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Abstract

In this thesis is initiated a more systematic geometric exploration of energy shaping. Most of
the previous results have been dealt with particular cases and neither the existence nor the
space of solutions has been discussed with any degree of generality. The geometric theory
of partial differential equations originated by Goldschmidt and Spencer in late 1960’s is
utilized to analyze the partial differential equations in energy shaping. The energy shaping
partial differential equations are described as a fibered submanifold of a k-jet bundle of
a fibered manifold. By revealing the nature of kinetic energy shaping, similarities are
noticed between the problem of kinetic energy shaping and some well-known problems in
Riemannian geometry. In particular, there is a strong similarity between kinetic energy
shaping and the problem of finding a metric connection initiated by Eisenhart and Veblen.
We notice that the necessary conditions for the set of so-called λ-equation restricted to the
control distribution are related to the Ricci identity, similarly to the Eisenhart and Veblen
metric connection problem. Finally, the set of λ-equations for kinetic energy shaping are
coupled with the integrability results of potential energy shaping. This gives new insights
for answering some key questions in energy shaping that have not been addressed to this
point. The procedure shows how a poor design of closed-loop metric can make it impossible
to achieve any flexibility in the character of the possible closed-loop potential function.
The integrability results of this thesis have been used to answer some interesting questions
about the energy shaping method. In particular, a geometric proof is provided which
shows that linear controllability is sufficient for energy shaping of linear simple mechanical
systems. Furthermore, it is shown that all linearly controllable simple mechanical control
systems with one degree of underactuation can be stabilized using energy shaping feedback.
The result is geometric and completely characterizes the energy shaping problem for these
systems. Using the geometric approach of this thesis, some new open problems in energy
shaping are formulated. In particular, we give ideas for relating the kinetic energy shaping
problem to a problem on holonomy groups. Moreover, we suggest that the so-called Fakras
lemma might be used for investigating the stabilization condition of energy shaping.
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Chapter 1

Introduction

Consider the following control problem: given a mechanical system with an unstable equi-
librium at q0, stabilize the system using feedback. One of the recent developments in the
stabilization of equilibria is the energy shaping method . The key idea concerns the construc-
tion of a feedback for which the closed-loop system possesses the structure of a mechanical
system. A feedback so obtained is called an energy shaping feedback and the procedure by
which it is obtained is called energy shaping . In the classical notion of energy shaping, the
assumed method consists of two stages: shaping the kinetic energy of the system—so-called
kinetic energy shaping—and changing the potential energy of the system—so-called poten-
tial energy shaping . If such an energy shaping feedback exists, then for stability one has to
ensure that the Hessian of the closed-loop potential energy is positive-definite.

The cart-pendulum, as a mechanical system with one degree of underactuation, is one
of the systems that has been stabilized using the energy shaping method [16, 33]. Potential
energy shaping alone can be shown to be not enough to stabilize the system; therefore kinetic
energy shaping is necessary. More complicated mechanical systems with more degrees
of freedom, like the spherical pendulum, have been stabilized using the energy shaping
method [11]. Linear controllability is a necessary condition for stabilization using energy
shaping. For linear systems, linear controllability is also a sufficient condition for the
existence of a stabilizing feedback [51, 36]. Such sharp conditions for nonlinear systems do
not exist in the literature. Thus the question of which mechanical systems are stabilizable
using energy shaping is still unresolved. Moreover, almost all the existing results on energy
shaping are based on a specific parametrization of the assumed solutions to the energy
shaping problem. While the parameterizations used are sufficient for particular problems,
it is not clear whether (1) a better controller would result if a richer class of feedbacks
were available or (2) there are systems that are not presently amenable to stabilization by
energy shaping using existing parameterizations, but which could be stabilized using energy
shaping were the complete set of energy shaping feedbacks known.

Recently there have been notable attempts to investigate various features of the energy
shaping problem. The first classical appearance of the notion of potential energy shaping
problem is in [45]. Van der Schaft [47] made a significant geometric contribution to the
problem from the Hamiltonian point of view. It turns out that this method has an exten-
sion in the Lagrangian setting called the method of Controlled Lagrangians; this has been
investigated in [11, 10]. In recent work, Chang, Woolsey and others have realized that the
space of possible kinetic energy feedbacks can be enlarged by considering the addition of
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appropriate gyroscopic forcing [16, 50]. In the Hamiltonian framework, the idea of kinetic
energy shaping has been related by van der Schaft [17] to the notion of interconnection and
modified into the IDA-PBC method [33]. The equivalence of the Controlled Lagrangian
method and the IDA-PBC method has been addressed in [16, 9]. Both methods result in
a set of partial differential equations whose solutions determine the energy shaping feed-
backs. In other recent work, the possibility of finding a coordinate change for simplifying
the kinetic energy shaping partial differential equations in the IDA-PBC method has been
investigated [48].

A differential geometric approach to the kinetic energy shaping problem—the so-called
λ-method—has been presented in [7]. In this paper, the authors propose a system of
linear partial differential equations for the kinetic energy shaping problem in terms of a
new variable, λ = G♯

clG
♭
ol, where Gol and Gcl are the open-loop and closed-loop metrics,

respectively. The main idea of the λ-method is that it transforms the set of quasi-linear
equations for kinetic energy shaping into a set of overdetermined linear partial differential
equations [5]. In [6] an equivalent system of linear partial differential equations is given for
the assumed procedure of kinetic energy shaping problem. Moreover, the authors investigate
the compatibility conditions for the set of λ-equation in local coordinates. However, the
analysis of the compatibility conditions is not complete, and many structural questions
remain unanswered, even after one accounts for the results in [5, 6]. The λ-method has
been modified by adding the possibility of using gyroscopic forces for enlarging the space
of solutions [16]. The resulting partial differential equations remain poorly understood.

Lewis [31] has introduced an affine differential geometric approach to energy shaping
in order to have a better geometric understanding of the problem and to state some of
the questions that had not been addressed before. The main idea of the approach involves
first understanding the existence of such an energy shaping feedback and then what such a
feedback might look like. In recent work, sufficient conditions for the existence of potential
energy shaping are derived assuming that kinetic energy shaping has been performed [32].
The results are based on the integrability theory for linear partial differential equations
developed by Goldschmidt [21] and Spencer [44]. Although the results offer some insight,
they are limited by the fact that kinetic energy shaping has been assumed to precede
potential energy shaping.

In the next section a formal statement of the energy shaping problem is given. Before
that, some of the basic notation used in this manuscript is presented.

Notation. The basic differential geometric notation that is used in this thesis is that of
[2] and [14]. The identity map for a set S is denoted by idS and the image of a map
f : S → W by Im(f). For a vector space V, the set of (r, s)-tensors on V is denoted by
Tr
s(V). By SkV and ΛkV we denote, respectively, the set of symmetric and skew-symmetric

(0, k)-tensors on V. The dual space of V is denoted by V∗. Let V and W be R-vector
spaces; by L(V,W) we denote the set of linear maps from V to W. We shall also require
symmetrizing and skew-symmetrizing maps. Thus, for A ∈ T0

k(V), we define the following
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projection maps:

Alt(A)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

(−1)sgn(σ)A(vσ(1), . . . , vσ(k));

Sym(A)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

A(vσ(1), . . . , vσ(k)),

whereSk is the permutation group on k symbols and sgn(σ) is the parity of the permutation
σ. Let A be a (0, 2)-tensor on V. We define the flat map A♭ : V → V∗ by ⟨A♭(u); v⟩ = A(u, v),
u, v ∈ V. The inverse of the flat map is denoted by A♯ : V∗ → V in case A♭ is invertible. We
also define a similar notation for a (0, 3)-tensor A on V by

⟨A♭(u), w⟩ = A(w, u, u), u, w ∈ V.

For S ⊂ V and W ⊂ V∗ we denote

ann(S) = {α ∈ V∗ | α(v) = 0, ∀ v ∈ S},
coann(W) = {v ∈ V | α(v) = 0, ∀ α ∈ W}.

For the purpose of using a version of the Cartan–Kähler theorem, all manifolds and
maps will be assumed to be analytic unless otherwise stated. Many of the theorems and
lemmata are still true in the smooth case. Let Q be an analytic manifold. If π : E → Q is
an analytic vector bundle, Γω(E) denotes the set of analytic sections of E. We often denote
a bundle by a triple (E, π,Q). We denote the tangent bundle of Q by πQ : TQ → Q. Let
(E1, π1,Q) and (E2, π2,Q) be two vector bundles over the same base manifold Q. Then the
fibered product bundle is the triple (E1 ×Q E2, π1 ×Q π2,Q), where the E1 ×Q E2 is defined
by {

(u1, u2) ∈ E1 ×Q E2 | π1(u1) = π2(u2)
}

and the projection map is defined through π1×Qπ2(u1, u2) = π1(u1) = π2(u2). Furthermore,
the tensor product of π1 and π2 with fibers (E1)q and (E2)q, q ∈ Q, is the vector bundle
on Q with fibers (E1)q ⊗ (E2)q; we denote this vector bundle by (E1 ⊗Q E2, π1 ⊗Q π2,Q).
Consider a vector bundle (E, π,Q) and a map ξ : N → Q. Then the pull-back bundle of π
is the bundle (ξ∗(E), ξ∗(π),N), where ξ∗(E) is defined to equal{

(u, y) ∈ E×Q N | π(u) = ξ(y)
}

and the projection map is defined through ξ∗(π)(u, y) = y.
The set of analytic functions on Q is denoted by Cω(Q). The exterior derivative of a

k-form α on Q is denoted by dα. For a (0, k)-tensor field A and a Riemannian metric G on
Q, we define the (1, k − 1)-tensor field G♯A by

G♯A(α,X1, . . . , Xk−1) = A(G♯(α), X1, . . . , Xk−1), (1.1)

where α ∈ Γω(T∗Q), X1, . . . , Xk ∈ Γω(TQ). Finally, we give a decomposition of the (0, 3)-
tensor fields. We call a (0, 3)-tensor field A on Q:

a) gyroscopic if A(X1, X2, X3) = −A(X2, X1, X3) for all X1, X2, X3 ∈ Γω(TQ);



4 B. Gharesifard

b) torsional if A(X1, X2, X3) = −A(X1, X3, X2) for all X1, X2, X3 ∈ Γω(TQ);

c) geodesic if A(X1, X2, X3) = A(X1, X3, X2) for all X1, X2, X3 ∈ Γω(TQ);

d) skew if A ∈ Γω(Λ3(TQ)).

We denote the set of gyroscopic and torsional tensor fields on Q, respectively, by Gyr(TQ)
and Tor(TQ). We can record the decomposition of T0

3(TQ) as follows [31, 19]:

T0
3(TQ) = S3(TQ)⊕ (Gyr(TQ) ∩ kerAlt)⊕ (Tor(TQ) ∩ kerAlt)⊕ Λ3(TQ).

1.1. Statement of the problem

A forced simple mechanical system is a quadruple Σ = (Q,G, V,Fe), where Q is an n-
dimensional manifold called the configuration manifold , G is a Riemannian metric on Q, V
is a function on the configuration manifold called the potential function, and Fe : TQ → T∗Q
is a bundle map over idQ called the external force. We denote by∇G the covariant derivative
with respect to the associated Levi-Civita connection. The governing equations for a forced
simple mechanical system are

∇Gγ′(t)γ
′(t) = −G♯ ◦ dV (γ(t)) +G♯Fe(γ

′(t)),

where γ : I → Q is an analytic curve on Q.
Similarly, a simple mechanical control system is a quintuple Σ = (Q,G, V,Fe,W), where

Q is an n-dimensional manifold called the configuration manifold , G is a Riemannian metric
on Q, V is a function on the configuration manifold called the potential function, Fe : TQ →
T∗Q is a bundle map over idQ called the external force, and W is a subbundle of T∗Q called
the control subbundle [14]. The governing equations for a simple mechanical control system
are

∇Gγ′(t)γ
′(t) = −G♯ ◦ dV (γ(t)) +G♯Fe(γ

′(t)) +G♯u(γ′(t)),

where γ : I → Q is a curve on Q and u : TQ → W is the assumed state feedback. A class
of external forces in which we are interested is gyroscopic forces.

1.1 Definition: Let Σ = (Q,G, V,Fe) be a forced simple mechanical system. We call an
external force FG : TQ → T∗Q a gyroscopic force if, for all X ∈ Γω(TQ),

⟨X,FG(X)⟩ = 0.

A linear gyroscopic force is a gyroscopic force FG,1 of the following form:

FG,1(X) = B♭
G,1(X), X ∈ Γω(TqQ),

where BG,1 is a skew-symmetric (0, 2)-tensor. A quadratic gyroscopic force is a gyroscopic
force FG,2 with the following form:

FG,2(X) = B♭
G,2(X), X ∈ Γω(TqQ),

where BG,2 is a (0, 3)-tensor which is skew-symmetric in the first two arguments, i.e.,
BG,2(X,Y, Z) = −BG,2(Y,X,Z), X,Y, Z ∈ Γω(TqQ). By definition of the flat map, a
quadratic gyroscopic force is defined by

⟨FG,2(X);Z⟩ = BG,2(Z,X,X), X, Z ∈ Γω(TqQ).
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Given an open-loop simple mechanical control system Σol = (Q,Gol, Vol,Fol,Wol), we
seek a control force such that the closed-loop system is a forced simple mechanical system
Σcl = (Q,Gcl, Vcl,Fcl), possibly with some external force. The reason for seeking this as
the closed-loop system is that the stability analysis of the equilibria for mechanical systems
is well understood [14, Chapter 6]. The class of gyroscopic forces does not change the
total energy of the closed-loop system, while the addition of gyroscopic forces improves the
possibility of finding a stable closed-loop system [16]. Here it is assumed that the open-loop
external force Fol is zero. Moreover, it seems that only the quadratic gyroscopic forces are
useful in extending the space of possible closed-loop metrics [31]. The objective, therefore,
can be phrased with the following definition.

1.2 Definition: Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechanical control
system with Fol = 0. If there exists a bundle map ushp : TQ → Wol (called the control)
with ushp = −ukin − upot such that the closed-loop system is a forced simple mechanical
system Σcl = (Q,Gcl, Vcl,Fcl), where Fcl is a quadratic gyroscopic force with associated
(0, 3)-tensor B and

1. G♯
ol ◦ ukin(γ

′(t)) = ∇Gcl

γ′(t)γ
′(t)−∇Gol

γ′(t)γ
′(t)−G♯

cl ◦ (B
♭(γ′(t))),

2. upot(γ(t)) = G♭
ol ◦G

♯
cldVcl(γ(t))− dVol(γ(t)),

then the control ushp is called an energy shaping feedback .

1.3 Remark: Throughout this work, it is assumed that the equilibrium point q0 ∈ Q is a
regular point for Wol. Moreover, it is assumed that the control codistribution Wol is inte-
grable. These assumptions are common, even implicit, in the literature and many examples
fall into this case. Nevertheless, these assumptions, especially the integrability assumptions
are stringent, and relaxing them is an interesting challenge.

The conditions of Definition 1.2 contain as unknowns the closed-loop metric Gcl, the
closed-loop potential energy Vcl, and the gyroscopic (0, 3)-tensor field B. One can observe
that these equations involve the first jet of the unknowns. One can construct a set of
first-order partial differential equations which completely characterize the existence of an
energy shaping feedback. Let Wol ⊂ T∗Q be a given subbundle and define the associated
Gol-orthogonal projection map P ∈ Γω(T∗Q⊗ TQ) by

ker(P ) = G♯
olWol.

Note that P completely prescribes Wol. We apply P to the equation from part 1 of Defini-
tion 1.2 to arrive at the following equation:

P (∇Gcl

γ′(t)γ
′(t)−∇Gol

γ′(t)γ
′(t)−G♯

cl ◦B
♭(γ′(t))) = 0.

Assume Q is an n-dimensional manifold andWol is an integrable codistribution of dimension
n−m. In adapted local coordinates, the kinetic energy shaping partial differential equation
is given by

P a
r (G

rl
cl (Gcl,lj,k +Gcl,lk,j −Gcl,kj,l)−Grl

ol(Gol,lj,k +Gol,lk,j −Gol,kj,l)−Grl
clBlkj) = 0,
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where i, j, k, l, r ∈ {1, . . . , n}, a ∈ {1, . . . ,m}, and where we denote the first derivative of
Gcl,lj with respect to qk by Gcl,lj,k. Similarly, let P̂ : T∗Q → T∗Q/Wol be the canonical
projection on to the quotient vector bundle. We have

P̂ (G♭
ol ◦G

♯
cldVcl(γ(t))− dVol(γ(t))) = 0.

In local coordinates we have

P̂ i
a(Gol,ijGcl

jkVcl,k − Vol,k) = 0,

where i, j, k ∈ {1, . . . , n}, a ∈ {1, . . . ,m}, and where we denote the first derivative of Vcl

with respect to qk by Vcl,k. For more details on the affine differential geometric setup of
the energy shaping problem, see [31].

1.2. Some open problems in energy shaping

Now that the energy shaping partial differential equations have been specified, a sum-
mary of some of the fundamental questions one can now ask are provided.

P1. Describe the set of achievable closed-loop metrics. Until the recent paper [20], there
has not been much consideration of this problem in the literature, apart from giving a
geometric description of the problem [7] and some initial and incomplete integrability
results [6].

P2. Assume that one has found a closed-loop metric which solves the kinetic energy shaping
problem. What are the conditions under which there exists a closed-loop potential
function which satisfies the potential energy shaping problem?

P3. Describe the set of achievable closed-loop potential functions by allowing the closed-
loop metric to vary over its achievable set.

P4. Give a complete description of the set of stabilizing potential energy shaping functions.
In order to have a stabilizing energy shaping feedback, the Hessian of the closed-loop
potential functions should be positive-definite. The type of obstruction this condition
puts on the set of achieved energy shaping feedbacks has not yet been characterized.

P5. Describe the effect of including gyroscopic forces in the procedure of energy shaping.
An algebraic presentation of this problem has been given in [31]. Although one can
extend the results of Chapter 4 to the case with gyroscopic forces, many geometric
and algebraic constructions remain to be performed to clarify how the results should
be interpreted in terms of stabilization.

P6. Reconstruct some of the existing results using the sufficient conditions of Chapter 4;
namely, answer the following questions:

(a) Why is it always the case that one can construct an explicit solution to the set
of partial differential equations for systems with one degree of underactuation?

(b) Why is linear controllability a sufficient condition for existence of a stabilizing
energy shaping feedback for linear systems?
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P7. Find some interesting counterexamples. It would be revealing to have an example
for which there exists no stabilizing energy shaping feedback, even in the absence of
gyroscopic forces. This might help to understand the key primary question in energy
shaping: when is it possible to stabilize a system by the energy shaping method?

P8. Is it possible to give a complete solution to the stabilization problem, at least in special
cases? In particular, can we give a complete description of stabilization of simple
mechanical systems with one degree of underactuation? Since, for these systems, for
any solution to the kinetic energy shaping partial differential equations there exists a
potential function that satisfies the potential energy shaping system of partial differ-
ential equations (see [20]), it is an interesting question to see whether any/some/all
of these solutions are stabilizing solutions.

1.3. Contribution of thesis

In this thesis a geometric framework is developed for stabilization of simple mechanical
systems using energy shaping. In particular, the geometric theory of partial differential
equations has been used to discuss the integrability of the energy shaping partial differential
equations. As a summary, in this document the following answers to some of the problems
of Section 1.2 are provided.
Note. Most of the integrability results of this document have been published in a recent
paper [20], coauthored with Drs. Andrew D. Lewis and Abdol-Reza Mansouri.

A1. In Section 4.1 we partially answer Problem 1. Assuming that Wol is integrable, we
describe a set of sufficient conditions under which one can construct a formal solution
to the set of kinetic energy shaping partial differential equations in the analytic case
and in the absence of gyroscopic forces. Moreover, we show that any analytic solution
to the kinetic energy shaping problem satisfies these conditions. (See Theorems 4.7
and 4.15.) In Section 7.2.1 some observations are made that suggest a possible re-
lationship between the kinetic energy shaping problem and holonomy groups. This
might lead to some new insight into the sufficient conditions for kinetic energy shaping
problem.

A2. Lewis [32] presented a set of sufficient conditions for Problem 2 using a geometric
analysis of the potential energy shaping partial differential equations. In Section 4.3
we couple this sufficient condition with the kinetic energy shaping results. In other
words, we give conditions on the closed-loop metric so that there exists a solution to
the set of potential energy shaping partial differential equations. (See Theorem 4.24.)

A3. Problem 3 remains open, and even a clear geometric formulation of this problem
is far from being achieved. In this document we provide one possible approach by
placing the problem in the setting of geometric partial differential equations [21, 22].
In particular, we give conditions on the set of closed-loop metrics under which there
exists a closed-loop potential function that satisfies the set of potential energy shaping
partial differential equations.

A4. In Section 7.2.3 a promising approach is introduced for answering the question of
whether a solution to the energy shaping partial differential equations is stabilizing
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or not. The approach relies on the so-called Farkas lemma [29]. This might be the
subject of future work.

A5. The integrability results in this thesis do not include gyroscopic forces. Moreover, an
algebraic description of gyroscopic forces that reveals the interaction of the gyroscopic
forces and the kinetic energy shaping partial differential equations is far from being
achieved. In Section 7.2.2 we suggest some future directions for this problem.

A6. Problem 6(a) has been discussed in [6] and [3]. But the results do not reveal how
the geometric obstructions given by the kinetic and potential energy shaping condi-
tions are intertwined. We give a result in Theorem 6.1 which essentially solves the
problem. The second question has been posed and solved in [51, 36]. In Chapter 5, a
geometric proof for this problem is presented that specializes the integrability results
of Chapter 4 to linear simple mechanical control systems.

A7. In Section 4.5 an example of a simple mechanical system is given that is not stabilizable
using the energy shaping method in the absence of gyroscopic forces. The integrability
results of Chapter 4 are essential in devising such an example.

A8. In Chapter 6 the energy shaping problem is fully characterized for systems with one
degree of underactuation and these systems are proved to be stabilizable using an
energy shaping feedback. Furthermore, Example 6.6 demonstrates how it might be
the case that the energy shaping for a system with one degree of underactuation is
not possible via a positive-definite closed-loop metric.

This document is organized as follows. In Chapter 2, a brief review is given of the
fundamental mathematical background required in this thesis. In particular, Section 2.1
gives an introduction to the geometric methods for analyzing formal integrability of partial
differential equations [21, 22]. The character of the theorems in this section is mainly
algebraic and may seem unmotivated to a reader unfamiliar with the formal theory of
partial differential equations. A reader new to these techniques is advised that some effort
will be required to become comfortable with them. A list of useful references is [21, 22, 23,
44, 34, 24, 25, 41]. In Section 2.2, we motivate the definition of a connection as a section
of a jet bundle [38] in order to give a precise definition for the space of torsion free affine
connections on a manifold. A geometric formulation for the partial differential equations
of kinetic energy shaping is presented in Chapter 3, and the existing results for potential
energy shaping [32] are recalled. The main results of the so-called λ-method [7] for kinetic
energy shaping are reviewed and reproved in Section 3.2. Chapter 4 contains the formal
integrability results for the partial differential equations in the energy shaping problem.
Section 4.1 involves one of the main contribution of this thesis. The set of λ-equations has
been proved to have an involutive symbol and to be formally integrable under a certain
surjectivity condition. In other words, sufficient conditions for the existence of a formal
solution to the λ-equations is given. Section 4.3 deals with the potential energy shaping
problem. The set of conditions in [32] is analyzed to characterize the set of acceptable
closed-loop metrics. Finally, in Section 4.4 a set of sufficient conditions is given for the total
energy shaping problem. Chapter 5 is devoted to linear simple mechanical control systems.
In particular, we give an algebraic proof for the result of [51, 36] which shows that linear
controllability is sufficient for linear energy shaping (it is always necessary for asymptotic
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stabilization). In Chapter 6 systems with one degree of underactuation are considered and
the result of Chapter 4 is been used to obtain Theorem 6.4, which essentially solves the
stabilization problem for systems with one degree of underactuation. Chapter 7 contains
the conclusions of the thesis. Moreover, some of the future directions of this thesis have
been presented in this chapter: Section 7.2.1 gives some ideas for relating the kinetic energy
shaping problem to problems in holonomy groups. Work in this direction might reveal the
essential character of the kinetic energy shaping partial differential equations. Section 7.2.2
raises the issue of gyroscopic forces, concentrating on the limitations of gyroscopic forces as a
tool for extending the solutions of the kinetic energy shaping partial differential equations.
Finally, in Section 7.2.3 a new approach is suggested for dealing with the stabilization
condition after solving the energy shaping partial differential equations. This approach
suggests using a version of Farkas lemma [29, 8] for this stabilization condition.



Chapter 2

Mathematical preliminaries

The mathematical preliminaries that are used in this thesis are reviewed in this chapter.
In particular, a summary of some basic background for modeling the system of partial
differential equations in the energy shaping problem is given. The differential geometric
notions used in modeling of simple mechanical systems are assumed here, and the unfamiliar
reader is referred to [14, 2, 1, 30, 26] for more details. This section consists of three main
parts. The first part deals with the geometric modeling of partial differential equations
and the second part gives a useful definition of a connection on a vector bundle which
characterizes the structure of the set of all affine connections. Finally, we present the so-
called Ricci identity [15] which plays a significant role in answering some questions about
the kinetic energy shaping problem.

2.1. Formal integrability of partial differential equations

In this section, we describe the main technique that we use for studying the energy
shaping partial differential equations. The discussion centers around an analogue of the
Cauchy–Kowalevski theorem [13] and formal integrability. We review the contributions
made by Goldschmidt and Spencer in the late 1960’s [21, 22, 44].

Although understanding the proofs of the main theorems in Chapter 4 depends on
techniques from the formal theory of partial differential equations, we emphasize that the
statement of the main results of the thesis are accessible without understanding formal
methods in detail. The main integrability results in this document involve applications of
the important Theorem 2.20 stated below. However, the verification of the hypothesis of
this theorem typically takes some effort. In this section we describe the tools used to verify
the hypothesis of Theorem 2.20.

2.1.1. Representation of a partial differential equation as a fibered submanifold of a jet
bundle. We denote by (E, π,Q) a fibered manifold π : E → Q. The vertical bundle of the
fibered manifold π is the subbundle of Tπ : TE → TQ given by Vπ = ker(Tπ). We denote
by Jkπ the bundle of k-jets [39]. A local section of π is a pair (U, ξ), where U is an open
submanifold of Q and ξ is a map ξ : U → E such that π◦ξ = idU . If (ξ, U) is an analytic local
section of π, we denote its k-jet by jkξ. We denote an element of Jkπ by jkξ(x), where x ∈ U .
If we represent the sheaf of germs of sections of π by SQ(π), then jk induces a morphism

10
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of sheaves SQ(π) → SQ(Jkπ). We let πk : Jkπ → Q and πk
l : Jkπ → Jlπ, l ≤ k, be the

canonical projections. One can show that πk and πk
l are surjective submersions. Moreover,

πk
l : Jkπ → Jlπ is an epimorphism of fibered manifolds and (Jkπ, π

k
k−1, Jk−1π) is an affine

bundle modeled on a vector bundle over Jk−1π whose total space is the tensor product
π∗
k−1(SkT

∗Q) ⊗ (πk−1
0 )∗Vπ; see [39]. The following definition establishes the relationship

between jet bundles and systems of partial differential equations.

2.1 Definition: Let (E, π,Q) be a fibered manifold and let Jkπ be its bundle of k-jets. A
partial differential equation is a fibered submanifold Rk ⊂ Jkπ.

We denote by π̂k the restriction of πk to Rk. As one can see, the “equation” representa-
tion of the partial differential equation is obscure here. The following local characterization
of a partial differential equation as a kernel of a fibered manifold morphism is helpful for
identifying the “equation.”

2.2 Proposition: Let (E, π,Q) be a fibered manifold. Given a partial differential equation
Rk ⊂ Jkπ and a point p ∈ Q, there exists neighborhood U of p, a fibered manifold (E′, π′, U),
an analytic section η of π′, and a morphism of fibered manifolds Φ : π−1

k (U) → E′ such
that

π−1
k (U) ∩ Rk

.
= kerη Φ = {uk ∈ π−1

k (U) | Φ(uk) = η(πk(uk))}.

Proof: Because Rk is a fibered submanifold, there exists an adapted chart (Uk, ϕk) for Jkπ
with the induced chart (U, ϕ) on Q such that

ϕk(Uk) ⊂ ϕ(U)× V ×W ⊂ Rn ×Rm ×Rm′
, n,m,m′ ∈ Z≥0,

and such that
π−1
k (U) ∩ Rk = {(x, v, 0) | x ∈ ϕ(U), v ∈ V }.

Take E′ = U × V and π′(x, v) = x. Taking Φ(η) = (x, v), where (ϕ(x), v, w) = ϕk(η) and
η(x) = (x, 0), the result follows. ■

A morphism Φ : Jkπ → π′ of fibered manifolds induces a differential operator D of order
k which is a sheaf morphism of the form Φ ◦ jk : SQ(π) → SQ(π

′).

2.1.2. Prolongations and symbols. The notion of involutivity for partial differential equa-
tions was defined by Cartan, where he used his exterior differential calculus to prove the
existence of formal solutions for involutive partial differential equations of first order using
Cauchy–Kowalevski theorem. This notion, which is an essential ingredient of the Car-
tan–Kähler theorem, relies on the important notions of prolongation and symbol . In par-
ticular, Kuranishi [28] proves that, by prolonging a partial differential equation a sufficient
number of times, one obtains an involutive system. These two notions are the subject of
our study in this section.

Prolongation. The process of differentiating a partial differential equation in order
to arrive at a higher order partial differential equation is called prolongation. One can
formalize this statement as in the following definition.
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2.3 Definition: Let (E, π,Q) be a fibered manifold and let Rk ⊂ Jkπ be a partial differential
equation. The rth-prolongation of Rk is the subset

ρr(Rk) = Jrπ̂k ∩ Jk+rπ.

A partial differential equation Rk is regular if ρr(Rk) is a fibered submanifold of Jk+rπ
for each r ∈ Z≥0. One can represent the rth-prolongation of a partial differential equation
using the associated morphism. The rth-prolongation of Φ is defined to be the unique
morphism of fibered manifolds over Q, ρr(Φ) : Jr+kπ → Jrπ

′, that makes the following
diagram commute:

SQ(Jk+rπ)
ρr(Φ) // SQ(Jrπ

′)

SQ(π)
D //

jk+r

OO

SQ(π
′)

jr

OO

It is fairly clear that, for r, l ∈ Z≥0 and r ≥ l, we have πk+r
k+l (ρr(Rk)) ⊂ ρl(Rk). We adopt

the notation π̂k+r
k+l : ρr(Rk) → ρl(Rk) and π̂k+r : ρr(Rk) → Q as the canonical projections.

There is no guarantee that the first map is a surjective submersion; surjectivity of this
map leads to the concept of formal integrability that will be discussed later. The following
remark will be used in Section 2.1.3; for details of the proof we refer to [23, 22].

2.4 Remark: Let π be a fibered manifold as before and let Rk ⊂ Jkπ be a partial differential
equation. If ρr(Rk) is a fibered submanifold of Jk+rπ, then ρl(ρr(Rk)) = ρl+r(Rk). Since one
can define ρr(Rk) as the kernel of a morphism of fibered manifolds, this follows immediately
from studying the following exact commutative diagram and showing that the map γ is an
isomorphism of fibred manifolds.

0

��

0

��
0 // ρr+l(Rk) //

γ

��

Jk+r+lπ
ρl+r(Φ)// Jl+rπ

′

��
0 // ρl(ρr(Rk)) // Jk+r+lπ

ρl(ρr(Φ))//

��

Jrπ
′
l

0

Whenever Rk is regular, for sake of convenience, we use Rk+r for the rth-prolongation.

Symbols. The highest order terms in the linearization of a partial differential equation
carry valuable information about formal integrability of the equation [22]. Similarly to
our approach for defining a partial differential equation, we give two equivalent formal
definitions to capture these higher order terms, one as a vector bundle morphism and one
as a family of subspaces.

Given pk−1 ∈ Jk−1π, recall that (πk
k−1)

−1(pk−1) has the structure of an affine space
modeled on SkT

∗
πk−1(pk−1)

Q⊗ Vπk−1
0 (pk−1)

π. For each pk ∈ Jkπ we have

Vpkπ
k
k−1 ≃ SkT

∗
πk−1(pk−1)

Q⊗ Vπk−1
0 (pk−1)

π,
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as well as a vector bundle isomorphism π∗
kSkT

∗Q⊗ (πk
0 )

∗Vπ ∼= Vπk
k−1. The identification of

these bundles is made implicitly in most of the literature [39] and we follow this convention.

2.5 Definition: Let (E, π,Q) be a fibered manifold and let Rk ⊂ Jkπ be a partial differential
equation. The symbol of Rk is the family Gk of vector spaces given by

Gk|pk = Vpk π̂k ∩ Vpkπ
k
k−1, pk ∈ Jkπ.

Let ξ be a section of E on an open neighborhood U ⊂ Q and let p ∈ U . Let {f1, . . . , fk}
be R-valued functions defined on a neighborhood U of p ∈ Q which vanish at p. As in [21],
define ϵk : SkT

∗Q⊗ Vπ → Vπk by

ϵk : (df1 · · · dfk ⊗ ξ)(p) → jk((Π
k
i=1fi).ξ)(p).

The map ϵk is well-defined since the derivatives of (Πk
i=1fi) vanish up to order k − 1 at p.

We have the following lemma.

2.6 Lemma: Let (E, π,Q) be a fibered manifold. We have the following short exact sequence
of vector bundles over Jkπ:

0 // SkT
∗Q⊗ Vπ

ϵk // Vπk
Vπk

k−1// (πk
k−1)

∗(Vπk−1) // 0 .

The following definition introduces the symbol map as a morphism of vector bundles.
It is crucial to understand the distinction between the definition of the symbol map as a
bundle map and the definition of the symbol map at a point as a map of vector spaces.
This explicit distinction is usually dropped in the literature.

2.7 Definition: Let (E, π,Q) and (E′, π′,Q) be fibered manifolds and let Φ : Jkπ → E′ be a
morphism over idQ. The symbol of Φ is defined to be

σ(Φ) = VΦ ◦ ϵk : π∗
kSkT

∗Q⊗ (πk
0 )

∗Vπ → Vπ′.

The following proposition relates the definition of the symbol as a family of vector spaces
with that as a map.

2.8 Proposition: Let π be a fibered manifold as above and let pk ∈ Rk ⊂ Jkπ. Then the
following sequences are exact:

1. 0 // Gk|pk // SkT
∗
πk(pk)

Q⊗ Vπk
o (pk)

π
σ(Φ)|pk// VΦ(pk)π

′ ;

2. 0 // Gk|pk // Vpk π̂k
Vπk

k−1|Vπ̂k// Vπk
k−1(pk)

πk−1 .

Sketch of the proof: The proof of exactness of the first sequence follows from the following
commutative diagram:

0

��

0

��
0 // Gk|pk //

��

SkT
∗
πk(pk)

Q⊗ Vπk
0 (pk)

(π)

��

σ(Φ) // VΦ(pk)π
′

0 // Vπk
0 (pk)

(π̂k) // Vπk
0 (pk)

(πk)
VΦ // VΦ(pk)π

′
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where the bottom row is exact. Similarly, for the second sequence, one should consider the
following exact commutative diagram:

0

��

0

��
0 // Gk|pk //

��

Vpk π̂k

��

Vπk
k−1|Vπ̂k // Vπk

k−1(pk)
πk−1

0 // Vpkπ
k
k−1

// Vpkπk
Vπk

k−1 // Vπk
k−1(pk)

πk−1
// 0

The second row is exact since Vπk
k−1 is an epimorphism of vector spaces. ■

Note that Gk is not always a vector bundle over Vπ̂k. The first statement of Propo-
sition 2.8 reveals the relationship between Definition 2.5 and Definition 2.7, by basically
identifying the kernel of the symbol map at pk with Gk|pk . The second statement of
this proposition, along with the affine structure of jet bundles, shows that the symbol
of a partial differential equation can be identified as the highest order component in the
linearization of the equation.

Prolongation of symbols. We establish a process for prolonging the symbol of a
partial differential equation. This process can be obtained in a purely algebraic manner
[24]. Let (E, π,Q) be a fibered manifold and Rk ⊂ Jkπ a partial differential equation. We
fix a point pk ∈ Rk, we let x = πk(pk), and we let {e1, . . . , en} be a basis for T∗

xQ. We
denote an induced basis element for SkT

∗
xQ by ei1ei2 · · · eik , where i1, . . . , ik ∈ {1, . . . , n}

satisfy i1 ≤ i2 ≤ · · · ≤ in. For k, r ∈ Z≥0, we define the natural inclusion ∆k,r : Sk+rT
∗
xQ →

SrT
∗
xQ⊗ SkT

∗
xQ by

∆k,r : Ai1···ik+r
ei1ei2 · · · eik+r 7→ Ai1···irir+1···ik+r

ei1ei2 · · · eir ⊗ eir+1 · · · eik+r .

The map ∆k,r can be extended naturally to

∆k,r ⊗ idVπ : Sk+rT
∗
xQ⊗ Vπk

0 (pk)
π → SrT

∗
xQ⊗ SkT

∗
xQ⊗ Vπk

0 (pk)
π.

Let Φ : Jkπ → π′ be the local morphism associated to Rk and let σ(Φ) be the associated
symbol map. With Gk|pk = kerσ(Φ)|pk , we establish the rth-prolongation of the symbol
using the following definition.

2.9 Definition: Let Rk ⊂ Jkπ be a partial differential equation. For each pk ∈ Rk with
x = πk(pk), the map

ρr(σ(Φ)|pk) : Sk+rT
∗
xQ⊗ Vπk

0 (pk)
π → SrT

∗
xQ⊗ VΦ(pk)π

′,

defined by (idSrT∗
xQ ⊗ σ(Φ)|pk) ◦ (∆k,r ⊗ idVπ) is called the rth-prolongation of σ(Φ)|pk . Its

kernel is denoted by ρr(Gk|pk) and is called the rth-prolongation of the symbol.
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2.10 Remark: Even if Gk is a vector bundle over Vπ̂k, ρr(Gk) might not be a vector bundle
over Vπ̂k. In case it is, we sometimes use the notation Gk+r instead of ρr(Gk).

2.1.3. Formal integrability. Given a partial differential equation, we would like to study
the existence of solutions. Specifically, we would like to construct the solutions of a given
partial differential equation by constructing their Taylor series order by order. Since the
theory we use rests on the Cauchy–Kowalevski theorem, we assume analyticity of all the
data. We start by giving a formal definition for solutions.

2.11 Definition: Let (E, π,Q) be a fibered manifold and let Rk ⊂ Jkπ be a kth-order partial
differential equation. A local formal solution of order k is a pair (ξk, U), where U is an open
subset of Q and ξk is a section of Rk over U . If Rk is regular, one can define a formal
solution of order (k + r) as a pair (ξk+r, U), where ξk+r is a section of Rk+r.

One can come up with examples which are not “formally integrable” in the sense that
one cannot iteratively construct a solution as a Taylor series; see Example 2.22.

2.12 Definition: Let (E, π,Q) be a fibered manifold and let Rk ⊂ Jkπ be a regular partial
differential equation. Then Rk is formally integrable if the maps πk+r+1

k+r : ρr+1(Rk) → ρr(Rk)
are epimorphisms of fibered manifolds for each r ∈ Z≥0.

Note that in our definition of formally integrable we assume that Rk is regular.

2.13 Proposition: If Rk is formally integrable then ρr(Gk) is a vector bundle over Rk for
each r ∈ Z≥0.

Proof: As Rk is formally integrable, πk+r+1
k+r is an epimorphism and so locally of constant

rank. Then the following short exact sequence

0 // Gk+r+1
// Vπ̂k+r+1

// Vπ̂k+r
// 0

yields that Gk+r is of constant rank. ■

The δ-sequence. Another purely algebraic construction which is used extensively for
the formal theory is the δ-sequence. The δ-sequence has been utilized by Spencer [43] in the
theory of deformation of structures. We describe this construction in the partial differential
equation framework, omitting some details, and we construct the δ-sequence for T∗Q which
provides a characterization of the δ-operator with the fiberwise exterior derivative on the
set of differential r-forms on T∗Q. Generally, there is no necessity for a manifold structure
and one can give the construction of the δ-sequence in a purely algebraic fashion [24].

We start by characterizing ΛrT
∗Q ⊗ SkT

∗Q as a subset of differential r-forms on T∗Q.
First we give the following lemma.

2.14 Lemma: Let V be a R-vector space and denote by

Pk(V) = {f : V → R | f(x) = A(x, . . . , x), A ∈ T0
kV}

the homogenous polynomial functions of degree k. Then, for f ∈ Pk(V), there exists a
unique A ∈ SkV such that A(x, . . . , x) = f(x) for each x ∈ V.
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Proof: We first prove that A exists. Take B ∈ T0
kV. If f(v) = B(v, . . . , v), for v ∈ V, we

define A by
A(v1, . . . , vk) = Sym(B)(v1, . . . , vk),

which is symmetric by definition and f(v) = A(v, . . . , v). In order to prove the uniqueness,
we show that if Â ∈ SkV satisfies f(v) = Â(v, . . . , v) for all v ∈ V, then Â = A. Note that if
Â ∈ T0

2V then

∑
σ∈S2

Â(vσ(1), vσ(2)) = Â(
2∑

j1=1

vj1 ,

2∑
j2=1

vj2)−
2∑

j1=1

Â(vj1 , vj1).

An inductive argument shows that for Â ∈ T0
kV

∑
σ∈Sk

Â(vσ(1), . . . , vσ(k)) = Â(
k∑

j1=1

vj1 , . . . ,
k∑

jk=1

vjk)

−
k−1∑
l=1

∑
j1,...,jl

Â(vj1 + · · ·+ vjl , . . . , vj1 + · · ·+ vjl),

where {j1, . . . , jl} ⊂ {1, . . . , k} whose elements are distinct. Thus if Â ∈ SkV satisfies
f(v) = Â(v, . . . , v) for all v ∈ V,

Â(v1, . . . , vk) =
1

k!

∑
σ∈Sk

Â(vσ(1), . . . , vσ(k))

=
1

k!

(
f(v1, . . . , vk)−

k−1∑
l=1

∑
j1,...,jl

f(vj1 + · · ·+ vjl)
)

= A(v1, . . . , vk).

Thus A is unique. ■

2.15 Lemma: The following map from ΛrT
∗
xQ ⊗ SkT

∗
xQ to the set of differential r-forms

on T∗
xQ is a monomorphism of R-vector spaces,

ϕk,r(α⊗ A)(u)(v1, . . . , vr) = A(u, . . . , u)α(v1, . . . , vr), v1, . . . , vr ∈ TuT
∗
xQ

∼= T∗
xQ,

where x ∈ Q and u ∈ T∗
xQ.

Proof: The map ϕk,r is linear by construction. We need to show that it is injective. Suppose
that ϕk,r(A1 ⊗ α1 + · · ·+ Ai ⊗ αi) = 0. Then

i∑
a=1

Aa(u, . . . , u)αa(v1, . . . , vr) = 0
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for all v1, . . . , vr ∈ T∗
xQ. If u1, . . . , uk ∈ T∗

xQ, then, by the previous lemma, for each
a ∈ {1, . . . , i} we have

Aa(u1, . . . , uk) = Aa(
k∑

j1=1

uj1 , . . . ,
k∑

jk=1

ujk)

−
k−1∑
l=1

∑
j1,...,jl

Aa(uj1 + · · ·+ ujl , . . . , uj1 + · · ·+ ujl).

As a result, we have

i∑
a=1

Aa(u1, . . . , ur)αa(v1, . . . , vr) =
i∑

a=1

αa(v1, . . . , vr)Aa(
k∑

j1=1

uj1 , . . . ,
k∑

jk=1

ujk)

−
i∑

a=1

k−1∑
l=1

∑
j1,...,jl

Aa(uj1 + · · ·+ ujl , . . . , uj1 + · · ·+ ujl) = 0,

where the last equality holds by assumption; thus
∑i

a=1 Aa ⊗ αa = 0 and the map ϕk,r is
injective. ■

The preceding characterization basically identifies the symmetric tensor part of ΛrT
∗
xQ⊗

SkT
∗
xQ with a homogeneous polynomial function of order k. Let dr be the exterior derivative

on T∗
xQ restricted to differential r-forms. One can define a linear map δr,k : ΛrT

∗
xQ ⊗

SkT
∗
xQ → Λr+1T

∗
xQ⊗ Sk−1T

∗
xQ by asking that the following diagram be commutative:

ΛrT
∗
xQ⊗ SkT

∗
xQ

δr,k //

ϕk,r

��

Λr+1T
∗
xQ⊗ Sk−1T

∗
xQ

ϕk−1,r+1

��
Γω(ΛrT

∗
xQ)

dr // Γω(Λr+1T
∗
xQ)

Explicitly, for α ∈ ΛrT
∗
xQ and A ∈ SkT

∗
xQ,

δr,k(α⊗ A)(v1, . . . , vr+1, u1, . . . , uk−1)

=

r+1∑
j=1

(−1)j+1kα(v1, . . . , v̂j , . . . , vr+1)A(vj , u1, . . . , uk−1).

In other words, the δr,k operator imitates the exterior derivative on the space of differential
forms on T∗

xQ with polynomial coefficients when we identify the symmetric homogenous
polynomials of degree k with a symmetric k-tensor.

It turns out that the following sequence, the so-called kth δ-sequence, is exact (here we
simply denote δr,k by δ)

0 // SkT
∗
xQ

δ // T∗
xQ⊗ Sk−1T

∗
xQ

δ // · · ·

· · · δ // ΛnT
∗
xQ⊗ Sk−nT

∗
xQ // 0
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The exactness is the Poincaré lemma for the class of differential forms. Let Rk ⊂ Jkπ be a
partial differential equation. Consider the following exact and commutative diagram:

0 // ΛsT
∗Q⊗ Gk+r+1

δ
��

// ΛsT
∗Q⊗ Sk+r+1T

∗Q⊗ Vπ
σr+1(Φ)//

δ
��

ΛsT
∗Q⊗ Sr+1T

∗Q⊗ Vπ′

δ
��

0 // Λs+1T
∗Q⊗ Gk+r

// Λs+1T
∗Q⊗ Sk+rT

∗Q⊗ Vπ
σr(Φ) // Λs+1T

∗Q⊗ SrT
∗Q⊗ Vπ′

The map δ induces a new δ-sequence for the symbol at each point . Note that sequences
involving the symbol shall really be specified at each point and for the sake of simplicity we
omit the point. What is more, there is no guarantee that this sequence is exact in general.
Summarizing, we have the following graded differential complex

0 // Gk+r
δ // T∗Q⊗ Gk+r−1

δ // · · ·

· · · δ // ΛnT
∗Q⊗ Gk+r−n

// 0 . (2.1)

We denote by Hs
k+r−s(Gk) the cohomology at ΛsT

∗Q⊗ Gk+r−s of this complex and we call
it the Spencer cohomology group of degree k + r − s:

Hs
k+r−s(Gk) = ker(δs,k+r−s)/Im(δs−1,k+r+1−s).

Gk is said to be m-acyclic if Hs
k+r = 0 for all 0 ≤ s ≤ m and r ≥ 0.

2.16 Definition: Let Q be an n-dimensional manifold and let Rk ⊂ Jkπ be a partial differ-
ential equation as above. If the symbol is n-acyclic it is called involutive.

By definition, a symbol is involutive if and only if its corresponding δ-sequences are
exact. In particular, the symbol of the trivial system of partial differential equations is
involutive.

2.17 Remark: The concept of involutivity is critical in the formal theory of partial differ-
ential equations, and is not easy to grasp at first glance. It is simply not possible to provide
a complete review of the concept in this document. Guillemin and Sternberg relate the
different interpretations of an involutive symbol and actually propose a practical method
for verifying involutivity [25]. J. P. Serre’s complementary note in the appendix of this
paper completes the picture by relating the sequence given in Equation (2.1) to the Koszul
complex.

We next address the concept of a quasi-regular basis and a practical method for verifying
involutivity [42]. Let (E, π,Q) be a bundle with Q an n-dimensional manifold and x ∈ Q.
Let Rk ⊂ Jkπ be a partial differential equation with associated symbol Gk and let pk ∈ Rk

be such that πk(pk) = x. Let {α1, . . . , αn} be a basis for T∗
xQ. Let j ∈ {1, . . . , n}, we define

Gk,j |(x,pk) = Gk|pk ∩ SkΣj |x,

where Σj is the subspace of T∗
xQ generated by {αj+1, . . . , αn}.
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2.18 Definition: (Quasi-regular basis) Let (E, π,Q) be a bundle with Q an n-dimensional
manifold and x ∈ Q. Let Rk ⊂ Jkπ be a partial differential equation with associated symbol
Gk and let pk ∈ Rk be such that πk(pk) = x. A basis {α1, . . . , αn} for T∗

xQ is called
quasi-regular if

dim(Gk+1|pk+1
) = dim(Gk|pk) +

n−1∑
j=1

dim(Gk,j |(x,pk)). (2.2)

The following theorem relates the concept of involutivity to the existence of a quasi-
regular basis; the proof of the theorem can be found in [42].

2.19 Theorem: (Criterion of involutivity) Let Rk ∈ Jkπ be a partial differential equa-
tion. If there exists a quasi-regular basis for T∗

πk(pk)
Q, the symbol Gk is involutive at

pk ∈ Rk.

We now have the required machinery for the following central theorem for formal inte-
grability [22]. This theorem is an analogue of the Cartan–Kähler theorem and is essentially
a local result.

2.20 Theorem: (Goldschmidt) Let (E, π,Q) be a fibered manifold and Rk ⊂ Jkπ a partial
differential equation. Assume the following hypotheses:

1. ρ1(Rk) is a fibered submanifold of Jk+1π;

2. π̂k+1
k : ρ1(Rk) → Rk is an epimorphism of fibered manifolds;

3. Gk is 2-acyclic.

Then Rk is formally integrable and thus, given a point pk+l ∈ Rk+l with πk+l(pk+l) = x ∈ Q,
there exists an analytic solution ξk of the equation Rk on a neighborhood of x such that
jl(ξk)(x) = pk+l, where l ≥ 1.

Sketch of the proof: Let Φ be the local morphism associated to Rk and recall the affine
structure of ρ1(Rk) over Rk. Since ρ1(Rk) is a fibered submanifold of Jk+1π, we have
Gk+1 = ρ1(Gk) as a vector bundle over Rk and so one can define a vector bundle C =
coker(ρ1(σ(Φ))) such that the following sequence is exact:

0 // Gk+1
// Sk+1T

∗Q⊗ Vπ
ρ1(σ(Φ))// T∗Q⊗ Vπ′ τ // C // 0

where τ is the canonical projection onto C. The essence of the proof is the construction of a
map κ : Rk → C as follows. Consider the following exact and commutative diagram where
the upper row is a sequence of vector bundles on which the second row of affine bundles are
modeled:

0 // Gk+1
//

��

Sk+1T
∗Q⊗ Vπ

ρ1(σ(Φ))//

��

T∗Q⊗ Vπ′ τ //

��

C // 0

0 // ρ1(R1) //

��

Jk+1π
ρ1(Φ) //

��

J1π
′

��
0 // Rk

// Jkπ
Φ // π′
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Let p ∈ Rk with πk(p) = q ∈ Q and let p′ ∈ Jk+1π projecting to p. By commutativity of the
diagram, ρ1(Φ)(p

′) projects to Φ(p). As a result,

ρ1(Φ)(p
′)− j1Φ(p) ∈ T∗Q⊗ Vπ′.

Let
κ(p) = τ(ρ1(Φ)(p

′)− j1Φ(p)). (2.3)

One can show that this definition is independent of the choice of p′ [21]. This map is called
the curvature map. A diagram chase shows that the map κ is zero with respect to the
zero section of the vector bundle C if and only if the map πk+1

k is an epimorphism of affine

bundles. The 2-acyclicity of the symbol implies that π̂k+r+1
k+r is also an epimorphism of affine

bundles for r ∈ Z≥0. ■

If the symbol is involutive, condition 3 is automatically satisfied. We have the following
definition.

2.21 Definition: A partial differential equation Rk is called involutive at a point p if

1. its associated morphism is of constant rank,

2. there exists a quasi-regular basis at p, and

3. the map π̂k+1
k is surjective and is of constant rank in a neighborhood of p.

2.22 Example: Let Q = R3 and E = R3 × R with π(x, y, z, f) = (x, y, z). Let X be a
vector field on Q. Consider the partial differential equation

Rgrad = {(x, y, z, f, fx, fy, fz) ∈ J1π | grad(f) = X}.

We show that the solutions to this partial differential equation exists if curl(X) = 0. The
symbol map of this partial differential equation is clearly the identity map and hence invo-
lutive. Following the proof of Theorem 2.20, we have the following diagram:

0 // S2T
∗R3 ⊗R3 //

��

S2T
∗R3 ⊗R3 //

��

T∗R3 ⊗ TR3 τ //

��

Λ2T
∗R3 ⊗R3 // 0

0 // ρ1(Rgrad) //

��

J2R3 ρ1(grad) //

��

J1R3

��
0 // Rgrad

// J1R3 grad // TR3 ∼= R3

The map τ is defined by the composition of the alternation map and an isomorphism of
T∗R3 ⊗TR3 to T∗R3 ⊗T∗R3 which maps ei to ei for i ∈ {1, 2, 3}. This alternation map in
coordinates yields

∂Xi

∂xj
− ∂Xj

∂xi
= 0,

which is exactly curl(X) = 0 as claimed.
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2.2. The space of connections

In this section we fix a fibered manifold (E, π,Q). As before, we denote by Vπ and Jk(π),
the vertical bundle and the bundle of k-jets of the fibered manifold π, respectively [39]. We
start by defining what we mean by a connection. It is not hard to show that the definition
we give is equivalent to the usual construction of a connection as a splitting of the total
space of a bundle on which the connection is defined [38, 13].

2.23 Definition: A connection on a fibered manifold (E, π,Q) is a section S : E → J1π of
the bundle π1

0 : J1π → E.

In natural coordinates (qi, ua, uak) for J1π, a connection has the form (qi, ua) 7→
(qi, ua, Sak), which defines the connection coefficients Sak, where a ∈ {1, . . . ,m} and
i, k ∈ {1, . . . , n}. One can define the covariant derivative associated to a connection as
follows.

2.24 Definition: Let S : E → J1π be a connection on a fibered manifold (E, π,Q). If ξ is a
smooth local section of E, then the S-covariant differential of ξ is the smooth local section
∇Sξ of T∗Q⊗ ξ∗Vπ defined by

∇Sξ(q) = j1ξ(q)− S(ξ(q)). (2.4)

In natural coordinates we have

∇Sξ =

(
∂ξa

∂qi
− Sai

)
dxi ⊗ ∂

∂ua
.

If X is a vector field on Q, then the S-covariant derivative of ξ with respect to X is
the section of ξ∗Vπ defined by ∇S

Xξ = ∇Sξ(X). A linear connection on a vector bundle
(E, π,Q) is a connection S : E → J1π that is also a vector bundle morphism over idE. In
adapted coordinates (xi, ua) for E and (xi, ua, uak) on J1π, a linear connection has the form
(xi, ua) 7→ (xi, ua, Sakbu

b) which defines the connection coefficients Saib, for a, b ∈ {1, . . . ,m}
and i ∈ {1, . . . , n}.

A linear connection S on the vector bundle (TQ, πQ,Q) is sometimes called an affine
connection on Q. We have the following proposition which generalizes to vector bundles.

2.25 Proposition: The set of affine connections on a manifold Q is the set of sections of
an affine subbundle of the vector bundle T∗Q⊗ J1πQ over Q modeled on the vector bundle
T∗Q⊗ T∗Q⊗ TQ.

The following proposition clarifies the structure of the space of torsion-free affine con-
nections.

2.26 Proposition: The set of torsion-free affine connections on a manifold Q is an affine
subbundle of the vector bundle T∗Q⊗J1πQ over Q modeled on the vector bundle S2T

∗Q⊗TQ
given by

Aff0(Q) =

{Ξ ∈ T∗Q⊗ J1πQ | π1
0 ◦ Ξ = idTQ, (j1Y − Ξ(Y ))(X)− (j1X − Ξ(X))(Y ) = [X,Y ]}, (2.5 )

where X,Y ∈ Γω(TQ) and we think of Ξ as a vector bundle map from TQ to J1πQ.
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2.3. The Ricci identity

Let (E, π,Q) be a vector bundle. There is a bijective correspondence between the set
of linear connections S : E → J1π and the type (1, 1)-tensor fields PH

S on E, where PH
S is a

projection operator of constant rank, PH
S (X) = 0 for every X ∈ Γω(Vπ) and Im(PH

S )⊕Vπ =
TE. Such a projection is called the horizontal projection associated to the connection S [39].
An integral section of a connection S is an analytic local section ξ of π satisfying j1ξ = S(ξ).
There is no guarantee that such a section exists, even locally. The existence of such an
integral section is equivalent to the vanishing of the Nijenhuis tensor of the (1, 1)-tensor
field PH

S (see [39, 27]). In other words, the Nijenhuis tensor measures the involutivity of the
associated horizontal subbundle and, as a result, the Nijenhuis tensor of S is directly related
to the curvature tensor R[S] associated to S. Let (qi, ua) be adapted local coordinates on
a neighborhood U of E with i ∈ {1, . . . , n} and a ∈ {1, . . . ,m}. Also let {e1, . . . , em} be a
basis for the local sections of E. The curvature tensor, R[S] ∈ Γω(E∗ ⊗ E⊗ Λ2T

∗Q), can be
written as

R[S]aijb =
∂Saib
∂xj

+ SaicS
c
jb −

(∂Sajb
∂xi

+ SajcS
c
ib

)
, (2.6)

where i, j ∈ {1, . . . , n} and a, b, c ∈ {1, . . . ,m}. One can naturally define an induced connec-
tion on the tensor product of two vector bundles as follows. Let (E1, π1,Q) and (E2, π2,Q)
be two vector bundles equipped with two linear connections S1 and S2, respectively. There
is a unique connection S1 ⊗Q S2 that makes the following diagram commute:

E1 ×Q E2
⊗ //

S1×QS2

��

π1 ⊗Q π2

S1⊗QS2
��

J1π2 ×Q J1π2 // J1(π1 ⊗Q π2)

For more information about the induced connection on a fibered product bundle, see [39].
One can use the same procedure to induce a connection S∗ on the dual bundle π∗. For our
purposes, we consider the tensor bundle (E ⊗Q E, π ⊗Q π,Q), where π : E → Q is a vector
bundle. Let (xi) be local coordinates for Q and let (xi, ua) be adapted coordinates for E,
where i ∈ {1, . . . , n} and a ∈ {1, . . . ,m}. Denote an analytic local section of E ⊗ E by
ξ = ξabea ⊗ eb, where {e1, . . . , em} is a basis for local sections of E and a, b ∈ {1, . . . ,m}.
Then the covariant derivative with respect to S⊗ S can be represented by

∇S⊗Sξ = j1ξ − (S⊗ S)(ξ).

We have the following representation of the covariant derivative with respect to the induced
connection S⊗ S in local coordinates:

(∇S⊗Sξ)abi =
∂ξab

∂xi
− Saicξ

cb − Sbicξ
ac, (2.7)

where i ∈ {1, . . . , n} and a, b, c ∈ {1, . . . ,m}. Using Equation (2.6), one can show that the
associated curvature tensor for S⊗ S is

R[S⊗ S]abcdijξ
cd = R[S]acijξ

cb + R[S]bcijξ
ac. (2.8)
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The vanishing of the curvature tensor is an obstruction for the involutivity of the horizontal
subspace of T(E⊗E) associated with the induced connection S⊗S. The relationship between
the curvature tensor of a tensor product bundle and the curvature of the underlying bundles
leads to the Ricci identity [15]. In the literature this identity is typically introduced through
the following lemma.

2.27 Lemma: Let (Q,G) be a Riemannian manifold equipped with a symmetric affine con-
nection S. Then the following identity holds and is called the Ricci identity:

(∇X∇YG −∇Y ∇XG −∇[X,Y ]G)(Z,W ) = G(R(X,Y )Z,W ) +G(Z,R(X,Y )W ), (2.9 )

where X,Y, Z,W ∈ Γω(TQ).

Proof: The proof follows from a direct computation using Equation (2.7) to compute the
covariant derivative of G with respect to a vector field. ■

2.28 Remark: We state the following remarks for future use.

1. Lemma 2.27 can be extended to any (0, 2)-tensor on Q, but for our purposes we state
the lemma for a metric G on Q.

2. The Ricci identity appears when one tries to find a set of necessary conditions for a
metric to be associated to a given symmetric affine connection; see [18, 46].



Chapter 3

Geometric formulation of partial
differential equations in energy
shaping

We give a formulation of the partial differential equations of the energy shaping problem
using the theory of partial differential equations presented in the previous section. This
formulation is an integral part of our approach since it places the energy shaping problem
into the realm of the formal theory of partial differential equations.

3.1. Kinetic energy shaping

We provide a jet bundle structure associated to the kinetic energy shaping system of
partial differential equations. This system of partial differential equations involves the affine
subbundle description for the set of torsion free connection; see Section 2.2.

Let (S+2 T
∗Q, πG,Q) be the bundle of Riemannian metrics on the configuration manifold

Q. One can generalize the definitions in this section by allowing metrics with other signa-
tures; see Remark 3.7. Let (B, πB,Q) be the bundle of gyroscopic tensor fields on Q; thus
B

.
= Gyr(TQ) ∩ ker(Alt). We have the following definition.

3.1 Definition: The kinetic energy shaping bundle is the fibered product bundle (KS, π
.
=

πG ×Q πB,Q), where KS
.
= S+2 T

∗Q×Q B. We denote by π1 and π2 the projections onto the
first and second factors.

In local coordinates, a typical fiber over q ∈ Q is a pair (G(q),B(q)) and coordinates for
J1π are denoted by (qi,Gmn,Blpq,Gjk,a,Blpq,b), where we denote the derivatives of Gjk and
Blpq, respectively, by Gjk,a and Blpq,b.

Define the “Levi-Civita” map ϕLC : J1πG → Aff0(Q) by ϕLC(j1G) = ∇G. Let Σol =
(Q,Gol, Vol, 0,Wol) be a given open-loop simple mechanical control system and let (KS, π,Q)
be the kinetic energy shaping bundle. We define the following projection:

πW : G♯
ol(T

∗Q⊗ T∗Q⊗ T∗Q) → G♯
ol(T

∗Q⊗ T∗Q⊗ T∗Q)/G♯
ol(Wol ⊗ T∗Q⊗ T∗Q)

.
= K,

where we use the extended definition of sharp map; see Equation (1.1). We now have
the required tools for defining the kinetic energy shaping partial differential equation as a
submanifold of J1π.

24
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3.2 Definition: Let (KS, π,Q) be the kinetic energy shaping bundle. If πW and ϕLC are,
respectively, the projection and the affine connection map defined above, the kinetic energy
shaping submanifold Rkin ⊂ J1π is defined by

Rkin = {p ∈ J1π | Φkin(p) = 0},

where Φkin is the kinetic energy shaping map given by

Φkin(p) = πW (ϕLC(j1π1(p))− ϕLC(j1π1(p0)))− πW(π1(p)
♯π2(p)),

where the last term involves gyroscopic forces.

One can represent the governing system of partial differential equations for the kinetic
energy shaping problem by the following exact sequence:

0 // Rkin
// J1π

Φkin // K ,

where Rkin is the kernel of Φkin with respect to the zero section of K.

3.2. The λ-method

In this section, we recall a differential geometric approach to the kinetic energy shaping
problem from [7, 5]. The main idea is to transform the set of quasi-linear partial differential
equations from the previous section into a set of linear partial differential equations in
terms of a new variable. In the following definition we introduce a set of partial differential
equations which is the main component of this equivalent system.

The following theorem gives the desired transformation.

3.3 Theorem: Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechanical control
system. Let P ∈ Γω(T∗Q ⊗ TQ) be the Gol-orthogonal projection as in Section 1.1. Let
Gcl ∈ Γω(S+2 T

∗Q) and let B be a quadratic gyroscopic tensor. If G♭
ol = G

♭
cl ◦ λ for λ ∈

Γω(T∗Q⊗ TQ), then the following two conditions are equivalent:

1. P (∇Gcl
X X −∇Gol

X X −G♯
cl ◦B

♭(X)) = 0, where X ∈ Γω(TQ);

2. (a) ∇Gol
Z (Golλ)(PX,PY ) + 1

2⟨B(λPX, λPY ) +B(λPY, λPX), Z⟩ = 0 and

(b) ∇Gol
λPXGcl(Z,Z) + 2Gcl(∇Gol

Z λPX,Z) = 2Gol(∇Gol
Z PX,Z)− 2⟨λPX,B♭(Z)⟩,

where X,Y, Z ∈ Γω(TQ).

In order to prove this theorem we need the following lemma.

3.4 Lemma: Let (Q,G) be a Riemannian manifold and let W be a codistribution on Q. Let
P ∈ Γω(T∗Q⊗ TQ) be the G-orthogonal projection and let Gcl ∈ Γω(S+2 T

∗Q). If

P (∇Gcl
X X −∇GXX −G♯

cl ◦B
♭(X)) = 0, ∀X ∈ Γω(TQ),

then
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1. for X,Y ∈ Γω(TQ) we have

P (∇GXY −∇Gcl
X Y ) = −1

2PG
♯
cl ◦ (B

♭(X + Y )−B♭(X)−B♭(Y )), (3.1 )

and

2. for G = Gcl ◦ λ for λ ∈ Γω(T∗Q⊗ TQ) we have

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = ∇GZ(Gλ)(PX,PX), (3.2 )

where X,Z ∈ Γω(TQ).

Proof: We begin with the first statement. Note that since the connections are torsion free,

∇GXY −∇Gcl
X Y = ∇GY X −∇Gcl

Y X.

We have

P (∇GXY −∇Gcl
X Y ) = 1

2P (∇GXY −∇Gcl
X Y +∇GY X −∇Gcl

Y X)

= 1
2P (∇GX+Y (X + Y )−∇Gcl

X+Y (X + Y ))− 1
2P (∇GX(X)−∇Gcl

X (X))

− 1
2P (∇GY (Y )−∇Gcl

Y (Y ))

= − 1
2PG

♯
cl ◦ (B

♭(X + Y )−B♭(X)−B♭(Y )),

where X,Y ∈ Γω(TQ).
For the second part, recall that for the Levi-Civita connection ∇G associated to G one

can write

2G(∇GXY,Z) = LXG(Y, Z) + LYG(Z,X)− LZG(X,Y )

+G([X,Y ], Z) +G([Z,X], Y )−G([Y, Z], X). (3.3)

Moreover, we have
LX(G(Y, Z)) = G(∇GXY,Z) +G(Y,∇GXZ). (3.4)

Thus

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = 2G(∇GλPXZ,PX)− 2G(∇Gcl

λPXZ,PX)

= 2G(∇GλPXZ,PX)− 2Gcl(∇Gcl
λPXZ, λPX).

We use Equation (3.3) to get

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = λPXG(Z,PX)− PXG(λPX,Z)

+G([PX, λPX], Z)−G([Z,PX], λPX) +G([Z, λPX], PX). (3.5)

Expanding the terms using Equation (3.4), after some simplification, we have

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = G(∇GZ(λPX), PX)−G(∇GZPX, λPX).

Note that
LZ(λ(X)) = ∇GZ(λ)(X) + λ(∇GZX).
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As a result,

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = G((∇GZλ)(PX) + λ(∇GZPX), PX)−G(∇GZPX, λPX)

= G((∇GZλ)(PX), PX) +G(λ(∇GZPX), PX)

−G(∇GZPX, λPX)

= G((∇GZλ)PX,PX).

Since ∇GG = 0, one can write

2G(P (∇GλPXZ −∇Gcl
λPXZ), X) = ∇GZ(Gλ)(PX,PX), (3.6)

which is the desired result. ■

Proof of Theorem 3.3: (1)⇒(2)] We first assume that Gcl and B satisfy

P (∇Gcl
X X −∇Gol

X X −G♯
cl ◦B

♭(X)) = 0, ∀X ∈ Γω(TQ).

Using the second part of Lemma 3.4 we have

2Gol(P (∇Gol
λPXZ −∇Gcl

λPXZ), X) = ∇Z(Golλ)(PX,PX). (3.7)

By the first part of Lemma 3.4 we have

P (∇Gol
λPXZ −∇Gcl

λPXZ) = −1
2PG

♯
cl ◦ (B

♭(λPX + Z)−B♭(λPX)−B♭(Z)).

Using Equation (3.7) we get

2Gol(−1
2PG

♯
cl ◦ (B

♭(λPX + Z)−B♭(λPX)−B♭(Z)), X) = ∇Z(Golλ)(PX,PX),

which can be written as

∇Z(Golλ)(PX,PX) + ⟨B♭(λPX + Z)−B♭(λPX)−B♭(Z), λPX⟩ = 0.

From the definition of the flat operation we have ⟨B♭(Y ), X⟩ = B(X,Y, Y ). Also recall that
the gyroscopic tensor is antisymmetric in the first two arguments. We can then expand the
right hand side of the previous equation to get

∇Z(Golλ)(PX,PX) = B(λPX,Z, λPX) = −⟨B(λPX, λPX), Z⟩.

Notice that Golλ and ∇Z(Golλ) are both symmetric (0, 2)-tensors. Thus we have

∇Z(Golλ)(PX,PY ) + 1
2⟨B(λPX, λPY ) +B(λPY, λPX), Z⟩ = 0

for all X,Y ∈ Γω(TQ) which is (2a). In order to prove (2b) we have

LλPXGcl(Z,Z) = Gcl(∇Gcl
λPXZ,Z) +Gcl(Z,∇Gcl

λPXZ)

= 2Gcl(∇Gcl
λPXZ,Z)

= 2Gcl(∇Gcl
Z λPX − [Z, λPX], Z)

= 2Gcl(∇Gcl
Z λPX,Z)− 2Gcl([Z, λPX], Z).
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As a result,

LλPXGcl(Z,Z) + 2Gcl([Z, λPX], Z) = 2Gcl(∇Gcl
Z λPX,Z)

= 2LZGol(PX,Z)− 2Gol(PX,∇Gcl
Z Z)

= 2LZGol(PX,Z)− 2Gol(X,P∇Gcl
Z Z).

Now, from the kinetic energy shaping system of partial differential equations, we have

P∇Gcl
Z Z = P∇Gol

Z Z + PG♯
clB

♭(Z).

Therefore,

LλPXGcl(Z,Z) + 2Gcl([Z, λPX], Z)

= 2LZGol(PX,Z)− 2Gol(X,P∇Gol
Z Z + PG♯

clB
♭(Z))

= 2Gol(∇Gol
Z PX,Z) + 2Gol(PX,∇Gol

Z Z)− 2Gol(X,P∇Gol
Z Z + PG♯

clB
♭(Z)).

This gives

LλPXGcl(Z,Z) + 2Gcl([Z, λPX], Z) = 2Gol(∇Gol
Z PX,Z)− 2⟨λPX,B♭(Z)⟩,

which is (2b).

(2)⇒(1): We have to prove that if λ = G♯
cl ◦ G

♭
ol and if Gcl and B satisfy the set of

extended λ equations and the closed-loop metric equation given in part (2) of the theorem,
then (Gcl,B) is a solution to the kinetic energy shaping problem. We compute

Gol(P (∇Gol
X X −∇Gcl

X X +G♯
clB

♭(X)), Z)

= Gol(∇Gol
X X −∇Gcl

X X +G♯
clB

♭(X), PZ)

= Gol(∇Gol
X X,PZ)−Gcl(∇Gcl

X X,λPZ) + ⟨B♭(X), λPZ⟩

= LXGol(X,PZ)−Gol(X,∇Gol
X PZ)

− LXGcl(X,λPZ) +Gcl(X,∇Gcl
X λPZ) + ⟨B♭(X), λPZ⟩

= −Gol(X,∇Gol
X PZ) +Gcl(X,∇Gcl

X λPZ) + ⟨B♭(X), λPZ⟩

= −Gol(X,∇Gol
X PZ) +Gcl(X,∇Gcl

λPZX) +Gcl(X, [X,λPZ]) + ⟨B♭(X), λPZ⟩

= −Gol(X,∇Gol
X PZ) + 1

2LλPZGcl(X,X) +Gcl(X, [X,λPZ]) + ⟨B♭(X), λPZ⟩

= −Gol(X,∇Gol
X PZ) +Gol(∇Gol

X PZ,X)− ⟨λPZ,B♭(X)⟩+ ⟨B♭(X), λPZ⟩
= 0.

As a result,
P (∇Gol

X X −∇Gcl
X X +G♯

clB
♭(X)) = 0,

as desired. ■

From part (2) of the previous theorem we see that the kinetic energy shaping partial
differential equation is equivalent to two partial differential equations, one for λ and one
for obtaining Gcl from λ. We will study these partial differential equations in detail in
Chapter 4, but for now let us define them.
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3.5 Definition: Let Q be an n-dimensional manifold and let G ∈ Γω(S+2 T
∗Q) be a Rieman-

nian metric on Q. Let W ⊂ T∗Q be a subbundle and let P be the associated G-orthogonal
projection map as in Section 1.1. The following set of partial differential equations with
λ ∈ Γω(T∗Q ⊗ TQ) and B a gyroscopic (0, 3)-tensor field as dependent variables is called
the extended λ-equation:

∇GZ(Gλ)(PX,PY ) + 1
2⟨B(λPX, λPY ) +B(λPY, λPX), Z⟩ = 0, (3.8)

where X,Y ∈ Γω(TQ).

3.6 Definition: Let Q be an n-dimensional manifold and let G ∈ Γω(S+2 T
∗Q) be a metric

on Q. Let W ⊂ T∗Q be a subbundle and P ∈ Γω(T∗Q ⊗ TQ) be the associated projection
map as above. Also let λ ∈ Γω(T∗Q⊗ TQ) and let B be a gyroscopic (0, 3)-tensor field on
Q. The following set of partial differential equations with Gcl ∈ Γω(S2T

∗Q) as unknown is
called the extended closed-loop metric equation:

∇GλPXGcl(Z,Z) + 2Gcl(∇GZλPX,Z) = 2G(∇GZPX,Z)− 2⟨λPX,B♭(Z)⟩, (3.9)

for X,Y, Z ∈ Γω(TQ).

It is clear that the λ-equation is a first-order linear system of partial differential equa-
tions. The word extended is due to the presence of gyroscopic forces. Theorem 3.3 is an
intrinsic version of what has been presented in [7]. Different versions of the proof have been
given in [5, 6] and modified with presence of gyroscopic forces in [16]. One should note
that, by solving the λ-equations, we only obtain the restriction of λ to Γω(W⊥ ⊗T∗Q). As
in [6], we assume that one solves the kinetic energy shaping problem in the following steps.

1. Find the set of pairs (λ,B) which satisfy the extended λ-equations.

2. Use the set of solutions to the λ-equations to find a closed-loop metric Gcl as a solution
to the extended closed-loop metric system of equations. This closed-loop metric will
be a solution to the kinetic energy shaping problem by the statement of Theorem 3.3.
Moreover, all the solutions to the kinetic energy shaping problem can be produced by
this procedure.

3.7 Remark: Note that there is no assumption on the positive-definiteness of the closed-
loop metric. In other words, one may very well achieve a closed-loop metric which is not
positive-definite, but which could possibly lead to a stabilizing energy shaping feedback.

3.3. The λ-method partial differential equations

In this section, we formulate the two partial differential equations for the λ-method
in the language of jet bundles. We make the simplifying assumption in this section that
B = 0. Assume that W is an (n−m)-dimensional integrable subbundle of T∗Q, where m is
the number of unactuated directions. In this section, for simplification, we fix the notation
G = Gol. We use the same notation in Sections 4.1 and 4.2.
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3.3.1. The equation RL. With the assumptions above, the set of λ-equations we consider
in this section is

∇GZ(Gλ)(PX,PY ) = 0, X, Y, Z ∈ Γω(TQ),

where λ ∈ Γω(T∗Q⊗ TQ), G is a metric on Q and P ∈ Γω(T∗Q⊗ TQ) is the G-orthogonal
projection as before. We denote byW⊥ the G-orthogonal complement ofW and by λ|W⊥⊗TQ

the restriction of λ to W⊥⊗TQ. Consider the bundle π : W⊥⊗TQ → Q and let λ|W⊥⊗TQ(q)
be a typical fiber element over q ∈ Q. We define the bundle map

Φ :J1π → T∗Q⊗W⊥ ⊗W⊥

j1(λ|W⊥⊗TQ) 7→ ∇G(Gλ)|ImP⊗ImP , (3.10)

In an adapted coordinate system (qi, λi
a) on W⊥ ⊗ TQ and (qi, λi

a, λ
i
a,k) on J1π,

Φ(qi, λi
a, λ

i
a,k) = (qi,Gaiλ

i
b,k +Gai,kλ

i
b − SskaGsiλ

i
b − SskbGsiλ

i
a), (3.11)

where Sijk, i, j, k ∈ {1, . . . , n}, are the coefficients of the Levi-Civita connection associated
to G, and k ∈ {1, . . . , n}, a, b ∈ {1, . . . ,m}. Thus we define

RL
.
= {p ∈ J1π | Φ(p) = 0}

to be the submanifold of J1π corresponding to the λ-equation.

3.3.2. The equation RE. With the assumptions above, the closed-loop metric equation is

∇GλPXGcl(Z,Z) + 2Gcl(∇GZλPX,Z) = 2G(∇GZPX,Z),

for X,Y, Z ∈ Γω(TQ). Consider the bundle (S2T
∗Q, π,Q) and let W and P be, respectively,

the integrable control codistribution and the G-orthogonal projection, respectively, as in
Section 1.1. Let λ be an automorphism of TQ and denote a section of W⊥⊗TQ by λ|W⊥⊗TQ.
Define the bundle map Υ1 : J1π → T∗Q ⊗ S2T

∗Q by Υ1(j1Gcl) = ∇GGcl. Also define a
bundle map

Υ0 : J1π → W⊥ ⊗ S2T
∗Q

by
Υ0(X,Z,Z) = 2Gcl(∇GZλPX,Z)− 2G(∇GZPX,Z).

Let ΨE : T∗Q⊗ S2T
∗Q → W⊥ ⊗ S2T

∗Q be the bundle map given by

ΨE(β ⊗ A)(PX) = β(λPX)⊗ A,

where β ∈ Γω(T∗Q) and A ∈ Γω(S2T
∗Q). Observe that the map ΨE is surjective. Finally,

define ΦE = ΨE ◦Υ1+Υ0. Thus RE = kerΦE gives the extended closed-loop metric system
of partial differential equations.

3.4. Potential energy shaping

In this section, we explore aspects of potential energy shaping. First, we recall the
result of Lewis [32] regarding potential shaping after kinetic shaping has been done. Then
we couple the sufficient conditions of Lewis [32] with the λ-equations from the previous
section. In this way, we can understand how kinetic energy shaping can influence potential
energy shaping.
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3.4.1. Sufficient conditions for potential energy shaping. We recall the results for poten-
tial energy shaping after kinetic energy shaping from [32]. Denote the bundle automorphism

G♭
ol ◦ G

♯
cl by Λcl. Define a codistribution Wcl = Λ−1

cl (Wol) and assume that this codistri-
bution is integrable. Let (PS

.
= Q × R, π,Q) be the trivial vector bundle over Q, so that

a section of π corresponds to a potential function via the formula q 7→ (q, V (q)). We de-
fine a T∗Q-valued differential operator Dd(V ) = dV which induces a vector bundle map
Φpot : J1π → T∗Q such that Dd(V )(q) = Φpot(j1V (q)). Similarly to what we did for kinetic
energy shaping, we denote by

πWcl
: T∗Q → T∗Q/Wcl

the canonical projection.

3.8 Definition: Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechanical control
system. The submanifold Rpot ⊂ J1π defined by

Rpot = {p ∈ J1π | πWcl
◦ Φpot(p) = πWcl

◦ Λ−1
cl dVol}

is called the potential energy shaping submanifold .

Let π1 : J1π → Q be the canonical projection. Lewis [32] gives a set of sufficient
conditions under which the potential shaping problem has a solution. The proof follows from
the integrability theory of partial differential equations; in particular, the potential energy
shaping partial differential equation has an involutive symbol. We recall the definition of
(Gol-Gcl)-potential energy shaping feedback from [32].

3.9 Definition: A section F of W is called a (Gol-Gcl)-potential energy shaping feedback if
there exists a function Vcl on Q such that

F(q) = ΛcldVcl − dVol, q ∈ Q.

The following theorem implies when one can construct a Taylor series solution to the
potential energy shaping partial differential equation order-by-order.

3.10 Theorem: Let Σol = (Q,Gol, Vol,Fol,Wol) be an analytic open-loop simple mechanical
control system. Let Gcl be a closed-loop analytic metric. Let p0 ∈ Rpot and let q0 =
π1(p0). Assume that q0 is a regular point for Wol and that Wcl = Λ−1

cl Wol is integrable in
a neighborhood of q0. Then the following statements are equivalent:

1. there exists a neighborhood U of q0 and an analytic (Gol-Gcl)-potential energy shaping
feedback F ∈ Γω(W) defined on U which satisfies

Φpot(p0) = ΛcldV (q0)− dVol(q0) + Λ−1
cl dVol(q0),

for a solution V to Rpot;

2. there exists a neighborhood U of q0 such that d(Λ−1
cl dVol)(q) ∈ I2(Wcl|q), where we

denote I2(Wcl|q) = I(Wcl|q) ∩ Λ2(T
∗
qQ) and the algebraic ideal I(Wcl|q) of Λ(T∗

qQ) is
generated by elements of the form γ ∧ ω with γ ∈ Wcl|q.
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The theorem gives a set of compatibility conditions for the existence of a (Gol-Gcl)-
potential energy shaping feedback. Moreover, one can give a full description of the set of
achievable potential energy shaping feedbacks. Let αcl = Λ−1

cl dVol. Let us use a coordinate
system (q1, . . . , qn) on U a neighborhood of q0 such that

Wcl|q0 = span(dqm+1, . . . , dqn).

In these local coordinates we write the one form αcl as αcl = αjdq
j and compatibility

conditions become:
∂αj

∂qi
− ∂αi

∂qj
= 0, i, j ∈ {1, . . . ,m}. (3.12)

3.11 Remark: One can make the following observations about the potential energy shaping
problem.

1. The choice of Gcl affects the set of solutions that one might get for potential energy
shaping. A bad choice of Gcl might make it impossible to find any potential energy
shaping feedback . As a result, if one is able to have an understanding of the set of
closed-loop energy shaping metrics, then the condition given by Equation (3.12) is an
obstruction that detects the closed-loop energy shaping metrics for which their exists
a potential energy shaping feedback. We give a complete description of this problem
in Section 4.3.

2. Following [32], if we denote the set of all solutions for the potential shaping problem
by

PSq0 = {Vcl ⊕ Fcl ∈ Cω(Q)⊕ Γω(Wcl) | dVcl = Fcl + Λ−1
cl dVol, Vcl(q0) = 0},

one can describe the whole set of solutions as an affine subspace of Cω(Q)⊕ Γω(Wcl)
modeled on the subspace

L(PSq0) = {f ⊕ β ∈ Cω(Q)⊕ Γω(Wcl) | df = β}.

3.4.2. The equation RT. The sufficient condition for integrability of the partial differential
equation in potential energy shaping, given in Equation (3.12), can be seen as a nonlinear

partial differential equation with the dependent variable Λ = G♭
ol ◦ G

♯
cl. The following

commutative diagram shows the relationship between λ and Λ:

T∗Q
Λ //

G♯
ol
��

T∗Q

G♯
ol
��

TQ
λ // TQ

Any condition on Λ imposes conditions on λ and vice versa. Through these conditions, we
can find the obstruction that the potential energy shaping integrability condition imposes
on the set of solutions to the λ-equations. The solutions of the λ-equation which give
rise to potential energy shaping are the ones that satisfy the partial differential equation
obtained from Equation (3.12), with the dependent variable Λ. Thus we wish to analyze the
integrability of the partial differential equation obtained from Equation (3.12). We make
some algebraic constructions.
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An algebraic construction

Let V be a finite-dimensional R-vector space. Let D be a subspace of V∗. The algebraic
ideal I(D) of Λ(V∗) is generated by elements of the form γ ∧ ω, where γ ∈ D. For k ∈ Z≥0

we denote Ik(D) = I(D) ∩ Λk(V
∗). For Θ ∈ Aut(V∗), we wish to understand I2(Θ(D)).

3.12 Lemma: We have I2(Θ(D)) = (Θ⊗Θ)(I2(D)).

Proof: Let {v1, . . . , vn} be a basis for V∗, and suppose that

D = span{vm+1, vm+2, . . . , vn}.

One can identify I2(Θ(D)) by

I2(Θ(D)) = span{Θ(vj) ∧Θ(vi) | m+ 1 ≤ j ≤ n, 1 ≤ i ≤ n}.

If one extends Θ to Θ⊗Θ on V∗ ⊗ V∗ in the usual way, we have

Θ⊗Θ(I2(D)) = span{Θ(vj) ∧Θ(vi) | m+ 1 ≤ j ≤ n, 1 ≤ i ≤ n},

as desired. ■

3.13 Lemma: Let α be an analytic local section of (T∗Q, π,Q) in a neighborhood U of Q
and let D ⊂ T∗Q be a subbundle. Then dα ∈ I2(Θ(D)) if and only if

Θ−1 ⊗Θ−1(dα) ∈ I2(D).

Proof: Note that (Θ⊗Θ)−1 = Θ−1⊗Θ−1 and so the proof follows from the previous lemma.
■

3.14 Proposition: Let Q be an n-dimensional manifold and let β ̸= 0 and α be analytic
local sections of T∗Q such that α = Θ(β), where Θ ∈ Aut(T∗Q). Let U be a neighbor-
hood of p ∈ Q. Given D, an integrable subbundle of T∗Q with adapted local coordinates
{dqm+1, . . . , dqn} as above, we have dα ∈ I2(Θ(D)) in this neighborhood if and only if(

∆k
i∆

p
j −∆k

j∆
p
i

)(∂Θl
k

∂xp
βl +Θl

k

∂βl
∂xp

)
= 0,

where i, j ∈ {1, . . . ,m} and we denote Θ−1 by ∆.

Proof: Using Lemma 3.13 we have

dα = ∆k
i∆

p
j

(
∂Θl

k

∂xp
βl +Θl

k

∂βl
∂xp

)
dqi ∧ dqj .

The proof follows since Λ2T
∗Q = I2(D)⊕ Λ2(D

⊥). ■
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Partial differential equation

We consider the system of partial differential equations of Proposition 3.14 with the auto-
morphism Θ as unknown. One can easily observe that this system of partial differential
equations is equivalent to the system of partial differential equations one would obtain by
assuming Equation (3.12) as a partial differential equation with unknown Λ−1. We consider
nonlinear partial differential equations as described briefly in Section 2.1. More details on
the formal integrability of nonlinear systems of partial differential equations can be found
in [22].

Let (Q,G) be an n-dimensional Riemannian manifold and let W ⊂ T∗Q be a subbundle.
Consider the vector bundle (π, (W⊥⊗QTQ)⊕(W⊥⊗QTQ),Q) with a typical fiber (q,Θ(q)⊕
∆(q)) and denote its first jet bundle by J1π. We define the following system of partial
differential equations in a neighborhood U of q0 ∈ Q:

RT = {j1(Θ⊕∆) ∈ J1π | ΦT(j1(Θ⊕∆)) = 0},

where ΦT can be written in adapted local coordinates

ΦT(j1(Θ⊕∆)) =
(
∆k

i∆
r
j −∆k

j∆
r
i

)(∂Θl
k

∂qr
βl +Θl

k

∂βl
∂qr

)
,

where i, j, k ∈ {1, . . . ,m} and β ∈ Γω(T∗Q). This system of partial differential equations
is quasi-linear and so we need to use Definition 2.7 to find the symbol. We look at the
linearization of the partial differential equation about a given reference point. Let Θ̄(q) ⊕
∆̄(q) be a typical fiber of π. If we linearize the system about this point we have

d

dt

∣∣∣
t=0

((
(∆k

i t+ ∆̄k
i )(∆

p
j t+ ∆̄r

j)− (∆k
j t+ ∆̄k

j )(∆
p
i t+ ∆̄r

i )
)

×
(
∂(Θl

kt+ Θ̄l
k)

∂qr
βl + (Θl

kt+ Θ̄l
k)βl

))
=
(
∆k

i ∆̄
r
j +∆r

j∆̄
k
i −∆k

j ∆̄
r
i −∆r

i ∆̄
k
j

) ∂̄Θl
k

∂qr
βl

+
(
∆̄k

i ∆̄
r
j − ∆̄k

j ∆̄
r
i

)(∂Θl
k

∂qr
βl +Θl

k

∂βl
∂qr

)
.

The effect on the reference point of the linearization should be investigated carefully. For
now, we consider the linearization of the system about a point p ∈ J1π with π1

0(p) =
(id|TQ⊗QW⊥ ⊗ id|TQ⊗QW⊥). The reason for this choice is that the identity solution for Θ
refers to the open-loop system which is always a solution to the energy shaping problem.
Thus we study the linearization of the nonlinear system about the open-loop solution. We
emphasize that the involutivity results of Section 4.3 are independent of the choice of point
of linearization. We have the following linearization of ΦT about p:

Vp(ΦT)(j1(Θ⊕∆)) =

(
∂Θl

i

∂qj
βl −

∂Θl
j

∂qi
βl

)
+ (Θl

i

∂βl
∂qj

−Θl
j

∂βl
∂qi

), (3.13)

where we have utilized the fact that VJ1π ∼= J1Vπ [34].



Chapter 4

Formal integrability of energy
shaping partial differential
equations

In this chapter we present some integrability results for the partial differential equations
appearing in the previous chapter. The results rely on the formal integrability theorem of
Goldshmidt, Theorem 2.20.

4.1. Formal integrability of RL

In this section, we apply the integrability theorem of Goldschmidt to the λ-equation.
The statement of the result in this section is Theorem 4.7 which gives sufficient conditions for
formal integrability of the λ-equation. The proof of this theorem requires the machinery of
Section 2.1. However, the statement of the result can be understood without understanding
the details of the proof.

4.1.1. The symbol of RL. Recall the definition of the partial differential equation RL given
in Section 3.3.1. We start by computing the symbol map for RL.

4.1 Lemma: The symbol map σ(RL) : T
∗Q⊗W⊥ ⊗ TQ → T∗Q⊗W⊥ ⊗W⊥ is defined by

σ(RL)(A)(X,PY, PZ) = A(X,PY,G♭(PZ)), A ∈ Γω(T∗Q⊗W⊥ ⊗ TQ),

where X,Y, Z ∈ Γω(TQ).

Proof: This can be shown using the affine structure of J1π as follows. Take p1, p2 ∈ J1π such
that π1

0(p1) = π1
0(p2). Then A = p1 − p2 ∈ T∗Q⊗W⊥ ⊗ TQ, by the affine structure of J1π.

Now one can define the symbol map to be Φ(p2 − p1), where Φ is defined in Section 3.3.1.
Using Equation (3.11), one can observe that

Φ(p1 − p2)(X,PY, PZ) = A(X,PY,G♭(PZ)),

since π1
0(p1) = π1

0(p2). In local coordinates, this identifies the highest order term of the
partial differential equations. ■

Let us determine the symbol G1(RL) and its prolongation.

35
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4.2 Lemma: The following sequence is short exact:

0 // G1(RL) // T∗Q⊗W⊥ ⊗ TQ
σ(RL) // T∗Q⊗W⊥ ⊗W⊥ // 0 (4.1 )

Proof: By the previous lemma one can write σ(RL) = idT∗Q⊗W⊥ ⊗ (G♭ ◦ P ). This map is

surjective since the image of TQ under G♭ ◦ P is isomorphic to W⊥. ■

Let {e1, . . . , en} be a basis for T∗
q0Q for q0 ∈ Q and let Σj be the subspace of T∗

q0Q
generated by {ej+1, . . . , en}. Then we have the following lemma, similar to Lemma 4.2.

4.3 Lemma: The following sequence is short exact:

0 // G1,j(RL) // Σj ⊗W⊥ ⊗ TQ
σ(RL) // Σj ⊗W⊥ ⊗W⊥ // 0

where G1,j(RL) = G1(RL) ∩ Σj.

The following lemma characterizes the prolonged symbol ρ1(G1(RL)).

4.4 Lemma: The following sequence is short exact:

0 // ρ1(G1(RL)) // S2T∗Q⊗W⊥ ⊗ TQ
ρ1(σ(RL))// T∗Q⊗ T∗Q⊗W⊥ ⊗W⊥ τ // C // 0

where C = Λ2T∗Q⊗W⊥ ⊗W⊥ and τ is given by

τ(A)(X1, X2, Y1, Y2) = A(X1, X2, Y1, Y2)− A(X2, X1, Y1, Y2), (4.2 )

where X1, X2 ∈ Γω(T∗Q) and Y1, Y2 ∈ Γω(W⊥).

Proof: Note that τ is, up to a constant, the alternation map on the first two elements and
so is surjective. Moreover, we have

ρ1(σ(RL))(A)(X1, X2, Y1, Y2) = A(X1, X2, Y1,G
♭Y2),

as a consequence of the fact that τ ◦ ρ1(σ(RL)) is zero since A is symmetric in the first two
arguments. Thus the image of ρ1(σ(RL)) is S2T

∗Q⊗W⊥⊗W⊥ and so C = Λ2T∗Q⊗W⊥⊗W⊥.
■

4.5 Lemma: The symbol G1(RL) is involutive.

Proof: We will show that any basis {e1, . . . , en} for T∗
q0Q is a quasi-regular basis. This is

just a dimension count. From Lemmata 4.2 and 4.3 we have

dim(G1(RL)) = nm(n−m),

dim(G1,j(RL)) = (n− j)m(n−m).

We compute

dim(G1(RL)) +

n−1∑
j=1

dim(G1,j(RL)) =
1
2nm(n+ 1)(n−m).

On the other side, using the exactness of Lemma 4.4, one computes

dim(ρ1(G1(RL))) =
n(n+ 1)mn

2
+

n(m)2(n− 1)

2
− n2(m)2

= 1
2nm(n+ 1)(n−m);

thus the G1(RL) is involutive. ■
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4.1.2. Involutivity of RL.

4.6 Theorem: The set of λ-equations RL is involutive if, for p ∈ RL, we have

τ(ρ1(Φ)(p2)− 0) = 0,

where p2 is any point in J2(π) that projects to p.

Proof: We shall verify the conditions of Theorem 2.20. Note that ρ1(G1(RL)) is isomorphic
to S2T

∗Q⊗W⊥ ⊗G♯W. Therefore, it is a vector bundle on the open subset of Q for which
G♯W is a vector bundle. Let C be the cokernel of ρ1(σ(Φ))). Then G(RL) is involutive
and so the system of partial differential equations RL is involutive if the curvature map
κ : RL → C, defined as in Equation (2.3), is zero. We have the following exact commutative
diagram:

0 // ρ1(G1(RL)) //

��

S2T
∗Q⊗W⊥ ⊗ TQ

ρ1(σ(Φ))//

��

T∗Q⊗ T∗Q⊗W⊥ ⊗W⊥ τ //

��

C // 0

0 // ρ1(RL) //

��

J2π
ρ1(Φ) //

��

J1π
′

��
0 // RL

// J1π
Φ // T∗Q⊗W⊥ ⊗W⊥

where we denote by π′ the bundle (T∗Q ⊗W⊥ ⊗W⊥, π′,Q). Let p ∈ RL so that π(p) = q
for q ∈ Q. Therefore, Φ(p) = 0. Take p2 ∈ J2π projecting to p and define ξ = ρ1(Φ)(p2) ∈
J1π

′. By commutativity of the diagram, ξ projects to 0 ∈ T∗Q ⊗ W⊥ ⊗ W⊥, so we take
κ(p) = τ(ξ − 0). It is easy to show that the definition of κ is independent of the choice of
p2 [34, 35]. By the discussion in Section 2.1, p is in the image of the projection of ρ1(RL)
to RL if and only if κ(p) = 0. ■

Using Theorem 4.6 and the map τ defined by Equation (4.2), we can write the following
intrinsic formula for κ:

κ(j1λ)(Z,W,PX,PY )

= ∇GW
(
∇GZ(Gλ)(PX,PY )

)
−∇GZ

(
∇GW (Gλ)(PX,PY )

)
−∇G[W,Z](Gλ)(PX,PY ), (4.3)

where X,Y, Z,W ∈ Γω(TQ). This leads to the following theorem which gives an explicit
expression for the compatibility conditions of the λ-equations.

4.7 Theorem: Let (Q,G) be an analytic Riemannian manifold of dimension n and let S be
the Levi-Civita connection on Q with the associated curvature tensor R. Let W ⊂ T∗Q be
an analytic integrable subbundle and let P ∈ Γω(T∗Q⊗TQ) be the associated G-orthogonal
projection as above. If the partial differential equation

(Gλ)(R(PX,PY )W,Z) + (Gλ)(W,R(PX,PY )Z)

+∇GZ(Gλ)(∇GWPX,PY ) +∇GZ(Gλ)(∇GWPY, PX)

−∇GW (Gλ)(∇GZPX,PY )−∇GW (Gλ)(∇GZPY, PX) = 0 (4.4 )

is satisfied in a neighborhood of λ0 ∈ Γω(T∗Q ⊗ TQ), then the set of λ-equations has a
solution in a neighborhood of λ0. Moreover, any solution to the λ-equations will satisfy
Equation (4.4).
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Proof: From Theorem 4.6 and involutivity of the symbol of RL, a sufficient condition for
the existence of solutions to the λ-equations is that the curvature map be zero. We have

∇GZ(Gλ)(PX,PY ) = G((∇GZλ)(PX), PY )

for all X,Z ∈ Γω(TQ). Thus

∇GW
(
∇GZ(Gλ)(PX,PY )

)
= ∇GW

(
G((∇GZλ)(PX), PY )

)
= G(∇GW (∇GZλ(PX)), PY ) +G(∇GZλ(PX),∇GWPY ),

where X,Y, Z,W ∈ Γω(TQ).
As a result, one can compute

∇GW
(
∇GZ(Gλ)(PX,PY )

)
= G(∇GW∇GZλ(PX), PY ) +∇GZ(Gλ)(∇GWPX,PY ) +∇GZ(Gλ)(PX,∇GWPY ).

We conclude that

∇GW
(
∇GZ(Gλ)(PX,PY )

)
−∇GZ

(
∇GW (Gλ)(PX,PY )

)
−∇G[W,Z](Gλ)(PX,PY )

= G(∇GW∇GZλ(PX), PY )−G(∇GZ∇GWλ(PX), PY )−G(∇G[W,Z]λ(PX), PY )

+∇GZ(Gλ)(∇GWPX,PY ) +∇GZ(Gλ)(∇GWPY, PX)

−∇GW (Gλ)(∇GZPX,PY )−∇GW (Gλ)(∇GZPY, PX) = 0.

Equation (4.4) then follows using the Ricci identity. The necessity of this condition is clear
since any formal solution of the λ-equation satisfies Equation (4.3) by definition. ■

4.2. Formal integrability of RE

We prove that the system of partial differential equations for the closed-loop metric has
an involutive symbol and is formally integrable under a certain surjectivity condition.

4.8 Assumption: An additional assumption is that λ(coann(W)) is involutive. This as-
sumption is not necessary for proving the involutivity of the symbol, however, it helps
simplifying the compatibility conditions. Recall that a similar assumption has been used in
Theorem 3.10.

The main result here is Theorem 4.15. Again, this result can be understood separately
from the details of its proof.

4.2.1. The symbol of RE. We have the symbol map σ(RE) : T
∗Q⊗S2T

∗Q → W⊥⊗S2T
∗Q

for the partial differential equation RE given by

σ(RE)(β ⊗ A)(PX) = β(λPX)⊗ A,

where β ∈ Γω(T∗Q) and A ∈ Γω(S2T
∗Q).
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4.9 Lemma: We have G(RE)
.
= ker(σ(RE)) is isomorphic to W⊗ S2T

∗Q.

Proof: If β ⊗A ∈ ker(σ(RE)) then β(λPX) = 0 and thus β ∈ ann(λ(coann(W))). Since λ is
an isomorphism, we have that ker(σ(RE)) is of dimension (n−m)× (n× (n+ 1)/2) and so
is isomorphic to W⊗ S2T

∗Q as claimed. ■

Let {e1, . . . , en} be a basis for T∗
q0Q such that {e1, . . . , en−m} spans W and let Σj be

the subspace of T∗
q0Q generated by {ej+1, . . . , en}. Consider the restriction

σ(RE)|Σj⊗S2T∗Q : Σj ⊗ S2T
∗Q → W⊥ ⊗ S2T

∗Q,

of the symbol map to Σj ⊗ S2T
∗Q. We have the following lemma.

4.10 Lemma: We have

G(RE)1,j
.
= ker(σ(RE)|Σj⊗S2T∗Q) = (Σj ∩W)⊗ S2T

∗Q.

Proof: The proof follows by Lemma 4.9 with restricting the symbol σ(RE) to Σj⊗S2T
∗Q.■

Define a map

ρ1(σ(RE)) : S2T
∗Q⊗ S2T

∗Q → T∗Q⊗W⊥ ⊗ S2T
∗Q,

by ρ1(σ(RE)) = idT∗Q ⊗ σ(RE). Explicitly,

ρ1(σ(RE))(Π⊗ A)(X,PY,Z,W ) = Π(λ(PY ), X)⊗ A(Z,W ),

where Π ∈ Γω(S2T
∗Q). This map then identifies the prolongation of σ(RE). We have the

following lemma.

4.11 Lemma: The following sequence is short exact:

S2T
∗Q⊗ S2T

∗Q
ρ1(σ(RE))// T∗Q⊗W⊥ ⊗ S2T

∗Q
τ // Λ2W

⊥ ⊗ S2T
∗Q // 0

where τ is the canonical projection onto cokernel of ρ1(σ(RE)).

The proof of Lemma 4.11 follows immediately from the following lemma.

4.12 Lemma: Let V be an n-dimensional vector space and let W be an m-dimensional
subspace of V∗. Let γ be an automorphism on V. Suppose ϕγ is the map from S2V

∗ to
V∗ ⊗ V∗ defined by ϕγ(A)(u, v) = A(γu, v), where u, v ∈ V. Then the following diagram is
exact and commutative:

0

��

0

��
S2V

∗ //W ⊗ V∗ //

��

Λ2W //

��

0

S2V
∗ ϕγ // V∗ ⊗ V∗ τγ // Λ2V

∗ // 0

where τγ is given by
τγ(B)(u, v) = B(γ−1u, v)− B(γ−1v, u),

and B ∈ V∗ ⊗ V∗.
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Proof: It is immediate by definition that ker(ϕγ) = 0. Thus the image of ϕγ is isomorphic

to S2V
∗ and the cokernel is of dimension n(n−1)

2 and thus isomorphic to Λ2V
∗. The map τγ

precisely prescribes the projection to the cokernel since τγ ◦ϕγ(A) = 0 for all A ∈ S2V
∗. The

first row of the diagram is the restriction of the second row by restricting γ to W ⊗ V. We
only need to verify that the cokernel of this restriction is isomorphic to Λ2W. This follows
since

τγ(B)(u1 ⊕ 0, v1 ⊕ v2) = −τγ(B)(v1 ⊕ 0, u1 ⊕ 0) = τγ(B)(u1 ⊕ 0, v1 ⊕ 0),

where B ∈ W ⊗ V∗, i.e., τγ(B) ∈ Λ2W. ■

An immediate corollary of Lemma 4.11 is that the kernel of ρ1(σ(RE)) is isomorphic
to S2W ⊗ S2T

∗Q. One could also verify this in adapted local coordinates. By definition,
Π⊗A ∈ ker(ρ1(σ(RE))) if and only if Πkjλ

j
a = 0, where j, k ∈ {1, . . . , n} and a ∈ {1, . . . ,m}.

Since λ is an isomorphism, all of the equations that describe the kernel are independent;
thus a dimension count gives that the space of all Π⊗A which are in the kernel is isomorphic
to S2W⊗ S2T

∗Q.

4.13 Proposition: The symbol of RE is involutive.

Proof: Let {e1, . . . , en} be a basis for T∗
q0Q for q0 ∈ Q and let Σj be the subspace of T∗

q0Q
generated by {ej+1, . . . , en}. We show that this yields a quasi-linear basis for T∗

q0Q. Using
Lemmata 4.9 and 4.10 we have

dim(G(RE)) =
1
2(n−m)n(n+ 1),

dim(G(RE)1,j) =

{
1
2(n−m− j)n(n+ 1), 1 ≤ j < n−m,

0, n−m ≤ j < 0.

We compute

dim(G(RE)) +

n−m∑
j=1

dim(G(RE)1,j) =
1
4n(n−m)(n−m+ 1)(n+ 1).

On the other side, Lemma 4.11 implies that

dim(ρ1(G(RE))) =
(n−m)(n−m+ 1)n(n+ 1)

4
=

1

4
n(n−m)(n−m+ 1)(n+ 1),

as desired. ■

4.2.2. Involutivity of RE. The following theorem applies Goldschmidt’s theorem to RE.

4.14 Theorem: The partial differential equation RE is involutive if, for p ∈ RE, we have

τ(ρ1(p2)− 0) = 0,

where p2 is any point in J2π that projects to p.

Proof: Since the symbol is involutive, the proof follows along the same lines as that of
Theorem 4.6. ■
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One can construct the curvature map, similar to the one for RL, using the map τ defined
in Lemma 4.11:

κ(j1Gcl)(λPX, λPY,Z, Z)

= ∇GλPY [∇GλPX(Gcl)(Z,Z)]−∇GλPX [∇GλPY (Gcl)(Z,Z)]−∇G[λPY,λPX](Gcl)(Z,Z). (4.5)

Note that, by Assumption 4.8, there exists a ζ ∈ Γω(TQ) such that [λPY, λPX] = λPζ. We
state the following theorem which provides the obstruction to finding a closed-loop metric.

4.15 Theorem: Let (Q,G) be an analytic Riemannian manifold of dimension n and let S

be the Levi-Civita connection on Q with associated curvature tensor R. Let W ⊂ T∗Q be
an analytic integrable subbundle and let P ∈ Γω(T∗Q⊗TQ) be the associated G-orthogonal
projection as above. Let λ be an automorphism on TQ which satisfies Assumption 4.8. If
the first-order partial differential equation

2∇GλPY (Gcl)([Z, λPX], Z)− 2∇GλPX(Gcl)([Z, λPY ], Z)

+ 2Gcl(∇GλPY (∇GZλPX)−∇GλPX(∇GZλPY ), Z) + 2G(∇GλPY (∇GZPX)−∇GλPX(∇GZPY ), Z)

+ 2Gcl(∇GλPY Z,∇GZλPX)− 2Gcl(∇GλPXZ,∇GZλPY ) + 2G(∇GλPXZ,∇GZλPY )

− 2Gcl(∇GλPY Z,∇GZλPX) + 2Gcl(∇GZλζ, Z)− 2G(∇GZζ, Z) = 0 (4.6 )

is satisfied in a neighborhood of Gcl ∈ Γω(S2T
∗Q) for X,Y, Z ∈ Γω(TQ) and ζ ∈ Γω(TQ)

as above, then the set of closed-loop metric equations has a solution in a neighborhood of
Gcl. Moreover, any solution to the closed-loop metric equations will satisfy Equation (4.6).

Proof: The proof follows from a direct computation using Equation (4.5) and the Ricci
identity (similar to Theorem 4.7). One also uses the following identity

(Gcl)(R(Z,Z)λPY, λPX) + (Gcl)(λPY,R(Z,Z)λPX)

= (G)(R(Z,Z)λPY, PX) + (G)(PY,R(Z,Z)λPX) = 0,

which holds by the Ricci identity, since R is the curvature associated to the Levi-Civita
connection ∇G. ■

4.3. Formal integrability of RT

We prove that the system of partial differential equations relating the λ-equations to
the potential energy shaping equations is formally integrable under a surjectivity condition.
The main result here is Theorem 4.24. As with the previous two sections, this result can
be understood separately from the details of its proof.

4.3.1. The symbol of RT. In this section we construct the symbol map for the quasi-linear
partial differential equation ΦT defined in Section 3.4.2. Note that the linearization VΦT

about a point p ∈ J1π with

π1
0(p) = (id|TQ⊗QW⊥ ⊗ id|TQ⊗QW⊥),
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can be reduced to a map on J1Vπ|(W⊥⊗QTQ)⊕0 since there is no ∆ involved in the linearization
(see Equation (3.13)). As we showed in Section 3.4.2, the linearization VΦT can be identified
as a map from J1Vπ to Vπ′, where π′ denotes the bundle (π′,Λ2W

⊥,Q). We identify
Vπk

0 (p)
π and VΦT(p)π

′ with (W⊥⊗QTQ)|π1
0(p)

and Λ2(W
⊥)|Φ(p), respectively. In this section,

we wish to define the symbol map σ(RT) of RT as a morphism of vector bundles from
π∗
1T

∗Q ⊗ (π1
0)

∗Vπ to Vπ′. In order to do this, we start with some algebraic constructions.
We will often drop the points of evaluation for simplicity of notation.

Consider the alternation map Alt acting on the (0, 2)-tensors and denote the restriction
of 2Alt to (W⊥ ⊗ T∗Q)|π1

0(p)
by σ̌. Explicitly, if we have b ∈ W⊥

π1(p)
and c ∈ T∗

π1(p)
Q, then

σ̌(b⊗ c)(u1 ⊕ u2, v1 ⊕ v2) = b(u1)c(v1 ⊕ v2)− b(v1)c(u1 ⊕ u2).

4.16 Lemma: We have ker(σ̌) = S2W
⊥ and Im(σ̌) = I2(W

⊥).

Proof: Since σ̌ is the restriction of the alternation map, one can easily observe that ker(σ̌) =
ker(Alt) ∩ (W⊥ ⊗ T∗Q). Clearly S2W

⊥ ⊂ S2T
∗Q ∩ (W⊥ ⊗ T∗Q). Moreover, for any Θ ∈

Γω(S2T
∗Q ∩ (W⊥ ⊗ T∗Q)), we have

Θ(u1 ⊕ u2, v1 ⊕ v2) = Θ(0⊕ v2, u1 ⊕ u2) = Θ(0⊕ u2, 0⊕ v2).

Thus Θ ∈ Γω(S2W
⊥) and as a result, we have S2T

∗Q∩(W⊥⊗T∗Q) = S2W
⊥. Recalling that

Λ2(T
∗Q) = Λ2(W) ⊕ Λ2(W

⊥) ⊕ (W ⊗W⊥) and using the definition of σ̌, one can observe
that Im(2Alt) = Im(σ̌) ∪ Λ2(W). ■

The symbol map σ(RT)|p can be characterized as the composition

T∗Q⊗ (W⊥ ⊗Q TQ)
σ̃ // I2(W

⊥)
p // Λ2W

⊥ ,

where p is the canonical projection of I2(W
⊥) onto Λ2W

⊥ and

σ̃(b⊗ c⊗ v) = β(v)σ̌(b⊗ c),

with β ∈ T∗
π1(p)

Q, b ∈ W⊥
π1(p)

, c ∈ T∗
π1(p)

Q and v ∈ Tπ1(p)Q. In local coordinates, σ(RT)

captures the highest order derivatives in Equation (3.13). We now identify the kernel of
σ(RT).

4.17 Lemma: The following sequence is short exact:

0 // G(RT) // T∗Q⊗ (W⊥ ⊗Q TQ)
σ(RT) // Λ2(W

⊥) ,

where

G(RT) ∼=
(
S2W

⊥ ⊗ TQ
)
⊕
(
(W⊗W⊥)⊗ TQ

)
⊕
(
Λ2W

⊥ ⊗ coann(β)
)
.

Proof: Clearly T∗Q ⊗ (W⊥ ⊗ coann(β)) ⊂ ker(σ(RT)). Lemma 4.16 yields S2W
⊥ ⊗ TQ ⊂

ker(σ(RT)). Finally σ̃((W⊗W⊥)⊗ TQ) ⊂ ker(p). If v /∈ coann(β) then, by definition, the
image of Λ2W

⊥ ⊗ v under σ(RT) is Λ2W
⊥. ■

Let {e1, . . . , en} be a basis for T∗
π1(p)

Q. Let Σj be the subspace of T∗
π1(p)

Q generated by

{ej+1, . . . , en} and define M∗
j = W⊥ ∩ Σj and M∗⊥

j = W⊥ ∩ Σ⊥
j . Let I2(M

∗
j) = I(M∗

j) ∩
Λ2(W

⊥). The following lemma can be proved along the same lines as Lemma 4.17.
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4.18 Lemma: The following sequence is short exact:

0 // G(RT)1,j // Σj ⊗ (W⊥ ⊗Q TQ)
σ(RT)// I2(M

∗
j) ,

where

G(RT)1,j ∼=
(
S2M

∗
j ⊗ TQ

)
⊕
(
((W ∩ Σj)⊗W⊥)⊗ TQ

)
⊕
(
((W⊥ ∩ Σj)⊗W⊥)/S2M

∗
j ⊗ coann(β)

)
.

We define the prolongation map ρ1(σ(RT)) as idT∗Q ⊗ σ(RT). Explicitly,

ρ1(σ(RT)) = (idT∗Q ⊗ p) ◦ ρ1(σ̃(RT)),

where

ρ1(σ̃(RT))(C⊗ b⊗ v)(w1 ⊕ w2, u1 ⊕ u2, z1 ⊕ z2)

= β(v)
(
C(w1 ⊕ w2, u1 ⊕ u2)b(z1)− C(w1 ⊕ w2, z1 ⊕ z2)b(u1)

)
,

and β ∈ T∗
π1(p)

Q, b ∈ W⊥
π1(p)

, C ∈ S2T
∗
π1(p)

Q, and v ∈ Tπ1(p)Q.

4.19 Lemma: The following sequence is short exact:

0 // ρ1(G(RT)) // S2T
∗Q⊗ (W⊥ ⊗Q TQ)

ρ1(σ(RT))// T∗Q⊗ Λ2W
⊥

where

ρ1(G(RT)) ∼=
(
S3W

⊥ ⊗ TQ
)
⊕
(
(W⊗W⊥ ⊗W⊥)⊗ TQ

)
⊕
(
(S2W⊗W⊥)⊗ TQ

)
⊕
(
((S2W

⊥ ⊗W⊥)/S3W
⊥)⊗ coann(β)

)
.

The proof of this lemma requires the following lemma.

4.20 Lemma: Let V be an n-dimensional R-vector space and define ρ : S2V
∗ ⊗ V∗ →

V∗ ⊗ Λ2V
∗ by

ρ(A⊗ α)(u, v, w) = A(u, v)α(w)− A(u,w)α(v).

Then the following sequence is short exact

0 // S3V
∗ // S2V

∗ ⊗ V∗ ρ // V∗ ⊗ Λ2V
∗ // Λ3V

∗ // 0 ,

where τ is defined by

τ(B)(u, v, w) = B(u, v, w) + B(v, w, u) + B(w, u, v).

Proof: The kernel of ρ consists of elements of T0
3(V

∗) which are symmetric in the first two
entries and the last two entries. Thus ker(ρ) = S3V

∗. The map τ is surjective, since if
C ∈ Λ3V

∗ then C = τ(13C). Furthermore, one can easily check that τ ◦ ρ = 0; thus the
sequence is short exact. ■



44 B. Gharesifard

We now are ready to prove Lemma 4.19.

Proof of Lemma 4.19: By definition of ρ1(σ(RT)),

S2T
∗Q⊗W⊥ ⊗ coann(β) ⊂ ker ρ1(σ(RT)).

Let v /∈ coann(β) and take C ∈ S2T
∗
π1(p)

Q and b ∈ W⊥
π1(p)

such that C⊗b ∈ S3W
⊥
π1(p)

. Then

ρ1(σ(RT))(C⊗ b⊗ v)(w1 ⊕ w2, u1 ⊕ u2, z1 ⊕ z2)

= β(v)
(
C(w1 ⊕ 0, u1 ⊕ 0)b(z1)− C(w1 ⊕ 0, z1 ⊕ 0)b(u1)

)
= 0,

by symmetry in the last two entries; thus

S3W
⊥ ⊗ TQ ⊂ ker(ρ1(σ(RT))).

Furthermore, (W⊥ ⊗W⊗W⊥)⊗TQ and (S2W⊗W⊥)⊗TQ are subsets of ker(ρ1(σ(RT))),
because the image of these two sets under ρ1(σ̃(RT)) is in the kernel of idT∗Q ⊗ p. Finally,
the elements of S2T

∗Q⊗ (W⊥ ⊗Q TQ) that look like C⊗ b⊗ v, where C⊗ b ∈ (S2W
⊥
π1(p)

⊗
W⊥

π1(p)
)\S3W⊥

π1(p)
and v /∈ coann(β), have nonzero image under ρ1(σ(RT)), see Lemma 4.20.

■

4.21 Proposition: The symbol of RT is involutive.

Proof: We will show that any basis {e1, . . . , en} is a quasi-regular basis. Using Lemmata 4.17
and 4.18 we have

dim(G(RT)) =
m(m+ 1)

2
n+mn(n−m) +

m(m− 1)

2
(n− 1),

dim(G(RT)1,j) = n
(m− j + 1)(m− j)

2
+mn(n−m)

+ [(m− j)m− (m− j)(m− j + 1)

2
](n− 1), j < m,

dim(G(RT)1,j) = mn(n− j), j ≥ m.

As a result, we compute

n−1∑
j=1

dim(G(RT)1,j) + dim(G(RT)) =

m−1∑
j=1

(
n
(m− j + 1)(m− j)

2
+mn(n−m)

+ [(m− j)m− (m− j)(m− j + 1)

2
](n− 1)

)
+

n−1∑
j=m

(mn(n− j)) + n
m(m+ 1)

2

+mn(n−m) +
m(m− 1)

2
(n− 1)

=
1

6
mn(m+ 1)(m+ 2) + 1

2mn(n+m+ 1)(n−m)

+
1

3
m(m− 1)(m+ 1)(n− 1).
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On the other side, by Lemma 4.19 we have

dim(ρ1(G(RT))) = n
m(m+ 1)(m+ 2)

6
+ nm2(n−m) + nm

(n−m)(n−m+ 1)

2

+
(
m
m(m+ 1)

2
− m(m+ 1)(m+ 2)

6

)
(n− 1)

=
1

6
mn(m+ 1)(m+ 2) + 1

2mn(n+m+ 1)(n−m)

+
1

3
m(m− 1)(m+ 1)(n− 1)

which completes the proof. ■

4.3.2. Involutivity of RT. To compute the curvature map for RT we use the following
lemma.

4.22 Lemma: The following sequence is exact:

S2T
∗Q⊗ (W⊥ ⊗Q TQ)

ρ1(σ(RT))// T∗Q⊗ Λ2W
⊥ τ // Λ3W

⊥ ⊕ (W⊗ Λ2W
⊥) // 0

where τ is the projection to coker(ρ1(σ(RT))) given by

τ(b)(v1 ⊕ v2, u, w) =

(b(v1, u, w) + b(u,w, v1) + b(w, v1, u)) + b(v2, u, w), v1, u, w ∈ W⊥, v2 ∈ W.

Proof: Recall that S2T
∗Q = S2W⊕ S2W

⊥ ⊕ (W⊗W⊥). Using Lemma 4.19 and since(
S3W

⊥ ⊗ TQ
)
⊕
(
(W⊗W⊥ ⊗W⊥)⊗ TQ

)
⊆ ker(ρ1(σ(RT))),

we observe that
W⊗ Λ2W

⊥ ⊆ coker(ρ1(σ(RT))).

Moreover, by Lemma 4.20
Λ3W

⊥ ⊆ coker(ρ1(σ(RT))).

Finally, a dimension count using Lemma 4.19 then shows that the sequence is exact. ■

As a consequence of the previous computations, we have the following theorem.

4.23 Theorem: The partial differential equation RT is involutive if, for p ∈ RT, we have

τ(ρ1(Φ)(p2)− 0) = 0,

where p2 is any point in J2π that projects to p.

Proof: The proof follows by verifying conditions of Theorem 2.20. Notice that ρ1(G1(RL))
is a vector bundle on the open subset on which W is a vector bundle. Since G(RT) is
an involutive symbol, the system of partial differential equations RT is involutive if the
curvature map κ defined as follows is zero:

κ : RT → Λ3W
⊥ ⊕ (W⊗ Λ2W

⊥), (4.7)

with κ(p) = τ(ρ1(Φ)(p2)− 0), where p2 is any point in J2π that projects to p. ■

Recall the definition of Rpot from Section 3.4.1. We have the following theorem.
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4.24 Theorem: Let Σol = (Q,Gol, Vol,Fol,Wol) be an analytic open-loop simple mechanical
control system. Let p0 ∈ Rpot and let q0 = π1(p0). Assume that q0 is a regular point for
Wol and that there exists a bundle automorphism Θ on T∗Q defined on a neighborhood U
of q0 such that Θ satisfies the following equation in the neighborhood U :

[κ(Θ)]rij =

(
∂2Θl

i

∂qr∂qj
∂Vol

∂ql
−

∂2Θl
j

∂qr∂qi
∂Vol

∂ql

)
+

(
∂Θl

i

∂qj
∂2Vol

∂qr∂ql
−

∂Θl
j

∂qi
∂2Vol

∂qr∂ql

)

+

(
∂Θl

i

∂qr
∂2Vol

∂qj∂ql
−

∂Θl
j

∂qr
∂2Vol

∂qi∂ql

)
+

(
Θl

i

∂3Vol

∂qr∂qj∂ql
−Θl

j

∂3Vol

∂qr∂qi∂ql

)
= 0,

where i, j ∈ {1, . . . ,m}, l ∈ {1, . . . , n} and r ∈ {m+1, . . . , n}. Then there exists an analytic
closed-loop energy shaping metric Gcl prescribed by G♭

cl = Θ◦G♭
ol and an analytic (Gol-Gcl)-

potential energy shaping feedback F ∈ Γω(Wol) defined on U which satisfies Φpot(p0) =
Θ−1dV (q0)− dVol(q0) + ΘdVol(q0) for a solution V to Rpot.

Proof: Observe that the system of partial differential equations RT, with Θ = Λ−1
cl and

β = dVol, gives the sufficient conditions for existence of a (Gol-Gcl)-potential energy shaping
feedback; see Equation (3.12). Using Theorem 4.23, this partial differential equation is
integrable if the curvature map given by Equation (4.7) is zero. By calculating the τ map,
defined in Lemma 4.22, in local coordinates and after some simplifications the curvature
map can be written as

[κ(Θ)] =

(
∂2Θl

i

∂qr∂qj
∂Vol

∂ql
−

∂2Θl
j

∂qr∂qi
∂Vol

∂ql
+

∂Θl
i

∂qj
∂2Vol

∂qr∂ql
−

∂Θl
j

∂qi
∂2Vol

∂qr∂ql

+
∂Θl

i

∂qr
∂2Vol

∂qj∂ql
−

∂Θl
j

∂qr
∂2Vol

∂qi∂ql
+Θl

i

∂3Vol

∂qr∂qj∂ql
−Θl

j

∂3Vol

∂qr∂qi∂ql

)
dqr ⊗ dqi ∧ dqj ,

where i, j ∈ {1, . . . ,m}, l ∈ {1, . . . , n} and r ∈ {m+ 1, . . . , n}, as desired. ■

4.4. Summary of integrability results

In this section we give a summary of the theorems we have obtained in the previous
sections. Moreover, we state a procedure that clarifies how one should perform the energy
shaping method so that certain problems—such as having a closed-loop energy shaping
metric for which no potential energy shaping is possible—will not arise. This procedure
reveals some of the fundamental properties of energy shaping partial differential equations
that have not been understood in the literature to date.

1. Kinetic energy shaping: Find the set of bundle automorphisms λ on TQ which
satisfy the sufficient conditions of Theorem 4.7 and denote it by ŜK. Use the sufficient
conditions of Theorem 4.15 to find the set of λ ∈ ŜK for which there exists a closed-
loop metric Gcl and denote it by SK.

2. Potential energy shaping: Find the set of bundle automorphisms Θ on T∗Q which
satisfy the sufficient conditions of Theorem 4.24 and denote it by ŜP and let

S′P = {Θ−1 | Θ ∈ ŜP}.
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The set of bundle automorphisms S′P induces a set of bundle automorphisms on TQ
by

SP
.
= {G♯

olΛG
♭
ol | Λ ∈ S′P}.

Note that, by Theorem 3.10, for each λ ∈ SP there exists a Vcl which satisfies the
potential energy shaping partial differential equations.

3. Total energy shaping: The intersection SP ∩ SK yields the set of λ such that

(a) there exists a closed-loop metric which is a solution to the kinetic energy shaping
problem and

(b) more importantly, potential energy shaping is possible and as a result, energy
shaping is possible.

4. Determine the set of closed-loop potential functions Vcl with positive-definite Hessian
at the desired point. It would be interesting to have a geometric characterization of
this. Some ideas for this are addressed in Section 7.2.3.

4.5. A simple mechanical control system with no energy shaping feedback

We emphasize the importance of the sufficient conditions obtained in the previous sec-
tions by designing a class of linearly controllable systems that are not stabilizable by the
energy shaping method in the absence of gyroscopic forces. We postpone the extension of
this problem in the presence of gyroscopic forces for the future work; see Section 7.2.2.

4.25 Example: Let Q = R3 and consider a simple mechanical control system Σol =
(R3,G, Vol, 0,Wol) as follows.

1. The open-loop metric is

G = Mdq1 ⊗ dq1 +Mdq2 ⊗ dq2 + ((q1)2 + (q2)2 + 1)dq3 ⊗ dq3,

where M ∈ R>0.

2. The open-loop potential function Vol is

Vol = (q1)2 + q3q2 + q3q1 + p(q1, q2),

with p = O((q1)k1(q2)k2), k1 + k2 ≥ 3.

3. The control subbundle is W = span{dq3}.

The system is linearly controllable at the origin q0 = 0 ∈ R3. Furthermore, the system
is not stable at q0. So we wish to proceed with the energy shaping method. We have the
following proposition.

4.26 Proposition: Σol is stabilizable at the origin by energy shaping method if and only if
p ≡ 0.

In order to prove this proposition we need the following lemma.
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4.27 Lemma: For the above example, the set of analytic closed-metrics for which there
exists a potential energy shaping feedback is

{Mdq1 ⊗ dq1 +Mdq2 ⊗ dq2 + (q1)2 + Z(q1, q2, q3)dq3 ⊗ dq3 | M,C ∈ R, Z ∈ Cω(Q)}.

Proof: For this example, one can easily check that the only nonzero Christoffel symbols are
S133, S

2
33, S

3
31, and S332. Thus the λ-equations are the following:

1.


∂

∂q1
(G11λ

1
1) = 0,

∂
∂q2

(G11λ
1
1) = 0,

∂
∂q3

(G11λ
1
1)− 2S331G33λ

3
1 = 0;

2.


∂

∂q1
(G22λ

2
2) = 0,

∂
∂q2

(G22λ
2
2) = 0,

∂
∂q3

(G22λ
2
2)− 2S332G33λ

3
2 = 0;

3.


∂

∂q1
(G11λ

1
2) = 0,

∂
∂q2

(G11λ
1
2) = 0,

∂
∂q3

(G11λ
1
2)− S331G33λ

3
2 − S332G33λ

3
1 = 0;

4.


∂

∂q1
(G22λ

2
1) = 0,

∂
∂q2

(G22λ
2
1) = 0,

∂
∂q3

(G22λ
2
1)− S332G33λ

3
1 − S331G33λ

3
2 = 0.

From the first set of equations we conclude that q1λ3
2 = g(q3), where g ∈ Cω(Q). Similarly,

we have q2λ3
1 = h(q3), where h ∈ Cω(Q). Substituting this into the third set of equations,

one can conclude that h = g ≡ 0. Furthermore, since Gcl is required to be symmetric,
λ1
3 = λ2

3 = 0. Thus the set of solutions to the λ-equation in a neighborhood of the origin is
given by

λ = c11dq
1 ⊗ dq1 + c12(dq

1 ⊗ dq2 + dq2 ⊗ dq1) + c22dq
2 ⊗ dq2 + z(q1, q2, q3)dq3 ⊗ dq3, (4.8)

where c11, c12, c22 ∈ R and z ∈ Cω(Q). Recalling the definition of Θ in Proposition 3.14,
we have

Θ = C11dq
1 ⊗ dq1 + C12(dq

1 ⊗ dq2 + dq2 ⊗ dq1) + C22dq
2 ⊗ dq2 + Z(q1, q2, q3)dq3 ⊗ dq3,

where C11, C12, C22 ∈ R and Z ∈ Cω(Q). We denote the set of all such Θ by SK as
in Section 4.4. Our main goal is to find the subset SK which leads to a potential energy
shaping feedback. SinceWol is invariant under Θ, the potential energy shaping compatibility
condition (see Equation (3.12)) in a neighborhood of the origin is given by

(C11 − C22)
∂2Vol

∂q1∂q2
+ C12

∂2Vol

∂q2∂q2
− C12

∂2Vol

∂q1∂q1
= 0;

thus we conclude that C11 = C22 and C12 = 0. ■
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Proof of Proposition 4.26: Since c11 = c22 and c12 = 0, the potential energy shaping partial
differential equations for Vcl reads

∂Vcl

∂qi
= a

∂Vcl

∂qi
,

where i ∈ {1, 2} and a ∈ R\{0}. Thus we have

Vcl = a((q1)2 + q3q2 + q3q1 + p(q1, q2)) + f(q3),

where a ∈ R\{0} and f ∈ Cω(Q). The Hessian of the closed-loop potential function has
the following form at the origin.

Hess(Vcl)(q0) = a

 2 0 1
0 0 1
1 1 b

 ,

where a ∈ R\{0} and b ∈ R are arbitrary parameters. Thus it is clear that the Hessian
cannot be made positive-definite for any choice of a and b. If p ≡ 0, then C12 need not be zero
and thus the Hessian can be made positive-definite using this extra arbitrary parameter.■



Chapter 5

Energy shaping for linear simple
mechanical systems

In this chapter, a geometric proof is given that, for linear simple mechanical control sys-
tems, linear controllability is sufficient for the existence of a stabilizing energy shaping
feedback. Although the same result has been proved in the Lagrangian setting [51] and in
the Hamiltonian setting [36], the proofs are not constructive and do not reveal the structure
of the partial differential equations for energy shaping. Our proof relies on an adaptation
of the integrability results of Chapter 4 to linear simple mechanical systems. Moreover, we
clarify the role of kinetic energy shaping in the construction of a stabilizing energy shaping
feedback for linear simple mechanical systems.

5.1. Linear simple mechanical systems

In this section we recall the algebraic formulation of linear simple mechanical systems
from [14]. We use this formulation to give an algebraic description of the energy shaping
problem for linear simple mechanical control systems in the next section. We start by
defining what we mean by a linear simple mechanical system.

5.1 Definition: A linear simple mechanical control system is a quadruple Σ = (V,M,K, F ),
where

1. V is an n-dimensional R-vector space,

2. M is an inner product on V,

3. K is a symmetric (0, 2)-tensor on V, and

4. F ∈ L(Rm,V∗) corresponds to the controls.

The governing equations for a linear simple mechanical system are

ẍ(t) +M♯K♭(x(t)) = M♯ ◦ F (u(x(t), ẋ(t))),

where t 7→ x(t) is curve in V and u : V ⊕ V → Rm.

50
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If F = 0 we call Σ a linear simple mechanical system and we denote it by the triple
Σ = (V,M,K). The equations of motion for a linear simple mechanical system in the absence
of external forces can equivalently be defined by ẋ = AΣ(x), where x ∈ V ⊕ V and

AΣ =

(
0 idV

−M♯K♭ 0

)
,

is a linear map on V ⊕ V.

5.2 Lemma: For a linear simple mechanical system Σ = (V,M,K) the eigenvalues of M♯K♭

are real.

Proof: The proof is immediate since M♯K♭ is symmetric with respect to the inner product
M. ■

The following proposition follows immediately from the stability analysis of linear sys-
tems; see [14].

5.3 Proposition: Let Σ = (V,M,K) be a simple mechanical system with the equilibrium
configuration 0 ∈ V. Then the system is stable if and only if M♯K♭ is positive-definite.

5.2. Energy shaping for linear simple mechanical control systems

Although the statement of the energy shaping problem for linear simple mechanical
systems can be given in a purely algebraic fashion, in this section we study the energy
shaping problem for these systems using the energy shaping partial differential equations.
The advantage of such a treatment is (1) characterizing the space of linear stabilizing
solutions to the energy shaping partial differential equations and (2) describing the space
of closed-loop metrics for which there exists a closed-loop potential function which satisfies
the potential energy shaping partial differential equations. It is worth reminding ourselves
that the achievable closed-loop systems by performing energy shaping on a linear simple
mechanical control system are not necessarily all linear simple mechanical systems. What
we need in this section, however, is that the space of linear closed-loop systems is large
enough to stabilize a linear simple mechanical control system using energy shaping. When
we seek a linear solution to the energy shaping problem, we call the procedure the linear
energy shaping. We start this section by presenting the closed-loop systems achievable
using linear energy shaping.

5.2.1. The algebra of linear energy shaping. Let Σol = (V,Mol,Kol, Fol) be a linear simple
mechanical system. Let us define EΣol

⊂ L(V,V) to be the subset of linear maps A that
satisfy the following conditions:

1. A = M♯
olK

♭
ol +M♯

ol ◦ Fol ◦ L, where L ∈ L(V,Rm);

2. A is diagonalizable over R.

The following proposition shows that the set EΣol
prescribes the closed-loop systems achiev-

able by linear energy shaping.
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5.4 Proposition: Let Σol = (V,Mol,Kol, Fol) be a linear simple mechanical control system
and define EΣol

as above. Let Mcl be an inner product on V and let Kcl ∈ S2V
∗. The

following statements are equivalent.

1. There exists a linear feedback u : V⊕V → Rm given by u(x, v) = −L(x) for which the
dynamics of the closed-loop system are those of the linear simple mechanical system
Σcl = (V,Mcl,Kcl).

2. M♯
clK

♭
cl ∈ EΣol

.

Proof: The governing equation for Σol is(
ẋ(t)
v̇(t)

)
=

(
0 idV

−M♯
olK

♭
ol 0

)(
x(t)
v(t)

)
+

(
0

M♯
ol ◦ Fol

)
u(t).

So the closed-loop system has the following form(
ẋ(t)
v̇(t)

)
=

(
0 idV

−M♯
olK

♭
ol −M♯

ol ◦ Fol ◦ L 0

)(
x(t)
v(t)

)
,

for L ∈ L(V,Rm). As a result, the closed-loop system has the dynamics of Σcl if and only

if M♯
clK

♭
cl = M♯

olK
♭
ol + M♯

ol ◦ Fol ◦ L. So if the closed-loop system has the dynamics of Σcl,

then M♯
clK

♭
cl ∈ EΣol

, since M♯
clK

♭
cl is diagonalizable. Conversely, if M♯

clK
♭
cl ∈ EΣol

, then by

definition there exists L ∈ L(V,Rm) such that M♯
clK

♭
cl = M♯

olK
♭
ol +M♯

ol ◦ Fol ◦ L. ■

5.2.2. The energy shaping partial differential equations. The goal in this section is
to obtain the linear energy shaping solutions from the energy shaping partial differential
equations and show that, for all linear simple mechanical systems, these solutions lie in the
subspace EΣol

. Then, if the open-loop system Σol is linearly controllable, one can design

Fol ◦ L such that M♯
clK

♭
cl is positive-definite. Thus a stabilizing energy shaping feedback is

achieved.
Recall that for each Kol ∈ S2V

∗ there exists a function Vol such that Kol(v, v) = Vol(v),
for all v ∈ V. We adapt the energy shaping definition, Definition 1.2, to the linear simple
mechanical systems to arrive at the following

M♭
olM

♯
cldVcl(x(t))− dVol(x(t)) = Fol ◦ upot(x(t)), (5.1)

where Mcl is an inner product on V, Vcl is the closed-loop potential function, and upot :
V ⊕ V → Rm is a feedback. The following proposition shows that the linear solutions of
Equation (5.1) lie in EΣol

.

5.5 Proposition: Let Σol = (V,Mol,Kol, Fol) be a linear simple mechanical control system.
Let Mcl be an inner product on V and let Kcl ∈ S2V

∗. The following statements are equiv-
alent:

1. there exists a linear feedback upot : V ⊕ V → Rm given by upot(x, v) = −L(x) which
satisfies Equation (5.1);

2. M♯
clK

♭
cl ∈ EΣol

.
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Proof: We denote the projection of V∗ onto V∗/Im(Fol) by P . As a result, if Mcl and Vcl

satisfy Equation (5.1)

P
(
M♭

olM
♯
cldVcl − dVol

)
= 0. (5.2)

Note that by Theorem 3.10 this partial differential equation is involutive provided that

d(M♭
clM

♯
oldVol) ∈ I2(Wcl), (5.3)

where Wcl = M♭
clM

♯
ol(Im(Fol)). Note that we are only interested in the solutions to Equa-

tion (5.2) that lead to a linear closed-loop system. Thus one can write this equation as

P
(
M♭

olM
♯
clKcl(v)− Kol(v)

)
= 0,

where v ∈ V. This holds if and only if

M♭
olM

♯
clKcl(v)− Kol(v) ∈ Im(Fol)

for all v ∈ V. Equivalently,

M♯
clK

♭
cl −M♯

olK
♭
ol = M♯

ol ◦ Fol ◦ L, (5.4)

where L ∈ L(V,Rm), i.e., M♯
clK

♭
cl ∈ EΣol

. In order to proceed with the proof, we show
that, in fact, the integrability condition of Equation (5.3) holds for all solutions given by
Equation (5.4). Let PE be the projection of V∗ onto V∗/Wcl. Then Equation (5.3) can be
written as

Mcl(M
♯
olK

♭
ol(v1), v2)−Mcl(M

♯
olK

♭
ol(v1), v2) = 0, (5.5)

for all v1, v2 ∈ coann(Wcl). If v ∈ coann(Wcl), then M♭
clM

♯
ol(α)(v) = 0 for any α ∈ Im(Fol).

This implies that v ∈ coann(Im(Fol)), since M♭
clM

♯
ol is an isomorphism. If Equation (5.4)

holds, we have M♯
clK

♭
cl(v) = M♯

olK
♭
ol(v) for all v ∈ coann(Im(Fol)). Thus Equation (5.5), for

all v1, v2 ∈ coann(Im(Fol)), can be written as

Kcl(v1, v2)− Kcl(v2, v1) = 0,

which holds by symmetry of Kcl. ■

5.6 Theorem: Let Σol = (V,Mol,Kol, Fol) be a linear simple mechanical control system
which is linearly controllable. Then there exists a linear energy shaping feedback which
stabilizes the system.

Proof: By Proposition 5.5, for any inner product Mcl on V and Kcl ∈ S2V
∗ such that

M♯
clK

♭
cl ∈ EΣol

, there exists a linear feedback u : V ⊕ V → Rm given by u(x, v) = −L(x),
with L ∈ L(V,Rm), for which the dynamics of the closed-loop system are those of the
linear simple mechanical system Σcl = (V,Mcl,Kcl). Then, by pole placement, one can

design Fol ◦ L such that M♯
clK

♭
cl ∈ EΣol

is positive-definite. ■

One can choose a basis of eigenvectors for M♯
clK

♭
cl and by requiring that this basis be or-

thonormal, one can define Mcl and thus pull apart M♯
clK

♭
cl into its components. In following,

we present an example of linear energy shaping.
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5.7 Example: Let V = R2 and consider the stabilization of the following system around
the origin using energy shaping:

1. Mol = dx1 ⊗ dx1 + dx2 ⊗ dx2;

2. Vol = −(x1)2 + 2x1x2 + (x2)2;

3. Fol = span{dx2}.

This system is clearly linearly controllable. We shall find a closed-loop system which has
the same dynamics as Σol = (Mol, Vol, Fol). We compute

EΣol
=
{
A ∈ D(R2×2) | A =

(
−2 2
L1 L2

)
, L1, L2 ∈ R

}
,

where we denoted the space of diagonalizable two by two matrices by D(R2×2). We are look-

ing for an inner product Mcl and Kcl ∈ S2R2 such that M♯
clK

♭
cl ∈ EΣol

; see Proposition 5.5.
Suppose that the closed-loop inner product is characterized as

M♯
cl =

(
a b
b c

)
,

where a, b, c ∈ R. Furthermore, suppose that Kcl = Kijdx
i ⊗ dxj , where Kij ∈ R for

i, j ∈ {1, 2}, and K21 = K12. Then the prolongation of the energy shaping partial differential
equation, Equation (5.2), reads

aK11 + aK12 = −2,

aK12 + bK22 = 2.

Thus

M♯
clK

♭
cl =

(
−2 2

b
a(−2− bK12) + cK12

c
b(2− aK12) + bK12

)
,

which clearly belongs to EΣol
. It is easy to check that A ∈ EΣol

is positive-definite if and
only if L1 < 0, L2 > 2, and −L1 > L2. Moreover, since the desired closed-loop inner
product is positive-definite (note that, in general, this assumption is not necessary), we
have a > 0, c > 0 and ac − b2 > 0. If we incorporate this assumption, we can choose the
arbitrary variables a, b, c,K12 such that the closed-loop system is stable at the origin. For
example, the closed-loop simple mechanical system is stable with choosing a = 37

10 , b =
42
10 ,

c = 48
10 , and K12 = −705

10 .



Chapter 6

Energy shaping for systems with
one degree of underactuation

Numerous systems considered in the literature on energy shaping have one degree of under-
actuation. In this chapter we show that all linearly controllable simple mechanical control
systems with one degree of underactuation can be stabilized using an energy shaping feed-
back, with closed-loop metrics which are not necessarily positive-definite. The results fully
solve the problem of stabilization of systems with one degree of underactuation. First, in
Theorem 6.1, we show that any solution to the kinetic energy shaping partial differential
equations gives rise to a closed-loop potential function. Then we investigate, in a geometric
fashion, if there exists any stabilizing solution.

6.1. Formal integrability of potential energy shaping partial differential
equations

We first show that for systems with one degree of underactuation the potential energy
shaping partial differential equations is always involutive. The following theorem is an
immediate corollary of Theorem 4.15.

6.1 Theorem: If Σol is a simple mechanical control system with one degree of underactua-
tion, for each bundle automorphism that satisfies the λ-equation, there exists a closed-loop
metric and a closed-loop potential function that satisfy the energy shaping partial differential
equations.

Proof: Note that the projection map τ in Lemma 4.22 is the zero map for m = 1 and so
the closed-loop metric equation is involutive by Theorem 4.15. Moreover, Equation (3.12)
vanishes for m = 1. ■

6.2. Stabilization of systems with one degree of underactuation

In this section, we wish to determine the stabilizing solutions to the energy shaping
partial differential equations for systems with one degree of underactuation. Throughout
this section, let Q be an n-dimensional analytic manifold and Σol = (Q,G, Vol,Wol) be an
open-loop simple mechanical control system with one degree of underactuation. We denote
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the Hessian of a potential function V at q0 ∈ Q by Hess(V )(q0) ∈ S2T
∗
q0Q. In particular,

we denote the Hessian of the open-loop potential function and the closed-loop potential
function at the equilibrium point by Hess(Vol)(q0) and Hess(Vcl)(q0), respectively.

Since the compatibility conditions of Theorem 3.10 always satisfy for systems with one
degree of underactuation, Theorem 6.1, one can study the prolongation of the potential
energy shaping partial differential equations instead of the original partial differential equa-
tions. We shall perform this in the same fashion as in Chapter 5. Let (q1, . . . , qn) be local
coordinates in a neighborhood U of q0 ∈ Q such that Wol = span{dq2, . . . , dqn} and let P
be the projection of T∗Q onto span{dq1}.

If we prolong the potential energy shaping partial differential equation and evaluate the
result at the origin, noting that dVcl(q0) = 0, we have

P
(
G♭(q0)G

♯
cl(q0)HessVcl(v)(q0)− HessVol(v)(q0)

)
= 0,

where v ∈ Tq0Q, i.e.,

G♯
cl(q0)Hess

♭(Vcl)(q0)−G♯(q0)Hess
♭(Vol)(q0) = G

♯(q0)(u|q0), (6.1)

where u : TQ → Wol. If the system is linearly controllable, then one can design a control
such that G♯(q0)Hess

♭(Vol)(q0) + G
♯(q0)(u|q0) is diagonalizable and positive-definite. It is

important to note that this does not necessarily imply that there exist Gcl and Vcl such that
G♯

cl(q0)Hess
♭(Vcl)(q0) is positive-definite, since the kinetic energy shaping partial differential

equation puts restrictions on the achievable closed-loop metrics. However, we will show
that, for systems with one degree of underactuation, the space of solutions of the kinetic
energy shaping partial differential equations is large enough so that G♯

cl(q0)Hess
♭(Vcl)(q0)

can be made positive-definite. We do this in the following steps.

1. We first identify a simple class of solutions to the λ-equation using Proposition 6.2.

2. We show that this class of solutions is large enough to ensure that Equation (6.1)

holds with G♯
cl(q0)Hess

♭(Vcl)(q0) diagonalizable and positive-definite.

Let U be a neighborhood of the equilibrium point q0 ∈ Q and let (q1, . . . , qn) be local
coordinates on U . In order to find the class of solutions mentioned in 1, we need to
make some observations about the kinetic energy shaping partial differential equations for
systems with one degree of underactuation. For these systems, the λ-equation in adapted
local coordinates is given by

∂

∂qk
(G1iλ

i
1)− 2Ssk1Gsiλ

i
1 = 0, (6.2)

where Sijk, for i, j, k ∈ {1, . . . , n}, are the Levi-Civita connection coefficients associated to
G and i, k, s ∈ {1, . . . , n}. Suppose we are seeking solutions to the λ-equation that in local
coordinates look like λ(q) = λk

i dq
i⊗ ∂

∂qk
, where λk

i ∈ R and q ∈ U , i.e., λ is constant. Then

one can write Equation (6.2) as follows:(
∂G11

∂qk
− 2Sik1Gi1

)
λ1
1 +

(
∂G12

∂qk
− 2Sik1Gi2

)
λ2
1 + · · ·+

(
∂G1n

∂qk
− 2Sik1Gin

)
λn
1 = 0. (6.3)
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Because S is the Levi-Civita connection for G, the first term vanishes, leaving λ1
1 arbitrary.

One can rewrite Equation (6.3) in the following fashion:

n∑
i=1

n∑
j=2

(SikjGi1 − Sik1Gij)λ
j
1 = 0, (6.4)

where k ∈ {1, . . . , n}. Thus, if λj
2 = 0 for j ∈ {2, . . . , n}, λ(q) is a solution to the λ-equation.

Note that we further require that λ(q) ◦ G♯(q) is symmetric. In the following, we try to
describe the space of such solutions of the λ-equation in an algebraic fashion.

Let V be an n-dimensional R-vector space and let G ∈ S2V be a nondegenerate sym-
metric tensor. Let ΦG : V∗ ⊗ V → Λ2V be the map defined by

ΦG(A)(v1, v2) = A ◦ G(v1, v2)− A ◦ G(v2, v1),

where v1, v2 ∈ V. The space of all tensors, A ∈ V∗⊗V, such that A◦G is symmetric belongs
to the kernel of ΦG and thus is of dimension n(n+1)

2 , we denote this subspace by SG. Let
{e1, . . . , en} be a basis for V and let {e1, . . . , en} be its dual. Let W ⊂ V∗ be the vector
subspace generated by {e2, . . . , en} and denote its complement by E. We denote by S̃ the
space of all A ∈ V∗ ⊗V such that, if v ∈ coann(W), then A(v) ∈ coann(W), for all v ∈ V. A
tensor A ∈ S̃ can be written as

A = A1
1e

1 ⊗ e1 +

n∑
i=2

n∑
j=1

Aj
ie

i ⊗ ej ,

where A1
1 ∈ R and Aj

i ∈ R for i ∈ {2, . . . , n} and j ∈ {1, . . . , n}. Thus the dimension of
S̃ is n(n − 1) + 1. If we denote the restriction of the map ΦG to S̃ by ΦG|S̃ : S̃ → Λ2V,

then ker(ΦG|S̃) is of dimension n(n−1)
2 + 1. If we additionally require that A ∈ ker(ΦG|S̃) be

nondegenerate, we obtain a n(n−1)
2 -dimensional subspace of V∗ ⊗ V.

Let Q be an n-dimensional analytic manifold and Σol = (Q,G, Vol,Wol) be an open-loop
simple mechanical control system with one degree of underactuation. Let U be a neigh-
borhood of the equilibrium point q0 ∈ Q and let (q1, . . . , qn) be local coordinates on U
such that Wol|q = span{dq2, . . . , dqn}, where q ∈ U . In following, we define a subspace of
T∗
qQ⊗TqQ which is large enough for stabilization of systems with one degree of underactu-

ation. Consider the space of solutions to the λ-equation that in local coordinates look like
λ(q) = λj

idq
i ⊗ ∂

∂qj
∈ T∗

qQ⊗ TqQ, where λj
i ∈ R and q ∈ U , and satisfies the followings

1. λ(q) ◦G♯(q) is symmetric and nondegenerate;

2. if v ∈ coann(span{dq1}) then λ(v) ∈ coann(span{dq1}) for all v ∈ TqQ.

We denote this subspace by S . The following proposition is a corollary of the algebraic
discussion above.

6.2 Proposition: S is an n(n−1)
2 -dimensional subspace of T∗

qQ⊗ TqQ.

We wish to show that the space of solutions of the λ-equation, described in Proposi-
tion 6.2, is large enough to guarantee that G♯

cl(q0)Hess
♭(Vcl)(q0) can be made diagonalizable
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and with positive real eigenvalues. If λ(q) ∈ S , then Equation (6.1) gives

Hess♭(Vcl)(q0)(
∂

∂q1
,
∂

∂qj
) =

1

λ1
1

Hess♭(Vol)(q0)(
∂

∂q1
,
∂

∂qj
), (6.5)

G♯
cl(q0)(dq

1, dqj) = λ1
1G

♯(q0)(dq
1, dqj), (6.6)

where j ∈ {1, . . . , n}. As a result, we have the following proposition.

6.3 Proposition: Let Q be an n-dimensional analytic manifold and Σol = (Q,G, Vol,Wol)
be an open-loop simple mechanical control system with one degree of underactuation. Let U
be a neighborhood of the equilibrium point q0 ∈ Q and let (q1, . . . , qn) be local coordinates
on U such that Wol|q = span{dq2, . . . , dqn}, where q ∈ U . Suppose that

A = G♯(q0)Hess
♭(Vol)(q0) +G

♯(q0)(u|q0)

is diagonalizable with real eigenvalues, where u|q0 : Tq0Q → Wol|q0. Then there exists a
closed-loop metric Gcl and a potential function Vcl such that

1. G♭ = G♭
cl ◦ λ, where λ ∈ S ,

2. G♯
cl(q0)Hess

♭(Vcl)(q0) = A.

Proof: We only need to show that if 1 holds, then Gcl and Vcl can be selected so that 2
holds. Using Equations (6.5) and (6.6), we can write G♯

cl(q0) in coordinates as(
λ1
1a λ1

1B
λ1
1B

T C

)
,

where a ∈ R, B ∈ L(Rn−1,R), and C ∈ S2Rn−1 are such that a = G♯(dq1, dq1) and
B(dq1, dqj) = G♯(dq1, dqj) for all j ∈ {2, . . . , n}. Similarly, Hess♭(Vcl)(q0) can be written as(

1
λ1
1
k 1

λ1
1
B

1
λ1
1
BT C

)
,

where k ∈ R, B ∈ L(Rn−1,R), and C ∈ S2Rn−1 are such that k = Hess♭(Vol)(q0)(
∂

∂q1
, ∂
∂q1

)

and B( ∂
∂q1

, ∂
∂qj

) = Hess♭(Vol)(q0)(
∂

∂q1
, ∂
∂qj

) for all j ∈ {2, . . . , n}. Thus we have

G♯
cl(q0)Hess

♭(Vcl)(q0) = G
♯
ol(q0)Hess

♭(V0l)(q0) +

(
0 0
L1 L2

)
,

where

1. L1 = kBT + 1
λ1
1
CBT ∈ L(R,Rn−1) and

2. L2 = λ1
1BB

T + CCT ∈ L(Rn−1 ×Rn−1)

can be set to any value by appropriate choice of C and C. ■
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6.4 Theorem: Let Σol = (Q,Gol, Vol,Wol) be a linearly controllable open-loop simple me-
chanical control system with one degree of underactuation and with q0 ∈ Q an equilibrium
point. Then the system is stabilizable at q0 using an energy shaping feedback.

Proof: The involutivity of the energy shaping partial differential equations ensures that
formal solutions exist. If the system is linearly controllable, then one can design a control
such that G♯(q0)Hess

♭(Vol)(q0)+G
♯(q0)(u|q0) is diagonalizable and positive-definite. Propo-

sition 6.3 then guarantees that Gcl can be found such that it satisfies the kinetic energy
shaping partial differential equations, by choosing λ ∈ S , and taking

G♯
cl(q0)Hess

♭(Vcl)(q0) = G
♯(q0)Hess

♭(Vol)(q0) +G
♯(q0)(u|q0)

to be diagonalizable with positive real eigenvalues. ■

Note that this proof does not require that the closed-loop metric be positive-definite and
in fact, there are cases for which energy shaping is not possible with positive-definite closed-
loop metrics; an example of this is presented in Example 6.6. The following proposition
clarifies when it is necessary to perform kinetic energy shaping for systems with one degree
of underactuation.

6.5 Proposition: Let Q be an n-dimensional manifold and let Σol = (Q,G, Vol,Wol) be a
linearly controllable simple mechanical system. Let (q1, . . . , qn) be coordinates on a neigh-
borhood U of q0 ∈ Q such that Wol = span{dq2, . . . , dqn}. If Hess(Vol)(

∂
∂q1

, ∂
∂q1

) > 0, the
system can be stabilized around its equilibrium point q0 without kinetic energy shaping.

Proof: We shall show that Σol is stabilizable using an energy shaping feedback with Gcl = G.
Equation (6.1) then reads

Hess♭(Vcl)(q0) = Hess♭(Vol)(q0) + u|q0 ,

where u is a feedback. Note that since Hess(Vcl) is symmetric, it is positive-definite if and
only if all of its principal minors are positive. The first principal minor of Hess♭(Vcl) is
positive. Then, by linear controllability, one can choose the controls so that the system is
stabilizable at the equilibrium point q0, similar to Proposition 6.3. ■

Next, we present an example of energy shaping for simple mechanical systems with one
degree of underactuation for which the energy shaping is possible only via a closed-loop
metric that is not positive-definite.

6.6 Example: Consider the stabilization problem for a simple mechanical control system
Σ = (R2,G, Vol, 0,Wol) at the origin q0 = 0 ∈ R2, where

1. G = ((q2)2 + 1)dq1 ⊗ dq2 + ((q1)2 + 1)dq2 ⊗ dq2,

2. Vol = −(q1)2 + 2q1q2 + (q2)2, and

3. Wol = {dq2}.

This system is linearly controllable at the origin. We show that, for any solution of the
λ-equation, the constant term in the Taylor expansion of λ2

1 is always zero. In order to show
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this, we need to modify Equation (6.4) by adding an extra term, since λ, in a neighborhood
of q0, is not necessarily chosen from S . We have

n∑
i=1

(G1i
∂λi

1

∂qk
+

n∑
j=2

(SikjGi1 − Sik1Gij)λ
j
1) = 0,

for all k ∈ {1, . . . , n}. For this example, by substituting the nonzero Christoffel symbols,
we have

((q2)2 + 1)
∂λ1

1

∂q1
+ 2q2λ2

1 = 0, (6.7)

((q2)2 + 1)
∂λ1

1

∂q2
− 2q1λ2

1 = 0. (6.8)

It is clear that λ1
1(q0) can be chosen arbitrarily. Consider formal expressions for λ2

1 and λ1
1:

λ1
1 = C00 + C10q

1 + C01q
2 + C20(q

1)2 + C02(q
2)2 + C11q

1q2 + . . . ,

λ2
1 = D00 +D10q

1 +D01q
2 +D20(q

1)2 +D02(q
2)2 +D11q

1q2 + . . . ,

where Cij , Dij ∈ R for i, j ∈ Z≥0. If λ1
1 and λ2

1 satisfy Equations (6.7) and (6.8), then
C11 = D00 = 0, i.e., λ2

1(q0) = 0. Thus the closed-loop metric at the origin has the form
Gcl(q0) = 1

adq
1 ⊗ dq1 + 1

cdq
2 ⊗ dq2, where a, c ∈ R\{0} and λ1

1(q0) = a. Equation (6.5)
implies that

Hess♭(Vcl)(q0) =

( −2
a

2
a

2
a k

)
,

where k ∈ R. Thus
G♯

cl(q0)Hess
♭(Vcl)(q0) =

(
−2 2
2c
a ck

)
.

From the discussion in Example 5.7, we have to choose 2c
a < 0 and ck > 2 in order to

make G♯
cl(q0)Hess

♭(Vcl)(q0) positive-definite, i.e., none of the achievable closed-loop metrics

is positive-definite. However, one can choose a, c, k ∈ R so that G♯
cl(q0)Hess

♭(Vcl)(q0) is
positive-definite, for example a = −191

100 , c =
43
10 , and k = 1.

6.7 Remark: If we take the open-loop metric given by

G = ((q2)2 + 1)dq1 ⊗ dq2 + ((q1)2 + 1)dq2 ⊗ dq2 + 2q1q2(dq1 ⊗ dq2 + dq2 ⊗ dq1),

then λ2
1(q0) need not be zero and the system can be shown to be stabilizable by the energy

shaping method with a positive-definite closed-loop metric, similar to the linear system given
in Example 5.7. This reveals that a slight change in the structure of the open-loop Levi-
Civita connection has a huge impact on the achievable closed-loop metrics. In Section 7.2.1,
we provide some observations that suggest a possible relationship between the holonomy
group generated by the closed-loop metric and the one generated by the open-loop metric.



Chapter 7

Conclusions and future directions

7.1. Conclusions

In this thesis a geometric framework for stabilization of simple mechanical systems
using the energy shaping method is developed. The geometric theory of partial differential
equations has been used to show that the partial differential equations involved in the energy
shaping method are integrable under a surjectivity condition. The geometric framework
has been utilized to reveal the obstructions to the energy shaping method. This geometric
approach has been used to obtain a geometric proof that linear controllability is sufficient
for energy shaping for linear simple mechanical systems. Furthermore, the problem of
stabilization of systems with one degree of underactuation is completely resolved. This
approach gives some new insights for answering key questions in energy shaping that have
not been addressed in the existing literature. Some of these new open problems are outlined
in the next section.

7.2. Future directions

Understanding the geometry of the kinetic energy shaping problem and the interaction
of gyroscopic forces in the dynamics of kinetic energy shaping should be the main focus of
the future directions of this thesis. Furthermore, an algebraic formulation of the positive-
definiteness of the Hessian of the closed-loop potential function is another open problem in
energy shaping. In following, we describe some of these future directions in more detail.

7.2.1. Kinetic energy shaping via holonomy groups. The most interesting open problem
in the energy shaping method is the characterization of closed-loop kinetic energy shaping
metrics. A deep understanding of the integrability conditions of kinetic energy shaping
partial differential equations is far from being achieved. Here, we propose a possible di-
rection for investigating this problem. The main motivation for the approach is a theorem
on holonomy groups by Schmidt [40]. Given a metric, the theorem provides the conditions
for a connection on a connected manifold to be a metric connection. As the kinetic energy
shaping partial differential equations is, in fact, the metric-connection problem restricted
to a distribution, one might hope to rephrase the kinetic energy shaping problem in terms
of the holonomy groups. In the following we review the result of [40].

61
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Let Q be a connected manifold equipped with an affine connection S. Then, for any
path τ between two points of the manifold, parallel transport along τ defines a linear map
between the tangent spaces at the two points which we denote by L(τ); here the tangent
spaces are regarded as vector spaces and the parallel transport is a linear isomorphism
of vector spaces [26]. This linear map is an isometry if the connection is a Levi-Civita
connection.

7.1 Definition: Let p ∈ Q, where Q is a connected manifold. Denote by C(p) the loop
space at pq, i.e., all the continuous closed curves starting and ending at p. We call the
set of all linear transformations in the tangent space at p defined by the parallel transport
along elements of C(p)q the holonomy group at p and we denote it by Φ(p).

It can be shown easily that for connected manifolds the holonomy groups at different
points are isomorphic [26]. A connection can only be the Levi-Civita connection of a metric
G on Q if the holonomy group is a subgroup of the orthogonal group corresponding to the
metric G (metric preserving and parallel preserving properties). The following theorem
of [40] shows that the converse is true.

7.2 Theorem: Let S be a torsion free connection on a connected manifold Q whose holon-
omy keeps a metric G invariant. Then S is the Levi-Civita connection of a metric which
has the same signature as g.

7.3 Remark: Let Q be a simply connected manifold. Then Φ(p) is a connected Lie subgroup
of the group of linear transformations in the tangent space at p. Therefore, Φ(p) is uniquely
determined by its Lie algebra g(p). So the metric Gp(X,Y ) is invariant under Φ(p) if and
only if

G(A(X), Y ) +G(X,A(Y )) = 0 (7.1)

for all A ∈ g(p). Since the elements of g(p) for a simply connected analytic manifold are
generated by the curvature and its covariant derivatives [26], this in fact includes the local
integrability result of [18]. Although the holonomy group Φ(p) is not necessarily connected,
one can obtain a similar result on a universal covering of Q and so the result can be extended
to the case that the manifold is not simply connected; see [40].

Key question: Is there a relationship between the holonomy group of the Levi-Civita
connection associated to Gol and that of Gcl?
We observe that this gives rise to the metric-connection problem restricted to a distribution.
A proper answer to this key question may resolve the mystery behind the kinetic energy
shaping process and, furthermore, may give a global proof for the sufficient conditions of
energy shaping.

7.2.2. Gyroscopic forces. It is well-known that the presence of gyroscopic forces can en-
large the space of solutions of the kinetic energy shaping partial differential equations.
Although the integrability results of this thesis have been obtained in the absence gyro-
scopic forces, the involutivity results hold even in the presence of gyroscopic forces. These
computations are omitted from the thesis. One can ask the following key questions.

1. Describe the integrability conditions of the kinetic energy shaping problem in the pres-
ence of gyroscopic forces in an algebro-geometric fashion.
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2. Extend the results of Example 4.25 to a system for which there exists no energy shaping
feedback even at the presence of gyroscopic forces.

7.2.3. Stabilization condition via the Farkas lemma. After possibly solving the energy
shaping partial differential equations, one has to check if the Hessian of the closed-loop
potential function at the equilibrium point is positive-definite. In this section, we provide
a possible algebro-geometric framework for this positive-definiteness condition using the
Farkas lemma [29]. The type of obstruction the stabilization condition puts on the set of
achieved energy shaping feedbacks has not yet been characterized in an algebro-geometric
fashion. We show that one can possibly investigate this question using tools from convex
analysis [4, 49, 12].

We denote the cone of positive-semidefinite R-bilinear maps on V∗ by S⪰0
2 V; that is

S⪰0
2 V = {A ∈ V ⊗ V | A(α, β) ≥ 0, ∀α, β ∈ V∗}.

We use ⪰ as a partial order on the positive semidefinite cone: A ⪰ B if A − B is positive
semidefinite.

Some properties of S
⪰0
2 V. We start this section by showing that the set of all positive

semidefinite symmetric R-bilinear maps forms a convex cone in S2V.

7.4 Lemma: The set of all symmetric positive semidefinite symmetric R-bilinear maps
S⪰0
2 V is a convex cone.

Proof: Let A1, A2 ∈ S⪰0
2 V. This implies that A1(x, x), A2(x, x) ≥ 0 for all x ∈ V∗. As a

result,
c1A1(x, x) + c2A2(x, x) ≥ 0, c1, c2 ∈ R≥0,

which implies c1A1 + c2A2 ⪰ 0 for all c2, c2 ∈ R≥0 as required. ■

Note that the interior of S≻0
2 V consists of all positive-definite symmetric R-bilinear

maps. The dual cone for the positive-semidefinite cone is defined by

S⪰0
2 V∗ = {Y ∈ S2V

∗ | ∀A ∈ S⪰0
2 V, A(Y ) ≥ 0}.

The following theorem is a corollary of the so-called Hadamard product theorem and gives
an important characterization of the positive-semidefinite symmetric R-bilinear maps [49].

7.5 Theorem: (Fejer) A ∈ S⪰0
2 V if and only if A(Y ) ≥ 0 for all Y ∈ S⪰0

2 V∗.

Algebraic extended Farkas lemma. It is well-known that it is not possible to generalize the
classical Farkas lemma [8] to nonpolyhedral cones due to the closedness assumption in the
Farkas lemma; see [29]. In this section, we reformulate the closedness sufficient condition
of [4] in an algebraic fashion. Let V be an n-dimensional R-vector space and let W be an
m-dimensional R-vector space. Suppose that we have a linear map

A : S2V → W,

and define K
.
= Im(A)|

S⪰0
2 V

. The following lemma provides a Slater-type constraint qualifi-

cation that enables us to extend the Farkas lemma [8] for the positive-semidefinite cone [29],
for proof see [4].
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7.6 Lemma: (Algebraic version of closedness condition) If A(α) ∈ S≻0
2 V∗ for some

α ∈ W∗ then K is closed in W with the topology induced from Rm.

Now we can state an algebraic version of the so-called extended Farkas lemma.

7.7 Lemma: (Algebraic version of extended Farkas lemma) Let V and W be, respec-
tively, n and m-dimensional R-vector spaces. Let A ∈ W⊗ S2V

∗ and b ∈ W. Assume that
A(α) ∈ S≻0

2 V∗ for some α ∈ W∗. Then the following statements are equivalent:

1. there exists X ∈ S⪰0
2 V such that A(X) = b;

2. b(α) ≥ 0 for all α for which A(α) ∈ S⪰0
2 V∗.

Proof: Suppose that (1) is true. Then, by the Fejer Theorem, Theorem 7.5,

b(α) = A(X)(α) = A(α)(X) ≥ 0.

Conversely, suppose that there exists no X ∈ S⪰0
2 V such that A(X) = b, i.e., b is not in K.

Since the cone K is closed by Lemma 7.6, there exists a hyperplane that separates b and K
(see so-called separation theorem [37]), i.e., there exists some α ∈ W ∗ such that b(α) < 0
and A(X)(α) ≥ 0 for all X ∈ S⪰0

2 V which, by the virtue of Fejer Theorem, means that

A(α) ∈ S⪰0
2 V∗. ■

Stabilization condition. Suppose that we want to stabilize Σol = (Q,Gol, Vol, 0,Wol) at an
equilibrium point q0 ∈ Q. If there exists a λ ∈ Γω(T∗Q ⊗ TQ) that satisfies the kinetic
energy shaping partial differential equations of Theorem 3.3 and yields a positive-definite
closed-loop metric on Q, then one needs to check whether there exists a closed-loop potential
function that satisfies the potential energy shaping partial differential equations. One can
take local coordinates around q0 in which λ and the closed-loop potential function satisfy
the following partial differential equation:

λi
a

∂Vcl

∂qi
− ∂Vol

∂qa
= 0, (7.2)

where i ∈ {1, . . . , n} and a ∈ {1, . . . ,m}. Moreover, we require that the Hessian of Vcl at
q0 be positive-definite. Prolonging the above equation and evaluating at q0 we have

λi
a(q0)

∂2Vcl

∂qk∂qi
(q0)−

∂2Vol

∂qk∂qa
(q0) = 0, (7.3)

since dVol(q0) = dVcl(q0) = 0. In the following, we use Lemma 7.7 to investigate the
possibility of having a positive-definite solution to Equation (7.3).

Suppose that λ is a solution to the kinetic energy shaping partial differential equa-
tions. One can observe that positive-definiteness of the Hessian of Vcl at q0, along with
Equation (7.3), is equivalent to the intersection of the cone of positive-definite symmet-
ric R-bilinear maps on T∗

q0Q with the affine subspace prescribed by Equation (7.3) being
nonempty. Thus a version of the extended Farkas Lemma 7.7 might be suitable for deter-
mining if the intersection is nonempty. The challenge, however, is deriving an appropriate
version of Lemma 7.6 that allows us to use the extended Farkas lemma. In fact, one can
extend Equation (7.3) in such a way that it satisfies the closedness condition of Lemma 7.6.
Thus a necessary condition for existence of a positive-definite Hessian that satisfies Equa-
tion (7.3) can be achieved. But it is not clear whether such a result is sufficient or not.
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