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Abstract

In this thesis, we develop a feedback-invariant theory of local controllability for affine dis-
tributions. We begin by developing an unexplored notion in control theory that we call
proper small-time local controllability (PSTLC). The notion of PSTLC is developed for an
abstraction of the well-known notion of a control-affine system, which we call an affine
system. Associated to every affine system is an affine distribution, an adaptation of the
notion of a distribution. Roughly speaking, an affine distribution is PSTLC if the local
behaviour of every affine system that locally approximates the affine distribution is locally
controllable in the standard sense. We prove that, under a regularity condition, the PSTLC
property can be characterized by studying control-affine systems.

The main object that we use to study PSTLC is a cone of high-order tangent vectors, or
variations, and these are defined using the vector fields of the affine system. To better under-
stand these variations, we study how they depend on the jets of the vector fields by studying
the Taylor expansion of a composition of flows. Some connections are made between la-
beled rooted trees and the coefficients appearing in the Taylor expansion of a composition
of flows. Also, a relation between variations and the formal Campbell-Baker—Hausdorff
formula is established.

After deriving some algebraic properties of variations, we define a variational cone for
an affine system and relate it to the local controllability problem. We then study the notion
of neutralizable variations and give a method for constructing subspaces of variations.

Finally, using the tools developed to study variations, we consider two important classes
of systems: driftless and homogeneous systems. For both classes, we are able to characterize
the PSTLC property.
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Chapter 1

Introduction

1.1. Literature review

Beginning with the work of Chow [14], it has been known for some time that Lie bracket
configurations are the key objects to study in the problem of differential geometric control-
lability. In 1966, Nagano [34] published a result, later generalized by Sussmann [42], that
gave a precise reason as to why this is so. To state the Nagano—Sussmann theorem, let
us introduce some notation. For a real analytic manifold M, I'(TM) denotes the Lie al-
gebra of real analytic vector fields on M. Given a subset L of I'(TM) and = € M, let
L(z) = {&x)| €€ L}. If L is a Lie subalgebra of I'(TM), the set of all £ € L such that
&(x) = 0y, ie., &(x) is the zero vector at x, is called the isotropy subalgebra of L and is
denoted by L,. A transitive subalgebra of T'(TM) is a Lie subalgebra L C I'(TM) such that
dim L(z) = dim M for every = € M. With this notation we state a slightly weaker version
of the Nagano—Sussmann theorem.

1.1 Theorem: (Nagano—Sussmann) Let M and N be connected and simply connected real
analytic manifolds. Let L C T'(TM) and let L' C T(TN) be transitive Lie subalgebras such
that each element of L and L' is complete. Let W: L — L' be a Lie algebra isomorphism.
Assume there exists x € M and y € N such that W(L;) = L;. Then there exists a unique
diffeomorphism ¢: M — N such that ¢(x) =y and ¢, (&) = V(&) for every £ € L.

A local version of the Nagano—Sussmann theorem holds in which the connected, simply
connected, and complete assumptions can be dropped, thereby only resulting in the exis-
tence of a local diffeomorphism ¢: Q — ', with ¢(z) = y, such that for every £ € L, the
restriction of £ to the neighbourhood 2 of z and the restriction of (&) to the neighbourhood
Q' of y correspond under ¢.

With the knowledge that Lie bracket configurations completely determine the local be-
haviour of the trajectories of a family of vector fields that generate a transitive Lie subalge-
bra, a systematic effort to characterize controllability in terms of Lie bracket configurations
has resulted in many sufficient conditions for local controllability [31], [46], [18], [30], [19],
[43], [20], [44], [7], [45], [5], [8], [9], [2], [22], [28]. A class of systems that has received a lot
of the attention in this effort are the so-called control-affine systems. These are control sys-
tems specified by a family of vector fields X = { Xy, X1,...,X;»} and a subset U C R™, and
whose trajectories are absolutely continuous curves y: [0,7] — M satisfying the differential
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equation
Y'(8) = Xo(y(t) + ) u(t) Xa(¥(t)),
a=1
for some Lebesgue integrable U-valued function t + u(t) = (u!(t),...,u™(t)) on [0,T].

Assuming that the family of vector fields

Xy = {Xo—l—iuaXa

a=1

uEU}

generates a Lie subalgebra that is locally transitive about x¢ € M, and under mild geometric
assumptions on the set U, local controllability from z( for the control-affine system (X, U)
is equivalent to studying the local behaviour of the set of trajectories emanating from zq of
the family of vector fields X, i.e., by studying the set of end-points

B0 - odf! (o), (1.1.1)

for ti,...,t, sufficiently small, &1,...,§, € Xy, p > 1, and where (t,z) — @f(m) denotes
the local flow generated by £. By the Nagano—Sussmann theorem, the local behaviour of
the set of points of the form (1.1.1) can be described using the isotropy subalgebra of the
Lie algebra generated by Xy, the latter we denote by Lie(Xy). Assuming that U affinely
spans R™, it is easy to show that Lie(Xy) = Lie(X), and thus much attention has been
given to studying the isotropy subalgebra Lie(X).,. There are some inherent difficulties
that arise, however, by fixing one’s attention on Lie(X) in the way that has been done in
the literature. To be precise, and at the same time keep the discussion as simple as possible,
let A = (Af) be an invertible m x m matrix, and set Yy = Xo, set Y, = > " | AfX,, for
b=1,...,m, set Y = {Yp,Y1,...,Y,,}, and finally set V= A(U). Then, it is easily seen
that the trajectories of the control-affine system (Y,V) are the same as those of (X,U).
Currently, many sufficient conditions for local controllability for control-affine systems, for
example those of [45] which generalize many known results, are not invariant under the Lie
algebra isomorphism W: Lie(X) — Lie(Y) that is induced by the mapping X; — Y}, for
j €4{0,1,...,m}. In other words, the obtained results are not invariant under feedback
transformations. Let us illustrate this with a simple example.

1.2 Example: Consider the following data:

0 0 0
N

Let ¥ = ({Xo, X1, X2},U), where U is the unit cube in R? centered at the origin. By
Theorem 7.3 in [45], ¥ is locally controllable from xg if

M =R = (0,0,0), Xo = ((z')? — 2(2%)?)

(X1, [X1, Xol](z0) + [ X2, [X2, Xol](z0) € span {Xi(zo), X2(z0)} -

One can check that this condition does not hold, and so the theorem is inconclusive. Con-
sider the matrix A = (*? ?), and let Y = {Y, Y1,Y2} be defined as above. One checks
that

(Y1, [Y1, Yo (z0) + [Ya, [Ya, Yol](z0) = Ogy,
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and thus, by Theorem 7.3 in [45], the control-affine system (Y,V) is locally controllable
from x¢ and, therefore, so is X. In this case, the Lie algebra isomorphism induced by the
mapping X; — Yj, for j € {0,1,2}, does not preserve the isotropy subalgebras Lie(X),,
and Lie(Y),, because

(X1, [X1, Xo]](zo) + [X2, [X2, Xo]](20) # Ox,- .

With the above example in mind, one sees that, in order to obtain a feedback-invariant
result for local controllability using the current methods, one must verify that the obtained
conditions are satisfied by all families representing the same control-affine system, i.e., by
all families that generate the same trajectories. The work of Elkin [16] on the equivalence
of control-affine systems can be used to start such an approach. Instead, one can consider
the affine distribution generated by a control-affine system. Indeed, a control-affine system
Y =({Xo0,X1,...,Xm},U) on M generates the affine distribution Ay, C TM defined by

As(x) = Xo(z) + span{ Xy (z),..., Xin(z)},

and two control-affine systems have the same trajectories if and only if the affine distribu-
tions they generate are the same [16, pg. 117]. Hence, a feedback-invariant theory can be
developed by studying the local controllability of affine distributions. To obtain a practical
theory, however, one should consider affine distributions with some regularity properties,
e.g., possessing local generators. But all constructions should be developed in a generator
independent way.

1.2. Contribution of thesis

In this thesis, we propose a feedback-invariant theory of local controllability for affine
distributions. The main approach is to use the jets of sections of the affine distribution to
study high-order tangent vectors to the reachable set. Below we outline the contents and
contributions of the thesis.

e In Chapter 2, we establish our notation and review some basic material from jet
bundle theory and set-valued maps. We also prove a technical result regarding the
high-order derivatives of an integral curve with respect to a parameter.

e In Chapter 3, we begin by laying a basic foundation for the study of a generator
independent theory of local controllability for affine distributions. We start by defining
the notion of an affine system, which can be seen as a generalization of a control-affine
system. With affine systems in hand, we are then able to give a definition of local
controllability for affine distributions that we call proper small-time local controllability
(PSTLC). We then prove that, in the regular case, our notion of PSTLC can be
characterized by studying control-affine systems.

e In Chapter 4, we define a type of high-order tangent vector, which we call an end-time
variation. These tangent vector variations are constructed by concatenating flows of
vector fields and parameterizing the switching time between the integral curves of the
flows. To better understand these variations, we study how they depend on the jets
of the vector fields by studying the Taylor expansion of a composition of flows. This
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study leads to a theorem which asserts the existence of a linear map on an appropriate
jet space of the tangent bundle whose image describes the set of variations. Some
connections are made between labeled rooted trees and the coefficients appearing
in the Taylor expansion of a composition of flows. We end the chapter by relating
variations to the formal Campbell-Baker—Hausdorff formula.

Using the tools developed in Chapter 4, in Chapter 5 we study a variational cone and
its connection with the local controllability problem. We then study the variational
cone at low orders and give a method for constructing subspaces in the variational
cone.

In Chapter 6, we consider two important classes of systems, namely, driftless systems
and homogeneous systems. For driftless systems, we prove that, under the standard
regularity assumptions, there are no obstructions to local controllability. Also, we give
a simple proof using our methods to show that, for driftless systems, any Lie bracket
direction is realizable as a variation. We then move onto homogeneous systems, which
play a key role in many known sufficient conditions for local controllability. We
prove that, for homogeneous systems, the variational cone contains all the information
needed for the characterization of local controllability. The proof of this result is
constructive in the sense that it gives a method for determining the directions that will
verify the local controllability, or lack thereof, of the system. Furthermore, for these
systems we are able to answer an open question in control theory regarding whether
it is possible to determine local controllability in a finite number of differentiations.

We end the thesis with a summary of the main results and list some natural problems
to study using our methods. We also describe how our methods can be used to study
Kawski’s fast-switching example [24].



Chapter 2

Preliminaries

In this section we establish some of our notation and review some material from jet bundle
theory and set-valued maps. We also prove a proposition on the high-order derivatives of
the solution of an ODE with respect to a parameter.

2.1. Notation and conventions

If f is a mapping, its domain is denoted by dom(f) and its image by img(f).

Let V be a finite-dimensional vector space. Most of our notation regarding vector spaces
and linear maps can be found in [12]. The convex hull, affine hull, cone hull, and interior
of a set S are denoted by co(S), aff(S), cone(S), and int(S), respectively. The interior
of S relative to W is denoted by inty (S). Given a linear map f, ker(f) will denote its
kernel. We identify the kth tensor power of V*, denoted by T*(V*), with the set of k-
multilinear maps from V to R, denoted by LF(V;R). Similarly, we identify S*(V*), the
kth symmetric power of V*, with the set of symmetric k-multilinear maps from V to R,
denoted by L%, (V;R). With these identifications we have that T*(V*) @ W = LF(V; W)
and that S*(V*) @ W = Lé“ym(V; W). The symbol ® will denote the symmetric product in

the symmetric algebra S(V*) = @22, S%(V*), that is,
a®f = Sym(a® pB),

where Sym: T'(V*) — S(V*) denotes the symmetrization operator given by

1
Sym(a)(ve, ..., vx) = & D oy Vo),
) geGy,

where &j, denotes the permutation group on k symbols. For each integer ¢ > 1, define
602 V= SYV) by dp(v) = v @v® ---®@wv. The proof of the following can be found in
Propositions 13 and 15, pg. 54-56, [11].

2.1 Lemma: ([11]) Let V and W be R-vector spaces with V finite-dimensional and let
f: V. — W be a homogeneous polynomial mapping of degree £ > 1. Then there is a unique
mapping h € L(SYV); W) such that f(v) = h(8(v)) for allv € V.

By a manifold we mean a Hausdorff, second countable, connected, smooth manifold.
When not explicitly stated, all maps between manifolds will be assumed to be smooth.
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We will frequently employ the summation convention in which summation is implied over
repeated indices. For a manifold M, TM and T*M denote its tangent and cotangent bundle,
respectively, and T,M and T;M denote its tangent and cotangent space at x, respectively.
The zero vector in T;M is denoted by 0,. If f: M — N is a map differentiable at =, T, f
denotes its derivative at x.

For a complete vector field £ on a manifold M, ®¢: R x M — M will denote its flow. For
fixed t € R, @f is the diffeomorphism 2 — ®¢(t,z), and for fixed z € M, ®% denotes the
curve t — ®¢(¢, ), i.e., the integral curve of ¢ through .

Let & and 7 be vector fields of M, defined locally about a common point zg € M. We say
that £ and n are equivalent at xg if there is a neighbourhood 2 of z( such that &(x) = n(z)
for all x € Q). This defines an equivalence relation on the set of vector fields defined locally
about zg. The germ of  at z¢ is the equivalence class of £ and is denoted by [{;,]. The
set of germs of vector fields at x¢ has a natural Lie bracket structure inherited from the Lie
bracket structure of I'(TM). Indeed, given germs [{;,] and [7,], we define their Lie bracket
[[€20]s [M20]] Dy computing the vector field Lie bracket of the vector fields & and 7 on some
neighbourhood of xy and letting [[£z,], [72,]] be the germ of the local vector field [¢,n]. In
this way, if X is a family of vector fields defined locally about a common point, we can talk
about the Lie algebra generated by the family of vector fields X by passing to germs.

Given a smooth function f: 2 — R™, on the open set 2 C R", the derivative of f will

be denoted Df, i.e., the R™*™-valued map on R™ whose ij-entry is %. The higher-order
derivatives of f are denoted by D) f, which is a map from R” to Lfym(R"; R™). Also, we

denote by ng) f the R™-valued map on R™ whose ith entry is gfgif;k. The zero vector in
RP will sometimes be denoted by 0,, to avoid possible confusion with the zero vector in a
different Euclidean space.

Finally, the symbol * will denote concatenation. For example, if z = (x1,...,2,) and
y=(y1,...,Yq), then xxy = (x1,...,2p,y1,...,Yq). We will sometimes write z*xy = (z,y).
For maps f;: X; — Y}, j = 1,2, the symbol f; * fo denotes the map (f1 * f2)(x1,22) =
(fi(@1), fa(z2)).

2.2. Jets

In this section we review some basic notions from jet bundle theory, all taken from
(38, 27].

Given a vector bundle 7: E — M, T'(E) will denote its smooth sections. Given &,7n €
I'(E), we say that & and n are k-equivalent at x if £(x) = n(z) and if, in some adapted
coordinate system around x, the partial derivatives of £ and 1 at x agree up to order k.
This defines an equivalence relation on the sections of w. The equivalence class of £ at x
of order k is denoted by j¥¢ and is called the k-jet of ¢ at x. The set of all k-jets at x
is denoted by JXE and the set of all k-jets is denoted by J¥E. We will sometimes find it
convenient to denote these sets as J’;ﬂ and J*7, respectively. The set J¥E can be given
the structure of a smooth manifold by using vector bundle coordinates for E to assign the
coordinates of ji?g as the derivatives of ¢ up to order k at z. Note that JO7 is naturally
identified with E. The map 7: J*)E — M that takes j¥¢ to 2 defines a vector bundle. In
71',;1(:5) = JFE, addition and scalar multiplication are defined as j¥¢ + jFn = j¥(¢ +n) and
M- jke = 5k (N\E), respectively, where A € R. For non-negative integers ¢ < k, there is a
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canonical projection Wé?: JFE — JYE, that maps jk¢ to jﬁ{. When ¢ = k — 1, the map
7r,]:_1: JFE — JF71E can be given an affine bundle structure modeled on the pull-back of
the vector bundle S*(T*M) ® E — M to J¥"1E. Explicitly, for smooth functions fi,..., fx
vanishing at z, the action of (dfi(z) ® -+ ® dfi(z)) ® n(x) € S¥(TM) ® E, on j¥¢ € JVE
is given by

G5+ (dfi(2) © - © dfi(@)) @ n(x) = G5 (€ + (f fi)n):

The affine structure can be represented via the following exact sequence of vector bundles
over M,
”571

0 — S¥(T*M) ® E —%> JFE 5 Jk-1E — 0
where € : S¥(T*M) ® E — JFE is the injection defined as
ex((dfi(2) © - O dfi(z)) @n(x)) = jE((fi-- fi)m),
for smooth functions fi,..., fi vanishing at . The elements of
img(e;) N JYE = ker(nf_,) N JEE

are the k-jets of sections of E that vanish up to order £k — 1 at x; that is, elements whose
(k —1)-jet at = agrees with the (k — 1)-jet at x of the zero section. Given j¥ ¢ € ker(nf_,),
the corresponding element in S* (T3, M)®@E, will be denoted by Bé“. In a coordinate system

(x',...,2") about x(, Bé“ is given by
k d" ¢/ I
Bf=> Y o7 (20) d2’ (z0) @ €, (2.2.1)
j=1 I
where eq,...,e, is a basis for E;,, the inner sum runs through all multi-indices I =

(i1,...,ix) C {1,...,n}* of length k,

ak 6k . . .
orl — Oz 9z - - - Ogin and dz! =dz" @ dz”? @ - - @ da*.

That (2.2.1) is indeed in S*(T} M) ® E,, follows from the symmetry of the derivative.

We will say that ¢ € I'(E) is of order k at x if j*¢ € ker(7F_,), but j¥¢ is not the zero
vector. In other words, £ € T'(E) is of order k at z if the first non-zero derivatives of £ at x
are of order k.

Given manifolds M and N, define the trivial bundle mp: MxN — M by mps(z,y) = 2. A
section of 7y is naturally identified with a mapping from M to N. The jet space J¥(M x N)
can be defined in the same way as was done for vector bundles. Explicitly, J’(“%y)(M x N)
is the space of equivalence classes of mappings from M to N that map = to y and whose
derivatives at x agree up to order k. The set J¥(M x N), which we prefer to denote by
JE(M; N), is the set of all such equivalence classes. The space Jk )(M; N) can be given an

(zy
algebraic structure in the following way. We give the vector space

Ti"M = I, ) (M; R)
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a R-algebra structure by defining multiplication as j¥¢- j¥¢ = j&(¢ep), for smooth functions
#,1 on M. The set J¥ ( y)(l\/l, N) can then be identified with the R-algebra homomorphisms

Hom(T}*N; T¥M) by defining, for j¥f € Jk »(M;N) and jk¢ e TN,

i fGEe) = jE (o0 f).

Similarly to the vector bundle case, we have an exact sequence of vector spaces

0 —— SHTIM) @ TN %o 05, (MsN) 2 g (M N) —0 (2.2.2)

() (x

where ¢, S¥(TM) @ T,N — J’(“m ,)(M;N) is the mapping defined by

ee((dfi(2) © - ©dfi(x) @ vy) = ji (vo, o (ffo- - fi),

for smooth functions fi,..., fy on M that vanish at z, and where y,,: R — N is any curve
at y such that v, (0) = vy. A case that will be of interest to us is when M = R. In this
case, since S*(TZR) is canonically isomorphic to R, it follows that S*(T;R) ® T,N = T,N.
Hence, if y: R — N is a curve at y such that jgy € ker(w,’j_l), then jgﬁ/ can be canonically
identified with a tangent vector in T,N. Hence, the sequence (2.2.2) becomes

R;N) —> i S LR N) —— 0 (2.2.3)

€k k
0 TN J (0.9)

(07y)(

Another important case of the exact sequence (2.2.2) is when N = R. In this case, for y = 0,
the sequence (2.2.2) becomes

k
0 —= SH(T:M) —£s T L T2E=Um o ¢ (2.2.4)

When M = RP, the set (RP)** := Jfo 0) (RP; R) can be canonically identified with polynomial
functions of order k with zero constant term via Taylor’s expansion and, therefore, we have

the isomorphism
(RP)** = (RP)*F- 1) & % ((RP)").

Explicitly, for a function A: RP — R vanishing at the origin, j(’)“ph as a polynomial is defined
as

: ol
G = > ot
7=1
where |I] := iy 4 -+ +dp, I! = ixlig!---ip!, for a multi-index I = (iy,...,4p) € Z%;, and

th = {2 ... for t = (t1,...,t,) € RP.

2.3. Set-valued maps

In this section we review some basic material from set-valued analysis following [4].
Let A and B be sets. A set-valued map F' from A to B, denoted by F': A = B, is a
rule that assigns to each a € A a subset of B, possibly empty. We say that F : A = B
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is compact (convex, when B is a vector space) if F(a) is a compact (convex, when B is a
vector space) set for each a € A. Suppose that A and B are Hausdorff topological spaces
and that F' : A = B has non-empty values. We say that F' is upper semi-continuous
(usc) at ap € A if, for any open set V' containing F'(ag), there exists a neighbourhood
of ag such that F(Q2) C V. We say that F is lower semi-continuous (Isc) at ag if, for any
by € F(ag) and any neighbourhood V' of by, there exists a neighbourhood 2 of ay such that
F(a)NV # ( for all a € Q. We call F continuous at ap if it is usc and lsc at ag. If F
is usc (Isc, continuous) at each point in A then we say that it is usc (Isc, continuous). A
set-valued map is completely determined by its graph, that is, the set

gph(F) ={(a,b) e Ax B| be F(a)}.

Given a non-empty subset G C A x B, there is a F' : A = B such that gph(F) = G,
namely, F'(a) = {b€ B| (a,b) € G}. The proof of the following result can be found in [37,
Theorem 5.9].

2.2 Theorem: Suppose that F : R™ = R™ has non-empty values, is convexr and
int(F(ag)) # 0. Then F is lsc at ao if and only if, for all by € int(F(ayp)), there exists
neighbourhoods Q > ag and V' > by such that Q x V C gph(F), that is, V C F(a) for all
a € .

The following will be useful.

2.3 Proposition: Let A be a topological space and let B a topological vector space. Let Fi
be a set-valued map from A to B and define F5 : A = B by Fy(a) = co(Fi(a)). If Fy is Isc
at ag then so is Fy.

Proof: Let b € Fy(ap) and let V' be a neighbourhood of b. We can write that
b= Mo,
j=1

for some by, ..., b, € Fi(ag) and some A!, ..., \™ > 0 with ZTZI M = 1. Consider the map
p: B™ — B defined by

m
p(x1,...,Tm) = Z)\ij.
j=1

Then p(by,...,by,) = b € V. Because p is continuous, for each j € {1,...,m}, there is a
neighbourhood Vj of b; such that p(V; x --- x V) C V. By lower semi-continuity of F; at
ao, there is a neighourhood € of ag such that Wj(a) := Fi(a) NV # 0 for all a €  and all
j€{l,...,m}. Then, by the definition of p,

p(Wi(a) X -+ x Wip(a)) C Fa(a),
for all a € Q. This proves that Fy(a) NV # () for all a € Q, and, therefore, F; is Isc at ag. B

A set-valued map F : A = B is locally C" selectionable at ay if, for each by € F(ayp),
there exist a neighbourhood Q of ag and a C™ map f: Q — B such that f(ag) = by and
f(a) € F(a) for all a € Q. We say that F' is locally C" selectionable if it is locally C”
selectionable at each point in A. The following is straightforward to show [4].
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2.4 Proposition: A locally continuously selectionable set-valued map is lower semi-
continuous.

2.4. Derivatives of the solution of an ODE with respect to a parameter

In this section we prove a technical result regarding the high-order derivatives of the
solution of an ODE with respect to a parameter.

2.5 Proposition: Let I C R be an open interval containing the origin and suppose that
(: I xM—=TM s a smooth map with the following properties:
(i) ¢s = ((s,-) is a smooth vector field on M for each s € I;
(it) ¢(0,2) =0, for all z € M;
(11i) the curve (po: I — Ty M defined by (zo(s) = ((s,x0) has vanishing derivatives of
orders 1,2,...,£ —1 at s = 0.
If vs denotes the integral curve of the vector field (s through xq, then the curve s +— y(s) =

vs(1) satisfies §5y = §5Cus € TuoM.

2.6 Remark: Let T' > 0. From the continuous dependence on the parameters of the solution
of a smooth differential equation and the fact that the integral curves of the zero vector
field o = ¢(0,-) exist on any compact interval [—T,T], the integral curves of the vector
field (s also exist on the interval [—T, 7T provided s is sufficiently close to zero.

The proof of Proposition 2.5 will follow from the next two lemmas.

2.7 Lemma: Let (: I xQ — R"™ be a smooth map, where I C R is an interval containing the
origin and where  C R™ is an open set containing the origin, and suppose that ((0,z) =0
forallz € Q. Letv: (—0,0) X [-T,T] — R™ be the smooth map such that vs = v(s,-) is the
integral curve of (s through xqg =0 € ). Then, for each integer £ > 1, it holds that

9 (o v ov o1y
e <asg> =D{"¢(s,v) + Da((s,v) - a5t TGl <8,v, FIEREE 83‘“) ; (2.4.1)

where Gg: W — R™ is a smooth map on a neighbourhood W C R x (R™)¢ of the origin such

that Gy¢(s,91,0,...,0) =0, for all (s,y1) € R x R™. Consequently,
o) () t ov F )
@(O,t)—Dl C(O,x())t+/0 G( <O,$0,%(O,U)7,M(O,U)> do. (242)

Proof: The proof is by induction on £. By definition of v,

t
v(s,t) = vs(t) = xp +/ ((s,vs(0)) do,
0
and, therefore,

a (0 0
a <8z> = D1C($,U) + DZC(&'U) ' 87:;)

The claim holds for ¢ = 1 by setting G1(s,y1) = 0. Assume the claim holds for ¢ > 1. Let
DG denote the derivative of Gy with respect to y; for k € {1,...,¢}. By commutativity

of partial differentiation,
o (0N _ 0 (0 (0
ot \ostt1 ) os\ot\os') )’
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Hence, by the induction hypothesis and the chain-rule (we omit evaluation at (s,v) for the
derivatives of ¢ for compactness of notation),

o (9 g+1 g) Ov ot (2) Ov a% 'y

0Gy ov 86 1 ov o\ kv
9Ge (g 4,2 D =AY
s <S’”’ s’ st 1>+Z kGt (S U 9s ’asfl> DsF

Let
Gesr (5,91, -, yer1) = DaDYC(s,01) - 92 + DiDaC(s,31) - yeyr + DSVC(s,11) - (w2, yera)
¢
oGy
+ - (S yl?'-'7y5>+ZDkG£(87y17"'7y5)'yk+1-
8 k=1

Then Gy41 is clearly smooth, and, moreover,

oGy

GZ-‘rl(Sayl?Oa" 70) - 68

(S ylaoa'-'ao) :()7

and the latter vanishes by the induction hypothesis. This proves (2.4.1). Equation (2.4.2)
now follows because D2((0, z) is the zero matrix for all = € €2 and v is constant and equal
to xg. This completes the proof. |

2.8 Lemma: Let ¢ and v be given as in Lemma 2.7. Let { > 1 be an integer and suppose that
D( )§(0 xo) =0 forj €{0,...,0—1}. Then, forallt € (=T, T) and for allj € {0,...,0—1},
gi? (0,t) =0 and

8@

542(0:1) = DYVC(0, o).

Proof: The proof is by induction on £ > 1. For £ = 1, we have that G; = 0, and, therefore,
by (2.4.1) it holds that %(O,t) =D1¢(0,z0)t for all t € (=T, T). The proves the claim for
f=1.

Now suppose that ng)C(O,xo) =0 for j € {0,1,...,¢} and assume the claim for ¢ >
1. By the induction hypothesis, gf(O t) =0 for j € {0,1,...,£ — 1} and & ”(O t) =
DgK)C(O,xo)t, forall t € (—=T,T). By assumption, DgK)C(O, xo) = 0, and thus also W(O,t) =
0, for all t € (=7, T). Then by (2.4.2), for all t € (=T,T),

aé—i—l t v aé,v
Ost+1 (0,2) = D§£+1)<(07$0>t+/0 Gt <0,1’07 5(070)7 R 834(0’0)> do

0+1
= D{"V¢(0,20)t,
and this completes the proof. |

Proof of Proposition 2.5: Choose a coordinate neighbourhood of xg, mapping x¢ to the ori-
gin, and let, by abuse of notation, {: I x 2 — R" be the coordinate representation of
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(: I x M — TM about xo. By assumption, ng)C(O,mo) = Oy, for j € {0,1,...,£—1}, and,
therefore, by Lemma 2.8, %(O,t) =0 forall j €{0,1,...,¢—1} and

ot /

@(Oﬂf) = Dg )g(ovx(])tv

for all t € (=T, T). Choosing T' > 1 and setting ¢t = 1 completes the proof. |



Chapter 3

Local controllability of affine
distributions

The purpose of this chapter is to lay the basic foundation for a theory of local controllability
for affine distributions. We start by reviewing the notion of an affine distribution and prove
some basic results regarding their local structure. We then introduce an unexplored notion
in control theory called an affine system and use it to give a definition of local controllability
for an affine distribution. A special type of affine system is a control-affine system, and
we prove that, in the regular case, it is sufficient to study control-affine systems to prove
controllability of affine distributions. Even with this being the case, the setting of affine
systems has the advantage of forcing one’s viewpoint to be feedback-invariant.

3.1. Affine distributions

By an affine distribution on M we mean a subset A C TM such that, for each x € M,
A; :=ANT,.M is an affine subspace of T,M. We say that A is smooth if, for each x¢y € M,
there exists a neighbourhood €2 of xy and smooth vector fields Xg, X1, ..., X, on £ such
that
A; = {Xo(z)} +span {X;(x),..., Xn(x)}

for all x € Q. The set of vector fields { X, X1,...,X,,} is called a local frame for A at xo.
Henceforth, we deal exclusively with smooth affine distributions.

An affine distribution will be called a distribution if A, is a subspace for each x. Distri-
butions will typically be denoted with the symbol D. A vector field £ is said to belong to A,
if £(x) € A, for each x in the domain of £&. We let T'(A) denote the set of smooth A-vector
fields and let I;(A) denote the set of smooth A-vector fields containing z in their domain.
The linear part of A at x is denoted by L(A),, and L(A) C TM denotes the corresponding
distribution on M. Explicitly,

L(A)e = {&2(2) = &u(2) | &, & € L(A)}.

We say that zg is a regular point of A if there is a neighbourhood of zg in which the
dimension of the subspace L(A), is constant, and we call A regular if it is regular at every
point. We say that A is singular at xq if it is not regular at xg. The following three lemmas,

13
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describing some local properties of affine distributions, will prove to be useful in subsequent
analysis.

3.1 Lemma: Let k = dim(L(A)z,). There is a local frame {Xo, X1,...,Xm} for A at xg
such that X1 j(xo) = Oy for j = 1,...,m — k. Moreover, if 05, € Ay, then Xo can be
chosen to satisfy Xo(zop) = Oy,

Proof: To prove the first statement, let » = m — k and assume that r > 0; otherwise
there is nothing to prove. Let {Xo, X1,..., Xk, Y1,...,Y,} be a local frame for A on 2
about z¢ such that L(A),, = span{Xi(zo),...,Xx(zo)}. For each j € {1,...,r}, there
exist \; € R¥ such that Y;(z¢) = )\?Xb(xo) (we are employing the summation convention).
Let Xpq; =Y — /\?Xb. Then Xj4; € L(A) and Xjyj(xo) = Oy, for j € {1,...,7}. Let
A=\ Ay oo A €RF e, A’s jth column is A;. Now let 2 € Q and v, € L(A); be
arbitrary. Then v, = O/{Xb(x) + a§Ye(z) for some (aq, ) € R* x R"™. Set pu1 = a1 + Aap
and po = ag. Then,

HEXo() + 15 Xro(w) = (o + Mas ) X(@) + a5 (Ye(@) = X (@)

= b Xy (z) + a5Y.(x) + (Moas — Aoas) Xy (z) = v,.
This proves that {Xi,...,X,,} is a local frame for L(A) on €, and, therefore,
{Xo0,X1,...,Xm} is a local frame for A on Q.

To prove the second statement, suppose that 0,, € A;, and let {Yy, X1,..., X} be a
local frame for A on © about xg. There is a A € R™ such that 0., = Yo(zq) + A\* X3 (o).
Let Xo = Yo + A’ X3, so that Xo(zo) = 04, and, moreover X € A. Let € Q and v, € A,
be arbitrary. We can write v, = Yp(x) + o’ X;(z) for some a € R™. If g = o — ), then

Xo(2) + 1" Xy(2) = Yo(x) + (1 + A") Xy (2) = Yo(x) + a”Xy(2) = vs.
Thus {Xo, X1,..., X} is a local frame for A on Q. This completes the proof. [ |

3.2 Lemma: Let A be regular at xo. Suppose that &1,...,&, are A-vector fields such that
aff ({&1(z0), ..., &p(20)}) = Aszy. Then there exists a neighbourhood Q0 of xo such that

aff ({€&1(x), ..., &(2)}) = As
for all x € Q.
Proof: It is straightforward to show that, for any i € {1,...,p},
aff ({€&1(x0), - - -, &(@0)}) = &i(wo) + span{§;(xo) — &i(wo) |7 # i},
so that
span {§; (o) — &i(xo) [J # 1} = L(A)ap-

By lower semi-continuity of the rank and regularity of A at g, there exists a neighbourhood
Q2 of zg such that span {&;(x) — &(x) |j # i} = L(A), for all x € 2. Therefore,

Ar = &i(x) +span {;(x) — &i(x) [J # i} = aff ({&1(2), .., () })
for all x € Q2. This completes the proof. |

The next lemma asserts the existence of a particularly nice frame for a regular distri-
bution.
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3.3 Lemma: Let M be an n-manifold and let D be a smooth distribution that is regular at
xg and of rank m at xg. Then there is a coordinate system (1:1, ..., x™) about xy and a local

frame {X1,..., Xm} for D such that, in these coordinates,

(9 n—m .
Xj:@‘k Cj

0
oxm+t’
/=1

for smooth functions cf vanishing at xg.

Proof: Without loss of generality assume that M = R” and that zq = 0. Let {X1,..., X/}
be a local frame for D on a neighbourhood € of ;9. Thinking of the X ;'s as column vectors,
define the matrix A(z) = [X;(z) Xa(z) --- X,(z)]. By permuting the coordinates, if
necessary, we can assume that the uppermost m x m submatrix in A(x) is invertible on .
Call this submatrix A(x). Multiplying A(z) on the right by A(z)~!, we obtain a new frame
{X1,..., X} for D on Q of the form

n—m

j al’] Z m+ga ]'E{l,...,'rn}7

for smooth functions b?. Define the coordinate change W: R® — R™ by

F=U(t . 2" = (2. 2™ ™ - Z}n:lb}(a:o)xj, N e = " (xg)z?).

A direct computation gives that

n—m 9
\II*(XJ) Bx] + Z - bé xO))W:

which completes the proof. |

Let ¢ be a vector field of order k at xp and let

oF CJ 0
Bf = Z Z (z0) dz! (z9) ® 5.7 (@0) (3.1.1)
j=1 1
denote the associated symmetric k-multilinear map on T, M, in the coordinates (z',...,2")

about xp, where n = dim(M). The next proposition states that, in the regular case, if ¢
belongs to a distribution D then Blg will take its values in Dy, .

3.4 Proposition: Let D be a smooth distribution, on the n-dimensional manifold M, that is
reqular at xg. If ¢ is a D-vector field that is of order k at xq, then img(Bé“) C Dy,

Proof: Let m be the rank of D at xzyp. By Lemma 3.3, there is a local frame {X7,..., X}
for D about xg of the form

9 n—m .
Xj:@‘f‘ Cj

0
oxm+t’
/=1
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for smooth functions cf vanishing at xg, and, thus,

0 0
There exist smooth functions !, ..., 4™ such that, locally, ( = «’ X;. Now since ( is of
order k at zg, the partial derivatives of the functions u’ of order less than k vanish at z.

That is, %(ZEQ) = 0 for multi-indices 0 < |I| < k. Therefore,

8'”(c§uj)

for all multi-indices I such that 0 < |I| < k because Cg(l‘g) = 0. It therefore follows from
(3.1.1) that

T Ol 0
k _ I
Bf = ; o1 (0) Ao’ (w0) © (o),
and, therefore, by (3.1.2), img(Bé“) C Dg,. [ |

The following example shows that the conclusion of Proposition 3.4 is no longer true in

the singular case.
3.5 Example: Let M = R? write a typical point * € R? as z = (2!,2?), and let zg =

(0,0) € R? denote the origin. Consider the distribution D given by

span {%(x)} , ! =0,

span{%(m), 8%2(3:)} , al £0.

The vector fields X7 = {9%1 and Xy = x1% form a global frame for D and so D is smooth.
The vector Xs is of order k = 1 at xo. In the canonical coordinates on R? we have

0
B}(Q = da:l(:co) ® 9.2 (z0),
o . . _ i
which does not take its values in D, = span { BT (xo)}. °

3.2. Affine systems

In this section we introduce affine systems and their trajectories. To begin, we will say
that F: M = TM is a multi-valued vector field if F(x) C T,M for each x € M.

3.6 Definition: Let A be an affine distribution. An affine system in A is a multi-valued
vector field A : M = TM such that aff(A(z)) = A, for each z € M. .

If A is an affine system in A, then, necessarily, A(z) # () and A(z) C A, for each z € M.
Henceforth, when the affine distribution A is understood or it is not important in what is to
follow, we will simply refer to A as an affine system, without mentioning A. The restriction
of A to an open set @ C M will be denoted by A|n. Given an open set 2 C M and a
multi-valued vector field A : @ = TM such that aff(A(z)) = A, for each x € Q, we will call



LOCAL CONTROLLABILITY OF AFFINE DISTRIBUTIONS 17

A a local affine system in A or an affine system in A on 2. Given two affine systems A
and Ay in A with dom(A;) Ndom(Asz) # 0, we will write that Ay C Ag if Aj(z) C Aa(z)
for all x € dom(A;1) Ndom(As).

By an A-vector field on an open set {2 C M we will mean a vector field £: & — TM such
that £(x) € A(z) for each = € Q. We say that A is smooth at z if, for each v, € A(x), there
exists a smooth A-vector field £ such that {(z) = v,, i.e., A is smoothly selectionable at x.
The set of all smooth A-vector fields will be denoted by I'(A) and I},(A) will denote the set
of smooth A-vector fields containing = in their domain. Finally, we say that A is proper at
ZTo if

Oz € inta, (co(A(20))).

3.7 Definition: Let A : M = TM be an affine system. An A-trajectory is a locally absolutely
continuous curve y: I — M such that y'(t) € A(y(t)) a.e., where I C R is an interval. e

There are various sufficient conditions for an affine system, or more generally a differ-
ential inclusion, to possess trajectories under the above definition of a trajectory [4]. The
conditions are of two types, namely, continuity conditions and geometric or topological
conditions (convexity, compactness). For example, if A is a smooth affine system, then it
trivially has (smooth) trajectories through each point x € M with any given initial velocity
vector v, € A(z). To see this, let £: Q@ — TM be a A-vector field with £(z) = v,. Then
the differential equation y'(t) = £(y(t)) has a (unique) smooth solution through = with
Y'(0) = v,. More generally, we have the following.

3.8 Theorem: ([4]) Let 2 C R™ be an open subset containing xo and let F : Q = R" be
continuous with non-empty compact images. Then there exists T > 0 and an absolutely
continuous curve y: [0,T] — Q such that y'(t) € F(y(t)) and y(0) = zo.

This theorem can be applied locally to multi-valued vector fields. We include the details
for completeness.

3.9 Theorem: Let F: M = TM be a continuous multi-valued vector field with non-empty
compact images. Then, for any xqg € M, there exists T > 0 and an absolutely continuous
curve y: [0,T] = M such that Y'(t) € F(y(t)) and y(0) = zo.

Proof: Let (€2, ¢) be a coordinate chart for zyp and set n = dim(M). Let f: ¢(©2) — R"™ be the
map defined by f(y) = T¢_1(y)<p(9’(go_1(y))). This map is well-defined since F(x) C T,M for
each z € M and it is continuous because it is a composition of continuous maps. Moreover,
its images are non-empty compact subsets of R”. By Theorem 3.8, the differential inclusion
y'(t) € f(y(t)) with initial condition y(0) = ¢(zo) has a solution y: [0,T] — () for some
T > 0. It follows then that ¢ — y(t) = ¢~ (y(t)) is such that v/(¢) € F(y(t)) and y(0) = zo,
and 7y is absolutely continuous. |

3.10 Corollary: A continuous and compact affine system contains trajectories through any
point in its domain.

In this thesis, we will not be concerned with existence issues of solutions of affine systems
since we will be focusing on smooth affine systems.
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3.3. The Lie algebra rank condition

Given a set X of smooth vector fields, we let X(z) = { X (z) | X € X}, and denote by
Lie(X) the smallest Lie subalgebra of vector fields that contains X. If X consists of vector
fields that are defined locally about a common point xg, then X generates a set of germs
at xq of vector fields, which by abuse of notation we denote by the same symbol X. In this
case, Lie(X) will denote the smallest Lie subalgebra of germs at g of vector fields generated
by the set of germs X.

3.11 Definition: A set X of smooth vector fields is said to satisfy the Lie algebra rank
condition (LARC) at zg if Lie(X)(xo) = Tz M. .

Let A be a smooth affine distribution. If X = {Xy, X1,...,X,,} is a local frame for
A at zg, then it is clear that Lie(X) C Lie(I},(A)), and hence a way to test if the LARC
holds for I, (A) at xo, is to compute Lie(X)(z¢). However, since it is generally not true
that Lie(I},(A)) C Lie(X), a bad choice of a local frame can lead to an inconclusive result.
Here is a simple example to demonstrate this.

3.12 Example: As in Example 3.5, let M = R?, and let 29 = (0,0) € R? denote the origin.
The distribution D is

span {%(m)} , ! =0,

span{%(x), 8%2(3:)} , a2t #£0.

D, =

The vector fields X7 = 6%1 and Xy = 331% form a global frame for D and so D is smooth.
Qne computes that [X1, Xs] = % and therefore Lie({Xi, Xo})(x9) = Ty;,M. Now let
Xy = go%, where ¢: R — R is a smooth function whose derivatives of all orders (including
the zeroth derivative) vanish at ' = 0 and p(x!') > 0 for 2! # 0. Then X; and X also form
a global frame for D, but direct computations show that Lie({ X7, X2})(x¢) = span {%}. .

3.13 Remark: Example 3.12 can be used to show that, if D is a smooth distribution that
is singular at xg and {X7, X2} is a local frame for D about xg, then, for £ € D, there may
not exist smooth functions u',u?, locally defined about zg, such that ¢ = u'X; + u?Xo.
For example, and referring to Example 3.12, if X; = % but now X = (x1)2%, then
{X1, Xz} is still a global frame for D. It is clear that £ = x1% is a D-vector field, but
there is no smooth function u, defined in a neighbourhood of xg, such that £ = uXs. °

The previous example is typical of what can happen in the case that A is singular at
xg. Let us now prove a lemma regarding the regular case.

3.14 Lemma: Let A be an affine distribution that is reqular at xg. Then for any frame
X ={Xo,X1,...,Xm} of A at zg, it holds that Lie(I}y,(A))(xo) = Lie(X)(xq).

Proof: It is clear that we only need to show that Lie(I}, (A))(zo) C Lie(X)(zp). To this end,
let n1,m2 € Iy (A). In a neighbourhood 2 of xg, we can write that 7, = Xo+ u®X, and that
no = Xo + v? Xy, for smooth functions u?, v® on Q. By the properties of the Lie bracket, we
can write that

[, m2) = (X0, Xa] + 6" Xp + [ X, X4]
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for some smooth functions f¢, g%, h*?, where 1 < a,b,¢,d < m. Let
X = f*(w0)[Xo, Xa] + 9" (x0) Xp + h™(20)[ X, X4].

Then X € Lie(X) and [n1,n2](x0) = X (x0). This procedure can be repeated for any vector
field of the form [ng, [mk—1,[ - ,[n2, m]]-- -], for any m,...,mx € I, (A) and & > 1. Using
the Jacobi-identity, one can show [35, Proposition 3.8] that any element of Lie(I},(A)) can
be written as a linear combination of Lie brackets of the form [ng, [mk—1,[ -, [m2, m]] -],
and so the claim follows. [ |

The LARC plays an important role in controllability theory. For example, in the analytic
case, the LARC at xg is a necessary condition for controllability [46]. Moreover, if one
assumes the LARC at xg, the type of trajectories that characterize local controllability take
a relatively simple form [17]. With this in mind we give the following definition.

3.15 Definition: We say that an affine system A satisfies the LARC at xg if the family
I, (A) satisfies the LARC at zo. .

3.4. Local controllability definitions

In this section we define the notion of local controllability for affine distributions that
we will study in this thesis.
Let A be an affine system and let T' > 0. The reachable set of A from xq in time T is

Ra(xo, T) ={v(T)| v:[0,T] = M is a A-trajectory such that y(0) = zo},
and the reachable set of A from xg in time at most T is

R anST U RA 'IOa

The reachable set of A from xg is Ra(xo) = U=oRa (0, 1).
An affine system A is called small-time locally controllable (STLC) from x if, for each
T > 0, it holds that zg € int(R4(xo, < T)).

3.16 Remark: Let ¥ : M = TM be a multi-valued vector field. Then the sets Ry (zo,T),
Ry (zo, < T), the definition of the LARC at z¢ (if F is smoothly selectionable at z), and
the property of STLC from xg, can all be defined in the same way for F as was done for an
affine system. °

We now give our local controllability definitions for an affine distribution.

3.17 Definition: Let A be an affine distribution on M and let zg € M.

(i) We say that A is properly small-time locally controllable (PSTLC) from zy if every
affine system A in A that (1) is proper and smooth at z¢ and (2) satisfies the LARC
at xg, is STLC from xy.

(ii) We say that A is small-time locally uncontrollable (STLUC) from xq if every affine
system A in A that (1) is upper semi-continuous at xo and (2) for which A(zg) is
compact, is not STLC from xy.

(iii) We say that A is conditionally small-time locally controllable (CSTLC) from zg if it
is neither PSTLC nor STLUC from x. °
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The following two examples illustrate some of the motivations for studying PSTLC.
In the first, we give an example that shows that controllability of the linearization is not
invariant under feedback transformations.

3.18 Example: Let M = R3, let 29 = (0,0,0) € M, and consider the affine distribution
A, = Xo(z) + span { X4 (z), Xo(x)},

where Xy = 22 X =23 and Xy = 23. Consider the affine system A given by

8301’ 627

= { Xo(z) + ur X, (x) + u Xo(x) ‘ (u',u?) € [-2,2)> RQ} :

The linearization of A satisfies the equations

which is not STLC from xg since 42 = 0. Consider the transformation
(ut, u?) = (v, v?) = (u' = 1,42).

The correspondlng new frame for A is given by Yy = 22 ar + a® 822, Y ==x 822, and

Y, = . In the new frame, the affine system A is given by

8m

= {Yo(z) + v'Yi(z) + v*Ya(z) | (v',0*) € [-3,1] x [-2,2] C R?}.

The linearization of A in this frame satisfies the equations

Using the standard Kalman rank test, this system is STLC from xy. °

In the next example, we show how the size of the control set can affect controllability.

3.19 Example: Let M = R3, let 29 = (0,0,0) € R3, and consider the affine distribution

A, = Xo(z) + span { X1 (z), Xo(x)},
where X = (21)%2 a5, X1 = 8 29 and Xg = 2% + (m;)z %. Consider the affine system A,
given by

Ar(z) = { Xo(z) + u' X1 (z) + u*Xa(2) | (u',0?) € [-1,1]* C R?}.

It can be shown that A; is proper and smooth at zy (Proposition 3.21) and, moreover, A,
satisfies the LARC at xg. An Aj-trajectory will satisfy the differential equation

it =l i = i® = (2')*(1 + 2u?).

It is clear that A; is not STLC from zg because &> > 0 for all A;-trajectories. Hence, A is
not PSTLC from zy. Roughly speaking, the set Uy = [—1, 1] x [—1,1] is not “big enough”
to counteract the effects of Xy. Now let € > 0 and consider the affine system

As(2) = { Xo(2) + u' X1 (z) + u*Xo() | (u',u?) € [-1,1] x [-2 — ¢, 1]} .
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It is clear that As(xg) is compact, and it can be shown that As is upper semi-continuous at
xo (Proposition 3.21). With the set Uy = [—1, 1] x [-2 —¢, 1], one suspects that As is STLC
from xg since now &3 can be made positive and negative. The proof that this is indeed true
will have to wait until Example 5.8. Thus, Ay is STLC from xy. Hence, A is CSTLC from
xo. We note that a direct computation shows that

Span {Xl(l'o), XQ(J:‘()), [Xl, [Xl, XQ]](.%’O)} = TxoM7

i.e., the value of the Lie algebra generated by L(A) is T,,M, but one cannot conclude STLC
for Ay from the results of, say, [9] since Uz is bounded. .

Hence, a motivation for the notion of PSTLC is that one would like a property of
controllability that does not depend on the size of the control set but only on the local
differential geometry of the affine distribution.

As given, the definition of PSTLC is difficult to check. In this regard, the next proposi-
tion states that, in the regular case, PSTLC can be determined by considering affine systems
that are generated by a finite set of vector fields. To state the proposition, we need some
notation. For a finite family of vector fields & = (&1, ...,&p) defined on an open set Q C M,
let Ag : Q = TM be defined as Ag(x) = {&i(2),. .., &(x)}. A set-valued map of the form
Ag is clearly smoothly selectionable.

3.20 Proposition: Let A be an affine distribution that is reqular at xg. Then A is PSTLC
from xq if and only if, for every finite collection & of smooth A-vector fields such that Ag is
proper at o and § satisfies the LARC at xq, Ag is STLC from xy.

Proof: Assume that, for every finite collection & of smooth A-vector fields such that Ag is
proper at xg and & satisfies the LARC at xg, A¢ is STLC from z, and let us prove that A is
PSTLC from xp. To this end, let A be an affine system in A that is proper and smooth at xg
and satisfies the LARC at xg. By smoothness of A at z¢, there exists a neighbourhood €2 of
0, and a finite family of A-vector fields £ defined on €2 such that 0, € inta, (co(Ag(zo))).
By augmenting a finite number of A-vector fields to the family &, if necessary, we can
assume that & satisfies the LARC at zg. Now since aff(Ag(20)) = Ay, by Lemma 3.2, we
can assume by shrinking € if necessary, that aff(A¢(x)) = A, for all z € Q, and, therefore,
Ag is an affine system in A. By construction, A¢ C A and, therefore, since A¢ is STLC
from zg, then so is A. Since A was arbitrary, this proves that A is PSTLC from xy.

Now assume that A is PSTLC from zy and let £ be a finite collection of smooth A-vector
fields. If Ag is proper at zg then again, by Lemma 3.2, A¢ is a local affine system in A.
Therefore, if A satisfies the LARC at g, then Ag is STLC from xy because A is PSTLC
from xg. This completes proof. ]

3.5. Control-affine systems

In this section, we describe an important class of affine systems called control-affine
systems. After proving some basic properties of control-affine systems, we will show that,
in the regular case, it is enough to consider control-affine systems to study the PSTLC
property.

A control-affine system is a triple ¥ = (M, {Xo, X1, ..., Xin},U), where M is a manifold,
{Xo0,X1,...,Xm} is a set of vector fields on M, and aff(U) = R™. The set U is called the
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control set of ¥, and we say that U (or X) is proper if 0 € int(co(U)). One can associate to
3. an affine distribution Ay, and an affine system Ay, in Ax by

(An)e = { Xo(z) + u"Xo(z) | u=(u',...,u™) e R™}

and

As(z) = { Xo(@) + v Xa(@) | u=(ul,...,u™) € U},
respectively. We will say that X is convex (compact, STLC from zy, etc.) if the associated
affine system Ay, is convex (compact, STLC from zg, etc.). If y: [0,7] — M is a trajectory

of Ay, i.e., vy is absolutely continuous and y'(t) € Ax(y(t)) a.e., then there is an integrable
map u: [0, 7] — R™ such that u(t) = (u!(t),...,u™(t)) € U and

Y(8) = Xo(v(t) + Y u(t)Xaly(1))-
a=1

The next proposition gives some basic properties of control-affine systems.

3.21 Proposition: Let ¥ = (M, {Xo, X1,...,Xn},U) be a control-affine system. Then the
following statements hold:

(i) Ax. is smooth and, in particular, lower semi-continuous;

(ii) if U is compact then As, is upper semi-continuous;

(113) if U is proper and Xo(xo) = 0, then Ay, is proper at xg.

Proof: To prove (i), let z € M and let v, € Ax(x). Then there exists u € U such that
vy = Xo(z) + u*Xo(z). Let &€ = Xo + u®X,. Then ¢ is a Ax-vector field and &(z) = v,.
Hence, Ay, is smooth, and by Proposition 2.4, Ay, is lower semi-continuous.

To prove (ii), fix g € M. Since upper semi-continuity is a local property, we can work
locally and consider a coordinate representation of Ay, on some neighbourhood of xy. Hence,
we can think of Ay, as a map Ay : 2 = R"”, where 2 C R" is an open set containing xg.
Let f: Q@ x R™ — R" be defined by f(z,u) = Xo(z) + u*X4(z). Then Ax(x) = f(z,U)
for all z € Q. Let W be an open set containing f(xg, U). Then, for each uy € U, f(zg,uo)
is contained in W. Since f is continuous, there exists a neighbourhood €y of ¢ and a
neighbourhood Uy of ug such that f(z,u) € W for all (z,u) € Qp x Up. By compactness of
U, there exists a finite number of neighbourhoods € 1, ..., x containing zg such that, if
ze) = ﬂf:lﬂo,j, then f(x,u) € W for allu € U. In other words, for z € ', f(z,U) C W,
ie., As(x) C W for all z € Q. This proves that Ay, is upper semi-continuous at .

To prove (iii), let f: M x R™ = TM be defined by f(z,u) = Xo(x) + u®X,(z). Then
co(Ax(x)) = f(x,co(U)) for each z € M. Now, since Xo(xg) = 0z, (Ax)z, is a subspace
and, because dim((As)z,) < m, f(xo,-) is a linear map onto (Ax)s,, and is therefore an
open mapping. Thus, 0 € int(co(U)), implies that 0z, € int(ay,), (co(As(20))). [ |

Because of their relatively simple structure in the setting of affine systems, one would
like to use control-affine systems to study the local controllability of affine distributions. To
this end we give the following definition.

3.22 Definition: Let A be an affine distribution. We say that the control-affine system
¥ =(Q,{Xo,X1,..., X, },U) is a local realization for A at xg if © is a neighbourhood of z
and Ay = Alq. .

The next proposition asserts the possibility of including a control-affine system in an
arbitrary convex affine system.



LOCAL CONTROLLABILITY OF AFFINE DISTRIBUTIONS 23

3.23 Proposition: Suppose that xo is a regular point of A and let m = dim(L(A)z,).
Let A be a convex affine system in A that is lower semi-continuous at xg. Then there
is a meighbourhood Q of xg, a conver set U C R™, and a control-affine system > =
(Q,{Xo, X1,...,X0n},U) that is a local realization for A at o and Ay, C A. Moreover,

if A is proper at xg, then ¥ can be chosen so that Ayx, is proper at xg.

Proof: Let {Xo, X1,...,X;n} be a local frame for A on a coordinate neighbourhood §2
of zg, and let f: Q x R™ — A|q be defined as f(x,u) = Xo(x) + u*Xy(x). Then, for
r € Q, f(x,-) is a bijective affine map. Define F : Q = R™ as F(x) = pryo f~1(A(z)),
where pry is the canonical projection onto the second factor. Then JF is convex because
A is convex, and int(F(x)) # 0 for each x € Q since inta, (A(x)) # 0 for each z. Let
ug € int(F(xp)). By Theorem 2.2, there exists a convex open set U C int(F(xg)) containing
up and a neighbourhood Qg 3 x¢ such that U C int(F(x)) for all x € Q. The first part of
the claim follows by letting ¥ = (Qo, { X0, X1,..., Xm},U).

If A is proper at xp, by Lemma 3.1 we can assume that Xo(xg) = 0z,. The linear
independence of X;(xzg), ..., Xm(xo) and properness of A at o imply that 0 € int(F(xp)).
Hence we can choose ug = 0 € R™, and, therefore, U contains the origin in its interior.
Therefore, Ay, is proper at zg. |

The method of proof of Proposition 3.23 can be used to prove the following useful
lemma.

3.24 Lemma: Let A be reqular at xg and let A be an affine system in A that is lower semi-
continuous at xo. If vy, € inta, (co(A(zo))) and £ is an A-vector field such that {(x0) = vy,
then £ is a locally co(A)-vector field. In fact, there exists a neighbourhood Q2 of x¢ such that,
forx € Q,

&(x) € inta, (co(A(x))).

Proof: By Proposition 2.3, lower semi-continuity of A at z( implies that co(A) is lower semi-
continuous at zg. Using the notation of the proof of Proposition 3.23 applied to the convex
affine system co(A), let up € int(F(xg)) be such that f(zg,up) = vgy,. Now {(z) = Xo(z) +
u®(x) Xq(x) for some smooth functions u!, ..., u™ on Q such that (u!(zo),...,u™(z0)) = uo.
By shrinking  if necessary, and by lower semi-continuity, Theorem 2.2 implies that there
is a neigbourhood Uy of wy such that Uy C int(F(x)) for all z € €. By continuity of
u',...,u™, and shrinking Q if necessary, (u'(z),...,u™(z)) € Uy for all 2 € Q. In other
words, £(z) € inta, (co(A(x))) for all z € Q. In particular, £ is a co(A)-vector field. [ |

We are now ready to state the result we have been eluding to, namely that, in the
regular case, we can consider control-affine systems to study the PSTLC property.

3.25 Theorem: Suppose that xq is a regular point for A and that Oy, € Ay,. Then A is
PSTLC from xq if and only if every control-affine system that
(i) satisfies the LARC at x,
(ii) is a local realization for A at xo, and
(#ii) has a proper and convex control set,
is STLC from xg.

Proof: Assume that (i)-(iii) hold and let us prove that A is PSTLC from xy. By Proposi-
tion 3.20, it is enough to show that, for every finite family &£ of A-vector fields such that Ag
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is proper and satisfies the LARC at xg, Ag¢ is STLC from zg. By Proposition 3.23, there
exists a control-affine system ¥ that is a local realization for A at z, with a control set that
is proper and convex, such that Ay, C co(Ag) on some neighbourhood of xy. Moreover, by
Lemma 3.14, Ay satisfies the LARC at xy. Hence, Aysx is STLC from xg, and, therefore,
so is co(Ag). By Proposition 3.30 below, Ag is also STLC from zg. This proves that A is
PSTLC from zy. The converse statement is obvious. [ |

The following corollary to Theorem 3.25 will be useful.

3.26 Corollary: Suppose that xq is a reqular point for A with m = dim(Ag,) and that 05, €
Az, Let {Xo, X1,...,Xm} be alocal frame for A at xq that satisfies the LARC at xo. Then
A is PSTLC from xg if and only if, for every convex set U that is proper, the control-affine
system X = (Q,{Xo, X1,..., Xm},U) is STLC from xqy, where Q is a neighbourhood of x.

Proof: Let ¥’ be a control-affine system that is a local realization for A at x, satisfies the
LARC at zg, and has a proper and convex control set. The affine system Asv is clearly
convex and, by Proposition 3.21, is also lower semi-continuous. Therefore, by Proposi-
tion 3.23, there is a neighbourhood €2 of g and a convex and proper control set U C R™,
such that control-affine system ¥ = (Q,{ Xy, X1,...,Xm},U) satisfies Ax(x) C Asy(x) for
each = € Q. Properness of U implies that aff(U) = R™ and, therefore by Lemma 3.14,
Ay, satisfies the LARC at zg. If Ay is STLC, then so is Ayy. Since X' is arbitrary, by
Theorem 3.25, this proves that A is PSTLC from xzg. The converse statement is obvious. B

To prove Theorem 3.25, a key ingredient that was used was that if £ is a finite family of
vector fields that satisfies the LARC at g, then Ag¢ is STLC from zg if and only if co(Ag) is
STLC from zp. This fact can be shown to be a corollary of a proposition in [45, Proposition
2.3]. However, to prove Proposition 3.30, we will use some results from [32] and [6] that
relate the reachable set of a multi-valued vector field with the reachable set of its smooth
selections. To begin, for an arbitrary family & of vector fields on M, zg € M, and T > 0, we
let

Re (0, T) = {cbfgo e 0 B (z) ) Sti=T, t;>0,& €8, p> o},

and let Re(xo, < T) = Ug<i<rRe (20, t). Next, we recall that, if (M, d) is a metric space and
A and B are subsets of M, then the Hausdorff distance of A and B is defined by

dr (A, B) = max {21612 blélg d(a,b), igg igg d(a, b)} .

It is well-known [33] that, when dg is restricted to the non-empty, closed, and bounded
subsets of M, we obtain a metric space. Let {2 C R™ be an open set and let F : 2 = R™ be
a Lipschitzean map with respect to the Hausdorff metric, that is, there exists a constant
L such that dy(F(z), F(y)) < Ld(z,y) for all z,y € Q. Suppose that F admits Lipschitz
selections about any point in €, that is, for any 2o € Q and yy € F(xg), there is a Lipschitz
function f: Q9 — R", where Q¢ C € is a neighbourhood of zg, such that f(zo) = yo
and f(z) € F(x) for all x € Qy. Let I}, (F) denote the set of all Lipschitz selections of F
containing zg in their domain. It is clear that

iRECO (3”) (xﬂa T) - R?(x(% T) - Rﬁ(?) (xoa T):

where ©6(S) denotes the closure of the convex hull of S. In fact, we have the following.
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3.27 Lemma: ([32]) Let F : Q = R™ be a Lipschitzean map that admits Lipschitz selections
about any point in Q. Then, for each T > 0, fRFzO(S")(me) is dense in Regg)(z0,T).
Consequently,

IRy, (5)(@0, < T) = el Reg() (20, < T)

Proof: The proof of the first statement is the contents of [32]. To prove the second statement,
we have that

ARy, (o, <T)=c ] Ry, @ (xo.t) > |J Ry, @) (@0,t)
0<t<T 0<t<T

= U Rﬁ(?) (wo,t) = Rﬁ(?) (20, <T).
0<t<T

It follows that
cl fR@(g) (33‘0, < T) Ccl :RE;O(?) (1‘0, < T).

The reverse inclusion is obvious. [ |

The following result is Theorem 3.1 in [6].

3.28 Theorem: ([6]) Let f: M x R™ — TM be a smooth map such that, for each u € R™,
x> f(z,u) is a smooth vector field on M. Let U C R™ and let T'(fy) = {f(-,u) | we U}
and suppose that Lie(I'(fur))(xo) = TpoM. Then

int cl RF(fU)(xo, <T)=int fRF(fU)(SUQ, <T).

The following is an easy consequence of Theorem 3.28.

3.29 Lemma: Let § = (&1,...,&p) be a family of smooth vector fields on M that satisfies
the LARC at xog. Then

int cl Re(xo, < T') = int Re(zo, < T).

Proof: Define f: M x R™ — TM by f(z,u) = >.L_;u%,(z). Then f(-,u) is a smooth
vector field for each uw € R™. Let U be the standard basis in RP. Then I'(fy) = &, and,
therefore, Lie(I'(fyy)) = Lie(€). We then apply Theorem 3.28 to the map f to conclude the

proof. |

We finally have the following proposition, whose proof is an adaptation of the proof
of Proposition 2.2 in [10], the difference being that we are not assuming analyticity, but
instead assume the LARC and use the standard proof of accessibility [29].

3.30 Proposition: Let € be a finite family of smooth vector fields defined on an open set
Q C R, let Ag : @ = R"™ be the associated set-valued map, and let xo € Q. If £ satisfies
the LARC on 2, then, for each T > 0 and € > 0,

int cho(As)(xg, < T) C int Rg(.’ﬂo, <T+ 6).

Consequently, Ag is STLC from xq if and only if co(Ag) is STLC from xq.
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Proof: We first note that, since £ is finite and consists of smooth vector fields, A¢ is Lips-
chitzean with respect to the Hausdorff metric and admits Lipschitz selections. Let T' > 0 and
let y € int cho(Ag)(xo, <T). Let € > 0 and consider R_¢(y, < €), where —§ = { £ | £ € &}.
Because n = dim Lie(§)(y) = dim Lie(—§)(y), it follows that R_¢(y, < €) has non-empty
interior [29]. Let V; C Reo(a,) (20, < T) be a neighbourhood of y. By the well-known acces-
sibility theorem [39, page 156, Theorem 9], there exists a sequence &1, . .., &, of elements of
€ and t* = (t],...,t) € RY,, with t7 < €/n, such that the map

(t1y .o ytn) = oty .. ty) = (I)t—lﬁlo O(I,t—n&n(y)

is defined for 0 < t; < €/n, its image belongs to V,,, and it has rank n at t*. Hence
there is a neighbourhood Wy of t* such that ¢(W3+) is an open set and is contained in
Vy Nint R_¢(y, < €). Hence, there is a z € (W) and a neighbourhood V. of z such that

V.cV, C fRCO(As)(xO, < T) C CIRCO(A§)<$0, < T) = leRg(:L’o, < T),

where the last equality follows from Lemma 3.27. By Lemma 3.29, it holds that
int clRe(xo, < T) = int Re(xo, < T'), and hence V, C Re(xo, < T). Now by definition
of z, it holds that y = @fz LR oq)fll(z) for some 0 < t; < €/n. Therefore, the open set
<I>§: SR o<I>§11(VZ), which is contained in Rg(zo, < T + €), is a neighbourhood of y. This
completes the proof. |

We end this chapter with a corollary to Proposition 3.30 which states that, in the regular
case, there is no loss in generality that affine systems are convex.

3.31 Corollary: Suppose that xo is a regular point for A and that Oy, € Ay,. Then A is
PSTLC from xq if and only if every smooth convex affine system in A that is proper and
satisfies the LARC at xg is STLC from xg.

Proof: First assume that every convex affine system in A that is proper, smooth, and
satisfies the LARC at xg, is STLC from xg, and let us prove that A is PSTLC from xy. By
Proposition 3.20, it is enough to consider affine systems of the form Ag, where £ is a finite
family of vector fields that satisfies the LARC at xo and such that Ag is proper at zg. By
Proposition 3.23, there exists a control-affine system X that is a local realization for A at
xo and has a proper and convex control set, and Ay; C co(A¢). By Lemma 3.14, 3 satisfies
the LARC at xg. Moreover, Ay is clearly convex. Hence, Ay, is STLC from zy and thus so
is co(Ag). By Proposition 3.30, Ag is also STLC from xg. This proves that A is PSTLC.
The converse is obvious. |



Chapter 4

Composition of flows and related
computational tools

The content of this chapter is a set of computational tools for the study of high-order tangent
vectors constructed using compositions of flows of vector fields. We start by defining a type
of high-order tangent vector that we call an end-time variation. We then proceed to describe
how these variations depend on the jets of the vector fields used to construct them. We
describe a connection between the coefficients of the Taylor series and labeled rooted trees,
in a similar way as Butcher [13] relates the coefficients of the Taylor series of the solution
of an ODE to rooted trees. We end the chapter with the relationship between a variation
and the continuous Campbell-Baker—Hausdorff formula.

4.1. End-time variations

In this section, for ease of presentation and without loss of generality, all vector fields
are assumed to be complete. If £ = (&1,...,&,) is a family of vector fields on M, we define
the map ®¢: R? x M — M by

BE(t, ) = B o B0 +or 0B (),

The map @f is defined as x — @f(x) = ®&(t, ) and ®% is the map defined as ¢ — <I>§(t) =
PE(t, ).

For a positive integer p, an end-time is a smooth map t: R>¢o — ]R’;O such that T(0) = 0,.
The set of all such maps is denoted by ET,. Given a family of vector fields & = (£1,...,&,)
and T € ET), @go ot: R — M is a curve at x¢p whose image consists of points obtained by
following concatenations of the integral curves of {1, ...,&,. The order of the pair (§,T) at
xo, denoted ordy, (&, T), is the smallest integer k& such that

](I;‘((I)go OT) # 0$07

provided such an integer exists, and we set ordy,(§,T) = oo if no such integer exists. If
k = ordy, (&, T), we call
Ny
Ve :=Jo (‘I)go °T)

27
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the (&, T)-end-time variation or just variation when (&, ) is understood. Recall that, from
the exact sequence (2.2.3), Vg can be canonically identified with a tangent vector at wg,
and this is how we will view Vg .

4.2. A linear map describing variations

To better understand how a variation V¢ r depends on the jets of &, we note that, as
R-algebra homomorphisms,
36 (@5, o) = joT et @

o’

where we think of
joT € Hom((RP)**; (R)**) and j§ ®5 € Hom(T;*M; (RP)*),

and where we recall that (RP)** = J’(“Op 0)
easy to understand what j[’)“'t is. On the other hand, it is not easy to see how jé“p @ﬁo depends

on the jets of £& To understand this dependence, we first introduce some multi-index

(RP;R). Thinking of jets as Taylor polynomials, it is

notation. For a family of vector fields & = (&1,...,¢p), a multi-index I = (i1,...,14p), and a
smooth function f: M — R, let £’ f be the function defined by (£ f)(z) = (€2 --- &7 f)(z),
where we think of vector fields as differential operators. Similarly, for ¢t = (¢1,...,t,) € RP,

we set ¢ =1 .. -t;p . With this notation we have the following.

4.1 Theorem: Let f: M — R be a smooth function, let & = (&1, ... ,&p) be a family of smooth
vector fields on M, and let xo € M. The Taylor expansion of the function fO<I>§0 RP 5 R
at the origin is

> (€N (o) (4.2.1)
|1|=0 '
Proof: We must show that, for any multi-index I = (i1,...,1p),
I
ol ¢

(f 2 @5,)(0p) = (€' f)(wo).

ozl

Since the order of differentiation does not matter, we begin by differentiating with respect
to tp. It is clear that

ftp<fo<1>§o><t> (G N)(@F o 0B (20))

and, therefore,

8ip i
i 28 = (6@ o - o 0f a0).
P
from which it follows that

o

RS0 11, 0) = (67 (@ o o 09 (a0))
P
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We repeat this procedure with ¢, 1 to obtain
8ip71+ip

7.]00(1)5 t?"'vt—7070251p 1§ f @51722 Oq)gllw :
8tlp lat;p( 0)( 1 P 2 ) ( )( tp t ( 0))

This procedure is done repeatedly to obtain the desired result. |

We now introduce some notation that will be used throughout the rest of the thesis.
Given a smooth mapping ¢: R"® — R", written ¢(x) = (¢'(2),...,¢"(x)), and a smooth
vector field € on R”, let £¢: R™ — R™ be the smooth mapping whose ith component is £¢'.
Let idg»: R®™ — R™ denote the identity mapping. For a multi-index I = (i1,...,1p), let
¢’ R" — R denote the mapping (£7)(z) = (&I -- fl’;’ idgn)(z). We this notation we have
the following corollary to Theorem 4.1.

4.2 Corollary: Let& = (&1,...,&p) be a family of smooth vector fields on R™ and let xy € R™.
The Taylor series of the mapping <I>§O: RP — R"™ at the origin is

o0 I
> € ) (4.2:2)

|7]=0

Using Theorem 4.1, we now want to describe how jé“p @fco depends on the jets of £&. We
do this in the following theorem which gives the existence of a linear map on an appropriate
jet space of the tangent bundle and whose image, on a suitable subset, determines j[’)“p <I>§O for
every family &€ = (&, ...,&p) of smooth vector fields. To state the theorem, let &, @?zl
TM — M denote the vector bundle over M whose total space is the p-fold direct sum of
TM. By abuse of notation, a family of p-vector fields € = (&1, . ..,§,) will be identified with
a section of 7¥,,.

4.3 Theorem: Let M be a manifold and let xog € M. For positive integers k and p, there
exists a unique linear map

@Sf (S (T2) — L(TEM; (RP)*)

such that, for every family of smooth vector fields & = (&1,...,&,) on M,

T (D165, €)) = di, B,

Moreover, the diagram

51(J207T$M) @?:1 5Z(Jg 1WTM)<;EB5 15€(J£ 17TTM)<;

Hom (T M; (RP)*!) <— Hom(T;2M; (RP)*) <—— Hom(T;3M; (RP)*) <—

commutes, where the horizontal arrows are the canonical projections.
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Proof: We first recall that (RP)** can be canonically identified with polynomial functions of
order k with zero constant term via Taylor’s expansion, and thus we will think of elements
in (RP)** in this way.

The proof is by induction on k. Let £ = 1 and let £ be a family of p-vector fields. We
define 7! : J9 74y — L(TiM; (RP)*!) by asking that J,} (€(z0)) € L(TEM; (RP)*!) be
defined as .

. . t!
T (6(0)) (g F) () = G, (f @5 ) () = D (€7 F) (o) -
|I]=1 ’
where the last equality follows from Theorem 4.1. If n is another family of p-vector fields,
then

%ﬁ(&(wo)Jrn(wo))(jiof)()— T (€ +m)(20)) iz, f) ()

i, (7298 8)
1
Y (e N0
1]=1

= Jo, (f 2 ®5,)(8) + g, (f o @) (2)
= Tpo (€(20)) (i /) () + T (0(0)) (G ) ().
This proves that ,73610 is linear. Moreover, by definition, 99:10 is the unique map such that

T (€(x0)) = j&p@go. Hence, the claim holds for k£ = 1.
By induction, assume the claim for £ > 1 and let € be a family of p-vector fields on M.
From Theorem 4.1 and the induction hypothesis,

k I
GO )G N®) = S (€ ) + S (€ )0t 7
[I]=1 I |T|=k+1
1
=GN D+ Y E D
\I|=k+1
I
= THEL GG LN+ Y €N
[I|=k+1 ’

= TF(@)_160(i5, " €) (G ) () + VET (A E) G F)(8),

where i Jkrl D L(TEFIM; (RP)*(k+D)) is defined as

I
RGO NG = Y €D
|I|=k+1
If A € R, then
1
OO GET ) = e GO G N = Y (08 o)y
|T|=k+1 ’

= > MNEHE )f = N G ) Gy (@),

[T|=k+1
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Hence, wkﬂ is a homogeneous polynomial mapping of degree k + 1. By Lemma 2.1, there
exists a unique linear mapping

\IJk—H Sk+1(Jk+17TTM) . L(T;gk—&-l)M; (Rp)*(k—i-l))
such that
Wi (O (2,1 €)) = U (g 1€)-
Now define the mapping

k+1
yk—l—l @SZ Jé 17TTM —)L(T*(k+1)M (Rp) (k:—l-l))

by asking that, for
k+1

V1D DU DUy € @SZ Jé 17TTM)
/=1

we have
Tt v @ @vp@v)(Gh ) = TE (v @ ®ve)(Gh )+ U (o) (R ), (4.2.3)

where 7 : @lgzl SYIE T ,) — L(T:EM; (RP)**) is the unique linear mapping whose
existence is ensured by the induction hypothesis. Because %’z and ‘11’;;“1 are linear, it
follows that ﬂxlg“ is linear. Moreover,

T (@1 00y ")) g ) = T (B1=100(Tng ")) (o f) + Wy Ok (g 1 €) (i, )

= (6, ®5,) (o /) + Wi G 8) = (6 @5, (k)

Now since 71 is uniquely determined by 7% and WEH! it follows that 7,7 is the unique

o ?
mapping satisfying the claim of the theorem for £k + 1. This proves the ﬁrst statement.
Commutativity of the diagram follows from (4.2.3). [ |
Since we are only interested in the image of .7,° on @e L 0e(JE17,), we define the

map ZF: JE-1al 0 — L(THEM; (RP)**) by asking that

(Jxo 5) a:() (@E 1(55(]360 5))
Hence, with this notation, for £ = (&1,...,&,) and T € ET),

Jo (D5, o) = Gy To Tt Gy €)-
For k € Z>p and a smooth function f, define the polynomial function eif : RP — R by

k "
i/ ()= D (€' Niwo) g, (4.2.4)

|1]=0

i.e., by Theorem 4.1 egf (t) is the Taylor polynomial of f o @%0 of order k. It will be important
for us to know how the Taylor polynomials (4.2.4) decompose when we view § = (&1,...,&p)

as being a concatenation of two families of vector fields. The following lemma will be key.
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4.4 Lemma: Let & and &, be families of smooth vector fields on M of length p and q,
respectively, and let f: M — R be a smooth function that vanishes at xo. Let & = £, * &,.
Then, for each positive integer k and (t1,t3) € RP x R,

e}(f1*€2)f(t17t ) — eglf(tl) + e§2f<t2) + mgf(tl,tg)
where

k—
It 1) = 272 @) and by =€f - € ().

Proof: From (4.2.4),

k IgJ
* tit
e " (0, t) = e (0) + e (0) + D (6163 1) (0) gy
1|+].7]=2 o
[1,]J]>1
Now, directly,
k J k—1 k— ‘J‘ J
t t; t t
Y. €N =D D €l 1
[T+ J]|=2 |J|=1 |[I|=1
[1],]J]=1
k—1 th |J|
= Z 2 Z El&f—¢&f (1’0))(560)],
|J|= 1 S

t]
= Z sz eil(\sf\f I ¢),

where the last equality follows because the function 55 f- 55 f(zo) vanishes at xg. This
proves the claim. |

The following lemma will also be useful.

4.5 Lemma: Let § be a family of smooth vector fields of length p and let T € ET,. Suppose
that k = ord,(€,T) > 2 and let p: R — R? be a smooth map such that p(0) = 04. For
any smooth function f: M — R and any multi-index J = (j1,...,jq) with 1 < |[J| <k —1,
the derivatives of the function s +— pJ(s)egfm(T(s)) of orders 0,1,...,k vanish at s = 0,

where p”(s) = (p'(s))7* - -+ (p?(s))%a

Proof: Suppose that 1 < |J| < k — 1. By the Leibniz rule, the derivatives of the function
s+ p?(s)of orders 0,1,...,|J|—1 all vanish at s = 0. By definition of ord,,, the derivatives
of the function s — eiiw("l(s)) of orders 1,...,k — |J| all vanish at s = 0. Therefore, by

the Leibniz rule, the derivatives of the function s — p”(s)e if \JI( (s)) of orders 0,1,...,k

all vanish at s = 0. |
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4.3. The Taylor series of <I>§lcO and rooted trees

In this section, following the work of Butcher [13], we make a graph-theoretic connection
between the coefficients in the Taylor series (4.2.1) and labeled rooted trees. To state
Butcher’s formula and our extension of it, we introduce some basic notions from graph
theory [15]. If G is a graph, we let |G| denote the number of vertices of G. A tree is a
connected graph with no cycles. A rooted tree is a tree with a distinguished vertex called
the root, which we denote by r. The set of all rooted trees is denoted by T and a typical
rooted tree will be denoted by T, V, or W. The rooted tree with a single vertex is denoted
by T. If v1,v9 are vertices of the rooted tree T, let v17v9 be the unique path from vy to vs.
There is a natural ordering imposed on the vertices of a rooted tree: vy < vy if vy € rTv1.
In other words, v; < wg if vy is closer to the root than vy, and it is easy to see that the
root r is the greatest vertex. If u and v are adjacent vertices in a rooted tree and u < v,
then we say that v is the parent of v and w the child of v. A leaf of a rooted tree is a
vertex with no children. For a finite subset K C N with &k elements, let Tx denote the
set of rooted trees with k vertices and labeled with the elements of K such that the root
is labeled max(K) and for each a € K\{max(K)}, the labels of the nodes on the unique
path from the root to the node labeled a forms a decreasing sequence. If K = {1,...,k},
then we write Ty for Tg. If T € Tg and T1,7T5,...,T,, denote the rooted trees obtained
by removing the root of T and its incident edges, the labeling of T induces a set partition
Ky, Ko, ..., Ky of K\{max(K)} satisfying T, € Tk, for a =1,...,m. For this reason, we
write T' = [Tl,Tg, v ,Tm].

We now introduce the notion of an elementary differential corresponding to a labeled
rooted tree, which is a generalization of the elementary differentials considered by Butcher
[13].

4.6 Definition: Let K = {a1,...,ar} C N, let n = {nq,,..., 14, } be a set of smooth vector
fields on R™, and let K’ C K be a non-empty subset. The elementary differential of n
corresponding to T € Tk is the map np: R — R™ defined as np(z) = Nyaxk) (), if
|K'| =1, and

17(x) = D Nax(icny (@) (g, (@), 17, (@),
if |K’'| > 2, where T1,...,T,, are the rooted trees obtained by removing the root of 7" and
its incident edges. °

The following example illustrates the idea of an elementary differential for labeled rooted
trees.

4.7 Example: The elementary differentials corresponding to the labeled trees in Fig-
ure 4.1 are (from left to right) DnoiDmisD*ng(ns,15), D?n21(Dns(ns), Dms(ns)),
D®n13(Dns, Dns, D), and s, respectively. .

Let there be given a multi-index I = (i1,...,7,) such that 4y + --- + 4, = k and let
€= (&,...,&) be a family of vector fields. Define a new family of vector fields &; by

E[ — (617'"aglv"'agpv"'agp)'
i1 —times ip—times

For each T' € Ty, let [€;]7: R™ — R”™ be the elementary differential of &; corresponding to
T. With this notation we have the following formula.
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13 & 13 3 \I/b-
21 13 e

21

Figure 4.1. Some labeled rooted trees

4.8 Theorem: Let & = (&1,...,§p) be family of smooth vector fields on R™ and let o € R”™.
Then, for a multi-index I = (i1, ...,ip) such that |I| =k, it holds that

ok
AT S 05,(0p) = > [&1)r(w0).
(BE ) (D)2 - (9t ) 2
The case p = 1 in Theorem 4.8 is Butcher’s formula [13]. Let us recall Butcher’s
construction. If T' is a rooted tree, let «(T") denote the number of ways of labeling T with
the set {1,2,...,|T|} such that the root is labeled 1 and for each 2 < a < |T'|, the labels

of the nodes on the unique path from the root to the node labeled a forms an increasing
sequence. Let £: R®™ — R"™ be a smooth vector field. To each rooted tree T, Butcher
associates an elementary differential {7: R™ — R™ defined as &p(z) = £(z) if |T]| =1, and

ér(x) = (DE) (@) (ér (x), - -, &7, (2))

if |T'| > 2, where T1,...,T,, are the rooted trees obtained by removing the root of 7" and
its incident edges. With this notation we state Butcher’s formula, which is an immediate
corollary of Theorem 4.8.
4.9 Theorem: ([13]) If&: R™ — R™ is (k—1) times differentiable at xo and y'(t) = £(y(t))
with y(0) = xg, then

dk’

@Y(O) = Z a(T)ér (o).

T a rooted tree

|T|=
To prove Theorem 4.8 we will first need to prove the following.

4.10 Theorem: Let nn = (n1,...,m) be a family of smooth vector fields on R™. Then, for
all x € R™,

(mmnz - -me)(z) = Z nr(z).

TeI,

Let us prove Theorem 4.8 using Theorem 4.10

Proof of Theorem 4.8: By Corollary 4.2, it follows that, for a multi-index I = (i1,...,14p)
satisfying |I| = k,

ak 11 12 ip
Gy @) @y to(0) = (&6 (o)
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Define k vector fields n = (11, ..., ;) via the equation

77: (77177727"'717]6) = <£17'"7€17"'7§p7"'7§p)'
SN——— ~—

11 —times ip—times

Then, for any T' € T, and multi-index I = (i1,...,t,) with |I| = k, by definition 7 = [£;]7.
Therefore,

(€162 - &) (wo) = (e - =3 np(wo) = Y [€]r (o),

TeTy TeT

where the second equality follows from Theorem 4.10 and the third equality follows from
the definition of [£;]7. This completes the proof. [ |

The rest of this section is devoted to proving Theorem 4.10. Let K = {a1,...,ap} C N
and let Ko = {ao,a1,...,ar} C N, where qp < min(K). If V € Tg,, and the vertex
labeled with ag (which is necessarily a leaf) is removed along with its incident edge, then
the resulting labeled rooted tree is an element of Tx. Conversely, every element of Tx, can
be obtained by adding a leaf to a vertex of some element of Tx and labeling it with ay.
Hence, if T' € T and Y1 C Tk, denotes the subset whose elements are obtained by adding
a leaf to a vertex of 1" and labeling with ag, we have Tx, = UTGTK Pr. The next lemma
states that the operation of adding a leaf to each vertex of a rooted tree is equivalent to
taking the derivative of the associated elementary differential.

4.11 Lemma: Let K = {ay,...,ar}, let K' C K be a non-empty subset, and let Kj =
{ao} U K', where ap < min(K). Let T € Tgr and let ¢ = {CagsCays---,Cay) be a set of
smooth vector fields on R™. Then

CT Cao Z CVv (431}

Vegr
where D(C7)((ay): R™ — R™ denotes the smooth mapping x — D({r)(x)((ao(2))-

Proof: Let T,, denote the rooted tree with one vertex and labeled with ag. Let P(Tg,)
denote the power set of Tx,. The set Zr is the image of T under the map d: Tx — P(Tk,)
defined recursively as d(T") = {[tq,]} if |T| = 1, and

A(T) = {[Tap, T2, To -, T} | U U {Tl,...,Tj_l,V[/',Tj+1,...,Tm]} , (4.3.2)

J=1Wed(T,

if |T'| > 2. It is straightforward to show that (4.3.1) holds for T € T whenever |K| = 1.
Assume by induction that the claim holds for K/ € K and T € Tk, whenever |K| =
k — 1. To prove the induction step, let K C N have k elements, K’ C K is non-empty
and T' € Tgr. Write T = [T1,...,T,], and let K{,..., K], be the induced partition on
K'\{max(K')} such that Tj € Tk Then each K7 is a subset of K\{max(K)}, which has

k — 1 elements, and so the claim holds for each T} by the induction hypothesis. Now, by
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the definition of an elementary differential {;, and letting r := max(K’) = max(K}), we
have (7 = D¢ (Cpy, -+, ¢, ). Therefore, from the chain rule, it follows that

D(¢1)(Cao) = DG (s, s Cao)

m

+ Y DMG(Cryr Sy D) (Cag)s Sy -5 )

j=1
On the other hand, from the definition of Zr = d(T") given in (4.3.2),
Z CV = D(m-‘rl)Cr(CTp s 7CTm7 CCLO)

Vedr
+> > DGyl Cw Gy Cy)
Jj=1 WGd(Tj)
= (erl)C (CTN s 7CTm7 Cao)
+ZD C’I" <T17 '-’CTJ‘,17 Z CW’CTj+1?"'?<Tm)
Wed(Ty)
=D m+1>cr<<Tl, sl Cao)

+ Z D(m)Cr(CTN s CTj—l’D(CTJ’>(Ca0)’ CTJ'-H’ B CTm),
j=1

where the second equality follows from multilinearity and the last equality follows from the
induction hypothesis. This completes the proof. |

The following lemma is an easy consequence of our notation and the definition of the
Lie derivative.

4.12 Lemma: For any collection of smooth vector fields ny,...,nx on R™, it holds that

(mmnz - me)(x) =D(n2 - i) () (m(2)),

for any x € R™.
We now prove Theorem 4.10.
Proof of Theorem 4.10: The proof is a modification of Lemma 302B in [13]. The proof is

by induction on k. The case k = 1 is trivial. Assume it holds for k¥ > 1. Let (g = n1,(1 =
N2y vy Ck = Nkt1, € = {C0,C1y---,Ck}, and Ko ={0,1,...,k}. Then, from Lemma 4.12,

mnz - M1 = D2 npg1)(m) = D(G - - Z Cr | (Go)
TeTy
=Y D)= > Cv= > v,
TeTy VETKO VeTrr

where the third equality follows from the induction hypothesis and the penultimate equality
follows from Lemma 4.11. |
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To give an application of some of the ideas in this section, we will give a Lie bracket
interpretation of the vector-valued symmetric k-multilinear map Bé?, for a vector field ¢ of

order k at xo. Recall that, in a coordinate system (x!,...,2") about zo, Bé‘“' e ST M) ®

Tz, M is given by
k¢ 0
ZZ C (o) dz’ (xo )®@(x0).
j=1 1

Hence, identifying T,,M with R™ via the basis {%(wo), ce 82" (o)}, the action of Bk on
v1,...,0; € R™is given by

Bé(vl,...,vk) = D*¢(x0)(v1, ..., vk). (4.3.3)
With (4.3.3) in mind we have the following.
4.13 Proposition: Let ¢ be a vector field of order k at xo. Then B’g € Sk(Tjol\/I) ® Ty M s

given by
B?(Uly <o 7Uk) = [Xla [X27 [ ) [Xk‘a CH o ”(.’L‘()),

where X;(xo) = vj, for vector fields Xq,..., Xk.
Proof: By a simple induction, one can show that, for vector fields X7,..., Xgy1, as differ-
ential operators,

(X1, [Xo, [ s [Xiy Xpa]] -] = Xa X o X + U( X, 000, Xip),
where W(X1,..., Xj41) is a linear combination of monomials of the form X; X, --- X, .,
with ix41 # k + 1. That is, Xx41 does not appear as the right-most factor in any
monomial in the sum ¥(Xy,...,Xk11). From Lemma 4.12, the coordinate expression of

Xiy Xiy - -+ Xiy ., (w0) is a sum of terms involving the derivatives at g, of X;,_, up to order
k, the derivatives of X;, up to order k —1, etc., and the zeroth derivative of X;,. Therefore,
if Xp4q is of order k at xg, U(X1,..., Xg+1)(x0) vanishes. Hence, by Lemma 4.12, if X}
is of order k at xg, then

X1X2 - X3 Xpt1(z0) = D Xpy1(20) (X1 (20), X2(20)s - - -, Xp(20)),

which proves the claim. |

4.4. The continuous Campbell-Baker—Hausdorff formula

In this section, we establish a connection between a variation and the formal Camp-
bell-Baker-Hausdorff formula. The algebraic material that follows can all be found in [23].

Let J be a set. The free R-vector space generated by J will be denoted by V' (J). By
definition, V(J) is the set of maps ¢: J — R such that ¢(j) = 0 for all but finitely many
j € J and the vector space operations on V' (J) are the usual pointwise definitions. A basis
for V(J) is the set of maps e;: J — R defined by e;(j') = 1 if j = j’ and zero otherwise.
We let A(J) = @2, TH(V(J)) and A(J) = [[2, T*(V(J)) denote the free associative
R-algebra and the R-algebra of non-commutative power series generated by J, respectively.
We have the canonical projections

k
T A(J) = @TJ'(V(J)), i A(J) = @ TV ().
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Using the usual commutator definition, A(J) and A(J) become Lie algebras. We let
L(J) ¢ A(J) and L(J) C A(J) denote the Lie subalgebras generated by the basis
(¢j)jes. We say that b € L(J) is of degree k if it belongs to T*(V(.J)), and the set of
elements in L(.J) of degree k is denoted by LF(J). Let Ag(J) = [12, TF(V(J)), which
is easily seen to be a subalgebra of A(J), and that L(J) C Ag(J). For a € AO(J)
exp(a) = > 72, %IT and log(1 +a) = >22,(— )k‘H“ are well-defined elements of Ag(J).
Moreover, a direct calculation shows that exp(log(l + a)) = 1 + a and log(exp(a)) = a.
The Campbell-Baker—Hausdorff formula gives a map CBH: L(J) x L(J) — L(.J) such that
exp(by) - exp(be) = exp(CBH(by, b2)) [23]. The formula for CBH(by, b2) up to order three is

1
CBH(by,b2) = by + by + 5 [bh ba] + 2[51, (b1, ba]] + E[bm (b2, b1]] +

Given b1,...,bp € fL(J) and applying the CBH formula recursively, there exists
CBH(by,...,by) € L(J) such that

exp(by) - exp(b2) - --- - exp(bp) = exp(CBH(by,...,bp)).

The formula for CBH(b1, ..., b,) up to order three is

CBH(by,...,by) = » bi+ 5 Zbl,b Z([bi,[bi,bj]]+[bj,[bj,bi]])
Z<j Z<j
+ - Z bi, [bj, bk]] + [bw, b, bs]]) +
z<]<k

Now let ¢: J — I'(TM) be a map, and recall that the set of vector fields on a manifold M has
the structure of a Lie algebra. By the universal property of the free Lie algebra L(J), there
exists a unique Lie algebra homomorphism Evy,: L(J) — I'(TM) such that Evy(e;) = ¥(j)
for each j € J. One cannot in general extend Evy to f)(J ), and so for example, the
expression Evy,(CBH(by,...,bp)) does not generally make sense. However, it is possible to
use the CBH formula to relate the flows of a family of vector fields £ = (&1,...,&p,) and the
vector field obtained by truncating the formal CBH formula. Explicitly, let £ = (&1,...,&p)
be a family of vector fields, let J = {1,...,p}, and define ¢p: J — I'(TM) by ¥(j) = &;. Let
{e1,...,ep} be the canonical basis of V(J). For k € Z, let

CBHg (&1, ..., &) = Evy (7 (CBH(ey, .. ., ep))),

that is, CBH(&) is the vector field obtained by “plugging in” &; for e; in the kth-order
truncated Lie series CBH(eq, ..., e,). With this notation we can state the following result.

4.14 Theorem: ([41]) Let & = (&1, ...,&p) be a family of smooth vector fields. Then

(pgo (th o 7tp) _ (I)(llBHk(hél,...,tpﬁp)(xo) +O(t+ -+ tp)kJrl),

as (t1,...,tp) = 0, in RY
Combining Proposition 2.5 and Theorem 4.14, we obtain the following.
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4.15 Proposition: Let £ = (&1,...,&p) be a family of smooth vector fields and let T € ET),
and suppose that ordg, (€, T) = k. Then

. d*
j{f(@ﬁo oT) = Ik CBH,,(t!(s)&1, . .. ,T(5)&p) (o).
S8" 1s=0
Proposition 4.15 and uniqueness of the CBH formula, immediately gives the existence
and uniqueness of a “universal” Lie bracket at each order k£ such that, when evaluated at

xo, gives the variation of every pair (€, T) with k = ordy, (&, T), on every manifold M.

4.16 Theorem: Let p be a positive integer and let J = {1,...,p}. Let ¥b: J — T'(TM)
be defined as (j) = &;. Then, for each positive integer k, there exists a unique map
g J(ko,op)(R;Rp) — L¥(J) such that

(i) for every manifold M and every xy € M and

(i) for every family of smooth vector fields & = (&1, ...,&p) on M and every T € ET,,, with

ordg, (&, 7) =k,
it holds that
Jo (P53, °T) = Evy (8, (Jo ™)) (20)-



Chapter 5

A variational cone for affine
systems

In this chapter we describe a class of high-order tangent vectors to the reachable set of
an affine system and relate them to the local controllability of the affine system. We then
discuss the notion of a neutralizable variation and show that variations of orders k = 1
and k = 2 are always neutralizable, provided the affine system is proper. We then give a
method for construction subspaces of variations for affine systems.

5.1. A variational cone

Fix a smooth affine system A and xy € M. Let I, (AP) denote the set of p-tuples of
elements of I, (A) and let Vg = Up>1T, (AP) x ET,. For a positive integer k, let V¥ denote
the elements of V of order k at xg, and let

VEA={Vex| (€,7) € Vi U{0,}

and let
VeeA = | VEA.
E>1
By definition, V,,A is a set of high-order tangent vectors at xy to the reachable set of A
from xg. It is well-known that a curve y: [0,¢] — M is of order k at 0 if and only if for any
smooth function f: M — R, the derivatives at 0 of the function fovy vanish up to order

k — 1, and in this case
k

@(f oy)(0) =V [,

where V = y#)(0) € S¥(TIR) ® T,(yM = T, yM. Therefore, if k = ord,, (&, T), then, for
any function f: M — R, the derivatives of the function egf ot: [0, €] — R vanish up to order
k—1at s=0, and

T (e e D(0) = Ve f.

With this in mind, let us state and prove the most important property of VﬁOA.

40
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5.1 Proposition: The set VfOA 1S @ convex cone.

Proof: We first prove that VJ}’OA is closed under addition. Let (&;,7T1), (&9, T2) € VA’f, set
& =&, %€, and set T = T1*T2. We will show that (€, 1) € VA’f and that Ve v = Ve, v, + Ve, 1o
We can assume that Vg ¢, # —V,x,; if not, then Ve o + Ve, r, = Oz € VEA. Let
f: M = R be a smooth function that vanishes at zg. By Lemma 4.4,

&l (2(s)) = €7 (11(5)) + €72 (a(5)) + M (11(5), Ta(s)),

where

mi! (T1(s), Ta(s)) = ngf) e ) (T (s),

|J|=1

and hy = & f — &) f(zo). By Lemma 4.5, the first k derivatives of the function s —
mﬁf (t1(s),T2(s)) at s = 0 vanish. This proves that V% A is closed under addition.

To prove that V;“OA is closed under R -multiplication, let (£, T) € VA’f, let « € R+, and
define T, by T.(s) = T(a!/*s). By the chain-rule, for all £ € Z,

dé m dZ
@@50 °To)(0) =« / @@50 °1)(0).
Therefore, (€,7T,) € VA]f and V¢ ¢, = aVg 1. This completes the proof. [ |

5.2 Lemma: ([30]) For positive integers k and m, VE A C V¥™A.
Proof: If (¢,7) € V&, then, for any function f vanishing at o,

Sk
eif(T(S)) = (VE,Tf)E + O(Sk).

Therefore,

Skm

(km)!

ei! (e((k/ (km))/*5™)) = (Vo) +o(s*™).

It follows that if
p(s) = T((K!/(km)))!/Es™),
then (€, p) € VA™ and Ve p = Ve r. |

5.3 Corollary: V, A is a convex cone.

Proof: The set V,,A is a cone because it is a union of cones. By Lemma 5.2, if V1,...,V, €
VoA, with V; € vng and k = lem(kq, ..., k), then Vi,... )V, € Vfoﬂ. By Proposition 5.1,
VfOA is convex and, therefore, any convex combination of Vi, ..., V, is an element of VﬁOA C

VioA. This proves that VA is convex. This completes the proof. |
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5.4 Remark: Our definition of a variation uses smooth functions t: R>¢ — RZ, so that in
general we do not have Vfofl - \7;?0+ LA. If the end-times T are allowed to be C" at s = 0 for
r > 1, then a variation of order k can be realized as a variation of order ¢ > k. However,
one then needs to keep track of the order of differentiability of the end-times T to be able to
work with high-order jets. For this reason we choose to work with smooth end-times, and
Lemma 5.2 ensures that essentially nothing is lost by doing so. The use of smooth end-times
are employed for instance in [30], whereas [19] uses end-times that are C”, r > 1. o

The following theorem relates V,, A and STLC of A at xg.

5.5 Theorem: Let A be a smooth affine system in A C TM and let xg € M. If Vo A = T,,M
then A is STLC from xg.

Proof: Let T' > 0. By assumption, there exists Vg «,,..., Ve r, € Vi oA such that
0z, € int(co{Ve, 7 -, ngn}).

By Lemma 5.2, we can assume that Vg, , € \750/1 for some k € Z~q, for all i =1,...,r.
Consider the map p: @ NRY; — M defined by
(s s) = %! Y (20)
HASLy - ey Sr T ((kls1) k) T (ks ) /) O
where Q is a neighbourhood of the origin in R" such that if (s1,...,s,) € QN R%,, then
D 1;:((k's;)'/¥)) < T. By construction, p is continuously differentiable at the origin,

1(0) = xo, and the image of u consists of points reachable from xy in time at most 7. The
theorem now follows by Lemma 5.6 below. |

5.6 Lemma: ([3]) Let p: R" — R™ be Lipschitzean, u(0) = 0, and differentiable at 0.
Assume that Du(0)(RY,) = R"™. Then, for any neighbourhood ) of the origin in R”,

0 € int u(Q NRY,).

Let us state an immediate corollary to Theorem 5.5.

5.7 Corollary: Let A be an affine distribution on M and let xog € M. If, for every smooth
affine system A in A that is proper and satisfies the LARC xq, it holds that Vo A = T, M,
then A is PSTLC from xg.

The following example illustrates the usage of Theorem 5.5 and at the same time proves
the claim made in Example 3.19.

5.8 Example: As in Example 3.19, let M = R3, let 29 = (0,0,0), and consider the affine
distribution Ay = Xo(z) + span {X1(z), X2(z)}, where

, 0 9 o (a2 o

Xo= (') =—=, X; = —, and Xo = — .
0 (x)(%‘?” L= gty G A2 8:132+ 2 0x3

A trajectory of an affine system in A satisfies
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Let U = [-1,—1] x [-2—¢,1], for € > 0, and let ¥ = (M, {Xo, X1, X2}, U) be the associated
control-affine system. It is clear that span {%(mo), %(xo)} C V;,As. Hence, to prove
that ¥ is STLC from xg using Theorem 5.5, we need only construct variations in the
ia%g directions. Let & = Xo + ujl-Xl + u?Xg, for j = 1,2,3, let £ = (&1,&2,&3), and let
T(s) = (s,8,5). Suppose that u} +u} +u = u3 + w4 + u3 = 0. Then

d

L (@8, 01)(0) = (0 w0) = (u} + b+ u})

0

2 2 2

ds @(JCO) + (ui +uy + U3)@($0)
= Oxm

and, therefore, ord,, (&, T) > 2. Moreover, since &;&;(x¢) vanish at zo, for any i, j € {1, 2, 3},

by Theorem 4.1 we actually have that ord,,(§,T) > 3. For ease of notation, set a; = ujl

and b; = u?, for 5 = 1,2,3. Then a direct computation gives that

a? )
@@go o1)(0) = (a?(10 + 2b2) + aas(10 — 2b1 + by) + a3(4 — bl))ﬁ(xo).

If by = by = 0, then, for all a1, as, the above produces a variation in the % direction. Let
b1 = by so that

— (@8, 21)(0) = (aF(10 + 2b2) + a1az(10 — by) + a3(4 — by))

9
ds3 ox3’

The determinant of the matrix associated with the quadratic form
Q(al, a2) = a%(lO + 2b2) + a1a2(10 — bg) + (I%(‘l — bg)

is x(b2) = 60 + 12by — 9b2 = 3(2 + b2)(10 — 3bs). Therefore, the quadratic form @ can be

made to have a saddle at the origin by choosing —2 — ¢ < by < —2. Hence, for such by,

there are values of a1, as arbitrarily close to the origin that produce a variation in the —%

direction. By Theorem 5.5, Ay, is STLC from xy. .

5.2. Neutralizable variations

Given (€,71) € V¥, under what conditions does there exist a (&,,T2) € VX such that
Ve, i = — Ve, 1,7 Motivated by this question we give the following definition.

5.9 Definition: We say that (£1,71) € V& is neutralizable if there exists (€5, 72) € V& such
that VElle = —V§2712. °

The following result is a trivial consequence of Proposition 5.1.
5.10 Proposition: Every element of Vﬁ is neutralizable if and only if Vfofl 15 a subspace.

For orders kK = 1 and k = 2, we will show that neutralizability is ensured by properness
of the affine system. In fact, for £ = 1 we have the following.
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5.11 Proposition: Let A be an affine system in A that is proper at xog. Then V;;OA = Ay

Proof: Given (&, T) € Vg, a direct calculation yields that

d .
L @€ 0t)(0) = V(0)¢ (o).

Since /(0) > 0, it follows that VA = cone(co(A(o))), and the result follows by properness

of A at xg. [ |

To treat the kK = 2 case, we derive the expression for a second order variation. If &,
are vector fields, then, as differential operators,

1 1
&n = §(£n+n§) + Q[é,n]-

Therefore, by Theorem 4.1, if f: M — R is a smooth function, § = (§1,...,&p) is a family
of vector fields, and T € ET,,, then

2
iﬂﬁf )()zZ(& (20)¥(0) + (& £)(wo) T (0)(0)

=1 i<j

Z(é}f)(%o)’fj(o) + (TH0)E + -+ T(0)&,) % (f) (20)

+ 216 &1(N (@) (0)¥ (0).

1<j

Hence, if ord,, (&, T) = 2, then (1(0)&1 + - + (0)&,)2(f)(x0) = 0, and, therefore,

Ver =3 &(20)(0) + > [&:&](w0)t (0) (0). (5.2.1)
j=1

1<j

5.12 Lemma: Let A be an affine system in A that is proper at xo. If £,n € I (A), then

Proof: Set & := £ and ny := 1. By properness of A at zg, there are positive constants
ag,aq, ..., ap and A-vector fields &, . .., §, such that E?:o a;&j(xg) = 04, Similarly, there
are positive constants 8o, 81, . . ., By and A-vector fields 11, ..., 1q such that 37 Beme(xo) =
Ozo- Let &= (0,m0,&1,---,&p, M, ..., 1) and let

T(s) = (s, fos, 18, ..., 0p8, B18,. .., 3¢S).

Then ord,,(&,T) > 2 and, if ord,, (&, T) = 2, then, by (5.2.1) (we will suppress evaluation
of the Lie brackets at z( to simplify the notation),

Ver = anBolomol + Y iyl &)+ Zaoﬁz €0 me) + Zﬁo% [0, &5

0<i<j<p j=1

p q
+ ) BeBelnend + > > eiBelmel.

0<k<t<q j=1 =1
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Now let é = (nlp SRR 771751% s 751){07 770) and let
T(s) = (BgS, .-, P18, aps, ..., 18, s, Bos).

Then ord,, (€,%) > 2 and, by (5.2.1),

q p
Vez= Z BrBelne, mi] + ZZ&O@ ne, 5] + Zaoﬁe (¢, o]

0<k<(<gq =1 j=1 =1

p
+ Y aialg&l+ Y aiBolés,mol + aoBoléo, mo-

0<i<j<p j=1

One computes that Ve + Vz. = 2a060[0,n0](z0), and, therefore, [{o,m0](z0) € VJ?OA
because V:CQOA is a cone. This completes the proof. |

For an affine system A define

DE = {[¢,n]| &neTA)}.

With this notation we have the following.
5.13 Proposition: Let A be an affine system in A that is proper at xo. Then

V:?O.A =A, + span{Df) (x0)}-
In particular, VQ?DA 18 a subspace.

Proof: By (5.2.1) it is clear that V2 A C Ay, + span{fo) (o)} Now let

w € Ay + span{Df) (o)},

and write )
T
w=) v+ ajlEn &),
i=1 j=1

for v; € Ay, and & € Ty (A). Since VLA = A,y it follows that v; € Vi A C VZ A.
By Lemma 5.12, [£;1,&;2](x0) € VQ?OA, and we can assume without loss of generality that
a; > 0. Hence, w is a sum of elements of V2 A, and thus w € V2 A since VZ A is closed
under addition. This proves the reverse inclusion. |

The next step would be to consider the cases k > 3, but this seems to be a difficult task.
Notwithstanding, some results have been obtained by fixing a set of local generators for the
affine distribution and identifying “bad Lie brackets” that are potentially non-neutralizable
[9, 45]. These results, unfortunately, are not invariant under a change of local generators
for the affine distribution.
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5.3. Subspaces of variations

In this section, using a technique from Krener [30, Section 4], we construct subspaces
of variations. The idea of this section is to obtain linear approximations, i.e., subspaces, to
the variational cone V,,A.

Let ¢ be a vector field on M that vanishes at xy. Then, by Proposition 4.13, ¢ induces
a linear map B¢: T,)M — T, M. Explicitly, for v, € T,\M, B¢(vs,) = [X, (](20), where X
is any vector field extending vy, .

Let A be an affine system and set

Zagh = {C € Iy (A) | (0) = 0o} -

We identify Z;,A with the corresponding subset of End(T;,M), which we still denote by
ZgoA. For a subspace W C T, M, let (Z,,A; W) denote the smallest subspace containing
W and that is invariant under the linear maps in Z;,A. It is not hard to show that

<Z’x0-A§ W> = span {BQB@ R BCr (wxo) | Wg € W, ¢ € Zxof[, r e ZZQ} . (5.3.1)
5.14 Theorem: Let A be a smooth affine system in A and let xg € M. For any subspace
W C VA, it holds that (ZzoA; W) C Vi A.

Proof: To prove the theorem, it is enough to show that, if w;, € W and ¢ € Z;,A, then
Bc(wxo) S VxO.A

Let w,, € W and let ¢ € Z,,A. By Lemma 5.2, we can assume that there exist an
integer k& > 1 and (§;,7;) € V such that Vg, -, = (—1)" 1wy, for i = 1,2. Let Ti(s) =
i ((k!/(2k)1)/*s?), for @ = 1,2. Then, by Lemma 5.2, ordy,(¢;,7;) = 2k and Vg z, =
(=1)"wgy, for i = 1,2. Now, since ((xo) = Oz, and Vg z, = —Vf, z,» we have ordg, (& *
(*&,y,T1 * 8% Ty) > 2k + 1. By definition and then expanding,

§1xCx€y) f ~ &f /= Eof 1~
eS5rE (71 (s), 5, o () = €5 (F1(9)) + 5L, (5) + €52 (Ra(s))
2k+1 s 21 2k+1 s TIQ(S)
1 j 1 J 2 \%/
sY EEne T e Y (el L
|]1\+j 2 |]2|+] 2
[I1],5>1 |T2],5>1
2k+1 ~I Is 2k+1 =1 j=Is
I 7' (5)T5° (s) I rj oI T, 8Ty
) @@NT Y (@OENE) T (632)
|I1[+|I2]|=2 |I1]|+5+|12|=3
[I1],|12]>1 [I1], 3, |12|>1

Using the fact that ((z9) = 0, and letting h;, for each j € {1,...,

2k}, be the smooth
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function z — hj(x) = (¢ f)(z) — (¢? f)(z0), we can rewrite (5.3.2) as

2k+1 T
*Ck - - " - - , 7T (s
T R0, al) = S (o) Rl Y (€))L
Iy |+j=2 JH
[I1],5>1
2k+1 ~I j=la
. T 8/T
+ Y (€I (o)
- Il.].IQ.
[I1]+5+]12]=3
[11], 3, 12]>1
* &1(h; ~
= et (R +Z . ) ()
2k+1 [1 jada
ST
+ Y (ErER (o) I,j,f, (5.3.3)
|I1]|+7+]12]=3
[11], 3, 12]>1

Now, ordg,(§; *&, T1 % T2) > k+1 because Vg 1, + Ve, r, = Wey — Wz, = Oz, and, therefore,

ordy, (& * &5, T1 x T2) > 2(k + 1) = 2k + 2. Hence, the derivatives of e;%_f) (t1(s),T2(5))
of orders 1,...,2k + 1 all vanish at s = 0. By Lemma 4.4, the term (5.3.3) can be written
as

2k I
s (8) & (Hyry) B
2 Te(2lk+]1)12(a+|12|>(71(5))» (5.3.4)
j+|12|=2

where H; 1, is the smooth function = — H, 1, (x) = Z/€%2 f(x) — Z7¢22 f(x0). By Lemma 4.5,
the derivatives of (5.3.4) up to order 2k + 1 vanish at s = 0. Hence Vg .cxg, 7 557, 19
determined by the (2k + 1)st derivative of the R-valued function

where, for each j € {1,...,2k},

fi(s) = ety (F1(s)).

Now since ord,, (&, T1) = 2k, if j € {2,...,2k}, then the (2k + 1 — j)th derivative of f; at
s = 0 vanishes and, therefore, the (2k + 1)st derivative of s — s/ f;(s) vanishes at s = 0.
Thus the (2k+1)st derivative of g at s = 0 is equal to the (2k+1)st derivative of s — sf1(s)
at s = 0. The 2kth derivative of fi at s = 0 is precisely w4, (¢f — (f(z0)) = B¢ (wa,)(f),
and therefore, the (2k + 1)st derivative of s +— sfi(s) is (2k 4+ 1)((wx,)(f). Therefore,
(2k + 1)B¢(wa,) € ViyA and since Vg A is a cone, B¢(wz,) € Vi A. This completes the
proof. [ |

In the case that A is regular at xp and A, C W, computing (Z,,A; W) is greatly
simplified in the following sense.
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5.15 Theorem: Suppose that A is regular at xg and let A be an affine system in A. If
W C VoA is a subspace containing Ay, then (Zz0A; W) = (Be; W) for any ¢ € Zg,A.

Proof: Fix ¢ € Z,,A and let {; € Z,,A be arbitrary. Then Y] = (; —( is a L(A)-vector field
and, moreover, Y;(zg) = 0z,. Therefore, for w,, € T;,M,

B, (wag) = Be(way) + By; (way),
and, therefore, by Proposition 3.4,
B¢, (wzy) — Be(wgy) € Agy-

If o =(+Ys € Z,,A, then

B, Be, (W) = (B¢)*(way) + B¢ (By, (way)) + By, (B (ws,) + By, (wg)),
and, therefore, by Proposition 3.4,

By Be, (way) = (B)*(way) = Be(By, (waq)) € Ay

By induction, if ¢; = (+Y; € Z,,A for i € {1,...,k}, then

Be, -+ By (wzg) = (Be)* (wag) = (Be)*H(bwg,1) =+ = Be(bag p-1) € Auys

where by, € Ay, for £ € {1,...,k — 1}. Hence, if W is a subspace containing A, for
wg, € W and any collection (1,...,(x € ZzA, it holds that By, --- Be, (wg,) € (B W).
By (5.3.1), this proves that (Z,A; W) C (B¢; W) if W contains A,,. The reverse inclusion
holds regardless of whether A,, C W or not. This completes the proof. |

Proposition 5.13 and Theorem 5.14 imply the following.
5.16 Theorem: Let A be an affine system that is proper at xg. If

(ZagA; Aro) + span{ D (z¢)} = T,y M
then A is STLC from xg.

5.17 Example: On M = R", let A be the linear control system & = Ax + Bu, where
A e R B e R"™™ and u lies in the unit cube in R™. By Proposition 5.11, leo.A =
img(B). The set Z,,A contains the vector field z — Az, i.e., the drift vector field. Hence,
by Theorem 5.14, the smallest subspace containing img(B) and invariant under the linear
vector field x — Ax is a subspace of variations. In other words, the image of the classical
Kalman controllability matrix [B AB --- A"~ B] is a subspace of variations. .



Chapter 6

Driftless and homogeneous systems

In this chapter, we give two applications of the methods developed in this thesis for two
important classes of systems: driftless and homogeneous systems. For driftless systems, we
show that the LARC at zg is sufficient for PSTLC from x(. This result is well-known, of
course, dating to the work of Chow and Rashevski [14, 36]. We then consider homogeneous
systems which are central to proving the well-known sufficient conditions of Sussmann [45]
and Bianchini-Stefani [8]; see Hermes [21] for an excellent survey. We give a necessary and
sufficient condition, in terms of the variational cone, for local controllability for homoge-
neous systems. Moreover, for these systems, we are able to give a positive answer to an
open problem in control theory regarding whether local controllability can be determined
in a finite number of differentiations.

6.1. Driftless Systems
When the affine distribution A is a distribution, affine systems become what are com-
monly called driftless systems. Here is the definition.

6.1 Definition: Let D be a smooth distribution. A driftless system in D is a multi-valued
vector field D : M = TM such that span D(z) = D, for each z € M. .

We begin by showing that all variations can be neutralized for a distribution.

6.2 Proposition: Let D be a smooth distribution and let o € M. For each positive integer
k, VfOD is a subspace.

Proof: By Proposition 5.1, VQICCOD is a convex cone, so to prove that it is a subspace we

need only prove that it is closed under multiplication by —1. Let (€,T) € VS, let E =
(=&py---,—61), and let T = (tP,...,t'). We note that, for each i € {1,...,p}, =& is a
D-vector field, and thus (&, T) € Vp. It is clear that

(I>§(s) ° ‘I)ﬁ(s) (z0) = o

for all s in a neighbourhood of zero. Thus, for all £ > 0 and any smooth function f vanishing
at x, it holds that s — egﬁ*g)f('r(s), T(s)) = 0. Hence, by Lemma 4.4,

e (7(s)) = —el&) (x(s)) — m{ED (x(s), 7(s)). (6.1.1)

49
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By Lemma 4.5, the derivatives of m,(f*g)f (t,T) at s = 0 of orders 1,...,k vanish because

ordg, (&, T) = k. Therefore, differentiating (6.1.1) and evaluating at s = 0 through orders
1,...,k, we obtain that ord,, (&, T) = k and Vé + = —V¢x. This proves that —Vg € VfOD. |

The next proposition states that, in the regular case, the variational cones of convex
driftless systems agree with those of the distribution.

6.3 Proposition: Let D be a smooth distribution that is reqular at xo and let D be a smooth
driftless system in D. If D is proper at xy then VJ’fOD = Vfoco(D) for each k > 1. Conse-
quently, VD =V co(D).

Proof: Let (&,7) € V&, where & = (£,...,&,) and T € ET,. There exists A > 0 such
that A;(zo) € intp, (co(D(zo))) for all j € {1,...,p}. By Lemma 3.24, there exists
a neighbourhood € of xy such that, for all j € {1,...,p} and all x € Q, it holds that
Xi(z) € co(D(z)), i.e., the A¢;’s are co(D)-vector fields. Define £, = (A&1,...,AE,) and

T)(s) = $7(s). Then (€,,7)) € Veo(p) and, by Theorem 4.1, for any smooth function f,

Exf e I T{\(S) - 1] 1 T/ (s) £f
I = 3 @00 T = S o Sy = (<)

Therefore, Ver = V¢, x, € VX co(D). This proves that V¥ D C V¥ co(D), and, therefore,
VoD € Vyyco(D). The reverse inclusion is obvious. [ |

Combining Proposition 6.3 and Corollary 3.31 we obtain the following.

6.4 Theorem: Let D be a smooth distribution that is reqular at xg. If Vy,D = T,(M then D
is PSTLC from xq.

Proof: Let D be a convex driftless system that is proper, smooth, and satisfies the LARC
at xg. By Proposition 6.3, V,,D = V,,D = T,,M, which implies that D is STLC from z( by
Theorem 5.5. Since D was arbitrary and by Corollary 3.31, the proof is complete. |

In the rest of this section, we will construct an explicit type of variation for a driftless
system that will lead to the result that, for driftless systems, the LARC at zg is sufficient
for PSTLC from zp. The construction is motivated by [27, Theorem 3.16] but we will use
our methods to prove the result. For vector fields &1, &2 and s € R sufficiently small, define
the (local) diffeomorphism

[D52, B51] = B S oD %2 0 BF 0 P2,
In our notation, if & = (&2,&1, —&2, —&1) and T(s) = (s, s, s, ), then @i(s) = [<I>§2, <I>§1]. It is
clear that [®52, ®5']~! = [®§', ®%2]. If &3 is another vector field, put
(@5, (052, 03] = [, '] 1 0@, 0 [0, 0510 B,

In our notation, this COI'I'GSpOHdS to 5 = (537 527 517 _527 _517 _‘537 flv §27 _517 _527 _63) and

T(s) = (s,5,...,5) € RI% We can iterate this process to define higher-order commutators
of local diffeomorphisms of the form

(@[ (98, 9] (6.1.2)
for vector fields &1,...,&p. An elementary induction shows that, for each p > 2, the com-

mutator (6.1.2) corresponds to a family of a, = 3 - 2P — 2 vectors fields.
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6.5 Lemma: Let p > 2 be an integer and let &1, ..., &, be smooth vector fields on M. Then,
for any x € M, it holds that, for £ € {1,...,p— 1},

df

Tt B[22 () = 0

s=0

and
dp

dsP
Proof: The proof is by induction on p. Let p = 2. From Corollary 4.2, the first order term in
the Taylor expansion of [®§', ®%2](z) is (&2(x) + & (2) — &2(x) — & (2))s, which is identically
zero for all x € M. Again, by Corollary 4.2, the second order term in the Taylor expansion
of [®§', ®%2](z) is (we are suppressing evaluation at z)

o [0, 08 (@) = Pl -+ all -+ )(@).

252 2 2 2 2 252 2 2 2 252 2 252
525‘1‘52518 — &35 — &bis +§1§—51§25 —&is +52§+§2§13 +f1§a

which simplifies to &£ 5% —&1&98% = (&2, 51}32. This proves the case p = 2. Assume it for p >
2. Let &1,&2, ..., &p+1 be smooth vector fields and let £ be the a,-tuple of vector fields and let

T € ET,, be defined as t(s) = (s,s,...,5) € R, so that @E(S) = [<I>§", [ [@%, @51 ].

Let é denote the family obtained by reversing the order of the sequence § and multiplying
each element by —1. Let np = §p11 * € * (—&p41) * € and let

p+1
ol

elas)=> > ((£p+1)i51(_fp+1)j§J)(x)m. (6.1.3)

=1 i+j+|I|+|J|=£

By Corollary 4.2, eg 1 1s the Taylor expansion of order p + 1 of the curve
s [@0 [ [0, 9] (@),

so that, at s = 0, they have the same derivatives up to order p + 1. From the induction
hypothesis, it follows that Zm:a %El is identically zero for each a € {1,...,p — 1} and
that also
I
S e =16 8l

|I|=p

Moreover, by the proof of Lemma 6.2, the same is true for the family €. Hence, the only
coefficients in the polynomial (6.1.3) that are potentially non-zero are when either |I| = p
or |J| = p. Hence there are two cases to consider: (i) |[I| =p (or |J| =p) and i = j =0, or
(ii)) [I| =p (or |J| =p) and i = 1 or j = 1. In the first case, if |I| = p (so that |J| = 1),
these coefficients will vanish identically by the induction hypothesis, and the case |J| = p
and |I| = 1 is identical. In the second case, the four coefficients that remain are when
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|[I|=pandi=1,|I|=pand j=1,|J|=pand i=1, and |J| = p and j = 1. Therefore,

I I
@ = (& X 5 @+ [ X 56 | @
I=p [I|=p =~
¢’ ¢’
+ Z (fp+1)j (z)sP ! + Z (*§p+1)j (z)s*!
|J]=p ' |J|=p ’
¢ ¢
= | &1 Z T (x)sp—i-l + Z F(_ép—&-l) (w)sp-kl
[=p Il=p
= i1, [Ep, [+ [, 6] - ) () P
and the proof is complete. |

Lemma 6.5 gives us a formula for iterative Lie brackets in terms of monomials.
To state the formula, we introduce some notation. Given a finite list of indetermi-
nates € = (x1,...,xk), let € = (—xg,...,—x1). Given another indeterminate y, define
py(x) = (y,z,—y,x). For example, given z1, z2, x3,

P

px3(px2(xl)) — (x?)) pxg(xl)a —I3, pxz(xl)) - (373,$2,I]_, —3527—1171,333,33]_,332, _xla_xQ)‘

With this notation and Lemma 6.5, the following formula is immediate.

6.6 Corollary: Let &1, ...,&, be vector fields and define the family of vector fields via § =
P, (Pg,oa (- (Pgr(€1)) -+ ). Then

1
(&ps [Ep—1, [+ [&2,&]) -] = Z glﬂ'
=p
The following is an immediate consequence of Lemma 6.5.

6.7 Proposition: Let D be a smooth distribution and let p € Z>2. Then, for any family
€= (&,...,&) of D-vector fields and xo € M, it holds that

(€. [+ [€2.&0]] - )(ao) € VE,D.

For completeness, we state the following.

6.8 Theorem: Let D be a smooth distribution and suppose that I, (D) satisfies the LARC
at xg. Then VD = T, M. Consequently, if D is reqular at xo then it is PSTLC from x.

Proof: It is well-known that Lie(I},(D)) is spanned by elements of the form

[, [+ (€2, 6] - - ](20),

where &;,...,¢&, € I,;(D) and p € Z>1, see for example [35, Proposition 3.8]. Hence, if
I, (D) satisfies the LARC at x, by Proposition 6.7 there is some k such that V& D = T,,M
and thus V,,D = T,;,M. The second statement is Theorem 6.4. |
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6.2. Homogeneous systems

Homogeneous systems have received much attention in the literature with regards to
controllability and also stabilizability, see [21] for a survey. One of the basic problems is
concerned with constructing homogeneous approximations that preserve the property of
interest, for example, STLC or stabilizability. Our aim in this section is to show that,
for homogeneous systems, one can characterize the local controllability property with the
variational cone.

To define homogeneous systems, we need the notion of a dilation. A one-parameter
family of dilations on R™ is a map A: Rsg — L(R™;R"™) of the form

A(s)(zh, ... z") = (sPat, sF222, . sPna™)

for positive integers kq, ..., k,. We write Ay for the linear map A(s).

Given a control-affine system ¥ = (R", { Xy, X1,...,Xm},U), a controlled trajectory on
[0,T] of ¥ is a pair (y,u), where u: [0,7] — R™ is an integrable map such that u(t) € U
and y: [0,7] — R™ is the absolutely continuous curve satisfying

Y'(8) = Xo(y() + ) _u(t) Xa(¥(2)).
a=1

The set of all controlled trajectories on [0,T] of ¥ is denoted by Trajx(T"). Given (y,u) €
Trajs,(T) and s > 0, we define (y'™, u'™) € Trajs(sT) by setting ul™(t) = u(t/s), for all
t € [0, sT]. Similarly, given (y,u) € Trajy(7) and € > 0, we define (v, ul") € Trajs(T') by
setting uS'(t) = eu(t), for all ¢t € [0, T).

6.9 Definition: Let ¥ = (R", { Xy, X1,...,X:n},U) be a control-affine system.
(i) We say that X is time-homogeneous with respect to the one-parameter family of
dilations A'™ if, for every (y,u) € Trajy(T) inducing (Y™ u'™), it holds that
Y (st) = A (y(t)), for all t € [0,T].
(ii) We say that X is control-homogeneous with respect to the one-parameter family of
dilations A™ if, for every (y,u) € Trajs(T") inducing (v, ul"), it holds that y&'(t) =

£

AT (y(t)), for all t € [0,T]. °
Time-homogeneous systems have, naturally, homogeneous reachable sets.

6.10 Lemma: Let ¥ be a control-affine system and suppose that 3 is time-homogeneous
with respect to the dilation A™. Then, for each T > 0,

Ry (z0, sT) = A™ (R (w0, T)).

Consequently,
Ry (20, < sT) = A™ (R (20, < T)).

Proof: Let (y,u) € Trajs(T) and let (Y™™, uf™) € Trajs(sT) be the induced controlled
trajectory. By definition of time-homogeneity, A™ (y(T)) = z4(sT) € Rx(xo, sT), so that
AM™(Ry (20, T)) C Rs(xg,sT). To prove the reverse inclusion, let (zs,us) € Trajy(sT).
Define u: [0,T7] — R™ by u(t) = us(st) and let (y,u) € Trajx(T") be the resulting controlled
trajectory. Then, by definition, (zs,us) = (Y™, ut™), and, therefore, by time-homogeneity,
zs(st) =y (st) = A™(y(t)) for t € [0,T]. Hence, x5(sT) = At (y(T)) € AM™(Rg(z0,T)).
This proves the reverse inclusion. |
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The proof of the following is similar to the proof of the previous lemma but we include
it for completeness.

6.11 Lemma: Let X = (R, X,U) be a control-affine system and suppose that ¥ is control-
homogeneous with respect to the dilation X*. For e > 0, let U; = {eu| uwe U} and let
Y. = (R",X,U.). Then, for each T >0,

Ry (20, T) = AT (Rx(x0,T)).

Consequently,
Ry (20, < T) = AZ (Rn(wo, < T)).

Proof: Let (v,u) € Trajys(T) and let (v, ug") € Trajy,_(T') be the induced controlled tra-
jectory. By definition of control-homogeneity, AZ(y(T)) = y&'(T') € Ry_(z0,T) so that
A (Rs(x0,T)) C Ry, (w0, T). To prove the reverse inclusion, let (z.,u.) € Trajy_(T'). De-
fine u: [0,T] — R™ by u(t) = Lu.(t) and let (y,u) € Trajs(T) be the resulting controlled
trajectory. Then by definition, (z.,u:) = (Y&, ul"), and, therefore, by control-homogeneity,
ze(t) = v&(t) = AZ(y(t)). Hence, z.(T) = AL (y(T)) € ALY (Rx(xo,T)). This proves the

reverse inclusion. |

6.12 Definition: Let 3 be a control-affine system on R"™. We say that X is controllable from
Zo if RE(xO) = R". °

For a control-affine system %, we will use the more compact notation V¥ % for VE Ay,
We are now ready to state the main result of this section.

6.13 Theorem: Let X be a control-affine system on R™ that is time-homogeneous for some
dilation A™(z) = (sMal, ... s"2™) and let z9 = 0 € R™. Let k = lem(ky, ko, ..., kn).
Suppose that 3 satisfies the LARC at xg. The following are equivalent:

(i) ¥ is STLC from xo;

(ii) V¥1$ + V2 ... 4 VFS = R" and hence VE X = R";

(i1i) X is controllable from xg.

Proof: We first prove that (i) implies (ii). Suppose that ¥ is STLC from x¢ and let T > 0.
Let {e1,...,en} be the standard basis in R"™ and let e; € {e1,...,e,} be arbitrary. By
hypothesis and by a theorem of Grasse [17, Corollary 4.15], there exists a piecewise-constant
control u: [0,7] — R™ for 3, where ' < T, and a positive constant ¢ > 0 such that
the corresponding trajectory y: [0,7] — R™ satisfies y(T') = cej. In other words, there
exists a family of vector fields & = (&1,...,&p) C L (X), times t,...,t, > 0 satisfying
t1+---+1t, =T, such that

Y(T) = cej = @ - oDy ().
Consider the curve v: [0,1] — R”™ given by

V(s) = B o oo 0@ (xp).

tps

Then, by construction of v, for s € (0,1], it holds that v(s) = y"™(sT), where (y'™, u'™) €
Trajy(sT) is induced by (v, u) € Trajs (7). By time-homogeneity and the fact that v(0) =
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g, it follows that v(s) = cejs* for all s € [0, 1]. By construction of v and the definition of
Vng, it is clear that e; € Vfg{]. An identical procedure shows that also —e; € Vfg Y. This
proves that VEIS + VF2¥ 4 ... + VY = R, By Lemma 5.2, it follows that V¥ ¥ = R™.

Now we prove that (ii) implies (iii). If (ii) holds then, by Theorem 5.5, (i) holds.
Let 2 € R™ and T* > 0 be arbitrary. For A > 0 sufficiently large, Atf})\(a:*) €
int Ry (20, < 7). Let T < T* and let (v,u) € Trajg(T) be such that y(T) = AT}, ().
Let (yi™, u™) € Trajs(sT) be the induced trajectory. Then, by time-homogeneity,
Y (sT) = At;n(Atln/‘A(m*)) = At;‘/‘)\(:c*). Hence, setting s = A, we obtain that #* is reachable
from z( in time AT using the control uy. This proves that z* € Rx ().

The proof that (iii) implies (i) can be done by first proving that (iii) implies (ii) in the
exact same way as was shown that (i) implies (ii). Then we use the fact that (ii) implies
(i), by Theorem 5.5. [ |

Let us illustrate the procedure in the proof of Theorem 6.13 with an example.

6.14 Example: The following system was considered by Stefani [40]. The state manifold is
M =R3 zq = (0,0,0), and the affine distribution is

Ay = Xo(x) + span {Xi(2)},

where 5 5 9
_1 1\3,.2 _
XO—.CU@—F(JT).’IJ% anXm—@.
Consider the control-affine system ¥ = (R", { X, X1}, [—1,1]). It is straightforward to show

that X is control-homogeneous with respect to the dilation A% (z) = (ex!,ex?, e*2?), and

that it is time-homogeneous with respect to the dilation A™(z) = (sz!, s?22, s%23). For u €
U let &, = Xo + uX;. Using Proposition 5.13, one computes that VQ?OE = span {%, % .
According to Theorem 6.13, to produce variations in the i% directions, we need to look
at variations of order six. Following the proof of Theorem 6.13, let t(s) = (a1s, ass, ass)

and let & = (§u,, &us» Eus ), With ajuy + agug + aguz = 0. Then one computes that

d? 0
2| go (t(s)) = (ura1(a1 + 2a2 + a3) + uzaz(az + a3))$
and so we set ug = —%, so that ord(&,t) > 3. Then one computes that the

derivatives of @ge (t(s)) of orders 3,4, and 5 vanish at s = 0, and that C% 7O<I>§;O (t(s)) is

equal to

_3Ou4a‘f(a1 + az)(a1 — as)(a1 + a2 + a3)(a1a2 + 2a1a3 + azasz) i
(ag + a3)?3 ox3’

By inspection, the above expression can be made negative and positive for all choices of
u for appropriate values of a1, as,as > 0. Hence, \7:?02 = span {%}, and, therefore, by
Corollary 3.26, the affine distribution spanned by { X, X;} is PSTLC from the origin zg. e

In the proof of Theorem 6.13, linear end-times were used. This can potentially result
in an over estimate for an integer k for which VfOE = R", i.e., the bound lem(ky, ..., k) is
not sharp, as the following example shows.
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6.15 Example: The following system was considered by Kawski [25]. The control-affine

system is given as ¥ = (R%, {Xo, X1}, U) where

3 0
3

0 0

2 3 —
g K= g

Xo=2 =5+ = (x)

and U C R is convex and proper. One can easily check that 3 is time-homogeneous with
respect to the dilation A (z) = (sz!,s?2?, s%23, s7o*). Hence, from Theorem 6.13, ¥ is
STLC from x¢ = 0 if and only if \73??2 = ]R4. Using the procedure of Theorem 6.13, it is
not too difficult to produce variations of orders 1,2, 4, and 7, in both positive and negative
directions, so that VQ?EE = R*. However, here we will show that actually \73?02 = R* by using
end-times that are not linear to produce the :t% directions as eighth order variations. For
u € U let & = Xo + uXj.

0

ox?

(i) Using Proposition 5.13, one computes that \730 = span { T

(ii) According to Theorem 6.13, to produce :l:% as variations, we must look at variations
of order 4. Let 1(s) = (a1$, a2s, azs) and & = (&u,, &us, Eus) be such that aju; +agus +
asug = 0. Then ordy, (&, T) > 2 and

2
% SZO@EO(T(S)) = (a%ul + a1(2a2 + az)uy + az(az + a3)uz)%'

Setting uz = —m(a%m + a1(2a2 + a3)uq) results in ordy, (€, T) > 4 and
d74 Pé (t(s)) = _aila(al + ag)(ar — a3)(a1 + az + a3)u? i
ds*ls=0 % (a2 +a3)? ox3

We can then easily choose a1, ao, and a3 to produce the variations j:%

(iii) Now we produce variations in the directions :I:%. Producing a variation in the

direction % is straightforward but we will treat both cases simultaneously. To this

end, let
2

Ti(S) = a;s + bi%,

for i = 1,2,3, let 7(s) = (t'(5),7(5), T(5)), let & = (§urs&urs&us), let T(s) =

(TS( ) (5)7 ( ))a and let £ = (§U37§U27£u1) If ajuy + aguz + azuz = 0 then
ord,,(&,T) > 2 and

2
d ¢

(<) = (b + o - P20 202)) D

ds?ls=0 0 as 2
0
+ (a%ul + a1(2az + az)ur + az(as + az)us) 5.5
If we set b3 = alulam(blul + baug), then we obtain that
d? ¢ 5 9
a2 0@I0 (T(S)) = [(alul + a1(2a2 + a3)u1 + ag(ag + a3)u2] a3 (6.2.1)
s=

ox
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It is not hard to choose uj,us2,a1,as to make the tangent vector in (6.2.1) equal to
zero, so that we can continue to produce a higher-order variation. But instead of
this, we augment to (£,T) the reverse pair (€,7%) so that we can keep the variables
u1,ug, a1, az free and simultaneously cancel the tangent vector in (6.2.1). In fact, one
computes that, if we continue to use

as

aiuq + asus +agug =0 and by = (b1ul + b2u2),

aiul + agus
then ord,, (€ * &, T+ %) > 7 and

7 ~

G| (e D)6) = Qulin ua) oy,
where Qq: R? — R is a homogeneous polynomial of degree 4 whose coefficients are
homogeneous polynomials in @ = (ay, az,az) of degree 7. It is difficult to determine
if the homogeneous polynomial (), can be made to be indefinite by an appropriate
choice of the parameter a, i.e., have both negative and positive values in its image.
Instead, we investigate whether it is possible to choose a so that there exists a non-
trivial subspace of R? on which @, vanishes. To this end, set, for example, a; =
1,a9 = 1/10,a3 = 5, and uz = Auj, where A € R is to be determined. Then, one
computes that

Qa(ul, )\ul) = [CO + 1A+ 02)\2 + 63/\3 + 64)\4] ’Ufll,

where ¢g,...,cq are positive rational numbers. Using a computer algebra system,
one can check that the polynomial ¢(\) = ¢y + 1A + a2 + csA? + e4\* has two
real roots and they can be computed explicitly. Up to four digits they are given as
A1 = —15.7499... and Ao = —13.4544.... Hence, setting a; = 1,a2 = 1/10,a3 = 5,
the subspaces S; = {(Ul,UQ) € R? ’ Uy = )\jul}, 7 = 1,2, are killed by Q). Hence,
setting ug = Aju; yields that ord, (€ * £, T x T) > 8 and one computes that, for these
choices of parameters,

d8
ds8
where r1,79 > 0 are constants. By inspection, one can then easily choose b; and by
to produce variations in the ia%zl directions for any choice of u;. Moreover, since us

and ug are directly proportional to w1, by choosing u; sufficient small, we can force
uy, ug, uz € U.

Therefore, by Corollary 3.26, the affine distribution spanned by { Xy, X} is PSTLC from
the origin xg. °

z . 0
szo@ﬁze((r xT)(s)) = (—r1by + rgbg)u‘f@,

Now we turn to the question of determining PSTLC for homogeneous systems.

6.16 Theorem: Let ¥ = (R",{X0, X1,..., X}, [—1,1]™) be a control-affine system that is
both time- and control-homogeneous for some dilations A™ and AT, respectively. Assume
that X1, ..., X,, are linearly independent at o = 0 and that X satisfies the LARC' at xy.
Let A be the affine distribution generated by {Xo, X1,...,Xm}. Then A is PSTLC from x
if and only if VfOE = R", where k = lem(ky, ..., ky) and the integers ki, ..., ky are those
associated with the dilation A™.
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Proof: If A is PSTLC from zg then X is STLC from xy. Therefore, by Theorem 6.13,
VEY =R"

Now suppose that V!C“OE = R” and let U be an arbitrary proper and convex control
set. By Theorem 5.5, ¥ is STLC from xy. For ¢ > 0 let ¥, = (R", {X¢, X1,..., X\n},eU).
By control-homogeneity, Y. is also STLC from xj. For e sufficiently small, [—¢,e]™ C
U. Hence, the control-affine system (R",{Xo, X1,...,Xn},U) is also STLC from zy. By
Corollary 3.26, A is PSTLC from xy. |

6.2.1. A class of high-order systems. In this section, we will consider the affine distribu-
tion A on R™ generated by the frame {¢, X1, ..., X,,}, where

0 0 0
— ! 2 _ e T~
(=r o+l + Hyrmt2 + + Hrm+r’
where the FJ7:R™ — R are homogeneous polynomials of order k, for j = 1,...,r, and
X, = 8 - fora =1,2,...,m. In this section, zg € R" will denote the origin, and n = m-+r.

6.17 Proposition: Let A be the affine distribution on R™ generated by {¢, X1,..., Xm}-
Suppose that {¢, X1,..., X} satisfies the LARC at xo. Then A is PSTLC from xq if and
only if VEFIS = R™, where £ = (R, {(, X1, ..., X}, [-1,1]™).

Proof: Write a point in R™" as (z,y). Let u: [0,7] — R™ be a control for the system %
and let ¢ — (x(t),y(t)) the corresponding trajectory. Let ((z<',yS"), us") denote the induced
controlled trajectory. Then

xJ(t) = /Ot us(w) dw = /Otu(w/s) dw = S/Ot/s u(o)do = sx(t/s)

and therefore 257 (sT) = sz(T). Let F = (F,..., F"). Then,

Y (t) = /0 P2 (w)) dw = /0 Flsn(w/s)) dw = s* /0 Fa(w/s)) dw

t/s
=s". 5/0 F(x(0))do = s5ty(t/s).

Thus, < (sT) = s*Tly(T). Thus, ¥ is time-homogeneous with respect to the dilation
Agm(a}, y) = (sx, s*T1y). In like manner, one can show that ¥ is control-homogeneous with
respect to the dilation A% ((x,y)) = (ex,e*y). The result now follows by Theorem 6.16. B

If € is a vector field of order k at xg and

dim(M

8]%] 0

is the associated vector-valued symmetric k-multilinear map on T,,M, we define Q’g t TegM —
TzoM by

ng(vxo) = Bg(vxo, ey Ugg)-
Note that when k is odd, img(Q’g) is closed under multiplication by —1. Indeed,

—ng(vmo) = —Bf(vmo, cey Ugg) = Bg(—vmo, ey = Ugy) = Qé(—vmo).
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6.18 Proposition: Let A be the affine distribution on R™ generated by {(, X1,...,Xm}.
Suppose that {¢, X1,...,Xm} satisfies the LARC at xg. Let Wy, = span {Q’E(Axo)} and
suppose that Ay, + Wy, = R"™. Then the following hold:

(i) if k is odd then A is PSTLC from xo;
(ii) if k is even and Oy, € inty, (co(Q’E(AxO))) then A is PSTLC from xy.

Proof: Put ¥ = (R", {(, X1,..., X}, U = [—1,1]™). According to Proposition 6.17, it is
enough to prove that \7;‘3:'12 =R" Let {4 =(+Y and & = ( — Y, where Y = u?X, for
u=(ul,...,u™) € U. Let & = (&, &) and let T(s) = (s,s). Then, by Theorem 4.1, for any

smooth function f,
k+1k+1—¢

ek+1 Z Z 5152 (6.2.2)

(=0 7=0

Since &1 (xo) +£2(z0) = 0g,, it follows that ordy, (€, T) > 2. In fact, since ( is of order k at xg
and Y is a constant vector field, by Lemma 4.12 we actually have that ord,,(&,T) > k + 1.
Therefore, (6.2.2) simplies to

k+1

(=0

Now, as differential operators,

bt gleb=te — Xtebty, 1=0,1,... k,
gieh
¢+ €1, (=k+1

and, therefore, by Lemma 4.12 and the fact that Y (xg) = u,

Bk( , Uy —U, —u), £=0,1,... k,
kb1t B \W_z \—v—’
515 ( )_ {—times  (k—{)—times
Bé‘;(u,...,u), {=k+1,

(—l)kféBéf(u,.._,u), (=0,1,...,k,

Blg(u,...,u), L=Fk+1.
Therefore,
k
k+ 1 k—¢ k 8k+1
ekJrl (Z( ) —1) +1>B<(u,u,...,u)(k+1>!.
(=
Now

(75

£=0
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and, therefore,

Sk+1

(k+ 1)U

Using the fact that VXS is a cone and by properness of U, we have Q]g (Agy) C VEFLS,
and, therefore, the convexity of Vit!Y implies that co(QF(Az,)) C Vat'S. If k is odd then
CO(Q'IE (Ag,)) is closed under multiplication by —1, and, therefore, CO(QIE(AIO)) =Wy, Ifk
is even and O, € intw, (co(Q’Z(AIO))) then again co(ng(AxO)) =Wa,. Now A, =VL X C
VEFLY, and therefore R" = A, + Wy, C VEFIY. Hence, in either case of k, we have that
ij 1Y) = R”, and the result now follows by Proposition 6.17. |

e5 1 (T(s)) = 2Q% (u) (6.2.3)

6.2.2. Determining STLC in a finite number of differentiations. In [26] (see also [1]),
the following problem was posed.

Open problem: If the smooth control-affine system ¥ = (M, {Xo, X1,..., X;n},U) is
STLC from zg, does there exist an integer k such that every smooth control-affine system
¥ = (M {Yp,Y1,...,Y,},U) is also STLC from xq if the Taylor expansions at xg of the
vector fields of the two systems agree up to order k7

Theorem 6.13 gives a positive answer to this question for the special case of time-
homogeneous systems.

6.19 Theorem: Suppose  that X = (R™" {Xo0, X1,...., X}, U) is  time-
homogeneous with respect to the dilation A (z) = (sMal!,... s"a") and let
k = max{ki,...,kp} — 1. If ¥ STLC from xy = 0, then every control-affine system
¥ = (R, {Yo,Y1,..., Y}, U) with j& Yo = jE Xa, for alla € {0,1,...,m}, is also STLC
from xg.

Proof: If ¥ is STLC from xg, by Theorem 6.13, Vfolﬁ + \7532 + e+ Vi?gE = R". By
definition, VfOE depends only on the (¢ — 1)-jets of Xg, X1,..., X, at zo. Hence, if ¥/ =
(R™,{Yo, Y1,..., Y}, U) is a control-affine system such that j¥ Y, = j¥ X,, then VJEE =
Vng’ for all j € {1,...,n}. Hence, \75012’ + Vng’ + -t V:f(;lE' = R". Consequently, by
Theorem 5.5, ¥/ is STLC from zg. |



Chapter 7

Conclusions and future work

7.1. Conclusions

In this thesis, we have developed a feedback invariant theory of local controllability for
affine distributions. The main geometric notion we have studied is what we call proper
small-time local controllability and the main tool used to study this notion is a set of
high-order tangent vectors. To better understand these high-order tangent vectors, some
computational tools were developed on appropriate jet spaces of the tangent bundle. Using
these tools we were able to characterize proper small-time local controllability for driftless
and homogeneous systems.

7.2. Future work

The following list of questions and problems are natural avenues of future research from
this point.

1.

In Chapter 3 it was shown that, for a regular affine distribution, there is no loss of
generality by considering convex control-affine systems for the study of PSTLC. A
natural question is whether this is still true in the singular case.

. It would be fruitful to better understand the algebraic properties of the linear map

ng described in Chapter 4. Having established a solid understanding of this map, it
should be possible to obtain new interesting sufficient conditions for local controlla-
bility. The connection between the coefficients of the Taylor series of a composition
of flows and labeled rooted trees, established in Section 4.3, might be useful for this
task.

. Using the tools developed in this thesis, give a sufficient condition for Vfoﬂ to be a

subspace. In other words, when are all variations of order k neutralizable?

. For homogeneous systems, it was shown that the variational cone completely char-

acterizes local controllability. It would be natural to explore what new necessary
conditions can be obtained in the general case.

In Section 6.2.1, a special class of homogeneous systems was considered and we were
able to give a geometric sufficient condition for the variational cone to be the whole
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tangent space. This was done by considering a specific type of concatenation that
resulted in the high-order vector-valued form appearing as the variation. A natural
generalization of this result would be to do the same for general homogeneous systems.

. In [24] it was shown that, for the control-affine system ¥ = (R* {Xo, X1}, [—¢,€])

given by

if the set of controls is restricted to piecewise constant controls with at most N
jumps, then, if > 0 and € > 0 satisfy N7T7/2¢3/4 < 1, then zH(T) > 0if 21(T) = 0.
However, Kawski proved that > was indeed STLC from the origin 9 = 0 by using
variations that were parameterized by a discrete parameter related to the number of
switchings in a specific type of variation. The number of switchings grew as the final
time tended to zero. Roughly speaking, one can say that Kawski’s example satisfies
the following behaviour: If the control set is bounded then one needs high frequency
to control the system in small-time. One natural question is: If the control set is
unbounded, can Kawski’s example be controlled using finite jumps in small-time? The
tools developed in this thesis can be used to give a positive answer to this question. To
show this, for u € R let &, = X+ uX;. For X, it is easy to produce variations in the
directions ﬁ:%, :I:%, :I:%, and 6%4’ so that —% is the only missing direction for
local controllability. For s > 0, let £(s) = (§u(s)s E—u(s)» E—u(s)» Su(s)) Where u(s) = fgf)
and the function f is to be determined. Let T(s) = (s,s,s,s). We can compute
directly, by either integrating the differential equation or using the Taylor series tools
developed in Chapter 4, that

(c15 —c2f(s))

@) (x(s) =

f(s)%es

for constants c1, ¢, c3 > 0, and where e4 denotes the 4th standard basis vector in R*.

Let s
fls) = 22+ a6,
C2

for A € R. Then direct substitution and simplification yields

B As8(c1 4 Acps33)0

6303

BE) (1(s)) =

Hence, we get a smooth curve in the reachable of ¥ from zy approaching the origin
and in the —ey direction provided that A > 0, i.e.,

) (2(s)) € Re(wo, 45) N {w €R" | & <0}
The resulting parameterized control u(s) is given by

f(s)  cis+Aeas™ g + Aeps®
u(s) = —= = - = R (7.2.1)
S C2S C2S

which goes to infinity as s — 0. Using a more general notion of variation than the one
used in this thesis, see for example [25], this shows that, if one replaces the control set
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U = [—¢€,¢] with U = R, then ¥ is STLC from xz( using piecewise constant controls
with a finite number of switchings. In view of Kawski’s example, a natural line of
future research would be to build a theory, in the same spirit as was done in this
thesis, to deal with this fast-switching phenomenon.
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