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Abstract

A simple three-state system with two inputs is considered. The system’s controlla-
bility is determined using properties of vector-valued quadratic forms. The quadratic
structure is then used as the basis for the design of a homogeneous, discontinuous,
stabilising feedback controller. The paper should be seen as an attempt to relate con-
trollability of a system from a point to stabilisability of the system to the same point.
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1. Introduction

As is well-known, for any system for which it is possible to reach an equilibrium point
with open-loop controls from any nearby point, i.e., for systems that are locally asymp-
totically controllable, there exists a continuous control Lyapunov function [Sontag 1983,
Sontag and Sussmann 1995]. The matter of whether it is possible to stabilise a system
by feedback is then answerable if one can use a continuous Lyapunov function to design
stabilising feedback, as can be done fairly easily in the case of a differentiable control Lya-
punov function [Sontag 1989]. That this is indeed possible has been proved by Clarke,
Ledyaev, Sontag, and Subotin [1997], using ideas from nonsmooth analysis. Of course, the
biggest practical obstruction to the utility of these results is the determination of a control
Lyapunov function for a given example, or class of examples. Indeed, a reasonably fair
description of much of the present stabilisation literature would be that it consists of the
pursuit of classes of systems for which control Lyapunov functions can be found. Many
of these classes of systems possess control Lyapunov functions that are differentiable in a
(possibly punctured) neighbourhood of the equilibrium point, and so, by the theorem of

∗Professor, Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L
3N6, Canada
Email: ron@mast.queensu.ca, URL: http://www.mast.queensu.ca/~ron/
Research supported in part by a grant from the Natural Sciences and Engineering Research Council of
Canada.

†Professor, Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L
3N6, Canada
Email: andrew.lewis@queensu.ca, URL: http://www.mast.queensu.ca/~andrew/
Research supported in part by a grant from the Natural Sciences and Engineering Research Council of
Canada.

1

http://dx.doi.org/10.1109/CDC.2006.377783


2 R. M. Hirschorn and A. D. Lewis

Artstein [1983], are stabilisable a feedback control law that is C∞, except possibly at the
equilibrium point.

For systems that are only stabilisable by discontinuous state feedback, less work has been
done along the lines of determining control Lyapunov functions. In such cases, Artstein’s
Theorem ensures that the control-Lyapunov function will not be differentiable. In this paper
we initiate a discussion on the relationship between controllability and stabilisability. As is
well-known, controllability from a point does not allow one to conclude stabilisability using
smooth feedback to the same point (see the discussion in [Bacciotti 1992], for example).
However, there does not appear to be a systematic exploration of the relationship between
controllability from a point and stabilisation, possibly discontinuous, to the same point.
Indeed, the matter of connecting the geometric theory of controllability (e.g., using Lie
brackets, etc.) with the analytical theory of stabilisation (e.g., using control Lyapunov
functions) seems to be an important one that has not been touched upon in a significant
way. It is in this direction that we aim, in this paper, to make a small first step by using
the controllability properties of a system as a basis for the design of a feedback control law.

Briefly, in Section 2 we consider a class of systems that are locally controllable from a
given point. While it ought to be possible for this class of systems to describe a general
procedure for designing a discontinuous stabilising feedback, this appears to be somewhat
nontrivial. Therefore, in this preliminary paper we content ourselves with perhaps the
simplest example in this class. Even for this example, as can be seen, the state feedback is
quite complex.

2. A class of controllable systems

In this section we consider a class of systems that is controllable at “second-order.” The
systems we consider fall into the larger class considered by Hirschorn and Lewis [2002].
First we provide the details of the class of systems, then we indicate a general idea, using
homogeneity, for beginning the design of a stabilising state feedback. This will put us in
position, in Section 3, to design a stabilising feedback for one of the systems from the class.

2.1. The systems and their controllability. We consider a system whose state space is Rn,
and we partition Rn as Rm ×Rn−m. The states we then denote by (x,y) ∈ Rn ×Rn−m.
The governing equations we consider are

ẋ(t) = u(t)

ẏ(t) = Q(x(t)),
(2.1)

where u ∈ Rm is the control, and Q : Rm → Rn−m is a quadratic map, i.e., Q(λx) =
λ2Q(x) for all x ∈ Rm and λ ∈ R. This class of system is clearly not linearly controllable.
However, the following result describes the nonlinear controllability properties of the system,
and we refer the reader to [Hirschorn and Lewis 2002] for further details (see also [Basto-
Gonçalves 1998]). We denote by conv(S) denotes the convex hull of a set S, and by int(S)
the interior of S.

2.1 Theorem: Suppose that the controls for the system (2.1) take values in a subset U ⊂
Rm for which 0 ∈ int(conv(U)). Then the system (2.1) is small-time locally controllable
from (0,0) if and only if 0 ∈ int(conv(image(Q))).
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Based on this theorem on the controllability of the system (2.1), it seems reasonable
to assume that 0 ∈ int(conv(image(Q))) in order to ensure that (0,0) is stabilisable using
state feedback. Indeed, if 0 ̸∈ int(conv(image(Q))), then it is easy to see that the system
is not asymptotically controllable to (0,0), and so therefore not stabilisable by feedback of
any sort.

2.2. A general construction using homogeneity. In this section we outline some general
initial steps that reduce the stabilisation problem for the system (2.1) first to a sphere,
then to the product of a sphere with a disk. The initial assumption is that the state
feedback u : Rm × Rn−m → Rm has the property that the closed-loop system is invariant
under the action of R on Rm ×Rn−m given by Φ(s, (x,y)) 7→ (esx, e2sy). This means, in
language perhaps more familiar to control theoreticians, that we ask that the closed-loop
system be homogeneous with respect to some dilation. We refer the reader to [Kawski
1995] for a discussion of various notions of homogeneity, in particular, the group invariance
version we use here. In any case, since we are assuming the closed-loop system to be
invariant under the action Φ, its flow will drop to a flow on the set of orbits of the group
action, i.e., on the quotient space. Omitting the trivial orbit which is the origin, the orbits
are generally parabolic curves in Rm × Rn−m of the form R+ ∋ t 7→ (tx, t2y). In the
case of a point where y = 0, the orbit is then a line. In either case, again omitting the
trivial orbit at the origin, each orbit intersects an appropriate sphere in exactly one place,
so the set of orbits is parameterised by an (n − 1)-sphere. It is convenient to realise this
parameterisation explicitly by using a very particular submanifold of Rm × Rn−m that is
homeomorphic to a sphere, but is not the standard Euclidean sphere. The sphere we want is
defined by the following homogeneous norm: ρ : Rm×Rn−m → R : (x,y) 7→

√
∥x∥2 + ∥y∥,

where ∥·∥ is the standard Euclidean norm. The function ρ is distinguished by the fact
that it is an invariant function for the group action Φ. Thus, for example, level sets of
ρ are mapped to other level sets of ρ under the group action. For this reason, there is
a 1–1-correspondence between group orbits and points in the level set ρ−1(1). We shall
use the set ρ−1(1) as an explicit model for the set of orbits for the group action (again,
omitting the orbit (0,0)). The canonical projection onto the quotient is then given by
π : Rm ×Rn−m → ρ−1(1) : (x,y) 7→ (ρ(x,y)−1x, ρ(x,y)−2y).

Now, again assuming that the state feedback u is invariant under the group action Φ,
the closed-loop vector field will be π-related to a vector field on ρ−1(1), the model for the
quotient. Moreover, the vector field on ρ−1(1) is defined by (x,y) 7→ T(x,y)π(u,Q(x)),
for (x,y) ∈ ρ−1(1). A straightforward computation then gives the governing equations on
ρ−1(1) as

ẋ = − 1
2xŷ

TQ(x) + (Im − xxT )u,

ẏ = (In−m − yŷT )Q(x)− 2yxTu,
(2.2)

where ŷ is the unit vector, with respect to the standard norm in Rn−m, in the direction of
y.

A further simplification can be achieved by considering in more detail the geometry of
ρ−1(1). Note that this is not a submanifold of Rm ×Rn−m since it is not smooth at points
where y = 0. Therefore, the closed-loop vector field can be expected to have some poor
behaviour on the sphere

S = {(x,y) ∈ ρ−1(1) | y = 0}.



4 R. M. Hirschorn and A. D. Lewis

Indeed, as we will see with our explicit feedback law in Section 3, the differential equations
governing the trajectories will change when they pass through the set S. This motivates
removing the set S from the analysis, and treating it as a sort of boundary region for the
system. What then is the geometry of ρ−1(1) \S? If one thinks about it for a moment, the
variables x ∈ ρ−1(1) \ S take values in the unit disk

Dm(0) = {x ∈ Rm | ∥x∥ = 1}.

Moreover, for each point x ∈ Dm(0), there is associated a sphere’s worth of points y ∈
Rn−m with the property that (x,y) ∈ ρ−1(1). The radius of this sphere goes from a
maximum 1 when x = 0, and decreases to 0 as x approaches the boundary of Dm(0). It is
convenient, therefore, to normalise y to have unit radius to give an explicit diffeomorphism
of ρ−1(1)\S withDm(0)×Sn−m−1. This is accomplished with the diffeomorphism (x,y) 7→
(x, ŷ = y

∥y∥). Applying this change of coordinates to the equations (2.2), we get the
differential equations

ẋ = − 1
2xŷ

TQ(x) + (Im − xxT )u,

˙̂y = (In−m − ŷŷT )
Q(x)

1− ∥x∥2
,

(2.3)

which are valid for (x, ŷ) ∈ Dm(0)× Sn−m−1.
It is equations (2.3) that will form the starting point for our analysis of the example in

the next section.

3. A stabilising feedback law for a simple example

In this section we consider a simple example from the general class of systems represented
by equation (2.1). After presenting the system, we reduce it to the homogeneous sphere.
Then we present a control strategy based on our observations about the nature of the
reduced control system.

3.1. The system and its reduction to the homogeneous sphere. The example we consider
in this section is the special case of the system (2.1), where n = 3, m = 2, and Q(x1, x2) =
x21 − x22. The resulting differential equations are

ẋ1 = u1, ẋ2 = u2, ẏ = x21 − x22. (3.1)

It is easy to verify that 0 ∈ int(conv(image(Q))), so the system (3.1) is small-time locally
controllable from ((0, 0), 0) by Theorem 2.1. This is, in some sense, the simplest example
of a controllable system of the form (2.1).

In terms of the reduction of the system using homogeneity to the equations (2.3), we
note that, since n−m− 1 = 0, the second of equations (2.3) is trivial (Sn−m−1 = {−1, 1}).
Therefore, we only need reproduce the first of equations (2.3), and these are determined to
be

ẋ1 = ∓ 1
2x1(x

2
1 − x22) + (1− x21)u1 − x1x2u2,

ẋ2 = ∓ 1
2x2(x

2
1 − x22)− x1x2u1 + (1− x22)u2,

(3.2)

which should be thought of as a system on two copies, indexed by ±1, of the unit disk
D2(0, 0) in the (x1, x2)-plane. The “∓” in the first term on the right-hand side corresponds
to taking ŷ = +1 (this gives the minus sign) or ŷ = −1 (this gives the plus sign).
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Let us make some observations about the system (3.2).

1. At a point ((x1, x2), y) ∈ D2(0, 0)×{−1, 1}, the drift vector field points in the direction
±(x1, x2), i.e., either away from or towards the origin, depending on the sign of x21 − x22
and the sign of y. In Figure 1 we show the character of the drift vector field for the

fixed
points

Figure 1. Integral curves for the drift vector field onD2(0, 0) when
ŷ = −1 (left) and when ŷ = 1 (right)

cases ŷ = −1 and ŷ = 1.

2. The controls appear in the two equations like so:[
1− x21 −x1x2
−x1x2 1− x22

] [
u1
u2

]
.

The coefficient matrix has nonzero determinant in the interior of D2(0, 0), but the
determinant vanishes as (x1, x2) approaches the boundary of D2(0, 0). Thus the control
directions are arbitrarily specifiable in the interior of D2(0, 0).

3. On the boundary of D2(0, 0), the control vector field becomes tangent to the boundary.
Thus, at the boundary of D2(0, 0), one can only control the tangential component of
the flow, not the normal component.

Note that all of these observations are also valid for the general equations (2.3).

3.2. The stabilisation strategy. The objective of our stabilisation strategy is to shape
the closed-loop flow on the reduced space in such a way that it guarantees stability for the
unreduced flow. This idea is based on general discussions along these lines by Kawski [1991].
To understand our strategy, suppose that we have a state feedback u : Dm(0)× Sn−m−1 →
Rm for the reduced equations (2.3) on the homogeneous sphere. This then gives a state
feedback u : Rm ×Rn−m → Rm for the full system (2.1) by

u(x,y) = u(π(x,y)).

The resulting closed-loop system on Rm ×Rn−m is then, of course, invariant with respect
to the group action Φ. Therefore, equilibria for the reduced system on Dm(0) × Sn−m−1

correspond to group orbits that are also trajectories for the closed-loop system. Therefore,
it is of importance to describe the trajectories in Rm × Rn−m corresponding to equilibria
on Dm(0)× Sn−m−1.

The key to this is the following general result.
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3.1 Proposition: As in the preceding discussion, let u : Dm(0) × Sn−m−1 → Rm be
a state feedback for the reduced equations (2.3) on the homogeneous sphere, and let
u : Rm × Rn−m → Rm be the corresponding state feedback for the system (2.1). Let
(x0, ŷ0) ∈ Dm(0) × Sn−m−1 be an equilibrium point for the reduced closed-loop system
and let (x0,y0) be the associated point in ρ−1(1). Then the following statements hold:

(i) the corresponding closed-loop trajectory through (x0,y0) in the full state space Rm ×
Rn−m is given by t 7→ (eαtx0, e

2αty0), where 2αy0 = Q(x0);

(ii) the corresponding closed-loop trajectory through (x0,y0) in the full state space Rm ×
Rn−m tends to (0,0) if and only if yT

0 Q(x0) < 0.

Proof: Let t 7→ (x(t),y(t)) be the closed-loop trajectory for the system (2.1). Since this is
also the image of a one-parameter subgroup of R under the action Φ, we have x(t) = eαtx0

and y(t) = e2αty0 for some α ∈ R. Since ẏ(t) = Q(x(t)), the first part of the result easily
follows. The second part follows from multiplying the expression 2αy0 = Q(x0) on the left
by yT

0 . ■

The upshot of this result, when applied to our system (3.1), is that we should design the
closed-loop system on D2(0, 0)× {−1, 1} to only have equilibrium points in the regions in
Figure 1 where the integral curves for the reduced drift vector field are directed away from
the origin. More precisely, this suggests the following scheme for designing a stabilising
control law via the design of a state feedback for the reduced system.

3.2 Problem: Find a state feedback u : D2(0, 0) × {−1, 1} → R2 with the following prop-
erties.

(i) The closed-loop system onD2(0, 0)×{−1, 1} has a finite number of equilibrium points,
all occurring in a region where the integral curves of the reduced drift vector field are
directed away from (0, 0).

(ii) The ω-limit set of every point inD2(0, 0)×{−1, 1} consists of one of the finite number
of equilibrium points. That is to say, all trajectories tend to one of the equilibrium
points which correspond, in the full system (3.1), to trajectories which asymptotically
approach ((0, 0), 0). •

To obtain a solution to this problem, we employ a strategy as follows.

1. We break the homogeneous sphere D2(0, 0) × {−1, 1} into four regions as shown in
Figure 2.

2. In each region we ask that there be two equilibrium points located and with stability as
in Figure 2.

3. In each of the four regions, we ask that the dynamics be the gradient flow of a potential
function designed to have a minimum at the stable equilibrium, a maximum at the
unstable equilibrium, and to have boundary behaviour consistent with the fact that
we can only modify the tangential component of the closed-loop flow on boundary of
D2(0, 0)× {−1, 1}.

Of course, the difficult step is the last one, and indeed it is not a priori clear that it is
possible. However, it is possible, and one can easily check that the potential function

V3(x1, x2) = 3
(
−2 + x21 − 5x2

) (
−1 + x21 + x22

)2
+ 1

4

(
x21 − x22

) (
−5 + 3x21 + 3x22

)
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Region 2Region 1 Region 3

Region 4

Figure 2. The location of equilibria on D2(0, 0) × {−1, 1}. A ◦
means an unstable equilibrium and a • means a stable equi-
librium. The left figure corresponds to ŷ = −1 and the right
figure corresponds to ŷ = 1.
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Figure 3. A contour plot for V3. Darker regions correspond to
smaller values of the function.

has the desired properties in Region 3 in Figure 2. We show in Figure 3 a contour plot
for V3 so the reader can understand the character of the function. One then defines the
potential function in Regions 1, 2, and 3 by

V1(x1, x2) = V3(−x2, x2), V2(x1, x2) = V3(x2,−x1), V4(x1, x2) = V3(x1,−x2),

respectively. The resulting potential function defined on all of D2(0, 0)×{−1, 1} we denote
by V . Note that to obtain the controls, one simply sets the right-hand side of equation (3.2)
equal to − gradV , and then solves for the control. Because V is designed to have the
appropriate boundary behaviour, this procedure is well-defined. Of course, the function V
is not differentiable. However, at points of discontinuity of the derivative, one can make a
choice of one of the two possible limiting values for gradV .

In Figure 4 we show the closed-loop phase portrait on D2(0, 0)×{−1, 1}. Note that the
unstable equilibria indicated in Figure 2 are very close to the boundary of the disk, and so
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Figure 4. The closed-loop phase portrait for ŷ = −1 (left) and
ŷ = 1 (right)

are hard to see in Figure 4.
One can glue the two copies of the disk from D2(0, 0)×{−1, 1} along their boundary to

get a vector field on a manifold homeomorphic to the two-sphere. This vector field will have
discontinuities on the boundary where the gluing takes place, and also on the boundaries
between Regions 1 and 2, and between Regions 3 and 4. One needs to be careful about the
manner in which one defines solutions to these discontinuous vector fields. For example, if
one goes with the Filippov notion of a solution, there will be unwanted equilibria at the
origins of the disks. The resolution of this is to instead make an arbitrary choice for the
value of the vector field along the lines of discontinuity. One can then define solutions in the
sense of Carathéodory, and the difficulties of unwanted Filippov equilibria will be avoided.

In Figure 5 we show the obligatory simulation where the states decay to zero. Note that
the performance is not all that good, but this can be improved by changing the potential
function. In particular, it turns out that to achieve faster rates of exponential decay along
the homogeneous rays, one should move the stable fixed points in Figure 2 closer to the
boundary. Also, performance can be improved by making the potential well deeper at the
stable equilibria. However, these are design issues that are somewhat peripheral to what
we are trying to achieve here, which is to use the controllability structure as the basis for
the design of a stabilising feedback.

4. Extensions and future work

The immediate modest objective of the work we describe here is to design a stabilising
feedback for a general system of the type described by (2.1). Certain of the ideas used in
Section 3 to motivate our control strategy are also applicable to completely general systems
of the type of (2.1). However, the three-dimensional system we consider is special in at
least two ways.
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Figure 5. Simulation showing states and controls for an initial
condition of (1, 1, 1)

1. The reduced dynamics of (2.3) have no y-component for the example we consider. This
makes the matter of designing the feedback on the homogeneous sphere significantly
simpler than will be the case in general.

2. The quadratic function Q is surjective for our example. This is key because it allows
us, for every point y ∈ Rn−m, to find an x such that Q(x) = −λy for λ > 0. This is
an essential part of our control strategy. An example of a system for which Q is not
surjective is

ẋ1 = u1, ẋ2 = u2, ẋ3 = u3,

ẏ1 = x1x2, ẏ2 = x1x3, ẏ3 = x2x3.

For this system, it only holds for certain y’s that we can find an x such thatQ(x) = −λy



10 R. M. Hirschorn and A. D. Lewis

for λ > 0. This complicates the picture significantly.

Despite these two difficulties, it seems reasonable that one can generalise the control strategy
we present here. In so doing, one will arrive at explicit feedback stabilisers for a class of
systems which have interesting controllability properties.

And, as we mentioned in the introduction, one of the ideas of interest to us is to
investigate the relationship between controllability from a point and stabilisability to a
point. To this end, it would be useful to use the methodology we describe here to determine a
control Lyapunov function for the system. The potential function onD2(0, 0)×{−1, 1} gives
rise to a continuous, but not differentiable, control Lyapunov function on the homogeneous
sphere ρ−1(1). However, this does not extend to a control Lyapunov function for the full
system (3.1). However, perhaps it is possible to arrive at a corresponding control Lyapunov
function, using the geometric controllability structure of the system.

In any case, there certainly appears to be much progress to be made in understanding
the relationship between controllability and stabilisation.
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