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The objective of the talk

To illustrate where some fairly sophisticated mathematics has
been used to solve (hopefully somewhat interesting) problems that
may be difficult, or impossible, to solve otherwise.
There will be no details in the talk. However, details exist.
Collaborators: Francesco Bullo, Bahman Gharesifard, Kevin
Lynch, Richard Murray, David Tyner.
Relies on work by: Suguru Arimoto, Guido Blankenstein, Anthony
Bloch, Dong Eui Chang, Hubert Goldschmidt, Fabio
Gómez-Estern, Velimir Jurdjevic, Naomi Leonard, Jerrold
Marsden, Romeo Ortega, Mark Spong, Héctor Sussmann,
Morikazu Takegaki, Arjan van der Schaft.
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Some toy problems to keep in mind
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Snakeboard gait: x Snakeboard gait: y Snakeboard gait: θ
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Mechanical systems: mathematical modelling

Question: What is the mathematical structure of the equations
governing the motion of a mechanical system?
We know that we derive these equations using Newton/Euler or
Euler/Lagrange, but do the resulting equations have a useful
unifying structure?
We will use the Euler–Lagrange equations.
We begin with the kinetic energy Lagrangian.
Expressed in (“generalised”) coordinates (q1, . . . , qn) this
Lagrangian is

L =

n∑
i,j=1

1
2
Gij(q)q̇iq̇j.

Here Gij(q), i, j = 1, . . . , n, are the components of a symmetric
n × n matrix which represents the inertial properties of the system.
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Mechanical systems: mathematical modelling

Mathematically, Gij, i, j = 1, . . . , n, are the components of a
Riemannian metric on the configuration space of the system.
Some call this the mass matrix, inertia tensor, etc. Let us call
this the kinetic energy metric.
For a system with kinetic energy determined by the kinetic energy
metric G and acted upon by no external forces, the following
statements are equivalent for a curve q(t) in configuration space:

1 q(t) satisfies the force and moment balance equations of
Newton/Euler;

2 q(t) satisfies the Euler–Lagrange equations,

d
dt

( ∂L
∂q̇i

)
− ∂L
∂qi = 0, i = 1, . . . , n,

where L is the kinetic energy Lagrangian.
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Mechanical systems: mathematical modelling

Let us do the computation:

d
dt

( ∂L
∂q̇i

)
− ∂L
∂qi =

n∑
j=1

Gij

[
q̈j +

n∑
k=1

Gjk
n∑

l,m=1

(∂Gkl

∂qm − 1
2
∂Glm

∂qk

)
q̇lq̇m

]
=

n∑
j=1

Gij

[
q̈j +

n∑
l,m=1

G

Γj
lmq̇lq̇m

]
,

where
G

Γj
lm =

1
2
Gjk

(∂Gkl

∂qm +
∂Gkm

∂ql − ∂Glm

∂qk

)
,

and where Gjk are the components of the inverse of the matrix
with components Gij.
What’s the stuff in red?
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Mechanical systems: mathematical modelling

Fact: Associated to the kinetic energy metric G is a unique “affine
connection,” called the Levi-Civita connection, satisfying certain
properties.
I will not say just what an affine connection is. However, in
coordinates an affine connection is uniquely determined by n3

coefficients, typically denoted by Γk
lm, i, j, k = 1, . . . , n, called the

Christoffel symbols. For the Levi-Civita connection, these

Christoffel symbols are the
G

Γj
lm’s appearing on the previous slide.

The differential equations

q̈j +

n∑
l,m=1

G

Γj
lmq̇lq̇m = 0, j = 1, . . . , n,

are the geodesic equations for the Levi-Civita connection.
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Mechanical systems: mathematical modelling

Now let’s add forces. There is a rule for converting forces and
moments in the world of Newton/Euler to a single quantity which is
determined in coordinates by components F1, . . . ,Fn. These
appear in the Euler–Lagrange equations according to

d
dt

( ∂L
∂q̇i

)
− ∂L
∂qi = Fi, i = 1, . . . , n.

Correspondingly, the geodesic equations are modified to be

q̈j +
n∑

l,m=1

G

Γj
lmq̇lq̇m =

n∑
k=1

GjkFk, j = 1, . . . , n.

These equations can be read: acceleration = mass−1force.
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Mechanical systems: mathematical modelling

(Almost) inviolable rule: Thou shalt not separate

q̈j +

n∑
l,m=1

G

Γj
lmq̇lq̇m

into its summands. It is one thing, and we denote it by
G

∇q̇q̇.
With this notation, we can slickly write the governing equations for
any mechanical system as

G

∇q̇q̇ = G−1F.

Again, this is: acceleration = mass−1force.
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What have we done?

We have a compact (and well-known) representation of the
equations governing the motion of a mechanical system, and a
prominent rôle is played by the “Levi-Civita connection associated
with the kinetic energy metric.”
So what? We already know how to write equations of motion.
Question: Can we do anything interesting with the structure in our
representation of the equations of motion?
Answer: I think so, in control theory.
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Control theory for mechanical systems

In control theory we have control over some of the external forces.
Thus we write the external force F as

F = Fext +

m∑
a=1

uaFa,

where Fext represents uncontrolled forces and the total control
force is

∑m
a=1 uaFa, i.e., the control force is a linear combination of

forces F1, . . . ,Fm.
Assumption: F1, . . . ,Fm depend only on configuration q, and not
on time or velocity q̇.
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Control theory for mechanical systems

The governing equations we consider are then

G

∇q̇q̇ = Yext +

m∑
a=1

uaYa,

where Yext = G−1Fext and Ya = G−1Fa, a = 1, . . . ,m.
Questions:

1 Controllability: Can a state x2 be reached from a state x1 by a
suitable control u?

2 Stabilisability: Can a state x0 be made a stable equilibrium point for
the system after a suitable control u has been prescribed?

3 Motion planning: Design a control steering x1 to x2.
4 Stabilisation: Design a control u that renders x0 a stable equilibrium

point.
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(Local) controllability of mechanical systems

G

∇q̇q̇ = Yext +

m∑
a=1

uaYa

x0x0

big excursions
not allowed

x0

accessibility controllability

Accessibility (does the set of points reachable from x0 have a
nonempty interior?) is easily decidable.
Controllability (is x0 in the interior of its own reachable set?) is
very difficult to decide.
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(Local) controllability of mechanical systems

Controllability is only an interesting problem for underactuated
systems; this excludes the “typical” robot. An example illustrates
how controllability works.
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(Local) controllability of mechanical systems

F

φ

Hovercraft system:
1 Question: Is the system accessible?
2 Answer: Yes (easy).
3 Question: Is the system controllable?
4 Answer: Yes (a little harder).

Andrew D. Lewis (Queen’s University) Geometry, control, and mechanics 19/02/2009 15 / 27



(Local) controllability of mechanical systems

F

π
2

Now suppose that the fan cannot rotate.
1 Question: Is the system accessible?
2 Answer: Yes (easy).
3 Question: Is the system controllable?
4 Answer: No, at least not locally (nontrivial).
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(Local) controllability of mechanical systems

F

τ

Change the model by adding inertia to the fan.
1 Question: Is the system accessible?
2 Answer: Yes (easy).
3 Question: Is the system controllable?
4 Answer: No, at least not locally (getting really difficult now).
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The punchline

By slight alterations of the problem, a somewhat simple problem
can be made very hard. To determine the answers to some of the
controllability questions, difficult general theorems had to be
proved.
The proofs of the general theorems alluded to above in a specific
context rely in an essential way on the Levi-Civita affine
connection for the problem.
So what? Can the affine connection actually be used to solve a
problem?
Let’s look at the motion planning problem.
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Motion planning

F

φ

Imagine trying to steer the hovercraft from one configuration at
rest to another.
We know this is possible (we answered the controllability question
in the affirmative). But how can we do this?
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Motion planning

For the general system

G

∇q̇q̇ =

m∑
a=1

uaYa

(i.e., with no uncontrolled external forces) one can pose a natural
question: What are those vector fields whose integral curves we
can follow with an arbitrary parameterisation?
This question has a very elegant answer expressed by using the
affine connection.
The answer rests on some deep connections with controllability as
described above.
In examples, the answer to this question can sometimes lead
directly to strikingly simple motion control algorithms.
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Motion planning (movies)

For the planar body:
Planar body motion 1
Planar body motion 2
Planar body motion plan

Another flavour of motion planner
Yet another flavour of motion planner

For the snakeboard:
Snakeboard motion plan 1
Snakeboard motion plan 2
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Stabilisation using energy shaping

We are now thinking about mechanical systems for which the
external force is solely provided by means of a potential function.
We are interested here in the stabilisation problem. For systems
with potential forces, equilibria are points where the derivative of
the potential function is zero. An equilibrium is stable if it is a
minimum of the potential function and unstable if it is a maximum
of the potential function:
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Stabilisation using energy shaping

Problem: Using control, can we take a system with an unstable
equilibrium and make it stable by altering the potential function to
have a minimum at the desired point?
For example, one can imagine the classical problem of stabilising
the cart/pendulum system with the pendulum up:

x

θ

The input is a horizontal force applied to the cart.
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Stabilisation using energy shaping

Problem restatement: Can we determine the set of potential
functions that are achievable by using controls?
If we only use control to alter the potential energy, it is possible to
completely characterise the set of achievable potential functions.
The set is often too small to be useful, e.g., for the pendulum/cart
system, no stable potential is achievable in this way.
Question: What if we allow not only the potential function to
change, but also the kinetic energy metric?
Answer: The set of achievable potential functions is then
larger, e.g., for the pendulum/cart system there is now a stable
potential achieved in this way.
Caveat: To solve this problem requires solving a set of (generally
overdetermined) nonlinear partial differential equations. . . gulp.
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Stabilisation using energy shaping

Nonetheless, maybe we can answer the question of when a given
system is stabilisable using this “energy shaping” strategy.
Studying the partial differential equations is complicated. Here is a
simple paradigm for understanding what is going on.
Problem: In Euclidean 3-space, given a vector field X, find a
function f so that grad f = X.
Answer (from vector calculus): There is a solution if and only if
curlX = 0.
The condition curlX = 0 is called a compatibility condition; it
places the appropriate restrictions on the problem data to ensure
that a solution exists.
We have found the compatibility conditions for the energy shaping
partial differential equations.
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Stabilisation using energy shaping
This is really not trivial: it involves lots of Riemannian geometry
and enough homological algebra to, for one thing, make sense of
the following exact and commutative diagram

0

��

0

��
S2(T∗M)

��

σ1(Φ) // T∗M ⊗ F τ //

��

K // 0

0 // ρ1(R) //

��

J2(R,E)
ρ1(Φ) //

��

J1(R,F)

��
0 // R // J1(R,E)

��

Φ // F

��
0 0

which is used to construct the compatibility operator as a map
from the bottom left corner to the top right corner.
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Summary

Mathematical tools can very often provide concise elegant models
for physical systems.
Sometimes these mathematical tools can provide solutions to
problems that may not be solvable were the problems not
formulated in the “right” way.
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