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Abstract

The lack of feedback-invariance of mathematical formulations of nonlinear control
theory has been a thorn in the side of understanding the basic structure of control sys-
tems. Moreover, it is a thorn whose presence has largely come to be accepted, and this
has prohibited a complete understanding of certain fundamental structural problems
for nonlinear systems. One way to understand the issue is as follows: just as an explicit
parameterisation of system dynamics by state, i.e., a choice of coordinates, can impede
the identification of general structure, so it is too with an explicit parameterisation
of system dynamics by control. However, such explicit and fixed parameterisation by
control is commonplace in control theory, leading to definitions, methodologies, and
results that depend in unexpected ways on control parameterisation. This unexpected
dependence makes it virtually impossible to comprehensively address the fundamental
structural problems in control theory, such as controllability and stabilisability.

In this monograph we present a framework for modelling systems in geometric con-
trol theory in a manner that does not make any choice of parameterisation by control;
the systems are called “tautological control systems.” For the framework to be coherent,
it relies in a fundamental way on topologies for spaces of vector fields. As such, we take
advantage of recent characterisations of topologies for spaces of vector fields possessing a
variety of degrees of regularity: finitely differentiable; Lipschitz; smooth; real analytic.
As part of the presentation, therefore, locally convex topologies for spaces of vector
fields are comprehensively reviewed. It is these locally convex topologies that provide
for the unified treatment of time-varying vector fields that underpins the approach.

This monograph presents simply the foundations of the approach, as well as the
basic results that indicate the structural attributes of tautological control systems. In
particular, we are able to prove the feedback-invariance of the approach. Future work
will involve using this feedback-invariant approach to address the basic problems of
control theory, e.g., controllability, stabilisability, and optimality.
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1. Introduction, motivation, and background

One can study nonlinear control theory from the point of view of applications, or from
a more fundamental point of view, where system structure is a key element. From the
practical point of view, questions that arise are often of the form, “How can we. . . ”, for
example, “How can we steer a system from point A to point B?” or, “How can we stabilise
this unstable equilibrium point?” or, “How can we manoeuvre this vehicle in the most
efficient manner?” From a fundamental point of view, the problems are often of a more
existential nature, with, “How can we” replaced with, “Can we”. These existential questions
are often very difficult to answer in any sort of generality.

As one thinks about these fundamental existential questions and looks into the quite
extensive existing literature, one comes to understand that the question, “What is a control
system?” is one whose answer must be decided upon with some care. One also begins to
understand that structure coming from common physical models can be an impediment to
general understanding. For example, in a real physical model, states are typically physical
quantities of interest, e.g., position, current, quantity of reactant X, and so the explicit
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labelling of these is natural. This labelling amounts to a specific choice of coordinates, and
it is now well understood that such specific choices of coordinate obfuscate structure, and
so are to be avoided in any general treatment. In like manner, in a real physical model,
controls are likely to have meaning that one would like to keep track of, e.g., force, voltage,
flow. The maintenance of these labels in a model provides a specific parameterisation of the
inputs to the system, completely akin to providing a specific coordinate parameterisation
for states. However, while specific coordinate parameterisations have come (by many) to
be understood as a bad idea in a general treatment, this is not the case for specific control
parameterisations; models with fixed control parameterisation are commonplace in control
theory. In contrast to the situation with dependence of state on parameterisation, the
problem of eliminating dependence of control on parameterisation is not straightforward. In
our discussion below we shall overview some of the common models for control systems, and
some ways within these modelling frameworks for overcoming the problem of dependence on
control parameterisation. As we shall see, the common models all have some disadvantage or
other that must be confronted when using them. In this monograph we provide a means for
eliminating explicit parameterisation of controls that, we believe, overcomes the problems
with existing techniques. Our idea has some of its origins in the work on “chronological
calculus” of Agrachev and Gamkrelidze [1978] (see also [Agrachev and Sachkov 2004]), but
the approach we describe here is more general (in ways that we will describe below) and
more fully developed as concerns its relationship to control theory (chronological calculus
is primarily a device for understanding time-varying vector fields and flows). There are
some ideas similar to ours in the approach of Sussmann [1998], but there are also some
important differences, e.g., our families of vector fields are time-invariant (corresponding to
vector fields with frozen control values) while Sussmann considers families of time-varying
vector fields (corresponding to selecting an open-loop control). Also, the work of Sussmann
does not touch on real analytic systems.

We are interested in models described by ordinary differential equations whose states
are in a finite-dimensional manifold. Even within this quite narrow class of control systems,
there is a lot of room to vary the models one might consider. Let us now give a brief outline
of the sorts of models and methodologies of this type that are commonly present in the
literature.

1.1. Models for geometric control systems: pros and cons. By this time, it is well-
understood that the language of systems such as we are considering should be founded in
differential geometry and vector fields on manifolds [Agrachev and Sachkov 2004, Bloch
2003, Bullo and Lewis 2004, Isidori 1995, Jurdjevic 1997, Nijmeijer and van der Schaft
1990]. This general principle can go in many directions, so let us discuss a few of these.
Our presentation here is quite vague and not very careful. In the main body of the work,
we will be less vague and more careful.

1.1.1. Family of vector field models. Given that manifolds and vector fields are impor-
tant, a first idea of what might comprise a control system is that it is a family of vector
fields. For these models, trajectories are concatenations of integral curves of vector fields
from the family. This is the model used in the development of the theory of accessibil-
ity of Sussmann and Jurdjevic [1972] and in the early work of Sussmann [1978] on local
controllability. The work of Hermann and Krener [1977], while taking place in the setting
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of systems parameterised by control (such as we shall discuss in Section 1.1.2), uses the
machinery of families of vector fields to study controllability and observability of nonlinear
systems. Indeed, a good deal of the early work in control theory is developed in this sort
of framework, and it is more or less sufficient when dealing with questions where piecewise
constant controls are ample enough to handle the problems of interest. The theory is also
highly satisfying in that it is very differential geometric, and the work utilising this approach
is often characterised by a certain elegance.

However, the approach does have the drawback of not handling well some of the more
important problems of control theory, such as feedback (where controls are specified as
functions of state) and optimal control (where piecewise constant controls are often not a
sufficiently rich class, cf. [Fuller 1960]).

It is worth mentioning at this early stage in our presentation that one of the ingredients
of our approach is a sort of fusion of the “family of vector fields” approach with the more
common control parameterisation approach to whose description we now turn.

1.1.2. Models with control as a parameter. Given the limitations of the “family of vector
fields” models for physical applications and also for a theory where merely measurable
controls are needed, one feels as if one has to have the control as a parameter in the model,
a parameter that one can vary in a quite general manner. These sorts of models are typically
described by differential equations of the form

ẋ(t) = F (x(t), u(t)),

where t 7→ u(t) is the control and t 7→ x(t) is a corresponding trajectory. For us, the
trajectory is a curve on a differentiable manifold M, but there can be some freedom in
attributing properties to the control set C in which u takes its values, and on the properties
of the system dynamics F . (In Section 3.3 we describe classes of such models in differential
geometric terms.) This sort of model is virtually synonymous with “nonlinear control
system” in the existing control literature. A common class of systems that are studied are
control-affine systems, where

F (x,u) = f0(x) +

k∑
a=1

uafa(x),

for vector fields f0, f1, . . . , fk on M, and where the control u takes values in a subset of Rk.
For control-affine systems, there is an extensively developed theory of controllability based
on free Lie algebras [Bianchini and Stefani 1993, Kawski 1990a, Kawski 1999, Kawski 2006,
Sussmann 1983, Sussmann 1987]. We will see in Section 3.3.2 that control-affine systems
fit into our framework in a particularly satisfying way.

The above general model, and in particular the control-affine special case, are all exam-
ples where there is an explicit parameterisation of the control set, i.e., the control u lives in
a particular set and the dynamics F is determined to depend on u in some particular way.
It could certainly be the case, for instance, that one could have two different systems

ẋ(t) = F1(x(t), u1(t)), ẋ(t) = F2(x(t), u2(t))
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with exactly the same trajectories. This has led to an understanding that one should study
equivalence classes of systems. A little precisely, if one has two systems

ẋ1(t) = F1(x1(t), u1(t)), ẋ2(t) = F2(x2(t), u2(t)),

with xa(t) ∈ Ma and ua(t) ∈ Ca, a ∈ {1, 2}, then there may exist a diffeomorphism Φ: M1 →
M2 and a mapping κ : M1 × C1 → C2 (with some sort of regularity that we will not bother
to mention) such that

1. Tx1Φ ◦ F1(x1, u1) = F2(Φ(x1), κ(x1, u1)) and

2. the trajectories t 7→ x1(t) for the first system are in 1–1 correspondence with those of
the second system by t 7→ Φ ◦ x1(t).

1

Let us say a few words about this sort of “feedback equivalence.” One can imagine it being
useful in at least two ways.

1. First of all, one might use it as a kind of “acid test” on the viability of a control
theoretic construction. That is, a control theoretic construction should make sense, not
just for a system, but for the equivalence class of that system. This is somewhat akin to
asking that constructions in differential geometry should be independent of coordinates.
Indeed, in older presentations of differential geometry, this was often how constructions
were defined: they were given in coordinates, and then demonstrated to behave properly
under changes of coordinate. We shall illustrate in Examples 1.1 and 1.2 below that
many common constructions in control theory do not pass the “acid test” for viability
as feedback-invariant constructions.

2. Feedback equivalence is also a device for classifying control systems, the prototypical
example being “feedback linearisation,” the determination of those systems that are
linear systems in disguise [Jakubczyk and Respondek 1980]. In differential geometry,
this is akin to the classification of geometric structures on manifolds, e.g., Riemannian,
symplectic, etc.

In Section 5.6 we shall consider a natural notion of equivalence for systems of the sort we
are introducing in this work, and we will show that “feedback transformations” are vacuous
in that they amount to being described by mappings between manifolds. This is good news,
since the whole point of our framework is to eliminate control parameterisation from the
picture and so eliminate the need for considering the effects of varying this parameterisa-
tion, cf. “coordinate-free” versus “coordinate-independent” in differential geometry. Thus
the first of the preceding uses of feedback transformations simply does not come up for
us: our framework is naturally feedback-invariant. The second use of feedback transforma-
tions, as will be seen in Section 5.6, amounts to the classification of families of vector fields
under push-forward by diffeomorphisms. This is generally a completely hopeless under-
taking, so we will have nothing to say about this. Studying this under severe restrictions
using, for example, (1) the Cartan method of equivalence, e.g., [Bryant and Gardner 1995,
Gardner 1989, Hermann 1989], (2) the method of generalised transformations, e.g., [Kang
and Krener 1992, Kang and Krener 2006], (3) the study of singularities of vector fields and

1We understand that there are many ways of formulating system equivalence. But here we are content
to be, not only vague, but far from comprehensive.
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distributions, e.g., [Jakubczyk and Respondek 1980, Pasillas-Lépine and Respondek 2002],
one might expect that some results are possible.

There is an important facet of our modelling framework that comes out in the preceding
paragraph, and to which we wish to draw special attention:

Our framework is not one for determining feedback invariants of control sys-
tems. It is one for providing models that have the attribute of feedback-
invariance.

Thus, while it is tempting to regard what we do as being in the spirit of the work mentioned
above on feedback equivalence, the approach and objectives are really quite different.

Let us consider an example that shows how a classical control-theoretic construction, lin-
earisation, is not invariant under even the very weak notion of equivalence where equivalent
systems are those with the same trajectories.

1.1 Example: (Linearisation is not well-defined) We consider the two control-affine
systems

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + x3(t)u1(t),

ẋ3(t) = u2(t),

with (x1, x2, x3) ∈ R3 and (u1, u2) ∈ R2. One can readily verify that these two sys-
tems have the same trajectories. If we linearise these two systems about the equilibrium
point at (0, 0, 0)—in the usual sense of taking Jacobians with respect to state and con-
trol [Isidori 1995, page 172], [Khalil 2001, §12.2], [Nijmeijer and van der Schaft 1990,
Proposition 3.3], [Sastry 1999, page 236], and [Sontag 1998, Definition 2.7.14]—then we
get the two linear systems

A1 =

0 1 0
0 0 0
0 0 0

 , B1 =

0 0
0 0
0 1

 , A2 =

0 1 0
0 0 1
0 0 0

 , B2 =

0 0
0 0
0 1

 ,

respectively. The linearisation on the left is not controllable, while that on the right is.
The example suggests that (1) classical linearisation is not independent of parameteri-

sation of controls and/or (2) the classical notion of linear controllability is not independent
of parameterisation of controls. Both things, in fact, are true: neither classical linearisation
nor the classical linear controllability test are feedback-invariant. Said differently, lineari-
sation and linear controllability, when applied to representatives of an equivalence class of
systems, do not allow conclusions that apply to all members of the same equivalence class.
This may come as a surprise to some. •

This example has been particularly chosen to provide probably the simplest illustration
of the phenomenon of lack of feedback-invariance of common control theoretic constructions.
Therefore, it should not be a surprise that an astute reader will notice that linearising the
“uncontrollable” system about the control (1, 0) rather than the control (0, 0) will square
things away as concerns the discrepancy between the two linearisations. But after doing
this, the questions of, “What are the proper definitions of linearisation and linear control-
lability?” still remain. Moreover, one might expect that as one moves to constructions in



8 A. D. Lewis

control theory more sophisticated than mere linearisation, the dependence of these con-
structions on the parameterisation of controls becomes more pronounced. Let us illustrate
this with another example.

1.2 Example: (Obstructions to controllability are not feedback-invariant) We
again consider two control-affine systems on R3 with two inputs:

ẋ1(t) = u1(t),

ẋ2(t) = u2(t),

ẋ3(t) = x1(t)
2 − x2(t)

2,

ẋ1(t) =
1
2(u1(t) + u2(t)),

ẋ2(t) =
1
2(u1(t)− u2(t)),

ẋ3(t) = x1(t)
2 − x2(t)

2.

Thus both systems have the drift vector field f0 = (x21 + x22)
∂

∂x3
, the system on the left

has control vector fields f1 = ∂
∂x1

and f2 = ∂
∂x2

, and the system on the right has control

vector fields f ′
1 = 1

2(
∂

∂x1
+ ∂

∂x2
) and f ′

2 = 1
2(

∂
∂x1

− ∂
∂x2

). It is pretty obvious that these
two systems have the same trajectories. We will apply the well-known “bad bracket test”
of Sussmann [1987, Theorem 7.3] to study the local controllability of these two control-
affine systems. This test says that the system is locally controllable from x0 if all “bad
brackets,” i.e., those having an odd number of drift terms and an even number of each of
the control vector fields, are a finite linear combination at x0 of “good brackets” (“good”
meaning “not bad”) of lower degree, where degree means the total number of terms in the
bracket.2 For the systems at hand, the relevant bad brackets are

[f1, [f1, f0]] = 2
∂

∂x3
, [f2, [f2, f0]] = −2

∂

∂x3
,

and
[f ′

1, [f
′
1, f0]] = 0, [f ′

2, [f
′
2, f0]] = 0.

In each case, the good brackets of lower degree vanish at (0, 0, 0). Thus, for the system on
the left, the bad bracket test is inconclusive about local controllability from (0, 0, 0) since
its hypotheses do not hold. However, for the system on the right, the hypotheses of the
bad bracket test hold (the bad brackets are zero), and so we can conclude that the system
is controllable from (0, 0, 0).

Just as Example 1.1 suggests that the classical constructions of linearisation and linear
controllability are not feedback-invariant, the preceding calculations show that one of the
well-known tests for local controllability is not feedback-invariant. This is well-known in
this case, e.g., it has been pointed out (more comprehensively than here) in [Bullo and
Lewis 2004, Example 7.22]. •

As the preceding examples illustrate, the likelihood that a sophisticated construction,
made using a specific control parameterisation, is feedback-invariant is quite small, and in
any case would need proof to verify that it is. Such verification is not typically part of the
standard development of methodologies in control theory. There are at least three reasons
for this: (1) the importance of feedback-invariance is not universally recognised; (2) such
verifications are generally extremely difficult, nearly impossible, in fact; (3) most method-
ologies will fail the verification, so it is hardly flattering to one’s methodology to point this
out. Some discussion of this is made by Lewis [2012].

2Sussmann actually has a more sophisticated notion of degree, but for this example it boils down to the
one we give.
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But the bottom line is that our framework simply eliminates the need for any of this
sort of verification. As long as one remains within the framework, feedback-invariance is
guaranteed. One of the central goals of the monograph is to provide the means by which one
does not have to leave the framework to get things done. As we shall see, certain technical
difficulties have to be overcome to achieve this, and our work relies crucially on nontrivial
recent work of Jafarpour and Lewis [2014b] on topologies for spaces of vector fields.

1.1.3. Fibred manifold models. As we have tried to make clear in the discussion just
preceding, the standard model for control theory has the unpleasant attribute of depending
on parameterisation of controls. A natural idea to overcome this unwanted dependence is
to do with controls as one does with states: regard them as taking values in a differentiable
manifold. Moreover, the manner in which control enters the model should also be handled
in an intrinsic manner. This leads to the “fibred manifold” picture of a control system
which, as far as we can tell, originated in the papers of Brockett [1977] and Willems [1979],
and was further developed by Nijmeijer [1983], Nijmeijer and van der Schaft [1982], and
van der Schaft [1983]. This idea has been picked up on by many researchers in geometric
control theory, and we point to the papers [Barbero-Liñán and Muñoz-Lecanda 2009, Bus
1984, Delgado-Téllez and Ibort 2003, Langerock 2003] as illustrative examples.

The basic idea is this. A control system is modelled by a fibred manifold π : C → M and
a bundle map F : C → TM over idM:

C
F //

π !!

TM

πTM

��
M

One says that F is “a vector field over the bundle map π.” Trajectories are then curves
t 7→ x(t) in M satisfying ẋ(t) = F (u(t)) for some t 7→ u(t) satisfying x(t) = π ◦ u(t). When
it is applicable, this is an elegant and profitable model for control theory. For example, for
control models that arise in problems of differential geometry or the calculus of variations,
this can be a useful model.

The difficulty with the model is that it is not always applicable, especially in physical
system models. The problem that arises is the strong regularity of the control set and,
implicitly, the controls: C is a manifold so it is naturally the codomain for smooth curves.
In practice, control sets in physical models are seldom manifolds, as bounds on controls lead
to boundaries of the control set. Moreover, the boundary sets are seldom smooth. Also, as
we have mentioned above, controls cannot be restricted to be smooth or piecewise smooth;
natural classes of controls are typically merely measurable. These matters become vital in
optimal control theory where bounds on control sets lead to bang-bang extremals. When
these considerations are overlaid on the fibred manifold picture, it becomes considerably less
appealing and indeed problematic. One might try to patch up the model by generalising the
structure, but at some point it ceases to be worthwhile; the framework is simply not well
suited to certain problems of control theory. Moreover, since the framework includes the
standard approach of Section 1.1.2 (at least when the control set is a manifold), it shares
with the standard approach the lack of feedback-invariance.
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1.1.4. Differential inclusion models. Another way to eliminate the control dependence
seen in the models with fixed control parameterisation is to instead work with differential
inclusions. A differential inclusion, roughly (we will be precise about differential inclusions
in Section 3.3.3), assigns to each x ∈ M a subset X (x) ⊆ TxM, and trajectories are
curves t 7→ x(t) satisfying ẋ(t) ∈ X (x(t)). There is a well-developed theory for differential
inclusions, and we refer to the literature for what is known, e.g., [Aubin and Cellina 1984,
Filippov 1988, Smirnov 2002]. There are many appealing aspects to differential inclusions
as far as our objectives here are concerned. In particular, differential inclusions do away
with the explicit parameterisations of the admissible tangent vectors at a state x ∈ M
by simply prescribing this set of admissible tangent vectors with no additional structure.
Moreover, differential inclusions generalise the control-parameterised systems described in
Section 1.1.2. Indeed, given such a control-parameterised system with dynamics F , we
associate the differential inclusion

XF (x) = {F (x, u) | u ∈ C}.

The trouble with differential inclusions is that their theory is quite difficult to understand if
one just starts with differential inclusions coming “out of the blue.” Indeed, it is immediately
clear that one needs some sort of conditions on a differential inclusion to ensure that trajec-
tories exist. Such conditions normally come in the form of some combination of compact-
ness, convexity, and semicontinuity. However, the differential inclusions that arise in control
theory are highly structured; certainly they are more regular than merely semicontinuous
and they automatically possess many trajectories. Moreover, it is not clear how to develop
an independent theory of differential inclusions, i.e., one not making reference to standard
models for control theory, that captures the desired structure (in Example 5.5–4 we suggest
a natural way of characterising a class of differential inclusions useful in geometric control
theory). Also, differential inclusions do not themselves, i.e., without additional structure,
capture the notion of a flow that is often helpful in the standard control-parameterised
models, e.g., in the Maximum Principle of optimal control theory, cf. [Sussmann 2002].
However, differential inclusions are a useful tool for studying trajectories, and we include
them in the development of our new framework in Section 5.1.

1.1.5. The “behavioural” approach. Starting with a series of papers [Willems 1986a,
Willems 1986b, Willems 1987] and the often cited review [Willems 1991], Willems provides
a framework for studying system theory, with an emphasis on linear systems. A comprehen-
sive overview of the behavioural approach to physical system modelling is given in [Willems
2007]. The idea in this approach is to provide a framework for modelling dynamical sys-
tems arising from physical models as subsets of general functions of generalised time taking
values in a set. The framework is also intended to provide a mathematical notion of inter-
connection as relations in a set. In this framework, the most general formulation is quite
featureless, i.e., maps between sets and relations in sets. With this level of generality, the
basic questions have a computer science flavour to them, in terms of formal languages.
When one comes to making things more concrete, say by making the time-domain an in-
terval in R for continuous-time systems, one ends up with differential-algebraic equations
describing the behaviours and relations. For the most part, these ideas seem to have been
only reasonably fully developed for linear models [Polderman and Willems 1998]; we are
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not aware of substantial work on nonlinear and/or geometric models in the behavioural
approach. It is also the case that the considerations of feedback-invariance, such as we
discuss above, are not a part of the current landscape in behavioural models, although this
is possible within the context of linear systems, cf. the beautiful book of Wonham [1985].

Thus, while there are some idealogical similarities with our objectives and those of the
behavioural approach, our thinking in this work is in a quite specific and complementary
direction to the existing work on the behavioural point of view.

1.2. An introduction to tautological control systems. We will, of course, subsequently
provide a comprehensive description of tautological control systems and their basic prop-
erties. However, it is useful to, at this early stage, give an outline of the approach so that
the reader may have a broad idea in mind of what to expect as she reads the more detailed
and difficult rigorous presentation.

Let us begin by providing a list of the objectives of our framework, some of which we
have described in some detail above, and some of which we have not yet mentioned.

1.2.1. Attributes of a modelling framework for geometric control systems. The preced-
ing sections are meant to illustrate some standard frameworks for modelling control systems
and the motivation for consideration of these, as well as pointing out their limitations. If
one is going to propose a modelling framework, it is important to understand a priori just
what it is that one hopes to be able to do in this framework. Here is a list of possible
criteria, criteria that we propose to satisfy in our framework.

1. Models should provide for control parameterisation-independent constructions as dis-
cussed above.

2. We believe that being able to easily handle real analytic systems is essential to a useful
theory. In practice, any smooth control system is also real analytic, and one wants to be
able to make use of real analyticity to both strengthen conclusions, e.g., the real analytic
version of Frobenius’s Theorem [Nagano 1966], and to weaken hypotheses, e.g., the in-
finitesimal characterisation of invariant distributions e.g., [Agrachev and Sachkov 2004,
Lemma 5.2].

3. The framework should be able to handle regularity in an internally consistent man-
ner. This means, for example, that the conclusions should be consistent with hypothe-
ses, e.g., smooth hypotheses with continuous conclusions suggest that the framework
may not be perfectly natural or perfectly well-developed. The pursuit of this inter-
nal consistency in the real analytic case requires deep and recent results concerning
topologies for spaces of real analytic vector fields [Jafarpour and Lewis 2014b].

4. The modelling framework should seamlessly deal with distinctions between local and
global. Many notions in control theory are highly localised, e.g., local controllability of
real analytic control systems. A satisfactory framework should include a systematic way
of dealing with constructions in control theory that are of an inherently local nature.
Moreover, the framework should allow a systematic means of understanding the passage
from local to global in cases where this is possible and/or interesting. As we shall see,
there are some simple instances of these phenomena that can easily go unnoticed if one
is not looking for them.
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5. Our interest is in geometric control theory, as we believe this is the right framework
for studying nonlinear systems in general. A proper framework for geometric control
theory should make it natural to use the tools of differential geometry.

6. While (we believe that) differential geometric methods are essential in nonlinear control
theory, the quest for geometric elegance should not be carried out at the expense of a
useful control theory.

1.2.2. The “essentials” of tautological control theory. Underneath the technicalities of
tautological control systems are two mostly simple ideas.

Extracting the essence of a control system

In this section we essentially establish a dictionary from “ordinary” control systems to
tautological control systems. This dictionary, like an actual dictionary, is not precise. It
will be made more precise during the course of the monograph.

Let us suppose that we have a control system Σ = (M, F,C), meaning that M is a
manifold of some prescribed regularity (say, smooth or real analytic), C is the control set,
and F describes the dynamics, in the sense that trajectories are absolutely continuous curves
t 7→ ξ(t) ∈ M satisfying

ξ′(t) = F (ξ(t), µ(t))

for some control t 7→ µ(t) ∈ C. Of course, there needs to be some technical conditions
on F to ensure that trajectories exist for reasonable controls. As a minimum, one needs
something like: (1) the vector field F u defined by F u(x) = F (x, u) is at least continuously
differentiable, and maybe smooth or real analytic; (2) C should be a topological space,
and the derivatives of F with respect to x should be jointly continuous functions of x
and u. Issues such as this are discussed in the setting of locally convex topologies in the
paper [Jafarpour and Lewis 2016], and we review this in Section 3.3 below. In any case,
there are two elements of this model that we wish to pull out. First of all, Σ defines a
parameterised set of vector fields

FΣ = {F u | u ∈ C}.

Second, to define a trajectory for Σ, one first specifies an open-loop control t 7→ µ(t). This
open-loop control then defines a time-varying vector field Fµ by (t, x) 7→ F (x, µ(t)). A
trajectory is then an integral curve of this time-varying vector field. If, for example, F
satisfies the conditions above and the control µ is locally essentially bounded, i.e., takes
values in a compact subset of C on compact subsets of time, then the vector field Fµ will
satisfy the hypotheses of the Carathéodory existence and uniqueness theorem for integral
curves [Sontag 1998, Theorem 54].

Now, using only these two elements of “ordinary” control systems, let us see if we can
fashion a methodology for eliminating the parameterisation by the control set C.

First of all, rather than working with the parameterised family of vector fields FΣ, we
instead work simply with a subset of vector fields, denoted by F . We may ask that these
vector fields have a prescribed regularity, and in this work we allow for smooth, Lipschitz,
finitely differentiable, and real analytic dependence on state. This is the easy part. The
difficult part is mimicking the effects of specifying an open-loop control t 7→ µ(t). As we
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saw above, this defines a time-varying vector field Fµ. In the case where one simply has a
family of vector fields F , one needs to specify a curve t 7→ Xt ∈ F in the family of vector
fields. The technical issues that arise are that one needs to be able to describe properties
of this curve that ensure that the resulting time-varying vector field (t, x) 7→ Xt(x) is nice
enough to possess integral curves. It turns out that the way to do this is to ask that the
curve t 7→ Xt be “measurable” and “integrable” in an appropriate topology on the space of
vector fields. This is carried out in Section 3.1 below.

The “presheaf of vector fields” point of view

From the preceding section, we see that subsets of vector fields will feature prominently
in our framework. In our work we break with the common approach by talking only
about families of vector fields assigned locally. Somewhat precisely (we will remove the
“somewhat” in Section 4), to each open subset U ⊆ M we assign a subset F (U) of vector
fields, and we require that, if open sets U and V satisfy V ⊆ U, then the restrictions of vector
fields from F (U) to V are members of F (V). Such a construction is called a “presheaf of
sets of vector fields.”

The rationale for making constructions such as this may be initially difficult to grasp.
Here we point out three reasons for using this structure.

1. Sometimes control theoretic constructions are easily made locally, but global analogues
are not so easily understood. Here is an example. A smooth or real analytic distribution
is a subset D ⊆ TM such that, for each x ∈ M, there exists a neighbourhood Nx of x
and a family Xx of smooth or real analytic vector fields on Nx such that

Dy ≜ D ∩ TyM = spanR(X(y)| X ∈ Xx).

The existence, locally, of plenty of vector fields taking values in the distribution follows
from the definition. However, the question of whether there are many smooth or real
analytic vector fields X on M for which X(x) ∈ Dx is not so trivial. In the smooth
case, such vector fields can be constructed using cutoff functions. However, in the real
analytic case, the existence of globally defined vector fields only follows from nontrivial
sheaf theoretic constructions, including, but not limited to, a deployment of Cartan’s
Theorem A [Cartan 1957]. We shall sketch how this is carried out in Lemma 7.2 when
we discuss a tautological control system formulation of sub-Riemannian geometry.

2. The presheaf point of view is the natural one for defining germs. It is to be imagined
that many (all?) important local properties of a real analytic system about x ∈ M
are contained in the germ of the system at x. This is a statement that will not come
as a surprise. However, adopting the presheaf formalism makes consideration of such
matters an integral part of the framework; indeed, it forces one to think carefully about
matters of locality. We will see that these matters arise naturally in Section 6 when we
extend our quite natural notion of trajectory from Section 5.3 to one that is actually
more natural, but also more difficult to understand. This class of trajectories relies for
their definition on the so-called étalé topology of a sheaf, which itself is connected to
germs of local sections of the sheaf. In Section 7.3 we suggest some places where we
anticipate that such considerations may well contribute to a tautological control system
formulation of problems in controllability theory.
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3. The third reason for adopting the presheaf formalism is that it aids in addressing ques-
tions that come up even in routine control theory. An example of this is seen at the end
of Section 3.3.3.

The point of the preceding discussion is this: while we expect that many readers will
doubt the value of the presheaf formalism that is a part of the tautological control system
framework, it is nonetheless the case that this formalism is not hollow in control theoretic
terms.

1.2.3. An outline of the monograph. Let us discuss briefly the contents of the monograph.
As mentioned in our requirement 3 in Section 1.2.1, we wish to develop a theory that

handles regularity in an intelligent manner. This is not as straightforward as it seems. First
of all this has simply not been routinely done in control theory in a systematic manner for
any degree of regularity [Jafarpour and Lewis 2014a, §VI]. In most any work, the joint
dependence of a system on time (for dynamical systems) or control (for control systems)
is presented in an incoherent way. The manner in which this is sometimes done is pointed
out in clear way in Sections 3.1.6 and 3.2.6, but the fact of the matter is that the disar-
ray of the manner in which regularity is handled in the literature prohibits any organised
critique. In [Jafarpour and Lewis 2014b, Jafarpour and Lewis 2016] it is revealed that the
right way to achieve consistency with respect to regularity is to make use of locally convex
topologies for spaces of vector fields. Also, the new class of systems we present in the
monograph, i.e., “tautological control systems,” are defined in such a way that these locally
convex topologies play an essential rôle. We very rapidly overview these topologies in Sec-
tion 2. A reader wishing to understand this material deeply will want to consult [Jafarpour
and Lewis 2014b, Jafarpour and Lewis 2016] and the references cited therein.

In Section 3 we present classes of time-varying vector fields and control systems that
are essential for our presentation, following the work of Jafarpour and Lewis [2014b] and
Jafarpour and Lewis [2016]. We begin in Section 3.1 by defining classes of time-varying
vector fields and indicating the relationship of these classes to the locally convex topologies
of Section 2. While in this work we are presenting a framework that we believe should
replace the existing framework for nonlinear control theory (at least for the investigation of
problems of structure), we do need to establish the relationships between our approach and
standard approaches. Thus, in Section 3.3 we carefully define classes of “ordinary” control
systems that mesh very well with our new class of tautological control systems. We also
talk about differential inclusions, as there are useful comparisons to be made between these
and our systems.

As we have mentioned a few times, presheaves and sheaves are an essential part of our
approach, and in Section 4 we give the requisite background. Much of the material that
we use from this chapter is quite elementary in character, but, in the constructions of étalé
trajectories in Section 6, we make reference to the deeper sheaf concepts of étalé topology
and stalk topologies, which we present in Sections 4.3 and 4.4.

In Section 5 we provide our modelling framework for geometric control systems, defin-
ing what we shall call “tautological control systems.”3 We first provide the definitions and

3The terminology “tautological” arises from two different attributes of our framework. First of all, when
one makes the natural connection from our systems to standard control systems, we encounter the identity
map (Example 5.2–2). Second, in our framework we prove that the only pure feedback transformation is
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then give the notion of a trajectory for these systems. We also show that our framework
includes the standard framework of Section 3.3 as a special case. We carefully establish
correspondences between our generalised models, the standard models, and differential in-
clusion models. Included in this correspondence is a description of the relationships between
trajectories for these models, and we prove that for control-affine systems, and for systems
with general dependence on control and compact control sets, the trajectory equivalence is
exact.

In Section 6 we present the notion of an étalé system. This extends the basic framework
of Section 5 to one where the sheaf structure really assumes a prominent rôle. While the
punchline of this chapter is the quite natural notion of an étalé trajectory, it is probably
the case that the aspects of the tautological control system framework that are touched
upon in this chapter will be those that have the most to do with the future utility of the
framework.

What is presented in this work is the result of initial explorations of a modelling frame-
work for geometric control theory. We certainly have not fully fleshed out all parts of this
framework ourselves. In the closing chapter, Section 7, we outline places where there is
ongoing and obvious further work to be done. In this chapter we intend to illustrate that
the tautological control system framework naturally reveals elements of system structure
that have hitherto been obscured, and permits the use of tools that have hitherto not been
used in control theory.

1.3. Notation, conventions, and background. In this section we overview what is needed
to read the monograph. We do use a lot of specialised material in essential ways, and we
certainly do not review this comprehensively. Instead, we simply provide a few facts, the
notation we shall use, and recommended sources. Throughout the work we have tried to
include precise references to material needed so that a reader possessing enthusiasm and
lacking background can begin to chase down all of the ideas upon which we rely.

We shall use the slightly unconventional, but perfectly rational, notation of writing
A ⊆ B to denote set inclusion, and when we write A ⊂ B we mean that A ⊆ B and
A ̸= B. By idA we denote the identity map on a set A. For a product

∏
i∈I Xi of sets,

prj :
∏

i∈I Xi → Xj is the projection onto the jth component. We shall have occasion
to talk about set-valued maps. If X and Y are sets and Φ is a set-valued map from X
to Y , i.e., Φ(x) is a subset of Y , we shall write Φ: X ↠ Y . By Z we denote the set of
integers, with Z≥0 denoting the set of nonnegative integers and Z>0 denoting the set of
positive integers. We denote by R the set of real numbers. By R≥0 we denote the set of
nonnegative real numbers and by R>0 the set of positive real numbers. The set of complex
numbers is denoted by C.

For a topological space X and A ⊆ X, int(A) denotes the interior of A and cl(A) denotes
the closure of A. Neighbourhoods will always be open sets. The support of a continuous
function f (or any other kind of object for which it makes sense to have a value “zero”) is
denoted by supp(f).

Elements of Rn are typically denoted with a bold font, e.g., “x.” Similarly, matrices
are written using a bold font, e.g., “A.” By ∥·∥ we denote the Euclidean norm for Rn or
Cn. By B(r,x) ⊆ Rn we denote the open ball of radius r and centre x. In like manner,

the identity transformation (cf. Proposition 5.39).
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B(r,x) denotes the closed ball.
If U ⊆ Rn is open and if Φ: U → Rm is differentiable at x ∈ U, we denote its derivative

by DΦ(x). Higher-order derivatives, when they exist, are denoted by DrΦ(x), r being the
order of differentiation.

If V is a R-vector space and if A ⊆ V, we denote by conv(A) the convex hull of A, by
which we mean the set of all convex combinations of elements of A.

By λ we denote Lebesgue measure. If I ⊆ R is an interval and if A ⊆ R, by L1(I;A)
we denote the set of Lebesgue integrable A-valued functions on I. By L1

loc(I;A) we denote
the A-valued locally integrable functions on I, i.e., those functions whose restrictions to
compact subintervals are integrable. In like manner, we denote by L∞(I;A) and L∞

loc(I;A)
the essentially bounded A-valued functions and the locally essentially bounded A-valued
functions, respectively.

For an interval I and a topological space X, a curve γ : I → X is measurable if γ−1(O)
is Lebesgue measurable for every open O ⊆ X. By Lcpt(I;X) we denote the measurable
curves γ : I → X for which there exists a compact set K ⊆ X with

λ({t ∈ I | γ(t) ̸∈ K}) = 0,

i.e., Lcpt(I;X) is the set of essentially bounded curves. By Lcpt
loc (I;X) we denote the

locally essentially bounded curves, meaning those measurable curves whose restrictions
to compact subintervals are essentially bounded.

Our differential geometric conventions mostly follow [Abraham, Marsden, and Ratiu
1988]. Whenever we write “manifold,” we mean “second-countable Hausdorff manifold.”
This implies, in particular, that manifolds are assumed to be metrisable [Abraham, Mars-
den, and Ratiu 1988, Corollary 5.5.13]. If we use the letter “n” without mentioning what
it is, it is the dimension of the connected component of the manifold M with which we are
working at that time. The tangent bundle of a manifold M is denoted by πTM : TM → M
and the cotangent bundle by πT∗M : T∗M → M. The derivative of a differentiable map
Φ: M → N is denoted by TΦ: TM → TN, with TxΦ = TΦ|TxM. If I ⊆ R is an interval and
if ξ : I → M is a curve that is differentiable at t ∈ I, we denote the tangent vector field to
the curve at t by ξ′(t) = Ttξ(1).

We will work in both the smooth and real analytic categories. We will also work with
finitely differentiable objects, i.e., objects of class Cr for r ∈ Z≥0. (We will also work with
Lipschitz objects, but will develop the notation for these in the text.) A good reference for
basic real analytic analysis is [Krantz and Parks 2002], but a reader wishing to thoroughly
understand the real analytic topology we use in this work will need ideas going beyond
those from this text, or any other text. We refer to [Jafarpour and Lewis 2014b] and the
references cited there for details. An analytic manifold or mapping will be said to be of
class Cω. Let r ∈ Z≥0 ∪ {∞, ω}. The set of mappings of class Cr between manifolds
M and N is denoted by Cr(M;N). In particular, Cr(M) denotes the space of functions of
class Cr. The set of sections of a vector bundle π : E → M of class Cr is denoted by Γr(E).
Thus, in particular, Γr(TM) denotes the set of vector fields of class Cr on a manifold M.
We shall think of Γr(E) as a R-vector space with the natural pointwise addition and scalar
multiplication operations.

We also work with holomorphic, i.e., complex analytic, manifolds and associated geo-
metric constructions; real analytic geometry, at some level, seems to unavoidably rely on
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holomorphic geometry. A nice overview of holomorphic geometry, and some of its connec-
tions to real analytic geometry, is given in the book [Cieliebak and Eliashberg 2012]. There
are many specialised texts on the subject of holomorphic geometry, including the three
volumes of Gunning [1990a], Gunning [1990b], and Gunning [1990c]. For our purposes, we
shall just say the following things. By TM we denote the holomorphic tangent bundle of M.
This is the object which, in complex differential geometry, is commonly denoted by T1,0M.
For holomorphic manifolds M and N, we denote by Chol(M;N) the set of holomorphic map-
pings from M to N, by Chol(M) the set of holomorphic functions on M (note that these
functions are C-valued, not R-valued, of course), and by Γhol(E) the space of holomorphic
sections of an holomorphic vector bundle π : E → M. We shall use both the natural C- and,
by restriction, R-vector space structures for Γhol(E).

We shall make reference to mostly elementary ideas from sheaf theory. It will not be
necessary to understand this theory deeply, at least not in the present monograph. In par-
ticular, a comprehensive understanding of sheaf cohomology is not required, although we
do make use of Cartan’s Theorems A and B in places. A nice introduction to the use of
sheaves in smooth differential geometry can be found in the book of Ramanan [2005]. More
advanced and comprehensive treatments include [Bredon 1997, Kashiwara and Schapira
1990], and the classic [Godement 1958]. The discussion of sheaf theory in [Stacks Project
Authors 2014] is also useful. Understandable proofs of Cartan’s Theorems in the holomor-
phic setting can be found in [Taylor 2002]. The real analytic versions of these theorems
seem to only be available in the original paper of Cartan [1957]. For readers who are expert
in sheaf theory, we comment that our reasons for using sheaves are not always the usual
ones, so an adjustment of point of view may be required.

We shall make use of locally convex topological vector spaces, and refer to [Conway
1990, Grothendieck 1973, Horváth 1966, Jarchow 1981, Rudin 1991, Schaefer and Wolff
1999] for details. We provide in Section 2.1 a rapid overview of the subject.

We shall talk about two flavours of “boundedness,” and we will need to carefully dis-
criminate between these. The proper abstract framework for talking about boundedness
is supplied by the notion of a “bornology.”4 Bornologies are less popular than topologies,
but a treatment in some generality can be found in [Hogbe-Nlend 1977]. There are two
bornologies we consider in this work. One is the compact bornology for a topological
space X whose bounded sets are the relatively compact sets. The other is the von Neu-
mann bornology for a locally convex topological vector space V whose bounded sets are
those subsets B ⊆ V for which, for any neighbourhood N of 0 ∈ V, there exists λ ∈ R>0

such that B ⊆ λN. On any locally convex topological vector space we thus have these two
bornologies, and generally they are not the same. Indeed, if V is an infinite-dimensional
normed vector space, then the compact bornology is strictly contained in the von Neumann
bornology. For certain locally convex spaces, however, the compact and von Neumann
bornologies agree. An important example of such a class is the nuclear locally convex
spaces [Pietsch 1969, Proposition 4.47]. We shall merely make use of the fact that some of
our spaces are nuclear, and will point this out at the appropriate moments. But, in general,

4A bornology on a set S is a family B of subsets of S, called bounded sets, and satisfying the axioms:

1. S is covered by bounded sets, i.e., S = ∪B∈BB;

2. subsets of bounded sets are bounded, i.e., if B ∈B and if A ⊆ B, then A ∈B ;

3. finite unions of bounded sets are bounded, i.e., if B1, . . . , Bk ∈B , then ∪k
j=1Bj ∈B .
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we will have occasion to use both the compact and von Neumann bornologies, and shall
make it clear which we mean. This is reflected, for example, in our use of the symbol “L∞”
for “essentially bounded” and of the symbol “Lcpt” for “essentially compact-valued.” The
latter symbol is not typically used, but in this work we must discriminate between the two
notions of boundedness.
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2. Topologies for spaces of vector fields

In this chapter we review the definitions of the topologies we use for spaces of Lips-
chitz, finitely differentiable, smooth, and real analytic vector fields. We comment that all
topologies we define are locally convex topologies, of which the normed topologies are a
special case. However, few of the topologies we define, and none of the interesting ones, are
normable. We, therefore, begin with a very rapid review of locally convex topologies, and
why they are inevitable in work such as we undertake here.

2.1. An overview of locally convex topologies for vector spaces. In this section we
provide a “chatty” overview of locally convex topologies, since this work relies on these
in an essential way. The presentation here should be regarded as that of a bare bones
introduction, and a reader wishing to understand the subject deeply will wish to refer to
references such as [Conway 1990, Grothendieck 1973, Horváth 1966, Jarchow 1981, Rudin
1991, Schaefer and Wolff 1999]. We particularly suggest [Rudin 1991] as a good place to
start learning the theory.

2.1.1. Motivation. As mentioned above, few of the topologies we introduce below arise
from a norm, and the most interesting ones, e.g., the topologies for spaces of smooth and
real analytic vector fields, are decidedly not norm topologies. Let us reflect on why locally
convex topologies, such as we use in this work, are natural. Consider first the task of putting
a norm on the space C0(R) of continuous R-valued functions on R. Spaces of continuous
functions are in the domain of classical analysis, and so are well-known to the readership of
this monograph, e.g., [Hewitt and Stromberg 1975, Theorem 7.9]. This is often considered
for continuous functions defined on compact spaces, e.g., compact intervals, where the sup-
norm suffices to describe the topology in an adequate manner. For continuous functions on
noncompact spaces, the sup-norm obviously no longer applies. In such cases, it is common
to consider instead functions that “die off” at infinity, as the sup-norm again functions
perfectly well for these classes. For the entire space of continuous functions, say C0(R),
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the sup-norm is no longer a viable candidate for defining a topology. Instead one can use a
family of natural seminorms, one for each compact set K ⊆ M. To be precise, we define

pK(f) = sup{|f(x)| | x ∈ K}.

The collection pK , K ⊆ M compact, of such seminorms can then be used to define a
topology (in a manner that we make precise in Definition 2.2). If one wishes to apply the
same reasoning to functions of class Cm, m ∈ Z>0, we can use the seminorms

pmK(f) = sup{|Djf(x)| | x ∈ K, j ∈ {0, 1, . . . ,m}}, K ⊆ M compact,

on Cm(R), and it is not hard to imagine that this can be used to describe a suitable
topology; we define these sorts of topologies precisely below.

By being slightly more clever, one can imagine adapting the above procedure for topol-
ogising Cm(R), m ∈ Z≥0, to topologising the space Cm(M) of functions on a smooth
manifold M of class Cm. If M is compact, such a space is actually a normed space, since
supremums can be taken over the compact set M. If one wishes to topologise the space
C∞(M) of smooth functions on a smooth manifold, one must account for all derivatives.
Let us indicate how to do this for C∞(R); we handle the general case in Section 2.2.2. For
C∞(R) we define the seminorms

p∞K,m(f) = sup{|Djf(x)| | x ∈ K, j ∈ {0, 1, . . . ,m}}, K ⊆ M compact, m ∈ Z≥0.

Note that the appropriate adaptation of these seminorms to manifolds will never yield a
normed topology, since there will always be infinitely many derivatives to account for.

The point of the preceding motivation is this: topologies defined by families of seminorms
arise in natural ways when topologising spaces of functions in differential geometry.

2.1.2. Families of seminorms and topologies defined by these. With the preceding re-
marks as motivation, let us provide a few precise definitions and state a few facts (without
proof) arising from these definitions.

We begin with the notion of a seminorm.

2.1 Definition: (Seminorm) Let F ∈ {R,C} and let V be an F-vector space. A semi-
norm for V is a function p : V → R≥0 such that

(i) p(av) = |a|p(v) for a ∈ F and v ∈ V;

(ii) p(v1 + v2) ≤ p(v1) + p(v2). •
The reader will note that the missing norm element is the positive definiteness. A mo-

ments reflection on the examples above indicates why this omission is necessary. Nonethe-
less, one can use families of seminorms to define a topology.

2.2 Definition: (The topology defined by a family of seminorms) Let F ∈ {R,C},
let V be an F-vector space, and let P be a family of seminorms for V. The topology
defined by P is that topology for which the sets

{v ∈ V | p(v) < r}, p ∈ P , r ∈ R>0,

are a subbasis, i.e., open sets in the topology are unions of finite intersections of these sets.
The resulting topology is called a locally convex topology, and an F-vector space with
a locally convex topology is called an F-locally convex topological vector space , or
simply a locally convex space . •
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Now let us simply list some attributes of these topologies, referring to the references for
details. In the following list, we let F ∈ {R,C} and let U and V be F-locally convex spaces
defined by families Q and P , respectively, of seminorms.

1. The locally convex topology on V is Hausdorff if and only if, for each v ∈ V, there exists
p ∈ P such that p(v) ̸= 0 [Rudin 1991, Theorem 1.37]. Locally convex spaces are often
assumed to be Hausdorff, and we shall suppose this to be true for our statements below.

2. Locally convex topologies are translation-invariant, i.e., a neighbourhood basis at 0
translates (by adding v) to a neighbourhood basis at v ∈ V [Rudin 1991, Theorem 1.37].

3. We say that a subset B is von Neumann bounded if, for any neighbourhood N of 0,
there exists λ ∈ R>0 such that B ⊆ λN. A subset is von Neumann bounded if and only
if p|B is bounded for every p ∈ P [Rudin 1991, Theorem 1.37(b)].

4. A locally convex topology is normable if it can be defined by a single seminorm which is
a norm. A locally convex space is normable if and only if there exists a convex bounded
neighbourhood of 0 [Rudin 1991, Theorem 1.39].

5. Compact subsets of locally convex spaces are closed and bounded. However, closed and
bounded subsets are not necessarily compact, e.g., closed balls in infinite-dimensional
Banach spaces are not compact.

6. Unlike the situation for Banach spaces, there are infinite-dimensional locally convex
spaces for which closed and bounded sets are compact. An important class of such
spaces are the so-called nuclear spaces [Pietsch 1969, Proposition 4.47]. A normed
space is nuclear if and only if it is finite-dimensional. In this work, many of the spaces
we deal with are nuclear.

7. A locally convex space is metrisable if its topology can be defined by a translation-
invariant metric. A locally convex space is metrisable if and only if it can be defined by
a countable family of seminorms [Rudin 1991, Remark 1.38(c)].

8. Metrisable topologies are characterised by their convergent sequences. This is a gen-
eral assertion, following from the fact that metric spaces are first-countable [Willard
2004, Corollary 10.5]. However, we will encounter locally convex spaces that are not
metrisable, and so convergence in such spaces is determined by using nets rather than
sequences. Recall that a net in a set is indexed by points in a directed set, i.e., a
partially ordered set (I,⪯) with the attribute that, given i1, i2 ∈ I, there exists i ∈ I
such that i1, i2 ⪯ i. A net (xi)i∈I in a topological space converges to x0 if, for every
neighbourhood O of x0, there exists i0 ∈ I such that xi ∈ O for all i0 ⪯ i.

9. A net (vi)i∈I in V converges to v0 if and only if, for each p ∈ P and each ϵ ∈ R>0, there
exists i0 ∈ I such that p(vi − v0) < ϵ for i0 ⪯ i.

10. A Cauchy net in V is a net (vi)i∈I such that, for each p ∈ P and each ϵ ∈ R>0, there
exists i0 ∈ I such that, if i0 ⪯ i1, i2, then p(vi1 − vi2) < ϵ. A locally convex space is
complete if every Cauchy net converges.

11. A linear map L : U → V is continuous if and only if, for each p ∈ P , there exist
q1, . . . , qk ∈ Q and C1, . . . , Ck ∈ R>0 such that

p(L(u)) ≤ C1q1(u) + · · ·+ Ckqk(u),

cf. the discussion in [Schaefer and Wolff 1999, §III.1.1]. We denote by L(U;V) the set
of continuous linear maps from U to V.
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The preceding is all that we shall make direct reference to in this monograph. We mention,
however, that our work here relies on the recent work of Jafarpour and Lewis [2014b], and
in this work, especially the development of the topology for spaces of real analytic vector
fields, many deep properties of locally convex topologies are used. We shall skirt around
these issues, for the most part, in the present monograph.

2.2. Seminorms for locally convex spaces of vector fields. We now describe in a little
detail the seminorms we use for spaces of vector fields with various regularity, Lipschitz,
finitely differentiable, smooth, and real analytic. We also characterise spaces of holomorphic
vector fields, because these can often be useful in understanding real analytic vector fields.

While our interest is primarily in spaces of vector fields, it is actually less confusing
notationally and conceptually to work instead with spaces of sections of a vector bundle.
Thus, throughout this section we will work with a vector bundle π : E → M that is either
smooth, real analytic, or holomorphic, depending on our needs.

2.2.1. Fibre norms for jet bundles. The classes of sections we consider are all characterised
by their derivatives in some manner. The appropriate device for considering derivatives of
sections is the theory of jet bundles, for which we refer to [Saunders 1989] and [Kolář,
Michor, and Slovák 1993, §12]. By JmE we denote the vector bundle of m-jets of sections
of a smooth vector bundle π : E → M, with πm : JmE → M denoting the projection. If ξ is
a smooth section of E, we denote by jmξ the corresponding smooth section of JmE.

Sections of JmE should be thought of as sections of E along with their first m derivatives.
In a local trivialisation of E, one has the local representatives of the derivatives, order-by-
order. Such an order-by-order decomposition of derivatives is not possible globally, however.
Nonetheless, following [Jafarpour and Lewis 2014b, §2.1], we shall mimic this order-by-order
decomposition globally using a linear connection ∇0 on E and an affine connection ∇ on
M. First note that ∇ defines a connection on T∗M by duality. Also, ∇ and ∇0 together
define a connection ∇m on Tm(T∗M) ⊗ E by asking that the Leibniz Rule be satisfied for
the tensor product. Then, for a smooth section ξ of E, we denote

∇(m)ξ = ∇m · · · ∇1∇0ξ,

which is a smooth section of Tm+1(T∗M⊗ E). By convention we take ∇(−1)ξ = ξ.
We then have a map

Sm
∇,∇0 : J

mE → ⊕m
j=0(TS

j(T∗M)⊗ E)

jmξ(x) 7→ (ξ(x),Sym1⊗ idE(∇0ξ)(x), . . . ,Symm⊗ idE(∇(m−1)ξ)(x)),
(2.1)

which can be verified to be an isomorphism of vector bundles [Jafarpour and Lewis 2014b,
Lemma 2.1]. Here Symm : Tm(V) → TSm(V) is defined by

Symm(v1 ⊗ · · · ⊗ vm) =
1

m!

∑
σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m).

Now we note that inner products on the components of a tensor product induce in a
natural way inner products on the tensor product [Jafarpour and Lewis 2014b, Lemma 2.2].
Thus, if we suppose that we have a fibre metric G0 on E and a Riemannian metric G on M,
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there is induced a natural fibre metric Gm on Tm(T∗M) ⊗ E for each m ∈ Z≥0. We then
define a fibre metric Gm on JmE by

Gm(jmξ(x), jmη(x))

=

m∑
j=0

Gj

( 1

j!
Symj ⊗ idE(∇(j−1)ξ)(x),

1

j!
Symj ⊗ idE(∇(j−1)η)(x)

)
.

(The factorials are required to make things work out with the real analytic topology.) The
corresponding fibre norm we denote by ∥·∥Gm

.

2.2.2. Seminorms for spaces of smooth vector fields. Let π : E → M be a smooth vector
bundle. Using the fibre norms from the preceding section, it is a straightforward matter
to define appropriate seminorms that prescribe the locally convex topology for Γ∞(E). For
K ⊆ M compact and for m ∈ Zm

≥0, define a seminorm p∞K,m on Γ∞(E) by

p∞K,m(ξ) = sup{∥jmξ(x)∥Gm
| x ∈ K}.

The family of seminorms p∞K,m,K ⊆ M compact,m ∈ Z≥0, defines a locally convex topology,

called the C∞-topology ,5 with the following properties:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;

2. it is separable;

3. it is nuclear;

4. it is characterised by the sequences converging to zero, which are the sequences (ξj)j∈Z>0

such that, for each K ⊆ M and m ∈ Z≥0, the sequence (jmξj |K)j∈Z>0 converges
uniformly to zero.

In this paper we shall not make reference to other properties of the C∞-topology, but
we mention that there are other properties that play an important rôle in the results in
Section 3. For these details, and for references where the above properties are proved, we
refer to [Jafarpour and Lewis 2014b, §3.2].

2.2.3. Seminorms for spaces of finitely differentiable vector fields. We again take π : E →
M to be a smooth vector bundle, and we fix m ∈ Z≥0. For the space Γm(E) of m-times
continuously differentiable sections, we define seminorms pmK , K ⊆ M compact, for Γm(E)
by

pmK(ξ) = sup{∥jmξ(x)∥Gm
| x ∈ K}.

The locally convex topology defined by the family of seminorms pmK , K ⊆ M compact, we
call the Cm-topology , and it has the following properties:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;

2. it is separable;

3. it is characterised by the sequences converging to zero, which are the sequences (ξj)j∈Z>0

such that, for each K ⊆ M, the sequence (jmξj |K)j∈Z>0 converges uniformly to zero;

5This is actually not a very good name. A better name, and the name used by Jafarpour and Lewis
[2014b], would be the “smooth compact-open topology.” However, we wish to keep things simple here, and
also use notation that is common between regularity classes.



Tautological control systems 23

4. if M is compact, then pmM is a norm that gives the Cm-topology.

As with the C∞-topology, we refer to [Jafarpour and Lewis 2014b, §3.4] for details.

2.2.4. Seminorms for spaces of Lipschitz vector fields. In this section we again work
with a smooth vector bundle π : E → M. In defining the fibre metrics from Section 2.2.1,
for the Lipschitz topologies the affine connection ∇ is required to be the Levi-Civita con-
nection for the Riemannian metric G and the linear connection ∇0 is required to be G0-
orthogonal. While Lipschitz vector fields are often used, spaces of Lipschitz vector fields are
not. Nonetheless, one may define seminorms for spaces of Lipschitz vector fields rather anal-
ogous to those defined above in the smooth and finitely differentiable cases. Let m ∈ Z≥0.
By Γm+lip(E) we denote the space of sections of E that are m-times continuously differ-
entiable and whose m-jet is locally Lipschitz. (One can think of this in coordinates, but
Jafarpour and Lewis [2014b] provide geometric definitions, if the reader is interested.) If a
section ξ is of class Cm+lip, then, by Rademacher’s Theorem [Federer 1996, Theorem 3.1.6],
its (m+ 1)st derivative exists almost everywhere. Thus we define

dil jmξ(x) = inf{sup{∥∇[m]
vy jmξ∥Gm

| y ∈ cl(U), ∥vy∥G = 1,

jmξ differentiable at y}| U is a relatively compact neighbourhood of x},

which is the local sectional dilatation of ξ. Here ∇[m] is the connection in JmE defined
by the decomposition (2.1). Let K ⊆ M be compact and define

λm
K(ξ) = sup{dil jmξ(x) | x ∈ K}

for ξ ∈ Γm+lip(E). We can then define a seminorm pm+lip
K on Γm+lip(E) by

pm+lip
K (ξ) = max{λm

K(ξ), pmK(ξ)}.

The family of seminorms pm+lip
K , K ⊆ M compact, defines a locally convex topology for

Γm+lip(E), which we call the Cm+lip-topology , having the following attributes:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;

2. it is separable;

3. it is characterised by the sequences converging to zero, which are the sequences (ξj)j∈Z>0

such that, for each K ⊆ M, the sequence (jmξj |K)j∈Z>0 converges uniformly to zero in
both seminorms λm

K and pmK ;

4. if M is compact, then pm+lip
M is a norm that gives the Cm+lip-topology.

We refer to [Jafarpour and Lewis 2014b, §3.5] for details.

2.2.5. Seminorms for spaces of holomorphic vector fields. Now we consider an holomor-
phic vector bundle π : E → M and denote by Γhol(E) the space of holomorphic sections of E.
We let G be an Hermitian metric on the vector bundle and denote by ∥·∥G the associated
fibre norm. For K ⊆ M compact, denote by pholK the seminorm

pholK (ξ) = sup{∥ξ(z)∥G | z ∈ K}

on Γhol(E). The family of seminorms pholK , K ⊆ M compact, defines a locally convex topology
for Γhol(E) that we call the Chol-topology . This topology has the following properties:
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1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;

2. it is separable;

3. it is nuclear;

4. it is characterised by the sequences converging to zero, which are the sequences (ξj)j∈Z>0

such that, for each K ⊆ M, the sequence (ξj |K)j∈Z>0 converges uniformly to zero;

5. if M is compact, then pholM is a norm that gives the Chol-topology.

We refer to [Jafarpour and Lewis 2014b, §4.2] and the references therein for details about
the Chol-topology.

2.2.6. Seminorms for spaces of real analytic vector fields. The topologies described
above for spaces of smooth, finitely differentiable, Lipschitz, and holomorphic sections of a
vector bundle are quite simple to understand in terms of their converging sequences. The
topology one considers for real analytic sections does not have this attribute. There is a bit
of a history to the characterisation of real analytic topologies, and we refer to [Jafarpour
and Lewis 2014b, §5] for four equivalent characterisations of the real analytic topology for
the space of real analytic sections of a vector bundle. Here we will give the most elementary
of these definitions to state, although it is probably not the most practical definition. In
practice, it is probably best to somehow complexify and use the holomorphic topology; we
give instances of this in Theorems 3.9 and 3.17 below.

In this section we let π : E → M be a real analytic vector bundle and let Γω(E) be
the space of real analytic sections. One can show that there exist a real analytic linear
connection ∇0 on E, a real analytic affine connection ∇ on M, a real analytic fibre metric
on E, and a real analytic Riemannian metric on M [Jafarpour and Lewis 2014b, Lemma 2.3].
Thus we can define real analytic fibre metrics Gm on the jet bundles JmE as in Section 2.2.1.

To define seminorms for Γω(E), let c↓0(Z≥0;R>0) denote the space of sequences in R>0,
indexed by Z≥0, and converging to zero. We shall denote a typical element of c↓0(Z≥0;R>0)
by a = (aj)j∈Z≥0

. Now, for K ⊆ M and a ∈ c↓0(Z≥0;R>0), we define a seminorm pωK,a for
Γω(E) by

pωK,a(ξ) = sup{a0a1 · · · am∥jmξ(x)∥Gm
| x ∈ K, m ∈ Z≥0}.

The family of seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), defines a locally
convex topology on Γω(E) that we call the Cω-topology . This topology has the following
attributes:

1. it is Hausdorff and complete;

2. it is not metrisable (and so it not a Fréchet topology);

3. it is separable;

4. it is nuclear.

We shall generally avoid dealing with the rather complicated structure of this topology, and
shall be able to do what we need by just working with the seminorms. That this is possible
is one of the main contributions of the work [Jafarpour and Lewis 2014b].

2.2.7. Summary and notation. In the real case, the degrees of regularity are ordered
according to

C0 ⊃ Clip ⊃ C1 ⊃ · · · ⊃ Cm ⊇ Cm+lip ⊃ Cm+1 ⊃ · · · ⊃ C∞ ⊃ Cω,
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and in the complex case the ordering is the same, of course, but with an extra Chol on the
right. Sometimes it will be convenient to write ν + lip for ν ∈ {Z≥0,∞, ω}, and in doing
this we adopt the obvious convention that ∞+ lip = ∞ and ω + lip = ω.

Where possible, we will state definitions and results for all regularity classes at once.
To do this, we will let m ∈ Z≥0 and m′ ∈ {0, lip}, and consider the regularity classes
ν ∈ {m+m′,∞, ω}. In such cases we shall require that the underlying manifold be of class
“Cr, r ∈ {∞, ω}, as required.” This has the obvious meaning, namely that we consider
class Cω if ν = ω and class C∞ otherwise. Proofs will typically break into the four cases
ν = ∞, ν = m, ν = m+lip, and ν = ω. In some cases there is a structural similarity in the
way arguments are carried out, so we will sometimes do all cases at once. In doing this, we
will, for K ⊆ M be compact, for k ∈ Z≥0, and for a ∈ c↓0(Z≥0;R>0), denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pm+lip
K , ν = m+ lip,

pωK,a, ν = ω.

(2.2)

The convenience and brevity more than make up for the slight loss of preciseness in this
approach.

3. Time-varying vector fields and control systems

We now turn to utilising the locally convex topologies from the preceding chapter to
characterise time-varying vector fields and control systems. We shall see that the use of
locally convex topologies allows for a comprehensive and unified treatment of these notions,
and allows one to understand in a deep way their structure in a way which has hitherto
not been possible. This is especially true in the real analytic case, where we describe new
results of Jafarpour and Lewis [2014b] and Jafarpour and Lewis [2016] on the structure of
time-varying vector fields and control systems depending on state in a real analytic manner.

The ideas we present here seem to first appear in the work of Agrachev and Gamkrelidze
[1978]; see also the presentation of Agrachev and Sachkov [2004]. Our treatment is different
in a few ways. First of all, we make use of connections and jet bundles, aided by (2.1).
In [Agrachev and Gamkrelidze 1978] the presentation is developed on Euclidean spaces,
and so the geometric treatment we give here is not necessary. (One way of understanding
why it is not necessary is that Euclidean space has a canonical flat connection in which
the decomposition of (2.1) becomes the usual decomposition of derivatives by their order.)
In [Agrachev and Sachkov 2004] the treatment is on manifolds, and the seminorms are
defined by an embedding of the manifold in Euclidean space by Whitney’s Embedding The-
orem [Whitney 1936]. In [Agrachev and Sachkov 2004] consideration is only given to smooth
vector fields. In [Agrachev and Gamkrelidze 1978] the real analytic case is also considered,
but in a rather restricted setting, i.e., to real analytic vector fields on real Euclidean space
admitting a bounded holomorphic extension to a strip of fixed width in complex Euclidean
space. Our presentation is far more general and geometric. Moreover, we also include the
finitely differentiable and Lipschitz classes. Also, Agrachev and Sachkov [2004] use what
Jafarpour and Lewis [2014b] call the “weak-L topology” in the case of vector fields. This is
shown in [Jafarpour and Lewis 2014b, Theorems 3.5, 3.8, 3.14, 4.5, and 5.8] to be the same



26 A. D. Lewis

as the usual topology for all regularity classes. In the work of Sussmann [1998] a similarly
styled presentation of time-varying vector fields is given. As with the work of Agrachev and
coauthors, Sussmann relies on the “weak-L ” characterisation of time-dependence. More-
over, the locally convex topology for Γ∞(TM) is not explicitly considered, although it is
implicit in Sussmann’s constructions. In any case, all approaches can be tediously shown
to be equivalent (in the smooth case) once the relationships are understood. Apart from
the fact that we handle all common regularity classes, an advantage of the approach we use
here is that it does not require coordinate charts or embeddings to write the seminorms,
and it makes the seminorms explicit, rather than implicitly present. The disadvantage of
our approach is the added machinery and complication of connections and our jet bundle
decomposition.

As in Section 2.2, it is convenient to work with sections of a general vector bundle
π : E → M, rather than just with vector fields.

3.1. Time-varying vector fields. The work of Jafarpour and Lewis [2014b] is concerned
with time-varying vector fields with measurable time dependence. In that work, a com-
prehensive and consistent theory for such vector fields, with varying regularity in state,
is developed. Thus, for m ∈ Z≥0, m′ ∈ {0, lip}, for ν ∈ {m + m′,∞, ω}, and for an
interval T ⊆ R, characterisations are given for classes of time-varying vector fields, de-
noted by LIΓν(T;TM). There are two equivalent ways to present these classes of vector
fields: (1) by directly prescribing the joint pointwise conditions on state and time in each
regularity class; (2) using the Cν-topologies. We shall present the definitions in the for-
mer setting, and also state without proof the equivalence of the two seemingly unrelated
characterisations.

3.1.1. Time-varying smooth vector fields. Throughout this section we will work with a
smooth vector bundle π : E → M with a linear connection ∇0 on E, an affine connection
∇ on M, a fibre metric G0 on E, and a Riemannian metric G on M. This defines the fibre
norms ∥·∥Gm

on JmE and seminorms p∞K,m, K ⊆ M compact, m ∈ Z≥0, on Γ∞(E) as in
Section 2.2.2.

3.1 Definition: (Smooth Carathéodory section) Let π : E → M be a smooth vector
bundle and let T ⊆ R be an interval. A Carathéodory section of class C∞ of E is a
map ξ : T ×M → E with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) = ξ(t, x) is of class C∞;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓ∞(T;E) we denote the set of
Carathéodory sections of class C∞ of E. •

Note that the curve t 7→ ξ(t, x) is in the finite-dimensional vector space Ex, and so
Lebesgue measurability of this is unambiguously defined, e.g., by choosing a basis and
asking for Lebesgue measurability of the components with respect to this basis.

Now we put some conditions on the time dependence of the derivatives of the section.
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3.2 Definition: (Locally integrally C∞-bounded and locally essentially C∞-
bounded sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be an
interval. A Carathéodory section ξ : T ×M → E of class C∞ is

(i) locally integrally C∞-bounded if, for every compact set K ⊆ M and every m ∈
Z≥0, there exists g ∈ L1

loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K,

and is

(ii) locally essentially C∞-bounded if, for every compact set K ⊆ M and every m ∈
Z≥0, there exists g ∈ L∞

loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K.

The set of locally integrally C∞-bounded sections of E with time-domain T is denoted by
LIΓ∞(T,E) and the set of locally essentially C∞-bounded sections of E with time-domain
T is denoted by LBΓ∞(T;E). •

Note that LBΓ∞(T;M) ⊆ LIΓ∞(T;M), precisely because locally essentially bounded
functions (in the usual sense) are locally integrable (in the usual sense).

3.1.2. Time-varying finitely differentiable and Lipschitz vector fields. In this section, so
as to be consistent with our definition of Lipschitz seminorms in Section 2.2.4, we suppose
that the affine connection ∇ on M is the Levi-Civita connection for the Riemannian metric
G and that the vector bundle connection ∇0 in E is G0-orthogonal.

3.3 Definition: (Finitely differentiable or Lipschitz Carathéodory section) Let
π : E → M be a smooth vector bundle and let T ⊆ R be an interval. Let m ∈ Z≥0 and let
m′ ∈ {0, lip}. A Carathéodory section of class Cm+m′

of E is a map ξ : T ×M → E
with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) = ξ(t, x) is of class Cm+m′
;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓm+m′
(T;E) we denote the set

of Carathéodory sections of class Cm+m′
of E. •

Now we put some conditions on the time dependence of the derivatives of the section.

3.4 Definition: (Locally integrally Cm+m′
-bounded and locally essentially

Cm+m′
-bounded sections) Let π : E → M be a smooth vector bundle and let T ⊆ R be

an interval. Let m ∈ Z≥0 and let m′ ∈ {0, lip}. A Carathéodory section ξ : T ×M → E of
class Cm+m′

is

(i) locally integrally Cm+m′
-bounded if:

(a) m′ = 0: for every compact set K ⊆ M, there exists g ∈ L1
loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K;
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(b) m′ = lip: for every compact set K ⊆ M, there exists g ∈ L1
loc(T;R≥0) such that

dil jmξt(x), ∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K,

and is

(ii) locally essentially Cm+m′
-bounded if:

(a) m′ = 0: for every compact set K ⊆ M, there exists g ∈ L∞
loc(T;R≥0) such that

∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K;

(b) m′ = lip: for every compact set K ⊆ M, there exists g ∈ L∞
loc(T;R≥0) such that

dil jmξt(x), ∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K.

The set of locally integrally Cm+m′
-bounded sections of E with time-domain T is denoted

by LIΓm+m′
(T,E) and the set of locally essentially Cm+m′

-bounded sections of E with time-
domain T is denoted by LBΓm+m′

(T;E). •

3.1.3. Time-varying holomorphic vector fields. While we are not per se interested in time-
varying holomorphic vector fields, our understanding of time-varying real analytic vector
fields—in which we are most definitely interested—is connected with an understanding of
the holomorphic case, cf. Theorem 3.9.

We begin with definitions that are similar to the smooth and finitely differentiable
cases, but which rely on the holomorphic topologies introduced in Section 2.2.5. We will
consider an holomorphic vector bundle π : E → M with an Hermitian fibre metric G. This
defines the seminorms pholK , K ⊆ M compact, describing the Chol-topology for Γhol(E) as in
Section 2.2.5.

Let us get started with the definitions.

3.5 Definition: (Holomorphic Carathéodory section) Let π : E → M be an holomor-
phic vector bundle and let T ⊆ R be an interval. A Carathéodory section of class Chol

of E is a map ξ : T ×M → E with the following properties:

(i) ξ(t, z) ∈ Ez for each (t, z) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(z) is of class C
hol;

(iii) for each z ∈ M, the map ξz : T → E defined by ξz(t) = ξ(t, z) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓhol(T;E) we denote the set of
Carathéodory sections of class Chol of E. •

The associated notions for time-dependent sections compatible with the Chol-topology
are as follows.

3.6 Definition: (Locally integrally Chol-bounded and locally essentially Chol-
bounded sections) Let π : E → M be an holomorphic vector bundle and let T ⊆ R
be an interval. A Carathéodory section ξ : T ×M → E of class Chol is

(i) locally integrally Chol-bounded if, for every compact set K ⊆ M, there exists
g ∈ L1

loc(T;R≥0) such that

∥ξ(t, z)∥G ≤ g(t), (t, z) ∈ T ×K

and is
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(ii) locally essentially Chol-bounded if, for every compact set K ⊆ M, there exists
g ∈ L∞

loc(T;R≥0) such that

∥ξ(t, z)∥G ≤ g(t), (t, z) ∈ T ×K.

The set of locally integrally Chol-bounded sections of E with time-domain T is denoted by
LIΓhol(T,E) and the set of locally essentially Chol-bounded sections of E with time-domain
T is denoted by LBΓhol(T;E). •

3.1.4. Time-varying real analytic vector fields. Let us now turn to describing real analytic
time-varying sections. We thus will consider a real analytic vector bundle π : E → M with
∇0 a real analytic linear connection on E, ∇ a real analytic affine connection on M, G0 a
real analytic fibre metric on E, and G a real analytic Riemannian metric on M. This defines
the seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), describing the Cω-topology as in
Section 2.2.6.

3.7 Definition: (Real analytic Carathéodory section) Let π : E → M be a real analytic
vector bundle and let T ⊆ R be an interval. A Carathéodory section of class Cω of E
is a map ξ : T ×M → E with the following properties:

(i) ξ(t, x) ∈ Ex for each (t, x) ∈ T ×M;

(ii) for each t ∈ T, the map ξt : M → E defined by ξt(x) is of class C
ω;

(iii) for each x ∈ M, the map ξx : T → E defined by ξx(t) = ξ(t, x) is Lebesgue measurable.

We shall call T the time-domain for the section. By CFΓω(T;E) we denote the set of
Carathéodory sections of class Cω of E. •

Now we turn to placing restrictions on the time-dependence to allow us to do useful
things.

3.8 Definition: (Locally integrally Cω-bounded and locally essentially Cω-
bounded sections) Let π : E → M be a real analytic vector bundle and let T ⊆ R
be an interval. A Carathéodory section ξ : T ×M → E of class Cω is

(i) locally integrally Cω-bounded if, for every compact set K ⊆ M and every a ∈
c↓0(Z≥0;R>0), there exists g ∈ L1

loc(T;R≥0) such that

a0a1 · · · am∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K, m ∈ Z≥0,

and is

(ii) locally essentially Cω-bounded if, for every compact set K ⊆ M and every a ∈
c↓0(Z≥0;R>0), there exists g ∈ L∞

loc(T;R≥0) such that

a0a1 · · · am∥jmξt(x)∥Gm
≤ g(t), (t, x) ∈ T ×K, m ∈ Z≥0.

The set of locally integrally Cω-bounded sections of E with time-domain T is denoted by
LIΓω(T,E) and the set of locally essentially Cω-bounded sections of E with time-domain T
is denoted by LBΓω(T;E). •

The following result will often be useful in practice when verifying whether a time-
varying vector field is in LIΓω(T;TM). While the result is one that is “practical,” its proof
relies on a comprehensive understanding of the real analytic topology.
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3.9 Theorem: (Real analytic time-varying vector fields as restrictions of holo-
morphic time-varying vector fields) Let π : E → M be a real analytic vector bundle
with complexification6 π : E → M, and let T be a time-domain. For a map ξ : T ×M → E
satisfying ξ(t, x) ∈ Ex for every (t, x) ∈ T ×M, the following statements hold:

(i) if ξ ∈ LIΓω(T;E), then, for each (t0, x0) ∈ T × M and each bounded subinterval
T′ ⊆ T containing t0, there exist a neighbourhood U of x0 in M and ξ ∈ Γhol(T′;E|U)
such that ξ(t, x) = ξ(t, x) for each t ∈ T′ and x ∈ U ∩M;

(ii) if, for each x0 ∈ M, there exist a neighbourhood U of x0 in M and ξ ∈ Γhol(T;E|U)
such that ξ(t, x) = ξ(t, x) for each t ∈ T and x ∈ U ∩M, then ξ ∈ LIΓω(T;E).

Proof: This is proved by Jafarpour and Lewis [2014b, Theorem 6.25]. ■

3.1.5. Topological characterisations of spaces of time-varying vector fields. The topolog-
ical characterisation we give in this section relies on notions of measurability, integrability,
and boundedness in the locally convex spaces Γν(TM). Let us review this quickly for an
arbitrary locally convex space V, referring to references for details.

1. A function γ : T → V is measurable if γ−1(O) is Lebesgue measurable for every open
O ⊆ V.

2. It is possible to describe a notion of integral, called the Bochner integral , for a func-
tion γ : T → V that closely resembles the usual construction of the Lebesgue integral.
We refer to [Jafarpour and Lewis 2014b] for a sketch of the construction, and to the
references cited there for details; the note [Beckmann and Deitmar 2011] is particularly
useful. A curve γ : T → V is Bochner integrable if its Bochner integral exists and
is locally Bochner integrable if the Bochner integral of γ|T′ exists for any compact
subinterval T′ ⊆ T.

3. Finally, a subsetB ⊆ V is von Neumann bounded if p|B is bounded for any continuous
seminorm p on V. A curve γ : T → V is essentially von Neumann bounded if there
exists a bounded set B such that

λ({t ∈ T | γ(t) ̸∈ B}) = 0,

and is locally essentially von Neumann bounded if γ|T′ is essentially von Neumann
bounded for every compact subinterval T′ ⊆ T.
The following test for Bochner integrability and essential boundedness is one that we

shall use.

3.10 Lemma: (Test for Bochner integrability and von Neumann boundedness)
Let m ∈ Z≥0, let m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω, hol}, and let r ∈ {∞, ω, hol}, as
required. For a manifold M of class Cr, an interval T ⊆ R, and a curve γ : T → Γν(TM),
the following two statements are equivalent:

(i) γ is locally Bochner integrable;

(ii) for each of the seminorms pK from (2.2), defined according to ν, there exists g ∈
L1
loc(T;R≥0) such that pK ◦ γ(t) ≤ g(t) for every t ∈ T,

and the following two statements are equivalent:

6Such complexifications exist, as pointed out in [Jafarpour and Lewis 2014b, §5.1.1]
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(iii) γ is locally essentially von Neumann bounded;

(iv) for each of the seminorms pK from (2.2), defined according to ν, there exists g ∈
L∞
loc(T;R≥0) such that pK ◦ γ(t) ≤ g(t) for every t ∈ T.

Proof: Let us prove the equivalence of the first two statements. As indicated in [Jafarpour
and Lewis 2014b, §6], Γν(TM) is complete and separable for all ν ∈ {m + m′,∞, ω}. By
Theorems 3.1 and 3.2 of [Beckmann and Deitmar 2011], we conclude that γ is locally
Bochner integrable if and only if p ◦ γ is locally integrable for every continuous seminorm p
for Γν(TM). Since the seminorms from (2.2) define the locally convex topology of Γν(TM),
it suffices to check local integrability of pK ◦ γ.

The equivalence of the last two assertions follows similarly, recalling that bounded sub-
sets of locally convex spaces are those to which restrictions of continuous seminorms are
bounded. ■

With these notions, we can now characterise our classes of vector fields.

3.11 Theorem: (Topological characterisation of time-varying sections) Let m ∈
Z≥0, let m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω, hol}, and let r ∈ {∞, ω, hol}, as required.
For a vector bundle π : E → M of class Cr and an interval T ⊆ R, let ξ : T×M → E satisfy
ξ(t, x) ∈ E for each (t, x) ∈ T ×M. Denote by ξt, t ∈ T, the map x 7→ ξ(t, x) and suppose
that ξt ∈ Γν(E) for every t ∈ T. Then ξ is:

(i) a Carathéodory section of class Cν if and only if the curve T ∋ t 7→ ξt ∈ Γν(E)
is measurable;

(ii) locally integrally Cν-bounded if and only if the curve T ∋ t 7→ ξt ∈ Γν(E) is locally
Bochner integrable;

(iii) locally essentially Cν-bounded if and only if the curve T ∋ t 7→ ξt ∈ Γν(E) is
locally essentially von Neumann bounded.

Proof: This is proved as Theorems 6.3, 6.9, 6.14, and 6.21 by Jafarpour and Lewis [2014b].
■

The classes of time-varying vector fields defined above have many excellent properties.
Perhaps the most compelling of these is that the dependence of the flows of these vector
fields on initial condition has regularity that matches ν. To be precise, if ν = ∞ then the
flow depends smoothly on initial condition, if ν = ω then the flow depends real analytically
on initial condition, and if ν = m+ lip then the flow depends m-times continuously differ-
entiably on initial condition. These results are proved by Jafarpour and Lewis [2014b]; the
real analytic version of this result requires a deep understanding of the Cω-topology.

3.1.6. Mixing regularity hypotheses. It is possible to mix regularity conditions for vector
fields. By this we mean that one can consider vector fields whose dependence on state
is more regular than their joint state/time dependence. This can be done by considering
m ∈ Z≥0∪{∞}, m′ ∈ {0, lip}, r ∈ Z≥0∪{∞, ω}, and r′ ∈ {0, lip} satisfying m+m′ < r+r′,
and considering vector fields in

CFΓr+r′(T;TM) ∩ LIΓm+m′
(T;TM) or CFΓr+r′(T;TM) ∩ LBΓm+m′

(T;TM),
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using the obvious convention that ∞ + lip = ∞ and ω + lip = ω. This does come across
as quite unnatural in our framework, and perhaps it is right that it should. Moreover,
because the Cm+m′

-topology for Γr+r′(TM) will be complete if and only if m+m′ = r+ r′,
some of the results above will not translate to this mixed class of time-varying vector fields:
particularly, the results on Bochner integrability require completeness. Nonetheless, this
mixing of regularity assumptions is quite common in the literature. Indeed, this has always
been done in the real analytic case, since the notions of “locally integrally Cω-bounded”
and “locally essentially Cω-bounded” given in Definition 3.8 are given for the first time
in [Jafarpour and Lewis 2014b].

3.2. Parameterised vector fields. One can think of a control system as a family of vector
fields parameterised by control. It is the exact nature of this dependence on the parameter
that we discuss in this section. Specifically, we give pointwise characterisations that are
equivalent to continuity of the natural map from the parameter space into the space of
sections, using the topologies from Section 2.

As we have been doing thus far, we shall consider sections of general vector bundles
rather than vector fields to simplify the notation.

3.2.1. The smooth case. We begin by discussing parameter dependent smooth sections.
Throughout this section we will work with a smooth vector bundle π : E → M with a
linear connection ∇0 on E, an affine connection ∇ on M, a fibre metric G0 on E, and a
Riemannian metric G on M. These define the fibre metrics ∥·∥Gm

and the seminorms p∞K,m,
K ⊆ M compact, m ∈ Z≥0, on Γ∞(E) as in Sections 2.2.1 and 2.2.2.

3.12 Definition: (Sections of parameterised class C∞) Let π : E → M be a smooth
vector bundle and let P be a topological space. A map ξ : M×P → E such that ξ(x, p) ∈ Ex

for every (x, p) ∈ M× P

(i) is a separately parameterised section of class C∞ if

(a) for each x ∈ M, the map ξx : P → E defined by ξx(p) = ξ(x, p) is continuous and

(b) for each p ∈ P, the map ξp : M → E defined by ξp(x) = ξ(x, p) is of class C∞,

and

(ii) is a jointly parameterised section of class C∞ if it is a separately parameterised
section of class C∞ and if the map (x, p) 7→ jmξp(x) is continuous for every m ∈ Z≥0.

By SPΓ∞(P;E) we denote the set of separately parameterised sections of E of class C∞ and
by JPΓ∞(P;E) we denote the set of jointly parameterised sections of E of class C∞. •

3.2.2. The finitely differentiable or Lipschitz case. The preceding development in the
smooth case is easily extended to the finitely differentiable and Lipschitz cases, and we
quickly give the definitions here. In this section, when considering the Lipschitz case, we
assume that ∇ is the Levi-Civita connection associated to G and we assume that ∇0 is
G0-orthogonal.
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3.13 Definition: (Sections of parameterised class Cm+m′
) Let π : E → M be a smooth

vector bundle and let P be a topological space. A map ξ : M×P → E such that ξ(x, p) ∈ Ex

for every (x, p) ∈ M× P

(i) is a separately parameterised section of class Cm+m′
if

(a) for each x ∈ M, the map ξx : P → E defined by ξx(p) = ξ(x, p) is continuous and

(b) for each p ∈ P, the map ξp : M → E defined by ξp(x) = ξ(x, p) is of class Cm+m′
,

and

(ii) is a jointly parameterised section of class Cm+m′
if it is a separately parame-

terised section of class Cm+m′
and

(a) m′ = 0: the map (x, p) 7→ jmξp(x) is continuous;

(b) m′ = lip: the map (x, p) 7→ jmξp(x) is continuous and, for each (x0, p0) ∈ M×P

and each ϵ ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood
O ⊆ P of p0 such that

jmξ(U× O) ⊆ {jmη(x) ∈ JmE | dil (jmη − jmξp0)(x) < ϵ},

where, of course, jmξ(x, p) = jmξp(x).

By SPΓm+m′
(P;E) we denote the set of separately parameterised sections of E of class

Cm+m′
and by JPΓm+m′

(P;E) we denote the set of jointly parameterised sections of E of
class Cm+m′

. •

3.2.3. The holomorphic case. As with time-varying vector fields, we are not really inter-
ested, per se, in holomorphic control systems, and in fact we will not even define the notion.
However, it is possible, and possibly sometimes easier, to verify that a control system sat-
isfies our rather technical criterion of being a “real analytic control system” by verifying
that it possesses an holomorphic extension. Thus, in this section, we present the required
holomorphic definitions. We will consider an holomorphic vector bundle π : E → M with an
Hermitian fibre metric G. This defines the seminorms pholK , K ⊆ M compact, describing the
Chol-topology for Γhol(E) as in Section 2.2.5.

3.14 Definition: (Sections of parameterised class Chol) Let π : E → M be an holo-
morphic vector bundle and let P be a topological space. A map ξ : M × P → E such that
ξ(z, p) ∈ Ez for every (z, p) ∈ M× P

(i) is a separately parameterised section of class Chol if

(a) for each z ∈ M, the map ξz : P → E defined by ξz(p) = ξ(z, p) is continuous and

(b) for each p ∈ P, the map ξp : M → E defined by ξp(z) = ξ(z, p) is of class Chol,

and

(ii) is a jointly parameterised section of class Chol if it is a separately parameterised
section of class Chol and if the map (z, p) 7→ ξp(z) is continuous.

By SPΓhol(P;E) we denote the set of separately parameterised sections of E of class Chol

and by JPΓhol(P;E) we denote the set of jointly parameterised sections of E of class Chol. •
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3.2.4. The real analytic case. Now we repeat the procedure above for real analytic sec-
tions. We thus will consider a real analytic vector bundle π : E → M with ∇0 a real analytic
linear connection on E, ∇ a real analytic affine connection on M, G0 a real analytic fibre
metric on E, and G a real analytic Riemannian metric on M. This defines the seminorms
pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0), describing the Cω-topology as in Section 2.2.6.

3.15 Definition: (Sections of parameterised class Cω) Let π : E → M be a real analytic
vector bundle and let P be a topological space. A map ξ : M×P → E such that ξ(x, p) ∈ Ex

for every (x, p) ∈ M× P

(i) is a separately parameterised section of class Cω if

(a) for each x ∈ M, the map ξx : P → E defined by ξx(p) = ξ(x, p) is continuous and

(b) for each p ∈ P, the map ξp : M → E defined by ξp(x) = ξ(x, p) is of class Cω,

and

(ii) is a jointly parameterised section of class Cω if it is a separately parameterised
section of class C∞ and if, for each (x0, p0) ∈ M × P, for each a ∈ c↓0(Z≥0,R>0),
and for each ϵ ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood
O ⊆ P of p0 such that

jmξ(U× O) ⊆ {jmη(x) ∈ JmE | a0a1 · · · am∥jmη(x)− jmξp0(x)∥Gm
< ϵ}

for every m ∈ Z≥0, where, of course, jmξ(x, p) = jmξp(x).

By SPΓω(P;E) we denote the set of separately parameterised sections of E of class Cω and
by JPΓω(P;E) we denote the set of jointly parameterised sections of E of class Cω. •

3.16 Remark: (Jointly parameterised sections of class Cω) The condition that ξ ∈
JPΓ∞(P;E) can be restated like this: for each (x0, p0) ∈ M× P, for each m ∈ Z≥0, and for
each ϵ ∈ R>0, there exist a neighbourhood U ⊆ M of x0 and a neighbourhood O ⊆ P of p0
such that

jmξ(U× O) ⊆ {jmη(x) ∈ JmE | ∥jmη(x)− jmξp0(x)∥Gm
< ϵ};

that this is so is, more or less, the idea of the proof of Theorem 3.18 below in the smooth
case. Phrased this way, one sees clearly the grammatical similarity between the smooth
and real analytic definitions. Indeed, the grammatical transformation from the smooth
to the real analytic definition is, put a factor of a0a1 · · · am before the norm, precede the
condition with “for every a ∈ c↓0(Z≥0;R>0)”, and move the “for every m ∈ Z≥0” from
before the condition to after. This was also seen in the definitions of locally integrally
bounded and locally essentially bounded sections in Section 3.1. Indeed, the grammatical
similarity is often encountered when using our locally convex topologies, and contributes to
the unification of the analysis of the varying degrees of regularity. •

One can wonder about the relationship between sections of jointly parameterised class
Cω and sections that are real restrictions of sections of jointly parameterised class Chol. As
with Theorem 3.9 above, this is a “practical” theorem with a deep and difficult proof.
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3.17 Theorem: (Jointly parameterised real analytic sections as restrictions of
jointly parameterised holomorphic sections) Let π : E → M be a real analytic vector
bundle with complexification7 π : E → M and let P be a topological space. For a map
ξ : M× P → E satisfying ξ(x, p) ∈ Ex for all (x, p) ∈ M× P, the following statements hold:

(i) if ξ ∈ JPΓω(P;E) and if P is locally compact and Hausdorff, then, for each (x0, p0) ∈
M× P, there exist a neighbourhood U ⊆ M of x0, a neighbourhood O ⊆ P of p0, and
ξ ∈ JPΓhol(O;E|U) such that ξ(x, p) = ξ(x, p) for all (x, p) ∈ (M ∩ U)× O;

(ii) if there exists a section ξ ∈ JPΓhol(P;E) such that ξ(x, p) = ξ(x, p) for every (x, p) ∈
M× P, then ξ ∈ JPΓω(P;E).

Proof: This is proved by Jafarpour and Lewis [2016, Theorem 4.10]. ■

3.2.5. Topological characterisations of parameterised vector fields. As with time-varying
vector fields, it is possible to characterise parameterised vector fields using the locally
convex topologies developed in Section 2. This is done relatively easily here, since we only
rely on continuity properties, not on the more complicated notions of measurability and
integrability we used for time-varying vector fields.

3.18 Theorem: (Topological characterisation of parameterised vector fields) Let
m ∈ Z≥0, let m

′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω, hol}, and let r ∈ {∞, ω, hol}, as required.
For a vector bundle π : E → M of class Cr and a topological space P, let ξ : M × P → E
satisfy ξ(x, p) ∈ Ex for each (x, p) ∈ M × P. Then ξ ∈ JPΓν(P;E) if and only if the map
p 7→ ξp ∈ Γν(E) is continuous, where Γν(E) has the Cν-topology.

Proof: This is proved as Propositions 4.2, 4.4, 4.6, and 4.9 by Jafarpour and Lewis [2016].■

3.2.6. Mixing regularity hypotheses. It is possible to consider parameterised sections
with mixed regularity hypotheses. Indeed, the conditions of Definitions 3.12, 3.13, and 3.15
are joint on state and parameter. Thus we may consider the following situation. Let
m ∈ Z≥0 ∪ {∞}, m′ ∈ {0, lip}, r ∈ Z≥0 ∪ {∞, ω}, and r′ ∈ {0, lip}. If r + r′ ≥ m + m′

(with the obvious convention that ∞+ lip = ∞ and ω + lip = ω), we may then consider a
parameterised section in

SPΓr+r′(P;E) ∩ JPΓm+m′
(P;E)

As with time-varying vector fields, there is nothing wrong with this—indeed this is often
done—as long as one remembers what is true and what is not in the case when r + r′ >
m+m′.

3.3. Control systems. In this section we shall present a class of control systems of the
“ordinary” sort. These systems, while of a standard form, are defined in such a way that the
appropriate topology for the space of vector fields is carefully accounted for. In Section 3.3.3
we also briefly discuss differential inclusions.

3.3.1. Control systems with locally essentially bounded controls. With the notions of
parameterised sections from the preceding section, we readily define what we mean by a
control system.

7Such complexifications exist, as pointed out in [Jafarpour and Lewis 2014b, §5.1.1]
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3.19 Definition: (Control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-control system is a triple Σ = (M, F,C),
where

(i) M is a Cr-manifold whose elements are called states,

(ii) C is a topological space called the control set , and

(iii) F ∈ JPΓν(C;TM). •
The governing equations for a control system are

ξ′(t) = F (ξ(t), µ(t)),

for suitable functions t 7→ µ(t) ∈ C and t 7→ ξ(t) ∈ M. To ensure that these equations make
sense, the differential equation should be shown to have the properties needed for existence
and uniqueness of solutions, as well as appropriate dependence on initial conditions. We do
this by allowing the controls for the system to be as general as reasonable.

3.20 Proposition: (Property of control system when the control is specified) Let
m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
Σ = (M, F,C) be a Cν-control system. If µ ∈ Lcpt

loc (T;C) then Fµ ∈ LBΓν(T,TM), where
Fµ : T ×M → TM is defined by Fµ(t, x) = F (x, µ(t)).

Proof: We refer to [Jafarpour and Lewis 2016, Proposition 5.2]. ■

The notion of a trajectory is, of course, well known. However, we make the definitions
clear for future reference.

3.21 Definition: (Trajectory for control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-control
system. For an interval T ⊆ R, a T-trajectory is a locally absolutely continuous curve
ξ : T → M for which there exists µ ∈ Lcpt

loc (T;C) such that

ξ′(t) = F (ξ(t), µ(t)), a.e. t ∈ T.

The set of T-trajectories we denote by Traj(T,Σ). If U is open, we denote by Traj(T,U,Σ)
those trajectories taking values in U.8 •

3.3.2. Control systems with locally integrable controls. In this section we specialise the
discussion from the preceding section in one direction, while generalising it in another. To
be precise, we now consider the case where our control set C is a subset of a locally convex
topological vector space, and the system structure is such that the notion of integrability
is preserved (in a way that will be made clear in Proposition 3.24 below).

8This is not a common notion in this context, and our introduction of this is for the convenience of making
comparisons when we talk about tautological control systems in Section 5; see Theorems 5.27 and 5.29.
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3.22 Definition: (Sublinear control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-sublinear control system is a
triple Σ = (M, F,C), where

(i) M is a Cr-manifold whose elements are called states,

(ii) C is a subset of a locally convex topological vector space V, C being called the control
set , and

(iii) F : M × C → TM has the following property: for every continuous seminorm p for
Γν(TM), there exists a continuous seminorm q for V such that

p(F u1 − F u2) ≤ q(u1 − u2), u1, u2 ∈ C. •

Note that, by Theorem 3.18, the sublinearity condition (iii) implies that a Cν-sublinear
control system is a Cν-control system.

Let us demonstrate a class of sublinear control systems in which we will be particularly
interested.

3.23 Example: (Control-linear systems and control-affine systems) The class of sub-
linear control systems we consider seems quite particular, but will turn out to be extremely
general in our framework. We let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω},
and let r ∈ {∞, ω}, as required. Let V be a locally convex topological vector space and let
C ⊆ V. We suppose that we have a continuous linear map Λ ∈ L(V; Γν(TM)) and we corre-
spondingly define FΛ : M × C → TM by FΛ(x, u) = Λ(u)(x). Continuity of Λ immediately
gives that the control system (M, FΛ,C) is sublinear, and we shall call a system such as this
a Cν-control-linear system .

Note that we can regard a control-affine system as a control-linear system as follows.
For a control-affine system with C ⊆ Rk and with

F (x,u) = f0(x) +
k∑

a=1

uafa(x),

we let V = Rk+1 ≃ R ⊕Rk and take

C′ = {(u0,u) ∈ R ⊕Rk | u0 = 1, u ∈ C}, Λ(u0,u) =
k∑

a=0

uafa.

Clearly we have F (x,u) = FΛ(x, (1,u)) for every u ∈ C. Since linear maps from finite-
dimensional locally convex spaces are continuous [Horváth 1966, Proposition 2.10.2], we
conclude that control-affine systems are control-linear systems. Thus they are also control
systems as per Definition 3.19. •

One may want to regard the generalisation from the case where the control set is a
subset of Rk to being a subset of a locally convex topological vector space to be mere fancy
generalisation, but this is, actually, far from being the case. Indeed, this observation is the
foundation for the connections we make in Section 5 between “ordinary” control systems
and tautological control systems.

We also have a version of Proposition 3.20 for sublinear control systems.
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3.24 Proposition: (Property of sublinear control system when the control is spec-
ified) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as
required. Let Σ = (M, F,C) be a Cν-sublinear control system for which C is a subset of a
locally convex topological vector space V. If µ ∈ L1

loc(T;C), then Fµ ∈ LIΓν(T;TM), where
Fµ : T ×M → TM is defined by Fµ(t, x) = F (x, µ(t)).

Proof: We refer to [Jafarpour and Lewis 2016, Proposition 5.6]. ■

There is also a version of the notion of trajectory that is applicable to the case when
the control set is a subset of a locally convex topological space.

3.25 Definition: (Trajectory for sublinear control system) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a
Cν-sublinear control system. For an interval T ⊆ R, a T-trajectory is a locally absolutely
continuous curve ξ : T → M for which there exists µ ∈ L1

loc(T;C) such that

ξ′(t) = F (ξ(t), µ(t)), a.e. t ∈ T.

The set of T-trajectories we denote by Traj(T,Σ). If U is open, we denote by Traj(T,U,Σ)
those trajectories taking values in U. •

3.3.3. Differential inclusions. We briefly mentioned differential inclusions in Section 1.1.4,
but now let us define them properly and give a few attributes of, and constructions for,
differential inclusions of which we shall subsequently make use.

First the definition.

3.26 Definition: (Differential inclusion, trajectory) For a smooth manifold M, a dif-
ferential inclusion on M is a set-valued map X : M ↠ TM with nonempty values for
which X (x) ⊆ TxM. A trajectory for a differential inclusion X is a locally absolutely
continuous curve ξ : T → M defined on an interval T ⊆ R for which ξ′(t) ∈ X (ξ(t)) for
almost every t ∈ T. If T ⊆ R is an interval and if U ⊆ M is open, by Traj(T,U,X ) we
denote the trajectories of X defined on T and taking values in U. •

Of course, differential inclusions will generally not have trajectories, and to ensure that
they do various hypotheses can be made. Two common attributes of differential inclusions
in this vein are the following.

3.27 Definition: (Lower and upper semicontinuity of differential inclusions) A
differential inclusion X on a smooth manifold M is:

(i) lower semicontinuous at x0 ∈ M if, for any v0 ∈ X (x0) and any neighbourhood
V ⊆ TM of v0, there exists a neighbourhood U ⊆ M of x0 such that X (x)∩V ̸= ∅ for
every x ∈ U;

(ii) lower semicontinuous if it is lower semicontinuous at every x ∈ M;

(iii) upper semicontinuous at x0 ∈ M if, for every open set TM ⊇ V ⊇ X (x0), there
exists a neighbourhood U ⊆ M of x0 such that X (U) ⊆ V;

(iv) upper semicontinuous if it is upper semicontinuous at each x ∈ M;

(v) continuous at x0 ∈ M if it is both lower and upper semicontinuous at x0;

(vi) continuous if it is both lower and upper semicontinuous. •
Other useful properties of differential inclusions are the following.
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3.28 Definition: (Closed-valued, compact-valued, convex-valued differential in-
clusions) A differential inclusion X on a smooth manifold M is:

(i) closed-valued (resp. compact-valued , convex-valued) at x ∈ M if X (x) is closed
(resp., compact, convex);

(ii) closed-valued (resp. compact-valued , convex-valued) if X (x) is closed (resp.,
compact, convex) for every x ∈ M. •

Some standard hypotheses for existence of trajectories are then:

1. X is lower semicontinuous with closed and convex values [Aubin and Cellina 1984,
Theorem 2.1.1];

2. X is upper semicontinuous with compact and convex values [Aubin and Cellina 1984,
Theorem 2.1.4];

3. X is continuous with compact values [Aubin and Cellina 1984, Theorem 2.2.1].

These are not matters with which we shall be especially concerned.
A standard operation is to take “hulls” of differential inclusions in the following manner.

3.29 Definition: (Convex hull, closure of a differential inclusion) Let r ∈ {∞, ω},
let M be a Cr-manifold, and let X : M ↠ TM be a differential inclusion.

(i) The convex hull of X is the differential inclusion conv(X ) defined by

conv(X )(x) = conv(X (x)), x ∈ M.

(ii) The closure of X is the differential inclusion cl(X ) defined by

cl(X )(x) = cl(X (x)), x ∈ M. •

To close this section, let us make an observation regarding the connection between
control systems and differential inclusions. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-control system. To
this system we associate the differential inclusion XΣ by

XΣ(x) = {F u(x) | u ∈ C}.

Since the differential inclusion XΣ is defined by a family of vector fields, one might try to
recover the vector fields F u, u ∈ C, from XΣ. The obvious way to do this is to consider

Γν(XΣ) ≜ {X ∈ Γν(TM) | X(x) ∈ XΣ(x), x ∈ M}.

Clearly we have F u ∈ Γν(XΣ) for every u ∈ C. However, XΣ will generally contain vector
fields not of the form F u for some u ∈ C. Let us give an illustration of this. Let us consider
a smooth control system (M, F,C) with the following properties:

1. C is a disjoint union of sets C1 and C2;

2. there exist disjoint open sets U1 and U2 such that supp(F u) ⊆ U1 for u ∈ C1 and
supp(F u) ⊆ U2 for u ∈ C2.

One then has that

{c1F u1 + c1F
u2 | u1 ∈ C1, u2 ∈ C2, c1, c2 ∈ {0, 1}, c21 + c22 ̸= 0} ⊆ Γν(XΣ),

showing that there are more sections of XΣ than there are control vector fields. This is very
much related to presheaves and sheaves, to which we shall now turn our attention.
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4. Presheaves and sheaves of sets of vector fields

We choose to phrase our notion of control systems in the language of sheaf theory. This
will seem completely pointless to a reader not used to thinking in this sort of language.
However, we do believe there are benefits to the sheaf approach including (1) it permits
natural formulations of problems that do not have a natural formulation in “ordinary” con-
trol theory, (2) sheaves are the proper framework for constructing germs of control systems
which are often important in the study of local system structure, and (3) sheaf theory
provides us with a natural class of mappings between systems that we use to advantage in
Section 5.6.

4.1. Definitions and examples. We do not even come close to discussing sheaves in any
generality; we merely give the definitions we require, a few of the most elementary conse-
quences of these definitions, and some representative (for us) examples. We refer to [Bredon
1997, Godement 1958, Kashiwara and Schapira 1990, Ramanan 2005, Stacks Project Au-
thors 2014] for details.

4.1 Definition: (Presheaf of sets of vector fields) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr. A
presheaf of sets of Cν-vector fields is an assignment to each open set U ⊆ M a subset
F (U) of Γν(TU) with the property that, for open sets U,V ⊆ M with V ⊆ U, the map

rU,V : F (U) → Γν(TV)

X 7→ X|V

takes values in F (V). Elements of F (U) are called local sections of F over U. •
Let us give some notation to the presheaf of sets of vector fields of which every other

such presheaf is a subset.

4.2 Example: (Presheaf of all vector fields) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr. The
presheaf of all vector fields of class Cν is denoted by G ν

TM. Thus G ν
TM(U) = Γν(TU) for every

open set U. Presheaves such as this are extremely important in the “normal” applications
of sheaf theory. For those with some background in these more standard applications of
sheaf theory, we mention that our reasons for using the theory are not quite the usual ones.
Such readers will be advised to be careful not to overlay too much of their past experience
on what we do with sheaf theory here. •

The preceding notion of a presheaf is intuitively clear, but it does have some defects.
One of these defects is that one can describe local data that does not patch together to give
global data. Let us illustrate this with a few examples.

4.3 Examples: (Local definitions not globally consistent)

1. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let us take a manifold M of class Cr with a Riemannian metric G. Let us define a
presheaf Fbdd by asking that

Fbdd(U) = {X ∈ Γν(TM) | sup{∥X(x)∥G | x ∈ U} < ∞}.
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Thus Fbdd is comprised of vector fields that are “bounded.” This is a perfectly sensible
requirement. However, the following phenomenon can happen if M is not compact.
There can exist an open cover (Ua)a∈A for M and local sections Xa ∈ Fbdd(Ua) that are
“compatible” in the sense that Xa|Ua ∩ Ub = Xb|Ua ∩ Ub, for each a, b ∈ A, but such
that there is no globally defined section X ∈ Fbdd(M) such that X|Ua = Xa for every
a ∈ A. We leave to the reader the easy job of coming up with a concrete instance of
this.

2. We let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as
required. Let M be a manifold of class Cr and let (Ua)a∈A be an open cover of M.
For each a ∈ A suppose that we have Xa ∈ Γν(TUa); this echoes the setting of the
Orbit Theorem of Stefan [1974] and Sussmann [1973]. We define a presheaf F of sets
of Cν-vector fields as follows. For U ⊆ M open, we define

F (U) = {X ∈ Γν(TU) | there exists a ∈ A such that U ⊆ Ua and X = Xa|U}.

The verification that this is a presheaf is easily carried out. However, it will generally not
have decent global patching properties. This can arise in many ways for this presheaf,
and here is one. Suppose that a, b ∈ A are such that Ua∩Ub = ∅. We take U = Ua∪Ub

and consider the open cover (Ua,Ub) for U. Then the vector fields Xa and Xb vacuously
agree on Ua ∩ Ub. We then define X ∈ Γν(TU) by

X(x) =

{
Xa(x), x ∈ Ua,

Xb(x), x ∈ Ub.

Generally, however, we will not have U ⊆ Uc for some c ∈ A, and so X ̸∈ F (U).

3. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let M be a manifold of class Cr. If X ⊆ Γν(TM) is any family of vector fields on M,
then we can define an associated presheaf FX of sets of vector fields by

FX (U) = {X|U | X ∈ X }.

Note that F (M) is necessarily equal to X , and so we shall typically use F (M) to denote
the set of globally defined vector fields giving rise to this presheaf. A presheaf of this
sort will be called globally generated .

This sort of presheaf will almost never have nice “local to global” properties. Let us
illustrate why this is so. Let M be a connected Hausdorff manifold. Suppose that the
set of globally defined vector fields F (M) has cardinality strictly larger than 1 and
has the following property: there exists a disconnected open set U ⊆ M such that the
mapping from F (U) to F (M) given by X|U 7→ X is injective. This property will hold
for real analytic families of vector fields, because we can take as U the union of a pair
of disconnected open sets. However, the property will also hold for many reasonable
families of smooth vector fields.

We write U = U1∪U2 for disjoint open sets U1 and U2. By hypothesis, there exist vector
fields X1, X2 ∈ F (M) such that X1|U ̸= X2|U. Define local sections X ′

a ∈ F (Ua) by
X ′

a = Xa|Ua, a ∈ {1, 2}. The condition

X ′
1|U1 ∩ U2 = X ′

2|U1 ∩ U2
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is vacuously satisfied. But there can be no X ∈ F (M) such that, if X ′ ∈ F (U) is given
by X ′ = X|U, then X ′|U1 = X ′

1 and X ′|U2 = X ′
2.

While a globally generated presheaf is unlikely to allow patching from local to global,
this can be easily redressed by undergoing a process known as “sheafification” that we
will describe below. •
The preceding examples suggest that, if one wishes to make compatible local construc-

tions that give rise to a global construction, additional properties need to be ascribed to a
presheaf of sets of vector fields. This we do as follows.

4.4 Definition: (Sheaf of sets of vector fields) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr.
A presheaf F of sets of Cν-vector fields is a sheaf of sets of Cν-vector fields if, for
every open set U ⊆ M, for every open cover (Ua)a∈A of U, and for every choice of local
sections Xa ∈ F (Ua) satisfying Xa|Ua ∩ Ub = Xb|Ua ∩ Ub, there exists X ∈ F (U) such
that X|Ua = Xa for every a ∈ A. •

The condition in the definition is called the gluing condition . Readers familiar with
sheaf theory will note the absence of another condition, sometimes called the separation
condition, normally placed on a presheaf in order for it to be a sheaf: it is automatically
satisfied for presheaves of sets of vector fields.

Many of the presheaves that we encounter will not be sheaves, as they will be globally
generated. Thus let us give some examples of sheaves, just as a point of reference.

4.5 Examples: (Sheaves of sets of vector fields)

1. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let M be a Cr-manifold. The presheaf G ν

TM of all Cν-vector fields is a sheaf. We leave
the simple and standard working out of this to the reader; it will provide some facility
in working with sheaf concepts for those not already having this.

2. If instead of considering bounded vector fields as in part Example 4.3–1, we consider
the presheaf of vector fields satisfying a fixed bound, then the resulting presheaf is a
sheaf. Let us be clear. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let
r ∈ {∞, ω}, as required. We let M be a Cr-manifold with Riemannian metric G and,
for B ∈ R>0, define a presheaf F≤B by

F≤B(U) = {X ∈ Γν(TU) | sup{∥X(x)∥G | x ∈ U} ≤ B}.

The presheaf F≤B is a sheaf, as is easily verified. In this case, the local constraints for
membership are compatible with a global one.

3. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let M be a Cr-manifold. Let A ⊆ M and define a presheaf IA of sets of vector fields by

IA(U) = {X ∈ Γν(TU) | X(x) = 0, x ∈ A}.

This is a sheaf (again, we leave the verification to the reader) called the ideal sheaf
of A. •
Let us now turn to localising sheaves of sets of vector fields. Let m ∈ Z≥0 and m′ ∈

{0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold,
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let A ⊆ M, and let NA be the set of neighbourhoods of A in M, i.e., the open subsets of
M containing A. This is a directed set in the usual way by inclusion, i.e., U ⪯ V if V ⊆ U.
Let F be a sheaf of sets of Cν-vector fields. The stalk of F over A is the direct limit
dir limU∈NA

F (U). Let us be less cryptic about this. Let U,V ∈ NA, and let X ∈ F (U)
and Y ∈ F (V). We say X and Y are equivalent if there exists W ⊆ U ∩ V such that
X|W = Y |W. The germ of X ∈ F (U) for U ∈ NA is the equivalence class of X under this
equivalence relation. If U ∈ NA and if X ∈ F (U), then we denote by [X]A the equivalence
class of X. The stalk of F over A is the set of all equivalence classes. The stalk of F over
A is denoted by FA, and we write F{x} as Fx. In particular, G ν

x,TM is the stalk at x of the
sheaf G ν

TM of Cν-vector fields.

4.2. Sheafification. Let us now describe how a presheaf can be converted in a natural way
into a sheaf. The description of how to do this for general presheaves is a little complicated.
However, in the case we are dealing with here, we can be explicit about this.

4.6 Lemma: (A sheaf associated to every presheaf of sets of vector fields) Let
m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
M be a Cr-manifold and let F be a presheaf of sets of Cν-vector fields. For an open set
U ⊆ M, define

Sh(F )(U) = {X ∈ Γν(TU) | [X]x ∈ Fx for every x ∈ U}.

Then Sh(F ) is a sheaf.

Proof: Let U ⊆ M be open and let (Ua)a∈A be an open cover of U. Suppose that local
sections Xa ∈ Sh(F )(Ua), a ∈ A, satisfy Xa|Ua ∩Ub = Xb|Ua ∩Ub for each a, b ∈ A. Since
G ν
TM is a sheaf, there exists X ∈ Γν(TU) such that X|Ua = Xa, a ∈ A. It remains to

show that X ∈ Sh(F )(U). Let x ∈ U and let a ∈ A be such that x ∈ Ua. Then we have
[X]x = [Xa]x ∈ Fx, as desired. ■

With the lemma in mind we have the following definition.

4.7 Definition: (Sheafification of a presheaf of sets of vector fields) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a
Cr-manifold and let F be a presheaf of sets of Cν-vector fields. The sheafification of F
is the sheaf Sh(F ) of sets of vector fields defined by

Sh(F )(U) = {X ∈ Γν(TU) | [X]x ∈ Fx for all x ∈ U}. •

Let us consider some examples of sheafification.

4.8 Examples: (Sheafification)

1. Let us consider the presheaf of bounded vector fields from Example 4.3–1. Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be
a Cr-manifold and consider the presheaf Fbdd of bounded vector fields. One easily sees
that the stalk of this presheaf at x ∈ M is given by

Fbdd,x = {[X]x | X ∈ Γν(TM)},

i.e., there are no restrictions on the stalks coming from the boundedness restriction on
vector fields. Therefore, Sh(Fbdd) = G ν

TM.
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2. Let us consider the sheafification of the presheaf defined in Example 4.3–2 by a family of
vector fields defined on the open sets of an open cover of M. Thus we let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. We let (Ua)a∈A
be an open cover for M and let (Xa)a∈A be Cν-vector fields defined on these sets. By
F we denote the associated presheaf. Note that, for x ∈ M,

Fx = {[Xa]x | x ∈ Ua}.

Generally, the sheafification of this presheaf will be difficult to understand. However, in
the case that Ua ∩ Ub = ∅, then the vector field X ∈ Γν(TU), U = Ua ∪ Ub, defined by

X(x) =

{
Xa(x), x ∈ Ua,

Xb(x), x ∈ Ub

is a section of Sh(F ) over U.

3. Let us now examine the sheafification of a globally generated presheaf of sets of vector
fields as in Example 4.3–3. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and
let r ∈ {∞, ω}, as required. Let M be a Cr-manifold and let F be a globally generated
presheaf of sets of Cν-vector fields, with F (M) the global generators. We will contrast
F (U) with Sh(F )(U) to get an understanding of what the sheaf Sh(F ) “looks like.”

To do so, for U ⊆ M open and for X ∈ Γν(TU), let us define a set-valued map κX,U : U ↠
F (M) by

κX,U(x) = {X ′ ∈ F (M) | X ′(x) = X(x)}.

Generally, since we have asked nothing of the vector field X, we might have κX,U(x) =
∅ for a chosen x, or for some x, or for every x. If, however, we take X ∈ F (U),
then X = X ′|U for some X ′ ∈ F (M). Therefore, there exists a constant selection of
κX,U, i.e., a constant function s : U → F (M) such that s(x) ∈ κX,U(x) for every x ∈ U.
Note that if, for example, M is connected and ν = ω, then there will be a unique such
constant selection since a real analytic vector field known on an open subset uniquely
determines the vector field on the connected component containing this open set; this is
the Identity Theorem, cf. [Gunning 1990a, Theorem A.3] in the holomorphic case and
the same proof applies in the real analytic case. Moreover, this constant selection in
this case will completely characterise κX,U in the sense that κX,U(x) = {s(x)}.
Let us now contrast this with the character of the map κX,U for a local section X ∈
Sh(F )(U). In this case, for each x ∈ U, we have [X]x = [Xx]x for some Xx ∈ F (M).
Thus there exists a neighbourhood Vx ⊆ U such that X|Vx = Xx|Vx. What this
shows is that there is a locally constant selection of κX,U, i.e., a locally constant map
s : U → F (M) such that s(x) ∈ κX,U(x) for each x ∈ U. As above, in the real analytic
case when M is connected, this locally constant selection is uniquely determined, and
determines κX,U in the sense that κX,U(x) = {s(x)}.
Note that locally constant functions are those that are constant on connected compo-
nents. Thus, by passing to the sheafification, we have gained flexibility by allowing
local sections to differ on connected components of an open set. While this does not
completely characterise the difference between local sections of the globally generated
sheaf F and its sheafification Sh(F ), it captures the essence of the matter, and does
completely characterise the difference when ν = ω and M is connected. •
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4.3. The étalé space. For the basic material on tautological control systems in Section 5,
the elementary machinery provided above for presheaves and sheaves of sets of vector fields
will suffice. However, as the theory of tautological control systems develops, it appears
likely that more sophisticated sheaf theoretic constructions will play a rôle. We begin to
see this in Section 6 where we introduce the machinery needed to define a class of trajectories
extending those defined in Section 5. In the next two sections we shall introduce two sheaf
theoretic constructions that we will need in Section 6.

The first has to do with a natural topology associated to a sheaf. We describe this in
the following definitions, which are very restricted versions of general definitions that one
uses in a complete presentation of sheaf theory.

4.9 Definition: (Étalé space, étalé topology) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold and let F
be a presheaf of sets of Cν-vector fields.

(i) The étalé space for the presheaf F is the disjoint union of the stalks:

Et(F ) =
◦
∪ x∈MFx.

The étalé projection is the map πF : Et(F ) → M defined by πF ([X]x) = x.

(ii) The étalé topology for Et(F ) is that topology for Et(F ) generated by the basis

B(U, X) = {[X]x | x ∈ U}, U ⊆ M open, X ∈ F (U). •

The étalé topology is an important construction in sheaf theory, and here we will review
a few of the basic ideas and constructions associated with it.

4.10 Remarks: (Properties of the étalé space and the étalé topology) We let m ∈
Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required, and we let
F be a presheaf of sets of Cν-vector fields on the Cr-manifold M.

1. The étalé projection is a local homeomorphism [Tennison 1976, Lemma 2.3.5(a)].

2. A local section of Et(F ) over an open set U is a continuous map σ : U → Et(F ) with
the property that πF ◦ σ = idU.

3. If (and only if) F is a sheaf, there is a bijective correspondence between local sections
of F over U and local sections of Et(F ) defined by the map sending X ∈ F (U) to the
local section σX of Et(F ) given by σX(x) = [X]x [Tennison 1976, Lemma 2.4.3]. Thus
we are really to think of these two flavours of local sections as being the same. Indeed,
normally in sheaf theory there is no additional notation such as we use for Et(F ), and
F and Et(F ) are typically identified.

4. The étalé topology for Et(G ν
TM) is not Hausdorff for ν ∈ {m+m′,∞}. Let us illustrate

this for ν = ∞. Let U ⊆ M be open with a nonempty boundary and let X ∈ Γ∞(TM)
be a smooth vector field that is nowhere zero on U and is zero on M \ U. Let Z be
the zero vector field. If x ∈ bd(U), we claim that any neighbourhoods of [X]x and [Z]x
intersect. To see this, let OX and OZ be neighbourhoods in the étalé topology of [X]x and
[Z]x. Since any sufficiently small neighbourhood of [X]x and [Z]x is homeomorphic to a
neighbourhood of x under the étalé projection, let us suppose without loss of generality
that OX and OZ are both homeomorphic to a neighbourhood V of x under the projection.
For y ∈ V∩ (M \ cl(U)), [X]y = [Z]y. Since OX and OZ are uniquely determined by the



46 A. D. Lewis

germs of X and Z in V, respectively, it follows that [X]y = [Z]y ∈ OX ∩ OZ , giving the
desired conclusion.

5. The étalé topology for Et(G ω
TM) is Hausdorff. Though this is well-known, we could not

find a reference for this, so let us prove it. Let [X]x and [Y ]y be distinct. If x ̸= y then
there are disjoint neighbourhoods U and V of x and y and then B(U, X) and B(V, Y )
are disjoint neighbourhoods of [X]x and [Y ]y, respectively, since the étalé projection is
an homeomorphism from the neighbourhoods in M to the neighbourhoods in Et(G ω

TM).
If x = y let [X]x and [Y ]x be distinct and suppose that any neighbourhoods of [X]x and
[Y ]x in the étalé topology intersect. This implies, in particular, that, for every connected
neighbourhood U of x, the basic neighbourhoods B(U, X) and B(U, Y ) intersect. This
implies the existence of an open subset V of U such that Y and Y agree on V. This,
however, contradicts the Identity Theorem, cf. [Gunning 1990a, Theorem A.3]. Note
that this implies that the étalé space of every presheaf of sets of real analytic vector
fields is Hausdorff since Et(F ) ⊆ Et(G ω

TM). •

4.4. Stalk topologies. In order to characterise some of our constructions with tautological
control systems in Section 5, we will make use of a convenient topology for the stalks of the
sheaf of vector fields.

4.11 Definition: (Cν-stalk topology) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, let r ∈ {∞, ω}, as required, and let M be a Cr-manifold. For x ∈ M, the
Cν-stalk topology for G ν

x,TM is the final topology9 for the restriction mappings

rU,x : Γ
ν(TU) → G ν

x,TM

X 7→ [X]x,

where U ⊆ M is a neighbourhood of x. •
The following property of the stalk topology will be useful for us.

4.12 Lemma: (The Cν-stalk topology determines the Cν-topology) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. For a manifold
M of class Cr, the following topologies for Γν(TM) agree:

(i) the Cν-topology;

(ii) the initial topology10 defined by the mappings rM,x, x ∈ M, and the Cν-stalk topologies.

Proof: The definition of the Cν-stalk topology ensures that the mappings rM,x, x ∈ M, are
continuous if Γν(TM) has the Cν-topology. This means that the Cν-topology is finer than
the initial topology.

To show the converse, we show that every open set for Γν(TM) in the Cν-topology is
open in the initial topology. We first show that, if K ⊆ M is compact, if pK is one of the
seminorms (2.2), if ϵ ∈ R>0, and if X ∈ Γν(TM), then there is a neighbourhood of X in
the initial topology contained in the subbasic open set

B(X,K, ϵ) = {Y ∈ Γν(TM) | pK(Y −X) < ϵ}.
9That is to say, it is the finest topology for which the given mappings are continuous [Bourbaki 1989,

§I.2.4].
10That it to say, it is the coarsest topology for which the given mappings are continuous [Bourbaki 1989,

§I.2.3].
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Thus let K, ϵ, and X be so chosen. Let x ∈ K and let (Ux,j)j∈Z>0 be a sequence
of relatively compact neighbourhoods of x such that (1) cl(Ux,j+1) ⊆ Ux,j , j ∈ Z>0

and (2) ∩j∈Z>0Ux,j = {x}. Since the directed set (under inclusion) (Ux,j)j∈Z>0 is cofi-
nal in the directed set of all neighbourhoods of x, the topology of G ν

x,TM is the direct limit
topology of the sequence (Γν(TUx,j))j∈Z>0 under the mappings rUx,j ,x [Grothendieck 1973,
page 137]. A neighbourhood base of 0 in G ν

x,TM is thus given by

conv
( ⋃
j∈Z>0

rUx,j
(Ox,j)

)
, (4.1)

where Ox,j are neighbourhoods of 0 ∈ Γν(TUx,j), j ∈ Z>0, [Grothendieck 1973, Proposi-
tion 4.1.1]. Let us specifically take

Ox,j = {Z ∈ Γν(TUx,j) | pcl(Ux,j+1)(Z) < ϵ}

and define Ox to be the corresponding convex hull, as in (4.1). Now let x1, . . . , xk ∈ K be
such that K ⊆ ∪k

l=1Uxl,1. We claim that

k⋂
l=1

r−1
U,xl

(X + Oxl
) ⊆ B(X,K, ϵ).

If Y ∈ ∩k
l=1r

−1
U,xl

(X + Oxl
) then, for each l ∈ {1, . . . , k},

rU,xl
(Y −X) ∈ Oxl

=⇒ Y −X =

rl∑
al=1

λl,al [Zl,al ]xl
,

where λl,a1 , . . . , λl,arl
∈ [0, 1] satisfy

∑rl
al=1 λl,al = 1 and where Zl,al ∈ Γν(TUxl,jal

) satisfies
pcl(Uxl,jal

+1)(Zl,al) < ϵ for some ja1 , . . . , jarl ∈ Z>0. Therefore,

pcl(Uxl,jal
+1)

( rl∑
al=1

λl,alZl,al

)
≤

rl∑
al=1

λl,alpcl(Uxl,jal
+1)(Zl,al) < ϵ.

Since K ⊆ ∪k
l=1 ∪

rl
al=1 cl(Uxl,jal+1), it follows that pK(Y −X) < ϵ, as claimed. Now, since

each of the sets r−1
M,xl

(X+Oxl
), l ∈ {1, . . . , k}, is open in the initial topology of Γν(TM), we

conclude that their intersection is a neighbourhood of X in the initial topology contained
in B(X,K, ϵ).

To complete the proof, if O ⊆ Γν(TM) is a neighbourhood of X ∈ Γν(TM), then there
are K1, . . . ,Ks ⊆ M compact and ϵ1, . . . , ϵs ∈ R>0 (and whatever other pieces of data may
be required to define the s basic seminorms of the form (2.2)) such that

s⋂
j=1

B(X,Kj , ϵj) ⊆ O.

By the arguments above, we have neighbourhoods O1, . . . ,Os of X in the initial topology
such that Oj ⊆ B(X,Kj , ϵj), j ∈ {1, . . . , s}. Then ∩s

j=1Oj ⊆ O is a neighbourhood of X in
the initial topology. ■

The Cν-stalk topology has a rather different character in the case of ν = ω than the
other cases. The following result enumerates some of these differences.
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4.13 Lemma: (Properties of the stalk topology) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold having no
zero-dimensional connected components. Then the following two statements hold for each
x ∈ M:

(i) the closure of {0} ⊆ G ν
x,TM is

{[X]x ∈ Gm
x,TM | jmX(x) = 0x}, ν = m,

{[X]x ∈ Gm+lip
x,TM | jmX(x) = 0x, dil jmX(x) = 0}, ν = m+ lip,

{[X]x ∈ G∞
x,TM | jmX(x) = 0x, m ∈ Z≥0}, ν = ∞,

{0}, ν = ω;

(ii) the Cν-stalk topology for G ν
x,TM is Hausdorff if and only if ν = ω;

(iii) for U ⊂ M open and connected and for x ∈ U, the mapping rU,x is injective if and
only if ν = ω.

Proof: (i) We consider the various cases.
ν = m: First of all, if jmX(x) ̸= 0, then [X]x is not in the closure of {0}. Indeed, if

jmX(x) ̸= 0 then ∥jmX(x)∥Gm
> 0. Therefore, if U is any neighbourhood of x on which

X is defined and if K ⊆ U is compact with x ∈ K, p∞K,m(X) > 0. Thus, since Γm(TU) is
Hausdorff, there exists a neighbourhood O of 0 in Γm(TU) such that X ̸∈ O. It follows that
[X]x is not in any neighbourhood of 0 in Gm

x,TM containing rU,x(O). That is, [X]x ̸∈ cl({0}).
Let (U, ϕ) be a chart about x such that B(1, ϕ(x)) ⊆ ϕ(U). For simplicity, suppose that

ϕ(x) = 0. Let X ∈ Γm(TU) be such that jmX(x) = 0x. Let f ∈ C∞(Rn) be such that
f(x) = 0 for x in a neighbourhood of 0 and such that f(x) = 1 for x ̸∈ B(1,0). Let

Xj(y) = f(jϕ(y))X(y), j ∈ Z≥0, y ∈ U.

Note that [Xj ]x = 0. We claim that (Xj)j∈Z>0 converges to X in the Cm-topology of
Γm(TU). We will show, in fact, that (jmXj)j∈Z>0 converges uniformly to jmX on U. Indeed,
let ϵ ∈ R>0, let X be the local representative of X and let Xj be the local representative
of Xj . For s ∈ {0, 1, . . . ,m} and x ∈ ϕ(U), we compute

∥Ds(X −Xj)(x)∥ ≤
s∑

r=0

s!

r!(s− r)!
jr∥Ds−rX(x)∥∥Dr(1− f)(jx)∥.

Note that Dr(1− f)(jx) = 0 for x ∈ ϕ(U) \B(1j ,0) and r ∈ {0, 1, . . . ,m}. By the binomial
theorem,

s∑
r=0

s!

r!(s− r)!
= 2s.

Therefore, for ϵ ∈ R>0, if we choose N ∈ Z>0 sufficiently large that

DsX(x) ≤ ϵ

(2k)m∥Dr(1− f)∥∞
, r, s ∈ {0, 1, . . . ,m},

for all x ∈ B( 1
N ,0), then

∥Ds(X −Xj)(x)∥ < ϵ, x ∈ ϕ(U), s ∈ {0, 1, . . . ,m}, j ≥ N.
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giving the desired uniform convergence.
Let U and X be as in the preceding paragraph. Note that r−1

U,x({0}) is a submodule
of Γm(TU); it is the submodule of vector fields vanishing in some neighbourhood of x.
Our argument from the preceding paragraph shows that X ∈ cl(r−1

U,x({0})). Therefore,
[X]x ∈ cl({0}) by [Willard 2004, Theorem 7.2(d)].

ν = m + lip: We consider the case m = 0 since the general case follows along similar
lines, with more complicated notation.

First of all, if X(x) ̸= 0 then, as in the previous part of the proof, we can conclude that

[X]x ̸∈ cl(G lip
x,TM). Next suppose that X(x) = 0 but that dilX(x) ̸= 0. This means that,

for any neighbourhood U of x on which X is defined and any compact K ⊆ U with x ∈ K,
λ0
K(X) > 0. Since Γlip(TU) is Hausdorff, there exists a neighbourhood O of 0 ∈ Γlip(TU)

such that X ̸∈ O. From this we conclude that [X]x is not in any neighbourhood of 0 ∈ G lip
x,TM

containing rU,x(O). Thus [X]x ̸∈ cl({0}).
Now let X ∈ Γlip(TM) be such that X(x) = 0 and dilX(x) = 0. Let (U, ϕ) be a chart

about x with ϕ(x) = 0 and with B(1,0) ⊆ ϕ(U). Define a sequence (Xj)j∈Z>0 as in the
preceding part of the proof. As in that part of the proof, the sequence (Xj)j∈Z>0 converges
uniformly to X on U. We also compute

∥X(x)−Xj(x)− (X(y)−Xj(y))∥ = ∥(f(jx)− 1)X(x)− (f(jy)− 1)X(y)∥.

Let ϵ ∈ R>0 and let N ∈ Z>0 be sufficiently large that

∥X(x)∥ ≤ ϵ

4∥1− f∥∞

for x ∈ B( 1
N ,0). Let j ≥ N . We have four cases.

1. x,y ∈ B( 1
N ,0): In this case we have

∥X(x)−Xj(x)− (X(y)−Xj(y))∥ ≤ 2∥1− f∥∞(∥X(x)∥+ ∥X(y)∥) ≤ ϵ.

2. x ∈ B( 1
N ,0), y ∈ ϕ(U) \ B( 1

N ,0): Here we have 1− f(jx) = 0, and so we estimate

∥X(x)−Xj(x)∥ ≤ ∥1− f∥∞∥X(x)∥ < ϵ.

3. x ∈ ϕ(U) \ B( 1
N ,0), y ∈ B( 1

N ,0): This is the same as the previous case.

4. x,y ∈ ϕ(U) \ B( 1
N ,0): In this case, we have

∥X(x)−Xj(x)− (X(y)−Xj(y))∥ = 0.

This shows that (Xj)j∈Z>0 converges to X in the Clip-topology.
As in the final paragraph of the preceding part of the proof, with U and X as in the

preceding paragraph, X ∈ cl(r−1
U,x({0})) and so [X]x ∈ cl({0}).

ν = ∞: If jmX(x) ̸= 0 for some m ∈ Z≥0, then we may argue as in the case ν = m to
see that [X]x is not in cl({0}). If jmX(x) = 0 for every m ∈ Z≥0, then the computations
above in the case ν = m, applied to each m ∈ Z≥0, give a sequence (Xj)j∈Z>0 converging
to X in the C∞-topology on a neighbourhood U of x. The same argument as in the case
ν = m then gives [X]x ∈ cl({0}).
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ν = ω: Let [X]x ∈ G ω
x,TM be nonzero. This is equivalent to the infinite jet of X at x

being nonzero. One can infer from this, using the arguments in the smooth case above,
that [X]x is not in the closure of {0} in the C∞-stalk topology. Now we note that the
Cω-topology is finer that the C∞-topology, and so the same holds for the stalk topologies.
Thus closed sets for the Cω-stalk topology are also closed sets for the C∞-stalk topology,
and we conclude that [X]x is not in the closure of {0} in the Cω-stalk topology.

(ii) This follows immediately from part (i).
(iii) If ν = ω, then the Identity Theorem [Gunning 1990a, Theorem A.3] implies that, if

rU,x(X) = 0, then X = 0 since X must vanish in some neighbourhood of x. If ν ̸= ω, then
we let V,V′ ⊆ U be a relatively compact neighbourhoods of x such that

cl(V) ⊆ V′ ⊆ cl(V′) ⊆ U.

Then let f ∈ C∞(M) be such that f has the value 0 in some neighbourhood of cl(V) and
has value 1 outside cl(V′) [Abraham, Marsden, and Ratiu 1988, Proposition 5.5.8]. Now,
for any X,Y ∈ Γν(TU),

rU,x(X) = rU,x(X + fY ).

This prohibits injectivity of rU,x. ■

5. Tautological control systems: Definitions and fundamental properties

In this chapter we introduce the class of control systems, tautological control systems,
that we propose as being useful mathematical models for the investigation of geometric
system structure. As promised in our introduction in Section 1.2, this class of systems nat-
urally handles a variety of regularity classes; we work with finitely differentiable, Lipschitz,
smooth, and real analytic classes simultaneously with comparative ease. Also as indicated
in Section 1.2, the framework makes essential use of sheaf theory in its formulation. We
shall see in Section 5.6 that the natural morphisms for tautological control systems ensure
feedback-invariance of the theory.

5.1. Tautological control systems. Our definition of a tautological control system is rela-
tively straightforward, given the constructions of the preceding chapter.

5.1 Definition: (Tautological control system and related notions) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
(i) A Cν-tautological control system is a pair G = (M,F ), where M is a manifold

of class Cr whose elements are called states and where F is a presheaf of sets of
Cν-vector fields on M.

(ii) A tautological control system G = (M,F ) is complete if F is a sheaf and is globally
generated if F is globally generated.

(iii) The completion of G = (M,F ) is the tautological control system Sh(G) =
(M, Sh(F )). •

This is a pretty featureless definition, sorely in need of some connection to control theory.
Let us begin to build this connection by pointing out the manner in which more common
constructions give rise to tautological control systems, and vice versa.
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5.2 Examples: (Correspondences between tautological control systems and other
sorts of control systems) One of the topics of interest to us will be the relationship
between our notion of tautological control systems and the more common notions of control
systems (as in Sections 3.3.1 and 3.3.2) and differential inclusions (as in Section 3.3.3). We
begin here by making some more or less obvious associations.

1. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let Σ = (M, F,C) be a Cν-control system. To this control system we associate the
Cν-tautological control system GΣ = (M,FΣ) by

FΣ(U) = {F u|U ∈ Γν(TU) | u ∈ C}.

The presheaf of sets of vector fields in this case is of the globally generated variety,
as in Example 4.3–3. According to Example 4.3–3, we should generally not expect
tautological control systems such as this to be a priori complete. We can, however,
sheafify so that the tautological control system Sh(GΣ) is complete.

2. Let us consider a means of going from a large class of tautological control systems
to a control system. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and
let r ∈ {∞, ω}, as required. We suppose that we have a Cν-tautological control system
G = (M,F ) where the presheaf F is globally generated. We define a Cν-control system
ΣG = (M, FF ,CF ) as follows. We take CF = F (M), i.e., the control set is our family of
globally defined vector fields and the topology is that induced from Γν(TM). We define

FF : M× CF → TM

(x,X) 7→ X(x).

(Note that one has to make an awkward choice between writing a vector field as u or
a control as X, since vector fields are controls. We have gone with the latter awkward
choice, since it more readily mandates thinking about what the symbols mean.) Note
that FX

F = X, and so this is somehow the identity map in disguise. In order for
this construction to provide a bona fide control system, we should check that FF is a
parameterised vector field of class Cν according to Theorem 3.18. For this it is sufficient
to check that the map X 7→ FX

F is continuous. But this is the identity map, which is
obviously continuous!

Note that ΣG is a control-linear system, according to Example 3.23.

3. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let X : M ↠ TM be a differential inclusion. If U ⊆ M is open, we denote

Γν(X |U) = {X ∈ Γν(TU) | X(x) ∈ X (x), x ∈ U}.

One should understand, of course, that we may very well have Γν(X |U) = ∅. This
might happen for two reasons.

(a) First, the differential inclusion may lack sufficient regularity to permit even local
sections of the prescribed regularity.

(b) Second, even if it permits local sections, there may be be problems finding sec-
tions defined on “large” open sets, because there may be global obstructions. One
might anticipate this to be especially problematic in the real analytic case, where
the specification of a vector field locally determines its behaviour globally by the
Identity Theorem, cf. [Gunning 1990a, Theorem A.3].
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This caveat notwithstanding, we can go ahead and define a tautological control system
GX = (M,FX ) with FX (U) = Γν(X |U).
We claim that GX is complete. To see this, let U ⊆ M be open and let (Ua)a∈A be an
open cover for U. For each a ∈ A, let Xa ∈ FX (Ua) and suppose that, for a, b ∈ A,

Xa|Ua ∩ Ub = Xb|Ua ∩ Ub.

Since G ν
TM is a sheaf, let X ∈ Γν(TU) be such that X|Ua = Xa for each a ∈ A. We

claim that X ∈ FX (U). Indeed, for x ∈ U we have X(x) = Xa(x) ∈ X (x) if we take
a ∈ A such that x ∈ Ua.

The sheaf FX is not often globally generated since it is, indeed, a sheaf as we saw
in Example 4.3–3. Here is a stupid counterexample that relates to the character of
differential inclusions. Let us define X (x) = TxM, x ∈ M, so that FX = G ν

TM. For an
open set U, there will generally be local sections X ∈ Γν(TU) that are not restrictions
to U of globally defined vector fields; vector fields that “blow up” at some point in the
boundary of U are what one should have in mind.

4. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Note that there is also associated to any Cν-tautological control system G = (M,F ) a
differential inclusion XG by

XG(x) = {X(x) | [X]x ∈ Fx},

recalling that Fx is the stalk of F at x. •
Now note that we can iterate the four constructions and ask to what extent we end up

back where we started. More precisely, we have the following result.

5.3 Proposition: (Going back and forth between classes of systems) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system, let Σ = (M, F,C) be a Cν-control system, and let X be
a differential inclusion. Then the following statements hold:

(i) if G is globally generated, then GΣG
= G;

(ii) if the map u 7→ F u from C to Γν(TM) is injective and open onto its image, then
ΣGΣ

= Σ;

(iii) F (U) ⊆ FXG
(U) for every open U ⊆ M;

(iv) XGX ⊆ X .

Proof: (i) Let U ⊆ M be open and let X ∈ F (U). Then X = X ′|U for X ′ ∈ F (M).
Thus X ′ ∈ CF and X ′(x) = F (x,X ′) and so X ∈ FΣG

(U). Conversely, let X ∈ FΣG
(U).

Then X(x) = F (x,X ′), x ∈ U, for some X ′ ∈ CF . But this means that X(x) = X ′(x) for
X ′ ∈ F (U) and for all x ∈ U. In other words, X ∈ F (U).

(ii) Note that GΣ is globally generated. Thus we have

CFΣ
= FΣ(M) = {F u | u ∈ C}.

Since the map u 7→ F u is continuous, and injective and open onto its image (by hypothesis),
it is an homeomorphism onto its image. Thus CFΣ

is homeomorphic to C. Since u 7→ F u is
injective we can unambiguously write

FFΣ
(x, F u) = F u(x) = F (x, u).
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(iii) Let U ⊆ M be open. If X ∈ F (U), then clearly we have X(x) ∈ XG(x) for every
x ∈ U and so F (U) ⊆ FXG

(U), giving the assertion.
(iv) This is obvious. ■

5.4 Remark: (Correspondence between control systems and control-linear sys-
tems) The result establishes the rather surprising correspondence between control systems
Σ = (M, F,C) for which the map u 7→ F u is injective and open onto its image, and the
associated control-linear system ΣGΣ

= (M,FΣG
,CFΣ

). That is to say, at least at the sys-
tem level, in our treatment every system corresponds in a natural way to a control-linear
system, albeit with a rather complicated control set. This correspondence carries over to
trajectories as well, but one can also weaken these conditions to obtain trajectory corre-
spondence in more general situations. These matters we discuss in detail in Section 5.5. •

Let us make some comments on the hypotheses present in the preceding result.

5.5 Remarks: (Going back and forth between classes of systems)

1. Since GΣ is necessarily globally generated for any control system Σ, the requirement
that G be globally generated cannot be dropped in part (i).

2. The requirement that the map u 7→ F u be injective in part (ii) cannot be relaxed.
Without this assumption, there is no way to recover F from {F u | u ∈ C}. Similarly,
if this map is not open onto its image, while there may be a bijection between C and
CFΣ

, it will not be an homeomorphism which one needs for the control systems to be
the same.

3. The converse assertion in part (iii) does not generally hold, as many counterexamples
show. Here are two, each of a different character.

(a) We take M = R and consider the Cω-tautological control system G = (M,F )
where F is the globally generated presheaf defined by the single vector field x2 ∂

∂x .
Note that

XG(x) =

{
{0}, x = 0,

TxR, x ̸= 0.

Therefore,

FX (U) =

{
{X ∈ Γω(TU) | X(0) = 0}, 0 ∈ U,

Γω(TU), 0 ̸∈ U.

It holds, therefore, that the vector field x ∂
∂x is a global section of FX , but is not a

global section of F .

(b) Let us again take M = R and now define a smooth tautological control system
G = (M,F ) by asking that F be the globally generated presheaf defined by the
vector fields X1, X2 ∈ Γ∞(R), where

X1(x) =

{
e−1/x ∂

∂x , x > 0,

0, x ≤ 0,

and

X2(x) =

{
e−1/x ∂

∂x , x < 0,

0, x ≥ 0.
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In this case,

XG(x) =

{
{0}, x = 0,

{0} ∪ {e−1/x ∂
∂x}, x ̸= 0.

Therefore, FX is the sheafification of the globally generated presheaf defined by
the vector fields X1, X2, X3, and X4, where

X3(x) =

{
e−1/x ∂

∂x , x ̸= 0,

0, x = 0,

and X4 is the zero vector field.

4. Given the discussion in Example 5.2–3, one cannot reasonably expect that we will
generally have equality in part (iv) of the preceding result. Indeed, one might even be
inclined to say that it is only differential inclusions satisfying X = XGX that are useful
in geometric control theory. . . •
While we are not yet finished with the task of formulating our theory—trajectories have

yet to appear—it is worthwhile to make a pause at this point to reflect upon what we have
done and have not done. After a moments thought, one realises that the difference between
a control system Σ = (M, F,C) and its associated tautological control system GΣ = (M,FΣ)
is that, in the former case, the control vector fields are from the indexed family (F u)u∈C,
while for the tautological control system we have the set {F u | u ∈ C}. In going from
the former to the latter we have “forgotten” the index u which we are explicitly keeping
track of for control systems. If the map u 7→ F u is injective, as in Proposition 5.3(ii), then
there is no information lost as one goes from the indexed family to the set. If u 7→ F u

is not injective, then this is a signal that the control set is too large, and perhaps one
should collapse it in some way. In other words, one can probably suppose injectivity of
u 7→ F u without loss of generality. (Openness of this map is another matter. As we shall
see in Section 5.5 below, openness (and a little more) is crucial for there to be trajectory
correspondence between systems and tautological control systems.) This then leaves us
with the mathematical semantics of distinguishing between the indexed family (F u)u∈C and
the subset {F u | u ∈ C}. About this, let us make two observations.

1. The entire edifice of nonlinear control theory seems, in some sense, to be built upon the
preference of the indexed family over the set. As we discuss in Section 1, in applications
there are very good reasons for doing this. But from the point of view of the general
theory, the idea that one should carefully maintain the labelling of the vector fields from
the set {F u | u ∈ C} seems to be a really unnecessary distraction. And, moreover, it is
a distraction upon which is built the whole notion of “feedback transformation,” plus
entire methodologies in control theory that are not feedback-invariant, e.g., linearisa-
tion, cf. Example 1.1. So, semantics? Possibly, but sometimes semantic choices are
important.

2. Many readers will probably not be convinced by our attempts to magnify the distinction
between the indexed family (F u)u∈C and the set {F u | u ∈ C}. As we shall see, however,
this distinction becomes more apparent if one is really dedicated to using sets rather
than indexed families. Indeed, this deprives one of the notion of “control,” and one is
forced to be more thoughtful about what one means by “trajectory.”
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We comment that the preceding discussion only pertains to the comparison of globally
generated tautological control systems and “ordinary” control systems. Although we have
not yet seen the significance of this, this sort of discussion essentially ignores the “presheaf
of vector fields” aspect of tautological control systems, and this is likely to feature heavily
in further developments of tautological control systems, cf. Sections 6 and 7.

5.2. Open-loop systems. Trajectories are associated to “open-loop systems,” so we first
discuss these. We first introduce some notation. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. For a Cν-tautological control system
G = (M,F ), we then denote

LIΓν(T;F (U)) = {X : T → F (U) | X ∈ LIΓν(T;TU)},

for T ⊆ R an interval and U ⊆ M open.

5.6 Definition: (Open-loop system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system. An open-loop system for G is a triple Gol = (X,T,U) where

(i) T ⊆ R is an interval called the time-domain ;

(ii) U ⊆ M is open;

(iii) X ∈ LIΓν(T;F (U)). •
Note that an open-loop system for G = (M,F ) is also an open-loop system for the

completion Sh(G), just because F (U) ⊆ Sh(F )(U). However, of course, there may be
open-loop systems for Sh(G) that are not open-loop systems for G. This is as it should be,
and has no significant ramifications for the theory, at least for the purposes of this chapter.

In order to see how we should think about an open-loop system, let us consider this
notion in the special case of control systems.

5.7 Example: (Open-loop systems associated to control systems) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C)
be a Cν-control system with GΣ the associated Cν-tautological control system. If we let
µ ∈ Lcpt

loc (T;C), then we have the associated open-loop system GΣ,µ = (Fµ,T,M) defined
by

Fµ(t)(x) = F (x, µ(t)), t ∈ T, x ∈ M.

Proposition 3.20 ensures that this is an open-loop system for the tautological control system
GΣ.

A similar assertion holds if C is a subset of a locally convex topological vector space and
F defines a sublinear control system, and if µ ∈ L1

loc(T;C), cf. Proposition 3.24. •

5.8 Notation: (Open-loop systems) For an open-loop system Gol(X,T,U), the nota-
tion X(t)(x), while accurate, is unnecessarily cumbersome, and we will often instead write
X(t, x) or Xt(x), with no loss of clarity and a gain in aesthetics. •

Generally one might wish to place a restriction on the set of open-loop systems one will
use. This is tantamount to, for usual control systems, placing restrictions on the controls
one might use; one may wish to use piecewise continuous controls or piecewise constant
controls, for example. For tautological control systems we do this as follows.
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5.9 Definition: (Open-loop subfamily) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system. An open-loop subfamily for G is an assignment, to each interval T ⊆ R and each
open set U ⊆ M, a subset OG(T,U) ⊆ LIΓν(T;F (U)) with the property that, if (T1,U1)
and (T2,U2) are such that T1 ⊆ T2 and U1 ⊆ U2, then

{X|T1 × U1 | X ∈ OG(T2,U2)} ⊆ OG(T1,U1). •

Here are a few common examples of open-loop subfamilies.

5.10 Examples: (Open-loop subfamilies) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system.

1. The full subfamily for G is the open-loop subfamily OG,full defined by

OG,full(T,U) = LIΓν(T;F (U)).

Thus the full subfamily contains all possible open-loop systems. Of course, every open-
loop subfamily will be contained in this one.

2. The locally essentially bounded subfamily for G is the open-loop subfamily OG,∞
defined by asking that

OG,∞(T,U) = {X ∈ OG,full(T,U) | X ∈ LBΓν(T;TU)}.

Thus, for the locally essentially bounded subfamily, we require that the condition of
being locally integrally Cν-bounded be replaced with the stronger condition of being
locally essentially Cν-bounded.

3. The locally essentially compact subfamily for G is the open-loop subfamily OG,cpt

defined by asking that

OG,cpt(T,U) = {X ∈ OG,full(T,U)| for every compact subinterval T′ ⊆ T
there exists a compact K ⊆ Γν(T;TU)

such that X(t) ⊆ K for almost every t ∈ T′}.

Thus, for the locally essentially compact subfamily, we require that the condition of
being locally essentially bounded in the von Neumann bornology (that defines the locally
essentially bounded subfamily) be replaced with being locally essentially bounded in the
compact bornology.

We comment that in cases when the compact and von Neumann bornologies agree, then
of course we have OG,∞ = OG,cpt. As pointed out by Jafarpour and Lewis [2014b], this
is the case when ν ∈ {∞, ω}.

4. The piecewise constant subfamily for G is the open-loop subfamily OG,pwc defined
by asking that

OG,pwc(T;U) = {X ∈ OG,full(T,U) | t 7→ X(t) is piecewise constant}.

Let us be clear what we mean by piecewise constant. We mean that there is a partition
(Tj)j∈J of T into pairwise disjoint intervals such that
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(a) for any compact interval T′ ⊆ T, the set

{j ∈ J | T′ ∩ Tj ̸= ∅}

is finite and such that

(b) X|Tj is constant for each j ∈ J .

One might imagine that the piecewise constant open-loop subfamily will be useful for
studying orbits and controllability of tautological control systems. This is almost true,
but one needs the more refined notion of an étalé trajectory considered in Section 6.

5. We can associate an open-loop subfamily to an open-loop system as follows. Let OG
be an open-loop subfamily for G, let T be a time-domain, let U ⊆ M be open, and
let X ∈ OG(T,U). We denote by OG,X the open-loop subfamily defined as follows. If
T′ ⊆ T and U′ ⊆ U, then we let

OG,X(T′,U′) = {X ′ ∈ OG(T′,U′) | X ′ = X|T′ × U′}.

If T′ ̸⊆ T and/or U′ ̸⊆ U, then we take OG,X(T′,U′) = ∅. Thus OG,X is comprised of
those vector fields from OG that are merely restrictions of X to smaller domains.

6. In Proposition 5.3 we saw that there was a pretty robust correspondence between Cν-
control systems and Cν-tautological control systems, at the system level . As we make
our way towards trajectories, as we are now doing, this robustness breaks down a little.
To frame this, we can define an open-loop subfamily for the tautological control system
associated to a Cν-control system Σ = (M, F,C) as follows. For a time-domain T and
an open U ⊆ M, we define

OΣ(T,U) = {Fµ|U | µ ∈ Lcpt
loc (T;C)},

recalling that Fµ(t, x) = F (x, µ(t)). We clearly have OΣ(T;U) ⊆ OGΣ,cpt(T;U) for
every time-domain T and every open U ⊆ M; this is proved in the course of proving
Proposition 3.20. (Of course, by virtue of Proposition 3.24, we have a corresponding
construction if the control set C is a subset of a locally convex topological vector space,
if F is sublinear, and if µ ∈ L1

loc(T;C).) However, we do not generally expect to have
equality of the two open-loop subfamilies OΣ and OGΣ,cpt. This, in turn, will have
repercussions on the nature of the trajectories for these subfamilies, and, therefore,
on the relationship of trajectories of a control system with those of the corresponding
tautological control system. We will consider these matters in Section 5.5, and we will
see that, for many interesting classes of control systems, there is, in fact, a natural
trajectory correspondence between the system and its associated tautological control
system. •
Our notion of an open-loop subfamily is very general, and working with the full general-

ity will typically lead to annoying problems. There are many attributes that one may wish
for open-loop subfamilies to satisfy in order to relax some the annoyance. To illustrate, let
us define a typical attribute that one may require, that of translation-invariance. Let us
define some notation so that we can easily make the definition. For a time-domain T and
for s ∈ R, we denote

s+ T = {s+ t | t ∈ T}

and we denote by τs : s+ T → T the translation map τs(t) = t− s.
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5.11 Definition: (Translation-invariant open-loop subfamily) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-
tautological control system. An open-loop subfamily OG for G is translation-invariant
if, for every s ∈ R, every time-domain T, and every open set U ⊆ M, the map

(τs × idU)
∗ : OG(s+ T,U) → OG(T,U)

X 7→ X ◦ (τs × idU)

is a bijection. •
An immediate consequence of the definition is, of course, that if t 7→ ξ(t) is a trajectory

(we will formally define the notion of “trajectory” in the next section), then so is t 7→ ξ(s+t)
for every s ∈ R.

Let us now think about how open-loop subfamilies interact with completion. In order
for the definition we are about to make make sense, we should verify the following lemma.

5.12 Lemma: (Time-varying vector fields characterised by their germs) Let m ∈
Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be
a Cr-manifold, let T ⊆ R be an interval, and let X : T ×M → TM have the property that
X(t, x) ∈ TxM for each (t, x) ∈ T ×M. Then the following statements hold:

(i) if, for each x ∈ M, there exist a neighbourhood U of x and X ′ ∈ CFΓν(T;TU) such
that [Xt]x = [X ′

t]x for every t ∈ T, then X ∈ CFΓν(T;TM);

(ii) if, for each x ∈ M, there exist a neighbourhood U of x and X ′ ∈ LIΓν(T;TU) such
that [Xt]x = [X ′

t]x for every t ∈ T, then X ∈ LIΓν(T;TM);

(iii) if, for each x ∈ M, there exist a neighbourhood U of x and X ′ ∈ LBΓν(T;TU) such
that [Xt]x = [X ′

t]x for every t ∈ T, then X ∈ LBΓν(T;TM).

Proof: (i) Let x ∈ M. Since X agrees in some neighbourhood of x with a Carathéodory
vector field X ′, it follows that t 7→ Xt(x) = X ′

t(x) is measurable. In like manner, let t ∈ T
and let x0 ∈ M. Then x 7→ Xt(x) = X ′

t(x) is of class C
ν in a neighbourhood of x0, and so

x 7→ Xt(x) is of class C
ν .

(ii) For K ⊆ M compact, for k ∈ Z≥0, and for a ∈ c↓0(Z≥0;R>0), denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pm+lip
K , ν = m+ lip,

pωK,a, ν = ω.

Let K ⊆ M be compact, let x ∈ K, let Ux be a relatively compact neighbourhood of x, and
let Xx ∈ LIΓν(T;Ux) be such that [Xt]x = [Xx,t]x for every t ∈ T. By Lemma 3.10 there
exists gx ∈ L1

loc(T;R≥0) such that

pcl(Ux)(Xx,t) ≤ gx(t), t ∈ T.

Now let x1, . . . , xk ∈ K be such that K ⊆ ∪k
j=1Uxj . Let g(t) = max{gx1(t), . . . , gxk

(t)},
noting that the associated function g is measurable by [Cohn 2013, Proposition 2.1.3] and
is locally integrable by the triangle inequality, along with the fact that

g(t) ≤ (gx1(t) + · · ·+ gxk
(t)).
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We then have
pK(Xt) ≤ g(t), t ∈ T,

showing that X ∈ LIΓν(T;TM) by another application of Lemma 3.10.
(iii) This is proved in exactly the same manner, mutatis mutandis, as the preceding part

of the lemma. ■

The following definition can now be made.

5.13 Definition: (Completion of an open-loop subfamily) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system and let OG be an open-loop subfamily for G. The
completion of OG is the open-loop subfamily Sh(OG) for Sh(G) defined by specifying that
(X,T,U) ∈ Sh(OG) if, for each x ∈ U, there exist a neighbourhood U′ ⊆ U of x and
(X ′,T,U′) ∈ OG(T,U′) such that [Xt]x = [X ′

t]x for each t ∈ T. •
Clearly the completion of an open-loop subfamily is an open-loop subfamily for the

completion. Moreover, if (X,T,U) ∈ OG(T,U), then (X,T,U) ∈ Sh(OG(T,U)), but one
cannot expect the converse assertion to generally hold.

5.3. Trajectories. With the concept of open-loop system just developed, it is relatively
easy to provide a notion of a trajectory for a tautological control system.

5.14 Definition: (Trajectory for tautological control system) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a
Cν-tautological control system and let OG be an open-loop subfamily for G.

(i) For a time-domain T, an open set U ⊆ M, and for X ∈ OG(T,U), an (X,T,U)-
trajectory for OG is a curve ξ : T → U such that ξ′(t) = X(t, ξ(t)) for almost every
t ∈ T.

(ii) For a time-domain T and an open set U ⊆ M, a (T,U)-trajectory for OG is a curve
ξ : T → U such that ξ′(t) = X(t, ξ(t)) for almost every t ∈ T for some X ∈ OG(T,U).

(iii) A trajectory for OG is a curve that is a (T,U)-trajectory for OG for some time-domain
T and some open set U ⊆ M.

We denote by:

(iv) Traj(X,T,U,OG) the set of (X,T,U)-trajectories for OG;

(v) Traj(T,U,OG) the set of (T,U)-trajectories for OG;

(vi) Traj(OG) the set of trajectories for OG.

We shall abbreviate Traj(T,U,G) = Traj(T,U,OG,full) and Traj(G) = Traj(OG,full). •
Sometimes one wishes to keep track of the fact that, associated with a trajectory, is an

open-loop system. The following notion is designed to capture this.

5.15 Definition: (Referenced trajectory) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system and let OG be an open-loop subfamily for G. A referenced OG-trajectory is a
pair (X, ξ) where X ∈ OG(T;U) and ξ ∈ Traj(X,T,U). We denote by:

(i) Rtraj(T,U,OG) the set of referenced OG-trajectories for which X ∈ OG(T;U);
(ii) Rtraj(OG) the set of referenced trajectories. •
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In Section 5.5 below, we shall explore trajectory correspondences between tautological
control systems, control systems, and differential inclusions.

The notion of a trajectory immediately gives rise to a certain open-loop subfamily.

5.16 Example: (The open-loop subfamily defined by a trajectory) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system, let OG be an open-loop subfamily for G, and let ξ ∈
Traj(T,U,OG). We denote by OG,ξ the open-loop subfamily defined as follows. If T′ ⊆ T
and U′ ⊆ U are such that ξ(T′) ⊆ U′, then we let

OG,ξ(T
′,U′) = {X ∈ OG(T′,U′) | ξ′(t) = X(t, ξ(t)), a.e. t ∈ T′}.

If T′ ̸⊆ T or U′ ̸⊆ U, or if T′ ⊆ T and U′ ⊆ U but ξ(T′) ̸⊆ U′, then we take OG,ξ(T
′,U′) =

∅. Thus OG,ξ is comprised of those vector fields from OG possessing ξ (restricted to the
appropriate subinterval) as an integral curve. •

In control theory, trajectories are of paramount importance, often far more important,
say, than systems per se. For this reason, one might ask that completion of a tautological
control system preserve trajectories. However, this will generally not be the case, as the
following counterexample illustrates.

5.17 Example: (Sheafification does not preserve trajectories) We will chat our way
through a general example; the reader can very easily create a specific concrete instance
from the general discussion.

Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
We let M be a Cr-manifold with Riemannian metric G. We consider the presheaf Fbdd

of bounded Cν-vector fields on M, initially discussed in Example 4.3–1. We let Gbdd =
(M,Fbdd) so that, as we saw in Example 4.8–1, Sh(Fbdd) = G ν

TM. Let X be a vector field
possessing an integral curve ξ : T → M for which

lim sup
t→supT

∥ξ′(t)∥G = ∞

(this requires that T be noncompact, of course).
Now let us see how this gives rise to a trajectory for Sh(Gbdd) that is not a trajectory

for Gbdd. We let T be the interval of definition of the integral curve ξ described above. We
consider the open subset M ⊆ M. We then have the open-loop system (X,T,M) specified
by letting X(t) = X (abusing notation), i.e., we consider a time-independent open-loop
system. It is clear, then, that ξ ∈ Traj(T,M,Sh(Gbdd)) (since Sh(Gbdd) = (M,G ν

TM) as we
showed in Example 4.8–1), but that ξ cannot be a trajectory for Gbdd since any vector field
possessing ξ as an integral curve cannot be bounded. •

Thus we cannot expect sheafification to generally preserve trajectories. This should be
neither a surprise nor a disappointment to us. It is gratifying, however, that sheafification
does preserve trajectories in at least one important case.

5.18 Proposition: (Trajectories are preserved by sheafification of globally gener-
ated systems) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω},
as required. Let G = (M,F ) be a globally generated Cν-tautological control system, let T
be a time-domain, and let OG be an open-loop subfamily for G. For a locally absolutely
continuous curve ξ : T → M the following statements are equivalent:
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(i) ξ ∈ Traj(T,U,OG) for some open set U ⊆ M;

(ii) ξ ∈ Traj(T,U′, Sh(OG)) for some open set U′ ⊆ M.

Proof: Since OG(T,U) ⊆ Sh(OG)(T,U), the first assertion clearly implies the second. So it
is the opposite implication that we need to prove.

Thus let U′ ⊆ M be open and suppose that ξ ∈ Traj(T,U′, Sh(OG)). Let X ∈
LIΓν(T;TU′) be such that ξ is an integral curve for X and such that Xt ∈ Sh(F )(U′)
for every t ∈ T. For each fixed τ ∈ T, there exists Xτ ∈ LIΓν(T;F (M)) such that
[Xτ,t]ξ(τ) = [Xt]ξ(τ) for every t ∈ T. (This is the definition of Sh(OG), noting that F is
globally generated.) This means that around τ we have a bounded open interval Tτ ⊆ T
and a neighbourhood Uτ of ξ(τ) so that ξ(Tτ ) ⊆ Uτ and so that ξ′(t) = Xτ (t, ξ(t)) for
almost every t ∈ Tτ . By paracompactness, we can choose a locally finite refinement of these
intervals that also covers T. By repartitioning, we arrive at a locally finite pairwise disjoint
covering (Tj)j∈J of T by subintervals with the following property: the index set J is a finite
or countable subset of Z chosen so that t1 < t2 whenever t1 ∈ Tj1 and t2 ∈ Tj2 with j1 < j2.
That is, we order the labels for the elements of the partition in the natural way, this making
sense since the cover is locally finite. By construction, we have Xj ∈ LIΓν(Tj ;F (M)) with
the property that ξ|Tj is an integral curve for Xj . We then define X : T → F (M) by asking
that X|Tj = Xj . It remains to show that X ∈ LIΓν(T;F (M)).

Because each of the vector fields Xj , j ∈ J , is a Carathéodory vector field, we easily
conclude that X is also a Carathéodory vector field.

Let K ⊆ M be compact, k ∈ Z≥0, and a ∈ c↓0(Z≥0;R>0), and denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pm+lip
K , ν = m+ lip,

pωK,a, ν = ω.

By Lemma 3.10, for each j ∈ J , there then exists gj ∈ L1
loc(Tj ;R≥0) such that

pK(Xj,t) ≤ gj(t), t ∈ Tj .

Define g : T → R≥0 by asking that g|Tj = gj . We claim that g ∈ L1
loc(T;R≥0). Let T′ ⊆ T

be a compact subinterval. The set

JT′ = {j ∈ J | T′ ∩ Tj ̸= ∅}.

is finite by local finiteness of the cover (Tj)j∈J . Now we have∫
T′

g(t) dt ≤
∑
j∈JT′

∫
Tj

gj(t) dt < ∞.

Since
pK(Xt) ≤ g(t), t ∈ T,

from Lemma 3.10 we conclude that X ∈ LIΓν(T;TM), as desired. ■
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5.4. Attributes that can be given to tautological control systems. In this section we
show that some typical assumptions that are made for control systems also can be made
for tautological control systems. None of this is particularly earth-shattering, but it does
serves as a plausibility check for our framework, letting us know that it has some common
ground with familiar constructions from control theory.

A construction that often occurs in control theory is to determine a trajectory as the
limit of a sequence of trajectories in some manner. To ensure the existence of such limits,
the following property for tautological control systems is useful.

5.19 Definition: (Closed tautological control system) Let m ∈ Z≥0 and m′ ∈ {0, lip},
let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-tautological control system
G = (M,F ) is closed if F (U) is closed in the topology of Γν(TU) for every open set
U ⊆ M. •

Here are some examples of control systems that give rise to closed tautological control
systems.

5.20 Proposition: (Control systems with closed tautological control systems) Let
m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
Σ = (M, F,C) be a Cν-control system with GΣ the associated Cν-tautological control system
as in Example 5.2–1. Then GΣ is closed if Σ has either of the following two attributes:

(i) C is compact;

(ii) C is a closed subset of Rk and the system is control-affine, i.e.,

F (x,u) = f0(x) +

k∑
a=1

uafa(x),

for f0, f1, . . . , fk ∈ Γν(TM).

Proof: (i) Let U ⊆ M be open. The map

C ∋ u 7→ F u ∈ Γν(TU)

is continuous. Now let U ⊆ M be open and note that FΣ(U) is the image of C under the
mapping

C ∋ u 7→ F u|U ∈ Γν(TU).

Thus FΣ(U) is compact, and so closed, being the image of a compact set under a continuous
mapping [Willard 2004, Theorem 17.7].

(ii) Let U ⊆ M be open. Just as in the preceding part of the proof, we consider the
mapping u 7→ Fu|U. Note that the image of the mapping

u 7→ Fu = f0 +

k∑
a=1

uafa

is a finite-dimensional affine subspace of the R-vector space Γν(TU). Therefore, this image
is closed since (1) locally convex topologies are translation-invariant (by construction) and
since (2) finite-dimensional subspaces of locally convex spaces are closed [Horváth 1966,
Proposition 2.10.1]. Moreover, the map u 7→ Fu|U is closed onto its image since any sur-
jective linear map between finite-dimensional locally convex spaces is closed. We conclude,
therefore, that if we restrict this map from all of Rk to C, then the image is closed. ■
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Let us next turn to attributes of tautological control systems arising from the fact, shown
in Example 5.2–4, that tautological control systems give rise to differential inclusions in a
natural way.

5.21 Proposition: (Continuity of differential inclusions arising from tautological
control systems) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let
r ∈ {∞, ω}, as required. If G = (M,F ) is a Cν-tautological control system, then

(i) XG is lower semicontinuous and

(ii) XG is upper semicontinuous if G is globally generated and F (M) is compact.

Proof: (i) Let x0 ∈ M and let vx0 ∈ XG(x0). Then there exists a neighbourhood W of x0
and X ∈ F (W) such that X(x0) = vx0 . Let V ⊆ TM be a neighbourhood of vx0 . By
continuity of X, there exists a neighbourhood U ⊆ W of x0 such that X(U) ⊆ V. This
implies that X(x) ∈ XG(x) for every x ∈ U, giving lower semicontinuity of XG.

(ii) Let x0 ∈ M and let V ⊆ TM be a neighbourhood of XG(x0). For each X ∈ F (M),
V is a neighbourhood of X(x0) and so there exist neighbourhoods MX ⊆ M of x0 and
CX ⊆ F (M) of X such that

{X ′(x) | x ∈ MX , X ′ ∈ CX} ⊆ V.

Since F (M) is compact, let X1, . . . , Xk ∈ F (M) be such that F (M) = ∪k
j=1CXj . Then the

neighbourhood U = ∩k
j=1MXj of x0 has the property that XG(U) ⊆ V. ■

There are many easy examples to illustrate that compactness of F (M) is generally
required in part (ii) of the preceding result. Here is one.

5.22 Example: (A tautological control system with non-upper semicontinuous
differential inclusion) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let
r ∈ {∞, ω}, as required. Let M be a Cr-manifold and let x0 ∈ M. Let F (x0) be the globally
generated sheaf of sets of Cν-vector fields defined by

F (x0)(M) = {X ∈ Γν(TM) | X(x0) = 0}.

We claim that, if we take G = (M,F (x0)), then we have

XG(x) =

{
{0x0}, x = x0,

TxM, x ̸= x0.
(5.1)

In the case ν = ∞ or ν = m, this is straightforward. Let U be a neighbourhood of x ̸= x0
such that x0 ̸∈ cl(U). By the smooth Tietze Extension Theorem [Abraham, Marsden, and
Ratiu 1988, Proposition 5.5.8], if X ∈ Γ∞(TM), then there exists X ′ ∈ Γ∞(TM) such that
X ′|U = X|U and such that X ′(x0) = 0x0 . Thus [X]x = [X ′

x] and so we have F (x0)x = G ν
x,M

in this case. From this, (5.1) follows.
The case of ν = m+ lip follows as does the case ν = m, noting that a locally Lipschitz

vector field multiplied by a smooth function is still a locally Lipschitz vector field [Weaver
1999, Proposition 1.5.3].

The case of ν = ω is a little more difficult, and relies on Cartan’s Theorem A for coherent
sheaves on real analytic manifolds [Cartan 1957]. Here is the argument for those who know
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a little about sheaves. First, define a sheaf of sets (in fact, submodules) of real analytic
vector fields by

Ix0(U) =

{
{X ∈ Γω(TU) | X(x0) = 0x0}, x0 ∈ U,

Γω(TU), x0 ̸∈ U.

We note that Ix0 is a coherent sheaf since it is a finitely generated subsheaf of the coherent
sheaf G ω

TM [Demailly 2012, Theorem 3.16].11 Let x ̸= x0 and let vx ∈ TxM. By Cartan’s
Theorem A, there exist X1, . . . , Xk ∈ Ix0(M) = F (x0)(M) such that [X1]x, . . . , [Xk]x
generate (Ix0)x = G ω

x,TM as a module over the ring C ω
x,M of germs of functions at x. Let

[X]x ∈ G ω
x,TM be such that X(x) = vx. There then exist [f1]x, . . . , [f

k]x ∈ C ω
x,M such that

[f1]x[X1]x + · · ·+ [fk]x[Xk]x = [X]x.

Therefore,
vx = X(x) = f1(x)X1(x) + · · ·+ fk(x)Xk(x),

and so, taking
X = f1X1 + · · ·+ fkXk ∈ Ix0(M) = F (x0)(M),

we see that vx = X(x) ∈ XG(x), which establishes (5.1) in this case.
In any event, (5.1) holds, and it is easy to see that this differential inclusion is not upper

semicontinuous. •
We can make the following definitions, rather analogous to those of Definition 3.29 for

differential inclusions.

5.23 Definition: (Attributes of tautological control systems coming from the as-
sociated differential inclusion) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω},
and let r ∈ {∞, ω}, as required. The Cν-tautological control system G = (M,F ) is:

(i) closed-valued (resp. compact-valued , convex-valued) at x ∈ M if XG(x) is closed
(resp., compact, convex);

(ii) closed-valued (resp. compact-valued , convex-valued) if XG(x) is closed (resp.,
compact, convex) for every x ∈ M. •

One can now talk about taking “hulls” under various properties. Let us discuss this for
the properties of closedness and convexity. First we need the definitions we will use.

5.24 Definition: (Convex hull, closure of a tautological control system) Let m ∈
Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
G = (M,F ) be a Cν-tautological control system.

(i) The convex hull of G is the Cν-tautological control system conv(G) = (M, conv(F )),
where conv(F ) is the presheaf of subsets of Cν-vector fields given by

conv(F )(U) = conv(F (U)),

the convex hull on the right being that in the R-vector space Γν(TU).

11This relies on the fact that Oka’s Theorem, in the version of “the sheaf of sections of a vector bundle
is coherent,” holds in the real analytic case. It does, and the proof is the same as for the holomorphic
case [Demailly 2012, Theorem 3.19] since the essential ingredient is the Weierstrass Preparation Theorem,
which holds in the real analytic case [Krantz and Parks 2002, Theorem 6.1.3].
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(ii) The closure of G is the Cν-tautological control system

cl(G) = (M, cl(F )),

where cl(F ) is the presheaf of subsets of Cν-vector fields given by cl(F )(U) =
cl(F (U)), the closure on the right being that in the R-topological vector space
Γν(TU). •

The reader should verify that cl(F ) is indeed a presheaf.
Let us now relate the two different sorts of “hulls” we have.

5.25 Proposition: (Convex hull and closure commute with taking differential in-
clusions) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω},
as required. Let G = (M,F ) be a Cν-tautological control system with XG the associated
differential inclusion. Then the following statements hold:

(i) conv(XG) = Xconv(G);

(ii) Xcl(G) ⊆ cl(XG) and Xcl(G) = cl(XG) if G is globally generated and F (M) is bounded
in the compact bornology (or, equivalently, the von Neumann bornology if ν ∈ {∞, ω}).

Proof: (i) Let x ∈ M. If v ∈ conv(XG(x)), then there exist v1, . . . , vk ∈ XG(x) and
c1, . . . , ck ∈ [0, 1] satisfying

∑k
j=1 cj = 1 such that

v = c1v1 + · · ·+ ckvk.

Let U1, . . . ,Uk be neighbourhoods of x and let Xj ∈ F (Uj) be such that Xj(x) = vj ,
j ∈ {1, . . . , k}. Then, taking U = ∩k

j=1Uj ,

c1X1|U+ · · ·+ ckXk|U ∈ conv(F (U)),

showing that conv(XG(x)) ⊆ Xconv(G)(x).
Conversely, let v ∈ Xconv(G), let U be a neighbourhood of x, and let X ∈ conv(F (U))

be such that X(x) = v. Then

X = c1X1 + · · ·+ ckXk

for X1, . . . , Xk ∈ F (U) and for c1, . . . , ck ∈ [0, 1] satisfying
∑k

j=1 cj = 1. We then have

v = c1X1(x) + · · ·+ ckXk(x) ∈ conv(XG)(x),

completing the proof of the proposition as concerns convex hulls.
(ii) Let x ∈ M, let v ∈ Xcl(G)(x), let U be a neighbourhood of x, and let X ∈ cl(F (U))

be such that X(x) = v. Let (I,⪯) be a directed set and let (Xi)i∈I be a net in F (U)
converging to X in the appropriate topology. Then we have limi∈I Xi(x) = X(x) since the
net (Xi)i∈I converges uniformly in some neighbourhood of x (this is true for all cases of ν).
Thus v ∈ cl(XG(x)), as desired.

Suppose that F is globally generated with F (M) bounded, let x ∈ M, and let v ∈
cl(XG)(x). Thus there exists a sequence (vj)j∈Z>0 in XG(x) converging to v. Let Xj ∈
F (M) be such thatXj(x) = vj , j ∈ Z>0. Since cl(F (M)) is compact, there is a subsequence
(Xjk)jk in F (M) converging to X ∈ cl(F (M)). Moreover,

X(x) = lim
k→∞

Xjk(x) = lim
j→∞

vj = v
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since (Xjk)k∈Z>0 converges to X uniformly in some neighbourhood of x (again, this is true
for all ν). Thus v ∈ Xcl(G)(x).

The parenthetical comment in the final assertion of the proof follows since the compact
and von Neumann bornologies agree for nuclear spaces [Pietsch 1969, Proposition 4.47]. ■

The following example shows that the opposite inclusion stated in the proposition for
closures does not generally hold.

5.26 Example: (A tautological control system for which the closure of the differ-
ential inclusion is not the differential inclusion of the closure) We will talk our
way through a general sort of example, leaving to the reader the job of instantiating this
to give a concrete example.

Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let M be a Cr-manifold. Let x ∈ M and let (Xj)j∈Z>0 be a sequence of Cν-vector fields
with the following properties:

1. (Xj(x))j∈Z>0 converges to 0x;

2. Xj(x) ̸= 0x for all j ∈ Z>0;

3. there exists a neighbourhood O of zero in Γν(TM) such that, for each j ∈ Z>0,

{k ∈ Z>0 \ {j} | Xk −Xj ∈ O} = ∅.

Let F be the globally generated presheaf of sets of Cν-vector fields given by F (M) =
{Xj | j ∈ Z>0}. Then 0x ∈ cl(XG(x)). We claim that 0x ̸∈ Xcl(G)(x). To see this, suppose
that 0x ∈ Xcl(G)(x). Since F (M) is countable, this implies that there is a subsequence
(Xjk)k∈Z>0 that converges in Γν(TM). But this is prohibited by the construction of the
sequence (Xj)j∈Z>0 . •

5.5. Trajectory correspondences with other sorts of control systems. In Example 5.2
and Proposition 5.3 we made precise the connections between various models for control
systems: control systems, differential inclusions, and tautological control systems. In or-
der to flesh out these connections more deeply, in this section we investigate the possible
correspondences between the trajectories for the various models.

We first consider correspondences between trajectories of control systems and their
associated tautological control systems. Thus we let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-control
system with GΣ the associated Cν-tautological control system, as in Example 5.2–1. As
we saw in Proposition 5.3(ii), the correspondence between Σ and GΣ is perfect, at the
system level, when the map u 7→ F u is injective and open onto its image. Part (ii) of
the following result shows that this perfect correspondence almost carries over at the level
of trajectories as well. Included with this statement we include a few other related ideas
concerning trajectory correspondences.

5.27 Theorem: (Correspondence between trajectories of a control system and
its associated tautological control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-control system
with GΣ the associated Cν-tautological control system, as in Example 5.2–1. Then the
following statements hold:
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(i) Traj(T,U,Σ) ⊆ Traj(T,U,OGΣ,cpt);

(ii) if the map u 7→ F u is injective and proper, then Traj(T,U,OGΣ,cpt) ⊆ Traj(T,U,Σ);

(iii) if C is a Suslin topological space12 and if F is proper, then Traj(T,U,OGΣ,cpt) ⊆
Traj(T,U,Σ).

(iv) if, in addition, ν ∈ {∞, ω}, then we may replace Traj(T,U,OGΣ,cpt) with
Traj(T,U,OGΣ,∞) in statements (i), (ii), and (iii).

Proof: (i) Let ξ ∈ Traj(T,U,Σ) and let µ ∈ Lcpt
loc (T;C) be such that

ξ′(t) = F (ξ(t), µ(t)), a.e. t ∈ T.

Note that, as we saw in Example 5.7, Fµ|U ∈ OGΣ,cpt(T,U), making sure to note
that the conclusions of Proposition 3.20 imply that Fµ ∈ LBΓν(T;TM). Thus ξ ∈
Traj(T,U,OGΣ,∞). To show that, in fact, ξ ∈ Traj(T,U,OGΣ,cpt), let T

′ ⊆ T be a compact
subinterval and let K ⊆ C be a compact set such that µ(t) ∈ K for almost every t ∈ T′.
Denote

F̂ : C → Γν(TM)

u 7→ F u.

Since F̂ is continuous, F̂ (K) is compact [Willard 2004, Theorem 17.7]. Since Fµ
t ∈ F̂ (K)

for almost every t ∈ T′, we conclude that ξ ∈ Traj(T,U,OGΣ,cpt), as claimed.

(ii) Recall from [Bourbaki 1989, Proposition I.10.2] that, if F̂ (as defined above) is
proper, then it has a closed image, and is an homeomorphism onto its image. If ξ ∈
Traj(T,U,OGΣ,cpt), then there exists X ∈ OGΣ,cpt such that ξ′(t) = X(t, ξ(t)) for almost

every t ∈ T. Note that, since X ∈ OGΣ,cpt, we have X(t) ∈ FΣ(M) = image(F̂ ). Thus,

by hypothesis, there exists a unique µ : T → C such that F̂ ◦ µ = X. To show that µ is
measurable, let O ⊆ C be open so that F̂ (O) is an open subset of image(F̂ ). Thus there
exists an open set O′ ⊆ Γν(TM) such that F̂ (O) = image(F̂ ) ∩ O′. Then we have

µ−1(O) = X−1(F̂ (O)) = X−1(O′),

giving the desired measurability. To show that µ ∈ Lcpt
loc (T;C), let T

′ ⊆ T be a compact
subinterval and let K ⊆ Γν(TM) be such that X(t) ∈ K for almost every t ∈ T′. Then,
since F̂ is proper, F̂−1(K) is a compact subset of C. Since µ(t) ∈ F̂−1(K) for almost every
t ∈ T′ we conclude that µ ∈ Lcpt

loc (T;C).
(iii) Let ξ ∈ Traj(T,U,OGΣ,cpt) and let X ∈ OGΣ,cpt(T,U) be such that ξ′(t) = X(t, ξ(t))

for almost every t ∈ T. We wish to construct µ ∈ Lcpt
loc (T,C) such that

ξ′ = F (ξ(t), µ(t)), a.e. t ∈ T.

We fix an arbitrary element ū ∈ C (it matters not which) and then define a set-valued map
U : T ↠ C by

U(t) =

{
{u ∈ C | ξ′(t) = F (ξ(t), u)}, ξ′(t) exists,

{ū}, otherwise.

12Recall that this means that C is the continuous image of a complete, separable, metric space. We refer
to [Bogachev 2007, §6.6–6.8] for an outline of the theory of Suslin spaces.
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Since X(t) ∈ FΣ(M), we conclude that X(t) ∈ image(F̂ ) for every t ∈ T, i.e., X(t) = F u

for some u ∈ C, and so U(t) ̸= ∅ for every t ∈ T.
Properness of F ensures that U(t) is compact for every t ∈ T. The following lemma

shows that any selection µ of U is locally essentially bounded in the compact bornology.

1 Lemma: If T′ ⊆ T is a compact subinterval, then the set ∪{U(t) | t ∈ T′} is contained
in a compact subset of C.

Proof: Let us define Fξ : T × C → TM by Fξ(t, u) = F (ξ(t), u). We claim that, if T′ ⊆ T is
compact, then Fξ|T′ × C is proper. To see this, first define

Gξ : T
′ × C → M× C

(t, u) 7→ (ξ(t), u),

i.e., Gξ = ξ× idC. With this notation, we have Fξ = F ◦Gξ. Since F
−1
ξ (K) = G−1

ξ (F−1(K))
and since F is proper, to show that Fξ is proper it suffices to show that Gξ is proper. Let
K ⊆ M× C be compact. We let pr1 : M× C → M and pr2 : M× C → C be the projections.
Note that

G−1
ξ (K) = (ξ × idC)

−1(K) ⊆ ξ−1(pr1(K))× id−1
C (pr2(K)).

Since the projections are continuous, pr1(K) and pr2(K) are compact [Willard 2004, Theo-
rem 17.7]. Since ξ is a continuous function whose domain (for our present purposes) is the
compact set T′, ξ−1(pr1(K)) is compact. Since the identity map is proper, id−1

C (pr2(K))
is compact. Thus G−1

ξ (K) is contained in a product of compact sets. Since a product of

compact sets is compact [Willard 2004, Theorem 17.8] and G−1
ξ (K) is closed by continuity

of Gξ, it follows that G
−1
ξ (K) is compact, as claimed. Thus Fξ|T′ × C is proper.

Now, since ξ is a trajectory for the OGΣ,cpt open-loop subfamily, there exists a compact
set K ′ ⊆ TM such that

{ξ′(t) | t ∈ T′} ⊆ K ′,

adopting the convention that ξ′(t) is taken to satisfy ξ′(t) = F (ξ(t), ū) when ξ′(t) does
not exist; this is an arbitrary and inconsequential choice. By our argument above, K ′′ ≜
(Fξ|T′ × C)−1(K ′) is compact. Therefore, for each t ∈ T′,

{(t, u) ∈ T′ × C | u ∈ U(t)} = {(t, u) ∈ T′ × C | F (ξ(t), u) = ξ′(t)}
⊆ {(t, u) ∈ T′ × C | F (ξ(t), u) ∈ K ′} ⊆ K ′′.

Defining the compact set (compact by [Willard 2004, Theorem 17.7]) K = pr2(K
′′), with

pr2 : T
′ × C → C the projection, we then have

∪{U(t) | t ∈ T′} ⊆ K. ▼

We shall now make a series of observations about the set-valued map U , using results
of [Himmelberg 1975] on measurable set-valued mappings, particularly with values in Suslin
spaces.
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2 Lemma: The set-valued map U is measurable, i.e., if O ⊆ C is open, then

U−1(O) = {t ∈ T | U(t) ∩ O ̸= ∅}

is measurable.

Proof: Define
Fξ : T × C → TM

(t, u) 7→ F (ξ(t), u),

noting that t 7→ Fξ(t, u) is measurable for each u ∈ C and that u 7→ Fξ(t, u) is continuous
for every t ∈ T. It follows from [Himmelberg 1975, Theorem 6.4] that U is measurable as
stated. ▼

3 Lemma: There exists a measurable function µ : T → C such that µ(t) ∈ U(t) for almost
every t ∈ T.

Proof: First note that U(t) is a closed subset of C since it is either the singleton {ū} or
the preimage of the closed set {ξ′(t)} under the continuous map u 7→ F (ξ(t), u). It follows
from [Himmelberg 1975, Theorem 3.5] that

graph(U) = {(t, u) ∈ T × C | u ∈ U(t)}

is measurable with respect to the product σ-algebra of the Lebesgue measurable sets in T
and the Borel sets in C. The lemma now follows from [Himmelberg 1975, Theorem 5.7]. ▼

Now, for t ∈ T having the property that ξ′(t) exists and that µ(t) ∈ U(t) (with µ from
the preceding lemma), we have ξ′(t) = F (ξ(t), µ(t)).

(iv) This follows by our observation of Example 5.10–3. ■

Let us make some comments on the hypotheses of the preceding theorem.

5.28 Remarks: (Trajectory correspondence between control systems and tauto-
logical control systems)

1. Part (ii) of the result has assumptions that the map u 7→ F u be injective and proper.
An investigation of the proof shows that injectivity and openness onto the image of this
map are enough to give trajectories for Σ that correspond to measurable controls. The
additional assumption of properness, which gives the further consequence of the image
of the map u 7→ F u being closed, allows us to conclude boundedness of the controls.
Let us look at these assumptions.

(a) By the map u 7→ F u being injective, we definitely do not mean that the map
u 7→ F (x, u) is injective for each x ∈ M; this is a very strong assumption whose
adoption eliminates a large number of interesting control systems. For example, if
we take M = Rn, C = Rk, and

F (x,u) =
(
A+

k∑
j=1

ujBj

)
x

for n × n matrices A,B1, . . . ,Bk, then we have a bilinear control system [Elliott
2009]. In this case, the map u 7→ F (0,u) is never injective, while the map u 7→ Fu

may very well be.
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(b) Let us take M = R2, C = R, and

F ((x1, x2), u) = f1(u)
∂

∂x1
+ f2(u)

∂

∂x2
,

where f1, f2 : R → R are such that the map u 7→ (f1(u), f2(u)) is injective and
continuous, but not an homeomorphism onto its image. Such a system may be
verified to be a Cν-control system for any ν ∈ {m+m′,∞, ω} with m ∈ Z≥0 and
m′ ∈ {0, lip} (using Propositions 4.2, 4.4, and 4.9 of [Jafarpour and Lewis 2016]).
In this case, we claim that the map F̂ : u 7→ F u is injective and continuous, but not
an homeomorphism onto its image. Injectivity of the map is clear and continuity
follows since F is a jointly parameterised vector field of class Cν . Define a linear
map

κ : R2 → Γν(TM)

(v1, v2) 7→ v1
∂

∂x1
+ v2

∂

∂x2
,

i.e., κ(v) is the constant vector field with components (v1, v2). Since κ has as
domain a finite-dimensional vector space, it is continuous, and so is an homeomor-
phism onto its closed image (arguing as in the proof of Proposition 5.20(ii)). Then
F̂ = κ ◦ (f1 × f2), and so we conclude that F̂ is an homeomorphism onto its image
if and only if f1×f2 is an homeomorphism onto its image, and this gives our claim.

(c) Let us take M = R, C = R, and F (x, u) = tan−1(u) ∂
∂x . As with the example

above, we regard this as a control system of class Cν for any ν ∈ {m+m′,∞, ω},
for m ∈ Z≥0 and m′ ∈ {0, lip}. We claim that F̂ : u 7→ F u is an homeomorphism
onto its image, but is not proper. This is verified in exactly the same manner as
in the preceding example.

(d) If C is compact, then F̂ is proper because, if K ⊆ Γν(TM) is compact, then F̂−1(K)
is closed, and so compact [Willard 2004, Theorem 17.5]. This gives trajectory
correspondence between a Cν-control system and its corresponding tautological
control system for compact control sets when the map F̂ is injective.

2. Part (iii) of the result has two assumptions, that C is a Suslin space and that F is
proper. Let us consider some cases where these hypotheses hold.

(a) Complete separable metric spaces are Suslin spaces.

(b) If C is an open or a closed subspace of Suslin space, it is a Suslin space [Bogachev
2007, Lemma 6.6.5(ii)].

(c) For m ∈ Z≥0, m
′ ∈ {0, lip}, and ν ∈ {m + m′,∞, ω}, Γν(TM) is a Suslin space.

In all except the case of ν = ω, this follows since Γν(TM) is a separable, complete,
metrisable space. However, Γω(TM) is not metrisable. Nonetheless, it is Suslin, as
argued in [Jafarpour and Lewis 2014b, §5.3].

(d) If C is compact, then F is proper. Indeed, if K ⊆ TM is compact, then πTM(K) is
compact, and

F−1(K) ⊆ πTM(K)× C,

and so the set on the left is compact, being a closed subset of a compact set [Willard
2004, Theorem 17.5]. •
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We also have a version of the preceding theorem in the case that the control set C is
a subset of a locally convex topological vector space, cf. Proposition 3.24. Here we also
specialise for one of the implications to control-linear systems introduced in Example 3.23.

5.29 Theorem: (Correspondence between trajectories of a control-linear system
and its associated tautological control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let Σ = (M, F,C) be a Cν-sublinear
control system for which C is a subset of a locally convex topological vector space V, and
let GΣ be the associated Cν-tautological control system, as in Example 5.2–1. If T is a
time-domain and if U is open, then Traj(T,U,Σ) ⊆ Traj(T,U,OGΣ,full).

Conversely, if

(i) Σ is a Cν-control-linear system, i.e., there exists Λ ∈ L(V; Γν(TM)) such that
F (x, u) = Λ(u)(x),

(ii) Λ is injective, and

(iii) Λ is an open mapping onto its image,

then it is also the case that Traj(T,U,OGΣ,full) ⊆ Traj(T,U,Σ).

Proof: We first show that Traj(T,U,Σ) ⊆ Traj(T,U,OGΣ,full). Suppose that ξ ∈
Traj(T,U,Σ). Thus there exists µ ∈ L1

loc(T;C) such that

ξ′(t) = F (ξ(t), µ(t)), a.e. t ∈ T.

By Proposition 3.24 and Example 5.7, Fµ|U ∈ OGΣ,full(T,U) and so ξ ∈ Traj(T,U,OGΣ,full).
Now let us prove the “conversely” assertion of the theorem. Thus we let ξ ∈

Traj(T,U,OGΣ,full) so that there exists X ∈ OGΣ,full(T,U) for which ξ′(t) = X(t, ξ(t))
for almost every t ∈ T. Since Λ is injective and since Xt ∈ Λ(C) for each t ∈ T (this is
the definition of GΣ), we uniquely define µ(t) ∈ C by Λ(µ(t)) = Xt. We need only show
that µ is locally Bochner integrable. Let Λ−1 denote the inverse of Λ, thought of as a
map from image(Λ) to V. As Λ is open, Λ−1 is continuous. From this, measurability of
µ follows immediately. To show that µ is locally Bochner integrable, let q be a continu-
ous seminorm for the locally convex topology of V and, as per [Schaefer and Wolff 1999,
§III.1.1], let p be a continuous seminorm for the locally convex topology of Γν(TM) such
that q(Λ−1(Y )) ≤ p(Y ) for every Y ∈ Γν(TM). Then we have, for any compact subinterval
T′ ⊆ T, ∫

T′
q(µ(t)) dt ≤

∫
T′

p(Xt) dt < ∞,

giving Bochner integrability of µ by [Beckmann and Deitmar 2011, Theorems 3.2 and 3.3].
■

Let us make some observations about the preceding theorem.

5.30 Remarks: (Trajectory correspondence between control systems and tauto-
logical control systems) The converse part of Theorem 5.29 has three hypotheses: that
the system is control-linear; that the map from controls to vector fields is injective; that the
map from controls to vector fields is open onto its image. The first hypothesis, linearity of
the system, cannot be weakened except in sort of artificial ways. As can be seen from the
proof, linearity allows us to talk about the integrability of the associated control. Injectivity
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can be assumed without loss of generality by quotienting out the kernel if it is not. Let us
consider some cases where the third hypothesis holds. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
1. Let C ⊆ Rk and suppose that our system is Cν-control-affine, i.e.,

F (x,u) = f0(x) +
k∑

a=1

uafa(x)

for Cν-vector fields f0, f1, . . . , fm. As we pointed out in Example 3.23, this can be
regarded as a control-linear system by taking V = R ⊕Rk

C′ = {(u0,u) ∈ V | u0 = 1, u ∈ C},

and

Λ(u0,u) =
k∑

a=0

uafa.

We can assume that Λ is injective, as mentioned above. In this case, the map Λ is an
homeomorphism onto its image since any map from a finite-dimensional locally convex
space is continuous [Horváth 1966, Proposition 2.10.2]. Thus Theorem 5.29 applies to
control-affine systems, and gives trajectory equivalence in this case.

2. The other case of interest to us is that when V = Γν(TM) and when C ⊆ V is then a
family of globally defined vector fields of class Cν on M. In this case, we take Λ to be
the identity map on Γν(TM), so the hypotheses of Theorem 5.29 are easily satisfied.
The trajectory equivalence one gets in this case is that between a globally generated
tautological control system and its corresponding control system as in Example 5.2–2. •
One of the conclusions enunciated above is sufficiently interesting to justify its own

theorem.

5.31 Theorem: (Correspondence between trajectories of a tautological control
system and its associated control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a globally
generated Cν-tautological control system. As in Example 5.2–2, let ΣG = (M,ΣG,CF ) be
the corresponding Cν-control system. Then, for each time-domain T and each open set
U ⊆ M, Traj(T,U,OG,full) = Traj(T,U,ΣG).

Proof: This is the observation made in Remark 5.30–2. ■

Now we turn to relationships between trajectories for tautological control systems and
differential inclusions. In Example 5.2–3 we showed how a tautological control system can
be built from a differential inclusion. However, as we mentioned in that example, we cannot
expect any sort of general correspondence between trajectories of the differential inclusion
and the tautological control system constructed from it; differential inclusions are just too
irregular. We can, however, consider the correspondence in the other direction, as the
following theorem indicates.
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5.32 Theorem: (Correspondence between trajectories of a tautological control
system and its associated differential inclusion) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological
control system and let XG be the associated differential inclusion, as in Example 5.2–4. For
T a time-domain and U ⊆ M an open set, Traj(T,U,G) ⊆ Traj(T,U,XG).

Conversely, if F is globally generated and if F (M) is a compact subset of Γν(TM),
then Traj(T,U,XG) ⊆ Traj(T,U,G).

Proof: Since, for an open-loop system (X,T,U), X(t) ∈ F (U) for every t ∈ T, we have
X(t, x) ∈ XG(x) for every (t, x) ∈ T × U. Thus, if ξ ∈ Traj(T,U,G), then we have
ξ′(t) ∈ XG(ξ(t)) for almost every t ∈ T.

For the “conversely” part of the theorem, if ξ is a trajectory for the differential inclusion
XG then, for almost every t ∈ T, ξ′(t) = X(ξ(t)) for some X ∈ F (M). Therefore, let us fix
an arbitrary X ∈ F (M) and let us define U : T ↠ F (M) by

U(t) =

{
{X ∈ F (M) | ξ′(t) = X(ξ(t))}, ξ′(t) exists,

{X}, otherwise.

Now we note that

1. CF = F (M) is a Suslin space, being a closed subset of a Suslin space, and

2. the map FF is proper by Remark 5.28–d.

Thus we are in exactly the right framework to use the proof of Theorem 5.27(iii) to show that
there exists a locally essentially bounded (in the compact bornology) measurable control
t 7→ X(t) for which

ξ′(t) = FF (ξ(t), X(t)), a.e. t ∈ T,

and so ξ ∈ Traj(T,U,ΣG), as desired. ■

Let us comment on the hypotheses of this theorem.

5.33 Remark: (Trajectory correspondence between tautological control systems
and differential inclusions) The assumption that F (M) be compact in the “conversely”
part of the preceding theorem is indispensable. The connection going from differential
inclusion to tautological control system is too “loose” to get any sort of useful trajectory
correspondence, without restricting the class of vector fields giving rise to the differential
inclusion. Roughly speaking, this is because a differential inclusion only prescribes the
values of vector fields, and the topologies have to do with derivatives as well. •

5.6. The category of tautological control systems. In our discussion of feedback equiv-
alence in Section 1.1.2 we indicated that the notion of equivalence in our framework is not
interesting to us. In this section, we illustrate why it not interesting by defining a natural
notion of equivalence, and then seeing that it degenerates to something trivial under nat-
ural hypotheses. We do this in a general way by considering first how one might define a
“category” of tautological control systems with objects and morphisms. The problem of
equivalence is then the problem of understanding isomorphisms in this category. By impos-
ing a naturality condition on morphisms via trajectories, we prove that isomorphisms are
uniquely determined by diffeomorphisms of the underlying manifolds for the two tautolog-
ical control systems. The notion of “direct image” we use here is common in sheaf theory,
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and we refer to, e.g., [Kashiwara and Schapira 1990, Definition 2.3.1] for some discussion.
However, by far the best presentation that we could find of direct images of presheaves such
as we use here is in the online documentation [Stacks Project Authors 2014, Tag 008C].

Let us first describe how to build maps between tautological control systems. This is
done first by making the following definition.

5.34 Definition: (Direct image of tautological control systems) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system, let N be Cr-manifold, and let Φ ∈ Cr(M;N). The
direct image of G by Φ is the tautological control system Φ∗G = (N,Φ∗F ) defined by
Φ∗F (V) = F (Φ−1(V)) for V ⊆ N open. •

One easily verifies that if F is a sheaf, then so too is Φ∗F .
With the preceding sheaf construction, we can define what we mean by a morphism of

tautological control systems.

5.35 Definition: (Morphism of tautological control systems) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) and
H = (N,G ) be Cν-tautological control systems. A morphism from G to H is a pair (Φ,Φ♯)
such that

(i) Φ ∈ Cr(M;N) and

(ii) Φ♯ = (Φ♯
V)V open is a family of mappings Φ♯

V : G (V) → Φ∗F (V), V ⊆ N defined as
follows:

(a) there exists a family LV ∈ L(Γν(TV); Γν(T(Φ−1(V)))) of continuous linear map-
pings satisfying LV′ = LV|Γν(TV′) if V,V′ ⊆ N are open with V′ ⊆ V;

(b) Φ♯
V = LV|G (V). •

By the preceding definition, we arrive at the “category of Cν-tautological control sys-
tems” whose objects are tautological control systems and whose morphisms are as just
defined. From the point of view of control theory, one wishes to restrict these definitions
further to account for the fact that morphisms ought to preserve trajectories. Therefore,
let us see how trajectories come into the picture. First we consider open-loop systems.
Thus let T be a time-domain and let V ⊆ N be open. If Y : T → G (U), then we have

Φ♯(Y )t ≜ Φ♯
V(Yt) ∈ F (Φ−1(V)) for each t ∈ T. That is, an open-loop system (Y,T,V) for

H gives rise to an open-loop system (Φ♯(Y ),T,Φ−1(V)) for G. For such a correspondence
to have significance, it must do the more or less obvious thing to trajectories.

5.36 Definition: (Trajectory-preserving morphisms of tautological control sys-
tems) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω},
as required. Let G = (M,F ) and H = (N,G ) be Cν-tautological control systems. A mor-
phism (Φ,Φ♯) from G to H is trajectory-preserving if, for each time-domain T, each
open V ⊆ N, and each Y ∈ LIΓν(T;G (V)), any integral curve ξ : T′ → Φ−1(V) for the
time-varying vector field t 7→ Φ♯(Yt) defined on T′ ⊆ T has the property that Φ ◦ ξ is an
integral curve for Y . •

Note that the time-varying vector field t 7→ Φ♯(Yt) from the definition is locally integrally
bounded by [Beckmann and Deitmar 2011, Lemma 1.2].

We can now characterise these trajectory-preserving morphisms.
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5.37 Proposition: (Characterisation of trajectory-preserving morphisms) Let m ∈
Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
G = (M,F ) and H = (M,G ) be Cν-tautological control systems. A morphism (Φ,Φ♯) from
G to H is trajectory-preserving if and only if, for each open V ⊆ N, each Y ∈ G (V), each
y ∈ V, and each x ∈ Φ−1(y), we have TxΦ(Φ

♯(Y )(x)) = Y (y).

Proof: First suppose that (Φ,Φ♯) is trajectory-preserving, and let V ⊆ N be open, let
Y ∈ G (V), let y ∈ V, and let x ∈ Φ−1(V). Let T ⊆ R be a time-domain for which
0 ∈ int(T) and for which the integral curve η for Y through y is defined on T. We consider
Y ∈ LIΓν(T;G (V)) by taking Yt = Y , i.e., Y is a time-independent time-varying vector field.
Note that integral curves of Y can, therefore, be chosen to be differentiable [Coddington
and Levinson 1984, Theorem 1.3], and will be differentiable if ν > 0. Let T′ ⊆ T be such
that the differentiable integral curve ξ for Φ♯(Y ) through x is defined on T′. Since (Φ,Φ♯)
is trajectory-preserving, we have η = Φ ◦ ξ on T′. Therefore,

Y (y) = η′(0) = TxΦ(ξ
′(0)) = TxΦ(Φ

♯(Y )(x)).

Next suppose that, for each open V ⊆ N, each Y ∈ G (V), each y ∈ V, and each
x ∈ Φ−1(y), we have TxΦ(Φ

♯(Y )(x)) = Y (y). Let T be a time-domain, let V ⊆ N be open,
let Y ∈ LIΓν(T;G (V)), and let ξ : T′ → Φ−1(V) be an integral curve for the time-varying
vector field t 7→ Φ♯(Yt) defined on T′ ⊆ T. Let η = Φ ◦ ξ. Then we have

η′(t) = Tξ(t)Φ(Φ
♯(Yt)(ξ(t))) = Yt(η(t))

for almost every t ∈ T′, showing that η is an integral curve for Y . ■

Note that the condition TxΦ(Φ
♯(Y )(x)) = Y (y) is consistent with the regularity condi-

tions for Y . In the cases ν ∈ {m,∞, ω}, this is a consequence of the Chain Rule (see [Krantz
and Parks 2002, Proposition 2.2.8] for the real analytic case). In the Lipschitz case this is
a consequence of the fact that the Lipschitz constant of a differentiable map is the norm
of the derivative [Gromov 2007, Example 1.4(c)], combined with the fact that the Lips-
chitz constant of a composition is the product of the Lipschitz constants [Weaver 1999,
Proposition 1.2.2].

To make a connection with more common notions of mappings between control systems,
let us do the following. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let
r ∈ {∞, ω}, as required. Suppose that we have two Cν-control systems Σ1 = (M1, F1,C1)
and Σ2 = (M2, F2,C2). As tautological control systems, these are globally generated, so let
us not fuss with general open sets for the purpose of this illustrative discussion. We then
suppose that we have a mapping Φ ∈ Cr(M1;M2) and a mapping κ : M1 × C2 → C1, which
gives rise to a correspondence between the system vector fields by

Φ♯(F u2
2 )(x1) = F

κ(x1,u2)
1 (x1).

The condition of being trajectory-preserving means that a trajectory ξ1 for Σ1 satisfying

ξ′1(t) = F1(ξ1(t), κ(ξ1(t), µ2(t)))

gives rise to a trajectory ξ2 = Φ ◦ ξ1 for Σ2, implying that

ξ′2 = Tξ1(t)Φ(ξ
′
1(t)) = Tξ1(t)Φ ◦ F1(ξ1(t), κ(ξ1(t), µ2(t))).
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Thus
F2(x2, u2) = Tx1Φ ◦ F1(x1, κ(x1, u2))

for every x1 ∈ Φ−1(x2).
There may well be some interest in studying general morphisms, but we will not pursue

this right at the moment. Instead, let us simply think about isomorphisms in the category
of tautological control systems.

5.38 Definition: (Isomorphisms of tautological control systems) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
and H = (N,G ) be Cν-tautological control systems. An isomorphism from G to H is
a morphism (Φ,Φ♯) such that Φ is a diffeomorphism and LV is an isomorphism (in the
category of locally convex topological vector spaces) for every open V ⊆ N, where LV is

such that Φ♯
V = LV|G (V) as in Definition 5.35. •

It is now easy to describe the trajectory-preserving isomorphisms.

5.39 Proposition: (Characterisation of trajectory-preserving isomorphisms) Let
m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
G = (M,F ) and H = (N,G ) be Cν-tautological control systems. A morphism (Φ,Φ♯) from
G to H is a trajectory-preserving isomorphism if and only if Φ is a diffeomorphism and

G (Φ(U)) = {(Φ|U)∗X | X ∈ F (U)}

for every open set U ⊆ M.

Proof: According to Proposition 5.37, if V ⊆ N is open and if Y ∈ G (V), we have
(Φ|Φ−1(V))∗(Φ

♯(Y )) = Y or Φ♯(Y ) = (Φ|Φ−1(V))∗Y . Since Φ♯ is a bijection from G (V)
to F (Φ−1(V)), we conclude that

F (Φ−1(V)) = {(Φ|Φ−1(V))∗Y | Y ∈ G (V)}.

This is clearly equivalent to the assertion of the theorem since Φ must be a diffeomorphism.
■

In words, trajectory-preserving isomorphisms simply amount to the natural correspon-
dence of vector fields under the push-forward Φ∗. (One should verify that push-forward is
continuous as a mapping between locally convex spaces. This amounts to proving continuity
of composition, and for this we point to places in the literature from which this can be de-
duced. In the smooth and finitely differentiable cases this can be shown using an argument
fashioned after that from [Mather 1969, Proposition 1]. In the Lipschitz case, this follows
because the Lipschitz constant of a composition is bounded by the product of the Lipschitz
constants [Weaver 1999, Proposition 1.2.2]. In the real analytic case, this follows from
Sublemma 6 from the proof of [Jafarpour and Lewis 2014b, Lemma 2.4].) In particular, if
one wishes to consider only the identity diffeomorphism, i.e., only consider the “feedback
part” of a feedback transformation, we see that the only trajectory-preserving isomorphism
is simply the identity morphism. In this way we see that the notion of equivalence for
tautological control systems is either very trivial (it is easy to understand when systems
are equivalent) or very difficult (the study of equivalence classes contains as a special case
the classification of vector fields up to diffeomorphism), depending on your tastes. It is our
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view that the triviality (or impossibility) of equivalence is a virtue of the formulation since
all structure except that of the manifold and the vector fields has been removed; there is
no extraneous structure. This justifies our calling these “tautological” control systems. We
refer to Section 1.1.2 for further discussion.

6. Étalé systems

The development of tautological control systems in the preceding chapter was focussed
in large part on connecting this new class of control systems with more common existing
classes of systems. In particular, our notion of a trajectory is a quite natural adaptation to
our framework of the usual notion of a trajectory for a control system. However, it turns
out that there is a limitation of this sort of definition in terms of being able to use the
full power of the tautological control system framework. In this chapter we overcome this
limitation, and at the same time more fully integrate the sheaf formalism into the way in
which we think about tautological control systems.

In order to begin to understand this, let us consider an example.

6.1 Example: (A different sort of trajectory) We take M = R2 with coordinates (x, y)
and let X and Y be the vector fields

X =
∂

∂x
, Y =

∂

∂y
.

We let G = (M,F ) be the tautological control system defined by taking

F (U) =

{
{±X|U,±Y |U}, U ⊆ (−1, 1)×R,
{±X|U}, otherwise.

It is a simple verification to see that F is a presheaf of sets of Cω-vector fields. Consider
the curve ξ : [0, 6] → M defined by

ξ(t) =


(2− t,−1), t ∈ [0, 2],

(0, t− 3), t ∈ (2, 4],

(t− 4, 1), t ∈ (4, 6].

Note that ξ cannot be a trajectory for the tautological control system G according to
Definition 5.14 because any open set U ⊆ M containing image(ξ) will have the property
that Y |U ̸∈ F (U). •

It is pretty clear that, despite the fact that the curve of the example is not a trajectory
according to our existing definition, we would like it to be a trajectory. The idea of a more
general notion of a trajectory is that it should locally be an integral curve for some system
vector field. The notion of “local” for our system is captured by stalks, and this leads us
to the consideration of the étalé space Et(F ) as a device for capturing trajectories of the
sort depicted in Example 6.1. There are some technicalities that have to be dealt with to
provide a satisfactory description of what is required, and in this chapter we undertake this
development.
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6.1. Sheaves of time-varying vector fields. In the next definition we introduce some
sheaves of time-varying vector fields. These are not defined by simply defining the presheaf,
but by a more indirect construction; they are constructed by defining their local sections
over a basis for the topology consisting of products of open subsets of T and M. The idea is
that, to every open set W ⊆ T ×M, we assign a “time-varying vector field.” However, this
vector field is not defined on a single time interval, but rather it is defined locally in M on
a variable interval. That this procedure produces a legitimate sheaf is proved in [MacLane
and Moerdijk 1992, Theorem II.1.3] (see also the detailed discussion in the open source
book [Stacks Project Authors 2014, Tag 009H]).

With the preceding as preparation, we state the following definition.

6.2 Definition: (Sheaves of time-varying vector fields) Letm ∈ Z≥0 andm′ ∈ {0, lip},
let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let T ⊆ R be an interval and let
M be a Cr-manifold.

(i) By CFG ν(T;TM) we denote the sheaf over T ×M defined by requiring that

CFG ν(T;TM)(T′ × U) = CF(T′; Γν(TU))

for every relatively open interval T′ ⊆ T and every open set U ⊆ M. Here
CF(T′; Γν(TU)) denotes the set of measurable functions from T′ to Γν(TU).

(ii) By LIG ν(T;TM) we denote the sheaf over T ×M defined by requiring that

LIG ν(T;TM)(T′ × U) = L1(T′; Γν(TU))

for every relatively open interval T′ ⊆ T and every open set U ⊆ M. Here
L1(T′; Γν(TU)) denotes the set of Bochner integrable functions from T′ to Γν(TU).

(iii) By LBG ν(T;TM) we denote the sheaf over T ×M defined by requiring that

LBG ν(T;TM)(T′ × U) = L∞(T′; Γν(TU))

for every relatively open interval T′ ⊆ T and every open set U ⊆ M. Here
L∞(T′; Γν(TU)) denotes the set of essentially von Neumann bounded functions from
T′ to Γν(TU). •

We remind the reader of the characterisations of CF(T′; Γν(TU)), L1(T′; Γν(TU)), and
L∞(T′; Γν(TU)) made possible by Theorem 3.11.

In terms of sheaf theory, the sheaf CF(T′; Γν(TU)) is to be thought of as a sheaf in the
category of R-vector spaces, and L1(T′; Γν(TU)) and L∞(T′; Γν(TU)) are to be thought of
as sheaves in the category of locally convex topological vector spaces. That is, to each open
W ⊆ T ×M we assign a (locally convex topological) vector space.

The main point that we shall use is that, as sheaves, the local sections of CFG ν(T;TM)
(resp. LIG ν(T;TM), LBG ν(T;TM)) are to be regarded as local sections of the correspond-
ing étalé spaces, cf. Remark 4.10–3. Thus a local section X over an open set W ⊆ T ×M
should be thought of as assigning to (t, x) ∈ W a germ X (t, x) ∈ Et(CFG ν(T;TM))(t,x)
(resp. Et(LIG ν(T;TM))(t,x), Et(LBG

ν(T;TM))(t,x)). The definitions of these sheaves per-
mit the following characterisation of germs.
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6.3 Construction: (Representatives of germs for sheaves of time-varying vector
fields) Because of the way the sheaves CFG ν(T;TM), LIG ν(T;TM), and LBG ν(T;TM)
are defined by defining them on a basis for the topology of T ×M, for each germ X (t, x)
there is a relatively open interval T′ ⊆ T, an open set U ⊆ M, and X ∈ CF(T′; Γν(TU))
(resp. X ∈ L1(T′; Γν(TU)), X ∈ L∞(T′; Γν(TU))) such that T′×U ⊆ W is a neighbourhood
of (t, x) and such that X (t, x) = [X](t,x). •

As sheaves, CFG ν(T;TM), LIG ν(T;TM), and LBG ν(T;TM) are equipped with restric-
tion maps

rW2,W1 : CFG
ν(T;TM)(W2) → CFG ν(T;TM)(W1),

and similarly for LIG ν(T;TM) and LBG ν(T;TM). To make these restriction maps explicit,
we note that, since CFG ν(T;TM), LIG ν(T;TM), and LBG ν(T;TM) are sheaves, local
sections are identified with local sections of the étalé space. In this case, the restriction
maps are just regular restriction.

Although a local section of CFG ν(T;TM), LIG ν(T;TM), or LBG ν(T;TM) is not a
time-varying vector field in the usual sense, we can nonetheless assign tangent vectors as
if it is in the following manner (we do this for CFG ν(T;TM), but the same constructions
apply to LIG ν(T;TM) and LBG ν(T;TM)). Let W ⊆ T × M be open and let (t, x) ∈ W.
If X ∈ CFG ν(T;TM)(W) then, as in Construction 6.3, X is the germ of a time-varying
vector field X ∈ CF(T′; Γν(TU)) for some relatively open interval T′ ⊆ T and some open
set U ⊆ M for which T′×U ⊆ W is a neighbourhood of (t, x). With this in mind, we define

ev(t,x) : Et(CFG
ν(T;TM))(t,x) → TxM

X (t, x) 7→ X(t, x).

6.2. An alternative description of local sections of sheaves of time-varying vector
fields. The preceding constructions are a little bit hampered by the fact that the sheaves
CFG ν(T;TM), LIG ν(T;TM), and LBG ν(T;TM) are not really comprised of time-varying
vector fields, and so representations of their local sections can be a little awkward. Let us
address this by showing that one can equivalently characterise sections of these sheaves as
mappings into Et(G ν

TM).
The ideas here mirror, to some extent, the constructions of Section 3.1. To this end, we

begin with the following constructions that are to be regarded as the étalé versions of the
corresponding notions for time-varying vector fields. In the following definition, we suppose
that Et(G ν

TM) is equipped with the étalé topology (from Definition 4.9) and that the stalks
G ν
x,TM are equipped with the Cν-stalk topology (from Definition 4.11).

6.4 Definition: (Time-varying local sections of G ν
TM) Let m ∈ Z≥0 and m′ ∈ {0, lip},

let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let T ⊆ R be an interval, let
M be a Cr-manifold, let W ⊆ T × M be open, and let X : W → Et(G ν

TM) be such that
X (t, x) ∈ G ν

x,TM. For (t, x) ∈ W, denote

Wt = {x ∈ M | (t, x) ∈ W}, Wx = {t ∈ T | (t, x) ∈ W},

and define mappings

Xt : Wt → Et(G ν
TM)

x 7→ X (t, x),

X x : Wx → G ν
x,TM

t 7→ X (t, x).
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(i) The mapping X is a Carathéodory local section of class Cν if

(a) for each t ∈ T for which Wt ̸= ∅, Xt is continuous and

(b) for each x ∈ M for which Wx ̸= ∅, X x is measurable.

(ii) The mapping X is a locally integrally bounded local section of class Cν if

(a) for each t ∈ T for which Wt ̸= ∅, Xt is continuous and

(b) for each x ∈ M for which Wx ̸= ∅, X x is locally Bochner integrable.

(iii) The mapping X is a locally essentially von Neumann bounded local section
of class Cν if

(a) for each t ∈ T for which Wt ̸= ∅, Xt is continuous and

(b) for each x ∈ M for which Wx ̸= ∅, X x is locally essentially von Neumann
bounded. •

We wish to establish a correspondence between the objects in the preceding definition
and those in Definition 6.2. To do this we shall need some general notation to capture
a notion where both sorts of objects have no a priori structure in terms of their time-
dependence. To this end, let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let
r ∈ {∞, ω}, as required. Let T ⊆ R be an interval and let M be a Cr-manifold. We let
TVG ν(T;TM) be the sheaf over T ×M defined by requiring that

TVG ν(T;TM)(T′ × U) = Map(T′; Γν(TU)),

for a relatively open interval T′ ⊆ T and an open set U ⊆ M, and where Map simply means
the set of all maps. This is a sheaf in the same manner as are the sheaves CFG ν(T;TM),
LIG ν(T;TM), and LBG ν(T;TM), being defined on a basis for the topology of T ×M. It
is, moreover, a sheaf in the category of R-vector spaces. In particular, Construction 6.3
applies to describe a representative of a germ for this sheaf. For W ⊆ T ×M open, we also
denote by Map0(W; Et(G ν

TM)) the mappings X : W → Et(G ν
TM) such that X (t, x) ∈ G ν

x,TM

for every (t, x) ∈ W. We shall make use of the evaluation map

evx : G
ν
x,TM → TxM

[X]x 7→ X(x).

We now indicate how to relate sections of TVG ν(T;TM) over W to elements of
Map0(W; Et(G ν

TM)), and vice versa.
First let W ⊆ T × M be open and let X ∈ TVG ν(T;TM)(W). We define X̌ ∈

Map0(W; Et(G ν
TM)) as follows. Let (t, x) ∈ W and let T′, U, and X ∈ Map(T′; Γν(TU)) be

as in Construction 6.3, i.e., such that X (t, x) = [X](t,x). Then define X̌ (t, x) = [Xt]x, where
Xt(x

′) = X(t, x′) for x′ ∈ U. This construction is well-defined in that (1) Xt ∈ Γν(TU) so
the germ [Xt]x is in G ν

x,TM and (2) it is independent of the choice of representative X.

Next let W ⊆ T × M be open and let X ∈ Map0(W; Et(G ν
TM)). We define X̂ ∈

TVG ν(T;TM)(W) as follows. Let (t, x) ∈ W, let T′ ⊆ T be a relatively open interval, and
let U ⊆ M be an open set such that T′ × U ⊆ W is a neighbourhood of (t, x). Denote

X : T′ × U → TU

(t′, x′) 7→ evx′(X (t′, x′)).
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It is clear that X ∈ Map(T′; Γν(TU)). We thus can define X̂ (t, x) = [X](t,x). We note

that X̂ is well-defined in that (1) [X](t,x) ∈ Et(TVG ν(T;TM))(t,x) and (2) the definition is
independent of the representative X.

Note that the preceding correspondences are, in essence, making the identification of
[Xt]x with [X](t,x) for a suitable representative X of the germ.

With this notation, we can state and prove the following result.

6.5 Theorem: (A characterisation of local sections) Let m ∈ Z≥0 and m′ ∈ {0, lip},
let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let T ⊆ R be an interval, let M
be a Cr-manifold, let W ⊆ T ×M be open, and let X ∈ Map0(W; Et(G ν

TM)). Then X is:

(i) a Carathéodory local section of class Cν if and only if X̂ ∈ CFG ν(T;TM)(W);

(ii) a locally integrally bounded local section of class Cν if and only if X̂ ∈
LIG ν(T;TM)(W);

(iii) a locally essentially von Neumann bounded local section of class Cν if and only if

X̂ ∈ LBG ν(T;TM)(W).

Proof: (i) Suppose that X̂ ∈ CFG ν(T;TM)(W). Let (t, x) ∈ W, and let T′, U, and X be

as in Construction 6.3. By definition of X̂ , this implies that X ∈ Map(T′; Γν(TU)). As we
asserted in Remark 4.10–3, the mapping x′ 7→ X (t, x′) = [Xt]x is continuous at x. Also, by
definition of the stalk topology, the mapping

rU,x : G
ν
TM(U) → G ν

x,TM

Y 7→ [Y ]x

is continuous. Therefore, since X x(t′) = rU,x ◦ Xt′ for t′ ∈ Wx and since t′ 7→ Xt′ is
measurable by assumption, it follows that X is a Carathéodory local section of class Cr.

Next suppose that X is a Carathéodory local section of class Cν . Let T′ ⊆ T be a
relatively open interval and let U ⊆ M be open, relatively compact, and such that T′×U ⊆
W, and let X ∈ Map(T′; Γν(TU)) be such that X (t, x) = [Xt]x. Since X is a Carathéodory
local section, the map t′ 7→ X (t′, x) is measurable. Since evx : G ν

x,TM → TxM is continuous
(cf. the proof of Theorem 6.3 in [Jafarpour and Lewis 2014b]), it follows that the mapping

T′ ∋ t′ 7→ evx ◦ [Xt′ ]x = Xx(t′) ∈ TxM

is measurable. By Theorem 3.11 we conclude that X ∈ CF(T′; Γν(TM)), implying that

X̂ ∈ CFG ν(T;TM).

(ii) Suppose that X̂ ∈ LIG ν(T;TM)(W). Let (t, x) ∈ W, and let T′, U, and X be as in
Construction 6.3. As in the proof of part (i), we can conclude that Xt is continuous at x.
Since rU,x is continuous and since the mapping

T′ ∋ t′ 7→ Xt′ ∈ Γν(TU)

is Bochner integrable by hypothesis, t 7→ rU,x ◦ Xt′ is also Bochner integrable, since
Bochner integrability is preserved by continuous linear maps [Beckmann and Deitmar 2011,
Lemma 1.2]. Since X x(t′) = rU,x ◦Xt′ for t

′ ∈ T′, we conclude that X is a locally integrally
bounded local section of class Cν .
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Next suppose that X is a locally integrally bounded local section of class Cr. Let
T′ ⊆ T be a relatively open interval and let U ⊆ M be open and such that T′×U ⊆ W, and
let X ∈ Map(T′; Γν(TU)) be such that X (t, x) = [Xt]x. Let p be a continuous seminorm
for Γν(TU). By Lemma 4.12 there exist x1, . . . , xk ∈ U and continuous seminorms qj for
G ν
xj ,TM

, j ∈ {1, . . . , k}, such that

p(Y ) ≤ q1 ◦ rU,x1(Y ) + · · ·+ qk ◦ rU,xk
(Y )

for every Y ∈ Γν(TU). By hypothesis and by definition of Bochner integrability,∫
T′

qj ◦ rU,xj
(Xt) dx < ∞, j ∈ {1, . . . , k},

and so ∫
T′

p(Xt) dt < ∞.

Therefore, by Lemma 3.10, X ∈ L1(T′; Γν(TM)), and so X̂ ∈ LIG ν(T;TM)(W).

(iii) If X̂ ∈ LBG ν(T;TM)(W) then we can deduce that X is a locally essentially
bounded local section of class Cν as in the corresponding part of the proof of part (ii), but
using the fact that boundedness is preserved by continuous linear maps [Schaefer and Wolff
1999, §III.1.1]. Next suppose that X is a locally essentially bounded local section of class
Cν . Let T′ be an open interval and let U ⊆ M be open and such that T′ × U ⊆ W, and let
X ∈ Map(T′; Γν(TU)) be such that X (t, x) = [Xt]x. Let p be a continuous seminorm for
Γν(TU). Just as in the previous part of the proof, we have x1, . . . , xk ∈ U and continuous
seminorms qj for G ν

xj ,TM
, j ∈ {1, . . . , k}, such that

p(Y ) ≤ q1 ◦ rU,x1(Y ) + · · ·+ qk ◦ rU,xk
(Y )

for every Y ∈ Γν(TU). By hypothesis and by Lemma 3.10, there exist C1, . . . , Ck ∈ R>0

such that
λ({t ∈ T′ | qj ◦ rU,xj

(Xt) < Cj}) = 0,

and so
λ({t ∈ T′ | p(Xt) < C1 + · · ·+ Ck < ∞}) = 0,

implying that X ∈ L∞(T′; Γν(TU)), and so X̂ ∈ LBG ν(T;TM)(W). ■

6.3. Étalé open-loop systems and open-loop subfamilies. The use of sheaves of time-
varying vector fields allows us to broaden our notion of trajectory. First we need to broaden
our notion of an open-loop system.

6.6 Definition: (Étalé open-loop system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let T ⊆ R be an interval and let
G = (M,F ) be a Cν-tautological control system. By LIG ν(T;F ) we denote the sheaf
defined by requiring that

LIG ν(T;F )(T′ × U) = L1(T′;F (U))

for every relatively open interval T′ ⊆ T and every open set U ⊆ M. An étalé open-loop
system is a local section of LIG ν(T;F ). •

One can also adapt the notion of an open-loop subfamily to the étalé setting as follows.
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6.7 Definition: (Étalé open-loop subfamily) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let T ⊆ R be an interval and let
G = (M,F ) be a Cν-tautological control system. An étalé open-loop subfamily for G
is an assignment, to each open set W ⊆ T ×M, a subset OG(W) ⊆ LIG ν(T;F )(W) with
the property that, if W1 ⊆ W2, then

{rW2,W1(X) | X ∈ OG(W2)} ⊆ OG(W1). •

We can define the host of natural étalé open-loop subfamilies corresponding to those of
Example 5.10.

6.8 Examples: (Étalé open-loop subfamilies) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let T ⊆ R be an interval and
let G = (M,F ) be a Cν-tautological control system.

1. The full étalé subfamily for G is the open-loop subfamily OG,full defined by

OG,full(W) = LIG ν(T;F )(W).

2. The locally essentially bounded étalé subfamily for G is the open-loop subfamily
OG,∞ defined by requiring that

OG,∞(T′ × U) = {X ∈ OG,full(T
′ × U) | X ∈ L∞(T′; Γν(TU))}

for every relatively open interval T′ ⊆ T and every open set U ⊆ M.

3. The locally essentially compact étalé subfamily for G is the open-loop subfamily
OG,cpt defined by requiring that

OG,cpt(T
′ × U) = {X ∈ OG,full(T

′ × U) | X ∈ Lcpt(T′; Γν(TU))}

for every relatively open interval T′ ⊆ T and every open set U ⊆ M.

4. Next we define the piecewise constant étalé subfamily for G. This takes a little
more work. If T′ ⊆ T is a bounded relatively open interval and U ⊆ M is open, a map
X : T′×U → Et(F ) is piecewise constant if there exist a finite partition (T1, . . . ,Tk)
of T′ into pairwise disjoint intervals and vector fields X1, . . . , Xk ∈ Γν(TU) such that
X (t, x) = [Xj ]x for t ∈ Tj , j ∈ {1, . . . , k}. Now suppose that W ⊆ T ×M is open. We
say that X : W → Et(F ) is piecewise constant if, for every (t, x) ∈ W, there exist a
relatively open interval Tt ⊆ T and an open set Ux ⊆ M such that (t, x) ∈ Tt ×Ux ⊆ W

and X |Tt × Ux is piecewise constant.

5. We can associate an étalé open-loop subfamily to an étalé open-loop system as follows.
Let OG be an étalé open-loop subfamily for G, let W ⊆ T × M be open, and let X ∈
OG(W). We denote by OG,X the open-loop subfamily defined as follows. If W′ ⊆ W,
then we let

OG,X(W′) = {X ′ ∈ OG(W′) | X ′ = rW,W′(X)}.

If W′ ̸⊆ W, then we take OG,X(W′) = ∅. •

6.4. Étalé trajectories. We can now define an appropriately extended notion of trajectory.
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6.9 Definition: (Étalé trajectory) Letm ∈ Z≥0 andm′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω},
and let r ∈ {∞, ω}, as required. Let T ⊆ R be an interval, let G = (M,F ) be a Cν-
tautological control system, and let OG be an étalé open-loop subfamily for G.

(i) For an open set W ⊆ T ×M and for X ∈ OG(W), an étalé (X,W)-trajectory for
OG is a curve ξ : T′ → M such that

(a) T′ ⊆ T is an interval,

(b) graph(ξ) ⊆ W, and

(c) ξ′(t) = ev(t,ξ(t))(X(t, ξ(t))) for almost every t ∈ T′.

(ii) For an open set W ⊆ T ×M, an étalé W-trajectory for OG is a curve ξ : T′ → M
such that, for some X ∈ OG(W),

(a) T′ ⊆ T is an interval,

(b) graph(ξ) ⊆ W, and

(c) ξ′(t) = ev(t,ξ(t))(X(t, ξ(t))) for almost every t ∈ T′.

(iii) An étalé trajectory for OG is a curve that is an étalé W-trajectory for OG for some
open set W ⊆ T ×M.

We denote by:

(iv) Étraj(X,W,OG) the set of étalé (X,W)-trajectories for OG;

(v) Étraj(W,OG) the set of étalé W-trajectories for OG;

(vi) Étraj(OG) the set of étalé trajectories for OG.

We shall abbreviate Étraj(W,G) = Étraj(W,OG,full) and Étraj(G) = Étraj(OG,full). •
Let us verify that this extended notion of trajectory captures the desired behaviour from

our introductory example above.

6.10 Example: (Example 6.1 cont’d) We claim that the curve ξ considered in Exam-
ple 6.1 is an étalé trajectory. To see this, we take

W = (

T1︷ ︸︸ ︷
(−1, 3)×(

U1︷ ︸︸ ︷
(−1, 3)× (−2, 0)))︸ ︷︷ ︸

W1

∪ (

T2︷ ︸︸ ︷
(1, 5)×(

U2︷ ︸︸ ︷
(−1, 1)× (−2, 2)))︸ ︷︷ ︸

W2

∪ (

T3︷ ︸︸ ︷
(3, 7)×(

U3︷ ︸︸ ︷
(−1, 3)× (0, 2)))︸ ︷︷ ︸

W3

.

To define a local section of LIG ω([0, 6];TM) over W, we think of a local section as being a
map from W into Et(LIG ω([0, 6];TM)), cf. Theorem 6.5. In doing so, we shall think of ±X
and ±Y as being time-varying vector fields (that are actually independent of time). With
this as preamble, we define V ∈ LIG ω([0, 6];F )(W) by asking that

V (t, x) =


[−X](t,x), (t, x) ∈ W1,

[Y ](t,x), (t, x) ∈ W2,

[X](t,x), (t, x) ∈ W3.

One can then directly see that ξ is a (V,W)-trajectory, as desired. •
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7. Ongoing and future work

In our discussion of tautological control systems in Section 5, we strove to make connec-
tions between tautological control systems and standard control models. We do not wish
to give the impression, however, that tautological control systems are mere fancy reformu-
lations of standard control systems. In this chapter we will give a sketchy, but we hope
compelling, idea of how the tautological control system framework can be used to say new
things about control systems. This will also provide an illustration of how, in practice,
one can do control theory within the confines of the tautological control system framework,
without reverting to the comforting control parameterisations with which one is familiar.
We will emphasise that some of these ideas are in the preliminary stages of investigation, so
the final word on what results will look like has yet to be uttered. Nonetheless, we believe
that even the clear problem formulations we give make it apparent that there is something
“going on” here.

7.1. Linearisation. Work has already been completed on a theory for linearisation of
tautological control systems [Lewis 2016]. The development of even this elementary control
theoretic construction takes some nontrivial effort. However, it does provide one with some
insights into linearisation, and here we will give a brief outline of the main ideas.

We let m ∈ Z>0, m
′ ∈ {0, lip}, ν ∈ {m + m′,∞, ω}, and r ∈ {∞, ω}, as appropriate.

We let G = (M,F ) be a Cν-tautological control system. The first step in the process is to
define the linearisation of the system. This is itself a tautological control system TG with
the tangent bundle TM as state space. The presheaf TF of sets of vector fields is given by
requiring that

TF (π−1
TM(U)) = {XT + Y V | X,Y ∈ F (U)}

for every open U ⊆ M. Here XT is the tangent lift of X, which is defined by

XT (vx) =
d

dt

∣∣∣∣
t=0

TxΦ
X
t (vx),

and Y V is the vertical lift of Y , which is defined by

Y V (vx) =
d

dt

∣∣∣∣
t=0

(vx + tY (x)).

This definition of linearisation can be given a quite precise motivation, and this is explained
in [Lewis 2016, Eq. (14)]. For our purposes here, we shall simply note that XT can be
thought of as the linearisation with respect to state and Y V can be thought of as linearisation
with respect to control. One can show that the linearisation of a Cν-tautological control
system is a Cν−1-tautological control system, with the obvious conventions ∞−1 = ∞ and
ω − 1 = ω.

One then needs to define trajectories for the linearisation TG. This becomes a nontrivial
task. The first step is that one needs to properly extend tangent and vertical lifts to time-
varying vector fields from the class LIΓν(T;TTM). For the vertical lift, this is done easily,
but the extension of the tangent lift construction is more complicated. One anticipates,
and it is true, that, if X ∈ LIΓν(T;TM), then the proper definition should give XT ∈
LIΓν−1(T;TTM). The work required to show this is done in [Lewis 2016]. This then allows
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one to define appropriate open-loop systems, open-loop families, and then trajectories for
the linearisation. As one expects, a trajectory for the linearisation is a vector field along a
trajectory for the system itself.

One of the issues that the process of linearisation for tautological control systems brings
into focus is the distinction between linearisation along a trajectory and linearisation along
a reference flow. Associated to a reference flow, i.e., a prescribed open-loop system, and
an initial condition will be a unique trajectory. However, a trajectory can correspond to
multiple reference flows. This allowing for multiple reference flows when linearising about a
trajectory shows up in a pointed way when considering equilibrium trajectories, i.e., station-
ary trajectories. In this case, it is natural when linearising in the tautological framework to
have a time-varying linearisation of a system about an equilibrium point. This is something
that is simply missing from classical Jacobian linearisation.

Having described in broad terms the process by which one builds the linearisation of a
tautological control system, let us indicate, without the details which can be found in [Lewis
2016], how the constructions resolve the potential confusion of Example 1.1. If one regards
this system as a tautological control system with equilibrium point at (0, 0, 0), then the
linearisation about the equilibrium trajectory t 7→ (0, 0, 0) is time-varying in this case.
However, one notices that the equilibrium trajectory can be a trajectory for an infinite
number of open-loop systems. By linearising about one or the other of these, one will get
linearisations with different controllability properties. This makes one think about what
should be the proper definition of linear controllability in this case, and this is done in [Lewis
2016] with an invariant subspace characterisation, and the tautological control system of
Example 1.1 is shown to be linearly controllable according to this correct feedback-invariant
definition.

For our purposes the central point to take from this discussion is that, if one strictly
adheres to the tautological control system framework, extra structure—in this case time-
varying linearisations of time-independent systems about equilibria—reveals itself.

7.2. Optimal control theory. Ongoing work, presently not complete, involves formulating
problems in optimal control theory in the tautological control system framework. It is
possible, at this point, to state the basic ingredients of the formulation, but the exact
statement of the results and their proofs will require additional work.

We let m ∈ Z>0, m
′ ∈ {0, lip}, ν ∈ {m + m′,∞, ω}, and r ∈ {∞, ω}, as appropriate.

By C ν
M we denote the sheaf of Cν-functions, this being defined in exactly the same manner

as the sheaf G ν
TM, with “vector field” replaced by “function.” We let G = (M,F ) be a Cν-

tautological control system. A Cν-Lagrangian for G is a family of mappings ΛU : F (U) →
C ν

M(U), U ⊆ M open, with the following properties:

1. if U,V ⊆ M are open with V ⊆ U, then ΛV(X|V) = ΛU(X)|V, i.e., “Λ commutes with
restriction”;

2. ΛU is continuous with respect to the Cν-topologies for F (U) and C ν
M(U).

Note that a Lagrangian is no longer a function, as in “ordinary” optimal control theory, but
is actually a morphism of presheaves of locally convex topological vector spaces [Ramanan
2005, Definition 1.1.9]. Let us see how the usual notion of a Lagrangian in optimal control
theory is related to the preceding definition, as this is not immediately obvious. Thus we
suppose that we have a Cν-control system Σ = (M, F,C) with the property that F̂ : C →
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Γν(TM) is continuous, open, and injective, where F̂ (u) = F (x, u). It is reasonable to
suppose a Lagrangian that shares the regularity of Σ. Thus we suppose that L : M×C → R
is such that the map L̂ : C → Cν(M) is continuous, if Cν(M) has the Cν-topology and
L̂(u) = L(x, u). This, obviously, echoes the way that we prescribe regularity for control
systems, and we refer to [Jafarpour and Lewis 2016, §4] for a more concrete description.
A Lagrangian L for a control system Σ defines a Lagrangian ΛL for the corresponding
tautological control system GΣ by

ΛL(F
u)(x) = L(x, u).

Since ΛL ◦ F̂ = L̂ and since F̂ is continuous, open, and injective, it follows that ΛL is indeed
continuous.

Now, given a Lagrangian for a tautological control system, one can define an associated
Hamiltonian as the family of mappings HG,Λ,U : F (U) → C ν

T∗M(T∗U), U ⊆ M open,
defined by

HG,Λ,U(X)(αx) = ⟨αx;X(x)⟩+ ΛU(X)(x).

Thus an Hamiltonian is not a function on the cotangent bundle, but rather again a
sort of presheaf morphism (in a way we will not make precise here). Associated with
this Hamiltonian is an Hamiltonian vector field which is the family of mappings
HG,Λ,U : F (U) → G ν−1

T∗M(T∗U), U ⊆ M open, defined by

HG,Λ,U(X) = ω♯ ◦ d(HG,Λ,U(X)),

where ω is the canonical symplectic form on T∗M. As with our other constructions, we see
that, in the tautological control system framework, this is not a vector field, but some kind
of presheaf morphism.

We can see, then, that optimal control theory in the tautological control system setting
is not “just the same” as in the ordinary setting, and one expects the presheaf structure that
runs through the above constructions to be important in the development of the theory,
although there are still many details left to work out.

We can make the preceding constructions concrete by considering a specific application
in optimal control theory, that of sub-Riemannian geometry. The presentation we give, in
the smooth case, is shared with the presentation of sub-Riemannian geometry by Sussmann
[1998]. It is worth noting, however, that Sussmann’s approach does not immediately extend
to the real analytic case, as the topology on the space of real analytic vector fields is not
Fréchet.

Let us define the basic structure of sub-Riemannian geometry.

7.1 Definition: (Sub-Riemannian manifold) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-sub-Riemannian manifold is a
pair (M,G) where M is a Cr-manifold and G is a Cν-tensor field of type (2, 0) such that,
for each x ∈ M, G(x) is positive-semidefinite as a quadratic function on T∗

xM. •
Associated with a sub-Riemannian structure G on M is a distribution that we now

describe. First of all, we have a map G♯ : T∗M → TM defined by

⟨βx;G♯(αx)⟩ = G(βx, αx).
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We then denote by DG = image(G♯) the associated distribution. Note that DG is a distri-
bution of class Cν since, for each x ∈ M, there exist a neighbourhood U of x and a family of
Cν-vector fields (Xa)a∈A on U (namely the images under G♯ of the coordinate basis vector
fields, if we choose U to be a coordinate chart domain) such that

DG,y = DG ∩ TyM = spanR(Xa(y)| a ∈ A)

for every y ∈ U. There is also an associated sub-Riemannian metric for DG, i.e., an
assignment to each x ∈ M an inner product G(x) on DG,x. This is denoted also by G and
defined by

G(ux, vx) = G(αx, βx),

where ux = G♯(αx) and vx = G♯(βx), and where we joyously abuse notation.
An absolutely continuous curve γ : [a, b] → M is DG-admissible if γ′(t) ∈ DG,γ(t) for

almost every t ∈ [a, b]. The length of a DG-admissible curve γ : [a, b] → M is

ℓG(γ) =

∫ b

a

√
G(γ′(t), γ′(t)) dt.

As in Riemannian geometry, the length of a DG-admissible curve is independent of param-
eterisation, and so curves can be considered to be defined on [0, 1]. We can then define the
sub-Riemannian distance between x1, x2 ∈ M by

dG(x1, x2) = inf{ℓG(γ)| γ : [0, 1] → M is an absolutely

continuous curve for which γ(0) = x1 and γ(1) = x2}.

One of the problems of sub-Riemannian geometry is to determine length minimising
curves, i.e., sub-Riemannian geodesics.

A common means of converting sub-Riemannian geometry into a standard control prob-
lem is to choose a G-orthonormal basis (X1, . . . , Xk) for DG and so consider the control-affine
system with dynamics prescribed by

F (x,u) =

k∑
a=1

uaXa(x), x ∈ M, u ∈ Rk.

Upon doing this, DG-admissible curves are evidently trajectories for this control-affine sys-
tem. Moreover, for a trajectory ξ : [0, 1] → M satisfying

ξ′(t) =

k∑
a=1

ua(t)Xa(ξ(t)),

we have

ℓG(ξ) =

∫ 1

0
∥u(t)∥ dt.

The difficulty, of course, with the preceding approach to sub-Riemannian geometry is
that there may be no G-orthonormal basis for DG. This can be the case for at least two
reasons: (1) the distribution DG may not have locally constant rank; (2) when the distribu-
tion DG has locally constant rank, the global topology of M may prohibit the existence of a
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global basis, e.g., on even-dimensional spheres there is no global basis for vector fields, or-
thonormal or otherwise. However, one can formulate sub-Riemannian geometry in terms of
a tautological control system in a natural way. Indeed, associated to DG is the tautological
control system GG = (M,FG), where, for an open subset U ⊆ M,

FG(U) = {X ∈ Γν(TU) | X(x) ∈ DG,x, x ∈ U}.

One readily verifies that FG is a sheaf. Note that the sheaf FG is not globally generated; this
is because it is a sheaf, cf. Example 4.3–3. However, it can be regarded as the sheafification
of the globally generated sheaf with global generators FG(M).

7.2 Lemma: (The sheaf of vector fields for the sub-Riemannian tautological con-
trol problem) The sheaf FG is the sheafification of the globally generated presheaf with
generators FG(M).

Proof: This is a result about sheaf cohomology, and we will not give all details here. Instead
we will simply point to the main facts from which the conclusion follows. First of all, to
prove the assertion, it suffices by Lemma 4.6 to show that FG,x is generated, as a module over
the ring C ν

x,M, by germs of global sections. In the cases ν ∈ {m,m+ lip,∞}, the fact that
the sheaf of rings of smooth functions admits partitions of unity implies that the sheaf C ν

M

is a fine sheaf of rings [Wells Jr. 2008, Example 3.4(d)]. It then follows from [Wells Jr. 2008,
Example 3.4(e)] that the sheaf FG is also fine and so soft [Wells Jr. 2008, Proposition 3.5].
Because of this, the cohomology groups of positive degree for this sheaf vanish [Wells Jr.
2008, Proposition 3.11], and this ensures that germs of global sections generate all stalks
(more or less by definition of cohomology in degree 1). In the case ν = ω, the result is quite
nontrivial. First of all, by a real analytic adaptation of [Gunning 1990b, Corollary H9], one
can show that FG is locally finitely generated. Then, FG being a finitely generated subsheaf
of the coherent sheaf G ω

TM, it is itself coherent [Demailly 2012, Theorem 3.16]. Then, by
Cartan’s Theorem A [Cartan 1957], we conclude that FG,x is generated by germs of global
sections. ■

Let us next formulate the sub-Riemannian geodesic problem in the framework of tau-
tological control systems. First of all, it is convenient when performing computations to
work with energy rather than length as the quantity we are minimising. To this end, for
an absolutely continuous DG-admissible curve γ : [a, b] → M, we define the energy of this
curve to be

EG(γ) =
1

2

∫ b

a
G(γ′(t), γ′(t)) dt.

A standard argument shows that curves that minimise energy are in 1–1 correspondence
with curves that minimise length and are parameterised to have an appropriate constant
speed [Montgomery 2002, Proposition 1.4.3]. We can and do, therefore, consider the energy
minimisation problem. In terms of our general constructions above for optimal control in
the tautological control system setting, the Lagrangian for sub-Riemannian geometry will
be the family (ΛG,U)U open of mappings defined by

ΛG,U(X)(x) = 1
2G(X(x), X(x)).

The corresponding Hamiltonian will be the family of mappings (HG,U)U open defined by

HG,U(X)(αx) = ⟨αx;X(x)⟩+ λ0
1
2G(X(x), X(x)),
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where λ0 ∈ {0,−1}, with λ0 = 0 corresponding to so-called abnormal extremals. Let
us apply the classical Maximum Principle [Pontryagin, Boltyanskĭı, Gamkrelidze, and
Mishchenko 1961], leaving aside the technicalities caused by the complicated topology of
the control set. If we consider only normal extremals, i.e., supposing that λ0 = −1, then
the Maximum Principle prescribes that the reference flow giving an optimal trajectory will
necessarily be a bundle map X∗ : T

∗M → TM over idM chosen so that X∗(αx) maximises
the function

vx 7→ ⟨αx; vx⟩ − 1
2G(vx, vx).

Standard finite-dimensional optimisation gives X∗(x) = G♯(αx). The maximum Hamil-
tonian is then obtained by substituting this value of the “control” into the Hamiltonian:

Hmax
G (X∗) : T

∗M → R
αx 7→ 1

2G(αx, αx).

The normal extremals are then integral curves of the Hamiltonian vector field associated
with the Hamiltonian Hmax

G (X∗). At a superficial level and in the normal case, at least,
we thus see that the tautological control system formulation of sub-Riemannian geometry
gives the familiar extremals [Montgomery 2002, Theorem 1.5.7].

The preceding computations, having banished the usual parameterisation by control,
are quite elegant when compared to manner in which one applies the Maximum Principle
to the “usual” control formulation of sub-Riemannian geometry. The calculations are also
more general and global. However, to make sense of them, one has to prove an appropriate
version of the Maximum Principle, something which will be forthcoming. For the moment,
we mention that a significant rôle in this will be played by appropriate needle variations
constructed by dragging variations along a trajectory to the final endpoint. The manner in
which one drags these variations has to do with linearisation, as described in Section 7.1.

7.3. Controllability. In this section we will vaguely sketch some ideas that are beginning to
emerge regarding the study of controllability in the tautological control system framework.
Before we do this, let us give a brief critical overview of the state of the literature on the
controllability problem, referring to [Lewis 2012] for a more organised and extensive version
of this.

The controllability of nonlinear systems comprises a vast and difficult component of the
geometric control theory literature. A number of papers have been published addressing the
seemingly impenetrable nature of the problems of controllability [Agrachev 1999, Bianchini
and Kawski 2003, Kawski 1990a, Kawski 1990b, Kawski 2006, Sontag 1988]. Despite this,
there has been substantial effort dedicated to determining sufficient or necessary conditions
for controllability [Agrachev and Gamkrelidze 1993, Bacciotti and Stefani 1983, Bianchini
and Stefani 1984, Bianchini and Stefani 1986, Bianchini and Stefani 1993, Haynes and Her-
mes 1970, Hermes 1974, Hermes 1976a, Hermes 1976b, Hermes 1977, Hermes 1982, Hermes
and Kawski 1987, Kawski 1987, Kawski 1988, Kawski 1991, Kawski 1998, Kawski 1999,
Stefani 1986, Sussmann 1978, Sussmann 1983, Sussmann 1987, Sussmann and Jurdjevic
1972]. The problem of controllability has a certain lure that attracts researchers in geo-
metric control theory. The problem is such a natural one that it feels as if it should be
possible to obtain complete results, at least in some quite general situations. However, this
objective remains to be fulfilled.
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Our view is that one of the reasons for this is that many of the approaches to control-
lability are not feedback-invariant. An extreme example of this are methods for studying
controllability of control-affine systems, fixing a drift vector field f0 and control vector fields
f1, . . . , fm, and using these as generators of a free Lie algebra. In this sort of analysis, Lie
series are truncated, leading to the notion of “nilpotent approximation” of control systems.
These ideas are reflected in a great many of the papers cited above. The difficulty with this
approach is that it will behave very badly under feedback transformations, cf. Example 1.2.
This is discussed in [Lewis 2012].

One approach is then to attempt to find feedback-invariant conditions for local controlla-
bility. The first-order case is considered in [Aguilar 2010, Theorem 5.16]; see also [Bianchini
and Stefani 1984]. Second-order feedback-invariant conditions are considered in [Basto-
Gonccalves 1998, Hirschorn and Lewis 2002]. Any attempts to determine higher-order
feedback-invariant controllability conditions have, as far as we know, met with no success.
Indeed, the likelihood of this approach leading anywhere seems very small, given the ex-
tremely complicated manner in which feedback transformations interact with controllability
conditions.

Thus controllability theory would appear to be an area where the tautological control
system framework, with its “built-in” feedback-invariance, might be useful. In work with
the author’s Doctoral student, Saber Jafarpour, the Orbit Theorem of Stefan [1974] and
Sussmann [1973] is being adapted to tautological control systems. The results themselves
are not surprising. However, in carrying out this adaptation, two related observations have
surfaced.

1. For the purposes of defining reachable sets and orbits, and, therefore, for studying
controllability, the notion of an étalé trajectory as in Definition 6.9 is the correct notion
to use, rather than the more straightforward construction of Definition 5.14. This should
not be surprising, given Example 6.1.

2. That tautological control systems lead us naturally to étalé trajectories has a potentially
profound consequence. As is clear from the constructions of Sections 6.1 and 6.2, étalé
trajectories are intimately and nontrivially connected with, not sets of vector fields, but
sheaves of sets of vector fields, and all of the structure that this possesses and imposes,
especially concerning étalé spaces and stalk topologies. When considering flows, i.e., one-
parameter families of diffeomorphisms, this leads one naturally to pseudogroups and
groupoids. This idea is touched upon by Stefan [1974], but other than this is completely
unexplored in control theory.

Thus, while this work on controllability is in its formative stages, in these formative stages
are already seen new ideas for attacking important problems in control theory.

7.4. Feedback and stabilisation theory. There are, one could argue, three big fundamen-
tal problems in geometric control theory. Two, controllability and optimal control, are
discussed above, and moreover in the context of tautological control systems. The third
is stabilisation with which we have as yet done no work in the tautological control system
framework. The stabilisation problem, being one of enormous practical importance, has
been comprehensively studied, mainly from the point of view of Lyapunov theory, where
the notion of a “control-Lyapunov function” provides a useful device for characterising when
a system is stabilisable [Clarke, Ledyaev, Sontag, and Subotin 1997] and for stabilisation
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if one is known [Sontag 1989]. Our view is that Lyapunov characterisations for stabil-
isability are important from a practical point of view, but, from a fundamental point of
view, merely replace one impenetrable notion, “stabilisability,” with another, “existence of
a control-Lyapunov function.” This is expressed succinctly by Sontag.

In any case, all converse Lyapunov results are purely existential, and are of
no use in guiding the search for a Lyapunov function. The search for such
functions is more of an art than a science, and good physical insight into a
given system plus a good amount of trial and error is typically the only way to
proceed.—[Sontag 1998, page 259]

As Sontag goes on to explain, there are many heuristics for guessing control-Lyapunov func-
tions. However, this is unsatisfying if one is seeking a general understanding of the problem
of stabilisability, and not just a means of designing stabilising controllers for individual
systems or classes of systems.

It is also the case that there has been virtually no work on stabilisability from a geomet-
ric perspective. Topological characterisations of stabilisability such as those of [Brockett
1983] (refined in [Orsi, Praly, and Mareels 2003, Zabczyk 1989]) and [Coron 1990] are grat-
ifying when they are applicable, but they are far too coarse to provide anything even close
to a complete characterisation of the problem. Indeed, the extremely detailed and intricate
analysis of controllability, as reflected by the work we cite above, is simply not present
for stabilisability. It is fair to say that, outside the general control-Lyapunov function
framework, very little work has been done in terms of really understanding the structural
obstructions to stabilisability. Moreover, it is also fair to say that, again outside the general
control-Lyapunov function framework, almost none of the published literature on stabili-
sation and stabilisability passes the “acid test” for feedback-invariance that we discuss in
Section 1.1. For researchers such as ourselves interested in structure, this in an unsatisfying
state of affairs.

Our framework provides a natural means of addressing problems like this, just as with
controllability and optimal control, because of the feedback-invariance of the framework.
Indeed, upon reflection, one sees that the problem of stabilisability should have some rela-
tionships with that of controllability, although little work has been done along these lines
(but see the PhD thesis of Isaiah [2012]). This area of research is wide open [Lewis 2012].

7.5. The category of tautological control systems. In Section 5.6 we introduced mor-
phisms between tautological control systems with the objective of showing that our frame-
work is feedback-invariant. The notion of morphism we present is one that is natural and
possibly easy to work with. It would be, therefore, interesting to do all of the exercises
of category theory with the category of tautological control systems. That is, one would
like to study epimorphisms, monomorphisms, subobjects, quotient objects, products, co-
products, pull-backs, push-outs, and various functorial operations in this category. Many
of these may not be interesting or useful, or even exist. But probably some of it would be
of interest. For example, Tabuada and Pappas [2005] study quotients of control systems,
and Elkin [1999] studies various categorical constructions for control-affine systems.
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Gromov, M. [2007] Metric Structures for Riemannian and Non-Riemannian Spaces, edited
by J. LaFontaine and P. Pansu, translated by S. M. Bates, Modern Birkhäuser Classics,
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