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Abstract

In this thesis, we develop a coherent framework for studying time-varying vector
fields of different regularity classes and their flows. This setting has the benefit of
unifying all classes of regularity. In particular, it includes the real analytic regularity
and provides us with tools and techniques for studying holomorphic extensions of
real analytic vector fields. We show that under suitable “integrability” conditions,
a time-varying real analytic vector field on a manifold can be extended to a time-
varying holomorphic vector field on a neighbourhood of that manifold. Moreover,
in this setting, the “nonlinear” differential equation governing the flow of a time-
varying vector field can be considered as a “linear” differential equation on an infinite
dimensional locally convex vector space. We show that, in the real analytic case, the
“integrability” of the time-varying vector field ensures convergence of the sequence of
Picard iterations for this linear differential equation, giving us a series representation
for the flow of a time-varying real analytic vector field.

Using the framework we develop in this thesis, we study a parametization-
independent model in control theory called tautological control system. In the tauto-
logical control system setting, instead of defining a control system as a parametrized
family of vector fields on a manifold, it is considered as a subpresheaf of the sheaf of
vector fields on that manifold. This removes the explicit dependence of the systems
on the control parameter and gives us a suitable framework for studying regularity of
control systems. We also study the relationship between tautological control systems
and classical control systems. Moreover, we introduce a suitable notion of trajectory
for tautological control systems.

Finally, we generalize the orbit theorem of Sussmann and Stefan to the tautological
framework. In particular, we show that orbits of a tautological control system are
immersed submanifolds of the state manifold. It turns out that the presheaf structure
on the family of vector fields of a system plays an important role in characterizing the
tangent space to the orbits of the system. In particular, we prove that, for globally
defined real analytic tautological control systems, every tangent space to the orbits
of the system is generated by the Lie brackets of the vector fields of the system.
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Chapter 1

Introduction

1.1. Literature Review

In the mathematical theory of control, regularity of maps and functions plays a
crucial role. Literature of control theory is replete with theories which work for a
specific class of regularity but fail in other classes. The most well-known example is
stabilizability of nonlinear control systems. While it is clear that for linear control
systems controllability implies stabilizability, for nonlinear control systems this im-
plication may or may not be true based on the regularity of the stabilizing feedback.
In his 1979 paper, Sussmann proved that every real analytic system which satisfies
some strong controllability condition is stabilizable by “piecewise analytic” controls
[76]. However, some years later, Brockett showed that controllability of a nonlinear
system does not necessarily imply stabilizability by “continuous” feedbacks [14]. An-
other example is the role that real analyticity plays in characterizing the fundamental
properties of systems. One can show that the accessibility of real analytic systems at
point x0 can be completely characterized using the Lie bracket of their vector fields at
point x0 [79]. However, such a characterization is not generally possible for smooth
systems [79]. While in the physical world there are very few, and possibly no, maps
which are smooth but not real analytic, in mathematics the gap between these two
classes of regularity is huge. This can be seen using the well-known fact that if a real
analytic function is zero on an open set, then it is zero everywhere. However, using
a partition of unity, one can construct many non-zero smooth functions that are zero
on a given open set [49]. Moreover, the techniques and analysis for studying real
analytic systems are sometimes completely different from their smooth counterparts.

Roughly speaking, a map f is real analytic on a domain D if the Taylor series of
f around every point x0 ∈ D converges to f in a neighbourhood of x0. By definition,
for the Taylor series of f on D to exist, derivatives of f of any order should exist
and be continuous at every point x0 ∈ D. This means that all real analytic maps
are of class C∞. The converse implication is not true, since there are some examples
of functions that are C∞ but not real analytic. Although, nowadays, these examples
of smooth but not real analytic functions are well-known, it is surprising to know
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that at the beginning stages of theory of real analytic functions, mathematicians had
difficulty understanding them. In the nineteenth century, mathematicians started
to think more about the natural question of which functions can be expanded in a
Taylor series around a point. Lagrange and Hankel believed that the existence of all
derivatives of a function implies the convergence of its Taylor series [8]. Eventually,
it was Cauchy who came up with the function

f(x) =

{
e

−1

x2 x ̸= 0,

0 x = 0,

which is C∞ everywhere not real analytic at x = 0 [16], [8].
Real analytic functions on R have a close connection with the holomorphic func-

tions defined on neighbourhoods of R in C. It is well-known that every real analytic
function f on R can be extended to a holomorphic function defined on an appropriate
domain in C. However, it may not be possible to extend the real analytic function f
to a holomorphic function on the whole C. This can be seen in the following example.

Example. Let f : R→ R be the real analytic function defined as

f(x) =
1

1 + x2
, ∀x ∈ R.

If f : C → C is a holomorphic extension of f to the whole C, then by the identity
theorem, we should have

f(z) =
1

1 + z2
, ∀z ∈ C.

However, the function 1
1+z2

is not defined at z = i and z = −i and this is a contra-
diction. So the holomorphic extension of f to the whole complex plane C does not
exist.

This observation suggests that one should consider a real analytic function as a
germ of a holomorphic function. This perspective for real analytic functions motivates
the definition of a natural topology on the space of real analytic functions. Unfortu-
nately, there does not exist a single domain such that “every” real analytic function
on R can be extended to a holomorphic function on that domain. The following
example shows this fact.

Example. For every n ∈ N, consider the function fn : R→ R defined as

fn(x) =
1

1 + n2x2
, ∀x ∈ R.

It is easy to see that, for every n ∈ N, the function fn is real analytic on R. We show
that there does not exist a neighbourhood Ω of R in C such that, for every n ∈ N, the
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real analytic function fn can be extended to a holomorphic function on Ω. Suppose
that such an Ω exists. Then there exists r > 0 such that

{x ∈ C | ∥x∥ ≤ r} ⊆ Ω.

Now let N ∈ N be such that 1
N
< r and suppose that fN be the holomorphic extension

of fN to Ω. Then, by the identity theorem, we have

fN(z) =
1

1 +N2z2
, ∀z ∈ Ω.

By our choice of N , we have i
N
∈ Ω, but fN is not defined at z = i

N
. This is a

contradiction and shows that such an Ω does not exist.

Thus the space of real analytic functions on R, which we denote by Cω(R), can be
considered as the “union” of the spaces of holomorphic functions defined on neigh-
bourhoods of R in C. This process of taking union can be made precise using the
mathematical notion of “inductive limit”. The space of holomorphic functions on an
open set Ω ⊆ C has been studied in detail in the literature [51], [61]. One can show
that the well-known “compact-open” topology on the space of holomorphic functions
on Ω is generated by a family of seminorms [51]. The vector spaces equipped with
a topology generated by a family of seminorms are called “locally convex topological
vector spaces”. Therefore, we can present the space of real analytic functions on R as
an inductive limit of locally convex spaces. The “inductive limit topology” on Cω(R)
is defined as the finest topology which makes all the inclusions from the spaces of
holomorphic functions to the space of real analytic functions continuous.

Locally convex topological vector spaces play a crucial role in the theory of topo-
logical vector spaces. Inductive limits of locally convex spaces arise in many fields,
including partial differential equations, Fourier analysis, distribution theory, and holo-
morphic calculus. While there is little literature for inductive limit of arbitrary fam-
ilies of locally convex spaces, the countable inductive limit of locally convex spaces
is rich in both theory and applications. Historically, locally convex inductive limits
of locally convex spaces first appeared when mathematicians tried to define a suit-
able topology on the space of distributions. The importance of connecting maps in
inductive limits of locally convex spaces was first realized by José Sebastião e Silva
[71]. Motivated by studying the space of germs of holomorphic functions, Sebastião
e Silva investigated inductive limits with compact connecting maps. Inductive limits
with weakly compact connecting maps were studied later by Komatsu in [48], where
he showed that weakly compact inductive limits share some nice properties with the
compact inductive limits.

One can also characterize the space of real analytic functions on R using the germs
of holomorphic functions around compact subsets of R. Let {Ki}i∈N be a family of
compact sets on R such that

⋃∞
i=1Ki = R and

cl(Ki) ⊆ Ki+1, ∀i ∈ N.
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Then the space of real analytic functions on R is obtained by “gluing together”
the vector spaces of germs of holomorphic functions on compact sets {Ki}i∈I . The
concept of “gluing together” mentioned above can be made precise using the notion of
projective limit of vector spaces. The coarsest locally convex topology on Cω(R) which
makes all the gluing maps continuous is called the “projective limit topology” on
Cω(R). Having defined the “inductive limit topology” and “projective limit topology”
on the space of real analytic functions on R, it would be interesting to study the
relation between these two topologies. To our knowledge, the first paper that studied
the relation between these two topologies on the space of real analytic functions is
[59], where it is shown that these two topologies are identical. There has been a recent
interest in this topology due to its applications in the theory of partial differential
equations [12], [52].

Since every locally convex topology on a vector space can be characterized using
a family of generating seminorms, it is interesting to find a family of generating
seminorms for Cω-topology on Cω(R). In [81] a family of generating seminorms for
Cω-topology on Cω(R) has been introduced.

In chapter 3, by generalizing the above ideas, we study the Cω-topology on the
space of real analytic sections of a real analytic vector bundle (E,M, π). For a real
analytic vector bundle (E,M, π), we denote the space of its real analytic sections by
Γω(E). Using the similar constructions as for the space of real analytic functions,
we can define the “inductive limit” and “projective limit” topology on this space. It
follows from [59] that the inductive limit topology and the projective limit topology
on Γω(E) are equivalent. This is the topology which we refer to as the Cω-topology.
In particular, using the results of [42], we define two families of generating seminorms
for the Cω-topology on Γω(E).

In control theory, time-varying vector fields with measurable dependence on time
arises naturally in studying open-loop systems. Properties of time-varying vector
fields and their flows are essential in characterizing the fundamental properties of
systems. However, the theory of time-varying vector fields and their flows has not
been developed as much as its time-invariant counterpart. In order to study time-
varying vector fields, it is convenient to adapt an operator approach to vector fields.
The operator approach for studying time-varying vector fields and their flows in
control theory started with the work of Agrachev and Gamkrelidze [3]. One can
also find traces of this approach in the nilpotent Lie approximations for studying
controllability of systems [77], [78]. In [3] a framework is proposed for studying
complete time-varying vector fields and their flows. The cornerstone of this approach
is the space C∞(M), which is both an R-algebra and a locally convex vector space. In
this framework, a smooth vector field on M is considered as a derivation of C∞(M)
and a smooth diffeomorphism on M is considered as a unital R-algebra isomorphism
of C∞(M). Using a family of seminorms on C∞(M), weak topologies on the space of
derivations of C∞(M) and on the space of unital R-algebra isomorphisms of C∞(M)
are defined [3]. Then a time-varying vector field is considered as a curve on the
space of derivations of C∞(M) and its flow is considered as a curve on the space of
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R-algebra isomorphisms of C∞(M). While this framework seems to be designed for
smooth vector fields and their flows, in [3] and [4] the same framework is used for
studying time-varying “real analytic” vector fields and their flows.

In this thesis, we present a coherent framework for studying time-varying vector
fields of different regularity classes. While we only focus on smooth and real analytic
vector fields, this setting can be generalized to include a variety of regularity classes
[42]. In order to include real analytic vector fields and their flows in our framework
in a consistent way, we can generalize the operator approach of [3] by replacing the
locally convex space C∞(M) with Cν(M), where ν ∈ {∞, ω}. In particular, using
the result of [26], we show that there is a one-to-one correspondence between real
analytic vector fields on M and derivations of Cω(M). Moreover, using the results of
[60], we show that Cω-maps are in one-to-one correspondence with unital R-algebra
homomorphisms on Cω(M). This allows us to unify the smooth and real analytic
classes of regularity in a setting where there is a one-to-one correspondence between
Cν-vector fields and derivations of Cν(M) and there is a one-to-one correspondence
between Cν-maps on M and unital R-algebra homomorphisms on Cν(M). Using
these characterizations, we can consider a time-varying Cν-vector field on M as a
curve on the vector space of derivations of Cν(M). In order to study properties of
this curve, we need to define a topology on the space of derivations of Cν(M).

Using the Cν-topology on Cν(M), one can define the topology of pointwise-
convergence on the space L(Cν(M);Cν(M)) of linear continuous maps between
Cν(M) and Cν(M). One can show that L(Cν(M);Cν(M)) equipped with the topol-
ogy of pointwise-convergence is a locally convex space with many nice properties.
This topology also induces a locally convex topology on the space of derivations of
Cν(M) and enables us to study different properties of time-varying vector fields. In
particular, we can use the framework in [6] to define and characterize the Bochner
integrability of curves on L(Cν(M);Cν(M)).

As we mentioned above, one of the most fundamental and interesting properties
of a real analytic vector field on R is that it can be extended to a holomorphic vector
field on a neighbourhood Ω of R in C. It would be interesting to ask whether such
a holomorphic extension exists for a “time-varying” real analytic vector field. The
following example shows that the answer to this question is negative in general.

Example. Define the time-varying vector field X : R× R→ TR as

X(t, x) =

{
t2

t2+x2
∂
∂x

x ̸= 0 or t ̸= 0,

0 x, t = 0.

One can easily see that X is measurable with respect to t and real analytic with
respect to x. Now suppose that there exists T ⊆ R a neighbourhood of t = 0, a
connected neighbourhood U of R in C, and a time-varying vector field X : T× U →
TC which is measurable in time and holomorphic in state such that

X(t, x) = X(t, x) ∀x ∈ R, ∀t ∈ T.
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Since 0 ∈ T, there exists t ∈ T such that cl(Dt(0)) ⊆ U . Let us fix this t and define
the real analytic vector field Xt : R→ TR as

Xt(x) =
t2

t2 + x2
∂

∂x
, ∀x ∈ R,

and the holomorphic vector field X t : U → TC as

X t(z) = X(t, z) ∀z ∈ U,

Then it is clear that X t is a holomorphic extension of Xt. However, one can define
another holomorphic vector field Y : Dt(0)→ TC by

Y (z) =
t2

t2 + z2
∂

∂z
, ∀z ∈ Dt(0),

It is easy to observe that Y is also a holomorphic extension ofXt. Thus, by the identity
theorem, we should have Y (z) = X t(z), for all z ∈ Dt(0). Moreover, we should have
U ⊆ Dt(0). However, this is a contradiction with the fact that cl(Dt(0)) ⊆ U .

As the above example suggests, without any joint condition on time and space,
it is impossible to prove a holomorphic extension result similar to the time-invariant
real analytic vector fields. It turns out that “local Bochner integrability” is the right
joint condition for a time-varying real analytic vector field to have a holomorphic
extension. Using the inductive limit characterization of the space of real analytic
vector fields, we show that the “global” extension of “locally Bochner integrable”
time-varying real analytic vector fields is possible. More specifically, we show that,
for a locally Bochner integrable time-varying real analytic vector field X on M , there
exists a locally Bochner integrable holomorphic extension on a neighbourhood of
M . We call this result a “global” extension since it proves the existence of the
holomorphic extension of a time-varying vector field to a neighbourhood of its “whole”
state domain.

In order to study the holomorphic extension of a “single” locally Bochner inte-
grable time-varying real analytic vector field, the global extension result is a perfect
tool. However, this extension theorem is indecisive when it comes to questions about
holomorphic extension of all elements of a family of locally Bochner integrable time-
varying real analytic vector fields to a “single” domain. Using the projective limit
characterization of space of real analytic vector fields, we show that one can “locally”
extend every element of a bounded family of locally Bochner integrable time-varying
real analytic vector fields to a time-varying holomorphic vector field defined on a
single domain.

Another important question is the connection between time-varying vector fields
and their flows. In [3], using the characterizations of vector fields as derivations and
their flows as unital algebra isomorphism, the “nonlinear” differential equation on Rn

for flows of a complete time-varying vector field is transformed into a “linear” differ-
ential equation on the infinite-dimensional locally convex space L(C∞(Rn);C∞(Rn)).
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While working with linear differential equations seems to be more desirable than
working with their nonlinear counterparts, the fact that the underlying space of this
linear differential equation is an infinite-dimensional locally convex spaces makes this
study more complicated. In fact, the theory of linear ordinary differential equations
on a locally convex spaces is completely different from the classical theory of linear
differential equations on Rn or Banach spaces [56]. While, for the Banach space case,
every linear ordinary differential equations has a unique solution, the existence of
solutions of an ordinary differential equation on a locally convex space heavily de-
pends on the geometry of the underlying space [56]. Moreover, most of the theorems
and techniques in classical differential equations are not applicable when dealing with
locally convex spaces. For example, one can easily find counterexamples for Peano’s
existence theorem [56]. In [3] it has been shown that, if the vector field is integrable
in time, real analytic in state, and has a bounded holomorphic extension to a neigh-
bourhood of Rn, the sequence of Picard iterations for the linear infinite-dimensional
differential equation converges in L(C∞(Rn);C∞(Rn)). In this case, one can repre-
sent flows of a time-varying real analytic system as a series of iterated composition
of the time-varying vector field.

The techniques that we developed in this thesis help us to study the differential
equations governing the flows of time-varying Cν-vector fields in a consistent way.
The framework we developed for studying time-varying Cν-vector fields plays a cru-
cial role in this analysis. Using the fact that time-varying vector fields and their flows
are curves on L(Cν(M);Cν(M)), we translate the nonlinear differential equation gov-
erning the flow a time-varying Cν-vector field into a “linear” differential equation on
L(Cν(M);Cν(M)). In the real analytic case, we show that a solution for the “linear”
differential equation of a “locally Bochner integrable” time-varying real analytic vec-
tor field exists and is unique. In particular, using a family of generating seminorms
on the space of real analytic functions, we show that the sequence of Picard iterations
for our “linear” differential equation on the locally convex space L(Cω(M);Cω(M))
converges. This will generalize the result of [3, Proposition 2.1] to the case of locally
Bochner integrable time-varying real analytic vector fields.

In chapter 4, we turn our attention to a new framework for modeling control
systems. Since the advent of mathematical control theory, many different models
have been used for studying control systems. In 1930’s, starting with the works of
Nyquist [63], Bode [11], and Black [10], the frequency response and transform methods
became the dominant techniques for studying control systems. This methodology has
the benefit of representing feedback in a nice way. In 1960’s a paradigm shift has
been made in control theory from the frequency based model to the state-space model.
This change was partly motivated by the influential works of Kalman [45], [44] and
Pontryagin and his collaborators [64]. In 1970’s control theorists started to generalize
the results of the state-space framework to nonlinear control systems. At the same
time, a geometric approach to study classical mechanics, as in the work of Abraham
and Marsden [1], started to gain prominence. Both of these developments inspired
the use of differential geometry and Lie theory in control theory [31], [33], [35], [79],
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[74], [75]. This resulted in a change of language and techniques in the mathematical
theory of control. A geometric model for control theory considers a control system as
a family of parametrized vector fields {F u}u∈U , where U is the set of all “inputs” or
“controls”. Since this model is independent of coordinates, it is more convenient for a
geometric study of control systems. However, this model has some shortfalls. While
most of the fundamental properties of control systems depend on their trajectories,
this model has dependence on the specific parametrization of the vector fields of the
control system. This makes many techniques and theories that are presented in this
model dependent on the specific choice of parameter for the vector fields of the system.
The following example shows that even the simple “linear” test for controllability of
systems is not parameterization-independent.

Example ([54]). Consider the control systems Σ1 and Σ2 on R3, where Σ1 is defined
as

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t),

where (u1, u2) ∈ R2 and the control system Σ2 is defined as

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + x3(t)v1(t),

ẋ3(t) = v2(t),

where (v1, v2) ∈ R2. It is easy to note that under the bijective transformation(
u1
u2

)
=

(
v1
v2

)
+

(
1
0

)
the two control systems Σ1 and Σ2 are identical. This implies that Σ1 and Σ2 have
the same trajectories and therefore have the same small-time local controllability.
However, if we apply the linear test to Σ1 and Σ2, one can observe that the lineariza-
tion of Σ2 is controllable at (0, 0, 0) and this implies that Σ2 (and therefore Σ1) is
small-time locally controllable at (0, 0, 0). However, the linearization of Σ1 is not
controllable at (0, 0, 0). This implies that the linear test is indecisive for small-time
local controllability of Σ1 at (0, 0, 0).

This example motivates the construction of a setting for studying a control system
which is independent of parametrization of vector fields of the system. In [55] a
parameterization-independent methodology called “tautological control systems” has
been developed using the notion of a sheaf of sets of vector fields. Considering control
systems as sheaves of vector fields makes control systems at the level of definition
independent of control parametrization. Moreover, it allows us to consider regularity
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of the control systems in a consistent manner. In this thesis, following [55], we
introduce tautological control systems and study their connection with the classical
control systems. We also define the appropriate notion of trajectory for tautological
control systems.

One of the most fundamental theorems in geometric control theory is the
Chow–Rashevskii theorem. Let S = {X1, X2, . . . , Xn} be a family of vector fields
on a manifold M . Given a point x0 ∈ M , the orbit of S passing through x0 is the
set of all points of M which can be reached from x0 by traveling along trajectories of
vector fields of S in both positive and negative times. The Chow–Rashevskii theorem
connects some of the properties of orbits of S to the Lie brackets of vector fields in
S. In order to state the Chow–Rashevskii theorem, we first need to introduce some
terminology. A distribution on TM generated by S is the assignment DS such that,
for every x ∈M , DS(x) is the vector subspace of TxM defined by

DS(x) = span{X1(x), X2(x), . . . , Xn(x)}.

We say that a vector field Y belongs to the distribution DS (and we write Y ∈ DS)
if, for every x ∈M , we have

Y (x) ∈ DS(x).

A distribution DS is involutive if, for every Y, Z ∈ DS, [Y, Z] ∈ DS. An integral
manifold of DS is a connected submanifold N ofM such that TxN = DS(x) for every
x ∈ N . In other words, N is an integral manifold of DS if DS is the tangent space
of N at every point. It is easy to check that not every distribution has an integral
manifold. A distribution DS on TM is called integrable if, for every x ∈ M , there
exists a maximal integral manifold of DS passing through x.

Given a family of vector fields S = {X1, X2, . . . Xn} on the manifoldM , we denote
the Lie algebra generated by this family of vector fields by Lie(S). Chow [17] and Ra-
shevskii [65] independently showed that if, for x0 ∈ M , we have Lie(S)(x0) = Tx0M ,
then the orbit of S passing through x0 contains a neighbourhood of x0. While the
Chow–Rashevskii theorem only gives us information about orbit of S passing through
x0 when Lie(S)(x0) = Tx0M , it would be interesting to investigate the structure of
this orbit when Lie(S)(x0) ̸= Tx0M . As mentioned in [74], if the distribution Lie(S) is
integrable, it is still possible to apply the Chow–Rashevskii theorem for the maximal
integral manifold of the distribution Lie(S). Unfortunately, the distribution Lie(S) is
not generally integrable for a family of smooth vector fields. This can be seen using
the following example.

Example ([74]). Consider the family of vector fields S = {X1, X2} on R2 defined as

X1 =
∂

∂x
,

X2 = ϕ(x)
∂

∂y
.
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Where ϕ : R→ R is defined as

ϕ(x) =

{
e−

1
x2 x > 0,

0 x ≤ 0.

Let I be the maximal integral manifold of Lie({X1, X2}) passing through (0, 0) ∈ R2.
Note that we have

dim(Lie({X1, X2})(0, 0)) = 1.

Thus, the integral manifold I is a 1-dimensional manifold. However, we have

Lie({X1, X2})(0, 0) = span

{
∂

∂x
(0, 0)

}
This implies that, there exists (x0, y0) ∈ I such that x0 > 0. However, at (x0, y0), we
have

dim(Lie({X1, X2})(0, 0)) = 2,

which is a contradiction. Thus the integral manifold of Lie({X1, X2}) passing through
(0, 0) ∈ R2 does not exist.

As is shown in the example above, for a family S = {X1, X2, . . . , Xn} of smooth
but non-real-analytic vector fields, it is possible that the involutive distribution Lie(S)
does not have a maximal integral manifold. In 1974, Sussmann [74] and Stefan [72]
independently proved a singular version of the Chow–Rashevskii theorem for smooth
vector fields called the “orbit theorem”. Using the concatenation of flows of the
vector fields {X1, . . . , Xn}, Sussmann defined a distribution PS. Instead of working
with involutive distribution Lie(S), Sussmann considered the distribution PS. In
particular, he showed that, given smooth vector fields S = {X1, X2, . . . , Xn}, the
distribution PS is integrable and its maximal integral manifolds are exactly the S-
orbits [74]. This implies that S-orbits are smooth submanifolds of M and completely
characterizes the tangent space to S-orbits.

Stefan introduced the notion of singular foliation in [72]. One can consider a
singular foliation as a generalization of the notion of foliation where the leaves does
not necessarily have the same dimension. Stefan proved that a family of smooth
vector fields S = {X1, X2, . . . , Xn} induces a “singular foliation” structure on M
and using the same distribution PS, he completely characterizes the tangent space to
leaves of this foliation [72].

It would be natural to expect that if the distribution Lie(S) is integrable, then
it coincides with the distribution PS. Both Sussmann and Stefan studied conditions
under which the distribution Lie(S) is integrable and Lie(S) and PS are identical.
In the differential geometry literature, numerous conditions have been developed for
the integrability of a distribution. The Frobenius theorem is one of the first and
most well-known of these results. According to the Frobenius theorem, if the rank
of the distribution Lie(S) is locally constant at every point on its domain, then it
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is integrable. In 1963, Hermann proposed two other conditions for integrability of
Lie(S) [32]. By considering the space of smooth vector fields as a module over the
ring C∞(M), Hermann showed that the module structure of the family of vector
fields S plays a crucial role in the integrability of Lie(S) [32]. He defined a C∞(M)-
module generated by vector fields in S and their Lie brackets and showed that if this
module has some finiteness property, then the distribution Lie(S) is integrable [32,
2.1(b)]. Hermann’s second condition dealt with real analyticity of vector fields in S.
He claimed that if the vector fields in S are real analytic, the distribution Lie(S) is
integrable [32, 2.1(c)]. However, he did not give any proof for this claim in his paper.
Three years later, Nagano [62] showed that if the vector fields in S are real analytic,
the distribution Lie(S) is integrable. In 1970, Lobry introduced a weaker condition
called “locally of finite type” and showed that (up to a minor error later discovered
by Stefan) if the distribution Lie(S) is locally of finite type, then it is integrable [57].
Using the Noetherian property of the space of germs of real analytic functions, Lobry
claimed that an involutive family of real analytic vector fields is locally of finite type
[57, Proposition 1.2.8]. However, Lobry did not give a complete proof of this claim.

In this thesis, following the approach of [72], we prove a similar orbit theorem for
tautological control systems. While this result can be considered as a generalization
of the orbit theorem, its proof is essentially the same as the proof of the orbit theorem
for ordinary control systems. However, the power of the tautological control system
approach becomes more clear in the real analytic case, where we show that the “lo-
cally finitely generated” property of the presheaf of Lie brackets of vector fields of a
tautological control system can be used to characterize the orbits of the system using
the Lie brackets of vector fields of the system.

1.2. Contribution of thesis

In this thesis, we develop a unifying framework for studying time-varying vector
fields of smooth and real analytic regularity. The framework we developed can be
generalized to include time-varying vector fields of a variety of regularity classes [42].
The contribution of this thesis is as follows.

1. As mentioned in the previous section, in [3] and [4], an operator framework has
been used to study time-varying vector fields and their flows in Rn. In the heart
of the approach in [3] is the R-algebra C∞(Rn) and the locally convex topology
on it. In this approach, smooth vector fields are considered as derivations of
R-algebra C∞(Rn) and smooth maps are considered as unital R-algebra homo-
morphisms on C∞(Rn). Then one can consider a time-varying vector field as a
curve on the space of derivations of C∞(Rn). However, it seems that in both
[3] and [4] there is no consistency between regularity of vector fields and their
corresponding operators. For example, in [4], a real analytic vector field is also
considered as derivation of R-algebra C∞(Rn).
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In this thesis, we develop a unified setting for studying smooth and real ana-
lytic time-varying vector field in a consistent manner. In order to do this, we
generalize the frameworks in [3] and [4] in two ways. First, instead of working
with the R-algebra C∞(M) for all regularity classes, we consider the R-algebra
Cν(M), where ν ∈ {∞, ω}, consistent with the regularity of the problem. Using
the results of Grabowski [26] and Michael [60], we show that there is a one-to-
one correspondence between Cω-vector fields on M and derivations on Cω(M)
and there is a one-to-one correspondence between Cω-maps on M and unital
R-algebra homomorphisms of Cω(M). These results together with that proved
in [4] allow us to develop a setting for studying time-varying Cν-vector fields
and their flows which is consistent with regularity of the vector fields. While, we
only include the space of smooth and real analytic functions in this thesis, the
extension of this setting to other classes of regularity is straightforward and has
been done in [42]. Secondly, instead of focusing only on the space of functions
onM , we study the space of sections of a vector bundle (E,M, π). One can eas-
ily see that functions and vector fields can be obtained from this constructions
by considering the sections of the trivial line bundle and tangent bundle on M
respectively. Moreover, we define suitable topology on the space of Cν-sections,
which makes it into a complete locally convex space. This topology in the
smooth case is the well-known “smooth compact-open” topology. However, for
the real analytic sections, following [59], we define the topology using the germ
of holomorphic sections. This topology, which turns out to be finer than the
restriction of smooth compact-open topology, plays a crucial role in studying
the local and global holomorphic extension of time-varying real analytic vector
fields.

2. It is well-known that every real analytic function on R can be extended to a
holomorphic function on a neighbourhood Ω ⊆ C of R. Similarly, one can
extend a real analytic function (vector field) on a real analytic manifold M to
a holomorphic function (vector field) on a complexification of M [18, Lemma
5.40]. In control theory, it is sometimes crucial to work with time-varying vector
fields. Since the class of real analytic regularity is of considerable importance
in control theory, it is interesting to study time-varying real analytic vector
fields. As mentioned in the introduction, the class of real analytic maps has a
close connection with the class of holomorphic maps. Therefore, one would like
to see if it is possible to extend a time-varying real analytic vector field to a
time-varying holomorphic vector field. In the previous section we showed that
generally such an extension is not possible. One would then try to impose some
appropriate joint regularity condition on time and state to ensure the existence
of such an extension. In chapter 3, we develop tools and techniques for studying
time-varying vector fields as curves on Γν(TM). In particular, following the
approach in [6] and using the properties of the locally convex space Γν(TM),
we study and characterize the “Bochner integrability” of curves on Γν(TM).



On the role of regularity in mathematical control theory 13

We then use the inductive limit representation of the space Γω(TM) to show
that one can extend a “locally Bochner integrable” time-varying real analytic
vector field on M to a locally Bochner integrable holomorphic vector field on
a complexification of M (Theorem 3.7.4). We call this result the “global”
extension result, since it proves the existence of a holomorphic extension on
the “whole” domain M . While this theorem is the right tool for studying
extension of a “single” time-varying real analytic vector field, it is indecisive
for studying the holomorphic extension of a family of time-varying real analytic
vector fields. In Theorem 3.7.8, using the projective limit representation of the
space Γω(TM), we show that all members of a “bounded” family of locally
Bochner integrable real analytic vector fields have holomorphic extensions to a
common domain of states.

3. Following the chronological calculus of Agrachev and Gamkrelidze [3], one can
consider the “nonlinear” differential equation governing the flow of a time-
varying vector field as a “linear” differential equation on the infinite-dimensional
locally convex space L(C∞(M);C∞(M)). In [3] and [4] this “linear” differential
equation has been studied on L(C∞(M);C∞(M)) for the real analytic vector
fields. The approach used in both [3] and [4] is to construct the so-called se-
quence of Picard iterations for the “linear” differential equation and show that
this sequence converges. In [3] it has been shown that, if a locally integrable
time-varying real analytic vector field on Rn has a bounded extension to a locally
integrable time-varying holomorphic vector field on Cn, then the sequence of Pi-
card iterations for the extended vector field converges in L(Chol(M);Chol(M)).
In [4], it has been shown that, for every locally integrable time-varying real
analytic vector field on a real analytic manifold M , the sequence of Picard it-
erations converges in L(C∞(M);C∞(M)). In this thesis, we show that for a
time-varying Cν-vector fields, the associated “linear” differential equation is a
differential equation on the locally convex space L(Cν(M);Cν(M)). In Theorem
3.8.1 we study this “linear” differential equation for the holomorphic and real
analytic case in a consistent manner. As mentioned in the previous section, we
show that a locally Bochner integrable time-varying real analytic vector field X
can be considered as a locally Bochner integrable curve on L(Cω(M);Cω(M)).
Therefore, the “linear” differential equation for the flows of X is a “linear”
differential equation on the locally convex space L(Cω(M);Cω(M)). Using the
extension results developed in Theorem 3.7.4 and appropriate estimates for the
seminorms on the space of real analytic functions (equation (3.3.2)), we show
that the sequence of Picard iterations for this “linear” differential equation con-
verges in L(Cω(M);Cω(M)). This will give us the convergence of the sequence
of Picard iterations for the locally Bochner integrable time-varying real analytic
vector field in the real analytic topology.

4. We finish chapter 3 by studying the connection between locally Bochner in-
tegrable time-varying Cν-vector fields and their flows. We consider locally
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Bochner integrable time-varying Cν-vector fields as locally Bochner integrable
curves on the space L(Cν(M);Cν(M)). Moreover, by Theorem 3.8.1, we
know that the flow of a locally Bochner integrable time-varying Cν-vector field
can also be considered as a locally absolutely continuous curve on the space
L(Cν(M);Cν(U)), for some open set U . In Example 3.9.1, it has been clari-
fied that any map which assigns to a locally Bochner integrable time-varying
vector field its flow can only be defined into the space of “germs” of flows. We
then proceed to define the “exponential map” which assigns to the germ of
a locally Bochner integrable curve around (t0, x0) ∈ R × M , the germ of its
flow around (x0, t0). Using suitable topologies on the space of locally Bochner
integrable curves on L(Cν(M);Cν(M)) and the space of locally absolutely con-
tinuous curves on L(Cν(M);Cν(U)), one can induce topologies on domain and
codomain of the exponential map. In particular, we show that, using these
topologies, the exponential map is sequentially continuous.

5. One can use the framework developed in chapter 3 to study regularity of control
systems. Using the Cν-topologies developed in chapter 3, we define a new class
of control systems called Cν-control systems. This control system is a family
of parametrized vector fields {F u}u∈U , where the control set U is a general
“topological space”. We study regularity of Cν-control systems and we show
that, by imposing appropriate conditions on {F u}u∈U coming from Cν-topology
on Γν(M), we could ensure that the regularity of the flows of a Cν-control system
is consistent with the regularity of the system itself. In the real analytic case, the
class of Cω-control systems is new and deep. Moreover, using the Cω-topology
on the space of real analytic vector fields, we study the relationship between
real analytic control systems and holomorphic control systems. In particular,
we show that when U is locally compact, every real analytic control system
can be extended “locally” to a holomorphic control system on an appropriate
manifold.

6. In chapter 4, following [55], we present a model for studying control system
called “tautological control system”. Instead of considering control systems as
a “parametrized” family of vector fields, a tautological control system is defined
as a presheaf of vector fields. Therefore, the tautological framework removes the
dependence of the definition of control systems on “control parametrization”.
However, this arises some difficulties in defining trajectories of a system. We
define etalé trajectories of a tautological control systems and we show that this
notion of the trajectory is the right one for studying orbits of the system and
its properties.

7. In chapter 5, we study the orbits of Cν-tautological control systems. We general-
ize proof of the orbit theorem given in [72] to the case of Cν-tautological control
systems. In particular, for every Cν-tautological control system Σ = (M,F ),
we define a subpresheaf F of the sheaf of Cν-vector fields onM , which is called
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the homogeneous presheaf associated to F . We show that, for every point x on
the manifoldM , the tangent space to the orbit of Σ passing through x is F (x).
Similar to the classical orbit theorem, it would be interesting to see whether
one can characterize F (x) using the Lie brackets of vector fields of the system.
In particular, one would like to find conditions under which we have

F (x) = Lie(F )(x).

Given a family of vector fields S, Hermann observed that the module struc-
ture of the vector fields of the system plays a essential role in the integrability
of the distribution Lie(S). More specifically, Hermann showed that if Lie(S)
is a locally finitely generated module, then the distributions Lie(S) and PS
coincides [31, 2.1(c)]. Unfortunately, one cannot generalize Hermann’s condi-
tion for tautological control systems. In particular, Example 5.4.13 gives a real
analytic tautological control system (M,F ) such that, for every open neigh-
bourhood U of x, Lie(F )(U) is a locally finitely generated Cω(M)-module but
F (x) ̸= Lie(F )(x).

Thus, for a tautological control system (M,F ), the fact that Lie(F ) is a locally
finitely generated module does not generally imply that F (x) = Lie(F )(x). In
this thesis, we considering Lie(F ) as a subpresheaf of the sheaf of Cν-vector
fields on M . Then we show that if Lie(F ) is a “locally finitely generated
presheaf”, then, for every x ∈M , we have

F (x) = Lie(F )(x).

Thus the difference between Lie(F ) being a locally finitely generated module
and a locally finitely generated presheaf is crucial here. It should be noted
that the first condition is a condition on the local section of Lie(F ), while the
second one is a condition on germs of sections in Lie(F ). In particular, for a
globally generated real analytic tautological control system Σ = (M,F ), using
the Weierstrass Prepration theorem and the Noetherian property of analytic
sheaves, one can show that the presheaf Lie(F ) is locally finitely generated.
Therefore, for globally generated real analytic tautological control systems, we
have

F (x) = Lie(F )(x).



Chapter 2

Mathematical notation and
background

In this chapter, we present the mathematical background and notation used in this
thesis. Our treatment of every subject in this section is not comprehensive and we
refer to the references for a detailed study of each topic.

2.1. Manifolds and mappings

Definition 2.1.1. A multi-index of order m is an element (r) = (r1, r2, . . . , rm) ∈
(Z≥0)

m. For all multindices (r) and (s) of order m, every x = (x1, x2, . . . , xm) ∈ Rm,
and f : Rm → Rn, we define

|r| = r1 + r2 + . . .+ rm,

(r) + (s) = (r1 + s1, r2 + s2, . . . , rm + sm),

(r)! = r1!r2! . . . rm!,

x(r) = xr11 x
r2
2 . . . x

rm
m ,

D(r)f(x) =
∂|r|f

∂xr11 ∂x
r2
2 . . . ∂x

rm
m

,(
(r)

(s)

)
=

(
r1
s1

)(
r2
s2

)
. . .

(
rm
sm

)
.

We denote the multi-index (0, 0, . . . , 1, . . . , 0) ∈ (Z≥0)
m, where 1 is in the i-th place,

by (̂i). One can compare multindices (r), (s) ∈ (Z≥0)
m. We say that (s) ≤ (r) if, for

every i ∈ {1, 2, . . . ,m}, we have si ≤ ri.

Definition 2.1.2. The space of all decreasing sequences {ai}i∈N such that ai ∈ R>0

and limn→∞ an = 0 is denoted by c↓0(Z≥0;R>0).

Definition 2.1.3. Let Ω ⊆ Rn be an open set and x0 ∈ Ω. A mapping f : Ω → Rl

is smooth, or of class C∞ at point x0, if there exists a neighbourhood U ⊆ Ω of x0

16



On the role of regularity in mathematical control theory 17

such that, for every m ∈ N and every (r) ∈ (Z≥0)
m, the mapping D(r)f : U → Rm|r|

is continuous.
A mapping f : Ω→ Rl is smooth on Ω if, for every x0 ∈ Ω, f is smooth at x0.

Definition 2.1.4. Let Ω ⊆ Rn be an open set, x0 ∈ Ω, and f : Ω → Rl be a
C∞-mapping at x0. Then the Taylor series of f at x0 is the power series∑

(r)∈(Z≥0)m

1

(r)!

[
D(r)f(x0)

]
(x− x0)(r). (2.1.1)

A C∞-mapping f : Ω→ Rl is real analytic or of class Cω if, for every x0 ∈ Ω,
there exists ρ > 0 such that the Taylor series (2.1.1) of f at x0 converges to f(x) for
all ∥x− x0∥ < ρ.

A mapping f : Ω → Rl is real analytic on Ω if, for every x0 ∈ Ω, it is real
analytic at x0.

The class of Cω-maps are strictly contained in class of C∞-maps. The following
theorem characterizes real analytic functions as a subset of smooth functions [49,
Proposition 2.2.10].

Theorem 2.1.5. Let Ω ⊆ Rn be an open set and f : Ω→ Rl be smooth on Ω. Then
the following are equivalent:

1. f is real analytic on Ω;

2. there exists open set U ⊆ Cn such that Ω ⊂ U and a holomorphic function
f : U → Cl such that

f(x) = f(x), ∀x ∈ Ω;

3. for every x ∈ Ω, there exists V ⊆ Ω containing x and R,C > 0 such that∥∥∥∥ ∂|r|f∂x(r)
(x)

∥∥∥∥ ≤ C(r)!

R|r| , ∀(r) ∈ (Z≥0)
m.

Definition 2.1.6. Let ν ∈ {∞, ω, hol}, n ∈ N, and F ∈ {C,R}, where F = C if
ν = hol. Then a Cν-manifold is a Hausdorff, second countable topological space M
equipped with a family A of maps such that

1. for every ϕ ∈ A , ϕ : Dϕ → Rϕ is a homeomorphism from an open subset
Dϕ ⊆M onto an open set Rϕ ⊆ Fn,

2.
⋃
ϕ∈A Dϕ =M ,

3. for every ϕ, ψ ∈ A , the map ϕ ◦ψ−1 : ψ(Dϕ ∩Dψ)→ ϕ(Dϕ ∩Dψ) is of class C
ν .

The family A is called an atlas onM . Members of A are called coordinate charts
on M . We usually refer to a coordinate chart as a pair (Dϕ, ϕ). The integer n is
called the dimension of the manifold and we write dimFM = n.
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Definition 2.1.7. Let M and N be two Cν-manifolds and x0 ∈ M . A mapping
F : M → N is of class Cν at x0 if there exists a coordinate chart (ϕ,Dϕ) on
M containing x0 and a coordinate chart (ψ,Dψ) on N containing f(x0) such that
F (Dϕ) ⊆ Dψ and the mapping

ψ ◦F ◦ϕ−1 : ϕ(Dϕ)→ ψ(Dψ),

is of class Cν at ϕ(x0).
A mapping f :M → N is of class Cν if, for every x ∈M , it is of class Cν at x.

If ν = ∞, we consider the manifold M to be of class C∞. Manifolds of class Cν

are also called smooth manifolds.
If ν = ω, the manifold M is considered to be of class Cω. Manifolds of class Cω

are usually called real analytic manifolds.
Finally, if ν = hol, we consider the manifold M to be a Chol-manifold. Manifolds

of class Chol are usually called holomorphic manifolds.

Definition 2.1.8. The set of all Cν-functions f :M → F is denoted by Cν(M).

The set Cν(M) is clearly an F-vector space under addition and scalar multiplica-
tion defined as

(f + g)(x) = f(x) + g(x), ∀f, g ∈ Cν(M),

(λf)(x) = λf(x), ∀f ∈ Cν(M), λ ∈ F.

Since every Cν-manifold of dimension n is locally diffeomorphic with Fn, one can
see that locally Cν-functions do exists. However, in the case of holomorphic manifolds,
it is possible that the set of globally defined holomorphic functions are very restricted
(for example, when M is a compact holomorphic manifold, then Chol(M) consists
only of locally constant functions) [28, Chapter V, Theorem 2.4]. We restrict our
analysis to a class of holomorphic manifolds which turns out to have good supply of
globally defined holomorphic functions.

Definition 2.1.9. A Chol-manifold is called a Stein manifold if,

1. for every compact set K ⊆M , the set

K̂ = {z ∈M | ∥f(z)∥ ≤ sup
z∈K
∥f(z)∥, for every f ∈ Chol(M)},

is a compact subset of M .

2. the set Chol(M) separate points on M (i.e., for every z1, z2 ∈ M such that
z1 ̸= z2, there exists f ∈ Chol(M) such that f(z1) ̸= f(z2)).

One can show that Stein manifolds have “enough” global functions to construct
local charts.
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Theorem 2.1.10. Let M be a Stein manifold. Then, for every z0 ∈ M , there exist
f1, f2, . . . , fn ∈ Chol(M) and a neighbourhood U around z0 such that (U, ϕ), where
ϕ : U → Rn given by

ϕ(z) = (f1(z), f2(z), . . . , fn(z)), ∀z ∈ U,

is a coordinate chart around z0.

For a Cν-manifold M , one can attach a vector space to every point on a manifold
and glue these vector spaces in such a way that the whole space “locally” looks like
M × Rk. These structures arises frequently in differential geometry and are called
vector bundles.

Definition 2.1.11. Let M be a Cν-manifold. A Cν-vector bundle over M is a
triple (E,M, π) where E is a Cν-manifold and π : E →M is a Cν-map such that

1. for every x ∈ M , the set Ex = π−1(x) (which is usually called the fiber of E
at x) is a k-dimensional F-vector space;

2. for every x ∈ M , there exists a neighbourhood U of x in M and a Cν-
diffeomorphism Φ : π−1(U) → U × Fk such that the following diagram com-
mutes:

π−1(U) Φ //

π
%%

U × Fk

pr1
��
U

where pr1 : U × Fk → U is the projection into the first factor;

3. for every x ∈M , the restriction of Φ to Ex is a linear isomorphism from Ex to
Fk.

Definition 2.1.12. Let (E,M, π) be a Cν-vector bundle. A Cν-section of (E,M, π)
is a Cν-map σ : E →M such that

π ◦σ = idM .

The set of all Cν-sections of a Cν-vector bundle (E,M, π) is denoted by Γν(E).
One can show that Γν(E) is an F-vector space.

Let M be a Cν-manifold. One can show that (M × R,M, pr1) is a Cν-vector
bundle. Moreover, Cν-sections of (M × R,M, pr1) are exactly Cν-functions on M .

Now we can define maps between vector bundle and subbundles.

Definition 2.1.13. Let (E,M, π) and (E ′,M ′, π′) be two Cν-vector bundles. A Cν

vector bundle map between (E,M, π) and (E ′,M ′, π′) is a pair of maps (F, f) such
that
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1. The maps F : E → E ′ and f : M → M ′ are Cν and the following diagram
commutes:

E
F //

π
��

E ′

π′

��
M

f
//M ′

2. for every x ∈M , the map F |Ex : Ex → E ′
f(x) is linear.

Vector bundle (E,M, π) is a generalized vector subbundle of (E ′,M ′, π′) if
there exists a Cν-vector bundle map (F, f) such that

1. The maps F : E → E ′ and f :M →M ′ are Cν-embeddings, and

2. for every x ∈M , the map F |Ex : Ex → E ′
f(x) is injective.

Let (E,M, π) be a Cν-vector bundle and U ⊆ M be an open subset of M . We
set E|U= π−1(U). Then one can show that (E|U , U, π|U) is a generalized Cν-vector
subbundle of (E,M, π).

Definition 2.1.14. For the space Rn, we define the Euclidian norm ∥.∥Rn : Rn → R
as

∥v∥Rn =
(
v21 + v22 + . . .+ v2n

) 1
2 , ∀v ∈ Rn.

For the space Cn, we define the norm ∥.∥Cn : Cn → R as

∥v∥Cn = (v1v1 + v2v2 + . . .+ vnvn)
1
2 , ∀v ∈ Cn.

Let M be an n-dimensional Cν-manifold and (U, ϕ) be a coordinate chart on M .
Then we define ∥.∥(U,ϕ) : U → R as

∥x∥(U,ϕ) = ∥ϕ(x)∥Fn , ∀x ∈ U.

Let M be an n-dimensional Cν-manifold and (U, ϕ) be a coordinate chart on
M . Let f be a Cν-function on M . Then, for every multi-index (r), we define
∥D(r)f(x)∥(U,ϕ) as

∥D(r)f(x)∥(U,ϕ) = ∥D(r) (f ◦ϕ) (ϕ−1(x))∥F, ∀x ∈ U.

When the coordinate chart on M is understood, we usually omit the subscript (U, ϕ)
in the norm.

Let (E,M, π) be a Cν-vector bundle, M be an n-dimensional Cν-manifold, (U, ϕ)
be a coordinate chart on M , and η : π−1(U) → U × Rk be a local trivialization for
(E,M, π). Let X be a Cν-section of (E,M, π). Then, for every multi-index (r), we
define ∥D(r)X(x)∥(U,ϕ,η) as

∥D(r)X(x)∥(U,ϕ,η) = ∥D(r)
(
η ◦X ◦ϕ−1

)
(ϕ(x))∥F, ∀x ∈ U.

When the coordinate chart on M and the local trivialization on (E,M, π) is under-
stood, we usually omit the subscript (U, ϕ, η) in the norm.
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2.2. Complex analysis

In this section we review some well-known theorems from the theory of several
complex variables.

Definition 2.2.1. Let ω ∈ Cn. An open polydiscD(r)(ω) for (r) = (r1, r2, . . . , rn) ∈
(R>0)

n is a subset of Cn defined as

D(r)(ω) = {z ∈ Cn | ∥zi − ωi∥ < ri, ∀i ∈ {1, 2, . . . , n}}.

The Cauchy integral formula is one of the fundamental results in theory of func-
tions with one complex variable. Repeated application of Cauchy’s integral formula
for one variable will give us the following generalization of Cauchy’s integral formula
for several complex variables [37, Theorem 2.2.1].

Theorem 2.2.2. Let D(r)(z0) be an open polydisc in Cn and f ∈ C0(cl(D(r)(z0))),
such that f is analytic in each zi on D(r)(z0), when other variables are fixed. Then
we have

f(z) =
1

(2π)n

∫
∂0D(r)(z0)

f(z1, z2, . . . , zn)

(ω1 − z1)(ω2 − z2) . . . (ωn − zn)
dw1dw2 . . . dwn,

where ∂0D(r)(z0) is not the boundary of D(r)(z0), but it is a set defined as

∂0D(r)(z0) =
n∏
i=1

{z ∈ C | ∥zi − (z0)i∥ = ri}.

Using the Cauchy’s integral formula for several variables, one can get Cauchy’s
estimate for derivatives of holomorphic functions [37, Theorem 2.2.1].

Theorem 2.2.3. Let f ∈ Chol(D(r)(z0)). Then we have

∥∥D(s)f(z0)
∥∥ ≤ (s)!

(r)(s)
sup{∥f(z)∥ | z ∈ cl(D(r)(z0))}.

2.3. Topological vector spaces

2.3.1. Basic definitions. In this section we consider vector spaces over the field F,
where F ∈ {C,R}.

Definition 2.3.1. Let V be a vector space over field F with addition + : V ×V → F
and scalar multiplication . : F × V → V . Then a topology τ on V is called a
linear topology if, with respect to τ , both addition and scalar multiplication are
continuous. The pair (V, τ) is called a topological vector space.
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Definition 2.3.2. Let (V, τ) be a topological vector space.
A subset B ⊆ V is bounded if, for every neighbourhood U of 0 in V , there exists

α ∈ F such that B ⊂ αU .
A subset C ⊆ V is circled if, for every α ∈ F such that ∥α∥ ≤ 1, we have

αC ⊆ C.

A subset R ⊆ V is radial if, for every v ∈ V , there exists λv ∈ F such that v ∈ λR
for every λ such that ∥λ∥ ≤ ∥λv∥.

A subset A ⊆ V is convex if, for every α ∈ [0, 1] and every x, y ∈ A, we have

αx+ (1− α)y ∈ A

A subset A ⊆ V is absolutely convex if it is convex and circled.
A family U of open neighbourhoods of 0 in V is a local base for V if, for every

neighbourhood W of 0 in V , there exists U ∈ U such that U ⊆ W .
A family S of open neighbourhoods of 0 in V is a local subbase for V if, for

every neighbourhood W of 0 in V , there exists n ∈ N and S1, S2, . . . , Sn ∈ S such
that

⋂n
i=1 Si ⊆ W .

Definition 2.3.3. A topological vector space V satisfies theHeine–Borel property
if every closed and bounded subset of V is compact.

2.3.2. Locally convex topological vector spaces.

Definition 2.3.4. A topological vector space (V, τ) is locally convex if there exists
a local base U for V consisting of convex sets.

Definition 2.3.5. Let V be a vector space. A seminorm on V is a map p : V → R
such that

1. p(v) ≥ 0, ∀v ∈ V ,

2. p(αv) = ∥α∥p(v), ∀α ∈ F, ∀v ∈ V ,

3. p(v + w) ≤ p(v) + p(w), ∀v, w ∈ V .

For every seminorm p on V and every ϵ > 0, one can define a subset Up,ϵ as

Up,ϵ = {v ∈ V | p(v) < ϵ}.

Then the topology generated by p is the linear topology on V for which the family
{Up,ϵ}ϵ∈R>0 is a local subbase.

One can also associate to every convex, circled, and radial subset of V a seminorm.
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Definition 2.3.6. For every convex, circled, and radial set U ⊆ V , the Minkowski
functional of U is the map pU : V → R defined as

pU(v) = inf{α ∈ R≥0 | α−1v ∈ U}, ∀v ∈ V.

Since U is radial, we have

pU(v) <∞, ∀v ∈ V.

Since U is circled, we have
p−1
U ([0, 1)) = U.

Finally, since U is convex, the Minkowski functional pU is a seminorm [68, Theorem
1.35].

One can show that locally convex topological vector spaces can be characterized
using a family of seminorms.

Theorem 2.3.7. A topological vector space (V, τ) is locally convex, if and only if
there exists a family of seminorms {pi}i∈Λ on V which generates the topology τ .

Similarly, one can characterize boundedness in a locally convex topological vector
space using a family of generating seminorms [68, Theorem 1.37].

Theorem 2.3.8. Let V be a locally convex space with a family of generating semi-
norms {pi}i∈Λ. Then B ⊆ V is bounded if and only if, for every i ∈ Λ, there exists
Mi > 0 such that

pi(v) < Mi, ∀v ∈ B.

2.3.3. Uniformity on topological vector spaces. In a metric space there are many
concepts which are not topological but depend on the specific metric we use on the
space. One of these properties is being a Cauchy sequence. The following example
shows that, for a sequence in a topological space, the property of being Cauchy is not
topological.

Example 2.3.9 ([46]). Let X = (0,∞) and consider two metrics d1 : X × X → R
and d2 : X ×X → R defined as

d1(x, y) = |x− y|, ∀x, y ∈ X

d2(x, y) =

∣∣∣∣1x − 1

y

∣∣∣∣ , ∀x, y ∈ X.

Since the map f : (0,∞)→ (0,∞) defined by

f(x) =
1

x

is a homeomorphism, d1 and d2 induce the same topology on X (which is exactly the
subspace topology from R). However, the sequence { 1

n
}n∈N on X is Cauchy in (X, d1)

and it is not Cauchy in (X, d2).
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In order to study Cauchy sequences on topological spaces, topology does not suffice
and one needs some extra structure. This structure can be obtained by generalizing
the notion of metric.

Definition 2.3.10. Let X be a set and let U, V ⊆ X × X. Then we define U−1 ⊆
X ×X as

U−1 = {(x, y) | (y, x) ∈ U}.

Also we define U ◦V ⊆ X ×X as

U ◦V = {(x, y) ∈ X ×X | ∃z ∈ X s.t. (x, z) ∈ U and (z, y) ∈ V }.

Definition 2.3.11. Let X be a set. A uniformity on X is a family U of subsets of
X ×X such that

1. every member of U contains {(x, x) | x ∈ X},

2. if U ∈ U, then U−1 ∈ U,

3. if U ⊆ U, then there exists V ∈ U such that V ◦V ⊆ U .

4. for every U, V ∈ U, we have U
⋂
V ∈ U,

5. if U ∈ U, then, for every V such that U ⊆ V , we have V ∈ U.

By a unifrom space, we mean a pair (X,U), where X is a topological space and
U is a uniformity on X.

Definition 2.3.12. Let U be a uniformity on a topological spaceX. Then a subfamily
N of U is a base for U if, for every U ∈ U, there exists N ∈ N such that N ⊆ U .

Using a uniformity on a topological space, one can define the notion of complete-
ness. We first define nets on topological spaces.

Definition 2.3.13. Let Λ be a set. A binary relation ⪰ directs Λ if

1. for every i, j, k ∈ Λ, i ⪰ j and j ⪰ k implies i ⪰ k,

2. for every i ∈ Λ, we have i ⪰ i,

3. for every i, j ∈ Λ, there exists m ∈ Λ such that m ⪰ i and m ⪰ j.

A directed set is a pair (Λ,⪰) such that ⪰ directs Λ.

Definition 2.3.14. Let (Λ,⪰) be a directed set. A net from (Λ,⪰) to a space Y is
a function s : Λ→ Y . We usually denote a net s by {sα}α∈Λ.
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Definition 2.3.15. Let (Λ,⪰) be a directed set and (X,U) be a uniform space. Let
{sα}α∈Λ be a net in the uniform space (X,U). Then {sα}α∈Λ is a Cauchy net in
(X,U) if, for every U ∈ U, there exists β ∈ Λ such that, for every m,n ∈ Λ with the
property that m ⪰ β and n ⪰ β, we have

(sm, sn) ∈ U.

Definition 2.3.16. A uniform space (X,U) is complete if every Cauchy net in
(X,U) converges to a point in X.

Since we are studying topological vector spaces, we would like to see if it is possible
to define uniformity on a topological vector space using its topological structure. We
first define translation-invariant uniformities on vector spaces.

Definition 2.3.17. Let V be a vector space. A uniformity U on V is translation-
invariant if there exists a base N for U such that, for every N ∈ N and every
x, y, z ∈ V , (x, y) ∈ N if and only if (x+ z, y + z) ∈ N .

The following theorem is of considerable importance in the theory of topolog-
ical vector spaces. It allows us to study the notions of completeness and Cauchy
convergence in topological vector spaces without ambiguity [69, Chapter 1, §1.4].

Theorem 2.3.18. Let V be a topological vector space. The topology of V induces a
unique translation-invariant uniformity U. In particular, if B is a local neighbourhood
base for topology on V , then N defined as

N = {(x, y) ∈ V × V | x− y ∈ V }

is a base for the uniformity U.

Therefore, given a topological vector space V , one can define Cauchy nets and
Cauchy sequences on V using this unique translation-invariant uniformity. In general
a topological vector space equipped with this translation-invariant uniformity may
not be complete. However, one can show that V is contained as a dense subset in a
complete topological vector space V̂ [69, Chapter 1, §1.5].

Theorem 2.3.19. Let V be a Hausdorff, locally convex vector space. Then there
exists a unique complete, locally convex vector space V̂ which contains V as a dense
subset.

We usually call the unique locally convex vector space V̂ associated with V the
completion of V .
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2.3.4. Dual space and dual topologies.

Definition 2.3.20. Let V be a topological vector space. Then the algebraic dual
of V , which is denoted by V ∗, is the set

V ∗ = {f : V → F | f is linear}

It is easy to see that V ∗ is a vector space.
The topological dual of V , which is denoted by V ′, is the set

V ′ = {f : V → F | f is continuous and linear}

The set V ′ is clearly a vector space.

Definition 2.3.21. Let (V, τ) be a locally convex space and let V ′ be the topolog-
ical dual of V . Then the coarsest topology on V , which makes all members of V ′

continuous is called the weak topology V .

It can be shown that the weak topology on V is a locally convex topology. In
particular, one can define a family of generating seminorms for the weak topology on
V .

Theorem 2.3.22. Let V be a locally convex space and V ′ be the topological dual of
V . Then, for every f ∈ V ′, we define the seminorm pf : V → F as

pf (v) = |f(v)|, ∀v ∈ V.

The family of seminorms {pf}f∈V ′ generates the weak topology on V .

To distinguish between topologies on a locally convex space V , we denote the
weak topology on V by σ(V, V ′). Since (V, (σ(V, V ′))) is a locally convex space, one
can define appropriate notions of compactness, boundedness and, convergence on it.

Definition 2.3.23. Let V be a locally convex space.

1. A subset K ⊆ V is weakly compact if it is compact in (V, σ(V, V ′)),

2. a subset S ⊆ V is relatively weakly compact if the σ(V, V ′)-closure of S is
compact in (V, (σ(V, V ′))),

3. a sequence {vn}n∈N in V is weakly convergent if there exists v ∈ V such that
{vn}n∈N converges to v in (V, σ(V, V ′)),

4. a sequence {vn}n∈N in V is weakly Cauchy if {vn}n∈N is a Cauchy sequence
in (V, σ(V, V ′)).
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For a metrizable topological space X it is well-known that a setK ⊆ X is compact
if and only if every sequence in K has a convergent subsequence. Let V be a Banach
space. Then it is clear that V is a metrizable space and therefore one can characterize
the compact subsets of V using the above fact. However, the weak topology on V is
not metrizable. Thus it would be interesting to see if the same characterization holds
for weakly compact subsets of V . Eberlein–Smulian Theorem answers this question
affirmatively [69, Chapter IV, Corollary 2]. Eberlein–Smulian Theorem is usually
considered as one of the deepest theorems in studying the weak topology on Banach
spaces.

Theorem 2.3.24. Let V be a Banach space and A ⊆ V . Then the following state-
ments are equivalent:

(i) The weak closure of A is weakly compact,

(ii) each sequence of elements of A has a subsequence that is weakly convergent.

One can get a partial generalization of the Eberlein–Smulian Theorem for complete
locally convex spaces [69, Chapter IV, Theorem 11.2].

Theorem 2.3.25. Let V be a complete locally convex space and A ⊆ V . If every
sequence of elements of A has a subsequence that is weakly convergent, then the weak
closure of A is weakly compact.

When V is a locally convex space, one can define many different linear topology
on V ′ which makes it into a locally convex space.

Definition 2.3.26. Let V be a locally convex vector space and S be a family of
subsets of V directed under the inclusion such that⋃

S∈S

S = V.

For every S ∈ S and every open neighbourhood U ⊆ F containing 0, we define
B(S, U) by

B(S, U) = {α ∈ V ′ | α(S) ⊆ U} .

The family {B(S, U)} form the neighbourhood base for a topology on V ′ called S-
topology.

In general, the vector space V ′ endowed with S-topology may not be a Hausdorff
locally convex topological vector space. However, it can be shown that by imposing
some restrictions on S , one can ensure that S-topology on V ′ is Hausdorff [69,
Chapter III, Theorem 3.2].

Theorem 2.3.27. Let S be a family of subsets of V such that
⋃
S∈S S = V and, for

every S ∈ S and every α ∈ V ′, α(S) is bounded in F. Then the S-topology on V ′ is
a Hausdorff locally convex topology.
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In particular, when S is family of finite sets of V , it is clear that, for every α ∈ V ′,
α(S) is bounded in R.

Definition 2.3.28. 1. If S is the family of finite subsets of V , then the S-
topology on V ′ is called the weak-∗ topology on V ′. We denote the weak-∗
topology on V ′ by σ(V ′, V ).

2. If S is the family of bounded subsets of V , then the S-topology on V ′ is called
the strong topology on V ′. We denote the strong topology on V ′ by β(V ′, V ).

One can find a family of generating seminorms for the S-topology on V ′ [69,
Chapter III, §3].

Theorem 2.3.29. Let {pi}i∈I be a family of generating seminorms for the locally
convex topology on V . Then, for every set S ∈ S, we define the seminorm pS,i :
V ′ → R by

pS,i(α) = sup
x∈S
∥α(x)∥.

The family {pS,i}{S∈S,i∈I} is a generating family of seminorms on for the S-topology
on V ′.

Corollary 2.3.30. Let V be a locally convex topological vector space. For every
v ∈ V , we define the seminorm pv : V

′ → F as

pv(f) = |f(v)|, ∀f ∈ V ′

The family of seminorm {pv}v∈V generates the weak-∗ topology on V ′.

It is easy to show that, for a locally convex space V , the strong topology on V ′ is
finer than the weak-∗ topology on V ′.

Definition 2.3.31. Let V and W be two topological vector spaces.

1. A linear map L : V → W is continuous if, for every open set U ⊆ W , the
set L−1(U) is open in V . The set of all linear continuous maps L : V → W is
denoted by L(V ;W ).

2. A linear map L : V → W is bounded if, for every bounded set B ⊆ V , the set
L(B) is bounded in W .

3. A linear map L : V → W is compact if there exists a neighbourhood U of 0
in V such that L(U) is relatively compact in W .

4. Let V andW be locally convex topological vector spaces. A linear map L : V →
W is weakly compact if there exists a neighbourhood U of 0 in V such that
L(U) is relatively compact in (W,σ(W,W ′)) (or equivalently L(U) is relatively
compact in the weak topology on W ).
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5. A subset S ⊆ L(V ;W ) is pointwise bounded if, for every v ∈ V , the set S(v)
is bounded in W .

6. Let S ⊆ L(V ;W ) be a subset and v0 ∈ V . Then S is equicontinuous at v0 if,
for every open neighbourhood U of 0 in W , there exists an open neighbourhood
O of 0 in V such that

α(v − v0) ∈ U, ∀α ∈ S, ∀v − v0 ∈ O.

7. A subset S ⊆ L(V ;W ) is equicontinuous if it is equicontinuous at v for every
v ∈ V .

2.3.5. Curves on locally convex topological vector spaces. In this section, we
denote the Lebesgue measure on R by m.

Definition 2.3.32. Let T ⊆ R be an interval and let M (T) denote the set of all
Lebesgue measurable functions f : T→ F. A function f : T→ F is integrable on T
if ∫

T
∥f(τ)∥dm <∞.

We denote the set of all integrable members of M (T) by L1(T). A function f : T→ F
is locally integrable if, for every compact set K ⊆ T, we have∫

K

∥f(τ)∥dm <∞.

The set of all locally integrable functions on T is denoted by L1
loc(T).

A function f : T→ F in M (T) is essentially bounded if there exists a compact
set K ⊆ F such that

m{x | f(x) ̸∈ K} = 0.

We denote the set of all essentially bounded members of M (T) by L∞(T).
A function f : T → F in M (T) is locally essentially bounded if, for every

compact set K ⊆ T, there exists a bounded set BK ⊆ F such that

m{x ∈ K | f(x) ̸∈ BK} = 0.

We denote the set of all locally essentially bounded members of M (T) by L∞
loc(T).

Definition 2.3.33. Let V be a locally convex space with a family of generating
seminorms {pi}i∈Λ and let T ⊆ R be an interval. A curve f : T → V is integrally
bounded if, for every i ∈ N, we have∫

T
pi(f(τ))dm <∞.
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A function s : T → V is a simple function if there exist n ∈ N, measurable
sets A1, A2 . . . , An ⊆ T, and v1, v2, . . . , vn ∈ V such that m(Ai) < ∞ for every
i ∈ {1, 2, . . . , n} and

s =
n∑
i=1

χAi
vi.

The set of all simple functions from the interval T to the vector space V is denoted
by S(T;V ).

One can define Bochner integral of a simple function s =
∑n

i=1 χAi
vi as∫

T
s(τ)dm =

n∑
i=1

m(Ai)vi.

It is easy to show that the above expression does not depend on choice of
A1, A2, . . . , An ⊆ T.

A curve f : T → V is Bochner approximable if there exists a net {fα}α∈Λ of
simple functions on V such that, for every seminorm pi, we have

lim
α

∫
T
pi(fα(τ)− f(τ))dm = 0.

The net of simple functions {fα}α∈Λ is an approximating net for the mapping f .

Theorem 2.3.34 ([6]). Let {fα}α∈Λ be an approximating net for the mapping f :
T→ V . Then {

∫
T fα(τ)dm}α∈Λ is a Cauchy net.

Let f : T→ V be a mapping and let {fα}α∈Λ be an approximating net of simple
functions for f . If the net {

∫
T fα(τ)dm}α∈Λ converges, then we say that f is Bochner

integrable. One can show that the limit of {
∫
T fα(τ)dm}α∈Λ doesn’t depend on the

choice of approximating net and is called Bochner integral of f . The set of all
Bochner integrable curves from T to V is denoted by L1(T;V ).

A curve f : T → V is locally Bochner integrable if for every compact set
J ⊆ T, the map f |J is Bochner integrable. The set of all locally Bochner integrable
curves from T to V is denoted by L1

loc(T;V ).

Definition 2.3.35. Let V be a locally convex vector space, {pi}i∈Λ a family of gen-
erating seminorms on V , and T ⊆ R an interval. Then, for every i ∈ Λ, we define a
seminorm pi,T as

pi,T(f) =

∫
T
pi(f(τ))dm, ∀f ∈ L1(T;V ).

The family of seminorms {pi,T} generates a topology on L1(T;V ), which is called the
L1-topology.
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Since locally convex spaces generally do not satisfy Heine–Borel property, one
can define two notion of bounded curves on locally convex spaces. The first notion
which we call von Neumann bounded deals with the bounded sets in a locally convex
spaces, while the second notion which is called bounded in compact bornology deals
with compact sets in the locally convex space.

Definition 2.3.36. A curve f : T→ V is essentially von Neumann bounded if
there exist a bounded set B ∈ V such that

m{x | f(x) ̸∈ B} = 0.

The set of all essentially von Neumann bounded curves from T to V is denoted by
L∞(T;V ).

A curve f : T→ V is locally essentially von Neumann bounded if, for every
compact interval I ⊆ T, the curve f |I is essentially von Neumann bounded. The set
of all locally essentially von Neumann bounded curves from T to V is denoted by
L∞
loc(T;V ).
A curve f : T → V is essentially bounded in compact bornology if there

exist a compact set K ∈ V such that

m{x | f(x) ̸∈ K} = 0.

The set of all essentially bounded in compact bornology curves from T to V is denoted
by Lcpt(T;V ).

A curve f : T → V is locally essentially bounded in compact bornology
if, for every compact interval I ⊆ T, the curve f |I is essentially bounded in compact
bornology. The set of all locally essentially bounded in compact bornology curves
from T to V is denoted by Lcpt

loc (T;V ).

One can easily see that for locally convex spaces that satisfy the Heine–Borel
property, bounded curves in von Neumann bornology and bounded curves in compact
bornology coincide.

Definition 2.3.37. Let V be a locally convex vector space, {pi}i∈Λ a family of gen-
erating seminorms on V , and T ⊆ R an interval. Then, for every i ∈ Λ, we define a
seminorm qi,T as

qi,T(f) = inf{M > 0 | pi(f(t)) ≤M, a.e. on T}.

The family of seminorms {qi,T} generates a topology on L∞(T;V ) which is called the
L∞-topology.

Definition 2.3.38. A curve f : T → V is absolutely continuous if there exists a
Bochner integrable curve g : T→ V such that, for every t0 ∈ T, we have

f(t) = f(t0) +

∫ t

t0

g(τ)dm, ∀t ∈ T.

The set of all absolutely continuous curves on V on the interval T is denoted by
AC(T;V ).
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Definition 2.3.39. A curve f : T → V is locally absolutely continuous if, for
every compact interval T′ ⊆ T, the curve f |T′ : T′ → V is absolutely continuous. The
set of all locally absolutely continuous curves on V on the interval T is denoted by
ACloc(T;V ).

Theorem 2.3.40. Let V be a complete, separable locally convex space, T ⊆ R be an
interval, and f : T→ V be a curve on V . Then f is locally integrally bounded if and
only if it is locally Bochner integrable.

Proof. Our proof here is restatement of the proof of Theorem 3.2 and Theorem 3.3
in [6]. Without loss of generality, assume that T is compact. Let {pi}i∈Λ be a family
of generating seminorms for V . If f is locally Bochner integrable then, by definition,
if i ∈ Λ we have ∫

T
pi(f(τ))dm <∞.

This means that f is integrally bounded.
To prove the converse, since V is separable there exists a sequence {vj}j∈N such

that {v1, v2, . . .} is dense in V . For every i, j, n ∈ N, we set

An,ji = {t ∈ T | pi(f(t)) >
1

n
, pi(f(t)− vj) <

1

n
}.

We define the simple functions {sni }i,n∈N as

sni =
n∑
j=1

χAn,j
i
vj.

Note that, by construction, we have

pi(f(t)− sni (t)) ≤
1

n
, ∀t ∈ T

So by Lebesgue’s dominated convergence theorem,

lim
n→∞

∫
T
pi(f(τ)− sni (τ))dm = 0.

This means that there exists N ∈ N such that∫
T
pi(f(τ)− sNi (τ))dm < 1, ∀i ∈ N.

This implies that f is Bochner-approximable. Since V is complete, every Bochner
approximable function is Bochner integrable. So f is Bochner integrable.

Theorem 2.3.41. Let T ⊆ R be an interval. For every g ∈ L∞(T), we define the
bounded functional Lg : L

1(T)→ R as

Lg(f) =

∫
T

f(τ)g(τ)dm, ∀f ∈ L1(T).

Then for every bounded linear functional L on L1(T), there exists g ∈ L∞(T) such
that L = Lg.

Proof. The proof is given in [67, Chapter 8].
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2.3.6. Inductive limit and projective limit of topological vector spaces.

Definition 2.3.42. Let V be a vector space, {Vi}i∈Λ be a family of topological vector
spaces, and {Li}i∈Λ be a family of continuous linear maps such that Li : V → Vi.
Then we define the projective topology on V with respect to {Vi, Li}i∈Λ as the
coarsest topology on V such that all the maps Li are continuous.

One can easily show that the projective topology turns V into a topological vector
space. Moreover if, for every i ∈ Λ, the topological vector space Vi is locally convex,
then the projective topology on V is also locally convex.

Theorem 2.3.43 ([69]). Let {Vi}i∈Λ be a family of locally convex topological vector
spaces and {Li}i∈Λ is a family of continuous linear maps such that Li : V → Vi. Then
the projective topology on V with respect to {Vi, Li}i∈Λ, makes V into a locally convex
topological vector space.

Definition 2.3.44. Let V be a vector space, {Vi}i∈Λ be a family of topological vector
spaces, and {Li}i∈Λ be a family of continuous linear maps such that Li : Vi → V .
Then the inductive linear topology on V with respect to {Vi, Li}i∈Λ is the finest
linear topology on V which makes all the maps Li continuous.

One may note that, contrary to the case of the projective topology, the inductive
topology may be different in different categories.

Definition 2.3.45. Let V be a vector space, {Vi}i∈Λ be a family of locally convex
topological vector spaces, and {Li}i∈Λ be a family of continuous linear maps such
that Li : Vi → V . Then the inductive locally convex topology on V with respect
to {Vi, Li}i∈Λ is the finest locally convex topology on V which makes all the maps Li
continuous.

Here we present definitions of the inductive limit and the projective limit of a
directed family of objects in a general category. However, in this thesis we only study
limit in the categories of sets, vector spaces, topological vector spaces, and locally
convex spaces.

Definition 2.3.46. Let (Λ,⪰) be a directed set and {Xα}α∈Λ be a family of objects
and let {fαβ}β⪰α be a family of morphisms such that fαβ : Xα → Xβ. Then the
inductive limit of {Xα, fαβ}β⪰α is a pair (X, {gα}α∈Λ), where

1. X is an object and {gα}α∈Λ is a family of morphisms such that gα : Xα → X
and, for every α, β ∈ Λ with β ⪰ α, the following diagram commutes:

Xα

fαβ //

gα !!

Xβ

gβ
��
X
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2. (X, {gα})α∈Λ is universal with respect to {Xα, fαβ}β⪰α in the sense that, for
every other pair (Y, {hα}α∈Λ) such that, for every β ⪰ α, the following diagram
commutes:

Xα

fαβ //

hα !!

Xβ

hβ
��
Y

there exists a unique morphism i : X → Y such that the following diagram
commutes:

Xα

fαβ //

gα

  

hα

��

Xβ
gβ

~~

hβ

��

X

i
��
Y

We usually denote the inductive limit of the inductive system {Xα, fαβ}β⪰α by
lim−→Xα.

Definition 2.3.47. Let (Λ,⪰) be a directed set, {Xα}α∈Λ be a family of objects, and
{fαβ}β⪰α be a family of morphisms such that fαβ : Xβ → Xα. Then the projective
limit of {Xα, fα,β}α,β∈Λ is a pair (X, {gα}α∈Λ), where

1. X is an object and {gα}α∈Λ is a family of morphisms such that gα : X → Xα

and, for every β ⪰ α, the following diagram commutes:

X

gβ
��

gα

!!
Xβ fαβ

// Xα

2. (X, {gα}α∈Λ) is universal with respect to {Xα, fαβ}β⪰α in the sense that, for
every other pair (Y, {hα}α∈Λ) such that, for every β ⪰ α, the following diagram
commutes:

Y

hβ
��

hα

!!
Xβ fαβ

// Xα

there exists a unique morphism i : Y → X such that the following diagram
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commutes:
Y

i
��hβ





hα

��

X

gα   gβ~~
Xβ fαβ

// Xα

We denote the projective limit of the inductive system {Xα, fαβ}β⪰α by lim←−Xα.

Let {Vi}i∈N be a countable family of locally convex topological vector spaces and
{fi}i∈N be a family of linear continuous maps such that fi : Vi → Vi+1. Then, for
every j > i, one can define fij : Vi → Vj as

fij = fj ◦fj−1 ◦ . . . ◦fi.

So we get a directed system (Vi, {fij})j>i of locally convex spaces and continuous
linear maps.

In the case of countable inductive limits, we sometimes refer to {Vi, fi}i∈N as a
directed system. By this we mean the directed system (Vi, {fij})j>i which is generated
from {Vi, fi}i∈N as above.

Assume that, according to Definition 2.3.46, the pair (V, {gi}i∈N) is the locally
convex inductive limit of a directed system {Vi, fi}i∈N. So V is a locally convex space
and gi : Vi → V are continuous linear maps. This completely characterizes open sets
in V in terms of open sets in Vi. In particular, one has the following theorem [69,
Chapter 2, §6].

Theorem 2.3.48. Let {Vi, fi}i∈N be a directed system of locally convex spaces and
the pair (V, {gi}i∈N) be the locally convex inductive limit of {Vi, fi}i∈N. Then a local
base for V consists of all radial, convex, and circled subset U of V such for every
i ∈ N, we have g−1

i (U) is an open set in Vi.

In many problems in functional analysis, one would like to study bounded sets of
V = lim−→Vi in terms of bounded sets of the locally convex spaces Vi. The following
definition classifies inductive limits of locally convex spaces based on their bounded
sets.

Definition 2.3.49. Let {Vi, fi}i∈N be a directed system of locally convex spaces and
the pair (V, {gi}i∈N) be the locally convex inductive limit of {Vi, fi}i∈N. The inductive
system {Vi, fi}i∈N is regular if, for every bounded set B ⊂ V , there exists m ∈ N
and a bounded set Bm ⊂ Vm such that the restriction map gm |Bm : Bm → V is a
bijection onto B.

The inductive system {Vi, fi}i∈N is boundedly retractive if, for every bounded
set B ⊂ V , there exists m ∈ N and a bounded set Bm ⊂ Vm such that the restriction
map gm |Bm : Bm → V is a homeomorphism onto B.
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Definition 2.3.50. Let {Vi}i∈N be a family of locally convex topological vector spaces
and let {fi}i∈N be a family of continuous linear maps such that fi : Vi → Vi+1.

1. The inductive system {Vi, fi}i∈N is compact if, for every i ∈ N, the map
fi : Vi → Vi+1 is compact.

2. The inductive system {Vi, fi}i∈N is weakly compact if, for every i ∈ N, the
map fi : Vi → Vi+1 is weakly compact.

Theorem 2.3.51. Let {Vi}i∈N be a family of locally convex topological vector spaces
and let {fi}i∈N be a family of linear continuous maps such that fi : Vi → Vi+1. Then

1. if the inductive system {Vi, fi}i∈N is weakly compact, then it is regular, and

2. if the inductive system {Vi, fi}i∈N is compact, then it is boundedly retractive.

Proof. The first part of this theorem has been proved in [48, Theorem 6] and the
second part in [48, Theorem 6’].

However, one can find boundedly retractive inductive families which are not com-
pact [7]. In [66], Retakh studied an important condition on inductive families of
locally convex spaces called condition (M).

Definition 2.3.52. Let {Vi}i∈N be a family of locally convex topological vector spaces
and let {fi}i∈N be a family of linear continuous maps such that fi : Vi → Vi+1. The
inductive system {Vi, fi}i∈N satisfies condition (M) if there exists a sequence of
absolutely convex neighbourhoods {Ui}i∈N of 0 such that, for every i ∈ N, we have
Ui ⊆ Vi and,

1. for every i ∈ N, we have Ui ⊆ f−1
i (Ui+1), and

2. for every i ∈ N, there exists Mi > 0 such that, for every j > Mi, the topologies
induced from Vj on Ui are all the same.

Theorem 2.3.53. Let {Vi}i∈N be a family of normed vector spaces and let {fi}i∈N
be a family of continuous linear maps such that fi : Vi → Vi+1. Suppose that the
inductive system {Vi, fi}i∈N is regular. Then inductive system {Vi, fi}i∈N is boundedly
retractive if and only if it satisfies condition (M).

Proof. This theorem is proved in [7, Proposition 9(d)].

2.3.7. Tensor product of topological vector spaces.

Definition 2.3.54. IfM ⊆ V andN ⊆ W be subsets, then we defineM⊗N ⊆ V ⊗W
as

M ⊗N =

{
k∑
i=1

λi(mi ⊗ ni) | λi ∈ F,mi ∈M,ni ∈ N, k ∈ N

}
.
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If V and W are locally convex topological vector spaces, in general there is no
canonical way of defining a topology on V ⊗W . In this section we recall two common
topologies on the tensor product V ⊗W .

Definition 2.3.55. The finest locally convex topology on V ⊗W which makes the
canonical map µ : V × W → V ⊗ W continuous is called the projective tensor
product topology. The vector space V ⊗W equipped with this topology is denoted
by V ⊗π W .

Definition 2.3.56. The finest locally convex topology on V ⊗W which makes the
map µ : V × W → V ⊗ W separately continuous is called the injective tensor
product topology. The vector space V ⊗W equipped with this topology is denoted
by V ⊗ϵW .

Even if the locally convex spaces V andW are complete, it is always the case that
V ⊗π W and V ⊗ϵW are not complete. We denote the completions of V ⊗π W and
V ⊗ϵW by V ⊗̂πW and V ⊗̂ϵW respectively.

Theorem 2.3.57 ([43]). Let E ⊂ V be a dense subset of V and F ⊂ W be a dense
subset of W . Then E ⊗π F is a dense subset of V ⊗̂πW .

Definition 2.3.58. Let V andW be locally convex spaces and p and q be seminorms
on V and W respectively. Then we define the map p⊗ q : V ⊗W → F as

p⊗ q(u) = inf{
n∑
i=1

p(xi)q(yi) | u =
n∑
i=1

xi ⊗ yi}.

It is easy to check that p⊗ q is a seminorm on V ⊗W .

Theorem 2.3.59 ([69]). Let V and W be locally convex spaces and let {pi}i∈I and
{qj}j∈J be families of generating seminorms for V and W respectively. Then the
family {pi ⊗ qj}(i,j)∈I×J is a generating family of seminorms for V ⊗π W .

Theorem 2.3.60 ([43]). Let T ⊆ R and E be a complete locally convex space. Then
there exists a linear homeomorphism between L1(T;E) and L1(T)⊗̂πE.

Proof. We first show that the map ι : S(T)⊗π E → S(T;E) defined as

ι(ϕ(t)⊗ v) = ϕ(t)v, ∀v ∈ E, ∀ϕ ∈ S(T),

is a linear homeomorphism. It is clear that ι is surjective. Let β =
∑n

i=1 βi(t)⊗ vi ∈
S(T)⊗E be such that ι(β) = 0. Without loss of generality, one can assume that the
set {v1, v2, . . . , vn} is linearly independent. By assumption, we have

n∑
i=1

βi(t)vi = 0, a.e. t ∈ T.
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Now if we choose {v∗1, v∗2 . . . , v∗n} in E ′ such that

⟨vi, v∗j ⟩ = δij, ∀i, j ∈ {1, 2, . . . , n},

then we get

βj(t) =
n∑
i=1

βi(t)⟨vi, v∗j ⟩ = 0, a.e. t ∈ T.

So we have β = 0. This implies that the map ι is a bijection.
Now we show that ι is continuous. Let q be the norm on L1(T) defined as

q(ϕ) =

∫
T
|ϕ(τ)|dτ.

Let p be a seminorm on E and s =
∑n

i=1 χAi
⊗ vi. Then we have∫

T
p ◦ ι(s(τ))dτ =

∫
T
p(

n∑
i=1

χAi
(τ)vi)dτ ≤

∫
T

n∑
i=1

χAi
(τ)p(vi)dτ =

n∑
i=1

(∫
T
χAi

(τ)dτ

)
p(vi).

Since the above relation holds for every representation of the simple function s, we
get ∫

T
p ◦ ι(s(τ))dτ ≤ q ⊗ p(s).

To show that ι is an open map, we can choose a representation s =
∑n

i=1 χAi
⊗ vi

such that {Ai}ni=1 are mutually disjoint. Then we have

q ⊗ p(s) ≤
n∑
i=1

m(Ai)p(vi) =

∫
T
p ◦ ι(s(τ))dτ.

Thus ι−1 is continuous and so ι is open. This implies that ι is a linear homeomorphism.
Now we extend ι to the completion of S(T)⊗πE. By Theorem 2.3.57, the completion
of S(T)⊗πE is L1(T)⊗̂πE. Since E is complete, the completion of S(T;E) is L1(T;E).
So i extends to a linear homeomorphism ι̂ : S(T)⊗̂πE → L1(T;E). This completes
the proof.

Theorem 2.3.61 ([43]). Let T ⊆ R be a compact interval and E be a complete
locally convex space. Then there exists a linear homeomorphism between C0(T;E)
and C0(T)⊗̂ϵE.

2.3.8. Nuclear spaces.

Definition 2.3.62. Let E and F be two Banach spaces. An operator L : E → F is
nuclear if there exists sequences {fn}n∈N in E ′ and {gn}n∈N in F and a sequence of
complex numbers {λn}n∈N such that

∑∞
n=1 |λn| <∞, and we can write

L(v) =
∞∑
n=1

λnfn(v)gn, ∀v ∈ E.
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One can also generalize the notion of nuclear operators for operators between
locally convex vector spaces.

Let E be a locally convex space and U be a convex, circled, and radial subset of
E containing 0. Then, for every n ∈ N, one can define Un as

Un =

{
1

n
x
∣∣∣ x ∈ U} .

The family {Un}n∈N form a local base for a locally convex topology τU on E. The

space (E, τU)/p
−1
U (0) is denoted by EU . We denote the completion of EU by ÊU . It is

easy to see that EU is a normable space with norm pU . One can define the quotient
map i : E → ÊU as

i(v) = [v], ∀v ∈ E.
Similarly, if B is a convex, circled, and bounded subset of E, then E1 =

⋃∞
n=1 nB

is a subspace of E. The gauge seminorm pB can be seen to be a norm on E1. We
denote the normed space (E1, pB) by EB.

Definition 2.3.63. Let E and F be two locally convex vector spaces. A continuous
map L : E → F is called nuclear if there exists an equicontinuous sequence {fn}n∈N
in E ′, a sequence {gn}n∈N contained in a convex, circled, and bounded subset B ⊆ F
such that FB is complete, and a sequence of complex numbers {λn}n∈N such that∑∞

n=1 |λn| <∞, and we can write

L(v) =
∞∑
n=1

λnfn(v)gn, ∀v ∈ E.

Theorem 2.3.64 ([69]). Every nuclear mapping is compact.

Definition 2.3.65. A locally convex vector space E is nuclear if, for every convex
circled neighbourhood of 0, the inclusion i : E → ÊU is nuclear.

One can see that nuclear spaces satisfies the Heine–Borel property. The following
theorem has been proved in [69, Chapter III, §7].

Theorem 2.3.66. Let E be a nuclear space. Then every closed and bounded subset
of E is compact.

One important property of nuclear spaces is that, for nuclear spaces, the topo-
logical tensor product is uniquely defined. This property can be used to characterize
nuclear spaces [43, §21.2, Theorem 1].

Theorem 2.3.67. Let E and F be locally convex spaces. Then F is nuclear if and
only if E ⊗π F = E ⊗ϵ F .

One can also identify the strong dual of the tensor product of metrizable locally
convex spaces with tensor product of their strong duals when one of the locally convex
spaces are nuclear [69, Chapter IV, Theorem 9.9].

Theorem 2.3.68. Let E and F be metrizable locally convex space and F be nuclear.
Then the strong dual of E⊗̂F can be identified with (E ′, β(E ′, E))⊗̂(F ′, β(F ′, F ))
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2.4. Sheaves and presheaves

In this section, we define the notions of presheaf and sheaf on a topological space
X. In this thesis, we mostly use presheaves and sheaves of sets, presheaves and
sheaves of rings, and presheaves and sheaves of modules. Thus it is more natural to
start with definition of presheaves and sheaves of arbitrary “objects” in this section.

Definition 2.4.1. Let X be a topological space. A presheaf of objects F on X
assigns to every open set U ⊆ X an object F (U) and to every pair of open sets
(U, V ) with U ⊆ V a morphism

rU,V : F (V )→ F (U),

which is called the restriction map such that

1. for every open set U ⊆ X, we have rU,U = id;

2. for all open sets U, V,W ⊆ X such that U ⊆ V ⊆ W , we have

rU,V ◦rV,W = rU,W .

For an open set U ⊆ X, an element s ∈ F (U) is called a local section of F over
U . If s ∈ F (V ) and W ⊆ V be an open set, then we denote rW,V (s) by s |W and we
call it “restriction of s to W”.

One of the most well-known examples of presheaves is the presheaf of locally
defined functions.

Example 2.4.2. LetM be a Cν-manifold. We define Cν
M which assigns to every open

set U ⊆ M the ring of Cν-functions on U and to every pair of open sets U, V ⊆ M
with U ⊆ V the ring homomorphism rU,V : Cν

M(V )→ Cν
M(U) defined as

rU,V (f) = f |U .

Then one can easily check that Cν
M is a presheaf of rings on M .

Given a presheaf of rings R over X, one can also define presheaf of R-modules
over X.

Definition 2.4.3. Let X be a topological space and R be a presheaf of rings on X.
Then F is a presheaf of R-modules over X if it assigns to every open set U ⊆ X
the R(U)-module F (U) and to every pair of open sets U ⊆ V a homomorphism rF

U,V

such that

1. for every open set U ⊆ X, we have rF
U,U = id;

2. for all open sets U, V,W ⊆ X such that U ⊆ V ⊆ W , we have

rF
U,V ◦rF

V,W = rF
U,W ;
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3. for every f, g ∈ F (U) and every α ∈ R(U), we have

rF
U,V (f + αg) = rF

U,V (f) + rR
U,V (α)r

F
U,V (g),

where rR is the restriction map for the presheaf R.

The most important example of presheaf of modules is the presheaf of locally
defined vector fields on a manifold.

Example 2.4.4. Let M be a Cν-manifold. In Example 2.4.2, we defined Cν
M as a

presheaf of ring of locally defined Cν-functions. In this example, we define the presheaf
ΓνM of Cν

M -modules overM . Let us define ΓνM which assigns to every open set U ⊆M
the Cν(U)-module of locally defined Cν-vector fields on U and assigns to every pair of
open sets (U, V ) with U ⊆ V ⊆M a restriction map rU,V : ΓνM(V )→ ΓνM(U) defined
as

rU,V (X) = X |U , ∀X ∈ ΓνM(V ).

Therefore, the set ΓνM(U) is defined as

ΓνM(U) = {X : U → TM | X is of class Cν and X(x) ∈ TxM, ∀x ∈ U},

One can easily check that ΓνM is a presheaf of Cν
M -modules over M .

Definition 2.4.5. Let F be a presheaf of objects on X. Then a subpresheaf H of
F is an assignment to every open set U ⊆ X, an object H (U) ⊆ F (U) such that,
for every pair of open sets U ⊆ V ⊆ X, the restriction map

rU,V |H (V ): H (V )→ F (U),

takes its values in H (U).

It is easy to see that a subpresheaf is itself a presheaf.

Definition 2.4.6. Let {sα}α∈Λ be a family of sections of the sheaf F of R-modules
on X, i.e., for every α ∈ Λ, we have sα ∈ F (X). Then, one can define a subpresheaf
H of R-modules as

H (U) = spanR(U) {sα|U | α ∈ Λ} , ∀ open sets U ⊆ X.

The subpresheaf H is called the subpresheaf of R-modules generated by
{sα}α∈Λ.

One can easily notice that presheaves lack many nice local to global properties.
One can enhance the local to global properties of presheaves by adding some extra
conditions on their sections.
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Definition 2.4.7. A sheaf of objects G on X is a presheaf of sets on X such that, for
every open set U ⊆ X and every open covering U =

⋃
i∈I Ui, the following properties

hold.

1. Locality property : Two elements s, t ∈ F (U) are the same if, for every
i ∈ I, we have rUi,U(t) = rUi,U(s).

2. Gluing property : If {si}i∈I is a family of sections of F such that, for every
i, j ∈ I, we have

si ∈ F (Ui),

rUi∩Uj ,Ui
(si) = rUi∩Uj ,Uj

(sj),

then there exists s ∈ F (U) such that, for every i ∈ I, we have rUi,U(s) = si.

Similar to presheaves, one can define a subsheaf of a sheaf.

Definition 2.4.8. Let G be a sheaf of objects on X. Then a subsheaf H of G is
a subpresheaf which is itself a sheaf.

Example 2.4.9. One can easily show that the presheaf of rings Cν
M defined in Exam-

ple 2.4.2 and the presheaf ΓνM of Cν
M -modules defined in Example 2.4.4 are sheaves.

While the above example shows that both of the presheaves we define in Example
2.4.2 and Example 2.4.4 are sheaves, it is not generally true that every presheaf is a
sheaf. The following example shows that not every presheaf is a sheaf.

Example 2.4.10 ([55]). Let M be a Cν-manifold and let G be a Riemannian metric
on M . Then, for every open set U ⊆M , we define

Fbdd(U) = {X ∈ G ν(U) | sup{∥X(x)∥G | x ∈ U} <∞}.

Also, we assign to every pair of open sets (U, V ) with U ⊆ V ⊆M , a restriction map
rU,V : Fbdd(V )→ Fbdd(U) defined as

rU,V (X) = X |U , ∀X ∈ Fbdd(V ).

One can easily check that Fbdd is a presheaf of sets. In fact, Fbdd is a presheaf of
vector spaces on M . However, Fbdd is not a sheaf of sets. This can be easily seen in
the caseM = R, by showing that the this presheaf doesn’t satisfy the gluing property.
Consider the covering {Ui}i∈N of R, where

Ui = (−i, i), ∀i ∈ N,

and the family of locally defined vector field {Xi}i∈N, where Xi : Ui → TR ≃ R× R
is defined as

Xi(x) = (x, x), ∀x ∈ Ui.
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For every i, j ∈ N such that i > j, we have Uj ⊆ Ui. Thus we get

rUi∩Uj ,Ui
(Xi) = rUj ,Ui

(Xi) = Xj = rUj ,Uj
(Xj) = rUi∩Uj ,Uj

(Xj).

It is also easy to see that, for every i ∈ N, ∥Xi∥ < i. Therefore, for every i ∈ N,
Xi ∈ Fbdd(Ui) and, for every i, j ∈ N, we have

rUi∩Uj ,Ui
(Xi) = rUi∩Uj ,Uj

(Xj).

However, there does not exist a bounded vector field X ∈ Fbdd(R) such that
rUi,R(X) = Xi, for all i ∈ N.

One can capture the local properties of a presheaf around a set A in a structure
called stalk of the presheaf over A.

Definition 2.4.11. Let F be a presheaf on X and A ⊆ X be a set. The set of all
open neighbourhoods of A in X is denoted by NA. We define an equivalence relation
≃A between local sections of F . Let U, V ∈ NA and s ∈ F (U) and t ∈ F (V ) be
two local sections of F . Then we say that s ≃A t if there exists an open set W ∈ NA

such that W ⊆ U ∩ V and
rW,U(s) = rW,V (t).

For every local section s ∈ F (U), where U ∈ NA, we define the germ of s over A
as the equivalence class of s under the equivalence relation ≃A. We denote the germ
of s over A by [s]A.

The stalk of F over A is the inductive limit

lim−→
U∈NA

F (U).

We usually use the symbol FA for the stalk of F over A. One can easily show
that the stalk of F over A consists of all equivalence classes under equivalent relation
≃A.

If R is a presheaf of rings, then, for every x ∈ X, one can define addition and
multiplication on Rx as follows. Let [s]x, [t]x ∈ Rx. Then, there exists open sets
U, V ⊆ X such that

s ∈ R(U),

t ∈ R(V ).

Let W ⊆ U ∩ V be an open set in X. Then, we define

[s]x.[t]x = [(s|W ) (t|W )]x,

[s]x + [t]x = [(s|W ) + (t|W )]x.

One can easily check that the multiplication and the addition defined above are well-
defined. Thus, Rx is a ring. Similarly, for a presheaf of R-modules F over X one
can define an Rx-module structure on Fx.
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Definition 2.4.12. A sheaf F of R-modules on the topological space X is called
locally finitely generated if, for every x ∈ X, there exists a neighbourhood U ⊆ X
of x and a family of finite sections {s1, s2 . . . , sn} of F on U , such that Fy is generated
by the set {[s1]y, [s2]y, . . . , [sn]y} as Ry-modules, for every y ∈ U .

Theorem 2.4.13. Let ν ∈ {ω, hol}, M be a Cν-manifold, and {sα}α∈Λ be a family
of sections of the sheaf Cν defined on M , i.e., for every α ∈ Λ, we have sα ∈ Cν(M).
Then the subpresheaf of Cν generated by {sα}α∈Λ is locally finitely generated.

Proof. The proof in the holomorphic case is given in [30, Theorem H.8 & Corollary
H.9]. For the real analytic case, the proof is similar.

Definition 2.4.14. Let F be a presheaf on X. Then the étalé space of F is defined
as

Et(F ) =
⋃̇

x∈X
Fx.

One can equip this space with a topology using a basis consisting of elements of the
form

B(U,X) = {[X]x | x ∈ U}, ∀U open in X, ∀X ∈ F (U).

This topology on Et(F ) is usually called the étalé topology.

As Example 2.4.10 shows, presheaves are not necessarily sheaves. However, it can
be shown that every presheaf can be converted to a sheaf in a natural way. This
procedure is called sheafification.

Definition 2.4.15. Let F be a presheaf of objects on X. Then, for every open set
U ⊆ X, we define

Sh(F )(U) = {s : U → Et(F ) | ∀x ∈ U, s(x) ∈ Fx and s is continuous on U}.

One can show that the assignment Sh(F ) is a sheaf [80, Theorem 7.1.8]

Theorem 2.4.16. Let F be a presheaf of objects on X. Then Sh(F ) is a sheaf on
X.

2.5. Groupoids and pseudogroups

In this section, we review definitions and elementary properties of groupoids and
pseudogroups. In particular, we show that one can always associate a groupoid to a
family of local diffeomorphism. This groupoid plays an important role in our study
of the orbits of a Cν-tautological system in chapter 5

Definition 2.5.1. A groupoid G is a pair (Ω, B) and five structural maps
(t, s, id, (.)−1, ∗), where t : Ω → B is called target map, s : Ω → B is called
source map, id : B → Ω is called object inclusion map, (.)−1 : Ω → Ω is called
inversion map and ∗ : Ω ⊗ Ω → Ω is called partial multiplication map, where
Ω⊗ Ω = {(ξ, η) ∈ Ω× Ω | t(ξ) = s(η)}. These maps have the following properties:
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1. t(ξ ∗ η) = t(ξ) and s(ξ ∗ η) = s(η), for all (ξ, η) ∈ Ω⊗ Ω;

2. ξ ∗ (η ∗ χ) = (ξ ∗ η) ∗ χ;

3. s(id(x)) = t(id(x)) = x, for all x ∈ B;

4. ξ ∗ id(t(ξ)) = ξ and id(s(ξ)) ∗ ξ = ξ, for all ξ ∈ Ω;

5. ξ ∗ ξ−1 = id(t(ξ)) and ξ−1 ∗ ξ = id(s(ξ)), for all ξ ∈ Ω.

Definition 2.5.2. If G is a groupoid, then the set Ωx defined as

Ωx = {ξ | ξ ∈ t−1(x)},

is called the t-fiber at x ∈ B, and the set Ωx defined as

Ωx = {ξ | ξ ∈ s−1(x)},

is called the s-fiber at x ∈ B.
The isotropy group of G at x ∈ B is defined as

Ωx
x = Ωx ∩ Ωx.

One can show that, for every y ∈ Ωx
x, we have y ∈ Ω⊗Ω. This means that the partial

multiplication of the groupoid G is a multiplication on Ωx
x. Therefore, the isotropy

group is actually a group with respect to groupoid partial multiplication.
The orbit of G at x ∈ B is defined as

OrbG (x) = t(Ωx) = {t(ξ) | ξ ∈ Ωx}.

Definition 2.5.3. Suppose that G is a groupoid. Then we define an equivalence
relation ∼ on B by

x ∼ y ⇐⇒ y ∈ OrbG (x).

We denote the equivalent class of x ∈ B by [x] and the set of all equivalent classes of
∼ is denoted by M/∼. We define

(M,G ) =
⋃̇

[x]∈M/∼
[x].

Definition 2.5.4. Let X be a topological space. A pseudogroup h acting on X is
a set of homeomorphisms F : U → V where U and V are open subsets of X such
that:

1. composition: if F1 : U1 → V1 and F2 : U2 → V2 are members of h, then
F1 ◦F2 : F

−1
2 (U1 ∩ V2)→ F−1

1 (U1 ∩ V2) is a member of h;

2. inversion: for every homeomorphism F : U → V in h, the homeomorphism
F−1 : V → U is also in h;
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3. restriction: for every element F : U → V and every open subset W ⊆ X, the
map F |U∩W : U ∩W → F (U ∩W ) is a member of h;

4. covering: if F : U → V is a homeomorphism and {Ui}i∈I is an open cover of
U such that F |Ui

is in h, for all i ∈ I, then F is in h.

Definition 2.5.5. Suppose that A is a set of homeomorphisms between open subsets
of X. Then we denote the pseudogroup generated by A, by Γ(A). A homeomorphism
f : U → V belongs to Γ(A) if, for every x ∈ X, there exists a neighbourhood W of x
and ϵ1, ϵ2, . . . , ϵk ∈ {1,−1} and h1, h2, . . . , hk ∈ A such that f |W= hϵ11 ◦hϵ22 ◦ . . . ◦hϵkk .

Now suppose that we have a family of local homeomorphisms P, we denote the
pseudogroup generated by P by Γ(P).

Definition 2.5.6. Suppose that P is a collection of local homeomorphisms of X.
Then the groupoid associated to P, which is denoted byGP , is defined by B =M
and Ω = {(P, x) | P ∈ Γ(P), x ∈ DomP}. The five structure maps (t, s, id, (.)−1, ∗)
for this groupoid are defined as follows:

s((P, x)) = x,

t((P, x)) = P (x),

id(x) = (idM , x),

(P, x)−1 = (P−1, P (x)).

(2.5.1)

If we have x = P ′(x′), the partial composition map ∗ is defined as

(P, x) ∗ (P ′, x′) = (P ◦P ′, x′). (2.5.2)

Note that, by definition, the orbit of GP passing through x ∈M is

GP(x) = t ◦s−1(x).

Therefore, we have

s−1(x) = {(P, x) | P ∈ Γ(P), x ∈ Dom(P )}.

This means that

GP(x) = t(s−1(x)) = {P (x) | P ∈ Γ(P), x ∈ Dom(P )}.



Chapter 3

Time-varying vector fields and
their flows

3.1. Introduction

In this chapter, we develop an operator approach for studying time-varying vec-
tor fields and their flows. The idea of this approach originated (for us) with the
so-called chronological calculus of Agrachev and Gamkrelidze [3]. The cornerstone of
the chronological calculus developed in [3] and [4] is to consider a complete vector field
on M and its flow as linear operators on the R-algebra C∞(M). By this correspon-
dence, one can easily see that the governing nonlinear differential equation for the
flow of a time-varying vector field is transformed into a “linear” differential equation
on the infinite-dimensional locally convex space L(C∞(M);C∞(M)). In [3] and [4],
this approach has been used to study flows of smooth and real analytic vector fields.
Although, this representation is the most convenient one for studying smooth vector
fields and their flows, in the real analytic case, it does not appear to be natural. This
can be seen in the proof of convergence of the sequence of Picard iterations for the flow
of a time-varying vector field [3, §2, Proposition 2.1]. Here it has been shown that,
for a locally integrable time-varying real analytic vector field on Rn with bounded
holomorphic extension, the sequence of Picard iterations for the “linear” differential
equation converges. In [4] it has been stated that the sequence of Picard iterations for
a locally integrable real analytic vector field converges in L(C∞(M);C∞(M)). How-
ever, the sequence of Picard iterations for the locally integrable time-varying smooth
vector fields which are not real analytic, never converges. This different behaviour of
the “linear” differential equation in smooth and real analytic case, suggests that one
may benefit from a new setting for studying time-varying real analytic vector fields.

In the framework we develop in this section, we consider ν to be in the set
{∞, ω, hol} and F ∈ {C,R}. Then, one can show that Cν-vector field and its flow are
operators on the F-algebra Cν(M). This way we get a unified framework in which op-
erators are consistent with the regularity of their corresponding maps. We start this
chapter by defining the Cν-topology on the vector space Γν(E), where (E,M, π) is a
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Cν-vector bundle. This, in particular, defines the Cν-topology on the vector spaces
Cν(M) when the vector bundle (E,M, π) is the trivial bundle (M × R,M, pr1). For
the reasons we will see later, we need this topology to make Γν(E) into a complete
topological vector space. For the smooth case, this topology on the space Γ∞(E) is
well-known and has been explored in detail [3], [36], [61], and [51]. For the real ana-
lytic case, it is interesting to note that Γω(E) equipped with the subspace topology
from Γ∞(E) is not a complete topological vector space (example 3.2.8). However, by
considering real analytic sections as germs of holomorphic sections, one can define a
topology on the space Γω(E) which makes it into a complete locally convex vector
space [59].

We then proceed in section 3.3 by considering Cν-vector fields onM as derivations
on Cν(M). It is interesting to see that there is a one-to-one correspondence between
derivations on Cν(M) and Cν-vector fields on M . We finally show that vector fields,
as operators on Cν(M), are continuous with respect to the Cν-topology. Similarly,
one can show that Cν-maps between two manifolds are in one-to-one correspondence
with unital F-algebra homomorphisms between their spaces of Cν-functions.

In order to define a setting where vector fields and their flows are treated the same
way, we define L(Cν(M);Cν(M)) as the space of linear operators between Cν(M) and
Cν(M). It is easy to see that both Cν-maps and Cν-vector fields are subsets of this
space. Then one can consider a time-varying vector field and its flow as curves on
the space of linear operators L(Cν(M);Cν(M)). In order to study properties of
these curves, we equip the space L(Cν(M);Cν(M)) with the topology of pointwise
convergence. Since the space of all Cν-vector fields is a subset of L(Cν(M);Cν(M)),
this induces a topology on the space of Cν-vector fields (as derivations between Cν(M)
and Cν(M)). On the other hand, Cν-vector fields are exactly Cν-sections of the
tangent bundle (TM,M, π). Therefore, one can see that, algebraically, the space of
Cν-vector fields on M is the same as Γν(TM). It is interesting to note that the
topology of pointwise convergence that we defined above on the space of Cν-vector
fields coincide with the Cν-topology on Γν(TM) defined in section 3.2.

In section 3.6, using the topology of pointwise convergence on the vector space
L(Cν(M);Cν(M)), we define and characterize essential boundedness, integrability
and absolute continuity of curves on L(Cν(M);Cν(M)).

It is well-known that every real analytic function on Rn can be extended to a
holomorphic function on some open set in Cn containing Rn. In section 3.7, we
study the extension of time-varying real analytic vector fields to holomorphic ones.
In general, it is not true that every time-varying real analytic vector field can be
extended to a time-varying holomorphic vector field (example 3.7.1). However, we
will show that locally integrable time-varying real analytic vector fields on M can be
extended to a locally integrable time-varying holomorphic vector field on a manifold
containing M . We refer to this result as the global extension of time-varying real
analytic vector fields. The reason is that it shows the existence of an extension over
the whole domain M .

In some applications, one would like to know if there exists a domain such that



On the role of regularity in mathematical control theory 49

“all” members of a family of locally integrable real analytic vector field can be ex-
tended to holomorphic vector fields on that domain. Unfortunately, the global exten-
sion theorem is indecisive in this situation. However, we show that, for every compact
set K ⊆ M , one can extend a “bounded” family of locally integrable real analytic
vector field to a bounded family of holomorphic vector fields on a domain containing
K.

In section 3.8, using the operator representation of time-varying vector fields and
their flows, we translate the “nonlinear” differential equation governing the flow of
a time-varying vector field on M into a “linear” differential equation on the infinite-
dimensional space L(Cν(M);Cν(U)), for some open set U ⊆M . In the holomorphic
and real analytic cases, we will show that, for the locally integrable time-varying
vector fields, the sequence of the Picard iterations for the “linear” differential equation
converges. The limit of this sequence gives us an absolutely continuous curve on
L(Cν(M);Cν(U)), which is the flow of the vector field.

Finally, in section 3.9, we study the exponential mapping which takes a locally
integrable time-varying vector field and gives us its absolutely continuous flow. Using
the local extension result for time-varying real analytic vector fields, we show that
real analytic exponential map is a sequential homeomorphism.

3.2. Topology on the space Γν(E)

In this section, we define a topology on space of Cν-sections of the Cν-vector
bundle (E,M, π). Topologies on spaces of differentiable mapping has been studied
in detail in many references (for example [36], [61], and [51]). In the cases of smooth
and holomorphic sections, these topologies has been defined in the literature using
a family of seminorms [51], [61]. We will show that these locally convex spaces
have many nice properties including being complete, separable, and satisfying the
Heine–Borel property.

In the real analytic case, using the fact that real analytic sections are germs of
holomorphic sections, one can define two representations for a locally convex topology
on the space of real analytic sections [59]. Moreover, one can find a family of gener-
ating seminorms for this space [81]. We will also show that the space of real analytic
sections with this topology has nice properties including being complete, separable,
and Heine–Borel.

Finally, when (E,M, π) is the trivial bundle, the space of Cν-sections of E can be
identified with the space of Cν-functions on M . However, one can see that the space
of Cν-functions on M has an additional structure of an F-algebra. It is reasonable,
therefore, to study algebra multiplication in Cν(M) with respect to Cν-topology. We
will show that the algebra multiplication of Cν(M) is continuous for the Cν-topology
on Cν(M).

3.2.1. Topology on Γ∞(E). The Whitney topology for the space of smooth map-
pings on M has been studied in [36] and [61].
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Definition 3.2.1. Let (E,M, π) be a C∞-vector bundle, (U, ϕ) be a coordinate chart
onM , K ⊆ U be a compact set, and m ∈ N. We define the seminorm p∞K,m on Γ∞(E)
as

p∞K,m(X) = sup{∥D(r)X(x)∥ | x ∈ K, |r| ≤ m}, ∀X ∈ Γ∞(E).

The family of seminorms {p∞K,m} generates a locally convex topology on the space
Γ∞(E). This topology is called C∞-topology.

This topological vector space has many nice properties. The next theorem states
some of the most used properties of this space.

Theorem 3.2.2. The space Γ∞(E) with the C∞-topology is a Hausdorff, separable,
complete, nuclear, and metrizable space. It also satisfies Heine–Borel property.

Proof. The fact that Γ∞(E) is a nuclear completely metrizable space is shown in [51,
§30.1] and the fact that Γ∞(E) is separable is proved in [42, §3.2]. Since Γ∞(E) is
metrizable, it is Hausdorff. Finally, the Heine–Borel property of Γ∞(E) follows from
the fact that Γ∞(E) is nuclear.

3.2.2. Topology on Γhol(E). The natural topology on the space of germs of holo-
morphic sections on a complex manifold M has been studied in [51, §30.4].

Definition 3.2.3. Let (E,M, π) be a Chol-vector bundle. For every compact set
K ⊆M , we define the seminorm pholK as

pholK (X) = sup{∥X(x)∥ | x ∈ K}, ∀X ∈ Γhol(E).

The family of seminorms {pholK } defines a locally convex topology on the vector space
Γhol(E). We call this topology the Chol-topology.

Theorem 3.2.4. The space Γhol(E) with the Chol-topology is a Hausdorff, separable,
complete, nuclear, and metrizable space. It also satisfies Heine–Borel property.

Proof. The fact that the Chol-topology on Γhol(E) is complete, nuclear, and metrizable
has been proved in [51, §30.5]. In order to prove that Γhol(E) is separable, note that
Γhol(E) is a subspace of Γ∞(ER). However, by Theorem 3.2.2, we know that Γ∞(ER)
is separable and by [84, Theorem 16.11], subspaces of separable metric spaces are
separable. This implies that Γhol(E) is separable. Since Γhol(E) is nuclear, it satisfies
the Heine–Borel property.

The Topology on the space of germs of holomorphic functions has been studied in
[51, §8.3]. We generalize the setting in [51] to include germs of holomorphic sections.
Let A ⊆ M be a subset. The family of all neighbourhoods of A in M is denoted by
NA. One can easily show that NA is a directed set with respect to the set inclusion.
For every pair UA, VA ∈ NA such that UA ⊆ VA, we can define the restriction map
iUA,VA : Γhol(VA)→ Γhol(UA) as

iUA,VA(X) = X |UA
.
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The pair {Γhol(UA), iUA,VA}UA⊆VA is a directed system. The direct limit of this directed
system is denoted by (G hol

A ,
{
iUA

}
UA∈NA

). One can define the topology on G hol
A as

the finest locally convex topology which makes all the maps iUA
: Γhol(UA) → G hol

A

continuous.
The special case when A = K ⊆ M is compact has a significant role in studying

the space of real analytic sections. One can show that, when K ⊆M is compact, the
inductive limit lim−→UK∈NK

Γhol(UK) = G hol
K is countable [23]. It follows that, for every

compact set K ⊆ M , one can choose a sequence of open sets {Un}n∈N such that, for
every n ∈ N, we have

cl(Un+1) ⊆ Un,

and
⋂∞
i=1 Ui = K. Then we have lim−→n→∞ Γhol(Un) = G hol

K .

Definition 3.2.5. Let U ⊆ M be an open set. We define the map pU : Γhol(U) →
[0,∞] as

pU(X) = sup{∥X(x)∥ | x ∈ U}, ∀X ∈ Γhol(U).

Then Γhol
bdd(U) is a subspace of Γhol(U) defined as

Γhol
bdd(U) = {X ∈ Γhol(U) | pU(X) <∞}.

We equip Γhol
bdd(U) with the norm pU and define the inclusion ρU : Γhol

bdd(U)→ Γhol(U)
as

ρU(X) = X, ∀f ∈ Γhol
bdd(U).

Theorem 3.2.6. The space (Γhol
bdd(U), pU) is a Banach space and the map ρU :

Γhol
bdd(U)→ Γhol(U) is a compact continuous map.

Proof. Let K be a compact subset of U . Then, for every X ∈ Γhol
bdd(U), we have

pholK (ρU(X)) = pholK (X) ≤ pU(X), which implies that ρU is continuous. Now con-
sider the open set p−1

U ([0, 1)) in Γhol
bdd(U). The set p−1

U ([0, 1)) is bounded and ρU is
continuous. So

ρU
(
p−1
U ([0, 1))

)
,

is bounded in Γhol(U). Since Γhol(U) has the Heine–Borel property, the set
ρU
(
p−1
U ([0, 1))

)
is relatively compact in Γhol(U). So ρU is compact.

Now we show that (Γhol
bdd(U), pU) is a Banach space. Let {Xn}n∈N be a Cauchy

sequence in Γhol
bdd(U). It suffices to show that there exists X ∈ Γhol

bdd(U) such that
limn→∞Xn = X in the topology induced by pU on Γhol

bdd(U). Since ρU is continuous,
the sequence {Xn}n∈N is Cauchy in Γhol(U). Since Γhol(U) is complete, there exists
X ∈ Γhol(U) such that limn→∞Xn = X in the Chol-topology. Now we show that
limn→∞Xn = X in the topology of (Γhol

bdd(U), pU) and X ∈ Γhol
bdd(U). Let ϵ > 0. Then

there exists N ∈ N such that, for every n,m > N , we have

pU(Xn −Xm) <
ϵ

2
.
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This implies that, for every z ∈ U and every n,m > N , we have

∥Xn(z)−Xm(z)∥ <
ϵ

2
.

So, for every z ∈ U and every n > N , we choose mz > N such that

∥Xm(z)−X(z)∥ < ϵ

2
, ∀m ≥ mz.

This implies that, for every z ∈ U , we have

∥X(z)−Xn(z)∥ < ∥Xn(z)−Xmz(z)∥+ ∥Xmz(z)−X(z)∥ < ϵ.

So, for every n > N , we have

pU(Xn −X) < ϵ.

This completes the proof.

Theorem 3.2.7. Let K be a compact set and {Un}n∈N be a sequence of neighbourhoods
of K such that

cl(Un+1) ⊆ Un, ∀n ∈ N,

and
⋂
n∈N Un = K. Then we have lim−→n→∞ Γhol

bdd(Un) = G hol
K . Moreover, the inductive

limit is compact.

Proof. For every n ∈ N, we define rn : Γhol(Un)→ Γhol
bdd(Un+1) as

rn(X) = X |Un+1 , ∀X ∈ Γhol(Un).

For every compact set K with Un+1 ⊆ K ⊆ Un, we have pUn(X) ≤ pholK (X). This
implies that the map rn is continuous and we have the following diagram:

Γhol
bdd(Un)

ρUn // Γhol(Un)
rn // Γhol

bdd(Un+1)
ρUn+1 // Γhol(Un+1) .

Since all maps in the above diagram are linear and continuous, by the universal
property of the inductive limit of locally convex spaces, we have

lim−→
n→∞

Γhol
bdd(Un) = lim−→

n→∞
Γhol(Un) = G hol

K .

Moreover, for every n ∈ N, the map ρUn is compact and rn is continuous. So the
composition rn ◦ρUn is also compact [43, §17.1, Proposition 1]. This implies that the
direct limit lim−→n→∞ Γhol

bdd(Un) = G hol
K is compact.
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3.2.3. Topology on Γω(E). Since Γω(E) ⊆ Γ∞(E), one can define a topology on
the space of real analytic sections using the C∞-topology. This topology makes Γω(E)
into a topological subspace of Γ∞(E). However, the following example shows that
the restriction of C∞-topology to the space of real analytic sections is not complete.

Example 3.2.8. Let f ∈ C∞(S1) be a smooth function which is not real analytic.
Recall that the nth partial sum of the Fourier series of f is given by

sn(f)(t) =
n∑

k=−n

1

2π

∫ π

−π
f(t− s)eiksds

=
n∑

k=−n

1

2π

∫ π

−π
f(s)eik(t−s)ds =

n∑
k=−n

(∫ π

−π
f(s)e−iksds

)
eikt.

For every k ∈ N, the function eikt is real analytic on S1. This implies that, for
every n ∈ N, sn(f) ∈ Cω(S1). Since f ∈ C1(S1), the sequence {sn(f)}n∈N converges
uniformly on S1 to f [40, Chapter 1, §1, Corollary III]. Let us define g ∈ C∞((−π, π))
by

g(t) = f(t), ∀t ∈ (−π, π).

Similarly, for every n ∈ N, we define gn ∈ C∞((−π, π)) by

gn(t) = sn(f)(t), ∀t ∈ (−π, π).

Now consider the sequence {Dgn}n∈N. Note that, for every n ∈ N , we have

D(gn)(t) = D

(
n∑

k=−n

1

2π

∫ π

−π
g(t− s)eiksds

)

=
n∑

k=−n

1

2π

∫ π

−π
Dg(t− s)eiksds, ∀t ∈ (−π, π).

Since we have g ∈ C∞((−π, π)), Dg ∈ C1((−π, π)). So, we can again use [40, Chapter
1, §1, Corollary III] to show that the sequence {Dgn}n∈N converges toDg uniformly on
(−π, π). If we continue this procedure, we will see that, for every i ∈ N, the sequence
{Di(gn)}n∈N converges to Di(g) uniformly on (−π, π). This implies that the sequence
{gn}n∈N converges to g in the C∞-topology. Therefore, we have a sequence of real
analytic functions {gn}n∈N which converges in the C∞-topology to a smooth but not
real analytic function g. This implies that the space Cω((−π, π)) with C∞-topology
is not complete.

We will define a topology on Γω(E) which makes it into a complete topological
vector space. This topology on Γω(E) has been first studied comprehensively in [59].
Recently, this topology has been studied throughly in operator theory [23]. A special
case of what Martineau did in [59] can be used to define a topology on the space
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of real analytic sections on an open set U ⊆ Rn. Martineau defined two topologies
on Γω(E), using the fact that every real analytic section on U can be extended to a
holomorphic section on some neighbourhood U ⊆ Cn of U . He also showed that these
two topologies are the same. Many properties of this topology have been studied in
[23]. The generalization of some of these ideas to the case when M is a real analytic
manifold is straightforward [23]. This requires extension of the domain of a section
X ∈ Γω(E) to a complex manifold. We first define a specific class of real submanifolds
of a complex manifold. One can consider an n-dimensional complex manifold M as a
2n-dimensional smooth manifold MR. Although the real submanifolds of MR are not
necessarily complex submanifolds of M , there exists a specific class of submanifolds
of MR which has many nice properties. These submanifolds are called totally real.
We start by defining a totally real subspace of a complex vector space.

Definition 3.2.9. Let V be a complex vector space with an almost complex structure
J . A real subspace U of V is called totally real if we have J(U)

⋂
U = {0}.

Definition 3.2.10. Let M be a complex manifold with an almost complex structure
J . A submanifold N of M is called a totally real submanifold if, for every p ∈ N ,
we have J(TpN)

⋂
TpN = {0}.

Definition 3.2.11. Let (F,N, ξ) be a holomorphic vector bundle with an almost com-
plex structure J on its fibers. A generalized vector subbundle (E,M, π) of (F,N, ξ)
is called a totally real subbundle if, M is a totally real submanifold of N , E is a
totally real submanifold of F , and, for every p ∈ N , we have J(Fp) ∩ Fp = {0}.

Let M be a complex manifold. Then every real analytic map on a totally real
submanifold N of M can be extended to a holomorphic map on a neighbourhood of
N in M [18, Lemma 5.40].

Theorem 3.2.12. Let M and W be two complex manifold and N be a real analytic
totally real submanifold of M , with dimCM = dimRN . Suppose that f : N → W is
a real analytic map. Then, there exists a sufficiently small neighbourhood U of N in
M and a holomorphic map f : U → W such that

f(x) = f(x), ∀x ∈ N.

Moreover, this holomorphic extension is unique in the following sense: if f is a
holomorphic extension of f to U containing N and g is another holomorphic extension
of f to W containing N , then there exists V ⊆ W ∩ U such that we have

f(x) = g(x), ∀x ∈ V .

We call the holomorphic function f a holomorphic extension of f .
What happens if we start with a real analytic manifold M? It can be shown

that, for every real analytic manifold M , there exists a complex manifold MC which
contains M as a totally real submanifold [83].
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Theorem 3.2.13. LetM be a real analytic manifold. There exists a complex manifold
MC such that dimCM

C = dimRM and M is a totally real submanifold of MC.

The complex manifoldMC is called a complexification of the real analytic man-
ifold M . Grauert showed that MC can be chosen to be a Stein manifold [27, §3].
Moreover, he showed that, given any neighbourhood U of M in MC, there exists a
Stein neighbourhood of M inside U [27, §3].

Theorem 3.2.14. Let M be a real analytic manifold. There exists a Stein manifold
MC such that dimCM

C = dimRM , and M is a totally real submanifold of MC. More-
over, for every neighbourhood U of M in MC, there exists a Stein neighbourhood S
of M in MC such that S ⊆ U

One can similarly show that for a real analytic vector bundle (E,M, π), there exists
a holomorphic vector bundle (EC,MC, πC) which contains (E,M, π) as a totally real
subbundle.

Theorem 3.2.15. Let (E,M, π) be a real analytic vector bundle. There exists a holo-
morphic vector bundle (EC,MC, πC), where EC and MC are complexifications of E
and M respectively. Moreover, (E,M, π) is a totally real subbundle of (EC,MC, πC).

Proof. The proof of this theorem is similar to the proof given in [83] for complexifi-
cation of manifolds.

The vector bundle (EC,MC, πC) is called a complexification of the real analytic
vector bundle (E,M, π). One can show that every real analytic section on (E,M, π)
can be extended to a holomorphic section on (EC,MC, π).

Theorem 3.2.16. Let (E,M, π) be a real analytic vector bundle, (EC,MC, πC) be a
complexification of (E,M, π), and σ :M → E be a real analytic section on (E,M, π).
Then there exists a neighbourhood U ⊆MC containing M and a holomorphic section
σ : U → EC such that

σ(x) = σ(x), ∀x ∈M.

Proof. Since E is a totally real submanifold of EC, there exists a real analytic map
i : E → EC. Thus, the composition i ◦σ : M → EC is a real analytic map. By
Theorem 3.2.12, there exists a neighbourhood V ⊆MC ofM and a holomorphic map
σ : V → EC such that

σ(x) = i ◦σ(x) = σ(x), ∀x ∈M.

Note that for the map πC ◦σ : V →MC, we have

πC ◦σ(x) = πC(σ(x)) = π ◦σ(x) = x, ∀x ∈M.

Therefore the map πC ◦σ is the identity on M . Thus, by the uniqueness part of
Theorem 3.2.12, there exists a neighbourhood U ⊆ V of M such that

πC ◦σ(z) = z, ∀z ∈ U.
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This implies that πC ◦σ|U= idU . This means that σ|U : U → EC is a holomorphic
section of (EC,MC, πC) such that

σ|U(x) = σ(x), ∀x ∈M.

This completes the proof.

The section σ is called a holomorphic extension of σ.
We are now able to define two topologies on the space of real analytic sections.

The definition of these topologies relies on the following characterization of the vector
space Γω(E) by the space of holomorphic sections.

Definition 3.2.17. Let (E,M, π) be a real analytic vector bundle and (EC,MC, πC)
be a complexification of (E,M, π). We define Γhol,R(EC) ⊆ Γhol(EC) as

Γhol,R(EC) = {X ∈ Γhol(EC) | X(x) ∈ Ex, ∀x ∈M}.

Theorem 3.2.18. The space Γhol,R(EC) with the Chol-topology is Hausdorff, sep-
arable, complete, nuclear, and metrizable. Moreover, it satisfies the Heine–Borel
property.

Proof. In view of Theorem 3.2.4, it suffices to show that Γhol,R(EC) is a closed subspace
of Γhol(EC). However, this is clear from the definition and the fact that Ex is closed
in EC

x .

Let A ⊆M . We denote the set of all neighbourhoods of A inMC by NA. For every
UA, V A ∈ NA with UA ⊆ V A, we define the map iR

UA,V A
: Γhol,R(V A)→ Γhol,R(UA) as

iR
UA,V A

(X) = X|UA
, ∀X ∈ Γhol,R(V A).

The pair (Γhol,R(UA), i
R
UA,V A

)UA⊆V A
is a directed system. The direct limit of this

system is (G hol,R
A , iR

UA
)UA∈NA

. One can define a topology on G hol,R
A as the finest locally

convex topology which makes all the maps iR
UA

: Γhol,R(UA)→ G hol,R
A continuous.

Theorem 3.2.19. Let M be a real analytic manifold. The vector space Γω(M) is
isomorphic to the vector space G hol,R

M .

Proof. We just need to find a linear bijective map between these two spaces. Let us
define the map iM : Γω(E)→ G hol,R

M as

iM(X) = [X]M , ∀X ∈ Γω(E),

where X is a holomorphic extension of X to a neighbourhood of M . The linearity
of iM is clear. By existence and uniqueness of the holomorphic extension (Theorem
3.2.12), iM is well-defined and injective. To prove surjectivity, note that, by definition
of G hol,R

M , for every h ∈ G hol,R
M , there exists a neighbourhood U containing M and a
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holomorphic section H ∈ Γhol,R(U) such that [H]M = h. Now, if we define g :M → E
as

g(x) = H(x), ∀x ∈M,

then, by Theorem 2.1.5, it is clear that g ∈ Γω(E). Moreover, H is a holomorphic
extension of g. So we have iM(g) = [H]M = h. This completes the proof of the
theorem.

Theorem 3.2.19 shows that the space of real analytic sections on a real analytic
manifoldM is isomorphic with the space of germs of holomorphic sections on complex
neighbourhoods of M . We first define an inductive topology on the space of germs of
holomorphic sections around an arbitrary set A ⊆ MC. Then using Theorem 3.2.19,
we induce a topology on Γω(E) [59].

Definition 3.2.20. Let A ⊆ M be a set, MC be a Stein manifold, and NA be the
family of neighbourhoods of A in MC. The inductive topology on G hol,R

A is defined
as the finest locally convex topology which makes all the maps {iR

U
}U∈NA

continuous.

Definition 3.2.21. Let U ⊆ MC be an open neighbourhood of M . We define the
map pU : Γhol,R(U)→ [0,∞] as

pU(X) = sup{∥X(x)∥ | x ∈ U}.

Then Γhol,R
bdd (U) is the subspace of Γhol,R(U) defined as

Γhol,R
bdd (U) = {X ∈ Γhol,R(U) | pU(X) <∞}.

We equip Γhol,R
bdd (U) with the norm pU and define the inclusion ρR

U
: Γhol,R

bdd (U) →
Γhol,R(U) as

ρR
U
(X) = X, ∀X ∈ Γhol,R

bdd (U).

Similar to the Theorem 3.2.6, one can show the following theorem.

Theorem 3.2.22. The space (Γhol,R
bdd (U), pU) is a Banach space and the map ρR

U
:

Γhol,R
bdd (U)→ Γhol,R(U) is a compact continuous map.

Similar to Theorem 3.2.7, the following result holds.

Theorem 3.2.23. Let K be a compact set in M and {Un}n∈N be a sequence of
neighbourhoods of K in MC such that

cl(Un+1) = Un, ∀n ∈ N,

and
⋂
n∈N Un = K. Then we have lim−→n→∞ Γhol,R

bdd (Un) = G hol,R
K . Moreover, the induc-

tive limit is compact and as a result the final topology on G hol,R
K and the locally convex

topology on G hol,R
K coincide.
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Using Theorem 3.2.19, one can define the inductive topology on Γω(E). Let M
be a real analytic manifold, MC be a complexification of M , and NM be the family
of all neighbourhoods of M in MC . Let U ∈ NM and let iM : Γω(E) → Γhol,R

M be
defined as

iM(X) = [X]M , ∀X ∈ Γω(E).

Theorem 3.2.19 shows that iM is a bijective linear map. So, for every U ⊆ NM , one
can define iU,M : Γhol,R(U)→ Γω(E) as

iU,M = i−1
M

◦ iR
U
.

Definition 3.2.24. The inductive topology on Γω(E) is defined as the finest locally
convex topology which makes all the maps {iU,M}U⊆NM

continuous.

Although the definition of inductive topology on Cω(M) is natural, characteriza-
tion of properties of Γω(E) using this topology is not easy. The main reason is that,
for non-compactM , the inductive limit lim−→U∈NM

Γhol,R(U) = Γω(E) is not necessarily

countable [23, Fact 14]. However, one can define another topology on the space of
real analytic sections which is representable by countable inductive and projective
limits [59]. Let M be a real analytic manifold and let A be a subset of M . Then we
define the projection jA : Γω(E)→ G hol,R

A as

jA(X) = [X]A,

where X is a holomorphic extension of X ∈ Γω(E) to a complex neighbourhood
U ⊆MC of A.

Theorem 3.2.25. Let A ⊆M . Then the map jA is well-defined and linear.

Proof. LetX and Y be two holomorphic extensions ofX on neighbourhoods U and V ,
respectively. Then, by existence and uniqueness of holomorphic extension (Theorem
3.2.12), there exists an open set W ⊆ U ∩ V such that M ⊆ W and

X(x) = Y (x), ∀x ∈ W.

So we have [X]A = [Y ]A. This implies that the map pA is well-defined. Let X, Y ∈
Γω(E) and α ∈ R. Then there exist neighbourhoods U and V , and holomorphic
sections X ∈ Γhol,R(U) and Y ∈ Γhol,R(V ) which are holomorphic extensions of X
and Y respectively. Let W = U ∩ V . Then we define h : Γhol,R(W ) as

h(x) = X(x) + αY (x), ∀x ∈ W.

It is clear that we have

jA(X + αY ) = [h]A = [X + αY ]A = [X]A + α[Y ]A = jA(X) + αjA(Y ).
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Definition 3.2.26. Let M be a real analytic manifold and let {Kn}n∈N be a com-
pact exhaustion for M . The projective topology on the space of real analytic
sections Γω(E) is defined as the coarsest topology which makes all the projections
jKn : Γω(E)→ G hol,R

Kn
continuous.

It is easy to see that the projective topology does not depend on the specific choice
of compact exhaustion {Kn}n∈N. One can also show that the inductive topology and
projective topology on Γω(E) are the same [59, Theorem 1.2(a)].

Theorem 3.2.27. The inductive and projective topology on Γω(E) coincide.

We denote this topology on the space Γω(E) by the Cω-topology.

Theorem 3.2.28. The space Γω(E) with the Cω-topology is Hausdorff, separable,
complete, and nuclear. It also satisfies Heine–Borel property.

Proof. Let {Kn}n∈N be a compact exhaustion for M . Note that, by theorem 3.2.22,
the inductive limit

lim−→Γhol,R(UKn) = G hol,R
Kn

is compact. Note that, for every n ∈ N, the vector space Γhol,R(UKn) is a complete
locally convex space. This implies that, for every n ∈ N , the vector space G hol,R

Kn
is

complete [7, Theorem 4]. Since Γω(E) is the projective limit of the family {G hol,R
Kn
}n∈N,

it is a complete locally convex vector space [69, Chapter II, §5.3]. By [51, §30.4],
for every UM ⊆ MC a neighbourhood of M , the vector space Γhol(UM) is nuclear.
Therefore Γhol,R(UM) is nuclear because Γhol,R(UM) is a closed subspace of Γhol(UM)
[69, Chapter II, Theorem 7.4]. According to [69, Chapter II, Theorem 7.4], the
inductive limit of a family of nuclear spaces is nuclear. So Γω(E) is nuclear. The fact
that Γω(E) is nuclear implies that it satisfies Heine–Borel property. Finally, the fact
that Γω(E) is separable has been shown in [23, Theorem 16].

Every locally convex topology can be represented by a family of generating semi-
norms. So, it would be useful to find families of generating seminorms for the Cω-
topology on Γω(E). In this section, we construct two families of seminorms that
generates the Cω-topology on Γω(E).

Let C ⊆M be a compact set and A be a Cω-atlas on the manifold M . For every
coordinate chart (U, ϕ) ∈ A , every local trivialization η : π−1(U) → U × Rk, every
compact set K ⊆ U , and every a ∈ c0(Z≥0,R>0), we define the seminorm pK,a,ϕ,η on

G hol,R
C as

pK,a,ϕ([X]C) = sup

{
a0a1 . . . a|r|

(r)!
∥D(r)X(x)∥(U,ϕ,η)

∣∣∣ x ∈ K, |r| ∈ Z≥0

}
.

Theorem 3.2.29. Let M be a real analytic manifold, C ⊆ M be a compact set and
A be a Cω-atlas on M . The family of seminorms {pK,a,ϕ,η} generates the inductive

limit topology on the space G hol,R
C .



60 S. Jafarpour

Proof. We first show that the topology induced by these seminorms on G hol,R
C is

independent of the Cω-atlas A . Let A1 and A2 be two equivalent Cω-atlas on M .
Let (U, ϕ) ∈ A1 and (V, ψ) ∈ A2 be such that U ∩ V ̸= ∅. Let a ∈ c0(Z≥0,R>0)
and K ⊆ U ∩ V . By Sublemma 3 from the proof of Lemma 5.2 in [42], there exist
C, σ > 0 such that

sup

{
1

(r)!
∥D(r)(η ◦X ◦ϕ−1)(x)∥ | |r| ≤ m∥

}
≤ C(σ)m sup

{
1

(r)!
∥D(r)

(
η ◦X ◦ψ−1

)
(ψ ◦ϕ−1(x))∥ | |r| ≤ m

}
for every [X]C ∈ G hol,R

C and every x ∈ ϕ(K). Now if we take the supremum over the
compact set ϕ(K), for every X ∈ G hol,R

C , we get

sup

{
1

(r)!
∥D(r)(η ◦X ◦ϕ−1)(x)∥ | |r| ≤ m,x ∈ ϕ(K)∥

}
≤ C(σ)m sup

{
1

(r)!
∥D(r)(η ◦X ◦ψ)(x)∥ | |r| ≤ m,x ∈ ψ(K)

}
.

Therefore,

sup

{
1

(r)!
∥D(r)(η ◦X ◦ϕ−1)(x)∥ | |r| ≤ m,x ∈ ϕ(K)∥

}
≤ C(σ)m sup

{
1

(r)!
∥D(r)(η ◦X ◦ψ)(x)∥ | |r| ≤ m,x ∈ ψ(K)

}
.

Multiplying both side of the equality by a0a1 . . . am, we get

sup

{
a0a1 . . . am

(r)!
∥D(r)(η ◦X ◦ϕ−1)(x)∥ | |r| ≤ m,x ∈ ϕ(K)∥

}
≤ C sup

{
(σa0)(σa1) . . . (σam)

(r)!
∥D(r)(η ◦X ◦ψ−1)(x)∥ | |r| ≤ m,x ∈ ψ(K)

}
.

Taking supremum over all multi-indicies, we have

pK,a,ϕ,η(X) ≤ pψ(K),σa,ψ,η(X), ∀X ∈ G hol,R
C .

Now assume that K ⊆ U . Then, for every x ∈ K, there exists a chart (Vx, ϕx) ∈ A2

such that x ∈ Vx. Consider a compact setKx ⊆ Vx such that x ∈ Kx and int(Kx) ̸= ∅.
Since K is compact, there exists a finite collection of points x1, x2, . . . , xn ∈ K such
that

n⋃
i=1

int(Kxi) = K.
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This implies that

K ⊆
n⋃
i=1

Kxi .

Note that, for every i ∈ {1, 2, . . . , n}, we have Kx ∈ U ∩ Vx. Therefore, for every
i ∈ {1, 2, . . . , n}, there exist σi, Ci > 0 such that

pKxi ,a,ϕ,η
(X) ≤ pψxi (Kxi ),σa,ψxi ,η

(X), ∀X ∈ G hol,R
C .

Thus, we have

pK,a,ϕ,η(X) ≤
n∑
i=1

pKxi ,a,ϕ,η
(X) ≤

n∑
i=1

pψxi (Kxi ),σa,ψxi ,η
(f), ∀X ∈ G hol,R

C .

This shows that the topology generated by the family of seminorms {pK,a,ϕ,η} for
(U, ϕ) ∈ A1 is coarser than the topology generated by the family of seminorms
{pK,a,ψ,η} for (V, ψ) ∈ A2. Similarly, we can show that topology generated by the
family of seminorms {pK,a,ψ,η} for (V, ψ) ∈ A2 is coarser than the topology gener-
ated by the family of seminorms {pK,a,ϕ,η} for (U, ϕ) ∈ A1. This shows that the two
topologies are the same. Now one can fix a Cω-atlas A on M and consider the semi-
norms {pK,a,ϕ,η} for (U, ϕ) ∈ A . The fact that the seminorms {pK,a,ϕ,η} generates the
topology on G hol,R

C has been proved in [81].

Remark 3.2.30. Since the topology generated by the family of seminorms {pK,a,ϕ,η}
does not depend on the Cω-atlas on M , one can fix a Cω-atlas on M . Unless it is
explicitly mentioned, we assume that a coordinate chart (U, ϕ) forM and a local triv-
ialization (E,M, π) is attached to K. Therefore we can usually denote the seminorm
pK,a,ϕ,η by pK,a without any confusion, assuming that the choice of the coordinate
chart and local trivialization is clear from the context.

One can show that the set {pK,a}a∈c0(Z≥0,R>0) is uncountable. Although this fam-

ily of seminorms generates the topology on G hol,R
C , it doesn’t mean that one needs

every seminorms in the family {pK,a} to generate the topology on G hol,R
C . In fact,

the topology on G hol,R
C can be generated by a much smaller subfamily. In the next

theorem, we choose a specific subfamily of {pK,a}, which turns out to be useful for
our future computations.

Let d > 0 be a positive real number. We define c↓0(Z≥0;R>0, d) as the subset of
c↓0(Z≥0;R>0) given by

c↓0(Z≥0;R>0, d) = {a ∈ c↓0(Z≥0;R>0) | am ≤ d, ∀m ∈ Z≥0}.

Theorem 3.2.31. Let C ⊆ M be a compact set. Then the family of seminorms
{pK,a}, a ∈ c↓0(Z≥0;R>0, d), generates the inductive limit topology on G hol,R

C .
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Proof. Let b ∈ c↓0(Z≥0;R>0). Then we define b′ = (b′0, b
′
1, b

′
2, . . .) ∈ c↓0(Z≥0;R>0, d) as

b′i = min{d, bi}

Since {bi}i∈N converges to zero, there exists m ∈ N such that

b′i = bi, ∀i > m,

b′i = d, ∀i ≤ m.

This implies that, for every multi-index (r) with |r| ≤ m, we have

b′0b
′
1 . . . b

′
|r|

(r)!
=
d|r|

(r)!
≥
(

dm

b0b1 . . . bm

)
b0b1 . . . b|r|

(r)!
,

and, for every multi-index (r) with |r| > m, we have

b′0b
′
1 . . . b

′
|r|

(r)!
=
dmb′m+1b

′
m+2 . . . b

′
|r|

(r)!
=
dmbm+1bm+2 . . . b|r|

(r)!
=

(
dm

b0b1 . . . bm

)
b0b1 . . . b|r|

(r)!
.

So, for every compact set K ⊆ U , we have

pK,b([X]C) ≤
(
b0b1 . . . bm

dm

)
pK,b′([X]C) ∀[X]C ∈ G hol,R

C .

In many applications it is more convenient to work with another family of semi-
norms on G hol,R

C .

Definition 3.2.32. Let A be an atlas on M , (U, ϕ) ∈ A be a coordinate chart on
M , η : π−1(U)→ U ×Rk is a local trivialization for (E,M, π), K ⊆ U be a compact
set, and a ∈ c0(Z≥0,R>0). Then we define the seminorm p̃K,a on G hol,R

C as

p̃K,a([X]C) = sup

{
a0a1 . . . a|r|
|r|!

∥∥D(r)(X)(x)
∥∥
(U,ϕ,η)

| x ∈ K, |r| ∈ Z≥0

}
.

Theorem 3.2.33. The family of seminorms {p̃K,a} generates the inductive limit

topology on the space G hol,R
C .

Proof. Note that for every multi-index (r), we have (r)! ≤ |r|!. This implies that

a0a1 . . . a|r|
|r|!

∥∥D(r)X(x)
∥∥
(U,ϕ,η)

≤
a0a1 . . . a|r|

(r)!

∥∥D(r)X(x)
∥∥
(U,ϕ,η)

So we have
p̃K,a(X) ≤ pK,a(X), ∀a ∈ c↓0(Z≥0,R>0).
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So the topology generated by the family of seminorms {p̃K,a} is finer than the induc-
tive limit topology. Moreover, we have

a0a1 . . . a|r|
(r)!

∥∥D(r)X(x)
∥∥
(U,ϕ,η)

=
|r|!
(r)!

a0a1 . . . a|r|
|r|!

∥∥D(r)X(x)
∥∥
(U,ϕ,η)

≤ N |r|a0a1 . . . a|r|
|r|!

∥∥D(r)X(x)
∥∥
(U,ϕ,η)

=
(Na0)(Na1) . . . (Na|r|)

|r|!
∥∥D(r)X(x)

∥∥
(U,ϕ,η)

.

Thus we get
pK,a(X) ≤ p̃K,Na(X), ∀a ∈ c↓0(Z≥0,R>0).

This shows that the topology generated by the family of seminorms {p̃K,a} is coarser
than the inductive limit topology. This completes the proof.

Using families of seminorms {pK,a} and {p̃K,a} on G hol,R
C , one can easily define two

families of seminorms on Γω(E). Let (U, ϕ) be a coordinate chart onM , η : π−1(U)→
U × Rk be a local trivialization for (E,M, π), K ⊆ U be a compact set, d > 0 be a
positive real number, and a ∈ c0(Z≥0,R>0, d). Then we define the seminorm pωK,a as

pωK,a(X) = sup

{
a0a1 . . . a|r|

(r)!
∥D(r)X(x)∥(U,ϕ,η) | x ∈ K, |r| ∈ Z≥0

}
.

Similarly, we define

p̃ωK,a(X) = sup

{
a0a1 . . . a|r|
|r|!

∥D(r)X(x)∥(U,ϕ,η) | x ∈ K, |r| ∈ Z≥0

}
.

One can show that each of the families {pωK,a} and {p̃ωK,a} is a generating family
of seminorms for the Cω-topology on the space Γω(E).

Theorem 3.2.34. Let d > 0 be a positive real number, K be a compact set in a coor-
dinate neighbourhood on M , and a ∈ c↓0(Z≥0,R>0, d). Then the family of seminorms
{pωK,a} generates the Cω-topology on the space Γω(E).

Proof. Let (U, ϕ) be a coordinate chart on M . Then, for all compact sets C and K
such that K ⊆ C ⊆ U and every a ∈ c0(Z≥0,R>0, d), we have

pωK,a = pK,a ◦jC .

So pωK,a is a continuous seminorm on Cω-topology on Γω(E). This means that the
topology generated by the family of seminorms {pωK,a} on Γω(E) is coarser than the
Cω-topology. Let {Kn}n∈N be a compact exhaustion for the manifold M . We have
lim←−G hol,R

Kn
= Γω(E). So, for every open set W ⊂ Γω(E), there exists m ∈ N and

Wi ∈ G hol,R
Ki

for all i ∈ {1, 2, . . . ,m}, such that

m⋂
i=1

j−1
Ki

(Wi) ⊆W.
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Note that, for every n ∈ N, the family of seminorms {pK,a} generates the topology

on G hol,R
Kn

. Therefore, there exist compact sets C1, C2, . . . , Cm such that Ci ⊆ Ki for
every i ∈ {1, 2, . . . ,m} and sequences a1, a2, . . . , am such that ai ∈ c0(Z≥0,R>0, d)
for every i ∈ {1, 2, . . . ,m}, and we have

p−1
Ci,ai

([0, 1)) ⊆ Wi, ∀i ∈ {1, 2, . . . ,m}.

This implies that

m⋂
i=1

j−1
Ki

(p−1
Ci,ai

([0, 1))) =
m⋂
i=1

(
pωCi,ai

)−1
([0, 1)) ⊆ W.

This means that the topology generated by family of seminorms {pωK,a} is finer than
the Cω-topology on Γω(E).

Theorem 3.2.35. Let d > 0 be a positive real number, K be a compact set in a coor-
dinate neighbourhood on M , and a ∈ c↓0(Z≥0,R>0, d). Then the family of seminorms
{p̃ωK,a} generates the Cω-topology on the space Γω(E).

Proof. The proof is similar to the proof of Theorem 3.2.34.

Let M be a Cν-manifold. For the Cν-vector bundle (M × R,M, pr1), we know
that Cν-sections of (M ×R,M, pr1) are exactly C

ν-functions of M . Therefore, using
the above analysis, we can study the topology on the space Cν(M). In particular,
we can define a family of seminorms on Cν(M). However, the space of Cν-functions
has an extra algebra structure that the space of Cν-sections doesn’t have. One can
define a multiplication . : Cν(M)×Cν(M)→ Cν(M) on the vector space Cν(M) by

(f.g)(x) = f(x)g(x), ∀x ∈M.

This multiplication make the vector space Cν(M) into an F-algebra. It is interesting
that this algebra structure on Cν(M) is consistent with the Cν-topology on it.

Theorem 3.2.36. The algebra multiplication . : Cν(M)× Cν(M)→ Cν(M) is con-
tinuous.

Proof. The proof consists of three different cases:

1. (ν =∞):

Let (U, ϕ) be a coordinate chart onM and K ⊆ U be a compact set. Note that,
for all multi-indicies (r) with |r| ≤ m, we have

D(r)(fg)(x) =
∑

(s)≤(r)

(
(r)

(s)

)
D(r−s)f(x)D(s)g(x), ∀x ∈ U.
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So we have

∥D(r)(fg)(x)∥ ≤
∑

(s)≤(r)

(
(r)

(s)

)
∥D(r−s)f(x)∥∥D(s)g(x)∥, ∀x ∈ U.

Note that, for all multi-indices (s), (r) with (s) ≤ (r), we have

∥D(r−s)f(x)∥ ≤ sup
{
∥D(r)f(x)∥ | |r| ≤ m

}
, ∀x ∈ U,

and
∥D(s)g(x)∥ ≤ sup

{
∥D(r)g(x)∥ | |r| ≤ m

}
, ∀x ∈ U.

This implies that

∥D(r)(fg)(x)∥
≤ 2|r| sup

{
∥D(r)f(x)∥ | |r| ≤ m

}
sup

{
∥D(r)g(x)∥ | |r| ≤ m

}
, ∀x ∈ U.

Taking the sup of the left hand side of the above inequality over x ∈ K and (r)
with |r| ≤ m, we get

p∞K,m(fg) = sup
{
∥D(r)(fg)(x)∥ | x ∈ K, |r| ≤ m

}
≤ 2m sup

{
∥D(r)(f)(x)∥ | |r| ≤ m

}
sup

{
∥D(r)(g)(x)∥ | |r| ≤ m

}
≤ 2mp∞K,m(f)p

∞
K,m(g).

2. (ν = hol):

Note that, for every compact set K ⊆M , we have

pholK (fg) = sup {∥f(x)g(x)∥ | x ∈ K}
≤ sup {∥f(x)∥ | x ∈ K} sup {∥g(x)∥ | x ∈ K} = pholK (f)pholK (g).

3. (ν = ω):

Let (U, ϕ) be a coordinate chart on M , K ⊆ U be a compact set, and a ∈
c↓0(Z≥0;R>0). Note that, for every multi-index (r), we have

D(r)(fg)(x) =
∑
s≤r

D(r−s)f(x)D(s)g(x), ∀x ∈ U.

Since the sequence {ai}i∈N is decreasing, we have

a0a1 . . . a|r|
(r)!

∥D(r)(fg)(x)∥

≤
∑
s≤r

a0a1 . . . a|r−s|
(r − s)!

∥D(r−s)(f)(x)∥
a0a1 . . . a|s|

(s)!
∥D(s)(g)(x)∥, ∀x ∈ U.
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Note that, for every multi-index (s) such that (s) ≤ (r), we get

a0a1 . . . a|r−s|
(r − s)!

∥D(r−s)(f)(x)∥

≤ sup

{
a0a1 . . . a|r|

(r)!
∥D(r)(f)(x)∥

∣∣∣∣ |r| ∈ Z≥0

}
, ∀x ∈ U,

and

a0a1 . . . a|s|
(s)!

∥D(s)(g)(x)∥

≤ sup

{
a0a1 . . . a|r|

(r)!
∥D(r)(g)(x)∥

∣∣∣∣ |r| ∈ Z≥0

}
, ∀x ∈ U.

This implies that

a0a1 . . . a|r|
(r)!

∥D(r)(fg)(x)∥ ≤ 2|r| sup

{
a0a1 . . . a|r|

(r)!
∥D(r)(f)(x)∥ | |r| ∈ Z≥0

}
× sup

{
a0a1 . . . a|r|

(r)!
∥D(r)(g)(x)∥ | |r| ∈ Z≥0

}
, ∀x ∈ U.

Taking the sup over x ∈ K and |r| ∈ Z≥0, we get

pωK,a(fg) ≤ pω
K,

√
2a
(f)pω

K,
√
2a
(g).

3.3. Cν-vector fields as derivations on Cν(M)

In this section, we study Cν-vector fields on M as derivations on the F-algebra
Cν(M). For a smooth manifoldM , it is a well-known fact that every derivation on the
R-algebra C∞(M) is the derivation associated to a C∞-vector field on M . However,
it is not generally true that a derivation on the C-algebra Chol(M) is the derivation
associated to a Chol-vector field on M . When M is a Stein manifold, this one-to-one
correspondence has been proved in [26]. Using this result, it can be shown that, for a
real analytic manifold M , there is a one-to-one correspondence between derivations
on the R-algebra Cω(M) and the Chol-vector fields on M [26]. Moreover, we will
show that, with the Cν-topology on Cν(M), vector fields are continuous operators.

Let M be a Cν-manifold and let X :M → TM be a Cν-vector field on M . Then
we define the corresponding linear map X̂ : Cν(M)→ Cν(M) as

X̂(f) = df(X), ∀f ∈ Cν(M).

Using the Leibniz rule, this linear map can be shown to be a derivation on the F-
algebra Cν(M).

More interestingly, one can show there is a one-to one correspondence between
Cν-vector fields on M and derivations on the F-algebra Cν(M).
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Theorem 3.3.1. Let M be a Cν-manifold , where ν ∈ {∞, ω, hol}. Additionally

assume that M is a Stein manifold when ν = hol. If X is a Cν-vector field, then X̂ is
a derivation on the F-algebra Cν(M). Moreover, for every derivation D : Cν(M)→
Cν(M), there exists a Cν-vector field X such that X̂ = D.

Proof. The proof of this theorem is different for the smooth case (ν = ∞), the real
analytic case (ν = ω), and holomorphic case (ν = hol). For the smooth case the
proof is given in [4, Proposition 2.4]. For the holomorphic case, this is proved in
[26, Theorem 3.2]. For the real analytic case, the idea of the proof is similar to the
holomorphic case, and the sketch of proof is given in [26, Theorem 4.1]

Theorem 3.3.2. Let X be a Cν-vector field. Then X̂ : Cν(M) → Cν(M) is a
continuous linear map.

Proof. The fact that X̂ is linear is easy. To show that X̂ is continuous, we consider
three different cases:

1. (ν =∞):

Assume that the compact set K is inside a coordinate chart (U, η =
(x1, x2, . . . , xN)). In this coordinate chart, we can write

X(f) =
N∑
i=1

X(xi)
∂f

∂xi
.

For every i ∈ {1, 2, . . . , N}, we denote X(xi) by X i. Let m ∈ Z>0, then we
have

p∞K,m(X(f)) = sup
{
∥D(r)(X(f))(x)∥ | |r| ≤ m,x ∈ K

}
.

Note that we have

D(r)(X(f))(x) = D(r)

(
N∑
i=1

X(xi)
∂f

∂xi

)
=
∑
l≤r

N∑
i=1

(D(l)X i(x))(D(r−l+(̂i)f(x)).

This implies that

p∞K,m(X(f)) ≤ 2mN max
i
{p∞K,m(X i)}p∞K,m+1(f).

This completes the proof of continuity of X̂.

2. (ν = hol):

Let (U, η = (x1, x2, . . . , xN)) be a coordinate chart such that U is relatively
compact and K ⊆ U be a compact set. For every x ∈ K, there exists rx > 0
such that cl(D(rx)(x)) ⊆ U . Since K is compact, there exists x1, x2, . . . , xn ∈ K
such that K ⊆

⋃n
i=1 cl(D(rxi )

(xi)). Note that for every i ∈ {1, 2, . . . , n}, the
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set cl(D(rxi )
(xi)) is compact. Therefore, the set K ′ =

⋃n
i=1 cl(D(rxi )

(xi)) is also
compact.

In this coordinate chart, we can write

X(f) =
N∑
i=1

X(xi)
∂f

∂xi
.

For every i ∈ {1, 2, . . . , N}, we denote X(xi) by X i. Then, we have

pholK (X(f)) = sup {∥X(f)(x)∥ | x ∈ K} .

Note that we have

∥X(f)(x)∥ ≤
N∑
i=1

∥X i(x)∥
∥∥∥∥ ∂f∂xi

∥∥∥∥
If we set r = min{r1, r2, . . . , rn}, using the Cauchy inequality, we have∥∥∥∥ ∂f∂xi (x)

∥∥∥∥ ≤ 1

r
sup {∥f(x)∥ | x ∈ K ′} , ∀x ∈ K.

This implies that

pholK (X(f)) ≤ N

r
max
i
{pholK (X i)}p∞K′(f).

This completes the proof for the holomorphic case.

3. (ν = ω):

Let (U, ϕ) be a coordinate chart on M and K ⊆ U be a compact set. We first
prove that, for every multi-index (r), we have

∥∥D(r)(fg)(x)
∥∥ ≤ |r|∑

j=0

(
|r|
j

)
sup{

∥∥(D(l)f(x))
∥∥ | |l| = j}

× sup
{∥∥(D(l)g(x))

∥∥ | |l| = |r| − j} , ∀x ∈ U.

We prove this by induction on |r|. If |r| = 1, then it is clear that we have∥∥∥∥ ∂

∂xi
(fg)(x)

∥∥∥∥ =

∥∥∥∥ ∂f∂xi (x)g(x) + ∂g

∂xi
(x)f(x)

∥∥∥∥
≤
∥∥∥∥ ∂f∂xi (x)g(x)

∥∥∥∥+ ∥∥∥∥ ∂g∂xi (x)f(x)
∥∥∥∥ , ∀x ∈ U.
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Now suppose that, for every (r) such that |r| ∈ {1, 2, . . . , k}, we have

∥∥D(r)(fg)(x)
∥∥ ≤ |r|∑

j=0

(
|r|
j

)
sup

{∥∥(D(l)f(x))
∥∥ | |l| = j

}
× sup

{∥∥(D(l)g(x))
∥∥ | |l| = |r| − j} , ∀x ∈ U.

Let (l) be a multi-index with |l| = k + 1. Then there exists i ∈ {1, 2, . . . , N}
and (r) with |r| = k such that (l) = (r) + (̂i). So we have

∥∥D(l)(fg)(x)
∥∥ =

∥∥∥∥D(r)

(
∂

∂xi
(fg)

)
(x)

∥∥∥∥
≤
∥∥∥∥D(r)

(
∂f

∂xi
g

)
(x)

∥∥∥∥+ ∥∥∥∥D(r)

(
∂g

∂xi
f

)
(x)

∥∥∥∥
≤

|r|∑
j=0

(
|r|
j

)
sup

{∥∥∥∥(D(l) ∂f

∂xi
(x))

∥∥∥∥ | |l| = j

}
sup

{∥∥(D(l)g(x))
∥∥ | |l| = |r| − j}+(

|r|
j

)
sup

{∥∥(D(l)f(x))
∥∥ | |l| = j

}
sup

{∥∥∥∥(D(l) ∂g

∂xi
(x))

∥∥∥∥ | |l| = |r| − j}
=

|r|∑
j=0

((
|r|
j − 1

)
+

(
|r|
j

))
sup

{∥∥(D(l)f(x))
∥∥ | |l| = j

}
× sup

{∥∥(D(l)g(x))
∥∥ | |l| = |r| − j + 1

}
=

|r|∑
j=0

(
|r|+ 1

j

)
sup

{∥∥(D(l)f(x))
∥∥ | |l| = j

}
× sup

{∥∥(D(l)g(x))
∥∥ | |l| = |r| − j + 1

}
, ∀x ∈ U.

This completes the induction. Thus, by noting that in a coordinate chart we
have

X(f) =
N∑
i=1

X(xi)
∂f

∂xi
,

we get

∥∥D(r)(X(f))(x)
∥∥ ≤ |r|∑

j=0

N∑
i=1

(
|r|
j

)
sup

{∥∥(D(l)X i(x))
∥∥ | |l| = |r| − j}

× sup

{∥∥∥∥D(l) ∂f

∂xi
(x)

∥∥∥∥ | |l| = j

}
, ∀x ∈ U. (3.3.1)
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Now let a ∈ c↓0(Z≥0,R>0). Then we have

a0a1 . . . a|r|
|r|!

∥∥D(r)(X(f))(x)
∥∥ ≤

1

a0

|r|∑
j=0

N∑
i=1

sup

{
a0a1 . . . aj

j!

∥∥∥∥D(l) ∂f

∂xi
(x)

∥∥∥∥ | |l| = |r| − j}×
sup

{
a0a1 . . . a|r|−j
(|r| − j)!

∥∥(D(l)X i(x))
∥∥ | |l| = |r| − j} , ∀x ∈ U.

We define the sequence p = (p0, p1, . . .) as

pm =

{
a0a1, m = 0,(
m+1
m

)
am−1, m ≥ 1.

Then it is clear that limm→infty pm = 0. This implies that p ∈ c↓0(Z≥0,R>0).
Moreover, we have

p0p1 . . . pm+1

(m+ 1)!
=
a0a1 . . . am

m!
, ∀m ∈ Z≥0.

Thus we have

a0a1 . . . a|r|
|r|!

∥∥D(r)(X(f))(x)
∥∥ ≤

1

a0

|r|∑
j=0

N∑
i=1

sup

{
p0p1 . . . pj+1

(j + 1)!

∥∥∥∥D(l) ∂f

∂xi
(x)

∥∥∥∥ | |l| = |r| − j}×
sup

{
a0a1 . . . a|r|−j
(|r| − j)!

∥∥(D(l)X i(x))
∥∥ | |l| = |r| − j} , ∀x ∈ U.

Taking the supremum of both side of the above inequality over x ∈ K, we have

pωK,a(X(f)) ≤ N

a0
sup
i

{
pωK,a(X

i)
}
pωK,p(f)

This completes the proof of continuity of X̂ in real analytic case.

Now, we prove a specific approximation for the seminorms on Cω(M). In the next
sections, we will see that this approximation plays an essential role in studying flows
of time-varying real analytic vector fields. Let d > 0 be a positive real number and a ∈
c↓0(Z≥0,R>0, d). For every n ∈ N, we define the sequence an = (an,0, an,1, . . . , an,m, . . .)
as

an,m =

{(
m+1
m

)n
am, m > n,(

m+1
m

)m
am, m ≤ n.
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Associated to every a ∈ c↓0(Z≥0,R>0, d), we define the sequence bn ∈ c↓0(Z≥0,R>0) as

bn,m =

{
an,m, m = 0,m = 1,(

(m+1)(m+2)
(m−1)(m)

)
an,m, m > 1.

Lemma 3.3.3. Let a ∈ c↓0(Z≥0,R>0, d). Then, for every n ∈ Z≥0, we have an ∈
c↓0(Z≥0,R>0, ed) and, for every m,n ∈ Z≥0, we have

an,m ≤ eam,

(m+ 1)

(n+ 1)
≤ (an+1,0)(an+1,1) . . . (an+1,m+1)

(an,0)(an,1) . . . (an,m+1)
,

where e is the Euler constant. Moreover, for every n ∈ Z≥0 we have bn ∈
c↓0(Z≥0,R>0, 6ed) and, for every m > 1, we have

bn,m ≤ 6eam,

(an,0)(an,1) . . . (an,m)

(m− 2)!
=

(bn,0)(bn,1) . . . (bn,m)

m!
.

Proof. Let a ∈ c↓0(Z≥0,R>0, d). Then by definition of an, for n < m, we have

an,m =

(
m+ 1

m

)n
am ≤

(
m+ 1

m

)m
am ≤ eam

For n ≥ m, we have

an,m =

(
m+ 1

m

)m
am ≤ eam.

This implies that limm→∞ an,m = 0. Moreover, for every m,n ∈ Z≥0, we have

an,m ≤ eam ≤ ed.

So we have an ∈ c↓0(Z≥0,R>0, ed). Let m,n ∈ Z≥0 be such that n+ 1 > m+ 1. Then
we have

an+1,m+1

an,m+1

= 1.

So we get
(an+1,0)(an+1,1) . . . (an+1,m+1)

(an,0)(an,1) . . . (an,m+1)
≥ 1.

Since we have an ∈ c↓0(Z≥0,R>0, ed), we get

(an+1,0)(an+1,1) . . . (an+1,m+1)

(an,0)(an,1) . . . (an,m+1)
≥ 1 ≥ m+ 1

n+ 1
.
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Now suppose that m,n ∈ Z≥0 are such that n+ 1 ≤ m+ 1. Then we have

an+1,m+1

an,m+1

=

(
m+ 1

m

)
.

Therefore, we get

(an+1,0)(an+1,1) . . . (an+1,m+1)

(an,0)(an,1) . . . (an,m+1)
=

(
n+ 2

n+ 1

)(
n+ 3

n+ 2

)
. . .

(
m+ 2

m+ 1

)
=
m+ 2

n+ 1
>
m+ 1

n+ 1
.

Since we have an ∈ c↓0(Z≥0,R>0, ed), we get

(an+1,0)(an+1,1) . . . (an+1,m+1)

(an,0)(an,1) . . . (an,m)
≥ m+ 1

n+ 1
.

So, for all m,n ∈ Z≥0, we have

(an+1,0)(an+1,1) . . . (an+1,m+1)

(an,0)(an,1) . . . (an,m+1)
≥ m+ 1

n+ 1
.

Finally, since an ∈ c↓0(Z≥0,R>0, ed) and we have (m+2)(m+1)
m(m−1)

≤ 6, for all m > 1, we get

bn,m =
(m+ 2)(m+ 1)

m(m− 1)
an,m ≤ 6an,m.

So we have limm→∞ bn,m = 6 limm→∞ an,m = 0. Moreover, we have

bn,m ≤ 6an,m ≤ 6eam ≤ 6ed.

Thus we get bn ∈ c↓0(Z≥0,R>0, 6ed). This completes the proof of the lemma.

Theorem 3.3.4. Let M be a real analytic manifold of dimension N , X ∈ Γω(E),
and f ∈ Cω(M). Let U be a coordinate neighbourhood in M and K ⊆ U is compact.
For every d > 0, every a ∈ c↓0(Z≥0;R>0, d), and every n ∈ Z≥0, we have

p̃ωK,an
(X(f)) ≤ 4N(n+ 1)max

i
{p̃ωK,bn

(X i)}p̃ωK,an+1
(f). (3.3.2)

Proof. Now let d > 0 and a ∈ c↓0(Z≥0,R>0, d). Then by multiplying both sides of

equation (3.3.1) by
(an,0)(an,1)...(an,|r|)

|r|! we get

(an,0)(an,1) . . . (an,|r|)

|r|!
∥∥D(r)(X(f))(x)

∥∥ ≤
N∑
i=1

|r|∑
l=0

(
(an,0)(an,1) . . . (an,l+1)

l!
sup

{∥∥∥∥D(s) ∂f

∂xi
(x)

∥∥∥∥ | |s| = l

})
×
(
(an,l+2)(an,l+3) . . . (an,|r|)

(|r| − l)!
sup

{∥∥D(s)X i(x)
∥∥ | |s| = |r| − l}) , ∀x ∈ U.
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Since the sequence an is decreasing, we have

(an,0)(an,1) . . . (an,|r|)

|r|!
∥∥D(r)(X(f))(x)

∥∥
≤

N∑
i=1

|r|∑
l=0

(
(an,0)(an,1) . . . (an,l+1)

l!
sup

{∥∥∥∥D(s) ∂f

∂xi
(x)

∥∥∥∥ | |s| = l

})
×
(
(an,0)(an,1) . . . (an,|r|−l−2)

(|r| − l)!
sup

{∥∥D(s)X i(x)
∥∥ | |s| = |r| − l}) , ∀x ∈ U.

Using the above lemma, we have

(an,0)(an,1) . . . (an,l+1)

(l)!
≤ (n+ 1)

(an+1,0)(an+1,1 . . . (an+1,l+1)

(l + 1)!
,

(an,0)(an,1) . . . (an,|r|−l−2)

(|r| − l − 2)!
=

(bn+1,0)(bn+1,1) . . . (bn+1,|r|−l)

(|r| − l)!

Therefore, we get

(an,0)(an,1) . . . (an,|r|)

|r|!
∥∥D(r)(X(f))(x)

∥∥
≤

N∑
i=1

|r|∑
l=0

(n+ 1)

(|r| − l)(|r| − l − 1)

(
(an+1,0)(an+1,1) . . . (an+1,l+1)

(l + 1)!
sup

{∥∥D(s)f(x)
∥∥ | |s| = l + 1

})
(
(bn,0)(bn,1) . . . (bn,|r|−l)

(|r| − l)!
sup

{∥∥D(s)X i(x)
∥∥ | |s| = |r| − l}) , ∀x ∈ U.

Thus, by taking supremum over l ∈ Z≥0 and x ∈ K of the two term in the right hand
side of the above inequality, we get

(an,0)(an,1) . . . (an,|r|)

|r|!
∥∥D(r)(X(f))(x)

∥∥
≤ N(n+ 1)p̃ωK,an+1

(f)p̃ωK,bn
(X i)

|r|∑
l=0

1

(|r| − l)(|r| − l − 1)

≤ 4N(n+ 1)p̃ωK,an+1
(f)p̃ωK,bn

(X i), ∀x ∈ U.

By taking the supremum of the left hand side of the above inequality over |r| ∈ N
and x ∈ K, for every a ∈ c↓0(Z≥0;R>0, d), we get

p̃ωK,an
(X(f)) ≤ 4N(n+ 1)max

i
{p̃ωK,bn

(X i)}p̃ωK,an+1
(f).
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3.4. Cν-maps as unital algebra homomorphisms on Cν(M)

In this section, we study Cν-maps between manifolds. One can easily associate to
every Cν-map between two manifolds M and N , a unital F-algebra homomorphism
between the vector spaces Cν(N) and Cν(M). For ν = ∞, this correspondence can
be shown to be one-to-one [4, Proposition 2.1]. For the ν = hol, by adding the extra
assumption that M and N are Stein manifolds, one can show that Chol-maps from
M to N are in one-to-one correspondence with unital C-algebra homomorphisms
between Chol(N) and Chol(M) [30, Theorem J.1]. For the real analytic case, this
correspondence has shown to be one-to-one for the case when the manifolds are open
subsets of Rn [24, Theorem 2.1]. In Theorem 3.4.2, we give a unifying proof to the
fact that, for ν ∈ {∞, ω} and for ν = hol with the extra assumption of M and N
being Stein manifolds, there is a one-to-one correspondence between Cν-maps between
two manifolds M and N and unital F-algebra homomorphisms between Cν(N) and
Cν(M). This result, in particular, generalize Theorem 2.1 in [24] to arbitrary real
analytic manifolds. Finally, we will show that, with the Cν-topology on the vector
spaces Cν(N) and Cν(M), Cν-maps are continuous operators.

Let ϕ :M → N be a Cν-map. Then we can define the map ϕ̂ : Cν(N)→ Cν(M)
as

ϕ̂(f) = f ◦ϕ.

It is easy to see that ϕ̂ is an F-algebra homomorphism. For every x ∈ M , one can
define the unital F-algebra homomorphism evx : C

ν(M)→ F as

evx(f) = f(x).

The map evx is called the evaluation map at x ∈ M . It is natural to ask whether
the evaluation maps are continuous with respect to Cν-topology.

Theorem 3.4.1. For every x ∈ M , the map evx : Cν(M) → F is continuous with
respect to Cν-topology.

Proof. If pνK is one of the seminorms p∞K,m, p
hol
K , or pωK,a, we have

pνK(f) ≤ C |evx(f)| ,

where C = 1 for ν ∈ {∞, hol} and C = a0 for ν = ω.

The evaluation map plays an essential role in characterizing unital F-algebra ho-
momorphisms. The following result is of significant importance.

Theorem 3.4.2. Let M be a Cν-manifold where ν ∈ {∞, hol, ω}. If ν = hol, addi-
tionally assume that M is a Stein manifold. Let ϕ : Cν(M) → F be a nonzero and
unital F-algebra homomorphism. Then there exists x ∈M such that ϕ = evx.
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Proof. For the smooth case, the proof is given in [4, Proposition 2.1]. For the holo-
morphic case, the proof is the special case of [30, Theorem J.1]. For the real analytic
case, when M and N are open subsets of euclidean spaces, a proof for this theorem is
given in [24, Theorem 2.1]. However, it seems that this proof cannot be generalized
to include the general real analytic manifolds. Using the techniques and ideas in [60,
Proposition 12.5], we present a unified proof of this theorem for all ν ∈ {∞, ω, hol}.
Let ϕ : Cω(M) → R be a unital R-algebra homomorphism. It is easy to see that
Ker(ϕ) is a maximal ideal in Cω(M). For every f ∈ Cω(M), we define

Z(f) = {x ∈M | f(x) = 0}.

Lemma. Let n ∈ N and f1, f2, . . . , fn ∈ Ker(ϕ). Then we have

n⋂
i=1

Z(fi) ̸= ∅.

Proof. Suppose that we have
n⋂
i=1

Z(fi) = ∅.

Then we can define a function g ∈ Cω(M) as

g(x) =
1

(
∑n

i=1(fi(x))
2)
, ∀x ∈M.

Then it is clear that we have (
n∑
i=1

(fi)
2

)
(g) = 1,

where 1 : Cν(M)→ F is a unital F-algebra homomorphism defined as

1(f) = 1.

Since Ker(ϕ) is an ideal in Cω(M), we have 1 ∈ Ker(ϕ). This implies that ϕ = 0,
which is a contradiction of ϕ being unital.

Since M is a Cν-manifold, there exists a Cν-embedding of M into some RN (for
smooth case, we use Whitney’s embedding theorem [82, §8, Theorem 1] with N =
2n+1, for the holomorphic case, one can use Remmert’s embedding theorem [29], [9]
with N = 2n+1, and for the real analytic case, we use Grauert’s embedding theorem
with N = 4n+2). Let x1, x2, . . . , xN be the standard coordinate functions on RN and
x̂1, x̂2, . . . , x̂N be their restrictions to M . Now, for every i ∈ {1, 2, . . . , N}, consider
the functions x̂i − ϕ(x̂i)1 ∈ Cν(M). It is easy to see that

ϕ(x̂i − ϕ(x̂i)1) = ϕ(x̂i)− ϕ(x̂i)ϕ(1) = 0, ∀i ∈ {1, 2, . . . , N}.
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This implies that, for every i ∈ {1, 2, . . . , N}, we have x̂i − ϕ(x̂i)1 ∈ Ker(ϕ). So, by
the above Lemma, we get

N⋂
i=1

Z(x̂i − ϕ(x̂i)1) ̸= ∅.

Since x1, x2, . . . , xN are coordinate functions, it is easy to see that
⋂N
i=1 Z(x̂i−ϕ(x̂i)1)

is just a one-point set. So we set
⋂N
i=1 Z(x̂i − ϕ(x̂i)1) = {x}.

Now we proceed to prove the theorem. Note that, for every f ∈ Ker(ϕ), we have

Z(f) ∩ {x} = Z(f)
⋂(
∩Ni=1Z(x̂i − ϕ(x̂i)1)

)
.

So, by the above Lemma, we have

Z(f) ∩ {x} ̸= ∅, ∀f ∈ Ker(ϕ).

This implies that
{x} ⊆ Z(f), ∀f ∈ Ker(ϕ).

This means that
{x} ⊆

⋂
f∈Ker(ϕ)

Z(f).

This implies that Ker(ϕ) ⊆ Ker(evx). Since Ker(evx) and Ker(ϕ) are both maximal
ideals, we have

Ker(evx) = Ker(ϕ).

Now let f ∈ Cν(M), so we have f − f(x)1 ∈ Ker(ϕ). This implies that

0 = ϕ(f − f(x)1) = ϕ(f)− f(x).

So, for every f ∈ Cν(M),
ϕ(f) = f(x).

Therefore, we have ϕ = evx.

Theorem 3.4.3. Let M be a Cν-manifold where ν ∈ {∞, hol, ω}. If ν = hol, addi-
tionally assume that M is a Stein manifold. We define the map ev :M → (Cν(M))′

by
ev(x) = evx.

The image of ev is HomR(C
ν(M);F). Moreover, this map is a homeomorphism onto

its image.

Proof. To show that evx is continuous, it suffice to show that, for every f ∈ Cν(M),
the set

{x ∈M | ∥f(x)∥ < 1}
is open in M . But this is clear since we have Cν(M) ⊂ C0(M). To show that ev is a
homeomorphism onto its image, we prove that the topology induced by Cν(M)′ onM
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using the map ev is finer that the original topology ofM . Suppose that dim(M) = n.
For ν ∈ {∞, hol, ω}, there a Cν-embedding i : M → Rs for some s ∈ N (for smooth
case, it is exactly Whitney’s embedding theorem [82, §8, Theorem 1] with s = 2n+1,
for the holomorphic case, it is Remmert’s embedding theorem [29], [9] with s = 2n+1,
and for the real analytic case, it is Grauert’s embedding theorem with s = 4n + 2).
This implies that, without loss of generality, one can assume M to be an embedded
submanifold of Rs. Let (x1, x2, . . . , xs) be the standrad coordinate chart on M and
U ⊆M be a neighborhood of x0. There exists c > 0 such that

{x ∈M |
s∑
i=1

∥xi − (x0)
i∥2 < c} ⊆ U.

However, we have

M
⋂(

s⋂
i=1

p−1
xi

([
0,

√
c

s

)))
=

{
x ∈M | ∥xi − (x0)

i∥ <
√
c

s
, ∀i ∈ {1, 2, . . . , s}

}
⊆ {x ∈M |

s∑
i=1

∥xi − (x0)
i∥2 < c}.

Therefore, we have

M
⋂(

s⋂
i=1

p−1
xi

([
0,

√
c

s

)))
⊆ U.

Theorem 3.4.4. Let M and N be Cν-manifolds and ν ∈ {∞, hol, ω}. If ν = hol,
additionally assume that M and N are Stein manifold. Then, for every F-algebra
map A : Cν(M)→ Cν(N), there exists a Cν-map ϕ : N →M such that

ϕ̂ = A.

Proof. For every x ∈ N , consider the unital F-algebra homomorphism evx ◦A :
Cν(M) → F. By Theorem 3.4.2, there exists yx ∈ M such that evx ◦A = evyx .
We define ϕ : N →M as

ϕ(x) = yx, ∀x ∈ N.

Let (U, η = (z1, z2, . . . , zm)) be a coordinate neighbourhood on M around yx.
Then, by using the embedding theorems (for ν = ∞, we use Whitney’s embedding
theorem [82, §8, Theorem 1] , for ν = hol, we use Remmert’s embedding theorem
[29], [9], and for ν = ω, we use Grauert’s embedding theorem), there exist functions
z̃1, z̃2, . . . , z̃m such that, for every i ∈ {1, 2 . . . ,m}, we have

z̃i ∈ Cν(N),

z̃i|U = zi.
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Thus, for every x ∈ U , we have

yix = evx ◦A(z̃i) = A(z̃i)(x), ∀i ∈ {1, 2, . . . ,m}.

However, for every i ∈ {1, 2, . . . ,m}, we have A(z̃i) ∈ Cν(N). This implies that,
for every i ∈ {1, 2, . . . ,m}, the function yix is of class Cν with respect to x on the
neighborhood U . Therefore, the map ϕ is of class Cν . One can easily check that
ϕ̂ = A.

Theorem 3.4.5. Let ϕ ∈ Cν(N,M) be a Cν-map. Then ϕ̂ : Cν(M) → Cν(N) is a
continuous linear map .

Proof. It is easy to see that ϕ̂ is a linear map. To show that it is continuous, note
that we need to separate the cases ν =∞, ν = hol, and ν = ω.

1. (ν =∞):

Consider a coordinate chart (U, η) on M and a coordinate chart (V, ξ) on N .
Then, for every compact set K ⊆ V and every m ∈ Z≥0, we have

p∞K,m(f ◦ϕ) = sup{∥D(r)(f ◦ϕ)(x)∥ | x ∈ K, |r| ≤ m}.

Note that we have

∥D(r)(f ◦ϕ)(x)∥
≤ 2|r| sup

{
∥D(j)ϕ(x)∥|j| | x ∈ K, |j| ≤ |r|

}
sup

{
∥D(j)f(x)∥ | x ∈ K, |j| < |r|

}
.

This implies that

p∞K,m,f (ϕ) ≤ 2m sup
{
∥D(j)ϕ(x)∥|j| | x ∈ K, |j| ≤ m

}
p∞K,m(f).

This completes the proof for the smooth case.

2. (ν = hol):

For every compact set K ⊆M , we have

pholK,f (ϕ) = sup {∥(f ◦ϕ)(x)∥ | x ∈ K} = sup {∥f(z)∥ | z ∈ ϕ(K)} = pholϕ(K)(f).

This completes the proof for the holomorphic case.

3. (ν = ω):

Let (U, η) be a coordinate chart on M , (V, ξ) be a coordinate chart on N such
that η(U) ⊆ V , andK ⊆ V be a compact set. Since η ◦ϕ ◦ξ−1 : ξ(V ∩ϕ−1(U))→
η(ϕ(V ) ∩ U) is real analytic, by Sublemma 3 of [42], there exist C > 0, σ > 0
such that, for every f ∈ Cω(M) and every multi-index (r), we have

sup

{
1

(r)!
∥D(r)(f ◦ϕ)(x)∥ | x ∈ K

}
≤ Cσm sup

{
1

(r)!
∥D(r)f(x)∥ | x ∈ ϕ(K)

}
.
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Let a = (a0, a1, . . .) ∈ c0(Z>0;R≥0). We multiply both side of the above in-
equality by a0a1 . . . a|r| and we get

sup

{
a0a1 . . . a|r|

(r)!
∥D(r)(f ◦ϕ)(x)∥ | x ∈ K

}
≤ Cσm sup

{
a0a1 . . . a|r|

(r)!
∥D(r)f(x)∥ | x ∈ ϕ(K)

}
,

Now by taking the sup over |r| ∈ Z>0, we have

pωK,a,f (ϕ) ≤ CpωK,σa(f), ∀f ∈ Cω(M).

This completes the proof for the real analytic case.

Definition 3.4.6. The set of all unital R-algebra homomorphisms from Cν(N) to
Cν(M) is denoted by HomR(C

ν(N);Cν(M)).

By Theorem 3.4.4, there is a one-to-one correspondence between Cν(M ;N) and
HomR(C

ν(N);Cν(M)).

3.5. Topology on L(Cν(M);Cν(N))

In this section, using the Cν-topology on the vector space Cν(M), we equip the
space of linear maps from Cν(M) to Cν(N) with the pointwise convergence topol-
ogy. We will show that L(Cν(M);Cν(N)) with this topology is a locally convex
topological vector space. In particular, we find a family of defining seminorms for
this space. We then proceed by studying properties of the topological vector spaces
L(Cν(M);Cν(N)) and Der(Cν(M)).

Definition 3.5.1. For f ∈ Cν(M), we define the map Lf : L(Cν(M);Cν(N)) →
Cν(N) as

Lf (X) = X(f).

The Cν-topology on L(Cν(M);Cν(N)) is the projective topology with respect to
the family {Cν(N),Lf}f∈Cν(M).

One can show that this topology coincides with the topology of pointwise-
convergence on L(Cν(M);Cν(N)).

Theorem 3.5.2. The Cν-topology and the topology of pointwise convergence on
L(Cν(M);Cν(N)) are the same. Moreover, L(Cν(M);Cν(N)) is a closed subspace
of Cν(N)C

ν(M).
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Proof. The fact that Cν-topology and the topology of pointwise convergence on
L(Cν(M);Cν(N)) are the same is clear from the definition. We show that
L(Cν(M);Cν(N)) is a closed subspace of Cν(N)C

ν(M), if we equip the latter space
with its natural topology of pointwise convergence. Let {Xα}α∈Λ be a converging net
in L(Cν(M);Cν(N)) with the limit X ∈ Cν(N)C

ν(M). We show that X is linear and
continuous. Let f, g ∈ Cν(M) and c ∈ F. Then we have

Xα(f + cg) = Xα(f) + cXα(g), ∀α ∈ Λ.

By taking limit on α, we get

X(f + cg) = X(f) + cX(g).

This implies that X is linear.

Theorem 3.5.3. The locally convex space L(Cν(M);Cν(N)) with the Cν-topology is
Hausdorff, separable, complete, and nuclear.

Proof. Since Cν(N) is Hausdorff, it is clear that Cν(N)C
ν(M) is Hausdorff. This

implies that L(Cν(M);Cν(N)) ⊆ Cν(N)C
ν(M) is Hausdorff. Let c be the cardinality of

the continuum. Note that Cν(M) ⊆ C0(M) andM is separable. This implies that the
cardinality of C0(M) is c [38, Chapter 5, Theorem 2.6(a)]. Therefore, the cardinality
of Cν(M) is at most c. The product of c separable spaces is separable [84, Theorem
16.4(c)]. This implies that Cν(N)C

ν(M) is separable. Since L(Cν(M);Cν(N)) is a
closed subspace of Cν(N)C

ν(M), it is separable [84, Theorem 16.4]. Note that Cν(N)
is complete. This implies that Cν(N)C

ν(M) is complete [69, Chapter II, §5.3]. Since
L(Cν(M);Cν(N)) is a closed subspace of Cν(N)C

ν(M), it is complete. The product
of any arbitrary family of nuclear locally convex vector spaces is nuclear [69, Chapter
III, §7.4]. This implies that Cν(N)C

ν(M) is nuclear. Since every subspace of nuclear
space is nuclear [69, Chapter III, §7.4], L(Cν(M);Cν(N)) is nuclear.

Since locally convex spaces can be characterized using a family of seminorms, one
would like to find a family of generating seminorms for the spaces L(Cν(M);Cν(N)).

Definition 3.5.4. Let {pi}i∈I be a generating family of seminorms on Cν(N). Then,
for every f ∈ Cω(M), we define the family of seminorms {pi,f}i∈I as

pi,f (X) = pi(X(f)).

Theorem 3.5.5. Let {pi}i∈I be a generating family of seminorms on Cν(N). Then
the family of seminorms {pi,f}, where i ∈ I and f ∈ Cν(M), generates the Cν-
topology on L(Cν(M);Cν(N)).

Proof. Let {Xα}α∈Λ be a net in L(Cν(M);Cν(N)) which converges to X in the
Cν-topology. Since Cν-topology and topology of pointwise convergence coincide on
L(Cν(M);Cν(N)), for every f ∈ Cν(M), we have

lim
α
Xα(f) = X(f).
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This implies that, for every i ∈ I, we have

lim
α
pi (Xα(f)−X(f)) = 0.

This means that, for every f ∈ Cν(N) and every i ∈ I, we have

lim
α
pi,f (Xα −X) = 0.

This means that limαXα = X in the topology generated by {pi,f}.
Now let {Xα}α∈Λ be a net in L(Cν(M);Cν(N)) which converges to X in the

topology generated by {pi,f}i∈I,f∈Cν(M). This implies that, for every f ∈ Cν(N) and
every i ∈ I, we have

lim
α
pi (Xα(f)−X(f)) = 0.

Since the family of seminorms {pi}i∈I generates the topology on L(Cν(M);Cν(N)), we
have limαXα = X in the topology of pointwise convergence on L(Cν(M);Cν(N)).

Remark 3.5.6. Using Theorem 3.5.5, one can define a family of generating semi-
norms for L(C∞(M);C∞(N)), L(Cω(M);Cω(N)), and L(Chol(M);Chol(N)).

1. Let (U, ϕ) be a coordinate chart on N , K ⊆ U be a compact set, and m ∈ Z≥0.
Then we define

p∞K,m,f (X) = p∞K,m(X(f)), ∀f ∈ C∞(M).

By Theorem 3.5.5, the family of seminorms {p∞K,m,f} generates the C∞-topology
on L(C∞(M);C∞(N)).

2. Let K ⊆ N be a compact set. Then we define

pholK,f (X) = pholK (X(f)), ∀f ∈ Chol(M).

By Theorem 3.5.5, the family of seminorms {pholK,f} generates the Chol-topology

on L(Chol(M);Chol(N)).

3. Let (U, ϕ) be a coordinate chart on N , K ⊆ U be a compact set, d > 0 be a
positive real number, and a ∈ c↓0(Z≥0,R>0, d). Then we define

pωK,a,f (X) = pωK,a(X(f)), ∀f ∈ Cω(M).

By Theorem 3.5.5, the family of seminorms {pωK,a,f} generates the Cω-topology
on L(Cω(M);Cω(N)).

Theorem 3.5.7. Let M,N,P be Cν-manifolds and V ∈ L(Cν(M);Cν(N)). We
define the operator LV : L(Cν(P );Cν(M))→ L(Cν(P );Cν(N)) as

LV (W ) = V ◦W.

For every V ∈ L(Cν(M);Cν(N)), the operator LV is continuous.
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Proof. Let {Wα}α∈Λ be a converging net in L(Cν(P );Cν(M)) such that limαWα =
W . By definition of the Cν-topology on L(Cν(P );Cν(M)), for every f ∈ Cν(P ), we
have

lim
α
Wα(f) =W (f).

Since V ∈ L(Cν(M);Cν(N)) is continuous, for every net {gβ} in Cν(M) such that
lim gα = g, we have

lim
α
V (gα) = V (g).

By choosing gα = Wα(f), we have

lim
α
V (Wα(f)) = V (W (f)).

This implies that limα LV (Wα) = limα V ◦Wα = V ◦W = LV (W ). This means that
LV is a continuous map.

Since Der(Cν(M)) is a subspace of L(Cν(M);Cν(M)), one can easily define the
Cν-topology on Der(Cν(M)) as the subspace topology.

Theorem 3.5.8. The space Der(Cν(M)) is Hausdorff, separable, complete, and nu-
clear.

Proof. We first show that Der(Cν(M)) is a closed subspace of L(Cν(M);Cν(M)).
Let Xα be a net in Der(Cν(M)) such that limαXα = X. Then we have

X(fg) = lim
α
Xα(fg) = lim

α
fXα(g) + lim

α
Xα(f)g

= fX(g) +X(f)g, ∀f, g ∈ Cν(M).

This implies that X ∈ Der(Cν(M)). So Der(Cν(M)) is a closed subset of
L(Cν(M);Cν(M)). As a result, Der(Cν(M)) is Hausdorff, separable [84, Theorem
16.4], complete, and nuclear [69, Chapter III, §7.4].

Let M be a Cν-manifold, where ν ∈ {∞, hol, ω}. If ν = hol, additionally assume
that M is a Stein manifold. In Theorem 3.3.1, we showed that one can identify
Der(Cν(M)) with Γν(TM) algebraically. Now that we defined the Cν-topology on
Der(Cν(M)) using the Cν-topology on Cν(M), one would like to see the relationship
between the Cν-topology on Der(Cν(M)) and the Cν-topology on Γν(TM).

Theorem 3.5.9. The Cν-topology on Γν(TM) coincide with Cν-topology on
Der(Cν(M)).

Proof. This has been shown in [42, Theorem 3.5, Theorem 4.5, Theorem 5.8].
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3.6. Curves on the space L(Cν(M);Cν(N))

In the previous section, we defined the Cν-topology on L(Cν(M);Cν(N)). We
showed that L(Cν(M);Cν(N)) endowed with Cν-topology is a locally convex topologi-
cal vector space. In this section, using the fact that L(Cν(M);Cν(N)) is complete and
separable, we are able to characterize Bochner integrable curves on L(Cν(M);Cν(N))
using a family of generating seminorm on Cν(N). Then, we proceed by defining
topologies on the space of locally Bochner integrable and continuous using appro-
priate families of seminorms. These topologies will be important in studying the
relationship between time-varying vector fields and their flows. Finally, using the Cν-
topology, we prove that a locally absolutely continuous curve on L(Cν(M);Cν(N))
is almost everywhere differentiable.

3.6.1. Bochner integrable curves. In Section 2.3.5, we defined Bochner integrable
and locally Bochner integrable curves on a locally convex space. In this section, using
the fact that the locally convex space L(Cν(M);Cν(N)) is complete and separable,
we characterize Bochner integrability of a curve on L(Cν(M);Cν(N)) in terms of a
generating family of seminorms on Cν(N).

Theorem 3.6.1. Let {pi}i∈I be a family of generating seminorms on Cν(N). A curve
ξ : T→ L(Cν(M);Cν(N)) is locally Bochner integrable if and only if, for every i ∈ I
and every f ∈ Cν(M), there exists g ∈ L1

loc(T) such that

pi(ξ(t)(f)) ≤ g(t), ∀t ∈ T.

Proof. Since the space L(Cν(M);Cν(N)) is complete and separable, the proof follows
from Theorem 2.3.40.

A time-varying vector field can be considered as a curve on the space
L(Cν(M);Cν(M)). Let V : T ×M → TM be a time-varying Cν-vector field, then

we define V̂ : T→ L(Cν(M);Cν(M)) as

V̂ (t)(f) = V̂ (t)(f), ∀f ∈ Cν(M).

3.6.2. Space L1(T; L(Cν(M);Cν(N))). Let {pνi }i∈I be a family of generating
seminorms for Cν(N) and T ⊆ R be an interval. For every compact subinterval
I ⊆ T, we define the seminorm pνi,f,I on L1(T; L(Cν(M);Cν(N))) as

pνi,f,I(X) =

∫
I
pνi (X(τ)(f))dτ, ∀X ∈ L1(T; L(Cν(M);Cν(N))).

The family of seminorms {pνi,f,I} generates a locally convex topology on the space
L1(T; L(Cν(M);Cν(N))).
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Theorem 3.6.2. There is a canonical isomorphism between L1(T; L(Cν(M);Cν(N)))
and L1(T)⊗̂πL(Cν(M);Cν(N)). In particular, the vector space L1(T; Der(Cν(M))) is
complete.

Proof. Since L(Cν(M);Cν(N)) is a locally convex space, this theorem follows from
Theorem 2.3.60.

3.6.3. Space L1(T; Der(Cν(M))). Let {pνi }i∈I be a family of generating semi-
norms for Cν(N) and T ⊆ R be an interval. For every compact subinterval I ⊆ T,
we define the seminorm pνi,f,I as

pνi,f,I(X) =

∫
I
pνi (X(τ)(f))dτ, ∀X ∈ Der(Cν(M))

The family of seminorms {pνi,f,I} generate a locally convex topology on the space
L1(T; Der(Cν(M))).

Theorem 3.6.3. There is a canonical isomorphism between L1(T; Der(Cν(M))) and
L1(T)⊗̂πDer(Cν(M)). In particular, the vector space L1(T; Der(Cν(M))) is complete.

Proof. Since Der(Cν(M)) is a locally convex space, this theorem follows from Theo-
rem 2.3.60.

3.6.4. Space C0(T; L(Cν(M);Cν(N))). Let {pνi }i∈I be a family of generating
seminorms for Cν(N) and T ⊆ R be an interval. Then, for every compact subinterval
I ⊆ T, we define the seminorm rνi,f,I as

rνi,f,I(X) = sup{pνi (X(t)(f)) | t ∈ I}, ∀X ∈ L(Cν(M);Cν(N)).

The family of seminorms {rνi,f,I(X)} defines a locally convex topology on
C0(T; L(Cν(M);Cν(N))).

Theorem 3.6.4. There is a canonical isomorphism between C0(T; L(Cν(M);Cν(N)))
and C0(T)⊗̂ϵDer(Cν(M)). In particular, the vector space C0(T; L(Cν(M);Cν(N)))
is complete.

Proof. Since L(Cν(M);Cν(N)) is a locally convex space, this theorem follows from
Theorem 2.3.61.

3.6.5. Absolutely continuous curves. In Section 2.3.5, we defined absolutely con-
tinuous and locally absolutely continuous curves on a locally convex space. In this
section, we show that locally absolutely continuous curves on L(Cν(M);Cν(N)) are
almost everywhere differentiable.

Theorem 3.6.5. Let ξ : T → L(Cν(M);Cν(N)) be a locally absolutely continuous
curve on L(Cν(M);Cν(N)). Then ξ is differentiable for almost every t ∈ T.
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Proof. Without loss of generality, we assume that T is compact. Then there exists
η ∈ L1(T; L(Cν(M);Cν(N))) such that

ξ(t) = ξ(t0) +

∫ t

t0

η(τ)dτ, ∀t ∈ T.

Therefore, it suffice to show that, for almost every t0 ∈ T, we have

lim sup
t→t0

1

t− t0

∫ t

t0

(η(τ)− η(t0)) dτ = 0, t > t0.

Since C0(T) is dense in L1(T), by Theorem 2.3.57, the set C0(T)⊗̂πL(Cν(M);Cν(N))
is dense in L1(T)⊗̂πL(Cν(M);Cν(N)). Since the locally convex space
L(Cν(M);Cν(N)) is complete, by Theorem 2.3.60 and Theorem 2.3.61, we have

C0(T)⊗̂πL(Cν(M);Cν(N))) = C0(T; L(Cν(M);Cν(N))),

L1(T)⊗̂πL(Cν(M);Cν(N))) = L1(T; L(Cν(M);Cν(N))).

This implies that C0(T; L(Cν(M);Cν(N))) is dense in L1(T; L(Cν(M);Cν(N))). Let
{pi}i∈I be a generating family of seminorms for L(Cν(M);Cν(N)). For ϵ > 0 and
i ∈ I, there exists g ∈ C0(T; L(Cν(M);Cν(N))) such that∫

T
pi(g(τ)− η(τ))dτ < ϵ.

So, we can write

1

t− t0

∫ t

t0

pi (η(τ)− η(t0)) dτ ≤
1

t− t0

∫ t

t0

pi(η(τ)− g(τ))dτ

+
1

t− t0

∫ t

t0

pi (g(τ)− g(t0)) dτ + pi(g(t0)− η(t0)). (3.6.1)

Since g is continuous, we get

lim sup
t→t0

1

t− t0

∫ t

t0

pi (g(τ)− g(t0)) dτ = 0.

If we take limsup of both side of (3.6.1), we have

lim sup
t→t0

(
1

t− t0

∫ t

t0

pi (η(τ)− η(t0)) dτ
)

≤ lim sup
t→t0

(
1

t− t0

∫ t

t0

pi(η(τ)− g(τ))dτ
)
+ pi(g(t0)− η(t0)).

Now suppose that there exists a set A such that m(A) ̸= 0 and we have

lim sup
t→t0

(
1

t− t0

∫ t

t0

pi (η(τ)− η(t0)) dτ
)
̸= 0, ∀t0 ∈ A.
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This implies that, there exists α > 0 such that the set B defined as

B =

{
t0 ∈ T | lim sup

t→t0

(
1

t− t0

∫ t

t0

pi (η(τ)− η(t0)) dτ
)
> α

}
.

has positive Lebesgue measure. However, we have∫
T
pi (g(τ)− η(τ)) dτ =

∫
C

pi (g(τ)− η(τ)) dτ +
∫
D

pi (g(τ)− η(τ)) dτ.

Where C,D ⊆ T are defined as

C = {t0 ∈ T | pi(g(t0)− η(t0)) >
α

2
},

D = {t0 ∈ T | pi(g(t0)− η(t0)) ≤
α

2
}.

This implies that ∫
C

pi (g(τ)− η(τ)) dτ ≥ m{C}α
2
.

Therefore we have∫
T
pi (g(τ)− η(τ)) dτ ≥

∫
C

pi (g(τ)− η(τ)) dτ ≥ m{C}α
2
.

This means that

m
{
t0 ∈ T | pi(g(t0)− η(t0)) >

α

2

}
≤ 2

α

∫
T
pi (g(τ)− η(τ)) dτ <

2ϵ

α
.

Also, by [25, Chapter 1, Theorem 4.3(a)], we have

m

{
t0 ∈ T | lim sup

t→t0

(
1

t− t0

∫ t

t0

pi(η(τ)− g(τ))dτ
)
>
α

2

}
≤ 4

α

∫
T
pi (g(τ)− η(τ)dτ) <

4ϵ

α
.

So this implies that

m(B) ≤ m
{
t0 ∈ T | pi(g(t0)− η(t0)) >

α

2

}
+m

{
t0 ∈ T | lim

t→t0

(
1

t− t0

∫ t

t0

pi(η(τ)− g(τ))dτ
)
>
α

2

}
≤ 6ϵ

α
.

Since ϵ can be chosen arbitrary small, this is a contradiction.
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3.6.6. Space AC(T; L(Cν(M);Cν(N))). Let {pνi }i∈I be a family of generating
seminorms for L(Cν(M);Cν(N)) and T ⊆ R be an interval. For every compact
subinterval I ⊆ T, we define the seminorm qνK,f,I as

qνi,f,I(X) =

∫
I
pνi

(
dX

dτ
(τ)(f)

)
dτ.

The family of seminorms {pνi,f,I, qνi,f,I} generate a locally convex topology on the space
AC(T; L(Cν(M);Cν(N))).

3.7. Extension of real analytic vector fields

It is well-known that every real analytic function can be extended to a holomorphic
function on a complex manifold. Similar to the case of real analytic functions, one can
show that a real analytic vector field can also be extended to a holomorphic vector
field on an appropriate complex manifold. We then proceed to study real analytic
time-varying vector fields. Considering a time-varying real analytic vector field onM
with some regularity in terms of time, one would expect that it can be extended to a
holomorphic vector field on a complex manifold containing M . Unfortunately this is
not generally true. As the following example shows, a measurable time-varying real
analytic vector field may not even have a local holomorphic extension to a complex
manifold.

Example 3.7.1. Let X : R× R→ TR be a time-varying vector field defined as

X(t, x) =

{
t2

t2+x2
∂
∂x

x ̸= 0 or t ̸= 0,

0 x, t = 0.

Then X is a time-varying vector field on R which is locally integrable with respect
to t and real analytic with respect to x. However, there does not exist a connected
neighbourhood U of x = 0 in C on which X can be extended to a holomorphic
function. To see this, let U ⊆ C be a connected neighbourhood of x = 0 and let
T ⊆ R be a neighbourhood of t = 0. Let X : T× U → TC be a time-varying vector
field which is measurable in time and holomorphic in state such that

X(t, x) = X(t, x) ∀x ∈ R ∩ U, ∀t ∈ T.

Since 0 ∈ T, there exists t ∈ T such that cl(Dt(0)) ⊆ U . Let us fix this t and define
the real analytic vector field Xt : R→ TR as

Xt(x) =
t2

t2 + x2
∂

∂x
, ∀x ∈ R,

and the holomorphic vector field X t : U → TC as

X t(z) = X(t, z) ∀z ∈ U,
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Then it is clear that X t is a holomorphic extension of Xt. However, one can define
another holomorphic vector field Y : Dt(0)→ TC by

Y (z) =
t2

t2 + z2
∂

∂z
, ∀z ∈ Dt(0),

It is easy to observe that Y is also a holomorphic extension ofXt. Thus, by the identity
theorem, we should have Y (z) = X t(z), for all z ∈ Dt(0). Moreover, we should have
U ⊆ Dt(0). However, this is a contradiction with the fact that cl(Dt(0)) ⊆ U .

However, one can show that every locally Bochner integrable time-varying real-
analytic vector field can be extended to a locally Bochner integrable time-varying
holomorphic vector field. This extension result will show its significance in the next
sections in proving convergence of the sequence of Picard iterations and continuity of
the exponential map.

3.7.1. Global extension of real analytic vector fields. As mentioned in the in-
troduction, not every time-varying real analytic vector field can be extended to a
holomorphic one on a complex neighbourhood of its domain. However, by impos-
ing some appropriate joint condition on time and state, one can show that such
an extension exists. In this section, we show that every “locally Bochner integrable”
time-varying real analytic vector field on a real analytic manifoldM , can be extended
to a locally Bochner integrable, time-varying holomorphic vector field on a complex
neighbourhood of M . Moreover, we show that if X is a continuous time-varying real
analytic vector field, then its extension X is a continuous time-varying holomorphic
vector field.

We state the following lemma which turns out to be useful in studying extension
of real analytic vector fields. The proof of the first lemma is given in [39, Corollary
1].

Lemma 3.7.2. Let Λ be a directed set and (Eα, {iαβ})β⪰α be a directed system of
locally convex spaces with locally convex inductive limit (E, {iα}α∈Λ). Let F be a
subspace of E such that, for every α ∈ Λ, we have

Eα = clEα

(
i−1
α (F )

)
.

Then F is a dense subset of E.

Having a directed set Λ and a locally convex directed system (Eα, {iαβ})β⪰α, for
every β ⪰ α, one can define ĩαβ : L1(T;Eα)→ L1(T;Eβ) as

ĩαβ(f)(t) = iαβ(f(t)), ∀t ∈ T.

We can also define the map ĩα : L1(T;Eα)→ L1(T;E) as

ĩα(f)(t) = iα(f(t)).

Then it is clear that (L1(T;Eα), {̃iαβ})β⪰α is a directed system of locally convex
spaces.
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Lemma 3.7.3. Let T ⊆ R be a compact interval, Λ be a directed set, and
(Eα, {iαβ})β,α∈Λ be a directed system of locally convex spaces with locally convex in-
ductive limit (E, {iα}α∈Λ). Then (L1(T;Eα), {̃iαβ})β,α∈Λ is a directed system of locally
convex spaces with locally convex inductive limit (L1(T;E), {̃iα}α∈Λ).

Proof. Since L1(T) is a normable space, by [43, Corollary 4, §15.5], we have
lim−→α

L1(T) ⊗π Eα = L1(T) ⊗π E. Let F = L1(T) ⊗π E. Then, for every α ∈ Λ,
we have

L1(T)⊗π Eα ⊆ ĩ−1
α (F ).

This implies that
L1(T;Eα) = cl

(̃
i−1
α (F )

)
.

Then by using Lemma 3.7.2, we have that F is a dense subset of lim−→α
L1(T;Eα). This

means that lim−→α
L1(T;Eα) = L1(T;E).

Using Lemmata 3.7.2 and 3.7.3, one can deduce the following result which we
refer to as the global extension of real analytic vector fields.

Theorem 3.7.4. Let M be a real analytic manifold and let NM be the family of all
neighbourhoods of M . Then we have

lim−→
UM∈NM

L1(T; Γhol,R(UM)) = L1(T; Γω(TM)).

Corollary 3.7.5. Let X ∈ L1(T; Γω(TM)). There exists a Stein neighbourhood UM

of M and a locally Bochner integrable time-varying holomorphic vector field X ∈
L1(T; Γhol(UM)) such that X(t, x) = X(t, x), for every t ∈ T and every x ∈M .

Similarly, one can study the extension of continuous time-varying real analytic
vector fields. While a continuous time-varying real analytic vector fields is locally
Bochner integrable, it has a holomorphic extension to a suitable domain. However,
this raises the question of whether the holomorphic extension of a “continuous” time-
varying real analytic vector field is a “continuous” time-varying holomorphic vector
field or not. Using the following lemma, we show that the answer to the above
question is positive.

Lemma 3.7.6. Let K be a compact topological space, Λ be a directed set, and
(Eα, {iαβ})β⪰α be a directed family of nuclear locally convex spaces with locally con-
vex inductive limit (E, {iα})α∈Λ . Then (C0(K;Eα), {̂iαβ})β⪰α is a directed system of
locally convex spaces with inductive limit (C0(K;E), {̂iα}α∈Λ).

Proof. Since C0(K) is a normable space, by [43, Corollary 4, §15.5], we have
lim−→α

C0(K)⊗πEα = C0(K)⊗πE. For every α ∈ Λ, the space Eα is nuclear. Therefore,
by Theorem 2.3.67, we have

C0(K)⊗π Eα = C0(K)⊗ϵ Eα, ∀α ∈ Λ.
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Moreover, the space E is nuclear. So, by Theorem 2.3.67, we have

C0(K)⊗π E = C0(K)⊗ϵ E.

This implies that
lim−→
α

C0(K)⊗ϵ Eα = C0(K)⊗ϵ E.

We set F = C0(K)⊗ϵ E. Then, for every α ∈ Λ, we have

C0(K)⊗ϵ Eα ⊆ î−1
α (F ).

This implies that

C0(K;Eα) ⊆ cl
(
î−1
α F

)
.

Then, by using Lemma 3.7.2, we have that F is a dense subset of lim−→α
C0(K;Eα).

This means that we have lim−→α
C0(K;Eα) = C0(K;E).

Theorem 3.7.7. Let K be a compact topological space, M be a real analytic vector
field and NM be the family of all neighbourhoods of M , which is a directed set under
inclusion. Then we have

lim−→
UM∈NM

C0(K; Γhol(UM)) = C0(K; Γω(TM)).

Proof. Let Λ be a directed set and (Eα, {iαβ})β⪰α be a directed system of locally
convex spaces. Then, for every β ⪰ α, one can define îαβ : C0(K;Eα) → C0(K;Eβ)
as

îαβ(f)(u) = iαβ(f(u)), ∀u ∈ K.

For every α ∈ Λ, we can also define the map îα : C0(K;Eα)→ C0(K;E) as

îα(f)(u) = iα(f(u)), ∀u ∈ K.

Then it is clear that (C0(K;Eα), {̂iαβ})β⪰α is a directed system of locally convex
spaces. The result follows from the above lemma.

3.7.2. Local extension of real analytic vector fields. In the previous section, we
proved that every locally Bochner integrable real analytic vector field on M has a
holomorphic extension on a neighbourhood of M . However, this result is true for
extending one vector field. It is natural to ask that, if we have a family of locally
integrable real analytic vector fields onM , can we extend every member of the family
to holomorphic vector fields on one neighbourhood of M? In order to answer this
question, we need a finer result for the extension of real analytic vector fields. We
will see that the projective limit representation of the space of real analytic vector
fields helps us to get this extension result.
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Theorem 3.7.8. Let K ⊆ M be a compact set and {Un}n∈N be a sequence of Stein
neighbourhoods of M such that

cl(Un+1) ⊆ Un, ∀n ∈ N.

and
⋂
n∈N Un = K. Then we have lim−→n→∞ L1(T; Γhol

bdd(Un)) = L1(T;G hol,R
K ). Moreover

the direct limit is weakly compact and boundedly retractive.

Proof. We know that, by Theorem 3.2.6, for every n ∈ N, the map ρR
Un

: Γhol,R
bdd (Un)→

Γhol,R(Un) is a compact continuous map. Note that every n ∈ N, the map id⊗ ρR
Un

:

L1(T)⊗π Γhol,R
bdd (Un)→ L1(T)⊗π Γhol,R(Un) is defined by

id⊗ ρR
Un

(ξ(t)⊗ η) = ξ(t)⊗ ρR
Un

(η).

Since L1(T) ⊗π Γhol,R
bdd (Un) is a dense subset of L1(T; Γhol,R

bdd (Un)), one can extend the

map id⊗ ρR
Un

into the map id⊗̂ρR
Un

: L1(T; Γhol,R
bdd (Un))→ L1(T; Γhol,R(Un)). We show

that id⊗̂ρR
Un

is weakly compact.

In order to show that id⊗̂ρR
Un

is weakly compact, it suffices to show that for a

bounded set B ⊂ L1(T; Γhol,R
bdd (Un)), the set id⊗̂ρR

Un
(B) is relatively weakly compact

in L1(T; Γhol,R(Un)). Since L1(T; Γhol,R(Un)) is a complete locally convex space, by
Theorem 2.3.25, the set

cl
(
id⊗̂ρR

Un
(B)
)

is weakly compact if it is weakly sequentially compact. Therefore, it suffices to show

that cl
(
id⊗̂ρR

Un
(B)
)
is weakly sequentially compact. Let {fn}∞n=1 in cl

(
id⊗̂ρR

Un
(B)
)
.

Since cl
(
id⊗̂ρR

Un
(B)
)
is bounded, for every seminorm p on Γhol,R(Un), there exists

M > 0 such that

p(

∫
T
fn(τ)dτ) ≤

∫
T
p(fn(τ))dτ ≤M.

This implies that the sequence
{∫

T fn(τ)dτ
}∞
n=1

is bounded in Γhol,R(Un). Since

Γhol,R(Un) is a nuclear locally convex space, the sequence
{∫

T fn(τ)dτ
}∞
n=1

is rela-

tively compact in Γhol,R(Un). Therefore, there is a subsequence {fnr}∞r=1 of {fn}∞n=1

such that {∫
T
fnr(τ)dτ

}∞

r=1

is Cauchy in Γhol,R(Un).
By Theorems 2.3.68 and 2.3.41, the strong dual of L1(T; Γhol,R(Un) is exactly

L∞(T)⊗̂π
(
Γhol,R(Un)

)′
β
. We first show that, for every ξ⊗ η ∈ L∞(T)⊗

(
Γhol,R(Un)

)′
,

the sequence
{ξ ⊗ η(fnr)}

∞
r=1
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is Cauchy in R. Note that we have

ξ ⊗ η(fnr − fns) =

∫
T
ξ(t)η(fns(t)− fnr(t))dt

≤M

∫
T
η(fns(t)− fnr(t))dt =Mη

(∫
T
(fns(t)− fnr(t))dt

)
.

Since the sequence
{∫

T fnr(τ)dτ
}∞
r=1

is Cauchy in Γhol,R(Un), this implies that the
sequence {ξ ⊗ η(fnr)}

∞
r=1 is Cauchy in R. Now we show that, for every λ ∈

L∞(T)⊗̂
(
Γhol,R(Un)

)′
, the sequence

{λ(fnr)}
∞
r=1

is Cauchy in R. Note that L∞(T) ⊗π
(
Γhol,R(Un)

)′
β

is a dense subset of

L∞(T)⊗̂π
(
Γhol,R(Un)

)′
β
. So there exist nets {ξα}α∈Λ in L∞(T) and {ηα}α∈Λ in(

Γhol,R(Un)
)′

such that
lim
α
ξα ⊗ ηα = λ.

Thus, for every ϵ > 0, there exists θ > 0 such that

∥ξθ ⊗ ηθ(v)− λ(v)∥ ≤
ϵ

3
, ∀v ∈ cl

(
id⊗̂ρR

Un
(B)
)
.

Since the sequence {ξθ ⊗ ηθ(fnr)}
∞
r=1 is Cauchy in F, for every ϵ > 0, there exists

Ñ > 0 such that
∥ξN ⊗ ηθ(fns − fnr)∥ <

ϵ

3
, ∀r, s > Ñ.

Thus, for every ϵ > 0, there exists Ñ > 0 such that

∥λ(fns − fnr)∥ ≤ ∥λ(fns − fnr)− ξθ ⊗ ηN(fns − fnr)∥+ ∥ξθ ⊗ ηN(fns − fnr)∥
≤ ∥λ(fns)− ξθ ⊗ ηN(fns)∥+ ∥λ(fnr)− ξN ⊗ ηθ(fnr)∥+ ∥ξN ⊗ ηθ(fns − fnr)∥ < ϵ.

Therefore, the sequence {fnr}∞r=1 is weakly Cauchy in L1(T; Γhol,R(Un)). This com-
pletes the proof of weak compactness of the map id⊗̂ρR

Un
: L1(T; Γhol,R

bdd (Un)) →
L1(T; Γhol,R(Un)). Recall that in the proof of Theorem 3.2.7, for every n ∈ N, we
defined the continuous linear map rRn : Γhol,R(Un)→ Γhol,R

bdd (Un+1) by

rRn (X) = X|Un+1
.

Then we have the following diagram:

Γhol,R
bdd (Un)

ρRUn // Γhol,R(Un)
rRn // Γhol,R

bdd (Un+1).

Therefore, we have the following diagram:

L1(T; Γhol,R
bdd (Un))

id⊗̂ρRUn // L1(T; Γhol(Un))
id⊗̂rRn// L1(T; Γhol

bdd(Un+1)).
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Since, id⊗̂ρR
Un

is weakly compact, by [43, §17.2, Proposition 1], the composition

id⊗̂ρR
Un

◦ id⊗̂rR
Un

is weakly compact. Therefore, the connecting maps in the inductive

limit lim−→n→∞ L1(T; Γhol
bdd(Un)) = L1(T;G hol,R

K ) are weakly compact.
Using Theorem 2.3.53, if we can show that the direct limit satisfies condition (M),

then it would be boundedly retractive. Since the inductive limit lim−→n→∞ Γhol
bdd(Un) =

G hol,R
K is compact, by Theorem 2.3.51, it satisfies condition (M). This means that

there exists a sequence {Vn}n∈N such that, for every n ∈ N, Vn is an absolutely
convex neighbourhood of 0 in Γhol

bdd(Un) and there exists Mn > 0 such that, for
every m > Mn, the topologies induced from Γhol

bdd(Um) on Vn are all the same. Now
consider the sequence {L1(T;Vn)}n∈N. It is clear that, for every n ∈ N, L1(T;Vn) is
an absolutely convex neighbourhood of 0 in L1(T; Γhol

bdd(Un)). For every seminorm p
on Γhol

bdd(Un) and every m > Mn, there exists a seminorm qm on Γhol
bdd(Um) such that

p(v) ≤ qm(v), ∀v ∈ Vn.

This implies that, for every X ∈ L1(T;Vn), we have∫
T
p(X(τ))dτ ≤

∫
T
qm(X(τ))dτ.

So, for every m > Mn, the topology induced on L1(T;Vn) from L1(T; Γhol
bdd(Um))

is the same as its original topology. Therefore, the inductive limit
lim−→n→∞ L1(T; Γhol

bdd(Un)) = L1(T;G hol,R
K ) satisfies condition (M) and it is boundedly

retractive.

Using the local extension theorem developed here, we can state the following
result, which can be considered as generalization of Corollary 3.7.5.

Corollary 3.7.9. Let B ⊆ L1(T; Γω(TM)) be a bounded set. Then, for every compact
set K ⊆ M , there exists a Stein neighbourhood UK of K and a bounded set B ∈
L1(T; Γhol

bdd(Un)) such that, for every X ∈ B, there exists a X ∈ B such that

X(t, x) = X(t, x) ∀t ∈ T, ∀x ∈ K.

Let M be a real analytic manifold and let U ⊆M be a relatively compact subset
of M . Then, by the local extension theorem, for every f ∈ Cω(M), there exists a
neighbourhood V ⊆MC of U such that f can be extended to a bounded holomorphic
function f ∈ Chol

bdd(V ). It is useful to study the relationship between the seminorms
of f and the seminorms of its holomorphic extension f .

Theorem 3.7.10. Let M be a real analytic manifold and U be a relatively compact
subset of M . Then, for every neighbourhood V ⊆ MC of cl(U), there exists d > 0
such that, for every f ∈ Cω(M) with a holomorphic extension f ∈ Chol

bdd(V ), we have

pωK,a(f) ≤ pV (f), ∀a ∈ c↓0(Z≥0,R>0, d), ∀ compact K ⊆ U.
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Proof. Since f is a holomorphic extension of f , we have

f(x) = f(x), ∀x ∈ cl(U).

Since cl(U) is compact, one can choose d > 0 such that, for every x ∈ cl(U), we
have D(d)(x) ⊆ V , where (d) = (d, d, . . . , d). We set D =

⋃
x∈U D(d)(x). Then

we have D ⊆ V . Using Cauchy’s estimate, for every multi-index (r) and for every
a ∈ c↓0(Z≥0,R>0, d), we have

a0a1 . . . a|r|
(r)!

∥D(r)f(x)∥ ≤ a0
d

a1
d
. . .

a|r|
d

sup
{
∥f(x)∥ | x ∈ D

}
≤ pV (f), ∀x ∈ U.

This implies that, for every compact set K ⊆ U and every a ∈ c↓0(Z≥0,R>0, d), we
have

pωK,a(f) ≤ pV (f).

3.8. Flows of time-varying vector fields

As mentioned in the previous sections, a time-varying Cν-vector field can be
considered as a curve on the locally convex space L(Cν(M);Cν(M)). Following the
analysis in [3], the flow of a time-varying Cν-vector field X can be considered as a
curve ζ : T → L(Cν(M);Cν(U)) which satisfies the following initial value problem
on the locally convex space L(Cν(M);Cν(U)):

dζ

dt
(t) = ζ(t) ◦X(t), a.e. t ∈ T

ζ(0) = id.
(3.8.1)

Therefore, one can reduce the problem of studying the flow of a time-varying vec-
tor field to the problem of studying solutions of a linear differential equation on a
locally convex vector space. The theory of ordinary differential equations on locally
convex spaces is different in nature from the classical theory of ordinary differential
equations on Banach spaces. While in the theory of differential equations on Banach
spaces, there are many general results about existence, uniqueness and properties
of the flows, which hold independently of the underlying Banach space, the theory
of ordinary differential equations on locally convex spaces heavily depends on the
nature of their underlying space. Many methods in the classical theory of ordinary
differential equations in Banach spaces have no counterpart in the theory of ordinary
differential equations on locally convex spaces [56].

In [3], the initial value problem (3.8.1) for smooth and real analytic time-varying
vector fields has been studied. In the real analytic case, X is assumed to be a
locally integrable time-varying Cω-vector field on Rn such that it can be extended to
a bounded holomorphic vector field on a neighbourhood Ω ⊆ Cn of Rn. Using the



On the role of regularity in mathematical control theory 95

Chol-topology on the space of holomorphic vector fields, it has been shown that the
well-known sequence of Picard iterations for the initial value problem (3.8.1) converges
and gives us the unique solution of (3.8.1) [3, §2, Proposition 2.1]. In the smooth case,
the existence and uniqueness of solutions of (3.8.1) has been shown. However, for
smooth but not real analytic vector fields, the sequence of Picard iterations associated
to the initial value problem (3.8.1) does not converge [4, §2.4.4].

In this section, using the framework we developed in this chapter, we study the
initial value problem (3.8.1) for the holomorphic and the real analytic cases. Our proof
for the existence of the solution of (3.8.1) in the holomorphic case is similar to the one
given in [3]. In the real analytic case, using the local extension theorem (3.7.5) and
estimates for seminorms on the space of real analytic functions, we provide a direct
method for proving and studying the convergence of sequence of Picard iterations.
This method helps us to generalize the result of [3, §2, Proposition 2.1] to arbitrary
locally Bochner integrable real analytic vector fields.

Theorem 3.8.1. Let X : T → Der(Cν(M)) be a locally Bochner integrable time-
varying vector field. Then, for every t0 ∈ T and every x0 ∈ M , there exists an
interval T′ ⊆ T containing t0 and an open set U ⊆ M containing x0 such that there
exists a unique locally absolutely continuous curve ζ : T′ → L1(Cν(M);Cν(U)) which
satisfies the following initial value problem:

dζ

dt
(t) = ζ(t) ◦X(t), a.e. t ∈ T′,

ζ(t0) = id,
(3.8.2)

and, for every t ∈ T′, we have

ζ(t)(fg) = ζ(t)(f)ζ(t)(g), ∀f, g ∈ Cν(M).

Proof. We study two different cases.

1. ν =∞
In the smooth case, this theorem is just a restatement of the classical exis-
tence, local uniqueness, and C∞-dependence on initial condition proved in [42,
Theorem 6.6].

2. ν ∈ {hol, ω}
Let N = dim(M) and (V, (x1, x2, . . . , xN)) be a coordinate chart around x0.
Without loss of generality, we can assume that T is a compact interval. Let U
be a relatively compact set such that cl(U) ⊆ V , K ⊆ U be a compact set. For
every k ∈ N, we define ϕk : R→ L(Cν(M);Cν(U)) inductively as

ϕ0(t)(f) = f |U , ∀t ∈ [t0, T ],

ϕk(t)(f) = f |U +

∫ t

t0

ϕk−1(τ) ◦X(τ)(f)dτ, ∀t ∈ [t0, T ].

If pνK is one of the seminorms pholK or p̃ωK,a, we have the following lemma.



96 S. Jafarpour

Lemma. If pνK is one of the seminorms pholK or p̃ωK,a. Then, there exist a real
number T > t0 and locally integrable function m ∈ L1

loc(T) such that, for every
f ∈ Cν(M), there exist constants Mf , M̃f ∈ R≥0

pνK,f (ϕn(t)− ϕn−1(t)) ≤ (M(t))nMf , ∀t ∈ [t0, T ], ∀n ∈ N.
pνK,f ((ϕn(t)− ϕn−1(t)) ◦X(t)) ≤ m(t)(M(t))nM̃f , ∀t ∈ [t0, T ], ∀n ∈ N.

where M : [t0, T ]→ R is defined as

M(t) =

∫ t

t0

m(τ)dτ, ∀t ∈ [t0, T ].

Proof. (a) ν = hol

We set:
d = max{∥x− y∥ | x ∈ cl(U), y ∈ K}.

Since X is locally Bochner integrally, by Theorem 3.6.1, there exists m ∈
L1
loc(T) such that

d

2N
max
i
{pholcl(U)(X

i(t))} ≤ m(t).

Then we have

pholK,f (X(t)) = pholK

(
X i(t)

∂f

∂xi

)
≤ N max

i

{
pholK (X i(t))

}
max
i

{
pholK (

∂f

∂xi
)

}
.

Using Cauchy’s estimate, we have

sup

{∥∥∥∥ ∂f∂xi (x)
∥∥∥∥ | x ∈ K} ≤ 1

d
sup{∥f(x)∥ | x ∈ cl(U)}.

Therefore, we get

pholK,f (X(t)) ≤ N

d
max
i

{
pholK (X i(t))

}
pholcl(U)(f) ≤

1

2
m(t)pholcl(U)(f).

We set Mf = pholcl(U)(f). Moreover since M(t) =
∫ t
t0
m(τ)dτ , there exists

T > t0 such that |M(T )| < 1.

Now, for every n ∈ Z>0, for every t ∈ [t0, T ], we have

(ϕn(t)− ϕn−1(t)) (f) =∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

X(t1) ◦X(t2) ◦ . . . X(tn)(f)dtndtn−1 . . . dt1.
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This implies that, for every t ∈ [t0, T ],

pholK,f (ϕn(t)− ϕn−1(t))

≤
∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

pholK,f (X(t1) ◦X(t2) ◦ . . . X(tn)) dtndtn−1 . . . dt1.

Using induction on n, one can show that

pholK,f (X(t1) ◦X(t2) ◦ . . . X(tn)) ≤
(2N)nn!

dn

(
n∏
j=1

m(tj)

)
pholcl(U)(f).

This implies that, for every t ∈ [t0, T ], we have∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

pholK,f (X(t1) ◦X(t2) ◦ . . . X(tn)) dtndtn−1 . . . dt1

≤
∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

(
(2N)nn!

dn

n∏
i=1

m(ti)

)
pholcl(U)(f)dtndtn−1 . . . dt1

= (M(t))n pholcl(U)(f).

Thus we have
pholK,f (ϕn(t)− ϕn−1(t)) ≤ (M(t))nMf .

Moreover, we have

(ϕn(t)− ϕn−1(t)) ◦X(t)

≤
∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

X(t1) ◦X(t2) ◦ . . . X(tn) ◦X(t)dtndtn−1 . . . dt1.

Therefore, we get

pholK,f ((ϕn(t)− ϕn−1(t)) ◦X(t))

≤
∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

pholK,f (X(t1) ◦X(t2) ◦ . . . X(tn) ◦X(t)) dtndtn−1 . . . dt1

≤
∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

(
(2N)nn!

dn

n∏
i=1

m(ti)

)
pholcl(U)(X(t)f)dtndtn−1 . . . dt1

≤ (M(t))nmax
i

{
pholcl(U)(X

i(t))
}
max
i

{
pholcl(U)

(
∂f

∂xi
(x)

)}
If we set

M̃f =
2N

d
max
i

{
pholcl(U)

(
∂f

∂xi
(x)

)}
Then, for every n ∈ N, we have

pholK,f ((ϕn(t)− ϕn−1(t)) ◦X(t)) ≤ m(t)(M(t))nM̃f , ∀t ∈ [t0, T ]

This completes the proof of the lemma for the holomorphic case.



98 S. Jafarpour

(b) ν = ω

Since X is locally Bochner integrable, by Corollary 3.7.9, there ex-
ist a neighbourhood V of U , a locally Bochner integrable vector field
X ∈ L1(T; Γhol,R

bdd (V )), and a function f ∈ Chol,R
bdd (V ) such that X t and

f are the holomorphic extension of X and f over V , respectively. Then,
by Theorem 3.7.10, there exists d > 0 such that, for every compact set
K ⊆ U and every a ∈ c↓0(Z≥0,R>0, 6ed), we have

p̃ωK,a(f) ≤ pV (f),

max
i

{
p̃ωK,a(X

i(t))
}
≤ max

i

{
pV (X(t))

}
, ∀t ∈ T,

Since X is locally Bochner integrable, there exists m ∈ L1(T) such that

4N max
i

{
pV (X

i
(t))
}
≤ m(t), ∀t ∈ T,

Then we define M : T→ R as

M(t) =

∫ t

t0

m(τ)dτ.

Since M is continuous, there exists T ∈ T such that

M(t) < 1, ∀t ∈ [t0, T ].

Let K ⊆ U be a compact set and let a ∈ c↓0(Z≥0,R>0, d). We show by
induction that, for every n ∈ N , we have

p̃ωK,a,f (ϕn+1(t)− ϕn(t)) ≤ (M(t))n+1p̃ωK,an+1
(f), ∀t ∈ [t0, T ],

where, for every n ∈ N, the sequence an ∈ c↓0(Z≥0,R>0) is defined as in
Lemma 3.3.3:

an,m =

{(
m+1
m

)n
am n < m,(

m+1
m

)m
am n ≥ m.

First note that for n = 1 we have

ϕ1(t)− ϕ0(t) =

∫ t

t0

X(τ)dτ, ∀t ∈ [t0, T ].

This implies that

p̃ωK,a,f (ϕ1(t)− ϕ0(t)) ≤
∫ t

t0

p̃ωK,a(X(τ)f)dτ, ∀t ∈ [t0, T ].

By inequality (3.3.2), we have

p̃ωK,a(X(t)f) ≤ 4N max
i
{p̃ωK,b1

(X i(t))}p̃ωK,a1
(f), ∀t ∈ [t0, T ].
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Therefore we have

p̃ωK,a,f (ϕ1(t)− ϕ0(t)) ≤
∫ t

t0

4N max
i
{p̃ωK,b1

(X i(τ))}p̃ωK,a1
(f)dτ

≤M(t)p̃ωK,a1
(f).

Now suppose that, for every k ∈ {1, 2, . . . , n− 1}, we have

p̃ωK,a,f (ϕk+1(t)− ϕk(t)) ≤ (M(t))k+1p̃ωK,ak+1
(f), ∀t ∈ [t0, T ].

By definition of ϕn, we have

ϕn+1(t)− ϕn(t) =
∫ t

t0

(ϕn(τ) ◦X(τ)− ϕn−1(τ) ◦X(τ)) dτ, ∀t ∈ [t0, T ].

Taking p̃ωK,a,f of both side of the above equality, we have

p̃ωK,a,f (ϕn+1(t)− ϕn(t))

≤
∫ t

t0

p̃ωK,a,f ((ϕn(τ)− ϕn−1(τ)) ◦X(τ)) dτ, ∀t ∈ [t0, T ].

However, we know that by the induction hypothesis

p̃ωK,a,f ((ϕn(t)− ϕn−1(t)) ◦X(t)) ≤ (M(t))np̃ωK,an
(X(t)f), ∀t ∈ [t0, T ].

Moreover, by the inequality (3.3.2), we have

p̃ωK,an
(X(t)f) ≤ 4N(n+ 1)max

i

{
p̃ωK,bn

(X i(t))
}
p̃ωK,an+1

(f), ∀t ∈ [t0, T ].

By Lemma 3.3.3, for every n ∈ N, we have bn ∈ c↓0(Z≥0,R>0, 6ed). This
implies that, for every n ∈ N, we have

max
i

{
p̃ωK,bn

(X i(t))
}
≤ max

i

{
pV (X

i
(t))
}
<

1

4N
m(t), ∀t ∈ [t0, T ].

Therefore, for every n ∈ N, we have

p̃ωK,a,f ((ϕn(t)− ϕn−1(t)) ◦X(t)) ≤ (n+ 1)m(t)Mn(t)p̃ωK,an+1
(f).

Thus we get

p̃ωK,a,f (ϕn+1(t)− ϕn(t))

≤
∫ t

t0

(n+ 1)(M(τ))nm(τ)p̃ωK,an+1
(f)dτ

= (M(t))n+1p̃ωK,an+1
(f), ∀t ∈ [t0, T ].
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This completes the induction. Note that by Lemma 3.3.3, for every m,n ∈
Z≥0, we have

an,m ≤ eam ≤ 6ed

This implies that, for every n ∈ N, we have

p̃ωK,an
(f) ≤ pV (f).

If we set Mf = pV (f) then, for every n ∈ N, we have

p̃ωK,a,f (ϕn+1(t)− ϕn(t)) ≤ (M(t))n+1Mf , ∀t ∈ [t0, T ].

Moreover, for every n ∈ N, we have

p̃ωK,a,f ((ϕn(t)− ϕn−1(t)) ◦X(t)) ≤ (M(t))np̃ωK,an
(X(t)f), ∀t ∈ [t0, T ].

However, by inequality (3.3.2), we have

p̃ωK,an(X(t)f) ≤ 4N max
i

{
p̃ωK,bn

}
p̃ωK,an+1

(f), ∀t ∈ [t0, T ].

Noting that we have

max
i

{
p̃ωK,bn

(X i(t))
}
≤ max

i

{
pV (X

i
(t))
}
<

1

4N
m(t), ∀t ∈ [t0, T ],

and
p̃ωK,an+1

(f) ≤ pV (f), ∀t ∈ [t0, T ].

Therefore, if we set M̃f = pV (f), we have

p̃ωK,a,f ((ϕn(t)− ϕn−1(t)) ◦X(t)) ≤ m(t)(M(t))nM̃f , ∀t ∈ [t0, T ].

This completes the proof of the lemma for the real analytic case.

We now show that, for every n ∈ N, ϕn ∈ AC([t0, T ],L(C
ν(M);Cν(U))). For

every n ∈ N, consider the following inequality:

pνK,f (ϕn−1(t) ◦X(t)) ≤ pνK,f (X(t)) +
n−1∑
i=1

pνK,f ((ϕi(t)− ϕi−1(t)) ◦X(t))

≤ pνK,f (X(t)) +
n−1∑
i=1

m(t)(M(t))i+1M̃f

≤ m(t)

(
n−1∑
i=0

(M(t))i

)
M̃f , ∀t ∈ [t0, T ].
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The function gn : [t0, T ]→ R defined as

gn(t) = m(t)

(
n−1∑
i=0

M i(t)

)
, ∀t ∈ [t0, T ],

is locally integrable. Thus, by Theorem 3.6.1, ϕn−1 ◦X is locally Bochner in-
tegrable. So, by Definition 2.3.39, ϕn is absolutely continuous. Therefore, for
every n ∈ N, we have

pνK,f (ϕn(t)− ϕn−1(t)) ≤ |M(T )|nMf , ∀t ∈ [t0, T ].

Since |M(T )| < 1, one can deduce that the sequence {ϕn}n∈N converges uni-
formly on [t0, T ] in L(Cν(M);Cν(U)). Since uniform convergence implies L1-
convergence and the space L1([t0, T ]; L(C

ν(M);Cν(U))) is complete, there exists
ϕ ∈ L1([t0, T ]; L(C

ν(M);Cν(U))) such that

lim
n→∞

ϕn = ϕ,

where the limit is in L1-topology on L1([t0, T ]; L(C
ν(M);Cν(U))). Now we need

to show that ϕ satisfies the initial value problem (3.8.2). We prove that

lim
n→∞

∫ t

t0

ϕn(τ) ◦X(τ)dτ =

∫ t

t0

ϕ(τ) ◦X(τ)dτ, ∀t ∈ [t0, T ].

Note that, for every n ∈ N, we have

pνK,f (ϕ(t)− ϕn(t)) ≤
∞∑

k=n+1

(M(t))kMf .

This implies that, for every n ∈ N,∫ t

t0

pνK,f ((ϕ(τ)− ϕn(τ)) ◦X(τ)) dτ ≤
∫ t

t0

∞∑
k=n+1

m(τ)(M(τ))kM̃f

≤ N(T − t0)
∞∑

i=n+1

|M(T )|nM̃f , ∀t ∈ [t0, T ].

Therefore, we have

lim
n→∞

∫ t

t0

ϕn(τ) ◦X(τ)dτ =

∫ t

t0

ϕ(τ) ◦X(τ)dτ, ∀t ∈ [t0, T ].

This implies that we have

ϕ(t) = lim
n→∞

ϕn(t) = lim
n→∞

∫ t

t0

ϕn−1(τ) ◦X(τ)dτ =

∫ t

t0

ϕ(τ) ◦X(τ)dτ.
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Thus ϕ satisfies the initial value problem (3.8.2). On the other hand

ϕ ∈ L1([t0, T ]; L(C
ν(M);Cν(U))),

and
X ∈ L1([t0, T ]; L(C

ν(M);Cν(M))),

Therefore
ϕ ◦X ∈ L1([t0, T ]; L(C

ν(M);Cν(U)))

By definition 2.3.39, ϕ is in the space AC([t0, T ]; L(C
ν(M);Cν(U))). This com-

pletes the proof.

One can also show that the sequence {ϕn}n∈N converges to ϕ in
AC([t0, T ]; L(C

ν(M);Cν(U))). In order to show this, it suffices to show that,
for every compact set K ⊆ U and every f ∈ Cν(M), we have

lim
n→∞

∫ t

t0

pνK,f

(
dϕn+1

dt
− dϕn

dt

)
= 0, ∀t ∈ [t0, T ].

Note that, for every n ∈ N, we have

dϕn+1

dt
= ϕn(t) ◦X(t), a.e., t ∈ [t0, T ].

Therefore, it suffices to show that

lim
n→∞

∫ t

t0

pνK,f (ϕn(t) ◦X(t)− ϕn−1(t) ◦X(t)) = 0, ∀t ∈ [t0, T ].

But we know that, for every n ∈ N, we have

pνK,f (ϕn(t) ◦X(t)− ϕn−1(t) ◦X(t)) ≤
m(t)(M(t))nM̃f ≤ m(t)(M(t))nM̃f , ∀t ∈ [t0, T ].

So we have∫ t

t0

pνK,f (ϕn(t) ◦X(t)− ϕn−1(t) ◦X(t)) ≤ d

(n+ 1)N
(M(T ))n+1M̃f

≤ d

(n+ 1)N
(M(T ))n+1M̃f .

This completes the proof of convergence of {ϕn}n∈N in
AC([t0, T ]; L(C

ν(M);Cν(U))).
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To show the uniqueness of the solutions, we assume that there exists two solutions
ϕ, ψ ∈ AC(T; L(Cν(M);Cν(U))) for the initial value problem (3.8.2). If we choose
T > 0 as in the lemma above, then we have

ϕ(t)− ψ(t) =
∫ t

t0

(ϕ(τ)− ψ(τ)) ◦X(τ)dτ, ∀t ∈ [t0, T ].

Therefore, for every i ∈ {1, 2, . . . , N} and every convex open set W ⊆ U such that
cl(W ) ⊆ U , we have

p∞cl(W ),0,xi(ϕ(t)− ψ(t)) ≤
∫ t

t0

p∞cl(W ),0,xi((ϕ(τ)− ψ(τ)) ◦X(τ))dτ, ∀t ∈ [t0, T ].

Note that

p∞cl(W ),0,xi((ϕ(t)− ψ(t)) ◦X(t)) = sup
{∥∥X i(t, ϕ(t, x))−X i(t, ψ(t, x))

∥∥ ∣∣ x ∈ cl(W )
}
.

Now, by using the mean value inequality, for every x ∈ cl(W ), there exists rx ∈ cl(W )
such that∥∥X i(t, ϕ(t, x))−X i(t, ψ(t, x))

∥∥ ≤ ∥∥∥∥∂X i

∂xj
(t, rx))

∥∥∥∥∥∥ϕj(t, x)− ψj(t, x)∥∥
Taking supremum over x ∈ cl(W ), we have

max
i
{p∞cl(W ),0,xi((ϕ(t)− ψ(t)) ◦X(t))}

≤ max
i
{p∞cl(W ),0,xi(ϕ(t)− ψ(t))}max

i
{p∞cl(W ),1,xi(X(t))}, ∀t ∈ [t0, T ].

Since X is locally Bochner integrable, there exists m ∈ L1
loc(T) such that

max
i
{p∞cl(W ),1,xi(X(t))} ≤ m(t), ∀t ∈ [t0, T ].

Therefore, we have

max
i
{p∞cl(W ),0,xi((ϕ(t)− ψ(t)) ◦X(t))}

≤ m(t)max
i
{p∞cl(W ),0,xi(ϕ(t)− ψ(t))}, ∀t ∈ [t0, T ].

This implies that

max
i
{p∞cl(W ),0,xi(ϕ(t)− ψ(t))}

≤
∫ t

t0

m(τ)max
i
{p∞cl(W ),0,xi(ϕ(τ)− ψ(τ))}dτ, ∀t ∈ [t0, T ].
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Using the Grönwall inequality, we will get

max
i
{p∞cl(W ),0,xi(ϕ(t)− ψ(t))} ≤ max

i
{p∞cl(W ),0,xi(ϕ(t0)− ψ(t0))}e

∫ t
t0
m(τ)dτ

.

Since we have ϕ(t0) = ψ(t0) = id, we get

max
i
{p∞cl(W ),0,xi(ϕ(t)− ψ(t))} = 0, ∀t ∈ [t0, T ], ∀ convex open set W ⊆ U.

So we have
ϕ(t)(x) = ψ(t)(x), ∀t ∈ [t0, T ], ∀x ∈ cl(W ).

This implies the local uniqueness of the solution of (3.8.2), on the interval [t0, T ].

3.9. The exponential map

In this section, we study the relationship between locally integrable time-varying
real analytic vector fields and their flows. In order to define such a map connecting
time-varying vector fields and their flows, one should note that there may not exist
a fixed interval T ⊆ R containing t0 and a fixed open neighbourhood U ⊆ M of
x0, such that the flow of “every” locally Bochner integrable time-varying vector field
X ∈ L1(R,Γν(TM)) is defined on time interval T and on neighbourhood U . The
following example shows this for a family of vector fields.

Example 3.9.1. Consider the family of vector fields {Xn}n∈N, where Xn : R×R→
TR ≃ R2 is defined as

Xn(t, x) = (x, nx2), ∀t ∈ T, ∀x ∈ R.

Let T = [−1, 1]. Then, for every n ∈ N, the flow of Xn is defined as

ϕXn(t, x) =
x

1− nxt
.

This implies that ϕXn is only defined for x ∈ [− 1
n
, 1
n
]. Therefore, there does not exist

an open neighbourhood U of 0 such that, for every n ∈ N, ϕXn is defined on U .

The above example suggest that it is natural to define the connection between
vector fields and their flows on their germs around t0 and x0. Let T ⊆ R be a compact
interval containing t0 ∈ R and U ⊆M be an open set containing x0 ∈M . We define

L1,ν
(t0,x0)

= lim−→L1(T; Der(Cν(U))),

and
ACν

(t0,x0)
= lim−→AC(T; L(Cν(M);Cν(U))).

These direct limits are in the category of topological spaces. We define the exponential
map exp : L1,ν

(t0,x0)
→ ACν

(t0,x0)
as

exp([X](t0,x0)) = [ϕX ](t0,x0), ∀[X](t0,x0) ∈ L1,ν
(t0,x0)

.
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Theorem 3.9.2. The exponential map is sequentially continuous.

Proof. To show that exp : L1,ν
(t0,x0)

→ ACν
(t0,x0)

is a sequentially continuous map,

it suffices to prove that, for every sequence {Xn}n∈N in L1(T; Γν(TM)) which con-
verges to X ∈ L1(T; Γν(TM)), the sequence {[ϕXn ](t0,x0)} converges to [ϕX ](t0,x0) in
ACν

(t0,x0)
. Since the sequence {Xn}n∈N is converging, it is bounded in L1(T; Γν(TM)).

So, by Theorem 3.8.1, there exists T > t0 and a relatively compact coordinate
neighbourhood U of x0 such that [t0, T ] ⊆ T and, for every n ∈ N, we have
ϕXn ∈ AC([t0, T ]; L(C

ν(M);Cν(U))). Therefore, it suffices to show that, for the se-
quence {Xn}n∈N in L1(T; Γν(TM)) converging to X ∈ L1(T; Γν(TM)), the sequence
{ϕXn} converges to ϕX in AC([t0, T ]; L(C

ν(M);Cν(U))). We separate the proof for
the cases ν =∞, ν = hol, and ν = ω.

1. ν =∞:

The proof for the smooth case follows from Theorem 2.1 in [70] and Theorem
6.6 in [42].

2. ν = hol:

Let (V, η = (z1, z2, . . . , zN)) be a coordinate chart on M . There exists r > 0
such that

W = {z | ∥z∥ ≤ r} ⊆ V.

We define Λ = L1(T; Γhol(TM)) and F : T× V × Λ→ CN as

F (t,x, X) = X(t,x)

Since X ∈ L1(T; Γhol(TM)), one can easily check that F satisfies conditions of
Theorem 1.1 in [70]. Therefore, there exist T > 0 and U ⊆ K such that

ϕF ∈ C0([t0, T ]× U × Λ;CN)

where ϕF : [t0, T ] × U × Λ → CN is the solution of the following differential
equation

d

dt
ϕF (t,x, X) = X(t, ϕF (t,x, X)), ∀x ∈ U, ∀X ∈ Λ.

Using the identity

C0([t0, T ]× U × Λ;CN) = C0(Λ; C0([t0, T ]× U ;CN)),

we can easily see that, if limn→∞Xn = X in L1(T; Γhol(TM)), then
limn→∞ ϕXn = ϕX in C0([t0, T ] × U ;Cn). Therefore, for every compact set
K ⊆ U , every nonzero f ∈ Chol(M), and every ϵ > 0, there exists M > 0 such
that

sup
{∥∥∥(ϕX)j (t, z)− (ϕXn

)j
(t, z)

∥∥∥ | z ∈ K, t ∈ [t0, T ]
}

≤ ϵ

sup
{∥∥ ∂f

∂xj
(x)
∥∥ | x ∈W∥∥ (T − t0) , ∀n > M.
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This implies that, for every t ∈ [t0, T ], we have

pholK,f (ϕ
Xn(t)− ϕX(t)) = sup{∥f(ϕXn(t, z))− f(ϕX(t, z))∥ | z ∈ K, t ∈ [t0, T ]}

≤ sup

{∥∥∥∥ ∂f∂xj (x)
∥∥∥∥ | x ∈W}×

sup
{∥∥∥(ϕX)j (t, z)− (ϕXn

)j
(t, z)

∥∥∥ | z ∈ K, t ∈ [t0, T ]
}
<

ϵ

T − t0
, ∀n > M.

Therefore, we get∫ t

t0

pholK,f (ϕ
Xn(τ)− ϕX(τ))dτ < ϵ, ∀n > M.

This completes the proof of continuity of exponential map in the holomorphic
case.

3. ν = ω:

Let f ∈ Cω(M) be a real analytic function and suppose that we have

lim
m→∞

Xm = X

in L1(T; Γω(U)). By Theorems 3.7.4 and 3.7.8, there exists a neighbourhood
V ⊆MC of U such that the bounded sequence of locally integrable real analytic
vector fields {Xm}m∈N, the real analytic vector field X, and the real analytic
function f can be extended to a converging sequence of locally integrable holo-
morphic vector fields {Xm}m∈N, a locally integrable holomorphic vector field
X, and a holomorphic function f respectively. Moreover, by Theorem 3.7.8,
the inductive limit

lim−→L1(T; Γhol,R
bdd (Un)) = L1(T; Γω(TM))

is boundedly retractive. Therefore, we have

lim
m→∞

Xm = X

in L1(T; Γhol,R
bdd (V )). Now, according to Theorem 3.7.10, there exists d > 0, such

that for every compact set K ⊆ U , every a ∈ c↓0(Z≥0,R>0, d), and every t ∈ T,
we have

p̃ωK,a(f) ≤ pV (f),

max
i

{
p̃ωK,a(X

i(t))
}
≤ max

i

{
pV (X

i
(t))
}
,

max
i

{
p̃ωK,a(X

i(t)−X i
m(t))

}
≤ max

i

{
pV (X

i
(t)−X i

m(t))
}
.
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Since X is locally integrable, by Theorem 3.6.1, there exists g ∈ L1(T) such
that

max
i

{
pV (X(t))

}
< g(t), ∀t ∈ T.

This implies that, for every compact set K ⊆ U and every a ∈ c↓0(Z≥0,R>0, d),
we have

max
i

{
pωK,a(X

i(t))
}
≤ max

i

{
pV (X

i
(t))
}
< g(t), ∀t ∈ T.

This means that, for every ϵ > 0, there exists C ∈ N such that∫ t

t0

max
i

{
pV (X

i

m(τ)−X
i
(τ))

}
dτ < ϵ, ∀m > C, t ∈ T.

Therefore, if m > C, we have

max
i

{
pV (X

i

m(t))
}
≤ max

i

{
pV (X

i
(t))
}
+ ϵ ≤ g(t) + ϵ, ∀t ∈ T, ∀m > C.

We define m ∈ L1(T) as

m(t) = g(t) + ϵ, ∀t ∈ T.

We also define m̃ ∈ C(T) as

m̃(t) =

∫ t

t0

(4N)m(τ)dτ, ∀t ∈ T.

We choose T > t0 such that |m̃(T )| < 1
2
.

Lemma. Let K ⊆ U be a compact set and a ∈ c↓0(Z≥0,R>0, d). Then, for every
n ∈ N, we have

p̃ωK,a,f (ϕ
X
n (t)− ϕXm

n (t)) ≤

(
n−1∑
r=0

(r + 1)(m̃(t))rp̃ωK,ar+1
(f)

)
×∫ t

t0

max
i

{
pV (X

i
(τ)−X i

m(τ))
}
dτ, ∀t ∈ [t0, T ], ∀m > C,

where ak is as defined in Lemma 3.3.3.

Proof. We prove this lemma using induction on n ∈ N. We first check the case
n = 1. For n = 1, using Theorem 3.3.4, we have

p̃ωK,a,f (ϕ
X
1 (t)− ϕXm

1 (t)) = p̃ωK,a,f

(∫ t

t0

X(τ)−Xm(τ)dτ

)
≤
∫ t

t0

p̃ωK,a,f (X(τ)−Xm(τ)) dτ

≤ p̃ωK,a1
(f)

∫ t

t0

max
i

{
pV (X

i
(τ)−X i

m(τ))
}
dτ, ∀t ∈ [t0, T ], ∀m > C,
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Now assume that, for j ∈ {1, 2, . . . , n}, we have

p̃ωK,a,f (ϕ
X
j (t)− ϕXm

j (t)) ≤
j−1∑
r=0

(
(r + 1)(m̃(t))rp̃ωK,ar+1

(f)
)
×∫ t

t0

max
i

{
pV (X

i
(τ)−X i

m(τ))
}
dτ, ∀t ∈ [t0, T ], ∀m > C.

We want to show that

p̃ωK,a,f (ϕ
X
n+1(t)− ϕXm

n+1(t)) ≤
n∑
r=0

(
(r + 1)(m̃(t))rp̃ωK,ar+1

(f)
)
×∫ t

t0

max
i

{
pV (X

i
(τ)−X i

m(τ))
}
dτ, ∀t ∈ [t0, T ], ∀m > C.

Note that one can write

ϕXn+1(t)− ϕXm
n+1(t) =

∫ t

t0

(ϕXn (τ) ◦X(τ)− ϕXm
n ◦Xm(τ))dτ

=

∫ t

t0

(
ϕXn (τ)− ϕXm

n (τ)
)

◦X(τ)dτ

+

∫ t

t0

ϕXm
n (τ) ◦ (X(τ)−Xm(τ)) dτ ∀t ∈ [t0, T ], ∀m > C.

Therefore, for every compact set K ⊆ U and every a ∈ c↓0(Z≥0,R>0, d), we have

p̃K,a,f (ϕ
X
n (t)− ϕXm

n (t)) ≤
∫ t

t0

p̃ωK,a,f
((
ϕXn (τ)− ϕXm

n (τ)
)

◦X(τ)
)
dτ

+

∫ t

t0

p̃ωK,a,f
(
ϕXm
n (τ) ◦ (X(τ)−Xm(τ))

)
dτ, ∀t ∈ [t0, T ], ∀m > C.

Note that, for every X, Y ∈ L1([t0, T ]; Γ
ω(TM)), we have

p̃ωK,a,f
(
ϕXn (t) ◦Y (t)

)
= p̃ωK,a,f (Y (t)) +

n∑
r=1

p̃ωK,a,f
(
(ϕXr (t)− ϕXr−1(t)) ◦Y (t)

)
Since, for every r ∈ N, we have

p̃ωK,a,f
(
ϕXr (t)− ϕXr−1(t)

)
≤ (m̃(t))rp̃ωK,ar

(f), ∀t ∈ [t0, T ]

for every X,Y ∈ L1([t0, T ]; Γ
ω(TM)), we have

p̃ωK,a,f
(
ϕXn (t) ◦Y (t)

)
≤

n∑
r=0

(m̃(t))rp̃ωK,ar,f (Y (t)) , ∀t ∈ [t0, T ].
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This implies that, for every t ∈ [t0, T ] and every m > C, we have

p̃ωK,a,f
(
ϕXm
n (t) ◦ (X(t)−Xm(t))

)
≤

n∑
r=0

(m̃(t))rp̃ωK,ar,f (X(t)−Xm(t))

≤
n∑
r=0

(
(r + 1)(m̃(t))rp̃ωK,ar+1

(f)
)
max
i

{
pV

(
X
i
(t)−X i

m(t)
)}

.

Therefore, for every t ∈ [t0, T ] and every m > C, we get

p̃ωK,a,f (ϕ
X
n+1(t)− ϕXm

n+1(t))

≤
∫ t

t0

n−1∑
r=0

(
(r + 1)(r + 2)(m̃(t))rm(t)p̃ωK,ar+2

(f)
) ∫ t

t0

max
i

{
pV (X

i
(τ)−X i

m(τ))
}
dτ

+

∫ t

t0

n∑
r=0

(
(r + 1)(m̃(τ))rp̃ωK,ar+1

(f)
)
max
i

{
pV

(
X
i
(t)−X i

m(t)
)}

dτ.

Using integration by parts, we have

p̃ωK,a,f (ϕ
X
n+1(t)− ϕXm

n+1(t)) ≤
n∑
r=0

(r + 1)(m̃(t))rp̃ωK,ar+1
(f)×∫ t

t0

pV (X
i
(τ)−X i

m(τ))dτ, ∀t ∈ [t0, T ], ∀m > C.

This completes the proof of the lemma

Thus, for every n ∈ N, we have

p̃ωK,a,f (ϕ
X
n (t)− ϕXm

n (t))

≤
n−1∑
r=0

(r+1)(m̃(t))rp̃ωK,ar+1
(f)

(∫ t

t0

pV (X
i
(τ)−X i

m(τ))dτ

)
, ∀t ∈ [t0, T ], ∀m > C.

Since, for every t ∈ [t0, T ], we have

|m̃(t)| < 1

2
,

the series
∞∑
r=0

(r + 1)(m̃(t))rp̃ωK,ar+1
(f)

converges to a function h(t), for every t ∈ [t0, T ]. By Lebesgue’s monotone
convergence theorem, h is integrable. This implies that, for every n ∈ N and
every a ∈ c↓0(Z≥0,R>0, d),

p̃ωK,a,f
(
ϕXn (t)− ϕXm

n (t)
)
≤ h(t)

∫ t

t0

pV (X
i
(τ)−X i

m(τ))dτ, ∀t ∈ [t0, T ], ∀m > C.
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Therefore, by taking the limit as n goes to infinity of the left hand side of the
inequality, we have

p̃ωK,a,f
(
ϕX(t)− ϕXm(t)

)
≤ h(t)

∫ t

t0

pV (X
i
(τ)−X i

m(τ))dτ, ∀t ∈ [t0, T ], ∀m > C.

This completes the proof of sequential continuity of exp.



Chapter 4

Tautological control systems

4.1. Introduction

In geometric control theory, a control system can be described by a family of
parametrized vector field {F u}u∈U , where U is the set of all controls. The evolution of
this system is studied using trajectories of the system, i.e., solutions of the differential
equations

dx(t)

dt
= F u(t)(x(t)), (4.1.1)

for admissible controls t 7→ u(t). Many fundamental properties of a control system
such as controllability, stabilizability, and reachability are defined using trajectories
of the system. However, finding the solutions for the differential equations (4.1.1) is
usually very hard, if not impossible. Therefore, one would like to get some informa-
tion about these properties using the family of parametrized vector fields {F u}u∈U .
This has been an area of research for more than four decades in control theory and
many deep and fundamental results about control systems have been proved. For
instance, the accessibility of analytic control systems has been completely character-
ized in two independent works [79] and [50]. In [33], [34], [75], [77], [78] the problem
of controllability of a system has been studied using nilpotent approximations and
geometric methods. In [14], [76], [20], and [22] many deep and fundamental results in
stabilizability of systems have been developed. While in the most of the these papers
the analysis of control systems is done in the geometric framework mentioned above,
this framework has some deficiencies.

First, one can easily notice that two different families of parametrized vector fields
can generate the same family of trajectories. Therefore, in order to get characteriza-
tion of fundamental properties of control systems, the conditions on {F u}u∈U should
be parameter-invariant. Unfortunately, most of the criteria in the literature for study-
ing fundamental properties of control systems depend on a specific parametrization
of the system. The following example shows this fact about sufficient controllability
conditions developed in [78].

Example 4.1.1. [15] Consider the following two control systems on R3 with the two

111
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inputs. The first one is the system given by

ẋ = f0(x) + u1f1(x) + u2f2(x), ∀x ∈ R3 ∀(u1, u2) ∈ [−1, 1]2, (4.1.2)

where

f0(x1, x2, x3) = (x21 − x22)
∂

∂x3
,

f1(x1, x2, x3) =
∂

∂x1
,

f2(x1, x2, x3) =
∂

∂x2
.

The second one is the system given by the following equations

ẋ = g0(x) + u1g1(x) + u2g2(x), ∀x ∈ R3 ∀(u1, u2) ∈ [−1, 1]2, (4.1.3)

where

g0(x1, x2, x3) = (x21 − x22)
∂

∂x3
,

g1(x1, x2, x3) =
1

2

(
∂

∂x1
+

∂

∂x2

)
,

g2(x1, x2, x3) =
1

2

(
∂

∂x1
− ∂

∂x2

)
.

It is easy to see that, by the following change of parametrization,(
v1
v2

)
=

(
1
2

1
2

1
2

−1
2

)(
u1
u2

)
,

one would get the control system (4.1.2) from the control system (4.1.3). This implies
that two systems (4.1.2) and (4.1.3) have the same trajectories and they should have
the same small-time local controllability around (0, 0, 0). In order to study the small-
time local controllability of system (4.1.2) from (0, 0, 0), one can apply Theorem
7.3 in [78] and show that the system (4.1.2) is small-time locally controllable from
(0, 0, 0). However, when we apply the same theorem for the system (4.1.3), we get
that Theorem 7.3 in [78] is indecisive for studying small-time local controllability of
the system (4.1.3).

This example shows that the sufficient conditions in the literature for controlla-
bility of systems are not parameter-invariant. It also motivates the attempt to get
parameter-invariant conditions for studying structural properties of control systems.
Although checking that a condition is parameter-invariant is not impossible, it some-
times needs lots of efforts and huge amount of computations.

Secondly, the regularity of maps and functions plays an important role is studying
control systems. Many fundamental results in control theory are only true for a
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specific class of regularity. For example, in [79] the local accessibility of nonlinear
systems with “real analytic” vector fields has been characterized using Lie brakets of
vector fields of the system. However, it can be shown that such a characterization
does not hold for “smooth” systems [79]. In the geometric control literature, the
treatment of regularity is not coherent. For example, while it is very common to
assume that x 7→ F u(x) are smooth vector fields, one may need some extra joint
conditions on regularity of F u with respect to x and u to ensure nice properties of
trajectories of the system. In the literature many different joint regularity conditions
on (x, u) 7→ F u(x) have been introduced. In [53] and [13], it has been assumed that
U is an open subset of Rm and the map u 7→ F u(x) is C1 for every state x. However,
in [21], it is assumed that this map is smooth. This is maybe because of the absence
of a consistent framework for studying regularity of the control systems.

In this chapter, we introduce a model which has the following features.

1. It forgets the labeling of vector fields of the system by controls. This allows one
to start with a control system which is parameter-independent at the very level
of the definition.

2. Using the suitable topologies on spaces of vector fields developed in chapter
3, this model gives us a unified setting in which control systems of different
regularity classes can be treated in the same manner. In particular, in this
framework, one can study and analyze the class of “real analytic” systems in a
consistent way.

In section 4.2, we give some motivations for defining what we call a Cν-tautological
control system. We then proceed to study the relationship between this new notion
of control systems with the classical one. This has been done in sections 4.3, 4.4,
and 4.5. Finally, we define the trajectories and reachable of Cν-tautological control
systems in 4.6.

4.2. Cν-tautological control systems

In this section, following [55], we introduce a mathematical model for studying
structure of control systems. At the heart of this model is the notion of a sheaf.
Using the sheaf of Cν-vector fields, this model makes the definition of control systems
invariant of control-parameters. To motivate this definition of control system, we
revisit the Example 4.1.1 in the introduction.

Example 4.2.1. Consider the two control systems (4.1.2) and (4.1.3) in the Example
4.1.1. It has been shown in the Example 4.1.1 that while these two systems have the
same trajectories, Theorem 7.3 in [78] does not imply the same result about their
small-time local controllability. Note that the control system (4.1.3) is obtained from
the control system (4.1.2) by a linear transformation of parameters (u1, u2). So it
seems that the criteria in Theorem 7.3 of [78] depends on how we label our family of
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vector fields. We forget the labeling of vector fields in a control system by consider
them as a subset of space of Cν-vector fields. So for the control system 4.1.2, we get
the subset F1 ⊆ Γω(TR3) given by

F1 = {f0 + u1f1 + u2f2 | (u1, u2) ∈ [−1, 1]2}.

Similarly, for the control system 4.1.3, we get the subset F2 ⊆ Γω(TR3) given by

F2 = {g0 + u1g1 + u2g2 | (u1, u2) ∈ [−1, 1]2}.

It is easy to see that F1 = F2.

The above example shows that by considering vector fields of a control system
as a subset of space of vector fields, one can forget the control-parametrization of
systems. In order to emphasize the local-global behaviour of the control system, one
can consider F1 as a subpresheaf of sets of the sheaf Γω.

Definition 4.2.2. A Cν-tautological control system is a pair (M,F ) where

1. M is a Cν-manifold called state manifold, and

2. F is a subpresheaf of sets of the sheaf of Cν-vector fields on M .

A Cν-tautological control system (M,F ) is globally generated if F is a globally
generated presheaf.

We will next study the correspondence between tautological control systems and
classical control systems. In order to make this correspondence more clear, we need
to define what we call a classical control system. We first define a specific family of
Cν-vector fields. This class of parametrized vector fields turns out to be useful in
connecting the notion of tautological control system to the classical control system.

4.3. Parametrized vector fields of class Cν

As mentioned in the introduction, in the geometric setting, a control system can
be considered as a family of parametrized vector fields. However, the dependence of
these vector fields on the parameters plays a crucial role in properties of systems. In
many applications, it is completely natural to assume that the vector fields depends
continuously on control u. This can be made precise in the following weak and strong
versions.

Definition 4.3.1. Let U be a topological space. A map X : U ×M → TM is called
a separately parametrized vector field of class Cν if,

1. for every u ∈ U , the map Xu :M → TM defined as

Xu(x) = X(u, x),

has the property that, for every x ∈M , Xu(x) ∈ TxM and is of class Cν , and
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2. for every x ∈M , the map Xx : U → TM defined as

Xx(u) = X(u, x), ∀u ∈ U , ∀x ∈M,

is continuous.

The class of separately parametrized vector field of class Cν onM , with parameters
in U is denoted by SPΓν(U ,M).

Definition 4.3.2. Let U be a topological space. A map X : U ×M → TM is called
a jointly parametrized vector field of class Cν if

1. X is separately parametrized of class Cν , and

2. the map X̂ : U → Γν(TM) defined as

X̂(u)(x) = Xu(x), ∀x ∈M.

is continuous.

The class of jointly parametrized vector field of class Cν on M , with parameters
in U is denoted by JPΓν(U ,M). By definition, every jointly parametrized vector field
of class Cν is a separately parametrized vector field of class Cν . So we have

JPΓν(U ,M) ⊆ SPΓν(U ,M).

4.4. Cν-control systems

Now we are in the position to define a Cν-control system.

Definition 4.4.1. A Cν-control system is a triple (M,F,U) such that

1. M is a manifold called state manifold,

2. U is a topological space called control set, and

3. F : U ×M → TM is a jointly parametrized vector field of class Cν .

Given an admissible control t 7→ u(t), one would like to study the evolution of the
system by applying that control. The notion of “open-loop system” roughly captures
what happens to the vector fields of the system when you plug in the admissible
control t 7→ u(t).

Definition 4.4.2. Let Σ = (M,F,U) be a Cν-control system, T ⊆ R be an interval,
and u ∈ Lcpt

loc (T;U). Then an open-loop system associated to u is a time-varying
vector field F (u(t)) : T×M → TM defined as

F (u(t))(t, x) = F (u(t), x), ∀t ∈ T, ∀x ∈M.
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One can define trajectories of a Cν-control systems using open-loop system.

Definition 4.4.3. Let Σ = (M,F,U) be a Cν-control system, t0 ∈ R, T ⊆ R be
an interval containing t0, u ∈ Lcpt

loc (T;U), and x0 ∈ M . Then a trajectory of Σ
associated to u and starting from x0 at time t0 is a locally absolutely continuous
curve γ : T′ →M , for some interval T′ ⊆ T containing t0, which satisfies

dγ(t)

dt
= F (u(t))(t, γ(t)), a.e t ∈ T′,

γ(t0) = x0,

for the open-loop system F (u(t)) associated to u ∈ Lcpt
loc (T;U).

This definition of open-loops of Cν-control systems ensures many nice properties
for the trajectories of these systems.

Theorem 4.4.4. Let Σ = (M,F,U) be a Cν-control system. Then, for every u ∈
Lcpt
loc (T;U), the map F̂ u : T→ Γν(M) defined as

F̂ u(t)(x) = F (u(t), x), ∀t ∈ T, ∀x ∈M,

is locally essentially bounded and locally Bochner integrable.

Proof. Since Σ is a Cν-control system, the map F : U × M → TM is jointly
parametrized of class Cν . This implies that the map F̂ : U → Γν(M) is continu-
ous. Since u ∈ Lcpt

loc (T;U), for every compact interval I ⊆ T, there exists a compact
set K ⊆ U such that

m{t ∈ I | u(t) ̸∈ K} = 0.

Since F̂ is continuous and K is compact, the set B = F̂ (K) is bounded in Cν(M).
Thus we have

m{t ∈ I | F̂ u(t) ̸∈ B} ≤ m{t ∈ I | u(t) ̸∈ K} = 0.

This implies that F̂ u is locally essentially bounded. Now, we show that F̂ u is locally
Bochner integrable. Let {pi}i∈I be a family of generating seminorms for Γν(TM).
Then, for every i ∈ I, there exists m(t) ∈ L∞

loc(T;R) such that

pi(F̂
u(t)) ≤ m(t), ∀t ∈ T.

Now since L∞
loc(T;R) ⊂ L1

loc(T;R), F̂ u is locally Bochner integrable.

Theorem 4.4.5. Let Σ = (M,F,U) be a Cν-control system, x0 ∈ M , t0 ∈ R, and
T ⊆ R be an interval containing t0. Then, for every u ∈ Lcpt

loc (T;U), the trajectory of
Σ associated to u starting from x0 at time t0 exists and is locally unique. Moreover,
the resulting flow is of class Cν with respect to the initial condition.

Proof. The proof follows from Theorem 3.8.1.
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4.4.1. Extension of real analytic control systems. It is well-known that every
real analytic function on a real analytic manifold M is a restriction of a holomorphic
function on a complexification of M . In chapter 3, we also showed that every locally
Bochner integrable time-varying vector field on a real analytic manifold M is restric-
tion of a locally Bochner time-varying holomorphic vector field (Corollary 3.7.5). So
it is interesting to see whether a real analytic parametrized vector fields on a real
analytic manifold M is a restriction of holomorphic parametrized vector field on a
complexification ofM . It is easy to see that, in general, this is not the case for jointly
parametrized vector fields.

Example 4.4.6. Let U = Cω(M) and consider F : U ×M → TM which is defined
as

F (X, x) = X(x).

Since F̂ : U → Cω(M) is the identity map, it is continuous. So F is a jointly
parametrized vector field of class Cω. Now assume that M is a complexification of
M and F : Cω(M) ×M → TM is a jointly parametrized vector field of class Chol

such that
F (X, x) = F (X, x), ∀x ∈M, ∀X ∈ Cω(M).

So F̂ : Cω(M)→ Chol(M) is defined as

F̂ (X) = X,

where X is the holomorphic extension of X over M . But, this is a contradiction and
the jointly parametrized real analytic vector field F does not have any holomorphic
extension.

One can show that, when U is locally compact and Hausdorff, a jointly
parametrized vector field of class Cω is a restriction of a jointly parametrized vector
field of class Chol.

Theorem 4.4.7. Let X : U ×M → TM be a separately parametrized vector field of
class Cω.

(i) if U is locally compact and Hausdorff and X is jointly parametrized vector field
of class Cω, then, for every u0 ∈ U , there exists a neighbourhood O ⊆ U of u0, a
complexification M of the real analytic manifold M , and a jointly parametrized
vector field of class Chol, X : U ×M → TM , such that

X(u, x) = X(u, x), ∀u ∈ O, ∀x ∈M,

(ii) if, for a complexification M of the real analytic manifold M , there exists a
jointly parametrized vector field of class Chol, X : U ×M → TM , such that

X(u, x) = X(u, x), ∀u ∈ U , ∀x ∈M,

then X is jointly parametrized vector field of class Cω.
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Proof. (i) Suppose that u0 ∈ U . Since U is locally compact, there exists a neigh-
bourhood O ⊆ U of u0 such that cl(O) is compact in U . Since O is compact
and Hausdorff, C0(cl(O)) is a Banach space. Therefore, by Theorem 3.7.7, we
have

lim−→C0(cl(O); Γhol(UM)) = C0(cl(O); Γω(M)).

If X : U ×M → TM is a jointly parametrized vector field of class Cω, then

X̂ : U → Γω(TM) is continuous. So we have X̂
∣∣∣
cl(O)

∈ C0(cl(O); Γω(M)). So

by the above direct limit, there exists a neighbourhood UM of M and X̂ ∈
C0(cl(O); Γhol(UM)) such that

X̂(u)(x) = X̂(u)(x), ∀u ∈ cl(O, ∀x ∈M.

So if we define X : cl(O × UM → TUM as

X(u, x) = X̂(u)(x), ∀u ∈ cl(O, ∀x ∈ UM

It is easy to see that X is separately parametrized vector field of class Chol.
Moreover, we have

X̂ = X̂.

This implies that X is a jointly parametrized vector field of class Chol and we
have

X(u, x) = X(u, x), ∀u ∈ cl(O, ∀x ∈M.

This completes the proof.

(ii) It suffices to show that X̂ : U → Γω(TM) is continuous. Since X is a jointly

parametrized vector field of class Chol, X̂ : U → Γhol(TM) is continuous. Let
f ∈ Cω(M), a = (a0, a1, a2, . . .) ∈ c↓0(Z≥0,R>0), (U, ϕ) be a coordinate chart on
M and K ⊆ U be a compact set. Suppose that there exists a neighbourhood U
ofM inM such that f can be extended to a holomorphic function f ∈ Chol(U).
Let d > 0 be such that, for every x ∈ K, we have D(d)(x) ⊆ U . Since K is
compact and {D(d)(x)}x∈K is an open cover for K, there exists x1, x2, . . . , xm ∈
K such that K ⊆

⋃m
i=1Dd(xi). We set V =

⋃m
i=1Dd(xi). Note that V is

compact and V ⊆ U . Since limi→∞ ai = 0, there exists N ∈ N such that for
every n > N , we have

an < d.

On the other hand, by Cauchy’s estimate, we have

a0a1 . . . a|r|
(r)!

∥∥D(r)Xf(x)
∥∥ ≤ a0a1 . . . a|r|

d|r|
sup{∥Xf(z)∥ | z ∈ V }

If we set a0a1...an
dn

= C, then, for every multi-index (r) and every x ∈ K, we have

a0a1 . . . a|r|
(r)!

∥∥D(r)Xf(x)
∥∥ ≤ C sup{∥Xf(z)∥ | z ∈ V }
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This implies that
pωK,a,f (X) ≤ Cphol

V ,f
(X).

By continuity of X̂, for every u0 ∈ U and every ϵ > 0, there exists an open
neighbourhood O ⊆ U such that

phol
V ,f

(X̂(u)) <
ϵ

C
, ∀u ∈ O.

This implies that
pωK,a,f (X̂(u)) < ϵ, ∀u ∈ O.

This completes the proof.

4.5. From control systems to tautological control systems and
vice versa

In this section, we build a correspondence between Cν-control systems and Cν-
tautological control systems. Given a Cν-control system Σ = (M,F,U), one can
define the assignment FΣ as

FΣ(U) = {F u |U | u ∈ U} .

It is easy to check that (M,FΣ) is a globally generated C
ν-tautological control system.

The system (M,FΣ) is called the Cν-tautological control system associated to the
Cν-control system Σ. However, as is shown in Example 4.2.1, this correspondence is
not one-to-one. This raises this question that, given a Cν-tautological control system
(M,F ), is it coming from a Cν-control system? In the next theorem, we will show
that the answer is “yes” for globally generated Cν-tautological control systems.

Theorem 4.5.1. Let (M,F ) be a globally generated Cν-tautological control system.
Then we define FF : F (M)×M → TM as

FF (X, x) = X(x), ∀x ∈M, ∀X ∈ F (M).

We consider F (M) as a topological subspace of Γν(TM) with the Cν-topology. Then
the triple ΣF = (M,FF ,F (M)) is a Cν-control system. Moreover, we have FΣF

=
F .

Proof. It suffice to show that FF is a jointly parametrized vector field of class Cν .
Note that, for every X ∈ F (U), we have

FF (X, x) = X(x) ∈ TxM, ∀x ∈M.

Moreover, the map F̂F : F (M)→ Γν(TM) is defined as

F̂F (X)(x) = X(x), ∀x ∈M.
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This implies that F̂F is the inclusion map and it is clearly continuous in Cν-topology
on F (M) and Γν(TM). To show the last part of the theorem, note that we have

FX
F = X, ∀X ∈ F (M).

This implies that, for every U ⊆M , we have

FΣF
(U) =

{
FX

F (U) | X ∈ F (M)
}
= {X |U | X ∈ F (M)} = F (U).

This completes the proof.

4.6. Trajectories of Cν-tautological systems

In previous sections, we studied Cν-tautological control systems as presheaves
of vector fields. In order to study the evolution of Cν-tautological control systems,
one needs to define trajectories for these systems. In the context of Cν-control sys-
tems, one defines trajectories of the system by plugging in an admissible control
u ∈ Lcpt

loc (T;U) and defining the trajectories of the resulting time-varying vector fields
as the trajectories of the control system. In the control literature, the time-varying
vector field which is obtained by plugging in the admissible control is called an “open-
loop system”. Thus, in this language, we define trajectories of a Cν-control system Σ
as the trajectories of open-loop families of Σ. This idea can be generalized to define
the trajectories for Cν-tautological systems. Therefore, one can naively define an
open-loop system of a Cν-tautological control system as a locally Bochner integrable
time-varying Cν-vector field X : T× U → TU such that

X̂(t) ∈ F (U), ∀t ∈ T.

However, this definition does not cover all the desirable trajectories of the systems. In
particular, with this definition of open-loop system, it is possible that concatenation of
two trajectories is not a trajectory of the system. This can also affect the fundamental
properties of the tautological control systems.

Example 4.6.1. Consider the Cν-tautological control system (R2,F ) defined as

F (U) =

{
{ ∂
∂x
, ∂
∂y
} (0, 0) ̸∈ U,

{ ∂
∂x
} (0, 0) ∈ U

Consider the two points (0, 0) and (1, 1) in R2. It is clear that by the above definition
of open-loop systems, there does not exist a trajectory of (M,F ) starting from (0, 0)
and reaching (1, 1). However, one can see that the curve γ : [0, 1]→ R2 defined as

γ(t) =

{
(0, t) 0 ≤ t ≤ 1

2
,

(t− 1
2
, 1
2
) 1

2
≤ t ≤ 1,

is concatenation of trajectories of (M,F ) and connect (0, 0) and (1, 1). However, γ
itself is not a trajectory of the system.
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Definition 4.6.2. Associated to every Cν-tautological control system (M,F ), we
define a sheaf LIF ν on open subsets of R × M . This sheaf is defined for every
interval T ⊆ R and every open set U ⊆M as

LIF ν(T× U) = L1(T;F (U)).

One can show that this define a sheaf on open subsets of T ×M [58, Chapter II,
Theorem 2].

Recall that a local section of LIF ν is a continuous map X : W → Et(LIF ν), for
some open set W ⊆ R×M such that X (t, x) ∈ LIF ν

(t,x), for all (t, x) ∈ W .

Definition 4.6.3. Let W ⊆ T × R be an open set. We define the projection maps
pr1 : R×M → R and pr2 : R×M →M as

pr1(t, x) = t,

pr2(t, x) = x.

For every t ∈ pr1(W ), we define W t = {x ∈ M | (t, x) ∈ W} and similarly for every
x ∈ pr2(W ), we define Wx = {t ∈ R | (t, x) ∈ W}.

Definition 4.6.4. Let W ⊆ T× R be an open set.

1. Suppose that (T1, T2) = T ⊆ R is an open interval, U ⊆M is an open set, and
X : T × U → Et(LIF ν) is a local section of LIF ν defined on T × U . Then
X is a piecewise constant local section of LIF ν , if there exist n ∈ N, real
numbers T1 = t0 < t1 < . . . < tn−1 < tn = T2, and vector fields Xi ∈ Γν(TU)
for i ∈ {0, 1, 2, . . . , n− 1} such that

X (t, x) = [Xi]x, ∀t ∈ (ti, ti+1), ∀x ∈ U, ∀i ∈ {0, 1, 2, . . . , n− 1}.

2. Let X : W → Et(LIF ν)(M) is a local section of LIF ν . Then X is a piece-
wise constant local section of LIF ν , if for every (t, x) ∈ W , there exists an
open interval Tt ⊆ R and an open set Ux ⊆ M such that (t, x) ∈ Tt × Ux and
X |Tt×Ux is piecewise constant.

We prove the following fact about piecewise constant local sections of Sh(LIF ν).

Theorem 4.6.5. Suppose that X : W → Et(LIF ν) is a piecewise constant local
section of LIF ν. Then, for every open set V ⊆ W , X |V is also a piecewise constant
local section of LIF ν.

Proof. It is clear that it suffices to prove the theorem forW = T×U and V = T′×U ′

where T = (T1, T2) and T′ = (T ′
1, T

′
2) are open intervals such that T′ ⊂ T, and U and

U ′ are open subsets of M such that U ′ ⊆ U .
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Suppose that X : T × U → Et(LIF ν) is a piecewise constant local section of
LIF ν . Then by definition, there exist n ∈ N, real numbers T1 = t0 < t1 < . . . <
tn−1 < tn = T2, and vector fields Xi ∈ Γν(TU) for i ∈ {0, 1, 2, . . . , n− 1} such that

X (t, x) = [Xi]x, ∀t ∈ (ti, ti+1), ∀x ∈ U, ∀i ∈ {0, 1, 2, . . . , n− 1}.

Since (T ′
1, T

′
2) ⊂ (T1, T2), there exists i, j ∈ N such that T ′

1 < ti < ti+1 < . . . < tj−1 <
T ′
2. Now, we set j − i = k ∈ N, T ′

1 = s0, tl = sl−i, for l ∈ {1, 2, . . . , k − 1}, and
T ′
2 = sk. Moreover, we define Yl = Xl−i |U ′ for l ∈ {0, 1, 2, . . . , k}. Then it is clear

that, for X |T′×U ′ , there exists k+1 ∈ N, real numbers T ′
1 = s0 < s1 < . . . < sk = T ′

2

and Yi ∈ Γν(TU ′
i) for all i ∈ {0, 1, . . . , k} such that

X |T′×U ′ (t, x) = [Yi]x, ∀t ∈ (si, si+1), ∀x ∈ U ′, ∀i ∈ {0, 1, 2, . . . , k}.

This means that X |T′×U ′ is piecewise constant.

Definition 4.6.6. An etalé open-loop system for (M,F ) is a local section of the
sheaf Sh(LIF ν). An etalé open loop subfamily for (M,F ) is an assignment Oσ

to every open set W ⊂ R×M such that

Oσ(W ) ⊆ Sh (LIF ν) (W ).

with the property that, if W1 ⊆ W2, then we have

{rW2,W1(X) | X ∈ Oσ(W2)} ⊆ Oσ(W1).

Definition 4.6.7. 1. The full etalé open-loop subfamily of vector fields, de-
noted by Ofull, is the etalé open-loop subfamily for (M,F ) defined as

Ofull(W ) = Sh (LIF ν) (W ),

for all open sets W ⊆ R×M .

2. The piecewise constant etalé open-loop subfamily of vector fields, denoted
by Opwc, is the etalé open-loop subfamily for (M,F ) defined as the assignment

Opwc(W ) = {X ∈ Sh (LIF ν) (W ) | X is a piecewise constant

open-loop system for (M,F )},

for all W ⊆ R×M .

Remark 4.6.8. By Theorem 4.6.5, it is clear that piecewise constant etalé open-loop
subfamily is an etalé open-loop subfamily for (M,F ).

Let (M,F ) be a Cν-tautological control system and suppose that Oσ is an etalé
open-loop subfamily of (M,F ) and W ⊂ R×M be an open set. Then
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1. an (W,Oσ)-etalé trajectory of (M,F ) is a locally absolutely continuous curve
γ : T→M such that there exists an open-loop system X ∈ Oσ(W ) for (M,F )
such that

dγ

dt
(t) = ev(t,γ(t)) (X(t, γ(t))) , a.e. t ∈ T,

and

2. an (Oσ)-etalé trajectory of (M,F ) as a locally absolutely continuous curve
γ : T → M such that there exists open set W ⊆ R × M such that γ is a
(W,Oσ)-trajectory of (M,F ).

The set of all (W,Oσ)-etalé trajectories of (M,F ) is denoted by ETraj(W,Oσ)
and the set of all (Oσ)-etalé trajectory of (M,F ) is denoted by ETraj(Oσ).



Chapter 5

The orbit theorem for tautological
control systems

5.1. Introduction

In this chapter, we first define the orbits and reachable sets of a tautological
control system. In particular, we show that the etalé trajectory that we define in
Chapter 4 is consistent with the orbits of the system. The rest of the chapter focuses
on studying the orbits of tautological control systems. We associate to every Cν-
tautological control system (M,F ), a groupoid GF which is generated by the flows
of the system. It can be shown that the orbits of this groupoid is the same as the orbits
of its corresponding Cν-tautological control system. We then proceed to study the
geometric properties of orbit of Cν-tautological control systems. In 1974, Sussmann
[74] and Stefan [72] independently studied the orbits of a family of Cν-vector fields on
M and showed that the orbits are immersed Cν-submanifold of M . Moreover, they
completely characterized the tangent space to the orbits using the family of vector
fields of the system. In this thesis, we generalized these results for Cν-tautological
control systems. In particular, for a Cν-tautological control system Σ = (M,F ), we
show that orbits of Σ are Cν-immersed submanifold of M and we characterize the
tangent space to orbits of Σ using the presheaf F .

Moreover, we show that when Σ is a globally generated real analytic tautological
control system, the tangent space to orbits of Σ passing through x can be characterized
by the Lie brackets of vector fields of F at point x.

5.2. Reachable sets of Cν-tautological control systems

In order to study local properties of a tautological control system, one should
define the notions of orbits, attainable sets, and reachable sets of the tautological
control system. In this section, we generalize the notions of orbits and attainable
sets to tautological control systems. Moreover, using the etalé trajectories, we define
reachable sets of a tautological control system. We then show that reachable sets

124



On the role of regularity in mathematical control theory 125

are consistent with orbits and attainable sets. More specifically, we prove that the
reachable set by etalé trajectories of piecewise constant vector fields is the same as
attainable set of the system.

Definition 5.2.1. Let T ∈ R. The T -orbit of (M,F ) passing through x0 is the set

OrbF (T, x0) = {ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXn
tn (x0) | ti ∈ R,

n∑
i=1

ti = T,

Xi ∈ F (Ui), Ui ⊆M, Ui open in M, ∀i ∈ {1, 2, . . . , n}, ∀n ∈ Z≥0}.

One can define the orbit of (M,F ) passing through x0 as

OrbF (x0) =
⋃
T∈R

OrbF (T, x0).

The T -attainable set of (M,F ) passing through x0 is the set

AF (T, x0) = {ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXn
tn (x0) | ti ∈ R>0,

n∑
i=1

ti = T,

Xi ∈ F (Ui), Ui ⊆M, Ui open in M, ∀i ∈ {1, 2, . . . , n}, ∀n ∈ Z≥0}.

One can define the attainable set of (M,F ) passing through x0 as

AF (x0) =
⋃
T≥0

AF (T, x0).

Definition 5.2.2. Let Oσ be an etalé open loop subfamily of (M,F ) and suppose
that x0 ∈ M and T ∈ R≥0. We define the (T, U,Oσ)-reachable set of (M,F ) from
x0 as

RF (T, x0, U,Oσ) = {γ(T ) | γ : [0, T ]→M is a

(Oσ)-etalé trajectory of (M,F ), Image(γ) ⊆ U, γ(0) = x0}.

We define the (≤ T, U,Oσ)-reachable set of (M,F ) from x0 as

RF (≤ T, x0, U,Oσ) =
⋃

t∈[0,T ]

RF (t, x0, U,Oσ).

And we define the (U,Oσ)-reachable set of (M,F ) from x0 as

RF (x0, U,Oσ) =
⋃
T≥0

RF (T, x0, U,Oσ).

Also, we can define (T,Oσ)-reachable set of (M,F ) from x0 as

RF (T, x0,Oσ) =
⋃
U⊆M

U is open

RF (T, x0, U,Oσ).
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We define (≤ T,Oσ)-reachable set of (M,F ) from x0 as

RF (≤ T, x0,Oσ) =
⋃

t∈[0,T ]

RF (t, x0,Oσ).

We define the (Oσ)-reachable set of (M,F ) from x0 as

RF (x0,Oσ) =
⋃
T≥0

RF (T, x0,Oσ).

Definition 5.2.3 (Accessibility definitions). Let (M,F ) be a Cν-tautological
control system and x0 ∈ M . Suppose that Oσ is an etalé open-loop subfamily of
(M,F ). Then the etalé open-loop subfamily Oσ is called

1. small-time locally accessible from x0 if there exist T > 0 and open set
U ⊂ M containing x0 such that, for every t ∈ (0, T ], we have int(RF (≤
t, U, x0,Oσ)) ̸= ∅,

2. locally accessible from x0 if there exists an open set U ⊂ M containing x0
such that int(RF (U, x0,Oσ)) ̸= ∅,

3. small-time accessible from x0 if there exists T > 0 such that, for every
t ∈ (0, T ], we have int(RF (≤ t, U, x0,Oσ)) ̸= ∅,

4. accessible from x0 if int(RF (x0,Oσ)) ̸= ∅.

Definition 5.2.4 (Fixed-time accessibility definitions). Let (M,F ) be a Cν-
tautological control system, x0 ∈ M and T ∈ R>0. Suppose that Oσ is an etalé
open-loop subfamily of (M,F ). Then the etalé open-loop subfamily Oσ is called

1. locally T -accessible from x0 if there exists an open set U ⊂M containing x0
such that we have int(RF (T, U, x0,Oσ)) ̸= ∅,

2. T -accessible from x0 if int(RF (T, x0,Oσ)) ̸= ∅,

3. locally strongly accessible from x0 if, for every T > 0, it is locally T -
accessible from x0,

4. strongly accessible from x0 if, for every T > 0, it is T -accessible from x0.

Definition 5.2.5 (Reachability definitions). Let (M,F ) be a Cν-tautological
control system and x0 ∈ M . Suppose that Oσ is an etalé open-loop subfamily of
(M,F ). Then the etalé open-loop subfamily Oσ is called

1. small-time locally reachable from x0 if there exist T > 0 and open set
U ⊂M such that for every t ∈ (0, T ] we have x0 ∈ int(RF (≤ t, U, x0,Oσ)),

2. locally reachable from x0 if there exists an open set U ⊂ M such that x0 ∈
int(RF (U, x0,Oσ)),
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3. small-time reachable from x0 if there exists T > 0 such that for every t ∈
(0, T ] we have x0 ∈ int(RF (≤ t, U, x0,Oσ),

4. reachable from x0 if x0 ∈ int(RF (x0,Oσ)),

5. totally reachable if it is reachable from every point x ∈M .

Definition 5.2.6 (Fixed-time reachability definitions). Let (M,F ) be a Cν-
tautological control system, x0 ∈ M and T ∈ T>0. Suppose that Oσ is an etalé
open-loop subfamily of (M,F ). Then the etalé open-loop subfamily Oσ is called

1. locally T -reachable from x0 if there exists an open set U ⊂M containing x0
such that we have x0 ∈ int(RF (T, U, x0,Oσ)),

2. T -reachable from x0 if x0 ∈ int(RF (T, x0,Oσ)),

3. strongly reachable from x0 if, for every T > 0, it is T -reachable from x0.

4. locally strongly reachable from x0 if, for every T > 0, it is locally T -reachable
from x0.

The connection between notion of reachable sets and attainable sets can be ex-
pressed in the following theorem.

Theorem 5.2.7. Suppose that (M,F ) is a Cν-tautological control system. Then for
every x0 ∈M , and for every T ∈ R≥0 we have

AF (T, x0) = RF (T, x0,Opwc).

Proof. Note that, if y ∈ AF (T, x0), there exists X1, X2, . . . , Xk and open sets
U1, U2, . . . , Uk ⊆M such that Xi ∈ F (Ui), for all i ∈ {1, 2, . . . , k} and t1, t2, . . . , tk ∈
R>0 such that

∑k
i=1 ti = T and we have

ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXk
tk

(x0) = y.

We set Ti = 0 + t1 + t2 + . . . + ti, for all t ∈ {0, 1, 2, . . . , k} and we define W =⋃k
i=1(Ti−1, Ti)×Ui We define the piecewise constant local section X :W → Et(LIF ν)

as
X(t, x) = [Xi]x, ∀(t, x) ∈ (Ti−1, Ti)× Ui, ∀i ∈ {1, 2, . . . , k}.

It is clear that X is piecewise constant. So, if γ : [0, T ] → U is the integral curve of
X starting from x0 ∈M , we have

γ(T ) = ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXk
tk

(x0) = y

Therefore, if y ∈ AF (T, x0), then there exists X ∈ Opwc such that γ(T ) = y, where
γ : [0, T ] → M is the integral curve of X starting at γ(0) = x0. This means that
y ∈ RF (T, x0,Opwc). Therefore, we have the inclusion

AF (T, x0) ⊆ RF (T, x0,Opwc).
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Now let y ∈ RF (T, x0,Opwc). Therefore, there exists an Opwc-etalé trajectory
ξ : [0, T ] → M such that ξ(0) = x0 and ξ(T ) = y. Since ξ is a Opwc-etalé trajectory,
there exists X ∈ Opwc such that

ξ′(t) = ev(t,ξ(t))(X(t, ξ(t))), a.e. t ∈ [0, T ].

If one consider X : W → Et(LIF ν), then X is piecewise constant. So, for every
t ∈ [0, T ], there exists an open interval Tt ⊆ R and an open set Uξ(t) ⊆ M such
that (t, ξ(t)) ∈ Tt × Uξ(t) and X |Tt×Uξ(t)

is piecewise constant. Therefore, for every
t ∈ [0, T ], there exists T0 < T1 < . . . < Tn and vector fields Xi ∈ Γν(TUξ(t)), for all
i ∈ {0, 1, . . . , n− 1}, such that

X (t, x) = [Xi]x, ∀t ∈ (Ti, Ti+1), ∀x ∈ Uξ(t), ∀i ∈ {0, 1, 2, . . . , n− 1}.

Now consider the open cover {Tt×Uξ(t)}t∈[0,T ] of graph(ξ). Since graph(ξ) is a compact
set, there exists finite subcover {Tti × Uξ(ti)}ni=1 of graph(ξ). This shows that there
exists k ∈ N and 0 = s0 < s1 < . . . < sk = T and open sets U1, U2, . . . , Uk ⊆ M and
vector fields Xi ∈ Γν(TUk) such that

X (t, x) = [Xi]x, ∀t ∈ (si, si+1), ∀x ∈ Ui, ∀i ∈ {0, 1, 2, . . . , k − 1}.

So we have

ξ′(t) = Xi(ξ(t)), ∀t ∈ (si, si+1), ∀i ∈ {0, 1, . . . , k − 1}

By denoting ti = si+1 − si for i ∈ {0, 1, 2, . . . , k − 1}, one can easily see that

ξ(T ) = ϕXk
tk

◦ϕ
Xk−1

tk−1
◦ . . . ◦ϕX1

t1 (x0).

This shows that y ∈ AF (T, x0). Thus, we have RF (T, x0,Opwc) ⊆ AF (T, x0). This
completes the proof.

Corollary 5.2.8. Suppose that (M,F ) is a Cν-tautological control system. Then,
for every x0 ∈M , we have

AF (x0) = RF (x0,Opwc).

5.3. Algebraic structure of orbits

In this section we associate a groupoid to a Cν-tautological control system. We
will show that the groupoid and the Cν-tautological control system have the same
orbits.

Definition 5.3.1. Let (M,F ) be a Cν-tautological control system and U ⊆ M be
an open set. For every X ∈ F (U), we define the flow of X as the pair (D , ϕX),
where D ⊆ R× U is open and ϕX : D → U is the flow of X.
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Note that, for every x ∈ U , the set Dx defined as

Dx = {t ∈ R | (t, x) ∈ D},

is an open interval containing 0. For every t ∈ R, we define Dt as

Dt = {x ∈ U | (t, x) ∈ D}.

Then, for every t ∈ R, the set Dt is open in U and the map ϕXt : Dt → D−t defined as

ϕXt (x) = ϕX(t, x) ∀x ∈ Dt.

is a Cν-diffeomorphism with the inverse ϕX−t.

Definition 5.3.2. The family PF of local Cν-diffeomorphisms of (M,F ) is defined
as

PF = {ϕXt | X ∈ F (U), U ⊆M, t ∈ R}. (5.3.1)

We denote the groupoid associated to PF by GF .

It is interesting to see that this groupoid has the same orbits as the Cν-tautological
control system.

Theorem 5.3.3. Let (M,F ) be a Cν-tautological control system and GF be the
groupoid associated with PF . Then, for every x0 ∈M , we have

OrbF (x0) = GF (x0).

Proof. We first show that GF (x0) ⊆ OrbF (x0). Suppose that y ∈ GF (x0). Then
there exists P ∈ Γ(P) such that x0 ∈ Dom(P ) and we have P (x0) = y. By definition
of Γ(P), there exist a neighbourhood U of x0, integers ϵ1, ϵ2, . . . , ϵk ∈ {1,−1}, and
h1, h2, . . . , hk ∈ P such that P |U= hϵ11 ◦hϵ22 ◦ . . . ◦hϵkk . So we have y = P (x0) =
hϵ11 ◦hϵ22 ◦ . . . ◦hϵkk (x0). Note that, for every i ∈ {1, 2, . . . , k}, we have hi ∈P. There-
fore, there exist ti ∈ R and open sets Ui ⊆ M and Xi ∈ F (Ui) such that hi = ϕXi

ti .

This means that y = ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXk
tk

(x0) and so by definition of orbits, we have
y ∈ OrbF (x0).

On the other hand, if y ∈ OrbF (x0), then there exists open sets U1, U2, . . . , Uk ⊆
M and t1, t2, . . . , tk ∈ R and X1, X2, . . . , Xn such that Xi ∈ F (Ui) for all i ∈
{1, 2, . . . , k} and we have

y = ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXk
tk

(x0).

By choosing P = ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXk
tk

, it is clear that P ∈ Γ(P), and we have y =
P (x0). This means that y ∈ GF (x0). This implies that OrbF (x0) ⊆ GF (x0).

5.4. Geometric structure of orbits

In this section, we study the geometric properties of orbits of a Cν-tautological
control system (M,F ). The geometric structure of orbits of a family of vector fields
has been studied in [74] and [72].
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5.4.1. Singular foliations. In his 1973 paper, in order to study orbits of a family of
vector fields, Peter Stefan generalized the notion of foliations to “singular” foliations
[72]. He showed that orbits of a family of C∞-vector fields are leaves of a singular
foliation onM . In this section, we recall the notion of singular foliation and its leaves.
Following [72], we show that existence of a specific coordinate chart on M called the
“privileged coordinate chart”

Definition 5.4.1. Let M be a Cν-manifold. Then a subset L ⊆ M is called a leaf
of M if there exists a Cν-atlas σ on L such that

1. (L, σ) is a connected immersed submanifold of M , and

2. for every locally connected topological space Y and every continuous map f :
Y →M such that f(Y ) ⊆ L, the map f : Y → (L, σ) is continuous.

A leaf L ⊆M is called a k-leaf, if (L, σ) is a k-dimensional manifold.

Definition 5.4.2. Let M be a Cν-manifold of dimension n and k ∈ N be such that
k ≤ n. A foliation of dimension k on M is a collection of disjoint k-leaves {Sλ}λ∈Λ
of M such that ⋃

λ∈Λ

Sλ =M

and, for every x ∈ M , there exists a chart (Ux, ϕx) around x with the following
properties:

1. ϕx : Ux → Vx ×Wx ⊆ Rk × Rn−k, ϕx(x) = (0, 0), and

2. Sλ ∩ Ux = ϕ−1
x (Vx × lx,λ), for every λ ∈ Λ,

where lx,λ = {s ∈W | ϕ−1
x (0, s) ∈ Sλ}.

In [72], the notion of foliation with singularity, which is a generalization of foli-
ations, is introduced. Roughly speaking, foliations with singularity are foliations in
which leaves can have different dimension.

Definition 5.4.3. Let M be a Cν-manifold of dimension n. A foliation with
singularities on M is a collection of disjoint leaves {Sλ}λ∈Λ of M such that⋃

λ∈Λ

Sλ =M

and, for every x ∈ M , there exist k ∈ N and a chart (Ux, ϕx) around x with the
following properties:

1. ϕ : Ux → Vx ×Wx ⊆ Rk × Rn−k, ϕx(x) = (0, 0), and

2. Sλ ∩ Ux = ϕ−1
x (Vx × lx,λ), for every λ ∈ Λ,
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Figure 5.1: Privileged Chart

where lx,λ = {s ∈W | ϕ−1
x (0, s) ∈ Sλ}.

Suppose that L ⊆ M and D(x) is a vector subspace of TxM for every x ∈ L. In
order to prove Stefan’s orbit theorem, we need to define privileged chart on M with
respect to L and D(x).

Definition 5.4.4. Suppose that L ⊆ M and, for every x ∈ L, D(x) is a vector
subspace of TxM . A chart (Ux, ϕx) on M around x such that

1. ϕx : Ux → Vx ×Wx, where Ux is an open neighbourhood of x and Vx and Wx

are open neighbourhoods of 0 in Rk and Rn−k respectively,

2. ϕx(x) = (0, 0) ∈ Rk × Rn−k,

3. L
⋂
ϕ−1
x (Vx ×Wx) = ϕ−1

x (Vx × lx), where lx = {s ∈W | (0, s) ∈ ϕx(L)},

4. Tϕ−1
x ( ∂

∂xi
) ∈ D(ϕ−1

x (t, s)) for every (t, s) ∈ ϕx(L) and for every i ∈ {1, 2, . . . , k},

is called a privileged chart on M with respect to L and D(x).

We first prove the following results about privileged charts on M .

Proposition 5.4.5. Let ϕx : Ux → Vx ×Wx be a privileged chart on M with respect
to L and D(x). Suppose that N is a connected Cν-manifold and f : N → M is a
Cν-map such that

1. f(N) ⊆ L
⋂
ϕ−1
x (Vx ×Wx), and
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2. Tyf(v) ∈ D(f(y)), for every y ∈ N and every v ∈ TyN .

Then there exists s ∈ Wx such that f(N) ⊆ ϕ−1
x (Vx × {s}).

Proof. We show that the map η : N → Rk defined as

η = pr2 ◦ϕx ◦f,

is a constant function. Note that, for every i ∈ {1, 2, . . . , k}, we have

Di(pr2)(t, s) = 0, ∀(t, s) ∈ Vx ×Wx.

So we can write

Di(pr2 ◦ϕx ◦ϕ−1
x )(t, s) = Tϕ−1

x (t,s)(pr2 ◦ϕx)Di(ϕ
−1
x )(t, s) = 0, ∀(t, s) ∈ Vx ×Wx.

Since, for every y ∈ N , we have f(N) ⊆ L
⋂
ϕ−1
x (Vx×Wx), there exists (t, s) ∈ Vx×Wx

such that f(y) = ϕ−1
x (t, s) and ϕ−1

x (t, s) ∈ L. On the other hand, by property (4) of
privileged charts, we have

span{D1ϕ
−1
x (t, s), D2ϕ

−1
x (t, s), . . . , Dkϕ

−1
x (t, s)} ⊆ D(ϕ−1

x (t, s)).

Note that one can write

Tyη(v) = Tϕ−1
x (t,s)(pr2 ◦ϕx) ◦Tyf(v), ∀y ∈ N.

Since Tyf(v) ∈ D(f(y)) = D(ϕ−1
x (t, s)), for every v ∈ TyN , we can write

Tyη(v) = 0 ∀y ∈ N

Note that N is connected. Therefore, there exists s ∈ Wx such that η(N) = {s}.

Theorem 5.4.6. Let M be a Cν-manifold, L be a subset of M , and, for every x ∈ L,
D(x) be a vector subspace of TxM . Suppose that there exists k ∈ N such that, for
every x ∈ L, dim(D(x)) = k and, for every x ∈ L, there exists a privileged chart
(Ux, ϕx) on M with respect to L and D(x). Then there exists a Cν-atlas σ on L such
that

1. (L, σ) is an immersed submanifold of M with the tangent space TxL = D(x) for
all x ∈ L,

2. for every Cν-map f : N → M such that f(N) ⊆ L and Tyf(v) ∈ D(f(y)) for
all y ∈ N , the map f : N → (L, σ) is of class Cν, and

3. every connected component of L is a leaf of M .
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Proof. We construct an atlas on L. Let ϕx : Ux → Vx ×Wx be a privileged chart on
M with respect to L and D(x) and s ∈ Wx be such that (0, s) ∈ ϕx(L). Then we
define ϕx,s : ϕ

−1
x (Vx × {s})→ Vx as

ϕx,s = pr1 ◦ϕx.

By property (3) of privileged charts, we have that ϕ−1
x (Vx × {s}) ⊆ L.

We show that σ = {ϕx,s}x∈L,s∈lx is a Cν-atlas for L. Note that the domains of
elements of σ covers the whole L. The reason is that, for every x ∈ L, we have
x ∈ ϕ−1

x (Vx×{0}). This implies that
⋃
x∈L ϕ

−1
x (Vx×{0}) = L. Now we need to check

that the charts in atlas σ are Cν-compatible. We first prove the following lemma.

Lemma. Suppose that f : N → M is a Cν-map such that f(N) ⊆ L and Tyf(v) ∈
D(f(y)), for all y ∈ N and all v ∈ TyN . Then G = f−1

(
ϕ−1
x,s(Vx)

)
is an open subset

of N and the map ϕx,s ◦f : G→ Rk is of class Cν.

Proof. Let y ∈ G. Since G = f−1
(
ϕ−1
x,s(Vx)

)
⊆ f−1 (ϕ−1

x (Vx ×Wx)), there exists a
connected component H of f−1 (ϕ−1

x (Vx ×Wx)) such that y ∈ H. Then it is clear
that H is an open submanifold of N . Note that f(H) ⊆ ϕ−1

x (Vx ×Wx) and we have
f(H) ⊆ L. Therefore, we get

f(H) ⊆ L
⋂

ϕ−1
x (Vx ×Wx).

By Theorem 5.4.5, one can show that f(H) ⊆ ϕ−1
x (Vx×{s}). So H ⊆ f−1

(
ϕ−1
x,s(Vx)

)
.

This means that, for every y ∈ G, there exists an open set H ⊆ f−1
(
ϕ−1
x,s(Vx)

)
such

that y ∈ H. Thus f−1
(
ϕ−1
x,s(Vx)

)
is an open subset of N .

To show that ϕx,s ◦f : G→ Rk is a Cν-map, one needs to notice that

ϕx,s ◦f = pr1(ϕx ◦f |G).

Since G is open in N , the map ϕx,s ◦f is of class Cν .

Now using the above lemma, we show that the charts in atlas A are Cν-
compatible. Let ϕx,s, ϕy,t ∈ A be two coordinate charts. Consider the map
ϕ−1
x,s : Vx → ϕ−1

x (Vx × {s}) ⊆M . Using the fact that

ϕ−1
x (Vx × {s}) ⊆ L,

we can deduce that
ϕ−1
x,s(Vx) ⊆ L.

Also we have
Ttϕ

−1
x,s(v) = T(t,s)ϕ

−1
x ◦Ttpr

−1
1 (v), ∀v ∈ Rk.

However, it is clear that

Ttpr
−1
1 (v) = (v, 0), ∀v ∈ Rk, 0 ∈ Rn−k.
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This implies that
Ttϕ

−1
x,s(v) = T(t,s)ϕ

−1
x (v, 0), ∀v ∈ Rk.

Since we know that T(t,s)ϕ
−1
x (v, 0) ∈ D(ϕ−1

x (t, s)), we get

Ttϕ
−1
x,s(v) ∈ D(ϕ−1

x (t, s)) = D(ϕ−1
x,s(t)), ∀v ∈ Rk.

So, by the above Lemma, ϕ(x,s) ◦ϕ
−1
(y,t)(Vx) is open and the map ϕ(y,t) ◦ϕ

−1
(x,s) :

ϕ(x,s) ◦ϕ
−1
(y,t)(Vx)→ Rk is of class Cν .

The atlas σ defines an immersed submanifold structure on L. By the Lemma
above, the assertion (2) clearly holds. To show the assertion (3), suppose that L0

is a connected component of (L, σ). Let Y be a locally connected topological space
such that f : Y → M is continuous and f(Y ) ⊆ L0. If we denote the space L0 with
the subspace topology from M by (L0, τ), then it is clear that f : Y → (L0, τ) is
continuous. Let (Ux, ϕx) be a privileged coordinate chart on M with respect to L0

and D(x) such that ϕx : Ux → Vx ×Wx. Then L0

⋂
Ux = ϕ−1

x (Vx × lx). Therefore,
ϕ−1
x (Vx × lx) is an open set in (L0, τ).
Also, {ϕ−1

x,s(Vx)}s∈lx is a collection of disjoint open sets of (L0, σ). Since M is
second-countable and (L0, σ) is connected, (L0, σ) is a separable space. This implies
that lx is countable. This means that, for every s ∈ lx, Vx × {s} is a connected
component of Vx× lx and ϕ−1

x (Vx×{s}) is a connected component of ϕ−1
x (Vx× lx) in

(L0, τ). Thus ϕ−1
x (Vx × {s}) is open in (L0, τ). Since f : Y → (L0, τ) is continuous,

f−1(ϕ−1
x (Vx × {s})) = f−1(ϕ−1

x,s(Vx)) is open in Y . Moreover, {ϕ−1
x,s(Vx)}x∈L0,s∈lx is

a basis for topology on (L0, σ). This implies that the map f : Y → (L0, σ) is also
continuous.

5.4.2. The orbit theorem. In geometric control theory a control system is con-
sidered as a family S of parametrized vector fields. Orbits of this family of vector
fields is one of the basic objects of interest in control theory. However, any analytic
description of orbits requires solving nonlinear differential equations, which is, in the
best case, very difficult, if not impossible. Therefore, it would be more reasonable to
study orbits using properties of the family of vector fields S.

In 1939 Chow [17] and Rashevskii [65] independently proved a theorem which
connects properties of the orbits of S to the Lie brackets of the vector fields in S. This
theorem can be considered as one of the first results where the tools and techniques
of differential geometry are used in control theory. Let Lie(S) be the distribution
generated by the Lie brackets of the vector fields in S. The Chow–Rashevskii theorem
states that, for a connected manifold M , if Lie(S)(x) is TxM , then the orbit of S
passing through x is the whole space M . However, in the case that Lie(S)(x) is not
TxM , this theorem does not give us any information about the structure of orbits of
the system.

In 1974 Sussmann [74] and Stefan [72] proved a generalization of Chow–Rashevskii
theorem. They showed that, even in the case that Lie(S)(x) is not TxM , the orbits of
S are immersed submanifolds of M . As Sussmann mentions in his 1973 paper [74], a
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naive way of generalizing the Chow–Rashevskii theorem is to consider a submanifold
of M such that its tangent space at each point x is Lie(S)(x). Then, one can apply
the Chow–Rashevskii theorem to this “integral” submanifold of Lie(S) and show
that the orbit of S passing through x is exactly this submanifold. Unfortunately, this
generalization does not generally work. In fact, it is possible that such an integral
submanifold for the distribution Lie(S) does not exist. Sussmann and Stefan defined
another distribution PS using flows of the vector fields in S. They showed that the
distribution PS is always integrable and the integral submanifolds of PS are exactly
the orbits of the family of vector fields S. Stefan also showed that this manifold
structure on orbits of S makes M into a singular foliation where the leaves of this
foliation are orbits of S [72, Theorem 1].

In this section, following the approach of Stefan [72], we generalize the classical
orbit theorem to the tautological framework. Given a tautological control system
(M,F ), one can define another presheaf of modules F using the flows of vector fields
in F . It can be shown that the presheaf F induces a unique manifold structures
on the orbits of F , which makes M into a singular foliation with orbits of F as the
leaves of this foliation. Moreover, for every x ∈M , the tangent space to the orbit of
F passing through x is the vector space F (x).

Definition 5.4.7. Suppose that (M,F ) is a Cν-tautological control system. Then
we define

F (x) = {X(x) | X ∈ F (U), U is an open subset of M containing x}.

Lie(F ) is the subpresheaf of Cν-modules of Γν which assigns to every open set U ⊆M ,
the Cν(U)-module Lie(F )(U) defined as

Lie(F )(U) = spanCν(U) {[. . . [[X1, X2], X3] . . . , Xn] | X1, X2, . . . , Xn ∈ F (U)} ,

where, for every family of Cν-vector fields S, spanCν(U)(S) is the C
ν(U)-module gen-

erated by the vector fields in S. Also F is defined as the subpresheaf of Cν-modules
of Γν which assigns to every open set U ⊆M the following Cν(U)-module:

F (U) = spanCν(U){η∗X | ∃V an open subset of M s.t.

X ∈ F (V ), η : U → V ∈ Γ(PF )}, (5.4.1)

where, for every family of Cν-vector fields S, spanCν(U)(S) is the C
ν(U)-module gen-

erated by the vector fields in S.

We will show that F is a subpresheaf of Cν-modules of Γν . Let Y ∈ F (U) and
W ⊆ U be an open set. Then there exists an open set V ⊆M , a section X ∈ F (U),
and η : U → V ∈ Γ(PF ) such that

Y = η∗X.
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If we restrict to W , we have

Y |W= (η |W )∗X |W .

By the restriction property of the pseudogroup Γ(PF ), we have ξ = η |W∈ Γ(PF ).
Since X |W∈ F (W ), we have Y |W∈ F (W ). This shows that F is a subpresheaf of
Γν . The following theorem is an immediate consequence of this fact.

Theorem 5.4.8. Suppose that (M,F ) is a Cν-tautological control system. Then
(M,F ) is a Cν-tautological control system.

The Cν-tautological control system (M,F ) defined as above is the homogeneous
Cν-tautological control system associated to (M,F ).

Theorem 5.4.9. Suppose that (M,F ) is a Cν-tautological control system. Then
(M,GF ) is a foliation with singularities. Moreover, for every x0 ∈M and every x ∈
OrbF (x0), we have TxOrbF (x0) = F (x). In particular, for every x0 ∈M , OrbF (x0)
is a leaf of M and has a unique structure as a connected immersed submanifold of
M .

Proof. Consider the homogeneous Cν-tautological control system (M,F ) associated
to (M,F ). By Theorem 5.4.6, it suffices to show that, for every x ∈ OrbF (x0), there
exists k ∈ N such that dim(F (x)) = k and there exists a privileged chart (Ux, ϕx) on
M with respect to OrbF (x0) and F (x).

Lemma. There exists k ∈ N such that, for every x ∈ OrbF (x0), we have
dim(F (x)) = k.

Proof. Suppose that dim(F (x0)) = k. There exists open sets V1, V2, . . . , Vk inM and
vector fields Y1, Y2, . . . , Yk such that Yi ∈ F (Vi), for every i ∈ {1, 2, . . . , k}, and we
have

span{Y1(x0), X2(x0), . . . , Yk(x0)} = F (x0).

x ∈ OrbF (x0). Then there exist real numbers t1, t2, . . . , tn ∈ R, open sets
U1, U2, . . . , Un ⊆M , and vector fields X1, X2, . . . , Xn such that

Xi ∈ F (Ui), ∀i ∈ {1, 2, . . . , k},

and we have
x = ϕX1

t1
◦ϕX2

t2
◦ . . . ◦ϕXn

tn (x0).

Therefore, there exist open sets W,H ⊆M such that the map η :W → H defined as

η = ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXn
tn

is a Cν-diffeomorphism. We set V =
(⋂k

i=1 Vi

)
∩ H and U = W ∩

ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXn
tn (V ). Then, for every i ∈ {1, 2, . . . , k}, we define Zi ∈ F (U)

as
Zi = η∗Yi |V .
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Since η is a Cν-diffeomorphism and η(x0) = x, we have

span{Z1(x), Z2(x), . . . , Zk(x)} = span{Y1(x0), Y2(x0), . . . , Yk(x0)} = k.

This means that dim(F (x0)) ≤ dim(F (x)). By symmetry, we have dim(F (x)) ≤
dim(F (x0)). This implies that, for every x ∈ OrbF (x0), dim(F (x)) = k.

Now we show that, for every x ∈ OrbF (x0), there exists a privileged chart (Ux, ϕx)
on M with respect to OrbF (x0) and F (x). Let us fix x ∈ M and define Q(x) as
a n − k dimensional vector subspace of TxM such that Q(x) ⊕F (x) = TxM . The
following lemma has been proved in [47].

Lemma. Let M be a Cν-manifold, x ∈ M , and D be a vector subspace of TxM .
Then there exists an embedded Cν-submanifold S of M passing through x such that
TxS = D(x).

Using the above lemma, there exists an embedded submanifold of M called Q
such that x ∈ Q and TxQ = Q(x). Let (Wx, ψx) be a coordinate chart on Q around
x. Since dim(F (x)) = k, there exist vector fields X1, X2, . . . , Xk and open sets
U1, U2, . . . , Uk ⊆M such that

Xi ∈ F (Ui), ∀i ∈ {1, 2, . . . , k},

and we have
span{X1(x), X2(x), . . . , Xk(x)} = F (x).

We define a map ηx : Vx ×Wx →M as

ηx(t1, t2, . . . , tk, y1, y2, . . . , yn−k) = ϕX1
t1

◦ϕX2
t2

◦ . . . ◦ϕXk
tk

(ψ−1
x (y1, y2, . . . , yn−k)).

We show that T(0,0)ηx is a linear map of rank n. Note that we have

T(0,0)ηx(
∂

∂ti
) = Xi(x), ∀i ∈ {1, 2, . . . , k}.

Also we have

T(0,0)ηx(
∂

∂yi
) = T0ψ

−1
x (

∂

∂yi
), ∀i ∈ {1, 2, . . . , n− k}.

Thus we have

rank(T(0,0)ηx) = dim{X1(x), . . . , Xk(x), T0ψ
−1
x (

∂

∂y1
), . . . , T0ψ

−1
x (

∂

∂yn−k
)} = n.

By the inverse function theorem, there exist a neighbourhood V ′
x ⊆ Rk and a neigh-

bourhood W ′
x ⊆ Rn−k such that ηx |V ′

x×W ′
x
is a Cν-diffeomorphism. So, there exists a

chart (V ′
x ×W ′

x, ϕx) such that

ϕx(y) = η−1
x (y), ∀y ∈ V ′

x ×W ′
x.
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Now, we show that (V ′
x×W ′

x, ϕx) is a privileged chart onM with respect to OrbF (x0)
and F (x). Note that we have

OrbF (x0)
⋂

ηx(V
′
x ×W ′

x) = ηx(V
′
x × {lx}),

and by setting z = ϕ
Xi+1

ti+1
◦ . . . ◦ϕXk

tk
(ψ−1

x (y1, . . . , yn−k)), we have

Diηx(t1, . . . , tk, y1, . . . , yn−k) = Tz(ϕ
X1
t1

◦ . . . ◦ϕ
Xi−1

ti1
)Xi(z), ∀i ∈ {1, 2, . . . , k}.

Thus, it is clear that

Diηx(t1, . . . , tk, y1, . . . , yn−k) ∈ F (ηx(t1, . . . , tk, y1, . . . , yn−k)).

This implies that (V ′
x ×W ′

x, ϕx) is privileged chart on M with respect to OrbF (x0)
and F (x). Therefore, by Theorem 5.4.6, (M,OrbF ) is a singular foliation and, for
every x ∈M , we have TxOrbF (x0) = F (x).

It remains to show that OrbF (x0) is a connected immersed submanifold of M .
The fact that OrbF (x0) is an immersed submanifold of M is clear from the above
argument. So we only need to show that OrbF (x0) is connected. Let x ∈M , U ⊆M
be an open set containing x, and X ∈ F (U). We define a map γXx : Dx →M as

γXx (t) = ϕXt (x), ∀t ∈ Dx.

Since X is time-invariant, t 7→ ϕXt (x) is of class Cν . This implies that γXx is of
class Cν and in particular, it is continuous. Since γXx (D

x) ⊆ OrbF (x), the map
γXx : R → OrbF (x) is continuous. We know that y ∈ OrbF (x0), then there exists
t1, t2 . . . , tk ∈ R>0, open sets U1, U2, . . . , Uk ⊆ M and vector fields X1, X2, . . . , Xk

such that
Xi ∈ F (Ui), ∀i ∈ {1, 2, . . . , k},

and we have
y = ϕX1

t1
◦ϕX2

t2
◦ . . . ◦ϕXk

tk
(x0).

So one can reach y from x0 ∈M , by moving along the continuous curves of the form
γXx . This shows that OrbF (x0) is connected.

5.4.3. The real analytic case. While the classical orbit theorem of Sussmann and
Stefan characterizes the tangent space to the orbits of a family of vector fields S using
the distribution PS, computing the distribution PS requires finding the flows of the
system. Therefore, it would be natural to investigate the conditions under which one
can characterize the distribution PS using the Lie brackets of the vector fields in S.
Using the Chow–Rashevskii theorem, it is easy to see that if the distribution Lie(S)
is integrable, the distributions PS and Lie(S) are identical.

In the differential geometry literature, integrability of distributions has been
deeply studied. The most well-known result about integrability of distributions is
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the Frobenius theorem. According to the Frobenius theorem, if the rank of the dis-
tribution Lie(S) is locally constant, then it is integrable. In 1963, Hermann realized
that the module structure on the family of vector fields Lie(S) plays a crucial role
in the integrability of the distribution Lie(S). More specifically, he showed that if
the C∞(M)-module generated by the vector fields in Lie(S) is locally finitely gener-
ated, then the distribution Lie(S) is integrable [31, 2.1(b)]. He also claimed that if
the vector field of the distribution Lie(S) are real analytic, then this distribution is
integrable [31, 2.1(c)]. However, his paper does not contain a complete proof of this
claim. In 1966, Nagano proved that for a family of real analytic vector fields S, the
distribution Lie(S) is integrable [62, Theorem 1]. In his 1970 paper, Lobry introduced
a weaker condition called “locally of finite type”. He proved that if a distribution
is locally of finite type, then it is integrable. In particular, mentioning the fact that
the space of real analytic vector fields has Noetherian property, he claimed that for
a family of real analytic vector fields S, the distribution Lie(S) is always locally of
finite type and therefore integrable. In [73], Stefan gave a counterexample to this
assertion. However, he showed that Lobry’s locally of finite type condition can be
modified to give integrability of a distribution [72, Theorem 6].

In the previous section, we proved the orbit theorem for Cν-tautological control
systems. We showed that orbits of a Cν-tautological control system (M,F ) define
the structure of a singular foliations on M and, for every x0 ∈M , we have

TxOrbF (x0) = F (x), ∀x ∈ OrbF (x0).

However, computing the sheaf F requires solving for the flows of the vector fields
of the system, which is in the best case very difficult, if not impossible. Therefore,
similar to the classical orbit theorem, it would be natural to investigate the conditions
under which the vector space F (x) is identical with the vector space Lie(F )(x). It
is natural to expect that Hermann’s condition can be generalized the the tautological
framework. In other words, if the “module” Lie(F ) is locally finitely generated, then
we have F (x) = Lie(F )(x). However, Example 5.4.13 shows that this implication is
not true for all tautological control systems.

In this section, we show that, for having the equality F (x) = Lie(F )(x), the
presheaf structure on the family of vector fields Lie(F ) plays an essential role. We
prove that if Lie(F ) is a locally finitely generated “presheaf”, then the vector spaces
F (x) and Lie(F )(x) are identical. In particular, we show that for “globally defined”
Cω-tautological control system the presheaf Lie(F ) is locally finitely generated. This
shows that for a Cω-tautological control system, one can characterize the tangent
space to the orbits of the system using the Lie brackets of vector fields of the system.

Theorem 5.4.10. Let (M,F ) be a Cν-tautological control system such that the
presheaf Lie(F ) is locally finitely generated. Then, for every x ∈ M , we have
F (x) = Lie(F )(x).

Proof. We first show that, for every x ∈ M , we have Lie(F )(x) ⊆ F (x). Let us fix
x ∈ M . In order to show this inclusion, it suffices to show that, for every open set
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U ⊆ M containing x and every X1, X2 ∈ Lie(F (U)), we have [X1, X2](x) ∈ F (x).
We know that

[X1, X2](x) =
d

dt

∣∣∣
t=0

(
(ϕX1

t )∗X2(x)
)
.

Since F (x) is finite dimensional, there exist n ∈ N, a neighbourhood V ⊆ M of x,
η1, η2, . . . , ηn ∈ Γ(PF ) whose domain contains V , and vector fields Y1, Y2, . . . , Yn ∈
F (V ) such that the set S defined as

S = {η∗1Y1(x), η∗2Y2(x), . . . , η∗nYn(x)}

generates the vector space F (x). Let ϕX1 : D → M be the flow of X1. Then, there
exists T > 0 such that [−T, T ] ⊆ (D)x. Since S generates the vector space F (x),
there exist functions f1, f2, . . . , fn ∈ F[−T,T ] such that

(ϕX1
t )∗X2(x) =

n∑
j=1

fj(t)η
∗
jYj(x).

Since X1 is a vector field of class Cν , the map t 7→ (ϕX1
t )∗X2(x) is of class Cν .

Therefore the functions f1, f2, . . . , fn are of class Cν with respect to t. This implies
that

[X1, X2](x) =
d

dt

∣∣∣
t=0

(
(ϕX1

t )∗X2(x)
)
=

d

dt

∣∣∣
t=0

n∑
j=1

fj(t)η
∗
jYj(x) =

n∑
j=1

dfj(t)

dt

∣∣∣
t=0
η∗jYj(x).

Therefore [X1, X2](x) ∈ F (x). This completes the proof of the inclusion Lie(F )(x) ⊆
F (x).

Now we show that, for every x ∈ M , we have F (x) ⊆ Lie(F )(x). Let us fix
x ∈M . Suppose that U, V are two open sets in M , where V contains x, X ∈ F (U),
and Y ∈ F (V ). We show that, for every t > 0 where

(
ϕYt
)∗
X(x) is defined, we have(

ϕYt
)∗
X(x) ∈ Lie(F )(x).

Without loss of generality, we can assume that ϕYt is defined on [0, T ]. Since the
presheaf Lie(F ) is locally finitely generated, for every y ∈ ϕY ([0, T ], x), there exist
a neighbourhood Uy, sections Xy

1 , X
y
2 , . . . , X

y
m ∈ Lie(F )(Uy) and functions f yij ∈

Cν(Uy) for i, j ∈ {1, 2, . . . ,m} such that

[Y,Xy
j ](z) =

m∑
i=1

f yij(z)X
y
i (z), ∀z ∈ Uy, ∀j ∈ {1, 2, . . . ,m}

and, for every z ∈ Uy, the set {[Xy
1 ]z, [X

y
2 ]z, . . . , [X

y
m]z} generates Lie(F )z.

Now we consider all open set Uy, where y ∈ ϕY ([0, T ], x). For every y ∈
ϕY ([0, T ], x), there exists ty ∈ [0, T ] such that

y = ϕY (ty, x).
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One can assume that (possibly after shrinking Uy), for every s ∈ [0, T ] such that

inf{τ | ϕY (τ, x) ∈ Uy} < s < sup{τ | ϕY (τ, x) ∈ Uy},

we have
ϕY (s, x) ∈ Uy.

Since ϕY ([0, T ], x) is compact, there exists y1, y2, . . . , yn ∈ ϕY ([0, T ], x) such that

ϕY ([0, T ], x) ⊆
n⋃
i=0

Uyi .

Without loss of generality, we can assume that, for every i ∈ {1, 2, . . . , n − 1}, we
have

inf{t ∈ [0, T ] | ϕY (t, x) ∈ Uyi} ≤ inf{t ∈ [0, T ] | ϕY (t, x) ∈ Uyi+1
}.

Since
⋃n
i=0 Uyi covers ϕ

Y ([0, T ], x), for every i ∈ {1, 2, . . . , n− 1}, we have

sup{t ∈ [0, T ] | ϕY (t, x) ∈ Uyi} ≥ inf{t ∈ [0, T ] | ϕY (t, x) ∈ Uyi+1
}.

Therefore, for every i ∈ {1, 2, . . . , n− 1}, there exists τi ∈ [0, T ] such that

sup{t ∈ [0, T ] | ϕY (t, x) ∈ Uyi−1
} ≥ τi ≥ inf{t ∈ [0, T ] | ϕY (t, x) ∈ Uyi}.

We also set τ0 = 0 and τn = T . The following lemma is essential in the course of the
proof.

Lemma. For every i ∈ {1, 2, . . . , n} and every j ∈ {1, 2, . . . ,m}, we have(
ϕYτi
)∗
Xyi
j (x) ∈ span

{(
ϕYτi−1

)∗
X
yi−1

k (x)
∣∣∣k ∈ {1, 2, . . . ,m}} .

Proof. Let us fix i ∈ {1, 2, . . . , n}. Then, for every j ∈ {1, 2, . . . ,m}, we have

d

dt

∣∣∣
t=s

(
ϕYt
)∗
Xyi
j (x) =

(
ϕYs
)∗

[Y,Xyi
j ](x), ∀s ∈ [τi, τi+1].

Note that we have
ϕYs (x) ∈ Uyi , ∀s ∈ [τi, τi+1].

Thus, for every z ∈ Uyi we have

[Y,Xyi
j ](ϕ

Y
s (x)) =

m∑
k=1

f yikj(ϕ
Y
s (x))X

yi
k (ϕ

Y
s (x)), ∀s ∈ [τi, τi+1].

Therefore we have

d

dt

∣∣∣
t=s

(
ϕYt
)∗
Xyi
j (x) =

m∑
k=1

f yikj(ϕ
Y
s (x))

(
ϕYs
)∗
Xyi
k (x), ∀s ∈ [τi, τi+1].
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For every k, j ∈ {1, 2, . . . ,m}, we have that the map s 7→ f yikj(ϕ
Y
s (x)) is of class C

ν .
For every j ∈ {1, 2, . . . ,m}, we set

aj(t) =
(
ϕYt
)∗
Xyi
j (x), ∀t ∈ [τi, τi+1],

and
bkj(t) = f yikj(ϕ

Y
t (x)), ∀t ∈ [τi, τi+1].

Therefore, we have the family of linear time-varying differential equations:

daj(t)

dt
=

m∑
k=1

bkj(t)aj(t), ∀t ∈ [τi, τi+1].

By [19, Theorem 5.1], there exists γkj ∈ Cν(T) such that

aj(t) = γkj(t)aj(τi), ∀t ∈ [τi, τi+1].

Thus, by replacing aj and b
k
j , we get

(
ϕYt
)∗
Xyi
j (x) =

m∑
k=1

γkj(t)
(
ϕYτi−1

)∗
Xyi
k (x), ∀t ∈ [τi, τi+1].

By setting t = τi, we get

(
ϕYτi
)∗
Xyi
j (x) =

m∑
k=1

γkj(τi)
(
ϕYτi−1

)∗
Xyi
k (x).

However, by the way we have chosen τ0, τ1, . . . , τn, we have

Xyi
k (ϕ

Y
τi−1

(x)) ∈ span
{
Xyi−1
r (ϕYτi−1

(x))
∣∣∣r ∈ {1, 2, . . . ,m}} .

Thus, for every j ∈ {1, 2, . . . ,m}, there exist real numbers c1j, c2j, . . . , ckj ∈ R such
that (

ϕYτi
)∗
Xyi
j (x) =

m∑
k=1

ckj

(
ϕYτi−1

)∗
X
yi−1

k (x)

This completes the proof of the lemma.

Using the above lemma and induction on i ∈ {1, 2, . . . , n}, it is easy to see that,
for every j ∈ {1, 2, . . . ,m}, we have(

ϕYT
)∗
Xyn
j (x) ∈ span

{(
ϕYτ0
)∗
Xx
j (x)

∣∣∣j ∈ {1, 2, . . . ,m}} .
However, we know that τ0 = 0. This implies that(

ϕYT
)∗
Xyn
j (x) ∈ span

{
Xx
j (x)

∣∣∣j ∈ {1, 2, . . . ,m}} .
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Thus, we have (
ϕYT
)∗
Xyn
j (x) ∈ Lie(F )(x).

Also, since Lie(F ) is locally finitely generated, we know that there exists
g1, g2, . . . , gn ∈ Cν(Uyn) such that

X(ϕYT (x)) =
n∑
i=1

gj(ϕ
Y
T (x))X

yn
j (ϕYT (x))

This implies that (
ϕYT
)∗
X(x) ∈ Lie(F )(x).

Thus, we get F (x) ⊆ Lie(F )(x).

Corollary 5.4.11. Let (M,F ) be a globally generated Cω-tautological control system.
Then, for every x ∈M , we have F (x) = Lie(F )(x).

Proof. In the real analytic case, by Theorem 2.4.13, the presheaf Lie(F ) is locally
finitely generated. The result then follows from Theorem 5.4.10.

One can apply Theorem 5.4.11 to the orbit theorem to get the real analytic version
of the orbit theorem.

Corollary 5.4.12. Let (F ,M) be a globally generated Cω-tautological control system.
Then (M,GF ) is a foliation with singularities. Moreover, for every x0 ∈M and every
x ∈ OrbF (x0), we have TxOrbF (x0) = Lie(F )(x). In particular, for every x0 ∈ M ,
OrbF (x0) is a leaf of (M,GF ) and it has a unique structure as a connected immersed
submanifold of M .

In the following example, we define a real analytic tautological control system
(R2,F ) with the following properties:

1. the vector fields in F are not globally defined,

2. for every x, there exists a neighbourhood U ⊆ R2 of x such that Lie(F )(U) is
a locally finitely generated Cω(U)-module, and

3. Lie(F )(0, 0) ̸= F (0, 0).

Properties (1) and (2) indicate that one cannot remove the condition that F is
globally generated from Theorem 3.2.12. This is because Theorem 2.4.13 fails if F is
not globally generated. Properties (2) and (3) show that the condition that Lie(F ) is
a locally finitely generated “module” is not sufficient for the equality of vector spaces
Lie(F )(x) and F (x).
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Example 5.4.13. [73] Let M = R2 and F = {X1, X2}, where X1 : R2 → TR2 is
defined as

X1(x, y) =
∂

∂x
,

and X2 : R>0 × R→ TR2 is defined as

X2(x, y) =
1

x

∂

∂y
.

It is clear that both X1 and X2 are real analytic on their domain of definition. We
first compute the presheaf Lie(F ). If we compute the Lie bracket of X1 and X2, we
have

[X1, X2](x, y) =
1

x2
∂

∂y
, ∀(x, y) ∈ R>0 × R.

Now we can continue computing the Lie brackets. It is easy to see that the only
non-zero Lie brackets are

[X1, [X1, . . . , [X1︸ ︷︷ ︸
n

, X2] . . .]](x, y) =
n

xn+1

∂

∂y
, ∀n ∈ N.

This implies that, for every open sets U ̸⊆ R>0 × R, we have

Lie(F )(U) =

{
f0
∂

∂x

∣∣∣∣ f0 ∈ Cω(U)

}
,

and, for every open sets U ⊆ R>0 × R, we have

Lie(F )(U) =

{
f0
∂

∂x
+

(
n∑
i=1

fi
xi

)
∂

∂y

∣∣∣∣∣ n ∈ N, f0, f1, . . . , fn ∈ Cω(U)

}
.

We show that, for every (x0, y0) ∈ R2, there exists a neighbourhood U of (x0, y0) such
that Lie(F )(U) is a finitely generated Cω(U)-module. Let (x0, y0) ∈ R>0×R. Then,
we choose an open neighbourhood U of (x0, y0) such that U ⊆ R>0 × R. Thus, we
have

Lie(F )(U) =

{
f0
∂

∂x
+

(
n∑
i=1

fi
xi

)
∂

∂y

∣∣∣∣∣ n ∈ N, f0, f1, . . . , fn ∈ Cω(U)

}

= spanCω(U)

{
∂

∂x
,
∂

∂y

}
.

Now suppose that (x0, y0) ̸∈ R>0 × R. Then, for every open neighbourhood U of
(x0, y0), we have U ̸⊆ R>0 × R. This implies that

Lie(F )(U) =

{
f0
∂

∂x

∣∣∣∣ f0 ∈ Cω(U)

}
= spanCω(U)

{
∂

∂x

}
.



On the role of regularity in mathematical control theory 145

Therefore, for every (x0, y0) ∈ R2, there exists an open neighbourhood U of (x0, y0)
such that Lie(F )(U) is a finitely generated Cω(U)-module.

One can see that OrbF (0, 0) = R2. Therefore, by the orbit theorem, we have

F (0, 0) = T(0,0)R2.

In particular, we have dim(F (0, 0)) = 2. On the other hand, Lie(F )(0, 0) = { ∂
∂x
}

and so dim(Lie(F )(0, 0)) = 1. This implies that

F (0, 0) ̸= Lie(F )(0, 0).



Chapter 6

Conclusions and future work

6.1. Conclusions

In this thesis, using topologies on the space of Cν-functions, we have developed
a framework for studying time-varying Cν-vector fields and their flows. The setting
that we constructed in this thesis unifies different classes of regularities in a coherent
manner. In particular, it includes the real analytic regularity which is of significance
in mathematical control theory. Moreover, we have developed tools and techniques
for studying the extension of a time-varying real analytic vector field to a time-varying
holomorphic one. Using the suitable topology on the space of real analytic functions,
we found a mild sufficient condition to ensure that a time-varying real analytic vector
field has a holomorphic extension.

In chapter 4, following [55], we have presented a parameter-invariant model for
studying control system called “tautological control system”. Using the notion of
presheaf, we developed an appropriate notion of trajectories for tautological control
systems. In chapter 5, we generalized the orbit theorem of Sussmann and Stefan
for tautological control systems. Using the tautological system approach, we got a
natural condition on a tautological control system which ensure that the tangent
space to the orbit of the system at a point x is generated by the Lie brackets of
vector fields of the system at x. In particular, we showed that globally generated real
analytic tautological control systems satisfy this condition.

6.2. Future work

In this section, we mention possible directions for future research.

1. The operator approach developed in chapter 3 can be used to study the local
controllability of control systems. While local controllability of a control system
is a property of its flows, it is sometimes very hard, if not impossible, to find
the flows of a control system. Therefore, in mathematical control theory, one
would like to study local controllability of a control system using the vector

146
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fields of the system. Numerous deep and interesting results has been developed
in this direction during last four decades. However, many questions still re-
main unanswered. One of the most interesting open questions is whether local
controllability of a control system can be determined using finite number of
differentiations of vector fields of the system. One can make this question more
rigorous as follows. For a family of vector fields S = {f1, f2, . . . , fm}, we define
a trajectory of S as a piecewise continuous curve such that every continuous
piece is a trajectory of one of elements of S. For every T > 0, the attainable
set of S from 0 ∈ Rn at time less than equal T is defined as

A≤T (0) = {ξ(t) | ξ is a trajectory of S, ξ(0) = 0, t ≤ T}.

The family of vector fields S = {f1, f2, . . . , fm} is called small-time locally
controllable from 0 if, for every T > 0, we have

0 ∈ int (A≤T (0)) .

In [2], the question of deciding local controllability by a finite number of differ-
entiation has been stated in the following way:

• Question: Suppose that we have a family of real analytic vector fields
{f1, f2, . . . , fm} on Rn such that it is small-time locally controllable from
0. Does there exists N ∈ N such that any other family of real analytic
vector fields with the same Taylor polynomial of order N at 0 as the Taylor
polynomials of {f1, f2, . . . , fm} is small-time locally controllable?

In [5], using suitable variations, this question has been answered affirmative for
a specific class of real analytic vector fields. However, for a general family of
real analytic vector fields this problem is still open.

We first state the above question in the framework of Cω-control systems. Con-
sider a Cω-control system Σ1 = (Rn, F,Rm). Suppose that F : Rm×Rn → TRn

is defined as

F (u, x) = X0(x) + u1X1(x) + . . .+ umXm(x), ∀u ∈ Rm, ∀x ∈M.

Where X0, X1, . . . , Xm are real analytic vector fields. Suppose that u : T → R
is a locally essentially bounded and the time-varying vector field F u : T×Rn →
TRn is defined as

F u(t, x) = F (u(t), x), ∀t ∈ T, ∀x ∈ Rn.

Now assume that Σ2 = (Rn, G,Rm) is another Cω-control system with G :
Rm × Rn → TRn defined as

G(u, x) = Y0(x) + u1Y1(x) + . . .+ umYm(x), ∀u ∈ Rm, ∀x ∈ Rn.
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where Y0, Y1, . . . , Ym are real analytic vector fields with the same Taylor polyno-
mial of order N at x0 as X0, X1, . . . , Xm. Then, we say that Cν-control systems
Σ1 and Σ2 agree up to order N at x0 and we write

(Σ1)
N
x0

= (Σ2)
N
x0
.

Now, one can restate the above question as follows:

• Question: Let Σ = (Rn, F,U) be a Cω-control system. Suppose that
x0 ∈ Rn and Σ is locally controllable from x0. Does there exists N ∈ N
such that, for every Cω-control system Θ = (Rn, G,U) with (Σ)Nx0 = (Θ)Nx0 ,
Θ is locally controllable from x0?

Since local controllability is a property of flows of the system, it is reasonable to
investigate the relation between flows of two real analytic control system which
agree up to order N at x0. We showed in Theorem 4.4.4 that if t 7→ u(t) is
locally essentially bounded, then F u is a locally Bochner integrable time-varying
real analytic vector field. Therefore, by Theorem 3.8.1, the flow of this vector
field can be written as:

ϕF
u

(t) = id +

∫ t

t0

F u(τ)dτ +

∫ t

t0

∫ τ

t0

F u(τ) ◦F u(s)dsdτ + . . . .

Since the local controllability of Σ1 from x0 only depends on the trajectories of
Σ1 which pass through x0 at time t0, we evaluate ϕF

u
at x0.

evx0 ◦ϕF
u

(t) = evx0+

∫ t

t0

evx0 (F
u(τ)) dτ+

∫ t

t0

∫ τ

t0

evx0 (F
u(τ) ◦F u(s)) dsdτ+. . . .

Suppose that Σ2 is a Cω-control system such that (Σ1)
N
x0

= (Σ2)
N
x0
. Then, for

every locally essentially bounded control t 7→ u(t), for every i ∈ {0, 1, . . . , N},
and for every t1, t2, . . . , ti ∈ R, we have

evx0 (F
u(t1) ◦F u(t2) ◦ . . . F u(ti)) = evx0 (G

u(t1) ◦Gu(t2) ◦ . . . Gu(ti)) .

Therefore, for every control t 7→ u(t) which is locally essentially bounded, we
have

evx0 ◦ϕF
u

N (t) = evx0 ◦ϕG
u

N (t)

This motivates the definition of a Cν-control system which is Nth order approx-
imation of Σ1. Unfortunately, such an approximation cannot be a Cν-control
system. The reason is that the map ϕF

u

N (t) is not an algebra homomorphism and
as a result, ϕF

u

N (t) is not the flow of any time-varying vector field. However, it is
easy to check that ϕF

u

N (t) is an Nth order differential operator on Cω(Rn). Let
us denote by LN(Cω(Rn);Cω(Rn)) the subspace of L(Cω(Rn);Cω(Rn)) consists
of Nth order differential operators.
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Considering flows of a system as unital R-algebra homomorphism between
Cω(Rn) and Cω(Rn), one can get the following restatement of definition of
local controllability.

Theorem 6.2.1. The system Σ1 is locally controllable from x0 if and only if evx0
is in the interior of

{
evx0 ◦ϕF

u
(T ) | u ∈ L∞

loc(T), T ∈ R
}
in HomR(C

ω(Rn);R).

Proof. According to Theorem 3.4.3, the map ev : Rn → (Cω(Rn))′ is a topo-
logical homeomorphism onto its image. Using the fact that image of this map
is exactly HomR(C

ω(Rn);R) (Theorem 3.4.3), the theorem immediately fol-
lows.

While the above theorem may seem a complicated version of the definition of
local controllability of a system from x0, it will allow us to generalize the notion
of local controllability to the Nth order approximation of the system.

In order to modify the definition of the local controllability for the Nth order
approximation of a system, we define êvx0 : L(Cω(Rn);Cω(Rn)) → (Cω(Rn))′

as
êvx0(X) = evx0 ◦X, ∀X ∈ L(Cω(Rn);Cω(Rn)).

Then it is clear that êvx0(HomR(C
ω(Rn);Cω(Rn))) = HomR(C

ω(Rn);R). We
define

êvx0(L
N(Cω(Rn);Cω(Rn))) = LNx0(C

ω(M);Cω(Rn)).

Note that using the map êvx0 , we get

Theorem 6.2.2. The system Σ1 is locally controllable from x0 if and only
if evx0 is in the interior of {evx0 ◦ϕF

u
(T ) | u ∈ L∞

loc(T), T ∈ R} in
êvx0(HomR(C

ω(Rn);Cω(Rn))).

The above theorem motivates the introduction of the following notion of Nth
order local controllability.

Definition 6.2.3. A Cω-control system Σ is called Nth order locally con-
trollable at x0 if evx0 is in the interior of {evx0 ◦ϕF

u

N (T ) | u ∈ L∞
loc(T), T ∈ R}

in LNx0(C
ω(Rn);Cω(Rn)

It is clear that for a Cν-control system Σ, Nth order local controllability of
Σ form x0 only depends on Nth order Taylor polynomial of vector fields of
the system around x0. Using the above definition, one can ask the following
question:

• Open problem: Suppose that Σ1 is locally controllable from x0. Does
there exists N ∈ N such that Σ1 is Nth order locally controllable at x0?
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It is obvious that a positive answer to this question will give an affirmative
answer to the question mentioned above.

2. We treated the nonlinear differential equation governing the flow of a time-
varying Cν-vector field on M as a linear ODE on the locally convex space
L(Cν(M);Cν(M)). Using the holomorphic extension of locally Bochner in-
tegrable time-varying real analytic vector fields, we showed that the classical
methods for studying linear ODEs on Rn can be extended to find the solution
for the this linear ODE on L(Cν(M);Cν(M)). The evolution of flow a vector
field is not the only differential equation that can be translated into an ODE on
a locally convex space. In fact, every evolution of partial differential equation
and every pseudodifferential equation can be treated as an ODE on some ap-
propriate locally convex space. However, the theory of ODE on locally convex
spaces is different in nature from the classical theory of ODE on Banach spaces.
While, in the classical theory of ODE on Banach spaces, most of the techniques
and tools can be used independently of the geometry of the Banach space, the
theory of ODE on locally convex spaces heavily depends on the geometry of
the underlying space [56]. The machinery that we developed in chapter 3, in-
cluding the local and global extension results (Theorems 3.7.8 and 3.7.4) and
the family of seminorms for space of real analytic functions (Theorem 3.2.34
and 3.2.35) enables us to study the generalization of the ideas and methods of
classical theory of ODE on Banach spaces to ODEs on specific locally convex
spaces.

3. The parameter-invariant framework developed in [55] seems to be the right
framework for studying fundamental properties of control systems. As men-
tioned in [54], even the simple linear test for controllability of systems is not
parameter-invariant. In [41], a parameter-invariant approach has been used to
study linearization of tautological control systems. However, the problem of
developing a parameter-invariant theory for small-time local controllability of
systems is still open.

4. While in chapter 5 we generalized the orbit theorem for tautological control
systems, the proof of the generalized orbit theorem is essentially the same as
the classical orbit theorem. In particular, “piecewise constant vector fields”
plays a crucial role in the proof of this theorem. With the machinery that we
developed in chapter 3, it seems plausible that one can get a new proof of orbit
theorem based on general “locally Bochner integrable” vector fields which does
not rely on piecewise constant vector fields.
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