Mathematics coming from applied mathematics

Andrew D. Lewis

Department of Mathematics and Statistics, Queen's University

03/04/2008

Depends who you ask. For example, here are some extreme, i.e., stereotypical, responses.

- For someone who uses mathematics, but dislikes abstraction, applied mathematics is:
 - Useful mathematics

Criticisms: Useful according to who?

There are numerous instances of "useless" mathematics becoming useful, e.g., from the National Institute of Standards and Technology website:

Unscheduled downtime of manufacturing equipment is one of the most important impediments to achieving cost-effective, timely production schedules.

NIST recommends (but does not require) the following set of Elliptic Curves for Federal government use...

- Minimal mathematics, i.e., no "mathematics for the sake of mathematics"
 - *Criticisms:* Sometimes "mathematics for the sake of mathematics" leads to something.
 - The minimalist approach often ends up ignoring essential structure, leading to a continual unnecessary reinvention of ideas.

- For a mathematical snob, applied mathematics is:
 - Easy or shallow mathematics
 Criticisms: Easy or shallow mathematics is not applied mathematics. It is non-mathematics. It is to mathematics as:
 - accounting is to mathematics...
 - ★ knowing what happened in 1066 is to being an historian...
 - ★ having a brain is to being a psychologist...
 - Non-rigorous mathematics, where such things as
 - division by infinity,
 - freely swapping all mathematical operations,
 - ★ treating all entities in an equation as if they are numbers

are permissible.

Criticism: This is just *bad* mathematics...nay...a bad lifestyle.

- The fact of the matter is that, as with mathematics, there are many sorts of applied mathematics.
- Perhaps it might be characterised
 - by its involving that which mathematicians do, in some form,
 - by its involving "interesting" mathematics in a nontrivial way, and
 - by its demanding knowledge, sometimes genuine expertise, in a field that is not mathematics.

What is the connection of mathematics to the non-mathematical world?

This is a difficult question to think about, but here are some organising points to mull over.

- Is there a connection between mathematics and the physical world? Physical theories with mathematical underpinnings are frequently overwritten by new theories.
- Is mathematics "out there," or is it a human or sentient activity?
- Why does it seem that mathematics is often spectacularly successful at describing the physical world?¹
 - Is it to do with mathematics? the physical world? human beings? a combination of some or all of these?

¹E. Wigner, *The unreasonable effectiveness of mathematics in the natural sciences*. Comm. Pure Appl. Math., **13**(1), 1960.

What is the connection of mathematics to the non-mathematical world?

- If a race on a planet in a galaxy far far away existed,²
 - would they develop mathematics?
 - if so, what would their mathematics look like?

That is, is mathematics a social construct?

- Does the non-mathematical world force mathematics on us, or do we force mathematics on it?
- If you value the actual activity of mathematics or science, do not spend all of your time thinking about these questions.

²R. W. Hamming, *Mathematics on a distant planet*, Amer. Math. Monthly, **105**(7), 1998.

Modes of applied mathematics

- What are some of the ways in which mathematical activities been valuable in non-mathematics?
- We shall consider some concrete instances of this.
- Note that "mathematical activity"≠"use of mathematics."

- To some, mathematics is the activity of producing axioms and proving theorems which follow from those axioms. In this case...
 - "correct" axioms lead to interesting mathematics and
 - "incorrect" axioms lead to dull or stupid mathematics.
- The same activity can be conducted in applied mathematics, but to the above criterion for axioms we add...
 - axioms must capture the relevant non-mathematical phenomenon.
- When this is successful, it is a satisfying undertaking.
- Examples include:
 - classical mechanics;
 - continuum mechanics:
 - quantum mechanics;
 - relativistic mechanics;

- control theory;
- information theory;
- branches of economics;
- etc.

- The axiomisation of physical theories was Hilbert's Sixth Problem.
- Much of the activity resembles the axiom → theorem activity that some see as mathematics.
- But there are significant differences with "pure" mathematics.
 - The natural questions important for the non-mathematics may not always agree with the natural mathematical questions.
 - ► The generalisations and specialisations important to mathematics may be irrelevant to the non-mathematics.
- One should respect the non-mathematics.

Let us consider a concrete example: Continuum mechanics.

- This is the study of continuous (as opposed to discrete) deformable (as opposed to rigid) media, e.g., elasticity and fluid mechanics.
- ullet For the first ~ 150 years, the subject was disjointed, consisting of many essentially separate theories depending on the context, e.g., fluids, metallic materials, ceramic materials, polymeric materials, etc.
- In 1965 Truesdell and Noll published The Non-Linear Field Theories of Mechanics.
 - The formulation was axiomatic and very general.
 - All previous ad hoc work was subsumed and clarified.
 - The formulation made clear some of the real problems in continuum mechanics.
 - ► The work influenced everything in the area that followed.

Other similar seminal works:

- Kolmogorov's 1933 book Foundations of the Theory of Probability;
- von Neumann and Morgenstern's 1944 book Theory of Games and Economic Behavior;
- Shannon's 1948 paper A mathematical theory of communication;
- von Neumann's 1955 book Mathematical Foundations of Quantum Mechanics;
- Kalman's 1963 paper Mathematical description of linear dynamical systems;
- Abraham and Marsden's 1967 book Foundations of Mechanics.

- To some, mathematics is the activity of contributing to the solution of particular, often very difficult problems, e.g., the Riemann Hypothesis. In this case the problems should be chosen...
 - so that they give rise to independently interesting mathematics and
 - so that their solution has an impact in other areas of mathematics.
- The same activity can be conducted in applied mathematics, but the above criterion can be augmented or replaced by
 - the problem should be relevant to the application area.
- We look at a couple of instances of this.

 From the principles of continuum mechanics one derives the Navier–Stokes equations:

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u = \nu \Delta u - \operatorname{grad} p + f,$$
$$\operatorname{div} u = 0$$

- Fundamental questions are:
 - O Do the Navier-Stokes equations possess solutions?
 - 2 If so, are solutions uniquely defined for initial/boundary data?
 - On what domain are solutions defined?
 - What is the character of solutions?
- The above problem is one of the Clay Institute Millennium Problems.

- An important observation was made by V. I. Arnol'd in 1966.³ Let us be slightly precise about the setup:
 - inviscid flow, i.e., $\nu = 0$;
 - no body forces, i.e., f = 0;
 - ▶ suppose that fluid occupies a compact region $R \subset \mathbb{R}^3$ with nonempty interior and smooth boundary.
- The inviscid assumption means energy is conserved.
- Let Diff(R) be the collection of diffeomorphisms of R; note that a motion of the fluid defines a curve in Diff(R).

³ Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), **16**(1).

- The problem possesses the "particle relabelling symmetry."
 - ▶ Let $t \mapsto \psi_t$ be a curve in Diff(R) be an admissible fluid motion.
 - ▶ Let $\phi \in \text{Diff}(R)$.
 - ▶ Then $t \mapsto \psi_t \circ \phi$ is a curve in $\mathrm{Diff}(R)$ that describes an admissible fluid motion.
- Non sequitor...think about the motion of a rigid body in \mathbb{R}^3 with no external forces. Let $\mathrm{Isom}(\mathbb{R}^3)$ be the isometries of \mathbb{R}^3 .
 - ▶ A motion corresponds to a curve in $\text{Isom}(\mathbb{R}^3)$.
 - Let $t \mapsto \psi_t$ be a curve in $\text{Isom}(\mathbb{R}^3)$ that describes an admissible body motion.
 - ▶ Let $\phi \in \text{Isom}(\mathbb{R}^3)$.
 - ▶ Then $t \mapsto \phi \circ \psi_t$ is a curve in $\text{Isom}(\mathbb{R}^3)$ that describes an admissible body motion.

Let us now make a series of observations.

 $\operatorname{Isom}(\mathbb{R}^3)$ is a group.

Rigid body motion: Diff(R) is a group.

Rigid body motion: The equations of motion possess $Isom(\mathbb{R}^3)$ as

a symmetry group.

Fluid motion: The equations of motion possess Diff(R) as a

symmetry group.

Rigid body motion: Fact: Equations of motion = conservation of

momentum

Fluid motion: Fact: Equations of motion = Kelvin's circulation

theorem

- The point is that there is a large framework in which inviscid fluid mechanics and rigid body mechanics are "the same."
- Making this approach to fluid mechanics rigorous takes great care.⁴
- But you get some results:
 - existence and uniqueness of solutions for short times;
 - regularity of solutions;
 - continuous dependence on initial conditions.
- The Ebin/Marsden paper is one of the early papers in the area of so-called geometric analysis.

⁴D. G. Ebin and J. E. Marsden, *Groups of diffeomorphisms and the notion of an incompressible fluid*, Ann. of Math. (2), **92**, 1970.

- The question is: Is the solar system stable?
- The answer is obtained by looking at the differential equations for N (maybe N=10) point masses whose interactions are governed by Newton's inverse square law.
- For N=2 one can obtain closed-form solutions and show stability "by hand."
- For $N \ge 3$ many big shots took a whack at the problem: Newton, Laplace, Lagrange.

- The first era of activity was crippled by the very way in which differential equations were viewed.
 - A differential equation was something for which one obtains solutions.
 - ► For example, $\ddot{x} + x = 0$ has solutions $x(t) = A\cos(t) + B\sin(t)$.
- A "closed form solution" is one of those things like a "happy marriage"—a vague sort of goal to be attained. One little affair 20 years in the past, or using one little hypergeometric function: it's sort of up to the people involved how badly they want to feel about it.

- In 1887 King Oscar II of Sweden announced a prize for a solution of the problem of the stability of the solar system.
- Poincaré claimed the prize in 1889, although he did not actually solve the problem.
- In some sense Poincaré did something more significant.
 - He introduced the notion of *qualitative* dynamics where one is interested, not in closed-form solutions, but important characteristics of these solutions.
 - By letting go of the insistence on closed-form solutions, Poincaré opened the Pandora's Box where simple differential equations can have complicated solutions not usefully described in closed-form.
 - ► Poincaré invented the modern field of dynamical systems (and along the way, topology).

Modes of applied mathematics III Producing mathematical models for the non-mathematical world

- There seems to be no analogue of this activity in "pure" mathematics.
- Is this activity mathematics?
- Let us point out some historically prominent examples of this kind of activity. Ask yourself, "Which of these are mathematics?"
 - Newton's mechanics.
 - Derivation of fluid equations by Navier and Stokes.
 - Maxwell's equations for electromagnetism.
 - Anything done by Einstein, including general relativity.
 - Development of quantum mechanics.
 - Predator-prey models (e.g., by Lotka and Volterra).
 - Formulation of pricing equilibria as fixed point problems.
 - String theory.

Conclusions

• There are none.