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Abstract

Controllability and stabilisability are two fundamental properties of control systems and it
is intuitively appealing to conjecture that the former should imply the latter; especially so
when the state of a control system is assumed to be known at every time instant. Such
an implication can, indeed, be proven for certain types of controllability and stabilisability,
and certain classes of control systems. In the present thesis, we consider real analytic
control systems of the form Σ : ẋ = f(x, u), with x in a real analytic manifold and u
in a separable metric space, and we show that, under mild technical assumptions, small-
time local controllability from an equilibrium p of Σ implies the existence of a piecewise
analytic feedback F that asymptotically stabilises Σ at p. As a corollary to this result,
we show that nonlinear control systems with controllable unstable dynamics and stable
uncontrollable dynamics are feedback stabilisable, extending, thus, a classical result of
linear control theory.

Next, we modify the proof of the existence of F to show stabilisability of small-time
locally controllable systems in finite time, at the expense of obtaining a closed-loop system
that may not be Lyapunov stable. Having established stabilisability in finite time, we
proceed to prove a converse-Lyapunov theorem. If F is a piecewise analytic feedback that
stabilises a small-time locally controllable system Σ : ẋ = f(x, u) in finite time, then the
Lyapunov function we construct has the interesting property of being differentiable along
every trajectory of the closed-loop system obtained by “applying” F to Σ.

We conclude this thesis with a number of open problems related to the stabilisability of
nonlinear control systems, along with a number of examples from the literature that hint
at potentially fruitful lines of future research in the area.
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Chapter 1

Introduction

1.1. Contribution of the thesis

Controllability and feedback stabilisation are two fundamental problems in control the-
ory and this thesis establishes a connection between the two. Although it is natural to
strive for utmost generality, in order to reach any meaningful conclusion it is necessary to
work within the boundaries of a precisely defined framework which, in our case, is provided
by the class of real analytic control systems that are small-time locally controllable from an
equilibrium point p and that can be represented in coordinates by an expression of the form
ẋ = f(x, u). Within this framework, a feedback is understood to be a vector field that can
be realised by assigning values to the control parameters. A stabilising feedback is, then,
a feedback whose trajectories converge to p asymptotically or in finite time. After these
notions are made precise we show that, under an additional assumption that guarantees
the compactness of the reachable sets, small-time local controllability implies the existence
of an asymptotically stabilising piecewise analytic feedback. As a corollary, we obtain a
nonlinear analogue of the stabilisability of linear control systems with controllable unstable
eigenvalues. Next, by modifying the proof of asymptotic stabilisability, we show that small-
time locally controllable systems can also be stabilised in finite time and, building on this
fact, we prove a converse Lyapunov theorem. That is, we show that, in a neighbourhood
of the equilibrium p, there exists a function which is positive definite, continuous at p, and
its derivative along the trajectories of the closed-loop system is negative.

1.2. A few motivating examples

One of the challenges in understanding and classifying nonlinear control systems accord-
ing to their stabilisability properties is that there exist obstructions to stabilisation that
are genuinely nonlinear, in the sense that they have no analogues in the linear theory. The
examples in this section are meant to demonstrate this observation in a concrete manner
and, also, to show that the relationship between nonlinear controllability and stabilisation
is, at best, indirect. Moreover, the examples that conclude the section indicate that some
basic questions on stabilisation remain elusive, despite their deceivingly simple formula-
tion. Unlike the rest of the thesis, in this section we freely use terms that have not yet been
defined and we let the reader assign an intuitive meaning to them based on the context.

We begin by recalling an important aspect of the stabilisation problem for linear control
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systems that has been well understood for some time now. Let A ∈ L(Rn;Rn), B ∈
L(Rm;Rn), and consider the control system

ẋ = Ax + Bu, (L)

with the admissible controls being the locally integrable maps [0,∞) ∋ t 7→ u(t) ∈ Rm. Aslo,
let λ denote a complex number, C− the open left-half of the complex plane, rankM the
rank of a matrix M , and σ(M) the spectrum of a matrix M . Then, according to a theorem
proven by Hautus, the following statements are equivalent [46]:

(controllability of unstable eigenvalues) ℜ(λ) ≥ 0 ⇒ rank [A− λI |B ] = n ⇔

(stabilisability) ∃K ∈ L (Rn;Rm) | σ(A + BK ) ⊂ C− ⇔

(asymptotic controllability) The system (L) is asymptotically
controllable to 0 ∈ Rn.

For emphasis, let us state in words two of the conclusions that can be drawn from the
above equivalences. First, the only obstruction to static, state dependent, asymptotic
stabilisation of finite dimensional linear control systems of the form (L) is the existence
of uncontrollable eigenvalues with non-negative real part. Second, if the states of a linear
control system can be driven to the origin by open loop controls, then, not only does there
exist a stabilising feedback, but one that is linear. This implies that if a linear system can
be stabilised by a feedback of any regularity (always assuming the local integrability of the
controls), then the system can also be stabilised with a linear, and hence C∞, feedback.
It will become clear below that a similar conclusion is far from being true for nonlinear
control systems. However, its validity in the linear case has motivated significant results on
nonlinear stabilisation, some of which are described in Section 2.2.3. It is worth mentioning
that linear systems also form a tractable class of control systems when other types of
stabilisation are considered. For example, it can be shown that controllable linear systems
can be globally stabilised in finite time using continuous feedback laws [38].

To contrast Hautus’s theorem, cited above, with the case of nonlinear control systems,
consider the control-affine system Σ : ẋ = X(x) + vY (x), x = (x, y) ∈ R2, X,Y : R2 → R2,
v ∈ R, where

X(x) =

[
4 0
0 1

]
x and Y (x) =

[
y2

1

]
.

It can be shown by directly solving the equations of Σ that any two points in R2 can be
connected with a trajectory of Σ. In other words, Σ is globally controllable. However, there
does not exist v ∈ C1(R2) that renders Σ asymptotically stable at the origin. This can
be seen by noting that such a v has to satisfy v(0, 0) = 0 (for otherwise the origin would
not be an equilibrium) and that the linearisation has an eigenvalue with positive real part,
regardless of the form of v [52]. Therefore, Σ is globally controllable, affine in the control,
and has linear drift, however it cannot be asymptotically stabilised at the origin using C1

feedback.1

1The Jurdjevic–Quinn theory of stabilization, initiated in [52], has been generalised to systems with
nonlinear drift. However, our goal here is precisely to show how even “simple” nonlinear systems deviate
from the linear theory.
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Next, we look at the driftless control system Σ : ẋ = uX(x)+vY (x), x = (x, y, z) ∈ R3,
X,Y : R3 → R3, u, v ∈ R, defined by

X(x) =

 1
0
−y

 and Y (x) =

 0
1
x

 ,

and known in the literature as “Brockett’s integrator”. The control system Σ is locally
controllable2 from 0 ∈ R3, as well as globally and asymptotically controllable. Nevertheless,
Brockett showed in [15, p. 181] that Σ violates a topological condition that is necessary
for the existence of a (u, v) ∈ C1(R3;R2) that makes 0 ∈ R3 an asymptotically stable
equilibrium. Zabczyck [87] and Ryan [72] later showed that the same topological condition
persists also when larger classes of feedback controls are allowed. We revisit Brockett’s
result and its extensions in Section 2.1.2.

The previous two examples show that some common notions of controllability for non-
linear systems do not imply stabilisability. A natural question to ask is whether the opposite
implication is true, that is, whether stabilisability implies controllability. In general, this
is not true even for one-dimensional systems. For example, consider the control system
Σ : ẋ = (1 − u)x, x, u ∈ R. Any constant control u = 1 + ε, ε > 0, yields a globally
asymptotically stable closed-loop, however, for reasonable classes of admissible controls,
e.g., piecewise continuous u : R → R, Σ is neither locally controllable from 0 ∈ R nor
globally controllable.

The next four examples of control systems that conclude this introductory section are
meant to illustrate the fact that deciding the existence of a stabilising feedback is only one
facet of the problem of static, state feedback stabilisation for finite dimensional, nonlinear
control systems; once it is known that a control system is stabilisable, there are natural
questions to ask concerning the regularity and robustness of a stabilising feedback. In this
regard, consider the problem of asymptotically stabilising at the origin 0 ∈ R2 the control
systems

(A)

{
ẋ = u,

ẏ = y − x3,
(B)

{
ẋ = u,

ẏ = y2 − x4,

where x, y, u ∈ R. The following statements are true:

• There exists a Hölder-continuous map u : R2 → R that stabilises (A).

• There does not exist u ∈ C1(R2) that stabilises (A).

• There exists u ∈ C1(R2) that stabilises (B).

• There does not exist u ∈ C3(R2) that stabilises (B).

The proof of the first statement can be found in [53] and will be reviewed in Section 2.2.1.
The second statement follows from Lyapunov’s first method, that is, from a linearisation
argument, whereas the proof of the last two statements is contained in [30]. Systems (A)

2Locally controllable means that, by following the trajectories of the control system for all admissible
controls and for arbitrarily small time, it is possible to reach a neighbourhood of 0 ∈ R3.
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and (B) are formally similar—they are both control-affine, with polynomial drift, and of
the same dimension—however a variety of techniques has to be employed to prove the
stabilisability properties listed above. An interesting problem is to devise a method that
can distinguish between (A) and (B), based on their stabilisability properties. Finallly,
consider the problem of asymptotically stabilising at the origin 0 ∈ R3 the control systems

(C)


ẋ = u,

ẏ = v,

ż = x2 − y2,

(D)


ẋ = u,

ẏ = x2(y − x),

ż = x2(z − x),

assuming that the set of control values is convex and contains 0 ∈ R3 in its interior. The
following facts can be proven:

• there exist polynomial maps u and v that stabilise (C);

• there exists a piecewise analytic feedback that stabilises (D);

• there does not exist u ∈ C0(R3) that stabilises (D).

The proofs follow from Centre Manifold theory, Theorem 3.3, and the results in [26], re-
spectively. It will be seen later in the text that systems (C) and (D), besides both being
control-affine, with polynomial drift, and of the same dimension, also share certain controlla-
bility properties. As in the case of systems (A) and (B), it is not clear how to systematically
identify the structure that dictates the different stabilisability properties.

The problem of characterising the regularity of stabilising feedbacks for a given control
system is not resolved in this thesis; in Chapter 5.1, using results from the literature as
supporting evidence, we hint at directions that could lead to progress on the solution of this
problem. In any case, a conclusion that can be safely drawn, and which is one of the goals
of the present discussion, is that the problem of feedback stabilisation for nonlinear control
systems, even when confined to static state feedback for finite dimensional deterministic
systems of the form ẋ = f(x, u), can be considered as far from being settled.



Chapter 2

Literature review

2.1. General theorems on stabilisation

Unless one is confined to specific classes of control systems and types of stabilisation, the
literature on stabilisation of control systems is too vast—see, e.g., [6, 7, 51] and the references
therein—to review any representative body of results. Therefore, we adopt the following
criteria as to what results to include here and what not to include. First, we consider
results because of their generality in the sense that they may require certain assumptions
on the regularity of the equations that define a control system, but otherwise they impose no
restrictions on the equations other than being of the form ẋ = f(x, u). Results of this type
are reviewed in Section 2.1. Second, we omit results that impose conditions on a control
system that make the problem of local asymptotic feedback stabilisation trivial. Most
notably, results that require the linearisation of a nonlinear control system to be controllable,
e.g., the method of feedback linearisation [67, Ch. 6] and techniques based on bifurcation
theory [1, 2]. Third, we restrict our attention to results that are similar in philosophy to
ours. To wit, results that establish connections between controllability and stabilisation
and are as relevant as possible to the problem of static, state feedback stabilisation of
nonlinear, finite dimensional control systems of the form ẋ = f(x, u). This rule is not
strictly followed since there are interesting results, e.g., Theorem 2.17 and Theorem 2.24,
on the stabilisation of controllable systems that involve time-dependent or sampled-data
feedbacks; however, we do categorise the results in Sections 2.2.1 and 2.2.3 according to
the type of controllability assumed for a control system. The effect of this third criterion is
that, for example, we exclude the parts of the literature that address the problems of output
feedback stabilisation, of stabilisation of infinite dimensional systems, or the stabilisation
of systems that cannot be expressed in the form ẋ = f(x, u).

2.1.1. One-dimensional control systems. Obstructions to stabilisation exist even for one-
dimensional control systems. If regularity, e.g., continuity, of feedback is required, then one
can construct examples of one-dimensional control systems that (1) can be semi-globally,
but not globally, stabilised, (2) that can only be stabilised with controls that undergo an
infinite number of switchings, or (3) that depend on the control in a nonlinear fashion
that imposes algebraic obstructions on continuous stabilisability [75]. More generally, the
pathologies that can be constructed are only limited by one’s ability to imagine functions
with complicated level sets. On the other hand, due to the simplicity of the state space, it

5
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is possible to characterise the (one-dimensional) control systems that are stabilisable.
The basic idea introduced in [76] in connection with one-dimensional control systems

and their stabilisability properties is to express the latter in terms of the graph of a feedback
control. To demonstrate this idea we make a simplifying assumption on the regularity of
feedbacks and refer the reader to [76] for a more general definition of a stabilising feedback
and for other results on one-dimensional control systems (see also Section 2.2.3).

Consider a control system of the form Σ : ẋ = f(x, u), x, u ∈ R, and suppose that
u : R → R, with u(0) = 0, is a map such that x 7→ f(x, u(x)) is locally Lipschitz and x = 0
is an asymptotically stable equilibrium of the dynamical system ẋ = f(x, u(x)). Then, if
we define

O ≜ {(x, v) ∈ R2 | xf(x, v) < 0},

asymptotic stability of x = 0 implies that the graph of u must lie in O. Conversely, if there
exists a u as above and the condition on the graph is satisfied, then Σ is stabilisable. Using
this observation, we can construct a simple one-dimensional control system that does not
admit a stabilising feedback u with the above properties.

2.1 Example: The control system

ẋ = x
[
2(u + 1)2 + (x− 1)

] [
2(u− 1)2 − (x + 1)

]
(2.1.1)

cannot be asymptotically stabilised at x = 0 using a feedback u : R → R that satisfies
u(0) = 0 and is locally Lipschitz in a neighbourhood of x = 0. Since pr1O = R, the
system (2.1.1) is asymptotically controllable to x = 0. However, it cannot be globally
stabilised with a feedback u ∈ C0(R). On the other hand, it can be easily verified that if
u = −1, then (2.1.1) becomes ẋ = −x3 + 8x2 − 7x, which is a locally asymptotically stable
vector field.

2.1.2. Brockett’s theorem. Brockett’s theorem is one of the earliest general results on
feedback stabilisation of nonlinear control systems. It is a necessary condition that a system
of the form ẋ = f(x, u) must satisfy in order to be stabilisable using smooth feedback.
More precisely, suppose f : Rn × Rm → Rn is map that is continuously differentiable in a
neighbourhood of a point (xeq, 0) and that satisfies f(xeq, 0) = 0. The following is proven
in [15, p. 181].

2.2 Theorem: Necessary conditions for the existence of a function u ∈ C1(Rn;Rm) such
that xeq is an asymptotically stable equilibrium of ẋ = f(x, u(x)) are that:

(i) there exists a neighbourhood N of xeq such that for each ξ ∈ N there exists a control
uξ : [0,∞) → Rm such that the solution xuξ

of the initial value problem ẋ(t) =
f(x(t), uξ(t)), x(0) = ξ, satisfies lim

t→+∞
xuξ

(t) = xeq;

(ii) the linear system ẋ = Ax + Bu, where A =
∂f

∂x

∣∣∣∣
(xeq ,0)

and B =
∂f

∂u

∣∣∣∣
(xeq ,0)

— i.e., the

linearisation of ẋ = f(x, u) — has no uncontrollable eigenvalues whose real part is
positive;

(iii) the image of the map Rn×Rm ∋ (x, u) 7→ f(x, u) ∈ Rn contains an open neighbourhood
of 0 ∈ Rn.
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The necessity of the first part of Theorem 2.2 is obvious since every closed-loop control
can also be viewed as an open loop control. The necessity of the second part is a direct
consequence of Lyapunov’s indirect method, however it is worth noting that if condition
(ii) does not hold, only the existence of C1 feedbacks that vanish at the equilibrium can be
precluded [6, p. 28].

2.3 Example: Consider the two-dimensional, single-input, control-affine system Σ : ẋ =
X(x) + uY (x), x = (x, y) ∈ R2, u ∈ R, with

X(x) =

[
0
y

]
and Y (x) =

[
2x− y

x

]
.

Using the notation of Theorem 2.2, we have

A + BK = A =

[
0 0
0 1

]
,

for any K ∈ R1×2, and, therefore, the linearisation of Σ at (x, u) = (0, 0) has a real positive
uncontrollable eigenvalue. Nevertheless, any constant u < −2 yields an asymptotically
stable linear vector field X(x) + uY (x), as can be seen by examining the eigenvalues of the
matrix [

2u −u
u 1

]
. (2.1.2)

2.4 Remark: The system Σ of Example 2.3 belongs to a class of systems called “bilinear”
and there exist several sufficient conditions in the literature that imply the stabilisability
of bilinear systems using constant feedback [6, Ch. II]. •
Kawski has shown that violation of the second condition of Theorem 2.2 does not imply
the non-existence of continuous stabilising feedbacks either [53].

2.5 Example: Suppose that in Example 2.3 we set

X(x) =

[
0

y − x3

]
and Y (x) =

[
1
0

]
.

Then, because any feedback u : R2 → R that stabilises Σ at (x, y) = (0, 0) has to satisfy
u(0, 0) = 0—for otherwise (0, 0) would not be an equilibrium—and because λ = 1 is an
uncontrollable eigenvalue of the linearisation of Σ, condition (ii) of Theorem 2.2 implies that
there does not exist an asymptotically stabilising u ∈ C1(R2). However, it can be shown
that Σ admits a Hölder-continuous stabilising feedback [53]. In Section 2.2 we outline the
idea behind the proof of this last result.

The third condition of Theorem 2.2 is of a topological nature and is far from completely
characterising stabilisable systems as can be seen by considering the control system

ẋ = x,

ẏ = u,
(2.1.3)

which satisfies the condition but is obviously not stabilisable by any kind of feedback u :
R2 → R. However, system (2.1.3) is a trivial counterexample in the sense that it violates
both conditions (i) and (ii) of the theorem. What is perhaps more interesting is that there
exist systems that satisfy all three conditions of Theorem 2.2 and they cannot be stabilised
using continuous feedback.
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2.6 Example: 1 The driftless control system ẋ = uY (x) with

Y (x) =

[
x2 − y2

2xy

]
satisfies the three conditions in Theorem 2.2, however it cannot be stabilised using contin-
uous feedback [5, 75].

Let us conclude this section by noting that Brockett’s condition, i.e., part (iii) of The-
orem 2.2, was subsequently shown to be also necessary for the existence of a stabilising
u ∈ C0(R2;R) [87]. Moreover, it was proven in [72] that if a control system ẋ = f(x, u),
x ∈ Rn, u ∈ Rm, satisfies the condition

U ⊂ Rm convex ⇒ f(x, U) convex,

for all x ∈ Rn, Brockett’s condition persists even if a feedback is understood as an upper
semicontinuous set-valued map with non-empty, compact, convex values, in which case the
trajectories of the control system are defined in the sense of Filippov.

2.1.3. Coron’s theorem. Next, we describe another necessary topological condition for
continuous feedback stabilisation of nonlinear control systems. Let Ω ⊂ Rn × Rm be open
and f : Ω → Rn a continuous map such that f(0, 0) = 0. A control system ẋ = f(x, u) is
said to be locally asymptotically stabilisable (LAS) if there exists a map u ∈ C0(V ;Rm)
defined on a neighbourhood V of 0 ∈ Rn such that

(i) u(0) = 0,

(ii) there exists a neighbourhood W ⊆ V of 0 ∈ Rn such that the initial value problem
ẋ = f(x, u(x)), x(0) ∈ W , has unique solutions, and

(iii) the origin 0 ∈ Rn is an asymptotically stable equilibrium of the differential equation
ẋ = f(x, u(x)).

If V is a neighbourhood of 0 ∈ Rn × Rp, p ∈ Z>0, and u ∈ C0(V ;Rm) is such that the
control system (with the new control v)

ẋ = f(x, u(x, y)),

ẏ = v,

is LAS, then the control system ẋ = f(x, u) is said to be dynamically locally asymptot-
ically stabilisable (DLAS). Suppose now that X is a topological space and f : X → Rn

a continuous map. Denote by Hk(X), k ∈ Z≥0, the k-th singular homology group of X, by
f∗ the homomorphism induced on homology by f , and define the set

Σε = {(x, u) ∈ Ω | (|x| < ε) ∧ (|u| < ε) ∧ (f(x, u) ̸= 0)} . (2.1.4)

Coron has shown in [26] the following.

1This example has become known in the literature as “Artstein’s circles”.
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2.7 Theorem: If the system ẋ = f(x, u(x)) is LAS or DLAS, then f∗ (Hn−1 (Σε)) =
Hn−1 (Rn \ 0), ∀ε ∈ (0,∞].

Theorem 2.7 provides a strictly stronger condition than that of Theorem 2.2.

2.8 Example: The control-affine system ẋ = X(x)+uY (x), x = (x, y, z) ∈ R3, u ∈ R, with

X(x) =

 0
z3 − 3(y − x)2z

(y − x)3 − 3(y − x)z2

 and Y (x) =

 1
0
0


satisfies the conditions of Theorem 2.2 [26, Prop. 6], but not the condition of Theorem 2.7.

Similarly to Theorem 2.2, the condition of Theorem 2.7 is not sufficient for continuous
feedback stabilisability.

2.9 Example: The control-affine system ẋ = X(x) + uY (x), x = (x, y, z) ∈ R3, u ∈ R,
where

X(x) =

 0
x2(y − x)
x2(z − y)

 and Y (x) =

 1
0
0


satisfies the conditions of Theorems 2.2 and 2.7 and it is not LAS [26].

2.1.4. Artstein’s theorem. Having seen two necessary conditions for state feedback stabil-
isability of nonlinear control systems, it is natural to ask when a stabilising feedback does
exist or, in other words, if there exist sufficient conditions for stabilisability. One of the
earliest and most general such results is a theorem due to Artstein [5]. Artstein’s theorem
establishes an equivalence between the existence of a continuous stabilising feedback and
the existence of a smooth control-Lyapunov function.2 If the control system is of the form
ẋ = f(x, u), then the continuous feedback is a continuous map from the state space of
the control system into a space of relaxed controls and if the control system is affine in
the control, then the feedback is an ordinary continuous map from the state space of the
control system into the metric space of control values.

Let us now sketch the ideas behind the main result in [5]. Since a closed-loop system
is, in fact, a dynamical system, the existence of a smooth control-Lyapunov function for
continuously stabilisable systems is a consequence of a general converse Lyapunov theorem
due to Kurzweil [57]. Conversely, if such a control-Lyapunov function exists, then the
existence of a continuous stabilising feedback is shown by point-wise minimisation over
the admissible controls of the derivative of the control-Lyapunov function. This is exactly
how relaxed controls come into play, since they form a convex space that admits a natural
compact topology, two useful properties for minimisation. Artstein’s theorem has several
interesting aspects and corollaries for which the reader is referred to the original paper [5].

Before we proceed with the precise statement of Artstein’s theorem, it is interesting to
observe that, although the theorem seems to recast the problem of existence of a continuous
stabilising feedback as the equally hard problem of existence of a control-Lyapunov function,
it has non-trivial implications related to the regularity of stabilising feedbacks a control
system admits. This aspect of Artstein’s theorem will be explored further in Section 5.1.

2A control-Lyapunov function is a function that has the properties listed in Theorem 2.10.
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Let U denote a metric space and UR the set of probability measures on U , equipped
with the topology induced by the following notion of convergence. A sequence (vk) is said
to converge to v ∈ UR if and only if ∫

hdvk →
∫

hdv,

for any continuous and bounded h : U → R. A relaxed control on U is an element of UR.
3 Consider now a control system Σ : ẋ = f(x, u), where f : Rn × U → Rn is a continuous
map and U as above. Since a relaxed control is, by definition, a probability measure, a
meaning has to be assigned to the right-hand side of Σ when a relaxed control is “applied”
to Σ. To this end, if v is a relaxed control, f(x, v) is defined to be

f(x, v) ≜
∫
U
f(x, u)dv. (2.1.5)

Depending on the control system to be modelled, different assumptions can be made that
guarantee that the right-hand side of (2.1.5) is finite [5], [37, Ch. 2]. For example, one of
the simplest cases is to assume that the metric space U is compact.4 A relaxed feedback
control can now be defined to be a map v : N ⊆ Rn → UR defined on a neighbourhood
N of the origin 0 ∈ Rn and such that x 7→ v(x) and x 7→ f(x, v(x)) are continuous on
N \ {0}. If x = 0 is an asymptotically stable equilibrium of Σ : ẋ = f(x, v(x)), then v is a
stabilising relaxed feedback control for Σ. The following result is proven in [5].

2.10 Theorem: There exists a stabilising relaxed feedback control v : N ⊆ Rn → UR for
ẋ = f(x, u) if and only if there exists a function V ∈ C1(N) such that

(i) V (0) = 0,

(ii) x ̸= 0 ⇒ V (x) > 0, and

(iii) x ̸= 0 ⇒ inf
u∈U

{gradV (x) · f(x, u)} < 0.

Moreover, the function V can be chosen to be in C∞(N \ {0}).

A function which is C∞ in a punctured neighbourhood of the origin will be called almost
smooth. The following example is representative of how a relaxed control can fail to be
continuous at the origin.

3This is the definition of a constant relaxed control; a relaxed control is, in general, a family of probability
measures [37, Ch. 2]. However, the definition as it is suffices in order to state the results in [5]. In Section 2.2.3
it will be necessary to introduce a more general definition of a relaxed control. The references [37] and [85]
cover the theory of relaxed controls thoroughly, with [37] being particularly clear and concise. The approach
to relaxed controls taken in [86] (called “chattering controls” therein) is close to the historical development
of the subject, that is, as a natural extension of the classical theory of the calculus of variations.

4It is interesting to note that, to obtain the results of the theory of relaxed controls, it suffices to consider
only Dirac measures [9, 60]. This fact hinges upon two observations: first, with respect to a suitably defined
weak topology [37, p. 29], analogous to the vague topology [31, p. ], “time-varying” Dirac measures are dense
in the space of relaxed controls and can be approximated arbitrarily well by piecewise constant ordinary
controls; second, by a theorem due to Carathéodory [36, p. 67], any point in the convex hull of a set A ⊂ Rd

is the convex combination of at most d + 1 points of A. Therefore, any trajectory of the control system
ẋ ∈ cof(x, U) (co denotes the closure of the convex hull) can be approximated by a trajectory of the control
system ẋ = f(x, u) that corresponds to some piecewise constant control. If v is a convex combination of
Dirac measures, convergence of the integral in (2.1.5) presents no difficulties.
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2.11 Example: Consider the control system

Σ : ẋ = (u + 1)[xg(x) + 2xh(x)] + (u− 1)[2xg(x) + xh(x)],

where x ∈ R, u ∈ U = {−1, 1}, and the functions g, h : R → R are defined by

g(x) =

{
x, x ≤ 0,

0, x > 0,
and h(x) =

{
0, x ≤ 0,

x, x > 0.

There does not exist a stabilising relaxed feedback control for Σ that is continuous at 0 ∈ R
since, for x < 0, the measure assigned to u = 1 has to be greater than 2/3, whereas, for
x > 0, the measure assigned to u = 1 has to be less than 1/3.

Example 2.11 captures the general idea behind non-removable discontinuities (for stabilising
feedbacks) at the origin in the sense that, if U is separable and complete and ρ is a convex5

semi-metric on UR, then the relaxed control of Theorem 2.10 is ρ-continuous at 0 ∈ Rn

if the following property holds.6 There exists a v0 ∈ UR such that f(0, v0) = 0 and, for
every ε > 0, there exists a δ > 0 such that, if |x| < δ, then there exists v1 ∈ UR such that
ρ(v0, v1) < ε, |f(x, v1)| < ε, and ∇V (x) · f(x, v1) < 0.

We conclude this section on Artstein’s theorem with the important observation made
in [5] that, if a control system is affine in the control, then it is not necessary to enlarge
the class of admissible controls to include relaxed controls. In other words, Theorem 2.10
as well as the remark made in the preceding paragraph hold for ordinary feedback controls.
A general implication of Artstein’s theorem for one-dimensional control systems will be
discussed in Section 2.2.3.

2.2. Stabilisation under controllability assumptions

The results in Section 2.1 were grouped together on the basis of their applicability
to control systems of the general form Σ : ẋ = f(x, u), assuming only some regularity
properties for the map f in order for the relevant constructions to make sense. From
the present section onwards we start imposing additional control-theoretic properties on
Σ and, more specifically, controllability properties, and we consider the implications on
the stabilisability of the system. Although a conscious effort is made to maximise the
coherence of the presentation as we meander through the literature, the picture becomes
necessarily fragmented from now on for the simple reason that there do not exist universal,
all-encompassing results that relate the controllability properties of a nonlinear control
system to its stabilisability properties. For each result that we present below we specify
precisely the class of control systems to which the result applies and the reader should pay
attention to the fact that some of those classes of systems are significantly narrower than
the one we considered in Section 2.1.7

5A semi-metric ρ on a set X is convex if, for any two distinct points x, y ∈ X, there exists a point
z ∈ X \ {x, y}, such that ρ(x, y) = ρ(x, z) + ρ(z, y).

6This property is known in the stabilisation literature as the “small-control property”.
7In Section 2.1 we considered systems of the form ẋ = f(x, u), with f : Rn×Rm → Rn merely continuous.
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2.2.1. Locally controllable systems. Suppose M is a Cr-manifold, r ∈ {∞, ω}, and Ω a
separable metric space. A Cr-control system on M is a map f : M × Ω → TM such
that, for any ω ∈ Ω fixed, the map fω : M ∋ x 7→ f(x, ω) ∈ TM is a Cr-analytic vector
field on M . If r = ∞, we use the designation smooth for the control system and, if
r = ω, we use the designation real analytic. The manifold M is usually called the state
space of the control system whereas the metric space Ω can be either the space of control
functions or the space of control values depending on the way one wishes to view the control
system. If we let Umeas denote the set of measurable functions u : I ⊂ R → Ω, defined on
an interval I of the real line, then the class of admissible controls for a control system
f is defined to be the subset Uf ⊂ Umeas containing the functions u with the property
that the differential equation ẋ(t) = f(x(t), u(t)) satisfies Carathéodory’s theorem on the
existence and uniqueness of solutions. If p ∈ M , t ∈ R, t ≥ 0, and t 7→ x(t; p, u(t)) is the
trajectory that corresponds to an admissible control u and satisfies x(0; p, u(0)) = p, then
the reachable set of f from p at time t is the set

Rf (p, t) = {q ∈ M | q = x(t; p, u) for some u ∈ Uf} .

A control system f : M × Ω → TM is small-time locally controllable (STLC) from a
point p ∈ M if, for every T > 0, the point p is in the interior of the set

Rf (p, [0, T )) ≜
⋃

t∈[0,T )

Rf (p, t).

Unless there is risk for confusion, we refer to STLC systems simply as locally controllable.
We chose to recall the above definitions at the level of generality that is pertinent to

the proofs of one of the main results of the thesis in Chapters 3 and 4. In the next few
sections we will specify the different assumptions that need to be made for the results of
each section to hold.

One-dimensional control systems. For one-dimensional control systems, a link between
controllability and stabilisation is provided by the fact that, for a fairly general class of
systems, open-loop controls can, in certain cases and to the same effect, be replaced by
closed-loop controls. More precisely, consider the control system Σ : ẋ = f(x, u), where
f : R × U → R is a continuous map, and U ⊂ Rm is a compact and convex set with
0 ∈ intU . Suppose that the class U of admissible controls consists of the locally integrable
maps u : R → U such that, if z ∈ R, then the negative orbit of z is the set

O−(z) ≜ {y ∈ R | x(T ; y, u(T )) = z, for some u ∈ U and T ∈ R>0} ,

where, as before, t 7→ x(t;x0, u(t)) denotes the trajectory8 of Σ that corresponds to a control
u ∈ U and starts at y ∈ R at time t = 0. If we denote by Upwc the piecewise constant
maps F : R → U , then we have the following [23, p. 341].

2.12 Lemma: For all z ∈ R and y ∈ O−(z), there exist F ∈ Upwc and T ∈ R>0 such that
x(T ; t0, y, F (x(T ))) = z.

8Unique, by assumption.
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The elements of Upwc will be called piecewise constant controls. If we now assume
that Σ is real analytic, then, by a theorem due to Grasse [40], local controllability of
ẋ = f(x, u) is equivalent to local controllability of ẋ = −f(x, u) and, therefore, by virtue of
Lemma 2.12, we have the following.

2.13 Corollary: If the control system Σ : ẋ = f(x, u) is real analytic and locally controllable
from p ∈ R, then it can be stabilised to p in finite time using a piecewise constant feedback
control.

In [23], Lemma 2.12 is also used in conjunction with the authors’ theory of “control
sets” to draw conclusions on the asymptotic stabilisation of one-dimensional control sys-
tems. However, there are more direct and simpler-to-state characterisations of asymptotic
stabilisability for one-dimensional systems that we recall in Section 2.2.3.

Two-dimensional control-affine systems. Consider a control system of the form

ẋ = X(x) + uY (x), (CAS)

where x = (x, y) ∈ R2, u ∈ R, and X,Y are C∞ vector fields with X(0) = 0. Because the
vector field X vanishes at the origin and the control system (CAS) is assumed to be locally
controllable from the origin, it follows that Y (0) ̸= 0. We can therefore assume, without
loss of generality, that (CAS) has the form9

ẋ = u,

ẏ = f(x, y),
(CASr)

where f ∈ C∞(R2). A general result on the stabilisation of systems of the form (CASr) is
the following theorem due to Kawski [53].

2.14 Theorem: If the control system (CASr) is locally controllable from x = 0, then there
exists a Hölder-continuous map u : R2 → R that makes (CASr) locally asymptotically stable
at the origin.

The essence of the proof of Theorem 2.14 can be most easily conveyed by means of an
example.

2.15 Example: Consider the control system

ẋ = u,

ẏ = y − x3,
(2.2.1)

of the form (CASr). If V ∈ C1(R2) and

Xu(x, y) ≜ u
∂

∂x
+ (y − x3)

∂

∂y
,

then

XuV (x, y) = u
∂V (x, y)

∂x
+ (y − x3)

∂V (x, y)

∂y
.

9For if this is not the case, we can “straighten out” the vector field Y around the origin and then apply
a preliminary feedback that will convert (CAS) to (CASr).
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We wish to choose u so that XuV ≤ 0 for the closed-loop system. To this end, we replace
the control parameter u with the function

u(x, y) =
∂V (x, y)

∂y
− ∂V (x, y)

∂x
. (2.2.2)

Then

XuV (x, y) =
∂V (x, y)

∂x

∂V (x, y)

∂y
−
(
∂V (x, y)

∂x

)2

+ (y − x3)
∂V (x, y)

∂y
,

and if we set
∂V (x, y)

∂x
= −(y − x3), (2.2.3)

then the first and the last term in the previous equation cancel out each other to give

XuV (x, y) = −
(
∂V (x, y)

∂x

)2

≤ 0.

Equation (2.2.3) implies that

V (x, y) = −xy +
x4

4
+ ϕ(y),

where ϕ is some function of y. The problem of stabilising (2.2.3) then reduces to that of
choosing ϕ so that V becomes positive-definite, for then V would be a Lyapunov function
for (2.2.1). It turns out that it is possible to find a suitable ϕ; for example, some exper-
imentation shows that ϕ(y) = aym with a = 1 and m = 4/3 makes V into a Lyapunov
function for (2.2.1) and (2.2.2) gives the stabilising control.

Although the assumption of local controllability is not used explicitly in the algorithmic
procedure described in Example 2.15, it is essential in two ways. First, it guarantees
uniqueness of solutions despite the right-hand side of the closed-loop system being only
Hölder-continuous and, second, it allows the application of LaSalle’s invariance principle to
deduce the asymptotic stability from the non-strict inequality satisfied by the derivative of
V along the trajectories of the closed-loop system.

The control-affine system in Example 2.9 can be shown to be locally controllable from
0 ∈ R3 and, therefore, shows that Theorem 2.14 does not hold beyond dimension two.

Assuming that f in (CASr) is real analytic,10 the following theorem was proven in [30].

2.16 Theorem: The control system (CASr) is continuously asymptotically stabilisable if
and only if, for every ε > 0, there exist p = (p1, p2) ∈ B2(0; ε), with p2 > 0, and q =
(q1, q2) ∈ B2(0, ε), with q2 < 0, such that f(p) < 0 and f(q) > 0.

The philosophy of the proof of Theorem 2.16 is entirely different from that of Theorem 2.14.
Specifically, in [30], a detailed analysis is made, using Puiseux series, of the way the branches
of f through the origin separate the plane and a stabilising feedback control is then con-
structed using partitions of unity. Using again Lyapunov-theoretic arguments, a more
straightforward proof of Theorem 2.16 was given in the paper [28] which contains other
interesting results on systems of the form (CASr), as well.

10The paper [30] contains several results, including a sufficient condition for stabilisation when f is in
C∞(R2), but not necessarily in Cω(R2).
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Time-varying feedback. It must be clear at this point that, for nonlinear control systems,
local controllability from a point does not imply local stabilisability, in general, at least not
with feedback controls that are continuous in a neighbourhood of that point. Even more,
it can be shown that if the trajectories of a closed-loop system are defined in the sense
of Filippov, then the control systems that can be stabilised using discontinuous feedback
can also be stabilised by means of continuous feedback [25]. In this case, any necessary
condition for continuous stabilisability becomes necessary for discontinuous stabilisability
in the sense of Filippov as well, and we have seen several examples of control systems that
violate such conditions.

One class of feedback controls for which positive conclusions of a fairly general nature
can be reached regarding the connection between controllability and stabilisability is the
class of time-dependent feedback controls. Not only it can be shown that such feedbacks
exist in many (see below for what “many” means) cases but, also, that they enjoy strong
regularity properties. The review article [27] can serve as a roadmap for the extensive
literature on time-dependent stabilising feedbacks, at least for the most important results
that preceded the article’s publication. Adhering to the criteria outlined in the introduction
to this chapter, we recall in this section only one result on the existence of time-dependent
stabilising feedbacks. However, to the best of our knowledge, it is the most general such
result.

Consider the control system Σ : ẋ = f(x, u), where f ∈ Cω(Rn × Rm;Rm) with f(0, 0).
If there exists t > 0 such that Rf (p, t) has non-empty interior, then Σ is said to be strongly
accessible from p ∈ Rn; it is called locally continuously reachable to the origin in
small time if, for any T > 0, there exist ε > 0 and a continuous map Rn ∋ p 7→ u(p) ∈
L1((0, T );Rm) such that

lim
p→0

sup
t∈(0,T )

|u(p)(t)| = 0

and
x0 ∈ Bn(0; ε) ⇒ x(T ;x0, u(x0)(T )) = 0.

If, for any T > 0, there exist ε > 0 and u ∈ C0(Rn×R;Rm)∩C∞((Rn \ {0})×R;Rm) such
that

(i) u(0, t) = 0, for all t ∈ R,

(ii) u(x, t + T ) = u(x, t), for all t ∈ R,

(iii) x(t) = 0 ⇒ x(s;x(t), u(x(s), s)) = 0, for all s, t ∈ R, s ≥ t, and

(iv) x(t) ∈ Bn(0, ε) ⇒ x(s) = 0, for all s, t ∈ R, s ≥ t + T ,

then the control system Σ is said to be locally stabilisable in small time by means
of an almost smooth periodic time-varying feedback. The following theorem was
proven by Coron [27, Thm 2.23, Thm 2.30].

2.17 Theorem: If the control system Σ : ẋ = f(x, u) is strongly accessible from 0 ∈ Rn,
locally continuously reachable to the origin in small time, and if n /∈ {2, 3}, then Σ is locally
stabilisable in small time by means of an almost smooth periodic time-varying feedback. If
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Σ is of the form ẋ =

k∑
i=1

uigi(x), where k ∈ Z>0 and gi ∈ ΓωTRn, i = 1, . . . , k, then the

condition n /∈ {2, 3} can be dropped.

The reader is referred again to [27] for applications of Theorem 2.17 to specific systems
such as the rotating rigid body with torques as controls and for references to papers that
deal with the explicit construction of stabilising time-varying feedbacks.

2.2.2. Globally controllable systems.

Real analytic control systems. Sussmann’s paper [80] is one of the early works that in-
vestigated the relationship between controllability and stabilisability, and contains both a
negative and a positive result of a general nature. By means of a counterexample, Sussmann
shows that, even if a closed-loop system is understood as a flow which is merely continuous
with respect to time and the state variable, a continuous feedback does not always exist.
In Sussmann’s counterexample, the obstruction to the existence of a continuous stabilising
feedback stems from the impossibility of choosing a direction at each point of the state space
in a continuous (with respect to the state) manner, and not from the topology of the state
space—the latter being R2. Having established the inevitability of utilising discontinuous
feedbacks if one is to show a stabilisation result of a substantial level of generality, Suss-
mann goes on to prove that, for every globally controllable, real analytic control system,
there exists a piecewise analytic feedback11 that steers every point of the state space to
an arbitrary fixed point in finite time. A control system f : M × Ω → TM is said to be
globally controllable if, for every p, q ∈ M , there exists an admissible u ∈ Uf such that
x(T ; p, u(T )) = q, for some T ∈ R≥0. In [80] it is further assumed that u can be taken to
be piecewise constant; a theorem of Grasse [40] guarantees that we can also assume u to be
piecewise constant when we show in Chapter 3 that stabilising piecewise analytic feedbacks
exist for locally controllable systems as well. To summarise, the following is proven in [80].

2.18 Theorem: Let f : M × Ω → TM be a real analytic control system that is globally
controllable by means of piecewise constant controls. Then, for every p ∈ M , there exists a
piecewise analytic feedback that steers every point of M to p in finite time.

The main contribution of the present thesis can be viewed as an extension of Sussmann’s
result on globally controllable systems, in the sense that the assumption of global control-
lability is replaced by that of local controllability. These two notions of controllability are
related through normal self-reachability [40], but they are not directly comparable in that
neither assumption is stronger than the other. Because Sussmann’s work provides the foun-
dation for this thesis, most of the definitions and constructions from [80] are included in
Chapter 3.

Driftless control systems. In a spirit similar to that of Theorem 2.17, Coron has shown
that globally controllable, real analytic, driftless control systems on Rn can be globally
asymptotically stabilised using smooth, time-varying, periodic feedback. A driftless con-

11The precise definition of a piecewise analytic feedback is given in Chapter 3.



Feedback stabilisation of locally controllable systems 17

trol system on Rn is a control system of the form

Σ : ẋ =

m∑
i=1

uifi(x), (2.2.4)

where u = (u1, . . . , um) ∈ Rm and the fi, i = 1, . . . ,m, denote vector fields on Rn. The
regularity of the vector fields fi determines the regularity of Σ. That is, a real analytic
driftless system is a control system of the form (2.2.4) with fi ∈ ΓωTRn. The following
theorem is proven in [24].

2.19 Theorem: Let Σ be a globally controllable, real analytic, driftless control system on
Rn. Then, for any T ∈ R>0, there exists u ∈ C∞(Rn × R;Rm) such that

(i) u(0, t) = 0, for all t ∈ R,

(ii) u(x, t + T ) = u(x, t), for all (x, t) ∈ Rn × R, and

(iii) the origin 0 ∈ Rn is a globally asymptotically stable equilibrium of Σ.

For example, Brockett’s integrator (see page 3) can be globally asymptotically stabilised
using a smooth, time-varying, periodic feedback [73].12

2.2.3. Asymptotically controllable systems. Probably under the influence of the classical
theory of dynamical systems, the stabilisation of control systems has traditionally been
(with many exceptions in the recent years, of course) a quest for asymptotically stable
closed-loop systems. Therefore, a large part of the literature on the relationship between
controllability and stabilisability employs a notion of asymptotic controllability, as opposed
to local controllability. Reviewing a representative sample from this body of work is the
purpose of the present section.

One-dimensional systems. For one-dimensional, asymptotically controllable systems, we
can obtain a result on stabilisability by directly applying Theorem 2.10, as is done in [5].
Moreover, it suffices to assume only attractivity, whereas for higher-dimensional systems,
additional assumptions have to be made. The following paragraphs contain the relevant
definitions.

Consider a control system Σ : ẋ = f(x, u), where x, u ∈ R, and f : R×R → R is locally
Lipschitz and satisfies Carathéodory-type conditions for the existence and uniqueness of
solutions (see, for example, [76]). Suppose that, for every point x0 in a neighbourhood
N of 0 ∈ R, there exists a piecewise constant control ux0 to which corresponds a unique
trajectory t 7→ x(t;x0, ux0(t)) of Σ with the property that lim

t→+∞
x(t;x0, ux0(t)) = 0. Then

Σ is said to be attractive13 and we have the following [5].

12Samson’s theoretical and applied work are among the earliest that draw attention to time-varying
feedbacks.

13We refrain from calling Σ “asymptotically controllable” because the standard usage of the term entails
additional properties which are described in the next section.
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2.20 Theorem: If a control system Σ : ẋ = f(x, u), x, u ∈ R, is attractive, then there exists
a stabilising relaxed feedback.

Proof: Apply Theorem 2.10 with V (x) = x2. ■

Recall that, by definition (page 10), a stabilising relaxed feedback is continuous on
N \ {0}. Example 2.6 shows that Theorem 2.20 does not hold in dimensions greater than
one.

In Section 2.1.1 we saw a characterisation of feedback stabilisable, one-dimensional
control systems; in the same paper [76] where this characterisation is proven, Sontag and
Sussmann show that every attractive, one-dimensional system can be stabilised using time-
varying feedback. Because stabilising feedbacks that yield a Lipschitz closed loop do not
always exist, a definition of a stabilising feedback has to address the problem of defining
the trajectories of a closed-loop system. This is the motivation for the following definition
of a stabilising feedback given in [76] where the reader can find additional details.

Suppose that, for the control system Σ : ẋ = f(x, u) above, the class U of admissible
controls consists of the piecewise constant functions defined on R≥0 and taking values in R.
Then, an asymptotically stabilising feedback for Σ is a pair (K, û) where K is a map
from R \ {0} to R and û : R \ {0} ∋ x0 7→ ux0 ∈ U is a map such that

(i) t 7→ x(t;x0, ux0(t)) is defined for all t ≥ 0,

(ii) lim
t→+∞

x(t;x0, ux0(t)) = 0, and

(iii) ûx(t;x0,ux0 (t))
(s) = K(x(t + s;x0, ux0(t + s))), for all t ≥ 0 and almost all s ≥ 0.

A time-varying asymptotically stabilising feedback is defined similarly, but with K :
R \ {0} × R≥0 → R. We can now state the following result.

2.21 Theorem: If a control system Σ : ẋ = f(x, u), x, u ∈ R, is attractive, then there exists
a continuous time-varying asymptotically stabilising feedback.

2.22 Remark: The proof of Theorem 2.21 actually yields a feedback such that the map
x 7→ f(x,K(x, t)) is locally Lipschitz and, as the authors point out, it can be modified to
yield a map K which is smooth in x, for every x ∈ R \ {0}.

The example in the Appendix of [80] (which is too long to reproduce here) shows that
Theorem 2.21 does not hold in dimensions greater than one.

Lyapunov characterisation of asymptotic controllability. The control systems of the pre-
vious section were of the general form ẋ = f(x, u). However their state space was restricted
to be one-dimensional. In the case where the state space is Rn, n ≥ 2, stabilisation results
of a fairly general nature have also been proven, however the distinctive feature between
the cases n = 1 and n ≥ 2 is that, in general, “regular” (e.g., continuous) stabilising feed-
backs do not exist in the latter case. Because of this inherent lack of regularity, part of
every contribution in this area has been to provide a meaningful definition for the trajec-
tories of a closed-loop system. Two ideas that have prevailed and have been generalised in
several directions since their appearance are the Lyapunov characterisation of asymptotic
controllability, due to Sontag [77], and the patching of open-loop controls into a closed-loop
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system, due to Ancona and Bressan [3]. This section and the next one describe these two
ideas in more detail.

To state the main result in [77]—that is, the equivalence between asymptotic controlla-
bility and the existence of a control-Lyapunov function—we need the following definitions.
Consider the control system Σ : ẋ = f(x, u), where x ∈ Rn, t ∈ R≥0, and assume that the
class of admissible controls is

U ≜ {u : R≥0 → Rm | u is measurable and locally essentially bounded} .

Suppose that the map f : Rn×Rm → Rn is locally Lipschitz, that the point (0, 0) ∈ Rn×Rm

is an equilibrium, that is, f(0, 0) = 0, and that, for any admissible control t 7→ u(t), there
exists locally a unique solution of ẋ(t) = f(x(t), u(t)). The control system Σ is said to be
asymptotically controllable to 0 ∈ Rn if

(i) for any x0 ∈ Rn there exists an admissible control u ∈ U such that
lim

t→+∞
x(t;x0, u(t)) = 0,

(ii) for any ε > 0 there exists a δ > 0 and an admissible control u ∈ U such that |x0| < δ
implies lim

t→+∞
x(t;x0, u(t)) = 0 and |x(t;x0, u(t))| < ε, for all t ≥ 0, and

(iii) there exist η, k ∈ R>0 such that |x0| < η implies that the control in (ii) can be chosen
so that |u| < k.

In order to prove the existence of a control-Lyapunov function for asymptotically control-
lable systems, it is necessary to consider relaxed controls in addition to the classical controls.
In Section 2.1.4 the focus was on feedback relaxed controls; in the present section we need
the following more general definition of an open-loop relaxed control (see also the footnote
on page 10).

Let W denote the set of probability measures on Rm equipped with the vague topology14

and let Wr ⊂ W denote the subspace of probability measures supported in B(0, r). A
relaxed control is a measurable function w : R≥0 → W . The class of relaxed controls is
denoted by W and the class of relaxed controls taking values in Wr for almost every t is
denoted by Wr. A control-Lyapunov function is a positive-definite, continuous, proper
function V : Rn → R such that, for every x ∈ Rn, there exists w ∈ W such that

V̇w(x) ≜ lim inf
t→0+

V (x(t;x,w)) − V (x)

t
< 0.

As stated at the beginning of this section, the following theorem is proven in [77].

2.23 Theorem: The control system Σ : ẋ = f(x, u) is asymptotically controllable if and
only if there exists a control-Lyapunov function.

With a smooth control-Lyapunov function at hand, the construction of a stabilising
feedback is straightforward. However, the control-Lyapunov function of Theorem 2.23 is
Lipschitz continuous15 and there are technical difficulties to overcome if it is to be used

14See [31, Ch. XIII, §4], for example.
15Many of the examples we have seen so far show that asymptotic controllability does not imply the

existence of a smooth control-Lyapunov function.
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for the construction of a stabilising feedback. This task is undertaken in [22] where it is
shown that asymptotic controllability implies the existence of a stabilising feedback. The
philosophy of the proof is to obtain a stabilising feedback as the solution to a sequence of
optimisation problems that are initialised by sampling the state of the control system. To
state the result in [22] a few more definitions are necessary.

Define a feedback to be a function k : Rn → Rm that maps compact sets to relatively
compact sets and a partition of [0,∞) to be an infinite increasing sequence π = (ti)i≥0

with t0 = 0. The number d(π) = sup
i

(ti+1 − ti) is called the diameter of π. Given a

feedback k, a partition π, and an initial state x0 ∈ Rn, the π-trajectory of Σ starting at
x0 is the trajectory obtained by solving recursively the differential equations

ẋ(t) = f(x(t), k(x(ti))), t ∈ [ti, ti+1].

A feedback k is said to s-stabilise Σ if, for any two positive real numbers R and r with
R > r, there exist MR > 0, δR,r > 0, and TR,r > 0 such that, for every partition π of [0,∞)
with d(π) < δ and every initial state x0 with |x0| ≤ R, the π-trajectory γ of ẋ = f(x, k(x))
starting at x0 is well-defined and satisfies:

(i) |γ(t)| ≤ r, for all t ≥ T ;

(ii) |γ(t)| ≤ M , for all t ≥ 0; and

(iii) limR→0M(R) = 0. •

The following is proven in [22].

2.24 Theorem: A system Σ : ẋ = f(x, u) is asymptotically controllable if and only if there
exists an s-stabilising feedback.

As the authors point out, the feedback of Theorem 2.24 is not robust with respect to
state measurement errors. Subsequent work [59, 69], however, improved on this aspect of
the result.

Patchy feedback. Another approach to the stabilisation of asymptotically controllable sys-
tems in Rn is a more direct construction of a stabilising feedback by patching together the
open-loop controls that drive the states of a system to the origin. Such feedbacks are called
“patchy” in [3], where their existence is proven. The result of [3] is stated below after the
necessary definitions are given; it applies to systems of the form Σ : ẋ = f(x, u), where
x ∈ Rn, u ∈ K ⊂ Rm, with K compact, and the map f : Rn × Rm → Rn is smooth.

A patch is a pair (Ω, g) where Ω ⊂ Rn is an open domain with smooth boundary and
g is smooth vector field defined on a neighbourhood of Ω and satisfying

⟨g(x), n(x)⟩ < 0, ∀x ∈ ∂Ω.

The vector n(x) is the unit normal at x ∈ ∂Ω pointing outside Ω. A patchy vector field
is a triple (Ω, g, (Ωa, ga)a∈A) such that

(i) the index set A is totally ordered,

(ii) Ω and Ωa, a ∈ A, are open domains with smooth boundary,
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(iii) {Ωa}a∈A is a locally finite cover of Ω,

(iv) g : Ω → Rn is a map and {(Ωa, ga)}a∈A is a family of patches such that

g(x) = ga(x), whenever x ∈ Ωa \
⋃
b>a

Ωb.

Given a patchy vector field (Ω, g, (Ωa, ga)a∈A), if there exist control values ka ∈ K, a ∈ A,
such that

ga(x) = f(x, ka), ∀x ∈ Ωa \
⋃
b>a

Ωb,

then the piecewise constant map

U(x) = ka, ∀x ∈ Ωa \
⋃
b>a

Ωb

is called a patchy feedback on Ω. Patchy feedbacks have piecewise C1 integral curves and
the following theorem says that they exist for asymptotically controllable systems [3]. For
the result to hold, the last part in the definition of asymptotic controllability, that is, the
small-control property, is not necessary.

2.25 Theorem: If a system Σ : ẋ = f(x, u) is asymptotically controllable, then there exists
an asymptotically stabilising patchy feedback.

The patchy feedback of Theorem 2.25 is shown to be robust with respect to certain
types of disturbances and a more extensive analysis of robustness properties is presented
in [4]. Theorem 2.25 is used in [39] to prove the existence of piecewise smooth, patchy,
control-Lyapunov functions for asymptotically controllable systems. Other papers that
contain recent results of a general nature on the existence of stabilising feedbacks and on
Lyapunov-like characterisations of control-theoretic properties are [54, 66, 70, 71, 84].



Chapter 3

Feedback stabilisation of locally
controllable systems

3.1. Introduction

The interest in studying semianalytic sets, i.e., sets that locally satisfy finitely many
analytic inequalities, is self-evident since many important families of sets in mathematics
and its applications are semianalytic, e.g., polyhedra in Rn. It is thus not surprising that
they have been studied extensively, beginning with the work of Thom and  Lojasiewicz
who established their fundamental properties such as the existence of stratifications and
triangulations [74]. However, the image of even a compact semianalytic set under an analytic
map can fail to be semianalytic [45] and, therefore, the class of semianalytic sets has to
be enlarged in order for their properties to be studied effectively. The solution was given
independently by Gabrielov [35], Hardt [45], and Hironaka [47, 48], who introduced the
category of subanalytic sets. We should note here that, although the study of semianalytic
sets naturally led to the concept of a subanalytic set, the applicability of subanalytic sets
extends well beyond the analysis of semianalytic sets.

The theory of subanalytic sets was used for the first time in control theory by
Brunovský [16] to show the existence of a regular time-optimal synthesis [14] for linear
systems with constraints. At the same time, the theory of subanalytic sets was used by
Sussmann to show in [79] the existence of universal inputs (a problem related to nonlin-
ear observability) and in [80] the existence of stabilising feedbacks for nonlinear globally
controllable systems.

3.2. Real analytic geometry

The goal of this section is to introduce a minimal background from real analytic geometry
and, more specifically, from the theory of subanalytic sets. Starting from the definitions of
semianalytic and subanalytic sets, we introduce the parts of the theory that are necessary
in order to state a stratification theorem due to Sussmann [80] which is the cornerstone
of the construction of a piecewise analytic feedback. Unless explicitly stated otherwise, all
manifolds that appear in this chapter and the next one are, by definition, second-countable,
Hausdorff, topological spaces, equipped with a maximal real analytic atlas.

22
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3.2.1. Semi-analytic and subanalytic sets. Let U be an open subset of a manifold M and
denote the ring of real analytic functions defined on U by Cω(U ;R). To make the length
and complexity of certain statements manageable, we introduce the following notation. If
f : A → R is a function on a set A and σ ∈ {=, >}, then

{f σ 0} ≜ {a ∈ A | f(a)σ 0}.

Moreover, we set

S (Cω(U ;R)) ≜

X ⊂ U | X =

p⋃
i=1

q⋂
j=1

{fij σ 0}, fij ∈ Cω(U ;R), σ ∈ {=, >}, p, q ∈ Z>0

 .

Then, a subset X of a manifold M is said to be semianalytic if, for every p ∈ M , there ex-
ists a neighbourhood U of p in M such that X∩U ∈ S (Cω(U ;R)). The study of semianalytic
sets leads naturally to the notion of subanalytic sets mainly because the class of semiana-
lytic sets is not closed under projections, and subanalytic sets are precisely projections of
(compact) semianalytic sets. Specifically, a subset X of a manifold M is subanalytic if,
for every point p ∈ M , there exists a neighbourhood U of p in M , a manifold N , and a
compact semianalytic subset A such that X ∩ U = pr1(A), where pr1 : M × N → M is
the canonical projection onto the first factor. This definition of subanalytic sets is the first
of the three equivalent definitions given in [13, Prop. 3.13]; the second part of the same
Proposition is the definition that appears in [80].

3.2.2. Stratifications. One of the most useful tools the theory of subanalytic sets provides
for applications is the stratification theorems for locally finite families of subanalytic sets [58,
79, 80, 83]. In what follows, we recall the definition of a subanalytic stratifiaction, following
the exposition in [80]. The theorems of the following section, although independent from
control-theoretic considerations, will take us one step closer to geometric control theory. In
particular, if one thinks of a control system as a collection of vector fields on a manifold,
the usefulness of stratification theorems for proving existence theorems, e.g., existence of a
stabilising feedback, will become apparent.

An analytic stratification of a manifold M is a partition P of M into connected real
analytic submanifolds, called strata, such that

(i) P is locally finite; that is, for every point p ∈ M , there exists a neighbourhood U of
p in M such that U intersects only finitely many strata from P,

(ii) S =
⋃

T∈P
T∩S ̸=∅

T , for every S ∈ P; that is, the closure S of a stratum S is the union of

those stata that have nonempty intersection with S, and

(iii) (T ⊂ S) ∧ (T ̸= S) ⇒ codimT > codimS; that is, if a stratum T is contained in the
closure S and it is not the whole stratum S, then the codimension1 of T is larger than
the codimension of S.

1A point x of a subanalytic subset X of a manifold M is called smooth of dimension k if there exists a
neighbourhood U of x in M such that X∩U is an analytic submanifold of M of dimension k. The dimension
of X is defined to be the maximum of the dimensions of the smooth points of X.
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A subanalytic stratification is an analytic stratification whose strata are subanalytic
sets. A stratification is called compatible with a family A of subsets of M if every A is
a union of strata. As mentioned earlier, the next theorem is fundamental for showing that
a piecewise analytic feedback, with all its defining properties, exists for locally or globally
controllable systems.

3.1 Theorem: [80] Let A be a locally finite family of nonempty subanalytic subsets of M
and, for each A ∈ A , let F (A) be a finite collection of vector fields on M . Then there exists
a subanalytic stratification P of M compatible with A and having the following property:
whenever P ∋ S ⊂ A ∈ A and X ∈ F (A), then either X is everywhere tangent to S or X
is nowhere tangent to S.

3.3. Control theory

In the remainder of this chapter, and unless specified otherwise, all control systems are
assumed to be real analytic. The reader may need to refer back to previous sections, and
Section 2.2.1 in particular, for notation and definitions that are used below.

3.3.1. Piecewise analytic feedback. The first point of contact between the real analytic
geometry of the previous section and control theory is the notion of a piecewise analytic
feedback. That is, a piecewise analytic vector field that can be realised by choosing values
for the controls of a control system. We begin with the definition of a piecewise analytic
vector field [80].

A piecewise analytic vector field on a manifold M is a quadruple

V = (Σ, (Σ1,Σ2), {VS}S∈Σ1 , E) ,

where

(i) Σ is an analytic stratification of M ,

(ii) (Σ1,Σ2) is a partition of Σ; strata in Σ1 are said to be of the first kind and strata in
Σ2 of the second kind,

(iii) for every S ∈ Σ1, VS is an analytic vector field on S,

(iv) for every p ∈ S ∈ Σ1, the integral curve γ of VS through p is either defined for all
t ≥ 0 or, if the integral curve is defined up to some time T > 0, then limt→T− γ(t)
exists,

(v) E is a map which assigns to every point p in a stratum S ∈ Σ2 a stratum E(p) ∈ Σ1,

(vi) for every p ∈ S ∈ Σ2, there exists a unique integral curve γ of VE(p) such that
limt→0+ γ(t) = p.

A piecewise analytic feedback for a control system f : M×Ω → TM can now be defined
as a piecewise analytic vector field V on M such that, for every p ∈ S ∈ Σ1, there exists
ω ∈ Ω, such that VS(p) = f(p, ω).

If p ∈ S ∈ Σ2, that is, p belongs to a stratum of the second kind, then the map E
in the definition of a piecewise analytic vector field is used as an “exit rule” from S into
E(p) ∈ Σ1.
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3.3.2. Normal reachability. This section is concerned with normal reachability, a property
of real analytic, locally controllable systems that is essential for proving the existence of
a piecewise analytic feedback. In geometric control theory, there is an obvious appeal in
knowing that certain control-theoretic tasks can be accomplished using piecewise constant
controls. This is due on the one hand to the simplicity of such controls and, on the other, to
the direct geometric interpretation of a control system with piecewise constant controls as
a family of vector fields on a manifold. For the purpose of constructing a piecewise analytic
feedback, we need not only know that the points in the reachable set of a locally controllable
system can be reached using piecewise constant controls, but also that the concatenation of
flows that correspond to these piecewise constant controls have rank equal to the dimension
of the state space, as a map from the space of switching times to the state space of the
control system. This last property is called normal reachability and it has been shown to be
true for a wide class of control systems [40]. Normal reachability entails the use of piecewise
constant controls and, therefore, we have to make sure that such controls are admissible.
To this end, we assume that Tfω : TM × Ω → TTM2 is continuous. Then Uf contains the
set Ustep of piecewise constant maps that possess a finite number of discontinuities on every
bounded interval [40, 41] [78, p. 474 Thm 54, p. 480 Prop. C3.4].

If Φf : R×M ⊃ U ∋ (t, p) 7→ Φf (t, p) ∈ M is the flow (defined on some open subset U)

of a vector field f on a manifold M , we write Φf
p for the map t 7→ Φf (t, p) [18, p. 95]. With

this notation, given a control system f : M × Ω → TM and two points p, q ∈ M , we say
that q is normally reachable from p (via f) if there exist k ∈ N, (ω1, . . . , ωk) ∈ Ωk, and

(s1, . . . , sk) ∈ Rk such that q = Φ
fωk
sk ◦ · · · ◦ Φ

fω1
s1 (p) and the map (t1, . . . , tk) 7→ Φ

fωk
tk

◦ · · · ◦
Φ
fω1
t1

(p) has rank equal to dimM at (s1, . . . , sk).
The following theorem is a combination of results contained in [40] and it covers all

aspects of normal reachability that are relevant to the proof of stabilisability of locally
controllable systems given in Section 3.4 below.

3.2 Theorem: If a control system f : M × Ω → TM is locally controllable from p ∈ M ,
then the time-reversed system −f is also locally controllable from p and every point in
R−f (p, [0, T )) is normally reachable from p.

As stated earlier, the theorem guarantees that we can actually reach an open neigh-
bourhood of each point in the reachable set of a locally controllable system.

3.4. Proof of the main result

Given a control system f : M × Ω → TM , a point p ∈ M is said to be an equilibrium
for f if there exists ω ∈ Ω such that f(p, ω) = 0. The control system f is said to admit
a uniform bound at p if, given a positive real number T , there exists a compact set
containing all trajectories defined on [0, T ] and starting at p [60].

3.3 Theorem: Let f : M × Ω → TM be a control system locally controllable from an
equilibrium p ∈ M . Suppose f admits a uniform bound, Ω is compact, and {f(p, ω) | ω ∈ Ω}
is convex for every p ∈ M . There exists a locally asymptotically stabilising piecewise analytic
feedback.

2Fix ω to compute Tfω and consider the resulting map on TM × Ω.
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Proof: If ξ = (X1, . . . , Xk) is a finite sequence of vector fields, |ξ| denotes the number of
elements in ξ, i.e., |ξ| = k, and if τ = (t1, . . . , tk) is a k-tuple of real numbers, |τ | is equal
to the sum of the components of τ , i.e. |τ | = t1 + · · · + tk. Given such a τ ∈ Rk, we denote
the cubical neighbourhood of τ of side 2ε by Cn

ε (τ); in other words,

Ck
ε (τ) =

{
(s1, . . . , sk) ∈ Rk | |ti − si| ≤ ε, i ∈ {1, . . . , n}

}
.

The non-negative orthant of Rk will be denoted by Rk
≥0 and it is, by definition, the set

{τ = (t1, . . . , tk) ∈ Rk | ti ≥ 0, i ∈ {1, . . . , k}}. For a collection of vector fields ξ and a

k-tuple τ as above, Φξ
τ stands for the composition ΦX1

t1
◦ · · · ◦ΦXk

tk
and, similarly to the case

of a single vector field, Φξ
p is the map τ 7→ Φξ(τ, p).

Since the control system f is locally controllable from p, the time-reversed system −f
is also locally controllable from p by Theorem 3.2. By the same theorem, if q is a point
in the reachable set R−f (p, [0, T ]) of −f , then q is normally reachable from p via −f in
time less than T + α, where α is a positive real number. That this is the case follows from
the fact that R−f (p, [0, T ]) ⊂ R−f (p, [0, T + α)). Theorem 3.2 can then be applied directly
to the set R−f (p, [0, T + α)). Normal reachability of q from p via −f in time less than
T +α means precisely that we can find a finite sequence of vector fields ξq = (X1, . . . , X|ξq |)

and σq = (s1, . . . , s|ξq |) ∈ R|ξq |
≥0 such that |σq| < T + α, each Xi, i ∈ {1, . . . , |ξq|}, is of

the form −fω, and Φξq(σq, p) ≜ ΦX1
s1 ◦ · · · ◦ Φ

X|ξq |
s|ξq |

(p) = q, with the map Φ
ξq
p having rank

equal to the dimension of M at σq. Since the rank of the map Φ
ξq
p is dimM at σq, the set

Φ
ξq
p (C

|ξq |
εq (σq)∩R|ξq |

≥0 ) contains a neighbourhood of q, for some (in fact, any) positive εq. For

every τ ∈ C
|ξq |
εq (σq) ∩ R|ξq |

≥0 , we can define a curve

ητ : [0, |τ |] ∋ t 7→ ητ (t) ∈ R|ξq |

such that t 7→
(

Φ
ξq
p ◦ ητ

)
(t) is the concatenation of trajectories of the control system −f

that connects p and Φ
ξq
p (τ) (see Figure 3.1). Let Aq denote the set of points in R|ξq |

≥0 which

are of the form ητ (t), τ ∈ C
|ξq |
εq (σq) ∩R|ξq |

≥0 , t ∈ [0, |τ |]. The set Aq can be written as a finite

union of compact semianalytic sets: Aq = A1
q ∪· · ·∪A

|ξq |
q . The geometric meaning of the Ai

q

is shown in Figure 3.2; they are sets of increasing dimension and every Ai
q is a rectangular

“neighbourhood” of the ith segment of the curve ητ . The explicit description of the sets Ai
q

in terms of inequalities—inequalities that stem form the fact that τ ∈ C
|ξq |
εq (σq) ∩ R|ξq |

≥0 and

t ∈ [0, |τ |]—is as follows [80, p. 45]: the set Ai
q consists of those points (t1, . . . , t|ξq |) that

satisfy

(i) tj = 0, for j ≤ |ξq| − i,

(ii) 0 ≤ tj ≤ bj , for j = |ξq| + 1 − i, and

(iii) aj ≤ tj ≤ bj , for j > |ξq| + 1 − i,

where aiq = max (σq,i − εq, 0), biq = σq,i+εq, and σq,i denotes the ith component of σq. Since

the sets Aq, A
i
q are compact semianalytic, their images Bq = Φ

ξq
p (Aq), B

i
q = Φ

ξq
p (Ai

q) are
compact subanalytic sets. The set Bq contains a neighbourhood of the point q.
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t3

t2

t1

ησq(t)

C |ξq |
εq (σq)

s2
s1

s3

σq

Figure 3.1. The curve ητ is used to express a concatenation of
flows for a control system as one single curve.

A2
q

A1
q

t2

A3
q

t3

t1

Figure 3.2. A graphical representation of the sets Ai
q used in the

proof of Theorem 3.3.

Consider now a strictly decreasing sequence (Ti) of positive real numbers with Ti → 0
and T1 = T . The assumptions of the theorem imply that the sets R−f (p, [0, Ti]) form
a decreasing sequence of compact sets [60, p. 242]. For the ease of notation, set Ki =

R−f (p, [0, Ti]) and
◦
Ki = R−f (p, [0, Ti)). Each point q in Ri ≜ Ki \ intKi+1 is contained

in a set Bq and, because Ri is compact, every Ri can be covered with finitely many sets
Bq1 , . . . , Bqki

. We reindex the points qi that correspond to the sets that form the finite
covers to create a sequence Bq1 , Bq2 , . . . of sets. Using the indices i, j, and m uniquely
defined by the relation

j = i + |ξq1 | + · · · + |ξqm−1 |, (3.4.1)

with 1 ≤ i ≤ |ξqm |, we define the sequence of sets Dj = B
|ξqm |+1−i
qm and we set Hj =
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Dj \
⋃
i̸=j

Di. The sequence (Hj)j≥1 gives, by restriction of certain sets Hj if necessary, a

locally finite partition of the punctured neighbourhood
◦
K1\{p} of p into relatively compact

subanalytic sets. To each set Hj , j ≥ 1, we assign the vector field Yj = −Xi, where i and
j satisfy (3.4.1), and to H0 ≜ {p} we assign the zero vector field; each vector field Xi

is of the form −fω and, therefore, Yj is of the form fω. Applying Theorem 3.1 to the
family H = {Hj}j≥1 of subanalytic subsets, with F (Hj) = {Yj} (see the notation in the

theorem), gives a stratification Σ of
◦
K1, compatible with the family H . The stratification

Σ is partitioned into Σ1 and Σ2 in the following way: every stratum S ∈ Σ is a subset of
an Hj ; if Yj is everywhere tangent to S then S ∈ Σ1, otherwise S ∈ Σ2.

We now show that the trajectories of the piecewise analytic feedback starting in a

neighbourhood of p converge to p. More specifically, let q be an arbitrary point in
◦
K1 \{p};

then q belongs to Hj , for some j > 0, since (Hj)j≥1 is a locally finite partition of
◦
K1 \ {p}.

By definition of the set Hj , q belongs to Dj but not to Ej−1 and, therefore, q is a point of
the form

q = ΦXi

t0i
◦ · · · ◦ Φk

t0k
(p),

for some finite sequence (t0i , . . . , t
0
k) of times. The curve

γ : s → ΦXi

t0i−s
◦ · · · ◦ ΦXk

t0k

is the integral curve of −Xi that satisfies γ(0) = q. For s = t0i we have γ(t0i ) ∈ Ej+1

and, since Yj = −Xi, the trajectory of the piecewise analytic feedback that starts at q
successively enters sets Hj with increasing index j approaching, thus, the point p.

Recall that an equilibrium p is Lyapunov stable if, for any neighbourhood U of p, there
exists a neighbourhood V of p such that all trajectories starting in V converge to p without
leaving the set U . Because Ki → {p}, for any neighbourhood U of p, there exists λ ∈ Z>0

such that Kℓ ⊂ U . If we set V = Kℓ+µ, for sufficiently large µ ∈ Z>0, then the sets U and
V satisfy the conditions for Lyapunov stability and, therefore, the closed-loop system with
the piecewise analytic feedback we constructed above is Lyapunov stable.

The verification that there is a well-defined map E so that (Σ, (Σ1,Σ2), {VS}S∈Σ1 , E)
is a piecewise analytic feedback for f is the same as in [80] and we conclude this proof by
recalling the main idea behind it. Let q be a point in a stratum S ∈ Σ2 and such that
q ̸= p. Then S ⊂ Hj , for some j > 0, and we denote by γ the integral curve of Yj through
q. For δ > 0 small enough, the compact set Γ = γ([0, T ]) intersects finitely many strata
S1, . . . , Sr ⊂ Hj , r ∈ Z > 0, and we define S̃i = {s ∈ [0, δ] | γ(s) ∈ Γ ∩ Si}, i = 1, . . . , r.
The subanalytic sets S̃i, i = 1, . . . , r, form a partition of [0, δ] and each S̃i is a finite union
of intervals and singletons. Without loss of generality, assume that q ∈ S1; then, there does
not exist an interval [0, α], α ∈ R>0, contained in S̃1 for otherwise S1 ∈ Σ1, contradicting
the hypothesis that S ∈ Σ2. Therefore, there exists k ∈ {1, . . . , r} such that γ(s) ∈ Sk for
s ∈ (0, α), α ∈ R>0, and Sk ∈ Σ1. Then, in the notation of Section 3.3.1, E(q) = Sk. ■

Theorem 3.3 is the core contribution of the present thesis and is an extension to locally
controllable systems of Theorem 2.18, by Sussmann [80], for globally controllable systems.
To show that the sets Ri can be covered by sets of the form Bq (in the notation of the proof
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of Theorem 3.3), Sussmann argues as follows: by Sard’s theorem, the map τ 7→ Φξ(τ, p)
has full rank on an open and dense subset of its domain of definition, for any fixed k-tuple
ξ of vector fields. Then, given any point q in the reachable (from p) set of −f , there exist
τ1 and ξ1 such that Φξ1(·, p) has full rank at τ1. If q1 is the point Φξ1(τ1, p), then, by
the assumption of global controllability, there exist τ2 and ξ2 such that Φξ2(τ2, q1) = q,
and the overall concatenation of flows from p to q, through q1, can be shown to have
rank equal to the dimension of M . Therefore, the construction of the piecewise analytic
feedback in [80] relies heavily on the assumption of global controllability that allows any two
points—in the argument above, the points q1 and q—in the state space M to be connected
by trajectories of −f . When the assumption of local controllability is substituted for that
of global controllability, it is not true in anymore that any two points in M can always be
connected by trajectories of −f and it is precisely the property of normal reachability that
allows the construction of a piecewise analytic feedback to be reinstated.

3.5. A corollary

As mentioned in the Introduction, controllability of the unstable eigenvalues of a linear
control system is equivalent to the existence of a linear asymptotically stabilising feedback.
In other words, it suffices to be able to control the unstable dynamics in order to stabilise
a system. Theorem 3.3 can be used to obtain an analogous result for nonlinear control
systems and the following corollary formalises this idea.

Let f : M × Ω → TM be a control system with dimM = n. We first perform some
constructions with vector fields following [82]. Let C be the Lie algebra of vector fields
generated by the vector fields fω, ω ∈ Ω. Let D ⊂ C be the derived algebra which can be
shown to be the set of all finite R-linear combinations of vector fields from the set

[fω1 , [fω2 , . . . , [fωk−1
, fωk

]]], k ≥ 2, ω1, . . . , ωk ∈ Ω.

Let X0 be the family of vector fields

X0 = {λ1fω1 + · · · + λkfωk
| k ≥ 1, ω1, . . . , ωk ∈ Ω, λ1 + · · · + λk = 0} .

Then take C0 = X0 + D ; this is a family of vector fields that can be shown to be closed
under Lie bracket. Moreover, this family of vector fields is invariant under the vector fields
fω, ω ∈ Ω, in the sense that [fω, X] ∈ C0 for every X ∈ C0. Denote by C0 the distribution
generated by the family of vector fields C0. If C0 has constant rank k in a neighbourhood of
p ∈ M , then we can find local coordinates x = (x1, . . . , xk, xk+1, . . . , xn) = (y1, y2) around
p such that C0 = span{ ∂

∂x1 , . . . ,
∂

∂xk } and, because C0 is invariant under f , we have the
local decomposition [82]:

ẏ1 = f1
(
y1, y2, ω

)
,

ẏ2 = f2
0

(
y2
)
.

(3.5.1)

3.4 Corollary: If the subsystem f1 is locally controllable from p and the vector field f2
0 has

p as a locally asymptotically stable equilibrium, then the control system f is asymptotically
stabilisable at p.

Obviously, variations of Corollary 3.4 can be obtained by altering the type of stability
of the uncontrolled dynamics f2

0 .
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3.6. Examples

Consider the question of whether some kind of stabilising feedback exists for the class
of control-affine systems described by

ẋ = u,

ẏ = Q(x),
(3.6.1)

where (x, y) ∈ Rm × Rn, Q is a quadratic form,3 and u ∈ U ⊂ Rm. The control set U
is assumed to be compact, convex, and containing a neighbourhood of the origin. The
linearisation of (3.6.1) is not controllable, and methods such as the use of Centre Manifold
theory [67, Ch. 10] or homogeneity arguments [42, 50] become impractical as the complexity
of Q and the dimension n (of the centre manifold) increase. It has been proven, though, that
control systems of the form (3.6.1) are locally controllable from the origin (0, 0) ∈ Rm×Rn

if and only if Q is indefinite [49]. Therefore, if Q is indefinite, Theorem 3.3 implies that
there exists a piecewise analytic feedback that asymptotically stabilises (3.6.1) to the origin.

The control-affine system of Example 2.9, that is, Σ : ẋ = X(x)+uY (x), x = (x, y, z) ∈
R3, u ∈ U ⊂ R, where

X(x) =

 0
x2(y − x)
x2(z − y)

 , Y (x) =

 1
0
0

 ,

and U is as in the previous example, is locally controllable from the origin, asymptotically
controllable to the origin, and it satisfies Coron’s condition for stabilisation [26]. However,
as is shown in [26], there does not exist a continuous feedback that asymptotically stabilises
Σ to the origin. It is also remarked in [26] that it is not known whether Σ can be stabilised
using dynamic feedback. Since Σ is locally controllable, we know from Theorem 3.3 that it
can be locally asymptotically stabilised to the origin using a piecewise analytic feedback.

Our last example is meant to illustrate the behaviour of control systems when the rank
condition of Corollary 3.4 does not hold. It is an instance of how the notion of singulari-
ties, if properly understood, will clarify further the relationship between controllability and
stabilisability for nonlinear control systems, and indeed the properties of these systems in
general. It is worth noting the simplicity of the example.

The control system
ẋ = (1 − u)x,

where x, u ∈ R, becomes asymptotically stable at x = 0 for any choice of a constant control
with value greater than one. At the same time, this system is clearly not locally controllable
from x = 0.

3See Problem 10.4 in [17, p. 315] and the references therein for the long history of vector-valued quadratic
forms and their relevance to control theory.



Chapter 4

A converse Lyapunov-type theorem
for locally controllable systems

4.1. Introduction

4.1.1. Lyapunov stability and converse Lyapunov theorems. In his 1892 dissertation,
Lyapunov made a fundamental contribution to the theory of stability for dynamical sys-
tems by introducing a powerful technique which allows the stability analysis of a dynamical
system without explicit knowledge of the trajectories of the system [61, 68]. The central
idea in Lyapunov’s work is to define a so-called Lyapunov function which can be viewed as
a generalised energy and prove that, if such a function exists and is decreasing along the
trajectories of a dynamical system, then the dynamical system has to be stable, mimicking
thus the process of energy decay for dissipative physical systems. Mathematicians, natu-
rally, followed up Lyapunov’s accomplishment by asking whether Lyapunov’s stability and
instability theorems admit converses; that is, in the case of the stability theorems, whether
Lyapunov functions exist for stable dynamical systems. The affirmative answer to this ques-
tion was given by several mathematicians [12], [44, Ch.VI] at varying levels of generality. In
the case of dynamical systems defined by differential equations, the most general results are
due to Kurzweil [57], Massera [64], and Zubov [88]. Kurzweil and Massera independently
proved that it suffices for the right-hand side of a differential equation to be a continuous
function for a C∞ Lyapunov function to exist. They also showed that if the differential
equation is periodic or time-independent, then there exists a Lyapunov function having
the same property. Zubov, on the other hand, introduced a general method for stability
analysis that he applied both to dynamical systems and differential equations. We com-
ment in more detail on Zubov’s work below, since we employ some of the core ideas of his
approach in the present chapter. It is worth noting that converse Lyapunov theorems not
only answer a mathematically interesting question, but also lead to a better understanding
of the stability properties of dynamical systems. The paper [63] is a representative example
where it is shown that the assumptions in Lyapunov’s second theorem imply equiasymp-
totic stability1, a type of stability which is stronger than asymptotic stability2, and they

1That is, asymptotic stability with the additional property that convergence to the equilibrium is uniform
with respect to the initial condition of the trajectories.

2In the non-autonomous case, otherwise the two notions are equivalent.
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have to be weakened for a converse theorem to hold. As far as the literature on classical
stability theory is concerned, in addition to the monographs [12] and [44], the paper [64]
provides a useful roadmap to earlier results due to Barbas̆in, Krasovskĭı, Četaev, Malkin,
Persidskĭı, and Yoshizawa. Entry points to the literature on extensions and generalisa-
tions of Lyapunov’s ideas such as piecewise smooth Lyapunov functions, prolongations, or
stability theorems that involve second or higher derivates of Lyapunov functions can be
found in [12]. Numerous sources of historical information on stability theory are available;
the recent publication [62] on Lyapunov stability has the additional quality of clarifying
misattributions and misnomers in the stability literature.

4.1.2. Zubov’s method. Zubov’s work on stability stands out for a multitude of reasons.3

To motivate the rest of the chapter, we explain in the present section its relevance to our
framework and why it provides a natural approach to the problem at hand, i.e., the proof
of the existence of a Lyapunov function for small-time locally controllable systems.

As we mentioned above, Zubov introduced a method that applies not only to differential
equations but also to dynamical systems on metric spaces [88, Ch.I]. This aspect of the
method is important to us for the following reason. To prove the existence of a Lyapunov
function for real analytic, small-time locally controllable systems, we first show that there
exists a piecewise analytic feedback that stabilises the control system in finite time. The
existence of the feedback is proven using a stratification theorem for subanalytic sets [80]
and, therefore, a closed-form expression—that is, a formula—describing the feedback is not
available. However, the resulting closed-loop system induces a dynamical system on the
state space of the control system and, hence, we can still apply Zubov’s method.

The second aspect of Zubov’s method that is important to us is its versatility that allows
for different definitions of a dynamical system. Specifically, in our proof of stabilisability
(Theorem 4.2) the trajectories of the dynamical system induced on the state space by the
closed-loop are not continuous with respect to initial conditions and they converge in finite
time to the equilibrium from which the control system is small-time locally controllable.
Because of these characteristics, the dynamical system and its stability properties do not
satisfy some of the assumptions classically made [11, 12, 44, 88] to prove converse Lyapunov
theorems. Of course, in the modern theory of dynamical systems [65] the classical assump-
tions have been considerably relaxed. However, we aim for a balance between the generality
of the assumptions we make and the strength of the conclusions we draw. To wit, although
it is possible, for example, to prove converse Lyapunov theorems for dynamical systems
that are discontinuous with respect to both the time and state variables and that satisfy
conditions weaker than the semi-group property (see for example [65, Theorem 3.6.1]), we
wish to exploit to the largest possible extent the known structure of the control system and,
consequently, of the dynamical system at hand, to sharpen our result.

One of the main contributions of Zubov [57, p. 21] is the characterisation of the domain
of attraction of an asymptotically stable equilibrium as the sub-level set of a suitably defined
Lyapunov function. Although not necessary from a strictly logical point of view for what we
want to accomplish here, this characterisation provides an interesting connection between
the reachable set of the control systems we consider and the domain of definition of a
Lyapunov function. This connection has not been fully explored yet.

3Lefschetz describes [88] as a “first rate book” and its last chapter as “the most striking part”.
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4.1.3. Control theory. From a control-theoretic point of view, Theorem 4.3 establishes a
connection between local controllability and the existence of a Lyapunov function. It is
perhaps interesting to view this connection as another necessary condition for local con-
trollability. The idea of using Zubov’s method in control theory is not new, of course. It
is well known that control theory has been heavily influenced by the theory of Lyapunov
stability, especially through the generalisation of Lyapunov functions to control-Lyapunov
functions [78, Ch.5] and through foundational contributions—analogous to the ones in the
classical theory of stability—such as the first converse theorems for control-Lyapunov func-
tions [5]. In fact, the Lyapunov approach constitutes the main paradigm in the study of
the stabilisation problem, one of the fundamental problems in control theory. In the op-
posite direction, significant impetus for the theoretical developments has been provided by
the successful application of control-Lyapunov functions to control engineering problems
and more specifically to the design of robust feedback controllers [34, 56]. The literature
on control-Lyapunov functions and their application to control theoretic problems is now
enormous; a review of many significant results can be found in [7]. As far as the appli-
cation of Zubov’s method to control theory is concerned, the main guiding principle that
led to important generalisations and progress in understanding the relationship between
contol-Lyapunov functions and stabilisation has been to obtain a control-Lyapunov func-
tion as a viscosity solution of a PDE of Hamilton-Jacobi type that generalises Zubov’s
equation [8, 19, 20, 34, 43]. In this context, small-time local controllability becomes espe-
cially relevant since it is known [33, 81] that it implies the continuity of the minimum-time
function. In fact, one has the following theorem. The terms used in the statement of the
theorem should be self-explanatory; the definitions can be found in [21] where a synthesising
overview of the contributions to control theory of the school of non-smooth analysis can
also be found.

4.1 Theorem: A small-time locally controllable system is globally asymptotically control-
lable in finite time if and only if there exists a Lyapunov pair (V,W )4 with V continuous
and W ≡ 1.

Several authors [7, 8, 21] define small-time local controllability to be controllability to
a point. Being a definition, it could be anything meaningful, however the majority of the
literature defines small-time local controllability to be controllabiltiy from a point. The
equivalence of the two definitions stems from a nontrivial theorem originally conjectured by
Sussmann and proven by Grasse [40], the point being that the same term is used for two
logically equivalent but different properties. What is obvious, of course, is that small-time
local controllability from a point is equivalent to small-time local controllability to that
point for the time-reversed system.

Theorem 4.1 bears some similarity to our Theorem 4.3. One way our result is different
from Theorem 4.1, and other similar results, is that we prove the existence of a Lyapunov
function for a dynamical system that corresponds to (the closed-loop system of) a control
system and we do not deal with open loop controls. Our Lyapunov function is not necessarily
continuous, however it has a derivative in the usual (“strong”) sense along the trajectories
of the closed-loop system. Moreover, we believe that a distinctive feature of our proof is
its simplicity: the construction of the Lyapunov function and the proof the accompanying

4The function V is the control-Lyapunov function and the function W is the positive definite function
that bounds the negative of a generalised derivative (sub-differential) of V with respect to the control system.
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properties use only elementary arguments.
Although our focus is exclusively on small-time locally controllable systems, we would

like to end the present section with a few landmarks in the development of the (control-
) Lyapunov theory for asymptotically controllable systems and, more specifically, with
results on converse Lyapunov-type theorems. To keep the size of this already long literature
review reasonable, we will not digress into the related, but different, topic of how Lyapunov
functions, smooth or not, can be used to construct feedback controls, however we will
mention such results if they seem necessary to make the picture coherent.

One of the earliest general results on asymptotic controllability is a Lyapunov charac-
terisation by Sontag [77] which provided the basis for proving in [22] that a sampled-data
feedback exists for asymptotically controllable systems. The feedback in [22] is obtained by
solving a sequence of optimisation problems, each one of them being initialised by sampling
the state of the system. As the authors point out, the feedback so constructed is not robust
with respect to state measurement errors, however, subsequent work [59, 69] improved on
this aspect of the result. A different approach to the problem of showing the existence of
stabilising feedbacks for asymptotically controllable systems is taken in [3] were it is shown
that there exist families of vector fields that can be patched together to construct an asymp-
totically stable closed-loop. Results on the robustness properties of these patchy feedbacks
are presented in [4]. Building on [3], the authors of [39] use the existence of asymptotically
stabilising patchy feedbacks to prove the existence of piecewise smooth patchy control-
Lyapunov functions for asymptotically controllable systems. In the present chapter, we
prove the existence of a stabilising feedback and use this fact to prove the existence of a
Lyapunov function and, in this sense, the philosophy of our approach parallels that of [39].
As mentioned above, the paper [22] follows the opposite direction by proving the existence
of a stabilising feedback, given the existence of a Lyapunov function. Other papers that
contain recent results of a general nature on the existence of stabilising feedbacks and on
Lyapunov-like characterisations of control-theoretic properties are [54, 66, 70, 71, 84].

4.2. Stabilisation of locally controllable systems in finite time

The first step in proving the existence of a Lyapunov function for locally controllable
systems is to show the stabilisability of the latter. Although it was shown in Chapter 3
that STLC systems can, indeed, be asymptotically stabilised, in this section we show that
a slight modification of the proof of Theorem 3.3 yields stabilisation of STLC systems in
finite time. The rationale behind this approach is twofold: first, it gives a different result
which is interesting in itself; second, showing that the trajectories of the closed-loop system
converge to the equilibrium in finite time greatly simplifies the arguments related to the
existence and the properties of the Lyapunov functions. It is perhaps interesting to observe
that stabilisation in finite time comes at the expense of a closed-loop system which may
not be Lyapunov stable. Whether the two properties can be reconciled requires further
investigation.

As mentioned already, the proof of the Theorem 4.2 is similar to that of Theorem 3.3,
but presenting only the necessary modifications with constant references to the proof of
Theorem 3.3 would make the exposition too convoluted.

4.2 Theorem: If a control system f : M × Ω → TM is locally controllable from an equilib-
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rium p ∈ M and admits a uniform bound, and if Ω is compact and {f(p, ω) | ω ∈ Ω} is
convex for every p ∈ M , then there exists a piecewise analytic feedback that locally stabilises
f at p in finite time.

Proof: If ξ = (X1, . . . , Xk) is a finite sequence of vector fields, |ξ| denotes the number of
elements in ξ, i.e. |ξ| = k, and if τ = (t1, . . . , tk) is a k-tuple of real numbers, |τ | is equal
to the sum of the components of τ , i.e., |τ | = t1 + · · ·+ tk. Given such a τ ∈ Rk, we denote
the cubical neighbourhood of τ of side 2ε by Ck

ε (τ); in other words,

Ck
ε (τ) =

{
(s1, . . . , sk) ∈ Rk | |ti − si| ≤ ε, i ∈ {1, . . . , k}

}
.

The non-negative orthant of Rk will be denoted by Rk
≥0 and it is, by definition, the set

{τ = (t1, . . . , tk) ∈ Rk | ti ≥ 0, i ∈ {1, . . . , k}}. Also, for the ease of notation, if

Φf : R×M ⊃ U ∋ (t, p) 7→ Φf (t, p) ∈ M

is the flow (defined on some open subset U) of a vector field f on a manifold M , we write

Φf
p for the map t 7→ Φf (t, p). For a collection of vector fields ξ and a k-tuple τ as above,

Φξ
τ stands for the composition ΦX1

t1
◦ · · · ◦ ΦXk

tk
and, similarly to the case of one vector field

just described, Φξ
p is the map τ 7→ Φξ(τ, p).

Since the control system f is locally controllable from p, the time-reversed system −f is
also locally controllable from p, by Theorem 3.2. By the same theorem, if q is a point in the
reachable set R−f (p, [0, T ]), then q is normally reachable from p via −f in time less than
T +α, where α is an arbitrarily small positive real number. One way to see this is to observe
that, since p is an equilibrium for f , R−f (p, [0, T ]) ⊂ R−f (p, [0, T + α)). Theorem 3.2 can
then be applied directly to the set R−f (p, [0, T + α)). Normal reachability of q from p via
−f in time less than T + α means precisely that we can find a finite sequence of vector

fields ξq = (X1, . . . , X|ξq |) and σq = (s1, . . . , s|ξq |) ∈ R|ξq |
≥0 such that |σq| < T + α, each Xi,

i ∈ {1, . . . , |ξq|}, is of the form −fω, and Φξq(σq, p) ≜ ΦX1
s1 ◦ · · · ◦ Φ

X|ξq |
s|ξq |

(p) = q, with the

map Φ
ξq
p having rank equal to the dimension of M at σq. Since the rank of the map Φ

ξq
p is

dimM at σq, there exists εq > 0 such that the map Φ
ξq
p is defined on C

|ξq |
εq (σq) ∩ R|ξq |

≥0 and

the set Φ
ξq
p (C

|ξq |
εq (σq) ∩ R|ξq |

≥0 ) contains a neighbourhood of q.

For every τ ∈ C
|ξq |
εq (σq) ∩ R|ξq |

≥0 , we can define a curve

ητ : [0, |τ |] ∋ t 7→ ητ (t) ∈ R|ξq |

such that t 7→
(

Φ
ξq
p ◦ ητ

)
(t) is the concatenation of trajectories of the control system −f

that connects p and Φ
ξq
p (τ) (see Figure 3.1). Let Aq denote the set of points in R|ξq |

≥0 which

are of the form ητ (t), τ ∈ C
|ξq |
εq (σq) ∩R|ξq |

≥0 , t ∈ [0, |τ |]. The set Aq can be written as a finite

union of compact semianalytic sets: Aq = A1
q ∪· · ·∪A

|ξq |
q . The geometric meaning of the Ai

q

is shown in Figure 3.2; they are sets of increasing dimension and every Ai
q is a rectangular

“neighbourhood” of the ith segment of the curve ητ . The explicit description of the sets Ai
q

in terms of inequalities—inequalities that stem form the fact that τ ∈ C
|ξq |
εq (σq) ∩ R|ξq |

≥0 and

t ∈ [0, |τ |]—is as follows [80, p. 45]: the set Ai
q consists of those points (t1, . . . , t|ξq |) that

satisfy
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(i) tj = 0, for j ≤ |ξq| − i,

(ii) 0 ≤ tj ≤ bj , for j = |ξq| + 1 − i, and

(iii) aj ≤ tj ≤ bj , for j > |ξq| + 1 − i,

where aiq = max (σq,i − εq, 0), biq = σq,i+εq, and σq,i denotes the ith component of σq. Since

the sets Aq, A
i
q are compact semianalytic, their images Bq = Φ

|ξq |
p (Aq), B

i
q = Φ

|ξq |
p (Ai

q) are
compact subanalytic sets and the set Bq contains a neighbourhood of the point q.

Consider now a strictly increasing sequence (Ti) of positive real numbers and the cor-
responding increasing sequence of compact sets Ki ≜ R−f (p, [0, Ti]); compactness follows
from the assumptions of our theorem [60, p. 242]. Each point q in Ri ≜ Ki+1 \ intKi is
contained in a set Bq of the form described above and, therefore, by successively covering
each compact set Ri with finitely many sets Bq we obtain a countable covering (Bqm) of
the set R ≜ R−f (p, [0,∞)). Following Sussmann’s construction [80], we use the indices i,
j, and m uniquely defined by the relation

j = i + |ξq1 | + · · · + |ξqm−1 |, (4.2.1)

with 1 ≤ i ≤ |ξqm |, to define the sequence of sets Dj = Bi
qm , with D0 = {p}. Then

Ej = D0 ∪ · · · ∪Dj is an increasing sequence of compact subanalytic sets and we set Hj =
Ej \Ej−1, with E−1 = ∅. The collection {Hj}j≥0 of sets is, then, a locally finite partition of
R into relatively compact subanalytic sets. If we assign the vector field Yj = −X|ξqm |+1−i

to each set Hj , j ≥ 1, and the vector field Y0 = 0 to the set H0 ≜ {p}, we can apply
Theorem 3.1 to the family H = {Hj}j≥1 of subanalytic subsets, with F (Hj) = {Yj} (see
the notation in the theorem), to obtain a stratification Σ of R, compatible with the family
H . The stratification Σ is partitioned into Σ1 and Σ2 (see Section 3.3.1) in the following
way: given that every stratum S ∈ Σ is a subset of an Hj for some j, if Yj is everywhere
tangent to S then S ∈ Σ1, otherwise S ∈ Σ2. If we set VS = Yj , for all S ∈ Σ1, then
F = (Σ, (Σ1,Σ2), {VS}S∈Σ1 , E) is a piecewise analytic feedback for f that steers every
point of R to p in finite time [80, p. 46-48]. ■

4.3. Proof of the main result

In the previous section we showed that STLC systems can be locally stabilised in finite
time using a piecewise analytic feedback. In the present section we explain how the flow
of the resulting closed-loop system defines on the state space a dynamical system which
provides a convenient formalism for the proof of our converse Lyapunov theorem. Let us
begin by recalling the definition of an action.

A (left) action of a monoid G on a metric space X is a map ϕ : G × X → X that
satisfies the following properties:

(i) ϕ(1G, x) = x, ∀x ∈ X;

(ii) ϕ(g2g1, x) = ϕ(g2, ϕ(g1, x)), ∀g1, g2 ∈ G,∀x ∈ X,

where 1G is the identity in G. Because the dynamical system associated with the piecewise
analytic feedback of the previous section is defined only for positive times—we follow the
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common convention according to which we label as “time” the variable that takes its values
in G—and it has trajectories that do not depend continuously on their initial conditions,
we are lead to the following definition. A dynamical system on a metric space X is an
action of a monoid G on X. It is perhaps worth noting at this point that stronger definitions
of a dynamical system satisfy a fortiori the definition just given and, hence, we have not
tailored our definition to our convenience. In other words, if, for example, negative times
are allowed and G has the structure of a group, then G is also a monoid. If continuity
with respect to initial conditions holds then the map ϕ will satisfy additional continuity
properties. In fact, our ϕ is continuous with respect to time.5

The following definition relies on the fact that, to each initial condition q ∈ R, there
corresponds a unique trajectory of the piecewise analytic feedback we constructed in the
previous section. Such a trajectory is a concatenation of integral curves of analytic vector
fields of the form f(x, ω), with ω ∈ Ω fixed. If d denotes a metric on M that generates the
topology of M (see the beginning of Section 3.2 for the defining properties of a manifold that
imply its metrisability), the dynamical system that corresponds to the flow of a piecewise
analytic feedback is defined as follows.

Let f : M × Ω → TM and p ∈ M be as in Theorem 4.2, and F a piecewise analytic
feedback for f . The dynamical system F̃ is the action ϕ of G = (R≥0,+) on X = (R, d),
where R = R−f (p, [0,∞)), defined as follows: given t ∈ G and q ∈ R, ϕ(t, q) is the point
in R that is reached by following for time t the trajectory of F that starts at q at time 0.
Moreover, for all t ∈ G, we set ϕ(t, p) = p.

In what follows, we write interchangeably ϕ(t, q) and tq for the value of ϕ at (t, q) ∈
G×R. In the latter notation, associativity of the action is expressed as (t2 + t1)q = t2(t1q).

Given q ∈ R, we define the trajectory through q of F̃ to be the map γq : G ∋ t 7→
ϕ(t, q) ∈ R. Being a concatenation of integral curves of analytic vector fields, γq is a
continuous map. We have now established the necessary framework to prove the following.

4.3 Theorem: Let f : M × Ω → TM be a control system, p ∈ M an equilibrium, and F
a stabilising piecewise analytic feedback as in Theorem 4.2. There exists a positive-definite
function V defined on R such that, for all q ∈ R, the derivative of V along γq negative
definite.

Proof: Define on R = R−f (p, [0,∞)) the function

V : R ∋ q 7→ 1 − e−
∫∞
0 d(tq,p)dt ∈ R. (4.3.1)

Every point q ∈ R converges to p in some finite time Tq > 0 and, therefore,∫ ∞

0
d(tq, p)dt =

∫ Tq

0
d(tq, p)dt < ∞, (4.3.2)

which shows that V is well-defined. Since, for any q ∈ R \ {p}, there exist η > 0 and

5In the manifold topology.
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Tη ∈ (0, Tq) such that d(tq, p) > η for t ∈ [0, Tη], it follows that∫ Tη

0
d(tq, p)dt >

∫ Tη

0
ηdt = ηTη

⇒ − e−
∫ Tη
0 d(tq,p)dt > −e−ηTη

⇒ 1 − e−
∫ Tη
0 d(tq,p)dte

−
∫ Tq
Tη

d(tq,p)dt
> 1 − e−ηTηe

−
∫ Tq
Tη

d(tq,p)dt

⇒ V (q) > 1 − e−ηTηe
−

∫ Tq
Tη

d(tq,p)dt ≥ 1 − e−ηTη > 0.

To go from the third to the last line we used Eq. (4.3.2), whereas for the last two inequalities
we used the facts that d(tq, p) ≥ 0, t ∈ [Tη, Tq], and ηTη > 0, respectively. Moreover,

V (p) = 1 − e−
∫∞
0 d(tp,p)dt = 1 − e0 = 0.

We have thus shown that V is positive definite. We complete the proof by showing that
the derivative of V along the trajectories of F̃ is negative definite. From the definition of
the function V , we have for q ∈ R \ {p} and t ∈ [0,∞)

1 − V (q) = e−
∫∞
0 d(sq,p)ds

= e−
∫ t
0 d(sq,p)dse−

∫∞
t d(sq,p)ds

⇒ [1 − V (q)]e
∫ t
0 d(sq,p)ds = e−

∫∞
t d(sq,p)ds

= e−
∫∞
0 d((u+t)q,p)du

= e−
∫∞
0 d(u(tq),p)du

= 1 − V (tq).

A metric is uniformly continuous with respect to the metric structure it defines and, as
explained above, the action ϕ(t, q) = tq is continuous with respect to t. Therefore, V (tq) is
differentiable with respect to t and we have

dV (tq)

dt
= −[1 − V (q)]d(tq, p)e

∫ t
0 d(sq,p)ds.

Setting t = 0 gives

dV (tq)

dt

∣∣∣∣
t=0

= −[1 − V (q)]d(q, p)

and both factors on the right-hand side are positive for q ̸= p. The derivative at any other
time t0 along the trajectory γq can be computed by a change of variables and is easily seen
to be

dV (tq)

dt

∣∣∣∣
t=t0

=
dV (sq̃)

ds

∣∣∣∣
s=0

,

where q̃ = t0q and the last quantity is negative from the previous calculation. ■
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One observation that could potentially be interesting, as far as the relation between the
function V and the structure of the reachable sets R−f (p, T ) is concerned, is the following.
If F is a feedback and V is a function as in Theorem 4.3, then a simple calculation shows
that the points q that are steered to p by F in time exactly T > 0 are characterised by the
relation

V (q) = 1 − e−
∫ T
0 d(tq,p)dt,

where T is the smallest positive real number such that

dV (tq)

dt

∣∣∣∣
t=T

= 0.

Therefore, the level sets of V correspond to the reachable sets R−f (p, T ).

4.4. Examples

We begin by revisiting the control-affine system Σ1 : ẋ = X(x) + uY (x), x = (x, y, z) ∈
R3, u ∈ U ⊂ R, of Example 2.9, in the context of the present chapter. Recall that

X(x) =

 0
x2(y − x)
x2(z − y)

 , Y (x) =

 1
0
0

 ,

and U is assumed to be compact, convex, and containing a neighbourhood of the origin.
The control system Σ1 satisfies both Brockett’s [15, p. 181],[87] and Coron’s [26] necessary
conditions for continuous stabilisability, however, as explained in [26], there does not exist
an asymptotically stabilising u ∈ C0(R3) for Σ1. From Artstein’s theorem [5], it follows
that a smooth control-Lyapunov function for Σ1 does not exist as well. However, because
Σ1 is asymptotically controllable to the origin, Sontag’s characterisation [77] implies the
existence of a continuous control-Lyapunov function. In connection with our result, system
Σ1 can be shown to be STLC from 0 ∈ R3 and, therefore, there exists a function V as
in Theorem 4.3. That is, a positive definite V with negative derivative along closed-loop
trajectories of Σ1. It would be interesting to know whether Theorem 4.3 can be improved
to yield a continuous V .

Our second example is the control-affine system Σ2 : ẋ = X(x) + uY (x) of Exam-
ple 2.15, where x = (x, y) ∈ R2, u ∈ U ⊂ R, with U as in the previous example, and

X(x) =

[
0

y − x3

]
, Y (x) =

[
1
0

]
.

Theorem 4.3 can be applied to Σ2 since the latter is STLC from 0 ∈ R2. However we can
draw stronger conclusions in terms of the regularity of the Lyapunov function: as shown
in [53], Σ2 can be asymptotically stabilised using a Hölder-continuous feedback and, by
Artstein’s theorem, there exists a smooth control-Lyapunov function for Σ2. Our interest
in this example stems from the fact that any map f : Rm → Rn with subanalytic graph is
locally Hölder-continuous if it is continuous [55, p. 183], and hence a plausible conjecture is
that, under additional hypotheses that, for example, must be violated by Σ1, Theorem 3.3
could yield a Hölder-continuous feedback.
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Lastly, to demonstrate the numerical approximation of the function V of Theorem 4.3,
we consider an elementary optimal control problem. Specifically, the problem of driving to
the origin in minimum time and with zero terminal speed a point mass that is restricted
to move on the real line, starting from any initial condition. The advantage of considering
this simple problem is that the optimal feedback can be easily constructed explicitly and is
piecewise constant. Therefore, the construction contained in the proof of Theorem 4.3 can
be readily applied to yield a Lyapunov function V . As is well known, the solution to this
optimal control problem is a bang-bang control and the numerical approximation suggests
that the function V is piecewise differentiable with the loss of differentiability taking place
along the switching locus of the optimal feedback control. The same procedure can, in
principle, be applied to any control system for which a feedback F , as in Theorem 4.2,
can be constructed, however, in the case of nonlinear control systems, the complexity of
constructing F seems prohibitive at the moment.

A point of unit mass moving without friction on a horizontal track under the influence
of a force u whose magnitude can vary from -1 to 1 can be modelled by the control system

ẋ = y,

ẏ = u,
(4.4.1)

where x, y ∈ R, and u ∈ [−1, 1]. If we define the function

y = W (x) =

{
−
√

2x, x ≥ 0,
√
−2x, x < 0,

and call Γ− and Γ+ the branches that correspond to x < 0 and x ≥ 0, respectively, then the
feedback Ψ that steers the point mass from any intial condition to the origin in minimum
time and with zero terminal speed is as follows [60, p. 4]

Ψ(x, y) =


−1, (y > W (x)) ∨ ((x, y) ∈ Γ− \ {(0, 0)}) ,

0, (x, y) = (0, 0)

1, (y < W (x)) ∨ ((x, y) ∈ Γ+ \ {(0, 0)}).

Given the feedback Ψ and Equation (4.3.1), the function V we are after can be written as

V (x, y) =


Vu, (y > W (x)) ∨ ((x, y) ∈ Γ− \ {(0, 0)}) ,

0, (x, y) = (0, 0)

Vℓ, (y < W (x)) ∨ ((x, y) ∈ Γ+ \ {(0, 0)}),

where

Vu = 1 − exp

(
−
∫ ts

0

√
(x + ty − t2/2)2 + (y − t)2dt−∫ ∞

ts

√
[t2/2 + t(ys − ts) − tsys + t2s/2 + xs]2 + (t− ts + ys)2dt

)
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and

Vu = 1 − exp

(
−
∫ ts

0

√
(x + ty + t2/2)2 + (y + t)2dt−∫ ∞

ts

√
[−t2/2 + t(ys + ts) − tsys − t2s/2 + xs]2 + (−t + ts + ys)2dt

)
.

The integration limit ts is the first time when the trajectory of the closed-loop system

ẋ = y,

ẏ = Ψ(x, y),
(4.4.2)

that starts at (x, y) intersects the graph of the function W , and (xs, ys) are the coordinates
of that point of intersection. We make the convention that, if the initial condition (x, y) is
already on the graph of W , then ts = ∞. A pair of trajectories of (4.4.2) and the graph of
the function V are shown in Figures 4.1 and 4.2, respectively. It should be mentioned that
a differentiable Lyapunov function that leads to the construction of a continuous feedback
that stabilises the double integrator (4.4.1) to the origin in finite time can be found in [10].
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Figure 4.1. Two trajectories of (4.4.2) corresponding to initial
conditions (−5, 6) and (5,−6).
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Figure 4.2. A numerical approximation of the Lyapunov function
of Theorem 4.3 for system (4.4.2).



Chapter 5

Future work

If we assume that the culmination of a general theory of stabilisation should be a taxonomy
of control systems according to their stabilisability properties, then specifying the regularity
of the feedbacks that can stabilise a given control system becomes a particularly important
problem. It is not a problem of purely theoretical interest, however, and the examples in
the Introduction (some of which we revisit below) demonstrate how it relates to concrete
questions of stabilisability. The first section of the present chapter is devoted to examples
and results from the literature that lead to the conclusion that regularity of feedback is an
infinitesimal, rather than a local phenomenon. That is, it depends only on the properties of
a control system at the equilibrium of interest and, therefore, should be studied accordingly.

The second section of the chapter is concerned with the gap that exists in the literature
between the asymptotic notions of controllability and stabilisability and the analogous no-
tions of finite temporal character. For example, geometric control theory focuses primarily
on the notion of small-time local controllability, whereas the classical Lyapunov approach
to stabilisation is mainly concerned with asymptotically stable closed-loop control systems.
Establishing a connection between these two bodies of work that have been developing in-
dependently for decades will probably initiate an osmosis of ideas that could lead to further
progress in understanding the structural properties of nonlinear control systems. The main
point of Section 5.2 is to show how the first step in reconciling the finite and the asymptotic
character of controllability and stabilisation can be precisely formulated in geometric terms.

The goal of the present chapter is a modest one, namely, to identify the right questions
to ask in connection with the two problems mentioned above and described in more detail
below. Their resolution is the matter of future work. Any claim of originality regarding the
material of this chapter is bound to the presentation and not the results.

5.1. Regularity of asymptotically stabilising feedback controls

We saw in the Introduction and in Section 2.1.2 that Brockett’s integrator, that is, the
control system Σ : ẋ = uX(x) + vY (x), x = (x, y, z) ∈ R3, X,Y : R3 → R3, u, v ∈ R, where

X(x) =

 1
0
−y

 and Y (x) =

 0
1
x

 ,

43
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cannot be asymptotically stabilised at the origin by means of a continuous feedback control.
However, it was observed in [29] that the feedback control given by

[
u
v

]
=

[
x −y
y x

] −1 +
z2

(x2 + y2)3/2
−z

(x2 + y2)1/2

 (5.1.1)

and defined to be zero at zero, i.e., (u(0, 0, 0), v(0, 0, 0)) = (0, 0), asymptotically stabilises
Σ on

R3 \ {(x, y, z) ∈ R3 | (x2 + y2 = 0) ∧ (z ̸= 0)}.

That is, there exists a feedback control which is continuous off the negative and positive z-
semiaxes, and asymptotically stabilises Brockett’s integrator at the origin 0 ∈ R3. Similarly,
it is shown in [29] that the feedback control

u(x, y) =

 y1/3 +
1

3

(
5y + x− 2x3 − x4

y

)
, y ̸= 0

0, (x, y) = (0, 0)
(5.1.2)

asymptotically stabilises on

R2 \ {(x, y) ∈ R2 | (x ̸= 0) ∧ (y = 0)}

the control system Σ : ẋ = X(x) + uY (x), x = (x, y) ∈ R2, X,Y : R2 → R2, u ∈ R, where

X(x) =

[
0

y − x3

]
and Y (x) =

[
1
0

]
. (2.2.1)

Recall from Section 1.2 that the linearisation of (2.2.1) is not stabilisable and, hence, a
stabilising feedback u ∈ C1(R2) for (2.2.1) does not exist. However, the feedback con-
trol (5.1.2) is real analytic off the x-axis. Both feedback controls (5.1.1) and (5.1.2) are
obtained in [29] by first performing coordinate transformations that are known in the dy-
namical systems literature as “blow-ups” [32]. A question that naturally emerges from the
analysis of the previous examples is the following [29].

Problem Let f : M × Ω → TM be a control system that is not continuously stabilisable
at a point p ∈ M . That is, there does not exist u ∈ C0(M ; Ω) such that f(., u(.)) is
asymptotically stable at p. Is it possible to identify “singular submanifolds” of M off
which a continuous stabilising feedback can be defined?

In the case of control-affine systems, a positive answer to the above question would be in
agreement with the result in [70] where it is shown that asymptotically controllable (control-
affine) systems can be stabilised by means of feedback controls that are continuous outside
closed sets of measure zero.

If a control system can be stabilised using continuous feedback, then, by virtue of
Theorem 2.10, the obstructions to higher regularity, e.g., existence of smooth feedback,
are concentrated at the equilibrium at which the control system is to be stabilised. For
example, consider again the System (2.2.1). Since it was shown in Section 1.2 that (2.2.1)
can be stabilised by a Hölder-continuous feedback, Theorem 2.10 implies the existence of an
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almost smooth control-Lyapunov function that can be used to construct an almost smooth
stabilising feedback1 for (2.2.1).2 Similarly, since the control system Σ : ẋ = X(x)+uY (x),
x = (x, y) ∈ R2, X,Y : R2 → R2, u ∈ R, where

X(x) =

[
0

y2 − x4

]
and Y (x) =

[
1
0

]
, (B)

can be stabilised by C1 feedback [30], it can also be stabilised by a feedback which is almost
smooth. However, it has been shown in [30] that no C3 feedback can stabilise (B) at the
origin. These observations lead us to the following question.

Problem Given a control system f : M × Ω → TM that is continuously stabilisable, is
it possible to systematically specify the highest degree of regularity that a stabilising
feedback for f can have?

It is worth emphasising the obvious fact that the importance of the above problems stems
from the interest to stabilise control systems for which we do not know a priori their
stabilisability properties. For example, unless one is aware of the results in [30], it is not
obvious why attempting to stabilise (B) using a parametrised polynomial feedback is a futile
endeavour.

5.2. The temporal aspect of stabilisation

As mentioned in the introduction of this chapter, in the present section we formulate a
question that, if answered, will provide a link between asymptotic and local controllability.
We begin by recalling a few basic definitions.

Let f : M ×Ω → TM be a real analytic control system and denote by FΣ the collection
(fω)ω∈Ω of vector fields of the form fω : M ∋ x 7→ f(x, ω) ∈ TM . Let also LΣ denote the
Lie algebra generated by FΣ and set

LΣ(x) = spanR {X(x) | X ∈ LΣ} .

If LΣ(p) = TpM , then the control system f is said to satisfy the Lie algebra rank
condition (LARC) at p. If a control system f satisfies the Lie algebra rank condition
at a point p ∈ M , then the reachable set Rf (p, [0, T )) has non-empty interior, for all
T ∈ R>0 [82].

Suppose now that f : M × Ω → TM is a real analytic control system that satisfies the
Lie algebra rank condition at p ∈ M and is asymptotically controllable (AC) to p. Here we
redefine asymptotic controllability to mean that, for any q in a neighbourhood U ⊂ M of p,
there exists an admissible control u such that lim

t→+∞
x(t; q, u(t)) = p. That is, we keep only

(a local version of) the first part of the definition given on page 19, and the reason why we
do so is because we believe it is important to isolate the defining properties of asymptotic

1Recall that an almost smooth function is a function which is C∞ in a punctured neighbourhood of
0 ∈ Rn. Since the set of control values Ω was assumed to have only the structure of a metric space, in order
to extend the definition of almost smoothness to feedback controls we can either consider the special case
Ω = Rm, or define a feedback u : M → Ω to be Cr if the vector field f(., u(.)) is Cr.

2In other words, a corollary of Theorem 2.10 is that the existence of a continuous stabilising feedback
implies the existence of an almost smooth stabilising feedback.



46 P. Isaiah

controllability and understand separately their relevance to the problem we formulate in
this section. Under the aforementioned assumptions on f , we examine the following two
cases.

The control system f is STLC at p. Then, given T ∈ R>0, p lies in the interior of
R−f (p, [0, T )), by Theorem 3.2. Because f is assumed to be asymptotically control-
lable to p, any point q1 in a neighbourhood U ⊂ M of p can be steered in finite time
to some point q2 ∈ R−f (p, [0, T )) and, by definition of R−f (p, [0, T )), q2 can be steered
to p in finite time. Therefore, in this case, asymptotic controllability to p and the Lie
algebra rank condition at p, together, imply controllability to p in finite time.

The control system f is not STLC at p. Then p has to be on the boundary of
R−f (p, [0, T )), for all T ∈ R>0, and asymptotic controllability of f implies that, for
every q in a neighbourhood U ⊂ M of p, there exists an admissible control u such that
lim

t→+∞
x(t; q, u(t)) = p. In order to deduce controllability to p in finite time it has to be

shown that the control u can be chosen in such a way that x(t; q, u(t)) ∈ R−f (p, [0, T )),
for some t, T ∈ R>0.

The previous considerations lead to the following question.

Problem Let f : M × Ω → TM be a real analytic control system that satisfies the Lie
algebra rank condition at p ∈ M . Is it true that asymptotic controllability to p implies
local controllability from p?

It is reasonable to expect that an affirmative answer to this question will require a stronger
notion of asymptotic controllability than the one we employ in this chapter, especially
because of the “small-time” character of local controllability.
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Bn(p; ε) : a ball of radius ε centred at p ∈ Rn,
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Rf (p, t) : the set of points reachable from p in
time t via trajectories of f , 12
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Z>0 : the set of positive integers, 8
ΓωE : the vector space of real analytic sections

of the bundle E, 16

almost smooth function, 10
Artstein’s theorem, 10

Brockett’s theorem, 6
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locally integrable, 12
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relaxed, 10, 19
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asymptotically controllable, 19, 45
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controllable
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small-time locally (STLC), 12

driftless, 17
locally continuously reachable in small

time, 15
real analytic, 12
smooth, 12

control-Lyapunov function, 19
Coron’s theorem, 9

diameter of partition, 20

equilibrium, 25

feedback, 20
asymptotically stabilising, 18
patchy, 21
piecewise analytic, 16, 24
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s-stabilising, 20
time-varying, 18

Kawski’s theorem, 13

Lie algebra rank condition (LARC), 45

negative orbit, 12
normal reachability, 25
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patch, 20

reachable set, 12

semianalytic set, 23
stabilisability

dynamic local asymptotic (DLAS), 8
local asymptotic (LAS), 8
local by time-varying feedback, 15

state space, 12
stratification

analytic, 23
compatible with a family of sets, 24
subanalytic, 24

stratum, 23
strong accessibility, 15
subanalytic set, 23

uniform bound, 25

vector field
patchy, 20
piecewise analytic, 24

52


	Introduction
	Contribution of the thesis
	A few motivating examples

	Literature review
	General theorems on stabilisation
	One-dimensional control systems.
	Brockett's theorem.
	Coron's theorem.
	Artstein's theorem.

	Stabilisation under controllability assumptions
	Locally controllable systems.
	Globally controllable systems.
	Asymptotically controllable systems.


	Feedback stabilisation of locally controllable systems
	Introduction
	Real analytic geometry
	Semi-analytic and subanalytic sets.
	Stratifications.

	Control theory
	Piecewise analytic feedback.
	Normal reachability.

	Proof of the main result
	A corollary
	Examples

	A converse Lyapunov-type theorem for locally controllable systems
	Introduction
	Lyapunov stability and converse Lyapunov theorems.
	Zubov's method.
	Control theory.

	Stabilisation of locally controllable systems in finite time
	Proof of the main result
	Examples

	Future work
	Regularity of asymptotically stabilising feedback controls
	The temporal aspect of stabilisation

	Index

