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1. Introduction

The stability of linear ordinary differential equations has, of course, been exhaustively
studied, and is included in many standard texts on ordinary differential equations ([Bourlès
and Marinescu 2011, §12.4], [Coddington and Levinson 1984, §3.8], [Coppel 1965, §III.2],
[Hale 1980, §III.2], [Hahn 1967], [Liao, Wang, and Yu 2007, Chapter 3]) and control theory
([Antsaklis and Michel 1997, §6.5], [Brockett 1970, §29], [Delchamps 1988, §23], [Hinrichsen
and Pritchard 2005, §3.3.1], [Kwakernaak and Sivan 1972, §1.4.1], [Sastry 1999, §5.7]). As
compared to LTI systems where the notions of stability and uniform stability coincide, for
time-varying systems the distinction between these notions become relevant. In this note
we flesh out this distinction in a way which seems to have eluded treatment in the standard
texts, even occasionally leading to misstated results as a consequence.

Notation and conventions. In the note, we will consider the state-space of a linear ordinary
differential equation to be a finite-dimensional normed R-vector space (V, ∥·∥). None of the
conclusions of the note depend on the choice of (necessarily equivalent) norm. Thus the
differential equation has the form

ξ̇(t) = A(t)(ξ(t)), (1)

where A : T → L(V;V) is a locally integrable function on an interval T ⊆ R taking values
in the space L(V;V) of linear mappings of V. The solution of the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x0,
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has the form ξ(t) = ΦA(t, t0)(x), where ΦA : T × T → L(V;V) is the state transition map,
which is defined to be the solution of the initial value problem

Φ̇(t) = A(t) ◦ Φ(t), Φ(t0) = idV,

idV denoting the identity map. As a consequence, t 7→ ΦA(t, t0) is absolutely continuous
for each t0 ∈ T.

2. Stability definitions

In this section we first provide definitions for stability of linear ordinary differential
equations. The definitions we give are specially contrived for use for linear equations, and
are not, at a first glance, equivalent to the usual notions of local stability. Therefore, since
we are not aware of all of these results having been proved in the literature, we prove that
our linear definitions are equivalent to the usual ones for linear equations.

2.1. Stability definitions for linear ordinary differential equations. We give the various
notions of stability that are of interest to us. Our definitions are for the equation (1),
keeping in mind that this means, by definition, stability of the zero solution.

1 Definition: (Stability for linear ordinary differential equations) Let (V, ∥·∥) be a
finite-dimensional normed R-vector space, let T ⊆ R be an interval with supT = ∞, and
let A : T → L(V;V) be locally integrable. The differential equation (1) is:

(i) stable if, for each t0 ∈ T, there exists C > 0 such that ∥ΦA(t, t0)(x)∥ ≤ C∥x∥ for
every x ∈ V and for every t ≥ t0;

(ii) attractive if, for each t0 ∈ T and each ϵ > 0, there exists T > 0 such that
∥ΦA(t, t0)(x)∥ ≤ ϵ∥x∥ for every x ∈ V and for every t ≥ t0 + T ;

(iii) exponentially attractive if, for each t0 ∈ T and each ϵ > 0, there exists M,σ > 0
such that ∥ΦA(t, t0)(x)∥ ≤ Me−σ(t−t0)∥x∥ for every x ∈ V and for every t ≥ t0;

(iv) asymptotically stable if it is stable and attractive;

(v) exponentially stable if it is stable and exponentially attractive;

(vi) uniformly stable if there exists C > 0 such that ∥ΦA(t, t0)(x)∥ ≤ C∥x∥ for every
(t0, x) ∈ T × V and for every t ≥ t0;

(vii) uniformly attractive if, for each ϵ > 0, there exists T > 0 such that ∥ΦA(t, t0)(x)∥ ≤
ϵ∥x∥ for every (t0, x) ∈ T × V and for every t ≥ t0 + T ;

(viii) uniformly exponentially attractive if there exists M,σ > 0 such that
∥ΦA(t, t0)(x)∥ ≤ Me−σ(t−t0)∥x∥ for every (t0, x) ∈ T × V and for every t ≥ t0;

(ix) uniformly asymptotically stable if it is uniformly stable and uniformly attractive;

(x) uniformly exponentially stable if it is uniformly stable and uniformly exponen-
tially attractive. •

We have made the definitions of “asymptotically stable,” “exponentially stable,” “uni-
formly asymptotically stable,” “uniformly exponentially stable” in such a way that they are
visually symmetric. Moreover, for nonlinear equations, the form of the definitions we give
agree with the standard ones (as we shall prove in the next section). However, as we shall
see, some of the definitions are logically redundant for linear equations. Indeed, this is the
point of the note.
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2.2. Equivalence with standard general definitions. Since we are not aware of complete
proofs in the existing literature of the equivalence between our stability definitions for linear
equations and the usual ones for general equations, in this section we prove this equivalence.

First we give the general definitions, just so we are clear about which of the myriad
possible definitions we are using. The definitions are made for an ordinary differential
equation

ξ̇(t) = F (t, ξ(t))

for right-hand side F defined on T × U for an interval T ⊆ R and U ⊆ Rn open, and that
is locally integrable in t and locally Lipschitz in state with a locally integrally bounded
Lipschitz constant. The solution to the initial value problem with initial condition ξ(t0) =
x0 we denote by ΦF (t, t0,x0).

2 Definition: (General stability definitions) Let T ⊆ R be an interval and let U ⊆ Rn

be open. Let F : T ×U → Rn define a system of ordinary differential equations (as above)
and suppose that supT = ∞. Let x0 ∈ U be an equilibrium point for F . The equilibrium
point x0 is:

(i) locally stable if, for any ϵ > 0 and t0 ∈ T, there exists δ > 0 such that t 7→
ΦF (t, t0,x0) is defined on [t0,∞) and satisfies ∥ΦF (t, t0,x0) − x0∥ < ϵ for every
x ∈ U satisfying ∥x− x0∥ < δ and for every t ≥ t0;

(ii) locally attractive if, for every t0 ∈ T, there exists δ > 0 such that, for ϵ > 0,
there exists T > 0 such that t 7→ ΦF (t, t0,x0) is defined on [t0,∞) and satisfies
∥ΦF (t, t0,x0) − x0∥ < ϵ for every x ∈ U satisfying ∥x − x0∥ < δ and for every
t ≥ t0 + T ;

(iii) locally exponentially attractive if, for every t0 ∈ T, there exists M, δ, σ > 0
such that t 7→ ΦF (t, t0,x0) is defined on [t0,∞) and satisfies ∥ΦF (t, t0,x0) − x0∥ ≤
Me−σ(t−t0) for every x ∈ U satisfying ∥x− x0∥ < δ and for every t ≥ t0.

(iv) locally asymptotically stable if it is locally stable and locally attractive;

(v) locally exponentially stable if it is locally stable and locally exponentially attrac-
tive;

(vi) uniformly locally stable if, for any ϵ > 0, there exists δ > 0 such that t 7→
ΦF (t, t0,x0) is defined on [t0,∞) and satisfies ∥ΦF (t, t0,x0) − x0(t)∥ < ϵ for every
(t0,x) ∈ T × U satisfying ∥x− x0∥ < δ and for every t ≥ t0;

(vii) uniformly locally attractive if there exists δ > 0 such that, for ϵ > 0, there exists
T > 0 such that t 7→ ΦF (t, t0,x0) is defined on [t0,∞) and satisfies ∥ΦF (t, t0,x0) −
x0∥ < ϵ for every (t0,x) ∈ T × U satisfying ∥x− x0∥ < δ and for every t ≥ t0 + T ;

(viii) uniformly locally exponentially attractive if there exists M,σ, δ > 0 such that
t 7→ ΦF (t, t0,x0) is defined on [t0,∞) and satisfies ∥ΦF (t, t0,x0)− x0∥ ≤ Me−σ(t−t0)

for every (t0,x) ∈ T × U satisfying ∥x− x0∥ < δ and for every t ≥ t0.

(ix) uniformly locally asymptotically stable if it is uniformly locally stable and uni-
formly locally attractive;

(x) uniformly locally exponentially stable if it is uniformly locally stable and uni-
formly locally exponentially attractive;

(xi) unstable if it is not stable. •
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To simplify reading, let us introduce abbreviations.

Definition 1

S: stable
A: attractive
EA: exponentially attractive
AS: asymptotically stable
ES: exponentially stable
US: uniformly stable
UA: uniformly attractive
UEA: uniformly exponentially attractive
UAS: uniformly asymptotically stable
UES: uniformly exponentially stable

Definition 2

LS: locally stable
LA: locally attractive
LEA: locally exponentially attractive
LAS: locally asymptotically stable
LES: locally exponentially stable
ULS: uniformly locally stable
ULA: uniformly locally attractive
ULEA: uniformly locally exponentially attractive
ULAS: uniformly locally asymptotically stable
ULES: uniformly locally exponentially stable

Now the following result proves the equivalence of the two possibly different collections
of stability definitions.

3 Proposition: (Equivalence of stability definitions for linear equations) Let T ⊆ R
be an interval for which supT = ∞, let V be a finite-dimensional R-vector space, and let
F : T × V → V be a linear ordinary differential equation: F (t, x) = A(t)(x). We have the
following equivalences:

(i) S of F ⇐⇒ 0 is LS;

(ii) A of F ⇐⇒ 0 is LA;

(iii) EA of F ⇐⇒ 0 is LEA;

(iv) AS of F ⇐⇒ 0 is LAS;

(v) ES of F ⇐⇒ 0 is LES;

(vi) US of F ⇐⇒ 0 is ULS;

(vii) UA of F ⇐⇒ 0 is ULA;

(viii) UEA of F ⇐⇒ 0 is ULEA;

(ix) UAS of F ⇐⇒ 0 is ULAS;

(x) UES of F ⇐⇒ 0 is ULES;

Proof: (S =⇒ LS) Let t0 ∈ T and let C > 0 be such that ∥ΦA(t, t0)(x)∥ ≤ C∥x∥ for x ∈ V
and t ≥ t0. Let ϵ > 0 and take δ = ϵ

2C . Now let x ∈ V satisfy ∥x∥ < δ. We then have

∥ΦA(t, t0)(x)∥ ≤ C∥x∥ =
ϵ

2δ
∥x∥ < ϵ,

for t ≥ t0, giving local stability of 0.
(LS =⇒ S) Let t0 ∈ T and let δ > 0 have the property that ∥ΦA(t, t0)(x)∥ < 1 for every

x ∈ V such that ∥x∥ < δ and for every t ≥ t0. Define C = 2
δ . Let x ∈ V. First suppose

that x ̸= 0 and define x̂ = δ x
2∥x∥ so that ∥x̂∥ = δ

2 < δ. Thus ∥ΦA(t, t0)(x̂)∥ < 1 for t ≥ t0.
However,

ΦA(t, t0)(x) = ΦA(t, t0)

(
2∥x∥
δ

x̂

)
=

2∥x∥
δ

ΦA(t, t0)(x̂) = C∥x∥ΦA(t, t0)(x̂).

Therefore,
∥ΦA(t, t0)(x)∥ = C∥x∥ ∥Φ(t, t0)(x̂)∥ ≤ C∥x∥

for t ≥ t0. Since we also have ∥ΦA(t, t0)(0)∥ = 0 ≤ C∥0∥, we conclude that F is stable.
(A =⇒ LA) Let t0 ∈ T and let δ > 0. Let ϵ > 0, and take T > 0 such that

∥ΦA(t, t0)(x)∥ ≤ ϵ
δ∥x∥ for every x ∈ V and for every t ≥ t0 + T . Now suppose that

∥x∥ < δ and note that ∥ΦA(t, t0)(x)∥ ≤ ϵ
δ∥x∥ < ϵ for every t ≥ t0 + T . This shows that 0

is locally attractive.
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(LA =⇒ A) Let t0 ∈ T and let δ > 0 have the property that, given ϵ > 0, there exists
T > 0 such that ∥ΦA(t, t0)(x)∥ < ϵ for every x ∈ V such that ∥x∥ < δ and for every
t ≥ t0 + T .

Let ϵ > 0 and let T > 0 be such that ∥ΦA(t, t0)(x)∥ < ϵδ
2 for every x ∈ V such that

∥x∥ < δ and for every t ≥ t0+T . Let x ∈ V\{0} and denote x̂ = δ x
2∥x∥ . Since ∥x̂∥ = δ

2 < δ,

∥ΦA(t, t0)(x̂)∥ < ϵδ
2 for t ≥ t0 + T . We also have

ΦA(t, t0)(x) = ΦA(t, t0)

(
2∥x∥
δ

x̂

)
=

2∥x∥
δ

ΦA(t, t0)(x̂).

Thus

∥ΦA(t, t0)(x)(t)∥ =
2

δ
∥x∥ ∥ΦA(t, t0)(x̂)∥ < ϵ∥x∥,

for t ≥ t0 + T , and so F is attractive.
(EA =⇒ LEA) Let t0 ∈ T and let M̃, σ̃ > 0 be such that ∥ΦA(t, t0)(x)∥ ≤ M̃∥x∥e−σ̃(t−t0)

for every x ∈ V and for every t ≥ t0. Now let δ > 0 and take M = M̃δ and σ = σ̃. Then,
for ∥x∥ < δ, we have

∥ΦA(t, t0)(x)∥ ≤ M̃∥x∥eσ̃(t−t0) ≤ M̃

δ
δ∥x∥eσ̃(t−t0) ≤ Me−σ(t−t0),

showing that 0 is locally exponentially attractive.
(LEA =⇒ EA) Let t0 ∈ T and let M̃, δ, σ̃ > 0 be such that ∥ΦA(t, t0)(x)∥ ≤ M̃e−σ̃(t−t0)

for every x ∈ V such that ∥x∥ < δ and for every t ≥ t0.

Take M = 2M̃
δ and σ = σ̃. Now let x ∈ V and denote x̂ = δ x

2∥x∥ . Since ∥x̂∥ = δ
2 < δ,

∥ΦA(t, t0)(x̂)∥ ≤ M̃e−σ̃(t−t0) for t ≥ t0. Then, as in the proof that AS =⇒ GAS,

ΦA(t, t0)(x) =
2∥x∥
δ

ΦA(t, t0)(x̂),

and so

∥ΦA(t, t0)(x)∥ =
2

δ
∥x∥ ∥ΦA(t, t0)(x̂)∥ ≤ 2M̃

δ
∥x∥e−σ̃(t−t0) = M∥x∥e−σ(t−t0),

for t ≥ t0, showing that F is exponentially attractive.
The fact that (AS ⇐⇒ LAS) and (ES ⇐⇒ LES) follows immediately from the preceding

parts of the proof.
The remainder of the proof concerns the results we have already proved, but with the

property “uniform” being applied to all hypotheses and conclusions. The proofs are entirely
similar to those above. We shall, therefore, only work this out in one of the three cases, the
other two following in an entirely similar manner.

(US =⇒ ULS) Let C > 0 be such ∥ΦA(t, t0)(x)∥ ≤ C∥x∥ for every x ∈ V and for every
t ≥ t0. Let ϵ > 0 and take δ = ϵ

2C . Now let x ∈ V satisfy ∥x∥ < δ and note that

∥ΦA(t, t0)(x)∥ ≤ C∥x∥ =
ϵ

2δ
∥x∥ < ϵ,

for t ≥ t0, giving uniform local stability of 0.
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(ULS =⇒ US) Let δ > 0 have the property that ∥ΦA(t, t0)(x)∥ < 1 for every x ∈ V such
that ∥x∥ < δ and for every t ≥ t0. Define C = 2

δ . Now let x ∈ V and define x̂ = δ x
2∥x∥ so

that ∥x̂∥ = δ
2 < δ. Thus ∥Φ(t, t0)(x̂)∥ < 1 for t ≥ t0. Then,

ΦA(t, t0)(x) = ΦA(t, t0)

(
2∥x∥
δ

x̂

)
=

2∥x∥
δ

ΦA(t, t0)(x̂) = C∥x∥ΦA(t, t0)(x̂).

Therefore,
∥ΦA(t, t0)(x)∥ = C∥x∥ ∥ΦA(t, t0)(x̂)∥ ≤ C∥x∥

for t ≥ t0. Since we also have ∥ΦA(t, t0)(0)∥ = 0 ≤ C∥0∥, we conclude that F is uniformly
stable. ■

3. Two trivial results and a nontrivial example

In this section are contained the principal observations of this note, which are that the
rôle of “stability” in the definitions of “asymptotic stability” differ in the nonuniform and
uniform cases.

First a simple result.

4 Proposition: (“Stability” is redundant in the definition of “asymptotic stabil-
ity”) Let (V, ∥·∥) be a finite-dimensional normed R-vector space, let T ⊆ R be an interval
with supT = ∞, and let A : T → L(V;V) be locally integrable. Then the differential equa-
tion (1) is stable if it is attractive.

Proof: Let t0 ∈ T. Since the differential equation is attractive, there exists T > 0 such
that ∥ΦA(t, t0)(x)∥ ≤ ∥x∥ for all x ∈ V and for every t ≥ t0 + T . This means that, for
t ∈ [t0, t0 + T ],

∥ΦA(t, t0)(x)∥ ≤ sup{|||ΦA(t, t0)||| | t ∈ [t0, t0 + T ]}∥x∥,

where ||| · ||| is the induced norm on L(V;V). Note that the supremum in the preceding
equation is finite, since t 7→ ΦA(t, t0) is continuous. Thus, letting

C = max{1, sup{|||ΦA(t, t0)||| | t ∈ [t0, t0 + T ]}},

we have ∥ΦA(t, t0)(x)∥ ≤ C∥x∥ for all x ∈ V and for all t ≥ t0. Thus the differential
equation (1) is stable. ■

Next we give an example that is, in some sense, the main contribution of the note.

5 Example: (“Uniform stability” is not redundant in the definition of “uniform
asymptotic stability”) We shall construct a scalar linear ordinary differential equation
that is uniformly attractive but not uniformly stable. To do this we construct a locally
integrable function a : [0,∞) → R and work with the differential equation

ξ̇(t) = a(t)ξ(t). (2)

Let us define a.

1. Define sequences (αk), (βk), and (∆k) as follows:
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(a) ∆k = 2−k−1;

(b) βk = k2k+1;

(c) define α0 = 1 and then define αk, k ≥ 1, by

βk−1∆k−1 − αk(1−∆k) + βk∆k + βk+1∆k+1 = −1.

2. If t ∈ T, let k be a nonnegative integer such that t ∈ [k, k + 1), and then define

a(t) =

{
−αk, t ∈ [k, (k + 1)−∆k),

βk, t ∈ [(k + 1)−∆k, k + 1).

To show that (2) has the desired properties, we first show that it is not uniformly stable.
For k ≥ 1 define tk = (k+1)−∆k and t0,k = k+1. We consider the initial condition 1 ∈ V
and note that

|Φa(tk, t0,k)(1)| =
∣∣∣∣e∫ tk

t0,k
a(τ) dτ

∣∣∣∣ = ek.

This prohibits uniform global stability.
Next we show that (2) is uniformly attractive. Thus let ϵ > 0 and define T > 0 such

that e−T < ϵ. Let t0 ∈ T and let t ≥ t0 + T . Let k1 ≥ 1 be such that t0 ∈ [k1, k1 + 1), let
k2 ≥ 1 be such that t ∈ [k2, k2 + 1). Note that

t− t0 ≥ T =⇒ k2 − k1 − 1 > T.

Now we estimate∫ t

t0

a(τ) dτ =

∫ k1+1

t0

a(τ) dτ +

k2−1∑
k=k1+1

∫ k+1

k
a(τ) dτ +

∫ t

k2

a(τ) dτ

≤ βk1∆k1 +

k2−1∑
k=k1+1

(−αk(1−∆k) + βk∆k) + βk2∆k2

≤
k2−1∑
k1+1

(βk−1∆k−1 − αk(1−∆k) + βk∆k + βk+1∆k+1)

=

k2−1∑
k=k1+1

(−1) = −(k2 − k1 − 1) < −T.

Now let x ∈ V and note that

|Φa(t, t0)(x)| =
∣∣∣xe∫ t

t0
a(τ) dτ

∣∣∣ ≤ |x|e−T < ϵ|x|,

for t ≥ t0 + T , giving the desired conclusion. •
Finally, we consider another simple result.
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6 Proposition: (“Uniform stability” is redundant in the definition of “uniform
exponential stability”) Let (V, ∥·∥) be a finite-dimensional normed R-vector space, let
T ⊆ R be an interval with supT = ∞, and let A : T → L(V;V) be locally integrable. Then
the differential equation (1) is uniformly stable if it is uniformly exponentially attractive.

Proof: Since the differential equation is uniformly exponentially attractive, there exists
M,σ > 0 such that ∥ΦA(t, t0)(x)∥ ≤ Me−σ(t−t0)∥x∥ for every x ∈ V and for every t ≥ t0.
This immediately gives ∥ΦA(t, t0)(x)∥ ≤ M∥x∥ for every x ∈ V and for every t ≥ t0 and so
gives uniform stability. ■

4. Discussion

The simple results and the example illustrate that the logically correct, i.e., not redun-
dant, versions of our definitions for linear ordinary differential equations are:

1. “asymptotically stable” if “attractive”;

2. “exponentially stable” if “exponentially attractive”;

3. “uniformly asymptotically stable” if “uniformly stable” and “uniformly attractive”;

4. “uniformly exponentially stable” if “uniformly exponentially attractive”.

Thus, when making the definitions, one has a choice between symmetry of the definitions
(as we have gone with in Definition 1) and logical correctness. That there is such a choice,
and the precise reasons why there is such a choice (mainly Example 5), is something that is
sidestepped in the literature on stability of time-varying linear ordinary differential equa-
tions, and occasionally gotten wrong. Let us point out how this matter is handled in some
places in the literature, to illustrate the propagation of the confusion.

1. Antsaklis and Michel [1997]: Although this is a book about linear systems, the definitions
for linear equations are specialised from general definitions for nonlinear equations.
For nonlinear equations, one does not have to choose between symmetry and logical
consistency, since the two choices align in the general case. For linear equations, these
definitions are logically redundant, as exhibited by Propositions 4 and 6. In Theorem 5.4,
Antsaklis and Michel correctly observe that, for linear equations, uniform asymptotic
stability and uniform exponential stability coincide.

2. Bourlès and Marinescu [2011]: Here too, the definitions for linear equations appear as
a special case of definitions for nonlinear equations (although this is a text specifically
about time-varying linear differential equations), so the definitions are logically redun-
dant as per Propositions 4 and 6. Also, in Proposition 1186, it is proved that, correctly
for linear equations, uniform asymptotic stability and uniform exponential stability co-
incide.

3. Brockett [1970]: Here only the stability of linear differential equations is considered, but
only the notions of “uniform stability” and “exponential stability” are defined. Thus
the exception of “uniform asymptotic stability” in the definitions does not arise.

4. Coddington and Levinson [1984]: The notions of uniform stability are not discussed.

5. Coppel [1965]: As this is a book on the general notions of stability, the stability defi-
nitions for linear equations are adapted from those for nonlinear equations. Thus the
redundancies of Propositions 4 and 6 are not discussed. In Theorem III.2.1, uniform
asymptotic stability is correctly characterised precisely as uniform exponential stability.
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6. Delchamps [1988]: In this text, while only linear equations are considered, the definitions
of stability are those for nonlinear equations, and so the redundancies of Propositions 4
and 6 are inherited. While a correct definition is given for uniform asymptotic stability
(the one for nonlinear equations), it is incorrectly characterised in Theorem 23.10(d),
where the uniform boundedness of the state transition map is not hypothesised, as we
have shown in Example 5 that it must be.

7. Hahn [1967]: This is a book on the general theory of stability, with stability of linear
systems arising as a special case. The treatment here has the feature of proving (as
Theorem 58.7) the usual result that uniform exponential stability is equivalent to uni-
form asymptotic stability. However, the consideration of the special logical implications
between various stability notions for linear systems, such as we consider here, does not
receive attention.

8. Hale [1980]: This is another instance where the redundancies of Propositions 4 and 6 are
not revealed because linear equations are treated as a special case of nonlinear equations.
In Theorem III.2.1, uniform asymptotic stability is correctly characterised as uniform
exponential stability.

9. [Hahn 1967]: This is a book on the general theory of stability, with stability of linear
systems arising as a special case. The treatment here has the feature of proving (as
Theorem 58.7) the usual result that uniform exponential stability is equivalent to uni-
form asymptotic stability. However, the consideration of the special logical implications
between various stability notions for linear systems, such as we consider here, does not
receive attention.

10. Hinrichsen and Pritchard [2005]: In this text also, the stability definitions for linear
equations are simply those for nonlinear equations, and consequently the redundancies
of Propositions 4 and 6 are not discussed. However, in their Proposition 3.3.2(iii), Hin-
richsen and Pritchard give an incorrect characterisation of uniform asymptotic stability,
omitting the hypothesis that the state transition map must be uniformly bounded, as
we show must be the case in Example 5.

11. Kwakernaak and Sivan [1972]: In this text on linear optimal control theory, stability
definitions are given for nonlinear equations, and these are inherited for linear equations.
Notions of uniform stability are not considered, and only exponential stability of linear
equations is discussed in detail.

12. Liao, Wang, and Yu [2007]: The stability definitions for linear equations are inherited
from the general definitions for nonlinear equations, as might be expected in a text
on the general theory of stability. In Theorem 3.2.5 it is pointed out that uniform
asymptotic stability is equivalent to the uniform decay of the state transition map and
uniform boundedness of this map. This is the only place in the literature where we
saw this correspondence stated (although it is logically and nontrivially equivalent to
the often stated uniform exponential decay of the state transition map). However, the
redundancies of Propositions 4 and 6 are not addressed.

13. Sastry [1999]: In this text on nonlinear systems, the linear definitions of stability are
specialised from those for nonlinear equations, and again the fact that these definitions
are redundant as per Propositions 4 and 6 is not discussed. In Theorem 5.33 the
correct theorem concerning the equivalence of uniform asymptotic stability and uniform
exponential stability is stated.
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As can be seen, in most texts, while there are no errors, the treatment is made in such a
way that the interesting subtleties of uniform asymptotic stability for linear equations are
avoided. And, in a few cases, the overlooking of these subtleties has led to erroneously
stated results.

Acknowledgement. The author thanks a referee who, through careful reading of Exam-
ple 5, noticed a difficult to notice error.
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