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Abstract

Reduction theory for systems with symmetry deals with the problem of understanding
dynamics on a manifold with an action of a Lie group. In geometric mechanics, this problem
can be formulated in the Lagrangian, Hamiltonian or affine connection frameworks. While
the Lagrangian and Hamiltonian formulations have been well developed, the results obtained
in these setups are based on variational principles and symplectic geometry. These methods
cannot be used directly in the affine connection formulation unless additional structure is
available.

In this thesis, a manifold with an arbitrary affine connection is considered, and the
geodesic spray associated with the connection is studied in the presence of a Lie group
action. In particular, results are obtained that provide insight into the structure of the
reduced dynamics associated with the given invariant affine connection. The geometry of
the frame bundle of the given manifold is used to provide an intrinsic description of the
geodesic spray. A fundamental relationship between the geodesic spray, the tangent lift and
the vertical lift of the symmetric product is obtained, which provides a key to understanding
reduction in this formulation.
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Chapter 1

Introduction

The geometry of systems with symmetry has been an active area of research in the last
300 years. The study of manifolds with certain special geometric structure invariant under
Lie group action leads to what is known as reduction theory. Such questions arise in, for
example, geometric mechanics. In this framework, the presence of symmetry allows the
dynamics on a manifold to be studied on a lower dimensional manifold. In mechanics, there
are at least three different ways of describing dynamics on a manifold, corresponding to
the Lagrangian, Hamiltonian and affine connection formulations respectively. While the
reduction theory for Lagrangian and Hamiltonian systems has been well developed (see
[22, 1, 7, 6]), the results have been obtained by using variational analysis and symplectic
geometry respectively. The main reason behind following this approach is the fact that
the dynamics for such systems arises from variational principles which are manifested by
symplectic structures in the Hamiltonian framework. However, when the dynamics on a
manifold are given in terms of the geodesic equation of an affine connection, we cannot use
variational analysis unless additional structure is provided.

1.1. Reduction theory for mechanical systems

In this section we motivate the idea of reduction in mechanics by presenting a simple
example. What we say here can be found in [21, 20]. A detailed review of reduction theory
will be presented in Chapter 2.

The equations of motion of a particle with charge e and mass m in a magnetic field
can be considered as reduced equations coming from dynamics on a larger manifold as we
discuss below.

First of all, let B be a closed two-form on R3 and let B = Bxi + Byj + BZk be the
associated divergence free vector field satisfying

iB(dx ∧ dy ∧ dz) = B,

where iB refers to the interior product. The vector field B can be thought of as a magnetic
field. Let the configuration space be given by M = R3 × S1 with variables (q, θ). The Lie
group G = S1 acts onM in a natural way andM/G ≃ R3. If B = dA, for some one-form A
on R3, that is, B = ∇×A, where A♭ = A, we consider the one-form ω = A+ dθ regarded
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2 A. Bhand

as a principal connection one-form. Define a Lagrangian L : TM → R as follows:

L(q, q̇, θ, θ̇) =
1

2
m||q̇||2 + 1

2
(ω(q, q̇, θ, θ̇))2.

Now, the Euler–Lagrange equations corresponding to this Lagrangian are the geodesic equa-
tions on M for the Levi–Civita connection corresponding to the metric for which L is the
kinetic energy. These equations can be reduced, for example, by using the procedure de-
scribed in [20], and the reduced dynamics is given by

mẍ =
e

c
(Bz ẏ −By ż),

mÿ =
e

c
(Bxż −Bzẋ), (1.1.1)

mz̈ =
e

c
(Byẋ−Bxẏ).

These equations correspond to the Lorentz force law for a particle with charge e and mass
m:

m
dv

dt
=
e

c
v ×B,

where v = (ẋ.ẏ, ż). This therefore provides an example of a physical system whose dynamics
can be thought of as the dynamics of a reduced system.

1.2. Contribution of this thesis

In this thesis, we consider an arbitrary affine connection on a manifold and provide
results that enable us to decompose the reduced geodesic spray corresponding to the affine
connection using tools from affine differential geometry only. In other words, we do not use
variational methods. In arriving at our results, we come to a deeper understanding of the
geometry of bundle of linear frames and its relationship with the geometry of the tangent
bundle of the given manifold.

The setup we consider is the following. Let M be a manifold and G a Lie group which
acts on M in such a manner that M is the total space of a principal bundle over M/G.
Let A be an arbitrary principal connection on this bundle. The Lie group G also acts
on the bundle L(M) of linear frames over M via the lifted action. In such a case we
say that L(M) is G-compatible. It is known that there is a one-to-one correspondence
between principal connections on L(M) and affine connections on M [12]. Let ω be a G-
invariant linear connection on L(M) with ∇ the corresponding affine connection onM . The
geodesic spray Z corresponding to ∇ is a second-order vector field on the tangent bundle
TM with the property that the projection of its integral curves correspond to geodesics on
M . Thus, to understand how the dynamics evolves under symmetry, Z is the appropriate
object to study. Since additional structure is not available, we exploit the geometry of the
linear frame bundle in order to completely understand the meaning of the geodesic spray
(which classically is only defined in local coordinates). The first significant step in this
direction is to provide an intrinsic definition of the geodesic spray that uses frame bundle
geometry. We are able to provide such a definition and build on this knowledge to give an
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alternate proof of the statement that there is a one-to-one correspondence between torsion-
free connections and geodesic sprays. Along the way, we provide proofs to some general
statements concerning the space of all principal connections on a principal bundle as well
as the space of affine connections on a manifold.

Our investigation of invariant linear connections on the frame bundle leads us to the
more general problem of studying invariant connections on arbitrary principal bundles. In
this context, we prove a generalization of a result by Wang [35] which characterizes invariant
connections on principal bundles. We also study the geometry of the frame bundle of a Lie
group and provide an intrinsic derivation of the Euler–Poincaré equations. The derivations
found in the literature depend on the choice of a basis for the Lie algebra of the Lie group
and this reinforces our belief that frame bundle geometry can provide valuable insight into
understanding the dynamics on a manifold with an affine connection.

Moving ahead, we study the notion of geodesic invariance for a distribution on the
manifold M and provide an intrinsic proof of a characterization due to Lewis [16] using the
symmetric product. We investigate the structure of a G-compatible frame bundle adapted
to a principal connection and provide a decomposition in terms of the frame bundle L(M/G)
and construct several bundles that help us understand the geometry of the reduced frame
bundle.

Next, we turn our attention to understanding the reduced geodesic spray of a given
connection. We prove an important relationship between the geodesic spray, the tangent
lift and the vertical lift of the symmetric product. This result is of fundamental importance
and it enables us to decompose the reduced geodesic spray in terms of objects defined on
reduced spaces.

1.3. Contents of the thesis

Below we provide a chapter-by-chapter description of the thesis and state what is new
in each chapter.
Chapter 2 In this chapter we review the existing literature relevant to our investigation
and present a historical development of reduction theory.
Chapter 3 In this chapter we review some fundamental concepts and definitions that
we shall build upon and notation that we shall use in this thesis. We provide a detailed
description of the linear frame bundle and how its geometry is related to that of TM .
Chapter 4 Here we characterize the set of all principal connections on a principal bundle
and specialize it to the case of the linear frame bundle. In particular, we show that there
is a one-to-one correspondence between (1, 2) tensor fields on M and tensorial one-forms
on the frame bundle that have a certain property. These results are known but to our
knowledge they have not been written down in this form. Next, we provide an intrinsic
frame bundle interpretation of the Liouville vector field on TM as well as the geodesic
spray corresponding to a linear connection, and define the Ehresmann connection induced
by the linear connection. These constructions have not appeared in the literature previously.
We prove a weak generalization of a result by Wang [35] which relates invariant principal
connections to certain mappings between vector bundles. We also study the geometry of
the frame bundle of a Lie group and provide an intrinsic derivation of the Euler–Poincaré
equation.
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Chapter 5 In this chapter we present the main results of this thesis. We first study the
notion of geodesic invariance of a distribution, and provide an alternate proof of a result
by Lewis [16] using the linear frame bundle. Next, in the presence of a principal connection
A, we provide a decomposition of the frame bundle adapted to the connection similar to
the decomposition of the tangent bundle induced by a principal connection. These bundle
constructions have not appeared in the literature previously. Next, we prove an important
formula that relates the geodesic spray of a connection evaluated at a point to the tangent
lift and the vertical lift of the symmetric product. This formula provides insight into the
nature of Z and how it is related to the concept of geodesic invariance. Furthermore, it
enables us to decompose the reduced geodesic spray into pieces that we understand.
Chapter 6 In this chapter we write down the conclusions we draw based on this investi-
gation and point to certain avenues for further research.



Chapter 2

Literature review

In this chapter, we review the work done in the area of reduction of mechanical systems
with symmetry.

2.1. The development of Lagrangian reduction theory

We refer to Cendra, Marsden and Ratiu [6] for what we say in this section. Reduction
theory has its origins in the work of Euler, Lagrange, Hamilton, Jacobi, Routh, Poincaré
and Lie. Below we survey the progress that has been made in this area over the past 150
years.

One of the earliest contributions in this field is due to Routh [29, 30] who worked on
reduction for Abelian groups. Lie [17] discovered several basic structures in symplectic and
Poisson geometry and their link with symmetry. Poincaré [28] discovered the generalization
of the Euler equations for a rigid body mechanics to general Lie algebras (see also, [33, 3]).
Modern reduction theory began with Arnold [2] and Smale [31]. In order to synthesize the
Lie algebra reduction methods of Arnold with the methods of Smale on the reduction of
cotangent bundle, Marsden and Weinstein [22] developed reduction theory for symplectic
manifolds. We describe their construction below.

Let (P,Ω) be a symplectic manifold and let a Lie groupG act freely and properly on P by
symplectic maps. Assume that this action has an equivariant momentum map J : P → g∗.
Then, the symplectic reduced space J−1(µ)/Gµ =: Pµ is a symplectic manifold in a
natural way; the induced symplectic form Ωµ is determined uniquely by π∗µΩµ = i∗µΩ where
πµ : J−1(µ) → Pµ is the projection and iµ : J−1(µ) → P is the inclusion. If the momentum
map is not equivariant, Souriau [32] discovered how to centrally extend the group to make
it equivariant. Coadjoint orbits were shown to be symplectic reduced space by Marsden
and Weinstein [22]. In the reduction construction, if we choose P = T ∗G, with G acting by
cotangent lift, the corresponding space Pµ is identified with the coadjoint orbit Oµ through
µ together with its coadjoint orbit symplectic structure. Likewise, the Lie-Poisson bracket
on g∗ is inherited from the canonical Poisson structure on T ∗G by Poisson reduction, that
is, by identifying g∗ with the quotient T ∗G/G. This observation is implicit in Lie [17],
Kirilov [11], Guillemin and Sternberg [10] and Marsden and Weinstein [24, 23].

2.1.1. Tangent and cotangent bundle reduction. Given a manifold M with a free and
proper action of a Lie group G, the simplest case of cotangent bundle reduction is reduction

5
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at zero in which case one chooses P = T ∗M and then the reduced space at µ = 0 is given
by P0 = T ∗(M/G) with the canonical symplectic form. Another simple case is when G is
Abelian. Here, (T ∗M)µ ≃ T ∗(M/G) but the latter has a symplectic structure modified by
the curvature of a connection.

The Abelian version of cotangent bundle reduction was developed by Smale [31] and was
generalized to the nonabelian case in Abraham and Marsden [1]. Kummer [14] provided
an interpretation of Abraham and Marsden’s results in terms of a connection, now called
the mechanical connection. The geometry of this situation was used by Guichardet [9] and
Montgomery [25, 26, 27]. Routh reduction may be viewed as the Lagrangian analogue of
cotangent bundle reduction.

Tangent and cotangent bundle reduction evolved into a “bundle picture of mechanics”.
This point of view was developed in Marsden, Montgomery and Ratiu [18] and Montgomery
[25]. That work was influenced by the work of Sternberg [34] and Weinstein [36]. The main
result of the bundle picture gives a structure to the quotient spaces (T ∗M)/G and (TM)/G
where G acts by cotangent and tangent lifted actions. The structure of the reduced tangent
bundle TM/G forms part of the structure we use in Chapter 5.

2.1.2. Lagrangian versus Hamiltonian reduction. In symplectic and Poisson reduction,
the objective is to pass the symplectic form and the Poisson bracket as well as Hamiltonian
dynamics to the quotient. In modern Lagrangian reduction it is the variational principles
that pass onto the quotient. Of course, the two methodologies are related by the Legendre
transform. Below we provide a brief summary of Lagrangian reduction theory.

2.1.3. Routh reduction. Routh reduction for Lagrangian systems is associated with sys-
tems having cyclic variables; a modern treatment of the subject may be found in Marsden
and Ratiu [19]. An important feature of Routh reduction is that when one drops the
Euler-Lagrange equations to the quotient space associated with symmetry and when the
momentum map is constrained to a specified value, then the resulting equations are in
Euler-Lagrange form not with respect to the Lagrangian itself, but with respect to the
Routhian.

2.1.4. Euler-Poincaré reduction. Another fundamental case of Lagrangian reduction is
that of Euler-Poincaré reduction. In this case the configuration manifold is a Lie group G.
This case has its origins in the work of Lagrange [15] and Poincaré [28].

The classical Euler-Poincaré equations are as follows. Let ξa be coordinates for the Lie
algebra g of a Lie group G and let Ca

bd be the associated structure constants. Let TG→ R
be a given left-invariant Lagrangian and let ℓ : g = TG/G → R be the corresponding
reduced Lagrangian. Then the Euler-Poincaré equations for a curve ξ(t) ∈ g are

d

dt

∂ℓ

∂ξb
=

∂ℓ

∂ξa
Ca
dbξ

d.

These equations are equivalent to the Euler-Lagrange equations for L for a curve g(t) ∈ G,
where g(t)−1ġ(t) = ξ(t). This is one of the most basic formulations of Lagrangian reduction.

The general formulation of Euler-Poincaré reduction in terms of variational principles
was given by Marsden and Scheurle [21, 20]. A modern treatment of this subject is given
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in [19]. In Section 4.5.2 we provide a intrinsic derivation of these equations without using
variational principles.

2.1.5. Lagrange-Poincaré reduction. Marsden and Scheurle [21, 20] also generalized the
Routh theory to the non-Abelian case and introduced the idea of reducing variational prin-
ciples. In Cendra, Marsden and Ratiu [7], the Euler-Poincaré case is extended to arbitrary
configuration manifolds. This leads to Lagrange-Poincaré reduction.

One of the things that makes the Lagrangian side of reduction theory more interesting
is the absence of a general category that is the Lagrangian analogue of Poisson manifolds.
Such a category, that of Lagrange-Poincaré bundles is developed in Cendra, Marsden and
Ratiu [7].

The Lagrangian analogue of the bundle picture is the bundle TM/G, which is a vector
bundle over M/G. The equations and variational principles are developed on this space.
For M = G this reduces to Euler-Poincaré reduction and for G Abelian, it reduces to
the classical Routh procedure. Given a Lagrangian L on TM , it induces a Lagrangian
ℓ on TM/G. The resulting equations inherited on this space are the Lagrange-Poincaré
equations (or the reduced Euler-Lagrange equations).

2.2. Relation of thesis to previous work

In the previous sections, we have provided a brief account of some of the main work
done in the field of reduction of systems with symmetry. As stated in the introduction, our
work differs from the existing literature in that we do not use variational principles and
symplectic geometry to study the reduced dynamics. Our treatment is based on an intrinsic
formulation of the problem using the geometry of frame bundles.



Chapter 3

Definitions and notation

In this chapter we present some mathematical tools and establish notation that we shall
be using in this thesis. In Section 3.1, we review some fundamental concepts related to Lie
groups and their actions on manifolds. We follow the treatment in Marsden and Ratiu [19].
In the next section, we introduce locally trivial fiber bundles, and then proceed to define
a principal fiber bundle in Section 3.2.1. The notion of a connection on a principal fiber
bundle will be central to our investigations and we present a fairly detailed account of the
basic geometric structures on principal fiber bundles. Finally, in Section 3.3, we define the
bundle of linear frames and introduce the notion of torsion. We follow the classic text of
Kobayashi and Nomizu [12] for most of what we say in this section.

3.1. Action of a Lie group on a manifold

3.1.1. Lie groups. A Lie group G is a group with a differentiable structure that makes
the group multiplication

µ : G×G→ G, (g, h) 7→ gh

a smooth map. Given g ∈ G, the left translation map Lg : G → G is defined by
Lg(h) = gh. Similarly, given h ∈ G, the right translation map Rh : G → G is given by
Rh(g) = gh. The left and right translations commute. That is

Lg ◦Rh = Rh ◦ Lg, g, h ∈ G.

A vector field X on G is called left-invariant if for every g ∈ G, we have L∗
gX = X,

that is, if

ThLg(X(h)) = X(gh).

A left-invariant vector field on G is uniquely determined by its value at the identity. We
denote the left-invariant vector field with value ξ ∈ TeG at the identity by Xξ. The tangent
space TeG to G at e is a vector space and the Lie bracket on TeG is defined by

[ξ, η] = [Xξ, Xη](e),

8
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where [Xξ, Xη] is the Lie bracket of vector fields. The vector space TeG equipped with this
bracket is called the Lie algebra of G and we denote it by g. The Lie algebra of a Lie
group is isomorphic to the set of left-invariant vector fields on G.
Next, we define a map exp : g → G as follows. For ξ ∈ g let Φξ

t be the flow of the
left-invariant vector field Xξ. Then,

exp(ξ) = Φξ
1(e).

Given a Lie group G and its Lie algebra g, recall that the adjoint representation Ad of
G on g is defined by

Adgη = TeLgRg−1η, η ∈ g, g ∈ G.

3.1.2. Action of a Lie group on a manifold. Let P be a manifold and G a Lie group. A
left action of G on P is a smooth mapping Φ : G× P → P such that

(i) Φ(e, u) = u, ∀u ∈ P and

(ii) Φ(g, (Φ(h, u))) = Φ(gh, u), ∀g, h ∈ G and u ∈ P .

A right action is a map Ψ : P × G → P that satisfies Ψ(u, e) = u and Ψ(Ψ(u, g), h) =
Ψ(u, gh). We shall sometimes use the notation g · u = Φ(g, u) and u · g = Ψ(u, g). Given
g ∈ G and u ∈ P , we also define maps Φg : P → P and Φu : G → P that satisfy
Φg(u) = Φ(g, u) = Φu(g). We can similar define maps Ψg and Ψu for right actions.
An action of G on P is called

(i) transitive if, for every u, v ∈ P , there exists g ∈ G such that g · u = v,

(ii) effective (or faithful) if Φg = idP implies that g = e,

(iii) free if Φg(u) = u implies that g = e, and

(iv) proper if the mapping Φ̃ : G× P → P × P given by

Φ̃(g, u) = (u,Φ(g, u))

is proper, that is, the preimage of a compact set under this mapping is a compact set.

The following result proved in [1] gives a sufficient condition for the quotient P/G to be
a smooth manifold.

3.1 Proposition: If Φ : G × P → P is a free and proper action, then P/G is a smooth
manifold and the natural projection πP/G : P → P/G is a surjective submersion.

For each ξ ∈ g, the action Φ of G on P induces a vector field ξP on P as follows.

ξP (u) =
d

dt

∣∣∣∣
t=0

Φexp ξtu.

The vector field ξP is called the infinitesimal generator corresponding to ξ for the action
of G on P . If Φ is free and proper, we say that ξP is a vertical vector field in the sense
that, for each u ∈ P , the vector ξP (u) projects to zero under the map TπP/G. Let us denote
the set of vertical vector fields on P by Γ(V P ). The map σV : g → Γ(V P ) that takes ξ to
ξP is a Lie algebra antihomomorphism. That is, for ξ, η ∈ g, we have

σV ([ξ, η]) = −[σV (ξ), σV (η)].
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For right actions, the map σV is a Lie algebra homomorphism.
Let P and Q be manifolds and let G be a Lie group that acts on P by Φg : P → P and
on Q by Ψg : Q → Q. A smooth map f : P → Q is called G-equivariant with respect to
these actions if for all g ∈ G, we have

f ◦ Φg = Ψg ◦ f.

3.2. Locally trivial fiber bundles

A locally trivial fiber bundle is a 4-tuple (π, P,M,F ), where

(i) P,M and F are smooth manifolds;

(ii) π : P →M is a surjective submersion, and

(iii) P is locally trivial, that is, every point x ∈M has a neighborhood U such that π−1(U)
is diffeomorphic to U×F via a diffeomorphism ψ : π−1(U) → U×F with the property
that pr1 ◦ ψ = π (pr1 being the projection onto the first component).

We call M the base space and F the standard fiber . Given x ∈ M , we shall denote by
Px the preimage π−1(x) and call it the fiber over x. For u ∈ π−1(x) the fiber through u
is defined as the fiber over π(u) and denoted by Pu.

We shall often use the term “fiber bundle” to refer to a locally trivial fiber bundle with
the understanding that local triviality is implicit. If (π1, P1,M1, F1) and (π2, P2,M2, F2)
are locally trivial fiber bundles, a map f : P1 → P2 is called a fiber bundle map if there
exists a map f0 :M1 →M2 such that the following diagram commutes:

P1
f−−−−→ P2

π1

y yπ2

M1 −−−−→
f0

M2

In such a case, we say that f is a fiber bundle map over f0. A fiber bundle map is called
a fiber bundle isomorphism if both f and f0 are diffeomorphisms.

3.2.1. Principal fiber bundles. Let M be a manifold and G a Lie group. A right principal
bundle over M with structure group G consists of a manifold P and an action Φ of G on
P satisfying the following conditions:

(i) G acts freely on P on the right.

(ii) M is the quotient space of P by the equivalence relation induced by the action of G
on P , and the natural projection π : P →M is differentiable;

(iii) P is locally trivial, that is, every point x ∈M has a neighborhood U such that π−1(U)
is diffeomorphic to U × G. In other words, there is a diffeomorphism ψ : π−1(U) →
U ×G such that ψ(u) = (π(u), ϕ(u)) where ϕ : π−1(U) → G is a G-equivariant map.

We shall denote a principal fiber bundle as P (M,G). A left principal bundle can be defined
in a similar way. Unless stated otherwise, throughout this dissertation, a principal fiber
bundle will mean a right principal bundle.
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3.2.2. Associated bundles. Let P (M,G) be a principal fiber bundle and let F be a mani-
fold on which G acts on the left:

Ψ : G× F → F

(g, ξ) 7→ Ψ(g, ξ) =: g · ξ.

Define a right action of G on P × F as follows:

(P × F )×G→ (P × F )

((u, ξ), g) 7→ (Φ(u, g),Ψ(g−1, ξ))

:=(ug, g−1ξ).

Denote by E := (P ×F )/G =: P ×G F the quotient of P ×F by G and the projection onto
E by πG : P ×F → E. Given (u, ξ) ∈ P ×F , we know that πG(u, ξ) is the equivalence class
(defined by the action of G on P × F ) containing (u, ξ). We shall denote this equivalence
class by [u, ξ]G. Define a map πE : E →M by

πE([u, ξ]G) = π(u).

Now, it can be shown that E has a differentiable structure that makes πE a surjective
submersion. Thus, πE : E →M is a (locally trivial) fiber bundle with standard fiber F and
we call it the bundle associated with P (M,G) with standard fiber F . We shall denote
this bundle by E(M,F, P,G). To avoid the use of excessive language, we shall sometimes call
E(M,F, P,G) simply the associated bundle whenever the underlying principal fiber bundle
and the standard fiber are understood to be P (M,G) and F respectively. This should cause
no confusion. The following result is immediate once the notation is understood properly.

3.2 Proposition: Let P (M,G) be a principal fiber bundle and F a manifold on which G
acts on the left. Let E(M,F,G, P ) be the associated bundle. For u ∈ P and ξ ∈ F , we
write [u, ξ]G := uξ ∈ E. Then each u ∈ P is a mapping of F onto Fx = π−1

E (x) where
x = π(u) and

(ug)ξ = u(gξ) for g ∈ G, u ∈ P, ξ ∈ F. (3.2.1 )

3.3 Remark: For u ∈ P and x = π(u), the map u : F → Fx is given by uξ = [u, ξ]G and
thus it is easy to see that [ug, ξ]G = [u, gξ]G, which is (3.2.1). We shall use the notation
“uξ” and “[u, ξ]G” interchangeably, depending on context.

For fixed ξ ∈ F , the map Φξ : P → E defined by Φξ(u) = uξ is a fiber bundle map over
the identity map of M . We call it the association map for E. This map will appear
frequently in the sequel.

The adjoint bundle. We now introduce a very important associated bundle that we shall
use frequently in later chapters. Let M(M/G,G) be a principal bundle, and let g be the
Lie algebra of G. The Lie group G acts on g via the adjoint representation. The adjoint
bundle , denoted by g̃ is the bundle associated with M(M/G,G) with standard fiber g. A
point in the adjoint bundle will be typically represented as [x, ξ]G, where x ∈M and ξ ∈ g.
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Tensorial forms and associated bundles. Let P (M,G) be a principal bundle over M with
structure group G. For u ∈ P , let TuP be the tangent space of P at u. The vertical space
of P at u is defined as

VuP = {X ∈ TuP | Tuπ(X) = 0}.

It can be seen that VuP is the set of vectors tangent to the fiber through u. Given a principal
fiber bundle P (M,G) and a representation ρ of G on a finite-dimensional vector space V ,
a pseudotensorial form of degree r on P of type (ρ, V ) is a V -valued r-form φ on
P such that

Φ∗
gφ = ρ(g−1) · φ, g ∈ G,

where Φ is the action of G on P . A pseudotensorial form of degree r on P of type (ρ, V ) is
called a tensorial form if it is horizontal in the sense that φ(X1, . . . , Xr) = 0 whenever
Xi is vertical for at least one i ∈ {1, . . . , r}.

Now, given P (M,G) and ρ on V , consider the associated bundle E(M,V,G, P ) with
standard fiber V on which G acts by ρ. A tensorial form φ of degree r of type (ρ, V ) can
be regarded as an assignment

M ∋ x 7→ φ̃x ∈ Λr(T ∗
xM).

In particular, we define

φ̃x(X1, . . . , Xr) = u(φ(X∗
1 , . . . , X

∗
r )), Xi ∈ TxM, (3.2.2)

where u ∈ P is such that π(u) = x and X∗
i is any vector at u that projects to Xi, that is

Tuπ(X
∗
i ) = Xi for each i = 1, . . . , r. Since φ is a V -valued r-form, φ(X1, . . . , Xr) ∈ V . By

Proposition 3.2 we know that u : V → π−1
E (x) and thus the right-hand side of (3.2.2) is

in π−1
E (x). Skew-symmetry and multilinearity properties are clear. To see that the right-

hand side of 3.2.2 is independent of the choice of X∗
i , suppose that Y ∗

k ∈ TuP is such that
Tuπ(Y

∗
k ) = Xk = Tπ(X

∗
k) for some fixed k. This means that X∗

k − Y ∗
k is vertical. We

compute

φ(X∗
1 , . . . , X

∗
k , . . . , X

∗
r )− φ(X∗

1 , . . . , Y
∗
k , . . . , X

∗
r ) = φ(X∗

1 , . . . , X
∗
k − Y ∗

k , . . . , X
∗
r ) = 0,

since φ is tensorial. This implies that

φ(X∗
1 , . . . , X

∗
k , . . . , X

∗
r ) = φ(X∗

1 , . . . , Y
∗
k , . . . , X

∗
r ),

which shows that definition of φ̃x is independent of the choice of X∗
i for each i. Finally, we

must also show that the definition is independent of the choice of u. To see this, let v ∈ P
such that π(v) = x. This means that v = ua for some a ∈ G. Since G acts on V by ρ, by
Proposition 3.2 we have

(ua)X = u(ρ(a)X), u ∈ P, X ∈ V.

Choose Z∗
i ∈ TuaP such that Tuaπ(Z

∗
i ) = Xi. We compute

(ua)(φ(Z∗
1 , . . . , Z

∗
r )) = u(ρ(a)φ(Z∗

1 , . . . , Z
∗
r ))

= u(φ(TuRa−1Z∗
1 , . . . , TuRa−1Z∗

r ))

= u(φ(X∗
1 , . . . , X

∗
r )).
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The last step follows since

Tuπ(TuRa−1Z∗
i ) = Tua(π ◦Ra−1)Z∗

i = Tuaπ(Z
∗
i ) = Xi = Tuπ(X

∗
i ).

We have thus shown that φ̃x is well-defined for each x ∈M .
Conversely, given an r-multilinear, skew-symmetric mapping φ̃x ∈ Λr(T ∗

xM) ⊗ π−1
E (x)

for each x ∈M , we can define a V -valued tensorial r-form φ by

φ(X̄1, . . . , X̄r) = u−1φ̃x(Tuπ(X̄1), . . . , Tuπ(X̄r)), X̄i ∈ TuP, π(u) = x. (3.2.3)

3.4 Example: The above discussion shows that a tensorial 0-form of type (ρ, V ) on P can be
identified with a section M → E of E(M,V,G, P ). In other words, each V -valued function
f : P → V satisfying f(ua) = ρ(a−1)f(u) for u ∈ P and a ∈ G can be identified with a
section of E. We shall have occasion to use this fact later on.

Let P (M,G) be a principal fiber bundle and ρ a representation of G onto Rn. Let
E(M,Rn, G, P ) be the associated bundle with standard fiber Rn on which G acts through
ρ. We shall call this associated bundle a vector bundle over M . Each fiber π−1

E (x), x ∈M
has the structure of a vector space such that (see Proposition 3.2) every u ∈ P with π(u) = x
considered as a mapping from Rn to π−1

E (x) is a linear isomorphism. Restating this in our
notation, this means that given [u, ξ]G, [u, ξ1]G, [u, ξ2]G ∈ π−1

E (x) where π(u) = x and c ∈ R,
the vector space structure is given by

c[u, ξ]G = [u, cξ]G, and [u, ξ1]G + [u, ξ2]G = [u, ξ1 + ξ2]G.

It clear from Proposition 3.2 that vector addition and scalar multiplication are well-defined
operations. That this definition is equivalent to the “usual” definition of a vector bundle is
not immediate here. We shall touch upon this issue in Section 3.3.1.

3.2.3. Connections in principal bundles. Let P (M,G) be a principal bundle over M with
structure group G. A principal connection on P (M,G) is a distribution HP on P such
that, for each u ∈ P ,

(i) TuP = HuP ⊕ VuP ,

(ii) HΦg(u)P = TuΦgHuP for u ∈ P and g ∈ G, and

(iii) HuP depends differentiably on u.

We call HuP the horizontal subspace at u and represent the horizontal and vertical parts
of a vector X ∈ TuP by hor(X) and ver(X) respectively. Given a principal connection on
P (M,G), we define a g-valued one-form ω on P as follows:

σV (ω(X))(u) = ver(X), X ∈ TuP

where σV is the Lie algebra homomorphism defined in Section 3.1. We call ω the connec-
tion one-form . It is easy to see that X ∈ TuP is horizontal if and only if ω(X) = 0. The
following result records the fundamental properties of a connection one-form[12].



14 A. Bhand

3.5 Proposition: The connection one-form ω corresponding to a connection HP on P sat-
isfies the following conditions:

(i) ω(µM (u)) = µ for all µ ∈ g and u ∈ P ;

(ii) ω(TuΦgX) = Adg−1ω(X).

Conversely, given a g-valued one-form ω on P satisfying (i) and (ii), there exists a unique
principal connection HP with connection form ω.

It can be shown that the connection one-form ω is a tensorial one-form of type
(Ad(G), g), where Ad(G) corresponds to the adjoint representation of G on g. The projec-
tion π : P → M induces a linear map Tuπ : TuP → TxM where π(u) = x. If a principal
connection is given, TuπM maps the horizontal spaceHuM isomorphically onto TxM . Given
a vector field X on M , the horizontal lift of X is the unique horizontal vector field Xh

on P that projects to X.
Next, given an interval [a, b] ⊂ R and a curve c : [a, b] →M , we define a horizontal lift

of c to be a C1 curve ch : [a, b] → P with the property that π(ch(t)) = c(t) for all t ∈ [a, b]
and ċh(t) ∈ Hch(t)P . The following result proved in [12] shows the uniqueness property of
the horizontal lift.

3.6 Proposition: Let c : [0, 1] → M be a curve in M and u0 ∈ P such that π(u0) = c0, for
c0 ∈M . Then there exists a unique horizontal lift ch of c which passes through u0.

Let c : [0, 1] → M be a C1 curve in M such that c(t0) = c0 and c(t1) = c1. The parallel
transport along c is defined as the map τ t0,t1c : Pc0 → Pc1 given by

τ t0,t1c (u0) = ch(t1)

where π(u0) = c0. The parallel transport map is actually an isomorphism between Pc0 and
Pc1 since it commutes with the action of G on P .
Given a principal bundle P (M,G) and a connection one-form ω, the curvature form of
ω is a g-valued two-form Ω on P defined by

Ω(u)(X,Y ) = dω(hor(X), hor(Y )), X, Y ∈ TuP.

The curvature form satisfies the Cartan structure equation :

Ω(X,Y ) = dω(X,Y )− [ω(X), ω(Y )].

Here we have suppressed the point at which Ω is evaluated. Notice that, if X,Y are vector
fields taking values in HP then the structure equation becomes

Ω(X,Y ) = dω(X,Y ).

We also have

dω(X,Y ) = LX(ω(Y ))−LY (ω(X))− ω([X,Y ]) = −ω([X,Y ])

since X and Y are horizontal. Hence we deduce the fact that the curvature form Ω measures
the lack of integrability of the horizontal distribution HP . In other words, HP is integrable
if and only if Ω is zero.



Geodesic reduction via frame bundle geometry 15

3.2.4. Connections in vector bundles. Given a connection in a principal bundle P (M,G),
we can define the notion of parallel transport in the associated bundle E(M,F,G, P ) with
standard fiber F . Given w ∈ E, choose u ∈ P and ξ ∈ F such that πG(uξ) = w. The
vertical subspace VwE at w is the set of vectors tangent to the fiber through w. For fixed
ξ, the association map Φξ (defined in 3.2.2) maps Pu onto Ew. The horizontal subspace
HwE at w is defined as the image of HuP under the map TuΦξ. This definition is easily
seen to be independent of the choice of u and ξ. We also have TwE = HwE ⊕ VwE. A
differentiable curve in E is horizontal if the the tangent vector to the curve at each point
lies in the horizontal subspace at that point. Given a curve c in M , the horizontal lift of c
onto E is a horizontal curve ch with the property that πE ◦ ch = c. If c : [t0, t1] → M is a
curve such that c(t0) = x0 and c(t1) = x1 and if w0 ∈ E has the property that πE(w0) = x0,
then there exists a unique horizontal lift ch passing through w0. Parallel translation along
c is a map τ t0,t1c : π−1

E (x0) → π−1
E (x1) defined by τ t0,t1c (w0) = ch(t1), where c

h is the unique
horizontal lift of c passing through w0.

Let us now consider an associated bundle E(M,Rn, G, P ) over M with standard fiber
Rn. By definition, it is a vector bundle over M . Let c be a curve in M and σ be a section
of E along c, so that πE(σ(c(t))) = c(t) for all t. For fixed t, the covariant derivative
∇ċ(t)σ of σ with respect to ċ(t) is defined by

∇ċ(t)σ =
d

ds

∣∣∣∣
s=0

τ t+s, t
c (σ(c(t+ s))).

The covariant derivation ∇ċ(t)σ defines a section of E along c.
If X ∈ TxM and σ is a section of E defined in a neighborhood of x, the covariant derivative
of σ with respect to X is defined as follows. Let c be a curve in M such that c(t0) = x and
ċ(t0) = X for some t0 ∈ R. Then

∇Xσ = ∇ċ(t0)σ.

It is easy to see that this definition is independent of the choice of the curve c. Next, if σ
is a section of E and X is a vector field on M , the covariant derivative of σ with respect to
X is defined to be the section of E given by

∇Xσ(x) = ∇X(x)σ.

The covariant derivative satisfies the following properties.

3.7 Proposition: Let X and Y be vector fields on M , σ and µ be sections of E, and f a
real-valued function on M . Then

(i) ∇X+Y σ = ∇Xσ +∇Y σ,

(ii) ∇X(σ + µ) = ∇Xσ +∇Xµ,

(iii) ∇fXσ = f∇Xσ, and

(iv) ∇X(fσ) = f∇Xσ + (LXf)σ.

Given a vector bundle E(M,Rn, G, P ) over M , to each section σ :M → E, we associate a
function fσ : P → Rn as follows.

fσ(v) = v−1(σ(π(v))), v ∈ P.

The function fσ is G-equivariant. That is, for g ∈ G, we have fσ ◦ Φg = ρ(g−1) · fσ. There
is a one-to-one correspondence between G-equivariant functions f : P → Rn and sections
of E. Given a section σ, we call fσ the corresponding function on P .
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3.8 Proposition: Let σ : M → E be a section and fσ the corresponding function, and let
X be a vector field on M . Let ω be a principal connection on P (M,G) and ∇ the induced
covariant derivative on E. Then LXhfσis the function corresponding to the section ∇Xσ.

Proof: For fixed x ∈ M and u ∈ P such that π(u) = x, let c be a curve in M with the
property that c(0) = x and ċ(0) = X(x). Let ch be the horizontal lift of c through u. We
have

LXhfσ(u) =
d

dt
(fσ(c

h(t)))

∣∣∣∣
t=0

=
d

dt

(
(ch(t))−1σ(c(t))

)∣∣∣
t=0

.

Thus,

u(LXhfσ(u)) =
d

dt

(
u(ch(t))−1σ(c(t))

)∣∣∣
t=0

.

To prove the Proposition, it suffices to show that

τ t,0c (σ(c(t))) = u ◦ (ch(t))−1(σ(c(t)).

We set ξ = (ch(t))−1(σ(c(t)). Then, ch(t)ξ is a horizontal curve in E, and

τ t,0c (ch(t)ξ) = ch(0)ξ = uξ = u ◦ (ch(t))−1(σ(c(t)).

This completes the proof. ■

3.3. The bundle of linear frames

Let M be an n-dimensional manifold. A linear frame at x is an ordered basis u =
(X1, . . . , Xn) for the tangent space TxM at x ∈M . Let

Lx(M) = {u| u is a linear frame at x}

and write

L(M) =
⋃
x∈M

Lx(M).

Define a map πM : L(M) →M by πM (u) = x if u is a linear frame at x. The general linear
group GL(n;R) acts on L(M) on the right in the following manner. If a = (aij) ∈ GL(n;R)

and u = (X1, . . . , Xn) ∈ Lx(M), we define ΦL : L(M)×GL(n;R) → L(M) by

(u, a) 7→ (ua) := (aj1Xj , . . . , a
j
nXj).

Rather than using the elaborate notation, we write ΦL(u, a) = Ra(u) which is appropri-
ate for right actions. This action is also free and proper. This means that the quotient
L(M)/GL(n;R) possesses a differentiable structure and can be identified with the manifold
M . Next, we show that πM : L(M) → M satisfies the local-triviality condition for a prin-
cipal fiber bundle. Let (U, ϕ) be a chart for M with local coordinates (x1, . . . , xn). Every
frame u ∈ Lx(M), x ∈ U , can be uniquely expressed as

u =

(
Xk

1

∂

∂xk
, . . . , Xk

n

∂

∂xk

)
,
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where (Xk
i ) is an invertible matrix. If we write Xi = Xk

i
∂

∂xk , the map ψ : π−1
M (U) →

U ×GL(n;R) given by

(X1, . . . , Xn) 7→ (x, (Xk
j )),

is an isomorphism of principal fiber bundles. We can therefore use coordinates (xi, Xk
j ) on

π−1
M (U) and define a differentiable structure on L(M). It is also clear that the map

(X1, . . . , Xn) 7→ (Xk
j )

satisfies Rb(X1, . . . , Xn) = (Y1, . . . , Yn) where Yi = bjiXj and b ∈ GL(n,R) and thus defines
a local bundle chart for L(M). We have thus shown that L(M)(M,GL(n;R)) is a principal
fiber bundle. We call it the bundle of linear frames.

There is another equivalent way to think about a linear frame. A linear frame u =
(X1, . . . , Xn) at x ∈ M can be regarded as an isomorphism u : Rn → TxM as follows. If
(e1, . . . , en) is the standard basis for Rn, the map u is given by

ciei 7→ ciXi, ci ∈ R.

The right action of GL(n;R) on L(M) is interpreted as follows. Consider a = (aij) ∈
GL(n;R) as a linear transformation of Rn which acts on Rn by matrix multiplication.
Then ua = Ra(u) : Rn → TxM is the composition of the following two maps:

Rn a−→ Rn u−→ TxM.

3.3.1. The tangent bundle as an associated bundle. Let τM : TM → M be the tangent
bundle of M . Recall that GL(n;R) acts on Rn on the left by (a, ξ) 7→ aξ (this is simply
matrix vector multiplication). Given a manifold M , we write E = L(M)×GL(n;R) R

n and
construct the bundle E(M,Rn,GL(n;R), L(M)) associated with L(M)(M,GL(n;R)) with
standard fiber Rn. It is clear that this is a vector bundle over M in the sense of the
definition given in Section 3.2.2. We have the following result.

3.9 Lemma: The bundles E(M,Rn,GL(n;R), L(M)) and τM : TM → M are naturally
isomorphic as vector bundles over M . In particular, there exists a natural vector bundle
isomorphism from E to TM over the identity mapping of M .

Proof: Following the discussion at the end of Section 3.3, we think of a frame u ∈ Lx(M)
as an isomorphism u : Rn → TxM . Thus for ξ ∈ Rn, we have uξ ∈ TxM where x = π(u).
We also know that [u, ξ]G ∈ π−1

E (x). Now, define a map ι : E → TM by

[u, ξ]G 7→ uξ.

To see that this is well-defined, for a ∈ G, consider [ua, a−1ξ]G (which is equal to [u, ξ]G).
We have

ι([ua, a−1ξ]G) = (ua)(a−1ξ).

The right-hand side is the composition of the following maps on ξ

Rn ∋ ξ
a−1

7−→ Rn a−→ Rn u−→ TxM,
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and therefore ι([u, ξ]G) = ι([ua, a−1ξ]G).
Next, given v ∈ TxM , we claim that ι−1(v) = [u, u−1(v)]G for any u ∈ Lx(M). First we

show that this statement is independent of the choice of u. Suppose that ũ ∈ Lx(M), then
ũ = Rb(u) = ub for some b ∈ GL(n;R). Thus we have

[ũ, ũ−1(v)]G = [ub, (ub)−1(v)]G = [ub.b−1u−1(v)]G = [u, u−1(v)]G.

Thus ι maps each fiber of E isomorphically to a fiber of TM . From the discussion on
associated vector bundles it is also clear that ι is linear. Finally, τM (ι([u, ξ]G) = x and thus
we conclude that ι is a vector bundle isomorphism between E and TM over the identity on
M . ■

3.10 Remarks: (i) Notice that we shall use the notation “uξ” to represent two different
objects in the sequel. In Proposition 3.2 “uξ” represents the image of ξ under the
map u : F → π−1

E (x). Let us call this the “first” definition. In the proof of Lemma
3.9, we have used it to represent the image of ξ under the map u : Rn → TxM .
Call this the “second” definition. For the associated bundle E considered in Lemma
3.9, the natural fiber F = Rn and thus according to the “first” definition we have
u : F = Rn → π−1

E (x). Lemma 3.9 shows that π−1
E (x) is naturally isomorphic to TxM

for every x ∈M and thus that the “first” and the “second” definitions are really the
same (up to a natural isomorphism).

(ii) The associated vector bundle construction described in this section is actually a spe-
cial case of a general construction for arbitrary vector bundles. In the section on
associated vector bundles, we presented a definition of a vector bundle over a man-
ifold M . We now show how this definition is equivalent to the standard definition
of a vector bundle. So suppose πE : E → M is a vector bundle in the usual sense,
with fiber Ex over each x ∈ M . For x ∈ M , define Px := L(Rn, Ex) = {u : Rn →
Ex| u is a linear isomorphism } and set

P =
⋃
x∈M

L(Rn, Ex).

It is easy to see that GL(n;R) acts on P on the right and that this action is free
and proper. Thus, P (M,GL(n;R)) is a principal fiber bundle. Next, consider the
usual left action of GL(n;R) on Rn and form the associated bundle with total space
Ẽ := (P × Rn)/GL(n;R) associated with P (M,GL(n;R)) with standard fiber Rn.
It can be seen that this associated bundle Ẽ(M,Rn,GL(n;R), P ) is isomorphic to
πE : E → M . That is, there exists a bundle isomorphism from Ẽ to E over the
identity map of M . This justifies why it makes sense to define vector bundles the way
we have done in this thesis.

(iii) One can think of the bundle T r
s (TM) of (r, s) tensors on M as an associated bundle

as well. Observe that GL(n;R) acts on Rn by (a, ξ) 7→ Aξ and thus it also acts on
T r
s (R

n) (the (r, s) tensor space of Rn) on the left by push-forward. That is

GL(n;R)× T r
s (R

n) → T r
s (R

n)

(a, t) 7→ a∗t.
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It can be seen that the fibers of T r
s (TM) are isomorphic to the fibers of the bundle

E(M,T r
s (R

n),GL(n;R), L(M)) associated with L(M)(M,GL(n;R)) with standard
fiber T r

s (R
n) where E = (L(M)× T r

s (R
n))/GL(n;R).

3.3.2. Linear connections. Let L(M)(M,GL(n;R)) be the bundle of linear frames of M
where n = dim(M). Denote the canonical projection by πM : L(M) →M .

3.11 Definition: A principal connection in the bundle L(M)(M,GL(n;R)) of linear frames
over M is called a linear connection of M .

The canonical form of L(M) is the Rn-valued one-form θ : TL(M) → Rn define by

θ(X) = u−1(TuπMX)), X ∈ TuL(M),

where u ∈ L(M) is considered as a linear isomorphism u : Rn → TπM (u)M as before.

3.12 Proposition: The canonical form θ of L(M) is a tensorial one-form of type
(GL(n;R),Rn). It corresponds to the identity transformation of TxM at each x ∈M .

Proof: Note that GL(n;R) acts on Rn by (a, ξ) 7→ ρ(a)ξ = aξ, a ∈ GL(n;R) and thus we
write (ua) : Rn → TxM, x = πM (u) such that (ua)ξ = u(aξ) as usual. Let X ∈ TuL(M)
and a ∈ GL(n;R). Then TuaRaX ∈ TuaL(M). We now compute

(R∗
aθ) = θ(TuaRaX) = (ua)−1(TuaπM (TuaRaX))

= a−1u−1(θ(TuπMX)) = a−1θ(X),

which shows that θ is pseudo-tensorial. Now, let X ∈ TuL(M) be vertical. Then θ(X) =
u−1(TuπMX) = 0 and thus θ is tensorial.

For each x ∈M , the linear map θ̃x : TxM → TxM corresponding to θ is given by

θ̃x(X) = u(θ(X∗)), X ∈ TxM, πM (u) = x,

where X∗ ∈ TuL(M) is such that TuπM (X∗) = X. Using the definition of θ we get

θ̃x(X) = u(u−1TuπM (X∗)) = X.

This is what we wished to show. ■

For x ∈ M , let U be a neighborhood of x in M with local coordinates (x1, . . . , xn). We
denote the vector field ∂

∂xi by Xi. Every linear frame at a point x ∈ U can be expressed
uniquely by

(Xi
1(Xi)x, . . . , X

i
n(Xi)x),

whereXj
i is an invertible n×nmatrix. The pair (xi, Xj

k) is a coordinate system in π−1(U) ⊂
L(M). Let Y j

k be the inverse matrix of Xj
k and (e1, . . . , en) be the standard basis for Rn.

In the coordinate system (xi, Xj
k), write the canonical form θ = θiei, where θ

1, . . . , θn are

one-forms on M . Then we have θi = Y i
j dx

j . Next, let {Ej
i } be the standard basis for

gl(n,R). We can write the connection form ω of a linear connection of M with respect to
this basis as ω = ωi

jE
j
i , where ω

i
j are one-forms on M . Let σ be the section of L(M) over U
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which assigns to each x ∈ U the linear frame ((X1)x, . . . , (Xn)x). Define a gl(n,R)-valued
one-form ωU on U by ωU = σ∗ω. We define n3 functions Γi

jk on U by

ωU = Γi
jkdx

j ⊗ Ek
i .

The functions Γi
jk are called the Christoffel symbols of the linear connection with respect

to the coordinate system (x1, . . . , xn). Using these Christoffel symbols, the connection form
ω can be reconstructed as follows [12].

3.13 Proposition: The connection form ω = ωi
jE

j
i is given in terms of the local coordinate

system (xi, Xj
k) by

ωi
j = Y i

k (dX
k
j + Γk

mlX
l
jdx

m), i, j = 1, . . . , n.

We can also express the Christoffel symbols in terms of the covariant derivative.

3.14 Proposition: Let (x1, . . . , xn) be a local coordinate system on a manifold M with a
linear connection. Set Xi = ∂

∂xi , i = 1, . . . , n. Then the Christoffel symbols Γi
jk of the

connection with respect to (x1, . . . , xn) are defined by

∇XiXj = Γk
ijXk.

Given a linear connection Γ of M , we associate with each ξ ∈ Rn a horizontal vector field
B(ξ) on L(M) as follows. For each u ∈ L(M), (B(ξ))u is the unique horizontal vector at u
with the property that TuπM (B(ξ)u) = uξ. We shall call B(ξ) the standard horizontal
vector field corresponding to ξ. Note that this vector field is only defined in the presence
of a linear connection of M .

3.15 Proposition: The standard horizontal vector fields have the following properties:

(i) if θ is the canonical form of L(M), then θ(B(ξ)u) = ξ for each ξ ∈ Rn and u ∈ L(M);

(ii) TuRa(B(ξ)u) = (B(a−1ξ))ua, a ∈ GL(n;R), ξ ∈ Rn;

(iii) if ξ ̸= 0, then B(ξ) never vanishes.

The following result provides a representation of a standard horizontal vector field in local
coordinates.

3.16 Proposition: Given ξ = ξiei ∈ Rn, the standard horizontal vector field B(ξ) corre-
sponding to ξ is represented in local coordinates as

B(ξ)u = ξiXp
i

∂

∂xp
− Γk

mlX
l
j(ξ

iXm
i )

∂

∂Xk
j

.

Proof: The proof is straightforward. In our local coordinate system for L(M), a frame
u ∈ Lx(M) can be thought of as a map Rn → TxM that takes ei ∈ Rn to Xk

i Xk. Thus, we
have uξ = ξi(Xp

i
∂

∂xp )
∣∣
x
. Now, an arbitrary vector field V on L(M) can be written as

V (u) = λp
∂

∂xp

∣∣∣∣
u

+ Λk
j

∂

∂Xk
j

∣∣∣∣∣
u

.
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If V is the standard horizontal vector field corresponding to ξ, then we must have (for each
u ∈ π−1

M (U)) that TπM (V (u)) = uξ and ω(V (u)) = 0. The second condition implies that

Λk
j + Γk

plX
l
jλ

p = 0.

That is, Λk
j = −Γk

plX
l
jλ

p. The first condition implies that λp = ξiXp
i . ■

Standard horizontal vector fields have the following homogeneity property [12].

3.17 Proposition: Let A ∈ gl(n,R), and let B(ξ) be the standard horizontal vector field
corresponding to ξ ∈ Rn. Then,

[AL(M), B(ξ)] = B(Aξ).

3.18 Proposition: Let T(M) be the algebra of tensor fields on M . Let X and Y be vector
fields on M . Then the covariant derivative has the following properties:

(i) ∇X : T(M) → T(M) is a type-preserving derivation;

(ii) ∇X commutes with every contraction;

(iii) ∇Xf = LXf for every function f :M → R;
(iv) ∇X+Y = ∇X +∇Y ;

(v) ∇fXK = f · ∇XK for every function f on M and K ∈ T(M).

As a consequence of this result and Proposition 3.7 we have the following result.

3.19 Proposition: If X,Y and Z are vector fields on M , then

(i) ∇X(Y + Z) = ∇XY +∇XZ,

(ii) ∇X+Y Z = ∇XZ +∇Y Z,

(iii) ∇fXY = f · ∇XY for every f ∈ C∞(M), and

(iv) ∇X(fY ) = f · ∇XY + (LXf)Y for every f ∈ C∞(M).

This result thus shows that, given a linear connection ofM , there exists a map ∇ : Γ(TM)×
Γ(TM) → Γ(TM) that has properties (i)-(iv). The operator ∇ satisfying the properties
listed in Proposition 3.19 is called an affine connection on M . There is a one-to-one
correspondence between linear connections on L(M) and affine connections on M [12].

Given an (r, s) tensor fieldK onM , the covariant differential ∇K ofK is an (r, s+1)
tensor field defined by

(∇K)(X1, . . . , Xs;X) = (∇XK)(X1, . . . , Xs).

Thus both sides of the above expression are (r, 0) tensor fields. We only write the vector
field arguments since those are the only ones involved in the definition.

3.3.3. Torsion. Given a manifoldM with a linear connection ω, let ∇ be the corresponding
connection on TM . We represent the set of smooth vector fields on M by Γ(TM). The
torsion tensor field is the (1, 2) tensor field T given by

T (X,Y ) = ∇XY −∇YX − [X,Y ], X, Y ∈ Γ(TM). (3.3.1)
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Corresponding to this tensor field, there exists an Rn-valued tensorial two-form Θ called
the torsion form defined by

Θ(X̃u, Ỹu) = u−1T (TuπMX̃u, TuπM (Ỹu)).

Given a connection ∇ with torsion T , we can define a connection ∇̃ by

∇̃XY = ∇XY − 1

2
T (X,Y ).

The connection ∇̃ is torsion-free.

3.3.4. Geodesics. A smooth curve c : R → M on a manifold M with a linear connection
is called a geodesic if ∇ċ(t)ċ(t) = 0 for all t ∈ R. A useful characterization of geodesics is
given by the following result [12].

3.20 Proposition: A curve onM is a geodesic if and only if it is the projection of an integral
curve of a standard horizontal field of L(M).

We shall use this result to derive the Euler–Poincaré equations in the next chapter.



Chapter 4

The geometry of the linear frame
bundle

In this chapter, we study the geometry of the linear frame bundle L(M) of a manifold
M in detail and explore the relationship between TL(M) and TTM . In Section 4.1, we
characterize the space of all principal connections on a principal bundle and use this char-
acterization to describe the space of all affine connections on a manifold. In Section 4.2
we provide precise intrinsic definitions of the Liouville vector field and the geodesic spray
on TM respectively. In the next section, we describe an Ehresmann connection on TM
corresponding to an affine connection onM and provide a proof of the statement that there
is a one-to-one correspondence between geodesic sprays and torsion-free connections. In
Section 4.4, we provide a characterization of invariant principal connections on principal
bundles. Finally, we study the geometry of the frame bundle of a Lie group and provide an
intrinsic derivation of the Euler–Poincaré equations.

4.1. The space of linear connections of M

Let P (M,G) be a principal fiber bundle. The following result characterizes the set of
all principal connections on P .

4.1 Proposition: Let ω be a principal connection one-form on a principal bundle P (M,G)
and let α be a tensorial one-form of type (Ad(G), g) on P . Then ω̄ := ω + α defines a new
principal connection on P . Conversely, given any two principal connection forms ω and ω̄
respectively, the object α := ω̄ − ω is a tensorial one-form of type (Ad(G), g) on P .

Proof: The proof is straightforward. For µ ∈ g, let µP (u) be the infinitesimal generator
corresponding to µ at u ∈ P . Since α is tensorial, it vanishes on vertical vectors. Thus

ω̄(µP (u)) = ω(µP (u)) + 0 = µ.

Also, since α is pseudotensorial, for a ∈ G, we have α(TuΦa(X)) = Ada−1α(X) forX ∈ TuP .
Thus,

ω̄(TuΦa(X)) = (ω + α)(TuΦa(X)) = Ada−1ω(X) + Ada−1α(X) = Ada−1(ω̄(X)).

23
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The one-form ω̄ therefore satisfies the two properties of a connection one-form given in
Proposition 3.5. Conversely, given two principal connections ω and ω̄, it is easy to see
that ω − ω̄ is a pseudotensorial one-form of type (Ad(G), g). If X ∈ TuP is a vertical
vector, by definition, we have (ω(X))P (u) = X and (ω̄(X))P (u) = X. Thus, we must have
ω(X) = ω̄(X) and thus ω − ω̄ vanishes on vertical vectors, and is therefore tensorial. This
concludes the proof. ■

The following result provides a relationship between the horizontal distributions correspond-
ing to two given principal connections.

4.2 Proposition: Suppose that ω and ω̄ are two distinct connection one-forms on a principal
bundle P (M,G) with horizontal distributions HP and HP respectively. If α is the unique
tensorial one-form on P of type (Ad(G), g) such that α = ω̄ − ω, then, for each u ∈ P ,

HuP = HuP + VuP

where VuP = {X ∈ TuP | (α(X))P (u)} ⊂ VuP .

Proof: Let X ∈ TuP , we have

hor(X)− hor(X) = (X − (ω(X))P (u))− (X − (ω̄(X))P (u))

= ((ω̄ − ω)(X)P (u) = (α(X))P (u).

This proves the result. ■

We shall use the above result in the next section to study the Ehresmann connection corre-
sponding to a principal connection on M . The following result provides a correspondence
between tensorial one-forms on L(M) and (1, 2) tensor fields on M .

4.3 Proposition: There is a one-to-one correspondence between tensorial one-forms of type
(Ad(GL(n,R)), gl(n,R)) on L(M) and (1, 2) tensor fields on M .

Proof: Since TM is the bundle associated with L(M) with standard fiber Rn, for each
(1, 2) tensor field S on M , we can define a map αS : TL(M) → gl(n,R) as follows. Let
X̃ ∈ TuL(M), for u ∈ L(M) and let η ∈ Rn. Then

u
(
αS(u)(X̃)η

)
= S(TuπM (X̃), uη). (4.1.1)

Since α(X̃) ∈ gl(n,R), the product α(X̃)η ∈ Rn. We now show that αS is a tensorial form
of type (Ad(GL(n,R)), gl(n,R)). For a ∈ GL(n,R), let Ỹ = TuΦaX̃ ∈ TuaL(M). Then,
using the definition (4.1.1), we get

(ua)
(
αS(ua)(Ỹ )η

)
= S(TuaπM (Ỹ ), uaη) = u

(
αS(u)(X̃)(aη)

)
from which we get

αS(ua)(Ỹ ) = a−1αS(u)(X̃)a,

which means that αS is pseudotensorial. Next, if X̃ ∈ VuL(M), it is easy to see that
αS(X̃) = 0, which shows that αS is tensorial.
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Conversely, given a tensorial one-form α : TP → gl(n,R), we can define a (1, 2) tensor field
Sα as follows.

Sα(X,Y ) = u
(
α(X̃)(u−1Y )

)
, X, Y ∈ TxM, πM (u) = x,

where X̃u ∈ TuL(M) has the property that TuπM (X̃) = X. This completes the proof. ■

4.4 Corollary: Let ω and ω̄ be linear connections of M and let ∇ and ∇, respectively, be
the corresponding covariant derivatives. Let α = ω̄ − ω. Then, for vector fields X and Y
on M , we have

∇XY = ∇XY + Sα(X,Y )

where Sα is the (1,2) tensor field on M corresponding to α.

This result,therefore, characterizes the set of all affine connections on the manifold M .

4.2. First-order geometry

Given a manifold M of dimension n, the tangent bundle TM is a manifold of dimension
2n. In this section we study the geometry of the tangent bundle TTM of TM and relate it
to the geometry of TL(M).

4.2.1. Tangent and vertical lifts. If X is a vector field onM we can define a unique vector
field X̃ on L(M) corresponding to X as follows. Let ϕXt be the flow of X. The tangent
lift XT is a vector field on TM defined by

XT (vx) =
d

dt

∣∣∣∣
t=0

TϕXt (vx).

Let u ∈ Lx(M) and ξ ∈ Rn be such that uξ = vx. For ξ fixed, recall that the association
map Φξ : L(M) → TM is given by Φξu = uξ. The flow of XT defines a curve ut in L(M)
by ut = Txϕ

X
t · u. That is,

Φξut = (Txϕ
X
t ◦ Φξ)u.

The map Φ̃t(u) = ut defines a flow on L(M). The corresponding vector field is called the
natural lift X̃ of X onto L(M). Thus, we have

XT (vx) = TuΦξX̃(u).

Given vx, wx ∈ TxM , the vertical lift of w at v is defined by

vlftvx(wx) =
d

dt

∣∣∣∣
t=0

(vx + twx).

The canonical almost tangent structure on M is a (1, 1) tensor field JM on TM
given by

JM (Wvx) = vlftvx(TτM (Wvx)), Wvx ∈ TvxTM.
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Now, we define a vertical vector field ∆ on TM , called the Liouville vector field (also
sometimes called the dilation vector field) as follows:

∆(vx) = TuΦξ(idn×n)L(M)(u), uξ = vx,

where (idn×n)L(M) is the infinitesimal generator corresponding to idn×n ∈ gl(n,R) for the
action of GL(n,R) on L(M). The vector field ∆ is an example of a vertical vector field that
is not a vertical lift [8]. The following is usually taken to be the definition of the dilation
vector field.

4.5 Proposition: The vector field ∆ is generated by the flow Φ∆
t (vx) = etvx.

Proof: The proof is obvious from our definition of ∆. ■

A vector field S : TM → TTM is called a second-order vector field if TτM ◦ S = idTM .
A second-order vector field S has the property JM ◦ S = ∆.

4.2.2. The geodesic spray of an affine connection. In this section we define an important
second-order vector field associated with a given affine connection.

Given a linear connection ω on M , for fixed ξ ∈ Rn, let Φξ : L(M) → TM be the
association map. We define a second-order vector field Z : TM → TTM as follows.

Z(v) = TuΦξ(B(ξ)u), v ∈ TM, (4.2.1)

where, u ∈ LτM (v)(M) and ξ ∈ Rn are such that uξ = v, and B(ξ) is the standard horizontal
vector field corresponding to ξ for the linear connection Γ associated with ∇. We have the
following result.

4.6 Proposition: The map Z defined in (4.2.1) is a second-order vector field on TM . The
coordinate expression for Z, in terms of the canonical tangent bundle coordinates (xi, vi) is
given by

Z = vi
∂

∂xi
− Γi

jkv
jvk

∂

∂vi
(4.2.2 )

Proof: We first show that Z as given by (4.2.1) is well-defined. For a given v ∈ TM , we
write x := τM (v). Suppose that u′ ∈ Lx(M) and ξ′ ∈ Rn are such that u′ξ′ = v = uξ.
Then, we must have u′ = ua for some a ∈ GL(n;R). Consequently, ξ′ = a−1ξ. We compute

TuaΦa−1ξ(B(a−1ξ)ua) = TuaΦa−1ξ(TuRa(B(ξ)u)

= Tu(Φa−1ξ ◦Ra)B(ξ)u

= TuΦξ(B(ξ)u),

where the first equality follows from the properties of a standard horizontal vector field.
Let us now show that Z is a second-order vector field. We have

TτM (Z(v)) = TτM (TuΦξB(ξ)u) = Tu(τM ◦ Φξ)B(ξ)u

= Tu(πM )(B(ξ)u) = uξ = v

as desired.
It now remains to be shown that the coordinate representation of Z is as given in (4.2.2),

but this follow directly from Proposition 3.16, and the definition of Φξ. ■

The geodesic spray satisfies the following homogeneity property.
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4.7 Proposition: [∆, Z] = Z.

Proof: This follows directly from Proposition 3.17. ■

4.3. Ehresmann connections induced by a linear connection

An Ehresmann connection on a locally trivial fiber bundle π : P → M is a comple-
ment HP to V P := ker(Tπ) in TP . Given a second-order vector field S on TM , the kernel
of the map (idTTM +LSJM ) defines an Ehresmann connection HTM(S) on τ : TM →M
[8, 13]. In natural coordinates (x, v) for TM , we can write a second-order vector field S as

S = vi
∂

∂xi
+ Si(x, v)

∂

∂vi
.

It can be verified that a local basis for HTM(S) is given by the vector fields

hlft

(
∂

∂xi

)
=

∂

∂xi
+

1

2

∂Sj

∂vi
∂

∂vj
, i = 1, . . . , n. (4.3.1)

If Z is the geodesic spray corresponding to a linear connection, in local coordinates the
Ehresmann connection HTM(Z) associated with Z is spanned by the vector fields

hlft

(
∂

∂xi

)
=

∂

∂xi
− 1

2
(Γj

ik + Γj
ki)v

k ∂

∂vj
, i = 1, . . . , n

where Γj
ik are the Christoffel symbols for the connection. We have the following result which

is a consequence of Proposition 4.1.

4.8 Proposition: Let ω be a linear connection on L(M) and denote the horizontal distribu-
tion corresponding to the connection by HL(M). For vx ∈ TxM , define

HvxTM = TuΦξHuL(M).

Then, HTM is an Ehresmann connection on τM : TM → M . Furthermore, if αT is the
tensorial one-form of type (Ad(GL(n,R), gl(n,R)) corresponding to the torsion tensor field
T , we have

HvxTM −HvxTM(Z) = {TuΦξ(αT (X̃u))L(M)(u)|X̃u ∈ TuL(M)}.

4.9 Corollary: Let ∇ be a connection on M with torsion T and let ω be the corresponding
linear connection on L(M). The connection ∇ defined by

∇XY = ∇XY − 1

2
T (X,Y )

has zero torsion. Let ω̄ be the linear connection corresponding to ∇. Then, the geodesic
sprays Z and Z̄ corresponding to ω and ω̄ respectively are equal. In other words, there is a
one-to-one correspondence between geodesic sprays and torsion-free connections.
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Proof: It is clear that ∇ is torsion-free. We also have

ω̄ − ω = −1

2
αT ,

where αT is the tensorial one-form of type (Ad(GL(n,R)) on L(M). Using Proposition 4.8
we get

B(ξ)u −B(ξ)u =
1

2
αT (X̃u))L(M)(u),

where X̃u ∈ TuL(M) is such that TuπM (X̃u) = uξ. Thus,

Z(uξ)− Z(uξ) =
1

2
TuΦξαT (X̃u))L(M)(u)

=
1

2

d

dt

∣∣∣∣
t=0

Φξ(u exp(tαT (X̃u))

=
1

2
vlftuξ

(
u
(
αT (X̃u)ξ

))
=

1

2
vlftuξ

(
T (TuπM (X̃u), uξ)

)
= 0

since T is skew-symmetric. Hence Z = Z. ■

4.4. Invariant principal connections

In this section, we study connections on principal fiber bundles that are invariant under
the action of a certain Lie group and derive a useful characterization of such connections.
We first describe the setup we shall consider.

4.10 Definition: Let P (M,G) be a principal fiber bundle and let K be a Lie group. The
bundle P (M,G) is called K-compatible if the following hold.

(i) K acts smoothly on P and M (through actions ΦP and ΦM respectively) such that
the map π : P →M is equivariant with respect to these actions. That is,

π(ΦP
k (u)) = ΦM

k π(u), u ∈ P, k ∈ K.

(ii) ΦM is free and proper.

A K-compatible principal fiber bundle will typically be denoted by a pair (P (M,G),K).

We shall often write ΦP
k (u) = ku and ΦM

k (x) = kx, etc. This should cause no confusion. A
principal connection ω on P is K-invariant if Φ∗

kω = ω for every k ∈ K. We shall denote
the horizontal distribution corresponding to ω by HP . Given X ∈ k, denote by XP the
infinitesimal generator corresponding to X (for the action ΦP ). The following is easy to
verify.

4.11 Proposition: If ω is K-invariant, the following statements hold:

(i) LXP
ω = 0 for every X ∈ k;

(ii) HP is K-invariant,

(iii) The parallel transport map of ω is K-equivariant.
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4.12 Remark: In general, if Y is a vector field on a manifold M , a vector-valued one-form
α on M is Y -invariant , if LY α = 0. Thus, if ω is K-invariant, it is XP -invariant for
every X ∈ k.

Let K be a Lie group acting on a principal fiber bundle P (M,G) as a group of automor-
phisms. Let u0 be a point in P , which we choose as a reference point. Every element k ∈ K
induces a transformation k̃ of M . Let

J := {k ∈ K | k̃(π(u0)) = π(u0)}.

J is a closed subgroup of K, and we call it the isotropy subgroup of K at x0 := π(u0).
We can define a homomorphism λ : J → G as follows. For each j ∈ J , ju0 ∈ π−1(x0) and
thus is of the form ju0 = u0a, for some a ∈ G. Define λ(j) = a. This is easily seen to
be a homomorphism (we refer the reader to [12] for details). We say that K acts fiber-
transitively if, for any two fibers of P , there is an element of K which maps one fiber into
the other, that is, the action of K on M is transitive. We now recall a theorem by Wang
[35].

4.13 Theorem: (Wang) If a (connected) Lie group K is a fiber-transitive automorphism
group of a principal fiber bundle P (M,G) and if J is the isotropy subgroup of K at x0 =
π(u0), u0 ∈ P , then there is a one-to-one correspondence between the set of K-invariant
connections in P and the set of linear mappings Λ : k → g satisfying

(i) Λ|j = Teλ and

(ii) Λ ◦Ad(j) = Ad(λ(j)) ◦ Λ, j ∈ J .

The correspondence is given by

Λ(u0)(X) = ωu0(XP (u0)), X ∈ k.

Now, notice that the map Λ in Wang’s theorem defines a left-invariant g-valued one-form
on K as follows. Define AΛ : TK → g by

AΛ(k)(vk) = Λ ◦ θ(vk), vk ∈ TkK,

where θ is the canonical 1-form on K. Also, for fixed u0, we define a map Φu0 : K → P
given by Φu0(k) = ku0. Then, there is a left-invariant g-valued one-form Aω on K defined
by Aω = Φ∗

u0
ω, and we can define ΛA := Aω|k. We can now restate Wang’s theorem as

follows.

4.14 Theorem: If a (connected) Lie group K is a fiber-transitive automorphism group of a
principal fiber bundle P (M,G) and if J is the isotropy subgroup of K at x0 = π(u0), u0 ∈ P ,
then there is a one-to-one correspondence between the set of K-invariant connections in P
and the set of left-invariant g-valued 1-forms A on K satisfying the following two conditions:

(i) A|j = Teλ;

(ii) A ◦Ad(j) = Ad(λ(j))A, j ∈ J.

The map Λ, and thus the left-invariant form AΛ in the theorem depends on the choice
of the point u0 ∈ P , as well as on the assumption that K acts fiber-transitively. We now
prove a generalization of Wang’s result. Define an action Φk of K ×G on P × k as follows:

Φk
(k,g)(u, ξ) = (kug,Adkξ).
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Let us show that this action is free. Assume that Φk
(k,g)(u, ξ) = (u, ξ). Then we must have

kug = u and Adkξ = ξ. That is,

π(kug) = kπ(ug) = kπ(u) = π(u),

which implies that k = eK , and thus g = eG since the action of G on P is free. Thus we
conclude that Φk is free. Notice that we can identify M/K with P/(K ×G) by the map

[π(u)]K 7−→ [u]K×G.

Also, we can identify (P × k)/(K ×G) with (M × k)/K by the map

[u, ξ]K×G 7−→ [π(u), ξ]K .

Next, define an action Φg of K ×G on P × g by

Φg
(k,g)(u,X) = (kug,Adg−1X).

This action is again seen to be free. Now, if P (M,G) is K-compatible, P/K is a differen-
tiable manifold, and there is an induced action of G on P/K given by

P/K ×G→ P/K

([u]K , g) 7→ [ug]K .

Thus, G acts on P/K × g as follows

(P/K × g)×G→ P/K × g

(([u]K , X), g) 7−→ ([ug]K ,Adg−1X).

Notice that we can identify (P × g)/K ×G with (P/K × g)/G by the map

[u,X]K×G 7−→ [[u]K , X]G.

Let us denote by k̃ the adjoint bundle (M × k)/K → M/K and by g̃ the adjoint bundle
(P/K × g)/G→ (P/K)/G. Let us also define the map

Λ0 :M/K → (P/K)/G

[π(u)]K → [[u]K ]G.

We have the following result.

4.15 Proposition: Let (P (M,G),K) be a K-compatible principal fiber bundle. Then for
each K-invariant connection in P there exists a vector bundle mapping Λ̃ : k̃ → g̃ over the
mapping Λ0. The correspondence is given by

Λ̃[π(u), ξ]K = [[u]K ,Λ(u)ξ]G,

where Λ at a point u is given by Wang’s theorem.
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Proof: Let ω be a K-invariant connection on P . Let u0, u1 ∈ P be such that u1 ∈
π−1(π(u0)). Then, it is clear that

Λ(u1)(X) = ω(u0A)(XP (uA)) = Ad(A−1)Λ(u0)(X),

where A ∈ G is such that u1 = u0A.
Next, for u2 ∈ OrbK(u0) (where orb denotes the orbit through u0), we have,

Λ(ku0)(X) = Λ(u0)(Ad(k
−1)X), k ∈ K.

To see that Λ̃ is well-defined, we compute

Λ̃([kπ(ug),Adkξ]K) = Λ̃([π(kuA),Adkξ]K) = [[kuA]K ,Λ(kuA)(Adkξ)]G

= [[uA]K ,Λ(uA)(Adk−1(Adkξ))]G

= [[uA]K ,AdA−1Λ(u)(ξ)]G

= [[u]K ,Λ(u)(ξ)]G. (4.4.1)

■

This result provides a characterization of K-invariant principal connections on K-
compatible principal bundles. As we shall see in Chapter 5, this is a setup in which invariant
affine connections on manifolds can be studied.

4.5. The frame bundle L(G) of a Lie group G

In this section we study the linear frame bundle corresponding to a Lie group G and
provide an intrinsic derivation of the Euler–Poincaré equation.

Consider an n-dimensional Lie group G with a left-invariant affine connection ∇. We
look at the frame bundle L(G)(G,GL(n;R)) of G. The canonical projection is denoted by
πG : L(G) → G.

If we left-trivialize the tangent bundle TG, we have the following result.

4.16 Proposition: L(G) is diffeomorphic to G× L(Rn, g) as a principal fiber bundle.

Proof: To see this, notice that corresponding to each pair (g,A) ∈ G×L(Rn, g) there exists
an isomorphism u : Rn → TgG as follows:

u(x) = TeLg(Ax), x ∈ Rn.

Conversely, given an isomorphism u : Rn → TgG, such that πG(u) = g, we can use the left
trivialization of TgG to define A ∈ L(Rn, g)

A(x) = TgLg−1u(x).

The result now follows. ■

Unless stated otherwise, we shall use the identification L(G) ≃ G × L(Rn, g) throughout
this section. If u ∈ Lg(G) is the unique frame corresponding to (g,A) ∈ G× L(Rn, g), for
v ∈ TgG we shall often write

(g,A)−1(v) := A−1TgLg−1(v).
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4.5.1. The connection 1-form of a left-invariant affine connection on G. In this section,
we compute the linear connection 1-form corresponding to a left-invariant affine connection
∇ on G. We apply Proposition 3.8 to the case when P = L(G) is a Lie group. Note that
a left-invariant affine connection on G defines a bilinear map S : g× g → g. Thus, for any
two left-invariant vector fields Xξ and Xη, we have

∇Xξ
Xη(g) = XS(ξ,η)(g).

We also define the map S♭ : g → L(g, g) by S♭(ξ)η = S(ξ, η).

4.17 Proposition: Let G be a Lie group with a left-invariant affine connection ∇. Then the
corresponding linear connection 1-form ω : T (G× L(Rn, g)) → gl(n;R) is given by

ω(X,Y ) = A−1Y +A−1S♭(TgLg−1X)A, (X,Y ) ∈ T(g,A)(G× L(Rn, g)).

Proof: We first prove a lemma.

1 Lemma: Let Xξ be a left-invariant vector field on G. Then the horizontal lift X∗
ξ of Xξ

is given by

X∗
ξ (g,A) = (Xξ(g),−S♭(ξ)A).

Proof: Let Xξ and Xη be left-invariant vector fields on G. We define fη(g,A) =
(g,A)−1Xη(g) = A−1η. Let us denote the integral curve of the horizontal lift X∗

ξ pass-
ing through (g,A) be (g(t), A(t)). Using Proposition 3.8 we have

d

dt
fη(g(t), A(t))|t=0 = (g(t), A(t))−1(∇Xξ

Xη(g))|t=0 = A−1S(ξ, η).

Also, we have

d

dt
fη(g(t), A(t))|t=0 =

d

dt
(A(t)−1η)|t=0.

Now, differentiating the equality A(t)(A(t)−1η) = η with respect to t, we get

0 = TA−1ηΦA(t)
d

dt
(A(t)−1η)|t=0 + TAΦ

A(t)−1ηȦ(t)|t=0.

That is,

A(0)(A−1S(ξ, η)) + Ȧ(0)A(0)−1η = 0.

We thus conclude that Ȧ(0) = −S♭(ξ)A. In other words, the horizontal lift X∗
ξ is given by

X∗
ξ (g,A) = (Xξ(g),−S♭(ξ)A). This is what we wished to prove. ▼

Now, given an arbitrary vector (X,Y ) ∈ T(g,A)L(G), we have

hor(X,Y ) = X∗(g,A) = (X,−S♭(TgLg−1X)A).

In other words,

ω(X,Y )L(G)(g,A) = (0, Y + S♭(TgLg−1X))A).

We know that the infinitesimal generator corresponding to an element a ∈ gl(n;R) at a
point (g,A) is given by

d

ds
(g,Aeas)|s=0 = (0, Aa).

We thus conclude that ω(X,Y ) = A−1Y +A−1S♭(TgLg−1X)A. ■
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4.5.2. Geodesics on G. In this section, we recover the classical geodesic equation of a
left-invariant connection on a Lie group using the language of linear frame bundles. This
equation is known as the Euler–Poincaré equation. The derivations of this equation that
are found in the literature (see, for example, [5]) are based on a choice of a basis for the
Lie algebra of G. Our approach therefore provides a more satisfactory intrinsic derivation
independent of the choice of a basis.

4.18 Proposition: Let g : R → G be the geodesic with the initial condition X ∈ TgG and
let ξ(t) = g(t)−1ġ(t). Then ξ̇(t) = −S(ξ(t), ξ(t)).

Proof: Let v = (g,A)−1(X) = A−1(TgLg−1X). Consider the standard horizontal vec-
tor field corresponding to v. That is, B(v)(g,A) ∈ hor(g,A)(G × L(Rn, g)) such that
T(g,A)πG(B(v)(g,A)) = (g,A)(v). From our previous computations, it is clear that

B(v)(g,A) = (Xξ(g),−S♭(Av)A),

where ξ = TgLg−1X. Let us find the integral curve of B(v). We need a curve (g(t), A(t))
such that

(g′(t), A′(t)) = (XA(t)v(g(t)),−S♭(A(t)v)A(t)).

Thus, we want to find a curve A(t) such that

A′(t)A(t)−1 = −S♭(A(t)v). (4.5.1)

A geodesics t 7→ g(t) therefore satisfy

g′(t) = TeLg(t)A(t)v,

where A(t) satisfies (4.5.1). Now, ξ(t) = g(t)−1ġ(t) = A(t)v. Thus,

ξ̇(t) = Ȧ(t)v = −S♭(A(t)v)A(t)v = −S(ξ(t), ξ(t)),

which gives us the result. ■



Chapter 5

Geodesic Reduction

In this section we consider an arbitrary affine connection ∇ on the total space of a principal
bundle πM/G :M →M/G, and compute the reduced geodesic equation. In Section 5.1, we
study the notion of geodesic invariance of a distribution, and using frame bundle geometry,
provide an intrinsic proof of a characterization of geodesic invariance given by Lewis [16]
in terms of the symmetric product. In the next section, we consider the bundle of linear
frames adapted to a given principal connection, and construct several bundles that help
provide insight into the structure of the reduced frame bundle. In Section 5.3 we begin
by proving an important relationship between the geodesic spray, the tangent lift and
the vertical lift of the symmetric product. Next, we explore the structure of the reduced
geodesic spray by decomposing it using a principal connection on M(M/G,G) and an
induced principal connection on TM(TM/G,G). We are able to provide meaning to the
various terms obtained in this decomposition.

5.1. Geodesic invariance

We recall the notion of geodesic invariance.

5.1 Definition: A distribution D on a manifold M with an affine connection ∇ is called
geodesically invariant if for every geodesic c : [a, b] → M , ċ(a) ∈ Dc(a) implies that
ċ(t) ∈ Dc(t) for all t ∈ [a, b].

It turns out that geodesic invariance can be characterized by studying a certain product
on the set of vector fields on M . Let M be a manifold with a connection ∇. Given
X,Y ∈ Γ(TM), the symmetric product ⟨X : Y ⟩ is the vector field defined by

⟨X : Y ⟩ = ∇XY +∇YX. (5.1.1)

Given a distribution D on M , we represent by Γ(D) the set of vector fields taking values
in D. The following result, proved by Lewis [16], provides infinitesimal tests for geodesic
invariance and gives the geometric meaning of the symmetric product.

5.2 Theorem: (Lewis) Let D be a distribution on a manifold M with a connection ∇. The
following are equivalent.

(i) D is geodesically invariant;

(ii) ⟨X : Y ⟩ ∈ Γ(D) for every X,Y ∈ Γ(D);

34
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(iii) ∇XX ∈ Γ(D) for every X ∈ Γ(D).

We give a proof of this theorem below. Thus, for geodesically invariant distributions, the
symmetric product plays the role that the Lie bracket plays for integrable distributions.

Now, given a p-dimensional distribution D on an n-dimensional manifold M with a
linear connection, we say that a frame u ∈ Lx(M) is D-adapted if u|Rp : Rp⊕Rn−p → Dx

is an isomorphism. Let L(M,D) be the collection of D-adapted frames. We observe that
L(M,D) is invariant under the subgroup of GL(n,R) consisting of those automorphisms
which leave Rp invariant. It turns out that L(M,D) is a subbundle of L(M).

We have the following result.

5.3 Proposition: The distribution D is geodesically invariant if and only if, for each ξ ∈ Rp,
B(ξ ⊕ 0)|L(M,D) is a vector field on L(M,D).

Proof: We first prove the “if” statement. Suppose that B(ξ⊕0) is a vector field on L(M,D)
and let c : R → L(M) be its integral curve passing through ū ∈ L(M,D). Then, we know
that x(t) := πM (c(t)) is the unique geodesic with the initial condition ūξ ∈ D. We must
show that ẋ(t) ∈ Dx(t) for all t. We have

ẋ(t) = TπM (B(ξ ⊕ 0)c(t)) = c(t)(ξ ⊕ 0).

Since B(ξ⊕0) is a vector field on L(M,D), we must have c(t) ∈ L(M,D) for all t. Thus, we
have ẋ(t) ∈ Dx(t) for all t. The “only if” part of the statement can be proved by reversing
this argument. ■

An immediate consequence of this result is the following.

5.4 Corollary: A distribution D is geodesically invariant if and only if the geodesic spray Z
is tangent to the submanifold D of TM .

We are now in a position to provide a proof of Theorem 5.2 using frame bundle geometry.

Proof of Theorem 5.2: (i) =⇒ (ii) Suppose thatD is geodesically invariant, and letX1, X2 ∈
Γ(D). Then, we know that the corresponding functions fXi : L(M,D) → Rp ⊕Rn−p, i =
1, 2, take values in Rp. Also,

(Xi)
h(u) = cjiB(ej ⊕ 0)u, u ∈ L(M,D),

where cji are functions on L(M) and {ej}j=1,...,p is the standard basis for Rp. We have

f(∇X1
X2+∇X2

X1) = L(X1)hfX2 +L(X2)hfX1 = cj1LB(ej⊕0)fX2 + ck2LB(ek⊕0)fX1 .

Since fXi , i = 1, 2, are Rp-valued functions on L(M,D) and B(ej ⊕0)|L(M,D), j = 1, . . . , p,
are vector fields on L(M,D) because the distribution is assumed to be geodesically invariant,
we conclude that the function f(∇X1

X2+∇X2
X1) : L(M,D) → Rp ⊕Rn−p takes its values in

Rp. This proves (ii).
(ii) =⇒ (iii) This follows directly from the definition of the symmetric product.
(iii) =⇒ (i) Assume that ∇XX ∈ Γ(D) for every X ∈ Γ(D). This implies that the

function LXhfX : L(M,D) → Rp ⊕ Rn−p takes values in Rp. Once again, we can write
Xh = CiB(ei ⊕ 0) for some functions Ci. This implies that B(ei ⊕ 0)|L(M,D) must be a
vector field on L(M,D). ■

The above result shows that it is possible to check for geodesic invariance by looking at
vector fields B(ei ⊕ 0) on the bundle L(M,A).
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5.2. Frame bundle adapted to a principal connection

We now consider the following setup. Let M be an n-dimensional manifold with a
connection ∇ (and corresponding linear connection ω) and let G be a p-dimensional Lie
group with a (left) free and proper action Φ on M . In other words, M(M/G,G) is a
principal fiber bundle. We denote the canonical projection by πM/G : M → M/G. The

Lie group G acts on L(M) on the left via the lifted action ΦL(M) : G × L(M) → L(M)
defined as follows:

ΦL(M)(g, u) = TπM (u)Φg ◦ u.

Now let A be a principal connection on the bundle πM/G : M → M/G. This defines
a distribution HM complementary to the vertical distribution VM . Next, consider the
linear frame bundle L(M). We know that the tangent bundle TM is a bundle associated
with L(M) with standard fiber Rn. A frame u ∈ L(M) is called A-adapted if u|Rn−p is an
isomorphism onto HxM and u|Rp is an isomorphism onto VxM . Denote by L(M,A), the
collection of A-adapted linear frames. A frame u ∈ Lx(M,A), is a map u : Rn−p ⊕ Rp →
TxM . It therefore induces, for each y ∈M/G, a map ũ : Rn−p → Ty(M/G) given by

ũ(η) = TxπM/G(u(η ⊕ 0)), πG(x) = y, u ∈ Lx(M).

We must verify that this is well-defined. To see this, we compute

Tg·xπM/G(Φ
L(M)
g u(η ⊕ 0)) = Tg·xπM/G(TΦgu(η ⊕ 0))

= Tg·x(πM/G ◦ Φg)u(η ⊕ 0)

= TxπM/G(u(η ⊕ 0)).

This thus defines a map fG : L(M,A) → L(M/G) as follows:

Lx(M,A) ∋ u 7→ ũ ∈ LπM/G(x)(M/G).

Now, L(M,A) is a subbundle of L(M) with structure group given by

H =

{(
a 0
0 c

)∣∣∣∣ a ∈ GL(n− p;R), c ∈ GL(p;R)

}
.

It is easy to see that the map H → GL(n− p;R) given by(
a 0
0 c

)
7→ a

is a Lie group homomorphism. We denote it by the same symbol fG. This should not cause
any confusion. We have the following result.
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5.5 Proposition: The map fG : L(M,A) → L(M/G) is a principal bundle homomorphism
over πG.

Proof: We must verify that fG(uB) = fG(u)fG(B), B ∈ H, so that the following diagram
commutes:

L(M,A)
fG−−−−→ L(M/G)

πM

y yπ̄M/G

M
πM/G−−−−→ M/G

where π̄M/G is the natural projection from L(M/G) to M/G. Let

B =

(
a 0
0 c

)
.

By definition, for ξ ∈ Rn−p, we have

fG(uB)ξ = TxπM/G(uB(η ⊕ 0)) = TxπM/G(ua(η ⊕ 0)) = fG(u)fG(B)ξ,

which is what we wanted to show. ■

5.2.1. The reduced frame bundle. A principal connection on a principal bundle
M(M/G,G) induces a vector bundle isomorphism between the reduced tangent bundle
TM/G and the Whitney sum T (M/G) ⊕ g̃ of bundles over M/G. This decomposition of
TM/G can be used to decompose the dynamics into its horizontal and vertical parts. In this
section, we study the geometry of the reduced linear frame bundle L(M)/G and the reduced
bundle L(M,A)/G associated to a principal connection. We construct several bundles that
allow us to better understand the structure of these reduced bundles.

Let G be a Lie group and (L(M),M,GL(n,R)), G) a G-compatible principal fiber bun-
dle. The action of G on L(M) is assumed to the the lift of the action of G on M . This
action is induced by the tangent lift ΦT of the action Φ of G on M onto TM as defined
earlier. We can define a map [τM ]G : TM/G→M/G as follows:

[τM ]G([v]G) = [τM (v)]G, [v]G ∈ TM/G.

The following result proved in [7] shows that TM/G is a vector bundle.

5.6 Proposition: [τM ]G : TM/G → M/G is a vector bundle over M/G and the fiber
(TM/G)x over x ∈M/G is isomorphic to TyM , for each y for which x = [y]G.

If A is a principal connection on the bundle πM/G : M → M/G, we can decompose the
bundle TM/G into its horizontal and vertical parts [19].

5.7 Lemma: The map αA : TM/G→ T (M/G)⊕ g̃ given by

αA([vx]G) = TπM/G(vx)⊕ [x,A(vx)]G

is a well-defined vector bundle isomorphism.
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The second component of the map αA will be denoted by ρA : TM/G → g̃. Now,
consider the vector bundle [τM ]G : TM/G→M/G and define

(L(M)/G)[x]G := L(Rn, [τM ]−1
G ([x]G)), [x]G ∈M/G

to be the set of linear isomorphisms. For each x ∈ M , L(M)/G[x]G is isomorphic to LxM .
Let L(M)/G :=

⋃
[x]G

(L(M)/G)[x]G . The natural projection maps u/G ∈ (L(M)/G)[x]G 7→
[x]G. Similarly, if A is a principal connection on the bundle πM/G : M → M/G, we can
define L(M,A)/G.

Next, we consider the adjoint bundle τg : (M × g)/G → M/G and define G̃ :=⋃
[x]G
G̃[x]G , where

G̃[x]G = L(Rp, τ−1
g ([x]G))

is the set of linear isomorphisms.
Let L(M/G)×M/G G̃ be the bundle over M/G with the fiber being the direct product

of the fibers of the bundles L(M/G) and G̃ respectively. The structure group H of L(M,A)
also acts on L(M/G)×M/G G̃ on the right as follows.

(ū, ũ)

(
a 0
0 c

)
7→ (ūa, ũc).

This fibered product bundle is a principal bundle overM/G with structure groupH. Finally,
we note that T (M/G) is a bundle associated with L(M/G)(M/G,Rn−p), with standard
fiber Rn−p.

We also consider the bundle π/G : L(M)/G → M/G. The next result provides a
decomposition of L(M)/G similar to the one given in Lemma 5.7.

5.8 Proposition: The following statements hold.

(i) L(M)/G(M/G,GL(n;R)) and G̃ (M/G,GL(p;R)) are principal fiber bundles.

(ii) The bundles L(M)/G and L(M)/G are isomorphic.

(iii) [τM ]G : TM/G → M/G is a bundle associated with L(M)/G(M/G,GL(n;R)) with

standard fiber Rn, and g̃ is a bundle associated with G̃ with standard fiber Rp.

(iv) Consider the map αL
A : L(M,A)/G → L(M/G)×M/G G̃ given by

u/G 7→ (fG(u/G), ũ/G),

where fG is the principal bundle homomorphism defined in Section 5.2 and ũ/G ∈
G̃[πM (u)]G is such that

ũ/G(ξ) = [πM (u), A(u|Rp(0⊕ ξ))]G.

Then, αL
A is a principal bundle isomorphism over the identity mapping on M/G.

Sketch of proof: (i) The structure group GL(n,R) acts on L(M)/G by composition on
the right.

L(M)/G ×GL(n,R) → L(M)/G

(u/G, a) 7→ u/Ga, u/G ∈ (L(M)/G)[x]G , a ∈ GL(n,R).
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It can be seen that (L(M)/G)/GL(n,R) is isomorphic to M/G. The other case with

G̃ can be similarly worked out.

(ii) The map ιG : L(M)/G→ L(M)/G defined by

ιG([u]G)ξ = [uξ]G.

is an isomorphism over the identity map on M/G.

(iii) This is straightforward.

(iv) A chase through the various definitions gives us this result. ■

5.3. The reduced geodesic spray

In this section, we study how the geodesic spray of a connection behaves under the action
of G. We first prove an important result that will enable us to understand the nature of
the reduced geodesic spray.

5.9 Proposition: Let v ∈ TxM for some x ∈ M , and Xv be an arbitrary vector field that
has the value v at x. Then,

Z(v) = (Xv)
T (v)− vlftv(∇XvXv(x)). (5.3.1 )

Proof: Using local coordinates xi around x in M , we write Xv = Xv
i ∂
∂xi . Then,

(Xv)
T (v) = vi

∂

∂xi
+ vj

∂Xv
i

∂xj
∂

∂vi
,

and

∇XvXv(x) =

(
∂Xv

i

∂xj
Xv

j + Γi
jkXv

jXv
k

)
∂

∂xi
=

(
∂Xv

i

∂xj
vj + Γi

jkv
jvk

)
∂

∂xi
.

So

vlftv(∇XvXv(x)) =

(
∂Xv

i

∂xj
vj + Γi

jkv
jvk

)
∂

∂vi
.

Thus,

(Xv)
T (v)− vlftv(∇XvXv(x)) = vi

∂

∂xi
+ vj

∂Xv
i

∂xj
∂

∂vi
−
(
∂Xv

i

∂xj
vj + Γi

jkv
jvk

)
∂

∂vi

= vi
∂

∂xi
− Γi

jkv
jvk

∂

∂vi
= Z(v).

■
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5.10 Remark: Notice that, even though each of the two terms XT
v (v) and vlftv(∇XvXv)

depends on the extension Xv, terms that depend on the derivative of Xv cancel in the
expression for Z.

5.3.1. Decomposition of the reduced geodesic spray. In this section, we generalize the
notion of a second-order vector field. Let us first remark that, if M(M/G,G) is a principal
fiber bundle, then so is TM(TM/G,G) (the action ΦT of G on TM being the tangent
lift of the action of G on M). We denote the canonical projection by the map πTM/G :

TM → TM/G. Furthermore, G acts on TTM by the tangent lift of ΦT . We denote by
TτM : TTM/G→ TM/G the map given by

TτM ([Wvx ]G) = [TτM (Wvx)]G.

It is easy to see that this map is well-defined. We know from the previous section that a
principal connection A on the bundle M(M/G,G) induces a vector bundle isomorphism
αA : TM/G → T (M/G) ⊕ g̃M/G. Similarly, a principal connection Â on TM induces an

isomorphism αÂ : TTM/G→ T (TM/G)⊕ g̃TM/G. Thus, if A and Â are chosen, there is a
vector bundle isomorphism

TTM/G ≃ TT (M/G)⊕A T g̃M/G ⊕Â g̃TM/G.

We now consider the decomposition of TTM/G using a principal connection A on πM/G :
M →M/G as follows.

5.11 Lemma: The object Â = τ∗MA is a principal connection on πTM/G : TM → TM/G.

Proof: Let ξTM be the infinitesimal generator on TM corresponding to ξ ∈ g. Then, we
have

TτM (ξTM (vx)) =
d

dt
τM ◦ TΦexpξt(vx)

∣∣∣∣
t=0

=
d

dt
ΦexpξtτM (vx)

∣∣∣∣
t=0

= ξM (x).

Therefore, we get

Â(ξTM (vx)) = A(TτM (ξTM (vx))) = A(ξM (x)) = ξ.

Next, given Wvx ∈ TvxTM and g ∈ G, we compute

Â(TΦT
g (Wvx)) = A(TτM (TΦT

g (Wvx)) = A(TΦgTτM (Wvx)) = AdgA(TτM (Wvx)).

This shows that

Â(TΦT
g (Wvx)) = AdgÂ(Wvx)

which gives us the result. ■

The connection Â has the following useful property.
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5.12 Corollary: If S : TM → TTM is a second-order vector field, then

Â(S(vx)) = [vx, A(vx)]G ∈ g̃TM/G.

In other words, if we choose connections A and Â on M(M/G,G) and TM(TM/G,G)
respectively, studying a second-order vector field such as the geodesic spray reduces to
studying the TT (M/G)⊕T g̃ components, since the g̃TM/G component is completely deter-
mined by A itself. We now define the reduced geodesic spray.

5.13 Proposition: Let ω be a G-invariant linear connection on L(M) and ∇ the corre-
sponding connection on M . The object Z : TM/G→ TTM/G defined by

Z([vx]G) = [Z(vx)]G = [TuΦξB(ξ)u]G.

is well-defined. We call Z the reduced geodesic spray .

Proof: We first prove a lemma.

1 Lemma: The standard horizontal vector fields corresponding to a G-invariant linear con-
nection ω on L(M) are G-invariant. That is,

B(ξ)g.u = TuΦ
L(M)
g B(ξ)u, u ∈ L(M), ξ ∈ Rn.

Proof: Let X = uξ ∈ TxM . Then, g · uξ = TxΦg(vx). By definition, B(ξ)g·u is the unique
horizontal vector that projects to TxΦgvx. On the other hand, since ω is G-invariant,

the vector TuΦ
L(M)
g B(ξ)u is horizontal and it projects to TuΦg(vx). By the uniqueness of

horizontal lift at a point, we must have

B(ξ)g·u = TuΦ
L(M)
g B(ξ)u,

which proves the lemma. ▼

Since L(M) is G-compatible, the association map Φξ : L(M) → TM corresponding to
ξ ∈ Rn is G-equivariant. That is,

Φξ ◦ ΦL(M)
g = ΦT

g ◦ Φξ.

Now, for g ∈ G, we compute

[Z(TxΦg(vx))]G = [Tg·uΦξB(ξ)g·u]G

= [Tg·uΦξTuΦ
L(M)
g B(ξ)u]G = [TvxΦ

T
g TuΦξB(ξ)u]G

= [TuΦ
T
g Z(vx)]G.

■

Now, since G acts on TTM via the lifted action, we can define a map TπTM/G : TTM/G→
T (T (M/G)) as follows.

TπTM/G[Wvx ]G = TπTM/G(Wvx).

This is well-defined since given any g ∈ G, we have πTM/G ◦ TΦT
g = πTM/G. By abuse of

notation, we shall sometimes use the maps TπTM/G and TπTM/G interchangeably.
We have the following result.
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5.14 Proposition: Let SZ : T (M/G) → TT (M/G) be the map defined by

SZ(X̄) = T (TπM/G ◦ πTM/G)Z([X̄
h(x)]G), X̄ ∈ T[x]G(M/G),

where X̄h is an invariant horizontal vector field that projects to X̄ at x ∈M . The following
statements hold.

(i) SZ is a second-order vector field on T (M/G);

(ii) SZ(X̄) = X̄T (X̄)− vlftX̄TπM/G(∇X̄hX̄h), where, by abuse of notation, X̄ is a vector
field on M/G which has a value X̄ at [x]G ∈M/G.

Proof: (i) We compute

TτM/GSZ(X̄) = T (τM/G ◦ TπM/G ◦ Z(X̄h(x))

= TπM/GTτM (Z(X̄h(x)))

= TπM/G(X̄
h(x)) = X̄.

(ii) Let ΦX̄h

t and ΦX̄
t be the flows of X̄h and X̄ respectively. We have

TTπM/G(X̄
h)T (X̄h(x)) =

d

dt

∣∣∣∣
t=0

(TπM/G ◦ TΦXh

t (X̄h(x)))

=
d

dt

∣∣∣∣
t=0

(T (πM/G ◦ ΦXh

t )(X̄h(x)))

=
d

dt

∣∣∣∣
t=0

(
d

ds

∣∣∣∣
s=0

(πM/G ◦ ΦXh

t )(ΦXh

s (x)))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(πM/G ◦ ΦXh

t+s(x))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(ΦX
t+s([x]G) = X̄T (X̄).

Next, we look at

TTπM/GvlftX̄h(x)(∇X̄hX̄h(x)) =
d

dt
(tTπM/G∇X̄hX̄h(x) + TπM/GX̄

h(x))

∣∣∣∣
t=0

=
d

dt
(tTπM/G∇X̄hX̄h(x) + X̄([x]G))

∣∣∣∣
t=0

= vlftX̄([x]G)TπM/G∇X̄hX̄h(x).

This finally gives us

SZ(X̄) = X̄T (X̄)− vlftX̄(TπM/G∇X̄hX̄h(x)). ■

The idea here is that we use principal connections A and τ∗MA on M(M/G,G) and
TM(TM/G,G), respectively, to write the reduced geodesic spray corresponding to an in-
variant linear connection as a map from T (M/G)⊕ g̃ to TT (M/G)⊕T g̃. The map SZ gives
us one component of this decomposition.
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Next, we define a map PZ : g̃ → TT (M/G) as follows

PZ([x, ξ]G) = TTπM/GTπTM/GZ([ξ
V
L (x)]G).

where ξVL is the left-invariant vector field on M that satisfies ξVL (x) = ξM (x). We must
verify that this is well-defined. To see this, notice that [g · x,Adgξ]G = [x, ξ]G. Next, we
have

(Adgξ)M (g · x) = d

dt
Φexp(Adgξ)t(g · x)

∣∣∣∣
t=0

=
d

dt
Φ(g(expξt)g−1, g · x)

∣∣∣∣
t=0

= TxΦgξM (x) = ξVL (g · x).

Let us denote ξ̃ := [x, ξ]G. Using (5.3.1), we get

PZ(ξ̃) = TTπM/GZ(ξ
V
L (x)) = TTπM/G((ξ

V
L )

T (ξVL (x))− TTπM/GvlftξVL (x)(∇ξVL
ξVL (x))

= −vlft0(TπM/G∇ξVL
ξVL (x)).

We write S (ξ̃, ξ̃) = (TπM/G∇ξVL
ξVL (x)). Since ∇ is G-invariant, this map is well-defined.

Next, we define RZ : T (M/G) → T g̃ by

RZ(X̄) = TρATπTM/GZ(X̄
h(x)).

Then, using (5.3.1), we calculate

TρATπTM/GZ(X̄
h(x)) = TρATπTM/G

(
(X̄h)T (X̄h(x)− vlftX̄h(x)(∇X̄hX̄h(x)

)
.

Let us look at the first term on the right-hand side.

TρATπTM/G

(
(X̄h)T (X̄h(x)

)
= TρATπTM/G

d

dt

∣∣∣∣
t=0

TΦX̄h

t (X̄h(x))

=
d

dt

∣∣∣∣
t=0

ρA([TΦ
X̄h

t (X̄h(x))]G) = 0,

since TΦX̄h

t (X̄h(x)) is horizontal and ρA vanishes on horizontal vectors. Also,

TρATπTM/GvlftX̄h(x)(∇X̄hX̄h(x))

=
d

dt

∣∣∣∣
t=0

ρAπTM/G

(
t∇X̄hX̄h(x)) + X̄h(x)

)
=

d

dt

∣∣∣∣
t=0

(
tρA ◦ πTM/G(∇X̄hX̄h(x) + ρA ◦ πTM/G(X̄

h(x))
)

=
d

dt

∣∣∣∣
t=0

(
tρA ◦ πTM/G(∇X̄hX̄h(x) + 0

)
,

and thus we get

RZ(X̄) = −vlft0(ρA ◦ πTM/G(∇X̄hX̄h(x))).
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If HM is geodesically invariant, then ∇X̄hX̄h is horizontal, and thus RZ = 0.
Finally, we define UZ : g̃ → T g̃ by

UZ(ξ̃) = TρATπTM/GZ(ξ
V
L (x)),

and a calculation similar to the one performed above shows that

UZ(ξ̃) = −vlftξρA(πTM/G(∇ξVL
ξVL (x))).

The following lemma is useful.

5.15 Lemma: The map ∇A : Γ(T (M/G))× Γ(g̃) → Γ(g̃) given by

∇A
X̄ ξ̃([x]G) = ρAπTM/G

(〈
X̄h : ξVL

〉
(x)

)
, [x]G ∈ (M/G)

defines a vector bundle connection on the bundle g̃.

Proof: Let f :M/G→ R be a differentiable function. Define fh :M → R by fh = π∗M/Gf .

Therefore, (fX̄)h = fhX̄h. We compute

∇A
fX̄ ξ̃ = ρAπTM/G

(〈
fhX̄h : ξVL

〉)
= ρAπTM/G

(
fh∇X̄hξVL + fh∇ξVL

X̄h + (LξVL
fh)X̄h

)
= f∇A

X̄ ξ̃,

since (LξVL
fh)X̄h = 0. The property ∇A

X̄
f ξ̃ = f∇X̄ξ̃ + (LX̄f)ξ̃ can be proved similarly. ■

We now state the main result of this section.

5.16 Theorem: Let Zh : T (M/G)⊕ g̃ → TT (M/G) be the map defined by

Zh(X̄ ⊕ ξ̃) = TTπM/GZ[X̄
h(x) + ξVL (x)]G,

where X̄h is an invariant horizontal vector field that projects to X̄ at x ∈M , and ξVL is the
left-invariant vertical vector field with value ξM (x) at x ∈M .

Let Zv : T (M/G)⊕ g̃ → T g̃ be the map defined by

Zv(X̄ ⊕ ξ̃) = TρAZ([X̄
h(x) + ξVL (x))]G,

where X̄h and ξVL are defined as above. The following statements hold.

(i) Zh(X̄ ⊕ ξ̃) = SZ(X̄)− vlftX̄S (ξ̃, ξ̃)− vlftX̄
(
TπM/G

〈
X̄h : ξVL

〉)
.

(ii) Zv(X̃ ⊕ ξ̃) = RZ(X̄) + UZ(ξ̃)− vlftξ

(
∇A

X̄
ξ̃([x]G)

)
.

Proof: (i) Let us compute

TTπM/GZ(X̄
h(x) + ξVL (x))

= TTπM/G((X̄h + ξVL )
T )(X̄h + ξVL (x))− vlftX̄h(x)(TπM/G∇X̄h+ξVL

(Xh + ξVL )))

= TTπM/G(X̄
h)T (ξM (x)) + X̄T (X̄([x]G)− vlftX̄h(x)(TπM/G∇X̄hX̄h))

− vlftX̄h(x)(S (ξ̃, ξ̃))− vlftX̄h(x)

(
TπM/G

〈
X̄h : ξVL

〉)
= TTπM/G(X̄

h)T (ξVL (x)) + SZ(X̄)− vlftX̄h(x)(S (ξ̃, ξ̃))

− vlftX̄h(x)

(
TπM/G

〈
X̄h : ξVL

〉
(x)

)
.
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We also have

TTπM/G(X̄
h + ξVL )

T (ξVL (x)) =
d

dt

∣∣∣∣
t=0

TπM/Gξ
V
L (Φ

X̄h

t (x)) = 0.

This gives us the first part.

(ii) This follows from a computation similar to that in part (i). ■

5.17 Remark: The fact that the right-hand sides of Zh and Zv respectively are independent
of the extensions follows from G-invariance of ω and the definition of Z.

5.3.2. Discussion. The horizontal part of the reduced geodesic spray therefore consists
of three terms. The map SZ is a second-order vector field on T (M/G). The term S(ξ̃, ξ̃)
can be interpreted in the following manner. Recall that the second fundamental form
corresponding to the vertical distribution is a map S : Γ(VM)×Γ(VM) → HM defined by

S(vx, wx) = hor (∇XY ) , vx, wx ∈ VxM.

where X and Y are extensions of vx and wx respectively. In view of this, we have

S(ξM (x), ξM (x)) =
(
S (ξ̃, ξ̃)

)h
(x)

Now, the vertical distribution VM is geodesically invariant if and only if S is skew-
symmetric. Hence, if VM is geodesically invariant, we have S (ξ̃, ξ̃) = 0.

The last term is related to the curvature of the horizontal distribution, at least in the
case when M is a Riemannian manifold with an invariant Riemannian metric, the chosen
affine connection is the Levi-Civita connection corresponding to this metric, and A is the
mechanical connection as we show below.

Let (M,k) be a Riemannian manifold and G be a Lie group that acts freely and properly
on G, so that πM/G : M → M/G is a principal bundle. Suppose that the Riemannian
metric k is invariant under G. The mechanical connection corresponding to k is a principal
connection on πM/G :M →M/G determined by the condition that the horizontal subbundle
is orthogonal to the vertical subbundle VM with respect to the metric. We denote by A
the connection one-form corresponding to this connection. We also let ∇ be the Levi-Civita
connection corresponding to k.

5.18 Lemma: The following holds

k
(〈
X̄h : ξVL

〉
(x), Ȳ h(x)

)
= k

(
((BA(X̄

h(x), Ȳ h(x))M , ξ
V
L (x)

)
where X̄h and Ȳ h are invariant horizontal vector fields on M , and BA is the curvature form
corresponding to A.

Proof: Recall that if X,Y and Z are vector fields on M , the Koszul formula is given by

2k(∇XY,Z) = LX(k(Y, Z)) +LY (k(X,Z))−LZ(k(X,Y )) + k([X,Y ], Z)

− k([X,Z], Y ])− k([Y, Z], X).
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We therefore have (using the Koszul formula twice and adding the two results)

2k
(〈
X̄h : ξVL

〉
(x), Ȳ h(x)

)
= 2LX̄h(k

(
Ȳ h(x), ξVL (x)

)
+ 2LξVL

(k
(
X̄h(x), Ȳ h(x)

)
− 2LȲ h(k

(
X̄h(x), ξVL (x)

)
− 2k

(
[X̄h, Ȳ h](x), ξVL (x)

)
− 2k

(
[ξVL , Ȳ

h](x), X̄h(x)
)
.

Now, the first and the third terms respectively on the right-hand side are clearly zero (by
the definition of the mechanical connection). The second term is zero since the function
k
(
x̄h(x), Ȳ h(x)

)
is constant along the invariant vertical vector field ξVL . The fifth term is

also zero since the Lie bracket [ξVL , Ȳ
h] is a vertical vector field. Thus, we get

k
(〈
X̄h : ξVL

〉
(x), Ȳ h(x)

)
= k

(
[X̄h, Ȳ h](x), ξVL (x)

)
.

By the Cartan structure formula, we have

[X̄h, Ȳ h] = [X̄, Ȳ ]h −
(
BA(X̄

h, Ȳ h)
)
M

(x).

Therefore,

k
(〈
X̄h : ξVL

〉
(x), Ȳ h(x)

)
= k

(
((BA(X̄

h(x), Ȳ h(x))M , ξ
V
L (x)

)
. ■

The vertical part of the reduced geodesic spray consists of the map RZ which vanishes
identically if the horizontal distribution corresponding to the principal connection A is
geodesically invariant, and can be thought of as the fundamental form corresponding to the
horizontal distribution. Lewis [16] has shown that if both HM and VM are geodesically
invariant, then the corresponding linear connection restricts to the subbundle L(M,A).
The term UZ(ξ̃) is essentially the Euler–Poincaré term, and the last term corresponds to a
connection on g̃.



Chapter 6

Conclusions and future work

In this thesis we have investigated the geometry of the linear frame bundle in detail and
explained how reduction of a manifold with an arbitrary affine connection under Lie group
action can be achieved. It is our belief this way of looking at reduction from the point of
view of frame bundle geometry is just the first step towards a complete understanding of
the interrelationship between an arbitrary affine connection on a manifold M , an arbitrary
principal connection on the bundle πM/G :M →M/G and the reduced dynamics on M/G.
In this chapter, we summarize our conclusions and point to some avenues for further research
in this area.

6.1. Conclusions

The geometry of the linear frame bundle provides us with a key to understanding the
geodesic spray associated with a linear connection. Using an arbitrary principal connection,
we first obtain a key formula that relates the geodesic spray, the tangent lift and the vertical
lift of the symmetric product. Using this relationship we are able to decompose the reduced
geodesic spray into its horizontal and vertical parts. The horizontal part of the reduced
spray consists of a second-order vector field on T (M/G). We also get a “curvature” term
which exactly corresponds to the curvature of the chosen principal connection in the case
of a Riemannian manifold with an invariant Riemannian metric, and a term which has the
same flavor as the second-fundamental form corresponding to the vertical distribution.

The vertical part of the reduced geodesic spray consists of an “Euler–Poincaré” term,
another term involving the vector bundle connection induced by the principal connection
chosen, and another term which is zero if the horizontal distribution of the principal con-
nection is geodesically invariant.

6.2. Future work

The geometry of nonholonomic systems with symmetry has been an active area of
research in the last decade or so, yet the geometric picture is far from complete. The first
rigorous attempt in this regard was made by Bloch, Krishnaprasad, Marsden and Murray
[4]. They investigate the geometry of constrained Lagrangian systems under symmetry in
the framework of principal bundle geometry and reduction using the Lagrange-d’Alembert
principle in mechanics and variational analysis.

47
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We can consider the following setup. Let M be a Riemannian manifold with a Rie-
mannian metric that is invariant under the action of a Lie group G which acts freely and
properly on M . Let D be a G-invariant distribution. Denote the Levi-Civita affine con-

nection associated with k by
k
∇. The Lagrange-d’Alembert principle allows us to conclude

that the constrained geodesics c(t) ∈ Q satisfy

k
∇c′(t) c

′(t) ∈ D⊥
c(t), c′(t) ∈ Dc(t)

Sometimes these conditions are written as

k
∇c′(t) c

′(t) = λ(c(t))

P⊥(c′(t)) = 0

where λ is a section of D⊥ and P⊥ : TM → TM is the projection onto D⊥. Lewis [16] has
shown that the trajectories C : R →M satisfying the constraints are actually unconstrained

geodesics of an affine connection ∇̃ defined by ∇̃XY =
k
∇X Y + (∇XP

⊥)(Y ). He calls this
connection ∇̃ restricted to D as the constraint affine connection. We can use our approach
to study the geodesic spray of the constraint connection in the presence of a principal
connection on πG : M → M/G. In the case when D is non-integrable, this will lead to
reduction of a nonholonomic system with symmetry. This is still an open problem if there
are no other assumptions on the constraint distribution. We can generalize the problem even
further by considering an arbitrary affine connection instead of the Riemannian connection.

In the course of our investigations, we have uncovered the meaning of various geometric
objects from a frame bundle point of view. However, we still do not understand what the
canonical almost tangent structure JM on TM and the Lie derivative LZJM mean in terms
of frame bundle geometry.

We can also consider the problem of finding conditions under which a distribution is
geodesically invariant using the setup of partial differential equations. More precisely, let
M be a manifold with an affine connection, and let D be a distribution on M with the
corresponding projection P : TM → D. Given ∇, we would like to find conditions on P
such that D is geodesically invariant. Now, let D̃ be a chosen complement of D in TM and
P̃ : TM → D̃ be the natural projection. Define the generalized second fundamental form
SD,D̃ : Γ(D)× Γ(D) → D̃ by

SD,D̃(X,Y ) = P̃ (∇PXPY ).

Lewis [16] has shown that D is geodesically invariant if and only if SD,D̃ is skew-symmetric

for every choice of D̃. In the course of our investigations, we have discovered that the PDE
governing this problem is given by

P ∗Sym(∇P ) = 0.

It would be interesting to find the solution of this equation using the geometric theory of
partial differential equations.
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