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Abstract

Just as an explicit parameterisation of system dynamics by state, i.e., a choice of
coordinates, can impede the identification of general structure, so it is too with an ex-
plicit parameterisation of system dynamics by control. However, such explicit and fixed
parameterisation by control is commonplace in control theory, leading to definitions,
methodologies, and results that depend in unexpected ways on control parameterisation.
In this paper a framework is presented for modelling systems in geometric control theory
in a manner that does not make any choice of parameterisation by control; the systems
are called “tautological control systems.” For the framework to be coherent, it relies in
a fundamental way on topologies for spaces of vector fields. As such, classes of systems
are considered possessing a variety of degrees of regularity: finitely differentiable; Lip-
schitz; smooth; real analytic. In each case, explicit geometric seminorms are provided
for the topologies of spaces of vector fields that enable straightforward descriptions of
time-varying vector fields and control systems. As part of the development, theorems
are proved for regular (including real analytic) dependence on initial conditions of flows
of vector fields depending measurably on time. Classes of “ordinary” control systems
are characterised that interact with the regularity under consideration in a comprehen-
sive way. In this framework, for example, the statement that “a smooth or real analytic
control-affine system is a smooth or real analytic control system” becomes a theorem.
Correspondences between ordinary control systems and tautological control systems are
carefully examined, and trajectory correspondence between the two classes is proved
for control-affine systems and for systems with general control dependence when the
control set is compact.
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1. Introduction

One can study nonlinear control theory from the point of view of applications, or from
a more fundamental point of view, where system structure is a key element. From the
practical point of view, questions that arise are often of the form, “How can we. . . ”, for
example, “How can we steer a system from point A to point B?” or, “How can we stabilise
this unstable equilibrium point?” or, “How can we manoeuvre this vehicle in the most
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efficient manner?” From a fundamental point of view, the problems are often of a more
existential nature, with, “How can we” replaced with, “Can we”. These existential questions
are often very difficult to answer in any sort of generality.

As one thinks about these fundamental existential questions and looks into the quite
extensive existing literature, one comes to understand that the question, “What is a control
system?” is one whose answer must be decided upon with some care. One also begins to
understand that structure coming from common physical models can be an impediment to
general understanding. For example, in a real physical model, states are typically physical
quantities of interest, e.g., position, current, quantity of reactant X, and so the explicit
labelling of these is natural. This labelling amounts to a specific choice of coordinates, and
it is now well understood that such specific choices of coordinates obfuscate structure, and
so are to be avoided in any general treatment. In like manner, in a real physical model,
controls are likely to have meaning that one would like to keep track of, e.g., force, voltage,
flow. The maintenance of these labels in a model provides a specific parameterisation of the
inputs to the system, completely akin to providing a specific coordinate parameterisation
for states. However, while specific coordinate parameterisations have come (by many) to
be understood as a bad idea in a general treatment, this is not the case for specific control
parameterisations; models with fixed control parameterisation are commonplace in control
theory. In contrast to the situation with dependence of state on parameterisation, the
problem of eliminating dependence of control on parameterisation is not straightforward. In
our discussion below we shall overview some of the common models for control systems, and
some ways within these modelling frameworks for overcoming the problem of dependence on
control parameterisation. As we shall see, the common models all have some disadvantage or
other that must be confronted when using these models. In this paper we provide a means for
eliminating explicit parameterisation of controls that, we believe, overcomes the problems
with existing techniques. Our idea has some of its origins in the work on “chronological
calculus” of Agrachev and Gamkrelidze [1978] (see also [Agrachev and Sachkov 2004]), but
the approach we describe here is more general (in ways that we will describe below) and
more fully developed as concerns its relationship to control theory (chronological calculus
is primarily a device for understanding time-varying vector fields and flows). There are
some ideas similar to ours in the approach of Sussmann [1998], but there are also some
important differences, e.g., our families of vector fields are time-invariant (corresponding to
vector fields with frozen control values) while Sussmann considers families of time-varying
vector fields (corresponding to selecting an open-loop control). Also, the work of Sussmann
does not touch on real analytic systems.

We are interested in models described by ordinary differential equations whose states
are in a finite-dimensional manifold. Even within this quite narrow class of control systems,
there is a lot of room to vary the models one might consider. Let us now give a brief outline
of the sorts of models and methodologies of this type that are commonly present in the
literature.

1.1. Models for geometric control systems: pros and cons. By this time, it is well-
understood that the language of systems such as we are considering should be founded in
differential geometry and vector fields on manifolds [Agrachev and Sachkov 2004, Bloch
2003, Bullo and Lewis 2004, Isidori 1995, Jurdjevic 1997, Nijmeijer and van der Schaft
1990]. This general principle can go in many directions, so let us discuss a few of these.
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Our presentation here is quite vague and not very careful. In the main body of the paper,
we will be less vague and more careful.

Family of vector field models. Given that manifolds and vector fields are important, a first
idea of what might comprise a control system is that it is a family of vector fields. For these
models, trajectories are concatenations of integral curves of vector fields from the family.
This is the model used in the development of the theory of accessibility of Sussmann and
Jurdjevic [1972] and in the early work of Sussmann [1978] on local controllability. The work
of Hermann and Krener [1977], while taking place in the setting of systems parameterised
by control (such as we shall discuss in Section 1.1), uses the machinery of families of vector
fields to study controllability and observability of nonlinear systems. Indeed, a good deal
of the early work in control theory is developed in this sort of framework, and it is more
or less sufficient when dealing with questions where piecewise constant controls are ample
enough to handle the problems of interest. The theory is also highly satisfying in that it is
very differential geometric, and the work utilising this approach is often characterised by a
certain elegance.

However, the approach does have the drawback of not handling well some of the more
important problems of control theory, such as feedback (where controls are specified as
functions of state) and optimal control (where piecewise constant controls are often not a
sufficiently rich class [cf. Fuller 1960]).

It is worth mentioning at this early stage in our presentation that one of the ingredients
of our approach is a sort of fusion of the “family of vector fields” approach with the more
common control parameterisation approach to whose description we now turn.

Models with control as a parameter. Given the limitations of the “family of vector fields”
models for physical applications and also for a theory where merely measurable controls are
needed, one feels as if one has to have the control as a parameter in the model, a parameter
that one can vary in a quite general manner. These sorts of models are typically described
by differential equations of the form

ẋ(t) = F (x(t), u(t)),

where t 7→ u(t) is the control and t 7→ x(t) is a corresponding trajectory. For us, the
trajectory is a curve on a differentiable manifold M, but there can be some freedom in
attributing properties to the control set C in which u takes its values, and on the properties
of the system dynamics F . (In Section 7 we describe classes of such models in differential
geometric terms.) This sort of model is virtually synonymous with “nonlinear control
system” in the existing control literature. A common class of systems that are studied are
control-affine systems, where

F (x,u) = f0(x) +
k∑
a=1

uafa(x),

for vector fields f0, f1, . . . , fk on M, and where the control u takes values in a subset of Rk.
For control-affine systems, there is an extensively developed theory of controllability based
on free Lie algebras [Bianchini and Stefani 1993, Kawski 1990a, Kawski 1999, Kawski 2006,



6 S. Jafarpour and A. D. Lewis

Sussmann 1983, Sussmann 1987]. We will see in Section 7.3 that control-affine systems fit
into our framework in a particularly satisfying way.

The above general model, and in particular the control-affine special case, are all exam-
ples where there is an explicit parameterisation of the control set, i.e., the control u lives in
a particular set and the dynamics F is determined to depend on u in some particular way.
It could certainly be the case, for instance, that one could have two different systems

ẋ(t) = F1(x(t), u1(t)), ẋ(t) = F2(x(t), u2(t))

with exactly the same trajectories. This has led to an understanding that one should study
equivalence classes of systems. A little precisely, if one has two systems

ẋ1(t) = F1(x1(t), u1(t)), ẋ2(t) = F2(x2(t), u2(t)),

with xa(t) ∈ Ma and ua(t) ∈ Ca, a ∈ {1, 2}, then there may exist a diffeomorphism Φ: M1 →
M2 and a mapping κ : M1 × C1 → C2 (with some sort of regularity that we will not bother
to mention) such that

1. Tx1Φ ◦ F1(x1, u1) = F2(Φ(x1), κ(x1, u1)) and

2. the trajectories t 7→ x1(t) for the first system are in 1–1 correspondence with those of
the second system by t 7→ Φ ◦ x1(t).

1

Let us say a few words about this sort of “feedback equivalence.” One can imagine it being
useful in at least two ways.

1. First of all, one might use it as a kind of “acid test” on the viability of a control
theoretic construction. That is, a control theoretic construction should make sense,
not just for a system, but for the equivalence class of that system. This is somewhat
akin to asking that constructions in differential geometry should be independent of
coordinates. Indeed, in older presentations of differential geometry, this was often how
constructions were defined: they were given in coordinates, and then demonstrated
to behave properly under changes of coordinate. We shall illustrate in Example 1.1
below that many common constructions in control theory do not pass the “acid test”
for viability as feedback-invariant constructions.

2. Feedback equivalence is also a device for classifying control systems, the prototypical
example being “feedback linearisation,” the determination of those systems that are
linear systems in disguise [Jakubczyk and Respondek 1980]. In differential geometry,
this is akin to the classification of geometric structures on manifolds, e.g., Riemannian,
symplectic, etc.

In Section 8.7 we shall consider a natural notion of equivalence for systems of the sort
we are introducing in this paper, and we will show that “feedback transformations” are
vacuous in that they amount to being described by mappings between manifolds. This is
good news, since the whole point of our framework is to eliminate control parameterisation
from the picture and so eliminate the need for considering the effects of varying this param-
eterisation, cf. “coordinate-free” versus “coordinate-independent” in differential geometry.

1We understand that there are many ways of formulating system equivalence. But here we are content
to be, not only vague, but far from comprehensive.
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Thus the first of the preceding uses of feedback transformations simply does not come up
for us: our framework is naturally feedback-invariant. The second use of feedback transfor-
mations, as will be seen in Section 8.7, amounts to the classification of families of vector
fields under push-forward by diffeomorphisms. This is generally a completely hopeless un-
dertaking, so we will have nothing to say about this. Studying this under severe restrictions
using, for example, (1) the Cartan method of equivalence [e.g., Bryant and Gardner 1995,
Gardner 1989], (2) the method of generalised transformations [e.g., Kang and Krener 1992,
Kang and Krener 2006], (3) the study of singularities of vector fields and distributions [e.g.,
Jakubczyk and Respondek 1980, Pasillas-Lépine and Respondek 2002], one might expect
that some results are possible.

Let us consider an example that shows how a classical control-theoretic construction, lin-
earisation, is not invariant under even the very weak notion of equivalence where equivalent
systems are those with the same trajectories.

1.1 Example: (Linearisation is not well-defined) We consider two control-affine sys-
tems

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + x3(t)u1(t),

ẋ3(t) = u2(t),

with (x1, x2, x3) ∈ R3 and (u1, u2) ∈ R2. One can readily verify that these two sys-
tems have the same trajectories. If we linearise these two systems about the equilibrium
point at (0, 0, 0)—in the usual sense of taking Jacobians with respect to state and con-
trol [Isidori 1995, page 172], [Khalil 2001, §12.2], [Nijmeijer and van der Schaft 1990,
Proposition 3.3], [Sastry 1999, page 236], and [Sontag 1998, Definition 2.7.14]—then we
get the two linear systems

A1 =

0 1 0
0 0 0
0 0 0

 , B1 =

0 0
0 0
0 1

 , A2 =

0 1 0
0 0 1
0 0 0

 , B2 =

0 0
0 0
0 1

 ,
respectively. The linearisation on the left is not controllable, while that on the right is.

The example suggests that (1) classical linearisation is not independent of parameteri-
sation of controls and/or (2) the classical notion of linear controllability is not independent
of parameterisation of controls. We shall see in Section 9.5 that both things, in fact, are
true: neither classical linearisation nor the classical linear controllability test are feedback-
invariant. This may come as a surprise to some. •

This example has been particularly chosen to provide probably the simplest illustration
of the phenomenon of lack of feedback-invariance of common control theoretic constructions.
Therefore, it should not be a surprise that an astute reader will notice that linearising the
“uncontrollable” system about the control (1, 0) rather than the control (0, 0) will square
things away as concerns the discrepancy between the two linearisations. But after doing this,
the questions of, “What are the proper definitions of linearisation and linear controllabil-
ity?” still remain. Moreover, one might expect that as one moves to constructions in control
theory more advanced than mere linearisation, the dependence of these constructions on the
parameterisation of controls becomes more pronounced. Thus the likelihood that a sophis-
ticated construction, made using a specific control parameterisation, is feedback-invariant
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is quite small, and in any case would need proof to verify that it is. Such verification is
not typically part of the standard development of methodologies in control theory. There
are at least three reasons for this: (1) the importance of feedback-invariance is not univer-
sally recognised; (2) such verifications are generally extremely difficult, nearly impossible,
in fact; (3) most methodologies will fail the verification, so it is hardly flattering to one’s
methodology to point this out. Some discussion of this is made by Lewis [2012].

But the bottom line is that our framework simply eliminates the need for any of this
sort of verification. As long as one remains within the framework, feedback-invariance is
guaranteed. One of the central goals of the paper is to provide the means by which one
does not have to leave the framework to get things done. As we shall see, certain technical
difficulties have to be overcome to achieve this.

Fibred manifold models. As we have tried to make clear in the discussion just preceding,
the standard model for control theory has the unpleasant attribute of depending on param-
eterisation of controls. A natural idea to overcome this unwanted dependence is to do with
controls as one does with states: regard them as taking values in a differentiable manifold.
Moreover, the manner in which control enters the model should also be handled in an in-
trinsic manner. This leads to the “fibred manifold” picture of a control system which, as
far as we can tell, originated in the papers of Brockett [1977] and Willems [1979], and was
further developed by Nijmeijer and van der Schaft [1982]. This idea has been picked up on
by many researchers in geometric control theory, and we point to the papers [Barbero-Liñán
and Muñoz-Lecanda 2009, Bus 1984, Delgado-Téllez and Ibort 2003, Langerock 2003] as
illustrative examples.

The basic idea is this. A control system is modelled by a fibred manifold π : C → M and
a bundle map F : C → TM over idM:

C
F //

π !!

TM

πTM
��
M

One says that F is “a vector field over the bundle map π.” Trajectories are then curves
t 7→ x(t) in M satisfying ẋ(t) = F (u(t)) for some t 7→ u(t) satisfying x(t) = π ◦ u(t). When
it is applicable, this is an elegant and profitable model for control theory. For example, for
control models that arise in problems of differential geometry or the calculus of variations,
this can be a useful model.

The difficulty with the model is that it is not always applicable, especially in physical
system models. The problem that arises is the strong regularity of the control set and,
implicitly, the controls: C is a manifold so it is naturally the codomain for smooth curves.
In practice, control sets in physical models are seldom manifolds, as bounds on controls lead
to boundaries of the control set. Moreover, the boundary sets are seldom smooth. Also, as
we have mentioned above, controls cannot be restricted to be smooth or piecewise smooth;
natural classes of controls are typically merely measurable. These matters become vital in
optimal control theory where bounds on control sets lead to bang-bang extremals. When
these considerations are overlaid on the fibred manifold picture, it becomes considerably less
appealing and indeed problematic. One might try to patch up the model by generalising
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the structure, but at some point it ceases to be worthwhile; the framework is simply not
well suited to certain problems of control theory.

Differential inclusion models. Another way to eliminate the control dependence seen in the
models with fixed control parameterisation is to instead work with differential inclusions. A
differential inclusion, roughly (we will be precise about differential inclusions in Section 7.4),
assigns to each x ∈ M a subset X (x) ⊆ TxM, and trajectories are curves t 7→ x(t) satisfying
ẋ(t) ∈ X (x(t)). There is a well-developed theory for differential inclusions, and we refer to
the literature for what is known, e.g., [Aubin and Cellina 1984, Filippov 1988, Smirnov 2002].
There are many appealing aspects to differential inclusions as far as our objectives here are
concerned. In particular, differential inclusions do away with the explicit parameterisations
of the admissible tangent vectors at a state x ∈ M by simply prescribing this set of admissible
tangent vectors with no additional structure. Moreover, differential inclusions generalise the
control-parameterised systems described above. Indeed, given such a control-parameterised
system with dynamics F , we associate the differential inclusion

XF (x) = {F (x, u) | u ∈ C}.

The trouble with differential inclusions is that their theory is quite difficult to understand if
one just starts with differential inclusions coming “out of the blue.” Indeed, it is immediately
clear that one needs some sort of conditions on a differential inclusion to ensure that trajec-
tories exist. Such conditions normally come in the form of some combination of compact-
ness, convexity, and semicontinuity. However, the differential inclusions that arise in control
theory are highly structured; certainly they are more regular than merely semicontinuous
and they automatically possess many trajectories. Moreover, it is not clear how to develop
an independent theory of differential inclusions, i.e., one not making reference to standard
models for control theory, that captures the desired structure (in Example 8.13–4 we suggest
a natural way of characterising a class of differential inclusions useful in geometric control
theory). Also, differential inclusions do not themselves, i.e., without additional structure,
capture the notion of a flow that is often helpful in the standard control-parameterised
models, e.g., in the Maximum Principle of optimal control theory, cf. [Sussmann 2002].
However, differential inclusions are a useful tool for studying trajectories, and we include
them in our development of our new framework in Section 8.

The “behavioural” approach. Starting with a series of papers [Willems 1986a, Willems
1986b, Willems 1987] and the often cited review [Willems 1991], Willems provides a frame-
work for studying system theory, with an emphasis on linear systems. The idea in this
approach is to provide a framework for dynamical systems as subsets of general functions of
generalised time taking values in a set. The framework is also intended to provide a mathe-
matical notion of interconnection as relations in a set. In this framework, the most general
formulation is quite featureless, i.e., maps between sets and relations in sets. With this
level of generality, the basic questions have a computer science flavour to them, in terms of
formal languages. When one comes to making things more concrete, say by making the time-
domain an interval in R for continuous-time systems, one ends up with differential-algebraic
equations describing the behaviours and relations. For the most part, these ideas seem to
have been only reasonably fully developed for linear models [Polderman and Willems 1998];



10 S. Jafarpour and A. D. Lewis

we are not aware of substantial work on nonlinear systems in the behavioural approach. It
is also the case that the considerations of feedback-invariance, such as we discuss above, are
not a part of the current landscape in behavioural models, although this is possible within
the context of linear systems, cf. the beautiful book of [Wonham 1985].

Thus, while there are some idealogical similarities with our objectives and those of the
behavioural approach, our thinking in this paper is in a quite specific and complementary
direction to the existing work on the behavioural point of view.

1.2. Attributes of a modelling framework for geometric control systems. The preceding
sections are meant to illustrate some standard frameworks for modelling control systems
and the motivation for consideration of these, as well as pointing out their limitations. If
one is going to propose a modelling framework, it is important to understand a priori just
what it is that one hopes to be able to do in this framework. Here is a list of possible
criteria, criteria that we propose to satisfy in our framework.

1. Models should provide for control parameterisation-independent constructions as dis-
cussed above.

2. We believe that being able to handle real analytic systems is essential to a useful theory.
In practice, any smooth control system is also real analytic, and one wants to be able
to make use of real analyticity to both strengthen conclusions, e.g., the real analytic
version of Frobenius’s Theorem [Nagano 1966], and to weaken hypotheses, e.g., the in-
finitesimal characterisation of invariant distributions [e.g., Agrachev and Sachkov 2004,
Lemma 5.2].

3. The framework should be able to handle regularity in an internally consistent man-
ner. This means, for example, that the conclusions should be consistent with hypothe-
ses, e.g., smooth hypotheses with continuous conclusions suggest that the framework
may not be perfectly natural or perfectly well-developed. The pursuit of this internal
consistency in the real analytic case contributes to many of the difficulties we encounter
in the paper.

4. The modelling framework should seamlessly deal with distinctions between local and
global. Many notions in control theory are highly localised, e.g., local controllability of
real analytic control systems. A satisfactory framework should include a systematic way
of dealing with constructions in control theory that are of an inherently local nature.
Moreover, the framework should allow a systematic means of understanding the passage
from local to global in cases where this is possible and/or interesting. As we shall see,
there are some simple instances of these phenomena that can easily go unnoticed if one
is not looking for them.

5. Our interest is in geometric control theory, as we believe this is the right framework
for studying nonlinear systems in general. A proper framework for geometric control
theory should make it natural to use the tools of differential geometry.

6. While (we believe that) differential geometric methods are essential in nonlinear control
theory, the quest for geometric elegance should not be carried out at the expense of a
useful theory.

1.3. An outline of the paper. Let us discuss briefly the contents of the paper.
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One of the essential elements of the paper is a characterisation of seminorms for the
various topologies we use. Our definitions of these seminorms unify the presentation of
the various degrees of regularity we consider—finitely differentiable, Lipschitz, smooth,
holomorphic, and real analytic—making it so that, after the seminorms are in place, these
various cases can be treated in very similar ways in many cases. The key to the construction
of the seminorms that we use is the use of connections to decompose jet bundles into direct
sums. In Section 2 we present these constructions. As we see in Section 5, in the real analytic
case, some careful estimates must be performed to ensure that the geometric seminorms we
use do, indeed, characterise the real analytic topology.

In Sections 3, 4, and 5 we describe topologies for spaces of finitely differentiable, Lip-
schitz, smooth, holomorphic, and real analytic vector fields. (While we do not have a per
se interest in holomorphic systems, holomorphic geometry has an important part to play
in real analytic geometry.) While these topologies are more or less classical in the smooth,
finitely differentiable, and holomorphic cases, in the real analytic case the description we
give is less well-known, and indeed many of our results here are new, or provide new and
useful ways of understanding existing results.

Time-varying vector fields feature prominently in geometric control theory. In Section 6
we review some notions concerning such vector fields and develop a few not quite standard
constructions and results for later use. In the smooth case, the ideas we present are probably
contained in the work of Agrachev and Gamkrelidze [1978] (see also [Agrachev and Sachkov
2004]), but our presentation of the real analytic case is novel. For this reason, we present a
rather complete treatment of the smooth case (with the finitely differentiable and Lipschitz
cases following along similar lines) so as to provide a context for the more complicated real
analytic case. We should point out that, even in the smooth case, we use properties of the
topology that are not normally called upon, and we see that it is these deeper properties that
really tie together the various regularity hypotheses we use. Indeed, what our presentation
reveals is the connection between the standard pointwise—in time and state—conditions
placed on time-varying vector fields and topological characterisations. This is, we believe,
a fulfilling way of understanding the meaning of the usual pointwise conditions.

In Section 7 we review quite precisely a fairly general standard modelling framework in
geometric control theory. While ultimately we wish to assert that there are some difficulties
with this framework, understanding it clearly will give us some context for what will be,
frankly, our rather abstract notion of a control system to follow. Also, we do wish to make
sure that our proposed model does indeed generalise this more concrete and standard no-
tion, so to prove this we need precise definitions. Additionally, as with time-varying vector
fields, we show how natural pointwise regularity conditions are equivalent to topological
characterisations of systems. Thus, while we do generalise the standard modelling frame-
work for control theory, in doing so we arrive at a deeper understanding of this framework.
For example, we introduce for the first time the notion of a “real analytic control system,”
which means that the real analytic structure is fully integrated into the structure of the con-
trol system; this is only made possible by understanding the topology for the space of real
analytic vector fields. As a result, seemingly tautological statements like, “A real analytic
control-affine system is a real analytic control system,” now are theorems in our framework.
Also, interestingly, we will show that, in many cases, our more general modelling framework
can be cast in the standard framework, albeit in a non-obvious way; see Example 8.10–2.

In Section 8 we provide our modelling framework for geometric control systems, defining
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what we shall call “tautological control systems.2” After developing the background needed,
we provide the definitions and then give the notion of a trajectory for these systems. We
also show that our framework includes the standard framework of Section 7 as a special
case. We carefully establish correspondences between our generalised models, the standard
models, and differential inclusion models. Included in this correspondence is a description
of the relationships between trajectories for these models. One feature of our framework
that will appear strange initially is our use of presheaves and sheaves. These are the devices
by which we can attempt to patch together local constructions to give global constructions.
We understand that the use of this language will seem unnecessarily complicated initially.
However, it will have its uses in the paper, e.g., our notion of transformations between
tautological control systems is based on a standard construction in sheaf theory, and we
will point out places where the reader may have unwittingly encountered some shadows of
sheaf theory, even in familiar places in control theory.

We study the linearisation of tautological control systems in Section 9. The theory
here has many satisfying elements attached to it. First of all, the framework naturally
suggests two sorts of linearisation, one with respect to a reference trajectory and another
with respect to a reference flow. This is an interesting distinction, and one that is, as far as
we know, hitherto not made clear in the literature. Also, of course, our theory comprehends
and rectifies the problems encountered in Example 1.1.

What is presented in this paper is the result of initial explorations of a modelling frame-
work for geometric control theory. We certainly have not fully fleshed out all parts of this
framework ourselves, despite the substantial length of the paper. In the closing section of
the paper, Section 10, we outline places where there is obvious further work to be done.

1.4. Summary of contributions. This is a long and complex paper with many results, some
significant, and some necessary for the foundations of the approach, but not necessarily sig-
nificant per se. In order to facilitate the reading of the paper, we highlight the contributions
that we feel are important. First we point out the more significant contributions.

1. The main contribution of the paper is the general feedback-invariant framework. This
main contribution has with it a few novel components.

(a) Our framework generalises the standard formulation and has some satisfying re-
lationships with the standard theory and the theory of differential inclusions; see
Proposition 8.11 and the trajectory equivalence results of Section 8.6. We conclude,
for example, that our generalised formulation agrees with the standard formula-
tion in two important cases: (i) for control-affine systems with arbitrary control sets
(Theorem 8.37); (ii) for systems depending generally on the control with compact
control sets (Theorem 8.35).

(b) The framework relies in an essential and nontrivial way on topologies for spaces of
vector fields. The full development of these topologies, and their integration into
a theory for control systems, is fully executed here for the first time.

(c) The formulation uses the theory of presheaves and sheaves in an essential way.

2The terminology “tautological” arises from two different attributes of our framework. First of all, when
one makes the natural connection from our systems to standard control systems, we encounter the identity
map (Example 8.10–2). Second, in our framework we prove that the only pure feedback transformation is
the identity transformation (cf. Proposition 8.47).
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(d) Using a notion of morphism borrowed from sheaf theory, we prove that equiv-
alence for our systems is simply diffeomorphism equivalence of vector fields; see
Proposition 8.47. That is to say, we prove that our framework cannot involve any
“feedback transformation” in the usual sense.

2. We provide, for the first time, a comprehensive treatment of real analytic time-varying
vector fields and control systems. In particular,

(a) we provide a concrete, usable, geometric characterisation of the real analytic topol-
ogy by specifying a family of geometric seminorms (Theorem 5.5),

(b) we provide conditions that ensure that a real analytic vector field with measurable
time dependence will have a flow depending on initial conditions in a real analytic
manner (Theorem 6.26),

(c) we provide conditions that ensure that trajectories for a real analytic control system
depend on initial conditions in a real analytic manner (Propositions 7.18 and 7.22),
and

(d) we show that real analytic vector fields depending measurably on time and/or
continuously on a parameter can often be extended to holomorphic vector fields
depending on time or parameter (Theorems 6.25 and 7.14).

The last three results rely, sometimes in highly nontrivial ways, on the properties of the
real analytic topology for vector fields.

3. We fully develop various “weak” formulations of properties such as continuity, bound-
edness, measurability, and integrability for spaces of finitely differentiable, Lipschitz,
smooth, and real analytic vector fields. These weak formulations come in two forms,
one for evaluations of vector fields on functions by Lie differentiation, which we call the
“weak-L ” topology (see Theorems 3.5, 3.8, 3.14, and 5.8 and their corollaries), and one
for evaluations in time and space (see Theorems 6.4, 6.10, and 6.22). These results use
deep properties of the topologies for spaces of vector fields derived in Sections 3 and 5.
In the existing literature, these weak formulations are often used without reference to
their “strong” counterparts; here we make the (unsurprising, but sometimes nontrivial)
link explicit.

4. In Section 9 we provide a coherent theory for linearisation of systems in our framework.
The theory of linearisation that we develop is necessarily feedback-invariant, and as a
consequence reveals some interesting structure that has previously been hidden by the
standard treatment of linearisation which is not feedback-invariant, as we have seen in
Example 1.1.

Along the way to these substantial definitions and results, we uncover a few minor, but still
interesting, results and constructions.

5. We use to advantage some not entirely elementary geometric constructions to make
elegant coordinate-free proofs. Here are some instances of this.

(a) We provide a decomposition for jet bundles of sections of a vector bundle using
the theory of connections; see Lemma 2.1. This decomposition is used to pro-
vide a concrete and useful collection of seminorms for the finitely differentiable,
Lipschitz, and smooth compact-open topologies, and the real analytic topology.
Indeed, without these seminorms, our descriptions of these topologies would be
incomprehensible, as opposed to merely difficult as it already is in the real analytic
case.
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(b) We use our seminorms in an essential way to prove the equivalence of “weak-
L ” and “strong” versions of the finitely differentiable, Lipschitz, and smooth
compact-open topologies, and the real analytic topology for vector fields; see The-
orems 3.5, 3.8, 3.14, and 5.8.

(c) These seminorms allow for relatively clean characterisations of the finitely differ-
entiable, Lipschitz, and smooth compact-open, and real analytic topologies for
vector fields on tangent bundles, using induced affine connections and Riemannian
metrics on tangent bundles. These constructions appear in the proofs concerning
linearisation; see Lemmata 9.2 and 9.7.

(d) The double vector bundle structure of the double tangent bundle TTM is used to
provide a slick justification of our definition of linearisation, culminating in the
formula (9.12).

6. We provide a “weak-L ” characterisation of the compact-open topology for holomorphic
vector fields on a Stein manifold; see Theorem 4.5.

1.5. Notation, conventions, and background. In this section we overview what is needed
to read the paper. We do use a lot of specialised material in essential ways, and we certainly
do not review this comprehensively. Instead, we simply provide a few facts, the notation
we shall use, and recommended sources. Throughout the paper we have tried to include
precise references to material needed so that a reader possessing enthusiasm and lacking
background can begin to chase down all of the ideas upon which we rely.

We shall use the slightly unconventional, but perfectly rational, notation of writing
A ⊆ B to denote set inclusion, and when we write A ⊂ B we mean that A ⊆ B and
A ̸= B. By idA we denote the identity map on a set A. For a product

∏
i∈I Xi of sets,

prj :
∏
i∈I Xi → Xj is the projection onto the jth component. For a subset A ⊆ X, we

denote by χA the characteristic function of A, i.e.,

χA(x) =

{
1, x ∈ A,

0, x ̸∈ A.

By card(A) we denote the cardinality of a set A. By Sk we denote the symmetric group on
k symbols. We shall have occasion to talk about set-valued maps. If X and Y are sets and
Φ is a set-valued map from X to Y , i.e., Φ(x) is a subset of Y , we shall write Φ: X ↠ Y .
By Z we denote the set of integers, with Z≥0 denoting the set of nonnegative integers and
Z>0 denoting the set of positive integers. We denote by R and C the sets of real and
complex numbers. By R≥0 we denote the set of nonnegative real numbers and by R>0 the
set of positive real numbers. By R≥0 = R≥0 ∪ {∞} we denote the extended nonnegative
real numbers. By δjk, j, k ∈ {1, . . . , n}, we denote the Kronecker delta.

We shall use constructions from algebra and multilinear algebra, referring to [Hungerford
1980], [Bourbaki 1989a, Chapter III], and [Bourbaki 1990, §IV.5]. If F is a field (for us,
typically F ∈ {R,C}), if V is an F-vector space, and if A ⊆ V, by spanF(A) we denote the
subspace generated by A. If F is a field and if U and V are F-vector spaces, by HomF(U;V)
we denote the set of linear maps from U to V. We denote EndF(V) = HomF(V;V) and
V∗ = HomF(V;F). If α ∈ V∗ and v ∈ V, we may sometimes denote by ⟨α; v⟩ ∈ F the natural
pairing. The k-fold tensor product of V with itself is denoted by Tk(V). Thus, if V is
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finite-dimensional, we identify Tk(V∗) with the k-multilinear F-valued functions on Vk by

(α1 ⊗ · · · ⊗ αk)(v1, . . . , vk) = α1(v1) · · ·αk(vk).

By Sk(V∗) we denote the symmetric tensor algebra of degree k, which we identify with the
symmetric k-multilinear F-valued functions on Vk, or polynomial functions of homogeneous
degree k on V.

If G is an inner product on a R-vector space V, we denote by G♭ ∈ HomR(V;V
∗) the

associated mapping and by G♯ ∈ HomR(V
∗;V) the inverse of G♭ when it is invertible.

For a topological space X and A ⊆ X, int(A) denotes the interior of A and cl(A) denotes
the closure of A. Neighbourhoods will always be open sets. The support of a continuous
function f (or any other kind of object for which it makes sense to have a value “zero”) is
denoted by supp(f).

By B(r,x) ⊆ Rn we denote the open ball of radius r and centre x. In like manner,
B(r,x) denotes the closed ball. If r ∈ R>0 and if x ∈ F, F ∈ {R,C}, we denote by

D(r, x) = {x′ ∈ F | |x′ − x| < r}

the disk of radius r centred at x. If r ∈ Rn>0 and if x ∈ Fn, we denote by

D(r,x) = D(r1, x1)× · · · × D(rn, xn)

the polydisk with radius r centred at x. In like manner, D(r,x) denotes the closed polydisk.
Elements of Fn, F ∈ {R,C}, are typically denoted with a bold font, e.g., “x.” The

standard basis for Fn is denoted by (e1, . . . ,en). By In we denote the n × n identity
matrix. We denote by L(Rn;Rm) the set of linear maps from Rn to Rm (this is the
same as HomR(R

n;Rm), of course, but the more compact notation is sometimes help-
ful). The invertible linear maps on Rn we denote by GL(n;R). By L(Rn1 , . . . ,Rnk ;Rm)
we denote the set of multilinear mappings from

∏k
j=1R

nj to Rm. We abbreviate by

Lk(Rn;Rm) the k-multilinear maps from (Rn)k to Rm. We denote by Lksym(R
n;Rm)

the set of symmetric k-multilinear maps from (Rn)k to Rm. With our notation above,
Lksym(R

n;Rm) ≃ Sk((Rn)∗)⊗Rm, but, again, we prefer the slightly more compact notation
in this special case.

If U ⊆ Rn is open and if Φ : U → Rm is differentiable at x ∈ U, we denote its derivative
by DΦ(x). Higher-order derivatives, when they exist, are denoted by DrΦ(x), r being
the order of differentiation. We will also use the following partial derivative notation. Let
Uj ⊆ Rnj be open, j ∈ {1, . . . , k}, and let Φ : U1 × · · · × Uk → Rm be continuously
differentiable. The derivative of the map

xj 7→ Φ(x1,0, . . . ,xj , . . . ,xk,0)

at xj,0 is denoted by DjΦ(x1,0, . . . ,xk,0). Higher-order partial derivatives, when they exist,
are denoted by Dr

jΦ(x1,0, . . . ,xk,0), r being the order of differentiation. We recall that if

Φ : U → Rm is of class Ck, k ∈ Z>0, then DkΦ(x) is symmetric. We shall sometimes find
it convenient to use multi-index notation for derivatives. A multi-index with length n is
an element of Zn≥0, i.e., an n-tuple I = (i1, . . . , in) of nonnegative integers. If Φ : U → Rm
is a smooth function, then we denote

DIΦ(x) = Di1
1 · · ·Din

n Φ(x).
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We will use the symbol |I| = i1 + · · · + in to denote the order of the derivative. Another
piece of multi-index notation we shall use is

aI = ai11 · · · ainn ,

for a ∈ Rn and I ∈ Zn≥0. Also, we denote I! = i1! · · · in!.
If V is a R-vector space and if A ⊆ V, we denote by conv(A) the convex hull of A, by

which we mean the set of all convex combinations of elements of A.
Our differential geometric conventions mostly follow [Abraham, Marsden, and Ratiu

1988]. Whenever we write “manifold,” we mean “second-countable Hausdorff manifold.”
This implies, in particular, that manifolds are assumed to be metrisable [Abraham, Mars-
den, and Ratiu 1988, Corollary 5.5.13]. If we use the letter “n” without mentioning what
it is, it is the dimension of the connected component of the manifold M with which we are
working at that time. The tangent bundle of a manifold M is denoted by πTM : TM → M
and the cotangent bundle by πT∗M : T∗M → M. The derivative of a differentiable map
Φ: M → N is denoted by TΦ: TM → TN, with TxΦ = TΦ|TxM. If I ⊆ R is an interval
and if ξ : I → M is a curve that is differentiable at t ∈ I, we denote the tangent vector
field to the curve at t by ξ′(t) = Ttξ(1). We use the symbols Φ∗ and Φ∗ for pull-back and
push-forward. Precisely, if g is a function on N, Φ∗g = g ◦ Φ, and if Φ is a diffeomorphism,
if f is a function on M, if X is a vector field on M, and if Y is a vector field on N, we have
Φ∗f = f ◦ Φ−1, Φ∗X = TΦ ◦X ◦ Φ−1, and Φ∗Y = TΦ−1 ◦ Y ◦ Φ. The flow of a vector field
X is denoted by ΦXt , so t 7→ ΦXt (x) is the integral curve of X passing through x at t = 0.
We shall also use time-varying vector fields, but will develop the notation for the flows of
these in the text.

If π : E → M is a vector bundle, we denote the fibre over x ∈ M by Ex and we sometimes
denote by 0x the zero vector in Ex. If S ⊆ M is a submanifold, we denote by E|S the
restriction of E to S which we regard as a vector bundle over S. The vertical subbundle
of E is the subbundle of TE defined by VE = ker(Tπ). If G is a fibre metric on E, i.e., a
smooth assignment of an inner product to each of the fibres of E, then ∥·∥G denotes the
norm associated with the inner product on fibres. If π : E → M is a vector bundle and if
Φ: N → M is a smooth map, then Φ∗π : Φ∗E → N denotes the pull-back of E to N [Kolář,
Michor, and Slovák 1993, §III.9.5]. The dual of a vector bundle π : E → M is denoted by
π∗ : E∗ → M.

Generally we will try hard to avoid coordinate computations. However, they are some-
times unavoidable and we will use the Einstein summation convention when it is convenient
to do so, but we will not do so slavishly.

We will work in both the smooth and real analytic categories, with occasional forays into
the holomorphic category. We will also work with finitely differentiable objects, i.e., objects
of class Cr for r ∈ Z≥0. (We will also work with Lipschitz objects, but will develop the
notation for these in the text.) A good reference for basic real analytic analysis is [Krantz
and Parks 2002], but we will need ideas going beyond those from this text, or any other
text. Relatively recent work of e.g., [Domański 2012], [Vogt 2013], and [Domański and Vogt
2000] has shed a great deal of light on real analytic analysis, and we shall take advantage
of this work. An analytic manifold or mapping will be said to be of class Cω. Let
r ∈ Z≥0 ∪ {∞, ω}. The set of mappings of class Cr between manifolds M and N is denoted
by Cr(M;N). We abbreviate Cr(M) = Cr(M;R). The set of sections of a vector bundle
π : E → M of class Cr is denoted by Γr(E). Thus, in particular, Γr(TM) denotes the set
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of vector fields of class Cr. We shall think of Γr(E) as a R-vector space with the natural
pointwise addition and scalar multiplication operations. If f ∈ Cr(M), df ∈ Γr(T∗M)
denotes the differential of f . If X ∈ Γr(TM) and f ∈ Cr(M), we denote the Lie derivative
of f with respect to X by LXf .

We also work with holomorphic, i.e., complex analytic, manifolds and associated geo-
metric constructions; real analytic geometry, at some level, seems to unavoidably rely on
holomorphic geometry. A nice overview of holomorphic geometry, and some of its connec-
tions to real analytic geometry, is given in the book of Cieliebak and Eliashberg [2012].
There are many specialised texts on the subject of holomorphic geometry, including [De-
mailly 2012, Fritzsche and Grauert 2002, Gunning and Rossi 1965, Hörmander 1966] and
the three volumes of Gunning [1990a], Gunning [1990b], and Gunning [1990c]. For our
purposes, we shall just say the following things. By TM we denote the holomorphic tan-
gent bundle of M. This is the object which, in complex differential geometry, is commonly
denoted by T1,0M. For holomorphic manifolds M and N, we denote by Chol(M;N) the set
of holomorphic mappings from M to N, by Chol(M) the set of holomorphic functions on M
(note that these functions are C-valued, not R-valued, of course), and by Γhol(E) the space
of holomorphic sections of an holomorphic vector bundle π : E → M. We shall use both the
natural C- and, by restriction, R-vector space structures for Γhol(E).

We will make use of the notion of a “Stein manifold.” For practical purposes, these
can be taken to be holomorphic manifolds admitting a proper holomorphic embedding in
complex Euclidean space.3 Stein manifolds are characterised by having lots of holomorphic
functions, distinguishing them from general holomorphic manifolds, e.g., compact holomor-
phic manifolds whose only holomorphic functions are those that are locally constant. There
is a close connection between Stein manifolds and real analytic manifolds, and this explains
our interest in Stein manifolds. We shall point out these connections as they arise in the
text.

We shall occasionally make use of Cartan’s Theorems A and B for Stein manifolds and
real analytic manifolds; these are theorems about the cohomology of certain sheaves. In
the holomorphic case, the original source is [Cartan 1951-52], but there are many good
treatments in textbooks, including in [Taylor 2002]. For the real analytic case, the only
complete reference seems to be the original work of Cartan [1957], although the short book
of Guaraldo, Macŕı, and Tancredi [1986] is also helpful. In using these theorems (and
sometimes in other places where we use sheaves) we will use the following notation. Let
r ∈ Z≥0 ∪ {∞, ω,hol} and let M be a smooth, real analytic, or holomorphic manifold, such
as is demanded by r. By C r

M we denote the sheaf of functions of class Cr and by C r
x,M the

set of germs of this sheaf at x ∈ M. If π : E → M is a Cr-vector bundle, then G rE denotes
the sheaf of Cr-sections of E with G rx,E the set of germs at x. The germ of a function
(resp. section) at x will be denoted by [f ]x (resp. [ξ]x).

We will make use of jet bundles, and a standard reference is [Saunders 1989]. Appropri-
ate sections of [Kolář, Michor, and Slovák 1993] (especially §12) are also useful. If π : E → M
is a vector bundle and if k ∈ Z≥0, we denote by JkE the bundle of k-jets of E. For a section

3The equivalence of this to other characterisations of Stein manifolds is due to RR:55. A reader un-
familiar with holomorphic manifolds should note that, unlike in the smooth or real analytic cases, it is
not generally true that an holomorphic manifold can be embedded in complex Euclidean space, even af-
ter the usual elimination of topological pathologies such as non-paracompactness. For example, compact
holomorphic manifolds can never be holomorphically embedded in complex Euclidean space.
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ξ of E, we denote by jkξ the corresponding section of JkE. The projection from JkE to JlE,
l ≤ k, is denoted by πkl . If M and N are manifolds, we denote by Jk(M;N) the bundle of k
jets of mappings from M to N. If Φ ∈ C∞(M;N), jkΦ denotes its k-jet, which is a mapping
from M to Jk(M;N). In the proof of Theorem 6.6 we will briefly make use of jets of sections
of fibred manifolds. We shall introduce there the notation we require, and the reader can
refer to [Saunders 1989] to fill in the details.

We shall make use of connections, and refer to [Kolář, Michor, and Slovák 1993, §11,
§17] for a comprehensive treatment of these, or to [Kobayashi and Nomizu 1963] for another
comprehensive treatment and an alternative point of view.

We shall make reference to elementary ideas from sheaf theory; indeed we have already
made reference to sheaves above. It will not be necessary to understand this theory deeply,
at least not in the present paper. In particular, a comprehensive understanding of sheaf
cohomology is not required, although, as indicated above, we do make use of Cartan’s
Theorems A and B in places. A nice introduction to the use of sheaves in smooth differential
geometry can be found in the book of Ramanan [2005]. More advanced and comprehensive
treatments include [Bredon 1997, Kashiwara and Schapira 1990], and the classic [Godement
1958]. The discussion of sheaf theory in (Stacks 2013) is also useful. For readers who are
expert in sheaf theory, we comment that our reasons for using sheaves are not always the
usual ones, so an adjustment of point of view may be required.

We shall make frequent and essential use of nontrivial facts about locally convex topo-
logical vector spaces, and refer to [Conway 1990, Grothendieck 1973, Horváth 1966, Jarchow
1981, Rudin 1991, Schaefer and Wolff 1999] for details. We shall also access the contem-
porary research literature on locally convex spaces, and will indicate this as we go along.
We shall denote by L(U;V) the set of continuous linear maps from a locally convex space
U to a locally convex space V. In particular, U′ is the topological dual of U, meaning
the continuous linear scalar-valued functions. We will break with the usual language one
sees in the theory of locally convex spaces and call what are commonly called “inductive”
and “projective” limits, instead “direct” and “inverse” limits, in keeping with the rest of
category theory.

By λ we denote the Lebesgue measure on R. We will talk about measurability of maps
taking values in topological spaces. If (T,M ) is a measurable space and if X is a topological
space, a mapping Ψ: T → X is Borel measurable if Ψ−1(O) ∈ M for every open set
O ⊆ X. This is equivalent to requiring that Ψ−1(B) ∈M for every Borel subset B ⊆ X.

One not completely standard topic we shall need to understand is integration of functions
with values in locally convex spaces. There are multiple theories here,4 so let us outline what
we mean, following [Beckmann and Deitmar 2011]. We let (T,M , µ) be a finite measure
space, let V be a locally convex topological vector space, and let Ψ: T → V. Measurability
of Ψ is Borel measurability mentioned above, and we note that there are other forms of
measurability that arise for locally convex spaces (the comment made in footnote 4 applies
to these multiple notions of measurability as well). The notion of the integral we use
is the Bochner integral . This is well understood for Banach spaces [Diestel and Uhl,
Jr. 1977] and is often mentioned in an offhand manner as being “the same” for locally
convex spaces [e.g., Schaefer and Wolff 1999, page 96]. A detailed textbook treatment does

4Most of the theories of integration in locally convex spaces coincide for the sorts of locally convex spaces
we deal with.
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not appear to exist, but fortunately this has been worked out in the note of [Beckmann
and Deitmar 2011], to which we shall refer for details as needed. One has a notion of
simple functions, meaning functions that are finite linear combinations, with coefficients
in V, of characteristic functions of measurable sets. The integral of a simple function
σ =

∑k
j=1 vjχAj is ∫

T

σ dµ =

k∑
j=1

µ(Aj)vj ,

in the usual manner. A measurable function Ψ is Bochner approximable if it can be
approximated with respect to any continuous seminorm by a net of simple functions. A
Bochner approximable function Ψ is Bochner integrable if there is a net of simple func-
tions approximating Ψ whose integrals converge in V to a unique value, which is called the
integral of Ψ. If V is separable and complete, as will be the case for us in this paper, then
a measurable function Ψ: T → V is Bochner integrable if and only if∫

T

p ◦ Ψdµ <∞

for every continuous seminorm p on V [Beckmann and Deitmar 2011, Theorems 3.2 and 3.3].
This construction of the integral clearly agrees with the standard construction of the
Lebesgue integral for functions taking values in R or C (or any finite-dimensional vec-
tor space over R or C, for that matter). If A ⊆ V, by L1(T;A) we denote the space of
Bochner integrable functions with values in A. The space L1(T;V) is itself a locally convex
topological vector space with topology defined by the seminorms

p̂(Ψ) =

∫
T

p ◦ Ψdµ,

where p is a continuous seminorm for V [Schaefer and Wolff 1999, page 96]. In the case where
T = I is an interval in R, L1

loc(I;A) denotes the set of locally integrable functions, i.e., those
functions whose restriction to any compact subinterval is integrable.

While it does not generally make sense to talk about integrability of measurable func-
tions with values in a topological space, one can sensibly talk about essentially bounded
functions. This means that one needs a notion of boundedness, this being supplied by
a “bornology.”5 Bornologies are less popular than topologies, but a treatment in some
generality can be found in [Hogbe-Nlend 1977]. There are two bornologies we consider in
this paper. One is the compact bornology for a topological space X whose bounded sets
are the relatively compact sets. The other is the von Neumann bornology for a locally
convex topological vector space V whose bounded sets are those subsets B ⊆ V for which,
for any neighbourhood N of 0 ∈ V, there exists λ ∈ R>0 such that B ⊆ λN. On any
locally convex topological vector space we thus have these two bornologies, and generally
they are not the same. Indeed, if V is an infinite-dimensional normed vector space, then
the compact bornology is strictly contained in the von Neumann bornology. We will, in

5A bornology on a set S is a family B of subsets of S, called bounded sets, and satisfying the axioms:

1. S is covered by bounded sets, i.e., S = ∪B∈BB;

2. subsets of bounded sets are bounded, i.e., if B ∈B and if A ⊆ B, then A ∈B ;

3. finite unions of bounded sets are bounded, i.e., if B1, . . . , Bk ∈B , then ∪k
j=1Bj ∈B .
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fact, have occasion to use both of these bornologies, and shall make it clear which we mean.
Now, if (T,M , µ) is a measure space and if (X,B ) is a bornological space, i.e., a set X with
a bornology B , a measurable map Ψ: T → X is essentially bounded if there exists a
bounded set B ⊆ X such that

µ({t ∈ T | Ψ(t) ̸∈ B}) = 0.

By L∞(T;X) we denote the set of essentially bounded maps. If T = I is an interval in
R, a measurable map Ψ: I → X is locally essentially bounded in the bornology B if
Ψ|J is essentially bounded in the bornology B for every compact subinterval J ⊆ I. By
L∞
loc(I;X) we denote the set of locally essentially bounded maps; thus the bornology is to

be understood when we write expressions such as this.

Apologia. This is a paper about differential geometric control theory. It is, therefore, a
paper touching upon two things, (1) differential geometry and (2) control theory.

It is our view that differential geometry is the language of nonlinear control theory. As
such, our attitude toward the differential geometric aspects of what we do is unflinching in
that our presentation relies, sometimes in nontrivial ways, on all of the tools of a differential
geometer, including some that are not always a part of the nonlinear control theoretician’s
tool box, e.g., jet bundles, connections, locally convex topologies. In this paper, apart from
presenting a new framework for control theory, we also hope to illustrate the value of differ-
ential geometric tools in analysing these systems, and, for that matter, any sort of geometric
model in control theory. We have, therefore, eschewed the use of coordinates wherever pos-
sible, since it is our opinion that unfettered coordinate calculations are dangerous; they can
lead one astray if one forgets for too long the necessity of developing definitions and results
that do not depend on specific choices of coordinates. Also, overuse of coordinates has a
tendency to mask structure, and it is structure that we are emphasising in this paper. We
accept that our approach will make the paper difficult reading for some.

This is also a paper about control theory. And, as such, we wish to make the paper
as faithful to the discipline as possible, within the confines of what we are doing. We
are certainly not including in our modelling all of the elements that would be demanded
by a practicing control engineer, e.g., no uncertainty, no robustness, no adaptive control,
etc. And we are only considering our very limited class of models with ordinary differential
equations on finite-dimensional manifolds, e.g., no partial differential equations, no discrete-
time systems, no hybrid systems, etc. However, with respect to those elements of control
theory that we do touch upon, we have tried to be sincere in making a framework that
captures what one is likely to encounter in practice. This means, for example, that we
assiduously refrain from imposing geometric structure that is not natural from the point of
view of control theory. This tends to be a weakness of some purely differential geometric
approaches to control theory, and it is a weakness that we have avoided duplicating.
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in the Department of Mathematics at University of Hawaii, Manoa, when the paper was
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2. Fibre metrics for jet bundles

One of the principal devices we use in the paper are convenient seminorms for the
various topologies we use for spaces of sections of vector bundles. Since such topologies rely
on placing suitable norms on derivatives of sections, i.e., on jet bundles of vector bundles, in
this section we present a means for defining such norms, using as our starting point a pair
of connections, one for the base manifold, and one for the vector bundle. These allow us
to provide a direct sum decomposition of the jet bundle into its component “derivatives,”
and so then a natural means of defining a fibre metric for jet bundles using metrics on the
tangent bundle of the base manifold and the fibres of the vector bundle.

As we shall see, in the smooth case, these constructions are a convenience, whereas
in the real analytic case, they provide a crucial ingredient in our global, coordinate-free
description of seminorms for the topology of the space of real analytic sections of a vector
bundle. For this reason, in this section we shall also consider the existence of, and some
properties of, real analytic connections in vector bundles.

2.1. A decomposition for the jet bundles of a vector bundle. We let π : E → M be a
smooth vector bundle with πm : JmE → M its mth jet bundle. In a local trivialisation of
JmE, the fibres of this vector bundle are

⊕m
j=0L

j
sym(R

n;Rk),

with n the dimension of M and k the fibre dimension of E. This decomposition of the
derivatives, order-by-order, that we see in the local trivialisation has no global analogue,
but such a decomposition can be provided with the use of connections, and we describe how
to do this.

We suppose that we have a linear connection ∇0 on the vector bundle E and an affine
connection ∇ on M. We then have a connection, that we also denote by ∇, on T∗M defined
by

LY ⟨α;X⟩ = ⟨∇Y α;X⟩+ ⟨α;∇YX⟩.

For ξ ∈ Γ∞(E) we then have ∇0ξ ∈ Γ∞(T∗M ⊗ E) defined by ∇0ξ(X) = ∇0
Xξ for X ∈

Γ∞(TM). The connections ∇0 and ∇ extend naturally to a connection, that we denote by
∇m, on Tm(T∗M)⊗ E, m ∈ Z>0, by the requirement that

∇m
X(α

1 ⊗ · · · ⊗ αm ⊗ ξ)

=

m∑
j=1

(α1 ⊗ · · · ⊗ (∇Xαj)⊗ · · · ⊗ αm ⊗ ξ) + α1 ⊗ · · · ⊗ αm ⊗ (∇0
Xξ)

for α1, . . . , αm ∈ Γ∞(T∗M) and ξ ∈ Γ∞(E). Note that

∇(m)ξ ≜ ∇m(∇m−1 · · · (∇1(∇0ξ))) ∈ Γ∞(Tm+1(T∗M)⊗ E). (2.1)
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Now, given ξ ∈ Γ∞(E) and m ∈ Z≥0, we define

Pm+1
∇,∇0(ξ) = Symm+1⊗ idE(∇(m)ξ) ∈ Γ∞(Sm+1(T∗M)⊗ E),

where Symm : Tm(V) → Sm(V) is defined by

Symm(v1 ⊗ · · · ⊗ vm) =
1

m!

∑
σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m).

We take the convention that P 0
∇,∇0(ξ) = ξ.

The following lemma is then key for our presentation. While this lemma exists in
the literature in various forms, often in the form of results concerning the extension of
connections by “bundle functors” [e.g., Kolář, Michor, and Slovák 1993, Chapter X], we
were unable to find the succinct statement we give here. Pohl [1966] gives existential results
dual to what we give here, but stops short of giving an explicit formula such as we give
below. For this reason, we give a complete proof of the lemma.

2.1 Lemma: (Decomposition of jet bundles) The map

Sm∇,∇0 : J
mE → ⊕m

j=0(S
j(T∗M)⊗ E)

jmξ(x) 7→ (ξ(x), P 1
∇,∇0(ξ)(x), . . . , P

m
∇,∇0(ξ)(x))

is an isomorphism of vector bundles, and, for each m ∈ Z>0, the diagram

Jm+1E
Sm+1

∇,∇0
//

πm+1
m

��

⊕m+1
j=0 (Sj(T∗M)⊗ E)

prm+1
m

��
JmE

Sm
∇,∇0

// ⊕m
j=0(S

j(T∗M)⊗ E)

commutes, where prm+1
m is the obvious projection, stripping off the last component of the

direct sum.

Proof: We prove the result by induction on m. For m = 0 the result is a tautology. For
m = 1, as in [Kolář, Michor, and Slovák 1993, §17.1], we have a vector bundle mapping
S∇0 : E → J1E over idM that determines the connection ∇0 by

∇0ξ(x) = j1ξ(x)− S∇0(ξ(x)). (2.2)

Let us show that S1
∇,∇0 is well-defined. Thus let ξ, η ∈ Γ∞(E) be such that j1ξ(x) = j1η(x).

Then, clearly, ξ(x) = η(x), and the formula (2.2) shows that ∇ξ(x) = ∇η(x), and so
S1
∇,∇0 is indeed well defined. It is clearly linear on fibres, so it remains to show that it is

an isomorphism. This will follow from dimension counting if it is injective. However, if
S1
∇,∇0(j1ξ(x)) = 0 then j1ξ(x) = 0 by (2.2).
For the induction step, we begin with a sublemma.
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1 Sublemma: Let F be a field and consider the following commutative diagram of finite-
dimensional F-vector spaces with exact rows and columns:

0

��

0

��

0

��
0 // A1

ϕ1 //

ι1
��

C1
ψ1 //

ι2
��

p1

gg B //

γ1

gg 0

0 // A2
ϕ2 //

σ1

EE

C2
ψ2 //

p2

gg B
γ2

gg
// 0

If there exists a mapping γ2 ∈ HomF(B;C2) such that ψ2 ◦γ2 = idB (with p2 ∈ HomF(C2;A2)
the corresponding projection), then there exists a unique mapping γ1 ∈ HomF(B;C1) such
that ψ1 ◦ γ1 = idB and such that γ2 = ι2 ◦ γ1. There is also induced a projection p1 ∈
HomF(C1;A1).

Moreover, if there additionally exists a mapping σ1 ∈ HomF(A2;A1) such that σ1 ◦ ι1 =
idA1, then the projection p1 is uniquely determined by the condition p1 = σ1 ◦ p2 ◦ ι2.

Proof: We begin by extending the diagram to one of the form

0

��

0

��

0

��
0 // A1

ϕ1 //

ι1
��

C1
ψ1 //

ι2
��

B // 0

0 // A2
ϕ2 //

κ1
��

C2
ψ2 //

κ2
��

B //

��

0

0 // coker(ι1)
ϕ3 //

��

coker(ι2) //

��

0

0 0

also with exact rows and columns. We claim that there is a natural mapping ϕ3 between
the cokernels, as indicated by the dashed arrow in the diagram, and that ϕ3 is, moreover,
an isomorphism. Suppose that u2 ∈ image(ι1) and let u1 ∈ A1 be such that ι1(u1) = u2.
By commutativity of the diagram, we have

ϕ2(u2) = ϕ2 ◦ ι1(u1) = ι2 ◦ ϕ1(u1),

showing that ϕ2(image(ι1)) ⊆ image(ι2). We thus have a well-defined homomorphism

ϕ3 : coker(ι1) → coker(ι2)

u2 + image(ι1) 7→ ϕ2(u2) + image(ι2).

We now claim that ϕ3 is injective. Indeed,

ϕ3(u2 + image(ι1)) = 0 =⇒ ϕ2(u2) ∈ image(ι2).
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Thus let v1 ∈ C1 be such that ϕ2(u2) = ι2(v1). Thus

0 = ψ2 ◦ ϕ2(u2) = ψ2 ◦ ι2(v1) = ψ1(v1)

=⇒ v1 ∈ ker(ψ1) = image(ϕ1).

Thus v1 = ϕ1(u
′
1) for some u′1 ∈ A1. Therefore,

ϕ2(u2) = ι2 ◦ ϕ1(u
′
1) = ϕ2 ◦ ι1(u

′
1),

and injectivity of ϕ2 gives u2 ∈ image(ι1) and so u2 + image(ι1) = 0+ image(ι1), giving the
desired injectivity of ϕ3.

Now note that
dim(coker(ι1)) = dim(A2)− dim(A1)

by exactness of the left column. Also,

dim(coker(ι2)) = dim(C2)− dim(C1)

by exactness of the middle column. By exactness of the top and middle rows, we have

dim(B) = dim(C2)− dim(A2) = dim(C1)− dim(A1).

This proves that
dim(coker(ι1)) = dim(coker(ι2)).

Thus the homomorphism ϕ3 is an isomorphism, as claimed.
Now we proceed with the proof, using the extended diagram, and identifying the bottom

cokernels with the isomorphism ϕ3. The existence of the stated homomorphism γ2 means
that the middle row in the diagram splits. Therefore, C2 = image(ϕ2) ⊕ image(γ2). Thus
there exists a well-defined projection p2 ∈ HomF(C2;A2) such that p2 ◦ ϕ2 = idA2 [Halmos
1974, Theorem 41.1].

We will now prove that image(γ2) ⊆ image(ι2). By commutativity of the diagram and
since ψ1 is surjective, if w ∈ B then there exists v1 ∈ C1 such that ψ2 ◦ ι2(v1) = w. Since
ψ2 ◦ γ2 = idB, we have

ψ2 ◦ ι2(v1) = ψ2 ◦ γ2(w) =⇒ ι2(v1)− γ2(w) ∈ ker(ψ2) = image(ϕ2).

Let u2 ∈ A2 be such that ϕ2(u2) = ι2(v1)− γ2(w). Since p2 ◦ ϕ2 = idA2 we have

u2 = p2 ◦ ι2(v1)− p2 ◦ γ2(w),

whence
κ1(u2) = κ1 ◦ p2 ◦ ι2(v1)− κ1 ◦ p2 ◦ γ2(w) = 0,

noting that (1) κ1◦p2 = κ2 (by commutativity), (2) κ2◦ι2 = 0 (by exactness), and (3) p2◦γ2 =
0 (by exactness). Thus u2 ∈ ker(κ1) = image(ι1). Let u1 ∈ A1 be such that ι1(u1) = u2.
We then have

ι2(v1)− γ2(w) = ϕ2 ◦ ι1(u1) = ι2 ◦ ϕ1(u1),

which gives γ2(w) ∈ image(ι2), as claimed.
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Now we define γ1 ∈ HomF(B;C1) by asking that γ1(w) ∈ C1 have the property that
ι2 ◦ γ1(w) = γ2(w), this making sense since we just showed that image(γ2) ⊆ image(ι2).
Moreover, since ι2 is injective, the definition uniquely prescribes γ1. Finally we note that

ψ1 ◦ γ1 = ψ2 ◦ ι2 ◦ γ1 = ψ2 ◦ γ2 = idB,

as claimed.
To prove the final assertion, let us denote p̂1 = σ1 ◦ p2 ◦ ι2. We then have

p̂1 ◦ ϕ1 = σ1 ◦ p2 ◦ ι2 ◦ ϕ1 = σ1 ◦ p2 ◦ ϕ2 ◦ ι1 = σ1 ◦ ι1 = idA1 ,

using commutativity. We also have

p̂1 ◦ γ1 = σ1 ◦ p2 ◦ ι2 ◦ γ1 = σ1 ◦ p2 ◦ γ2 = 0.

The two preceding conclusions show that p̂1 is the projection defined by the splitting of the
top row of the diagram, i.e., p̂1 = p1. ▼

Now suppose that the lemma is true for m ∈ Z>0. For any k ∈ Z>0 we have a short
exact sequence

0 // Sk(T∗M)⊗ E
ϵk // JkE

πk
k−1 // Jk−1E // 0

for which we refer to [Saunders 1989, Theorem 6.2.9]. Recall from [Saunders 1989, Defini-
tion 6.2.25] that we have an inclusion ι1,m of Jm+1E in J1(JmE) by jm+1ξ(x) 7→ j1(jmξ(x)).
We also have an induced injection

ι̂1,m : Sm+1(T∗M)⊗ E → T∗M⊗ JmE

defined by the composition

Sm+1(T∗M)⊗ E // T∗M⊗ Sm(T∗M)⊗ E
id⊗ϵm // T∗M⊗ JmE

Explicitly, the left arrow is defined by

α1 ⊙ · · · ⊙ αm+1 ⊗ ξ 7→
m+1∑
j=1

αj ⊗ α1 ⊙ · · · ⊙ αj−1 ⊙ αj+1 ⊙ · · · ⊙ αm+1 ⊗ ξ,

⊙ denoting the symmetric tensor product defined by

A⊙B =
∑
σ∈Sk,l

σ(A⊗B), (2.3)

for A ∈ Sk(V) and B ∈ Sl(V), and with Sk,l the subset of Sk+l consisting of permutations
σ satisfying

σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l).
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We thus have the following commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // Sm+1(T∗M)⊗ E

ϵm+1 //

ι̂1,m

��

Jm+1E
πm+1
m //

ι1,m
��

Pm+1

mm
JmE //

Γm+1

ii 0

0 // T∗M⊗ JmE
ϵ1,m //

λ1,m

FF

J1(JmE)
(πm)1 //

P1,m

kk JmE //

Γ1,m

ll
0

(2.4)

We shall define a connection on (πm)1 : J
1(JmE) → JmE which gives a splitting Γ1,m and

P1,m of the lower row in the diagram. By the sublemma, this will give a splitting Γm+1 and
Pm+1 of the upper row, and so give a projection from Jm+1E onto Sm+1(T∗M) ⊗ E, which
will allow us to prove the induction step. To compute Pm+1 from the sublemma, we shall
also give a map λ1,m as in the diagram so that λ1,m ◦ ι̂1,m is the identity on Sm+1(T∗M)⊗E.

We start, under the induction hypothesis, by making the identification

JmE ≃ ⊕m
j=0S

j(T∗M)⊗ E,

and consequently writing a section of JmE as

x 7→ (ξ(x), P 1
∇,∇0(ξ(x)), . . . , P

m
∇,∇0(ξ(x))).

We then have a connection ∇m
on JmE given by

∇m
X(ξ, P

1
∇,∇0(ξ), . . . , P

m
∇,∇0(ξ)) = (∇0

Xξ,∇1
XP

1
∇,∇0(ξ), . . . ,∇m

XP
m
∇,∇0(ξ)).

Thus
∇m

(ξ, P 1
∇,∇0(ξ), . . . , P

m
∇,∇0(ξ)) = (∇0ξ,∇1P 1

∇,∇0(ξ), . . . ,∇mPm∇,∇0(ξ)),

which—according to the jet bundle characterisation of connections from [Kolář, Michor,
and Slovák 1993, §17.1] and which we have already employed in (2.2)—gives the mapping
P1,m in the diagram (2.4) as

P1,m(j1(ξ, P
1
∇,∇0(ξ), . . . , P

m
∇,∇0(ξ))) = (∇0ξ,∇1P 1

∇,∇0(ξ), . . . ,∇mPm∇,∇0(ξ)).

Now we define a mapping λ1,m for which λ1,m ◦ ι̂1,m is the identity on Sm+1(T∗M)⊗ E.
We continue to use the induction hypothesis in writing elements of JmE, so that we consider
elements of T∗M⊗ JmE of the form

(α⊗ ξ, α⊗A1, . . . , α⊗Am),

for α ∈ T∗M and Ak ∈ Sk(T∗M)⊗ E, k ∈ {1, . . . ,m}. We then define λ1,m by

λ1,m(α0 ⊗ ξ, α0 ⊗ α1
1 ⊗ ξ, . . . , α0 ⊗ α1

m ⊙ · · · ⊙ αmm ⊗ ξ)

= Symm+1⊗ idE(α0 ⊗ α1
m ⊙ · · · ⊙ αmm ⊗ ξ).
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Note that, with the form of JmE from the induction hypothesis, we have

ι̂1,m(α
1 ⊙ · · · ⊙ αm+1 ⊗ ξ)

=
(
0, . . . , 0,

1

m+ 1

m+1∑
j=1

αj ⊗ α1 ⊙ · · · ⊙ αj−1 ⊙ αj+1 ⊙ · · · ⊙ αm+1 ⊗ ξ
)
.

We then directly verify that λ1,m ◦ ι̂1,m is indeed the identity.
We finally claim that

Pm+1(jm+1ξ(x)) = Pm+1
∇,∇0(ξ), (2.5)

which will establish the lemma. To see this, first note that it suffices to define Pm+1 on
image(ϵm+1) since

1. Jm+1E ≃ (Sm+1(T∗M)⊗ E)⊕ JmE,

2. Pm+1 is zero on JmE ⊆ Jm+1E (thinking of the inclusion arising from the connection-
induced isomorphism from the preceding item), and

3. Pm+1 ◦ ϵm+1 is the identity map on Sm+1(T∗M)⊗ E.

In order to connect the algebra and the geometry, let us write elements of Sm+1(T∗M)⊗ E
in a particular way. We let x ∈ M and let f1, . . . , fm+1 be smooth functions contained in
the maximal ideal of C∞(M) at x, i.e., f j(x) = 0, j ∈ {1, . . . ,m + 1}. Let ξ be a smooth
section of E. We then can work with elements of Sm+1(T∗M)⊗ E of the form

df1(x)⊙ · · · ⊙ dfm+1(x)⊗ ξ(x).

We then have

ϵm+1(df
1(x)⊙ · · · ⊙ dfm+1(x)⊗ ξ(x)) = jm+1(f

1 · · · fm+1ξ)(x);

this is easy to see using the Leibniz Rule [cf. Goldschmidt 1967, Lemma 2.1]. (See [Abra-
ham, Marsden, and Ratiu 1988, Supplement 2.4A] for a description of the higher-order
Leibniz Rule.) Now, using the last part of the sublemma, we compute

Pm+1(jm+1(f
1 · · · fm+1ξ)(x))

= λ1,m ◦ P1,m ◦ ι1,m(jm+1(f
1 · · · fm+1ξ)(x))

= λ1,m ◦ P1,m(j1(f
1 · · · fm+1ξ, P 1

∇,∇0(f1 · · · fm+1ξ), . . . , Pm
∇,∇0(f1 · · · fm+1ξ))(x))

= λ1,m(∇0(f1 · · · fm+1ξ)(x),∇1P 1
∇,∇0(f1 · · · fm+1ξ)(x), . . . ,∇mPm

∇,∇0(f1 · · · fm+1ξ)(x))

= Symm+1 ⊗ idE(∇mPm
∇,∇0(f1 · · · fm+1ξ)(x))

= Pm+1
∇,∇0

(f1 · · · fm+1ξ)(x),

which shows that, with Pm+1 defined as in (2.5), Pm+1 ◦ ϵm+1 is indeed the identity on
Sm+1(T∗M)⊗ E.

The commuting of the diagram in the statement of the lemma follows directly from the
recursive nature of the constructions. ■

2.2. Fibre metrics using jet bundle decompositions. We also require the following result
concerning inner products on tensor products.
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2.2 Lemma: (Inner products on tensor products) Let U and V be finite-dimensional
R-vector spaces and let G and H be inner products on U and V, respectively. Then the
element G ⊗H of T2(U∗ ⊗ V∗) defined by

G ⊗H(u1 ⊗ v1, u2 ⊗ v2) = G(u1, u2)H(v1, v2)

is an inner product on U⊗ V.

Proof: Let (e1, . . . , em) and (f1, . . . , fn) be orthonormal bases for U and V, respectively.
Then

{ea ⊗ fj | a ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} (2.6)

is a basis for U⊗ V. Note that

G ⊗H(ea ⊗ fj , eb ⊗ fk) = G(ea, eb)H(fj , fk) = δabδjk,

which shows that G ⊗H is indeed an inner product, as (2.6) is an orthonormal basis. ■

Now, we let G0 be a fibre metric on E and let G be a Riemannian metric on M. Let us
denote by G−1 the associated fibre metric on T∗M defined by

G−1(αx, βx) = G(G
♯(αx),G

♯(βx)).

By induction using the preceding lemma, we have a fibre metric Gj on Tj(T∗M)⊗E induced
by G−1 and G0. By restriction, this gives a fibre metric on Sj(T∗M)⊗E. We can thus define
a fibre metric Gm on JmE given by

Gm(jmξ(x), jmη(x)) =
m∑
j=0

Gj
( 1

j!
P j∇,∇0(ξ)(x),

1

j!
P j∇,∇0(η)(x)

)
,

with the convention that ∇(−1)ξ = ξ. Associated to this inner product on fibres is the norm
on fibres, which we denote by ∥·∥Gm

. We shall use these fibre norms continually in our
descriptions of our various topologies below.

2.3. Real analytic connections. The fibre metrics from the preceding section will be used
to define seminorms for spaces of sections of vector bundles. In the finitely differentiable
and smooth cases, the particular fibre metrics we define above are not really required to give
seminorms for the associated topologies: any fibre metrics on the jet bundles will suffice.
Indeed, as long as one is only working with finitely many derivatives at one time, the choice
of fibre norms on jet bundles is of no consequence, since different choices will be equivalent
on compact subsets of M, cf. Section 3.1. However, when we work with the real analytic
topology, we are no longer working only with finitely many derivatives, but with the infinite
jet of a section. For this reason, different choices of fibre metric for jet bundles may give
rise to different topologies for the space of real analytic sections, unless the behaviour of
the fibre metrics is compatible as the order of derivatives goes to infinity. In this section we
give a fundamental inequality for our fibre metrics of Section 2.2 in the real analytic case
that ensures that they, in fact, describe the real analytic topology.

First let us deal with the matter of existence of real analytic data defining these fibre
metrics.
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2.3 Lemma: (Existence of real analytic connections and fibre metrics) If π : E →
M is a real analytic vector bundle, then there exist

(i) a real analytic linear connection on E,

(ii) a real analytic affine connection on M,

(iii) a real analytic fibre metric on E, and

(iv) a real analytic Riemannian metric on M.

Proof: By [Grauert 1958, Theorem 3], there exists a proper real analytic embedding ιE of
E in RN for some N ∈ Z>0. There is then an induced proper real analytic embedding
ιM of M in RN by restricting ιE to the zero section of E. Let us take the subbundle Ê of
TRN |ιM(M) whose fibre at ιM(x) ∈ ιM(M) is

ÊιM(x) = T0xιE(V0xE).

Now recall that E ≃ ζ∗VE, where ζ : M → E is the zero section [Kolář, Michor, and Slovák
1993, page 55]. Let us abbreviate ι̂E = TιE|ζ∗VE. We then have the following diagram

E ≃ ζ∗VE

π

��

ι̂E // RN ×RN

pr2
��

M ιM
// RN

(2.7)

describing a monomorphism of real analytic vector bundles over the proper embedding ιM,
with the image of ι̂E being Ê.

Among the many ways to prescribe a linear connection on the vector bundle E, we
will take the prescription whereby one defines a mapping K : TE → E such that the two
diagrams

TE
K //

Tπ
��

E

π
��

TM πTM
// M

TE
K //

πTE
��

E

π
��

E π
// M

(2.8)

define vector bundle mappings [Kolář, Michor, and Slovák 1993, §11.11]. We define K as
follows. For ex ∈ Ex and Xex ∈ TexE we have

Tex ι̂E(Xex) ∈ Tι̂E(ex)(R
N ×RN ) ≃ RN ⊕RN ,

and we define K so that
ι̂E ◦K(Xex) = pr2 ◦Tex ι̂E(Xex);

this uniquely defines K by injectivity of ι̂E, and amounts to using on E the connection
induced on image(ι̂E) by the trivial connection on RN ×RN . In particular, this means that
we think of ι̂E ◦K(Xex) as being an element of the fibre of the trivial bundle RN ×RN at
ιM(x).
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If vx ∈ TM, if e, e′ ∈ E, and if X ∈ TeE and X ′ ∈ Te′E satisfy X,X ′ ∈ Tπ−1(vx), then
note that

Teπ(X) = Te′π(X
′) =⇒ Te(ιM ◦ π)(X) = Te′(ιM ◦ π)(X ′)

=⇒ Te(pr2 ◦ι̂E)(X) = Te′(pr2 ◦ι̂E)(X
′)

=⇒ TιM(x) pr2 ◦Teι̂E(X) = TιM(x) pr2 ◦Te′ ι̂E(X
′).

Thus we can write

Teι̂E(X) = (x, e,u,v), Te′ ι̂E(X) = (x, e′,u,v′)

for suitable x,u, e, e′,v,v′ ∈ RN . Therefore,

ι̂E ◦K(X) = (x,v), ι̂E ◦K(X ′) = (x,v′), ι̂E ◦K(X +X ′) = (x,v + v′),

from which we immediately conclude that, for addition in the vector bundle Tπ : TE → TM,
we have

ι̂E ◦K(X +X ′) = ι̂E ◦K(X) + ι̂E ◦K(X ′),

showing that the diagram on the left in (2.8) makes K a vector bundle mapping.
On the other hand, if ex ∈ E and if X,X ′ ∈ TexE, then we have, using vector bundle

addition in πTE : TE → E,

ι̂E ◦K(X +X ′) = pr2 ◦Tex ι̂E(X +X ′)

= pr2 ◦Tex ι̂E(X) + pr2 ◦Tex ι̂E(X
′)

= ι̂E ◦K(X) + ι̂E ◦K(X ′),

giving that the diagram on the right in (2.8) makes K a vector bundle mapping. Since K
is real analytic, this defines a real analytic linear connection ∇0 on E as in [Kolář, Michor,
and Slovák 1993, §11.11].

The existence of G0, G, and ∇ are straightforward. Indeed, we let GRN be the Euclidean
metric on RN , and define G0 and G by

G0(ex, e
′
x) = GRN (ι̂E(ex), ι̂E(e

′
x))

and
G(vx, v

′
x) = GRN (TxιM(vx), TxιM(v′x)).

The affine connection ∇ can be taken to be the Levi-Civita connection of G. ■

The existence of a real analytic linear connection in a real analytic vector bundle is
asserted at the bottom of page 302 in [Kriegl and Michor 1997], and we fill in the blanks in
the preceding proof.

Now let us provide a fundamental relationship between the geometric fibre norms of
Section 2.2 and norms constructed in local coordinate charts.
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2.4 Lemma: (A fundamental estimate for fibre norms) Let U ⊆ Rn be open, denote
RkU = U×Rk, let K ⊆ U be compact, and consider the trivial vector bundle pr1 : R

k
U → U.

Let G be a Riemannian metric on U, let G0 be a vector bundle metric on RkU, let ∇ be an
affine connection on U, and let ∇0 be a vector bundle connection on RkU, with all of these
being real analytic. Then there exist C, σ ∈ R>0 such that

σm

C
∥jmξ(x)∥Gm

≤ sup
{ 1

I!
|DIξa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
≤ C

σm
∥jmξ(x)∥Gm

for every ξ ∈ Γ∞(RkU), x ∈ K, and m ∈ Z≥0.

Proof: We begin the proof with a series of sublemmata of a fairly technical nature. From
these the lemma will follow in a more or less routine manner.

Let us first prove a result which gives a useful local trivialisation of a vector bundle and
a corresponding Taylor expansion for real analytic sections.

1 Sublemma: Let π : E → M be a real analytic vector bundle, let ∇0 be a real analytic linear
connection on E, and let ∇ be a real analytic affine connection on M. Let x ∈ M, and let
N ⊆ TxM be a convex neighbourhood of 0x and V ⊆ M be a neighbourhood of x such that the
exponential map expx corresponding to ∇ is a real analytic diffeomorphism from N to V.
For y ∈ V, let τxy : Ex → Ey be parallel transport along the geodesic t 7→ expx(t exp

−1
x (y)).

Define
κx : N × Ex → E|V

(v, ex) 7→ τx,expx(v)(ex).

Then

(i) κx is a real analytic vector bundle isomorphism over expx and

(ii) if ξ ∈ Γω(E|V), then

κ−1
x ◦ ξ ◦ expx(v) =

∞∑
m=0

1

m!
∇(m−1)ξ(x)(v, · · · , v︸ ︷︷ ︸

m times

)

for v in a sufficiently small neighbourhood of 0x ∈ TxM.

Proof: (i) Consider the vector field X∇,∇0 on the Whitney sum TM⊕ E defined by

X∇,∇0(vx, ex) = hlft(vx, vx)⊕ hlft0(ex, vx),

where hlft(vx, ux) is the horizontal lift of ux ∈ TxM to TvxTM and hlft0(ex, ux) is the
horizontal lift of ux ∈ TxM to TexE. Note that, since

TπTM(hlft(vx, vx)) = Tπ(hlft0(ex, vx)),

this is indeed a vector field on TM ⊕ E. Moreover, the integral curve of X∇,∇0 through
(vx, ex) is t 7→ γ′(t)⊕τ(t), where γ is the geodesic with initial condition γ′(0) = vx and where
t 7→ τ(t) is parallel transport of ex along γ. This is a real analytic vector field, and so the flow
depends in a real analytic manner on initial condition [Sontag 1998, Proposition C.3.12].
In particular, it depends in a real analytic manner on initial conditions lying in N × Ex.
But, in this case, the map from initial condition to value at t = 1 is exactly κx. This shows
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that κx is indeed real analytic. Moreover, it is clearly fibre preserving over expx and is
linear on fibres, and so is a vector bundle map [cf. Abraham, Marsden, and Ratiu 1988,
Proposition 3.4.12(iii)].

(ii) For v ∈ N, let γv be the geodesic satisfying γ′v(0) = v. Then, for t ∈ R>0 satisfying
|t| ≤ 1, define

αv(t) = κ−1
x ◦ ξ(γv(t)) = τ−1

x,γv(t)
(ξ(γv(t)).

We compute derivatives of αv as follows, by induction and using the fact that ∇γ′v(t)
γ′v(t) =

0:

Dαv(t) = τ−1
x,γv(t)

(∇0ξ(γ′v(t)))

D2αv(t) = τ−1
x,γv(t)

(∇(1)ξ(γ′v(t), γ
′
v(t)))

...

Dmαv(t) = τ−1
x,γv(t)

(∇(m−1)ξ(γ′v(t), . . . , γ
′
v(t)︸ ︷︷ ︸

m times

)).

By these computations, we have

dm

dtm

∣∣∣∣
t=0

(κ−1
x ◦ ξ(expx(tv)) = ∇(m−1)ξ(v, . . . , v︸ ︷︷ ︸

m times

),

and so

κ−1
x ◦ ξ(expx(tv)) =

∞∑
m=0

tm

m!
∇(m−1)ξ(v, . . . , v︸ ︷︷ ︸

m times

),

which is the desired result upon letting t = 1 and supposing that v is in a sufficiently small
neighbourhood of 0x ∈ TxM. ▼

Next we introduce some notation in the general setting of the preceding sublemma that
will be useful later. We fix x ∈ M. We let Nx ⊆ TxM and Vx ⊆ M be neighbourhoods of
0x and x, respectively, such that expx : Nx → Vx is a diffeomorphism. For y ∈ Vx we then
define

I ′xy : N
′
xy × Ex → E|V′

xy

(v, ex) 7→ τx,expx(v+exp−1
x (y))(ex)

for neighbourhoods N′
xy ⊆ TxM of 0x ∈ TxM and V′

xy ⊆ M of y. We note that I ′xy is a real
analytic vector bundle isomorphism over the diffeomorphism

i′xy : N
′
xy → V′

xy

v 7→ expx(v + exp−1
x (y)).

Thus Ixy ≜ I ′xy ◦ κ−1
x is a real analytic vector bundle isomorphism from E|U′

xy to E|V′
xy for

appropriate neighbourhoods U′
xy ⊆ M of x and V′

xy ⊆ M of y. If we define ixy : U
′
xy → V′

xy

by ixy = i′xy ◦ exp−1
x , then Ixy is a vector bundle mapping over ixy. Along similar lines,

Îxy ≜ κ−1
y ◦ I ′xy is a vector bundle isomorphism between the trivial bundles O′

xy × Ex and
N′
xy × Ey for appropriate neighbourhoods O′

xy ⊆ TxM and N′
xy ⊆ TyM of the origin. If we

define îxy : O
′
xy → N′

xy by îxy = exp−1
y ◦i′xy, then Îxy is a vector bundle map over îxy.

The next sublemma indicates that the neighbourhoods U′
xy of x and O′

xy of 0x can be
uniformly bounded from below.
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2 Sublemma: The neighbourhood Vx and the neighbourhoods U′
xy and O′

xy above may be
chosen so that

int(∩y∈VxU
′
xy) ̸= ∅, int(∩y∈VxO

′
xy) ̸= ∅.

Proof: By [Kobayashi and Nomizu 1963, Theorem III.8.7] we can choose Vx so that, if
y ∈ Vx, then there is a normal coordinate neighbourhood Vy of y containing Vx. Taking
V′
xy = Vx ∩ Vy and U′

xy = Vx gives the sublemma. ▼

We shall always assume Vx chosen as in the preceding sublemma, and we let U′
x ⊆ M

be a neighbourhood of x and O′
x ⊆ TxM be a neighbourhood of 0x such that

U′
x ⊆ int(∩y∈VxU

′
xy), O′

x ⊆ int(∩y∈VxO
′
xy).

These constructions can be “bundled together” as one to include the dependence on
y ∈ Vx in a clearer manner. Since this will be useful for us, we explain it here. Let us
denote Dx = Vx × U′

x, let pr2 : Dx → U′
x be the projection onto the second factor, and

denote
ix : Dx → M

(y, x′) 7→ ixy(x
′).

Consider the pull-back bundle pr∗2 π : pr∗2 E|U′
x → Dx. Thus

pr∗2 E|U′
x = {((y, x′), ey′) ∈ Dx × E|U′

x | y′ = x′}.

We then have a real analytic vector bundle mapping

Ix : pr
∗
2 E|U′

x → E

((y, x′), ex′) 7→ Ixy(ex′)

which is easily verified to be defined over ix and is isomorphic on fibres. Given ξ ∈ Γ∞(E),
we define I∗xξ ∈ Γ∞(pr∗2 E|U′

x) by

I∗xξ(y, x
′) = (Ix)

−1
(y,x′)

◦ ξ ◦ ix(y, x
′) = I−1

xy ◦ ξ ◦ ixy(x
′).

For y ∈ Vx fixed, we denote by I∗xyξ ∈ Γ∞(E|U′
x) the section given by

I∗xyξ(x
′) = I∗xξ(y, x

′) = I−1
xy ◦ ξ ◦ ixy(x

′).

A similar construction can be made in the local trivialisations. Here we denote D̂x =
Vx ×Ox, let pr2 : D̂x → Ox be the projection onto the second factor, and consider the map

îx : D̂x → TM

(y, vx) 7→ îxy(vx).

Denote by π∗TMπ : π
∗
TME → TM the pull-back bundle and also define the pull-back bundle

pr∗2 π
∗
TMπ : pr∗2 π

∗
TME → D̂x.

Note that
pr∗2 π

∗
TME = {((y, vx), (uy, ey)) ∈ D̂x × π∗TME | x = y}.
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We then define the real analytic vector bundle map

Îx : pr
∗
2 π

∗
TME → π∗TME

((y, vx), (ux, ex)) 7→ (vx, Îxy(vx, ex)).

Given a local section η ∈ Γ∞(π∗TME) defined in a neighbourhood of the zero section, define

a local section Î∗xη ∈ Γ∞(pr∗2 π
∗
TME) in a neighbourhood of the zero section of D̂x by

Î∗xη(y, vx) = (Îx)
−1
(y,vx)

◦ η ◦ îx(y, vx) = Î−1
xy ◦ η ◦ ix(y, vx).

For y ∈ Vx fixed, we denote by ηy the restriction of η to a neighbourhood of 0y ∈ TyM. We
then denote by

Î∗xyηy(vx) = Î∗xη(y, vx) = Î−1
xy ◦ ηy ◦ îxy(vx)

the element of Γ∞(O′
x × Ex).

The following simple lemma ties the preceding two constructions together.

3 Sublemma: Let ξ ∈ Γ∞(E) and let ξ̂ ∈ Γ∞(π∗TME) be defined in a neighbourhood of the
zero section by

ξ̂ = κ−1
y ◦ ξ ◦ expy .

Then, for each y ∈ Vx,
Î∗xy ξ̂y = κ−1

x ◦ I∗xyξ ◦ expx .

Proof: We have

Î∗xy ξ̂(vx) = Î−1
xy ◦ ξ̂ ◦ îxy(vx)

= (I ′xy)
−1 ◦ κy ◦ ξ̂ ◦ exp−1

y ◦i′xy(vx)

= κ−1
x ◦ I−1

xy ◦ κy ◦ ξ̂ ◦ exp−1
y ◦ixy ◦ expx(vx)

= κ−1
x ◦ I−1

xy ◦ ξ ◦ ixy ◦ expx(vx)

= κ−1
x I∗xyξ ◦ expx(vx).

as claimed. ▼

Let us leave these general vector bundle considerations and proceed to local estimates.
We shall consider estimates associated with local vector bundle maps. First we consider an
estimate arising from multiplication.

4 Sublemma: If U ⊆ Rn is open, if f ∈ Cω(U), and if K ⊆ U is compact, then there exist
C, σ ∈ R>0 such that

sup
{ 1

I!
DI(fg)(x)

∣∣∣ |I| ≤ m
}
≤ Cσ−m sup

{ 1

I!
DIg(x)

∣∣∣ |I| ≤ m
}

for every g ∈ C∞(U), x ∈ K, and m ∈ Z≥0.

Proof: For multi-indices I, J ∈ Zn≥0, let us write J ≤ I if I − J ∈ Zn≥0. For I ∈ Zn≥0 we
have

1

I!
DI(fg)(x) =

∑
J≤I

DJg(x)

J !

DI−Jf(x)

(I − J)!
,
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by the Leibniz Rule. By [Krantz and Parks 2002, Lemma 2.1.3], the number of multi-indices

in n variables of order at most |I| is (n+|I|)!
n!|I|! . Note that, by the binomial theorem,

(a1 + a2)
n+|I| =

n+|I|∑
j=0

(n+ |I|)!
(n+ |I| − j)!j!

aj1a
n+|I|−j
2 .

Evaluating at a1 = a2 = 1 and considering the summand corresponding to j = |I|, this
gives

(n+ |I|)!
n!|I|!

≤ 2n+|I|.

Using this inequality we derive

1

I!
|DI(fg)(x)| ≤

∑
|J |≤|I|

sup
{ |DJf(x)|

J !

∣∣∣ |J | ≤ |I|
}
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ |I|
}

≤ (n+ |I|)!
n!|I|!

sup
{ |DJf(x)|

J !

∣∣∣ |J | ≤ |I|
}
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ |I|
}

≤ 2n+|I| sup
{ |DJf(x)|

J !

∣∣∣ |J | ≤ |I|
}
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ |I|
}
.

By [Krantz and Parks 2002, Proposition 2.2.10], there exist B, r ∈ R>0 such that

1

J !
|DJf(x)| ≤ Br−|J |, J ∈ Zn≥0, x ∈ K.

We can suppose, without loss of generality, that r < 1 so that we have

1

I!
|DI(fg)(x)| ≤ 2nB

(2
r

)|I|
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ |I|
}
, x ∈ K.

We conclude, therefore, that if |I| ≤ m we have

1

I!
|DI(fg)(x)| ≤ 2nB

(2
r

)m
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ m
}
, x ∈ K,

which is the result upon taking C = 2nB and σ = 2
r . ▼

Next we give an estimate for derivatives of compositions of mappings, one of which is
real analytic. Thus we have a real analytic mapping Φ : U → V between open sets U ⊆ Rn
and V ⊆ Rk and f ∈ C∞(V). By the higher-order Chain Rule [e.g., Constantine and Savits
1996], we can write

DI(f ◦ Φ)(x) =
∑

H∈Zm
≥0

|H|≤|I|

AI,H(x)D
Hf(Φ(x))

for x ∈ U and for some real analytic functions AI,H ∈ Cω(U). The proof of the next
sublemma gives estimates for the AI,H ’s, and is based on computations of Thilliez [1997] in
the proof of his Proposition 2.5.
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5 Sublemma: Let U ⊆ Rn and V ⊆ Rk be open, let Φ ∈ Cω(U;V), and let K ⊆ U be
compact. Then there exist C, σ ∈ R>0 such that

|DJAI,H(x)| ≤ Cσ−(|I|+|J |)(|I|+ |J | − |H|)!

for every x ∈ K, I, J ∈ Zn≥0, and H ∈ Zk≥0.

Proof: First we claim that, for j1, . . . , jr ∈ {1, . . . , n},

∂r(f ◦ Φ)

∂xj1 · · · ∂xjr
(x) =

r∑
s=1

k∑
a1,...,as=1

Ba1···as
j1···jr (x)

∂sf

∂ya1 · · · ∂yas
(Φ(x)),

where the real analytic functions Ba1···as
j1···jr , a1, . . . , as ∈ {1, . . . , k}, j1, . . . , jr ∈ {1, . . . , n},

r, s ∈ Z>0, s ≤ r, are defined by the following recursion, starting with Ba
j = ∂Φa

∂xj
:

1. Ba
j1···jr =

∂Ba
j2···jr
∂xj1

;

2. Ba1···as
j1···jr =

∂Ba1···as
j2···jr
∂xj1

+
∂Φa1

∂xj1
Ba2···as
j2···jr , r ≥ 2, s ∈ {2, . . . , r − 1};

3. Ba1···ar
j1···jr =

∂Φa1

∂xj1
Ba2···ar
j2···jr .

This claim we prove by induction on r. It is clear for r = 1, so suppose the assertion true
up to r − 1. By the induction hypothesis we have

∂r−1(f ◦ Φ)

∂xj2 · · · ∂xjr
(x) =

r−1∑
s=1

k∑
a1,...,as=1

Ba1···as
j2···jr (x)

∂sf

∂ya1 · · · ∂yas
(Φ(x)).

We then compute

∂

∂xj1
∂r−1(f ◦ Φ)

∂xj2 · · · ∂xjr
(x)

=

r−1∑
s=1

k∑
a1,...,as=1

(∂Ba1,...,as
j2···jr
∂xj1

(x)
∂sf

∂ya1 · · · ∂yas
(Φ(x))

+

k∑
b=1

Ba1···as
j2···jr (x)

∂Φb

∂xj1
(x)

∂s+1f

∂yb∂ya1 · · · ∂yas
(Φ(x))

)
=

r−1∑
s=1

k∑
a1,...,as=1

∂Ba1···as
j2···jr
∂xj1

(x)
∂sf

∂ya1 · · · ∂yas
(Φ(x))

+

r∑
s=2

k∑
a1,...,as=1

Ba2···as
j2···jr (x)

∂Φa1

∂xj1
(x)

∂sf

∂ya1 · · · ∂yas
(Φ(x))

=
k∑
a=1

∂Ba
j2···jr
∂xj1

(x)
∂f

∂ya
(Φ(x))

+

r−1∑
s=2

k∑
a1,...,as=1

(∂Ba1···as
j2···jr
∂xj1

(x) +
∂Φa1

∂xj1
(x)Ba2···as

j2···jr (x)
) ∂sf

∂ya1 · · · ∂yas
(Φ(x))
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+

k∑
a1,...,ar=1

∂Φa1

∂xj1
(x)Ba2···ar

j2···jr (x)
∂sf

∂ya1 · · · ∂yar
(Φ(x)),

from which our claim follows.
Next we claim that there exist A, ρ, α, β ∈ R>0 such that

|DJBa1···as
j1···jr (x)| ≤ (Aα)r

(β
ρ

)r+|J |−s
(r + |J | − s)!

for every x ∈ K, J ∈ Zn≥0, a1, . . . , as ∈ {1, . . . , k}, j1, . . . , jk ∈ {1, . . . , n}, r, s ∈ Z>0, s ≤ r.
This we prove by induction on r once again. First let β ∈ R>0 be sufficiently large that∑

I∈Zn
≥0

β−|I| <∞,

and denote this value of this sum by S. Then let α = 2S. By [Krantz and Parks 2002,
Proposition 2.2.10] there exist A, ρ ∈ R>0 such that

|DJDjΦa(x)| ≤ AJ !ρ−|J |

for every x ∈ K, J ∈ Zn≥0, j ∈ {1, . . . , n}, and a ∈ {1, . . . , k}. This gives the claim for
r = 1. So suppose the claim true up to r − 1. Then, for any a1, . . . , as ∈ {1, . . . , k} and
j1, . . . , jr ∈ {1, . . . , n}, s ≤ r, Ba1···as

j1···jr has one of the three forms listed above in the recurrent
definition. These three forms are themselves sums of terms of the form

∂Ba1···as
j2···jr
∂xj1︸ ︷︷ ︸
P

,
∂Φa1

∂xj1
Ba2···as
j2···jr︸ ︷︷ ︸

Q

.

Let us, therefore, estimate derivatives of these terms, abbreviated by P and Q as above.
We directly have, by the induction hypothesis,

|DJP (x)| ≤ (Aα)r
(β
ρ

)r+|J |−s
(r + |J | − s)!

≤Arαr−1S
(β
ρ

)r+|J |−s
(r + |J | − s)!,

noting that α = 2S. By the Leibniz Rule we have

DJQ(x) =
∑

J1+J2=J

J !

J1!J2!
DJ1Dj1Φa1(x)DJ2Ba2···as

j2···jr (x).

By the induction hypothesis we have

|DJ2Ba2···as
j2···jr (x)| ≤ (Aα)r−1

(β
ρ

)r+|J2|−s
(r + |J2| − s)!

for every x ∈ K and J2 ∈ Z≥0. Therefore,

|DJQ(x)| ≤
∑

J1+J2=J

J !

J2!
A(Aα)r−1

(β
ρ

)r+|J |−s
β−|J1|(r + |J2| − s)!
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for every x ∈ K and J ∈ Zn≥0. Now note that, for any a, b, c ∈ Z>0 with b < c, we have

(a+ b)!

b!
= (1 + b) · · · (a+ b) < (1 + c) · · · (a+ c) =

(a+ c)!

c!
.

Thus, if L, J ∈ Zn≥0 satisfy L < J (meaning that J − L ∈ Zn≥0), then we have

lk ≤ jk =⇒ (a+ lk)!

lk!
≤ (a+ jk)!

jk!
=⇒ jk!

lk!
≤ (a+ jk)!

(a+ lk)!

for every a ∈ Z>0 and k ∈ {1, . . . , n}. Therefore,

(j1 + · · ·+ jn−1 + jn)!

(j1 + · · ·+ jn−1 + ln)!
≥ jn!

ln!

and

(j1 + · · ·+ jn−2 + jn−1 + jn)!

(j1 + · · ·+ jn−2 + ln−1 + ln)!

=
(j1 + · · ·+ jn−1 + jn)!

(j1 + · · ·+ jn−1 + ln)!

(j1 + · · ·+ jn−2 + jn−1 + ln)!

(j1 + · · ·+ jn−2 + ln−1 + ln)!
≥ jn−1!

ln−1!

jn!

ln!
.

Continuing in this way, we get
J !

L!
≤ |J |!

|L|!
.

We also have
(r + |J2| − s)!

|J2|!
≤ (r + |J | − s)!

|J |!
.

Thus we have

|DJQ(x)| ≤
∑

J1+J2=J

J !

J2!
A(Aα)r−1

(β
ρ

)r+|J |−s
β−|J1|(r + |J2| − s)!

≤ A(Aα)r−1
(β
ρ

)r+|J |−s
(r + |J | − s)!

∑
J1+J2=J

β−|J1|

≤ AS(Aα)r−1
(β
ρ

)r+|J |−s
(r + |J | − s)!

Combining the estimates for P and Q to give an estimate for their sum, and recalling that
α = 2S, gives our claim that there exist A, ρ, α, β ∈ R>0 such that

|DJBa1···as
j1···jr (x)| ≤ (Aα)r

(β
ρ

)r+|J |−s
(r + |J | − s)!

for every x ∈ K, J ∈ Zn≥0, a1, . . . , as ∈ {1, . . . , k}, and j1, . . . , jr ∈ {1, . . . , n}, r, s ∈ Z>0,
s ≤ r.

To conclude the proof of the lemma, note that given an index j = (j1, . . . , jr) ∈
{1, . . . , n}r we define a multi-index I(j) = (i1, . . . , in) ∈ Zn≥0 by asking that il be the
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number of times l appears in the list j. Similarly an index a = (a1, . . . , as) ∈ {1, . . . , k}s
gives rise to a multi-index H(a) ∈ Zk≥0. Moreover, by construction we have

Ba1···as
j1···jr = AI(j),H(a).

Let C = 1 and σ−1 = max{Aα, βρ} and suppose, without loss of generality, that σ ≤ 1.
Then

(Aα)|I| ≤ σ−(|I|+|J |),
(β
ρ

)r+|J |−s
≤ σ−(|I|+|J |)

for every I, J ∈ Zn≥0. Thus we have

|DJAI,H(x)| ≤ Cσ−(|I|+|J |)(|I|+ |J | − |H|)!

as claimed. ▼

Next we consider estimates for derivatives arising from composition.

6 Sublemma: Let U ⊆ Rn and V ⊆ Rk be open, let Φ ∈ Cω(U;V), and let K ⊆ U be
compact. Then there exist C, σ ∈ R>0 such that

sup
{ 1

I!
|DI(f ◦ Φ)(x)|

∣∣∣ |I| ≤ m
}
≤ Cσ−m sup

{ 1

I!
|DHf(Φ(x))|

∣∣∣ |H| ≤ m
}

for every f ∈ C∞(V), x ∈ K, and m ∈ Z≥0.

Proof: As we denoted preceding the statement of Sublemma 5 above, let us write

DI(f ◦ Φ)(x) =
∑

H∈Zm
≥0

|H|≤|I|

AI,H(x)D
Hf(Φ(x))

for x ∈ U and for some real analytic functions AI,H ∈ Cω(U). By Sublemma 5, let A, r ∈
R>0 be such that

|DJAI,H(x)| ≤ Ar−(|I|+|J |)(|I|+ |J | − |H|)!
for x ∈ K. By the multinomial theorem [Krantz and Parks 2002, Theorem 1.3.1] we can
write

(a1 + · · ·+ an)
|I| =

∑
|J |=|I|

|J |!
J !

aJ

for every I ∈ Zn≥0. Setting a1 = · · · = an = 1 gives |I|!
I! ≤ n|I| for every I ∈ Zn≥0. As in

the proof of Sublemma 4 we have that the number of multi-indices of length k and degree
at most |I| is bounded above by 2k+|I|. Also, by a similar binomial theorem argument, if
|H| ≤ |I|, then we have

(|I| − |H|)!|H|!
|I|!

≤ 2|I|.

Putting this together yields

1

I!
|DI(f ◦ Φ)(x)| ≤ An|I|r−|I|

∑
|H|≤|I|

(|I| − |H|)!|H|!
|I|!

1

H!
|DHf(Φ(x))|

≤ An|I|2k+|I|2|I|r−|I| sup
{ 1

H!
|DHf(Φ(x))|

∣∣∣ |H| ≤ |I|
}

= 2kA(4nr−1)|I| sup
{ 1

H!
|DHf(Φ(x))|

∣∣∣ |H| ≤ |I|
}
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whenever x ∈ K. Let us denote C = 2kA and σ−1 = 4nr−1 and take r so that 4nr−1 ≥ 1,
without loss of generality. We then have

sup
{ 1

I!
|DI(f ◦ Φ)(x)|

∣∣∣ |I| ≤ m
}
≤ Cσ−1 sup

{ 1

H!
|DHf(Φ(x))|

∣∣∣ |H| ≤ m
}

for every f ∈ C∞(U2), x ∈ K, and m ∈ Z≥0, as claimed. ▼

Now we can state the following estimate for vector bundle mappings which is essential
for our proof.

7 Sublemma: Let U ⊆ Rn and V ⊆ Rk be open, let l ∈ Z>0, and consider the trivial
vector bundles RlU and RlV. Let Φ ∈ Cω(U;V), let A ∈ Cω(U;GL(l;R)), and let K ⊆ U be
compact. Then there exist C, σ ∈ R>0 such that

sup
{ 1

I!
|DI(A−1 · (ξ ◦ Φ))b(x)|

∣∣∣ |I| ≤ m, b ∈ {1, . . . , l}
}

≤ Cσ−m sup
{ 1

H!
|DHξa(Φ(x))|

∣∣∣ |H| ≤ m, a ∈ {1, . . . , l}
}
,

for every ξ ∈ Γ∞(RlV), x ∈ K, and m ∈ Z≥0.

Proof: By Sublemma 6 there exist C1, σ1 ∈ R>0 such that

sup
{ 1

I!
|DI(ξ ◦ Φ)a(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , l}
}

≤ C1σ
−m
1 sup

{ 1

H!
|DHξa(Φ(x))|

∣∣∣ |H| ≤ m, a ∈ {1, . . . , l}
}

for every ξ ∈ Γ∞(RlV), x ∈ K, and m ∈ Z≥0.
Now let η ∈ Γ∞(RlU). Let B

b
a ∈ Cω(U), a ∈ {1, . . . , l}, b ∈ {1, . . . , l}, be the components

of A−1. By Sublemma 4, there exist C2, σ2 ∈ R>0 such that

sup
{ 1

I!
|DI(Bb

a(x)η
a(x))|

∣∣∣ |I| ≤ m, a, b ∈ {1, . . . , l}
}

≤ C2σ
−m
2 sup

{ 1

I!
|DIηa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , l}
}

for every x ∈ K andm ∈ Z≥0. (There is no implied sum over “a” in the preceding formula.)
Therefore, by the triangle inequality,

sup
{ 1

I!
|DI(A−1 · η)b(x)|

∣∣∣ |I| ≤ m, b ∈ {1, . . . , l}
}

≤ lC2σ
−m
2 sup

{ 1

I!
|DIηa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , l}
}

for every x ∈ K and m ∈ Z≥0.
Combining the estimates from the preceding two paragraphs gives

sup
{ 1

I!
|DI(ξ ◦ Φ)b(x)|

∣∣∣ |I| ≤ m, b ∈ {1, . . . , l}
}

≤ lC1C2(σ1σ2)
−m sup

{ 1

H!
|DHξa(Φ(x))|

∣∣∣ |H| ≤ m, a ∈ {1, . . . , l}
}

for every ξ ∈ Γ∞(RlV), x ∈ K, and m ∈ Z≥0, which is the desired result after taking
C = lC1C2 and σ = σ1σ2. ▼
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Now we begin to provide some estimates that closely resemble those in the statement
of the lemma. We begin by establishing an estimate resembling that of the required form
for a fixed x ∈ U.

8 Sublemma: Let U ⊆ Rn be open, denote RkU = U × Rk, and consider the trivial vector
bundle pr1 : R

k
U → U. Let G be a Riemannian metric on U, let G0 be a vector bundle metric

on RkU, let ∇ be an affine connection on U, and let ∇0 be a vector bundle connection on

RkU, with all of these being real analytic. For ξ ∈ Γ∞(RkU) and x ∈ U, denote by ξ̂x the
corresponding section of Nx × Rk defined by the isomorphism κx of Sublemma 1. For
K ⊆ U compact, there exist C, σ ∈ R>0 such that the following inequalities hold for each
ξ ∈ Γ∞(RkU), x ∈ K, and m ∈ Z≥0:

(i) ∥jmξ(x)∥Gm
≤ Cσ−m sup

{
1
I! |D

I ξ̂ax(0)|
∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
;

(ii)
{

1
I! |D

I ξ̂ax(0)|
∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
≤ Cσ−m∥jmξ(x)∥Gm

.

Proof: By Sublemma 1 we have

ξ̂x(v) =

∞∑
m=0

1

m!
∇(m−1)ξ(x)(v, . . . ,v︸ ︷︷ ︸

m times

)

for v in some neighbourhood of 0 ∈ Rn. We also have

ξ̂x(v) =
∑

m∈Z≥0

1

m!
Dmξ̂x(0)(v, . . . ,v︸ ︷︷ ︸

m times

)

for every v in some neighbourhood of 0 ∈ Rn. As the relation

∞∑
m=0

1

m!
∇(m−1)ξ(x)(v, . . . ,v︸ ︷︷ ︸

m times

) =
∑

m∈Z≥0

1

m!
Dmξ̂x(0)(v, . . . ,v︸ ︷︷ ︸

m times

)

holds for every v ∈ Rn, it follows that

Pm∇,∇0(ξ)(x) = Dmξ̂x(0)

for every m ∈ Z≥0. Take m ∈ Z≥0. We have

m∑
r=0

1

(r!)2
∥P r∇,∇0(ξ)(x)∥2Gr

≤
m∑
r=0

A′Ar

(r!)2
∥Drξ̂x(0)∥2,

where A′ ∈ R>0 depends on G0, A ∈ R>0 depends on G, and where ∥·∥ denotes the 2-
norm, i.e., the square root of the sum of squares of components. We can, moreover, assume
without loss of generality that A ≥ 1 so that we have

m∑
r=0

1

(r!)2
∥P r∇,∇0(ξ)(x)∥2Gr

≤ A′Am
m∑
r=0

1

(r!)2
∥Drξ̂x(0)∥2.

By [Krantz and Parks 2002, Lemma 2.1.3],

card({I ∈ Zn≥0 | |I| ≤ m}) = (n+m)!

n!m!
.
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Note that the 2-norm for RN is related to the ∞-norm for RN by ∥a∥2 ≤
√
N∥a∥∞ so that

m∑
r=0

1

(r!)2
∥Drξ̂x(0)∥2 ≤ k

(n+m)!

n!m!

(
sup

{ 1

r!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
})2

.

By the binomial theorem, as in the proof of Sublemma 4,

(n+m)!

n!m!
≤ 2n+m.

Thus

∥jmξ(x)∥Gm
≤

√
kA′2n(

√
2A)m sup

{ 1

I!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

(2.9)

for every m ∈ Z≥0. The above computations show that this inequality is satisfied for
a real analytic section ξ. However, it also is satisfied if ξ is a smooth section. This we
argue as follows. Let ξ ∈ Γ∞(RkU) and, for m ∈ Z>0, let ξm ∈ Γω(RkU) be the section whose
coefficients are polynomial functions of degree at most m and such that jmξm(x) = jmξ(x).
Also let ξ̂x,m be the corresponding section of Nx ×Rk. We then have

jmξm(x) = jmξ(x), DI ξ̂x,m(0) = DI ξ̂x(0),

for every I ∈ Zn≥0 satisfying |I| ≤ m, the latter by the formula for the higher-order Chain
Rule [Abraham, Marsden, and Ratiu 1988, Supplement 2.4A]. Since ξm is real analytic,
this shows that (2.9) is also satisfied for every m ∈ Z≥0 if ξ is smooth.

To establish the other estimate asserted in the sublemma, let x ∈ K and, using the
notation of Sublemma 1, let Nx be a relatively compact neighbourhood of 0 ∈ Rn ≃ TxRn

and Vx ⊆ U be a relatively compact neighbourhood of x such that κx : Nx×Rk → Vx×Rk
is a real analytic vector bundle isomorphism. Let ξ ∈ Γω(RkVx

) and let ξ̂x ∈ Γω(RkNx
) be

defined by ξ̂x(v) = κ−1
x ◦ ξ(expx(v)). As in the first part of the estimate, we have

Dmξ̂x(0) = Pm∇,∇0(ξ)(x)

for every m ∈ Z≥0. For indices j = (j1, . . . , jm) ∈ {1, . . . , n}m we define I(j) =
(i1, . . . , in) ∈ Zn≥0 by asking that ij be the number of times “j” appears in the list j.
We then have

sup
{ 1

I!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
=

sup
{ 1

I(j)!
|(P r∇,∇0(ξ)(x))

a
j1···jr |

∣∣∣
j1, . . . , jr ∈ {1, . . . , n}, r ∈ {0, 1, . . . ,m}, a ∈ {1, . . . , k}

}
.

By an application of the multinomial theorem as in the proof of Sublemma 6, we have
|I|!
I! ≤ n|I| for every I ∈ Zn≥0. We then have

1

I(j)!
|(P r∇,∇0(ξ)(x))

a
j1···jr | ≤

nr

r!
|(P r∇,∇0(ξ)(x))

a
j1···jr |
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for every j1, . . . , jr ∈ {1, . . . , n} and a ∈ {1, . . . , k}. Using the fact that the ∞-norm for
RN is related to the 2-norm for RN by ∥a∥∞ ≤ ∥a∥2, we have

sup
{ 1

I!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
≤

(
m∑
r=0

(nr
r!

)2
B′Br∥P r∇,∇0(ξ)(x)∥2Gr

)1/2

,

where B′ ∈ R>0 depends on G0 and B ∈ R>0 depends on G. We may, without loss of
generality, suppose that B ≥ 1 so that we have

sup
{ 1

I!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
≤

√
B′(n

√
B)m∥jmξ(x)∥Gm

for every m ∈ Z≥0. As in the first part of the proof, while we have demonstrated the
preceding inequality for ξ real analytic, it can also be demonstrated to hold for ξ smooth.

The sublemma follows by taking

C = max{
√
kA′2n,

√
B′}, σ−1 = max{

√
2A,n

√
B}. ▼

The next estimates we consider will allow us to expand the pointwise estimate from the
preceding sublemma to a local estimate of the same form. The construction makes use of
the vector bundle isomorphisms Ixy and Îxy defined after Sublemma 1. In the statement
and proof of the following sublemma, we make free use of the notation we introduced where
these mappings were defined.

9 Sublemma: Let U ⊆ Rn be open, denote RkU = U × Rk, and consider the trivial vector
bundle pr1 : R

k
U → U. Let G be a Riemannian metric on U, let G0 be a vector bundle metric

on RkU, let ∇ be an affine connection on U, and let ∇0 be a vector bundle connection on
RkU, with all of these being real analytic. For each x ∈ U there exist a neighbourhood Vx and
Cx, σx ∈ R>0 such that we have the following inequalities for each ξ ∈ Γ∞(RkU), m ∈ Z≥0,
and y ∈ Vx:

(i) sup
{

1
I! |D

I ξ̂ay(0)|
∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
≤ Cxσ

−1
x sup

{
1
I! |D

I((Î∗xy)
−1ξ̂y)

a(0)|
∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
;

(ii) sup
{

1
I! |D

I(Î∗xyξ̂y)
a|(0)

∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ Cxσ
−1
x sup

{
1
I! |D

I ξ̂ay(0)|
∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
;

(iii) ∥jmξ(y)∥Gm
≤ Cxσ

−1
x ∥jm((I∗xy)−1ξ)(x)∥Gm

;

(iv) ∥jm(I∗xyξ)(x)∥Gm
≤ Cxσ

−1
x ∥jmξ(y)∥Gm

.

Proof: We begin the proof with an observation. Suppose that we have an open subset
U ⊆ Rn×Rk and f ∈ Cω(U). We wish to think of f as a function of x ∈ Rn depending on
a parameter p ∈ Rk in a jointly real analytic manner. We note that, for K ⊆ U compact,
we have C, σ ∈ R>0 such that the partial derivatives satisfy a bound

|DI
1f(x,p)| ≤ CI!σ−|I|

for every (x,p) ∈ K and I ∈ Zn≥0. This is a mere specialisation of [Krantz and Parks
2002, Proposition 2.2.10] to partial derivatives. The point is that the bound for the partial
derivatives is uniform in the parameter p. With this in mind, we note that the following
are easily checked:
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1. the estimate of Sublemma 4 can be extended to the case where f depends in a jointly
real analytic manner on a parameter, and the estimate is uniform in the parameter over
compact sets;

2. the estimate of Sublemma 5 can be extended to the case where Φ depends in a jointly
real analytic manner on a parameter, and the estimate is uniform in the parameter over
compact sets;

3. as a consequence of the preceding fact, the estimate of Sublemma 6 can be extended
to the case where Φ depends in a jointly real analytic manner on a parameter, and the
estimate is uniform in the parameter over compact sets;

4. as a consequence of the preceding three facts, the estimate of Sublemma 7 can be
extended to the case where Φ and A depend in a jointly real analytic manner on a
parameter, and the estimate is uniform in the parameter over compact sets.

Now let us proceed with the proof.
We take Vx as in the discussion following Sublemma 1. Let us introduce coordinate

notation for all maps needed. We have

ξ̂y(u) = ξ̂(y,u) = ξ ◦ expy(u),

I∗xyξ(x
′) = A(y,x′) · (ξ ◦ ixy(x

′)),

Î∗xyξ̂y(v) = Â(y,v) · (ξ̂y ◦ îxy(v)),

(I∗xy)
−1ξ(y′) = A−1(y, i−1

xy(y
′) · (ξ ◦ i−1

xy(y
′)),

(Î∗xy)
−1ξ̂y(v) = Â−1(y, î−1

xy(u)) · (ξ̂y ◦ î−1
xy(v)),

for appropriate real analytic mappings A and Â taking values in GL(k;R). Note that, for
every I ∈ Zn≥0,

DI(Î∗xyξ̂y)(0) = DI
2(Î

∗
xξ̂)(y,0),

and similarly for DI((Î∗xy)
−1ξ̂y)(0). The observation made at the beginning of the proof

shows that parts (i) and (ii) follow immediately from Sublemma 7. Parts (iii) and (iv)
follow from the first two parts after an application of Sublemma 8. ▼

By applications of (a) Sublemma 9, (b) Sublemmata 3 and 8, (c) Sublemma 9 again,
and (d) Sublemma 7, there exist

A1,x, A2,x, A3,x, A4,x, r1,x, r2,x, r3,x, r4,x ∈ R>0

and a relatively compact neighbourhood Vx ⊆ U of x such that

∥jmξ(y)∥Gm
≤ A1,xr

−m
1,x ∥jm((I∗xy)−1ξ)(x)∥Gm

≤ A2,xr
−m
2,x sup

{ 1

I!
|DI((Î∗xy)

−1ξ̂y)
a(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A3,xr
−m
3,x sup

{ 1

I!
|DI ξ̂ay(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A4,xr
−m
4,x sup

{ 1

I!
|DIξa(y)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
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for every ξ ∈ Γ∞(RkU), m ∈ Z≥0, and y ∈ Vx. Take x1, . . . ,xk ∈ K such that K ⊆ ∪kj=1Vxj

and define
C1 = max{A4,x1 , . . . , A4,xk

}, σ1 = min{r4,x1 , . . . , r4,xk
},

so that

∥jmξ(x)∥Gm
≤ C1σ

−m
1 sup

{ 1

I!
|DIξa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

for every ξ ∈ Γ∞(RkU), m ∈ Z≥0, and x ∈ K. This gives one half of the estimate in the
lemma.

For the other half of the estimate in the lemma, we apply (a) Sublemma 7, (b) Sub-
lemma 9, (c) Sublemmata 3 and 8, and (d) Sublemma 9 again to assert the existence of

A1,x, A2,x, A3,x, A4,x, r1,x, r2,x, r3,x, r4,x ∈ R>0

and a relatively compact neighbourhood Vx ⊆ U of x such that

sup
{ 1

I!
|DIξa(y)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A1,xr
−m
1,x sup

{ 1

I!
|DI ξ̂ay(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A2,xr
−m
2,x sup

{ 1

I!
|DI((Î∗xy)

−1ξ̂y)
a(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A3,xr
−m
3,x ∥jm((I∗xy)−1ξ)(x)∥Gm

≤ A4,xr
−m
4,x ∥jmξ(y)∥Gm

for every ξ ∈ Γ∞(RkU), m ∈ Z≥0, and y ∈ Vx. As we argued above using a standard
compactness argument, there exist C2, σ2 ∈ R>0 such that

sup
{ 1

I!
|DIξa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
≤ C2σ

−m
2 ∥jmξ(x)∥Gm

for every ξ ∈ Γ∞(RkU), m ∈ Z≥0, and x ∈ K. Taking C = max{C1, C2} and σ =
min{σ1, σ2} gives the lemma. ■

The preceding lemma will come in handy on a few crucial occasions. To illustrate how
it can be used, we give the following characterisation of real analytic sections, referring to
Section 3 below for the definition of the seminorm p∞K,m used in the statement.

2.5 Lemma: (Characterisation of real analytic sections) Let π : E → M be a real
analytic vector bundle and let ξ ∈ Γ∞(E). Then the following statements are equivalent:

(i) ξ ∈ Γω(E);

(ii) for every compact set K ⊆ M, there exist C, r ∈ R>0 such that p∞K,m(ξ) ≤ Cr−m for
every m ∈ Z≥0.

Proof: (i) =⇒ (ii) Let K ⊆ M be compact, let x ∈ K, and let (Vx, ψx) be a vector bundle
chart for E with (Ux, ϕx) the corresponding chart for M. Let ξ : ϕ(Ux) → Rk be the
local representative of ξ. By [Krantz and Parks 2002, Proposition 2.2.10], there exist a
neighbourhood U′

x ⊆ Ux of x and Bx, σx ∈ R>0 such that

|DIξa(x′)| ≤ BxI!σ
−|I|
x
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for every a ∈ {1, . . . , k}, x′ ∈ cl(U′
x), and I ∈ Zn≥0. We can suppose, without loss of

generality, that σx ∈ (0, 1). In this case, if |I| ≤ m,

1

I!
|DIξa(x′)| ≤ Bxσ

−m
x

for every a ∈ {1, . . . , k} and x′ ∈ cl(U′
x). By Lemma 2.4, there exist Cx, rx ∈ R>0 such that

∥jmξ(x′)∥Gm
≤ Cxr

−m
x , x′ ∈ cl(U′

x), m ∈ Z≥0.

Let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1U
′
xj and let C = max{Cx1 , . . . , Cxk} and r =

min{rx1 , . . . , rxk}. Then, if x ∈ K, we have x ∈ U′
xj for some j ∈ {1, . . . , k} and so

∥jmξ(x)∥Gm
≤ Cxjr

−m
xj ≤ Cr−m,

as desired.
(ii) =⇒ (ii) Let x ∈ M and let (V, ψ) be a vector bundle chart for E such that

the associated chart (U, ϕ) for M is a relatively compact coordinate chart about x. Let
ξ : ϕ(U) → Rk be the local representative of ξ. By hypothesis, there exist C, r ∈ R>0 such
that ∥jmξ(x′)∥Gm

≤ Cr−m for every m ∈ Z≥0 and x′ ∈ U. Let U′ be a relatively compact
neighbourhood of x such that cl(U′) ⊆ U. By Lemma 2.4, there exist B, σ ∈ R>0 such that

|DIξa(x′)| ≤ BI!σ−|I|

for every a ∈ {1, . . . , k}, x′ ∈ cl(U′), and I ∈ Zn≥0. We conclude real analyticity of ξ in a
neighbourhood of x by [Krantz and Parks 2002, Proposition 2.2.10]. ■

3. The compact-open topologies for the spaces of finitely differentiable,
Lipschitz, and smooth vector fields

In Sections 6 and 7 we will look carefully at two related things: (1) time-varying vector
fields and (2) control systems. In doing so, we focus on structure that allows us to prove
useful properties such as regular dependence of flows on initial conditions. Also, in our
framework of tautological control systems in Section 8, we will need to impose structure
on systems where we have carefully eliminated the usual structure of a control parameter-
isation. To do this, we use the topological structure of sets of vector fields in an essential
way. In this and the subsequent two sections we describe appropriate topologies for finitely
differentiable, Lipschitz, smooth, holomorphic, and real analytic vector fields. The topol-
ogy we use in this section in the smooth case (and the easily deduced finitely differentiable
case) is classical, and is described, for example, in [Agrachev and Sachkov 2004, §2.2]; see
also [Michor 1980, Chapter 4]. What we do that is original is provide a characterisation of
the seminorms for this topology using the jet bundle fibre metrics from Section 2.2. The
fruits of the effort expended in the next three sections is harvested in the remainder of the
paper, where our concrete definitions of seminorms permit a relatively unified analysis in
Sections 6 and 7 of time-varying vector fields and control systems. Also, the treatment
of our new class of systems in Section 8 is made relatively simple by our descriptions of
topologies for spaces of vector fields.
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One facet of our presentation that is novel is that we flesh out completely the “weak-L ”
characterisations of topologies for vector fields. These topologies characterise vector fields
by how they act on functions through Lie differentiation. The use of such “weak” charac-
terisations is commonplace [e.g., Agrachev and Sachkov 2004, Sussmann 1998], although
the equivalence with strong characterisation is not typically proved; indeed, we know of no
existing proofs of our Theorems 3.5, 3.8, 3.14, and 5.8. We show that, for the issues that
come up in this paper, the weak characterisations for vector field topologies agree with the
direct “strong” characterisations. This requires some detailed knowledge of the topologies
we use.

While our primary interest is in vector fields, i.e., sections of the tangent bundle, it is
advantageous to work instead with topologies for sections of general vector bundles, and
then specialise to vector fields. We will also work with topologies for functions, but this
falls out easily from the general vector bundle treatment.

3.1. General smooth vector bundles. We let π : E → M be a smooth vector bundle with
∇0 a linear connection on E, ∇ an affine connection on M, G0 a fibre metric on E, and G
a Riemannian metric on M. This gives us, as in Section 2.2, fibre metrics Gm on the jet
bundles JmE, m ∈ Z≥0, and corresponding fibre norms ∥·∥Gm

.
For a compact set K ⊆ M we now define a seminorm p∞K,m on Γ∞(E) by

p∞K,m(ξ) = sup{∥jmξ(x)∥Gm
| x ∈ K}.

The locally convex topology on Γ∞(TM) defined by the family of seminorms p∞K,m, K ⊆ M
compact, m ∈ Z≥0, is called the smooth compact open or CO∞-topology for Γ∞(E).

We comment that the seminorms depend on the choices of ∇, ∇0, G, and G0, but the
CO∞-topology is independent of these choices. We will constantly throughout the paper use
these seminorms, and in doing so we will automatically be assuming that we have selected
the linear connection ∇0, the affine connection ∇, the fibre metric G0, and the Riemannian
metric G. We will do this often without explicit mention of these objects having been
chosen.

3.2. Properties of the CO∞-topology. Let us say a few words about the CO∞-topology,
referring to references for details. The locally convex CO∞-topology has the following
attributes.
CO∞-1. It is Hausdorff: [Michor 1980, page 4.3.1].
CO∞-2. It is complete: [Michor 1980, page 4.3.2].
CO∞-3. It is metrisable: [Michor 1980, page 4.3.1].
CO∞-4. It is separable: We could not find this stated anywhere, but here’s a sketch of a

proof. By embedding E in Euclidean space RN and, using an argument like that for
real analytic vector bundles in the proof of Lemma 2.3, we regard E as a subbundle of
a trivial bundle over the submanifold M ⊆ RN . In this case, we can reduce our claim
of separability of the CO∞-topology to that for smooth functions on submanifolds
of RN . Here we can argue as follows. If K ⊆ M is compact, it can be contained in
a compact cube C in RN . Then we can use a cutoff function to take any smooth
function on M and leave it untouched on a neighbourhood of K, but have it and
all of its derivatives vanish outside a compact set contained in int(C). Then we
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can use Fourier series to approximate in the CO∞-topology [Stein and Weiss 1971,
Theorem VII.2.11(b)]. Since there are countably many Fourier basis functions, this
gives the desired separability.

CO∞-5. It is nuclear:6 [Jarchow 1981, Theorem 21.6.6].
CO∞-6. It is Suslin:7 This follows since Γ∞(TM) is a Polish space (see footnote 7), as we

have already seen.
Some of these attributes perhaps seem obscure, but we will, in fact, use all of them!

Since the CO∞-topology is metrisable, it is exactly characterised by its convergent
sequences, so let us describe these. A sequence (ξk)k∈Z>0 in Γ∞(E) converges to ξ ∈ Γ∞(E) if
and only if, for each compact setK ⊆ M and for eachm ∈ Z≥0, the sequence (jmξk|K)k∈Z>0

converges uniformly to jmξ|K, cf. combining [Munkres 2000, Theorem 46.8] and [Michor
1980, Lemma 4.2].

Since the topology is nuclear, it follows that subsets of Γ∞(TM) are compact if and only if
they are closed and von Neumann bounded [Pietsch 1969, Proposition 4.47]. That is to say,
in a nuclear locally convex space, the compact bornology and the von Neumann bornology
agree, according to the terminology introduced in Section 1.5. It is then interesting to
characterise von Neumann bounded subsets of Γ∞(E). One can show that a subset B is
bounded in the von Neumann bornology if and only if every continuous seminorm on V
is a bounded function when restricted to B [Rudin 1991, Theorem 1.37(b)]. Therefore, to
characterise von Neumann bounded subsets, we need only characterise subsets on which
each of the seminorms p∞K,m is a bounded function. This obviously gives the following
characterisation.

3.1 Lemma: (Bounded subsets in the CO∞-topology) A subset B ⊆ Γ∞(E) is
bounded in the von Neumann bornology if and only if the following property holds: for
any compact set K ⊆ M and any m ∈ Z≥0, there exists C ∈ R>0 such that p∞K,m(ξ) ≤ C

6There are several ways of characterising nuclear spaces. Here is one. A continuous linear mapping
L : E → F between Banach spaces is nuclear if there exist sequences (vj)j∈Z>0 in F and (αj)j∈Z>0 in E′

such that
∑

j∈Z>0
∥αj∥∥vj∥ < ∞ and such that

L(u) =

∞∑
j=1

αj(u)vj ,

the sum converging in the topology of V. Now suppose that V is a locally convex space and p is a continuous
seminorm on V. We denote by Vp the completion of

V/{v ∈ V | p(v) = 0};

thus Vp is a Banach space. The space V is nuclear if, for any continuous seminorm p, there exists a
continuous seminorm q satisfying q ≤ p such that the mapping

ip,q : Vp → Vq

v + {v′ ∈ V | p(v) = 0} 7→ v + {v′ ∈ V | q(v) = 0}

is nuclear. It is to be understood that this definition is essentially meaningless at a first encounter, so
we refer to [Hogbe-Nlend and Moscatelli 1981, Pietsch 1969] and relevant sections of [Jarchow 1981] to
begin understanding the notion of a nuclear space. The only attribute of nuclear spaces of interest to us
here is that their relatively compact subsets are exactly the von Neumann bounded subsets [Pietsch 1969,
Proposition 4.47].

7A Polish space is a complete separable metrisable space. A Suslin space is a continuous image of a
Polish space. A good reference for the basic properties of Suslin spaces is [Bogachev 2007, Chapter 6].
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for every ξ ∈ B.

Let us give a coordinate characterisation of the smooth compact-open topology, just for
concreteness and so that the reader can see that our constructions agree with perhaps more
familiar things. If we have a smooth vector bundle π : E → M, we let (V, ψ) be a vector
bundle chart for E inducing a chart (U, ϕ) for M. For ξ ∈ Γ∞(E), the local representative
of ξ has the form

Rn ⊇ ϕ(U) ∋ x 7→ (x, ξ(x)) ∈ ϕ(U)×Rk.
Thus we have an associated map ξ : ϕ(U) → Rk that describes the section locally. A
CO∞-subbasic neighbourhood is a subset B∞(ξ,V,K, ϵ,m) of Γ∞(E), where

1. ξ ∈ Γ∞(E),

2. (V, ψ) is a vector bundle chart for E with associated chart (U, ϕ) for M,

3. K ⊆ U is compact,

4. ϵ ∈ R>0,

5. m ∈ Z≥0, and

6. η ∈ B∞(ξ,V,K, ϵ,m) if and only if

∥Dlη(x)−Dlξ(x)∥ < ϵ, x ∈ ϕ(K), l ∈ {0, 1, . . . ,m},

where ξ,η : ϕ(U) → Rk are the local representatives.

One can show that the CO∞-topology is that topology having as a subbase the CO∞-
subbasic neighbourhoods. This is the definition used by [Hirsch 1976], for example. To show
that this topology agrees with our intrinsic characterisation is a straightforward bookkeeping
chore, and the interested reader can refer to Lemma 2.4 to see how this is done in the more
difficult real analytic case. This more concrete characterisation using vector bundle charts
can be useful should one ever wish to verify some properties in examples. It can also be
useful in general arguments in emergencies when one does not have the time to flesh out
coordinate-free constructions.

3.3. The weak-L topology for smooth vector fields. The CO∞-topology for smooth
sections of a vector bundle, merely by specialisation, gives a locally convex topology on
the set Γ∞(TM) of smooth vector fields and the set C∞(M) of smooth functions (noting
that a smooth function is obviously identified with a section of the trivial vector bundle
M×R). The only mildly interesting thing in these cases is that one does not need a separate
linear connection in the vector bundles or a separate fibre metric. Indeed, TM is already
assumed to have a linear connection (the affine connection on M) and a fibre metric (the
Riemannian metric on M), and the trivial bundle has the canonical flat linear connection
defined by ∇Xf = LXf and the standard fibre metric induced by absolute value on the
fibres.

We wish to see another way of describing the CO∞-topology on Γ∞(TM) by noting that
a vector field defines a linear map, indeed a derivation, on C∞(M) by Lie differentiation:
f 7→ LXf . The topology we describe for Γ∞(TM) is a sort of weak topology arising from
the CO∞-topology on C∞(M) and Lie differentiation. To properly set the stage for the fact
that we will repeat this construction for our other topologies, it is most clear to work in a
general setting for a moment, and then specialise in each subsequent case.

The general setup is provided by the next definition.
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3.2 Definition: (Weak boundedness, continuity, measurability, and integrability)
Let F ∈ {R,C} and let U and V be F-vector spaces with V locally convex. Let A ⊆
HomR(U;V) and let the weak-A topology on U be the weakest topology for which A is
continuous for every A ∈ A [Horváth 1966, §2.11].

Also let (X,O ) be a topological space, let (T,M ) be a measurable space, and let µ : M →
R≥0 be a finite measure. We have the following notions:

(i) a subset B ⊆ U is weak-A bounded in the von Neumann bornology if A(B) is
bounded in the von Neumann bornology for every A ∈ A ;

(ii) a map Φ: X → U is weak-A continuous if A ◦ Φ is continuous for every A ∈ A ;

(iii) a map Ψ: T → U is weak-A measurable if A ◦ Ψ is measurable for every A ∈ A ;

(iv) a map Ψ: T → U is weak-A Bochner integrable with respect to µ if A ◦ Ψ is
Bochner integrable with respect to µ for every A ∈ A . •

As can be seen in Section 2.11 of [Horváth 1966], the weak-A topology is a locally
convex topology, and a subbase for open sets in this topology is

{A−1(O) | A ∈ A , O ⊆ V open}.

Equivalently, the weak-A topology is defined by the seminorms

u 7→ q(A(u)), A ∈ A , q a continuous seminorm for V.

This is a characterisation of the weak-A topology we will use often.
We now have the following result which gives conditions for the equivalence of “weak-

A ” notions with the usual notions. We call a subset A ⊆ HomF(U;V) point separating
if, given distinct u1, u2 ∈ U, there exists A ∈ A such that A(u1) ̸= A(u2).

3.3 Lemma: (Equivalence of weak-A and locally convex notions for general lo-
cally convex spaces) Let F ∈ {R,C} and let U and V be locally convex F-vector spaces.
Let A ⊆ HomR(U;V) and suppose that the weak-A topology agrees with the locally convex
topology for U. Let (X,O ) be a topological space, let (T,M ) be a measurable space, and let
µ : M → R≥0 be a finite measure. Then the following statements hold:

(i) a subset B ⊆ U is bounded in the von Neumann bornology if and only if it is weak-A
bounded in the von Neumann bornology;

(ii) a map Φ: X → U is continuous if and only if it is weak-A continuous;

(iii) for a map Ψ: T → U,

(a) if Ψ is measurable, then it is weak-A measurable;

(b) if U and V are Hausdorff Suslin spaces, if A contains a countable point sepa-
rating subset, and if Ψ is weak-A measurable, then Ψ is measurable;

(iv) if U is complete and separable, a map Ψ: T → U is Bochner integrable with respect
to µ if and only if it is weak-A Bochner integrable with respect to µ.

Proof: (i) and (ii): Both of these assertions follows directly from the fact that the locally
convex topology of U agrees with the weak-A topology. Indeed, the equivalence of these
topologies implies that (a) if p is a continuous seminorm for the locally convex topology of
U, then there exist continuous seminorms q1, . . . , qk for V and A1, . . . , Ak ∈ A such that

p(u) ≤ q1(A1(u)) + · · ·+ qk(Ak(u)), u ∈ U, (3.1)
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and (b) if q is a continuous seminorm for V and if A ∈ A , then there exists a continuous
seminorm p for the locally convex topology for U such that

q(A(u)) ≤ p(u), u ∈ U. (3.2)

(iii) First suppose that Ψ is measurable and let A ∈ A . Since the locally convex topology
of U agrees with the weak-A topology, A is continuous in the locally convex topology of
U. Therefore, if Ψ is measurable, it follows immediately by continuity of A that A ◦ Ψ is
measurable.

Next suppose that U and V are Suslin, that A contains a countable point separating
subset, and that Ψ is weak-A measurable. Without loss of generality, let us suppose
that A is itself countable. By VA we denote the mappings from A to V, with the usual
pointwise vector space structure. A typical element of VA we denote by ϕ. By [Bogachev
2007, Lemma 6.6.5(iii)], VA is a Suslin space. Let us define a mapping ιA : U → VA by
ιA (u)(A) = A(u). Since A is point separating, we easily verify that ιA is injective, and so
we have U as a subspace of the countable product VA . For A ∈ A let prA : V

A → V be the
projection defined by prA(ϕ) = ϕ(A). Since V is Suslin, it is hereditary Lindelöf [Bogachev
2007, Lemma 6.6.4]. Thus the Borel σ-algebra of VA is the same as the initial Borel σ-
algebra defined by the projections prA, A ∈ A , i.e., the smallest σ-algebra for which the
projections are measurable [Bogachev 2007, Lemma 6.4.2]. By hypothesis, (A ◦ Ψ)−1(B) is
measurable for every A ∈ A and every Borel set B ⊆ V. Now we note that prA ◦ιA (v) =
A(v), from which we deduce that

(A ◦ Ψ)−1(B) = (ιA ◦ Ψ)−1(pr−1
A (B))

is measurable for every A ∈ A and every Borel set B ⊆ V. Thus ιA ◦ Ψ is measurable.
Since U is Suslin, by definition there is a Polish space P and a continuous surjection

σ : P → U. If C ⊆ U is a Borel set, then σ−1(C) ⊆ P is a Borel set. Note that ιA is continuous
(since prA ◦ιA is continuous for every A ∈ A ) and so is a Borel mapping. By [Fremlin 2006,
Theorem 423I], we have that ιA ◦ σ(σ−1(C)) ⊆ V is Borel. Since σ is surjective, this means
that ιA (C) ⊆ V is Borel. Finally, since

Ψ−1(C) = (ιA ◦ Ψ)−1(ιA (C)),

measurability of Ψ follows.
(iv) Since U is separable and complete, by Beckmann and Deitmar [2011, Theorems 3.2

and 3.3] Bochner integrability of Ψ is equivalent to integrability, in the sense of Lebesgue,
of t 7→ p ◦Ψ(t) for any continuous seminorm p. Thus, Ψ is Bochner integrable with respect
to the locally convex topology of U if and only if t 7→ p◦Ψ(t) is integrable, and Ψ is weak-A
Bochner integrable if and only if t 7→ qA(Ψ(t)) is integrable for every A ∈ A . This part of
the proof now follows from the inequalities (3.1) and (3.2) that characterise the equivalence
of the locally convex and weak-A topologies for U. ■

The proof of the harder direction in part (iii) is an adaptation of [Thomas 1975, The-
orem 1] to our more general setting. We will revisit this idea again when we talk about
measurability of time-varying vector fields in Section 6.

For f ∈ C∞(M), let us define

Lf : Γ
∞(TM) → C∞(M)

X 7→ LXf.
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The topology for Γ∞(TM) we now define corresponds to the general case of Definition 3.2
by taking U = Γ∞(TM), V = C∞(M), and A = {Lf | f ∈ C∞(M)}. To this end, we make
the following definition.

3.4 Definition: (Weak-L topology for space of smooth vector fields) For a smooth
manifold M, the weak-L topology for Γ∞(TM) is the weakest topology for which Lf is
continuous for every f ∈ C∞(M), if C∞(M) has the CO∞-topology. •

We now have the following result.

3.5 Theorem: (Weak-L characterisation of CO∞-topology for smooth vector
fields) For a smooth manifold, the following topologies for Γ∞(TM) agree:

(i) the CO∞-topology;

(ii) the weak-L topology.

Proof: (i)⊆(ii) For this part of the proof, we assume that M has a well-defined dimension.
The proof is easily modified by additional notation to cover the case where this may not
hold. Let K ⊆ M be compact and let m ∈ Z≥0. Let x ∈ K and let (Ux, ϕx) be a coordinate
chart for M about x with coordinates denoted by (x1, . . . , xn). Let X : ϕx(Ux) → Rn

be the local representative of X ∈ Γ∞(TM). For j ∈ {1, . . . , n} let f jx ∈ C∞(M) have
the property that, for some relatively compact neighbourhood Vx of x with cl(Vx) ⊆ Ux,
f jx = xj in some neighbourhood of cl(Vx). (This is done using standard extension arguments
for smooth functions, cf. [Abraham, Marsden, and Ratiu 1988, Proposition 5.5.8].) Then,
in a neighbourhood of cl(Vx) in Ux, we have LXf

j
x = Xj . Therefore, for each y ∈ cl(Vx),

jmX(y) 7→
n∑
j=1

∥jm(LXf jx)(y)∥Gm

is a norm on the fibre Jmy E. Therefore, there exists Cx ∈ R>0 such that

∥jmX(y)∥Gm
≤ Cx

n∑
j=1

∥jm(LXf jx)(y)∥Gm
, y ∈ cl(Vx).

Since K is compact, let x1, . . . , xk ∈ K be such that K ⊆ ∪ka=1Vxa . Let

C = max{Cx1 , . . . , Cxr}.

Then, if y ∈ K we have y ∈ Vxa for some a ∈ {1, . . . , r}, and so

∥jmX(y)∥Gm
≤ C

n∑
j=1

∥jm(LXf jxa)(y)∥Gm
≤ C

r∑
a=1

n∑
j=1

∥jm(LXf jxa)(y)∥Gm
.

Taking supremums over y ∈ K gives

p∞K,m(X) ≤ C
r∑

a=1

n∑
j=1

p∞K,m(LXf
j
xa),
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This part of the theorem then follows since the weak-L topology, as we indicated following
Definition 3.2 above, is defined by the seminorms

X 7→ p∞K,m(LXf), K ⊆ M compact, m ∈ Z≥0, f ∈ C∞(M).

(ii)⊆(i) As per (2.1), let us abbreviate

∇j(. . . (∇1(∇0A))) = ∇(j)A,

where A can be either a vector field or one-form, in what we will need. Since covariant
differentials commute with contractions [Dodson and Poston 1991, Theorem 7.03(F)], an
elementary induction argument gives the formula

∇(m−1)(df(X)) =

m∑
j=0

(
m

j

)
C1,m−j+1((∇(m−j−1)X)⊗ (∇(j−1)df)), (3.3)

where C1,m−j+1 is the contraction defined by

C1,m−j+1(v ⊗ α1 ⊗ · · · ⊗ αm−j ⊗ αm−j+1 ⊗ αm−j+2 ⊗ · · · ⊗ αm+1)

= (αm−j+1(v))(α1 ⊗ · · · ⊗ αm−j ⊗ αm−j+2 ⊗ · · · ⊗ αm+1).

In writing (3.3) we use the convention ∇(−1)X = X and ∇(−1)(df) = df . Next we claim
that Lf is continuous for every f ∈ C∞(M) if Γ∞(TM) is provided with CO∞-topology.
Indeed, let K ⊆ M, let m ∈ Z>0, and let f ∈ C∞(M). By (3.3) (after a few moments of
thought), we have, for some suitable M0,M1 . . . ,Mm ∈ R>0,

p∞K,m(LXf) ≤
m∑
j=0

Mm−jp
∞
K,m−j(X)p∞K,j+1(f) ≤

m∑
j=0

M ′
jp

∞
K,j(X).

This gives continuity of the identity map, if we provide the domain with the CO∞-topology
and the codomain with the weak-L topology, cf. [Schaefer and Wolff 1999, §III.1.1]. Thus
open sets in the weak-L topology are contained in the CO∞-topology. ■

With respect to the concepts of interest to us, this gives the following result.

3.6 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the CO∞-topology) Let M be a smooth manifold, let
(X,O ) be a topological space, let (T,M ) be a measurable space, and let µ : M → R≥0 be a
finite measure. The following statements hold:

(i) a subset B ⊆ Γ∞(TM) is bounded in the von Neumann bornology if and only if it is
weak-L bounded in the von Neumann bornology;

(ii) a map Φ: X → Γ∞(TM) is continuous if and only if it is weak-L continuous;

(iii) a map Ψ: T → Γ∞(TM) is measurable if and only if it is weak-L measurable;

(iv) a map Ψ: T → Γ∞(TM) is Bochner integrable if and only if it is weak-L Bochner
integrable.
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Proof: We first claim that A ≜ {Lf | f ∈ C∞(M)} has a countable point separating
subset. This is easily proved as follows. For notational simplicity, suppose that M has a
well-defined dimension. Let x ∈ M and note that there exist a neighbourhood Ux of x and
f1x , . . . , f

n
x ∈ C∞(M) such that

T∗
yM = spanR(df

1(y), . . . , dfn(y)), y ∈ Ux.

Since M is second countable it is Lindelöf [Willard 1970, Theorem 16.9]. Therefore, there
exists (xj)j∈Z>0 such that M = ∪j∈Z>0Uxj . The countable collection of linear mappings
Lfkxj

, k ∈ {1, . . . , n}, j ∈ Z>0, is then point separating. Indeed, if X,Y ∈ Γ∞(TM) are

distinct, then there exists x ∈ M such that X(x) ̸= Y (x). Let j ∈ Z>0 be such that x ∈ Uxj
and note that we must have Lfkxj

(X)(x) ̸= Lfkxj (Y )(x) for some k ∈ {1, . . . , n}, giving our

claim.
The result is now a direct consequence of Lemma 3.3, noting that the CO∞-topology on

Γ∞(TM) is complete, separable, and Suslin (we also need that the CO∞-topology on C∞(M)
is Suslin, which it is), as we have seen above in properties CO∞-2, CO∞-4, and CO∞-6.■

3.4. Topologies for finitely differentiable vector fields. The constructions of this section
so far are easily adapted to the case where objects are only finitely differentiable. We sketch
here how this can be done. We let π : E → M be a smooth vector bundle, and we suppose
that we have a linear connection ∇0 on E, an affine connection ∇ on M, a fibre metric G0 on
E, and a Riemannian metric G on M. Let r ∈ Z≥0∪{∞} and let m ∈ Z≥0 with m ≤ r. By
Γr(E) we denote the space of Cr-sections of E. We define seminorms pmK , K ⊆ M compact,
on Γr(E) by

pmK(ξ) = sup{∥jmξ(x)∥Gm
| x ∈ K},

and these seminorms define a locally convex topology that we call the COm-topology . Let
us list some of the attributes of this topology.
COm-1. It is Hausdorff: [Michor 1980, page 4.3.1].
COm-2. It is complete if and only if m = r: [Michor 1980, page 4.3.2].
COm-3. It is metrisable: [Michor 1980, page 4.3.1].
COm-4. It is separable: This can be shown to follow by an argument similar to that given

above for the CO∞-topology.
COm-5. It is probably not nuclear: In case M is compact, note that pmM is a norm that

characterises the COm-topology. A normed vector space is nuclear if and only if it
is finite-dimensional [Pietsch 1969, Theorem 4.4.14], so the COm-topology cannot be
nuclear when M is compact except in cases of degenerate dimension. But, even when
M is not compact, the COm-topology is not likely nuclear, although we have neither
found a reference nor proved this.

COm-6. It is Suslin when m = r: This follows since Γm(TM) is a Polish space, as we have
already seen.

COm-7. The COm-topology is weaker than the COr-topology: This is more or less clear
from the definitions.

From the preceding, we point out two places where one must take care in using the
COm-topology, m ∈ Z≥0, contrasted with the CO∞-topology. First of all, the topology, if
used on Γr(E), r > m, is not complete, so convergence arguments must be modified appro-
priately. Second, it is no longer the case that bounded sets are relatively compact. Instead,
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relatively compact subsets will be described by an appropriate version of the Arzelà–Ascoli
Theorem, cf. [Jost 2005, Theorem 5.21]. Therefore, we need to specify for these spaces
whether we will be using the von Neumann bornology or the compact bornology when we
use the word “bounded.” These caveats notwithstanding, it is oftentimes appropriate to
use these weaker topologies.

Of course, the preceding can be specialised to vector fields and functions, and one
can define the weak-L topologies corresponding to the topologies for finitely differentiable
sections. In doing this, we apply the general construction of Definition 3.2 with U = Γr(TM),
V = Cr(M) (with the COm-topology), and A = {Lf | f ∈ C∞(M)}, where

Lf : Γ
r(TM) → Cr(M)

X 7→ LXf.

This gives the following definition.

3.7 Definition: (Weak-L topology for space of finitely differentiable vector fields)
Let M be a smooth manifold, let m ∈ Z≥0, and let r ∈ Z≥0 ∪ {∞} have the property that
r ≥ m. The weak-(L ,m) topology for Γr(TM) is the weakest topology for which Lf is
continuous for each f ∈ C∞(M), where Cr(M) is given the COm-topology. •

We can show that the weak-(L ,m) topology agrees with the COm-topology.

3.8 Theorem: (Weak-L topology for finitely differentiable vector fields) Let M be
a smooth manifold, let m ∈ Z≥0, and let r ∈ Z≥0 ∪ {∞} have the property that r ≥ m.
Then the following two topologies for Γr(TM) agree:

(i) the COm-topology;

(ii) the weak-(L ,m)-topology.

Proof: Let us first show that the COm-topology is weaker than the weak-(L ,m) topology.
Just as in the corresponding part of the proof of Theorem 3.5, we can show that, for K ⊆ M
compact, there exist f1, . . . , f r ∈ C∞(M), compact K1, . . . ,Kr ⊆ M, and C1, . . . , Cr ∈ R>0

such that
pmK(X) ≤ C1p

m
K1

(LXf
1) + · · ·+ Crp

m
Kr

(LXf
r)

for every X ∈ Γr(TM). This estimate gives this part of the theorem.
To prove that the weak (L ,m)-topology is weaker than the COm-topology, it suffices

to show that Lf is continuous if Γr(TM) and Cr(M) are given the COm-topology. This can
be done just as in Theorem 3.5, with suitable modifications since we only have to account
for m derivatives. ■

We also have the corresponding relationships between various attributes and their weak
counterparts.

3.9 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the COm-topology) Let M be a smooth manifold, let
m ∈ Z≥0, and let r ∈ Z≥0 ∪{∞} have the property that r ≥ m. Let (X,O ) be a topological
space, let (T,M ) be a measurable space, and let µ : M → R≥0 be a finite measure. The
following statements hold:
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(i) a subset B ⊆ Γr(TM) is COm-bounded in the von Neumann bornology if and only if
it is weak-(L ,m) bounded in the von Neumann bornology;

(ii) a map Φ: X → Γr(TM) is COm-continuous if and only if it is weak-(L ,m) continu-
ous;

(iii) a map Ψ: T → Γm(TM) is COm-measurable if and only if it is weak-(L ,m) measur-
able;

(iv) a map Ψ: T → Γm(TM) is Bochner integrable if and only if it is weak-(L ,m) Bochner
integrable.

Proof: In the proof of Corollary 3.6 we established that {Lf | f ∈ C∞(M)} was point
separating as a family of linear mappings with domain Γ∞(TM). The same proof is valid if
the domain is Γm(TM). The result is then a direct consequence of Lemma 3.3, taking care to
note that the COm-topology on Γr(TM) is separable, and is also complete and Suslin when
r = m (and Cr(M) is Suslin when r = m), as we have seen in properties COm-2, COm-4,
and COm-6 above. ■

3.5. Topologies for Lipschitz vector fields. It is also possible to characterise Lipschitz
sections, so let us indicate how this is done in geometric terms. Throughout our discussion
of the Lipschitz case, we make the assumption that the affine connection ∇ on M is the
Levi-Civita connection for G and that the linear connection ∇0 on E is G0-orthogonal, by
which we mean that parallel translation consists of isometries. The existence of such a
connection is ensured by the reasoning of Kobayashi and Nomizu [1963] following the proof
of their Proposition III.1.5. We suppose that M is connected, for simplicity. If it is not,
then one has to allow the metric we are about to define to take infinite values. This is not
problematic [Burago, Burago, and Ivanov 2001, Exercise 1.1.2], but we wish to avoid the
more complicated accounting procedures. The length of a piecewise differentiable curve
γ : [a, b] → M is

ℓG(γ) =

∫ b

a

√
G(γ′(t), γ′(t)) dt.

One easily shows that the length of the curve γ depends only on image(γ), and not on the
particular parameterisation. We can, therefore, restrict ourselves to curves defined on [0, 1].
In this case, for x1, x2 ∈ M, we define the distance between x1 and x2 to be

dG(x1, x2) = inf{ℓG(γ)| γ : [0, 1] → M is a piecewise

differentiable curve for which γ(0) = x1 and γ(1) = x2}.

It is relatively easy to show that (M, dG) is a metric space [Abraham, Marsden, and Ratiu
1988, Proposition 5.5.10].

Now we define a canonical Riemannian metric on the total space E of a vector bundle
π : E → M, following the construction of Sasaki [1958] for tangent bundles. The linear
connection ∇0 gives a splitting TE ≃ π∗TM⊕π∗E [Kolář, Michor, and Slovák 1993, §11.11].
The second component of this decomposition is the vertical component so Texπ restricted to
the first component is an isomorphism onto TxM, i.e., the first component is “horizontal.”
Let us denote by hor : TE → π∗TM and ver : TE → π∗E the projections onto the first
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and second components of the direct sum decomposition. This then gives the Riemannian
metric GE on E defined by

GE(Xex , Yex) = G(hor(Xex), hor(Yex)) +G0(ver(Xex), ver(Yex)).

Now let us consider various ways of characterising Lipschitz sections. To this end, we
let ξ : M → E be such that ξ(x) ∈ Ex for every x ∈ M. For compact K ⊆ M we then define

LK(ξ) = sup

{
dGE

(ξ(x1), ξ(x2))

dG(x1, x2)

∣∣∣∣ x1, x2 ∈ K, x1 ̸= x2

}
.

This is theK-dilatation of ξ. For a piecewise differentiable curve γ : [0, T ] → M, we denote
by τγ,t : Eγ(0) → Eγ(t) the isomorphism of parallel translation along γ for each t ∈ [0, T ]. We
then define

lK(ξ) = sup

{
∥τ−1
γ,1(ξ ◦ γ(1))− ξ ◦ γ(0)∥G0

ℓG(γ)

∣∣∣∣∣ γ : [0, 1] → M, γ(0), γ(1) ∈ K, γ(0) ̸= γ(1)

}
,

(3.4)
which is the K-sectional dilatation of ξ. Finally, we define

Dil ξ : M → R≥0

x 7→ inf{Lcl(U)(ξ) | U is a relatively compact neighbourhood of x},

and
dil ξ : M → R≥0

x 7→ inf{lcl(U)(ξ) | U is a relatively compact neighbourhood of x},
which are the local dilatation and local sectional dilatation , respectively, of ξ. Fol-
lowing [Weaver 1999, Proposition 1.5.2] one can show that

LK(ξ + η) ≤ LK(ξ) + LK(η), lK(ξ + η) ≤ lK(ξ) + lK(η), K ⊆ M compact,

and

Dil (ξ + η)(x) ≤ Dil ξ(x) + Dil η(x), dil (ξ + η)(x) ≤ dil ξ(x) + dil η(x), x ∈ M.

The following lemma connects the preceding notions.

3.10 Lemma: (Characterisations of Lipschitz sections) Let π : E → M be a smooth
vector bundle and let ξ : M → E be such that ξ(x) ∈ Ex for every x ∈ M. Then the following
statements are equivalent:

(i) LK(ξ) <∞ for every compact K ⊆ M;

(ii) lK(ξ) <∞ for every compact K ⊆ M;

(iii) Dil ξ(x) <∞ for every x ∈ M;

(iv) dil ξ(x) <∞ for every x ∈ M.

Moreover, we have the equalities

LK(ξ) =
√
lK(ξ)2 + 1, Dil ξ(x) =

√
dil ξ(x)2 + 1

for every compact K ⊆ M and every x ∈ M.



58 S. Jafarpour and A. D. Lewis

Proof: The equivalence of (i) and (ii), along with the equality LK =
√
l2K + 1, follows from

the arguments of Canary, Epstein, and Marden [2006, Lemma II.A.2.4]. This also implies
the equality Dil ξ(x) =

√
dil ξ(x)2 + 1 when both Dil ξ(x) and dil ξ(x) are finite.

(i) =⇒ (iii) If x ∈ M and if U is a relatively compact neighbourhood of x, then Lcl(U)(ξ) <
∞ and so Dil ξ(x) <∞.

(ii) =⇒ (iv) This follows just as does the preceding part of the proof.
(iii) =⇒ (i) Suppose that Dil ξ(x) <∞ for every x ∈ M and that there exists a compact

set K ⊆ M such that LK(ξ) ̸< ∞. Then there exist sequences (xj)j∈Z>0 and (yj)j∈Z>0 in
K such that xj ̸= yj , j ∈ Z>0, and

lim
j→∞

dGE
(ξ(xj), ξ(yj))

dG(xj , yj)
= ∞.

Since Dil ξ(x) < ∞ for every x ∈ M, it follows directly that ξ is continuous and so ξ(K) is
bounded in the metric GE. Therefore, there exists C ∈ R>0 such that

dGE
(ξ(xj), ξ(yj)) ≤ C, j ∈ Z>0,

and so we must have limj→∞ dG(xj , yj) = 0. Let (xjk)k∈Z>0 be a subsequence converging to
x ∈ K and note that (yjk)k∈Z>0 then also converges to x. This implies that Dil ξ(x) ̸< ∞,
which proves the result.

(iv) =⇒ (ii) This follows just as the preceding part of the proof. ■

With the preceding, we can define what we mean by a locally Lipschitz section of a
vector bundle, noting that, if dil ξ(x) <∞ for every x ∈ M, ξ is continuous. Our definition
is in the general situation where sections are of class Cm with the mth derivative being, not
just continuous, but Lipschitz.

3.11 Definition: (Locally Lipschitz section) For a smooth vector bundle π : E → M
and for m ∈ Z≥0, ξ ∈ Γm(E) is of class Cm+lip if jmξ : M → JmE satisfies any of the
four equivalent conditions of Lemma 3.10. If ξ is of class C0+lip then we say it is locally
Lipschitz . By Γlip(E) we denote the space of locally Lipschitz sections of E. For m ∈ Z≥0,
by Γm+lip(E) we denote the space of sections of E of class Cm+lip. •

It is straightforward, if tedious, to show that a section is of class Cm+lip if and only
if, in any coordinate chart, the section is m-times continuously differentiable with the mth
derivative being locally Lipschitz in the usual Euclidean sense. The essence of the argument
is that, in any sufficiently small neighbourhood of a point in M, the distance functions dG
and dGE

are equivalent to the Euclidean distance functions defined in coordinates.
The following characterisation of the local sectional dilatation is useful.

3.12 Lemma: (Local sectional dilatation using derivatives) For a smooth vector bun-
dle π : E → M and for ξ ∈ Γlip(E), we have

dil ξ(x) = inf{sup{∥∇vyξ∥G0
| y ∈ cl(U), ∥vy∥G = 1, ξ differentiable at y}|

U is a relatively compact neighbourhood of x}.

Proof: As per [Kobayashi and Nomizu 1963, Proposition IV.3.4], let U be a geodesically
convex, relatively compact open set. We claim that

lcl(U)(ξ) = sup{∥∇0
vyξ∥G0

| y ∈ cl(U), ∥vy∥G = 1, ξ differentiable at y}.
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By [Canary, Epstein, and Marden 2006, Lemma II.A.2.4], to determine lcl(U)(ξ), it suffices
in the formula (3.4) to use only length minimising geodesics whose images are contained in
cl(U). Let x ∈ U, let vx ∈ TxM have unit length, and let γ : [0, T ] → cl(U) be a minimal
length geodesic such that γ′(0) = vx. If x is a point of differentiability for ξ, then

lim
t→0

∥τ−1
γ,t (ξ ◦ γ(t))− ξ ◦ γ(0)∥G0

t
= ∥∇0

vyξ∥G0
.

From this we conclude that

lcl(U)(ξ) ≥ sup{∥∇0
vxξ∥G0

| x ∈ cl(U), ∥vx∥G = 1, ξ differentiable at y}.

Suppose the opposite inequality does not hold. Then there exist x1, x2 ∈ cl(U) such that, if
γ : [0, T ] → M is the arc-length parameterised minimal length geodesic from x1 to x2, then

∥τ−1
γ,T (ξ ◦ γ(T ))− ξ ◦ γ(0)∥

T
> ∥∇0

vxξ∥G0
(3.5)

for every x ∈ cl(U) for which ξ is differentiable at x and every vx ∈ TxM of unit length. Note
that α : t 7→ τ−1

γ,t (ξ ◦ γ(t)) is a Lipschitz curve in Tx1M. By Rademacher’s Theorem [Federer
1969, Theorem 3.1.5], this curve is almost everywhere differentiable. If α is differentiable
at t we have

α′(t) = τ−1
γ,t (∇0

γ′(t)ξ).

Therefore, also by Rademacher’s Theorem and since ∇0 is G0-orthogonal, we have

sup

{
∥τ−1
γ,t (ξ ◦ γ(t))− ξ ◦ γ(0)∥G0

t

∣∣∣∣∣ t ∈ [0, T ]

}
= sup{∥∇0

γ′(t)ξ∥G0
| t ∈ [0, T ], ξ is differentiable at γ(t)}.

This, however, contradicts (3.5), and so our claim holds.
Now let x ∈ M and let (Uj)j∈Z>0 be a sequence of relatively compact, geodesically

convex neighbourhood of x such that ∩j∈Z>0Uj = {x}. Then

dil ξ(x) = lim
j→∞

lcl(Uj)(ξ)

and

inf{sup{∥∇0
vyξ∥G0

| y ∈ cl(U), ∥vy∥G = 1, ξ differentiable at y}|
U is a relatively compact neighbourhood of x}

= lim
j→∞

sup{∥∇0
vyξ∥G0

| y ∈ cl(Uj), ∥vy∥G = 1, ξ differentiable at y}.

The lemma now follows from the claim in the opening paragraph. ■

Let us see how to topologise spaces of locally Lipschitz sections. Lemma 3.10 gives us
four possibilities for doing this. In order to be as consistent as possible with our other defini-
tions of seminorms, we use the “locally sectional” characterisation of Lipschitz seminorms.
Thus, for ξ ∈ Γlip(E) and K ⊆ M compact, let us define

λK(ξ) = sup{dil ξ(x) | x ∈ K}
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and then define a seminorm plipK , K ⊆ M compact, on Γlip(E) by

plipK (ξ) = max{λK(ξ), p0K(ξ)}.

The seminorms plipK , K ⊆ M compact, give theCOlip-topology on Γr(E) for r ∈ Z>0∪{∞}.
To topologise Γm+lip(E), note that the COlip-topology on Γlip(JmE) induces a topology on
Γm+lip(E) that we call the COm+lip-topology . The seminorms for this locally convex
topology are

pm+lip
K (ξ) = max{λmK(ξ), pmK(ξ)}, K ⊆ M compact,

where
λmK(ξ) = sup{dil jmξ(x) | x ∈ K}.

Note that dil jmξ is unambiguously defined. Let us briefly explain why. If the connections
∇ and ∇0 are metric connections for G and G0, as we are assuming, then the induced
connection ∇m on Tk(T∗M)⊗E is also metric with respect to the induced metric determined
from Lemma 2.2. It then follows from Lemma 2.1 that the dilatation for sections of JmE
can be defined just as for sections of E.

Note that Γlip(E) ⊆ Γ0(E) and Γr(E) ⊆ Γlip(E) for r ∈ Z>0. Thus we adopt the
convention that 0 < lip < 1 for the purposes of ordering degrees of regularity. Let m ∈ Z≥0,
and let r ∈ Z≥0∪{∞} and r′ ∈ {0, lip} be such that r+r′ ≥ m+lip. We adopt the obvious

convention that ∞+lip = ∞. The seminorms pm+lip
K , K ⊆ M compact, can then be defined

on Γr+r
′
(E).

Let us record some properties of the COm+lip-topology for Γr+r
′
(E). This topology

is not extensively studied like the other differentiable topologies, but we can nonetheless
enumerate its essential properties.
COm+lip-1. It is Hausdorff: This is clear.
COm+lip-2. It is complete if and only if r + r′ = m+ lip: This is more or less because, for

a compact metric space, the space of Lipschitz functions is a Banach space [Weaver
1999, Proposition 1.5.2]. Since Γm+lip(E) is the inverse limit of the Banach spaces
Γm+lip(E|Kj),

8 j ∈ Z>0, for a compact exhaustion (Kj)j∈Z>0 of M, and since the
inverse limit of complete locally convex spaces is complete [Horváth 1966, Proposi-
tion 2.11.3], we conclude the stated assertion.

COm+lip-3. It is metrisable: This is argued as follows. First of all, it is a countable in-
verse limit of Banach spaces. Inverse limits are closed subspaces of the direct prod-
uct [Robertson and Robertson 1980, Proposition V.19]. The direct product of metris-
able spaces, in particular Banach spaces, is metrisable [Willard 1970, Theorem 22.3].

COm+lip-4. It is separable: This is a consequence of the result of Greene and Wu [1979,
Theorem 1.2′] which says that Lipschitz functions on Riemannian manifolds can be
approximated in the COlip-topology by smooth functions, and by the separability of
the space of smooth functions.

COm+lip-5. It is probably not nuclear: For compact base manifolds, Γm+lip(E) is an infinite-
dimensional normed space, and so not nuclear [Pietsch 1969, Theorem 4.4.14]. But,
even when M is not compact, the COm+lip-topology is not likely nuclear, although we
have neither found a reference nor proved this.

8To be clear, by Γm+lip(E|K) we denote the space of sections of class m+lip defined on a neighbourhood
of K.
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COm+lip-6. It is Suslin when m+lip = r+r′: This follows since Γm+lip(E) is a Polish space,
as we have already seen.

Of course, the preceding can be specialised to vector fields and functions, and one can
define the weak-L topologies corresponding to the above topologies. To do this, we apply
the general construction of Definition 3.2 with U = Γr+r

′
(TM), V = Cr+r

′
(M) (with the

COm-topology), and A = {Lf | f ∈ C∞(M)}, where

Lf : Γ
r+r′(TM) → Cr+r

′
(M)

X 7→ LXf.

We then have the following definition.

3.13 Definition: (Weak-L topology for space of Lipschitz vector fields) Let M be
a smooth manifold, let m ∈ Z≥0, and let r ∈ Z≥0∪{∞} and r′ ∈ {0, lip} have the property
that r + r′ ≥ m + lip. The weak-(L ,m + lip) topology for Γr+r

′
(TM) is the weakest

topology for which Lf is continuous for each f ∈ C∞(M), where Cr+r
′
(M) is given the

COm+lip-topology. •
We can show that the weak-(L ,m+ lip) topology agrees with the COm+lip-topology.

3.14 Theorem: (Weak-L topology for Lipschitz vector fields) Let M be a smooth
manifold, let m ∈ Z≥0, and let r ∈ Z≥0 ∪ {∞} and r′ ∈ {0, lip} have the property that
r + r′ ≥ m+ lip. Then the following two topologies for Γr+r

′
(E) agree:

(i) the COm+lip-topology;

(ii) the weak-(L ,m+ lip)-topology.

Proof: We prove the theorem only for the case m = 0, since the general case follows from
this in combination with Theorem 3.8.

Let us first show that the COlip-topology is weaker than the weak-(L , lip) topology.
Let K ⊆ M be compact and for x ∈ M choose a coordinate chart (Ux, ϕx) and func-
tions f1x , . . . , f

n
x ∈ C∞(M) agreeing with the coordinate functions in a neighbourhood of

a geodesically convex relatively compact neighbourhood Vx of x [Kobayashi and Nomizu
1963, Proposition IV.3.4]. We denote by X : ϕx(Ux) → Rn the local representative of X.
Since LXf

j
x = Xj on a neighbourhood of Vx, there exists Cx ∈ R>0 such that

∥τ−1
γ,1(X(x1))−X(x2)∥G ≤ Cx

n∑
j=1

|LXf jx(x1)−LXf jx(x2)|

for every distinct x1, x2 ∈ cl(Vx), where γ is the unique minimal length geodesic from x2 to
x1 (the inequality is a consequence of the fact that the ℓ1 norm for Rn is equivalent to any
other norm). This gives an inequality

dilX(y) ≤ Cx(dilLXf
1
x(y) + · · ·+ dilLXf

n
x (y))

for every y ∈ Vx. Now let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Vxj . From this point,
it is a bookkeeping exercise, exactly like that in the corresponding part of the proof of
Theorem 3.5, to arrive at the inequality

λK(X) ≤ C1λK(LXf
1) + · · ·+ CrλK(LXf

r).
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From the proof of Theorem 3.8 we also have

p0K(X) ≤ C ′
1p

0
K(LXf

1) + · · ·+ C ′
rp

0
K(LXf

r),

and this gives the result.
To prove that the weak (L , lip)-topology is weaker than the COlip-topology, it suffices

to show that Lf is continuous for every f ∈ C∞(M) if Γr+r
′
(TM) and Cr+r

′
(M) are given

the COm+lip-topology. Thus let K ⊆ M be compact and let f ∈ C∞(M). We choose
a relatively compact geodesically convex chart (Ux, ϕx) about x ∈ K and compute, for
distinct x1, x2 ∈ Ux,

|LXf(x1)−LXf(x2)|

≤
n∑
j=1

∣∣∣Xj(x1)
∂f

∂xj
(x1)−Xj(x2)

∂f

∂xj
(x2)

∣∣∣
≤

n∑
j=1

(
|Xj(x1)|

∣∣∣ ∂f
∂xj

(x1)−
∂f

∂xj
(x2)

∣∣∣+ |Xj(x1)−Xj(x2)|
∣∣∣ ∂f
∂xj

(x2)
∣∣∣)

≤
n∑
j=1

(
Axp

0
cl(Ux)

(X)
∂f

∂xj
(y)dG(x1, x2)

)
+Bx∥τ−1

γ,1X(x1)−X(x2)∥G,

for some y ∈ Ux, using the mean value theorem [Abraham, Marsden, and Ratiu 1988,
Proposition 2.4.8], and where γ is the unique length minimising geodesic from x2 to x1.
Thus we have an inequality

λcl(Ux)(LXf) ≤ Axp
0
cl(Ux)

(X) +Bxλcl(Ux)(X),

for a possibly different Ax. Letting x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Ux, some more
bookkeeping like that in the first part of the proof of Theorem 3.5 gives

λK(LXf) ≤
k∑
j=1

(Ajp
0
cl(Uxj )

(X) +Bjλcl(Uxj )
(X))

for suitable constants Aj , Bj ∈ R>0, j ∈ {1, . . . , k}. Since, from the proof of Theorem 3.8,
we also have

p0K(LXf) ≤
k∑
j=1

Cjp
0
cl(Uxj )

(X)

for suitable constants C1, . . . , Ck ∈ R>0, the result follows. ■

We also have the corresponding relationships between various attributes and their weak
counterparts.

3.15 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the COm+lip-topology) Let M be a smooth manifold, let
m ∈ Z≥0, and let r ∈ Z≥0∪{∞, lip} and r′ ∈ {0, lip} have the property that r+r′ ≥ m+lip.
Let (X,O ) be a topological space, let (T,M ) be a measurable space, and let µ : M → R≥0

be a finite measure. The following statements hold:
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(i) a subset B ⊆ Γr+r
′
(TM) is COm+lip-bounded in the von Neumann bornology if and

only if it is weak-(L ,m+ lip) bounded in the von Neumann bornology;

(ii) a map Φ: X → Γr+r
′
(TM) is COm+lip-continuous if and only if it is weak-(L ,m+lip)

continuous;

(iii) a map Ψ: T → Γm+lip(TM) is COm+lip-measurable if and only if it is weak-(L ,m+
lip) measurable;

(iv) a map Ψ: T → Γm+lip(TM) is Bochner integrable if and only if it is weak-(L ,m+lip)
Bochner integrable.

Proof: In the proof of Corollary 3.6 we established that {Lf | f ∈ C∞(M)} was point
separating as a family of linear mappings with domain Γ∞(TM). The same proof is valid if
the domain is Γm+lip(TM). The result is then a direct consequence of Lemma 3.3, noting
that the COm+lip-topology on Γr+r

′
(TM) is separable, and is also complete and Suslin when

r + r′ = m+ lip (and Cr+r
′
(M) is Suslin when r + r′ = m+ lip), as we have seen above in

properties COm+lip-2, COm+lip-4, and COm+lip-6. ■

3.16 Notation: (m + m′) In order to try to compactify the presentation of the various
degrees of regularity we consider, we will frequently speak of the class “m + m′” where
m ∈ Z≥0 and m′ ∈ {0, lip}. This allows us to include the various Lipschitz cases alongside
the finitely differentiable cases. Thus, whenever the reader sees “m+m′,” this is what they
should have in mind. •

4. The COhol-topology for the space of holomorphic vector fields

While in this paper we have no per se interest in holomorphic vector fields, it is the
case that an understanding of certain constructions for real analytic vector fields rely in
an essential way on their holomorphic extensions. Also, as we shall see, we will arrive at a
description of the real analytic topology that, while often easy to use in general arguments,
is not well suited for verifying hypotheses in examples. In these cases, it is often most
convenient to extend from real analytic to holomorphic, where things are easier to verify.

Thus in this section we overview the holomorphic case. We begin with vector bundles,
as in the smooth case.

4.1. General holomorphic vector bundles. We let π : E → M be an holomorphic vector
bundle with Γhol(E) the set of holomorphic sections. We let G be an Hermitian fibre metric
on E, and, for K ⊆ M compact, define a seminorm pholK on Γhol(E) by

pholK (ξ) = sup{∥ξ(z)∥G | z ∈ K}.

The COhol-topology for Γhol(E) is the locally convex topology defined by the family of
seminorms pholK , K ⊆ M compact.

We shall have occasion to make use of bounded holomorphic sections. Thus we let
π : E → M be an holomorphic vector bundle with Hermitian fibre metric G. We denote by
Γhol
bdd(E) the sections of E that are bounded, and on Γhol

bdd(E) we define a norm

phol∞ (ξ) = sup{∥ξ(z)∥G | z ∈ M}.
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If we wish to draw attention to the domain of the section, we will write the norm as pholM,∞.
This will occur when we have sections defined on an open subset of the manifold.

The following lemma makes an assertion of which we shall make use.

4.1 Lemma: (The topology of Γhol
bdd(E)) Let π : E → M be an holomorphic vector bundle.

The subspace topology on Γhol
bdd(E), induced from the COhol-topology, is weaker than the norm

topology induced by the norm phol∞ . Moreover, Γhol
bdd(E) is a Banach space. Also, if U ⊆ M

is a relatively compact open set with cl(U) ⊂ M, then the restriction map from Γhol(E) to
Γhol
bdd(E|U) is continuous.

Proof: It suffices to show that a sequence (ξj)j∈Z>0 in Γhol
bdd(E) converges to ξ ∈ Γhol

bdd(E)
uniformly on compact subsets of M if it converges in norm. This, however, is obvious. It
remains to prove completeness of Γhol

bdd(E) in the norm topology. By [Hewitt and Stromberg
1975, Theorem 7.9], a Cauchy sequence (ξj)j∈Z>0 in Γhol

bdd(E) converges to a bounded contin-
uous section ξ of E. That ξ is also holomorphic follows since uniform limits of holomorphic
sections are holomorphic [Gunning 1990a, page 5]. For the final assertion, since the topol-
ogy of Γhol(E) is metrisable (see COhol-3 below), it suffices to show that the restriction of a
convergent sequence in Γhol(E) to U converges uniformly. This, however, follows since cl(U)
is compact. ■

One of the useful attributes of holomorphic geometry is that properties of higher deriva-
tives can be deduced from the mapping itself. To make this precise, we first make the
following observations.

1. Hermitian inner products on C-vector spaces give inner products on the underlying
R-vector space.

2. By Lemma 2.3, there exist a real analytic affine connection ∇ on M and a real analytic
vector bundle connection ∇0 on E.

Therefore, the seminorms defined in Section 3.1 can be made sense of for holomorphic
sections.

4.2 Proposition: (Cauchy estimates for vector bundles) Let π : E → M be an holomor-
phic vector bundle, let K ⊆ M be compact, and let U be a relatively compact neighbourhood
of K. Then there exist C, r ∈ R>0 such that

p∞K,m(ξ) ≤ Cr−mpholU,∞(ξ)

for every m ∈ Z≥0 and ξ ∈ Γhol
bdd(E|U).

Moreover, if (Uj)j∈Z>0 is a sequence of relatively compact neighbourhoods of K such
that (i) cl(Uj) ⊆ Uj+1 and (ii) K = ∩j∈Z>0Uj, and if Cj , rj ∈ R>0 are such that

p∞K,m(ξ) ≤ Cjr
−m
j pholUj ,∞(ξ), m ∈ Z≥0, ξ ∈ Γhol

bdd(E|Uj),

then limj→∞ rj = 0.

Proof: Let z ∈ K and let (Wz, ψz) be an holomorphic vector bundle chart about z with
(Uz, ϕz) the associated chart for M, supposing that Uz ⊆ U. Let k ∈ Z>0 be such that
ψz(Wz) = ϕz(Uz)× Ck. Let z = ϕz(z) and let ξ : ϕz(Uz) → Ck be the local representative
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of ξ ∈ Γhol
bdd(E|U). Note that when taking real derivatives of ξ with respect to coordinates,

we can think of taking derivatives with respect to

∂

∂zj
=

1

2

( ∂

∂xj
− i

∂

∂yj

)
,

∂

∂z̄j
=

1

2

( ∂

∂xj
+ i

∂

∂yj

)
, j ∈ {1, . . . , n}.

Since ξ is holomorphic, the ∂
∂z̄j

derivatives will vanish [Krantz 1992, page 27]. Thus, for
the purposes of the multi-index calculations, we consider multi-indices of length n (not 2n).
In any case, applying the usual Cauchy estimates [Krantz 1992, Lemma 2.3.9], there exists
r ∈ R>0 such that

|DIξa(z)| ≤ I!r−|I| sup{|ξa(ζ)| | ζ ∈ D(r,z)}

for every a ∈ {1, . . . , k}, I ∈ Zn≥0, and ξ ∈ Γhol
bdd(E|U). We may choose r ∈ (0, 1) such that

D(r,z) is contained in ϕz(Uz), where r = (r, . . . , r). Denote Vz = ϕ−1
z (D(r,z)). There

exists a neighbourhood V′
z of z such that cl(V′

z) ⊆ Vz and such that

|DIξa(z′)| ≤ 2I!r−|I| sup{|ξa(ζ)| | ζ ∈ D(r,z)}

for every z′ ∈ ϕz(V
′
z), ξ ∈ Γhol

bdd(E|U), a ∈ {1, . . . , k}, and I ∈ Zn≥0. If |I| ≤ m then, since
we are assuming that r < 1, we have

1

I!
|DIξa(z′)| ≤ 2r−m sup{|ξa(ζ)| | ζ ∈ D(r,z)}

for every a ∈ {1, . . . , k}, z′ ∈ ϕz(V
′
z), and ξ ∈ Γhol

bdd(E|U). By Lemma 2.4, it follows that
there exist Cz, rz ∈ R>0 such that

∥jmξ(z)∥Gm
≤ Czr

−m
z pholVz ,∞(ξ)

for all z ∈ V′
z, m ∈ Z≥0, and ξ ∈ Γhol

bdd(E|U). Let z1, . . . , zk ∈ K be such that K ⊆ ∪kj=1V
′
zj ,

and let C = max{Cz1 , . . . , Czk} and r = min{rz1 , . . . , rzk}. If z ∈ K, then z ∈ V′
zj for some

j ∈ {1, . . . , k} and so we have

∥jmξ(z)∥Gm
≤ Czjr

−m
zj pholVzj ,∞

(ξ) ≤ Cr−mpholU,∞(ξ),

and taking supremums over z ∈ K on the left gives the result.
The final assertion of the proposition immediately follows by observing in the preceding

construction how “r” was defined, namely that it had to be chosen so that polydisks of
radius r in the coordinate charts remained in U. ■

4.2. Properties of the COhol-topology. The COhol-topology for Γhol(E) has the following
attributes.
COhol-1. It is Hausdorff: [Kriegl and Michor 1997, Theorem 8.2].
COhol-2. It is complete: [Kriegl and Michor 1997, Theorem 8.2].
COhol-3. It is metrisable: [Kriegl and Michor 1997, Theorem 8.2].
COhol-4. It is separable: This follows since Γhol(E) is a closed subspace of Γ∞(E) by [Kriegl

and Michor 1997, Theorem 8.2] and since subspaces of separable metric spaces are
separable [Willard 1970, Theorems 16.2, 16.9, and 16.11].
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COhol-5. It is nuclear: [Kriegl and Michor 1997, Theorem 8.2]. Note that, when M is
compact, pholM is a norm for the Chol-topology. A consequence of this is that Γhol(E)
must be finite-dimensional in these cases since the only nuclear normed vector spaces
are those that are finite-dimensional [Pietsch 1969, Theorem 4.4.14].

COhol-6. It is Suslin: This follows since Γhol(E) is a Polish space, as we have seen above.
Being metrisable, it suffices to describe the COhol-topology by describing its convergent

sequences; these are more or less obviously the sequences that converge uniformly on every
compact set.

As with spaces of smooth sections, we are interested in the fact that nuclearity of
Γhol(E) implies that compact sets are exactly those sets that are closed and von Neumann
bounded. The following result is obvious in the same way that Lemma 3.1 is obvious once
one understands Theorem 1.37(b) from [Rudin 1991].

4.3 Lemma: (Bounded subsets in the COhol-topology) A subset B ⊆ Γhol(E) is
bounded in the von Neumann bornology if and only if the following property holds: for
any compact set K ⊆ M, there exists C ∈ R>0 such that pholK (ξ) ≤ C for every ξ ∈ B.

4.3. The weak-L topology for holomorphic vector fields. As in the smooth case, one
simply specialises the constructions for general vector bundles to get the COhol-topology
for the space Γhol(TM) of holomorphic vector fields and the space Chol(M) of holomorphic
functions, noting that an holomorphic function is obviously identified with a section of the
trivial holomorphic vector bundle M× C.

As with smooth vector fields, for holomorphic vector fields we can seek a weak-L
characterisation of the COhol-topology. To begin, we need to understand the Lie derivative
in the holomorphic case. Thinking of Chol(M) ⊆ C∞(M) ⊗ C and using the Wirtinger
formulae,

∂

∂zj
=

1

2

( ∂

∂xj
− i

∂

∂yj

)
,

∂

∂z̄j
=

1

2

( ∂

∂xj
+ i

∂

∂yj

)
, j ∈ {1, . . . , n},

in an holomorphic chart, one sees that the usual differential of a C-valued function can
be decomposed as dCf = ∂f + ∂̄f , the first term on the right corresponding to “ ∂

∂z” and

the second to “ ∂
∂z̄ .” For holomorphic functions, the Cauchy–Riemann equations [Krantz

1992, page 27] imply that dCf = ∂f . Thus we define the Lie derivative of an holomorphic
function f with respect to an holomorphic vector field X by LXf = ⟨∂f ;X⟩. Fortunately,
in coordinates this assumes the expected form:

LXf =

n∑
j=1

Xj ∂f

∂zj
.

It is not the case that on a general holomorphic manifold there is a correspondence between
derivations of the C-algebra Chol(M) and holomorphic vector fields by Lie differentiation.9

9For example, on a compact holomorphic manifold, the only holomorphic functions are locally con-
stant [Fritzsche and Grauert 2002, Corollary IV.1.3], and so the only derivation is the zero derivation.
However, the C-vector space of holomorphic vector fields, while not large, may have positive dimension. For
example, the space of holomorphic vector fields on the Riemann sphere has C-dimension three [Ilyashenko
and Yakovenko 2008, Problem 17.9].
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However, for a certain class of holomorphic manifolds, those known as “Stein manifolds,”
the exact correspondence between derivations of the C-algebra Chol(M) and holomorphic
vector fields under Lie differentiation does hold [Grabowski 1981]. This is good news for
us, since Stein manifolds are intimately connected with real analytic manifolds, as we shall
see in the next section.

With the preceding discussion in mind, we can move ahead with Definition 3.2 with
U = Γhol(TM), V = Chol(M) (with the COhol-topology), and A = {Lf | f ∈ Chol(M)},
where

Lf : Γ
hol(TM) → Chol(M)

X 7→ LXf.
We make the following definition.

4.4 Definition: (Weak-L topology for space of holomorphic vector fields) For an
holomorphic manifold M, the weak-L topology for Γhol(TM) is the weakest topology for
which Lf is continuous for every f ∈ Chol(M), if Chol(M) has the COhol-topology. •

We then have the following result.

4.5 Theorem: (Weak-L characterisation of COhol-topology for holomorphic vec-
tor fields on Stein manifolds) For a Stein manifold M, the following topologies for
Γhol(TM) agree:

(i) the COhol-topology;

(ii) the weak-L topology.

Proof: (i)⊆(ii) As we argued in the proof of the corresponding assertion of Theorem 3.5, it
suffices to show that

pholK (X) ≤ C1p
hol
K1

(LXf
1) + · · ·+ Crp

hol
Kr

(LXf
r)

for some C1, . . . , Cr ∈ R>0, some K1, . . . ,Kr ⊆ M compact, and some f1, . . . , f r ∈ Chol(M).
Let K ⊆ M be compact. For simplicity, we assume that M is connected and so has

a well-defined dimension n. If not, then the arguments are easily modified by change of
notation to account for this. Since M is a Stein manifold, for every z ∈ K there exists a
coordinate chart (Uz, ϕz) with coordinate functions z1, . . . , zn : Uz → C that are restrictions
to Uz of globally defined holomorphic functions on M. Depending on your source, this is
either a theorem or part of the definition of a Stein manifold [Fritzsche and Grauert 2002,
Hörmander 1966]. Thus, for j ∈ {1, . . . , n}, let f jz ∈ Chol(M) be the holomorphic function
which, when restricted to Uz, gives the coordinate function z

j . Clearly, LXf
j
z = Xj on Uz.

Also, there exists Cz ∈ R>0 such that

∥X(ζ)∥G ≤ Cz(|X1(ζ)|+ · · ·+ |Xn(ζ)|), ζ ∈ cl(Vz),

for some relatively compact neighbourhood Vz ⊆ Uz of z (this follows from the fact that all
norms are equivalent to the ℓ1 norm for Cn). Thus

∥X(ζ)∥G ≤ Cz(|LXf1z (ζ)|+ · · ·+ |LXfnz (ζ)|), ζ ∈ cl(Vz).

Let z1, . . . , zk ∈ K be such that K ⊆ ∪kj=1Vzj . Let f
1, . . . , fkn be the list of globally defined

holomorphic functions
f1z1 , . . . , f

n
z1 , . . . , f

1
zk
, . . . , fnzk
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and let C1, . . . , Ckn be the list of coefficients

Cz1 , . . . , Cz1︸ ︷︷ ︸
n times

, . . . , Czk , . . . , Czk︸ ︷︷ ︸
n times

.

If z ∈ K, then z ∈ Vzj for some j ∈ {1, . . . , k} and so

∥X(z)∥G ≤ C1|LXf1(z)|+ · · ·+ Ckn|LXfkn(z)|,

which gives
pholK (X) ≤ C1p

hol
K (LXf

1) + · · ·+ Cknp
hol
K (LXf

kn),

as needed.
(ii)⊆(i) We claim that Lf is continuous for every f ∈ Chol(M) if Γhol(TM) has the

COhol-topology. Let K ⊆ M be compact and let U be a relatively compact neighbourhood
of K in M. Note that, for f ∈ Chol(M),

pholK (LXf) ≤ Cp∞K,1(f)p
hol
K (X) ≤ C ′pholK (X),

using Proposition 4.2, giving continuity of the identity map if we provide the domain with
the COhol-topology and the codomain with the weak-L topology, cf. [Schaefer and Wolff
1999, §III.1.1]. Thus open sets in the weak-L topology are contained in the COhol-topology.

■

As in the smooth case, we shall use the theorem according to the following result.

4.6 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the COhol-topology) Let M be a Stein manifold, let (X,O )
be a topological space, let (T,M ) be a measurable space, and let µ : M → R≥0 be a finite
measure. The following statements hold:

(i) a subset B ⊆ Γhol(TM) is bounded in the von Neumann bornology if and only if it is
weak-L bounded in the von Neumann bornology;

(ii) a map Φ: X → Γhol(TM) is continuous if and only if it is weak-L continuous;

(iii) a map Ψ: T → Γhol(TM) is measurable if and only if it is weak-L measurable;

(iv) a map Ψ: T → Γhol(TM) is Bochner integrable if and only if it is weak-L Bochner
integrable.

Proof: As in the proof of Corollary 3.6, we need to show that {Lf | f ∈ Chol(M)} has
a countable point separating subset. The argument here follows that in the smooth case,
except that here we have to use the properties of Stein manifolds, cf. the proof of the first
part of Theorem 4.5 above, to assert the existence, for each z ∈ M, of a neighbourhood
on which there are globally defined holomorphic functions whose differentials span the
cotangent space at each point. Since Γhol(TM) is complete, separable, and Suslin, and since
Chol(M) is Suslin by properties COhol-2, COhol-4 and COhol-6 above, the corollary follows
from Lemma 3.3. ■
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5. The Cω-topology for the space of real analytic vector fields

In this section we examine a topology on the set of real analytic vector fields. As we
shall see, this requires some considerable effort. Agrachev and Gamkrelidze [1978] consider
the real analytic case by considering bounded holomorphic extensions to neighbourhoods of
Rn of fixed width in Cn. Our approach is more general, more geometric, and global, using
a natural real analytic topology described, for example, in the work of Martineau [1966].
This allows us to dramatically broaden the class of real analytic systems that we can handle
to include “all” analytic systems.

The first observation we make is that Γω(E) is not a closed subspace of Γ∞(E) in the
CO∞-topology. To see this, consider the following. Take a smooth but not real analytic
function on S1. The Fourier series of this function gives rise, by taking partial sums, to
a sequence of real analytic functions. Standard harmonic analysis [Stein and Weiss 1971,
Theorem VII.2.11(b)] shows that this sequence and all of its derivatives converge uniformly,
and so in the CO∞-topology, to the original function. Thus we have a Cauchy sequence in
Cω(S1) that does not converge, with respect to the CO∞-topology, in Cω(S1).

The second observation we make is that a plain restriction of the topology for holomor-
phic objects is not sufficient. The reason for this is that, upon complexification (a process
we describe in detail below) there will not be a uniform neighbourhood to which all real
analytic objects can be extended. Let us look at this for an example, where “object” is
“function.” For r ∈ R>0 we consider the real analytic function fr : R → R defined by
fr(x) =

r2

r2+x2
. We claim that there is no neighbourhood U of R in C to which all of the

functions fr, r ∈ R>0, can be extended. Indeed, take some such neighbourhood U and let
r ∈ R>0 be sufficiently small that D(r, 0) ⊆ U. To see that fr cannot be extended to an
holomorphic function f r on U, let f r be such an holomorphic extension. Then f r(z) must

be equal to r2

r2+z2
for z ∈ D(r, 0) by uniqueness of holomorphic extensions [Cieliebak and

Eliashberg 2012, Lemma 5.40]. But this immediately prohibits f r from being holomorphic
on any neighbourhood of D(r, 0), giving our claim.

Therefore, to topologise the space of real analytic vector fields, we will need to do more
than either (1) restrict the CO∞-topology or (2) use the COhol-topology in an “obvious”
way. Note that it is the “obvious” use of the COhol-topology for holomorphic objects
that is employed by Agrachev and Gamkrelidze [1978] in their study of time-varying real
analytic vector fields. Moreover, Agrachev and Gamkrelidze [1978] also restrict to bounded
holomorphic extensions. What we propose is an improvement on this in that it works
far more generally, and is also more natural to a geometric treatment of the real analytic
setting. We comment at this point that we shall see in Theorems 6.25 and 7.14 below
that the consideration of bounded holomorphic extensions to fixed neighbourhoods in the
complexification is sometimes sufficient locally. But conclusions such as this become hard
theorems with precise hypotheses in our approach, not starting points for the theory.

As in the smooth and holomorphic cases, we begin by considering a general vector
bundle.

5.1. A natural direct limit topology. We let π : E → M be a real analytic vector bundle.
We shall extend E to an holomorphic vector bundle that will serve an an important device
for all of our constructions.
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Complexifications. Let us take some time to explain how holomorphic extensions can be
constructed. The following two paragraphs distill out important parts of about forty years
of intensive development of complex analysis, culminating in the paper of Grauert [1958].

For simplicity, let us assume that M is connected and so has pure dimension, and so
the fibres of E also have a fixed dimension. As in Section 2.3, we suppose that we have a
real analytic affine connection ∇ on M, a real analytic vector bundle connection ∇0 on E,
a real analytic Riemannian metric G on M, and a real analytic fibre metric G0 on E. We
also assume the data required to make the diagram (2.7) giving π : E → M as the image
of a real analytic vector bundle monomorphism in the trivial vector bundle RN × RN for
some suitable N ∈ Z>0.

Now we complexify. Recall that, if V is a C-vector space, then multiplication by
√
−1

induces aR-linear map J ∈ EndR(V). AR-subspace U of V is totally real if U∩J(U) = {0}.
A submanifold of an holomorphic manifold, thinking of the latter as a smooth manifold,
is totally real if its tangent spaces are totally real subspaces. By [Whitney and Bruhat
1959, Proposition 1], for a real analytic manifold M there exists a complexification M of
M, i.e., an holomorphic manifold having M as a totally real submanifold and where M has
the same C-dimension as the R-dimension of M. As shown by Grauert [1958, §3.4], for any
neighbourhood U of M in M, there exists a Stein neighbourhood S of M contained in U. By
arguments involving extending convergent real power series to convergent complex power
series (the conditions on coefficients for convergence are the same for both real and complex
power series), one can show that there is an holomorphic extension of ιM to ιM : M → CN ,
possibly after shrinking M [Cieliebak and Eliashberg 2012, Lemma 5.40]. By applying
similar reasoning to the transition maps for the real analytic vector bundle E, one obtains
an holomorphic vector bundle π : E → M for which the diagram

E //

π

��

CN × CN

pr2

��

E
ι̂E //

π

��

__

RN ×RN

pr2
��

77

M ιM
//

��

RN

''
M ιM

// CN

commutes, where all diagonal arrows are complexification and where the inner diagram is
as defined in the proof of Lemma 2.3. One can then define an Hermitian fibre metric G0 on
E induced from the standard Hermitian metric on the fibres of the vector bundle CN ×CN
and an Hermitian metric G on M induced from the standard Hermitian metric on CN .

In the remainder of this section, we assume that the preceding constructions have been
done and fixed once and for all.

Germs of holomorphic sections over subsets of a real analytic manifold. In two different
places, we will need to consider germs of holomorphic sections. In this section we organise
the methodology for doing this to unify the notation.
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Let A ⊆ M and let NA be the set of neighbourhoods of A in the complexification M.
For U,V ∈ NA, and for ξ ∈ Γhol(E|U) and η ∈ Γhol(E|V), we say that ξ is equivalent to η
if there exist W ∈ NA and ζ ∈ Γhol(E|W) such that W ⊆ U ∩ V and such that

ξ|W = η|W = ζ.

By G hol
A,E

we denote the set of equivalence classes, which we call the set of germs of sections

of E over A. By [ξ]A we denote the equivalence class of ξ ∈ Γhol(E|U) for some U ∈ NA.
Now, for x ∈ M, Ex is a totally real subspace of Ex with half the real dimension, and so

it follows that
Ex = Ex ⊕ J(Ex),

where J is the complex structure on the fibres of E. For U ∈ NA, denote by Γhol,R(E|U)
those holomorphic sections ξ of E|U such that ξ(x) ∈ Ex for x ∈ U∩M. We think of this as
being a locally convex topological R-vector space with the seminorms phol

K
, K ⊆ U compact,

defined by
phol
K

(ξ) = sup{∥ξ(x)∥G0
| x ∈ K},

i.e., we use the locally convex structure induced from the usual COhol-topology on
Γhol(E|U).

5.1 Remark: (Closedness of “real” sections) We note that Γhol,R(E|U) is a closed R-
subspace of Γhol(E) in the COhol-topology, i.e., the restriction of requiring “realness” on M
is a closed condition. This is easily shown, and we often assume it often without mention. •

Denote by G hol,R

A,E
the set of germs of sections from Γhol,R(E|U), U ∈ NA. If U1,U2 ∈ NA

satisfy U1 ⊆ U2, then we have the restriction mapping

rU2,U1
: Γhol,R(E|U2) → Γhol,R(E|U1)

ξ 7→ ξ|U1.

This restriction is continuous since, for any compact set K ⊆ U1 ⊆ U2 and any ξ ∈
Γhol,R(E|U2), we have phol

K
(rU2,U1

(ξ)) ≤ phol
K

(ξ) (in fact we have equality, but the inequality
emphasises what is required for our assertion to be true [Schaefer and Wolff 1999, §III.1.1]).
We also have maps

rU,A : Γ
hol,R(E|U) → G hol,R

A,E

ξ 7→ [ξ]A.

Note that NA is a directed set by inclusion; that is, U2 ⪯ U1 if U1 ⊆ U2. Thus we have
the directed system (Γhol,R(TU))U∈NA

, along with the mappings rU2,U1
, in the category of

locally convex topological R-vector spaces. The usual notion of direct limit in the category
of R-vector spaces gives G hol,R

A,E
, along with the linear mappings rU,A, U ∈ NA, as the direct

limit of this directed system [cf. Lang 2005, Theorem III.10.1]. This vector space then
has the finest locally convex topology making the maps rU,A, U ∈ NA, continuous, i.e., the
direct limit in the category of locally convex topological vector spaces. We refer to this as
the direct limit topology for G hol,R

A,E
.
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The direct limit topology. We shall describe four topologies (or more, depending on which
descriptions you regard as being distinct) for the space of real analytic sections of a real
analytic vector bundle. The first is quite direct, involving an application of the construction
above to the case of A = M. In this case, the following lemma is key to our constructions.

5.2 Lemma: (Real analytic sections as holomorphic germs) There is a natural R-

vector space isomorphism between Γω(E) and G hol,R

M,E
.

Proof: Let ξ ∈ Γω(E). As in [Cieliebak and Eliashberg 2012, Lemma 5.40], there is an
extension of ξ to a section ξ ∈ Γhol,R(E|U) for some U ∈ NM. We claim that the map

iM : Γω(E) → G hol,R

M,E
defined by iM(ξ) = [ξ]M is the desired isomorphism. That iM is

independent of the choice of extension ξ is a consequence of the fact that the extension to
ξ is unique inasmuch as any two such extensions agree on some neighbourhood contained
in their intersection; this is the uniqueness assertion of [Cieliebak and Eliashberg 2012,

Lemma 5.40]. This fact also ensures that iM is injective. For surjectivity, let [ξ]M ∈ G hol,R

M,E

and let us define ξ : M → E by ξ(x) = ξ(x) for x ∈ M. Note that the restriction of ξ to
M is real analytic because the values of ξ|M at points in a neighbourhood of x ∈ M are
given by the restriction of the (necessarily convergent) C-Taylor series of ξ to M. Obviously,
iM(ξ) = [ξ]M. ■

Now we use the direct limit topology on G hol,R

M,E
described above, along with the preceding

lemma, to immediately give a locally convex topology for Γω(E) that we refer to as the direct
Cω-topology .

Let us make an important observation about the direct Cω-topology. Let us denote by
SM the set of all Stein neighbourhoods of M in M. As shown by Grauert [1958, §3.4], if
U ∈ NM then there exists S ∈ SM with S ⊆ U. Therefore, SM is cofinal in NM and so the
directed systems (Γhol(E|U))U∈NM

and (Γhol(E|S))S∈SM
induce the same final topology on

Γω(E) [Grothendieck 1973, page 137].

5.2. Topologies for germs of holomorphic functions about compact sets. In the pre-
ceding section, we gave a more or less direct description of a topology for the space of real
analytic sections. This description has a benefit of being the one that one might naturally
arrive at after some thought. However, there is not a lot that one can do with this de-
scription of the topology. In this section we develop the means by which one can consider
alternative descriptions of this topology that, for example, lead to explicit seminorms for
the topology on the space of real analytic sections. These seminorms will be an essential
part of our developing a useful theory for time-varying real analytic vector fields and real
analytic control systems.

The direct limit topology for the space of germs about a compact set. We continue
with the notation from Section 5.1. For K ⊆ M compact, we have the direct limit topology,
described above for general subsets A ⊆ M, on G hol,R

K,E
. We seem to have gained nothing,

since we have yet another direct limit topology. However, the direct limit can be shown
to be of a friendly sort as follows. Unlike the general situation, since K is compact there
is a countable family (UK,j)j∈Z>0 from NK with the property that cl(UK,j+1) ⊆ UK,j and
K = ∩j∈Z>0UK,j . Moreover, the sequence (UK,j)j∈Z>0 is cofinal in NK , i.e., if U ∈ NK ,
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then there exists j ∈ Z>0 with UK,j ⊆ U. Let us fix such a family of neighbourhoods.

Let us fix j ∈ Z>0 for a moment. Let Γhol,R
bdd (E|UK,j) be the set of bounded sections from

Γhol,R(E|UK,j), boundedness being taken relative to the Hermitian fibre metric G0. As we

have seen in Lemma 4.1, if we define a norm on Γhol,R
bdd (E|UK,j) by

phol
UK,j ,∞

(ξ) = sup{∥ξ(x)∥G0
| x ∈ UK,j},

then this makes Γhol,R
bdd (UK,j) into a Banach space, a closed subspace of the Banach space

of bounded continuous sections of E|UK,j . Now, no longer fixing j, we have a sequence of
inclusions

Γhol,R
bdd (E|UK,1) ⊆ Γhol,R(E|UK,1) ⊆ Γhol,R

bdd (E|UK,2) ⊆

· · · ⊆ Γhol,R(E|UK,j) ⊆ Γhol,R
bdd (E|UK,j+1) ⊆ · · · .

The inclusion Γhol,R(UK,j) ⊆ Γhol,R
bdd (UK,j+1), j ∈ Z>0, is by restriction from UK,j to the

smaller UK,j+1, keeping in mind that cl(UK,j+1) ⊆ UK,j . By Lemma 4.1, all inclusions are
continuous. For j ∈ Z>0 define

rK,j : Γ
hol,R
bdd (E|UK,j) → G hol,R

K,E

ξ 7→ [ξ]K .
(5.1)

Now one can show that the direct limit topologies induced on G hol,R

K,E
by the directed system

(Γhol,R(E|U))U∈NK
of Fréchet spaces and by the directed system (Γhol,R

bdd (E|UK,j))j∈Z>0 of
Banach spaces agree [Kriegl and Michor 1997, Theorem 8.4]. We refer to [Bierstedt 1988],
starting on page 63, for a fairly comprehensive discussion of the topology we have just
described in the context of germs of holomorphic functions about a compact subsetK ⊆ Cn.

A weighted direct limit topology for sections of bundles of infinite jets. Here we provide
a direct limit topology for a subspace of the space of continuous sections of the infinite jet
bundle of a vector bundle. Below we shall connect this direct limit topology to the direct
limit topology described above for germs of holomorphic sections about a compact set. The
topology we give here has the advantage of providing explicit seminorms for the topology
of germs, and subsequently for the space of real analytic sections.

For this description, we work with infinite jets, so let us introduce the notation we will
use for this, referring to [Saunders 1989, Chapter 7] for details. Let us denote by J∞E the
bundle of infinite jets of a vector bundle π : E → M, this being the inverse limit (in the
category of sets, for the moment) of the inverse system (JmE)m∈Z≥0

with mappings πm+1
m ,

m ∈ Z≥0. Precisely,

J∞E =
{
ϕ ∈

∏
m∈Z≥0

JmE
∣∣∣ πkl ◦ ϕ(k) = ϕ(l), k, l ∈ Z≥0, k ≥ l

}
.

We let π∞m : J∞E → JmE be the projection defined by π∞m (ϕ) = ϕ(m). For ξ ∈ Γ∞(E) we
let j∞ξ : M → J∞E be defined by π∞m ◦ j∞ξ(x) = jmξ(x). By a theorem of Borel [1895], if
ϕ ∈ J∞E, there exist ξ ∈ Γ∞(E) and x ∈ M such that j∞ξ(x) = ϕ. We can define sections
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of J∞E in the usual manner: a section is a map Ξ: M → J∞E satisfying π∞0 ◦ Ξ(x) = x for
every x ∈ M. We shall equip J∞E with the initial topology so that a section Ξ is continuous
if and only if π∞m ◦ Ξ is continuous for every m ∈ Z≥0. We denote the space of continuous
sections of J∞E by Γ0(J∞E). Since we are only dealing with continuous sections, we can
talk about sections defined on any subset A ⊆ M, using the relative topology on A. The
continuous sections defined on A ⊆ M will be denoted by Γ0(J∞E|A).

Now let K ⊆ M be compact and, for j ∈ Z>0, denote

Ej(K) = {Ξ ∈ Γ0(J∞E|K) | sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0, x ∈ K} <∞},

and on Ej(K) we define a norm pK,j by

pK,j(Ξ) = sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0, x ∈ K}.

One readily verifies that, for each j ∈ Z>0, (Ej(K), pK,j) is a Banach space. Note that
Ej(K) ⊆ Ej+1(K) and that pK,j+1(Ξ) ≤ pK,j(Ξ) for Ξ ∈ Ej(K), and so the inclusion of
Ej(K) in Ej+1(K) is continuous. We let E (K) be the direct limit of the directed system
(Ej(K))j∈Z>0 .

We shall subsequently explore more closely the relationship between the direct limit
topology for E (K) and the topology for G hol,R

K,E
. For now, we merely observe that the direct

limit topology for E (K) admits a characterisation by seminorms. To state the result, let
us denote by c↓0(Z≥0;R>0) the set of nonincreasing sequences (am)m∈Z≥0

in R>0 that
converge to 0. Let us abbreviate such a sequence by a = (am)m∈Z≥0

. The following result
is modelled after [Vogt 2013, Lemma 1].

5.3 Lemma: (Seminorms for E (K)) The direct limit topology for E (K) is defined by
the seminorms

pK,a = sup{a0a1 · · · am∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0, x ∈ K},

for a ∈ c↓0(Z≥0;R>0).

Proof: First we show that the seminorms pK,a, a ∈ c↓0(Z≥0;R>0), are continuous on
E (K). It suffices to show that pK,a|Ej(K) is continuous for each j ∈ Z>0 [Conway 1990,
Proposition IV.5.7]. Thus, since Ej(K) is a Banach space, it suffices to show that, if
(Ξk)k∈Z>0 is a sequence in Ej(K) converging to zero, then limk→∞ pK,a(Ξk) = 0. Let
N ∈ Z≥0 be such that aN < 1

j . Let C ≥ 1 be such that

a0a1 · · · am ≤ Cj−m, m ∈ {0, 1, . . . , N},

this being possible since there are only finitely many inequalities to satisfy. Therefore, for
any m ∈ Z≥0, we have a0a1 · · · am ≤ Cj−m. Then, for any Ξ ∈ Γ0(J∞E|K),

a0a1 · · · am∥π∞m ◦ Ξ(x)∥Gm
≤ Cj−m∥π∞m ◦ Ξ(x)∥Gm

for every x ∈ K and m ∈ Z≥0. From this we immediately have limk→∞ pK,a(Ξk) = 0, as
desired. This shows that the direct limit topology on E (K) is stronger than the topology
defined by the family of seminorms pK,a, a ∈ c↓0(Z≥0;R>0).
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For the converse, we show that every neighbourhood of 0 ∈ E (K) in the direct limit
topology contains a neighbourhood of zero in the topology defined by the seminorms pK,a,
a ∈ c↓0(Z≥0;R>0). Let Bj denote the unit ball in Ej(K). A neighbourhood of 0 in
the direct limit topology contains a union of balls ϵjBj for some ϵj ∈ R>0, j ∈ Z>0,
(see [Schaefer and Wolff 1999, page 54]) and we can assume, without loss of generality,
that ϵj ∈ (0, 1) for each j ∈ Z>0. We define an increasing sequence (mj)j∈Z>0 in Z≥0

as follows. Let m1 = 0. Having defined m1, . . . ,mj , define mj+1 > mj by requiring that

j < ϵ
1/mj+1

j+1 (j + 1). For m ∈ {mj , . . . ,mj+1 − 1}, define am ∈ R>0 by a−1
m = ϵ

1/mj

j j. Note
that, for m ∈ {mj , . . . ,mj+1 − 1}, we have

a−mm = ϵ
m/mj

j jm ≤ ϵjj
m.

Note that limm→∞ am = 0. If Ξ ∈ Γ0(J∞E|K) satisfies pK,a(Ξ) ≤ 1 then, for m ∈
{mj , . . . ,mj+1 − 1}, we have

j−m∥π∞m ◦ Ξ(x)∥Gm
≤ ammϵj∥π∞m ◦ Ξ(x)∥Gm

≤ a0a1 · · · amϵj∥π∞m ◦ Ξ(x)∥Gm
≤ ϵj

for x ∈ K. Thus, if Ξ ∈ Γ0(J∞E|K) satisfies pK,a(Ξ) ≤ 1 then, for m ∈ {mj , . . . ,mj+1−1},
we have π∞m ◦Ξ ∈ ϵjBj . Therefore, Ξ ∈ ∪j∈Z>0ϵjBj , and this shows that, for a as constructed
above,

{Ξ ∈ Γ0(J∞E|K) | pK,a(Ξ) ≤ 1} ⊆ ∪j∈Z>0ϵjBj ,

giving the desired conclusion. ■

The following attribute of the direct limit topology for E (K) will also be useful.

5.4 Lemma: (E (K) is a regular direct limit) The direct limit topology for E (K) is
regular, i.e., if B ⊆ E (K) is von Neumann bounded, then there exists j ∈ Z>0 such that
B is contained in and von Neumann bounded in Ej(K).

Proof: Let Bj ⊆ Ej(K), j ∈ Z>0, be the closed unit ball with respect to the norm topology.
We claim that Bj is closed in the direct limit topology of E (K). To prove this, we shall
prove that Bj is closed in a topology that is weaker than the direct limit topology.

The weaker topology we use is the topology induced by the topology of pointwise conver-
gence in Γ0(J∞E|K). To be precise, let E ′

j (K) be the vector space Ej(K) with the topology
defined by the seminorms

px,j(Ξ) = sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0}, x ∈ K.

Clearly the identity map from Ej(K) to E ′
j (K) is continuous, and so the topology of E ′

j (K)
is weaker than the usual topology of E (K). Now let E ′(K) be the direct limit of the
directed system (E ′

j (K))j∈Z>0 . Note that, algebraically, E ′(K) = E (K), but the spaces
have different topologies, the topology for E ′(K) being weaker than that for E (K).

We will show that Bj is closed in E ′(K). Let (I,⪯) be a directed set and let (Ξi)i∈I
be a convergent net in Bj in the topology of E ′(K). Thus we have a map Ξ: K → J∞E|K
such that, for each x ∈ K, limi∈I Ξi(x) = Ξ(x). If Ξ ̸∈ Bj then there exists x ∈ K such that

sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0} > 1.
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Let ϵ ∈ R>0 be such that

sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0} > 1 + ϵ

and let i0 ∈ I be such that

sup{j−m∥π∞ ◦ Ξi(x)− π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0} < ϵ

for i0 ⪯ i, this by pointwise convergence. We thus have, for all i0 ⪯ i,

ϵ < sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0} − sup{j−m∥π∞m ◦ Ξi(x)∥Gm

| m ∈ Z≥0}
≤ sup{j−m∥π∞m ◦ Ξi(x)− π∞m ◦ Ξ(x)∥Gm

| m ∈ Z≥0} < ϵ,

which contradiction gives the conclusion that Ξ ∈ Bj .
Since Bj has been shown to be closed in E (K), the lemma now follows from [Bierstedt

1988, Corollary 7]. ■

Seminorms for the topology of spaces of holomorphic germs. Let us define seminorms
pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), for G

hol,R

K,E
by

pωK,a([ξ]K) = sup{a0a1 · · · am∥jmξ(x)∥Gm
| x ∈ K, m ∈ Z≥0}.

We can (and will) also think of pωK,a as being a seminorm on Γω(E) defined by the same
formula.

Let us prove that the seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), can be

used to define the direct limit topology on G hol,R

K,E
.

5.5 Theorem: (Seminorms for G hol,R

K,E
) Let π : E → M be a real analytic vector bundle

and let K ⊆ M be compact. Then the family of seminorms pωK,a, a ∈ c↓0(Z≥0;R>0), defines

a locally convex topology on G hol,R

K,E
agreeing with the direct limit topology.

Proof: Let K ⊆ M be compact and let (Uj)j∈Z>0 be a sequence of neighbourhoods of K in
M such that cl(Uj+1) ⊆ Uj , j ∈ Z>0, and such that K = ∩j∈Z>0Uj . We have mappings

rUj ,K
: Γhol,R

bdd (E|Uj) → G hol,R

K,E

ξ 7→ [ξ]K .

The maps rUj ,K
can be assumed to be injective without loss of generality, by making sure

that each open set Uj consists of disconnected neighbourhoods of the connected components
ofK. SinceM is Hausdorff and the connected components ofK are compact, this can always
be done by choosing the initial open set U1 sufficiently small. In this way, Γhol,R

bdd (E|Uj),
j ∈ Z>0, are regarded as subspaces of G hol,R

K,E
. It is convenient to be able to do this.

We will work with the locally convex space E (K) introduced in Section 5.2, and define

a mapping LK : G hol,R

K,E
→ E (K) by LK([ξ]K) = j∞ξ|K. Let us prove that this mapping is

well-defined, i.e., show that, if [ξ]K ∈ G hol,R

K,E
, then LK([ξ]K) ∈ Ej(K) for some j ∈ Z>0.
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Let U be a neighbourhood of K in M on which the section ξ is defined, holomorphic, and
bounded. Then ξ|(M ∩ U) is real analytic and so, by Lemma 2.5, there exist C, r ∈ R>0

such that
∥jmξ(x)∥Gm

≤ Cr−m, x ∈ K, m ∈ Z≥0.

If j > r−1 it immediately follows that

sup{j−m∥jmξ(x)∥Gm
| x ∈ K, m ∈ Z≥0} <∞,

i.e., LK([ξ]K) ∈ Ej(K).
The following lemma records the essential feature of LK .

1 Lemma: The mapping LK is a continuous, injective, open mapping, and so an homeo-
morphism onto its image.

Proof: To show that LK is continuous, it suffices to show that LK |Γhol,R
bdd (E|Uj) is continuous

for each j ∈ Z≥0. We will show this by showing that, for each j ∈ Z>0, there exists
j′ ∈ Z>0 such that LK(Γhol

bdd(E|Uj)) ⊆ Ej′(K) and such that LK is continuous as a map
from Γhol

bdd(E|Uj) to Ej′(K). Since Ej′(K) is continuously included in E (K), this will give
the continuity of LK . First let us show that LK(Γhol

bdd(E|Uj)) ⊆ Ej′(K) for some j′ ∈ Z>0.
By Proposition 4.2, there exist C, r ∈ R>0 such that

∥jmξ(x)∥Gm
≤ Cr−mphol

Uj ,∞
(ξ)

for every m ∈ Z≥0 and ξ ∈ Γhol
bdd(E|Uj). Taking j′ ∈ Z>0 such that j′ ≥ r−1 we have

LK(Γhol
bdd(E|Uj)) ⊆ Ej′(K), as claimed. To show that LK is continuous as a map from

Γhol
bdd(E|Uj) to Ej′(K), let ([ξk]K)k∈Z>0 be a sequence in Γhol

bdd(E|Uj) converging to zero. We
then have

lim
k→∞

sup{(j′)−m∥jmξk(x)∥G | x ∈ K, m ∈ Z≥0} ≤ lim
k→∞

C sup{∥ξk(z)∥G | z ∈ Uj} = 0,

giving the desired continuity.
Since germs of holomorphic sections are uniquely determined by their infinite jets, in-

jectivity of LK follows.
We claim that, ifB ⊆ E (K) is von Neumann bounded, then L−1

K (B) is also von Neumann
bounded. By Lemma 5.4, if B ⊆ E (K) is bounded, then B is contained and bounded in
Ej(K) for some j ∈ Z>0. Therefore, there exists C ∈ R>0 such that, if LK([ξ]K) ⊆ B, then

∥jmξ(x)∥Gm
≤ Cj−m, x ∈ K, m ∈ Z≥0.

Let x ∈ K and let (Vx, ψx) be a vector bundle chart for E about x with corresponding chart
(Ux, ϕx) forM. Suppose the fibre dimension of E over Ux is k and that ϕx takes values in Rn.
Let U′

x ⊆ Ux be a relatively compact neighbourhood of x such that cl(U′
x) ⊆ Ux. Denote

Kx = K ∩ cl(U′
x). By Lemma 2.4, there exist Cx, rx ∈ R>0 such that, if LK([ξ]K) ⊆ B,

then
|DIξa(x)| ≤ CxI!r

−|I|
x , x ∈ ϕx(Kx), I ∈ Zn≥0, a ∈ {1, . . . , k},

where ξ is the local representative of ξ. Note that this implies the following for each [ξ]K
such that LK([ξ]K) ⊆ B and for each a ∈ {1, . . . , k}:
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1. ξa admits a convergent power series expansion to an holomorphic function on the poly-
disk D(σx, ϕx(x)) for σx < rx;

2. on the polydisk D(σx, ϕx(x)), ξ
a satisfies |ξa| ≤ ( 1

1−σx )
n.

It follows that, if LK([ξ]K) ∈ B, then ξ has a bounded holomorphic extension in some
coordinate polydisk around each x ∈ K. By a standard compactness argument and since
∩j∈Z>0Uj = K, there exists j′ ∈ Z>0 such that ξ ∈ Γhol,R

bdd (E|Uj′) for each [ξ]K such that
LK([ξ]K) ∈ B, and that the set of such sections of E|Uj′ is von Neumann bounded, i.e., norm
bounded. Thus L−1

K (B) is von Neumann bounded, as claimed.
Note also that E (K) is a DF-space since Banach spaces are DF-spaces [Jarchow 1981,

Corollary 12.4.4] and countable direct limits of DF-spaces are DF-spaces [Jarchow 1981,
Theorem 12.4.8]. Therefore, by the open mapping lemma from §2 of Baernstein [1971], the
result follows. ▼

From the lemma, it follows that the direct limit topology of G hol,R

K,E
agrees with that

induced by its image in E (K). Since the seminorms pK,a, a ∈ c↓0(Z≥0;R>0), define
the locally convex topology of E (K) by Lemma 5.3, it follows that the seminorms pωK,a,

a ∈ c↓0(Z≥0;R>0), define the direct limit topology of G hol,R

K,E
. ■

The problem of providing seminorms for the direct limit topology of G hol,R

K,E
is a nontrivial

one, so let us provide a little history for what led to the preceding theorem. First of all,
the first concrete characterisation of seminorms for germs of holomorphic functions about
compact subsets of Cn comes in [Mujica 1984]. Mujica provides seminorms having two parts,
one very much resembling the seminorms we use, and another part that is more complicated.
These seminorms specialise to the case where the compact set lies in Rn ⊆ Cn, and the
first mention of this we have seen in the research literature is in the notes of Domański
[2012]. The first full proof that the seminorms analogous to those we define are, in fact,
the seminorms for the space of real analytic functions on open subsets of Rn appears in
the recent note of Vogt [2013]. Our presentation is an adaptation, not quite trivial as it
turns out, of Vogt’s constructions. One of the principal difficulties is Lemma 2.4 which is
essential in showing that our jet bundle fibre metrics ∥·∥Gm

are suitable for defining the
seminorms for the real analytic topology. Note that one cannot use arbitrary fibre metrics,
since one needs to have the behaviour of these metrics be regulated to the real analytic
topology as the order of jets goes to infinity. Because our fibre metrics are constructed by
differentiating objects defined at low order, i.e., the connections ∇ and ∇0, we can ensure
that the fibre metrics are compatible with real analytic growth conditions on derivatives.

An inverse limit topology for the space of real analytic sections. In the preceding three
sections we provided three topologies for the space G hol,R

K,E
of holomorphic sections about

a compact subset K of a real analytic manifold: (1) the “standard” direct limit topol-
ogy; (2) the topology induced by the direct limit topology on E (K); (3) the topology defined
by the seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0). We showed in Lemma 5.3
and Theorem 5.5 that these three topologies agree. Now we shall use these constructions
to easily arrive at (1) a topology on Γω(E) induced by the locally convex topologies on the

spaces G hol,R

K,E
, K ⊆ M compact, and (2) seminorms for the topology of Γω(E).
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For a compact set K ⊆ M we have an inclusion iK : Γω(E) → G hol,R

K,E
defined as follows.

If ξ ∈ Γω(E), then ξ admits an holomorphic extension ξ defined on a neighbourhood U ⊆ M
of M [Cieliebak and Eliashberg 2012, Lemma 5.40]. Since U ∈ NK we define iK(ξ) = [ξ]K .
Now we have a compact exhaustion (Kj)j∈Z>0 of M. Since NKj+1 ⊆ NKj we have a
projection

πj : G
hol,R

Kj+1,E
→ G hol,R

Kj ,E

[ξ]Kj+1 7→ [ξ]Kj .

One can check that, as R-vector spaces, the inverse limit of the inverse family (G hol,R

Kj ,E
)j∈Z>0

is isomorphic to G hol,R

M,E
, the isomorphism being given explicitly by the inclusions

ij : G
hol,R

M,E
→ G hol,R

Kj ,E

[ξ]M 7→ [ξ]Kj .

Keeping in mind Lemma 5.2, we then have the inverse limit topology on Γω(E) induced by
the mappings ij , j ∈ Z>0. The topology so defined we call the inverse Cω-topology for
Γω(E).

It is now a difficult theorem of Martineau [1966, Theorem 1.2(a)] that the direct Cω-
topology of Section 5.1 agrees with the inverse Cω-topology. Therefore, we call the resulting
topology the Cω-topology . It is clear from Theorem 5.5 and the preceding inverse limit
construction that the seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), define the
Cω-topology.

5.3. Properties of the Cω-topology. To say some relevant things about the Cω-topology,
let us first consider the direct limit topology for G hol,R

K,E
, K ⊆ M compact, as this is an

important building block for the Cω-topology. First, we recall that a strict direct limit
of locally convex spaces consists of a sequence (Vj)j∈Z>0 of locally convex spaces that are
subspaces of some vector space V, and which have the nesting property Vj ⊆ Vj+1, j ∈ Z>0.

In defining the direct limit topology for G hol,R

K,E
we defined it as a strict direct limit of

Banach spaces. Moreover, the restriction mappings from Γhol,R
bdd (E|Uj) to Γhol,R

bdd (E|Uj+1)
can be shown to be compact [Kriegl and Michor 1997, Theorem 8.4]. Direct limits such as
these are known as “Silva spaces” or “DFS spaces.” Silva spaces have some nice properties,
and these provide some of the following attributes for the direct limit topology for G hol,R

K,E
.

G hol,R-1. It is Hausdorff: [Narici and Beckenstein 2010, Theorem 12.1.3].
G hol,R-2. It is complete: [Narici and Beckenstein 2010, Theorem 12.1.10].
G hol,R-3. It is not metrisable: [Narici and Beckenstein 2010, Theorem 12.1.8].
G hol,R-4. It is regular: [Kriegl and Michor 1997, Theorem 8.4]. This means that every

von Neumann bounded subset of G hol,R

K,E
is contained and von Neumann bounded in

Γhol,R(E|Uj) for some j ∈ Z>0.
G hol,R-5. It is reflexive: [Kriegl and Michor 1997, Theorem 8.4].
G hol,R-6. Its strong dual is a nuclear Fréchet space: [Kriegl and Michor 1997, Theorem 8.4].

Combined with reflexivity, this means that G hol,R

K,E
is the strong dual of a nuclear

Fréchet space.
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G hol,R-7. It is nuclear: [Schaefer and Wolff 1999, Corollary III.7.4].

G hol,R-8. It is Suslin: This follows from [Fernique 1967, Théorème I.5.1(b)] since G hol,R

K,E
is

a strict direct limit of separable Fréchet spaces.
These attributes for the spaces G hol,R

K,E
lead, more or less, to the following attributes of

Γω(E).
Cω-1. It is Hausdorff: It is a union of Hausdorff topologies.
Cω-2. It is complete: [Horváth 1966, Corollary to Proposition 2.11.3].
Cω-3. It is not metrisable: It is a union of non-metrisable topologies.
Cω-4. It is separable: [Domański 2012, Theorem 16].
Cω-5. It is nuclear: [Schaefer and Wolff 1999, Corollary III.7.4].
Cω-6. It is Suslin: Here we note that a countable direct product of Suslin spaces is

Suslin [Bogachev 2007, Lemma 6.6.5(iii)]. Next we note that the inverse limit is
a closed subspace of the direct product [Robertson and Robertson 1980, Proposi-
tion V.19]. Next, closed subspaces of Suslin spaces are Suslin spaces [Bogachev 2007,
Lemma 6.6.5(ii)]. Therefore, since Γω(E) is the inverse limit of the Suslin spaces

G hol,R

Kj ,E
, j ∈ Z>0, we conclude that Γω(E) is Suslin.

As we have seen with the CO∞- and COhol-topologies for Γ∞(E) and Γhol(E), nucle-
arity of the Cω-topology implies that compact subsets of Γω(E) are exactly those that are
closed and von Neumann bounded. For von Neumann boundedness, we have the following
characterisation.

5.6 Lemma: (Bounded subsets in the Cω-topology) A subset B ⊆ Γω(E) is bounded
in the von Neumann bornology if and only if the following property holds: for any compact
set K ⊆ M and any a ∈ c↓0(Z≥0;R>0), there exists C ∈ R>0 such that pωK,a(ξ) ≤ C for
every ξ ∈ B.

5.4. The weak-L topology for real analytic vector fields. As in the finitely differentiable,
Lipschitz, smooth, and holomorphic cases, the above constructions for general vector bun-
dles can be applied to the tangent bundle and the trivial vector bundle M×R to give the
Cω-topology on the space Γω(TM) of real analytic vector fields and the space Cω(M) of
real analytic functions. As we have already done in these other cases, we wish to provide
a weak characterisation of the Cω-topology for Γω(TM). First of all, if X ∈ Γω(TM), then
f 7→ LXf is a derivation of Cω(M). As we have seen, in the holomorphic case this does not
generally establish a correspondence between vector fields and derivations, but it does for
Stein manifolds. In the real analytic case, Grabowski [1981] shows that the map X 7→ LX is
indeed an isomorphism of the R-vector spaces of real analytic vector fields and derivations
of real analytic functions. Thus the pursuit of a weak description of the Cω-topology for
vector fields does not seem to be out of line.

The definition of the weak-L topology proceeds much as in the smooth and holomorphic
cases.

5.7 Definition: (Weak-L topology for space of real analytic vector fields) For a
real analytic manifold M, the weak-L topology for Γω(TM) is the weakest topology for
which the map X 7→ LXf is continuous for every f ∈ Cω(M), if Cω(M) has the Cω-topology.

•
We now have the following result.
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5.8 Theorem: (Weak-L characterisation of Cω-topology for real analytic vector
fields) For a real analytic manifold M, the following topologies for Γω(TM) agree:

(i) the Cω-topology;

(ii) the weak-L topology.

Proof: (i)⊆(ii) As we argued in the corresponding part of the proof of Theorem 3.5, it suffices
to show that, for K ⊆ M compact and for a ∈ c↓0(Z≥0;R>0), there exist compact sets
K1, . . . ,Kr ⊆ M, a1, . . . ,ar ∈ c↓0(Z≥0;R>0), f

1, . . . , f r ∈ Cω(M), and C1, . . . , Cr ∈ R>0

such that

pωK,a(X) ≤ C1p
ω
K1,a1

(LXf
1) + · · ·+ Crp

ω
Kr,ar

(LXf
r), X ∈ Γω(TM).

We begin with a simple technical lemma.

1 Lemma: For each x ∈ M there exist f1, . . . , fn ∈ Cω(M) such that (df1(x), . . . ,dfn(x))
is a basis for T∗

xM.

Proof: We are supposing, of course, that the connected component of M containing x has
dimension n. There are many ways to prove this lemma, including applying Cartan’s Theo-
rem A to the sheaf of real analytic functions on M. We shall prove the lemma by embedding
M in RN by the embedding theorem of Grauert [1958]. Thus we have a proper real analytic
embedding ιM : M → RN . Let g1, . . . , gN ∈ Cω(RN ) be the coordinate functions. Then we
have a surjective linear map

σx : R
N → T∗

xM

(c1, . . . , cN ) 7→
N∑
j=1

cjd(ι
∗
Mg

j)(x).

Let c1, . . . , cn ∈ RN be a basis for a complement of ker(σx). Then the functions

f j =
N∑
k=1

cjkι
∗
Mg

k

have the desired property. ▼

We assume that M has a well-defined dimension n. This assumption can easily be
relaxed. We use the notation

p′ωK,a(f) = sup
{a0a1 · · · a|I|

I!
|DIf(x)|

∣∣∣ x ∈ K, I ∈ Zn≥0

}
for a function f ∈ Cω(U) defined on an open subset of Rn and with K ⊆ U compact. We
shall also use this local coordinate notation for seminorms of local representatives of vector
fields. Let K ⊆ M be compact and let a ∈ c↓0(Z≥0;R>0). Let x ∈ K and let (Ux, ϕx) be
a chart for M about x with the property that the coordinate functions xj , j ∈ {1, . . . , n},
are restrictions to Ux of globally defined real analytic functions f jx, j ∈ {1, . . . , n}, on M.
This is possible by the lemma above. Let X : ϕx(Ux) → Rn be the local representative of
X ∈ Γω(M). Then, in a neighbourhood of the closure of a relatively compact neighbourhood
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Vx ⊆ Ux of x, we have LXf
j
x = Xj , the jth component of X. By Lemma 2.4, there exist

Cx, σx ∈ R>0 such that

∥jmX(y)∥Gm
≤ Cxσ

−m
x sup

{ 1

I!
|DIXj(ϕx(y))|

∣∣∣ |I| ≤ m, j ∈ {1, . . . , n}
}

for m ∈ Z≥0 and y ∈ cl(Vx). By equivalence of the ℓ1 and ℓ∞-norms for Rn, there exists
C ∈ R>0 such that

sup
{ 1

I!
|DIXj(ϕx(y))|

∣∣∣ |I| ≤ m, j ∈ {1, . . . , n}
}

≤ C
n∑
j=1

sup
{ 1

I!
|DI(LXf

j
x)(ϕx(y))|

∣∣∣ |I| ≤ m
}

for m ∈ Z≥0 and y ∈ cl(Vx). Another application of Lemma 2.4 gives Bx, rx ∈ R>0 such
that

sup
{ 1

I!
|DI(LXf

j
x)(ϕx(y))|

∣∣∣ |I| ≤ m, j ∈ {1, . . . , n}
}
≤ Bxr

−m
x ∥jm(LXf jx)(y)∥

for m ∈ Z≥0, j ∈ {1, . . . , n}, and y ∈ cl(Vx). Combining the preceding three estimates and
renaming constants gives

∥jmX(y)∥Gm
≤

n∑
j=1

Cxσ
−m
x ∥jm(LXf jx(ϕx(y)))∥Gm

for m ∈ Z≥0 and y ∈ cl(Vx). Define

bx = (bm)m∈Z≥0
∈ c↓0(Z≥0;R>0)

by b0 = Cxa0 and bm = σ−1
x am, m ∈ Z>0. Therefore,

a0a1 · · · am∥jmX(y)∥Gm
≤

n∑
j=1

b0b1 · · · bm∥jm(LXf jx(ϕx(y)))∥Gm

for m ∈ Z≥0 and y ∈ cl(Vx). Supping over y ∈ cl(Vx) and m ∈ Z≥0 on the right gives

a0a1 · · · am∥jmX(y)∥Gm
≤

n∑
j=1

pωcl(Vx),bx
(LXf

j
x), m ∈ Z≥0, y ∈ cl(Vx).

Let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Vxj , let f
1, . . . , fkn be the list of functions

f1x1 , . . . , f
n
x1 , . . . , f

1
xk
, . . . , fnxk ,

and let b1, . . . , bkn ∈ c↓0(Z≥0;R>0) be the list of sequences

bx1 , . . . , bx1︸ ︷︷ ︸
n times

, . . . , bxk , . . . , bxk︸ ︷︷ ︸
n times

.
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If x ∈ K, then x ∈ Vxj for some j ∈ {1, . . . , k} and so

a0a1 · · · am∥jmX(x)∥Gm
≤

kn∑
j=1

pωK,bj (LXf
j),

and this part of the lemma follows upon taking the supremum over x ∈ K and m ∈ Z≥0.
(ii)⊆(i) Here, as in the proof of the corresponding part of Theorem 3.5, it suffices to

show that, for every f ∈ Cω(M), the map Lf : X 7→ LXf is continuous from Γω(TM) with
the Cω-topology to Cω(M) with the Cω-topology.

We shall use the direct Cω-topology to show this. Thus we work with an holomorphic
manifold M that is a complexification of M, as described in Section 5.1. We recall that
NM denotes the directed set of neighbourhoods of M in M, and that the set SM of Stein
neighbourhoods is cofinal in NM. As we saw in Section 5.1, for U ∈ NM, we have mappings

rU,M : Γhol,R(TU) → Γω(TM)

X 7→ X|M

and
rU,M : Chol,R(U) → Cω(M)

f 7→ f |M,
making an abuse of notation by using rU,M for two different things, noting that context will
make it clear which we mean. For K ⊆ M compact, we also have the mapping

iM,K : Cω(M) → C hol,R

K,M

f 7→ [f ]K ,

The Cω-topology is the final topology induced by the mappings rU,M. As such, by [Horváth

1966, Proposition 2.12.1], the map Lf is continuous if and only if Lf ◦ rU,M for every

U ∈ NM. Thus let U ∈ NM. To show that Lf ◦ rU,M is continuous, it suffices by [Horváth

1966, §2.11] to show that iM,K ◦Lf ◦ rU,M is continuous for every compact K ⊆ M. Next,

there is U ⊇ S ∈ SM so that f admits an holomorphic extension f to S. The following
diagram shows how this all fits together.

Γhol,R(TU)

**

r
U,S // Γhol,R(TS)

r
S,M //

Lf̄

��

Γω(TM)

Lf

��
Chol,R(S) r

S,M

// Cω(M)
iM,K

// C hol,R

K,M

The dashed arrows signify maps whose continuity is a priori unknown to us. The diagonal
dashed arrow is the one whose continuity we must verify to ascertain the continuity of the
vertical dashed arrow. It is a simple matter of checking definitions to see that the dia-
gram commutes. By Theorem 4.5, we have that Lf : Γ

hol,R(TS) → Chol,R(S) is continuous
(keeping Remark 5.1 in mind). We deduce that, since

iM,K ◦Lf ◦ rU,M = iM,K ◦ rS,M ◦Lf ◦ rU,S,

iM,K ◦Lf ◦rU,M is continuous for every U ∈ NM and for every compact K ⊆ M, as desired.■
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As in the smooth and holomorphic cases, we can prove the equivalence of various topo-
logical notions between the weak-L and usual topologies.

5.9 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the Cω-topology) Let M be a real analytic manifold, let
(X,O ) be a topological space, let (T,M ) be a measurable space, and let µ : M → R≥0 be a
finite measure. The following statements hold:

(i) a subset B ⊆ Γω(TM) is bounded in the von Neumann bornology if and only if it is
weak-L bounded in the von Neumann bornology;

(ii) a map Φ: X → Γω(TM) is continuous if and only if it is weak-L continuous;

(iii) a map Ψ: T → Γω(TM) is measurable if and only if it is weak-L measurable;

(iv) a map Ψ: T → Γω(TM) is Bochner integrable if and only if it is weak-L Bochner
integrable.

Proof: The fact that {Lf | f ∈ Cω(M)} contains a countable point separating subset
follows from combining the lemma from the proof of Theorem 5.8 with the proof of the
corresponding assertion in Corollary 3.6. Since Γω(TM) is complete, separable, and Suslin,
and since Cω(M) is Suslin by properties Cω-2, Cω-4, and Cω-6 above, the corollary follows
from Lemma 3.3, taking “U = Γω(TM),” “V = Cω(M),” and “A = {Lf | f ∈ Cω(M)}.” ■

6. Time-varying vector fields

In this section we consider time-varying vector fields. The ideas in this section originate
(for us) with the paper of Agrachev and Gamkrelidze [1978], and are nicely summarised
in the more recent book of Agrachev and Sachkov [2004], at least in the smooth case. A
geometric presentation of some of the constructions can be found in the paper of Suss-
mann [1998], again in the smooth case, and Sussmann also considers regularity less than
smooth, e.g., finitely differentiable or Lipschitz. There is some consideration of the real an-
alytic case in [Agrachev and Gamkrelidze 1978], but this consideration is restricted to real
analytic vector fields admitting a bounded holomorphic extension to a fixed-width neigh-
bourhood of Rn in Cn. One of our results, the rather nontrivial Theorem 6.25, is that this
framework of Agrachev and Gamkrelidze [1978] is sufficient for the purposes of local analy-
sis. However, our treatment of the real analytic case is global, general, and comprehensive.
To provide some context for our novel treatment of the real analytic case, we treat the
smooth case in some detail, even though the results are probably mostly known. (However,
we should say that, even in the smooth case, we could not find precise statements with
proofs of some of the results we give.) We also treat the finitely differentiable and Lipschitz
cases, so our theory also covers the “standard” Carathéodory existence and uniqueness the-
orem for time-varying ordinary differential equations, [e.g., Sontag 1998, Theorem 54]. We
also consider holomorphic time-varying vector fields, as these have a relationship to real
analytic time-varying vector fields that is sometimes useful to exploit.

One of the unique facets of our presentation is that we fully explain the rôle of the topolo-
gies developed in Sections 3, 4, and 5. Indeed, one way to understand the principal results
of this section is that they show that the usual pointwise—in state and time—conditions
placed on vector fields to regulate the character of their flows can be profitably phrased
in terms of topologies for spaces of vector fields. While this idea is not entirely new—it is
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implicit in the approach of [Agrachev and Gamkrelidze 1978]—we do develop it compre-
hensively and in new directions.

While our principal interest is in vector fields, and also in functions, it is convenient to
conduct much of the development for general vector bundles, subsequently specialising to
vector fields and functions.

6.1. The smooth case. Throughout this section we will work with a smooth vector bundle
π : E → M with a linear connection ∇0 on E, an affine connection ∇ on M, a fibre metric
G0 on E, and a Riemannian metric G on M. This defines the fibre norms ∥·∥Gm

on JmE and
seminorms p∞K,m, K ⊆ M compact, m ∈ Z≥0, on Γ∞(E) as in Section 3.1.

6.1 Definition: (Smooth Carathéodory section) Let π : E → M be a smooth vector
bundle and let T ⊆ R be an interval. A Carathéodory section of class C∞ of E is a
map ξ : T ×M → E with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) = ξ(t, x) is of class C∞;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓ∞(T;E) we denote the set of
Carathéodory sections of class C∞ of E. •

Note that the curve t 7→ ξ(t, x) is in the finite-dimensional vector space Ex, and so
Lebesgue measurability of this is unambiguously defined, e.g., by choosing a basis and
asking for Lebesgue measurability of the components with respect to this basis.

Now we put some conditions on the time dependence of the derivatives of the section.

6.2 Definition: (Locally integrally C∞-bounded and locally essentially C∞-
bounded sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be an
interval. A Carathéodory section ξ : T ×M → E of class C∞ is

(i) locally integrally C∞-bounded if, for every compact set K ⊆ M and every m ∈
Z≥0, there exists g ∈ L1

loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K,

and is

(ii) locally essentially C∞-bounded if, for every compact set K ⊆ M and every m ∈
Z≥0, there exists g ∈ L∞

loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K.

The set of locally integrally C∞-bounded sections of E with time-domain T is denoted by
LIΓ∞(T,E) and the set of locally essentially C∞-bounded sections of E with time-domain
T is denoted by LBΓ∞(T;E). •

Note that LBΓ∞(T;M) ⊆ LIΓ∞(T;M), precisely because locally essentially bounded
functions (in the usual sense) are locally integrable (in the usual sense).

We note that our definitions differ from those in [Agrachev and Gamkrelidze 1978,
Agrachev and Sachkov 2004, Sussmann 1998]. The form of the difference is our use of
connections and jet bundles, aided by Lemma 2.1. In [Agrachev and Gamkrelidze 1978]
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the presentation is developed on Euclidean spaces, and so the geometric treatment we give
here is not necessary. (One way of understanding why it is not necessary is that Euclidean
space has a canonical flat connection in which the decomposition of Lemma 2.1 becomes
the usual decomposition of derivatives by their order.) In [Agrachev and Sachkov 2004]
the treatment is on manifolds, and the seminorms are defined by an embedding of the
manifold in Euclidean space by Whitney’s Embedding Theorem [Whitney 1936]. Also,
Agrachev and Sachkov [2004] use the weak-L topology in the case of vector fields, but we
have seen that this is the same as the usual topology (Theorem 3.5). In [Sussmann 1998]
the characterisation of Carathéodory functions uses Lie differentiation by smooth vector
fields, and the locally convex topology for Γ∞(TM) is not explicitly considered, although
it is implicit in Sussmann’s constructions. Sussmann also takes a weak-L approach to
characterising properties of time-varying vector fields. In any case, all approaches can be
tediously shown to be equivalent once the relationships are understood. An advantage of
the approach we use here is that it does not require coordinate charts or embeddings to
write the seminorms, and it makes the seminorms explicit, rather than implicitly present.
The disadvantage of our approach is the added machinery and complication of connections
and our jet bundle decomposition.

The following characterisation of Carathéodory sections and their relatives is also useful
and insightful.

6.3 Theorem: (Topological characterisation of smooth Carathéodory sections)
Let π : E → M be a smooth vector bundle and let T ⊆ R be an interval. For a map
ξ : T ×M → E satisfying ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M, the following two statements
are equivalent:

(i) ξ ∈ CFΓ∞(T;E);

(ii) the map T ∋ t 7→ ξt ∈ Γ∞(E) is measurable,

the following two statements are equivalent:

(iii) ξ ∈ LIΓ∞(T;E);

(iv) the map T ∋ t 7→ ξt ∈ Γ∞(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(v) ξ ∈ LBΓ∞(T;E);

(vi) the map T ∋ t 7→ ξt ∈ Γ∞(E) is measurable and locally essentially von Neumann
bounded.

Proof: It is illustrative, especially since we will refer to this proof at least three times
subsequently, to understand the general framework of the proof. Much of the argument has
already been carried out in a more general setting in Lemma 3.3.

So we let V be a locally convex topological vector space over F ∈ {R,C}, let (T,M ) be
a measurable space, and let Ψ: T → V. Let us first characterise measurability of Ψ. We use
here the results of Thomas [1975] who studies integrability for functions taking values in
locally convex Suslin spaces. Thus we assume that V is a Hausdorff Suslin space (as is the
case for all spaces of interest to us in this paper). We let V′ denote the topological dual of
V. A subset S ⊆ V′ is point separating if, for distinct v1, v2 ∈ V, there exists α ∈ V′ such
that α(v1) ̸= α(v2). Thomas [1975] proves the following result as his Theorem 1, and whose
proof we provide, as it is straightforward and shows where the (not so straightforward)
properties of Suslin spaces are used.
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1 Lemma: Let V be a Hausdorff, Suslin, locally convex topological vector space over F ∈
{R,C}, let (T,M ) be a measurable space, and let Ψ: T → V. If S ⊆ V′ is point separating,
then Ψ is measurable if and only if α ◦ Ψ is measurable for every α ∈ S.

Proof: If Ψ is measurable, then it is obvious that α ◦Ψ is measurable for every α ∈ V′ since
such α are continuous.

Conversely, suppose that α ◦Ψ is measurable for every α ∈ S. First of all, locally convex
topological vector spaces are completely regular if they are Hausdorff [Schaefer and Wolff
1999, page 16]. Therefore, by [Bogachev 2007, Theorem 6.7.7], there is a countable subset
of S that is point separating, so we may as well suppose that S is countable. We are now
in the same framework as Lemma 3.3(iii), and the proof there applies by taking “U = V,”
“V = F,” and “A = S.” ▼

The preceding lemma will allow us to characterise measurability. Let us now consider
integrability.

2 Lemma: Let V be a complete separable locally convex topological vector space over F ∈
{R,C} and let (T,M , µ) be a finite measure space. A measurable function Ψ: T → V is
Bochner integrable if and only if p ◦Ψ is integrable for every continuous seminorm p for V.

Proof: It follows from [Beckmann and Deitmar 2011, Theorems 3.2, 3.3] that Ψ is integrable
if p ◦ Ψ is integrable for every continuous seminorm p. Conversely, if Ψ is integrable, it
is implied that Ψ is Bochner approximable, and so, by [Beckmann and Deitmar 2011,
Theorem 3.2], we have that p ◦ Ψ is integrable for every continuous seminorm p. ▼

(i) ⇐⇒ (ii) For x ∈ M and αx ∈ E∗
x, define evαx : Γ

∞(E) → R by evαx(ξ) = ⟨αx; ξ(x)⟩.
Clearly evαx is R-linear. We claim that evαx is continuous. Indeed, for a directed set (I,⪯)
and a net (ξ)i∈I converging to ξ,10 we have

lim
i∈I

evαx(ξi) = lim
i∈I

αx(ξi(x)) = αx

(
lim
i∈I

ξi(x)
)
= αx(ξ(x)) = evαx(ξ),

using the fact that convergence in the CO∞-topology implies pointwise convergence. It
is obvious that the continuous linear functions evαx , αx ∈ E∗, are point separating. We
now recall from property CO∞-6 for the smooth CO∞-topology that Γ∞(E) is a Suslin
space with the CO∞-topology. Therefore, by the first lemma above, it follows that t 7→ ξt is
measurable if and only if t 7→ evαx(ξt) = ⟨αx; ξt(x)⟩ is measurable for every αx ∈ E∗. On the
other hand, this is equivalent to t 7→ ξt(x) being measurable for every x ∈ M since t 7→ ξt(x)
is a curve in the finite-dimensional vector space Ex. Finally, note that it is implicit in the
statement of (ii) that ξt is smooth, and this part of the proposition follows easily from these
observations.

(iii) ⇐⇒ (iv) Let T′ ⊆ T be compact.
First suppose that ξ ∈ LIΓ∞(T;E). By definition of locally integrally C∞-bounded, for

each compact K ⊆ M and m ∈ Z≥0, there exists g ∈ L1(T′;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T′ ×K =⇒ p∞K,m(ξt) ≤ g(t), t ∈ T′.

10Since Γ∞(E) is metrisable, it suffices to use sequences. However, we shall refer to this argument when
we do not use metrisable spaces, so it is convenient to have the general argument here.
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Note that continuity of p∞K,m implies that t 7→ p∞K,m(ξt) is measurable. Therefore,∫
T′
p∞K,m(ξt) dt <∞, K ⊆ M compact, m ∈ Z≥0.

Since Γ∞(E) is complete and separable, it now follows from the second lemma above that
t 7→ ξt is Bochner integrable on T′. That is, since T′ is arbitrary, t 7→ ξt is locally Bochner
integrable.

Next suppose that t 7→ ξt is Bochner integrable on T. By the second lemma above,∫
T′
p∞K,m(ξt) dt <∞, K ⊆ M compact, m ∈ Z≥0.

Therefore, since
∥jmξt(x)∥Gm

≤ p∞K,m(ξt), (t, x) ∈ T′ ×K,

we conclude that ξ is locally integrally C∞-bounded since T′ is arbitrary.
(v) ⇐⇒ (vi) We recall our discussion of von Neumann bounded sets in locally con-

vex topological vector spaces preceding Lemma 3.1 above. With this in mind and using
Lemma 3.1, this part of the theorem follows immediately. ■

Note that Theorem 6.3 applies, in particular, to vector fields and functions, giv-
ing the classes CF∞(T;M), LIC∞(T;M), and LBC∞(T;M) of functions, and the classes
CFΓ∞(T;TM), LIΓ∞(T;TM), and LBΓ∞(T;TM) of vector fields. Noting that we have the
alternative weak-L characterisation of the CO∞-topology, we can summarise the various
sorts of measurability, integrability, and boundedness for smooth time-varying vector fields
as follows. In the statement of the result, evx is the “evaluate at x” map for both functions
and vector fields.

6.4 Theorem: (Weak characterisations of measurability, integrability, and
boundedness of smooth time-varying vector fields) Let M be a smooth manifold,
let T ⊆ R be a time-domain, and let X : T × M → TM have the property that Xt is a
smooth vector field for each t ∈ T. Then the following four statements are equivalent:

(i) t 7→ Xt is measurable;

(ii) t 7→ LXtf is measurable for every f ∈ C∞(M);

(iii) t 7→ evx ◦Xt is measurable for every x ∈ M;

(iv) t 7→ evx ◦LXtf is measurable for every f ∈ C∞(M) and every x ∈ M,

the following two statements are equivalent:

(v) t 7→ Xt is locally Bochner integrable;

(vi) t 7→ LXtf is locally Bochner integrable for every f ∈ C∞(M),

and the following two statements are equivalent:

(vii) t 7→ Xt is locally essentially von Neumann bounded;

(viii) t 7→ LXtf is locally essentially von Neumann bounded for every f ∈ C∞(M).

Proof: This follows from Theorem 6.3, along with Corollary 3.6. ■

Let us now discuss flows of vector fields from LIΓ∞(T;TM). To do so, let us provide
the definition of the usual attribute of integral curves, but on manifolds.



Mathematical models for geometric control theory 89

6.5 Definition: (Locally absolutely continuous) Let M be a smooth manifold and let
T ⊆ R be an interval.

(i) A function f : [a, b] → R is absolutely continuous if there exists g ∈ L1([a, b];R)
such that

f(t) = f(a) +

∫ t

a
g(τ) dτ, t ∈ [a, b].

(ii) A function f : T → R is locally absolutely continuous if f |T′ is absolutely contin-
uous for every compact subinterval T′ ⊆ T.

(iii) A curve γ : T → M is locally absolutely continuous if ϕ ◦ γ is locally absolutely
continuous for every ϕ ∈ C∞(M). •

One easily verifies that a curve is locally absolutely continuous according to our definition
if and only if its local representative is locally absolutely continuous in any coordinate chart.

We then have the following existence, uniqueness, and regularity result for locally inte-
grally bounded vector fields. In the statement of the result, we use the notation

|a, b| =

{
[a, b], a ≤ b,

[b, a], b < a.

In the following result, we do not provide the comprehensive list of properties of the flow,
but only those required to make sense of its regularity with respect to initial conditions, as
per our specification 3 for our theory in Section 1.2.

6.6 Theorem: (Flows of vector fields from LIΓ∞(T;TM)) Let M be a smooth man-
ifold, let T be an interval, and let X ∈ LIΓ∞(T;TM). Then there exist a subset
DX ⊆ T × T × M and a map ΦX : DX → M with the following properties for each
(t0, x0) ∈ T ×M:

(i) the set
TX(t0, x0) = {t ∈ T | (t, t0, x0) ∈ DX}

is an interval;

(ii) there exists a locally absolutely continuous curve t 7→ ξ(t) satisfying

ξ′(t) = X(t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX(t0, x0);
(iii) d

dtΦ
X(t, t0, x0) = X(t,ΦX(t, t0, x0)) for almost all t ∈ TX(t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DX , there exists a neighbourhood U of x0 such
that the mapping x 7→ ΦX(t, t0, x) is defined and of class C∞ on U.

Proof: We observe that the requirement that X ∈ LIΓ∞(T;TM) implies that, in any co-
ordinate chart, the components of X and their derivatives are all bounded by a locally
integrable function. This, in particular, implies that, in any coordinate chart for M, the
ordinary differential equation associated to the vector field X satisfies the usual conditions
for existence and uniqueness of solutions as per, for example, [Sontag 1998, Theorem 54].
Of course, the differential equation satisfies conditions much stronger than this, and we
shall see how to use these in our argument below.
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The first three assertions are now part of the standard existence theorem for solutions
of ordinary differential equations, along with the usual Zorn’s Lemma argument for the
existence of a maximal interval on which integral curves is defined.

In the sequel we denote ΦXt,t0(x) = ΦX(t, t0, x0).
For the fourth assertion we first make some constructions with vector fields on jet

bundles, more or less following [Saunders 1989, §4.4]. We let M2 = M×M and we consider
M2 as a fibred manifold, indeed a trivial fibre bundle, over M by pr1 : M

2 → M, i.e., by
projection onto the first factor. A section of this fibred manifold is naturally identified with
a smooth map Φ: M → M by x 7→ (x,Φ(x)). We introduce the following notation:

1. Jm pr1: the bundle of m-jets of sections of the fibred manifold pr1 : M
2 → M;

2. V pr1,m: the vertical bundle of the fibred manifold pr1,m : Jm pr1 → M;

3. V pr1: the vertical bundle of the fibred manifold pr1 : M
2 → M;

4. ν: the projection pr1 ◦(πTM2 |V pr1);

5. Jmν: the bundle of m-jets of sections of the fibred manifold ν : V pr1 → M.

With this notation, we have the following lemma.

1 Lemma: There is a canonical diffeomorphism αm : Jmν → V pr1,m.

Proof: We describe the diffeomorphism, and then note that the verification that it is, in
fact, a diffeomorphism is a fact easily checked in jet bundle coordinates.

Let I ⊆ R be an interval with 0 ∈ int(I) and consider a smooth map ϕ : I×M → M×M
of the form ϕ(t, x) = (x, ϕ1(t, x)) for a smooth map ϕ1. We let ϕt(x) = ϕx(t) = ϕ(t, x). We
then have maps

jxmϕ : I → Jm pr1

t 7→ jmϕt(x)

and
ϕ′ : M → V pr1

x 7→ d

dt

∣∣∣∣
t=0

ϕx(t).

Note that the curve jxmϕ is a curve in the fibre of pr1,m : Jm pr1 → M. Thus we can sensibly
define αm by

αm(jmϕ
′(x)) =

d

dt

∣∣∣∣
t=0

jxmϕ(t).

In jet bundle coordinates, one can check that αm has the local representative

((x1, (x2,A0)), (B1,A1, . . . ,Bm,Am)) 7→ ((x1, (x2,B1, . . . ,Bm)), (A0,A1, . . . ,Am)),

showing that αm is indeed a diffeomorphism. ▼

Given a smooth vector field Y on M, we define a vector field Ỹ on M2 by Ỹ (x1, x2) =
(0x1 , Y (x2)). Note that we have the following commutative diagram

M2 Ỹ //

pr1
��

V pr1

ν

��
M M
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giving Ỹ as a morphism of fibred manifolds. It is thus a candidate to have its m-jet taken,
giving a morphism of fibred manifolds jmỸ : Jm pr1 → Jmν. By the lemma, αm ◦ jmỸ is
a vertical vector field on Jm pr1 that we denote by νmY , the mth vertical prolongation
of Y . Let us verify that this is a vector field. First of all, for a section Φ̃ of pr1 given by
x 7→ (x,Φ(x)), note that Ỹ ◦ Φ̃(x) = (0x, Y (Φ(x))), and so jm(Ỹ ◦ Φ̃)(x) is vertical. By
the notation from the proof of the lemma, we can write jm(Ỹ ◦ Φ̃)(x) = jmϕ

′(x) for some
suitable map ϕ as in the lemma. We then have

αm ◦ jm(Ỹ ◦ Φ̃)(x) = αm(jmϕ
′(x)) ∈ VjmΦ̃(x) pr1,m .

Therefore,

πTJm pr1(αm ◦ jmỸ (jmΦ̃(x))) = πTJm pr1(αm ◦ jm(Ỹ ◦ Φ̃)(x)) = jmΦ̃(x).

Note that since Jm pr1 is naturally identified with Jm(M;M) via the identification

jmΦ̃(x) 7→ jmΦ(x)

if Φ̃(x) = (x,Φ(x)), we can as well think of νmY as being a vector field on the latter space.
Sorting through all the definitions gives the form of νmY in coordinates as

((x1,x2),A1, . . . ,Am) 7→ (((x1,x2),A1, . . . ,Am),0,Y ,DY , . . . ,DmY ). (6.1)

We now apply the above constructions, for each fixed t ∈ T, to get the vector field νmXt,
and so the time-varying vector field νmX defined by νmX(t, jmΦ(x)) = νmXt(jmΦ(x)) on
Jm(M;M). The definition of LIΓ1(T;TM), along with the coordinate formula (6.1), shows
that νmX satisfies the standard conditions for existence and uniqueness of integral curves,
and so its flow depends continuously on initial condition [Sontag 1998, Theorem 55].

The fourth part of the theorem, therefore, will follow if we can show that

1. for each m ∈ Z≥0, the flow of νmX depends on the initial condition in M in a Cm way,

2. ΦνmXt,t0
(jmΦ

X
t0,t0(x0)) = jmΦ

X
t,t0(jmΦ

X
t0,t0(x0)), and

3. if {t} × {t0} × U ⊆ DX , then {t} × {t0} × pr−1
1,m(U) ⊆ DνmX .

We ask for property 3 to ensure that the domain of differentiability does not get too small
as the order of the derivatives gets large.

To prove these assertions, it suffices to work locally. According to (6.1), we have the
time-dependent differential equation defined on

U× L(Rn;Rn)× · · · × Lmsym(R
n;Rn),

where U is an open subset of Rn, and given by

γ̇(t) = X(t,γ(t)),

Ȧ1(t) = DX(t,γ(t)),

Ȧ2(t) = D2X(t,γ(t)),

...

Ȧm(t) = DmX(t,γ(t)),
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(t,x) 7→ (x,X(t,x)) being the local representative of X. The initial conditions of interest
for the vector field νmX are of the form jmΦ

X
t0,t0(x). In coordinates, keeping in mind that

ΦXt0,t0 = idM, this gives

γ(t0) = x0, A1(t0) = In, Aj(t0) = 0, j ≥ 2. (6.2)

Let us denote by t 7→ γ(t, t0,x) and t 7→ Aj(t, t0,x), j ∈ {1, . . . ,m}, the solutions of the
differential equations above with these initial conditions.

We will show that assertions 1–3 hold by induction on m. In doing this, we will need to
understand how differential equations depending differentiably on state also have solutions
depending differentiably on initial condition. Such a result is not readily found in the text-
book literature, as this latter is typically concerned with continuous dependence on initial
conditions for cases with measurable time-dependence, and on differentiable dependence
when the dependence on time is also differentiable. However, the general case (much more
general than we need here) is worked out by Schuricht and von der Mosel [2000].

For m = 0, the assertions are simply the result of the usual continuous dependence
on initial conditions [e.g., Sontag 1998, Theorem 55]. Let us consider the case m = 1.
In this case, the properties of LIΓ∞(T;TM) ensure that the hypotheses required to apply
Theorem 2.1 of [Schuricht and von der Mosel 2000] hold for the differential equation

γ̇(t) = X(t,γ(t)),

Ȧ1(t) = DX(t,γ(t)).

This allows us to conclude that x 7→ γ(t, t0,x) is of class C
1. This establishes the assertion 1

in this case. Therefore, on a suitable domain, j1Φ
X
t,t0 is well-defined. In coordinates the

map j1Φ
X
t,t0 : J

1(M;M) → J1(M;M) is given by

(x,y,B1) 7→ (x,γ(t, t0,x),D3γ(t, t0,x) ◦ B1), (6.3)

this by the Chain Rule. We have

d

dt
D3γ(t, t0,x) = D3(

d
dtγ(t, t0,x)) = DX(t,γ(t, t0,x)),

the swapping of the time and spatial derivatives being valid by [Schuricht and von der Mosel
2000, Corollary 2.2]. Combining this with (6.3) and the initial conditions (6.2) shows that
assertion 2 holds for m = 1. Moreover, since A1(t, t0,x) is obtained by merely integrating
a continuous function of t from t0 to t, we also conclude that assertion 3 holds.

Now suppose that assertions 1–3 hold for m. Again, the properties of LIΓ∞(T;TM)
imply that the hypotheses of Theorem 2.1 of [Schuricht and von der Mosel 2000] hold, and
so solutions of the differential equation

γ̇(t) = X(t,γ(t)),

Ȧ1(t) = DX(t,γ(t)),

Ȧ2(t) = D2X(t,γ(t)),

...

Ȧm(t) = DmX(t,γ(t))
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depend continuously differentiably on initial condition. By the induction hypothesis applied
to the assertion 2, this means that

(t, x) 7→ ΦνmXt,t0
(jmΦ

X
t0,t0(x)) = jmΦ

X
t,t0(x)

depends continuously differentiably on x, and so we conclude that (t, x) 7→ ΦXt,t0(x) depends

on x in a Cm+1 manner. This establishes assertion 1 for m + 1. After an application
of the Chain Rule for high-order derivatives (see [Abraham, Marsden, and Ratiu 1988,
Supplement 2.4A]) we can, admittedly after just a few moments thought, see that the local
representative of jm+1Φ

X
t,t0(jm+1Φ

X
t0,t0(x)) is

(x,γ(t, t0,x),D3γ(t, t0,x), . . . ,D
m+1
3 γ(t, t0,x)),

keeping in mind the initial conditions (6.2) in coordinates.
By the induction hypothesis,

d

dt
Dj

3γ(t) = DjX(t,γ(t, t0,x)), j ∈ {1, . . . ,m}.

Using Corollary 2.2 of [Schuricht and von der Mosel 2000] we compute

d

dt
Dm+1

3 γ(t, t0,x) = D( d
dtD

m
3 γ(t, t0,x)) = Dm+1X(t,γ(t, t0,x)),

giving assertion 2 for m+1. Finally, by the induction hypothesis and since Am+1(t, t0,x) is
obtained by simple integration from t0 to t, we conclude that assertion 3 holds for m+1.■

6.2. The finitely differentiable or Lipschitz case. The requirement that the flow depends
smoothly on initial conditions is not always essential, even when the vector field itself
depends smoothly on the state. In such cases as this, one may want to consider classes of
vector fields characterised by one of the weaker topologies described in Section 3.4. Let us
see how to do this. In this section, so as to be consistent with our definition of Lipschitz
norms in Section 3.5, we suppose that the affine connection ∇ on M is the Levi-Civita
connection for the Riemannian metric G and that the vector bundle connection ∇0 in E is
G0-orthogonal.

6.7 Definition: (Finitely differentiable or Lipschitz Carathéodory section) Let
π : E → M be a smooth vector bundle and let T ⊆ R be an interval. Let m ∈ Z≥0 and let
m′ ∈ {0, lip}. A Carathéodory section of class Cm+m′

of E is a map ξ : T ×M → E
with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) = ξ(t, x) is of class Cm+m′
;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓm+m′
(T;E) we denote the set

of Carathéodory sections of class Cm+m′
of E. •

Now we put some conditions on the time dependence of the derivatives of the section.
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6.8 Definition: (Locally integrally Cm+m′
-bounded and locally essentially

Cm+m′
-bounded sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be

an interval. Let m ∈ Z≥0 and let m′ ∈ {0, lip}. A Carathéodory section ξ : T ×M → E of
class Cm+m′

is

(i) locally integrally Cm+m′
-bounded if:

(a) m′ = 0: for every compact set K ⊆ M, there exists g ∈ L1
loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K;

(b) m′ = lip: for every compact set K ⊆ M, there exists g ∈ L1
loc(T;R≥0) such that

dil jmξt(x), ∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K,

and is

(ii) locally essentially Cm+m′
-bounded if:

(a) m′ = 0: for every compact set K ⊆ M, there exists g ∈ L∞
loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K;

(b) m′ = lip: for every compact set K ⊆ M, there exists g ∈ L∞
loc(T;R≥0) such that

dil jmξt(x), ∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K.

The set of locally integrally Cm+m′
-bounded sections of E with time-domain T is denoted

by LIΓm+m′
(T,E) and the set of locally essentially Cm+m′

-bounded sections of E with time-
domain T is denoted by LBΓm+m′

(T;E). •

6.9 Theorem: (Topological characterisation of finitely differentiable or Lipschitz
Carathéodory sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be
an interval. Let m ∈ Z≥0 and let m′ ∈ {0, lip}. For a map ξ : T × M → E satisfying
ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M, the following two statements are equivalent:

(i) ξ ∈ CFΓm+m′
(T;E);

(ii) the map T ∋ t 7→ ξt ∈ Γm+m′
(E) is measurable,

the following two statements are equivalent:

(iii) ξ ∈ LIΓm+m′
(T;E);

(iv) the map T ∋ t 7→ ξt ∈ Γm+m′
(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(v) ξ ∈ LBΓm+m′
(T;E);

(vi) the map T ∋ t 7→ ξt ∈ Γm+m′
(E) is measurable and locally essentially von Neumann

bounded.

Proof: (i) ⇐⇒ (ii) For x ∈ M and αx ∈ E∗
x, define evαx : Γ

m+m′
(E) → R by evαx(ξ) =

⟨αx; ξ(x)⟩. It is easy to show that evαx is continuous and that the set of continuous func-
tionals evαx , αx ∈ E∗

x, is point separating. Since Γm+m′
(E) is a Suslin space (properties



Mathematical models for geometric control theory 95

COm-6 and COm+lip-6), this part of the theorem follows in the same manner as the corre-
sponding part of Theorem 6.3.

(iii) ⇐⇒ (iv) Since Γm+m′
(E) is complete and separable (by properties COm-2 and COm-

4, and COm+lip-2 and COm+lip-4), the arguments from the corresponding part of Theo-

rem 6.3 apply here, taking note of the definition of the seminorms plipK (ξ) in case m′ = lip.
(v) ⇐⇒ (vi) We recall our discussion of von Neumann bounded sets in locally con-

vex topological vector spaces preceding Lemma 3.1 above. With this in mind and using
Lemma 4.3, this part of the proposition follows immediately. ■

Note that Theorem 6.9 applies, in particular, to vector fields and functions, giving the
classes CFm+m′

(T;M), LICm+m′
(T;M), and LBCm+m′

(T;M) of functions, and the classes
CFΓm+m′

(T;TM), LIΓm+m′
(T;TM), and LBΓm+m′

(T;TM) of vector fields. Noting that we
have the alternative weak-L characterisation of the COm+m′

-topology, we can summarise
the various sorts of measurability, integrability, and boundedness for smooth time-varying
vector fields as follows. In the statement of the result, evx is the “evaluate at x” map for
both functions and vector fields.

6.10 Theorem: (Weak characterisations of measurability, integrability, and
boundedness of finitely differentiable or Lipschitz time-varying vector fields)
Let M be a smooth manifold, let T ⊆ R be a time-domain, let m ∈ Z≥0, let m

′ ∈ {0, lip},
and let X : T × M → TM have the property that Xt is a vector field of class Cm+m′

for
each t ∈ T. Then the following four statements are equivalent:

(i) t 7→ Xt is measurable;

(ii) t 7→ LXtf is measurable for every f ∈ C∞(M);

(iii) t 7→ evx ◦Xt is measurable for every x ∈ M;

(iv) t 7→ evx ◦LXtf is measurable for every f ∈ C∞(M) and every x ∈ M,

the following two statements are equivalent:

(v) t 7→ Xt is locally Bochner integrable;

(vi) t 7→ LXtf is locally Bochner integrable for every f ∈ C∞(M),

and the following two statements are equivalent:

(vii) t 7→ Xt is locally essentially von Neumann bounded;

(viii) t 7→ LXtf is locally essentially von Neumann bounded for every f ∈ C∞(M).

Proof: This follows from Theorem 6.9, along with Corollaries 3.9 and 3.15. ■

It is also possible to state an existence, uniqueness, and regularity theorem for flows of
vector fields that depend on state in a finitely differentiable or Lipschitz manner.

6.11 Theorem: (Flows of vector fields from LIΓm+m′
(T;TM)) Let M be a smooth

manifold, let T be an interval, let m ∈ Z≥0, and let X ∈ LIΓm+lip(T;TM). Then there
exist a subset DX ⊆ T×T×M and a map ΦX : DX → M with the following properties for
each (t0, x0) ∈ T ×M:

(i) the set
TX(t0, x0) = {t ∈ T | (t, t0, x0) ∈ DX}

is an interval;
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(ii) there exists a locally absolutely continuous curve t 7→ ξ(t) satisfying

ξ′(t) = X(t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX(t0, x0);
(iii) d

dtΦ
X(t, t0, x0) = X(t,ΦX(t, t0, x0)) for almost all t ∈ TX(t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DX , there exists a neighbourhood U of x0 such
that the mapping x 7→ ΦX(t, t0, x) is defined and of class Cm on U.

Proof: The proof here is by truncation of the proof of Theorem 6.6 from “∞” to “m.” ■

6.3. The holomorphic case. While we are not per se interested in time-varying holomor-
phic vector fields, our understanding of time-varying real analytic vector fields—in which
we are most definitely interested—is connected with an understanding of the holomorphic
case, cf. Theorem 6.25.

We begin with definitions that are similar to the smooth case, but which rely on the
holomorphic topologies introduced in Section 4.1. We will consider an holomorphic vector
bundle π : E → M with an Hermitian fibre metric G. This defines the seminorms pholK ,
K ⊆ M compact, describing the COhol-topology for Γhol(E) as in Section 4.1.

Let us get started with the definitions.

6.12 Definition: (Holomorphic Carathéodory section) Let π : E → M be an holomor-
phic vector bundle and let T ⊆ R be an interval. A Carathéodory section of class Chol

of E is a map ξ : T ×M → E with the following properties:

(i) ξ(t, z) ∈ Ez for each (t, z) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(z) = ξ(t, z) is of class Chol;

(iii) for each z ∈ M, the map ξz : T → E defined by ξz(t) = ξ(t, z) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓhol(T;E) we denote the set of
Carathéodory sections of class Chol of E. •

The associated notions for time-dependent sections compatible with the COhol-topology
are as follows.

6.13 Definition: (Locally integrally Chol-bounded and locally essentially Chol-
bounded sections) Let π : E → M be an holomorphic vector bundle and let T ⊆ R
be an interval. A Carathéodory section ξ : T ×M → E of class Chol is

(i) locally integrally Chol-bounded if, for every compact set K ⊆ M, there exists
g ∈ L1

loc(T;R≥0) such that

∥ξ(t, z)∥G ≤ g(t), (t, z) ∈ T ×K

and is

(ii) locally essentially Chol-bounded if, for every compact set K ⊆ M, there exists
g ∈ L∞

loc(T;R≥0) such that

∥ξ(t, z)∥G ≤ g(t), (t, z) ∈ T ×K.
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The set of locally integrally Chol-bounded sections of E with time-domain T is denoted by
LIΓhol(T,E) and the set of locally essentially Chol-bounded sections of E with time-domain
T is denoted by LBΓhol(T;E). •

As with smooth sections, the preceding definitions admit topological characterisations,
now using the COhol-topology for Γhol(E).

6.14 Theorem: (Topological characterisation of holomorphic Carathéodory sec-
tions) Let π : E → M be an holomorphic vector bundle and let T ⊆ R be an interval. For
a map ξ : T × M → E satisfying ξ(t, z) ∈ Ez for each (t, z) ∈ T × M, the following two
statements are equivalent:

(i) ξ ∈ CFΓhol(T;E);

(ii) the map T ∋ t 7→ ξt ∈ Γhol(E) is measurable,

the following two statements are equivalent:

(iii) ξ ∈ LIΓhol(T;E);

(iv) the map T ∋ t 7→ ξt ∈ Γhol(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(v) ξ ∈ LBΓhol(T;E);

(vi) the map T ∋ t 7→ ξt ∈ Γhol(E) is measurable and locally essentially von Neumann
bounded.

Proof: (i) ⇐⇒ (ii) For z ∈ M and αz ∈ E∗
z, define evαz : Γ

hol(E) → C by evαz(ξ) = ⟨αz; ξ(z)⟩.
It is easy to show that evαz is continuous and that the set of continuous functionals evαz ,
αz ∈ E∗

z, is point separating. Since Γhol(E) is a Suslin space by COhol-6, this part of the
theorem follows in the same manner as the corresponding part of Theorem 6.3.

(iii) ⇐⇒ (iv) Since Γhol(E) is complete and separable (by properties COhol-2 and COhol-
4), the arguments from the corresponding part of Theorem 6.3 apply here.

(v) ⇐⇒ (vi) We recall our discussion of von Neumann bounded sets in locally con-
vex topological vector spaces preceding Lemma 3.1 above. With this in mind and using
Lemma 4.3, this part of the proposition follows immediately. ■

Since holomorphic vector bundles are smooth vector bundles (indeed, real analytic vector
bundles), we have natural inclusions

LIΓhol(T;E) ⊆ CFΓ∞(T;E), LBΓhol(T;E) ⊆ CFΓ∞(T;E). (6.4)

Moreover, by Proposition 4.2 we have the following.

6.15 Proposition: (Time-varying holomorphic sections as time-varying smooth
sections) For an holomorphic vector bundle π : E → M and an interval T, the inclu-
sions (6.4) actually induce inclusions

LIΓhol(T;E) ⊆ LIΓ∞(T;E), LBΓhol(T;E) ⊆ LBΓ∞(T;E).

Note that Theorem 6.14 applies, in particular, to vector fields and functions, giving
the classes CFhol(T;M), LIChol(T;M), and LBChol(T;M) of functions, and the classes
CFΓhol(T;TM), LIΓhol(T;TM), and LBΓhol(T;TM) of vector fields. Unlike in the smooth
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case preceding and the real analytic case following, there is, in general, not an equivalent
weak-L version of the preceding definitions and results. This is because our Theorem 4.5
on the equivalence of the COhol-topology and the corresponding weak-L topology holds
only on Stein manifolds. Let us understand the consequences of this with what we are doing
here via an example.

6.16 Example: (Time-varying holomorphic vector fields on compact manifolds)
Let M be a compact holomorphic manifold. By [Fritzsche and Grauert 2002, Corol-
lary IV.1.3], the only holomorphic functions on M are the locally constant functions. There-
fore, since ∂f = 0 for every f ∈ Chol(M), a literal application of the definition shows that,
were we to make weak-L characterisations of vector fields, i.e., give their properties by
ascribing those properties to the functions obtained after Lie differentiation, we would have
CFΓhol(T;TM), and, therefore, also LIΓhol(T;TM) and LBΓhol(T;TM), consisting of all
maps X : T × M → TM satisfying X(t, z) ∈ TzM for all z ∈ M. This is not a very useful
class of vector fields. •

The following result summarises the various ways of verifying the measurability, integra-
bility, and boundedness of holomorphic time-varying vector fields, taking into account that
the preceding example necessitates that we restrict our consideration to Stein manifolds.

6.17 Theorem: (Weak characterisations of measurability, integrability, and
boundedness of holomorphic time-varying vector fields) Let M be a Stein man-
ifold, let T ⊆ R be a time-domain, and let X : T ×M → TM have the property that Xt is
an holomorphic vector field for each t ∈ T. Then the following statements are equivalent:

(i) t 7→ Xt is measurable;

(ii) t 7→ LXtf is measurable for every f ∈ Chol(M);

(iii) t 7→ evz ◦Xt is measurable for every z ∈ M;

(iv) t 7→ evz ◦LXtf is measurable for every f ∈ Chol(M) and every z ∈ M,

the following two statements are equivalent:

(v) t 7→ Xt is locally Bochner integrable;

(vi) t 7→ LXtf is locally Bochner integrable for every f ∈ Chol(M),

and the following two statements are equivalent:

(vii) t 7→ Xt is locally essentially von Neumann bounded;

(viii) t 7→ LXtf is locally essentially von Neumann bounded for every f ∈ Chol(M).

Proof: This follows from Theorem 6.14, along with Corollary 4.6. ■

Now we consider flows for the class of time-varying holomorphic vector fields defined
above. Let X ∈ LIΓhol(T;TM). According to Proposition 6.15, we can define the flow of X
just as in the real case, and we shall continue to use the notation DX ⊆ T × T ×M, ΦXt,t0 ,

and ΦX : DX → M as in the smooth case. The following result provides the attributes of
the flow in the holomorphic case. This result follows easily from the constructions in the
usual existence and uniqueness theorem for ordinary differential equations, but we could
not find the result explicitly in the literature for measurable time-dependence. Thus we
provide the details here.
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6.18 Theorem: (Flows of vector fields from LIΓhol(T;TM)) Let M be an holomorphic
manifold, let T be an interval, and let X ∈ LIΓhol(T;TM). Then there exist a subset DX ⊆
T×T×M and a map ΦX : DX → M with the following properties for each (t0, z0) ∈ T×M:

(i) the set
TX(t0, z0) = {t ∈ T | (t, t0, z0) ∈ DX}

is an interval;

(ii) there exists a locally absolutely continuous curve t 7→ ξ(t) satisfying

ξ′(t) = X(t, ξ(t)), ξ(t0) = z0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX(t0, z0);
(iii) d

dtΦ
X(t, t0, z0) = X(t,ΦX(t, t0, z0)) for almost all t ∈ TX(t0, z0);

(iv) for each t ∈ T for which (t, t0, z0) ∈ DX , there exists a neighbourhood U of z0 such
that the mapping z 7→ ΦX(t, t0, z) is defined and of class Chol on U.

Proof: Given Proposition 6.15, the only part of the theorem that does not follow from
Theorem 6.6 is the holomorphic dependence on initial conditions. This is a local assertion,
so we let (U, ϕ) be an holomorphic chart for M with coordinates denoted by (z1, . . . , zn).
We denote by X : T × ϕ(U) → Cn the local representative of X. By Proposition 6.15, this
local representative is locally integrally C∞-bounded. To prove holomorphicity of the flow,
we recall the construction for the existence and uniqueness theorem for the solutions of the
initial value problem

γ̇(t) = X(t,γ(t)), γ(t0) = z,

see [e.g., Schuricht and von der Mosel 2000, §1.2]. On some suitable product domain
T′ × B(r, z0) (the ball being contained in ϕ(U) ⊆ Cn) we denote by C0(T′ × B(r, z0);Cn)
the Banach space of continuous mappings with the ∞-norm [Hewitt and Stromberg 1975,
Theorem 7.9]. We define an operator

Φ: C0(T′ × B(r, z0);C
n) → C0(T′ × B(r, z0);C

n)

by

Φ(γ)(t, z) = z +

∫ t

t0

X(s,γ(s, z)) ds.

One shows that this mapping, with domains suitably defined, is a contraction mapping, and
so, by iterating the mapping, one constructs a sequence in C0(T′×B(r, z0);Cn) converging
to a fixed point, and the fixed point, necessarily satisfying

γ(t, z) = z +

∫ t

t0

X(s,γ(s, z)) ds

and γ(t0, z) = z, has the property that γ(t,z) = ΦX(t, t0, z).
Let us consider the sequence one constructs in this procedure. We define γ0 ∈ C0(T′ ×

B(r, z0);Cn) by γ0(t, z) = z. Certainly γ0 is holomorphic in z. Now define γ1 ∈ C0(T′ ×
B(r, z0);Cn) by

γ1(t, z) = Φ(γ0) = z +

∫ t

t0

X(s, z) ds.
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Since X ∈ LIΓhol(T′;TB(r,z0)), we have

∂

∂z̄j
γ1(t, z) =

∂

∂z̄j
z +

∫ t

t0

∂

∂z̄j
X(s,γ0(s, z)) ds = 0, j ∈ {1, . . . , n},

swapping the derivative and the integral by the Dominated Convergence Theorem [Jost
2005, Theorem 16.11] (also noting by Proposition 6.15 that derivatives of X are bounded
by an integrable function). Thus γ1 is holomorphic for each fixed t ∈ T′. By iterating with
t fixed, we have a sequence (γj,t)j∈Z≥0

of holomorphic mappings from B(r, z0) converging
uniformly to the function γ that describes how the solution at time t depends on the initial
condition z. The limit function is necessarily holomorphic [Gunning 1990a, page 5]. ■

6.4. The real analytic case. Let us now turn to describing real analytic time-varying
sections. We thus will consider a real analytic vector bundle π : E → M with ∇0 a real
analytic linear connection on E, ∇ a real analytic affine connection on M, G0 a real analytic
fibre metric on E, andG a real analytic Riemannian metric onM. This defines the seminorms
pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), describing the Cω-topology as in Theorem 5.5.

6.19 Definition: (Real analytic Carathéodory section) Let π : E → M be a real ana-
lytic vector bundle and let T ⊆ R be an interval. A Carathéodory section of class Cω

of E is a map ξ : T ×M → E with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) = ξt(x) is of class C
ω;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓω(T;E) we denote the set of
Carathéodory sections of class Cω of E. •

Now we turn to placing restrictions on the time-dependence to allow us to do useful
things.

6.20 Definition: (Locally integrally Cω-bounded and locally essentially Cω-
bounded sections) Let π : E → M be a real analytic vector bundle and let T ⊆ R
be an interval. A Carathéodory section ξ : T ×M → E of class Cω is

(i) locally integrally Cω-bounded if, for every compact set K ⊆ M and every a ∈
c↓0(Z≥0;R>0), there exists g ∈ L1

loc(T;R≥0) such that

a0a1 · · · am∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K, m ∈ Z≥0,

and is

(ii) locally essentially Cω-bounded if, for every compact set K ⊆ M and every a ∈
c↓0(Z≥0;R>0), there exists g ∈ L∞

loc(T;R≥0) such that

a0a1 · · · am∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K, m ∈ Z≥0.

The set of locally integrally Cω-bounded sections of E with time-domain T is denoted by
LIΓω(T,E) and the set of locally essentially Cω-bounded sections of E with time-domain T
is denoted by LBΓω(T;E). •

As with smooth and holomorphic sections, the preceding definitions admit topological
characterisations.
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6.21 Theorem: (Topological characterisation of real analytic Carathéodory sec-
tions) Let π : E → M be a real analytic manifold and let T ⊆ R be an interval. For a map
ξ : T ×M → E satisfying ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M, the following two statements
are equivalent:

(i) ξ ∈ CFΓω(T;E);

(ii) the map T ∋ t 7→ ξt ∈ Γω(E) is measurable,

the following two statements are equivalent:

(iii) ξ ∈ LIΓω(T;E);

(iv) the map T ∋ t 7→ ξt ∈ Γω(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(v) ξ ∈ LBΓω(T;E);

(vi) the map T ∋ t 7→ ξt ∈ Γω(E) is measurable and locally essentially von Neumann
bounded.

Proof: Just as in the smooth case in Theorem 6.3, this is deduced from the following
facts: (1) evaluation maps evαx , αx ∈ E∗, are continuous and point separating; (2) Γω(E)
is a Suslin space (property Cω-6); (3) Γω(E) is complete and separable (properties Cω-2
and Cω-4; (4) we understand von Neumann bounded subsets of Γω(E) by Lemma 5.6. ■

Note that Theorem 6.21 applies, in particular, to vector fields and functions, giv-
ing the classes CFω(T;M), LICω(T;M), and LBCω(T;M) of functions, and the classes
CFΓω(T;TM), LIΓω(T;TM), and LBΓω(T;TM) of vector fields. The following result then
summarises the various ways of verifying the measurability, integrability, and boundedness
of real analytic time-varying vector fields.

6.22 Theorem: (Weak characterisations of measurability, integrability, and
boundedness of real analytic time-varying vector fields) Let M be a real analytic
manifold, let T ⊆ R be a time-domain, and let X : T×M → TM have the property that Xt

is a real analytic vector field for each t ∈ T. Then the following statements are equivalent:

(i) t 7→ Xt is measurable;

(ii) t 7→ LXtf is measurable for every f ∈ Cω(M);

(iii) t 7→ evx ◦Xt is measurable for every x ∈ M;

(iv) t 7→ evx ◦LXtf is measurable for every f ∈ Cω(M) and every x ∈ M,

the following two statements are equivalent:

(v) t 7→ Xt is locally Bochner integrable;

(vi) t 7→ LXtf is locally Bochner integrable for every f ∈ Cω(M),

and the following two statements are equivalent:

(vii) t 7→ Xt is locally essentially bounded;

(viii) t 7→ LXtf is locally essentially bounded in the von Neumann bornology for every
f ∈ Cω(M).

Proof: This follows from Theorem 6.21, along with Corollary 5.9. ■

Let us verify that real analytic time-varying sections have the expected relationship to
their smooth brethren.
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6.23 Proposition: (Time-varying real analytic sections as time-varying smooth
sections) For a real analytic vector bundle π : E → M and an interval T, we have

LIΓω(T;E) ⊆ LIΓ∞(T;E), LBΓω(T;M) ⊆ LBΓ∞(T;M).

Proof: It is obvious that real analytic Carathéodory sections are smooth Carathéodory
sections.

Let us verify only that LIΓω(T;E) ⊆ LIΓ∞(T;E), as the essentially bounded case follows
in the same manner. We let K ⊆ M be compact and let m ∈ Z≥0. Choose (arbitrarily)
a ∈ c↓0(Z≥0;R>0). Then, if ξ ∈ LIΓω(T;E), there exists g ∈ L1

loc(T;R≥0) such that

a0a1 · · · am∥jmξt(x)∥Gm
≤ g(t), x ∈ K, t ∈ T, m ∈ Z≥0.

Thus, taking ga,m ∈ L1
loc(T;R≥0) defined by

ga,m(t) =
1

a0a1 · · · am
g(t),

we have
∥jmξt(x)∥Gm

≤ ga,m(t), x ∈ K, t ∈ T
showing that ξ ∈ LIΓ∞(T;E). ■

Having understood the comparatively simple relationship between real analytic and
smooth time-varying sections, let us consider the correspondence between real analytic and
holomorphic time-varying sections. First, note that if T ⊆ R is an interval and if U ∈ NM

is a neighbourhood of M in a complexification M, then we have an inclusion

ρU,M : CFΓhol,R(T;E|U) → CFΓω(T;E)

ξ 7→ ξ|M.

(Here the notation CFΓhol,R(T;E|U) refers to those Carathéodory sections that are real
when restricted to M, cf. the constructions of Section 5.1.) However, this inclusion does not
characterise all real analytic Carathéodory sections, as the following example shows.

6.24 Example: (A real analytic Carathéodory function not extending to one that
is holomorphic) Let T be any interval for which 0 ∈ int(T). We consider the real analytic
Carathédory function on R with time-domain T defined by

f(t, x) =

{
t2

t2+x2
, t ̸= 0,

0, t = 0.

It is clear that x 7→ f(t, x) is real analytic for every t ∈ T and that t 7→ f(t, x) is measurable
for every x ∈ R. We claim that there is no neighbourhood U ⊆ C of R ⊆ C such that f is
the restriction to R of an holomorphic Carathéodory function on U. Indeed, let U ⊆ C be
a neighbourhood of R and choose t ∈ R>0 sufficiently small that D(t, 0) ⊆ U. Note that
ft : x 7→ 1

1+(x/t)2
does not admit an holomorphic extension to any open set containing D(t, 0)

since the radius of convergence of z 7→ 1
1+(z/t)2

is t, cf. the discussion at the beginning of

Section 5. Note that our construction actually shows that in no neighbourhood of (0, 0) ∈
R ×R is there an holomorphic extension of f . •

Fortunately, the example will not bother us, although it does serve to illustrate that the
following result is not immediate.
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6.25 Theorem: (Real analytic time-varying vector fields as restrictions of holo-
morphic time-varying vector fields) Let π : E → M be a real analytic vector bundle
with complexification π : E → M, and let T be a time-domain. For a map ξ : T ×M → E
satisfying ξ(t, x) ∈ Ex for every (t, x) ∈ T ×M, the following statements hold:

(i) if ξ ∈ LIΓω(T;E), then, for each (t0, x0) ∈ T × M and each bounded subinterval
T′ ⊆ T containing t0, there exist a neighbourhood U of x0 in M and ξ ∈ Γhol(T′;E|U)
such that ξ(t, x) = ξ(t, x) for each t ∈ T′ and x ∈ U ∩M;

(ii) if, for each x0 ∈ M, there exist a neighbourhood U of x0 in M and ξ ∈ Γhol(T;E|U)
such that ξ(t, x) = ξ(t, x) for each t ∈ T and x ∈ U ∩M, then ξ ∈ LIΓω(T;E).

Proof: (i) We let T′ ⊆ T be a bounded subinterval containing t0 and let U be a relatively
compact neighbourhood of x0. Let (Uj)j∈Z>0 be a sequence of neighbourhoods of cl(U) in
M with the properties that cl(Uj+1) ⊆ Uj and that ∩j∈Z>0Uj = cl(U). We first note that

L1(T′; Γhol,R(E|Uj)) ≃ L1(T′;R)⊗̂πΓ
hol,R(E|Uj),

with ⊗̂π denoting the completed projective tensor product [Schaefer and Wolff 1999, The-
orem III.6.5]. The theorem of Schaefer and Wolff is given for Banach spaces, and they also
assert the validity of this for locally convex spaces; thus we also have

L1(T′;G hol,R

cl(U),E
) ≃ L1(T′;R)⊗̂πG

hol,R

cl(U),E
.

In both cases, the isomorphisms are in the category of locally convex topological vector
spaces. We now claim that

L1(T′;R)⊗π G
hol,R

cl(U),E

is the direct limit of the directed system

(L1(T′;R)⊗π Γ
hol,R(E|Uj)))j∈Z>0

with the associated mappings id⊗πrcl(U),j , j ∈ Z>0, where rcl(U),j is defined as in (5.1).
(Here ⊗π is the uncompleted projective tensor product). We, moreover, claim that the
direct limit topology is boundedly retractive, meaning that bounded sets in the direct limit
are contained in and bounded in a single component of the directed system and, moreover,
the topology on the bounded set induced by the component is the same as that induced by
the direct limit.

Results of this sort have been the subject of research in the area of locally convex
topologies, with the aim being to deduce conditions on the structure of the spaces comprising
the directed system, and on the corresponding mappings (for us, the inclusion mappings
and their tensor products with the identity on L1(T′;R)), that ensure that direct limits
commute with tensor product, and that the associated direct limit topology is boundedly
retractive. We shall make principal use of the results given by Mangino [1997]. To state the
arguments with at least a little context, let us reproduce two conditions used by Mangino.

Condition (M) of Retakh [1970]: Let (Vj)j∈Z>0 be a directed system of locally convex
spaces with strict direct limit V. The direct limit topology of V satisfies condition (M) if
there exists a sequence (Oj)j∈Z>0 for which

(i) Oj is a balanced convex neighbourhood of 0 ∈ Vj ,
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(ii) Oj ⊆ Oj+1 for each j ∈ Z>0, and

(iii) for every j ∈ Z>0, there exists k ≥ j such that the topology induced on Oj by its
inclusion in Vk and its inclusion in V agree. •

Condition (MO) of Mangino [1997]: Let (Vj)j∈Z>0 be a directed system of metrisable
locally convex spaces with strict direct limit V. Let ij,k : Vj → Vk be the inclusion for k ≥ j
and let ij : Vj → V be the induced map into the direct limit.

Suppose that, for each j ∈ Z>0, we have a sequence (pj,l)l∈Z>0 of seminorms defining
the topology of Vj such that pj,l1 ≥ pj,l2 if l1 ≥ l2. Let

Vj,l = Vj/{v ∈ Vj | pj,l(v) = 0}

and denote by p̂j,l the norm on Vj,l induced by pj,l [Schaefer and Wolff 1999, page 97]. Let
πj,l : Vj → Vj,l be the canonical projection. Let Vj,l be the completion of Vj,l. The family
(Vj,l)j,l∈Z>0 is called a projective spectrum for Vj . Denote

Oj,l = {v ∈ Vj | pj,l(v) ≤ 1}.

The direct limit topology of V satisfies condition (MO) if there exists a sequence
(Oj)j∈Z>0 and if, for every j ∈ Z>0, there exists a projective spectrum (Vj,l)j,l∈Z>0 for Vj
for which

(i) Oj is a balanced convex neighbourhood of 0 ∈ Vj ,

(ii) Oj ⊆ Oj+1 for each j ∈ Z>0, and

(iii) for every j ∈ Z>0, there exists k ≥ j such that, for every l ∈ Z>0, there exists
A ∈ L(V;Vk,l) satisfying

(πk,l ◦ ij,k −A ◦ ij)(Oj) ⊆ cl(πk,l(Ok,l)),

the closure on the right being taken in the norm topology of Vk,l. •
With these concepts, we have the following statements. We let (Vj)j∈Z>0 be a directed

system of metrisable locally convex spaces with strict direct limit V.

1. If the direct limit topology on V satisfies condition (MO), then, for any Banach space
U, U⊗π V is the direct limit of the directed system (U⊗π Vj)j∈Z>0 , and the direct limit
topology on U⊗π V satisfies condition (M) [Mangino 1997, Theorem 1.3].

2. If the spaces Vj , j ∈ Z>0, are nuclear and if the direct limit topology on V is regular, then
the direct limit topology on V satisfies condition (MO) [Mangino 1997, Theorem 1.3].

3. If the direct limit topology on V satisfies condition (M), then this direct limit topology
is boundedly retractive [Wengenroth 1995].

Using these arguments we make the following conclusions.

4. The direct limit topology on G hol,R

cl(U),E
satisfies condition (MO) (by virtue of assertion 2

above and by the properties of the direct limit topology enunciated in Section 5.3,
specifically that the direct limit is a regular direct limit of nuclear Fréchet spaces).

5. The space L1(T′;R)⊗πG
hol,R

cl(U),E
is the direct limit of the directed sequence (L1(T′;R)⊗π

Γhol,R(E|Uj))j∈Z>0 (by virtue of assertion 1 above).
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6. The direct limit topology on L1(T′;R) ⊗π G
hol,R

cl(U),E
satisfies condition (M) (by virtue of

assertion 1 above).

7. The direct limit topology on L1(T′;R)⊗π G
hol,R

cl(U),E
is boundedly retractive (by virtue of

assertion 3 above).

We shall also need the following lemma.

1 Lemma: Let K ⊆ M be compact. If [ξ]K ∈ L1(T′;G hol,R
K,E ) then there exists a sequence

([ξk]K)k∈Z>0 in L1(T′;R)⊗ G hol,R
K,E converging to [ξ]K in the topology of L1(T′;G hol

K,E
).

Proof: Since L1(T′;G hol,R

K,E
) is the completion of L1(T′;R) ⊗π G

hol,R

K,E
, there exists a net

([ξi]K)i∈I converging to [ξ], so the conclusion here is that we can actually find a converging
sequence.

To prove this we argue as follows. Recall properties G hol,R-5 and G hol,R-6 of G hol,R

K,E
,

indicating that it is reflexive and its dual is a nuclear Fréchet space. Thus G hol,R

K,E
is the

dual of a nuclear Fréchet space. Also recall from property G hol,R-8 that G hol,R

K,E
is a Suslin

space. Now, by combining [Thomas 1975, Theorem 7] with remark (1) at the bottom of
page 76 of [Thomas 1975] (and being aware that Bochner integrability as defined by Thomas
is not a priori the same as Bochner integrability as we mean it), there exists a sequence

([ξk]K)k∈Z>0 of simple functions, i.e., elements of L1(T′;R)⊗ G hol,R

K,E
, such that

lim
k→∞

[ξk(t)]K = [ξ(t)]K , a.e. t ∈ T′,

(this limit being in the topology of G hol,R

K,E
) and

lim
k→∞

∫
T′
([ξ(t)]K − [ξk(t)]K) dt = 0.

This implies, by the Dominated Convergence Theorem, that

lim
k→∞

∫
T′
pωK,a([ξ(t)]K − [ξk(t)]K) dt = 0

for every a ∈ c↓0(Z≥0;R>0), giving convergence in

L1(T′;G hol,R

K,E
) ≃ L1(T′;R)⊗̂πG

hol,R
K,E ,

as desired. ▼

The remainder of the proof is straightforward. Since ξ ∈ LIΓω(T;E), the map

T′ ∋ t 7→ ξt ∈ Γω(E)

is an element of L1(T′; Γω(E)) by Theorem 6.21. Therefore, if [ξ]cl(U) is the image of ξ under

the natural mapping from Γω(E) to G hol,R

cl(U),E
, the map

T′ ∋ t 7→ [ξ(t)]cl(U) ∈ G
hol,R

cl(U),E
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is an element of L1(T′;G hol,R

cl(U),E
), since continuous linear maps commute with integra-

tion [Beckmann and Deitmar 2011, Lemma 1.2]. Therefore, by the Lemma above, there

exists a sequence ([ξk]cl(U))k∈Z>0 in L1(T′;R) ⊗ G hol,R

cl(U),E
that converges to [ξ]cl(U). By our

conclusion 5 above, the topology in which this convergence takes place is the completion of
the direct limit topology associated to the directed system (L1(T′;R)⊗πΓ

hol,R(E|Uj))j∈Z>0 .

The direct limit topology on L1(T′;R) ⊗π G
hol,R

cl(U),E
is boundedly retractive by our conclu-

sion 7 above. This is easily seen to imply that the direct limit topology is sequentially
retractive, i.e., that convergent sequences are contained in, and convergent in, a component
of the direct limit [Fernández 1990]. This implies that there exists j ∈ Z>0 such that the
sequence (ξk)k∈Z>0 converges in L1(T′; Γhol,R(E|Uj)) and so converges to a limit η satisfying
[η]cl(Uj) = [ξ]cl(Uj). Thus ξ can be holomorphically extended to Uj . This completes this
part of the proof.

(ii) Let K ⊆ M be compact and let a ∈ c↓0(Z≥0;R>0). Let (Uj)j∈Z>0 be a sequence
of neighbourhoods of K in M such that cl(Uj+1) ⊆ Uj and K = ∩j∈Z>0Uj . By hypothesis,
for x ∈ K, there is a relatively compact neighbourhood Ux ⊆ M of x in M such that there
is an extension ξx ∈ LIΓhol,R(T;E|Ux) of ξ|(T × (Ux ∩ M)). Let x1, . . . , xk ∈ K be such
that K ⊆ ∪kj=1Uxj and let l ∈ Z>0 be sufficiently large that Ul ⊆ ∪kj=1Uxj , so ξ admits an

holomorphic extension ξ ∈ LIΓhol,R(T;EUl).
Now we show that the above constructions imply that ξ ∈ LIΓω(T;TM). Let g ∈

L1
loc(T;R≥0) be such that

∥ξ(t, z)∥G ≤ g(t), (t, z) ∈ T × Ul.

By Proposition 4.2, there exist C, r ∈ R>0 such that

∥jmξ(t, x)∥ ≤ Cr−mg(t)

for all m ∈ Z≥0, t ∈ T, and x ∈ K. Now let N ∈ Z≥0 be such that aN+1 < r and let
g ∈ L1

loc(T;R≥0) be such that

Ca0a1 · · · amr−mg(t) ≤ g(t)

for m ∈ {0, 1, . . . , N}. Now, if m ∈ {0, 1, . . . , N}, we have

a0a1 · · · am∥jmξ(t, x)∥Gm
≤ a0a1 · · · amCr−mg(t) ≤ g(t)

for (t, x) ∈ T ×K. If m > N we also have

a0a1 · · · am∥jmξ(t, x)∥Gm
≤ a0a1 · · · aNr−Nrm∥jmξ(t, x)∥Gm

≤ a0a1 · · · aNr−NCg(t) ≤ g(t),

for (t, x) ∈ T ×K, as desired. ■

Finally, let us show that, according to our definitions, real analytic time-varying vector
fields possess flows depending in a real analytic way on initial condition.
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6.26 Theorem: (Flows of vector fields from LIΓω(T;TM)) Let M be a real analytic
manifold, let T be an interval, and let X ∈ LIΓω(T;TM). Then there exist a subset DX ⊆
T×T×M and a map ΦX : DX → M with the following properties for each (t0, x0) ∈ T×M:

(i) the set
TX(t0, x0) = {t ∈ T | (t, t0, x0) ∈ DX}

is an interval;

(ii) there exists a locally absolutely continuous curve t 7→ ξ(t) satisfying

ξ′(t) = X(t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX(t0, x0);
(iii) d

dtΦ
X(t, t0, x0) = X(t,ΦX(t, t0, x0)) for almost all t ∈ TX(t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DX , there exists a neighbourhood U of x0 such
that the mapping x 7→ ΦX(t, t0, x) is defined and of class Cω on U.

Proof: The theorem follows from Theorems 6.18 and 6.25, noting that the flow of an holo-
morphic extension will leave invariant the real analytic manifold. ■

6.5. Mixing regularity hypotheses. It is possible to mix regularity conditions for vector
fields. By this we mean that one can consider vector fields whose dependence on state
is more regular than their joint state/time dependence. This can be done by considering
m ∈ Z≥0, m

′ ∈ {0, lip}, r ∈ Z≥0 ∪ {∞, ω}, and r′ ∈ {0, lip} satisfying m+m′ < r+ r′, and
considering vector fields in

CFΓr+r
′
(T;TM) ∩ LIΓm+m′

(T;TM) or CFΓr+r
′
(T;TM) ∩ LBΓm+m′

(T;TM),

using the obvious convention that ∞+ lip = ∞ and ω + lip = ω. This does come across as
quite unnatural in our framework, and perhaps it is right that it should. Moreover, because
the COm+m′

-topology for Γr+r
′
(TM) will be complete if and only if m+m′ = r + r′, some

of the results above will not translate to this mixed class of time-varying vector fields:
particularly, the results on Bochner integrability require completeness. Nonetheless, this
mixing of regularity assumptions is quite common in the literature. Indeed, this has always
been done in the real analytic case, since the notions of “locally integrally Cω-bounded”
and “locally essentially Cω-bounded” given in Definition 6.20 are being given for the first
time in this paper.

7. Control systems

Now, having at hand a thorough accounting of time-varying vector fields, we turn to
the characterisation of classes of control systems. These classes of systems will provide us
with a precise point of comparison between our general development of Section 8 and the
more common notion of a control system. Our system definitions are designed so that the
act of “substituting in a control” leads to a time-varying vector field of the sort considered
in Section 6. This essentially means that we need for our system vector fields to depend
continuously on control in the appropriate topology. We note that, in practice, this is
generally not a limitation, e.g., we show in Example 7.21 that control-affine systems satisfy
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our conditions. In cases where it is a limitation, the definitions and results here can be
replaced with suitably modified versions with less smoothness, and we say a few words
about this at the end of the section.

As we have been doing all along so far, we initially consider separately the finitely
differentiable, Lipschitz, smooth, holomorphic, and real analytic cases. Also, the initial part
of our discussion is carried out for parameterised sections of vector bundles (control systems
are parameterised vector fields), as this allows us to handle vector fields and functions
simultaneously, just as we did in Sections 3, 4, and 5.

When we turn to control systems starting in Section 7.2, we merge as much as possible
the consideration of varying degrees of regularity to make clear the fact that, once the gen-
eral framework is in place, much of the analysis proceeds along very similar lines, regardless
of regularity.

We also include a brief discussion of differential inclusions since we shall use these, as
well as usual control systems, in understanding the position of our “tautological control
systems” from Section 8 in the existing order of things.

7.1. Parameterised vector fields. One can think of a control system as a family of vector
fields parameterised by control, as discussed in Section 1.1. It is the exact nature of this
dependence on the parameter that we discuss in this section.

The smooth case. We begin by discussing parameter dependent smooth sections.
Throughout this section we will work with a smooth vector bundle π : E → M with a
linear connection ∇0 on E, an affine connection ∇ on M, a fibre metric G0 on E, and a
Riemannian metric G on M. These define the fibre metrics ∥·∥Gm

and the seminorms p∞K,m,
K ⊆ M compact, m ∈ Z≥0, on Γ∞(E) as in Section 3.1.

7.1 Definition: (Sections of parameterised class C∞) Let π : E → M be a smooth
vector bundle and let P be a topological space. A map ξ : M×P → E such that ξ(x, p) ∈ Ex
for every (x, p) ∈ M× P

(i) is a separately parameterised section of class C∞ if

(a) for each x ∈ M, the map ξx : P → E defined by ξx(p) = ξ(x, p) is continuous and

(b) for each p ∈ P, the map ξp : M → E defined by ξp(x) = ξ(x, p) is of class C∞,

and

(ii) is a jointly parameterised section of class C∞ if it is a separately parameterised
section of class C∞ and if the map (x, p) 7→ jmξ

p(x) is continuous for every m ∈ Z≥0.

By SPΓ∞(P;E) we denote the set of separately parameterised sections of E of class C∞ and
by JPΓ∞(P;E) we denote the set of jointly parameterised sections of E of class C∞. •

It is possible to give purely topological characterisations of this class of sections.

7.2 Proposition: (Characterisation of jointly parameterised sections of class C∞)
Let π : E → M be a smooth vector bundle, let P be a topological space, and let ξ : M×P → E
satisfy ξ(x, p) ∈ Ex for every (x, p) ∈ M× P. Then ξ ∈ JPΓ∞(P;E) if and only if the map
p 7→ ξp ∈ Γ∞(E) is continuous, where Γ∞(E) has the CO∞-topology.

Proof: Given ξ : M× P → E we let ξm : M× P → JmE be the map ξm(x, p) = jmξ
p(x). We

also denote by σξ : P → Γ∞(E) the map given by σξ(p) = ξp.
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First suppose that ξm is continuous for every m ∈ Z≥0. Let K ⊆ M be compact, let
m ∈ Z≥0, let ϵ ∈ R>0, and let p0 ∈ P. Let x ∈ K and let Wx be a neighbourhood of
ξm(x, p0) in JmE for which

Wx ⊆ {jmη(x′) ∈ JmE | ∥jmη(x′)− ξm(x
′, p0)∥Gm

< ϵ}.

By continuity of ξm, there exist a neighbourhood Ux ⊆ M of x and a neighbourhood Ox ⊆ P

of p0 such that ξm(Ux × Ox) ⊆ Wx. Now let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Uxj
and let O = ∩kj=1Oxj . Then, if p ∈ O and x ∈ K, we have x ∈ Uxj for some j ∈ {1, . . . , k}.
Thus ξm(x, p) ∈ Wxj . Thus

∥ξm(x, p)− ξm(x, p0)∥Gm
< ϵ.

Therefore, taking supremums over x ∈ K, p∞K,m(σξ(p) − σξ(p0)) ≤ ϵ. As this can be done
for every compact K ⊆ M and every m ∈ Z≥0, we conclude that σξ is continuous.

Next suppose that σξ is continuous and let m ∈ Z≥0. Let (x0, p0) ∈ M × P and
let W ⊆ JmE be a neighbourhood of ξm(x0, p0). Let U ⊆ M be a relatively compact
neighbourhood of x0 and let ϵ ∈ R>0 be such that

π−1
m (U) ∩ {jmη(x) ∈ JmE | ∥jmη(x)− ξm(x, p0)∥Gm

< ϵ} ⊆ W,

where πm : JmE → M is the projection. By continuity of σξ, let O ⊆ P be a neighbourhood
of p0 such that p∞cl(U),m(σξ(p)− σξ(p0)) < ϵ for p ∈ O. Therefore,

∥jmσξ(p)(x)− jmσξ(p0)(x)∥Gm
< ϵ, (x, p) ∈ cl(U)× O.

Therefore, if (x, p) ∈ U×O, then πm(ξm(x, p)) = x ∈ U and so ξm(x, p) ∈ W, showing that
ξm is continuous at (x0, p0). ■

Of course, the preceding discussion applies, in particular, to give vector fields of pa-
rameterised class C∞ and functions of parameterised class C∞. This gives the spaces
SPC∞(P;M) and JPC∞(M) of parameterised functions, and the spaces SPΓ∞(P;TM) and
JPΓ∞(P;TM) of parameterised vector fields. Let us verify that we can as well use a weak-L
version of this characterisation for jointly parameterised vector fields.

7.3 Proposition: (Weak-L characterisation of jointly parameterised vector fields
of class C∞) Let M be a smooth manifold, let P be a topological space, and let X : M×P →
TM satisfy X(x, p) ∈ TxM for every (x, p) ∈ M× P. Then X ∈ JPΓ∞(P;TM) if and only
if (x, p) 7→ LXpf is a jointly parameterised function of class C∞ for every f ∈ C∞(M).

Proof: This follows from Corollary 3.6(ii). ■

The finitely differentiable or Lipschitz case. The preceding development in the smooth
case is easily extended to the finitely differentiable and Lipschitz cases, and we quickly give
the results and definitions here. In this section, when considering the Lipschitz case, we
assume that ∇ is the Levi-Civita connection associated to G and we assume that ∇0 is
G0-orthogonal.
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7.4 Definition: (Sections of parameterised class Cm+m′
) Let π : E → M be a smooth

vector bundle and let P be a topological space. A map ξ : M×P → E such that ξ(x, p) ∈ Ex
for every (x, p) ∈ M× P

(i) is a separately parameterised section of class Cm+m′
if

(a) for each x ∈ M, the map ξx : P → E defined by ξx(p) = ξ(x, p) is continuous and

(b) for each p ∈ P, the map ξp : M → E defined by ξp(x) = ξ(x, p) is of class Cm+m′
,

and

(ii) is a jointly parameterised section of class Cm+m′
if it is a separately parame-

terised section of class Cm+m′
and

(a) m′ = 0: the map (x, p) 7→ jmξ
p(x) is continuous;

(b) m′ = lip: the map (x, p) 7→ jmξ
p(x) is continuous and, for each (x0, p0) ∈ M×P

and each ϵ ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood
O ⊆ P of p0 such that

jmξ(U× O) ⊆ {jmη(x) ∈ JmE | dil (jmη − jmξ
p0)(x) < ϵ},

where, of course, jmξ(x, p) = jmξ
p(x).

By SPΓm+m′
(P;E) we denote the set of separately parameterised sections of E of class

Cm+m′
and by JPΓm+m′

(P;E) we denote the set of jointly parameterised sections of E of
class Cm+m′

. •
Let us give the purely topological characterisation of this class of sections.

7.5 Proposition: (Characterisation of jointly parameterised sections of class
Cm+m′

) Let π : E → M be a smooth vector bundle, let P be a topological space, and let
ξ : M × P → E satisfy ξ(x, p) ∈ Ex for every (x, p) ∈ M × P. Then ξ ∈ JPΓm+m′

(P;E) if
and only if the map p 7→ ξp ∈ Γm+m′

(E) is continuous, where Γm+m′
(E) has the COm+m′

-
topology.

Proof: We will prove the result only in the case that m = 0 and m′ = lip, as the general case
follows by combining this case with the computations from the proof of Proposition 7.2.
We denote σξ(p) = ξ(x, p).

Suppose that (x, p) 7→ ξ(x, p) is continuous and that, for every (x0, p0) ∈ M×P and for
every ϵ ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood O ⊆ P of p0
such that, if (x, p) ∈ U×O, then dil (ξp− ξp0)(x) < ϵ. Let K ⊆ M be compact, let ϵ ∈ R>0,
and let p0 ∈ P. Let x ∈ K. By hypothesis, there exist a neighbourhood Ux ⊆ M of x and a
neighbourhood Ox ⊆ P of p0 such that

ξ(Ux × Ox) ⊆ {η(x′) ∈ JmE | dil (η − ξp0)(x′) < ϵ}.

Now let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Uxj and let O = ∩kj=1Oxj . Then, if p ∈ O

and x ∈ K, we have x ∈ Uxj for some j ∈ {1, . . . , k}. Thus

dil (ξ(x, p)− ξ(x, p0))Gm
< ϵ.

Therefore, taking supremums over x ∈ K, we have λK(σξ(p)− σξ(p0)) ≤ ϵ. By choosing O

to be possibly smaller, the argument of Proposition 7.2 ensures that p0K(σξ(p)−σξ(p0)) ≤ ϵ,
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and so plipK (σξ(p) − σξ(p0)) < ϵ for p ∈ O. As this can be done for every compact K ⊆ M,
we conclude that σξ is continuous.

Next suppose that σξ is continuous, let (x0, p0) ∈ M × P, and let ϵ ∈ R>0. Let U be a
relatively compact neighbourhood of x0. Since σξ is continuous, let O be a neighbourhood
of p0 such that

plipcl(U)(σξ(p)− σξ(p0)) < ϵ, p ∈ O.

Thus, for every (x, p) ∈ U × O, dil (ξp − ξp0)(x) < ϵ. Following the argument of Proposi-
tion 7.2 one also shows that ξ is continuous at (x0, p0), which shows that ξ ∈ JPΓlip(P;E).■

Of course, the preceding discussion applies, in particular, to give vector fields of jointly
parameterised class Cm+m′

and functions of jointly parameterised class Cm+m′
. This gives

the spaces SPCm+m′
(P;M) and JPCm+m′

(M) of parameterised functions, and the spaces
SPΓm+m′

(P;TM) and JPΓm+m′
(P;TM) of parameterised vector fields. Let us verify that

we can as well use a weak-L version of this characterisation for jointly parameterised vector
fields.

7.6 Proposition: (Weak-L characterisation of jointly parameterised vector fields
of class Cm+m′

) Let M be a smooth manifold, let P be a topological space, and let X : M×
P → TM satisfy X(x, p) ∈ TxM for every (x, p) ∈ M × P. Then X ∈ JPΓm+m′

(P;TM)
if and only if (x, p) 7→ LXpf is a jointly parameterised function of class Cm+m′

for every
f ∈ C∞(M).

Proof: This follows from Corollary 3.15(ii). ■

The holomorphic case. As with time-varying vector fields, we are not really interested,
per se, in holomorphic control systems, and in fact we will not even define the notion.
However, it is possible, and possibly sometimes easier, to verify that a control system
satisfies our rather technical criterion of being a “real analytic control system” by verifying
that it possesses an holomorphic extension. Thus, in this section, we present the required
holomorphic definitions. We will consider an holomorphic vector bundle π : E → M with an
Hermitian fibre metric G. This defines the seminorms pholK , K ⊆ M compact, describing the
COhol-topology for Γhol(E) as in Section 4.1.

7.7 Definition: (Sections of parameterised class Chol) Let π : E → M be an holomor-
phic vector bundle and let P be a topological space. A map ξ : M × P → E such that
ξ(z, p) ∈ Ez for every (z, p) ∈ M× P

(i) is a separately parameterised section of class Chol if

(a) for each z ∈ M, the map ξz : P → E defined by ξz(p) = ξ(z, p) is continuous and

(b) for each p ∈ P, the map ξp : M → E defined by ξp(z) = ξ(z, p) is of class Chol,

and

(ii) is a jointly parameterised section of class Chol if it is a separately parameterised
section of class Chol and if the map (z, p) 7→ ξp(z) is continuous.

By SPΓhol(P;E) we denote the set of separately parameterised sections of E of class Chol

and by JPΓhol(P;E) we denote the set of jointly parameterised sections of E of class Chol. •
As in the smooth case, it is possible to give purely topological characterisations of these

classes of sections.
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7.8 Proposition: (Characterisation of jointly parameterised sections of class Chol)
Let π : E → M be an holomorphic vector bundle, let P be a topological space, and let ξ : M×
P → E satisfy ξ(z, p) ∈ Ez for every (z, p) ∈ M × P. Then ξ ∈ JPΓhol(P;E) if and only if
the map p 7→ ξp ∈ Γhol(E) is continuous, where Γhol(E) has the COhol-topology.

Proof: We define σξ : P → Γhol(E) by σξ(p) = ξp.
First suppose that ξ is continuous. Let K ⊆ M be compact, let ϵ ∈ R>0, and let p0 ∈ P.

Let z ∈ K and let Wz ⊆ E be a neighbourhood of ξ(z, p0) for which

Wz ⊆ {η(z′) ∈ E | ∥η(z′)− ξ(z′, p0)∥G < ϵ}.

By continuity of ξ, there exist a neighbourhood Uz ⊆ M of z and a neighbourhood Oz ⊆ P

of p0 such that ξ(Uz × Oz) ⊆ Wz. Now let z1, . . . , zk ∈ K be such that K ⊆ ∪kj=1Uzj and

let O = ∩kj=1Ozj . Then, if p ∈ O and z ∈ K, we have z ∈ Uzj for some j ∈ {1, . . . , k}. Thus
ξ(z, p) ∈ Wzj . Thus ∥ξ(z, p) − ξ(z, p0)∥G < ϵ. Therefore, taking supremums over z ∈ K,
pholK (σξ(p)− σξ(p0)) ≤ ϵ. As this can be done for every compact K ⊆ M, we conclude that
σξ is continuous.

Next suppose that σξ is continuous. Let (z0, p0) ∈ M×P and let W ⊆ E be a neighbour-
hood of ξ(z0, p0). Let U ⊆ M be a relatively compact neighbourhood of z0 and let ϵ ∈ R>0

be such that
π−1(U) ∩ {η(z) ∈ E | ∥η(z)− ξ(z, p0)∥G < ϵ} ⊆ W.

By continuity of σξ, let O ⊆ P be a neighbourhood of p0 such that pholcl(U)(σξ(p)−σξ(p0)) < ϵ
for p ∈ O. Therefore,

∥σξ(p)(z)− σξ(p0)(z)∥G < ϵ, (z, p) ∈ cl(U)× O.

Therefore, if (z, p) ∈ U×O, we have ξ(z, p) ∈ W, showing that ξ is continuous at (z0, p0).■

The specialisation of the preceding constructions to vector fields and functions is imme-
diate. This gives the spaces SPChol(P;M) and JPChol(M) of parameterised functions, and
the spaces SPΓhol(P;TM) and JPΓhol(P;TM) of parameterised vector fields. Let us verify
that we can as well use a weak-L version of the preceding definitions for vector fields in
the case when the base manifold is Stein.

7.9 Proposition: (Weak-L characterisation of jointly parameterised vector fields
of class Chol on Stein manifolds) Let M be a Stein manifold, let P be a topological
space, and let X : M × P → TM satisfy X(z, p) ∈ TzM for every (z, p) ∈ M × P. Then
X ∈ JPΓhol(P;TM) if and only if (x, p) 7→ LXpf is a jointly parameterised function of
class Chol for every f ∈ C∞(M).

Proof: This follows from Corollary 4.6(ii). ■

The real analytic case. Now we repeat the procedure above for real analytic sections. We
thus will consider a real analytic vector bundle π : E → M with ∇0 a real analytic linear
connection on E, ∇ a real analytic affine connection on M, G0 a real analytic fibre metric
on E, and G a real analytic Riemannian metric on M. This defines the seminorms pωK,a,
K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), describing the Cω-topology as in Theorem 5.5.
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7.10 Definition: (Sections of parameterised class Cω) Let π : E → M be a real analytic
vector bundle and let P be a topological space. A map ξ : M×P → E such that ξ(x, p) ∈ Ex
for every (x, p) ∈ M× P

(i) is a separately parameterised section of class Cω if

(a) for each x ∈ M, the map ξx : P → E defined by ξx(p) = ξ(x, p) is continuous and

(b) for each p ∈ P, the map ξp : M → E defined by ξp(x) = ξ(x, p) is of class Cω,

and

(ii) is a jointly parameterised section of class Cω if it is a separately parameterised
section of class C∞ and if, for each (x0, p0) ∈ M × P, for each a ∈ c↓0(Z≥0,R>0),
and for each ϵ ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood
O ⊆ P of p0 such that

jmξ(U× O) ⊆ {jmη(x) ∈ JmE | a0a1 · · · am∥jmη(x)− jmξ
p0(x)∥Gm

< ϵ}

for every m ∈ Z≥0, where, of course, jmξ(x, p) = jmξ
p(x).

By SPΓω(P;E) we denote the set of separately parameterised sections of E of class Cω and
by JPΓω(P;E) we denote the set of jointly parameterised sections of E of class Cω. •

7.11 Remark: (Jointly parameterised sections of class Cω) The condition that ξ ∈
JPΓ∞(P;E) can be restated like this: for each (x0, p0) ∈ M× P, for each m ∈ Z≥0, and for
each ϵ ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood O ⊆ P of p0
such that

jmξ(U× O) ⊆ {jmη(x) ∈ JmE | ∥jmη(x)− jmξ
p0(x)∥Gm

< ϵ};

that this is so is, more or less, the idea of the proof of Proposition 7.2. Phrased this
way, one sees clearly the grammatical similarity between the smooth and real analytic
definitions. Indeed, the grammatical transformation from the smooth to the real analytic
definition is, put a factor of a0a1 · · · am before the norm, precede the condition with “for every
a ∈ c↓0(Z≥0;R>0)”, and move the “for every m ∈ Z≥0” from before the condition to after.
This was also seen in the definitions of locally integrally bounded and locally essentially
bounded sections in Section 6. Indeed, the grammatical similarity will be encountered many
times in the sequel, and we shall refer to this to keep ourselves from repeating arguments
in the real analytic case that mirror their smooth counterparts. •

The following result records topological characterisations of jointly parameterised sec-
tions in the real analytic case.

7.12 Proposition: (Characterisation of jointly parameterised sections of class Cω)
Let π : E → M be a real analytic vector bundle, let P be a topological space, and let ξ : M×
P → E satisfy ξ(x, p) ∈ Ex for every (x, p) ∈ M × P. Then ξ ∈ JPΓω(P;E) if and only if
the map p 7→ ξp ∈ Γω(E) is continuous, where Γω(E) has the Cω-topology.

Proof: For a ∈ c↓0(Z≥0;R>0) and m ∈ Z≥0, given ξ : M×P → E satisfying ξp ∈ Γω(E), we
let ξa,m : M× P → JmE be the map

ξa,m(x, p) = a0a1 · · · amjmξp(x).

We also denote by σξ : P → Γω(E) the map given by σξ(p) = ξp.
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Suppose that, for every (x0, p0) ∈ M × P, for every a ∈ c↓0(Z≥0;R>0), and for every
ϵ ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood O ⊆ P of p0 such
that, if (x, p) ∈ U× O, then

∥ξa,m(x, p)− ξa,m(x, p0)∥Gm
< ϵ, m ∈ Z≥0.

Let K ⊆ M be compact, let a ∈ c↓0(Z≥0;R>0), let ϵ ∈ R>0, and let p0 ∈ P. Let x ∈ K.
By hypothesis, there exist a neighbourhood Ux ⊆ M of x and a neighbourhood Ox ⊆ P of
p0 such that

ξa,m(Ux × Ox) ⊆ {jmη(x′) ∈ JmE | ∥a0a1 · · · amjmη(x′)− ξa,m(x
′, p0)∥Gm

< ϵ},

for each m ∈ Z≥0. Now let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Uxj and let O = ∩kj=1Oxj .
Then, if p ∈ O and x ∈ K, we have x ∈ Uxj for some j ∈ {1, . . . , k}. Thus

∥ξa,m(x, p)− ξa,m(x, p0)∥Gm
< ϵ, m ∈ Z≥0.

Therefore, taking supremums over x ∈ K and m ∈ Z≥0, we have pωK,a(σξ(p)− σξ(p0)) ≤ ϵ.
As this can be done for every compact K ⊆ M and every a ∈ c↓0(Z≥0;R>0), we conclude
that σξ is continuous.

Next suppose that σξ is continuous, let (x0, p0) ∈ M×P, let a ∈ c↓0(Z≥0;R>0), and let
ϵ ∈ R>0. Let U be a relatively compact neighbourhood of x0. Since σξ is continuous, let O
be a neighbourhood of p0 such that

pωcl(U),a(σξ(p)− σξ(p0)) < ϵ, p ∈ O.

Thus, for every (x, p) ∈ U× O,

a0a1 · · · am∥jmξ(x, p)− jmξ(x, p0)∥Gm
< ϵ, m ∈ Z≥0,

which shows that ξ ∈ JPΓω(P;E). ■

As we have done in the smooth and holomorphic cases above, we can specialise the pre-
ceding discussion from sections to vector fields and functions, giving the spaces SPCω(P;M)
and JPCω(M) of parameterised functions, and the spaces SPΓω(P;TM) and JPΓω(P;TM)
of parameterised vector fields. We then have the following weak-L characterisation for
jointly parameterised vector fields.

7.13 Proposition: (Weak-L characterisation of jointly parameterised vector
fields of class Cω) Let M be a real analytic manifold, let P be a topological space, and let
X : M×P → TM satisfy X(x, p) ∈ TxM for every (x, p) ∈ M×P. Then X ∈ JPΓω(P;TM)
if and only if (x, p) 7→ LXpf(x) is a jointly parameterised function of class Cω for every
f ∈ Cω(M).

Proof: This follows from Corollary 5.9(ii). ■

One can wonder about the relationship between sections of jointly parameterised class
Cω and sections that are real restrictions of sections of jointly parameterised class Chol. We
address this with a result and an example. First the result.
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7.14 Theorem: (Jointly parameterised real analytic sections as restrictions of
jointly parameterised holomorphic sections) Let π : E → M be a real analytic vector
bundle with holomorphic extension π : E → M and let P be a topological space. For a map
ξ : M× P → E satisfying ξ(x, p) ∈ Ex for all (x, p) ∈ M× P, the following statements hold:

(i) if ξ ∈ JPΓω(P;E) and if P is locally compact and Hausdorff, then, for each (x0, p0) ∈
M× P, there exist a neighbourhood U ⊆ M of x0, a neighbourhood O ⊆ P of p0, and
ξ ∈ JPΓhol(O;E|U) such that ξ(x, p) = ξ(x, p) for all (x, p) ∈ (M ∩ U)× O;

(ii) if there exists a section ξ ∈ JPΓhol(P;E) such that ξ(x, p) = ξ(x, p) for every (x, p) ∈
M× P, then ξ ∈ JPΓω(P;E).

Proof: (i) Let p0 ∈ P and let O be a relatively compact neighbourhood of p0, this being
possible since P is locally compact. Let x0 ∈ M, let U be a relatively compact neighbourhood
of x0, and let (Uj)j∈Z>0 be a sequence of neighbourhoods of cl(U) in M with the properties
that cl(Uj+1) ⊆ Uj and that ∩j∈Z>0Uj = cl(U). We first note that

C0(cl(O);G hol,R

cl(U),E
) ≃ C0(cl(O))q⊗eG

hol,R

cl(U),E

and
C0(cl(O); Γhol,R(E|Uj)) ≃ C0(cl(O))q⊗eΓ

hol,R(E|Uj),
with q⊗e denoting the completed injective tensor product; see [Jarchow 1981, Chapter 16]
for the injective tensor product for locally convex spaces and [Diestel, Fourie, and Swart
2008, Theorem 1.1.10] for the preceding isomorphisms for Banach spaces (the constructions
apply more or less verbatim to locally convex spaces [Bierstedt 2007, Proposition 5.4]).
One can also prove, using the argument from the proof of [Diestel, Fourie, and Swart 2008,

Theorem 1.1.10] (see top of page 15 of that reference), that, if [ξ]K ∈ C0(cl(O);G hol,R

cl(U),E
), then

there is a sequence (we know there is a net) ([ξk]cl(U))k∈Z>0 in C0(cl(O))⊗G hol,R

cl(U),E
converging

to [ξ]K in the completed injective tensor product topology. Note that since G hol,R

cl(U),E
and

Γhol,R(E|Uj), j ∈ Z>0, are nuclear, the injective tensor product can be swapped with the
projective tensor product in the above constructions [Pietsch 1969, Proposition 5.4.2]. One
can now reproduce the argument from the proof of Theorem 6.25, swapping L1(T′;R) with
C0(cl(O)) and using the results of Mangino [1997], to complete the proof in this case.

(ii) Let (x0, p0) ∈ M × P, let a ∈ c↓0(Z≥0;R>0), and let ϵ ∈ R>0. Let U ⊆ M be a
relatively compact neighbourhood of x0 and let U be a relatively compact neighbourhood
of cl(U). By Proposition 4.2, there exist C, r ∈ R>0 such that

p∞cl(U),m(σξ(p)− σξ(p0)) ≤ Cr−m sup{∥ξ(z, p)− ξ(z, p0)∥G | z ∈ U}

for all m ∈ Z≥0 and p ∈ P. Now let N ∈ Z≥0 be such that aN+1 < r and let O be a
neighbourhood of p0 such that

∥ξ(z, p)− ξ(z, p0)∥G <
ϵrm

Ca0a1 · · · am
, m ∈ {0, 1, . . . , N},

for (z, p) ∈ U× O. Then, if m ∈ {0, 1, . . . , N}, we have

a0a1 · · · am∥jmξp(x)− jmξ
p0(x)∥Gm

≤ a0a1 · · · amCr−m sup{∥ξ(z, p)− ξ(z, p0)∥Gm
| z ∈ U} < ϵ,
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for (x, p) ∈ U× O. If m > N we also have

a0a1 · · · am∥jmξp(x)−jmξp0(x)∥Gm

≤ a0a1 · · · aNr−Nrm∥jmξp(x)− jmξ
p0(x)∥Gm

≤ a0a1 · · · aNr−NrmCr−m sup{∥ξ(z, p)− ξ(z, p0)∥Gm
| z ∈ U} < ϵ,

for (x, p) ∈ U× O, as desired. ■

The next example shows that the assumption of local compactness cannot be generally
relaxed.

7.15 Example: (Jointly parameterised real analytic sections are not always re-
strictions of jointly parameterised holomorphic sections) Let M = R, let P =
Cω(R), and define f : R × P → R by f(x, g) = g(x). Since g 7→ fg is the identity map,
we conclude from Proposition 7.12 that f ∈ JPCω(P;M). Let x0 ∈ R. We claim that, for
any neighbourhood U of x0 in C and any neighbourhood O of 0 ∈ P, there exists g ∈ O

such that g, and therefore fg, does not have an holomorphic extension to U. To see this,
let σ ∈ R>0 be such that the disk D(σ, x0) in C is contained in U. Let K1, . . . ,Kr ⊆ R be
compact, let a1, . . . ,ar ∈ c↓0(Z≥0;R>0), and let ϵ1, . . . , ϵr ∈ R>0 be such that

∩rj=1{g ∈ P | pKj ,aj (g) ≤ ϵj} ⊆ O.

Now define
g(x) =

α

1 + ((x− x0)/σ)2
, x ∈ R,

with α ∈ R>0 chosen sufficiently small that pKj ,aj (g) < ϵj , j ∈ {1, . . . , r}, and note that

g ∈ O does not have an holomorphic extension to U, cf. the discussion at the beginning of
Section 5. •

Mixing regularity hypotheses. Just as we discussed with time-varying vector fields in Sec-
tion 6.5, it is possible to consider parameterised sections with mixed regularity hypothe-
ses. Indeed, the conditions of Definitions 7.1, 7.4, and 7.10 are joint on state and pa-
rameter. Thus we may consider the following situation. Let m ∈ Z≥0, m

′ ∈ {0, lip},
r ∈ Z≥0 ∪ {∞, ω}, and r′ ∈ {0, lip}. If r + r′ ≥ m+m′ (with the obvious convention that
∞+ lip = ∞ and ω + lip = ω), we may then consider a parameterised section in

SPΓr+r
′
(P;E) ∩ JPΓm+m′

(P;E)

As with time-varying vector fields, there is nothing wrong with this—indeed this is often
done—as long as one remembers what is true and what is not in the case when r + r′ >
m+m′.

7.2. Control systems with locally essentially bounded controls. Let us first establish
some terminology we will use throughout the remainder of the paper.
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7.16 Notation: (Regularity hypotheses and proofs with regularity hypotheses)
Starting in this section, and continuing throughout the remainder of the paper, we will
simultaneously be considering finitely differentiable, Lipschitz, smooth, and real analytic
hypotheses. To do this, we will let m ∈ Z≥0 and m′ ∈ {0, lip}, and consider the regularity
classes ν ∈ {m + m′,∞, ω}. In such cases we shall require that the underlying manifold
be of class “Cr, r ∈ {∞, ω}, as required.” This has the obvious meaning, namely that we
consider class Cω if ν = ω and class C∞ otherwise.

Proofs will typically break into the four cases ν = ∞, ν = m, ν = m+ lip, and ν = ω.
In most cases there is a structural similarity in the way arguments are carried out, so we
will oftentimes do all cases at once. In doing this, we will, for K ⊆ M be compact, for
k ∈ Z≥0, and for a ∈ c↓0(Z≥0;R>0), denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pm+lip
K , ν = m+ lip,

pωK,a, ν = ω.

Then, using the fact that ξ ∈ LIΓν(T;E) if and only if there exists g ∈ L1
loc(T;R≥0) such

that pK(ξt) ≤ g(t) (with a similar sort of assertion for parameterised section), we argue all
cases simultaneously. The convenience and brevity more than make up for the slight loss
of preciseness in this approach. •

With the notions of parameterised sections from the preceding section, we readily define
what we mean by a control system.

7.17 Definition: (Control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-control system is a triple Σ = (M, F,C),
where

(i) M is a Cr-manifold whose elements are called states,

(ii) C is a topological space called the control set , and

(iii) F ∈ JPΓν(C;TM). •
The governing equations for a control system are

ξ′(t) = F (ξ(t), µ(t)),

for suitable functions t 7→ µ(t) ∈ C and t 7→ ξ(t) ∈ M. To ensure that these equations make
sense, the differential equation should be shown to have the properties needed for existence
and uniqueness of solutions, as well as appropriate dependence on initial conditions. We do
this by allowing the controls for the system to be as general as reasonable.

7.18 Proposition: (Property of control system when the control is specified) Let
m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
Σ = (M, F,C) be a Cν-control system. If µ ∈ L∞

loc(T;C) (boundedness here being taking
with respect to the compact bornology) then Fµ ∈ LBΓν(T,TM), where Fµ : T ×M → TM
is defined by Fµ(t, x) = F (x, µ(t)).

Proof: Let us define F̂µ : T → Γν(TM) by F̂µ(t) = Fµt . By Propositions 7.2, 7.5, and 7.12,
the mapping u 7→ F u is continuous. Since F̂µ is thus the composition of the measurable
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function µ and the continuous mapping u 7→ F u, it follows that F̂µ is measurable. It follows
from Theorems 6.3, 6.9, and 6.21 that Fµ is a Carathéodory vector field of class Cν .

Let T′ ⊆ T be compact. Since µ is locally essentially bounded, there exists a compact
set K ⊆ C such that

λ({t ∈ T′ | µ(t) ̸∈ K}) = 0.

Since the mapping u 7→ F u is continuous,

{Fµt | t ∈ T′}

is contained in a compact subset of Γν(TM), i.e., Fµ is locally essentially bounded. ■

The notion of a trajectory is, of course, well known. However, we make the definitions
clear for future reference.

7.19 Definition: (Trajectory for control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-control
system. For an interval T ⊆ R, a T-trajectory is a locally absolutely continuous curve
ξ : T → M for which there exists µ ∈ L∞

loc(T;C) such that

ξ′(t) = F (ξ(t), µ(t)), a.e. t ∈ T.

The set of T-trajectories we denote by Traj(T,Σ). If U is open, we denote by Traj(T,U,Σ)
those trajectories taking values in U.11 •

One may also wish to restrict the class of controls one uses. Thus we can consider, for
each time-domain T, a subset C (T) ⊆ L∞

loc(T;C). Generally, one will ask for some compat-
ibility conditions for these subsets, like, for example, that, if T′ ⊆ T, then µ|T′ ∈ C (T′)
for every µ ∈ C (T). For example, one may consider things like piecewise continuous or
piecewise constant controls. In this case, we denote by Traj(T,C ) the set of trajectories
arising from using controls from C (T). Similarly, by Traj(T,U,C ) we denote the trajec-
tories from this set taking values in an open set U. We shall see in Section 8 that our
tautological control systems provide a natural means of capturing issues such as this.

7.3. Control systems with locally integrable controls. In this section we specialise the
discussion from the preceding section in one direction, while generalising it in another. To
be precise, we now consider the case where our control set C is a subset of a locally convex
topological vector space, and the system structure is such that the notion of integrability
is preserved (in a way that will be made clear in Proposition 7.22 below).

7.20 Definition: (Sublinear control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-sublinear control system is a
triple Σ = (M, F,C), where

(i) M is a Cr-manifold whose elements are called states,

(ii) C is a subset of a locally convex topological vector space V, C being called the control
set , and

11This is not a common notion in this context, and our introduction of this is for the convenience of
making comparisons in the next section; see Theorems 8.35 and 8.37.
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(iii) F : M × C → TM has the following property: for every continuous seminorm p for
Γν(TM), there exists a continuous seminorm q for V such that

p(F u1 − F u2) ≤ q(u1 − u2), u1, u2 ∈ C. •

Note that, by Propositions 7.2, 7.5, and 7.12, the sublinearity condition (iii) implies
that a Cν-sublinear control system is a Cν-control system.

Let us demonstrate a class of sublinear control systems in which we will be particularly
interested.

7.21 Example: (Control-linear systems and control-affine systems) The class of sub-
linear control systems we consider seems quite particular, but will turn out to be extremely
general in our framework. We let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and
let r ∈ {∞, ω}, as required. Let V be a locally convex topological vector space, and let
C ⊆ V. We suppose that we have a continuous linear map Λ ∈ L(V; Γν(TM)) and we corre-
spondingly define FΛ : M × C → TM by FΛ(x, u) = Λ(u)(x). Continuity of Λ immediately
gives that the control system (M, FΛ,C) is sublinear, and we shall call a system such as this
a Cν-control-linear system .

Note that we can regard a control-affine system as a control-linear system as follows.
For a control-affine system with C ⊆ Rk and with

F (x,u) = f0(x) +

k∑
a=1

uafa(x),

we let V = Rk+1 ≃ R ⊕Rk and take

C′ = {(u0,u) ∈ R ⊕Rk | u0 = 1, u ∈ C}, Λ(u0,u) =
k∑
a=0

uafa.

Clearly we have F (x,u) = FΛ(x, (1,u)) for every u ∈ C. Since linear maps from finite-
dimensional locally convex spaces are continuous [Horváth 1966, Proposition 2.10.2], we
conclude that control-affine systems are control-linear systems. Thus they are also control
systems as per Definition 7.17. •

One may want to regard the generalisation from the case where the control set is a
subset of Rk to being a subset of a locally convex topological vector space to be mere fancy
generalisation, but this is, actually, far from being the case as we shall see in Section 8.

We also have a version of Proposition 7.18 for sublinear control systems.

7.22 Proposition: (Property of sublinear control system when the control is spec-
ified) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as
required. Let Σ = (M, F,C) be a Cν-sublinear control system for which C is a subset of a
locally convex topological vector space V. If µ ∈ L1

loc(T;C), then Fµ ∈ LIΓν(T;TM), where
Fµ : T ×M → TM is defined by Fµ(t, x) = F (x, µ(t)).

Proof: The proof that Fµ is a Carathéodory vector field of class Cν goes exactly as in
Proposition 7.18.
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To prove that Fµ ∈ LIΓν(T;TM), let K ⊆ M be compact, let k ∈ Z≥0, let a ∈
c↓0(Z≥0;R>0), and denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pm+lip
K , ν = m+ lip,

pωK,a, ν = ω.

Define g : T → R≥0 by g(t) = pK(Fµt ). We claim that g ∈ L∞
loc(T;R≥0). From the first

part of the proof of Proposition 7.18, t 7→ Fµt (x) is measurable for every x ∈ M. By
Theorems 6.3, 6.9, and 6.21, it follows that t 7→ Fµt is measurable. Since pK is a continuous
function on Γν(TM), it follows that t 7→ pK(Fµt ) is measurable, as claimed. We claim
that g ∈ L1

loc(T;R≥0). Note that X 7→ pK(X) is a continuous seminorm on Γ∞(TM). By
hypothesis, there exists a continuous seminorm q for the locally convex topology for V such
that

pK(F u1 − F u2) ≤ q(u1 − u2)

for every u1, u2 ∈ C. Therefore, if T′ ⊆ T is compact and if u0 ∈ C, we also have∫
T′
g(t) dt =

∫
T′
pK(Fµt )

≤
∫
T′
pK(Fµt − F u0) dt+

∫
T′
pK(F u0) dt

≤
∫
T′
q(µ(t)) dt+ (q(u0) + pK(F u0))λ(T′) <∞,

the last inequality by the characterisation of Bochner integrability from [Beckmann and
Deitmar 2011, Theorems 3.2 and 3.3]. Thus g is locally integrable. It follows from Theo-
rems 6.3, 6.9, and 6.21 that Fµ ∈ LIΓν(T;TM), as desired. ■

There is also a version of the notion of trajectory that is applicable to the case when
the control set is a subset of a locally convex topological space.

7.23 Definition: (Trajectory for sublinear control system) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-
control system. For an interval T ⊆ R, a T-trajectory is a locally absolutely continuous
curve ξ : T → M for which there exists µ ∈ L1

loc(T;C) such that

ξ′(t) = F (ξ(t), µ(t)), a.e. t ∈ T.

The set of T-trajectories we denote by Traj(T,Σ). If U is open, we denote by Traj(T,U,Σ)
those trajectories taking values in U. •

7.4. Differential inclusions. We briefly mentioned differential inclusions in Section 1.1,
but now let us define them properly and give a few attributes of, and constructions for,
differential inclusions of which we shall subsequently make use.

First the definition.
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7.24 Definition: (Differential inclusion, trajectory) For a smooth manifold M, a dif-
ferential inclusion on M is a set-valued map X : M ↠ TM with nonempty values for
which X (x) ⊆ TxM. A trajectory for a differential inclusion X is a locally absolutely
continuous curve ξ : T → M defined on an interval T ⊆ R for which ξ′(t) ∈ X (ξ(t)) for
almost every t ∈ T. If T ⊆ R is an interval and if U ⊆ M is open, by Traj(T,U,X ) we
denote the trajectories of X defined on T and taking values in U. •

Of course, differential inclusions will generally not have trajectories, and to ensure that
they do various hypotheses can be made. Two common attributes of differential inclusions
in this vein are the following.

7.25 Definition: (Lower and upper semicontinuity of differential inclusions) A
differential inclusion X on a smooth manifold M is:

(i) lower semicontinuous at x0 ∈ M if, for any v0 ∈ X (x0) and any neighbourhood
V ⊆ TM of v0, there exists a neighbourhood U ⊆ M of x0 such that X (x)∩V ̸= ∅ for
every x ∈ U;

(ii) lower semicontinuous if it is lower semicontinuous at every x ∈ M;

(iii) upper semicontinuous at x0 ∈ M if, for every open set TM ⊇ V ⊇ X (x0), there
exists a neighbourhood U ⊆ M of x0 such that X (U) ⊆ V;

(iv) upper semicontinuous if it is upper semicontinuous at each x ∈ M;

(v) continuous at x0 ∈ M if it is both lower and upper semicontinuous at x0;

(vi) continuous if it is both lower and upper semicontinuous. •
Other useful properties of differential inclusions are the following.

7.26 Definition: (Closed-valued, compact-valued, convex-valued differential in-
clusions) A differential inclusion X on a smooth manifold M is:

(i) closed-valued (resp. compact-valued , convex-valued) at x ∈ M if X (x) is closed
(resp., compact, convex);

(ii) closed-valued (resp. compact-valued , convex-valued) if X (x) is closed (resp.,
compact, convex) for every x ∈ M. •

Some standard hypotheses for existence of trajectories are then:

1. X is lower semicontinuous with closed and convex values [Aubin and Cellina 1984,
Theorem 2.1.1];

2. X is upper semicontinuous with compact and convex values [Aubin and Cellina 1984,
Theorem 2.1.4];

3. X is continuous with compact values [Aubin and Cellina 1984, Theorem 2.2.1].

These are not matters with which we shall be especially concerned.
A standard operation is to take “hulls” of differential inclusions in the following manner.

7.27 Definition: (Convex hull, closure of a differential inclusion) Let r ∈ {∞, ω},
let M be a Cr-manifold, and let X : M ↠ TM be a differential inclusion.

(i) The convex hull of X is the differential inclusion conv(X ) defined by

conv(X )(x) = conv(X (x)), x ∈ M.
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(ii) The closure of X is the differential inclusion cl(X ) defined by

cl(X )(x) = cl(X (x)), x ∈ M. •

To close this section, let us make an observation regarding the connection between
control systems and differential inclusions. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-control system. To
this system we associate the differential inclusion XΣ by

XΣ(x) = {F u(x) | u ∈ C}.

Since the differential inclusion XΣ is defined by a family of vector fields, one might try to
recover the vector fields F u, u ∈ C, from XΣ. The obvious way to do this is to consider

Γν(XΣ) ≜ {X ∈ Γν(TM) | X(x) ∈ XΣ(x), x ∈ M}.

Clearly we have F u ∈ Γν(XΣ) for every u ∈ C. However, XΣ will generally contain vector
fields not of the form F u for some u ∈ C. Let us give an illustration of this. Let us consider
a smooth control system (M, F,C) with the following properties:

1. C is a disjoint union of sets C1 and C2;

2. there exist disjoint open sets U1 and U2 such that supp(F u) ⊆ U1 for u ∈ C1 and
supp(F u) ⊆ U2 for u ∈ C2.

One then has that

{c1F u1 + c1F
u2 | u1 ∈ C1, u2 ∈ C2, c1, c2 ∈ {0, 1}, c21 + c22 ̸= 0} ⊆ Γν(XΣ),

showing that there are more sections of XΣ than there are control vector fields. This is very
much related to presheaves and sheaves, to which we shall now turn our attention.

8. Tautological control systems: Definitions and fundamental properties

In this section we introduce the class of control systems we propose as being useful
mathematical models for the investigation of geometric system structure. The reader would
do well to remember that this definition makes no pretences of being simple or user-friendly.
However, we can do some interesting things with these models, and to illustrate this we
present in Section 8.8 an elegant formulation of sub-Riemannian geometry in the framework
of tautological control systems.

8.1. Presheaves and sheaves of sets of vector fields. We choose to phrase our notion of
control systems in the language of sheaf theory. This will seem completely pointless to a
reader not used to thinking in this sort of language. However, we do believe there are benefits
to the sheaf approach including (1) sheaves are the proper framework for constructing
germs of control systems which are often important in the study of local system structure
and (2) sheaf theory provides us with a natural class of mappings between systems that we
use to advantage in Section 8.7.

We do not even come close to discussing sheaves in any generality; we merely give the
definitions we require, a few of the most elementary consequences of these definitions, and
some representative (for us) examples.
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8.1 Definition: (Presheaf of sets of vector fields) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr. A
presheaf of sets of Cν-vector fields is an assignment to each open set U ⊆ M a subset
F (U) of Γν(TU) with the property that, for open sets U,V ⊆ M with V ⊆ U, the map

rU,V : F (U) → Γν(TV)

X 7→ X|V

takes values in F (V). Elements of F (U) are called local sections over U. •
Let us give some notation to the presheaf of sets of vector fields of which every other

such presheaf is a subset.

8.2 Example: (Presheaf of all vector fields) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr. The
presheaf of all vector fields of class Cν is denoted by G νTM. Thus G νTM(U) = Γν(TU) for every
open set U. Presheaves such as this are extremely important in the “normal” applications
of sheaf theory. For those with some background in these more standard applications of
sheaf theory, we mention that our reasons for using the theory are not quite the usual ones.
Such readers will be advised to be careful not to overlay too much of their past experience
on what we do with sheaf theory here. •

The preceding notion of a presheaf is intuitively clear, but it does have some defects.
One of these defects is that one can describe local data that does not patch together to give
global data. Let us illustrate this with a few examples.

8.3 Examples: (Local definitions not globally consistent)

1. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let us take a manifold M of class Cr with a Riemannian metric G. Let us define a
presheaf Fbdd by asking that

Fbdd(U) = {X ∈ Γν(TM) | sup{∥X(x)∥G | x ∈ U} <∞}.

Thus Fbdd is comprised of vector fields that are “bounded.” This is a perfectly sensible
requirement. However, the following phenomenon can happen if M is not compact.
There can exist an open cover (Ua)a∈A for M and local sections Xa ∈ Fbdd(Ua) that are
“compatible” in the sense that Xa|Ua ∩ Ub = Xb|Ua ∩ Ub, for each a, b ∈ A, but such
that there is no globally defined section X ∈ Fbdd(M) such that X|Ua = Xa for every
a ∈ A. We leave to the reader the easy job of coming up with a concrete instance of
this.

2. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let M be a manifold of class Cr. If X ⊆ Γν(TM) is any family of vector fields on M,
then we can define an associated presheaf FX of sets of vector fields by

FX (U) = {X|U | X ∈ X }.

Note that F (M) is necessarily equal to X , and so we shall typically use F (M) to denote
the set of globally defined vector fields giving rise to this presheaf. A presheaf of this
sort will be called globally generated .
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This sort of presheaf will almost never have nice “local to global” properties. Let us
illustrate why this is so. Let M be a connected Hausdorff manifold. Suppose that the
set of globally defined vector fields F (M) has cardinality strictly larger than 1 and
has the following property: there exists a disconnected open set U ⊆ M such that the
mapping from F (U) to F (M) given by X|U 7→ X is injective. This property will hold
for real analytic families of vector fields, because we can take as U the union of a pair
of disconnected open sets. However, the property will also hold for many reasonable
families of smooth vector fields.

We write U = U1∪U2 for disjoint open sets U1 and U2. By hypothesis, there exist vector
fields X1, X2 ∈ F (M) such that X1|U ̸= X2|U. Define local sections X ′

a ∈ F (Ua) by
X ′
a = Xa|Ua, a ∈ {1, 2}. The condition

X ′
1|U1 ∩ U2 = X ′

2|U1 ∩ U2

is vacuously satisfied. But there can be no X ∈ F (M) such that, if X ′ ∈ F (U) is given
by X ′ = X|U, then X ′|U1 = X ′

1 and X ′|U2 = X ′
2.

While a globally generated presheaf is unlikely to allow patching from local to global,
this can be easily redressed by undergoing a process known as “sheafification” that we
will describe below. •
The preceding examples suggest that if one wishes to make compatible local construc-

tions that give rise to a global construction, additional properties need to be ascribed to a
presheaf of sets of vector fields. This we do as follows.

8.4 Definition: (Sheaf of sets of vector fields) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr.
A presheaf F of sets of Cν-vector fields is a sheaf of sets of Cν-vector fields if, for
every open set U ⊆ M, for every open cover (Ua)a∈A of U, and for every choice of local
sections Xa ∈ F (Ua) satisfying Xa|Ua ∩ Ub = Xb|Ua ∩ Ub, there exists X ∈ F (U) such
that X|Ua = Xa for every a ∈ A. •

The condition in the definition is called the gluing condition . Readers familiar with
sheaf theory will note the absence of the other condition, sometimes called the separation
condition, normally placed on a presheaf in order for it to be a sheaf: it is automatically
satisfied for presheaves of sets of vector fields.

Many of the presheaves that we encounter will not be sheaves, as they will be globally
generated. Thus let us give some examples of sheaves, just as a point of reference.

8.5 Examples: (Sheaves of sets of vector fields)

1. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let M be a Cr-manifold. The presheaf G νTM of all Cν-vector fields is a sheaf. We leave
the simple and standard working out of this to the reader; it will provide some facility
in working with sheaf concepts for those not already having this.

2. If instead of considering bounded vector fields as in part Example 8.3–1, we consider
the presheaf of vector fields satisfying a fixed bound, then the resulting presheaf is a
sheaf. Let us be clear. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let
r ∈ {∞, ω}, as required. We let M be a Cr-manifold with Riemannian metric G and,
for B ∈ R>0, define a presheaf F≤B by

F≤B(U) = {X ∈ Γν(TU) | sup{∥X(x)∥G | x ∈ U} ≤ B}.
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The presheaf F≤B is a sheaf, as is easily verified. In this case, the local constraints for
membership are compatible with a global one.

3. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let M be a Cr-manifold. Let A ⊆ M and define a presheaf IA of sets of vector fields by

IA(U) = {X ∈ Γν(TU) | X(x) = 0, x ∈ A}.

This is a sheaf (again, we leave the verification to the reader) called the ideal sheaf
of A. •
Let us now turn to localising sheaves of sets of vector fields. Let m ∈ Z≥0 and m′ ∈

{0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold,
let A ⊆ M, and let NA be the set of neighbourhoods of A in M, i.e., the open subsets of
M containing A. This is a directed set in the usual way by inclusion, i.e., U ⪯ V if V ⊆ U.
Let F be a sheaf of sets of Cν-vector fields. The stalk of F over A is the direct limit
dir limU∈NA

F (U). Let us be less cryptic about this. Let U,V ∈ NA, and let X ∈ F (U)
and Y ∈ F (V). We say X and Y are equivalent if there exists W ⊆ U ∩ V such that
X|W = Y |W. The germ of X ∈ F (U) for U ∈ NA is the equivalence class of X under this
equivalence relation. If U ∈ NA and if X ∈ F (U), then we denote by [X]A the equivalence
class of X in FA. The stalk of F over A is the set of all equivalence classes. The stalk of
F over A is denoted by FA, and we write F{x} as Fx.

Let us now describe how a presheaf can be converted in a natural way into a sheaf. The
description of how to do this for general presheaves is a little complicated. However, in the
case we are dealing with here, we can be explicit about this.

8.6 Lemma: (A sheaf associated to every presheaf of sets of vector fields) Let
m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
M be a Cr-manifold and let F be a presheaf of sets of Cν-vector fields. For an open set
U ⊆ M, define

Sh(F )(U) = {X ∈ Γν(TU) | [X]x ∈ Fx for every x ∈ U}.

Then Sh(F ) is a sheaf.

Proof: Let U ⊆ M be open and let (Ua)a∈A be an open cover of U. Suppose that local
sections Xa ∈ Sh(F )(Ua), a ∈ A, satisfy Xa|Ua ∩Ub = Xb|Ua ∩Ub for each a, b ∈ A. Since
G νTM is a sheaf, there exists X ∈ Γν(TU) such that X|Ua = Xa, a ∈ A. It remains to
show that X ∈ Sh(F )(U). Let x ∈ U and let a ∈ A be such that x ∈ Ua. Then we have
[X]x = [Xa]x ∈ Fx, as desired. ■

With the lemma in mind we have the following definition.

8.7 Definition: (Sheafification of a presheaf of sets of vector fields) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a
Cr-manifold and let F be a presheaf of sets of Cν-vector fields. The sheafification of F
is the sheaf Sh(F ) of sets of vector fields defined by

Sh(F )(U) = {X ∈ Γν(TU) | [X]x ∈ Fx for all x ∈ U}. •

Let us consider some examples of sheafification.
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8.8 Examples: (Sheafification)

1. Let us consider the presheaf of bounded vector fields from Example 8.3–1. Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be
a Cr-manifold and consider the presheaf Fbdd of bounded vector fields. One easily sees
that the stalk of this presheaf at x ∈ M is given by

Fbdd,x = {[X]x | X ∈ Γν(TM)},

i.e., there are no restrictions on the stalks coming from the boundedness restriction on
vector fields. Therefore, Sh(Fbdd) = G νTM.

2. Let us now examine the sheafification of a globally generated presheaf of sets of vector
fields as in Example 8.3–2. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and
let r ∈ {∞, ω}, as required. Let M be a Cr-manifold and let F be a globally generated
presheaf of sets of Cν-vector fields, with F (M) the global generators. We will contrast
F (U) with Sh(F )(U) to get an understanding of what the sheaf Sh(F ) “looks like.”

To do so, for U ⊆ M open and for X ∈ Γν(TU), let us define a set-valued map κX,U : U ↠
F (M) by

κX,U(x) = {X ′ ∈ F (M) | X ′(x) = X(x)}.

Generally, since we have asked nothing of the vector field X, we might have κX,U(x) =
∅ for a chosen x, or for some x, or for every x. If, however, we take X ∈ F (U),
then X = X ′|U for some X ′ ∈ F (M). Therefore, there exists a constant selection of
κX,U, i.e., a constant function s : U → F (M) such that s(x) ∈ κX,U(x) for every x ∈ U.
Note that if, for example, M is connected and ν = ω, then there will be a unique such
constant selection since a real analytic vector field known on an open subset uniquely
determines the vector field on the connected component containing this open set; this is
the Identity Theorem, cf. [Gunning 1990a, Theorem A.3] in the holomorphic case and
the same proof applies in the real analytic case. Moreover, this constant selection in
this case will completely characterise κX,U in the sense that κX,U(x) = {s(x)}.
Let us now contrast this with the character of the map κX,U for a local section X ∈
Sh(F )(U). In this case, for each x ∈ U, we have [X]x = [Xx]x for some Xx ∈ F (M).
Thus there exists a neighbourhood Vx ⊆ U such that X|Vx = Xx|Vx. What this
shows is that there is a locally constant selection of κX,U, i.e., a locally constant map
s : U → F (M) such that s(x) ∈ κX,U(x) for each x ∈ U. As above, in the real analytic
case when M is connected, this locally constant selection is uniquely determined, and
determines κX,U in the sense that κX,U(x) = {s(x)}.
Note that locally constant functions are those that are constant on connected compo-
nents. Thus, by passing to the sheafification, we have gained flexibility by allowing
local sections to differ on connected components of an open set. While this does not
completely characterise the difference between local sections of the globally generated
sheaf F and its sheafification Sh(F ), it captures the essence of the matter, and does
completely characterise the difference when ν = ω and M is connected. •

8.2. Tautological control systems. Our definition of a tautological control system is rela-
tively straightforward, given the definitions of the preceding section.
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8.9 Definition: (Tautological control system and related notions) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
(i) A Cν-tautological control system is a pair G = (M,F ), where M is a manifold

of class Cr whose elements are called states and where F is a presheaf of sets of
Cν-vector fields on M.

(ii) A tautological control system G = (M,F ) is complete if F is a sheaf and is globally
generated if F is globally generated.

(iii) The completion of G = (M,F ) is the tautological control system Sh(G) =
(M, Sh(F )). •

This is a pretty featureless definition, sorely in need of some connection to control theory.
Let us begin to build this connection by pointing out the manner in which more common
constructions give rise to tautological control systems, and vice versa.

8.10 Examples: (Correspondences between tautological control systems and
other sorts of control systems) One of the topics of interest to us will be the rela-
tionship between our notion of tautological control systems and the more common notions
of control systems (as in Sections 7.2 and 7.3) and differential inclusions (as in Section 7.4).
We begin here by making some more or less obvious associations.

1. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let Σ = (M, F,C) be a Cν-control system. To this control system we associate the
Cν-tautological control system GΣ = (M,FΣ) by

FΣ(U) = {F u|U ∈ Γν(TU) | u ∈ C}.

The presheaf of sets of vector fields in this case is of the globally generated variety, as in
Example 8.3–2. According to Example 8.3–2 we should generally not expect tautological
control systems such as this to be a priori complete. We can, however, sheafify so that
the tautological control system Sh(GΣ) is complete.

2. Let us consider a means of going from a large class of tautological control systems
to a control system. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and
let r ∈ {∞, ω}, as required. We suppose that we have a Cν-tautological control system
G = (M,F ) where the presheaf F is globally generated. We define a Cν-control system
ΣG = (M, FF ,CF ) as follows. We take CF = F (M), i.e., the control set is our family of
globally defined vector fields and the topology is that induced from Γν(TM). We define

FF : M× CF → TM

(x,X) 7→ X(x).

(Note that one has to make an awkward choice between writing a vector field as u or
a control as X, since vector fields are controls. We have gone with the latter awkward
choice, since it more readily mandates thinking about what the symbols mean.) Note
that FXF = X, and so this is somehow the identity map in disguise. In order for
this construction to provide a bona fide control system, we should check that FF is a
parameterised vector field of class Cν according to our Definitions 7.1, 7.4, and 7.10.
According to Propositions 7.2, 7.5, and 7.12, it is sufficient to check that the map
X 7→ FXF is continuous. But this is the identity map, which is obviously continuous!

Note that ΣG is a control-linear system, according to Example 7.21.
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3. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let X : M ↠ TM be a differential inclusion. If U ⊆ M is open, we denote

Γν(X |U) = {X ∈ Γν(TU) | X(x) ∈ X (x), x ∈ U}.

One should understand, of course, that we may very well have Γν(X |U) = ∅. This
might happen for two reasons.

(a) First, the differential inclusion may lack sufficient regularity to permit even local
sections of the prescribed regularity.

(b) Second, even if it permits local sections, there may be be problems finding sec-
tions defined on “large” open sets, because there may be global obstructions. One
might anticipate this to be especially problematic in the real analytic case, where
the specification of a vector field locally determines its behaviour globally by the
Identity Theorem, cf. [Gunning 1990a, Theorem A.3].

This caveat notwithstanding, we can go ahead and define a tautological control system
GX = (M,FX ) with FX (U) = Γν(X |U).
We claim that GX is complete. To see this, let U ⊆ M be open and let (Ua)a∈A be an
open cover for U. For each a ∈ A, let Xa ∈ FX (Ua) and suppose that, for a, b ∈ A,

Xa|Ua ∩ Ub = Xb|Ua ∩ Ub.

Since G νTM is a sheaf, let X ∈ Γν(TU) be such that X|Ua = Xa for each a ∈ A. We
claim that X ∈ FX (U). Indeed, for x ∈ U we have X(x) = Xa(x) ∈ X (x) if we take
a ∈ A such that x ∈ Ua.

The sheaf FX is not necessarily globally generated. Here is a stupid counterexample.
Let us define X (x) = TxM, x ∈ M, so that FX = G νTM. For an open set U, there will
generally be local sections X ∈ Γν(TU) that are not restrictions to U of globally defined
vector fields; vector fields that “blow up” at some point in the boundary of U are what
one should have in mind.

4. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Note that there is also associated to any Cν-tautological control system G = (M,F ) a
differential inclusion XG by

XG(x) = {X(x) | [X]x ∈ Fx},

recalling that Fx is the stalk of F at x. •
Now note that we can iterate the four constructions and ask to what extent we end up

back where we started. More precisely, we have the following result.

8.11 Proposition: (Going back and forth between classes of systems) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system, let Σ = (M, F,C) be a Cν-control system, and let X be
a differential inclusion. Then the following statements hold:

(i) if G is globally generated, then GΣG
= G;

(ii) if the map u 7→ F u from C to Γν(TM) is injective and open onto its image, then
ΣGΣ

= Σ;

(iii) F (U) ⊆ FXG
(U) for every open U ⊆ M;
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(iv) XGX ⊆ X .

Proof: (i) Let U ⊆ M be open and let X ∈ F (U). Then X = X ′|U for X ′ ∈ F (M).
Thus X ′ ∈ CF and X ′(x) = F (x,X ′) and so X ∈ FΣG

(U). Conversely, let X ∈ FΣG
(U).

Then X(x) = F (x,X ′), x ∈ U, for some X ′ ∈ CF . But this means that X(x) = X ′(x) for
X ′ ∈ F (U) and for all x ∈ U. In other words, X ∈ F (U).

(ii) Note that GΣ is globally generated. Thus we have

CFΣ
= FΣ(M) = {F u | u ∈ C}.

Since the map u 7→ F u is continuous (by Propositions 7.2, 7.5, and 7.12), and injective and
open onto its image (by hypothesis), it is an homeomorphism onto its image. Thus CFΣ

is
homeomorphic to C. Since u 7→ F u is injective we can unambiguously write

FFΣ
(x, F u) = F u(x) = F (x, u).

(iii) Let U ⊆ M be open. If X ∈ F (U), then clearly we have X(x) ∈ XG(x) for every
x ∈ U and so F (U) ⊆ FXG

(U), giving the assertion.
(iv) This is obvious. ■

8.12 Remark: (Correspondence between control systems and control-linear sys-
tems) The result establishes the rather surprising correspondence between control systems
Σ = (M, F,C) for which the map u 7→ F u is injective and open onto its image, and the
associated control-linear system ΣGΣ

= (M,FΣG
,CFΣ

). That is to say, at least at the sys-
tem level, in our treatment every system corresponds in a natural way to a control-linear
system, albeit with a rather complicated control set. This correspondence carries over to
trajectories as well, but one can also weaken these conditions to obtain trajectory corre-
spondence in more general situations. These matters we discuss in detail in Section 8.6. •

Let us make some comments on the hypotheses present in the preceding result.

8.13 Remarks: (Going back and forth between classes of systems)

1. Since GΣ is necessarily globally generated for any control system Σ, the requirement
that G be globally generated cannot be dropped in part (i).

2. The requirement that the map u 7→ F u be injective in part (ii) cannot be relaxed.
Without this assumption, there is no way to recover F from {F u | u ∈ C}. Similarly,
if this map is not open onto its image, while there may be a bijection between C and
CFΣ

, it will not be an homeomorphism which one needs for the control systems to be
the same.

3. The converse assertion in part (iii) does not generally hold, as many counterexamples
show. Here are two, each of a different character.

(a) We take M = R and consider the Cω-tautological control system G = (M,F )
where F is the globally generated presheaf defined by the single vector field x2 ∂

∂x .
Note that

XG(x) =

{
{0}, x = 0,

TxR, x ̸= 0.
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Therefore,

FX (U) =

{
{X ∈ Γω(TU) | X(0) = 0}, 0 ∈ U,

Γω(TU), 0 ̸∈ U.

It holds, therefore, that the vector field x ∂
∂x is a global section of FX , but is not a

global section of F .
(b) Let us again take M = R and now define a smooth tautological control system

G = (M,F ) by asking that F be the globally generated presheaf defined by the
vector fields X1, X2 ∈ Γ∞(R), where

X1(x) =

{
e−1/x ∂

∂x , x > 0,

0, x ≤ 0,

and

X2(x) =

{
e−1/x ∂

∂x , x < 0,

0, x ≥ 0.

In this case,

XG(x) =

{
{0}, x = 0,

{0} ∪ {e−1/x ∂
∂x}, x ̸= 0.

Therefore, FX is the sheafification of the globally generated presheaf defined by
the vector fields X1, X2, X3, and X4, where

X3(x) =

{
e−1/x ∂

∂x , x ̸= 0,

0, x = 0,

and X4 is the zero vector field.

4. Given the discussion in Example 8.10–3, one cannot reasonably expect that we will
generally have equality in part (iv) of the preceding result. Indeed, one might even be
inclined to say that it is only differential inclusions satisfying X = XGX that are useful
in geometric control theory. . . •
While we are not yet finished with the task of formulating our theory—trajectories have

yet to appear—it is worthwhile to make a pause at this point to reflect upon what we have
done and have not done. After a moments thought, one realises that the difference between
a control system Σ = (M, F,C) and its associated tautological control system GΣ = (M,FΣ)
is that, in the former case, the control vector fields are from the indexed family (F u)u∈C,
while for the tautological control system we have the set {F u | u ∈ C}. In going from the
former to the latter we have “forgotten” the index u which we are explicitly keeping track
of for control systems. If the map u 7→ F u is injective, as in Proposition 8.11(ii), then
there is no information lost as one goes from the indexed family to the set. If u 7→ F u

is not injective, then this is a signal that the control set is too large, and perhaps one
should collapse it in some way. In other words, one can probably suppose injectivity of
u 7→ F u without loss of generality. (Openness of this map is another matter. As we shall
see in Section 8.6 below, openness (and a little more) is crucial for there to be trajectory
correspondence between systems and tautological control systems.) This then leaves us
with the mathematical semantics of distinguishing between the indexed family (F u)u∈C and
the subset {F u | u ∈ C}. About this, let us make two observations.
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1. The entire edifice of nonlinear control theory seems, in some sense, to be built upon
the preference of the indexed family over the set. As we discuss in the introduction,
in applications there are very good reasons for doing this. But from the point of view
of the general theory, the idea that one should carefully maintain the labelling of the
vector fields from the set {F u | u ∈ C} seems to be a really unnecessary distraction.
And, moreover, it is a distraction upon which is built the whole notion of “feedback
transformation,” plus entire methodologies in control theory that are not feedback-
invariant, e.g., linearisation, cf. Example 1.1. So, semantics? Possibly, but sometimes
semantic choices are important.

2. Many readers will probably not be convinced by our attempts to magnify the distinction
between the indexed family (F u)u∈C and the set {F u | u ∈ C}. As we shall see, however,
this distinction becomes more apparent if one is really dedicated to using sets rather
than indexed families. Indeed, this deprives one of the notion of “control,” and one is
forced to be more thoughtful about what one means by “trajectory.” It is to this more
thoughtful undertaking that we now turn, slowly.

8.3. Open-loop systems. Trajectories are associated to “open-loop systems,” so we first
discuss these. We first introduce some notation. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. For a Cν-tautological control system
G = (M,F ), we then denote

LIΓν(T;F (U)) = {X : T → F (U) | X ∈ LIΓν(T;TU)},

for T ⊆ R an interval and U ⊆ M open.

8.14 Definition: (Open-loop system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system. An open-loop system for G is a triple Gol = (X,T,U) where

(i) T ⊆ R is an interval called the time-domain ;

(ii) U ⊆ M is open;

(iii) X ∈ LIΓν(T;F (U)). •
Note that an open-loop system for G = (M,F ) is also an open-loop system for the

completion Sh(G), just because F (U) ⊆ Sh(F )(U). However, of course, there may be
open-loop systems for Sh(G) that are not open-loop systems for G. This is as it should be,
and has no significant ramifications for the theory, as we shall see as we go along.

In order to see how we should think about an open-loop system, let us consider this
notion in the special case of control systems.

8.15 Example: (Open-loop systems associated to control systems) Letm ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C)
be a Cν-control system with GΣ the associated Cν-tautological control system. If we let
µ ∈ L∞

loc(T;C), then we have the associated open-loop system GΣ,µ = (Fµ,T,M) defined by

Fµ(t)(x) = F (x, µ(t)), t ∈ T, x ∈ M.

Proposition 7.18 ensures that this is an open-loop system for the tautological control system
GΣ.
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A similar assertion holds if C is a subset of a locally convex topological vector space and
F defines a sublinear control system, and if µ ∈ L1

loc(T;C), cf. Proposition 7.22. •

8.16 Notation: (Open-loop systems) For an open-loop system Gol(X,T,U), the nota-
tion X(t)(x), while accurate, is unnecessarily cumbersome, and we will often instead write
X(t, x) or Xt(x), with no loss of clarity and a gain in aesthetics. •

Generally one might wish to place a restriction on the set of open-loop systems one will
use. This is tantamount to, for usual control systems, placing restrictions on the controls
one might use; one may wish to use piecewise continuous controls or piecewise constant
controls, for example. For tautological control systems we do this as follows.

8.17 Definition: (Open-loop subfamily) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system. An open-loop subfamily for G is an assignment, to each interval T ⊆ R and each
open set U ⊆ M, a subset OG(T,U) ⊆ LIΓν(T;F (U)) with the property that, if (T1,U1)
and (T2,U2) are such that T1 ⊆ T2 and U1 ⊆ U2, then

{X|T1 × U1 | X ∈ OG(T2,U2)} ⊆ OG(T1,U1). •

Here are a few common examples of open-loop subfamilies.

8.18 Examples: (Open-loop subfamilies) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system.

1. The full subfamily for G is the open-loop subfamily OG,full defined by

OG,full(T,U) = LIΓν(T;F (U)).

Thus the full subfamily contains all possible open-loop systems. Of course, every open-
loop subfamily will be contained in this one.

2. The locally essentially bounded subfamily for G is the open-loop subfamily OG,∞
defined by asking that

OG,∞(T,U) = {X ∈ OG,full(T,U) | X ∈ LBΓν(T;TU)}.

Thus, for the locally essentially bounded subfamily, we require that the condition of
being locally integrally Cν-bounded be replaced with the stronger condition of being
locally essentially Cν-bounded.

3. The locally essentially compact subfamily for G is the open-loop subfamily OG,cpt

defined by asking that

OG,cpt(T,U) = {X ∈ OG,full(T,U)| for every compact subinterval T′ ⊆ T
there exists a compact K ⊆ Γν(T;TU)

such that X(t) ⊆ K for almost every t ∈ T′}.

Thus, for the locally essentially compact subfamily, we require that the condition of
being locally essentially bounded in the von Neumann bornology (that defines the locally
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essentially bounded subfamily) be replaced with being locally essentially bounded in the
compact bornology.

We comment that in cases when the compact and von Neumann bornologies agree, then
of course we have OG,∞ = OG,cpt. As we have seen in CO∞-5 and Cω-5, this is the case
when ν ∈ {∞, ω}.

4. The piecewise constant subfamily for G is the open-loop subfamily OG,pwc defined
by asking that

OG,pwc(T;U) = {X ∈ OG,full(T,U) | t 7→ X(t) is piecewise constant}.

Let us be clear what we mean by piecewise constant. We mean that there is a partition
(Tj)j∈J of T into pairwise disjoint intervals such that

(a) for any compact interval T′ ⊆ T, the set

{j ∈ J | T′ ∩ Tj ̸= ∅}

is finite and such that
(b) X|Tj is constant for each j ∈ J .

One might imagine that the piecewise constant open-loop subfamily will be useful for
studying orbits and controllability of tautological control systems.

5. We can associate an open-loop subfamily to an open-loop system as follows. Let m ∈
Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
G = (M,F ) be a Cν-tautological control system, let OG be an open-loop subfamily for
G, let T be a time-domain, let U ⊆ M be open, and let X ∈ OG(T,U). We denote by
OG,X the open-loop subfamily defined as follows. If T′ ⊆ T and U′ ⊆ U, then we let

OG,X(T
′,U′) = {X ′ ∈ OG(T′,U′) | X ′ = X|T′ × U′}.

If T′ ̸⊆ T and/or U′ ̸⊆ U, then we take OG,X = ∅. Thus OG,X is comprised of those
vector fields from OG that are merely restrictions of X to smaller domains. Just why
this might be interesting we will only see when we discuss linearisation about a reference
flow in Section 9.4.

6. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
In Proposition 8.11 we saw that there was a pretty robust correspondence between Cν-
control systems and Cν-tautological control systems, at the system level . As we make
our way towards trajectories, as we are now doing, this robustness breaks down a little.
To frame this, we can define an open-loop subfamily for the tautological control system
associated to a Cν-control system Σ = (M, F,C) as follows. For a time-domain T and
an open U ⊆ M, we define

OΣ(T,U) = {Fµ|U | µ ∈ L∞
loc(T;C)},

recalling that Fµ(t, x) = F (x, µ(t)). We clearly have OΣ(T;U) ⊆ OGΣ,cpt(T;U) for
every time-domain T and every open U ⊆ M; this was proved in the course of proving
Proposition 7.18. Of course, by virtue of Proposition 7.22, we have a corresponding
construction if the control set C is a subset of a locally convex topological vector space,
if F is sublinear, and if µ ∈ L1

loc(T;C). However, we do not generally expect to have
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equality of these two open-loop subfamilies. This, in turn, will have repercussions on
the nature of the trajectories for these subfamilies, and, therefore, on the relationship
of trajectories of a control system and the corresponding tautological control system.
We will consider these matters in Section 8.6, and we will see that, for many interesting
classes of control systems, there is, in fact, a natural trajectory correspondence between
the system and its associated tautological control system. •
Our notion of an open-loop subfamily is very general, and working with the full general-

ity will typically lead to annoying problems. There are many attributes that one may wish
for open-loop subfamilies to satisfy in order to relax some the annoyance. To illustrate, let
us define a typical attribute that one may require, that of translation-invariance. Let us
define some notation so that we can easily make the definition. For a time-domain T and
for s ∈ R, we denote

s+ T = {s+ t | t ∈ T}

and we denote by τs : s+ T → T the translation map τs(t) = t− s.

8.19 Definition: (Translation-invariant open-loop subfamily) Letm ∈ Z≥0 andm
′ ∈

{0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-
tautological control system. An open-loop subfamily OG for G is translation-invariant
if, for every s ∈ R, every time-domain T, and every open set U ⊆ M, the map

(τs × idU)
∗ : OG(s+ T,U) → OG(T,U)
X 7→ X ◦ (τs × idU)

is a bijection. •
An immediate consequence of the definition is, of course, that if t 7→ ξ(t) is a trajectory

(we will formally define the notion of “trajectory” in the next section), then so is t 7→ ξ(s+t)
for every s ∈ R.

Let us now think about how open-loop subfamilies interact with completion. In order
for the definition we are about to make make sense, we should verify the following lemma.

8.20 Lemma: (Time-varying vector fields characterised by their germs) Let m ∈
Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be
a Cr-manifold, let T ⊆ R be an interval, and let X : T ×M → TM have the property that
X(t, x) ∈ TxM for each (t, x) ∈ T ×M. Then the following statements hold:

(i) if, for each x ∈ M, there exist a neighbourhood U of x and X ′ ∈ CFΓν(T;TU) such
that [Xt]x = [X ′

t]x for every t ∈ T, then X ∈ CFΓν(T;TM);

(ii) if, for each x ∈ M, there exist a neighbourhood U of x and X ′ ∈ LIΓν(T;TU) such
that [Xt]x = [X ′

t]x for every t ∈ T, then X ∈ LIΓν(T;TM);

(iii) if, for each x ∈ M, there exist a neighbourhood U of x and X ′ ∈ LBΓν(T;TU) such
that [Xt]x = [X ′

t]x for every t ∈ T, then X ∈ LBΓν(T;TM).

Proof: (i) Let x ∈ M. Since X agrees in some neighbourhood of x with a Carathéodory
vector field X ′, it follows that t 7→ Xt(x) = X ′

t(x) is measurable. In like manner, let t ∈ T
and let x0 ∈ M. Then x 7→ Xt(x) = X ′

t(x) is of class C
ν in a neighbourhood of x0, and so

x 7→ Xt(x) is of class C
ν .
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(ii) For K ⊆ M compact, for k ∈ Z≥0, and for a ∈ c↓0(Z≥0;R>0), denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pm+lip
K , ν = m+ lip,

pωK,a, ν = ω.

Let K ⊆ M be compact, let x ∈ K, let Ux be a relatively compact neighbourhood of x,
and let Xx ∈ LIΓν(T;Ux) be such that [Xt]x = [Xx,t]x for every t ∈ T. Then there exists
gx ∈ L1

loc(T;R≥0) such that

pcl(Ux)(Xx,t) ≤ gx(t), t ∈ T.

Now let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Uxj . Let g(t) = max{gx1(t), . . . , gxk(t)},
noting that the associated function g is measurable by [Cohn 2013, Proposition 2.1.4] and
is locally integrable by the triangle inequality, along with the fact that

g(t) ≤ C(gx1(t) + · · ·+ gxk(t))

for some suitable C ∈ R>0 (this is simply the statement of the equivalence of the ℓ1 and
ℓ∞ norms for Rn). We then have

pK(Xt) ≤ g(t), t ∈ T,

showing that X ∈ LIΓν(T;TM).
(iii) This is proved in exactly the same manner, mutatis mutandis, as the preceding part

of the lemma. ■

The following definition can now be made.

8.21 Definition: (Completion of an open-loop subfamily) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system and let OG be an open-loop subfamily for G. The
completion of OG is the open-loop subfamily Sh(OG) for Sh(G) defined by specifying that
(X,T,U) ∈ Sh(OG) if, for each x ∈ U, there exist a neighbourhood U′ ⊆ U of x and
(X ′,T,U′) ∈ OG(T,U′) such that [Xt]x = [X ′

t]x for each t ∈ T. •
Clearly the completion of an open-loop subfamily is an open-loop subfamily for the

completion. Moreover, if (X,T,U) ∈ OG(T,U), then (X,T,U) ∈ Sh(OG(T,U)), but one
cannot expect the converse assertion to generally hold.

8.4. Trajectories. With the concept of open-loop system just developed, it is relatively
easy to provide a notion of a trajectory for a tautological control system.
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8.22 Definition: (Trajectory for tautological control system) Let m ∈ Z≥0 and m
′ ∈

{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a
Cν-tautological control system and let OG be an open-loop subfamily for G.

(i) For a time-domain T, an open set U ⊆ M, and for X ∈ OG(T,U), an (X,T,U)-
trajectory for OG is a curve ξ : T → U such that ξ′(t) = X(t, ξ(t)) for almost every
t ∈ T.

(ii) For a time-domain T and an open set U ⊆ M, a (T,U)-trajectory for OG is a curve
ξ : T → U such that ξ′(t) = X(t, ξ(t)) for almost every t ∈ T for some X ∈ OG(T,U).

(iii) A trajectory for OG is a curve that is a (T,U)-trajectory for OG for some time-domain
T and some open set U ⊆ M.

We denote by:

(iv) Traj(X,T;U) the set of (X,T,U)-trajectories for OG;

(v) Traj(T,U,OG) the set of (T,U)-trajectories for OG;

(vi) Traj(OG) the set of trajectories for OG.

We shall abbreviate Traj(T,U,G) = Traj(T,U,OG,full) and Traj(G) = Traj(OG,full). •
Sometimes one wishes to keep track of the fact that, associated with a trajectory is an

open-loop system. The following notion is designed to capture this.

8.23 Definition: (Referenced trajectory) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system and let OG be an open-loop subfamily for G. A referenced OG-trajectory is a
pair (X, ξ) where X ∈ OG(T;U) and ξ ∈ Traj(X,T,U). By Rtraj(T,U,OG) we denote the
set of referenced OG-trajectories for which X ∈ OG(T;U).

In Section 8.6 below, we shall explore trajectory correspondences between tautological
control systems, control systems, and differential inclusions.

The notion of a trajectory immediately gives rise to a certain open-loop subfamily. At
present it may not be clear why this construction is interesting, but it will come up in
Section 9.4 when we talk about linearisations about trajectories.

8.24 Example: (The open-loop subfamily defined by a trajectory) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system, let OG be an open-loop subfamily for G, and let ξ ∈
Traj(T,U,OG). We denote by OG,ξ the open-loop subfamily defined as follows. If T′ ⊆ T
and U′ ⊆ U are such that ξ(T′) ⊆ U′, then we let

OG,ξ(T
′,U′) = {X ∈ OG(T′,U′) | ξ′(t) = X(t, ξ(t)), a.e. t ∈ T′}.

If T′ ̸⊆ T or U′ ̸⊆ U, or if T′ ⊆ T and U′ ⊆ U but ξ(T′) ̸⊆ U′, then we take OG,ξ = ∅. Thus
OG,ξ is comprised of those vector fields from OG possessing ξ (restricted to the appropriate
subinterval) as an integral curve. •

In control theory, trajectories are of paramount importance, often far more important,
say, than systems per se. For this reason, one might ask that completion of a tautological
control system preserve trajectories. However, this will generally not be the case, as the
following counterexample illustrates.
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8.25 Example: (Sheafification does not preserve trajectories) We will chat our way
through a general example; the reader can very easily create a specific concrete instance
from the general discussion.

Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
We let M be a Cr-manifold with Riemannian metric G. We consider the presheaf Fbdd

of bounded Cν-vector fields on M, initially discussed in Example 8.3–1. We let Gbdd =
(M,Fbdd) so that, as we saw in Example 8.8–1, Sh(Fbdd) = G νTM. Let X be a vector field
possessing an integral curve ξ : T → M for which

lim sup
t→supT

∥ξ′(t)∥G = ∞

(this requires that T be noncompact, of course).
Now let us see how this gives rise to a trajectory for Sh(Gbdd) that is not a trajectory

for Gbdd. We let T be the interval of definition of the integral curve ξ described above. We
consider the open subset M ⊆ M. We then have the open-loop system (X,T,M) specified
by letting X(t) = X (abusing notation), i.e., we consider a time-independent open-loop
system. It is clear, then, that ξ ∈ Traj(T,M, Sh(Gbdd)) (since Sh(Gbdd) = (M,G νTM) as we
showed in Example 8.8–1), but that ξ cannot be a trajectory for Gbdd since any vector field
possessing ξ as an integral curve cannot be bounded. •

Thus we cannot expect sheafification to generally preserve trajectories. This should be
neither a surprise nor a disappointment to us. It is gratifying, however, that sheafification
does preserve trajectories in at least one important case.

8.26 Proposition: (Trajectories are preserved by sheafification of globally gener-
ated systems) Let m ∈ Z≥0 and m

′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω},
as required. Let G = (M,F ) be a globally generated Cν-tautological control system, let T
be a time-domain, and let OG be an open-loop subfamily for G. For a locally absolutely
continuous curve ξ : T → M the following statements are equivalent:

(i) ξ ∈ Traj(T,U,OG) for some open set U ⊆ M;

(ii) ξ ∈ Traj(T,U′, Sh(OG)) for some open set U′ ⊆ M.

Proof: Since OG(T,U) ⊆ Sh(OG)(T,U), the first assertion clearly implies the second. So it
is the opposite implication we need to prove.

Thus let U′ ⊆ M be open and suppose that ξ ∈ Traj(T,U′, Sh(OG)). Let X ∈
LIΓν(T;TU′) be such that ξ is an integral curve for X and such that Xt ∈ Sh(F )(U′)
for every t ∈ T. For each fixed τ ∈ T, there exists Xτ ∈ LIΓν(T;F (M)) such that
[Xτ,t]ξ(τ) = [Xt]ξ(τ) for every t ∈ T. (This is the definition of Sh(OG), noting that F is
globally generated.) This means that around τ we have a bounded open interval Tτ ⊆ T
and a neighbourhood Uτ of ξ(τ) so that ξ(Tτ ) ⊆ Uτ and so that ξ′(t) = Xτ (t, ξ(t)) for
almost every t ∈ Tτ . By paracompactness, we can choose a locally finite refinement of these
intervals that also covers T. By repartitioning, we arrive at a locally finite pairwise disjoint
covering (Tj)j∈J of T by subintervals with the following property: the index set J is a finite
or countable subset of Z chosen so that t1 < t2 whenever t1 ∈ Tj1 and t2 ∈ Tj2 with j1 < j2.
That is, we order the labels for the elements of the partition in the natural way, this making
sense since the cover is locally finite. By construction, we have Xj ∈ LIΓν(Tj ;F (M)) with
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the property that ξ|Tj is an integral curve for Xj . We then define X : T → F (M) by asking
that X|Tj = Xj . It remains to show that X ∈ LIΓν(T;F (M)).

Because each of the vector fields Xj , j ∈ J , is a Carathéodory vector field, we easily
conclude that X is also a Carathéodory vector field.

Let K ⊆ M be compact, k ∈ Z≥0, and a ∈ c↓0(Z≥0;R>0), and denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pm+lip
K , ν = m+ lip,

pωK,a, ν = ω.

For each j ∈ J , there then exists gj ∈ L1
loc(Tj ;R≥0) such that

pK(Xj,t) ≤ gj(t), t ∈ Tj .

Define g : T → R≥0 by asking that g|Tj = gj . We claim that g ∈ L1
loc(T;R≥0). Let T′ ⊆ T

be a compact subinterval. The set

JT′ = {j ∈ J | T′ ∩ Tj ̸= ∅}.

is finite by local finiteness of the cover (Tj)j∈J . Now we have∫
T′
g(t) dt ≤

∑
j∈JT′

∫
Tj

gj(t) dt <∞.

Since
pK(Xt) ≤ g(t), t ∈ T,

we conclude that X ∈ LIΓν(T;TM), as desired. ■

8.5. Attributes that can be given to tautological control systems. In this section we
show that some typical assumptions that are made for control systems also can be made
for tautological control systems. None of this is particularly earth-shattering, but it does
serves as a plausibility check for our framework, letting us know that it has some common
ground with familiar constructions from control theory.

A construction that often occurs in control theory is to determine a trajectory as the
limit of a sequence of trajectories in some manner. To ensure the existence of such limits,
the following property for tautological control systems is useful.

8.27 Definition: (Closed tautological control system) Let m ∈ Z≥0 and m′ ∈ {0, lip},
let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-tautological control system
G = (M,F ) is closed if F (U) is closed in the topology of Γν(TU) for every open set
U ⊆ M. •

Here are some examples of control systems that give rise to closed tautological control
systems.
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8.28 Proposition: (Control systems with closed tautological control systems) Let
m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
Σ = (M, F,C) be a Cν-control system with GΣ the associated Cν-tautological control system
as in Example 8.10–1. Then GΣ is closed if Σ has either of the following two attributes:

(i) C is compact;

(ii) C is a closed subset of Rk and the system is control-affine, i.e.,

F (x,u) = f0(x) +

k∑
a=1

uafa(x),

for f0, f1, . . . , fk ∈ Γν(TM).

Proof: (i) Let U ⊆ M be open. By Propositions 7.2, 7.5, and 7.12, the map

C ∋ u 7→ F u ∈ Γν(TU)

is continuous. Now let U ⊆ M be open and note that FΣ(U) is the image of C under the
mapping

C ∋ u 7→ F u|U ∈ Γν(TU).

Thus FΣ(U) is compact, and so closed, being the image of a compact set under a continuous
mapping [Willard 1970, Theorem 17.7].

(ii) Let U ⊆ M be open. Just as in the preceding part of the proof, we consider the
mapping u 7→ Fu|U. Note that the image of the mapping

u 7→ Fu = f0 +
k∑
a=1

uafa

is a finite-dimensional affine subspace of the R-vector space Γν(TU). Therefore, this image
is closed since (1) locally convex topologies are translation invariant (by construction) and
since (2) finite-dimensional subspaces of locally convex spaces are closed [Horváth 1966,
Proposition 2.10.1]. Moreover, the map u 7→ Fu|U is closed onto its image since any sur-
jective linear map between finite-dimensional locally convex spaces is closed. We conclude,
therefore, that if we restrict this map from all of Rk to C, then the image is closed. ■

Let us next turn to attributes of tautological control systems arising from the fact, shown
in Example 8.10–4, that tautological control systems give rise to differential inclusions in a
natural way.

8.29 Proposition: (Continuity of differential inclusions arising from tautological
control systems) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let
r ∈ {∞, ω}, as required. If G = (M,F ) is a Cν-tautological control system, then

(i) XG is lower semicontinuous and

(ii) XG is upper semicontinuous if G is globally generated and F (M) is compact.
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Proof: (i) Let x0 ∈ M and let vx0 ∈ XG(x0). Then there exists a neighbourhood W of x0
and X ∈ F (W) such that X(x0) = vx0 . Let V ⊆ TM be a neighbourhood of vx0 . By
continuity of X, there exists a neighbourhood U ⊆ W of x0 such that X(U) ⊆ V. This
implies that X(x) ∈ XG(x) for every x ∈ U, giving lower semicontinuity of XG.

(ii) Let x0 ∈ M and let V ⊆ TM be a neighbourhood of XG(x0). For each X ∈ F (M),
V is a neighbourhood of X(x0) and so there exist neighbourhoods MX ⊆ M of x0 and
CX ⊆ F (M) of X such that

{X ′(x) | x ∈ MX , X
′ ∈ CX} ⊆ V.

Since F (M) is compact, let X1, . . . , Xk ∈ F (M) be such that F (M) = ∪kj=1CXj . Then the

neighbourhood U = ∩kj=1MXj of x0 has the property that XG(U) ⊆ V. ■

There are many easy examples to illustrate that compactness of F (M) is generally
required in part (ii) of the preceding result. Here is one.

8.30 Example: (A tautological control system with non-upper semicontinuous
differential inclusion) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let
r ∈ {∞, ω}, as required. Let M be a Cr-manifold and let x0 ∈ M. Let F (x0) be the globally
generated sheaf of sets of Cν-vector fields defined by

F (x0)(M) = {X ∈ Γν(TM) | X(x0) = 0}.

We claim that, if we take G = (M,F (x0)), then we have

XG(x) =

{
{0x0}, x = x0,

TxM, x ̸= x0.
(8.1)

In the case ν = ∞ or ν = m, this is straightforward. Let U be a neighbourhood of x ̸= x0
such that x0 ̸∈ cl(U). By the smooth Tietze Extension Theorem [Abraham, Marsden, and
Ratiu 1988, Proposition 5.5.8], if X ∈ Γ∞(TM), then there exists X ′ ∈ Γ∞(TM) such that
X ′|U = X|U and such that X ′(x0) = 0x0 . Thus [X]x = [X ′

x] and so we have F (x0)x = G νx,M
in this case. From this, (8.1) follows.

The case of ν = m+ lip follows as does the case ν = m, noting that a locally Lipschitz
vector field multiplied by a smooth function is still a locally Lipschitz vector field [Weaver
1999, Proposition 1.5.3].

The case of ν = ω is a little more difficult, and relies on Cartan’s Theorem A for coherent
sheaves on real analytic manifolds [Cartan 1957]. Here is the argument for those who know
a little about sheaves. First, define a sheaf of sets (in fact, submodules) of real analytic
vector fields by

Ix0(U) =

{
{X ∈ Γω(TU) | X(x0) = 0x0}, x0 ∈ U,

Γω(TU), x0 ̸∈ U.

We note that Ix0 is a coherent sheaf since it is a finitely generated subsheaf of the coherent
sheaf G ωTM [Demailly 2012, Theorem 3.16].12 Let x ̸= x0 and let vx ∈ TxM. By Cartan’s

12This relies on the fact that Oka’s Theorem, in the version of “the sheaf of sections of a vector bundle
is coherent,” holds in the real analytic case. It does, and the proof is the same as for the holomorphic
case [Demailly 2012, Theorem 3.19] since the essential ingredient is the Weierstrass Preparation Theorem,
which holds in the real analytic case [Krantz and Parks 2002, Theorem 6.1.3].
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Theorem A, there exist X1, . . . , Xk ∈ Ix0(M) = F (x0)(M) such that [X1]x, . . . , [Xk]x
generate (Ix0)x = G ωx,TM as a module over the ring C ω

x,M of germs of functions at x. Let

[X]x ∈ G ωx,TM be such that X(x) = vx. There then exist [f1]x, . . . , [f
k]x ∈ C ω

x,M such that

[f1]x[X1]x + · · ·+ [fk]x[Xk]x = [X]x.

Therefore,
vx = X(x) = f1(x)X1(x) + · · ·+ fk(x)Xk(x),

and so, taking
X = f1X1 + · · ·+ fkXk ∈ Ix0(M) = F (x0)(M),

we see that vx = X(x) ∈ XG(x), which establishes (8.1) in this case.
In any event, (8.1) holds, and it is easy to see that this differential inclusion is not upper

semicontinuous. •
We can make the following definitions, rather analogous to those of Definition 7.27 for

differential inclusions.

8.31 Definition: (Attributes of tautological control systems coming from the as-
sociated differential inclusion) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω},
and let r ∈ {∞, ω}, as required. The Cν-tautological control system G = (M,F ) is:

(i) closed-valued (resp. compact-valued , convex-valued) at x ∈ M if XG(x) is closed
(resp., compact, convex);

(ii) closed-valued (resp. compact-valued , convex-valued) if XG(x) is closed (resp.,
compact, convex) for every x ∈ M. •

One can now talk about taking “hulls” under various properties. Let us discuss this for
the properties of closedness and convexity. First we need the definitions we will use.

8.32 Definition: (Convex hull, closure of a tautological control system) Let m ∈
Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
G = (M,F ) be a Cν-tautological control system.

(i) The convex hull of G is the Cν-tautological control system conv(G) = (M, conv(F )),
where conv(F ) is the presheaf of subsets of Cν-vector fields given by

conv(F )(U) = conv(F (U)),

the convex hull on the right being that in the R-vector space Γν(TU).

(ii) The closure of G is the Cν-tautological control system

cl(G) = (M, cl(F )),

where cl(F ) is the presheaf of subsets of Cν-vector fields given by cl(F )(U) =
cl(F (U)), the closure on the right being that in the R-topological vector space
Γν(TU). The reader should verify that cl(F ) is indeed a presheaf. •

Let us now relate the two different sorts of “hulls” we have.
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8.33 Proposition: (Convex hull and closure commute with taking differential in-
clusions) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω},
as required. Let G = (M,F ) be a Cν-tautological control system with XG the associated
differential inclusion. Then the following statements hold:

(i) conv(XG) = Xconv(G);

(ii) Xcl(G) ⊆ cl(XG) and Xcl(G) = cl(XG) if G is globally generated and F (M) is bounded
in the compact bornology (or, equivalently, the von Neumann bornology if ν ∈ {∞, ω}).

Proof: (i) Let x ∈ M. If v ∈ conv(XG(x)), then there exist v1, . . . , vk ∈ XG(x) and
c1, . . . , ck ∈ [0, 1] satisfying

∑k
j=1 cj = 1 such that

v = c1v1 + · · ·+ ckvk.

Let U1, . . . ,Uk be neighbourhoods of x and let Xj ∈ F (Uj) be such that Xj(x) = vj ,
j ∈ {1, . . . , k}. Then, taking U = ∩kj=1Uj ,

c1X1|U+ · · ·+ ckXk|U ∈ conv(F (U)),

showing that conv(XG(x)) ⊆ Xconv(G)(x).
Conversely, let v ∈ Xconv(G), let U be a neighbourhood of x, and let X ∈ conv(F (U))

be such that X(x) = v. Then

X = c1X1 + · · ·+ ckXk

for X1, . . . , Xk ∈ F (U) and for c1, . . . , ck ∈ [0, 1] satisfying
∑k

j=1 cj = 1. We then have

v = c1X1(x) + · · ·+ ckXk(x) ∈ conv(XG)(x),

completing the proof of the proposition as concerns convex hulls.
(ii) Let x ∈ M, let v ∈ Xcl(G)(x), let U be a neighbourhood of x, and let X ∈ cl(F (U))

be such that X(x) = v. Let (I,⪯) be a directed set and let (Xi)i∈I be a net in F (U)
converging to X in the appropriate topology. Then we have limi∈I Xi(x) = X(x) since the
net (Xi)i∈I converges uniformly in some neighbourhood of x (this is true for all cases of ν).
Thus v ∈ cl(XG(x)), as desired.

Suppose that F is globally generated with F (M) bounded, let x ∈ M, and let v ∈
cl(XG)(x). Thus there exists a sequence (vj)j∈Z>0 in XG(x) converging to v. Let Xj ∈
F (M) be such thatXj(x) = vj , j ∈ Z>0. Since cl(F (M)) is compact, there is a subsequence
(Xjk)jk in F (M) converging to X ∈ cl(F (M)). Moreover,

X(x) = lim
k→∞

Xjk(x) = lim
j→∞

vj = v

since (Xjk)k∈Z>0 converges to X uniformly in some neighbourhood of x (again, this is true
for all ν). Thus v ∈ Xcl(G)(x).

The parenthetical comment in the final assertion of the proof follows since the compact
and von Neumann bornologies agree for nuclear spaces [Pietsch 1969, Proposition 4.47]. ■

The following example shows that the opposite inclusion stated in the proposition for
closures does not generally hold.
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8.34 Example: (A tautological control system for which the closure of the differ-
ential inclusion is not the differential inclusion of the closure) We will talk our
way through a general sort of example, leaving to the reader the job of instantiating this
to give a concrete example.

Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let M be a Cr-manifold. Let x ∈ M and let (Xj)j∈Z>0 be a sequence of Cν-vector fields
with the following properties:

1. (Xj(x))j∈Z>0 converges to 0x;

2. Xj(x) ̸= 0x for all j ∈ Z>0;

3. there exists a neighbourhood O of zero in Γν(TM) such that, for each j ∈ Z>0,

{k ∈ Z>0 \ {j} | Xk −Xj ∈ O} = ∅.

Let F be the globally generated presheaf of sets of Cν-vector fields given by F (M) =
{Xj | j ∈ Z>0}. Then 0x ∈ cl(XG(x)). We claim that 0x ̸∈ Xcl(G)(x). To see this, suppose
that 0x ∈ Xcl(G)(x). Since F (M) is countable, this implies that there is a subsequence
(Xjk)k∈Z>0 that converges in Γν(TM). But this is prohibited by the construction of the
sequence (Xj)j∈Z>0 . •

8.6. Trajectory correspondence between tautological control systems and other sorts of
control systems. In Example 8.10 and Proposition 8.11 we made precise the connections
between various models for control systems: control systems, differential inclusions, and
tautological control systems. In order to flesh out these connections more deeply, in this
section we investigate the possible correspondences between the trajectories for the various
models.

We first consider correspondences between trajectories of control systems and their
associated tautological control systems. Thus we let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-control
system with GΣ the associated Cν-tautological control system, as in Example 8.10–1. As
we saw in Proposition 8.11(ii), the correspondence between Σ and GΣ is perfect, at the
system level, when the map u 7→ F u is injective and open onto its image. Part (ii) of
the following result shows that this perfect correspondence almost carries over at the level
of trajectories as well. Included with this statement we include a few other related ideas
concerning trajectory correspondences.

8.35 Theorem: (Correspondence between trajectories of a control system and
its associated tautological control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-control system
with GΣ the associated Cν-tautological control system, as in Example 8.10–1. Then the
following statements hold:

(i) Traj(T,U,Σ) ⊆ Traj(T,U,OGΣ,cpt);

(ii) if the map u 7→ F u is injective and proper, then Traj(T,U,OGΣ,cpt) ⊆ Traj(T,U,Σ);

(iii) if C is a Suslin topological space13 and if F is proper, then Traj(T,U,OGΣ,∞) ⊆
Traj(T,U,Σ).

13Recall that this means that C is the continuous image of a complete, separable, metric space.
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(iv) if, in addition, ν ∈ {∞, ω}, then we may replace Traj(T,U,OGΣ,cpt) with
Traj(T,U,OGΣ,∞) in statements (i), (ii), and (iii).

Proof: (i) Let ξ ∈ Traj(T,U,Σ) and let µ ∈ L∞
loc(T;C) be such that

ξ′(t) = F (ξ(t), µ(t)), a.e. t ∈ T.

Note that, as we saw in Example 8.15, Fµ|U ∈ OGΣ,∞(T,U), making sure to note
that the conclusions of Proposition 7.18 imply that Fµ ∈ LBΓν(T;TM). Thus ξ ∈
Traj(T,U,OGΣ,∞). To show that, in fact, ξ ∈ Traj(T,U,OGΣ,cpt), let T

′ ⊆ T be a compact
subinterval and let K ⊆ C be a compact set such that µ(t) ∈ K for almost every t ∈ T′.
Denote

F̂ : C → Γν(TM)

u 7→ F u.

Since F̂ is continuous, F̂ (K) is compact [Willard 1970, Theorem 17.7]. Since Fµt ∈ F̂ (K)
for almost every t ∈ T′, we conclude that ξ ∈ Traj(T,U,OGΣ,cpt), as claimed.

(ii) Recall from [Bourbaki 1989b, Proposition I.10.2] that, if F̂ (as defined above)
is proper, then it has a closed image, and is a homeomorphism onto its image. If
ξ ∈ Traj(T,U,OGΣ,cpt), then there exists X ∈ OGΣ,cpt such that ξ′(t) = X(t, ξ(t)) for

almost every t ∈ T. Note that, since X ∈ OGΣ,cpt, we have X(t) ∈ FΣ(M) = image(F̂ ).

Thus, by hypothesis, there exists a unique µ : T → C such that F̂ ◦ µ = X. To show that µ
is measurable, let O ⊆ C be open so that F̂ (O) is an open subset of image(F̂ ). Thus there
exists an open set O′ ⊆ Γν(TM) such that F̂ (O) = image(F̂ ) ∩ O′. Then we have

µ−1(O) = X−1(F̂ (O)) = X−1(O′),

giving the desired measurability. To show that µ ∈ L∞
loc(T;C), let T

′ ⊆ T be a compact
subinterval and let K ⊆ Γν(TM) be such that X(t) ∈ K for almost every t ∈ T′. Then,
since F̂ is proper, F̂−1(K) is a compact subset of C. Since µ(t) ∈ F̂−1(K) for almost every
t ∈ T′ we conclude that µ ∈ L∞

loc(T;C).
(iii) Let ξ ∈ Traj(T,U,OGΣ,∞) and let X ∈ OGΣ,∞(T,U) be such that ξ′(t) = X(t, ξ(t))

for almost every t ∈ T. We wish to construct µ ∈ L∞
loc(T,C) such that

ξ′ = F (ξ(t), µ(t)), a.e. t ∈ T.

We fix an arbitrary element ū ∈ C (it matters not which) and then define a set-valued map
U : T ↠ C by

U(t) =

{
{u ∈ C | ξ′(t) = F (ξ(t), u)}, ξ′(t) exists,

{ū}, otherwise.

Since X(t) ∈ FΣ(M), we conclude that X(t) ∈ image(F̂ ) for every t ∈ T, i.e., X(t) = F u

for some u ∈ C, and so U(t) ̸= ∅ for every t ∈ T.
Properness of F ensures that U(t) is compact for every t ∈ T. The following lemma

shows that any selection µ of U is locally essentially bounded in the compact bornology.
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1 Lemma: If T′ ⊆ T is a compact subinterval, then the set ∪{U(t) | t ∈ T′} is contained
in a compact subset of C.

Proof: Let us define Fξ : T × C → TM by Fξ(t, u) = F (ξ(t), u). We claim that, if T′ ⊆ T is
compact, then Fξ|T′ × C is proper. To see this, first define

Gξ : T
′ × C → M× C

(t, u) 7→ (ξ(t), u),

i.e., Gξ = ξ× idC. With this notation, we have Fξ = F ◦Gξ. Since F
−1
ξ (K) = G−1

ξ (F−1(K))
and since F is proper, to show that Fξ is proper it suffices to show that Gξ is proper. Let
K ⊆ M× C be compact. We let pr1 : M× C → M and pr2 : M× C → C be the projections.
Note that

G−1
ξ (K) = (ξ × idC)

−1(K) ⊆ ξ−1(pr1(K))× id−1
C (pr2(K)).

Since the projections are continuous, pr1(K) and pr2(K) are compact [Willard 1970, Theo-
rem 17.7]. Since ξ is a continuous function whose domain (for our present purposes) is the
compact set T′, ξ−1(pr1(K)) is compact. Since the identity map is proper, id−1

C (pr2(K))
is compact. Thus G−1

ξ (K) is contained in a product of compact sets. Since a product of

compact sets is compact [Willard 1970, Theorem 17.8] and G−1
ξ (K) is closed by continuity

of Gξ, it follows that G
−1
ξ (K) is compact, as claimed. Thus Fξ|T′ × C is proper.

Now, since ξ is a trajectory for the OGΣ,∞ open-loop subfamily, there exists a compact
set K ′ ⊆ TM such that

{ξ′(t) | t ∈ T′} ⊆ K ′,

adopting the convention that ξ′(t) is taken to satisfy ξ′(t) = F (ξ(t), ū) when ξ′(t) does
not exist; this is an arbitrary and inconsequential choice. By our argument above, K ′′ ≜
(Fξ|T′ × C)−1(K ′) is compact. Therefore, for each t ∈ T′,

{(t, u) ∈ T′ × C | u ∈ U(t)} = {(t, u) ∈ T′ × C | F (ξ(t), u) = ξ′(t)}
⊆ {(t, u) ∈ T′ × C | F (ξ(t), u) ∈ K ′} ⊆ K ′′.

Defining the compact set (compact by [Willard 1970, Theorem 17.7]) K = pr2(K
′′), with

pr2 : T
′ × C → C the projection, we then have

∪{U(t) | t ∈ T′} ⊆ K. ▼

We shall now make a series of observations about the set-valued map U , using results of
Himmelberg [1975] on measurable set-valued mappings, particularly with values in Suslin
spaces.

2 Lemma: The set-valued map U is measurable, i.e., if O ⊆ C is open, then

U−1(O) = {t ∈ T | U(t) ∩ O ̸= ∅}

is measurable.

Proof: Define
Fξ : T × C → TM

(t, u) 7→ F (ξ(t), u),

noting that t 7→ Fξ(t, u) is measurable for each u ∈ C and that u 7→ Fξ(t, u) is continuous
for every t ∈ T. It follows from [Himmelberg 1975, Theorem 6.4] that U is measurable as
stated. ▼
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3 Lemma: There exists a measurable function µ : T → C such that µ(t) ∈ U(t) for almost
every t ∈ T.

Proof: First note that U(t) is a closed subset of C since it is either the singleton {ū} or
the preimage of the closed set {ξ′(t)} under the continuous map u 7→ F (ξ(t), u). It follows
from [Himmelberg 1975, Theorem 3.5] that

graph(U) = {(t, u) ∈ T × C | u ∈ U(t)}

is measurable with respect to the product σ-algebra of the Lebesgue measurable sets in T
and the Borel sets in C. The lemma now follows from [Himmelberg 1975, Theorem 5.7]. ▼

Now, for t ∈ T having the property that ξ′(t) exists and that µ(t) ∈ U(t) (with µ from
the preceding lemma), we have ξ′(t) = F (ξ(t), µ(t)).

(iv) This follows by our observation of Example 8.18–3. ■

Let us make some comments on the hypotheses of the preceding theorem.

8.36 Remarks: (Trajectory correspondence between control systems and tauto-
logical control systems)

1. Part (ii) of the result has assumptions that the map u 7→ F u be injective and proper.
An investigation of the proof shows that injectivity and openness onto the image of this
map are enough to give trajectories for Σ that correspond to measurable controls. The
additional assumption of properness, which gives the further consequence of the image
of the map u 7→ F u being closed, allows us to conclude boundedness of the controls.
Let us look at these assumptions.

(a) By the map u 7→ F u being injective, we definitely do not mean that the map
u 7→ F (x, u) is injective for each x ∈ M; this is a very strong assumption whose
adoption eliminates a large number of interesting control systems. For example,
if we take M = R, C = R, and F (x, u) = ux ∂

∂x to define a Cν-control system for
any ν ∈ {m+m′,∞, ω} with m ∈ Z≥0 and m′ ∈ {0, lip}, then the map u 7→ F u is
injective, but the map u 7→ F (0, u) is not.

(b) Let us take M = R2, C = R, and

F ((x1, x2), u) = f1(u)
∂

∂x1
+ f2(u)

∂

∂x2
,

where f1, f2 : R → R are such that the map u 7→ (f1(u), f2(u)) is injective and
continuous, but not a homeomorphism onto its image. Such a system may be
verified to be a Cν-control system for any ν ∈ {m+m′,∞, ω} with m ∈ Z≥0 and
m′ ∈ {0, lip} (using Propositions 7.2, 7.5, and 7.12). In this case, we claim that
the map F̂ : u 7→ F u is injective and continuous, but not a homeomorphism onto
its image. Injectivity of the map is clear and continuity follows since F is a jointly
parameterised vector field of class Cν . Define a linear map

κ : R2 → Γν(TM)

(v1, v2) 7→ v1
∂

∂x1
+ v2

∂

∂x2
,
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i.e., κ(v) is the constant vector field with components (v1, v2). Using the seminorms
for our locally convex topologies and the standard seminorm characterisations of
continuous linear maps (as in [Schaefer and Wolff 1999, §III.1.1]), we can easily
see that κ is a continuous linear map, and so is a homeomorphism onto its closed
image (arguing as in the proof of Proposition 8.28(ii)). Then F̂ = κ ◦ (f1×f2), and
so we conclude that F̂ is a homeomorphism onto its image if and only if f1 × f2 is
a homeomorphism onto its image, and this gives our claim.

(c) Let us take M = R, C = R, and F (x, u) = tan−1(u) ∂∂x . As with the examples
above, we regard this as a control system of class Cν for any ν ∈ {m+m′,∞, ω},
for m ∈ Z≥0 and m′ ∈ {0, lip}. We claim that F̂ : u 7→ F u is a homeomorphism
onto its image, but is not proper. This is verified in exactly the same manner as
in the preceding example.

(d) If C is compact, then F̂ is proper because, if K ⊆ Γν(TM) is compact, then F̂−1(K)
is closed, and so compact [Willard 1970, Theorem 17.5]. This gives trajectory
correspondence between a Cν-control system and its corresponding tautological
control system for compact control sets when the map F̂ is injective.

2. Part (iii) of the result has two assumptions, that C is a Suslin space and that F is
proper. Let us consider some cases where these hypotheses hold.

(a) Complete separable metric spaces are Suslin spaces.
(b) If C is an open or a closed subspace of Suslin space, it is a Suslin space [Bogachev

2007, Lemma 6.6.5(ii)].
(c) For m ∈ Z≥0, m

′ ∈ {0, lip}, and ν ∈ {m +m′,∞, ω}, Γν(TM) is a Suslin space.
In all except the case of ν = ω, this follows since Γν(TM) is a separable, complete,
metrisable space. However, Γω(TM) is not metrisable. Nonetheless, it is Suslin, as
argued in Section 5.3.

(d) If C is compact, then F is proper. Indeed, if K ⊆ TM is compact, then πTM(K) is
compact, and

F−1(K) ⊆ πTM(K)× C,

and so the set on the left is compact, being a closed subset of a compact set [Willard
1970, Theorem 17.5]. •

We also have a version of the preceding theorem in the case that the control set C is
a subset of a locally convex topological vector space, cf. Proposition 7.22. Here we also
specialise for one of the implications to control-linear systems introduced in Example 7.21.

8.37 Theorem: (Correspondence between trajectories of a control-linear system
and its associated tautological control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-sublinear
control system for which C is a subset of a locally convex topological vector space V, and
let GΣ be the associated Cν-tautological control system, as in Example 8.10–1. If T is a
time-domain and if U is open, then Traj(T,U,Σ) ⊆ Traj(T,U,OGΣ,full).

Conversely, if

(i) Σ is a Cν-control-linear system, i.e., there exists Λ ∈ L(V; Γν(TM)) such that
F (x, u) = Λ(u)(x),

(ii) Λ is injective, and

(iii) Λ is an open mapping onto its image,
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then it is also the case that Traj(T,U,OGΣ,full) ⊆ Traj(T,U,Σ).

Proof: We first show that Traj(T,U,Σ) ⊆ Traj(T,U,OGΣ,full). Suppose that ξ ∈
Traj(T,U,Σ). Thus there exists µ ∈ L1

loc(T;C) such that

ξ′(t) = F (ξ(t), µ(t)), a.e. t ∈ T.

By Proposition 7.22 and Example 8.15, Fµ|U ∈ OGΣ,full(T,U) and so ξ ∈ Traj(T,U,OGΣ,full).
Now let us prove the “conversely” assertion of the theorem. Thus we let ξ ∈

Traj(T,U,OGΣ,full) so that there exists X ∈ OGΣ,full(T,U) for which ξ′(t) = X(t, ξ(t))
for almost every t ∈ T. Since Λ is injective and since Xt ∈ Λ(C) for each t ∈ T (this is
the definition of GΣ), we uniquely define µ(t) ∈ C by Λ(µ(t)) = Xt. We need only show
that µ is locally Bochner integrable. Let Λ−1 denote the inverse of Λ, thought of as a
map from image(Λ) to V. As Λ is open, Λ−1 is continuous. From this, measurability of
µ follows immediately. To show that µ is locally Bochner integrable, let q be a continu-
ous seminorm for the locally convex topology of V and, as per [Schaefer and Wolff 1999,
§III.1.1], let p be a continuous seminorm for the locally convex topology of Γν(TM) such
that q(Λ−1(Y )) ≤ p(Y ) for every Y ∈ Γν(TM). Then we have, for any compact subinterval
T′ ⊆ T, ∫

T′
q(µ(t)) dt ≤

∫
T′
p(Xt) dt <∞,

giving Bochner integrability of µ by [Beckmann and Deitmar 2011, Theorems 3.2 and 3.3].
■

Let us make some observations about the preceding theorem.

8.38 Remarks: (Trajectory correspondence between control systems and tauto-
logical control systems) The converse part of Theorem 8.37 has three hypotheses: that
the system is control-linear; that the map from controls to vector fields is injective; that the
map from controls to vector fields is open onto its image. The first hypothesis, linearity of
the system, cannot be weakened except in sort of artificial ways. As can be seen from the
proof, linearity allows us to talk about the integrability of the associated control. Injectivity
can be assumed without loss of generality by quotienting out the kernel if it is not. Let us
consider some cases where the third hypothesis holds. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
1. Let C ⊆ Rk and suppose that our system is Cν-control-affine, i.e.,

F (x,u) = f0(x) +

k∑
a=1

uafa(x)

for Cν-vector fields f0, f1, . . . , fm. As we pointed out in Example 7.21, this can be
regarded as a control-linear system by taking V = R ⊕Rk

C′ = {(u0,u) ∈ V | u0 = 1, u ∈ C},

and

Λ(u0,u) =
k∑
a=0

uafa.
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We can assume Λ is injective, as mentioned above. In this case, the map Λ is a homeo-
morphism onto its image since any map from a finite-dimensional locally convex space
is continuous [Horváth 1966, Proposition 2.10.2]. Thus Theorem 8.37 applies to control-
affine systems, and gives trajectory equivalence in this case.

2. The other case of interest to us is that when V = Γν(TM) and when C ⊆ V is then a
family of globally defined vector fields of class Cν on M. In this case, Λ is the identity
map on Γν(TM), so the hypotheses of Theorem 8.37 are easily satisfied. The trajectory
equivalence one gets in this case is that between a globally generated tautological control
system and its corresponding control system as in Example 8.10–2. •
One of the conclusions enunciated above is sufficiently interesting to justify its own

theorem.

8.39 Theorem: (Correspondence between trajectories of a tautological control
system and its associated control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a globally
generated Cν-tautological control system. As in Example 8.10–2, let ΣG = (M,ΣG,CF )
be the corresponding Cν-control system. Then, for each time-domain T and each open set
U ⊆ M, Traj(T,U,OG,full) = Traj(T,U,ΣG).

Proof: This is the observation made in Remark 8.38–2. ■

Now we turn to relationships between trajectories for tautological control systems and
differential inclusions. In Example 8.10–3 we showed how a tautological control system
can be built from a differential inclusion. However, as we mentioned in that example, we
cannot expect any sort of general correspondence between trajectories of the differential
inclusion and the tautological control system constructed from it; differential inclusions are
just too irregular. We can, however, consider the correspondence in the other direction, as
the following theorem indicates.

8.40 Theorem: (Correspondence between trajectories of a tautological control
system and its associated differential inclusion) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological
control system and let XG be the associated differential inclusion, as in Example 8.10–4.
For T a time-domain and U ⊆ M an open set, Traj(T,U,G) ⊆ Traj(T,U,XG).

Conversely, if F is globally generated and if F (M) is a compact subset of Γν(TM),
then Traj(T,U,XG) ⊆ Traj(T,U,G).

Proof: Since, for an open-loop system (X,T,U), X(t) ∈ F (U) for every t ∈ T, we have
X(t, x) ∈ XG(x) for every (t, x) ∈ T × U. Thus, if ξ ∈ Traj(T,U,G), then we have
ξ′(t) ∈ XG(ξ(t)) for almost every t ∈ T.

For the “conversely” part of the theorem, if ξ is a trajectory for the differential inclusion
XG then, for almost every t ∈ T, ξ′(t) = X(ξ(t)) for some X ∈ F (M). Therefore, let us fix
an arbitrary X ∈ F (M) and let us define U : T ↠ F (M) by

U(t) =

{
{X ∈ F (M) | ξ′(t) = X(ξ(t))}, ξ′(t) exists,

{X}, otherwise.

Now we note that
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1. CF = F (M) is a Suslin space, being a closed subset of a Suslin space, and

2. the map FF is proper by Remark 8.36–2(d).

Thus we are in exactly the right framework to use the proof of Theorem 8.35(iii) to show
that there exists a locally essentially bounded measurable control t 7→ X(t) for which

ξ′(t) = FF (ξ(t), X(t)), a.e. t ∈ T,

and so ξ ∈ Traj(T,U,ΣG), as desired. ■

Let us comment on the hypotheses of this theorem.

8.41 Remark: (Trajectory correspondence between tautological control systems
and differential inclusions) The assumption that F (M) be compact in the “conversely”
part of the preceding theorem is indispensable. The connection going from differential
inclusion to tautological control system is too “loose” to get any sort of useful trajectory
correspondence, without restricting the class of vector fields giving rise to the differential
inclusion. Roughly speaking, this is because a differential inclusion only prescribes the
values of vector fields, and the topologies have to do with derivatives as well. •

8.7. The category of tautological control systems. In our discussion of feedback equiv-
alence in Section 1.1 we indicated that the notion of equivalence in our framework is not
interesting to us. In this section, we illustrate why it not interesting by defining a natural
notion of equivalence, and then seeing that it degenerates to something trivial under nat-
ural hypotheses. We do this in a general way by considering first how one might define a
“category” of tautological control systems with objects and morphisms. The problem of
equivalence is then the problem of understanding isomorphisms in this category. By impos-
ing a naturality condition on morphisms via trajectories, we prove that isomorphisms are
uniquely determined by diffeomorphisms of the underlying manifolds for the two tautolog-
ical control systems. The notion of “direct image” we use here is common in sheaf theory,
and we refer to [e.g., Kashiwara and Schapira 1990, Definition 2.3.1] for some discussion.
However, by far the best presentation that we could find of direct images of presheaves such
as we use here is in the online documentation (Stacks 2013).

Let us first describe how to build maps between tautological control systems. This is
done first by making the following definition.

8.42 Definition: (Direct image of tautological control systems) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system, let N be Cr-manifold, and let Φ ∈ Cr(M;N). The
direct image of G by Φ is the tautological control system Φ∗G = (N,Φ∗F ) defined by
Φ∗F (V) = F (Φ−1(V)) for V ⊆ N open. •

One easily verifies that if F is a sheaf, then so too is Φ∗F .
With the preceding sheaf construction, we can define what we mean by a morphism of

tautological control systems.

8.43 Definition: (Morphism of tautological control systems) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) and
H = (N,G ) be Cν-tautological control systems. A morphism from G to H is a pair (Φ,Φ♯)
such that
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(i) Φ ∈ Cr(M;N) and

(ii) Φ♯ = (Φ♯V)V open is a family of mappings Φ♯V : G (V) → Φ∗F (V), V ⊆ N defined as
follows:

(a) there exists a family LV ∈ L(Γν(TV); Γν(T(Φ−1(V)))) of continuous linear map-
pings satisfying LV′ = LV|Γν(TV′) if V,V′ ⊆ N are open with V′ ⊆ V;

(b) Φ♯V = LV|G (V). •
By the preceding definition, we arrive at the “category of Cν-tautological control sys-

tems” whose objects are tautological control systems and whose morphisms are as just
defined. From the point of view of control theory, one wishes to restrict these definitions
further to account for the fact that morphisms ought to preserve trajectories. Therefore,
let us see how trajectories come into the picture. First we consider open-loop systems.
Thus let T be a time-domain and let V ⊆ N be open. If Y : T → G (U) then we have

Φ♯(Y )t ≜ Φ♯V(Yt) ∈ F (Φ−1(V)) for each t ∈ T. That is, an open-loop system (Y,T,V) for
H gives rise to an open-loop system (Φ♯(Y ),T,Φ−1(V)) for G. For such a correspondence
to have significance, it must do the more or less obvious thing to trajectories.

8.44 Definition: (Natural morphisms of tautological control systems) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
and H = (N,G ) be Cν-tautological control systems. A morphism (Φ,Φ♯) from G to H
is natural if, for each time-domain T, each open V ⊆ N, and each Y ∈ LIΓν(T;G (V)),
any integral curve ξ : T′ → Φ−1(V) for the time-varying vector field t 7→ Φ♯(Yt) defined on
T′ ⊆ T has the property that Φ ◦ ξ is an integral curve for Y . •

Note that the time-varying vector field t 7→ Φ♯(Yt) from the definition is locally integrally
bounded by [Beckmann and Deitmar 2011, Lemma 1.2].

We can now characterise these natural morphisms.

8.45 Proposition: (Characterisation of natural morphisms) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) and
H = (M,G ) be Cν-tautological control systems. A morphism (Φ,Φ♯) from G to H is natural
if and only if, for each open V ⊆ N, each Y ∈ G (V), each y ∈ V, and each x ∈ Φ−1(y), we
have TxΦ(Φ

♯(Y )(x)) = Y (y).

Proof: First suppose that (Φ,Φ♯) is natural, and let V ⊆ N be open, let Y ∈ G (V), let
y ∈ V, and let x ∈ Φ−1(V). Let T ⊆ R be a time-domain for which 0 ∈ int(T) and for
which the integral curve η for Y through y is defined on T. We consider Y ∈ LIΓν(T;G (V))
by taking Yt = Y , i.e., Y is a time-independent time-varying vector field. Note that integral
curves of Y can, therefore, be chosen to be differentiable [Coddington and Levinson 1955,
Theorem 1.3], and will be differentiable if ν > 0. Let T′ ⊆ T be such that the differentiable
integral curve ξ for Φ♯(Y ) through x is defined on T′. Since (Φ,Φ♯) is natural, we have
η = Φ ◦ ξ on T′. Therefore,

Y (y) = η′(0) = TxΦ(ξ
′(0)) = TxΦ(Φ

♯(Y )(x)).

Next suppose that, for each open V ⊆ N, each Y ∈ G (V), each y ∈ V, and each
x ∈ Φ−1(y), we have TxΦ(Φ

♯(Y )(x)) = Y (y). Let T be a time-domain, let V ⊆ N be open,
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let Y ∈ LIΓν(T;G (V)), and let ξ : T′ → Φ−1(V) be an integral curve for the time-varying
vector field t 7→ Φ♯(Yt) defined on T′ ⊆ T. Let η = Φ ◦ ξ. Then we have

η′(t) = Tξ(t)Φ(Φ
♯(Yt)(ξ(t))) = Yt(η(t))

for almost every t ∈ T′, showing that η is an integral curve for Y . ■

Note that the condition TxΦ(Φ
♯(Y )(x)) = Y (y) is consistent with the regularity condi-

tions for Y . In the cases ν ∈ {m,∞, ω}, this is a consequence of the Chain Rule (see [Krantz
and Parks 2002, Proposition 2.2.8] for the real analytic case). In the Lipschitz case this
is a consequence of [Gromov 2007, Example 1.4(c)] combined with [Weaver 1999, Proposi-
tion 1.2.2].

To make a connection with more common notions of mappings between control systems,
let us do the following. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let
r ∈ {∞, ω}, as required. Suppose that we have two Cν-control systems Σ1 = (M1, F1,C1)
and Σ2 = (M2, F2,C2). As tautological control systems, these are globally generated, so let
us not fuss with general open sets for the purpose of this illustrative discussion. We then
suppose that we have a mapping Φ ∈ Cr(M1;M2) and a mapping κ : M1 × C2 → C1, which
gives rise to a correspondence between the system vector fields by

Φ♯(F u22 )(x1) = F
κ(x1,u2)
1 (x1).

The condition of naturality means that a trajectory ξ1 for Σ1 satisfying

ξ′1(t) = F1(ξ1(t), κ(ξ1(t), µ2(t)))

gives rise to a trajectory ξ2 = Φ ◦ ξ1 for Σ2, implying that

ξ′2 = Tξ1(t)Φ(ξ
′
1(t)) = Tξ1(t)Φ ◦ F1(ξ1(t), κ(ξ1(t), µ2(t))).

Thus
F2(x2, u2) = Tx1Φ ◦ F1(x1, κ(x1, u2))

for every x1 ∈ Φ−1(x2).
There may well be some interest in studying general natural morphisms, but we will

not pursue this right at the moment. Instead, let us simply think about isomorphisms in
the category of tautological control systems.

8.46 Definition: (Isomorphisms of tautological control systems) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
and H = (N,G ) be Cν-tautological control systems. An isomorphism from G to H is
a morphism (Φ,Φ♯) such that Φ is a diffeomorphism and LV is an isomorphism (in the
category of locally convex topological vector spaces) for every open V ⊆ N, where LV is

such that Φ♯V = LV|G (V) as in Definition 8.43. •
It is now easy to describe the natural isomorphisms.
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8.47 Proposition: (Characterisation of natural isomorphisms) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
and H = (N,G ) be Cν-tautological control systems. A morphism (Φ,Φ♯) from G to H is a
natural isomorphism if and only if Φ is a diffeomorphism and

G (Φ(U)) = {(Φ|U)∗X | X ∈ F (U)}

for every open set U ⊆ M.

Proof: According to Proposition 8.45, if V ⊆ N is open and if Y ∈ G (V), we have
(Φ|Φ−1(V))∗(Φ

♯(Y )) = Y or Φ♯(Y ) = (Φ|Φ−1(V))∗Y . Since Φ♯ is a bijection from G (V)
to F (Φ−1(V)), we conclude that

F (Φ−1(V)) = {(Φ|Φ−1(V))∗Y | Y ∈ G (V)}.

This is clearly equivalent to the assertion of the theorem since Φ must be a diffeomorphism.
■

In words, natural isomorphisms simply amount to the natural correspondence of vector
fields under the push-forward Φ∗. (One should verify that push-forward is continuous as
a mapping between locally convex spaces. This amounts to proving continuity of compo-
sition, and for this we point to places in the literature from which this can be deduced.
In the smooth and finitely differentiable cases this can be shown using an argument fash-
ioned after that from [Mather 1969, Proposition 1]. In the Lipschitz case, this follows
because the Lipschitz constant of a composition is bounded by the product of the Lipschitz
constants [Weaver 1999, Proposition 1.2.2]. In the real analytic case, this follows from Sub-
lemma 6 from the proof of Lemma 2.4.) In particular, if one wishes to consider only the
identity diffeomorphism, i.e., only consider the “feedback part” of a feedback transforma-
tion, we see that the only natural isomorphism is simply the identity morphism. In this
way we see that the notion of equivalence for tautological control systems is either very
trivial (it is easy to understand when systems are equivalent) or very difficult (the study of
equivalence classes contains as a special case the classification of vector fields up to diffeo-
morphism), depending on your tastes. It is our view that the triviality (or impossibility) of
equivalence is a virtue of the formulation since all structure except that of the manifold and
the vector fields has been removed; there is no extraneous structure. We refer to Section 1.1
for further discussion.

8.8. A tautological control system formulation of sub-Riemannian geometry. In our
preceding discussion of tautological control systems, we strove to make connections between
tautological control systems and standard control models. We do not wish to give the
impression, however, that tautological control systems are mere fancy reformulations of
standard control systems. In this section we give an application, sub-Riemannian geometry,
that illustrates the per se value of tautological control systems.

Let us define the basic structure of sub-Riemannian geometry.

8.48 Definition: (Sub-Riemannian manifold) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-sub-Riemannian manifold is
a pair (M,G) where M is a Cr-manifold and G is a Cν-tensor field of type (2, 0) such that
G(x) is positive-semidefinite as a quadratic function on T∗

xM. •
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Associated with a sub-Riemannian structure G on M is a distribution that we now
describe. First of all, we have a map G♯ : T∗M → TM defined by

⟨βx;G♯(αx)⟩ = G(βx, αx).

We then denote by DG = image(G♯) the associated distribution. Note that DG is a distri-
bution of class Cν since, for each x ∈ M, there exist a neighbourhood U of x and a family of
Cν-vector fields (Xa)a∈A on U (namely the images under G♯ of the coordinate basis vector
fields, if we choose U to be a coordinate chart domain) such that

DG,y = DG ∩ TyM = spanR(Xa(y)| a ∈ A)

for every y ∈ U. There is also an associated sub-Riemannian metric for DG, i.e., an
assignment to each x ∈ M an inner product G(x) on DG,x. This is denoted also by G and
defined by

G(ux, vx) = G(αx, βx),

where ux = G♯(αx) and vx = G♯(βx), and where we joyously abuse notation.
An absolutely continuous curve γ : [a, b] → M is DG-admissible if γ′(t) ∈ DG,γ(t) for

almost every t ∈ [a, b]. The length of a DG-admissible curve γ : [a, b] → M is

ℓG(γ) =

∫ b

a

√
G(γ′(t), γ′(t)) dt.

As in Riemannian geometry, the length of a DG-admissible curve is independent of param-
eterisation, and so curves can be considered to be defined on [0, 1]. We can then define the
sub-Riemannian distance between x1, x2 ∈ M by

dG(x1, x2) = inf{ℓG(γ)| γ : [0, 1] → M is an absolutely

continuous curve for which γ(0) = x1 and γ(1) = x2}.

One of the problems of sub-Riemannian geometry is to determine length minimising
curves, i.e., sub-Riemannian geodesics.

A common means of converting sub-Riemannian geometry into a standard control prob-
lem is to choose a G-orthonormal basis (X1, . . . , Xk) for DG and so consider the control-affine
system with dynamics prescribed by

F (x,u) =
k∑
a=1

uaXa(x), x ∈ M, u ∈ Rk.

Upon doing this, DG-admissible curves are evidently trajectories for this control-affine sys-
tem. Moreover, for a trajectory ξ : [0, 1] → M satisfying

ξ′(t) =

k∑
a=1

ua(t)Xa(ξ(t)),

we have

ℓG(ξ) =

∫ 1

0
∥u(t)∥ dt.
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The difficulty, of course, with the preceding approach to sub-Riemannian geometry is
that there may be no G-orthonormal basis for DG. This can be the case for at least two
reasons: (1) the distribution DG may not have locally constant rank; (2) when the distribu-
tion DG has locally constant rank, the global topology of M may prohibit the existence of a
global basis, e.g., on even-dimensional spheres there is no global basis for vector fields, or-
thonormal or otherwise. However, one can formulate sub-Riemannian geometry in terms of
a tautological control system in a natural way. Indeed, associated to DG is the tautological
control system GG = (M,FG), where, for an open subset U ⊆ M,

FG(U) = {X ∈ Γν(TU) | X(x) ∈ DG,x, x ∈ U}.

One readily verifies that FG is a sheaf.
Let us see how we can regard our tautological control system formulation as that for

an “ordinary” control system, with a suitable control set, as per Example 8.10–2. First of
all, note that the sheaf FG is not globally generated; this is because it is a sheaf, cf. Exam-
ple 8.3–2. However, it can be regarded as the sheafification of the globally generated sheaf
with global generators FG(M).

8.49 Lemma: (The sheaf of vector fields for the sub-Riemannian tautological
control problem) The sheaf FG is the sheafification of the globally generated presheaf
with generators FG(M).

Proof: This is a result about sheaf cohomology, and we will not give all details here. Instead
we will simply point to the main facts from which the conclusion follows. First of all, to
prove the assertion, it suffices by Lemma 8.6 to show that FG,x is generated, as a module over
the ring C ν

x,M, by germs of global sections. In the cases ν ∈ {m,m+ lip,∞}, the fact that
the sheaf of rings of smooth functions admits partitions of unity implies that the sheaf C ν

M

is a fine sheaf of rings [Wells Jr. 2008, Example 3.4(d)]. It then follows from [Wells Jr. 2008,
Example 3.4(e)] that the sheaf FG is also fine and so soft [Wells Jr. 2008, Proposition 3.5].
Because of this, the cohomology groups of positive degree for this sheaf vanish [Wells Jr.
2008, Proposition 3.11], and this ensures that germs of global sections generate all stalks
(more or less by definition of cohomology in degree 1). In the case ν = ω, the result is quite
nontrivial. First of all, by a real analytic adaptation of [Gunning 1990b, Corollary H9], one
can show that FG is locally finitely generated. Then, FG being a finitely generated subsheaf
of the coherent sheaf G ωTM, it is itself coherent [Demailly 2012, Theorem 3.16]. Then, by
Cartan’s Theorem A [Cartan 1957], we conclude that FG,x is generated by germs of global
sections. ■

By the preceding lemma and Proposition 8.26, we can as well consider the globally gen-
erated presheaf with global generators FG(M), and so trajectories are those of the associated
“ordinary” control system ΣG = (M, FG,CG), where CG = FG(M) and FG(x,X) = X(x).

Let us next formulate the sub-Riemannian geodesic problem in the framework of tau-
tological control systems. First of all, it is convenient when performing computations to
work with energy rather than length as the quantity we are minimising. To this end, for
an absolutely continuous DG-admissible curve γ : [a, b] → M, we define the energy of this
curve to be

EG(γ) =
1

2

∫ b

a
G(γ′(t), γ′(t)) dt.
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A standard argument shows that curves that minimise energy are in 1–1 correspondence
with curves that minimise length and are parameterised to have an appropriate constant
speed [Montgomery 2002, Proposition 1.4.3]. We can and do, therefore, consider the energy
minimisation problem. We let x1, x2 ∈ M and let Ox1,x2 be the open-loop subfamily for
which the members of Ox1,x2(T,U) are those vector fields X ∈ LIΓν(T;FG(U)) having the
property that there exist t1, t2 ∈ T with t1 < t2, U

′ ⊆ U, and ξ ∈ Traj([t1, t2],U
′,OGG,X)

(see Example 8.18–5 for notation) such that ξ(t1) = x1 and ξ(t2) = x2. If X ∈ Oq1,q2(T,U),
let us denote by Traj(X,x1, x2) those integral curves ξ : [t1, t2] → M for X with the property
that ξ(t1) = x1 and ξ(t2) = x2. We can then define

CG(X) = inf{EG(ξ) | ξ ∈ Traj(X,x1, x2)}.

The goal, then, is to find an interval T∗ ⊆ R, an open set U∗, and X∗ ∈ Ox1,x2(T∗,U∗) such
that

CG(X∗) ≤ CG(X), X ∈ Ox1,x2(T,U), T an interval,U ⊆ M open.

Let us apply the classical Maximum Principle of Pontryagin, Boltyanskĭı, Gamkrelidze,
and Mishchenko [1961], leaving aside the technicalities caused by the complicated topology
of the control set. The dealing with of these technicalities will be the subject of future
work. We thus suppose that we have a length minimising trajectory ξ∗ ∈ Traj(X∗, x1, x2)
for X∗ ∈ Ox1,x2(T∗,U∗). The Hamiltonian for the system has the form

HG : T
∗U∗ ×FG(U∗) → R

(αx, X) 7→ ⟨αx;X(x)⟩+ λ0
1
2G(X(x), X(x)),

where λ0 ∈ {0,−1}. If we consider only normal extremals, i.e., supposing that λ0 = −1,
then the Maximum Principle prescribes that X∗ : T

∗U∗ → TU∗ should be a bundle map
over idU∗ chosen so that X∗(αx) maximises the function

vx 7→ ⟨αx; vx⟩ − 1
2G(vx, vx).

Standard finite-dimensional optimisation gives X∗(x) = G♯(αx). The maximum Hamil-
tonian is then obtained by substituting this value of the “control” into the Hamiltonian:

Hmax
G : T∗M → R

αx 7→ 1
2G(αx, αx).

The normal extremals are then integral curves of the Hamiltonian vector field associated
with the Hamiltonian Hmax

G .
The preceding computations, having banished the usual parameterisation by control,

are quite elegant when compared to manner in which one applies the Maximum Principle
to the “usual” control formulation of sub-Riemannian geometry. The calculations are also
more general and global. However, to make sense of them, one has to prove an appropriate
version of the Maximum Principle, something which will be forthcoming. For the moment,
we mention that a significant rôle in this will be played by appropriate needle variations
constructed by dragging variations along a trajectory to the final endpoint. The manner
in which one drags these variations has to do with linearisation, to which we now turn our
attention.
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9. Linearisation of tautological control systems

As an illustration of the fact that it is possible to do non-elementary things in the
framework of tautological control systems, we present a fully developed theory for the
linearisation of these systems. This theory is both satisfying and revealing. It is satisfying
because it is very simple (if one knows a little tangent bundle geometry) and it is revealing
because, for example, it clarifies and rectifies the hiccup with classical linearisation theory
that was revealed in Example 1.1.

Before we begin, it is worth pointing out that, apart from the problem revealed in
Example 1.1, there are other difficulties with the very idea of classical Jacobian linearisation
to which blind eyes seem to be routinely turned in practice. First of all, for models of the
form “F (x, u),” one must assume that differentiation with respect to u can be done. For
models of this sort, there is no reason to assume the control set to be a subset of Rm, and
so one runs into a problem right away. Even so, if one restricts to control-affine systems,
where the notion of differentiation with respect to u seems not to be problematic, one must
ignore the fact that the control set is generally not an open set, and so these derivatives are
not so easily made sense of. Therefore, even for the typical models one studies in control
theory, there are good reasons to revisit the notion of linearisation.

We point out that geometric linearisation of control-affine systems, and a Linear
Quadratic Regulator theory in this framework, has been carried out by Lewis and Tyner
[2010]. But even the geometric approach in that work is refined and clarified by what we
present here.

In this section we work with systems of general regularity, only requiring that they be
at least once differentiable so that we can easily define their linearisation. For dealing with
Lipschitz systems, we will use the following result.

9.1 Lemma: (C(m+lip)−1 = C(m−1)+lip) For a smooth vector bundle π : E → M and for
m ∈ Z>0, if ξ ∈ Γm+lip(E), then j1ξ ∈ Γ(m−1)+lip(J1E). Moreover, dil jm−1(j1ξ)(x) =
dil jmξ(x) for every x ∈ M.

Proof: We need to show that jm−1(j1ξ) is locally Lipschitz. This, however, is clear since
jm−1j1ξ is the image of jmξ under the injection of JmE in Jm−1J1E [Saunders 1989, Defini-
tion 6.2.25], and since jmξ is Lipschitz by hypothesis.

The last formula in the statement of the lemma requires us to make sense of dil jm−1(j1ξ).
This is made sense of using the fact that, by Lemma 2.1, one has J1E ≃ T∗M ⊗ E, and so
the Riemannian metric G on M, the fibre metric G0, the Levi-Civita connection ∇ on M,
and the G0-orthogonal linear connection ∇0 induce a fibre metric and linear connection in
the vector bundle J1E as in Sections 2.1 and 2.2. Now let us examine the inclusion of JmE
in Jm−1J1E to verify the final assertion of the lemma. We use Lemma 2.1 to write

JmE ≃ ⊕m
j=0S

j(T∗M)⊗ E.

In this case, the inclusion of JmE in J1Jm−1E becomes identified with the natural inclusions

Sj(T∗M)⊗ E → Sj−1(T∗M)⊗ T∗M⊗ E, j ∈ {0, 1, . . . ,m− 1},

given by

α1 ⊙ · · · ⊙ αj ⊗ e 7→
j∑

k=1

α1 ⊙ · · · ⊙ αk−1 ⊙ αk+1 ⊙ · · · ⊙ αj ⊗ αk ⊗ e.
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The fibre metric on Sj(T∗M) is the restriction of that on Tj(T∗M). Thus the preceding
inclusion preserves the fibre metrics since these are defined componentwise on the tensor
product. Similarly, since the connection in the symmetric and tensor products is defined
so as to satisfy the Leibniz rule for the tensor product, the injection above commutes with
parallel translation. It now follows from the definition of dilatation that the final formula
in the statement of the lemma holds. ■

9.1. Tangent bundle geometry. To make the constructions in this section, we recall a
little tangent bundle geometry. Throughout this section, we let m ∈ Z>0, m

′ ∈ {0, lip},
and let ν ∈ {m + m′,∞, ω}. We take r ∈ {∞, ω}, as required. The meaning of “ν − 1”
is obvious for all ν. But, to be clear, ∞ − 1 = ∞, ω − 1 = ω, and, given Lemma 9.1,
(m+ lip)− 1 = (m− 1) + lip.

Let X ∈ Γν(TM). We will lift X to a vector field on TM in two ways. The first is the
vertical lift, and is described first by a vector bundle map vlft : π∗TMTM → TTM as follows.
Let x ∈ M and let vx, wx ∈ TxM. The vertical lift of ux to vx is given by

vlft(vx, ux) =
d

dt

∣∣∣∣
t=0

(vx + tux).

Now, if X ∈ Γν(TM), we define XV ∈ Γν(TTM) by XV (vx) = vlft(vx, X(x)). In coordinates
(x1, . . . , xn) for M with ((x1, . . . , xn), (v1, . . . , vn)) the associated natural coordinates for
TM, if X = Xj ∂

∂xj
, then XV = Xj ∂

∂vj
. The vertical lift is a very simple vector field. It is

tangent to the fibres of TM, and is in fact constant on each fibre.
The other lift of X ∈ Γν(TM) that we shall use is the tangent lift14 which is the vector

field XT on TM of class Cν−1 whose flow is given by ΦX
T

t (vx) = TxΦ
X
t (vx). Therefore,

explicitly,

XT (vx) =
d

dt

∣∣∣∣
t=0

TxΦ
X
t (vx).

In coordinates as above, if X = Xj ∂
∂xj

, then

XT = Xj ∂

∂xj
+
∂Xj

∂xk
vk

∂

∂vj
. (9.1)

One recognises the “linearisation” of X in this expression, but one should understand that
the second term in this coordinate expression typically has no meaning by itself. The flow
for XT is related to that for X according to the following commutative diagram:

TM
ΦXT

t //

πTM
��

TM

πTM
��

M
ΦX

t

// M

(9.2)

14This is also frequently called the complete lift . However, “tangent lift” so much better captures the
essence of the construction, that we prefer our terminology. Also, the dual of the tangent lift is used in the
Maximum Principle, and this is then conveniently called the “cotangent lift.”
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Thus XT projects to X in the sense that TvxπTM(XT (vx)) = X(x). Moreover, XT is a
“linear” vector field (as befits its appearance in “linearisation” below), which means that
the diagram

TM
XT
//

πTM
��

TTM

TπTM
��

M
X
// TM

(9.3)

defines XT as a vector bundle map over X.
We will be interested in the flow of the tangent lift in the time-varying case, and the

next lemma indicates how this works.

9.2 Lemma: (Tangent lift for time-varying vector fields) Let m ∈ Z>0 and m′ ∈
{0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold
and let T ⊆ R be a time-domain. For X ∈ LIΓν(T;TM) define XT : T × TM → TTM by
XT (t, vx) = (X(t))T (vx). Then

(i) XT ∈ LIΓν−1(T;TTM),

(ii) if (t, t0, x0) ∈ DX , then (t, t0, vx0) ∈ DXT for every vx0 ∈ Tx0M, and

(iii) XT (t, vx) =
d
dτ

∣∣
τ=0

TxΦ
X
t+τ,t(vx).

Proof: (i) Since differentiation with respect to x preserves measurability in t,15 and since
the coordinate expression for XT involves differentiating the coordinate expression for X,
we conclude that XT is a Carathéodory vector field. To show that XT ∈ LIΓν−1(T;TTM)
requires, according to our definitions of Section 6, an affine connection on TM and a Rie-
mannian metric on TM. We suppose, of course, that we have an affine connection ∇ and a
Riemannian metric G on M. For simplicity of some of the computations below, and without
loss of generality, we shall suppose that ∇ is torsion-free. In case r = ω, we suppose these
are real analytic, according to Lemma 2.3. In case ν = m + lip for some m ∈ Z>0, we
assume that ∇ is the Levi-Civita connection associated with G.

Let us first describe the Riemannian metric on TM we shall use. The affine connection
∇ gives a splitting TTM ≃ π∗TMTM ⊕ π∗TMTM [Kolář, Michor, and Slovák 1993, §11.11].
We adopt the convention that the second component of this decomposition is the vertical
component so TvxπTM restricted to the first component is an isomorphism onto TxM, i.e., the
first component is “horizontal.” If X ∈ Γν(TM) we denote by XH ∈ Γν(TTM) the unique
horizontal vector field for which TvxπTM(XH(vx)) = X(x) for every vx ∈ TM, i.e., XH is
the “horizontal lift” of X. Let us denote by hor, ver : TTM → π∗TMTM the projections onto
the first and second components of the direct sum decomposition. This then immediately
gives a Riemannian metric GT on TM by

GT (Xvx , Yvx) = G(hor(Xvx), hor(Yvx)) +G(ver(Xvx), ver(Yvx)).

This is called the Sasaki metric [Sasaki 1958] in the case that ∇ is the Levi-Civita
connection associated with G.

Now let us determine how an affine connection on TM can be constructed from ∇.
There are a number of ways to lift an affine connection from M to one on TM, many of

15Derivatives are limits of sequences of difference quotients, each of which is measurable, and limits of
sequences of measurable functions are measurable [Cohn 2013, Proposition 2.1.5].



160 S. Jafarpour and A. D. Lewis

these being described by Yano and Ishihara [1973]. We shall use the so-called “tangent lift”
of ∇, which is the unique affine connection ∇T on TM satisfying ∇T

XT Y
T = (∇XY )T for

X,Y ∈ Γν(TM) [Yano and Kobayashi 1966, §7], [Yano and Ishihara 1973, page 30].
We have the following sublemma.

1 Sublemma: If X ∈ Γν(TM), if vx ∈ TM, if k ∈ Z≥0 satisfies k ≤ ν, if X1, . . . , Xk ∈
Γ∞(TM), and if Za ∈ {XT

a , X
V
a }, a ∈ {1, . . . , k}, then the following formula holds:

(∇T )(k)XT (Z1, . . . , Zk) =

{
(∇(k)X(X1, . . . , Xk))

V , Za vertical for some a ∈ {1, . . . , k},
(∇(k)X(X1, . . . , Xk))

T , otherwise.

Proof: By [Yano and Kobayashi 1966, Proposition 7.2], we have

∇TXT (XT
1 ) = (∇X(X1))

T , ∇TXT (XV
1 ) = (∇X(X1))

V ,

giving the result when k = 1. Suppose the result is true for k ∈ Z>0, and let Za ∈
{XT

a , X
V
a }, a ∈ {1, . . . ,m + 1}. First suppose that Zk+1 = XT

k+1(vx). We then compute,
using the fact that covariant differentiation commutes with contraction [Dodson and Poston
1991, Theorem 7.03(F)],

(∇T )(k+1)XT (Z1, . . . , Zm, Zk+1) = ∇T
XT

k+1
((∇T )(k)XT )(Z1, . . . , Zk)

−
k∑
j=1

(∇T )(k)XT (Z1, . . . ,∇T
XT

k+1
Zj , . . . , Zk). (9.4)

We now consider two cases.

1. None of Z1, . . . , Zk are vertical: In this case, by the induction hypothesis,

((∇T )(k)XT )(Z1, . . . , Zk) = (∇(k)X)(U1, . . . , Uk))
T ,

and [Yano and Kobayashi 1966, Proposition 7.2] gives

∇T
XT

k+1
((∇T )(k)XT )(Z1, . . . , Zk) = (∇Xk+1

(∇(k)X)(U1, . . . , Uk))
T .

Again using [Yano and Kobayashi 1966, Proposition 7.2] and also using the induction
hypothesis, we have, for j ∈ {1, . . . , k},

(∇T )(k)XT (Z1, . . . ,∇T
XT

k+1
Zj , . . . , Zk) = (∇(k)X(U1, . . . ,∇Xk+1

Uj , . . . , Uk))
T .

Combining the preceding two formulae with (9.4) gives the desired conclusion for k+ 1
in this case.

2. At least one of Z1, . . . , Zk is vertical: In this case, we have

((∇T )(k)XT )(Z1, . . . , Zk) = (∇(k)X)(U1, . . . , Uk))
V

by the induction hypothesis. Applications of [Yano and Kobayashi 1966, Proposition 7.2]
and the induction hypothesis give the formulae

∇T
XT

k+1
((∇T )(k)XT )(Z1, . . . , Zk) = (∇Xk+1

(∇(k)X)(U1, . . . , Uk))
V .
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and, for j ∈ {1, . . . , k},

(∇T )(k)XT (Z1, . . . ,∇T
XT

k+1
Zj , . . . , Zk) = (∇(k)X(U1, . . . ,∇Xk+1

Uj , . . . , Uk))
V .

Combining the preceding two formulae with (9.4) again gives the desired conclusion for
k + 1 in this case.

If we take Zk+1 = XV
k+1, an entirely similar argument gives the result for this case for

k + 1, and so completes the proof of the sublemma. ▼

To complete the proof of the lemma, let us for the moment simply regard X as a
vector field of class Cν , not depending on time. We will make use of the fact that, for every
vx ∈ TM, TvxTM is spanned by vector fields of the formXT

1 +Y
V
1 since vertical lifts obviously

span the vertical space and since tangent lifts of nonzero vector fields are complementary to
the vertical space. Therefore, for a fixed vx, we can choose X1, . . . , Xn, Y1, . . . , Yn ∈ Γ∞(M)
so that (XT

1 (vx), . . . , X
T
n (vx)) and (Y V

1 (vx), . . . , Y
V
n (vx)) comprise GT -orthonormal bases

for the horizontal and vertical subspaces, respectively, of TvxTM. Note that these vector
fields depend on vx, but for the moment we will fix vx. We use the following formula given
by Barbero-Liñán and Lewis [2012, Lemma 4.5] for any vector field W of class Cν on M:

W T (vx) =WH(vx) + vlft(vx,∇vxW (x)), (9.5)

keeping in mind that we are supposing ∇ to be torsion-free.
By the sublemma, if Za = XT

ja
, a ∈ {1, . . . , k}, then we have

(∇T )(k−1)XT (vx)(Z1(vx), . . . , Zk(vx)) = (∇(k−1)X(x)(Xj1(x), . . . , Xjk(x)))
H

+ vlft(vx,∇vx(∇(k−1)X(Xj1 , . . . , Xjk))(x)), (9.6)

using (9.5) with W = ∇(k−1)X(Xj1 , . . . , Xjk). Again using (9.5), now with W = Xja , we
have

XT
ja(vx) = XH

ja (vx) + vlft(vx,∇vxXja(x)).

Since XT
ja

was specified so that it is horizontal at vx, its vertical part must be zero, whence
∇vxXja(x) = 0. Therefore, expanding the second term on the right in (9.6), we get

(∇T )(k−1)XT (vx)(Z1(vx), . . . , Zk(vx)) = (∇(k−1)X(x)(Xj1(x), . . . , Xjk(x)))
H

+ vlft(vx,∇(k)X(x)(Xj1(x), . . . , Xjk(x), vx)). (9.7)

Symmetrising this formula with respect to {1, . . . , k} gives

P k∇T (X
T )(vx)(Z1(vx), . . . , Zk(vx)) = (P k∇(X)(x)(Xj1(x), . . . , Xjk(x)))

H

+ vlft
(
vx,∇vxP

k
∇(X)(x)(Xj1 , . . . , Xjk)

)
, (9.8)

where, adopting the notation from Section 2.1, P k∇(X) = Symk⊗ idTM(∇(k−1)X). Now
consider Za ∈ {XT

ja
, Y V

ja
}, a ∈ {1, . . . , k}, and suppose that at least one of these vector

fields is vertical. Then, by the sublemma, we immediately have the estimate

P k∇T (X
T )(vx)(Z1(vx), . . . , Zk(vx)) = (P k∇(Xj1(x), . . . , Xjk(x)))

V , (9.9)
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where X̂j1 , . . . , X̂jk are chosen from X1, . . . , Xn and Y1, . . . , Yn, corresponding to the way
that Z1, . . . , Zk are defined.

Now let us use these formulae in the various regularity classes to obtain the lemma.
ν = ∞: Let K ⊆ TM be compact and let m ∈ Z≥0. For the moment, suppose that X

is time-independent. Combining (9.8) and (9.9), and noting that they hold as we evaluate
Pm∇T (X

T )(vx) on a GT -orthonormal basis for TvxTM, we obtain the estimate

∥Pm∇T (X
T )(vx)∥GT

m
≤ C(∥Pm∇ (X)(x)∥Gm + ∥Pm+1

∇ (X)(x)∥Gm+1
∥vx∥G), vx ∈ K,

for some C ∈ R>0. Now, if we make use of the fibre norms induced on jet bundles as in
Section 2.2, we have

∥jmXT (vx)∥GT
m
≤ C(∥jmX(x)∥Gm

+ ∥jm+1X(x)∥Gm+1
∥vx∥G), vx ∈ K,

for some possibly different C ∈ R>0. Since vx 7→ ∥vx∥G is bounded on K, the previous
estimate gives

∥jmXT
t (vx)∥GT

m
≤ C∥jm+1Xt(x)∥Gm+1

, vx ∈ K, t ∈ T, (9.10)

for some appropriate C ∈ R>0.
Now we consider time-dependence, supposing that X ∈ LIΓ∞(T;TM). Then there

exists f ∈ L1
loc(T;R≥0) such that

∥jm+1Xt(x)∥Gm+1
≤ f(t), x ∈ K, t ∈ T.

We then immediately have

∥jmXT
t (vx)∥GT

m
≤ Cf(t), x ∈ K, t ∈ T,

showing that XT ∈ LIΓ∞(T;TTM), as desired.
ν = m: This case follows directly from the computations in the smooth case.
ν = m+lip: Here we take m = 1 as the general situation follows by combining this with

the previous case. We consider X to be time-independent for the moment. We let K ⊆ TM
be compact. By Lemma 3.12 we have

dilXT (vx) = inf{sup{∥∇T
Yvy
XT ∥GT | vy ∈ cl(W), ∥Yvy∥GT = 1, XT differentiable at vy}|

W is a relatively compact neighbourhood of vx}.

Now we make use of Lemma 2.1, (9.10), and the fact that K is compact, to reduce this to
an estimate

dilXT (vx) ≤ C inf{sup{∥j2X(y)∥G1
| y ∈ cl(U), j1X differentiable at y}|

U a relatively compact neighbourhood of x}

for some C ∈ R>0 and for every x ∈ K. By Lemma 3.12 then gives dilXT (vx) ≤ Cdil j1X(x)
for x ∈ K. From this we obtain the estimate

λlipK (XT ) ≤ Cp1+lip
πTM(K)(X).
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From the proof above in the smooth case, we have

p0K(XT ) ≤ C ′p1πTM(K)(X).

Combining these previous two estimates gives

plipK (XT ) ≤ Cp1+lip
πTM(K)(X)

for some C ∈ R>0, and from this, this part of the result follows easily after adding the
appropriate time-dependence.

ν = ω: For the moment, we take X to be time-independent. The following sublemma
will allow us to estimate the last term in (9.8).

2 Sublemma: Let M be a real analytic manifold, let ∇ be a real analytic affine connection
on M, let G be a real analytic Riemannian metric on M, and let K ⊆ M be compact. Then
there exist C, σ ∈ R>0 such that

∥∇kP k∇(X)(x)∥Gk+1
≤ 2∥jk+1X(x)∥Gk+1

for every x ∈ K and k ∈ Z≥0.

Proof: We use Lemma 2.1 to represent elements of JkTM. Following [Kolář, Michor, and
Slovák 1993, §17.1], we think of a connection ∇̃k on JkTM as being defined by a vector
bundle mapping

JkTM
S̃k //

��

J1JkTM

��
M // M

The connection ∇[k], thought of in this way and using the decomposition of Lemma 2.1,
gives the associated vector bundle mapping as zero. Now, with our identifications, we
see that P k∇(X) = jkX − jk−1X, noting that Jk−1TM is a subbundle of JkTM with our
identification. Therefore, by definition of ∇[k],

∇k(P k∇(X)) = ∇[k](jkX − jk−1X) = j1(jkX − jk−1X).

As we pointed out in the proof of Lemma 9.1 above, the inclusion of Jk+1TM in J1JkTM
preserves the fibre metric. Therefore,

∥∇k(P k∇(X))(x)∥Gk
≤ ∥jk+1X(x)∥Gk+1

+ ∥jkX(x)∥Gk
≤ 2∥jk+1X(x)∥Gk+1

,

as desired. ▼

Let K ⊆ TM be compact and let a ∈ c↓0(Z≥0;R>0). As in the smooth case, but now
using the preceding sublemma, we obtain an estimate

∥jmXT (vx)∥GT
m
≤ C∥jm+1X(x)∥Gm+1

, x ∈ K, m ∈ Z≥0,

for some suitable C ∈ R>0.
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Now, taking X ∈ LIΓω(T;TM), there exists f ∈ L1
loc(T;R≥0) such that

a′0a
′
1 · · · a′m+1∥jm+1Xt(x)∥Gm+1

≤ f(t), x ∈ K, t ∈ T, m ∈ Z≥0,

where a′j+1 = aj , j ∈ {1, . . . ,m}, and a′0 = C. We then immediately have

a0a1 · · · am∥jmXT
t (vx)∥GT

m
≤ f(t), x ∈ K, t ∈ T, m ∈ Z≥0,

showing that XT ∈ LIΓω(T;TTM), as desired.
(iii) We now prove the third assertion. It is local, so we work in a chart. Thus we

assume that we are working in an open subset U ⊆ Rn. We let X : T × U → Rn be the
principal part of the vector field so that a trajectory for X is a curve ξ : T → U satisfying

d

dt
ξ(t) = X(t, ξ(t)), a.e. t ∈ T.

The solution with initial condition x0 and t0 we denote by t 7→ ΦX(t, t0,x0). For
fixed (t0,x0) ∈ T × U and for t sufficiently close to t0, let us define a linear map
Ψ(t) ∈ HomR(R

n;Rn) by

Ψ(t) ·w = D3Φ
X(t, t0,x0) ·w.

We have
d

dt
ΦX(t, t0,x0) = X(t,ΦX(t, t0,x0)), a.e. t,

for t sufficiently close to t0. Therefore,

d

dt
D3Φ

X(t, t0,x0) = D3(
d
dtΦ

X(t, t0,x0))

= D2X(t,ΦX(t, t0,x0)) ·D3Φ
X(t, t0,x0).

In the preceding expression, we have used [Schuricht and von der Mosel 2000, Corollary 2.2]
to swap the time and spatial derivatives. This shows that t 7→ Ψ(t) satisfies the initial value
problem

d

dt
Ψ(t) = D2X(t,ΦX(t, t0,x0)) ·Ψ(t), Ψ(t0) = In.

By [Sontag 1998, Proposition C.3.8], t 7→ Ψ(t) can be defined for all t such that (t, t0,x0) ∈
DX . Moreover, for v0 ∈ Rn (which we think of as being the tangent space at x0), the curve
t 7→ v(t) ≜ Ψ(t) · v0 satisfies

d

dt
v(t) = D2X(t,ΦX(t, t0,x0)) · v(t).

Returning now to geometric notation, the preceding chart computations, after sifting
through the notation, show that

ΦX
T
(t, t0, vx0) = TxΦ

X(t, t0, x0)(vx0),

and differentiation with respect to t at t0 gives this part of the lemma.
(ii) This was proved along the way to proving (iii). ■
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We will also use some features of the geometry of the double tangent bundle, i.e., TTM.
This is an example of what is known as a “double vector bundle,” and we refer to [Mackenzie
2005, Chapter 9] as a comprehensive reference. A review of the structure we describe here
can be found [Barbero-Liñán and Lewis 2012], along with an interesting application of this
structure. We begin by noting that the double tangent bundle possesses two natural vector
bundle structures over πTM : TM → M:

TTM
πTTM //

TπTM
��

TM

πTM
��

TM πTM
// M

TTM
TπTM //

πTTM
��

TM

πTM
��

TM πTM
// M

The left vector bundle structure is called the primary vector bundle and the right the
secondary vector bundle . We shall denote vector addition in the vector bundles as
follows. If u, v ∈ TTM satisfy πTTM(u) = πTTM(v), then the sum of u and v in the primary
vector bundle is denoted by u +1 v. If u, v ∈ TTM satisfy TπTM(u) = TπTM(v), then the
sum of u and v in the secondary vector bundle is denoted by u+2 v.

The two vector bundle structures admit a naturally defined isomorphism between them,
described as follows. Let ρ be a smooth map from a neighbourhood of (0, 0) ∈ R2 to M.
We shall use coordinates (s, t) for R2. For fixed s and t define ρs(t) = ρt(s) = ρ(s, t). We
then denote

∂

∂t
ρ(s, t) =

d

dt
ρs(t) ∈ Tρ(s,t)M,

∂

∂s
ρ(s, t) =

d

ds
ρt(s) ∈ Tρ(s,t)M.

Note that s 7→ ∂
∂tρ(s, t) is a curve in TM for fixed t. The tangent vector field to this curve

we denote by

s 7→ ∂

∂s

∂

∂t
ρ(s, t) ∈ T ∂

∂t
ρ(s,t)TM.

We belabour the development of the notation somewhat since these partial derivatives are
not the usual partial derivatives from calculus, although the notation might make one think
they are. For example, we do not generally have equality of mixed partials, i.e., generally
we have

∂

∂s

∂

∂t
ρ(s, t) ̸= ∂

∂t

∂

∂s
ρ(s, t).

Now let ρ1 and ρ2 be smooth maps from a neighbourhood of (0, 0) ∈ R2 to M. We say
two such maps are equivalent if

∂

∂s

∂

∂t
ρ1(0, 0) =

∂

∂s

∂

∂t
ρ2(0, 0).

To the equivalence classes of this equivalence relation, we associate points in TTM by

[ρ] 7→ ∂

∂s

∂

∂t
ρ(0, 0).

The set of equivalence classes is easily seen to be exactly the double tangent bundle TTM.
We easily verify that

πTTM([ρ]) =
∂

∂t
ρ(0, 0), TπTM([ρ]) =

∂

∂s
ρ(0, 0). (9.11)
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Next, using the preceding representation of points in TTM, we relate the two vector
bundle structures for TTM by defining a canonical involution of TTM. If ρ is a smooth map
from a neighbourhood of (0, 0) ∈ R2 into M , define another such map by ρ̄(s, t) = ρ(t, s).
We then define the canonical tangent bundle involution as the map IM : TTM → TTM
given by IM([ρ]) = [ρ̄]. Clearly IM ◦ IM = idTTM. In a natural coordinate chart for TTM
associated to a natural coordinate chart for TM, the local representative of IM is

((x,v), (u,w)) 7→ ((x,u), (v,w)).

One readily verifies that IM is a vector bundle isomorphism from TTM with the primary
(resp. secondary) vector bundle structure to TTM with the secondary (resp. primary) vector
bundle structure [Barbero-Liñán and Lewis 2012, Lemma A.4].

The following technical lemma is Lemma A.5 from [Barbero-Liñán and Lewis 2012].

9.3 Lemma: (A property of vertical lifts) If w ∈ TTM satisfies πTTM(w) = v and
TπTM = u and if z ∈ TxM, then

w +2 IM ◦ vlft(u, z) = w +1 vlft(v, z).

The final piece of tangent bundle geometry we will consider concerns presheaves and
sheaves of sets of vector fields on tangent bundles. We shall need the following natural
notion of such a presheaf.

9.4 Definition: (Projectable presheaf) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold and let G be a presheaf
of sets of vector fields of class Cν on TM. The presheaf G is projectable if

G (W) = {Z|W | Z ∈ G (π−1
TM(πTM(W)))}. •

The idea is that a projectable sheaf is determined by the local sections over the open
sets π−1

TM(U) for U ⊆ M open.

9.2. Linearisation of systems. Throughout this section, unless stated otherwise, we let
m ∈ Z>0, m

′ ∈ {0, lip}, and let ν ∈ {m+m′,∞, ω}. We take r ∈ {∞, ω}, as required.
When linearising, one typically does so about a trajectory. We will do this also. But

before we do so, let us provide the notion of the linearisation of a system. The result,
gratifyingly, is a system on the tangent bundle. Before we produce the definition, let us
make a motivating computation. We let G = (M,F ) be a globally generated tautological
control system of class Cν . By Example 8.10–2, we have the corresponding Cν-control
system ΣG = (M, FF ,CF ) with CF = F (M) and FF (x,X) = X(x). This is a control
system whose control set is a vector space, and so is a candidate for classical Jacobian
linearisation, provided one is prepared to overlook technicalities of differentiation in locally
convex spaces. . . and we are for the purposes of this motivational computation. In Jacobian
linearisation one considers perturbations of state and control. In our framework, we linearise
about a state/control (x,X). We perturb the state by considering a C1-curve γ : J → M
defined on an interval J for which 0 ∈ int(J) and with γ′(0) = vx. Thus we perturb the
state in the direction of vx. We perturb the control from X in the direction of Y ∈ F (M)
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by considering a curve of controls s 7→ X + sY . Let us then define σ : N → M on a
neighbourhood N of (0, 0) ∈ R2 by

σ(t, s) = ΦX+sY
t (γ(s));

thus σ(t, s) gives the flow at time t corresponding to the perturbation at parameter s. Now
we compute

∂

∂t

∂

∂s
σ(t, s) =

∂

∂t

∂

∂s
ΦX+sY
t (γ(s))

=
∂

∂t

∂

∂s
ΦXt (γ(s)) +

∂

∂t

∂

∂s
ΦX+sY
t (x)

=
∂

∂t
TxΦ

X
t (γ

′(s)) + IM

( ∂
∂s

∂

∂t
ΦX+sY
t (x)

)
=

∂

∂t
TxΦ

X
t (γ

′(s)) + IM

( ∂
∂s

(X + sY )(ΦX+sY
t (x))

)
,

from which we have

∂

∂t

∂

∂s
σ(0, 0) = XT (vx) + IM(vlft(X(x), Y (x))) = XT (vx) + Y V (vx), (9.12)

using Lemma 9.3.
The formula clearly suggests what the linearisation of a tautological control system

should be. However, we need the following lemma to make a sensible definition in our sheaf
framework.

9.5 Lemma: (Presheaves for linearisation) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈
{m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let F be a presheaf of sets of Cν-vector
fields on a Cr-manifold M. Then there exist unique projectable presheaves F T and F V of
Cν−1-vector fields and Cν-vector fields on TM with the property that

F T (π−1
TM(U)) = {XT | X ∈ F (U)}

and
F V (π−1

TM(U)) = {XV | X ∈ F (U)}

for every open set U ⊆ M. Moreover,

(i) F T is a sheaf if and only if F is a sheaf,

(ii) F V is a sheaf if and only if F is a sheaf,

(iii) Sh(F T ) = Sh(F )T , and

(iv) Sh(F V ) = Sh(F )V .

Proof: Let W ⊆ TM be open and note that UW = πTM(W) is open. For W ⊆ TM open we
define

F T (W) = {XT |W | X ∈ F (UW)}

and
F V (W) = {XV |W | X ∈ F (UW)}.
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If W,W′ ⊆ TM are open with W′ ⊆ W and if XT |W ∈ F T (W), then, for vx ∈ W′, we have

(XT (vx)|W′)(vx) = ((X|UW′)T )(vx),

this making sense since XT (vx) depends only on the values of X in a neighbourhood of x,
and since UW′ contains a neighbourhood of x if vx ∈ W′. In any case, we have that

XT |W′ ∈ F T (W′),

which shows that F T is a presheaf. A similar argument, of course, works for F V . This gives
the existence assertion of the lemma. Uniqueness follows immediately from the requirement
that F T and F V be projectable.

(i) Suppose that F is a sheaf. We shall first show that F T is a sheaf. Let W ⊆ TM be
open, and let (Wa)a∈A be an open cover of W. Let Za ∈ F T (Wa), supposing that

Za|Wa ∩Wb = Zb|Wa ∩Wb

for a, b ∈ A. For each a ∈ A, we have, by our definition of F T above, Za = XT
a |Wa

for Xa ∈ F (UWa). Using the fact that Γν−1(TTM) is a sheaf, we infer that there exists
Z ∈ Γν−1(TTM) such that Z|Wa = XT

a |Wa for each a ∈ A. Now, for each x ∈ UW,
let us fix ax ∈ A such that x ∈ πTM(Wa). Note that Z|Wax = XT

ax |Wax and so there
is a neighbourhood Ux ⊆ UWax

of x and Xx ∈ Γν−1(TUx) such that Xx = Xax |Ux. In
particular, Xx ∈ F (Ux). Moreover, since F T is projectable, we can easily see that [Xx]x
is independent of the rule for choosing ax. Now let x1, x2 ∈ M and let x ∈ Ux1 ∩ Ux2 . By
projectability of F T , there exist a neighbourhood Vx ⊆ Ux1 ∩ Ux2 and X ′

x ∈ F (Vx) such
that

XT
axj

|Waxj
∩ π−1

TM(Vx) = (X ′
x)
T |Waxj

, j ∈ {1, 2}.

We conclude, therefore, that Xx1(x) = Xx2(x). Thus we have an open covering (Ux)x∈UW

of UW and local sections Xx ∈ F (Ux) pairwise agreeing on intersections. Since F is a
sheaf, there exists X ∈ F (UW) such that X|Ux = Xx for each x ∈ UW. Since

XT |Wax ∩ π−1
TM(Ux) = XT

x |Wax ∩ π−1
TM(Ux) = XT

ax |Wax ∩ π−1
TM(Ux),

projectability of F T allows us to conclude that Z = XT |W.
Now suppose that F T is a sheaf and let U ⊆ M be open, let (Ua)a∈A be an open covering

of U, and let Xa ∈ F (Ua), a ∈ A be such that Xa|Ua ∩Ub = Xb|Ua ∩Ub. This implies that

XT
a |π−1

TM(Ua ∩ Ub) = XT
b |π−1

TM(Ua ∩ Ub).

Therefore, by hypothesis, there exists X ∈ F (U) such that XT |π−1
TM(Ua) = XT

a for each
a ∈ A. Projecting to M gives X|Ua = Xa for each a ∈ A, showing that F is a sheaf.

(ii) To show that F V is a sheaf can be made with an identically styled argument as
above in showing that F T is a sheaf. The argument, indeed, is even easier since vertical
lifts do not depend on the value of their projections in a neighbourhood of a point in TM,
only on the projection at the point.

(iii) Let W ⊆ TM be open and let Z ∈ Sh(F T )(W). This means that, for each vx ∈ W,
[Z]vx ∈ F T

0,v. Therefore, there exist a neighbourhood Wvx of vx and Xx ∈ F (UWvx
) such

that Z|Wvx = XT
x |Wvx . We now proceed as in the preceding part of the proof. Thus, for
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each x ∈ UW let us fix vx ∈ W. Note that Z|Wvx = XT
vx |Wvx and so there is a neighbourhood

Ux ⊆ UWvx
of x and Xx ∈ Γν−1(TUx) such that Xx = Xvx |Ux. In particular, Xx ∈ F (Ux).

Moreover, since F T is projectable, we can easily see that [Xx]x is independent of the rule
for choosing vx ∈ W. Now let x1, x2 ∈ M and let x ∈ Ux1 ∩ Ux2 . By projectability of F T ,
there exist a neighbourhood Vx ⊆ Ux1 ∩ Ux2 and X ′

x ∈ F (Vx) such that

XT
vxj

|Wvxj
∩ π−1

TM(Vx) = (X ′
x)
T |Wvxj

, j ∈ {1, 2}.

We conclude, therefore, that Xx1(x) = Xx2(x). Thus we have an open covering (Ux)x∈UW

and local sections Xx ∈ F (Ux) pairwise agreeing on intersections. Thus there exists X ∈
Sh(F (UW)) such that X|Ux = Xx for each x ∈ UW. Since

XT |Wvx ∩ π−1
TM(Ux) = XT

x |Wvx ∩ π−1
TM(Ux) = XT

vx |Wvx ∩ π−1
TM(Ux),

projectability of Sh(F T ) allows us to conclude that Z = XT |W, i.e., Z ∈ Sh(F )T (W).
(iv) A similar argument as in the preceding part of the proof works to give this part of

the proof as well. ■

With the preceding computations and sheaf lemma as motivation, we make the following
definition.

9.6 Definition: (Linearisation of a tautological control system) Let m ∈ Z>0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be
a Cν-tautological control system. The linearisation of G is the Cν−1-tautological control
system TG = (TM, TF ), where the projectable presheaf of sets of vector fields TF is
characterised uniquely by the requirement that, for every open subset U ⊆ M,

TF (π−1
TM(U)) = {XT + Y V | X,Y ∈ F (U)}. •

This definition may look a little strange at a first glance. However, as we go along, we
shall use the definition in more commonplace settings, and we will see then that it connects
to more familiar constructions.

9.3. Trajectories for linearisations. As a tautological control system, TG provides a fo-
rum for all of the constructions of Sections 8.2, 8.3, and 8.4 concerning such systems. In
particular, the linearisation has trajectories, so let us look at these.

Let us first think about open-loop systems. By definition, an open-loop system
for TG is a triple (Z,T,W) with T ⊆ R an interval, W ⊆ TM an open set, and
Z ∈ LIΓν−1(T;TF (W)). Thus Z(t) = X(t)T + Y (t)V for X,Y : T → F (πTM(W)). We
will write Z = XT + Y V with the understanding that this means precisely what we have
just written. We should, however, verify that X and Y have useful properties.

9.7 Lemma: (Property of open-loop systems for linearisation) Let m ∈ Z>0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a
Cν-tautological control system with linearisation TG = (TM, TF ). Let T be a time-domain
and let W ⊆ TM be open. If Z ∈ LIΓν−1(T;TF (W)) is given by

Z(t, vx) = XT (t, vx) + Y V (t, vx)

for maps X,Y : T × πTM(W) → TM for which Xt, Yt ∈ Γν(T;πTM(W)) for every t ∈ T,
then X ∈ LIΓν(T;F (πTM(W))) and Y ∈ LIΓν−1(T;F (πTM(W))).
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Proof: It is possible to make oneself believe the lemma by a coordinate computation. How-
ever, we shall give a coordinate-free proof. To do this, we will use the Riemannian metric
GT and the affine connection ∇T on TM defined by a Riemannian metric G and affine
connection ∇ on M, as described in the proof of Lemma 9.2. For simplicity, and since we
will make use of some formulae derived in the proof of Lemma 9.2 where this assumption
was made, we suppose that ∇ is torsion-free.

Since we will be calculating iterated covariant differentials as in Section 3.1, only now us-
ing the affine connection ∇T on TM, we should also think about the character of Tk(T∗TM).
For vx ∈ TxM, TvxπTM is a surjective linear mapping from TvxTM to TxM. Thus its dual,
(TvxπTM)∗, is an injective linear mapping from T∗

xM to T∗
vxTM. It induces, therefore, an in-

jective linear mapping from Tk(T∗
xM) to Tk(T∗

vxTM) [Bourbaki 1989a, Proposition III.5.2.2].
Yano and Kobayashi [1966] call this the vertical lift of Tk(T∗M) into Tk(T∗TM). Note
that vertically lifted tensors, thought of as multilinear maps, vanish if they are given a
vertical vector as one of their arguments, i.e., they are “semi-basic” (in fact, they are even
“basic”). Note that T∗

vxTM ≃ T∗
xM⊕T∗

xM by dualising the splitting of the tangent bundle.
So as to notationally distinguish between the two components of the direct sum, let us de-
note the first component by (T∗

xM)1 and the second component by (T∗
xM)2, noting that the

first component is defined to be the image of the canonical injection from T∗
xM to T∗

vxTM.
We then have

Tk((T∗
xM)1 ⊕ (T∗

xM)2) ≃
⊕

a1,...,ak∈{1,2}

(T∗
xM)a1 ⊗ · · · ⊗ (T∗

xM)ak

by [Bourbaki 1989a, §III.5.5]. Let

πk : T
k(T∗

vxTM) → (T∗
xM)1 ⊗ · · · ⊗ (T∗

xM)1

be the projection onto the component of the direct sum decomposition.
With all of the preceding, we can now make sense of the following sublemma. We adopt

the notation (2.1) introduced in the proof of Theorem 3.5.

1 Sublemma: If, for X,Y ∈ Γν(TM), we have Z = XT + Y V , then we have

πk ⊗ idTTM((∇T )(k)Z(0x)) = ∇(k)X(x)⊕ (∇(k)Y (x))

for k ∈ Z≥0 satisfying k ≤ ν.

Proof: Obviously we can consider two special cases, the first where Y = 0 and the second
where X = 0. When Y = 0, the result follows from Sublemma 1 from the proof of
Lemma 9.2, especially the formula (9.7) we derived from the sublemma. When X = 0 the
result immediately follows from the same sublemma. ▼

By the preceding sublemma, Z(t, 0x) = X(t, x) ⊕ Y (t, x). Since the projections onto
the first and second component of the direct sum decomposition of TTM are continuous,
we immediately conclude that X,Y ∈ CFΓν(T;T(πTM(W))).

The remainder of the proof breaks into the various cases of regularity.
ν = ∞: Let K ⊆ M be compact and let m ∈ Z≥0. Since K is also a compact subset of

TM, there exists g ∈ L1
loc(T;R≥0) such that

∥jmZ(t, 0x)∥GT
m
≤ g(t), t ∈ T, x ∈ K.
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Let πm : JmTTM → ⊕m
j=0T

j(π∗TMTM)⊗ TTM be defined by

πm(jmZ
′(vx)) =

m∑
j=0

πj ⊗ idTTM((∇T )(j−1)Z ′(vx)),

this making sense by virtue of Lemma 2.1. By the sublemma, by the definition of GT , and
by the definition of the fibre metrics on JmTM and JmTTM induced by the decomposition
of Lemma 2.1, we have

∥πm(jmZ(t, 0x))∥2GT
m
= ∥jmX(t, x)∥2

Gm
+ ∥jmY (t, x)∥2

Gm
.

This gives

∥jmX(t, x)∥Gm
≤ g(t), ∥jmY (t, x)∥Gm

≤ g(t), t ∈ T, x ∈ K,

which gives the lemma in this case.
ν = m: From the computations above in the smooth case we have that X and Y are

locally integrally Cm−1-bounded. To show X is, in fact, locally integrally Cm-bounded, we
will use the computations from the proof of Lemma 9.2. Let K ⊆ M and let

K1 = {vx ∈ TM | x ∈ K, ∥vx∥G ≤ 1}

so K1 is a compact subset of TM. For the moment, let us fix t ∈ T. We now recall
equation (9.8) which gives a formula for Pm∇T (X

T
t ) when all arguments are horizontal. Since,

in the expression (9.8), vx is arbitrary, by letting it vary over vectors of unit length we get
an estimate

∥Pm∇ (Xt)(x)∥Gm ≤ C(pm−1
K (Xt) + pm−1

K1
(XT

t ))

for some C ∈ R>0. Since X,Y ∈ LIΓm−1(T;M) and since XT = Z−Y V ∈ LIΓm−1(T;TM),
by Lemma 2.1 there exists g ∈ L1

loc(T;R≥0) such that

∥jmXt(x)∥ ≤ g(t), (t, x) ∈ T ×K,

which gives X ∈ LIΓm(TM).
ν = m+lip: This follows from the computations above, using Lemma 3.12, cf. the proof

of the Lipschitz part of the proof of Lemma 9.2.
ν = ω: Let K ⊆ M be compact and let a ∈ c↓0(Z≥0;R>0). Since K is also a compact

subset of TM, there exists g ∈ L1
loc(T;R≥0) such that

a0a1 · · · am∥jmZ(t, 0x)∥GT
m
≤ g(t), t ∈ T, x ∈ K, m ∈ Z≥0.

As in the smooth case we have

∥πm(jmZ(t, 0x))∥2GT
m
= ∥jmX(t, x)∥2

Gm
+ ∥jmY (t, x)∥2

Gm
.

This gives

a0a1 · · · am∥jmX(t, x)∥Gm
≤ g(t), a0a1 · · · am∥jmY (t, x)∥Gm

≤ g(t),

for t ∈ T, x ∈ K, and m ∈ Z≥0, which gives the lemma. ■
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Next let us think about open-loop subfamilies for linearisations. Generally speaking,
one may wish to consider different classes of open-loop systems for the “tangent lift part”
and the “vertical lift part” of a linearised system. The open-loop systems for the tangent
lift part will be those giving rise to reference trajectories and reference flows. On the other
hand, the open-loop systems for the vertical lift part will be those that we will allow as
perturbing the reference flow. There is no reason that these should be the same. While this
proliferation of open-loop subfamilies will lead to some notational complexity, the freedom
to carefully account for these possibilities is one of the strengths of our theory. Indeed, in
standard Jacobian linearisation, it is difficult to keep track of how the controls—constraints
on them and attributes of them—are carried over to the linearisation. In our theory, this
is natural.

We first make tangent and vertical lift constructions for open-loop subfamilies.

9.8 Definition: (Tangent and vertical lifts of open-loop subfamilies) Let m ∈ Z>0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system with linearisation TG = (TM, TF ), and let OG be an
open-loop subfamily for G.

(i) The tangent lift of OG is the open-loop subfamily O TG for (TM,F T ) defined by

O TG (T,W) = {XT |W | X ∈ OG(T, πTM(W))}

for a time-domain T and for W ⊆ TM open.

(ii) The vertical lift of OG is the open-loop subfamily O VG for (TM,F V ) defined by

O VG (T,W) = {Y V |W | Y ∈ OG(T, πTM(W))}

for a time-domain T and for W ⊆ TM open. •

9.9 Definition: (Open-loop subfamily for linearisation) Let m ∈ Z>0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be
a Cν-tautological control system with linearisation TG = (TM, TF ). An open-loop sub-
family for TG defined by a pair (OG,0,OG,1) of open-loop subfamilies for G is the open-loop
subfamily O TG,0 + O

V
G,1 defined by:

XT + Y V ∈ (O TG,0 + O
V
G,1)(T,W) ⇐⇒ XT ∈ O TG,0(T, πTM(W)), Y V ∈ O VG,1(T, πTM(W)).

•
Note that the restriction properties of open-loop subfamilies as per Definition 8.17 are

satisfied by our construction above, so the result is indeed an open-loop subfamily for TG.
Next we can define what we mean by trajectories for the linearisation in the more or

less obvious way.

9.10 Definition: (Trajectory for linearisation of tautological control system) Let
m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
G = (M,F ) be a Cν-tautological control system with linearisation TG = (TM, TF ). Let
OG,0 and OG,1 be open-loop subfamilies for G.

(i) For a time-domain T, an open set W ⊆ TM, and for X ∈ OG,0(T,U) and Y ∈ OG,1,
an (X,Y,T,W)-trajectory for (OG,0,OG,1) is a curve Υ: T → W such that Υ′(t) =
XT (t,Υ(t)) + Y V (t,Υ(t)).
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(ii) For a time-domain T and an open set W ⊆ TM, a (T,W)-trajectory for the pair
(OG,0,OG,1) is a (T,W)-trajectory for O TG,0 + O

V
G,1.

(iii) A plain trajectory for the pair (OG,0,OG,1) is a curve that is a (T,W)-trajectory for
(OG,0,OG,1) for some time-domain T and some open W ⊆ TM.

We denote by:

(iv) Traj(X,Y,T;W) the set of (X,Y,T,U)-trajectories for (OG,0,OG,1);

(v) Traj(T,W, (OG,0,OG,1)) the set of (T,U)-trajectories for (OG,0,OG,1);

(vi) Traj(OG,0,OG,1) the set of trajectories for (OG,0,OG,1).

We shall abbreviate

Traj(T,W, (OG,full,OG,full)) = Traj(T,W, TG)

and Traj(OG,full,OG,full) = Traj(TG). •
Now that we have been clear about what we mean by the trajectory of a linearised

system, let us say some things about these trajectories.

9.11 Proposition: (Trajectories for the linearisation of a tautological control sys-
tem) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as
required. Let G = (M,F ) be a Cν-tautological control system with linearisation TG, and
let OG,0 and OG,1 be open-loop subfamilies for G. Let T ⊆ R be a time-domain and let
W ⊆ TM be open. If ξT ∈ Traj(T,W, (OG,0,OG,1)) then the following statements hold:

(i) there exist X ∈ OG,0(T, πTM(W)) and Y ∈ OG,1(T, πTM(W)) such that

(ξT )′(t) = XT (t, ξT (t)) + Y V (t, ξT (t));

(ii) there exists ξ ∈ Traj(T, πTM(W),OG,0) such that the diagram

T
ξT //

ξ !!

TM

πTU
��
M

commutes, i.e., ξT is a vector field along ξ.

Proof: The first assertion follows from Lemma 9.7. The second assertion follows by taking
ξ = πTM ◦ ξT , and noting that

ξ′(t) = TξT (t)πTM((ξT )′(t)) = TξT (t)πTM(XT (t, ξT (t)) + Y V (t, ξT (t))) = X(t, ξ(t))

and X is an open-loop system for OG,0. ■

9.4. Linearisation about reference trajectories and reference flows. Let us now slowly
begin to pull back our general notion of linearisation to something more familiar. In this
section we will linearise about two sorts of things, trajectories and flows. We will see in
the next section that it is the distinction between these two things that accounts for the
problems observed in Example 1.1.
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But for now, we proceed in general. We let G be a tautological control system and OG
an open-loop subfamily. We recall from Example 8.24 that, if T is a time-domain, if U ⊆ M
is open, and if ξ ∈ Traj(T,U,OG), then OG,ξ is the open-loop subfamily associated to the
trajectory ξ, i.e., all open-loop systems from OG possessing ξ as a trajectory. Having made
this recollection, we make the following definition.

9.12 Definition: (Linearisation of a tautological control system about a trajec-
tory) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as
required. Let G = (M,F ) be a Cν-tautological control system with linearisation TG. Let
OG,0 and OG,1 be open-loop subfamilies for G, let T be a time-domain, let U ⊆ M be
open, and let ξref ∈ Traj(T,U,OG,0). The (OG,0,OG,1)-linearisation of G about ξref
is the open-loop subfamily O TG,0,ξref + O

V
G,1 for TG. A trajectory for this linearisation is a

(T′,W)-trajectory Υ for (OG,0,ξref ,OG,1) satisfying πTM ◦ Υ = ξref, and where T′ ⊆ T and
W ⊆ π−1

TM(U). •
By definition, a trajectory for the linearisation about the reference trajectory ξref is a

curve Υ: T′ → W satisfying

Υ′(t) = XT (t,Υ(t)) + Y V (t,Υ(t)),

for X ∈ OG,0,ξref(T′, πTM(W)) and for Y ∈ OG,1(T′, πTM(W)), and where Υ is a tangent
vector field along ξref. Note that there may well be trajectories for (OG,0,ξref ,OG,1) that are
not vector fields along ξref; we just do not call these trajectories for the linearisation about
ξref.

Let us now talk about linearisation, not about a trajectory, but about a flow. Here we
recall the notion of the open-loop subfamily associated to an open-loop system in Exam-
ple 8.18–5.

9.13 Definition: (Linearisation of a tautological control system about a flow) Let
m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let G = (M,F ) be a Cν-tautological control system with linearisation TG. Let OG,0 and
OG,1 be open-loop subfamilies for G, let T be a time-domain, let U ⊆ M be open, and let
Xref ∈ OG,0(T,U). The OG,1-linearisation of G about Xref is the open-loop subfamily
O TG,0,Xref

+ O VG,1 for TG. A trajectory for this linearisation is a (T′,W)-trajectory for

(OG,0,Xref
,OG,1), where T′ ⊆ T and where W ⊆ π−1

TM(U). •
By definition, a trajectory for the linearisation about the reference flow Xref is a curve

Υ: T′ → W satisfying
Υ′(t) = XT

ref(t,Υ(t)) + Y V (t,Υ(t)),

for Y ∈ OG,1(T′, πTM(W)). Note that the definition of OG,0,Xref
necessarily implies that

πTM ◦ Υ is an integral curve for Xref. Unlike the case of linearisation about a reference
trajectory, we do not specify that the trajectories for the linearisation about a reference
flow follow a specific trajectory for G, although one can certainly do this as well.

9.5. Linearisation about an equilibrium point. Continuing to make things concrete, let
us consider linearising about trivial reference trajectories and reference flows. We begin by
considering what an equilibrium point is in our framework.
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9.14 Definition: (Tautological control system associated to an equilibrium point)
Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let G = (M,F ) be a Cν-tautological control system and let x0 ∈ M.

(i) The tautological control system for G at x0 is the Cν-tautological control system
Gx0 = (M,EqF ,x0), where

EqF ,x0(U) = {X ∈ F (U) | X(x0) = 0x0}.

(ii) If there exists an open set U ⊆ M for which EqF ,x0(U) ̸= ∅, then x0 is an equilibrium
point for G. •

Of course, by properties of presheaves, if X ∈ EqF ,x0(U), then X|V ∈ EqF ,x0(V) for
every open set V ⊆ U. Thus Gx0 is indeed a tautological control system.

Let us examine the nature of tautological control systems at x0. This amounts to
understanding any particular structure that one can associate to vector fields that vanish
at a point. This is the content of the following lemma.

9.15 Lemma: (Properties of vector fields vanishing at a point) Let M be a smooth
manifold, let x0 ∈ M, and let X ∈ Γ1(M). If X(x0) = 0x0, then there exists a unique
AX,x0 ∈ EndR(Tx0M) satisfying either of the following equivalent characterisations:

(i) noting that XT |Tx0M : Tx0M → V0x0
TM ≃ Tx0M, AX,x0 = XT |Tx0M;

(ii) AX,x0(vx0) = [V,X](x0) where V ∈ Γ∞(M) satisfies V (x0) = vx0.

Proof: We will show that the characterisation from part (i) makes sense, and that it agrees
with the second characterisation.

First, note that, since X(x0) = 0x0 , Tvx0πTM(XT (vx0)) = 0x0 for every vx0 ∈ Tx0M.

Thus XT (vx0) ∈ V0x0
TM, as claimed. That XT |Tx0M is linear is a consequence of the fact

that XT is a linear vector field, i.e., that the diagram (9.3) commutes. In the particular
case that X(x0) = 0x0 , the diagram implies that XT is a linear map from Tx0M to T0x0

TM.

As we already know that XT |Tx0M is V0x0
TM-valued, the characterisation from part (i)

does indeed uniquely define an endomorphism of Tx0M.
Let us now show that the characterisation of part (ii) agrees with that of part (i).

By [Abraham, Marsden, and Ratiu 1988, Theorem 4.2.19], we have

vlft(0x0 , [V,X](x0)) =
d

dt

∣∣∣∣
t=0

TΦX
−t(x0)

ΦXt ◦ V ◦ ΦX−t(x0)

=
d

dt

∣∣∣∣
t=0

Tx0Φ
X
t ◦ V (x0) = XT (V (x0)),

as desired. ■

According to the lemma, we can make the following definitions.

9.16 Definition: (Data associated with linearisation about an equilibrium point)
Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let G = (M,F ) be a Cν-tautological control system. For an equilibrium point x0 ∈ M for
G, we define

LF ,x0 = {AX,x0 | [X]x0 ∈ (EqF ,x0)x0}



176 S. Jafarpour and A. D. Lewis

(where (EqF ,x0)x0 denotes the stalk of the presheaf EqF ,x0 at x0) and

F (x0) = {X(x0) | [X]x0 ∈ Fx0}. •

Associated to an equilibrium point are natural notions of open-loop systems that pre-
serve the equilibrium point.

9.17 Definition: (Open-loop subfamilies and equilibrium points) Let m ∈ Z>0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be
a Cν-tautological control system. If x0 ∈ M and if OG is an open-loop subfamily for G, the
open-loop subfamily OG,x0 is defined by specifying that, for a time-domain T and an open
set U ⊆ M,

OG,x0(T,U) = {X ∈ OG(T;U) | X(t) ∈ EqF ,x0(U), t ∈ T}. •
Note that the only trajectory of OG,x0 passing through x0 is the constant trajectory

t 7→ x0, as it should be.
It is now more or less obvious how one should define linearisations about an equilibrium

point. This can be done for trajectories and flows. We start with trajectories.

9.18 Definition: (Linearisation of a tautological control system about an equi-
librium trajectory) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let
r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control system with lin-
earisation TG. Let OG,0 and OG,1 be open-loop subfamilies for G and let x0 ∈ M. The
(OG,0,OG,1)-linearisation of G about x0 is the open-loop subfamily O TG,0,x0 + O VG,1
for TG. A trajectory for this linearisation is a (T,W)-trajectory for the (OG,0,x0 ,OG,1)-
linearisation about the trivial reference trajectory t 7→ x0, where T is a time-domain and
where W is a neighbourhood of Tx0M. •

By definition and by the characterisation of XT at equilibria, a trajectory for the lin-
earisation about x0 will be a curve Υ: T → Tx0M satisfying

Υ′(t) = AX(t),x0(Υ(t)) + b(t),

where t 7→ X(t) is a curve in LF ,x0 whose nature is determined by the open-loop subfamily
OG,0, e.g., it may be locally integrable, locally essentially bounded, piecewise constant, etc.,
and where t 7→ b(t) is a curve in F (x0) ⊆ Tx0M, again whose nature is determined by the
open-loop subfamily OG,1. Note that the linearisation about x0 will, therefore, generally be
a family of time-dependent linear systems on Tx0M. This may come as a surprise to those
used to Jacobian linearisation, but we will see in Example 9.25 below how this arises in
practice.

Let us now talk about linearisation about an equilibrium point, not about a trajectory,
but about a flow.

9.19 Definition: (Linearisation of a tautological control system about an equilib-
rium flow) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω},
as required. Let G = (M,F ) be a Cν-tautological control system with linearisation TG.
Let OG,0 and OG,1 be open-loop subfamilies for G, let T be a time-domain, let x0 ∈ M, let
U ⊆ M be a neighbourhood of x0, and let Xref ∈ OG,0,x0(T,U). The OG,1-linearisation
of G about (Xref, x0) is the open-loop subfamily O TG,0,Xref

+ O VG,1 for TG. A trajectory
for this linearisation is a (T′,W)-trajectory for (OG,0,Xref

,OG,1), where T′ ⊆ T and where
W ⊆ π−1

TM(U). •



Mathematical models for geometric control theory 177

In this case, we have a prescribed curve t 7→ Xref(t) such that Xref(t, x0) = 0x0 for
every t. Thus this defines a curve AXref(t),x0 in LF ,x0 . By definition, a trajectory for the
linearisation about the pair (Xref, x0) is a curve Υ: T′ → Tx0M satisfying

Υ′(t) = AXref(t),x0(Υ(t)) + b(t),

where t 7→ b(t) is a curve in F (x0) having properties determined by the open-loop subfamily
OG,1. Note that this linearisation will still generally be time-dependent, but it is now a
single time-dependent linear system, not a family of them, as with linearisation about a
trajectory. Moreover, if Xref is chosen to be time-independent, then the linearisation will
also be time-invariant. But there is no reason in the general theory to do this.

The above comments about the possibility of time-varying linearisations notwithstand-
ing, there is one special case where we can be sure that linearisations will be time-
independent, and this is when LF ,x0 consists of a single vector field. The following result
gives a common case where this happens. Indeed, the ubiquity of this situation perhaps
explains the neglect of the general situation that has led to the seeming contradictions in
the standard treatments, such as are seen in Example 1.1.

9.20 Proposition: (Time-independent linearisations for certain control-affine sys-
tems) Let Σ = (M, F,C) be a C1-control-affine system with C ⊆ Rk and

F (x,u) = f0(x) +
k∑
a=1

uafa(x).

For x0 ∈ M, suppose that

(i) there exists u0 ∈ C such that

f0(x0) =

k∑
a=1

ua0fa(x0)

and

(ii) (f1(x0), . . . , fk(x0)) is linearly independent.

Then x0 is an equilibrium point for GΣ and LFΣ,x0 consists of a single linear map.

Proof: Let us define

f ′0 = f0 −
k∑
a=1

ua0fa,

noting that f ′0 ∈ FΣ. Since f
′
0(x0) = 0x0 , we conclude that x0 is an equilibrium point. Now

suppose that F (x0,u) = 0x0 . Thus

f0(x0) +
k∑
a=1

uafa(x0) = 0x0 =⇒ f0(x0) = −
k∑
a=1

uafa(x0).

This last equation has a solution for u, namely u = −u0, and since (f1(x0), . . . , fm(x0)) is
linearly independent, this solution is unique. Thus, for any neighbourhood U of x0,

EqFΣ,x0(U) =
{
f0 −

k∑
a=1

ua0fa(x0)
}
= {f ′0(x0)}.

This shows that LFΣ,x0 = {Af ′0,x0}, as claimed. ■



178 S. Jafarpour and A. D. Lewis

While we are definitely not giving a comprehensive account of controllability in this
paper—see Section 10.1 for a discussion of controllability—in order to “close the loop” on
Example 1.1, let us consider here how one talks about linear controllability in our framework.
First we introduce some general notation.

9.21 Definition: (Subspaces invariant under families of linear maps) Let F be a
field, let V be an F-vector space, let L ⊆ EndF(V), and let S ⊆ V. By ⟨L , S⟩ we denote
the smallest subspace of V that (i) contains S and (ii) is invariant under L for every L ∈ L .

•
We can give a simple description of this subspace.

9.22 Lemma: (Characterisation of smallest invariant subspace) If F is a field, if V
is an F-vector space, if L ⊆ EndF(V), and if S ⊆ V, then ⟨L , S⟩ is spanned by elements
of V of the form

L1 ◦ · · · ◦ Lk(v), k ∈ Z≥0, L1, . . . , Lk ∈ L , v ∈ S. (9.13 )

Proof: Let UL ,S be the subspace spanned by elements of the form (9.13). Clearly S ⊆ UL ,S

(taking the convention that L1◦· · ·◦Lk(v) = v if k = 0) and, if L ∈ L , then L(UL ,S) ⊆ UL ,S

since an endomorphism from L maps a generator of the form (9.13) to another generator
of this form. Therefore, ⟨L , S⟩ ⊆ UL ,S . Now, if v ∈ S, then clearly v ∈ ⟨L , S⟩. Since
⟨L , S⟩ is invariant under endomorphisms from L , L(v) ∈ ⟨L , S⟩ for every v ∈ S and
L ∈ L . Recursively, we see that all generators of the form (9.13) are in ⟨L , S⟩, whence
UL ,S ⊆ ⟨L , S⟩ since UL ,S is a subspace. ■

With the preceding as setup, let us make the following definition.

9.23 Definition: (Linear controllability) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system with linearisation TG, and let x0 ∈ M be an equilibrium point for G. The system
G is linearly controllable at x0 if there exists S ⊆ F (x0) such that (i) 0x0 ∈ conv(S)
and (ii) ⟨LF ,x0 , S⟩ = Tx0M. •

9.24 Remark: (Relationship to rank test) For readers who may not recognise the re-
lationship between our definition of linear controllability and the classical Kalman rank
test [Brockett 1970, Theorem 13.3], we make the following comments. Consider the linear
system

ẋ(t) = Ax(t) +Bu(t),

with x ∈ Rn, u ∈ Rm, and for appropriately sized matrices A and B. Using Lemma 9.22
and the Cayley–Hamilton Theorem, it is easy to check that the smallest A-invariant sub-
space containing image(B) is exactly the columnspace of the Kalman controllability matrix,[

B AB · · · An−1B
]
.

For the more geometric approach to topics in linear system theory, we refer to the excellent
book of Wonham [1985]. •

We state linear controllability as a definition, not a theorem, because we do not want
to develop the definitions required to state a theorem. However, it is true that a system
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that is linearly controllable according to our definition is small-time locally controllable in
the usual sense of the word. This is proved by Aguilar [2010, Theorem 5.14]. The setting
of Aguilar is not exactly that of our paper. However, it is easy to see that this part of
Aguilar’s development easily translates to what we are doing here.

Let us close this section, and the technical part of the paper, by revisiting Example 1.1
where we saw that the classical picture of Jacobian linearisation presents some problems.

9.25 Example: (Revisiting Example 1.1) We work with the system

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t).

We could as well work with the other representation for the system from Example 1.1, but
since the family of vector fields is the same (what changes between the two representations
is the parameterisation of the set of vector fields!), we will get the same conclusions; this,
after all, is the point of our feedback-invariant approach.

This, of course, is a control-affine system, and the resulting tautological control system
is G = (R3,F ) where F is the globally generated presheaf with

F (R3) = {f0 + u1f1 + u2f2 | (u1, u2) ∈ R2},

with

f0 = x2
∂

∂x1
, f1 = x3

∂

∂x2
, f2 =

∂

∂x3
.

We have an equilibrium point at (0, 0, 0).

1 Lemma: EqF ,(0,0,0)(R
3) = f0 + spanR(f1).

Proof: It is clear that f0(0, 0, 0) = f1(0, 0, 0) = 0, and, therefore, any linear combination
of f0 and f1 will also vanish at (0, 0, 0), and particularly those from the affine subspace
f0 + spanR(f1). Conversely, if

f0(0, 0, 0) + u1f1(0, 0, 0) + u2f2(0, 0, 0) = 0,

then u2 = 0 and so the resulting vector field is in the asserted affine subspace. ▼

We, therefore, have

LF ,(0,0,0) =


0 1 0
0 0 a
0 0 0

 ∣∣∣∣∣∣ a ∈ R

 .

We also have

F ((0, 0, 0)) = {bf2(0, 0, 0) | b ∈ R} =


00
b

 ∣∣∣∣∣∣ b ∈ R

 .
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Thus a curve in LF ,(0,0,0) has the form

t 7→

0 1 0
0 0 a(t)
0 0 0


for a function a having whatever properties might be induced from the open-loop subfamily
OG,0 one is using, e.g., locally integrable, locally essentially bounded. A curve in F ((0, 0, 0))
has the form

t 7→

 0
0
b(t)


for a function b having whatever properties might be induced from the open-loop subfamily
OG,1 one is using. Trajectories for the linearisation about (0, 0, 0) then satisfyv̇1(t)v̇2(t)

v̇3(t)

 =

0 1 0
0 0 a(t)
0 0 0

v1(t)v2(t)
v3(t)

+

 0
0
b(t)

 .
Note that this is not a fixed time-varying linear system, but a family of these, since the
function a is not a priori specified, but is variable.

Next let us look at two instances of linearisation about a reference flow by choosing the
two reference flows X1 = f0 and X2 = f0 + f1. We use coordinates ((x1, x2, x3), (v1, v2, v3))
for TR3 and we compute

XT
1 = x2

∂

∂x1
+ v2

∂

∂v1
, XT

2 = x2
∂

∂x1
+ x3

∂

∂x2
+ v2

∂

∂v1
+ v3

∂

∂v2
.

If t 7→ Y (t) is a time-dependent vector field with values in F (R3), then

Yt = f0 + ν1(t)f1 + ν2(t)f2 = x2
∂

∂x1
+ ν1(t)x3

∂

∂x2
+ ν2(t)

∂

∂x3
,

for functions ν1 and ν2 whose character is determined by the open-loop subfamily OG,1. The
linearisation about the two reference flows are described by the differential equations

ẋ1(t) = x2(t),

ẋ2(t) = 0;

ẋ3(t) = 0,

v̇1(t) = v2(t) + x2(t),

v̇2(t) = ν1(t)x3(t),

v̇3(t) = ν2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t);

ẋ3(t) = 0,

v̇1(t) = v2(t) + x2(t),

v̇2(t) = v3(t) + ν1(t)x3(t),

v̇3(t) = ν2(t),

respectively. The linearisations about (X1, (0, 0, 0)) and (X2, (0, 0, 0)) will be time-
independent since the vector fields X1 and X2 are time-independent, and we easily de-
termine that these linearisations are given byv̇1(t)v̇2(t)

v̇3(t)

 =

0 1 0
0 0 0
0 0 0

v1(t)v2(t)
v3(t)

+

 0
0

ν2(t)
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and v̇1(t)v̇2(t)
v̇3(t)

 =

0 1 0
0 0 1
0 0 0

v1(t)v2(t)
v3(t)

+

 0
0

ν2(t)

 ,
respectively. These are exactly the two distinct linearisations we encountered in Exam-
ple 1.1. Thus we can see here what was going on in Example 1.1: we were linearising
about two different reference flows. This also highlights the dangers of explicit and fixed
parameterisations by control: one can unknowingly make choices that affect conclusions.

We comment that the reason this example does not meet the conditions of Proposi-
tion 9.20 is that the vector fields f1 and f2 are not linearly independent at (0, 0, 0). The
distribution generated by these vector fields has (0, 0, 0) as a singular point. These sorts of
matters will doubtless be interesting in subsequent studies of geometric control systems in
our framework.

Finally, using Lemma 9.22, we can easily conclude that this system is linearly control-
lable. •

10. Future work

There is a lot of control theory that has yet to be done in our framework of tautological
control systems. In this closing section, we discuss a few avenues for future work, and
provide a few preliminary ideas related to these directions.

10.1. Controllability. The controllability of nonlinear systems comprises a vast and diffi-
cult component of the geometric control theory literature. A number of papers have been
published addressing the seemingly impenetrable nature of the problems of controllabil-
ity [Agrachev 1999, Bianchini and Kawski 2003, Kawski 1990a, Kawski 1990b, Kawski
2006, Sontag 1988]. Despite this, there has been substantial effort dedicated to determining
sufficient or necessary conditions for controllability [Agrachev and Gamkrelidze 1993, Bac-
ciotti and Stefani 1983, Bianchini and Stefani 1984, Bianchini and Stefani 1986, Bianchini
and Stefani 1993, Haynes and Hermes 1970, Hermes 1974, Hermes 1976a, Hermes 1976b,
Hermes 1977, Hermes 1982, Hermes and Kawski 1987, Kawski 1987, Kawski 1988, Kawski
1991, Kawski 1998, Kawski 1999, Stefani 1986, Sussmann 1973, Sussmann 1978, Sussmann
1983, Sussmann 1987, Sussmann and Jurdjevic 1972]. The problem of controllability has
a certain lure that attracts researchers in geometric control theory. The problem is such a
natural one that it feels as if it should be possible to obtain complete results, at least in
some quite general situations. However, this objective remains to be fulfilled.

Our view is that one of the reasons for this is that many of the approaches to control-
lability are not feedback-invariant. An extreme example of this are methods for studying
controllability of control-affine systems, fixing a drift vector field f0 and control vector fields
f1, . . . , fm, and using these as generators of a free Lie algebra. In this sort of analysis, Lie
series are truncated, leading to the notion of “nilpotent approximation” of control systems.
These ideas are reflected in a great many of the papers cited above. The difficulty with this
approach is that it will behave very badly under feedback transformations, cf. Example 1.1.
This is discussed by Lewis [2012].

One approach is then to attempt to find feedback-invariant conditions for local control-
lability. In the first-order case, i.e., the more or less linear case, this leads to Definition 9.23;
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see also [Bianchini and Stefani 1984]. Second-order feedback-invariant conditions are con-
sidered in [Basto-Gonccalves 1998, Hirschorn and Lewis 2002]. Any attempts to determine
higher-order feedback-invariant controllability conditions have, as far as we know, met with
no success. Indeed, the likelihood of this approach leading anywhere seems very small,
given the extremely complicated manner in which feedback transformations interact with
controllability conditions.

Therefore, the most promising idea would appear to be to develop a framework for
control theory that has feedback-invariance “built in.” It is this that we have done in this
paper. In his PhD thesis, Aguilar [2010] provides a class of control variations that is well-
suited to our feedback-invariant approach. Aguilar and Lewis [2012] have used these control
variations to completely characterise controllability of a class of homogeneous systems. It
will be an interesting project to apply the variations of Aguilar in our framework to see
what sorts of conditions for controllability naturally arise.

10.2. Optimal control and the Maximum Principle. It should be a fairly straightforward
exercise to formulate optimal control problems in our framework. Also, our approach to
linearisation in Section 9 already provides us with the natural means by which needle vari-
ations can be transported along reference trajectories, and so one expects that an elegant
version of the Maximum Principle of Pontryagin, Boltyanskĭı, Gamkrelidze, and Mishchenko
[1961] will be possible. There will be a resemblance in this to the work of Sussmann [1998],
who provides already a satisfying formulation of the Maximum Principle on manifolds. In
the same way as the natural feedback-invariance of our formulation should aid in the study
of controllability, it should also aid in the study of higher-order conditions for optimality.
In geometric control theory, the study of so-called singular extremals (those not charac-
terised by the Maximum Principle) is problematic for multi-input systems, so hopefully our
approach can shed light on this.

As outlined in Section 8.8, problems in sub-Riemannian geometry fit naturally into the
tautological control system framework, and can likely be handled well by a theory of optimal
control for tautological control systems.

10.3. Feedback and stabilisation theory. There are, one could argue, three big problems
in control theory. Two, controllability and optimal control, are discussed above. The
third is stabilisation. This problem, being one of enormous practical importance, has been
comprehensively studied, mainly from the point of view of Lyapunov theory, where the
notion of a “control-Lyapunov function” provides a useful device for characterising when a
system is stabilisable [Clarke, Ledyaev, Sontag, and Subotin 1997] and for stabilisation if one
is known [Sontag 1989]. Our view is that Lyapunov characterisations for stabilisability are
important from a practical point of view, but, from a fundamental point of view, merely
replace one impenetrable notion, “stabilisability,” with another, “existence of a control-
Lyapunov function.” This is expressed succinctly by Sontag.

In any case, all converse Lyapunov results are purely existential, and are of
no use in guiding the search for a Lyapunov function. The search for such
functions is more of an art than a science, and good physical insight into a
given system plus a good amount of trial and error is typically the only way to
proceed.—Sontag [1998, page 259]
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As Sontag goes on to explain, there are many heuristics for guessing control-Lyapunov
functions. However, this is unsatisfying if one is seeking a general understanding of the
problem of stabilisability, and not just a means of designing stabilising controllers for classes
of systems.

It is also the case that there has been virtually no work on stabilisability from a geometric
perspective. Topological characterisations of stabilisability such as those of Brockett [1983]
(refined by Orsi, Praly, and Mareels [2003] and Zabczyk [1989]) and Coron [1990] are
gratifying when they are applicable, but they are far too coarse to provide anything even
close to a complete characterisation of the problem. Indeed, the extremely detailed and
intricate analysis of controllability, as reflected by the work we cite above, is simply not
present for stabilisability. It is fair to say that, outside the control-Lyapunov framework,
very little work has been done in terms of really understanding the structural obstructions
to stabilisability. Moreover, it is also fair to say that almost none of the published literature
on stabilisation and stabilisability passes the “acid test” for feedback invariance that we
discuss in Section 1.1. For researchers such as ourselves interested in structure, this in an
unsatisfying state of affairs.

Our framework provides a natural means of addressing problems like this, just as with
controllability and optimal control, because of the feedback-invariance of the framework.
Indeed, upon reflection, one sees that the problem of stabilisability should have some rela-
tionships with that of controllability, although little work has been done along these lines
(but see the PhD thesis of Isaiah [2012]). This area of research is wide open [Lewis 2012].

10.4. Linear system theory. Our definition of linearisation suggests an immediate general-
isation from tangent bundles to vector bundles. Let us quickly see how it will work, making
no pretence to the level of generality of the main body of the paper.

10.1 Definition: (Linear vector field) Let r ∈ {∞, ω} and let π : E → M be vector bundle
of class Cr. A vector field X ∈ Γr(TE) is linear if

(i) X is π-projectable, i.e., there exists a vector field πX ∈ Γr(TM) such that
Texπ(X(ex)) = πX(x) for every x ∈ M and ex ∈ Ex, and

(ii) X is a vector bundle mapping for which the diagram

E
X //

π
��

TE

Tπ
��

M
πX
// TM

commutes. •
The prototypical linear vector field is the tangent lift XT , which is a linear vector field

on the vector bundle πTM : TM → M according to the preceding definition. One may show
that flows of linear vector fields are such that the diagram

E
ΦX

t //

π
��

E

π
��

M
ΦπX

t

// M
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commutes and ΦXt |Ex is an isomorphism of Ex with EΦπX
t (x) [Kolář, Michor, and Slovák

1993, Proposition 47.9].
Vertical lifts are also easily defined for vector bundles. We first define the vector bundle

map vlft : π∗E → TE as follows. Let x ∈ M and let ex, fx ∈ Ex. The vertical lift of fx to
ex is given by

vlft(ex, fx) =
d
dt

∣∣
t=0

(ex + tfx).

Now, if ξ ∈ Γ∞(E), we define ξV ∈ Γ∞(TE) by ξV (ex) = vlft(ex, ξ(x)).
One also has the notion of a projectable presheaf of vector fields on a vector bundle.

10.2 Definition: (Projectable presheaf on a vector bundle) Let r ∈ {∞, ω}, let
π : E → M be a vector bundle of class Cr, and let G be a presheaf of sets of vector fields of
class Cr on E. The presheaf G is projectable if

G (W) = {Z|W | Z ∈ G (π−1(π(W)))}. •

One also has the more or less obvious notion of presheaves of sets of sections of E.

10.3 Definition: (Presheaf of sets of sections) Let r ∈ {∞, ω} and let π : E → M be
a vector bundle of class Cr. A presheaf of sets of Cr-sections of E is an assignment,
to each open set U ⊆ M, a subset F (U) of Γr(E|U) with the property that, for open sets
U,V ⊆ M with V ⊆ U, the map

rU,V : F (U) → Γr(TV)

ξ 7→ ξ|V

takes values in F (V). Elements of F (U) are called local sections over U. •
One also has an analogue of Lemma 9.5 for vector bundles, which makes sense of the

following, final, definition.

10.4 Definition: (Linear system) Let r ∈ {∞, ω} and let π : E → M be a vector bundle
of class Cr. A Cr-linear system on E is a Cr-tautological control system G = (E,F ),
where the projectable presheaf of sets of vector fields F is characterised uniquely by the
requirement that, for every open subset U ⊆ M,

F (π−1(U)) = {X + Y V | X ∈ F0(π
−1(U), Y ∈ F1(U)},

where F0 is a projectable presheaf of sets of linear vector fields on E and F1 is a presheaf
of sets of sections of E. •

This is then a class of tautological control systems containing linearisations of tau-
tological control systems as a special case. One is then interested in what one can say
about problems of control—controllability, optimal control theory, stabilisation—for these
systems. An approach to this is presented in [Lewis and Tyner 2010] for control-affine sys-
tems. In [Colonius and Kliemann 2000, Chapter 5] one can find a setup along these lines,
but with a decidedly different perspective.
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10.5. The category of tautological control systems. In Section 8.7 we introduced mor-
phisms between tautological control systems with the objective of showing that our frame-
work is feedback-invariant. The notion of morphism we present is one that is natural and
possibly easy to work with. It would be, therefore, interesting to do all of the exercises
of category theory with the category of tautological control systems. That is, one would
like to study epimorphisms, monomorphisms, subobjects, quotient objects, products, co-
products, pull-backs, push-outs, and various functorial operations in this category. Many
of these may not be interesting or useful, or even exist. But probably some of it would be
of interest. For example, Tabuada and Pappas [2005] study quotients of control systems,
and Elkin [1999] studies various categorical constructions for control-affine systems.

10.6. Real analytic chronological calculus. As we have mentioned a few times, the treat-
ment of real analytic time-varying vector fields by Agrachev and Gamkrelidze [1978] is
carried out under very restrictive hypotheses, namely that the real analytic vector fields are
required to admit bounded holomorphic extensions to a fixed neighbourhood in the com-
plexification whose width is bounded uniformly from below. Even in the case of compact
real analytic manifolds, this is a severe restriction. With the theory of real analytic time-
varying vector fields presented in this paper, a fully functioning real analytic chronological
calculus ought to be feasible.

Moreover, the results that we have proved above allow a strengthening of the exist-
ing results of Agrachev and Gamkrelidze [1978], even in the smooth case, in the following
way. Agrachev and Gamkrelidze do everything “weakly.” By this we mean the following.
Vector fields are characterised by Agrachev and Gamkrelidze by what they do to func-
tions, i.e., they use what we call the weak-L topology. In Theorems 3.5, 3.14, and 5.8 we
see that this is equivalent to working directly with the appropriate topologies for vector
fields. Probably this is well understood in the finitely differentiable and smooth cases, but
in this paper we have understood that this is also true in the real analytic case. Also, when
dealing with matters such as measurability, integrability, and absolute continuity, Agrachev
and Gamkrelidze reduce to the scalar case by first composing all objects with the evaluation
functionals evx as in the proof of Theorem 6.3 (and by implication, in the proofs of Theo-
rems 6.9 and 6.21), and defining and computing with the scalar versions of these notions.
However, Theorems 6.4, 6.10, and 6.22 ensure that this is equivalent to doing computations
in the spaces of finitely differentiable, smooth, or real analytic vector fields. Again, perhaps
this is understood in the finitely differentiable and smooth cases, but we have shown that
this is also true in the real analytic case.

Thus, combining the preceding two paragraphs, one should be able to develop the
chronological calculus of Agrachev and Gamkrelidze [1978] into a more powerful and broadly
applicable tool.
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Mujica, J. [1984] A Banach–Dieudonné theorem for germs of holomorphic functions, Journal
of Functional Analysis, 57(1), pages 31–48, issn: 0022-1236, doi: 10 . 1016 / 0022 -
1236(84)90099-5.

Munkres, J. R. [1975] Topology, Prentice-Hall: Englewood Cliffs, NJ, New edition: [Munkres
2000].

— [2000] Topology, 2nd edition, Prentice-Hall: Englewood Cliffs, NJ, isbn: 978-0-13-181629-
9, First edition: [Munkres 1975].

Nagano, T. [1966] Linear differential systems with singularities and an application to tran-
sitive Lie algebras, Journal of the Mathematical Society of Japan, 18, pages 398–404,
issn: 0025-5645, doi: 10.2969/jmsj/01840398.

Narici, L. and Beckenstein, E. [2010] Topological Vector Spaces, 2nd edition, Pure and
Applied Mathematics, Dekker Marcel Dekker: New York, NY, isbn: 978-1-58488-866-6.

Nijmeijer, H. and van der Schaft, A. J. [1982] Controlled invariance for nonlinear systems,
Institute of Electrical and Electronics Engineers. Transactions on Automatic Control,
27(4), pages 904–914, issn: 0018-9286, doi: 10.1109/TAC.1982.1103025.

— [1990] Nonlinear Dynamical Control Systems, Springer-Verlag: New York/Heidelberg/-
Berlin, isbn: 978-0-387-97234-3.

Orsi, R., Praly, L., and Mareels, I. M. Y. [2003] Necessary conditions for stability and
attractivity of continuous systems, International Journal of Control, 76(11), pages 1070–
1077, issn: 0020-7179, doi: 10.1080/0020717031000122338.
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