Jet bundles and algebro-geometric characterisations for controllability of affine systems

César Aguilar and Andrew D. Lewis

Department of Mathematics and Statistics, Queen's University

09/12/2008

• We will talk about control-affine systems:

$$\dot{x}(t) = f_0(x(t)) + \sum_{a=1}^m u^a(t) f_a(x(t)).$$

- Since trajectories are of most interest and since feedback transformations preserve trajectories, one's approach to control theory should be feedback invariant, i.e., identify systems that are feedback equivalent.
- Working with a specific f_0, f_1, \ldots, f_m is like working with coordinates in differential geometry: Sometimes it is necessary, but it is best avoided if comprehension is what is sought.
- Two possible approaches:
 - Choose f_0, f_1, \ldots, f_m , then show results are independent of this choice.
 - 2 Develop an approach that does not involve this choice.

Many useful controllability theorems are not "feedback invariant."

Example

On $\mathbb{R}^m \times \mathbb{R}^{n-m}$ consider a system with governing equations

$$\dot{\boldsymbol{x}}_1 = \boldsymbol{u},$$

 $\dot{\boldsymbol{x}}_2 = \boldsymbol{Q}(\boldsymbol{x}_1)$

where Q is a \mathbb{R}^{n-m} -valued homogeneous polynomial of degree 2. Write

$$\boldsymbol{Q}(\boldsymbol{x}_1) = (\boldsymbol{B}_1(\boldsymbol{x}_1, \boldsymbol{x}_1), \dots, \boldsymbol{B}_{n-m}(\boldsymbol{x}_1, \boldsymbol{x}_1))$$

for quadratic forms B_1, \ldots, B_{n-m} .

Example (cont'd)

- By the "generalised Hermes condition," (Sussmann¹) the system is STLC from (0, 0) if the diagonal entries in the matrices B₁,..., B_{n-m} are zero.
- Is this condition necessary? No.
- Is this condition invariant under feedback transformations? No.
- However...TFAE:
 - STLC from (0, 0);
 - there exists a feedback transformation turning the system into one in which the generalised Hermes condition applies;
 - **3** $\mathbf{0} \in \operatorname{int}(\operatorname{conv}(\operatorname{image}(\boldsymbol{Q}))).$

¹SIAM J. Control Optim., **25**(1), 158–194

- Condition 2 represents the "choose generators and show independence on these" approach.
- Condition 3 represents "generator independent" approach.
- Generalisation of the first approach seems hopeless (and sort of disgusting).
- Generalisation of the second approach...how does one do it?
- Let us choose ignorance over hopelessness (and sort of disgust).

Affine systems

Replace the data {*f*₀,*f*₁,...,*f_m*} with a subset A ⊂ TM such that, in a neighbourhood of any point *x*₀ ∈ M, there exist vector fields *X*₀,*X*₁,...,*X_k* such that

$$\mathsf{A}_{x} \triangleq \mathsf{A} \cap \mathsf{T}_{x}\mathsf{M} = \Big\{ X_{0}(x) + \sum_{a=1}^{k} u^{a} X_{a}(x) \Big| \ u \in \mathbb{R}^{k} \Big\}.$$

- The object A is a *locally finitely generated affine distribution* on M.
- The (not uniquely defined) vector fields *X*₀, *X*₁,..., *X_k* are *local generators*.

Affine systems

• Typically controls for a control-affine system

$$\dot{x}(t) = f_0(x(t)) + \sum_{a=1}^m u^a(t) f_a(x(t))$$

are restricted to lie in a subset $U \subset \mathbb{R}^m$. We generalise this by...

- An *affine system* in an affine distribution A assigns to each point $x \in M$ a subset $\mathscr{A}(x) \subset A_x$.
 - Require the nondegeneracy condition that $aff(\mathscr{A}(x)) = A_x$ and
 - require some fussy smoothness conditions that I will not state here.
- A *trajectory* of \mathscr{A} is a locally absolutely continuous curve $\gamma: I \to M$ such that $\gamma'(t) \in \mathscr{A}(\gamma(t))$ for a.e. $t \in I$.
- An \mathscr{A} -vector field is a map $\xi \colon M \to TM$ such that $\xi(x) \in \mathscr{A}(x)$.

Problems for affine systems

- We aim to study the local properties of affine systems. To what end?
 - Understand controllability.
 - Onderstand stabilisability.
 - Understand relationships between controllability and stabilisability.
- What geometric properties of affine distributions come into play to address these problems?
- We sort of think Lie brackets are involved, but how?
- Here: Understand this through controllability.

Have the expected notions of controllability for an affine system *A*.
Denote

 $\mathcal{R}_{\mathscr{A}}(x_0,T) = \{\gamma(T) \mid \gamma \text{ is a trajectory on } [0,T] \text{ such that } \gamma(0) = x_0\}$

and $\mathcal{R}_{\mathscr{A}}(x_0, \leq T) = \bigcup_{t \in [0,T]} \mathcal{R}_{\mathscr{A}}(x_0, t).$

- Two flavours of controllability from $x_0 \in M$:
 - **1** Accessibility: $int(\mathcal{R}_{\mathscr{A}}(x_0, \leq T)) \neq \emptyset;$
 - **3** Small-time local controllability (STLC): $x_0 \in int(\mathcal{R}_{\mathscr{A}}(x_0, \leq T))$.

- Bang bang type theorems → it "suffices" to consider piecewise constant controls.
- Thus need to consider trajectories of the form

$$\Phi_{t_1}^{\xi_1} \circ \cdots \circ \Phi_{t_p}^{\xi_p}(x_0)$$

for \mathscr{A} -vector fields ξ_1, \ldots, ξ_p and $t_1, \ldots, t_p \in \mathbb{R}_{\geq 0}$.

• Baker–Campbell–Hausdorff: For $k \in \mathbb{Z}_{>0}$ there exists $\operatorname{BCH}_k(\eta_1, \ldots, \eta_p)$ such that

$$\Phi_{t_1}^{\xi_1} \circ \dots \circ \Phi_{t_p}^{\xi_p}(x_0) = \Phi_1^{\mathrm{BCH}_k(t_1\xi_1,\dots,t_p\xi_p)}(x_0) + O((t_1+\dots+t_p)^{k+1}).$$

Have

$$\operatorname{BCH}_{k}(\eta_{1},\ldots,\eta_{p}) = \eta_{1} + \cdots + \eta_{p} + \frac{1}{2} \sum_{\substack{j,k \in \{1,\ldots,p\}\\j < k}} [\eta_{j},\eta_{k}] + \cdots$$

10/20

- Standard technique in controllability: Find curves in the reachable set so the (possibly higher-order) tangent vector of this curve at x₀ is a "reachable direction."
- Construction of such tangent vectors:
 - Abbreviate $\Phi_{t_1}^{\xi_1} \circ \cdots \circ \Phi_{t_p}^{\xi_p}(x_0) = \Phi_{x_0}^{\boldsymbol{\xi}}(t_1, \dots, t_p).$
 - 2 Consider the map $\mathbb{R}^p_{\geq 0} \ni t \mapsto \Phi^{\boldsymbol{\xi}}_{x_0}(t) \in \mathsf{M}.$
 - Source $\mathbb{R}_{\geq 0} \ni s \mapsto \tau(s) \in \mathbb{R}_{\geq 0}^p$ with $\tau(0) = 0$.
 - The composition $\Phi_{x_0}^{\boldsymbol{\xi}} \circ \boldsymbol{\tau}$ is a curve in the reachable set.
 - Suppose the first k 1 derivatives of $\Phi_{x_0}^{\xi} \circ \tau$ vanish.
 - **6** Then $\frac{d^k}{ds^k}\Big|_{s=0} \Phi_{x_0}^{\boldsymbol{\xi}} \circ \boldsymbol{\tau}(s)$ (assume nonzero) is a *k*th-order tangent vector to the reachable set.

Output Denote
$$\operatorname{ord}_{x_0}(\boldsymbol{\xi}, \boldsymbol{\tau}) = k$$
.

Example

Take $\boldsymbol{\xi} = (-Y, -X, Y, X)$ and $\boldsymbol{\tau}(s) = (s, s, s, s)$. Then $\operatorname{ord}_{x_0}(\boldsymbol{\xi}, \boldsymbol{\tau}) = 2$ and

$$\frac{\mathsf{d}^2}{\mathsf{d}s^2}\bigg|_{s=0}\Phi_{x_0}^{\boldsymbol{\xi}}\circ\boldsymbol{\tau}(s)=[X,Y](x_0).$$

• This is nothing new.

- For analytic systems data is contained in the Taylor expansions at *x*₀, i.e., the infinite jets at *x*₀.
- Jet bundle notation and properties.
 - For manifolds M and N, J^k_(x,y)(M; N) denotes the k-jets of maps for which x → y.
 - ★ $J_{(x,0)}^k(M; \mathbb{R})$ is a \mathbb{R} -algebra.
 - ★ Elements of $J_{(x,y)}^{k}(M; \mathbb{N})$ are homomorphisms of the ℝ-algebras $J_{(y,0)}^{k}(\mathbb{N}; \mathbb{R})$ and $J_{(x,0)}^{k}(M; \mathbb{R})$.
 - e For a vector bundle π: E → M, $J_x^k π$ denotes the *k*-jets of sections of E at *x*.
 - ★ $J_x^k \pi$ is a \mathbb{R} -vector space.

- If ord_{x0}(ξ, τ) = k we are interested in the k-jet of s → Φ^ξ_{x0} ∘ τ(s).
- We have $j^k(\Phi_{x_0}^{\boldsymbol{\xi}} \circ \boldsymbol{\tau})(0) = j^k \boldsymbol{\tau}(0) \circ j^k \Phi_{x_0}^{\boldsymbol{\xi}}(\mathbf{0})$ (composition of algebra homomorphisms).
- $j^k \boldsymbol{\tau}(0) \in \mathsf{J}^k_{(0,\boldsymbol{0})}(\mathbb{R};\mathbb{R}^p)$ is a rather canonical object.
- What about $j^k \Phi_{x_0}^{\boldsymbol{\xi}}(\mathbf{0})$?

Some notation:

- 2 π^p_{TM} : TM^{*p*} \rightarrow M denotes the *p*-fold Whitney sum.
- For a R-vector space V, S^j(V) denotes the symmetric tensors of degree j.

$$\mathbf{S}^{\leq k}(\mathbf{V}) = \bigoplus_{j=1}^{k} \mathbf{S}^{j}(\mathbf{V})$$

Define

$$\Delta_k \colon \mathsf{V} \to \mathsf{S}^{\leq k}(\mathsf{V})$$
$$\nu \mapsto \nu \oplus (\nu \otimes \nu) \oplus \cdots \oplus (\nu \otimes \cdots \otimes \nu).$$

L(U; V) denotes the linear maps between R-vector spaces U and V.
 Hom(A; B) denotes the homomorphisms of R-algebras A and B.

Theorem

For each $k, p \in \mathbb{Z}_{>0}$ there exists a unique map

$$\mathscr{T}_p^k(x_0) \in \mathsf{L}(\mathsf{S}^{\leq k}(\mathsf{J}_{x_0}^{k-1}\pi_{\mathsf{TM}}^p);\mathsf{L}(\mathsf{T}_{x_0}^{*k}\mathsf{M};(\mathbb{R}^p)^{*k}))$$

such that

$$\mathscr{T}_p^k(x_0)(\Delta_k(j^{k-1}\boldsymbol{\xi}(x_0))) = j^k \Phi_{x_0}^{\boldsymbol{\xi}}(\boldsymbol{0})$$

for every family $\boldsymbol{\xi} = (\xi_1, \dots, \xi_p)$ of C^{∞} -vector fields. Moreover, the diagram

$$\begin{array}{c|c} \Delta_{1}(J_{x_{0}}^{0}\pi_{\mathsf{TM}}^{p}) < & \Delta_{2}(J_{x_{0}}^{1}\pi_{\mathsf{TM}}^{p}) < & \Delta_{3}(J_{x_{0}}^{2}\pi_{\mathsf{TM}}^{p}) < & \cdots \\ \\ \mathcal{F}_{p}^{1}(x_{0}) \middle| & \mathcal{F}_{p}^{2}(x_{0}) \middle| & \mathcal{F}_{p}^{3}(x_{0}) \middle| \\ \\ \mathsf{Hom}(\mathsf{T}_{x_{0}}^{*1}\mathsf{M};(\mathbb{R}^{p})^{*1}) < & \mathsf{Hom}(\mathsf{T}_{x_{0}}^{*2}\mathsf{M};(\mathbb{R}^{p})^{*2}) < & \mathsf{Hom}(\mathsf{T}_{x_{0}}^{*3}\mathsf{M};(\mathbb{R}^{p})^{*3}) < & \cdots \end{array}$$

commutes, where the horizontal arrows are the canonical projections.

Jet bundles and controllability

Important points:

- The diagram implies $\operatorname{proj} \lim_{k \to \infty}$ exists.
- 2 The map $\mathscr{T}_p^k(x_0)$ can be computed (and the proof of its existence is made) using Baker–Campbell–Hausdorff.
- 3 The map $\mathscr{T}_p^k(x_0)$ is system independent: It depends only on k, p, and dim(M).
- How is $\mathscr{T}_p^k(x_0)$ used for controllability?

Controllability of affine systems (again)

- Fix $k \ge 2$.
- *Neutralisation:* Find \mathscr{A} -vector fields ξ_1, \ldots, ξ_p and $\tau \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}^p$ such that

$$j^{k-1}\tau(0)\circ \mathscr{T}_p^{k-1}(\Delta_{k-1}(j^{k-2}\xi(x_0)))=0.$$

- Bad news: This is an intractable nonlinear equation for j^{k-1}τ(0) and j^{k-2}ξ(x₀).
- Good news: The equation is algebraic and it can be written down!
- *The point:* If $j^{k-1}\tau(0)$ and $j^{k-2}\xi(x_0)$ satisfy the neutralisability condition, then

$$j^k \boldsymbol{\tau}(0) \circ \mathscr{T}_p^k(\Delta_k(j^{k-1}\boldsymbol{\xi}(x_0)))$$

is a *k*th-order tangent vector to the reachable set.

• Note: The system only comes in through its jets.

Controllability of affine systems (again)

- Denote by $\mathscr{V}_{\mathscr{A}}^{k}(x_{0})$ the *k*th-order tangent vectors as above.
- Properties of $\mathscr{V}_{\mathscr{A}}^{k}(x_{0})$:
 - ① $\mathcal{V}_{\mathscr{A}}^{k}(x_{0})$ is a convex cone;
 - 2 if $k_1, \ldots, k_m \in \mathbb{Z}_{>0}$ then there exists $k \in \mathbb{Z}_{>0}$ such that $\mathscr{V}_{\mathscr{A}}^{k_r}(x_0) \subset \mathscr{V}_{\mathscr{A}}^k(x_0), r \in \{1, \ldots, m\}.$
- Let $\mathscr{Z}_{\mathscr{A}}(x_0)$ be the \mathscr{A} -vector fields vanishing at x_0 .
- Note that $\mathscr{Z}_{\mathscr{A}}(x_0)$ can be thought of as a subset of $End(T_{x_0}M)$.
- For a vector space V, ℒ ⊂ End(V), and for S ⊂ V, let ⟨ℒ,S⟩ be the smallest subspace containing S which is invariant under all linear maps in ℒ.

Theorem

If S is a subspace of $\mathscr{V}_{\mathscr{A}}^{k}(x_{0})$ and if $\langle \mathscr{Z}_{\mathscr{A}}(x_{0}), \mathsf{S} \rangle = \mathsf{T}_{x_{0}}\mathsf{M}$ then \mathscr{A} is STLC from x_{0} .

Conclusions and future work

• Conclusion:

- We have a means of producing feedback invariant controllability theorems.
- 2 The local structure of an analytic affine system about x_0 is captured by the canonical algebraic objects $\mathscr{T}_p^k(x_0)$ restricted to system data.

• Future/other work:

- **(1)** Must do examples \implies symbolic software to do computations.
- See what kind of controllability theorems come from this framework.
 Think about stabilisability.

4