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Abstract

In this report we study the modelling of simple mechanical systems evolving on trivial
principal bundles, specifically locomotion systems with nonholonomic constraints.

We show how we can model motion via group actions on configuration manifolds and
assess the relationship between the constraints (and constrained variables) and the variables
that physically induce motion on the vehicle by studying principal bundles.

With knowledge of the controllability (using the Lie algebra rank condition) of this
formulation of a constrained simple mechanical system, we proceed to outlining a method-
ology to design a universal control algorithm for constrained mechanical systems using the
method of virtual surfaces (or potential functions).

Lastly, we design a set of virtual surfaces to make a rolling disk (arguably the simplest
practical nonholonomic system) stabilise to a point, track a path, and avoid a sequence of
obstacles in the plane.
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Chapter 1

Introduction

In this report we study the modelling of simple mechanical systems evolving on trivial
principal bundles. Using this representation, we show how a velocity constraint distribution
is used to represent the constrained equations of motion of a simple mechanical system.

For locomotion systems, i.e., mobile robots, where position and orientation are the coor-
dinates of importance, we show how we can model motion via group actions on configuration
manifolds. The term locomotion refers to autonomous movement from point to point. Addi-
tionally, we assess the relationship between the constraints (and constrained variables) and
the variables that physically induce motion on the vehicle by studying principal bundles.

We outline a methodology to design a universal control algorithm for constrained me-
chanical systems using the method of virtual surfaces.

Lastly, we design a set of virtual surfaces to make a rolling disk (arguably the simplest
practical nonholonomic system) stabilise to a point, track a path, and avoid a sequence of
obstacles in the plane.

The desired outcome is a framework to control of autonomous vehicles (which are noth-
ing other than constrained nonholonomic systems) in dynamic environments using virtual
surfaces in a geometric control setting. The goal is to design a universal control law that
allows a vehicle to navigate from one configuration to another, while being able to re-route
in real-time based on observed obstacles and other vehicles. If we can demonstrate the
ability to use virtual surfaces to steer a vehicle in a desirable way, the final task is identi-
fying surfaces that can be used in practice. What makes this approach attractive is that
it is not imperative to have a physical path planned, nor is there a need to recalculate the
overall path using some prescribed path planning algorithm (typically, these are compu-
tationally heavy). All we need is an a priori map of our route (or area) and we update
this map based on sensed data. The underlying assumption is that we can reliably detect
(and identify) these objects and ascertain their global position. While we do not investigate
the practicality of sensing, we present this methodology to show what can we do with this
information.

The motivation of this work stems from the methodology developed by Panagou, et al.
(see [11], [12], [13]) who use reference vector fields for mobile robot control. While this work
produced results in a kinematic setting, there was not much mathematical foundation for
the design of the vector fields used to steer the vehicles.

The main approach in this report focusses on group actions on manifolds and principal
fibre bundles for locomotion systems. A significant amount of work was done on these topics
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in the 1990s by Murray and Kelly in [8] and [9], Bloch in [2], Cortes, et al. in [7]. Typical
locomotion systems studied include the unicycle, the rolling disk, and the snakeboard.

The approach using group actions on manifolds lends itself nicely to deriving the mo-
mentum equations for a mechanical system, something we do not investigate in this report,
but Bloch, et al. explore this in [17], and Bullo, et al. in [5].

Rossetter in [14] and Streubel in [15] used artificial potential fields for lane departure
warning system control algorithms. We extend this method, and again, add a geometric
framework.

Further, we acknowledge the work done using barrier functions and control Lyapunov
functions, for example, by Ames et al. in [1] and Braun and Kellet in [4]. Simply stated (and
similar to the intention of our virtual potential function), a barrier function is a continuous
function whose value on a point increases to infinity as the point approaches the boundary
of the feasible (or allowable) region of an optimization problem. As this method originates
from the study of optimization, there is a natural progression into assessing the stability of
such systems using Lyapunov methods.

We develop the geometric framework based on the work by Bullo and Lewis in [6], who
outline everything from kinematics, distributions, constraints, Euler-Lagrange equations,
group actions, principal fibre bundles, and controllability.

Finally, we acknowledge the work done by Ohsawa in [10], who assessed the fibre con-
trollability of a Sphero robot, however, there is minimal discussion into practical control
design.



Chapter 2

Simple mechanical systems

This report centres around locomotion systems, i.e., mobile robots, where position and
orientation are the coordinates of importance. Using a planar rigid body with three degrees
of freedom as a basis, we investigate the motion of other locomotion system that are also
parameterized by coordinates (θ, x, y), but have varying equations of motion due to different
geometric configurations and/or coordinates that can be actuated. Throughout this report,
we will will layer details to add complexity to the simple vehicle that will capture dynamics
inherent in nonholonomic systems.

2.1. Forced simple mechanical system with constraints

To understand where we are going, we introduce a forced simple mechanical system with
constraints.

Definition 2.1.1 (Forced affine connection system). A C∞-simple mechanical system with
constraints is the 5-tuple (Q,G, V, F,D), where

(i) Q is a C∞-manifold (called the configuration manifold),

(ii) G is a C∞-Riemannian metric on Q (called the kinetic energy metric),

(iii) V ∈ C∞(Q) is a function on Q (called the potential function),

(iv) F : R×TQ → T∗Q is a C∞-vector bundle map over idQ (called the Lagrangian force),
and

(v) D is a C∞-linear velocity constraint (called the distribution). •

One of the main objectives of this report is to utilize the vector bundle map, F , as a
tool for controlling the trajectories of the system. We visit this in section 6. The purpose
of this section is to familiarize ourselves with rigid body kinematics to obtain a notion of
the distribution, D. Using the distribution, we can assess controllability of the system, cast
the constraints as a connection on a principal bundle, and derive the associated constrained
equations of motion.

6
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2.2. Rigid body systems

The geometric approach to modelling mechanical systems relies heavily on the ability to
describe the configuration of the rigid body. A rigid body is a (possibly uncountable)
collection of particles whose position relative to one another is fixed. A measure theoretic
interpretation of this is given below.

Definition 2.2.1 (Rigid body). A rigid body is a pair (B, µ) where B ⊂ R3 is compact,
and µ is a finite Borel measure on R3 with support equal to B called the mass distribution
for the body. The mass of the body is

µ (B) =

∫
B

dµ.

•
To describe the location of a rigid body, it is necessary to define some spatial and body
coordinate frames. Let Σspatial = (Ospatial, {s1, s2, s3}), where Ospatial ∈ R3 is the location
of the origin represented in the basis {s1, s2, s3}. Without loss of generality, this can be
thought of as the origin.

The body frame is described by Σbody = (Obody, {b1, b2, b3}), where Obody ∈ R3 is the
location of the origin of the body in the spatial frame. The body frame moves with the
body, i.e., {b1, b2, b3} describes the physical orientation of the body.

The position of the body is specified by r = Obody −Ospatial ∈ R3.
Assuming the spatial and body bases are defined in a consistent way (like a right-handed

coordinate system), the vectors in the each basis are related by

O (n) =
{
R ∈ Rn×n : RRT = In

}
, SO (n) = {R ∈ O (n) : detR = ±1} ,

the set of orthogonal and special orthogonal matrices.
The matrix R ∈ SO (n) relates the components in {s1, s2, s3} to components

in {b1, b2, b3}. The a-th column of R are the components of ba, a ∈ {1, 2, 3}, relative
to the basis {s1, s2, s3}.

2.2.1. Configuration

Definition 2.2.2 (Free Mechanical System). A free mechanical system is a collection of
Nb ∈ N rigid bodies. The possible positions of all bodies are then described by the set

Qfree = SO (3)× R3 × · · · × SO (3)× R3︸ ︷︷ ︸
Nb

.

•
As illustrated in Figure 2.1, a planar rigid body (for a plane at height ρ) is defined by,

r = (x, y, ρ) ∈ R3, and

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ∈ SO (3) , (2.2.1)

meaning Qfree = SO (3)× R3. However, since the body only moves in the plane, the actual
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V ∗

s1

s2

b1

b2

θ

r = (x, y)

Figure 2.1: A planar rigid body

configuration of the body is the group G = SO (2)×R2 = SE (2) ⊂ Qfree. The configuration
manifold is parametrized by coordinates g = (θ, x, y).

We highlight the planar rigid body configuration as this forms a basis for the kinematic
models of common locomotion systems. For example, when we want to “control” a rolling
disk, two-wheeled mobile robot, or bicycle, we really want to move it to some (x, y) position,
with orientation θ. That said, the specific kinematic model for each of these systems is
different (and dependent on some other states and/or geometry), however we are able
to characterise the group configuration in terms of base (or shape) variables. These base
variables can often be thought of the variables that can be actuated. We explore this concept
through two examples in Chapter 5: the rolling disk, and the two-wheeled differential drive
robot.

2.2.2. Matrix Lie group representation

A matrix Lie group captures the position and orientation, i.e., the configuration, of the
body as a rigid displacement matrix.

Definition 2.2.3 (Group). A set G endowed with a binary operation denoted by G× G ∋
(a, b) 7→ a ⋆ b is a group if:

(i) a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G;

(ii) there exists e ∈ G such that a ⋆ e = a for all a ∈ G;

(iii) there exists a−1 ∈ G such that a ⋆ a−1 = a−1 ⋆ a = e for all a ∈ G. •
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Remark. The set GL(n;R) of invertible n × n matrices with real entries is a Lie group
with respect to the operation of matrix multiplication. It is called the real general linear
group, or simply, the general linear group. The identity element is In and the inverse
element ofA ∈ GL(n;R) isA−1. For all n > 1, the group is non-Abelian (non-commutative).

Definition 2.2.4 (Subgroup). Let G be a group.

(i) A subgroup H of a group G is a subset of G such that a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for
all a, b, c ∈ G.

(ii) A Lie subgroup of Lie group G is subgroup of H ⊂ G for which the inclusion iH : H →
G is an injective immersion (see Definition 2.3.1).

(iii) A Lie subgroup H of G that is a submanifold of G is a regular Lie subgroup. •

Definition 2.2.5 (Matrix Lie group). A matrix Lie group is a Lie subgroup of GL(n;R). •

To proceed, we need to introduce the concept of homogeneous coordinates.
Let Σspatial and Σbody be the spatial and body frames as in Definition 2.2.1, r ∈ R3 and
R ∈ SO(3).

The location of a point in space can be measured by an observer fixed either in the
spatial or body frame. Let χs be the position of the body in the spatial frame and let χb
be the position of the body in the body frame. The vectors are related by

χs = Rχb + r. (2.2.2)

For a vector x ∈ Rn, we define x̄ = (x, 1) ∈ Rn+1 as the homogeneous coordinates of x.
With this definition, Equation (2.2.2) can be expressed as

χ̄s =

[
R r
0 1

]
χ̄b (2.2.3)

and gives rise to Euclidean and special Euclidean groups as defined by

E (n) =

{
g ∈ R(n+1)×(n+1) : g =

[
R r
0 1

]
, R ∈ O (n) , r ∈ Rn

}
,

SE (n) = {g ∈ E (n) : det g = 1} .

For the planar rigid body, where n = 3, the homogeneous coordinates are related by
g ∈ SE (3), given by the bijection

(R, r) 7→
[
R r
0 1

]
. (2.2.4)

Example 2.2.1 (Planar Rigid Body). Let Σspatial = ((0, 0, 0) , {s1, s2, s3}),
where {s1, s2, s3} is the standard basis for R3. Let Σbody = ((x, y, ρ) , {b1, b2, b3}),
where {b1, b2, b3} is fixed in the body such that:
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1. b1 is the body x-axis (and points in the instantaneous longitudinal direction of mo-
tion);

2. b2 is the body y-axis (and points in the instantaneous lateral direction of motion);

3. b3 = s3.

With R ∈ SO (3) as per Equation (2.2.1) and r = (x, y, ρ) ∈ R3, we have that

g =


cos θ − sin θ 0 x
sin θ cos θ 0 y
0 0 1 ρ
0 0 0 1

 ∈ SE (3) , (2.2.5)

•
and that, for a constant ρ, g = (θ, x, y) ∈ S1 × R2 is equivalent to g = (R, r) ∈ SE (3),

and, under the group operation of matrix multiplication, is indeed a group as per Definition
3.1.4. The motion of the body in the plane is equivalent to a motion in SE (3) (but can be
reduced to a motion in SE (2)).

2.2.3. Unconstrained rigid body transformations

Rigid body motion is the combination of translations and rotations which are characterised
by linear and angular velocities, respectively. In order to determine the rigid body’s motion,
we introduce some structure on the special Euclidean groups. This material is covered
extensively in [6].

For n ∈ N, let so (n) be the vector space of skew-symmetric matrices in Rn×n given by

so (n) =
{
S ∈ Rn×n : ST = −S

}
. (2.2.6)

These skew-symmetric matrices represent the infinitesimal angular motion of the body.
The physical spatial or body angular velocity can be extracted from these matrices using
the hat map as defined below.

Let ω,α ∈ R3, and × be the standard vector cross-product on R3. The linear
map ·̂ : R3 → so (3) is defined as ω̂α = ω ×α. Thus, for ω =

(
ω1, ω2, ω3

)
,

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.2.7)

The inverse mapping ·̌ : so (3) → R3 is given by 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

ˇ= ω. (2.2.8)

Similarly, let

se (n) =

{[
ω̂ v
0 0

]
∈ R(n+1)×(n+1) : ω̂ ∈ so (n) ,v ∈ Rn

}
.
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Then the hat map, ·̂ : R3 ⊕ R3 → se (3) for a given ξ = (ω,v) ∈ R3 ⊕ R3 is defined by

ξ̂ =

[
ω̂ v
0 0

]
. (2.2.9)

The vectors ξ = (ω,v) ∈ R3 ⊕ R3 are referred to as the twist coordinates (or simply
twists), and represent velocity of the body in an inertial frame.

In the context of rigid body motion, the movement of a rigid body B is described by
a curve t 7→ g(t) ∈ SE (3). We suppose the curve to be differentiable. The following two
definitions apply given a curve g : R → SE (3).

Definition 2.2.6 (Body Velocity). The body velocity is the translational and an-
gular velocities relative to the instantaneous body frame, and is defined by the
curve ξb : R → R3 ⊕ R3 given by ξ̂b(t) = g−1(t)ġ(t). •

Definition 2.2.7 (Spatial Velocity). The spatial velocity is the translational and angular
velocities relative to the spatial frame, and is defined by the curve ξs : R → R3 ⊕ R3 given
by ξ̂s(t) = ġ(t)g−1(t). •

Example 2.2.2 (Planar Rigid Body). Continuing Example 2.2.1 and applying Defini-
tions 2.2.6 and 2.2.7 gives

ξ̂b(t) = g−1(t)ġ(t)

=


0 −θ̇ 0 ẋ cos θ + ẏ sin θ

θ̇ 0 0 −ẋ sin θ + ẏ cos θ
0 0 0 0
0 0 0 0

 , (2.2.10)

ξ̂s(t) = ġ(t)g−1(t)

=


0 −θ̇ 0 ẋ+ yθ̇

θ̇ 0 0 ẏ − xθ̇
0 0 0 0
0 0 0 0

 . (2.2.11)

Applying the unhat map gives the twists

ξb(t) = (ωb,vb) =
(
ωxb , ω

y
b , ω

z
b , v

x
b , v

y
b , v

z
b

)
=
(
0, 0, θ̇, ẋ cos θ + ẏ sin θ,−ẋ sin θ + ẏ cos θ, 0

)
,

(2.2.12)

ξs(t) = (ωs,vs) = (ωxs , ω
y
s , ω

z
s , v

x
s , v

y
s , v

z
s) =

(
0, 0, θ̇, ẋ+ yθ̇, ẏ − xθ̇, 0

)
. (2.2.13)

•
The relationship between the twist coordinates “equalling” some body velocity will

become apparent when we introduce constraints and control inputs.
The reader is encouraged to think of these twists in the following way:
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1. The body twist is the instantaneous velocity in the body frame, represented by the
global configuration (θ, x, y) and associated velocities (θ̇, ẋ, ẏ). The body twist is the
physical velocity of the body, and is used when calculating the kinetic energy of the
motion.

2. The spatial twist should be thought of as the velocity of the body passing
through Ospatial. It should be noted that the physical body might not be passing
through the spatial origin. •

2.3. Kinematic constraints

Constraints arise naturally in simple mechanical systems due to the dependency of the
instantaneous translational velocities on the orientation of the object and can be categorized
into two categories, holonomic or nonholonomic.

At this point, we have not imposed any constraints on our planar rigid body, i.e., we
assume the system is fully actuated and the body can travel instantaneously in its two
translational coordinates (x, y) and its rotational coordinate θ. Discussions relating to
controllability and control design are intuitive (and well known) in this instance.

The group configuration coordinates of the planar rigid body represent the coordinates
of many interesting nonholonomic systems. The skate blade, unicycle, rolling disk and
two-wheeled mobile robot fall into this category, however, we require some additional in-
formation to model and characterise the constraints of these systems.

Recall that ξb = (ωxb , ω
y
b , ω

z
b , v

x
b , v

y
b , v

z
b ) = (0, 0, θ̇, ẋ cos θ + ẏ sin θ,−ẋ sin θ + ẏ cos θ, 0).

The traditional skate blade model assumes there is a velocity, u ∈ R, in the body x-
axis, zero velocity in the body y-axis, and a turning rate ω ∈ R. With this assumption,
Equation (2.2.12) reduces to (ωzb = ω, vxb = u, vyb = 0) = (θ̇, ẋ cos θ + ẏ sin θ,−ẋ sin θ +
ẏ cos θ).

This kinematic model is also used to for the unicycle, however, the drawback with this
model and approach is that we cannot physically assign a translational velocity u. Since
the constraint arises due to rolling, we must define u in terms of a rolling coordinate.

A rolling constraint occurs where the wheel is in contact with the ground. The velocity
of the body at this point is identically zero. With an appropriate representation of the
orientation of the body in SE(n), the constraints are determined by

χ̄s(t) = g(t)χ̄b(t) =⇒ d

dt
χ̄s(t) =

d

dt
(g(t)χ̄b(t)) =

dg(t)

dt
χ̄b(t) + g(t)

�
�
��
0

dχ̄b

dt
(t)

=
dg(t)

dt
g−1(t)χ̄s(t) = ξ̂s(t)χ̄s(t) = 0.

(2.3.1)

Therefore, we can use the spatial twist information to determine an expression for our
velocity constraints.

2.3.1. Concepts from differential geometry

We introduce some concepts from differential geometry. We refer the reader to [6] for further
details.
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Let Q be a C∞-manifold of dimension n. We define TqQ as the tangent tangent space
of Q at q and vq ∈ TgQ as a tangent vector. Denote the total tangent bundle as TQ =⋃
q∈Q TqQ.
If f : Q → V is a smooth mapping between C∞-manifolds, we write Tqf : TqQ →

Tf(q)V to denote the tangent map.
A vector field X on Q is a smooth mapping X : Q → TQ, which assigns a tangent vector

in TqQ to each point q.

Definition 2.3.1 (Submersion and immersion). Let f ∈ C∞(Q;V).

(i) A regular value of f is a point y ∈ V with the property that, for every q ∈ f−1(y),
Tqf is surjective.

(ii) For a subset A ⊂ Q, we say that f is a submersion on A if, for each q ∈ A, Tqf is
surjective. If f is a submersion on Q, then it is simply a submersion.

(iii) If Tqf is injective, we saw f is an immersion at q. If f is an immersion at every q ∈ Q,
we say that it is an immersion.

Distributions and codistributions

Determining the distribution of a constrained system is of utmost importance kinematically,
as it captures what velocities are allowed at all points in the configuration space i.e., the
vectors that form the tangent space (or a subspace of the tangent space). In fact, we will
show that the most critical piece of information is the codistribution, as (mechanically
speaking) this specifies the directions complementary to the directions we can move.

Definition 2.3.2 (Distributions and codistributions). Let Q be a C∞-manifold.

(i) A distribution D (resp. a codistribution Ω) is an assignment, to each point q ∈ Q, of
a subspace Dq of TqQ (resp. a subspace Ωq of T

∗
qQ).

(ii) A distribution (resp. codistribution) is C∞, if it is a C∞-generalized subbundle
of TQ (resp. T∗Q).

(iii) A C∞-distribution (resp. C∞-codistribution) is regular if it is a C∞-subbundle
of TQ (resp. T∗Q). •

Definition 2.3.3 (Linear velocity constraint). Let Q be a C∞-differentiable manifold. A
C∞-linear velocity constraint is a distribution on D on Q with the property that ann(D)
is a C∞-codistribution. A C∞-linear velocity constraint D is regular if D is a regular
distribution. A locally absolutely continuous curve γ : [a, b] → Q satisfies a constraint D if
γ′(t) ∈ Dγ′(t) for a.e. t ∈ [a, b]. •

We refer the reader to [6] for detailed information on vector bundles and subbundles.
Regularity of a distribution is equivalent to the distribution, D, having locally constant
rank. Assuming this condition holds, we have a C∞-distribution, which allows us to assess
involutivity (and integrability), and therefore the holonomicity of the distribution.
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Definition 2.3.4 (Involutive distribution). Let r ∈ N ∪ {∞} ∪ {ω}. A C∞-distribution D

is involutive if, for every q0 ∈ Q and for any pair of vector fields X,Y ∈ D, it holds that
[X,Y ] ∈ D, where [·, ·] is the Lie bracket. •

Let D be a C∞-distribution on a C∞-manifold Q and let q0 ∈ Q. A local integral
manifold through q0 for D is an immersed C∞-submanifold S of a neighbourhood U of q0
with the property that, for each q ∈ S, TqS ⊂ Dq. A local integral manifold S is maximal
if TqS = Dq for each q ∈ S. A maximal local integral manifold for D containing q ∈ Q
is the maximal integral manifold for D through x if it contains any maximal local integral
manifold through q. The distribution D is integrable if there exists a maximal local integral
manifold through each q ∈ Q.

Under certain conditions and assumptions, there is a relationship between integrability
and involutivity of a distribution.

Theorem 2.3.1 (Frobenius’s Theorem). The following statements hold:

(i) a regular C∞-distribution is integrable if and only if it is involutive;

(ii) a Cω-distribution is integrable if and only if it is involutive.

We refer the reader to [6] for the further detail.

Definition 2.3.5 (Holonomic and nonholonomic constraints). A regular linear velocity
constraint D is holonomic if D is integrable. If a regular linear velocity constraint D is not
holonomic, it is nonholonomic. •

As per [3], in our setting (and roughly speaking), nonholonomic constraints are velocity
dependent, and are not derivable from position constraints. On the other hand, holonomic
constraints are those that can be expressed in terms of position (and possibly time).

There are useful relationships between distributions and codistributions. In particular,
given a distributionD on Q, we define the codistribution ann (D) on Q, called the annihilator
of D, by (ann (D))q = ann (Dq). Similarly, given a codistribution Ω on Q, we define the
distribution coann (Ω) on Q, called the coannihilator of Ω, by (coann (Ω))q = coann (Ωq).

Kinematic velocity constraints are used to determine the distribution on our configu-
ration manifold. In coordinates, these constraints can be written in a general differential
form as

T∗
qQ ∋ ωj (q) = αji (q) dq

i, i ∈ {1, . . . , n} , j ∈ {1, . . . ,m} ,

where n is the dimension of Q, and m is the number of kinematic constraints.
Since covectors annihilate the vectors in the distribution, the image of the distribution

is the kernel of the codistribution, i.e.,

Dq = span
{
Xi (q) ∈ TqQ :

〈
ωj (q) ;Xi (q)

〉
= 0 ∀q ∈ Q

}
. (2.3.2)

The local generators of D⊥
q are the vector fields G♯(ωj(q)) ∈ TqQ (the Riemannian

metric G is introduced in Section 4.1).
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2.3.2. Affine differential geometry

Definition 2.3.6 (Affine connection). A C∞-affine connection on Q assigns the pair
(X,Y ) ∈ Γ∞(TQ) × Γ∞(TQ) a vector field ∇XY ∈ Γ∞(TQ), and the assignment satis-
fies

(i) the map (X,Y ) 7→ ∇XY is R-bilinear,

(ii) ∇fXY = f∇XY for each X ∈ Γ∞(TQ), Y ∈ Γ∞(TQ) and f ∈ C∞(Q), and

(iii) ∇XfY = f∇XY + (LXf)Y for each X ∈ Γ∞(TQ), Y ∈ Γ∞(TQ) and f ∈ C∞(Q).

The vector field ∇XY is called the covariant derivatve of Y with respect to X. •

While we do not investigate the properties of affine connections or covariant derivatives
in this report, we highlight the Levi-Civita affine connection, which is determined uniquely
by the Riemannian metric G. In coordinates, the geodesic equations are

G
∇γ′(t)γ

′(t) =

(
q̈i +

G
Γijkq̇

j q̇k
)

∂

∂qi
= 0,

where Γijk : Q → R are the Christoffel symbols of the Levi-Civita affine connection. The

Christoffel symbols for
G
∇ are

G
Γkij =

1

2
Gkl

(
∂Gil

∂qj
+
∂Gjl

∂qi
− ∂Gij

∂ql

)
.



Chapter 3

Constraints and connections on Lie
groups

There is an elegant way to characterise nonholonomic constraints on Lie groups. For most
simple mechanical systems involving locomotion, we can exploit some inherent properties,
most notably the rolling and spinning symmetry of wheels, and the fact we can generally
actuate the rolling and spinning (steering) coordinates. The symmetry of the system allows
us to reduce the dynamic system to a kinematic one, and assess the kinematic controllability
of the system. While the theory can get complicated, it allows us to obtain some elegant
results. For the next part of the report, we turn our attention to manifolds, group actions
on manifolds, and principal fibre bundles.

Note, for the definitons in this section, we omit the bolded representation of a group
element g ∈ G. We now write g ∈ G.

3.1. Lie algebras of Lie groups

Sections 2.2.2 and 2.2.3 have identified a robust methodology to determine the velocity of a
rigid body based on its configuration. The structure of special Euclidean groups SE (n) and
the relationship with their associated Lie algebras, se (n), is formalized with some theory
of Lie algebras of Lie groups.

Definition 3.1.1 (Lie algebra). A Lie algebra V is a R-vector space endowed with a bilinear
operation [·, ·] : V× V → V called the bracket satisfying

(i) anti-commutativity, i.e., [ξ1, ξ2] = − [ξ2, ξ1] for all ξ1, ξ2 ∈ V, and

(ii) the Jacobi identity, i.e., [ξ1, [ξ2, ξ3]] + [ξ2, [ξ3, ξ1]] + [ξ3, [ξ1, ξ2]] = 0 for
all ξ1, ξ2, ξ3 ∈ V. •

Definition 3.1.2 (Left (resp. right) translation). For every g ∈ G the left translation
(resp. right translation) by g is defines as the map Lg : G → G by Lg(h) = g ⋆ h for h ∈ G
(resp. Rg : G → G by Rg(h) = h ⋆ g). On Lie groups, the operation is matrix multiplication
meaning Lg(h) = gh. •

16
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The tangent map TeLg : TeG → TgG is a natural isomorphism be-
tween TeG and TgG, and as such we have an isomorphism between the tangent
space and the tangent space at the identity.1

One can easily verify that these tangent mappings represent the transformation
from the vector representation of group velocities vg ∈ TgG and the unhat expression
of the group’s body and spatial velocities (as given in Equations (2.2.12) and (2.2.13)),
i.e., vg = TeLg(ξb) and vg = TeRg(ξs).

Definition 3.1.3 (Adjoint operator and adjoint mapping). Let G be a Lie group with Lie
algebra g and let ξ, η ∈ g. The adjoint operator is given by the linear map adη : g× g by

adξη = [ξ, η] .

For g ∈ G, the adjoint mapping Adg : g× g is given by

Adg = (TeRg)
−1 ◦ TeLg(ξb).

•
For ξ, η ∈ g, the adjoint maps satisfies the following property

d

dt

∣∣∣∣
t=0

Adexp(tξ)(η) = adξη.

•
Definition 3.1.4 (Lie algebra of a Lie group). The Lie alegbra g of a Lie group G is the
tangent space at the identity TeLg with bracket [ξ, η] = [ξL, ηL] (e), where ξL, ηL are the
vector fields defined by g 7→ TeLg(ξ) and g 7→ TeLg(η). •

The motion of the body due to the motion of the base variables is described by the
left action (resp. right action) of the base configuration G on the total configuration Q,
defined below.

Definition 3.1.5 (Action of a group on a manifold). A left action (resp. right action) of
a Lie group G on a manifold Q is a smooth map Φ: G× Q → Q such that

(i) Φ (e, q) = q for all q ∈ Q;

(ii) Φ (g1,Φ(g2, q)) = Φ (g1g2, q) for every g1, g2 ∈ G and q ∈ Q.

If Φ (g, q) = q implies g = e, then the left action is said to be free. If the map from
G×Q → Q×Q defined by (g, q) 7→ (q,Φ(g, q)) is proper,2 then the left action is said to be
proper. •

In simple mechanical systems, we take the manifold, Q, to be the overall configuration
of the system. One has some choice over the group and its action, however there are some
intelligent and intuitive (but not unique) ways to choose the group and associated action.
Since we are inducing motion by a group action, it seems natural to split the variables that
vary by the group action, and the ones that do not, which leads to two submanifolds: the
base (or shape) variables, M, and the group variables, G. To investigate this idea further,
we define the base space and notion of a trivial principal bundle.

1The identity e for SE(n) is idn, which implies g = (R, r) = (θ, x, y) = (0, 0, 0).
2A function f : V → V between two topological spaces is proper if f−1(K) is compact for every compact

subset K ⊂ V.
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3.2. Base spaces and principal bundles

Definition 3.2.1 (Base space). Let Q be a smooth manifold of dimension n, G be a group
of dimension n−m and suppose there exists a projection π : Q → Q/G. The quotient space
defined by M = Q/G is the base space of our system and defines the internal configuration
of the system. •

Definition 3.2.2 (Trivial principal bundle). A trivial principal bundle with base M and
group G consists of the manifold Q = M×G together with a free left action of G on Q given by
the left translation in the group variable: Φh (q) = Φh (x, g) = Φ (x, hg) for x ∈ M and g ∈ G.
•

There is an equivalent definition for right actions.
The manifold Q is called the total space of the bundle. For x0 ∈ M, the set of

points (x0, g) ∈ Q is called the fibre over x0. In the trivial principal bundle case,
q = (x, g) ∈ M× G, and vq ∈ TqQ can be written as vq = (vx, vg) ∈ TxM× TgG.

From now on, we denote a principal bundle as the 4-tuple (Q,M,G, π).
There are many locomotion systems whose orientations are described by fibre configura-

tion g = (θ, x, y). However, their total configurations are different due to base manifolds, M,
that represent the variables that physically induce motion on the vehicle. Some examples
include:

(i) a spinning and rolling coordinate for the rolling disk (which can be reduced to a group
configuration of (x, y);

(ii) two rolling coordinates for a two-wheeled differential drive robot;

(iii) or a rolling and steering coordinate for a kinematic car (or bicycle) model.

We explore the rolling disk and two-wheeled differential drive robot. We refer the reader
to [8] for the kinematic car analysis.

3.2.1. Left actions of locomotion systems

Example 3.2.1 (Left action on a rolling disk). The rolling disk, of radius ρ ∈ R, has a
group configuration manifold G = R2, parameterized by coordinates (x, y). A natural base
space for the rolling disk is M = S1×S1, which represents the ability to apply input torques
to spin and roll the disk about θ and ϕ respectively. The total configuration Q = S1×S1×R2

is depicted by Figure 3.1.
For an arbitrary (s, t) ∈ R2, the left action is

((s, t), (ϕ, θ, x, y)) 7→ (ϕ, θ, x+ s, y + t). (3.2.1)

•

Example 3.2.2 (Left action on a two-wheeled robot). The two-wheeled robot, with wheels
of radius ρ ∈ R, has a group configuration manifold G = SE (2) parametrized by coordinates
θ, x, y. We are able to apply a torque to each wheel independently, giving M = S1×S1 with
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s1

s2

s3
b1

b2

b3

θ

ϕ

r = (x, y, ρ)

Figure 3.1: A rolling disk

V ∗

s1

s2

b1

b2

ψL

ψR

d
θ

r = (x, y, ρ)

Figure 3.2: A two-wheel robot

coordinates (ψR, ψL) so that Q = S1 × S1 × SE (2). The total configuration is shown in
Figure 3.2.

For an arbitrary (α, a, b) ∈ SE (2), the left action is

((α, a, b), (ψR, ψL, θ, x, y)) 7→ (ψR, ψL, θ + α, x cosα− y sinα, x sinα+ y cosα). (3.2.2)

•
In Chapter 5, we determine the physical motion from the group actions above. We

refer the reader to [2] and [8] for further details.

Definition 3.2.3 (Group Orbits). Given a Lie group G and a left action of G on Q, denoted
by Φg(q), the group orbit through a point q ∈ Q is denoted

Orb(q) = {Φg(q) : g ∈ G} .
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•

Definition 3.2.4 (Infinitesimal generators). Let Φ be a left action of M on a mani-
fold Q, and ξ ∈ g (the basis components of the Lie algebra). The infinitesimal generator
of ξ is the vector field on Q defined by

ξQ(q) =
d

dϵ
Φ (exp (ξϵ) , q)

∣∣∣∣
ϵ=0

. (3.2.3)

•

Definition 3.2.5 (Tangent space to the group orbit). The tangent space to the group orbit
through q is given by the set of infinitesimal generators, and denoted by

Tq(Orb(q)) =
{
ξQ(q) : ξ ∈ g

}
.

•
As per [7], if the action of G on Q is free and proper, the base (or quotient) space are

the orbits of the system, and thus the projection map π : Q → Q/G is a smooth surjective
map with a surjective tangent space Tqπ at each point, and is thus a trivial principal
bundle. The kernel of the linear map Tqπ is the set of infinitesimal generators at the
point q, i.e., it is exactly Tq(Orb(q)). This space is called the vertical subspace.

Definition 3.2.6 (Vertical subspace of principal fibre bundle). The vertical subspace of the
principal fibre bundle Q at the point q ∈ Q is

VqQ =
{
X ∈ TqQ : X = ξQ(q) for ξ ∈ g

}
.

•
A vector which lies in VqQ is tangent to the orbit of q under the action of G. For a

trivial principal bundle Q = M × G, the elements of VqQ have the form (0, ξ̂bg) ∈ TqQ

(where ξ̂b ∈ g is body twist of the group variables). This follows from the fact the base
variables are fully horizontal, and thus the vertical subspace is tangent to the fibre (group)
variables.

Definition 3.2.7 (Connection on a principal bundle). A connection Γ: TQ → g (a g valued
one form on Q) on the (trivial) principal bundle Q = M× G satisfies

(i) Γ
(
ξQ
)
= ξ, and

(ii) Γ (TqΦgX) = AdgΓ(X).

GivenX ∈ TqQ, Γ(X) is the unique ξ ∈ g such that ξQ is equal to the vertical component
of X. •

A connection Γ on the principal fibre bundle Q assigns to each q ∈ Q a horizontal
subspace.
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Definition 3.2.8 (Horizontal subspace of principal fibre bundle). The horizontal subspace
of the principal fibre bundle Q at the point q ∈ Q is

HqQ = {X ∈ TqQ : Γ(X) = 0} .

•
As per [8], it follows from the properties of the connection Γ that TqQ = HqQ⊕VqQ on

a principal bundle.
Since velocity vectors in the horizontal subspace are in the nullspace of the connec-

tion, one might wonder whether there is a relationship between the connection, Γ, and the
codistribution, ann(D). Indeed, there is the following relationship.

3.2.2. Modelling constraints as connections

Consider a system on a principal bundle Q = M× G with constraints

ωj(q)vq = 0, j ∈ {1, . . . ,m} ,

where ωj(q) ∈ ann(Dq). Let Γ(q) : TQ → g be the connection on the principal bundle.
Let Φg : Q → Q represent the left action of G on Q, and ξQ the infinitesimal generator
associated with ξ ∈ g (the Lie algebra of the group G). The horizontal and vertical subspaces
are:

(i) HqQ =
{
X ∈ TqQ :

〈
ωj(q);X

〉
= 0, j ∈ {1, . . . ,m}

}
,

(ii) VqQ =
{
ξQ(q) ∈ TqQ : ξ ∈ g

}
.

If the constraints are group invariant, i.e., for any g ∈ G and X ∈ TqQ, we have
Γ (TqΦg(X)) = AdgΓ(X), and if TqQ = VqQ ⊕ HqQ, the constraints define a distribution
on Q = M× G. The constraints in terms of a connection one form are

ωj(q)vq = 0 ⇐⇒ Γ(q)

[
vx
vg

]
= Adg (ξ +A(x)vx) = 0, (3.2.4)

where A(x) : TM → g is the local representation of the connection.
As per [7], Equation (3.2.4) is obtained by applying Definition 3.2.7, so that

Γ(q)vq = Γ(x, g)(vx, vg) = Γ(g(x, e))(g(vx, ξ)) = AdgΓ(x, e)(vx, ξ)

= Adg (Γ(x, e)(0, ξ) + Γ(x, e)(vx, 0))

= Adg (ξ +A(x)vx) .

Similarly, splitting the constraints in terms of the trivial principal bundle and group
coordinates (with normal coefficients), i.e., of the form

ωj (q) = dgj +Bj
k(q)dx

k = 0, j ∈ {1, . . . ,m} , k ∈ {1, . . . , n−m} , Bj
k ∈ R,
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with a matrix representation equivalent to Γ(q)vq = 0, we get

Γ(q)vq =
[
Γx(q) | Γg(q)

] [vx
vg

]
= Γg(q)vg + Γx(q)vx = 0

⇐⇒ TeLgξ + Γ−1
g (q)Γx(q)vx = 0

⇐⇒ ξ + (TeLg)
−1Γ−1

g (q)Γx(q)︸ ︷︷ ︸
A(x)

vx = 0

⇐⇒ ξ +A(x)vx = 0

⇐⇒ Adg (ξ +A(x)vx) = 0.

Note that, the connection, Γ, is not unique.
Local controllability can be assessed using the one-form A(x). In this report we use the

Lie algebra rank condition to assess controllability, but we refer the reader to [8] for detail
on fibre controllability. Also note, this expression determines the kinematic equations of
motion since ξ = −A(x)vx =⇒ ġ = −gA(x)vx.

We now have a formal methodology for a trivial result. The main takeaway is that we
have an expression for the motion of a locomotion system in terms of its base variables, i.e.,
the coordinates we can physically actuate.



Chapter 4

Equations of motion

We want to design a control framework based on the dynamics of the system, meaning we
need to determine the equations of motion of a simple mechanical system. We will introduce
the notions of inertia and kinetic energy; we refer the reader to [6] for a detailed overview
of these ideas.

4.1. Inertia tensor and kinetic energy metric

We return to our discussion about an arbitrary rigid body, (B, µ). A rigid body is described
by three properties: its mass, centre of mass, and inertia tensor, defined below.

Definition 4.1.1 (Centre of mass). The centre of mass of a body (B, µ) is the point

χc =
1

µ (B)

(∫
B

χdµ

)
.

•

Definition 4.1.2 (Inertia tensor). Let (B, µ) be a rigid body, and χ0 its centre of mass.
The inertia tensor about χ0 of (B, µ) is the linear map Iχ0

∈ L
(
R3;R3

)
given by

Iχ0
(v) =

∫
B

(χ− χ0)× (v × (χ− χ0)) dµ.

•
We denote the inertia tensor about the centre of mass of a rigid body (B, µ) by Ic.
The movement of the body B is described by a curve t 7→ (r(t),R(t)) = g(t) ∈ SE (3).

As per Equation (2.2.2), a point χb ∈ B at time t is located at χs(t) = R(t)χb + r(t).1

Definition 4.1.3 (Kinetic energy). Let GR3 be the standard inner product on R3, r be
the position of the body in the spatial frame, and ωb the body angular velocity (extracted

1We use this fact, and a set of simplifying assumptions, to generalize the idea that the kinetic energy of
a particle of mass m with velocity ẋ, is 1

2
m ||ẋ||2.

23
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from the body twist coordinate). If the centre of mass is located at the origin of the body
frame, the kinetic energy of (B, µ) at time t is given by

KE(t) =
1

2
µ (B) ||ṙ(t)||2R3 +

1

2
GR3 (Ic (ωb(t)) ,ωb(t)) .

•
If we parameterize our expression for kinetic energy in terms of velocities in the tangent
bundle, instead of time, the kinetic energy metric is naturally a Riemannian metric on
the configuration manifold. Let

(
q1, . . . , qn

)
∈ Q be coordinates for our configuration

manifold and
(
v1, . . . , vn

)
∈ TQ, the associated tangent bundle. The Riemannian metric,

G, is defined as

Gij =
∂2

∂vi∂vj
KE.

Example 4.1.1 (Planar body kinetic energy). Let µ (B) = m be the mass of the body
and J the moment of inertia about the vertical axis,

KE =
1

2
m
(
ẋ(t)2 + ẏ(t)2

)
+

1

2
Jθ̇(t)2 =

1

2
m
(
v2x + v2y

)
+

1

2
Jv2θ .

Thus, the kinetic energy metric is

G = m (dx⊗ dx+ dy ⊗ dy) + J (dθ ⊗ dθ) . (4.1.1)

•
Referring back to Definition 2.1.1: we are now equipped with a configuration manifold

Q, a Riemannian metric G on Q, and a distribution D.
Let us introduce F , a C∞-force.

4.2. Forces

Definition 4.2.1 (Forces). A C∞-force on TQ is a map F : R×TQ → T∗Q with property
that F is locally integrally class C∞ bundle map over idQ. A C∞-force F is

(i) time-independent if there exists a Cr-fibre bundle map F0 : TQ → T∗Q over idQ with
property that F (t, vq) = F0(vq), and is

(ii) basic if there exists a C∞-covector field F0 on Q such that F (t, vq) = F0(q).

If γ : [a, b] → Q is a C∞-curve, then a C∞-force along γ is a C∞-covector field
F : [a, b] → T∗Q along γ. •

In coordinates, these forces can be written as a differential form as F =
Fidq

i, where Fi are called the components of the force F .
There are procedures in place to determine the total external force that acts on a rigid

body. Due to the “simple” nature of our systems and forces (since they equate exactly to
actuating the base variables), we do not explore this further.
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4.3. Euler–Lagrange equations

We assume the reader is familiar with the calculus of variations and the Euler–Lagrange
equations. For our discussion, we talk about the Euler–Lagrange equations on a Riemannian
manifold. A time independent Lagrangian, L : R → TQ, can be defined on this manifold
as LG (vq) =

1
2G (vq, vq)—the kinetic energy of the system.

The geodesic equations
G
∇γ′(t)γ

′(t) = 0 are exactly the unforced equations of motions of
a simple mechanical system.

Definition 4.3.1 (Forced Euler–Lagrange equations on Riemannian manifolds).
Let (Q,R) be a C∞-Riemannian manifold, F a C∞-force, and LG a C∞-Lagrangian. For a
C∞-curve γ : [a, b] → Q, the forced Euler–Lagrange equations are

G
∇γ′(t)γ

′(t) = G♯(F (t, γ′(t))). (4.3.1)

•

4.4. Constrained Euler-Lagrange equation

Definition 4.4.1 (Orthogonal projections). Let D be a regular C∞-linear velocity con-
straint on a C∞-manifold Q. The orthogonal projections are C∞-vector bundle maps
over idQ, denoted PD, P

⊥
D : TQ → TQ such that, for each vq ∈ TqQ,

(i) vq = PD(vq)⊕ P⊥
D (vq),

(ii) PD(vq) ∈ Dq, and P
⊥
D (vq) ∈ D⊥

q ,

where D⊥
q is the G-orthogonal complement to Dq, PD is the G-orthogonal projection

onto Dq, and P
⊥
D is the G-orthogonal projection onto D⊥

q . •
These G-orthogonal projections are calculated using the local representation of the dis-

tribution,
Dq = span {X1, . . . , Xn−m : Xi ∈ TqQ} ,

and codistribution

D⊥
q = span

{
G♯(ω1), . . . ,G♯(ωm) : ωi ∈ T∗

qQ
}
.

Definition 4.4.2 (Constrained forced Euler–Lagrange equations on Riemannian mani-
folds). Let (Q,R) be a C∞-Riemannian manifold, F a C∞-force, D a regular C∞-linear
velocity constraint, and LG a C∞-Lagrangian. For a C∞-curve γ : [a, b] → Q, the con-
strained forced Euler–Lagrange equations are

G
∇γ′(t)γ

′(t) = G♯
(
F (t, γ′(t))

)
+ λ(t), (4.4.1)

P⊥
D

(
γ′(t)

)
= 0, (4.4.2)

where λ(t) ∈ D⊥, and γ(t) is a controlled trajectory of the system.
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The constraint force, λ(t), is determined by differentiating Equation (4.4.2) along the
trajectory, substituting in the dynamics of Equation (4.4.1) and solving, i.e.,

P⊥
D

(
γ′(t)

)
= 0 =⇒

G
∇γ′(t)

(
P⊥
D

(
γ′(t)

))
= 0

=⇒ P⊥
D

(
G
∇γ′(t)γ

′(t)

)
+

(
G
∇γ′(t)P

⊥
D

)(
γ′(t)

)
= 0

=⇒ P⊥
D

(
G♯(F (t, γ′(t))) + λ(t)

)
+

(
G
∇γ′(t)P

⊥
D

)(
γ′(t)

)
= 0

=⇒ λ(t) = −P⊥
D

(
G♯(F (t, γ′(t)))

)
−
(

G
∇γ′(t)P

⊥
D

)(
γ′(t)

)
. (4.4.3)

Therefore, substituting (4.4.3) into (4.4.1) gives

G
∇γ′(t)γ

′(t) = G♯
(
F (t, γ′(t))

)
− P⊥

D

(
G♯
(
F (t, γ′(t))

))
−
(

G
∇γ′(t)P

⊥
D

)(
γ′(t)

)
G
∇γ′(t)γ

′(t) = PD

(
G♯
(
F (t, γ′(t))

))
−
(

G
∇γ′(t)P

⊥
D

)(
γ′(t)

)
. (4.4.4)



Chapter 5

Rolling disk and two-wheel robot
example

5.1. Configuration

5.1.1. Rolling disk

The rolling disk is a rigid body with configuration manifold Q = S1×S1×R2, parameterised
by coordinates q = (ϕ, θ, x, y). The rolling coordinate is ϕ and the spinning coordinate is θ.
A schematic of the rolling disk described in the following sections is given in figure 3.1. The
total configuration of the rolling disk can be described by its orientation R ∈ SO (3) and po-
sition r = (x, y, ρ) ∈ R3.

5.1.2. Two-wheeled robot

A two-wheeled differential drive robot is a rigid body with configuration manifold Q =
S1 × S1 × SE(2), parameterised by coordinates q = (ψR, ψL, θ, x, y). The coordinates ψR
and ψL represent the rolling coordinates of the left and right wheel, which are separated by
a distance d ∈ R>0. The two-wheel robot is kinematically related to the rolling disk as the
forward velocity (ρϕ̇) and turning rate (θ̇) are uniquely determined by the combination of
motion of each wheel. A schematic of the two-wheeled analysed in this section is given in
figure 3.2.

5.2. Kinematic constraints

5.2.1. Rolling disk

Example 5.2.1 (Rolling disk constraints). The group representation of the disk is

g =


cos θ cosϕ cos θ sinϕ sin θ x
sin θ cosϕ sin θ sinϕ − cos θ y
− sinϕ cosϕ 0 ρ

0 0 0 1

 ∈ SE (3) . (5.2.1)

27
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The spatial point of the disk that is in contact with the ground is directly down from the
centre of mass. Therefore, the contact point is χ̄s = (x, y, 0, 1). Applying Equation (2.3.1)
yields

χ̄s(t) = g(t)χ̄b(t)

d

dt
χ̄s(t) = ξ̂s(t)χ̄s(t)

0 =


0 −θ̇ ϕ̇ cos θ ẋ+ yθ̇ − ρϕ̇ cos θ

θ̇ 0 ϕ̇ sin θ ẏ − xθ̇ − ρϕ̇ sin θ

−ϕ̇ cos θ −ϕ̇ sin θ 0 ϕ̇ (y sin θ + x cos θ)
0 0 0 0



x
y
0
1



=


ẋ− ρϕ̇ cos θ

ẏ − ρϕ̇ sin θ
0
0

 =⇒ ẋ = ρϕ̇ cos θ, ẏ = ρϕ̇ sin θ. (5.2.2)

•

Example 5.2.2 (Rolling disk distribution). The constraints are local generators for
ann (D), expressed in differential form by

ω1 (q) = dx− ρ cos θdϕ = 0, ω2 (q) = dy − ρ sin θdϕ = 0.

In matrix form, the constraints are

[
1 0 0 −ρ cos θ
0 1 0 −ρ sin θ

]
︸ ︷︷ ︸

Ω(q)


ẋ
ẏ

θ̇

ϕ̇

 =

[
0
0

]
. (5.2.3)

As per the definition, covectors annihilate the vectors in the distribution, meaning the
image of the distribution is the kernel of the codistribution, Ω (q), i.e.,

Dq = span {Xi (q) ∈ TqQ : Ω (q)Xi (q) = 0 ∀q ∈ Q} . (5.2.4)

A simple calculation shows that

Dq = span



ρ cos θ
ρ sin θ

0
1

 ,

0
0
1
0


 , (5.2.5)

which is well defined for all q ∈ Q. The basis vectors (local generators) of Dq in
coordinates are

X1 = ρ cos θ
∂

∂x
+ ρ sin θ

∂

∂y
+

∂

∂ϕ
, X2 =

∂

∂θ
. (5.2.6)
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As per theorem 2.3.1, to check integrability of this distribution it suffices to check if the
distribution is involutive. Start by computing

[X1, X2] = −ρ sin θ ∂
∂x

+ ρ cos θ
∂

∂y
/∈ Dq,

[X2, [X1, X2]] = ρ cos θ
∂

∂x
+ ρ sin θ

∂

∂y
/∈ Dq.

Higher order brackets can be shown to be in the span of previous brackets.
Clearly, the distribution is not involutive and, therefore, not intregrable, which means

the constraints are nonholonomic. We ascertain that the constraint is totally nonholonomic
as the space spanned by {X1, X2, [X1, X2] , [X2 [X1, X2]]} is linearly independent.

The four linearly independent Lie brackets imply kinematic controllability (more specifi-
cally small-time locally controllable) per the Lie algebra rank condition. We refer the reader
to [6] for further detail. •

5.2.2. Two-wheeled robot

Example 5.2.3 (Two-wheeled robot constraints). The kinematic constraints of the two-
wheeled robot are

ẋ =
ρ

2
(ψ̇R + ψ̇L) cos θ, ẏ =

ρ

2
(ψ̇R + ψ̇L) sin θ, θ̇ =

ρ

d
(ψ̇R − ψ̇L). (5.2.7)

Example 5.2.4 (Two-wheeled robot distribution). The constraints are local generators for
ann (D), expressed in differential form by

ω1 (q) = dx− ρ

2
cos θ(dψR + dψL) = 0,

ω2 (q) = dy − ρ

2
sin θ(dψR + dψL) = 0,

ω3 (q) = dθ − ρ

d
(dψR − dψL) = 0.

In matrix form, the constraints are

1 0 0 −ρ
2 cos θ −ρ

2 cos θ
0 1 0 −ρ

2 sin θ −ρ
2 sin θ

0 0 1 −ρ
d

ρ
d


︸ ︷︷ ︸

Ω(q)


ẋ
ẏ

θ̇

ψ̇R
ψ̇L

 =

00
0

 . (5.2.8)

Thus,

Dq = span




ρ
2 cos θ
ρ
2 sin θ

ρ
d
1
0

 ,

ρ
2 cos θ
ρ
2 sin θ
−ρ
d
0
1


 , (5.2.9)
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which is well defined for all q ∈ Q. The basis vectors (local generators) of Dq in
coordinates are

X1 =
ρ

2
cos θ

∂

∂x
+
ρ

2
sin θ

∂

∂y
+
ρ

d

∂

∂θ
+

∂

∂ψR
, X2 =

ρ

2
cos θ

∂

∂x
+
ρ

2
sin θ

∂

∂y
− ρ

d

∂

∂θ
+

∂

∂ψL
.

(5.2.10)

Again, one can check if the distribution is involutive. After this calculation we determine
the system is not integrable which means the constraints are nonholonomic. We also ascer-
tain that the space spanned by the Lie brackets imply has dimension of the configuration
space, and is controllable per the Lie algebra rank condition. •

5.3. Constraints and connections on Lie groups

5.3.1. Rolling disk

Left actions

Example 5.3.1 (Left action on a rolling disk). The rolling disk, of radius ρ ∈ R, has a
group configuration manifold G = R2, parameterized by coordinates (x, y). A natural base
space for the rolling disk isM = S1×S1, which represent the ability to apply input torques to
spin and roll the disk about θ and ϕ respectively. The total configuration Q = S1×S1×R2.
For an arbitrary (s, t) ∈ R2, the left action is

((s, t), (ϕ, θ, x, y)) 7→ (ϕ, θ, x+ s, y + t). (5.3.1)

•

Tangent maps

(Note, we omit the bolded notation for group elements.)

Example 5.3.2 (Tangent maps for the rolling disk). Let g = (x, y) ∈ G and h = (u, v) ∈ G.
Let Lg : G → G by Lg(h) = g ⋆ h = gh = (x+ u, y + v). Then

TeLg = ThLg|h=e =
∂

∂h
(gh)

∣∣∣∣
h=e

=

[
1 0
0 1

]
. (5.3.2)

The calculaton is similar for Rg : G → G defined by Rg(h) = h⋆g = hg = (u+x, v+y). •

Example 5.3.3 (Adjoint for the rolling disk). The matrix representation of the adjoint
representation is

[Adg] =

[
1 0
0 1

]
. (5.3.3)

•
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Example 5.3.4 (Infinitesimal generator for R2). Let G = R2. Let Φ: G × Q → Q be the
standard left action of SE (2) on itself. A standard basis of g, the Lie algebra of G is

ξx =

[
1
0

]
u, ξy =

[
0
1

]
v, (5.3.4)

where u, v ∈ R are the local expressions for body velocity (in this case u = ẋ and
v = ẏ). Then,

ξQ(q) =
d

dϵ
Φ (exp (ξϵ) , q)

∣∣∣∣
ϵ=0

=
d

dϵ
Φ (exp (ξϵ) , g)

∣∣∣∣
ϵ=0

=
d

dϵ
(exp (ξϵ) g)

∣∣∣∣
ϵ=0

= (ξexp (ξϵ) g)|ϵ=0

= u
∂

∂x
+ v

∂

∂y
. (5.3.5)

We know, for the left action described in Equation (5.3.1), the shape space is ex-
actly Q/G = M, and is thus a trivial principal bundle with infinitesimal generator

ξQ(q) = 0

(
∂

∂ϕ
+

∂

∂θ

)
︸ ︷︷ ︸

ξM(q)

+u
∂

∂x
+ v

∂

∂y︸ ︷︷ ︸
ξG(q)

. (5.3.6)

•

5.3.2. Two-wheeled robot

Left action

Example 5.3.5 (Left action on a two-wheeled robot). The two-wheeled robot, with wheels
of radius ρ ∈ R, has a group configuration manifold G = SE (2) parametrized by coordinates
(θ, x, y). We are able to apply a torque to each wheel independently, giving M = S1 × S1
with coordinates (ψR, ψL) so that Q = S1× S1× SE (2). For an arbitrary (α, a, b) ∈ SE (2),
the left action is

((α, a, b), (ψR, ψL, θ, x, y)) 7→ (ψR, ψL, θ+α, x cosα−y sinα+a, x sinα+y cosα+b). (5.3.7)

•

Tangent maps

Example 5.3.6 (Tangent maps for the two-wheeled robot). Let g = (θ, x, y) ∈ G and h =
(β, u, v) ∈ G. Let Lg : G → G by Lg(h) = g ⋆ h = gh = (θ + β, u cos θ − v sin θ + x, u sin θ +
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v cos θ + y). Then

TeLg = ThLg|h=e

=
∂

∂h
(gh)

∣∣∣∣
h=e

=
∂

∂h
(θ + β, u cos θ − v sin θ + x, u sin θ + v cos θ + y)

∣∣∣∣
h=e

=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

∣∣∣∣∣∣
h=e

=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (5.3.8)

Similarly, let Rg : G → G by Rg(h) = h ⋆ g = hg = (β + θ, x cosβ − y sinβ + u, x sinβ +
y cosβ + v). Then

TeRg = ThRg|h=e

=
∂

∂h
(hg)

∣∣∣∣
h=e

=

 1 0 0
−x sinβ − y cosβ 1 0
x cosβ − y sinβ 0 1

∣∣∣∣∣∣
h=e

=

 1 0 0
−y 1 0
x 0 1

 . (5.3.9)

•

Example 5.3.7 (Adjoint for the two-wheeled robot). Using the tangent maps from Exam-
ple 5.3.6, the matrix representation of the adjoint representation is

[Adg] =

 1 0 0
y cos θ − sin θ
−x sin θ cos θ

 . (5.3.10)

•

Example 5.3.8 (Infinitesimal generator for SE(2)). Let G = SE (2) and Q = G and g =
(R, r) ∈ G = SE (2). Let Φ: G × Q → Q be the standard left action of SE (2) on itself. A
standard basis of se(2), the Lie algebra of SE (2) is

ξθ =

0 −1 0
1 0 0
0 0 0

ω, ξx =

0 0 1
0 0 0
0 0 0

u, ξy =
0 0 0
0 0 1
0 0 0

 v =⇒ ξ =

0 −ω u
ω 0 v
0 0 0

 ,
(5.3.11)

where u, v, ω ∈ R are the local expressions for body velocity (the physical expressions
are calculated in Equation (2.2.12)). Then,

ξQ(q) =
d

dϵ
Φ (exp (ξϵ) , q)

∣∣∣∣
ϵ=0

=
d

dϵ
Φ (exp (ξϵ) , g)

∣∣∣∣
ϵ=0

=
d

dϵ
(exp (ξϵ) g)

∣∣∣∣
ϵ=0

= (ξexp (ξϵ) g)|ϵ=0

= ω
∂

∂θ
+ (u− ωy)

∂

∂x
+ (v + ωx)

∂

∂y
. (5.3.12)
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We know, for the left action two-wheeled robot described in Equation (5.3.7), the shape
space is exactly Q/G = M, and is a trivial principal bundle with infinitesimal generator

ξQ(q) = 0

(
∂

∂ψR
+

∂

∂ψL

)
︸ ︷︷ ︸

ξM(q)

+ω
∂

∂θ
+ (u− ωy)

∂

∂x
+ (v + ωx)

∂

∂y︸ ︷︷ ︸
ξG(q)

. (5.3.13)

•
We are now ready to cast the constraints as a connection.

5.3.3. Constraint Connection

Rolling disk

Example 5.3.9 (Constrained connection for the rolling disk). Let M = S1 × S1 and G =
R2, so that Q = S1×S1×R2. The left action for this principal bundle is given by Equation
(5.3.1), and associated infinitesimal generator (5.3.5).

The constraints, relating the base and group variables, are given in Equation (5.2.3).
Using this information, we get an expression for Γ that satisfies condition (i) of Definition

3.2.7. A calculation, by inspection, shows

Γ
(
ξQ
)
= ξ ⇐⇒

[
Γx | Γg

] [ 0
ξG

]
= ξ ⇐⇒ Γg(ξG) = ξ ⇐⇒ Γg = TeRg

−1.

We can calculate the Γx knowing Γ must satisfy condition (i) in Definition 3.2.2,
i.e., Γ (X) = 0, when X ∈ HqQ, as[

Γx | TeRg−1
]
(X) = 0 ⇐⇒ Γx(Xx) + TeRg

−1(Xg) = 0

⇐⇒ Γx

[
1
0

]
+ TeRg

−1

[
ρ cos θ
ρ sin θ

]
= 0, Γx

[
0
1

]
+ TeRg

−1

[
0
0

]
= 0

⇐⇒ Γx =

[
−ρ cos θ 0
−ρ sin θ 0

]
=⇒ Γ =

[
−ρ cos θ 0 1 0
−ρ sin θ 0 0 1

]
.

We must now check condition (ii) of Definition 3.2.7.

AdgΓ(X) =

[
1 0
0 1

] [
−ρ cos θ 0 1 0
−ρ sin θ 0 0 1

]
(X)

= Γ(X).

Γ (TqΦg(X)) =

[
−ρ cos θ 0 1 0
−ρ sin θ 0 0 1

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (X)

= Γ(X) = AdgΓ(X).
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Thus, we have met all the conditions of the connection one form, and the principal
bundle is indeed a principal bundle. The local connection is, therefore,

A(x) = (TeLg)
−1Γ−1

g (q)Γx(q) = (TeLg)
−1TeRgΓx(q) = (Adg)

−1Γx(q) =

[
−ρ cos θ 0
−ρ sin θ 0

]
.

Since ξ = −A(x)vx, we deduce an expression for the group variables as

vg = TeLgξ = −TeLgA(x)vx =

[
ρ cos θ 0
ρ sin θ 0

] [
ϕ̇

θ̇

]
= Xv

i u
i, (5.3.14)

where Xv
i ∈ TgG are the vertical vector fields, and the control inputs ui = ẋi ∈ TxM.

Since, TqQ = TxM ⊕ TgG, we can append the motion of the horizontal coordinates in the
principal bundle, i.e., ϕ̇ = ϕ̇ and θ̇ = θ̇ to obtain the familiar distribution (and kinematic
equation of motion) for the rolling disk, as given in Equation (5.2.6). •

Two-wheeled robot

Example 5.3.10 (Constrained connection for the two-wheeled robot). Let M = S1 ×
S1 and G = SE (2), so that Q = S1 × S1 × SE (2). The left action for this principal bundle
is given by Equation (5.3.7), and associated infinitesimal generator (5.3.13).

The constraints, relating the base and group variables, are given in Equation (5.2.8).
The calculations are the same as Example 5.3.9, so we simply state the results. We get

Γg = TeRg
−1,

Γx =

 −ρ
d

ρ
d

−ρ
dy −

ρ
2 cos θ

ρ
dy −

ρ
2 cos θ

ρ
dx− ρ

2 sin θ −ρ
dx− ρ

2 sin θ

 ,
Γ =

 −ρ
d

ρ
d 1 0 0

−ρ
dy −

ρ
2 cos θ

ρ
dy −

ρ
2 cos θ y 1 0

ρ
dx− ρ

2 sin θ −ρ
dx− ρ

2 sin θ −x 0 1

 ,
A(x) =

−ρ
d

ρ
d

−ρ
2 −ρ

2
0 0

 ,
vg =

 ρ
d −ρ

d
ρ
2 cos θ

ρ
2 cos θ

ρ
2 sin θ

ρ
2 sin θ

[ψ̇R
ψ̇L

]
= Xv

i u
i,

where Xv
i ∈ TgG are the vertical vector fields, and the control inputs ui = ẋi ∈ TxM.

Again, we can append the motion of the horizontal coordinates in the principal bundle,
i.e, ψ̇R = ψ̇R and ψ̇L = ψ̇L to obtain the same expression as given in Equation (5.2.10). •

5.4. Equations of motion

5.4.1. Rolling disk

Example 5.4.1 (Rolling disk kinetic energy). Let µ (B) = m be the mass of the
body, Jspin the moment of inertia about the vertical axis, and Jroll the moment of inertia
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s1

s2

s3

θ

ϕ

τθ

τϕ

Figure 5.1: Forces on the rolling disk.

about the rolling axis, then calculate

KE =
1

2
m
(
ẋ2 + ẏ2

)
+

1

2
Jspinθ̇

2 +
1

2
Jrollϕ̇

2.

The kinetic energy metric is, therefore,

G = m (dx⊗ dx+ dy ⊗ dy) + Jspin (dθ ⊗ dθ) + Jroll (dϕ⊗ dϕ) . (5.4.1)

•

Example 5.4.2 (Rolling disk forces). As per Figure 5.1, the forces acting on the rolling
disk are torques represented by

F 1 = τθ (0, 0, 1, 0) = τθdθ, F
2 = τϕ (0, 0, 0, 1) = τϕdϕ,

with τθ and τϕ defined on R× TQ. •

Example 5.4.3 (Rolling disk orthogonal projections). From Example 5.2.2 we have a basis
for Dq and D⊥

q . In matrix form, the bases are1

G(q) =


ρ cos θ 0
ρ sin θ 0

0 1
1 0

 , ΩT (q) =


1 0
0 1
0 0

−ρ cos θ −ρ sin θ

 .
In Example 5.4.1, we calculated the Riemannian metric, which is given by

[G] =


m 0 0 0
0 m 0 0
0 0 Jspin 0
0 0 0 Jroll

 .
1We revert to the notation of our configuration being q = (x, y, θ, ϕ) as opposed to the manifold and

group order of q = (ϕ, θ, x, y) as in previous sections.
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Using the formula for the orthogonal projection (there are multiple ways to do this)

[PD] = G(q)
(
G(q)T [G]G(q)

)−1
G(q)T [G] , (5.4.2)

[P⊥
D ] = [G]−1ΩT (q)

(
[G]−1Ω(q) [G] [G]−1ΩT (q)

)−1
[G]−1Ω(q) [G]

= [G]−1ΩT (q)
(
[G]−1Ω(q)ΩT (q)

)−1
[G]−1Ω(q) [G] , (5.4.3)

and we obtain

[PD] =
1

mρ2 + Jroll


mρ2 cos2 θ mρ2 cos θ sin θ 0 ρJroll cos θ

mρ2 cos θ sin θ mρ2 sin2 θ 0 ρJroll sin θ
0 0 1 0

mρ cos θ mρ sin θ 0 Jroll

 , (5.4.4)

[P⊥
D ] =

1

mρ2 + Jroll


Jroll +mρ2 sin2 θ −mρ2 cos θ sin θ 0 −ρJroll cos θ
−mρ2 cos θ sin θ Jroll +mρ2 cos2 θ 0 −ρJroll sin θ

0 0 0 0
−mρ cos θ −mρ sin θ 0 mρ2

 . (5.4.5)

•

Example 5.4.4 (Rolling disk equations of motion). Recall our expressions
for G, PD, P

⊥
D , F

1, F 2, and let λ1, λ2 ∈ R. The local representation of the equa-
tions of motion are

ẍ =
1

m
λ1, ÿ =

1

m
λ2, θ̈ =

1

Jspin
τθ, ϕ̈ =

1

Jroll
τϕ − λ1

ρ

Jroll
cos θ − λ2

ρ

Jroll
sin θ,

ẋ = ρϕ̇ cos θ, ẏ = ρϕ̇ sin θ

Solving for λ1, λ2 ∈ R, i.e, the local representation of Equation (4.4.4), gives

ẍ =
ρ cos θ

mρ2 + Jroll
τϕ − ρθ̇ϕ̇ sin θ, ÿ =

ρ sin θ

mρ2 + Jroll
τϕ + ρθ̇ϕ̇ cos θ,

θ̈ =
1

Jspin
τθ, ϕ̈ =

1

mρ2 + Jroll
τϕ. (5.4.6)

•

5.4.2. Two-wheeled robot

Example 5.4.5 (Two-wheeled robot kinetic energy). Let µ (B) = m be the mass of the
body, Ibody the moment of inertia about the centre of mass, and Jroll the moment of inertia
about the rolling axis of each wheel. We have

KE =
1

2
m
(
ẋ2 + ẏ2

)
+

1

2
Ibody θ̇

2 +
1

2
Jroll

(
ψ̇2
R + ψ̇2

L

)
.

The kinetic energy metric is, therefore,

G = m (dx⊗ dx+ dy ⊗ dy) + Ibody (dθ ⊗ dθ) + Jroll (dψR ⊗ dψR + dψL ⊗ dψL) . (5.4.7)

•
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V ∗

s1

s2

τψL

τψR

d
θ

Figure 5.2: Two-wheeled robot forces.

Example 5.4.6 (Two-wheeled robot forces). As per Figure 5.2, the forces acting on the
two-wheeled robot are torques represented by

F 1 = τψR
(0, 0, 0, 1, 0) = τψR

dψR, F
2 = τψL

(0, 0, 0, 0, 1) = τψL
dψL,

with τψR
and τψL

defined on R× TQ. •

Example 5.4.7 (Two-wheeled robot orthogonal projections). The orthogonal projections,
PD and P⊥

D , can be calculated using the distribution from Example 5.2.4 and the the
Riemannian as per Equation (5.4.5). We do not write out this computation. •

Example 5.4.8 (Two-wheeled robot equations of motion). Recall our expressions
for G, PD, P

⊥
D , F

1, F 2, and let λ1, λ2, λ3 ∈ R. The local representation of the equa-
tions of motion are

ẍ =
1

m
λ1, ÿ =

1

m
λ2, θ̈ =

1

Ibody
λ3,

ψ̈R =
1

Jroll
τψR

− ρ

2Jroll
cos θλ1 − ρ

2Jroll
sin θλ2 − ρ

dJroll
λ3,

ψ̈L =
1

Jroll
τψL

− ρ

2Jroll
cos θλ1 − ρ

2Jroll
sin θλ2 +

ρ

dJroll
λ3,

ẋ =
ρ

2
(ψ̇R + ψ̇L) cos θ, ẏ =

ρ

2
(ψ̇R + ψ̇L) sin θ, θ̇ =

ρ

d
(ψ̇R − ψ̇L). (5.4.8)

Solving for λ1, λ2, λ3 ∈ R, the local representation of Equation (4.4.4) for the two-
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wheeled robot is

ẍ =
ρ cos θ

mρ2 + 2Jroll
(τψR

+ τψL
)− ρθ̇

(
ψ̇R + ψ̇L

2

)
sin θ,

ÿ =
ρ sin θ

mρ2 + 2Jroll
(τψR

+ τψL
) + ρθ̇

(
ψ̇R + ψ̇L

2

)
cos θ,

θ̈ =
ρd

2Ibodyρ2 + Jrolld2
(τψR

− τψL
) ,

ψ̈R =

(
4Jrolld

2 + ρ2
(
md2 + 4Ibody

))
τψR

− ρ2
(
md2 − 4Ibody

)
τψL

2 (mρ2 + 2Jroll) (2Ibodyρ2 + Jrolld2)
,

ψ̈L =

(
4Jrolld

2 + ρ2
(
md2 + 4Ibody

))
τψR

− ρ2
(
md2 − 4Ibody

)
τψL

2 (mρ2 + 2Jroll) (2Ibodyρ2 + Jrolld2)
. (5.4.9)

•



Chapter 6

Control design using virtual
surfaces

We are now ready to design control forces to make the physical system behave in a desirable
way. The method we explore is to design a virtual surface (or potential function) that the
vehicle will naturally “fall” down due to the induced virtual potential force.

In this method, we aim to characterise the virtual potential function solely by the spatial
group coordinates as this represents where we want the body to go (or not go). For example,
we can place a minima at a coordinate the body should travel to, while a maxima can be
placed at point we want to avoid. This can be seen as a method of potential shaping, but we
are translating a virtual potential force and its influence on the virtual system to physical
control forces.

Also, we design a virtual force that steers the system in directions complementary to
the force generated by the virtual potential force. We can then compute the control forces,
F , so that the physical system follows the same trajectory.

Finally, using the rolling disk as an example, we prescribe surfaces to perform point
stabilisation, path tracking, and obstacle avoidance.

6.1. The physical system

Suppose that we have a simple mechanical system (Q,G, F,D) on a principal bundle
(Q,M,G, π). Let M have coordinates that represent the actuated degrees of freedom of
the body.

Since the physical control inputs F (t, x, g) ∈ T∗
xM, the trajectories of the group coordi-

nates in G are solely characterised by the trajectories of the base coordinates. We can fully
determine the motion of the body via the constraints which comprise a connection on Q.

Now, let us write down a few facts about Q, and the decompositions of TQ and T∗Q:

(i) Since Q = M× G is a principal fibre bundle, TQ = TM⊕ TG and TQ = D⊕D⊥.

(ii) Further, T∗Q = T∗M ⊕ T∗G = T∗M ⊕ ann(TM) = ann(TG) ⊕ T∗G, and T∗Q =
ann(D⊥)⊕ ann(D).

The decompositions result from the fact we have two representations of subspaces that
form the tangent space. The two distributions, D, and D⊥, span the tangent space. The

39
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tangent space is also spanned by the tangent space of the base and group manifolds. We
assume that we can determine the required components of the virtual force because repre-
sentations of the tangent space are, in general, not equal due to the non-integrability of the
distribution.

Recall the global equations of motion (given in Equation (4.4.4)) are

G
∇γ′(t)γ

′(t) = PD

(
G♯
(
F (t, γ′(t))

))
−
(

G
∇γ′(t)P

⊥
D

)(
γ′(t)

)
.

Since, by construction of M, the physical input forces are independent and span the
base cotangent space, then it is true that{

PD

(
G♯
(
F (t, γ′(t))

))
: F (t, γ′(t)) ∈ T∗M

}
= D.

To design the physical input forces, F , and ultimately make our system behave in a
useful way, we turn our attention to a virtual system.

6.2. The virtual system

Definition 6.2.1 (The virtual system). Let (Q,G, V ∗, F̃ ,D) be a virtual simple mechanical
system on a principal bundle (Q,M,G, π) where

(i) Q is the configuration manifold (of the physical simple mechanical system),

(ii) G is the Riemannian metric (of the physical simple mechanical system),

(iii) V ∗ ∈ C∞(G) is a user-defined virtual potential function on G,

(iv) F̃ is a C∞-force comprised of a virtual force, F ∗, and a dissipative force, Fd,
1 and

(v) D is the distribution (of the physical simple mechanical system).

•
Firstly, we determine the virtual equations of motion. We refer the reader to [6] for

further detail on potential functions, potential forces, and dissipative forces.
A virtual potential function V ∗ ∈ C∞(G) on G generates a virtual potential force given

by

F ∗
V ∗(t, vg) = −dV ∗(g) = −∂V

∗(g)

∂gi
dgi = −dV ∗

gi(g)dg
i ∈ T∗

gG. (6.2.1)

The virtual force is a designed input and has the form

F ∗(t, vq) ∈ T∗
qQ. (6.2.2)

We will outline some sufficient conditions to determine the necessary components of F ∗,
and a methodology to design the components.

Finally, we introduce a dissipative force, which acts solely to remove energy from the
system in the actuated coordinates.

1The dissipative force is not necessary to actuate the system, and is simply used to remove energy from
the system, and thus converge to a minima.
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Definition 6.2.2 (Dissipative force). A time-independent force F : TQ → T∗Q is dissipa-
tive if ⟨F (vq); vq⟩ ≤ 0 for each vq ∈ TQ, and is strictly dissipative if it is dissipative and
if ⟨F (vq); vq⟩ = 0 only when vq ∈ Z(TQ). •

Definition 6.2.3 (Rayleigh dissipation). Let Q be a C∞-manifold. A Rayleigh dissipa-
tion function is a class C∞, symmetric, positive-semidefinite (0, 2)-tensor field Rdiss on
Q. If Rdiss is positive-definite, then it is strict. The dissipative force associated with
a Rayleigh dissipation function is the map −R♭diss : TQ → T∗Q. A time-independent
force F : TQ → T∗Q is dissipative if ⟨F (vq); vq⟩ ≤ 0 for each vq ∈ Q, and is strictly dissipative
if it is dissipative and if ⟨F (vq); vq⟩ = 0 only when vq ∈ Z(TQ). •

Let Fd : TQ → T∗Q be a time-independent C∞-dissipative force given by

Fd(γ
′(t)) = −R♭diss(γ′(t), γ′(t)).

6.2.1. The virtual equations of motion

Using expressions of the virtual surface, dissipative force, and virtual force, the global
equations of motion become

G
∇γ̃′(t)γ̃

′(t) = G♯

−dV ∗ (γ̃(t)) + Fd(γ̃
′(t)) + F ∗(t, γ̃′(t))︸ ︷︷ ︸
F̃ (t,γ̃(t),γ̃′(t))

+ λ∗(t), (6.2.3)

P⊥
D

(
γ̃′(t)

)
= 0, (6.2.4)

where λ∗(t) ∈ D⊥ is the virtual constraint force, and γ̃ : [a, b] → Q is the virtual trajectory
of the system.

The constrained equations of motion of the virtual system are

G
∇γ̃′(t)γ̃

′(t) = PD

(
G♯
(
−dV ∗ (γ̃(t)) + F̃ (t, γ̃(t), γ̃′(t))

))
−
(

G
∇γ̃′(t)P

⊥
D

)(
γ̃′(t)

)
. (6.2.5)

6.2.2. Determining the components of the virtual force

Using the equations of motion, we can give some properties of the virtual potential force
and the components of the virtual force.

Due to the product structure of Q, it holds that dV ∗ (γ̃(t)) ∈ T∗G = ann(TM). The or-
thogonal projection of the set T∗Gmaps to a subset of the distribution, i.e., PD

(
G♯ (T∗G)

)
⊆

D.
We assume that there always exists a subgroup H ⊆ G such that PD

(
G♯ (T∗H)

)
⊂ D.

We acknowledge that this strict inclusion is also dependent on the components of the
Riemannian metric, G.

Therefore, it follows that

dim
(
PD

(
G♯ (T∗H)

))
< dim(D).

Thus, there exists a complementary force set, CF, with dim (CF) > 0, such that

CF ⊕ PD

(
G♯ (T∗H)

)
= D =⇒ dim (CF) + dim

(
PD

(
G♯ (T∗H)

))
= dim(D).
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This is equivalent to ensuring

span
{
CF, PD

(
G♯ (T∗H)

)}
= D. (6.2.6)

Similar to the physical system, we require{
PD

(
G♯
(
−dV ∗ (γ̃(t)) + F̃ (t, γ̃(t), γ̃′(t))

))
: dV ∗ (γ̃(t)) ∈ T∗H, F̃ (t, γ̃(t), γ̃′(t)) ∈ T∗Q

}
= D,

or
span

{
PD

(
−G♯dV ∗ (γ̃(t))

)
, PD

(
G♯
(
F̃ (t, γ̃(t), γ̃′(t))

))}
= D.

Therefore, the components of F̃ can be chosen such that{
PD

(
G♯
(
F̃ (t, γ̃(t), γ̃′(t))

))}
∈ CF.

It follows that the components of F̃ are only required in directions complementary to
the direction of the force generated by the virtual potential function. Since Fd is strictly dis-
sipative, we ensure Equation (6.2.6) holds by specifying the components of F ∗ in directions
complementary to the direction of the force generated by the virtual potential function.

From a virtual system to physical control inputs

Given a virtual simple mechanical system
(
Q,G, V ∗, F̃ ,D

)
with trajectory γ̃ : [a, b] → Q.

Let V ∗ ∈ C∞(H), where H ⊆ G, and F̃ ∈ T∗Q be chosen as above. Then the physical simple
mechanical system (Q,G, F,D) will follow the trajectory γ(t) = γ̃(t) if

PD

(
G♯
(
F (t, γ′(t))

))
= PD

(
G♯
(
−dV ∗ (γ(t)) + F̃

(
t, γ(t), γ′(t)

)))
. (6.2.7)

6.3. Controlling the rolling disk

Recall, the physical system is defined by (Q,G, F,D), on a principal bundle (Q,M = S1 ×
S1,G = R2, π) where

(i) Q = S1 × S1 × R2,

(ii) G = m (dx⊗ dx+ dy ⊗ dy) + Jspin (dθ ⊗ dθ) + Jroll (dϕ⊗ dϕ),

(iii) F = τθdθ + τϕdϕ ∈ T∗M (the physical control forces), and

(iv) D = span
{
X1 = ρ cos θ ∂

∂x + ρ sin θ ∂
∂y +

∂
∂ϕ , X2 =

∂
∂θ

}
⊂ TQ.

The global equations of motion of the physical system are given by Equation (4.4.4),
where γ : [a, b] → Q is the trajectory of the system.

Figure 6.1 shows a disk, with base configuration x = (ϕ, θ) ∈ M and group configu-
ration g = (x, y) ∈ G, rolling on a virtual surface V ∗, with local slope dV ∗. With this

information, the virtual disk is defined by
(
Q,G, V ∗, F̃ ,D

)
, where

(i) Q = S1 × S1 × R2,
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V ∗

dV ∗

x

y

z

θ

(x, y)

ϕ
ρ

Figure 6.1: A rolling disk on a virtual surface

(ii) G = m (dx⊗ dx+ dy ⊗ dy) + Jspin (dθ ⊗ dθ) + Jroll (dϕ⊗ dϕ),

(iii) V ∗ ∈ C∞(G) is a user-defined virtual potential function on G,2

(iv) F̃ = Fd + F ∗ = (Fdθ + F ∗
θ )dθ + (Fdϕ + F ∗

ϕ)dϕ ∈ T∗M (a dissipative force and virtual
force), and

(v) D = span
{
X1 = ρ cos θ ∂

∂x + ρ sin θ ∂
∂y +

∂
∂ϕ , X2 =

∂
∂θ

}
⊂ TQ.

The global equations of motion of the physical system are given by Equation (6.2.5),
where γ̃ : [a, b] → Q is the virtual trajectory of the system.

We concern ourselves with the choice of a virtual surface V ∗, the choice of the compo-
nents of the virtual force, F ∗, and subsequently the design of the components to induce
“useful” trajectory on the system.

6.3.1. Determining the components of the virtual force for the rolling disk

Considering dV ∗ = dV ∗
x dx + dV ∗

y dy ∈ T∗G, a computation shows that PD

(
G♯ (dV ∗)

)
has

components only in the span of X1 ⊂ D. Thus, we need to design a virtual force to spin the
disk in the direction of X2 ⊂ D. Thus, for the rolling disk we take CF ∈ span {X2}, which
implies F ∗ = F ∗

θ dθ = τ∗dθ ∈ T∗M, i.e., a torque that spins the disk about its vertical axis.

6.3.2. Forced equations of motion

We now obtain the general equations of motion of the system in coordinates, and solve for
the physical control inputs, F = τθdθ + τϕdϕ ∈ T∗M ⊆ T∗Q. Let

2For the rolling disk, the subgroup H = R2 = G. For the two-wheeled robot the subgroup H = R2 ⊂ G. In
both cases, H represents the spatial coordinates of the body. There is some interesting geometry occurring
here that should be studied further.
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(i) V ∗ ∈ C∞(G);

(ii) dV ∗ = dV ∗
x dx+ dV ∗

y dy ∈ T∗G;

(iii) Fd = −(Fdϕdϕ+ Fdθdθ) ∈ T∗M;

(iv) F ∗ = τ∗dθ ∈ T∗M.

Then, by Equation (6.2.7),

PD

(
1

Jspin
τθ
∂

∂θ
+

1

Jroll
τϕ

∂

∂ϕ

)
=

PD

(
− 1

m

(
dV ∗

x

∂

∂x
+ dV ∗

y

∂

∂y

)
− 1

Jspin
(Fdθ − τ∗)

∂

∂θ
− 1

Jroll
Fdϕ

∂

∂ϕ

)
.

Thus, the physical control inputs are

τθ = − Fdθ + τ∗, (6.3.1)

τϕ = − Fdϕ − ρ(dV ∗
x cos θ + dV ∗

y sin θ), (6.3.2)

and the overall equations of motion of the physical system are

ẍ = − ρ cos θ

mρ2 + Jroll

(
Fdϕ + ρ(dV ∗

x cos θ + dV ∗
y sin θ)

)
− ρθ̇ϕ̇ sin θ,

ÿ = − ρ sin θ

mρ2 + Jroll

(
Fdϕ + ρ(dV ∗

x cos θ + dV ∗
y sin θ)

)
+ ρθ̇ϕ̇ cos θ,

θ̈ = − 1

Jspin
(Fdθ − τ∗) ,

ϕ̈ = − 1

mρ2 + Jroll

(
Fdϕ + ρ(dV ∗

x cos θ + dV ∗
y sin θ)

)
. (6.3.3)

6.4. Designing the virtual force

As the goal is the design a virtual force that spins the disk, we impose the following as-
sumptions on the virtual disk:

1. the disk is perpendicular to the virtual surface;

2. the disk has a virtual mass, m∗ ∈ R≥0, that is acted on by a virtual gravity, g∗ ∈ R≥0.
The virtual gravitational force m∗g∗ acts vertically;

3. the disk has a virtual centre of mass, G∗, located at l∗ = (l∗ cos θ, l∗ sin θ, ρ) ∈ R3 from
the physical centre of mass G = (x, y, ρ) ∈ R3, with magnitude l∗ ∈ R;

4. the virtual gravitational force generated through the virtual centre of mass induces a
virtual torque about the physical centre of mass;

5. the virtual force, f∗, is the component of the the virtual gravitational force parallel
to the virtual slope.
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Figure 6.2 illustrates assumptions 1 and 2, and Figure 6.3 shows assumptions 3 and 5.
Employing these assumptions, we can design the component of the virtual force for each
spatial group variable.

We design the components of the virtual force by making the following observations:

1. The tangent of the angle, ψx ∈ R, the disk forms with the vertical is equal to the
local virtual slope in the x-coordinate. The local slope equal to the component of the
virtual potential force for that coordinate, i.e.,

tanψx = −∂V
∗

∂x
= −dV ∗

x .

2. Thus, the angle the virtual surface forms with the global x-axis is

ψx = − tan−1 (dV ∗
x ) .

3. Since the virtual gravitational force is vertical by Assumption 2, we apply Assumption
5 to obtain the dx component of the virtual force as

f∗x = m∗g∗ sinψx = m∗g∗ sin
(
− tan−1 (dV ∗

x )
)
= −m∗g∗

dV ∗
x√

(dV ∗
x )

2 + 1
∈ R.

The derivation is the similar for the dy component.

4. The overall virtual force is f∗ = f∗xdx+ f∗ydy ∈ T∗G.

5. The total external virtual force, F ∗, that acts on the disk is

F ∗ =

〈
f∗;

dl∗

dt

〉
= − l∗

(
−f∗x sin θ + f∗y cos θ

)
dθ = τ∗dθ ∈ T∗M. (6.4.1)

6. Substituting the components from Equation (3) into Equation (6.4.1) gives

τ∗ =−m∗g∗l∗

− sin θ
dV ∗

x√
(dV ∗

x )
2 + 1

+ cos θ
dV ∗

y√
(dV ∗

y )
2 + 1


=−K∗

− sin θ
dV ∗

x√
(dV ∗

x )
2 + 1

+ cos θ
dV ∗

y√
(dV ∗

y )
2 + 1

 , (6.4.2)

where K∗ ∈ R is a tuneable control parameter that represents the virtual mass,
gravity and distance from the physical centre of mass.

Example 6.4.1 (The rolling disk). Let V ∗(g) = 1
2(x

2 + y2), then dV ∗(g) = xdx + ydy.

Let R♭diss = (dϕ⊗ dϕ+ dθ ⊗ dθ). Let the virtual constant K∗ = 1.
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V ∗

∂V ∗

∂x

x

V ∗

G G∗

m∗g∗
f∗x = m∗g∗ sinψx

ψx

Figure 6.2: The disk normal to the virtual surface

V ∗

dV ∗

x

y

z

θ

G G∗
l∗

f∗

Figure 6.3: A rolling disk with a virtual force
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Figure 6.4: Simulation of Equation (6.4.3) with V ∗(g) = 1
2(x

2 + y2), a = 1, and K∗ = 1

Substituting this information into Equation (6.3.3) gives the equations of motion of the
physical system as

ẍ = − ρ cos θ

mρ2 + Jroll

(
ϕ̇+ ρ (x cos θ + y sin θ)

)
− ρθ̇ϕ̇ sin θ,

ÿ = − ρ sin θ

mρ2 + Jroll

(
ϕ̇+ ρ (x cos θ + y sin θ)

)
+ ρθ̇ϕ̇ cos θ,

θ̈ = −− 1

Jspin

(
θ̇ +

(
− sin θ

x√
x2 + 1

+ cos θ
y√
y2 + 1

))
,

ϕ̈ = − 1

mρ2 + Jroll

(
ϕ̇+ ρ (x cos θ + y sin θ)

)
. (6.4.3)

Figure 6.4, demonstrates the trajectories of Equation (6.4.3) from rest, initial configu-
ration q(0) = (−6, 4, π3 , 0). Note that, this choice of V ∗ implies we want (xf , yf ) = (0, 0).
•

It is evident that the group coordinates (x, y) asymptotically go to zero. The base
coordinate, θ, converges to an arbitrary value. In a physical application, we can make two
actions to compensate for this: orient the disk when the final group coordinate is reached,
or simply turn the controls “off”.

While we have not given any thought to how a and K∗ are chosen, this scheme clearly
steers the disk from our initial position, to the group origin.

Depending on the application, these parameters can be determined by assessing the
stability of the system (and find bounds on the tuneable control parameters), but there are
instances where the notion of stability is not immediately clear, i.e., when tracking a path
we never want the system to be at rest, or at an equilibrium configuration, so how does one
assess “stability”, or convergence?

As per [16], for dissipative nonholonomic mechanical systems, we know that equilibria
can arise at configurations which are not critical points of the potential function (in this
case the virtual potential function). This already presents a huge limitation; in order to
easily apply Lyapunov methods, we need to restrict ourselves to equilibria which are critical
points.

6.5. Designing practical surfaces

We are now ready to design a collection of surfaces that ensures our system behaves in a
useful way. Since we have established that the rolling disk is controllable, and that we can
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yO = tan θf (x− xf ) + yf

yS = tan
(
θf +

π
2

)
(x− xf ) + yf

(xf , yf )(x0, y0)

θf

θf +
π
2

x

y

Figure 6.5: The lines forming the minina of virtual surfaces

design virtual surfaces that actuate the system in the base variables that are solely charac-
terised by the group coordinates (x, y), we can design surfaces to influence the behaviour
of our system. Furthermore, we want to ensure convergence to a specified orientation, θ, of
the disk.

Thus, we are tasked with finding a set of surfaces that solve two fundamental control
problems—point stabilisation and path tracking. We also investigate obstacle avoidance as
the end goal is to be able to compute control inputs for a vehicle in a dynamic environment.

6.5.1. Point stabilisation

In our setting, point stabilisation is akin to the virtual disk rolling to a minimum on the vir-
tual surface. Point stabilization for nonholonomic vehicles is well studied, and we highlight
the main result that it is not possible to prescribe a continuous control so that a vehicle
at rest with configuration q0 at time T = 0, is also at rest at its final configuration qf at
some time T > 0. Acknowledging this allows us to tackle the problem in a logical way, i.e.,
specifying piecewise continuous control inputs with switching. This ultimately leads to the
Orient-Settle control strategy.

This scheme uses the idea that the final configuration (xf , yf , θf , ϕf ) is fully captured
by a line in G = R2 given by x 7→ tan θf (x − xf ) + yf , which is solely a function of the
group configuration at any given time.3

Figure 6.5 demonstrates the two lines that form the minimums of parabolas used in this
control strategy. Since the line in the plane can be parameterised by (x, y = f(x)) ∈ R2, the
virtual surface about this line is V ∗(g) = 1

2 (y − f(x))2.
This scheme has two phases:

Orient With K∗ > 0, the vehicle orients itself in a parabola (with minina along the line with

3We acknowledge that tan(x) is undefined when x = π
2
+ πk, k ∈ Z. In simulations, one can account for

this rather easily.
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Figure 6.6: The orient phase virtual surface

angle θf ) represented by the surface

V ∗
O(g) =

1

2
(yO − yf − tan θf (x− xf ))

2 .

An example of this surface is plotted in Figure 6.6 for (x0, y0) = (−6, 4) and (xf , yf ) =
(0, 0) and θf = 0.

Settle Once the disk angle has converged to θf , the disk then settles in a parabola along a
line given by x 7→ tan

(
θf +

π
2

)
(x− xf ) + yf . This surface is given by

V ∗
S (g) =

1

2

(
yS − yf − tan(θf +

π

2
)(x− xf )

)2
and K∗ = 0.

The results are demonstrated in Figure 6.7.
The switching strategy between the control inputs is dependent on the error of the

controlled coordinate for that surface. In theory, we switch controls when limt→∞ qi(t) −
qif (t) = 0, for qi ∈ (x, y, θ), however this is not practical numerically, so we define error

bounds, ϵqi ∈ R>0, for the q
i-th coordinate to trigger the switch. These parameters require
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Figure 6.7: Orient-Settle point stabilization technique. For the two phases, a =
{2, 2}, and K∗ = {6, 0}

tuning, but for the sake of this report we do not explore the choice or bounds of these
switching constants. What we note, however, is that we never turn the controls off. They
are only zero at the minimum of V ∗.

Figures 6.7 demonstrates the Orient-Settle control strategy with q0 =
(−6, 4, π3 , 0) and qf = (0, 0, 0, ⋆).4

All trajectories converge to the origin (within their associated error band) for a period
of time. What is observable, however, is the motion away from the origin as time increases.
This indicates the disk is not exactly at the origin (which would make the control inputs
identically zero). Hence, we know we can make the configuration to asymptotically converge
to the origin. In practice, the controls can be turned off when the system is within a
prescribed error bound.

Since this is a dynamic simulation, the system still needs time to converge to the origin
once the controls are zero (or turned off). The dissipative force ensures the convergence of
the system to a minima (in this case the origin). In a kinematic simulation, a control input
of zero would instantaneously stop the disk—a property that is impossible in a physical
system.

6.5.2. Path tracking

In our setting, path tracking is equivalent to the virtual disk rolling along a path in the
plane that is the minimum of a parabola at that point. Without loss of generality, assume
we can define a path in the plane as (x, y = f(x)) ∈ R2, the virtual surface to track that
path V ∗(g) = 1

2 (y − f(x))2−x. Note, we add the −x term to impart a velocity on the disk
in the positive x-direction.5 We test the following paths:

PT-1 A line: Let y = f(x) = 0, then V ∗(g) = 1
2y

2 − x. Let a = 2, and K∗ = 6. Figure 6.8
shows the result of this simulation. It is clear the disk tracks the reference path
(within a certain margin of error).

PT-2 Sine wave: Let y = f(x) = sin(x), then

V ∗(g) =
1

2
(y − sinx)2 − x.

Let a = 2, and K∗ = 6. Figure 6.9 demonstrates the implementation of this path
controller. The disk tracks the overall shape of reference path, but with a lag, due

4Since we are not concerned with the total angle the disk has rolled, ϕf is arbitrary.
5This term can be plane with slope in the direction of the path.
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Figure 6.8: Tracking a straight path (PT-1)
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Figure 6.9: Tracking a sine wave path (PT-2)

to the induction of velocity from the −x term. Decreasing the magnitude of the −x
term decreases the lag error, but the vehicle does not traverse the overall shape as
well.

6.5.3. Obstacle avoidance

Given an object at (xo, yo) ∈ R2, and disk position (x, y) ∈ R2, we can place a multivariate
Gaussian function at the location of obstacle of the form

V ∗(g) =
α

2
exp

(
− 1

β

(
(x− xo)

2 + (y − yo)
2
))

,

where α, β ∈ R are parameters that adjust the overall shape (height and width) of the
function. A Gaussian function has some nice properties that make it a practical function
to use for obstacle avoidance, including:

• the function is continuous;

• the value of the function decays exponentially to zero away from its origin, meaning
far away from the obstacle, there is no contribution to the virtual surface;

• the derivative is easy to compute;

• we can manipulate certain parameters to change the shape and height of the function,
i.e., the contribution to the surface;

• functions can be added linearly, allowing the surface for multiple objects to be deter-
mined efficiently.

Let us place three obstacles at (10, 1), (20,−1), (30, 1), and let α = β = 1. The
resultant virtual surface is

V ∗(g) =
1

2

(
e−((x−1)2+(y−10)2) + e−((x+1)2+(y−20)2) + e−((x−1)2+(y−30)2)

)
− x. (6.5.1)
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Figure 6.10: Obstacle avoidance trajectory

Figure 6.10 demonstrates the result of traversing the surface given by Equation (6.5.1),
again with q0 = (−6, 4, π3 , 0). Again, we add the −x term to impart a velocity on the disk.
We can just as easily make this a function of the path we want the disk track.



Chapter 7

Conclusions and future work

7.1. Conclusions

In this report, we studied the connection between group and base variables in the presence
of nonholonomic constraints. With knowledge of the controllability of a simple rolling
disk, we then presented a framework to design virtual surfaces to achieve some simple, yet
fundamental control tasks. Although there are still many unanswered questions, from this
investigation we can summarize the following:

1. Representing the configuration of a rigid body as a group is a powerful way to de-
termine the constraints, the constrained connection, and ultimately to determine the
controllability of a system. We determine controllability using the Lie algebra rank
condition.

2. The trivial principal bundle is not unique, and the associated connection one-form is
also not unique. It is dependent on the choice of group and base variables and the
corresponding group action. For simple mechanical systems. the most practical (and
natural) principal fibre bundle is the one that separates the base and group variables
by the actuated coordinates. This ensures the group variables are determined uniquely
from the actual control inputs.

3. For any input force on a simple mechanical system, and the resulting external force on
the constrained simple mechanical system is simply the orthogonal projection of the
force. This allows us to use any “force” (whether designed or arbitrary) be a control
input, and the system will satisfy its nonholonomic constraints and move accordingly.
To determine the necessary components of the virtual force, we ensure the virtual
force has dimension equal to the distribution along its trajectory, i.e., in directions
complementary to the virtual potential force.

4. To stabilise the body to a point, the virtual potential function should be a function
of the spatial group coordinates. To orient the body, the virtual potential function
should be a function of the angle of the body.

5. It is possible to achieve point stabilization and path tracking for a rolling disk. The
former cannot be done using a continuous control, but using piecewise continuous
control inputs gives practical results.

53



54 S. M. Kyle

6. The methodology works for avoiding obstacles.

7.2. Future work

In finishing this thesis, we have discovered some interesting geometry between the total
configuration manifold, base space and group manifold and their connection to the distri-
butions. It appears there is much to do to explore the intricacies of the relationships between
their tangent and cotangent spaces in the presence of principal bundles and non-integtrable
distributions. The piece of this puzzle lies with the subgroup H ⊆ G, and therefore the
intersection of TH with the distribution, D.

The one major omission from this report is a stability analysis. We picked a virtual
surface in a logical way to make our system go to “low” areas and avoid “high” areas, but
we never determined the requirements on the surface V ∗ based on a set of stability criteria.
While this is relatively simple to do for our specific running example, a more thorough,
generalized notion of these properties is a dissertation in itself.

Also, stability definitions for nonholonomic systems focus on the system being at an
equilibrium point, a property that is undesirable when dealing with robot motion. An
investigation into relative equilibria is necessary too.

Furthermore, we acknowledge the requirement to understand the switching between
controls in the point stabilization examples. There is an element of sliding mode control
to this, which has been extensively studied in the past, but not investigated or applied in
relation to this application.

Additionally, a case for the need to investigate the optimality of the proposed scheme.
This analysis could yield interesting results since we are dealing with steering the vehicle
to the minima of some virtual potential function.

Finally, investigating this control design strategy on the kinematic car (or bicycle) is
the next progression, as vehicles modelled this way are slated to take over the world.
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