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Abstract

Time-varying vector fields on manifolds are considered with measurable time de-
pendence and with varying degrees of regularity in state; e.g., Lipschitz, finitely dif-
ferentiable, smooth, holomorphic, and real analytic. Classes of such vector fields are
described for which the regularity of the flow’s dependence on initial condition matches
the regularity of the vector field. It is shown that the way in which one characterises
these classes of vector fields corresponds exactly to the vector fields, thought of as being
vector field valued functions of time, having measurability and integrability properties
associated with appropriate topologies. For this reason, a substantial part of the de-
velopment is concerned with descriptions of these appropriate topologies. To this end,
geometric descriptions are provided of locally convex topologies for Lipschitz, finitely
differentiable, smooth, holomorphic, and real analytic sections of vector bundles. In
all but the real analytic case, these topologies are classically known. The description
given for the real analytic topology is new. This description allows, for the first time,
a characterisation of those time-varying real analytic vector fields whose flows depend
real analytically on initial condition.
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1. Introduction

1.1. Motivation. In this monograph we consider vector fields with measurable time-
dependence. Such vector fields are not well-studied in the differential equation and dy-
namical system literature, but are important in control theory. There are at least two
reasons for this.

1. In the theory of optimal control, it can often happen that optimal trajectories correspond
to controls that switch infinitely often in a finite duration of time. This seems to have
first been observed by Fuller [1960], and has since been studied by many authors. A
detailed discussion of these facets of optimal control theory can be found in the book
of Zelikin and Borisov [1994].
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2. In the study of controllability, it is often necessary to use complex control variations
where there is an increasing number of switches in a finite time. This was noticed by
Kawski [1988], and examined in detail by Agrachev and Gamkrelidze [1993].

In any event, vector fields with measurable time-dependence do not have as extensive a
basic theory as, say, time-independent vector fields. One place where this especially holds
true is where regularity of flows with respect to initial conditions is concerned. For time-
independent vector fields, the basic regularity theorems are well-established for all the stan-
dard degrees of regularity [Coddington and Levinson 1955], including real analyticity [e.g.,
Sontag 1998, Proposition C.3.12]. In the time-varying case, the standard Carathéodory
existence and uniqueness theorem for ordinary differential equations depending measurably
on time is a part of classical text treatments [e.g., Coddington and Levinson 1955, Theo-
rem 2.2.1]. Continuity with respect to initial condition in this setting is not consistently
mentioned, e.g., it is not proved by Coddington and Levinson [1955]. This continuity is
proved, for example, by Sontag [1998, Theorem 55]. However, conditions for differentiabil-
ity of flows become extremely hard to come by in the case of measurable time dependence.
The situation here, however, is dealt with comprehensively by Schuricht and von der Mosel
[2000]. The differentiable hypotheses are easily extended to any finite degree of differen-
tiability. For smooth dependence on initial conditions with measurable time dependence,
we are not aware of the desired result being stated anywhere in the existing literature. We
prove this result as our Theorem 6.6, and we note that the hypotheses guaranteeing smooth
dependence on initial condition are what one might guess after a moment’s reflection, and
understanding the conditions for differentiable dependence. However, the situation is quite
different for vector fields depending on state in a real analytic manner. In this case, it is by
no means clear a priori what are the correct hypotheses for such a vector field to have a
flow depending on initial condition in a real analytic manner. Indeed, the joint conditions
on time and state required to ensure such real analytic dependence are simply not known,
and are being given here for the first time.

Quite apart from the sort of pragmatic issue of determining the appropriate hypotheses
for real analytic dependence on initial conditions, what we reveal in this work is that the
matter of joint conditions on state and time that give desired regularity with respect to
initial conditions are intimately connected with topologies for spaces of vector fields. Let
us indicate the nature of this connection. Let M be a manifold and suppose that we have
a time-varying vector field (t, x) 7→ X(t, x) ∈ TM. This then defines a curve t 7→ Xt in the
space of vector fields, with Xt(x) = X(t, x). If the space of vector fields has a topology,
then one can consider properties like measurability, integrability, and boundedness of a
curve such as this. We show that the characterisations of these attributes of curves of
vector fields are precisely related to the hypotheses required to prove regular dependence on
initial conditions. That is, we reveal the connection between regular dependence on initial
conditions and descriptions of topologies for spaces of vector fields. We show that this is the
case for all degrees of regularity, and so, in particular, we see that the standard conditions for
existence, uniqueness, and regularity are, in fact, measurability and integrability conditions
in appropriate spaces of vector fields.

For this reason, we spend a great deal of time describing topologies for spaces of sec-
tions of vector bundles. We do this for spaces of Lipschitz, finitely differentiable, smooth,
holomorphic, and real analytic sections of vector bundles. These topologies are classical in
the finitely differentiable, smooth, and holomorphic cases. The extension to the Lipschitz
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case is fairly easily carried out, but we are unaware of this being done in the literature, so
we provide this extension here. But the main contribution is a description of the topology
of the space of real analytic sections. We do this by providing explicit seminorms for this
topology. The seminorms we use in the real analytic case are defined in such a way that
the qualitative relationships between the real analytic and the other regularity classes are
clear. For this reason, as part of our presentation we provide a thorough treatment of the
Lipschitz, finitely differentiable, smooth, and holomorphic cases alongside the novel real
analytic presentation. This serves to illustrate the unified framework that we have devel-
oped for analysing time-varying vector fields with measurable time dependence and varying
degrees of regularity in state. Indeed, one of the satisfying aspects of the way the theory
is developed is that many things “look the same” for all degrees of regularity; only the
seminorms change. That being said, the main contribution is the explication of the real
analytic theory, and we shall see that there are a few places where this case is substantially
more difficult than the other regularity classes we consider.

The ideas we present in this work have their origins in the work of Agrachev and
Gamkrelidze [1978] on “chronological calculus.” Our work here is distinguished, however,
in two important ways. First of all, the work of Agrachev and Gamkrelidze [1978] is
presented in Euclidean space, while we work in a global framework of vector fields on
manifolds. In the presentation of chronological calculus in the recent book of Agrachev
and Sachkov [2004], the formulation is also given on manifolds, but the analysis methods,
particularly the seminorms used, use an embedding of the manifold in Euclidean space
by the Whitney Embedding Theorem [Whitney 1936]. In contrast, we use seminorms
formulated intrinsically in terms of fibre norms on jet bundles. This use of geometric
seminorms allows for an elegant and unified treatment of all regularity classes, with many
of the fundamental theorems having hypotheses closely resembling one another, and having
proofs that rely on properties of topologies that are shared by all regularity classes. A
second significant difference in our approach and that of Agrachev and Gamkrelidze [1978]
is the manner in which the real analytic case is handled. In the work of Agrachev and
Gamkrelidze, the real analytic analysis is restricted to real analytic vector fields defined on
real Euclidean space admitting a bounded holomorphic extension to a neighbourhood of
fixed width in complex Euclidean space. This is a rather severe restriction, and one that
we eliminate by defining an appropriate topology for the space of real analytic vector fields.
We comment that our description of this work using geometric seminorms is only made
possible by the recent study of real analytic analysis by, e.g., [Domański 2012], [Vogt 2013],
and [Domański and Vogt 2000]. That is to say, the complete results we give here are only
possible due to work that was not available at the time of the original work of Agrachev
and Gamkrelidze [1978]. It is fair to say that our work here is a completion—a nontrivial
completion—of the project initiated in this earlier work.

1.2. An outline of the monograph. Let us discuss briefly the contents of the monograph.
One of the essential elements of this work is a characterisation of seminorms for the

various topologies we use. Our definitions of these seminorms unify the presentation of
the various degrees of regularity we consider—finitely differentiable, Lipschitz, smooth,
holomorphic, and real analytic—making it so that, after the seminorms are in place, these
various cases can be treated in very similar ways in many cases. The key to the construction
of the seminorms that we use is the use of connections to decompose jet bundles into direct
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sums. In Section 2 we present these constructions. As we see in Section 5, in the real analytic
case, some careful estimates must be performed to ensure that the geometric seminorms we
use do, indeed, characterise the real analytic topology.

In Sections 3, 4, and 5 we describe topologies for spaces of finitely differentiable, Lip-
schitz, smooth, holomorphic, and real analytic vector fields. While these topologies are
more or less classical in the smooth, finitely differentiable, and holomorphic cases, in the
real analytic case the description we give is less well-known, and indeed many of our results
here are new, or provide new and useful ways of understanding existing results. We also
fully develop various “weak” formulations of properties such as continuity, boundedness,
measurability, and integrability for spaces of finitely differentiable, Lipschitz, smooth, and
real analytic vector fields. In Sections 3, 4, and 5 the weak formulations we develop are
concerned with evaluations of vector fields on functions by Lie differentiation, which we call
the “weak-L ” topology. In the existing literature, the weak-L topology is often used with
some sort of implicit understanding that it is equivalent to its “strong” counterpart. Here
we validate this implicit understanding for all regularity classes.

In Section 6 we present our main results concerning time-varying vector fields. In the
smooth case, the ideas we present are probably contained in the work of Agrachev and
Gamkrelidze [1978] (see also [Agrachev and Sachkov 2004]), but our presentation of the
real analytic case is novel. For this reason, we present a rather complete treatment of
the smooth case (with the finitely differentiable and Lipschitz cases following along similar
lines) so as to provide a context for the more complicated real analytic case. We should
point out that, even in the smooth case, we use properties of the topology that are not
normally called upon, and we see that it is these deeper properties that really tie together
the various regularity hypotheses we use. Indeed, what our presentation reveals is the
connection between the standard pointwise—in time and state—conditions placed on time-
varying vector fields and topological characterisations. This is, we believe, a fulfilling way
of understanding the meaning of the usual pointwise conditions.

1.3. Notation, conventions, and background. In this section we overview what is needed
to read the monograph. We do use a lot of specialised material in essential ways, and we
certainly do not review this comprehensively. Instead, we simply provide a few facts, the
notation we shall use, and recommended sources. Throughout the work we have tried to
include precise references to material needed so that a reader possessing enthusiasm and
lacking background can begin to chase down all of the ideas upon which we rely.

We shall use the slightly unconventional, but perfectly rational, notation of writing
A ⊆ B to denote set inclusion, and when we write A ⊂ B we mean that A ⊆ B and
A ̸= B. By idA we denote the identity map on a set A. For a product

∏
i∈I Xi of sets,

prj :
∏
i∈I Xi → Xj is the projection onto the jth component. For a subset A ⊆ X, we

denote by χA the characteristic function of A, i.e.,

χA(x) =

{
1, x ∈ A,

0, x ̸∈ A.

By card(A) we denote the cardinality of a set A. By Sk we denote the symmetric group on
k symbols. By Z we denote the set of integers, with Z≥0 denoting the set of nonnegative
integers and Z>0 denoting the set of positive integers. We denote by R and C the sets of
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real and complex numbers. By R≥0 we denote the set of nonnegative real numbers and
by R>0 the set of positive real numbers. By R≥0 = R≥0 ∪ {∞} we denote the extended
nonnegative real numbers. By δjk, j, k ∈ {1, . . . , n}, we denote the Kronecker delta.

We shall use constructions from algebra and multilinear algebra, referring to [Hungerford
1980], [Bourbaki 1989, Chapter III], and [Bourbaki 1990, §IV.5]. If F is a field (for us,
typically F ∈ {R,C}), if V is an F-vector space, and if A ⊆ V, by spanF(A) we denote the
subspace generated by A. If F is a field and if U and V are F-vector spaces, by HomF(U;V)
we denote the set of linear maps from U to V. We denote EndF(V) = HomF(V;V) and
V∗ = HomF(V;F). If α ∈ V∗ and v ∈ V, we may sometimes denote by ⟨α; v⟩ ∈ F the natural
pairing. The k-fold tensor product of V with itself is denoted by Tk(V). Thus, if V is
finite-dimensional, we identify Tk(V∗) with the k-multilinear F-valued functions on Vk by

(α1 ⊗ · · · ⊗ αk)(v1, . . . , vk) = α1(v1) · · ·αk(vk).

By Sk(V∗) we denote the symmetric tensor algebra of degree k, which we identify with the
symmetric k-multilinear F-valued functions on Vk, or polynomial functions of homogeneous
degree k on V.

If G is an inner product on a R-vector space V, we denote by G♭ ∈ HomR(V;V
∗) the

associated mapping and by G♯ ∈ HomR(V
∗;V) the inverse of G♭.

For a topological space X and A ⊆ X, int(A) denotes the interior of A and cl(A) denotes
the closure of A. Neighbourhoods will always be open sets.

By B(r,x) ⊆ Rn we denote the open ball of radius r and centre x. If r ∈ R>0 and if
x ∈ F, F ∈ {R,C}, we denote by

D(r, x) = {x′ ∈ F | |x′ − x| < r}

the disk of radius r centred at x. If r ∈ Rn>0 and if x ∈ Fn, we denote by

D(r,x) = D(r1, x1)× · · · × D(rn, xn)

the polydisk with radius r centred at x. In like manner, D(r,x) denotes the closed polydisk.
Elements of Fn, F ∈ {R,C}, are typically denoted with a bold font, e.g., “x.” The

standard basis for Fn is denoted by (e1, . . . ,en). By In we denote the n × n identity
matrix. We denote by L(Rn;Rm) the set of linear maps from Rn to Rm (this is the
same as HomR(R

n;Rm), of course, but the more compact notation is sometimes help-
ful). The invertible linear maps on Rn we denote by GL(n;R). By L(Rn1 , . . . ,Rnk ;Rm)
we denote the set of multilinear mappings from

∏k
j=1R

nj to Rm. We abbreviate by

Lk(Rn;Rm) the k-multilinear maps from (Rn)k to Rm. We denote by Lksym(R
n;Rm)

the set of symmetric k-multilinear maps from (Rn)k to Rm. With our notation above,
Lksym(R

n;Rm) ≃ Sk((Rn)∗)⊗Rm, but, again, we prefer the slightly more compact notation
in this special case.

If U ⊆ Rn is open and if Φ : U → Rm is differentiable at x ∈ U, we denote its derivative
by DΦ(x). Higher-order derivatives, when they exist, are denoted by DrΦ(x), r being
the order of differentiation. We will also use the following partial derivative notation. Let
Uj ⊆ Rnj be open, j ∈ {1, . . . , k}, and let Φ : U1 × · · · × Uk → Rm be continuously
differentiable. The derivative of the map

xj 7→ Φ(x1,0, . . . ,xj , . . . ,xk,0)
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at xj,0 is denoted by DjΦ(x1,0, . . . ,xk,0). Higher-order partial derivatives, when they exist,
are denoted by Dr

jΦ(x1,0, . . . ,xk,0), r being the order of differentiation. We recall that if

Φ : U → Rm is of class Ck, k ∈ Z>0, then DkΦ(x) is symmetric. We shall sometimes find
it convenient to use multi-index notation for derivatives. A multi-index with length n is
an element of Zn≥0, i.e., an n-tuple I = (i1, . . . , in) of nonnegative integers. If Φ : U → Rm
is a smooth function, then we denote

DIΦ(x) = Di1
1 · · ·Din

n Φ(x).

We will use the symbol |I| = i1 + · · · + in to denote the order of the derivative. Another
piece of multi-index notation we shall use is

aI = ai11 · · · ainn ,

for a ∈ Rn and I ∈ Zn≥0. Also, we denote I! = i1! · · · in!.
Our differential geometric conventions mostly follow [Abraham, Marsden, and Ratiu

1988]. Whenever we write “manifold,” we mean “second-countable Hausdorff manifold.”
This implies, in particular, that manifolds are assumed to be metrisable [Abraham, Mars-
den, and Ratiu 1988, Corollary 5.5.13]. If we use the letter “n” without mentioning what
it is, it is the dimension of the connected component of the manifold M with which we are
working at that time. The tangent bundle of a manifold M is denoted by πTM : TM → M
and the cotangent bundle by πT∗M : T∗M → M. The derivative of a differentiable map
Φ: M → N is denoted by TΦ: TM → TN, with TxΦ = TΦ|TxM. If I ⊆ R is an interval
and if ξ : I → M is a curve that is differentiable at t ∈ I, we denote the tangent vector
field to the curve at t by ξ′(t) = Ttξ(1). We use the symbols Φ∗ and Φ∗ for pull-back and
push-forward. Precisely, if g is a function on N, Φ∗g = g ◦ Φ, and if Φ is a diffeomorphism,
if f is a function on M, if X is a vector field on M, and if Y is a vector field on N, we have
Φ∗f = f ◦ Φ−1, Φ∗X = TΦ ◦X ◦ Φ−1, and Φ∗Y = TΦ−1 ◦ Y ◦ Φ. The flow of a vector field
X is denoted by ΦXt , so t 7→ ΦXt (x) is the integral curve of X passing through x at t = 0.
We shall also use time-varying vector fields, but will develop the notation for the flows of
these in the text.

If π : E → M is a vector bundle, we denote the fibre over x ∈ M by Ex and we sometimes
denote by 0x the zero vector in Ex. If S ⊆ M is a submanifold, we denote by E|S the
restriction of E to S which we regard as a vector bundle over S. The vertical subbundle
of E is the subbundle of TE defined by VE = ker(Tπ). If G is a fibre metric on E, i.e., a
smooth assignment of an inner product to each of the fibres of E, then ∥·∥G denotes the
norm associated with the inner product on fibres. If π : E → M is a vector bundle and if
Φ: N → M is a smooth map, then Φ∗π : Φ∗E → N denotes the pull-back of E to N [Kolář,
Michor, and Slovák 1993, §III.9.5]. The dual of a vector bundle π : E → M is denoted by
π∗ : E∗ → M.

Generally we will try hard to avoid coordinate computations. However, they are some-
times unavoidable and we will use the Einstein summation convention when it is convenient
to do so, but we will not do so slavishly.

We will work in both the smooth and real analytic categories, with occasional forays into
the holomorphic category. We will also work with finitely differentiable objects, i.e., objects
of class Cr for r ∈ Z≥0. (We will also work with Lipschitz objects, but will develop the
notation for these in the text.) A good reference for basic real analytic analysis is [Krantz
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and Parks 2002], but we will need ideas going beyond those from this text, or any other
text. Relatively recent work of e.g., [Domański 2012], [Vogt 2013], and [Domański and Vogt
2000] has shed a great deal of light on real analytic analysis, and we shall take advantage
of this work. An analytic manifold or mapping will be said to be of class Cω. Let
r ∈ Z≥0 ∪ {∞, ω}. The set of mappings of class Cr between manifolds M and N is denoted
by Cr(M;N). We abbreviate Cr(M) = Cr(M;R). The set of sections of a vector bundle
π : E → M of class Cr is denoted by Γr(E). Thus, in particular, Γr(TM) denotes the set
of vector fields of class Cr. We shall think of Γr(E) as a R-vector space with the natural
pointwise addition and scalar multiplication operations. If f ∈ Cr(M), df ∈ Γr(T∗M)
denotes the differential of f . If X ∈ Γr(TM) and f ∈ Cr(M), we denote the Lie derivative
of f with respect to X by LXf .

We also work with holomorphic, i.e., complex analytic, manifolds and associated geo-
metric constructions; real analytic geometry, at some level, seems to unavoidably rely on
holomorphic geometry. A nice overview of holomorphic geometry, and some of its connec-
tions to real analytic geometry, is given in the book of Cieliebak and Eliashberg [2012].
There are many specialised texts on the subject of holomorphic geometry, including [De-
mailly 2012, Fritzsche and Grauert 2002, Gunning and Rossi 1965, Hörmander 1966] and
the three volumes of Gunning [1990a], Gunning [1990b], and Gunning [1990c]. For our
purposes, we shall just say the following things. By TM we denote the holomorphic tan-
gent bundle of M. This is the object which, in complex differential geometry, is commonly
denoted by T1,0M. For holomorphic manifolds M and N, we denote by Chol(M;N) the set
of holomorphic mappings from M to N, by Chol(M) the set of holomorphic functions on M
(note that these functions are C-valued, not R-valued, of course), and by Γhol(E) the space
of holomorphic sections of an holomorphic vector bundle π : E → M. We shall use both the
natural C- and, by restriction, R-vector space structures for Γhol(E).

We will make use of the notion of a “Stein manifold.” For practical purposes, these
can be taken to be holomorphic manifolds admitting a proper holomorphic embedding in
complex Euclidean space.1 Stein manifolds are characterised by having lots of holomorphic
functions, distinguishing them from general holomorphic manifolds, e.g., compact holomor-
phic manifolds whose only holomorphic functions are those that are locally constant. There
is a close connection between Stein manifolds and real analytic manifolds, and this explains
our interest in Stein manifolds. We shall point out these connections as they arise in the
text.

We shall make reference to germs of functions and sections, for which we use the following
notation. Let r ∈ Z≥0 ∪ {∞, ω, hol} and let M be a smooth, real analytic, or holomorphic
manifold, such as is demanded by r. By C r

M we denote the sheaf of functions of class Cr

and by C r
x,M the set of germs of this sheaf at x ∈ M. If π : E → M is a Cr-vector bundle,

then G rE denotes the sheaf of Cr-sections of E with G rx,E the set of germs at x. The germ of
a function (resp. section) at x will be denoted by [f ]x (resp. [ξ]x).

We will make use of jet bundles, and a standard reference is [Saunders 1989]. Appropri-
ate sections of [Kolář, Michor, and Slovák 1993] (especially §12) are also useful. If π : E → M

1The equivalence of this to other characterisations of Stein manifolds is due to RR:55. A reader un-
familiar with holomorphic manifolds should note that, unlike in the smooth or real analytic cases, it is
not generally true that an holomorphic manifold can be embedded in complex Euclidean space, even af-
ter the usual elimination of topological pathologies such as non-paracompactness. For example, compact
holomorphic manifolds can never be holomorphically embedded in complex Euclidean space.
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is a vector bundle and if k ∈ Z≥0, we denote by JkE the bundle of k-jets of E. For a section
ξ of E, we denote by jkξ the corresponding section of JkE. The projection from JkE to JlE,
l ≤ k, is denoted by πkl . If M and N are manifolds, we denote by Jk(M;N) the bundle of k
jets of mappings from M to N. If Φ ∈ C∞(M;N), jkΦ denotes its k-jet, which is a mapping
from M to Jk(M;N). In the proof of Theorem 6.6 we will briefly make use of jets of sections
of fibred manifolds. We shall introduce there the notation we require, and the reader can
refer to [Saunders 1989] to fill in the details.

We shall make use of connections, and refer to [Kolář, Michor, and Slovák 1993, §11,
§17] for a comprehensive treatment of these, or to [Kobayashi and Nomizu 1963] for another
comprehensive treatment and an alternative point of view.

We shall make frequent and essential use of nontrivial facts about locally convex topo-
logical vector spaces, and refer to [Conway 1990, Grothendieck 1973, Horváth 1966, Jarchow
1981, Rudin 1991, Schaefer and Wolff 1999] for details. We shall also access the contem-
porary research literature on locally convex spaces, and will indicate this as we go along.
We shall denote by L(U;V) the set of continuous linear maps from a locally convex space
U to a locally convex space V. In particular, U′ is the topological dual of U, meaning
the continuous linear scalar-valued functions. We will break with the usual language one
sees in the theory of locally convex spaces and call what are commonly called “inductive”
and “projective” limits, instead “direct” and “inverse” limits, in keeping with the rest of
category theory.

By λ we denote the Lebesgue measure on R. We will talk about measurability of maps
taking values in topological spaces. If (T,M ) is a measurable space and if X is a topological
space, a mapping Ψ: T → X is Borel measurable if Ψ−1(O) ∈ M for every open set
O ⊆ X. This is equivalent to requiring that Ψ−1(B) ∈M for every Borel subset B ⊆ X.

One not completely standard topic we shall need to understand is integration of functions
with values in locally convex spaces. There are multiple theories here,2 so let us outline what
we mean, following [Beckmann and Deitmar 2011]. We let (T,M , µ) be a finite measure
space, let V be a locally convex topological vector space, and let Ψ: T → V. Measurability
of Ψ is Borel measurability mentioned above, and we note that there are other forms of
measurability that arise for locally convex spaces (the comment made in footnote 2 applies
to these multiple notions of measurability as well). The notion of the integral we use
is the Bochner integral . This is well understood for Banach spaces [Diestel and Uhl,
Jr. 1977] and is often mentioned in an offhand manner as being “the same” for locally
convex spaces [e.g., Schaefer and Wolff 1999, page 96]. A detailed textbook treatment does
not appear to exist, but fortunately this has been worked out in the note of [Beckmann
and Deitmar 2011], to which we shall refer for details as needed. One has a notion of
simple functions, meaning functions that are finite linear combinations, with coefficients
in V, of characteristic functions of measurable sets. The integral of a simple function
σ =

∑k
j=1 vjχAj is ∫

T

σ dµ =
k∑
j=1

µ(Aj)vj ,

in the usual manner. A measurable function Ψ is Bochner approximable if it can be

2Most of the theories of integration in locally convex spaces coincide for the sorts of locally convex spaces
we deal with.
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approximated with respect to any continuous seminorm by a net of simple functions. A
Bochner approximable function Ψ is Bochner integrable if there is a net of simple func-
tions approximating Ψ whose integrals converge in V to a unique value, which is called the
integral of Ψ. If V is separable and complete, as will be the case for us in this work, then
a measurable function Ψ: T → V is Bochner integrable if and only if∫

T

p ◦ Ψdµ <∞

for every continuous seminorm p on V [Beckmann and Deitmar 2011, Theorems 3.2 and 3.3].
This construction of the integral clearly agrees with the standard construction of the
Lebesgue integral for functions taking values in R or C (or any finite-dimensional vec-
tor space over R or C, for that matter). If A ⊆ V, by L1(T;A) we denote the space of
Bochner integrable functions with values in A. The space L1(T;V) is itself a locally convex
topological vector space with topology defined by the seminorms

p̂(Ψ) =

∫
T

p ◦ Ψdµ,

where p is a continuous seminorm for V [Schaefer and Wolff 1999, page 96]. In the case where
T = I is an interval in R, L1

loc(I;A) denotes the set of locally integrable functions, i.e., those
functions whose restriction to any compact subinterval is integrable.

While it does not generally make sense to talk about integrability of measurable func-
tions with values in a topological space, one can sensibly talk about essentially bounded
functions. This means that one needs a notion of boundedness, this being supplied by a
“bornology.”3 Bornologies are less popular than topologies, but a treatment in some gen-
erality can be found in [Hogbe-Nlend 1977]. There are two bornologies we consider in this
monograph. One is the compact bornology for a topological space X whose bounded sets
are the relatively compact sets. The other is the von Neumann bornology for a locally
convex topological vector space V whose bounded sets are those subsets B ⊆ V for which,
for any neighbourhood N of 0 ∈ V, there exists λ ∈ R>0 such that B ⊆ λN. On any
locally convex topological vector space we thus have these two bornologies, and generally
they are not the same. Indeed, if V is an infinite-dimensional normed vector space, then
the compact bornology is strictly contained in the von Neumann bornology. We will, in
fact, have occasion to use both of these bornologies, and shall make it clear which we mean.
Now, if (T,M , µ) is a measure space and if (X,B ) is a bornological space, i.e., a set X with
a bornology B , a measurable map Ψ: T → X is essentially bounded if there exists a
bounded set B ⊆ X such that

µ({t ∈ T | Ψ(t) ̸∈ B}) = 0.

By L∞(T;X) we denote the set of essentially bounded maps. If T = I is an interval in
R, a measurable map Ψ: I → X is locally essentially bounded in the bornology B if
Ψ|J is essentially bounded in the bornology B for every compact subinterval J ⊆ I. By
L∞
loc(I;X) we denote the set of locally essentially bounded maps; thus the bornology is to

be understood when we write expressions such as this.

3A bornology on a set S is a family B of subsets of S, called bounded sets, and satisfying the axioms:

1. S is covered by bounded sets, i.e., S = ∪B∈BB;

2. subsets of bounded sets are bounded, i.e., if B ∈B and if A ⊆ B, then A ∈B ;

3. finite unions of bounded sets are bounded, i.e., if B1, . . . , Bk ∈B , then ∪k
j=1Bj ∈B .
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Intended readership. It is our intention that this monograph to be useful for a control
theoretic audience, since one of the areas where this work is likely to have a substantial
impact is in control theory. For this reason, we have written the results in a manner that
is perhaps more detailed than usual, and with many more and more detailed references
than usual. Much of the mathematical material we use in this work is not a part of the
standard background of a control theoretic audience. This is especially true of our use
of locally convex topologies and holomorphic geometry, and for these subjects we include
various discussions, some as footnotes, that provide a little historical and mathematical
context in these areas. By doing this, our hope is that the presentation is self-contained
and comprehensive enough for a reader to get most of the ideas needed from the monograph
and the references.

Acknowledgements. This research was funded in part by a grant from the Natural Sciences
and Engineering Research Council of Canada. The second author was a Visiting Professor
in the Department of Mathematics at University of Hawaii, Manoa, when the paper was
written, and would like to acknowledge the hospitality of the department, particularly that
of Monique Chyba and George Wilkens. The second author would also like to thank his
departmental colleague Mike Roth for numerous useful conversations over the years. While
conversations with Mike did not lead directly to results in this paper, Mike’s willingness to
chat about complex geometry and to answer ill-informed questions was always appreciated,
and ultimately very helpful.

2. Fibre metrics for jet bundles

One of the principal devices we use in the monograph are convenient seminorms for the
various topologies we use for spaces of sections of vector bundles. Since such topologies rely
on placing suitable norms on derivatives of sections, i.e., on jet bundles of vector bundles, in
this section we present a means for defining such norms, using as our starting point a pair
of connections, one for the base manifold, and one for the vector bundle. These allow us
to provide a direct sum decomposition of the jet bundle into its component “derivatives,”
and so then a natural means of defining a fibre metric for jet bundles using metrics on the
tangent bundle of the base manifold and the fibres of the vector bundle.

As we shall see, in the smooth case, these constructions are a convenience, whereas
in the real analytic case, they provide a crucial ingredient in our global, coordinate-free
description of seminorms for the topology of the space of real analytic sections of a vector
bundle. For this reason, in this section we shall also consider the existence of, and some
properties of, real analytic connections in vector bundles.

2.1. A decomposition for the jet bundles of a vector bundle. We let π : E → M be a
smooth vector bundle with πm : JmE → M its mth jet bundle. In a local trivialisation of
JmE, the fibres of this vector bundle are

⊕m
j=0L

j
sym(R

n;Rk),

with n the dimension of M and k the fibre dimension of E. This decomposition of the
derivatives, order-by-order, that we see in the local trivialisation has no global analogue,



12 S. Jafarpour and A. D. Lewis

but such a decomposition can be provided with the use of connections, and we describe how
to do this.

We suppose that we have a linear connection ∇0 on the vector bundle E and an affine
connection ∇ on M. We then have a connection, that we also denote by ∇, on T∗M defined
by

LY ⟨α;X⟩ = ⟨∇Y α;X⟩+ ⟨α;∇YX⟩.
For ξ ∈ Γ∞(E) we then have ∇0ξ ∈ Γ∞(T∗M ⊗ E) defined by ∇0ξ(X) = ∇0

Xξ for X ∈
Γ∞(TM). The connections ∇0 and ∇ extend naturally to a connection, that we denote by
∇m, on Tm(T∗M)⊗ E, m ∈ Z>0, by the requirement that

∇m
X(α

1 ⊗ · · · ⊗ αm ⊗ ξ)

=

m∑
j=1

(α1 ⊗ · · · ⊗ (∇Xαj)⊗ · · · ⊗ αm ⊗ ξ) + α1 ⊗ · · · ⊗ αm ⊗ (∇0
Xξ)

for α1, . . . , αm ∈ Γ∞(T∗M) and ξ ∈ Γ∞(E). Note that

∇(m)ξ ≜ ∇m(∇m−1 · · · (∇1(∇0ξ))) ∈ Γ∞(Tm+1(T∗M)⊗ E). (2.1)

Now, given ξ ∈ Γ∞(E) and m ∈ Z≥0, we define

Pm+1
∇,∇0(ξ) = Symm+1⊗ idE(∇(m)ξ) ∈ Γ∞(Sm+1(T∗M)⊗ E),

where Symm : Tm(V) → Sm(V) is defined by

Symm(v1 ⊗ · · · ⊗ vm) =
1

m!

∑
σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m).

We take the convention that P 0
∇,∇0(ξ) = ξ.

The following lemma is then key for our presentation. While this lemma exists in
the literature in various forms, often in the form of results concerning the extension of
connections by “bundle functors” [e.g., Kolář, Michor, and Slovák 1993, Chapter X], we
were unable to find the succinct statement we give here. Pohl [1966] gives existential results
dual to what we give here, but stops short of giving an explicit formula such as we give
below. For this reason, we give a complete proof of the lemma.

2.1 Lemma: (Decomposition of jet bundles) The map

Sm∇,∇0 : J
mE → ⊕m

j=0(S
j(T∗M)⊗ E)

jmξ(x) 7→ (ξ(x), P 1
∇,∇0(ξ)(x), . . . , P

m
∇,∇0(ξ)(x))

is an isomorphism of vector bundles, and, for each m ∈ Z>0, the diagram

Jm+1E
Sm+1

∇,∇0
//

πm+1
m

��

⊕m+1
j=0 (Sj(T∗M)⊗ E)

prm+1
m

��
JmE

Sm
∇,∇0

// ⊕m
j=0(S

j(T∗M)⊗ E)

commutes, where prm+1
m is the obvious projection, stripping off the last component of the

direct sum.
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Proof: We prove the result by induction on m. For m = 0 the result is a tautology. For
m = 1, as in [Kolář, Michor, and Slovák 1993, §17.1], we have a vector bundle mapping
S∇0 : E → J1E over idM that determines the connection ∇0 by

∇0ξ(x) = j1ξ(x)− S∇0(ξ(x)). (2.2)

Let us show that S1
∇,∇0 is well-defined. Thus let ξ, η ∈ Γ∞(E) be such that j1ξ(x) = j1η(x).

Then, clearly, ξ(x) = η(x), and the formula (2.2) shows that ∇ξ(x) = ∇η(x), and so
S1
∇,∇0 is indeed well defined. It is clearly linear on fibres, so it remains to show that it is

an isomorphism. This will follow from dimension counting if it is injective. However, if
S1
∇,∇0(j1ξ(x)) = 0 then j1ξ(x) = 0 by (2.2).
For the induction step, we begin with a sublemma.

1 Sublemma: Let F be a field and consider the following commutative diagram of finite-
dimensional F-vector spaces with exact rows and columns:

0

��

0

��

0

��
0 // A1

ϕ1 //

ι1
��

C1
ψ1 //

ι2
��

p1

gg B //

γ1

gg 0

0 // A2
ϕ2 //

σ1

EE

C2
ψ2 //

p2

gg B
γ2

gg
// 0

If there exists a mapping γ2 ∈ HomF(B;C2) such that ψ2 ◦γ2 = idB (with p2 ∈ HomF(C2;A2)
the corresponding projection), then there exists a unique mapping γ1 ∈ HomF(B;C1) such
that ψ1 ◦ γ1 = idB and such that γ2 = ι2 ◦ γ1. There is also induced a projection p1 ∈
HomF(C1;A1).

Moreover, if there additionally exists a mapping σ1 ∈ HomF(A2;A1) such that σ1 ◦ ι1 =
idA1, then the projection p1 is uniquely determined by the condition p1 = σ1 ◦ p2 ◦ ι2.

Proof: We begin by extending the diagram to one of the form

0

��

0

��

0

��
0 // A1

ϕ1 //

ι1
��

C1
ψ1 //

ι2
��

B // 0

0 // A2
ϕ2 //

κ1
��

C2
ψ2 //

κ2
��

B //

��

0

0 // coker(ι1)
ϕ3 //

��

coker(ι2) //

��

0

0 0

also with exact rows and columns. We claim that there is a natural mapping ϕ3 between
the cokernels, as indicated by the dashed arrow in the diagram, and that ϕ3 is, moreover,
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an isomorphism. Suppose that u2 ∈ image(ι1) and let u1 ∈ A1 be such that ι1(u1) = u2.
By commutativity of the diagram, we have

ϕ2(u2) = ϕ2 ◦ ι1(u1) = ι2 ◦ ϕ1(u1),

showing that ϕ2(image(ι1)) ⊆ image(ι2). We thus have a well-defined homomorphism

ϕ3 : coker(ι1) → coker(ι2)

u2 + image(ι1) 7→ ϕ2(u2) + image(ι2).

We now claim that ϕ3 is injective. Indeed,

ϕ3(u2 + image(ι1)) = 0 =⇒ ϕ2(u2) ∈ image(ι2).

Thus let v1 ∈ C1 be such that ϕ2(u2) = ι2(v1). Thus

0 = ψ2 ◦ ϕ2(u2) = ψ2 ◦ ι2(v1) = ψ1(v1)

=⇒ v1 ∈ ker(ψ1) = image(ϕ1).

Thus v1 = ϕ1(u
′
1) for some u′1 ∈ A1. Therefore,

ϕ2(u2) = ι2 ◦ ϕ1(u
′
1) = ϕ2 ◦ ι1(u

′
1),

and injectivity of ϕ2 gives u2 ∈ image(ι1) and so u2 + image(ι1) = 0+ image(ι1), giving the
desired injectivity of ϕ3.

Now note that
dim(coker(ι1)) = dim(A2)− dim(A1)

by exactness of the left column. Also,

dim(coker(ι2)) = dim(C2)− dim(C1)

by exactness of the middle column. By exactness of the top and middle rows, we have

dim(B) = dim(C2)− dim(A2) = dim(C1)− dim(A1).

This proves that
dim(coker(ι1)) = dim(coker(ι2)).

Thus the homomorphism ϕ3 is an isomorphism, as claimed.
Now we proceed with the proof, using the extended diagram, and identifying the bottom

cokernels with the isomorphism ϕ3. The existence of the stated homomorphism γ2 means
that the middle row in the diagram splits. Therefore, C2 = image(ϕ2) ⊕ image(γ2). Thus
there exists a well-defined projection p2 ∈ HomF(C2;A2) such that p2 ◦ ϕ2 = idA2 [Halmos
1974, Theorem 41.1].

We will now prove that image(γ2) ⊆ image(ι2). By commutativity of the diagram and
since ψ1 is surjective, if w ∈ B then there exists v1 ∈ C1 such that ψ2 ◦ ι2(v1) = w. Since
ψ2 ◦ γ2 = idB, we have

ψ2 ◦ ι2(v1) = ψ2 ◦ γ2(w) =⇒ ι2(v1)− γ2(w) ∈ ker(ψ2) = image(ϕ2).
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Let u2 ∈ A2 be such that ϕ2(u2) = ι2(v1)− γ2(w). Since p2 ◦ ϕ2 = idA2 we have

u2 = p2 ◦ ι2(v1)− p2 ◦ γ2(w),

whence
κ1(u2) = κ1 ◦ p2 ◦ ι2(v1)− κ1 ◦ p2 ◦ γ2(w) = 0,

noting that (1) κ1◦p2 = κ2 (by commutativity), (2) κ2◦ι2 = 0 (by exactness), and (3) p2◦γ2 =
0 (by exactness). Thus u2 ∈ ker(κ1) = image(ι1). Let u1 ∈ A1 be such that ι1(u1) = u2.
We then have

ι2(v1)− γ2(w) = ϕ2 ◦ ι1(u1) = ι2 ◦ ϕ1(u1),

which gives γ2(w) ∈ image(ι2), as claimed.
Now we define γ1 ∈ HomF(B;C1) by asking that γ1(w) ∈ C1 have the property that

ι2 ◦ γ1(w) = γ2(w), this making sense since we just showed that image(γ2) ⊆ image(ι2).
Moreover, since ι2 is injective, the definition uniquely prescribes γ1. Finally we note that

ψ1 ◦ γ1 = ψ2 ◦ ι2 ◦ γ1 = ψ2 ◦ γ2 = idB,

as claimed.
To prove the final assertion, let us denote p̂1 = σ1 ◦ p2 ◦ ι2. We then have

p̂1 ◦ ϕ1 = σ1 ◦ p2 ◦ ι2 ◦ ϕ1 = σ1 ◦ p2 ◦ ϕ2 ◦ ι1 = σ1 ◦ ι1 = idA1 ,

using commutativity. We also have

p̂1 ◦ γ1 = σ1 ◦ p2 ◦ ι2 ◦ γ1 = σ1 ◦ p2 ◦ γ2 = 0.

The two preceding conclusions show that p̂1 is the projection defined by the splitting of the
top row of the diagram, i.e., p̂1 = p1. ▼

Now suppose that the lemma is true for m ∈ Z>0. For any k ∈ Z>0 we have a short
exact sequence

0 // Sk(T∗M)⊗ E
ϵk // JkE

πk
k−1 // Jk−1E // 0

for which we refer to [Saunders 1989, Theorem 6.2.9]. Recall from [Saunders 1989, Defini-
tion 6.2.25] that we have an inclusion ι1,m of Jm+1E in J1(JmE) by jm+1ξ(x) 7→ j1(jmξ(x)).
We also have an induced injection

ι̂1,m : Sm+1(T∗M)⊗ E → T∗M⊗ JmE

defined by the composition

Sm+1(T∗M)⊗ E // T∗M⊗ Sm(T∗M)⊗ E
id⊗ϵm // T∗M⊗ JmE

Explicitly, the left arrow is defined by

α1 ⊙ · · · ⊙ αm+1 ⊗ ξ 7→
m+1∑
j=1

αj ⊗ α1 ⊙ · · · ⊙ αj−1 ⊙ αj+1 ⊙ · · · ⊙ αm+1 ⊗ ξ,



16 S. Jafarpour and A. D. Lewis

⊙ denoting the symmetric tensor product defined by

A⊙B =
∑
σ∈Sk,l

σ(A⊗B), (2.3)

for A ∈ Sk(V) and B ∈ Sl(V), and with Sk,l the subset of Sk+l consisting of permutations
σ satisfying

σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l).

We thus have the following commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // Sm+1(T∗M)⊗ E

ϵm+1 //

ι̂1,m

��

Jm+1E
πm+1
m //

ι1,m
��

Pm+1

mm
JmE //

Γm+1

ii 0

0 // T∗M⊗ JmE
ϵ1,m //

λ1,m

FF

J1(JmE)
(πm)1 //

P1,m

kk JmE //

Γ1,m

ll
0

(2.4)

We shall define a connection on (πm)1 : J
1(JmE) → JmE which gives a splitting Γ1,m and

P1,m of the lower row in the diagram. By the sublemma, this will give a splitting Γm+1 and
Pm+1 of the upper row, and so give a projection from Jm+1E onto Sm+1(T∗M) ⊗ E, which
will allow us to prove the induction step. To compute Pm+1 from the sublemma, we shall
also give a map λ1,m as in the diagram so that λ1,m ◦ ι̂1,m is the identity on Sm+1(T∗M)⊗E.

We start, under the induction hypothesis, by making the identification

JmE ≃ ⊕m
j=0S

j(T∗M)⊗ E,

and consequently writing a section of JmE as

x 7→ (ξ(x), P 1
∇,∇0(ξ(x)), . . . , P

m
∇,∇0(ξ(x))).

We then have a connection ∇m
on JmE given by

∇m
X(ξ, P

1
∇,∇0(ξ), . . . , P

m
∇,∇0(ξ)) = (∇0

Xξ,∇1
XP

1
∇,∇0(ξ), . . . ,∇m

XP
m
∇,∇0(ξ)).

Thus
∇m

(ξ, P 1
∇,∇0(ξ), . . . , P

m
∇,∇0(ξ)) = (∇0ξ,∇1P 1

∇,∇0(ξ), . . . ,∇mPm∇,∇0(ξ)),

which—according to the jet bundle characterisation of connections from [Kolář, Michor,
and Slovák 1993, §17.1] and which we have already employed in (2.2)—gives the mapping
P1,m in the diagram (2.4) as

P1,m(j1(ξ, P
1
∇,∇0(ξ), . . . , P

m
∇,∇0(ξ))) = (∇0ξ,∇1P 1

∇,∇0(ξ), . . . ,∇mPm∇,∇0(ξ)).

Now we define a mapping λ1,m for which λ1,m ◦ ι̂1,m is the identity on Sm+1(T∗M)⊗ E.
We continue to use the induction hypothesis in writing elements of JmE, so that we consider
elements of T∗M⊗ JmE of the form

(α⊗ ξ, α⊗A1, . . . , α⊗Am),



Time-varying vector fields and their flows 17

for α ∈ T∗M and Ak ∈ Sk(T∗M)⊗ E, k ∈ {1, . . . ,m}. We then define λ1,m by

λ1,m(α0 ⊗ ξ, α0 ⊗ α1
1 ⊗ ξ, . . . , α0 ⊗ α1

m ⊙ · · · ⊙ αmm ⊗ ξ)

= Symm+1⊗ idE(α0 ⊗ α1
m ⊙ · · · ⊙ αmm ⊗ ξ).

Note that, with the form of JmE from the induction hypothesis, we have

ι̂1,m(α
1 ⊙ · · · ⊙ αm+1 ⊗ ξ)

=
(
0, . . . , 0,

1

m+ 1

m+1∑
j=1

αj ⊗ α1 ⊙ · · · ⊙ αj−1 ⊙ αj+1 ⊙ · · · ⊙ αm+1 ⊗ ξ
)
.

We then directly verify that λ1,m ◦ ι̂1,m is indeed the identity.
We finally claim that

Pm+1(jm+1ξ(x)) = Pm+1
∇,∇0(ξ), (2.5)

which will establish the lemma. To see this, first note that it suffices to define Pm+1 on
image(ϵm+1) since

1. Jm+1E ≃ (Sm+1(T∗M)⊗ E)⊕ JmE,

2. Pm+1 is zero on JmE ⊆ Jm+1E (thinking of the inclusion arising from the connection-
induced isomorphism from the preceding item), and

3. Pm+1 ◦ ϵm+1 is the identity map on Sm+1(T∗M)⊗ E.

In order to connect the algebra and the geometry, let us write elements of Sm+1(T∗M)⊗ E
in a particular way. We let x ∈ M and let f1, . . . , fm+1 be smooth functions contained in
the maximal ideal of C∞(M) at x, i.e., f j(x) = 0, j ∈ {1, . . . ,m + 1}. Let ξ be a smooth
section of E. We then can work with elements of Sm+1(T∗M)⊗ E of the form

df1(x)⊙ · · · ⊙ dfm+1(x)⊗ ξ(x).

We then have

ϵm+1(df
1(x)⊙ · · · ⊙ dfm+1(x)⊗ ξ(x)) = jm+1(f

1 · · · fm+1ξ)(x);

this is easy to see using the Leibniz Rule [cf. Goldschmidt 1967, Lemma 2.1]. (See [Abra-
ham, Marsden, and Ratiu 1988, Supplement 2.4A] for a description of the higher-order
Leibniz Rule.) Now, using the last part of the sublemma, we compute

Pm+1(jm+1(f
1 · · · fm+1ξ)(x))

= λ1,m ◦ P1,m ◦ ι1,m(jm+1(f
1 · · · fm+1ξ)(x))

= λ1,m ◦ P1,m(j1(f
1 · · · fm+1ξ, P 1

∇,∇0(f1 · · · fm+1ξ), . . . , Pm
∇,∇0(f1 · · · fm+1ξ))(x))

= λ1,m(∇0(f1 · · · fm+1ξ)(x),∇1P 1
∇,∇0(f1 · · · fm+1ξ)(x), . . . ,∇mPm

∇,∇0(f1 · · · fm+1ξ)(x))

= Symm+1 ⊗ idE(∇mPm
∇,∇0(f1 · · · fm+1ξ)(x))

= Pm+1
∇,∇0

(f1 · · · fm+1ξ)(x),

which shows that, with Pm+1 defined as in (2.5), Pm+1 ◦ ϵm+1 is indeed the identity on
Sm+1(T∗M)⊗ E.

The commuting of the diagram in the statement of the lemma follows directly from the
recursive nature of the constructions. ■

Next we consider the decomposition of the preceding lemma in geodesic normal coordi-
nates about a fixed point in M.



18 S. Jafarpour and A. D. Lewis

2.2 Lemma: (Jet bundle decomposition and geodesic normal coordinates) Let
r ∈ {∞, ω}, let π : E → M be a Cr-vector bundle, let ∇0 be a Cr-linear connection on E,
and let ∇ be a Cr-affine connection on M. Let x ∈ M, and let N ⊆ TxM be a convex
neighbourhood of 0x and V ⊆ M be a neighbourhood of x such that the exponential map
expx corresponding to ∇ is a Cr-diffeomorphism from N to V. For y ∈ V, let τxy : Ex → Ey
be parallel transport along the geodesic t 7→ expx(t exp

−1
x (y)). Define

κx : N × Ex → E|V
(v, ex) 7→ τx,expx(v)(ex).

Then

(i) κx is a Cr-vector bundle isomorphism over expx and

(ii) if ξ ∈ Γr(E|V), then Pm∇,∇0(ξ)(x) = Dmξ̂(0), where ξ̂ is the section of N×Ex defined

by ξ̂(v) = τ−1
x,expx(v)

(ξ(expx(v))).

Proof: (i) Consider the vector field X∇,∇0 on the Whitney sum TM⊕ E defined by

X∇,∇0(vx, ex) = hlft(vx, vx)⊕ hlft0(ex, vx),

where hlft(vx, ux) is the horizontal lift of ux ∈ TxM to TvxTM and hlft0(ex, ux) is the
horizontal lift of ux ∈ TxM to TexE. Note that, since

TπTM(hlft(vx, vx)) = Tπ(hlft0(ex, vx)),

this is indeed a vector field on TM ⊕ E. Moreover, the integral curve of X∇,∇0 through
(vx, ex) is t 7→ γ′(t) ⊕ τ(t), where γ is the geodesic with initial condition γ′(0) = vx and
where t 7→ τ(t) is parallel transport of ex along γ. This is a Cr-vector field, and so the
flow depends in a Cr-manner on initial condition; [Abraham, Marsden, and Ratiu 1988,
Lemma 4.1.9] for r = ∞ and [Sontag 1998, Proposition C.3.12] for r = ω. In particular, it
depends in a Cr-manner on initial conditions lying in N × Ex. But, in this case, the map
from initial condition to value at t = 1 is exactly κx. This shows that κx is indeed of class
Cr. Moreover, it is clearly fibre preserving over expx and is linear on fibres, and so is a
vector bundle map [cf. Abraham, Marsden, and Ratiu 1988, Proposition 3.4.12(iii)].

(ii) For v ∈ N, let γv be the geodesic satisfying γ′v(0) = v. Then, for t ∈ R>0 satisfying
|t| ≤ 1, define

αv(t) = κ−1
x ◦ ξ(γv(t)) = τ−1

x,γv(t)
(ξ(γv(t)).

We compute derivatives of αv as follows, by induction and using the fact that ∇γ′v(t)
γ′v(t) =

0:

Dαv(t) = τ−1
x,γv(t)

(∇0ξ(γ′v(t)))

D2αv(t) = τ−1
x,γv(t)

(∇(1)ξ(γ′v(t), γ
′
v(t)))

...

Dmαv(t) = τ−1
x,γv(t)

(∇(m−1)ξ(γ′v(t), . . . , γ
′
v(t)︸ ︷︷ ︸

m times

)).
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Since γv(t) = γtv(1) and since ξ̂(tv) = αv(t), we have

Dmαv(0) = Dmξ̂(0)(v, . . . , v︸ ︷︷ ︸
m times

).

Thus
Dmξ̂(0)(v, . . . , v︸ ︷︷ ︸

m times

) = ∇(m−1)ξ(v, . . . , v︸ ︷︷ ︸
m times

),

and the result follows by symmetrising both sides of this last equation. ■

2.2. Fibre metrics using jet bundle decompositions. We require the following result
concerning inner products on tensor products.

2.3 Lemma: (Inner products on tensor products) Let U and V be finite-dimensional
R-vector spaces and let G and H be inner products on U and V, respectively. Then the
element G ⊗H of T2(U∗ ⊗ V∗) defined by

G ⊗H(u1 ⊗ v1, u2 ⊗ v2) = G(u1, u2)H(v1, v2)

is an inner product on U⊗ V.

Proof: Let (e1, . . . , em) and (f1, . . . , fn) be orthonormal bases for U and V, respectively.
Then

{ea ⊗ fj | a ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} (2.6)

is a basis for U⊗ V. Note that

G ⊗H(ea ⊗ fj , eb ⊗ fk) = G(ea, eb)H(fj , fk) = δabδjk,

which shows that G ⊗H is indeed an inner product, as (2.6) is an orthonormal basis. ■

Now, we let G0 be a fibre metric on E and let G be a Riemannian metric on M. Let us
denote by G−1 the associated fibre metric on T∗M defined by

G−1(αx, βx) = G(G
♯(αx),G

♯(βx)).

By induction using the preceding lemma, we have a fibre metric Gj on Tj(T∗M)⊗E induced
by G−1 and G0. By restriction, this gives a fibre metric on Sj(T∗M)⊗E. We can thus define
a fibre metric Gm on JmE given by

Gm(jmξ(x), jmη(x)) =
m∑
j=0

Gj
( 1

j!
P j∇,∇0(ξ)(x),

1

j!
P j∇,∇0(η)(x)

)
,

with the convention that ∇(−1)ξ = ξ. Associated to this inner product on fibres is the norm
on fibres, which we denote by ∥·∥Gm

. We shall use these fibre norms continually in our
descriptions of our various topologies below.
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2.3. Real analytic connections. The fibre metrics from the preceding section will be used
to define seminorms for spaces of sections of vector bundles. In the finitely differentiable
and smooth cases, the particular fibre metrics we define above are not really required to give
seminorms for the associated topologies: any fibre metrics on the jet bundles will suffice.
Indeed, as long as one is only working with finitely many derivatives at one time, the choice
of fibre norms on jet bundles is of no consequence, since different choices will be equivalent
on compact subsets of M, cf. Section 3.1. However, when we work with the real analytic
topology, we are no longer working only with finitely many derivatives, but with the infinite
jet of a section. For this reason, different choices of fibre metric for jet bundles may give
rise to different topologies for the space of real analytic sections, unless the behaviour of
the fibre metrics is compatible as the order of derivatives goes to infinity. In this section we
give a fundamental inequality for our fibre metrics of Section 2.2 in the real analytic case
that ensures that they, in fact, describe the real analytic topology.

First let us deal with the matter of existence of real analytic data defining these fibre
metrics.

2.4 Lemma: (Existence of real analytic connections and fibre metrics) If π : E →
M is a real analytic vector bundle, then there exist

(i) a real analytic linear connection on E,

(ii) a real analytic affine connection on M,

(iii) a real analytic fibre metric on E, and

(iv) a real analytic Riemannian metric on M.

Proof: By [Grauert 1958, Theorem 3], there exists a proper real analytic embedding ιE of
E in RN for some N ∈ Z>0. There is then an induced proper real analytic embedding
ιM of M in RN by restricting ιE to the zero section of E. Let us take the subbundle Ê of
TRN |ιM(M) whose fibre at ιM(x) ∈ ιM(M) is

ÊιM(x) = T0xιE(V0xE).

Now recall that E ≃ ζ∗VE, where ζ : M → E is the zero section [Kolář, Michor, and Slovák
1993, page 55]. Let us abbreviate ι̂E = TιE|ζ∗VE. We then have the following diagram

E ≃ ζ∗VE

π

��

ι̂E // RN ×RN

pr2
��

M ιM
// RN

(2.7)

describing a monomorphism of real analytic vector bundles over the proper embedding ιM,
with the image of ι̂E being Ê.

Among the many ways to prescribe a linear connection on the vector bundle E, we
will take the prescription whereby one defines a mapping K : TE → E such that the two
diagrams

TE
K //

Tπ
��

E

π
��

TM πTM
// M

TE
K //

πTE
��

E

π
��

E π
// M

(2.8)
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define vector bundle mappings [Kolář, Michor, and Slovák 1993, §11.11]. We define K as
follows. For ex ∈ Ex and Xex ∈ TexE we have

Tex ι̂E(Xex) ∈ Tι̂E(ex)(R
N ×RN ) ≃ RN ⊕RN ,

and we define K so that
ι̂E ◦K(Xex) = pr2 ◦Tex ι̂E(Xex);

this uniquely defines K by injectivity of ι̂E, and amounts to using on E the connection
induced on image(ι̂E) by the trivial connection on RN ×RN . In particular, this means that
we think of ι̂E ◦K(Xex) as being an element of the fibre of the trivial bundle RN ×RN at
ιM(x).

If vx ∈ TM, if e, e′ ∈ E, and if X ∈ TeE and X ′ ∈ Te′E satisfy X,X ′ ∈ Tπ−1(vx), then
note that

Teπ(X) = Te′π(X
′) =⇒ Te(ιM ◦ π)(X) = Te′(ιM ◦ π)(X ′)

=⇒ Te(pr2 ◦ι̂E)(X) = Te′(pr2 ◦ι̂E)(X
′)

=⇒ TιM(x) pr2 ◦Teι̂E(X) = TιM(x) pr2 ◦Te′ ι̂E(X
′).

Thus we can write

Teι̂E(X) = (x, e,u,v), Te′ ι̂E(X) = (x, e′,u,v′)

for suitable x,u, e, e′,v,v′ ∈ RN . Therefore,

ι̂E ◦K(X) = (x,v), ι̂E ◦K(X ′) = (x,v′), ι̂E ◦K(X +X ′) = (x,v + v′),

from which we immediately conclude that, for addition in the vector bundle Tπ : TE → TM,
we have

ι̂E ◦K(X +X ′) = ι̂E ◦K(X) + ι̂E ◦K(X ′),

showing that the diagram on the left in (2.8) makes K a vector bundle mapping.
On the other hand, if ex ∈ E and if X,X ′ ∈ TexE, then we have, using vector bundle

addition in πTE : TE → E,

ι̂E ◦K(X +X ′) = pr2 ◦Tex ι̂E(X +X ′)

= pr2 ◦Tex ι̂E(X) + pr2 ◦Tex ι̂E(X
′)

= ι̂E ◦K(X) + ι̂E ◦K(X ′),

giving that the diagram on the right in (2.8) makes K a vector bundle mapping. Since K
is real analytic, this defines a real analytic linear connection ∇0 on E as in [Kolář, Michor,
and Slovák 1993, §11.11].

The existence of G0, G, and ∇ are straightforward. Indeed, we let GRN be the Euclidean
metric on RN , and define G0 and G by

G0(ex, e
′
x) = GRN (ι̂E(ex), ι̂E(e

′
x))

and
G(vx, v

′
x) = GRN (TxιM(vx), TxιM(v′x)).

The affine connection ∇ can be taken to be the Levi-Civita connection of G. ■
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The existence of a real analytic linear connection in a real analytic vector bundle is
asserted at the bottom of page 302 in [Kriegl and Michor 1997], and we fill in the blanks in
the preceding proof.

Now let us provide a fundamental relationship between the geometric fibre norms of
Section 2.2 and norms constructed in local coordinate charts.

2.5 Lemma: (A fundamental estimate for fibre norms) Let U ⊆ Rn be open, denote
RkU = U×Rk, let K ⊆ U be compact, and consider the trivial vector bundle pr1 : R

k
U → U.

Let G be a Riemannian metric on U, let G0 be a vector bundle metric on RkU, let ∇ be an
affine connection on U, and let ∇0 be a vector bundle connection on RkU, with all of these
being real analytic. Then there exist C, σ ∈ R>0 such that

σm

C
∥jmξ(x)∥Gm

≤ sup
{ 1

I!
|DIξa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
≤ C

σm
∥jmξ(x)∥Gm

for every ξ ∈ Γ∞(RkU), x ∈ K, and m ∈ Z≥0.

Proof: We begin the proof by introducing some notation in the general setting of Lemma 2.2
that will be useful later. We fix x ∈ M. We let Nx ⊆ TxM and Vx ⊆ M be neighbourhoods
of 0x and x, respectively, such that expx : Nx → Vx is a diffeomorphism. For y ∈ Vx we
then define

I ′xy : N
′
xy × Ex → E|V′

xy

(v, ex) 7→ τx,expx(v+exp−1
x (y))(ex)

for neighbourhoods N′
xy ⊆ TxM of 0x ∈ TxM and V′

xy ⊆ M of y. We note that I ′xy is a real
analytic vector bundle isomorphism over the diffeomorphism

i′xy : N
′
xy → V′

xy

v 7→ expx(v + exp−1
x (y)).

Thus Ixy ≜ I ′xy ◦ κ−1
x is a real analytic vector bundle isomorphism from E|U′

xy to E|V′
xy for

appropriate neighbourhoods U′
xy ⊆ M of x and V′

xy ⊆ M of y. If we define ixy : U
′
xy → V′

xy

by ixy = i′xy ◦ exp−1
x , then Ixy is a vector bundle mapping over ixy. Along similar lines,

Îxy ≜ κ−1
y ◦ I ′xy is a vector bundle isomorphism between the trivial bundles O′

xy × Ex and
N′
xy × Ey for appropriate neighbourhoods O′

xy ⊆ TxM and N′
xy ⊆ TyM of the origin. If we

define îxy : O
′
xy → N′

xy by îxy = exp−1
y ◦i′xy, then Îxy is a vector bundle map over îxy.

The next sublemma indicates that the neighbourhoods U′
xy of x and O′

xy of 0x can be
uniformly bounded from below.

1 Sublemma: The neighbourhood Vx and the neighbourhoods U′
xy and O′

xy above may be
chosen so that

int(∩y∈VxU
′
xy) ̸= ∅, int(∩y∈VxO

′
xy) ̸= ∅.

Proof: By [Kobayashi and Nomizu 1963, Theorem III.8.7] we can choose Vx so that, if
y ∈ Vx, then there is a normal coordinate neighbourhood Vy of y containing Vx. Taking
V′
xy = Vx ∩ Vy and U′

xy = Vx gives the sublemma. ▼

We shall always assume Vx chosen as in the preceding sublemma, and we let U′
x ⊆ M

be a neighbourhood of x and O′
x ⊆ TxM be a neighbourhood of 0x such that

U′
x ⊆ int(∩y∈VxU

′
xy), O′

x ⊆ int(∩y∈VxO
′
xy).
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These constructions can be “bundled together” as one to include the dependence on
y ∈ Vx in a clearer manner. Since this will be useful for us, we explain it here. Let us
denote Dx = Vx × U′

x, let pr2 : Dx → U′
x be the projection onto the second factor, and

denote
ix : Dx → M

(y, x′) 7→ ixy(x
′).

Consider the pull-back bundle pr∗2 π : pr∗2 E|U′
x → Dx. Thus

pr∗2 E|U′
x = {((y, x′), ey′) ∈ Dx × E|U′

x | y′ = x′}.

We then have a real analytic vector bundle mapping

Ix : pr
∗
2 E|U′

x → E

((y, x′), ex′) 7→ Ixy(ex′)

which is easily verified to be defined over ix and is isomorphic on fibres. Given ξ ∈ Γ∞(E),
we define I∗xξ ∈ Γ∞(pr∗2 E|U′

x) by

I∗xξ(y, x
′) = (Ix)

−1
(y,x′)

◦ ξ ◦ ix(y, x
′) = I−1

xy ◦ ξ ◦ ixy(x
′).

For y ∈ Vx fixed, we denote by I∗xyξ ∈ Γ∞(E|U′
x) the section given by

I∗xyξ(x
′) = I∗xξ(y, x

′) = I−1
xy ◦ ξ ◦ ixy(x

′).

A similar construction can be made in the local trivialisations. Here we denote D̂x =
Vx ×Ox, let pr2 : D̂x → Ox be the projection onto the second factor, and consider the map

îx : D̂x → TM

(y, vx) 7→ îxy(vx).

Denote by π∗TMπ : π
∗
TME → TM the pull-back bundle and also define the pull-back bundle

pr∗2 π
∗
TMπ : pr∗2 π

∗
TME → D̂x.

Note that
pr∗2 π

∗
TME = {((y, vx), (uy, ey)) ∈ D̂x × π∗TME | x = y}.

We then define the real analytic vector bundle map

Îx : pr
∗
2 π

∗
TME → π∗TME

((y, vx), (ux, ex)) 7→ (vx, Îxy(vx, ex)).

Given a local section η ∈ Γ∞(π∗TME) defined in a neighbourhood of the zero section, define

a local section Î∗xη ∈ Γ∞(pr∗2 π
∗
TME) in a neighbourhood of the zero section of D̂x by

Î∗xη(y, vx) = (Îx)
−1
(y,vx)

◦ η ◦ îx(y, vx) = Î−1
xy ◦ η ◦ ix(y, vx).

For y ∈ Vx fixed, we denote by ηy the restriction of η to a neighbourhood of 0y ∈ TyM. We
then denote by

Î∗xyηy(vx) = Î∗xη(y, vx) = Î−1
xy ◦ ηy ◦ îxy(vx)

the element of Γ∞(O′
x × Ex).

The following simple lemma ties the preceding two constructions together.
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2 Sublemma: Let ξ ∈ Γ∞(E) and let ξ̂ ∈ Γ∞(π∗TME) be defined in a neighbourhood of the
zero section by

ξ̂ = κ−1
y ◦ ξ ◦ expy .

Then, for each y ∈ Vx,
Î∗xy ξ̂y = κ−1

x ◦ I∗xyξ ◦ expx .

Proof: We have

Î∗xy ξ̂(vx) = Î−1
xy ◦ ξ̂ ◦ îxy(vx)

= (I ′xy)
−1 ◦ κy ◦ ξ̂ ◦ exp−1

y ◦i′xy(vx)

= κ−1
x ◦ I−1

xy ◦ κy ◦ ξ̂ ◦ exp−1
y ◦ixy ◦ expx(vx)

= κ−1
x ◦ I−1

xy ◦ ξ ◦ ixy ◦ expx(vx)

= κ−1
x I∗xyξ ◦ expx(vx).

as claimed. ▼

Let us leave these general vector bundle considerations and proceed to local estimates.
We shall consider estimates associated with local vector bundle maps. First we consider an
estimate arising from multiplication.

3 Sublemma: If U ⊆ Rn is open, if f ∈ Cω(U), and if K ⊆ U is compact, then there exist
C, σ ∈ R>0 such that

sup
{ 1

I!
DI(fg)(x)

∣∣∣ |I| ≤ m
}
≤ Cσ−m sup

{ 1

I!
DIg(x)

∣∣∣ |I| ≤ m
}

for every g ∈ C∞(U), x ∈ K, and m ∈ Z≥0.

Proof: For multi-indices I, J ∈ Zn≥0, let us write J ≤ I if I − J ∈ Zn≥0. For I ∈ Zn≥0 we
have

1

I!
DI(fg)(x) =

∑
J≤I

DJg(x)

J !

DI−Jf(x)

(I − J)!
,

by the Leibniz Rule. By [Krantz and Parks 2002, Lemma 2.1.3], the number of multi-indices

in n variables of order at most |I| is (n+|I|)!
n!|I|! . Note that, by the binomial theorem,

(a1 + a2)
n+|I| =

n+|I|∑
j=0

(n+ |I|)!
(n+ |I| − j)!j!

aj1a
n+|I|−j
2 .

Evaluating at a1 = a2 = 1 and considering the summand corresponding to j = |I|, this
gives

(n+ |I|)!
n!|I|!

≤ 2n+|I|.
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Using this inequality we derive

1

I!
|DI(fg)(x)| ≤

∑
|J |≤|I|

sup
{ |DJf(x)|

J !

∣∣∣ |J | ≤ |I|
}
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ |I|
}

≤ (n+ |I|)!
n!|I|!

sup
{ |DJf(x)|

J !

∣∣∣ |J | ≤ |I|
}
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ |I|
}

≤ 2n+|I| sup
{ |DJf(x)|

J !

∣∣∣ |J | ≤ |I|
}
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ |I|
}
.

By [Krantz and Parks 2002, Proposition 2.2.10], there exist B, r ∈ R>0 such that

1

J !
|DJf(x)| ≤ Br−|J |, J ∈ Zn≥0, x ∈ K.

We can suppose, without loss of generality, that r < 1 so that we have

1

I!
|DI(fg)(x)| ≤ 2nB

(2
r

)|I|
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ |I|
}
, x ∈ K.

We conclude, therefore, that if |I| ≤ m we have

1

I!
|DI(fg)(x)| ≤ 2nB

(2
r

)m
sup

{ |DJg(x)|
J !

∣∣∣ |J | ≤ m
}
, x ∈ K,

which is the result upon taking C = 2nB and σ = 2
r . ▼

Next we give an estimate for derivatives of compositions of mappings, one of which is
real analytic. Thus we have a real analytic mapping Φ : U → V between open sets U ⊆ Rn
and V ⊆ Rk and f ∈ C∞(V). By the higher-order Chain Rule [e.g., Constantine and Savits
1996], we can write

DI(f ◦ Φ)(x) =
∑

H∈Zm
≥0

|H|≤|I|

AI,H(x)D
Hf(Φ(x))

for x ∈ U and for some real analytic functions AI,H ∈ Cω(U). The proof of the next
sublemma gives estimates for the AI,H ’s, and is based on computations of Thilliez [1997] in
the proof of his Proposition 2.5.

4 Sublemma: Let U ⊆ Rn and V ⊆ Rk be open, let Φ ∈ Cω(U;V), and let K ⊆ U be
compact. Then there exist C, σ ∈ R>0 such that

|DJAI,H(x)| ≤ Cσ−(|I|+|J |)(|I|+ |J | − |H|)!

for every x ∈ K, I, J ∈ Zn≥0, and H ∈ Zk≥0.

Proof: First we claim that, for j1, . . . , jr ∈ {1, . . . , n},

∂r(f ◦ Φ)

∂xj1 · · · ∂xjr
(x) =

r∑
s=1

k∑
a1,...,as=1

Ba1···as
j1···jr (x)

∂sf

∂ya1 · · · ∂yas
(Φ(x)),

where the real analytic functions Ba1···as
j1···jr , a1, . . . , as ∈ {1, . . . , k}, j1, . . . , jr ∈ {1, . . . , n},

r, s ∈ Z>0, s ≤ r, are defined by the following recursion, starting with Ba
j = ∂Φa

∂xj
:
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1. Ba
j1···jr =

∂Ba
j2···jr
∂xj1

;

2. Ba1···as
j1···jr =

∂Ba1···as
j2···jr
∂xj1

+
∂Φa1

∂xj1
Ba2···as
j2···jr , r ≥ 2, s ∈ {2, . . . , r − 1};

3. Ba1···ar
j1···jr =

∂Φa1

∂xj1
Ba2···ar
j2···jr .

This claim we prove by induction on r. It is clear for r = 1, so suppose the assertion true
up to r − 1. By the induction hypothesis we have

∂r−1(f ◦ Φ)

∂xj2 · · · ∂xjr
(x) =

r−1∑
s=1

k∑
a1,...,as=1

Ba1···as
j2···jr (x)

∂sf

∂ya1 · · · ∂yas
(Φ(x)).

We then compute

∂

∂xj1
∂r−1(f ◦ Φ)

∂xj2 · · · ∂xjr
(x)

=

r−1∑
s=1

k∑
a1,...,as=1

(∂Ba1,...,as
j2···jr
∂xj1

(x)
∂sf

∂ya1 · · · ∂yas
(Φ(x))

+
k∑
b=1

Ba1···as
j2···jr (x)

∂Φb

∂xj1
(x)

∂s+1f

∂yb∂ya1 · · · ∂yas
(Φ(x))

)
=

r−1∑
s=1

k∑
a1,...,as=1

∂Ba1···as
j2···jr
∂xj1

(x)
∂sf

∂ya1 · · · ∂yas
(Φ(x))

+

r∑
s=2

k∑
a1,...,as=1

Ba2···as
j2···jr (x)

∂Φa1

∂xj1
(x)

∂sf

∂ya1 · · · ∂yas
(Φ(x))

=
k∑
a=1

∂Ba
j2···jr
∂xj1

(x)
∂f

∂ya
(Φ(x))

+

r−1∑
s=2

k∑
a1,...,as=1

(∂Ba1···as
j2···jr
∂xj1

(x) +
∂Φa1

∂xj1
(x)Ba2···as

j2···jr (x)
) ∂sf

∂ya1 · · · ∂yas
(Φ(x))

+
k∑

a1,...,ar=1

∂Φa1

∂xj1
(x)Ba2···ar

j2···jr (x)
∂sf

∂ya1 · · · ∂yar
(Φ(x)),

from which our claim follows.
Next we claim that there exist A, ρ, α, β ∈ R>0 such that

|DJBa1···as
j1···jr (x)| ≤ (Aα)r

(β
ρ

)r+|J |−s
(r + |J | − s)!

for every x ∈ K, J ∈ Zn≥0, a1, . . . , as ∈ {1, . . . , k}, j1, . . . , jk ∈ {1, . . . , n}, r, s ∈ Z>0, s ≤ r.
This we prove by induction on r once again. First let β ∈ R>0 be sufficiently large that∑

I∈Zn
≥0

β−|I| <∞,
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and denote this value of this sum by S. Then let α = 2S. By [Krantz and Parks 2002,
Proposition 2.2.10] there exist A, ρ ∈ R>0 such that

|DJDjΦa(x)| ≤ AJ !ρ−|J |

for every x ∈ K, J ∈ Zn≥0, j ∈ {1, . . . , n}, and a ∈ {1, . . . , k}. This gives the claim for
r = 1. So suppose the claim true up to r − 1. Then, for any a1, . . . , as ∈ {1, . . . , k} and
j1, . . . , jr ∈ {1, . . . , n}, s ≤ r, Ba1···as

j1···jr has one of the three forms listed above in the recurrent
definition. These three forms are themselves sums of terms of the form

∂Ba1···as
j2···jr
∂xj1︸ ︷︷ ︸
P

,
∂Φa1

∂xj1
Ba2···as
j2···jr︸ ︷︷ ︸

Q

.

Let us, therefore, estimate derivatives of these terms, abbreviated by P and Q as above.
We directly have, by the induction hypothesis,

|DJP (x)| ≤ (Aα)r
(β
ρ

)r+|J |−s
(r + |J | − s)!

≤Arαr−1S
(β
ρ

)r+|J |−s
(r + |J | − s)!,

noting that α = 2S. By the Leibniz Rule we have

DJQ(x) =
∑

J1+J2=J

J !

J1!J2!
DJ1Dj1Φa1(x)DJ2Ba2···as

j2···jr (x).

By the induction hypothesis we have

|DJ2Ba2···as
j2···jr (x)| ≤ (Aα)r−1

(β
ρ

)r+|J2|−s
(r + |J2| − s)!

for every x ∈ K and J2 ∈ Z≥0. Therefore,

|DJQ(x)| ≤
∑

J1+J2=J

J !

J2!
A(Aα)r−1

(β
ρ

)r+|J |−s
β−|J1|(r + |J2| − s)!

for every x ∈ K and J ∈ Zn≥0. Now note that, for any a, b, c ∈ Z>0 with b < c, we have

(a+ b)!

b!
= (1 + b) · · · (a+ b) < (1 + c) · · · (a+ c) =

(a+ c)!

c!
.

Thus, if L, J ∈ Zn≥0 satisfy L < J (meaning that J − L ∈ Zn≥0), then we have

lk ≤ jk =⇒ (a+ lk)!

lk!
≤ (a+ jk)!

jk!
=⇒ jk!

lk!
≤ (a+ jk)!

(a+ lk)!

for every a ∈ Z>0 and k ∈ {1, . . . , n}. Therefore,

(j1 + · · ·+ jn−1 + jn)!

(j1 + · · ·+ jn−1 + ln)!
≥ jn!

ln!
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and

(j1 + · · ·+ jn−2 + jn−1 + jn)!

(j1 + · · ·+ jn−2 + ln−1 + ln)!

=
(j1 + · · ·+ jn−1 + jn)!

(j1 + · · ·+ jn−1 + ln)!

(j1 + · · ·+ jn−2 + jn−1 + ln)!

(j1 + · · ·+ jn−2 + ln−1 + ln)!
≥ jn−1!

ln−1!

jn!

ln!
.

Continuing in this way, we get
J !

L!
≤ |J |!

|L|!
.

We also have
(r + |J2| − s)!

|J2|!
≤ (r + |J | − s)!

|J |!
.

Thus we have

|DJQ(x)| ≤
∑

J1+J2=J

J !

J2!
A(Aα)r−1

(β
ρ

)r+|J |−s
β−|J1|(r + |J2| − s)!

≤ A(Aα)r−1
(β
ρ

)r+|J |−s
(r + |J | − s)!

∑
J1+J2=J

β−|J1|

≤ AS(Aα)r−1
(β
ρ

)r+|J |−s
(r + |J | − s)!

Combining the estimates for P and Q to give an estimate for their sum, and recalling that
α = 2S, gives our claim that there exist A, ρ, α, β ∈ R>0 such that

|DJBa1···as
j1···jr (x)| ≤ (Aα)r

(β
ρ

)r+|J |−s
(r + |J | − s)!

for every x ∈ K, J ∈ Zn≥0, a1, . . . , as ∈ {1, . . . , k}, and j1, . . . , jr ∈ {1, . . . , n}, r, s ∈ Z>0,
s ≤ r.

To conclude the proof of the lemma, note that given an index j = (j1, . . . , jr) ∈
{1, . . . , n}r we define a multi-index I(j) = (i1, . . . , in) ∈ Zn≥0 by asking that il be the
number of times l appears in the list j. Similarly an index a = (a1, . . . , as) ∈ {1, . . . , k}s
gives rise to a multi-index H(a) ∈ Zk≥0. Moreover, by construction we have

Ba1···as
j1···jr = AI(j),H(a).

Let C = 1 and σ−1 = max{Aα, βρ} and suppose, without loss of generality, that σ ≤ 1.
Then

(Aα)|I| ≤ σ−(|I|+|J |),
(β
ρ

)r+|J |−s
≤ σ−(|I|+|J |)

for every I, J ∈ Zn≥0. Thus we have

|DJAI,H(x)| ≤ Cσ−(|I|+|J |)(|I|+ |J | − |H|)!

as claimed. ▼

Next we consider estimates for derivatives arising from composition.



Time-varying vector fields and their flows 29

5 Sublemma: Let U ⊆ Rn and V ⊆ Rk be open, let Φ ∈ Cω(U;V), and let K ⊆ U be
compact. Then there exist C, σ ∈ R>0 such that

sup
{ 1

I!
|DI(f ◦ Φ)(x)|

∣∣∣ |I| ≤ m
}
≤ Cσ−m sup

{ 1

I!
|DHf(Φ(x))|

∣∣∣ |H| ≤ m
}

for every f ∈ C∞(V), x ∈ K, and m ∈ Z≥0.

Proof: As we denoted preceding the statement of Sublemma 4 above, let us write

DI(f ◦ Φ)(x) =
∑

H∈Zm
≥0

|H|≤|I|

AI,H(x)D
Hf(Φ(x))

for x ∈ U and for some real analytic functions AI,H ∈ Cω(U). By Sublemma 4, let A, r ∈
R>0 be such that

|DJAI,H(x)| ≤ Ar−(|I|+|J |)(|I|+ |J | − |H|)!

for x ∈ K. By the multinomial theorem [Krantz and Parks 2002, Theorem 1.3.1] we can
write

(a1 + · · ·+ an)
|I| =

∑
|J |=|I|

|J |!
J !

aJ

for every I ∈ Zn≥0. Setting a1 = · · · = an = 1 gives |I|!
I! ≤ n|I| for every I ∈ Zn≥0. As in

the proof of Sublemma 3 we have that the number of multi-indices of length k and degree
at most |I| is bounded above by 2k+|I|. Also, by a similar binomial theorem argument, if
|H| ≤ |I|, then we have

(|I| − |H|)!|H|!
|I|!

≤ 2|I|.

Putting this together yields

1

I!
|DI(f ◦ Φ)(x)| ≤ An|I|r−|I|

∑
|H|≤|I|

(|I| − |H|)!|H|!
|I|!

1

H!
|DHf(Φ(x))|

≤ An|I|2k+|I|2|I|r−|I| sup
{ 1

H!
|DHf(Φ(x))|

∣∣∣ |H| ≤ |I|
}

= 2kA(4nr−1)|I| sup
{ 1

H!
|DHf(Φ(x))|

∣∣∣ |H| ≤ |I|
}

whenever x ∈ K. Let us denote C = 2kA and σ−1 = 4nr−1 and take r so that 4nr−1 ≥ 1,
without loss of generality. We then have

sup
{ 1

I!
|DI(f ◦ Φ)(x)|

∣∣∣ |I| ≤ m
}
≤ Cσ−1 sup

{ 1

H!
|DHf(Φ(x))|

∣∣∣ |H| ≤ m
}

for every f ∈ C∞(U2), x ∈ K, and m ∈ Z≥0, as claimed. ▼

Now we can state the following estimate for vector bundle mappings which is essential
for our proof.
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6 Sublemma: Let U ⊆ Rn and V ⊆ Rk be open, let l ∈ Z>0, and consider the trivial
vector bundles RlU and RlV. Let Φ ∈ Cω(U;V), let A ∈ Cω(U;GL(l;R)), and let K ⊆ U be
compact. Then there exist C, σ ∈ R>0 such that

sup
{ 1

I!
|DI(A−1 · (ξ ◦ Φ))b(x)|

∣∣∣ |I| ≤ m, b ∈ {1, . . . , l}
}

≤ Cσ−m sup
{ 1

H!
|DHξa(Φ(x))|

∣∣∣ |H| ≤ m, a ∈ {1, . . . , l}
}
,

for every ξ ∈ Γ∞(RlV), x ∈ K, and m ∈ Z≥0.

Proof: By Sublemma 5 there exist C1, σ1 ∈ R>0 such that

sup
{ 1

I!
|DI(ξ ◦ Φ)a(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , l}
}

≤ C1σ
−m
1 sup

{ 1

H!
|DHξa(Φ(x))|

∣∣∣ |H| ≤ m, a ∈ {1, . . . , l}
}

for every ξ ∈ Γ∞(RlV), x ∈ K, and m ∈ Z≥0.
Now let η ∈ Γ∞(RlU). Let B

b
a ∈ Cω(U), a ∈ {1, . . . , l}, b ∈ {1, . . . , l}, be the components

of A−1. By Sublemma 3, there exist C2, σ2 ∈ R>0 such that

sup
{ 1

I!
|DI(Bb

a(x)η
a(x))|

∣∣∣ |I| ≤ m, a, b ∈ {1, . . . , l}
}

≤ C2σ
−m
2 sup

{ 1

I!
|DIηa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , l}
}

for every x ∈ K andm ∈ Z≥0. (There is no implied sum over “a” in the preceding formula.)
Therefore, by the triangle inequality,

sup
{ 1

I!
|DI(A−1 · η)b(x)|

∣∣∣ |I| ≤ m, b ∈ {1, . . . , l}
}

≤ lC2σ
−m
2 sup

{ 1

I!
|DIηa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , l}
}

for every x ∈ K and m ∈ Z≥0.
Combining the estimates from the preceding two paragraphs gives

sup
{ 1

I!
|DI(ξ ◦ Φ)b(x)|

∣∣∣ |I| ≤ m, b ∈ {1, . . . , l}
}

≤ lC1C2(σ1σ2)
−m sup

{ 1

H!
|DHξa(Φ(x))|

∣∣∣ |H| ≤ m, a ∈ {1, . . . , l}
}

for every ξ ∈ Γ∞(RlV), x ∈ K, and m ∈ Z≥0, which is the desired result after taking
C = lC1C2 and σ = σ1σ2. ▼

Now we begin to provide some estimates that closely resemble those in the statement
of the lemma. We begin by establishing an estimate resembling that of the required form
for a fixed x ∈ U.
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7 Sublemma: Let U ⊆ Rn be open, denote RkU = U × Rk, and consider the trivial vector
bundle pr1 : R

k
U → U. Let G be a Riemannian metric on U, let G0 be a vector bundle metric

on RkU, let ∇ be an affine connection on U, and let ∇0 be a vector bundle connection on

RkU, with all of these being real analytic. For ξ ∈ Γ∞(RkU) and x ∈ U, denote by ξ̂x
the corresponding section of Nx × Rk defined by the isomorphism κx of Lemma 2.2. For
K ⊆ U compact, there exist C, σ ∈ R>0 such that the following inequalities hold for each
ξ ∈ Γ∞(RkU), x ∈ K, and m ∈ Z≥0:

(i) ∥jmξ(x)∥Gm
≤ Cσ−m sup

{
1
I! |D

I ξ̂ax(0)|
∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
;

(ii)
{

1
I! |D

I ξ̂ax(0)|
∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
≤ Cσ−m∥jmξ(x)∥Gm

.

Proof: By Lemma 2.2 we have

Pm∇,∇0(ξ)(x) = Dmξ̂x(0)

for every m ∈ Z≥0. Take m ∈ Z≥0. We have

m∑
r=0

1

(r!)2
∥P r∇,∇0(ξ)(x)∥2Gr

≤
m∑
r=0

A′Ar

(r!)2
∥Drξ̂x(0)∥2,

where A′ ∈ R>0 depends on G0, A ∈ R>0 depends on G, and where ∥·∥ denotes the 2-
norm, i.e., the square root of the sum of squares of components. We can, moreover, assume
without loss of generality that A ≥ 1 so that we have

m∑
r=0

1

(r!)2
∥P r∇,∇0(ξ)(x)∥2Gr

≤ A′Am
m∑
r=0

1

(r!)2
∥Drξ̂x(0)∥2.

By [Krantz and Parks 2002, Lemma 2.1.3],

card({I ∈ Zn≥0 | |I| ≤ m}) = (n+m)!

n!m!
.

Note that the 2-norm for RN is related to the ∞-norm for RN by ∥a∥2 ≤
√
N∥a∥∞ so that

m∑
r=0

1

(r!)2
∥Drξ̂x(0)∥2 ≤ k

(n+m)!

n!m!

(
sup

{ 1

r!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
})2

.

By the binomial theorem, as in the proof of Sublemma 3,

(n+m)!

n!m!
≤ 2n+m.

Thus

∥jmξ(x)∥Gm
≤

√
kA′2n(

√
2A)m sup

{ 1

I!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

(2.9)

for every m ∈ Z≥0. The above computations show that this inequality is satisfied for
a real analytic section ξ. However, it also is satisfied if ξ is a smooth section. This we
argue as follows. Let ξ ∈ Γ∞(RkU) and, for m ∈ Z>0, let ξm ∈ Γω(RkU) be the section whose
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coefficients are polynomial functions of degree at most m and such that jmξm(x) = jmξ(x).
Also let ξ̂x,m be the corresponding section of Nx ×Rk. We then have

jmξm(x) = jmξ(x), DI ξ̂x,m(0) = DI ξ̂x(0),

for every I ∈ Zn≥0 satisfying |I| ≤ m, the latter by the formula for the higher-order Chain
Rule [Abraham, Marsden, and Ratiu 1988, Supplement 2.4A]. Since ξm is real analytic,
this shows that (2.9) is also satisfied for every m ∈ Z≥0 if ξ is smooth.

To establish the other estimate asserted in the sublemma, let x ∈ K and, using the
notation of Lemma 2.2, let Nx be a relatively compact neighbourhood of 0 ∈ Rn ≃ TxRn

and Vx ⊆ U be a relatively compact neighbourhood of x such that κx : Nx×Rk → Vx×Rk
is a real analytic vector bundle isomorphism. Let ξ ∈ Γω(RkVx

) and let ξ̂x ∈ Γω(RkNx
) be

defined by ξ̂x(v) = κ−1
x ◦ ξ(expx(v)). As in the first part of the estimate, we have

Dmξ̂x(0) = Pm∇,∇0(ξ)(x)

for every m ∈ Z≥0. For indices j = (j1, . . . , jm) ∈ {1, . . . , n}m we define I(j) =
(i1, . . . , in) ∈ Zn≥0 by asking that ij be the number of times “j” appears in the list j.
We then have

sup
{ 1

I!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
=

sup
{ 1

I(j)!
|(P r∇,∇0(ξ)(x))

a
j1···jr |

∣∣∣
j1, . . . , jr ∈ {1, . . . , n}, r ∈ {0, 1, . . . ,m}, a ∈ {1, . . . , k}

}
.

By an application of the multinomial theorem as in the proof of Sublemma 5, we have
|I|!
I! ≤ n|I| for every I ∈ Zn≥0. We then have

1

I(j)!
|(P r∇,∇0(ξ)(x))

a
j1···jr | ≤

nr

r!
|(P r∇,∇0(ξ)(x))

a
j1···jr |

for every j1, . . . , jr ∈ {1, . . . , n} and a ∈ {1, . . . , k}. Using the fact that the ∞-norm for
RN is related to the 2-norm for RN by ∥a∥∞ ≤ ∥a∥2, we have

sup
{ 1

I!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
≤

(
m∑
r=0

(nr
r!

)2
B′Br∥P r∇,∇0(ξ)(x)∥2Gr

)1/2

,

where B′ ∈ R>0 depends on G0 and B ∈ R>0 depends on G. We may, without loss of
generality, suppose that B ≥ 1 so that we have

sup
{ 1

I!
|DI ξ̂ax(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
≤

√
B′(n

√
B)m∥jmξ(x)∥Gm

for every m ∈ Z≥0. As in the first part of the proof, while we have demonstrated the
preceding inequality for ξ real analytic, it can also be demonstrated to hold for ξ smooth.

The sublemma follows by taking

C = max{
√
kA′2n,

√
B′}, σ−1 = max{

√
2A,n

√
B}. ▼
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The next estimates we consider will allow us to expand the pointwise estimate from
the preceding sublemma to a local estimate of the same form. The construction makes use
of the vector bundle isomorphisms Ixy and Îxy defined at the beginning of the proof. In
the statement and proof of the following sublemma, we make free use of the notation we
introduced where these mappings were defined.

8 Sublemma: Let U ⊆ Rn be open, denote RkU = U × Rk, and consider the trivial vector
bundle pr1 : R

k
U → U. Let G be a Riemannian metric on U, let G0 be a vector bundle metric

on RkU, let ∇ be an affine connection on U, and let ∇0 be a vector bundle connection on
RkU, with all of these being real analytic. For each x ∈ U there exist a neighbourhood Vx and
Cx, σx ∈ R>0 such that we have the following inequalities for each ξ ∈ Γ∞(RkU), m ∈ Z≥0,
and y ∈ Vx:

(i) sup
{

1
I! |D

I ξ̂ay(0)|
∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
≤ Cxσ

−1
x sup

{
1
I! |D

I((Î∗xy)
−1ξ̂y)

a(0)|
∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
;

(ii) sup
{

1
I! |D

I(Î∗xyξ̂y)
a|(0)

∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ Cxσ
−1
x sup

{
1
I! |D

I ξ̂ay(0)|
∣∣ |I| ≤ m, a ∈ {1, . . . , k}

}
;

(iii) ∥jmξ(y)∥Gm
≤ Cxσ

−1
x ∥jm((I∗xy)−1ξ)(x)∥Gm

;

(iv) ∥jm(I∗xyξ)(x)∥Gm
≤ Cxσ

−1
x ∥jmξ(y)∥Gm

.

Proof: We begin the proof with an observation. Suppose that we have an open subset
U ⊆ Rn×Rk and f ∈ Cω(U). We wish to think of f as a function of x ∈ Rn depending on
a parameter p ∈ Rk in a jointly real analytic manner. We note that, for K ⊆ U compact,
we have C, σ ∈ R>0 such that the partial derivatives satisfy a bound

|DI
1f(x,p)| ≤ CI!σ−|I|

for every (x,p) ∈ K and I ∈ Zn≥0. This is a mere specialisation of [Krantz and Parks
2002, Proposition 2.2.10] to partial derivatives. The point is that the bound for the partial
derivatives is uniform in the parameter p. With this in mind, we note that the following
are easily checked:

1. the estimate of Sublemma 3 can be extended to the case where f depends in a jointly
real analytic manner on a parameter, and the estimate is uniform in the parameter over
compact sets;

2. the estimate of Sublemma 4 can be extended to the case where Φ depends in a jointly
real analytic manner on a parameter, and the estimate is uniform in the parameter over
compact sets;

3. as a consequence of the preceding fact, the estimate of Sublemma 5 can be extended
to the case where Φ depends in a jointly real analytic manner on a parameter, and the
estimate is uniform in the parameter over compact sets;

4. as a consequence of the preceding three facts, the estimate of Sublemma 6 can be
extended to the case where Φ and A depend in a jointly real analytic manner on a
parameter, and the estimate is uniform in the parameter over compact sets.

Now let us proceed with the proof.
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We take Vx as in the discussion at the beginning of the proof. Let us introduce coordi-
nate notation for all maps needed. We have

ξ̂y(u) = ξ̂(y,u) = ξ ◦ expy(u),

I∗xyξ(x
′) = A(y,x′) · (ξ ◦ ixy(x

′)),

Î∗xyξ̂y(v) = Â(y,v) · (ξ̂y ◦ îxy(v)),

(I∗xy)
−1ξ(y′) = A−1(y, i−1

xy(y
′) · (ξ ◦ i−1

xy(y
′)),

(Î∗xy)
−1ξ̂y(v) = Â−1(y, î−1

xy(u)) · (ξ̂y ◦ î−1
xy(v)),

for appropriate real analytic mappings A and Â taking values in GL(k;R). Note that, for
every I ∈ Zn≥0,

DI(Î∗xyξ̂y)(0) = DI
2(Î

∗
xξ̂)(y,0),

and similarly for DI((Î∗xy)
−1ξ̂y)(0). The observation made at the beginning of the proof

shows that parts (i) and (ii) follow immediately from Sublemma 6. Parts (iii) and (iv)
follow from the first two parts after an application of Sublemma 7. ▼

By applications of (a) Sublemma 8, (b) Sublemmata 2 and 7, (c) Sublemma 8 again,
and (d) Sublemma 6, there exist

A1,x, A2,x, A3,x, A4,x, r1,x, r2,x, r3,x, r4,x ∈ R>0

and a relatively compact neighbourhood Vx ⊆ U of x such that

∥jmξ(y)∥Gm
≤ A1,xr

−m
1,x ∥jm((I∗xy)−1ξ)(x)∥Gm

≤ A2,xr
−m
2,x sup

{ 1

I!
|DI((Î∗xy)

−1ξ̂y)
a(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A3,xr
−m
3,x sup

{ 1

I!
|DI ξ̂ay(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A4,xr
−m
4,x sup

{ 1

I!
|DIξa(y)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

for every ξ ∈ Γ∞(RkU), m ∈ Z≥0, and y ∈ Vx. Take x1, . . . ,xk ∈ K such that K ⊆ ∪kj=1Vxj

and define
C1 = max{A4,x1 , . . . , A4,xk

}, σ1 = min{r4,x1 , . . . , r4,xk
},

so that

∥jmξ(x)∥Gm
≤ C1σ

−m
1 sup

{ 1

I!
|DIξa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

for every ξ ∈ Γ∞(RkU), m ∈ Z≥0, and x ∈ K. This gives one half of the estimate in the
lemma.

For the other half of the estimate in the lemma, we apply (a) Sublemma 6, (b) Sub-
lemma 8, (c) Sublemmata 2 and 7, and (d) Sublemma 8 again to assert the existence of

A1,x, A2,x, A3,x, A4,x, r1,x, r2,x, r3,x, r4,x ∈ R>0
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and a relatively compact neighbourhood Vx ⊆ U of x such that

sup
{ 1

I!
|DIξa(y)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A1,xr
−m
1,x sup

{ 1

I!
|DI ξ̂ay(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A2,xr
−m
2,x sup

{ 1

I!
|DI((Î∗xy)

−1ξ̂y)
a(0)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}

≤ A3,xr
−m
3,x ∥jm((I∗xy)−1ξ)(x)∥Gm

≤ A4,xr
−m
4,x ∥jmξ(y)∥Gm

for every ξ ∈ Γ∞(RkU), m ∈ Z≥0, and y ∈ Vx. As we argued above using a standard
compactness argument, there exist C2, σ2 ∈ R>0 such that

sup
{ 1

I!
|DIξa(x)|

∣∣∣ |I| ≤ m, a ∈ {1, . . . , k}
}
≤ C2σ

−m
2 ∥jmξ(x)∥Gm

for every ξ ∈ Γ∞(RkU), m ∈ Z≥0, and x ∈ K. Taking C = max{C1, C2} and σ =
min{σ1, σ2} gives the lemma. ■

The preceding lemma will come in handy on a few crucial occasions. To illustrate how
it can be used, we give the following characterisation of real analytic sections, referring to
Section 3 below for the definition of the seminorm p∞K,m used in the statement.

2.6 Lemma: (Characterisation of real analytic sections) Let π : E → M be a real
analytic vector bundle and let ξ ∈ Γ∞(E). Then the following statements are equivalent:

(i) ξ ∈ Γω(E);

(ii) for every compact set K ⊆ M, there exist C, r ∈ R>0 such that p∞K,m(ξ) ≤ Cr−m for
every m ∈ Z≥0.

Proof: (i) =⇒ (ii) Let K ⊆ M be compact, let x ∈ K, and let (Vx, ψx) be a vector bundle
chart for E with (Ux, ϕx) the corresponding chart for M. Let ξ : ϕ(Ux) → Rk be the
local representative of ξ. By [Krantz and Parks 2002, Proposition 2.2.10], there exist a
neighbourhood U′

x ⊆ Ux of x and Bx, σx ∈ R>0 such that

|DIξa(x′)| ≤ BxI!σ
−|I|
x

for every a ∈ {1, . . . , k}, x′ ∈ cl(U′
x), and I ∈ Zn≥0. We can suppose, without loss of

generality, that σx ∈ (0, 1). In this case, if |I| ≤ m,

1

I!
|DIξa(x′)| ≤ Bxσ

−m
x

for every a ∈ {1, . . . , k} and x′ ∈ cl(U′
x). By Lemma 2.5, there exist Cx, rx ∈ R>0 such that

∥jmξ(x′)∥Gm
≤ Cxr

−m
x , x′ ∈ cl(U′

x), m ∈ Z≥0.

Let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1U
′
xj and let C = max{Cx1 , . . . , Cxk} and r =

min{rx1 , . . . , rxk}. Then, if x ∈ K, we have x ∈ U′
xj for some j ∈ {1, . . . , k} and so

∥jmξ(x)∥Gm
≤ Cxjr

−m
xj ≤ Cr−m,
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as desired.
(ii) =⇒ (ii) Let x ∈ M and let (V, ψ) be a vector bundle chart for E such that

the associated chart (U, ϕ) for M is a relatively compact coordinate chart about x. Let
ξ : ϕ(U) → Rk be the local representative of ξ. By hypothesis, there exist C, r ∈ R>0 such
that ∥jmξ(x′)∥Gm

≤ Cr−m for every m ∈ Z≥0 and x′ ∈ U. Let U′ be a relatively compact
neighbourhood of x such that cl(U′) ⊆ U. By Lemma 2.5, there exist B, σ ∈ R>0 such that

|DIξa(x′)| ≤ BI!σ−|I|

for every a ∈ {1, . . . , k}, x′ ∈ cl(U′), and I ∈ Zn≥0. We conclude real analyticity of ξ in a
neighbourhood of x by [Krantz and Parks 2002, Proposition 2.2.10]. ■

3. The compact-open topologies for the spaces of finitely differentiable,
Lipschitz, and smooth vector fields

As mentioned in the introduction, one of the themes of this work is the connection
between topologies for spaces of vector fields and regularity of their flows. In this and
the subsequent two sections we describe appropriate topologies for finitely differentiable,
Lipschitz, smooth, holomorphic, and real analytic vector fields. The topology we use in this
section in the smooth case (and the easily deduced finitely differentiable case) is classical,
and is described, for example, in [Agrachev and Sachkov 2004, §2.2]; see also [Michor 1980,
Chapter 4]. What we do that is original is provide a characterisation of the seminorms for
this topology using the jet bundle fibre metrics from Section 2.2. The fruits of the effort
expended in the next three sections is harvested when our concrete definitions of seminorms
permit a relatively unified analysis in Section 6 of time-varying vector fields.

One facet of our presentation that is novel is that we flesh out completely the “weak-L ”
characterisations of topologies for vector fields. These topologies characterise vector fields
by how they act on functions through Lie differentiation. The use of such “weak” charac-
terisations is commonplace [e.g., Agrachev and Sachkov 2004, Sussmann 1998], although
the equivalence with strong characterisation is not typically proved; indeed, we know of no
existing proofs of our Theorems 3.5, 3.8, 3.14, 4.5, and 5.8. We show that, for the issues
that come up in this monograph, the weak characterisations for vector field topologies agree
with the direct “strong” characterisations. This requires some detailed knowledge of the
topologies we use.

While our primary interest is in vector fields, i.e., sections of the tangent bundle, it is
advantageous to work instead with topologies for sections of general vector bundles, and
then specialise to vector fields. We will also work with topologies for functions, but this
falls out easily from the general vector bundle treatment.

3.1. General smooth vector bundles. We let π : E → M be a smooth vector bundle with
∇0 a linear connection on E, ∇ an affine connection on M, G0 a fibre metric on E, and G
a Riemannian metric on M. This gives us, as in Section 2.2, fibre metrics Gm on the jet
bundles JmE, m ∈ Z≥0, and corresponding fibre norms ∥·∥Gm

.
For a compact set K ⊆ M and for m ∈ Z≥0, we now define a seminorm p∞K,m on Γ∞(E)

by
p∞K,m(ξ) = sup{∥jmξ(x)∥Gm

| x ∈ K}.
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The locally convex topology on Γ∞(TM) defined by the family of seminorms p∞K,m, K ⊆ M
compact, m ∈ Z≥0, is called the smooth compact open or CO∞-topology for Γ∞(E).

We comment that the seminorms depend on the choices of ∇, ∇0, G, and G0, but
the CO∞-topology is independent of these choices. We will constantly throughout the
monograph use these seminorms, and in doing so we will automatically be assuming that
we have selected the linear connection ∇0, the affine connection ∇, the fibre metric G0, and
the Riemannian metric G. We will do this often without explicit mention of these objects
having been chosen.

3.2. Properties of the CO∞-topology. Let us say a few words about the CO∞-topology,
referring to references for details. The locally convex CO∞-topology has the following
attributes.
CO∞-1. It is Hausdorff: [Michor 1980, page 4.3.1].
CO∞-2. It is complete: [Michor 1980, page 4.3.2].
CO∞-3. It is metrisable: [Michor 1980, page 4.3.1].
CO∞-4. It is separable: We could not find this stated anywhere, but here’s a sketch of a

proof. By embedding E in Euclidean space RN and, using an argument like that for
real analytic vector bundles in the proof of Lemma 2.4, we regard E as a subbundle of
a trivial bundle over the submanifold M ⊆ RN . In this case, we can reduce our claim
of separability of the CO∞-topology to that for smooth functions on submanifolds
of RN . Here we can argue as follows. If K ⊆ M is compact, it can be contained in
a compact cube C in RN . Then we can use a cutoff function to take any smooth
function on M and leave it untouched on a neighbourhood of K, but have it and
all of its derivatives vanish outside a compact set contained in int(C). Then we
can use Fourier series to approximate in the CO∞-topology [Stein and Weiss 1971,
Theorem VII.2.11(b)]. Since there are countably many Fourier basis functions, this
gives the desired separability.
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CO∞-5. It is nuclear:4 [Jarchow 1981, Theorem 21.6.6].
CO∞-6. It is Suslin:5 This follows since Γ∞(TM) is a Polish space (see footnote 5), as we

have already seen.
Some of these attributes perhaps seem obscure, but we will, in fact, use all of them!

Since the CO∞-topology is metrisable, it is exactly characterised by its convergent
sequences, so let us describe these. A sequence (ξk)k∈Z>0 in Γ∞(E) converges to ξ ∈ Γ∞(E) if
and only if, for each compact setK ⊆ M and for eachm ∈ Z≥0, the sequence (jmξk|K)k∈Z>0

converges uniformly to jmξ|K, cf. combining [Munkres 2000, Theorem 46.8] and [Michor
1980, Lemma 4.2].

Since the topology is nuclear, it follows that subsets of Γ∞(TM) are compact if and only if
they are closed and von Neumann bounded [Pietsch 1969, Proposition 4.47]. That is to say,
in a nuclear locally convex space, the compact bornology and the von Neumann bornology
agree, according to the terminology introduced in Section 1.3. It is then interesting to
characterise von Neumann bounded subsets of Γ∞(E). One can show that a subset B is
bounded in the von Neumann bornology if and only if every continuous seminorm on V
is a bounded function when restricted to B [Rudin 1991, Theorem 1.37(b)]. Therefore, to
characterise von Neumann bounded subsets, we need only characterise subsets on which
each of the seminorms p∞K,m is a bounded function. This obviously gives the following
characterisation.

3.1 Lemma: (Bounded subsets in the CO∞-topology) A subset B ⊆ Γ∞(E) is
bounded in the von Neumann bornology if and only if the following property holds: for
any compact set K ⊆ M and any m ∈ Z≥0, there exists C ∈ R>0 such that p∞K,m(ξ) ≤ C
for every ξ ∈ B.

Let us give a coordinate characterisation of the smooth compact-open topology, just for
concreteness and so that the reader can see that our constructions agree with perhaps more

4There are several ways of characterising nuclear spaces. Here is one. A continuous linear mapping
L : E → F between Banach spaces is nuclear if there exist sequences (vj)j∈Z>0 in F and (αj)j∈Z>0 in E′

such that
∑

j∈Z>0
∥αj∥∥vj∥ < ∞ and such that

L(u) =

∞∑
j=1

αj(u)vj ,

the sum converging in the topology of V. Now suppose that V is a locally convex space and p is a continuous
seminorm on V. We denote by Vp the completion of

V/{v ∈ V | p(v) = 0};

thus Vp is a Banach space. The space V is nuclear if, for any continuous seminorm p, there exists a
continuous seminorm q satisfying q ≤ p such that the mapping

ip,q : Vp → Vq

v + {v′ ∈ V | p(v) = 0} 7→ v + {v′ ∈ V | q(v) = 0}

is nuclear. It is to be understood that this definition is essentially meaningless at a first encounter, so
we refer to [Hogbe-Nlend and Moscatelli 1981, Pietsch 1969] and relevant sections of [Jarchow 1981] to
begin understanding the notion of a nuclear space. The only attribute of nuclear spaces of interest to us
here is that their relatively compact subsets are exactly the von Neumann bounded subsets [Pietsch 1969,
Proposition 4.47].

5A Polish space is a complete separable metrisable space. A Suslin space is a continuous image of a
Polish space. A good reference for the basic properties of Suslin spaces is [Bogachev 2007, Chapter 6].
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familiar things. If we have a smooth vector bundle π : E → M, we let (V, ψ) be a vector
bundle chart for E inducing a chart (U, ϕ) for M. For ξ ∈ Γ∞(E), the local representative
of ξ has the form

Rn ⊇ ϕ(U) ∋ x 7→ (x, ξ(x)) ∈ ϕ(U)×Rk.

Thus we have an associated map ξ : ϕ(U) → Rk that describes the section locally. A
CO∞-subbasic neighbourhood is a subset B∞(ξ,V,K, ϵ,m) of Γ∞(E), where

1. ξ ∈ Γ∞(E),

2. (V, ψ) is a vector bundle chart for E with associated chart (U, ϕ) for M,

3. K ⊆ U is compact,

4. ϵ ∈ R>0,

5. m ∈ Z≥0, and

6. η ∈ B∞(ξ,V,K, ϵ,m) if and only if

∥Dlη(x)−Dlξ(x)∥ < ϵ, x ∈ ϕ(K), l ∈ {0, 1, . . . ,m},

where ξ,η : ϕ(U) → Rk are the local representatives.

One can show that the CO∞-topology is that topology having as a subbase the CO∞-
subbasic neighbourhoods. This is the definition used by [Hirsch 1976], for example. To show
that this topology agrees with our intrinsic characterisation is a straightforward bookkeeping
chore, and the interested reader can refer to Lemma 2.5 to see how this is done in the more
difficult real analytic case. This more concrete characterisation using vector bundle charts
can be useful should one ever wish to verify some properties in examples. It can also be
useful in general arguments in emergencies when one does not have the time to flesh out
coordinate-free constructions.

3.3. The weak-L topology for smooth vector fields. The CO∞-topology for smooth
sections of a vector bundle, merely by specialisation, gives a locally convex topology on
the set Γ∞(TM) of smooth vector fields and the set C∞(M) of smooth functions (noting
that a smooth function is obviously identified with a section of the trivial vector bundle
M×R). The only mildly interesting thing in these cases is that one does not need a separate
linear connection in the vector bundles or a separate fibre metric. Indeed, TM is already
assumed to have a linear connection (the affine connection on M) and a fibre metric (the
Riemannian metric on M), and the trivial bundle has the canonical flat linear connection
defined by ∇Xf = LXf and the standard fibre metric induced by absolute value on the
fibres.

We wish to see another way of describing the CO∞-topology on Γ∞(TM) by noting that
a vector field defines a linear map, indeed a derivation, on C∞(M) by Lie differentiation:
f 7→ LXf . The topology we describe for Γ∞(TM) is a sort of weak topology arising from
the CO∞-topology on C∞(M) and Lie differentiation. To properly set the stage for the fact
that we will repeat this construction for our other topologies, it is most clear to work in a
general setting for a moment, and then specialise in each subsequent case.

The general setup is provided by the next definition.
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3.2 Definition: (Weak boundedness, continuity, measurability, and integrability)
Let F ∈ {R,C} and let U and V be F-vector spaces with V locally convex. Let A ⊆
HomR(U;V) and let the weak-A topology on U be the weakest topology for which A is
continuous for every A ∈ A [Horváth 1966, §2.11].

Also let (X,O ) be a topological space, let (T,M ) be a measurable space, and let µ : M →
R≥0 be a finite measure. We have the following notions:

(i) a subset B ⊆ U is weak-A bounded in the von Neumann bornology if A(B) is
bounded in the von Neumann bornology for every A ∈ A ;

(ii) a map Φ: X → U is weak-A continuous if A ◦ Φ is continuous for every A ∈ A ;

(iii) a map Ψ: T → U is weak-A measurable if A ◦ Ψ is measurable for every A ∈ A ;

(iv) a map Ψ: T → U is weak-A Bochner integrable with respect to µ if A ◦ Ψ is
Bochner integrable with respect to µ for every A ∈ A . •

As can be seen in Section 2.11 of [Horváth 1966], the weak-A topology is a locally
convex topology, and a subbase for open sets in this topology is

{A−1(O) | A ∈ A , O ⊆ V open}.

Equivalently, the weak-A topology is defined by the seminorms

u 7→ q(A(u)), A ∈ A , q a continuous seminorm for V.

This is a characterisation of the weak-A topology we will use often.
We now have the following result which gives conditions for the equivalence of “weak-

A ” notions with the usual notions. We call a subset A ⊆ HomF(U;V) point separating
if, given distinct u1, u2 ∈ U, there exists A ∈ A such that A(u1) ̸= A(u2).

3.3 Lemma: (Equivalence of weak-A and locally convex notions for general lo-
cally convex spaces) Let F ∈ {R,C} and let U and V be locally convex F-vector spaces.
Let A ⊆ HomR(U;V) and suppose that the weak-A topology agrees with the locally convex
topology for U. Let (X,O ) be a topological space, let (T,M ) be a measurable space, and let
µ : M → R≥0 be a finite measure. Then the following statements hold:

(i) a subset B ⊆ U is bounded in the von Neumann bornology if and only if it is weak-A
bounded in the von Neumann bornology;

(ii) a map Φ: X → U is continuous if and only if it is weak-A continuous;

(iii) for a map Ψ: T → U,

(a) if Ψ is measurable, then it is weak-A measurable;

(b) if U and V are Hausdorff Suslin spaces, if A contains a countable point sepa-
rating subset, and if Ψ is weak-A measurable, then Ψ is measurable;

(iv) if U is complete and separable, a map Ψ: T → U is Bochner integrable with respect
to µ if and only if it is weak-A Bochner integrable with respect to µ.

Proof: (i) and (ii): Both of these assertions follows directly from the fact that the locally
convex topology of U agrees with the weak-A topology. Indeed, the equivalence of these
topologies implies that (a) if p is a continuous seminorm for the locally convex topology of
U, then there exist continuous seminorms q1, . . . , qk for V and A1, . . . , Ak ∈ A such that

p(u) ≤ q1(A1(u)) + · · ·+ qk(Ak(u)), u ∈ U, (3.1)
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and (b) if q is a continuous seminorm for V and if A ∈ A , then there exists a continuous
seminorm p for the locally convex topology for U such that

q(A(u)) ≤ p(u), u ∈ U. (3.2)

(iii) First suppose that Ψ is measurable and let A ∈ A . Since the locally convex topology
of U agrees with the weak-A topology, A is continuous in the locally convex topology of
U. Therefore, if Ψ is measurable, it follows immediately by continuity of A that A ◦ Ψ is
measurable.

Next suppose that U and V are Suslin, that A contains a countable point separating
subset, and that Ψ is weak-A measurable. Without loss of generality, let us suppose
that A is itself countable. By VA we denote the mappings from A to V, with the usual
pointwise vector space structure. A typical element of VA we denote by ϕ. By [Bogachev
2007, Lemma 6.6.5(iii)], VA is a Suslin space. Let us define a mapping ιA : U → VA by
ιA (u)(A) = A(u). Since A is point separating, we easily verify that ιA is injective, and so
we have U as a subspace of the countable product VA . For A ∈ A let prA : V

A → V be the
projection defined by prA(ϕ) = ϕ(A). Since V is Suslin, it is hereditary Lindelöf [Bogachev
2007, Lemma 6.6.4]. Thus the Borel σ-algebra of VA is the same as the initial Borel σ-
algebra defined by the projections prA, A ∈ A , i.e., the smallest σ-algebra for which the
projections are measurable [Bogachev 2007, Lemma 6.4.2]. By hypothesis, (A ◦ Ψ)−1(B) is
measurable for every A ∈ A and every Borel set B ⊆ V. Now we note that prA ◦ιA (v) =
A(v), from which we deduce that

(A ◦ Ψ)−1(B) = (ιA ◦ Ψ)−1(pr−1
A (B))

is measurable for every A ∈ A and every Borel set B ⊆ V. Thus ιA ◦ Ψ is measurable.
Since U is Suslin, by definition there is a Polish space P and a continuous surjection

σ : P → U. If C ⊆ U is a Borel set, then σ−1(C) ⊆ P is a Borel set. Note that ιA is continuous
(since prA ◦ιA is continuous for every A ∈ A ) and so is a Borel mapping. By [Fremlin 2006,
Theorem 423I], we have that ιA ◦ σ(σ−1(C)) ⊆ V is Borel. Since σ is surjective, this means
that ιA (C) ⊆ V is Borel. Finally, since

Ψ−1(C) = (ιA ◦ Ψ)−1(ιA (C)),

measurability of Ψ follows.
(iv) Since U is separable and complete, by Beckmann and Deitmar [2011, Theorems 3.2

and 3.3] Bochner integrability of Ψ is equivalent to integrability, in the sense of Lebesgue,
of t 7→ p ◦Ψ(t) for any continuous seminorm p. Thus, Ψ is Bochner integrable with respect
to the locally convex topology of U if and only if t 7→ p◦Ψ(t) is integrable, and Ψ is weak-A
Bochner integrable if and only if t 7→ qA(Ψ(t)) is integrable for every A ∈ A . This part of
the proof now follows from the inequalities (3.1) and (3.2) that characterise the equivalence
of the locally convex and weak-A topologies for U. ■

The proof of the harder direction in part (iii) is an adaptation of [Thomas 1975, The-
orem 1] to our more general setting. We will revisit this idea again when we talk about
measurability of time-varying vector fields in Section 6.

For f ∈ C∞(M), let us define

Lf : Γ
∞(TM) → C∞(M)

X 7→ LXf.
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The topology for Γ∞(TM) we now define corresponds to the general case of Definition 3.2
by taking U = Γ∞(TM), V = C∞(M), and A = {Lf | f ∈ C∞(M)}. To this end, we make
the following definition.

3.4 Definition: (Weak-L topology for space of smooth vector fields) For a smooth
manifold M, the weak-L topology for Γ∞(TM) is the weakest topology for which Lf is
continuous for every f ∈ C∞(M), if C∞(M) has the CO∞-topology. •

We now have the following result.

3.5 Theorem: (Weak-L characterisation of CO∞-topology for smooth vector
fields) For a smooth manifold, the following topologies for Γ∞(TM) agree:

(i) the CO∞-topology;

(ii) the weak-L topology.

Proof: (i)⊆(ii) For this part of the proof, we assume that M has a well-defined dimension.
The proof is easily modified by additional notation to cover the case where this may not
hold. Let K ⊆ M be compact and let m ∈ Z≥0. Let x ∈ K and let (Ux, ϕx) be a coordinate
chart for M about x with coordinates denoted by (x1, . . . , xn). Let X : ϕx(Ux) → Rn

be the local representative of X ∈ Γ∞(TM). For j ∈ {1, . . . , n} let f jx ∈ C∞(M) have
the property that, for some relatively compact neighbourhood Vx of x with cl(Vx) ⊆ Ux,
f jx = xj in some neighbourhood of cl(Vx). (This is done using standard extension arguments
for smooth functions, cf. [Abraham, Marsden, and Ratiu 1988, Proposition 5.5.8].) Then,
in a neighbourhood of cl(Vx) in Ux, we have LXf

j
x = Xj . Therefore, for each y ∈ cl(Vx),

jmX(y) 7→
n∑
j=1

∥jm(LXf jx)(y)∥Gm

is a norm on the fibre Jmy E. Therefore, there exists Cx ∈ R>0 such that

∥jmX(y)∥Gm
≤ Cx

n∑
j=1

∥jm(LXf jx)(y)∥Gm
, y ∈ cl(Vx).

Since K is compact, let x1, . . . , xk ∈ K be such that K ⊆ ∪ka=1Vxa . Let

C = max{Cx1 , . . . , Cxr}.

Then, if y ∈ K we have y ∈ Vxa for some a ∈ {1, . . . , r}, and so

∥jmX(y)∥Gm
≤ C

n∑
j=1

∥jm(LXf jxa)(y)∥Gm
≤ C

r∑
a=1

n∑
j=1

∥jm(LXf jxa)(y)∥Gm
.

Taking supremums over y ∈ K gives

p∞K,m(X) ≤ C
r∑

a=1

n∑
j=1

p∞K,m(LXf
j
xa),



Time-varying vector fields and their flows 43

This part of the theorem then follows since the weak-L topology, as we indicated following
Definition 3.2 above, is defined by the seminorms

X 7→ p∞K,m(LXf), K ⊆ M compact, m ∈ Z≥0, f ∈ C∞(M).

(ii)⊆(i) As per (2.1), let us abbreviate

∇j(. . . (∇1(∇0A))) = ∇(j)A,

where A can be either a vector field or one-form, in what we will need. Since covariant
differentials commute with contractions [Dodson and Poston 1991, Theorem 7.03(F)], an
elementary induction argument gives the formula

∇(m−1)(df(X)) =

m∑
j=0

(
m

j

)
C1,m−j+1((∇(m−j−1)X)⊗ (∇(j−1)df)), (3.3)

where C1,m−j+1 is the contraction defined by

C1,m−j+1(v ⊗ α1 ⊗ · · · ⊗ αm−j ⊗ αm−j+1 ⊗ αm−j+2 ⊗ · · · ⊗ αm+1)

= (αm−j+1(v))(α1 ⊗ · · · ⊗ αm−j ⊗ αm−j+2 ⊗ · · · ⊗ αm+1).

In writing (3.3) we use the convention ∇(−1)X = X and ∇(−1)(df) = df . Next we claim
that Lf is continuous for every f ∈ C∞(M) if Γ∞(TM) is provided with CO∞-topology.
Indeed, let K ⊆ M, let m ∈ Z>0, and let f ∈ C∞(M). By (3.3) (after a few moments of
thought), we have, for some suitable M0,M1 . . . ,Mm ∈ R>0,

p∞K,m(LXf) ≤
m∑
j=0

Mm−jp
∞
K,m−j(X)p∞K,j+1(f) ≤

m∑
j=0

M ′
jp

∞
K,j(X).

This gives continuity of the identity map, if we provide the domain with the CO∞-topology
and the codomain with the weak-L topology, cf. [Schaefer and Wolff 1999, §III.1.1]. Thus
open sets in the weak-L topology are contained in the CO∞-topology. ■

With respect to the concepts of interest to us, this gives the following result.

3.6 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the CO∞-topology) Let M be a smooth manifold, let
(X,O ) be a topological space, let (T,M ) be a measurable space, and let µ : M → R≥0 be a
finite measure. The following statements hold:

(i) a subset B ⊆ Γ∞(TM) is bounded in the von Neumann bornology if and only if it is
weak-L bounded in the von Neumann bornology;

(ii) a map Φ: X → Γ∞(TM) is continuous if and only if it is weak-L continuous;

(iii) a map Ψ: T → Γ∞(TM) is measurable if and only if it is weak-L measurable;

(iv) a map Ψ: T → Γ∞(TM) is Bochner integrable if and only if it is weak-L Bochner
integrable.
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Proof: We first claim that A ≜ {Lf | f ∈ C∞(M)} has a countable point separating
subset. This is easily proved as follows. For notational simplicity, suppose that M has a
well-defined dimension. Let x ∈ M and note that there exist a neighbourhood Ux of x and
f1x , . . . , f

n
x ∈ C∞(M) such that

T∗
yM = spanR(df

1(y), . . . , dfn(y)), y ∈ Ux.

Since M is second countable it is Lindelöf [Willard 1970, Theorem 16.9]. Therefore, there
exists (xj)j∈Z>0 such that M = ∪j∈Z>0Uxj . The countable collection of linear mappings
Lfkxj

, k ∈ {1, . . . , n}, j ∈ Z>0, is then point separating. Indeed, if X,Y ∈ Γ∞(TM) are

distinct, then there exists x ∈ M such that X(x) ̸= Y (x). Let j ∈ Z>0 be such that x ∈ Uxj
and note that we must have Lfkxj

(X)(x) ̸= Lfkxj (Y )(x) for some k ∈ {1, . . . , n}, giving our

claim.
The result is now a direct consequence of Lemma 3.3, noting that the CO∞-topology on

Γ∞(TM) is complete, separable, and Suslin (we also need that the CO∞-topology on C∞(M)
is Suslin, which it is), as we have seen above in properties CO∞-2, CO∞-4, and CO∞-6.■

3.4. Topologies for finitely differentiable vector fields. The constructions of this section
so far are easily adapted to the case where objects are only finitely differentiable. We sketch
here how this can be done. We let π : E → M be a smooth vector bundle, and we suppose
that we have a linear connection ∇0 on E, an affine connection ∇ on M, a fibre metric G0 on
E, and a Riemannian metric G on M. Let r ∈ Z≥0∪{∞} and let m ∈ Z≥0 with m ≤ r. By
Γr(E) we denote the space of Cr-sections of E. We define seminorms pmK , K ⊆ M compact,
on Γr(E) by

pmK(ξ) = sup{∥jmξ(x)∥Gm
| x ∈ K},

and these seminorms define a locally convex topology that we call the COm-topology . Let
us list some of the attributes of this topology.
COm-1. It is Hausdorff: [Michor 1980, page 4.3.1].
COm-2. It is complete if and only if m = r: [Michor 1980, page 4.3.2].
COm-3. It is metrisable: [Michor 1980, page 4.3.1].
COm-4. It is separable: This can be shown to follow by an argument similar to that given

above for the CO∞-topology.
COm-5. It is probably not nuclear: In case M is compact, note that pmM is a norm that

characterises the COm-topology. A normed vector space is nuclear if and only if it
is finite-dimensional [Pietsch 1969, Theorem 4.4.14], so the COm-topology cannot be
nuclear when M is compact except in cases of degenerate dimension. But, even when
M is not compact, the COm-topology is not likely nuclear, although we have neither
found a reference nor proved this.

COm-6. It is Suslin when m = r: This follows since Γm(TM) is a Polish space, as we have
already seen.

COm-7. The COm-topology is weaker than the COr-topology: This is more or less clear
from the definitions.

From the preceding, we point out two places where one must take care in using the
COm-topology, m ∈ Z≥0, contrasted with the CO∞-topology. First of all, the topology, if
used on Γr(E), r > m, is not complete, so convergence arguments must be modified appro-
priately. Second, it is no longer the case that bounded sets are relatively compact. Instead,
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relatively compact subsets will be described by an appropriate version of the Arzelà–Ascoli
Theorem, cf. [Jost 2005, Theorem 5.21]. Therefore, we need to specify for these spaces
whether we will be using the von Neumann bornology or the compact bornology when we
use the word “bounded.” These caveats notwithstanding, it is oftentimes appropriate to
use these weaker topologies.

Of course, the preceding can be specialised to vector fields and functions, and one
can define the weak-L topologies corresponding to the topologies for finitely differentiable
sections. In doing this, we apply the general construction of Definition 3.2 with U = Γr(TM),
V = Cr(M) (with the COm-topology), and A = {Lf | f ∈ C∞(M)}, where

Lf : Γ
r(TM) → Cr(M)

X 7→ LXf.

This gives the following definition.

3.7 Definition: (Weak-L topology for space of finitely differentiable vector fields)
Let M be a smooth manifold, let m ∈ Z≥0, and let r ∈ Z≥0 ∪ {∞} have the property that
r ≥ m. The weak-(L ,m) topology for Γr(TM) is the weakest topology for which Lf is
continuous for each f ∈ C∞(M), where Cr(M) is given the COm-topology. •

We can show that the weak-(L ,m) topology agrees with the COm-topology.

3.8 Theorem: (Weak-L topology for finitely differentiable vector fields) Let M be
a smooth manifold, let m ∈ Z≥0, and let r ∈ Z≥0 ∪ {∞} have the property that r ≥ m.
Then the following two topologies for Γr(TM) agree:

(i) the COm-topology;

(ii) the weak-(L ,m)-topology.

Proof: Let us first show that the COm-topology is weaker than the weak-(L ,m) topology.
Just as in the corresponding part of the proof of Theorem 3.5, we can show that, for K ⊆ M
compact, there exist f1, . . . , f r ∈ C∞(M) and C1, . . . , Cr ∈ R>0 such that

pmK(X) ≤ C1p
m
K1

(LXf
1) + · · ·+ Crp

m
Kr

(LXf
r)

for every X ∈ Γr(TM). This estimate gives this part of the theorem.
To prove that the weak (L ,m)-topology is weaker than the COm-topology, it suffices

to show that Lf is continuous if Γr(TM) and Cr(M) are given the COm-topology. This can
be done just as in Theorem 3.5, with suitable modifications since we only have to account
for m derivatives. ■

We also have the corresponding relationships between various attributes and their weak
counterparts.

3.9 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the COm-topology) Let M be a smooth manifold, let
m ∈ Z≥0, and let r ∈ Z≥0 ∪{∞} have the property that r ≥ m. Let (X,O ) be a topological
space, let (T,M ) be a measurable space, and let µ : M → R≥0 be a finite measure. The
following statements hold:
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(i) a subset B ⊆ Γr(TM) is COm-bounded in the von Neumann bornology if and only if
it is weak-(L ,m) bounded in the von Neumann bornology;

(ii) a map Φ: X → Γr(TM) is COm-continuous if and only if it is weak-(L ,m) continu-
ous;

(iii) a map Ψ: T → Γm(TM) is COm-measurable if and only if it is weak-(L ,m) measur-
able;

(iv) a map Ψ: T → Γm(TM) is Bochner integrable if and only if it is weak-(L ,m) Bochner
integrable.

Proof: In the proof of Corollary 3.6 we established that {Lf | f ∈ C∞(M)} was point
separating as a family of linear mappings with domain Γ∞(TM). The same proof is valid if
the domain is Γm(TM). The result is then a direct consequence of Lemma 3.3, taking care to
note that the COm-topology on Γr(TM) is separable, and is also complete and Suslin when
r = m (and Cr(M) is Suslin when r = m), as we have seen in properties COm-2, COm-4,
and COm-6 above. ■

3.5. Topologies for Lipschitz vector fields. It is also possible to characterise Lipschitz
sections, so let us indicate how this is done in geometric terms. Throughout our discussion
of the Lipschitz case, we make the assumption that the affine connection ∇ on M is the
Levi-Civita connection for G and that the linear connection ∇0 on E is G0-orthogonal, by
which we mean that parallel translation consists of isometries. The existence of such a
connection is ensured by the reasoning of Kobayashi and Nomizu [1963] following the proof
of their Proposition III.1.5. We suppose that M is connected, for simplicity. If it is not,
then one has to allow the metric we are about to define to take infinite values. This is not
problematic [Burago, Burago, and Ivanov 2001, Exercise 1.1.2], but we wish to avoid the
more complicated accounting procedures. The length of a piecewise differentiable curve
γ : [a, b] → M is

ℓG(γ) =

∫ b

a

√
G(γ′(t), γ′(t)) dt.

One easily shows that the length of the curve γ depends only on image(γ), and not on the
particular parameterisation. We can, therefore, restrict ourselves to curves defined on [0, 1].
In this case, for x1, x2 ∈ M, we define the distance between x1 and x2 to be

dG(x1, x2) = inf{ℓG(γ)| γ : [0, 1] → M is a piecewise

differentiable curve for which γ(0) = x1 and γ(1) = x2}.

It is relatively easy to show that (M, dG) is a metric space [Abraham, Marsden, and Ratiu
1988, Proposition 5.5.10].

Now we define a canonical Riemannian metric on the total space E of a vector bundle
π : E → M, following the construction of Sasaki [1958] for tangent bundles. The linear
connection ∇0 gives a splitting TE ≃ π∗TM⊕π∗E [Kolář, Michor, and Slovák 1993, §11.11].
The second component of this decomposition is the vertical component so Texπ restricted to
the first component is an isomorphism onto TxM, i.e., the first component is “horizontal.”
Let us denote by hor : TE → π∗TM and ver : TE → π∗E the projections onto the first
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and second components of the direct sum decomposition. This then gives the Riemannian
metric GE on E defined by

GE(Xex , Yex) = G(hor(Xex), hor(Yex)) +G0(ver(Xex), ver(Yex)).

Now let us consider various ways of characterising Lipschitz sections. To this end, we
let ξ : M → E be such that ξ(x) ∈ Ex for every x ∈ M. For compact K ⊆ M we then define

LK(ξ) = sup

{
dGE

(ξ(x1), ξ(x2))

dG(x1, x2)

∣∣∣∣ x1, x2 ∈ K, x1 ̸= x2

}
.

This is theK-dilatation of ξ. For a piecewise differentiable curve γ : [0, T ] → M, we denote
by τγ,t : Eγ(0) → Eγ(t) the isomorphism of parallel translation along γ for each t ∈ [0, T ]. We
then define

lK(ξ) = sup

{
∥τ−1
γ,1(ξ ◦ γ(1))− ξ ◦ γ(0)∥G0

ℓG(γ)

∣∣∣∣∣ γ : [0, 1] → M, γ(0), γ(1) ∈ K, γ(0) ̸= γ(1)

}
,

(3.4)
which is the K-sectional dilatation of ξ. Finally, we define

Dil ξ : M → R≥0

x 7→ inf{Lcl(U)(ξ) | U is a relatively compact neighbourhood of x},

and
dil ξ : M → R≥0

x 7→ inf{lcl(U)(ξ) | U is a relatively compact neighbourhood of x},
which are the local dilatation and local sectional dilatation , respectively, of ξ. Fol-
lowing [Weaver 1999, Proposition 1.5.2] one can show that

LK(ξ + η) ≤ LK(ξ) + LK(η), lK(ξ + η) ≤ lK(ξ) + lK(η), K ⊆ M compact,

and

Dil (ξ + η)(x) ≤ Dil ξ(x) + Dil η(x), dil (ξ + η)(x) ≤ dil ξ(x) + dil η(x), x ∈ M.

The following lemma connects the preceding notions.

3.10 Lemma: (Characterisations of Lipschitz sections) Let π : E → M be a smooth
vector bundle and let ξ : M → E be such that ξ(x) ∈ Ex for every x ∈ M. Then the following
statements are equivalent:

(i) LK(ξ) <∞ for every compact K ⊆ M;

(ii) lK(ξ) <∞ for every compact K ⊆ M;

(iii) Dil ξ(x) <∞ for every x ∈ M;

(iv) dil ξ(x) <∞ for every x ∈ M.

Moreover, we have the equalities

LK(ξ) =
√
lK(ξ)2 + 1, Dil ξ(x) =

√
dil ξ(x)2 + 1

for every compact K ⊆ M and every x ∈ M.
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Proof: The equivalence of (i) and (ii), along with the equality LK =
√
l2K + 1, follows from

the arguments of Canary, Epstein, and Marden [2006, Lemma II.A.2.4]. This also implies
the equality Dil ξ(x) =

√
dil ξ(x)2 + 1 when both Dil ξ(x) and dil ξ(x) are finite.

(i) =⇒ (iii) If x ∈ M and if U is a relatively compact neighbourhood of x, then Lcl(U)(ξ) <
∞ and so Dil ξ(x) <∞.

(ii) =⇒ (iv) This follows just as does the preceding part of the proof.
(iii) =⇒ (i) Suppose that Dil ξ(x) <∞ for every x ∈ M and that there exists a compact

set K ⊆ M such that LK(ξ) ̸< ∞. Then there exist sequences (xj)j∈Z>0 and (yj)j∈Z>0 in
K such that xj ̸= yj , j ∈ Z>0, and

lim
j→∞

dGE
(ξ(xj), ξ(yj))

dG(xj , yj)
= ∞.

Since Dil ξ(x) < ∞ for every x ∈ M, it follows directly that ξ is continuous and so ξ(K) is
bounded in the metric GE. Therefore, there exists C ∈ R>0 such that

dGE
(ξ(xj), ξ(yj)) ≤ C, j ∈ Z>0,

and so we must have limj→∞ dG(xj , yj) = 0. Let (xjk)k∈Z>0 be a subsequence converging to
x ∈ K and note that (yjk)k∈Z>0 then also converges to x. This implies that Dil ξ(x) ̸< ∞,
which proves the result.

(iv) =⇒ (ii) This follows just as the preceding part of the proof. ■

With the preceding, we can define what we mean by a locally Lipschitz section of a
vector bundle, noting that, if dil ξ(x) <∞ for every x ∈ M, ξ is continuous. Our definition
is in the general situation where sections are of class Cm with the mth derivative being, not
just continuous, but Lipschitz.

3.11 Definition: (Locally Lipschitz section) For a smooth vector bundle π : E → M
and for m ∈ Z≥0, ξ ∈ Γm(E) is of class Cm+lip if jmξ : M → JmE satisfies any of the
four equivalent conditions of Lemma 3.10. If ξ is of class C0+lip then we say it is locally
Lipschitz . By Γlip(E) we denote the space of locally Lipschitz sections of E. For m ∈ Z≥0,
by Γm+lip(E) we denote the space of sections of E of class Cm+lip. •

It is straightforward, if tedious, to show that a section is of class Cm+lip if and only
if, in any coordinate chart, the section is m-times continuously differentiable with the mth
derivative being locally Lipschitz in the usual Euclidean sense. The essence of the argument
is that, in any sufficiently small neighbourhood of a point in M, the distance functions dG
and dGE

are equivalent to the Euclidean distance functions defined in coordinates.
The following characterisation of the local sectional dilatation is useful.

3.12 Lemma: (Local sectional dilatation using derivatives) For a smooth vector bun-
dle π : E → M and for ξ ∈ Γlip(E), we have

dil ξ(x) = inf{sup{∥∇vyξ∥G0
| y ∈ cl(U), ∥vy∥G = 1, ξ differentiable at y}|

U is a relatively compact neighbourhood of x}.

Proof: As per [Kobayashi and Nomizu 1963, Proposition IV.3.4], let U be a geodesically
convex, relatively compact open set. We claim that

lcl(U)(ξ) = sup{∥∇0
vyξ∥G0

| y ∈ cl(U), ∥vy∥G = 1, ξ differentiable at y}.
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By [Canary, Epstein, and Marden 2006, Lemma II.A.2.4], to determine lcl(U)(ξ), it suffices
in the formula (3.4) to use only length minimising geodesics whose images are contained in
cl(U). Let x ∈ U, let vx ∈ TxM have unit length, and let γ : [0, T ] → cl(U) be a minimal
length geodesic such that γ′(0) = vx. If x is a point of differentiability for ξ, then

lim
t→0

∥τ−1
γ,t (ξ ◦ γ(t))− ξ ◦ γ(0)∥G0

t
= ∥∇0

vyξ∥G0
.

From this we conclude that

lcl(U)(ξ) ≥ sup{∥∇0
vxξ∥G0

| x ∈ cl(U), ∥vx∥G = 1, ξ differentiable at y}.

Suppose the opposite inequality does not hold. Then there exist x1, x2 ∈ cl(U) such that, if
γ : [0, T ] → M is the arc-length parameterised minimal length geodesic from x1 to x2, then

∥τ−1
γ,T (ξ ◦ γ(T ))− ξ ◦ γ(0)∥

T
> ∥∇0

vxξ∥G0
(3.5)

for every x ∈ cl(U) for which ξ is differentiable at x and every vx ∈ TxM of unit length. Note
that α : t 7→ τ−1

γ,t (ξ ◦ γ(t)) is a Lipschitz curve in Tx1M. By Rademacher’s Theorem [Federer
1969, Theorem 3.1.5], this curve is almost everywhere differentiable. If α is differentiable
at t we have

α′(t) = τ−1
γ,t (∇0

γ′(t)ξ).

Therefore, also by Rademacher’s Theorem and since ∇0 is G0-orthogonal, we have

sup

{
∥τ−1
γ,t (ξ ◦ γ(t))− ξ ◦ γ(0)∥G0

t

∣∣∣∣∣ t ∈ [0, T ]

}
= sup{∥∇0

γ′(t)ξ∥G0
| t ∈ [0, T ], ξ is differentiable at γ(t)}.

This, however, contradicts (3.5), and so our claim holds.
Now let x ∈ M and let (Uj)j∈Z>0 be a sequence of relatively compact, geodesically

convex neighbourhood of x such that ∩j∈Z>0Uj = {x}. Then

dil ξ(x) = lim
j→∞

lcl(Uj)(ξ)

and

inf{sup{∥∇0
vyξ∥G0

| y ∈ cl(U), ∥vy∥G = 1, ξ differentiable at y}|
U is a relatively compact neighbourhood of x}

= lim
j→∞

sup{∥∇0
vyξ∥G0

| y ∈ cl(Uj), ∥vy∥G = 1, ξ differentiable at y}.

The lemma now follows from the claim in the opening paragraph. ■

Let us see how to topologise spaces of locally Lipschitz sections. Lemma 3.10 gives us
four possibilities for doing this. In order to be as consistent as possible with our other defini-
tions of seminorms, we use the “locally sectional” characterisation of Lipschitz seminorms.
Thus, for ξ ∈ Γlip(E) and K ⊆ M compact, let us define

λK(ξ) = sup{dil ξ(x) | x ∈ K}
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and then define a seminorm plipK , K ⊆ M compact, on Γlip(E) by

plipK (ξ) = max{λK(ξ), p0K(ξ)}.

The seminorms plipK , K ⊆ M compact, give theCOlip-topology on Γr(E) for r ∈ Z>0∪{∞}.
To topologise Γm+lip(E), note that the COlip-topology on Γlip(JmE) induces a topology on
Γm+lip(E) that we call the COm+lip-topology . The seminorms for this locally convex
topology are

pm+lip
K (ξ) = max{λmK(ξ), pmK(ξ)}, K ⊆ M compact,

where
λmK(ξ) = sup{dil jmξ(x) | x ∈ K}.

Note that dil jmξ is unambiguously defined. Let us briefly explain why. If the connections
∇ and ∇0 are metric connections for G and G0, as we are assuming, then the induced
connection ∇m on Tk(T∗M)⊗E is also metric with respect to the induced metric determined
from Lemma 2.3. It then follows from Lemma 2.1 that the dilatation for sections of JmE
can be defined just as for sections of E.

Note that Γlip(E) ⊆ Γ0(E) and Γr(E) ⊆ Γlip(E) for r ∈ Z>0. Thus we adopt the
convention that 0 < lip < 1 for the purposes of ordering degrees of regularity. Let m ∈ Z≥0,
and let r ∈ Z≥0∪{∞} and r′ ∈ {0, lip} be such that r+r′ ≥ m+lip. We adopt the obvious

convention that ∞+lip = ∞. The seminorms pm+lip
K , K ⊆ M compact, can then be defined

on Γr+r
′
(E).

Let us record some properties of the COm+lip-topology for Γr+r
′
(E). This topology

is not extensively studied like the other differentiable topologies, but we can nonetheless
enumerate its essential properties.
COm+lip-1. It is Hausdorff: This is clear.
COm+lip-2. It is complete if and only if r + r′ = m+ lip: This is more or less because, for

a compact metric space, the space of Lipschitz functions is a Banach space [Weaver
1999, Proposition 1.5.2]. Since Γm+lip(E) is the inverse limit of the Banach spaces
Γm+lip(E|Kj),

6 j ∈ Z>0, for a compact exhaustion (Kj)j∈Z>0 of M, and since the
inverse limit of complete locally convex spaces is complete [Horváth 1966, Proposi-
tion 2.11.3], we conclude the stated assertion.

COm+lip-3. It is metrisable: This is argued as follows. First of all, it is a countable in-
verse limit of Banach spaces. Inverse limits are closed subspaces of the direct prod-
uct [Robertson and Robertson 1980, Proposition V.19]. The direct product of metris-
able spaces, in particular Banach spaces, is metrisable [Willard 1970, Theorem 22.3].

COm+lip-4. It is separable: This is a consequence of the result of Greene and Wu [1979,
Theorem 1.2′] which says that Lipschitz functions on Riemannian manifolds can be
approximated in the COlip-topology by smooth functions, and by the separability of
the space of smooth functions.

COm+lip-5. It is probably not nuclear: For compact base manifolds, Γm+lip(E) is an infinite-
dimensional normed space, and so not nuclear [Pietsch 1969, Theorem 4.4.14]. But,
even when M is not compact, the COm+lip-topology is not likely nuclear, although we
have neither found a reference nor proved this.

6To be clear, by Γm+lip(E|K) we denote the space of sections of class m+lip defined on a neighbourhood
of K.
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COm+lip-6. It is Suslin when m+lip = r+r′: This follows since Γm+lip(E) is a Polish space,
as we have already seen.

Of course, the preceding can be specialised to vector fields and functions, and one can
define the weak-L topologies corresponding to the above topologies. To do this, we apply
the general construction of Definition 3.2 with U = Γr+r

′
(TM), V = Cr+r

′
(M) (with the

COm-topology), and A = {Lf | f ∈ C∞(M)}, where

Lf : Γ
r+r′(TM) → Cr+r

′
(M)

X 7→ LXf.

We then have the following definition.

3.13 Definition: (Weak-L topology for space of Lipschitz vector fields) Let M be
a smooth manifold, let m ∈ Z≥0, and let r ∈ Z≥0∪{∞} and r′ ∈ {0, lip} have the property
that r + r′ ≥ m + lip. The weak-(L ,m + lip) topology for Γr+r

′
(TM) is the weakest

topology for which Lf is continuous for each f ∈ C∞(M), where Cr+r
′
(M) is given the

COm+lip-topology. •
We can show that the weak-(L ,m+ lip) topology agrees with the COm+lip-topology.

3.14 Theorem: (Weak-L topology for Lipschitz vector fields) Let M be a smooth
manifold, let m ∈ Z≥0, and let r ∈ Z≥0 ∪ {∞} and r′ ∈ {0, lip} have the property that
r + r′ ≥ m+ lip. Then the following two topologies for Γr+r

′
(E) agree:

(i) the COm+lip-topology;

(ii) the weak-(L ,m+ lip)-topology.

Proof: We prove the theorem only for the case m = 0, since the general case follows from
this in combination with Theorem 3.8.

Let us first show that the COlip-topology is weaker than the weak-(L , lip) topology.
Let K ⊆ M be compact and for x ∈ M choose a coordinate chart (Ux, ϕx), compact
K1, . . . ,Kr ⊆ M, and functions f1x , . . . , f

n
x ∈ C∞(M) agreeing with the coordinate func-

tions in a neighbourhood of a geodesically convex relatively compact neighbourhood Vx
of x [Kobayashi and Nomizu 1963, Proposition IV.3.4]. We denote by X : ϕx(Ux) → Rn

the local representative of X. Since LXf
j
x = Xj on a neighbourhood of Vx, there exists

Cx ∈ R>0 such that

∥τ−1
γ,1(X(x1))−X(x2)∥G ≤ Cx

n∑
j=1

|LXf jx(x1)−LXf jx(x2)|

for every distinct x1, x2 ∈ cl(Vx), where γ is the unique minimal length geodesic from x2 to
x1 (the inequality is a consequence of the fact that the ℓ1 norm for Rn is equivalent to any
other norm). This gives an inequality

dilX(y) ≤ Cx(dilLXf
1
x(y) + · · ·+ dilLXf

n
x (y))

for every y ∈ Vx. Now let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Vxj . From this point,
it is a bookkeeping exercise, exactly like that in the corresponding part of the proof of
Theorem 3.5, to arrive at the inequality

λK(X) ≤ C1λK(LXf
1) + · · ·+ CrλK(LXf

r).
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From the proof of Theorem 3.8 we also have

p0K(X) ≤ C ′
1p

0
K(LXf

1) + · · ·+ C ′
rp

0
K(LXf

r),

and this gives the result.
To prove that the weak (L , lip)-topology is weaker than the COlip-topology, it suffices

to show that Lf is continuous for every f ∈ C∞(M) if Γr+r
′
(TM) and Cr+r

′
(M) are given

the COm+lip-topology. Thus let K ⊆ M be compact and let f ∈ C∞(M). We choose
a relatively compact geodesically convex chart (Ux, ϕx) about x ∈ K and compute, for
distinct x1, x2 ∈ Ux,

|LXf(x1)−LXf(x2)|

≤
n∑
j=1

∣∣∣Xj(x1)
∂f

∂xj
(x1)−Xj(x2)

∂f

∂xj
(x2)

∣∣∣
≤

n∑
j=1

(
|Xj(x1)|

∣∣∣ ∂f
∂xj

(x1)−
∂f

∂xj
(x2)

∣∣∣+ |Xj(x1)−Xj(x2)|
∣∣∣ ∂f
∂xj

(x2)
∣∣∣)

≤
n∑
j=1

(
Axp

0
cl(Ux)

(X)
∂f

∂xj
(y)dG(x1, x2)

)
+Bx∥τ−1

γ,1X(x1)−X(x2)∥G,

for some y ∈ Ux, using the mean value theorem [Abraham, Marsden, and Ratiu 1988,
Proposition 2.4.8], and where γ is the unique length minimising geodesic from x2 to x1.
Thus we have an inequality

λcl(Ux)(LXf) ≤ Axp
0
cl(Ux)

(X) +Bxλcl(Ux)(X),

for a possibly different Ax. Letting x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Ux, some more
bookkeeping like that in the first part of the proof of Theorem 3.5 gives

λK(LXf) ≤
k∑
j=1

(Ajp
0
cl(Uxj )

(X) +Bjλcl(Uxj )
(X))

for suitable constants Aj , Bj ∈ R>0, j ∈ {1, . . . , k}. Since, from the proof of Theorem 3.8,
we also have

p0K(LXf) ≤
k∑
j=1

Cjp
0
cl(Uxj )

(X)

for suitable constants C1, . . . , Ck ∈ R>0, the result follows. ■

We also have the corresponding relationships between various attributes and their weak
counterparts.

3.15 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the COm+lip-topology) Let M be a smooth manifold, let
m ∈ Z≥0, and let r ∈ Z≥0∪{∞, lip} and r′ ∈ {0, lip} have the property that r+r′ ≥ m+lip.
Let (X,O ) be a topological space, let (T,M ) be a measurable space, and let µ : M → R≥0

be a finite measure. The following statements hold:
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(i) a subset B ⊆ Γr+r
′
(TM) is COm+lip-bounded in the von Neumann bornology if and

only if it is weak-(L ,m+ lip) bounded in the von Neumann bornology;

(ii) a map Φ: X → Γr+r
′
(TM) is COm+lip-continuous if and only if it is weak-(L ,m+lip)

continuous;

(iii) a map Ψ: T → Γm+lip(TM) is COm+lip-measurable if and only if it is weak-(L ,m+
lip) measurable;

(iv) a map Ψ: T → Γm+lip(TM) is Bochner integrable if and only if it is weak-(L ,m+lip)
Bochner integrable.

Proof: In the proof of Corollary 3.6 we established that {Lf | f ∈ C∞(M)} was point
separating as a family of linear mappings with domain Γ∞(TM). The same proof is valid if
the domain is Γm+lip(TM). The result is then a direct consequence of Lemma 3.3, noting
that the COm+lip-topology on Γr+r

′
(TM) is separable, and is also complete and Suslin when

r + r′ = m+ lip (and Cr+r
′
(M) is Suslin when r + r′ = m+ lip), as we have seen above in

properties COm+lip-2, COm+lip-4, and COm+lip-6. ■

3.16 Notation: (m + m′) In order to try to compactify the presentation of the various
degrees of regularity we consider, we will frequently speak of the class “m + m′” where
m ∈ Z≥0 and m′ ∈ {0, lip}. This allows us to include the various Lipschitz cases alongside
the finitely differentiable cases. Thus, whenever the reader sees “m+m′,” this is what they
should have in mind. •

4. The COhol-topology for the space of holomorphic vector fields

Even if one has no per se interest in holomorphic vector fields, it is the case that an
understanding of certain constructions for real analytic vector fields rely in an essential way
on their holomorphic extensions. Also, as we shall see, we will arrive at a description of the
real analytic topology that, while often easy to use in general arguments, is not well suited
for verifying hypotheses in examples. In these cases, it is often most convenient to extend
from real analytic to holomorphic, where things are easier to verify.

Thus in this section we overview the holomorphic case. We begin with vector bundles,
as in the smooth case.

4.1. General holomorphic vector bundles. We let π : E → M be an holomorphic vector
bundle with Γhol(E) the set of holomorphic sections. We let G be an Hermitian fibre metric
on E, and, for K ⊆ M compact, define a seminorm pholK on Γhol(E) by

pholK (ξ) = sup{∥ξ(z)∥G | z ∈ K}.

The COhol-topology for Γhol(E) is the locally convex topology defined by the family of
seminorms pholK , K ⊆ M compact.

We shall have occasion to make use of bounded holomorphic sections. Thus we let
π : E → M be an holomorphic vector bundle with Hermitian fibre metric G. We denote by
Γhol
bdd(E) the sections of E that are bounded, and on Γhol

bdd(E) we define a norm

phol∞ (ξ) = sup{∥ξ(z)∥G | z ∈ M}.
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If we wish to draw attention to the domain of the section, we will write the norm as pholM,∞.
This will occur when we have sections defined on an open subset of the manifold.

The following lemma makes an assertion of which we shall make use.

4.1 Lemma: (The topology of Γhol
bdd(E)) Let π : E → M be an holomorphic vector bundle.

The subspace topology on Γhol
bdd(E), induced from the COhol-topology, is weaker than the norm

topology induced by the norm phol∞ . Moreover, Γhol
bdd(E) is a Banach space. Also, if U ⊆ M

is a relatively compact open set with cl(U) ⊂ M, then the restriction map from Γhol(E) to
Γhol
bdd(E|U) is continuous.

Proof: It suffices to show that a sequence (ξj)j∈Z>0 in Γhol
bdd(E) converges to ξ ∈ Γhol

bdd(E)
uniformly on compact subsets of M if it converges in norm. This, however, is obvious. It
remains to prove completeness of Γhol

bdd(E) in the norm topology. By [Hewitt and Stromberg
1975, Theorem 7.9], a Cauchy sequence (ξj)j∈Z>0 in Γhol

bdd(E) converges to a bounded contin-
uous section ξ of E. That ξ is also holomorphic follows since uniform limits of holomorphic
sections are holomorphic [Gunning 1990a, page 5]. For the final assertion, since the topol-
ogy of Γhol(E) is metrisable (see COhol-3 below), it suffices to show that the restriction of a
convergent sequence in Γhol(E) to U converges uniformly. This, however, follows since cl(U)
is compact. ■

One of the useful attributes of holomorphic geometry is that properties of higher deriva-
tives can be deduced from the mapping itself. To make this precise, we first make the
following observations.

1. Hermitian inner products on C-vector spaces give inner products on the underlying
R-vector space.

2. By Lemma 2.4, there exist a real analytic affine connection ∇ on M and a real analytic
vector bundle connection ∇0 on E.

3. The estimates of Lemma 2.5 hold if the Riemannian metric G and the vector bundle
metric G0 are only smooth. This is true because, in the proof, G and G0 are not
differentiated; one only requires their values.

Therefore, the seminorms defined in Section 3.1 can be made sense of for holomorphic
sections.

4.2 Proposition: (Cauchy estimates for vector bundles) Let π : E → M be an holomor-
phic vector bundle, let K ⊆ M be compact, and let U be a relatively compact neighbourhood
of K. Then there exist C, r ∈ R>0 such that

p∞K,m(ξ) ≤ Cr−mpholU,∞(ξ)

for every m ∈ Z≥0 and ξ ∈ Γhol
bdd(E|U).

Moreover, if (Uj)j∈Z>0 is a sequence of relatively compact neighbourhoods of K such
that (i) cl(Uj) ⊆ Uj+1 and (ii) K = ∩j∈Z>0Uj, and if Cj , rj ∈ R>0 are such that

p∞K,m(ξ) ≤ Cjr
−m
j pholUj ,∞(ξ), m ∈ Z≥0, ξ ∈ Γhol

bdd(E|Uj),

then limj→∞ rj = 0.
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Proof: Let z ∈ K and let (Wz, ψz) be an holomorphic vector bundle chart about z with
(Uz, ϕz) the associated chart for M, supposing that Uz ⊆ U. Let k ∈ Z>0 be such that
ψz(Wz) = ϕz(Uz)× Ck. Let z = ϕz(z) and let ξ : ϕz(Uz) → Ck be the local representative
of ξ ∈ Γhol

bdd(E|U). Note that when taking real derivatives of ξ with respect to coordinates,
we can think of taking derivatives with respect to

∂

∂zj
=

1

2

( ∂

∂xj
− i

∂

∂yj

)
,

∂

∂z̄j
=

1

2

( ∂

∂xj
+ i

∂

∂yj

)
, j ∈ {1, . . . , n}.

Since ξ is holomorphic, the ∂
∂z̄j

derivatives will vanish [Krantz 1992, page 27]. Thus, for
the purposes of the multi-index calculations, we consider multi-indices of length n (not 2n).
In any case, applying the usual Cauchy estimates [Krantz 1992, Lemma 2.3.9], there exists
r ∈ R>0 such that

|DIξa(z)| ≤ I!r−|I| sup{|ξa(ζ)| | ζ ∈ D(r,z)}

for every a ∈ {1, . . . , k}, I ∈ Zn≥0, and ξ ∈ Γhol
bdd(E|U). We may choose r ∈ (0, 1) such that

D(r,z) is contained in ϕz(Uz), where r = (r, . . . , r). Denote Vz = ϕ−1
z (D(r,z)). There

exists a neighbourhood V′
z of z such that cl(V′

z) ⊆ Vz and such that

|DIξa(z′)| ≤ 2I!r−|I| sup{|ξa(ζ)| | ζ ∈ D(r,z)}

for every z′ ∈ ϕz(V
′
z), ξ ∈ Γhol

bdd(E|U), a ∈ {1, . . . , k}, and I ∈ Zn≥0. If |I| ≤ m then, since
we are assuming that r < 1, we have

1

I!
|DIξa(z′)| ≤ 2r−m sup{|ξa(ζ)| | ζ ∈ D(r,z)}

for every a ∈ {1, . . . , k}, z′ ∈ ϕz(V
′
z), and ξ ∈ Γhol

bdd(E|U). By Lemma 2.5 (and keeping in
mind our observations made before the statement of the proposition), it follows that there
exist Cz, rz ∈ R>0 such that

∥jmξ(z)∥Gm
≤ Czr

−m
z pholVz ,∞(ξ)

for all z ∈ V′
z, m ∈ Z≥0, and ξ ∈ Γhol

bdd(E|U). Let z1, . . . , zk ∈ K be such that K ⊆ ∪kj=1V
′
zj ,

and let C = max{Cz1 , . . . , Czk} and r = min{rz1 , . . . , rzk}. If z ∈ K, then z ∈ V′
zj for some

j ∈ {1, . . . , k} and so we have

∥jmξ(z)∥Gm
≤ Czjr

−m
zj pholVzj ,∞

(ξ) ≤ Cr−mpholU,∞(ξ),

and taking supremums over z ∈ K on the left gives the result.
The final assertion of the proposition immediately follows by observing in the preceding

construction how “r” was defined, namely that it had to be chosen so that polydisks of
radius r in the coordinate charts remained in U. ■

4.2. Properties of the COhol-topology. The COhol-topology for Γhol(E) has the following
attributes.
COhol-1. It is Hausdorff: [Kriegl and Michor 1997, Theorem 8.2].
COhol-2. It is complete: [Kriegl and Michor 1997, Theorem 8.2].
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COhol-3. It is metrisable: [Kriegl and Michor 1997, Theorem 8.2].
COhol-4. It is separable: This follows since Γhol(E) is a closed subspace of Γ∞(E) by [Kriegl

and Michor 1997, Theorem 8.2] and since subspaces of separable metric spaces are
separable [Willard 1970, Theorems 16.2, 16.9, and 16.11].

COhol-5. It is nuclear: [Kriegl and Michor 1997, Theorem 8.2]. Note that, when M is
compact, pholM is a norm for the Chol-topology. A consequence of this is that Γhol(E)
must be finite-dimensional in these cases since the only nuclear normed vector spaces
are those that are finite-dimensional [Pietsch 1969, Theorem 4.4.14].

COhol-6. It is Suslin: This follows since Γhol(E) is a Polish space, as we have seen above.
Being metrisable, it suffices to describe the COhol-topology by describing its convergent

sequences; these are more or less obviously the sequences that converge uniformly on every
compact set.

As with spaces of smooth sections, we are interested in the fact that nuclearity of
Γhol(E) implies that compact sets are exactly those sets that are closed and von Neumann
bounded. The following result is obvious in the same way that Lemma 3.1 is obvious once
one understands Theorem 1.37(b) from [Rudin 1991].

4.3 Lemma: (Bounded subsets in the COhol-topology) A subset B ⊆ Γhol(E) is
bounded in the von Neumann bornology if and only if the following property holds: for
any compact set K ⊆ M, there exists C ∈ R>0 such that pholK (ξ) ≤ C for every ξ ∈ B.

4.3. The weak-L topology for holomorphic vector fields. As in the smooth case, one
simply specialises the constructions for general vector bundles to get the COhol-topology
for the space Γhol(TM) of holomorphic vector fields and the space Chol(M) of holomorphic
functions, noting that an holomorphic function is obviously identified with a section of the
trivial holomorphic vector bundle M× C.

As with smooth vector fields, for holomorphic vector fields we can seek a weak-L
characterisation of the COhol-topology. To begin, we need to understand the Lie derivative
in the holomorphic case. Thinking of Chol(M) ⊆ C∞(M) ⊗ C and using the Wirtinger
formulae,

∂

∂zj
=

1

2

( ∂

∂xj
− i

∂

∂yj

)
,

∂

∂z̄j
=

1

2

( ∂

∂xj
+ i

∂

∂yj

)
, j ∈ {1, . . . , n},

in an holomorphic chart, one sees that the usual differential of a C-valued function can
be decomposed as dCf = ∂f + ∂̄f , the first term on the right corresponding to “ ∂

∂z” and

the second to “ ∂
∂z̄ .” For holomorphic functions, the Cauchy–Riemann equations [Krantz

1992, page 27] imply that dCf = ∂f . Thus we define the Lie derivative of an holomorphic
function f with respect to an holomorphic vector field X by LXf = ⟨∂f ;X⟩. Fortunately,
in coordinates this assumes the expected form:

LXf =

n∑
j=1

Xj ∂f

∂zj
.

It is not the case that on a general holomorphic manifold there is a correspondence between
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derivations of the C-algebra Chol(M) and holomorphic vector fields by Lie differentiation.7

However, for a certain class of holomorphic manifolds, those known as “Stein manifolds,”
the exact correspondence between derivations of the C-algebra Chol(M) and holomorphic
vector fields under Lie differentiation does hold [Grabowski 1981]. This is good news for
us, since Stein manifolds are intimately connected with real analytic manifolds, as we shall
see in the next section.

With the preceding discussion in mind, we can move ahead with Definition 3.2 with
U = Γhol(TM), V = Chol(M) (with the COhol-topology), and A = {Lf | f ∈ Chol(M)},
where

Lf : Γ
hol(TM) → Chol(M)

X 7→ LXf.

We make the following definition.

4.4 Definition: (Weak-L topology for space of holomorphic vector fields) For an
holomorphic manifold M, the weak-L topology for Γhol(TM) is the weakest topology for
which Lf is continuous for every f ∈ Chol(M), if Chol(M) has the COhol-topology. •

We then have the following result.

4.5 Theorem: (Weak-L characterisation of COhol-topology for holomorphic vec-
tor fields on Stein manifolds) For a Stein manifold M, the following topologies for
Γhol(TM) agree:

(i) the COhol-topology;

(ii) the weak-L topology.

Proof: (i)⊆(ii) As we argued in the proof of the corresponding assertion of Theorem 3.5, it
suffices to show that

pholK (X) ≤ C1p
hol
K1

(LXf
1) + · · ·+ Crp

hol
Kr

(LXf
r)

for some C1, . . . , Cr ∈ R>0, some K1, . . . ,Kr ⊆ M compact, and some f1, . . . , f r ∈ Chol(M).
Let K ⊆ M be compact. For simplicity, we assume that M is connected and so has

a well-defined dimension n. If not, then the arguments are easily modified by change of
notation to account for this. Since M is a Stein manifold, for every z ∈ K there exists a
coordinate chart (Uz, ϕz) with coordinate functions z1, . . . , zn : Uz → C that are restrictions
to Uz of globally defined holomorphic functions on M. Depending on your source, this is
either a theorem or part of the definition of a Stein manifold [Fritzsche and Grauert 2002,
Hörmander 1966]. Thus, for j ∈ {1, . . . , n}, let f jz ∈ Chol(M) be the holomorphic function
which, when restricted to Uz, gives the coordinate function z

j . Clearly, LXf
j
z = Xj on Uz.

Also, there exists Cz ∈ R>0 such that

∥X(ζ)∥G ≤ Cz(|X1(ζ)|+ · · ·+ |Xn(ζ)|), ζ ∈ cl(Vz),

7For example, on a compact holomorphic manifold, the only holomorphic functions are locally con-
stant [Fritzsche and Grauert 2002, Corollary IV.1.3], and so the only derivation is the zero derivation.
However, the C-vector space of holomorphic vector fields, while not large, may have positive dimension. For
example, the space of holomorphic vector fields on the Riemann sphere has C-dimension three [Ilyashenko
and Yakovenko 2008, Problem 17.9].
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for some relatively compact neighbourhood Vz ⊆ Uz of z (this follows from the fact that all
norms are equivalent to the ℓ1 norm for Cn). Thus

∥X(ζ)∥G ≤ Cz(|LXf1z (ζ)|+ · · ·+ |LXfnz (ζ)|), ζ ∈ cl(Vz).

Let z1, . . . , zk ∈ K be such that K ⊆ ∪kj=1Vzj . Let f
1, . . . , fkn be the list of globally defined

holomorphic functions
f1z1 , . . . , f

n
z1 , . . . , f

1
zk
, . . . , fnzk

and let C1, . . . , Ckn be the list of coefficients

Cz1 , . . . , Cz1︸ ︷︷ ︸
n times

, . . . , Czk , . . . , Czk︸ ︷︷ ︸
n times

.

If z ∈ K, then z ∈ Vzj for some j ∈ {1, . . . , k} and so

∥X(z)∥G ≤ C1|LXf1(z)|+ · · ·+ Ckn|LXfkn(z)|,

which gives
pholK (X) ≤ C1p

hol
K (LXf

1) + · · ·+ Cknp
hol
K (LXf

kn),

as needed.
(ii)⊆(i) We claim that Lf is continuous for every f ∈ Chol(M) if Γhol(TM) has the

COhol-topology. Let K ⊆ M be compact and let U be a relatively compact neighbourhood
of K in M. Note that, for f ∈ Chol(M),

pholK (LXf) ≤ Cp∞K,1(f)p
hol
K (X) ≤ C ′pholK (X),

using Proposition 4.2, giving continuity of the identity map if we provide the domain with
the COhol-topology and the codomain with the weak-L topology, cf. [Schaefer and Wolff
1999, §III.1.1]. Thus open sets in the weak-L topology are contained in the COhol-topology.

■

As in the smooth case, we shall use the theorem according to the following result.

4.6 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the COhol-topology) Let M be a Stein manifold, let (X,O )
be a topological space, let (T,M ) be a measurable space, and let µ : M → R≥0 be a finite
measure. The following statements hold:

(i) a subset B ⊆ Γhol(TM) is bounded in the von Neumann bornology if and only if it is
weak-L bounded in the von Neumann bornology;

(ii) a map Φ: X → Γhol(TM) is continuous if and only if it is weak-L continuous;

(iii) a map Ψ: T → Γhol(TM) is measurable if and only if it is weak-L measurable;

(iv) a map Ψ: T → Γhol(TM) is Bochner integrable if and only if it is weak-L Bochner
integrable.

Proof: As in the proof of Corollary 3.6, we need to show that {Lf | f ∈ Chol(M)} has
a countable point separating subset. The argument here follows that in the smooth case,
except that here we have to use the properties of Stein manifolds, cf. the proof of the first
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part of Theorem 4.5 above, to assert the existence, for each z ∈ M, of a neighbourhood
on which there are globally defined holomorphic functions whose differentials span the
cotangent space at each point. Since Γhol(TM) is complete, separable, and Suslin, and since
Chol(M) is Suslin by properties COhol-2, COhol-4 and COhol-6 above, the corollary follows
from Lemma 3.3. ■

5. The Cω-topology for the space of real analytic vector fields

In this section we examine a topology on the set of real analytic vector fields. As we
shall see, this requires some considerable effort. Agrachev and Gamkrelidze [1978] consider
the real analytic case by considering bounded holomorphic extensions to neighbourhoods of
Rn of fixed width in Cn. Our approach is more general, more geometric, and global, using
a natural real analytic topology described, for example, in the work of Martineau [1966].
This allows us to dramatically broaden the class of real analytic vector fields that we can
handle to include “all” analytic vector fields.

The first observation we make is that Γω(E) is not a closed subspace of Γ∞(E) in the
CO∞-topology. To see this, consider the following. Take a smooth but not real analytic
function on S1. The Fourier series of this function gives rise, by taking partial sums, to
a sequence of real analytic functions. Standard harmonic analysis [Stein and Weiss 1971,
Theorem VII.2.11(b)] shows that this sequence and all of its derivatives converge uniformly,
and so in the CO∞-topology, to the original function. Thus we have a Cauchy sequence in
Cω(S1) that does not converge, with respect to the CO∞-topology, in Cω(S1).

The second observation we make is that a plain restriction of the topology for holomor-
phic objects is not sufficient. The reason for this is that, upon complexification (a process
we describe in detail below) there will not be a uniform neighbourhood to which all real
analytic objects can be extended. Let us look at this for an example, where “object” is
“function.” For r ∈ R>0 we consider the real analytic function fr : R → R defined by
fr(x) =

r2

r2+x2
. We claim that there is no neighbourhood U of R in C to which all of the

functions fr, r ∈ R>0, can be extended. Indeed, take some such neighbourhood U and let
r ∈ R>0 be sufficiently small that D(r, 0) ⊆ U. To see that fr cannot be extended to an
holomorphic function f r on U, let f r be such an holomorphic extension. Then f r(z) must

be equal to r2

r2+z2
for z ∈ D(r, 0) by uniqueness of holomorphic extensions [Cieliebak and

Eliashberg 2012, Lemma 5.40]. But this immediately prohibits f r from being holomorphic
on any neighbourhood of D(r, 0), giving our claim.

Therefore, to topologise the space of real analytic vector fields, we will need to do more
than either (1) restrict the CO∞-topology or (2) use the COhol-topology in an “obvious”
way. Note that it is the “obvious” use of the COhol-topology for holomorphic objects that is
employed by Agrachev and Gamkrelidze [1978] in their study of time-varying real analytic
vector fields. Moreover, Agrachev and Gamkrelidze [1978] also restrict to bounded holo-
morphic extensions. What we propose is an improvement on this in that it works far more
generally, and is also more natural to a geometric treatment of the real analytic setting. We
comment at this point that we shall see in Theorem 6.25 below that the consideration of
bounded holomorphic extensions to fixed neighbourhoods in the complexification is some-
times sufficient locally. But conclusions such as this become hard theorems with precise
hypotheses in our approach, not starting points for the theory.
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As in the smooth and holomorphic cases, we begin by considering a general vector
bundle.

5.1. A natural direct limit topology. We let π : E → M be a real analytic vector bundle.
We shall extend E to an holomorphic vector bundle that will serve an an important device
for all of our constructions.

Complexifications. Let us take some time to explain how holomorphic extensions can be
constructed. The following two paragraphs distill out important parts of about forty years
of intensive development of complex analysis, culminating in the paper of Grauert [1958].

For simplicity, let us assume that M is connected and so has pure dimension, and so
the fibres of E also have a fixed dimension. As in Section 2.3, we suppose that we have a
real analytic affine connection ∇ on M, a real analytic vector bundle connection ∇0 on E,
a real analytic Riemannian metric G on M, and a real analytic fibre metric G0 on E. We
also assume the data required to make the diagram (2.7) giving π : E → M as the image
of a real analytic vector bundle monomorphism in the trivial vector bundle RN × RN for
some suitable N ∈ Z>0.

Now we complexify. Recall that, if V is a C-vector space, then multiplication by
√
−1

induces aR-linear map J ∈ EndR(V). AR-subspace U of V is totally real if U∩J(U) = {0}.
A submanifold of an holomorphic manifold, thinking of the latter as a smooth manifold,
is totally real if its tangent spaces are totally real subspaces. By [Whitney and Bruhat
1959, Proposition 1], for a real analytic manifold M there exists a complexification M of
M, i.e., an holomorphic manifold having M as a totally real submanifold and where M has
the same C-dimension as the R-dimension of M. As shown by Grauert [1958, §3.4], for any
neighbourhood U of M in M, there exists a Stein neighbourhood S of M contained in U. By
arguments involving extending convergent real power series to convergent complex power
series (the conditions on coefficients for convergence are the same for both real and complex
power series), one can show that there is an holomorphic extension of ιM to ιM : M → CN ,
possibly after shrinking M [Cieliebak and Eliashberg 2012, Lemma 5.40]. By applying
similar reasoning to the transition maps for the real analytic vector bundle E, one obtains
an holomorphic vector bundle π : E → M for which the diagram

E //

π

��

CN × CN

pr2

��

E
ι̂E //

π

��

__

RN ×RN

pr2
��

77

M ιM
//

��

RN

''
M ιM

// CN

commutes, where all diagonal arrows are complexification and where the inner diagram is
as defined in the proof of Lemma 2.4. One can then define an Hermitian fibre metric G0 on
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E induced from the standard Hermitian metric on the fibres of the vector bundle CN ×CN
and an Hermitian metric G on M induced from the standard Hermitian metric on CN .

In the remainder of this section, we assume that the preceding constructions have been
done and fixed once and for all.

Germs of holomorphic sections over subsets of a real analytic manifold. In two different
places, we will need to consider germs of holomorphic sections. In this section we organise
the methodology for doing this to unify the notation.

Let A ⊆ M and let NA be the set of neighbourhoods of A in the complexification M.
For U,V ∈ NA, and for ξ ∈ Γhol(E|U) and η ∈ Γhol(E|V), we say that ξ is equivalent to η
if there exist W ∈ NA and ζ ∈ Γhol(E|W) such that W ⊆ U ∩ V and such that

ξ|W = η|W = ζ.

By G hol
A,E

we denote the set of equivalence classes, which we call the set of germs of sections

of E over A. By [ξ]A we denote the equivalence class of ξ ∈ Γhol(E|U) for some U ∈ NA.
Now, for x ∈ M, Ex is a totally real subspace of Ex with half the real dimension, and so

it follows that
Ex = Ex ⊕ J(Ex),

where J is the complex structure on the fibres of E. For U ∈ NA, denote by Γhol,R(E|U)
those holomorphic sections ξ of E|U such that ξ(x) ∈ Ex for x ∈ U∩M. We think of this as
being a locally convex topological R-vector space with the seminorms phol

K
, K ⊆ U compact,

defined by
phol
K

(ξ) = sup{∥ξ(x)∥G0
| x ∈ K},

i.e., we use the locally convex structure induced from the usual COhol-topology on
Γhol(E|U).

5.1 Remark: (Closedness of “real” sections) We note that Γhol,R(E|U) is a closed R-
subspace of Γhol(E) in the COhol-topology, i.e., the restriction of requiring “realness” on M
is a closed condition. This is easily shown, and we often assume it often without mention. •

Denote by G hol,R

A,E
the set of germs of sections from Γhol,R(E|U), U ∈ NA. If U1,U2 ∈ NA

satisfy U1 ⊆ U2, then we have the restriction mapping

rU2,U1
: Γhol,R(E|U2) → Γhol,R(E|U1)

ξ 7→ ξ|U1.

This restriction is continuous since, for any compact set K ⊆ U1 ⊆ U2 and any ξ ∈
Γhol,R(E|U2), we have phol

K
(rU2,U1

(ξ)) ≤ phol
K

(ξ) (in fact we have equality, but the inequality
emphasises what is required for our assertion to be true [Schaefer and Wolff 1999, §III.1.1]).
We also have maps

rU,A : Γ
hol,R(E|U) → G hol,R

A,E

ξ 7→ [ξ]A.

Note that NA is a directed set by inclusion; that is, U2 ⪯ U1 if U1 ⊆ U2. Thus we have
the directed system (Γhol,R(TU))U∈NA

, along with the mappings rU2,U1
, in the category of
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locally convex topological R-vector spaces. The usual notion of direct limit in the category
of R-vector spaces gives G hol,R

A,E
, along with the linear mappings rU,A, U ∈ NA, as the direct

limit of this directed system [cf. Lang 2005, Theorem III.10.1]. This vector space then
has the finest locally convex topology making the maps rU,A, U ∈ NA, continuous, i.e., the
direct limit in the category of locally convex topological vector spaces. We refer to this as
the direct limit topology for G hol,R

A,E
.

The direct limit topology. We shall describe four topologies (or more, depending on which
descriptions you regard as being distinct) for the space of real analytic sections of a real
analytic vector bundle. The first is quite direct, involving an application of the construction
above to the case of A = M. In this case, the following lemma is key to our constructions.

5.2 Lemma: (Real analytic sections as holomorphic germs) There is a natural R-

vector space isomorphism between Γω(E) and G hol,R

M,E
.

Proof: Let ξ ∈ Γω(E). As in [Cieliebak and Eliashberg 2012, Lemma 5.40], there is an
extension of ξ to a section ξ ∈ Γhol,R(E|U) for some U ∈ NM. We claim that the map

iM : Γω(E) → G hol,R

M,E
defined by iM(ξ) = [ξ]M is the desired isomorphism. That iM is

independent of the choice of extension ξ is a consequence of the fact that the extension to
ξ is unique inasmuch as any two such extensions agree on some neighbourhood contained
in their intersection; this is the uniqueness assertion of [Cieliebak and Eliashberg 2012,

Lemma 5.40]. This fact also ensures that iM is injective. For surjectivity, let [ξ]M ∈ G hol,R

M,E

and let us define ξ : M → E by ξ(x) = ξ(x) for x ∈ M. Note that the restriction of ξ to
M is real analytic because the values of ξ|M at points in a neighbourhood of x ∈ M are
given by the restriction of the (necessarily convergent) C-Taylor series of ξ to M. Obviously,
iM(ξ) = [ξ]M. ■

Now we use the direct limit topology on G hol,R

M,E
described above, along with the preceding

lemma, to immediately give a locally convex topology for Γω(E) that we refer to as the direct
Cω-topology .

Let us make an important observation about the direct Cω-topology. Let us denote by
SM the set of all Stein neighbourhoods of M in M. As shown by Grauert [1958, §3.4], if
U ∈ NM then there exists S ∈ SM with S ⊆ U. Therefore, SM is cofinal in NM and so the
directed systems (Γhol(E|U))U∈NM

and (Γhol(E|S))S∈SM
induce the same final topology on

Γω(E) [Grothendieck 1973, page 137].

5.2. Topologies for germs of holomorphic functions about compact sets. In the pre-
ceding section, we gave a more or less direct description of a topology for the space of real
analytic sections. This description has a benefit of being the one that one might naturally
arrive at after some thought. However, there is not a lot that one can do with this de-
scription of the topology. In this section we develop the means by which one can consider
alternative descriptions of this topology that, for example, lead to explicit seminorms for
the topology on the space of real analytic sections. These seminorms will be an essential
part of our developing a useful theory for time-varying real analytic vector fields.
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The direct limit topology for the space of germs about a compact set. We continue
with the notation from Section 5.1. For K ⊆ M compact, we have the direct limit topology,
described above for general subsets A ⊆ M, on G hol,R

K,E
. We seem to have gained nothing,

since we have yet another direct limit topology. However, the direct limit can be shown
to be of a friendly sort as follows. Unlike the general situation, since K is compact there
is a countable family (UK,j)j∈Z>0 from NK with the property that cl(UK,j+1) ⊆ UK,j and
K = ∩j∈Z>0UK,j . Moreover, the sequence (UK,j)j∈Z>0 is cofinal in NK , i.e., if U ∈ NK ,
then there exists j ∈ Z>0 with UK,j ⊆ U. Let us fix such a family of neighbourhoods.

Let us fix j ∈ Z>0 for a moment. Let Γhol,R
bdd (E|UK,j) be the set of bounded sections from

Γhol,R(E|UK,j), boundedness being taken relative to the Hermitian fibre metric G0. As we

have seen in Lemma 4.1, if we define a norm on Γhol,R
bdd (E|UK,j) by

phol
UK,j ,∞

(ξ) = sup{∥ξ(x)∥G0
| x ∈ UK,j},

then this makes Γhol,R
bdd (UK,j) into a Banach space, a closed subspace of the Banach space

of bounded continuous sections of E|UK,j . Now, no longer fixing j, we have a sequence of
inclusions

Γhol,R
bdd (E|UK,1) ⊆ Γhol,R(E|UK,1) ⊆ Γhol,R

bdd (E|UK,2) ⊆

· · · ⊆ Γhol,R(E|UK,j) ⊆ Γhol,R
bdd (E|UK,j+1) ⊆ · · · .

The inclusion Γhol,R(UK,j) ⊆ Γhol,R
bdd (UK,j+1), j ∈ Z>0, is by restriction from UK,j to the

smaller UK,j+1, keeping in mind that cl(UK,j+1) ⊆ UK,j . By Lemma 4.1, all inclusions are
continuous. For j ∈ Z>0 define

rK,j : Γ
hol,R
bdd (E|UK,j) → G hol,R

K,E

ξ 7→ [ξ]K .
(5.1)

Now one can show that the direct limit topologies induced on G hol,R

K,E
by the directed system

(Γhol,R(E|U))U∈NK
of Fréchet spaces and by the directed system (Γhol,R

bdd (E|UK,j))j∈Z>0 of
Banach spaces agree [Kriegl and Michor 1997, Theorem 8.4]. We refer to [Bierstedt 1988],
starting on page 63, for a fairly comprehensive discussion of the topology we have just
described in the context of germs of holomorphic functions about a compact subsetK ⊆ Cn.

A weighted direct limit topology for sections of bundles of infinite jets. Here we provide
a direct limit topology for a subspace of the space of continuous sections of the infinite jet
bundle of a vector bundle. Below we shall connect this direct limit topology to the direct
limit topology described above for germs of holomorphic sections about a compact set. The
topology we give here has the advantage of providing explicit seminorms for the topology
of germs, and subsequently for the space of real analytic sections.

For this description, we work with infinite jets, so let us introduce the notation we will
use for this, referring to [Saunders 1989, Chapter 7] for details. Let us denote by J∞E the
bundle of infinite jets of a vector bundle π : E → M, this being the inverse limit (in the
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category of sets, for the moment) of the inverse system (JmE)m∈Z≥0
with mappings πm+1

m ,
m ∈ Z≥0. Precisely,

J∞E =
{
ϕ ∈

∏
m∈Z≥0

JmE
∣∣∣ πkl ◦ ϕ(k) = ϕ(l), k, l ∈ Z≥0, k ≥ l

}
.

We let π∞m : J∞E → JmE be the projection defined by π∞m (ϕ) = ϕ(m). For ξ ∈ Γ∞(E) we
let j∞ξ : M → J∞E be defined by π∞m ◦ j∞ξ(x) = jmξ(x). By a theorem of Borel [1895], if
ϕ ∈ J∞E, there exist ξ ∈ Γ∞(E) and x ∈ M such that j∞ξ(x) = ϕ. We can define sections
of J∞E in the usual manner: a section is a map Ξ: M → J∞E satisfying π∞0 ◦ Ξ(x) = x for
every x ∈ M. We shall equip J∞E with the initial topology so that a section Ξ is continuous
if and only if π∞m ◦ Ξ is continuous for every m ∈ Z≥0. We denote the space of continuous
sections of J∞E by Γ0(J∞E). Since we are only dealing with continuous sections, we can
talk about sections defined on any subset A ⊆ M, using the relative topology on A. The
continuous sections defined on A ⊆ M will be denoted by Γ0(J∞E|A).

Now let K ⊆ M be compact and, for j ∈ Z>0, denote

Ej(K) = {Ξ ∈ Γ0(J∞E|K) | sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0, x ∈ K} <∞},

and on Ej(K) we define a norm pK,j by

pK,j(Ξ) = sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0, x ∈ K}.

One readily verifies that, for each j ∈ Z>0, (Ej(K), pK,j) is a Banach space. Note that
Ej(K) ⊆ Ej+1(K) and that pK,j+1(Ξ) ≤ pK,j(Ξ) for Ξ ∈ Ej(K), and so the inclusion of
Ej(K) in Ej+1(K) is continuous. We let E (K) be the direct limit of the directed system
(Ej(K))j∈Z>0 .

We shall subsequently explore more closely the relationship between the direct limit
topology for E (K) and the topology for G hol,R

K,E
. For now, we merely observe that the direct

limit topology for E (K) admits a characterisation by seminorms. To state the result, let
us denote by c↓0(Z≥0;R>0) the set of nonincreasing sequences (am)m∈Z≥0

in R>0 that
converge to 0. Let us abbreviate such a sequence by a = (am)m∈Z≥0

. The following result
is modelled after [Vogt 2013, Lemma 1].

5.3 Lemma: (Seminorms for E (K)) The direct limit topology for E (K) is defined by
the seminorms

pK,a = sup{a0a1 · · · am∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0, x ∈ K},

for a ∈ c↓0(Z≥0;R>0).

Proof: First we show that the seminorms pK,a, a ∈ c↓0(Z≥0;R>0), are continuous on
E (K). It suffices to show that pK,a|Ej(K) is continuous for each j ∈ Z>0 [Conway 1990,
Proposition IV.5.7]. Thus, since Ej(K) is a Banach space, it suffices to show that, if
(Ξk)k∈Z>0 is a sequence in Ej(K) converging to zero, then limk→∞ pK,a(Ξk) = 0. Let
N ∈ Z≥0 be such that aN < 1

j . Let C ≥ 1 be such that

a0a1 · · · am ≤ Cj−m, m ∈ {0, 1, . . . , N},
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this being possible since there are only finitely many inequalities to satisfy. Therefore, for
any m ∈ Z≥0, we have a0a1 · · · am ≤ Cj−m. Then, for any Ξ ∈ Γ0(J∞E|K),

a0a1 · · · am∥π∞m ◦ Ξ(x)∥Gm
≤ Cj−m∥π∞m ◦ Ξ(x)∥Gm

for every x ∈ K and m ∈ Z≥0. From this we immediately have limk→∞ pK,a(Ξk) = 0, as
desired. This shows that the direct limit topology on E (K) is stronger than the topology
defined by the family of seminorms pK,a, a ∈ c↓0(Z≥0;R>0).

For the converse, we show that every neighbourhood of 0 ∈ E (K) in the direct limit
topology contains a neighbourhood of zero in the topology defined by the seminorms pK,a,
a ∈ c↓0(Z≥0;R>0). Let Bj denote the unit ball in Ej(K). A neighbourhood of 0 in
the direct limit topology contains a union of balls ϵjBj for some ϵj ∈ R>0, j ∈ Z>0,
(see [Schaefer and Wolff 1999, page 54]) and we can assume, without loss of generality,
that ϵj ∈ (0, 1) for each j ∈ Z>0. We define an increasing sequence (mj)j∈Z>0 in Z≥0

as follows. Let m1 = 0. Having defined m1, . . . ,mj , define mj+1 > mj by requiring that

j < ϵ
1/mj+1

j+1 (j + 1). For m ∈ {mj , . . . ,mj+1 − 1}, define am ∈ R>0 by a−1
m = ϵ

1/mj

j j. Note
that, for m ∈ {mj , . . . ,mj+1 − 1}, we have

a−mm = ϵ
m/mj

j jm ≤ ϵjj
m.

Note that limm→∞ am = 0. If Ξ ∈ Γ0(J∞E|K) satisfies pK,a(Ξ) ≤ 1 then, for m ∈
{mj , . . . ,mj+1 − 1}, we have

j−m∥π∞m ◦ Ξ(x)∥Gm
≤ ammϵj∥π∞m ◦ Ξ(x)∥Gm

≤ a0a1 · · · amϵj∥π∞m ◦ Ξ(x)∥Gm
≤ ϵj

for x ∈ K. Thus, if Ξ ∈ Γ0(J∞E|K) satisfies pK,a(Ξ) ≤ 1, then, for m ∈ {mj , . . . ,mj+1−1},
we have π∞m ◦Ξ ∈ ϵjBj . Therefore, Ξ ∈ ∪j∈Z>0ϵjBj , and this shows that, for a as constructed
above,

{Ξ ∈ Γ0(J∞E|K) | pK,a(Ξ) ≤ 1} ⊆ ∪j∈Z>0ϵjBj ,

giving the desired conclusion. ■

The following attribute of the direct limit topology for E (K) will also be useful.

5.4 Lemma: (E (K) is a regular direct limit) The direct limit topology for E (K) is
regular, i.e., if B ⊆ E (K) is von Neumann bounded, then there exists j ∈ Z>0 such that
B is contained in and von Neumann bounded in Ej(K).

Proof: Let Bj ⊆ Ej(K), j ∈ Z>0, be the closed unit ball with respect to the norm topology.
We claim that Bj is closed in the direct limit topology of E (K). To prove this, we shall
prove that Bj is closed in a topology that is weaker than the direct limit topology.

The weaker topology we use is the topology induced by the topology of pointwise conver-
gence in Γ0(J∞E|K). To be precise, let E ′

j (K) be the vector space Ej(K) with the topology
defined by the seminorms

px,j(Ξ) = sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0}, x ∈ K.

Clearly the identity map from Ej(K) to E ′
j (K) is continuous, and so the topology of E ′

j (K)
is weaker than the usual topology of E (K). Now let E ′(K) be the direct limit of the
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directed system (E ′
j (K))j∈Z>0 . Note that, algebraically, E ′(K) = E (K), but the spaces

have different topologies, the topology for E ′(K) being weaker than that for E (K).
We will show that Bj is closed in E ′(K). Let (I,⪯) be a directed set and let (Ξi)i∈I

be a convergent net in Bj in the topology of E ′(K). Thus we have a map Ξ: K → J∞E|K
such that, for each x ∈ K, limi∈I Ξi(x) = Ξ(x). If Ξ ̸∈ Bj then there exists x ∈ K such that

sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0} > 1.

Let ϵ ∈ R>0 be such that

sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0} > 1 + ϵ

and let i0 ∈ I be such that

sup{j−m∥π∞ ◦ Ξi(x)− π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0} < ϵ

for i0 ⪯ i, this by pointwise convergence. We thus have, for all i0 ⪯ i,

ϵ < sup{j−m∥π∞m ◦ Ξ(x)∥Gm
| m ∈ Z≥0} − sup{j−m∥π∞m ◦ Ξi(x)∥Gm

| m ∈ Z≥0}
≤ sup{j−m∥π∞m ◦ Ξi(x)− π∞m ◦ Ξ(x)∥Gm

| m ∈ Z≥0} < ϵ,

which contradiction gives the conclusion that Ξ ∈ Bj .
Since Bj has been shown to be closed in E (K), the lemma now follows from [Bierstedt

1988, Corollary 7]. ■

Seminorms for the topology of spaces of holomorphic germs. Let us define seminorms
pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), for G

hol,R

K,E
by

pωK,a([ξ]K) = sup{a0a1 · · · am∥jmξ(x)∥Gm
| x ∈ K, m ∈ Z≥0}.

We can (and will) also think of pωK,a as being a seminorm on Γω(E) defined by the same
formula.

Let us prove that the seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), can be

used to define the direct limit topology on G hol,R

K,E
.

5.5 Theorem: (Seminorms for G hol,R

K,E
) Let π : E → M be a real analytic vector bundle

and let K ⊆ M be compact. Then the family of seminorms pωK,a, a ∈ c↓0(Z≥0;R>0), defines

a locally convex topology on G hol,R

K,E
agreeing with the direct limit topology.

Proof: Let K ⊆ M be compact and let (Uj)j∈Z>0 be a sequence of neighbourhoods of K in
M such that cl(Uj+1) ⊆ Uj , j ∈ Z>0, and such that K = ∩j∈Z>0Uj . We have mappings

rUj ,K
: Γhol,R

bdd (E|Uj) → G hol,R

K,E

ξ 7→ [ξ]K .

The maps rUj ,K
can be assumed to be injective without loss of generality, by making sure

that each open set Uj consists of disconnected neighbourhoods of the connected components
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ofK. SinceM is Hausdorff and the connected components ofK are compact, this can always
be done by choosing the initial open set U1 sufficiently small. In this way, Γhol,R

bdd (E|Uj),
j ∈ Z>0, are regarded as subspaces of G hol,R

K,E
. It is convenient to be able to do this.

We will work with the locally convex space E (K) introduced in Section 5.2, and define

a mapping LK : G hol,R

K,E
→ E (K) by LK([ξ]K) = j∞ξ|K. Let us prove that this mapping is

well-defined, i.e., show that, if [ξ]K ∈ G hol,R

K,E
, then LK([ξ]K) ∈ Ej(K) for some j ∈ Z>0.

Let U be a neighbourhood of K in M on which the section ξ is defined, holomorphic, and
bounded. Then ξ|(M ∩ U) is real analytic and so, by Lemma 2.6, there exist C, r ∈ R>0

such that
∥jmξ(x)∥Gm

≤ Cr−m, x ∈ K, m ∈ Z≥0.

If j > r−1 it immediately follows that

sup{j−m∥jmξ(x)∥Gm
| x ∈ K, m ∈ Z≥0} <∞,

i.e., LK([ξ]K) ∈ Ej(K).
The following lemma records the essential feature of LK .

1 Lemma: The mapping LK is a continuous, injective, open mapping, and so an homeo-
morphism onto its image.

Proof: To show that LK is continuous, it suffices to show that LK |Γhol,R
bdd (E|Uj) is continuous

for each j ∈ Z≥0. We will show this by showing that, for each j ∈ Z>0, there exists
j′ ∈ Z>0 such that LK(Γhol

bdd(E|Uj)) ⊆ Ej′(K) and such that LK is continuous as a map
from Γhol

bdd(E|Uj) to Ej′(K). Since Ej′(K) is continuously included in E (K), this will give
the continuity of LK . First let us show that LK(Γhol

bdd(E|Uj)) ⊆ Ej′(K) for some j′ ∈ Z>0.
By Proposition 4.2, there exist C, r ∈ R>0 such that

∥jmξ(x)∥Gm
≤ Cr−mphol

Uj ,∞
(ξ)

for every m ∈ Z≥0 and ξ ∈ Γhol
bdd(E|Uj). Taking j′ ∈ Z>0 such that j′ ≥ r−1 we have

LK(Γhol
bdd(E|Uj)) ⊆ Ej′(K), as claimed. To show that LK is continuous as a map from

Γhol
bdd(E|Uj) to Ej′(K), let ([ξk]K)k∈Z>0 be a sequence in Γhol

bdd(E|Uj) converging to zero. We
then have

lim
k→∞

sup{(j′)−m∥jmξk(x)∥G | x ∈ K, m ∈ Z≥0} ≤ lim
k→∞

C sup{∥ξk(z)∥G | z ∈ Uj} = 0,

giving the desired continuity.
Since germs of holomorphic sections are uniquely determined by their infinite jets, in-

jectivity of LK follows.
We claim that, ifB ⊆ E (K) is von Neumann bounded, then L−1

K (B) is also von Neumann
bounded. By Lemma 5.4, if B ⊆ E (K) is bounded, then B is contained and bounded in
Ej(K) for some j ∈ Z>0. Therefore, there exists C ∈ R>0 such that, if LK([ξ]K) ⊆ B, then

∥jmξ(x)∥Gm
≤ Cj−m, x ∈ K, m ∈ Z≥0.

Let x ∈ K and let (Vx, ψx) be a vector bundle chart for E about x with corresponding chart
(Ux, ϕx) forM. Suppose the fibre dimension of E over Ux is k and that ϕx takes values in Rn.
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Let U′
x ⊆ Ux be a relatively compact neighbourhood of x such that cl(U′

x) ⊆ Ux. Denote
Kx = K ∩ cl(U′

x). By Lemma 2.5, there exist Cx, rx ∈ R>0 such that, if LK([ξ]K) ⊆ B,
then

|DIξa(x)| ≤ CxI!r
−|I|
x , x ∈ ϕx(Kx), I ∈ Zn≥0, a ∈ {1, . . . , k},

where ξ is the local representative of ξ. Note that this implies the following for each [ξ]K
such that LK([ξ]K) ⊆ B and for each a ∈ {1, . . . , k}:
1. ξa admits a convergent power series expansion to an holomorphic function on the poly-

disk D(σx, ϕx(x)) for σx < rx;

2. on the polydisk D(σx, ϕx(x)), ξ
a satisfies |ξa| ≤ ( 1

1−σx )
n.

It follows that, if LK([ξ]K) ∈ B, then ξ has a bounded holomorphic extension in some
coordinate polydisk around each x ∈ K. By a standard compactness argument and since
∩j∈Z>0Uj = K, there exists j′ ∈ Z>0 such that ξ ∈ Γhol,R

bdd (E|Uj′) for each [ξ]K such that
LK([ξ]K) ∈ B, and that the set of such sections of E|Uj′ is von Neumann bounded, i.e., norm
bounded. Thus L−1

K (B) is von Neumann bounded, as claimed.
Note also that E (K) is a DF-space since Banach spaces are DF-spaces [Jarchow 1981,

Corollary 12.4.4] and countable direct limits of DF-spaces are DF-spaces [Jarchow 1981,
Theorem 12.4.8]. Therefore, by the open mapping lemma from §2 of Baernstein [1971], the
result follows. ▼

From the lemma, it follows that the direct limit topology of G hol,R

K,E
agrees with that

induced by its image in E (K). Since the seminorms pK,a, a ∈ c↓0(Z≥0;R>0), define
the locally convex topology of E (K) by Lemma 5.3, it follows that the seminorms pωK,a,

a ∈ c↓0(Z≥0;R>0), define the direct limit topology of G hol,R

K,E
. ■

The problem of providing seminorms for the direct limit topology of G hol,R

K,E
is a nontrivial

one, so let us provide a little history for what led to the preceding theorem. First of all,
the first concrete characterisation of seminorms for germs of holomorphic functions about
compact subsets of Cn comes in [Mujica 1984]. Mujica provides seminorms having two parts,
one very much resembling the seminorms we use, and another part that is more complicated.
These seminorms specialise to the case where the compact set lies in Rn ⊆ Cn, and the
first mention of this we have seen in the research literature is in the notes of Domański
[2012]. The first full proof that the seminorms analogous to those we define are, in fact,
the seminorms for the space of real analytic functions on open subsets of Rn appears in
the recent note of Vogt [2013]. Our presentation is an adaptation, not quite trivial as it
turns out, of Vogt’s constructions. One of the principal difficulties is Lemma 2.5 which is
essential in showing that our jet bundle fibre metrics ∥·∥Gm

are suitable for defining the
seminorms for the real analytic topology. Note that one cannot use arbitrary fibre metrics,
since one needs to have the behaviour of these metrics be regulated to the real analytic
topology as the order of jets goes to infinity. Because our fibre metrics are constructed by
differentiating objects defined at low order, i.e., the connections ∇ and ∇0, we can ensure
that the fibre metrics are compatible with real analytic growth conditions on derivatives.

An inverse limit topology for the space of real analytic sections. In the preceding three
sections we provided three topologies for the space G hol,R

K,E
of holomorphic sections about
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a compact subset K of a real analytic manifold: (1) the “standard” direct limit topol-
ogy; (2) the topology induced by the direct limit topology on E (K); (3) the topology defined
by the seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0). We showed in Lemma 5.3
and Theorem 5.5 that these three topologies agree. Now we shall use these constructions
to easily arrive at (1) a topology on Γω(E) induced by the locally convex topologies on the

spaces G hol,R

K,E
, K ⊆ M compact, and (2) seminorms for the topology of Γω(E).

For a compact set K ⊆ M we have an inclusion iK : Γω(E) → G hol,R

K,E
defined as follows.

If ξ ∈ Γω(E), then ξ admits an holomorphic extension ξ defined on a neighbourhood U ⊆ M
of M [Cieliebak and Eliashberg 2012, Lemma 5.40]. Since U ∈ NK we define iK(ξ) = [ξ]K .
Now we have a compact exhaustion (Kj)j∈Z>0 of M. Since NKj+1 ⊆ NKj we have a
projection

πj : G
hol,R

Kj+1,E
→ G hol,R

Kj ,E

[ξ]Kj+1 7→ [ξ]Kj .

One can check that, as R-vector spaces, the inverse limit of the inverse family (G hol,R

Kj ,E
)j∈Z>0

is isomorphic to G hol,R

M,E
, the isomorphism being given explicitly by the inclusions

ij : G
hol,R

M,E
→ G hol,R

Kj ,E

[ξ]M 7→ [ξ]Kj .

Keeping in mind Lemma 5.2, we then have the inverse limit topology on Γω(E) induced by
the mappings ij , j ∈ Z>0. The topology so defined we call the inverse Cω-topology for
Γω(E).

It is now a difficult theorem of Martineau [1966, Theorem 1.2(a)] that the direct Cω-
topology of Section 5.1 agrees with the inverse Cω-topology. Therefore, we call the resulting
topology the Cω-topology . It is clear from Theorem 5.5 and the preceding inverse limit
construction that the seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), define the
Cω-topology.

5.3. Properties of the Cω-topology. To say some relevant things about the Cω-topology,
let us first consider the direct limit topology for G hol,R

K,E
, K ⊆ M compact, as this is an

important building block for the Cω-topology. First, we recall that a strict direct limit
of locally convex spaces consists of a sequence (Vj)j∈Z>0 of locally convex spaces that are
subspaces of some vector space V, and which have the nesting property Vj ⊆ Vj+1, j ∈ Z>0.

In defining the direct limit topology for G hol,R

K,E
we defined it as a strict direct limit of

Banach spaces. Moreover, the restriction mappings from Γhol,R
bdd (E|Uj) to Γhol,R

bdd (E|Uj+1)
can be shown to be compact [Kriegl and Michor 1997, Theorem 8.4]. Direct limits such as
these are known as “Silva spaces” or “DFS spaces.” Silva spaces have some nice properties,
and these provide some of the following attributes for the direct limit topology for G hol,R

K,E
.

G hol,R-1. It is Hausdorff: [Narici and Beckenstein 2010, Theorem 12.1.3].
G hol,R-2. It is complete: [Narici and Beckenstein 2010, Theorem 12.1.10].
G hol,R-3. It is not metrisable: [Narici and Beckenstein 2010, Theorem 12.1.8].
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G hol,R-4. It is regular: [Kriegl and Michor 1997, Theorem 8.4]. This means that every

von Neumann bounded subset of G hol,R

K,E
is contained and von Neumann bounded in

Γhol,R(E|Uj) for some j ∈ Z>0.
G hol,R-5. It is reflexive: [Kriegl and Michor 1997, Theorem 8.4].
G hol,R-6. Its strong dual is a nuclear Fréchet space: [Kriegl and Michor 1997, Theorem 8.4].

Combined with reflexivity, this means that G hol,R

K,E
is the strong dual of a nuclear

Fréchet space.
G hol,R-7. It is nuclear: [Schaefer and Wolff 1999, Corollary III.7.4].

G hol,R-8. It is Suslin: This follows from [Fernique 1967, Théorème I.5.1(b)] since G hol,R

K,E
is

a strict direct limit of separable Fréchet spaces.
These attributes for the spaces G hol,R

K,E
lead, more or less, to the following attributes of

Γω(E).
Cω-1. It is Hausdorff: It is a union of Hausdorff topologies.
Cω-2. It is complete: [Horváth 1966, Corollary to Proposition 2.11.3].
Cω-3. It is not metrisable: It is a union of non-metrisable topologies.
Cω-4. It is separable: [Domański 2012, Theorem 16].
Cω-5. It is nuclear: [Schaefer and Wolff 1999, Corollary III.7.4].
Cω-6. It is Suslin: Here we note that a countable direct product of Suslin spaces is

Suslin [Bogachev 2007, Lemma 6.6.5(iii)]. Next we note that the inverse limit is
a closed subspace of the direct product [Robertson and Robertson 1980, Proposi-
tion V.19]. Next, closed subspaces of Suslin spaces are Suslin spaces [Bogachev 2007,
Lemma 6.6.5(ii)]. Therefore, since Γω(E) is the inverse limit of the Suslin spaces

G hol,R

Kj ,E
, j ∈ Z>0, we conclude that Γω(E) is Suslin.

As we have seen with the CO∞- and COhol-topologies for Γ∞(E) and Γhol(E), nucle-
arity of the Cω-topology implies that compact subsets of Γω(E) are exactly those that are
closed and von Neumann bounded. For von Neumann boundedness, we have the following
characterisation.

5.6 Lemma: (Bounded subsets in the Cω-topology) A subset B ⊆ Γω(E) is bounded
in the von Neumann bornology if and only if the following property holds: for any compact
set K ⊆ M and any a ∈ c↓0(Z≥0;R>0), there exists C ∈ R>0 such that pωK,a(ξ) ≤ C for
every ξ ∈ B.

5.4. The weak-L topology for real analytic vector fields. As in the finitely differentiable,
Lipschitz, smooth, and holomorphic cases, the above constructions for general vector bun-
dles can be applied to the tangent bundle and the trivial vector bundle M×R to give the
Cω-topology on the space Γω(TM) of real analytic vector fields and the space Cω(M) of
real analytic functions. As we have already done in these other cases, we wish to provide
a weak characterisation of the Cω-topology for Γω(TM). First of all, if X ∈ Γω(TM), then
f 7→ LXf is a derivation of Cω(M). As we have seen, in the holomorphic case this does not
generally establish a correspondence between vector fields and derivations, but it does for
Stein manifolds. In the real analytic case, Grabowski [1981] shows that the map X 7→ LX is
indeed an isomorphism of the R-vector spaces of real analytic vector fields and derivations
of real analytic functions. Thus the pursuit of a weak description of the Cω-topology for
vector fields does not seem to be out of line.
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The definition of the weak-L topology proceeds much as in the smooth and holomorphic
cases.

5.7 Definition: (Weak-L topology for space of real analytic vector fields) For a
real analytic manifold M, the weak-L topology for Γω(TM) is the weakest topology for
which the map X 7→ LXf is continuous for every f ∈ Cω(M), if Cω(M) has the Cω-topology.

•
We now have the following result.

5.8 Theorem: (Weak-L characterisation of Cω-topology for real analytic vector
fields) For a real analytic manifold M, the following topologies for Γω(TM) agree:

(i) the Cω-topology;

(ii) the weak-L topology.

Proof: (i)⊆(ii) As we argued in the corresponding part of the proof of Theorem 3.5, it suffices
to show that, for K ⊆ M compact and for a ∈ c↓0(Z≥0;R>0), there exist compact sets
K1, . . . ,Kr ⊆ M, a1, . . . ,ar ∈ c↓0(Z≥0;R>0), f

1, . . . , f r ∈ Cω(M), and C1, . . . , Cr ∈ R>0

such that

pωK,a(X) ≤ C1p
ω
K1,a1

(LXf
1) + · · ·+ Crp

ω
Kr,ar

(LXf
r), X ∈ Γω(TM).

We begin with a simple technical lemma.

1 Lemma: For each x ∈ M there exist f1, . . . , fn ∈ Cω(M) such that (df1(x), . . . ,dfn(x))
is a basis for T∗

xM.

Proof: We are supposing, of course, that the connected component of M containing x has
dimension n. There are many ways to prove this lemma, including applying Cartan’s Theo-
rem A to the sheaf of real analytic functions on M. We shall prove the lemma by embedding
M in RN by the embedding theorem of Grauert [1958]. Thus we have a proper real analytic
embedding ιM : M → RN . Let g1, . . . , gN ∈ Cω(RN ) be the coordinate functions. Then we
have a surjective linear map

σx : R
N → T∗

xM

(c1, . . . , cN ) 7→
N∑
j=1

cjd(ι
∗
Mg

j)(x).

Let c1, . . . , cn ∈ RN be a basis for a complement of ker(σx). Then the functions

f j =
N∑
k=1

cjkι
∗
Mg

k

have the desired property. ▼

We assume that M has a well-defined dimension n. This assumption can easily be
relaxed. We use the notation

p′ωK,a(f) = sup
{a0a1 · · · a|I|

I!
|DIf(x)|

∣∣∣ x ∈ K, I ∈ Zn≥0

}
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for a function f ∈ Cω(U) defined on an open subset of Rn and with K ⊆ U compact. We
shall also use this local coordinate notation for seminorms of local representatives of vector
fields. Let K ⊆ M be compact and let a ∈ c↓0(Z≥0;R>0). Let x ∈ K and let (Ux, ϕx) be
a chart for M about x with the property that the coordinate functions xj , j ∈ {1, . . . , n},
are restrictions to Ux of globally defined real analytic functions f jx, j ∈ {1, . . . , n}, on M.
This is possible by the lemma above. Let X : ϕx(Ux) → Rn be the local representative of
X ∈ Γω(M). Then, in a neighbourhood of the closure of a relatively compact neighbourhood
Vx ⊆ Ux of x, we have LXf

j
x = Xj , the jth component of X. By Lemma 2.5, there exist

Cx, σx ∈ R>0 such that

∥jmX(y)∥Gm
≤ Cxσ

−m
x sup

{ 1

I!
|DIXj(ϕx(y))|

∣∣∣ |I| ≤ m, j ∈ {1, . . . , n}
}

for m ∈ Z≥0 and y ∈ cl(Vx). By equivalence of the ℓ1 and ℓ∞-norms for Rn, there exists
C ∈ R>0 such that

sup
{ 1

I!
|DIXj(ϕx(y))|

∣∣∣ |I| ≤ m, j ∈ {1, . . . , n}
}

≤ C
n∑
j=1

sup
{ 1

I!
|DI(LXf

j
x)(ϕx(y))|

∣∣∣ |I| ≤ m
}

for m ∈ Z≥0 and y ∈ cl(Vx). Another application of Lemma 2.5 gives Bx, rx ∈ R>0 such
that

sup
{ 1

I!
|DI(LXf

j
x)(ϕx(y))|

∣∣∣ |I| ≤ m, j ∈ {1, . . . , n}
}
≤ Bxr

−m
x ∥jm(LXf jx)(y)∥

for m ∈ Z≥0, j ∈ {1, . . . , n}, and y ∈ cl(Vx). Combining the preceding three estimates and
renaming constants gives

∥jmX(y)∥Gm
≤

n∑
j=1

Cxσ
−m
x ∥jm(LXf jx(ϕx(y)))∥Gm

for m ∈ Z≥0 and y ∈ cl(Vx). Define

bx = (bm)m∈Z≥0
∈ c↓0(Z≥0;R>0)

by b0 = Cxa0 and bm = σ−1
x am, m ∈ Z>0. Therefore,

a0a1 · · · am∥jmX(y)∥Gm
≤

n∑
j=1

b0b1 · · · bm∥jm(LXf jx(ϕx(y)))∥Gm

for m ∈ Z≥0 and y ∈ cl(Vx). Supping over y ∈ cl(Vx) and m ∈ Z≥0 on the right gives

a0a1 · · · am∥jmX(y)∥Gm
≤

n∑
j=1

pωcl(Vx),bx
(LXf

j
x), m ∈ Z≥0, y ∈ cl(Vx).

Let x1, . . . , xk ∈ K be such that K ⊆ ∪kj=1Vxj , let f
1, . . . , fkn be the list of functions

f1x1 , . . . , f
n
x1 , . . . , f

1
xk
, . . . , fnxk ,
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and let b1, . . . , bkn ∈ c↓0(Z≥0;R>0) be the list of sequences

bx1 , . . . , bx1︸ ︷︷ ︸
n times

, . . . , bxk , . . . , bxk︸ ︷︷ ︸
n times

.

If x ∈ K, then x ∈ Vxj for some j ∈ {1, . . . , k} and so

a0a1 · · · am∥jmX(x)∥Gm
≤

kn∑
j=1

pωK,bj (LXf
j),

and this part of the lemma follows upon taking the supremum over x ∈ K and m ∈ Z≥0.
(ii)⊆(i) Here, as in the proof of the corresponding part of Theorem 3.5, it suffices to

show that, for every f ∈ Cω(M), the map Lf : X 7→ LXf is continuous from Γω(TM) with
the Cω-topology to Cω(M) with the Cω-topology.

We shall use the direct Cω-topology to show this. Thus we work with an holomorphic
manifold M that is a complexification of M, as described in Section 5.1. We recall that
NM denotes the directed set of neighbourhoods of M in M, and that the set SM of Stein
neighbourhoods is cofinal in NM. As we saw in Section 5.1, for U ∈ NM, we have mappings

rU,M : Γhol,R(TU) → Γω(TM)

X 7→ X|M

and
rU,M : Chol,R(U) → Cω(M)

f 7→ f |M,
making an abuse of notation by using rU,M for two different things, noting that context will
make it clear which we mean. For K ⊆ M compact, we also have the mapping

iM,K : Cω(M) → C hol,R

K,M

f 7→ [f ]K ,

The Cω-topology is the final topology induced by the mappings rU,M. As such, by [Horváth

1966, Proposition 2.12.1], the map Lf is continuous if and only if Lf ◦ rU,M for every

U ∈ NM. Thus let U ∈ NM. To show that Lf ◦ rU,M is continuous, it suffices by [Horváth

1966, §2.11] to show that iM,K ◦Lf ◦ rU,M is continuous for every compact K ⊆ M. Next,

there is U ⊇ S ∈ SM so that f admits an holomorphic extensions f to S. The following
diagram shows how this all fits together.

Γhol,R(TU)

**

r
U,S // Γhol,R(TS)

r
S,M //

Lf̄

��

Γω(TM)

Lf

��
Chol,R(S) r

S,M

// Cω(M)
iM,K

// C hol,R

K,M

The dashed arrows signify maps whose continuity is a priori unknown to us. The diagonal
dashed arrow is the one whose continuity we must verify to ascertain the continuity of the
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vertical dashed arrow. It is a simple matter of checking definitions to see that the dia-
gram commutes. By Theorem 4.5, we have that Lf : Γ

hol,R(TS) → Chol,R(S) is continuous
(keeping Remark 5.1 in mind). We deduce that, since

iM,K ◦Lf ◦ rU,M = iM,K ◦ rS,M ◦Lf ◦ rU,S,

iM,K ◦Lf ◦rU,M is continuous for every U ∈ NM and for every compact K ⊆ M, as desired.■

As in the smooth and holomorphic cases, we can prove the equivalence of various topo-
logical notions between the weak-L and usual topologies.

5.9 Corollary: (Weak-L characterisations of boundedness, continuity, measura-
bility, and integrability for the Cω-topology) Let M be a real analytic manifold, let
(X,O ) be a topological space, let (T,M ) be a measurable space, and let µ : M → R≥0 be a
finite measure. The following statements hold:

(i) a subset B ⊆ Γω(TM) is bounded in the von Neumann bornology if and only if it is
weak-L bounded in the von Neumann bornology;

(ii) a map Φ: X → Γω(TM) is continuous if and only if it is weak-L continuous;

(iii) a map Ψ: T → Γω(TM) is measurable if and only if it is weak-L measurable;

(iv) a map Ψ: T → Γω(TM) is Bochner integrable if and only if it is weak-L Bochner
integrable.

Proof: The fact that {Lf | f ∈ Cω(M)} contains a countable point separating subset
follows from combining the lemma from the proof of Theorem 5.8 with the proof of the
corresponding assertion in Corollary 3.6. Since Γω(TM) is complete, separable, and Suslin,
and since Cω(M) is Suslin by properties Cω-2, Cω-4, and Cω-6 above, the corollary follows
from Lemma 3.3, taking “U = Γω(TM),” “V = Cω(M),” and “A = {Lf | f ∈ Cω(M)}.” ■

6. Time-varying vector fields

In this section we consider time-varying vector fields. The ideas in this section originate
(for us) with the paper of Agrachev and Gamkrelidze [1978], and are nicely summarised
in the more recent book of Agrachev and Sachkov [2004], at least in the smooth case. A
geometric presentation of some of the constructions can be found in the paper of Suss-
mann [1998], again in the smooth case, and Sussmann also considers regularity less than
smooth, e.g., finitely differentiable or Lipschitz. There is some consideration of the real an-
alytic case in [Agrachev and Gamkrelidze 1978], but this consideration is restricted to real
analytic vector fields admitting a bounded holomorphic extension to a fixed-width neigh-
bourhood of Rn in Cn. One of our results, the rather nontrivial Theorem 6.25, is that this
framework of Agrachev and Gamkrelidze [1978] is sufficient for the purposes of local analy-
sis. However, our treatment of the real analytic case is global, general, and comprehensive.
To provide some context for our novel treatment of the real analytic case, we treat the
smooth case in some detail, even though the results are probably mostly known. (However,
we should say that, even in the smooth case, we could not find precise statements with
proofs of some of the results we give.) We also treat the finitely differentiable and Lipschitz
cases, so our theory also covers the “standard” Carathéodory existence and uniqueness the-
orem for time-varying ordinary differential equations, [e.g., Sontag 1998, Theorem 54]. We
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also consider holomorphic time-varying vector fields, as these have a relationship to real
analytic time-varying vector fields that is sometimes useful to exploit.

One of the unique facets of our presentation is that we fully explain the rôle of the topolo-
gies developed in Sections 3, 4, and 5. Indeed, one way to understand the principal results
of this section is that they show that the usual pointwise—in state and time—conditions
placed on vector fields to regulate the character of their flows can be profitably phrased
in terms of topologies for spaces of vector fields. While this idea is not entirely new—it is
implicit in the approach of [Agrachev and Gamkrelidze 1978]—we do develop it compre-
hensively and in new directions.

While our principal interest is in vector fields, and also in functions, it is convenient to
conduct much of the development for general vector bundles, subsequently specialising to
vector fields and functions.

6.1. The smooth case. Throughout this section we will work with a smooth vector bundle
π : E → M with a linear connection ∇0 on E, an affine connection ∇ on M, a fibre metric
G0 on E, and a Riemannian metric G on M. This defines the fibre norms ∥·∥Gm

on JmE and
seminorms p∞K,m, K ⊆ M compact, m ∈ Z≥0, on Γ∞(E) as in Section 3.1.

6.1 Definition: (Smooth Carathéodory section) Let π : E → M be a smooth vector
bundle and let T ⊆ R be an interval. A Carathéodory section of class C∞ of E is a
map ξ : T ×M → E with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) = ξ(t, x) is of class C∞;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓ∞(T;E) we denote the set of
Carathéodory sections of class C∞ of E. •

Note that the curve t 7→ ξ(t, x) is in the finite-dimensional vector space Ex, and so
Lebesgue measurability of this is unambiguously defined, e.g., by choosing a basis and
asking for Lebesgue measurability of the components with respect to this basis.

Now we put some conditions on the time dependence of the derivatives of the section.

6.2 Definition: (Locally integrally C∞-bounded and locally essentially C∞-
bounded sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be an
interval. A Carathéodory section ξ : T ×M → E of class C∞ is

(i) locally integrally C∞-bounded if, for every compact set K ⊆ M and every m ∈
Z≥0, there exists g ∈ L1

loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K,

and is

(ii) locally essentially C∞-bounded if, for every compact set K ⊆ M and every m ∈
Z≥0, there exists g ∈ L∞

loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K.

The set of locally integrally C∞-bounded sections of E with time-domain T is denoted by
LIΓ∞(T,E) and the set of locally essentially C∞-bounded sections of E with time-domain
T is denoted by LBΓ∞(T;E). •
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Note that LBΓ∞(T;M) ⊆ LIΓ∞(T;M), precisely because locally essentially bounded
functions (in the usual sense) are locally integrable (in the usual sense).

We note that our definitions differ from those in [Agrachev and Gamkrelidze 1978,
Agrachev and Sachkov 2004, Sussmann 1998]. The form of the difference is our use of
connections and jet bundles, aided by Lemma 2.1. In [Agrachev and Gamkrelidze 1978]
the presentation is developed on Euclidean spaces, and so the geometric treatment we give
here is not necessary. (One way of understanding why it is not necessary is that Euclidean
space has a canonical flat connection in which the decomposition of Lemma 2.1 becomes
the usual decomposition of derivatives by their order.) In [Agrachev and Sachkov 2004]
the treatment is on manifolds, and the seminorms are defined by an embedding of the
manifold in Euclidean space by Whitney’s Embedding Theorem [Whitney 1936]. Also,
Agrachev and Sachkov [2004] use the weak-L topology in the case of vector fields, but we
have seen that this is the same as the usual topology (Theorem 3.5). In [Sussmann 1998]
the characterisation of Carathéodory functions uses Lie differentiation by smooth vector
fields, and the locally convex topology for Γ∞(TM) is not explicitly considered, although
it is implicit in Sussmann’s constructions. Sussmann also takes a weak-L approach to
characterising properties of time-varying vector fields. In any case, all approaches can be
tediously shown to be equivalent once the relationships are understood. An advantage of
the approach we use here is that it does not require coordinate charts or embeddings to
write the seminorms, and it makes the seminorms explicit, rather than implicitly present.
The disadvantage of our approach is the added machinery and complication of connections
and our jet bundle decomposition.

The following characterisation of Carathéodory sections and their relatives is useful and
insightful.

6.3 Theorem: (Topological characterisation of smooth Carathéodory sections)
Let π : E → M be a smooth vector bundle and let T ⊆ R be an interval. For a map
ξ : T ×M → E satisfying ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M, the following two statements
are equivalent:

(i) ξ ∈ CFΓ∞(T;E);

(ii) the map T ∋ t 7→ ξt ∈ Γ∞(E) is measurable,

the following two statements are equivalent:

(iii) ξ ∈ LIΓ∞(T;E);

(iv) the map T ∋ t 7→ ξt ∈ Γ∞(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(v) ξ ∈ LBΓ∞(T;E);

(vi) the map T ∋ t 7→ ξt ∈ Γ∞(E) is measurable and locally essentially von Neumann
bounded.

Proof: It is illustrative, especially since we will refer to this proof at least three times
subsequently, to understand the general framework of the proof. Much of the argument has
already been carried out in a more general setting in Lemma 3.3.

So we let V be a locally convex topological vector space over F ∈ {R,C}, let (T,M ) be
a measurable space, and let Ψ: T → V. Let us first characterise measurability of Ψ. We use
here the results of Thomas [1975] who studies integrability for functions taking values in
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locally convex Suslin spaces. Thus we assume that V is a Hausdorff Suslin space (as is the
case for all spaces of interest to us in this work). We let V′ denote the topological dual of
V. A subset S ⊆ V′ is point separating if, for distinct v1, v2 ∈ V, there exists α ∈ V′ such
that α(v1) ̸= α(v2). Thomas [1975] proves the following result as his Theorem 1, and whose
proof we provide, as it is straightforward and shows where the (not so straightforward)
properties of Suslin spaces are used.

1 Lemma: Let V be a Hausdorff, Suslin, locally convex topological vector space over F ∈
{R,C}, let (T,M ) be a measurable space, and let Ψ: T → V. If S ⊆ V′ is point separating,
then Ψ is measurable if and only if α ◦ Ψ is measurable for every α ∈ S.

Proof: If Ψ is measurable, then it is obvious that α ◦Ψ is measurable for every α ∈ V′ since
such α are continuous.

Conversely, suppose that α ◦Ψ is measurable for every α ∈ S. First of all, locally convex
topological vector spaces are completely regular if they are Hausdorff [Schaefer and Wolff
1999, page 16]. Therefore, by [Bogachev 2007, Theorem 6.7.7], there is a countable subset
of S that is point separating, so we may as well suppose that S is countable. We are now
in the same framework as Lemma 3.3(iii), and the proof there applies by taking “U = V,”
“V = F,” and “A = S.” ▼

The preceding lemma will allow us to characterise measurability. Let us now consider
integrability.

2 Lemma: Let V be a complete separable locally convex topological vector space over F ∈
{R,C} and let (T,M , µ) be a finite measure space. A measurable function Ψ: T → V is
Bochner integrable if and only if p ◦Ψ is integrable for every continuous seminorm p for V.

Proof: It follows from [Beckmann and Deitmar 2011, Theorems 3.2, 3.3] that Ψ is integrable
if p ◦ Ψ is integrable for every continuous seminorm p. Conversely, if Ψ is integrable, it
is implied that Ψ is Bochner approximable, and so, by [Beckmann and Deitmar 2011,
Theorem 3.2], we have that p ◦ Ψ is integrable for every continuous seminorm p. ▼

(i) ⇐⇒ (ii) For x ∈ M and αx ∈ E∗
x, define evαx : Γ

∞(E) → R by evαx(ξ) = ⟨αx; ξ(x)⟩.
Clearly evαx is R-linear. We claim that evαx is continuous. Indeed, for a directed set (I,⪯)
and a net (ξ)i∈I converging to ξ,8 we have

lim
i∈I

evαx(ξi) = lim
i∈I

αx(ξi(x)) = αx

(
lim
i∈I

ξi(x)
)
= αx(ξ(x)) = evαx(ξ),

using the fact that convergence in the CO∞-topology implies pointwise convergence. It
is obvious that the continuous linear functions evαx , αx ∈ E∗, are point separating. We
now recall from property CO∞-6 for the smooth CO∞-topology that Γ∞(E) is a Suslin
space with the CO∞-topology. Therefore, by the first lemma above, it follows that t 7→ ξt is
measurable if and only if t 7→ evαx(ξt) = ⟨αx; ξt(x)⟩ is measurable for every αx ∈ E∗. On the
other hand, this is equivalent to t 7→ ξt(x) being measurable for every x ∈ M since t 7→ ξt(x)
is a curve in the finite-dimensional vector space Ex. Finally, note that it is implicit in the
statement of (ii) that ξt is smooth, and this part of the proposition follows easily from these
observations.

8Since Γ∞(E) is metrisable, it suffices to use sequences. However, we shall refer to this argument when
we do not use metrisable spaces, so it is convenient to have the general argument here.
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(iii) ⇐⇒ (iv) Let T′ ⊆ T be compact.
First suppose that ξ ∈ LIΓ∞(T;E). By definition of locally integrally C∞-bounded, for

each compact K ⊆ M and m ∈ Z≥0, there exists g ∈ L1(T′;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T′ ×K =⇒ p∞K,m(ξt) ≤ g(t), t ∈ T′.

Note that continuity of p∞K,m implies that t 7→ p∞K,m(ξt) is measurable. Therefore,∫
T′
p∞K,m(ξt) dt <∞, K ⊆ M compact, m ∈ Z≥0.

Since Γ∞(E) is complete and separable, it now follows from the second lemma above that
t 7→ ξt is Bochner integrable on T′. That is, since T′ is arbitrary, t 7→ ξt is locally Bochner
integrable.

Next suppose that t 7→ ξt is Bochner integrable on T. By the second lemma above,∫
T′
p∞K,m(ξt) dt <∞, K ⊆ M compact, m ∈ Z≥0.

Therefore, since
∥jmξt(x)∥Gm

≤ p∞K,m(ξt), (t, x) ∈ T′ ×K,

we conclude that ξ is locally integrally C∞-bounded since T′ is arbitrary.
(v) ⇐⇒ (vi) We recall our discussion of von Neumann bounded sets in locally con-

vex topological vector spaces preceding Lemma 3.1 above. With this in mind and using
Lemma 3.1, this part of the theorem follows immediately. ■

Note that Theorem 6.3 applies, in particular, to vector fields and functions, giv-
ing the classes CF∞(T;M), LIC∞(T;M), and LBC∞(T;M) of functions, and the classes
CFΓ∞(T;TM), LIΓ∞(T;TM), and LBΓ∞(T;TM) of vector fields. Noting that we have the
alternative weak-L characterisation of the CO∞-topology, we can summarise the various
sorts of measurability, integrability, and boundedness for smooth time-varying vector fields
as follows. In the statement of the result, evx is the “evaluate at x” map for both functions
and vector fields.

6.4 Theorem: (Weak characterisations of measurability, integrability, and
boundedness of smooth time-varying vector fields) Let M be a smooth manifold,
let T ⊆ R be a time-domain, and let X : T × M → TM have the property that Xt is a
smooth vector field for each t ∈ T. Then the following four statements are equivalent:

(i) t 7→ Xt is measurable;

(ii) t 7→ LXtf is measurable for every f ∈ C∞(M);

(iii) t 7→ evx ◦Xt is measurable for every x ∈ M;

(iv) t 7→ evx ◦LXtf is measurable for every f ∈ C∞(M) and every x ∈ M,

the following two statements are equivalent:

(v) t 7→ Xt is locally Bochner integrable;

(vi) t 7→ LXtf is locally Bochner integrable for every f ∈ C∞(M),

and the following two statements are equivalent:
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(vii) t 7→ Xt is locally essentially von Neumann bounded;

(viii) t 7→ LXtf is locally essentially von Neumann bounded for every f ∈ C∞(M).

Proof: This follows from Theorem 6.3, along with Corollary 3.6. ■

Let us now discuss flows of vector fields from LIΓ∞(T;TM). To do so, let us provide
the definition of the usual attribute of integral curves, but on manifolds.

6.5 Definition: (Locally absolutely continuous) Let M be a smooth manifold and let
T ⊆ R be an interval.

(i) A function f : [a, b] → R is absolutely continuous if there exists g ∈ L1([a, b];R)
such that

f(t) = f(a) +

∫ t

a
g(τ) dτ, t ∈ [a, b].

(ii) A function f : T → R is locally absolutely continuous if f |T′ is absolutely contin-
uous for every compact subinterval T′ ⊆ T.

(iii) A curve γ : T → M is locally absolutely continuous if ϕ ◦ γ is locally absolutely
continuous for every ϕ ∈ C∞(M). •

One easily verifies that a curve is locally absolutely continuous according to our definition
if and only if its local representative is locally absolutely continuous in any coordinate chart.

We then have the following existence, uniqueness, and regularity result for locally inte-
grally bounded vector fields. In the statement of the result, we use the notation

|a, b| =

{
[a, b], a ≤ b,

[b, a], b < a.

In the following result, we do not provide the comprehensive list of properties of the flow,
but only those required to make sense of its regularity with respect to initial conditions.

6.6 Theorem: (Flows of vector fields from LIΓ∞(T;TM)) Let M be a smooth man-
ifold, let T be an interval, and let X ∈ LIΓ∞(T;TM). Then there exist a subset
DX ⊆ T × T × M and a map ΦX : DX → M with the following properties for each
(t0, x0) ∈ T ×M:

(i) the set
TX(t0, x0) = {t ∈ T | (t, t0, x0) ∈ DX}

is an interval;

(ii) there exists a locally absolutely continuous curve t 7→ ξ(t) satisfying

ξ′(t) = X(t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX(t0, x0);
(iii) d

dtΦ
X(t, t0, x0) = X(t,ΦX(t, t0, x0)) for almost all t ∈ TX(t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DX , there exists a neighbourhood U of x0 such
that the mapping x 7→ ΦX(t, t0, x) is defined and of class C∞ on U.
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Proof: We observe that the requirement that X ∈ LIΓ∞(T;TM) implies that, in any co-
ordinate chart, the components of X and their derivatives are all bounded by a locally
integrable function. This, in particular, implies that, in any coordinate chart for M, the
ordinary differential equation associated to the vector field X satisfies the usual conditions
for existence and uniqueness of solutions as per, for example, [Sontag 1998, Theorem 54].
Of course, the differential equation satisfies conditions much stronger than this, and we
shall see how to use these in our argument below.

The first three assertions are now part of the standard existence theorem for solutions
of ordinary differential equations, along with the usual Zorn’s Lemma argument for the
existence of a maximal interval on which integral curves is defined.

In the sequel we denote ΦXt,t0(x) = ΦX(t, t0, x0).
For the fourth assertion we first make some constructions with vector fields on jet

bundles, more or less following [Saunders 1989, §4.4]. We let M2 = M×M and we consider
M2 as a fibred manifold, indeed a trivial fibre bundle, over M by pr1 : M

2 → M, i.e., by
projection onto the first factor. A section of this fibred manifold is naturally identified with
a smooth map Φ: M → M by x 7→ (x,Φ(x)). We introduce the following notation:

1. Jm pr1: the bundle of m-jets of sections of the fibred manifold pr1 : M
2 → M;

2. V pr1,m: the vertical bundle of the fibred manifold pr1,m : Jm pr1 → M;

3. V pr1: the vertical bundle of the fibred manifold pr1 : M
2 → M;

4. ν: the projection pr1 ◦(πTM2 |V pr1);

5. Jmν: the bundle of m-jets of sections of the fibred manifold ν : V pr1 → M.

With this notation, we have the following lemma.

1 Lemma: There is a canonical diffeomorphism αm : Jmν → V pr1,m.

Proof: We describe the diffeomorphism, and then note that the verification that it is, in
fact, a diffeomorphism is a fact easily checked in jet bundle coordinates.

Let I ⊆ R be an interval with 0 ∈ int(I) and consider a smooth map ϕ : I×M → M×M
of the form ϕ(t, x) = (x, ϕ1(t, x)) for a smooth map ϕ1. We let ϕt(x) = ϕx(t) = ϕ(t, x). We
then have maps

jxmϕ : I → Jm pr1

t 7→ jmϕt(x)

and
ϕ′ : M → V pr1

x 7→ d

dt

∣∣∣∣
t=0

ϕx(t).

Note that the curve jxmϕ is a curve in the fibre of pr1,m : Jm pr1 → M. Thus we can sensibly
define αm by

αm(jmϕ
′(x)) =

d

dt

∣∣∣∣
t=0

jxmϕ(t).

In jet bundle coordinates, one can check that αm has the local representative

((x1, (x2,A0)), (B1,A1, . . . ,Bm,Am)) 7→ ((x1, (x2,B1, . . . ,Bm)), (A0,A1, . . . ,Am)),

showing that αm is indeed a diffeomorphism. ▼
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Given a smooth vector field Y on M, we define a vector field Ỹ on M2 by Ỹ (x1, x2) =
(0x1 , Y (x2)). Note that we have the following commutative diagram

M2 Ỹ //

pr1
��

V pr1

ν

��
M M

giving Ỹ as a morphism of fibred manifolds. It is thus a candidate to have its m-jet taken,
giving a morphism of fibred manifolds jmỸ : Jm pr1 → Jmν. By the lemma, αm ◦ jmỸ is
a vertical vector field on Jm pr1 that we denote by νmY , the mth vertical prolongation
of Y . Let us verify that this is a vector field. First of all, for a section Φ̃ of pr1 given by
x 7→ (x,Φ(x)), note that Ỹ ◦ Φ̃(x) = (0x, Y (Φ(x))), and so jm(Ỹ ◦ Φ̃)(x) is vertical. By
the notation from the proof of the lemma, we can write jm(Ỹ ◦ Φ̃)(x) = jmϕ

′(x) for some
suitable map ϕ as in the lemma. We then have

αm ◦ jm(Ỹ ◦ Φ̃)(x) = αm(jmϕ
′(x)) ∈ VjmΦ̃(x) pr1,m .

Therefore,

πTJm pr1(αm ◦ jmỸ (jmΦ̃(x))) = πTJm pr1(αm ◦ jm(Ỹ ◦ Φ̃)(x)) = jmΦ̃(x).

Note that since Jm pr1 is naturally identified with Jm(M;M) via the identification

jmΦ̃(x) 7→ jmΦ(x)

if Φ̃(x) = (x,Φ(x)), we can as well think of νmY as being a vector field on the latter space.
Sorting through all the definitions gives the form of νmY in coordinates as

((x1,x2),A1, . . . ,Am) 7→ (((x1,x2),A1, . . . ,Am),0,Y ,DY , . . . ,DmY ). (6.1)

We now apply the above constructions, for each fixed t ∈ T, to get the vector field νmXt,
and so the time-varying vector field νmX defined by νmX(t, jmΦ(x)) = νmXt(jmΦ(x)) on
Jm(M;M). The definition of LIΓ1(T;TM), along with the coordinate formula (6.1), shows
that νmX satisfies the standard conditions for existence and uniqueness of integral curves,
and so its flow depends continuously on initial condition [Sontag 1998, Theorem 55].

The fourth part of the theorem, therefore, will follow if we can show that

1. for each m ∈ Z≥0, the flow of νmX depends on the initial condition in M in a Cm way,

2. ΦνmXt,t0
(jmΦ

X
t0,t0(x0)) = jmΦ

X
t,t0(jmΦ

X
t0,t0(x0)), and

3. if {t} × {t0} × U ⊆ DX , then {t} × {t0} × pr−1
1,m(U) ⊆ DνmX .

We ask for property 3 to ensure that the domain of differentiability does not get too small
as the order of the derivatives gets large.

To prove these assertions, it suffices to work locally. According to (6.1), we have the
time-dependent differential equation defined on

U× L(Rn;Rn)× · · · × Lmsym(R
n;Rn),
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where U is an open subset of Rn, and given by

γ̇(t) = X(t,γ(t)),

Ȧ1(t) = DX(t,γ(t)),

Ȧ2(t) = D2X(t,γ(t)),

...

Ȧm(t) = DmX(t,γ(t)),

(t,x) 7→ (x,X(t,x)) being the local representative of X. The initial conditions of interest
for the vector field νmX are of the form jmΦ

X
t0,t0(x). In coordinates, keeping in mind that

ΦXt0,t0 = idM, this gives

γ(t0) = x0, A1(t0) = In, Aj(t0) = 0, j ≥ 2. (6.2)

Let us denote by t 7→ γ(t, t0,x) and t 7→ Aj(t, t0,x), j ∈ {1, . . . ,m}, the solutions of the
differential equations above with these initial conditions.

We will show that assertions 1–3 hold by induction on m. In doing this, we will need to
understand how differential equations depending differentiably on state also have solutions
depending differentiably on initial condition. Such a result is not readily found in the text-
book literature, as this latter is typically concerned with continuous dependence on initial
conditions for cases with measurable time-dependence, and on differentiable dependence
when the dependence on time is also differentiable. However, the general case (much more
general than we need here) is worked out by Schuricht and von der Mosel [2000].

For m = 0, the assertions are simply the result of the usual continuous dependence
on initial conditions [e.g., Sontag 1998, Theorem 55]. Let us consider the case m = 1.
In this case, the properties of LIΓ∞(T;TM) ensure that the hypotheses required to apply
Theorem 2.1 of [Schuricht and von der Mosel 2000] hold for the differential equation

γ̇(t) = X(t,γ(t)),

Ȧ1(t) = DX(t,γ(t)).

This allows us to conclude that x 7→ γ(t, t0,x) is of class C
1. This establishes the assertion 1

in this case. Therefore, on a suitable domain, j1Φ
X
t,t0 is well-defined. In coordinates the

map j1Φ
X
t,t0 : J

1(M;M) → J1(M;M) is given by

(x,y,B1) 7→ (x,γ(t, t0,x),D3γ(t, t0,x) ◦ B1), (6.3)

this by the Chain Rule. We have

d

dt
D3γ(t, t0,x) = D3(

d
dtγ(t, t0,x)) = DX(t,γ(t, t0,x)),

the swapping of the time and spatial derivatives being valid by [Schuricht and von der Mosel
2000, Corollary 2.2]. Combining this with (6.3) and the initial conditions (6.2) shows that
assertion 2 holds for m = 1. Moreover, since A1(t, t0,x) is obtained by merely integrating
a continuous function of t from t0 to t, we also conclude that assertion 3 holds.
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Now suppose that assertions 1–3 hold for m. Again, the properties of LIΓ∞(T;TM)
imply that the hypotheses of Theorem 2.1 of [Schuricht and von der Mosel 2000] hold, and
so solutions of the differential equation

γ̇(t) = X(t,γ(t)),

Ȧ1(t) = DX(t,γ(t)),

Ȧ2(t) = D2X(t,γ(t)),

...

Ȧm(t) = DmX(t,γ(t))

depend continuously differentiably on initial condition. By the induction hypothesis applied
to the assertion 2, this means that

(t, x) 7→ ΦνmXt,t0
(jmΦ

X
t0,t0(x)) = jmΦ

X
t,t0(x)

depends continuously differentiably on x, and so we conclude that (t, x) 7→ ΦXt,t0(x) depends

on x in a Cm+1 manner. This establishes assertion 1 for m + 1. After an application
of the Chain Rule for high-order derivatives (see [Abraham, Marsden, and Ratiu 1988,
Supplement 2.4A]) we can, admittedly after just a few moments thought, see that the local
representative of jm+1Φ

X
t,t0(jm+1Φ

X
t0,t0(x)) is

(x,γ(t, t0,x),D3γ(t, t0,x), . . . ,D
m+1
3 γ(t, t0,x)),

keeping in mind the initial conditions (6.2) in coordinates.
By the induction hypothesis,

d

dt
Dj

3γ(t) = DjX(t,γ(t, t0,x)), j ∈ {1, . . . ,m}.

Using Corollary 2.2 of [Schuricht and von der Mosel 2000] we compute

d

dt
Dm+1

3 γ(t, t0,x) = D( d
dtD

m
3 γ(t, t0,x)) = Dm+1X(t,γ(t, t0,x)),

giving assertion 2 for m+1. Finally, by the induction hypothesis and since Am+1(t, t0,x) is
obtained by simple integration from t0 to t, we conclude that assertion 3 holds for m+1.■

6.2. The finitely differentiable or Lipschitz case. The requirement that the flow depends
smoothly on initial conditions is not always essential, even when the vector field itself
depends smoothly on the state. In such cases as this, one may want to consider classes of
vector fields characterised by one of the weaker topologies described in Section 3.4. Let us
see how to do this. In this section, so as to be consistent with our definition of Lipschitz
norms in Section 3.5, we suppose that the affine connection ∇ on M is the Levi-Civita
connection for the Riemannian metric G and that the vector bundle connection ∇0 in E is
G0-orthogonal.
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6.7 Definition: (Finitely differentiable or Lipschitz Carathéodory section) Let
π : E → M be a smooth vector bundle and let T ⊆ R be an interval. Let m ∈ Z≥0 and let
m′ ∈ {0, lip}. A Carathéodory section of class Cm+m′

of E is a map ξ : T ×M → E
with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) = ξ(t, x) is of class Cm+m′
;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓm+m′
(T;E) we denote the set

of Carathéodory sections of class Cm+m′
of E. •

Now we put some conditions on the time dependence of the derivatives of the section.

6.8 Definition: (Locally integrally Cm+m′
-bounded and locally essentially

Cm+m′
-bounded sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be

an interval. Let m ∈ Z≥0 and let m′ ∈ {0, lip}. A Carathéodory section ξ : T ×M → E of
class Cm+m′

is

(i) locally integrally Cm+m′
-bounded if:

(a) m′ = 0: for every compact set K ⊆ M, there exists g ∈ L1
loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K;

(b) m′ = lip: for every compact set K ⊆ M, there exists g ∈ L1
loc(T;R≥0) such that

dil jmξt(x), ∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K,

and is

(ii) locally essentially Cm+m′
-bounded if:

(a) m′ = 0: for every compact set K ⊆ M, there exists g ∈ L∞
loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K;

(b) m′ = lip: for every compact set K ⊆ M, there exists g ∈ L∞
loc(T;R≥0) such that

dil jmξt(x), ∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K.

The set of locally integrally Cm+m′
-bounded sections of E with time-domain T is denoted

by LIΓm+m′
(T,E) and the set of locally essentially Cm+m′

-bounded sections of E with time-
domain T is denoted by LBΓm+m′

(T;E). •

6.9 Theorem: (Topological characterisation of finitely differentiable or Lipschitz
Carathéodory sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be
an interval. Let m ∈ Z≥0 and let m′ ∈ {0, lip}. For a map ξ : T × M → E satisfying
ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M, the following two statements are equivalent:

(i) ξ ∈ CFΓm+m′
(T;E);

(ii) the map T ∋ t 7→ ξt ∈ Γm+m′
(E) is measurable,

the following two statements are equivalent:
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(iii) ξ ∈ LIΓm+m′
(T;E);

(iv) the map T ∋ t 7→ ξt ∈ Γm+m′
(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(v) ξ ∈ LBΓm+m′
(T;E);

(vi) the map T ∋ t 7→ ξt ∈ Γm+m′
(E) is measurable and locally essentially von Neumann

bounded.

Proof: (i) ⇐⇒ (ii) For x ∈ M and αx ∈ E∗
x, define evαx : Γ

m+m′
(E) → R by evαx(ξ) =

⟨αx; ξ(x)⟩. It is easy to show that evαx is continuous and that the set of continuous func-
tionals evαx , αx ∈ E∗

x, is point separating. Since Γm+m′
(E) is a Suslin space (properties

COm-6 and COm+lip-6), this part of the theorem follows in the same manner as the corre-
sponding part of Theorem 6.3.

(iii) ⇐⇒ (iv) Since Γm+m′
(E) is complete and separable (by properties COm-2 and COm-

4, and COm+lip-2 and COm+lip-4), the arguments from the corresponding part of Theo-

rem 6.3 apply here, taking note of the definition of the seminorms plipK (ξ) in case m′ = lip.
(v) ⇐⇒ (vi) We recall our discussion of von Neumann bounded sets in locally con-

vex topological vector spaces preceding Lemma 3.1 above. With this in mind and using
Lemma 4.3, this part of the proposition follows immediately. ■

Note that Theorem 6.9 applies, in particular, to vector fields and functions, giving the
classes CFm+m′

(T;M), LICm+m′
(T;M), and LBCm+m′

(T;M) of functions, and the classes
CFΓm+m′

(T;TM), LIΓm+m′
(T;TM), and LBΓm+m′

(T;TM) of vector fields. Noting that we
have the alternative weak-L characterisation of the COm+m′

-topology, we can summarise
the various sorts of measurability, integrability, and boundedness for smooth time-varying
vector fields as follows. In the statement of the result, evx is the “evaluate at x” map for
both functions and vector fields.

6.10 Theorem: (Weak characterisations of measurability, integrability, and
boundedness of finitely differentiable or Lipschitz time-varying vector fields)
Let M be a smooth manifold, let T ⊆ R be a time-domain, let m ∈ Z≥0, let m

′ ∈ {0, lip},
and let X : T × M → TM have the property that Xt is a vector field of class Cm+m′

for
each t ∈ T. Then the following four statements are equivalent:

(i) t 7→ Xt is measurable;

(ii) t 7→ LXtf is measurable for every f ∈ C∞(M);

(iii) t 7→ evx ◦Xt is measurable for every x ∈ M;

(iv) t 7→ evx ◦LXtf is measurable for every f ∈ C∞(M) and every x ∈ M,

the following two statements are equivalent:

(v) t 7→ Xt is locally Bochner integrable;

(vi) t 7→ LXtf is locally Bochner integrable for every f ∈ C∞(M),

and the following two statements are equivalent:

(vii) t 7→ Xt is locally essentially von Neumann bounded;

(viii) t 7→ LXtf is locally essentially von Neumann bounded for every f ∈ C∞(M).

Proof: This follows from Theorem 6.9, along with Corollaries 3.9 and 3.15. ■
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It is also possible to state an existence, uniqueness, and regularity theorem for flows of
vector fields that depend on state in a finitely differentiable or Lipschitz manner.

6.11 Theorem: (Flows of vector fields from LIΓm+m′
(T;TM)) Let M be a smooth

manifold, let T be an interval, let m ∈ Z≥0, and let X ∈ LIΓm+lip(T;TM). Then there
exist a subset DX ⊆ T×T×M and a map ΦX : DX → M with the following properties for
each (t0, x0) ∈ T ×M:

(i) the set
TX(t0, x0) = {t ∈ T | (t, t0, x0) ∈ DX}

is an interval;

(ii) there exists a locally absolutely continuous curve t 7→ ξ(t) satisfying

ξ′(t) = X(t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX(t0, x0);
(iii) d

dtΦ
X(t, t0, x0) = X(t,ΦX(t, t0, x0)) for almost all t ∈ TX(t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DX , there exists a neighbourhood U of x0 such
that the mapping x 7→ ΦX(t, t0, x) is defined and of class Cm on U.

Proof: The proof here is by truncation of the proof of Theorem 6.6 from “∞” to “m.” ■

6.3. The holomorphic case. While we are not per se interested in time-varying holomor-
phic vector fields, our understanding of time-varying real analytic vector fields—in which
we are most definitely interested—is connected with an understanding of the holomorphic
case, cf. Theorem 6.25.

We begin with definitions that are similar to the smooth case, but which rely on the
holomorphic topologies introduced in Section 4.1. We will consider an holomorphic vector
bundle π : E → M with an Hermitian fibre metric G. This defines the seminorms pholK ,
K ⊆ M compact, describing the COhol-topology for Γhol(E) as in Section 4.1.

Let us get started with the definitions.

6.12 Definition: (Holomorphic Carathéodory section) Let π : E → M be an holomor-
phic vector bundle and let T ⊆ R be an interval. A Carathéodory section of class Chol

of E is a map ξ : T ×M → E with the following properties:

(i) ξ(t, z) ∈ Ez for each (t, z) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(z) = ξ(t, z) is of class Chol;

(iii) for each z ∈ M, the map ξz : T → E defined by ξz(t) = ξ(t, z) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓhol(T;E) we denote the set of
Carathéodory sections of class Chol of E. •

The associated notions for time-dependent sections compatible with the COhol-topology
are as follows.
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6.13 Definition: (Locally integrally Chol-bounded and locally essentially Chol-
bounded sections) Let π : E → M be an holomorphic vector bundle and let T ⊆ R
be an interval. A Carathéodory section ξ : T ×M → E of class Chol is

(i) locally integrally Chol-bounded if, for every compact set K ⊆ M, there exists
g ∈ L1

loc(T;R≥0) such that

∥ξ(t, z)∥G ≤ g(t), (t, z) ∈ T ×K

and is

(ii) locally essentially Chol-bounded if, for every compact set K ⊆ M, there exists
g ∈ L∞

loc(T;R≥0) such that

∥ξ(t, z)∥G ≤ g(t), (t, z) ∈ T ×K.

The set of locally integrally Chol-bounded sections of E with time-domain T is denoted by
LIΓhol(T,E) and the set of locally essentially Chol-bounded sections of E with time-domain
T is denoted by LBΓhol(T;E). •

As with smooth sections, the preceding definitions admit topological characterisations,
now using the COhol-topology for Γhol(E).

6.14 Theorem: (Topological characterisation of holomorphic Carathéodory sec-
tions) Let π : E → M be an holomorphic vector bundle and let T ⊆ R be an interval. For
a map ξ : T × M → E satisfying ξ(t, z) ∈ Ez for each (t, z) ∈ T × M, the following two
statements are equivalent:

(i) ξ ∈ CFΓhol(T;E);

(ii) the map T ∋ t 7→ ξt ∈ Γhol(E) is measurable,

the following two statements are equivalent:

(iii) ξ ∈ LIΓhol(T;E);

(iv) the map T ∋ t 7→ ξt ∈ Γhol(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(v) ξ ∈ LBΓhol(T;E);

(vi) the map T ∋ t 7→ ξt ∈ Γhol(E) is measurable and locally essentially von Neumann
bounded.

Proof: (i) ⇐⇒ (ii) For z ∈ M and αz ∈ E∗
z, define evαz : Γ

hol(E) → C by evαz(ξ) = ⟨αz; ξ(z)⟩.
It is easy to show that evαz is continuous and that the set of continuous functionals evαz ,
αz ∈ E∗

z, is point separating. Since Γhol(E) is a Suslin space by COhol-6, this part of the
theorem follows in the same manner as the corresponding part of Theorem 6.3.

(iii) ⇐⇒ (iv) Since Γhol(E) is complete and separable (by properties COhol-2 and COhol-
4), the arguments from the corresponding part of Theorem 6.3 apply here.

(v) ⇐⇒ (vi) We recall our discussion of von Neumann bounded sets in locally con-
vex topological vector spaces preceding Lemma 3.1 above. With this in mind and using
Lemma 4.3, this part of the proposition follows immediately. ■
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Since holomorphic vector bundles are smooth vector bundles (indeed, real analytic vector
bundles), we have natural inclusions

LIΓhol(T;E) ⊆ CFΓ∞(T;E), LBΓhol(T;E) ⊆ CFΓ∞(T;E). (6.4)

Moreover, by Proposition 4.2 we have the following.

6.15 Proposition: (Time-varying holomorphic sections as time-varying smooth
sections) For an holomorphic vector bundle π : E → M and an interval T, the inclu-
sions (6.4) actually induce inclusions

LIΓhol(T;E) ⊆ LIΓ∞(T;E), LBΓhol(T;E) ⊆ LBΓ∞(T;E).

Note that Theorem 6.14 applies, in particular, to vector fields and functions, giving
the classes CFhol(T;M), LIChol(T;M), and LBChol(T;M) of functions, and the classes
CFΓhol(T;TM), LIΓhol(T;TM), and LBΓhol(T;TM) of vector fields. Unlike in the smooth
case preceding and the real analytic case following, there is, in general, not an equivalent
weak-L version of the preceding definitions and results. This is because our Theorem 4.5
on the equivalence of the COhol-topology and the corresponding weak-L topology holds
only on Stein manifolds. Let us understand the consequences of this with what we are doing
here via an example.

6.16 Example: (Time-varying holomorphic vector fields on compact manifolds)
Let M be a compact holomorphic manifold. By [Fritzsche and Grauert 2002, Corol-
lary IV.1.3], the only holomorphic functions on M are the locally constant functions. There-
fore, since ∂f = 0 for every f ∈ Chol(M), a literal application of the definition shows that,
were we to make weak-L characterisations of vector fields, i.e., give their properties by
ascribing those properties to the functions obtained after Lie differentiation, we would have
CFΓhol(T;TM), and, therefore, also LIΓhol(T;TM) and LBΓhol(T;TM), consisting of all
maps X : T × M → TM satisfying X(t, z) ∈ TzM for all z ∈ M. This is not a very useful
class of vector fields. •

The following result summarises the various ways of verifying the measurability, integra-
bility, and boundedness of holomorphic time-varying vector fields, taking into account that
the preceding example necessitates that we restrict our consideration to Stein manifolds.

6.17 Theorem: (Weak characterisations of measurability, integrability, and
boundedness of holomorphic time-varying vector fields) Let M be a Stein man-
ifold, let T ⊆ R be a time-domain, and let X : T ×M → TM have the property that Xt is
an holomorphic vector field for each t ∈ T. Then the following statements are equivalent:

(i) t 7→ Xt is measurable;

(ii) t 7→ LXtf is measurable for every f ∈ Chol(M);

(iii) t 7→ evz ◦Xt is measurable for every z ∈ M;

(iv) t 7→ evz ◦LXtf is measurable for every f ∈ Chol(M) and every z ∈ M,

the following two statements are equivalent:

(v) t 7→ Xt is locally Bochner integrable;

(vi) t 7→ LXtf is locally Bochner integrable for every f ∈ Chol(M),

and the following two statements are equivalent:
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(vii) t 7→ Xt is locally essentially von Neumann bounded;

(viii) t 7→ LXtf is locally essentially von Neumann bounded for every f ∈ Chol(M).

Proof: This follows from Theorem 6.14, along with Corollary 4.6. ■

Now we consider flows for the class of time-varying holomorphic vector fields defined
above. Let X ∈ LIΓhol(T;TM). According to Proposition 6.15, we can define the flow of X
just as in the real case, and we shall continue to use the notation DX ⊆ T × T ×M, ΦXt,t0 ,

and ΦX : DX → M as in the smooth case. The following result provides the attributes of
the flow in the holomorphic case. This result follows easily from the constructions in the
usual existence and uniqueness theorem for ordinary differential equations, but we could
not find the result explicitly in the literature for measurable time-dependence. Thus we
provide the details here.

6.18 Theorem: (Flows of vector fields from LIΓhol(T;TM)) Let M be an holomorphic
manifold, let T be an interval, and let X ∈ LIΓhol(T;TM). Then there exist a subset DX ⊆
T×T×M and a map ΦX : DX → M with the following properties for each (t0, z0) ∈ T×M:

(i) the set
TX(t0, z0) = {t ∈ T | (t, t0, z0) ∈ DX}

is an interval;

(ii) there exists a locally absolutely continuous curve t 7→ ξ(t) satisfying

ξ′(t) = X(t, ξ(t)), ξ(t0) = z0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX(t0, z0);
(iii) d

dtΦ
X(t, t0, z0) = X(t,ΦX(t, t0, z0)) for almost all t ∈ TX(t0, z0);

(iv) for each t ∈ T for which (t, t0, z0) ∈ DX , there exists a neighbourhood U of z0 such
that the mapping z 7→ ΦX(t, t0, z) is defined and of class Chol on U.

Proof: Given Proposition 6.15, the only part of the theorem that does not follow from
Theorem 6.6 is the holomorphic dependence on initial conditions. This is a local assertion,
so we let (U, ϕ) be an holomorphic chart for M with coordinates denoted by (z1, . . . , zn).
We denote by X : T × ϕ(U) → Cn the local representative of X. By Proposition 6.15, this
local representative is locally integrally C∞-bounded. To prove holomorphicity of the flow,
we recall the construction for the existence and uniqueness theorem for the solutions of the
initial value problem

γ̇(t) = X(t,γ(t)), γ(t0) = z,

see [e.g., Schuricht and von der Mosel 2000, §1.2]. On some suitable product domain
T′ × B(r, z0) (the ball being contained in ϕ(U) ⊆ Cn) we denote by C0(T′ × B(r, z0);Cn)
the Banach space of continuous mappings with the ∞-norm [Hewitt and Stromberg 1975,
Theorem 7.9]. We define an operator

Φ: C0(T′ × B(r, z0);C
n) → C0(T′ × B(r, z0);C

n)

by

Φ(γ)(t, z) = z +

∫ t

t0

X(s,γ(s, z)) ds.
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One shows that this mapping, with domains suitably defined, is a contraction mapping, and
so, by iterating the mapping, one constructs a sequence in C0(T′×B(r, z0);Cn) converging
to a fixed point, and the fixed point, necessarily satisfying

γ(t, z) = z +

∫ t

t0

X(s,γ(s, z)) ds

and γ(t0, z) = z, has the property that γ(t,z) = ΦX(t, t0, z).
Let us consider the sequence one constructs in this procedure. We define γ0 ∈ C0(T′ ×

B(r, z0);Cn) by γ0(t, z) = z. Certainly γ0 is holomorphic in z. Now define γ1 ∈ C0(T′ ×
B(r, z0);Cn) by

γ1(t, z) = Φ(γ0) = z +

∫ t

t0

X(s,z) ds.

Since X ∈ LIΓhol(T′;TB(r,z0)), we have

∂

∂z̄j
γ1(t, z) =

∂

∂z̄j
z +

∫ t

t0

∂

∂z̄j
X(s,γ0(s, z)) ds = 0, j ∈ {1, . . . , n},

swapping the derivative and the integral by the Dominated Convergence Theorem [Jost
2005, Theorem 16.11] (also noting by Proposition 6.15 that derivatives of X are bounded
by an integrable function). Thus γ1 is holomorphic for each fixed t ∈ T′. By iterating with
t fixed, we have a sequence (γj,t)j∈Z≥0

of holomorphic mappings from B(r, z0) converging
uniformly to the function γ that describes how the solution at time t depends on the initial
condition z. The limit function is necessarily holomorphic [Gunning 1990a, page 5]. ■

6.4. The real analytic case. Let us now turn to describing real analytic time-varying
sections. We thus will consider a real analytic vector bundle π : E → M with ∇0 a real
analytic linear connection on E, ∇ a real analytic affine connection on M, G0 a real analytic
fibre metric on E, andG a real analytic Riemannian metric onM. This defines the seminorms
pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), describing the Cω-topology as in Theorem 5.5.

6.19 Definition: (Real analytic Carathéodory section) Let π : E → M be a real ana-
lytic vector bundle and let T ⊆ R be an interval. A Carathéodory section of class Cω

of E is a map ξ : T ×M → E with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) = ξ(t, x) is of class Cω;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓω(T;E) we denote the set of
Carathéodory sections of class Cω of E. •

Now we turn to placing restrictions on the time-dependence to allow us to do useful
things.
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6.20 Definition: (Locally integrally Cω-bounded and locally essentially Cω-
bounded sections) Let π : E → M be a real analytic vector bundle and let T ⊆ R
be an interval. A Carathéodory section ξ : T ×M → E of class Cω is

(i) locally integrally Cω-bounded if, for every compact set K ⊆ M and every a ∈
c↓0(Z≥0;R>0), there exists g ∈ L1

loc(T;R≥0) such that

a0a1 · · · am∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K, m ∈ Z≥0,

and is

(ii) locally essentially Cω-bounded if, for every compact set K ⊆ M and every a ∈
c↓0(Z≥0;R>0), there exists g ∈ L∞

loc(T;R≥0) such that

a0a1 · · · am∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K, m ∈ Z≥0.

The set of locally integrally Cω-bounded sections of E with time-domain T is denoted by
LIΓω(T,E) and the set of locally essentially Cω-bounded sections of E with time-domain T
is denoted by LBΓω(T;E). •

As with smooth and holomorphic sections, the preceding definitions admit topological
characterisations.

6.21 Theorem: (Topological characterisation of real analytic Carathéodory sec-
tions) Let π : E → M be a real analytic manifold and let T ⊆ R be an interval. For a map
ξ : T ×M → E satisfying ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M, the following two statements
are equivalent:

(i) ξ ∈ CFΓω(T;E);

(ii) the map T ∋ t 7→ ξt ∈ Γω(E) is measurable,

the following two statements are equivalent:

(iii) ξ ∈ LIΓω(T;E);

(iv) the map T ∋ t 7→ ξt ∈ Γω(E) is measurable and locally Bochner integrable,

and the following two statements are equivalent:

(v) ξ ∈ LBΓω(T;E);

(vi) the map T ∋ t 7→ ξt ∈ Γω(E) is measurable and locally essentially von Neumann
bounded.

Proof: Just as in the smooth case in Theorem 6.3, this is deduced from the following
facts: (1) evaluation maps evαx , αx ∈ E∗, are continuous and point separating; (2) Γω(E)
is a Suslin space (property Cω-6); (3) Γω(E) is complete and separable (properties Cω-2
and Cω-4; (4) we understand von Neumann bounded subsets of Γω(E) by Lemma 5.6. ■

Note that Theorem 6.21 applies, in particular, to vector fields and functions, giv-
ing the classes CFω(T;M), LICω(T;M), and LBCω(T;M) of functions, and the classes
CFΓω(T;TM), LIΓω(T;TM), and LBΓω(T;TM) of vector fields. The following result then
summarises the various ways of verifying the measurability, integrability, and boundedness
of real analytic time-varying vector fields.
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6.22 Theorem: (Weak characterisations of measurability, integrability, and
boundedness of real analytic time-varying vector fields) Let M be a real analytic
manifold, let T ⊆ R be a time-domain, and let X : T×M → TM have the property that Xt

is a real analytic vector field for each t ∈ T. Then the following statements are equivalent:

(i) t 7→ Xt is measurable;

(ii) t 7→ LXtf is measurable for every f ∈ Cω(M);

(iii) t 7→ evx ◦Xt is measurable for every x ∈ M;

(iv) t 7→ evx ◦LXtf is measurable for every f ∈ Cω(M) and every x ∈ M,

the following two statements are equivalent:

(v) t 7→ Xt is locally Bochner integrable;

(vi) t 7→ LXtf is locally Bochner integrable for every f ∈ Cω(M),

and the following two statements are equivalent:

(vii) t 7→ Xt is locally essentially bounded;

(viii) t 7→ LXtf is locally essentially bounded in the von Neumann bornology for every
f ∈ Cω(M).

Proof: This follows from Theorem 6.21, along with Corollary 5.9. ■

Let us verify that real analytic time-varying sections have the expected relationship to
their smooth brethren.

6.23 Proposition: (Time-varying real analytic sections as time-varying smooth
sections) For a real analytic vector bundle π : E → M and an interval T, we have

LIΓω(T;E) ⊆ LIΓ∞(T;E), LBΓω(T;M) ⊆ LBΓ∞(T;M).

Proof: It is obvious that real analytic Carathéodory sections are smooth Carathéodory
sections.

Let us verify only that LIΓω(T;E) ⊆ LIΓ∞(T;E), as the essentially bounded case follows
in the same manner. We let K ⊆ M be compact and let m ∈ Z≥0. Choose (arbitrarily)
a ∈ c↓0(Z≥0;R>0). Then, if ξ ∈ LIΓω(T;E), there exists g ∈ L1

loc(T;R≥0) such that

a0a1 · · · am∥jmξt(x)∥Gm
≤ g(t), x ∈ K, t ∈ T, m ∈ Z≥0.

Thus, taking ga,m ∈ L1
loc(T;R≥0) defined by

ga,m(t) =
1

a0a1 · · · am
g(t),

we have
∥jmξt(x)∥Gm

≤ ga,m(t), x ∈ K, t ∈ T

showing that ξ ∈ LIΓ∞(T;E). ■

Having understood the comparatively simple relationship between real analytic and
smooth time-varying sections, let us consider the correspondence between real analytic and
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holomorphic time-varying sections. First, note that if T ⊆ R is an interval and if U ∈ NM

is a neighbourhood of M in a complexification M, then we have an inclusion

ρU,M : CFΓhol,R(T;E|U) → CFΓω(T;E)

ξ 7→ ξ|M.

(Here the notation CFΓhol,R(T;E|U) refers to those Carathéodory sections that are real
when restricted to M, cf. the constructions of Section 5.1.) However, this inclusion does not
characterise all real analytic Carathéodory sections, as the following example shows.

6.24 Example: (A real analytic Carathéodory function not extending to one that
is holomorphic) Let T be any interval for which 0 ∈ int(T). We consider the real analytic
Carathédory function on R with time-domain T defined by

f(t, x) =

{
t2

t2+x2
, t ̸= 0,

0, t = 0.

It is clear that x 7→ f(t, x) is real analytic for every t ∈ T and that t 7→ f(t, x) is measurable
for every x ∈ R. We claim that there is no neighbourhood U ⊆ C of R ⊆ C such that f is
the restriction to R of an holomorphic Carathéodory function on U. Indeed, let U ⊆ C be
a neighbourhood of R and choose t ∈ R>0 sufficiently small that D(t, 0) ⊆ U. Note that
ft : x 7→ 1

1+(x/t)2
does not admit an holomorphic extension to any open set containing D(t, 0)

since the radius of convergence of z 7→ 1
1+(z/t)2

is t, cf. the discussion at the beginning of

Section 5. Note that our construction actually shows that in no neighbourhood of (0, 0) ∈
R ×R is there an holomorphic extension of f . •

Fortunately, the example will not bother us, although it does serve to illustrate that the
following result is not immediate.

6.25 Theorem: (Real analytic time-varying vector fields as restrictions of holo-
morphic time-varying vector fields) Let π : E → M be a real analytic vector bundle
with complexification π : E → M, and let T be a time-domain. For a map ξ : T ×M → E
satisfying ξ(t, x) ∈ Ex for every (t, x) ∈ T ×M, the following statements hold:

(i) if ξ ∈ LIΓω(T;E), then, for each (t0, x0) ∈ T × M and each bounded subinterval
T′ ⊆ T containing t0, there exist a neighbourhood U of x0 in M and ξ ∈ Γhol(T′;E|U)
such that ξ(t, x) = ξ(t, x) for each t ∈ T′ and x ∈ U ∩M;

(ii) if, for each x0 ∈ M, there exist a neighbourhood U of x0 in M and ξ ∈ Γhol(T;E|U)
such that ξ(t, x) = ξ(t, x) for each t ∈ T and x ∈ U ∩M, then ξ ∈ LIΓω(T;E).

Proof: (i) We let T′ ⊆ T be a bounded subinterval containing t0 and let U be a relatively
compact neighbourhood of x0. Let (Uj)j∈Z>0 be a sequence of neighbourhoods of cl(U) in
M with the properties that cl(Uj+1) ⊆ Uj and that ∩j∈Z>0Uj = cl(U). We first note that

L1(T′; Γhol,R(E|Uj)) ≃ L1(T′;R)⊗̂πΓ
hol,R(E|Uj),

with ⊗̂π denoting the completed projective tensor product [Schaefer and Wolff 1999, The-
orem III.6.5]. The theorem of Schaefer and Wolff is given for Banach spaces, and they also
assert the validity of this for locally convex spaces; thus we also have

L1(T′;G hol,R

cl(U),E
) ≃ L1(T′;R)⊗̂πG

hol,R

cl(U),E
.
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In both cases, the isomorphisms are in the category of locally convex topological vector
spaces. We now claim that

L1(T′;R)⊗π G
hol,R

cl(U),E

is the direct limit of the directed system

(L1(T′;R)⊗π Γ
hol,R(E|Uj)))j∈Z>0

with the associated mappings id⊗πrcl(U),j , j ∈ Z>0, where rcl(U),j is defined as in (5.1).
(Here ⊗π is the uncompleted projective tensor product). We, moreover, claim that the
direct limit topology is boundedly retractive, meaning that bounded sets in the direct limit
are contained in and bounded in a single component of the directed system and, moreover,
the topology on the bounded set induced by the component is the same as that induced by
the direct limit.

Results of this sort have been the subject of research in the area of locally convex
topologies, with the aim being to deduce conditions on the structure of the spaces comprising
the directed system, and on the corresponding mappings (for us, the inclusion mappings
and their tensor products with the identity on L1(T′;R)), that ensure that direct limits
commute with tensor product, and that the associated direct limit topology is boundedly
retractive. We shall make principal use of the results given by Mangino [1997]. To state the
arguments with at least a little context, let us reproduce two conditions used by Mangino.

Condition (M) of Retakh [1970]: Let (Vj)j∈Z>0 be a directed system of locally convex
spaces with strict direct limit V. The direct limit topology of V satisfies condition (M) if
there exists a sequence (Oj)j∈Z>0 for which

(i) Oj is a balanced convex neighbourhood of 0 ∈ Vj ,

(ii) Oj ⊆ Oj+1 for each j ∈ Z>0, and

(iii) for every j ∈ Z>0, there exists k ≥ j such that the topology induced on Oj by its
inclusion in Vk and its inclusion in V agree. •

Condition (MO) of Mangino [1997]: Let (Vj)j∈Z>0 be a directed system of metrisable
locally convex spaces with strict direct limit V. Let ij,k : Vj → Vk be the inclusion for k ≥ j
and let ij : Vj → V be the induced map into the direct limit.

Suppose that, for each j ∈ Z>0, we have a sequence (pj,l)l∈Z>0 of seminorms defining
the topology of Vj such that pj,l1 ≥ pj,l2 if l1 ≥ l2. Let

Vj,l = Vj/{v ∈ Vj | pj,l(v) = 0}

and denote by p̂j,l the norm on Vj,l induced by pj,l [Schaefer and Wolff 1999, page 97]. Let
πj,l : Vj → Vj,l be the canonical projection. Let Vj,l be the completion of Vj,l. The family
(Vj,l)j,l∈Z>0 is called a projective spectrum for Vj . Denote

Oj,l = {v ∈ Vj | pj,l(v) ≤ 1}.

The direct limit topology of V satisfies condition (MO) if there exists a sequence
(Oj)j∈Z>0 and if, for every j ∈ Z>0, there exists a projective spectrum (Vj,l)j,l∈Z>0 for Vj
for which

(i) Oj is a balanced convex neighbourhood of 0 ∈ Vj ,
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(ii) Oj ⊆ Oj+1 for each j ∈ Z>0, and

(iii) for every j ∈ Z>0, there exists k ≥ j such that, for every l ∈ Z>0, there exists
A ∈ L(V;Vk,l) satisfying

(πk,l ◦ ij,k −A ◦ ij)(Oj) ⊆ cl(πk,l(Ok,l)),

the closure on the right being taken in the norm topology of Vk,l. •
With these concepts, we have the following statements. We let (Vj)j∈Z>0 be a directed

system of metrisable locally convex spaces with strict direct limit V.

1. If the direct limit topology on V satisfies condition (MO), then, for any Banach space
U, U⊗π V is the direct limit of the directed system (U⊗π Vj)j∈Z>0 , and the direct limit
topology on U⊗π V satisfies condition (M) [Mangino 1997, Theorem 1.3].

2. If the spaces Vj , j ∈ Z>0, are nuclear and if the direct limit topology on V is regular, then
the direct limit topology on V satisfies condition (MO) [Mangino 1997, Theorem 1.3].

3. If the direct limit topology on V satisfies condition (M), then this direct limit topology
is boundedly retractive [Wengenroth 1995].

Using these arguments we make the following conclusions.

4. The direct limit topology on G hol,R

cl(U),E
satisfies condition (MO) (by virtue of assertion 2

above and by the properties of the direct limit topology enunciated in Section 5.3,
specifically that the direct limit is a regular direct limit of nuclear Fréchet spaces).

5. The space L1(T′;R)⊗πG
hol,R

cl(U),E
is the direct limit of the directed sequence (L1(T′;R)⊗π

Γhol,R(E|Uj))j∈Z>0 (by virtue of assertion 1 above).

6. The direct limit topology on L1(T′;R) ⊗π G
hol,R

cl(U),E
satisfies condition (M) (by virtue of

assertion 1 above).

7. The direct limit topology on L1(T′;R)⊗π G
hol,R

cl(U),E
is boundedly retractive (by virtue of

assertion 3 above).

We shall also need the following lemma.

1 Lemma: Let K ⊆ M be compact. If [ξ]K ∈ L1(T′;G hol,R
K,E ) then there exists a sequence

([ξk]K)k∈Z>0 in L1(T′;R)⊗ G hol,R
K,E converging to [ξ]K in the topology of L1(T′;G hol

K,E
).

Proof: Since L1(T′;G hol,R

K,E
) is the completion of L1(T′;R) ⊗π G

hol,R

K,E
, there exists a net

([ξi]K)i∈I converging to [ξ], so the conclusion here is that we can actually find a converging
sequence.

To prove this we argue as follows. Recall properties G hol,R-5 and G hol,R-6 of G hol,R

K,E
,

indicating that it is reflexive and its dual is a nuclear Fréchet space. Thus G hol,R

K,E
is the

dual of a nuclear Fréchet space. Also recall from property G hol,R-8 that G hol,R

K,E
is a Suslin

space. Now, by combining [Thomas 1975, Theorem 7] with remark (1) at the bottom of
page 76 of [Thomas 1975] (and being aware that Bochner integrability as defined by Thomas
is not a priori the same as Bochner integrability as we mean it), there exists a sequence

([ξk]K)k∈Z>0 of simple functions, i.e., elements of L1(T′;R)⊗ G hol,R

K,E
, such that

lim
k→∞

[ξk(t)]K = [ξ(t)]K , a.e. t ∈ T′,
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(this limit being in the topology of G hol,R

K,E
) and

lim
k→∞

∫
T′
([ξ(t)]K − [ξk(t)]K) dt = 0.

This implies, by the Dominated Convergence Theorem, that

lim
k→∞

∫
T′
pωK,a([ξ(t)]K − [ξk(t)]K) dt = 0

for every a ∈ c↓0(Z≥0;R>0), giving convergence in

L1(T′;G hol,R

K,E
) ≃ L1(T′;R)⊗̂πG

hol,R
K,E ,

as desired. ▼

The remainder of the proof is straightforward. Since ξ ∈ LIΓω(T;E), the map

T′ ∋ t 7→ ξt ∈ Γω(E)

is an element of L1(T′; Γω(E)) by Theorem 6.21. Therefore, if [ξ]cl(U) is the image of ξ under

the natural mapping from Γω(E) to G hol,R

cl(U),E
, the map

T′ ∋ t 7→ [ξ(t)]cl(U) ∈ G
hol,R

cl(U),E

is an element of L1(T′;G hol,R

cl(U),E
), since continuous linear maps commute with integra-

tion [Beckmann and Deitmar 2011, Lemma 1.2]. Therefore, by the Lemma above, there

exists a sequence ([ξk]cl(U))k∈Z>0 in L1(T′;R) ⊗ G hol,R

cl(U),E
that converges to [ξ]cl(U). By our

conclusion 5 above, the topology in which this convergence takes place is the completion of
the direct limit topology associated to the directed system (L1(T′;R)⊗πΓ

hol,R(E|Uj))j∈Z>0 .

The direct limit topology on L1(T′;R) ⊗π G
hol,R

cl(U),E
is boundedly retractive by our conclu-

sion 7 above. This is easily seen to imply that the direct limit topology is sequentially
retractive, i.e., that convergent sequences are contained in, and convergent in, a component
of the direct limit [Fernández 1990]. This implies that there exists j ∈ Z>0 such that the
sequence (ξk)k∈Z>0 converges in L1(T′; Γhol,R(E|Uj)) and so converges to a limit η satisfying
[η]cl(Uj) = [ξ]cl(Uj). Thus ξ can be holomorphically extended to Uj . This completes this
part of the proof.

(ii) Let K ⊆ M be compact and let a ∈ c↓0(Z≥0;R>0). Let (Uj)j∈Z>0 be a sequence
of neighbourhoods of K in M such that cl(Uj+1) ⊆ Uj and K = ∩j∈Z>0Uj . By hypothesis,
for x ∈ K, there is a relatively compact neighbourhood Ux ⊆ M of x in M such that there
is an extension ξx ∈ LIΓhol,R(T;E|Ux) of ξ|(T × (Ux ∩ M)). Let x1, . . . , xk ∈ K be such
that K ⊆ ∪kj=1Uxj and let l ∈ Z>0 be sufficiently large that Ul ⊆ ∪kj=1Uxj , so ξ admits an

holomorphic extension ξ ∈ LIΓhol,R(T;EUl).
Now we show that the above constructions imply that ξ ∈ LIΓω(T;TM). Let g ∈

L1
loc(T;R≥0) be such that

∥ξ(t, z)∥G ≤ g(t), (t, z) ∈ T × Ul.
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By Proposition 4.2, there exist C, r ∈ R>0 such that

∥jmξ(t, x)∥ ≤ Cr−mg(t)

for all m ∈ Z≥0, t ∈ T, and x ∈ K. Now let N ∈ Z≥0 be such that aN+1 < r and let
g ∈ L1

loc(T;R≥0) be such that

Ca0a1 · · · amr−mg(t) ≤ g(t)

for m ∈ {0, 1, . . . , N}. Now, if m ∈ {0, 1, . . . , N}, we have

a0a1 · · · am∥jmξ(t, x)∥Gm
≤ a0a1 · · · amCr−mg(t) ≤ g(t)

for (t, x) ∈ T ×K. If m > N we also have

a0a1 · · · am∥jmξ(t, x)∥Gm
≤ a0a1 · · · aNr−Nrm∥jmξ(t, x)∥Gm

≤ a0a1 · · · aNr−NCg(t) ≤ g(t),

for (t, x) ∈ T ×K, as desired. ■

Finally, let us show that, according to our definitions, real analytic time-varying vector
fields possess flows depending in a real analytic way on initial condition.

6.26 Theorem: (Flows of vector fields from LIΓω(T;TM)) Let M be a real analytic
manifold, let T be an interval, and let X ∈ LIΓω(T;TM). Then there exist a subset DX ⊆
T×T×M and a map ΦX : DX → M with the following properties for each (t0, x0) ∈ T×M:

(i) the set
TX(t0, x0) = {t ∈ T | (t, t0, x0) ∈ DX}

is an interval;

(ii) there exists a locally absolutely continuous curve t 7→ ξ(t) satisfying

ξ′(t) = X(t, ξ(t)), ξ(t0) = x0,

for almost all t ∈ |t0, t1| if and only if t1 ∈ TX(t0, x0);
(iii) d

dtΦ
X(t, t0, x0) = X(t,ΦX(t, t0, x0)) for almost all t ∈ TX(t0, x0);

(iv) for each t ∈ T for which (t, t0, x0) ∈ DX , there exists a neighbourhood U of x0 such
that the mapping x 7→ ΦX(t, t0, x) is defined and of class Cω on U.

Proof: The theorem follows from Theorems 6.18 and 6.25, noting that the flow of an holo-
morphic extension will leave invariant the real analytic manifold. ■

6.5. Mixing regularity hypotheses. It is possible to mix regularity conditions for vector
fields. By this we mean that one can consider vector fields whose dependence on state
is more regular than their joint state/time dependence. This can be done by considering
m ∈ Z≥0, m

′ ∈ {0, lip}, r ∈ Z≥0 ∪ {∞, ω}, and r′ ∈ {0, lip} satisfying m+m′ < r+ r′, and
considering vector fields in

CFΓr+r
′
(T;TM) ∩ LIΓm+m′

(T;TM) or CFΓr+r
′
(T;TM) ∩ LBΓm+m′

(T;TM),
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using the obvious convention that ∞+ lip = ∞ and ω + lip = ω. This does come across as
quite unnatural in our framework, and perhaps it is right that it should. Moreover, because
the COm+m′

-topology for Γr+r
′
(TM) will be complete if and only if m+m′ = r + r′, some

of the results above will not translate to this mixed class of time-varying vector fields:
particularly, the results on Bochner integrability require completeness. Nonetheless, this
mixing of regularity assumptions is quite common in the literature. Indeed, this has always
been done in the real analytic case, since the notions of “locally integrally Cω-bounded”
and “locally essentially Cω-bounded” given in Definition 6.20 are being given for the first
time in this monograph.
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