Controllability: A brief revisionist tutorial

Andrew D. Lewis

Department of Mathematics and Statistics, Queen's University

08/05/2008

Control-affine systems

Background for the controllability-impaired.

- A *control-affine system* is a triple $\Sigma = (M, \mathscr{F} = \{f_0, f_1, \dots, f_m\}, U)$ where
 - M is the state manifold,
 - 2 f_0 is the drift vector field and f_1, \ldots, f_m are the control vector fields, and
 - 3 $U \subset \mathbb{R}^m$ is the control set.
- The governing equations are

$$\gamma'(t) = f_0(\gamma(t)) + \sum_{a=1}^m u^a(t) f_a(\gamma(t)),$$

for $u: I \to U$ locally integrable and $\gamma: I \to M$ locally absolutely continuous.

• The pair (γ, u) is a *controlled trajectory*.

Controllability definitions for control-affine systems

Denote

 $\mathcal{R}_{\Sigma}(x_0, T) = \{\gamma(T) \mid (\gamma, \boldsymbol{u}) \text{ is a controlled trajectory} \\ \text{on } [0, T] \text{ such that } \gamma(0) = x_0 \}$

and $\mathcal{R}_{\Sigma}(x_0, \leq T) = \bigcup_{t \in [0,T]} \mathcal{R}_{\Sigma}(x_0, t).$

- Two flavours of controllability from $x_0 \in M$:
 - **1** Accessibility: $int(\Re_{\Sigma}(x_0, \leq T)) \neq \emptyset;$
 - **2** Small-time local controllability (STLC): $x_0 \in int(\Re_{\Sigma}(x_0, \leq T))$.
- Let us agree to sometimes call "small-time local controllability" just "controllability."

Accessibility of control-affine systems

• Define a distribution F:

$$\mathsf{F}_x = \operatorname{span}(f_0(x), f_1(x), \dots, f_m(x)).$$

• Define a sequence of distributions:

$$\begin{aligned} \operatorname{Lie}^{(0)}(\mathsf{F})_{x} &= \mathsf{F}_{x}, \\ &\vdots \\ \operatorname{Lie}^{(k)}(\mathsf{F})_{x} &= \operatorname{Lie}^{(k-1)}(\mathsf{F})_{x} \\ &+ \operatorname{span}([f_{a}, X](x) \mid a \in \{0, \dots, m\}, \ X \in \Gamma^{\infty}(\operatorname{Lie}^{(k-1)}(\mathsf{F}))). \end{aligned}$$

• This defines

$$\operatorname{Lie}^{(0)}(\mathsf{F})\subset\operatorname{Lie}^{(1)}(\mathsf{F})\subset\cdots\subset\operatorname{Lie}^{(\infty)}(\mathsf{F}).$$

Accessibility of control-affine systems

• Sussmann and Jurdjevic¹ and Krener:²

Theorem

An analytic Σ is accessible from x_0 if and only if $\operatorname{Lie}^{(\infty)}(\mathsf{F})_{x_0} = \mathsf{T}_{x_0}\mathsf{M}$.

• The condition $\operatorname{Lie}^{(\infty)}(F)_{x_0} = T_{x_0}M$ is called the *local accessibility* rank condition (LARC).

Notes:

- Algorithmically, accessibility is decidable using an algorithm that is polynomial in the "size" of the system. (Sontag³).
- The LARC is thus sharp and computable.

²J. Soc. Indust. Appl. Math. Ser. A Control, **12**, 43–52, 1974 ³SIAM J. Control Optim., **26**(5), 1106–1118, 1988

¹J. Differential Equations, **12**, 95–116, 1972

- Sontag⁴ and Kawski⁵ show that deciding controllability is NP-hard in the "size" of the system.
- Hmmm...maybe we should just give up? Maybe not. We are after insight, not algorithms.

Example (Kawski)

Let
$$n \in \mathbb{Z}_{>0}$$
, let $r = \lceil \frac{1}{3}(4n-1) \rceil$, and let

$$\begin{aligned} \gamma_j &= \lfloor (4n - 2j)/(2j + 1) \rfloor, \\ \alpha_j &= (2j + 1)(\gamma_j + 2) - (4n + 1), \\ \beta_j &= (2j + 1)(\gamma_j + 2) - (4n + 1) \end{aligned}$$

for $j \in \{1, ..., 2n\}$.

⁴SIAM J. Control Optim., **26**(5), 1106–1118, 1988 ⁵Systems Control Lett., **15**(1), 9–14, 1990

Andrew D. Lewis (Queen's University)

Controllability: A brief revisionist tutorial

Example (cont'd)

Consider the system on $M = \mathbb{R}^{2n+r+2}$ with governing equations

$$\begin{split} \dot{x}_0 &= u, \\ \dot{x}_j &= x_{j-1}, \\ \dot{y}_j &= x_{\gamma_j}^{\alpha_j} x_{\gamma_j+1}^{\beta_j}, \\ \dot{y}_n &= x_0^2 x_1^{2n-1} x_2, \\ \dot{z} &= P(y), \end{split}$$
 $j \in \{1, \dots, n-1, n+1, \dots, 2n\},$

where P is a homogeneous polynomial.

"Standard" techniques easily show that the (x, y) subsystem is STLC from **0**.

It is then more or less clear that the system is STLC if and only if P changes sign in any neighbourhood of **0**: the decidability of this is NP-hard.

- The point is, even the decidability of STLC for a system whose controllability is intuitively clear is NP-complete. So, soldier on...
- A useful fact of, e.g., Grasse,⁶ Sussmann,⁷ Warga:⁸

Theorem

For $\Sigma = (M, \mathscr{F}, U)$ define $cl(conv(\Sigma)) = (M, \mathscr{F}, cl(conv(U)))$. If Σ satisfies LARC and $x_0 \in M$, then the following statements are equivalent:

(i) Σ is STLC from x_0 ;

(ii) $cl(conv(\Sigma))$ is STLC from x_0 ;

- (iii) Σ is STLC from x_0 using piecewise constant controls;
- (iv) $cl(conv(\Sigma))$ is STLC from x_0 using piecewise constant controls.

⁶Math. Control Signals Systems, 5(1), 41–66, 1992
 ⁷SIAM J. Control Optim., 25(1), 158–194
 ⁸J. Math. Anal. Appl., 4, 111-128, 1962

• It thus suffices to show that for $T \in \mathbb{R}_{>0}$ we have

$$x_0 \in \operatorname{int}\left(\left\{\Phi_{t_1}^{f_{u_1}} \circ \cdots \circ \Phi_{t_p}^{f_{u_p}}(x_0) \mid \\ p \in \mathbb{Z}_{>0}, \ \boldsymbol{u}_1, \dots, \boldsymbol{u}_p \in U, \ t_1 + \dots + t_p \leq T\right\}\right),$$

where
$$f_{\boldsymbol{u}} \triangleq f_0 + \sum_{a=1}^m u^a f_a$$
.

Example (Kawski)

Consider the system on $M = \mathbb{R}^4$ with governing equations

 $\dot{x}_1 = u,$ $\dot{x}_2 = x_1,$ $\dot{x}_3 = x_1^3,$ $\dot{x}_4 = x_3^2 - x_2^7.$

Example (cont'd)

Kawski^{*a*} shows that this system is STLC from $\mathbf{0}$ but that the number of switches *p* required to reach all points in a neighbourhood of $\mathbf{0}$ is unbounded.

^aBull. Amer. Math. Soc. (N.S.), **18**(2), 149–152, 1988

- Ech! But we soldier on...
- Consider the case of two switches a little explicitly. If X_1 and X_2 are analytic vector fields then, for $t_1 + t_2$ small, we have

$$\Phi_{t_1}^{X_1} \circ \Phi_{t_2}^{X_2}(x_0)^{"} = "\Phi_1^{\operatorname{BCH}(t_1X_1, t_2X_2)}(x_0),$$

where

 $\mathrm{BCH}(\xi_1,\xi_2) = \xi_1 + \xi_2 + \tfrac{1}{2}[\xi_1,\xi_2] + \tfrac{1}{12}([\xi_1,[\xi_1,\xi_2]] + [\xi_2,[\xi_2,\xi_1]]) + \cdots .$

- The formal series BCH(ξ₁, ξ₂) is called the Baker–Campbell–Hausdorff formula.
- It may be used inductively to arrive at

$$\Phi_{t_1}^{X_1} \circ \cdots \circ \Phi_{t_p}^{X_p}(x_0)^{"} = "\Phi_1^{\operatorname{BCH}(t_1X_1,\dots,t_pX_p)}(x_0)$$

for some ungodly horrible (but explicitly determinable) formal series $BCH(\xi_1, \ldots, \xi_p)$.

- The point is that Lie brackets appear in a natural way for controllability using piecewise constant controls.
- \implies Seek controllability conditions involving Lie bracket conditions on the vector fields $\{f_0, f_1, \ldots, f_m\}$.

- The literature on this approach is vast and varied, and is mostly characterised as follows:
 - ► Authors A_n of paper P_n give some conditions C_n, necessary or sufficient for STLC;
 - ► If the authors A_n of P_n possess good pedagogical instincts, intuition is given for the conditions C_n;
 - Either
 - **()** authors A_n of P_n give a counterexample showing that the intuitive description of their condition C_n is misleading or
 - 2 authors A_{n+1} of paper P_{n+1} begin their paper with such a counterexample, and proceed to give conditions C_{n+1} which apply to the counterexample;
 - Repeat...

• There is an inherent problem with this approach: conditions are given subject to a *specific choice of the vector fields* f_0, f_1, \ldots, f_m .

Example

On $M = \mathbb{R}^m \times \mathbb{R}^{n-m}$ consider a system with governing equations

$$\dot{\boldsymbol{x}}_1 = \boldsymbol{u},$$

 $\dot{\boldsymbol{x}}_2 = \boldsymbol{Q}(\boldsymbol{x}_1),$

where Q is a \mathbb{R}^{n-m} -valued homogeneous polynomial of degree 2. Write

$$\boldsymbol{Q}(\boldsymbol{x}_1) = (\boldsymbol{Q}_1(\boldsymbol{x}_1), \dots, \boldsymbol{Q}_{n-m}(\boldsymbol{x}_1))$$

for scalar-valued quadratic functions Q_1, \ldots, Q_{n-m} . Write

$$Q_j(\boldsymbol{x}_1) = \boldsymbol{x}_1^T \boldsymbol{B}_j \boldsymbol{x}_1$$

for a symmetric matrix B_j .

Example (cont'd)

By the "generalised Hermes condition," (Sussmann^a) the system is STLC from (0, 0) if the diagonal entries in the matrices B_1, \ldots, B_{n-m} are zero.

Is this condition necessary? No.

Is this condition invariant under feedback transformations of the form

 $u \mapsto Pu$ for $P \in GL(m; \mathbb{R})$? No.

However... the system is STLC from (0, 0) if and only if there exists $P \in GL(m; \mathbb{R})$ such that the diagonal entries of the matrices $P^T B_1 P, \ldots, P^T B_{n-m} P$ are zero.

But what does this condition really mean?

^aSIAM J. Control Optim., 25(1), 158–194

Affine distributions

- Stating theorems stated in terms of specific f_0, f_1, \ldots, f_m is rather like stating theorems in differential geometry that rely on a specific choice of coordinates.
- Note that in applications the vector fields f_0, f_1, \ldots, f_m are often a part of the problem, and so it might seem absurd to adopt a point of view where the rôle of these vector fields is pushed aside.
- But we are interested in insight, not particular applications.
- Anyway, how do we not make this choice of drift and control vector fields?
- The geometric object that the vector fields \$\mathcal{F}\$ = {f₀, f₁,..., f_m} really represent is the affine subbundle A_{\$\mathcal{F}\$} of TM defined by

$$\mathsf{A}_{\mathscr{F},x} = \Big\{ f_0(x) + \sum_{a=1}^m u^a f_a(x) \mid \mathbf{u} \in \mathbb{R}^m \Big\}.$$

Affine distributions

So why not simply replace the data {*f*₀,*f*₁,...,*f_m*} with a subset A ⊂ TM such that, in a neighbourhood of any point *x* ∈ M, there exist vector fields *X*₀,*X*₁,...,*X_k* such that

$$\mathsf{A}_{x} \triangleq \mathsf{A} \cap \mathsf{T}_{x}\mathsf{M} = \Big\{ X_{0}(x) + \sum_{a=1}^{k} u^{a} X_{a}(x) \Big| \ u \in \mathbb{R}^{k} \Big\}.$$

- The object A is a *locally finitely generated affine distribution* on M.
- The (not uniquely defined) vector fields *X*₀, *X*₁, . . . , *X_k* are *local generators*.

Affine systems

- Let us see if we can develop a theory of systems and their controllability using our notion of an affine distribution as the starting point, rather than a set of vector fields.
- An *affine system* in an affine distribution A assigns to each point $x \in M$ a subset $\mathscr{A}(x) \subset A_x$.
 - Require the nondegeneracy condition that $aff(\mathscr{A}(x)) = A_x$ and
 - require some fussy smoothness conditions that I will not state here.
- For a control-affine system $\Sigma = (\mathsf{M}, \mathscr{F}, U)$ we have the affine system

$$\mathscr{A}_{\Sigma}(x) = \Big\{ f_0(x) + \sum_{a=1}^m u^a f_a(x) \mid \boldsymbol{u} \in U \Big\}.$$

• A *trajectory* of \mathscr{A} is a locally absolutely continuous curve $\gamma: I \to M$ such that $\gamma'(t) \in \mathscr{A}(\gamma(t))$ for a.e. $t \in I$.

Controllability definitions for affine systems

Denote

 $\mathcal{R}_{\mathscr{A}}(x_0,T) = \{\gamma(T) \mid \gamma \text{ is a trajectory on } [0,T] \text{ such that } \gamma(0) = x_0\}$

and $\mathcal{R}_{\mathscr{A}}(x_0, \leq T) = \bigcup_{t \in [0,T]} \mathcal{R}_{\mathscr{A}}(x_0, t).$

- Two flavours of controllability from $x_0 \in M$:
 - **1** Accessibility: $int(\mathcal{R}_{\mathscr{A}}(x_0, \leq T)) \neq \emptyset;$
 - **2** Small-time local controllability (STLC): $x_0 \in int(\Re_{\mathscr{A}}(x_0, \leq T))$.

Controllability definitions for affine systems

- If one is interested in *geometry*, then our controllability conditions should be on A, not on *A*.
- Say \mathscr{A} is *proper* at x_0 if $0_{x_0} \in \operatorname{int}_{A_{x_0}}(\operatorname{conv}(\mathscr{A}(x_0)))$.
- Say A is *properly small-time locally controllable* (*PSTLC*) from x_0 if \mathscr{A} is STLC from x_0 whenever \mathscr{A} is proper at x_0 .
- Say A is *small-time locally uncontrollable* (*STLUC*) from x₀ if 𝔄 is not STLC from x₀ whenever 𝔄(x₀) is compact.
- Say A is *conditionally small-time locally uncontrollable* (*CSTLC*) from x₀ if it is neither PSTLC nor STLUC from x₀.
- This characterisation partitions the set of affine distributions on M.

Accessibility of affine systems

 Accessibility is characterised much as for control-affine systems. Let Lie⁽⁰⁾(A)_x = span(A_x) and inductively define

$$\operatorname{Lie}^{(k)}(\mathsf{A})_{x} = \operatorname{Lie}^{(k-1)}(\mathsf{A})_{x} + \operatorname{span}([X, Y](x)| \ X \in \Gamma^{\infty}(\mathsf{A}), \ Y \in \Gamma^{\infty}(\operatorname{Lie}^{(k-1)}(\mathsf{A}))).$$

• Analytic data \implies accessible from x_0 if and only if $\operatorname{Lie}^{(\infty)}(\mathsf{A})_{x_0} = \mathsf{T}_{x_0}\mathsf{M}.$

- One would like to come up with conditions for controllability that are independent of generators.
- There are two possible approaches:
 - provide conditions that simply do not involve generators;
 - give conditions using generators, and then show that these conditions do not actually depend on the choice.
- Problem: No one knows what the first approach means and the second approach seems hopeless.
- Choose "undefined" over "hopeless."

Example (cont'd)

Consider again the system with governing equations

 $\dot{\boldsymbol{x}}_1 = \boldsymbol{u},$ $\dot{\boldsymbol{x}}_2 = \boldsymbol{Q}(\boldsymbol{x}_1),$

where Q is a \mathbb{R}^{n-m} -valued homogeneous polynomial of degree 2. One may show that the system is STLC from (0, 0) if and only if 0 is in the interior of the convex hull of $\operatorname{image}(Q)$. This, then, is the geometric version of the "generalised Hermes condition" we saw applied to this example above.

The verifiability of the convex hull condition, incidentally, is NP-complete.

22/25

- The point of the example is that existing conditions for controllability are not generator independent, but should properly be stated as, "If there exists a set of generators such that C_n holds..."
- By adding the prefix, "If there exists a set of generators," one can take a computable condition (like the generalised Hermes condition) and turn it into one that is not computable (like the convex hull condition in the example).
- But we expect this since we have already asserted that controllability is computationally difficult.
- So we soldier on...

• Now, at last, we have a clearly defined vague direction to head:

Problem

Give conditions for controllability of an affine system \mathscr{A} in an affine distribution A that do not involve generators for A.

- Fine... where do we start?
- Apart from generators, what structure does an affine distribution A possess? Here are some facts:
 - A is a subset of TM;
 - sections of A are vector fields;
 - Baker–Campbell–Hausdorff suggests that iterated Lie brackets of A-valued vector fields are important;
 - an iterated Lie bracket of degree k of vector fields involves derivatives of those vector fields up to order k 1.

- We are interested in spaces which parameterise vector fields and their derivatives.
- These spaces are called "jet bundles," and these bundles have a very detailed algebraic structure.
- —> "Jet bundles and algebro-geometric conditions for controllability of affine systems"
- Cesar?