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Abstract

In this thesis, we develop a coherent framework for studying time-varying vector
fields of different regularity classes and their flows. This setting has the benefit of
unifying all classes of regularity. In particular, it includes the real analytic regularity
and provides us with tools and techniques for studying holomorphic extensions of
real analytic vector fields. We show that under suitable “integrability” conditions,
a time-varying real analytic vector field on a manifold can be extended to a time-
varying holomorphic vector field on a neighbourhood of that manifold. Moreover,
in this setting, the “nonlinear” differential equation governing the flow of a time-
varying vector field can be considered as a “linear” differential equation on an infinite
dimensional locally convex vector space. We show that, in the real analytic case, the
“integrability” of the time-varying vector field ensures convergence of the sequence of
Picard iterations for this linear differential equation, giving us a series representation
for the flow of a time-varying real analytic vector field.

Using the framework we develop in this thesis, we study a parametization-
independent model in control theory called tautological control system. In the tauto-
logical control system setting, instead of defining a control system as a parametrized
family of vector fields on a manifold, it is considered as a subpresheaf of the sheaf of
vector fields on that manifold. This removes the explicit dependence of the systems
on the control parameter and gives us a suitable framework for studying regularity of
control systems. We also study the relationship between tautological control systems
and classical control systems. Moreover, we introduce a suitable notion of trajectory
for tautological control systems.

Finally, we generalize the orbit theorem of Sussmann and Stefan to the tautological
framework. In particular, we show that orbits of a tautological control system are
immersed submanifolds of the state manifold. It turns out that the presheaf structure
on the family of vector fields of a system plays an important role in characterizing the
tangent space to the orbits of the system. In particular, we prove that, for globally
defined real analytic tautological control systems, every tangent space to the orbits
of the system is generated by the Lie brackets of the vector fields of the system.
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Chapter 1

Introduction

1.1. Literature Review

In the mathematical theory of control, regularity of maps and functions plays a
crucial role. Literature of control theory is replete with theories which work for a
specific class of regularity but fail in other classes. The most well-known example is
stabilizability of nonlinear control systems. While it is clear that for linear control
systems controllability implies stabilizability, for nonlinear control systems this im-
plication may or may not be true based on the regularity of the stabilizing feedback.
In his 1979 paper, Sussmann proved that every real analytic system which satisfies
some strong controllability condition is stabilizable by “piecewise analytic” controls
[76]. However, some years later, Brockett showed that controllability of a nonlinear
system does not necessarily imply stabilizability by “continuous” feedbacks [14]. An-
other example is the role that real analyticity plays in characterizing the fundamental
properties of systems. One can show that the accessibility of real analytic systems at
point zy can be completely characterized using the Lie bracket of their vector fields at
point zo [79]. However, such a characterization is not generally possible for smooth
systems [79]. While in the physical world there are very few, and possibly no, maps
which are smooth but not real analytic, in mathematics the gap between these two
classes of regularity is huge. This can be seen using the well-known fact that if a real
analytic function is zero on an open set, then it is zero everywhere. However, using
a partition of unity, one can construct many non-zero smooth functions that are zero
on a given open set [49]. Moreover, the techniques and analysis for studying real
analytic systems are sometimes completely different from their smooth counterparts.

Roughly speaking, a map f is real analytic on a domain D if the Taylor series of
f around every point xy € D converges to f in a neighbourhood of xy. By definition,
for the Taylor series of f on D to exist, derivatives of f of any order should exist
and be continuous at every point xqg € D. This means that all real analytic maps
are of class C'°. The converse implication is not true, since there are some examples
of functions that are C'*° but not real analytic. Although, nowadays, these examples
of smooth but not real analytic functions are well-known, it is surprising to know
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that at the beginning stages of theory of real analytic functions, mathematicians had
difficulty understanding them. In the nineteenth century, mathematicians started
to think more about the natural question of which functions can be expanded in a
Taylor series around a point. Lagrange and Hankel believed that the existence of all
derivatives of a function implies the convergence of its Taylor series [8]. Eventually,
it was Cauchy who came up with the function

B 2 x # 0,
o= {7 ot

which is C* everywhere not real analytic at x = 0 [16], [8].

Real analytic functions on R have a close connection with the holomorphic func-
tions defined on neighbourhoods of R in C. It is well-known that every real analytic
function f on R can be extended to a holomorphic function defined on an appropriate
domain in C. However, it may not be possible to extend the real analytic function f
to a holomorphic function on the whole C. This can be seen in the following example.

Example. Let f : R — R be the real analytic function defined as

1

:m7 Vz € R.

()

If f: C — C is a holomorphic extension of f to the whole C, then by the identity
theorem, we should have

— 1
z) = ——, Vz e C.
However, the function —- is not defined at z = i and z = —i and this is a contra-

1+22
diction. So the holomorphic extension of f to the whole complex plane C does not

exist.

This observation suggests that one should consider a real analytic function as a
germ of a holomorphic function. This perspective for real analytic functions motivates
the definition of a natural topology on the space of real analytic functions. Unfortu-
nately, there does not exist a single domain such that “every” real analytic function
on R can be extended to a holomorphic function on that domain. The following
example shows this fact.

Example. For every n € N consider the function f,, : R — R defined as

1

=T wER

fn(2)

It is easy to see that, for every n € N, the function f, is real analytic on R. We show
that there does not exist a neighbourhood €2 of R in C such that, for every n € N, the
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real analytic function f,, can be extended to a holomorphic function on €. Suppose
that such an €2 exists. Then there exists r > 0 such that

{zreCl|zf <r}c

Now let N € N be such that % < r and suppose that f be the holomorphic extension
of fy to €. Then, by the identity theorem, we have

— 1

fN(Z) = m, Vz € Q.

By our choice of N, we have ﬁ € Q, but fy is not defined at z = ﬁ This is a

contradiction and shows that such an €2 does not exist.

Thus the space of real analytic functions on R, which we denote by C*(R), can be
considered as the “union” of the spaces of holomorphic functions defined on neigh-
bourhoods of R in C. This process of taking union can be made precise using the
mathematical notion of “inductive limit”. The space of holomorphic functions on an
open set 2 C C has been studied in detail in the literature [51], [61]. One can show
that the well-known “compact-open” topology on the space of holomorphic functions
on € is generated by a family of seminorms [51]. The vector spaces equipped with
a topology generated by a family of seminorms are called “locally convex topological
vector spaces”. Therefore, we can present the space of real analytic functions on R as
an inductive limit of locally convex spaces. The “inductive limit topology” on C¥(R)
is defined as the finest topology which makes all the inclusions from the spaces of
holomorphic functions to the space of real analytic functions continuous.

Locally convex topological vector spaces play a crucial role in the theory of topo-
logical vector spaces. Inductive limits of locally convex spaces arise in many fields,
including partial differential equations, Fourier analysis, distribution theory, and holo-
morphic calculus. While there is little literature for inductive limit of arbitrary fam-
ilies of locally convex spaces, the countable inductive limit of locally convex spaces
is rich in both theory and applications. Historically, locally convex inductive limits
of locally convex spaces first appeared when mathematicians tried to define a suit-
able topology on the space of distributions. The importance of connecting maps in
inductive limits of locally convex spaces was first realized by José Sebastiao e Silva
[71]. Motivated by studying the space of germs of holomorphic functions, Sebastiao
e Silva investigated inductive limits with compact connecting maps. Inductive limits
with weakly compact connecting maps were studied later by Komatsu in [48], where
he showed that weakly compact inductive limits share some nice properties with the
compact inductive limits.

One can also characterize the space of real analytic functions on R using the germs
of holomorphic functions around compact subsets of R. Let {K;}ien be a family of
compact sets on R such that [ J;°, K; = R and

Cl(Kl) g KiJrl, Vi € N.
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Then the space of real analytic functions on R is obtained by “gluing together”
the vector spaces of germs of holomorphic functions on compact sets {K;}ic;. The
concept of “gluing together” mentioned above can be made precise using the notion of
projective limit of vector spaces. The coarsest locally convex topology on C¥(R) which
makes all the gluing maps continuous is called the “projective limit topology” on
C“(R). Having defined the “inductive limit topology” and “projective limit topology”
on the space of real analytic functions on R, it would be interesting to study the
relation between these two topologies. To our knowledge, the first paper that studied
the relation between these two topologies on the space of real analytic functions is
[59], where it is shown that these two topologies are identical. There has been a recent
interest in this topology due to its applications in the theory of partial differential
equations [12], [52].

Since every locally convex topology on a vector space can be characterized using
a family of generating seminorms, it is interesting to find a family of generating
seminorms for C*-topology on C*(R). In [81] a family of generating seminorms for
C“-topology on C*(R) has been introduced.

In chapter 3, by generalizing the above ideas, we study the C*-topology on the
space of real analytic sections of a real analytic vector bundle (E, M, ). For a real
analytic vector bundle (E, M, ), we denote the space of its real analytic sections by
['“(E). Using the similar constructions as for the space of real analytic functions,
we can define the “inductive limit” and “projective limit” topology on this space. It
follows from [59] that the inductive limit topology and the projective limit topology
on ['Y(E) are equivalent. This is the topology which we refer to as the C*“-topology.
In particular, using the results of [42], we define two families of generating seminorms
for the C¥-topology on I'“(FE).

In control theory, time-varying vector fields with measurable dependence on time
arises naturally in studying open-loop systems. Properties of time-varying vector
fields and their flows are essential in characterizing the fundamental properties of
systems. However, the theory of time-varying vector fields and their flows has not
been developed as much as its time-invariant counterpart. In order to study time-
varying vector fields, it is convenient to adapt an operator approach to vector fields.
The operator approach for studying time-varying vector fields and their flows in
control theory started with the work of Agrachev and Gamkrelidze [3]. One can
also find traces of this approach in the nilpotent Lie approximations for studying
controllability of systems [77], [78]. In [3] a framework is proposed for studying
complete time-varying vector fields and their flows. The cornerstone of this approach
is the space C*°(M), which is both an R-algebra and a locally convex vector space. In
this framework, a smooth vector field on M is considered as a derivation of C*°(M)
and a smooth diffeomorphism on M is considered as a unital R-algebra isomorphism
of C*°(M). Using a family of seminorms on C*°(M), weak topologies on the space of
derivations of C*°(M) and on the space of unital R-algebra isomorphisms of C'*° (M)
are defined [3]. Then a time-varying vector field is considered as a curve on the
space of derivations of C*°(M) and its flow is considered as a curve on the space of
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R-algebra isomorphisms of C*°(M). While this framework seems to be designed for
smooth vector fields and their flows, in [3] and [4] the same framework is used for
studying time-varying “real analytic” vector fields and their flows.

In this thesis, we present a coherent framework for studying time-varying vector
fields of different regularity classes. While we only focus on smooth and real analytic
vector fields, this setting can be generalized to include a variety of regularity classes
[42]. In order to include real analytic vector fields and their flows in our framework
in a consistent way, we can generalize the operator approach of [3] by replacing the
locally convex space C*°(M) with C¥(M), where v € {oo,w}. In particular, using
the result of [26], we show that there is a one-to-one correspondence between real
analytic vector fields on M and derivations of C¥(M ). Moreover, using the results of
[60], we show that C*-maps are in one-to-one correspondence with unital R-algebra
homomorphisms on C*(M). This allows us to unify the smooth and real analytic
classes of regularity in a setting where there is a one-to-one correspondence between
C”-vector fields and derivations of C¥(M) and there is a one-to-one correspondence
between C”-maps on M and unital R-algebra homomorphisms on C¥(M). Using
these characterizations, we can consider a time-varying C"-vector field on M as a
curve on the vector space of derivations of C¥(M). In order to study properties of
this curve, we need to define a topology on the space of derivations of C*(M).

Using the C"-topology on C¥(M), one can define the topology of pointwise-
convergence on the space L(CY(M);C"(M)) of linear continuous maps between
CY(M) and C”(M). One can show that L(C"(M); C*(M)) equipped with the topol-
ogy of pointwise-convergence is a locally convex space with many nice properties.
This topology also induces a locally convex topology on the space of derivations of
C"(M) and enables us to study different properties of time-varying vector fields. In
particular, we can use the framework in [6] to define and characterize the Bochner
integrability of curves on L(C¥(M);C¥(M)).

As we mentioned above, one of the most fundamental and interesting properties
of a real analytic vector field on R is that it can be extended to a holomorphic vector
field on a neighbourhood €2 of R in C. It would be interesting to ask whether such
a holomorphic extension exists for a “time-varying” real analytic vector field. The
following example shows that the answer to this question is negative in general.

Example. Define the time-varying vector field X : R x R — TR as

2 9
e OQort#0
X(tya) = {Troe 27 0ort 70,
0 z,t = 0.

One can easily see that X is measurable with respect to ¢ and real analytic with
respect to x. Now suppose that there exists T C R a neighbourhood of ¢ = 0, a
connected neighbourhood U of R in C, and a time-varying vector field X : T x U —
TC which is measurable in time and holomorphic in state such that

X(t,x) = X(t, ) Ve e R, vVt € T.
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Since 0 € T, there exists t € T such that cl(D;(0)) € U. Let us fix this ¢ and define
the real analytic vector field X; : R — TR as

9
242202

Xi(x) Vo € R,

and the holomorphic vector field X, : U — TC as

Xi(z) = X(t,2) vz eU,

Then it is clear that X, is a holomorphic extension of X,. However, one can define
another holomorphic vector field Y : D,(0) — TC by

2 0

V()= — 2
(2) 12+ 22072’

Vz € Dt(O),

It is easy to observe that Y is also a holomorphic extension of X;. Thus, by the identity
theorem, we should have Y'(z) = X,(z2), for all z € D;(0). Moreover, we should have
U C D;(0). However, this is a contradiction with the fact that cl(D;(0)) C U.

As the above example suggests, without any joint condition on time and space,
it is impossible to prove a holomorphic extension result similar to the time-invariant
real analytic vector fields. It turns out that “local Bochner integrability” is the right
joint condition for a time-varying real analytic vector field to have a holomorphic
extension. Using the inductive limit characterization of the space of real analytic
vector fields, we show that the “global” extension of “locally Bochner integrable”
time-varying real analytic vector fields is possible. More specifically, we show that,
for a locally Bochner integrable time-varying real analytic vector field X on M, there
exists a locally Bochner integrable holomorphic extension on a neighbourhood of
M. We call this result a “global” extension since it proves the existence of the
holomorphic extension of a time-varying vector field to a neighbourhood of its “whole”
state domain.

In order to study the holomorphic extension of a “single” locally Bochner inte-
grable time-varying real analytic vector field, the global extension result is a perfect
tool. However, this extension theorem is indecisive when it comes to questions about
holomorphic extension of all elements of a family of locally Bochner integrable time-
varying real analytic vector fields to a “single” domain. Using the projective limit
characterization of space of real analytic vector fields, we show that one can “locally”
extend every element of a bounded family of locally Bochner integrable time-varying
real analytic vector fields to a time-varying holomorphic vector field defined on a
single domain.

Another important question is the connection between time-varying vector fields
and their flows. In [3], using the characterizations of vector fields as derivations and
their flows as unital algebra isomorphism, the “nonlinear” differential equation on R"”
for flows of a complete time-varying vector field is transformed into a “linear” differ-
ential equation on the infinite-dimensional locally convex space L(C*(R™); C*(R")).
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While working with linear differential equations seems to be more desirable than
working with their nonlinear counterparts, the fact that the underlying space of this
linear differential equation is an infinite-dimensional locally convex spaces makes this
study more complicated. In fact, the theory of linear ordinary differential equations
on a locally convex spaces is completely different from the classical theory of linear
differential equations on R™ or Banach spaces [56]. While, for the Banach space case,
every linear ordinary differential equations has a unique solution, the existence of
solutions of an ordinary differential equation on a locally convex space heavily de-
pends on the geometry of the underlying space [56]. Moreover, most of the theorems
and techniques in classical differential equations are not applicable when dealing with
locally convex spaces. For example, one can easily find counterexamples for Peano’s
existence theorem [56]. In [3] it has been shown that, if the vector field is integrable
in time, real analytic in state, and has a bounded holomorphic extension to a neigh-
bourhood of R", the sequence of Picard iterations for the linear infinite-dimensional
differential equation converges in L(C*(R"); C*°(R")). In this case, one can repre-
sent flows of a time-varying real analytic system as a series of iterated composition
of the time-varying vector field.

The techniques that we developed in this thesis help us to study the differential
equations governing the flows of time-varying C"-vector fields in a consistent way.
The framework we developed for studying time-varying C”-vector fields plays a cru-
cial role in this analysis. Using the fact that time-varying vector fields and their flows
are curves on L(C¥(M); C*(M)), we translate the nonlinear differential equation gov-
erning the flow a time-varying C”-vector field into a “linear” differential equation on
L(C"(M);C*(M)). In the real analytic case, we show that a solution for the “linear”
differential equation of a “locally Bochner integrable” time-varying real analytic vec-
tor field exists and is unique. In particular, using a family of generating seminorms
on the space of real analytic functions, we show that the sequence of Picard iterations
for our “linear” differential equation on the locally convex space L(C¥(M); C¥(M))
converges. This will generalize the result of [3, Proposition 2.1] to the case of locally
Bochner integrable time-varying real analytic vector fields.

In chapter 4, we turn our attention to a new framework for modeling control
systems. Since the advent of mathematical control theory, many different models
have been used for studying control systems. In 1930’s, starting with the works of
Nyquist [63], Bode [11], and Black [10], the frequency response and transform methods
became the dominant techniques for studying control systems. This methodology has
the benefit of representing feedback in a nice way. In 1960’s a paradigm shift has
been made in control theory from the frequency based model to the state-space model.
This change was partly motivated by the influential works of Kalman [45], [44] and
Pontryagin and his collaborators [64]. In 1970’s control theorists started to generalize
the results of the state-space framework to nonlinear control systems. At the same
time, a geometric approach to study classical mechanics, as in the work of Abraham
and Marsden [1], started to gain prominence. Both of these developments inspired
the use of differential geometry and Lie theory in control theory [31], [33], [35], [79],
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[74], [75]. This resulted in a change of language and techniques in the mathematical
theory of control. A geometric model for control theory considers a control system as
a family of parametrized vector fields {F*“},cy, where U is the set of all “inputs” or
“controls”. Since this model is independent of coordinates, it is more convenient for a
geometric study of control systems. However, this model has some shortfalls. While
most of the fundamental properties of control systems depend on their trajectories,
this model has dependence on the specific parametrization of the vector fields of the
control system. This makes many techniques and theories that are presented in this
model dependent on the specific choice of parameter for the vector fields of the system.
The following example shows that even the simple “linear” test for controllability of
systems is not parameterization-independent.

Example ([54]). Consider the control systems 3; and 33 on R?, where 3 is defined
as

T1(t) = x2(t),
‘%.'2 (t) = I3 (t)u1 (t),
a3(t) = ua(t),

where (u1,us) € R? and the control system X is defined as

l’l(t) = .I'Q(t),
[L’Q(t) = l‘g(t) + l’g(t)vl(t),
l’g(t) = UQ(t),

where (vy,v9) € R2. Tt is easy to note that under the bijective transformation

()= () )

the two control systems ¥; and Y5 are identical. This implies that 3; and Y5 have
the same trajectories and therefore have the same small-time local controllability.
However, if we apply the linear test to ¥; and Y, one can observe that the lineariza-
tion of X is controllable at (0,0,0) and this implies that ¥ (and therefore %) is
small-time locally controllable at (0,0,0). However, the linearization of ¥; is not
controllable at (0,0,0). This implies that the linear test is indecisive for small-time
local controllability of ¥, at (0,0,0).

This example motivates the construction of a setting for studying a control system
which is independent of parametrization of vector fields of the system. In [55] a
parameterization-independent methodology called “tautological control systems” has
been developed using the notion of a sheaf of sets of vector fields. Considering control
systems as sheaves of vector fields makes control systems at the level of definition
independent of control parametrization. Moreover, it allows us to consider regularity
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of the control systems in a consistent manner. In this thesis, following [55], we
introduce tautological control systems and study their connection with the classical
control systems. We also define the appropriate notion of trajectory for tautological
control systems.

One of the most fundamental theorems in geometric control theory is the
Chow-Rashevskii theorem. Let S = {Xj, Xs,..., X, } be a family of vector fields
on a manifold M. Given a point o € M, the orbit of S passing through x, is the
set of all points of M which can be reached from x( by traveling along trajectories of
vector fields of S in both positive and negative times. The Chow—Rashevskii theorem
connects some of the properties of orbits of S to the Lie brackets of vector fields in
S. In order to state the Chow—Rashevskii theorem, we first need to introduce some
terminology. A distribution on T'M generated by S is the assignment Dg such that,
for every x € M, Dg(x) is the vector subspace of T, M defined by

Dg(x) = span{ X;(x), Xo(z), ..., Xp(2)}.

We say that a vector field Y belongs to the distribution Dg (and we write Y € Dyg)
if, for every x € M, we have
Y (z) € Dg(z).

A distribution Dg is involutive if, for every Y, Z € Dg, [Y,Z] € Dg. An integral
manifold of Dg is a connected submanifold N of M such that T, N = Dg(x) for every
x € N. In other words, N is an integral manifold of Dg if Dg is the tangent space
of N at every point. It is easy to check that not every distribution has an integral
manifold. A distribution Dg on T'M is called integrable if, for every x € M, there
exists a maximal integral manifold of Dg passing through .

Given a family of vector fields S = { X3, X», ... X} on the manifold M, we denote
the Lie algebra generated by this family of vector fields by Lie(S). Chow [17] and Ra-
shevskii [65] independently showed that if, for zy € M, we have Lie(S)(x¢) = T, M,
then the orbit of S passing through z, contains a neighbourhood of x,. While the
Chow-Rashevskii theorem only gives us information about orbit of S passing through
xo when Lie(S)(zo) = Ty, M, it would be interesting to investigate the structure of
this orbit when Lie(S)(x¢) # Ty, M. As mentioned in [74], if the distribution Lie(.S) is
integrable, it is still possible to apply the Chow—Rashevskii theorem for the maximal
integral manifold of the distribution Lie(.S). Unfortunately, the distribution Lie(S) is
not generally integrable for a family of smooth vector fields. This can be seen using
the following example.

Example ([74]). Consider the family of vector fields S = {X;, X5} on R? defined as

0

Xl - %7
0
Xy = ¢(x)(7_y
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Where ¢ : R — R is defined as

b(x) = {e_:c? x>0,

0 z <0.

Let I be the maximal integral manifold of Lie({ X1, X5}) passing through (0,0) € R2.
Note that we have
dim(Lie({ X7, X2})(0,0)) = 1.

Thus, the integral manifold [ is a 1-dimensional manifold. However, we have

0
Lie({ X1, X52})(0,0) = span {8_<0’ O)}
x
This implies that, there exists (zg,yo) € I such that xy > 0. However, at (zq,yo), we

have
dim(Lie({X,, X,})(0,0)) = 2,

which is a contradiction. Thus the integral manifold of Lie({ X1, X»}) passing through
(0,0) € R? does not exist.

As is shown in the example above, for a family S = {X;, Xy, ..., X,,} of smooth
but non-real-analytic vector fields, it is possible that the involutive distribution Lie(S)
does not have a maximal integral manifold. In 1974, Sussmann [74] and Stefan [72]
independently proved a singular version of the Chow-Rashevskii theorem for smooth
vector fields called the “orbit theorem”. Using the concatenation of flows of the
vector fields { X7, ..., X,,}, Sussmann defined a distribution Pg. Instead of working
with involutive distribution Lie(.S), Sussmann considered the distribution Pg. In
particular, he showed that, given smooth vector fields S = {Xi, Xs,..., X, }, the
distribution Pg is integrable and its maximal integral manifolds are exactly the S-
orbits [74]. This implies that S-orbits are smooth submanifolds of M and completely
characterizes the tangent space to S-orbits.

Stefan introduced the notion of singular foliation in [72]. One can consider a
singular foliation as a generalization of the notion of foliation where the leaves does
not necessarily have the same dimension. Stefan proved that a family of smooth
vector fields S = {Xi, Xs, ..., X,,} induces a “singular foliation” structure on M
and using the same distribution Pg, he completely characterizes the tangent space to
leaves of this foliation [72].

It would be natural to expect that if the distribution Lie(S) is integrable, then
it coincides with the distribution Pg. Both Sussmann and Stefan studied conditions
under which the distribution Lie(S) is integrable and Lie(S) and Pg are identical.
In the differential geometry literature, numerous conditions have been developed for
the integrability of a distribution. The Frobenius theorem is one of the first and
most well-known of these results. According to the Frobenius theorem, if the rank
of the distribution Lie(S) is locally constant at every point on its domain, then it
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is integrable. In 1963, Hermann proposed two other conditions for integrability of
Lie(S) [32]. By considering the space of smooth vector fields as a module over the
ring C*°(M), Hermann showed that the module structure of the family of vector
fields S plays a crucial role in the integrability of Lie(S) [32]. He defined a C*°(M)-
module generated by vector fields in S and their Lie brackets and showed that if this
module has some finiteness property, then the distribution Lie(S) is integrable [32,
2.1(b)]. Hermann’s second condition dealt with real analyticity of vector fields in S.
He claimed that if the vector fields in S are real analytic, the distribution Lie(S) is
integrable [32, 2.1(c)]. However, he did not give any proof for this claim in his paper.
Three years later, Nagano [62] showed that if the vector fields in S are real analytic,
the distribution Lie(S) is integrable. In 1970, Lobry introduced a weaker condition
called “locally of finite type” and showed that (up to a minor error later discovered
by Stefan) if the distribution Lie(S) is locally of finite type, then it is integrable [57].
Using the Noetherian property of the space of germs of real analytic functions, Lobry
claimed that an involutive family of real analytic vector fields is locally of finite type
[57, Proposition 1.2.8]. However, Lobry did not give a complete proof of this claim.

In this thesis, following the approach of [72], we prove a similar orbit theorem for
tautological control systems. While this result can be considered as a generalization
of the orbit theorem, its proof is essentially the same as the proof of the orbit theorem
for ordinary control systems. However, the power of the tautological control system
approach becomes more clear in the real analytic case, where we show that the “lo-
cally finitely generated” property of the presheaf of Lie brackets of vector fields of a
tautological control system can be used to characterize the orbits of the system using
the Lie brackets of vector fields of the system.

1.2. Contribution of thesis

In this thesis, we develop a unifying framework for studying time-varying vector
fields of smooth and real analytic regularity. The framework we developed can be
generalized to include time-varying vector fields of a variety of regularity classes [42].
The contribution of this thesis is as follows.

1. As mentioned in the previous section, in [3] and [4], an operator framework has
been used to study time-varying vector fields and their flows in R™. In the heart
of the approach in [3] is the R-algebra C'*°(R") and the locally convex topology
on it. In this approach, smooth vector fields are considered as derivations of
R-algebra C*°(R") and smooth maps are considered as unital R-algebra homo-
morphisms on C*>°(R"). Then one can consider a time-varying vector field as a
curve on the space of derivations of C°(R"). However, it seems that in both
[3] and [4] there is no consistency between regularity of vector fields and their
corresponding operators. For example, in [4], a real analytic vector field is also
considered as derivation of R-algebra C*°(R").
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In this thesis, we develop a unified setting for studying smooth and real ana-
lytic time-varying vector field in a consistent manner. In order to do this, we
generalize the frameworks in [3] and [4] in two ways. First, instead of working
with the R-algebra C°°(M) for all regularity classes, we consider the R-algebra
C"(M), where v € {co,w}, consistent with the regularity of the problem. Using
the results of Grabowski [26] and Michael [60], we show that there is a one-to-
one correspondence between C“-vector fields on M and derivations on C*(M)
and there is a one-to-one correspondence between C“-maps on M and unital
R-algebra homomorphisms of C*(M). These results together with that proved
in [4] allow us to develop a setting for studying time-varying C”-vector fields
and their flows which is consistent with regularity of the vector fields. While, we
only include the space of smooth and real analytic functions in this thesis, the
extension of this setting to other classes of regularity is straightforward and has
been done in [42]. Secondly, instead of focusing only on the space of functions
on M, we study the space of sections of a vector bundle (£, M, 7). One can eas-
ily see that functions and vector fields can be obtained from this constructions
by considering the sections of the trivial line bundle and tangent bundle on M
respectively. Moreover, we define suitable topology on the space of C”-sections,
which makes it into a complete locally convex space. This topology in the
smooth case is the well-known “smooth compact-open” topology. However, for
the real analytic sections, following [59], we define the topology using the germ
of holomorphic sections. This topology, which turns out to be finer than the
restriction of smooth compact-open topology, plays a crucial role in studying

the local and global holomorphic extension of time-varying real analytic vector
fields.

. It is well-known that every real analytic function on R can be extended to a

holomorphic function on a neighbourhood 2 C C of R. Similarly, one can
extend a real analytic function (vector field) on a real analytic manifold M to
a holomorphic function (vector field) on a complexification of M [18, Lemma
5.40]. In control theory, it is sometimes crucial to work with time-varying vector
fields. Since the class of real analytic regularity is of considerable importance
in control theory, it is interesting to study time-varying real analytic vector
fields. As mentioned in the introduction, the class of real analytic maps has a
close connection with the class of holomorphic maps. Therefore, one would like
to see if it is possible to extend a time-varying real analytic vector field to a
time-varying holomorphic vector field. In the previous section we showed that
generally such an extension is not possible. One would then try to impose some
appropriate joint regularity condition on time and state to ensure the existence
of such an extension. In chapter 3, we develop tools and techniques for studying
time-varying vector fields as curves on I'V(T'M). In particular, following the
approach in [6] and using the properties of the locally convex space I'V(T'M),
we study and characterize the “Bochner integrability” of curves on I'V(TM).
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We then use the inductive limit representation of the space I'Y(T'M) to show
that one can extend a “locally Bochner integrable” time-varying real analytic
vector field on M to a locally Bochner integrable holomorphic vector field on
a complexification of M (Theorem 3.7.4). We call this result the “global”
extension result, since it proves the existence of a holomorphic extension on
the “whole” domain M. While this theorem is the right tool for studying
extension of a “single” time-varying real analytic vector field, it is indecisive
for studying the holomorphic extension of a family of time-varying real analytic
vector fields. In Theorem 3.7.8, using the projective limit representation of the
space I'“(T'M), we show that all members of a “bounded” family of locally
Bochner integrable real analytic vector fields have holomorphic extensions to a
common domain of states.

. Following the chronological calculus of Agrachev and Gamkrelidze [3], one can
consider the “nonlinear” differential equation governing the flow of a time-
varying vector field as a “linear” differential equation on the infinite-dimensional
locally convex space L(C*>(M); C*°(M)). In [3] and [4] this “linear” differential
equation has been studied on L(C*°(M); C>°(M)) for the real analytic vector
fields. The approach used in both [3] and [4] is to construct the so-called se-
quence of Picard iterations for the “linear” differential equation and show that
this sequence converges. In [3] it has been shown that, if a locally integrable
time-varying real analytic vector field on R™ has a bounded extension to a locally
integrable time-varying holomorphic vector field on C”, then the sequence of Pi-
card iterations for the extended vector field converges in L(C(M); ChoY(M)).
In [4], it has been shown that, for every locally integrable time-varying real
analytic vector field on a real analytic manifold M, the sequence of Picard it-
erations converges in L(C*(M); C*°(M)). In this thesis, we show that for a
time-varying C"-vector fields, the associated “linear” differential equation is a
differential equation on the locally convex space L(C¥(M); C¥(M)). In Theorem
3.8.1 we study this “linear” differential equation for the holomorphic and real
analytic case in a consistent manner. As mentioned in the previous section, we
show that a locally Bochner integrable time-varying real analytic vector field X
can be considered as a locally Bochner integrable curve on L(C*(M); C¥(M)).
Therefore, the “linear” differential equation for the flows of X is a “linear”
differential equation on the locally convex space L(C*(M); C¥(M)). Using the
extension results developed in Theorem 3.7.4 and appropriate estimates for the
seminorms on the space of real analytic functions (equation (3.3.2)), we show
that the sequence of Picard iterations for this “linear” differential equation con-
verges in L(C*(M); C¥(M)). This will give us the convergence of the sequence
of Picard iterations for the locally Bochner integrable time-varying real analytic
vector field in the real analytic topology.

. We finish chapter 3 by studying the connection between locally Bochner in-
tegrable time-varying C"-vector fields and their flows. We consider locally
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Bochner integrable time-varying C"-vector fields as locally Bochner integrable
curves on the space L(C*(M);C¥"(M)). Moreover, by Theorem 3.8.1, we
know that the flow of a locally Bochner integrable time-varying C”-vector field
can also be considered as a locally absolutely continuous curve on the space
L(CY(M);C"(U)), for some open set U. In Example 3.9.1, it has been clari-
fied that any map which assigns to a locally Bochner integrable time-varying
vector field its flow can only be defined into the space of “germs” of flows. We
then proceed to define the “exponential map” which assigns to the germ of
a locally Bochner integrable curve around (tg,z9) € R x M, the germ of its
flow around (zo,%y). Using suitable topologies on the space of locally Bochner
integrable curves on L(C”(M); C”(M)) and the space of locally absolutely con-
tinuous curves on L(C"(M); C¥(U)), one can induce topologies on domain and
codomain of the exponential map. In particular, we show that, using these
topologies, the exponential map is sequentially continuous.

. One can use the framework developed in chapter 3 to study regularity of control

systems. Using the C”-topologies developed in chapter 3, we define a new class
of control systems called C”-control systems. This control system is a family
of parametrized vector fields {F“},ey, where the control set U is a general
“topological space”. We study regularity of C”-control systems and we show
that, by imposing appropriate conditions on {F""},c; coming from C”-topology
on I'Y(M), we could ensure that the regularity of the flows of a C”-control system
is consistent with the regularity of the system itself. In the real analytic case, the
class of C“-control systems is new and deep. Moreover, using the C“-topology
on the space of real analytic vector fields, we study the relationship between
real analytic control systems and holomorphic control systems. In particular,
we show that when U is locally compact, every real analytic control system
can be extended “locally” to a holomorphic control system on an appropriate
manifold.

. In chapter 4, following [55], we present a model for studying control system

called “tautological control system”. Instead of considering control systems as
a “parametrized” family of vector fields, a tautological control system is defined
as a presheaf of vector fields. Therefore, the tautological framework removes the
dependence of the definition of control systems on “control parametrization”.
However, this arises some difficulties in defining trajectories of a system. We
define etalé trajectories of a tautological control systems and we show that this
notion of the trajectory is the right one for studying orbits of the system and
its properties.

. In chapter 5, we study the orbits of C”-tautological control systems. We general-

ize proof of the orbit theorem given in [72] to the case of C”-tautological control
systems. In particular, for every C"-tautological control system X = (M, F),
we define a subpresheaf .% of the sheaf of C'-vector fields on M, which is called
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the homogeneous presheaf associated to .%. We show that, for every point x on
the manifold M, the tangent space to the orbit of ¥ passing through z is .Z (z).
Similar to the classical orbit theorem, it would be interesting to see whether
one can characterize .% () using the Lie brackets of vector fields of the system.
In particular, one would like to find conditions under which we have

F(x) = Lie(F)(x).

Given a family of vector fields S, Hermann observed that the module struc-
ture of the vector fields of the system plays a essential role in the integrability
of the distribution Lie(S). More specifically, Hermann showed that if Lie(S)
is a locally finitely generated module, then the distributions Lie(S) and Pg
coincides [31, 2.1(c)]. Unfortunately, one cannot generalize Hermann’s condi-
tion for tautological control systems. In particular, Example 5.4.13 gives a real
analytic tautological control system (M, . %) such that, for every open neigh-
bourhood U of x, Lie(.%#)(U) is a locally finitely generated C*(M )-module but
Z (2) # Lie(F)(x).

Thus, for a tautological control system (M, . %), the fact that Lie(.#) is a locally
finitely generated module does not generally imply that .7 (z) = Lie(.#)(z). In
this thesis, we considering Lie(.#) as a subpresheaf of the sheaf of C*-vector
fields on M. Then we show that if Lie(.#) is a “locally finitely generated
presheaf”, then, for every x € M, we have

F (x) = Lie(F)(x).

Thus the difference between Lie(.%) being a locally finitely generated module
and a locally finitely generated presheaf is crucial here. It should be noted
that the first condition is a condition on the local section of Lie(.#), while the
second one is a condition on germs of sections in Lie(.#). In particular, for a
globally generated real analytic tautological control system 3 = (M, .%), using
the Weierstrass Prepration theorem and the Noetherian property of analytic
sheaves, one can show that the presheaf Lie(.#) is locally finitely generated.
Therefore, for globally generated real analytic tautological control systems, we
have

Z(z) = Lie(F)(x).



Chapter 2

Mathematical notation and
background

In this chapter, we present the mathematical background and notation used in this
thesis. Our treatment of every subject in this section is not comprehensive and we
refer to the references for a detailed study of each topic.

2.1. Manifolds and mappings

Definition 2.1.1. A multi-index of order m is an element () = (ry,re,...,7,) €
(Zsp)™. For all multindices (r) and (s) of order m, every x = (x1,%2,...,%y) € R™,
and f: R™ — R", we define

Irl = ri4+r+...+rm,
(r)y+(s) = (ri+s,ma+ 82, s Tm + Sm),
(r)! = rlrl ool
" = gl L,
olrlf

oxy Oy ... Oy
() = () - ()

We denote the multi-index (0,0,...,1,...,0) € (Z>)™, where 1 is in the i-th place,

by (/z\) One can compare multindices (r), (s) € (Zs)™. We say that (s) < (r) if, for
every i € {1,2,...,m}, we have s; < r;.

Definition 2.1.2. The space of all decreasing sequences {a;};en such that a; € R+
and lim,,_,., a, = 0 is denoted by cé(ZZO; R-o).

Definition 2.1.3. Let Q C R” be an open set and z9 € Q. A mapping f : Q — R/
is smooth, or of class ('™ at point xg, if there exists a neighbourhood U C € of x

16



ON THE ROLE OF REGULARITY IN MATHEMATICAL CONTROL THEORY 17

such that, for every m € N and every (r) € (Zso)™, the mapping D f : U — R
is continuous.
A mapping f : Q — R! is smooth on 2 if, for every zo € Q, f is smooth at z.

Definition 2.1.4. Let O C R”™ be an open set, o € 2, and f : Q@ — R! be a
C*>-mapping at xo. Then the Taylor series of f at x( is the power series

S D9 ()] (@ — w0, 211)

|
ye@aom )

A C>®-mapping f : Q@ — R is real analytic or of class C¥ if, for every z, € €,
there exists p > 0 such that the Taylor series (2.1.1) of f at xy converges to f(x) for
all ||z — x| < p.

A mapping f : Q — R is real analytic on  if, for every z, € Q, it is real
analytic at x.

The class of C“-maps are strictly contained in class of C*°-maps. The following
theorem characterizes real analytic functions as a subset of smooth functions [49,
Proposition 2.2.10].

Theorem 2.1.5. Let Q C R" be an open set and f : 0 — R! be smooth on Q. Then
the following are equivalent:

1. f is real analytic on §2;

2. there exists open set U C C™ such that Q C U and a holomorphic function
f:U — C! such that

f(z) = f(z), Yze
3. for every x € €1, there exists V C ) containing x and R,C > 0 such that
’ ol f H < C(r)!

920 " RIf
Definition 2.1.6. Let v € {oo,w,hol}, n € N, and F € {C,R}, where F = C if
v = hol. Then a C¥-manifold is a Hausdorff, second countable topological space M
equipped with a family &/ of maps such that

V(r) € (Zso)™.

1. for every ¢ € &/, ¢ : Dy — Ry is a homeomorphism from an open subset
Dy € M onto an open set Ry C ",

2. U¢eng¢ =M,
3. for every ¢, v € o, the map ¢otp™" : (Dy N Dy) — ¢(DyN Dy) is of class C”.

The family &7 is called an atlas on M. Members of .o/ are called coordinate charts
on M. We usually refer to a coordinate chart as a pair (D, ¢). The integer n is
called the dimension of the manifold and we write dimpM = n.
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Definition 2.1.7. Let M and N be two C"-manifolds and o € M. A mapping
F : M — N is of class C" at xz( if there exists a coordinate chart (¢, Dy) on
M containing zy and a coordinate chart (¢, D) on N containing f(xg) such that
F(Dy) € Dy and the mapping

YoFog " ¢(Dy) = (Dy),

is of class C¥ at ¢(xo).
A mapping f: M — N is of class C" if, for every z € M, it is of class C* at x.

If v = oo, we consider the manifold M to be of class C'*°. Manifolds of class C*
are also called smooth manifolds.

If v = w, the manifold M is considered to be of class C*. Manifolds of class C¥
are usually called real analytic manifolds.

Finally, if v = hol, we consider the manifold M to be a C"'-manifold. Manifolds
of class C"! are usually called holomorphic manifolds.

Definition 2.1.8. The set of all C¥-functions f : M — F is denoted by C*(M).

The set C¥(M) is clearly an F-vector space under addition and scalar multiplica-
tion defined as

(f+9)(@) = fla)+g(x), Vfgel (M),
Af)(x) = Af(x), VfeC"(M),\eF.

Since every C”-manifold of dimension n is locally diffeomorphic with F”, one can
see that locally C”-functions do exists. However, in the case of holomorphic manifolds,
it is possible that the set of globally defined holomorphic functions are very restricted
(for example, when M is a compact holomorphic manifold, then C"'(M) consists
only of locally constant functions) [28, Chapter V, Theorem 2.4]. We restrict our
analysis to a class of holomorphic manifolds which turns out to have good supply of
globally defined holomorphic functions.

Definition 2.1.9. A C"!-manifold is called a Stein manifold if,

1. for every compact set K C M, the set

K={zeM|[[fG) < sup 1F(2)[l, for every f e CM(M)},

is a compact subset of M.

2. the set C™!(M) separate points on M (i.e., for every z;,z; € M such that
21 # 2, there exists f € C™!(M) such that f(z1) # f(22)).

One can show that Stein manifolds have “enough” global functions to construct
local charts.
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Theorem 2.1.10. Let M be a Stein manifold. Then, for every zo € M, there exist
fi,f2,- - fo € CPY(M) and a neighbourhood U around zy such that (U, ), where
¢:U — R" given by

¢(Z) = (fl(z)7f2(z)7 .- 7fn(z))7 VzeU,

18 a coordinate chart around zy.

For a C-manifold M, one can attach a vector space to every point on a manifold
and glue these vector spaces in such a way that the whole space “locally” looks like
M x RF. These structures arises frequently in differential geometry and are called
vector bundles.

Definition 2.1.11. Let M be a C”-manifold. A C"-vector bundle over M is a
triple (E, M, ) where F is a C”-manifold and 7 : E — M is a C”-map such that

1. for every x € M, the set E, = 7 '(x) (which is usually called the fiber of £
at x) is a k-dimensional F-vector space;

2. for every x € M, there exists a neighbourhood U of x in M and a C"-
diffeomorphism ® : 7= 3(U) — U x F* such that the following diagram com-
mutes:

Y (U) 2> U x F*
S
U
where pr; : U x F¥ — U is the projection into the first factor;
3. fokr every x € M, the restriction of ® to F, is a linear isomorphism from £, to
F*.

Definition 2.1.12. Let (E, M, ) be a C”-vector bundle. A C”-section of (E, M, )
is a C”-map o : E — M such that

mToo = idyy,.

The set of all C”-sections of a C¥-vector bundle (E, M, ) is denoted by I'V(E).
One can show that ['V(FE) is an F-vector space.

Let M be a C”-manifold. One can show that (M x R, M, pr,) is a C”-vector
bundle. Moreover, C”-sections of (M x R, M, pr,) are exactly C”-functions on M.
Now we can define maps between vector bundle and subbundles.

Definition 2.1.13. Let (E, M, ) and (E', M', ") be two C”-vector bundles. A C"
vector bundle map between (E, M, ) and (E’, M’ 7’) is a pair of maps (F, f) such
that
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1. The maps F : E — E' and f : M — M’ are C” and the following diagram
commutes:

2. for every x € M, the map F|g,: E, — E}(x) is linear.

Vector bundle (F, M, r) is a generalized vector subbundle of (E', M’ «’) if
there exists a C”-vector bundle map (F, f) such that

1. The maps F : E — E' and f: M — M’ are C”-embeddings, and
2. for every x € M, the map Flg,: E, — E}(m) is injective.

Let (E, M, ) be a C”-vector bundle and U C M be an open subset of M. We
set Ely= 7 1(U). Then one can show that (E|y, U, |y) is a generalized C”-vector
subbundle of (E, M, ).

Definition 2.1.14. For the space R™, we define the Euclidian norm ||.||g» : R" — R
as
1
[V[ge = (0] +03 +...+02)>,  VYveER™

For the space C", we define the norm ||.||cn : C" — R as

N

[V]cr = (0101 + vl + ... + 0, T5) 2, Vv e C".

Let M be an n-dimensional C”-manifold and (U, ¢) be a coordinate chart on M.
Then we define ||.||4) : U = R as

|zl we) = lo(2)||pn,  Vz €U.

Let M be an n-dimensional C”-manifold and (U, ¢) be a coordinate chart on
M. Let f be a C”-function on M. Then, for every multi-index (r), we define

DY f ()| as

1DV f(@)lws) = 1DV (fod) (97 (@)]e, Ve U.

When the coordinate chart on M is understood, we usually omit the subscript (U, ¢)
in the norm.

Let (E, M, ) be a C”-vector bundle, M be an n-dimensional C”-manifold, (U, ¢)
be a coordinate chart on M, and 1 : 7= }(U) — U x R¥ be a local trivialization for
(E,M, ). Let X be a C”-section of (E, M,x). Then, for every multi-index (r), we
define | DX (2)|| (w6, as

IDOX @) wam = 1D (12X 07) (@)l VU

When the coordinate chart on M and the local trivialization on (E, M, ) is under-
stood, we usually omit the subscript (U, ¢, n) in the norm.



ON THE ROLE OF REGULARITY IN MATHEMATICAL CONTROL THEORY 21

2.2. Complex analysis

In this section we review some well-known theorems from the theory of several
complex variables.

Definition 2.2.1. Let w € C". An open polydisc D(,y(w) for (r) = (r1,72,...,7,) €
(Rso)™ is a subset of C™ defined as

D(r)(w) = {Z cC” | ||ZZ _WZH < Ti, Vi€ {172a s 7n}}

The Cauchy integral formula is one of the fundamental results in theory of func-
tions with one complex variable. Repeated application of Cauchy’s integral formula
for one variable will give us the following generalization of Cauchy’s integral formula
for several complex variables [37, Theorem 2.2.1].

Theorem 2.2.2. Let D,y(z) be an open polydisc in C" and f € C°(cl(D¢y(20))),
such that f is analytic in each z; on Dy (%), when other variables are fized. Then
we have

1
flz) = —/ UCTE I dw,dws . . . dw,,
0

(27‘(‘)77/ UD(T)(ZO) (wl - Zl)(w2 - ZQ) . (wn — Zn>

where 0y Dy (20) is not the boundary of Dy (20), but it is a set defined as

00D (z0) = [[{2 € C | llzi — (z0)ill =i}
=1

Using the Cauchy’s integral formula for several variables, one can get Cauchy’s
estimate for derivatives of holomorphic functions [37, Theorem 2.2.1].

Theorem 2.2.3. Let f € C™(D(z0)). Then we have

\w@ﬂwHSéﬂﬁwWﬂ@MZEﬂDm%»}

2.3. Topological vector spaces

2.3.1. Basic definitions. In this section we consider vector spaces over the field F,
where F € {C,R}.

Definition 2.3.1. Let V' be a vector space over field F with addition +: V xV — F
and scalar multiplication . : F x V' — V. Then a topology 7 on V is called a
linear topology if, with respect to 7, both addition and scalar multiplication are
continuous. The pair (V,7) is called a topological vector space.
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Definition 2.3.2. Let (V,7) be a topological vector space.

A subset B C V is bounded if, for every neighbourhood U of 0 in V, there exists
a € F such that B C aU.

A subset C' C V is circled if, for every a € F such that ||«|| < 1, we have

aC C C.

A subset R C V is radial if, for every v € V, there exists A, € F such that v € AR
for every A such that | A|| < [[A.]|-
A subset A C V is convex if, for every a € [0,1] and every z,y € A, we have

ar+ (1 —a)ye A

A subset A C V is absolutely convex if it is convex and circled.

A family U of open neighbourhoods of 0 in V' is a local base for V' if, for every
neighbourhood W of 0 in V', there exists U € U such that U C W.

A family . of open neighbourhoods of 0 in V' is a local subbase for V if, for
every neighbourhood W of 0 in V, there exists n € N and 51, S5,,...,S5, € . such
that (., S; C W.

Definition 2.3.3. A topological vector space V' satisfies the Heine—Borel property
if every closed and bounded subset of V' is compact.

2.3.2. Locally convex topological vector spaces.

Definition 2.3.4. A topological vector space (V, 1) is locally convex if there exists
a local base U for V consisting of convex sets.

Definition 2.3.5. Let V be a vector space. A seminormon Visamapp:V — R
such that

1. p(v) >0, Yo eV,

2. plav) = ||laf|p(v), VaeF,Yv eV,

3. p(v+w) < p(v) + p(w), Yo,we V.

For every seminorm p on V' and every € > 0, one can define a subset U, as
Upe ={v eV |p) <e}

Then the topology generated by p is the linear topology on V' for which the family
{Up.e}eers, 1s a local subbase.

One can also associate to every convex, circled, and radial subset of V' a seminorm.
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Definition 2.3.6. For every convex, circled, and radial set U C V| the Minkowski
functional of U is the map py : V — R defined as

pu(v) =inf{a € Ry | a v € U}, Yo e V.
Since U is radial, we have
pu(v) < oo, YveV.

Since U is circled, we have
py ([0,1)) =U.
Finally, since U is convex, the Minkowski functional py is a seminorm [68, Theorem
1.35].
One can show that locally convex topological vector spaces can be characterized
using a family of seminorms.

Theorem 2.3.7. A topological vector space (V,T) is locally convez, if and only if
there exists a family of seminorms {p;}iea on V which generates the topology .

Similarly, one can characterize boundedness in a locally convex topological vector
space using a family of generating seminorms [68, Theorem 1.37].

Theorem 2.3.8. Let V' be a locally convexr space with a family of generating semi-
norms {p;}ien. Then B C V is bounded if and only if, for every i € A, there exists
M; > 0 such that

pi(v) < M;, Yv € B.

2.3.3. Uniformity on topological vector spaces. In a metric space there are many
concepts which are not topological but depend on the specific metric we use on the
space. One of these properties is being a Cauchy sequence. The following example
shows that, for a sequence in a topological space, the property of being Cauchy is not
topological.

Example 2.3.9 ([46]). Let X = (0,00) and consider two metrics d; : X x X — R
and dy : X x X — R defined as

di(z,y) = |lz—yl, VeyeX
1 1
dQ(xuy) = | vxuyeX'
r Yy
Since the map f : (0,00) — (0, 00) defined by
1
fla) =~

is a homeomorphism, d; and dy induce the same topology on X (which is exactly the
subspace topology from R). However, the sequence {%}neN on X is Cauchy in (X, d;)
and it is not Cauchy in (X, ds).
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In order to study Cauchy sequences on topological spaces, topology does not suffice
and one needs some extra structure. This structure can be obtained by generalizing
the notion of metric.

Definition 2.3.10. Let X be a set and let U,V C X x X. Then we define U~ C
X x X as

U= {(:E,y) ’ (y,:E) S U}
Also we define UoV C X x X as

UoV ={(z,y) e X x X |3z € X s.t. (z,2) €U and (z,y) € V}.

Definition 2.3.11. Let X be a set. A uniformity on X is a family Ll of subsets of
X x X such that

1. every member of il contains {(x,x) | x € X},

2. if U € Y, then U™! € 4,

3. if U C U, then there exists V' € i such that VoV C U.

4. for every U,V € U, we have UV € 4,

5. if U € 4, then, for every V such that U C V| we have V € 4l

By a unifrom space, we mean a pair (X, i), where X is a topological space and
31 is a uniformity on X.

Definition 2.3.12. Let 4 be a uniformity on a topological space X. Then a subfamily
N of U is a base for L if, for every U € i, there exists N € 91 such that N C U.

Using a uniformity on a topological space, one can define the notion of complete-
ness. We first define nets on topological spaces.

Definition 2.3.13. Let A be a set. A binary relation > directs A if
1. for every 4,7,k € A, i > j and j = k implies i = k,
2. for every i € A, we have ¢ = i,
3. for every 7,5 € A, there exists m € A such that m > ¢ and m > j.
A directed set is a pair (A, >) such that = directs A.

Definition 2.3.14. Let (A, =) be a directed set. A net from (A, >) to a space Y is
a function s : A — Y. We usually denote a net s by {s4}aea-
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Definition 2.3.15. Let (A, =) be a directed set and (X, 4l) be a uniform space. Let
{Sa}aca be a net in the uniform space (X,4). Then {s,}.ca is a Cauchy net in
(X, ) if, for every U € 4, there exists 8 € A such that, for every m,n € A with the
property that m = g and n > 3, we have

(S, sn) € U.

Definition 2.3.16. A uniform space (X,4) is complete if every Cauchy net in
(X, 1) converges to a point in X.

Since we are studying topological vector spaces, we would like to see if it is possible
to define uniformity on a topological vector space using its topological structure. We
first define translation-invariant uniformities on vector spaces.

Definition 2.3.17. Let V be a vector space. A uniformity 4 on V' is translation-
invariant if there exists a base 91 for 4 such that, for every N € 9 and every
z,y,z €V, (x,y) € N if and only if (z + z,y + z) € N.

The following theorem is of considerable importance in the theory of topolog-
ical vector spaces. It allows us to study the notions of completeness and Cauchy
convergence in topological vector spaces without ambiguity [69, Chapter 1, §1.4].

Theorem 2.3.18. Let V' be a topological vector space. The topology of V induces a
unique translation-invariant uniformity . In particular, if B is a local neighbourhood
base for topology on V', then N defined as

N={(z,y) eVxV]z—yeV}
is a base for the uniformity L.

Therefore, given a topological vector space V', one can define Cauchy nets and
Cauchy sequences on V' using this unique translation-invariant uniformity. In general
a topological vector space equipped with this translation-invariant uniformity may
not be complete. However, one can show that V' is contained as a dense subset in a
complete topological vector space V' [69, Chapter 1, §1.5].

Theorem 2.3.19. Let V' be a Hausdorff, locally convex vector space. Then there
exists a unique complete, locally convex vector space V. which contains V as a dense
subset.

We usually call the unique locally convex vector space V associated with V the
completion of V.
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2.3.4. Dual space and dual topologies.

Definition 2.3.20. Let V be a topological vector space. Then the algebraic dual
of V, which is denoted by V*, is the set

V*={f:V = F| fis linear}

It is easy to see that VV* is a vector space.
The topological dual of V', which is denoted by V', is the set

V'={f:V —F| fis continuous and linear}

The set V' is clearly a vector space.

Definition 2.3.21. Let (V,7) be a locally convex space and let V' be the topolog-
ical dual of V. Then the coarsest topology on V', which makes all members of V"’
continuous is called the weak topology V.

It can be shown that the weak topology on V' is a locally convex topology. In
particular, one can define a family of generating seminorms for the weak topology on

V.

Theorem 2.3.22. Let V' be a locally convex space and V' be the topological dual of
V. Then, for every f € V', we define the seminorm py : V — F as

pr(v)=|f)], VweV.

The family of seminorms {ps}rev' generates the weak topology on V.

To distinguish between topologies on a locally convex space V', we denote the
weak topology on V' by a(V,V’). Since (V, (c(V,V"))) is a locally convex space, one
can define appropriate notions of compactness, boundedness and, convergence on it.

Definition 2.3.23. Let V' be a locally convex space.
1. A subset K CV is weakly compact if it is compact in (V, o (V, V")),

2. a subset S C V is relatively weakly compact if the o(V, V’)-closure of S is
compact in (V, (a(V,V"))),

3. asequence {v, }nen in V' is weakly convergent if there exists v € V' such that
{p }nen converges to v in (V,o(V, V")),

4. a sequence {v,}nen in V' is weakly Cauchy if {v,},en is a Cauchy sequence

in (V,o(V,V")).
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For a metrizable topological space X it is well-known that a set K C X is compact
if and only if every sequence in K has a convergent subsequence. Let V' be a Banach
space. Then it is clear that V' is a metrizable space and therefore one can characterize
the compact subsets of V' using the above fact. However, the weak topology on V' is
not metrizable. Thus it would be interesting to see if the same characterization holds
for weakly compact subsets of V. Eberlein-Smulian Theorem answers this question
affirmatively [69, Chapter IV, Corollary 2]. Eberlein-Smulian Theorem is usually
considered as one of the deepest theorems in studying the weak topology on Banach
spaces.

Theorem 2.3.24. Let V' be a Banach space and A C V. Then the following state-
ments are equivalent:

(i) The weak closure of A is weakly compact,
(i1) each sequence of elements of A has a subsequence that is weakly convergent.

One can get a partial generalization of the Eberlein—-Smulian Theorem for complete
locally convex spaces [69, Chapter IV, Theorem 11.2].

Theorem 2.3.25. Let V' be a complete locally convex space and A C V. If every
sequence of elements of A has a subsequence that is weakly convergent, then the weak
closure of A is weakly compact.

When V is a locally convex space, one can define many different linear topology
on V' which makes it into a locally convex space.

Definition 2.3.26. Let V' be a locally convex vector space and & be a family of
subsets of V' directed under the inclusion such that

UJs=w

5e6

For every S € & and every open neighbourhood U C F containing 0, we define
B(S,U) by
B(S,U)={aeV'|a(S)CU}.

The family {B(S,U)} form the neighbourhood base for a topology on V' called &-
topology.

In general, the vector space V' endowed with G-topology may not be a Hausdorff
locally convex topological vector space. However, it can be shown that by imposing
some restrictions on %, one can ensure that G-topology on V' is Hausdorff [69,
Chapter III, Theorem 3.2].

Theorem 2.3.27. Let & be a family of subsets of V' such that | Jgeq S =V and, for
every S € % and every a € V', a(9) is bounded in F. Then the G-topology on V' is
a Hausdorff locally convex topology.
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In particular, when & is family of finite sets of V, it is clear that, for every a € V”,
a(S) is bounded in R.

Definition 2.3.28. 1. If & is the family of finite subsets of V', then the &-
topology on V' is called the weak-* topology on V’. We denote the weak-x
topology on V' by o(V', V).

2. If & is the family of bounded subsets of V', then the &-topology on V' is called
the strong topology on /. We denote the strong topology on V' by 5(V', V).

One can find a family of generating seminorms for the G-topology on V' [69,
Chapter 111, §3].

Theorem 2.3.29. Let {p;}ic; be a family of generating seminorms for the locally
convex topology on V. Then, for every set S € &, we define the seminorm pg; :
V= R by

psi(a) = sup[[a(z)].
€S

The family {ps;}{scs,cry s a generating family of seminorms on for the &-topology
on V'

Corollary 2.3.30. Let V' be a locally convex topological vector space. For every
v €V, we define the seminorm p, : V' — F as

po(f)=1f()],  VfeV
The family of seminorm {p, }vev generates the weak-+ topology on V'.

It is easy to show that, for a locally convex space V', the strong topology on V" is
finer than the weak-* topology on V.

Definition 2.3.31. Let V and W be two topological vector spaces.

1. A linear map L : V — W is continuous if, for every open set U C W, the
set L71(U) is open in V. The set of all linear continuous maps L : V — W is
denoted by L(V;W).

2. A linear map L : V — W is bounded if, for every bounded set B C V, the set
L(B) is bounded in W.

3. A linear map L : V — W is compact if there exists a neighbourhood U of 0
in V such that L(U) is relatively compact in W.

4. Let V and W be locally convex topological vector spaces. A linear map L : V —
W is weakly compact if there exists a neighbourhood U of 0 in V' such that
L(U) is relatively compact in (W, o(W,W')) (or equivalently L(U) is relatively
compact in the weak topology on W).
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5. A subset S C L(V; W) is pointwise bounded if, for every v € V| the set S(v)
is bounded in W.

6. Let S C L(V; W) be a subset and vy € V. Then S is equicontinuous at vy if,
for every open neighbourhood U of 0 in W, there exists an open neighbourhood
O of 0 in V such that

alv—1v) €U, Va e S, Yv—1y € 0.

7. A subset S C L(V; W) is equicontinuous if it is equicontinuous at v for every
velV.

2.3.5. Curves on locally convex topological vector spaces. In this section, we
denote the Lebesgue measure on R by m.

Definition 2.3.32. Let T C R be an interval and let .Z(T) denote the set of all
Lebesgue measurable functions f : T — F. A function f : T — F is integrable on T
if

/T 1£(7) ldm < oo,

We denote the set of all integrable members of .# (T) by L'(T). A function f: T — F
is locally integrable if, for every compact set K C T, we have

/K 1 () ldm < oo,

The set of all locally integrable functions on T is denoted by L .(T).

A function f: T — F in .#(T) is essentially bounded if there exists a compact
set K C IF such that

m{z | f(z) ¢ K} =0.

We denote the set of all essentially bounded members of .Z (T) by L>(T).
A function f : T — F in .#(T) is locally essentially bounded if, for every
compact set K C T, there exists a bounded set Bx C [ such that

m{z € K| f(z) & Bx} = 0.

We denote the set of all locally essentially bounded members of . (T) by L2 (T).

loc

Definition 2.3.33. Let V be a locally convex space with a family of generating
seminorms {p;}ica and let T C R be an interval. A curve f : T — V is integrally
bounded if, for every i € N, we have

/sz‘(f(T))dm < 00.
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A function s : T — V is a simple function if there exist n € N, measurable
sets Ay, As..., A, C T, and vy, vy,...,v, € V such that m(4;) < oo for every

ie{l,2,...,n} and
5= ZXAiUi.
i=1

The set of all simple functions from the interval T to the vector space V is denoted
by S(T; V).
One can define Bochner integral of a simple function s = Y | x4,v; as

/T s(r)dm = im(Ai)vi.

It is easy to show that the above expression does not depend on choice of
Ay, Ay A, CT.

A curve f: T — V is Bochner approximable if there exists a net {f,}aea of
simple functions on V' such that, for every seminorm p;, we have

i | i (fa(r) = £ = .

The net of simple functions { f,}aea is an approximating net for the mapping f.

Theorem 2.3.34 ([6]). Let {fo}acn be an approzimating net for the mapping f :
T — V. Then {[; fa(T)dm}acn is a Cauchy net.

Let f: T — V be a mapping and let {f,}aca be an approximating net of simple
functions for f. If the net {fT fa(T)dm}aen converges, then we say that f is Bochner
integrable. One can show that the limit of { [} fo(7)dm},ca doesn’t depend on the
choice of approximating net and is called Bochner integral of f. The set of all
Bochner integrable curves from T to V is denoted by L!(T; V).

A curve f : T — V is locally Bochner integrable if for every compact set
J C T, the map f |; is Bochner integrable. The set of all locally Bochner integrable
curves from T to V is denoted by LL (T;V).

loc

Definition 2.3.35. Let V' be a locally convex vector space, {p;}ica a family of gen-
erating seminorms on V', and T C R an interval. Then, for every ¢ € A, we define a
seminorm p; as

pr(f) = /T p(f()dm,  Vf e LT, V).

The family of seminorms {p; v} generates a topology on L*(T; V'), which is called the
L!-topology.
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Since locally convex spaces generally do not satisfy Heine-Borel property, one
can define two notion of bounded curves on locally convex spaces. The first notion
which we call von Neumann bounded deals with the bounded sets in a locally convex
spaces, while the second notion which is called bounded in compact bornology deals
with compact sets in the locally convex space.

Definition 2.3.36. A curve f: T — V is essentially von Neumann bounded if
there exist a bounded set B € V' such that

m{z | f(x) € B} =0,

The set of all essentially von Neumann bounded curves from T to V is denoted by
L(T; V).

A curve f: T — V is locally essentially von Neumann bounded if, for every
compact interval I C T, the curve f |1 is essentially von Neumann bounded. The set
of all locally essentially von Neumann bounded curves from T to V is denoted by
Lie(T; V).

A curve f : T — V is essentially bounded in compact bornology if there
exist a compact set K € V such that

m{z | f(z) ¢ K} =0.

The set of all essentially bounded in compact bornology curves from T to V' is denoted
by LPY(T; V).

A curve f : T — V is locally essentially bounded in compact bornology
if, for every compact interval I C T, the curve f |; is essentially bounded in compact
bornology. The set of all locally essentially bounded in compact bornology curves
from T to V is denoted by L™ (T; V).

loc

One can easily see that for locally convex spaces that satisfy the Heine-Borel
property, bounded curves in von Neumann bornology and bounded curves in compact
bornology coincide.

Definition 2.3.37. Let V be a locally convex vector space, {p;}ica a family of gen-
erating seminorms on V', and T C R an interval. Then, for every ¢ € A, we define a
seminorm g¢; T as

¢r(f) =inf{M > 0| p;(f(t)) < M, a.e. on T}.
The family of seminorms {g; T} generates a topology on L>°(T; V') which is called the
L*°-topology.

Definition 2.3.38. A curve f: T — V is absolutely continuous if there exists a
Bochner integrable curve g : T — V such that, for every ¢, € T, we have

f(t) = f(to) +/ g(7)dm, vt eT.

to

The set of all absolutely continuous curves on V' on the interval T is denoted by
AC(T; V).
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Definition 2.3.39. A curve f : T — V is locally absolutely continuous if, for
every compact interval T C T, the curve f |p: T — V is absolutely continuous. The
set of all locally absolutely continuous curves on V' on the interval T is denoted by
AC]OC(T; V)

Theorem 2.3.40. Let V' be a complete, separable locally convex space, T C R be an
interval, and f: T — V be a curve on V. Then f is locally integrally bounded if and
only if it is locally Bochner integrable.

Proof. Our proof here is restatement of the proof of Theorem 3.2 and Theorem 3.3
in [6]. Without loss of generality, assume that T is compact. Let {p;};ca be a family
of generating seminorms for V. If f is locally Bochner integrable then, by definition,
if € A we have

/sz‘(f(T))dm < 00.

This means that f is integrally bounded.
To prove the converse, since V' is separable there exists a sequence {v;};en such
that {vy, vg,...} is dense in V. For every i,j,n € N, we set

AV = (e T p(F(0) >~ A —v) < )

We define the simple functions {s!}; ,en as

n
SZ = E XA'Z(L,j’Uj.
Jj=1

Note that, by construction, we have
1
P -0 <, WeT

So by Lebesgue’s dominated convergence theorem,

lim Tpi(f(T) — s(1))dm = 0.

n—oo

This means that there exists N € N such that
/]%(f()—s (1))dm < 1, Vi € N.
T

This implies that f is Bochner-approximable. Since V' is complete, every Bochner
approximable function is Bochner integrable. So f is Bochner integrable. [

Theorem 2.3.41. Let T C R be an interval. For every g € L>°(T), we define the
bounded functional L, : L}(T) — R as

/f )dm, Vf e LY(T).

Then for every bounded linear functional L on LY(T), there exists g € L>°(T) such
that L = L.

Proof. The proof is given in [67, Chapter 8]. O
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2.3.6. Inductive limit and projective limit of topological vector spaces.

Definition 2.3.42. Let V be a vector space, {V;};ca be a family of topological vector
spaces, and {L;};cn be a family of continuous linear maps such that L; : V. — V.
Then we define the projective topology on V' with respect to {V;, L;};ca as the
coarsest topology on V' such that all the maps L; are continuous.

One can easily show that the projective topology turns V' into a topological vector
space. Moreover if, for every ¢ € A, the topological vector space V; is locally convex,
then the projective topology on V' is also locally convex.

Theorem 2.3.43 ([69]). Let {V;}iea be a family of locally convex topological vector
spaces and {L; }iea is a family of continuous linear maps such that L; : V' — V;. Then
the projective topology on V- with respect to {V;, L;}ien, makes V into a locally convex
topological vector space.

Definition 2.3.44. Let V be a vector space, {V; }ica be a family of topological vector
spaces, and {L;};cp be a family of continuous linear maps such that L; : V; — V.
Then the inductive linear topology on V with respect to {V;, L;};ca is the finest
linear topology on V' which makes all the maps L; continuous.

One may note that, contrary to the case of the projective topology, the inductive
topology may be different in different categories.

Definition 2.3.45. Let V' be a vector space, {V;};cpa be a family of locally convex
topological vector spaces, and {L;};cp be a family of continuous linear maps such
that L; : V; — V. Then the inductive locally convex topology on V' with respect
to {V;, L; }iea is the finest locally convex topology on V' which makes all the maps L;
continuous.

Here we present definitions of the inductive limit and the projective limit of a
directed family of objects in a general category. However, in this thesis we only study
limit in the categories of sets, vector spaces, topological vector spaces, and locally
convex spaces.

Definition 2.3.46. Let (A, >) be a directed set and { X, },ea be a family of objects
and let {f,s}p=o be a family of morphisms such that f.s : X, — Xpg. Then the
inductive limit of {X,, fus}sra is a pair (X, {ga}aca), Where

1. X is an object and {gq}aca is a family of morphisms such that g, : X, — X
and, for every «, 8 € A with 8 > «, the following diagram commutes:

X, 2% X,

RN

X
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2. (X,{9a})aen is universal with respect to {X,, fas}s=a in the sense that, for
every other pair (Y, {hq}aea) such that, for every § = a, the following diagram

commutes:

faﬁ
Xo— X3

AN

Y

there exists a unique morphism ¢ : X — Y such that the following diagram

commutes:
X, x,
N
ha )F hg
Iq
y
Y

We usually denote the inductive limit of the inductive system {X,, fag}s=a by
ligXa.
Definition 2.3.47. Let (A, ») be a directed set, { X, }aca be a family of objects, and

{fap}ps=a be a family of morphisms such that f,s: X3 — X,. Then the projective
limit of {X,, fas}apen is a pair (X, {gataea), Where

1. X is an object and {gq}aca is a family of morphisms such that g, : X — X,
and, for every 8 > «, the following diagram commutes:

X

I

X3 e Xao

2. (X,{9a}aen) is universal with respect to {X,, fas}s=a in the sense that, for
every other pair (Y, {hq}aea) such that, for every § = a, the following diagram
commutes:

Y

I

Xp e Xa

there exists a unique morphism 7 : ¥ — X such that the following diagram
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Y
hg )v( ha
LN
Xz I Xa

We denote the projective limit of the inductive system {X,, fag}s=a by 1'£1Xa.

commutes:

Let {V;}ien be a countable family of locally convex topological vector spaces and
{fi}ien be a family of linear continuous maps such that f; : V; — V1. Then, for
every j > i, one can define f;; : V; = Vj as

fij = fjofj—1°~-- ° fi.

So we get a directed system (V;, {fi;});>i of locally convex spaces and continuous
linear maps.

In the case of countable inductive limits, we sometimes refer to {V;, f;}ien as a
directed system. By this we mean the directed system (V;, { fi;});>:; which is generated
from {V;, f;}ien as above.

Assume that, according to Definition 2.3.46, the pair (V,{g;}ien) is the locally
convex inductive limit of a directed system {V;, f;}ien. So V' is a locally convex space
and g; : V; — V are continuous linear maps. This completely characterizes open sets
in V in terms of open sets in V;. In particular, one has the following theorem [69,
Chapter 2, §6].

Theorem 2.3.48. Let {V}, fitien be a directed system of locally conver spaces and
the pair (V,{g;}ien) be the locally convexr inductive limit of {V;, fi}ien. Then a local
base for V' consists of all radial, convez, and circled subset U of V' such for every
i € N, we have g; '(U) is an open set in V;.

In many problems in functional analysis, one would like to study bounded sets of
V =1limV; in terms of bounded sets of the locally convex spaces V;. The following
definition classifies inductive limits of locally convex spaces based on their bounded
sets.

Definition 2.3.49. Let {V}, f:}ien be a directed system of locally convex spaces and
the pair (V, {g;}ien) be the locally convex inductive limit of {V;, f;}ien. The inductive
system {V, fi}ien is regular if, for every bounded set B C V, there exists m € N
and a bounded set B, C V,, such that the restriction map ¢,, |g,.: Bm — V is a
bijection onto B.

The inductive system {V;, f; }ien is boundedly retractive if, for every bounded
set B C V, there exists m € N and a bounded set B,, C V,, such that the restriction
map ¢m |B,,: Bm — V' is a homeomorphism onto B.
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Definition 2.3.50. Let {V;};cn be a family of locally convex topological vector spaces
and let {f;};en be a family of continuous linear maps such that f; : V; — Vi ;.

1. The inductive system {V, fi}ien is compact if, for every ¢ € N, the map
fi : Vi = Viyq is compact.

2. The inductive system {V;, f; }ien is weakly compact if, for every ¢ € N, the
map f; : V; = Viiq is weakly compact.

Theorem 2.3.51. Let {V;}ien be a family of locally convez topological vector spaces
and let { fi}ien be a family of linear continuous maps such that f; - Vi — Viy1. Then

1. if the inductive system {V;, fi}ien is weakly compact, then it is reqular, and
2. if the inductive system {V;, fi}ien is compact, then it is boundedly retractive.

Proof. The first part of this theorem has been proved in [48, Theorem 6] and the
second part in [48, Theorem 6]. O

However, one can find boundedly retractive inductive families which are not com-
pact [7]. In [66], Retakh studied an important condition on inductive families of
locally convex spaces called condition (M).

Definition 2.3.52. Let {V; };cn be a family of locally convex topological vector spaces
and let {f;}ien be a family of linear continuous maps such that f; : V; — Vi;q. The
inductive system {V;, f;};en satisfies condition (M) if there exists a sequence of
absolutely convex neighbourhoods {U;};en of 0 such that, for every ¢ € N, we have
U; C V; and,

1. for every i € N, we have U; C f; ' (Uiy1), and

2. for every i € N, there exists M; > 0 such that, for every j7 > M;, the topologies
induced from V; on U; are all the same.

Theorem 2.3.53. Let {V;}ien be a family of normed vector spaces and let { fi}ien
be a family of continuous linear maps such that f; : V; — Vii1. Suppose that the
inductive system {V;, fi}ien is reqular. Then inductive system {V;, f;}ien is boundedly
retractive if and only if it satisfies condition (M ).

Proof. This theorem is proved in [7, Proposition 9(d)]. O

2.3.7. Tensor product of topological vector spaces.

Definition 2.3.54. If M C V and N C W be subsets, then we define M@N C VW
as

k
M@N:{Z)V(mi@ni)|)‘i€Fami€M7niEN7k€N}'

=1
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If V and W are locally convex topological vector spaces, in general there is no
canonical way of defining a topology on V @ W. In this section we recall two common
topologies on the tensor product V & W.

Definition 2.3.55. The finest locally convex topology on V ® W which makes the
canonical map p : V. x W — V ®@ W continuous is called the projective tensor

product topology. The vector space V@ W equipped with this topology is denoted
by V&, W.

Definition 2.3.56. The finest locally convex topology on V ® W which makes the
map p : V x W — V @ W separately continuous is called the injective tensor

product topology. The vector space V® W equipped with this topology is denoted
by V ®. W.

Even if the locally convex spaces V and W are complete, it is always the case that
V ®, W and V ® W are not complete. We denote the completions of V ®, W and
V @ W by V,W and V&.W respectively.

Theorem 2.3.57 ([43]). Let E C V be a dense subset of V and F C W be a dense
subset of W. Then E ®, F is a dense subset of V&, W.

Definition 2.3.58. Let V and W be locally convex spaces and p and ¢ be seminorms
on V and W respectively. Then we define the map p®q: V@ W — F as

p®Rq(u) = inf{zp(wi)qm) | u= Z Ti ® Yi}-

It is easy to check that p ® ¢ is a seminorm on V ® W.

Theorem 2.3.59 ([69]). Let V' and W be locally convex spaces and let {p;}icr and
{g;};jes be families of generating seminorms for V. and W respectively. Then the
family {p; ® g} jyerxs is a generating family of seminorms for V@, W.

Theorem 2.3.60 ([43]). Let T C R and E be a complete locally convex space. Then
there exists a linear homeomorphism between LY(T; E) and LY(T)®,E.

Proof. We first show that the map ¢ : S(T) ®, E — S(T; E) defined as
Lp(t) ®v) = ¢(t)v, Yo e E, V¢ € S(T),

is a linear homeomorphism. It is clear that ¢ is surjective. Let =", f;(t) @ v; €
S(T) ® E be such that «(8) = 0. Without loss of generality, one can assume that the
set {v1,vg,...,v,} is linearly independent. By assumption, we have

Zﬁi(t)vi =0, ae. teT.
i=1
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Now if we choose {v],v; ..., v} in E’ such that
(v, v7) = 85, Vi,j € {1,2,...,n},
then we get

Zﬁl UM ] — 7 a.e. tGT

So we have g = 0. This 1mphes that the map ¢ is a bijection.
Now we show that ¢ is continuous. Let ¢ be the norm on L!(T) defined as

- [19(iar

Let p be a seminorm on £ and s = Y ;" | x4, ® v;. Then we have

/Tp%( dr—/ ZXA -~ dT</ZXA p(v) df_i(/TXAi(T)dT)p(w).

=1

Since the above relation holds for every representation of the simple function s, we
get

/T pou(s(r))dr < q ® p(s).

To show that ¢ is an open map, we can choose a representation s = Z?Zl XA; @ ;
such that {A4;}? , are mutually disjoint. Then we have

q @ p(s Zm /pr(s(T))dT.

Thus ¢! is continuous and so ¢ is open. This implies that ¢ is a linear homeomorphism.
Now we extend ¢ to the completion of S(T)®, E. By Theorem 2.3.57, the completion
of S(T)®,F is LY(T)&,E. Since E is complete, the completion of S(T; E) is L'(T; E).
So i extends to a linear homeomorphism 7 : S(T)®&,E — L*(T; E). This completes
the proof. n

Theorem 2.3.61 ([43]). Let T C R be a compact interval and E be a complete
locally convex space. Then there exists a linear homeomorphism between CO(T; E)
and CO(T)&®.E.

2.3.8. Nuclear spaces.

Definition 2.3.62. Let E' and F' be two Banach spaces. An operator L : E — F'is
nuclear if there exists sequences { f,, }nen in E' and {g, }nen in F' and a sequence of
complex numbers {\, },en such that Y7 |\,| < oo, and we can write

- Z Anfn(”)gna Vv e E.
n=1
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One can also generalize the notion of nuclear operators for operators between
locally convex vector spaces.

Let E be a locally convex space and U be a convex, circled, and radial subset of
E containing 0. Then, for every n € N, one can define U,, as

1
Un:{—x‘xEU}.
n

The family {U,},en form a local base for a locally convex topology 7y on E. The
space (E, 1) /py;*(0) is denoted by Eyy. We denote the completion of Ey by Ey. Tt is
easy to see that Ey is a normable space with norm py. One can define the quotient
map i : E — Ey as
i(v) = [v], Vv e E.

Similarly, if B is a convex, circled, and bounded subset of E, then Ey = J-, nB
is a subspace of E. The gauge seminorm pp can be seen to be a norm on E;. We
denote the normed space (E1,pg) by Ep.

Definition 2.3.63. Let E and F' be two locally convex vector spaces. A continuous
map L : F — F is called nuclear if there exists an equicontinuous sequence { f,, } nen
in E’, a sequence {g, nen contained in a convex, circled, and bounded subset B C F'
such that Fp is complete, and a sequence of complex numbers {\,},en such that
Y |An] < 00, and we can write

L(v) = Z A fn(V)Gns Yo e FE.
n=1

Theorem 2.3.64 ([69]). Every nuclear mapping is compact.

Definition 2.3.65. A locally convex vector space £ is nuclear if, for every convex
circled neighbourhood of 0, the inclusion ¢ : £ — Ey is nuclear.

One can see that nuclear spaces satisfies the Heine-Borel property. The following
theorem has been proved in [69, Chapter III, §7].

Theorem 2.3.66. Let E be a nuclear space. Then every closed and bounded subset
of E is compact.

One important property of nuclear spaces is that, for nuclear spaces, the topo-
logical tensor product is uniquely defined. This property can be used to characterize
nuclear spaces [43, §21.2, Theorem 1].

Theorem 2.3.67. Let E and F be locally convex spaces. Then F' is nuclear if and
only if E®, F =FE®F.

One can also identify the strong dual of the tensor product of metrizable locally
convex spaces with tensor product of their strong duals when one of the locally convex
spaces are nuclear [69, Chapter IV, Theorem 9.9].

Theorem 2.3.68. Let E and F' be metrizable locally convex space and F' be nuclear.
Then the strong dual of EQF can be identified with (E', B(E', E))Q(F', B(F', F))
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2.4. Sheaves and presheaves

In this section, we define the notions of presheaf and sheaf on a topological space
X. In this thesis, we mostly use presheaves and sheaves of sets, presheaves and
sheaves of rings, and presheaves and sheaves of modules. Thus it is more natural to
start with definition of presheaves and sheaves of arbitrary “objects” in this section.

Definition 2.4.1. Let X be a topological space. A presheaf of objects .% on X
assigns to every open set U C X an object . (U) and to every pair of open sets
(U, V) with U C V' a morphism

Tuyv 40/\(‘/) — 40/\((]),
which is called the restriction map such that

1. for every open set U C X, we have ryy = id;

2. for all open sets U, V,W C X such that U CV C W, we have
Tuyervw =Tuw-

For an open set U C X, an element s € .#(U) is called a local section of .Z over
U.If se Z(V)and W CV be an open set, then we denote ry,(s) by s |y and we
call it “restriction of s to W”.

One of the most well-known examples of presheaves is the presheaf of locally
defined functions.

Example 2.4.2. Let M be a C”-manifold. We define C'}; which assigns to every open
set U C M the ring of C”-functions on U and to every pair of open sets U,V C M
with U C V the ring homomorphism 7y : Cy; (V) = C},(U) defined as

T‘U,v(f) =flv-
Then one can easily check that C7}; is a presheaf of rings on M.

Given a presheaf of rings #Z over X, one can also define presheaf of Z-modules
over X.

Definition 2.4.3. Let X be a topological space and # be a presheaf of rings on X.
Then .7 is a presheaf of Z-modules over X if it assigns to every open set U C X
the Z(U)-module .Z (U) and to every pair of open sets U C V' a homomorphism r{7y,
such that

1. for every open set U C X, we have rﬁfU =id;

2. for all open sets U, V,W C X such that U CV C W, we have

F z  _ F .
Tovelvw = Tuws
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3. for every f,g € F(U) and every a € Z(U), we have

iy ([ +ag) =1y () + iy (@)rdy (o).
where 77 is the restriction map for the presheaf Z.

The most important example of presheaf of modules is the presheaf of locally
defined vector fields on a manifold.

Example 2.4.4. Let M be a C”-manifold. In Example 2.4.2, we defined CY},; as a
presheaf of ring of locally defined C”-functions. In this example, we define the presheaf
I, of C};-modules over M. Let us define I''j, which assigns to every open set U C M
the C"(U)-module of locally defined C¥-vector fields on U and assigns to every pair of
open sets (U, V) with U CV C M a restriction map ryy : I'f, (V) — I'},(U) defined
as

rov(X) =X |y, VX eIy (V).
Therefore, the set I'},(U) is defined as
I (U)={X:U—TM]| X is of class C” and X (z) € T,M, Vx e U},
One can easily check that I'}, is a presheaf of C},;-modules over M.

Definition 2.4.5. Let .# be a presheaf of objects on X. Then a subpresheaf .77 of
F is an assignment to every open set U C X, an object .2 (U) C .#(U) such that,
for every pair of open sets U C V C X the restriction map

ruy ey V) — F(U),
takes its values in S (U).
It is easy to see that a subpresheaf is itself a presheaf.

Definition 2.4.6. Let {s,}aca be a family of sections of the sheaf .# of Z-modules

on X, i.e., for every a € A, we have s, € % (X). Then, one can define a subpresheaf
FCof Z-modules as

A (U) = Spallg ) {salu] @ € A}, V open sets U C X.

The subpresheaf 77 is called the subpresheaf of Z-modules generated by
{Sa}aEA-

One can easily notice that presheaves lack many nice local to global properties.
One can enhance the local to global properties of presheaves by adding some extra
conditions on their sections.
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Definition 2.4.7. A sheaf of objects ¢ on X is a presheaf of sets on X such that, for
every open set U C X and every open covering U = | J,_; U;, the following properties
hold.

iel
1. Locality property : Two elements s,t € #(U) are the same if, for every
i € I, we have ry, y(t) = ry, v(s).

2. Gluing property : If {s;}ic; is a family of sections of .# such that, for every
1,7 € I, we have

S, € Q(Uz),
TUzﬂUj,Ui(Si) = TUimUj,Uj(Sj),
then there exists s € .# (U) such that, for every i € I, we have ry, y(s) = s;.
Similar to presheaves, one can define a subsheaf of a sheaf.

Definition 2.4.8. Let 4 be a sheaf of objects on X. Then a subsheaf 77 of ¥ is
a subpresheaf which is itself a sheaf.

Example 2.4.9. One can easily show that the presheaf of rings C}, defined in Exam-
ple 2.4.2 and the presheaf I}, of C};-modules defined in Example 2.4.4 are sheaves.

While the above example shows that both of the presheaves we define in Example
2.4.2 and Example 2.4.4 are sheaves, it is not generally true that every presheaf is a
sheaf. The following example shows that not every presheaf is a sheaf.

Example 2.4.10 ([55]). Let M be a C”-manifold and let G be a Riemannian metric
on M. Then, for every open set U C M, we define

Fraa(U) ={X € 9" (U) | sup{|| X (z)||c | z € U} < o0}.

Also, we assign to every pair of open sets (U, V) with U C V' C M, a restriction map
roy : Foaa(V) = Fpaa(U) defined as

T’U,V(X) =X ’U, VX € ybdd(‘/)

One can easily check that %44 is a presheaf of sets. In fact, F#,qq is a presheaf of
vector spaces on M. However, %144 is not a sheaf of sets. This can be easily seen in
the case M = R, by showing that the this presheaf doesn’t satisfy the gluing property.
Consider the covering {U,};en of R, where

U = (—i,i), Vi€eN,

and the family of locally defined vector field {X;};en, where X; : U; - TR~ R x R
is defined as
Xi(z) = (z,2), vz e U,.
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For every ¢,j € N such that ¢ > j, we have U; C U;. Thus we get
TU,nU;,U; (Xl) = Tu,,u; (XZ) = Xj = Tu,,u; (XJ) = Tu,nu;,U; (XJ)

It is also easy to see that, for every i € N, ||X;|| < i. Therefore, for every i € N,
X; € Fpaa(U;) and, for every i,j € N, we have

Tu,nU;,U; (Xz) = TUimUj7Uj(Xj)'

However, there does not exist a bounded vector field X € Zpqq4(R) such that
TUZ-,R(X> = X;, for all 2 € N.

One can capture the local properties of a presheaf around a set A in a structure
called stalk of the presheaf over A.

Definition 2.4.11. Let .% be a presheaf on X and A C X be a set. The set of all
open neighbourhoods of A in X is denoted by .#4. We define an equivalence relation
~ 4 between local sections of .#. Let U,V € A4, and s € .Z(U) and t € F(V) be
two local sections of .%. Then we say that s ~ 4 t if there exists an open set W € .4}
such that W C U NV and
TW,U<S) = T’WJ/(t).
For every local section s € #(U), where U € .44, we define the germ of s over A
as the equivalence class of s under the equivalence relation ~4. We denote the germ
of s over A by [s]a.
The stalk of .# over A is the inductive limit

liy F(U).
UeNy

We usually use the symbol %4 for the stalk of .# over A. One can easily show
that the stalk of .% over A consists of all equivalence classes under equivalent relation

>~A.

If # is a presheaf of rings, then, for every z € X, one can define addition and
multiplication on %, as follows. Let [s].,[t]. € #,. Then, there exists open sets
U,V C X such that

s € Z0U),
t e Z(V).
Let W C U NV be an open set in X. Then, we define
[s]e-[t]e = [(s]w) (tlw )],
(s + [t]e = [(slw) + (tlw)]a-

One can easily check that the multiplication and the addition defined above are well-
defined. Thus, %, is a ring. Similarly, for a presheaf of Z-modules .% over X one
can define an Z#,-module structure on .%,.
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Definition 2.4.12. A sheaf . of %Z-modules on the topological space X is called
locally finitely generated if, for every x € X, there exists a neighbourhood U C X
of x and a family of finite sections {s1,s3. .., s,} of % on U, such that .#, is generated
by the set {[s1]y, [s2]y, - - - [Sn]y} as #,-modules, for every y € U.

Theorem 2.4.13. Let v € {w,hol}, M be a C”-manifold, and {s,}aecn be a family
of sections of the sheaf C¥ defined on M, i.e., for every a € A, we have s, € C*(M).
Then the subpresheaf of C* generated by {Sa}aca is locally finitely generated.

Proof. The proof in the holomorphic case is given in [30, Theorem H.8 & Corollary
H.9]. For the real analytic case, the proof is similar. O]

Definition 2.4.14. Let .% be a presheaf on X. Then the étalé space of .% is defined
as

o\ — oA
Et(7) = Umex‘/z'
One can equip this space with a topology using a basis consisting of elements of the

form

B(U,X)={[X]. |z €U}, VU open in X, VX € Z#(U).
This topology on Et(.%) is usually called the étalé topology.

As Example 2.4.10 shows, presheaves are not necessarily sheaves. However, it can
be shown that every presheaf can be converted to a sheaf in a natural way. This
procedure is called sheafification.

Definition 2.4.15. Let .# be a presheaf of objects on X. Then, for every open set
U C X, we define

Sh(F)(U) ={s:U — Et(F) |Vz € U, s(x) € %, and s is continuous on U}.
One can show that the assignment Sh(.%#) is a sheaf [80, Theorem 7.1.8]

Theorem 2.4.16. Let .F be a presheaf of objects on X. Then Sh(.%) is a sheaf on
X.

2.5. Groupoids and pseudogroups

In this section, we review definitions and elementary properties of groupoids and
pseudogroups. In particular, we show that one can always associate a groupoid to a
family of local diffeomorphism. This groupoid plays an important role in our study
of the orbits of a C”-tautological system in chapter 5

Definition 2.5.1. A groupoid ¢ is a pair (£2,B) and five structural maps
(t,s,id, ()71, %), where t : Q — B is called target map, s : Q — B is called
source map, id : B —  is called object inclusion map, (.)™' : Q — Q is called
inversion map and * : Q ® 2 — € is called partial multiplication map, where
QRQ={(&n) € Q2xQ|t&) =s(n)}. These maps have the following properties:
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L t(§+n) = t(£) and s(§ x n) = s(n), for all (§,7) € QO Q;
2. & (nxx) = (E5n) *X;
3. s(id(z)) = t(id(z)) = z, for all z € B;
4. €xid(t(€)) = € and id(s(€)) x £ = &, for all £ € O
5. Ex &t =id((€)) and £« € = id(s(€)), for all £ € Q.
Definition 2.5.2. If ¢ is a groupoid, then the set Q7 defined as
O ={¢| et (a)},

is called the t-fiber at x € B, and the set {2, defined as

Q. ={¢]6€s (x)},

is called the s-fiber at z € B.
The isotropy group of 4 at z € B is defined as

0F = Q"N Q,.

One can show that, for every y € Q22 we have y € Q® 2. This means that the partial
multiplication of the groupoid ¢ is a multiplication on Q2. Therefore, the isotropy
group is actually a group with respect to groupoid partial multiplication.

The orbit of &4 at x € B is defined as

Definition 2.5.3. Suppose that ¢ is a groupoid. Then we define an equivalence
relation ~ on B by
z ~y <=y € Orby(x).

We denote the equivalent class of x € B by [z] and the set of all equivalent classes of
~ is denoted by M/~. We define

(,9) =

Definition 2.5.4. Let X be a topological space. A pseudogroup b acting on X is
a set of homeomorphisms F' : U — V where U and V are open subsets of X such
that:

[z].

[x]€M/~

1. composition: if F; : Uy — V; and F, : Uy — V5 are members of h, then
FioFy : Fy (UL N Va) — Fy YU N V) is a member of b;

2. inversion: for every homeomorphism F' : U — V in b, the homeomorphism
F~1:V = U is also in b;
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3. restriction: for every element F': U — V and every open subset W C X, the
map F |yrw: UNW — F(UNW) is a member of b;

4. covering: if F': U — V is a homeomorphism and {U, };c; is an open cover of
U such that F' |y, isin b, for all ¢ € I, then F is in b.

Definition 2.5.5. Suppose that A is a set of homeomorphisms between open subsets
of X. Then we denote the pseudogroup generated by A, by I'(4). A homeomorphism
f U — V belongs to I'(A) if, for every z € X, there exists a neighbourhood W of x
and €y, €, ..., ¢, € {1,—1} and Ry, ho, ..., hy € A such that f |y= hi' oh?o ... ok

Now suppose that we have a family of local homeomorphisms &2, we denote the
pseudogroup generated by &2 by I'(2?).

Definition 2.5.6. Suppose that & is a collection of local homeomorphisms of X.
Then the groupoid associated to &2, which is denoted by G », is defined by B = M
and Q = {(P,z) | P € T(£),z € DomP}. The five structure maps (¢, s,id, (.)7*, *)

for this groupoid are defined as follows:

s((P,z)) =z,
t((P,z)) = P(x),
((P.a)) = P2 -
id(z) = (idpy, ©),
(P2)™ = (P, P(x))
If we have x = P’(z'), the partial composition map * is defined as
(P,x) x (P',2") = (PP 1. (2.5.2)

Note that, by definition, the orbit of G4 passing through x € M is
Gap(x) =tos (z).
Therefore, we have
s Hz)={(P,x) | Pe(#), x € Dom(P)}.
This means that

Ga(x)=t(s" x)) ={P(x) | P€T(Z£), z € Dom(P)}.



Chapter 3

Time-varying vector fields and
their flows

3.1. Introduction

In this chapter, we develop an operator approach for studying time-varying vec-
tor fields and their flows. The idea of this approach originated (for us) with the
so-called chronological calculus of Agrachev and Gamkrelidze [3]. The cornerstone of
the chronological calculus developed in [3] and [4] is to consider a complete vector field
on M and its flow as linear operators on the R-algebra C*°(M). By this correspon-
dence, one can easily see that the governing nonlinear differential equation for the
flow of a time-varying vector field is transformed into a “linear” differential equation
on the infinite-dimensional locally convex space L(C*(M); C>°(M)). In [3] and [4],
this approach has been used to study flows of smooth and real analytic vector fields.
Although, this representation is the most convenient one for studying smooth vector
fields and their flows, in the real analytic case, it does not appear to be natural. This
can be seen in the proof of convergence of the sequence of Picard iterations for the flow
of a time-varying vector field [3, §2, Proposition 2.1]. Here it has been shown that,
for a locally integrable time-varying real analytic vector field on R™ with bounded
holomorphic extension, the sequence of Picard iterations for the “linear” differential
equation converges. In [4] it has been stated that the sequence of Picard iterations for
a locally integrable real analytic vector field converges in L(C*°(M); C*°(M)). How-
ever, the sequence of Picard iterations for the locally integrable time-varying smooth
vector fields which are not real analytic, never converges. This different behaviour of
the “linear” differential equation in smooth and real analytic case, suggests that one
may benefit from a new setting for studying time-varying real analytic vector fields.

In the framework we develop in this section, we consider v to be in the set
{00, w, hol} and F € {C,R}. Then, one can show that C”-vector field and its flow are
operators on the F-algebra C”(M). This way we get a unified framework in which op-
erators are consistent with the regularity of their corresponding maps. We start this
chapter by defining the C”-topology on the vector space I'(E), where (E, M, 7) is a

47
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C"-vector bundle. This, in particular, defines the C”-topology on the vector spaces
C¥ (M) when the vector bundle (F, M, ) is the trivial bundle (M x R, M, pry). For
the reasons we will see later, we need this topology to make I'V(E) into a complete
topological vector space. For the smooth case, this topology on the space I'*(F) is
well-known and has been explored in detail [3], [36], [61], and [51]. For the real ana-
lytic case, it is interesting to note that I'“(E) equipped with the subspace topology
from I'*°(E) is not a complete topological vector space (example 3.2.8). However, by
considering real analytic sections as germs of holomorphic sections, one can define a
topology on the space I'“(E) which makes it into a complete locally convex vector
space [59].

We then proceed in section 3.3 by considering C*-vector fields on M as derivations
on C¥(M). It is interesting to see that there is a one-to-one correspondence between
derivations on C*(M) and C”-vector fields on M. We finally show that vector fields,
as operators on C”(M), are continuous with respect to the C”-topology. Similarly,
one can show that C”-maps between two manifolds are in one-to-one correspondence
with unital F-algebra homomorphisms between their spaces of C'V-functions.

In order to define a setting where vector fields and their flows are treated the same
way, we define L(C"(M); C¥(M)) as the space of linear operators between C (M) and
C¥"(M). It is easy to see that both C”-maps and C”-vector fields are subsets of this
space. Then one can consider a time-varying vector field and its flow as curves on
the space of linear operators L(CY(M);C"(M)). In order to study properties of
these curves, we equip the space L(C¥(M);C*(M)) with the topology of pointwise
convergence. Since the space of all C”-vector fields is a subset of L(C"(M); C¥(M)),
this induces a topology on the space of C¥-vector fields (as derivations between C* (M)
and C”(M)). On the other hand, C"-vector fields are exactly C"-sections of the
tangent bundle (T'M, M, ). Therefore, one can see that, algebraically, the space of
C%-vector fields on M is the same as I'V(T'M). It is interesting to note that the
topology of pointwise convergence that we defined above on the space of C¥-vector
fields coincide with the C”-topology on I'(T'M) defined in section 3.2.

In section 3.6, using the topology of pointwise convergence on the vector space
L(C"(M);C"(M)), we define and characterize essential boundedness, integrability
and absolute continuity of curves on L(C*(M); C¥(M)).

It is well-known that every real analytic function on R" can be extended to a
holomorphic function on some open set in C" containing R”. In section 3.7, we
study the extension of time-varying real analytic vector fields to holomorphic ones.
In general, it is not true that every time-varying real analytic vector field can be
extended to a time-varying holomorphic vector field (example 3.7.1). However, we
will show that locally integrable time-varying real analytic vector fields on M can be
extended to a locally integrable time-varying holomorphic vector field on a manifold
containing M. We refer to this result as the global extension of time-varying real
analytic vector fields. The reason is that it shows the existence of an extension over
the whole domain M.

In some applications, one would like to know if there exists a domain such that
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“all” members of a family of locally integrable real analytic vector field can be ex-
tended to holomorphic vector fields on that domain. Unfortunately, the global exten-
sion theorem is indecisive in this situation. However, we show that, for every compact
set K C M, one can extend a “bounded” family of locally integrable real analytic
vector field to a bounded family of holomorphic vector fields on a domain containing
K.

In section 3.8, using the operator representation of time-varying vector fields and
their flows, we translate the “nonlinear” differential equation governing the flow of
a time-varying vector field on M into a “linear” differential equation on the infinite-
dimensional space L(C*(M); C¥(U)), for some open set U C M. In the holomorphic
and real analytic cases, we will show that, for the locally integrable time-varying
vector fields, the sequence of the Picard iterations for the “linear” differential equation
converges. The limit of this sequence gives us an absolutely continuous curve on
L(C"(M);C¥(U)), which is the flow of the vector field.

Finally, in section 3.9, we study the exponential mapping which takes a locally
integrable time-varying vector field and gives us its absolutely continuous flow. Using
the local extension result for time-varying real analytic vector fields, we show that
real analytic exponential map is a sequential homeomorphism.

3.2. Topology on the space I'V(E)

In this section, we define a topology on space of C"-sections of the C"-vector
bundle (E, M, ). Topologies on spaces of differentiable mapping has been studied
in detail in many references (for example [36], [61], and [51]). In the cases of smooth
and holomorphic sections, these topologies has been defined in the literature using
a family of seminorms [51], [61]. We will show that these locally convex spaces
have many nice properties including being complete, separable, and satisfying the
Heine—Borel property.

In the real analytic case, using the fact that real analytic sections are germs of
holomorphic sections, one can define two representations for a locally convex topology
on the space of real analytic sections [59]. Moreover, one can find a family of gener-
ating seminorms for this space [81]. We will also show that the space of real analytic
sections with this topology has nice properties including being complete, separable,
and Heine-Borel.

Finally, when (F, M, ) is the trivial bundle, the space of C*-sections of E can be
identified with the space of C”-functions on M. However, one can see that the space
of C”-functions on M has an additional structure of an F-algebra. It is reasonable,
therefore, to study algebra multiplication in C¥ (M) with respect to C¥-topology. We
will show that the algebra multiplication of C* (M) is continuous for the C*-topology
on C"(M).

3.2.1. Topology on I'*°(E). The Whitney topology for the space of smooth map-
pings on M has been studied in [36] and [61].
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Definition 3.2.1. Let (F, M, ) be a C*°-vector bundle, (U, ¢) be a coordinate chart
on M, K C U be a compact set, and m € N. We define the seminorm p%,, on I'°(E)
as

PRm(X) =sup{|[DVX(2)| |z € K, |[r| <m}, VX eT™(E).

The family of seminorms {p%,,} generates a locally convex topology on the space
['*°(E). This topology is called C*°-topology.

This topological vector space has many nice properties. The next theorem states
some of the most used properties of this space.

Theorem 3.2.2. The space I'°(E) with the C*-topology is a Hausdorff, separable,
complete, nuclear, and metrizable space. It also satisfies Heine—Borel property.

Proof. The fact that I'°(F) is a nuclear completely metrizable space is shown in [51,
§30.1] and the fact that I'*°(F) is separable is proved in [42, §3.2]. Since I'°(F) is
metrizable, it is Hausdorff. Finally, the Heine-Borel property of I'*°(E) follows from
the fact that ['*°(E) is nuclear. O

3.2.2. Topology on T'"°!( E). The natural topology on the space of germs of holo-
morphic sections on a complex manifold M has been studied in [51, §30.4].

Definition 3.2.3. Let (E, M,7) be a C"-vector bundle. For every compact set
K C M, we define the seminorm ph°! as

PN (X) =sup{|| X (2)]| | x € K}, VX € T™(E).

The family of seminorms {p2'} defines a locally convex topology on the vector space

I'°l(E). We call this topology the C™'-topology.

Theorem 3.2.4. The space I'"°Y(E) with the C"'-topology is a Hausdorff, separable,
complete, nuclear, and metrizable space. It also satisfies Heine—Borel property.

Proof. The fact that the C"-topology on I'*!( ) is complete, nuclear, and metrizable
has been proved in [51, §30.5]. In order to prove that I'"!(E) is separable, note that
I'l(E) is a subspace of ['(E®). However, by Theorem 3.2.2, we know that T>°(E®)
is separable and by [84, Theorem 16.11], subspaces of separable metric spaces are
separable. This implies that ['°!(E) is separable. Since I'™!(E) is nuclear, it satisfies
the Heine—Borel property. O]

The Topology on the space of germs of holomorphic functions has been studied in
[51, §8.3]. We generalize the setting in [51] to include germs of holomorphic sections.
Let A C M be a subset. The family of all neighbourhoods of A in M is denoted by
1. One can easily show that .4 is a directed set with respect to the set inclusion.
For every pair Uy, V4 € A4 such that Uy C V4, we can define the restriction map
Z‘UAyvA : FhOI(VA) — FhOI(UA) as

ivava(X) =X |u, -
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The pair {T""(Uy,), iy, v, fu.cv, is a directed system. The direct limit of this directed
system is denoted by (42, {iy; M }UAe JVA)' One can define the topology on ¢! as

the finest locally convex topology which makes all the maps iy, : ["N(U,) — 5!
continuous.

The special case when A = K C M is compact has a significant role in studying
the space of real analytic sections. One can show that, when K C M is compact, the
inductive limit lim el (Uy) = 920l is countable [23]. Tt follows that, for every

KENK

compact set K C M, one can choose a sequence of open sets {U, },en such that, for
every n € N, we have

Cl(Un+1) g Una
and (2, U; = K. Then we have lig Thol(17,) = @hol,

Definition 3.2.5. Let U C M be an open set. We define the map py : T'Y(U) —
[0, 00] as
pu(X) =sup{||X(z)|[ |z €U}, VX € ™(U).

Then I''9(U) is a subspace of I'™!(U) defined as
Thaa(U) = {X € T™(U) | py(X) < o0}

We equip I''9,(U) with the norm py and define the inclusion py : Th9L(U) — TRN(U)
as
po(X)=X,  VfeTigU).

Theorem 3.2.6. The space (I''%L(U),py) is a Banach space and the map py :
el (U) — ThYU) is a compact continuous map.

Proof. Let K be a compact subset of U. Then, for every X € I''SL(U), we have
P2 (py (X)) = phel(X) < py(X), which implies that py is continuous. Now con-
sider the open set p;;' ([0,1)) in TBSL(U). The set p;' ([0,1)) is bounded and py is
continuous. So

PU (p(_Jl ([07 1))) )

is bounded in '™ (U). Since T™!(U) has the Heine-Borel property, the set
U (pgl ([0, 1))) is relatively compact in ThY(U). So py is compact.

Now we show that (I'PSL(U), py) is a Banach space. Let {X,},en be a Cauchy
sequence in I'M9L(U). It suffices to show that there exists X € I'l94(U) such that
lim,, , X,, = X in the topology induced by py on TP, (U). Since py is continuous,
the sequence { X, } ey is Cauchy in TP(U). Since I'™(U) is complete, there exists
X € TrYU) such that lim, ,., X,, = X in the C™-topology. Now we show that
lim,, ;0o X, = X in the topology of (I'ML(U), pr) and X € ' (U). Let € > 0. Then
there exists N € N such that, for every n,m > N, we have

NN e
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This implies that, for every z € U and every n,m > N, we have

1X0(2) = Xn(2)l| < 5

So, for every z € U and every n > N, we choose m, > N such that

X, (2) — X(2)]| < g Ym > m..

This implies that, for every z € U, we have
1X(2) = Xa(2)[| < [ Xn(2) = X ()| + | Xim. (2) = X (2)[| <€
So, for every n > N, we have
pu(X, —X) <e
This completes the proof. n

Theorem 3.2.7. Let K be a compact set and {U, } nen be a sequence of neighbourhoods
of K such that
Cl(Un+1> g Um Vn € N,

and ey Un = K. Then we have lign_)oO Tl (U,) = 9po!

limit is compact.

. Moreover, the inductive

Proof. For every n € N, we define 1, : T"N(U,,) — Th9, (U, 41) as

ra(X) =X

U7L+17 VX E FhOI(Un)

For every compact set K with U,,; C K C U,, we have py, (X) < p'(X). This
implies that the map r, is continuous and we have the following diagram:

o PUn o Tn o PUp 41 o
ngld(Un) =1t 1(Un) —>Flﬁdld<Un+1> —=Th 1(Un+1) :

Since all maps in the above diagram are linear and continuous, by the universal
property of the inductive limit of locally convex spaces, we have

ling [yq(Un) = lim T(U,,) = 4.

n—oo n—oo
Moreover, for every n € N, the map py, is compact and r, is continuous. So the
composition r, o py, is also compact [43, §17.1, Proposition 1]. This implies that the
direct limit lim el (U,) = 42 is compact. O
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3.2.3. Topology on I'’(E). Since ['Y(F) C I'*°(E), one can define a topology on
the space of real analytic sections using the C*°-topology. This topology makes I'“(E)
into a topological subspace of I'°(FE). However, the following example shows that
the restriction of C*°-topology to the space of real analytic sections is not complete.

Example 3.2.8. Let f € C*°(S!) be a smooth function which is not real analytic.
Recall that the nth partial sum of the Fourier series of f is given by

SN = 3 = [ ft - s)eeds

—T

. 1 " ik(t—s) . " —iks ikt

= Z %/ﬂf(s)e ds = Z 77rf(s)e ds | e™.
k=—n k=—n
For every k € N, the function e’** is real analytic on S'. This implies that, for
every n € N, s,(f) € C*(S"). Since f € C'(S'), the sequence {s,(f)}nen converges
uniformly on S' to f [40, Chapter 1, §1, Corollary III]. Let us define g € C*°((—, 7))
by
o) = f(1), Ve (omm).

Similarly, for every n € N, we define g, € C®((—m, 7)) by

gn(t> = Sn(fxt)’ vt € (—7‘(‘, 7T)‘

Now consider the sequence {Dg, }nen. Note that, for every n € N, we have

n 1 - .
Z Dy /_ﬂg(t - S)elksds>

k=—n

D@MUID<

n 1 T .
=Y 5 [ Datt=setas e (-mm),

k=—n

Since we have g € C*®((—m, 7)), Dg € C'((—m,7)). So, we can again use [40, Chapter
1, §1, Corollary II1] to show that the sequence { Dg,, },en converges to Dg uniformly on
(—m, ). If we continue this procedure, we will see that, for every i € N, the sequence
{D¥(gyn) }nen converges to D¥(g) uniformly on (—, ). This implies that the sequence
{gn}nen converges to g in the C*°-topology. Therefore, we have a sequence of real
analytic functions {g, }neny which converges in the C*°-topology to a smooth but not
real analytic function g. This implies that the space C*((—m, 7)) with C*°-topology
is not complete.

We will define a topology on I'Y(FE) which makes it into a complete topological
vector space. This topology on I'(E) has been first studied comprehensively in [59].
Recently, this topology has been studied throughly in operator theory [23]. A special
case of what Martineau did in [59] can be used to define a topology on the space
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of real analytic sections on an open set U C R". Martineau defined two topologies
on ['Y(E), using the fact that every real analytic section on U can be extended to a
holomorphic section on some neighbourhood U C C" of U. He also showed that these
two topologies are the same. Many properties of this topology have been studied in
[23]. The generalization of some of these ideas to the case when M is a real analytic
manifold is straightforward [23]. This requires extension of the domain of a section
X € I'Y(E) to a complex manifold. We first define a specific class of real submanifolds
of a complex manifold. One can consider an n-dimensional complex manifold M as a
2n-dimensional smooth manifold M®. Although the real submanifolds of M* are not
necessarily complex submanifolds of M, there exists a specific class of submanifolds
of M® which has many nice properties. These submanifolds are called totally real.
We start by defining a totally real subspace of a complex vector space.

Definition 3.2.9. Let V' be a complex vector space with an almost complex structure
J. A real subspace U of V is called totally real if we have J(U) (U = {0}.

Definition 3.2.10. Let M be a complex manifold with an almost complex structure
J. A submanifold N of M is called a totally real submanifold if, for every p € N,
we have J(T,N)T,N = {0}.

Definition 3.2.11. Let (F, N, £) be a holomorphic vector bundle with an almost com-
plex structure J on its fibers. A generalized vector subbundle (E, M, ) of (F, N,§)
is called a totally real subbundle if, M is a totally real submanifold of N, E is a
totally real submanifold of F', and, for every p € N, we have J(F,) N F, = {0}.

Let M be a complex manifold. Then every real analytic map on a totally real
submanifold N of M can be extended to a holomorphic map on a neighbourhood of
N in M [18, Lemma 5.40].

Theorem 3.2.12. Let M and W be two complex manifold and N be a real analytic
totally real submanifold of M, with dimcM = dimgN. Suppose that f : N — W is
a real analytic map. Then, there exists a sufficiently small neighbourhood U of N in
M and a holomorphic map f: U — W such that

f(x) = f(z), Vr € N.

Moreover, this holomorphic extension is unique in the following sense: if f is a
holomorphic extension of f toU containing N and g is another holomorphic extension
of f to W containing N, then there exists V- C W NU such that we have

f(z) = g(x), Vo eV.

We call the holomorphic function f a holomorphic extension of f.

What happens if we start with a real analytic manifold M? It can be shown
that, for every real analytic manifold M, there exists a complex manifold M® which
contains M as a totally real submanifold [83].
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Theorem 3.2.13. Let M be a real analytic manifold. There exists a complex manifold
M€ such that dimcM© = dimgM and M is a totally real submanifold of MC.

The complex manifold MF is called a complexification of the real analytic man-
ifold M. Grauert showed that M® can be chosen to be a Stein manifold [27, §3].
Moreover, he showed that, given any neighbourhood U of M in MC, there exists a
Stein neighbourhood of M inside U [27, §3].

Theorem 3.2.14. Let M be a real analytic manifold. There exists a Stein manifold
MFC such that dimcM® = dimgM, and M is a totally real submanifold of M. More-
over, for every neighbourhood U of M in MC, there exists a Stein neighbourhood S
of M in M® such that S CU

One can similarly show that for a real analytic vector bundle (E, M, 7), there exists
a holomorphic vector bundle (E®, M© 7*) which contains (E, M, ) as a totally real
subbundle.

Theorem 3.2.15. Let (E, M, ) be a real analytic vector bundle. There exists a holo-
morphic vector bundle (E©, M€, 7°), where E© and M® are complezifications of E
and M respectively. Moreover, (E, M, ) is a totally real subbundle of (E€, M®,7®).

Proof. The proof of this theorem is similar to the proof given in [83] for complexifi-
cation of manifolds. O

The vector bundle (E€, M©, 7%) is called a complexification of the real analytic
vector bundle (E, M, 7). One can show that every real analytic section on (E, M, )
can be extended to a holomorphic section on (E®, M, 7).

Theorem 3.2.16. Let (E, M, ) be a real analytic vector bundle, (E€, M© %) be a
complexification of (E, M,7), and o : M — E be a real analytic section on (E, M, ).
Then there exists a neighbourhood U C MC containing M and a holomorphic section
7 : U — EC such that

o(z) =0o(x), Vo € M.

Proof. Since E is a totally real submanifold of EC, there exists a real analytic map
i+ E — E®. Thus, the composition ioo : M — EC is a real analytic map. By
Theorem 3.2.12, there exists a neighbourhood V' C M € of M and a holomorphic map
7 :V — E€ such that
o(x) =ico(z) =o(x), Vo e M.

Note that for the map 7€e7 : V — MC, we have

7t (2) = 7%(0(2)) = moo(z) = =, Vo € M.
Therefore the map 7¢o7 is the identity on M. Thus, by the uniqueness part of
Theorem 3.2.12, there exists a neighbourhood U C V' of M such that

7Ce5(2) = 2, VzeU.
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This implies that 7€ o@|z= idg. This means that |z U — EC is a holomorphic
section of (E€, M® 7%) such that

Olg(z) = o(x), Ve e M.
This completes the proof. O

The section 7 is called a holomorphic extension of o.

We are now able to define two topologies on the space of real analytic sections.
The definition of these topologies relies on the following characterization of the vector
space I'Y(E) by the space of holomorphic sections.

Definition 3.2.17. Let (E, M, ) be a real analytic vector bundle and (E®, M©, 7©)
be a complexification of (E, M, 7). We define Th'E(EC) C Thol(ET) as

I®(EC) = {X e T"(E®) | X(2) € E,, Vx e M}.

Theorem 3.2.18. The space I'"YR(EC) with the C™'-topology is Hausdorff, sep-
arable, complete, nuclear, and metrizable. Moreover, it satisfies the Heine—Borel

property.

Proof. Inview of Theorem 3.2.4, it suffices to show that I'""®( EC) is a closed subspace
of I'™!(E®). However, this is clear from the definition and the fact that E, is closed
in EC. O]

~ Let A C M. We denote the set of all neighbourhoods of A in M C by 4. For every
U, Vg€ Ny with Uy C Vy, we define the map i%A 7. [holR(V 4) — Thob®(TT 4) as

R (X) = X|UA7 VX € FhOI’R<VA).

UaVa

The pair (YR (T ), i%A,VA)UAQVA is a directed system. The direct limit of this
R
i

, UA)UA ey One can define a topology on %XOI’R as the finest locally

convex topology which makes all the maps 4 : "M% (U 4) = 44°" continuous.

. (czholR
system is (4,

Theorem 3.2.19. Let M be a real analytic manifold. The vector space I'*(M) is
isomorphic to the vector space gj\l}[d’R.

Proof. We just need to find a linear bijective map between these two spaces. Let us
define the map iy : T¥(E) — 907F as

in(X) = [X]m, VX €I¥(E),

where X is a holomorphic extension of X to a neighbourhood of M. The linearity
of iy is clear. By existence and uniqueness of the holomorphic extension (Theorem
3.2.12), iy, is well-defined and injective. To prove surjectivity, note that, by definition

of %h; M for every h € %\}}IOI’R, there exists a neighbourhood U containing M and a



ON THE ROLE OF REGULARITY IN MATHEMATICAL CONTROL THEORY a7

holomorphic section H € I'*®(T7) such that [H]y; = h. Now, if we define g : M — E
as
g(x) = H(z), Vo e M,

then, by Theorem 2.1.5, it is clear that g € I'Y(F). Moreover, H is a holomorphic
extension of ¢g. So we have iy/(g) = [H|y = h. This completes the proof of the
theorem. []

Theorem 3.2.19 shows that the space of real analytic sections on a real analytic
manifold M is isomorphic with the space of germs of holomorphic sections on complex
neighbourhoods of M. We first define an inductive topology on the space of germs of
holomorphic sections around an arbitrary set A C MC. Then using Theorem 3.2.19,
we induce a topology on I'(E) [59].

Definition 3.2.20. Let A C M be a set, M© be a Stein manifold, and .44 be the
family of neighbourhoods of A in M®. The inductive topology on %XOI’R is defined
as the finest locally convex topology which makes all the maps {i%}ge 4, continuous.

Definition 3.2.21. Let U C M€ be an open neighbourhood of M. We define the
map pg : TPME(T) — [0, 00] as

py(X) = sup{[| X (2)[| | z € U}
Then IV55%(U) is the subspace of "R (T) defined as

Togd (U) = {X € I"¥(T) | pr(X) < oo}

We equip FEZZR(U) with the norm py and define the inclusion ,o% : FEZIC’IR(U ) —
ThobE(T7) as
hol,R /77
RX)=X, VX el D).

Similar to the Theorem 3.2.6, one can show the following theorem.

Theorem 3.2.22. The space (IY%5 (U), py) is a Banach space and the map P

TR (T) — TRWR(T) s a compact continuous map.

Similar to Theorem 3.2.7, the following result holds.

Theorem 3.2.23. Let K be a compact set in M and {U,}nen be a sequence of
neighbourhoods of K in MC such that

AU,1)=U,,  VneN,

and ey Un = K. Then we have lim b (T,) = 93°0% . Moreover, the induc-

tive limit is compact and as a result the final topology on %I}}OI’R and the locally convex
topology on G coincide.



58 S. JAFARPOUR

Using Theorem 3.2.19, one can define the inductive topology on I'Y(E). Let M
be a real analytic manifold, M® be a complexification of M, and .43, be the family
of all neighbourhoods of M in M®. Let U € A4 and let iy : T¥(E) — T be
defined as

in(X) =Xy, VX eTI¥E).

Theorem 3.2.19 shows that i), is a bijective linear map. So, for every U C Ny, one
can define iz, : TY¥(U) — I¥(E) as
1 R

ZU,M - ZM OZU.

Definition 3.2.24. The inductive topology on I'*(E) is defined as the finest locally
convex topology which makes all the maps {iz 5, }z7c 4;, continuous.

Although the definition of inductive topology on C*(M) is natural, characteriza-
tion of properties of I'Y(F) using this topology is not easy. The main reason is that,
for non-compact M, the inductive limit lim_ s [PLR(U) = T“(E) is not necessarily
countable [23, Fact 14]. However, one can define another topology on the space of
real analytic sections which is representable by countable inductive and projective
limits [59]. Let M be a real analytic manifold and let A be a subset of M. Then we
define the projection js : ['Y(E) — %XOI’R as

ja(X) = [X]a,

where X is a holomorphic extension of X € I'“(E) to a complex neighbourhood
U C MC of A.

Theorem 3.2.25. Let A C M. Then the map ja is well-defined and linear.

Proof. Let X and Y be two holomorphic extensions of X on neighbourhoods U and V/,
respectively. Then, by existence and uniqueness of holomorphic extension (Theorem
3.2.12), there exists an open set W C U NV such that M C W and

X(x) =Y(x), Ve e W.

So we have [X]4 = [Y]4. This implies that the map p, is well-defined. Let XY €
I“(E) and a € R. Then there exist neighbourhoods U and V, and holomorphic
sections X € I'YB(U) and Y € I'MR(V) which are holomorphic extensions of X
and Y respectively. Let W = U NV. Then we define h : Th'R (W) as

h(z) = X(z) + aY (x), Ve e W.
It is clear that we have

jA(X+OéY) = [E]A = [X—FOé?]A = [X]A—F@[?]A :jA(X> +OéjA(Y).
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Definition 3.2.26. Let M be a real analytic manifold and let {K,},en be a com-
pact exhaustion for M. The projective topology on the space of real analytic
sections T“(FE) is defined as the coarsest topology which makes all the projections
. w hol,R .

Ji, : T9(E) — 4" continuous.

It is easy to see that the projective topology does not depend on the specific choice
of compact exhaustion { K, },en. One can also show that the inductive topology and
projective topology on I'“(E) are the same [59, Theorem 1.2(a)].

Theorem 3.2.27. The inductive and projective topology on I'*(E) coincide.
We denote this topology on the space I'“(E) by the C“-topology.

Theorem 3.2.28. The space I'Y(E) with the C“-topology is Hausdorff, separable,
complete, and nuclear. It also satisfies Heine—Borel property.

Proof. Let {K,},en be a compact exhaustion for M. Note that, by theorem 3.2.22,
the inductive limit o
héﬂFhoLR(UKn) _ g}l;:l,R

is compact. Note that, for every n € N, the vector space T"'R(Ug, ) is a complete
locally convex space. This implies that, for every n € N, the vector space %}éil’R is
complete [7, Theorem 4]. Since I'’(E) is the projective limit of the family {Sf}}f’R}neN,
it is a complete locally convex vector space [69, Chapter II, §5.3]. By [51, §30.4],
for every Uy € MC a neighbourhood of M, the vector space I''!(U,,) is nuclear.
Therefore I'"Y® (T ,;) is nuclear because ' &(U ;) is a closed subspace of I'"(U ;)
[69, Chapter II, Theorem 7.4]. According to [69, Chapter II, Theorem 7.4], the
inductive limit of a family of nuclear spaces is nuclear. So I'(E) is nuclear. The fact
that I'“(E) is nuclear implies that it satisfies Heine-Borel property. Finally, the fact
that I'“(E) is separable has been shown in [23, Theorem 16]. O

Every locally convex topology can be represented by a family of generating semi-
norms. So, it would be useful to find families of generating seminorms for the C“-
topology on I'Y(FE). In this section, we construct two families of seminorms that
generates the C¥-topology on I'Y(E).

Let C' C M be a compact set and &7 be a C¥-atlas on the manifold M. For every
coordinate chart (U, ¢) € &, every local trivialization n : 7= 4(U) — U x R¥, every
compact set K C U, and every a € co(Z>o, R>¢), we define the seminorm pg a4, o0
%goLR as

apay . . . ay,
DX @ | 2 € Kilrl € 2o |

Theorem 3.2.29. Let M be a real analytic manifold, C C M be a compact set and
o be a C¥-atlas on M. The family of seminorms {px.aesn} generates the inductive
limit topology on the space %({301’“.

Preas([X]c) = sup {
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Proof. We first show that the topology induced by these seminorms on %“’”R is
independent of the C“-atlas /. Let o/ and % be two equivalent C*-atlas on M.
Let (U,¢) € @4 and (V,9) € o be such that UNV # 0. Let a € co(Zxo,Rso)
and K C UNV. By Sublemma 3 from the proof of Lemma 5.2 in [42], there exist
C, o > 0 such that

su L MnoXod (x rl <m
p{ DY 0o X e )@ ] <
< Clo)™ sup {ﬁuw (noX o) (gL (@)| | Ir] < m}

for every [X]ec € 95" and every z € ¢(K). Now if we take the supremum over the
compact set ¢(K), for every X € 2% we get

su L M (noX o™ (x r m,x
p{ 07X o )@ ) < € o]
< oy sup { S ID e X )@ 1] < mw € w() |

Therefore,

sui(”)oo_lx rl<m,z
p{ D e X 0@ 1] < m € 600
< c<a>msup{ﬁquonow(wm ] < moo e wo}.

Multiplying both side of the equality by aga; ... a,,, we get
agaq . ..AQm, r _
sup { S0 DO X o6 11| < o € oK)
< C'sup {

(cap)(oay) ... (cay)

(r)!

Taking supremum over all multi-indicies, we have

IDO (e X o)) | Ir] < myzx € wo}.

hol,R
PKabn(X) < Py)oann(X), VX €G"

Now assume that K C U. Then, for every x € K, there exists a chart (V,, ¢,) € o

such that x € V.. Consider a compact set K, C V, such that x € K, and int(K,) # 0.

Since K is compact, there exists a finite collection of points 1, xs,...,z, € K such

that

n
int(K,,) = K.

=1

7
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This implies that
K C| K.,

i=1
Note that, for every ¢« € {1,2,...,n}, we have K, € U NV,. Therefore, for every
i€{1,2,...,n}, there exist g;, C; > 0 such that

hol,
pKa;i7aa¢777(X> S pwzi(Kzi)vaavwzivn<X)’ \V/X S gco R'

Thus, we have

hol,R
Prasn(X) < ZpKzi,amn(X) < Zdezi(Kzi)anszﬂ(f)’ VX e
i=1

=1

This shows that the topology generated by the family of seminorms {pxae,} for
(U,¢) € o is coarser than the topology generated by the family of seminorms
{prayn} for (V,¢) € af. Similarly, we can show that topology generated by the
family of seminorms {px.ay,} for (V,¢) € o is coarser than the topology gener-
ated by the family of seminorms {px asn} for (U, ¢) € <. This shows that the two
topologies are the same. Now one can fix a C¥-atlas &/ on M and consider the semi-
norms {px.aqsnt for (U, ¢) € o7. The fact that the seminorms {px a4} generates the
topology on fféwl’R has been proved in [81]. a

Remark 3.2.30. Since the topology generated by the family of seminorms {ps a s, }
does not depend on the C*-atlas on M, one can fix a C*-atlas on M. Unless it is
explicitly mentioned, we assume that a coordinate chart (U, ¢) for M and a local triv-
ialization (E, M, ) is attached to K. Therefore we can usually denote the seminorm
PK.aepn DY Dka Without any confusion, assuming that the choice of the coordinate
chart and local trivialization is clear from the context.

One can show that the set {px atacco(z,r-0) 1S uncountable. Although this fam-
ily of seminorms generates the topology on %(?OI’R, it doesn’t mean that one needs
every seminorms in the family {pxa} to generate the topology on %OIR. In fact,
the topology on ggol,R can be generated by a much smaller subfamily. In the next
theorem, we choose a specific subfamily of {px a}, which turns out to be useful for
our future computations.

Let d > 0 be a positive real number. We define cé(ZZO; R.q,d) as the subset of
c(Z=0; Rsg) given by

Cé(ZZQ;R>Q7 d) = {a S Cé(ZZQ; R>0) | am < d, VYm e ZZO}’

Theorem 3.2.31. Let C' C M be a compact set. Then the family of seminorms
{Pra}t,ac cé(ZZO;Rw, d), generates the inductive limit topology on ggol,R'
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Proof. Let b € ¢}(Zso: Rsg). Then we define b’ = (b)), ;. b}, ...) € c§(Z=0;Rsg, d) as
Since {b; }ien converges to zero, there exists m € N such that

b= b, Vi>m,
b= d, Vi<m

This implies that, for every multi-index () with |r| < m, we have

b6bll e bm B dl! S am boby . .. bm
(r) () T \boby... by (r)! 7

and, for every multi-index (r) with |r| > m, we have

boby - b, _ A"V 1ba - b _ d"bmgibmga by dm boby ... by
(r)! (r)! (r)! boby ... b '

So, for every compact set K C U, we have

prp([X]e) < (bobld—mbm) pen(X]e)  V[X]o € 9RF

]

In many applications it is more convenient to work with another family of semi-
hol R
norms on ¥4,

Definition 3.2.32. Let &/ be an atlas on M, (U, ¢) € &/ be a coordinate chart on
M, n: 7 Y(U) — U x R¥ is a local trivialization for (E, M, w), K C U be a compact
set, and a € ¢o(Zxo, R>o). Then we define the seminorm pg , on %gOI’R as

@0 - - - Ar| 1 ()
|r! HD (X)(fC)H(U@m |z € K, |r| EZZO}_

Theorem 3.2.33. The family of seminorms {Px.a} generates the inductive limit
topology on the space %éml’R.

Preal[X]c) = sup {

Proof. Note that for every multi-index (r), we have (r)! < |r|!. This implies that

apasq . .. CLM ||D(T)X(1‘

@ < (). M wom

So we have
ﬁK,a(X) S pK,a(X), Va € Cé(Zzo, R>0).



ON THE ROLE OF REGULARITY IN MATHEMATICAL CONTROL THEORY 63
So the topology generated by the family of seminorms {pr a} is finer than the induc-
tive limit topology. Moreover, we have

aoa - .. aj b aoas . ap

(r)! |HD(T)X($)H(U,¢,77) BGIEL IDOX @)1,
@001 . . . Q) ., (Nao)(Nay) ... (Nayy) |
< N2 1|r|! | X @)y = I;I! “||p X @) 76
Thus we get

Pr.a(X) < proval(X), Va € cf(Zso, Ro).
This shows that the topology generated by the family of seminorms {px a} is coarser

than the inductive limit topology. This completes the proof. O

Using families of seminorms {px o} and {pxa} on Z2°"%, one can easily define two
families of seminorms on I'Y(E). Let (U, ¢) be a coordinate chart on M, n: 7= (U) —
U x R¥ be a local trivialization for (E, M, n), K C U be a compact set, d > 0 be a
positive real number, and a € ¢y(Z>o, R>o,d). Then we define the seminorm pf; , as

pea(X) = sup { 2 DO X (Dl | 7 € K] € Zao

Similarly, we define
» apay . .. aj .
Prea(X) = sup { 2 DO X ()l | 2 € K] € Zoo

One can show that each of the families {p% .} and {p% .} is a generating family
of seminorms for the C¥-topology on the space I'Y(E).

Theorem 3.2.34. Let d > 0 be a positive real number, K be a compact set in a coor-
dinate neighbourhood on M, and a € cé(ZZO,Rw, d). Then the family of seminorms
{p% o} generates the C*-topology on the space I'“(E).

Proof. Let (U, ¢) be a coordinate chart on M. Then, for all compact sets C' and K
such that K C C C U and every a € co(Z>o, R~,d), we have

w .
Pra = PKa°JC-

So pf . 1s a continuous seminorm on C“-topology on I'“(E). This means that the
topology generated by the family of seminorms {p% ,} on I'“(E) is coarser than the
C“-topology. Let {K,},en be a compact exhaustion for the manifold M. We have
1'&154}51’]1{ = ['“(E). So, for every open set W C I'Y(F), there exists m € N and

W; e g}gﬂ’R for all i € {1,2,...,m}, such that

(ixl (W) € W.
=1
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Note that, for every n € N, the family of seminorms {pxa} generates the topology
on %;}:LR. Therefore, there exist compact sets C1,Cy, ..., C,, such that C; C K; for
every i € {1,2,...,m} and sequences aj,ay, ..., a, such that a; € co(Z>o, R=0,d)
for every i € {1,2,...,m}, and we have

Pora, ([0,1) S Wi, Vie{1,2,...,m}.

This implies that

(il ke, (0:0) = ) ()~ (0,1) €W

This means that the topology generated by family of seminorms {p% .} is finer than
the C¥-topology on I'V(E). O

Theorem 3.2.35. Let d > 0 be a positive real number, K be a compact set in a coor-
dinate neighbourhood on M, and a € cé(ZZO,Rw, d). Then the family of seminorms
{P% a) generates the C*-topology on the space I'“(E).

Proof. The proof is similar to the proof of Theorem 3.2.34. n

Let M be a C"-manifold. For the C”-vector bundle (M x R, M, pry), we know
that C”-sections of (M x R, M, pr,) are exactly C”-functions of M. Therefore, using
the above analysis, we can study the topology on the space C¥(M). In particular,
we can define a family of seminorms on C¥(M). However, the space of C”-functions
has an extra algebra structure that the space of C”-sections doesn’t have. One can

define a multiplication . : C* (M) x C*(M) — C*(M) on the vector space C* (M) by

(f.9)(x) = f(x)g(x),  Vxe M.

This multiplication make the vector space C¥(M) into an F-algebra. It is interesting
that this algebra structure on C¥(M) is consistent with the C”-topology on it.

Theorem 3.2.36. The algebra multiplication . : C¥(M) x C*(M) — C¥(M) is con-
tinuous.

Proof. The proof consists of three different cases:

1. (v =00):

Let (U, ¢) be a coordinate chart on M and K C U be a compact set. Note that,
for all multi-indicies (r) with |r| < m, we have

DY (fg)(x) = > ((T))DWS)f(x)D(S)g(x), Ve eU.

s
(8)<(r)
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So we have
r r r—s s
D@l < 3 ()10 r@lips@l,  veev
(s)<(r)
Note that, for all multi-indices (s), (r) with (s) < (r), we have
1D ()| < sup {|IDVf(@)l| | Ir| <m},  Vxel,

and
ID®g(z)|| < sup {|IDVg(2)[| | [r| <m},  VzeU.

This implies that

1D (fg) ()]
< 2" sup {| DV f(@)|| | [r| < m}sup {|IDVg(2)|| | || < m},  VeeU.

Taking the sup of the left hand side of the above inequality over x € K and (r)
with |r| < m, we get

Pm(fg) = sup {IDO(fg)(@)|| | = € K, |r < m}
< 2%sup {[DV(F)@) | Ir] < m}sup {|DV @@l | Ir] < m}

. (v =hol):
Note that, for every compact set K C M, we have

i (fg) = sup {[|f (@)g(2)]| | = € K}
< sup{|lf (@)l | € K}sup{llg(x)]| | = € K} = i (/)pi (9)-

. (v=w):
Let (U, ¢) be a coordinate chart on M, K C U be a compact set, and a €
c(Z=0;Rsp). Note that, for every multi-index (r), we have

= Z D=9 f(2)D¥g(x), Ve e U.

s<r

Since the sequence {a; }ien is decreasing, we have

S I fa) @)
< Z%HDT TN@I GG, Ve
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Note that, for every multi-index (s) such that (s) < (r), we get
apayq . . . CL|T

o 1PN @I

< sup {%w%mn

Ir| € ZZO} , Vo e U,

< sup {MHDW@H

|7“’ EZZO}) Vo e U.

This implies that

Qpdyq . . . CL|T

S IDP )@l < 2 s {

apayq . . . a|r

S D@ ] € oo

aody . . . Q) .
‘ sup{%y'uzﬂ (@)@ | Ir] € Zzo}, Ve eU

Taking the sup over z € K and |r| € Z>, we get

p%’a(fg) < p%\/ga(f)p%ﬁa(g)-

3.3. C”-vector fields as derivations on C” (M)

In this section, we study C"-vector fields on M as derivations on the F-algebra
C¥(M). For a smooth manifold M, it is a well-known fact that every derivation on the
R-algebra C*°(M) is the derivation associated to a C'-vector field on M. However,
it is not generally true that a derivation on the C-algebra C"!(M) is the derivation
associated to a C"l-vector field on M. When M is a Stein manifold, this one-to-one
correspondence has been proved in [26]. Using this result, it can be shown that, for a
real analytic manifold M, there is a one-to-one correspondence between derivations
on the R-algebra C*(M) and the C™l-vector fields on M [26]. Moreover, we will
show that, with the C*-topology on C"(M), vector fields are continuous operators.

Let M be a C"-manifold and let X : M — T'M be a C-vector field on M. Then
we define the corresponding linear map X : C¥(M) — C¥(M) as

R(f) = df(X),  VfeCr(M).
Using the Leibniz rule, this linear map can be shown to be a derivation on the [F-
algebra C"(M).
More interestingly, one can show there is a one-to one correspondence between
C¥-vector fields on M and derivations on the F-algebra C*(M).
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Theorem 3.3.1. Let M be a C¥-manifold , where v € {oo,w,hol}. Additionally
assume that M is a Stein manifold when v = hol. If X is a C¥-vector field, then X is
a derivation on the F-algebra C¥(M). Moreover, for every derivation D : C* (M) —
CY(M), there exists a C”-vector field X such that X = D.

Proof. The proof of this theorem is different for the smooth case (v = o0), the real
analytic case (v = w), and holomorphic case (v = hol). For the smooth case the
proof is given in [4, Proposition 2.4]. For the holomorphic case, this is proved in
[26, Theorem 3.2|. For the real analytic case, the idea of the proof is similar to the
holomorphic case, and the sketch of proof is given in [26, Theorem 4.1] ]

Theorem 3.3.2. Let X be a C”-vector field. Then X C"(M) — C*"(M) is a
continuous linear map.

Proof. The fact that X is linear is easy. To show that X is continuous, we consider
three different cases:

1. (v =00):
Assume that the compact set K 1is inside a coordinate chart (U,n =
(x', 22, ..., 2"Y)). In this coordinate chart, we can write
N
i O
X(f) =) X )5
i=1

For every i € {1,2,..., N}, we denote X(z) by X*. Let m € Z~q, then we
have

PRn(X () = sup {IDOX () @) | Ir| <m,ze K}
Note that we have

DX (D)) = D) (Z X(xi)aaji) = 3 DO @)D O f @)

<r i=1

This implies that

PR (X () < 27N mas (3 (X0 1 ().

This completes the proof of continuity of X.

2. (v = hol):
Let (U,n = (2',22%,...,2")) be a coordinate chart such that U is relatively
compact and K C U be a compact set. For every x € K, there exists r, > 0

such that cl(D(,,)(x)) € U. Since K is compact, there exists 1, z,..., 2, € K
such that K C (J;_, cl(D, )(x;)). Note that for every i € {1,2,...,n}, the
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set cl(D, y(x;)) is compact. Therefore, the set K" = (J;_; cl(Dy, )(;)) is also
compact.

In this coordinate chart, we can write
N

i 9f

X(f) =3 X(a)5

=1

For every i € {1,2,..., N}, we denote X (2°) by X*. Then, we have

P (X(f)) = sup {|X(f)(@)]| | = € K}

Note that we have

N
X < Y 1x@ | 2
i=1
If we set » = min{ry,ro,...,r,}, using the Cauchy inequality, we have
of

S| < tsawllf@l ze K}, veek

This implies that

N
r

PRI (X () < = max{pie (X") }pi ().

This completes the proof for the holomorphic case.

. (v=w):

Let (U, ¢) be a coordinate chart on M and K C U be a compact set. We first
prove that, for every multi-index (r), we have

||
ol < 3 (1) swtlo® s 1 =1

=0 \J

< sup {|(DOg(@))|| [ lI| = |r| - j}, VaeU

We prove this by induction on |r|. If |r| = 1, then it is clear that we have

| to@)| = | g @) + s
< | Lo + [ L. vsew
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Now suppose that, for every (r) such that |r| € {1,2,...,k}, we have
r 7] :
ERPEIE Z (") s {00 stanl 111 = 33

xsup {|(DOg()|| | 1| = |r| — j}, Vzel.

Let () be a multi-index with [[| = k + 1. Then there exists i € {1,2,..., N}
and (r) with |r| = k such that (1) = (r) + (). So we have

[t = |20 (500) @

< [p0 (30) @] + [P0 (25) @
<3 () e {3 ”H"”:J}Sﬂp{H(D”’g(w))II||l|=|r|—j}+
( )Sup{u H||1|—]}SUP{H m_m_J}
- lz (") + (1)) s o0 ol 101 =53

X sup{H DWg()|[ |11l = r| = j +1}

- Z (") s {00 1 =3)

x sup {[[(DDg()|| | il = |r| —j+1}, Vzel.

M_

This completes the induction. Thus, by noting that in a coordinate chart we
have

X0 =Y x5,
we get
Ir| N '
| D (X Z( )sup{uwamx))u ] = Irl - 4

} VreU. (3.3.1)
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Now let a € ¢§(Zo, Rsg). Then we have

B D (X () )] <
Il N
i apady ... a ()8f B B }
Zzp{ 2002 )| 1 = 1 -5}

aogdy ... Ap|—4 i .
Sup{W I(DOX @) | 1] = |r] —]}, Vo € U

We define the sequence p = (po, p1,...) as

D = apay, m =0,
oy =
(1) s, m> 1.

Then it is clear that limy, i, ey P = 0. This implies that p € Cé(Zzo,Rw).
Moreover, we have
PopP1 - - - Pm+1 apQy . . . A

= , VYm € Zy.
(m+1)! ml s Sz

Thus we have

apdyq . .. CL|T

DD (X () (@) <
R PoP1 - - - Pj+1
ZZZSUP{ G+1)
aoal...a|T|,j () vi . s
sup{—,'H(D X (@) ||t =1|r| j}, Vz e U.

(Irl = 3)"

Taking the supremum of both side of the above inequality over x € K, we have

7!

DU

)| =14} x

Pha(X(1) < o sup (i a (X} iy (1)

)

This completes the proof of continuity of X in real analytic case.
O

Now, we prove a specific approximation for the seminorms on C¥(M). In the next
sections, we will see that this approximation plays an essential role in studying flows
of time-varying real analytic vector fields. Let d > 0 be a positive real number and a €
cé(ZZO, R-o,d). For every n € N, we define the sequence a,, = (an0, Gn1s- - s G, - - )
as

u (mTH)nam, m > n,
" () 0 m<n.
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Associated to every a € cé(ZZO, R-q, d), we define the sequence b,, € Cé(Zzo, R.o) as

; {amm, m=0m=1,
n,m — (m+1)(m+2)
( m=1)(m) >an,m, m > 1.

Lemma 3.3.3. Let a € cg(ZZO,RW,d). Then, for every n € Zsy, we have a,, €
cé(ZZO,RW, ed) and, for every m,n € Zsq, we have

Upgm < €y,
(m+1) < (Ant1,0)(Ang11) - - (Ang1ms1)
(n + 1) - (an,O)(an,l) e (an,m—&-l) 7

where e is the Euler constant. Moreover, for every n € Zso we have b, €
cé(ZZO,Rw, 6ed) and, for every m > 1, we have

bpm < 6eap,

(an0)(@n1) - (@nm)  (bn0)(bn1) - .- (bm)
(m —2)! m! '

Proof. Let a € c§(Z>o, Rsq,d). Then by definition of a,, for n < m, we have

1\" 1\
- (&) 0 < (&) o < ea.
m m

For n > m, we have

m4+1\"
(= (—) A < €0y,
m

This implies that limy, .« @y, = 0. Moreover, for every m,n € Zx(, we have
Apm < €Qpy, < ed.

So we have a,, € cé(Zzo,RN, ed). Let m,n € Zs( be such that n+1 > m+ 1. Then
we have

an-{—l,m—‘rl -1

an,m—l—l
So we get
(an+1,0)<an+l,1> e (an+1,m+1> >1
(an,(J)(an,l) cee (an,m—I—l) o

Since we have a,, € cg(ZZO, Ry, ed), we get

(an+1,0)(@ng11) - - (Cng1me1) 1" + 1

(n0)(ana) ... (nms1) n+1"

Vv
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Now suppose that m,n € Z>q are such that n +1 < m + 1. Then we have
Uppimer  (m+1
Qn,m+1 m ‘
Therefore, we get

(@n41,0)(@n+11) - - - (@ng1mer) (n—i—Q) (n+3) (m+2> _m+2 _mt 1

(an,O)(&n,l)---(an,m+1) n -+ 1 n+2 n -+ 1 n—l—l '

m+1
Since we have a,, € cé(ZZO, R.q, ed), we get

(ant1,0)(@ng1,1) - (@ng1mer) _ m+1
(an70>(an71) Ce (an’m) T n+1 ’

So, for all m,n € Zx, we have

(@n+1.0)(@nt11) - (Qpy1mer) - m+1
(an,O)(anJ) ce - (an,m+1> T n+1 ’

Finally, since a,, € cé(Zzo, R+, ed) and we have % < 6, for all m > 1, we get

h (m+2)(m+1)
o m(m — 1)

Qn,m < 6a'n,m-

So we have lim,,,_,o0 by, = 61im,,,_,o0 @y, m = 0. Moreover, we have
bpm < 6ay,m, < 6ea,, < 6ed.

Thus we get b,, € cé(ZZO, R<q, 6ed). This completes the proof of the lemma. O

Theorem 3.3.4. Let M be a real analytic manifold of dimension N, X € I'Y(E),
and f € C¥(M). Let U be a coordinate neighbourhood in M and K C U is compact.
For every d > 0, every a € cé(ZZO; R-o,d), and every n € Z>o, we have

P, (X (f)) < AN(n + 1) max{pp, (X)} PR a,,, (). (3.32)

Proof. Now let d > 0 and a € cé(ZZO,RN,d). Then by multiplying both sides of
equation (3.3.1) by (@n0)(@n1)-(@nirt) g get

Irl!

(o) (@n1) - (@) y oy () )| <

7!

=1 1=0
2 ((an,l+2)(an,l+3> e (an,lrl)
(] = D!

1=1))

sup {[| DO X ()] | Is] = |r| - z})  weew
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Since the sequence a,, is decreasing, we have

(@) (@) - (@nir) |\ o) 5 )) )|

7!

(8 ettt o 1)
e ) s {|DOX @) 1= b -1}),  veu

Using the above lemma, we have

(an,o)(an,l) e (an,l+1) (an+1,0>(an+1,1 - (an+1,l+1)

< (n+1)

) (I +1)! ’
(an,o)(an,l) . (an,\r|—l—2> _ (bn+1,0)(bn+1,1> e (bn+17\7’|—l)
(jr[ —1—2)! (I =0)!
Therefore, we get
(anp)(an’iﬂ)h ! DX () ()
N Ir|
<SSt (e i), 0 =141
((bn,o)(ba;‘ﬁ-_-é)(!bn,lr—z) sup { | DOX @) | |s] = |r| l}) , VzeU.

Thus, by taking supremum over [ € Z>, and x € K of the two term in the right hand
side of the above inequality, we get

(amo)(an,l) ce (amw) ‘

7!

S N(n + 1)ﬁ?(,an+1 pr

|7
l: (Ir[ = )( \r\—l—l)
S 4N(7’L + 1)pK,an+1(f)pK,bn (Xl)a Vx € U

By taking the supremum of the left hand side of the above inequality over |r| € N
and z € K, for every a € cé(ZZO; R, d), we get

P, (X (f)) S AN(n + 1) max{pp, (X))} PR a,,, ().
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3.4. C”-maps as unital algebra homomorphisms on C” (M)

In this section, we study C'V-maps between manifolds. One can easily associate to
every C”-map between two manifolds M and N, a unital F-algebra homomorphism
between the vector spaces C¥(N) and C*(M). For v = oo, this correspondence can
be shown to be one-to-one [4, Proposition 2.1]. For the v = hol, by adding the extra
assumption that M and N are Stein manifolds, one can show that C"-maps from
M to N are in one-to-one correspondence with unital C-algebra homomorphisms
between C"(N) and C"!(M) [30, Theorem J.1]. For the real analytic case, this
correspondence has shown to be one-to-one for the case when the manifolds are open
subsets of R™ [24, Theorem 2.1]. In Theorem 3.4.2, we give a unifying proof to the
fact that, for v € {oo,w} and for v = hol with the extra assumption of M and N
being Stein manifolds, there is a one-to-one correspondence between C”-maps between
two manifolds M and N and unital F-algebra homomorphisms between C¥(N) and
C¥(M). This result, in particular, generalize Theorem 2.1 in [24] to arbitrary real
analytic manifolds. Finally, we will show that, with the C"-topology on the vector
spaces C¥(N) and C¥(M), C¥-maps are continuous operators.

Let ¢ : M — N be a C*-map. Then we can define the map ¢ : CY(N) = C"(M)
as

~

O(f) = feo.

It is easy to see that 5 is an [F-algebra homomorphism. For every z € M, one can
define the unital F-algebra homomorphism ev, : C*(M) — F as

eve(f) = f().

The map ev, is called the evaluation map at x € M. It is natural to ask whether
the evaluation maps are continuous with respect to C”-topology.

Theorem 3.4.1. For every x € M, the map ev, : C¥(M) — F is continuous with
respect to C¥-topology.

Proof. If pY is one of the seminorms p%,,, Pl or P a» We have

Pk (f) < Cleva(f)I,
where C' =1 for v € {00, hol} and C' = ay for v = w. O

The evaluation map plays an essential role in characterizing unital F-algebra ho-
momorphisms. The following result is of significant importance.

Theorem 3.4.2. Let M be a C”-manifold where v € {00, hol,w}. If v = hol, addi-
tionally assume that M is a Stein manifold. Let ¢ : C¥(M) — F be a nonzero and
unital F-algebra homomorphism. Then there exists x € M such that ¢ = ev,.
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Proof. For the smooth case, the proof is given in [4, Proposition 2.1]. For the holo-
morphic case, the proof is the special case of [30, Theorem J.1]. For the real analytic
case, when M and N are open subsets of euclidean spaces, a proof for this theorem is
given in [24, Theorem 2.1]. However, it seems that this proof cannot be generalized
to include the general real analytic manifolds. Using the techniques and ideas in [60,
Proposition 12.5], we present a unified proof of this theorem for all v € {oo,w, hol}.
Let ¢ : C¥(M) — R be a unital R-algebra homomorphism. It is easy to see that
Ker(¢) is a maximal ideal in C¥(M). For every f € C¥(M), we define

Z(f) ={z e M| f(z) = 0}.

Lemma. Let n € N and fi, fo,..., fn € Ker(¢). Then we have

n

M z(f:) #0.

=1

Proof. Suppose that we have
M z(f:) =0.
i=1

Then we can define a function g € C¥(M) as

1
10 = Gwy M

Then it is clear that we have
(Dm?) (9) = 1.
i=1

where 1 : C¥(M) — F is a unital F-algebra homomorphism defined as

1(f) =1.
Since Ker(¢) is an ideal in C*(M), we have 1 € Ker(¢). This implies that ¢ = 0,
which is a contradiction of ¢ being unital. O

Since M is a C”-manifold, there exists a C”-embedding of M into some RY (for
smooth case, we use Whitney’s embedding theorem [82, §8, Theorem 1] with N =
2n+ 1, for the holomorphic case, one can use Remmert’s embedding theorem [29], [9]
with N = 2n+ 1, and for the real analytic case, we use Grauert’s embedding theorem
with N = 4n+2). Let z1, x9, ..., xx be the standard coordinate functions on RY and
T1,%3,...,Tx be their restrictions to M. Now, for every ¢ € {1,2,..., N}, consider
the functions z; — ¢(7;)1 € C*(M). It is easy to see that

&7 — (T)1) = 6(T) — o(@)d(1) =0,  Vie{1,2,....N}.
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This implies that, for every i € {1,2,..., N}, we have z; — ¢(7;)1 € Ker(¢). So, by

the above Lemma, we get
N

(2@ — ¢(@)1) £ 0.

i=1
Since 1, Ty, . .., xy are coordinate functions, it is easy to see that (., Z(Z; — ¢(7;)1)
is just a one-point set. So we set X, Z(Z; — ¢(%,)1) = {z}.

Now we proceed to prove the theorem. Note that, for every f € Ker(¢), we have

Z(f)n{az} = (N (ML 2@ - ¢(@)1)) -
So, by the above Lemma, we have

Z(f)yn{z} #0, V[ € Ker(9).

This implies that
{2} CZ(f),  Vf € Ker(o).

This means that
{zy< ) 2.
f€Ker()

This implies that Ker(¢) C Ker(ev,). Since Ker(ev,) and Ker(¢) are both maximal
ideals, we have
Ker(ev,) = Ker(¢).

Now let f € C¥(M), so we have f — f(z)1 € Ker(¢). This implies that

0=0o(f — f(z)1) = o(f) — f(=).
So, for every f € C"(M),

Therefore, we have ¢ = ev,. O]

Theorem 3.4.3. Let M be a C¥-manifold where v € {00, hol,w}. If v = hol, addi-
tionally assume that M is a Stein manifold. We define the map ev : M — (C?(M))’
by

ev(z) = evy.
The image of ev is Homg(C”(M);F). Moreover, this map is a homeomorphism onto
its 1mage.

Proof. To show that ev, is continuous, it suffice to show that, for every f € C*(M),
the set
{zreM[|f(=)] <1}

is open in M. But this is clear since we have C¥(M) C C°(M). To show that ev is a
homeomorphism onto its image, we prove that the topology induced by C* (M) on M
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using the map ev is finer that the original topology of M. Suppose that dim(M) = n.
For v € {00, hol,w}, there a C”-embedding i : M — R?® for some s € N (for smooth
case, it is exactly Whitney’s embedding theorem [82, §8, Theorem 1] with s = 2n+1,
for the holomorphic case, it is Remmert’s embedding theorem [29], [9] with s = 2n+1,
and for the real analytic case, it is Grauert’s embedding theorem with s = 4n + 2).
This implies that, without loss of generality, one can assume M to be an embedded
submanifold of R®. Let (z', 2% ... 2°) be the standrad coordinate chart on M and
U C M be a neighborhood of xy. There exists ¢ > 0 such that

{ee M| |l2' = (zo) P <} CU.

=1

However, we have

M (Qp;} ({0, \/§)>> = {x e M| ||z — (x| < \/g Vi e {1,2,...,3}}

CleeM|) o' = (zo)|* < c}.
i=1

1 (f (o) <

Theorem 3.4.4. Let M and N be C”-manifolds and v € {oc,hol,w}. If v = hol,
additionally assume that M and N are Stein manifold. Then, for every F-algebra
map A : C"(M) — CY(N), there exists a C¥-map ¢ : N — M such that

Therefore, we have

]

~

6= A

Proof. For every x € N, consider the unital F-algebra homomorphism ev,oA :
C"(M) — F. By Theorem 3.4.2, there exists y, € M such that ev,0A = ev,, .
We define ¢ : N — M as

¢(l’) = Yz, Vo € N.

Let (U,n = (2%,2%...,2™)) be a coordinate neighbourhood on M around y,.
Then, by using the embedding theorems (for v = 0o, we use Whitney’s embedding
theorem [82; §8, Theorem 1] , for ¥ = hol, we use Remmert’s embedding theorem
[29], [9], and for v = w, we use Grauert’s embedding theorem), there exist functions
Z1, 22, ..., Z™ such that, for every i € {1,2...,m}, we have

# € CY(N),

21"[] = 2"
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Thus, for every x € U, we have
YL = ev, 0 A(Z") = A(Z) (), Vie{l1,2,...,m}.

However, for every i € {1,2,...,m}, we have A(z") € C”(N). This implies that,
for every ¢ € {1,2,...,m}, the function g’ is of class C” with respect to z on the
neighborhood U. Therefore, the map ¢ is of class C”. One can easily check that
b= A

m

Theorem 3.4.5. Let ¢ € CY(N, M) be a C¥-map. Then ¢ CY"(M) — C¥(N) is a
continuous linear map .

Proof. 1t is easy to see that gg is a linear map. To show that it is continuous, note
that we need to separate the cases v = oo, ¥ = hol, and v = w.

1. (v=o00):

Consider a coordinate chart (U,n) on M and a coordinate chart (V,£) on N.
Then, for every compact set K C V and every m € Zs(, we have

PR (fod) = sup{|DV)(fo0)(2)|| | x € K, |r| < m}.
Note that we have

IDY(fod)(@)]
< 2" sup {|[DVg(@)|| | 2 € K, |j] < [r|} sup {|D9 f(2)]| | = € K. |j] < Irl}

This implies that

PR (@) < 27 sup {| DD (2) |V | 2 € K, |j]| < m}p,.(f)-

This completes the proof for the smooth case.

2. (v = hol):

For every compact set K C M, we have

Piéy(¢) = sup {[[(f o) (@)l | = € K} = sup {|f(2)Il | = € 6(K)} = pgiie) (f)-

This completes the proof for the holomorphic case.

3. (v=w):

Let (U,n) be a coordinate chart on M, (V,&) be a coordinate chart on N such
that n(U) C V,and K C V be a compact set. Since nogo&~t: E(VNo~1(U)) —
n(@(V) N U) is real analytic, by Sublemma 3 of [42], there exist C' > 0,0 > 0
such that, for every f € C*(M) and every multi-index (r), we have

su L O (fod)(2)|| | = o™ su L O )| |z
p{ DYoo)l o € K} < Comsup { LD )] € 0}
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Let a = (ag,ai,...) € co(Zp;R>p). We multiply both side of the above in-
equality by apa; ... a) and we get

sup {%HD“’U@)(@H P K}

apy . .

“Air| ()
SrDY @ 2 € 00
Now by taking the sup over |r| € Z, we have

pf(,a,f(qs) S Cp?(,aa(f)a \V/f € Cw(M)

< Co™sup {

This completes the proof for the real analytic case.

]

Definition 3.4.6. The set of all unital R-algebra homomorphisms from C”(N) to
C"(M) is denoted by Homg(C¥(N); C¥(M)).

By Theorem 3.4.4, there is a one-to-one correspondence between C¥(M; N) and
Homg (C¥(N); C*(M)).

3.5. Topology on L(C¥(M); C*(N))

In this section, using the C”-topology on the vector space C* (M), we equip the
space of linear maps from C”(M) to C¥(N) with the pointwise convergence topol-
ogy. We will show that L(C"(M);C"(N)) with this topology is a locally convex
topological vector space. In particular, we find a family of defining seminorms for
this space. We then proceed by studying properties of the topological vector spaces
L(CY(M);C*(N)) and Der(C*(M)).

Definition 3.5.1. For f € C¥(M), we define the map £ : L(C¥(M);C"(N)) —
C”(N) as
Z5(X) = X(f).

The C”-topology on L(C¥(M);C*(N)) is the projective topology with respect to
the family {C"(N), L} recv -

One can show that this topology coincides with the topology of pointwise-
convergence on L(CY(M); C*(N)).

Theorem 3.5.2. The C"-topology and the topology of pointwise convergence on
L(C"(M);C¥"(N)) are the same. Moreover, L(C"(M);C"(N)) is a closed subspace
of C¥(N)C" 0D
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Proof. The fact that C"-topology and the topology of pointwise convergence on
L(CY(M);C”(N)) are the same is clear from the definition. ~We show that
L(C¥(M);C¥(N)) is a closed subspace of C*(N)¢" M) if we equip the latter space
with its natural topology of pointwise convergence. Let { X, }aen be a converging net
in L(C¥(M); C¥(N)) with the limit X € C*(N)¢" ™). We show that X is linear and
continuous. Let f,g € C¥(M) and ¢ € F. Then we have

Xo(f 4+ cg) = Xo(f) + cXalg), Va € A.
By taking limit on «, we get
X(f +cg) = X(f) + cX(9)-
This implies that X is linear. O

Theorem 3.5.3. The locally convex space L(CY(M); C¥(N)) with the C¥-topology is
Hausdorff, separable, complete, and nuclear.

Proof. Since C¥(N) is Hausdorff, it is clear that C*(N)“") is Hausdorff. This
implies that L(C¥(M); C*(N)) C C¥(N)“" ) is Hausdorff. Let c be the cardinality of
the continuum. Note that C¥(M) C C°(M) and M is separable. This implies that the
cardinality of C°(M) is ¢ [38, Chapter 5, Theorem 2.6(a)]. Therefore, the cardinality
of C¥(M) is at most c¢. The product of ¢ separable spaces is separable [84, Theorem
16.4(c)]. This implies that C*(N)¢" M) is separable. Since L(C¥(M);C?(N)) is a
closed subspace of C%(N)“" (M) it is separable [84, Theorem 16.4]. Note that C¥(N)
is complete. This implies that C*(N)¢" M) is complete [69, Chapter II, §5.3]. Since
L(C¥(M);C¥(N)) is a closed subspace of C*(N)¢"M) it is complete. The product
of any arbitrary family of nuclear locally convex vector spaces is nuclear [69, Chapter
I11, §7.4]. This implies that C¥(N)“" ) is nuclear. Since every subspace of nuclear
space is nuclear [69, Chapter III, §7.4], L(C¥(M);C¥(N)) is nuclear. O

Since locally convex spaces can be characterized using a family of seminorms, one
would like to find a family of generating seminorms for the spaces L(C"(M); C¥(N)).

Definition 3.5.4. Let {p;};c; be a generating family of seminorms on C¥(N). Then,
for every f € C¥(M), we define the family of seminorms {p; s }ier as

P (X) = pi(X(f)).

Theorem 3.5.5. Let {p;}icr be a generating family of seminorms on C¥(N). Then
the family of seminorms {p; s}, where i € I and f € C"(M), generates the C"-
topology on L(C¥(M); C¥(N)).

Proof. Let {Xa}taen be a net in L(CY(M);C¥(N)) which converges to X in the
C"-topology. Since C”-topology and topology of pointwise convergence coincide on
L(C¥(M);C"(N)), for every f € C*(M), we have

lim Xa(f) = X ().
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This implies that, for every ¢ € I, we have
limp; (Xa(f) — X(£)) = 0.
This means that, for every f € CY(N) and every ¢ € I, we have
liinpi,f (Xo — X)=0.

This means that lim, X, = X in the topology generated by {p; r}.

Now let {X,}aea be a net in L(CY(M);C¥(N)) which converges to X in the
topology generated by {p; f}icr,recv(m). This implies that, for every f € C¥(N) and
every i € I, we have

lim p; (Xao(f) = X(f)) = 0.

Since the family of seminorms {p; },c; generates the topology on L(C"(M); C*(N)), we
have lim, X, = X in the topology of pointwise convergence on L(C”(M); C*(N)). O

Remark 3.5.6. Using Theorem 3.5.5, one can define a family of generating semi-
norms for L(C®°(M); C*(N)), L(C¥(M); C¥(N)), and L(C(M); Ch(N)).

1. Let (U, ¢) be a coordinate chart on N, K C U be a compact set, and m € Zx.
Then we define

PEm (X)) = PEn(X(f)),  VfeCF(M).

By Theorem 3.5.5, the family of seminorms {p%,,, f} generates the C*°-topology
on L(C*(M); C*(N)).

2. Let K C N be a compact set. Then we define

Py (X) =p(X(f),  Vfe (M)

By Theorem 3.5.5, the family of seminorms {p]}‘})lf} generates the C"-topology

on L(CH(M); CP(N)).

3. Let (U, ¢) be a coordinate chart on N, K C U be a compact set, d > 0 be a
positive real number, and a € cé(ZZO, R-g,d). Then we define

Pitas(X) = Pia(X(f),  Vfe (M)

By Theorem 3.5.5, the family of seminorms {pf, ;} generates the C*-topology
on L(C¥(M);C¥(N)).

Theorem 3.5.7. Let M,N,P be C"-manifolds and V € L(C¥(M);C¥(N)). We
define the operator £y : L(C*(P);C*(M)) — L(C¥(P);C¥(N)) as

Lr(W) =V oW,

For every V€ L(CY(M);C"(N)), the operator £y is continuous.



82 S. JAFARPOUR

Proof. Let {W,}aea be a converging net in L(C¥(P); C¥(M)) such that lim, W, =
W. By definition of the C”-topology on L(C"(P); C¥(M)), for every f € C¥(P), we
have

lim W, (f) = W(f).

Since V € L(CY(M);C¥(N)) is continuous, for every net {gz} in C*(M) such that
lim g, = g, we have
lim V (g.) = V(g).

By choosing g, = W, (f), we have

lim V(Wa (/) = VW(£).

This implies that lim, %4, (W, ) = lim, VoW, = VoW = Z,(W). This means that
£y is a continuous map. O

Since Der(C¥(M)) is a subspace of L(C¥(M); C¥(M)), one can easily define the
C"-topology on Der(C”(M)) as the subspace topology.

Theorem 3.5.8. The space Der(C¥(M)) is Hausdorff, separable, complete, and nu-
clear.

Proof. We first show that Der(C¥(M)) is a closed subspace of L(C*(M); C*(M)).
Let X, be a net in Der(C”(M)) such that lim, X, = X. Then we have

X(fg) = lim Xo(fg) = lim fXa(g) +lim Xa(f)g
= fX(g9) + X(f)g, Vf,geC'(M).

This implies that X € Der(C¥(M)). So Der(C¥(M)) is a closed subset of
L(CY(M);C"(M)). As a result, Der(C¥(M)) is Hausdorff, separable [84, Theorem
16.4], complete, and nuclear [69, Chapter III, §7.4]. ]

Let M be a C”-manifold, where v € {oo, hol,w}. If v = hol, additionally assume
that M is a Stein manifold. In Theorem 3.3.1, we showed that one can identify
Der(C¥(M)) with I'(T'M) algebraically. Now that we defined the C*”-topology on
Der(C*(M)) using the C¥-topology on C¥ (M), one would like to see the relationship
between the C¥-topology on Der(C”(M)) and the C*-topology on I'V(T'M).

Theorem 3.5.9. The C"-topology on TY(TM) coincide with CY-topology on
Der(C¥(M)).

Proof. This has been shown in [42, Theorem 3.5, Theorem 4.5, Theorem 5.8]. O
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3.6. Curves on the space L(C"(M); C¥(N))

In the previous section, we defined the C”-topology on L(C*(M); C¥(N)). We
showed that L(C”(M); C¥(N)) endowed with C”-topology is a locally convex topologi-
cal vector space. In this section, using the fact that L(C"(M); C*(N)) is complete and
separable, we are able to characterize Bochner integrable curves on L(C*(M); C*(N))
using a family of generating seminorm on C”(N). Then, we proceed by defining
topologies on the space of locally Bochner integrable and continuous using appro-
priate families of seminorms. These topologies will be important in studying the
relationship between time-varying vector fields and their flows. Finally, using the C"-
topology, we prove that a locally absolutely continuous curve on L(C*(M); C*(N))
is almost everywhere differentiable.

3.6.1. Bochner integrable curves. In Section 2.3.5, we defined Bochner integrable
and locally Bochner integrable curves on a locally convex space. In this section, using
the fact that the locally convex space L(CY(M);C¥(N)) is complete and separable,
we characterize Bochner integrability of a curve on L(C¥(M); C¥(N)) in terms of a
generating family of seminorms on C”(N).

Theorem 3.6.1. Let {p;}ic; be a family of generating seminorms on C*(N). A curve
§:T — L(CY"(M);C"(N)) is locally Bochner integrable if and only if, for everyi € I
and every f € C(M), there exists g € LL _(T) such that

loc

pi(§()(f)) < g(2), vt e T.

Proof. Since the space L(C"(M); C*(N)) is complete and separable, the proof follows
from Theorem 2.3.40. ]

A time-varying vector field can be considered as a curve on the space
L(C"(M);C"(M)). Let V : T x M — TM be a time-varying C”-vector field, then
we define V : T — L(C*(M);C"(M)) as

VO =V, ¥fec ),
3.6.2. Space L'(T;L(C¥(M);C¥(N))). Let {p?}ics be a family of generating

seminorms for C¥(N) and T C R be an interval. For every compact subinterval
I C T, we define the seminorm pY ;; on L'(T; L(C"(M); C*(N))) as

Py a(X) = / PX()(f))dr,  YX € LY(T; L(CY(M); C*(N)).

The family of seminorms {pl" fJI} generates a locally convex topology on the space

LY (T; L(C"(M); C*(N)))-
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Theorem 3.6.2. There is a canonical isomorphism between L(T; L(C”(M); C*(N)))
and LY(T)®,L(C"(M);C*(N)). In particular, the vector space L'(T; Der(C”(M))) is
complete.

Proof. Since L(C"(M); C*(N)) is a locally convex space, this theorem follows from
Theorem 2.3.60. [

3.6.3. Space L'(T;Der(C¥(M))). Let {p’}ic; be a family of generating semi-
norms for C¥(N) and T C R be an interval. For every compact subinterval I C T,
we define the seminorm py ,; as

P (X) = / PX(F)(f)dr, VX € Der(C”(M))

The family of seminorms {p;’ f,JI} generate a locally convex topology on the space
L!(T; Der(C*(M))).

Theorem 3.6.3. There is a canonical isomorphism between L' (T; Der(C”(M))) and
LY(T)®;Der(C¥(M)). In particular, the vector space L'(T; Der(C¥(M))) is complete.

Proof. Since Der(C”(M)) is a locally convex space, this theorem follows from Theo-
rem 2.3.60. O

3.6.4. Space C°(T;L(C”(M);C”(N))). Let {p/}ics be a family of generating
seminorms for C¥(N) and T C R be an interval. Then, for every compact subinterval
[ C T, we define the seminorm r;,y as

rypi(X) = sup{p/ (X(@)(f)) [t €T}, VX € L(C"(M); C"(N)).

The family of seminorms {ry,;;(X)} defines a locally convex topology on

COU(T; L(C*(M); C"(N)))-

Theorem 3.6.4. There is a canonical isomorphism between CO(T; L(C”(M); C*(N)))
and C°(T)®Der(C¥(M)). In particular, the vector space CO(T;L(C*(M);C*(N)))

1s complete.

Proof. Since L(CY(M); C*(N)) is a locally convex space, this theorem follows from
Theorem 2.3.61. ]

3.6.5. Absolutely continuous curves. In Section 2.3.5, we defined absolutely con-
tinuous and locally absolutely continuous curves on a locally convex space. In this
section, we show that locally absolutely continuous curves on L(C¥(M);C¥(N)) are
almost everywhere differentiable.

Theorem 3.6.5. Let £ : T — L(CY(M);C"(N)) be a locally absolutely continuous
curve on L(CY(M); C¥(N)). Then & is differentiable for almost every t € T.
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Proof. Without loss of generality, we assume that T is compact. Then there exists
n € LYT;L(C”(M);C”(N))) such that

£(t) = £(to) + / C(ndr. WeT.

to

Therefore, it suffice to show that, for almost every ¢ty € T, we have

¢
lim sup / (n(1) —n(ty))dr =0, t>t.
t—to t =0 Jy,
Since C°(T) is dense in L'(T), by Theorem 2.3.57, the set C°(T)&,L(C*(M); C*(N))
is dense in LYT)®,L(C*(M);C"(N)). Since the locally convex space

L(C¥(M);C"(N)) is complete, by Theorem 2.3.60 and Theorem 2.3.61, we have

CUT)&:L(C*(M); C*(N))) = C(T;L(C"(M); C*(N))),
LY (T)®:L(C"(M); C*(N))) = LYT;L(C"(M);C*(N))).

This implies that C°(T; L(C*(M); C¥(N))) is dense in L'(T; L(C¥(M); C*(N))
{pi}icr be a generating family of seminorms for L(C"(M); C¥(N)).
i € I, there exists g € C°(T; L(C”(M);C*(N))) such that

/T pilg(r) — n(r))dr < c.

So, we can write

! /pi (n(r) —n(to)) dr < ! /pi(n(T)_g(T))dT

t_to tO _t_to tO

- t_lto /to pi (9(7) = g(to)) dr + pi(g(to) — n(to)). (3.6.1)

Since ¢ is continuous, we get

lim sup
t—to — 1o

/tpz‘ (g(1) — g(to)) dr = 0.

to

If we take limsup of both side of (3.6.1), we have

isup (= [ afo) = () )

t—to t— tO to

t—to

[ ot - g(r))dr) T pilgto) — ().

to

< lim sup (

t—to

Now suppose that there exists a set A such that m(A) # 0 and we have

Jim sup < L /tpi (n(7) = n(to) dT) 20, Ve A

t—to t—10 Jy,
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This implies that, there exists a > 0 such that the set B defined as

B— {to € T | Tim sup (L /tpi (n(r) = n(te)) dT) > a} |

t—to t— tO to

has positive Lebesgue measure. However, we have
[ o) = nm)dr = [ pito) = nenar+ [ pilo(r) = nr)dr.
T c D
Where C, D C T are defined as

C = {toeT|pi(g(to) —n(t)) >

D {to € T | pi(g(to) — n(to))

Il
St
IA

This implies that
(6%
/C i 9(r) — (7)) dr = m{C}

Therefore we have
sy =atmar = [ pilatr) —n(r)) e = mic)

This means that

m{to € T niotte) =) > 5} < 2 [ (o) ~mir)r < =

Also, by [25, Chapter 1, Theorem 4.3(a)], we have

1 t
mqto €T | limsup —/ pi(n(T) — g(T))dT) >
t—to \t =10 Jy
4 4
<= [ milatr) = niryar) <
So this implies that

m(B) < m {to € T| mlglts) — n(to)) > 5 }

1 ¢ a Ge
+m{t0 eT| thj% (t s /to pi(n(7) g(T))dT> > 2} <

Since € can be chosen arbitrary small, this is a contradiction.
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3.6.6. Space AC(T;L(C”(M);C¥(N))). Let {p?}icr be a family of generating
seminorms for L(CY(M);C"(N)) and T C R be an interval. For every compact
subinterval I C T, we define the seminorm gy ,; as

)= [o (G 00) i

The family of seminorms {pj R fJI} generate a locally convex topology on the space

AC(T; L(C(M); C*(N))).

3.7. Extension of real analytic vector fields

It is well-known that every real analytic function can be extended to a holomorphic
function on a complex manifold. Similar to the case of real analytic functions, one can
show that a real analytic vector field can also be extended to a holomorphic vector
field on an appropriate complex manifold. We then proceed to study real analytic
time-varying vector fields. Considering a time-varying real analytic vector field on M
with some regularity in terms of time, one would expect that it can be extended to a
holomorphic vector field on a complex manifold containing M. Unfortunately this is
not generally true. As the following example shows, a measurable time-varying real
analytic vector field may not even have a local holomorphic extension to a complex
manifold.

Example 3.7.1. Let X : R x R — TR be a time-varying vector field defined as

t2 0
mzs, TF#0ort#0,
X(t,x):{62+26 =0

Then X is a time-varying vector field on R which is locally integrable with respect
to t and real analytic with respect to x. However, there does not exist a connected
neighbourhood U of = 0 in C on which X can be extended to a holomorphic
function. To see this, let U C C be a connected neighbourhood of 2 = 0 and let
T C R be a neighbourhood of t = 0. Let X : T x U — TC be a time-varying vector
field which is measurable in time and holomorphic in state such that

X(t,z)=X(t,#) VrxreRNU, VteT.
Since 0 € T, there exists t € T such that cl(D;(0)) C U. Let us fix this ¢ and define
the real analytic vector field X; : R — TR as

ot
242202

Xi(x) Vr € R,

and the holomorphic vector field X, : U — T'C as

Xi(2) = X(t,2) VzeU,
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Then it is clear that X, is a holomorphic extension of X,. However, one can define
another holomorphic vector field Y : D,(0) — TC by

0
Y(2)= ———
(2) 12+ 220z’
It is easy to observe that Y is also a holomorphic extension of X;. Thus, by the identity

theorem, we should have Y (z) = X,(2), for all z € D;(0). Moreover, we should have
U C Dy(0). However, this is a contradiction with the fact that cl(D.(0)) C U.

Vz € Dt(O),

However, one can show that every locally Bochner integrable time-varying real-
analytic vector field can be extended to a locally Bochner integrable time-varying
holomorphic vector field. This extension result will show its significance in the next
sections in proving convergence of the sequence of Picard iterations and continuity of
the exponential map.

3.7.1. Global extension of real analytic vector fields. As mentioned in the in-
troduction, not every time-varying real analytic vector field can be extended to a
holomorphic one on a complex neighbourhood of its domain. However, by impos-
ing some appropriate joint condition on time and state, one can show that such
an extension exists. In this section, we show that every “locally Bochner integrable”
time-varying real analytic vector field on a real analytic manifold M, can be extended
to a locally Bochner integrable, time-varying holomorphic vector field on a complex
neighbourhood of M. Moreover, we show that if X is a continuous time-varying real
analytic vector field, then its extension X is a continuous time-varying holomorphic
vector field.

We state the following lemma which turns out to be useful in studying extension
of real analytic vector fields. The proof of the first lemma is given in [39, Corollary
1].

Lemma 3.7.2. Let A be a directed set and (Eq,{iag})p=a be a directed system of
locally convez spaces with locally convex inductive limit (E,{is}acr). Let F be a
subspace of E& such that, for every a € A, we have

E, = clg, (i, (F)).
Then F' is a dense subset of E.

Having a directed set A and a locally convex directed system (Eq, {ias})sra, for
every 8 = «, one can define 1,5 : L'(T; E,) — LY(T; E3) as

lap(N)(t) = iap(f(t)),  VEET.
We can also define the map i, : L'(T; E,) — LY(T; E) as
ia(£)(t) = ia(f(1)):

Then it is clear that (L}(T; E,), {iag})sra is a directed system of locally convex
spaces.
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Lemma 3.7.3. Let T C R be a compact interval, N be a directed set, and
(B {iap})pacn be a directed system of locally convex spaces with locally convex in-
ductive limit (E,{ia}acr). Then (LNT; E,), {ias})p.aca is a directed system of locally
convex spaces with locally convez inductive limit (LY(T; E), {ia}aen)-

Proof. Since L'(T) is a normable space, by [43, Corollary 4, §15.5], we have
lim | LYT) ® By, = LYT) ®, E. Let F = LYT) ®, E. Then, for every a € A,
we have

LYT) @ E, C i,*(F).

This implies that 3
LY(T; E,) = cl (z;l(F)) :

Then by using Lemma 3.7.2, we have that I is a dense subset of h_l’l;la LY(T; E,). This
means that lim LYT; E,) = LYT; E). O

Using Lemmata 3.7.2 and 3.7.3, one can deduce the following result which we
refer to as the global extension of real analytic vector fields.

Theorem 3.7.4. Let M be a real analytic manifold and let A3y be the family of all
neighbourhoods of M. Then we have

lig  LY(T; DY (Uyy)) = LY(T; T(TM)).

ﬁ]\,jet/l/M

Corollary 3.7.5. Let X € LY(T;T%(TM)). There exists a Stein neighbourhood_UM
of M and a locally Bochner integrable time-varying holomorphic vector field X €
LY(T; TP Uyy)) such that X (t,x) = X (t, ), for everyt € T and every x € M.

Similarly, one can study the extension of continuous time-varying real analytic
vector fields. While a continuous time-varying real analytic vector fields is locally
Bochner integrable, it has a holomorphic extension to a suitable domain. However,
this raises the question of whether the holomorphic extension of a “continuous” time-
varying real analytic vector field is a “continuous” time-varying holomorphic vector
field or not. Using the following lemma, we show that the answer to the above
question is positive.

Lemma 3.7.6. Let K be a compact topological space, N be a directed set, and
(B {iap})p=a be a directed family of nuclear locally convex spaces with locally con-
ver inductive limit (B, {ia})aes - Then (CO(K; Ey), {ing})ssa is a directed system of
locally convex spaces with inductive limit (CO(K; E), {iq }acn)-

Proof. Since C°(K) is a normable space, by [43, Corollary 4, §15.5], we have
hﬂa CUK)®,E, = CO(K)®,E. For every a € A, the space F, is nuclear. Therefore,
by Theorem 2.3.67, we have

CUK) @y By = C°(K) ®. Ea,  Va € A.
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Moreover, the space E is nuclear. So, by Theorem 2.3.67, we have
C"(K)®, E=C"K)®E.

This implies that
lim C*(K) ®. E, = C'(K) @ E.

We set F' = C°(K) ®. E. Then, for every a € A, we have
CUK) ®. B, Ci ' (F).

This implies that

CY(K; E,) C cl (%;1F) .
Then, by using Lemma 3.7.2, we have that F' is a dense subset of hﬂa C'K; E,).
This means that we have lim C°(K;E,) =CYK;E). O

Theorem 3.7.7. Let K be a compact topological space, M be a real analytic vector
field and Ay be the family of all neighbourhoods of M, which is a directed set under
inclusion. Then we have

lig  C(K:T™(Ty) = COK: (T M),

U]\/IGJVM

Proof. Let A be a directed set and (E,,{iag})s=a be a directed system of locally
convex spaces. Then, for every 8 = a, one can define 1,5 : C°(K; E,) — C°(K; Ej)
as

tas(f) (1) = iap(f(u),  VueK.
For every a € A, we can also define the map i, : C°(K; E,) — C°(K; E) as

A

Za(f)(“) :ia(f<u>>’ Vu € K.

Then it is clear that (CO(K; Ey), {ias})sra is a directed system of locally convex
spaces. The result follows from the above lemma. O

3.7.2. Local extension of real analytic vector fields. In the previous section, we
proved that every locally Bochner integrable real analytic vector field on M has a
holomorphic extension on a neighbourhood of M. However, this result is true for
extending one vector field. It is natural to ask that, if we have a family of locally
integrable real analytic vector fields on M, can we extend every member of the family
to holomorphic vector fields on one neighbourhood of M7 In order to answer this
question, we need a finer result for the extension of real analytic vector fields. We
will see that the projective limit representation of the space of real analytic vector
fields helps us to get this extension result.



ON THE ROLE OF REGULARITY IN MATHEMATICAL CONTROL THEORY 91

Theorem 3.7.8. Let K C M be a compact set and {U, }nen be a sequence of Stein
netghbourhoods of M such that

A(Un41) €U,  VneN.

and (,,eny Un = K. Then we have lim  LYT; oL (T,)) = LY(T; 93°"%). Moreover
the direct limit is weakly compact and boundedly retractive.

Proof. We know that, by Theorem 3.2.6, for every n € N, the map p%n : FEZZR (U,) —

IPLR(T,) is a compact continuous map. Note that every n € N, the map id ® po
LY(T) @, TP5(T,) — LYT) @, T™R(T,,) is defined by

id® pg (£(t) @n) = E(t) @ pi. ().

Since LY(T) @, [Y%%(T,) is a dense subset of LY(T; Tt%%(T,,)), one can extend the
map id ® p%n into the map id@p%n LT TS0 (T,)) — LY(T; TRMR(T,)). We show
that id@p%n is weakly compact.

In order to show that id@p%n is weakly compact, it suffices to show that for a
bounded set B  LY(T; Y955 (TU,)), the set id@p%n (B) is relatively weakly compact
in LY(T; T8 (TU,)). Since LY(T;Tt&(T,,)) is a complete locally convex space, by
Theorem 2.3.25, the set

d (1d®p%n(3))
is weakly compact if it is weakly sequentially compact. Therefore, it suffices to show
that cl (id@p%n (B)) is weakly sequentially compact. Let {f,}°2 in cl (id@)p%(B)).

Since cl (id@p% (B)) is bounded, for every seminorm p on I'™®(T,), there exists
M > 0 such that

o[ i) < [ plutrar <

This implies that the sequence { [, fn(T)dT}ZO:1 is bounded in T'"M®(T7,,). Since
IhelR(T7,) is a nuclear locally convex space, the sequence { [} fu(7)d7} ~ is rela-
tively compact in ThV®(U,,). Therefore, there is a subsequence {f, }°2, of {f.}>%,

such that -
{ / fnT(T)dT}
T r=1
is Cauchy in ThVR(T,,).

By Theorems 2.3.68 and 2.3.41, the strong dual of L'(T;T"'R(U,,) is exactly
!/

L®(T)®x (Fh‘)l’R(Un))lﬂ. We first show that, for every { ® n € L=(T) ® (I""¥(T,)),
the sequence

{E@n(fo)bs
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is Cauchy in R. Note that we have
s®nuw—ng:A@mmﬁxw—nxmﬁ
SMAMM@—M@WIM«AM®—MWW)

Since the sequence { [} fo, (T)dT}:il is Cauchy in I'™M®(TJ,), this implies that the
sequence {€ ®@n(fn, )}, is Cauchy in R. Now we show that, for every A\ €
Le(T)&® (FhOLR(Un)),, the sequence

{A(fn ) 12
is Cauchy in R. Note that L>*(T) ®, (Fh‘)l’R(UH)); is a dense subset of
L(T)@x (T (T,)) ;. So there exist nets {¢u}aca i L¥(T) and {ne}eca in

(T*Y®(T,)) such that
limé&, ®n, = A.

Thus, for every € > 0, there exists # > 0 such that

éo @mo(v) ~ AW < 5, Vo (idBpf (B)).

wl ™

Since the sequence {{p ® 1p(fn,)},—, is Cauchy in F, for every ¢ > 0, there exists
N > 0 such that ¢ )
| < =, Vr,s > N.

H&V ®779(fns - fm) 3

Thus, for every e > 0, there exists N > 0 such that

||>‘(fns - fm) | < ||/\(fnb - fnr-) - 59 ®77N(fn5 - fnr)H + ||€9 ®77N(fn5 - fnr)H
< H)‘<fns) — & ®77N(fns)|| + | )‘(fnr) — &N ®770(fnr>H + ||£N ®779(fns - fm)” < €.

Therefore, the sequence {f, }>°, is weakly Cauchy in L!(T; T8 (U,)). This com-
pletes the proof of weak compactness of the map id@p% . LY(T; FEZZR(UH)) —
L'(T; T""®(U,)). Recall that in the proof of Theorem 3.2.7, for every n € N, we
defined the continuous linear map ¥ : TPYR(T,) — T155 (TU,41) by

r¥(X) = X,

n

Then we have the following diagram:

rR

R
Puy, n hol,R
ded (UTL-H ) :

hol,R o
Toad (Un) —= T (U,,)
Therefore, we have the following diagram:

id®pR
LY(T; T (U,)) —2

id®rE
_—

LY (T; T (Uy)) LN (T Thaa (Un+))-
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Since, id@p% is weakly compact, by [43, §17.2, Proposition 1], the composition
id@p% oid@r% is weakly compact. Therefore, the connecting maps in the inductive
limit lim LY(T; el (T,)) = LY(T; 5°%F) are weakly compact.

Using Theorem 2.3.53, if we can show that the direct limit satisfies condition_(]\/[ ),
then it would be boundedly retractive. Since the inductive limit limp el (U,) =

%};OI’R is compact, by Theorem 2.3.51, it satisfies condition (M). This means that
there exists a sequence {V,},en such that, for every n € N, V,, is an absolutely
convex neighbourhood of 0 in TH9,(U,) and there exists M, > 0 such that, for
every m > M, the topologies induced from T, (U,,) on V;, are all the same. Now
consider the sequence {L'(T;V,,)}nen. It is clear that, for every n € N, LY(T; V;,) is
an absolutely convex neighbourhood of 0 in L!(T;Th9,(U,,)). For every seminorm p

on Thel(U,,) and every m > M, there exists a seminorm g, on T'h9,(U,,) such that
p(v) < gm(v), Yv € V,.

This implies that, for every X € L}(T;V,,), we have

/T p(X (r))dr < / g (X (7)) dr.

T

So, for every m > M, the topology induced on L!(T;V,,) from LY(T;T'2},(U,,))

is the same as its original topology. Therefore, the inductive limit
lim  LYT;Th54(Us)) = L!(T; 9;°"%) satisfies condition (M) and it is boundedly
retractive. O

Using the local extension theorem developed here, we can state the following
result, which can be considered as generalization of Corollary 3.7.5.

Corollary 3.7.9. Let B C L'(T;T¥(T'M)) be a bounded set. Then, for every compact
set K C M, there exists a Stein neighbourhood Uk of K and a bounded set B €
LY(T;The(U,.)) such that, for every X € B, there exists a X € B such that

X(t,x) = X(t,x) VteT, Ve € K.

Let M be a real analytic manifold and let U C M be a relatively compact subset
of M. Then, by the local extension theorem, for every f € C¥(M), there exists a
neighbourhood V- C M € of U such that f can be extended to a bounded holomorphic

function f € CPSL (V). Tt is useful to study the relationship between the seminorms
of f and the seminorms of its holomorphic extension f.

Theorem 3.7.10. Let M be a real analytic m_am'fold and U be a relatively compact
subset of M. Then, for every neighbourhood V. C M of cl(U), there exists d > 0

such that, for every f € C*(M) with a holomorphic extension f € CPSL(V), we have

Picalf) < pv(f), Va € ¢}(Zso, Rsg, d), ¥ compact K C U.



94 S. JAFARPOUR

Proof. Since f is a holomorphic extension of f, we have

Fx) = f(x), VY edU).

Since cl(U) is compact, one can choose d > 0 such that, for every z € cl(U), we
have Dg)(z) C V, where (d) = (d,d,...,d). We set D = U,ev Day(x). Then
we have D C V. Using Cauchy’s estimate, for every multi-index (r) and for every
ac cé(ZZO, R, d), we have

'”mpmf(nyxep}< F), Vaxel.

apasg . . . Gy

| (r)
1P @)l <

This implies that, for every compact set K C U and every a € Cé(Zzo,Rw, d), we
have

Picalf) < py(f)

3.8. Flows of time-varying vector fields

As mentioned in the previous sections, a time-varying C"-vector field can be
considered as a curve on the locally convex space L(CY(M); C*(M)). Following the
analysis in [3], the flow of a time-varying C"-vector field X can be considered as a
curve ¢ : T — L(C*(M);C"(U)) which satisfies the following initial value problem
on the locally convex space L(C¥(M); C*(U)):

d¢
dt( y=C((t)oX(t), aeteT

¢(0) = id.

Therefore, one can reduce the problem of studying the flow of a time-varying vec-
tor field to the problem of studying solutions of a linear differential equation on a
locally convex vector space. The theory of ordinary differential equations on locally
convex spaces is different in nature from the classical theory of ordinary differential
equations on Banach spaces. While in the theory of differential equations on Banach
spaces, there are many general results about existence, uniqueness and properties
of the flows, which hold independently of the underlying Banach space, the theory
of ordinary differential equations on locally convex spaces heavily depends on the
nature of their underlying space. Many methods in the classical theory of ordinary
differential equations in Banach spaces have no counterpart in the theory of ordinary
differential equations on locally convex spaces [56].

In [3], the initial value problem (3.8.1) for smooth and real analytic time-varying
vector fields has been studied. In the real analytic case, X is assumed to be a
locally integrable time-varying C“-vector field on R™ such that it can be extended to
a bounded holomorphic vector field on a neighbourhood Q C C" of R™. Using the

(3.8.1)
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C™!_topology on the space of holomorphic vector fields, it has been shown that the
well-known sequence of Picard iterations for the initial value problem (3.8.1) converges
and gives us the unique solution of (3.8.1) [3, §2, Proposition 2.1]. In the smooth case,
the existence and uniqueness of solutions of (3.8.1) has been shown. However, for
smooth but not real analytic vector fields, the sequence of Picard iterations associated
to the initial value problem (3.8.1) does not converge [4, §2.4.4].

In this section, using the framework we developed in this chapter, we study the
initial value problem (3.8.1) for the holomorphic and the real analytic cases. Our proof
for the existence of the solution of (3.8.1) in the holomorphic case is similar to the one
given in [3]. In the real analytic case, using the local extension theorem (3.7.5) and
estimates for seminorms on the space of real analytic functions, we provide a direct
method for proving and studying the convergence of sequence of Picard iterations.
This method helps us to generalize the result of [3, §2, Proposition 2.1] to arbitrary
locally Bochner integrable real analytic vector fields.

Theorem 3.8.1. Let X : T — Der(C”(M)) be a locally Bochner integrable time-
varying vector field. Then, for every to € T and every xo € M, there exists an
interval T C T containing to and an open set U C M containing xo such that there
exists a unique locally absolutely continuous curve ¢ : T' — LY (CY(M); C*(U)) which
satisfies the following initial value problem:

g .. _ /
E(t)-((t)oX(t), ae. teT,
((to) = id,

and, for every t € T', we have

C(B)(fg) = CONHCOg),  Vf,ge (M)
Proof. We study two different cases.

(3.8.2)

l. v=00

In the smooth case, this theorem is just a restatement of the classical exis-
tence, local uniqueness, and C*°-dependence on initial condition proved in [42,
Theorem 6.6].

2. v € {hol,w}

Let N = dim(M) and (V, (2}, 22,...,2")) be a coordinate chart around .
Without loss of generality, we can assume that T is a compact interval. Let U
be a relatively compact set such that cl(U) C V, K C U be a compact set. For
every k € N, we define ¢, : R — L(C"(M); C¥(U)) inductively as

oot)(f) = flus Vit € [to, T1,
() = flut / bpr (7)o X(7)(f)dr, Vi€ [to,T).

If p%- is one of the seminorms pi' or Pica» We have the following lemma.
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Lemma. If p% is one of the seminorms ps' or Dica- Then, there exist a real

number T' > to and locally integrable function m € LIOC(T) such that, for every
f € C"(M), there exist constants My, M; € RO

pVK,f(¢n(t) — ¢n-1(t))
Py (0n(t) = dna(t)) o X (1))

where M : [ty, T] — R is defined as

(M(£))"M;,  Vte[to,T), ¥n € N.

<
< m(t)(M(t)"M;,  Vt€ [ty,T], Vn € N.

¢
:/ m(7)dr, vt € [to, T'.
to

Proof. (a) v = hol
We set:
d=max{|z —y| |z €cl(U),y € K}.

Since X is locally Bochner integrally, by Theorem 3.6.1, there exists m €
LL .(T) such that

S ma(pli (X))} < m(t).

Then we have

i (x(0) = i (X025 ) < Ve () e {55 .

Using Cauchy’s estimate, we have

o

Therefore, we get

o K} < Gl | € dw))

m(t)pey (f)-

l\l)l»—l

N
PR (X() < = - max {3 (X (1) } v ()

hol : ot .
We set My = plity (f). Moreover since M(t) = [, m(7)dr, there exists

T > to such that |[M(T)| < 1.
Now, for every n € Z, for every t € [ty, T], we have

/1/ / 1X (t1) e X (ta)o ... X(tn)(f)dtndty 1 ... dt.
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This implies that, for every t € [to, T],
Py (Dn(t) — G-

1
/ / / PR (X (1) o X (ta) o ... X(tn)) dtndty—1 ... dt:.

Using induction on n, one can show that

zﬁ%(XﬁﬁoX@ﬁon-XQM)é(zﬁrn!<IIm@)>p$lﬂﬁ

This implies that, for every ¢ € [ty, T], we have

l// / PR (X(0) o X (62)o ... X (b)) bt . dy
n—1 n'
// / ( Hm )pEIOlU) f)dtndt, ;... dt

= (M())" ey (f).

Thus we have
PRy (Dn(t) — dna(t)) < (M(1))" M.

Moreover, we have

( anl

// / X(t1)oX(ta)o ... X(t,) o X (t)dtndt, 1 ...dt.

Therefore, we get

iy (6n(t) = dna (1)) = X (1))

/ / / picy (X () e X(ta)o .. X (t) o X () dtpdty_ ... dt

S/t/t /t _ ( m(t; )) Pest) (X (8) f)dtpdt, s ... dty
o Jio . §

< (M (1))" max { pei) (X' (¢ }maX{p?f’l (az( ))}

My = %mgx {p?f’l (ng( ))}

Then, for every n € N, we have

DY (9(t) = dur (1)) o X (1)) < m(t)(M(2)"My, Yt € [to, T]

This completes the proof of the lemma for the holomorphic case.

i=1

If we set
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(b) v =w

Since X is locally Bochner integrable, by Corollary 3.7.9, there ex-
ist a neighbourhood V' of U, a locally Bochner integrable vector field

X e LYT; I(V)), and a function f € CESLR(V) such that X; and
f are the holomorphic extension of X and f over V, respectively. Then,

by Theorem 3.7.10, there exists d > 0 such that, for every compact set
K C U and every a € cé(ZZO, R-g, 6ed), we have

Pa(f) < pr(f),
max {Fa(X'()} < max{pp(X()}, VieT.

Since X is locally Bochner integrable, there exists m € L!(T) such that

AN max {W(Yi(t))} <m(t), WeET,

= /t: m(7)dr

Since M is continuous, there exists T' € T such that

Then we define M : T — R as

M(t) <1,  Vte[t,T).

Let K C U be a compact set and let a € cé(ZZO,Rw,d). We show by
induction that, for every n € N, we have

Pita(Pni1(t) = du(t)) < (M) Pia,,, (), VEE [to, T],

where, for every n € N, the sequence a,, € cé(ZZO,Rw) is defined as in

Lemma 3.3.3:
" _{(’”T“)nam n<m,

e e, nzm.

First note that for n = 1 we have
t

gbl(t) — gbo(t) = / X(T)d’r, \V/t € [to,T]
to

This implies that

0 (61(1) — dul(t)) < / (X (1) [)dr, Vi€ [to,T).

to

By inequality (3.3.2), we have

Pica(X () f) < AN max{ficp, (X' (1)}Pi o, (), VEE [0, T).
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Therefore we have

Pl (61(0) = 00(0) < [ AN mx{7, (X)), (i
O < MO0 (1)
Now suppose that, for every k € {1,2,...,n — 1}, we have
P (ra(t) = u0) € (MO P (), VEE [t T]

By definition of ¢,,, we have

¢n+1(t)—¢n(t)=/ (0n(7) o X(7) = (7)o X (7)) dr, VL€ [to, T].

to

Taking p , ; of both side of the above equality, we have

ﬁ?{,a,f(¢n+l(t) - ¢n(t>>
< / Pras (Dn(T) = Pnoa(T)) o X (7)) dT, Yt € [to, T1.

to

However, we know that by the induction hypothesis

P (0n(t) = Gn-a(t)) 2 X (1)) < (M(1)"Pra, (X () ), VEE [to, T].

Moreover, by the inequality (3.3.2), we have
pclu(,an (X(t)f> S 4N(TL + ]') m?X {ﬁ?(,b }pK an+1 vt € [t07 T]

By Lemma 3.3.3, for every n € N, we have b,, € ¢}(Zx¢, Rso,6ed). This
implies that, for every n € N, we have

max {Pip, (X(1)} < max{ V(T(t))} < ﬁm(t), vt € [to, T'.

Therefore, for every n € N, we have

Pas ((9n(t) = dna(t)) 2 X (1)) < (n+ m(t)M" ()P a,,, (f)-

Thus we get

Picaf(@ns1(t) = ¢u(t))
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This completes the induction. Note that by Lemma 3.3.3, for every m,n €
Z>o, we have
U < €0, < Ged

This implies that, for every n € N, we have
Pican () < py(f)-
If we set M; = py(f) then, for every n € N, we have
Pitas(@nr1(t) — du(t)) < (M ()" My, VEE [to, T].
Moreover, for every n € N, we have
Picay ((Dn(t) = dna(t) e X (1)) < (M(1)"Pi 0, (X (@) f), V€ [to, T].

However, by inequality (3.3.2), we have
Fian(X(0F) < AN max (e, } Pt () VEE [0 T

Noting that we have

max {Bp, (X (1)} < max{ V(Y(t))} < &m(t) Vit € [to, T,

and B
Pitans: () S pw(f), VEE [to, T).

Therefore, if we set M; = p(f), we have

Bicay (@n(t) = Guma(t) o X (1) < m(t)(M(1)" My, Vit € [to, T).

This completes the proof of the lemma for the real analytic case.

]

We now show that, for every n € N, ¢,, € AC([to, T],L(C*(M);C*(U))). For

every n € N consider the following inequality:

Pk j(Pna(t) e X (1)) < P (X +ZpKf ((9:(t) = ¢ia(t)) o X (1))
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The function g, : [to, 7] — R defined as

(t) (nz_l Mi(ﬂ) , VEe[to, T],

is locally integrable. Thus, by Theorem 3.6.1, ¢,,_1 X is locally Bochner in-
tegrable. So, by Definition 2.3.39, ¢,, is absolutely continuous. Therefore, for
every n € N, we have

Prf(On(t) = dna(t)) < [M(T)["My, Vit € [to, T].

Since |M(T)| < 1, one can deduce that the sequence {¢,}nen converges uni-
formly on [tg, T] in L(C”(M);C*(U)). Since uniform convergence implies L'-
convergence and the space L!([to, T]; L(C*(M); C*(U))) is complete, there exists
¢ € LY([to, T]; L(C*(M); C¥(U))) such that

lim ¢n = ¢7
n—oo

where the limit is in L'-topology on L'([to, T]; L(C*(M); C*(U))). Now we need
to show that ¢ satisfies the initial value problem (3.8.2). We prove that

lim gbn( T)dT = / o(t )dr, Yt € [to, T'.

n—oo

Note that, for every n € N, we have

o

Phes (1) — dn(t)) < Y (M(1))*My.
k=n-+1
This implies that, for every n € N,
[ pies @) = autroX(e)ar < [ 3 min) )y
to o p=n+1
SN(T —to) > [M(T)|"My, Ve [t,T].
i=n+1
Therefore, we have
h_)m ¢n( T)dT = / (1 Vit € [to, T'.

This implies that we have

o(t) = lim ¢,(t) = lim On-1(T) dT—/ o(r

n—oo n—oo
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Thus ¢ satisfies the initial value problem (3.8.2). On the other hand
¢ € L([to, T]; L(C”(M); C*(U))),

and

X € Li([to, T]; L(C" (M); C* (M),
Therefore

¢oX € L([to, T, L(C"(M); C*(U)))
By definition 2.3.39, ¢ is in the space AC([to, T]; L(C*(M); C¥(U))). This com-
pletes the proof.

One can also show that the sequence {¢,}neny converges to ¢ in
AC([to, T); L(CY(M); C*(U))). In order to show this, it suffices to show that,
for every compact set K C U and every f € C¥(M), we have

hm tpl/ <d¢n+1 . %
W T\ at dt

n—o0

) =0, Vtelt,T].

Note that, for every n € N, we have

d¢n+1
dt

Therefore, it suffices to show that

= ¢ (t) o X (), a.e., t € [ty, T].

T [ bl (0n(0)oX(0) = 6ur(0)X () =0, VL€ [t0T].

But we know that, for every n € N, we have

P p(@n(t) 2 X () = dn1(t) o X (1)) <

So we have

| P01 X(0) = dnat) X (0) < (S )i
< M),

This  completes  the  proof of convergence of {¢ptnen in
AC([to, T; L(C™(M); C*(U)))-
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To show the uniqueness of the solutions, we assume that there exists two solutions
o, € AC(T; L(CY(M);C*(U))) for the initial value problem (3.8.2). If we choose
T > 0 as in the lemma above, then we have

o)~ () = [ (6(r) = v(r)) X()dr. VEE [t T

to

Therefore, for every i € {1,2,..., N} and every convex open set W C U such that
c(W) C U, we have

Paw) 0 (@) — (1)) < /t P02 ((O(T) = (7)) o X(7))dr, Vit € [to, T].
Note that

Paiwy0a: ((8(8) = ¥(1)) o X (1)) = sup {[| X" (£, 6(t, 2)) — X'(t.¥(t, 2))|| [ = € A(W)} .

Now, by using the mean value inequality, for every = € cl(W), there exists r, € cl(W)
such that

(00t — X0 vt )] < | T om0, 0) = 0]

Taking supremum over z € cl(W), we have

mzfcxx{p(fﬁw),07xi((¢(t) — (1)) < X(1))}
< m?X{pgf(W)’O,Ii(gb(t) — ()} m?X{pgf(W),m (X(1)},  Vtelto,T].

Since X is locally Bochner integrable, there exists m € L _(T) such that
o () (X)) S mlt), VE € [f0, T,

Therefore, we have

mec{ppy 0.0 (6() — (1)) o X(1)))
< () max (s 0.0 (B1) — G0}, V€ [t0,7)]

This implies that
s () 0.0 (61) — 0(0))}

< / m(7) m?X{pgf’(W)707xi(¢(T) — (7)) }dr, Yt € [to, T'.

to
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Using the Gronwall inequality, we will get

00 00 L m(r)dr
{0y 0 (6(8) = (1))} < ma{pg) 0. (Blts) — (ko)) el ™.
Since we have ¢(ty) = ¢ (tp) = id, we get
max{pgwy 0. (@(t) —¥(t))} =0, Vit € [to, T, V convex open set W C U.
So we have
o(t)(z) = Y(t) (), Vt € [to, T, Va € cl(W).
This implies the local uniqueness of the solution of (3.8.2), on the interval [to, T']. O

3.9. The exponential map

In this section, we study the relationship between locally integrable time-varying
real analytic vector fields and their flows. In order to define such a map connecting
time-varying vector fields and their flows, one should note that there may not exist
a fixed interval T C R containing ¢, and a fixed open neighbourhood U C M of
xg, such that the flow of “every” locally Bochner integrable time-varying vector field
X € LYR,I"(TM)) is defined on time interval T and on neighbourhood U. The
following example shows this for a family of vector fields.

Example 3.9.1. Consider the family of vector fields { X, }en, where X, : R x R —
TR ~ R? is defined as

X, (t,x) = (x,nx?), Vvt e T, Vx € R.
Let T = [—1,1]. Then, for every n € N, the flow of X, is defined as

¢Xn (t’ :E) =

X

1 —nat

This implies that ¢X" is only defined for x € [—% L1 Therefore, there does not exist

‘n
an open neighbourhood U of 0 such that, for every n € N, ¢** is defined on U.
The above example suggest that it is natural to define the connection between
vector fields and their flows on their germs around ¢ty and xg. Let T C R be a compact
interval containing ¢t € R and U C M be an open set containing xo € M. We define

L%,u = @LI(T;DGY(CU(U»),

t0,X0
and
AC 20) = liﬂAC(T; L(C"(M);C"(U))).
These direct limits are in the category of topological spaces. We define the exponential

map exp : th’;xo) — AC’(’tO’IO) as

exp([X] (towo)) = [¢X](to,wo)’ v[X](tO,IBO) € Lgt’oy,xo)'
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Theorem 3.9.2. The exponential map s sequentially continuous.

Proof. To show that exp : LY | — ACY

t0,X0 to, o
it suffices to prove that, for ex(fery)sequence {X, }nen in LYT;T%(TM)) which con-
verges to X € LY(T;I"(TM)), the sequence {[¢*"](;, 1)} converges to [¢™ ] z0) in
ACY{, 1)+ Since the sequence { X, }nen is converging, it is bounded in L'(T; T (T'M)).
So, by Theorem 3.8.1, there exists T > ty and a relatively compact coordinate
neighbourhood U of xy such that [tg,7] € T and, for every n € N, we have
¢* € AC([to, T); L(CY(M);C*(U))). Therefore, it suffices to show that, for the se-
quence { X, }nen in LY(T;T(T'M)) converging to X € LY(T;T¥(T'M)), the sequence
{¢%n} converges to ¢X in AC([ty, T]; L(C*(M); C*(U))). We separate the proof for
the cases v = 0o, ¥ = hol, and v = w.

) is a sequentially continuous map,

1. v=o0:
The proof for the smooth case follows from Theorem 2.1 in [70] and Theorem
6.6 in [42].

2. v =hol:

Let (V,n = (z',2%...,2")) be a coordinate chart on M. There exists r > 0
such that
W={z][zl <rtcV

We define A = LY(T;ThY(TM)) and F: Tx V x A — CV as
F(t,x,X) = X(t,x)

Since X € LY(T;T'™!(TM)), one can easily check that F satisfies conditions of
Theorem 1.1 in [70]. Therefore, there exist 7> 0 and U C K such that

¢F € CO[to, T) x U x A;CN)
where ¢ : [to,T] x U x A — C¥ is the solution of the following differential
equation

d
%d)F(t,x, X)=X(t¢"(t,x,X)), VrxelU VX €A.

Using the identity
CO([to, T] x U x A;CN) = CY(A; C([to, T) x U; CN)),

we can easily see that, if lim, ,, X, = X in LYT;I'™Y(TM)), then
lim, o % = ¢* in CO[ty,T] x U;C"). Therefore, for every compact set
K C U, every nonzero f € C' (M), and every e > 0, there exists M > 0 such
that

sup {H(¢X)j (t,z) — (ng")j (t,z)H |z€e K,t e [to,T]}

- ) Vn > M.
= sup {[| 25 (@)|| [ 2 € W[(T - to) "
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This implies that, for every ¢ € [ty, T], we have
Py (97 () — ¢ (1) = sup{[[ f(¢™"(t,2)) — (6™ (t.2)[| | 2 € K.t € [to, T]}
< sup{H%(a:) |z € W} X

sup { | (%) () = (6™’ (t.2)

Vn > M.

€
K.t € [to, ]} <
|ZE 76[07] T_toa

Therefore, we get
t
/ P (65 (7) — X (1))dr <, Vn> M.
to
This completes the proof of continuity of exponential map in the holomorphic
case.
V=w:

Let f € C¥(M) be a real analytic function and suppose that we have

lim X,, =X

m—00

in LY(T;T*(U)). By Theorems 3.7.4 and 3.7.8, there exists a neighbourhood
V' C MC of U such that the bounded sequence of locally integrable real analytic
vector fields { X, }men, the real analytic vector field X, and the real analytic
function f can be extended to a converging sequence of locally integrable holo-
morphic vector fields {X,,}men, a locally integrable holomorphic vector field
X, and a holomorphic function f respectively. Moreover, by Theorem 3.7.8,
the inductive limit

lim LY (T; Tygq " (Tn)) = L (T3 T%(T'M))
is boundedly retractive. Therefore, we have
lim X,, =X
in L(T; TY55% (V). Now, according to Theorem 3.7.10, there exists d > 0, such

that for every compact set K C U, every a € cé(ZZO, R-o,d), and every t € T,
we have

Feall) < (D)
mas {fa(X'(0)} < max {pp(X'(1)}.

mae {7 (X'(0) = X5, (1)} < max {pp(X(1) - X, (1)}
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Since X is locally integrable, by Theorem 3.6.1, there exists g € L!(T) such
that o
max {pp(X(t))} < g(t), vt e T.

This implies that, for every compact set K C U and every a € cé(ZZO, Ry, d),
we have

max {Pia (X))} < max {W(Yz(t))} <g(t), VteT.
This means that, for every € > 0, there exists C' € N such that
t . .
/ max {W(YZH(T) —YL(T))} dr <, vYm>C, teT.
to ¢

Therefore, if m > C, we have

max {W(Tm(t))} < max {W(F(t))} +e<yg(t) +e, Vte T, Vm > C.

%

We define m € L(T) as

We also define m € C(T) as

(t) = / UNym(r)dr,  VEeT.

to

We choose T' > ¢, such that |[m(T)| < 1.

Lemma. Let K C U be a compact set and a € cé(ZZO, R-o,d). Then, for every
n € N, we have

M

n—1
Bicas (@ (1) — < (r+1)( Tp%,arﬂ(f)) X

r=0
t .
/ max {pp(X'(r) = Xop(r) } dr. 9 € [t0.7], ¥m > O,
to ¢
where ay, is as defined in Lemma 3.3.3.

Proof. We prove this lemma using induction on n € N. We first check the case
n = 1. For n = 1, using Theorem 3.3.4, we have

s (6(0) — 0 Kaf(/“x Xa(r)ir)

< [ Py (X(7) = Xl

to

1

<P () /tt max {W(x (r) — Xjnm)} dr, Vtelto,T], ¥m > C,

i
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Now assume that, for j € {1,2,...,n}, we have

[y

jf

Pitas(@ (t) =77 (1) < ) ((r + D(0)) Fia,., (f)) X

r

I
o

/tt max {W(Y’(T) - Ym(T))} dr, VYt € [ty,T], Ym > C.

]

We want to show that

n

Bt (O (t) = o (8) < D ((r+ D (0(0) Bea,, () X

r=0

/tt max {pv(yi(T) — Fm(T))} dr, Vte lty,T], Ym > C.

)

Note that one can write
£00 - 6000 = [ GF0)eX(r) = X ()i
- [ @ - o) ex(ryar
+ /t: OXm (1) o (X (1) = Xon(7)) dr Yt € [to, T], Vm > C.

Therefore, for every compact set K C U and every a € cé(ZZO, R-g,d), we have

Brca s (6X (1) — 63 (1) < / 5 s (65 (r) — %7 (7)) o X (7)) dr
- /t Pitas (00 (7)o (X(T) = Xou(7))) d7, Vit € [to,T], Ym > C.

Note that, for every X,Y € L([tg, T];T*(TM)), we have

Bitcas (00 (8) Y (1)) = a s (Y (D) + D Bty ((6(8) = 1(8)) oY (1))

Since, for every r € N, we have

Picas (07 () = 6721(8) < (1) D, (f),  VEE [to,T]
for every X,Y € L!([ty, T];T*(T'M)), we have

n

Bicas (@0 (8) oY (8)) < D (M) Frea,p (Y(E) . VEE [to, T).

r=0
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This implies that, for every ¢ € [ty,T] and every m > C, we have

n

Bitas (03 () 0 (X (1) = X () <D (7)) P, 5 (X (1) = Xn(2))

< 3 (r+ D) Fita, (1) max {py (X'(0) = X, 0) }

)
r=0

Therefore, for every t € [tg, T| and every m > C, we get
Biag (@ (1) = dn11 (1))

/Z D4 O O, (1) [ max (e () = Ko}

to =0

* / Z ((r+ D)) e () max { o (X' (1) = X,,(0)

2 - ‘

Using integration by parts, we have

ﬁ?{,a,f(gan—l—l(t n+1 ) < Z r+1)( ) P, ()X

t .
/ W(YZ(T) — X, (7))dr, Vtelty,T], Ym > C.
to
This completes the proof of the lemma n

Thus, for every n € N, we have

Picas(@n (t) = &5 (1)

1

< S0 P 1) [ o) =T tr ) . V€ o T, Vo > .

r=0 to

Since, for every t € [ty, T], we have

)] < 5.
the series .
>+ D)) Py ()

converges to a function h(t), for every ¢t € [to,T]. By Lebesgue’s monotone
convergence theorem, h is integrable. This implies that, for every n € N and
every a € cj(Zso, Rog, d),

v =

0 s (65(8) — 0357 (8)) < h(t) /t po(X (1) =X (F)dr, Vi€ [to, T], ¥m > C.
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Therefore, by taking the limit as n goes to infinity of the left hand side of the
inequality, we have

Picay (67 (1) = o™ (1) < h(t)/ pr(X(1)=X,(1)dr, V€ [to,T], Ym > C.

to

This completes the proof of sequential continuity of exp.



Chapter 4

Tautological control systems

4.1. Introduction

In geometric control theory, a control system can be described by a family of
parametrized vector field { F*} ey, where U is the set of all controls. The evolution of
this system is studied using trajectories of the system, i.e., solutions of the differential
equations

o= FUO(z(t)), (4.1.1)

for admissible controls ¢ — wu(t). Many fundamental properties of a control system
such as controllability, stabilizability, and reachability are defined using trajectories
of the system. However, finding the solutions for the differential equations (4.1.1) is
usually very hard, if not impossible. Therefore, one would like to get some informa-
tion about these properties using the family of parametrized vector fields {F"},cy-
This has been an area of research for more than four decades in control theory and
many deep and fundamental results about control systems have been proved. For
instance, the accessibility of analytic control systems has been completely character-
ized in two independent works [79] and [50]. In [33], [34], [75], [77], [78] the problem
of controllability of a system has been studied using nilpotent approximations and
geometric methods. In [14], [76], [20], and [22] many deep and fundamental results in
stabilizability of systems have been developed. While in the most of the these papers
the analysis of control systems is done in the geometric framework mentioned above,
this framework has some deficiencies.

First, one can easily notice that two different families of parametrized vector fields
can generate the same family of trajectories. Therefore, in order to get characteriza-
tion of fundamental properties of control systems, the conditions on {F*}, <, should
be parameter-invariant. Unfortunately, most of the criteria in the literature for study-
ing fundamental properties of control systems depend on a specific parametrization
of the system. The following example shows this fact about sufficient controllability
conditions developed in [78].

Example 4.1.1. [15] Consider the following two control systems on R? with the two
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inputs. The first one is the system given by

T = fo(x) + ui fi(x) + uafo(x), Vo € R V(ug,up) € [—1,1]%, (4.1.2)
where
fo(z1, 20, 23) = (:1:2—562)i
0 1y, 42,43 1 2 8I37
0
f1($1,9€2,x3) = 8_951’
0
f2(I1,132,903) = 8_952
The second one is the system given by the following equations
T = go(w) + urg1(w) + uzga(z), vz € R® V(up,up) € [-1,1]%, (4.1.3)
where
golaraws) = (2 —ad)
0 1y 42,43 1 2 al‘g’
)~ L(2 L0
g1\T1,T2,X3) = 2\ oz, " Ory )’
R
G2(T1,T2,7T3 - 9 81‘1 3372

one would get the control system (4.1.2) from the control system (4.1.3). This implies
that two systems (4.1.2) and (4.1.3) have the same trajectories and they should have
the same small-time local controllability around (0, 0,0). In order to study the small-
time local controllability of system (4.1.2) from (0,0,0), one can apply Theorem
7.3 in [78] and show that the system (4.1.2) is small-time locally controllable from
(0,0,0). However, when we apply the same theorem for the system (4.1.3), we get
that Theorem 7.3 in [78] is indecisive for studying small-time local controllability of
the system (4.1.3).

This example shows that the sufficient conditions in the literature for controlla-
bility of systems are not parameter-invariant. It also motivates the attempt to get
parameter-invariant conditions for studying structural properties of control systems.
Although checking that a condition is parameter-invariant is not impossible, it some-
times needs lots of efforts and huge amount of computations.

Secondly, the regularity of maps and functions plays an important role is studying
control systems. Many fundamental results in control theory are only true for a
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specific class of regularity. For example, in [79] the local accessibility of nonlinear
systems with “real analytic” vector fields has been characterized using Lie brakets of
vector fields of the system. However, it can be shown that such a characterization
does not hold for “smooth” systems [79]. In the geometric control literature, the
treatment of regularity is not coherent. For example, while it is very common to
assume that = — F“(z) are smooth vector fields, one may need some extra joint
conditions on regularity of F" with respect to = and u to ensure nice properties of
trajectories of the system. In the literature many different joint regularity conditions
on (z,u) — F"“(x) have been introduced. In [53] and [13], it has been assumed that
U is an open subset of R™ and the map u +— F“(x) is C! for every state . However,
in [21], it is assumed that this map is smooth. This is maybe because of the absence
of a consistent framework for studying regularity of the control systems.
In this chapter, we introduce a model which has the following features.

1. It forgets the labeling of vector fields of the system by controls. This allows one
to start with a control system which is parameter-independent at the very level
of the definition.

2. Using the suitable topologies on spaces of vector fields developed in chapter
3, this model gives us a unified setting in which control systems of different
regularity classes can be treated in the same manner. In particular, in this
framework, one can study and analyze the class of “real analytic” systems in a
consistent way.

In section 4.2, we give some motivations for defining what we call a C”-tautological
control system. We then proceed to study the relationship between this new notion
of control systems with the classical one. This has been done in sections 4.3, 4.4,
and 4.5. Finally, we define the trajectories and reachable of C”-tautological control
systems in 4.6.

4.2. C"-tautological control systems

In this section, following [55], we introduce a mathematical model for studying
structure of control systems. At the heart of this model is the notion of a sheaf.
Using the sheaf of C”-vector fields, this model makes the definition of control systems
invariant of control-parameters. To motivate this definition of control system, we
revisit the Example 4.1.1 in the introduction.

Example 4.2.1. Consider the two control systems (4.1.2) and (4.1.3) in the Example
4.1.1. Tt has been shown in the Example 4.1.1 that while these two systems have the
same trajectories, Theorem 7.3 in [78] does not imply the same result about their
small-time local controllability. Note that the control system (4.1.3) is obtained from
the control system (4.1.2) by a linear transformation of parameters (u;,us). So it
seems that the criteria in Theorem 7.3 of [78] depends on how we label our family of
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vector fields. We forget the labeling of vector fields in a control system by consider
them as a subset of space of C-vector fields. So for the control system 4.1.2, we get
the subset %, C I'*(TR?) given by
T ={fo+ufi +usfs | (ur,u) € [-1,1]°}.
Similarly, for the control system 4.1.3, we get the subset %y C I'*(TR?) given by
Ty = {90+ urg1 + uzga | (ur,uz) € 1,1},
It is easy to see that ., = %;.

The above example shows that by considering vector fields of a control system
as a subset of space of vector fields, one can forget the control-parametrization of
systems. In order to emphasize the local-global behaviour of the control system, one
can consider .#; as a subpresheaf of sets of the sheaf I'V.

Definition 4.2.2. A C¥-tautological control system is a pair (M,.%#) where

1. M is a CY-manifold called state manifold, and

2. . is a subpresheaf of sets of the sheaf of C”-vector fields on M.

A C"-tautological control system (M, .7 ) is globally generated if .# is a globally
generated presheaf.

We will next study the correspondence between tautological control systems and
classical control systems. In order to make this correspondence more clear, we need
to define what we call a classical control system. We first define a specific family of
C"-vector fields. This class of parametrized vector fields turns out to be useful in
connecting the notion of tautological control system to the classical control system.

4.3. Parametrized vector fields of class C"”

As mentioned in the introduction, in the geometric setting, a control system can
be considered as a family of parametrized vector fields. However, the dependence of
these vector fields on the parameters plays a crucial role in properties of systems. In
many applications, it is completely natural to assume that the vector fields depends
continuously on control w. This can be made precise in the following weak and strong
versions.

Definition 4.3.1. Let U be a topological space. A map X : U x M — T'M is called
a separately parametrized vector field of class C" if,

1. for every u € U, the map X*: M — T'M defined as
X% (x) = X(u,z),

has the property that, for every x € M, X"(z) € T, M and is of class C¥, and
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2. for every x € M, the map X, : U4 — T M defined as
X, (u) = X(u, z), Yuel, Ve € M,
is continuous.

The class of separately parametrized vector field of class C* on M, with parameters

in U is denoted by SPT (U, M).

Definition 4.3.2. Let U be a topological space. A map X : U x M — T'M is called
a jointly parametrized vector field of class C" if

1. X is separately parametrized of class C*, and

2. the map X : U — (T M) defined as
X(u)(z) = X*“(z), Vze M.
is continuous.

The class of jointly parametrized vector field of class C* on M, with parameters
in U is denoted by JPT(U, M). By definition, every jointly parametrized vector field
of class C" is a separately parametrized vector field of class C”. So we have

JPT¥(U, M) C SPT (U, M).

4.4. C"-control systems

Now we are in the position to define a C”-control system.
Definition 4.4.1. A C"-control system is a triple (M, F,U) such that
1. M is a manifold called state manifold,
2. U is a topological space called control set, and
3. F:U X M — TM is a jointly parametrized vector field of class C".

Given an admissible control ¢ — u(t), one would like to study the evolution of the
system by applying that control. The notion of “open-loop system” roughly captures
what happens to the vector fields of the system when you plug in the admissible
control t — u(t).

Definition 4.4.2. Let 3 = (M, F,U) be a C”-control system, T C R be an interval,

and u € Lf(f’ct (T;U). Then an open-loop system associated to u is a time-varying

vector field F@W) - T x M — TM defined as

F(“(t))(t, r) = F(u(t), ), Vte T, Ve e M.
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One can define trajectories of a C”-control systems using open-loop system.

Definition 4.4.3. Let ¥ = (M, F,U) be a C"-control system, ty € R, T C R be
an interval containing tq, u € Lfg’;(’]l‘;bl), and zyp € M. Then a trajectory of ¥
associated to u and starting from x, at time ¢y is a locally absolutely continuous

curve v : TV — M, for some interval T/ C T containing tq, which satisfies

d’;it) = FEO(t y(t), aeteT,

Y(to) = o,

for the open-loop system F“®)) associated to u € LY (T;U).

loc

This definition of open-loops of C”-control systems ensures many nice properties
for the trajectories of these systems.

Theorem 4.4.4. Let ¥ = (M, F,U) be a C”-control system. Then, for every u €
LiPY(T;U), the map F* : T — TV (M) defined as

FY(t)(z) = F(u(t),z), VteT, Yz € M,
18 locally essentially bounded and locally Bochner integrable.

Proof. Since ¥ is a C"-control system, the map F' : U x M — TM is jointly
parametrized of class C¥. This implies that the map F' : Y — I'Y(M) is continu-
ous. Since u € Li?'(T;U), for every compact interval I C T, there exists a compact

set K C U such that
m{t el |u(t) € K} =0.

Since F is continuous and K is compact, the set B = ﬁ(K) is bounded in C¥(M).
Thus we have

m{tcl|F“t) ¢ B} <m{tel|ult)¢K}=0.

This implies that U is locally essentially bounded. Now, we show that v s locally
Bochner integrable. Let {p;}ic; be a family of generating seminorms for I'V(7T'M).
Then, for every i € I, there exists m(t) € L° (T; R) such that

pi(FU(t) <m(t), VteT.

Now since L2 (T;R) C LL_(T;R), F* is locally Bochner integrable. O

loc loc

Theorem 4.4.5. Let X = (M, F,U) be a C”-control system, xo € M, ty € R, and
T C R be an interval containing ty. Then, for every u € Lfgg(T;L{), the trajectory of
Y associated to u starting from xo at time to exists and is locally unique. Moreover,

the resulting flow is of class C¥ with respect to the initial condition.

Proof. The proof follows from Theorem 3.8.1. O]
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4.4.1. Extension of real analytic control systems. It is well-known that every
real analytic function on a real analytic manifold M is a restriction of a holomorphic
function on a complexification of M. In chapter 3, we also showed that every locally
Bochner integrable time-varying vector field on a real analytic manifold M is restric-
tion of a locally Bochner time-varying holomorphic vector field (Corollary 3.7.5). So
it is interesting to see whether a real analytic parametrized vector fields on a real
analytic manifold M is a restriction of holomorphic parametrized vector field on a
complexification of M. It is easy to see that, in general, this is not the case for jointly
parametrized vector fields.

Example 4.4.6. Let Y = C*(M) and consider F : U x M — TM which is defined
as

F(X,z) = X(x).

Since F : U — C¥(M) is the identity map, it is continuous. So F' is a jointly
parametrized vector field of class C“. Now assume that M is a complexification of
M and F : C¥(M) x M — TM is a jointly parametrized vector field of class C!
such that

F(X,z)=F(X,z), VYx& M, VX € C“M).
So F: C¥(M) — C"' (M) is defined as

F(X) =X,

where X is the holomorphic extension of X over M. But, this is a contradiction and
the jointly parametrized real analytic vector field F' does not have any holomorphic
extension.

One can show that, when U is locally compact and Hausdorff, a jointly

parametrized vector field of class C* is a restriction of a jointly parametrized vector
field of class C"!.

Theorem 4.4.7. Let X : U x M — T'M be a separately parametrized vector field of
class C“.

(i) if U is locally compact and Hausdorff and X is jointly parametrized vector field
of class C¥, then, for every uyg € % , there exists a neighbourhood © C U of ug, a
complexification M of the real analytic manifold M, and a jointly parametrized
vector field of class C™', X :U x M — TM, such that

X(u,z) = X(u,z), Yu e O, Vx € M,

(ii) if, for a complexification M of the real analytic manifold M, there exists a
jointly parametrized vector field of class C*', X : U x M — T'M, such that

X(u,z) = X(u,x), Yu eU, Vr € M,

then X is jointly parametrized vector field of class C“.
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(i) Suppose that uy € U. Since U is locally compact, there exists a neigh-
bourhood & C U of ug such that cl(€) is compact in U. Since & is compact
and Hausdorff, C°(cl(£)) is a Banach space. Therefore, by Theorem 3.7.7, we
have

lim C°(cl(€); T (Unr)) = CO(cl(0); T (M)).
If X :UxM — TM is a jointly parametrized vector field of class C¥, then
X : U — I¥(TM) is continuous. So we have X ‘o) € C%cl(0);T¥(M)). So

by the above direct limit, there exists a neighbourhood Uy of M and ? €
COcl(0); TheY(Uy;)) such that

X(w) (@) = X(w)(zx), VYuecd(O, Voe M.
So if we define X : cl(0 x Uy — TU )y as
X(u,7) = X(u)(z), Vuec(d, VzeTy

It is easy to see that X is separately parametrized vector field of class C™.
Moreover, we have

~ _—
~

X =X.
This implies that X is a jointly parametrized vector field of class C"™' and we
have

X(u,z) = X(u,z), Yu € cl(O, Yz € M.
This completes the proof.

It suffices to show that X : U — [“(TM) is continuous. Since X is a jointly

parametrized vector field of class CP!, X : ¢/ — I'™!(T'M) is continuous. Let
fecCcM),a=(ap,a,as,...) € cé(ZZO,R>0), (U, ¢) be a coordinate chart on
M and K C U be a compact set. Suppose that there exists a neighbourhood U
of M in M such that f can be extended to a holomorphic function f € C*Y(U).
Let d > 0 be such that, for every x € K, we have D((z) C U. Since K is
compact and {Dq) (%) }zex is an open cover for K, there exists x1,%a,...,2n €
K such that K C UiZy Da(w;). We set V = U, Da(z;). Note that V is
compact and V C U. Slnce lim;_, a; = 0, there ex1sts N € N such that for
every n > N, we have
a, < d.

On the other hand, by Cauchy’s estimate, we have

(7”)

If we set “0%==tn = (', then, for every multi-index (r) and every x € K, we have

D sup{ | XF(2)] | 2 € V)

ajr| HD(rXf H< e

apan . CL|T

o IPUXI@]| < CswlIXTN | 2 € VY
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This implies that o
Pias(X) < Cpps(X).

By continuity of X, for every uy € U and every e > 0, there exists an open
neighbourhood & C U such that

ML X (W) <<, Vueo.

V.f 67
This implies that R
pLIU(,a,f(X(u)) <€, Yueo.

This completes the proof.

4.5. From control systems to tautological control systems and
vice versa

In this section, we build a correspondence between C"-control systems and C*-
tautological control systems. Given a C”-control system ¥ = (M, F,U), one can
define the assignment %y, as

Fs(U) ={F" ly|uel}.

It is easy to check that (M, .%y) is a globally generated C”-tautological control system.
The system (M, Zy) is called the C”-tautological control system associated to the
C"-control system . However, as is shown in Example 4.2.1, this correspondence is
not one-to-one. This raises this question that, given a C”-tautological control system
(M, Z), is it coming from a C”-control system? In the next theorem, we will show
that the answer is “yes” for globally generated C'V-tautological control systems.

Theorem 4.5.1. Let (M, ) be a globally generated C¥-tautological control system.

Then we define Fiz : (M) x M — TM as
Fz(X,z) = X(x), Vee M, VX € F(M).

We consider F (M) as a topological subspace of TV (T M) with the C”-topology. Then
the triple ¥z = (M, Fg, # (M)) is a C”-control system. Moreover, we have Fs , =
Z.

Proof. 1t suffice to show that F'z is a jointly parametrized vector field of class C".
Note that, for every X € Z(U), we have

Fe(X,z)=X(x) € T,M, Vo € M.
Moreover, the map Fiy : F (M) — V(T M) is defined as

Fz(X)(z)= X(z), VzeM.



120 S. JAFARPOUR

This implies that ﬁ # is the inclusion map and it is clearly continuous in C”-topology
on .# (M) and I'(T'M). To show the last part of the theorem, note that we have

Ff=X, VYXecZFM).
This implies that, for every U C M, we have
Fe,(U)={Fz(U)| X € Z(M)} = {X [v| X € Z(M)} = F(V).

This completes the proof. n

4.6. Trajectories of C'V-tautological systems

In previous sections, we studied C"-tautological control systems as presheaves
of vector fields. In order to study the evolution of C”-tautological control systems,
one needs to define trajectories for these systems. In the context of C*-control sys-
tems, one defines trajectories of the system by plugging in an admissible control
u € Lifct (T;U) and defining the trajectories of the resulting time-varying vector fields
as the trajectories of the control system. In the control literature, the time-varying
vector field which is obtained by plugging in the admissible control is called an “open-
loop system”. Thus, in this language, we define trajectories of a C"-control system >
as the trajectories of open-loop families of ¥. This idea can be generalized to define
the trajectories for C”-tautological systems. Therefore, one can naively define an
open-loop system of a C”-tautological control system as a locally Bochner integrable
time-varying C”-vector field X : T x U — TU such that

X(t)e F(U), VteT.

However, this definition does not cover all the desirable trajectories of the systems. In
particular, with this definition of open-loop system, it is possible that concatenation of
two trajectories is not a trajectory of the system. This can also affect the fundamental
properties of the tautological control systems.

Example 4.6.1. Consider the C”-tautological control system (R?,.%) defined as

{75 (0,000,

W)= {{%} 0,0) €U

Consider the two points (0,0) and (1,1) in R?. It is clear that by the above definition
of open-loop systems, there does not exist a trajectory of (M, .%) starting from (0, 0)
and reaching (1,1). However, one can see that the curve v : [0,1] — R? defined as

is concatenation of trajectories of (M,.#) and connect (0,0) and (1,1). However,
itself is not a trajectory of the system.
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Definition 4.6.2. Associated to every C"-tautological control system (M,.%), we
define a sheaf LI.Z" on open subsets of R x M. This sheaf is defined for every
interval T C R and every open set U C M as

L1ZY(T x U) = LY(T; Z (U)).

One can show that this define a sheaf on open subsets of T x M [58, Chapter II,
Theorem 2.

Recall that a local section of LL.#" is a continuous map 2~ : W — Et(LL.Z"), for
some open set W C R x M such that 2 (t,z) € LL#}, X for all (t,z) € W.

(t,x

Definition 4.6.3. Let W C T x R be an open set. We define the projection maps
pri: Rx M — Randpry: Rx M — M as

pry(t,z) = t,
pry(t,z) = .

For every t € pr (W), we define W' = {& € M | (t,2) € W} and similarly for every
x € pry(W), we define W, = {t e R | (t,x) € W}.

Definition 4.6.4. Let W C T x R be an open set.

1. Suppose that (77,75) = T C R is an open interval, U C M is an open set, and
2 T x U — Et(LLF") is a local section of L1.#" defined on T x U. Then
Z is a piecewise constant local section of LI.Z", if there exist n € N, real
numbers T} =ty < t; < ... < t,_1 < t, = T3, and vector fields X; € T(TU)
for i € {0,1,2,...,n — 1} such that

c/lm//(t,l’) = [Xz]x; vVt € (ti,ti+1)7 Vx € U, Vi € {0,1,2, e, = 1}

2. Let 2 : W — Et(LI.Z#")(M) is a local section of LI.Z". Then 2 is a piece-
wise constant local section of LI.Z" | if for every (t,z) € W, there exists an
open interval T; C R and an open set U, C M such that (¢,z) € T; x U, and
2 |1,xu, is plecewise constant.

We prove the following fact about piecewise constant local sections of Sh(LLZ").

Theorem 4.6.5. Suppose that & : W — Et(LL#") is a piecewise constant local
section of L1F#". Then, for every open set V.C W, Z |y is also a piecewise constant
local section of L1.F".

Proof. 1t is clear that it suffices to prove the theorem for W =T x U and V = T' x U’
where T = (T}, T) and T" = (17, Ty) are open intervals such that T C T, and U and
U’ are open subsets of M such that U’ C U.
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Suppose that 2" : T x U — Et(LI1.Z") is a piecewise constant local section of
LIZ". Then by definition, there exist n € N, real numbers T3 =ty < t; < ... <
tn_1 < t, = Ty, and vector fields X; € T”(TU) for i € {0,1,2,...,n — 1} such that

%(t,l‘) = [Xz]x7 vVt € (ti,t“_l), Vx € U, Vi € {0,1,2, e, = 1}

Since (17, Ty) C (14, T5), there exists i, j € N such that 7] <, <t <...<tj_1 <
T,. Now, weset j —i =k € N, T] = s, t; = 84, for I € {1,2,...,k — 1}, and
T; = sg. Moreover, we define Y, = X;_; |¢ for [ € {0,1,2,...,k}. Then it is clear
that, for 2" |y, there exists k+ 1 € N, real numbers T} = s < 1 < ... < s, = T}
and Y; € I'V(TU]) for all i € {0,1,...,k} such that

Z s (tx) = [Yi]a, Vt € (s, 8i11), Ve e U', Vi€ {0,1,2,...,k}.
This means that 2" |y is piecewise constant. O

Definition 4.6.6. An etalé open-loop system for (M,.%) is a local section of the
sheaf Sh(LI.Z"). An etalé open loop subfamily for (M,.%) is an assignment O,
to every open set W C R x M such that

Oy(W) C Sh(LLZ") (W).
with the property that, if W; C W5, then we have
{rwem (X) | X € G,(W2)} € O5(W7).

Definition 4.6.7. 1. The full etalé open-loop subfamily of vector fields, de-
noted by Opy, is the etalé open-loop subfamily for (M, .7) defined as

Ora(W) = Sh (LLFY) (W),
for all open sets W C R x M.

2. The piecewise constant etalé open-loop subfamily of vector fields, denoted
by Opwe, is the etalé open-loop subfamily for (M, .%) defined as the assignment

Opwe(W) ={X € Sh(LLF") (W) | X is a piecewise constant
open-loop system for (M, .7)},
forall W C R x M.

Remark 4.6.8. By Theorem 4.6.5, it is clear that piecewise constant etalé open-loop
subfamily is an etalé open-loop subfamily for (M, 7).

Let (M, .%#) be a C”-tautological control system and suppose that &, is an etalé
open-loop subfamily of (M,.%#) and W C R x M be an open set. Then
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1. an (W, 0,)-etalé trajectory of (M,.7) is a locally absolutely continuous curve
v : T — M such that there exists an open-loop system X € &,(W) for (M,.7)

such that p
i
a(ﬂ = eV(t(t)) (X (t,y(t))), a.e. t €T,

and

2. an (0, )-etalé trajectory of (M,.#) as a locally absolutely continuous curve
v : T — M such that there exists open set W C R x M such that v is a
(W, O,)-trajectory of (M, .F).

The set of all (W, 0,)-etalé trajectories of (M,.%) is denoted by ETraj(W, 0,)
and the set of all (0,)-etalé trajectory of (M,.%) is denoted by ETraj(0,).



Chapter 5

The orbit theorem for tautological
control systems

5.1. Introduction

In this chapter, we first define the orbits and reachable sets of a tautological
control system. In particular, we show that the etalé trajectory that we define in
Chapter 4 is consistent with the orbits of the system. The rest of the chapter focuses
on studying the orbits of tautological control systems. We associate to every C"-
tautological control system (M, .7 ), a groupoid ¥z which is generated by the flows
of the system. It can be shown that the orbits of this groupoid is the same as the orbits
of its corresponding C”-tautological control system. We then proceed to study the
geometric properties of orbit of C'V-tautological control systems. In 1974, Sussmann
[74] and Stefan [72] independently studied the orbits of a family of C*-vector fields on
M and showed that the orbits are immersed C”-submanifold of M. Moreover, they
completely characterized the tangent space to the orbits using the family of vector
fields of the system. In this thesis, we generalized these results for C”-tautological
control systems. In particular, for a C”-tautological control system > = (M, %), we
show that orbits of ¥ are CV-immersed submanifold of M and we characterize the
tangent space to orbits of ¥ using the presheaf .7.

Moreover, we show that when X is a globally generated real analytic tautological
control system, the tangent space to orbits of 3J passing through x can be characterized
by the Lie brackets of vector fields of .# at point x.

5.2. Reachable sets of C”-tautological control systems

In order to study local properties of a tautological control system, one should
define the notions of orbits, attainable sets, and reachable sets of the tautological
control system. In this section, we generalize the notions of orbits and attainable
sets to tautological control systems. Moreover, using the etalé trajectories, we define
reachable sets of a tautological control system. We then show that reachable sets

124
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are consistent with orbits and attainable sets. More specifically, we prove that the
reachable set by etalé trajectories of piecewise constant vector fields is the same as
attainable set of the system.

Definition 5.2.1. Let 7' € R. The T-orbit of (M, .%#) passing through z is the set

Orb (T, z0) = {¢3 o bz o ... od " (wo) [t €R, Y t; =T,
=1

X, € Z(U;), Uy C M, U;openin M, Vi€ {1,2,...,n}, Yn € Z>p}.
One can define the orbit of (M,.#) passing through z( as
Orb(z0) = ] Orb(T, x).
TeR

The T-attainable set of (M, .#) passing through z is the set

Ag/‘(T, .T()) = {gbifl O¢t)§2 ... ogbtn"(ajo) ’ t’L € IR>07 Ztl = Ta
i=1

X, € F(U;), U; C M, U;openin M, Vi € {1,2,...,n}, ¥n € Z>o}.

One can define the attainable set of (M,.%#) passing through x( as
Az (xo) = | Az (T, a0).
T>0

Definition 5.2.2. Let &, be an etalé open loop subfamily of (M,.#) and suppose
that zop € M and T € Rso. We define the (7, U, 0,)-reachable set of (M,.#) from
To as
R (T, 20,U, G5) = {7(T) | v:[0,T] = M is a
(0, )-etalé trajectory of (M,.%), Image(vy) C U, v(0) = zo}.

We define the (< T, U, 0,)-reachable set of (M,.%) from x, as

R{}(S T7 Zo, U7 ﬁa) = U R’é’z(ta Zo, Uu ﬁo)'
t€[0,T]
And we define the (U, 0,)-reachable set of (M,.7) from x( as
Rﬂ‘(an U) ﬁo) = U R?“(Ta Zo, U7 ﬁa)'
>0
Also, we can define (T, 0, )-reachable set of (M,.%) from x, as
R#(T.20.0,) = |J R#(T,20,U.0,).

UCM
U is open
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We define (< T, 0,)-reachable set of (M, .#) from z, as

R’ﬁ(g T7 Zo, ﬁa’) = U R?(ta Zo, ﬁo)‘
]

t€[0,T

We define the (&,)-reachable set of (M,.7) from z( as

Ry(x(h ﬁo’) — U Ry(Ta Zo, 6)0)'

T>0

Definition 5.2.3 (Accessibility definitions). Let (M,.%#) be a C”-tautological
control system and xqg € M. Suppose that O, is an etalé open-loop subfamily of
(M,.#). Then the etalé open-loop subfamily &, is called

1. small-time locally accessible from x, if there exist 7" > 0 and open set
U C M containing xo such that, for every ¢t € (0,7], we have int(Rz(<
ta U7 Zo, ﬁo’)) 7é (Dv

2. locally accessible from x if there exists an open set U C M containing z
such that int(R.z (U, zo, O,)) # 0,

3. small-time accessible from z( if there exists T > 0 such that, for every
t € (0,T], we have int(R#(< t,U, xo, O,)) # 0,

4. accessible from x if int(R#(xg, O,)) # 0.

Definition 5.2.4 (Fixed-time accessibility definitions). Let (M,.%#) be a C*-
tautological control system, xo € M and T € R.y. Suppose that &, is an etalé
open-loop subfamily of (M, .%#). Then the etalé open-loop subfamily &, is called

1. locally T-accessible from x if there exists an open set U C M containing x
such that we have int(R# (T, U, xo, 0,)) # 0,

2. T-accessible from x if int(R# (T, g, O,)) # 0,

3. locally strongly accessible from z, if, for every T > 0, it is locally T-
accessible from xq,

4. strongly accessible from z if, for every T' > 0, it is T-accessible from x.

Definition 5.2.5 (Reachability definitions). Let (M,.#) be a C"-tautological
control system and xqg € M. Suppose that O, is an etalé open-loop subfamily of
(M,.#). Then the etalé open-loop subfamily &, is called

1. small-time locally reachable from =z, if there exist 7" > 0 and open set
U C M such that for every ¢t € (0,7 we have x € int(R#(< t,U, 29, 0,)),

2. locally reachable from x if there exists an open set U C M such that zy €
int(R# (U, xo, 0,)),
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3. small-time reachable from x if there exists T > 0 such that for every ¢t €
(0,T) we have zg € int(Rz(< t, U, xg, O,),

4. reachable from zg if z¢ € int(R.z(x0, 0,)),

5. totally reachable if it is reachable from every point x € M.

Definition 5.2.6 (Fixed-time reachability definitions). Let (M,.%) be a C*-
tautological control system, g € M and T € Tyy. Suppose that &, is an etalé
open-loop subfamily of (M,.%#). Then the etalé open-loop subfamily &, is called

1. locally T-reachable from z if there exists an open set U C M containing x,
such that we have zy € int(R# (7T, U, xo, 0,)),

2. T-reachable from z, if z¢ € int(R#(T, 2o, 0,)),
3. strongly reachable from z if, for every T" > 0, it is T-reachable from x.

4. locally strongly reachable from z if, for every 7" > 0, it is locally T-reachable
from z.

The connection between notion of reachable sets and attainable sets can be ex-
pressed in the following theorem.

Theorem 5.2.7. Suppose that (M,.F) is a C¥-tautological control system. Then for
every xo € M, and for every T' € R, we have

A?(Ta .To) = R9<T7 X, ﬁpwc)'

Proof. Note that, if y € Az(T,x), there exists Xi, Xs,..., X and open sets
Uy, Us, ..., U, € M such that X; € Z(U;), for all i € {1,2,...,k} and ty,t,...,tx €
R such that Zle t; = T and we have

X X X
tll O¢t22 O o¢tkk (xo) =Y.

Weset T, = 0+t +ta+ ...+ t;, forall t € {0,1,2,...,k} and we define W =
UL (T;_1, T;) x U; We define the piecewise constant local section X : W — Et(LLZY)
as

X(t,z) = [Xilo. V(to)e (T, T) x Ui,  Vie{L,2,... Kk}

It is clear that X is piecewise constant. So, if v : [0,7] — U is the integral curve of
X starting from xq € M, we have

YT) = ¢ oo ... ogpk(mg) =y

Therefore, if y € Az (T, x¢), then there exists X € Oy such that v(T) = y, where
v : [0,T] — M is the integral curve of X starting at v(0) = xo. This means that
y € Rz (T, ¢, Opye). Therefore, we have the inclusion

A7<T7 $0) g R? (T7 Zo, ﬁpwc)-
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Now let y € Rg (T, xg, Opwe). Therefore, there exists an Opyc-ctalé trajectory
€ :10,T] — M such that £(0) = z and &(T") = y. Since £ is a Opy-ctalé trajectory,
there exists X € Oy such that

fl(t) = eV(t’g(t))(X@, f(lf))), ae.te [0, T].

If one consider X : W — Et(LLZ"), then X is piecewise constant. So, for every
t € [0,77], there exists an open interval T; C R and an open set Ugy) € M such
that (¢,£(t)) € Ty x Ugwy and 27 |1,xv,,, 15 piecewise constant. Therefore, for every
t € [0,T], there exists Ty < T} < ... < T, and vector fields X; € I'V(TUg), for all
i€{0,1,...,n— 1}, such that

2 (t,x) = [Xi]a, vVt € (1}, Ti41), Vo € Uewy, Vi € {0,1,2,...,n —1}.

Now consider the open cover {T;x Ug) }1ejo,r] of graph(€). Since graph(&) is a compact
set, there exists finite subcover {T, X Ug,)}iz, of graph(¢). This shows that there
exists k € Nand 0 = sg < 1 < ... < s =T and open sets Uy, Us,...,U, C M and
vector fields X; € I'V(TUy) such that

2 (t,r) = [Xi]a, Vt € (s, 8i41), Ve e Uy, Vi €{0,1,2,... k—1}.
So we have
&) = X;(&(1)), Vt € (si, Siv1), Vie {0,1,...,k—1}
By denoting t; = s;41 — s; for i € {0,1,2,...,k — 1}, one can easily see that
§(T) = it oo o0 (o).

This shows that y € Az (T, x). Thus, we have Rz (T, zo, Opwe) € Az (T, x0). This
completes the proof. n

Corollary 5.2.8. Suppose that (M,.7) is a C-tautological control system. Then,
for every xqg € M, we have

Ag(l‘o) = Rg?(l’o, ﬁpwe)'

5.3. Algebraic structure of orbits

In this section we associate a groupoid to a C”-tautological control system. We
will show that the groupoid and the C"-tautological control system have the same
orbits.

Definition 5.3.1. Let (M,.#) be a C”-tautological control system and U C M be
an open set. For every X € .Z(U), we define the flow of X as the pair (2, ¢Y),
where 2 C R x U is open and ¢~ : 2 — U is the flow of X.
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Note that, for every x € U, the set Z* defined as
7 ={teR| (t,x) € 7},
is an open interval containing 0. For every ¢t € R, we define %, as
Dy ={xeU]|(tx) e P}
Then, for every t € R, the set Z; is open in U and the map ¢X : %, — 9, defined as
ok (w) = ¢ (t, ) Vo € Y.
is a C”-diffeomorphism with the inverse ¢%,.

Definition 5.3.2. The family &2 of local C”-diffeomorphisms of (M, .%) is defined
as
Pr={¢" | X FU), UCM,tecR}. (5.3.1)

We denote the groupoid associated to &z by Y.

It is interesting to see that this groupoid has the same orbits as the C'V-tautological
control system.

Theorem 5.3.3. Let (M,.#) be a C”-tautological control system and 9z be the
groupoid associated with & 4. Then, for every xg € M, we have

Orbgz(z0) = Y7 (x0).

Proof. We first show that ¥z (z9) C Orbg(zo). Suppose that y € ¥z (xp). Then
there exists P € I'(Z?) such that zy € Dom(P) and we have P(z() = y. By definition
of T'(£?), there exist a neighbourhood U of xg, integers €1, €s,..., ¢, € {1, —1}, and
hi,hg, ..., h, € & such that P |y= h{'ochy®c ... oh}". So we have y = P(xy) =
hitohito ... oh*(xg). Note that, for every i € {1,2,...,k}, we have h; € . There-
fore, there exist t; € R and open sets U; C M and X; € % (U;) such that h; = qbf(’
This means that y = gbffl ogbfg? °o... oqbt)i’“ (x0) and so by definition of orbits, we have
Yy < Ol"bgz(l‘g).

On the other hand, if y € Orb# (), then there exists open sets Uy, Us, ..., Uy C
M and ty,to,...,t € R and X, Xs,..., X, such that X; € Z(U;) for all i €
{1,2,...,k} and we have

Y=t ogpio. .. odp*(xg).

By choosing P = ¢, o2 o ... ogbii’“, it is clear that P € I'(Z?), and we have y =
P(zp). This means that y € ¥z (xy). This implies that Orbz(x¢) C Yz (xo). O

5.4. Geometric structure of orbits

In this section, we study the geometric properties of orbits of a C"-tautological
control system (M,.%#). The geometric structure of orbits of a family of vector fields
has been studied in [74] and [72].
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5.4.1. Singular foliations. In his 1973 paper, in order to study orbits of a family of
vector fields, Peter Stefan generalized the notion of foliations to “singular” foliations
[72]. He showed that orbits of a family of C*°-vector fields are leaves of a singular
foliation on M. In this section, we recall the notion of singular foliation and its leaves.
Following [72], we show that existence of a specific coordinate chart on M called the
“privileged coordinate chart”

Definition 5.4.1. Let M be a C”-manifold. Then a subset L C M is called a leaf
of M if there exists a C”-atlas o on L such that

1. (L,0) is a connected immersed submanifold of M, and

2. for every locally connected topological space Y and every continuous map f :
Y — M such that f(Y) C L, the map f:Y — (L, 0) is continuous.

A leaf L C M is called a k-leaf, if (L, o) is a k-dimensional manifold.

Definition 5.4.2. Let M be a C”-manifold of dimension n and &£ € N be such that
k < n. A foliation of dimension k on M is a collection of disjoint k-leaves {Sy}rea
of M such that

Usi=m

AEA

and, for every x € M, there exists a chart (U, ¢,) around = with the following
properties:

1. ¢p: Uy — Vo x W, CRF x R** ¢,(z) = (0,0), and
2. S\NU, = ¢ (Ve x Ipn), for every X € A,
where I, , = {s € W | ¢;(0, s) € Sy}

In [72], the notion of foliation with singularity, which is a generalization of foli-
ations, is introduced. Roughly speaking, foliations with singularity are foliations in
which leaves can have different dimension.

Definition 5.4.3. Let M be a C"-manifold of dimension n. A foliation with
singularities on M is a collection of disjoint leaves {S)} ea of M such that

Usi=Mm
AEA

and, for every z € M, there exist k& € N and a chart (U,, ¢,) around = with the
following properties:

1. ¢: U, = Vo x W, C REx R ¢ (z) = (0,0), and

2. SNNU, = ¢, (Vy X 1yn), for every X € A,
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o, (555)

Figure 5.1: Privileged Chart

where [, , = {s € W | ¢;(0,s) € Sy}

Suppose that L € M and D(z) is a vector subspace of T, M for every z € L. In
order to prove Stefan’s orbit theorem, we need to define privileged chart on M with
respect to L and D(zx).

Definition 5.4.4. Suppose that L C M and, for every = € L, D(x) is a vector
subspace of T, M. A chart (U,, ¢,) on M around x such that

1. ¢p : Uy — V, x W,, where U, is an open neighbourhood of x and V, and W,
are open neighbourhoods of 0 in R* and R"* respectively,

2. du(z) = (0,0) € R* x R,
3. LN (Ve x W) = ¢, 1 (Vi x 1), where I, = {s € W | (0,5) € ¢,(L)},
4. T (3=) € D(¢; (L, 5)) for every (t,s) € ¢,(L) and for every i € {1,2,...,k},

is called a privileged chart on M with respect to L and D(z).
We first prove the following results about privileged charts on M.

Proposition 5.4.5. Let ¢, : U, — V, x W, be a privileged chart on M with respect
to L and D(x). Suppose that N is a connected C¥-manifold and f : N — M is a
C"-map such that

1. f(N)CLN¢; (Ve x W,), and
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2. T,f(v) € D(f(y)), for everyy € N and every v € T,N.
Then there exists s € W, such that f(N) C ¢;1(V, x {s}).
Proof. We show that the map 7 : N — R” defined as

1= Dprae¢uf,
is a constant function. Note that, for every i € {1,2,...,k}, we have
D;(pr2)(t,s) =0, V(t,s) € Vp x W,.

So we can write

Di(prao ¢y o¢y )(t,8) = Tyz1, o) (Praod2) Di(d; ') (8 s) =0, V(t,s) € Vi x W,

Since, for every y € N, we have f(N) C L ¢, (Ve xW,), there exists (¢, s) € V,x W,
such that f(y) = ¢, '(t,s) and ¢, (¢, s) € L. On the other hand, by property (4) of
privileged charts, we have

span{ D¢, ' (t,5), Doy (t,5), ..., Doy ' (t,5)} C D(8; (L, 5)).
Note that one can write
Tyn(v) = Ty (1,0 (proo ) o Ty f(v), Vy € N.
Since T, f(v) € D(f(y)) = D(¢;'(t,s)), for every v € T, N, we can write
Tnw)=0 Yye N
Note that N is connected. Therefore, there exists s € W, such that n(N) = {s}. O

Theorem 5.4.6. Let M be a C”-manifold, L be a subset of M, and, for every x € L,
D(z) be a vector subspace of T, M. Suppose that there exists k € N such that, for
every x € L, dim(D(z)) = k and, for every x € L, there exists a privileged chart
(U, ¢o) on M with respect to L and D(x). Then there exists a C¥-atlas o on L such
that

1. (L,0) is an immersed submanifold of M with the tangent space T,,L = D(x) for
all x € L,

2. for every C*-map f: N — M such that f(N) C L and T, f(v) € D(f(y)) for
ally € N, the map f: N — (L,0) is of class C*, and

3. every connected component of L is a leaf of M.
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Proof. We construct an atlas on L. Let ¢, : U, — V, x W, be a privileged chart on
M with respect to L and D(x) and s € W, be such that (0,s) € ¢,(L). Then we
define ¢, s 1 o1 (Ve x {s}) = V,, as

¢x,s = p1y Od)x-

By property (3) of privileged charts, we have that ¢, *(V, x {s}) C L.

We show that o = {gbx75}xeL,selw is a C"-atlas for L. Note that the domains of
elements of o covers the whole L. The reason is that, for every x € L, we have
z € ¢, (V, x {0}). This implies that (J,.; ¢, (Vz x {0}) = L. Now we need to check
that the charts in atlas o are C”-compatible. We first prove the following lemma.

Lemma. Suppose that f : N — M is a C”-map such that f(N) C L and T, f(v) €
D(f(y)), for ally € N and allv € TyN. Then G = [~ (¢, 5(V2)) is an open subset
of N and the map ¢, 5o f: G — R is of class C”.

Proof. Let y € G. Since G = [~ (¢;1(Va)) C [ (¢7' (Ve x W,)), there exists a
connected component H of f~! (¢ 1(V, x W,)) such that y € H. Then it is clear
that H is an open submanifold of N. Note that f(H) C ¢;'(V, x W,) and we have
f(H) C L. Therefore, we get

H) C L, ' (Vo x Wy)

By Theorem 5.4.5, one can show that f(H) C ¢, (Ve x {s}). So H C [~ (¢;4(Va)).
This means that, for every y € G, there exists an open set H C f~! ( 1(V )) such

that y € H. Thus f~ (¢;(V;)) is an open subset of N.
To show that ¢, o f : G — R is a C”-map, one needs to notice that

(bm,s of = pr1(¢w of ’G)
Since G is open in N, the map ¢, ;o f is of class C". O

Now using the above lemma, we show that the charts in atlas o/ are C"-
compatible. Let ¢,,¢,+ € & be two coordinate charts. Consider the map
ve Vo = 071 (Vo x {s}) € M. Using the fact that

¢z (Vo x {s}) C L

we can deduce that

Also we have

T;f¢z s( ) T(t s)¢_ OTtpl“l_l(U), Yv € Rk

However, it is clear that

Tipr;'(v) = (v,0), Vv eRF 0eR"



134 S. JAFARPOUR

This implies that
T, 4(v) = T 0; ' (v,0), Vo € R¥.

Since we know that T ¢, (v,0) € D(¢; (¢, s)), we get

Tio7l(v) € D(g; (1) = D(6:A(1), Vo € R
So, by the above Lemma, ‘b(w,s)"(ﬁ(;t)(%ﬁ) is open and the map gb(y,t)oqb(;l’s)
Da.s) o%{t)(vz) — R*¥ is of class C”.

The atlas o defines an immersed submanifold structure on L. By the Lemma
above, the assertion (2) clearly holds. To show the assertion (3), suppose that Lo
is a connected component of (L,o). Let Y be a locally connected topological space
such that f : Y — M is continuous and f(Y) C Lg. If we denote the space Ly with
the subspace topology from M by (Lg,T), then it is clear that f : Y — (Lo, 7) is
continuous. Let (U, ¢,) be a privileged coordinate chart on M with respect to Ly
and D(z) such that ¢, : U, — V, x W,. Then Ly(\U, = ¢, (V, x l,). Therefore,
¢, (V, x 1,) is an open set in (Lg, 7).

Also, {¢;L(V2)}ser, is a collection of disjoint open sets of (Lo, o). Since M is
second-countable and (Lg, o) is connected, (Lo, o) is a separable space. This implies
that [, is countable. This means that, for every s € [, V, x {s} is a connected
component of V, x [, and ¢ (V, x {s}) is a connected component of ¢, (V, x [,) in
(Lo, 7). Thus ¢, (V, x {s}) is open in (L, 7). Since f : Y — (Lg,7) is continuous,
F7Ho (Ve x {s})) = f(¢74(V2)) is open in Y. Moreover, {¢,(Vz)}oeroset, 1S
a basis for topology on (Lg,o). This implies that the map f : Y — (Lg,0) is also
continuous. O

5.4.2. The orbit theorem. In geometric control theory a control system is con-
sidered as a family S of parametrized vector fields. Orbits of this family of vector
fields is one of the basic objects of interest in control theory. However, any analytic
description of orbits requires solving nonlinear differential equations, which is, in the
best case, very difficult, if not impossible. Therefore, it would be more reasonable to
study orbits using properties of the family of vector fields S.

In 1939 Chow [17] and Rashevskii [65] independently proved a theorem which
connects properties of the orbits of S to the Lie brackets of the vector fields in S. This
theorem can be considered as one of the first results where the tools and techniques
of differential geometry are used in control theory. Let Lie(S) be the distribution
generated by the Lie brackets of the vector fields in S. The Chow-Rashevskii theorem
states that, for a connected manifold M, if Lie(S)(z) is T, M, then the orbit of S
passing through z is the whole space M. However, in the case that Lie(S)(x) is not
T, M, this theorem does not give us any information about the structure of orbits of
the system.

In 1974 Sussmann [74] and Stefan [72] proved a generalization of Chow—Rashevskii
theorem. They showed that, even in the case that Lie(S)(z) is not T, M, the orbits of
S are immersed submanifolds of M. As Sussmann mentions in his 1973 paper [74], a
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naive way of generalizing the Chow—Rashevskii theorem is to consider a submanifold
of M such that its tangent space at each point x is Lie(S)(x). Then, one can apply
the Chow—Rashevskii theorem to this “integral” submanifold of Lie(S) and show
that the orbit of S passing through z is exactly this submanifold. Unfortunately, this
generalization does not generally work. In fact, it is possible that such an integral
submanifold for the distribution Lie(S) does not exist. Sussmann and Stefan defined
another distribution Pg using flows of the vector fields in S. They showed that the
distribution Pg is always integrable and the integral submanifolds of Pg are exactly
the orbits of the family of vector fields S. Stefan also showed that this manifold
structure on orbits of S makes M into a singular foliation where the leaves of this
foliation are orbits of S [72, Theorem 1].

In this section, following the approach of Stefan [72], we generalize the classical
orbit theorem to the tautological framework. Given a tautological control system
(M, ), one can define another presheaf of modules .F using the flows of vector fields
in .#. It can be shown that the presheaf .# induces a unique manifold structures
on the orbits of .7, which makes M into a singular foliation with orbits of .7 as the
leaves of this foliation. Moreover, for every x € M, the tangent space to the orbit of
F passing through z is the vector space .7 (z).

Definition 5.4.7. Suppose that (M,.F) is a C”-tautological control system. Then
we define

F(r) ={X(x) | X € Z(U),U is an open subset of M containing z}.

Lie(.%) is the subpresheaf of C”-modules of I' which assigns to every open set U C M,
the C”(U)-module Lie(.%)(U) defined as

Lie(:Z)(U) = spance g {[. - [X1, Xo], Xa] ..., Xo] | X1, X, .., X, € F(U)},

where, for every family of C”-vector fields S, spanc. ;)(S) is the C¥(U)-module gen-
erated by the vector fields in S. Also .Z is defined as the subpresheaf of C*-modules

of I'V which assigns to every open set U C M the following C¥(U)-module:

F(U) = spancy ) {n"X | 3V an open subset of M s.t.
XeZV),n:U—=Vel(Zs)} (54.1)

where, for every family of C"-vector fields .S, spanc. ) (S) is the C¥(U)-module gen-
erated by the vector fields in S.

We will show that .Z is a subpresheaf of C”-modules of I'V. Let Y € .#(U) and
W C U be an open set. Then there exists an open set V' C M, a section X € .#(U),
and n: U — V € I'(Z%) such that

Y =n"X.
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If we restrict to W, we have
Yilw=lw)X [w.

By the restriction property of the pseudogroup I'(#5), we have { =7 |[we I['(Z#).
Since X |we Z (W), we have Y |y€ % (W). This shows that .% is a subpresheaf of
['¥. The following theorem is an immediate consequence of this fact.

Theorem 5.4.8. Suppose that (M, F) is a C”-tautological control system. Then
(M,.F) is a C”-tautological control system.

The C”-tautological control system (M, ?) defined as above is the homogeneous
C"-tautological control system associated to (M, .%).

Theorem 5.4.9. Suppose that (M, %) is a C”-tautological control system. Then
(M,9%) is a foliation with singularities. Moreover, for every xo € M and every x €
Orbz(z0), we have T,Orbz (o) = .Z (). In particular, for every xo € M, Orbz(x)
is a leaf of M and has a unique structure as a connected immersed submanifold of

M.

Proof. Consider the homogeneous C-tautological control system (M, .%) associated
to (M,.#). By Theorem 5.4.6, it suffices to show that, for every € Orb#(zy), there
exists k € N such that dim(.% (z)) = k and there exists a privileged chart (U,, ¢,) on
M with respect to Orbz(zo) and .7 ().

Lemma. There exists k € N such that, for every x € Orbg(zy), we have

dim(.% (z)) = k.

Proof. Suppose that dim(.Z (z,)) = k. There exists open sets V1, Va, ..., Vi in M and
vector fields Y1, Ys, ..., Y, such that Y; € .Z#(V;), for every i € {1,2,...,k}, and we
have

span{Y(zq), Xa(z0), . . ., Ye(zo)} = F (20).

x € Orbg(xg). Then there exist real numbers ty,t,...,t, € R, open sets
Uy, Us,...,U, € M, and vector fields Xi, X>, ..., X,, such that

X; € Z(U;), Vie{l,2,...,k},
and we have
T =@t opito ... o (x0).
Therefore, there exist open sets W, H C M such that the map n: W — H defined as

X X X
TI = gbtll O¢t22 ... O¢tnn

is a (C%-diffeomorphism. We set V = <ﬂf:1 Vi> NH and U = W

N
gbfflogbf?o ... o¢pm(V). Then, for every i € {1,2,...,k}, we define Z, € F(U)
as
Zi=n"Y; ’V .
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Since 7 is a C¥-diffeomorphism and 7(x¢) = x, we have
span{ Z1(x), Zs(x), . .., Zr(x)} = span{Yi(zo), Ya(20), ..., Ya(zo)} = K.

This means that dim(.Z (z¢)) < dim(Z(z)). By symmetry, we have dim(.% (z))

<
dim(.Z (). This implies that, for every z € Orbz(zo), dim(Z (z)) = k. O

Now we show that, for every x € Orbz(z0), there exists a privileged chart (U, ¢.)
on M with respect to Orbgz(z¢) and F(z). Let us fix x € M and define Q(x) as
a n — k dimensional vector subspace of T, M such that Q(z) & F(x) = T, M. The
following lemma has been proved in [47].

Lemma. Let M be a C"-manifold, € M, and D be a vector subspace of T, M.
Then there exists an embedded CV-submanifold S of M passing through x such that
T,.S = D(z).

Using the above lemma, there exists an embedded submanifold of M called @)
such that x € @ and T,Q = Q(z). Let (W,,1,) be a coordinate chart on () around

x. Since dim(.%(z)) = k, there exist vector fields X, Xs,..., X} and open sets
Ui,Us, ..., U, € M such that

X; € ?(UZ), Vi € {1,2, .. .,k’},

and we have o
span{ X (z), Xo(x),..., Xp(2)} = F(x).

We define a map n, : V, x W, — M as
Ur(tl,tg, eyt Y1, Y2, - 7yn—k) = t)fl o 522 o... Ogﬁfik(d};l(yl,yg, - 7yn—k))-

We show that T(g )7, is a linear map of rank n. Note that we have

0 .
T(O,O)Um(a—ti) = X;(z), Vie{l,2,...,k}.
Also we have
Toom(e) = Tt (), Vi€ {1,2,...,n—k}
(0,0)7]z By’ 0¥z oy 02, )
Thus we have
1 —1 a 1 6
rank(T{o,07.) = dim{X1(z), ..., Xx(z), Tor, (8_>’ o T )} =n.
hn 8yn—k

By the inverse function theorem, there exist a neighbourhood V! C R* and a neigh-
bourhood W, C R"* such that 7, lvsxwy is a C¥-diffeomorphism. So, there exists a
chart (V! x W/ &,) such that

o.(y) =, (y),  VyeV.xW.
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Now, we show that (V; x W}, ¢,) is a privileged chart on M with respect to Orbz (o)
and .# (x). Note that we have

Orbz (o) [V 1a(Vi x W) = (V) % {1}),

and by setting z = gbt)fi“ °... ogbt)i’“ (¥ (Y1, - -+ Ynk)), we have

+1

Dina(ty, - syt - Ynk) = Te(@3 oo od ) Xo(2), Vi€ {1,2,... k}.
Thus, it is clear that

Dinx(tla o atkayla v 7yn—k) € ﬁ(%(tla s 7tk‘ay17 ce 7yn—k))‘

This implies that (V] x W., ¢,) is privileged chart on M with respect to Orbg(xo)
and .Z (x). Therefore, by Theorem 5.4.6, (M, Orb ) is a singular foliation and, for
every x € M, we have T,0rb#(x¢) = .7 ().

It remains to show that Orbz(x¢) is a connected immersed submanifold of M.
The fact that Orbg(zg) is an immersed submanifold of M is clear from the above
argument. So we only need to show that Orbz () is connected. Let x € M, U C M
be an open set containing z, and X € ?(U) We define a map vX : 2% — M as

7 t)=¢; (x), Vte D"

Since X is time-invariant, ¢t — ¢ (x) is of class C¥. This implies that 72X is of
class C¥ and in particular, it is continuous. Since 72X (2%) C Orbz(z), the map
7X : R — Orbz(z) is continuous. We know that y € Orbz(zo), then there exists
ti,ta...,t, € Rog, open sets Uy,Us, ..., U, € M and vector fields Xy, Xo,..., X}
such that

X; € Z(U;), Vie{l,2,...,k},

and we have

X; X b's

Y=yl oPpo ... °¢tkk(370)-
So one can reach y from xy € M, by moving along the continuous curves of the form
72X, This shows that Orbz(z) is connected. O

5.4.3. The real analytic case. While the classical orbit theorem of Sussmann and
Stefan characterizes the tangent space to the orbits of a family of vector fields S using
the distribution Pg, computing the distribution Pg requires finding the flows of the
system. Therefore, it would be natural to investigate the conditions under which one
can characterize the distribution Pg using the Lie brackets of the vector fields in S.
Using the Chow—Rashevskii theorem, it is easy to see that if the distribution Lie(.S)
is integrable, the distributions Pg and Lie(.S) are identical.

In the differential geometry literature, integrability of distributions has been
deeply studied. The most well-known result about integrability of distributions is
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the Frobenius theorem. According to the Frobenius theorem, if the rank of the dis-
tribution Lie(S) is locally constant, then it is integrable. In 1963, Hermann realized
that the module structure on the family of vector fields Lie(S) plays a crucial role
in the integrability of the distribution Lie(S). More specifically, he showed that if
the C'*°(M)-module generated by the vector fields in Lie(.S) is locally finitely gener-
ated, then the distribution Lie(S) is integrable [31, 2.1(b)]. He also claimed that if
the vector field of the distribution Lie(S) are real analytic, then this distribution is
integrable [31, 2.1(c)]. However, his paper does not contain a complete proof of this
claim. In 1966, Nagano proved that for a family of real analytic vector fields S, the
distribution Lie(.S) is integrable [62, Theorem 1]. In his 1970 paper, Lobry introduced
a weaker condition called “locally of finite type”. He proved that if a distribution
is locally of finite type, then it is integrable. In particular, mentioning the fact that
the space of real analytic vector fields has Noetherian property, he claimed that for
a family of real analytic vector fields S, the distribution Lie(.S) is always locally of
finite type and therefore integrable. In [73], Stefan gave a counterexample to this
assertion. However, he showed that Lobry’s locally of finite type condition can be
modified to give integrability of a distribution [72, Theorem 6].

In the previous section, we proved the orbit theorem for C”-tautological control
systems. We showed that orbits of a C”-tautological control system (M,.%#) define
the structure of a singular foliations on M and, for every xo € M, we have

T,0rbz(xy) = Z (z), Vo € Orbg(x).

However, computing the sheaf .Z requires solving for the flows of the vector fields
of the system, which is in the best case very difficult, if not impossible. Therefore,
similar to the classical orbit theorem, it would be natural to investigate the conditions
under which the vector space .Z (z) is identical with the vector space Lie(.%)(x). It
is natural to expect that Hermann’s condition can be generalized the the tautological
framework. In other words, if the “module” Lie(.%) is locally finitely generated, then
we have .7 (z) = Lie(.#)(x). However, Example 5.4.13 shows that this implication is
not true for all tautological control systems.

In this section, we show that, for having the equality .7 () = Lie(.%)(x), the
presheaf structure on the family of vector fields Lie(.#) plays an essential role. We
prove that if Lie(.%) is a locally finitely generated “presheaf”, then the vector spaces
7 (z) and Lie(.Z)(x) are identical. In particular, we show that for “globally defined”
C“-tautological control system the presheaf Lie(.%) is locally finitely generated. This
shows that for a C“-tautological control system, one can characterize the tangent
space to the orbits of the system using the Lie brackets of vector fields of the system.

Theorem 5.4.10. Let (M,.F) be a C¥-tautological control system such that the

presheaf Lie(F) is locally finitely generated. Then, for every x € M, we have
F(x) = Lie(.F)(x).

Proof. We first show that, for every » € M, we have Lie(.%)(z) C .Z (z). Let us fix
x € M. In order to show this inclusion, it suffices to show that, for every open set
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U C M containing x and every X, X, € Lie(.#(U)), we have [X, X,|(z) € Z ().
We know that

X0 X)) = o] (07 Xo(w).

Since .Z (x) is finite dimensional, there exist n € N, a neighbourhood V' C M of z,
N, N2y Mn € T(P) whose domain contains V', and vector fields Y;,Y5,...,Y, €
Z (V') such that the set S defined as

S ={mYi(z), iYa(x), .., Yu(2)}

generates the vector space .7 (z). Let ¢** : 2 — M be the flow of X. Then, there
exists T' > 0 such that [-T,7T] C (2)". Since S generates the vector space .7 (),
there exist functions fi, fa, ..., f, € FIZ7T] such that

(¢71)" Xa(2) = ij(t)??ﬂ”j(fc)

Since X, is a vector field of class C¥, the map t — (¢;")*Xy(z) is of class C”.
Therefore the functions fi, fo, ..., f, are of class C” with respect to t. This implies
that

(X1, Xo(x) P )Xo

d]
il S0 = 3 0

j=1

n:Y;(x).

dt‘ t=0 77
Therefore [X1, X»](z) € .Z(2). This completes the proof of the inclusion Lie(.%)(z) C
Now we show that, for every z € M, we have .Z () C Lie(#)(x). Let us fix
x € M. Suppose that U,V are two open sets in M, where V' contains z, X € F(U),
and Y € F(V). We show that, for every t > 0 where (¢} )" X () is defined, we have

(#1)" X(2) € Lie(F)(2).

Without loss of generality, we can assume that ¢! is defined on [0,7]. Since the
presheaf Lie(.#) is locally finitely generated, for every y € ¢¥ ([0, 7], z), there exist
a neighbourhood Uy, sections XY, X3,..., X}, € Lie(#)(U,) and functions f}; €
C(Uy) for i,j € {1,2,...,m} such that

Y, XY)(= Z (2) Vz e U, Vje{l,2,...,m}

and, for every z € U, the set {[X{]., [XJ].,...,[XY].} generates Lie(.7)..
Now we consider all open set U,, where y € ¢ ([0,T],z). For every y €
¥ ([0,T], x), there exists t, € [0,7T] such that

Yy = ¢Y(ty,x>.
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One can assume that (possibly after shrinking U,), for every s € [0, 7] such that
inf{r | ¥ (r,7) € U,} < s <sup{7 | ¢* (1,2) € U, },

we have

oY (s,x) € U,.
Since ¢¥ ([0, T], z) is compact, there exists y1,9s, ...,y € ¢¥ ([0, 7], z) such that

& ([0.70.2) € U

Without loss of generality, we can assume that, for every i € {1,2,...,n — 1}, we
have

inf{t € [0, 7] | ¢" (t,z) € U, } <inf{t € [0,T] | ¢* (t,x) € Uy, }.
Since J;—, Uy, covers ¢ ([0,T],z), for every i € {1,2,...,n — 1}, we have

sup{t € [0,T] | ¢* (t,x) € U} > inf{t € [0,T] | " (t,2) € Uy, }-
Therefore, for every i € {1,2,...,n — 1}, there exists 7; € [0, 7] such that
sup{t € [0,T] | " (t,z) € U,,_,} > > inf{t € [0,T] | ¢* (t,2) € U,,}.

We also set 79 = 0 and 7,, = T". The following lemma is essential in the course of the
proof.

Lemma. For everyi € {1,2,...,n} and every j € {1,2,...,m}, we have

(¢Y)" XVi(z) € span{( Zﬁl)*X}:H(x)‘k € {1,2,...,m}}.

Proof. Let us fix i € {1,2,...,n}. Then, for every j € {1,2,...,m}, we have

dt‘ t=s Xyl( )= (gzﬁg/)* Y, ngl](x)v Vs € [1;, Tiy1)-

Note that we have
¢Y( ) € Uy, Vs € 1, Tiy1)-

Thus, for every z € U,, we have

Y, X7 I( Z 2)) XY (95 (2)), Vs € [7i, Tisal.

Therefore we have

d ( Z )*X;‘Zl(x), Vs € [Ti, Tiy1)-
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For every k,j € {1,2,...,m}, we have that the map s — f,f](qﬁg/(x)) is of class C".
For every j € {1,2,...,m}, we set

aj(t) = (Qg/)* ijz<x)7 Vi € [Tia Ti+1]7

and
bi;(t) = fgj(¢f(x)), Vt € [1i, Tiga]-

Therefore, we have the family of linear time-varying differential equations:

da;(
j Zbk] CLJ Vit € [Ti77_i+1]-

By [19, Theorem 5.1], there exists vx; € C¥(T) such that
a;(t) = yi(t)aj(r:), V€ [7i, Tiga].

Thus, by replacing a; and bg? , we get

( Xyl nykj ( 3’271) Xlzch(x)v Vit € [TiaTi+1]'

By setting t = 7;, we get

( Xyl Z%J (7:) ( Z 1> X' (@).
However, by the way we have chosen 7y, 7, ..., 7,, we have

XV(¢Y () € span {Xﬁi—lwgﬂ(:ﬁ)) re{l,2,. .. ,m}} .

Thus, for every j € {1,2,...,m}, there exist real numbers ¢i;, ¢oj,. .., cx; € R such

that .
(60) X) @) = Y ey (o1,) X0 (@)
k=1

This completes the proof of the lemma. O

Using the above lemma and induction on i € {1,2,... n}, it is easy to see that,
for every j € {1,2,...,m}, we have

(¢¥)*X§”"(x) € span{( %)*Xf(x)‘j e {1,2,... ,m}} :

However, we know that 79 = 0. This implies that

(gz%)*X;”"(x) € span {Xf(x)’j e{1,2,... ,m}}.
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Thus, we have
(¢7)" XV (x) € Lie(F)(x).

J

Also, since Lie(.#) is locally finitely generated, we know that there exists
91,92, - -, gn € C”(U,,) such that

X(pr (@) = Z%(d)?(flf))ﬁ’”(d)?(ﬂf))

This implies that
(¢¥)* X(x) € Lie(F)(x).

Thus, we get .7 (z) C Lie(.F)(x). O

Corollary 5.4.11. Let (M, .F) be a globally generated C*'-tautological control system.
Then, for every x € M, we have . (x) = Lie(.F)(x).

Proof. In the real analytic case, by Theorem 2.4.13, the presheaf Lie(.%#) is locally
finitely generated. The result then follows from Theorem 5.4.10. [

One can apply Theorem 5.4.11 to the orbit theorem to get the real analytic version
of the orbit theorem.

Corollary 5.4.12. Let (%, M) be a globally generated C¥-tautological control system.
Then (M,97) is a foliation with singularities. Moreover, for every xo € M and every
x € Orbg(xg), we have T,Orbg(x¢) = Lie(F)(x). In particular, for every xo € M,
Orbg(z) is a leaf of (M,9%) and it has a unique structure as a connected immersed
submanifold of M.

In the following example, we define a real analytic tautological control system
(R?,.%) with the following properties:

1. the vector fields in .% are not globally defined,

2. for every x, there exists a neighbourhood U C R? of x such that Lie(.#)(U) is
a locally finitely generated C*(U)-module, and

3. Lie(#)(0,0) # .Z(0,0).

Properties (1) and (2) indicate that one cannot remove the condition that .# is
globally generated from Theorem 3.2.12. This is because Theorem 2.4.13 fails if .7 is
not globally generated. Properties (2) and (3) show that the condition that Lie(.%#) is
a locally finitely generated “module” is not sufficient for the equality of vector spaces
Lie(.Z)(z) and .Z (x).
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Example 5.4.13. [73] Let M = R? and % = {X;, X5}, where X; : R? — TR? is
defined as

0
Xl(xay) = %7
and X, : R®? x R — TR? is defined as
10
X = ——.
Q(xay) xay

It is clear that both X; and X, are real analytic on their domain of definition. We
first compute the presheaf Lie(.%#). If we compute the Lie bracket of X; and Xy, we

have
1 0

228y’
Now we can continue computing the Lie brackets. It is easy to see that the only
non-zero Lie brackets are

(X0, Xo|(w,y) = V(z,y) € R7° x R.

n
le, [Xi’r .« oy [Xl,XQ] .. ]](I,y) == x”H—l a—y,

Vn € N.

This implies that, for every open sets U € R”? x R, we have

Lie(Z)(U) = {faﬁ

fo € Cw(U)}7

and, for every open sets U C R>? x R, we have
0 " fi\ 0

Lie(Z)(U) = — ==
o)) {foaw s (Z ) o

We show that, for every (zg,70) € R?, there exists a neighbourhood U of (zg, y9) such
that Lie(.#)(U) is a finitely generated C¥(U)-module. Let (xg,3) € R”? x R. Then,

we choose an open neighbourhood U of (zg,yo) such that U C R>% x R. Thus, we
have

Lie(#)(U) = {faﬁ n (Z 9{—) 8%

n €N, fo,fl,...,fneC“(U)}.

n €N, fo,fl,...,fneC”(U)}

0 0
= SpanCW(U) a_x7 a_y .

Now suppose that (zg,79) € R>? x R. Then, for every open neighbourhood U of
(w0, y0), we have U € R>? x R. This implies that

L)) = { iz | fo € C0) | =spanee {52 |-
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Therefore, for every (zg,yo) € R?, there exists an open neighbourhood U of (zg, yo)
such that Lie(.7)(U) is a finitely generated C*(U)-module.
One can see that Orb#(0,0) = R?. Therefore, by the orbit theorem, we have

Z(0,0) = Tio.0)R*.

In particular, we have dim(.#(0,0)) = 2. On the other hand, Lie(#)(0,0) = {2}
and so dim(Lie(:#)(0,0)) = 1. This implies that

Z(0,0) # Lie(%)(0,0).



Chapter 6

Conclusions and future work

6.1. Conclusions

In this thesis, using topologies on the space of C”-functions, we have developed
a framework for studying time-varying C”-vector fields and their flows. The setting
that we constructed in this thesis unifies different classes of regularities in a coherent
manner. In particular, it includes the real analytic regularity which is of significance
in mathematical control theory. Moreover, we have developed tools and techniques
for studying the extension of a time-varying real analytic vector field to a time-varying
holomorphic one. Using the suitable topology on the space of real analytic functions,
we found a mild sufficient condition to ensure that a time-varying real analytic vector
field has a holomorphic extension.

In chapter 4, following [55], we have presented a parameter-invariant model for
studying control system called “tautological control system”. Using the notion of
presheaf, we developed an appropriate notion of trajectories for tautological control
systems. In chapter 5, we generalized the orbit theorem of Sussmann and Stefan
for tautological control systems. Using the tautological system approach, we got a
natural condition on a tautological control system which ensure that the tangent
space to the orbit of the system at a point x is generated by the Lie brackets of
vector fields of the system at x. In particular, we showed that globally generated real
analytic tautological control systems satisfy this condition.

6.2. Future work
In this section, we mention possible directions for future research.

1. The operator approach developed in chapter 3 can be used to study the local
controllability of control systems. While local controllability of a control system
is a property of its flows, it is sometimes very hard, if not impossible, to find
the flows of a control system. Therefore, in mathematical control theory, one
would like to study local controllability of a control system using the vector

146
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fields of the system. Numerous deep and interesting results has been developed
in this direction during last four decades. However, many questions still re-
main unanswered. One of the most interesting open questions is whether local
controllability of a control system can be determined using finite number of
differentiations of vector fields of the system. One can make this question more
rigorous as follows. For a family of vector fields S = {f1, fa, ..., fm}, we define
a trajectory of S as a piecewise continuous curve such that every continuous
piece is a trajectory of one of elements of S. For every T' > 0, the attainable
set of S from 0 € R™ at time less than equal T is defined as

Acr(0) = {£(t) | € is a trajectory of S, £(0) =0,t < T}.

The family of vector fields S = {fi, fo,..., fm} is called small-time locally
controllable from 0 if, for every T" > 0, we have

0 € int (.AST(O)) .

In [2], the question of deciding local controllability by a finite number of differ-
entiation has been stated in the following way:

e Question: Suppose that we have a family of real analytic vector fields
{f1, f2, .-, fm} on R™ such that it is small-time locally controllable from
0. Does there exists N € N such that any other family of real analytic
vector fields with the same Taylor polynomial of order N at 0 as the Taylor
polynomials of {f1, fa, ..., fm} is small-time locally controllable?

In [5], using suitable variations, this question has been answered affirmative for
a specific class of real analytic vector fields. However, for a general family of
real analytic vector fields this problem is still open.

We first state the above question in the framework of C*-control systems. Con-
sider a C¥-control system ¥; = (R™, F,R™). Suppose that F': R x R" — TR"
is defined as

F(u,z) = Xo(z) + w1 X1(z) + ... + upn Xon (), Vu e R™, Vo € M.

Where Xg, X1, ..., X,, are real analytic vector fields. Suppose that u : T — R
is a locally essentially bounded and the time-varying vector field F* : T x R™ —
TR" is defined as

FU(t,z) = F(u(t),x), vVt e T, Vo € R".

Now assume that ¥y = (R", G,R™) is another C“¥-control system with G :
R™ x R™ — TR" defined as

G(u,z) = Yo(z) + wmYi(z) + ... + up Y (x), Vu € R™, Vo € R™.
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where Yy, Y1, ..., Y,, are real analytic vector fields with the same Taylor polyno-
mial of order N at xg as Xy, X1, ..., X,,. Then, we say that C”-control systems

Y1 and Y, agree up to order N at zy and we write
(Z1)) = (D)2 .
Now, one can restate the above question as follows:

e Question: Let ¥ = (R", F,U) be a C*-control system. Suppose that
xo € R™ and ¥ is locally controllable from xy. Does there exists N € N
such that, for every C¥-control system © = (R", G,U) with (Z)i\; = (@)i\g,
O is locally controllable from x(?

Since local controllability is a property of flows of the system, it is reasonable to
investigate the relation between flows of two real analytic control system which
agree up to order N at xy. We showed in Theorem 4.4.4 that if ¢t — u(t) is
locally essentially bounded, then F'* is a locally Bochner integrable time-varying
real analytic vector field. Therefore, by Theorem 3.8.1, the flow of this vector
field can be written as:

t t T

o (t) =1id +/ F*(r)dr +/ / F(1) o F“(s)dsdT + . ...
to to Jio

Since the local controllability of 3, from xy only depends on the trajectories of

¥; which pass through z, at time ty, we evaluate ¢ at .

eV, ot (1) = evx0+/t evy, (F“(7)) dT—I—/t /T eV, (FY(7) o F(s)) dsdT+. . ..

to
Suppose that X, is a C*-control system such that (3,) = (3,)%. Then, for
every locally essentially bounded control t — w(t), for every i € {0,1,..., N},
and for every ti,ts,...,t; € R, we have

eVay (F(t)) o FU(ta) 0 ... FU(1)) = eva, (GU(t;) oG (ta) o . .. GU(t,)) .

Therefore, for every control ¢t — w(t) which is locally essentially bounded, we
have

eVay 0O (1) = evay 00 (¢)

This motivates the definition of a C'V-control system which is Nth order approx-
imation of ¥;. Unfortunately, such an approximation cannot be a C"-control
system. The reason is that the map ¢4 (¢) is not an algebra homomorphism and
as a result, ¢4 (¢) is not the flow of any time-varying vector field. However, it is
easy to check that @& () is an Nth order differential operator on C*(R"). Let
us denote by LY (C¥(R"); C“(R")) the subspace of L(C*(R"); C*(R")) consists
of Nth order differential operators.
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Considering flows of a system as unital R-algebra homomorphism between
C¥(R"™) and C*(R™), one can get the following restatement of definition of
local controllability.

Theorem 6.2.1. The system ¥, is locally controllable from xq if and only if ev,,
is in the interior of {evy, o¢™ (T) | u € L2 (T), T € R} in Homg(C¥(R"); R).
Proof. According to Theorem 3.4.3, the map ev : R* — (C*(R"))" is a topo-
logical homeomorphism onto its image. Using the fact that image of this map
is exactly Homg(C¥(R");R) (Theorem 3.4.3), the theorem immediately fol-
lows. O

While the above theorem may seem a complicated version of the definition of
local controllability of a system from xg, it will allow us to generalize the notion
of local controllability to the Nth order approximation of the system.

In order to modify the definition of the local controllability for the Nth order
approximation of a system, we define év,, : L(C*(R"); C*(R")) — (C¥(R"))’
as

6V (X) = evy, o X, VX € L(C*(R"™); C¥(R"™)).

Then it is clear that év,,(Homg(C¥(R"); C*(R"))) = Homg(C*(R");R). We
define
Vo (LY (C¥(R™); C¥(R"))) = L, (C¥(M); C“(R™)).

Note that using the map év,,,, we get

Theorem 6.2.2. The system > is locally controllable from xy if and only
if evy, is in the interior of {evy, o™ (T) | u € LX(T), T € R} in
&V, (Homg (C¥(R™); C¥(R™))).

The above theorem motivates the introduction of the following notion of Nth
order local controllability.

Definition 6.2.3. A C*-control system X is called Nth order locally con-
trollable at g if ev,, is in the interior of {ev,, ok (T) | u € L (T), T € R}
in L%(C‘”(R”); Cv(R")

It is clear that for a C"-control system ¥, Nth order local controllability of
> form xy only depends on Nth order Taylor polynomial of vector fields of
the system around x,. Using the above definition, one can ask the following
question:

e Open problem: Suppose that > is locally controllable from zy. Does
there exists N € N such that 3; is Nth order locally controllable at xy?
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It is obvious that a positive answer to this question will give an affirmative
answer to the question mentioned above.

. We treated the nonlinear differential equation governing the flow of a time-

varying C”-vector field on M as a linear ODE on the locally convex space
L(CY(M);C*(M)). Using the holomorphic extension of locally Bochner in-
tegrable time-varying real analytic vector fields, we showed that the classical
methods for studying linear ODEs on R™ can be extended to find the solution
for the this linear ODE on L(C*(M); C*(M)). The evolution of flow a vector
field is not the only differential equation that can be translated into an ODE on
a locally convex space. In fact, every evolution of partial differential equation
and every pseudodifferential equation can be treated as an ODE on some ap-
propriate locally convex space. However, the theory of ODE on locally convex
spaces is different in nature from the classical theory of ODE on Banach spaces.
While, in the classical theory of ODE on Banach spaces, most of the techniques
and tools can be used independently of the geometry of the Banach space, the
theory of ODE on locally convex spaces heavily depends on the geometry of
the underlying space [56]. The machinery that we developed in chapter 3, in-
cluding the local and global extension results (Theorems 3.7.8 and 3.7.4) and
the family of seminorms for space of real analytic functions (Theorem 3.2.34
and 3.2.35) enables us to study the generalization of the ideas and methods of
classical theory of ODE on Banach spaces to ODEs on specific locally convex
spaces.

. The parameter-invariant framework developed in [55] seems to be the right

framework for studying fundamental properties of control systems. As men-
tioned in [54], even the simple linear test for controllability of systems is not
parameter-invariant. In [41], a parameter-invariant approach has been used to
study linearization of tautological control systems. However, the problem of
developing a parameter-invariant theory for small-time local controllability of
systems is still open.

. While in chapter 5 we generalized the orbit theorem for tautological control

systems, the proof of the generalized orbit theorem is essentially the same as
the classical orbit theorem. In particular, “piecewise constant vector fields”
plays a crucial role in the proof of this theorem. With the machinery that we
developed in chapter 3, it seems plausible that one can get a new proof of orbit
theorem based on general “locally Bochner integrable” vector fields which does
not rely on piecewise constant vector fields.
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