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Abstract

We present a geometric formulation for the energy shaping problem. The central
objective is the initiation of a more systematic exploration of energy shaping with
the aim of determining whether a given system can be stabilized using energy shaping
feedback. We investigate the partial differential equations for the kinetic energy shaping
problem using the formal theory of partial differential equations. The main contribution
is sufficient conditions for integrability of these partial differential equations. We couple
these results with the integrability results for potential energy shaping of Lewis [2006].
This gives some new avenues for answering key questions in energy shaping that have
not been addressed to this point.

1. Introduction

Brockett [1977] observed that there were structural aspects of mechanical systems that
made them attractive as a class of control problems. In this paper he mentioned differential
geometry as the common mathematical structure between control theory and analytical
mechanics. He investigated the Lagrangian and Hamiltonian formulations for mechanical
systems and considered the interplay of the mechanical and control theoretic structures.

One interesting control problem is the following: given a mechanical system with an
unstable equilibrium at a point q0, stabilize the system using feedback. One of the recent
developments in the stabilization of equilibria is the energy shaping method. The key idea
concerns the construction of a feedback for which the closed-loop system possesses the
structure of a mechanical system. A feedback so obtained is called an energy shaping
feedback and the procedure by which it is obtained is called energy shaping. In the classical
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notion of energy shaping, the assumed method consists of two stages: shaping the kinetic
energy of the system—so-called kinetic energy shaping—and changing the potential energy
of the system—so-called potential energy shaping. If such an energy shaping feedback exists,
then for stability one has to ensure that the Hessian of the closed-loop potential energy is
positive definite.

The cart-pendulum, as a mechanical system with one degree of underactuation, is one of
the systems that has been stabilized using the energy shaping method; see [Chang, Bloch,
Leonard, Marsden, and Woolsey 2002, Ortega, Spong, Gómez-Estern, and Blankenstein
2002]. The system has the upright equilibria as saddle points and potential energy shaping
alone is not enough to stabilize the system; therefore kinetic energy shaping is necessary.
More complicated mechanical systems with more degrees of freedom like the spherical pen-
dulum have been stabilized using the energy shaping method; see [Bloch, Leonard, and
Marsden 2000]. It is worth mentioning that the spherical pendulum has been mentioned as
an example of a mechanical control system in [Brockett 1977].

To the authors’ knowledge there has been no linearly controllable example (note that
linear controllability is a necessary condition for stabilization by energy shaping) in the
literature that could be proved to be not stabilizable by the energy shaping method. For
linear systems, linear controllability is also a sufficient condition for existence of a stabilizing
feedback; see [Zenkov 2002]. Such sharp conditions for nonlinear systems do not exist in
the literature. Thus the question of which mechanical systems are stabilizable using energy
shaping is still unresolved. Moreover, almost all the existing results on energy shaping are
based on a specific parametrization of the assumed solutions to the energy shaping problem.
While the parameterizations used are sufficient for the particular problems, it is not clear
whether (1) a better controller would result if a richer class of feedbacks were available
or (2) there are systems that are not presently amenable to stabilization by energy shaping
using existing parameterizations, but which could be stabilized using energy shaping were
the complete set of energy shaping feedbacks known.

In this paper we give a geometric framework for kinetic energy shaping that should help
to answer some of the key questions about stabilization of mechanical systems using energy
shaping. Recently there have been notable attempts to investigate various features of the
energy shaping problem. The first classical appearance of the notion of potential energy
shaping problem is in [Takegaki and Arimoto 1981]. van der Schaft [1986] had a significant
geometric contribution to the problem from the Hamiltonian point of view. It turns out
that this method has an extension in the Lagrangian setting called the method of controlled
Lagrangians; this has been investigated by Bloch, Chang, Leonard, and Marsden [2001] and
Bloch, Leonard, and Marsden [2000]. In recent work, Chang [2002] and Woolsey, Reddy,
Bloch, Chang, Leonard, and Marsden [2004] have realized that the space of possible kinetic
energy feedbacks can be enlarged by considering the addition of appropriate gyroscopic
forcing. In the Hamiltonian framework, the idea of kinetic energy shaping has been related
in [Dalsmo and van der Schaft 1998] to the notion of interconnection and modified into the of
IDA-PBC method; see [Ortega, Spong, Gómez-Estern, and Blankenstein 2002]. The equiv-
alence of the Controlled Lagrangian method and the IDA-PBC method has been addressed
in [Blankenstein, Ortega, and van der Schaft 2002, Chang, Bloch, Leonard, Marsden, and
Woolsey 2002]. Both methods result in a set of partial differential equations whose solutions
determine the energy shaping feedbacks. In other recent work, the possibility of finding a
coordinate change for simplifying the kinetic energy shaping partial differential equations



A geometric framework for stabilization by energy shaping 3

in the IDA-PBC method has been investigated by Viola, Ortega, Banavar, Acosta, and As-
tolfi [2007]. Lewis [2004] reformulated the kinetic energy shaping problem as the problem
of finding an energy preserving connection with its associated closed-loop metric.

A differential geometric approach to the kinetic energy shaping problem—the so-called
λ-method—has been presented in [Auckly, Kapitanski, and White 2000]. In this paper
the authors propose a system of linear partial differential equations for the kinetic energy
shaping problem in terms of a new variable, λ = G♯

clG
♭
ol, where Gol and Gcl are the open-loop

and closed-loop metrics, respectively. The main idea of the λ-method is that it transforms
the set of quasi-linear equations for kinetic energy shaping into a set of overdetermined
linear partial differential equations; see [Auckly and Kapitanski 2001]. In [Auckly and
Kapitanski 2002] an equivalent system of linear partial differential equations is given for
the assumed procedure of kinetic energy shaping problem. Moreover, the authors investigate
the compatibility conditions for the set of λ-equation in local coordinates. However, the
analysis of the compatibility conditions is not complete, and many structural questions
remain unanswered, even after one accounts for the results in [Auckly and Kapitanski 2001,
Auckly and Kapitanski 2002]. The λ-method has been modified by adding the possibility
of using gyroscopic forces for enlarging the space of solutions; see [Chang 2002].

Lewis [2004] has introduced an affine differential geometric approach to energy shaping
in order to have a better geometric understanding of the problem and to state some of
the questions that had not been addressed before. The main idea of the approach involves
first understanding the existence of such an energy shaping feedback and then what such a
feedback might look like. In recent work, sufficient conditions for the existence of potential
energy shaping are derived assuming that kinetic energy shaping has taken place; see [Lewis
2006]. The results are based on the integrability theory for linear partial differential equa-
tions developed by Goldschmidt [1967a] and Spencer [1967]. Although the results offer
some insight, they are limited by the fact that kinetic energy shaping has been assumed to
precede potential energy shaping.

In the present work, we use the affine differential geometric approach for modeling
mechanical systems. We consider the class of simple mechanical control systems. The
central objective of this paper is the initiation of a more systematic geometric exploration
of energy shaping with the aim of determining whether a given system can be stabilized
using energy shaping feedback. Most of the previous results have dealt with a particular
solution and neither the role of closed-loop stability nor a complete exploration of the space
of solutions has been discussed with any degree of generality. We use the geometric theory
of partial differential equations originated by Goldschmidt and Spencer in the late 1960’s
using jet bundle structure; see [Goldschmidt 1967a, Saunders 1989, Spencer 1967]. We
describe the energy shaping partial differential equations as a fibered submanifold of the
k-jet bundle (in our case, k = 1) of a fibered manifold. By revealing the geometric structure
of kinetic energy shaping, we observe similarities of the problem of kinetic energy shaping
with some well-known problems in Riemannian geometry; in particular, the problem of
finding a metric connection, initiated by Eisenhart and Veblen [1922].

We also discuss the integrability of the λ-equation from a geometric point of view;
see [Goldschmidt 1967a, Goldschmidt 1967b], and we address some interesting geometric
features of the integrability conditions in the λ-method. In particular, we notice that the
necessary conditions for the set of λ-equations restricted to the underactuated distribution
are related to the Ricci identity (see [Cabras 1995, Kolář, Michor, and Slovák 1993]), an
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identity which also features prominently in the work of Eisenhart and Veblen [1922] on
the metric connection problem. The similarities of the kinetic energy shaping problem
and the metric connection problem, we reveal the geometric structure of the compatibility
conditions.

We also couple the set of λ-equations for kinetic energy shaping with the integrability
results of potential energy shaping; see [Lewis 2006]. This allows us to address some key
questions in energy shaping that have not been addressed to this point. For example, the
procedure shows how a poor design of closed-loop metric can make it impossible to achieve
any flexibility in the character of the possible closed-loop potential functions. Finally, we
discuss systems with one degree of underactuation and we show that for this class of systems
there is always a solution to the potential energy shaping problem for each closed-loop energy
shaping metric.

This paper is organized as follows. In Section 2 we review the affine geometric setup
for the energy shaping problem; see [Lewis 2004], and we state some of the fundamental
open problems in energy shaping. In Section 3 we give a brief review of the mathemat-
ical structures we use in this paper. In particular, Section 3.1 gives an introduction to
the geometric methods for analyzing formal integrability of partial differential equations;
see [Goldschmidt 1967a, Goldschmidt 1967b]. The main character of the theorems in this
section is extremely algebraic and may seem unmotivated to a reader unfamiliar with the
formal theory of partial differential equations. A reader new to these techniques is advised
that some effort will be required to become comfortable with them. In Section 3.2 we moti-
vate the definition of a connection as a section of a jet bundle (see [Saunders 1987]) in order
to give a precise definition for the space of torsion free connections on a manifold. We give a
geometric formulation for the partial differential equations of the kinetic energy shaping in
Section 4, and we recall the existing results for potential energy shaping in [Lewis 2006]. In
this paper we use the geometric formulation of the kinetic energy shaping problem using the
λ-method; see [Auckly, Kapitanski, and White 2000, Chang 2002]. We review and reprove
the main results of the λ-method in Section 4.2. Section 5 contains the main contribution
of the paper. We prove that the set of λ-equations has an involutive symbol and is for-
mally integrable under a certain surjectivity condition. In other words, we give sufficient
conditions for the existence of a formal solution to the λ-equations. Section 7 deals with
the potential energy shaping problem. We analyze the set of conditions in [Lewis 2006] to
characterize the set of acceptable closed-loop metrics. Finally, in Section 8 we give a set of
sufficient conditions for total energy shaping and, as an example, we specialize our results
to systems with one degree of underactuation. In particular we show that in this case,
for any closed-loop metric that satisfies the kinetic energy shaping conditions a closed-loop
potential energy shaping is achievable.

Notation

The basic differential geometric notations that we use in this paper are those of Abraham
and Marsden [1978] and Bullo and Lewis [2004]. The identity map for a set S is denoted
by idS and the image of a map f : S → W by Im(f). For a vector space V the set of
(r, s)-tensors on V is denoted by Tr

s(V). By SkV and ΛkV we denote, respectively, the set of
symmetric and skew-symmetric (0, k)-tensors on V. We shall also require symmetrizing and
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skew-symmetrizing maps. Thus, for A ∈ T0
k(V), we define the following projection maps:

Alt(A)(v1, · · · , vk) =
1

k!

∑
σ∈Sk

(−1)sgn(σ)A(vσ(1), · · · , vσ(k));

Sym(A)(v1, · · · , vk) =
1

k!

∑
σ∈Sk

A(vσ(1), · · · , vσ(k)),

whereSk is the permutation group on k symbols and sgn(σ) is the parity of the permutation
σ. Let A be a (0, 2)-tensor on V. We define the flat map A♭ : V → V∗ by ⟨A♭(u); v⟩ = A(u, v),
u, v ∈ V. The inverse of the flat map is denoted by A♯ : V∗ → V in case A♭ is invertible. We
also define a similar notation for a (0, 3)-tensor A on V by

⟨A♭(u), w⟩ = A(w, u, u), u, w ∈ V.

For S ⊂ V and W ⊂ V∗ we denote

ann(S) = {α ∈ V∗ | α(v) = 0, ∀v ∈ S},
coann(W ) = {v ∈ V∗ | α(v) = 0, ∀α ∈ W}.

For the purpose of using a version of the Cartan–Kähler theorem, all manifolds and
maps will be assumed to be analytic unless otherwise stated. Many of the theorems and
lemmas are still true in the smooth case. Let Q be an analytic manifold, if π : E → Q is
an analytic vector bundle, Γω(E) denotes the set of analytic sections of E. We denote the
tangent bundle of Q by πQ : TQ → Q. The set of analytic functions on Q is denoted by
Cω(Q). The exterior derivative of a k-form α on Q is denoted by dα. For a (0, k)-tensor
field A and a Riemannian metric G on Q, we define the (1, k − 1)-tensor field G♯A by

G♯A(α,X1, · · · , Xk−1) = A(G♯(α), X1, · · · , Xk−1), (1.1)

where α ∈ Γω(T∗Q) , X1, · · · , Xk ∈ Γω(TQ). Finally, we give a decomposition of the
(0, 3)-tensor fields. We call a (0, 3)-tensor field A on Q:

1. gyroscopic if A(X1, X2, X3) = −A(X2, X1, X3), ∀X1, X2, X3 ∈ Γω(TQ);

2. torsional if A(X1, X2, X3) = −A(X1, X3, X2), ∀X1, X2, X3 ∈ Γω(TQ);

3. geodesic if A(X1, X2, X3) = A(X1, X3, X2), ∀X1, X2, X3 ∈ Γω(TQ);

4. skew if A ∈ Γω(Λ3(TQ)).

We denote the set of gyroscopic and torsional tensor fields on Q, respectively, by Gyr(TQ)
and Tor(TQ). We can record the decomposition of T0

3(TQ) as follows (see [Fulton 1997,
Lewis 2004]):

T0
3(TQ) = S3(TQ)⊕ (Gyr(TQ) ∩ kerAlt)⊕ (Tor(TQ) ∩ kerAlt)⊕ Λ3(TQ).

2. Statement of the problem

A forced simple mechanical system is a quadruple Σ = (Q,G, V,Fe) where Q is
an n-dimensional manifold called the configuration manifold , G is a Riemannian metric
on Q, V is a function on the configuration manifold called the potential function and
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Fe : TQ → T∗Q is a bundle map over idQ called the external force . We denote by ∇G the
covariant derivative with respect to the associated Levi-Civita connection. The governing
equations for a forced simple mechanical system are

∇Gγ′(t)γ
′(t) = −G♯ ◦ dV (γ(t)) +G♯Fe(γ

′(t)),

where γ : I → Q is an analytic curve on Q.
Similarly, a simple mechanical control system is a quintuple Σ = (Q,G, V,Fe,W)

where Q is an n-dimensional manifold called the configuration manifold , G is a Rie-
mannian metric on Q, V is a function on the configuration manifold called the potential
function , Fe : TQ → T∗Q is a bundle map over idQ called the external force and W is a
subbundle of T∗Q called the control subbundle by [Bullo and Lewis 2004]. The governing
equations for a simple mechanical control system are

∇Gγ′(t)γ
′(t) = −G♯ ◦ dV (γ(t)) +G♯Fe(γ

′(t)) +G♯u(γ′(t)),

where γ : I → Q is a curve on Q and u : TQ → W is the control force. A class of external
forces in which we are interested is gyroscopic forces.

2.1 Definition: Let Σ = (Q,G, V,Fe) be a forced simple mechanical system. We call an
external force FG : TQ → T∗Q a gyroscopic force if, for all X ∈ Γω(TQ),

⟨X,FG(X)⟩ = 0. •

A linear gyroscopic force is a gyroscopic force with the following form:

FG,1(X) = −B♭
G,1(X), X ∈ Γω(TqQ),

where BG,1 is a skew-symmetric (0, 2)-tensor. A quadratic gyroscopic force is a gyro-
scopic force FG,2 with the following form:

FG,2(X) = B♭
G,2(X), X ∈ Γω(TqQ),

where BG,2 is a (0, 3)-tensor which is skew-symmetric in the first two arguments,
i.e., BG,2(X,Y, Z) = −BG,2(Y,X,Z), X,Y, Z ∈ Γω(TqQ). By definition of the flat map,
a quadratic gyroscopic force is defined by

⟨FG,2(X);Z⟩ = BG,2(Z,X,X), X, Z ∈ Γω(TqQ).

Given an open-loop simple mechanical control system Σol = (Q,Gol, Vol,Fol,Wol), we
seek a control force such that the closed-loop system is a forced simple mechanical system
Σcl = (Q,Gcl, Vcl,Fcl), possibly with some external force. The reason for seeking this as
the closed-loop system is that the stability analysis of the equilibria for mechanical systems
is well understood; see [Bullo and Lewis 2004, Chapter 6]. The class of gyroscopic forces
does not change the total energy of the closed-loop system, while adding gyroscopic forces
increases the possibility of finding a stable closed-loop system; see [Chang 2002]. In this
paper we assume that the open-loop external force Fol is zero. Moreover, it turns out that
only the quadratic gyroscopic forces are useful in extending the space of possible closed-
loop metrics; see [Lewis 2004]. The objective, therefore, can be phrased with the following
definition.
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2.2 Definition: Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechanical control
system with Fol = 0. If there exists a bundle map ushp : TQ → Wol (called control) with
ushp = −ukin − upot such that the closed-loop system is a forced simple mechanical system
Σcl = (Q,Gcl, Vcl,Fcl), where Fcl is a quadratic gyroscopic force with associated (0, 3)-tensor
B and

(i) G♯
ol ◦ ukin(γ

′(t)) = ∇Gcl

γ′(t)γ
′(t)−∇Gol

γ′(t)γ
′(t)−G♯

cl ◦ (B
♭(γ′(t))),

(ii) upot(γ(t)) = G♭
ol ◦G

♯
cldVcl(γ(t))− dVol(γ(t)),

then the control ushp is called an energy shaping feedback. •

2.3 Remark: Throughout this work, we assume that the equilibrium point q0 ∈ Q is a
regular point forWol. Moreover, we assume that the control codistributionWol is integrable.
This assumption is common in the literature and many examples fall into this case. •

The conditions of Definition 2.2 contain as unknowns the closed-loop metric Gcl, the
closed-loop potential energy Vcl and the gyroscopic (0, 3)-tensor field B. One can observe
that these equations involve the first jet of the unknowns. One can construct concretely a
set of first-order partial differential equations as necessary and sufficient conditions for the
existence of an energy shaping feedback. Let W ⊂ T∗Q be a given subbundle and define
the associated Gol-orthogonal projection map P ∈ Γω(T∗Q⊗ TQ) by

Ker(P ) = G♯
olW

Note that P completely prescribes W. We apply P to the equation from part i of Defini-
tion 2.2 to arrive at the following equation:

P (∇Gcl

γ′(t)γ
′(t)−∇Gol

γ′(t)γ
′(t)−G♯

cl ◦B
♭(γ′(t))) = 0.

Assume Q is an n-dimensional manifold and W is an integrable codistribution of dimension
n−m. In adapted local coordinates the kinetic energy shaping partial differential equation
is given by

P a
r (G

rl
cl (Gcl,lj,k +Gcl,lk,j −Gcl,kj,l)−Grl

ol(Gol,lj,k +Gol,lk,j −Gol,kj,l)−Grl
clBlkj) = 0,

where i, j, k, l, r ∈ {1, · · · , n}, a ∈ {1, · · · ,m} and we denote the first derivative of Gcllj with

respect to qk by Gcl,lj,k. Similarly, let P̂ : T∗Q → T∗Q/Wol be the canonical projection on
to the quotient vector bundle. We have

P̂ (G♭
ol ◦G

♯
cldVcl(γ(t))− dVol(γ(t))) = 0.

In local coordinates we have

P̂ i
a(Gol,ijGcl

jkVcl,k − Vol,k) = 0,

where i, j, k ∈ {1, · · · , n}, a ∈ {1, · · · ,m} and we denoted the first derivative of Vcl with
respect to qk by Vcl,k. For more details on the affine differential geometric setup of energy
shaping problem see [Lewis 2004].

Now that the energy shaping partial differential equations have been specified, we pro-
vide a summary of some of the fundamental questions one can now ask.
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Some problems in energy shaping

1. Describe the set of achievable closed-loop metrics. There has not been much treatment on
this problem in the literature apart from giving a geometric description of the problem;
see [Auckly, Kapitanski, and White 2000].

2. Assume that one has found a closed-loop metric which satisfies the kinetic energy shap-
ing problem. What are the conditions under which there exists a closed-loop potential
function which satisfies the potential energy shaping problem?

3. Describe the set of achievable closed-loop potential functions by allowing the closed-loop
metric to vary over the achievable set.

4. Give a complete description of the set of stabilizing potential energy shaping functions.
In order to have a stabilizing energy shaping feedback, the Hessian of the closed-loop
potential functions should be positive definite. The type of obstruction this condition
puts on the set of achieved energy shaping feedbacks has not yet been characterized in
a geometric fashion.

5. Describe the effect of including gyroscopic forces in the procedure of energy shaping. An
algebraic presentation of this problem has been given in [Lewis 2004]. Although one
can extend our results in the current paper to the case with gyroscopic forces, many
geometric and algebraic constructions need to be performed to clarify how the results
should be interpreted in terms of stabilization.

6. Reconstruct some of the existing results using the sufficient conditions presented in the
current paper; namely, answer the following questions using the results of this paper:

(a) why is it always the case that one can construct an explicit solution to the set of
partial differential equations for systems with one degree of underactuation?

(b) why is linear controllability a sufficient condition for existence of a stabilizing en-
ergy shaping feedback in linear systems?

7. Find some interesting counterexamples. It would be revealing to have an example for
which there exists no stabilizing energy shaping feedback, even under the absence of
gyroscopic forces. This might help to understand the key primary question in energy
shaping: when is it possible to stabilize a system by the energy shaping method?

Answers in this paper

1. In Section 5 we partially answer Problem 1. Assuming thatWol is integrable, we describe
a set of sufficient conditions under which one can construct a formal solution to the set
of kinetic energy shaping problem in the analytic case and in the absence of gyroscopic
forces. Moreover, we show that any analytic solution to the kinetic energy shaping
problem satisfies those conditions. (See Theorems 5.6 and 6.6.)

2. Lewis [2006] presented a set of sufficient condition for Problem 2 using a geometric
analysis of the potential energy shaping partial differential equations. In Section 7 we
couple this sufficient condition with the kinetic energy shaping results. In other words,
we give conditions on the closed-loop metric so that there exists a solution to the set of
potential energy shaping partial differential equations. (See Theorem 7.8.)

3. Problem 3 is wide open and even a clear geometric formulation of this problem is far
from being achieved. In this paper, we start down one possible avenue by placing
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the problem in the setting of geometric partial differential equations; see [Goldschmidt
1967a, Goldschmidt 1967b]. In particular, we give a set of conditions on the set of closed-
loop metrics under which there exists a closed-loop potential function that satisfies the
set of potential energy shaping partial differential equations. (See Theorem 7.8.)

4. Problem 6(a) has been discussed in [Auckly and Kapitanski 2002] and [Acosta, Ortega,
Astolfi, and Mahindrakar 2005]. But the results do not reveal how the geometric ob-
structions given by the kinetic and potential energy shaping conditions are satisfied. In
Example 7.3 we give a result which essentially solves the problem. The second question
has been posed and solved in [Zenkov 2002]. It would be interesting to recover the suffi-
cient conditions solely by looking at the integrability conditions for the energy shaping
partial differential equations.

3. Preliminaries

We review some basic background for modeling the system of partial differential equa-
tions in the energy shaping problem. This section consists of three main parts. The first
part deals with the geometric modeling of partial differential equations and the second part
gives a useful definition of a connection on a vector bundle which characterizes the structure
of the set of all connections. Finally, we present the so-called Ricci identity (see [Cabras
1995]) which plays a significant role in answering some questions about the kinetic energy
shaping problem.

3.1. Formal integrability of partial differential equations. In this section, we describe the
main technique that we use for studying the energy shaping partial differential equations.
The discussion centers around an analogue for the Cauchy–Kowalevski theorem (see [Bryant,
Chern, Gardner, Goldschmidt, and Griffiths 1991]) and formal integrability. We follow the
contributions made by Goldschmidt [1967a], Goldschmidt [1967b], and Spencer [1967].

Although understanding the proofs of the main theorems depends on the techniques
described in this section, we emphasize that the statement of the main results of the paper
are accessible without understanding formal methods in detail. The main results in the
paper involve applications of the important Theorem 3.20 stated below. However, the
verification of the hypothesis of this theorem typically takes some effort. In this section we
describe the tools used to verify the hypothesis of Theorem 3.20.

Representation of a partial differential equation as a fibered submanifold of a jet bundle.
We denote by (E, π,Q) a fibered manifold π : E → Q. The vertical bundle of a fibered
manifold π is the subbundle of Tπ given by Vπ = ker(Tπ). We denote by Jkπ the bundle
of k-jets; see [Saunders 1989]. If (ξ, U) is an analytic local section of π, we denote its
k-jet by jkξ. We denote an element of Jkπ by jkξ(x). If we represent the sheaf of germs
of sections of π by SQ(π), then jk induces a morphism of sheaves SQ(π) → SQ(Jkπ). We
let πk : Jkπ → Q and πk

l : Jkπ → Jlπ, l ≤ k, be the canonical projections. One can show
that πk and πk

l are surjective submersions; moreover, πk
l : Jkπ → Jlπ is an epimorphism

of fibered manifolds and (Jkπ, π
k
l , Jlπ) is a bundle. The following definition establishes the

relationship between jet bundles and systems of partial differential equations.
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3.1 Definition: Let (E, π,Q) be a fibered manifold and let Jkπ be its bundle of k-jets. A
partial differential equation is a fibered submanifold Rk ⊂ Jkπ. •

We denote by π̂k the restriction of πk to Rk. As one can see, the “equation” representa-
tion of the partial differential equation is obscure here. The following local characterization
of a partial differential equation as a kernel of a fibered manifold morphism is helpful in
clarifying the equation point of view.

3.2 Proposition: Let (E, π,Q) be a fibered manifold. Given a partial differential equations
Rk ⊂ Jkπ and a point p ∈ Q, there exists neighborhood U of p, a fibered manifold (E′, π′, U),
an analytic section η of π′, and a morphism of fibered manifolds Φ : π−1

k (U) → E′ such that

π−1
k (U) ∩ Rk

.
= kerη Φ = {uk ∈ π−1

k (uk) | Φ(uk) = η(πk(uk))}.

Proof: Because Rk is a fibered submanifold, there exists an adapted chart (Uk, ϕk) for Jkπ
with the induced chart (U, ϕ) on Q such that

ϕk(Uk) ⊂ ϕ(U)× V ×W ⊂ Rn ×Rm ×Rm′
n,m,m′ ∈ Z≥0,

and such that
π−1
k (U) ∩ Rk = {(x, v, 0) | x ∈ ϕ(U) , v ∈ V }.

Take E′ = U × V and π′(x, v) = x. Taking Φ(u) = (x, v) and η(x) = (x, 0), the result
follows. ■

A morphism Φ : Jkπ → π′ of fibered manifolds induces a differential operator D of order
k which is a sheaf morphism of the form Φ ◦ jk : SQ(E) → SQ(E

′).

Prolongations and symbols.

Prolongation

The process of differentiating a partial differential equation in order to arrive at a higher
order partial differential equation is called prolongation. One can phrase this statement as
the following definition.

3.3 Definition: Let (E, π,Q) be a fibered manifold and let Rk ⊂ Jkπ be a partial differential
equation. The rth-prolongation of Rk is the subset

ρr(Rk) = Jrπ̂k ∩ Jk+rπ. •

A partial differential equation Rk is regular if ρr(Rk) is a fibered submanifold of Jk+rπ
for each r ∈ Z≥0. One can represent the rth-prolongation of a partial differential equations
using the associated morphism. The rth-prolongation of Φ is defined to be the unique
morphism of fibered manifolds over Q, ρr(Φ) : Jr+kπ → Jrπ

′, that makes the following
diagram commutes:

SQ(Jk+rπ)
ρr(Φ) // SQ(Jrπ

′)

SQ(E)
D //

jk+r

OO

SQ(E
′)

jr

OO
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It is fairly clear that that for r, l ∈ Z≥0 and r ≥ l we have πk+r
k+l (ρr(Rk)) ⊂ ρl(Rk).

We adopt the notation π̂k+r
k+l : ρr(Rk) → ρl(Rk) and π̂k+r : ρr(Rk) → Q as the canonical

projections. There is no guarantee that the first map is a surjective submersion; surjectivity
of this map leads to the concept of formal integrability which will be discussed later. The
following remark is advantageous for later purposes; for details of the proof we refer to
[Goldschmidt 1967b, Goldschmidt 1968].

3.4 Remark: Let π be a fibered manifold as before and let Rk ⊂ Jkπ be a partial differential
equation. If ρr(Rk) is a fibered submanifold of Jk+rπ, then ρl(ρr(Rk)) = ρl+r(Rk). Since one
can define ρr(Rk) as the kernel of a morphism of fibered manifolds, this follows immediately
from studying the following exact commutative diagram:

0

��

0

��
0 // ρr+l(Rk) //

��

Jk+r+lπ
ρl+r(Φ)// Jl+rπ

′

��
0 // ρl(ρr(Rk)) // Jk+r+lπ

ρl(ρr(Φ)) //

��

Jrπ
′

0

Whenever Rk is regular, for sake of convenience, we use Rk+r for the rth-prolongation. •

Symbols

The highest order terms in the linearization of a partial differential equation carry valuable
information about formal integrability of the partial differential equation; see [Goldschmidt
1967a]. Similar to our approach for defining a partial differential equation, we give two
equivalent formal definitions to capture these higher order terms, one as a vector bundle
morphism and one as a family of subspaces.

Given pk−1 ∈ Jk−1π, recall that (πk
k−1)

−1(pk−1) has the structure of an affine space

modeled on SkT
∗
πk−1(pk−1)

Q ⊗ Vπk−1
0 (pk−1)

π. For each pk ∈ Jkπ we have Vpkπ
k
k−1 ≃

SkT
∗
πk−1(pk−1)

Q⊗Vπk−1
0 (pk−1)

π as well as a vector bundle isomorphism π∗
kSkT

∗Q⊗(πk
0 )

∗Vπ ∼=
Vπk

k−1. The identification of these bundles is made implicitly in most of the litera-
ture, e.g., [Saunders 1989], and we follow this convention.

3.5 Definition: Let (E, π,Q) be a fibered manifold and let Rk ⊂ Jkπ be a partial differential
equation. The symbol of Rk is the family Gk of vector spaces given by

Gk|pk = Vpk π̂k ∩ Vpkπ
k
k−1, pk ∈ Jkπ. •

Let ξ be a section of E over an open neighborhood U ⊂ Q and let p ∈ U . Let {f1, · · · , fn}
be R-valued functions defined on a neighborhood U of p ∈ Q which vanish at p. Define
ϵk : SkT

∗Q⊗ V π → Vπk by Goldschmidt [1967a]

ϵk : (df1 · · · dfk ⊗ ξ)(p) → jk((Π
k
i=1fi) · ξ)(p).

ϵk is well-defined since the derivatives of (Πk
i=1fi) vanish up to order k − 1 at p. We have

the following lemma.
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3.6 Lemma: Let (E, π,Q) be a fibered manifold. We have the following short exact sequence
of vector bundles over Jkπ:

0 // SkT
∗Q⊗ Vπ

ϵk // Vπk
Vπk

k−1// (πk
k−1)

∗(Vπk−1) // 0 .

The following definition introduces the symbol map as a morphism of vector bundles.
It is crucial to understand the distinction between the definition of the symbol map as a
bundle map and the definition of the symbol map at a point as a map of vector spaces.
This explicit distinction is usually dropped in the literature.

3.7 Definition: Let (E, π,Q) and (E′, π′,Q) be fibered manifolds and let Φ : Jkπ → E′ be a
morphism over idQ. The symbol of Φ is defined to be

σ(Φ) = VΦ ◦ ϵk : π∗
kSkT

∗Q⊗ (πk
0 )

∗Vπ → Vπ′. •

The following proposition relates the definition of the symbol as family of vector spaces
with that as a map.

3.8 Proposition: Let π be a fibered manifold as above and let pk ∈ Rk ⊂ Jkπ. Then the
following sequences are exact:

(i) 0 // Gk|pk // SkT
∗
πk(pk)

Q⊗ Vπk
o (pk)

π
σ(Φ)|pk// VΦ(pk)π

′ ;

(ii) 0 // Gk|pk // Vpk π̂k
Vπk

k−1|Vπ̂k// Vπk
k−1(pk)

πk−1 .

Proof: The proof of exactness of the first sequence follows from the following exact com-
mutative diagram:

0

��

0

��
0 // Gk|pk //

��

SkT
∗
πk(pk)

Q⊗ Vπk
0 (pk)

(π)

��

σ(Φ) // VΦ(pk)π
′

0 // Vπk
0 (pk)

(π̂k) // Vπk
0 (pk)

(πk)
V(Φ) // Vπ′

Similarly, for the second sequence, one should consider the following exact commutative
diagram:

0

��

0

��
0 // Gk|pk //

��

Vpk π̂k

��

Vπk
k−1|Vπ̂k// Vπk

k−1(pk)
πk−1

0 // Vpkπ
k
k−1

// Vpkπk
Vπk

k−1// Vπk
k−1(pk)

πk−1
// 0

The second row is exact since Vπk
k−1 is an epimorphism of vector spaces. ■

Note that Gk is not always a vector bundle over Vπ̂k.
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Prolongation of symbols

We establish a process for prolonging the symbol of a partial differential equation. This
process can be obtained in a purely algebraic manner; see [Guillemin and Kuranishi 1968].
Let (E, π,Q) be a fibered manifold and Rk ⊂ Jkπ a partial differential equation. We fix a
point pk ∈ Rk, we let x = πk(pk) and we let {e1, · · · , en} be a basis for T∗

xQ. We denote
a basis element for SkT

∗
xQ by ei1ei2 · · · eik , where i1, · · · , ik ∈ {1, · · · , n} satisfy i1 ≤ i2 ≤

· · · ≤ in. For k, r ∈ Z≥0 we define the natural inclusion ∆k,r : Sk+rT
∗
xQ → SrT

∗
xQ⊗ SkT

∗
xQ

by

∆k,r : Ai1···ik+r
ei1ei2 · · · eik+r 7→ Ai1···irir+1···ik+r

ei1ei2 · · · eir ⊗ eir+1 · · · eik+r .

The map ∆k,r can be extended naturally to

∆k,r ⊗ idVπ : Sk+rT
∗
xQ⊗ Vπk

0 (pk)
π → SkT

∗
xQ⊗ SrT

∗
xQ⊗ Vπk

0 (pk)
π.

Let Φ : Jkπ → π′ be the local morphism associated to Rk and let σ(Φ) be the associated
symbol map. With Gk|pk = kerσ(Φ)|pk , we establish the rth-prolongation of the symbol by
the following definition.

3.9 Definition: Let Rk ⊂ Jkπ be a partial differential equation. For each pk ∈ Rk with
x = πk(pk), the map

ρr(σ(Φ)|pk) : Sk+rT
∗
xQ⊗ Vπk

0 (pk)
π → SrT

∗
xQ⊗ VΦ(pk)π

′

defined by (idSrT∗
xQ ⊗ σ(Φ)|pk) ◦ (∆k,r ⊗ idVπ) is called the rth-prolongation of σ(Φ)|pk .

Its kernel is denoted by ρr(Gk|pk) and is called the rth-prolongation of the symbol. •

3.10 Remark: Even if Gk is a vector bundle over Vπ̂k, ρr(Gk) might not be a vector bundle
over Vπ̂k. In case it is, we sometimes use the notation Gk+r instead of ρr(Gk). •

Formal integrability. Given a partial differential equation, we would like to study the ex-
istence of solutions. Specifically, we would like to construct the solutions of a given partial
differential equation by constructing its Taylor series order by order. Since the theory we
use rests on the Cauchy–Kowalevski theorem we assume analyticity of all the data. We
start by giving a formal definition for solutions.

3.11 Definition: Let (E, π,Q) be a fibered manifold and let Rk ⊂ Jkπ be a kth-order partial
differential equation. A local formal solution of order k is a pair (ξk, U) where U is an
open subset of Q and ξk is a section of Rk over U . If Rk is regular, one can define a formal
solution of order (k + r) as a pair (ξk+r, U), where ξk+r is a section of Rk+r. •

One can come up with different examples which are not ”formally integrable” in the
sense that one can not construct a solution as a Taylor series. Consider grad(f) = X where
f : R3 → R and X is a vector field on R3. Solutions for f exist if and only if curl(X) = 0.
Such examples motivate the following formal definition.

3.12 Definition: Let (E, π,Q) be a fibered manifold and let Rk ⊂ Jkπ be a regular par-
tial differential equation. Then Rk is called formally integrable if the maps πk+r+1

k+r :
ρr+1(Rk) → ρr(Rk) are epimorphisms of fibered manifolds for each r ∈ Z≥0. •
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3.13 Proposition: If Rk is formally integrable then ρr(Gk) is a vector bundle over Rk for
each r ∈ Z≥0.

Proof: As Rk is formally integrable, πk+r+1
k+r is an epimorphism and so locally of constant

rank. Then the following short exact sequence:

0 // Gk+r+1
// V(π̂k+r+1) // V(π̂k+r) // 0

yields that Gk+r is of constant rank. ■

The δ-sequence

Another purely algebraic construction which is used extensively for the formal theory is
the δ-sequence. The δ-sequence has been utilized by Spencer [1962] in the theory of de-
formation of structures. We describe this construction in the partial differential equation
framework, omitting some details, and we construct the δ-sequence for T∗Q which provides
a characterization of the δ operator with the fiberwise exterior derivative on the set of dif-
ferential r-forms on T∗Q. Generally, there is no necessity for a manifold structure and one
can give the construction of the δ-sequence in a purely algebraic fashion; see [Guillemin and
Kuranishi 1968].

We start by characterizing ΛrT
∗Q ⊗ SkT

∗Q as a subset of differential r-forms on T∗Q.
First we give the following lemma whose proof is straightforward.

3.14 Lemma: Let F be a R-vector space and denote by

Pk(F ) = {f : F → R | f(x) = A(x, · · · , x), A ∈ T0
k(F )}

the symmetric homogenous functions of degree k. Then, for f ∈ Pk(F ), there exists a
unique A ∈ Sk(F ) such that A(x, · · · , x) = f(x) for each x ∈ F .

3.15 Lemma: The following map from ΛrT
∗
xQ⊗SkT

∗
xQ to the set of differential r-forms on

T∗
xQ is a monomorphism of R-vector spaces:

ϕk,r(α⊗ A)(x)(v1, · · · , vr) = A(x, · · · , x)α(v1, · · · , vr), v1, · · · , vr ∈ TpT
∗
xQ

∼= T∗
xQ

where p ∈ T∗
xQ.

The characterization basically identifies the symmetric tensor part of ΛrT
∗
xQ ⊗ SkT

∗
xQ

with a homogenous polynomial function of order k. Let dr be the exterior derivative on
T∗
xQ restricted to differential r-forms. One can define a linear map δr,k : ΛrT

∗
xQ⊗SkT

∗
xQ →

Λr+1T
∗
xQ⊗ Sk−1T

∗
xQ by asking that the following diagram be commutative:

ΛrT
∗
xQ⊗ SkT

∗
xQ

δr,k //

ϕk,r

��

Λr+1T
∗
xQ⊗ Sk−1T

∗
xQ

ϕk−1,r+1

��
Γω(ΛrT

∗
xQ)

dr // Γω(Λr+1T
∗
xQ)

Explicitly, for α ∈ ΛrT
∗
xQ and A ∈ SkT

∗
xQ,

δr,k(α⊗ A)(v1, · · · , vr+1, u1, · · · ,uk−1) =

r+1∑
j=1

rα(v1, · · · , v̂j , · · · , vr+1)A(vj , u1, · · · , uk−1).
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In other words, the δr,k operator imitates the exterior derivative on the space of differential
forms on T∗

xQ when we identify the symmetric homogenous polynomials of degree k with a
symmetric k-tensor.

It turns out that the following sequence, the so-called rth δ-sequence , is exact (here
we simply denote δr,k by δ):

0 // SnT
∗
xQ

δ // T∗
xQ⊗ Sn−1T

∗
xQ

δ // · · ·

· · · δ // ΛrT
∗
xQ⊗ Sn−rT

∗
xQ // 0

Let Rk ⊂ Jkπ be a partial differential equation. Consider the following exact and
commutative diagram:

0 // ΛsT
∗Q⊗ Gk+r+1

δ
��

// ΛsT
∗Q⊗ Sk+r+1T

∗Q⊗ Vπ
σr+1(Φ)//

δ
��

ΛsT
∗Q⊗ Sr+1T

∗Q⊗ Vπ′

δ
��

0 // Λs+1T
∗Q⊗ Gk+r

// Λs+1T
∗Q⊗ Sk+rT

∗Q⊗ Vπ
σr(Φ) // Λs+1T

∗Q⊗ SrT
∗Q⊗ Vπ′

The map δ induces a new δ-sequence for the symbol at each point. Note that sequences
involving the symbol shall really be specified at each point and for the sake of simplicity we
omit the point. What is more, there is no guarantee that this sequence is exact in general.
Summarizing, we have the following graded differential complex:

0 // Gk+r
δ // T∗Q⊗ Gk+r−1

δ // · · ·

· · · δ // ΛnT
∗Q⊗ Gk+r−n

// 0 . (3.1)

We denote by Hs
k+r−s(Gk) the cohomology at ΛsT

∗Q⊗ Gk+r−s of this complex and we call
it the Spencer cohomology group of degree k + r − s.

Hs
k+r−s(Gk) = ker(δs,k+r−s)/Im(δs−1,k+r+1−s).

Gk is said to be m-acyclic if Hs
k+r = 0 for all 0 ≤ s ≤ m and r ≥ 0.

3.16 Definition: Let Q be an n-dimensional manifold and let Rk ⊂ Jkπ be a partial differ-
ential equation as above. If the symbol is n-acyclic it is called involutive . •

By definition, a symbol is involutive if and only if its corresponding δ-sequences are
exact. In particular, the symbol of the trivial system of partial differential equations is
involutive.

3.17 Remark: The concept of involutivity is a prominent algebraic concept which is not
easy to grasp at first glance and it is simply not possible to provide a complete review of the
concept in this document. Guillemin and Sternberg [1964] relate the different interpretations
of an involutive symbol and actually propose a practical method for verifying involutivity.
J. P. Serre’s complementary note on the appendix of this paper completes the picture by
relating the sequence given in equation 3.1 to the Koszul complex. •

We next address the concept of quasi-regular basis and a practical method for verifying
involutivity; see [Singer and Sternberg 1965].
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3.18 Definition: (Quasi-regular basis) Let (E, π,Q) be a bundle with Q an n-dimensional
manifold and x ∈ Q. Let Rk ⊂ Jkπ be a partial differential equation with associated symbol
Gk and let pk ∈ Rk be such that πk(pk) = x. A basis {α1, · · · , αn} for T∗

xQ is called
quasi-regular if

dim(Gk+1|pk+1
) = dim(Gk|pk) +

n−1∑
j=1

dim(Gk,j |(x,pk)), (3.2)

where
Gk,j |(x,pk) = Gk|pk ∩ SkΣj |x,

and Σj is the subspace of T∗
xQ generated by {αj+1, · · · , αn}. •

The following theorem relates the concept of involutivity to the existence of a quasi-
regular basis; the proof of the theorem can be found in [Singer and Sternberg 1965].

3.19 Theorem: (Criterion of involutivity) Let Rk ∈ Jkπ be a partial differential equa-
tion. If there exists a quasi-regular basis for T∗

πk(pk)
Q, the symbol Gk is involutive at pk ∈ Rk.

We now have the required machinery for the following central theorem for formal inte-
grability; see [Goldschmidt 1967b].

3.20 Theorem: (Goldschmidt) Let (E, π,Q) be a fibered manifold and Rk ⊂ Jkπ a partial
differential equation. Assume the following hypotheses:

(i) ρ1(Rk) is a fibered submanifold of Jk+1π;

(ii) π̂k+1
k : ρ1(Rk) → Rk is an epimorphism of fibered manifolds;

(iii) Gk is 2-acyclic.

Then Rk is formally integrable.

Sketch of the proof: Let Φ be the local morphism associated to Rk and recall the affine
structure of ρ1(Rk) over Rk. Since ρ1(Rk) is a fibered submanifold of Jk+1π, we have
Gk+1 = ρ1(Gk) as a vector bundle over Rk and so one can define a vector bundle C =
coker(ρ1(σ(Φ))) such that the following sequence is exact:

0 // Gk+1
// Sk+1T

∗Q⊗ Vπ
ρ1(σ(Φ))// T∗Q⊗ Vπ′ τ // C // 0

where τ is the canonical projection onto C. The essence of the proof is the construction of a
map κ : Rk → C as follows: Consider the following exact and commutative diagram where
the upper row is a sequence of vector bundles on which the second row of affine bundles are
modeled:

0 // Gk+1
//

��

Sk+1T
∗Q⊗ Vπ

ρ1(σ(Φ))//

��

T∗Q⊗ Vπ′ τ //

��

C // 0

0 // ρ1(Rk) //

��

Jk+1π
ρ1(Φ) //

��

J1π
′

��
0 // Rk

// Jkπ
Φ // π′
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Let p ∈ Rk with πk(p) = q ∈ Q and let p′ ∈ Jk+1π projecting to p. By commutativity of the
diagram, ρ1(Φ)(p

′) projects to Φ(p). As a result

ρ1(Φ)(p
′)− j1Φ(p) ∈ T∗Q⊗ Vπ′.

Let
κ(p) = τ(ρ1(Φ)(p

′)− j1Φ(p)). (3.3)

One can show that this definition is independent of the choice of p′; see [Goldschmidt
1967a]. This map is called the curvature map. A diagram chase shows that the map
κ is zero with respect to the zero section of the vector bundle C if and only if the map
πk+1
k is an epimorphism of affine bundles. Moreover 2-acyclicity implies that π̂k+l

k+r is also
an epimorphism of affine bundles. ■

If the symbol is involutive, condition iii is automatically satisfied. We have the following
definition.

3.21 Definition: A partial differential equation Rk is called involutive at a point p if

(i) its associated morphism is of constant rank,

(ii) there exists a quasi-regular basis at p and

(iii) the map π̂k+1
k is surjective and is of constant rank in a neighborhood of p. •

3.2. The space of connections. In this section we fix a fibered manifold (E, π,Q). As
before, we denote by Vπ and Jk(π), the vertical bundle and the bundle of k-jets of a fibered
manifold π respectively; see [Saunders 1989]. We start by defining what we mean by a
connection. It is not hard to show that this definition is equivalent to the usual construction
of a connection as a splitting of the total space of a bundle on which the connection is
defined; see [Bryant, Chern, Gardner, Goldschmidt, and Griffiths 1991, Saunders 1987].

3.22 Definition: A connection on a fibered manifold (E, π,Q) is a section S : E → J1(π)
of the bundle π1

0 : J1(π) → E. •
In a natural coordinates (qi, ua, uak) for J1(π), a connection has the form (qi, ua) 7→

(qi, ua, Sak) which defines the connection coefficients Sak, where a ∈ {1, · · · ,m} and i, k ∈
{1, · · · , n}. One can define the covariant derivative associated to a connection as follows.

3.23 Definition: Let S : E → J1(π) be a connection on a fibered manifold (E, π,Q). If ξ is
a smooth local section of E, then the S-covariant differential of ξ is the smooth local
section ∇Sξ of T∗Q⊗ ξ∗V(π) defined by

∇Sξ(q) = j1ξ(q)− S(ξ(q)). (3.4)

In natural coordinates we have

∇Sξ =

(
∂ξa

∂qi
− Sai

)
dxi ⊗ ∂

∂ua
. •

If X is a vector field on Q, then the S-covariant derivative of ξ with respect to X
is the section of ξ∗V(π) defined by ∇S

Xξ = ∇Sξ(X). A linear connection on a vector
bundle (E, π,Q) is a connection S : E → J1(π) that is also a vector bundle morphism over
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idE. In adapted coordinates (xi, ua) on E and (xi, ua, uak) on J1(π), a linear connection
has the form (xi, ua) → (xi, ua, Sakbu

b) which defines the connection coefficients Saib where
a, b ∈ {1, · · · ,m} and i, k ∈ {1, · · · , n}.

A linear connection S on the vector bundle (TQ, πQ,Q) is sometimes called an affine
connection on Q. We have the following proposition which generalizes to vector bundles.

3.24 Proposition: The set of affine connections on a manifold Q is the set of sections of
an affine subbundle of the vector bundle T∗Q⊗ J1(πQ) over Q modeled on the vector bundle
T∗Q⊗ T∗Q⊗ TQ.

The following proposition clarifies the structure of the space of torsion-free affine con-
nections.

3.25 Proposition: The set of torsion-free affine connections on a manifold Q is an affine
subbundle of the vector bundle T∗Q⊗J1(πQ) over Q modeled on the vector bundle S2T

∗Q⊗TQ
given by

Aff0(Q) =

{Ξ ∈ T∗Q⊗ J1(πQ) | π1
0 ◦ Ξ = idTQ, (j1Y − Ξ(Y ))(X)− (j1X − Ξ(X))(Y ) = [X,Y ]},

(3.5)

where X,Y ∈ Γω(TQ) and we thought of Ξ as a section TQ → J1(πQ) for defining π1
0 ◦ Ξ.

3.3. Ricci identity. Let (E, π,Q) be a vector bundle. There is a bijective correspondence
between the set of linear connections S : E → J1π and the type (1, 1)-tensor fields PH

S on E,
where PH

S is a projection operator of constant rank, PH
S (X) = 0 for every X ∈ Γω(Vπ) and

Im(PH
S )⊕ Vπ = TE. Such a projection is called the horizontal projection associated to the

connection S; see [Saunders 1989]. An integral section of a connection S is an analytic
local section ξ of π satisfying j1ξ = S(ξ). There is no guarantee that such a section exists
even locally. The existence of such an integral section is equivalent to the vanishing of the
Nijenhuis tensor of the (1, 1)-tensor field PH

S (see [Kolář, Michor, and Slovák 1993, Saunders
1989]). In other words, the Nijenhuis tensor measures the involutivity of the associated
horizontal subbundle, and as a result, the Nijenhuis tensor of S is directly related to the
curvature tensor R[S] associated to S. Let (qi, ua) be an adapted local coordinates on a
neighborhood U of E with i ∈ {1, · · · , n} and a ∈ {1, · · · ,m}. Also let {ea} be a basis for
the local sections of E. The curvature tensor, R[S] ∈ Γω(E∗⊗E⊗Λ2T

∗Q), can be written as

R[S]aijb =
∂Saib
∂xj

+ SaicS
c
jb −

(
∂Sajb
∂xi

+ SajcS
c
ib

)
, (3.6)

where i, j ∈ {1, · · · , n} and a, b, c ∈ {1, · · · ,m}. One can naturally define an induced
connection on the fibered product as follows. Let (E1, π1,Q) and (E2, π2,Q) be two vector
bundles equipped with two connections S1 and S2, respectively. There is a unique connection
S1 ⊗Q S2 that makes the following diagram commute:

E1 ×Q E2
⊗ //

S1×QS2

��

π1 ⊗Q π2

S1⊗QS2
��

J1π2 ×Q J1π2 // J1(π1 ⊗Q π2)
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For more information about the induced connection on a fibered product bundle, see [Saun-
ders 1989]. One can use the same procedure to induce a connection S∗ on the dual bundle
π∗. For our purposes, we consider the tensor bundle (E⊗Q E, π⊗Q π,Q) where π is a vector
bundle. Let (xi) be local coordinates for Q and let (xi, ua) be adapted coordinates for E,
where i ∈ {1, · · · , n} and a ∈ {1, · · · ,m}. Denote an analytic local section of E ⊗ E by
ξ = ξabea ⊗ eb where {ea} is a basis for local sections of E and a, b ∈ {1, · · · ,m}. Then the
covariant derivative with respect to S⊗ S can be represented by

∇S⊗Sξ = j1ξ − (S⊗ S)(ξ).

We have the following representation of the covariant derivative with respect to the induced
connection S⊗ S in local coordinates:

(∇S⊗Sξ)abi =
∂ξab

∂xi
− Saicξ

cb − Sbicξ
ac, (3.7)

where c ∈ {1, · · · ,m} and a, b, c ∈ {1, · · · ,m}. Using equation (3.6), one can show that the
associated curvature tensor for S⊗ S is

R[S⊗ S]abcdijξ
cd = R[S]acijξ

cb + R[S]bcijξ
ac. (3.8)

The vanishing of the curvature tensor is an obstruction for the involutivity of the horizontal
subspace of T(E⊗ E) associated with the induced connection S⊗ S. The relation between
the curvature tensor of a product bundle and the curvature of the underlying bundles leads
to the Ricci identity; see [Cabras 1995]. In the literature this identity is typically introduced
through the following lemma:

3.26 Lemma: Let (Q,G) be a Riemannian manifold equipped with a symmetric affine con-
nection S. Then the following identity holds and is called the Ricci identity:

(∇X∇YG −∇Y ∇XG −∇[X,Y ]G)(Z,W ) = G(R(X,Y )Z,W ) +G(Z,R(X,Y )W ), (3.9)

where X,Y, Z,W ∈ Γω(TQ)

Proof: The proof follows from a direct computation using equation (3.7) to compute the
covariant derivative of G with respect to a vector field. ■

3.27 Remark: We state the following remarks for future use.

1. Lemma 3.26 can be extended to any (0, 2)-tensor on Q, but for our purposes we state
the lemma for G ∈ S+2 (T

∗Q).

2. The Ricci identity appears when one tries to find a set of necessary conditions for
a metric to be associated to a given symmetric affine connection; see [Eisenhart and
Veblen 1922, Thompson 1996]. •

4. Geometric formulation of partial differential equations in energy shaping

We give a formulation of the partial differential equations of the energy shaping problem
using the theory of partial differential equations presented in the previous section. This
formulation is an integral part of our approach since it places the energy shaping problem
separately into the realm of the formal theory of partial differential equations.
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4.1. Kinetic energy shaping. We provide a jet bundle structure associated to the kinetic
energy shaping system of partial differential equations. This system of partial differential
equations involves the affine subbundle description given for the set of torsion free connec-
tion; see Section 3.2.

Let (S+2 T
∗Q, πG,Q) be the bundle of Riemannian metrics on the configuration manifold

Q. One can generalize the definitions in this section by allowing metrics with other signa-
tures; see Remark 4.7. Let (B, πB,Q) be the bundle of gyroscopic tensor fields over Q where
B

.
= Gyr(TQ) ∩ ker(Alt). We have the following definition.

4.1 Definition: The kinetic energy shaping bundle is the fibered product bundle
(KS, π

.
= πG ×Q πB,Q), where KS

.
= S+2 T

∗Q ×Q B. We denote by π1 and π2 the projec-
tion on the first and second factors. •

In local coordinates, a typical fiber over q ∈ Q is a pair (G(q),B(q)) and a typical point
of J1(π) is given by (qi,Gmn,Blpq,Gjk,a,Blpq,b) where we denote the derivatives of Gjk and
Blpq, respectively, by Gjk,a and Blpq,b.

Define the “Levi-Civita” map ϕLC : J1πG → Aff0(Q) by ϕLC(j1G) = ∇G. Let Σol =
(Q,Gol, Vol, 0,Wol) be a given open-loop simple mechanical control system and let (KS, π,Q)
be the kinetic energy shaping bundle . The point p0 = (q0,Gol, 0) ∈ KS, where q0 ∈ Q,
represents the open-loop simple mechanical control system Σol. We define the following
projection:

πW : G♯
ol(T

∗Q⊗ S+2 T
∗Q) → G♯

ol(T
∗Q⊗ S+2 T

∗Q)/G♯
ol(Wol ⊗ S+2 T

∗Q)
.
= K,

where we used the extended definition of sharp map; see equation (1.1). We now have
the required tools for defining the kinetic energy shaping partial differential equation as a
submanifold of J1π.

4.2 Definition: Let (KS, π,Q) be the kinetic energy shaping bundle and let p0 =
(q0,Gol, 0) ∈ KS where q0 ∈ Q. If πW and ϕLC are, respectively, the projection and the affine
connection map defined above, the kinetic energy shaping submanifold Rkin(p0) ⊂ J1π
is defined by

Rkin(p0) = {p ∈ J1π | Φkin(p) = 0},
where Φkin is the kinetic energy shaping map given by

Φkin(p) = πW (ϕLC(j1π1(p))− ϕLC(j1π1(p0)))− πW(π1(p))
♯π2(p). •

One can represent the governing system of partial differential equations for the kinetic
energy shaping problem by the following exact sequence:

0 // Rkin(p0) // J1π
Φkin // K ,

where Rkin is the kernel of Φkin with respect to the zero section of K.

4.2. The λ-method. In this section, we recall a differential geometric approach to the
kinetic energy shaping problem from [Auckly and Kapitanski 2001, Auckly, Kapitanski,
and White 2000]. The main idea is to transform the set of quasi-linear partial differential
equations from the previous section into a set of linear partial differential equations in
terms of a new variable. In the following definition we introduce a set of partial differential
equations which is the main component of this equivalent system.

The following theorem gives the desired transformation.
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4.3 Theorem: Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechanical control
system. Let P ∈ Γω(T∗Q ⊗ TQ) be the Gol-orthogonal projection as above. Let Gcl ∈
Γω(S+2 T

∗Q) and let B be a quadratic gyroscopic tensor. If G♭
ol = G

♭
cl ◦ λ for λ ∈ Γω(T∗Q⊗

TQ), the following two conditions are equivalent:

(i) P (∇Gcl
X X −∇Gol

X X −G♯
cl ◦B

♭(X)) = 0 , ∀X ∈ Γω(TQ);

(ii) (a) ∇Gol
Z (Golλ)(PX,PY ) + 1

2⟨B(λPX, λPY ) +B(λPY, λPX), Z⟩ = 0, and

(b) ∇Gol
λPXGcl(Z,Z) + 2Gcl(∇Gol

Z λPX,Z) = 2Gol(∇Gol
Z PX,Z)− 2⟨λPX,B♭(Z)⟩,

where X,Y, Z ∈ Γω(TQ).

In order to prove this theorem we need the following lemma.

4.4 Lemma: Let (Q,G) be a Riemannian manifold and let W be a codistribution on Q.
Let P ∈ Γω(T∗Q ⊗ TQ) be the G-orthogonal projection introduced above and let Gcl ∈
Γω(S+2 T

∗Q). If

P (∇Gcl
X X −∇GXX −G♯

cl ◦B
♭(X)) = 0, ∀X ∈ Γω(TQ),

then

(i) for X,Y ∈ Γω(TQ) we have

P (∇GXY −∇Gcl
X Y ) = −1

2PG
♯
cl ◦ (B

♭(X + Y )−B♭(X)−B♭(Y )), (4.1)

and

(ii) for G = Gcl ◦ λ for λ ∈ Γω(T∗Q⊗ TQ) we have

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = ∇GZ(Gλ)(PX,PX), (4.2)

where X,Z ∈ Γω(TQ).

Proof: We begin with the first statement. Note that since the connections are torsion free,

∇GXY −∇Gcl
X Y = ∇GY X −∇Gcl

Y X.

We have

P (∇GXY −∇Gcl
X Y ) = 1

2P (∇GXY −∇Gcl
X Y +∇GY X −∇Gcl

Y X)

= 1
2P (∇GX+Y (X + Y )−∇Gcl

X+Y (X + Y ))− 1
2P (∇GX(X)−∇Gcl

X (X))

− 1
2P (∇GY (Y )−∇Gcl

Y (Y ))

= −1
2PG

♯
cl ◦ (B

♭(X + Y )−B♭(X)−B♭(Y )),

where X,Y ∈ Γω(TQ).
For the second part, recall that for the Levi-Civita connection ∇G associated to G one

can write

2G(∇GXY,Z) = LXG(Y, Z) + LYG(Z,X)− LZG(X,Y )

+G([X,Y ], Z) +G([Z,X], Y )−G([Y, Z], X). (4.3)
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Moreover, we have
LX(G(Y, Z)) = G(∇GXY,Z) +G(Y,∇GXZ). (4.4)

Thus

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = 2G(∇GλPXZ,PX)− 2G(∇Gcl

λPXZ,PX)

= 2G(∇GλPXZ,PX)− 2Gcl(∇Gcl
λPXZ, λPX).

We use equation (4.3) to get

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = λPXG(Z,PX)− PXG(λPX,Z)

+G([PX, λPX], Z)−G([Z,PX], λPX) +G([Z, λPX], PX).

Expanding the terms along with equation (4.4), and after some simplifications, we have

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = G(∇GZ(λPX), PX)−G(∇GZPX, λPX).

Note that
LZ(λ(X)) = ∇GZ(λ)(X) + λ(∇GZX).

As a result,

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = G((∇GZλ)(PX) + λ(∇GZPX), PX)−G(∇GZPX, λPX)

= G((∇GZλ)(PX), PX) +G(λ(∇GZPX), PX)

−G(∇GZPX, λPX)

= G((∇GZλ)PX,PX).

Since ∇GG = 0, one can write

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = ∇GZ(Gλ)(PX,PX),

which is the desired result. ■

Proof of Theorem 4.3: (1) ⇒ (2) We first assume that Gcl and B satisfy the kinetic energy
shaping equation

P (∇Gcl
X X −∇Gol

X X −G♯
cl ◦B

♭(X)) = 0, ∀X ∈ Γω(TQ).

Using the second part of lemma 4.4 we have

2Gol(P (∇Gol
λPXZ −∇Gcl

λPXZ), X) = ∇Z(Golλ)(PX,PX). (4.5)

By the first part of lemma 4.4 we have

P (∇Gol
λPXZ −∇Gcl

λPXZ) = −1
2PG

♯
cl ◦ (B

♭(λPX + Z)−B♭(λPX)−B♭(Z)).

Substituting equation (4.5) we get

2Gol(−1
2PG

♯
cl ◦ (B

♭(λPX + Z)−B♭(λPX)−B♭(Z)), X) = ∇Z(Golλ)(PX,PX),
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which can be written as

∇Z(Golλ)(PX,PX) + ⟨B♭(λPX + Z)−B♭(λPX)−B♭(Z), λPX⟩ = 0.

From the definition of the flat operation we have ⟨B♭(Y ), X⟩ = B(X,Y, Y ). Also recall that
the gyroscopic tensor is antisymmetric in the first two elements. We can then expand the
right hand side of the previous equation to get

∇Z(Golλ)(PX,PX) = B(λPX,Z, λPX) = −⟨B(λPX, λPX), Z⟩.

Notice that Golλ and ∇Z(Golλ) are both symmetric (0, 2) tensors. Thus we have

∇Z(Golλ)(PX,PY ) + 1
2⟨B(λPX, λPY ) +B(λPY, λPX), Z⟩ = 0,

for all X,Y ∈ Γω(TQ) as claimed. Now, for the second part of the proof, we have

LλPXGcl(Z,Z) = Gcl(∇Gcl
λPXZ,Z) +Gcl(Z,∇Gcl

λPXZ)

= 2Gcl(∇Gcl
λPXZ,Z)

= 2Gcl(∇Gcl
Z λPX − [Z, λPX], Z)

= 2Gcl(∇Gcl
Z λPX,Z)− 2Gcl([Z, λPX], Z).

As a result

LλPXGcl(Z,Z) + 2Gcl([Z, λPX], Z) = 2Gcl(∇Gcl
Z λPX,Z)

= 2LZGol(PX,Z)− 2Gol(PX,∇Gcl
Z Z)

= 2LZGol(PX,Z)− 2Gol(X,P∇Gcl
Z Z).

Now, from the kinetic energy shaping system of partial differential equations, we have

P∇Gcl
Z Z = P∇Gol

Z Z + PG♯
clB

♭(Z).

Therefore,

LλPXGcl(Z,Z) + 2Gcl([Z, λPX], Z)

= 2LZGol(PX,Z)− 2Gol(X,P∇Gol
Z Z + PG♯

clB
♭(Z))

= 2Gol(∇Gol
Z PX,Z) + 2Gol(PX,∇Gol

Z Z)− 2Gol(X,P∇Gol
Z Z + PG♯

clB
♭(Z)).

This gives

LλPXGcl(Z,Z) + 2Gcl([Z, λPX], Z) = 2Gol(∇Gol
Z PX,Z)− 2⟨λPX,B♭(Z)⟩.

A simple computation gives the desired conclusion.
(2) ⇒ (1): We have to prove that if λ = G♭

ol ◦ G
♯
cl and if Gcl and B satisfy the set of

extended λ equations and the closed-loop metric equation given in part 2 of the theorem,



24 B. Gharesifard, A. D. Lewis, and A.-R. Mansouri

then (Gcl,B) is a solution to the kinetic energy shaping problem. We compute

Gol(P (∇Gol
X X −∇Gcl

X X +G♯
clB

♭(X)), Z)

= Gol(∇Gol
X X −∇Gcl

X X +G♯
clB

♭(X), PZ)

= Gol(∇Gol
X X,PZ)−Gcl(∇Gcl

X X,λPZ) + ⟨B♭(X), λPZ⟩

= LXGol(X,PZ)−Gol(X,∇Gol
X PZ)

− LXGcl(X,λPZ) +Gcl(X,∇Gcl
X λPZ) + ⟨B♭(X), λPZ⟩

= −Gol(X,∇Gol
X PZ) +Gcl(X,∇Gcl

X λPZ) + ⟨B♭(X), λPZ⟩

= −Gol(X,∇Gol
X PZ) +Gcl(X,∇Gcl

λPZX) +Gcl(X, [X,λPZ]) + ⟨B♭(X), λPZ⟩

= −Gol(X,∇Gol
X PZ) + 1

2LλPZGcl(X,X) +Gcl(X, [X,λPZ]) + ⟨B♭(X), λPZ⟩

= −Gol(X,∇Gol
X PZ) +Gol(∇Gol

X PZ,X)− ⟨λPZ,B♭(X)⟩+ ⟨B♭(X), λPZ⟩
= 0,

As a result,
P (∇Gol

X X −∇Gcl
X X +G♯

clB
♭(X)) = 0,

as desired. ■

From part ii of the previous theorem we see that the kinetic energy shaping partial
differential equation is equivalent to two partial differential equations, one for λ and one
for obtaining Gcl from λ. We will study these partial differential equations in detail later
in the paper, but for now let us define them.

4.5 Definition: Let Q be an n-dimensional manifold and let G ∈ Γω(S+2 T
∗Q) be a metric on

Q. Let W ⊂ T∗Q be a subbundle and let P be the associated G-orthogonal projection map
as in Section 2. The following set of partial differential equations with λ ∈ Γω(T∗Q⊗ TQ)
and B a gyroscopic (0, 3)-tensor field as dependent variables is called the (extended)
λ-equation :

∇GZ(Gλ)(PX,PY ) + 1
2⟨B(λPX, λPY ) +B(λPY, λPX), Z⟩ = 0, (4.6)

where X,Y ∈ Γω(TQ). •

4.6 Definition: Let Q be an n-dimensional manifold and let G ∈ Γω(S+2 T
∗Q) be a metric

on Q. Let W ⊂ T∗Q be a subbundle and P ∈ Γω(T∗Q ⊗ TQ) be the associated projection
map as above. Also let λ ∈ Γω(T∗Q⊗ TQ) and let B be a gyroscopic (0, 3)-tensor field on
Q. The following set of partial differential equations with Gcl ∈ Γω(S2T

∗Q) as unknown is
called the (extended) closed-loop metric equation :

∇GλPXGcl(Z,Z) + 2Gcl(∇GZλPX,Z) = 2G(∇GZPX,Z)− 2⟨λPX,B♭(Z)⟩, (4.7)

for X,Y, Z ∈ Γω(TQ). •
It is clear that the λ-equation is a first-order linear systems of partial differential equa-

tions. The word extended is due to the presence of gyroscopic forces. Theorem 4.3 is an
intrinsic version of what has been presented in [Auckly and Kapitanski 2002]. Different ver-
sions of the proof have been given in [Auckly and Kapitanski 2001, Auckly, Kapitanski, and
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White 2000] and modified with presence of gyroscopic forces in [Chang 2002]. One should
note that, by solving the λ-equations, we only obtain the restriction of λ to Γω(W⊥⊗T∗Q),
but only this restriction of λ appears in the statement of the extended closed-loop metric
equation.

4.7 Remark: Note that there is no assumption on the positive definiteness of the closed-
loop metric. In other words, one may very well achieve a closed-loop metric which is not
positive definite, but which could possibly lead to a stabilizing energy shaping feedback. •

According to Definition 2.2, the energy shaping problem can proceed in two steps: first,
kinetic energy shaping and then potential energy shaping. As in [Auckly and Kapitanski
2002], we assume that one solves the energy shaping problem in the following steps:

1. Find the set of pairs (λ,B) which satisfy the extended λ-equations.

2. The system of partial differential equations (2b) from Theorem 4.3 with Gcl as unknown
is called the (extended) closed-loop metric system of equations. So we use the
set of solutions to the λ-equations to find a closed-loop metric Gcl as a solution to
the extended closed-loop metric system of equations. This closed-loop metric will be
a solution to the kinetic energy shaping problem by the statement of the theorem.
Moreover, all the solutions to the kinetic energy shaping problem can be produced by
this procedure.

3. Check if the set of Gcl, or equivalently the set of solutions to the λ-equations satisfies
the sufficient condition of potential energy shaping problem, equation (4.10). If so, one
can find a formal solution to the potential energy shaping partial differential equation.

One of our main goals in this paper is to show that a bad choice for the closed-loop metric can
make it impossible to find a solution for the energy shaping problem. In order to identify
the space of solutions to the energy shaping problem, one should consider together the
compatibility conditions of the kinetic energy shaping and potential energy shaping problem.
In the coming sections we use the language of geometric partial differential equations to
analyze the integrability of the complete set of partial differential equations.

4.3. The λ-method partial differential equations. In this section, we formulate the two
partial differential equations for the λ-method in the language of jet bundles. We make the
simplifying assumption in this section that B = 0. Assume thatW is an (n−m)-dimensional
integrable subbundle of T∗Q where m is the number of unactuated directions.

The equation RL. With the assumptions above, the set of λ-equations we consider in this
section is

∇GZ(Gλ)(PX,PX) = 0, X, Z ∈ Γω(TQ),

where λ ∈ Γω(T∗Q⊗ TQ), G is a metric on Q and P ∈ Γω(T∗Q⊗ TQ) is the G-orthogonal
projection as before. We denote by W⊥ the G-orthogonal complement of W and by λ|P the
restriction of λ to W⊥ ⊗TQ. Consider the bundle π : W⊥ ⊗TQ → Q and let (q, λ|P (q)) be
a typical fiber element over q ∈ Q. We define the bundle map

Φ :J1π → T∗Q⊗W⊥ ⊗W⊥

j1λ|P 7→ ∇G(Gλ)|ImP⊗2 , (4.8)
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In an adapted coordinate system (qi, λi
a) on W⊥ ⊗ TQ and (qi, λi

a, λ
i
a,k) on J1π,

Φ(qi, λi
a, λ

i
a,k) = (qi,Gaiλ

i
b,k +Gai,kλ

i
b − SskaGsiλ

i
b − SskbGsiλ

i
a), (4.9)

where S is the coefficient of the Levi-Civita connection associated to G, and k ∈
{1, · · · , n}, a, b ∈ {1, · · · ,m}. Thus we define

RL
.
= {p ∈ J1(π) | Φ(p) = 0}.

to be the submanifold of J1π corresponding to the λ-equation.

The equation RE. With the assumptions above, the closed-loop metric equation is

∇GλPXGcl(Z,Z) + 2Gcl(∇GZλPX,Z) = 2G(∇GZPX,Z)

for X,Y, Z ∈ Γω(TQ). Consider the bundle (S2T
∗Q, π,Q) and let W and P be, respectively,

the integrable control codistribution and the G-orthogonal projection, respectively, as in
Section 2. Let λ be an automorphism of TQ and denote a section of W⊥ ⊗ TQ by λ|P .
In adapted local coordinates, λ|P = λj

aea ⊗ ej , where a ∈ {1, · · · ,m} and j ∈ {1, · · · , n}.
Define the bundle map Υ1 : J1π → T∗Q ⊗ S2T

∗Q by Υ1(j1Gcl) = ∇GGcl. Also define a
bundle map

Υ0 : S2T
∗Q → W⊥ ⊗ S2T

∗Q

by
Υ0(X,Z,Z) = 2Gcl(∇GZλPX,Z)− 2G(∇GZPX,Z),

Let ΨE : T∗Q⊗ S2T
∗Q → W⊥ ⊗ S2T

∗Q be the bundle map given in local coordinates by

ΨE(β ⊗ A) = λj
aβje

a ⊗ A,

where a ∈ {1, · · · ,m}, j ∈ {1, · · · , n}, β ∈ Γω(T∗Q) and A ∈ Γω(S2T
∗Q). Observe that

the map ΨE is surjective. Finally, define ΦE = ΨE ◦Υ1 +Υ0. Thus RE = kerΦE gives the
extended closed-loop metric system of partial differential equations.

4.4. Potential energy shaping. In this section, we explore aspects of potential energy
shaping. Firstly, we recall the result of Lewis [2006] regarding potential shaping after
kinetic shaping has been done. Then, we couple the sufficient conditions of Lewis [2006]
with the λ-equations from the previous section. In this way, we can understand how kinetic
energy shaping can influence potential energy shaping.

Sufficient conditions for potential energy shaping. We recall the results for potential
energy shaping after kinetic energy shaping from [Lewis 2006]. Denote the bundle au-

tomorphism G♭
ol ◦ G

♯
cl by Λcl. Define an integrable codistribution Wcl = Λ−1

cl (Wol). Let
(PS

.
= Q×R, π,Q) be the trivial vector bundle over Q, so that a section of π corresponds

to a potential function via the formula q 7→ (q, V (q)). We define a T∗Q-valued differential
operator Dd(V ) = dV which induces a vector bundle map Φpot : J1π → T∗Q such that
Dd(V )(q) = Φpot(j1V (q)). Similar to what we did for kinetic energy shaping we denote by

πWcl
: T∗Q → T∗Q/Wcl

as the canonical projection.
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4.8 Definition: Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechanical control
system. The submanifold Rpot ⊂ J1π defined by

Rpot = {p ∈ J1π | πWcl
◦ Φpot(p) = πWcl

◦ Λ−1
cl dVol}.

is called the potential energy shaping submanifold . •
Let π1 : J1π → Q be the canonical projection. Lewis [2006] gives a set of sufficient

conditions under which the potential shaping problem has a solution. The proof follows from
the integrability theory of partial differential equations; in particular, the potential energy
shaping partial differential equation has an involutive symbol. We recall the definition of
(Gol-Gcl)-potential energy shaping feedback from [Lewis 2006].

4.9 Definition: A section F of W is called a (Gol-Gcl)-potential energy shaping feed-
back if there exists a function Vcl on Q such that

F(q) = ΛcldVcl − dVol, q ∈ Q. •

The following results implies when one can construct a Taylor series solution to the
potential energy shaping partial differential equation order-by-order.

4.10 Theorem: Let Σol = (Q,Gol, Vol,Fol,Wol) be an analytic open-loop simple mechanical
control system. Let Gcl be a closed-loop analytic metric. Let p0 ∈ Rpot and let q0 =
π1(p0). Assume that q0 is a regular point for Wol and that Wcl = Λ−1

cl Wol is integrable in a
neighborhood of q0. Then the following statements are equivalent:

(i) there exists a neighborhood U of q0 and an analytic (Gol-Gcl) -potential energy shaping
feedback F ∈ Γω(W) defined on U which satisfies

Φpot(p0) = ΛcldV (q0)− dVol(q0) + Λ−1
cl dVol(q0)

for a solution V to Rpot;

(ii) there exists a neighborhood U of q0 such that d(Λ−1
cl dVol)(q) ∈ I2(Wcl|q), where we

denote I2(Wcl|q) = I(Wcl|q)∩Λ2(T
∗
qQ) where the algebraic ideal I(Wcl|q) of Λ(T∗

qQ) is
generated by elements of the form γ ∧ ω where γ ∈ Wcl|q.

The theorem gives a set of compatibility conditions for the existence of a (Gol-Gcl)-
potential energy shaping feedback. Moreover, one can give a full description of the set of
achievable potential energy shaping feedbacks. Let αcl = Λ−1

cl dVol. Let us use a coordinate
system (q1, · · · , qn) on U a neighborhood of q0 such that

Wcl|q0 = Span(dqm+1, · · · , dqn).

In these local coordinate we write the one form αcl as αcl = αjdq
j and compatibility

conditions become:
∂αj

∂qi
− ∂αi

∂qj
= 0 , i, j ∈ {1, · · · ,m}. (4.10)
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4.11 Remark: One can make the following observations from the potential energy shaping
problem.

1. The choice of Gcl affects the set of solutions that one might get for potential energy
shaping. A bad choice of Gcl might make it impossible to find any potential energy
shaping feedback. As a result, if one is able to have an understanding of the set of
closed-loop energy shaping metrics, then the condition given by equation (4.10) is an
obstruction that detects the closed-loop energy shaping metrics for which their exists a
potential energy shaping feedback. We give a complete description of this problem in
Section 7.

2. Following [Lewis 2004], if we denote the set of all solutions for the potential shaping
problem by

PSq0 = {Vcl ⊕ Fcl ∈ Cω(Q)⊕ Γω(Wcl) | dVcl = Fcl + Λ−1
cl dVol , Vcl(q0) = 0},

one can describe the whole set of solutions as an affine subspace of Cω(Q) ⊕ Γω(Wcl)
modeled on the subspace

L(PSq0) = {f ⊕ β ∈ Cω(Q)⊕ Γω(Wcl) | df = β}. •

The equation RT. The sufficient condition for integrability of the partial differential equa-
tion in potential energy shaping, given in equation (4.10), is a nonlinear partial differential

equation with the dependent variable Λ = G♭
ol ◦ G

♯
cl. The following commutative diagram

shows the relation between λ and Λ:

T∗Q
Λ //

G♯
ol
��

T∗Q

G♯
ol
��

TQ
λ // TQ

Any condition on Λ imposes conditions on λ and vice versa. Through these conditions, we
can find the obstruction that the potential energy shaping integrability condition imposes
on the set of solutions to the λ-equations. For more information about the procedure we
propose for energy shaping, see Section 8. We make some algebraic constructions before
moving to the potential energy shaping problem.

An algebraic construction

Let V be a finite-dimensional R-vector space and denote the dual vector space by V∗. Let
D be a subspace of V∗. The algebraic ideal I(D) of Λ(V∗) is generated by elements of the
form γ ∧ ω where γ ∈ D. For k ∈ Z we denote Ik(D) = I(D)∩Λk(V

∗). For Θ ∈ Aut(V∗), we
wish to understand I2(Θ(D)).

4.12 Lemma: We have I2(Θ(D)) = (Θ⊗Θ)(I2(D)).

Proof: Let {v1, · · · , vn} be a basis for V, and suppose that

D = Span{vm+1, vm+2, · · · , vn}.
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One can identify I2(Θ(D)) by

I2(Θ(D)) = Span{Θ(vj) ∧Θ(vi) | m+ 1 ≤ j ≤ n , 1 ≤ i ≤ n},

If one extends Θ to Θ⊗Θ on V∗ ⊗ V∗ in the usual way we have

Θ⊗Θ(I2(D)) = Span{Θ(vj) ∧Θ(vi) | m+ 1 ≤ j ≤ n , 1 ≤ i ≤ n},

as desired. ■

4.13 Lemma: Let α be an analytic local section of (T∗Q, π,Q) in a neighborhood U of Q
and let D ⊂ T∗Q be a subbundle. Then dα ∈ I2(Θ(D)) if and only if

Θ−1 ⊗Θ−1(dα) ∈ I2(D).

Proof: Note that (Θ⊗Θ)−1 = Θ−1⊗Θ−1 and so the proof follows from the previous lemma.
■

4.14 Proposition: Let Q be an n-dimensional manifold and let β ̸= 0 and α be analytic
local sections of T∗Q such that α = Θ(β), where Θ ∈ Aut(T∗Q). Let U be a neighbor-
hood of p ∈ Q. Given D, an integrable subbundle of T∗Q, with adapted local coordinates
{dqm+1, · · · , dqn} as above, we have dα ∈ I2(Θ(D)) in this neighborhood if and only if(

∆k
i∆

p
j −∆k

j∆
p
i

)(∂Θl
k

∂xp
βl +Θl

k

∂βl
∂xp

)
= 0,

where i, j, k ∈ {1, · · · ,m} and we denoted the Θ−1 by ∆.

Proof: Using Lemma 4.13 we have

dα = ∆k
i∆

p
j

(
∂Θl

k

∂xp
βl +Θl

k

∂βl
∂xp

)
dqi ∧ dqj .

The proof follows since Λ2T
∗Q = I2(D)⊕ Λ2(D

⊥). ■

Partial differential equation

We consider the system of partial differential equations of Proposition 4.14 with the auto-
morphism Θ as unknown. One can easily observe that this system of partial differential
equation is equivalent to the system of partial differential equations one would obtain by
assuming equation (4.10) as a partial differential equation with unknown Λ−1. We consider
nonlinear partial differential equations as described briefly in Section 3.1. More details on
the formal integrability of nonlinear systems of partial differential equations can be found
in [Goldschmidt 1967b].

Let (Q,G) be an n-dimensional Riemannian manifold and let W ⊂ T∗Q be a subbundle.
Consider the vector bundle (π, (W⊥⊗QTQ)⊕(W⊥⊗QTQ),Q) with a typical fiber (q,Θ(q)⊕
∆(q)) and denote its first jet bundle by J1π. We define the following system of partial
differential equations in a neighborhood U of q0 ∈ Q:

RT = {j1(Θ⊕∆) ∈ J1π | ΦT(j1(Θ⊕∆)) = 0},
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where ΦT can be written in adapted local coordinates

ΦT(j1(Θ⊕∆)) =
(
∆k

i∆
r
j −∆k

j∆
r
i

)(∂Θl
k

∂qr
βl +Θl

k

∂βl
∂qr

)
,

where i, j, k ∈ {1, · · · ,m} and β ∈ Γω(T∗Q). This system of partial differential equations
is quasi-linear and so we need to use Definition 3.7 to find the symbol. We look at the
linearization of the partial differential equation about a given reference point. Let (q, Θ̄(q)⊕
∆̄(q)) be a typical fiber of π. If we linearize the system about this point we have

d

dt
|t=0

((
(∆k

i t+ ∆̄k
i )(∆

p
j t+ ∆̄r

j)− (∆k
j t+ ∆̄k

j )(∆
p
i t+ ∆̄r

i )
)

×
[
∂(Θl

kt+ Θ̄l
k)

∂qr
βl + (Θl

kt+ Θ̄l
k)βl

))
=
(
∆k

i ∆̄
r
j +∆r

j∆̄
k
i −∆k

j ∆̄
r
i −∆r

i ∆̄
k
j

) ∂̄Θl
k

∂qr
βl

+
(
∆̄k

i ∆̄
r
j − ∆̄k

j ∆̄
r
i

)(∂Θl
k

∂qr
βl +Θl

k

∂βl
∂qr

)
.

The effect on the reference point of the linearization should be investigated carefully. For
now, we consider the linearization of the system about a point p ∈ J1π with π1

0(p) =
(id|TQ⊗QW⊥ ⊗ id|TQ⊗QW⊥). The reason for this choice is that the identity solution for Θ
refers to the open-loop system which is always a solution to the energy shaping problem.
Thus we study the linearization of the nonlinear system about the open-loop solution. We
have the following linearization of ΦT about p:

Vp(ΦT)(j1(Θ⊕∆)) =

(
∂Θl

i

∂qj
βl −

∂Θl
j

∂qi
βl

)
+ (Θl

i

∂βl
∂qj

−Θl
j

∂βl
∂qi

), (4.11)

where we utilized the fact that VJ1π ∼= J1Vπ; see [Pommaret 1978].

5. Formal integrability of RL

In this section, we apply the theorem of Goldschmidt, Theorem 3.20, to the λ-equations.
The main result in this section is Theorem 5.6 which gives sufficient conditions for formal
integrability of the λ-equations. The proof of this theorem requires the machinery of Sec-
tion 3.1. However, the main result can be understood without understanding the details of
the proof.

5.1. The symbol of RL. The symbol map σ(RL) : T
∗Q⊗W⊥ ⊗TQ → T∗Q⊗W⊥ ⊗W⊥ is

defined by

σ(RL)(A)(X,PY, PZ) = A(X,PY,G♭(PZ)), A ∈ Γω(T∗Q⊗W⊥ ⊗ TQ),

where X,Y, Z ∈ Γω(TQ). This can be shown using the affine structure of J1π as follows.
Take p1, p2 ∈ J1π such that π1

0(p1) = π1
0(p2). Then p1 − p2 ∈ Γω(T∗Q ⊗ W⊥ ⊗ TQ) by

the affine structure of J1π. Now one can define the symbol map to be Φ(p2 − p1). Using
equation (4.9), one can observe in local coordinates that Φ(p1 − p2) is the highest order
term of the partial differential equations since π1

0(p1) = π1
0(p2). Let us determine the symbol

G1(RL) and its prolongation.
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5.1 Lemma: The following sequence is short exact:

0 // G1(RL) // T∗Q⊗W⊥ ⊗ TQ
σ(RL) // T∗Q⊗W⊥ ⊗W⊥ // 0 (5.1)

Proof: The symbol map is surjective since σ(RL) = idT∗Q⊗W⊥ ⊗ (G♭ ◦ P ). ■

Let {e1, · · · , en} be a basis for T∗
q0Q for q0 ∈ Q and let Σj be the subspace of T∗

q0Q
generated by {ej+1, · · · , en}. Then we have the following lemma, similar to Lemma 5.1.

5.2 Lemma: The following sequence is short exact:

0 // G1,j(RL) // Σj ⊗W⊥ ⊗ TQ
σ(RL) // Σj ⊗W⊥ ⊗W⊥ // 0

where G1,j(RL) = G1(RL) ∩ Σj.

The following lemma characterizes the prolonged symbol ρ1(G1(RL)).

5.3 Lemma: The following sequence is short exact:

0 // ρ1(G1(RL)) // S2T
∗Q⊗W⊥ ⊗ TQ

ρ1(σ(RL))// T∗Q⊗ T∗Q⊗W⊥ ⊗W⊥ τ // C // 0

where C ∼= Λ2T∗Q⊗W⊥ ⊗W⊥ and τ is given by

τ(A)(X1, X2, Y1, Y2) = A(X1, X2, Y1, Y2)− A(X2, X1, Y1, Y2). (5.2)

Proof: Note that τ is the alternation map up to a constant and so is surjective. Moreover,
we have

ρ1(G1(RL))(A)(X1, X2, Y1, Y2) = A(X1, X2, Y1,G
♭Y2),

as a consequence of the fact that τ ◦ρ1(G1(RL)) is zero since A is symmetric in the first two
elements. ■

5.4 Lemma: The symbol G1(RL) is involutive.

Proof: We will show that the basis {e1, · · · , en} is a quasi-regular basis. This is just a
dimension count. From Lemmata 5.1 and 5.2 we have

dim(G1(RL)) = nm(n−m),

dim(G1,j(RL)) = (n− j)m(n−m).

We compute

dim(G1(RL)) +
n−1∑
j=1

dim(G1,j(RL)) =
1
2nm(n+ 1)(n−m),

which is precisely dimension of ρ1(G1(RL)) using Lemma 5.3. ■

5.2. Involutivity of RL.
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5.5 Theorem: The set of λ-equations RL is involutive if, for p ∈ RL, we have

τ(ρ1(Φ)(p2)− 0) = 0,

where p2 is any point in J2(π) that projects to p.

Proof: Note that ρ1(G1(RL)) is isomorphic to S2T
∗Q⊗W⊥⊗G♯W. Therefore, it is a vector

bundle on the open subset for which G♯W is a vector bundle. Let C be the cokernel of
ρ1(σ(Φ))). Then G(RL) is involutive and so the system of partial differential equations RL

is involutive if the curvature map κ : RL → C, defined as in equation (3.3), is zero. We have
the following exact commutative diagram:

0 // ρ1(G1(RL)) //

��

S2T
∗Q⊗W⊥ ⊗ TQ

ρ1(σ(Φ))//

��

T∗Q⊗ T∗Q⊗W⊥ ⊗W⊥ τ //

��

C // 0

0 // ρ1(RL) //

��

J2(π)
ρ1(Φ) //

��

J1(π
′)

��
0 // RL

// J1(π)
Φ // T∗Q⊗W⊥ ⊗W⊥

Let p ∈ RL so that π(p) = q for q ∈ Q. Therefore, Φ(p) = 0. Take p2 ∈ J2(π) projecting
to p and define ξ = ρ1(Φ)(p2) ∈ J1(π

′). By commutativity of the diagram, ξ projects to
0 ∈ T∗Q⊗W⊥⊗W⊥, so we take κ(p) = τ(ξ− 0). It is easy to show that the definition of κ
is independent of the choice of p2; see [Pommaret 1978, Pommaret 1994]. By the discussion
in Section 3.1, p is in the image of the projection of ρ1(RL) to RL if and only if κ(p) = 0.■

Using Theorem 5.5 and the map defined by equation (5.2), we can write the following
intrinsic formula for κ:

κ(j1λ)(Z,W,PX,PY ) =

∇GW [∇GZ(Gλ)(PX,PX)]−∇GZ [∇GW (Gλ)(PX,PX)]−∇G[W,Z](Gλ)(PX,PX). (5.3)

This leads to the following theorem which gives an explicit expression for the compatibility
conditions of the λ-equations.

5.6 Theorem: Let (Q,G) be an analytic Riemannian manifold of dimension n and let S

be the Levi-Civita connection on Q with the associated curvature tensor R. Let W ⊂ T∗Q
be a given analytic subbundle and let P ∈ Γω(T∗Q ⊗ TQ) be the associated G-orthogonal
projection as above. If the partial differential equation

(Gλ)(R(PX,PX)W,Z) + (Gλ)(W,R(PX,PX)Z)+

2∇GZ(Gλ)(∇GWPX,PX)− 2∇GW (Gλ)(∇GZPX,PX)) = 0. (5.4)

is satisfied in a neighborhood of λ0 ∈ Γω(T∗Q ⊗ TQ), then the set of λ-equations has a
solution in a neighborhood of λ0. Moreover, any solution to the λ-equations will satisfy
equation (5.4).
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Proof: From Theorem 5.5 and involutivity of the symbol of RL, a sufficient condition for
the existence of solutions to the λ-equations is that the curvature map be zero. We have

∇GZ(Gλ)(PX,PX) = G((∇GZλ)(PX), PX),

for all X,Z ∈ Γω(TQ). Thus

∇GW [∇GZ(Gλ)(PX,PX)] = ∇GW [G((∇GZλ)(PX), PX)]

= G(∇GW (∇GZλ(PX)), PX) +G(∇GZλ(PX),∇GWPX),

where X,Z,W ∈ Γω(TQ). Therefore,

∇GW [∇GZ(Gλ)(PX,PX)] = G(∇GW (∇GZλ(PX)), PX) +G(∇GZλ(PX),∇GWPX).

As a result,

∇GW [∇GZ(Gλ)(PX,PX)]

= G(∇GW∇GZλ(PX), PX) + 2∇GZ(Gλ)(∇GWPX,PX). (5.5)

We conclude that

∇GW [∇GZ(Gλ)(PX,PX)]−∇GZ [∇GW (Gλ)(PX,PX)]−∇G[W,Z](Gλ)(PX,PX)

= G(∇GW∇GZλ(PX), PX)−G(∇GZ∇GWλ(PX), PX)−G(∇G[W,Z]λ(PX), PX)+

+ 2∇GZ(Gλ)(∇GWPX,PX)− 2∇GW (Gλ)(∇GZPX,PX).

Finally, using the Ricci identity and Theorem 5.5, we have the following sufficient condition
for the existence of solutions:

(Gλ)(R(PX,PX)W,Z) + (Gλ)(W,R(PX,PX)Z)

+ 2∇GZ(Gλ)(∇GWPX,PX)− 2∇GW (Gλ)(∇GZPX,PX) = 0.

The necessity of this condition is clear since any solution of the λ-equation satisfies equa-
tion (5.3) by definition. ■

6. Formal integrability of RE

We prove that the system of partial differential equations for the closed-loop metric has
an involutive symbol and is formally integrable under a certain surjectivity condition. An
additional assumption is that λ(TQ/(G♯

olW)) is integrable. Recall that a similar assumption
has been used in Theorem 4.10. The main result here is Theorem 6.6. Again, this result
can be understood separately from the details of its proof.

6.1. The symbol of RE. We have the symbol map σ(RE) : T
∗Q⊗ S2T

∗Q → W⊥ ⊗ S2T
∗Q

for the partial differential equation RE given by

σ(RE)(β ⊗ A) = λj
aβje

a ⊗ A

in local coordinates.
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6.1 Lemma: We have G(RE)
.
= ker(σ(RE)) ∼= W⊗ S2T

∗Q.

Proof: Note that λ is an isomorphism, so ker(σ(RE)) is of dimension (n − m) ×
(n× (n+ 1)/2) and so is isomorphic to W⊗ S2T

∗Q as claimed. ■

Let {e1, e2, · · · , en} be a basis for T∗
q0Q such that {e1, · · · , en−m} spans W and let Σj

be the subspace of T∗
q0Q generated by {ej+1, · · · , en}. Consider the restriction

σ(RE)|Σj : Σj ⊗ S2T
∗Q → W⊥ ⊗ S2T

∗Q

of the symbol map to Σj ⊗ S2T
∗Q. We have the following lemma:

6.2 Lemma: We have

G(RE)1,j
.
= ker(σ(RE)|Σj⊗S2T∗Q) = (Σj ∩W)⊗ S2T

∗Q.

Proof: The proof follows along the same lines as that of Lemma 6.1. ■

In local coordinates, the prolongation of the symbol map

ρ1(σ(RE)) : S2T
∗Q⊗ S2T

∗Q → T∗Q⊗W⊥ ⊗ S2T
∗Q

is given by
ρ1(σ(RE))(Π⊗ A) = λj

aΠjk ⊗ A,

where Π ∈ Γω(S2T
∗Q).

6.3 Lemma: The following sequence is short exact:

S2T
∗Q⊗ S2T

∗Q
ρ1(σ(RE))// T∗Q⊗W⊥ ⊗ S2T

∗Q
τ // Λ2W

⊥ ⊗ S2T
∗Q // 0

where τ is the canonical projection onto cokernel of ρ1(σ(RE)).

Proof: Recall that
S2T

∗Q = S2W⊕ S2W
⊥ ⊕ (W⊗W⊥).

By using the definition of ρ1(σ(RE)), the kernel of ρ1(σ(RE)) is isomorphic to S2W⊗S2T
∗Q.

Moreover, we have

Im(ρ1(σ(RE))) ∼= (S2W
⊥ ⊕ (W⊗W⊥))⊗ S2T

∗Q.

Therefore, the cokernel of ρ1(σ(RE)) is isomorphic to Λ2W
⊥ ⊗ S2T

∗Q. ■

6.4 Proposition: The symbol of RE is involutive.

Proof: Let {e1, · · · , en} be a basis for T∗
q0Q for q0 ∈ Q and let Σj be the subspace of T∗

q0Q
generated by {ej+1, · · · , en}. We show that this yields a quasi-linear basis for T∗

q0Q RE.
Using Lemmata 6.1 and 6.2 we have

dim(G(RE)) =
1
2(n−m)n(n+ 1),

dim(G(RE)1,j) =

{
1
2(n−m− j)n(n+ 1), 1 ≤ j < n−m,

0, n−m ≤ j < 0.

We compute

dim(G(RE)) +

n−m∑
j=1

dim(G(RE)1,j) =
1
4n(n−m)(n−m+ 1)(n+ 1),

which is equal to dim(ρ1(G(RE))) by Lemma 6.3, as required. ■
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6.2. Involutivity of RE. The following theorem applies Goldschmidt’s theorem to RE.

6.5 Theorem: The partial differential equation RE is involutive if, for p ∈ RE, we have

τ(ρ1(p2)− 0) = 0,

where p2 is any point in J2(π) that projects to p.

Proof: Since the symbol is involutive, the proof follows along the same lines as that of
Theorem 5.5. ■

One can construct the curvature map similar to the one for RL:

κ(j1Gcl)(λPX, λPY,Z, Z) =

∇GλPY [∇GλPX(Gcl)(Z,Z)]−∇GλPX [∇GλPY (Gcl)(Z,Z)]−∇G[λPY,λPX](Gcl)(Z,Z). (6.1)

Note that since λ(TQ/(G♯
olW)) is integrable by assumption, there exists a ζ ∈ Γω(TQ) such

that [λPY, λPX] = λPζ. We state the following theorem which implies the obstruction to
finding a closed-loop metric.

6.6 Theorem: Let (Q,G) be an analytic Riemannian manifold of dimension n and let S

be the Levi-Civita connection on Q with associated curvature tensor R. Let W ⊂ T∗Q be
an analytic integrable subbundle and let P ∈ Γω(T∗Q⊗TQ) be the associated G-orthogonal
projection as above. Let λ be an automorphism on TQ so that λ(TQ/(G♯W)) is integrable.
If the first-order partial differential equations

2∇GλPY (Gcl)([Z, λPX], Z)− 2∇GλPX(Gcl)([Z, λPY ], Z)

+ 2Gcl(∇GλPY (∇GZλPX)−∇GλPX(∇GZλPY ), Z) + 2G(∇GλPY (∇GZPX)−∇GλPX(∇GZPY ), Z)

+ 2Gcl(∇GλPY Z,∇GZλPX)− 2Gcl(∇GλPXZ,∇GZλPY ) + 2G(∇GλPXZ,∇GZλPY )

− 2Gcl(∇GλPY Z,∇GZλPX) + 2Gcl(∇GZλζ, Z)− 2G(∇GZζ, Z) = 0 (6.2)

are satisfied in a neighborhood of Gcl ∈ Γω(S2T
∗Q) for X,Y, Z ∈ Γω(TQ) and ζ ∈ Γω(TQ)

as above, then the set of closed-loop metric equations has a solution in a neighborhood of
Gcl. Moreover, any solution to the closed-loop metric equations will satisfy equation (6.2).

Proof: The proof follows from a direct computation using equation (6.1) and the Ricci
identity (similar to Theorem 5.6). One also uses the following identity

(Gcl)(R(Z,Z)λPY, λPX) + (Gcl)(λPY,R(Z,Z)λPX) =

(G)(R(Z,Z)λPY, PX) + (G)(PY,R(Z,Z)λPX) = 0,

which holds since G is associated to S. ■

7. Formal integrability of RT

We prove that the system of partial differential equations relating the λ-equations to
the potential energy shaping equations is formally integrable under a surjectivity condition.
The main result here is Theorem 7.8. As with the previous two sections, this result can be
understood separately from the details of its proof.
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7.1. The symbol of RT. The symbol map for RT can be written precisely as the following
morphism of vector bundles:

σ(RT) : π
∗
1T

∗Q⊗ (π1
0)

∗Vπ → Vπ′,

where π′ denotes the bundle (π′,Λ2W
⊥,Q). If we evaluate the morphism σ at a given point

p, we obtain the following exact sequence, which characterizes the symbol, G(RT), at p:

0 // G(RT)|p // T∗
π1(p)

Q⊗ Vπ1
0(p)

(π)
σ(Φ) // VΦ(p)π

′

Note that the linearization VΦ about a point p ∈ J1π with

π1
0(p) = (id|TQ⊗QW⊥ ⊗ id|TQ⊗QW⊥)

can be reduced to a map on J1Vπ|(W⊥⊗QTQ)⊕0 since there is no ∆ involved in the linearization

(see equation (4.11)). If we identify Vπk
0 (p)

(π) and VΦ(p)(π
′) with (W⊥ ⊗Q TQ)|π1

0(p)
and

Λ2(W
⊥)|Φ(p), respectively, we can write the symbol map as

σ(RT)|p : T∗
π1(p)

Q⊗ (W⊥ ⊗Q TQ)|π1
0(p)

→ Λ2(W
⊥)|Φ(p).

We usually drop the points of evaluation for simplicity of notation. Consider the alternation
map Alt acting on the (0, 2)-tensors and denote the restriction of 2Alt to (W⊥ ⊗ T∗Q)|π1

0(p)

by σ̌. Explicitly, if we have b ∈ W⊥
π1(p)

and c ∈ T∗
π1(p)

Q, then

σ̌(b⊗ c)(u1 ⊕ u2, v1 ⊕ v2) = b(u1)c(v1 ⊕ v2)− b(v1)c(u1 ⊕ u2).

7.1 Lemma: We have ker(σ̌) = S2W
⊥ and Im(σ̌) = I2(W

⊥).

Proof: Since σ̌ is the restriction of the alternation map, one can easily observe that ker(σ̌) =
ker(Alt) ∩ (W⊥ ⊗ T∗Q). Clearly S2W

⊥ ⊂ S2T
∗Q ∩ (W⊥ ⊗ T∗Q). Moreover, for any Θ ∈

Γω(S2T
∗Q ∩ (W⊥ ⊗ T∗Q)), we have

Θ(u1 ⊕ u2, v1 ⊕ v2) = Θ(0⊕ v2, u1 ⊕ u2) = Θ(0⊕ u2, 0⊕ v2).

Thus Θ ∈ Γω(S2W
⊥) and as a result we have S2T

∗Q∩ (W⊥⊗T∗Q) = S2W
⊥. Recalling that

Λ2(T
∗Q) = Λ2(W) ⊕ Λ2(W

⊥) ⊕ (W ⊗W⊥) and using the definition of σ̌, one can observe
that Im(2Alt) = Im(σ̌) ∪ Λ2(W). ■

The symbol map σ(RT)|p can be characterized as the following composition map:

T∗Q⊗ (W⊥ ⊗Q TQ)
σ̃ // I2(W

⊥)
p // Λ2W

⊥ ,

where p is the canonical projection of I2(W
⊥) onto Λ2W

⊥ and

σ̃(b⊗ c⊗ v) = β(v)σ̌(b⊗ c),

with β ∈ T∗
π1(p)

Q, b ∈ W⊥
π1(p)

, c ∈ T∗
π1(p)

Q and v ∈ Tπ1(p)Q.
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7.2 Lemma: The following sequence is short exact:

0 // G(RT) // T∗Q⊗ (W⊥ ⊗Q TQ)
σ(RT) // Λ2(W

⊥)

where
G(RT) ∼=

(
S2W

⊥ ⊗ TQ
)
⊕
(
(W⊗W⊥)⊗ TQ

)
⊕
(
Λ2W

⊥ ⊗ ann(β)
)
.

Proof: Clearly T∗Q ⊗ (W⊥ ⊗ ann(β)) ⊂ ker(σ(RT)). Lemma 7.2 yields S2W
⊥ ⊗ TQ ⊂

kerσ(RT). Finally σ̃((W ⊗ W⊥) ⊗ TQ) ⊂ ker p. The claim follows since the image of
Λ2W

⊥ ⊗ v under σ(RT) is Λ2W
⊥, where v ∈ Tπ1(p)Q/ann(β). ■

Let {e1, · · · , en} be a basis for T∗
π1(p)

Q. Let Σj be the subspace of T
∗
π1(p)

Q generated by

{ej+1, · · · , en} and define M∗
j = W⊥ ∩ Σj and M∗⊥

j = W⊥ ∩ Σ⊥
j . Let I2(M

∗
j) = I(M∗

j) ∩
Λ2(W

⊥). The following two lemmata can be proved along the same lines as Lemma 7.2.

7.3 Lemma: The following sequence is short exact:

0 // G(RT)1,j // Σj ⊗ (W⊥ ⊗Q TQ)
σ(RT) // I2(M

∗
j)

where

G(RT)1,j ∼=
(
S2M

∗
j ⊗ TQ

)
⊕
(
((W ∩ Σj)⊗W⊥)⊗ TQ

)
⊕(

((W⊥ ∩ Σj)⊗W⊥)/S2M
∗
j ⊗ ann(β)

)
One can identify the prolongation map ρ1(σ(RT)) as

ρ1(σ(RT))(c · d⊗ b⊗ v) = 1
2β(v)(c⊗ σ̌(d⊗ b) + d⊗ σ̌(c⊗ b)),

where β ∈ T∗
π1(p)

Q, b ∈ W⊥
π1(p)

, c, d ∈ T∗
π1(p)

Q and v ∈ Tπ1(p)Q.

7.4 Lemma: The following sequence is short exact:

0 // ρ1(G(RT)) // S2T
∗Q⊗ (W⊥ ⊗Q TQ)

ρ1(σ(RT))// T∗Q⊗ Λ2W
⊥

where

ρ1(G(RT)) ∼=
(
S3W

⊥ ⊗ TQ
)
⊕
(
(W⊗W⊥ ⊗W⊥)⊗ TQ

)
⊕
(
(S2W⊗W⊥)⊗ TQ

)
⊕
(
((S2W

⊥ ⊗W⊥)/S3W
⊥)⊗ ann(β)

)
.
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7.5 Proposition: The symbol of RT is involutive.

Proof: We will show that the basis {e1, · · · , en} above is a quasi-regular basis. Using Lem-
mata 7.2 and 7.3 we have

dim(G(RT)) =
m(m+ 1)

2
n+mn(n−m) +

m(m− 1)

2
(n− 1),

dim(G(RT)1,j) = n
(m− j + 1)(m− j)

2
+mn(n−m),

+ [(m− j)m− (m− j)(m− j + 1)

2
](n− 1), j < m

dim(G(RT)1,j) = mn(n− j), j ≥ m.

As a result we compute

n−1∑
j=1

dim(G(RT)1,j) + dim(G(RT)) =

m−1∑
j=1

(
n
(m− j + 1)(m− j)

2
+mn(n−m)

+ [(m− j)m− (m− j)(m− j + 1)

2
](n− 1)

)
+

n−1∑
j=m

(mn(n− j)) + n
m(m+ 1)

2

+mn(n−m) +
m(m− 1)

2
(n− 1)

=
1

6
mn(m+ 1)(m+ 2) + 1

2mn(n+m+ 1)(n−m)

+
1

3
m(m− 1)(m+ 1)(n− 1),

which is precisely dimension of dim(ρ1(G(RT))) by Lemma 7.4. ■

7.2. Involutivity of RT. To compute the curvature map for RT we use the following lemma.

7.6 Lemma: The following sequence is exact:

S2T
∗Q⊗ (W⊥ ⊗Q TQ)

ρ1(σ(RT))// T∗Q⊗ Λ2W
⊥ τ // Λ3W

⊥ ⊕ (W⊗ Λ2W
⊥) // 0

where τ is the projection to the coker(ρ1(σ(RT))) given by

τ(b)(v1 ⊕ v2, u, w) =

(b(v1, u, w) + b(u,w, v1) + b(w, v1, u)) + b(v2, u, w), v1, u, w ∈ W⊥, v2 ∈ W.

Proof: Recall that S2T
∗Q = S2W⊕ S2W

⊥ ⊕ (W⊗W⊥). Using Lemma 7.4 and since(
S3W

⊥ ⊗ TQ
)
⊕
(
(W⊗W⊥ ⊗W⊥)⊗ TQ

)
⊆ ker(ρ1(σ(RT))),
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we observe that
W⊗ Λ2W

⊥ ⊆ coker(ρ1(σ(RT))).

Moreover, by definition the image of ρ1(σ(RT)) is symmetric in the first two elements, so
one can conclude that

Λ3W
⊥ ⊆ coker(ρ1(σ(RT))).

Finally, a direct computation shows that, for any ξ ∈ Γω(T∗Q ⊗ Λ2W
⊥), there exists an

analytic section of T∗Q⊗ Λ2W
⊥ which projects to ξ under τ . ■

As a consequence of the previous computations, we have the following theorem.

7.7 Theorem: The partial differential equation RT is involutive if, for p ∈ RT, we have

τ(ρ1(Φ)(p2)− 0) = 0,

where p2 is any point in J2π that projects to p.

Proof: The proof follows similarly to Theorem 5.5. Notice that ρ1(G1(RL)) is a vector
bundle on the open subset on which W is a vector bundle. Since G(RT) is an involutive
symbol, the system of partial differential equations RT is involutive if the curvature map κ
defined as following is zero:

κ : RT → Λ3W
⊥ ⊕ (W⊗ Λ2W

⊥), (7.1)

with κ(p) = τ(ρ1(Φ)(p2)), where p2 is any point in J2(π) that projects to p.
Consider the bundle π′ : Λ2W

⊥ → Q and let p ∈ RT be such that π(p) = q for q ∈ Q.
Therefore, Φ(p) = 0. Take p2 ∈ J2(π) projecting to p and define ξ = ρ1(Φ)(p2) ∈ J1(π

′).
One can show that ξ projects to 0 ∈ Γω(Λ2W

⊥), so we take κ(p) = τ(ξ − 0). It is easy
to show that the definition of κ is independent of the choice of p2; see [Pommaret 1978,
Pommaret 1994]. By the discussion we had in Section 3.1, p is in the projection of ρ1(RT)
to RT if and only if κ(p) = 0. ■

Recall the definition of Rpot from Section 4. We have the following theorem.

7.8 Theorem: Let Σol = (Q,Gol, Vol,Fol,Wol) be an analytic open-loop simple mechanical
control system. Let p0 ∈ Rpot and let q0 = π1(p0). Assume that q0 is a regular point for
Wol and that there exists a bundle automorphism Θ on T∗Q defined on a neighborhood U
of q0 such that Θ satisfies the following equation in the neighborhood U :

[κ(Θ)]rij =

(
∂2Θl

i

∂qr∂qj
∂Vol

∂ql
−

∂2Θl
j

∂qr∂qi
∂Vol

∂ql

)
+

(
∂Θl

i

∂qj
∂2Vol

∂qr∂ql
−

∂Θl
j

∂qi
∂2Vol

∂qr∂ql

)

+

(
∂Θl

i

∂qr
∂2Vol

∂qj∂ql
−

∂Θl
j

∂qr
∂2Vol

∂qi∂ql

)
+

(
Θl

i

∂3Vol

∂qr∂qj∂ql
−Θl

j

∂3Vol

∂qr∂qi∂ql

)
= 0,

where i, j ∈ {1, · · · ,m}, l ∈ {1, · · · , n} and r ∈ {m+1, · · · , n}. Then there exists an analytic
closed-loop energy shaping metric Gcl prescribed by G♭

cl = Θ◦G♭
ol and an analytic (Gol-Gcl)-

potential energy shaping feedback F ∈ Γω(Wol) defined on U which satisfies Φpot(p0) =
Θ−1dV (q0)− dVol(q0) + ΘdVol(q0) for a solution V to Rpot.
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Proof: Observe that the system of partial differential equations RT, with Θ = Λ−1
cl and

β = dVol, prescribes the sufficient conditions for existence of a (Gol-Gcl)-potential energy
shaping feedback; see equation (4.10). Using Theorem 7.7, this partial differential equation
is integrable if the curvature map given by equation (7.1) is zero. A direct computation
shows that the curvature map is given in local coordinates by:

[κ(Θ)] =

(
∂2Θl

i

∂qr∂qj
∂Vol

∂ql
−

∂2Θl
j

∂qr∂qi
∂Vol

∂ql
+

∂Θl
i

∂qj
∂2Vol

∂qr∂ql
−

∂Θl
j

∂qi
∂2Vol

∂qr∂ql

+
∂Θl

i

∂qr
∂2Vol

∂qj∂ql
−

∂Θl
j

∂qr
∂2Vol

∂qi∂ql
+Θl

i

∂3Vol

∂qr∂qj∂ql
−Θl

j

∂3Vol

∂qr∂qi∂ql

)
dqr ⊗ dqi ∧ dqj ,

where i, j ∈ {1, · · · ,m}, l ∈ {1, · · · , n} and r ∈ {m+ 1, · · · , n}, as desired. ■

7.3. Systems with one degree of underactuation. As an example, we discuss systems
with one degree of underactuation. Numerous systems considered in the literature on
energy shaping have one degree of underactuation. In [Auckly and Kapitanski 2002], the
authors introduce a coordinate system that transforms the system of partial differential
equations into a homogenous equation. Using the results of this section, one can give
a complete description of the system of partial differential equations with one degree of
underactuation. The following theorem shows that in this case it is enough to find the set
of bundle automorphisms which satisfy the sufficient conditions of Theorem 5.6.

7.9 Proposition: If Σol is a simple mechanical control system with one degree of underac-
tuation, for each bundle automorphism which satisfies the set of λ-equations, there exists
a closed-loop metric and a closed-loop potential function which satisfies the energy shaping
system of partial differential equations.

Proof: Note that the projection map τ in Lemma 7.4 is a zero map for m = 1 and so the
closed-loop metric equation is involutive by Theorem 6.6. Moreover, equation (4.10) always
holds for m = 1. ■

8. Summary

In this section we give a summary of the theorems we have obtained in the previous
sections. Moreover, we state a procedure that clarifies how one should perform the energy
shaping method so that certain problems—such as having a closed-loop energy shaping
metric for which no potential energy shaping is possible—will not happen. This procedure
reveals some of the fundamental properties of energy shaping partial differential equations
that have not been addressed before.

1. Kinetic energy shaping : Find the set of bundle automorphisms λ on TQ which satisfy the
sufficient conditions of Theorem 5.6 and denote it by ŜK. Use the sufficient conditions
of Theorem 6.6 to find the set of λ ∈ ŜK for which there exists a closed-loop energy
shaping metric Gcl and denote it by SK.

2. Potential energy shaping : Find the set of bundle automorphisms Θ on T∗Q which satisfy
the sufficient conditions of Theorem 7.8 and denote it by ŜP and let

S′P = {Θ−1 | Θ ∈ ŜP}.
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The set of bundle automorphisms S′P induces a set of bundle automorphisms on TQ by

SP
.
= {G♯

olΛG
♭
ol | Λ ∈ S′P}.

Note that by Theorem 4.10, for each λ ∈ SP there exists a Vcl which satisfies the potential
energy shaping partial differential equations.

3. Total energy shaping : The intersection SP ∩ SK yields the set of λ such that

(a) there exists a closed-loop metric which is a solution to the kinetic energy shaping
problem and

(b) more importantly, potential energy shaping is possible, and as a result energy
shaping is possible.

4. Determine the set of closed-loop potential functions Vcl with positive definite Hessian at
the desired point. It would be interesting to have a geometric characterization of this.
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Ortega, R., Spong, M. W., Gómez-Estern, F., and Blankenstein, G. [2002] Stabilization of a
class of underactuated mechanical systems via interconnection and damping assignment,
Institute of Electrical and Electronics Engineers. Transactions on Automatic Control,
47(8), pages 1218–1233, issn: 0018-9286, doi: 10.1109/TAC.2002.800770.

Pommaret, J.-F. [1978] Systems of Nonlinear Partial Differential Equations and Lie Pseu-
dogroups, number 14 in Mathematics and its Applications, Gordon & Breach Science
Publishers: New York, NY, isbn: 978-0-677-00270-5.

— [1994] Partial Differential Equations and Group Theory: New Perspectives for Applica-
tions, number 293 in Mathematics and its Applications, Kluwer Academic Publishers:
Dordrecht, isbn: 978-0-7923-2966-4.

Saunders, D. J. [1987] Jet fields, connections and second-order differential equations, Journal
of Physics. A. Mathematical and Theoretical, 20(11), pages 3261–3270, issn: 1751-8113,
doi: 10.1088/0305-4470/20/11/029.

— [1989] The Geometry of Jet Bundles, number 142 in London Mathematical Society
Lecture Note Series, Cambridge University Press: New York/Port Chester/Melbourne/-
Sydney, isbn: 978-0-521-36948-0.

Singer, I. M. and Sternberg, S. [1965] The infinite groups of Lie and Cartan, Jour-
nal d’Analyse Mathématique, 15(1), pages 1–114, issn: 0021-7670, doi: 10 . 1007 /

BF02787690.
Spencer, D. C. [1962] Deformation of structures on manifolds defined by transitive, contin-

uous pseudogroups. I. Infinitesimal deformations of structure, Annals of Mathematics.
Second Series, 76(3), pages 306–398, issn: 0003-486X, doi: 10.2307/1970277.

— [1967] Overdetermined systems of linear partial differential equations, American Math-
ematical Society. Bulletin. New Series, 75, pages 159–193, issn: 0273-0979, doi: 10.
1090/S0002-9904-1969-12129-4.

Takegaki, M. and Arimoto, S. [1981] A new feedback method for dynamic control of manipu-
lators, Transactions of the ASME. Series G. Journal of Dynamic Systems, Measurement,
and Control, 103(2), pages 119–125, issn: 0022-0434, doi: 10.1115/1.3139651.

Thompson, G. [1996] Metrics compatible with a symmetric connection in dimension three,
Journal of Geometry and Physics, 19(1), pages 1–17, issn: 0393-0440, doi: 10.1016/
0393-0440(95)00014-3.

https://doi.org/10.1090/S0002-9904-1964-11019-3
https://doi.org/10.1109/CDC.2004.1429552
https://doi.org/10.1109/CDC.2006.376885
https://doi.org/10.1109/TAC.2002.800770
https://doi.org/10.1088/0305-4470/20/11/029
https://doi.org/10.1007/BF02787690
https://doi.org/10.1007/BF02787690
https://doi.org/10.2307/1970277
https://doi.org/10.1090/S0002-9904-1969-12129-4
https://doi.org/10.1090/S0002-9904-1969-12129-4
https://doi.org/10.1115/1.3139651
https://doi.org/10.1016/0393-0440(95)00014-3
https://doi.org/10.1016/0393-0440(95)00014-3


44 B. Gharesifard, A. D. Lewis, and A.-R. Mansouri

van der Schaft, A. J. [1986] Stabilization of Hamiltonian systems, Nonlinear Analysis.
Theory, Methods, and Applications, 10(10), pages 1021–1035, issn: 0362-546X, doi:
10.1016/0362-546X(86)90086-6.

Viola, G., Ortega, R., Banavar, B., Acosta, J. A., and Astolfi, A. [2007] The energy shap-
ing control of mechanical systems: Simplifying the matching equations via coordinate
changes, Institute of Electrical and Electronics Engineers. Transactions on Automatic
Control, 52(6), pages 1093–1099, issn: 0018-9286, doi: 10.1109/TAC.2007.899064.

Woolsey, C. A., Reddy, C. K., Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden,
J. E. [2004] Controlled Lagrangian systems with gyroscopic forcing and dissipation, Eu-
ropean Journal of Control, 10(5), pages 478–496, issn: 0947-3580, doi: 10.3166/ejc.
10.478-496.

Zenkov, D. V. [2002] Matching and stabilization of linear mechanical systems, in Proceedings
of 2002 International Symposium on Mathematical Theory of Networks and Systems,
International Symposium on Mathematical Theory of Networks and Systems, (South
Bend, IN, July 2002).

https://doi.org/10.1016/0362-546X(86)90086-6
https://doi.org/10.1109/TAC.2007.899064
https://doi.org/10.3166/ejc.10.478-496
https://doi.org/10.3166/ejc.10.478-496

	Introduction
	Statement of the problem
	Preliminaries
	Formal integrability of partial differential equations.
	Representation of a partial differential equation as a fibered submanifold of a jet bundle.
	Prolongations and symbols.
	Formal integrability.

	The space of connections.
	Ricci identity.

	Geometric formulation of partial differential equations in energy shaping
	Kinetic energy shaping.
	The -method.
	The -method partial differential equations.
	The equation RL.
	The equation RE.

	Potential energy shaping.
	Sufficient conditions for potential energy shaping.
	The equation RT.


	Formal integrability of RL
	The symbol of RL.
	Involutivity of RL.

	Formal integrability of RE
	The symbol of RE.
	Involutivity of RE.

	Formal integrability of RT
	The symbol of RT.
	Involutivity of RT.
	Systems with one degree of underactuation.

	Summary
	References

