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What these ideas are and are not about

There is nothing practical in this talk.
The machinery in this talk is intended to provide a framework for
studying fundamental structural problems in control theory,
nothing more. . . but nothing less either.
This talk is a mere sketch of a larger body of work:

1 Tautological Control Systems, Springer-Verlag, 2014, 118pp+xii
2 Time-Varying Vector Fields and Their Flows (with S. Jafarpour),

Springer-Verlag, 2014, 119pp+viii
3 Search tautological control systems on YouTube for the

17 hour version.
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What is the “problem”?

Why is a different framework needed from what is already out
there?
Let us consider the simplest possible illustration of this.

▶ If one has a vector field X on a manifold M with an equilibrium point
x0 ∈ M, the notions of “linearisation of X about x0” and “linear
stability of X at x0” are unambiguous, i.e., understood in a
coordinate-invariant way.

▶ The same is not true of “linearisation of control systems,” “linear
controllability of control systems,” and “linear stabilisability of control
systems.”
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What is the “problem”? (cont’d)

Example
Consider the two control-affine systems

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + x3(t)u1(t),

ẋ3(t) = u2(t),

The systems are related by a simple feedback transformation and
have the same trajectories.
The system on the left has a linearisation that is neither
controllable nor stabilisable and the linearisation on the right is
controllable (and so stabilisable).

Conclusion: The standard notions of linearisation, linear controllability,
and linear stabilisability are not feedback-invariant.
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What is the “problem”? (cont’d)

Plea: Do not try to “figure out” the example, but rather understand
that it just says that the usual definitions have a lurking problem.
Nonlinear control theory is filled with many rather complicated
constructions and theorems for doing things like determining when
a system is controllable or stabilisable, and for determining the
conditions for optimality of an extremal.
There are likely very few constructions in nonlinear control theory
that are feedback-invariant.
To be able to address fundamental structural problems in control
theory, one needs to have a feedback-invariant approach, or else
hypotheses and/or conclusions will change with different system
representations.
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What is the “problem”? (cont’d)

There are at least two approaches:
▶ Make constructions with a given representation, and verify that

these are, in fact, feedback-invariant.
▶ Develop a methodology that is representation independent.

The former is rather like making a coordinate construction in
differential geometry and showing it, in fact, does not depend on
the choice of coordinates, e.g., the linearisation of a vector field
about an equilibrium point using the Jacobian in a set of
coordinates.
This approach seems really hard, probably impossible, definitely
extremely messy.
The latter approach is like making constructions in differential
geometry that are a priori independent of coordinates.
This latter approach is what we use here. It seems more elegant,
but has its own difficulties.
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Warning!

We are interested in “feedback-invariance,” not
“feedback-invariants.”
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Why differential inclusions do not do what we want

To eliminate dependence on control parameterisation, it seems
natural to use differential inclusions, and my students and I
thought about this seriously for a few years.
While differential inclusions lose the undesirable structure of
dependence on control parameterisation, they also lose some
useful structure possessed by control systems.

1 Notions of regularity such as are important in geometric control
theory, e.g., smoothness and real analyticity, seem extremely
difficult to reproduce in a differential inclusion framework.

2 A trajectory for a differential inclusion is merely a curve, while for a
control system a trajectory is an integral curve of a time-varying
vector field which has a flow. Thus a trajectory carries with it
variations of initial condition, etc.
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Topologies for spaces of vector fields
An essential ingredient for the framework are effective (meaning
with explicit seminorms) locally convex topologies for spaces of
vector fields.
With Jafarpour,1 we have done the following.

1 For regularity class ν ∈ {m,m + lip,∞, ω, hol}, m ∈ Z≥0, we have
produced a useful description of a “compact-open type” topology for
the set Γν(TM) of Cν-vector fields on a Cr-manifold M
(r ∈ {∞, ω, hol} as required).

2 For ν ̸= ω these topologies are the classical topologies that
correspond to “uniform convergence of the required number of
derivatives on compacta.”

3 For ν = ω (an important case in control theory), the topology is not
classical, but derived from work of Martineau,2 Domanski,3 and
Vogt.4

1Time-Varying Vector Fields and Their Flows, Springer-Verlag, 2014
2Math. Ann., 163(1), 62-88, 1966
3Cont. Math., 561, 3-47, 2012
4ArXiv:1309.6292, 2013
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Topologies for spaces of vector fields (cont’d)

4 With these topologies one can provide useful notions of
a continuity for maps from an arbitrary topological space,
b measurability for maps from a measurable space (preimages of Borel

sets are measurable), and
c integrability for maps from a measure space (the classical Bochner

integral).

into Γν(TM).

Here’s a sample (nontrivial) result showing the power of the
unified theory for topologising spaces of vector fields.

Theorem
For a time-varying vector field R ∋ t 7→ Xt ∈ Γν(TM), the following are
equivalent:

1 X is measurable;

2 for each x ∈ M, the mapping t 7→ Xt(x) is measurable.
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Control systems

Definition
A Cν-control system is a triple (M,F,C) where

1 M is a Cr-manifold,
2 C is a topological space, and
3 F : M × C → TM is such that

a the mapping
Fu : M → TM

x 7→ F(x, u)

is a Cν-vector field, and
b the mapping C ∋ u 7→ Fu ∈ Γν(TM) is continuous.

The feature of being able to define all at once the notion of a
control system for a long list of regularity classes is a feature of
our methodology.
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Control systems (cont’d)
This definition is deceptively simple.

Remarks
1 The condition of being a “C1-control system” corresponds exactly

to assumptions common in the literature (that F and its derivative
with respect to x be jointly continuous in (x, u)).

2 The condition of being a “C∞-control system” is rarely seen, but
upon reflection is the natural definition for such a notion (it is
equivalent to the condition that F and all x-derivatives be jointly
continuous in (x, u)).

3 The condition of being a “Cω-control system” is new and gives, for
the first time, a useful notion of what is meant by a “real analytic
control system.”

4 A control-affine system with Cν drift and control vector fields is a
Cν-control system.
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Time-varying vector fields
Definition
A measurable time-varying vector field X : t 7→ Xt ∈ Γν(TM) is locally
integrally Cν-bounded if it is locally integrable (in the Bochner sense).

Again, this definition is deceptively simple.

Remarks
1 The condition of being “locally Clip-bounded” corresponds exactly

to the usual hypotheses of the Carathéodory existence and
uniqueness theorem (that X be locally integrable and locally
Lipschitz in x with local Lipschitz constant bounded by an
integrable function).

2 The condition of being “locally C∞-bounded” is (not obviously) the
same as in the original “chronological calculus” paper of Agrachev
and Gamkrelidze.a

aMath. USSR-Sb., 107(4), 467-532, 1978
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Time-varying vector fields (cont’d)

Two theorems that suggest our definitions of time-varying vector
fields and control systems are the “right” ones.

Theorem
If ν ≥ lip then the flow of a locally integrally Cν-bounded vector field
depends on initial conditions in a Cν-manner.

This holds in the real analytic case!

Theorem
For a Cν-control system (M,F,C), if t 7→ µ(t) ∈ C is locally essentially
bounded (in the relatively compact bornology), then the open-loop
system (t, x) 7→ F(x, µ(t)) is locally integrally Cν-bounded.
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Tautological control systems (definition)

The notion of a tautological control system has two main features.
1 It replaces the parameterised set of vector fields {Fu | u ∈ C} for a

control system Σ = (M,F,C) with an unparameterised set of vector
fields.

2 Data is defined only locally to systematically deal, e.g., with the fact
that flows for control systems are only locally defined.

Definition
A Cν-tautological control system is a pair G = (M,F ) where

1 M is a Cr-manifold and
2 F is a presheaf of sets of Cν-vector fields, i.e., F assigns to each

open U ⊆ M a subset F (U) of vector fields on U with the property
that if V ⊆ U then X|V ∈ F (V) for every X ∈ F (U).
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Tautological control systems (attributes)

Definition
A Cν-tautological control system G = (M,F ) is globally generated if
there exists a family X of globally defined vector fields such that

F (U) = {X|U | X ∈ X }.

Definition
A Cν-tautological control system G = (M,F ) is complete if F is a
sheaf of sets of Cν-vector fields, i.e., if, for every open U ⊆ M, every
open cover (Ua)a∈A of U, and every family (Xa)a∈A of Cν-vector fields
on the open sets Ua, a ∈ A, satisfying

Xa|Ua ∩ Ub = Xb|Ua ∩ Ub,

there exists X ∈ F (U) such that X|Ua = Xa.
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Tautological control systems (examples)
Examples

1 The presheaf F (U) = Γν(TU) is the tangent sheaf denoted by
G ν

TM. This presheaf is complete and not globally generated.
2 Consider a Cν-control system Σ = (M,F,C), and define a

Cν-tautological control system GΣ = (M,FΣ) by

FΣ(U) = {Fu|U | u ∈ C}.

This system is obviously globally generated. It is seldom
complete.

3 Let (Ua)a∈A be an open cover of M with Xa ∈ Γν(TUa), a ∈ A.
Define

F (U) = {X ∈ Γν(TU) | U ⊆ Ua, X = Xa|U for some a ∈ A}.

This system is generally neither globally generated nor complete.
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Tautological control systems (examples) (cont’d)

Examples (cont’d)
4 Let D ⊆ TM be a Cν-distribution and define a Cν-tautological

control system GD = (M,FD) by

FD(U) = {D-valued vector fields on U of class Cν}.

This system is complete and not globally generated.
5 Given a globally defined tautological control system G = (M,F )

define an “ordinary” control system ΣG with control set C = F (M)
and dynamics

F(x,X) = X(x)︸ ︷︷ ︸
This is the tautology!
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Tautological control systems (system correspondence)

Note that we can go from a control system to a tautological control
system back to a control system.
Note that we can go from a globally defined tautological control
system to a control system back to a tautological control system.

Proposition
Given a globally defined tautological control system G = (M,F ) and a
control system Σ = (M,F,C):

1 GΣG
= G;

2 ΣGΣ
= Σ if the map u 7→ Fu is an homeomorphism onto its image.

We see here the first suggestion that topologies for spaces of
vector fields are required in this framework. On this, much more to
come.
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Tautological control systems (étale space)

For a Cν-tautological control system G = (M,F ), by Fx denote
the stalk of the presheaf F , i.e., the germs of the locally defined
vector fields for the system. For U ⊆ M open and X ∈ F (U),
denote by [X]x the germ of X.

By Et(F ) =
◦
∪ x∈MFx denote the étale space of the presheaf F .

The étale topology for Et(F ) has as basis

B(U,X) = {[X]x | x ∈ U}, U ⊆ M open, X ∈ F (U).

( ) M
U x

[X]x

B(U, X)
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Tautological control systems (stalk topology)

For x ∈ M and U a neighbourhood of x, let rU,x : G ν
TM(U) → G ν

x,TM
be given by rU,x(X) = [X]x.
G ν

TM(U) = Γν(TU) has the topology mentioned earlier.
The Cν-stalk topology for G ν

x,TM is the finest locally convex
topology such that all maps rU,x are continuous.
For a Cν-tautological control system G = (M,F ), the stalk
Fx ⊆ G ν

x,TM has the relative topology, which is the Cν-stalk
topology for Fx.
The étale and stalk topologies are generally not Hausdorff unless
ν = ω.
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A “sheafy” generalisation of time-varying vector fields

Definition
Let G = (M,F ) be a Cν-tautological control system. For W ⊆ R × M
open, a locally integrally Cν-bounded étale vector field for G is a
map X : W → Et(F ) such that

1 X (t, x) ∈ Fx for every (t, x) ∈ W,
2 for fixed t, the map x 7→ X (t, x) is continuous with respect to the

étale topology, and
3 for fixed x, the map t 7→ X (t, x) is locally (Bochner) integrable with

respect to the stalk topology.

The definition is equivalent to (a precise version of) the following:
For each (t, x) ∈ W there exists an interval T ⊆ R, an open set
U ⊆ M, and a locally integrally Cν-bounded vector field X on T ×U

such that T × U ⊆ W and X (t, x) = [Xt]x.
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Tautological control systems (trajectories)

For “family of vector field” models such as ours, one normally only
has trajectories as concatenations of integral curves,
i.e., piecewise constant controls.
Because we have topologies with respect to which we can define
integrability, we are able to extend the notion of integral curves to
an analog of locally integrable controls.
By evx : Fx → TxM we denote the map evx([X]x) = X(x).

Definition
A trajectory for a Cν-tautological control system G = (M,F ) is an
absolutely continuous curve t 7→ ξ(t) for which there exists an open
W ⊆ R × M and a locally integrally Cν-bounded étale vector field X for
G defined on W such that ξ′(t) = evx ◦X (t, ξ(t)) for almost every t.
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Tautological control systems (trajectory
correspondence)

We can compare the trajectories of control systems and their
tautological control systems, and vice versa.

Theorem
If Σ = (M,F,C) is an ordinary control system with GΣ the associated
tautological control system, then:

1 trajectories of Σ are trajectories of GΣ;
2 if u 7→ Fu is continuous, injective, and proper, then trajectories of

GΣ are trajectories of Σ;
3 if C is a Suslin space and if F is continuous and proper, then

trajectories of GΣ are trajectories of Σ.
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Tautological control systems (trajectory
correspondence) (cont’d)

Theorem
If G = (M,F ) is a globally generated tautological control system with
ΣG the associated ordinary control system, then trajectories of G and
ΣG agree.

Corollary
1 Trajectories of control-affine systems correspond to trajectories of

the corresponding tautological control system.
2 If Σ is a control system with compact control set, trajectories of Σ

correspond to trajectories of the corresponding tautological control
system.
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A “sheafy” take on flows
By Diff ν

M we denote the groupoid of germs of local
diffeomorphisms of M. If [Φ]x is the germ of a local
diffeomorphism, then src([Φ]x) = x and tgt([Φ]x) = Φ(x).
Denote by Diff ν

x,M = src−1(x) the stalk of the groupoid at x.

We can give Diff ν
M the étale topology in much the same way as

we did for presheaves of sets of vector fields.
If M and N are Cr-manifolds, we can topologise Cν(M;N) in a
manner generalising our locally convex topologies for spaces of
vector fields.
For U a neighbourhood of x ∈ M, we have the restriction map

rU,x : Diff ν
M(U) → Diff ν

x,M

Φ 7→ [Φ]x.

The Cν-stalk topology for Diff ν
x,M is the finest topology for which

all maps rU,x are continuous.
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A “sheafy” take on flows (cont’d)

Let ν ≥ lip.
Let W ⊆ R × M be open and let X be a locally integrally
Cν-bounded étale vector field over W.
There exists an open DX ⊆ R ×R × M and a map ΦX : DX → M
with the following properties (and others).

1 For fixed (t0, x0) ∈ R × M, the set {t ∈ R | (t, t0, x0) ∈ DX } is an
interval.

2 For fixed (t0, x0) ∈ R×M, t 7→ ΦX (t, t0, x0) is an integral curve for X .
3 For fixed (t, t0, x0) ∈ DX , there exists a neighbourhood U of x0 such

that the mapping U ∋ x 7→ ΦX (t, t0, x) ∈ M is a Cν-diffeomorphism
onto its image.
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A “sheafy” take on flows (cont’d)

A tautological control system, then, gives rise to a family of local
diffeomorphisms, and the union of the germs of these gives an
open subset of Diff ν

M.
This leads one to a generalisation of control systems.

Definition
Let G ⇒ M be a Cν-étale Lie groupoid. A control system in G is an
open submanifold Σ ⊆ G.

It seems as if some properties of control systems can be studied
in this very general setting.
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What has been done?

Apart from the basic constructions reported here:
1 a study of transformations of tautological control systems;
2 a theory of linearisation (harder than you might think);
3 the Orbit Theorem for tautological control systems (S. Jafarpour);
4 the beginning of optimal control theory (weirder than you might

think, e.g., cost functions are sheaf morphisms).
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What remains to be done?

Almost everything. . .
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