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Abstract

In this thesis, we develop a feedback-invariant theory of local controllability for affine dis-
tributions. We begin by developing an unexplored notion in control theory that we call
proper small-time local controllability (PSTLC). The notion of PSTLC is developed for an
abstraction of the well-known notion of a control-affine system, which we call an affine
system. Associated to every affine system is an affine distribution, an adaptation of the
notion of a distribution. Roughly speaking, an affine distribution is PSTLC if the local
behaviour of every affine system that locally approximates the affine distribution is locally
controllable in the standard sense. We prove that, under a regularity condition, the PSTLC
property can be characterized by studying control-affine systems.

The main object that we use to study PSTLC is a cone of high-order tangent vectors, or
variations, and these are defined using the vector fields of the affine system. To better under-
stand these variations, we study how they depend on the jets of the vector fields by studying
the Taylor expansion of a composition of flows. Some connections are made between la-
beled rooted trees and the coefficients appearing in the Taylor expansion of a composition
of flows. Also, a relation between variations and the formal Campbell–Baker–Hausdorff
formula is established.

After deriving some algebraic properties of variations, we define a variational cone for
an affine system and relate it to the local controllability problem. We then study the notion
of neutralizable variations and give a method for constructing subspaces of variations.

Finally, using the tools developed to study variations, we consider two important classes
of systems: driftless and homogeneous systems. For both classes, we are able to characterize
the PSTLC property.
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Chapter 1

Introduction

1.1. Literature review

Beginning with the work of Chow [14], it has been known for some time that Lie bracket
configurations are the key objects to study in the problem of differential geometric control-
lability. In 1966, Nagano [34] published a result, later generalized by Sussmann [42], that
gave a precise reason as to why this is so. To state the Nagano–Sussmann theorem, let
us introduce some notation. For a real analytic manifold M, Γ(TM) denotes the Lie al-
gebra of real analytic vector fields on M. Given a subset L of Γ(TM) and x ∈ M, let
L(x) = {ξ(x) | ξ ∈ L}. If L is a Lie subalgebra of Γ(TM), the set of all ξ ∈ L such that
ξ(x) = 0x, i.e., ξ(x) is the zero vector at x, is called the isotropy subalgebra of L and is
denoted by Lx. A transitive subalgebra of Γ(TM) is a Lie subalgebra L ⊂ Γ(TM) such that
dimL(x) = dimM for every x ∈ M. With this notation we state a slightly weaker version
of the Nagano–Sussmann theorem.

1.1 Theorem: (Nagano–Sussmann) Let M and N be connected and simply connected real
analytic manifolds. Let L ⊂ Γ(TM) and let L′ ⊂ Γ(TN) be transitive Lie subalgebras such
that each element of L and L′ is complete. Let Ψ: L → L′ be a Lie algebra isomorphism.
Assume there exists x ∈ M and y ∈ N such that Ψ(Lx) = L′

y. Then there exists a unique
diffeomorphism ϕ : M → N such that ϕ(x) = y and ϕ∗(ξ) = Ψ(ξ) for every ξ ∈ L.

A local version of the Nagano–Sussmann theorem holds in which the connected, simply
connected, and complete assumptions can be dropped, thereby only resulting in the exis-
tence of a local diffeomorphism ϕ : Ω → Ω′, with ϕ(x) = y, such that for every ξ ∈ L, the
restriction of ξ to the neighbourhood Ω of x and the restriction of Φ(ξ) to the neighbourhood
Ω′ of y correspond under ϕ.

With the knowledge that Lie bracket configurations completely determine the local be-
haviour of the trajectories of a family of vector fields that generate a transitive Lie subalge-
bra, a systematic effort to characterize controllability in terms of Lie bracket configurations
has resulted in many sufficient conditions for local controllability [31], [46], [18], [30], [19],
[43], [20], [44], [7], [45], [5], [8], [9], [2], [22], [28]. A class of systems that has received a lot
of the attention in this effort are the so-called control-affine systems. These are control sys-
tems specified by a family of vector fields X = {X0, X1, . . . , Xm} and a subset U ⊂ Rm, and
whose trajectories are absolutely continuous curves γ : [0, T ] → M satisfying the differential

1



2 C. O. Aguilar

equation

γ′(t) = X0(γ(t)) +

m∑
a=1

ua(t)Xa(γ(t)),

for some Lebesgue integrable U -valued function t 7→ u(t) = (u1(t), . . . , um(t)) on [0, T ].
Assuming that the family of vector fields

XU =

{
X0 +

m∑
a=1

uaXa

∣∣∣∣∣ u ∈ U

}

generates a Lie subalgebra that is locally transitive about x0 ∈ M, and under mild geometric
assumptions on the set U , local controllability from x0 for the control-affine system (X, U)
is equivalent to studying the local behaviour of the set of trajectories emanating from x0 of
the family of vector fields XU , i.e., by studying the set of end-points

Φ
ξp
tp

◦ · · · ◦Φξ1t1 (x0), (1.1.1)

for t1, . . . , tp sufficiently small, ξ1, . . . , ξp ∈ XU , p ≥ 1, and where (t, x) 7→ Φξt (x) denotes
the local flow generated by ξ. By the Nagano–Sussmann theorem, the local behaviour of
the set of points of the form (1.1.1) can be described using the isotropy subalgebra of the
Lie algebra generated by XU , the latter we denote by Lie(XU ). Assuming that U affinely
spans Rm, it is easy to show that Lie(XU ) = Lie(X), and thus much attention has been
given to studying the isotropy subalgebra Lie(X)x0 . There are some inherent difficulties
that arise, however, by fixing one’s attention on Lie(X) in the way that has been done in
the literature. To be precise, and at the same time keep the discussion as simple as possible,
let Λ = (Λab ) be an invertible m ×m matrix, and set Y0 = X0, set Yb =

∑m
a=1 Λ

a
bXa, for

b = 1, . . . ,m, set Y = {Y0, Y1, . . . , Ym}, and finally set V = Λ(U). Then, it is easily seen
that the trajectories of the control-affine system (Y, V ) are the same as those of (X, U).
Currently, many sufficient conditions for local controllability for control-affine systems, for
example those of [45] which generalize many known results, are not invariant under the Lie
algebra isomorphism Ψ: Lie(X) → Lie(Y) that is induced by the mapping Xj 7→ Yj , for
j ∈ {0, 1, . . . ,m}. In other words, the obtained results are not invariant under feedback
transformations. Let us illustrate this with a simple example.

1.2 Example: Consider the following data:

M = R3, x0 = (0, 0, 0), X0 = ((x1)2 − 2(x2)2)
∂

∂x3
, X1 =

∂

∂x1
, X2 =

∂

∂x2
.

Let Σ = ({X0, X1, X2}, U), where U is the unit cube in R2 centered at the origin. By
Theorem 7.3 in [45], Σ is locally controllable from x0 if

[X1, [X1, X0]](x0) + [X2, [X2, X0]](x0) ∈ span {X1(x0), X2(x0)} .

One can check that this condition does not hold, and so the theorem is inconclusive. Con-

sider the matrix Λ =
(√

2 0
0 1

)
, and let Y = {Y0, Y1, Y2} be defined as above. One checks

that
[Y1, [Y1, Y0]](x0) + [Y2, [Y2, Y0]](x0) = 0x0 ,
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and thus, by Theorem 7.3 in [45], the control-affine system (Y, V ) is locally controllable
from x0 and, therefore, so is Σ. In this case, the Lie algebra isomorphism induced by the
mapping Xj 7→ Yj , for j ∈ {0, 1, 2}, does not preserve the isotropy subalgebras Lie(X)x0
and Lie(Y)x0 because

[X1, [X1, X0]](x0) + [X2, [X2, X0]](x0) ̸= 0x0 . •

With the above example in mind, one sees that, in order to obtain a feedback-invariant
result for local controllability using the current methods, one must verify that the obtained
conditions are satisfied by all families representing the same control-affine system, i.e., by
all families that generate the same trajectories. The work of Elkin [16] on the equivalence
of control-affine systems can be used to start such an approach. Instead, one can consider
the affine distribution generated by a control-affine system. Indeed, a control-affine system
Σ = ({X0, X1, . . . , Xm}, U) on M generates the affine distribution AΣ ⊂ TM defined by

AΣ(x) = X0(x) + span {X1(x), . . . , Xm(x)} ,

and two control-affine systems have the same trajectories if and only if the affine distribu-
tions they generate are the same [16, pg. 117]. Hence, a feedback-invariant theory can be
developed by studying the local controllability of affine distributions. To obtain a practical
theory, however, one should consider affine distributions with some regularity properties,
e.g., possessing local generators. But all constructions should be developed in a generator
independent way.

1.2. Contribution of thesis

In this thesis, we propose a feedback-invariant theory of local controllability for affine
distributions. The main approach is to use the jets of sections of the affine distribution to
study high-order tangent vectors to the reachable set. Below we outline the contents and
contributions of the thesis.

• In Chapter 2, we establish our notation and review some basic material from jet
bundle theory and set-valued maps. We also prove a technical result regarding the
high-order derivatives of an integral curve with respect to a parameter.

• In Chapter 3, we begin by laying a basic foundation for the study of a generator
independent theory of local controllability for affine distributions. We start by defining
the notion of an affine system, which can be seen as a generalization of a control-affine
system. With affine systems in hand, we are then able to give a definition of local
controllability for affine distributions that we call proper small-time local controllability
(PSTLC). We then prove that, in the regular case, our notion of PSTLC can be
characterized by studying control-affine systems.

• In Chapter 4, we define a type of high-order tangent vector, which we call an end-time
variation. These tangent vector variations are constructed by concatenating flows of
vector fields and parameterizing the switching time between the integral curves of the
flows. To better understand these variations, we study how they depend on the jets
of the vector fields by studying the Taylor expansion of a composition of flows. This
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study leads to a theorem which asserts the existence of a linear map on an appropriate
jet space of the tangent bundle whose image describes the set of variations. Some
connections are made between labeled rooted trees and the coefficients appearing
in the Taylor expansion of a composition of flows. We end the chapter by relating
variations to the formal Campbell–Baker–Hausdorff formula.

• Using the tools developed in Chapter 4, in Chapter 5 we study a variational cone and
its connection with the local controllability problem. We then study the variational
cone at low orders and give a method for constructing subspaces in the variational
cone.

• In Chapter 6, we consider two important classes of systems, namely, driftless systems
and homogeneous systems. For driftless systems, we prove that, under the standard
regularity assumptions, there are no obstructions to local controllability. Also, we give
a simple proof using our methods to show that, for driftless systems, any Lie bracket
direction is realizable as a variation. We then move onto homogeneous systems, which
play a key role in many known sufficient conditions for local controllability. We
prove that, for homogeneous systems, the variational cone contains all the information
needed for the characterization of local controllability. The proof of this result is
constructive in the sense that it gives a method for determining the directions that will
verify the local controllability, or lack thereof, of the system. Furthermore, for these
systems we are able to answer an open question in control theory regarding whether
it is possible to determine local controllability in a finite number of differentiations.

• We end the thesis with a summary of the main results and list some natural problems
to study using our methods. We also describe how our methods can be used to study
Kawski’s fast-switching example [24].



Chapter 2

Preliminaries

In this section we establish some of our notation and review some material from jet bundle
theory and set-valued maps. We also prove a proposition on the high-order derivatives of
the solution of an ODE with respect to a parameter.

2.1. Notation and conventions

If f is a mapping, its domain is denoted by dom(f) and its image by img(f).
Let V be a finite-dimensional vector space. Most of our notation regarding vector spaces

and linear maps can be found in [12]. The convex hull, affine hull, cone hull, and interior
of a set S are denoted by co(S), aff(S), cone(S), and int(S), respectively. The interior
of S relative to W is denoted by intW (S). Given a linear map f , ker(f) will denote its
kernel. We identify the kth tensor power of V ∗, denoted by T k(V ∗), with the set of k-
multilinear maps from V to R, denoted by Lk(V ;R). Similarly, we identify Sk(V ∗), the
kth symmetric power of V ∗, with the set of symmetric k-multilinear maps from V to R,
denoted by Lksym(V ;R). With these identifications we have that T k(V ∗)⊗W ∼= Lk(V ;W )

and that Sk(V ∗)⊗W ∼= Lksym(V ;W ). The symbol ⊙ will denote the symmetric product in

the symmetric algebra S(V ∗) = ⊕∞
ℓ=1S

ℓ(V ∗), that is,

α⊙ β = Sym(α⊗ β),

where Sym: T (V ∗) → S(V ∗) denotes the symmetrization operator given by

Sym(α)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

α(vσ(1), . . . , vσ(k)),

where Sk denotes the permutation group on k symbols. For each integer ℓ ≥ 1, define
δℓ : V → Sℓ(V ) by δℓ(v) = v ⊗ v ⊗ · · · ⊗ v. The proof of the following can be found in
Propositions 13 and 15, pg. 54-56, [11].

2.1 Lemma: ([11]) Let V and W be R-vector spaces with V finite-dimensional and let
f : V → W be a homogeneous polynomial mapping of degree ℓ ≥ 1. Then there is a unique
mapping h ∈ L(Sℓ(V );W ) such that f(v) = h(δℓ(v)) for all v ∈ V .

By a manifold we mean a Hausdorff, second countable, connected, smooth manifold.
When not explicitly stated, all maps between manifolds will be assumed to be smooth.

5
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We will frequently employ the summation convention in which summation is implied over
repeated indices. For a manifold M, TM and T∗M denote its tangent and cotangent bundle,
respectively, and TxM and T∗

xM denote its tangent and cotangent space at x, respectively.
The zero vector in TxM is denoted by 0x. If f : M → N is a map differentiable at x, Txf
denotes its derivative at x.

For a complete vector field ξ on a manifold M, Φξ : R×M → M will denote its flow. For
fixed t ∈ R, Φξt is the diffeomorphism x 7→ Φξ(t, x), and for fixed x ∈ M, Φξx denotes the
curve t 7→ Φξ(t, x), i.e., the integral curve of ξ through x.

Let ξ and η be vector fields of M, defined locally about a common point x0 ∈ M. We say
that ξ and η are equivalent at x0 if there is a neighbourhood Ω of x0 such that ξ(x) = η(x)
for all x ∈ Ω. This defines an equivalence relation on the set of vector fields defined locally
about x0. The germ of ξ at x0 is the equivalence class of ξ and is denoted by [ξx0 ]. The
set of germs of vector fields at x0 has a natural Lie bracket structure inherited from the Lie
bracket structure of Γ(TM). Indeed, given germs [ξx0 ] and [ηx0 ], we define their Lie bracket
[[ξx0 ], [ηx0 ]] by computing the vector field Lie bracket of the vector fields ξ and η on some
neighbourhood of x0 and letting [[ξx0 ], [ηx0 ]] be the germ of the local vector field [ξ, η]. In
this way, if X is a family of vector fields defined locally about a common point, we can talk
about the Lie algebra generated by the family of vector fields X by passing to germs.

Given a smooth function f : Ω → Rm, on the open set Ω ⊂ Rn, the derivative of f will

be denoted Df , i.e., the Rn×m-valued map on Rn whose ij-entry is ∂f i

∂xj
. The higher-order

derivatives of f are denoted by D(k)f , which is a map from Rn to Lksym(Rn;Rm). Also, we
denote by D

(k)
ℓ f the Rn-valued map on Rn whose ith entry is ∂kf i

(∂xℓ)k
. The zero vector in

Rp will sometimes be denoted by 0p, to avoid possible confusion with the zero vector in a
different Euclidean space.

Finally, the symbol ∗ will denote concatenation. For example, if x = (x1, . . . , xp) and
y = (y1, . . . , yq), then x∗y = (x1, . . . , xp, y1, . . . , yq). We will sometimes write x∗y = (x, y).
For maps fj : Xj → Yj , j = 1, 2, the symbol f1 ∗ f2 denotes the map (f1 ∗ f2)(x1, x2) =
(f1(x1), f2(x2)).

2.2. Jets

In this section we review some basic notions from jet bundle theory, all taken from
[38, 27].

Given a vector bundle π : E → M, Γ(E) will denote its smooth sections. Given ξ, η ∈
Γ(E), we say that ξ and η are k-equivalent at x if ξ(x) = η(x) and if, in some adapted
coordinate system around x, the partial derivatives of ξ and η at x agree up to order k.
This defines an equivalence relation on the sections of π. The equivalence class of ξ at x
of order k is denoted by jkxξ and is called the k-jet of ξ at x. The set of all k-jets at x
is denoted by JkxE and the set of all k-jets is denoted by JkE. We will sometimes find it
convenient to denote these sets as Jkxπ and Jkπ, respectively. The set JkE can be given
the structure of a smooth manifold by using vector bundle coordinates for E to assign the
coordinates of jkxξ as the derivatives of ξ up to order k at x. Note that J0π is naturally
identified with E. The map πk : J

kE → M that takes jkxξ to x defines a vector bundle. In
π−1
k (x) = JkxE, addition and scalar multiplication are defined as jkxξ + jkxη = jkx(ξ + η) and
λ · jkxξ = jkx(λξ), respectively, where λ ∈ R. For non-negative integers ℓ ≤ k, there is a
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canonical projection πkℓ : J
kE → JℓE, that maps jkxξ to jℓxξ. When ℓ = k − 1, the map

πkk−1 : J
kE → Jk−1E can be given an affine bundle structure modeled on the pull-back of

the vector bundle Sk(T∗M) ⊗ E → M to Jk−1E. Explicitly, for smooth functions f1, . . . , fk
vanishing at x, the action of (df1(x)⊙ · · · ⊙ dfk(x))⊗ η(x) ∈ Sk(T∗

xM)⊗ Ex on jkxξ ∈ JkxE
is given by

jkxξ + (df1(x)⊙ · · · ⊙ dfk(x))⊗ η(x) = jkx(ξ + (f1 · · · fk)η).

The affine structure can be represented via the following exact sequence of vector bundles
over M,

0 // Sk(T∗M)⊗ E
ϵk // JkE

πk
k−1 // Jk−1E // 0

where ϵk : S
k(T∗M)⊗ E → JkE is the injection defined as

ϵk((df1(x)⊙ · · · ⊙ dfk(x))⊗ η(x)) = jkx((f1 · · · fk)η),

for smooth functions f1, . . . , fk vanishing at x. The elements of

img(ϵk) ∩ JkxE = ker(πkk−1) ∩ JkxE

are the k-jets of sections of E that vanish up to order k − 1 at x; that is, elements whose
(k− 1)-jet at x agrees with the (k− 1)-jet at x of the zero section. Given jkx0ζ ∈ ker(πkk−1),

the corresponding element in Sk(T∗
x0M)⊗Ex0 will be denoted by Bk

ζ . In a coordinate system

(x1, . . . , xn) about x0, B
k
ζ is given by

Bk
ζ =

p∑
j=1

∑
I

∂kζj

∂xI
(x0) dx

I(x0)⊗ ej , (2.2.1)

where e1, . . . , ep is a basis for Ex0 , the inner sum runs through all multi-indices I =
(i1, . . . , ik) ⊂ {1, . . . , n}k of length k,

∂k

∂xI
=

∂k

∂xi1∂xi2 · · · ∂xik
and dxI = dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxik .

That (2.2.1) is indeed in Sk(T∗
x0M)⊗ Ex0 follows from the symmetry of the derivative.

We will say that ξ ∈ Γ(E) is of order k at x if jkxξ ∈ ker(πkk−1), but j
k
xξ is not the zero

vector. In other words, ξ ∈ Γ(E) is of order k at x if the first non-zero derivatives of ξ at x
are of order k.

Given manifolds M and N, define the trivial bundle πM : M×N → M by πM (x, y) = x. A
section of πM is naturally identified with a mapping from M to N. The jet space Jk(M×N)
can be defined in the same way as was done for vector bundles. Explicitly, Jk(x,y)(M × N)
is the space of equivalence classes of mappings from M to N that map x to y and whose
derivatives at x agree up to order k. The set Jk(M × N), which we prefer to denote by
Jk(M;N), is the set of all such equivalence classes. The space Jk(x,y)(M;N) can be given an
algebraic structure in the following way. We give the vector space

T∗k
x M := Jk(x,0)(M;R)
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a R-algebra structure by defining multiplication as jkxϕ ·jkxψ = jkx(ϕψ), for smooth functions
ϕ, ψ on M. The set Jk(x,y)(M;N) can then be identified with the R-algebra homomorphisms

Hom(T∗k
y N;T∗k

x M) by defining, for jkxf ∈ Jk(x,y)(M;N) and jkyϕ ∈ T∗k
y N,

jkxf(j
k
yϕ) = jkx(ϕ ◦f).

Similarly to the vector bundle case, we have an exact sequence of vector spaces

0 // Sk(T∗
xM)⊗ TyN

ϵk // Jk(x,y)(M;N)
πk
k−1 // Jk−1

(x,y)(M;N) // 0 (2.2.2)

where ϵk : S
k(T∗

xM)⊗ TyN → Jk(x,y)(M;N) is the mapping defined by

ϵk((df1(x)⊙ · · · ⊙ dfk(x))⊗ vy) = jkx(γvy ◦ (f1f2 · · · fk)),

for smooth functions f1, . . . , fk on M that vanish at x, and where γvy : R → N is any curve
at y such that γ′

vy(0) = vy. A case that will be of interest to us is when M = R. In this

case, since Sk(T∗
xR) is canonically isomorphic to R, it follows that Sk(T∗

xR) ⊗ TyN ∼= TyN.
Hence, if γ : R → N is a curve at y such that jk0γ ∈ ker(πkk−1), then j

k
0γ can be canonically

identified with a tangent vector in TyN. Hence, the sequence (2.2.2) becomes

0 // TyN
ϵk // Jk(0,y)(R;N)

πk
k−1 // Jk−1

(0,y)(R;N) // 0 (2.2.3)

Another important case of the exact sequence (2.2.2) is when N = R. In this case, for y = 0,
the sequence (2.2.2) becomes

0 // Sk(T∗
xM)

ϵk // T∗k
x M

πk
k−1 // T

∗(k−1)
x M // 0 (2.2.4)

WhenM = Rp, the set (Rp)∗k := Jk(0p,0)(R
p;R) can be canonically identified with polynomial

functions of order k with zero constant term via Taylor’s expansion and, therefore, we have
the isomorphism

(Rp)∗k ∼= (Rp)∗(k−1) ⊕ Sk((Rp)∗).

Explicitly, for a function h : Rp → R vanishing at the origin, jk0ph as a polynomial is defined
as

(jk0ph)(t) =
k∑

|I|=1

∂|I|h

∂tI
(0p)

tI

I!
,

where |I| := i1 + · · · + ip, I! = i1!i2! · · · ip!, for a multi-index I = (i1, . . . , ip) ∈ Zp≥0, and

tI = ti11 t
i2
2 · · · tipp for t = (t1, . . . , tp) ∈ Rp.

2.3. Set-valued maps

In this section we review some basic material from set-valued analysis following [4].
Let A and B be sets. A set-valued map F from A to B, denoted by F : A ⇒ B, is a

rule that assigns to each a ∈ A a subset of B, possibly empty. We say that F : A ⇒ B
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is compact (convex, when B is a vector space) if F (a) is a compact (convex, when B is a
vector space) set for each a ∈ A. Suppose that A and B are Hausdorff topological spaces
and that F : A ⇒ B has non-empty values. We say that F is upper semi-continuous
(usc) at a0 ∈ A if, for any open set V containing F (a0), there exists a neighbourhood Ω
of a0 such that F (Ω) ⊂ V . We say that F is lower semi-continuous (lsc) at a0 if, for any
b0 ∈ F (a0) and any neighbourhood V of b0, there exists a neighbourhood Ω of a0 such that
F (a) ∩ V ̸= ∅ for all a ∈ Ω. We call F continuous at a0 if it is usc and lsc at a0. If F
is usc (lsc, continuous) at each point in A then we say that it is usc (lsc, continuous). A
set-valued map is completely determined by its graph, that is, the set

gph(F ) = {(a, b) ∈ A×B | b ∈ F (a)} .

Given a non-empty subset G ⊂ A × B, there is a F : A ⇒ B such that gph(F ) = G,
namely, F (a) = {b ∈ B | (a, b) ∈ G}. The proof of the following result can be found in [37,
Theorem 5.9].

2.2 Theorem: Suppose that F : Rn ⇒ Rm has non-empty values, is convex and
int(F (a0)) ̸= ∅. Then F is lsc at a0 if and only if, for all b0 ∈ int(F (a0)), there exists
neighbourhoods Ω ∋ a0 and V ∋ b0 such that Ω × V ⊂ gph(F ), that is, V ⊂ F (a) for all
a ∈ Ω.

The following will be useful.

2.3 Proposition: Let A be a topological space and let B a topological vector space. Let F1

be a set-valued map from A to B and define F2 : A⇒ B by F2(a) = co(F1(a)). If F1 is lsc
at a0 then so is F2.

Proof: Let b ∈ F2(a0) and let V be a neighbourhood of b. We can write that

b =

m∑
j=1

λjbj

for some b1, . . . , bm ∈ F1(a0) and some λ1, . . . , λm ≥ 0 with
∑m

j=1 λ
j = 1. Consider the map

ρ : Bm → B defined by

ρ(x1, . . . , xm) =
m∑
j=1

λjxj .

Then ρ(b1, . . . , bm) = b ∈ V . Because ρ is continuous, for each j ∈ {1, . . . ,m}, there is a
neighbourhood Vj of bj such that ρ(V1 × · · · × Vm) ⊂ V . By lower semi-continuity of F1 at
a0, there is a neighourhood Ω of a0 such that Wj(a) := F1(a)∩ Vj ̸= ∅ for all a ∈ Ω and all
j ∈ {1, . . . ,m}. Then, by the definition of ρ,

ρ(W1(a)× · · · ×Wm(a)) ⊂ F2(a),

for all a ∈ Ω. This proves that F2(a)∩V ̸= ∅ for all a ∈ Ω, and, therefore, F2 is lsc at a0.■

A set-valued map F : A ⇒ B is locally Cr selectionable at a0 if, for each b0 ∈ F (a0),
there exist a neighbourhood Ω of a0 and a Cr map f : Ω → B such that f(a0) = b0 and
f(a) ∈ F (a) for all a ∈ Ω. We say that F is locally Cr selectionable if it is locally Cr

selectionable at each point in A. The following is straightforward to show [4].
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2.4 Proposition: A locally continuously selectionable set-valued map is lower semi-
continuous.

2.4. Derivatives of the solution of an ODE with respect to a parameter

In this section we prove a technical result regarding the high-order derivatives of the
solution of an ODE with respect to a parameter.

2.5 Proposition: Let I ⊂ R be an open interval containing the origin and suppose that
ζ : I ×M → TM is a smooth map with the following properties:
(i) ζs = ζ(s, ·) is a smooth vector field on M for each s ∈ I;
(ii) ζ(0, x) = 0x for all x ∈ M;
(iii) the curve ζx0 : I → Tx0M defined by ζx0(s) = ζ(s, x0) has vanishing derivatives of

orders 1, 2, . . . , ℓ− 1 at s = 0.
If vs denotes the integral curve of the vector field ζs through x0, then the curve s 7→ γ(s) =
vs(1) satisfies j

ℓ
0γ = jℓ0ζx0 ∈ Tx0M.

2.6 Remark: Let T > 0. From the continuous dependence on the parameters of the solution
of a smooth differential equation and the fact that the integral curves of the zero vector
field ζ0 = ζ(0, ·) exist on any compact interval [−T, T ], the integral curves of the vector
field ζs also exist on the interval [−T, T ] provided s is sufficiently close to zero.

The proof of Proposition 2.5 will follow from the next two lemmas.

2.7 Lemma: Let ζ : I×Ω → Rn be a smooth map, where I ⊂ R is an interval containing the
origin and where Ω ⊂ Rn is an open set containing the origin, and suppose that ζ(0, x) = 0
for all x ∈ Ω. Let v : (−δ, δ)× [−T, T ] → Rn be the smooth map such that vs = v(s, ·) is the
integral curve of ζs through x0 = 0 ∈ Ω. Then, for each integer ℓ ≥ 1, it holds that

∂

∂t

(
∂ℓv

∂sℓ

)
= D

(ℓ)
1 ζ(s, v) +D2ζ(s, v) ·

∂ℓv

∂sℓ
+Gℓ

(
s, v,

∂v

∂s
, . . . ,

∂ℓ−1v

∂sℓ−1

)
, (2.4.1 )

where Gℓ : W → Rn is a smooth map on a neighbourhood W ⊂ R× (Rn)ℓ of the origin such
that Gℓ(s, y1, 0, . . . , 0) = 0, for all (s, y1) ∈ R× Rn. Consequently,

∂ℓv

∂sℓ
(0, t) = D

(ℓ)
1 ζ(0, x0)t+

∫ t

0
Gℓ

(
0, x0,

∂v

∂s
(0, σ), . . . ,

∂ℓ−1v

∂sℓ−1
(0, σ)

)
dσ. (2.4.2 )

Proof: The proof is by induction on ℓ. By definition of v,

v(s, t) = vs(t) = x0 +

∫ t

0
ζ(s, vs(σ)) dσ,

and, therefore,
∂

∂t

(
∂v

∂s

)
= D1ζ(s, v) +D2ζ(s, v) ·

∂v

∂s
.

The claim holds for ℓ = 1 by setting G1(s, y1) = 0. Assume the claim holds for ℓ ≥ 1. Let
DkGℓ denote the derivative of Gℓ with respect to yk for k ∈ {1, . . . , ℓ}. By commutativity
of partial differentiation,

∂

∂t

(
∂ℓ+1v

∂sℓ+1

)
=

∂

∂s

(
∂

∂t

(
∂ℓv

∂sℓ

))
.
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Hence, by the induction hypothesis and the chain-rule (we omit evaluation at (s, v) for the
derivatives of ζ for compactness of notation),

∂

∂t

(
∂ℓ+1v

∂sℓ+1

)
= D

(ℓ+1)
1 ζ+D2D

(ℓ)
1 ζ · ∂v

∂s
+D1D2ζ ·

∂ℓv

∂sℓ
+D

(2)
2 ζ ·

(
∂v

∂s
,
∂ℓv

∂sℓ

)
+D2ζ ·

∂ℓ+1v

∂sℓ+1

+
∂Gℓ
∂s

(
s, v,

∂v

∂s
, . . . ,

∂ℓ−1v

∂sℓ−1

)
+

ℓ∑
k=1

DkGℓ

(
s, v,

∂v

∂s
, . . . ,

∂ℓ−1v

∂sℓ−1

)
· ∂

kv

∂sk
.

Let

Gℓ+1(s, y1, . . . , yℓ+1) = D2D
(ℓ)
1 ζ(s, y1) · y2 +D1D2ζ(s, y1) · yℓ+1 +D

(2)
2 ζ(s, y1) · (y2, yℓ+1)

+
∂Gℓ
∂s

(s, y1, . . . , yℓ) +
ℓ∑

k=1

DkGℓ (s, y1, . . . , yℓ) · yk+1.

Then Gℓ+1 is clearly smooth, and, moreover,

Gℓ+1(s, y1, 0, . . . , 0) =
∂Gℓ
∂s

(s, y1, 0, . . . , 0) = 0,

and the latter vanishes by the induction hypothesis. This proves (2.4.1). Equation (2.4.2)
now follows because D2ζ(0, x) is the zero matrix for all x ∈ Ω and v0 is constant and equal
to x0. This completes the proof. ■

2.8 Lemma: Let ζ and v be given as in Lemma 2.7. Let ℓ ≥ 1 be an integer and suppose that

D
(j)
1 ζ(0, x0) = 0 for j ∈ {0, . . . , ℓ−1}. Then, for all t ∈ (−T, T ) and for all j ∈ {0, . . . , ℓ−1},

∂jv
∂sj

(0, t) = 0 and

∂ℓv

∂sℓ
(0, t) = D

(ℓ)
1 ζ(0, x0)t.

Proof: The proof is by induction on ℓ ≥ 1. For ℓ = 1, we have that G1 ≡ 0, and, therefore,
by (2.4.1) it holds that ∂v

∂s (0, t) = D1ζ(0, x0)t for all t ∈ (−T, T ). The proves the claim for
ℓ = 1.

Now suppose that D
(j)
1 ζ(0, x0) = 0 for j ∈ {0, 1, . . . , ℓ} and assume the claim for ℓ ≥

1. By the induction hypothesis, ∂jv
∂sj

(0, t) = 0 for j ∈ {0, 1, . . . , ℓ − 1} and ∂ℓv
∂sℓ

(0, t) =

D
(ℓ)
1 ζ(0, x0)t, for all t ∈ (−T, T ). By assumption, D

(ℓ)
1 ζ(0, x0) = 0, and thus also ∂ℓv

∂sℓ
(0, t) =

0, for all t ∈ (−T, T ). Then by (2.4.2), for all t ∈ (−T, T ),

∂ℓ+1v

∂sℓ+1
(0, t) = D

(ℓ+1)
1 ζ(0, x0)t+

∫ t

0
Gℓ+1

(
0, x0,

∂v

∂s
(0, σ), . . . ,

∂ℓv

∂sℓ
(0, σ)

)
dσ

= D
(ℓ+1)
1 ζ(0, x0)t,

and this completes the proof. ■

Proof of Proposition 2.5: Choose a coordinate neighbourhood of x0, mapping x0 to the ori-
gin, and let, by abuse of notation, ζ : I × Ω → Rn be the coordinate representation of
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ζ : I ×M → TM about x0. By assumption, D
(j)
1 ζ(0, x0) = 0x0 for j ∈ {0, 1, . . . , ℓ− 1}, and,

therefore, by Lemma 2.8, ∂
jv
∂sj

(0, t) = 0 for all j ∈ {0, 1, . . . , ℓ− 1} and

∂ℓv

∂sℓ
(0, t) = D

(ℓ)
1 ζ(0, x0)t,

for all t ∈ (−T, T ). Choosing T > 1 and setting t = 1 completes the proof. ■



Chapter 3

Local controllability of affine
distributions

The purpose of this chapter is to lay the basic foundation for a theory of local controllability
for affine distributions. We start by reviewing the notion of an affine distribution and prove
some basic results regarding their local structure. We then introduce an unexplored notion
in control theory called an affine system and use it to give a definition of local controllability
for an affine distribution. A special type of affine system is a control-affine system, and
we prove that, in the regular case, it is sufficient to study control-affine systems to prove
controllability of affine distributions. Even with this being the case, the setting of affine
systems has the advantage of forcing one’s viewpoint to be feedback-invariant.

3.1. Affine distributions

By an affine distribution on M we mean a subset A ⊂ TM such that, for each x ∈ M,
Ax := A ∩ TxM is an affine subspace of TxM. We say that A is smooth if, for each x0 ∈ M,
there exists a neighbourhood Ω of x0 and smooth vector fields X0, X1, . . . , Xm on Ω such
that

Ax = {X0(x)}+ span {X1(x), . . . , Xm(x)}

for all x ∈ Ω. The set of vector fields {X0, X1, . . . , Xm} is called a local frame for A at x0.
Henceforth, we deal exclusively with smooth affine distributions.

An affine distribution will be called a distribution if Ax is a subspace for each x. Distri-
butions will typically be denoted with the symbol D. A vector field ξ is said to belong to A,
if ξ(x) ∈ Ax for each x in the domain of ξ. We let Γ(A) denote the set of smooth A-vector
fields and let Γx(A) denote the set of smooth A-vector fields containing x in their domain.
The linear part of A at x is denoted by L(A)x, and L(A) ⊂ TM denotes the corresponding
distribution on M. Explicitly,

L(A)x = {ξ2(x)− ξ1(x) | ξ1, ξ2 ∈ Γx(A)} .

We say that x0 is a regular point of A if there is a neighbourhood of x0 in which the
dimension of the subspace L(A)x is constant, and we call A regular if it is regular at every
point. We say that A is singular at x0 if it is not regular at x0. The following three lemmas,

13
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describing some local properties of affine distributions, will prove to be useful in subsequent
analysis.

3.1 Lemma: Let k = dim(L(A)x0). There is a local frame {X0, X1, . . . , Xm} for A at x0
such that Xk+j(x0) = 0x0 for j = 1, . . . ,m − k. Moreover, if 0x0 ∈ Ax0, then X0 can be
chosen to satisfy X0(x0) = 0x0.

Proof: To prove the first statement, let r = m − k and assume that r > 0; otherwise
there is nothing to prove. Let {X0, X1, . . . , Xk, Y1, . . . , Yr} be a local frame for A on Ω
about x0 such that L(A)x0 = span {X1(x0), . . . , Xk(x0)}. For each j ∈ {1, . . . , r}, there
exist λj ∈ Rk such that Yj(x0) = λbjXb(x0) (we are employing the summation convention).

Let Xk+j = Yj − λbjXb. Then Xk+j ∈ L(A) and Xk+j(x0) = 0x0 , for j ∈ {1, . . . , r}. Let

Λ = [λ1 λ2 · · · λr] ∈ Rk×r, i.e., Λ’s jth column is λj . Now let x ∈ Ω and vx ∈ L(A)x be
arbitrary. Then vx = αb1Xb(x) + αc2Yc(x) for some (α1, α2) ∈ Rk × Rr. Set µ1 = α1 + Λα2

and µ2 = α2. Then,

µb1Xb(x) + µc2Xk+c(x) =
(
αb1 + λbcα

c
2

)
Xb(x) + αc2

(
Yc(x)− λbcXb(x)

)
= αb1Xb(x) + αc2Yc(x) + (λbcα

c
2 − λbcα

c
2)Xb(x) = vx.

This proves that {X1, . . . , Xm} is a local frame for L(A) on Ω, and, therefore,
{X0, X1, . . . , Xm} is a local frame for A on Ω.

To prove the second statement, suppose that 0x0 ∈ Ax0 and let {Y0, X1, . . . , Xm} be a
local frame for A on Ω about x0. There is a λ ∈ Rm such that 0x0 = Y0(x0) + λbXb(x0).
Let X0 = Y0 + λbXb, so that X0(x0) = 0x0 , and, moreover X0 ∈ A. Let x ∈ Ω and vx ∈ Ax
be arbitrary. We can write vx = Y0(x) + αbXb(x) for some α ∈ Rm. If µ = α− λ, then

X0(x) + µbXb(x) = Y0(x) + (µb + λb)Xb(x) = Y0(x) + αbXb(x) = vx.

Thus {X0, X1, . . . , Xm} is a local frame for A on Ω. This completes the proof. ■

3.2 Lemma: Let A be regular at x0. Suppose that ξ1, . . . , ξp are A-vector fields such that
aff({ξ1(x0), . . . , ξp(x0)}) = Ax0. Then there exists a neighbourhood Ω of x0 such that

aff({ξ1(x), . . . , ξp(x)}) = Ax

for all x ∈ Ω.

Proof: It is straightforward to show that, for any i ∈ {1, . . . , p},

aff({ξ1(x0), . . . , ξp(x0)}) = ξi(x0) + span {ξj(x0)− ξi(x0) | j ̸= i} ,

so that
span {ξj(x0)− ξi(x0) | j ̸= i} = L(A)x0 .

By lower semi-continuity of the rank and regularity of A at x0, there exists a neighbourhood
Ω of x0 such that span {ξj(x)− ξi(x) | j ̸= i} = L(A)x for all x ∈ Ω. Therefore,

Ax = ξi(x) + span {ξj(x)− ξi(x) | j ̸= i} = aff({ξ1(x), . . . , ξp(x)})

for all x ∈ Ω. This completes the proof. ■

The next lemma asserts the existence of a particularly nice frame for a regular distri-
bution.
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3.3 Lemma: Let M be an n-manifold and let D be a smooth distribution that is regular at
x0 and of rank m at x0. Then there is a coordinate system (x1, . . . , xn) about x0 and a local
frame {X1, . . . , Xm} for D such that, in these coordinates,

Xj =
∂

∂xj
+

n−m∑
ℓ=1

cℓj
∂

∂xm+ℓ
,

for smooth functions cℓj vanishing at x0.

Proof: Without loss of generality assume that M = Rn and that x0 = 0. Let {X̃1, . . . , X̃m}
be a local frame for D on a neighbourhood Ω of x0. Thinking of the X̃j ’s as column vectors,
define the matrix A(x) = [X̃1(x) X̃2(x) · · · X̃m(x)]. By permuting the coordinates, if
necessary, we can assume that the uppermost m×m submatrix in A(x) is invertible on Ω.
Call this submatrix Ã(x). Multiplying A(x) on the right by Ã(x)−1, we obtain a new frame
{X1, . . . , Xm} for D on Ω of the form

Xj =
∂

∂xj
+

n−m∑
ℓ=1

bℓj
∂

∂xm+ℓ
, j ∈ {1, . . . ,m},

for smooth functions bℓj . Define the coordinate change Ψ: Rn → Rn by

x̃ = Ψ(x1, . . . , xn) = (x1, . . . , xm, xm+1 − Σmj=1b
1
j (x0)x

j , . . . , xn − Σmj=1b
n−m
j (x0)x

j).

A direct computation gives that

Ψ∗(Xj)(x̃) =
∂

∂x̃j
+
n−m∑
ℓ=1

(bℓj(x̃)− bℓj(x0))
∂

∂x̃m+ℓ
,

which completes the proof. ■

Let ζ be a vector field of order k at x0 and let

Bk
ζ =

n∑
j=1

∑
I

∂kζj

∂xI
(x0) dx

I(x0)⊗
∂

∂xj
(x0) (3.1.1)

denote the associated symmetric k-multilinear map on Tx0M, in the coordinates (x1, . . . , xn)
about x0, where n = dim(M). The next proposition states that, in the regular case, if ζ
belongs to a distribution D then Bk

ζ will take its values in Dx0 .

3.4 Proposition: Let D be a smooth distribution, on the n-dimensional manifold M, that is
regular at x0. If ζ is a D-vector field that is of order k at x0, then img(Bk

ζ ) ⊂ Dx0.

Proof: Let m be the rank of D at x0. By Lemma 3.3, there is a local frame {X1, . . . , Xm}
for D about x0 of the form

Xj =
∂

∂xj
+

n−m∑
ℓ=1

cℓj
∂

∂xm+ℓ
,
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for smooth functions cℓj vanishing at x0, and, thus,

Dx0 = span

{
∂

∂x1
(x0), . . . ,

∂

∂xm
(x0)

}
. (3.1.2)

There exist smooth functions u1, . . . , um such that, locally, ζ = ujXj . Now since ζ is of
order k at x0, the partial derivatives of the functions uj of order less than k vanish at x0.

That is, ∂
|I|uj

∂xI
(x0) = 0 for multi-indices 0 ≤ |I| < k. Therefore,

∂|I|(cℓju
j)

∂xI
(x0) = 0

for all multi-indices I such that 0 ≤ |I| ≤ k because cℓj(x0) = 0. It therefore follows from
(3.1.1) that

Bk
ζ =

m∑
j=1

∑
I

∂|I|uj

∂xI
(x0) dx

I(x0)⊗
∂

∂xj
(x0),

and, therefore, by (3.1.2), img(Bk
ζ ) ⊂ Dx0 . ■

The following example shows that the conclusion of Proposition 3.4 is no longer true in
the singular case.

3.5 Example: Let M = R2, write a typical point x ∈ R2 as x = (x1, x2), and let x0 =
(0, 0) ∈ R2 denote the origin. Consider the distribution D given by

Dx =

span
{

∂
∂x1

(x)
}
, x1 = 0,

span
{

∂
∂x1

(x), ∂
∂x2

(x)
}
, x1 ̸= 0.

The vector fields X1 =
∂
∂x1

and X2 = x1 ∂
∂x2

form a global frame for D and so D is smooth.
The vector X2 is of order k = 1 at x0. In the canonical coordinates on R2 we have

B1
X2

= dx1(x0)⊗
∂

∂x2
(x0),

which does not take its values in Dx0 = span
{

∂
∂x1

(x0)
}
. •

3.2. Affine systems

In this section we introduce affine systems and their trajectories. To begin, we will say
that F : M ⇒ TM is a multi-valued vector field if F(x) ⊂ TxM for each x ∈ M.

3.6 Definition: Let A be an affine distribution. An affine system in A is a multi-valued
vector field A : M ⇒ TM such that aff(A(x)) = Ax for each x ∈ M. •

If A is an affine system in A, then, necessarily, A(x) ̸= ∅ and A(x) ⊂ Ax for each x ∈ M.
Henceforth, when the affine distribution A is understood or it is not important in what is to
follow, we will simply refer to A as an affine system, without mentioning A. The restriction
of A to an open set Ω ⊂ M will be denoted by A|Ω. Given an open set Ω ⊂ M and a
multi-valued vector field A : Ω ⇒ TM such that aff(A(x)) = Ax for each x ∈ Ω, we will call
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A a local affine system in A or an affine system in A on Ω. Given two affine systems A1

and A2 in A with dom(A1) ∩ dom(A2) ̸= ∅, we will write that A1 ⊂ A2 if A1(x) ⊂ A2(x)
for all x ∈ dom(A1) ∩ dom(A2).

By an A-vector field on an open set Ω ⊂ M we will mean a vector field ξ : Ω → TM such
that ξ(x) ∈ A(x) for each x ∈ Ω. We say that A is smooth at x if, for each vx ∈ A(x), there
exists a smooth A-vector field ξ such that ξ(x) = vx, i.e., A is smoothly selectionable at x.
The set of all smooth A-vector fields will be denoted by Γ(A) and Γx(A) will denote the set
of smooth A-vector fields containing x in their domain. Finally, we say that A is proper at
x0 if

0x0 ∈ intAx0
(co(A(x0))).

3.7 Definition: LetA : M ⇒ TM be an affine system. AnA-trajectory is a locally absolutely
continuous curve γ : I → M such that γ′(t) ∈ A(γ(t)) a.e., where I ⊂ R is an interval. •

There are various sufficient conditions for an affine system, or more generally a differ-
ential inclusion, to possess trajectories under the above definition of a trajectory [4]. The
conditions are of two types, namely, continuity conditions and geometric or topological
conditions (convexity, compactness). For example, if A is a smooth affine system, then it
trivially has (smooth) trajectories through each point x ∈ M with any given initial velocity
vector vx ∈ A(x). To see this, let ξ : Ω → TM be a A-vector field with ξ(x) = vx. Then
the differential equation γ′(t) = ξ(γ(t)) has a (unique) smooth solution through x with
γ′(0) = vx. More generally, we have the following.

3.8 Theorem: ([4]) Let Ω ⊂ Rn be an open subset containing x0 and let F : Ω ⇒ Rn be
continuous with non-empty compact images. Then there exists T > 0 and an absolutely
continuous curve γ : [0, T ] → Ω such that γ′(t) ∈ F(γ(t)) and γ(0) = x0.

This theorem can be applied locally to multi-valued vector fields. We include the details
for completeness.

3.9 Theorem: Let F : M ⇒ TM be a continuous multi-valued vector field with non-empty
compact images. Then, for any x0 ∈ M, there exists T > 0 and an absolutely continuous
curve γ : [0, T ] → M such that γ′(t) ∈ F(γ(t)) and γ(0) = x0.

Proof: Let (Ω, φ) be a coordinate chart for x0 and set n = dim(M). Let f : φ(Ω) → Rn be the
map defined by f(y) = Tφ−1(y)φ(F(φ

−1(y))). This map is well-defined since F(x) ⊂ TxM for
each x ∈ M and it is continuous because it is a composition of continuous maps. Moreover,
its images are non-empty compact subsets of Rn. By Theorem 3.8, the differential inclusion
y′(t) ∈ f(y(t)) with initial condition y(0) = φ(x0) has a solution y : [0, T ] → φ(Ω) for some
T > 0. It follows then that t 7→ γ(t) = φ−1(y(t)) is such that γ′(t) ∈ F(γ(t)) and γ(0) = x0,
and γ is absolutely continuous. ■

3.10 Corollary: A continuous and compact affine system contains trajectories through any
point in its domain.

In this thesis, we will not be concerned with existence issues of solutions of affine systems
since we will be focusing on smooth affine systems.
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3.3. The Lie algebra rank condition

Given a set X of smooth vector fields, we let X(x) = {X(x) | X ∈ X}, and denote by
Lie(X) the smallest Lie subalgebra of vector fields that contains X. If X consists of vector
fields that are defined locally about a common point x0, then X generates a set of germs
at x0 of vector fields, which by abuse of notation we denote by the same symbol X. In this
case, Lie(X) will denote the smallest Lie subalgebra of germs at x0 of vector fields generated
by the set of germs X.

3.11 Definition: A set X of smooth vector fields is said to satisfy the Lie algebra rank
condition (LARC) at x0 if Lie(X)(x0) = Tx0M. •

Let A be a smooth affine distribution. If X = {X0, X1, . . . , Xm} is a local frame for
A at x0, then it is clear that Lie(X) ⊂ Lie(Γx0(A)), and hence a way to test if the LARC
holds for Γx0(A) at x0, is to compute Lie(X)(x0). However, since it is generally not true
that Lie(Γx0(A)) ⊂ Lie(X), a bad choice of a local frame can lead to an inconclusive result.
Here is a simple example to demonstrate this.

3.12 Example: As in Example 3.5, let M = R2, and let x0 = (0, 0) ∈ R2 denote the origin.
The distribution D is

Dx =

span
{

∂
∂x1

(x)
}
, x1 = 0,

span
{

∂
∂x1

(x), ∂
∂x2

(x)
}
, x1 ̸= 0.

The vector fields X1 =
∂
∂x1

and X2 = x1 ∂
∂x2

form a global frame for D and so D is smooth.

One computes that [X1, X2] = ∂
∂x2

and therefore Lie({X1, X2})(x0) = Tx0M. Now let

X̃2 = φ ∂
∂x2

, where φ : R → R is a smooth function whose derivatives of all orders (including

the zeroth derivative) vanish at x1 = 0 and φ(x1) > 0 for x1 ̸= 0. Then X1 and X̃2 also form
a global frame for D, but direct computations show that Lie({X̃1, X2})(x0) = span

{
∂
∂x1

}
. •

3.13 Remark: Example 3.12 can be used to show that, if D is a smooth distribution that
is singular at x0 and {X1, X2} is a local frame for D about x0, then, for ξ ∈ D, there may
not exist smooth functions u1, u2, locally defined about x0, such that ξ = u1X1 + u2X2.
For example, and referring to Example 3.12, if X1 = ∂

∂x1
but now X2 = (x1)2 ∂

∂x2
, then

{X1, X2} is still a global frame for D. It is clear that ξ = x1 ∂
∂x2

is a D-vector field, but
there is no smooth function u, defined in a neighbourhood of x0, such that ξ = uX2. •

The previous example is typical of what can happen in the case that A is singular at
x0. Let us now prove a lemma regarding the regular case.

3.14 Lemma: Let A be an affine distribution that is regular at x0. Then for any frame
X = {X0, X1, . . . , Xm} of A at x0, it holds that Lie(Γx0(A))(x0) = Lie(X)(x0).

Proof: It is clear that we only need to show that Lie(Γx0(A))(x0) ⊂ Lie(X)(x0). To this end,
let η1, η2 ∈ Γx0(A). In a neighbourhood Ω of x0, we can write that η1 = X0+u

aXa and that
η2 = X0 + vbXb, for smooth functions ua, vb on Ω. By the properties of the Lie bracket, we
can write that

[η1, η2] = fa[X0, Xa] + gbXb + hcd[Xc, Xd]
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for some smooth functions fa, gb, hcd, where 1 ≤ a, b, c, d ≤ m. Let

X = fa(x0)[X0, Xa] + gb(x0)Xb + hcd(x0)[Xc, Xd].

Then X ∈ Lie(X) and [η1, η2](x0) = X(x0). This procedure can be repeated for any vector
field of the form [ηk, [ηk−1, [· · · , [η2, η1]] · · · ], for any η1, . . . , ηk ∈ Γx0(A) and k ≥ 1. Using
the Jacobi-identity, one can show [35, Proposition 3.8] that any element of Lie(Γx0(A)) can
be written as a linear combination of Lie brackets of the form [ηk, [ηk−1, [· · · , [η2, η1]] · · · ],
and so the claim follows. ■

The LARC plays an important role in controllability theory. For example, in the analytic
case, the LARC at x0 is a necessary condition for controllability [46]. Moreover, if one
assumes the LARC at x0, the type of trajectories that characterize local controllability take
a relatively simple form [17]. With this in mind we give the following definition.

3.15 Definition: We say that an affine system A satisfies the LARC at x0 if the family
Γx0(A) satisfies the LARC at x0. •

3.4. Local controllability definitions

In this section we define the notion of local controllability for affine distributions that
we will study in this thesis.

Let A be an affine system and let T > 0. The reachable set of A from x0 in time T is

RA(x0, T ) = {γ(T ) | γ : [0, T ] → M is a A-trajectory such that γ(0) = x0} ,

and the reachable set of A from x0 in time at most T is

RA(x0,≤ T ) =
⋃

0≤t≤T
RA(x0, t).

The reachable set of A from x0 is RA(x0) = ∪t≥0RA(x0, t).
An affine system A is called small-time locally controllable (STLC) from x0 if, for each

T > 0, it holds that x0 ∈ int(RA(x0,≤ T )).

3.16 Remark: Let F : M ⇒ TM be a multi-valued vector field. Then the sets RF(x0, T ),
RF(x0,≤ T ), the definition of the LARC at x0 (if F is smoothly selectionable at x0), and
the property of STLC from x0, can all be defined in the same way for F as was done for an
affine system. •

We now give our local controllability definitions for an affine distribution.

3.17 Definition: Let A be an affine distribution on M and let x0 ∈ M.
(i) We say that A is properly small-time locally controllable (PSTLC) from x0 if every

affine system A in A that (1) is proper and smooth at x0 and (2) satisfies the LARC
at x0, is STLC from x0.

(ii) We say that A is small-time locally uncontrollable (STLUC) from x0 if every affine
system A in A that (1) is upper semi-continuous at x0 and (2) for which A(x0) is
compact, is not STLC from x0.

(iii) We say that A is conditionally small-time locally controllable (CSTLC) from x0 if it
is neither PSTLC nor STLUC from x0. •
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The following two examples illustrate some of the motivations for studying PSTLC.
In the first, we give an example that shows that controllability of the linearization is not
invariant under feedback transformations.

3.18 Example: Let M = R3, let x0 = (0, 0, 0) ∈ M, and consider the affine distribution

Ax = X0(x) + span {X1(x), X2(x)} ,

where X0 = x2 ∂
∂x1

, X1 = x3 ∂
∂x2

, and X2 =
∂
∂x3

. Consider the affine system A given by

A(x) =
{
X0(x) + u1X1(x) + u2X2(x)

∣∣ (u1, u2) ∈ [−2, 2]2 ⊂ R2
}
.

The linearization of A satisfies the equations

ẋ1 = x2; ẋ2 = 0; ẋ3 = u2,

which is not STLC from x0 since ẋ2 = 0. Consider the transformation

(u1, u2) 7→ (v1, v2) = (u1 − 1, u2).

The corresponding new frame for A is given by Y0 = x2 ∂
∂x1

+ x3 ∂
∂x2

, Y1 = x3 ∂
∂x2

, and

Y2 =
∂
∂x3

. In the new frame, the affine system A is given by

A(x) =
{
Y0(x) + v1Y1(x) + v2Y2(x)

∣∣ (v1, v2) ∈ [−3, 1]× [−2, 2] ⊂ R2
}
.

The linearization of A in this frame satisfies the equations

ẋ1 = x2; ẋ2 = x3; ẋ3 = v2.

Using the standard Kalman rank test, this system is STLC from x0. •
In the next example, we show how the size of the control set can affect controllability.

3.19 Example: Let M = R3, let x0 = (0, 0, 0) ∈ R3, and consider the affine distribution

Ax = X0(x) + span {X1(x), X2(x)} ,

where X0 = (x1)2 ∂
∂x3

, X1 = ∂
∂x1

, and X2 = ∂
∂x2

+ (x1)2

2
∂
∂x3

. Consider the affine system A1

given by

A1(x) =
{
X0(x) + u1X1(x) + u2X2(x)

∣∣ (u1, u2) ∈ [−1, 1]2 ⊂ R2
}
.

It can be shown that A1 is proper and smooth at x0 (Proposition 3.21) and, moreover, A1

satisfies the LARC at x0. An A1-trajectory will satisfy the differential equation

ẋ1 = u1; ẋ2 = u2; ẋ3 = (x1)2(1 + 1
2u

2).

It is clear that A1 is not STLC from x0 because ẋ3 ≥ 0 for all A1-trajectories. Hence, A is
not PSTLC from x0. Roughly speaking, the set U1 = [−1, 1]× [−1, 1] is not “big enough”
to counteract the effects of X0. Now let ϵ > 0 and consider the affine system

A2(x) =
{
X0(x) + u1X1(x) + u2X2(x)

∣∣ (u1, u2) ∈ [−1, 1]× [−2− ϵ, 1]
}
.
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It is clear that A2(x0) is compact, and it can be shown that A2 is upper semi-continuous at
x0 (Proposition 3.21). With the set U2 = [−1, 1]× [−2− ϵ, 1], one suspects that A2 is STLC
from x0 since now ẋ3 can be made positive and negative. The proof that this is indeed true
will have to wait until Example 5.8. Thus, A2 is STLC from x0. Hence, A is CSTLC from
x0. We note that a direct computation shows that

span {X1(x0), X2(x0), [X1, [X1, X2]](x0)} = Tx0M,

i.e., the value of the Lie algebra generated by L(A) is Tx0M, but one cannot conclude STLC
for A2 from the results of, say, [9] since U2 is bounded. •

Hence, a motivation for the notion of PSTLC is that one would like a property of
controllability that does not depend on the size of the control set but only on the local
differential geometry of the affine distribution.

As given, the definition of PSTLC is difficult to check. In this regard, the next proposi-
tion states that, in the regular case, PSTLC can be determined by considering affine systems
that are generated by a finite set of vector fields. To state the proposition, we need some
notation. For a finite family of vector fields ξ = (ξ1, . . . , ξp) defined on an open set Ω ⊂ M,
let Aξ : Ω ⇒ TM be defined as Aξ(x) = {ξ1(x), . . . , ξp(x)}. A set-valued map of the form
Aξ is clearly smoothly selectionable.

3.20 Proposition: Let A be an affine distribution that is regular at x0. Then A is PSTLC
from x0 if and only if, for every finite collection ξ of smooth A-vector fields such that Aξ is
proper at x0 and ξ satisfies the LARC at x0, Aξ is STLC from x0.

Proof: Assume that, for every finite collection ξ of smooth A-vector fields such that Aξ is
proper at x0 and ξ satisfies the LARC at x0, Aξ is STLC from x0, and let us prove that A is
PSTLC from x0. To this end, let A be an affine system in A that is proper and smooth at x0
and satisfies the LARC at x0. By smoothness of A at x0, there exists a neighbourhood Ω of
x0, and a finite family of A-vector fields ξ defined on Ω such that 0x0 ∈ intAx0

(co(Aξ(x0))).
By augmenting a finite number of A-vector fields to the family ξ, if necessary, we can
assume that ξ satisfies the LARC at x0. Now since aff(Aξ(x0)) = Ax0 , by Lemma 3.2, we
can assume by shrinking Ω if necessary, that aff(Aξ(x)) = Ax for all x ∈ Ω, and, therefore,
Aξ is an affine system in A. By construction, Aξ ⊂ A and, therefore, since Aξ is STLC
from x0, then so is A. Since A was arbitrary, this proves that A is PSTLC from x0.

Now assume that A is PSTLC from x0 and let ξ be a finite collection of smooth A-vector
fields. If Aξ is proper at x0 then again, by Lemma 3.2, Aξ is a local affine system in A.
Therefore, if Aξ satisfies the LARC at x0, then Aξ is STLC from x0 because A is PSTLC
from x0. This completes proof. ■

3.5. Control-affine systems

In this section, we describe an important class of affine systems called control-affine
systems. After proving some basic properties of control-affine systems, we will show that,
in the regular case, it is enough to consider control-affine systems to study the PSTLC
property.

A control-affine system is a triple Σ = (M, {X0, X1, . . . , Xm}, U), where M is a manifold,
{X0, X1, . . . , Xm} is a set of vector fields on M, and aff(U) = Rm. The set U is called the
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control set of Σ, and we say that U (or Σ) is proper if 0 ∈ int(co(U)). One can associate to
Σ an affine distribution AΣ and an affine system AΣ in AΣ by

(AΣ)x =
{
X0(x) + uaXa(x) | u = (u1, . . . , um) ∈ Rm

}
and

AΣ(x) =
{
X0(x) + uaXa(x) | u = (u1, . . . , um) ∈ U

}
,

respectively. We will say that Σ is convex (compact, STLC from x0, etc.) if the associated
affine system AΣ is convex (compact, STLC from x0, etc.). If γ : [0, T ] → M is a trajectory
of AΣ, i.e., γ is absolutely continuous and γ′(t) ∈ AΣ(γ(t)) a.e., then there is an integrable
map u : [0, T ] → Rm such that u(t) = (u1(t), . . . , um(t)) ∈ U and

γ′(t) = X0(γ(t)) +

m∑
a=1

ua(t)Xa(γ(t)).

The next proposition gives some basic properties of control-affine systems.

3.21 Proposition: Let Σ = (M, {X0, X1, . . . , Xm}, U) be a control-affine system. Then the
following statements hold:
(i) AΣ is smooth and, in particular, lower semi-continuous;
(ii) if U is compact then AΣ is upper semi-continuous;
(iii) if U is proper and X0(x0) = 0x0 then AΣ is proper at x0.

Proof: To prove (i), let x ∈ M and let vx ∈ AΣ(x). Then there exists u ∈ U such that
vx = X0(x) + uaXa(x). Let ξ = X0 + uaXa. Then ξ is a AΣ-vector field and ξ(x) = vx.
Hence, AΣ is smooth, and by Proposition 2.4, AΣ is lower semi-continuous.

To prove (ii), fix x0 ∈ M. Since upper semi-continuity is a local property, we can work
locally and consider a coordinate representation of AΣ on some neighbourhood of x0. Hence,
we can think of AΣ as a map AΣ : Ω ⇒ Rn, where Ω ⊂ Rn is an open set containing x0.
Let f : Ω × Rm → Rn be defined by f(x, u) = X0(x) + uaXa(x). Then AΣ(x) = f(x, U)
for all x ∈ Ω. Let W be an open set containing f(x0, U). Then, for each u0 ∈ U , f(x0, u0)
is contained in W . Since f is continuous, there exists a neighbourhood Ω0 of x0 and a
neighbourhood U0 of u0 such that f(x, u) ∈W for all (x, u) ∈ Ω0 × U0. By compactness of
U , there exists a finite number of neighbourhoods Ω0,1, . . . ,Ω0,N containing x0 such that, if
x ∈ Ω′ = ∩Nj=1Ω0,j , then f(x, u) ∈W for all u ∈ U . In other words, for x ∈ Ω′, f(x, U) ⊂W ,
i.e., AΣ(x) ⊂W for all x ∈ Ω′. This proves that AΣ is upper semi-continuous at x0.

To prove (iii), let f : M× Rm ⇒ TM be defined by f(x, u) = X0(x) + uaXa(x). Then
co(AΣ(x)) = f(x, co(U)) for each x ∈ M. Now, since X0(x0) = 0x0 , (AΣ)x0 is a subspace
and, because dim((AΣ)x0) ≤ m, f(x0, ·) is a linear map onto (AΣ)x0 , and is therefore an
open mapping. Thus, 0 ∈ int(co(U)), implies that 0x0 ∈ int(AΣ)x0

(co(AΣ(x0))). ■

Because of their relatively simple structure in the setting of affine systems, one would
like to use control-affine systems to study the local controllability of affine distributions. To
this end we give the following definition.

3.22 Definition: Let A be an affine distribution. We say that the control-affine system
Σ = (Ω, {X0, X1, . . . , Xr}, U) is a local realization for A at x0 if Ω is a neighbourhood of x0
and AΣ = A|Ω. •

The next proposition asserts the possibility of including a control-affine system in an
arbitrary convex affine system.
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3.23 Proposition: Suppose that x0 is a regular point of A and let m = dim(L(A)x0).
Let A be a convex affine system in A that is lower semi-continuous at x0. Then there
is a neighbourhood Ω of x0, a convex set U ⊂ Rm, and a control-affine system Σ =
(Ω, {X0, X1, . . . , Xm}, U) that is a local realization for A at x0 and AΣ ⊂ A. Moreover,
if A is proper at x0, then Σ can be chosen so that AΣ is proper at x0.

Proof: Let {X0, X1, . . . , Xm} be a local frame for A on a coordinate neighbourhood Ω
of x0, and let f : Ω × Rm → A|Ω be defined as f(x, u) = X0(x) + uaXa(x). Then, for
x ∈ Ω, f(x, ·) is a bijective affine map. Define F : Ω ⇒ Rm as F(x) = pr2 ◦f−1(A(x)),
where pr2 is the canonical projection onto the second factor. Then F is convex because
A is convex, and int(F(x)) ̸= ∅ for each x ∈ Ω since intAx(A(x)) ̸= ∅ for each x. Let
u0 ∈ int(F(x0)). By Theorem 2.2, there exists a convex open set U ⊂ int(F(x0)) containing
u0 and a neighbourhood Ω0 ∋ x0 such that U ⊂ int(F(x)) for all x ∈ Ω0. The first part of
the claim follows by letting Σ = (Ω0, {X0, X1, . . . , Xm}, U).

If A is proper at x0, by Lemma 3.1 we can assume that X0(x0) = 0x0 . The linear
independence of X1(x0), . . . , Xm(x0) and properness of A at x0 imply that 0 ∈ int(F(x0)).
Hence we can choose u0 = 0 ∈ Rm, and, therefore, U contains the origin in its interior.
Therefore, AΣ is proper at x0. ■

The method of proof of Proposition 3.23 can be used to prove the following useful
lemma.

3.24 Lemma: Let A be regular at x0 and let A be an affine system in A that is lower semi-
continuous at x0. If vx0 ∈ intAx0

(co(A(x0))) and ξ is an A-vector field such that ξ(x0) = vx0,
then ξ is a locally co(A)-vector field. In fact, there exists a neighbourhood Ω of x0 such that,
for x ∈ Ω,

ξ(x) ∈ intAx(co(A(x))).

Proof: By Proposition 2.3, lower semi-continuity of A at x0 implies that co(A) is lower semi-
continuous at x0. Using the notation of the proof of Proposition 3.23 applied to the convex
affine system co(A), let u0 ∈ int(F(x0)) be such that f(x0, u0) = vx0 . Now ξ(x) = X0(x) +
ua(x)Xa(x) for some smooth functions u1, . . . , um on Ω such that (u1(x0), . . . , u

m(x0)) = u0.
By shrinking Ω if necessary, and by lower semi-continuity, Theorem 2.2 implies that there
is a neigbourhood U0 of u0 such that U0 ⊂ int(F(x)) for all x ∈ Ω. By continuity of
u1, . . . , um, and shrinking Ω if necessary, (u1(x), . . . , um(x)) ∈ U0 for all x ∈ Ω. In other
words, ξ(x) ∈ intAx(co(A(x))) for all x ∈ Ω. In particular, ξ is a co(A)-vector field. ■

We are now ready to state the result we have been eluding to, namely that, in the
regular case, we can consider control-affine systems to study the PSTLC property.

3.25 Theorem: Suppose that x0 is a regular point for A and that 0x0 ∈ Ax0. Then A is
PSTLC from x0 if and only if every control-affine system that
(i) satisfies the LARC at x0,
(ii) is a local realization for A at x0, and
(iii) has a proper and convex control set,
is STLC from x0.

Proof: Assume that (i)-(iii) hold and let us prove that A is PSTLC from x0. By Proposi-
tion 3.20, it is enough to show that, for every finite family ξ of A-vector fields such that Aξ
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is proper and satisfies the LARC at x0, Aξ is STLC from x0. By Proposition 3.23, there
exists a control-affine system Σ that is a local realization for A at x0, with a control set that
is proper and convex, such that AΣ ⊂ co(Aξ) on some neighbourhood of x0. Moreover, by
Lemma 3.14, AΣ satisfies the LARC at x0. Hence, AΣ is STLC from x0, and, therefore,
so is co(Aξ). By Proposition 3.30 below, Aξ is also STLC from x0. This proves that A is
PSTLC from x0. The converse statement is obvious. ■

The following corollary to Theorem 3.25 will be useful.

3.26 Corollary: Suppose that x0 is a regular point for A with m = dim(Ax0) and that 0x0 ∈
Ax0. Let {X0, X1, . . . , Xm} be a local frame for A at x0 that satisfies the LARC at x0. Then
A is PSTLC from x0 if and only if, for every convex set U that is proper, the control-affine
system Σ = (Ω, {X0, X1, . . . , Xm}, U) is STLC from x0, where Ω is a neighbourhood of x0.

Proof: Let Σ′ be a control-affine system that is a local realization for A at x0, satisfies the
LARC at x0, and has a proper and convex control set. The affine system AΣ′ is clearly
convex and, by Proposition 3.21, is also lower semi-continuous. Therefore, by Proposi-
tion 3.23, there is a neighbourhood Ω of x0 and a convex and proper control set U ⊂ Rm,
such that control-affine system Σ = (Ω, {X0, X1, . . . , Xm}, U) satisfies AΣ(x) ⊂ AΣ′(x) for
each x ∈ Ω. Properness of U implies that aff(U) = Rm and, therefore by Lemma 3.14,
AΣ satisfies the LARC at x0. If AΣ is STLC, then so is AΣ′ . Since Σ′ is arbitrary, by
Theorem 3.25, this proves that A is PSTLC from x0. The converse statement is obvious.■

To prove Theorem 3.25, a key ingredient that was used was that if ξ is a finite family of
vector fields that satisfies the LARC at x0, then Aξ is STLC from x0 if and only if co(Aξ) is
STLC from x0. This fact can be shown to be a corollary of a proposition in [45, Proposition
2.3]. However, to prove Proposition 3.30, we will use some results from [32] and [6] that
relate the reachable set of a multi-valued vector field with the reachable set of its smooth
selections. To begin, for an arbitrary family ξ of vector fields on M, x0 ∈ M, and T > 0, we
let

Rξ(x0, T ) =
{
Φ
ξp
tp

◦ · · · ◦Φξ1t1 (x0)
∣∣∣ Σ ti = T, ti > 0, ξi ∈ ξ, p ≥ 0

}
,

and let Rξ(x0,≤ T ) = ∪0≤t≤TRξ(x0, t). Next, we recall that, if (M, d) is a metric space and
A and B are subsets of M , then the Hausdorff distance of A and B is defined by

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

It is well-known [33] that, when dH is restricted to the non-empty, closed, and bounded
subsets of M, we obtain a metric space. Let Ω ⊂ Rn be an open set and let F : Ω ⇒ Rn be
a Lipschitzean map with respect to the Hausdorff metric, that is, there exists a constant
L such that dH(F (x), F (y)) ≤ Ld(x, y) for all x, y ∈ Ω. Suppose that F admits Lipschitz
selections about any point in Ω, that is, for any x0 ∈ Ω and y0 ∈ F(x0), there is a Lipschitz
function f : Ω0 → Rn, where Ω0 ⊂ Ω is a neighbourhood of x0, such that f(x0) = y0
and f(x) ∈ F(x) for all x ∈ Ω0. Let Γx0(F) denote the set of all Lipschitz selections of F
containing x0 in their domain. It is clear that

RΓx0 (F)
(x0, T ) ⊂ RF(x0, T ) ⊂ Rco(F)(x0, T ),

where co(S) denotes the closure of the convex hull of S. In fact, we have the following.
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3.27 Lemma: ([32]) Let F : Ω ⇒ Rn be a Lipschitzean map that admits Lipschitz selections
about any point in Ω. Then, for each T > 0, RΓx0 (F)

(x0, T ) is dense in Rco(F)(x0, T ).
Consequently,

clRΓx0 (F)
(x0,≤ T ) = clRco(F)(x0,≤ T )

Proof: The proof of the first statement is the contents of [32]. To prove the second statement,
we have that

clRΓx0 (F)
(x0,≤ T ) = cl

⋃
0≤t≤T

RΓx0 (F)
(x0, t) ⊃

⋃
0≤t≤T

clRΓx0 (F)
(x0, t)

=
⋃

0≤t≤T
Rco(F)(x0, t) = Rco(F)(x0,≤ T ).

It follows that
clRco(F)(x0,≤ T ) ⊂ clRΓx0 (F)

(x0,≤ T ).

The reverse inclusion is obvious. ■

The following result is Theorem 3.1 in [6].

3.28 Theorem: ([6]) Let f : M× Rm → TM be a smooth map such that, for each u ∈ Rm,
x 7→ f(x, u) is a smooth vector field on M. Let U ⊂ Rm and let Γ(fU ) = {f(·, u) | u ∈ U}
and suppose that Lie(Γ(fU ))(x0) = Tx0M. Then

int clRΓ(fU )(x0,≤ T ) = intRΓ(fU )(x0,≤ T ).

The following is an easy consequence of Theorem 3.28.

3.29 Lemma: Let ξ = (ξ1, . . . , ξp) be a family of smooth vector fields on M that satisfies
the LARC at x0. Then

int clRξ(x0,≤ T ) = intRξ(x0,≤ T ).

Proof: Define f : M × Rm → TM by f(x, u) =
∑p

a=1 u
aξa(x). Then f(·, u) is a smooth

vector field for each u ∈ Rm. Let U be the standard basis in Rp. Then Γ(fU ) = ξ, and,
therefore, Lie(Γ(fU )) = Lie(ξ). We then apply Theorem 3.28 to the map f to conclude the
proof. ■

We finally have the following proposition, whose proof is an adaptation of the proof
of Proposition 2.2 in [10], the difference being that we are not assuming analyticity, but
instead assume the LARC and use the standard proof of accessibility [29].

3.30 Proposition: Let ξ be a finite family of smooth vector fields defined on an open set
Ω ⊂ Rn, let Aξ : Ω ⇒ Rn be the associated set-valued map, and let x0 ∈ Ω. If ξ satisfies
the LARC on Ω, then, for each T > 0 and ϵ > 0,

intRco(Aξ)(x0,≤ T ) ⊂ intRξ(x0,≤ T + ϵ).

Consequently, Aξ is STLC from x0 if and only if co(Aξ) is STLC from x0.
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Proof: We first note that, since ξ is finite and consists of smooth vector fields, Aξ is Lips-
chitzean with respect to the Hausdorff metric and admits Lipschitz selections. Let T > 0 and
let y ∈ intRco(Aξ)(x0,≤ T ). Let ϵ > 0 and consider R−ξ(y,≤ ϵ), where −ξ = {−ξ | ξ ∈ ξ}.
Because n = dimLie(ξ)(y) = dimLie(−ξ)(y), it follows that R−ξ(y,≤ ϵ) has non-empty
interior [29]. Let Vy ⊂ Rco(Aξ)(x0,≤ T ) be a neighbourhood of y. By the well-known acces-
sibility theorem [39, page 156, Theorem 9], there exists a sequence ξ1, . . . , ξn of elements of
ξ and t∗ = (t∗1, . . . , t

∗
n) ∈ Rn>0, with t

∗
i < ϵ/n, such that the map

(t1, . . . , tn) 7→ φ(t1, . . . , tn) = Φ−ξ1
t1

◦ · · · ◦Φ−ξn
tn (y)

is defined for 0 ≤ ti < ϵ/n, its image belongs to Vy, and it has rank n at t∗. Hence
there is a neighbourhood Wt∗ of t∗ such that φ(Wt∗) is an open set and is contained in
Vy ∩ intR−ξ(y,≤ ϵ). Hence, there is a z ∈ φ(Wt∗) and a neighbourhood Vz of z such that

Vz ⊂ Vy ⊂ Rco(Aξ)(x0,≤ T ) ⊂ clRco(Aξ)(x0,≤ T ) = clRξ(x0,≤ T ),

where the last equality follows from Lemma 3.27. By Lemma 3.29, it holds that
int clRξ(x0,≤ T ) = intRξ(x0,≤ T ), and hence Vz ⊂ Rξ(x0,≤ T ). Now by definition

of z, it holds that y = Φξntn ◦ · · · ◦Φξ1t1 (z) for some 0 < ti < ϵ/n. Therefore, the open set

Φξntn ◦ · · · ◦Φξ1t1 (Vz), which is contained in Rξ(x0,≤ T + ϵ), is a neighbourhood of y. This
completes the proof. ■

We end this chapter with a corollary to Proposition 3.30 which states that, in the regular
case, there is no loss in generality that affine systems are convex.

3.31 Corollary: Suppose that x0 is a regular point for A and that 0x0 ∈ Ax0. Then A is
PSTLC from x0 if and only if every smooth convex affine system in A that is proper and
satisfies the LARC at x0 is STLC from x0.

Proof: First assume that every convex affine system in A that is proper, smooth, and
satisfies the LARC at x0, is STLC from x0, and let us prove that A is PSTLC from x0. By
Proposition 3.20, it is enough to consider affine systems of the form Aξ, where ξ is a finite
family of vector fields that satisfies the LARC at x0 and such that Aξ is proper at x0. By
Proposition 3.23, there exists a control-affine system Σ that is a local realization for A at
x0 and has a proper and convex control set, and AΣ ⊂ co(Aξ). By Lemma 3.14, Σ satisfies
the LARC at x0. Moreover, AΣ is clearly convex. Hence, AΣ is STLC from x0 and thus so
is co(Aξ). By Proposition 3.30, Aξ is also STLC from x0. This proves that A is PSTLC.
The converse is obvious. ■



Chapter 4

Composition of flows and related
computational tools

The content of this chapter is a set of computational tools for the study of high-order tangent
vectors constructed using compositions of flows of vector fields. We start by defining a type
of high-order tangent vector that we call an end-time variation. We then proceed to describe
how these variations depend on the jets of the vector fields used to construct them. We
describe a connection between the coefficients of the Taylor series and labeled rooted trees,
in a similar way as Butcher [13] relates the coefficients of the Taylor series of the solution
of an ODE to rooted trees. We end the chapter with the relationship between a variation
and the continuous Campbell–Baker–Hausdorff formula.

4.1. End-time variations

In this section, for ease of presentation and without loss of generality, all vector fields
are assumed to be complete. If ξ = (ξ1, . . . , ξp) is a family of vector fields on M, we define
the map Φξ : Rp ×M → M by

Φξ(t, x) = Φ
ξp
tp

◦Φ
ξp−1

tp−1
◦ · · · ◦Φξ1t1 (x).

The map Φξ
t is defined as x 7→ Φξ

t (x) = Φξ(t, x) and Φξ
x is the map defined as t 7→ Φξ

x(t) =
Φξ(t, x).

For a positive integer p, an end-time is a smooth map τ : R≥0 → Rp≥0 such that τ(0) = 0p.
The set of all such maps is denoted by ETp. Given a family of vector fields ξ = (ξ1, . . . , ξp)

and τ ∈ ETp, Φ
ξ
x0 ◦τ : R → M is a curve at x0 whose image consists of points obtained by

following concatenations of the integral curves of ξ1, . . . , ξp. The order of the pair (ξ,τ) at
x0, denoted ordx0(ξ,τ), is the smallest integer k such that

jk0 (Φ
ξ
x0

◦τ) ̸= 0x0 ,

provided such an integer exists, and we set ordx0(ξ,τ) = ∞ if no such integer exists. If
k = ordx0(ξ,τ), we call

Vξ,τ := jk0 (Φ
ξ
x0

◦τ)

27
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the (ξ,τ)-end-time variation or just variation when (ξ,τ) is understood. Recall that, from
the exact sequence (2.2.3), Vξ,τ can be canonically identified with a tangent vector at x0,
and this is how we will view Vξ,τ.

4.2. A linear map describing variations

To better understand how a variation Vξ,τ depends on the jets of ξ, we note that, as
R-algebra homomorphisms,

jk0 (Φ
ξ
x0

◦τ) = jk0τ ◦ jk0pΦ
ξ
x0 ,

where we think of

jk0τ ∈ Hom((Rp)∗k; (R)∗k) and jk0pΦ
ξ
x0 ∈ Hom(T∗k

x0M; (Rp)∗k),

and where we recall that (Rp)∗k = Jk(0p,0)(R
p;R). Thinking of jets as Taylor polynomials, it is

easy to understand what jk0τ is. On the other hand, it is not easy to see how jk0pΦ
ξ
x0 depends

on the jets of ξ. To understand this dependence, we first introduce some multi-index
notation. For a family of vector fields ξ = (ξ1, . . . , ξp), a multi-index I = (i1, . . . , ip), and a

smooth function f : M → R, let ξIf be the function defined by (ξIf)(x) = (ξi11 · · · ξipp f)(x),
where we think of vector fields as differential operators. Similarly, for t = (t1, . . . , tp) ∈ Rp,
we set tI = ti11 · · · tipp . With this notation we have the following.

4.1 Theorem: Let f : M → R be a smooth function, let ξ = (ξ1, . . . , ξp) be a family of smooth

vector fields on M, and let x0 ∈ M. The Taylor expansion of the function f ◦Φξ
x0 : Rp → R

at the origin is
∞∑

|I|=0

(ξIf)(x0)
tI

I!
. (4.2.1 )

Proof: We must show that, for any multi-index I = (i1, . . . , ip),

∂|I|

∂xI
(f ◦Φξ

x0)(0p) = (ξIf)(x0).

Since the order of differentiation does not matter, we begin by differentiating with respect
to tp. It is clear that

∂

∂tp
(f ◦Φξ

x0)(t) = (ξpf)(Φ
ξp
tp

◦ · · · ◦Φξ1t1 (x0))

and, therefore,
∂ip

∂t
ip
p

(f ◦Φξ
x0)(t) = (ξ

ip
p f)(Φ

ξp
tp

◦ · · · ◦Φξ1t1 (x0)),

from which it follows that

∂ip

∂t
ip
p

(f ◦Φξ
x0)(t1, · · · , tp−1, 0) = (ξ

ip
p f)(Φ

ξp−1

tp−1
◦ · · · ◦Φξ1t1 (x0)).
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We repeat this procedure with tp−1 to obtain

∂ip−1+ip

∂t
ip−1

p−1 ∂t
ip
p

(f ◦Φξ
x0)(t1, · · · , tp−2, 0, 0) = (ξ

ip−1

p−1 ξ
ip
p f)(Φ

ξp−2

tp−2
◦ · · · ◦Φξ1t1 (x0)).

This procedure is done repeatedly to obtain the desired result. ■

We now introduce some notation that will be used throughout the rest of the thesis.
Given a smooth mapping ϕ : Rn → Rn, written ϕ(x) = (ϕ1(x), . . . , ϕn(x)), and a smooth
vector field ξ on Rn, let ξϕ : Rn → Rn be the smooth mapping whose ith component is ξϕi.
Let idRn : Rn → Rn denote the identity mapping. For a multi-index I = (i1, . . . , ip), let

ξI : Rn → Rn denote the mapping (ξI)(x) = (ξi11 · · · ξipip idRn)(x). We this notation we have
the following corollary to Theorem 4.1.

4.2 Corollary: Let ξ = (ξ1, . . . , ξp) be a family of smooth vector fields on Rn and let x0 ∈ Rn.
The Taylor series of the mapping Φξ

x0 : Rp → Rn at the origin is

∞∑
|I|=0

ξI(x0)
tI

I!
. (4.2.2 )

Using Theorem 4.1, we now want to describe how jk0pΦ
ξ
x0 depends on the jets of ξ. We

do this in the following theorem which gives the existence of a linear map on an appropriate
jet space of the tangent bundle and whose image, on a suitable subset, determines jk0pΦ

ξ
x0 for

every family ξ = (ξ1, . . . , ξp) of smooth vector fields. To state the theorem, let πpTM : ⊕p
j=1

TM → M denote the vector bundle over M whose total space is the p-fold direct sum of
TM. By abuse of notation, a family of p-vector fields ξ = (ξ1, . . . , ξp) will be identified with
a section of πpTM.

4.3 Theorem: Let M be a manifold and let x0 ∈ M. For positive integers k and p, there
exists a unique linear map

T k
x0 :

k⊕
ℓ=1

Sℓ(Jℓ−1
x0 (πpTM)) → L(T∗k

x0M; (Rp)∗k)

such that, for every family of smooth vector fields ξ = (ξ1, . . . , ξp) on M,

T k
x0(⊕

k
ℓ=1δℓ(j

ℓ−1
x0 ξ)) = jk0pΦ

ξ
x0 .

Moreover, the diagram

δ1(J
0
x0π

p
TM)

T 1
x0
��

⊕2
ℓ=1 δℓ(J

ℓ−1
x0 πpTM)oo

T 2
x0
��

⊕3
ℓ=1 δℓ(J

ℓ−1
x0 πpTM)oo

T 3
x0
��

· · ·oo

Hom(T∗1
x0M; (Rp)∗1) Hom(T∗2

x0M; (Rp)∗2)oo Hom(T∗3
x0M; (Rp)∗3)oo · · ·oo

commutes, where the horizontal arrows are the canonical projections.
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Proof: We first recall that (Rp)∗k can be canonically identified with polynomial functions of
order k with zero constant term via Taylor’s expansion, and thus we will think of elements
in (Rp)∗k in this way.

The proof is by induction on k. Let k = 1 and let ξ be a family of p-vector fields. We
define T 1

x0 : J
0
x0π

p
TM → L(T∗1

x0M; (Rp)∗1) by asking that T 1
x0(ξ(x0)) ∈ L(T∗1

x0M; (Rp)∗1) be
defined as

T 1
x0(ξ(x0))(j

1
x0f)(t) = j10p(f ◦Φξ

x0)(t) =
1∑

|I|=1

(ξIf)(x0)
tI

I!
,

where the last equality follows from Theorem 4.1. If η is another family of p-vector fields,
then

T 1
x0(ξ(x0) + η(x0))(j

1
x0f)(t) = T 1

x0((ξ + η)(x0))(j
1
x0f)(t)

= j10p(f ◦Φξ+η
x0 )(t)

=

1∑
|I|=1

((ξ + η)If)(x0)
tI

I!

= j10p(f ◦Φξ
x0)(t) + j10p(f ◦Φη

x0)(t)

= T 1
x0(ξ(x0))(j

1
x0f)(t) + T 1

x0(η(x0))(j
1
x0f)(t).

This proves that T 1
x0 is linear. Moreover, by definition, T 1

x0 is the unique map such that

T 1
x0(ξ(x0)) = j10pΦ

ξ
x0 . Hence, the claim holds for k = 1.

By induction, assume the claim for k ≥ 1 and let ξ be a family of p-vector fields on M.
From Theorem 4.1 and the induction hypothesis,

(jk+1
0p

Φξ
x0)(j

k+1
x0 f)(t) =

k∑
|I|=1

(ξIf)(x0)
tI

I!
+

∑
|I|=k+1

(ξIf)(x0)
tI

I!

= (jk0pΦ
ξ
x0)(j

k
x0f)(t) +

∑
|I|=k+1

(ξIf)(x0)
tI

I!

= T k
x0(⊕

k
ℓ=1δℓ(j

ℓ−1
x0 ξ))(jkx0f)(t) +

∑
|I|=k+1

(ξIf)(x0)
tI

I!

= T k
x0(⊕

k
ℓ=1δℓ(j

ℓ−1
x0 ξ))(jkx0f)(t) + ψk+1

x0 (jk+1
x0 ξ)(jk+1

x0 f)(t),

where ψk+1
x0 : Jk+1

x0 πpTM → L(T
∗(k+1)
x0 M; (Rp)∗(k+1)) is defined as

ψk+1
x0 (jk+1

x0 ξ)(jk+1
x0 f)(t) =

∑
|I|=k+1

(ξIf)(x0)
tI

I!
.

If λ ∈ R, then

ψk+1
x0 (λjk+1

x0 ξ)(jk+1
x0 f)(t) = ψk+1

x0 (jk+1
x0 λξ)(jk+1

x0 f)(t) =
∑

|I|=k+1

((λξ)If)(x0)
tI

I!

=
∑

|I|=k+1

λ|I|(ξIf)(x0)
tI

I!
= λk+1ψk+1

x0 (jk+1
x0 ξ)(jk+1

x0 f)(t).
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Hence, ψk+1
x0 is a homogeneous polynomial mapping of degree k + 1. By Lemma 2.1, there

exists a unique linear mapping

Ψk+1
x0 : Sk+1(Jk+1

x0 πpTM) → L(T∗(k+1)
x0 M; (Rp)∗(k+1))

such that
Ψk+1
x0 (δk+1(j

k+1
x0 ξ)) = ψk+1

x0 (jk+1
x0 ξ).

Now define the mapping

T k+1
x0 :

k+1⊕
ℓ=1

Sℓ(Jℓ−1
x0 πpTM) → L(T∗(k+1)

x0 M; (Rp)∗(k+1))

by asking that, for

v1 ⊕ · · · ⊕ vk ⊕ vk+1 ∈
k+1⊕
ℓ=1

Sℓ(Jℓ−1
x0 πpTM),

we have

T k+1
x0 (v1⊕· · ·⊕vk⊕vk+1)(j

k+1
x0 f) = T k

x0(v1⊕· · ·⊕vk)(jkx0f)+Ψk+1
x0 (vk+1)(j

k+1
x0 f), (4.2.3)

where T k
x0 :

⊕k
ℓ=1 S

ℓ(Jℓ−1
x0 πpTM) → L(T∗k

x0M; (Rp)∗k) is the unique linear mapping whose
existence is ensured by the induction hypothesis. Because T k

x0 and Ψk+1
x0 are linear, it

follows that T k+1
x0 is linear. Moreover,

T k+1
x0 (⊕k+1

ℓ=1 δℓ(j
ℓ−1
x0 ξ))(jk+1

x0 f) = T k
x0(⊕

k
ℓ=1δℓ(j

ℓ−1
x0 ξ))(jkx0f) + Ψk+1

x0 (δk+1(j
k+1
x0 ξ))(jk+1

x0 f)

= (jk0pΦ
ξ
x0)(j

k
x0f) + ψk+1

x0 (jk+1
x0 ξ) = (jk+1

0p
Φξ
x0)(j

k+1
x0 f).

Now since T k+1
x0 is uniquely determined by T k

x0 and Ψk+1
x0 , it follows that T k+1

x0 is the unique
mapping satisfying the claim of the theorem for k + 1. This proves the first statement.
Commutativity of the diagram follows from (4.2.3). ■

Since we are only interested in the image of T k
x0 on

⊕k
ℓ=1 δℓ(J

ℓ−1
x0 πpTM), we define the

map TTT k
x0 : J

k−1
x0 πpTM → L(T∗k

x0M; (Rp)∗k) by asking that

TTT k
x0(j

k−1
x0 ξ) = T k

x0(⊕
k
ℓ=1δℓ(j

ℓ−1
x0 ξ)).

Hence, with this notation, for ξ = (ξ1, . . . , ξp) and τ ∈ ETp,

jk0 (Φ
ξ
x0

◦τ) = jk0τ ◦TTT k
x0(j

k−1
x0 ξ).

For k ∈ Z≥0 and a smooth function f , define the polynomial function eξfk : Rp → R by

eξfk (t) =
k∑

|I|=0

(ξIf)(x0)
tI

I!
, (4.2.4)

i.e., by Theorem 4.1 eξfk (t) is the Taylor polynomial of f ◦Φξ
x0 of order k. It will be important

for us to know how the Taylor polynomials (4.2.4) decompose when we view ξ = (ξ1, . . . , ξp)
as being a concatenation of two families of vector fields. The following lemma will be key.
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4.4 Lemma: Let ξ1 and ξ2 be families of smooth vector fields on M of length p and q,
respectively, and let f : M → R be a smooth function that vanishes at x0. Let ξ = ξ1 ∗ ξ2.
Then, for each positive integer k and (t1, t2) ∈ Rp × Rq,

e
(ξ1∗ξ2)f
k (t1, t2) = e

ξ1f
k (t1) + e

ξ2f
k (t2) +mξf

k (t1, t2),

where

mξf
k (t1, t2) =

k−1∑
|J |=1

tJ2
J !
e
ξ1(hJ )
k−|J | (t1) and hJ = ξJ2 f − ξJ2 f(x0).

Proof: From (4.2.4),

e
(ξ1∗ξ2)f
k (t1, t2) = e

ξ1f
k (t1) + e

ξ2f
k (t2) +

k∑
|I|+|J |=2
|I|,|J |≥1

(ξI1ξ
J
2 f)(x0)

tI1t
J
2

I!J !
.

Now, directly,

k∑
|I|+|J |=2
|I|,|J |≥1

(ξI1ξ
J
2 f)(x0)

tI1t
J
2

I!J !
=

k−1∑
|J |=1

k−|J |∑
|I|=1

(ξI1ξ
J
2 f)(x0)

tI1t
J
2

I!J !

=
k−1∑
|J |=1

tJ2
J !

k−|J |∑
|I|=1

ξI1(ξ
J
2 f − ξJ2 f(x0))(x0)

tI1
I!

=

k−1∑
|J |=1

tJ2
J !
e
ξ1(ξ

J
2 f−ξJ2 f(x0))

k−|J | (t1),

where the last equality follows because the function ξJ2 f − ξJ2 f(x0) vanishes at x0. This
proves the claim. ■

The following lemma will also be useful.

4.5 Lemma: Let ξ be a family of smooth vector fields of length p and let τ ∈ ETp. Suppose
that k = ordx0(ξ,τ) ≥ 2 and let ρ : R → Rq be a smooth map such that ρ(0) = 0q. For
any smooth function f : M → R and any multi-index J = (j1, . . . , jq) with 1 ≤ |J | ≤ k − 1,

the derivatives of the function s 7→ ρJ(s)eξfk−|J |(τ(s)) of orders 0, 1, . . . , k vanish at s = 0,

where ρJ(s) = (ρ1(s))j1 · · · (ρq(s))jq .

Proof: Suppose that 1 ≤ |J | ≤ k − 1. By the Leibniz rule, the derivatives of the function
s 7→ ρJ(s) of orders 0, 1, . . . , |J |−1 all vanish at s = 0. By definition of ordx0 , the derivatives

of the function s 7→ eξfk−|J |(τ1(s)) of orders 1, . . . , k − |J | all vanish at s = 0. Therefore, by

the Leibniz rule, the derivatives of the function s 7→ ρJ(s)eξfk−|J |(τ(s)) of orders 0, 1, . . . , k
all vanish at s = 0. ■
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4.3. The Taylor series of Φξ
x0

and rooted trees

In this section, following the work of Butcher [13], we make a graph-theoretic connection
between the coefficients in the Taylor series (4.2.1) and labeled rooted trees. To state
Butcher’s formula and our extension of it, we introduce some basic notions from graph
theory [15]. If G is a graph, we let |G| denote the number of vertices of G. A tree is a
connected graph with no cycles. A rooted tree is a tree with a distinguished vertex called
the root, which we denote by r. The set of all rooted trees is denoted by T and a typical
rooted tree will be denoted by T, V, or W . The rooted tree with a single vertex is denoted
by τ. If v1, v2 are vertices of the rooted tree T , let v1Tv2 be the unique path from v1 to v2.
There is a natural ordering imposed on the vertices of a rooted tree: v1 ≤ v2 if v2 ∈ rTv1.
In other words, v1 ≤ v2 if v2 is closer to the root than v1, and it is easy to see that the
root r is the greatest vertex. If u and v are adjacent vertices in a rooted tree and u ≤ v,
then we say that v is the parent of u and u the child of v. A leaf of a rooted tree is a
vertex with no children. For a finite subset K ⊂ N with k elements, let TK denote the
set of rooted trees with k vertices and labeled with the elements of K such that the root
is labeled max(K) and for each a ∈ K\{max(K)}, the labels of the nodes on the unique
path from the root to the node labeled a forms a decreasing sequence. If K = {1, . . . , k},
then we write Tk for TK . If T ∈ TK and T1, T2, . . . , Tm denote the rooted trees obtained
by removing the root of T and its incident edges, the labeling of T induces a set partition
K1,K2, . . . ,Km of K\{max(K)} satisfying Ta ∈ TKa for a = 1, . . . ,m. For this reason, we
write T = [T1, T2, . . . , Tm].

We now introduce the notion of an elementary differential corresponding to a labeled
rooted tree, which is a generalization of the elementary differentials considered by Butcher
[13].

4.6 Definition: Let K = {a1, . . . , ak} ⊂ N, let η = {ηa1 , . . . , ηak} be a set of smooth vector
fields on Rn, and let K ′ ⊂ K be a non-empty subset. The elementary differential of η
corresponding to T ∈ TK′ is the map ηT : Rn → Rn defined as ηT (x) = ηmax(K′)(x), if
|K ′| = 1, and

ηT (x) = (D(m)ηmax(K′)(x))(ηT1(x), . . . ,ηTm(x)),

if |K ′| ≥ 2, where T1, . . . , Tm are the rooted trees obtained by removing the root of T and
its incident edges. •

The following example illustrates the idea of an elementary differential for labeled rooted
trees.

4.7 Example: The elementary differentials corresponding to the labeled trees in Fig-
ure 4.1 are (from left to right) Dη21Dη13D

2η8(η3, η5), D2η21(Dη8(η3),Dη13(η5)),
D3η13(Dη3,Dη5,Dη8), and η5, respectively. •

Let there be given a multi-index I = (i1, . . . , ip) such that i1 + · · · + ip = k and let
ξ = (ξ1, . . . , ξp) be a family of vector fields. Define a new family of vector fields ξI by

ξI = (ξ1, . . . , ξ1︸ ︷︷ ︸
i1−times

, . . . , ξp, . . . , ξp︸ ︷︷ ︸
ip−times

).

For each T ∈ Tk, let [ξI ]T : Rn → Rn be the elementary differential of ξI corresponding to
T . With this notation we have the following formula.
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Figure 4.1. Some labeled rooted trees

4.8 Theorem: Let ξ = (ξ1, . . . , ξp) be family of smooth vector fields on Rn and let x0 ∈ Rn.
Then, for a multi-index I = (i1, . . . , ip) such that |I| = k, it holds that

∂k

(∂t1)i1(∂t2)i2 · · · (∂tp)ip
Φξ
x0(0p) =

∑
T∈Tk

[ξI ]T (x0).

The case p = 1 in Theorem 4.8 is Butcher’s formula [13]. Let us recall Butcher’s
construction. If T is a rooted tree, let α(T ) denote the number of ways of labeling T with
the set {1, 2, . . . , |T |} such that the root is labeled 1 and for each 2 ≤ a ≤ |T |, the labels
of the nodes on the unique path from the root to the node labeled a forms an increasing
sequence. Let ξ : Rn → Rn be a smooth vector field. To each rooted tree T , Butcher
associates an elementary differential ξT : Rn → Rn defined as ξT (x) = ξ(x) if |T | = 1, and

ξT (x) = (D(m)ξ)(x)(ξT1(x), . . . , ξTm(x))

if |T | ≥ 2, where T1, . . . , Tm are the rooted trees obtained by removing the root of T and
its incident edges. With this notation we state Butcher’s formula, which is an immediate
corollary of Theorem 4.8.

4.9 Theorem: ([13]) If ξ : Rn → Rn is (k−1) times differentiable at x0 and γ′(t) = ξ(γ(t))
with γ(0) = x0, then

dk

dtk
γ(0) =

∑
T a rooted tree

|T |=k

α(T )ξT (x0).

To prove Theorem 4.8 we will first need to prove the following.

4.10 Theorem: Let η = (η1, . . . , ηk) be a family of smooth vector fields on Rn. Then, for
all x ∈ Rn,

(η1η2 · · · ηk)(x) =
∑
T∈Tk

ηT (x).

Let us prove Theorem 4.8 using Theorem 4.10

Proof of Theorem 4.8: By Corollary 4.2, it follows that, for a multi-index I = (i1, . . . , ip)
satisfying |I| = k,

∂k

(∂t1)i1(∂t2)i2 · · · (∂tp)ip
Φξ
x0(0p) = (ξi11 ξ

i2
2 · · · ξipp )(x0).
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Define k vector fields η = (η1, . . . , ηk) via the equation

η = (η1, η2, . . . , ηk) = (ξ1, . . . , ξ1︸ ︷︷ ︸
i1−times

, . . . , ξp, . . . , ξp︸ ︷︷ ︸
ip−times

).

Then, for any T ∈ Tk and multi-index I = (i1, . . . , tp) with |I| = k, by definition ηT = [ξI ]T .
Therefore,

(ξi11 ξ
i2
2 · · · ξipp )(x0) = (η1η2 · · · ηk)(x0) =

∑
T∈Tk

ηT (x0) =
∑
T∈Tk

[ξI ]T (x0),

where the second equality follows from Theorem 4.10 and the third equality follows from
the definition of [ξI ]T . This completes the proof. ■

The rest of this section is devoted to proving Theorem 4.10. Let K = {a1, . . . , ak} ⊂ N
and let K0 = {a0, a1, . . . , ak} ⊂ N, where a0 < min(K). If V ∈ TK0 , and the vertex
labeled with a0 (which is necessarily a leaf) is removed along with its incident edge, then
the resulting labeled rooted tree is an element of TK . Conversely, every element of TK0 can
be obtained by adding a leaf to a vertex of some element of TK and labeling it with a0.
Hence, if T ∈ TK and DT ⊂ TK0 denotes the subset whose elements are obtained by adding
a leaf to a vertex of T and labeling with a0, we have TK0 =

⋃
T∈TK DT . The next lemma

states that the operation of adding a leaf to each vertex of a rooted tree is equivalent to
taking the derivative of the associated elementary differential.

4.11 Lemma: Let K = {a1, . . . , ak}, let K ′ ⊂ K be a non-empty subset, and let K ′
0 =

{a0} ∪ K ′, where a0 < min(K). Let T ∈ TK′ and let ζ = {ζa0 , ζa1 , . . . , ζak} be a set of
smooth vector fields on Rn. Then

D(ζT )(ζa0) =
∑
V ∈DT

ζV , (4.3.1 )

where D(ζT )(ζa0) : Rn → Rn denotes the smooth mapping x 7→ D(ζT )(x)(ζa0(x)).

Proof: Let τa0 denote the rooted tree with one vertex and labeled with a0. Let P (TK0)
denote the power set of TK0 . The set DT is the image of T under the map d: TK → P (TK0)
defined recursively as d(T ) = {[τa0 ]} if |T | = 1, and

d(T ) = {[τa0 , T1, T2, . . . , Tm]}
⋃ m⋃

j=1

⋃
W∈d(Tj)

{[T1, . . . , Tj−1,W, Tj+1, . . . , Tm]}

 , (4.3.2)

if |T | ≥ 2. It is straightforward to show that (4.3.1) holds for T ∈ TK′ whenever |K| = 1.
Assume by induction that the claim holds for K ′ ⊂ K and T ∈ TK′ , whenever |K| =
k − 1. To prove the induction step, let K ⊂ N have k elements, K ′ ⊂ K is non-empty
and T ∈ TK′ . Write T = [T1, . . . , Tm], and let K ′

1, . . . ,K
′
m be the induced partition on

K ′\{max(K ′)} such that Tj ∈ TK′
j
. Then each K ′

j is a subset of K\{max(K)}, which has

k − 1 elements, and so the claim holds for each Tj by the induction hypothesis. Now, by
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the definition of an elementary differential ζT , and letting r := max(K ′) = max(K ′
0), we

have ζT = D(m)ζr(ζT1 , . . . , ζTm). Therefore, from the chain rule, it follows that

D(ζT )(ζa0) = D(m+1)ζr(ζT1 , . . . , ζTm , ζa0)

+

m∑
j=1

D(m)ζr(ζT1 , . . . , ζTj−1
,D(ζTj )(ζa0), ζTj+1

, . . . , ζTm).

On the other hand, from the definition of DT = d(T ) given in (4.3.2),∑
V ∈DT

ζV = D(m+1)ζr(ζT1 , . . . , ζTm , ζa0)

+
m∑
j=1

∑
W∈d(Tj)

D(m)ζr(ζT1 , . . . , ζTj−1
, ζW , ζTj+1

, . . . , ζTm)

= D(m+1)ζr(ζT1 , . . . , ζTm , ζa0)

+
m∑
j=1

D(m)ζr(ζT1 , . . . , ζTj−1
,
∑

W∈d(Tj)

ζW , ζTj+1
, . . . , ζTm)

= D(m+1)ζr(ζT1 , . . . , ζTm , ζa0)

+

m∑
j=1

D(m)ζr(ζT1 , . . . , ζTj−1
,D(ζTj )(ζa0), ζTj+1

, . . . , ζTm),

where the second equality follows from multilinearity and the last equality follows from the
induction hypothesis. This completes the proof. ■

The following lemma is an easy consequence of our notation and the definition of the
Lie derivative.

4.12 Lemma: For any collection of smooth vector fields η1, . . . , ηk on Rn, it holds that

(η1η2 · · · ηk)(x) = D(η2 · · · ηk)(x)(η1(x)),

for any x ∈ Rn.
We now prove Theorem 4.10.

Proof of Theorem 4.10: The proof is a modification of Lemma 302B in [13]. The proof is
by induction on k. The case k = 1 is trivial. Assume it holds for k ≥ 1. Let ζ0 = η1, ζ1 =
η2, . . . , ζk = ηk+1, ζ = {ζ0, ζ1, . . . , ζk}, and K0 = {0, 1, . . . , k}. Then, from Lemma 4.12,

η1η2 · · · ηk+1 = D(η2 · · · ηk+1)(η1) = D(ζ1 · · · ζk)(ζ0) = D

∑
T∈Tk

ζT

 (ζ0)

=
∑
T∈Tk

D(ζT )(ζ0) =
∑

V ∈TK0

ζV =
∑

V ∈Tk+1

ηV ,

where the third equality follows from the induction hypothesis and the penultimate equality
follows from Lemma 4.11. ■
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To give an application of some of the ideas in this section, we will give a Lie bracket
interpretation of the vector-valued symmetric k-multilinear map Bk

ζ , for a vector field ζ of

order k at x0. Recall that, in a coordinate system (x1, . . . , xn) about x0, B
k
ζ ∈ Sk(T∗

x0M)⊗
Tx0M is given by

Bk
ζ =

n∑
j=1

∑
I

∂kζj

∂xI
(x0) dx

I(x0)⊗
∂

∂xj
(x0).

Hence, identifying Tx0M with Rn via the basis { ∂
∂x1

(x0), . . . ,
∂
∂xn (x0)}, the action of Bk

ζ on
v1, . . . , vk ∈ Rn is given by

Bk
ζ (v1, . . . , vk) = Dkζ(x0)(v1, . . . , vk). (4.3.3)

With (4.3.3) in mind we have the following.

4.13 Proposition: Let ζ be a vector field of order k at x0. Then Bk
ζ ∈ Sk(T∗

x0M)⊗ Tx0M is
given by

Bk
ζ (v1, . . . , vk) = [X1, [X2, [· · · , [Xk, ζ]] · · · ]](x0),

where Xj(x0) = vj, for vector fields X1, . . . , Xk.

Proof: By a simple induction, one can show that, for vector fields X1, . . . , Xk+1, as differ-
ential operators,

[X1, [X2, [· · · , [Xk, Xk+1]] · · · ] = X1X2 · · ·Xk+1 +Ψ(X1, . . . , Xk+1),

where Ψ(X1, . . . , Xk+1) is a linear combination of monomials of the form Xi1Xi2 · · ·Xik+1

with ik+1 ̸= k + 1. That is, Xk+1 does not appear as the right-most factor in any
monomial in the sum Ψ(X1, . . . , Xk+1). From Lemma 4.12, the coordinate expression of
Xi1Xi2 · · ·Xik+1

(x0) is a sum of terms involving the derivatives at x0, of Xik+1
up to order

k, the derivatives of Xik up to order k−1, etc., and the zeroth derivative of Xi1 . Therefore,
if Xk+1 is of order k at x0, Ψ(X1, . . . , Xk+1)(x0) vanishes. Hence, by Lemma 4.12, if Xk+1

is of order k at x0, then

X1X2 · · ·XkXk+1(x0) = DkXk+1(x0)(X1(x0), X2(x0), . . . , Xk(x0)),

which proves the claim. ■

4.4. The continuous Campbell–Baker–Hausdorff formula

In this section, we establish a connection between a variation and the formal Camp-
bell–Baker–Hausdorff formula. The algebraic material that follows can all be found in [23].

Let J be a set. The free R-vector space generated by J will be denoted by V (J). By
definition, V (J) is the set of maps ϕ : J → R such that ϕ(j) = 0 for all but finitely many
j ∈ J and the vector space operations on V (J) are the usual pointwise definitions. A basis
for V (J) is the set of maps ej : J → R defined by ej(j

′) = 1 if j = j′ and zero otherwise.
We let A(J) =

⊕∞
k=0 T

k(V (J)) and Â(J) =
∏∞
k=0 T

k(V (J)) denote the free associative
R-algebra and the R-algebra of non-commutative power series generated by J , respectively.
We have the canonical projections

πk : A(J) →
k⊕
j=0

T j(V (J)), π̂k : Â(J) →
k⊕
j=0

T j(V (J)).
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Using the usual commutator definition, A(J) and Â(J) become Lie algebras. We let
L(J) ⊂ A(J) and L̂(J) ⊂ Â(J) denote the Lie subalgebras generated by the basis
(ej)j∈J . We say that b ∈ L(J) is of degree k if it belongs to T k(V (J)), and the set of

elements in L(J) of degree k is denoted by Lk(J). Let Â0(J) =
∏∞
k=1 T

k(V (J)), which

is easily seen to be a subalgebra of Â(J), and that L̂(J) ⊂ Â0(J). For a ∈ Â0(J),

exp(a) =
∑∞

k=0
ak

k! and log(1 + a) =
∑∞

k=1(−1)k+1 ak

k are well-defined elements of Â0(J).
Moreover, a direct calculation shows that exp(log(1 + a)) = 1 + a and log(exp(a)) = a.
The Campbell–Baker–Hausdorff formula gives a map CBH: L̂(J)× L̂(J) → L̂(J) such that
exp(b1) · exp(b2) = exp(CBH(b1, b2)) [23]. The formula for CBH(b1, b2) up to order three is

CBH(b1, b2) = b1 + b2 +
1

2
[b1, b2] +

1

12
[b1, [b1, b2]] +

1

12
[b2, [b2, b1]] + · · ·

Given b1, . . . , bp ∈ L̂(J) and applying the CBH formula recursively, there exists
CBH(b1, . . . , bp) ∈ L̂(J) such that

exp(b1) · exp(b2) · · · · · exp(bp) = exp(CBH(b1, . . . , bp)).

The formula for CBH(b1, . . . , bp) up to order three is

CBH(b1, . . . , bp) =
∑

bi +
1

2

∑
i<j

[bi, bj ] +
1

12

∑
i<j

([bi, [bi, bj ]] + [bj , [bj , bi]])

+
1

6

∑
i<j<k

([bi, [bj , bk]] + [bk, [bi, bj ]]) + · · · .

Now let ψ : J → Γ(TM) be a map, and recall that the set of vector fields on a manifoldM has
the structure of a Lie algebra. By the universal property of the free Lie algebra L(J), there
exists a unique Lie algebra homomorphism Evψ : L(J) → Γ(TM) such that Evψ(ej) = ψ(j)

for each j ∈ J . One cannot in general extend Evψ to L̂(J), and so for example, the
expression Evψ(CBH(b1, . . . , bp)) does not generally make sense. However, it is possible to
use the CBH formula to relate the flows of a family of vector fields ξ = (ξ1, . . . , ξp) and the
vector field obtained by truncating the formal CBH formula. Explicitly, let ξ = (ξ1, . . . , ξp)
be a family of vector fields, let J = {1, . . . , p}, and define ψ : J → Γ(TM) by ψ(j) = ξj . Let
{e1, . . . , ep} be the canonical basis of V (J). For k ∈ Z>0, let

CBHk(ξ1, . . . , ξp) = Evψ(π̂k(CBH(e1, . . . , ep))),

that is, CBHk(ξ) is the vector field obtained by “plugging in” ξj for ej in the kth-order
truncated Lie series CBH(e1, . . . , ep). With this notation we can state the following result.

4.14 Theorem: ([41]) Let ξ = (ξ1, . . . , ξp) be a family of smooth vector fields. Then

Φξ
x0(t1, . . . , tp) = Φ

CBHk(t1ξ1,...,tpξp)
1 (x0) +O((t1 + · · ·+ tp)

k+1),

as (t1, . . . , tp) → 0p in Rp>0.

Combining Proposition 2.5 and Theorem 4.14, we obtain the following.
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4.15 Proposition: Let ξ = (ξ1, . . . , ξp) be a family of smooth vector fields and let τ ∈ ETp,
and suppose that ordx0(ξ,τ) = k. Then

jk0 (Φ
ξ
x0

◦τ) =
dk

dsk

∣∣∣
s=0

CBHk(τ
1(s)ξ1, . . . , τ

p(s)ξp)(x0).

Proposition 4.15 and uniqueness of the CBH formula, immediately gives the existence
and uniqueness of a “universal” Lie bracket at each order k such that, when evaluated at
x0, gives the variation of every pair (ξ,τ) with k = ordx0(ξ,τ), on every manifold M.

4.16 Theorem: Let p be a positive integer and let J = {1, . . . , p}. Let ψ : J → Γ(TM)
be defined as ψ(j) = ξj. Then, for each positive integer k, there exists a unique map
βkp : J

k
(0,0p)

(R;Rp) → Lk(J) such that

(i) for every manifold M and every x0 ∈ M and
(ii) for every family of smooth vector fields ξ = (ξ1, . . . , ξp) on M and every τ ∈ ETp, with

ordx0(ξ,τ) = k,
it holds that

jk0 (Φ
ξ
x0

◦τ) = Evψ(β
k
p (j

k
0τ))(x0).



Chapter 5

A variational cone for affine
systems

In this chapter we describe a class of high-order tangent vectors to the reachable set of
an affine system and relate them to the local controllability of the affine system. We then
discuss the notion of a neutralizable variation and show that variations of orders k = 1
and k = 2 are always neutralizable, provided the affine system is proper. We then give a
method for construction subspaces of variations for affine systems.

5.1. A variational cone

Fix a smooth affine system A and x0 ∈ M. Let Γx0(A
p) denote the set of p-tuples of

elements of Γx0(A) and let VA = ∪p≥1Γx0(A
p)×ETp. For a positive integer k, let VkA denote

the elements of VA of order k at x0, and let

Vkx0A =
{
Vξ,τ | (ξ,τ) ∈ VkA

}
∪ {0x0}

and let
Vx0A =

⋃
k≥1

Vkx0A.

By definition, Vx0A is a set of high-order tangent vectors at x0 to the reachable set of A
from x0. It is well-known that a curve γ : [0, ϵ] → M is of order k at 0 if and only if for any
smooth function f : M → R, the derivatives at 0 of the function f ◦γ vanish up to order
k − 1, and in this case

dk

dsk
(f ◦γ)(0) = V f,

where V = γ(k)(0) ∈ Sk(T∗
0R) ⊗ Tγ(0)M ∼= Tγ(0)M. Therefore, if k = ordx0(ξ,τ), then, for

any function f : M → R, the derivatives of the function eξfk ◦τ : [0, ϵ] → R vanish up to order
k − 1 at s = 0, and

dk

dsk
(eξfk ◦τ)(0) = Vξ,τf.

With this in mind, let us state and prove the most important property of Vkx0A.

40
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5.1 Proposition: The set Vkx0A is a convex cone.

Proof: We first prove that Vkx0A is closed under addition. Let (ξ1,τ1), (ξ2,τ2) ∈ VkA, set
ξ = ξ1∗ξ2, and set τ = τ1∗τ2. We will show that (ξ,τ) ∈ VkA and that Vξ,τ = Vξ1,τ1+Vξ2,τ2 .
We can assume that Vξ1,τ1 ̸= −Vξ2,τ2 ; if not, then Vξ1,τ1 + Vξ2,τ2 = 0x0 ∈ Vkx0A. Let
f : M → R be a smooth function that vanishes at x0. By Lemma 4.4,

eξfk (τ(s)) = e
ξ1f
k (τ1(s)) + e

ξ2f
k (τ2(s)) +mξf

k (τ1(s),τ2(s)),

where

mξf
k (τ1(s),τ2(s)) =

k−1∑
|J |=1

τJ2 (s)

J !
e
ξ1(hJ )
k−|J | (τ1(s)),

and hJ = ξJ2 f − ξJ2 f(x0). By Lemma 4.5, the first k derivatives of the function s 7→
mξf
k (τ1(s),τ2(s)) at s = 0 vanish. This proves that Vkx0A is closed under addition.
To prove that Vkx0A is closed under R>0-multiplication, let (ξ,τ) ∈ VkA, let α ∈ R>0, and

define τα by τα(s) = τ(α1/ks). By the chain-rule, for all ℓ ∈ Z>0,

dℓ

dsℓ
(Φξ

x0
◦τα)(0) = αℓ/k

dℓ

dsℓ
(Φξ

x0
◦τ)(0).

Therefore, (ξ,τα) ∈ VkA and Vξ,τα = αVξ,τ. This completes the proof. ■

5.2 Lemma: ([30]) For positive integers k and m, Vkx0A ⊆ Vkmx0 A.

Proof: If (ξ,τ) ∈ VkA, then, for any function f vanishing at x0,

eξfk (τ(s)) = (Vξ,τf)
sk

k!
+ o(sk).

Therefore,

eξfk (τ((k!/(km)!)1/ksm)) = (Vξ,τf)
skm

(km)!
+ o(skm).

It follows that if
ρ(s) = τ((k!/(km)!)1/ksm),

then (ξ,ρ) ∈ VkmA and Vξ,ρ = Vξ,τ. ■

5.3 Corollary: Vx0A is a convex cone.

Proof: The set Vx0A is a cone because it is a union of cones. By Lemma 5.2, if V1, . . . , Vr ∈
Vx0A, with Vj ∈ V

kj
x0A and k = lcm(k1, . . . , kr), then V1, . . . , Vr ∈ Vkx0A. By Proposition 5.1,

Vkx0A is convex and, therefore, any convex combination of V1, . . . , Vr is an element of Vkx0A ⊂
Vx0A. This proves that Vx0A is convex. This completes the proof. ■
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5.4 Remark: Our definition of a variation uses smooth functions τ : R≥0 → Rp≥0, so that in

general we do not have Vkx0A ⊆ Vk+1
x0 A. If the end-times τ are allowed to be Cr at s = 0 for

r ≥ 1, then a variation of order k can be realized as a variation of order ℓ > k. However,
one then needs to keep track of the order of differentiability of the end-times τ to be able to
work with high-order jets. For this reason we choose to work with smooth end-times, and
Lemma 5.2 ensures that essentially nothing is lost by doing so. The use of smooth end-times
are employed for instance in [30], whereas [19] uses end-times that are Cr, r ≥ 1. •

The following theorem relates Vx0A and STLC of A at x0.

5.5 Theorem: Let A be a smooth affine system in A ⊂ TM and let x0 ∈ M. If Vx0A = Tx0M
then A is STLC from x0.

Proof: Let T > 0. By assumption, there exists Vξ1,τ1 , . . . , Vξr,τr ∈ Vx0A such that

0x0 ∈ int(co{Vξ1,τ1 , . . . , Vξr,τr}).

By Lemma 5.2, we can assume that Vξi,τi ∈ Vkx0A for some k ∈ Z>0, for all i = 1, . . . , r.
Consider the map µ : Ω ∩ Rr≥0 → M defined by

µ(s1, . . . , sr) = Φ
ξ1
τ1((k!s1)1/k)

◦ · · · ◦Φ
ξr
τr((k!sr)1/k)

(x0),

where Ω is a neighbourhood of the origin in Rr such that if (s1, . . . , sr) ∈ Ω ∩ Rr≥0, then∑
i,j τj,i((k!sj)

1/k)) ≤ T . By construction, µ is continuously differentiable at the origin,
µ(0) = x0, and the image of µ consists of points reachable from x0 in time at most T . The
theorem now follows by Lemma 5.6 below. ■

5.6 Lemma: ([3]) Let µ : Rr → Rn be Lipschitzean, µ(0) = 0, and differentiable at 0.
Assume that Dµ(0)(Rr≥0) = Rn. Then, for any neighbourhood Ω of the origin in Rr,

0 ∈ intµ(Ω ∩ Rr≥0).

Let us state an immediate corollary to Theorem 5.5.

5.7 Corollary: Let A be an affine distribution on M and let x0 ∈ M. If, for every smooth
affine system A in A that is proper and satisfies the LARC x0, it holds that Vx0A = Tx0M,
then A is PSTLC from x0.

The following example illustrates the usage of Theorem 5.5 and at the same time proves
the claim made in Example 3.19.

5.8 Example: As in Example 3.19, let M = R3, let x0 = (0, 0, 0), and consider the affine
distribution Ax = X0(x) + span {X1(x), X2(x)}, where

X0 = (x1)2
∂

∂x3
, X1 =

∂

∂x1
, and X2 =

∂

∂x2
+

(x1)2

2

∂

∂x3
.

A trajectory of an affine system in A satisfies

ẋ1 = u1; ẋ2 = u2; ẋ3 = x21(1 +
1
2u

2).
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Let U = [−1,−1]× [−2−ϵ, 1], for ϵ > 0, and let Σ = (M, {X0, X1, X2}, U) be the associated
control-affine system. It is clear that span

{
∂
∂x1

(x0),
∂
∂x2

(x0)
}
⊂ V1

x0AΣ. Hence, to prove
that Σ is STLC from x0 using Theorem 5.5, we need only construct variations in the
± ∂
∂x3

directions. Let ξj = X0 + u1jX1 + u2jX2, for j = 1, 2, 3, let ξ = (ξ1, ξ2, ξ3), and let

τ(s) = (s, s, s). Suppose that u11 + u12 + u13 = u21 + u22 + u23 = 0. Then

d

ds
(Φξ

x0
◦τ)(0) = τ̇j(0)ξj(x0) = (u11 + u12 + u13)

∂

∂x1
(x0) + (u21 + u22 + u23)

∂

∂x2
(x0)

= 0x0 ,

and, therefore, ordx0(ξ,τ) ≥ 2. Moreover, since ξiξj(x0) vanish at x0, for any i, j ∈ {1, 2, 3},
by Theorem 4.1 we actually have that ordx0(ξ,τ) ≥ 3. For ease of notation, set aj = u1j
and bj = u2j , for j = 1, 2, 3. Then a direct computation gives that

d3

ds3
(Φξ

x0
◦τ)(0) = (a21(10 + 2b2) + a1a2(10− 2b1 + b2) + a22(4− b1))

∂

∂x3
(x0).

If b1 = b2 = 0, then, for all a1, a2, the above produces a variation in the ∂
∂x3

direction. Let
b1 = b2 so that

d3

ds3
(Φξ

x0
◦τ)(0) = (a21(10 + 2b2) + a1a2(10− b2) + a22(4− b2))

∂

∂x3
.

The determinant of the matrix associated with the quadratic form

Q(a1, a2) = a21(10 + 2b2) + a1a2(10− b2) + a22(4− b2)

is χ(b2) = 60 + 12b2 − 9b22 = 3(2 + b2)(10 − 3b2). Therefore, the quadratic form Q can be
made to have a saddle at the origin by choosing −2 − ϵ ≤ b2 < −2. Hence, for such b2,
there are values of a1, a2 arbitrarily close to the origin that produce a variation in the − ∂

∂x3

direction. By Theorem 5.5, AΣ is STLC from x0. •

5.2. Neutralizable variations

Given (ξ1,τ1) ∈ VkA, under what conditions does there exist a (ξ2,τ2) ∈ VkA such that
Vξ1,τ1 = −Vξ2,τ2? Motivated by this question we give the following definition.

5.9 Definition: We say that (ξ1,τ1) ∈ VkA is neutralizable if there exists (ξ2,τ2) ∈ VkA such
that Vξ1,τ1 = −Vξ2,τ2 . •

The following result is a trivial consequence of Proposition 5.1.

5.10 Proposition: Every element of VkA is neutralizable if and only if Vkx0A is a subspace.

For orders k = 1 and k = 2, we will show that neutralizability is ensured by properness
of the affine system. In fact, for k = 1 we have the following.
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5.11 Proposition: Let A be an affine system in A that is proper at x0. Then V1
x0A = Ax0.

Proof: Given (ξ,τ) ∈ VA, a direct calculation yields that

d

ds
(Φξ ◦τ)(0) = τ̇j(0)ξj(x0).

Since τ̇j(0) ≥ 0, it follows that V1
x0A = cone(co(A(x0))), and the result follows by properness

of A at x0. ■

To treat the k = 2 case, we derive the expression for a second order variation. If ξ, η
are vector fields, then, as differential operators,

ξη =
1

2
(ξη + ηξ) +

1

2
[ξ, η].

Therefore, by Theorem 4.1, if f : M → R is a smooth function, ξ = (ξ1, . . . , ξp) is a family
of vector fields, and τ ∈ ETp, then

d2

ds2
(eξf2 ◦τ)(0) =

p∑
j=1

(ξjf)(x0)τ̈
j(0) +

∑
i≤j

(ξiξjf)(x0)τ̇
i(0)τ̇j(0)

=

p∑
j=1

(ξjf)(x0)τ̈
j(0) + (τ̇1(0)ξ1 + · · ·+ τ̇p(0)ξp)

2(f)(x0)

+
∑
i<j

[ξi, ξj ](f)(x0)τ̇
i(0)τ̇j(0).

Hence, if ordx0(ξ,τ) = 2, then (τ̇1(0)ξ1 + · · ·+ τ̇p(0)ξp)
2(f)(x0) = 0, and, therefore,

Vξ,τ =

p∑
j=1

ξj(x0)τ̈
j(0) +

∑
i<j

[ξi, ξj ](x0)τ̇
i(0)τ̇j(0). (5.2.1)

5.12 Lemma: Let A be an affine system in A that is proper at x0. If ξ, η ∈ Γx0(A), then
[ξ, η](x0) ∈ V2

x0A.

Proof: Set ξ0 := ξ and η0 := η. By properness of A at x0, there are positive constants
α0, α1, . . . , αp and A-vector fields ξ1, . . . , ξp such that

∑p
j=0 αjξj(x0) = 0x0 . Similarly, there

are positive constants β0, β1, . . . , βq and A-vector fields η1, . . . , ηq such that
∑q

ℓ=0 βℓηℓ(x0) =
0x0 . Let ξ = (ξ0, η0, ξ1, . . . , ξp, η1, . . . , ηq) and let

τ(s) = (α0s, β0s, α1s, . . . , αps, β1s, . . . , βqs).

Then ordx0(ξ,τ) ≥ 2 and, if ordx0(ξ,τ) = 2, then, by (5.2.1) (we will suppress evaluation
of the Lie brackets at x0 to simplify the notation),

Vξ,τ = α0β0[ξ0, η0] +
∑

0≤i<j≤p
αiαj [ξi, ξj ] +

q∑
ℓ=1

α0βℓ[ξ0, ηℓ] +

p∑
j=1

β0αj [η0, ξj ]

+
∑

0≤k<ℓ≤q
βkβℓ[ηk, ηℓ] +

p∑
j=1

q∑
ℓ=1

αjβℓ[ξj , ηℓ].
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Now let ξ̃ = (ηq, . . . , η1, ξp, . . . , ξ1, ξ0, η0) and let

τ̃(s) = (βqs, . . . , β1s, αps, . . . , α1s, α0s, β0s).

Then ordx0(ξ̃, τ̃) ≥ 2 and, by (5.2.1),

Vξ̃,τ̃ =
∑

0≤k<ℓ≤q
βkβℓ[ηℓ, ηk] +

q∑
ℓ=1

p∑
j=1

βℓαj [ηℓ, ξj ] +

q∑
ℓ=1

α0βℓ[ηℓ, ξ0]

+
∑

0≤i<j≤p
αiαj [ξj , ξi] +

p∑
j=1

αjβ0[ξj , η0] + α0β0[ξ0, η0].

One computes that Vξ,τ + Vξ̃,τ̃ = 2α0β0[ξ0, η0](x0), and, therefore, [ξ0, η0](x0) ∈ V2
x0A

because V2
x0A is a cone. This completes the proof. ■

For an affine system A define

D
(2)
A = { [ξ, η] | ξ, η ∈ Γ(A)} .

With this notation we have the following.

5.13 Proposition: Let A be an affine system in A that is proper at x0. Then

V2
x0A = Ax0 + span{D(2)

A (x0)}.

In particular, V2
x0A is a subspace.

Proof: By (5.2.1) it is clear that V2
x0A ⊆ Ax0 + span{D(2)

A (x0)}. Now let

w ∈ Ax0 + span{D(2)
A (x0)},

and write

w =

p∑
i=1

vi +
r∑
j=1

αj [ξj,1, ξj,2](x0),

for vi ∈ Ax0 and ξj,k ∈ Γx0(A). Since V1
x0A = Ax0 , it follows that vi ∈ V1

x0A ⊂ V2
x0A.

By Lemma 5.12, [ξj,1, ξj,2](x0) ∈ V2
x0A, and we can assume without loss of generality that

αj > 0. Hence, w is a sum of elements of V2
x0A, and thus w ∈ V2

x0A since V2
x0A is closed

under addition. This proves the reverse inclusion. ■

The next step would be to consider the cases k ≥ 3, but this seems to be a difficult task.
Notwithstanding, some results have been obtained by fixing a set of local generators for the
affine distribution and identifying “bad Lie brackets” that are potentially non-neutralizable
[9, 45]. These results, unfortunately, are not invariant under a change of local generators
for the affine distribution.
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5.3. Subspaces of variations

In this section, using a technique from Krener [30, Section 4], we construct subspaces
of variations. The idea of this section is to obtain linear approximations, i.e., subspaces, to
the variational cone Vx0A.

Let ζ be a vector field on M that vanishes at x0. Then, by Proposition 4.13, ζ induces
a linear map Bζ : Tx0M → Tx0M. Explicitly, for vx0 ∈ Tx0M, Bζ(vx0) = [X, ζ](x0), where X
is any vector field extending vx0 .

Let A be an affine system and set

Zx0A = {ζ ∈ Γx0(A) | ζ(x0) = 0x0} .

We identify Zx0A with the corresponding subset of End(Tx0M), which we still denote by
Zx0A. For a subspace W ⊆ Tx0M, let ⟨Zx0A;W ⟩ denote the smallest subspace containing
W and that is invariant under the linear maps in Zx0A. It is not hard to show that

⟨Zx0A;W ⟩ = span {Bζ1Bζ2 · · · Bζr(wx0) | wx0 ∈W, ζi ∈ Zx0A, r ∈ Z≥0} . (5.3.1)

5.14 Theorem: Let A be a smooth affine system in A and let x0 ∈ M . For any subspace
W ⊆ Vx0A, it holds that ⟨Zx0A;W ⟩ ⊆ Vx0A.

Proof: To prove the theorem, it is enough to show that, if wx0 ∈ W and ζ ∈ Zx0A, then
Bζ(wx0) ∈ Vx0A.

Let wx0 ∈ W and let ζ ∈ Zx0A. By Lemma 5.2, we can assume that there exist an
integer k ≥ 1 and (ξi,τi) ∈ VkA such that Vξi,τi = (−1)i+1wx0 for i = 1, 2. Let τ̃i(s) =

τi((k!/(2k)!)
1/ks2), for i = 1, 2. Then, by Lemma 5.2, ordx0(ξi, τ̃i) = 2k and Vξ1,τ̃1 =

(−1)i+1wx0 , for i = 1, 2. Now, since ζ(x0) = 0x0 and Vξ1,τ̃2 = −Vξ2,τ̃2 , we have ordx0(ξ1 ∗
ζ ∗ ξ2, τ̃1 ∗ s ∗ τ̃2) ≥ 2k + 1. By definition and then expanding,

e
(ξ1∗ζ∗ξ2)f
2k+1 (τ̃1(s), s, τ̃2(s)) = e

ξ1f
2k+1(τ̃1(s)) + eζf2k+1(s) + e

ξ2f
2k+1(τ̃2(s))

+
2k+1∑

|I1|+j=2
|I1|,j≥1

(ξI11 ζ
jf)(x0)

sj τ̃I11 (s)

j!I1!
+

2k+1∑
|I2|+j=2
|I2|,j≥1

(ζjξI22 f)(x0)
sj τ̃I22 (s)

j!I2!

+
2k+1∑

|I1|+|I2|=2
|I1|,|I2|≥1

(ξI11 ξI22 f)(x0)
τ̃I11 (s)τ̃I22 (s)

I1!I2!
+

2k+1∑
|I1|+j+|I2|=3
|I1|, j, |I2|≥1

(ξI11 ζ
jξI22 f)(x0)

τ̃I11 s
j τ̃I22

I1!j!I2!
. (5.3.2)

Using the fact that ζ(x0) = 0x0 and letting hj , for each j ∈ {1, . . . , 2k}, be the smooth
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function x 7→ hj(x) = (ζjf)(x)− (ζjf)(x0), we can rewrite (5.3.2) as

e
(ξ1∗ζ∗ξ2)f
2k+1 (τ̃1(s), s, τ̃2(s)) = e

(ξ1∗ξ2)f
2k+1 (τ̃1(s), τ̃2(s)) +

2k+1∑
|I1|+j=2
|I1|,j≥1

(ξI11 ζ
jf)(x0)

sj τ̃I11 (s)

j!I1!

+
2k+1∑

|I1|+j+|I2|=3
|I1|, j, |I2|≥1

(ξI11 ζ
jξI22 f)(x0)

τ̃I11 s
j τ̃I22

I1!j!I2!

= e
(ξ1∗ξ2)f
2k+1 (τ̃1(s), τ̃2(s)) +

2k∑
j=1

sj

j!
e
ξ1(hj)

(2k+1)−j(τ̃1(s))

+

2k+1∑
|I1|+j+|I2|=3
|I1|, j, |I2|≥1

(ξI11 ζ
jξI22 f)(x0)

τ̃I11 s
j τ̃I22

I1!j!I2!
. (5.3.3)

Now, ordx0(ξ1∗ξ2,τ1∗τ2) ≥ k+1 because Vξ1,τ1+Vξ2,τ2 = wx0−wx0 = 0x0 , and, therefore,

ordx0(ξ1 ∗ ξ2, τ̃1 ∗ τ̃2) ≥ 2(k + 1) = 2k + 2. Hence, the derivatives of e
(ξ1∗ξ2)f
2k+1 (τ̃1(s), τ̃2(s))

of orders 1, . . . , 2k + 1 all vanish at s = 0. By Lemma 4.4, the term (5.3.3) can be written
as

2k∑
j+|I2|=2

sj τ̃I22 (s)

j!I2!
e
ξ1(Hj,I2

)

(2k+1)−(j+|I2|)(τ̃1(s)), (5.3.4)

where Hj,I2 is the smooth function x 7→ Hj,I2(x) = ZjξI22 f(x)−Zjξ
I2
2 f(x0). By Lemma 4.5,

the derivatives of (5.3.4) up to order 2k + 1 vanish at s = 0. Hence Vξ1∗ζ∗ξ2,τ̃1∗s∗τ̃2 is
determined by the (2k + 1)st derivative of the R-valued function

s 7→ g(s) :=
2k∑
j=1

sj

j!
fj(s),

where, for each j ∈ {1, . . . , 2k},

fj(s) = e
ξ1(hj)

(2k+1)−j(τ̃1(s)).

Now since ordx0(ξ1, τ̃1) = 2k, if j ∈ {2, . . . , 2k}, then the (2k + 1− j)th derivative of fj at
s = 0 vanishes and, therefore, the (2k + 1)st derivative of s 7→ sjfj(s) vanishes at s = 0.
Thus the (2k+1)st derivative of g at s = 0 is equal to the (2k+1)st derivative of s 7→ sf1(s)
at s = 0. The 2kth derivative of f1 at s = 0 is precisely wx0(ζf − ζf(x0)) = Bζ(wx0)(f),
and therefore, the (2k + 1)st derivative of s 7→ sf1(s) is (2k + 1)ζ(wx0)(f). Therefore,
(2k + 1)Bζ(wx0) ∈ Vx0A and since Vx0A is a cone, Bζ(wx0) ∈ Vx0A. This completes the
proof. ■

In the case that A is regular at x0 and Ax0 ⊂ W , computing ⟨Zx0A;W ⟩ is greatly
simplified in the following sense.
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5.15 Theorem: Suppose that A is regular at x0 and let A be an affine system in A. If
W ⊂ Vx0A is a subspace containing Ax0, then ⟨Zx0A;W ⟩ = ⟨Bζ ;W ⟩ for any ζ ∈ Zx0A.

Proof: Fix ζ ∈ Zx0A and let ζ1 ∈ Zx0A be arbitrary. Then Y1 = ζ1− ζ is a L(A)-vector field
and, moreover, Y1(x0) = 0x0 . Therefore, for wx0 ∈ Tx0M,

Bζ1(wx0) = Bζ(wx0) +BY1(wx0),

and, therefore, by Proposition 3.4,

Bζ1(wx0)−Bζ(wx0) ∈ Ax0 .

If ζ2 = ζ + Y2 ∈ Zx0A, then

Bζ2Bζ1(wx0) = (Bζ)
2(wx0) +Bζ(BY1(wx0)) +BY2(Bζ(wx0) +BY1(wx0)),

and, therefore, by Proposition 3.4,

Bζ2Bζ1(wx0)− (Bζ)
2(wx0)−Bζ(BY1(wx0)) ∈ Ax0 .

By induction, if ζi = ζ + Yi ∈ Zx0A for i ∈ {1, . . . , k}, then

Bζk · · ·Bζ1(wx0)− (Bζ)
k(wx0)− (Bζ)

k−1(bx0,1)− · · · −Bζ(bx0,k−1) ∈ Ax0 ,

where bx0,ℓ ∈ Ax0 for ℓ ∈ {1, . . . , k − 1}. Hence, if W is a subspace containing Ax0 , for
wx0 ∈ W and any collection ζ1, . . . , ζk ∈ Zx0A, it holds that Bζk · · ·Bζ1(wx0) ∈ ⟨Bζ ;W ⟩.
By (5.3.1), this proves that ⟨Zx0A;W ⟩ ⊂ ⟨Bζ ;W ⟩ if W contains Ax0 . The reverse inclusion
holds regardless of whether Ax0 ⊂W or not. This completes the proof. ■

Proposition 5.13 and Theorem 5.14 imply the following.

5.16 Theorem: Let A be an affine system that is proper at x0. If

⟨Zx0A;Ax0⟩+ span{D(2)
A (x0)} = Tx0M

then A is STLC from x0.

5.17 Example: On M = Rn, let A be the linear control system ẋ = Ax + Bu, where
A ∈ Rn×n, B ∈ Rn×m, and u lies in the unit cube in Rm. By Proposition 5.11, V1

x0A =
img(B). The set Zx0A contains the vector field x 7→ Ax, i.e., the drift vector field. Hence,
by Theorem 5.14, the smallest subspace containing img(B) and invariant under the linear
vector field x 7→ Ax is a subspace of variations. In other words, the image of the classical
Kalman controllability matrix [B AB · · ·An−1B] is a subspace of variations. •



Chapter 6

Driftless and homogeneous systems

In this chapter, we give two applications of the methods developed in this thesis for two
important classes of systems: driftless and homogeneous systems. For driftless systems, we
show that the LARC at x0 is sufficient for PSTLC from x0. This result is well-known, of
course, dating to the work of Chow and Rashevski [14, 36]. We then consider homogeneous
systems which are central to proving the well-known sufficient conditions of Sussmann [45]
and Bianchini-Stefani [8]; see Hermes [21] for an excellent survey. We give a necessary and
sufficient condition, in terms of the variational cone, for local controllability for homoge-
neous systems. Moreover, for these systems, we are able to give a positive answer to an
open problem in control theory regarding whether local controllability can be determined
in a finite number of differentiations.

6.1. Driftless Systems

When the affine distribution A is a distribution, affine systems become what are com-
monly called driftless systems. Here is the definition.

6.1 Definition: Let D be a smooth distribution. A driftless system in D is a multi-valued
vector field D : M ⇒ TM such that spanD(x) = Dx for each x ∈ M. •

We begin by showing that all variations can be neutralized for a distribution.

6.2 Proposition: Let D be a smooth distribution and let x0 ∈ M. For each positive integer
k, Vkx0D is a subspace.

Proof: By Proposition 5.1, Vkx0D is a convex cone, so to prove that it is a subspace we

need only prove that it is closed under multiplication by −1. Let (ξ,τ) ∈ VkD, let ξ̃ =
(−ξp, . . . ,−ξ1), and let τ̃ = (τp, . . . , τ1). We note that, for each i ∈ {1, . . . , p}, −ξi is a
D-vector field, and thus (ξ̃, τ̃) ∈ VD. It is clear that

Φξ̃
τ̃(s)

◦Φξ
τ(s)(x0) = x0

for all s in a neighbourhood of zero. Thus, for all ℓ ≥ 0 and any smooth function f vanishing

at x0, it holds that s 7→ e
(ξ∗ξ̃)f
ℓ (τ(s), τ̃(s)) = 0. Hence, by Lemma 4.4,

eξ̃fk (τ̃(s)) = −e(ξf)k (τ(s))−m
(ξ∗ξ̃)f
k (τ(s), τ̃(s)). (6.1.1)

49
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By Lemma 4.5, the derivatives of m
(ξ∗ξ̃)f
k (τ, τ̃) at s = 0 of orders 1, . . . , k vanish because

ordx0(ξ,τ) = k. Therefore, differentiating (6.1.1) and evaluating at s = 0 through orders
1, . . . , k, we obtain that ordx0(ξ̃, τ̃) = k and Vξ̃,τ̃ = −Vξ,τ. This proves that −Vξ,τ ∈ Vkx0D.■

The next proposition states that, in the regular case, the variational cones of convex
driftless systems agree with those of the distribution.

6.3 Proposition: Let D be a smooth distribution that is regular at x0 and let D be a smooth
driftless system in D. If D is proper at x0 then Vkx0D = Vkx0co(D) for each k ≥ 1. Conse-
quently, Vx0D = Vx0co(D).

Proof: Let (ξ,τ) ∈ VkD, where ξ = (ξ1, . . . , ξp) and τ ∈ ETp. There exists λ > 0 such
that λξj(x0) ∈ intDx0

(co(D(x0))) for all j ∈ {1, . . . , p}. By Lemma 3.24, there exists
a neighbourhood Ω of x0 such that, for all j ∈ {1, . . . , p} and all x ∈ Ω, it holds that
λξj(x) ∈ co(D(x)), i.e., the λξj ’s are co(D)-vector fields. Define ξλ = (λξ1, . . . , λξp) and
τλ(s) =

1
λτ(s). Then (ξλ,τλ) ∈ Vco(D) and, by Theorem 4.1, for any smooth function f ,

e
ξλf
k (τλ(s)) =

k∑
|I|=0

(ξIλf)(x0)
τIλ(s)

I!
=

k∑
|I|=0

(λ|I|ξIf)(x0)
τI(s)

λ|I|I!
= eξfk (τ(s)).

Therefore, Vξ,τ = Vξλ,τλ ∈ Vkx0co(D). This proves that Vkx0D ⊆ Vkx0co(D), and, therefore,
Vx0D ⊆ Vx0co(D). The reverse inclusion is obvious. ■

Combining Proposition 6.3 and Corollary 3.31 we obtain the following.

6.4 Theorem: Let D be a smooth distribution that is regular at x0. If Vx0D = Tx0M then D
is PSTLC from x0.

Proof: Let D be a convex driftless system that is proper, smooth, and satisfies the LARC
at x0. By Proposition 6.3, Vx0D = Vx0D = Tx0M, which implies that D is STLC from x0 by
Theorem 5.5. Since D was arbitrary and by Corollary 3.31, the proof is complete. ■

In the rest of this section, we will construct an explicit type of variation for a driftless
system that will lead to the result that, for driftless systems, the LARC at x0 is sufficient
for PSTLC from x0. The construction is motivated by [27, Theorem 3.16] but we will use
our methods to prove the result. For vector fields ξ1, ξ2 and s ∈ R sufficiently small, define
the (local) diffeomorphism

[Φξ2s ,Φ
ξ1
s ] = Φ−ξ1

s ◦Φ−ξ2
s ◦Φξ1s ◦Φξ2s .

In our notation, if ξ = (ξ2, ξ1,−ξ2,−ξ1) and τ(s) = (s, s, s, s), then Φξ
τ(s) = [Φξ2s ,Φ

ξ1
s ]. It is

clear that [Φξ2s ,Φ
ξ1
s ]−1 = [Φξ1s ,Φ

ξ2
s ]. If ξ3 is another vector field, put

[Φξ3s , [Φ
ξ2
s ,Φ

ξ1
s ]] = [Φξ2s ,Φ

ξ1
s ]−1 ◦Φ−ξ3

s ◦ [Φξ2s ,Φ
ξ1
s ] ◦Φξ3s .

In our notation, this corresponds to ξ = (ξ3, ξ2, ξ1,−ξ2,−ξ1,−ξ3, ξ1, ξ2,−ξ1,−ξ2,−ξ3) and
τ(s) = (s, s, . . . , s) ∈ R10. We can iterate this process to define higher-order commutators
of local diffeomorphisms of the form

[Φ
ξp
s , [· · · , [Φξ2s ,Φξ1s ]] · · · ] (6.1.2)

for vector fields ξ1, . . . , ξp. An elementary induction shows that, for each p ≥ 2, the com-
mutator (6.1.2) corresponds to a family of ap = 3 · 2p − 2 vectors fields.
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6.5 Lemma: Let p ≥ 2 be an integer and let ξ1, . . . , ξp be smooth vector fields on M. Then,
for any x ∈ M, it holds that, for ℓ ∈ {1, . . . , p− 1},

dℓ

dsℓ

∣∣∣
s=0

[Φ
ξp
s , [· · · , [Φξ2s ,Φξ1s ]] · · · ](x) = 0x

and
dp

dsp

∣∣∣
s=0

[Φ
ξp
s , [· · · , [Φξ2s ,Φξ1s ]] · · · ](x) = p![ξp, [· · · , [ξ2, ξ1]] · · · ](x).

Proof: The proof is by induction on p. Let p = 2. From Corollary 4.2, the first order term in
the Taylor expansion of [Φξ1s ,Φ

ξ2
s ](x) is (ξ2(x)+ ξ1(x)− ξ2(x)− ξ1(x))s, which is identically

zero for all x ∈ M. Again, by Corollary 4.2, the second order term in the Taylor expansion
of [Φξ1s ,Φ

ξ2
s ](x) is (we are suppressing evaluation at x)

ξ22
s2

2!
+ ξ2ξ1s

2 − ξ22s
2 − ξ2ξ1s

2 + ξ21
s2

2!
− ξ1ξ2s

2 − ξ21s
2 + ξ22

s2

2!
+ ξ2ξ1s

2 + ξ21
s2

2!
,

which simplifies to ξ2ξ1s
2−ξ1ξ2s2 = [ξ2, ξ1]s

2. This proves the case p = 2. Assume it for p ≥
2. Let ξ1, ξ2, . . . , ξp+1 be smooth vector fields and let ξ be the ap-tuple of vector fields and let

τ ∈ ETap be defined as τ(s) = (s, s, . . . , s) ∈ Rap , so that Φξ
τ(s) = [Φ

ξp
s , [· · · , [Φξ2s ,Φξ1s ]] · · · ].

Let ξ̃ denote the family obtained by reversing the order of the sequence ξ and multiplying
each element by −1. Let η = ξp+1 ∗ ξ ∗ (−ξp+1) ∗ ξ̃ and let

eηp+1(s) =

p+1∑
ℓ=1

∑
i+j+|I|+|J |=ℓ

(
(ξp+1)

iξI(−ξp+1)
j ξ̃
J)
(x)

sℓ

i!j!I!J !
. (6.1.3)

By Corollary 4.2, eηp+1 is the Taylor expansion of order p+ 1 of the curve

s 7→ [Φ
ξp+1
s , [· · · , [Φξ2s ,Φξ1s ]] · · · ](x),

so that, at s = 0, they have the same derivatives up to order p + 1. From the induction
hypothesis, it follows that

∑
|I|=a

1
I!ξ

I is identically zero for each a ∈ {1, . . . , p − 1} and
that also ∑

|I|=p

1
I!ξ

I = [ξp, [· · · , [ξ2, ξ1]] · · · ].

Moreover, by the proof of Lemma 6.2, the same is true for the family ξ̃. Hence, the only
coefficients in the polynomial (6.1.3) that are potentially non-zero are when either |I| = p
or |J | = p. Hence there are two cases to consider: (i) |I| = p (or |J | = p) and i = j = 0, or
(ii) |I| = p (or |J | = p) and i = 1 or j = 1. In the first case, if |I| = p (so that |J | = 1),
these coefficients will vanish identically by the induction hypothesis, and the case |J | = p
and |I| = 1 is identical. In the second case, the four coefficients that remain are when
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|I| = p and i = 1, |I| = p and j = 1, |J | = p and i = 1, and |J | = p and j = 1. Therefore,

eηp+1(s) =

ξp+1

∑
|I|=p

ξI

I!

 (x)sp+1 +

∑
|I|=p

ξI

I!
(−ξp+1)

 (x)sp+1

+

∑
|J |=p

(ξp+1)
ξ̃
J

J !

 (x)sp+1 +

∑
|J |=p

(−ξp+1)
ξ̃
J

J !

 (x)sp+1

=

ξp+1

∑
|I|=p

ξI

I!

 (x)sp+1 +

∑
|I|=p

ξI

I!
(−ξp+1)

 (x)sp+1

= [ξp+1, [ξp, [· · · , [ξ2, ξ1]] · · · ]](x)sp+1

and the proof is complete. ■

Lemma 6.5 gives us a formula for iterative Lie brackets in terms of monomials.
To state the formula, we introduce some notation. Given a finite list of indetermi-
nates x = (x1, . . . , xk), let x̃ = (−xk, . . . ,−x1). Given another indeterminate y, define
ρy(x) = (y,x,−y, x̃). For example, given x1, x2, x3,

ρx3(ρx2(x1)) = (x3, ρx2(x1),−x3, ρ̃x2(x1)) = (x3, x2, x1,−x2,−x1, x3, x1, x2,−x1,−x2).

With this notation and Lemma 6.5, the following formula is immediate.

6.6 Corollary: Let ξ1, . . . , ξp be vector fields and define the family of vector fields via ξ =
ρξp(ρξp−1( · · · (ρξ2(ξ1)) · · · ). Then

[ξp, [ξp−1, [ · · · [ξ2, ξ1]] · · · ] =
∑
|I|=p

ξI
1

I!
.

The following is an immediate consequence of Lemma 6.5.

6.7 Proposition: Let D be a smooth distribution and let p ∈ Z≥2. Then, for any family
ξ = (ξ1, . . . , ξp) of D-vector fields and x0 ∈ M, it holds that

[ξp, [· · · , [ξ2, ξ1]] · · · ](x0) ∈ Vpx0D.

For completeness, we state the following.

6.8 Theorem: Let D be a smooth distribution and suppose that Γx0(D) satisfies the LARC
at x0. Then Vx0D = Tx0M. Consequently, if D is regular at x0 then it is PSTLC from x0.

Proof: It is well-known that Lie(Γx0(D)) is spanned by elements of the form

[ξp, [· · · , [ξ2, ξ1]] · · · ](x0),

where ξ1, . . . , ξp ∈ Γx0(D) and p ∈ Z≥1, see for example [35, Proposition 3.8]. Hence, if
Γx0(D) satisfies the LARC at x0, by Proposition 6.7 there is some k such that Vkx0D = Tx0M
and thus Vx0D = Tx0M. The second statement is Theorem 6.4. ■
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6.2. Homogeneous systems

Homogeneous systems have received much attention in the literature with regards to
controllability and also stabilizability, see [21] for a survey. One of the basic problems is
concerned with constructing homogeneous approximations that preserve the property of
interest, for example, STLC or stabilizability. Our aim in this section is to show that,
for homogeneous systems, one can characterize the local controllability property with the
variational cone.

To define homogeneous systems, we need the notion of a dilation. A one-parameter
family of dilations on Rn is a map ∆: R>0 → L(Rn;Rn) of the form

∆(s)(x1, . . . , xn) = (sk1x1, sk2x2, . . . , sknxn)

for positive integers k1, . . . , kn. We write ∆s for the linear map ∆(s).
Given a control-affine system Σ = (Rn, {X0, X1, . . . , Xm}, U), a controlled trajectory on

[0, T ] of Σ is a pair (γ, u), where u : [0, T ] → Rm is an integrable map such that u(t) ∈ U
and γ : [0, T ] → Rn is the absolutely continuous curve satisfying

γ′(t) = X0(γ(t)) +
m∑
a=1

ua(t)Xa(γ(t)).

The set of all controlled trajectories on [0, T ] of Σ is denoted by TrajΣ(T ). Given (γ, u) ∈
TrajΣ(T ) and s > 0, we define (γtm

s , utms ) ∈ TrajΣ(sT ) by setting utms (t) = u(t/s), for all
t ∈ [0, sT ]. Similarly, given (γ, u) ∈ TrajΣ(T ) and ε > 0, we define (γcr

ε , u
cr
ε ) ∈ TrajΣ(T ) by

setting ucrε (t) = εu(t), for all t ∈ [0, T ].

6.9 Definition: Let Σ = (Rn, {X0, X1, . . . , Xm}, U) be a control-affine system.
(i) We say that Σ is time-homogeneous with respect to the one-parameter family of

dilations ∆tm if, for every (γ, u) ∈ TrajΣ(T ) inducing (γtm
s , utms ), it holds that

γtm
s (st) = ∆tm

s (γ(t)), for all t ∈ [0, T ].
(ii) We say that Σ is control-homogeneous with respect to the one-parameter family of

dilations ∆cr if, for every (γ, u) ∈ TrajΣ(T ) inducing (γcr
ε , u

cr
ε ), it holds that γcr

ε (t) =
∆cr
ε (γ(t)), for all t ∈ [0, T ]. •

Time-homogeneous systems have, naturally, homogeneous reachable sets.

6.10 Lemma: Let Σ be a control-affine system and suppose that Σ is time-homogeneous
with respect to the dilation ∆tm. Then, for each T > 0,

RΣ(x0, sT ) = ∆tm
s (RΣ(x0, T )).

Consequently,
RΣ(x0,≤ sT ) = ∆tm

s (RΣ(x0,≤ T )).

Proof: Let (γ, u) ∈ TrajΣ(T ) and let (γtm
s , utms ) ∈ TrajΣ(sT ) be the induced controlled

trajectory. By definition of time-homogeneity, ∆tm
s (γ(T )) = xs(sT ) ∈ RΣ(x0, sT ), so that

∆tm
s (RΣ(x0, T )) ⊂ RΣ(x0, sT ). To prove the reverse inclusion, let (xs, us) ∈ TrajΣ(sT ).

Define u : [0, T ] → Rm by u(t) = us(st) and let (γ, u) ∈ TrajΣ(T ) be the resulting controlled
trajectory. Then, by definition, (xs, us) = (γtm

s , utms ), and, therefore, by time-homogeneity,
xs(st) = γtm

s (st) = ∆tm
s (γ(t)) for t ∈ [0, T ]. Hence, xs(sT ) = ∆tm

s (γ(T )) ∈ ∆tm
s (RΣ(x0, T )).

This proves the reverse inclusion. ■
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The proof of the following is similar to the proof of the previous lemma but we include
it for completeness.

6.11 Lemma: Let Σ = (Rn,X, U) be a control-affine system and suppose that Σ is control-
homogeneous with respect to the dilation ∆cr. For ε > 0, let Uε = {εu | u ∈ U} and let
Σε = (Rn,X, Uε). Then, for each T > 0,

RΣε(x0, T ) = ∆cr
ε (RΣ(x0, T )).

Consequently,
RΣε(x0,≤ T ) = ∆cr

ε (RΣ(x0,≤ T )).

Proof: Let (γ, u) ∈ TrajΣ(T ) and let (γcr
ε , u

cr
ε ) ∈ TrajΣε

(T ) be the induced controlled tra-
jectory. By definition of control-homogeneity, ∆cr

ε (γ(T )) = γcr
ε (T ) ∈ RΣε(x0, T ) so that

∆cr
ε (RΣ(x0, T )) ⊂ RΣε(x0, T ). To prove the reverse inclusion, let (xε, uε) ∈ TrajΣε

(T ). De-
fine u : [0, T ] → Rm by u(t) = 1

εuε(t) and let (γ, u) ∈ TrajΣ(T ) be the resulting controlled
trajectory. Then by definition, (xε, uε) = (γcr

ε , u
cr
ε ), and, therefore, by control-homogeneity,

xε(t) = γcr
ε (t) = ∆cr

ε (γ(t)). Hence, xε(T ) = ∆cr
ε (γ(T )) ∈ ∆cr

ε (RΣ(x0, T )). This proves the
reverse inclusion. ■

6.12 Definition: Let Σ be a control-affine system on Rn. We say that Σ is controllable from
x0 if RΣ(x0) = Rn. •

For a control-affine system Σ, we will use the more compact notation Vkx0Σ for Vkx0AΣ.
We are now ready to state the main result of this section.

6.13 Theorem: Let Σ be a control-affine system on Rn that is time-homogeneous for some
dilation ∆tm

s (x) = (sk1x1, . . . , sknxn) and let x0 = 0 ∈ Rn. Let k = lcm(k1, k2, . . . , kn).
Suppose that Σ satisfies the LARC at x0. The following are equivalent:
(i) Σ is STLC from x0;
(ii) Vk1x0Σ+ Vk2x0Σ+ · · · + Vknx0 Σ = Rn and hence Vkx0Σ = Rn;
(iii) Σ is controllable from x0.

Proof: We first prove that (i) implies (ii). Suppose that Σ is STLC from x0 and let T ∗ > 0.
Let {e1, . . . , en} be the standard basis in Rn and let ej ∈ {e1, . . . , en} be arbitrary. By
hypothesis and by a theorem of Grasse [17, Corollary 4.15], there exists a piecewise-constant
control u : [0, T ] → Rm for Σ, where T < T ∗, and a positive constant c > 0 such that
the corresponding trajectory γ : [0, T ] → Rn satisfies γ(T ) = cej . In other words, there
exists a family of vector fields ξ = (ξ1, . . . , ξp) ⊂ Γx0(Σ), times t1, . . . , tp > 0 satisfying
t1 + · · ·+ tp = T , such that

γ(T ) = cej = Φ
ξp
tp

◦ · · · ◦Φξ1t1 (x0).

Consider the curve ν : [0, 1] → Rn given by

ν(s) = Φ
ξp
tps

◦ · · · ◦Φξ1t1s(x0).

Then, by construction of ν, for s ∈ (0, 1], it holds that ν(s) = γtm
s (sT ), where (γtm

s , utms ) ∈
TrajΣ(sT ) is induced by (γ, u) ∈ TrajΣ(T ). By time-homogeneity and the fact that ν(0) =
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x0, it follows that ν(s) = cejs
kj for all s ∈ [0, 1]. By construction of ν and the definition of

V
kj
x0Σ, it is clear that ej ∈ V

kj
x0Σ. An identical procedure shows that also −ej ∈ V

kj
x0Σ. This

proves that Vk1x0Σ+ Vk2x0Σ+ · · ·+ Vknx0 Σ = Rn. By Lemma 5.2, it follows that Vkx0Σ = Rn.
Now we prove that (ii) implies (iii). If (ii) holds then, by Theorem 5.5, (i) holds.

Let x∗ ∈ Rn and T ∗ > 0 be arbitrary. For λ > 0 sufficiently large, ∆tm
1/λ(x

∗) ∈
intRΣ(x0,≤ T ∗). Let T ≤ T ∗ and let (γ, u) ∈ TrajΣ(T ) be such that γ(T ) = ∆tm

1/λ(x
∗).

Let (γtm
s , utms ) ∈ TrajΣ(sT ) be the induced trajectory. Then, by time-homogeneity,

γtm
s (sT ) = ∆tm

s (∆tm
1/λ(x

∗)) = ∆tm
s/λ(x

∗). Hence, setting s = λ, we obtain that x∗ is reachable

from x0 in time λT using the control uλ. This proves that x
∗ ∈ RΣ(x0).

The proof that (iii) implies (i) can be done by first proving that (iii) implies (ii) in the
exact same way as was shown that (i) implies (ii). Then we use the fact that (ii) implies
(i), by Theorem 5.5. ■

Let us illustrate the procedure in the proof of Theorem 6.13 with an example.

6.14 Example: The following system was considered by Stefani [40]. The state manifold is
M = R3, x0 = (0, 0, 0), and the affine distribution is

Ax = X0(x) + span {X1(x)} ,

where

X0 = x1
∂

∂x2
+ (x1)3x2

∂

∂x3
and X1 =

∂

∂x1
.

Consider the control-affine system Σ = (Rn, {X0, X1}, [−1, 1]). It is straightforward to show
that Σ is control-homogeneous with respect to the dilation ∆cr

ε (x) = (εx1, εx2, ε4x3), and
that it is time-homogeneous with respect to the dilation ∆tm

s (x) = (sx1, s2x2, s6x3). For u ∈
U let ξu = X0 + uX1. Using Proposition 5.13, one computes that V2

x0Σ = span
{

∂
∂x1

, ∂
∂x2

}
.

According to Theorem 6.13, to produce variations in the ± ∂
∂x3

directions, we need to look
at variations of order six. Following the proof of Theorem 6.13, let τ(s) = (a1s, a2s, a3s)
and let ξ = (ξu1 , ξu2 , ξu3), with a1u1 + a2u2 + a3u3 = 0. Then one computes that

d2

ds2

∣∣∣
s=0

Φξ
x0(τ(s)) = (u1a1(a1 + 2a2 + a3) + u2a2(a2 + a3))

∂

∂x3

and so we set u2 = −a1(a1+2a2+a3)u1
a2(a2+a3)

, so that ord(ξ,τ) ≥ 3. Then one computes that the

derivatives of Φξ
x0(τ(s)) of orders 3,4, and 5 vanish at s = 0, and that d6

ds6

∣∣∣
s=0

Φξ
x0(τ(s)) is

equal to

−30u4a41(a1 + a2)(a1 − a3)(a1 + a2 + a3)(a1a2 + 2a1a3 + a2a3)

(a2 + a3)3
∂

∂x3
.

By inspection, the above expression can be made negative and positive for all choices of
u for appropriate values of a1, a2, a3 > 0. Hence, V6

x0Σ = span
{

∂
∂x3

}
, and, therefore, by

Corollary 3.26, the affine distribution spanned by {X0, X1} is PSTLC from the origin x0. •
In the proof of Theorem 6.13, linear end-times were used. This can potentially result

in an over estimate for an integer k for which Vkx0Σ = Rn, i.e., the bound lcm(k1, . . . , kr) is
not sharp, as the following example shows.
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6.15 Example: The following system was considered by Kawski [25]. The control-affine
system is given as Σ = (R4, {X0, X1}, U) where

X0 = x1
∂

∂x2
+

1

6
(x1)3

∂

∂x3
+ (x2x3)

∂

∂x4
, X1 =

∂

∂x1
,

and U ⊂ R is convex and proper. One can easily check that Σ is time-homogeneous with
respect to the dilation ∆tm

s (x) = (sx1, s2x2, s4x3, s7x4). Hence, from Theorem 6.13, Σ is
STLC from x0 = 0 if and only if V28

x0Σ = R4. Using the procedure of Theorem 6.13, it is
not too difficult to produce variations of orders 1, 2, 4, and 7, in both positive and negative
directions, so that V28

x0Σ = R4. However, here we will show that actually V8
x0Σ = R4 by using

end-times that are not linear to produce the ± ∂
∂x4

directions as eighth order variations. For
u ∈ U let ξu = X0 + uX1.

(i) Using Proposition 5.13, one computes that V2
x0Σ = span

{
∂
∂x1

, ∂
∂x2

}
.

(ii) According to Theorem 6.13, to produce ± ∂
∂x3

as variations, we must look at variations
of order 4. Let τ(s) = (a1s, a2s, a3s) and ξ = (ξu1 , ξu2 , ξu3) be such that a1u1+a2u2+
a3u3 = 0. Then ordx0(ξ,τ) ≥ 2 and

d2

ds2

∣∣∣
s=0

Φξ
x0(τ(s)) = (a21u1 + a1(2a2 + a3)u1 + a2(a2 + a3)u2)

∂

∂x2
.

Setting u2 = − 1
a2(a2+a3)

(a21u1 + a1(2a2 + a3)u1) results in ordx0(ξ,τ) ≥ 4 and

d4

ds4

∣∣∣
s=0

Φξ
x0(τ(s)) = −a

3
1(a1 + a2)(a1 − a3)(a1 + a2 + a3)u

3
1

(a2 + a3)2
∂

∂x3
.

We can then easily choose a1, a2, and a3 to produce the variations ± ∂
∂x3

.

(iii) Now we produce variations in the directions ± ∂
∂x4

. Producing a variation in the

direction ∂
∂x4

is straightforward but we will treat both cases simultaneously. To this
end, let

τi(s) = ais+ bi
s2

2
,

for i = 1, 2, 3, let τ(s) = (τ1(s), τ2(s), τ3(s)), let ξ = (ξu1 , ξu2 , ξu3), let τ̃(s) =
(τ3(s), τ2(s), τ1(s)), and let ξ̃ = (ξu3 , ξu2 , ξu1). If a1u1 + a2u2 + a3u3 = 0 then
ordx0(ξ,τ) ≥ 2 and

d2

ds2

∣∣∣
s=0

Φξ
x0(τ(s)) =

(
b1u1 + b2u2 −

b3(a1u1 + a2u2)

a3

)
∂

∂x2

+
(
a21u1 + a1(2a2 + a3)u1 + a2(a2 + a3)u2

) ∂

∂x3
.

If we set b3 =
a3

a1u1+a2u2
(b1u1 + b2u2), then we obtain that

d2

ds2

∣∣∣
s=0

Φξ
x0(τ(s)) =

[
(a21u1 + a1(2a2 + a3)u1 + a2(a2 + a3)u2

] ∂

∂x2
. (6.2.1)
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It is not hard to choose u1, u2, a1, a2 to make the tangent vector in (6.2.1) equal to
zero, so that we can continue to produce a higher-order variation. But instead of
this, we augment to (ξ,τ) the reverse pair (ξ̃, τ̃) so that we can keep the variables
u1, u2, a1, a2 free and simultaneously cancel the tangent vector in (6.2.1). In fact, one
computes that, if we continue to use

a1u1 + a2u2 + a3u3 = 0 and b3 =
a3

a1u1 + a2u2
(b1u1 + b2u2),

then ordx0(ξ ∗ ξ̃,τ ∗ τ̃) ≥ 7 and

d7

ds7

∣∣∣
s=0

Φξ∗ξ̃
x0 ((τ ∗ τ̃)(s)) = Qa(u1, u2)

∂

∂x4
,

where Qa : R2 → R is a homogeneous polynomial of degree 4 whose coefficients are
homogeneous polynomials in a = (a1, a2, a3) of degree 7. It is difficult to determine
if the homogeneous polynomial Qa can be made to be indefinite by an appropriate
choice of the parameter a, i.e., have both negative and positive values in its image.
Instead, we investigate whether it is possible to choose a so that there exists a non-
trivial subspace of R2 on which Qa vanishes. To this end, set, for example, a1 =
1, a2 = 1/10, a3 = 5, and u2 = λu1, where λ ∈ R is to be determined. Then, one
computes that

Qa(u1, λu1) =
[
c0 + c1λ+ c2λ

2 + c3λ
3 + c4λ

4
]
u41,

where c0, . . . , c4 are positive rational numbers. Using a computer algebra system,
one can check that the polynomial c(λ) = c0 + c1λ + c2λ

2 + c3λ
3 + c4λ

4 has two
real roots and they can be computed explicitly. Up to four digits they are given as
λ1 = −15.7499 . . . and λ2 = −13.4544 . . .. Hence, setting a1 = 1, a2 = 1/10, a3 = 5,
the subspaces Sj =

{
(u1, u2) ∈ R2

∣∣ u2 = λju1
}
, j = 1, 2, are killed by Qa. Hence,

setting u2 = λ1u1 yields that ordx0(ξ ∗ ξ̃,τ ∗ τ̃) ≥ 8 and one computes that, for these
choices of parameters,

d8

ds8

∣∣∣
s=0

Φξ∗ξ̃
x0 ((τ ∗ τ̃)(s)) = (−r1b1 + r2b2)u

4
1

∂

∂x4
,

where r1, r2 > 0 are constants. By inspection, one can then easily choose b1 and b2
to produce variations in the ± ∂

∂x4
directions for any choice of u1. Moreover, since u2

and u3 are directly proportional to u1, by choosing u1 sufficient small, we can force
u1, u2, u3 ∈ U .

Therefore, by Corollary 3.26, the affine distribution spanned by {X0, X1} is PSTLC from
the origin x0. •

Now we turn to the question of determining PSTLC for homogeneous systems.

6.16 Theorem: Let Σ = (Rn, {X0, X1, . . . , Xm}, [−1, 1]m) be a control-affine system that is
both time- and control-homogeneous for some dilations ∆tm and ∆cr, respectively. Assume
that X1, . . . , Xm are linearly independent at x0 = 0 and that Σ satisfies the LARC at x0.
Let A be the affine distribution generated by {X0, X1, . . . , Xm}. Then A is PSTLC from x0
if and only if Vkx0Σ = Rn, where k = lcm(k1, . . . , kn) and the integers k1, . . . , kn are those
associated with the dilation ∆tm.
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Proof: If A is PSTLC from x0 then Σ is STLC from x0. Therefore, by Theorem 6.13,
Vkx0Σ = Rn.

Now suppose that Vkx0Σ = Rn and let U be an arbitrary proper and convex control
set. By Theorem 5.5, Σ is STLC from x0. For ε > 0 let Σε = (Rn, {X0, X1, . . . , Xm}, εU).
By control-homogeneity, Σε is also STLC from x0. For ε sufficiently small, [−ε, ε]m ⊂
U . Hence, the control-affine system (Rn, {X0, X1, . . . , Xm}, U) is also STLC from x0. By
Corollary 3.26, A is PSTLC from x0. ■

6.2.1. A class of high-order systems. In this section, we will consider the affine distribu-
tion A on Rn generated by the frame {ζ,X1, . . . , Xm}, where

ζ = F 1 ∂

∂xm+1
+ F 2 ∂

∂xm+2
+ · · · + F r

∂

∂xm+r
,

where the F j : Rm → R are homogeneous polynomials of order k, for j = 1, . . . , r, and
Xa =

∂
∂xa for a = 1, 2, . . . ,m. In this section, x0 ∈ Rn will denote the origin, and n = m+r.

6.17 Proposition: Let A be the affine distribution on Rn generated by {ζ,X1, . . . , Xm}.
Suppose that {ζ,X1, . . . , Xm} satisfies the LARC at x0. Then A is PSTLC from x0 if and
only if Vk+1

x0 Σ = Rn, where Σ = (Rn, {ζ,X1, . . . , Xm}, [−1, 1]m).

Proof: Write a point in Rm+r as (x, y). Let u : [0, T ] → Rm be a control for the system Σ
and let t 7→ (x(t), y(t)) the corresponding trajectory. Let ((xcrs , y

cr
s ), u

cr
s ) denote the induced

controlled trajectory. Then

xcrs (t) =

∫ t

0
us(w) dw =

∫ t

0
u(w/s) dw = s

∫ t/s

0
u(σ)dσ = sx(t/s)

and therefore xcrs (sT ) = sx(T ). Let F = (F 1, . . . , F r). Then,

ycrs (t) =

∫ t

0
F (xcrs (w)) dw =

∫ t

0
F (sx(w/s)) dw = sk

∫ t

0
F (x(w/s)) dw

= sk · s
∫ t/s

0
F (x(σ)) dσ = sk+1y(t/s).

Thus, ycrs (sT ) = sk+1y(T ). Thus, Σ is time-homogeneous with respect to the dilation
∆tm
s (x, y) = (sx, sk+1y). In like manner, one can show that Σ is control-homogeneous with

respect to the dilation ∆cr
ε ((x, y)) = (εx, εky). The result now follows by Theorem 6.16. ■

If ξ is a vector field of order k at x0 and

Bk
ξ =

dim(M)∑
j=1

∑
I

∂kξj

∂xI
(x0) dx

I(x0)⊗
∂

∂xj
(x0)

is the associated vector-valued symmetric k-multilinear map on Tx0M, we defineQkξ : Tx0M →
Tx0M by

Qkξ (vx0) = Bk
ξ (vx0 , . . . , vx0).

Note that when k is odd, img(Qkξ ) is closed under multiplication by −1. Indeed,

−Qkξ (vx0) = −Bk
ξ (vx0 , . . . , vx0) = Bk

ξ (−vx0 , . . . ,−vx0) = Qkξ (−vx0).
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6.18 Proposition: Let A be the affine distribution on Rn generated by {ζ,X1, . . . , Xm}.
Suppose that {ζ,X1, . . . , Xm} satisfies the LARC at x0. Let Wx0 = span

{
Qkζ (Ax0)

}
and

suppose that Ax0 +Wx0 = Rn. Then the following hold:
(i) if k is odd then A is PSTLC from x0;
(ii) if k is even and 0x0 ∈ intWx0

(co(Qkζ (Ax0))) then A is PSTLC from x0.

Proof: Put Σ = (Rn, {ζ,X1, . . . , Xm}, U = [−1, 1]m). According to Proposition 6.17, it is
enough to prove that Vk+1

x0 Σ = Rn. Let ξ1 = ζ + Y and ξ2 = ζ − Y , where Y = uaXa for
u = (u1, . . . , um) ∈ U . Let ξ = (ξ1, ξ2) and let τ(s) = (s, s). Then, by Theorem 4.1, for any
smooth function f ,

eξfk+1(τ(s)) =

k+1∑
ℓ=0

k+1−ℓ∑
j=0

(ξℓ1ξ
j
2f)(x0)

sℓ+j

ℓ!j!
. (6.2.2)

Since ξ1(x0)+ξ2(x0) = 0x0 , it follows that ordx0(ξ,τ) ≥ 2. In fact, since ζ is of order k at x0
and Y is a constant vector field, by Lemma 4.12 we actually have that ordx0(ξ,τ) ≥ k+ 1.
Therefore, (6.2.2) simplies to

eξfk+1(τ(s)) =

k+1∑
ℓ=0

(
k + 1

ℓ

)
(ξℓ1ξ

k+1−ℓ
2 f)(x0)

sk+1

(k + 1)!
.

Now, as differential operators,

ξℓ1ξ
k+1−ℓ
2 =

ξ
ℓ
1ξ
k−ℓ
2 ζ −Xℓ

1ξ
k−ℓ
2 Y, ℓ = 0, 1, . . . , k,

ξk1ζ + ξk1Y, ℓ = k + 1

and, therefore, by Lemma 4.12 and the fact that Y (x0) = u,

ξℓ1ξ
k+1−ℓ
2 (x0) =


Bk
ζ (u, . . . , u︸ ︷︷ ︸

ℓ−times

,−u, . . . ,−u︸ ︷︷ ︸
(k−ℓ)−times

), ℓ = 0, 1, . . . , k,

Bk
ζ (u, . . . , u), ℓ = k + 1,

=

(−1)k−ℓBk
ζ (u, . . . , u), ℓ = 0, 1, . . . , k,

Bk
ζ (u, . . . , u), ℓ = k + 1.

Therefore,

eξk+1(τ(s)) =

(
k∑
ℓ=0

(
k + 1

ℓ

)
(−1)k−ℓ + 1

)
Bk
ζ (u, u, . . . , u)

sk+1

(k + 1)!
.

Now

k∑
ℓ=0

(
k + 1

ℓ

)
(−1)k−ℓ =

k+1∑
ℓ=0

(
k + 1

ℓ

)
(−1)k−ℓ − (−1)−1

= (−1)k
k+1∑
ℓ=0

(
k + 1

ℓ

)
(−1)ℓ + 1 = 1,
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and, therefore,

eξk+1(τ(s)) = 2Qkζ (u)
sk+1

(k + 1)!
. (6.2.3)

Using the fact that Vk+1
x0 Σ is a cone and by properness of U , we have Qkζ (Ax0) ⊂ Vk+1

x0 Σ,

and, therefore, the convexity of Vk+1
x0 Σ implies that co(Qkζ (Ax0)) ⊂ Vk+1

x0 Σ. If k is odd then

co(Qkζ (Ax0)) is closed under multiplication by −1, and, therefore, co(Qkζ (Ax0)) = Wx0 . If k

is even and 0x0 ∈ intWx0
(co(Qkζ (Ax0))) then again co(Qkζ (Ax0)) = Wx0 . Now Ax0 = V1

x0Σ ⊂
Vk+1
x0 Σ, and therefore Rn = Ax0 +Wx0 ⊂ Vk+1

x0 Σ. Hence, in either case of k, we have that
Vk+1
x0 Σ = Rn, and the result now follows by Proposition 6.17. ■

6.2.2. Determining STLC in a finite number of differentiations. In [26] (see also [1]),
the following problem was posed.

Open problem: If the smooth control-affine system Σ = (M, {X0, X1, . . . , Xm}, U) is
STLC from x0, does there exist an integer k such that every smooth control-affine system
Σ′ = (M, {Y0, Y1, . . . , Ym}, U) is also STLC from x0 if the Taylor expansions at x0 of the
vector fields of the two systems agree up to order k?

Theorem 6.13 gives a positive answer to this question for the special case of time-
homogeneous systems.

6.19 Theorem: Suppose that Σ = (Rn, {X0, X1, . . . , Xm}, U) is time-
homogeneous with respect to the dilation ∆tm

s (x) = (sk1x1, . . . , sknxn) and let
k = max{k1, . . . , kn} − 1. If Σ STLC from x0 = 0, then every control-affine system
Σ′ = (Rn, {Y0, Y1, . . . , Ym}, U) with jkx0Ya = jkx0Xa, for all a ∈ {0, 1, . . . ,m}, is also STLC
from x0.

Proof: If Σ is STLC from x0, by Theorem 6.13, Vk1x0Σ + Vk2x0Σ + · · · + Vknx0 Σ = Rn. By
definition, Vℓx0Σ depends only on the (ℓ − 1)-jets of X0, X1, . . . , Xm at x0. Hence, if Σ′ =

(Rn, {Y0, Y1, . . . , Ym}, U) is a control-affine system such that jkx0Ya = jkx0Xa, then V
kj
x0Σ =

V
kj
x0Σ

′ for all j ∈ {1, . . . , n}. Hence, Vk1x0Σ
′ + Vk2x0Σ

′ + · · · + Vknx0 Σ
′ = Rn. Consequently, by

Theorem 5.5, Σ′ is STLC from x0. ■



Chapter 7

Conclusions and future work

7.1. Conclusions

In this thesis, we have developed a feedback invariant theory of local controllability for
affine distributions. The main geometric notion we have studied is what we call proper
small-time local controllability and the main tool used to study this notion is a set of
high-order tangent vectors. To better understand these high-order tangent vectors, some
computational tools were developed on appropriate jet spaces of the tangent bundle. Using
these tools we were able to characterize proper small-time local controllability for driftless
and homogeneous systems.

7.2. Future work

The following list of questions and problems are natural avenues of future research from
this point.

1. In Chapter 3 it was shown that, for a regular affine distribution, there is no loss of
generality by considering convex control-affine systems for the study of PSTLC. A
natural question is whether this is still true in the singular case.

2. It would be fruitful to better understand the algebraic properties of the linear map
T k
x0 described in Chapter 4. Having established a solid understanding of this map, it

should be possible to obtain new interesting sufficient conditions for local controlla-
bility. The connection between the coefficients of the Taylor series of a composition
of flows and labeled rooted trees, established in Section 4.3, might be useful for this
task.

3. Using the tools developed in this thesis, give a sufficient condition for Vkx0A to be a
subspace. In other words, when are all variations of order k neutralizable?

4. For homogeneous systems, it was shown that the variational cone completely char-
acterizes local controllability. It would be natural to explore what new necessary
conditions can be obtained in the general case.

5. In Section 6.2.1, a special class of homogeneous systems was considered and we were
able to give a geometric sufficient condition for the variational cone to be the whole
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tangent space. This was done by considering a specific type of concatenation that
resulted in the high-order vector-valued form appearing as the variation. A natural
generalization of this result would be to do the same for general homogeneous systems.

6. In [24] it was shown that, for the control-affine system Σ = (R4, {X0, X1}, [−ϵ, ϵ])
given by

ẋ1 = u; ẋ2 = x1; ẋ3 = (x1)3; ẋ4 = (x3)2 − (x2)7,

if the set of controls is restricted to piecewise constant controls with at most N
jumps, then, if T > 0 and ϵ > 0 satisfy N7T 7/2ϵ3/4 < 1, then x4(T ) ≥ 0 if x1(T ) = 0.
However, Kawski proved that Σ was indeed STLC from the origin x0 = 0 by using
variations that were parameterized by a discrete parameter related to the number of
switchings in a specific type of variation. The number of switchings grew as the final
time tended to zero. Roughly speaking, one can say that Kawski’s example satisfies
the following behaviour: If the control set is bounded then one needs high frequency
to control the system in small-time. One natural question is: If the control set is
unbounded, can Kawski’s example be controlled using finite jumps in small-time? The
tools developed in this thesis can be used to give a positive answer to this question. To
show this, for u ∈ R let ξu = X0 + uX1. For Σ, it is easy to produce variations in the
directions ± ∂

∂x1
,± ∂

∂x2
,± ∂

∂x3
, and ∂

∂x4
, so that − ∂

∂x4
is the only missing direction for

local controllability. For s > 0, let ξ(s) = (ξu(s), ξ−u(s), ξ−u(s), ξu(s)) where u(s) =
f(s)
s7

and the function f is to be determined. Let τ(s) = (s, s, s, s). We can compute
directly, by either integrating the differential equation or using the Taylor series tools
developed in Chapter 4, that

Φξ(s)
x0 (τ(s)) =

(c1s− c2f(s))

c3s34
f(s)6e4

for constants c1, c2, c3 > 0, and where e4 denotes the 4th standard basis vector in R4.
Let

f(s) =
c1s

c2
+ λs34,

for λ ∈ R. Then direct substitution and simplification yields

Φξ(s)
x0 (τ(s)) = −λs

6(c1 + λc2s
33)6

c3c52
e4.

Hence, we get a smooth curve in the reachable of Σ from x0 approaching the origin
and in the −e4 direction provided that λ > 0, i.e.,

Φξ(s)
x0 (τ(s)) ∈ RΣ(x0, 4s) ∩

{
x ∈ Rn | x4 < 0

}
.

The resulting parameterized control u(s) is given by

u(s) =
f(s)

s7
=
c1s+ λc2s

34

c2s7
=
c1 + λc2s

33

c2s6
, (7.2.1)

which goes to infinity as s→ 0. Using a more general notion of variation than the one
used in this thesis, see for example [25], this shows that, if one replaces the control set
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U = [−ϵ, ϵ] with U = R, then Σ is STLC from x0 using piecewise constant controls
with a finite number of switchings. In view of Kawski’s example, a natural line of
future research would be to build a theory, in the same spirit as was done in this
thesis, to deal with this fast-switching phenomenon.
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[5] J. Basto-Gonçalves, Sufficient conditions for local controllability with unbounded controls,
SIAM Journal on Control and Optimization, 25 (1987), pp. 1371–1378.

[6] R. Bianchini, Variations of a control process at the initial point, Journal of Optimization
Theory and Applications, 81 (1994), pp. 249–258.

[7] R. Bianchini and G. Stefani, Normal local controllability of order one, International Journal
of Control, 39 (1984), pp. 701–714.

[8] , Graded approximations and controllability along a trajectory, SIAM Journal on Control
and Optimization, 28 (1990), pp. 903–924.

[9] , Controllability along a trajectory: A variational approach, SIAM Journal on Control and
Optimization, 31 (1993), pp. 900–927.

[10] R. Bianchini and P. Zecca, Local controllability for autonomous nonlinear systems, Journal
of Optimization Theory and Applications, 31 (1980), pp. 69–83.

[11] N. Bourbaki, Algebra II, Springer-Verlag, 1990.

[12] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis,
and Design for Simple Mechanical Control Systems, no. 49 in Texts in Applied Mathematics,
Springer-Verlag, 2004.

[13] J. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and
general linear methods, John Wiley & Sons, 1987.
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