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1. Introduction

Before I get to the actual writing of this paper, let me say a few words about the manner
and spirit in which it is written. Normally when writing technical articles I try to be rigorous
and precise, giving clear definitions, stating clear theorems, etc. However, I believe that
this should not be the tone of this article, given the intent of the special issue for which it
is being written. Therefore, I make no claims of the article being precise, rigorous, or even
remotely self-contained. Readers looking for a summary of differential geometric methods
in mechanics will not find it here. Many such summaries have been written, and many
of them are good. Moreover, many books have been written on the topic of differential
geometric modelling of mechanical systems, and many of these are good. A reader who
has an inkling that they want to learn the differential geometric method will already have
ventured into this part of the literature, so it seems pointless to simply reproduce it, or a
small part of it, here.

Instead I aim to give the reader some insights into why I think differential geometric
modelling is important. In doing so I will (1) make free use of intuitive “definitions” of
concepts and (2) make free use of terminology and notation that I have not defined, but is
hopefully either clear or for which the absence of a precise definition is inobtrusive. Thus
the paper should not be read as if it is a source of technical information, but rather as an
exposition about technical information that can be found elsewhere.

One of my hopes for this article is that it will show that there are real advantages to
be had from the differential geometric techniques of modelling and control of mechanical
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systems. Consistent with this, I will also make the point that there are disadvantages to not
using differential geometric techniques. Moreover, I will illustrate this latter point through
particular instances. Therefore, the article will be, in a very few places I hope, somewhat
provocative. In keeping with this, I have decided to write the article in a less formal and
more personal style.

That all out of the way, let me get to the actual substance of the paper. The most
common feedback I get from applied researchers not familiar with the mathematics I use
is (1) “I do not understand your notation” and (2) “I am not sure you are getting any mileage
from all of the mathematics.” In this paper I will attempt to address these concerns.

First let me address the notation matter. I am sympathetic to this criticism in that I am
certain that some parts of differential geometric notation seem almost intentionally cryptic
if one is not used to them. I understand from my own experience that these notational
issues can be a serious obstruction to understanding something new. However, my own
experience also suggests that sometimes notation can be a placeholder for ideas, and it is
the ideas behind the notation that should be focussed upon. I would, therefore, caution
against disregarding something as being “mere notation” without taking the time to see
whether the notation is actually a manifestation of something real. The affine connection
framework for mechanics that I will review in this paper certainly makes use of notation
that will be unfamiliar to those with a more classical mechanics background. However, I
think that the framework brings with it ideas that can be useful; the notation is merely a
consequence of the existence of these ideas.

The other matter—that of whether differential geometric methods actually contribute
anything in practice—has real substance, and it is to this matter that this paper is primarily
addressed. There is wonderful elegance and clarity in the differential geometric formulation
of mechanics. Much of the work done in the area of overlap between differential geometry
and mechanics—indeed, almost all of it until, maybe, the past fifteen years—has been in
understanding the structure of the mathematical models of the mechanics. While such
research is certainly justified on intellectual grounds by its outcome, to an engineer looking
for solutions to specific problems, it is not clear that the differential geometric formulation
contributes to these ends. Thus any skepticism that might be felt towards differential
geometric techniques is justified, at least until it is clearly shown by people like me that
these techniques contribute towards the solution of problems that are of interest. What I will
try to do in this paper is indicate some of the kinds of problems where differential geometric
ideas have made a clear and decisive contribution. I will argue that this contribution might
arise in two ways.

1. It is sometimes the case that, merely by formulating a problem in differential geometric
language, the right questions reveal themselves. This is an often overlooked contribution
of precise mathematical formulations in general. In solving a problem it is often the
question that is the real problem. Sometimes, once one has the right question, the
problem either (a) solves itself or (b) reveals itself to be, in a precise way, impossible.
For either eventuality, knowing the right question is much more than half the battle.

2. Sometimes the question one is asking is perfectly clear, and it is the solution that is the
real problem. In some such cases (but definitely not all!) differential geometric methods
are just the thing, and can lead one to unexpectedly simple solutions.

I should make some effort to position what I say in this paper relative to the growing
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volume of literature on differential geometric methods for control of mechanical systems.
It is impossible to give an accurate overview of the entirety of this research area, and I
will not attempt to do so. Instead I will identify research directions that have achieved a
somewhat polished state. Probably the first serious progress in uniting geometric mechan-
ics and geometric control theory was made along Hamiltonian lines. The port-controlled
Hamiltonian approach is representative of this, and a huge amount of work has been done
here. I refer to the papers of Dalsmo and van der Schaft [1998] and van der Schaft [2000]
as representative of this work. A book that allies this Hamiltonian approach with topics of
interest to readers of this journal is that of Stramigioli [2001].

Another significant body of research, this connected firmly with the origins of geometric
mechanics, is that undertaken by researchers including John Baillieul, Anthony Bloch,
Peter Crouch, P. S. Krishnaprasad, Naomi Leonard, Jerry Marsden, and Dmitry Zenkov.
An account of some of this work can be found in the recent book of Bloch [2003].

The approach to mechanics and control taken in this paper is the one developed in detail
in my book [Bullo and Lewis 2004] coauthored with Francesco Bullo from the University of
California, Santa Barbara. In this book we develop from “first principles” an approach to the
modelling of mechanical systems using Riemannian and affine differential geometry. After
this we outline some of the control problems that can be addressed using the differential
geometric modelling techniques. I will not attempt to summarise the content of this book.
One of the aims, instead, is to try to give the reader an idea of whether reading this book
is worth their effort. For some readers I believe it will be worth the effort, but for others it
may not be.

2. Modelling mechanical systems using affine differential geometry

In this section I present a quick overview of Chapter 4 of [Bullo and Lewis 2004]. The
intention is to introduce the major mathematical players in the affine differential geometric
formulation of mechanics. A novice reader expecting to read this section and walk away
understanding affine differential geometry and its use in mechanics will be disappointed.
The fact of the matter is that, if you are starting with only scant knowledge of differential
geometry, there is simply no way one can appreciate a geometric formulation of mechanics
in an afternoon. It will take a significant investment of effort and, more importantly, a
probable abandoning of certain preconceptions learned during the course of a more classical
mechanics education. Thus, what I attempt to do in this section is alert the reader to the
“brute facts” of a geometric formulation of mechanics. These are the things that they will
have to come to grips with in order to merely get off the ground.

2.1. The configuration manifold. One of the main reasons why differential geometry is
an effective tool for formulating mechanics is that mechanical systems evolve naturally on
a configuration space that is a manifold. That is to say, the set of configurations of a
mechanical system is in natural 1–1 correspondence with a set that has the structure of a
differentiable manifold; this manifold is called the configuration space and typically denoted
by Q. This idea is stated clearly by Bullo and Lewis [2004].

At this point I could define what a manifold is, but this seems pointless since this
definition can be found in many places, including in [Bullo and Lewis 2004]. Moreover, the
reader will probably have a good idea, or at least some intuition, about what a manifold is.
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Instead, therefore, let me indicate why the notion of a manifold is important in robotics.
The reader is surely familiar with the fact that the configurations of a rigid body fixed
at a point in some inertial frame are in 1–1 correspondence with the set SO(3) of 3 × 3
orthogonal matrices with determinant 1. What is the best way to view SO(3)? Some choose
to parameterise SO(3) with Euler angles. This makes it appear as though SO(3) is some
subset of 3-dimensional Euclidean space, although clearly it is not. Other representations of
SO(3) are used (e.g., quaternion representations) to attempt to get a handle on SO(3). But
from my point of view, SO(3) is a manifold and that is that. (Actually, SO(3) is a special
manifold, since it is also a Lie group, and this Lie group structure is extremely important in
robotics. However, I elect not to get into this aspect of rigid body modelling here, but refer
to [Bullo and Lewis 2004, Murray, Li, and Sastry 1994].) A manifold is, essentially, a set
that can locally be parameterised by an open subset Euclidean space (e.g., by Euler angles),
and different parameterisations are required to be compatible with one another. A specific
choice of parameterisation is sometimes helpful in working on a concrete example. And
the existence of parameterisations in general is sometimes useful in that it allows you to
believe, at least temporarily, that you are working with familiar calculus in Euclidean space
(typically by saying, “Let (q1, . . . , qn) be coordinates for Q”). However, the important
thing about manifolds is that, when used properly , they force a coordinate independent
restriction on the problem formulation. Thus one is forced to deal with the real structure
of the problem and not one tacked on, ad hoc, by a choice of coordinates.

Let me try to explain this in a concrete context. In Figure 1 I have depicted two
simple systems, systems that are frequently used as benchmark-type systems to implement
algorithms and so on. In the top left is a simple mobile robot. Let me suppose the three
wheels are actuated, so this is really just a fully actuated planar rigid body. The objective
is to steer the body to the × with a prescribed orientation. In the bottom right in Figure 1
I depict the classical pendulum/cart system where the objective is to balance the pendulum
in the upright configuration by application of a force to the cart. One approach to modelling
the mobile robot problem is to declare the coordinates describing the configurations of the
system to be (x, y, θ), and then proceed as if the configuration space is R3. Similarly, for the
pendulum/cart, one could take coordinates (x, θ) and proceed as if the configuration space
is R2. In practice this is often accentuated by writing the coordinates as [x y θ]T and [x θ]T

to drive home the fact the these are “coordinate vectors.” But the configuration spaces are
not R3 or R2 since, in each case, θ and θ + 2kπ describe the same configuration for every
integer k. The configuration spaces are, in fact, SE(2) (which is naturally diffeomorphic to
R2×S1) and R×S1, where S1 is the unit circle. (Other representations of the configuration
spaces are possible, but they will be equivalent to what I have given in the precise way that
they are diffeomorphic.)

A good question is, “Is it important to make this distinction?” I believe that it is,
and let me give one reason why. It is possible for a mechanical control system with a
configuration space of Rn to possess a globally stable equilibrium point using continuous
feedback. However, it is not possible for a mechanical control system with a configuration
space having rotational degrees of freedom to have a globally stable equilibrium point using
continuous feedback. In particular, there cannot be equilibria for the systems depicted in
Figure 1 that are globally stable using continuous feedback. Despite this, the literature
is filled with papers where continuous globally stabilising feedbacks are designed for the
systems in Figure 1 or systems like them. That is to say, merely by believing that the
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Figure 1. These systems are not globally stabilisable using con-
tinuous feedback!

configuration manifold is Euclidean space many researchers are led to claim something
impossible. This may seem as if it is not an important point on which to be fussy, but Bhat
and Bernstein [2000] illustrate clearly why this matter of rotational degrees of freedom are,
in fact, something the control designer ought to be aware of.

2.2. The tangent bundle to the configuration manifold. The configuration manifold
describes the set of configurations of a mechanical system. The tangent bundle of the
configuration manifold describes the set of configurations and velocities of a mechanical
system. Intuitively, the tangent space at a point q ∈ Q, denoted by TqQ, is the set of all
velocities at this configuration. From this intuitive description I hope it is evident that
TqQ is a vector space of the same dimension as Q. The tangent bundle, denoted by TQ,
is the union of all tangent spaces. The tangent bundle itself is a differentiable manifold,
and inherits from Q a differentiable structure in a natural way. Coordinates for TQ are
often denoted by ((q1, . . . , qn), (v1, . . . , vn)). Thus TQ has twice the dimension of Q. The
natural differentiable structure for TQ works out nicely since it demands that, if one has two
compatible sets of coordinates (q1, . . . , qn) and (q̃1, . . . , q̃n) for Q, then the corresponding
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velocities obey the rather Chain Rule-like formula

ṽj =
∂q̃j

∂qk
vk, j ∈ {1, . . . , n}.

(Here I use the summation convention commonly employed in differential geometry where
summation is implied over indices that are repeated.) The way one should think of the
tangent bundle is as the state space for the system. That is to say, the dynamics of the
system are uniquely determined by initial conditions in the tangent bundle, this by virtue of
the equations of motion being second-order (as we shall soon see, in case you have forgotten).

One piece of useful notation concerns the natural basis for a tangent space induced by
a set of coordinates. Thus, if (q1, . . . , qn) are coordinates for Q, there is a natural basis for
each tangent space which is denoted by { ∂

∂q1
, . . . , ∂

∂qn }. This basis has the property that

a tangent vector with components (v1, . . . , vn) has the representation vj ∂
∂qj

. The peculiar
partial derivative notation for a tangent vector is motivated by the fact that tangent vectors
are, in an appropriate sense, differential operators. But this interpretation need not concern
us here.

There is one caveat I would like to make concerning the tangent bundle. The represen-
tation of tangent bundle coordinates as ((q1, . . . , qn), (v1, . . . , vn)) would seem to imply that
there is some sort of “product structure” to the tangent bundle. That is to say, it appears
that the tangent bundle is the Cartesian product of the configuration manifold and the set
of velocities. This is not the case. It is true that TQ is locally a product, but even this
local product representation is not natural; it arises from a specific choice of coordinates
and different coordinates give different local product representations. Thus, while the co-
ordinates for TQ seem to validate the notation of representing points in TQ as (q, v), this
representation is, in a precise way, incorrect. It certainly is the case that one would like to
be able to specify the configuration at which a velocity lives. A good way to do this is by
writing a point in TQ as vq, thus declaring by the notation that this is a tangent vector in
the tangent space at q ∈ Q.

2.3. External forces. In a geometric setting for mechanics, forces take values in the cotan-
gent bundle. Let me quickly describe the cotangent bundle. The cotangent space at q ∈ Q
is the dual space of TqQ (i.e., the set of R-valued linear maps on the vector space TqQ)
and is denoted by T∗

qQ. The cotangent bundle is the union of all the cotangent spaces and
is denoted by T∗Q. Often authors feel compelled to attempt to give some intuitive idea of
what cotangent vectors are, typically because it is felt that cotangent vectors are somehow
more mysterious than tangent vectors. My own view is that the definition is perfectly ade-
quate, and one just has to accept it and learn that various physical quantities, for example
forces, naturally are represented as elements of the cotangent bundle.

But why should forces take values in the cotangent bundle? Well, what does a force do?
This is actually a fairly involved metaphysical question, but let me sidestep the metaphysics
and just answer the question: A force does work on a system as it moves. Precisely, the
situation is this. Suppose that a mechanical system undergoes a motion described by a
curve t 7→ γ(t) in Q. As it undergoes this motion, a force t 7→ F (t) is applied to the system
(being a little vague about just where F lives for the moment). The work done is then

W =

∫
I
F (t) · γ′(t) dt,
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where I is the time interval on which the motion is defined, i.e., the work is the integral
of the product of force with velocity. I have just written the product F (t) · γ′(t) as if it
means something, but let me consider what F must be in order for this expression to have
meaning. The expression F (t) ·γ′(t) should live in R (work is a scalar quantity) and should
be linear in γ′(t). Thus F (t) can live no place other than T∗

γ(t)Q. This is the explanation I
give about why forces are cotangent bundle-valued, and my undergraduate students seem
to buy it. Note that the “·” in the expression F (t) · γ′(t) is not the “dot product.” It
represents an element of the dual space acting on a vector.

Just as there is a natural basis for tangent vectors induced by a choice of coordinates,
there is also a basis for cotangent vectors associated with coordinates (q1, . . . , qn). This
basis is denoted by {dq1, . . . ,dqn} so that a force has the coordinate representation Fjdq

j .
It is not entirely obvious how one goes from the representation of forces in Newtonian
mechanics to the geometric representation. This is discussed in [Bullo and Lewis 2004,
Murray, Li, and Sastry 1994].

Forces in mechanics, at least when one is considering the control theory of mechanical
systems, come in two flavours: external forces coming from the environment (potential
forces, friction and dissipative forces, etc.) and control forces. Let me denote the total
uncontrolled external force by F , noting that F may be a function of position, velocity,
and/or time. The total control force I write as a linear combination of forces F 1, . . . , Fm.
Thus the control force is

m∑
a=1

uaF a,

where I ask that the forces F a be functions only of position, but allow the controls ua to
be functions of position, velocity, and/or time, as necessitated by the control scheme used.

2.4. The kinetic energy metric. The key to the affine differential geometric approach to
mechanics is the fact that the kinetic energy of the system defines a Riemannian metric on
the configuration space. Researchers in robotics will know this Riemannian metric as the
“inertia matrix,” the “mass matrix,” or something similar. In the classical way of looking
at things, the kinetic energy metric is a symmetric positive-definite matrix-valued function
of configuration. In the geometric way of looking at things, the kinetic energy metric is a
smooth assignment of an inner product to each tangent space of the configuration space. In
differential geometry such an assignment is called a Riemannian metric. In the particular
case where the assignment comes from the kinetic energy for a mechanical system I shall
call the corresponding Riemannian metric the kinetic energy metric.

The notation used in [Bullo and Lewis 2004] for the kinetic energy metric is G. Thus
the inner product on the tangent space at q ∈ Q is denoted by G(q) (in the geometric
formulation, the kinetic energy metric is a genuine map, it being a section of a certain
tensor bundle), and the inner product of two tangent vectors uq, vq ∈ TqQ is denoted by
G(q)(uq, vq), or simply by G(uq, vq) since the point q ∈ Q is explicit in the notation already.
Therefore, the kinetic energy is the function on TQ given by

KE(vq) =
1

2
G(vq, vq).

At a point q ∈ Q, G(q) is an inner product on the tangent space TqQ. Therefore, it is



8 A. D. Lewis

defined by the n2 components Gjk = G( ∂
∂qj
, ∂
∂qk

), j, k ∈ {1, . . . , n}. The way in which one

represents the kinetic energy metric in coordinates is then G = Gjkdq
j ⊗ dqk.

Once one has at hand a physical model for the system, including useful representations
of the configuration space and its tangent bundle, the actual task of writing the kinetic
energy metric is actually quite simple, at least in principle. Of course, in practice there
are genuine issues involved with determining the inertial properties of one’s system, etc.,
but there is not much one can say about these matters, within or without a geometric
formulation of mechanics.

There is a useful bit of notation associated with a Riemannian metric G. Since I have
found that this notation can be off-putting to many readers, let me devote a few moments
to an apology for it. Given a Riemannian metric G on Q there are naturally defined maps
G♭ : TQ → T∗Q and G♯ : T∗Q → TQ defined by

G♭(vq) · uq = G(uq, vq), uq, vq ∈ TqQ,

αq ·G♯(βq) = G−1(αq, βq), αq, βq ∈ T∗
qQ,

where by G−1 I denote the inner product on T∗
qQ induced by that on TqQ. If Gjk, j, k ∈

{1, . . . , n}, are the components of G in a set of coordinates, then G♭ is simply multiplication
by this matrix of components. If Gjk, j, k ∈ {1, . . . , n}, are the components of the inverse
of the matrix with components Gjk, then G

♯ is multiplication by this inverse matrix. The
reason for the funny notation ♭ and ♯ is that, in terms of indices, G♭ takes an object whose
indices are superscripts (a tangent vector) and converts them to an object whose indices
are subscripts (a cotangent vector). Thus G♭ “flattens” the indices. In a like manner, G♯

raises or “sharpens” the indices.

2.5. The Levi-Civita connection. The components of the description of a mechanical
system I have described thus far—the configuration manifold, its tangent bundle, forces,
and the kinetic energy metric–will be well known to anyone in robotics, although not always
necessarily in just the way that I think of these things. However, the Levi-Civita connection
that I will describe now is, if you are not familiar with it, really something new. While it
can be related to some things that may be familiar, it is precisely none of these things. The
Levi-Civita affine connection is what it is, and, for those unfamiliar with it, this will take
a little hard swallowing.

Since I am making the affine connection formulation of mechanics the centrepiece of this
article, I ought to say what an affine connection is. I suppose the reader to be familiar with
the basic concept of a vector field on a manifold and some of the notation surrounding the
differential geometry of dealing with vector fields. Let me work with a manifold Q (which
may or not be the configuration manifold for a mechanical system). An affine connection1

on Q is a mapping that assigns to two vector fields X and Y a third vector field denoted
∇XY , and this assignment has the following properties:

1. the map (X,Y ) 7→ ∇XY is R-bilinear;

2. for vector fields X and Y and a function f we have ∇fXY = f∇XY ;

1What I call an “affine connection” is called a “linear connection” by some authors, and these authors have
something else (something that is related, however) in mind when they say “affine connection.” However,
the use of “affine connection” as I use it is fairly widespread.
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3. for vector fields X and Y and a function f we have ∇X(fY ) = f∇XY +(LXf)Y , where
LX is the Lie derivative with respect to X.

The vector field ∇XY is called the covariant derivative of Y with respect to X. So this is
the definition, and how very uninsightful it is! However, the notion of an affine connection
comes up naturally in mechanics, and I will explain this as we go along. Let me first say a
few general things about affine connections.

1. An affine connection is extra structure on a manifold. That is to say, manifolds do
not come equipped with a nice natural affine connection that you can go ahead and
start using. You have to introduce your own. Thankfully, in mechanics, there are affine
connections that come from the mechanical problem data. We shall see how these arise.

2. An affine connection ∇ is described in coordinates (q1, . . . , qn) by writing

∇ ∂

∂qj

∂

∂qk
= Γljk

∂

∂ql
, j, k ∈ {1, . . . , n},

which is always possible for n3 functions Γljk, j, k, l ∈ {1, . . . , n}. These are called the
Christoffel symbols for the affine connection and they clearly depend on a choice of
coordinates. Using these, the covariant derivative of two general vectors fields is easily
written:

∇XY =
(∂Y l

∂qj
Xj + ΓljkX

jY k
) ∂

∂ql
.

3. Associated with every Riemannian metric G is a unique affine connection, called the

Levi-Civita connection and denoted (by me) as
G

∇. There is a nice intrinsic characteri-

sation of
G

∇ and for this I refer the reader to [Bullo and Lewis 2004]. Here let me give
a hands-on, but rather grimy, characterisation by giving the formula for its Christoffel
symbols:

G

Γljk =
1

2
Glr

(∂Grj
∂qk

+
∂Grk
∂qj

−
∂Gjk
∂qr

)
, j, k, l,∈ {1, . . . , n}.

We shall see in Section 2.7 where this affine connection arises from.

4. Associated with an affine connection ∇ are special curves on Q called the geodesics of
∇. These admit a nice intrinsic description too, but let me simply give the differential
equation in coordinates that these curves must satisfy:

q̈l(t) + Γljkq̇
j(t)q̇k(t) = 0, l ∈ {1, . . . , n}. (2.1)

In coordinate-free language this equation can be written as ∇γ′(t)γ
′(t) = 0. Thus

∇γ′(t)γ
′(t) is the slick way of writing what is on the left-hand side of (2.1), where

t 7→ γ(t) is the curve that in coordinates has the form t 7→ (q1(t), . . . , qn(t)).

It is through geodesics that one can most easily begin to get at what an affine connection
“means.” So let me say a few words about this.

(a) If ∇ =
G

∇ is the Levi-Civita connection, then geodesics are those curves which
locally minimise length.

(b) Note that the coordinate expression in (2.1) for ∇γ′(t)γ
′(t) is a sum of “q̈l” and

“Γljkq̇
j(t)q̇k(t).” It is an act of unspeakable violence to break these terms apart.
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These terms always belong together, and together they mean “∇γ′(t)γ
′(t).” Sepa-

rately they mean absolutely, positively nothing.2 One consequence of this is that
the expression “∇γ′(t)γ

′(t)” gives a way of understanding the acceleration along the
curve γ. But note that this expression of acceleration is not intrinsic as it depends
on a choice of affine connection. Some lengths are taken in Section 4.3.5 of [Bullo
and Lewis 2004] to describe this.

The primary message of the preceding discussion is this:

Associated in a unique way with the kinetic energy metric G for a mechanical
system is an affine connection called the Levi-Civita connection. The importance
of this will be made clear in Section 2.7.

2.6. Nonholonomic constraints. The final ingredient in my description of mechanics before
I write the equations of motion is nonholonomic constraints. Sometimes it seems to me as
if there are as many techniques for deriving the equations of motion in the presence of
nonholonomic constraints as there are people who have thought about doing this. These
methods are, at least the correct ones, all distinguished by one simple fact: they are all
the same! That is to say, Method X for writing equations of motion for a system subject
to nonholonomic constraints is correct if and only if it agrees with Newton’s and Euler’s
equations in the intersection where Method X and Newton’s and Euler’s equations apply.
Many authors claim mystical advantages of their correct technique over other (necessarily
equivalent) correct techniques. The mystical advantages too often are described in some
metaphysical form, and Newton and Euler do not even get mentioned. My take on this is:
If your technique is equivalent to Newton and Euler, then you are correct and so is everyone
else whose method is equivalent to Newton and Euler. There can be real issues in practice,
such as coming up with a technique that is easy to implement. By no means do I wish to
assert that these practical considerations do not merit consideration. However, there are
no “in principle” advantages of any one correct method over any other correct method.

That all being said, let me just say here what I mean when I say “nonholonomic con-
straint,” and how these constraints get accounted for in the equations of motion. A non-
holonomic constraint on a configuration manifold Q is a distribution D on Q. That is, we
select a subspace Dq of each tangent space TqQ that describes the set of velocities admis-
sible at that configuration. Generalisations are possible, for example, to time-dependent or
nonlinear constraints. But this complication adds little to the conceptual picture.

The way in which nonholonomic constraints get incorporated into the equations of
motion is by adding a force, called the constraint force, to the equations of motion. A
constraint force is, by definition, one that does no work on admissible velocities. That is,
at a configuration q ∈ Q, a force λq ∈ T∗

qQ is a constraint force if λq · vq = 0 for every
vq ∈ Dq. The idea, as we shall see clearly in the next section, is that a constraint force is
introduced into the problem as an unknown to be solved for, a little like, but not exactly
like, a Lagrange multiplier.

2Okay, I am telling a fib here for emphasis. The expression q̈i makes sense as a local coordinate for
the second jet bundle. But I do not wish to go in that direction, so let me stick to my expression of the
unspeakable violence of rendering these terms asunder, since you cannot be led wrong in accepting it.
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2.7. The equations of motion. As I suggested in the preceding section, the equations
of motion for a mechanical system are given by Newton’s and Euler’s equations that are
based on simple laws of force and moment balance. The precise variant of Newton’s and
Euler’s equations one wishes to use—for example, the standard Euler–Lagrange equations,
the Gibbs–Appell equations, Gauss’s Principle of Least Action, the Principle of Virtual
Work—is subject to taste and possibly other considerations. For my approach, the key is
the following result.

2.1 Theorem: (General equations of motion) Consider a mechanical system with con-
figuration manifold Q, kinetic energy metric G, external force F , control force

∑m
a=1 u

aF a,
and nonholonomic constraint D. For a curve t 7→ γ(t) the following are equivalent:

(i) the force/moment balance equations of Newton/Euler hold along γ;

(ii) γ satisfies the equations

G♭(
G

∇γ′(t)γ
′(t)) = F (t, γ′(t)) +

m∑
a=1

ua(t)F a(γ(t)) + λ(t),

γ′(t) ∈ Dγ(t),

where t 7→ λ(t) is a constraint force along γ.

For unconstrained systems, i.e., where the nonholonomic constraint is D = TQ, this
immediately gives the following corollary.

2.2 Corollary: (Equations of motion for unconstrained systems) Consider an uncon-
strained mechanical system with configuration manifold Q, kinetic energy metric G, external
force F , and control force

∑m
a=1 u

aF a. For a curve t 7→ γ(t) the following are equivalent:

(i) the force/moment balance equations of Newton/Euler hold along γ;

(ii) γ satisfies the equations

G♭(
G

∇γ′(t)γ
′(t)) = F (t, γ′(t)) +

m∑
a=1

ua(t)F a(γ(t)).

It is perhaps worth comparing these equations with the equations of motion in the
usual form seen in the robotics and mechanics literature. The usual form of the equations
is something like

M(q)q̈ +C(q, q̇)q̇ +N(t, q, q̇) = Bu.

In components the equations of Corollary 2.2 are

Grlq̈
l +Grl

G

Γljkq̇
j q̇k = Fr(t, q, q̇) +

m∑
a=1

uaF ar (q), r ∈ {1, . . . , n}.

Thus we can directly compare the terms in the two equations as per Table 1. Note that I
do not separate M(q)q̈ +C(q, q̇)q̇, and neither should you, given my comments in item b
in Section 2.5.

For systems with nonholonomic constraints the usual way to proceed is to eliminate
the constraint force in some way. In terms of the affine connection picture I am painting,
the magical thing is that, after elimination of the constraint force, one still gets equations
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Table 1. Comparison of terms in “classical,” “geometric compo-
nent,” and “intrinsic” formulation of equations of motion

Classical form Geometric coordinate form Intrinsic form

M(q)q̈ +C(q, q̇)q̇ Grlq̈
l +Grl

G

Γljkq̇
j q̇k

G

∇γ′(t)γ
′(t)

N(t, q, q̇) −Fr(t, q, q̇) −F (t, γ′(t))
Bu

∑m
a=1 u

aF ar (q)
∑m

a=1 u
aF a(γ(t))

involving an affine connection, although it is not generally the Levi-Civita connection for
some Riemannian metric. I will not explain the way this works here since the most direct
explanation involves manipulations with affine connections that are one step beyond ele-
mentary, and I do not want to get into too much intricate stuff. The elimination of the
constraint force also results in a modification of the external and control forces. Let me just
summarise descriptively the final tagline and refer to [Bullo and Lewis 2004] for a thorough
discussion of how this works.

For a mechanical system with configuration manifold Q, kinetic energy metric
G, external force F , control force

∑m
a=1 u

aF a, and nonholonomic constraint D,

there exists (1) an affine connection
D

∇ depending on G and D, (2) a TQ-valued
map Y depending on F , G, and D, and (3) vector fields Y1, . . . , Ym, depending
on F 1, . . . , Fm, G, and D, such that, for a curve t 7→ γ(t) the following are
equivalent:

(i) the force/moment balance equations of Newton/Euler hold along γ;

(ii) γ satisfies the equations

D

∇γ′(t)γ
′(t) = Y (t, γ′(t)) +

m∑
a=1

ua(t)Ya(γ(t)),

γ′(0) ∈ Dγ(0).

(2.2 )

Therefore, the point is that the equations of motion are given by the equations (2.2), and
a fundamental rôle in the equations is played by an affine connection.

2.8. An example. In this section I will go quickly through an example to illustrate how
the geometric concepts arise in a concrete context. The example I use is the so-called
“snakeboard” system which is a model for a commercially available skateboard-like prod-
uct.3 The mathematical model I give originated in the paper of Lewis, Ostrowski, Murray,
and Burdick [1994]. Here I shall present an affine differential geometric formulation of the
equations of motion; further details on this model can be found in [Bullo and Lewis 2003,
Bullo and Lewis 2004].

The model for the snakeboard is shown in Figure 2. The idea of the system is that there
is a central coupler, at each end of which are wheels whose angle relative to the coupler is

3http://www.snakeboard.com/
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φ

φ
ψ

θ

ℓ

Figure 2. The snakeboard

controlled. Atop the coupler, between the wheels, is an inertial rotor that is also controlled.
Thus the system has five degrees of freedom and two controls. This is an example of a
system with nonholonomic constraints since one places on the velocities of the system the
constraint that the wheels roll without slipping.

Configuration manifold

In the model I consider, the angle of the front and back wheels relative to the coupler are
fixed as being equal. This means that a configuration of the system is specified by (1) the
position of the coupler, (2) the angle of the wheels, and (3) the angle of the rotor. The
coupler is, essentially, a planar rigid body and it can take any configuration of a planar rigid
body, i.e., a point in SE(2) ≃ R2 × S1. The wheels are then specified by an angle, i.e., by
a point in S1. Similarly, the rotor angle is determined by a point in S1. The configuration
space is then Q = SE(2)× S1× S1. I use coordinates (x, y, θ, ψ, ϕ) for Q, where the physical
meaning of these coordinates is as indicated in Figure 2 (and with (x, y) being the position
of the centre of mass of the coupler).

Note that in simple planar systems like the snakeboard, it is often easy to “by hand” de-
termine the configuration manifold and useful coordinates for it. However, for complicated
interconnected systems, this process can often be a challenge. Some guidance for doing this
in a systematic way can be found in [Bullo and Lewis 2004, Murray, Li, and Sastry 1994].
Moreover, the modelling techniques outlined in [Bullo and Lewis 2004] make this step of
determining the configuration manifold the step of paramount importance. That is to say,
once this step is done properly, the other facets of the model will often fall into place fairly
easily.

The tangent bundle to the configuration manifold

The coordinates (x, y, θ, ψ, ϕ) induce natural coordinates ((x, y, θ, ψ, ϕ), (vx, vy, vθ, vψ, vϕ))
for the tangent bundle TQ. A point in the tangent bundle can be written as

vx
∂

∂x
+ vy

∂

∂y
+ vθ

∂

∂θ
+ vψ

∂

∂ψ
+ vϕ

∂

∂ϕ
,
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relative to the basis of vector fields { ∂
∂x ,

∂
∂y ,

∂
∂θ ,

∂
∂ψ ,

∂
∂ϕ} induced by the coordinate chart.

External forces

In the simple model I consider here, the only external forces are the control forces. These
consist of torques applied to the wheels and the rotor. A general force F is then written in
coordinates as

F = Fxdx+ Fydy + Fθdθ + Fψdψ + Fϕdϕ.

In the particular case of our control forces, a torque applied to the rotor will have the form
F 1 = uψdψ and a torque applied to the wheels will have the form F 2 = uϕdϕ. Here uψ
and uϕ are to be thought of as the controls, and so are functions of time, position, and/or
velocity, depending on what control task one is carrying out.

Kinetic energy metric

I use the following physical parameters:

mc mass of coupler;
mr mass of rotor;
mw mass of each wheel assembly;
Jc inertia of coupler about center of mass;
Jr inertia of rotor about center of mass;
Jw inertia of wheel assembly about center of mass;
ℓ distance from coupler center of mass to wheel assembly.

The kinetic energy is easily determined by “elementary methods” to be

KE =
1

2
(mc +mr + 2mw)(v

2
x + v2y) +

1

2
(Jc + Jr + 2(Jw +mwℓ

2))vθ

+
1

2
Jrv

2
ψ + Jwv

2
ϕ + Jrvθvψ.

In differential geometric notation the kinetic energy metric is then given by

G = (mc +mr + 2mw)(dx⊗ dx+ dy ⊗ dy) + (Jc + Jr + 2(Jw +mwℓ
2))dθ ⊗ dθ

+ Jrdψ ⊗ dψ + 2Jwdϕ⊗ dϕ+ Jr(dθ ⊗ dψ + dψ ⊗ dθ).

The Levi-Civita connection

Since the components of the kinetic energy metric are constants, independent of the coor-
dinates we are using, the Christoffel symbols of the Levi-Civita connection associated to G
are all identically zero. However, since this is a system with nonholonomic constraints, the
Levi-Civita connection, per se, is not of much interest.



Differential geometry and mechanics 15

Nonholonomic constraints

The nonholonomic constraints for the snakeboard are prescribed by no slip conditions on
the wheels. These conditions are given by the two constraints

− sin(θ + ϕ)vx + cos(θ + ϕ)vy − ℓ cosϕvθ = 0,

− sin(θ − ϕ)vx + cos(θ − ϕ)vy + ℓ cosϕvθ = 0.

To write a basis of vector fields that satisfy the constraints let me introduce the vector field

V = cos θ
∂

∂x
+ sin θ

∂

∂y
.

One can then check by direct computation that the three vector fields

X1 = ℓ cosϕV − sinϕ
∂

∂θ
, X ′

2 =
∂

∂ψ
, X3 =

∂

∂ϕ

form a basis for the set of velocities satisfying the constraints (after noting that one must
exclude points in Q where ϕ = ±π

2 since, at these points, the dimension of the subspace of
admissible velocities changes from three to four). Below we will see that it is useful to use
a basis for the admissible velocities that are orthogonal with respect to G. One can check
that if we define

X2 =
Jrℓ cosϕ sinϕ

c1(ϕ)
V − Jr sin

2 ϕ

c1(ϕ)

∂

∂θ
+

∂

∂ψ
,

where
c1(ϕ) = (mc +mr + 2mw)ℓ

2 cos2 ϕ+ (Jc + Jr + 2(Jw +mwℓ
2)) sin2 ϕ,

then the vector fields {X1, X2, X3} form a G-orthogonal basis for the set of velocities sat-
isfying the constraints.

Constraint forces are those which annihilate the velocities satisfying the constraints.
Thus a typical constraint force has the form

λ1(− sin(θ + ϕ)dx+ cos(θ + ϕ)dy − ℓ cosϕdθ)

+ λ2(− sin(θ − ϕ)dx+ cos(θ − ϕ)dy + ℓ cosϕdθ)

for some coefficients λ1 and λ2.

The equations of motion

As I mentioned above, there are many ways to write the equations of motion for a mechanical
system subject to nonholonomic constraints. To represent the equations of motion using
an affine connection as indicated in the equations (2.2), I follow the approach of Bullo
and Žefran [2002] which is explained in detail in [Bullo and Lewis 2004]. The idea of this
approach is that one uses coordinates for TQ that are not the natural coordinates, but rather
coordinates adapted to the constraints. Thus one chooses a basis {X1, . . . , Xn} of vector
fields, the first r of which are a basis for the admissible velocities allowed by the constraints.
In the particular version of this approach presented by Bullo and Žefran [2002], one uses
a G-orthogonal basis of vector fields. For the snakeboard we thus use the orthogonal basis
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{X1, X2, X3} of vector fields for the admissible velocities and write a typical admissible
velocity as

q̇j(t)
∂

∂qj
= vα(t)Xα(γ(t)),

so defining v1, v2, and v3. The functions v1, v2, and v3 are often known in the literature
as “pseudo-velocities.” One can verify that

v1 = cos θ cosϕẋ+ sin θ cosϕẏ − l sinϕθ̇ − Jrℓ sinϕ

c1(ϕ)
ψ̇,

v2 = ψ̇,

v3 = ϕ̇,

provided that (ẋ, ẏ, θ̇, ψ̇, ψ̇) satisfy the constraints. Moreover, using the methodology out-
lined in [Bullo and Lewis 2004] one can compute the equations of motion to be

ẋ = ℓ cosϕ cos θv1 +
Jrℓ cosϕ sinϕ cos θ

c1(ϕ)
ψ̇,

ẏ = ℓ cosϕ sin θv1 +
Jrℓ cosϕ sinϕ sin θ

c1(ϕ)
ψ̇,

θ̇ = − sinϕv1 − Jr sin
2 ϕ

c1(ϕ)
ψ̇,

v̇1 = − (Jc + Jr + 2Jw − (mc +mr)ℓ
2) cosϕ sinϕ

c1(ϕ)
v1ϕ̇

− Jr(mc +mr + 2mw)ℓ
2 cosϕ

c1(ϕ)2
ψ̇ϕ̇,

ψ̈ =
(mc +mr + 2mw)ℓ

2 cosϕ

c2(ϕ)
v1ϕ̇

+
Jr(mc +mr + 2mw)ℓ

2 cosϕ sinϕ

c1(ϕ)c2(ϕ)
ψ̇ϕ̇+

c1(ϕ)

Jrc2(ϕ)
uψ,

ϕ̈ =
1

2Jw
uϕ,

where
c2(ϕ) = (mc +mr + 2mw)ℓ

2 cos2 ϕ+ (Jc + 2(Jw +mwℓ
2)) sin2 ϕ.

These equations may not appear to be derived from the geodesic equations (2.1) since the
first three equations are first-order in configuration. This, however, is simply a manifestation
of the technique of using pseudo-velocities.

3. Some problems whose solution is facilitated by using differential geometry

The bottom line of the preceding section is equations (2.2), which include the equations
of motion for a large class of mechanical systems. These equations are nice since they are
so compact, general, and revealing of the geometric structure of the problem. However, the
fact of the matter is that, if this is the end of what one can do with the affine connection
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formalism, then serious questions can be raised about whether there is a payoff in learning
the mathematics necessary to understand the formulae. Thankfully, there are problems
beyond the mere formulation of the equations of motion that are effectively addressed
within the differential geometric framework. In this section I investigate some of these.
Since everything I will talk about here has already appeared in the literature, and since a
detailed presentation of the results would necessitate reproducing huge chunks of the papers
in question, I instead describe the results in the papers in question rather than reproduce
them. I think that this approach is more in keeping with the objectives of the paper.

3.1. Controllability. One of the fundamental problems in the control of mechanical systems
is, “Can a system be steered from Point A to Point B?” This is a controllability question.
For systems that are fully actuated, i.e., when the control forces F 1, . . . , Fm span T∗

qQ for
each q ∈ Q, these controllability questions are trivial since one can always apply a force to
make the system go wherever you want. However, for underactuated systems, controllability
questions are generally extremely difficult. Moreover, if the system is underactuated and
if there are no uncontrolled external forces (e.g., no potential forces, so ruling out the
multitude of pendulum systems that are often considered), then controllability becomes a
difficult problem. The approach I take here is to give a brief general discussion of the sort
of controllability problems I will consider, and then look at an example where I outline the
controllability that can be deduced based on some more or less recent work that is heavily
steeped in techniques of differential geometry.

The controllability problem I consider is purely a local one. Namely, I consider a me-
chanical system with configuration manifold Q and whose equations of motion are

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(γ(t)), (3.1)

recalling from Section 2.7 that this equation models mechanical systems, possibly with
nonholonomic constraints, that are subject to no uncontrolled external forces. I let q0 ∈ Q
and denote by RQ(q0,≤ T ) the set of configurations reachable from q0 in time at most T .
The system is small-time locally configuration controllable (STLCC) from q0 if q0 is an
interior point of RQ(q0,≤ T ). This definition is a bit pared down from the most general
definition, and I refer to [Bullo and Lewis 2004] for the full details. The results I will refer
to in this section are from the work of Bullo and Lewis [2005], Lewis [2000], Lewis and
Murray [1997], and Lewis and Tyner [2004]. All of the results in these papers rely heavily
on the affine connection structure of the system equations (3.1).

As an example of the sort of system whose controllability can be described by the
results I refer to, I consider the planar rigid body system depicted in Figure 3. This is a
system moving on a planar surface orthogonal to the direction of the gravitational field,
and I assume that there are no friction forces. One might want to think of this system as an
idealised model of a hovercraft whose motive force is supplied by a single thrust fan for which
the direction and magnitude of the force can be varied. One problem of interest for this
system is to steer the system from rest in a configuration qA to rest in a configuration qB. In
order to do this, one would require that qB be in the set of configurations reachable from qA.
Thus the controllability problem is fundamental to the motion planning problem. In [Lewis
and Murray 1997] it is shown that this system is, indeed, STLCC from every configuration.
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F

h

Figure 3. A controlled planar body

The results in [Lewis and Murray 1997] are an affine differential geometric formulation
of general accessibility results of Sussmann and Jurdjevic [1972] and local controllability
results of Sussmann [1987].

Let me now consider a slight alteration of the system by supposing that the direction
of the force is now fixed, say at an angle of π

2 as shown in Figure 4. Effectively, this

F

π
2

h

Figure 4. A controlled planar body with a single control input

system now has a single-input. It turns out that the controllability of this system cannot
be determined using the results of Lewis and Murray [1997]. However, these results were
refined in a certain direction in [Bullo and Lewis 2005] where it is shown that this system,
and indeed any single-input system of the form (3.1), is controllable from at most a “thin”
set4 of points.

Finally let me consider another alteration of the model as depicted in Figure 5. For
this model, the fan is assumed to have inertia, so this adds an extra degree of freedom to
the model. Once again, this system was one whose controllability I was unable to analyse
when I first encountered it. However, after some work by Lewis and Tyner [2004] it was
shown that this system was only STLCC from the configurations shown in Figure 6 and
SE(2)-translations of these configurations.

The point of the presentation in this section might be said to be the following.

4Precisely, a set that is locally the set of zeros of a finite collection of analytic functions.
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F

h

τ

Figure 5. A controlled planar body with the fan dynamics mod-
elled

Figure 6. The configurations from which the planar body with fan
dynamics is controllable

1. Underactuated mechanical systems often have subtle local controllability properties.
This is clearly evidenced in this section by the difficulty of determining the controllability
of a simple planar body system with some simple, natural variations in the model.

2. By understanding the geometric structure of the model of the system, particularly the
rôle played by the affine connection, it is possible to develop general results that allow
the analysis of some nontrivial examples.

Moreover, the controllability results referred to in this section lead naturally to some
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techniques in motion planning that I now describe.

3.2. Trajectory planning using decoupling vector fields. In this section I shall describe
what can be achieved in terms of converting the controllability results used in the preceding
section to motion planning results. The idea I describe here was motivated by explorations
of Arai, Tanie, and Shiroma [1998] and Lynch, Shiroma, Arai, and Tanie [2000]. The initial
geometric presentation is due to Bullo and Lynch [2001] and the most polished form of the
results appear in [Bullo and Lewis 2005]. The idea is fairly simple. For a given mechanical
system whose equations of motion are given by

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(γ(t)), (3.2)

one seeks vector fields X1, . . . , Xk, called decoupling vector fields, that have the property
that their integral curves, and any reparameterisations of these integral curves, can be
followed by a trajectory of the system (3.2). One then hopes to find sufficiently many
such vector fields that any motion planning problem can be solved by concatenating their
integral curves.

Again, rather than restating the results which are given in the language of affine differ-
ential geometry, let me give a problem for which the ideas lead to a solution of the motion
planning problem. The system I consider is the snakeboard system discussed in Section 2.8.
The motion planning strategy I present here is described by Bullo and Lewis [2003].

The objective is to steer the snakeboard from an initial configuration at rest to a desired
configuration at rest. Bullo and Lewis [2003] show that the snakeboard has two decoupling
vector fields and indicate how to use these to explicitly solve the motion planning problem.
In Figure 7 I show the trace of a solution of the motion planning problem where the
snakeboard is steered from the position at the origin to a specified final position. The
motion planning controller that generates Figure 7 is very simple, but is directly derived
from the controllability results of Bullo and Lewis [2005].

Other systems where the motion planning problem can be solved are given in Chapter 13
of Bullo and Lewis [2004].

The point of what I say in this section includes the following.

1. The idea of motion planning using decoupling vector fields is an excellent example of
one where the right question is suggested by the differential geometric formulation.

2. Controllability is often seen as being a somewhat esoteric undertaking. Very often
systems are controllable in a simple way, and in such cases sophisticated controllability
techniques are more than what is needed. However, mechanical systems provide a rich
class of systems where controllability is often not easy to characterise. Moreover, by
understanding the controllability properties of a system, it is possible that one might
be able to derive explicit solutions to the motion planning problem.

3. While the affine connection formulation of nonholonomic systems is fairly complicated,
the application of this formulation to the solution of the motion planning problem for
the snakeboard justifies the complication.

3.3. Energy shaping. The last idea I discuss in this section is something that is actually
extremely complicated, and is still the topic of ongoing research. The idea is this. Suppose
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Figure 7. A solution of the snakeboard motion planning problem

one is given a mechanical system, let me call it the “open-loop system,” with kinetic energy
metric Gol and with the uncontrolled external forces being those coming from a potential
function Vol. Using feedback, one wishes to transform the system into a mechanical system,
let me call it the “closed-loop system,” with kinetic energy metric Gcl and external forces
being those coming from a potential function Vcl. The value of this idea is that much
can be said about the behaviour of a mechanical system by knowing properties of the
potential function. In particular, equilibria and their stability are easily determined from the
properties of the potential function. Thus this technique of “energy shaping,” i.e., changing
the energy of the system using feedback, is a useful tool for stabilisation. The original
idea of potential shaping for fully actuated systems dates to [Takegaki and Arimoto 1981].
Potential shaping in the underactuated case was worked out by van der Schaft [1986]. The
possibility of shaping the kinetic energy was considered first in a Lagrangian setting by
Bloch, Chang, Leonard, and Marsden [2001] and Bloch, Leonard, and Marsden [2000] and
in a Hamiltonian setting by Ortega, Spong, Gómez-Estern, and Blankenstein [2002].

In our affine differential geometric formulation energy shaping amounts to finding a
state feedback uashp, a ∈ {1, . . . ,m}, that translates the open-loop system to the closed-loop
system. In equations this reads

Gol

∇γ′(t)γ
′(t) +G♯ol ◦ dVol(γ(t))−

m∑
a=1

uashp(vq)G
♯
ol

◦ F a(q) =
Gcl

∇γ′(t)γ
′(t) +G♯cl ◦ dVcl(γ(t)).

The process of energy shaping can be broken into two steps, kinetic energy shaping and po-
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tential energy shaping. For kinetic energy shaping one seeks feedback uakin, a ∈ {1, . . . ,m},
such that

m∑
a=1

uakin(vq)G
♯
ol

◦ F a(q) = (
Gcl

∇−
Gol

∇)︸ ︷︷ ︸
Dol,cl

(vq, vq), (3.3)

where we use the fact that the difference of affine connections (Dol,cl in the above equation)
is a tensor field. For potential energy shaping one seeks feedback uapot, a ∈ {1, . . . ,m}, such
that

m∑
a=1

uapot(q)G
♯
ol

◦ F a(q) = G♭ol ◦G
♯
cl

◦ dVcl(q)− dVol(q). (3.4)

Equation (3.3) is a quasilinear first-order partial differential equation for the closed-loop
metric Gcl. Equation (3.4) is a linear first-order partial differential equation for the closed-
loop potential function Vcl.

Thus energy shaping leads to partial differential equations and, particularly when kinetic
energy shaping is considered, these partial differential equations are extremely complicated.
It is difficult to even give conditions ensuring that these partial differential equations have
interesting solutions (there always exists the trivial solution Gcl = Gol and Vcl = Vol). A
rather coarse general result is given by Auckly and Kapitanski [2002], and they make use
of some Riemannian geometry in their development. A fairly refined result concerning part
of the problem is given by Lewis [2006]. In both cases, the results are too complicated to
reproduce here.

From a practical point of view, the jury is still out on the value of energy shaping as
a means of stabilisation. Because of the complexity of the partial differential equations
involved, only in simple examples has the method actually been implemented (see the
references above). Myself, I am dubious about the merits of the technique being widely
applicable. However, the mathematical questions arising from energy shaping are deep and
interesting, and may possibly shed some light on more practical matters. However, at this
point one cannot really be certain about any of this.

But the point is this.

1. Sometimes natural engineering questions can lead to extremely challenging problems
that require sophisticated mathematics for their solution.

4. In conclusion

In this paper I have attempted to illustrate that there is value in the differential geomet-
ric approach to modelling and control of mechanical systems. In particular, in Section 3 I
have attempted to make it clear that this value extends beyond a mere elegant formulation
of the equations of motion. What I hope is that an uninitiated reader interested in the
differential geometric approach might now attack the daunting literature with something
of a sense of purpose, knowing that there are possible rewards awaiting them at the end of
their journey.
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