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What we are not talking about

We are not devising design methodologies useful for solving
specific problems or restricted classes of problems.
We are not talking about control strategies, e.g., output regulation,
backstepping, passivity-based control, L1-adaptive control, sliding
mode control, etc.
Not mentioning these things does not equate to our belief that
they are not worth talking about. There are many things we find
important and/or interesting that we are not going to talk about.
But our objectives are different.
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What we are talking about

We are interested in understanding fundamental system structure.
This structure pertains to problems such as controllability,
stabilisability, and optimality.
These problems have been studied in depth and detail since at
least the 1960’s. . . nonetheless, the understanding of these
aspects of system structure is very far from complete.
These problems are not easy—to make progress with them one
has to understand very well what one is doing.
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Collaborators and students

Over the years: César Aguilar, Francesco Bullo, Bahman
Gharesifard, Ron Hirschorn, Saber Jafarpour, Abdol-Reza
Mansouri, Richard Murray, David Tyner.
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The arc of the talk

The end objective is to provide a list of requirements of a correct
and useful1 mathematical theory of control.
We shall do this by a sequence of illustrations—some quite
concrete, some less so—that point out the importance of certain
ideas.
Many of our illustrations will have a mechanical flavour, but the
end result is a general theory of control.

1I am a mathematician, remember, so “useful” means proving theorems.
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Some mechanical control systems
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Motion planning and controllability

The natural problem for such systems is motion planning: Steer
the system from one state to another.
The associated existential problem is controllability: Can we steer
the system from one state to another?
There is much work on the motion planning problem in the
robotics literature, some of it for underactuated systems such as
we are interested in.
And yet. . . the controllability problem is utterly unresolved in any
practical degree of generality.
Let us illustrate how one might come across this limitation in
practice.
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Illustrating the controllability problem
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Hovercraft system:
1 Question: Is the system controllable?
2 Answer: Yes, and can be proved using “standard results.2”

2e.g., Sussmann, SIAM J. Control Optim., 25(1), 158–194, 1987
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Illustrating the controllability problem (cont’d)
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Now suppose that the fan cannot rotate.
1 Question: Is the system controllable?
2 Answer: No, but now requires a special theorem.3

3Bullo/L, SIAM J. Control Optim., 44(3), 885–908, 2005
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A few words about the mathematical approach to
these problems

The controllability for the preceding examples is proven using
“geometric control of mechanical systems,” as developed by
Bullo/L.4

Mechanical systems are converted into a differential geometric
model known as an “affine connection control system,” and tools
from affine differential geometry are used to prove controllability
theorems.
The moral of the mathematical modelling story here is this: Thou
shalt only work with objects that are independent of choices of
coordinates.

4Springer-Verlag, Texts in Applied Mathematics, 2004
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A few words about the mathematical approach to
these problems (cont’d)

Here is something that is not independent of coordinates. The
equations of motion for a robotic system take the general form

Individually not well-defined!!︷ ︸︸ ︷
“inertial term”︷ ︸︸ ︷

M(q(t))q̈(t)+

“Coriolis term”︷ ︸︸ ︷
C(q(t), q̇(t))︸ ︷︷ ︸

These must be kept together!!

= F(t, q(t), q̇(t)).

Interestingly, the mathematics leads to answers to the motion
planning problem as well!

Hovercraft: Decouple1 Decouple2 Plan1 Plan2 Plan3

Snakeboard: Plan1 Plan2
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Summary of where we are

There is a very nice “body of work” here, with interplay between
applications and interesting mathematics.
The mathematics is at a level that a course in the material can be
taught to 4th-year undergraduates.
And yet. . . the fundamental existential question remains
unanswered. . .
Punchline(s)

1 Even with simple problems, one can easily run up against the limits
of what the known theory can tell you.

2 Sometimes thinking about an applied problem in a mathematical
way can help solve problems that may be difficult or impossible to
solve otherwise.
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Some more mechanical control systems
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The problem here is stabilisation of the unstable equilibria.
These problems can be dealt with locally by using linearisation
and linear control theory.
Can one do better by using a nonlinear stabilisation methodology?
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Stabilisation and stabilisability

For mechanical systems, stability is related to properties of the
potential energy function:

Problem: Using feedback, can we turn a mechanical system with
an unstable equilibrium into a mechanical system with the same
equilibrium, now stable?
This is an easy to understand and physically natural problem.
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Stabilisation and stabilisability

There’s a lot of work here, under the general name of “energy
shaping:”

▶ Takegaki/Arimoto, Trans. ASME Ser. G, 103(2), 119–125, 1981
▶ van der Schaft, Nonlinear Anal. TMA, 10(10), 1021–1035, 1986
▶ Ortega, et al. IEEE Trans. Automat. Control, 47(8), 1218–1233,

2002
▶ Bloch, et al. IEEE Trans. Automat. Control, 45(12), 2000,

2253–2270 and 46(10), 1556–1571, 2001
▶ Blankenstein, et al. Int. J. Control, 75(9), 645–665, 2002
▶ Chang, et al. ESAIM Control Optim. Calc. Var., 8, 393–422, 2002
▶ etc., etc., etc.

Existential question: Is it possible to determine when the energy
shaping idea works?
Broader existential question: Is it possible to recognise when a
control system is stabilisable?
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Feasibility of energy shaping

The method of energy shaping leads to overdetermined
quasilinear partial differential equations.
The mere existence of solutions to such equations is highly
problematic, never mind existence of solutions with properties
such as “stabilising.”
Despite these deep existential problems, the method has been
pursued.
Tiny bit of work on the existence problem:

▶ Auckly/Kapitanski, SIAM J. Control Optim., 41(5), 1372–1388
▶ Gharesifard, et al. Commun. Inf. Syst., 8(4), 353–398

Punchline: The matter of determining, in any generality, when the
energy shaping method can be applied seems hopeless.
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A few words about the mathematical approach to
these problems

This is really not trivial: e.g., it involves enough homological
algebra to make sense of the following diagram

0

��

0

��
S2(T∗M)

��

σ1(Φ) // T∗M ⊗ F
τ //

��

K // 0

0 // ρ1(R) //

��

J2E
ρ1(Φ) //

��

J1F

��
0 // R // J1E

��

Φ // F

��
0 0

which is used to construct the compatibility operator as a map
from the bottom left corner to the top right corner.
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Summary of where we are

With energy shaping and stabilisability, the picture is a lot different
than with motion planning and controllability.
There is not really a closed “body of work” here. There are isolated
examples and a theory that seems impossible to work with.
There are interesting mathematical problems here, and these
require deep, difficult, and specialised knowledge.
What “stabilisation and stabilisability” have in common with
“motion planning and controllability” is this: the fundamental
existential questions are entirely unanswered.
Punchline(s)

1 Sometimes natural physical problems give rise to very difficult
mathematical problems.

2 Sometimes thinking about an applied problem in a mathematical
way can reveal that the approach is simply not a good one.
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Yet another mechanical control system

x(t)

f
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Force is bounded: f ∈ [−A,A].
Problem: Steer from (x(0), ẋ(0)) to (0, 0) in time T while minimising∫ T

0

1
2

kx2(t) dt.

Another simple physical problem.
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Measurable controls are required

There is a solution to this optimisation problem, and the optimal
solution involves the force f “chattering” infinitely often as the final
state is approached.
This is the Fuller phenomenon.5

Therefore, continuous, or piecewise continuous, controls are not
sufficient in any general theory of control.
The correct class of controls to use is Lebesgue measurable
controls.

5IFAC World Congress, Moscow, 1960
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Physical models are real analytic

A typical control system, in a general formulation, has the form

ẋ(t) = f (x(t), u(t)),

with x being the state, u being the control, and f prescribing the
dynamics.
What properties should f have? In particular, what should be the
nature of the dependence of f on the state x?
Typical modelling frameworks have f being smooth (infinitely
differentiable) with respect to x.
This has the advantage of being mathematically convenient.
Physically, it is quite the wrong assumption. Physical systems are
either

1 nonsmooth or
2 real analytic.
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Why real analyticity is important

Important results are true for real analytic systems that are not
true for smooth systems:

1 usefully general versions of Frobenius’s Theorem;
2 sufficiency of Lie brackets for determining certain motion planning

problems;
3 usefully general versions of the Orbit Theorem.

One often sees statements about conditions holding on “open
dense sets,” e.g., a controller is globally stabilising except on an
open dense set. What is actually true in most of these cases is
that the set has an analytic complement, and this is a much
stronger and more useful statement.
Real analytic things behave like you think smooth things should.
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Why real analyticity is hard

There are no real analytic partitions of unity.
The things that one can achieve for smooth objects using
partitions of unity can often also be achieved for real analytic
objects. . . using sheaf cohomology. . . gulp. . .
Appropriate notions of “convergence of a sequence of real
analytic functions” are difficult to define.
After a lot of work. . . these notions of convergence can be defined
in ways that can be worked with.
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Summary of where we are

A comprehensive and physically realistic framework for control
theory must incorporate measurable controls and really should
incorporate real analytic system models.
Punchline(s)

1 A really honest framework for control theory must be done using
some difficult (and sort of standard) methods, and some really
difficult (and definitely nonstandard) methods.
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What is the right model for a control system?

We have already mentioned the models of the form

ẋ(t) = f (x(t), u(t)).

We have already mentioned the importance of working with
constructions that do not depend on particular choices of
coordinates.
What about the dependence of the dynamics on control? Is there
a sort of analogue of “coordinate independence” for this?
There is. . . and you’re not going to like it. . .
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Linearisation is not what you think it is

First let’s think about linearising dynamics.
▶ Have a differential equation ẋ(t) = f (x(t)).
▶ Have an equilibrium point x0, i.e., f (x0) = 0.
▶ Linearise: define A = ∂f

∂x (x0).

Good news! This makes sense and one has results like

ẋ(t) = Ax(t) asymptotically stableww�
ẋ(t) = f (x(t)) locally asymptotically stable.
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Linearisation is not what you think it is (cont’d)

Now consider linearising a control system.
▶ Have a control system ẋ(t) = f (x(t), u(t)).
▶ Have an equilibrium point (x0, u0), i.e., f (x0, u0) = 0.
▶ Linearise: define A = ∂f

∂x (x0, u0) and B = ∂f
∂u (x0, u0).

Some good news: one has results like

ẋ(t) = Ax(t) + Bu(t) controllable (stabilisable)ww�
ẋ(t) = f (x(t), u(t)) locally controllable (stabilisable).

But there is bad news: the process does not make sense.
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Linearisation is not what you think it is (cont’d)

Consider two systems:

ẋ1(t) = x2(t),

ẋ2(t) = x3(t)u1(t),

ẋ3(t) = u2(t),

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + x3(t)u1(t),

ẋ3(t) = u2(t),

with the equilibrium point ((0, 0, 0), (0, 0)).
These systems have exactly the same trajectories and so are “the
same.”
The linearisation of the left system is neither controllable nor
stabilisable and the linearisation of the right system is controllable
(and so stabilisable).
Questions: What is the linearisation of a system? What does it
mean for a system to be linearly controllable?
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Summary of where we are

The problem with the preceding example is this: The two different
systems are really the same system, but the parameterisation of
the dynamics by control is different.
Just like one wants “coordinate invariance,” one also wants
“control parameterisation invariance.”
Punchline(s)

1 There are lots of common constructions in control theory that, while
(hopefully) independent of coordinates, are not independent of
control parameterisation.

2 One would like to eliminate the dependence of models on control
parameterisation.
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Control sets should be general

In a model like ẋ(t) = f (x(t), u(t)), the set in which the control u
lives can be quite general, e.g., discrete, a polyhedron, etc.
Control sets should never be assumed to be smooth, e.g., if you
have a framework where you will be differentiating with respect to
control. . . this is done with loss of generality. . .
Smooth structure is often assumed for control sets:

1 control sets are sometimes assumed to be open, e.g., in “dynamic
feedback linearisation” and “differential flatness”;

2 there is the “bundle version” of a nonlinear system, where control
sets are assumed smooth.6,7

Assumptions of smooth structure are mathematically convenient,
but ultimately lacking in practicality.

6Brockett, in The 1976 Ames Research Center (NASA) Conference, 1–14, 1976
7Willems, Ricerche Automat., 10(2), 71–106, 1979
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Systems are only locally defined

There are many reasons for working with systems where data is
only locally defined.
There are application oriented reasons, e.g.,

There are mathematical reasons, e.g., solutions to (globally
defined) differential equations may only be locally defined.
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A summary of all of summaries of where we are

We have arrived at the following list of criteria for a useful kind of
control theory:

1 Must be coordinate-invariant
2 Must be control parameterisation-invariant
3 Must work with general control sets
4 Must make possible measurable controls
5 Should seamlessly incorporate real analytic models
6 May permit locally defined data

Developing a framework for doing all of this is difficult. You need:
1 Differential geometry
2 Advanced functional analysis (locally convex topologies)
3 A theory of measure and integration in infinite-dimensional spaces
4 Sheaves and groupoids
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Take-away message

Some problems, even concrete ones, in control theory can benefit
from a little mathematics.
Not all problems in control theory can benefit from a little
mathematics.
The basic structural problems in control theory remain open, and
require some rethinking of the framework if they are to be
answered.
Understand what you are being told. . . then question it!
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