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Abstract

The so-called Fundamental Theorem of Dynamical Systems—which (1) relates at-
tractors and repellers to the chain recurrent set and (2) gives the existence of a complete
Lyapunov function—can be seen as a means of separating out “recurrent” and “tran-
sient” dynamics. An overview of this theorem is given in its various guises, continuous-
time/discrete-time and flows/semiflows. As part of this overview, a unified approach is
developed for working simultaneously with both the continuous-time and discrete-time
frameworks for topological dynamics. Additionally, a complete Lyapunov function is
provided for the first time for continuous-time flows and semiflows.
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1. Introduction

The behaviour of dynamical systems is too complicated to admit any sort of very useful
classification. However, one of the basic sorts of classifications one might seek is to separate
dynamics that is “steady-state” from dynamics that is “transient.” The exact meaning
of “steady state” is rather unclear at the outset, e.g., should it be equilibrium dynamics?
period dynamics? After some thought, it becomes clear that “recurrence” is a good general
concept for capturing “steady-state.” However, there is a hierarchy of notions of recur-
rence, with the most elementary notion being that of a fixed point. As one ascends (or
descends, depending on one’s point of view) through the hierarchy, one naturally wonders
whether the hierarchy has finitely many steps, or whether there are just more and more
subtle notions of recurrence that become increasingly incomprehensible. One way to view
the Fundamental Theorem of Dynamical systems—the term coined by Norton [1995] for
the initial work of Conley [1978]—is that it says that this hierarchy can be terminated with
the notion of recurrence known as “chain recurrence.” Of course, this resolution of the
difference between transient and recurrent dynamics hardly resolves the problem of com-
pletely understanding dynamics: chain recurrent dynamics can be extremely complicated.
Nonetheless, this Fundamental Theorem of Dynamical Systems provides genuine insights
into the general structure of topological dynamical systems.

1.1. Contribution. In this paper, we shall provide a comprehensive overview of chain recur-
rence and the Fundamental Theorem of Dynamical Systems. We feel as if this overview is
warranted because (1) the essential results are scattered across many papers and (2) there
are a few places in the literature where some fundamental misconceptions lead to mis-
leading or erroneous statements. The reason for the theory being scattered across many
papers is simple: the notion of chain recurrence and the statement of the Fundamen-
tal Theorem of Dynamical Systems applies to 2 × 2 = 4 classes of dynamical systems:
continuous-time/discrete-time and flows/semiflows. Sometimes the differences in the way
various classes are handled can be passed off to the Latin abbreviation “cf.” without incur-
ring too much of a loss; typically the differences between “flow” and “semiflow” fall into
this category. Other times, a proof in one case is simply inapplicable to another case; the
construction of a complete Lyapunov function in the discrete-time case being one such ex-
ample since the construction is not immediately helpful in the continuous-time case. What
we wish to do, therefore, is to present the theory in a complete and unified way (as much
as this is possible). Most of the techniques we use will be familiar to those familiar with
the theory. However, we hope that presenting this theory in a unified way will have a per
se benefit.
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1.2. Historical developments. Let us give an historical overview of the development of
this theory. The terminology we use is given precise definitions in Section 2. A reader
completely new to the ideas we present here may benefit from first reading this section. As
we have indicated, the theory is initially given by Conley [1978], working with continuous-
time flows on compact metric spaces. From this initial work, there arises a few natural
extensions: (1) the inclusion of noncompact spaces; (2) the adaptation to discrete-time;
(3) the adaptation to semiflows. Note that extensions (2) and (3) are essential for the
theory to be applied to the important setting of the dynamics of a continuous mapping.
These adaptations were carried out in a series of papers during the 1980’s and 90’s. When
carrying out extensions of Conley’s initial work, there are a few different aspects of the
work that can be extended, and normally these extensions are not carried out together, but
piecemeal. These aspects are the following.

1. Chain recurrence: The Fundamental Theorem of Dynamical Systems is connected with
the particular recurrence notion of chain recurrence. There are different definitions
of chain recurrence, depending on the class of dynamical system with which one is
working. As well, chain recurrence, and particularly the connected notion of chain
transitivity, has its own properties that can be important to understand, independently
of the Fundamental Theorem of Dynamical Systems.

2. The Conley decomposition: Part of the Fundamental Theorem of Dynamical Systems
is a decomposition of the state space into (a) a subset on which the dynamics is chain
recurrent and (b) the complement on which the dynamics is gradient-like.

3. Complete Lyapunov functions: Another part of the Fundamental Theorem of Dynamical
Systems concerns the existence of a complete Lyapunov function that decreases along
trajectories, and is constant on the chain recurrent set.

We shall consider how all three of these aspects have developed, either together or separately.
As we indicated above, chain recurrence is part of a theory of recurrence for topological

dynamical systems. Other notions of recurrence include limit sets, Poincaré recurrent sets,
and nonwandering sets. A notion of “weak nonwandering point” for ordinary differential
equations is introduced by Sharkovskii and Dobrynsky [1973], and this notion can appar-
ently be shown to be equivalent to chain recurrence as introduced by [Conley 1978] (we
have seen this “on the internet” but know of no precise reference). The (fairly straightfor-
ward) adaptation to discrete-time semiflows seems to have first been given by Block and
Franke [1985], where connections to other forms of recurrence is proved in some special
cases. The discrete-time setting is also considered in [Easton 1989] and reflections are made
on numerical aspects of dynamics. An expository presentation is given by [Franks 1988]
that considers chain recurrence in relation to other recurrence notions.

As introduced by Conley, chain recurrence is defined for compact metric spaces. In its
original form, for noncompact spaces the notion of chain recurrence is a metric notion, not
a topological notion. We shall see an instance of this in Example 3.8. An approach to
making the concept less connected to the metric was introduced in [Hurley 1991]. In this
work, the setting is discrete-time semiflows on locally compact metric spaces. As well as
giving a definition of chain recurrence in this setting, Hurley also shows that the Conley
decomposition holds. The local compactness is relaxed to general metric spaces in [Hurley
1992], still in the discrete-time semiflow framework. Also in this work, the existence of a
complete Lyapunov function is proved for locally compact, second countable state spaces.
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The extension to general metric spaces is developed further by Hurley [1995] to include
the continuous-time framework as well as the discrete-time. Additionally, Hurley gives two
useful alternative characterisations of continuous-time chain recurrence; for instance, chain
recurrence for a continuous-time semiflow is related to chain recurrence for its time-one
map. The work [Hurley 1995] contained a few errors that were corrected by [Choi, Chu,
and Park 2002], while introducing a few other errors themselves. We hope we have corrected
these errors in our presentation. The existence of a complete Lyapunov function is proved
by [Hurley 1998] for discrete-time semiflows on separable metric spaces. This is extended
in [Patrão 2011] to the continuous-time case, although the proof has errors that we correct
in our presentation. For flows defined by smooth ordinary differential equations, Hafstein
and Suhr [2021] show the existence of smooth complete Lyapunov functions.

Extensions of chain recurrence and the Fundamental Theorem of Dynamical Systems
beyond the metric space setting are also possible, although we do not consider these in
our overview. A thorough development of these notions for uniform spaces is given in the
manuscript [Akin and Wiseman 2017]. Chain recurrence and related notions are considered
for discrete-time semiflows on arbitrary topological spaces in [Block and Coppel 1992]. This
treatment is extended to continuous-time semiflows in [Oprocha 2005]. An “open cover”
framework for chain recurrence is presented by Patrão and San Martin [2006].

Recent developments in the concepts of chain recurrence and the Fundamental Theo-
rem of Dynamical Systems include the applications to linear dynamical systems, including
those in infinite-dimensions [Antunes, Mantovani, and Varão 2022, Bernardes Jr and Peris
2024], control theory [Colonius, Santana, and Viscovini 2024], and hybrid dynamical sys-
tems [Kvalheim, Gustafson, and Koditschek 2021].

2. Dynamical systems and related concepts

In this section, we give our definitions for the classes of dynamical systems we use
throughout the paper, as well as a few of the concepts from topological dynamics to which we
refer. As the reader will see, we unite the continuous- and discrete-time in our presentation
as much as this is possible. This has a variety of conceptual benefits. We do not, however,
go as far as Akin [1993] who uses general relations in place of continuous- and discrete-time.

2.1. Flows and semiflows. We use the symbol T to stand for either R or Z. If we do not
explicitly specify, we intend that T can be either of the two possibilities. For t0 ∈ T and
for an interval I ⊆ R, We denote

T>t0 = {t ∈ T | t > t0},
T≥t0 = {t ∈ T | t ≥ t0},
T<t0 = {t ∈ T | t < t0},
T≤t0 = {t ∈ T | t ≤ t0},
TI = {t ∈ T | t ∈ I}.

Let us give the definition of the dynamical systems we work with.
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2.1 Definition: (Flow, semiflow) Let (X,O ) be a topological space.

(i) A topological semiflow on X is a continuous mapping Φ: T≥0 × X → X satisfying

(a) Φ(0, x) = x, x ∈ X, and

(b) Φ(t1,Φ(t2, x)) = Φ(t1 + t2, x), t1, t2 ∈ T≥0, x ∈ X.

(ii) A topological flow on X is a continuous mapping Φ: T × X → X satisfying

(a) Φ(0, x) = x, x ∈ X, and

(b) Φ(t1,Φ(t2, x)) = Φ(t1 + t2, x), t1, t2 ∈ T, x ∈ X.

If T = R, the topological semiflow or flow is continuous-time , and otherwise it is
discrete-time . •

2.2 Remark: (Discrete-time flows and semiflows) Discrete-time flows and semiflows
correspond to the dynamics of continuous mappings and homeomorphisms, respectively.

1. If Φ is a discrete-time topological semiflow, then we can define ϕ(x) = Φ(1, x) and easily
very that

Φ(t, x) = ϕt(x) ≜ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
t times

(x), (t, x) ∈ Z≥0 × X,

where it is understood that ϕ0 = idX.

2. Similarly, if Φ is a discrete-time topological flow and if ϕ(x) = Φ(1, x), then ϕ is an
homeomorphism with ϕ−1(x) = Φ(−1, x). Here we have Φ(t, x) as above for t ∈ Z≥0,
and

Φ(−t, x) = ϕ−t(x) ≜ ϕ−1 ◦ · · · ◦ ϕ−1︸ ︷︷ ︸
t times

(x), (t, x) ∈ Z≥0 × X,

Note that our use of “flow” or “semiflow” in the discrete-time case is nonstandard. However,
there is a unifying benefit to using the same terminology for both the continuous- and
discrete-time settings. •

There are somewhat surprising relationships between chain recurrence for a continuous-
time flow or semiflow, and chain recurrence for the discrete-time flow or semiflow defined
by its time-one map. For this reason, we make the following definition.

2.3 Definition: (Time-T discretisation of continuous-time flow or semiflow) Let
(X,O ) be a topological space and let Φ be a topological continuous-time topological flow
(resp. semiflow) on S. The T -discretisation of Φ is the discrete-time topological flow
(resp. semiflow) Φd,T on X defined by requiring that

Φd,T (1, x) = Φ(T, x), x ∈ X,

cf. Remark 2.2. •
It is evident that, if Φ is a topological flow, then its restriction to T≥0×X is topological

semiflow. If Φ is a topological flow (resp. semiflow) and if t ∈ T (resp. t ∈ T≥0), then we
have the homeomorphism (resp. continuous mapping)

Φt : X → X

x 7→ Φ(t, x).
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In like manner, if x ∈ X, then
Φ+,x : T≥0 → X

t 7→ Φ(t, x)

is the forward trajectory of x and, if Φ is a flow, then

Φx : T → X

t 7→ Φ(t, x)

is the trajectory of x.
Let us also define the notion of orbits.

2.4 Definition: (Orbit, forward orbit, backward orbit) Let (X,O ) be a topological
space and let Φ be a topological flow or semiflow on X. Let A ⊆ X.

(i) The forward orbit of A is

Orb+(A) = {Φ(t, x) | t ∈ T≥0, x ∈ A}.

(ii) The backward orbit of A is

Orb−(A) = {x ∈ X | Φ(t, x) ∈ A for some t ∈ T≥0}.

If Φ is a topological flow, then

(iii) the orbit of A is
Orb(A) = {Φ(t, x) | t ∈ T, x ∈ A}. •

If A = {x} for some x ∈ X, we abbreviate

Orb+(x) = Orb+({x}), Orb−(x) = Orb−({x}), Orb(x) = Orb({x}).

Note that, for a topological flow Φ, the backward orbit of A is

Orb−(A) = {Φ(t, x) | t ∈ T≤0, x ∈ A}.

The difference in how one should view the backward orbit for a flow and a semiflow will
come up in our treatment of the Conley decomposition.

We shall make use of the following invariance notions.

2.5 Definition: (Invariant, forward-invariant) Let (X,O ) be a topological space and
let Φ be a topological flow or semiflow. Let A ⊆ X.

(i) The set A is forward-invariant for Φ if Orb+(A) ⊆ A.

(ii) If Φ is a flow, the set A is invariant for Φ if Orb(A) ⊆ A. •
The following elementary lemma will account for some differences in how certain proofs

work for flows versus semiflows.
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2.6 Lemma: (Invariance of the complement of an invariant set) Let (X,O ) be a
topological space and let Φ be a topological flow on X. If A ⊆ X is invariant for Φ, then
X \A is invariant for Φ.

Proof: Let x ∈ X \A and let t ∈ T. If Φ(t, x) ∈ A, then x = Φ(−t, x) ∈ A by invariance of
A. Therefore, we must have Φ(t, x) ∈ X \A. ■

Note that the lemma is false for forward-invariance and semiflows; think of a semiflow
for which every trajectory ends up at a fixed point in finite time.

2.2. Attracting sets, repelling sets, and basins. The Conley decomposition relates the
chain recurrent set (which we define in Section 3) to attracting sets and their basins (for
semiflows) or attracting sets and repelling sets (for flows), In this section we introduce the
necessary terminology.

2.7 Definition: (Trapping region) Let (X,O ) be a topological space and let Φ be a
topological flow or semiflow on X. A nonempty subset T ⊆ X is a trapping region for Φ
if there exists T ∈ T>0 such that

cl(Φ(T≥T × T)) ⊆ int(T). •

2.8 Remark: (Trapping regions in particular cases) Different definitions and termi-
nology can be found for what we call a trapping region. For the continuous-time case,
sometimes “preattractor” is used. In the discrete-time case, the terminology “attractor
block” is sometimes used. Again, we prefer unified terminology. Let us also examine more
serious differences in the definitions that can be found in the literature.

1. Note that, in the discrete-time case, our definition of a trapping region is not the
usual definition. The usual definition in the discrete-time case is that cl(Φ1(T)) ⊆
int(T). We shall call a subset T a strong trapping region for the discrete-time flow
or semiflow Φ. Note that a strong trapping region is a trapping region. Note, also, that
a strong trapping region is forward-invariant, which leads to some simplifications for
strong trapping regions compared to trapping regions. It is easy to build examples for
which the two definitions of trapping region are not the same.

2. Somewhat in keeping with the notion of a strong trapping region in the discrete-time
case, one can consider a notion of trapping region in the continuous-time case where the
requirement is that there exists T ∈ R>0 such that cl(ΦT (T)) ⊆ int(T). In the case when
X is compact, this condition agrees with our notion of a trapping region. This is proved
for flows by Conley [1978, page 33, C]; we prove this here for semiflows as well. Let
T ∈ R>0 be such that cl(ΦT (T)) ⊆ int(T). Because metric spaces are normal [Willard
1970, Example 15.3(c)], let N be an open set for which

ΦT (cl(T)) ⊆ cl(ΦT (T)) ⊆ N ⊆ cl(N) ⊆ int(T).

Note that ΦT (T) is compact, being a closed subset of a compact space. By this com-
pactness and by the continuity of the dynamics, there exists δ ∈ R>0 such that

Φ((T − δ, T + δ)× cl(T)) ⊆ N.
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Let T ′ = T
2δ . If t ≥ T ′, then t is a finite sum t = t1 + · · ·+ tk where tj ∈ (T − δ, T + δ),

j ∈ {1, . . . , k}. Note that

Φtk(cl(T)) ⊆ N ⊆ int(T) ⊆ cl(T).

Thus
Φtk−1

◦ Φtk(cl(T)) ⊆ Φtk−1
(cl(T)) ⊆ N ⊆ int(T) ⊆ cl(T).

Inductively,
Φt(cl(T)) = Φt1 ◦ Φt2 ◦ Φtk(cl(T)) ⊆ Φt1(cl(T)) ⊆ N.

Therefore,

cl(Φ([T ′,∞)× T)) ⊆ cl

 ⋃
t∈[T ′,∞)

Φt(T)


⊆ cl

 ⋃
t∈[T ′,∞)

Φt(cl(T))


⊆ cl(N) ⊆ int(T),

and so T is a trapping region.

Hurley [1995, Example 1] gives a simple continuous-time flow which shows that com-
pactness is required for this assertion. •
Trapping regions give rise to attracting sets and (in the case of flows) repelling sets. Note

that we refrain from calling these “attractors” and “repellers” since one normally wants to
reserve this terminology for attracting sets and repelling sets with some minimality or
transitivity property.

2.9 Definition: (Attracting set, repelling set) Let (X,O ) be a topological space and
let Φ be a topological flow or semiflow.

(i) An attracting set for Φ is a subset A such that there exists a trapping region T for
which

A =
⋂

t∈T≥0

cl(Φ(T≥t × T)).

Suppose now that Φ is a flow.

(ii) A repelling set for Φ is a subset R such that there exists a trapping region T for
which

R =
⋂

t∈T≤0

cl(Φ(T≤t × (X \ T))).

(iii) An attracting-repelling pair for Φ is a pair (A,R) of subsets such that there exists
a trapping region T for which

A =
⋂

t∈T≥0

cl(Φ(T≥t × T)), R =
⋂

t∈T≤0

cl(Φ(T≤t × (X \ T))). •

If we wish to indicate that an attracting set or a repelling set comes from a particular
trapping region T, we may write AT or RT, respectively. It is entirely possible that attracting
and repelling sets may be empty.



The Fundamental Theorem of Dynamical Systems 9

2.10 Examples: (Attracting and repelling sets)

1. Let X = [0, 1] and let Φ be the continuous-time flow on X obtained by restricting to X

the flow associated with the ordinary differential equation

ẋ(t) = x(t)(1− x(t))

for on R. Then the trapping region T = (12 , 1] has the attracting set AT = {1} and the
repelling set RT = {0}.

2. On X = (−∞, 0], consider the continuous-time flow Φ(t, x) = xe−t. Then the trapping
region T = (−1, 0] has the attracting set AT = {0} and the repelling set RT = ∅.

3. On X = [0,∞), consider the continuous-time flow Φ(t, x) = xet. Then the trapping
region T = (1,∞) has the attracting set AT = ∅ and the repelling set RT = {0}.

4. On X = R, consider the continuous-time flow Φ(t, x) = x+ t. Then the trapping region
T = (0,∞) has the attracting set AT = ∅ and the repelling set RT = ∅. •
Let us show that trapping regions can be taken to be either open or closed.

2.11 Proposition: (Trapping regions can be taken to be open or closed) Let (X,O )
be a topological space and let Φ be an autonomous topological flow or semiflow. If T is a
trapping region, then

AT = Acl(T) = Aint(T).

If Φ is a flow, then
RT = Rcl(T) = Rint(T).

Proof: First we show that int(T) and cl(T) are trapping regions. Let T ∈ T>0 be such that

cl(Φ(T≥T × T)) ⊆ int(T).

This, in particular, implies that

cl(Φ(T≥T × int(T))) ⊆ int(T)

and

cl(Φ(T≥T × cl(T))) ⊆ cl(cl(Φ(T≥T × T))) = cl(Φ(T≥T × T)) ⊆ int(T) ⊆ int(cl(T)),

which shows that int(T) and cl(T) are indeed trapping regions.
Now note that

ΦT (cl(T)) ⊆ cl(Φ(T≥T × T)) ⊆ int(T),

and so
ΦT+t(cl(T)) = Φt(ΦT (cl(T))) ⊆ Φt(int(T)), t ∈ T≥0.

Now calculate

AT =
⋂

t∈T≥0

cl(Φ(T≥t × T)) ⊆
⋂

t∈T≥0

cl(Φ(T≥t × cl(T)))

⊆
⋂

t∈T≥0

cl(Φ(T≥T+t × cl(T))) ⊆
⋂

t∈T≥0

cl(Φ(T≥t × int(T))) ⊆ AT,
(2.1)
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and so, in particular,

AT =
⋂

t∈T≥0

cl(Φ(T≥t × cl(T))) =
⋂

t∈T≥0

cl(Φ(T≥t × int(T))),

which is the first part of the result.
For the second, note that cl(ΦT (A)) = ΦT (cl(A)) and int(ΦT (A)) = ΦT (int(A)) for any

A ⊆ X since ΦT is an homeomorphism when Φ is a flow. Also note that ΦT (X \ A) =
X \ ΦT (A) for any A ⊆ X since ΦT is a bijection. Therefore,

cl(ΦT (T)) ⊆ int(T) =⇒ X \ int(T) ⊆ X \ cl(ΦT (T)) = int(X \ ΦT (T))

= int(ΦT (X \ T)) = ΦT (int(X \ T)).

Therefore,
Φ−T (cl(X \ T)) = Φ−T (X \ int(T)) ⊆ int(X \ T).

Thus, by a modification of the arguments in the previous part of the proof, we have

RT =
⋂

t∈T≤0

cl(Φ(T≤t × (X \ T))) ⊆
⋂

t∈T≤0

cl(Φ(T≤t × (X \ int(T))))

⊆
⋂

t∈T≤0

cl(Φ(T≤t−T × (cl(X \ T)))) ⊆
⋂

t∈T≤0

cl(Φ(T≤t × (int(X \ T)))) ⊆ RT,

giving the result for repelling sets. ■

The definitions of attracting sets and repelling sets suggest a “duality” between these
notions, depending on whether time goes forwards or backwards. The following result
makes this suggestion precise. We denote by Φσ the time-reversed flow of a flow Φ defined
by Φσ(t, x) = Φ(−t, x).

2.12 Proposition: (Attracting sets as repelling sets, and vice versa) Let (X, d) be a
metric space and let Φ be a topological flow on X. If T is a trapping region with attracting-
repelling pair (A,R), then X \ T is a trapping region for Φσ and (R,A) is the attracting-
repelling pair associated to X \ T.

Proof: Let T ∈ T>0 be such that cl(Φ(T≥T × T)) ⊆ int(T). Denote

N = X \ cl

 ⋃
t∈T[0,T ]

Φ−t(T)

 .

The following facts about N are useful.

1 Lemma: The following statements hold:

(i) cl(N) ⊆ int(X \ T);
(ii) Φ−t(X \ int(T)) ⊆ N, t ∈ T≥2T .

Proof: (i) Since metric spaces are normal [Willard 1970, Example 15.3(c)], let N′ be an
open set such that

ΦT (cl(T)) ⊆ N′ ⊆ cl(N′) ⊆ T.
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Thus
cl(T) ⊆ Φ−T (N

′) ⊆ cl(Φ−T (N
′)) ⊆ Φ−T (T),

and so

X \ cl(T) ⊇ X \ Φ−T (N
′) ⊇ X \ Φ−T (T) ⊇ X \ cl

 ⋃
t∈T[0,T ]

Φ−t(T)

 = N.

Since the set X \ Φ−T (N
′) is closed, we obtain

cl(N) ⊆ X \ cl(T) = int(X \ T),

as desired.
(ii) Let t ∈ T≥2T . Then

Φt(X \N) = cl

Φt

 ⋃
t′∈T[0,T ]

Φ−t′(T)

 = cl

 ⋃
t′∈T[0,T ]

Φt−t′(T)


⊆ cl

 ⋃
s∈T≥T

Φs(T)

 ⊆ int(T);

here we have used the fact that Φt commutes with closure since it is an homeomorphism
and commutes with union since it is a bijection. Therefore,

X \N ⊆ Φ−t(int(T)) = X \ (X \ Φ−t(int(T))),

whereupon Φ−t(X \ int(T)) ⊆ N, as claimed. ▼

The proof of the proposition is now straightforward. First of all

cl(Φσ(T≥2T × (X \ T))) ⊆ cl

 ⋃
t∈T≤−2T

Φt(X \ T)


⊆ cl

 ⋃
t∈T≤−2T

Φt(cl(X \ T))


= cl(N) ⊆ int(X \ T),

which shows that X \ T is a trapping region for Φσ. Also,

AT =
⋂

t∈R≥0

Φt(T) =
⋂

t∈R≤0

Φ−t(X \ (X \ T)) = RX\T

and
RT =

⋂
t∈R≤0

Φt(X \ T) =
⋂

t∈R≥0

Φ−t(X \ T) = AX\T,

where AX\T andRX\T denote the attracting and repelling sets, respectively, for Φσ associated
to the trapping region X \ T. ■

The following properties of attracting and repelling sets will be used.
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2.13 Proposition: (Properties of attracting and repelling sets) Let (X,O ) be a topo-
logical space and let Φ be a topological flow or semiflow. Let A ⊆ X be an attracting set
and, when Φ is a flow, let R be a repelling set. Then the following statements hold:

(i) A is closed;

(ii) if Φ is a flow, then A and R are closed;

(iii) A and R (resp. A) are invariant (resp. forward-invariant).

Proof: (i) and (ii) follow since A is (or A and R are) an intersection of closed sets.
(iii) We let T be a trapping region with attracting set A. Let x ∈ A and let s ∈ T≥0.

Then, for t ∈ T≥0, we have x ∈ cl(Φ(T≥t × T)). Since

Φs(cl(Φ(T≥t × T))) ⊆ cl(Φs(Φ(T≥t × T))) = cl(Φ(T≥s+t × T)),

we have Φs(x) ∈ cl(Φ(T≥s+t × T)). As this holds for every t ∈ T≥0, we have

Φs(x) ∈
⋂

t∈T≥0

cl(Φ(T≥s+t × T)) = A.

Thus A is always forward-invariant.
Now suppose that Φ is a flow and let s ∈ T<0. In this case, for t ∈ T≥0, we have

x ∈ cl(Φ(T≥t−s × T)). Since

Φs(cl(Φ(T≥t−s × T))) ⊆ cl(Φs(Φ(T≥t−s × T)) = cl(Φ(T≥t × T)),

we have Φs(x) ∈ cl(Φ(T≥t × T)). As this holds for every t ∈ T≥0, we have

Φs(x) ∈
⋂

t∈T≥0

cl(Φ(T≥t × T)) = A.

One similarly shows that R is invariant in case Φ is a flow. ■

Of course, the notion of a repelling set is not applicable to semiflows, by our definition.
However, sometimes it is useful to think of X \ Orb−(T) as being the “repelling set” for a
trapping region T. The following simple lemma indicates that this is a reasonable way to
think of repelling sets for semiflows.

2.14 Lemma: (A characterisation of repelling sets) Let (X,d) be a metric space and
let Φ be a topological flow on X. If T is an open trapping region with attracting-repelling
pair (A,R), then R = X \Orb−(T).

Proof: If x ∈ R and t ∈ T≥0, then Φ(t, x) ∈ R by Proposition 2.13(iii). Since R ⊆ X \ T,
Φ(t, x) ̸∈ T and so x ̸∈ Orb−(T). Next let x ̸∈ R and let t ∈ T≥0. Since Φ is a flow (and so
Φt is an homeomorphism for all t ∈ T) and since X \ T is closed, we have

R =
⋂

s∈T≤0

Φ(T≤s × (X \ T)).

Thus x ̸∈ Φ−t(X \ T). However, X is the disjoint union of Φ−t(X \ T) and Φ−t(T) (again
since Φ is a flow). Therefore, x ∈ Φ−t(T) ⊆ Orb−(T). ■



The Fundamental Theorem of Dynamical Systems 13

3. Chains, chain recurrence, and chain equivalence

In this section we define chains and associated notions such as chain recurrence and chain
equivalence. We begin by enumerating useful properties of so-called error functions, and
then, after introducing the definitions for chains and related notions, give the proof of Hurley
[1995] of equivalent characterisations of chain equivalence. Hurley actually characterises
chain recurrence, but the proofs can be adapted to chain equivalence. Moreover, we shall see
that these characterisations of chain equivalence are essential to our proof of the existence
of complete Lyapunov functions for continuous-time flows and semiflows.

3.1. Error functions. The important observation of [Hurley 1992] was that one can replace
the constant ϵ’s in the usual definition of chain recurrence (see the definitions below) with
positive continuous functions. The use of nonconstant functions, in combination with the
metric, is reminiscent of the construction of the so-called fine topology for the space of
continuous functions on a metric space [McCoy, Kundu, and Jindal 2018]. In this section
we collect a few useful technical results for positive continuous functions.

First we give a descriptive name to the set positive continuous functions. By C0(A;B),
we denote the space of continuous functions from the topological space A to the topological
space B.

3.1 Definition: (Error function) For a topological space (X,O ), an error function is
an element of C0(X;R>0). •

Our first result is a general result concerning approximations of semicontinuous functions
by continuous function.

3.2 Lemma: (Bounding upper and lower semicontinuous functions by continuous
functions) Let (X,O ) be a paracompact topological space and let f, f : X → R be upper

(resp. lower) semicontinuous functions satisfying f(x) < f(x), x ∈ X. Then there exists a
continuous function f : X → R such that

f(x) < f(x) < f(x), x ∈ X.

Proof: For q ∈ Q, denote

Oq = {x ∈ X | f < q} ∪ {x ∈ X | f(x) > q},

this set being open. Since, for each x ∈ X, there exists q ∈ Q such that f(x) < q < f(x), it
follows that (Oq)q∈Q is an open cover of X. Let (ϕq)q∈Q be a partition of unity subordinate
to (Oq)q∈Q and define f =

∑
q∈Q qϕq. By local finiteness, f is continuous. Also, for x ∈ X,

let q1, . . . , qk ∈ Q be such that x ∈ supp(ϕq) if and only if q ∈ {q1, . . . , qk}. Therefore,
x ∈ ∩k

j=1Oqj and so f(x) < qj < f(x), j ∈ {1, . . . , k}. Therefore,

f(x) = f(x)

k∑
j=1

ϕqj (x) <

k∑
j=1

qjϕqj (x) = f(x) < f(x)

k∑
j=1

ϕqj (x) = f(x),

as desired. ■

Next we give a sort of approximation lemma for functions in C0(X;R>0). For a metric
space (X, d), Bd(r, x) denotes the ball of redius r ∈ R>0 centred at x ∈ X.
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3.3 Lemma: (Approximation in C0(X;R>0)) Let (X, d) be a metric space. Then, for
ε ∈ C0(X;R>0), there exists δ ∈ C0(X;R>0) such that

d(x, y) < δ(x) =⇒ 1
2ε(x) < ε(y) < 3

2ε(x).

Proof: First we give a δ that gives rise to the lower bound. Let β : X → R>0 be defined by

β(x) = sup{η ∈ R>0 | there exists α ∈ (12 , 1) such that d(x, y) < η =⇒ ε(y) > αε(x)}.

Fix α ∈ (12 , 1) so that αε(x) < ε(x) for x ∈ X. By continuity of ε at x ∈ X, there exists
η ∈ R>0 be such that

d(x, y) < η =⇒ ε(y) < αε(x).

Therefore, β(x) ≥ η > 0.
We claim that β is lower semicontinuous. Let x ∈ X and let a < β(x). By definition of

β, let η ∈ R>0 be such that a < η and such that there exists α ∈ (12 , 1) for which

d(x, y) < η =⇒ ε(y) > αε(x).

Let γ ∈ (12 , α). Since γ < α, γ−1(α − γ)ε(x) > 0. Let ξ ∈ (0, γ−1(γ − α)ε(x)). Let V be a
neighbourhood of x such that

y ∈ V =⇒ ε(y) < ε+ ξ.

Then we compute, for y ∈ V,

γε(y) < γε(x) + γξ < γε(x) + (γ − α)ε(x) = αε(x). (3.1)

Let ζ ∈ (a, η) and let r ∈ (0, η − ζ) be sufficiently small that U ≜ Bd(r, x) ⊆ V. We claim
that, if y ∈ U, then Bd(ζ, y) ⊆ Bd(η, x). Indeed, let y ∈ U and let z ∈ Bd(ζ, y). Then

d(x, z) ≤ d(x, y) + d(y, z) ≤ r + ζ < η − ζ + ζ = η,

as claimed. Thus, if y ∈ U and if z ∈ Bd(y, ζ), then d(x, z) < η implying that ε(z) > αε(x).
Let y ∈ U ⊆ V. Then, as in (3.2), γε(y) < αε(x), which immediately gives ε(z) > γε(y).
Since γ ∈ (0, 12), the definition of β implies that we must have β(y) ≥ ζ > a. This gives the
claimed lower semicontinuity of β.

By Lemma 3.2, let δ ∈ C0(X;R>0) be such that δ(x) ∈ (0, β(x)) for x ∈ X. The
definition of β then implies that there exists η ∈ R>0 such that δ(x) < η and such that

d(x, y) < η =⇒ ε(y) > α(x)

for some α ∈ (12 , 1). Thus we have

d(x, y) < δ(x) < η =⇒ ε(y) > αε(x) > 1
2ε(x),

as desired.
Now we give δ that gives rise to the upper bound. The argument is similar to that in

the first part of the proof, but we give it for completeness. Let β : X → R>0 be defined by

β(x) = sup{η ∈ R>0 | there exists α ∈ (1, 32) such that d(x, y) < η =⇒ ε(y) < αε(x)}.
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Let α ∈ (1, 32). Since ε is continuous at x ∈ X, there exists η ∈ R>0 be such that

d(x, y) < η =⇒ ε(y) < αε(x).

By definition of β, we have β(x) ≥ η > 0.
We claim that β is lower semicontinuous. Let x ∈ X and let a < β(x). By definition of

β, let η ∈ R>0 be such that a < η and such that there exists α ∈ (1, 32) for which

d(x, y) < η =⇒ ε(y) < αε(x).

Let γ ∈ (α, 32). Since γ > α, γ−1(γ − α)ε(x) > 0. Let ξ ∈ (0, γ−1(γ − α)ε(x)). Let V be a
neighbourhood of x such that

y ∈ V =⇒ ε(y) > ε− ξ.

Then we compute, for y ∈ V,

γε(y) > γε(x)− γξ > γε(x)− (γ − α)ε(x) = αε(x). (3.2)

Let ζ ∈ (a, η) and let r ∈ (0, η − ζ) be sufficiently small that U ≜ Bd(r, x) ⊆ V. We claim
that, if y ∈ U, then Bd(ζ, y) ⊆ Bd(η, x). Indeed, let y ∈ U and let z ∈ Bd(ζ, y). Then

d(x, z) ≤ d(x, y) + d(y, z) ≤ r + ζ < η − ζ + ζ = η,

as claimed. Thus, if y ∈ U and if z ∈ Bd(y, ζ), then d(x, z) < η implying that ε(z) < αε(x).
Let y ∈ U ⊆ V. Then, as in (3.2), αε(x) < γε(y), which immediately gives ε(z) < γε(y).
Since γ ∈ (1, 32), the definition of β implies that we must have β(y) ≥ ζ > a. This gives the
claimed lower semicontinuity of β.

By Lemma 3.2, let δ ∈ C0(X;R>0) be such that δ(x) ∈ (0, β(x)) for x ∈ X. The
definition of β then implies that there exists η ∈ R>0 such that δ(x) < η and such that

d(x, y) < η =⇒ ε(y) < α(x)

for some α ∈ (1, 32). Thus we have

d(x, y) < δ(x) < η =⇒ ε(y) < αε(x) < 3
2ε(x),

as desired.
By choosing the min of the δ’s giving rise to the lower and upper bound, we can ensure

a δ that simultaneously gives rise to both bounds. ■

Next we show how a positive function behaves under continuous maps. The proof has
an entirely similar flavour to the preceding lemma.

3.4 Lemma: (Positive continuous functions and continuous mappings of metric
spaces) Let (X, d) and (X′, d′) be metric spaces and let ϕ ∈ C0(X;X′). Then, for ε ∈
C0(X′;R>0), there exists δ ∈ C0(X;R>0) such that

d(x, y) < δ(x) =⇒ d′(ϕ(x), ϕ(y)) < ε(ϕ(x)).
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Proof: For x ∈ X, define

β(x) = sup{η ∈ R>0 | there exists α ∈ (0, ε(ϕ(x))) such that ϕ(Bd(η, x)) ⊆ Bd′(α, ϕ(x))},

this making sense by continuity of ϕ. Let x ∈ X and let α ∈ (0, ε(ϕ(x))). Then there exists
η ∈ R>0 such that

ϕ(Bd(η, x) ⊆ Bd′(α, ϕ(x)),

and so we can conclude that β(x) ≥ η > 0.
Now we shall show that β is lower semicontinuous. Let x ∈ X and let a < β(x). Let

η ∈ R>0 satisfy a < η and
ϕ(Bd(η, x)) ⊆ Bd′(α, ϕ(x))

for some α ∈ (0, ε(ϕ(x))). Let γ ∈ (α, ε(ϕ(x))). By continuity of ϕ and ε ◦ ϕ, let U be a
neighbourhood of x such that

1. d(ϕ(x), ϕ(y)) < γ − α and

2. ε(ϕ(y)) > γ

for y ∈ U. Let y ∈ U. Note that

d(z, ϕ(x)) < α =⇒ d(z, ϕ(y)) ≤ d(ϕ(x), ϕ(y)) + d(ϕ(x), z) < γ − α+ α = γ,

whence Bd′(α, ϕ(x)) ⊆ Bd′(γ, ϕ(y)). Next choose ξ ∈ (a, η) and choose b ∈ (0, η− ξ) so that
Bd(b, x) ⊆ U. For y ∈ U we have

d(z, y) < ξ =⇒ d(z, x) ≤ d(x, y) + d(y, z) < b+ ξ < η − ξ + ξ = η,

whereupon Bd(ξ, y) ⊆ Bd(η, x). We also have

ϕ(Bd(ξ, y)) ⊆ ϕ(Bd(η, x)) ⊆ Bd′(α, ϕ(x)) ⊆ Bd′(γ, ϕ(y)).

From this we deduce that β(y) ≥ ξ > a, which gives lower semicontinuity of β.
By Lemma 3.2, let δ ∈ C0(X;R>0) be such that δ(x) ∈ (0, β(x)) for x ∈ X. Let x ∈ X.

Since δ(x) < β(x), there exists η ∈ R>0 such that δ(x) < η and

ϕ(Bd(η, x)) ⊆ Bd′(α, ϕ(x))

for some α ∈ (0, ε(ϕ(x))). Then we have

d(x, y) < δ(x) =⇒ y ∈ Bd(η, x),

which in turn gives

ϕ(y) ∈ ϕ(Bd(η, x)) ⊆ Bd′(α, ϕ(x)) =⇒ d′(ϕ(y), ϕ(x)) < α < ε(ϕ(x)),

as desired. ■

Our final technical lemma that is of interest to us is the following.
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3.5 Lemma: (Approximation in C0(X;R) along trajectories) Let (X, d) be a metric
space and let Φ be a topological flow or semiflow on X. Let ε ∈ C0(X;R>0) and T ∈ T>0.
Then there exists δ ∈ C0(X;R>0) such that

d(x, y) < δ(x) =⇒ d(Φ(t, x),Φ(t, y)) < ε(Φ(t, x)), t ∈ T[0,T ].

Proof: We record a lemma (sometimes referred to as the integral continuity condition) for
use later in the proof.

1 Sublemma: Let (X, d) be a metric space and let Φ be a topological flow or semiflow on
X. Let x1 ∈ X and T ∈ T>0. Then, for ϵ ∈ R>0, there exists δ ∈ R>0 such that

d(x1, x2) < δ =⇒ d(Φ(t, x1),Φ(t, x2)) < ϵ, t ∈ T[0,T ].

Proof: For concreteness, we suppose that Φ is a semiflow. For flows, the proof is the same,
with the only change being the domain of Φ.

Let ϵ ∈ R>0, let x1 ∈ X, and let T ∈ T>0. Note that

(t, x2) 7→ d(Φ(t, x1),Φ(t, x2))

is continuous since it is a composition of the continuous maps

T≥0 × X ∋ (t, x2) 7→ (t, (t, x2)) ∈ T≥0 × (T≥0 × X),

(s, (t, x2)) 7→ (Φ(s, x1),Φ(t, x2)),

X× X ∋ (y1, y2) 7→ d(y1, y2) ∈ R≥0.

For each t ∈ T[0,T ], there is a neighbourhood Ut of x1 and an open (relatively in T) interval
It around t such that

d(Φ(s, x),Φ(s, x1)) < ϵ, (s, x) ∈ It × Ut,

by continuity. Note that (It)t∈T[0,T ]
is an open cover of T[0,T ] and so there exist t1, . . . , tk ∈

T[0,T ] such that T[0,T ] ⊆ ∪tjItj . Let U = ∩k
j=1Utj . For t ∈ T[0,T ] and x2 ∈ U, we have

(t, x2) ∈ Itj × Utj for some j ∈ {1, . . . , k}, whence

d(Φ(t, x1),Φ(t, x2)) < ϵ.

The result follows by taking δ sufficiently small that Bd(δ, x1) ⊆ U. ▼

For x, y ∈ X, denote
Mx = inf{ε(Φ(t, x)) | t ∈ T[0,T ]}

and
ρ(x, y) = sup{d(Φ(t, x),Φ(t, y)) | t ∈ T[0,T ]},

and define β : X → R>0 by

β(x) = sup{η ∈ R>0 | there exists α ∈ (0, 1) such that d(x, y) < η =⇒ ρ(x, y) < αMx}.

Let α ∈ (0, 1) so αMx > 0. Let η ∈ R>0 be such that

d(x, y) < η =⇒ d(Φ(t, x),Φ(t, y)) < αMx, t ∈ T[0,T ];
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this is possible by Sublemma 1. Note that, if ρ(x, y) < αMx, then β(x) ≥ η > 0 by
definition of β.

We claim that β is lower semicontinuous. Let x ∈ X and let a < β(x). By definition of
β, let η ∈ R>0 satisfy a < η and satisfy

d(x, y) < η =⇒ ρ(x, y) < αMx

for some α ∈ (0, 1).
We claim that, for ζ ∈ R>0, there exists a neighbourhood V of x such that

ε(Φ(t, x))− ζ < ε(Φ(t, y)) < ε(Φ(t, x)) + ζ, (t, y) ∈ T[0,T ] × V.

To see this, note that continuity of ε◦Φ implies that, for t ∈ T[0,T ], there is a neighbourhood
Vt of x and an open (relatively in T) set It about t such that

|ε(Φ(t, x))− ε(Φ(s, y))| < ζ

2
, (s, y) ∈ It × Vt.

By compactness of T[0,T ], let t1, . . . , tk ∈ T[0,T ] be such that T[0,T ] ⊆ ∪k
j=1Itj . Denote

V = ∩k
j=1Vtj . Let (t, y) ∈ T[0,T ] × V. Then t ∈ Itj for some j ∈ {1, . . . , k}. We also have

x, y ∈ Vtj . Then

|ε(Φ(tj , x))− ε(Φ(t, x))|, |ε(Φ(tj , x))− ε(Φ(t, y))| < ζ

2
=⇒ |ε(Φ(t, y))− ε(Φ(t, x))| < ζ,

establishing our claim.
Let γ, κ ∈ R>0 satisfy

0 < α < γ < κ < 1,
κ− γ

κ
Mx > 0.

As per the preceding paragraph, there exists a neighbourhood V of x such that, for (t, y) ∈
T[0,T ] × V,

ε(Φ(t, y)) > ε(Φ(t, x))− κ− γ

κ
Mx

≥ Mx −
κ− γ

κ
Mx =

γ

κ
Mx.

This gives the inequalities

My >
γ

κ
Mx =⇒ γMx < θMy, (γ − α)Mx > 0 (3.3)

for y ∈ V.
Since γ − α ∈ (0, 1), let ξ ∈ R>0 be such that

d(x, y) < ξ =⇒ ρ(x, y) < (γ − α)Mx;

as above, this is possible by Sublemma 1.
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Let ζ ∈ R>0 be such that, if 0 < r < min{η − ζ, ξ}, then U ≜ Bd(r, x) ⊆ V. We claim
that Bd(ζ, y) ⊆ Bd(η, x) if y ∈ U. Indeed, if d(y, z) < ζ, then

d(x, z) ≤ d(x, y) + d(y, z) < η − ζ + ζ = η,

as claimed. Thus, if y ∈ U and z ∈ Bd(ζ, y), then

d(x, z) < η =⇒ ρ(x, z) < αMx.

If y ∈ U then
d(x, y) < b < ξ =⇒ ρ(x, y) < (γ − α)Mx.

By (3.3), γMx < κMy if y ∈ U. Thus, if y ∈ U and z ∈ Bd(ζ, y), then

ρ(y, z) ≤ ρ(y, x) + ρ(x, z) < (γ − α)Mx + αMx = γMx < κMy.

The definition of β then gives β(y) ≥ ζ > a, giving the desired lower semicontinuity of β.
By Lemma 3.2, let δ ∈ C0(X;R>0) be such that 0 < δ(x) < β(x), x ∈ X. The definition

of β implies that, for a given x ∈ X, there exists η ∈ R>0 such that η > δ(x) such that

d(x, y) < η =⇒ ρ(x, y) < αMx

for some α ∈ (0, 1). The definitions of ρ and Mx give

d(Φ(t, x),Φ(t, y)) ≤ ρ(x, y) < αMx < αε(Φ(t, x)), t ∈ T[0,T ],

which is the desired conclusion. ■

3.2. Chain recurrence. We next introduce chains and chain recurrence. The notion of
chain we use is the following.

3.6 Definition: ((ε, T )-chain, ε-T -chain) Let (X, d) be a metric space and let Φ be a
topological flow or semiflow on X. For x, y ∈ X, ε ∈ C0(X;R>0), and T ∈ T>0, an (ε, T )-
chain for Φ from x to y is two finite sequences

x0, x1, . . . , xk, t0, t1, . . . , tk−1

with

(i) x0, x1, . . . , xk ∈ X,

(ii) t0, t1, . . . , tk−1 ∈ T≥T ,

(iii) x0 = x and xk = y, and

(iv) d(Φ(tj , xj), xj+1) < ε(Φ(tj , xj)), j ∈ {0, 1, . . . , k − 1}.
For such an (ε, T )-chain, its length is k. An ε-T -chain is an (ε, T ) chain

x0, x1, . . . , xk, t0, t1, . . . , tk−1

for which tj = T , j ∈ {0, 1, . . . , k − 1}. •
In Figure 1 we depict a chain. We can then define an associated notion of recurrence.
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x0 = x

x1

x2

xk = y

Φ(t0, x0)

Φ(t1, x1)

Φ(tk−1, xk−1)

Figure 1. An (ε, T )-chain (the depiction is of the continuous-time
case)

3.7 Definition: (Chain recurrence) Let (X, d) be a metric space and let Φ be a topological
flow or semiflow on X.

(i) A point x ∈ X is chain recurrent for Φ if, for each ε ∈ C0(X;R>0) and T ∈ T>0,
there exists an (ε, T )-chain from x to itself.

(ii) Let T ∈ T>0. A point x ∈ X is T -chain recurrent for Φ if, for each ε ∈ C0(X;R>0),
there exists an (ε, T )-chain from x to itself.

(iii) Let T ∈ T>0. A point x ∈ X is exactly T -chain recurrent for Φ if, for each
ε ∈ C0(X;R>0), there exists an ε-T -chain from x to itself.

(iv) We denote by ChRec(Φ) the set of chain recurrent points for Φ.

(v) We denote by ChRec≥T (Φ) the set of T -chain recurrent points for Φ.

(vi) We denote by ChRec=T (Φ) the set of exactly T -chain recurrent points for Φ. •
In the original definition of chain recurrence by Conley [1978], constant error functions

are used. For compact spaces, it is easy to see that the definitions for constant and non-
constant error functions are equivalent. For noncompact spaces, however, they are not the
same, as the following example shows.

3.8 Example: (Chain recurrence with constant error functions is metric-
dependent) Let X = R×R>0 be the upper half-plane. We let d be the standard Euclidean
metric for X inherited from R2 and we let dh be the so-called hyperbolic metric, i.e., that
metric whose geodesics are arcs of half-circles in X with centres on the lineR×{0}. Note that
the topology defined by these two metrics is the same. On X, we consider the continuous-
time flow defined by Φ(t, (x, y)) = (x+t, y). Let ChRec′(Φ) be the chain recurrent set where
chains are defined using constant error functions and using the metric d. Let ChRec′h(Φ)
be the chain recurrent set where chains are defined using constant error functions and using
the metric dh. It is not difficult to show that ChRec′(Φ) = ∅ and that ChRec′h(Φ) = X.
The idea in proving the second of these formulae is to observe that horizontal distances in
the hyperbolic metric become much larger than their Euclidean counterparts as one gets
close (in the Euclidean sense) to R×{0}. The details are given in [Alongi and Nelson 2007,
Example 2.7.13]. •
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The example illustrates the dangers of using constant error functions in defining chains.
Specifically, chain recurrence becomes a metric-dependent concept in this case. There is not
necessarily anything wrong with this, of course; perhaps one is content to have notions that
depend on metric, e.g., on normed vector spaces. However, the Conley decomposition relates
chain recurrence to attracting and repelling sets, and these latter are purely topological
concepts. Thus one cannot expect that the Conley decomposition is valid when chains are
defined using constant error functions. Nonetheless, the use of constant error functions to
define chains is common in the literature, even for noncompact states spaces.

Let us enumerate some properties of the chain recurrent set. We begin by relating chain
recurrence to one of the classical notions of recurrence, that of a nonwandering point.

3.9 Definition: (Nonwandering point) Let (X,O ) be a topological space and let Φ be
a topological flow or semiflow. A point x0 ∈ X is nonwandering for Φ if there exists
T ∈ T>0 such that, for each neighbourhood U of x0, Φt(U) ∩ U ̸= ∅ for some t ∈ T≥T . We
denote by NWnd(Φ) the set forward nonwandering points for Φ. •

The following characterisation of the set of nonwandering points will be useful.

3.10 Lemma: (Characterisation of nonwandering set for first countable topolog-
ical spaces) Let (X,O ) be a first countable Hausdorff topological space and let Φ be a
topological flow or semiflow. Let x ∈ NWnd(Φ). Then, for a neighbourhood U of x and
for T ∈ T>0, there exists t ∈ T≥T such that U ∩ Φt(U) ̸= ∅.

Proof: We prove the contrapositive. Thus, we let x ∈ X, we assume that there exists a
neighbourhood U of x and T ∈ T>0 such that U ∩ Φt(U) = ∅ for t ∈ T≥T , and we prove
that x ̸∈ NWnd(Φ).

Note that the assumptions ensure that x is not a periodic point. We claim that this
implies that, for any S ∈ T>0, there exists a neighbourhood V of x such that V∩Φt(V) = ∅
for all t ∈ [S, T ]. We prove this by the contrapositive. Thus we let x ∈ X and S ∈ T>0, we
assume that, for any neighbourhood V of x, there exists t ∈ [S, T ] such that V∩Φt(V) ̸= ∅,
and we prove that x is a periodic point. By first countability of (X,O ), let (Uj)j∈Z>0 be
a neighbourhood base for x. Our hypotheses ensure that, for each j ∈ Z>0, there exists
xj ∈ X and tj ∈ [S, T ] such that

xj ∈ Uj , Φ(tj , xj) ∈ Vj ∩ Φtj (Vj), j ∈ Z>0.

In particular, limj→∞ xj = x. Since the sequence of times (tj)j∈Z>0 resides in the compact
interval [S, T ], there exists a subsequence (tjk)k∈Z>0 that converges to some τ ∈ [S, T ].
Then we have

Φ(τ, x) = lim
jk→∞

Φ(tjk , xjk) = x.

This shows that x is a periodic point.
Now, combining the first two paragraphs of the proof, for any S ∈ T>0, there exist

neighbourhoods U and V of x such that

(U ∩ V) ∩ Φt(U ∩ V) = ∅

for all t ∈ T≥S . That is to say, x ̸∈ NWnd(Φ). ■

We now show that nonwandering points are chain recurrent.
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3.11 Proposition: (Nonwandering points as chain recurrent points) Let (X, d) be a
metric space and let Φ be a topological flow or semiflow. Then NWnd(Φ) ⊆ ChRec(Φ).

Proof: Let ε ∈ C0(X;R>0) and let T ∈ T>0. Let x ∈ NWnd(Φ). Since ΦT and ε are
continuous, let δ ∈ (0, 12ε(x)) be such that

d(x, y) < δ =⇒ d(Φ(T, x),Φ(T, y)) < ε(Φ(T, x)).

and
d(x, y) < δ =⇒ |ε(y)− ε(x)| < 1

2ε(x).

By Lemma 3.10, noting that metric spaces are first countable and Hausdorff, let t1 ∈ T>2T

be such that Bd(δ, x) ∩ Φt1(Bd(δ, x)) ̸= ∅, and let y ∈ Bd(δ, x) be such that Φ(t1, y) ∈
Bd(δ, x). Then

d(x, y) < δ =⇒ d(Φ(T, x),Φ(T, y)) < ε(Φ(T, x)).

Also,
d(Φ(t1 − T,Φ(T, y)), x) = d(Φ(t1, y), x) < δ < 1

2ε(x).

Thus,
ε(Φ(t1, y))− ε(x) > −1

2ε(x) =⇒ ε(Φ(t1, y)) >
1
2ε(x),

and so
d(Φ(t1 − T,Φ(T, y)), x) < ε(Φ(t1, y)).

We conclude, then, that
x,Φ(T, y), x, T, t1 − T

is an (ε, T )-chain, and so x ∈ ChRec(Φ). ■

The invariance and closedness of the chain recurrent set will be needed in our results
below.

3.12 Proposition: (Properties of sets of chain recurrent points) Let (X, d) be a met-
ric space and let Φ be a topological flow (resp. semiflow) on X. Then the following state-
ments hold:

(i) ChRec(Φ) is invariant (resp. forward-invariant) for Φ;

(ii) ChRec(Φ) is closed;

Proof: (i) Let x0 ∈ ChRec(Φ) and let t ∈ T. Let ε ∈ C0(X;R>0) and let T ∈ T>0.
Assume first that t ∈ T>0. Let T

′ = T + t. Let U be a neighbourhood of Φ(t, x0), chosen
so that

y ∈ U =⇒

{
d(y,Φ(t, x0)) <

1
2ε(Φ(t, x0)),

ε(y) > 1
2ε(Φ(t, x0)).

Let δ ∈ R>0 be small enough that

d(x0, x) < δ =⇒ Φ(t, x) ∈ U.

Take η ∈ C0(X;R>0) to be η(x) = min{ε(x), δ}, x ∈ X. Let

x0, x1, . . . , xn = x0, t0, t1, . . . , tn−1
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be an (η, T ′)-chain and denote

y0 = Φ(t, x0), y1 = x1, . . . , yn−1 = xn−1, yn = Φ(t, x0),

s0 = t0 − t, s1 = t1, . . . , sn−2 = tn−2, sn−1 = tn−1 + t.

Note that
d(Φ(s0, y0), y1) = d(Φ(t0 − t,Φ(t, x0)), x1) = d(Φ(t0, x0), x1).

Thus we have
d(Φ(s0, y0), y1) < η(Φ(t0, x0)) ≤ ε(Φ(s0, y0)).

Clearly we have

d(Φ(sj , yj), yj+1) < ε(Φ(sj , yj)), j ∈ {1, . . . , n− 2}.

Finally, we have

d(Φ(sn−1, yn−1), yn) = d(Φ(tn−1 + t, yn−1), yn) = d(Φ(t,Φ(tn−1, xn−1)),Φ(t, x0)).

From this and the various definitions we calculate

d(Φ(tn−1, xn−1), x0) < η(Φ(tn−1, xn−1)) < δ

=⇒ Φ(t,Φ(tn−1, xn−1)) ∈ U

=⇒

{
d(Φ(t,Φ(tn−1, xn−1)),Φ(t, x0)) <

1
2ε(Φ(t, x0)),

ε(Φ(t,Φ(tn−1, xn−1))) >
1
2ε(Φ(t, x0))

=⇒ d(Φ(t,Φ(tn−1, xn−1)),Φ(t, x0)) < ε(Φ(t,Φ(tn−1, xn−1)))

=⇒ d(Φ(sn−1, yn−1), yn) < ε(Φ(t,Φ(tn−1, xn−1))).

Therefore,
y0, y1, . . . , yn = y0, s0, s1, . . . , sn−1

is an (ε, T )-chain from Φ(t, x) to Φ(t, x).
If Φ is a flow and if t ∈ T<0, then let T ′ = T − t. One can then proceed exactly as in

the preceding paragraph to deduce that Φ(t, x0) ∈ ChRec(Φ).
(ii) Let x0 ∈ cl(ChRec(Φ)), and let ε ∈ C0(X;R>0) and T ∈ T>0. Let δ ∈ R>0 be such

that

d(x0, x) < δ =⇒

{
d(Φ(T, x0),Φ(T, x)) <

1
2ε(Φ(T, x0)),

ε(x) > 1
2ε(x0).

Since x0 ∈ cl(ChRec(Φ)), let x ∈ ChRec(Φ) be such that

d(x0, x) <
1
2 min{δ, ε(Φ(T, x0)), 12ε(x0)}.

Let η ∈ C0(X;R>0) be defined by η(x) = 1
2 min{δ, ε(x)}.

First note that
x0, x1 = Φ(T, x), T

is an (ε, T )-chain from x0 to Φ(T, x).
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Now, since x ∈ ChRec(Φ), let

y0 = x, y1, . . . , yn = x, s0, s1, . . . , sn−1

be an (η, 2T )-chain from x to itself. Since

Φ(s0 − T,Φ(T, x)) = Φ(s0, x),

it follows immediately that

Φ(T, x), y1, . . . , yn−1, s0 − T, s1, . . . , sn−2

is an (ε, T )-chain from Φ(T, x) to yn−1.
Finally, we claim that

yn−1, x0, sn−1

is an (ε, T )-chain from yn−1 to x0. First note that,

d(Φ(sn−1, yn−1), x0) ≤ d(Φ(sn−1, yn−1), x) + d(x, x0)

<
δ

2
+

δ

2
= δ.

Therefore,
ε(Φ(sn−1, yn−1)) >

1
2ε(x0),

and so

d(Φ(sn−1, yn−1), x0) ≤ d(Φ(sn−1, yn−1), x) + d(x, x0)

< 1
2ε(Φ(sn−1, yn−1)) +

1
4ε(x0)

< ε(Φ(sn−1, yn−1)),

giving our claim.
Putting the above three constructions together, we see that

x0,Φ(T, x), y1, . . . , yn−1, x0, T, s0 − T, s1, . . . , sn−1

is an (ε, T )-chain from x0 to itself, whence x0 ∈ ChRec(Φ). ■

3.3. Chain equivalence. On the set of chain recurrent points of a topological flow or
semiflow, there is an important equivalence relation.

3.13 Definition: (Chain equivalence) Let (X, d) be a metric space and let Φ be a topo-
logical flow or semiflow on X.

(i) Points x, y ∈ X are chain equivalent for Φ if, for each ε ∈ C0(X;R>0) and for each
T ∈ T>0, there exist (ε, T )-chains

x0 = x, x1, . . . , xk = y, t0, t1, . . . , tk−1

and
y0 = y, y1, . . . , ym = x, s0, s1, . . . , sm−1.
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(ii) Let T ∈ T>0. Points x, y ∈ X are T -chain equivalent for Φ if, for each ε ∈
C0(X;R>0), there exist (ε, T )-chains

x0 = x, x1, . . . , xk = y, t0, t1, . . . , tk−1

and
y0 = y, y1, . . . , ym = x, s0, s1, . . . , sm−1.

(iii) Let T ∈ T>0. Points x, y ∈ X are exactly T -chain equivalent for Φ if, for each
ε ∈ C0(X;R>0), there exist ε-T -chains

x0 = x, x1, . . . , xk = y, t0, t1, . . . , tk−1

and
y0 = y, y1, . . . , ym = x, s0, s1, . . . , sm−1.

(iv) A chain component for Φ is a subset C ⊆ X such that, if x, y ∈ C, then x and y
are chain equivalent.

(v) Let T ∈ T>0. A T -chain component for Φ is a subset C ⊆ X such that, if x, y ∈ C,
then x and y are T -chain equivalent.

(vi) Let T ∈ T>0. An exact T -chain component for Φ is a subset C ⊆ X such that, if
x, y ∈ C, then x and y are exactly T -chain equivalent. •

Note that the relation of chain equivalence is not generally an equivalence relation on
X; it is symmetric and transitive, but not generally reflexive. However, chain equivalence
is an equivalence relation on ChRec(Φ). Therefore, ChRec(Φ) is a disjoint union of chain
components. This fact features significantly in the Fundamental Theorem of Dynamical
Systems.

Let us prove a few essential properties of chain components.

3.14 Proposition: (Properties of chain components) Let (X, d) be a metric space and
let Φ be a topological flow (resp. semiflow) on X. Then the following statements hold:

(i) if C is a chain component for Φ, then it is closed;

(ii) if C is a chain component for Φ, then it is invariant (resp. forward-invariant).

Proof: (i) Let C ⊆ ChRec(Φ) be a chain component. To prove closedness of C, we shall
show that, if y ∈ cl(C), then y ∈ C. To do this, we will let x ∈ C, ε ∈ C0(X;R>0), and
T ∈ T>0 and construct two (ε, T )-chains, one from x to y and one from y to x. Since
x ∈ ChRec(Φ), there is also an (ε, T )-chain from x to itself. By concatenating chains, one
concludes that (1) y ∈ ChRec(Φ) and (2) y is chain equivalent to any point in C. This
suffices to show that y ∈ C.

By Lemma 3.4, let δ ∈ C0(X;R>0) be such that

d(x1, x2) < δ(x1) =⇒ d(Φ(T, x1),Φ(T, x2)) < ε(Φ(T, x1)).

Let x′ ∈ C be such that d(x′, y) < δ(y); this is possible since y ∈ cl(C). Since x, x′ ∈ C, let

x0 = x′, x1, . . . , xk = x, t0, t1, . . . , tk−1
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be an (ε, 2T )-chain from x′ to x. Note that

d(x′, y) < δ(y) =⇒ d(Φ(T, x′),Φ(T, y)) < ε(Φ(T, y)),

and from this we easily deduce that

y0 = y, y1 = Φ(T, x′), y2 = x1, . . . , yk+1 = xk = x, s0 = T, s1 = t0 − T, . . . , sk = tk−1

is an (ε, T )-chain from y to x.
Now we find an (ε, T )-chain from x to y. By Lemma 3.3, let δ ∈ C0(X;R>0) be such

that

d(x1, x2) < δ(x1) =⇒ 1

2
ε(x1) < ε(x2) <

3

2
ε(x1).

Let x′ ∈ C satisfy d(y, x′) < max{δ(y), 16ε(y)}, this being possible since y ∈ cl(C). Let

x0 = x, x1, . . . , xk = x′, t0, t1, . . . , tk−1

be a (12ε, T )-chain from x to x′. We have

d(Φ(tk−1, xk−1), y) ≤ d(Φ(tk−1, xk−1), x
′) + d(y, x′)

<
1

2
ε(Φ(tk−1, xk−1)) +

1

6
ε(y)

We have

d(x′, y) < δ(y) =⇒ 1

6
ε(y) <

1

3
ε(x′)

and

d(Φ(tk−1, xk−1), x
′) < δ(Φ(tk−1, xk−1)) =⇒ 1

3
ε(x′) <

1

2
ε(Φ(tk−1, xk−1)).

Putting this all together, we have

d(Φ(tk−1, xk−1), y) < ε(Φ(tk−1, xk−1)).

From this, we conclude that

x0 = x, x1, . . . , xk = y, t0, t1, . . . , tk−1

is an (ε, T )-chain from x to y.
(ii) Let C be a chain component, let x ∈ C, and let t ∈ T>0 (if Φ is a semiflow) and

t ∈ T (if Φ is a flow). As in the preceding part of the proof, to show that Φ(t, x) ∈ C, it
suffices to show that, for any ε ∈ C0(X;R>0) and T ∈ T>0, there exist two (ε, T )-chains,
one from x to Φ(t, x) and one from Φ(t, x) to x.

Since C ⊆ ChRec(Φ), let

x0 = x, x1, . . . , xk = x, t0, t1, . . . , tk−1

be an (ε, T + |t|)-chain from x to itself. Then it is evident that

Φ(t, x), x1, . . . , xk = x, t0 − t, t1, . . . , tk−1

is an (ε, T )-chain from Φ(t, x) to x.
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To construct an (ε, T )-chain from x to Φ(t, x), let δ ∈ C0(X;R>0) be such that

d(x1, x2) < δ(x1) =⇒ d(Φ(t, x1),Φ(t, x2)) < ε(x1).

Let
x0 = x, x1, . . . , xk = x, t0, t1, . . . , tk−1

be a (min{ε, δ}, T + |t|)-chain from x to itself; this is possible since x ∈ C ⊆ ChRec(Φ).
Since

d(Φ(tk−1, xk−1), x) < δ(Φ(tk−1, xk−1)),

we have

d(Φ(Φ(tk−1 + t), xk−1),Φ(t, x)) = d(Φ(t,Φ(tk−1, xk−1)),Φ(t, x))

< ε(Φ(tk−1, xk−1)).

Thus we conclude that

x0 = 0, x1, . . . , xk−1,Φ(t, x), t0, t1, . . . , tk−2, tk−1 + t

is an (ε, T )-chain from x to Φ(t, x). ■

3.4. Alternative characterisations of chain equivalence. Our objective in this section is to
give two alternative characterisations of chain equivalence, as per [Hurley 1995]. There are
two principal simplifications we consider. First we shall show that, for chain equivalence,
it is possible to fix T , provided that T possesses a multiplicative inverse in T. Next we
shall show that the precise choices of the times t0, t1, . . . , tk−1 can also be fixed to be the
same time T , provided again that T possesses a multiplicative inverse in T. In proving that
these simplifications can be made without loss of generality, we make extensive use of the
technical results about error functions from Section 3.1.

The result we prove is the following.

3.15 Theorem: (Equivalent characterisations of chain equivalence) Let (X, d) be a
metric space and let Φ be a topological flow or semiflow on X. Then the following statements
are equivalent for x, y ∈ X and for T0 ∈ T>0 possessing a multiplicative inverse in T:

(i) x and y are chain equivalent for Φ;

(ii) x and y are T0-chain equivalent for Φ;

(iii) x and y are exactly T0-chain equivalent for Φ.

Proof: (i) =⇒ (ii) This is clear from the definitions.
(ii) =⇒ (iii) We break the proof into two parts, first for the discrete-time case then for

the continuous-time case.

The discrete-time case

The discrete-time case is almost immediate. The requirement that T0 possess a multiplica-
tive inverse in T means that T0 = 1 in the discrete-time case. In this case, however, every
(ε, T )-chain gives rise to a ε-1-chain, simply by adding zero jumps at times for which there
is not already a jump.
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The continuous-time case

In this case, the requirement that T0 ∈ T>0 possess a multiplicative inverse in T places no
restriction on T0. Let x and y satisfy the hypotheses of (ii). We claim that this implies
that, for each ε ∈ C0(X;R>0) and for each τ ∈ R>0, there exists an (ε, T0) chain

x0 = x, x1, . . . , xk = y, t0, t1, . . . , tk−1

and N ∈ Z>0 such that tj ∈ [T0, 2T0), j ∈ {0, 1, . . . , k − 1}, and |
∑k

j=1 tj −NT0| < τ .

To prove this, let ε ∈ C0(X;R>0) and τ ∈ R>0. Note that the hypotheses ensure the
existence of (14ε, T0)-chains

u0 = x, u1, . . . , ul = y, r0, r1, . . . , rl−1

and
v0 = y, v1, . . . , vm = x, s0, s1, . . . , sm−1.

First of all, we can assume that ra ∈ [T0, 2T0), a ∈ {0, 1, . . . , l − 1}, and sb ∈ [T0, 2T0),
b ∈ {0, 1, . . . ,m− 1}. Indeed, if this is not so, then we can add jump times with zero jumps
to ensure that these conditions are met. Let us abbreviate

R = r0 + r1 + · · ·+ rl−1, S = s0 + s1 + · · ·+ sm−1.

By Lemma 3.3, let δ ∈ C0(X;R>0) be such that

d(z1, z2) < δ(z1) =⇒ 1

2
ε(z1) < ε(z2).

Let σ ∈ R>0 be such that

|r′0 − r0| < σ =⇒ d(Φ(r0, u0),Φ(r
′
0, u0)) < min{1

4ε(Φ(r0, u0), δ(Φ(r0, u0))}.

Choose r′0 ∈ [r0, r0 + σ) such that R+S − r0 + r′0 is irrational and such that r′0 ∈ [T0, 2T0).
Then, since

d(Φ(r0, u0),Φ(r
′
0, u0)) < δ(Φ(r0, u0)),

we have

d(Φ(r′0, u0), u1) ≤ d(Φ(r′0, u0),Φ(r0, u0)) + d(Φ(r0, u0), u1)

<
1

4
ε(Φ(r0, u0)) +

1

4
ε(Φ(r0, u0))

< ε(Φ(r′0, u0)),

and we deduce that
u0 = x, u1, . . . , ul = y, r′0, r1, . . . , rl−1

is an (ε, T0)-chain from x to y. Abbreviate

R′ = r′0 + r1 + · · ·+ rl−1.

By irrationality of R′ + S, there exist M,N ∈ Z>0 such that

|R′ +M(R′ + S)−NT0| < τ.
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Now build an (ε, T0) chain as follows:

u0 = x, u1, . . . , ul = y = v0, v1, . . . , vm, u0, u1, . . . , ul, . . . , v0, v1, . . . , vm, u0, u1, . . . , ul︸ ︷︷ ︸
v0,v1,...,vm,u0,u1,...,ul repeated M times

,

r′0, r1, . . . , rl−1, s0, s1, . . . , sm−1, r
′
0, r1, . . . , rl−1, . . . , s0, s1, . . . , sm−1, r

′
0, r1, . . . , rl−1︸ ︷︷ ︸

s0,s1,...,sm−1,r′0,r1,...,rl−1 repeated M times

.

This is the desired (ε, T0)-chain whose total duration is within τ of NT0.
Now, with this construction, we prove the desired implication. We let ε ∈ C0(X;R>0).

By Lemma 3.3, let δ1 ∈ C0(X;R>0) be such that

d(z1, z2) < δ1(z1) =⇒ 1

2
ε(z1) < ε(z2) <

3

2
ε(z1). (3.4)

By Lemma 3.5, let δ2 ∈ C0(X;R>0) be such that

d(z1, z2) < δ2(z1) =⇒ d(Φ(t, z1),Φ(t, z2))

< min

{
1

4
ε(Φ(t, z1)),

1

2
δ1(Φ(t, z1))

}
, t ∈ [0, 3T0]. (3.5)

Let
u0 = x, u1, . . . , ul = y, r0, r1, . . . , rl−1 (3.6)

and
v0 = y, v1, . . . , vm = x, s0, s1, . . . , sm−1 (3.7)

be (min{ 1
32ε,

1
4δ2}, T0)-chains. As we saw above, we can suppose that ra ∈ [T0, 2T0), a ∈

{0, 1, . . . , l−1}, and sb ∈ [T0, 2T0), b ∈ {0, 1, . . . ,m−1}. Our construction above gives rise,
for every τ ′ ∈ R>0, to N ∈ Z>0 and a (min{1

8ε, δ2}, T0)-chain

x0 = x, x1, . . . , xk = y, t0, t1, . . . , tk−1 (3.8)

satisfying |T−N | < τ ′, where T =
∑k−1

j=0 tj . Furthermore, we can see from our constructions
that tk−1 = rl−1 and xk−1 = ul−1, independently of τ ′. We now specify a suitable value of
τ ′.

To do so, denote

Ka = {Φ(t, ua) | t ∈ [0, ra]}, a ∈ {0, 1, . . . , l − 1},
Lb = {Φ(t, vb) | t ∈ [0, sb]}, a ∈ {0, 1, . . . ,m− 1},

K =

(
l−1⋃
a=0

Ka

)
∪

(
m−1⋃
b=0

Lb

)
.

Note that Ka, a ∈ {0, 1, . . . , l− 1}, and Lb, b ∈ {0, 1, . . . ,m− 1}, are compact, and thus so
too is K. Importantly, note that K depends only on the chains (3.6) and (3.7), i.e., not on
the choice of any τ ′. Let

α = inf

{
min

{
1

8
ε(z),

1

2
δ1(z), δ2(z)

} ∣∣∣∣ z ∈ K

}
,
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noting that α > 0. We claim that we can choose τ ∈ (0, T0) such that

|s| < τ =⇒ d(Φ(s, x), x) < α x ∈ K. (3.9)

Indeed, the function
[−1, 1]×K ∋ (t, z) 7→ Φ(t, z)

is uniformly continuous (its domain being compact), and so there exists η ∈ R>0 such that

(|τ1 − τ2| < η, d(z1, z2) < η) =⇒ d(Φ(τ1, z2),Φ(τ2, z2)) < α.

Applying this formula to τ1 = s, τ2 = 0, and z1 = z2 = z gives the claim. Thus we choose
τ ∈ (0, T0) so that (3.9) holds and choose the chain (3.8) so that |T − NT0| < τ , where
T =

∑k−1
j=0 tj . Note that we can, without loss of generality, assume that T > NT0, and so

T −NT0 ∈ [0, τ).
We now build points y0, y1, . . . , yN ∈ X such that

1. y0 = x,

2. yN = y, and

3. d(Φ(T0, yj), yj+1) < ε(Φ(T0, yj)), j ∈ {0, 1, . . . , N − 1}.
We take y0 = x0 = x. If t0 = t1 = · · · = tj = T0 for some j ∈ {0, 1, . . . , j − 2}, then
we can take ya = xa, a ∈ {0, 1, . . . , j}. Our constructions then begin with the next jump.
We can, therefore, simplify life notationally, and not lose generality, by simply supposing
that t0 ∈ (T0, 2T0). (We recommend that a reader draw pictures of trajectories with times
labelled to make sense of the constructions that follow.)

We take y1 = Φ(T0, y0), whereupon

d(Φ(T0, y0), y1) = 0 < ε(Φ(T0, y0)).

To define y2, we first note that

t0 ∈ (T0, 2T0) =⇒ t0 − T0 ∈ (0, T0).

Thus we can follow the trajectory through Φ(T0, y0) for time t0−T0 and then jump to x1 and
follow the trajectory through x1 for time T0− (t0−T0) = 2T0− t0. Since 2T0− t0 ∈ (0, T0),
we have t1 > 2T0 − t0, and so we do not need to jump from the trajectory through x1 and
so we can define y2 = Φ(2T0 − t0, x1).

Since
d(Φ(t0, x0), x1) < δ2(Φ(t0, x0))

and 2T0 − t0 ≤ 2T0, by (3.5) we have

d(Φ(2T0 − t0,Φ(t0, x0)),Φ(2T0 − t0, x1)) <
1

4
ε(Φ(2T0 − t0,Φ(t0, x0))).

Therefore,

d(Φ(T0, y1), y2) = d(Φ(2T0, y0),Φ(2T0 − t0, x1)

= d(Φ(2T0 − t0,Φ(t0, x0)),Φ(2T0 − t0, x1))

<
1

4
ε(Φ(2T0 − t0,Φ(t0, x0)))

=
1

4
ε(Φ(2T0, x0)) < ε(Φ(T0, y0)).
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Note that y2 lies on the trajectory through x1 of time duration t1. Specifically, y2 =
Φ(s, x1) with s = 2T0 − t0. To define y3, we need to follow the chain for time T0, and we
need to bookkeep if and when we need to jump to x2. There are three cases to consider.

1. t1 − s > T0: In this case we do not need to jump, and can immediately define y3 =
Φ(T0, y2). In this case we have

d(Φ(T0, y2), y3) = 0 < ε(Φ(T0, y2)).

2. t1 − s = T0: In this case, we jump at the end of the time interval of duration T0. That
is, we take y3 = x2. Note that

Φ(T0, y2) = Φ(t1, x1).

Thus we have

d(Φ(T0, y2), y3) = d(Φ(t1, x1), x2) <
1

4
ε(Φ(t1, x1))

=
1

4
ε(Φ(T0, y2)) < ε(Φ(T0, y2)).

3. t1 − s < T0: In this case, we follow the trajectory through y2 for time t1 − s, jump to
x2, and then take y3 = Φ(T0 − (t1 − s), x2). Note that

Φ(T0, y2) = Φ(T0,Φ(s, x1)) = Φ(T0 + s, x1).

Since
d(Φ(t1, x1), x2) < δ2(Φ(t1, x1))

and since T0 − (t1 − s) ≤ 2T0, by (3.5) we have

d(Φ(T0 − (t1 − s),Φ(t1, x1)),Φ(T0 − (t1 − s), x2)) <
1

4
ε(Φ(T0 − (t1 − s),Φ(t1, x1))).

Therefore,

d(Φ(T0, y2), y3) = d(Φ(T0 + s, x1),Φ(T0 − (t1 − s), x2))

= d(Φ(T0 − (t1 − s),Φ(t1, x1)),Φ(T0 − (t1 − s), x2))

<
1

4
ε(Φ(T0 − (t1 − s),Φ(t1, x1)))

=
1

4
ε(Φ(T0, y2)) < ε(Φ(T0, y2)).

Now one can proceed as in the construction of y3 to define y4, . . . , yN−1. Note that,
having done this, we have followed the chain (3.8) for time duration (N − 1)T0. Thus the
time remaining along the chain is T − (N − 1)T0 = T0 + (T −NT0) ∈ [T0, T0 + τ). That is
to say, the time remaining in the chain is within τ of T0.

We take yN = y and consider two cases.
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1. yN−1 = Φ(s, xk−1) for some s ∈ [0, tk−1): In this case, the time left to travel along the
chain (3.8) is tk−1 − s = T0 + (T −NT0). Thus

Φ(T0, yN−1) = Φ(T0 + s, xk−1) = Φ(tk−1 − (T −NT0), xk−1).

Since |NT0 − T | < τ , by (3.9) and (3.4) we have

Φ(T0, yN−1) = Φ(NT0 − T,Φ(tk−1, xk−1))

=⇒ d(Φ(T0, yN−1),Φ(tk−1, xk−1)) < α ≤ δ1(Φ(tk−1, xk−1))

=⇒ 1

2
ε(Φ(tk−1, xk−1)) < ε(Φ(T0, yN−1)) <

3

2
ε(Φ(tk−1, xk−1)).

Similarly, since |T −NT0| < τ and tk−1 ≤ 2, by (3.9) and (3.5) we have

d(xk−1,Φ(NT0 − T, xk−1)) < α ≤ δ2(xk−1)

=⇒ d(Φ(tk−1, xk−1),Φ(tk−1,Φ(NT0 − T, xk−1))) <
1

4
ε(Φ(tk−1, xk−1)).

Therefore,

d(Φ(T0, yN−1), yN ) = d(Φ(tk−1 − (T −NT0), xk−1), y)

≤ d(Φ(tk−1 − (T −NT0), xk−1),Φ(tk−1, xk−1)

+ d(Φ(tk−1, xk−1), y)

= d(Φ(tk−1,Φ(NT0 − T, xk−1)),Φ(tk−1, xk−1))

+ d(Φ(tk−1, xk−1), y)

<
1

4
ε(Φ(tk−1, xk−1)) +

1

4
ε(Φ(tk−1, xk−1))

=
1

2
ε(Φ(tk−1, xk−1)) < ε(Φ(T0, yN−1)).

2. yN−1 = Φ(s, xk−2) for some s ∈ [0, tk−2): In this case, to get to yN , we must jump to
the trajectory through xk−1 after time tk−2− s, and then follow this trajectory for time
tk−1 − (T −NT0). Note that

tk−1 − (T −NT0) + tk−2 − s = T0 =⇒ T0 + s = tk−1 + tk−2 − (T −NT0).

Also note that

(tk−1 ∈ [T0, 2T0), T −NT0 ∈ [0, τ)) =⇒ tk−1 − (T −NT0) ≤ 2T0.

Since
d(Φ(tk−2, xk−2), xk−1) < δ2(Φ(tk−2, xk−2)),

and tk−1 − (T −NT0) ≤ 2T0, by (3.5) we have

1

4
ε(Φ(T0+s, xk−2)) =

1

4
ε(Φ(tk−1 + tk−2 − (T −NT0), xk−2))

> d(Φ(tk−1 + tk−2 − (T −NT0), xk−2),Φ(tk−1 − (T −NT0), xk−1))

= d(Φ(T0 + s, xk−2),Φ(tk−1 − (T −NT0), xk−1)). (3.10)
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Since |NT0 − T | < τ , by (3.9) we have

Φ(tk−1 − (T −NT0), xk−1) = Φ(NT0 − T,Φ(tk−1, xk−1))

=⇒ d(Φ(tk−1 − (NT0 − T ), xk−1)),Φ(tk−1, xk−1)) < α ≤ 1

8
ε(Φ(tk−1, xk−1)). (3.11)

Using the definition of α, the same argument gives

d(Φ(tk−1 − (T −NT0), xk−1),Φ(tk−1, xk−1) < α ≤ 1

2
δ1(Φ(tk−1, xk−1)).

Since
d(Φ(tk−2, xk−2), xk−1) < δ2(Φ(tk−2, xk−2))

and tk−1 − (T −NT0) ≤ 2T0, by (3.5) we have

d(Φ(tk−1 − (T −NT0),Φ(tk−2, xk−2)),Φ(tk−1 − (T −NT0), xk−1))

<
1

2
δ1(Φ(tk−1 − (T −NT0),Φ(tk−2, xk−2))) =

1

2
δ1(T0 + s, xk−2).

Putting the above together, we have

d(Φ(tk−1+tk−2 − (T −NT0), xk−2),Φ(tk−1, xk−1))

= d(Φ(tk−1 − (T −NT0),Φ(tk−2, xk−2)),Φ(tk−1, xk−1)

≤ d(Φ(tk−1 − (T −NT0), xk−1),Φ(tk−1, xk−1)

+ d(Φ(tk−1 − (T −NT0),Φ(tk−2, xk−2)),Φ(tk−1 − (T −NT0), xk−1))

<
1

2
δ1(Φ(tk−1, xk−1)) +

1

2
δ1(T0 + s, xk−2)

≤ max{δ1(Φ(tk−1, xk−1)), δ1(Φ(T0 + s, xk−2))},

using the standard relation ∥·∥1 ≤ n∥·∥∞ between the 1- and ∞-norms for Rn. Keeping
in mind that T0 + s = tk−1 + tk−2 − (T −NT0), we now consider two cases.

(a) δ1(Φ(T0 + s, xk−2)) ≤ δ1(Φ(tk−1, xk−1)): In this case,

max{δ1(Φ(tk−1, xk−1)), δ1(Φ(T0 + s, xk−2))} = δ1(Φ(tk−1, xk−1)).

By (3.4) we have

d(Φ(T0 + s, xk−2),Φ(tk−1, xk−1)) < δ1(Φ(tk−1, xk−1))

=⇒ 1

2
ε(Φ(tk−1, xk−1)) < ε(Φ(T0 + s, xk−2)) <

3

2
ε(Φ(tk−1, xk−1))

(b) δ1(T0 + s, yN−1) > δ1(Φ(tk−1, xk−1)): In this case,

max{δ1(Φ(tk−1, xk−1)), δ1(Φ(T0 + s, yN−1))} = δ1(Φ(T0 + s, xk−2))

and, again by (3.4), we have

d(Φ(T0 + s, xk−2),Φ(tk−1, xk−1)) < δ1(Φ(T0 + s, xk−s))

=⇒ 1

2
ε(Φ(T0 + s, xk−2)) < ε(Φ(tk−1, xk−1)) <

3

2
ε(Φ(T0 + s, xk−2)).
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Therefore, considering both cases together,

ε(Φ(tk−1, xk−1)) < 2ε(Φ(T0 + s, xk−2)). (3.12)

Finally, we assemble (3.10), (3.11), and (3.12):

d(Φ(T0, yN−1), yN ) = d(Φ(T0 + s, xk−2), y)

≤ d(Φ(T0 + s, xk−2),Φ(tk−1 − (T −NT0), xk−1))

+ d(Φ(tk−1 − (T −NT0), xk−1),Φ(tk−1, xk−1)))

+ d(Φ(tk−1, xk−1), y)

<
1

4
ε(Φ(T0 + s, xk−2)) +

1

8
ε(Φ(tk−1, xk−1))

+
1

8
ε(Φ(tk−1, xk−1))

<
3

4
ε(Φ(T0 + s, xk−2)) < ε(Φ(T0, yN−1)).

Thus the points y0, y1, . . . , yN have the desired properties.
(iii) =⇒ (i) Under the stated hypotheses, let ε ∈ C0(X;R>0) and let T ∈ T>0. Without

loss of generality, suppose that T = MT0 for some M ∈ Z>0. By Lemma 3.3, let ε2M−1 ∈
C0(X;R>0) be such that ε2M−1 <

1
2ε and such that

d(z1, z2) < ε2M−1(z1) =⇒ ε(z2) <
3
2ε(z1). (3.13)

Then, by Lemma 3.4, let η2M−2 ∈ C0(X;R>0) be such that

d(z1, z2) < η2M−2(z1) =⇒ d(Φ(T0, z1),Φ(T0, z2)) < ε2M−1(Φ(T0, z1)). (3.14)

Then, using Lemmata 3.3 and 3.4, recursively define ε2M−1, . . . , ε2 ∈ C0(X;R>0) and
η2M−2, . . . , η1 ∈ C0(X;R>0) such that εj < 1

2ηj , j ∈ {2, . . . , 2M − 2}, x ∈ X, and such
that

d(z1, z2) < εj(z1) =⇒ ηj(z2) <
3
2ηj(z1), j ∈ {2, . . . , 2M − 1}, (3.15)

and

d(z1, z2) < ηj(z1) =⇒ d(Φ(T0, z1),Φ(T0, z2)) < εj+1(Φ(T0, z1)), j ∈ {1, . . . , 2M − 2}.
(3.16)

Define δ ∈ C0(X;R>0) by

δ = min{η1, 13η2, . . . ,
1
3ηN−1,

1
3ε}.

Now, by hypothesis, let

x0 = x, x1, . . . , xk = y, T0, T0, . . . , T0

and
y0 = y, y1, . . . , ym = x, T0, T0, . . . , T0

be ε-T0-chains, i.e.,

d(Φ(T0, xj), xj+1) < δ(Φ(T0, xj)), j ∈ {1, . . . , k}, (3.17)
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and
d(Φ(T0, yl), yl+1) < δ(Φ(T0, yl)), l ∈ {1, . . . ,m}. (3.18)

From the two finite sequences x0, x1, . . . , xk and y0, y1, . . . , ym, build another finite sequence

x0 = x, x1, . . . , xk−1,

y0, y1, . . . , ym−1, x0, x1, . . . , xk−1, . . . , y0, y1, . . . , ym−1, x0, x1, . . . , xk−1︸ ︷︷ ︸
y0,y1,...,ym−1,x0,x1,...,xk−1 repeated M times

, y,

this of length k +M(k +m) + 1. Let us use this sequence to assemble an ε-T0-chain

z0, z1, . . . , zk+M(k+m), T0, T0, . . . , T0,

i.e.,
d(Φ(T0, zj), zj+1) < δ(Φ(T0, zj)), j ∈ {0, 1, . . . , k +M(k +m)− 1}.

By the Euclidean Algorithm, let N ′, R′ ∈ Z>0 be such that

k +M(k +m) = N ′M +R′, R′ ∈ {0, 1, . . . ,M − 1}.

and take N = N ′ − 1 and R = R′ +M so that

k +m(k +m) = N ′M +R′ = (N + 1)M +R−M = NM +R,

R ∈ {M,M + 1, . . . , 2M − 1}.

Define

z′j =

{
zjM , j ∈ {0, 1, . . . , N − 1},
y, j = N

and

tj =

{
T, j ∈ {0, 1, . . . , N − 2},
R, j = N − 1.

We claim that
z′0, z

′
1, . . . , z

′
N , t0, t1, . . . , tN−1

is an (ε, T )-chain from x to y.
To establish this, we first claim that, for j ∈ {0, 1, . . . , N} and for l ∈ {1, . . . , R}, we

have
d(Φ(lT0, zjM ), zjM+l) < ηl(Φ(lT0, zjM )). (3.19)

For l = 1, we have

d(Φ(T0, zjM ), zjM+1) < δ(Φ(T0, zjM )) < η1(Φ(T0, zjM )),

verifying the claim in this case. To argue inductively, suppose that

d(Φ(T0, zjM ), zjM+l) < ηl(Φ(lT0, zjM ))

for some l ∈ {2, . . . , R− 1}. From this inequality and by (3.16), we have

d(Φ((l + 1)T0, zjM ),Φ(T0, zjM+l)) < εl+1(Φ((l + 1)T0, zjM )) < 1
2ηl+1(Φ((l + 1)T0, zjM )).
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Similarly, by (3.15) we have

ηl+1(Φ(T0, zjM+l)) <
3
2ηl+1(Φ((l + 1)T0, zjM )).

Thus, using (3.17), (3.18), and the definition of δ,

d(Φ(T0, zjM+l), zjM+l+1) < δ(Φ(T0, zjM+l)) <
1
3ηl+1(Φ(T0, zjM+l))

< 1
2ηl+1(Φ((l + 1)T0, zjM )).

Putting this together,

d(Φ((l + 1)T0, zjM ), zjM+l+1) ≤ d(Φ((l + 1)T0, zjM ),Φ(T0, zjM+l))

+ d(Φ(T0, zjM ), zjM+l+1)

< ηl+1(Φ((l + 1)T0, zjM )).

This establishes (3.19) by induction.
In the particular case of l = N , (3.19) gives

d(Φ(NT0, z
′
j), z

′
j+l) < ηN (Φ(NT0, z

′
j)) < ε(Φ(NT0, z

′
j)).

If l = R and j = N − 1, (3.19) gives

d(Φ(RT0, z
′
N−1), z

′
N ) < ηN−1(Φ(RT0, z

′
N−1)) < ε(Φ(RT0, z

′
N−1)).

Of course, the same argument gives, for ε ∈ C0(X;R>0) and T ∈ T>0, an (ε, T )-chain
from y to x, which gives this part of the result. ■

The following corollary is immediate since a point is chain recurrent if and only if it is
chain equivalent to itself.

3.16 Corollary: (Equivalent characterisations of chain recurrent set) Let (X, d) be
a metric space and let Φ be a topological flow or semiflow on X. Then, for T0 ∈ T>0

possessing a multiplicative inverse in T,

ChRec(Φ) = ChRec≥T0(Φ) = ChRec=T0(Φ) = ChRec(Φd,T0).

Note that the theorem and the corollary indicate why, when working with discrete-time
flows and semiflows, one can ignore the switching times and simply take them to be 1. This
leads to the following simplified notion of a chain in these cases. Indeed, this is the usual
definition of a chain for discrete-time flows and semiflows.

3.17 Definition: (ε-chain) Let (X, d) be a metric space and let Φ be a discrete-time topo-
logical flow or semiflow on X with ϕ = Φ1. For x, y ∈ X and ε ∈ C0(X;R>0), an ε-chain
for Φ from x to y is a finite sequence

x0, x1, . . . , xk,

with

(i) x0, x1, . . . , xk ∈ X,

(ii) x0 = x and xk = y, and



The Fundamental Theorem of Dynamical Systems 37

(iii) d(ϕ(xj), xj+1) < ε(ϕ(xj)), j ∈ {0, 1, . . . , k − 1}. •
Staying with discrete-time flows and semiflows for a moment, let us introduce some

notation for these that will facilitate a comparison of the chain recurrent set of a mapping
with the chain recurrent set of its iterate mappings. Let Φ be a discrete-time flow or
semiflow on a topological space (X,O ) and let k ∈ Z>0. Then define the discrete-time flow
or semiflow Φk on X by

Φk : T × X → X

(j, x) 7→ Φ(jk, x).

With this notation, we have the following result, which is essentially corollary to Theo-
rem 3.15.

3.18 Corollary: (The chain recurrent set of a mapping agrees with the chain re-
current set of its iterates) Let (X, d) be a metric space and let Φ be a topological flow
or semiflow on X. Then ChRec(Φ) = ChRec(Φk) for every k ∈ Z>0.

Proof: If x ∈ ChRec(Φk), then an elementary argument like that given in the discrete-
time case of the implication (ii) =⇒ (iii) from the proof of Theorem 3.15 shows that x ∈
ChRec(Φ).

Now suppose that x ∈ ChRec(Φ). Let ε ∈ C0(X;R>0) and, using an inductive proof like
that from the proof of the implication (iii) =⇒ (i) from Theorem 3.15, let δ ∈ C0(X;R>0)
be such that, if

y0, y1, . . . , yk

is a δ-chain for Φ, then
d(yk,Φ

k(y0)) < ε(Φk(y0)).

By Theorem 3.15, suppose that
x0, x1, . . . , xm

is a δ-chain from x to x for Φ. Then

x0, x1, . . . , xm−1, x0, x1, . . . , xm, . . . , x0, x1, . . . , xm︸ ︷︷ ︸
k times

is a δ-chain from x to x for Φ, and the choice of δ ensures that

x0, xk, . . . , xmk

is a ε-chain from x to x for Φk. Thus, by Theorem 3.15, x ∈ ChRec(Φk). ■

4. The Conley decomposition

Now we turn to the first part of the Fundamental Theorem of Dynamical Systems,
the so-called Conley decomposition. This gives a decomposition of the state space for a
flow or semiflow into chain recurrent dynamics on the chain recurrent set and gradient-like
dynamics off the chain recurrent set, as (roughly) one flows from repelling sets to attracting
sets. We first spend some time understanding the relationship between chains and trapping
regions, as this is essential for any sort of understanding of how the Fundamental Theorem
of Dynamical Systems works. After this, we prove the decomposition theorem.
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4.1. Chains and trapping regions. We begin with some notation. Let (X, d) be a metric
space and let S ⊆ X. The function

distS : X → R≥0

x 7→ inf{d(x, y) | y ∈ S}

is the distance function to S. We shall also denote dist(x, S) = distS(x). Evidently, if
S is closed and x ̸∈ S, distS(x) ∈ R>0. We use this notation in the proof of the following
lemma that shows how trapping regions give natural error functions with useful properties.

4.1 Lemma: (Error functions and trapping regions) Let (X, d) be a metric space and
let Φ be a topological flow or semiflow on X. For an open set T ⊆ X and for T ∈ T>0, the
following statements are equivalent:

(i) T is a trapping region with cl(Φ(T≥T × T)) ⊆ T;

(ii) there exists ε ∈ C0(X; (0, 1]) such that

Bd(ε(Φ(t, x)),Φ(t, x)) ⊆ T, t ∈ T≥T , x ∈ T.

Proof: (i) =⇒ (ii) Let

ε′(x) =
1

2

(
distcl(Φ(T≥T×T))(x) + distX\T(x)

)
,

noting that ε′ is continuous [Aliprantis and Border 2006, Theorem 3.16]. Also, ε′ takes
values in R>0 since, if x ∈ cl(Φ(T≥T ×T)), then x ̸∈ X \T. For x ∈ T and t ∈ T≥T , we have

Φ(t, x) ∈ Φ(T≥T × T) =⇒ distcl(Φ(T≥T×T))(Φ(t, x)) = 0.

Thus, if y ∈ Bd(ε
′(Φ(t, x)),Φ(t, x)), we have

d(Φ(t, x), y) < ε′(Φ(t, x)) =
1

2
distX\T(Φ(t, x)).

Also,

distX\T(Φ(t, x)) = inf{d(Φ(t, x), z) | z ∈ X \ T}
≤ inf{d(Φ(t, x), y) + d(z, y) | x ∈ X \ T}
= d(Φ(t, x), y) + distX\T(y).

Putting this together,

2d(Φ(t, x), y) < distX\T(Φ(t, x)) ≤ d(Φ(t, x), y) + distX\T(y).

Then
distX\T(y) > d(y,Φ(t, x)) ≥ 0 =⇒ y ∈ T,

showing that Bd(ε
′(Φ(t, x)),Φ(t, x)) ⊆ T. Taking

ε(x) = min{ε′(x), 1}

gives this part of the lemma.
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(ii) =⇒ (i) Let ε be as stated. Let y ∈ cl(Φ(T≥T × T)) and let ((tj , xj))j∈Z>0 be a
sequence in T≥T × T for which y = limj→∞Φ(tj , xj). By continuity of ε, let N ∈ Z>0 be
sufficiently large that ε(Φ(tj , xj)) ≥ 1

2ε(y), j ≥ N . Also suppose that N is large enough
that d(Φ(tj , xj), y) <

1
4ε(y) for j ≥ N . Let z ∈ Bd(

1
4ε(y), y). Then

d(Φ(tN , xN ), z) ≤ d(Φ(tN , xN ), y) + d(y, z)

<
1

4
ε(y) +

1

4
ε(y) ≤ ε(Φ(tN , xN )).

Thus
Bd(

1
4ε(y), y) ⊆ Bd(ε(Φ(tN , xN )),Φ(tN , xN )) ⊆ T

and so y ∈ T. ■

The following lemma provides an essential conceptual step in understanding the Fun-
damental Theorem of Dynamical Systems. It shows how chains and the chain recurrent set
give rise to natural trapping regions.

4.2 Lemma: (Trapping regions from chains) Let (X, d) be a metric space and let Φ be
a topological flow or semiflow on X. Let x ∈ X \ ChRec(Φ), and let ε ∈ C0(X;R>0) and
T ∈ T>0 be such that there is no (ε, T )-chain from x to itself. Let m ∈ Z>0. Then

T = {y ∈ X | there exists an (ε, T )-chain of length k ≥ m from x to y}

is an open trapping region satisfying

(i) Φ(T≥T × T) ⊆ T and

(ii) x ̸∈ T.

Proof: Clearly, x ̸∈ T by definition of ε and T .
To prove openness of T, let y ∈ T, let k ≥ m and let

x0 = x, x1, . . . , xk = y, t0, t1, . . . , tk−1

be an (ε, T )-chain from x to y ∈ T. We claim that, if

r = ε(Φ(tk−1, xk−1))− d(Φ(tk−1, xk−1), y),

then Bd(r, y) ⊆ T. Indeed, let z ∈ Bd(r, y). Then

d(Φ(tk−1, xk−1), z) ≤ d(Φ(tk−1, xk−1), y) + d(y, z)

< d(Φ(tk−1, xk−1), y) + ε(Φ(tk−1, xk−1))− d(Φ(tk−1, xk−1), y)

= ε(Φ(tk−1, xk−1)).

Thus we have
Bd(r, y) ⊆ Bd(ε(Φ(tk−1, xk−1)),Φ(tk−1, xk−1)).

Since the ball on the right consists of points z for which there is an (ε, T )-chain from x to
z, we obtain Bd(r, y) ⊆ T, giving the desired openness.
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Now we show that cl(Φ(T≥T ×T)) ⊆ T. By Lemma 3.3, let δ ∈ C0(X;R>0) be such that

d(z1, z2) < δ(z1) =⇒ 1

2
ε(z1) < ε(z2).

Without loss of generality, we can assume that δ ≤ 1
2ε. Let y ∈ cl(Φ(T≥T × T)). Then

Bd(δ(y), y) ∩ Φ(T≥T × T) ̸= ∅,

and so there exists t ∈ T≥T and z ∈ T such that Φ(t, z) ∈ Bd(δ(y), y). By definition of T,
let k ≥ m and let

x0 = x, x1, . . . , xk = z, t0, t1, . . . , tk−1

be an (ϵ, T )-chain from x to z. We have

d(Φ(t, z), y) < δ(y) ≤ 1

2
ε(y) < ε(Φ(t, z)),

from which we may conclude that

x0 = x, x1, . . . , xk = z, y, t0, t1, . . . , tk−1, t

is an (ε, T )-chain from x to y, and so y ∈ T. This gives cl(Φ(T≥T × T)) ⊆ T, as desired. ■

4.2. The decomposition theorem. With the understanding of the connection between
chains and trapping regions from the preceding section, we can prove the Conley decompo-
sition. The following lemma captures an essential part of the theorem. Typically the proof
of this lemma is given separately for the continuous-time case and the discrete-time case
(where the notion of trapping region is taken to be our notion of strong trapping region as
in Remark 2.8–1 and in Definition 5.6 below). Our proof works for both cases, and has the
additional benefit of being simpler than the already simple proofs in each of the separate
cases.

4.3 Lemma: (Chain recurrent points whose forward trajectories lie in a trapping
region) Let (X, d) be a metric space and let Φ be a topological flow or semiflow on X. If
T is a trapping region with A its corresponding attracting set, then

ChRec(Φ) ∩Orb−(T) = A.

Proof: Let T ∈ T>0 be such that cl(Φ(T≥T×T)) ⊆ T and, by Lemma 4.1, let ε ∈ C0(X;R>0)
be such that

Bd(ε(Φ(t, x)),Φ(t, x)) ⊆ T, t ∈ T≥T , x ∈ T.

Let t ∈ T≥T and let m ∈ Z>0. Let x ∈ ChRec(Φ) ∩ T. Let

x0 = x, x1, . . . , xk = x, t0, t1, . . . , tk−1

be a (min{ 1
m , ε}, t)-chain from x to itself. We have

d(Φ(t0, x0), x1) < min

{
1

m
, ε(Φ(t, x0))

}
≤ ε(Φ(t0, x0)),



The Fundamental Theorem of Dynamical Systems 41

which implies that x1 ∈ T by definition of ε. Now suppose that xj ∈ T for j ∈ {0, 1, . . . , k−
2}, and note that, as above,

d(Φ(tj , xj), xj+1) < ε(Φ(tj , xj)).

Thus xj+1 ∈ T by definition of ε. Thus x1, . . . , xk−1 ∈ T. Now we have

d(Φ(tk−1, xk−1), x) < min

{
1

m
, ε(Φ(tk−1, xk−1))

}
≤ 1

m
.

Since tk−1 ≥ T + t and xk−1 ∈ T, we have

Φ(tk−1, xk−1) ∈ Φ(T≥T+t × T),

which implies that

distΦ(T≥T+t×T)(x) ≤ d(x,Φ(tk−1, xk−1)) <
1

m
.

As this construction can be made for any m ∈ Z>0, we conclude that x ∈ cl(Φ(T≥T+t×T)).
Therefore, as this holds for every t ∈ T≥T , we have

x ∈
⋂

t∈T≥0

Φ(T≥T+t × T) = A.

Let x ∈ ChRec(Φ)∩Orb−(T). Let (ε, T ) be as in part (ii) of Lemma 4.1. Suppose that
Φ(t, x) ∈ T for t ∈ T>0. Since x ∈ ChRec(Φ), let

x0 = x, x1, . . . , xk = x, t0, t1, . . . , tk−1

be an (ε, T + t)-chain from x to x. Since Φt(x) ∈ T, Φs+t(x) ∈ cl(T) ⊆ T for every s ∈ T≥T ;
in particular, Φ(t0, x0) ∈ T. By definition of ε, x1 ∈ T. Thus

x1, x2, . . . , xk = x, t1, t2, . . . , tk−1

is an (ε, T ) chain from x1 ∈ T to x. As we argued in the first part of the proof, this implies
that xk = x ∈ T. Thus x ∈ ChRec(Φ) ∩ T = A, again from the first part of the proof. ■

Now we can state the decomposition theorem. In the statement of the result, we denote
by T (Φ) the set of trapping regions for a topological flow or semiflow.

4.4 Theorem: (The Conley decomposition) Let (X,d) be a metric space and let Φ be
a topological flow or semiflow on X. Then

X \ ChRec(Φ) =
⋃

T∈T (Φ)

Orb−(T) \AT.

Proof: Let x ̸∈ ChRec(Φ). Let ε ∈ C0(X;R>0) and T ∈ T>0 be such that there is no
(ε, T )-chain from x to itself. Let T be the associated trapping region with m = 1 as in
Lemma 4.2 and let A be the attracting set associated with T. Clearly x ̸∈ A ⊆ T. Since

x0 = x, x1 = ΦT (x), T
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is an (ε, T ) chain, ΦT (x) ∈ T. Therefore, x ∈ Orb−(T). Thus

X \ ChRec(Φ) ⊆ Orb−(T) \A ⊆
⋃

T′∈T (Φ)

Orb−(T′) \AT′ .

Now, let x ∈ Orb−(T) \A for some T ∈ T (Φ) with A its attracting set. By Lemma 4.3,
x ̸∈ ChRec(Φ) and so ⋃

T′∈T (Φ)

Orb−(T′) \AT′ ⊆ X \ ChRec(Φ), ■

There is an insightful rephrasing of this decomposition for flows.

4.5 Corollary: (A refinement of the Conley decomposition for flows) Let (X, d) be
a metric space and let Φ be a topological flow or semiflow on X. Then

ChRec(Φ) =
⋂

T∈T (Φ)

{A ∪R | (A,R) is the attracting-repelling pair for T ∈ T (Φ)}.

Proof: From the theorem,

ChRec(Φ) =
⋂

T∈T (Φ)

X \ (Orb−(T) \AT) =
⋂

T∈T (Φ)

(X \Orb−(T)) ∪AT.

The corollary now follows from Lemma 2.14. ■

5. Complete Lyapunov functions

In this section we give the second part of the Fundamental Theorem of Dynamical Sys-
tems, namely the existence of a complete Lyapunov function. Our construction comes with
a few steps. First we work with discrete-time flows and semiflows, with the final results
being valid for flows and semiflows on separable metric spaces. In our constructions, we
make use of strong trapping regions (as in Remark 2.8–1 and Definition 5.6 below), follow-
ing [Hurley 1998]. Despite using strong trapping regions in place of the trapping regions
from the decomposition theorem, the conclusions refer only to chain notions which are
themselves not concerned with whether the trapping regions are strong or not. After these
constructions are complete, we show that they imply the existence of complete Lyapunov
functions in the continuous-time case for separable metric spaces.

5.1. Definitions. We begin by giving definitions and elementary results around the notion
of a complete Lyapunov function.

5.1 Definition: (Complete Lyapunov function) Let (X, d) be a metric space and let
Φ be a topological flow or semiflow on X. A complete Lyapunov function for Φ is a
continuous function L : X → [0, 1] such that:

(i) L ◦ Φ(t2, x) ≤ L ◦ Φ(t1, x) for x ∈ X and t1, t2 ∈ T≥0 satisfying t1 < t2;

(ii) L ◦ Φ(t, x) < L(x) for x ∈ X \ ChRec(Φ) and t ∈ T>0;

(iii) L ◦ Φ(t, x) = L(x) for x ∈ ChRec(Φ) and t ∈ T≥0;
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(iv) points x, y ∈ ChRec(Φ) are chain equivalent if and only if L(x) = L(y). •
Thus we see that a complete Lyapunov function (1) distinguishes the forward chain

recurrent set, (2) additionally distinguishes the chain components, and (3) tells us something
about the flow or semiflow between the chain components.

Complete Lyapunov functions for flows have particular properties that are sometimes
also casually (and falsely) ascribed to complete Lyapunov functions for semiflows. The
following lemma gives two particular properties of complete Lyapunov functions for flows.

5.2 Lemma: (Complete Lyapunov functions for flows) Let (X, d) be a metric space
and let Φ be a topological flow on X with L a complete Lyapunov function for Φ. Then the
following statements hold:

(i) if x ∈ X \ ChRec(Φ), then the function t 7→ L ◦ Φ(t, x) is strictly decreasing on T;

(ii) if x ∈ ChRec(Φ), then L ◦ Φ(t, x) = L(x) for t ∈ T.

Proof: (i) Note that ChRec(Φ) is invariant by Proposition 3.12(i). By Lemma 2.6, X \
ChRec(Φ) is also invariant. Therefore, if x ∈ X \ChRec(Φ) and if t1, t2 ∈ T satisfy t1 < t2,
we have

L ◦ Φ(t2, x) = L ◦ Φ(t2 − t1,Φ(t1, x)) < L ◦ Φ(t1, x),

since Φ(t1, x) ∈ X \ ChRec(Φ).
(ii) We need only prove this for t ∈ T<0, so let x ∈ ChRec(Φ) and t ∈ T<0. Then

Φ(t, x) ∈ ChRec(Φ) by Proposition 3.12(i). By definition,

L ◦ Φ(t, x) = L ◦ Φ(−t,Φ(t, x)) = L(x). ■

We shall show that every topological flow or semiflow on a separable metric space
possesses a complete Lyapunov function. To do so will require some work. First we will
establish the result in the discrete-time case, and then use this result to establish the result
in the continuous-time case. That the continuous- and discrete-time cases should be related
should come as no surprise, given that the chain recurrent set and its chain components are
essentially determined by the mapping Φ1, given Theorem 3.15.

5.2. Some constructions particular to the discrete-time case. In this section and the
two sections following it, we work with a discrete-time flow or semiflow Φ on a metric space
(X, d), and we denote ϕ = Φ1 ∈ C0(X;X). Where convenient, we will drop the reference to
Φ and simply refer to ϕ. For instance, we will write ChRec(ϕ) ≜ ChRec(Φ).

First, it is useful to give a refined equivalent characterisation of complete Lyapunov
functions in this case.

5.3 Lemma: (Complete Lyapunov functions for discrete-time flows and semi-
flows) Let (X,d) be a metric space and let ϕ = Φ1. A mapping L ∈ C0(X; [0, 1]) is a
complete Lyapunov function if and only if

(i) L ◦ ϕ(x) ≤ L(x) for x ∈ X,

(ii) L ◦ ϕ(x) < L(x) for x ∈ X \ ChRec(Φ),
(iii) L ◦ ϕ(x) = L(x) for x ∈ ChRec(Φ), and

(iv) points x, y ∈ ChRec(Φ) are chain equivalent if and only if L(x) = L(y).
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Proof: Since the fourth property in the definition of a complete Lyapunov function and in
the statement of the lemma are the same, we need only work with the first three properties
in each case.

First suppose that L is a complete Lyapunov function. Then, since 0 < 1, L◦ϕ(x) ≤ L(x)
for every x ∈ X. Similarly, L ◦ ϕ(x) < L(x) for x ∈ X \ ChRec(Φ). If x ∈ ChRec(Φ), then
ϕ(x) ∈ ChRec(Φ) by Proposition 3.12(i). Therefore, L ◦ ϕ(x) = L(x). This gives the first
three properties in the statement of the lemma.

Next suppose that L has the first three properties from the statement of the lemma.
Since L ◦Φ(t, x) = L ◦ϕt(x), an elementary induction gives each of the first three properties
in the definition of a complete Lyapunov function. ■

We shall work with ε-1-chains for ε ∈ C0(X;R>0), which we simply call ε-chains ac-
cording to Definition 3.17. It turns out to be convenient to modify slightly our notion of
chain. As pointed out by Hurley [1998], this minor modification is required by the condition
that complete Lyapunov functions decrease. If we were happy with them being allowed to
increase, we could get by with our existing notion of chains.

5.4 Definition: (σchain, ε-σchain) Let (X,d) be a metric space and let ϕ ∈ C0(X;X). A
σchain for ϕ is a finite sequence

(x0, y0), (x1, y1), . . . , (xk, yk)

of ordered pairs in X such that xj+1 = ϕ(yj), j ∈ {0, 1, . . . , k−1}. The nonnegative integer k
is the length of the σchain and the σchain is said to be from x0 to yk. If ε ∈ C0(X;R>0),
then a σchain

(x0, y0), (x1, y1), . . . , (xk, yk)

is an ε-σchain for ϕ if d(xj , yj) < ε(xj), j ∈ {0, 1, . . . , k}. •
Let us clarify the relationship between ε-chains and ε-σchains.

5.5 Lemma: (ε-chains and ε-σchains) Let (X, d) be a metric space and let ϕ ∈ C0(X;X).
Then the following statements hold:

(i) if ε ∈ C0(X;R>0), then there exists ε′ ∈ C0(X;R>0) such that, if

(x0, y0), (x1, y1), . . . , (xk, yk)

is an ε′-σchain for ϕ, then
x0, x1, . . . , xk

is an ε-chain for ϕ;

(ii) if ε ∈ C0(X;R>0) and if
x0, x1, . . . , xk

is a ε-chain for ϕ, then

(x0, x0), (ϕ(x0), x1), . . . , (ϕ(xk−1), xk)

is a ε-σchain for ϕ.
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Proof: (i) By Lemma 3.4, let ε′ ∈ C0(X;R>0) be such that

d(x, y) < ε′(x) =⇒ d(ϕ(x), ϕ(y)) < ε(x).

This δ can be verified to have the asserted property.
(ii) This is clear by definition. ■

We shall also work with a modified notion of trapping region. Specifically, we will work
with the usual notion of trapping region from the literature in the discrete-time case, as
discussed in Remark 2.8–1.

5.6 Definition: (Strong trapping region) Let (X, d) be a metric space and let ϕ ∈
C0(X;X). A strong trapping region for ϕ is a subset T for which cl(ϕ(T)) ⊆ int(T). •

Clearly a strong trapping region is a trapping region. Thus a strong trapping region has
an associated attracting set and, in the case of flows, an associated repelling set.

5.3. The discrete-time case: weak Lyapunov functions for attracting sets. In this part
of our development, we do much of the technical heavy lifting. We work with a fixed strong
trapping region and build a weak Lyapunov function (i.e., a function that is nonincreasing
along trajectories) with particular properties relative to the associated attracting set.

Our construction of a weak Lyapunov function for an attracting set is done in stages.
First, given ε ∈ C0(X;R>0) and a σchain

(x0, y0), (x1, y1), . . . , (xk, yk)

for ϕ which we denote by γ, we define

Dε(γ) =
k∑

j=0

d(xj , yj)

ε(xj)
.

Now, if C ⊆ X is a nonempty closed set, if x ∈ X, and if ϕ ∈ C0(X;X), denote by Cϕ(C;x)
the set of all σchains for ϕ from a point in C to x. Then, for ε ∈ C0(X;R>0), define

Eϕ,ε(C;x) = inf{Dε(γ) | γ ∈ Cϕ(C;x)}.

It is evident that, since (x, x) ∈ Cϕ(C;x) if x ∈ C, that Eϕ,ε(C;x) = 0 in this case.
The following properties of Eϕ,ε(C;x) are important for us.

5.7 Lemma: (Properties of Eϕ,ε(C;x)) Let (X, d) be a metric space and let ϕ ∈
C0(X;X). Let C ⊆ X be a nonempty closed set, let x ∈ X, and let ε ∈ C0(X;R>0).
Then the following statements hold:

(i) Eϕ,ε(C;ϕ(x)) ≤ Eϕ,ε(C;x);

(ii) the mapping x 7→ Eϕ,ε(C;x) is continuous.

Proof: (i) Let
(x0, y0), (x1, y1), . . . , (xk, x)

be a σchain from x0 ∈ C to x, denoted by γ. Define a σchain γ′ from x0 ∈ C to ϕ(x) by

(x0, y0), (x1, y1), . . . , (xk, x), (ϕ(x), ϕ(x)).
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Since Dε(γ) = Dε(γ
′), we must have Eϕ,ε(C;ϕ(x)) ≤ Eϕ,ε(C;x).

(ii) Suppose first that x ∈ C. In this case, Eϕ,ε(C;x) = 0 (as we observed just prior to
the statement of the lemma). For y ∈ C, we have the σchain γ given by

(y, x)

from a point in C to x. Note that

Eϕ,ε(C; y) = Dε(γ) =
d(x, y)

ε(x)
,

and so limy→xEϕ,ε(C; y) = 0 = Eϕ,ε(C;x), giving continuity at x.
Now suppose that x ̸∈ C. Consider a σchain γ

(x0, y0), (x1, y1), . . . , (xk, x)

from a point in C to x. Let y ∈ X and consider the σchain γ′

(x0, y0), (x1, y1), . . . , (xk, y)

from the same point in C to y. We then have

|Dε(γ)−Dε(γ
′)| =

∣∣∣∣d(xk, x)ε(xk)
− d(xk, y)

ε(xk)

∣∣∣∣ ≤ d(x, y)

ε(xk)
(5.1)

using a standard metric identity [Searcóid 2007, Theorem 1.1.2]. We claim now that this
shows that x 7→ Eϕ,ε(C;x) is upper semicontinuous. To see this, let δ ∈ R>0 and let γ be
a σchain from a point in C to x such that

Dε(γ) < Eϕ,ε(C;x) +
δ

2
.

For y ∈ X sufficiently close to x and with γ′ as defined above, we can ensure that

Dε(γ
′) < Dε(γ

′) +
δ

2
.

With γ′ so chosen, we have

Eϕ,ε(C; y) ≤ Dε(γ
′) < Dε(γ) +

δ

2
< Eϕ,ε(C;x) + δ,

from which we can conclude the asserted upper semicontinuity.
Let us suppose that we do not have lower semicontinuity at x. Then there exists a

sequence (yj)j∈Z>0 in X converging to x and β ∈ R>0 such that

Eϕ,ε(C; yj) < Eϕ,ε(C;x)− β, j ∈ Z>0.

If this last condition holds, then there exists a sequence γ′j ∈ Cϕ(C; yj), j ∈ Z>0, such that

Dε(γ
′
j) < Eϕ,ε(C;x)− β, j ∈ Z>0.



The Fundamental Theorem of Dynamical Systems 47

Denote by γj the σchain obtained as above, replacing yj with x. As in (5.1), we have

|Dε(γj)−Dε(γ
′
j)| ≤

d(x, yj)

ε(zj)
,

where the last pair in γ′j is (zj , yj). If it holds that lim infj→∞
d(x,yj)
ε(zj)

= 0, then we arrive at

the contradiction that Dε(γj) < Eϕ,ε(C;x) for some sufficiently large j, in contradiction to
the definition of Eϕ,ε(C;x). This contradiction would then show that our assumption that
we do not have lower semicontinuity at x must be false.

Thus it remains to show that lim infj→∞
d(x,yj)
ε(zj)

= 0 under the assumption that

Eϕ,ε(C; yj) < Eϕ,ε(C;x)− β, j ∈ Z>0.

To this end, note that, as we have seen, the assumption implies that

Eϕ,ε(C;x)− β > Dε(γ
′
j) ≥

d(zj , yj)

ε(zj)
.

Therefore,
ε(zj) ≥ Md(zj , yj), j ∈ Z>0,

for a constant M ∈ R>0 independent of j. Therefore,

d(x, yj)

ε(zj)
≤ M−1 d(x, yj)

d(zj , yj)
, j ∈ Z>0.

We now consider two cases: (1) limj→0 d(zj , yj) = 0 and (2) (1) does not hold. In the first
case, limj→∞ zj = x. Therefore, for j sufficiently large, ε(zj) ≥ 1

2ε(x), in which case we
directly have

lim
j→∞

d(x, yj)

ε(zj)
= 0,

giving the desired conclusion in this case. In the second case, we have

lim inf
j→∞

d(x, yj)

ε(zj)
≤ lim inf

j→∞
M−1 d(x, yj)

d(zj , yj)
= 0,

again giving the desired result. ■

The way to view the function x 7→ Eε(C;x) is that it measures the “ε-effort” expended
along any ε-σchain going from a point in C to the point x, where “ε-effort” is characterised
by the ratio of the jumps of a σchain compared to the maximum jump permitted by ε.
(Thus “1” represents neutral effort.) The closed set C in the definition has no relationship
to the dynamics.

In the next stage in our construction, we fix a strong trapping region T and consider
our previous “minimum effort” function applied to the sets cl(ϕk(T)), k ∈ Z>0. We tailor ε
according to Lemma 4.1, and furthermore to be bounded above by 1. Throughout the next
part of our construction, we understand this ε to have been chosen and fixed. With such a
ε at hand and for k ∈ Z>0, we define

Eε,k(x) = Eϕk,ε(cl(ϕ
k(T));x), x ∈ X.

Let us list the pertinent properties of Eε,k.
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5.8 Lemma: (Properties of Eε,k) Let (X,d) be a metric space and let ϕ ∈ C0(X;X). For
a strong trapping region T and with ε as above, and for k ∈ Z>0, the following statements
hold:

(i) Eε,k is nonnegative and continuous;

(ii) Eε,k ◦ ϕk(x) ≤ Eε,k(x), x ∈ X;

(iii) if
(x0, y0), (x1, y1), . . . , (xk, yk)

is an ε-σchain for ϕk and if x0 ∈ cl(ϕk(T)), then yk ∈ T;

(iv) E−1
ε,k (0) = cl(ϕk(T)).

Additionally, no longer fixing k,

(v) if A is the attracting set associated with T and if x ∈ A, then Eε,k(x) = 0 for every
k ∈ Z>0;

(vi) if x ̸∈ T, then Eε,k(x) ≥ 1 for every k ∈ Z>0.

Proof: Parts (i) and (ii) follow directly from the definitions and Lemma 5.7.
(iii) Since x0 ∈ cl(ϕk(T)) ⊆ T, then y0 ∈ T by the fact that ε satisfies the condition

of Lemma 4.1. Then x1 = ϕk(y0) ∈ cl(ϕk(T)) and so y1 ∈ T by the same argument.
Inductively, yk ∈ T.

(iv) As we have observed above when working with Eϕ,ε(C;x), we have

cl(ϕk(T)) ⊆ E−1
ε,k (0).

It suffices, then, to show that Eε,k(x) > 0 for x ̸∈ cl(ϕk(T)). If there are no ε-σchains from
a point in cl(ϕk(T)) to x, then Eε,k(x) ≥ 1, as we shall see in our proof of part (vi) below.
So suppose that

(x0, y0), (x1, y1), . . . , (xk, x)

is a ε-σchain from a point x0 ∈ cl(ϕk(T)) to x. By part (iii), xk ∈ cl(ϕk(T)), whereupon

Dε(γ) ≥
d(xk, x)

ε(xk)
≥ d(xk, x) ≥ distcl(ϕk(T))(x) > 0,

noting that we have assumed that ε takes values in (0, 1].
(v) If x ∈ A, then x ∈ cl(ϕk(T)) for k ∈ Z>0. As we argued in the previous part of the

proof, this implies that Eε,k(x) = 0 for all k ∈ Z>0.
(vi) If x ̸∈ T and if γ ∈ Cϕ(cl(ϕ

k(T));x), then γ is not an ε-σchain by part (iii).
Therefore, if γ is given by

(x0, y0), (x1, y1), . . . , (xk, yk),

then, for some j ∈ {0, 1, . . . , k}, d(xj , yj) ≥ ε(xj), from which we have

Dε(γ) ≥
d(xj , yj)

ε(xj)
≥ 1.

Therefore, Eϕk,ε(cl(ϕ
k(T));x) ≥ 1. ■
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The next step in our construction is to average Eε,k over the first k iterates of ϕ:

Eε,k(x) =
1

k

k−1∑
j=0

Eε,k ◦ ϕj(x).

Let us record the salient properties of this function.

5.9 Lemma: (Properties of Eε,k) Let (X,d) be a metric space and let ϕ ∈ C0(X;X)
with strong trapping region T and associated error function ε as in Lemma 4.1. Then the
following statements hold:

(i) Eε,k is continuous and R≥0-valued;

(ii) Eε,k ◦ ϕ(x) ≤ Eε,k(x).

Proof: (i) This is clear.
(ii) We have

Eε,k ◦ ϕ(x)− Eε,k(x) =
1

k
(Eε,k ◦ ϕ(x)− Eε,k(x)) ≤ 0. ■

Now we can give the final part of the constructions we shall make for a fixed strong
trapping region T. We define

ET(x) =
∞∑
k=1

min{Eε,k(x), 1}
2k

, x ∈ X,

and then

LT(x) =
∞∑
j=0

ET ◦ ϕj(x)

2j
, x ∈ X.

Let us record the properties of the second of these functions. In the statement and proof
of the lemma (and of many constructions in the remainder of this section), it is insightful
to keep in mind the characterisation of repelling sets from Lemma 2.14.

5.10 Lemma: (Properties of LT) Let (X,d) be a metric space and let ϕ ∈ C0(X;X). Let
T be an open strong trapping region for ϕ with A the associated attracting set. Then the
following statements hold:

(i) LT is continuous with values in [0, 1];

(ii) L−1
T (0) = A and L−1

T (1) = X \Orb−(T);

(iii) LT ◦ ϕ(x) < LT(x) for x ∈ Orb−(T) \A.

Proof: (i) The series defining the functions ET is uniformly convergent by the Weierstrass
M -test, by virtue of which the limit function is continuous. The function ET take values in
[0, 1] since

∑∞
j=1

1
2j

= 1. For the same reason, the function LT take values in [0, 1].

(ii) If x ∈ A, then ϕj(x) ∈ A for every j ∈ Z≥0 by Proposition 2.13(ii). Therefore,
Eε,k ◦ϕ

j(x) = 0 for every k ∈ Z>0 and j ∈ Z≥0 by Lemma 5.8(v). Therefore, Eε,k ◦ϕ
j(x) = 0

for every k ∈ Z>0 and j ∈ Z≥0 and so ET ◦ ϕj(x) = 0 for every j ∈ Z≥0. Therefore,
LT(x) = 0. Conversely, if LT(x) = 0, then ET ◦ ϕj(x) = 0 for j ∈ Z≥0. This, in turn,
implies that Eε,k ◦ϕj(x) = 0 for every k ∈ Z>0 and j ∈ Z≥0. Considering the case of j = 0,
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this implies that Eε,k(ϕ
l(x)) = 0 for every k ∈ Z>0 and l ∈ {0, 1, . . . , k − 1}. In particular,

Eε,k(x) = 0 for every k ∈ Z>0. Thus x ∈ ∩k∈Z>0 cl(ϕ
k(T)) by Lemma 5.8(iv). Thus x ∈ A.

Now suppose that x ∈ X \ Orb−(T) and note that ϕj(x) ̸∈ T for every j ∈ Z≥0.
Therefore, Eε,k ◦ ϕj(x) ≥ 1 for every k ∈ Z>0 and every j ∈ Z≥0 by Lemma 5.8(vi).
Therefore, Eε,k(x) ≥ 1, and so ET ◦ ϕj(x) = 1 for every k ∈ Z>0 and j ∈ Z≥0. Thus
LT(x) = 1.

Conversely, suppose that LT(x) = 1. It follows that ET ◦ ϕj(x) = 1 for j ∈ Z≥0 and so
Eε,k ◦ ϕj(x) ≥ 1 for every k ∈ Z>0 and j ∈ Z≥0. We claim that this prohibits x ∈ Orb−(T)
for some y ∈ T. Indeed, if x ∈ Orb−(y) for some y ∈ T, then ϕj(x) ∈ T for some j ∈ Z≥0

and so ϕj+k(x) ∈ ϕj+k(T) ⊆ cl(ϕj+k(T)) for k ∈ Z>0. By Lemma 5.8(iv), this implies
that Eε,k ◦ ϕj(x) = 0. This, in turn, implies that Eε,k(x) < 1. This shows that, indeed, if
LT(x) = 1, then x ̸∈ Orb(y) for every y ∈ T. Thus x ∈ X \Orb−(T).

(iii) By Lemma 5.9(ii),

Eε,k ◦ ϕj+1(x) ≤ Eε,k ◦ ϕj(x), x ∈ X, k ∈ Z>0, j ∈ Z≥0.

It follows that
ET(ϕ

j+1(x)) ≤ ET(ϕ
j(x)), x ∈ X, j ∈ Z≥0.

We will have LT ◦ ϕ(x) < LT(x) when there exists j ∈ Z≥0 such that

ET(ϕ
j+1(x)) < ET(ϕ

j(x)).

This will happen when there exists k ∈ Z>0 and j ∈ Z≥0 such that

1. Eε,k ◦ ϕj(x) < 1 and

2. Eε,k ◦ ϕj+1(x) < Eε,k ◦ ϕj(x).

Therefore, to establish this part of the lemma, it suffices to show that, for x ∈ Orb−(T),
there exists k ∈ Z>0 and j ∈ Z≥0 such that conditions 1 and 2 are satisfied.

First suppose that x ∈ ϕ(T) \ A. Since x ̸∈ A, there exists k ∈ Z>0 such that x ̸∈
cl(ϕk+1(T)) but x ∈ cl(ϕj(T)) for j ∈ {1, . . . , k}. Thus Eε,j(x) = 0 for j ∈ {1, . . . , k} and
Eε,k+1(x) > 0 by Lemma 5.8(iv). Since ϕ(x) ∈ cl(ϕj(T)) for j ∈ {1, . . . , k + 1}, we can
again use Lemma 5.8(iv) to see that

Eε,k+1 ◦ ϕ(x) = 0 < Eε,k+1(x),

giving this part of the lemma in the case that x ∋ ϕ(T) \ A. Now suppose that x ∈
Orb−(T) \ ϕ(T). Then ϕj(x) ∈ ϕ(T) for some j ∈ Z>0, and then the above argument gives

Eε,k+1 ◦ ϕj+1(x) = 0 < Eε,k+1 ◦ ϕj(x)

for some k ∈ Z>0. This gives the result. ■

5.4. The discrete-time case: the complete Lyapunov function. In the preceding part of
our construction, we fixed a strong trapping region T and constructed a weak Lyapunov
function LT with some useful properties. We now use this construction to build a complete
Lyapunov function for a continuous mapping. To do so, we “sum over attracting sets,”
and so this requires being able to sum in a useful way. Thus we first establish some
countability for strong trapping regions. To do this, we shall make a connection between
strong trapping regions and points that can be connected by chains, rather as we did in the
proof of Theorem 4.4.

This being said, we begin with some constructions with chains.
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5.11 Lemma: (Robust chains) Let (X,d) and let ϕ ∈ C0(X;X). Let ε ∈ C0(X;R>0) and
x, y ∈ X be such that there is no 3ε-chain of length at least 2 for ϕ from x to y. Then there
are neighbourhoods U of x and V of y, and δ ∈ C0(X;R>0) such that there is no δ chain
for ϕ from a point in U to a point in V.

Proof: We first claim that there exists δ1 ∈ C0(X;R>0) such that, if

x0, x1, . . . , xk

is a ε-chain for ϕ, and if d(z, x0) < δ1(x0), then

(z, x1, . . . , xn)

is a 3ε-chain for ϕ. By Lemma 3.3, let δ ∈ C0(X;R>0) such that

d(z1, z2) < δ(z1) =⇒ 1
2ε(z1) < ε(z2) <

3
2ε(z1).

Without loss of generality, suppose that δ ≤ 1
2ε. By Lemma 3.4, let δ1 ∈ C0(X;R>0) be

such that
d(z1, z2) < δ1(z1) =⇒ d(ϕ(z1), ϕ(z2)) < δ(ϕ(z1)).

Note that

d(z, x0) < δ1(x0) =⇒ d(ϕ(x0), ϕ(z)) < δ(ϕ(x0)) =⇒ 1

2
ε(ϕ(x0)) < ε(ϕ(z)).

Then, if d(z, x0) < δ1(x0), we have

d(ϕ(z), x1) ≤ d(ϕ(z), ϕ(x0)) + d(ϕ(x0), x1)

< δ(ϕ(x0)) + ε(ϕ(x0)) ≤
3

2
ε(ϕ(x0)) ≤ 3ε(ϕ(z)),

as desired.
Next we claim that there exists δ2 ∈ C0(X;R>0) such that, if

x0, x1, . . . , xk−1, xk

is a δ2-chain with k ≥ 2 for ϕ and if d(xk, z) < ε(xk), then

x0, x1, . . . , xk−1, z

is a 3ε-chain for ϕ. Indeed, by Lemma 3.3, let δ2 ∈ C0(X;R>0) be such that

d(z1, z2) < δ2(z1) =⇒ 1

2
ε(z1) < ε(z2) <

3

2
ε(z1).

Without loss of generality, suppose that δ2 < ε. Note that

d(ϕ(xk−1), xk) < ε(ϕ(xk−1)) =⇒ ε(xk) <
3

2
ε(ϕ(xk−1)).

Therefore, if d(xk, z) < ε(xk), we have

d(ϕ(xk−1), z) ≤ d(ϕ(xk−1), xk) + d(xk, z)

< δ2(ϕ(xk−1)) + ε(xk) <
5

2
ε(ϕ(xk−1)) < 3ε(ϕ(xk−1)),

as desired.
Now take δ = 1

2 min{δ1, δ2} with δ1 and δ2 as in the preceding two paragraphs. Let U
be a neighbourhood of x such that
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1. U ⊆ B(δ(x), x) and

2. 2δ(x′) > δ(x) for x′ ∈ U,

and specify a neighbourhood V of y similarly. Now, if

x′, x1, . . . , xk−1, y
′

is a δ-chain for ϕ from x′ ∈ U to y′ ∈ V, then

d(x, x′) <
1

2
δ1(x) < δ1(x

′)

and

d(y, y′) <
1

2
δ2(y) < δ2(y

′),

our constructions ensure that
x, x1, . . . , xk−1, y

is a 3ε-chain for ϕ from x to y. This proves the lemma by contraposition. ■

Using the lemma, we devise a countable subset of strong trapping regions with desired
properties. As we shall see—and as we have seen already in our proof of Theorem 4.4—there
is a connection between strong trapping regions and chains. Thus the first step in reducing
to a countable number of strong trapping regions is to reduce to a countable number of ε’s
used to define these strong trapping regions.

5.12 Lemma: (A useful countable subset of C0(X;R>0)) Let (X,d) be a separable
metric space and let ϕ ∈ C0(X;X). Then there exists a countable subset P ⊆ C0(X;R>0)
with the following property: if x, y ∈ X and if, for some ε ∈ C0(X;R>0), there is no ε-chain
of length at least 2 for ϕ from x to y, then there exists δ ∈ P such that there is no δ-chain
of length at least 2 for ϕ from x to y.

Proof: Let us denote

N C = {(x, y) ∈ X× X| there exists ε ∈ C0(X;R>0) such that

there is no ε-chain of length at least 2 from x to y}.

For (x, y) ∈ N C , there exist neighbourhoods Ux of x and Vy of y, and δx,y ∈ C0(X;R>0)
such that there is no δx,j-chain from a point in U to a point in V. Now note that the
collection Ux × Vy, (x, y) ∈ N C , of open sets covers N C . There is a countable collection
of points ((xj , yj))j∈Z>0 from N C such that the sets Nj ≜ Uxj × Vyj , j ∈ Z>0, covers

N C [Willard 1970, Theorem 16.9]. Taking P = {δj ≜ δxj ,yj | j ∈ Z>0} gives the result.■

Let us extract from the proof the notation

N C = {(x, y) ∈ X× X| there exists ε ∈ C0(X;R>0) such that

there is no ε-chain of length at least 2 from x to y}.

Let D ⊆ X be a countable dense subset and let P be as prescribed by the lemma. Now,
for x ∈ X and ε ∈ C0(X;R>0), denote

T(x, ε) = {y ∈ X | there exists an ε-chain of length at least 2 from x to y}.
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By Lemma 4.2, T(x, ε) is a nonempty, open strong trapping region. Denote

T = {T(x, ε) | x ∈ D, ε ∈ P }.

As T is countable, we enumerate its elements as (Tj)j∈Z>0 . We let Aj be the attracting set
for Tj and we let Lj = LTj be the Lyapunov function for Tj as constructed in the preceding
section. Then define

L(x) =
∞∑
j=1

2Lj(x)

3j
. (5.2)

Since Lj takes values in [0, 1], this series converges uniformly by the Weierstrass M -test,
and so converges uniformly to a continuous function. Certainly L ◦ ϕ(x) ≤ L(x) for x ∈ X.
The following lemma lists some other pertinent properties of L.

5.13 Lemma: (Properties of L) Let (X,d) be a separable metric space and let ϕ ∈
C0(X;X). With the notation introduced above, the following statements hold for (x, y) ∈
N C :

(i) there exist z ∈ D and δj ∈ P such that y ̸∈ T(z, δj) and x ∈ Orb−(T(z, δj)).

With z ∈ D and j ∈ Z>0 as in the preceding statement, let k ∈ Z>0 be such that T(z, δj) =
Tk. Then the following statements hold;

(ii) if y ∈ ChRec(ϕ), then Lk(x) < Lk(y);

(iii) if y = x, then Lk ◦ ϕ(x) < Lk(x);

(iv) if x ̸∈ ChRec(ϕ), then L ◦ ϕ(x) < L(x);

(v) if x, y ∈ ChRec(ϕ) but x and y are not chain equivalent, then L(x) ̸= L(y);

(vi) if C,C ′ ⊆ ChRec(ϕ) are distinct chain components and if, for each ε ∈ C0(X;R>0),
there is a ε-chain for ϕ from a point in C to a point in C ′, then L(C) > L(C ′).

Proof: (i) Adopting the notation from the proof of Lemma 5.12, let Nj = Uxj × Vyj be
such that (x, y) ∈ Nj . Note that D ∩ Uxj is dense in Uxj . For z ∈ D ∩ Uxj , there is no
δj-chain from z to y, as we can conclude from Lemma 5.12. Thus y ̸∈ T(z, δj). Now, if z is
sufficiently close to x, then ϕ(z) will be close enough to ϕ(x) that

z, ϕ(x), ϕ2(x)

is a δj-chain from z to ϕ2(x). Thus ϕ2(x) ∈ T(z, δj) and so x ∈ ∪j∈Z>0ϕ
−j(T(z, ε)).

(ii) If y ∈ ChRec(ϕ), then y ∈ Ak ∪ (X \ Orb−(Tk)) by Theorem 4.4. Since y ̸∈ Tk ⊇
Ak, we must have y ∈ X \ Orb−(Tk). Since x ∈ Orb−(Tk), Lk(x) < 1, cf. the proof of
Lemma 5.10(ii), which gives this part of the result.

(iii) With the stated hypotheses, we have x ∈ Orb(Tk)\Tk, whereupon Lk ◦ϕ(x) < Lk(x)
by Lemma 5.10(iii).

(iv) Note that x ∈ ChRec(ϕ) if and only if (x, x) ∈ N C . This being the case, this part
of the result follows from the previous one.

(v) Note that x and y are not chain equivalent if and only if (x, y) ∈ N C or
(y, x) ∈ N C . Let us consider the case (x, y) ∈ N C . By part (ii), Lk(x) < Ly(y).
By Lemma 5.10(ii), Lk(x) = 0 and Lk(y) = 1. Thus L(x) and L(y) do not agree since they
necessarily have different ternary (that is, base 3) expansions.
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(vi) Note that

C,C ′ ⊆ ChRec(ϕ) =
⋂
T∈T

{A ∪ (X \Orb−(T)) | A is the attracting set for T}

by Theorem 4.4. Suppose that C ⊆ Ak for some k ∈ Z>0. We claim that, with the
hypotheses of this part of the lemma, C ′ ⊆ Ak. Indeed, if C

′ ̸⊆ Ak, then Ck ⊆ X\Orb−(Tk).
However, by Lemma 4.1, there exists ε ∈ C0(X;R>0) such that every ε-chain starting in
Tk ends in Tk, in contradiction with the current hypotheses. Thus, indeed, C ′ ⊆ Ak. This
shows that, if Lk(C) = 0, then Lk(C

′) = 0. Since, for each k ∈ Z>0, Lk(C), Lk(C
′) ∈ {0, 1}

by Lemma 5.10(ii), we have Lk(C) ≥ Lk(C
′) for each k ∈ Z>0. This part of the result now

follows from the previous part. ■

This gives the following theorem which is the second part of the Fundamental Theorem
of Dynamical Systems for discrete-time flows and semiflows.

5.14 Theorem: (Complete Lyapunov functions for mappings) Let (X,d) be a sepa-
rable metric space and let ϕ ∈ C0(X;X). Then there exists a complete Lyapunov function
for ϕ.

5.5. The continuous-time case: the complete Lyapunov function. Now we use the pre-
ceding results concerning mappings to obtain the existence of complete Lyapunov functions
for flows. We use the idea of Patrão [2011]. However, the proof of Patrão contains a number
of errors, including making use of connectedness of chain components (as far as we know,
this has only been proved in the compact case) and using Lemma 2.6 for semiflows (the
lemma is not true for semiflows).

The theorem we prove is the following.

5.15 Theorem: (Complete Lyapunov functions for flows) Let (X, d) be a metric space
and let Φ be a continuous-time topological flow or semiflow on X. If ℓ ∈ C0(X; [0, 1]) is a
complete Lyapunov function for Φd,1, then the function L : X → R given by

L(x) =

∫ 1

0
ℓ ◦ Φ(s, x) ds

is a complete Lyapunov function for Φ. In particular, if X is separable, then there exists a
complete Lyapunov function for Φ.

Proof: We note that the complete Lyapunov function ℓ that we constructed in the proof of
Theorem 5.14 has a property of which we shall make use. Namely, in the definition (5.2)
of ℓ, we see that points in ChRec(Φd,1), being points where the functions Lj take value 0,
are points whose ternary (i.e., base 3) expansion contains only 1s and 2s. This means that
ℓ(ChRec(Φd,1)) is a subset of the classical middle-thirds Cantor set, which is closed and
nowhere dense.

First note that L is continuous by standard results concerning swapping limits and
integrals [e.g., Rudin 1976, Theorem 7.16]. Since ℓ(x) ∈ [0, 1] for every x ∈ X, we also have
L(x) ∈ [0, 1] for every x ∈ X.
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The following calculation will be useful in the remainder of the proof. Let t ∈ R (if Φ
is a flow) or t ∈ R≥0 (if Φ is a semiflow) and suppose that t ∈ [j, j+1) for some j ∈ Z. Let
x ∈ X. Then we have

L ◦ Φ(t, x) =

∫ 1

0
ℓ ◦ Φ(s,Φ(t− j + j, x)) ds

=

∫ 1

0
ℓ ◦ Φ(s+ t− j,Φ(j, x)) ds

=

∫ 1+t−j

t−j
ℓ ◦ Φ(s,Φ(j, x)) ds

=

∫ 1

t−j
ℓ ◦ Φ(s,Φ(j, x)) ds+

∫ 1+t−j

1
ℓ ◦ Φ(s,Φ(j, x)) ds

=

∫ 1

t−j
ℓ ◦ Φ(s,Φ(j, x)) ds+

∫ t−j

0
ℓ ◦ Φ(1 + s,Φ(j, x)) ds. (5.3)

Let x ∈ X and let t ∈ [0, 1). Then

ℓ ◦ Φ(1 + s, x) ≤ ℓ ◦ Φ(s, x), s ∈ R≥0,

since ℓ is a complete Lyapunov function for Φd,1. Then, using (5.3) for j = 0, we have

L ◦ Φ(t, x) =

∫ 1

t
ℓ ◦ Φ(s, x) ds+

∫ t

0
ℓ ◦ Φ(1 + s, x) ds

≤
∫ 1

t
ℓ ◦ Φ(s, x) ds+

∫ t

0
ℓ ◦ Φ(s, x) ds

=

∫ 1

0
Φ(s, x) ds = L(x).

In particular, L ◦ Φ(1, x) ≤ L(x). Now, if t ∈ R>0 satisfies t ∈ [j, j + 1) for some j ∈ Z≥0,
then

L ◦ Φ(t, x) = L ◦ Φ(t− j,Φ(j, x)) ≤ L ◦ Φ(j, x),

and so, by an elementary induction, L ◦ Φ(t, x) ≤ L(x).
Let t ∈ R (if Φ is a flow) or t ∈ R≥0 (if Φ is a semiflow) satisfy t ∈ [j, j + 1) for

some j ∈ Z, let x ∈ ChRec(Φ) = ChRec(Φd,1), this last equality by Corollary 3.16. By
Proposition 3.12(i) and Corollary 3.16 we have

Φ(s,Φ(k, x)) ∈ ChRec(Φ) = ChRec(Φd,1),

k ∈ Z (for flows) or k ∈ Z≥0 (for semiflows), s ∈ [0, 1).

Therefore, by Theorem 5.14 we have

ℓ ◦ Φ(1 + s,Φ(j, x)) = ℓ ◦ Φ(s,Φ(j, x)), s ∈ [0, 1).

Thus we have, by (5.3),

L ◦ Φ(t, x) =

∫ 1

t−j
ℓ ◦ Φ(s,Φ(j, x))) ds+

∫ t−j

0
ℓ ◦ Φ(1 + s,Φ(j, x)) ds

=

∫ 1

0
ℓ ◦ Φ(s,Φ(j, x)) ds =

∫ 1

0
ℓ ◦ Φ(s, x) ds = L(x).
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Thus L is constant along forward trajectories through points in ChRec(Φ).
Let x ∈ X \ChRec(Φ). Since X \ChRec(Φ) is open by Proposition 3.12(ii), there exists

τ ∈ R>0 such that

Φ(t, x) ∈ X \ ChRec(Φ) = X \ ChRec(Φd,1), t ∈ [t1, t1 + τ ].

Therefore,
ℓ ◦ Φ(1 + t, x) < ℓ(Φ(t, x)), t ∈ [0, τ ]

since ℓ is a complete Lyapunov function for Φd,1. Therefore, for t ∈ [0, τ ], we can use (5.3)
to get

L ◦ Φ(t, x) =

∫ 1

t
ℓ ◦ Φ(s, x) ds+

∫ t

0
ℓ ◦ Φ(1 + s, x) ds

<

∫ 1

t
ℓ ◦ Φ(s, x) ds+

∫ t

0
ℓ ◦ Φ(s, x) ds = L(x).

If t > τ , we have

L ◦ Φ(t, x) = L ◦ Φ(t− τ,Φ(τ, x)) ≤ L ◦ Φ(τ, x) < L(x)

since Φ(t− τ, x) ∈ X \ ChRec(Φ).
Now let α ∈ ℓ(ChRec(Φd,1)). Since ℓ is a complete Lyapunov function for Φd,1, ℓ−1(α)

is a chain component for Φd,1, and so also a chain component of Φ by Theorem 3.15. By
Proposition 3.14(ii), ℓ−1(α) is invariant under Φ. Thus Φ(t, x) ∈ ℓ−1(α) for all t ∈ R (if Φ
is a flow) or for all t ∈ R≥0 (if Φ is a semiflow) if x ∈ ℓ−1(α). Therefore, for x ∈ ℓ−1(α), we
have

L(x) =

∫ 1

0
ℓ ◦ Φ(t, x) dt = α,

and so
ℓ−1(α) ⊆ L−1(α), α ∈ ℓ(ChRec(Φd,1)). (5.4)

To show that this inclusion is equality, we claim that it is sufficient to show that L−1(α) ⊆
ChRec(Φ). To prove this claim, we proceed by contradiction. Thus suppose that

1. there exists α ∈ ℓ(ChRec(Φd,1)) such that ℓ−1(α) ⊂ L−1(α) and

2. L−1(α) ⊆ ChRec(Φ) for each α ∈ ℓ(ChRec(Φd,1)).

Since chain equivalence defines an equivalence relation on ChRec(Φ) = ChRec(Φd,1), and
since the equivalence classes are determined by the unique value that ℓ takes on each
equivalence class, the assumptions 1 and 2 imply that there exists α′ ∈ ℓ(ChRec(Φd,1))
such that α ̸= α′ and such that L−1(α) ∩ ℓ−1(α′) ̸= ∅. Thus there exists x ∈ ChRec(Φd,1)
such that L(x) = α and ℓ(x) = α′. However, since ℓ−1(α′) ⊆ L−1(α′), this implies that
L(x) = α′ ̸= α. This contradiction shows that, if we can show that L−1(α) ⊆ ChRec(Φ) for
every α ∈ ℓ(ChRec(Φd,1)), it will follow that ℓ−1(α) = L−1(α) for every α ∈ ℓ(ChRec(Φd,1)).

To show that L−1(α) ⊆ ChRec(Φ) for every α ∈ ℓ(ChRec(Φd,1), let x ∈ X \ ChRec(Φ).
We claim that L(x) ̸∈ ℓ(ChRec(Φd,1)). Let

τx = sup{t ∈ R | Φ(t, x) ∈ X \ ChRec(Φ)},



The Fundamental Theorem of Dynamical Systems 57

noting that τx ∈ R>0 since X \ ChRec(Φ) is open by Proposition 3.12(ii). If τx < ∞,
we claim that Φ(τx, x) ∈ ChRec(Φ). Indeed, if Φ(τx.x) ̸∈ ChRec(Φ), then there must be
τ ′ > τx with Φ(t, x) ̸∈ ChRec(Φ) for t ∈ [τx, τ

′] by openness of X \ChRec(Φ), contradicting
the definition of τx. Let α = ℓ ◦ Φ(τx, x) ∈ ℓ(ChRec(Φd,1)). Thus, using (5.4),

Φ(τx, x) ∈ ℓ−1(α) ⊆ L−1(α),

and so L ◦ Φ(τx, x) = α. By the Mean Value Theorem for integrals [Rudin 1976, Theo-
rem 5.10], there exists s0 ∈ (0, 1) such that

L(x) =

∫ 1

0
ℓ ◦ Φ(s, x) ds = ℓ ◦ Φ(s0, x)(1− 0) = ℓ ◦ Φ(s0, x). (5.5)

If τx ≥ 1, (5.5) immediately gives L(x) ̸∈ ℓ(ChRec(Φd,1)) since the preceding formula holds
with s0 < 1 < τx and using the definition of τx. On the other hand, if τx ∈ (0, 1), we
proceed as follows. Since x ∈ X \ ChRec(Φ), we have

L(x) > L ◦ Φ(τx, x)

using already proved properties of L. By (5.5) we thus have, for some s0 ∈ (0, 1),

L(x) = ℓ ◦ Φ(s0, x) > α = ℓ ◦ Φ(τx, x).

We claim that s0 ∈ (0, τx). To see this, first note that

L ◦ Φ(t, x) ≤ L ◦ Φ(τx, x) = α, t ∈ [τx, 1), (5.6)

using the fact, already proved, that L is nonincreasing along trajectories. Suppose now that
there exists t0 ∈ [τx, 1) such that ℓ ◦ Φ(t0, x) > α. By Proposition 3.12(i) and the fact that
Φ(τx, x) ∈ ChRec(Φ), we have

Φ(t0, x) ∈ ChRec(Φ) = ChRec(Φd,1) =⇒ α′ ≜ ℓ ◦ Φ(t0, x) ∈ ℓ(ChRec(Φd,1)).

Therefore, by (5.4), we have

ℓ ◦ Φ(t0, x) = α′ =⇒ Φ(x, t0) ∈ ℓ−1(α′) ⊆ L−1(α′) =⇒ L ◦ Φ(t0, x) = α′ > α,

in contradiction with (5.6). Therefore, we have shown that, for any x ∈ X \ChRec(Φ) and
irregardless of the value of τx ∈ R>0, there exists s0 ∈ (0, τx) such that

L(x) = ℓ ◦ Φ(s0, x) ̸∈ ChRec(Φd,1).

Now we have the following logical implications:(
x ∈ X \ ChRec(Φ) =⇒ L(x) ̸∈ ℓ(ChRec(Φd,1))

)
⇐⇒

(
L(x) ∈ ℓ(ChRec(Φd,1)) =⇒ x ∈ ChRec(Φ)

)
⇐⇒

(
L−1(α) ⊆ ChRec(Φ), α ∈ ℓ(ChRec(Φd,1))

)
=⇒ ℓ−1(α) = L−1(α), α ∈ ℓ(ChRec(Φd,1)),

where the last implication was proved above. This shows that the partition of ChRec(Φ) =
ChRec(Φd,1) by level sets ℓ−1(α), α ∈ ℓ(ChRec(Φd,1)), is the same as the partition of
ChRec(Φ) by the level sets L−1(α), α ∈ ℓ(ChRec(Φd,1)). This shows that L(C) = L(C ′)
for chain components C and C ′ if and only if C = C ′. ■
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