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Abstract
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equation for the potential energy shaping that follows kinetic energy shaping.
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1. Introduction

Suppose that we have a mechanical system (not a control system yet) with a configura-
tion manifold Q, a kinetic energy metric G, and a potential energy function V . Equilibria
are then points q0 ∈ Q for which dV (q0) = 0, and an equilibrium q0 is stable if HessV (q0)
is positive-definite. If one has dissipation then, provided that the dissipation gives enough
“coupling,” one can additionally infer asymptotic stability of the equilibrium using the
LaSalle Invariance Principle. Moreover, one can get a good grip on the domain of attrac-
tion by considering the level sets of the potential function. The point is that a great deal
of the system’s behaviour follows from knowledge of the character of the potential function
V . We refer to the discussion in [Bullo and Lewis 2004, Section 6.2] for precise statements
and for references on the somewhat classical subject of stability of equilibria for mechanical
systems.

Now, if one has a control system and an unstable equilibrium q0, one may wish to sta-
bilise it using feedback. Since the stability properties of mechanical systems are generally
easy to understand, one might additionally wish to design the feedback so that the closed-
loop system is mechanical. There is a bit of a history to this approach. We do not attempt
an exhaustive review of the literature here, but rather an historical one. Potential shaping
for fully-actuated systems seems to date to [Takegaki and Arimoto 1981]. The situation in
the underactuated case was worked out by van der Schaft [1986], where one sees that “inte-
grability conditions” exist on the set of possible closed-loop potentials. If one additionally
allows for shaping of the kinetic energy then the class of systems that can be stabilised using
energy shaping is enlarged. The first papers in this direction seem to be [Bloch, Chang,
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Leonard, and Marsden 2001, Bloch, Leonard, and Marsden 2000] in the Lagrangian setting
and [Ortega, Spong, Gómez-Estern, and Blankenstein 2002] in the Hamiltonian setting. In
the Hamiltonian setting energy shaping is related to the extensive work on port controlled
Hamiltonian systems and passivity, and we do not attempt a review of this literature here.
A geometric formulation of the energy shaping method is given in [Auckly and Kapitanski
2002, Auckly, Kapitanski, and White 2000], and in the later of these papers the integrabil-
ity of the energy shaping partial differential equations, particularly the partial differential
equation for kinetic energy shaping, is discussed. Since these preliminary forays, there have
been a multitude of papers exploring specific parts of the method and its applications.
Again, we do not attempt a thorough review of this literature.

In this paper we are interested in the problem of potential energy shaping after kinetic
energy shaping has taken place. In terms of the stabilisation problem, this is the most
important part of the procedure, since it is through the shaping of the potential energy
that stability is achieved. In some sense, all other parts of the energy shaping method are
simply present to facilitate the shaping of the potential energy. As we shall see, the shaping
of the potential energy after one does shaping of the kinetic energy leads naturally to a
partial differential equation. The obvious questions are:

1. Does this partial differential equation have solutions?

2. If it does have solutions, what do they look like?

In previous work [Lewis 2004] we answered the second of these questions. In this paper
we address the first using the integrability theory for linear partial differential equations
developed in [Goldschmidt 1967a]. (We actually use a small extension of the linear theory
that follows from the more general nonlinear theory reported in [Goldschmidt 1967b].)

This theory of integrability is rather complicated and it is simply not possible to provide
any sort of useful review in this paper; it seems as if there is no way around this. We therefore
simply suppose that the reader is familiar with the theory, or is willing to spend the time to
learn it. Some places to start include the book of Pommaret [1978], Chapter IX of Bryant,
Chern, Gardner, Goldschmidt, and Griffiths [1991], and (particularly for an introduction
to involutivity of symbols) Chapter 4 of [Ivey and Landsberg 2006].

We do point out, however, that it is possible to understand the meaning of all of the
words in the main result, Theorem 2.3, even if one does not understand at all the Gold-
schmidt theory of integrability of partial differential equations. Moreover, the conditions of
Theorem 2.3 are eminently checkable.

2. Statement of problem and main result

In this section we provide the technical backdrop to the problem, and as quickly as
possible reduce the problem to a partial differential equation. We refer to the references
for more details on the energy shaping method in general. For background on geometric
control theory for mechanical systems in the approach we use here, we refer to [Bullo and
Lewis 2004]. We assume the reader to be familiar with this geometric approach.

2.1. Definitions. We shall always assume geometric objects to be at least of class C∞.
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A simple mechanical control system is a quadruple Σ = (Q,Gol, Vol,F =
{F 1, . . . , Fm}), where Q is the configuration manifold for the system, Gol is the kinetic
energy metric, Vol is the potential energy function, and F is a collection of one-forms on
Q. The subscript “ol” means “open-loop.” We will also be using closed-loop versions of
the kinetic energy metric and potential energy function. The equations governing a simple
mechanical control system are

Gol

∇γ′(t)γ
′(t) = − gradVol(γ(t)) +

m∑
a=1

ua(t)G♯
ol

◦ F a(γ(t)),

where G♯
ol : T

∗Q → TQ is the musical isomorphism associated with G (we will also use
the other such isomorphism, G♭

ol : TQ → T∗Q). We denote by F the codistribution on Q
generated by the one-forms F .

The objective of energy shaping is to find a state feedback u : TQ → Rm, defining an
F-valued map F on TQ by

F (vq) =

m∑
a=1

ua(vq)F
a(q),

such that the closed-loop system equations are those of a mechanical system with kinetic
energy metric Gcl and potential energy function Vcl. This means that we require that

Gol

∇γ′(t)γ
′(t) + gradVol(γ(t))−G♯

ol
◦ F (γ′(t)) =

Gcl

∇γ′(t)γ
′(t) + gradVcl(γ(t)).

As described in [Lewis 2004], we find the state feedback F in two stages. Define Λcl = G
♭
ol

◦

G♯
cl, noting that this is a vector bundle automorphism of T∗Q. We first find Fkin : TQ → F

with the property that

G♯
ol

◦ Fkin(γ
′(t)) =

Gcl

∇γ′(t)γ
′(t)−

Gol

∇γ′(t)γ
′(t),

and then we find Fpot : Q → F with the property that

Fpot(γ(t)) = Λcl ◦ dVcl(γ(t))− dVol(γ(t)).

In this paper we assume that some kinetic energy shaping has already been performed and
that we have in this manner arrived at a closed-loop kinetic energy metric Gcl. The set
of possible closed-loop kinetic energy metrics can be enlarged by allowing the addition of
gyroscopic terms in the state feedback. We do not address this explicitly here, but refer
to [Blankenstein, Ortega, and van der Schaft 2002, Chang, Bloch, Leonard, Marsden, and
Woolsey 2002, Lewis 2004] for various interpretations of the gyroscopic term in the state
feedback. For the purposes of the discussion here, suffice it to say that we allow that Gcl

has been achieved by the use of gyroscopic terms in the feedback. All we care about is that
we have at hand some open-loop metric Gol and some closed-loop metric Gcl.

2.2. Reduction to a partial differential equation. Given two kinetic energy metrics Gol

and Gcl, we take Λcl = G
♭
ol

◦ G♯
cl as above. We define a codistribution Fcl = Λ−1

cl (F). For a
section F of F we denote by Fcl = Λ−1

cl
◦ F the corresponding section of Fcl. We suppose

that we have an open-loop potential function Vol. Motivated by our presentation of the
energy shaping problem above we have the following definition.
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2.1 Definition: A section F of F is a (Gol,Gcl)-potential energy shaping feedback if
there exists a function Vcl on Q such that

F (q) = Λcl ◦ dVcl(q)− dVol(q), q ∈ Q. •

To convert the problem of finding potential energy shaping feedbacks into a partial
differential equation in the sense of Goldschmidt [1967a] we use the language of jet bundles.
We refer to [Saunders 1989] and [Pommaret 1978, Chapter 2] for background on jet bundles.
For a vector bundle π : E → X, we denote by JkE the vector bundle of k-jets of sections of E.
If ξ is a section of E we denote by jkξ the corresponding section of JkE. If τ : F → X is another
vector bundle, a kth-order linear differential operator is a map D : Γ(E) → Γ(F)
between the sections of E and F such that there exists a vector bundle map Φ: JkE → F
over idX for which D (ξ) = Φ(jkξ).

Now we assume that F is a vector bundle; this is a necessary regularity assumption. We
think of QR ≜ Q×R as a trivial vector bundle over Q with canonical projection π : QR → Q.
Let us denote a typical section of QR by V , as these will be potential functions in our setup.
We identify sections of QR with functions on Q in the obvious way; namely, given a function
V the corresponding section is q 7→ (q, V (q)). Define an T∗Q-valued differential operator
Dd on QR by Dd(V ) = dV . Since Dd is a first-order differential operator, there is a
vector bundle map Φd : J1QR → T∗Q such that Dd(V )(q) = Φd(j1V (q)) for every q ∈ Q.
Explicitly, in coordinates, this mapping is given by (qi, V, V,j) 7→ (qi, V,j), where V,j means
the partial derivative of V with respect to qj , thinking of this as a coordinate for J1QR .

Let us abbreviate αcl = Λ−1
cl

◦dVol. We let πFcl
: T∗Q → T∗Q/Fcl the canonical projection

onto the quotient vector bundle.
We then define

Rpot = {p ∈ J1QR | πFcl
◦ Φd(p) = πFcl

◦ αcl(q), π1(p) = q},

where π1 : J1QR → Q is the canonical projection. The subset Rpot is now a partial differential
equation in the sense of Goldschmidt [1967a], and so we are in a position to apply the
integrability theory from that paper. Moreover, the following obvious result establishes the
explicit correspondence between solutions to Rpot and potential energy shaping feedbacks.

2.2 Proposition: A section F of F is a (Gol,Gcl)-potential energy shaping feedback if and
only if F = Λcl ◦ dV − dVol for a solution V to Rpot.

2.3. Statement and discussion of main result. Before we state the result we first introduce
some convenient notation. If Λ ⊂ T∗Q is a subbundle we let I(Λ) be the ideal generated by
Λ in the set

∧
(T∗Q) of exterior forms on Q. For k ∈ Z let Ik(Λ) = I(Λ) ∩

∧k(T∗Q).
With this notation, we have the following result.

2.3 Theorem: Let Σ = (Q,Gol, Vol,F ) be an analytic simple mechanical control system
and let Gcl be an analytic Riemannian metric. Let p0 ∈ Rpot and let q0 = π1(p0). Assume
that q0 is a regular point for F and that Fcl is integrable in a neighbourhood of q0. Then
the following statements are equivalent:

(i) there exists a neighbourhood U of q0 and an analytic (Gol,Gcl)-potential energy shap-
ing feedback F defined on U which satisfies Φd(p0) = Fcl(q0) + αcl(q0);

(ii) there exists a neighbourhood U of q0 such that dαcl(q) ∈ I(Fcl,q) for each q ∈ U.
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2.4 Remarks: 1. The regularity condition on F in the hypotheses can be thought of as
being of secondary importance. For example, the subset of Q where this condition holds
is open and dense in the C∞ case, and possesses a complement that is a strict analytic
subset of Q in the analytic case. That being said, if one finds oneself at a point where
this regularity assumption does not hold, then the theorem is of no help.

2. One of the interesting features of the theorem is that it shows, or more precisely its
proof shows, that there are “compatibility conditions”—namely the conditions that Fcl

be integrable and that dαcl ∈ Γ(I2(Fcl))—needed to ensure the existence, even locally,
of (Gol,Gcl)-potential energy shaping feedback. It then becomes of interest to know
which closed-loop kinetic energy metrics allow for potential energy shaping, since it can
be expected that there will be some for which the compatibility conditions are not met.
Indeed, the condition that dαcl ∈ Γ(I(Fcl)) is one that will generally not hold.

3. Of course, Theorem 2.3 does not give solutions to the potential energy shaping partial
differential equation. What it does, in actuality, is indicate that Taylor series solutions
can be constructed “order-by-order.” This is the idea behind the theory of formal
integrability. •
To illustrate the hypotheses of the theorem, let us show how the potential shaping result

of van der Schaft [1986] follows from it.

2.5 Corollary: Let Σ = (Q,G, Vol,F ) be an analytic simple mechanical control system, let
p0 and let q0 = π1(p0). Assume the following:

(i) q0 is a regular point for F;

(ii) F is integrable in a neighbourhood of q0.

Then there exists an (Gol,Gol)-potential energy shaping feedback F defined on U which
satisfies Φd(p0) = F (q0).

Proof: This follows immediately since Fcl = F and since dαcl = 0 by virtue of the fact that
Gcl = Gol. ■

2.6 Remark: The converse of the corollary is true as well. That is to say, the only potential
shaping feedbacks are those with values in the largest involutive codistribution contained
in F. This is proved by van der Schaft [1986]. It is not known to the author whether
the compatibility condition of integrability of Fcl in Theorem 2.3 is necessary as well as
sufficient for the existence of potential energy shaping feedbacks. The author conjectures
that this is so, under suitable regularity assumptions on the codistributions involved. •

2.4. Conclusions and open problems. Since our proof is somewhat technical we strictly
relegate it to the end of the paper and give our closing remarks here for convenience.

Theorem 2.3 gives sufficient conditions for the existence of potential energy shaping
feedback after one has already done kinetic energy shaping. We refer to [Lewis 2004,
Proposition 7] for a discussion of the nature of the set of all potential energy shaping
feedbacks after one has found an initial one (for example, using Theorem 2.3).

Much basic work remains to be done on the problem of energy shaping. Let us list some
of the fundamental open problems.
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1. Describe the set of achievable closed-loop kinetic energy metrics. This is discussed
by [Auckly and Kapitanski 2002, Auckly, Kapitanski, and White 2000]. However, a
fully functional (or even elegant) geometric description of the solutions of the kinetic
energy shaping partial differential equations has so far eluded researchers in this area.
Also, the matter of what can be additionally achieved with the addition to the problem
of gyroscopic forces has not been even touched upon in a fundamental way.

2. Describe the set of all closed-loop potentials achievable by allowing the closed-loop poten-
tials to vary over their achievable set. This is the “holy grail” of the stabilisation prob-
lem, since in the stabilisation problem one wants to know whether the set of closed-loop
potentials contains one for which HessVcl(q0) is positive-definite at a desired equilibrium
q0.

3. Apply the theory to nontrivial examples. In particular, as is explained in [Lewis 2004],
the case where F has codimension 1 is degenerate, although this case seems to be the
source of many of the problems used to illustrate the method of energy shaping [Acosta,
Ortega, Astolfi, and Mahindrakar 2005]. Examples where F has codimension greater
than 1 are therefore of real interest if one is to understand the method and its limitations.

3. Proof of main result

In this section we prove Theorem 2.3. Our proof relies on the formal theory of partial
differential equations developed for linear equations by Goldschmidt [1967a]. This theory
has a strongly algebraic character. As part of our presentation, therefore, there is an
algebraic component. To the reader unfamiliar with the theory of Goldschmidt [1967a]
(and others), the algebraic part of the proof might seem completely unmotivated.

3.1. The algebraic part of the proof. If V is a R-vector space, we denote by ⊗k
j=1V

∗,

Sk(V∗), and
∧k(V∗) the vector spaces of (0, k)-tensors, symmetric (0, k)-tensors, and skew-

symmetric (0, k)-tensors, respectively, on V. By
∧
(V∗) we denote the set of all skew-

symmetric tensors.
We suppose that V is a finite-dimensional R-vector space with V∗ its dual space. We

let E and F be subspaces of V with the property that V = E ⊕ F. We denote the corre-
sponding decomposition of V∗ as V∗ = E∗⊕F∗. The decomposition also induces direct sum
decompositions of the vector spaces ⊗k

j=1V
∗, Sk(V∗), and

∧k(V∗). For example, we have∧2(V∗) =
∧2(E∗)⊕

∧2(F∗)⊕ (E∗ ⊗ F∗)

and
S2(V∗) = S2(E∗)⊕ S2(F∗)⊕ (E∗ ⊗ F∗).

(One can think of these decompositions as they manifest themselves for skew-symmetric
(resp. symmetric) matrices. If one writes such a matrix in four blocks, one has two skew-
symmetric (resp. symmetric) diagonal blocks, and the two off-diagonal blocks differ by
a transpose, so it suffices to determine only one of these.) Using these decompositions
we have natural inclusions of, for example, Sk(F∗) and

∧k(F∗) in Sk(V∗) and
∧k(V∗),

respectively. Moreover, the images of these inclusions have natural complements, so there
are also natural projections onto the subspaces. We shall take all of these inclusions and
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projections for granted in our discussions to follow. We shall also use the decomposition
V = E⊕F, and the induced decompositions of the tensor algebra, to identify quotients with
complements. We will do all of this without explicit indication.

We denote by σ : V∗ → E∗ the projection onto the first factor. Explicitly,

σ(α)(u1) = α(u1 ⊕ 0), u1 ∈ E.

We let ∆: S2(V∗) → V∗ ⊗ V∗ be the canonical inclusion and define σ1 : S
2(V∗) → V∗ ⊗ E∗

by σ1 = (idV∗ ⊗σ) ◦ ∆. Thus σ1 is the first prolongation of σ. Explicitly,

σ1(B)(u1 ⊕ u2, v1) = B(u1 ⊕ u2, v1 ⊕ 0)

for u1, v1 ∈ E and u2 ∈ F. Since B is symmetric this is equivalent to

σ1(B)(u1 ⊕ u2, v1) = B(u1 ⊕ 0, v1 ⊕ 0). (3.1)

We shall be interested in the kernels and cokernels of the maps σ and σ1. For σ we have
the following result.

3.1 Lemma: We have ker(σ) = F∗ and coker(σ) = 0.

Proof: This is obvious. ■

To state the analogous result for σ1 we need some notation. For a subspace Λ of V∗, let
I(Λ) be the ideal generated in

∧
(V∗) by Λ and let I2(Λ) = I(Λ) ∩

∧2(V∗).
We have the following result for σ1.

3.2 Lemma: We have ker(σ1) = S2(F∗) and coker(σ1) = I2(E
∗).

Proof: By definition, if B ∈ ker(σ1) then

B(u1 ⊕ 0, v1 ⊕ 0) = 0, u1, v1 ∈ E.

Thus B ∈ S2(F∗). We have image(σ1) = S2(E∗) by (3.1). Since

V∗ ⊗ E∗ = (E∗ ⊗ E∗)⊕ (F∗ ⊗ E∗) = S2(E∗)⊕
∧2(E∗)⊕ (F∗ ⊗ E∗)

and since
I2(E

∗) =
∧2(E∗)⊕ (F∗ ⊗ E∗),

it follows that coker(σ1) = I2(E
∗) as claimed. ■

Let us define G = F∗ ⊂ V∗ and G1 = S2(F∗) ⊂ S2(V∗). We note that, by definition of
σ1, G1 is the first prolongation of G. The following lemma gives an important property of
the subspace G.
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3.3 Lemma: The subspace G is an involutive subspace of V∗ ≃ V∗ ⊗R.

Proof: Let {v1, . . . , vn} be a basis for V with the property that {v1, . . . , vm} forms a basis
for F∗. We claim that this basis is quasi-regular which will show involutivity. We have

G = ker(σ) = F∗ ≃ Rm,

Gv1 = {α ∈ G | v1 α = 0} ≃ Rm−1,

Gv1,v2 = {α ∈ G | v1 α = v2 α = 0} ≃ Rm−2,

...

Gv1,...,vm−1 = {α ∈ G | v1 α = · · · = vm−1 α = 0} ≃ R.

Note that Gv1,...,vk = {0} for k ≥ m. We have

dim(G) +
m−1∑
j=1

dim(Gv1,...,vj ) =
m∑
j=1

j = 1
2m(m+ 1) = dim(G1),

giving involutivity, as desired. ■

(In fact, of course, every subspace of V∗ ⊗ R is involutive, and this may be proved
exactly as was the lemma.)

3.2. The rest of the proof. The sufficiency for existence of potential energy shaping
feedbacks of the condition dαcl ∈ Γ(I2(Fcl)) is the most difficult part of the theorem. To
prove this we prove the formal integrability of the partial differential equation Rpot. It then
follows from a general result of Malgrange [1972a, 1972b] that analytic solutions exist as
stated.

Following [Pommaret 1978, Corollary 2.4.9] we have the following result which was
proved by Goldschmidt [1967b]. We denote by ρ1(Rpot) ⊂ J2QR the first prolongation of
Rpot.

3.4 Theorem: The partial differential equation Rpot is formally integrable in a neighbour-
hood of q0 if

(i) it has an involutive symbol at every point in that neighbourhood, if

(ii) the first prolongation of the symbol is a vector bundle, and if

(iii) ρ1(Rpot) projects surjectively onto Rpot in that neighbourhood.

In the remainder of the proof we will let E be a subbundle of T∗Q which is complementary
to Fcl: T

∗Q = E⊕Fcl. Moreover, we shall also assume that E is integrable. This is possible
in a neighbourhood U1 of q0 since q0 is a regular point for Fcl. (Explicitly, since Fcl is
integrable, choose coordinates (q1, . . . , qn) in a neighbourhood U1 of q0 such that Fcl,q =
spanR(dq

1(q), . . . , dqm(q)) for each q ∈ U1. Then define Eq = spanR(dq
m+1(q), . . . , dqn(q))

for each q ∈ U1.) We denote the projection onto E by PE : T
∗Q → E.

Note that this gives a corresponding direct sum decomposition TQ = coann(Fcl) ⊕
coann(E). We shall use this decomposition below without explicit reference. As we did in
Section 3.1, we shall also suppose that this decomposition gives rise to decompositions of
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the tensor algebra, and we shall use these decompositions to give explicit inclusions and
projections from and onto various subspaces of tensors.

If we identify E and T∗Q/Fcl in the natural way then PE is just the representation of
πFcl

under this identification. Let us define Φpot : J1QR → E by Φpot = PE ◦ Φd. Thus we
have

Rpot = {p ∈ J1QR | Φpot(p) = PE ◦ αcl(q), q = π1(p)}.

Let us first determine the symbol G(Rpot) for Rpot.

3.5 Lemma: We have G(Rpot) = Fcl.

Proof: Note that G(Rpot) = ker(σ(Φpot)), where σ(Φpot) is the symbol of Φpot. A direct
computation using the definition of Φpot gives

σ(Φpot)(α)(u1) = α(u1 ⊕ 0).

By Lemma 3.1 our claim about G(Rpot) follows. ■

From the preceding lemma and Lemma 3.3 we know that G(Rpot) is involutive.
Let us give the first prolongation of G(Rpot), which we denote by ρ1(G(Rpot)).

3.6 Lemma: We have ρ1(G(Rpot)) = S2(Fcl).

Proof: We make the following observations:

1. G(Rpot)q is the kernel of the map σ used in Section 3.1 if we take V∗ = T∗
qQ and

F∗ = Fcl,q;

2. the map σ1 in Section 3.1 is the first prolongation of σ.

An application of Lemma 3.2 gives the result. ■

We can then see that the first prolongation of G(Rpot) is a vector bundle on the open
subset U2 of Q on which Fcl is a vector bundle. Clearly q0 ∈ int(U2).

We have now to verify only the third of the hypotheses of Theorem 3.4.
Let K = coker(σ1(Φpot)) and denote by τ the canonical projection from T∗Q⊗ E to K.
Following [Pommaret 1978, page 69] we have the following commutative and exact

diagram:

0

��

0

��
S2(T∗Q)

��

σ1(Φpot) // T∗Q⊗ E
τ //

��

K // 0

0 // ρ1(Rpot) //

��

J2QR
ρ1(Φpot) //

��

J1E

��
0 // Rpot

// J1QR

��

Φpot // E

��
0 0
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All unmarked arrows are either canonical inclusions or canonical projections. We define
a map κ from Rpot to K as follows. Let p ∈ Rpot project to q ∈ Q. Then Φpot(p) =
PE ◦ αcl(q). Choose p′ ∈ J2QR projecting to p and define ω = ρ1(Φpot)(p

′) ∈ J1E. Then,
by commutativity of the diagram, ω projects to Φpot(p) = PE ◦ αcl(q) ∈ E. We then take
κ(p) = τ(ω − j1αcl(q)). One can easily show that this definition of κ is independent of
the choice of p′. Pommaret [1978, Theorem 2.4.1] shows that p lies in the image of the
projection of ρ1(Rpot) to Rpot if and only if κ(p) = 0.

Let us give a way of explicitly constructing κ. In the construction we identify sections
of QR with functions on Q in the obvious way. Let p ∈ Rpot. We let V be a section of QR
such that j1V (q) = p. Thus PE ◦ dV (q) = PE ◦ αcl(q). Then define p′ = j2V (q) so that

ρ1(Φpot)(p
′) = j1(PE ◦ dV )(q)

by definition of ρ1(Φpot). Then we have

κ(p) = τ(j1(PE ◦ dV )(q)− j1(PE ◦ αcl)(q)).

To complete the proof, let (q1, . . . , qn) be coordinates for which

Fcl,q = spanR(dq
1(q), . . . , dqm(q)), Eq = spanR(dq

m+1(q), . . . , dqn(q))

in some neighbourhood of q0. Let us adopt the convention that indices in the set {1, . . . , n}
will be denoted by j and k, indices in the set {1, . . . ,m} will be denoted by a and b, and
indices in the set {m+1, . . . , n} with be denoted by r and s. In these coordinates we write
αcl = αjdq

j so that

dαcl =
(∂αk

∂qj
− ∂αj

∂qk

)
dqj ∧ dqk, j < k.

The assumption that dαcl ∈ Γ(I2(Fcl)) is equivalent in coordinates to

∂αr

∂qs
=

∂αs

∂qr
, r, s ∈ {m+ 1, . . . , n}. (3.2)

We also have

PE ◦ dV =
∂V

∂qr
dqr, PE ◦ αcl = αrdq

r.

Now let V be such that j1V (q0) = p0. Since τ is the projection onto the cokernel of σ1(Φpot),
we have κ(p) = 0 if and only if

j1(PE ◦ dV )(q0)− j1(PE ◦ αcl)(q0) ∈ image(σ1(Φpot)) = S2(E).

In jet bundle coordinates this condition reads

∂2V

∂qr∂qs
(q0)−

∂αs

∂qr
(q0) =

∂2V

∂qs∂qr
(q0)−

∂αr

∂qs
(q0), r, s ∈ {m+ 1, . . . , n}.

However, this identity does indeed hold by (3.2). This shows that, if dαcl ∈ Γ(I2(Fcl)), then
there exists a (Gol,Gcl)-potential energy shaping feedback F , defined in a neighbourhood
of q0, such that p0 = Fcl(q0) + αcl(q0).

The converse is straightforward. We use the coordinates (q1, . . . , qn) from above. If F
is a (Gol,Gcl)-potential energy shaping feedback defined in a neighbourhood U of q0, then
there exists a function V : U → R such that ∂V

∂qr (q) = αr(q), r ∈ {m + 1, . . . , n}, for all
q ∈ U. It then immediately follows by differentiating with respect to qs, s ∈ {m+1, . . . , n},
that (3.2) holds on U. But this is exactly the condition that dαcl ∈ Γ(I2(Fcl)).
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Ortega, R., Spong, M. W., Gómez-Estern, F., and Blankenstein, G. [2002] Stabilization of a
class of underactuated mechanical systems via interconnection and damping assignment,
Institute of Electrical and Electronics Engineers. Transactions on Automatic Control,
47(8), pages 1218–1233, issn: 0018-9286, doi: 10.1109/TAC.2002.800770.

Pommaret, J.-F. [1978] Systems of Nonlinear Partial Differential Equations and Lie Pseu-
dogroups, number 14 in Mathematics and its Applications, Gordon & Breach Science
Publishers: New York, NY, isbn: 978-0-677-00270-5.

Saunders, D. J. [1989] The Geometry of Jet Bundles, number 142 in London Mathematical
Society Lecture Note Series, Cambridge University Press: New York/Port Chester/-
Melbourne/Sydney, isbn: 978-0-521-36948-0.

Takegaki, M. and Arimoto, S. [1981] A new feedback method for dynamic control of manipu-
lators, Transactions of the ASME. Series G. Journal of Dynamic Systems, Measurement,
and Control, 103(2), pages 119–125, issn: 0022-0434, doi: 10.1115/1.3139651.

van der Schaft, A. J. [1986] Stabilization of Hamiltonian systems, Nonlinear Analysis.
Theory, Methods, and Applications, 10(10), pages 1021–1035, issn: 0362-546X, doi:
10.1016/0362-546X(86)90086-6.

https://doi.org/10.1109/CDC.2004.1429552
http://projecteuclid.org/euclid.jdg/1214430640
http://projecteuclid.org/euclid.jdg/1214430640
http://projecteuclid.org/euclid.jdg/1214430822
https://doi.org/10.1109/TAC.2002.800770
https://doi.org/10.1115/1.3139651
https://doi.org/10.1016/0362-546X(86)90086-6

	Introduction
	Statement of problem and main result
	Definitions.
	Reduction to a partial differential equation.
	Statement and discussion of main result.
	Conclusions and open problems.

	Proof of main result
	The algebraic part of the proof.
	The rest of the proof.

	References

