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Control-affine systems

Background for the controllability-impaired.
A control-affine system is a triple Σ = (M,F = {f0, f1, . . . , fm},U)
where

1 M is the state manifold,
2 f0 is the drift vector field and f1, . . . , fm are the control vector fields,

and
3 U ⊂ Rm is the control set.

The governing equations are

γ′(t) = f0(γ(t)) +
m∑

a=1

ua(t)fa(γ(t)),

for u : I → U locally integrable and γ : I → M locally absolutely
continuous.
The pair (γ,u) is a controlled trajectory.
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Controllability definitions for control-affine systems

Denote

RΣ(x0, T) = {γ(T) | (γ,u) is a controlled trajectory

on [0, T] such that γ(0) = x0}

and RΣ(x0,≤ T) = ∪t∈[0,T]RΣ(x0, t).
Two flavours of controllability from x0 ∈ M:

1 Accessibility: int(RΣ(x0,≤ T)) ̸= ∅;
2 Small-time local controllability (STLC): x0 ∈ int(RΣ(x0,≤ T)).

Let us agree to sometimes call “small-time local controllability” just
“controllability.”

Andrew D. Lewis (Queen’s University) Controllability: A brief revisionist tutorial 08/05/2008 3 / 25



Accessibility of control-affine systems

Define a distribution F:

Fx = span(f0(x), f1(x), . . . , fm(x)).

Define a sequence of distributions:

Lie(0)(F)x = Fx,

...

Lie(k)(F)x = Lie(k−1)(F)x

+ span([fa,X](x) | a ∈ {0, . . . ,m}, X ∈ Γ
∞
(Lie(k−1)(F))).

This defines

Lie(0)(F) ⊂ Lie(1)(F) ⊂ · · · ⊂ Lie(∞)(F).
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Accessibility of control-affine systems

Sussmann and Jurdjevic1 and Krener:2

Theorem
An analytic Σ is accessible from x0 if and only if Lie(∞)(F)x0 = Tx0M.

The condition Lie(∞)(F)x0 = Tx0M is called the local accessibility
rank condition (LARC).
Notes:

▶ Algorithmically, accessibility is decidable using an algorithm that is
polynomial in the “size” of the system. (Sontag3).

▶ The LARC is thus sharp and computable.

1J. Differential Equations, 12, 95–116, 1972
2J. Soc. Indust. Appl. Math. Ser. A Control, 12, 43–52, 1974
3SIAM J. Control Optim., 26(5), 1106–1118, 1988
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Controllability of control-affine systems

Sontag4 and Kawski5 show that deciding controllability is NP-hard
in the “size” of the system.
Hmmm. . . maybe we should just give up? Maybe not. We are after
insight, not algorithms.

Example (Kawski)

Let n ∈ Z>0, let r = ⌈ 1
3(4n − 1)⌉, and let

γj = ⌊(4n − 2j)/(2j + 1)⌋,
αj = (2j + 1)(γj + 2)− (4n + 1),

βj = (2j + 1)(γj + 2)− (4n + 1)

for j ∈ {1, . . . , 2n}.

4SIAM J. Control Optim., 26(5), 1106–1118, 1988
5Systems Control Lett., 15(1), 9–14, 1990
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Controllability of control-affine systems
Example (cont’d)
Consider the system on M = R2n+r+2 with governing equations

ẋ0 = u,

ẋj = xj−1, j ∈ {1, . . . , r},

ẏj = xαj
γj x

βj
γj+1, j ∈ {1, . . . , n − 1, n + 1, . . . , 2n},

ẏn = x2
0x2n−1

1 x2,

ż = P(y),

where P is a homogeneous polynomial.
“Standard” techniques easily show that the (x, y) subsystem is STLC
from 0.
It is then more or less clear that the system is STLC if and only if P
changes sign in any neighbourhood of 0: the decidability of this is
NP-hard.
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Controllability of control-affine systems

The point is, even the decidability of STLC for a system whose
controllability is intuitively clear is NP-complete. So, soldier on. . .
A useful fact of, e.g., Grasse,6 Sussmann,7 Warga:8

Theorem
For Σ = (M,F ,U) define cl(conv(Σ)) = (M,F , cl(conv(U))). If Σ
satisfies LARC and x0 ∈ M, then the following statements are
equivalent:

(i) Σ is STLC from x0;
(ii) cl(conv(Σ)) is STLC from x0;
(iii) Σ is STLC from x0 using piecewise constant controls;
(iv) cl(conv(Σ)) is STLC from x0 using piecewise constant controls.

6Math. Control Signals Systems, 5(1), 41–66, 1992
7SIAM J. Control Optim., 25(1), 158–194
8J. Math. Anal. Appl., 4, 111-128, 1962
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Controllability of control-affine systems

It thus suffices to show that for T ∈ R>0 we have

x0 ∈ int
(
{Φfu1

t1 ◦ · · · ◦ Φfup
tp (x0) |

p ∈ Z>0, u1, . . . ,up ∈ U, t1 + · · ·+ tp ≤ T}
)
,

where fu ≜ f0 +
∑m

a=1 uafa.

Example (Kawski)
Consider the system on M = R4 with governing equations

ẋ1 = u,

ẋ2 = x1,

ẋ3 = x3
1,

ẋ4 = x2
3 − x7

2.
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Controllability of control-affine systems

Example (cont’d)
Kawskia shows that this system is STLC from 0 but that the number of
switches p required to reach all points in a neighbourhood of 0 is
unbounded.

aBull. Amer. Math. Soc. (N.S.), 18(2), 149–152, 1988

Ech! But we soldier on. . .
Consider the case of two switches a little explicitly. If X1 and X2 are
analytic vector fields then, for t1 + t2 small, we have

ΦX1
t1 ◦ ΦX2

t2 (x0)“ = ”ΦBCH(t1X1,t2X2)
1 (x0),

where

BCH(ξ1, ξ2) = ξ1 + ξ2 +
1
2 [ξ1, ξ2]+

1
12([ξ1, [ξ1, ξ2]]+ [ξ2, [ξ2, ξ1]])+ · · · .
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Controllability of control-affine systems

The formal series BCH(ξ1, ξ2) is called the
Baker–Campbell–Hausdorff formula.
It may be used inductively to arrive at

ΦX1
t1 ◦ · · · ◦ ΦXp

tp (x0)“ = ”ΦBCH(t1X1,...,tpXp)
1 (x0)

for some ungodly horrible (but explicitly determinable) formal
series BCH(ξ1, . . . , ξp).
The point is that Lie brackets appear in a natural way for
controllability using piecewise constant controls.
=⇒ Seek controllability conditions involving Lie bracket

conditions on the vector fields {f0, f1, . . . , fm}.
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Controllability of control-affine systems

The literature on this approach is vast and varied, and is mostly
characterised as follows:

▶ Authors An of paper Pn give some conditions Cn, necessary or
sufficient for STLC;

▶ If the authors An of Pn possess good pedagogical instincts, intuition
is given for the conditions Cn;

▶ Either
1 authors An of Pn give a counterexample showing that the intuitive

description of their condition Cn is misleading or
2 authors An+1 of paper Pn+1 begin their paper with such a

counterexample, and proceed to give conditions Cn+1 which apply to
the counterexample;

▶ Repeat. . .
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Controllability of control-affine systems
There is an inherent problem with this approach: conditions are given
subject to a specific choice of the vector fields f0, f1, . . . , fm.

Example
On M = Rm ×Rn−m consider a system with governing equations

ẋ1 = u,
ẋ2 = Q(x1),

where Q is a Rn−m-valued homogeneous polynomial of degree 2. Write

Q(x1) = (Q1(x1), . . . ,Qn−m(x1))

for scalar-valued quadratic functions Q1, . . . ,Qn−m. Write

Qj(x1) = xT
1 Bjx1

for a symmetric matrix Bj.
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Controllability of control-affine systems

Example (cont’d)
By the “generalised Hermes condition,” (Sussmanna) the system is
STLC from (0, 0) if the diagonal entries in the matrices B1, . . . ,Bn−m

are zero.
Is this condition necessary? No.
Is this condition invariant under feedback transformations of the form
u 7→ Pu for P ∈ GL(m;R)? No.
However. . . the system is STLC from (0, 0) if and only if there exists
P ∈ GL(m;R) such that the diagonal entries of the matrices
PTB1P, . . . ,PTBn−mP are zero.
But what does this condition really mean?

aSIAM J. Control Optim., 25(1), 158–194
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Affine distributions

Stating theorems stated in terms of specific f0, f1, . . . , fm is rather
like stating theorems in differential geometry that rely on a specific
choice of coordinates.
Note that in applications the vector fields f0, f1, . . . , fm are often a
part of the problem, and so it might seem absurd to adopt a point
of view where the rôle of these vector fields is pushed aside.
But we are interested in insight, not particular applications.
Anyway, how do we not make this choice of drift and control vector
fields?
The geometric object that the vector fields F = {f0, f1, . . . , fm}
really represent is the affine subbundle AF of TM defined by

AF ,x =
{

f0(x) +
m∑

a=1

uafa(x)
∣∣∣ u ∈ Rm

}
.
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Affine distributions

So why not simply replace the data {f0, f1, . . . , fm} with a subset
A ⊂ TM such that, in a neighbourhood of any point x ∈ M, there
exist vector fields X0,X1, . . . ,Xk such that

Ax ≜ A ∩ TxM =
{

X0(x) +
k∑

a=1

uaXa(x)
∣∣∣ u ∈ Rk

}
.

The object A is a locally finitely generated affine distribution
on M.
The (not uniquely defined) vector fields X0,X1, . . . ,Xk are local
generators.
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Affine systems

Let us see if we can develop a theory of systems and their
controllability using our notion of an affine distribution as the
starting point, rather than a set of vector fields.
An affine system in an affine distribution A assigns to each point
x ∈ M a subset A (x) ⊂ Ax.

▶ Require the nondegeneracy condition that aff(A (x)) = Ax and
▶ require some fussy smoothness conditions that I will not state here.

For a control-affine system Σ = (M,F ,U) we have the affine
system

AΣ(x) =
{

f0(x) +
m∑

a=1

uafa(x)
∣∣∣ u ∈ U

}
.

A trajectory of A is a locally absolutely continuous curve
γ : I → M such that γ′(t) ∈ A (γ(t)) for a.e. t ∈ I.
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Controllability definitions for affine systems

Denote

RA (x0, T) = {γ(T) | γ is a trajectory on [0, T] such that γ(0) = x0}

and RA (x0,≤ T) = ∪t∈[0,T]RA (x0, t).
Two flavours of controllability from x0 ∈ M:

1 Accessibility: int(RA (x0,≤ T)) ̸= ∅;
2 Small-time local controllability (STLC): x0 ∈ int(RA (x0,≤ T)).
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Controllability definitions for affine systems

If one is interested in geometry, then our controllability conditions
should be on A, not on A .
Say A is proper at x0 if 0x0 ∈ intAx0

(conv(A (x0)).
Say A is properly small-time locally controllable (PSTLC) from
x0 if A is STLC from x0 whenever A is proper at x0.
Say A is small-time locally uncontrollable (STLUC) from x0 if A
is not STLC from x0 whenever A (x0) is compact.
Say A is conditionally small-time locally uncontrollable
(CSTLC) from x0 if it is neither PSTLC nor STLUC from x0.
This characterisation partitions the set of affine distributions on M.
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Accessibility of affine systems

Accessibility is characterised much as for control-affine systems.
Let Lie(0)(A)x = span(Ax) and inductively define

Lie(k)(A)x = Lie(k−1)(A)x

+ span([X, Y](x)| X ∈ Γ
∞
(A), Y ∈ Γ

∞
(Lie(k−1)(A))).

Analytic data =⇒ accessible from x0 if and only if
Lie(∞)(A)x0 = Tx0M.
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Controllability of affine systems

One would like to come up with conditions for controllability that
are independent of generators.
There are two possible approaches:

1 provide conditions that simply do not involve generators;
2 give conditions using generators, and then show that these

conditions do not actually depend on the choice.

Problem: No one knows what the first approach means and the
second approach seems hopeless.
Choose “undefined” over “hopeless.”
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Controllability of affine systems

Example (cont’d)
Consider again the system with governing equations

ẋ1 = u,
ẋ2 = Q(x1),

where Q is a Rn−m-valued homogeneous polynomial of degree 2. One
may show that the system is STLC from (0, 0) if and only if 0 is in the
interior of the convex hull of image(Q). This, then, is the geometric
version of the “generalised Hermes condition” we saw applied to this
example above.
The verifiability of the convex hull condition, incidentally, is
NP-complete.
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Controllability of affine systems

The point of the example is that existing conditions for
controllability are not generator independent, but should properly
be stated as, “If there exists a set of generators such that Cn

holds. . . ”
By adding the prefix, “If there exists a set of generators,” one can
take a computable condition (like the generalised Hermes
condition) and turn it into one that is not computable (like the
convex hull condition in the example).
But we expect this since we have already asserted that
controllability is computationally difficult.
So we soldier on. . .
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Controllability of affine systems

Now, at last, we have a clearly defined vague direction to head:

Problem
Give conditions for controllability of an affine system A in an affine
distribution A that do not involve generators for A.

Fine. . . where do we start?
Apart from generators, what structure does an affine distribution A
possess? Here are some facts:

1 A is a subset of TM;
2 sections of A are vector fields;
3 Baker–Campbell–Hausdorff suggests that iterated Lie brackets of

A-valued vector fields are important;
4 an iterated Lie bracket of degree k of vector fields involves

derivatives of those vector fields up to order k − 1.
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Controllability of affine systems

=⇒ We are interested in spaces which parameterise vector
fields and their derivatives.
These spaces are called “jet bundles,” and these bundles have a
very detailed algebraic structure.
=⇒ “Jet bundles and algebro-geometric conditions for

controllability of affine systems”
Cesar?
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