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What this talk is and is not about

This talk is really disconnected from immediate applications to
control theory.
My interest is in developing a framework for effectively studying
fundamental problems in control theory, e.g., necessary and
sufficient conditions for controllability, stabilisability, optimality. . .
To be effective, a control theoretic framework must not rely on
extraneous structure that will lead to studying the extraneous
structure, not control theory.
My interest is in differential geometric ordinary differential
equation models.
We all understand by now (I guess) that in differential geometric
models, a proper framework must be coordinate-invariant.
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What this talk is and is not about (cont’d)

Example: The equations coming from the PMP take the
coordinate form

ẋ(t) = F(x(t), u(t)),

λ̇(t) = −DFT(x(t), u(t))λ(t) + cost terms︸ ︷︷ ︸
“Adjoint equation”

}
This is intrinsic

It can take self-discipline to really buy into this
coordinate-invariance principle.
In this talk, we will further extend demands on self-discipline by
applying this “invariance” principle to controls.
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“Control invariance”

Here is a typically used class of control systems:

ξ′(t) = F(ξ(t), µ(t)).

Models such as this, where there is an explicit dependence on
control, are natural in applications of control theory, where the
control u is a “real” physical input like a force or a voltage.
Mathematically, there is a drawback to these sorts of models,
namely that the model comes with an explicit dependence on the
control u.
The problem is this: fundamental structural issues in control
theory are often about trajectories, and it is possible that two
different systems as above may give rise to the same trajectories,
but have rather different control theoretic attributes.
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“Control invariance” (cont’d)

Here is an example. Consider the two systems

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + x3(t)u1(t),

ẋ3(t) = u2(t),

with (x1, x2, x3) ∈ R3 and (u1, u2) ∈ R2.
▶ These two systems have the same trajectories.
▶ The left system has a linearisation at (0, 0, 0) that is not controllable.
▶ The right system has a linearisation at (0, 0, 0) that is controllable.
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“Control invariance” (cont’d)

So what’s going wrong?
▶ The notion of linearisation depends on how the system is

parameterised by controls.
▶ The notion of linearisation being controllable depends on how the

systems is parameterised by controls.
We do not like things that depend on how a system is
parameterised by control. Two possible solutions:

▶ think of how to do things in a way that can be shown to be
independent of how one parameterises a system by controls;

▶ eliminate the parameterisation by controls.
Cf. Think about defining things in differential geometry:

▶ make a definition in coordinates, and then show that it is
independent of coordinates;

▶ make a definition that is coordinate-independent at the outset.

The latter is what we’ll do here.
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The smooth and real analytic categories

Much of geometric control theory works with smooth systems.
This is okay: Many constructions in control theory are natural to
the smooth category, and additional structure can be a distraction.
However, one must be able to work in the real analytic category.

1 Mathematical motivation: Real analyticity gives
a Weaker hypotheses, e.g., the “finite generation” condition in

Frobenius’s Theorem and/or
b Stronger conclusions, e.g., the LARC in accessibility theory.

2 Nature is not replete with models that are smooth but not real
analytic.

We will develop a framework that works in the smooth and real
analytic categories, meaning that all ideas developed can be
developed in both cases.
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Topologies for spaces of vector fields

We want a rigorous framework where one can prove theorems. As
we shall see, this requires us to topologise the space Γr(TM),
r ∈ {∞, ω}, of vector fields of class Cr.
We will also talk about functions =⇒ we may as well talk about
vector bundles. . .
Let π : E → M be a Cr-vector bundle with Γr(E) the R-vector
space of sections.
For vector fields E = TM and for functions E = M ×R.
We consider r = ∞ and r = ω separately.
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Topologies for spaces of smooth sections

The smooth compact-open or CO∞-topology for Γ∞(E) is that
topology for which convergent sequences are described thusly: A
sequence (ξj)j∈Z>0 converges to ξ if and only if (jmξj|K)j∈Z>0

converges uniformly to jmξ|K for every compact set K and every
m ∈ Z≥0. (Here jm means the m-jet, and so represents all
derivatives up to order m.)
With this topology, Γ∞(E) has a property known as “nuclear.” This
means that compact sets are closed and bounded.
Closed: A set F of sections is closed if it is closed under
sequential convergence.
Bounded: A set F of sections is bounded if, for every compact set
K and every m ∈ Z≥0, jmξ|K is bounded, uniformly for ξ ∈ F .
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Topologies for spaces of smooth sections (cont’d)

It is more or less clear that the CO∞-topology is defined by the
seminorms

pK,m(ξ) = sup{∥jmξ(x)∥m | x ∈ K}

for K ⊆ M compact and m ∈ Z≥0.
For Γ∞(TM), we have the following “weak” characterisation of the
CO∞-topology.

Theorem
The CO∞-topology agrees with the locally convex topology defined by
the seminorms

qK,m(X) = sup{pK,m(LXf ) | pK,m+1(f ) = 1}

for K ⊆ M compact and m ∈ Z≥0.
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Topologies for spaces of real analytic sections

The topology for Γω(E) is harder to describe.
First complexify to get a holomorphic vector bundle π : E → M.
Let NM be the set of neighbourhoods of M in M.
For U ∈ NM, topologise Γhol(E|U) with the compact-open
topology, i.e., the topology of uniform convergence on compact
sets.
Have a mapping Γhol(E|U) → Γω(E) by restriction.
Give Γω(E) the direct limit topology. . .
There is an alternative inverse limit topology that turns out to be
equivalent by a hard theorem of Martineau.3

We call this the Cω-topology .

3Sur la topologie des espaces de fonctions holomorphes, Math. Ann., 163, 62–88,
1966
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Topologies for spaces of real analytic sections (cont’d)

It is difficult to work with the Cω-topology. . . at least for me. . .
We are working on a real analytic version of the weak topology for
smooth vector fields described above, and here is an interesting
step along the way. . .

Theorem
If M is a Stein manifold,a then the compact-open topology for Γhol(TM)
agrees with the topology defined by the seminorms

qK(X) = sup{pK,0(LXf ) | pK,0(f ) = 1}

for K ⊆ M compact.
aMost concretely, this means that M can be holomorphically embedded in CN .
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Control systems (carefully)

We will want to establish theorems of correspondence between
various forms of systems, so let us precisely describe the “usual”
notion of a control system, taking into account our general needs.
A C∞-control system is a triple Σ = (M,F,C) where:

1 M is a C∞-manifold;
2 C is a separable metric space;
3 F : M × C → TM has the properties:

a F(x, u) ∈ TxM, i.e., Fu : x 7→ F(x, u) is a vector field;
b Fu is a smooth vector field;
c (x, u) 7→ jmFu(x) is continuous for every m ∈ Z≥0.

In the smooth case, condition 3c ensures that the map u 7→ Fu is
continuous.
I do not know the right general definition for real analytic control
systems.
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Generalised control systems

For r ∈ {∞, ω}, a Cr-generalised control system is a pair
G = (M,F ) where

1 M is a Cr-manifold and
2 F assigns to an open U ⊆ M a subset F (U) ⊆ Γr(TU) such that, if

V ⊆ U, then the restrictions of elements of F (U) to V are in F (V)
(F is a presheaf).

The presheaf F is a sheaf if given Xa ∈ F (Ua), a ∈ A, such that
Xa1 and Xa2 agree on Ua1 ∩ Ua2 , then there is a well-defined
element of F (∪a∈AUa) agreeing with each Xa on Ua.
The presheaf F is globally generated if

F (U) = {X|U | X ∈ F (M)}.

This is a typical case that one can keep in mind for safety.
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Geometric system models (cont’d)

What are trajectories? We work with the smooth case only; we do
not yet understand the real analytic case.
An open-loop system for a generalised control system (M,F ) is
a triple OG = (T,U,X) where

1 T ⊆ R is an interval,
2 U ⊆ M is open, and
3 X : T → F (U) has the properties

a t 7→ LXt f (x) is measurable for every x ∈ M and f ∈ C∞(M),
b for every f ∈ C∞(M), LXt f ∈ C∞(M), and
c for each compact K ⊆ M and m ∈ Z≥0, there exists g ∈ L∞

loc(T;R>0)
such that

pK,m(LXt f ) ≤ g(t), t ∈ T, x ∈ K,

for every f ∈ C∞(M).

Equivalently, t 7→ Xt is measurable and locally essentially bounded
in the CO∞-topology. . .
A trajectory is an integral curve of some open-loop system.
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Fun and games with generalised control systems

Given a control system Σ = (M,F,C), we have the associated
generalised control system GΣ = (M,FΣ), where

FΣ(U) = {Fu|U | u ∈ C}.

Given a differential inclusion X : M ↠ TM, we have the associated
generalised control system GX = (M,FX ), where

FX (U) = {X ∈ Γr(TU) | X(x) ∈ X (x), x ∈ U}.
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Fun and games with generalised control systems
(cont’d)

Given a smooth generalised control system G = (M,F ) with F
globally generated, we have the control system
ΣG = (M,FF ,CF ), where

1 CF = F (M) and
2 F(x,X) = X(x).

(Stop having fun for a minute, and prove that this is a smooth
control system according to our definition.)
Given a generalised control system G = (M,F ), we have a
differential inclusion XG given by

XG(x) = {X(x) | [X]x ∈ Fx}

(Fx is the set of germs of vector fields from F ).
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Precise correspondences

For systems, we have the following correspondences:
1 if F is globally generated, GΣG

= G (tautological);
2 ΣGΣ = Σ (tautological);
3 if F is a sheaf, GXG

= G (sheafily tautological);
4 XGX ⊆ X .

The last inclusion will virtually never be an equality for all kinds of
reasons, including these two.

1 X may not possess enough local regularity to section it regularly,
even locally.

2 In the real analytic case, it is unlikely that a differential inclusion will
be compatible with the following fact: If one knows the Taylor series
of a real analytic vector field at a point x, this uniquely determines X
on the connected component of M containing x.

Seems to me. . . differential inclusions satisfying XGX = X are the
ones of interest in geometric control theory.
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Precise correspondences (cont’d)

Mostly we are interested in correspondence of trajectories. This
requires hypotheses.
Given Σ = (M,F,C):

1 Traj(Σ) ⊆ Traj(GΣ) (easy);
2 if F is proper, then Traj(GΣ) ⊆ Traj(Σ) (very hard);

Given G = (M,F ):
1 if F is globally generated and if F (M) is compact in the

CO∞-topology, then Traj(ΣG) = Traj(G) (relatively easy);
2 Traj(G) ⊆ Traj(XG) (easy);

Given a differential inclusion X :
1 Traj(GX ) ⊆ Traj(X ) (easy).

Given G = (M,F ):
1 Traj(G) ⊆ Traj(XG) (easy);
2 if F is globally generated and if F (M) is compact in the

CO∞-topology, then Traj(XG) ⊆ Traj(G) (follows easily from the
hard Traj(GΣ) ⊆ Traj(Σ)).
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Linearisation of generalised control systems

To illustrate that generalised control systems possible give you
something, let’s look at linearisation.
For a vector field X on M, let XT denote the tangent lift of X,
which is the vector field on TM defined by

XT(vx) =
d
dt

∣∣∣∣
t=0

TxΦ
X
t (vx),

i.e., the flow of XT is the linearised flow of X.
For a vector field X on M, define a vector field vlft(X) on TM by

vlft(X)(vx) =
d
ds

∣∣∣∣
s=0

(vx + sX(x)).
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Linearisation of generalised control systems (cont’d)

We let G = (M,F ) be a smooth generalised control system.
To construct the linearisation of G, we use. . . Jacobian
linearisation like we teach undergraduates! But in a rather atypical
setup. . .
Assume that F is globally generated and let ΣG = (M,FF ,CF )
be as above. Thus CF = F (M) and F(x,X) = X(x).
To do Jacobian linearisation at (x,X), we perturb x in the direction
of vx ∈ TxM and X in the direction of Y ∈ F (M):

1 let I ⊆ R be an open interval containing 0;
2 let γ : I → M satisfy γ′(0) = vx;
3 consider the curve s 7→ X + sY in F (M).
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Linearisation of generalised control systems (cont’d)

Denote
Υ(t, s) = ΦX+sY

t (γ(s)).

Now differentiate at s = 0 then t = 0:

d
dt

d
dsΥ ◦ δ(t, s) = d

dt
d
dsΦ

X
t (γ(s)) +2 IM(

d
ds

d
dtΦ

X+sY
t (x))

= d
dt TxΦ

X
t (vx) +2 IM(

d
ds(X(x) + sY(x)))

= XT(vx) +1 vlft(Y)(vx),

where IM is the double tangent bundle involution, and +1 and +2
refer to the “primary” and “secondary” vector bundle structures for
TTM:

πTTM : TTM → TM, TπTM : TTM → TM.
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Linearisation of generalised control systems (cont’d)

The linearisation of a generalised control system G = (M,F ) is
the Cr-geometric system model F T on TM defined by

F T(TU) = {XT + vlft(Y) | X, Y ∈ F (U)}.

The linearisation is a generalised control system on TM. . . niiice. . .
Let’s look at something familiar: linearisation about a trajectory.

▶ Let t 7→ ξref(t) ∈ U be a trajectory, i.e., ξ′ref(t) = Xt(ξref(t)).
▶ Note that there may be many vector fields t 7→ Xt ∈ F (U) having

ξref as an integral curve.
▶ A trajectory for the linearisation about ξref is a trajectory t 7→ Ξ(t)

for F T(TU) for which πTM ◦ Ξ = ξref.
▶ In coordinates: If t 7→ Ξ(t) is represented by t 7→ (x(t), v(t)) then

ẋ(t) = Xt(x(t)),
v̇(t) = DXt(x(t)) · v(t)︸ ︷︷ ︸

“A(t)x(t)”

+Yt(x(t))︸ ︷︷ ︸
“B(t)u(t)”

}
Alarm! Alarm!
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Linearisation of generalised control systems (cont’d)

One can also linearise about a flow, not just a trajectory.
▶ Let U ⊆ M be open.
▶ Let t 7→ Xref,t ∈ F (U) be a vector field for the system.
▶ A trajectory for the linearisation about Xref is a trajectory

t 7→ Ξ(t) for F T for which πTM ◦ Ξ is an integral curve for Xref,t.
▶ In coordinates: If t 7→ Ξ(t) is represented by t 7→ (x(t), v(t)) then

ẋ(t) = Xref,t(x(t)),
v̇(t) = DXref,t(x(t)) · v(t)︸ ︷︷ ︸

“A(t)x(t)”

+Yt(x(t))︸ ︷︷ ︸
“B(t)u(t)”

}
Alarm! (again)
Alarm! (again)

Generally, the two sorts of linearisations are not the same. To see
why, we consider stationary reference trajectories.
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Linearisation of generalised control systems (cont’d)

We look carefully at the linearisation at an equilibrium point.
▶ A point x0 is an equilibrium point if, for some (and so any

sufficiently small) neighbourhood U of x0, there exists X ∈ F (U)
such that X(x0) = 0x0 .

▶ If X(x0) = 0x0 then XT(vx) = AX,x0(vx) for some AX,x0 ∈ EndR(Tx0M).
▶ A trajectory for the linearisation about the trivial reference trajectory

t 7→ x0 is then a curve t 7→ v(t) in Tx0M satisfying

v̇(t) = AXt,x0(v(t)) + b(t), No alarm! No alarm!

for
1 t 7→ Xt ∈ F (U) such that Xt(x0) = 0x0 and
2 a measurable essentially bounded curve t 7→ b(t) taking values in

{Y(x0) | [Y]x0 ∈ Fx0},

where Fx0 is the stalk of F at x0.

Andrew D. Lewis (University of Hawaii) Models for control systems 06/09/2013 25 / 28



Linearisation of generalised control systems (cont’d)

Um. . . linearisation at an equilibrium point x0 is a time-dependent
linear system on Tx0M? Yes, in general!
If we instead fix a time-invariant reference vector field Xref ∈ F (U)
for which x0 is an equilibrium point, then the trajectories for the
linearisation about Xref with initial condition in Tx0M satisfy

v̇(t) = AXref,x0(v(t)) + b(t).

This is more or less what we expect when linearising at an
equilibrium point.
There are cases, however, where the linearisation is always
time-invariant.
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Linearisation of generalised control systems (cont’d)

▶ For x ∈ M define a distribution

D(F )x = spanR(X(x)| [X]x ∈ Fx).

▶ If x0 is an equilibrium point for F and a regular point for D(F ), then
a trajectory for the linearisation about the trivial reference trajectory
t 7→ x0 is a curve t 7→ v(t) in Tx0M satisfying

v̇(t) = AX,x0(v(t)) + b(t),

for
1 some X ∈ F (U) for which X(x0) = 0x0 and
2 a measurable essentially bounded curve t 7→ b(t) taking values in

{Y(x0) | [Y]x0 ∈ Fx0}.
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Summary

We have a mathematical framework for a class of control systems
that:

1 is coordinate-invariant;
2 is “representation-invariant”;
3 has the capacity to handle real analytic systems naturally;
4 isolates local properties and constructions in a natural way.

The most elementary of constructions in control theory,
linearisation, suggests that the new framework illuminates hitherto
unnoticed system structure.
Future work. . . frighteningly vast. . .
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