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Abstract

The framework of tautological control systems is one where “control” in the usual
sense has been eliminated, with the intention of overcoming the issue of feedback-
invariance. Here, the linearisation of tautological control systems is described. This
linearisation retains the feedback-invariant character of the tautological control system
framework and so permits, for example, a well-defined notion of linearisation of a system
about an equilibrium point, something which has surprisingly been missing up to now.
The linearisations described are of systems, first, and then about reference trajectories
and reference flows.
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1. Introduction

In recent work, Lewis [2014] introduced the notion of a “tautological control system.”
This class of control systems is developed to provide a framework for geometric control
theory that is intrinsically feedback-invariant. As described at length in the introduction
of [Lewis 2014], feedback-invariance is highly problematic for the standard “ẋ = F (x, u)”
model in control theory. This is because, in such models, there is implicitly a fixed pa-
rameterisation of the control set and a fixed manner in which these controls appear in the
dynamical model F . To account for the fact that the control parameterisation and the
manner in which control appears in the equations may vary, while trajectories remain the
same, there has been an extensive study of “feedback transformations.” In the tautological
control system framework, Lewis [2014, Proposition 5.39] shows that feedback transfor-
mations are comprised merely of diffeomorphisms of the state manifold i.e., there are no
transformations involving the control set as are usually seen. This is a direct consequence
of the elimination of control, in the usual sense, from the framework. This accounts, in
part, for the use of the word “tautological” in the title for these systems.

To give a simple example of the sorts of problems that arise in the “ordinary” framework,
and that the tautological control system framework is intended to overcome, let us consider
the simple example of [Lewis 2014].
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2 A. D. Lewis

1.1 Example: (Linearisation is not well-defined) We consider two control-affine sys-
tems

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + x3(t)u1(t),

ẋ3(t) = u2(t),

with (x1, x2, x3) ∈ R3 and (u1, u2) ∈ R2. One can readily verify that these two sys-
tems have the same trajectories in the sense that the set of curves in the state space
that arise from solving the two differential equations are the same (this corresponds to
part (iii) of Definition 3.9). If we linearise these two systems about the equilibrium
point at (0, 0, 0)—in the usual sense of taking Jacobians with respect to state and con-
trol [Isidori 1995, page 172], [Khalil 2001, §12.2], [Nijmeijer and van der Schaft 1990,
Proposition 3.3], [Sastry 1999, page 236], and [Sontag 1998, Definition 2.7.14]—then we
get the two linear systems

A1 =

0 1 0
0 0 0
0 0 0

 , B1 =

0 0
0 0
0 1

 , A2 =

0 1 0
0 0 1
0 0 0

 , B2 =

0 0
0 0
0 1

 ,

respectively. The linearisation on the left is not controllable, while that on the right is.
The example suggests that (1) classical linearisation is not independent of parameteri-

sation of controls and/or (2) the classical notion of linear controllability is not independent
of parameterisation of controls. In Section 4 we shall see that both things, in fact, are
true: neither classical linearisation nor the classical linear controllability test are feedback-
invariant. This may come as a surprise to some. •

This example is, by explicit design, very simple. A consequence of this is that an
astute reader will note that by linearising the uncontrollable system about the control (1, 0)
rather than (0, 0), one will obtain a controllable linearisation in both cases. This, however,
is a kludge that leaves unanswered the question, “How should one define the notions of
linearisation and linear controllability in such a way that any conclusions one draws from
them are feedback-invariant?” The correct way to understand the example is to imagine
giving the two different systems to two different people, telling neither that they are related,
and then asking them to “linearise about the equilibrium point and determine whether the
linearisation is controllable.” They will assuredly come back with different conclusions, and
it will be a rare occurrence (in the author’s experience) that anyone will notice the potential
ambiguity in this process.

It is also worth drawing attention to the fact that, while this paper focusses on linearisa-
tion, the lack of feedback-invariance arises in many other places in control theory. A survey
of this with respect to (nonlinear) controllability and stabilisability is given by Lewis [Lewis
2012]. For our purposes here, suffice it to say that, once one is attuned to look for it, the
problem of lack of feedback-invariance can be found in many areas of geometric control
theory and manifested in a variety of ways.

While the tautological control system framework does address problems such as this,
it does so at a cost: the theory is difficult to understand at a first glance, and it requires
discipline not to fall back to the comforting world of “ordinary” control systems. The
difficulty in the theory is that it relies in an unavoidable way on characterisations of time-
varying vector fields using locally convex topologies for spaces of vector fields described
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by Jafarpour and Lewis [2014, Chapter 6]. Moreover, precious little guidance is provided
by Lewis [2014] on how to work with tautological control systems; the emphasis in this
original paper is to establish foundations. In this paper, therefore, we illustrate how one
should work within the framework of tautological control system, while establishing a useful
theory of linearisation for these systems. In subsequent papers we shall explore further how
one works effectively in the world of tautological control systems.

Before we begin, it is worth pointing out that, apart from the problem revealed in
Example 1.1, there are other difficulties with the very idea of classical Jacobian linearisation
to which blind eyes seem to be routinely turned in practice. First of all, for models of the
form “F (x, u),” one must assume that differentiation with respect to u can be done. For
models of this sort, there is no reason to assume the control set to be a subset of Rm, and so
one runs into a problem right away. Even so, if one restricts to control-affine systems, where
the notion of differentiation with respect to u seems not to be problematic, one must ignore
the fact that the control set is generally not an open set—indeed, for control-affine systems
there is no reason to have the control set be anything but an arbitrary subset of Rm—and
so these derivatives are not so easily made sense of. Therefore, even for the typical models
one studies in control theory, there are good reasons to revisit the notion of linearisation.

The reader may be dismayed to learn that their nice simple theory of linearisation has
now been replaced by a complicated mathematical construction requiring many pages to
explain, and in a framework that takes many more pages to explain. A reader may well
steadfastly use these facts to simply disregard the theory of linearisation presented here
and the corresponding theory of tautological control systems. And it is very likely that,
upon making this decision, such a reader will not regret it. However, in defence of the
paper and of the theory of tautological control systems, it should be pointed out that there
is some intellectual negligence in doing this, for Example 1.1 clearly points out a defect
in things we understand (and teach!1) about linearisation. It is our view that, until such
defects are handled in a systematic way, it seems very unlikely that we will understand the
very difficult fundamental structural problems of geometric control theory, problems such
as controllability, stabilisability, and optimality.

We point out that geometric linearisation of control-affine systems, and a Linear
Quadratic Regulator theory in this framework, has been carried out by Lewis and Tyner
[2010]. But even the geometric approach in that work is refined and clarified by what we
present here.

1.1. Outline of paper. Let us outline the contents of the paper.
As mentioned above, the framework of tautological control systems relies inextricably

on locally convex topologies for spaces of vector fields. In Section 2 we review the theory
for these as developed by Jafarpour and Lewis [2014]. One of the powerful facets of the
theory of tautological control systems as expounded by Lewis [2014] is that it handles all
common regularity classes—Lipschitz, finitely differentiable, smooth, and real analytic—in
a unified manner. While these topologies are more or less well understood in the smooth and
finitely differentiable case (and this understanding is fairly easily extended to the Lipschitz
case, although this is rarely done), the description of the real analytic topology given by

1Note that this statement does not imply that the author advocates teaching undergraduates the theory
of tautological control systems!
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Jafarpour and Lewis [2014] is novel, and allows for the first time an understandable way
of handling real analytic systems as easily as smooth systems. In Section 2.3 we describe
the families of time-varying vector fields that are the backbone of the theory of tautological
control systems, in that they permit the notion of trajectories. In Section 2.4 we introduce
a class of “ordinary” control systems that will serve to provide a concrete reference point
for tautological control system constructions as we go along.

In Section 3 we quickly go over the notation and definitions of [Lewis 2014] regarding
tautological control systems. The presentation here is very sketchy indeed, and reader
wishing for more context will want to review the material in [Lewis 2014].

In Section 4 we present our theory of linearisation. We develop linearisations of systems,
as well as linearisation about trajectories and reference flows. We also give the special case of
linearisation about equilibria, and with this we see how to rectify and explain the difficulties
encountered in Example 1.1.

1.2. Notation. We shall use the slightly unconventional, but perfectly rational, notation
of writing A ⊆ B to denote set inclusion, and when we write A ⊂ B we mean that A ⊆ B
and A ̸= B. By idA we denote the identity map on a set A. By Z we denote the set of
integers, with Z≥0 denoting the set of nonnegative integers and Z>0 denoting the set of
positive integers. We denote by R the set of real numbers. By R≥0 we denote the set of
nonnegative real numbers and by R>0 the set of positive real numbers.

For a topological space X and A ⊆ X, int(A) denotes the interior of A and cl(A) denotes
the closure of A. Neighbourhoods will always be open sets.

Elements of Rn are typically denoted with a bold font, e.g., “x.” Similarly, matrices
are written using a bold font, e.g., “A.”

If V is a R-vector space and if A ⊆ V, we denote by conv(A) the convex hull of A, by
which we mean the set of all convex combinations of elements of A.

By λ we denote Lebesgue measure. If I ⊆ R is an interval and if A ⊆ R, by L1(I;A)
we denote the set of Lebesgue integrable A-valued functions on I. By L1

loc(I;A) we denote
the A-valued locally integrable functions on I, i.e., those functions whose restrictions to
compact subintervals are integrable. In like manner, we denote by L∞(I;A) and L∞

loc(I;A)
the essentially bounded A-valued functions and the locally essentially bounded A-valued
functions, respectively.

For an interval I and a topological space X, a curve γ : I → X is measurable if γ−1(B)
is Lebesgue measurable for every Borel set B ⊆ X. By L∞(I;X) we denote the measurable
curves γ : I → X for which there exists a compact set K ⊆ X with

λ({t ∈ I | γ(t) ̸∈ K}) = 0,

i.e., L∞(I;X) is the set of essentially bounded curves. By L∞
loc(I;X) we denote the

locally essentially bounded curves, meaning those measurable curves whose restrictions
to compact subintervals are essentially bounded.

Our differential geometric conventions mostly follow [Abraham, Marsden, and Ratiu
1988]. Whenever we write “manifold,” we mean “second-countable Hausdorff manifold.”
This implies, in particular, that manifolds are assumed to be metrisable [Abraham, Mars-
den, and Ratiu 1988, Corollary 5.5.13]. If we use the letter “n” without mentioning what
it is, it is the dimension of the connected component of the manifold M with which we are
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working at that time. The tangent bundle of a manifold M is denoted by πTM : TM → M
and the cotangent bundle by πT∗M : T∗M → M. The derivative of a differentiable map
Φ: M → N is denoted by TΦ: TM → TN, with TxΦ = TΦ|TxM. If I ⊆ R is an interval
and if ξ : I → M is a curve that is differentiable at t ∈ I, we denote the tangent vector
field to the curve at t by ξ′(t) = Ttξ(1). The flow of a vector field X is denoted by ΦX

t ,
so t 7→ ΦX

t (x) is the integral curve of X passing through x at t = 0. We shall also use
time-varying vector fields, but will develop the notation for the flows of these in the text.

We will work in both the smooth and real analytic categories. We will also work with
finitely differentiable objects, i.e., objects of class Cr for r ∈ Z≥0. (We will also work with
Lipschitz objects, but will develop the notation for these in the text.) An analytic manifold
or mapping will be said to be of class Cω. Let r ∈ Z≥0 ∪ {∞, ω}. The set of sections of
a vector bundle π : E → M of class Cr is denoted by Γr(E). Thus, in particular, Γr(TM)
denotes the set of vector fields of class Cr. We shall think of Γr(E) as a R-vector space with
the natural pointwise addition and scalar multiplication operations.

We shall make reference to elementary ideas from sheaf theory. It will not be necessary
to understand this theory deeply, at least not in the present paper. A nice introduction to
the use of sheaves in smooth differential geometry can be found in the book of Ramanan
[2005]. More advanced and comprehensive treatments include [Bredon 1997, Kashiwara and
Schapira 1990], and the classic [Godement 1958]. The discussion of sheaf theory in (Stacks
2013) is also useful.

We shall make use of locally convex topological vector spaces, and refer to [Rudin 1991]
as a gentle introduction and to, e.g., [Jarchow 1981, Schaefer and Wolff 1999] for more
advanced material. We denote by L(U;V) the set of continuous linear maps from U to V.

Acknowledgements. This research was funded in part by a grant from the Natural Sciences
and Engineering Research Council of Canada. The author was a Visiting Professor in
the Department of Mathematics at University of Hawaii, Manoa, when the paper was
written, and would like to acknowledge the hospitality of the department, particularly that
of Monique Chyba and George Wilkens.

2. Topologies for spaces of vector fields, time-varying vector fields, and
“ordinary” control systems

In this section we review the definitions of the topologies we use for spaces of Lips-
chitz, finitely differentiable, smooth, and real analytic vector fields. We comment that all
topologies we define are locally convex topologies, of which the normed topologies are a
special case. However, few of the topologies we define, and none of the interesting ones,
are normable. So a reader who is not familiar with locally convex topologies will have to
do some reading; we recommend [Rudin 1991] as a nice introduction. In Section 2.3 we
overview classes of time-varying vector fields following [Jafarpour and Lewis 2014], since
these are an essential part of the theory of tautological control systems. In Section 2.4 we re-
call topological characterisations of “ordinary” control systems from [Jafarpour and Lewis
2016], as these provide for a useful point of departure for many notions for tautological
control systems.
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2.1. Fibre norms for jet bundles. The classes of vector fields we consider are all char-
acterised by their derivatives in some manner. The appropriate device for considering
derivatives of vector fields is the theory of jet bundles, for which we refer to [Saunders
1989] and [Kolář, Michor, and Slovák 1993, §12]. Local coordinate descriptions of these
topologies are possible, [e.g., Hirsch 1976] for the smooth and finitely differentiable cases,
but we prefer coordinate-free descriptions. The cost for this is the machinery presented in
this and the next section. By JmTM we denote the vector bundle of m-jets of vector fields,
with πTM,m : JmTM → M denoting the projection. If X is a smooth vector field, we denote
by jmX the corresponding smooth section of JmTM.

Sections of JmTM should be thought of as vector fields along with their first m deriva-
tives. In a local trivialisation of TM, one has the local representatives of the derivatives,
order-by-order. Such an order-by-order decomposition of derivatives is not possible glob-
ally, however. Nonetheless, following [Jafarpour and Lewis 2014, §2.1], we shall mimic this
order-by-order decomposition globally using an affine connection∇ onM; we refer to [Kolář,
Michor, and Slovák 1993, §11, §17] or [Kobayashi and Nomizu 1963] for background on
connections. Let Tm(T∗M) denote the m-fold tensor product of T∗M and let S(T∗M) denote
the symmetric tensor bundle. First note that ∇ defines a connection on T∗M by duality.
Then ∇ defines a connection ∇m on Tm(T∗M) ⊗ TM by asking that the Leibniz Rule be
satisfied for the tensor product. Then, for a smooth vector field X, we denote

∇(m)X = ∇m · · · ∇1∇X,

which is a smooth section of Tm+1(T∗M ⊗ TM). By convention we take ∇0X = ∇X and
∇(−1)X = X. (The funny numbering makes this agree with the constructions of Jafarpour
and Lewis [2014].)

We then have a map

Sm
∇ : JmTM → ⊕m

j=0(S
j(T∗M)⊗ TM)

jmX(x) 7→ (X(x), Sym1⊗ idTM(∇X)(x), . . . , Symm⊗ idTM(∇(m−1)X)(x)),
(2.1)

which can be verified to be an isomorphism of vector bundles [Jafarpour and Lewis 2014,
Lemma 2.1]. Here Symm : Tm(V) → Sm(V) is defined by

Symm(v1 ⊗ · · · ⊗ vm) =
1

m!

∑
σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m).

Now we note that inner products on the components of a tensor product induce in a
natural way inner products on the tensor product [Jafarpour and Lewis 2014, Lemma 2.3].
Thus, if we suppose that we have a Riemannian metric G on M, there is induced a natural
fibre metric Gm on Tm(T∗M) ⊗ TM for each m ∈ Z≥0. We then define a fibre metric Gm

on JmTM by

Gm(jmX(x), jmY (x))

=

m∑
j=0

Gj

( 1

j!
Symj ⊗ idTM(∇(j−1)X)(x),

1

j!
Symj ⊗ idTM(∇(j−1)Y )(x)

)
.

(The factorials are required to make things work out with the real analytic topology.) The
corresponding fibre norm we denote by ∥·∥Gm

.
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2.2. Seminorms for spaces of vector fields. We shall describe topologies for spaces of
smooth, finitely differentiable, Lipschitz, and real analytic vector fields by prescribing semi-
norms on these spaces, using the fibre norms from the preceding section. We shall not give
any discussion of the nature of these topologies, although such considerations can, at times,
be extremely important. Instead, we refer the reader to [Jafarpour and Lewis 2014].

For studying topologies on the space of real analytic vector fields, we work with a real
analytic manifold M. For spaces of smooth, finitely differentiable, or Lipschitz vector fields,
we suppose thatM is smooth. In the real analytic case, we assume that the affine connection
∇ and the Riemannian metric G from the preceding section are real analytic. This is
essential for the topology we define to make sense, and can always be done [Jafarpour and
Lewis 2014, Lemma 2.4]. When we define seminorms for spaces of Lipschitz vector fields, we
need to assume for the definitions to work that ∇ is the Levi-Civita connection associated
with G [Jafarpour and Lewis 2014, §3.5].

To define our seminorms, we shall need some notation. We let c↓0(Z≥0;R>0) denote the
space of nonincreasing sequences in R>0, indexed by Z≥0, and converging to zero. We shall
denote a typical element of c↓0(Z≥0;R>0) by a = (aj)j∈Z≥0

. For m ∈ Z≥0, by Γm+lip(TM)
we denote the set of vector fields that are m-times continuously differentiable and whose
m-jet is Lipschitz continuous. (One can think of this in coordinates, but Jafarpour and
Lewis [2014] provide geometric definitions, if the reader is interested.) If a vector field X is
of class Cm+lip, then, by Rademacher’s Theorem [Federer 1969, Theorem 3.1.6], its (m+1)st
derivative exists almost everywhere. Thus we define

dil jmX(x) = inf{sup{∥∇[m]
vy jmX∥Gm

| y ∈ cl(U), ∥vy∥G = 1,

jmX differentiable at y}| U is a relatively compact neighbourhood of x},

which is the local sectional dilatation of X. Here ∇[m] is the connection in JmTM
induced by ∇ using the decomposition (2.1).

We may now define seminorms for our various classes of vector fields that define a
locally convex topology in each case. We shall consider regularity ν ∈ {m,m + lip,∞, ω}
for m ∈ Z≥0.

1. ν = ∞: We define the family of seminorms p∞K,m, K ⊆ M compact, m ∈ Z≥0, by

p∞K,m(X) = sup{∥jmX(x)∥Gm
| x ∈ K}.

2. ν = m: We define the family of seminorms pmK , K ⊆ M compact, by

pmK(X) = sup{∥jmX(x)∥Gm
| x ∈ K}.

3. ν = m+ lip: First, for K ⊆ M compact, we define

λm
K(X) = sup{dil jmX(x) | x ∈ K}.

Then we define the family of seminorms pm+lip
K , K ⊆ M compact, by

pm+lip
K (X) = max{λm

K(X), pmK(X)}.

4. ν = ω: We define the family of seminorms pωK,a, K ⊆ M compact, a ∈ c↓0(Z≥0;R>0),
by

pωK,a(X) = sup{a0a1 · · · am∥jmX(x)∥Gm
| x ∈ K, m ∈ Z≥0}.
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We call these topologies the Cν-topologies, and refer to [Jafarpour and Lewis 2014] for
discussion. Here we merely permit ourselves to say that it is the definition of the seminorms
above for the Cω-topology that make it possible to present the comprehensive theory that
we give here. Without these useable seminorms, the theory would be much less satisfac-
tory, probably not even worth presenting. However, because of the availability of these
seminorms, what we can give is a unified presentation of a methodology across a wide class
of regularity assumptions.

The degrees of regularity are ordered according to

C0 ⊃ Clip ⊃ C1 ⊃ · · · ⊃ Cm ⊃ Cm+lip ⊃ Cm+1 ⊃ · · · ⊃ C∞ ⊃ Cω.

Where possible, we will state definitions and results for all regularity classes at once. To
do this, we will let m ∈ Z≥0 and m′ ∈ {0, lip}, and consider the regularity classes ν ∈
{m+m′,∞, ω}. In such cases we shall require that the underlying manifold be of class “Cr,
r ∈ {∞, ω}, as required.” This has the obvious meaning, namely that we consider class Cω

if ν = ω and class C∞ otherwise. Proofs will typically break into the four cases ν = ∞,
ν = m, ν = m + lip, and ν = ω. In some cases there is a structural similarity in the way
arguments are carried out, so we will sometimes do all cases at once. In doing this, we will,
for K ⊆ M be compact, for k ∈ Z≥0, and for a ∈ c↓0(Z≥0;R>0), denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pm+lip
K , ν = m+ lip,

pωK,a, ν = ω.

(2.2)

The convenience and brevity more than make up for the slight loss of preciseness in this
approach.

2.3. Time-varying vector fields. The work of Jafarpour and Lewis [Jafarpour and Lewis
2014] is concerned with time-varying vector fields with measurable time dependence. In that
work, a comprehensive and consistent theory for such vector fields, with varying regularity
in state, is developed. The basic idea of the approach we give here is not new, and is also
used by Agrachev and Gamkrelidze [Agrachev and Gamkrelidze 1978] in their presentation
of “chronological calculus.” A recent and nice exposition of this work, at least in the smooth
case, can be found in the book [Agrachev and Sachkov 2004]. The essential idea is that one
thinks of a time-varying vector field, not as a joint function of state and time, but as a vector
field-valued function of time. In this case, it becomes important to provide properties of this
vector field-valued function, typical properties being things like continuity, measurability,
and integrability. The characterisations of these attributes rely essentially on a topology for
the spaces of vector fields used, but this has been taken care of by virtue of the presentation
in Section 2.2.

Thus, for m ∈ Z≥0, m
′ ∈ {0, lip}, for ν ∈ {m +m′,∞, ω}, and for an interval T ⊆ R,

characterisations are given for classes of time-varying vector fields denoted by LIΓν(T;TM).
There are two equivalent ways to present these classes of vector fields: (1) by directly
prescribing the joint pointwise conditions on state and time in each regularity class; (2) using
the Cν-topologies. The former is probably the most understandable, but takes a few pages to
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write down. The latter is slick and elegant, but gives the impression of being too abstract to
check. To save space, we shall give the topological characterisations and refer to [Jafarpour
and Lewis 2014, Chapter 6] for the concrete descriptions, and the quite nontrivial proofs of
the equivalence of the two descriptions.

The topological characterisation relies on notions of measurability, integrability, and
boundedness in the locally convex spaces Γν(TM). Let us review this quickly for an arbitrary
locally convex space V, referring to references for details.

1. A function γ : T → V is measurable if γ−1(B) is Lebesgue measurable for every Borel
set B ⊆ V.

2. It is possible to describe a notion of integral, called theBochner integral , for a function
γ : T → V that closely resembles the usual construction of the Lebesgue integral. We
refer to [Jafarpour and Lewis 2014] for a sketch of the construction, and to the references
cited there for details; the note of Beckmann and Deitmar [2011] is particularly useful.
A curve γ : T → V is Bochner integrable if its Bochner integral exists and is locally
Bochner integrable if the Bochner integral of γ|T′ exists for any compact subinterval
T′ ⊆ T.

3. Finally, a subset B ⊆ V is bounded if p|B is bounded any continuous seminorm p on V.
A curve γ : T → V is essentially von Neumann bounded if there exists a bounded
set B such that

λ({t ∈ T | γ(t) ̸∈ B}) = 0,

and is locally essentially von Neumann bounded if γ|T′ is essentially von Neumann
bounded for every compact subinterval T′ ⊆ T.
The following test for Bochner integrability and essential boundedness is one we shall

use.

2.1 Lemma: (Test for Bochner integrability and von Neumann boundedness) Let
m ∈ Z≥0, let m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. For
a manifold M of class Cr, an interval T ⊆ R, and a curve γ : T → Γν(TM), the following
two statements are equivalent:

(i) γ is locally Bochner integrable;

(ii) for each of the seminorms pK from (2.2), defined according to ν, there exists g ∈
L1
loc(T;R≥0) such that pK ◦ γ(t) ≤ g(t) for every t ∈ T,

and the following two statements are equivalent:

(iii) γ is locally essentially von Neumann bounded;

(iv) for each of the seminorms pK from (2.2), defined according to ν, there exists g ∈
L∞
loc(T;R≥0) such that pK ◦ γ(t) ≤ g(t) for every t ∈ T.

Proof: As indicated in [Jafarpour and Lewis 2014, Chapter 6], Γν(TM) is complete and
separable for all ν ∈ {m+m′,∞, ω}. By Theorems 3.1 and 3.2 of Beckmann and Deitmar
[2011], we conclude that γ is locally Bochner integrable if and only if p◦γ is locally integrable
for every continuous seminorm p for Γν(TM). Since the seminorms from (2.2) define the
locally convex topology of Γν(TM), it suffices to check local integrability of pK ◦ γ. This
proves the equivalence of the first two statements.

The equivalence of the second two statements follows from the definition of boundedness
in a locally convex space. ■
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With these notions, we can now define our classes of vector fields.

2.2 Definition: (Classes of time-varying vector fields) Let m ∈ Z≥0, let m
′ ∈ {0, lip},

let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. For a manifold M of class Cr and
an interval T ⊆ R, let X : T × M → TM satisfy X(t, x) ∈ TxM for each (t, x) ∈ T × M.
Denote by Xt, t ∈ T, the map x 7→ X(t, x) and suppose that Xt ∈ Γν(TM) for every t ∈ T.
Then X is:

(i) a Carathéodory vector field of class Cν if the curve T ∋ t 7→ Xt ∈ Γν(TM) is
measurable;

(ii) locally integrally Cν-bounded if the curve T ∋ t 7→ Xt ∈ Γν(TM) is locally Bochner
integrable;

(iii) locally essentially Cν-bounded if the curve T ∋ t 7→ Xt ∈ Γν(TM) is locally
essentially von Neumann bounded.

We denote:

(iv) the set of Carathéodory vector fields of class Cν by CFΓν(T;TM).

(v) the set of locally integrally Cν-bounded vector fields by LIΓν(T;TM).

(vi) the set of locally essentially Cν-bounded vector fields by LBΓν(T;TM). •
The classes of time-varying vector fields defined above have many excellent properties.

Perhaps the most compelling of these is that the dependence of the flows of these vector
fields on initial condition has regularity that matches ν. Let us be a little precise about
this. We let ν ≥ lip. The flow ΦX of X ∈ LIΓν(T;TM) is defined on an open subset DX of
the set T ×T ×M of final times, initial times, and initial states. For (t, t0, x0) ∈ DX there
exists a neighbourhood U of x0 such that the map

U ∋ x 7→ ΦX(t, t0, x) ∈ M

is a Cν-local diffeomorphism [Jafarpour and Lewis 2014]. The real analytic version of this
result requires a deep understanding of the Cω-topology.

2.4. Control systems. In this section we shall present a class of control systems of the
“ordinary” sort. These systems, while of a standard form, are defined in such a way that
the appropriate topology for the space of vector fields is carefully accounted for. The basic
idea of the approach mirrors that of Section 2.3 for time-varying vector fields. Thus we
consider a control system to be, not a joint function of state and control, but rather a
vector field-valued function of control. As with time-varying vector fields, the topology on
the space of vector fields is essential. This approach is explained in detail in [Jafarpour
and Lewis 2016], so here we shall give an abbreviated presentation. We begin by describing
“parameterised vector fields,” then we turn to control systems.

We consider a parameter space P, which is a topological space, and a mapping X : M×
P → TM having the property X(x, p) ∈ TxM for every (x, p) ∈ M × P. We denote by
Xp the map x 7→ X(x, p), which is thus a vector field depending on the parameter p. We
wish to give joint conditions on X so that the regularity is respected, not just for fixed
p, but as p varies. As with time-varying vector fields, there are two ways to approach
this: (1) by considering joint pointwise conditions on state and parameter; (2) by using the
Cν-topologies. As with time-varying vector fields, we choose the latter route since it saves
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space. We refer to [Jafarpour and Lewis 2016, §4] for the pointwise conditions and for the
proofs of the equivalence of the two characterisations.

Unlike we saw for time-dependence, the situation for parameterised vector fields only
relates to continuity, so requires no initial buildup.

2.3 Definition: (Classes of parameterised vector fields) Let m ∈ Z≥0, let m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. For a manifold M of
class Cr and a topological space P, let X : M × P → TM satisfy X(x, p) ∈ TxM for each
(x, p) ∈ M × P. Denote by Xx, x ∈ M, the map p 7→ X(x, p) and by Xp, p ∈ P, the map
x 7→ X(x, p). Then X is a:

(i) separately parameterised vector field of class Cν if Xx is continuous for every
x ∈ M and if Xp is of class Cν for every p ∈ P;

(ii) jointly parameterised vector field of class Cν if it is a separately parameterised
vector field of class Cν and if the map P ∋ p 7→ Xp ∈ Γν(TM) is continuous.

We denote the set of jointly parameterised vector fields of class Cν by JPΓν(P;TM). •
With these notions of parameterised sections, we readily define what we mean by a

control system.

2.4 Definition: (Control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω},
and let r ∈ {∞, ω}, as required. A Cν-control system is a triple Σ = (M, F,C), where

(i) M is a Cr-manifold whose elements are called states,

(ii) C is a topological space called the control set , and

(iii) F ∈ JPΓν(C;TM). •
A special class of control systems is given in the next definition.

2.5 Definition: (Sublinear control system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. A Cν-sublinear control system is a
triple Σ = (M, F,C), where

(i) M is a Cr-manifold whose elements are called states,

(ii) C is a subset of a locally convex topological vector space V, C being called the control
set , and

(iii) F has the following property: for every continuous seminorm p for Γν(TM), there
exists a continuous seminorm q for V such that

p(F u1 − F u2) ≤ q(u1 − u2), u1, u2 ∈ C. •

Note that, by Definition 2.3, the sublinearity condition (iii) implies that a Cν-sublinear
control system is a Cν-control system. A special sort of sublinear control system arises if
there exists a continuous linear map Λ ∈ L(V; Γν(TM)) for which F (x, u) = Λ(u)(x). Such
systems are called control-linear , and include control-affine systems as a special case.

The governing equations for a control system are

ξ′(t) = F (ξ(t), µ(t)),

for suitable functions t 7→ µ(t) ∈ C and t 7→ ξ(t) ∈ M. Of course, for these equations to
be sensible, it should be the case that, upon substitution of a locally essentially bounded
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control, or a locally integrable control for sublinear systems, the resulting time-varying
vector field is of the sort that possesses solutions. These matters are addressed by Jafarpour
and Lewis [2016], where it is further shown that the flows of such time-varying vector
fields depend on initial conditions in a manner consistent with the regularity of the control
system, cf. the final paragraph of Section 2.3.

3. A review of tautological control systems

In this section we overview the theory of tautological control systems as introduced by
Lewis [2014]. The theory is designed to deal with, among other things, the problem of
feedback-invariance such as enunciated in Example 1.1. This is carried out by two main
devices. The first is the replacement of the control set with an arbitrary family of vector
fields, which becomes a topological space by virtue of the constructions of Section 2.2.
This idea is not new, e.g., [Sussmann 1998], but we are able to extend it to new directions
by virtue of our understanding of the real analytic topology. The second main feature
of the approach of tautological control systems is the prescription of data locally, rather
than globally, by virtue of presheaves and sheaves of sets of vector fields. This device
allows for great generality in the sorts of things that are included as “control systems,” and
also provides a mechanism for systematically handling local constructions that abound in
control theory, constructions such as linearisation (dealt with here) and local controllability,
stabilisability, and optimality. Readers new to this approach can expect to take some time
to understand the ideas behind the theory, and we hope that reading [Lewis 2014] is useful
in this regard.

3.1. Presheaves and sheaves of sets of vector fields. One of the features of the tauto-
logical control system formulation is that it makes use of presheaves and sheaves of sets of
vector fields in an essential manner. The motivation for this is explained by Lewis [2014],
and we particularly refer to the formulation of the sub-Riemannian geodesic problem in
that work as an illustration of the utility of the presheaf and sheaf formalism.

In any case, in this section we quickly review the essential material, which means that
we merely give the definitions. A reader unfamiliar with these notions will want to look at
the examples in [Lewis 2014].

3.1 Definition: (Presheaf of sets of vector fields) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr. A
presheaf of Cν-vector fields is an assignment to each open set U ⊆ M a subset F (U)
of Γν(TU) with the property that, for open sets U,V ⊆ M with V ⊆ U, the map

rU,V : F (U) → Γν(TV)

X 7→ X|V

takes values in F (V). Elements of F (U) are called local sections of F over U. •
The notion of a presheaf is natural, but the more restrictive notion of a sheaf is also

sometimes useful, even in control theory.



Linearisation of tautological control systems 13

3.2 Definition: (Sheaf of sets of vector fields) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let
ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr.
A presheaf F of sets of Cν-vector fields is a sheaf of sets of Cν-vector fields if, for
every open set U ⊆ M, for every open cover (Ua)a∈A of U, and for every choice of local
sections Xa ∈ F (Ua) satisfying Xa|Ua ∩ Ub = Xb|Ua ∩ Ub, there exists X ∈ F (U) such
that X|Ua = Xa for every a ∈ A. •

An important sort of presheaf is as illustrated by the following example.

3.3 Example: (Globally generated presheaf) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈
{m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a manifold of class Cr. If
X ⊆ Γν(TM) is any family of vector fields on M, then we can define an associated presheaf
FX of sets of vector fields by

FX (U) = {X|U | X ∈ X }.

Note that F (M) is necessarily equal to X , and so we shall typically use F (M) to denote
the set of globally defined vector fields giving rise to this presheaf. A presheaf of this sort
will be called globally generated . As shown in [Lewis 2014], globally generated presheaves
are seldom sheaves. •

There is a process by which one naturally converts a presheaf into a sheaf. To make the
construction, for a presheaf F of sets of vector fields, we denote by Fx the stalk at x, i.e., the
set of germs of vector fields from F . For a local section X defined in a neighbourhood of x,
we denote by [X]x the germ of X at x. With this notation, we have the following definition.

3.4 Definition: (Sheafification of a presheaf of sets of vector fields) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a
Cr-manifold and let F be a presheaf of sets of Cν-vector fields. The sheafification of F
is the sheaf Sh(F ) of sets of vector fields defined by

Sh(F )(U) = {X ∈ Γν(TU) | [X]x ∈ Fx for all x ∈ U}. •

The verification that Sh(F ) is a sheaf is straightforward, and is given by Lewis [2014,
Lemma 4.6].

3.2. Tautological control systems. Equipped with the notion of a presheaf, it is easy to
say what we mean by a tautological control system.

3.5 Definition: (Tautological control system and related notions) Let m ∈ Z≥0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required.
(i) A Cν-tautological control system is a pair G = (M,F ) where M is a manifold

of class Cr whose elements are called states and where F is a presheaf of sets of
Cν-vector fields on M.

(ii) A tautological control system G = (M,F ) is complete if F is a sheaf and is globally
generated if F is globally generated.

(iii) The completion of G = (M,F ) is the tautological control system Sh(G) =
(M, Sh(F )). •
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Given a control system Σ = (M, F,C), there is a naturally associated tautological control
system GΣ = (M,FΣ) defined by taking

FΣ(U) = {F u|U | u ∈ C}.

The presheaf FΣ is obviously globally generated, and so generally is not a sheaf. It can,
however, be sheafified if one wishes.

3.3. Open-loop systems, open-loop subfamilies, trajectories. In order to define the no-
tion of a trajectory for a tautological control system, there is a little buildup required. First
we provide the tautological control system analogue of “plugging in control as a function
of time” in the standard framework for control theory.

3.6 Definition: (Open-loop system) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system. An open-loop system for G is a triple Gol = (X,T,U) where

(i) T ⊆ R is an interval called the time-domain ;

(ii) U ⊆ M is open;

(iii) X ∈ LIΓν(T;F (U)). •
For a control system Σ = (M, F,C), there is a natural sort of open-loop system that

arises by choosing an open-loop control µ ∈ L∞
loc(T;C) (or µ ∈ L1

loc(T;C) for sublinear
control systems). This is the open-loop system GΣ,µ = (Fµ,T,M) for GΣ defined by

Fµ(t)(x) = F (x, µ(t)), t ∈ T, x ∈ M.

It is shown in Propositions 6 and 7 of [Jafarpour and Lewis 2016] that Fµ is in
LBΓν(T;F (U)) for control systems and in LIΓν(T;F (U)) for sublinear control systems.

In “ordinary” control theory, one often wishes to restrict the class of controls from
L∞
loc(T;C) or L1

loc(T;C) (when this latter is defined) to a class with particular proper-
ties, e.g., piecewise constant. The following notion mimics this for tautological control
systems.

3.7 Definition: (Open-loop subfamily) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system. An open-loop subfamily for G is an assignment, to each interval T ⊆ R and each
open set U ⊆ M, a subset OG(T,U) ⊆ LIΓν(T;F (U)) with the property that, if (T1,U1)
and (T2,U2) are such that T1 ⊆ T2 and U1 ⊆ U2, then

{X|T1 × U1 | X ∈ OG(T2,U2)} ⊆ OG(T1,U1). •

Here are some examples of open-loop subfamilies, the last of which we shall need for
our theory of linearisation.

3.8 Examples: (Open-loop subfamilies) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system.
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1. The full subfamily for G is the open-loop subfamily OG,full defined by

OG,full(T,U) = LIΓν(T;F (U)).

Thus the full subfamily contains all possible open-loop systems. Of course, every open-
loop subfamily will be contained in this one.

2. The locally essentially bounded subfamily for G is the open-loop subfamily OG,∞
defined by asking that

OG,∞(T,U) = {X ∈ OG,full(T,U) | X ∈ LBΓν(T;TU)}.

Thus, for the locally essentially bounded subfamily, we require that the condition of
being locally integrally Cν-bounded be replaced with the stronger condition of being
locally essentially Cν-bounded.

3. The locally essentially compact subfamily for G is the open-loop subfamily OG,cpt

defined by asking that

OG,cpt(T,U) = {X ∈ OG,full(T,U)| for every compact subinterval T′ ⊆ T
there exists a compact K ⊆ Γν(T;TU)

such that X(t) ⊆ K for almost every t ∈ T′}.

Thus, for the locally essentially compact subfamily, we require that the condition of
being locally essentially bounded in the von Neumann bornology (that defines the locally
essentially bounded subfamily) be replaced with being locally essentially bounded in the
compact bornology.2

We comment that in cases when the compact and von Neumann bornologies agree, then
of course we have OG,∞ = OG,cpt. As pointed out by Jafarpour and Lewis [2014], this is
the case when ν ∈ {∞, ω}.

4. We can associate an open-loop subfamily to an open-loop system as follows. Let m ∈
Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
G = (M,F ) be a Cν-tautological control system, let OG be an open-loop subfamily for
G, let T be a time-domain, let U ⊆ M be open, and let X ∈ OG(T,U). We denote by
OG,X the open-loop subfamily defined as follows. If T′ ⊆ T and U′ ⊆ U, then we let

OG,X(T′,U′) = {X ′ ∈ OG(T′,U′) | X ′ = X|T′ × U′}.

If T′ ̸⊆ T and/or U′ ̸⊆ U, then we take OG,X = ∅. Thus OG,X is comprised of those
vector fields from OG that are merely restrictions of X to smaller domains. •

3.4. Trajectories. The preceding constructions allow one to define trajectories in a fairly
straightforward manner. As in standard control theory, one should think of a trajectory
as being an integral curve of some vector field arising after the substitution of control as a
function of time.

2We shall not make essential use of bornologies in this paper. However, they are useful for understanding
certain facets of the general theory, and we refer to [Lewis 2014] for discussion.
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3.9 Definition: (Trajectory for tautological control system) Let m ∈ Z≥0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a
Cν-tautological control system and let OG be an open-loop subfamily for G.

(i) For a time-domain T, an open set U ⊆ M, and for X ∈ OG(T,U), an (X,T,U)-
trajectory for OG is a curve ξ : T → U such that ξ′(t) = X(t, ξ(t)).

(ii) For a time-domain T and an open set U ⊆ M, a (T,U)-trajectory for OG is a curve
ξ : T → U such that ξ′(t) = X(t, ξ(t)) for some X ∈ OG(T,U).

(iii) A trajectory for OG is a curve that is a (T,U)-trajectory for OG for some time-domain
T and some open set U ⊆ M.

We denote by:

(iv) Traj(X,T;U) the set of (X,T,U)-trajectories for OG;

(v) Traj(T,U,OG) the set of (T,U)-trajectories for OG;

(vi) Traj(OG) the set of trajectories for OG.

We shall abbreviate Traj(T,U,OG,full) = Traj(T,U,G) and Traj(G) = Traj(OG,full). •
Note that if we have a control system Σ = (M, F,C) with an open-loop control µ giving

rise to the tautological control system GΣ and an open-loop system GΣ,µ, then trajectories
are exactly curves ξ satisfying the open-loop control equations

ξ′(t) = F (ξ(t), µ(t)),

as expected. However, this does not mean that, in this case, the trajectories of Σ and GΣ

agree. This issue is discussed in detail in [Lewis 2014, §5.5], and we summarise these results
in Section 3.5 below.

Given a trajectory, there is a naturally associated open-loop subfamily of which we shall
make use.

3.10 Example: (The open-loop subfamily defined by a trajectory) Let m ∈ Z≥0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system, let OG be an open-loop subfamily for G, and let ξ ∈
Traj(T,U,OG). We denote by OG,ξ the open-loop subfamily defined as follows. If T′ ⊆ T
and U′ ⊆ U are such that ξ(T′) ⊆ U′, then we let

OG,ξ(T
′,U′) = {X ∈ OG(T′,U′) | ξ′(t) = X(t, ξ(t)), a.e. t ∈ T′}.

If T′ ̸⊆ T or U′ ̸⊆ U, or if T′ ⊆ T and U′ ⊆ U but ξ(T′) ̸⊆ U′, then we take OG,ξ = ∅. Thus
OG,ξ is comprised of those vector fields from OG possessing ξ (restricted to the appropriate
subinterval) as an integral curve. •

3.5. Tautological control systems and control systems. As part of our development
above of tautological control systems, we indicated the natural way in which control systems
give rise to tautological control systems. It turns out that one can also regard a globally
generated tautological control system as an “ordinary” control system. Let us describe how
to do this. Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as
required. To a globally generated Cν -tautological control system G = (M,F ), we associate
a Cν-control system ΣG = (M, FF ,CF ) by asking that CF = F (M) and FF (x,X) = X(x).
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Since, in the notation of Definition 2.3, FX = X, it follows that ΣG is indeed a Cν-
control system as per Definition 2.4. Note that we now can make sense of the symbols
ΣGΣ

and GΣG
, i.e., we can go back and forth between control systems and tautological

control systems. Exactly the extent to which this returns you to where you started is
stated in [Lewis 2014, Proposition 5.4]. In [Lewis 2014, §5.5] some theorems are provided
which record the correspondence of trajectories for a control system and its corresponding
tautological control system. We summarise these results as follows.

1. If Σ = (M, F,C) is a Cν-control system and if F is injective and open onto its image,
then Σ = ΣGΣ

.

2. If G = (M,F ) is a globally generated tautological control system, then G = GΣG
.

3. If Σ = (M, F,C) is a Cν-control system and if F is injective and proper, then
Traj(T,U,OGΣ,cpt) = Traj(T,U,Σ).

4. If Σ = (M, F,C) is a Cν-control system, if C is a Suslin topological space,3 and if F
is proper, then Traj(T,U,OGΣ,∞) = Traj(T,U,Σ). In particular, if C is compact, then
Traj(T,U,OGΣ,∞) = Traj(T,U,Σ).

5. If Σ = (M, F,C) is a Cν-control-linear system, then Traj(T,U,Σ) = Traj(T,U,OGΣ,full).
In particular, if Σ is a control-affine system, then Traj(T,U,Σ) ⊆ Traj(T,U,OGΣ,full).

6. For a globally generated tautological control system G = (M,G), Traj(T,U,OG,full) =
Traj(T,U,ΣG).

4. Linearisation of tautological control systems

As an illustration of the fact that it is possible to do non-elementary things in the
framework of tautological control systems, we present a fully developed theory for the
linearisation of these systems. This theory is both satisfying and revealing. It is satisfying
because it is very simple (if one knows a little tangent bundle geometry) and it is revealing
because, for example, it clarifies and rectifies the hiccup with classical linearisation theory
that was revealed in Example 1.1. It is, however, not trivial (as it shall occupy us for the
remainder of the paper) and it does lead to results that make us uncomfortable (e.g., the
linearisation of a time-invariant system about an equilibrium point may be time-varying).
Our opinion is that this is a price one pays for a feedback-invariant theory; the decision on
whether to pay this price is one that must be made by the reader.

In this section we work with systems of general regularity, only requiring that they be
at least once differentiable so that we can easily define their linearisations. For dealing with
Lipschitz systems, we will use the following result.

4.1 Lemma: (C(m+lip)−1 = C(m−1)+lip) For a smooth manifold M and for m ∈ Z>0, if
X ∈ Γm+lip(TM), then j1X ∈ Γ(m−1)+lip(J1TM). Moreover, dil jm−1(j1X)(x) = dil jmX(x)
for every x ∈ M.

Proof: We need to show that jm−1(j1X) is locally Lipschitz. This, however, is clear since
jm−1j1X is the image of jmX under the injection of JmTM in Jm−1J1TM [Saunders 1989,
Definition 6.2.25], and since jmX is Lipschitz by hypothesis.

3Recall that this means that C is the continuous image of a complete, separable, metric space.
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The last formula in the statement of the lemma requires us to make sense of
dil jm−1(j1X). This is made sense of using the fact that, by (2.1), one has J1TM ≃
T∗M ⊗ TM, and so the Riemannian metric G on M and its Levi-Civita connection induce
a fibre metric and linear connection in the vector bundle J1TM as in Sections 2.1 and 2.2
of [Jafarpour and Lewis 2014]. Now let us examine the inclusion of JmTM in Jm−1J1TM to
verify the final assertion of the lemma. We use (2.1) to write

JmTM ≃ ⊕m
j=0S

j(T∗M)⊗ TM.

In this case, and using the generalisation of the isomorphism (2.1) for vector bundles as
in [Jafarpour and Lewis 2014, Lemma 2.1], the inclusion of JmTM in J1Jm−1TM becomes
identified with the natural inclusions

Sj(T∗M)⊗ TM → Sj−1(T∗M)⊗ T∗M⊗ TM, j ∈ {0, 1, . . . ,m− 1},

given by

α1 ⊙ · · · ⊙ αj ⊗ v 7→
j∑

k=1

α1 ⊙ · · · ⊙ αk−1 ⊙ αk+1 ⊙ · · · ⊙ αj ⊗ αk ⊗ v.

The fibre metric on Sj(T∗M) is the restriction of that on Tj(T∗M). Thus the preceding
inclusion preserves the fibre metrics since these are defined componentwise on the tensor
product. Similarly, since the connection in the symmetric and tensor products is defined
so as to satisfy the Leibniz rule for the tensor product, the injection above commutes with
parallel translation. It now follows from the characterisation of dilatation given in [Jafarpour
and Lewis 2014, Lemma 3.12] that the final formula in the statement of the lemma holds.■

4.1. Tangent bundle geometry. To make the constructions in this section, we recall a
little tangent bundle geometry. Throughout this section, we let m ∈ Z>0, m

′ ∈ {0, lip},
and let ν ∈ {m + m′,∞, ω}. We take r ∈ {∞, ω}, as required. The meaning of “ν − 1”
is obvious for all ν. But, to be clear, ∞ − 1 = ∞, ω − 1 = ω, and, given Lemma 4.1,
(m+ lip)− 1 = (m− 1) + lip.

Let X ∈ Γν(TM). We will lift X to a vector field on TM in two ways. The first is the
vertical lift, and is described first by a vector bundle map vlft : π∗

TMTM → TTM as follows.
Let x ∈ M and let vx, wx ∈ TxM. The vertical lift of ux to vx is given by

vlft(vx, ux) =
d

dt

∣∣∣∣
t=0

(vx + tux).

Now, if X ∈ Γν(TM), we define XV ∈ Γν(TTM) by XV (vx) = vlft(vx, X(x)). In coordinates
(x1, . . . , xn) for M with ((x1, . . . , xn), (v1, . . . , vn)) the associated natural coordinates for
TM, if X = Xj ∂

∂xj , then XV = Xj ∂
∂vj

. The vertical lift is a very simple vector field. It is
tangent to the fibres of TM, and is in fact constant on each fibre.

The other lift of X ∈ Γν(TM) that we shall use is the tangent lift4 which is the vector

field XT on TM of class Cν−1 whose flow is given by ΦXT

t (vx) = TxΦ
X
t (vx). Therefore,

4This is also frequently called the complete lift . However, “tangent lift” so much better captures the
essence of the construction, that we prefer our terminology. Also, the dual of the tangent lift is used in the
Maximum Principle, and this is then conveniently called the “cotangent lift.”
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explicitly,

XT (vx) =
d

dt

∣∣∣∣
t=0

TxΦ
X
t (vx).

In coordinates as above, if X = Xj ∂
∂xj , then

XT = Xj ∂

∂xj
+

∂Xj

∂xk
vk

∂

∂vj
. (4.1)

One recognises the “linearisation” of X in this expression, but one should understand that
the second term in this coordinate expression typically has no meaning by itself. The flow
for XT is related to that for X according to the following commutative diagram:

TM
ΦXT

t //

πTM

��

TM

πTM

��
M

ΦX
t

// M

(4.2)

Thus XT projects to X in the sense that TvxπTM(XT (vx)) = X(x). Moreover, XT is a
“linear” vector field (as befits its appearance in “linearisation” below), which means that
the diagram

TM
XT
//

πTM

��

TTM

TπTM
��

M
X
// TM

(4.3)

defines XT as a vector bundle map over X.
We will be interested in the flow of the tangent lift in the time-varying case, and the

next lemma indicates how this works.

4.2 Lemma: (Tangent lift for time-varying vector fields) Let m ∈ Z>0 and m′ ∈
{0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold
and let T ⊆ R be a time-domain. For X ∈ LIΓν(T;TM) define XT : T × TM → TTM by
XT (t, vx) = (X(t))T (vx). Then

(i) XT ∈ LIΓν−1(T;TTM),

(ii) if (t, t0, x0) ∈ DX , then (t, t0, vx0) ∈ DXT for every vx0 ∈ Tx0M, and

(iii) XT (t, vx) =
d
dτ

∣∣
τ=0

TxΦ
X
t+τ,t(vx).

Proof: (i) Since differentiation with respect to x preserves measurability in t,5 and since
the coordinate expression for XT involves differentiating the coordinate expression for X,
we conclude that XT is a Carathéodory vector field. To show that XT ∈ LIΓν−1(T;TTM)
requires, according to our definitions of Section 2.3, an affine connection on TM and a
Riemannian metric on TM. We suppose, of course, that we have an affine connection ∇
and a Riemannian metric G on M. For simplicity of some of the computations below,

5Derivatives are limits of sequences of difference quotients, each of which is measurable, and limits of
sequences of measurable functions are measurable [Cohn 2013, Proposition 2.1.5].
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and without loss of generality, we shall suppose that ∇ is torsion-free. In case r = ω,
we suppose these are real analytic, according to [Jafarpour and Lewis 2014, Lemma 2.4].
In case ν = m + lip for some m ∈ Z>0, we assume that ∇ is the Levi-Civita connection
associated with G.

Let us first describe the Riemannian metric on TM we shall use. The affine connection
∇ gives a splitting TTM ≃ π∗

TMTM ⊕ π∗
TMTM [Kolář, Michor, and Slovák 1993, §11.11].

We adopt the convention that the second component of this decomposition is the vertical
component so TvxπTM restricted to the first component is an isomorphism onto TxM, i.e., the
first component is “horizontal.” If X ∈ Γν(TM) we denote by XH ∈ Γν(TTM) the unique
horizontal vector field for which TvxπTM(XH(vx)) = X(x) for every vxx ∈ TM, i.e., XH is
the “horizontal lift” of X. Let us denote by hor, ver : TTM → π∗

TMTM the projections onto
the first and second components of the direct sum decomposition. This then immediately
gives a Riemannian metric GT on TM by

GT (Xvx , Yvx) = G(hor(Xvx), hor(Yvx)) +G(ver(Xvx), ver(Yvx)).

This is called the Sasaki metric [Sasaki 1958] in the case that ∇ is the Levi-Civita
connection associated with G.

Now let us determine how an affine connection on TM can be constructed from ∇.
There are a number of ways to lift an affine connection from M to one on TM, many of
these being described by Yano and Ishihara [1973]. We shall use the so-called “tangent lift”
of ∇, which is the unique affine connection ∇T on TM satisfying ∇T

XT Y
T = (∇XY )T for

X,Y ∈ Γν(TM) [Yano and Kobayashi 1966, §7], [Yano and Ishihara 1973, page 30].
We have the following sublemma.

1 Sublemma: If X ∈ Γν(TM), if vx ∈ TM, if k ∈ Z≥0 satisfies k ≤ ν, if X1, . . . , Xk ∈
Γ∞(TM), and if Za ∈ {XT

a , X
V
a }, a ∈ {1, . . . , k}, then the following formula holds:

(∇T )(k−1)XT (Z1, . . . , Zk) =

{
(∇(k)X(X1, . . . , Xk))

V , Za vertical for some a ∈ {1, . . . , k},
(∇(k−1)X(X1, . . . , Xk))

T , otherwise.

Proof: By [Yano and Kobayashi 1966, Proposition 7.2], we have

∇TXT (XT
1 ) = (∇X(X1))

T , ∇TXT (XV
1 ) = (∇X(X1))

V ,

giving the result when k = 0. Suppose the result is true for k ∈ Z≥0, and let Za ∈
{XT

a , X
V
a }, a ∈ {1, . . . , k + 1}. First suppose that Zk+1 = XT

k+1(vx). We then compute,
using the fact that covariant differentiation commutes with contraction [Dodson and Poston
1991, Theorem 7.03(F)],

(∇T )(k)XT (Z1, . . . , Zk, Zk+1) = ∇T
XT

k+1
((∇T )(k−1)XT )(Z1, . . . , Zk)

−
k∑

j=1

(∇T )(k−1)XT (Z1, . . . ,∇T
XT

k+1
Zj , . . . , Zk). (4.4)

We now consider two cases.
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1. None of Z1, . . . , Zk are vertical: In this case, by the induction hypothesis,

((∇T )(k−1)XT )(Z1, . . . , Zk) = (∇(k−1)X)(U1, . . . , Uk))
T ,

and [Yano and Kobayashi 1966, Proposition 7.2] gives

∇T
XT

k+1
((∇T )(k−1)XT )(Z1, . . . , Zk) = (∇Xk+1

(∇(k−1)X)(U1, . . . , Uk))
T .

Again using [Yano and Kobayashi 1966, Proposition 7.2] and also using the induction
hypothesis, we have, for j ∈ {1, . . . , k},

(∇T )(k−1)XT (Z1, . . . ,∇T
XT

k+1
Zj , . . . , Zk) = (∇(k−1)X(U1, . . . ,∇Xk+1

Uj , . . . , Uk))
T .

Combining the preceding two formulae with (4.4) gives the desired conclusion for k+ 1
in this case.

2. At least one of Z1, . . . , Zk is vertical: In this case, we have

((∇T )(k−1)XT )(Z1, . . . , Zk) = (∇(k−1)X)(U1, . . . , Uk))
V

by the induction hypothesis. Applications of [Yano and Kobayashi 1966, Proposition 7.2]
and the induction hypothesis give the formulae

∇T
XT

k+1
((∇T )(k−1)XT )(Z1, . . . , Zk) = (∇Xk+1

(∇(k−1)X)(U1, . . . , Uk))
V .

and, for j ∈ {1, . . . , k},

(∇T )(k−1)XT (Z1, . . . ,∇T
XT

k+1
Zj , . . . , Zk) = (∇(k−1)X(U1, . . . ,∇Xk+1

Uj , . . . , Uk))
V .

Combining the preceding two formulae with (4.4) again gives the desired conclusion for
k + 1 in this case.

If we take Zk+1 = XV
k+1, an entirely similar argument gives the result for this case for

k + 1, and so completes the proof of the sublemma. ▼

To complete the proof of the lemma, let us for the moment simply regard X as a
vector field of class Cν , not depending on time. We will make use of the fact that, for every
vx ∈ TM, TvxTM is spanned by vector fields of the formXT

1 +Y V
1 since vertical lifts obviously

span the vertical space and since tangent lifts of nonzero vector fields are complementary to
the vertical space. Therefore, for a fixed vx, we can choose X1, . . . , Xn, Y1, . . . , Yn ∈ Γ∞(M)
so that (XT

1 (vx), . . . , X
T
n (vx)) and (Y V

1 (vx), . . . , Y
V
n (vx)) comprise GT -orthonormal bases

for the horizontal and vertical subspaces, respectively, of TvxTM. Note that these vector
fields depend on vx, but for the moment we will fix vx. We use the following formula given
by Barbero-Liñán and Lewis [2012, Lemma 4.5] for any vector field W of class Cν on M:

W T (vx) = WH(vx) + vlft(vx,∇vxW (x)), (4.5)

keeping in mind that we are supposing ∇ to be torsion-free.
By the sublemma, if Za = XT

ja
, a ∈ {1, . . . , k}, then we have

(∇T )(k−1)XT (vx)(Z1(vx), . . . , Zk(vx)) = (∇(k−1)X(x)(Xj1(x), . . . , Xjk(x)))
H

+ vlft(vx,∇vx(∇(k−1)X(Xj1 , . . . , Xjk))(x)), (4.6)
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using (4.5) with W = ∇(k−1)X(Xj1 , . . . , Xjk). Again using (4.5), now with W = Xja , we
have

XT
ja(vx) = XH

ja (vx) + vlft(vx,∇vxXja(x)).

Since XT
ja

was specified so that it is horizontal at vx, its vertical part must be zero, whence
∇vxXja(x) = 0. Therefore, expanding the second term on the right in (4.6), we get

(∇T )(k−1)XT (vx)(Z1(vx), . . . , Zk(vx)) = (∇(k−1)X(x)(Xj1(x), . . . , Xjk(x)))
H

+ vlft(vx,∇(k)X(x)(Xj1(x), . . . , Xjk(x), vx)). (4.7)

Symmetrising this formula with respect to {1, . . . , k} gives

P k
∇T (X

T )(vx)(Z1(vx), . . . , Zk(vx)) = (P k
∇(X)(x)(Xj1(x), . . . , Xjk(x)))

H

+ vlft
(
vx,∇k

vxP
k
∇(X)(x)(Xj1 , . . . , Xjk)

)
, (4.8)

where P k
∇(X) = Symk ⊗ idTM(∇(k−1)X). Now consider Za ∈ {XT

ja
, Y V

ja
}, a ∈ {1, . . . , k},

and suppose that at least one of these vector fields is vertical. Then, by the sublemma, we
immediately have the equality

P k
∇T (X

T )(vx)(Z1(vx), . . . , Zk(vx)) = (P k
∇(Xj1(x), . . . , Xjk(x)))

V , (4.9)

where X̂j1 , . . . , X̂jk are chosen from X1, . . . , Xn and Y1, . . . , Yn, corresponding to the way
that Z1, . . . , Zk are defined.

Now let us use these formulae in the various regularity classes to obtain the lemma.
ν = ∞: Let K ⊆ TM be compact and let m ∈ Z≥0. For the moment, suppose that X

is time-independent. Combining (4.8) and (4.9), and noting that they hold as we evaluate
Pm
∇T (X

T )(vx) on a GT -orthonormal basis for TvxTM, we obtain the estimate

∥Pm
∇T (X

T )(vx)∥GT
m
≤ C(∥Pm

∇ (X)(x)∥Gm + ∥Pm+1
∇ (X)(x)∥Gm+1

∥vx∥G), vx ∈ K,

for some C ∈ R>0. Now, if we make use of the fibre norms induced on jet bundles as in
Section 2.1, we have

∥jmXT (vx)∥GT
m
≤ C(∥jmX(x)∥Gm

+ ∥jm+1X(x)∥Gm+1
∥vx∥G), vx ∈ K,

for some possibly different C ∈ R>0. Since vx 7→ ∥vx∥G is bounded on K, the previous
estimate gives

∥jmXT
t (vx)∥GT

m
≤ C∥jm+1Xt(x)∥Gm+1

, vx ∈ K, t ∈ T, (4.10)

for some appropriate C ∈ R>0.
Now we consider time-dependence, supposing that X ∈ LIΓ∞(T;TM). Then there

exists f ∈ L1
loc(T;R≥0) such that

∥jm+1Xt(x)∥Gm+1
≤ f(t), x ∈ K, t ∈ T.

We then immediately have

∥jmXT
t (vx)∥GT

m
≤ Cf(t), x ∈ K, t ∈ T,
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showing that XT ∈ LIΓ∞(T;TTM), as desired.
ν = m: This case follows directly from the computations in the smooth case.
ν = m+lip: Here we take m = 1 as the general situation follows by combining this with

the previous case. We consider X to be time-independent for the moment. We let K ⊆ TM
be compact. We have

dilXT (vx) = inf{sup{∥∇T
Yvy

XT ∥GT | vy ∈ cl(W), ∥Yvy∥GT = 1, XT differentiable at vy}|

W is a relatively compact neighbourhood of vx}.

Now we make use of (2.1), (4.10), and the fact that K is compact, to reduce this to an
estimate

dilXT (vx) ≤ C inf{sup{∥j2X(y)∥G1
| y ∈ cl(U), j1X differentiable at y}|

U a relatively compact neighbourhood of x}

for some C ∈ R>0 and for every x ∈ K. This then gives dilXT (vx) ≤ Cdil j1X(x) for
x ∈ K. From this we obtain the estimate

λlip
K (XT ) ≤ Cp1+lip

πTM(K)(X).

From the proof above in the smooth case, we have

p0K(XT ) ≤ C ′p1πTM(K)(X).

Combining these previous two estimates gives

plipK (XT ) ≤ Cp1+lip
πTM(K)(X)

for some C ∈ R>0, and from this, this part of the result follows easily after adding the
appropriate time-dependence.

ν = ω: For the moment, we take X to be time-independent. The following sublemma
will allow us to estimate the last term in (4.8).

2 Sublemma: Let M be a real analytic manifold, let ∇ be a real analytic affine connection
on M, let G be a real analytic Riemannian metric on M, and let K ⊆ M be compact. Then
there exist C, σ ∈ R>0 such that

∥∇kP k
∇(X)(x)∥Gk+1

≤ 2∥jk+1X(x)∥Gk+1

for every x ∈ K and k ∈ Z≥0.

Proof: We use (2.1) to represent elements of JkTM. Following [Kolář, Michor, and Slovák
1993, §17.1], we think of a connection ∇̃k on JkTM as being defined by a vector bundle
mapping

JkTM
S̃k //

��

J1JkTM

��
M // M
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The connection ∇[k], thought of in this way and using the decomposition of (2.1), gives
the associated vector bundle mapping as zero. Now, with our identifications, we see that
P k
∇(X) = jkX−jk−1X, noting that Jk−1TM is a subbundle of JkTM with our identification.

Therefore, by definition of ∇[k],

∇k(P k
∇(X)) = ∇[k](jkX − jk−1X) = j1(jkX − jk−1X).

As we pointed out in the proof of Lemma 4.1 above, the inclusion of Jk+1TM in J1JkTM
preserves the fibre metric. Therefore,

∥∇k(P k
∇(X))(x)∥Gk

≤ ∥jk+1X(x)∥Gk+1
+ ∥jkX(x)∥Gk

≤ 2∥jk+1X(x)∥Gk+1
,

as desired. ▼

Let K ⊆ TM be compact and let a ∈ c↓0(Z≥0;R>0). As in the smooth case, but now
using the preceding sublemma, we obtain an estimate

∥jmXT (vx)∥GT
m
≤ C∥jm+1X(x)∥Gm+1

, x ∈ K, m ∈ Z≥0,

for some suitable C ∈ R>0.
Now, taking X ∈ LIΓω(T;TM), there exists f ∈ L1

loc(T;R≥0) such that

a′0a
′
1 · · · a′m+1∥jm+1Xt(x)∥Gm+1

≤ f(t), x ∈ K, t ∈ T, m ∈ Z≥0,

where a′j+1 = aj , j ∈ {1, . . . ,m}, and a′0 = C. We then immediately have

a0a1 · · · am∥jmXT
t (vx)∥GT

m
≤ f(t), x ∈ K, t ∈ T, m ∈ Z≥0,

showing that XT ∈ LIΓω(T;TTM), as desired.
(iii) We now prove the third assertion. It is local, so we work in a chart. Thus we

assume that we are working in an open subset U ⊆ Rn. We let X : T × U → Rn be the
principal part of the vector field so that a trajectory for X is a curve ξ : T → U satisfying

d

dt
ξ(t) = X(t, ξ(t)), a.e. t ∈ T.

The solution with initial condition x0 and t0 we denote by t 7→ ΦX(t, t0,x0). For
fixed (t0,x0) ∈ T × U and for t sufficiently close to t0, let us define a linear map
Ψ(t) ∈ HomR(R

n;Rn) by

Ψ(t) ·w = D3Φ
X(t, t0,x0) ·w.

We have
d

dt
ΦX(t, t0,x0) = X(t,ΦX(t, t0,x0)), a.e. t,

for t sufficiently close to t0. Therefore,

d

dt
D3Φ

X(t, t0,x0) = D3(
d
dtΦ

X(t, t0,x0))

= D2X(t,ΦX(t, t0,x0)) ·D3Φ
X(t, t0,x0).
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In the preceding expression, we have used [Schuricht and von der Mosel 2000, Corollary 2.2]
to swap the time and spatial derivatives. This shows that t 7→ Ψ(t) satisfies the initial value
problem

d

dt
Ψ(t) = D2X(t,ΦX(t, t0,x0)) ·Ψ(t), Ψ(t0) = In.

By [Sontag 1998, Proposition C.3.8], t 7→ Ψ(t) can be defined for all t such that (t, t0,x0) ∈
DX . Moreover, for v0 ∈ Rn (which we think of as being the tangent space at x0), the curve
t 7→ v(t) ≜ Ψ(t) · v0 satisfies

d

dt
v(t) = D2X(t,ΦX(t, t0,x0)) · v(t).

Returning now to geometric notation, the preceding chart computations, after sifting
through the notation, show that

ΦXT
(t, t0, vx0) = TxΦ

X(t, t0, x0)(vx0),

and differentiation with respect to t at t0 gives this part of the lemma.
(ii) This was proved along the way to proving (iii). ■

We will also use some features of the geometry of the double tangent bundle, i.e., TTM.
This is an example of what is known as a “double vector bundle,” and we refer to [Mackenzie
2005, Chapter 9] as a comprehensive reference. A review of the structure we describe here
can be found [Barbero-Liñán and Lewis 2012], along with an interesting application of this
structure. We begin by noting that the double tangent bundle possesses two natural vector
bundle structures over πTM : TM → M:

TTM
πTTM //

TπTM
��

TM

πTM

��
TM πTM

// M

TTM
TπTM //

πTTM

��

TM

πTM

��
TM πTM

// M

The left vector bundle structure is called the primary vector bundle and the right the
secondary vector bundle . We shall denote vector addition in the vector bundles as
follows. If u, v ∈ TTM satisfy πTTM(u) = πTTM(v), then the sum of u and v in the primary
vector bundle is denoted by u +1 v. If u, v ∈ TTM satisfy TπTM(u) = TπTM(v), then the
sum of u and v in the secondary vector bundle is denoted by u+2 v.

The two vector bundle structures admit a naturally defined isomorphism between them,
described as follows. Let ρ be a smooth map from a neighbourhood of (0, 0) ∈ R2 to M.
We shall use coordinates (s, t) for R2. For fixed s and t define ρs(t) = ρt(s) = ρ(s, t). We
then denote

∂

∂t
ρ(s, t) =

d

dt
ρs(t) ∈ Tρ(s,t)M,

∂

∂s
ρ(s, t) =

d

ds
ρt(s) ∈ Tρ(s,t)M.

Note that s 7→ ∂
∂tρ(s, t) is a curve in TM for fixed t. The tangent vector field to this curve

we denote by

s 7→ ∂

∂s

∂

∂t
ρ(s, t) ∈ T ∂

∂t
ρ(s,t)TM.
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We belabour the development of the notation somewhat since these partial derivatives are
not the usual partial derivatives from calculus, although the notation might make one think
they are. For example, we do not generally have equality of mixed partials, i.e., generally
we have

∂

∂s

∂

∂t
ρ(s, t) ̸= ∂

∂t

∂

∂s
ρ(s, t).

Now let ρ1 and ρ2 be smooth maps from a neighbourhood of (0, 0) ∈ R2 to M. We say
two such maps are equivalent if

∂

∂s

∂

∂t
ρ1(0, 0) =

∂

∂s

∂

∂t
ρ2(0, 0).

To the equivalence classes of this equivalence relation, we associate points in TTM by

[ρ] 7→ ∂

∂s

∂

∂t
ρ(0, 0).

The set of equivalence classes is easily seen to be exactly the double tangent bundle TTM.
We easily verify that

πTTM([ρ]) =
∂

∂t
ρ(0, 0), TπTM([ρ]) =

∂

∂s
ρ(0, 0). (4.11)

Next, using the preceding representation of points in TTM, we relate the two vector
bundle structures for TTM by defining a canonical involution of TTM. If ρ is a smooth map
from a neighbourhood of (0, 0) ∈ R2 into M , define another such map by ρ̄(s, t) = ρ(t, s).
We then define the canonical tangent bundle involution as the map IM : TTM → TTM
given by IM([ρ]) = [ρ̄]. Clearly IM ◦ IM = idTTM. In a natural coordinate chart for TTM
associated to a natural coordinate chart for TM, the local representative of IM is

((x,v), (u,w)) 7→ ((x,u), (v,w)).

One readily verifies that IM is a vector bundle isomorphism from TTM with the primary
(resp. secondary) vector bundle structure to TTM with the secondary (resp. primary) vector
bundle structure [Barbero-Liñán and Lewis 2012, Lemma A.4].

The following technical lemma is Lemma A.5 from [Barbero-Liñán and Lewis 2012].

4.3 Lemma: (A property of vertical lifts) If w ∈ TTM satisfies πTTM(w) = v and
TπTM = u and if z ∈ TxM, then

w +2 IM ◦ vlft(u, z) = w +1 vlft(v, z).

The final piece of tangent bundle geometry we will consider concerns presheaves and
sheaves of sets of vector fields on tangent bundles. We shall need the following natural
notion of such a presheaf.

4.4 Definition: (Projectable presheaf) Let m ∈ Z≥0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold and let G be a presheaf
of sets of vector fields of class Cν on TM. The presheaf G is projectable if

G (W) = {Z|W | Z ∈ G (π−1
TM(πTM(W)))}. •

The idea is that a projectable sheaf is determined by the local sections over the open
sets π−1

TM(U) for U ⊆ M open.
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4.2. Linearisation of systems. Throughout this section, unless stated otherwise, we let
m ∈ Z>0, m

′ ∈ {0, lip}, and let ν ∈ {m+m′,∞, ω}. We take r ∈ {∞, ω}, as required.
When linearising, one typically does so about a trajectory. We will do this also. But

before we do so, let us provide the notion of the linearisation of a system. The result,
gratifyingly, is a system on the tangent bundle. Before we produce the definition, let us
make a motivating computation. We let G = (M,F ) be a globally generated tautologi-
cal control system of class Cν . As in Section 3.5, we have the corresponding Cν-control
system ΣG = (M, FF ,CF ) with CF = F (M) and FF (x,X) = X(x). This is a control
system whose control set is a vector space, and so is a candidate for classical Jacobian
linearisation, provided one is prepared to overlook technicalities of differentiation in locally
convex spaces. . . and we are for the purposes of this motivational computation. In Jaco-
bian linearisation one considers perturbations of state and control. In our framework, we
linearise about a state/control (x,X). We perturb the state by considering a C1-curve
γ : J → M defined on an interval J for which 0 ∈ int(J) and with γ′(0) = vx. Thus we
perturb the state in the direction of vx. We perturb the control from X in the direction of
Y ∈ F (M) by considering a curve of controls s 7→ X + sY . Let us then define σ : N → M
on a neighbourhood N of (0, 0) ∈ R2 by

σ(t, s) = ΦX+sY
t (γ(s));

thus σ(t, s) gives the flow at time t corresponding to the perturbation at parameter s. Now
we compute

∂

∂t

∂

∂s
σ(t, s) =

∂

∂t

∂

∂s
ΦX+sY
t (γ(s))

=
∂

∂t

∂

∂s
ΦX
t (γ(s)) +

∂

∂t

∂

∂s
ΦX+sY
t (x)

=
∂

∂t
TxΦ

X
t (γ′(s)) + IM

( ∂

∂s

∂

∂t
ΦX+sY
t (x)

)
=

∂

∂t
TxΦ

X
t (γ′(s)) + IM

( ∂

∂s
(X + sY )(ΦX+sY

t (x))
)
,

from which we have

∂

∂t

∂

∂s
σ(0, 0) = XT (vx) + IM(vlft(X(x), Y (x))) = XT (vx) + Y V (vx), (4.12)

using Lemma 4.3.
The formula clearly suggests what the linearisation of a tautological control system

should be. However, we need the following lemma to make a sensible definition in our sheaf
framework.

4.5 Lemma: (Presheaves for linearisation) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈
{m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let F be a presheaf of sets of Cν-vector
fields on a Cr-manifold M. Then there exist unique projectable presheaves F T and F V of
Cν−1-vector fields and Cν-vector fields on TM with the property that

F T (π−1
TM(U)) = {XT | X ∈ F (U)}

and
F V (π−1

TM(U)) = {XV | X ∈ F (U)}
for every open set U ⊆ M. Moreover,
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(i) F T is a sheaf if and only if F is a sheaf,

(ii) F V is a sheaf if and only if F is a sheaf,

(iii) Sh(F T ) = Sh(F )T , and

(iv) Sh(F V ) = Sh(F )V .

Proof: Let W ⊆ TM be open and note that UW = πTM(W) is open. For W ⊆ TM open we
define

F T (W) = {XT |W | X ∈ F (UW)}

and
F V (W) = {XV |W | X ∈ F (UW)}.

If W,W′ ⊆ TM are open with W′ ⊆ W and if XT |W ∈ F T (W), then, for vx ∈ W′, we have

(XT (vx)|W′)(vx) = ((X|UW′)T )(vx),

this making sense since XT (vx) depends only on the values of X in a neighbourhood of x,
and since UW′ contains a neighbourhood of x if vx ∈ W′. In any case, we have that

XT |W′ ∈ F T (W′),

which shows that F T is a presheaf. A similar argument, of course, works for F V . This gives
the existence assertion of the lemma. Uniqueness follows immediately from the requirement
that F T and F V be projectable.

(i) Suppose that F is a sheaf. We shall first show that F T is a sheaf. Let W ⊆ TM be
open, and let (Wa)a∈A be an open cover of W. Let Za ∈ F T (Wa), supposing that

Za|Wa ∩Wb = Zb|Wa ∩Wb

for a, b ∈ A. For each a ∈ A, we have, by our definition of F T above, Za = XT
a |Wa

for Xa ∈ F (UWa). Using the fact that Γν−1(TTM) is a sheaf, we infer that there exists
Z ∈ Γν−1(TTM) such that Z|Wa = XT

a |Wa for each a ∈ A. Now, for each x ∈ UW,
let us fix ax ∈ A such that x ∈ πTM(Wa). Note that Z|Wax = XT

ax |Wax and so there
is a neighbourhood Ux ⊆ UWax

of x and Xx ∈ Γν−1(TUx) such that Xx = Xax |Ux. In
particular, Xx ∈ F (Ux). Moreover, since F T is projectable, we can easily see that [Xx]x
is independent of the rule for choosing ax. Now let x1, x2 ∈ M and let x ∈ Ux1 ∩ Ux2 . By
projectability of F T , there exist a neighbourhood Vx ⊆ Ux1 ∩ Ux2 and X ′

x ∈ F (Vx) such
that

XT
axj

|Waxj
∩ π−1

TM(Vx) = (X ′
x)

T |Waxj
, j ∈ {1, 2}.

We conclude, therefore, that Xx1(x) = Xx2(x). Thus we have an open covering (Ux)x∈UW

of UW and local sections Xx ∈ F (Ux) pairwise agreeing on intersections. Since F is a
sheaf, there exists X ∈ F (UW) such that X|Ux = Xx for each x ∈ UW. Since

XT |Wax ∩ π−1
TM(Ux) = XT

x |Wax ∩ π−1
TM(Ux) = XT

ax |Wax ∩ π−1
TM(Ux),

projectability of F T allows us to conclude that Z = XT |W.
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Now suppose that F T is a sheaf and let U ⊆ M be open, let (Ua)a∈A be an open covering
of U, and let Xa ∈ F (Ua), a ∈ A be such that Xa|Ua ∩Ub = Xb|Ua ∩Ub. This implies that

XT
a |π−1

TM(Ua ∩ Ub) = XT
b |π−1

TM(Ua ∩ Ub).

Therefore, by hypothesis, there exists X ∈ F (U) such that XT |π−1
TM(Ua) = XT

a for each
a ∈ A. Projecting to M gives X|Ua = Xa for each a ∈ A, showing that F is a sheaf.

(ii) To show that F V is a sheaf can be made with an identically styled argument as
above in showing that F T is a sheaf. The argument, indeed, is even easier since vertical
lifts do not depend on the value of their projections in a neighbourhood of a point in TM,
only on the projection at the point.

(iii) Let W ⊆ TM be open and let Z ∈ Sh(F T )(W). This means that, for each vx ∈ W,
[Z]vx ∈ F T

0,v. Therefore, there exist a neighbourhood Wvx of vx and Xx ∈ F (UWvx
) such

that Z|Wvx = XT
x |Wvx . We now proceed as in the preceding part of the proof. Thus, for

each x ∈ UW let us fix vx ∈ W. Note that Z|Wvx = XT
vx |Wvx and so there is a neighbourhood

Ux ⊆ UWvx
of x and Xx ∈ Γν−1(TUx) such that Xx = Xvx |Ux. In particular, Xx ∈ F (Ux).

Moreover, since F T is projectable, we can easily see that [Xx]x is independent of the rule
for choosing vx ∈ W. Now let x1, x2 ∈ M and let x ∈ Ux1 ∩ Ux2 . By projectability of F T ,
there exist a neighbourhood Vx ⊆ Ux1 ∩ Ux2 and X ′

x ∈ F (Vx) such that

XT
vxj

|Wvxj
∩ π−1

TM(Vx) = (X ′
x)

T |Wvxj
, j ∈ {1, 2}.

We conclude, therefore, that Xx1(x) = Xx2(x). Thus we have an open covering (Ux)x∈UW

and local sections Xx ∈ F (Ux) pairwise agreeing on intersections. Thus there exists X ∈
Sh(F (UW)) such that X|Ux = Xx for each x ∈ UW. Since

XT |Wvx ∩ π−1
TM(Ux) = XT

x |Wvx ∩ π−1
TM(Ux) = XT

vx |Wvx ∩ π−1
TM(Ux),

projectability of Sh(F T ) allows us to conclude that Z = XT |W, i.e., Z ∈ Sh(F )T (W).
(iv) A similar argument as in the preceding part of the proof works to give this part of

the proof as well. ■

With the preceding computations and sheaf lemma as motivation, we make the following
definition.

4.6 Definition: (Linearisation of a tautological control system) Let m ∈ Z>0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be
a Cν-tautological control system. The linearisation of G is the Cν−1-tautological control
system TG = (TM, TF ), where the projectable presheaf of sets of vector fields TF is
characterised uniquely by the requirement that, for every open subset U ⊆ M,

TF (π−1
TM(U)) = {XT + Y V | X,Y ∈ F (U)}. •

This definition may look a little strange at a first glance. However, as we go along, we
shall use the definition in more commonplace settings, and we will see then that it connects
to more familiar constructions.
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4.3. Trajectories for linearisations. As a tautological control system, TG provides a forum
for all of the constructions of Section 3. In particular, the linearisation has trajectories, so
let us look at these.

Let us first think about open-loop systems. By definition, an open-loop system
for TG is a triple (Z,T,W) with T ⊆ R an interval, W ⊆ TM an open set, and
Z ∈ LIΓν−1(T;TF (W)). Thus Z(t) = X(t)T + Y (t)V for X,Y : T → F (πTM(W)). We
will write Z = XT + Y V with the understanding that this means precisely what we have
just written. We should, however, verify that X and Y have useful properties.

4.7 Lemma: (Property of open-loop systems for linearisation) Let m ∈ Z>0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a
Cν-tautological control system with linearisation TG = (TM, TF ). Let T be a time-domain
and let W ⊆ TM be open. If Z ∈ LIΓν−1(T;TF (W)) is given by

Z(t, vx) = XT (t, vx) + Y V (t, vx)

for maps X,Y : T × πTM(W) → TM for which Xt, Yt ∈ Γν(T;πTM(W)) for every t ∈ T,
then X ∈ LIΓν(T;F (πTM(W))) and Y ∈ LIΓν−1(T;F (πTM(W))).

Proof: It is possible to make oneself believe the lemma by a coordinate computation. How-
ever, we shall give a coordinate-free proof. To do this, we will use the Riemannian metric
GT and the affine connection ∇T on TM defined by a Riemannian metric G and affine
connection ∇ on M, as described in the proof of Lemma 4.2. For simplicity, and since we
will make use of some formulae derived in the proof of Lemma 4.2 where this assumption
was made, we suppose that ∇ is torsion-free.

Since we will be calculating iterated covariant differentials as in Section 2.1, only now us-
ing the affine connection ∇T on TM, we should also think about the character of Tk(T∗TM).
For vx ∈ TxM, TvxπTM is a surjective linear mapping from TvxTM to TxM. Thus its dual,
(TvxπTM)∗, is an injective linear mapping from T∗

xM to T∗
vxTM. It induces, therefore, an in-

jective linear mapping from Tk(T∗
xM) to Tk(T∗

vxTM) [Bourbaki 1989, Proposition III.5.2.2].
Yano and Kobayashi [1966] call this the vertical lift of Tk(T∗M) into Tk(T∗TM). Note
that vertically lifted tensors, thought of as multilinear maps, vanish if they are given a
vertical vector as one of their arguments, i.e., they are “semi-basic” (in fact, they are even
“basic”). Note that T∗

vxTM ≃ T∗
xM⊕T∗

xM by dualising the splitting of the tangent bundle.
So as to notationally distinguish between the two components of the direct sum, let us de-
note the first component by (T∗

xM)1 and the second component by (T∗
xM)2, noting that the

first component is defined to be the image of the canonical injection from T∗
xM to T∗

vxTM.
We then have

Tk((T∗
xM)1 ⊕ (T∗

xM)2) ≃
⊕

a1,...,ak∈{1,2}

(T∗
xM)a1 ⊗ · · · ⊗ (T∗

xM)ak

by [Bourbaki 1989, §III.5.5]. Let

πk : T
k(T∗

vxTM) → (T∗
xM)1 ⊗ · · · ⊗ (T∗

xM)1

be the projection onto the component of the direct sum decomposition.
With all of the preceding, we can now make sense of the following sublemma.
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1 Sublemma: If, for X,Y ∈ Γν(TM), we have Z = XT + Y V , then we have

πk ⊗ idTTM((∇T )(k)Z(0x)) = ∇(k)X(x)⊕ (∇(k)Y (x))

for k ∈ Z≥0 satisfying k ≤ ν.

Proof: Obviously we can consider two special cases, the first where Y = 0 and the second
where X = 0. When Y = 0, the result follows from Sublemma 1 from the proof of
Lemma 4.2, especially the formula (4.7) we derived from the sublemma. When X = 0 the
result immediately follows from the same sublemma. ▼

By the preceding sublemma, Z(t, 0x) = X(t, x) ⊕ Y (t, x). Since the projections onto
the first and second component of the direct sum decomposition of TTM are continuous,
we immediately conclude that X,Y ∈ CFΓν(T;T(πTM(W))).

The remainder of the proof breaks into the various cases of regularity.
ν = ∞: Let K ⊆ M be compact and let m ∈ Z≥0. Since K is also a compact subset of

TM, there exists g ∈ L1
loc(T;R≥0) such that

∥jmZ(t, 0x)∥GT
m
≤ g(t), t ∈ T, x ∈ K.

Let πm : JmTTM → ⊕m
j=0T

j(π∗
TMTM)⊗ TTM be defined by

πm(jmZ ′(vx)) =
m∑
j=0

πj ⊗ idTTM((∇T )(j−1)Z ′(vx)),

this making sense by virtue of (2.1). By the sublemma, by the definition of GT , and by the
definition of the fibre metrics on JmTM and JmTTM induced by the decomposition of (2.1),
we have

∥πm(jmZ(t, 0x))∥2GT
m
= ∥jmX(t, x)∥2

Gm
+ ∥jmY (t, x)∥2

Gm
.

This gives

∥jmX(t, x)∥Gm
≤ g(t), ∥jmY (t, x)∥Gm

≤ g(t), t ∈ T, x ∈ K,

which gives the lemma in this case.
ν = m: From the computations above in the smooth case we have that X and Y are

locally integrally Cm−1-bounded. To show X is, in fact, locally integrally Cm-bounded, we
will use the computations from the proof of Lemma 4.2. Let K ⊆ M and let

K1 = {vx ∈ TM | x ∈ K, ∥vx∥G ≤ 1}

so K1 is a compact subset of TM. For the moment, let us fix t ∈ T. We now recall
equation (4.8) which gives a formula for Pm

∇T (X
T
t ) when all arguments are horizontal. Since,

in the expression (4.8), vx is arbitrary, by letting it vary over vectors of unit length we get
an estimate

∥Pm
∇ (Xt)(x)∥Gm ≤ C(pm−1

K (Xt) + pm−1
K1

(XT
t ))

for some C ∈ R>0. Since X,Y ∈ LIΓm−1(T;M) and since XT = Z−Y V ∈ LIΓm−1(T;TM),
by (2.1) there exists g ∈ L1

loc(T;R≥0) such that

∥jmXt(x)∥ ≤ g(t), (t, x) ∈ T ×K,
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which gives X ∈ LIΓm(TM).
ν = m + lip: This follows from the computations above, cf. the proof of the Lipschitz

part of the proof of Lemma 4.2.
ν = ω: Let K ⊆ M be compact and let a ∈ c↓0(Z≥0;R>0). Since K is also a compact

subset of TM, there exists g ∈ L1
loc(T;R≥0) such that

a0a1 · · · am∥jmZ(t, 0x)∥GT
m
≤ g(t), t ∈ T, x ∈ K, m ∈ Z≥0.

As in the smooth case we have

∥πm(jmZ(t, 0x))∥2GT
m
= ∥jmX(t, x)∥2

Gm
+ ∥jmY (t, x)∥2

Gm
.

This gives

a0a1 · · · am∥jmX(t, x)∥Gm
≤ g(t), a0a1 · · · am∥jmY (t, x)∥Gm

≤ g(t),

for t ∈ T, x ∈ K, and m ∈ Z≥0, which gives the lemma. ■

Next let us think about open-loop subfamilies for linearisations. Generally speaking,
one may wish to consider different classes of open-loop systems for the “tangent lift part”
and the “vertical lift part” of a linearised system. The open-loop systems for the tangent
lift part will be those giving rise to reference trajectories and reference flows. On the other
hand, the open-loop systems for the vertical lift part will be those that we will allow as
perturbing the reference flow. There is no reason that these should be the same. While this
proliferation of open-loop subfamilies will lead to some notational complexity, the freedom
to carefully account for these possibilities is one of the strengths of our theory. Indeed, in
standard Jacobian linearisation, it is difficult to keep track of how the controls—constraints
on them and attributes of them—are carried over to the linearisation. In our theory, this
is natural.

We first make tangent and vertical lift constructions for open-loop subfamilies.

4.8 Definition: (Tangent and vertical lifts of open-loop subfamilies) Let m ∈ Z>0

and m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F )
be a Cν-tautological control system with linearisation TG = (TM, TF ), and let OG be an
open-loop subfamily for G.

(i) The tangent lift of OG is the open-loop subfamily O T
G for (TM,F T ) defined by

O T
G (T,W) = {XT |W | X ∈ OG(T, πTM(W))}

for a time-domain T and for W ⊆ TM open.

(ii) The vertical lift of OG is the open-loop subfamily O V
G for (TM,F V ) defined by

O V
G (T,W) = {Y V |W | Y ∈ OG(T, πTM(W))}

for a time-domain T and for W ⊆ TM open. •
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4.9 Definition: (Open-loop subfamily for linearisation) Let m ∈ Z>0 and m′ ∈
{0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be
a Cν-tautological control system with linearisation TG = (TM, TF ). An open-loop sub-
family for TG defined by a pair (OG,0,OG,1) of open-loop subfamilies for G is the open-loop
subfamily O T

G,0 + O
V
G,1 defined by:

XT + Y V ∈ (O T
G,0 + O

V
G,1)(T,W) ⇐⇒ XT ∈ O T

G,0(T, πTM(W)), Y V ∈ O V
G,1(T, πTM(W)).

•
Note that the restriction properties of open-loop subfamilies as per Definition 3.7 are

satisfied by our construction above, so the result is indeed an open-loop subfamily for TG.
Next we can define what we mean by trajectories for the linearisation in the more or

less obvious way.

4.10 Definition: (Trajectory for linearisation of tautological control system) Let
m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let
G = (M,F ) be a Cν-tautological control system with linearisation TG = (TM, TF ). Let
OG,0 and OG,1 be open-loop subfamilies for G.

(i) For a time-domain T, an open set W ⊆ TM, and for X ∈ OG,0(T,U) and Y ∈ OG,1,
an (X,Y,T,W)-trajectory for (OG,0,OG,1) is a curve Υ: T → W such that Υ′(t) =
XT (t,Υ(t)) + Y V (t,Υ(t)).

(ii) For a time-domain T and an open set W ⊆ TM, a (T,W)-trajectory for the pair
(OG,0,OG,1) is a (T,W)-trajectory for O T

G,0 + O
V
G,1.

(iii) A plain trajectory for the pair (OG,0,OG,1) is a curve that is a (T,W)-trajectory for
(OG,0,OG,1) for some time-domain T and some open W ⊆ TM.

We denote by:

(iv) Traj(X,Y,T;W) the set of (X,Y,T,U)-trajectories for (OG,0,OG,1);

(v) Traj(T,W, (OG,0,OG,1)) the set of (T,U)-trajectories for (OG,0,OG,1);

(vi) Traj(OG,0,OG,1) the set of trajectories for (OG,0,OG,1).

We shall abbreviate

Traj(T,W, (OG,full,OG,full)) = Traj(T,W, TG)

and Traj(OG,full,OG,full) = Traj(TG). •
Now that we have been clear about what we mean by the trajectory of a linearised

system, let us say some things about these trajectories.

4.11 Proposition: (Trajectories for the linearisation of a tautological control sys-
tem) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as
required. Let G = (M,F ) be a Cν-tautological control system with linearisation TG, and
let OG,0 and OG,1 be open-loop subfamilies for G. Let T ⊆ R be a time-domain and let
W ⊆ TM be open. If ξT ∈ Traj(T,W, (OG,0,OG,1)) then the following statements hold:

(i) there exist X ∈ OG,0(T, πTM(W)) and Y ∈ OG,1(T, πTM(W)) such that

(ξT )′(t) = XT (t, ξT (t)) + Y V (t, ξT (t));
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(ii) there exists ξ ∈ Traj(T, πTM(W),OG,0) such that the diagram

T
ξT //

ξ !!

TM

πTU

��
M

commutes, i.e., ξT is a vector field along ξ.

Proof: The first assertion follows from Lemma 4.7. The second assertion follows by taking
ξ = πTM ◦ ξT , and noting that

ξ′(t) = TξT (t)πTM((ξT )′(t)) = TξT (t)πTM(XT (t, ξT (t)) + Y V (t, ξT (t))) = X(t, ξ(t))

and X is an open-loop system for OG,0. ■

4.4. Linearisation about reference trajectories and reference flows. Let us now slowly
begin to pull back our general notion of linearisation to something more familiar. In this
section we will linearise about two sorts of things, trajectories and flows. We will see in
the next section that it is the distinction between these two things that accounts for the
problems observed in Example 1.1.

But for now, we proceed in general. We let G be a tautological control system and OG
an open-loop subfamily. We recall from Example 3.10 that, if T is a time-domain, if U ⊆ M
is open, and if ξ ∈ Traj(T,U,OG), then OG,ξ is the open-loop subfamily associated to the
trajectory ξ, i.e., all open-loop systems from OG possessing ξ as a trajectory. Having made
this recollection, we make the following definition.

4.12 Definition: (Linearisation of a tautological control system about a trajec-
tory) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as
required. Let G = (M,F ) be a Cν-tautological control system with linearisation TG. Let
OG,0 and OG,1 be open-loop subfamilies for G, let T be a time-domain, let U ⊆ M be
open, and let ξref ∈ Traj(T,U,OG,0). The (OG,0,OG,1)-linearisation of G about ξref
is the open-loop subfamily O T

G,0,ξref
+ O V

G,1 for TG. A trajectory for this linearisation is a
(T′,W)-trajectory Υ for (OG,0,ξref ,OG,1) satisfying πTM ◦ Υ = ξref, and where T′ ⊆ T and
W ⊆ π−1

TM(U). •
By definition, a trajectory for the linearisation about the reference trajectory ξref is a

curve Υ: T′ → W satisfying

Υ′(t) = XT (t,Υ(t)) + Y V (t,Υ(t)),

for X ∈ OG,0,ξref(T
′, πTM(W)) and for Y ∈ OG,1(T

′, πTM(W)), and where Υ is a tangent
vector field along ξref. Note that there may well be trajectories for (OG,0,ξref ,OG,1) that are
not vector fields along ξref; we just do not call these trajectories for the linearisation about
ξref.

Let us now talk about linearisation, not about a trajectory, but about a flow. Here we
recall the notion of the open-loop subfamily associated to an open-loop system in Exam-
ple 3.8–4.
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4.13 Definition: (Linearisation of a tautological control system about a flow) Let
m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let G = (M,F ) be a Cν-tautological control system with linearisation TG. Let OG,0 and
OG,1 be open-loop subfamilies for G, let T be a time-domain, let U ⊆ M be open, and let
Xref ∈ OG,0(T,U). The OG,1-linearisation of G about Xref is the open-loop subfamily
O T
G,0,Xref

+ O V
G,1 for TG. A trajectory for this linearisation is a (T′,W)-trajectory for

(OG,0,Xref
,OG,1), where T

′ ⊆ T and where W ⊆ π−1
TM(U). •

By definition, a trajectory for the linearisation about the reference flow Xref is a curve
Υ: T′ → W satisfying

Υ′(t) = XT
ref(t,Υ(t)) + Y V (t,Υ(t)),

for Y ∈ OG,1(T
′, πTM(W)). Note that the definition of OG,0,Xref

necessarily implies that
πTM ◦ Υ is an integral curve for Xref. Unlike the case of linearisation about a reference
trajectory, we do not specify that the trajectories for the linearisation about a reference
flow follow a specific trajectory for G, although one can certainly do this as well.

4.5. Linearisation about an equilibrium point. Continuing to make things concrete, let
us consider linearising about trivial reference trajectories and reference flows. We begin by
considering what an equilibrium point is in our framework.

4.14 Definition: (Tautological control system associated to an equilibrium point)
Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let G = (M,F ) be a Cν-tautological control system and let x0 ∈ M.

(i) The tautological control system for G at x0 is the Cν-tautological control system
Gx0 = (M,EqF ,x0

), where

EqF ,x0
(U) = {X ∈ F (U) | X(x0) = 0x0}.

(ii) If there exists an open set U ⊆ M for which EqF ,x0
(U) ̸= ∅, then x0 is an equilibrium

point for G. •
Of course, by properties of presheaves, if X ∈ EqF ,x0

(U), then X|V ∈ EqF ,x0
(V) for

every open set V ⊆ U. Thus Gx0 is indeed a tautological control system.
Let us examine the nature of tautological control systems at x0. This amounts to

understanding any particular structure that one can associate to vector fields that vanish
at a point. This is the content of the following lemma.

4.15 Lemma: (Properties of vector fields vanishing at a point) Let M be a smooth
manifold, let x0 ∈ M, and let X ∈ Γ1(M). If X(x0) = 0x0, then there exists a unique
AX,x0 ∈ EndR(Tx0M) satisfying either of the following equivalent characterisations:

(i) noting that XT |Tx0M : Tx0M → V0x0
TM ≃ Tx0M, AX,x0 = XT |Tx0M;

(ii) AX,x0(vx0) = [V,X](x0) where V ∈ Γ∞(M) satisfies V (x0) = vx0.

Proof: We will show that the characterisation from part (i) makes sense, and that it agrees
with the second characterisation.

First, note that, since X(x0) = 0x0 , Tvx0
πTM(XT (vx0)) = 0x0 for every vx0 ∈ Tx0M.

Thus XT (vx0) ∈ V0x0
TM, as claimed. That XT |Tx0M is linear is a consequence of the fact

that XT is a linear vector field, i.e., that the diagram (4.3) commutes. In the particular
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case that X(x0) = 0x0 , the diagram implies that XT is a linear map from Tx0M to T0x0
TM.

As we already know that XT |Tx0M is V0x0
TM-valued, the characterisation from part (i)

does indeed uniquely define an endomorphism of Tx0M.
Let us now show that the characterisation of part (ii) agrees with that of part (i).

By [Abraham, Marsden, and Ratiu 1988, Theorem 4.2.19], we have

vlft(0x0 , [V,X](x0)) =
d

dt

∣∣∣∣
t=0

TΦX
−t(x0)

ΦX
t ◦ V ◦ ΦX

−t(x0)

=
d

dt

∣∣∣∣
t=0

Tx0Φ
X
t ◦ V (x0) = XT (V (x0)),

as desired. ■

According to the lemma, we can make the following definitions.

4.16 Definition: (Data associated with linearisation about an equilibrium point)
Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω}, as required.
Let G = (M,F ) be a Cν-tautological control system. For an equilibrium point x0 ∈ M for
G, we define

LF ,x0
= {AX,x0 | [X]x0 ∈ (EqF ,x0

)x0}

(where (EqF ,x0
)x0 denotes the stalk of the presheaf EqF ,x0

at x0) and

F (x0) = {X(x0) | [X]x0 ∈ Fx0}. •

Associated to an equilibrium point are natural notions of open-loop systems that pre-
serve the equilibrium point.

4.17 Definition: (Open-loop subfamilies and equilibrium points) Let m ∈ Z>0 and
m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be
a Cν-tautological control system. If x0 ∈ M and if OG is an open-loop subfamily for G, the
open-loop subfamily OG,x0 is defined by specifying that, for a time-domain T and an open
set U ⊆ M,

OG,x0(T,U) = {X ∈ OG(T;U) | X(t) ∈ EqF ,x0
(U), t ∈ T}. •

Note that the only trajectory of OG,x0 passing through x0 is the constant trajectory
t 7→ x0, as it should be.

It is now more or less obvious how one should define linearisations about an equilibrium
point. This can be done for trajectories and flows. We start with trajectories.

4.18 Definition: (Linearisation of a tautological control system about an equi-
librium trajectory) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m + m′,∞, ω}, and let
r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control system with lin-
earisation TG. Let OG,0 and OG,1 be open-loop subfamilies for G and let x0 ∈ M. The
(OG,0,OG,1)-linearisation of G about x0 is the open-loop subfamily O T

G,0,x0
+ O V

G,1

for TG. A trajectory for this linearisation is a (T,W)-trajectory for the (OG,0,x0 ,OG,1)-
linearisation about the trivial reference trajectory t 7→ x0, where T is a time-domain and
where W is a neighbourhood of Tx0M. •
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By definition and by the characterisation of XT at equilibria, a trajectory for the lin-
earisation about x0 will be a curve Υ: T → Tx0M satisfying

Υ′(t) = AX(t),x0
(Υ(t)) + b(t),

where t 7→ X(t) is a curve in LF ,x0
whose nature is determined by the open-loop subfamily

OG,0, e.g., it may be locally integrable, locally essentially bounded, piecewise constant, etc.,
and where t 7→ b(t) is a curve in F (x0) ⊆ Tx0M, again whose nature is determined by the
open-loop subfamily OG,1. Note that the linearisation about x0 will, therefore, generally be
a family of time-dependent linear systems on Tx0M. This may come as a surprise to those
used to Jacobian linearisation, but we will see in Example 4.25 below how this arises in
practice.

Let us now talk about linearisation about an equilibrium point, not about a trajectory,
but about a flow.

4.19 Definition: (Linearisation of a tautological control system about an equilib-
rium flow) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω}, and let r ∈ {∞, ω},
as required. Let G = (M,F ) be a Cν-tautological control system with linearisation TG.
Let OG,0 and OG,1 be open-loop subfamilies for G, let T be a time-domain, let x0 ∈ M, let
U ⊆ M be a neighbourhood of x0, and let Xref ∈ OG,0,x0(T,U). The OG,1-linearisation
of G about (Xref, x0) is the open-loop subfamily O T

G,0,Xref
+ O V

G,1 for TG. A trajectory
for this linearisation is a (T′,W)-trajectory for (OG,0,Xref

,OG,1), where T
′ ⊆ T and where

W ⊆ π−1
TM(U). •

In this case, we have a prescribed curve t 7→ Xref(t) such that Xref(t, x0) = 0x0 for
every t. Thus this defines a curve AXref(t),x0

in LF ,x0
. By definition, a trajectory for the

linearisation about the pair (Xref, x0) is a curve Υ: T′ → Tx0M satisfying

Υ′(t) = AXref(t),x0
(Υ(t)) + b(t),

where t 7→ b(t) is a curve in F (x0) having properties determined by the open-loop subfamily
OG,1. Note that this linearisation will still generally be time-dependent, but it is now a
single time-dependent linear system, not a family of them, as with linearisation about a
trajectory. Moreover, if Xref is chosen to be time-independent, then the linearisation will
also be time-invariant. But there is no reason in the general theory to do this.

The above comments about the possibility of time-varying linearisations notwithstand-
ing, there is one special case where we can be sure that linearisations will be time-
independent, and this is when LF ,x0

consists of a single vector field. The following result
gives a common case where this happens. Indeed, the ubiquity of this situation perhaps
explains the neglect of the general situation that has led to the seeming contradictions in
the standard treatments, such as are seen in Example 1.1.

4.20 Proposition: (Time-independent linearisations for certain control-affine sys-
tems) Let Σ = (M, F,C) be a C1-control-affine system with C ⊆ Rk and

F (x,u) = f0(x) +
k∑

a=1

uafa(x).

For x0 ∈ M, suppose that
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(i) there exists u0 ∈ C such that

f0(x0) =
k∑

a=1

ua0fa(x0)

and

(ii) (f1(x0), . . . , fk(x0)) is linearly independent.

Then x0 is an equilibrium point for GΣ and LFΣ,x0
consists of a single linear map.

Proof: Let us define

f ′
0 = f0 −

k∑
a=1

ua0fa,

noting that f ′
0 ∈ FΣ. Since f ′

0(x0) = 0x0 , we conclude that x0 is an equilibrium point. Now
suppose that F (x0,u) = 0x0 . Thus

f0(x0) +

k∑
a=1

uafa(x0) = 0x0 =⇒ f0(x0) = −
k∑

a=1

uafa(x0).

This last equation has a solution for u, namely u = −u0, and since (f1(x0), . . . , fm(x0)) is
linearly independent, this solution is unique. Thus, for any neighbourhood U of x0,

EqFΣ,x0
(U) =

{
f0 −

k∑
a=1

ua0fa(x0)
}
= {f ′

0(x0)}.

This shows that LFΣ,x0
= {Af ′

0,x0
}, as claimed. ■

While we are definitely not giving a comprehensive account of controllability in this
paper, in order to “close the loop” on Example 1.1, let us consider here how one talks
about linear controllability in our framework. First we introduce some general notation.

4.21 Definition: (Subspaces invariant under families of linear maps) Let F be a
field, let V be an F-vector space, let L ⊆ EndF(V), and let S ⊆ V. By ⟨L , S⟩ we denote
the smallest subspace of V that (i) contains S and (ii) is invariant under L for every L ∈ L .

•
We can give a simple description of this subspace.

4.22 Lemma: (Characterisation of smallest invariant subspace) If F is a field, if V
is an F-vector space, if L ⊆ EndF(V), and if S ⊆ V, then ⟨L , S⟩ is spanned by elements
of V of the form

L1 ◦ · · · ◦ Lk(v), k ∈ Z≥0, L1, . . . , Lk ∈ L , v ∈ S. (4.13 )

Proof: Let UL ,S be the subspace spanned by elements of the form (4.13). Clearly S ⊆ UL ,S

(taking the convention that L1◦· · ·◦Lk(v) = v if k = 0) and, if L ∈ L , then L(UL ,S) ⊆ UL ,S

since an endomorphism from L maps a generator of the form (4.13) to another generator
of this form. Therefore, ⟨L , S⟩ ⊆ UL ,S . Now, if v ∈ S, then clearly v ∈ ⟨L , S⟩. Since
⟨L , S⟩ is invariant under endomorphisms from L , L(v) ∈ ⟨L , S⟩ for every v ∈ S and
L ∈ L . Recursively, we see that all generators of the form (4.13) are in ⟨L , S⟩, whence
UL ,S ⊆ ⟨L , S⟩ since UL ,S is a subspace. ■

With the preceding as setup, let us make the following definition.
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4.23 Definition: (Linear controllability) Let m ∈ Z>0 and m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω}, and let r ∈ {∞, ω}, as required. Let G = (M,F ) be a Cν-tautological control
system with linearisation TG, and let x0 ∈ M be an equilibrium point for G. The system
G is linearly controllable at x0 if there exists S ⊆ F (x0) such that (i) 0x0 ∈ conv(S)
and (ii) ⟨LF ,x0

, S⟩ = Tx0M. •

4.24 Remark: (Relationship to rank test) For readers who may not recognise the re-
lationship between our definition of linear controllability and the classical Kalman rank
test [Brockett 1970, Theorem 13.3], we make the following comments. Consider the linear
system

ẋ(t) = Ax(t) +Bu(t),

with x ∈ Rn, u ∈ Rm, and for appropriately sized matrices A and B. Using Lemma 4.22
and the Cayley–Hamilton Theorem, it is easy to check that the smallest A-invariant sub-
space containing image(B) is exactly the columnspace of the Kalman controllability matrix,[

B AB · · · An−1B
]
.

For the more geometric approach to topics in linear system theory, we refer to the excellent
book of Wonham [1985]. •

We state linear controllability as a definition, not a theorem, because we do not want
to develop the definitions required to state a theorem. However, it is true that a system
that is linearly controllable according to our definition is small-time locally controllable in
the usual sense of the word. This is proved by Aguilar [2010, Theorem 5.14]. The setting
of Aguilar is not exactly that of our paper. However, it is easy to see that this part of
Aguilar’s development easily translates to what we are doing here.

Let us close this section, and the technical part of the paper, by revisiting Example 1.1
where we saw that the classical picture of Jacobian linearisation presents some problems.

4.25 Example: (Revisiting Example 1.1) We work with the system

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t).

We could as well work with the other representation for the system from Example 1.1, but
since the family of vector fields is the same (what changes between the two representations
is the parameterisation of the set of vector fields!), we will get the same conclusions; this,
after all, is the point of our feedback-invariant approach.

This, of course, is a control-affine system, and the resulting tautological control system
is G = (R3,F ) where F is the globally generated presheaf with

F (R3) = {f0 + u1f1 + u2f2 | (u1, u2) ∈ R2},

with

f0 = x2
∂

∂x1
, f1 = x3

∂

∂x2
, f2 =

∂

∂x3
.

We have an equilibrium point at (0, 0, 0).
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1 Lemma: EqF ,(0,0,0)(R
3) = f0 + spanR(f1).

Proof: It is clear that f0(0, 0, 0) = f1(0, 0, 0) = 0, and, therefore, any linear combination
of f0 and f1 will also vanish at (0, 0, 0), and particularly those from the affine subspace
f0 + spanR(f1). Conversely, if

f0(0, 0, 0) + u1f1(0, 0, 0) + u2f2(0, 0, 0) = 0,

then u2 = 0 and so the resulting vector field is in the asserted affine subspace. ▼

We, therefore, have

LF ,(0,0,0) =


0 1 0
0 0 a
0 0 0

 ∣∣∣∣∣∣ a ∈ R

 .

We also have

F ((0, 0, 0)) = {bf2(0, 0, 0) | b ∈ R} =


00
b

 ∣∣∣∣∣∣ b ∈ R

 .

Thus a curve in LF ,(0,0,0) has the form

t 7→

0 1 0
0 0 a(t)
0 0 0


for a function a having whatever properties might be induced from the open-loop subfamily
OG,0 one is using, e.g., locally integrable, locally essentially bounded. A curve in F ((0, 0, 0))
has the form

t 7→

 0
0

b(t)


for a function b having whatever properties might be induced from the open-loop subfamily
OG,1 one is using. Trajectories for the linearisation about (0, 0, 0) then satisfyv̇1(t)v̇2(t)

v̇3(t)

 =

0 1 0
0 0 a(t)
0 0 0

v1(t)v2(t)
v3(t)

+

 0
0

b(t)

 .

Note that this is not a fixed time-varying linear system, but a family of these, since the
function a is not a priori specified, but is variable.

Next let us look at two instances of linearisation about a reference flow by choosing the
two reference flows X1 = f0 and X2 = f0 + f1. We use coordinates ((x1, x2, x3), (v1, v2, v3))
for TR3 and we compute

XT
1 = x2

∂

∂x1
+ v2

∂

∂v1
, XT

2 = x2
∂

∂x1
+ x3

∂

∂x2
+ v2

∂

∂v1
+ v3

∂

∂v2
.
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If t 7→ Y (t) is a time-dependent vector field with values in F (R3), then

Yt = f0 + ν1(t)f1 + ν2(t)f2 = x2
∂

∂x1
+ ν1(t)x3

∂

∂x2
+ ν2(t)

∂

∂x3
,

for functions ν1 and ν2 whose character is determined by the open-loop subfamily OG,1. The
linearisation about the two reference flows are described by the differential equations

ẋ1(t) = x2(t),

ẋ2(t) = 0;

ẋ3(t) = 0,

v̇1(t) = v2(t) + x2(t),

v̇2(t) = ν1(t)x3(t),

v̇3(t) = ν2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t);

ẋ3(t) = 0,

v̇1(t) = v2(t) + x2(t),

v̇2(t) = v3(t) + ν1(t)x3(t),

v̇3(t) = ν2(t),

respectively. The linearisations about (X1, (0, 0, 0)) and (X2, (0, 0, 0)) will be time-
independent since the vector fields X1 and X2 are time-independent, and we easily de-
termine that these linearisations are given byv̇1(t)v̇2(t)

v̇3(t)

 =

0 1 0
0 0 0
0 0 0

v1(t)v2(t)
v3(t)

+

 0
0

ν2(t)


and v̇1(t)v̇2(t)

v̇3(t)

 =

0 1 0
0 0 1
0 0 0

v1(t)v2(t)
v3(t)

+

 0
0

ν2(t)

 ,

respectively. These are exactly the two distinct linearisations we encountered in Exam-
ple 1.1. Thus we can see here what was going on in Example 1.1: we were linearising
about two different reference flows. This also highlights the dangers of explicit and fixed
parameterisations by control: one can unknowingly make choices that affect conclusions.

We comment that the reason this example does not meet the conditions of Proposi-
tion 4.20 is that the vector fields f1 and f2 are not linearly independent at (0, 0, 0). The
distribution generated by these vector fields has (0, 0, 0) as a singular point. These sorts of
matters will doubtless be interesting in subsequent studies of geometric control systems in
our framework.

Finally, using Lemma 4.22, we can easily conclude that this system is linearly control-
lable. •
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