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What these ideas are and are not about

@ There is nothing practical in this talk.

@ The machinery in this talk is intended to provide a framework for
studying fundamental structural problems in control theory,
nothing more. .. but nothing less either.

@ This talk is a mere sketch of a larger body of work:

@ Tautological Control Systems, Springer-Verlag, 2014, 118pp-xii

@ Time-Varying Vector Fields and Their Flows (with S. Jafarpour),
Springer-Verlag, 2014, 119pp-+viii

© Search tautological control systems on YouTube for the
17 hour version.
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What is the “problem”?

@ Why is a different framework needed from what is already out
there?
@ Let us consider the simplest possible illustration of this.

» If one has a vector field X on a manifold M with an equilibrium point
xo € M, the notions of “linearisation of X about x,” and “linear
stability of X at xy” are unambiguous, i.e., understood in a
coordinate-invariant way.

» The same is not true of “linearisation of control systems,” “linear
controllability of control systems,” and “linear stabilisability of control
systems.”
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What is the “problem”? (cont’d)

Example
Consider the two control-affine systems

x1(t) = x(1), x1(1) = x2(2),
X (1) = x3()us (1), X (1) = x3(t) + x3(Hur (1),
x3(1) = up(1), X3 (1) = ua(1),

@ The systems are related by a simple feedback transformation and
have the same trajectories.

@ The system on the left has a linearisation that is neither

controllable nor stabilisable and the linearisation on the right is
controllable (and so stabilisable).

-

Conclusion: The standard notions of linearisation, linear controllability,
and linear stabilisability are not feedback-invariant.
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What is the “problem”? (cont’d)

@ FPlea: Do not try to “figure out” the example, but rather understand
that it just says that the usual definitions have a lurking problem.

@ Nonlinear control theory is filled with many rather complicated
constructions and theorems for doing things like determining when
a system is controllable or stabilisable, and for determining the
conditions for optimality of an extremal.

@ There are likely very few constructions in nonlinear control theory
that are feedback-invariant.

@ To be able to address fundamental structural problems in control
theory, one needs to have a feedback-invariant approach, or else
hypotheses and/or conclusions will change with different system
representations.
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What is the “problem”? (cont’d)

@ There are at least two approaches:

» Make constructions with a given representation, and verify that
these are, in fact, feedback-invariant.
» Develop a methodology that is representation independent.

@ The former is rather like making a coordinate construction in
differential geometry and showing it, in fact, does not depend on
the choice of coordinates, e.g., the linearisation of a vector field
about an equilibrium point using the Jacobian in a set of
coordinates.

@ This approach seems really hard, probably impossible, definitely
extremely messy.

@ The latter approach is like making constructions in differential
geometry that are a prioriindependent of coordinates.

@ This latter approach is what we use here. It seems more elegant,
but has its own difficulties.
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Warning!

We are interested in “feedback-invariance,” not
“feedback-invariants.”
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Why differential inclusions do not do what we want

@ To eliminate dependence on control parameterisation, it seems
natural to use differential inclusions, and my students and |
thought about this seriously for a few years.

@ While differential inclusions lose the undesirable structure of
dependence on control parameterisation, they also lose some
useful structure possessed by control systems.

@ Notions of regularity such as are important in geometric control
theory, e.g., smoothness and real analyticity, seem extremely
difficult to reproduce in a differential inclusion framework.

@ A trajectory for a differential inclusion is merely a curve, while for a
control system a trajectory is an integral curve of a time-varying
vector field which has a flow. Thus a trajectory carries with it
variations of initial condition, etc.
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Topologies for spaces of vector fields

@ An essential ingredient for the framework are effective (meaning
with explicit seminorms) locally convex topologies for spaces of
vector fields.

@ With Jafarpour,! we have done the following.

@ For regularity class v € {m,m + lip, 0o, w, hol}, m € Z~,, we have
produced a useful description of a “compact-open type” topology for
the set I'”(TM) of C”-vector fields on a C"-manifold M
(r € {o0,w, hol} as required).

@ For v # w these topologies are the classical topologies that
correspond to “uniform convergence of the required number of
derivatives on compacta.”

@ For v = w (an important case in control theory), the topology is not
classical, but derived from work of Martineau,? Domanski,® and
Vogt.4

' Time-Varying Vector Fields and Their Flows, Springer-Verlag, 2014
2Math. Ann., 163(1), 62-88, 1966

®Cont. Math., 561, 3-47, 2012

*ArXiv:1309.6292, 2013
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Topologies for spaces of vector fields (cont'd)

© With these topologies one can provide useful notions of

@ continuity for maps from an arbitrary topological space,
@ measurability for maps from a measurable space (preimages of Borel
sets are measurable), and

@ integrability for maps from a measure space (the classical Bochner
integral).

into I'” (TM).

@ Here’s a sample (nontrivial) result showing the power of the
unified theory for topologising spaces of vector fields.

Theorem

For a time-varying vector field R > t — X, € I'V(TM), the following are
equivalent:

@ X is measurable;

@ for each x € M, the mapping t — X,(x) is measurable.
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Control systems

Definition

A C”-control system is a triple (M, F, C) where
@ Mis a C"-manifold,
@ cis atopological space, and
@ F: M x € — TMis such that

@ the mapping
F':M—TM

x = F(x,u)

is a C”-vector field, and
@ the mapping € 5 u — F" € T'¥(TM) is continuous.

@ The feature of being able to define all at once the notion of a
control system for a long list of regularity classes is a feature of
our methodology.
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Control systems (cont’d)

@ This definition is deceptively simple.

Remarks

@ The condition of being a “C!-control system” corresponds exactly
to assumptions common in the literature (that F and its derivative
with respect to x be jointly continuous in (x, u)).

© The condition of being a “C*-control system” is rarely seen, but
upon reflection is the natural definition for such a notion (it is
equivalent to the condition that F and all x-derivatives be jointly
continuous in (x, u)).

© The condition of being a “C“-control system” is new and gives, for
the first time, a useful notion of what is meant by a “real analytic
control system.”

©Q A control-affine system with C” drift and control vector fields is a
C”-control system.
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Time-varying vector fields

Definition

A measurable time-varying vector field X: t — X, € I'V(TM) is locally
integrally C* -bounded if it is locally integrable (in the Bochner sense).

@ Again, this definition is deceptively simple.

Remarks |

@ The condition of being “locally C'P-bounded” corresponds exactly
to the usual hypotheses of the Carathéodory existence and
uniqueness theorem (that X be locally integrable and locally
Lipschitz in x with local Lipschitz constant bounded by an
integrable function).

©@ The condition of being “locally C*°-bounded” is (not obviously) the

same as in the original “chronological calculus” paper of Agrachev
and Gamkrelidze.?

Math. USSR-Sb., 107(4), 467-532, 1978
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Time-varying vector fields (cont'd)

@ Two theorems that suggest our definitions of time-varying vector
fields and control systems are the “right” ones.
Theorem

If v > lip then the flow of a locally integrally C” -bounded vector field
depends on initial conditions in a C*-manner.

@ This holds in the real analytic case!

Theorem

For a C”-control system (M, F, C), if t — u(t) € C is locally essentially
bounded (in the relatively compact bornology), then the open-loop
system (t,x) — F(x, u(z)) is locally integrally C”-bounded.
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Tautological control systems (definition)

@ The notion of a tautological control system has two main features.

@ It replaces the parameterised set of vector fields {F* | u € €} for a
control system ¥ = (M, F, ) with an unparameterised set of vector
fields.

@ Data is defined only locally to systematically deal, e.g., with the fact
that flows for control systems are only locally defined.

Definition
A C"-tautological control system is a pair & = (M, ¥ ) where
@ Mis a C"-manifold and

© ¥ is a presheaf of sets of C”-vector fields, i.e., # assigns to each
open U C M a subset & (U) of vector fields on U with the property
that if V C U then X|V € ¥ (V) for every X € & (U).
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Tautological control systems (attributes)

Definition
A C"-tautological control system & = (M, &) is globally generated if
there exists a family & of globally defined vector fields such that

FU) = {X|U] X € Z).

Definition

A C"-tautological control system & = (M, &%) is complete if ¥ is a

sheaf of sets of C”-vector fields, i.e., if, for every open U C M, every
open cover (U,)qea Of U, and every family (X,),c4 of C”-vector fields
on the open sets U,, a € A, satisfying

Xa|ua NU, = Xb’ua N Uy,

there exists X € & (U) such that X|U, = X,.
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Tautological control systems (examples)
Examples

@ The presheaf # (U) = T'(TU) is the tangent sheaf denoted by
Y- This presheaf is complete and not globally generated.

@ Consider a C”-control system X~ = (M, F, C), and define a
C"-tautological control system &y = (M, %) by

Fo(U) = {F U] ueC}.

This system is obviously globally generated. It is seldom
complete.

© Let (U,)aca be an open cover of M with X, € T”(TU,), a € A.
Define

FU={XeI”(TU| U U, X =X,|U for some a € A}.

This system is generally neither globally generated nor complete.

v
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Tautological control systems (examples) (cont’d)

Examples (cont'd)

© Let D C TM be a C”-distribution and define a C”-tautological
control system &p = (M, %) by

Ib(U) = {D-valued vector fields on U of class C”}.

This system is complete and not globally generated.

©@ Given a globally defined tautological control system & = (M, %)
define an “ordinary” control system X with control set ¢ = & (M)
and dynamics
F(x,X) = X(x)
—_———

This is the tautology!
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Tautological control systems (system correspondence)

@ Note that we can go from a control system to a tautological control
system back to a control system.

@ Note that we can go from a globally defined tautological control
system to a control system back to a tautological control system.

Proposition
Given a globally defined tautological control system & = (M, %) and a
control system ¥ = (M, F,C):

Q 6y, =6,
Q X, = X ifthe map u — F" is an homeomorphism onto its image.

@ We see here the first suggestion that topologies for spaces of
vector fields are required in this framework. On this, much more to

come.

24/08/2015 19/30
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Tautological control systems (étale space)

@ For a C”-tautological control system & = (M, &), by % denote
the stalk of the presheaf &, i.e., the germs of the locally defined
vector fields for the system. For U € M open and X € ¥ (U),

denote by [X], the germ of X.
@ By Et(¥) = Oxem% denote the étale space of the presheaf & .

@ The étale topology for Et(¥#) has as basis
B(U,X) = {[X], | x e U}, U C M open, X € # (U).

24/08/2015 20/30
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Tautological control systems (stalk topology)

@ For x € Mand U a neighbourhood of x, let ry . : Gy, (U) — Gy
be given by ry(X) = [X],.
@ Ty (U) =I'"(TU) has the topology mentioned earlier.

@ The C”-stalk topology for &7, is the finest locally convex
topology such that all maps ry(, are continuous.

@ For a C”-tautological control system & = (M, ¥ ), the stalk
F: € Grw has the relative topology, which is the C"-stalk
topology for #..

@ The étale and stalk topologies are generally not Hausdorff unless

vV =Ww.
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A “sheafy” generalisation of time-varying vector fields

Definition
Let 8 = (M, ¥) be a C”-tautological control system. For W C R x M

open, a locally integrally C* -bounded étale vector field for & is a
map & : W — Et(¥) such that

Q@ Z(1,x) € F forevery (1,x) € W,

Q for fixed ¢, the map x — Z(, x) is continuous with respect to the
étale topology, and

© for fixed x, the map ¢ — Z (¢, x) is locally (Bochner) integrable with
respect to the stalk topology.

@ The definition is equivalent to (a precise version of) the following:
For each (r,x) € W there exists an interval T C R, an open set
U C M, and a locally integrally C”-bounded vector field X on T x U
suchthat T x U C W and & (t,x) = [X/],.
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Tautological control systems (trajectories)

@ For “family of vector field” models such as ours, one normally only
has trajectories as concatenations of integral curves,
i.e., piecewise constant controls.

@ Because we have topologies with respect to which we can define
integrability, we are able to extend the notion of integral curves to
an analog of locally integrable controls.

@ By ev,: % — T,M we denote the map ev,([X],) = X(x).

Definition

A trajectory for a C”-tautological control system & = (M, %) is an
absolutely continuous curve ¢t — &(¢) for which there exists an open

W C R x M and a locally integrally C”-bounded étale vector field & for
& defined on W such that &/(¢) = ev, o Z'(1,£(1)) for almost every .
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Tautological control systems (trajectory
correspondence)

@ We can compare the trajectories of control systems and their
tautological control systems, and vice versa.

Theorem

If ¥ = (M, F, Q) is an ordinary control system with ®x, the associated
tautological control system, then:

@ trajectories of ¥ are trajectories of &yx;;

Q ifu— F" is continuous, injective, and proper, then trajectories of
By, are trajectories of X2;

© ifC is a Suslin space and if F is continuous and proper, then
trajectories of &y, are trajectories of X.
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Tautological control systems (trajectory
correspondence) (cont'd)

Theorem

If 6 = (M, ) is a globally generated tautological control system with

Y@ the associated ordinary control system, then trajectories of & and
Y. agree.

Corollary

@ Trajectories of control-affine systems correspond to trajectories of
the corresponding tautological control system.

@ If X is a control system with compact control set, trajectories of &

correspond to trajectories of the corresponding tautological control
system.

v
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A “sheafy” take on flows
@ By Q)iﬂKA we denote the groupoid of germs of local
diffeomorphisms of M. If [®], is the germ of a local
diffeomorphism, then src([®],) = x and tgt([®],) = P(x).
@ Denote by Q)iﬁ‘;M = src~!(x) the stalk of the groupoid at x.
@ We can give Diff |, the étale topology in much the same way as
we did for presheaves of sets of vector fields.

@ If M and N are C"-manifolds, we can topologise C*(M;N) in a
manner generalising our locally convex topologies for spaces of
vector fields.

@ For U a neighbourhood of x € M, we have the restriction map

rus: Diff (W) = Diff?,
O — [D],.

@ The C”-stalk topology for Q)iﬂZM is the finest topology for which
all maps ry . are continuous.
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A “sheafy” take on flows (cont'd)

@ Letv > lip.
@ Let W C R x M be open and let & be a locally integrally
C"-bounded étale vector field over W.
@ There exists an open D C R x R x Mand a map &% : Dy — M
with the following properties (and others).
@ For fixed (ty,x) € R x M, the set {r ¢ R | (t,19,x0) € D} is an

interval.
@ For fixed (19, x) € R x M, t — &% (¢, 19, xo) is an integral curve for Z.
@ For fixed (¢, 7, x0) € Dy, there exists a neighbourhood U of x, such
that the mapping U > x — ®% (1,19, x) € M is a C”-diffeomorphism

onto its image.
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A “sheafy” take on flows (cont'd)

@ A tautological control system, then, gives rise to a family of local
diffeomorphisms, and the union of the germs of these gives an
open subset of Diff .

@ This leads one to a generalisation of control systems.

Definition
Let G = M be a C"-étale Lie groupoid. A control systemin G is an
open submanifold ¥ C G.

@ It seems as if some properties of control systems can be studied
in this very general setting.

28/30
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What has been done?

@ Apart from the basic constructions reported here:

@ a study of transformations of tautological control systems;

@ atheory of linearisation (harder than you might think);

@ the Orbit Theorem for tautological control systems (S. Jafarpour);

© the beginning of optimal control theory (weirder than you might
think, e.g., cost functions are sheaf morphisms).
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What remains to be done?

Almost everything. ..
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