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Motivation

Origins in long ago work on controllability and optimal control for
mechanical systems.
Extending this work in any generality necessitates thinking about
controllability and optimality in a more general setting.

Punchline
Understanding controllability and optimality (and maybe stabilisability?)
in a general way depend on the character of the reachable set.

We want to understand the reachable set as the image of
some sort of exponential map.
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A typical theorem about differential equations

Consider the time-varying, parameter-dependent differential
equation

ẋ(t) = f(t, x(t), p)

for (t, x, p) ∈ T × U×M with T ⊆ R an interval, U ⊆ Rn open, and
M a metric space.
Need conditions on f to ensure

1 existence and uniqueness of solutions,
2 standard semigroup properties of time-dependence,
3 continuous dependence on parameters, and
4 some sort of regular dependence on initial condition.
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A typical theorem about differential equations (cont’d)
Hypotheses

1 t 7→ f(t, x, p) is measurable for each x and p;
2 for each compact K ⊆ U and bounded B ⊆ M, there exists a

compact interval K ⊆ T and g0 ∈ L1(K;R≥0) such that

∥f(t, x, p)∥ ≤ g0(t), (t, x, p) ∈ K × K × B;

3 for each compact K ⊆ U and bounded B ⊆ M, there exists a
compact interval K ⊆ T and g1 ∈ L1(K;R≥0) such that

∥f(t, x, p)− f(t, y, p)∥ ≤ g1(t)∥x − y∥, (t, (x, y), p) ∈ K × K2 × B;

4 for each compact K ⊆ U, each compact interval K ⊆ T, and each
p0 ∈ M,

lim
p→p0

∫
K
∥f(t, x, p)− f(t, x, p0)∥ dt = 0, x ∈ K.
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A typical theorem about differential equations (cont’d)

Conclusions
There exists a maximal open set Df ⊆ T2 × U×M and a mapping
Φf : Df → U such that

1 Jf (t0, x0, p0) ≜ {t ∈ T | (t, t0, x0, p0) ∈ Df} is an interval;
2 t 7→ Φf (t, t0, x0, p0) is locally absolutely continuous;
3 d

dtΦ
f (t, t0, x0, p0) = f(t,Φf (t, t0, x0, p0), p0);

4 Φf (t0, t0, x0, p0) = x0;
5 Φf (t2, t0, x0, p0) = Φf (t2, t1,Φf (t1, t0, x0, p0), p0);
6 Φf (t0, t1,Φf (t1, t0, x, p), p) = x;
7 Df is continuous;
8 x 7→ Φf (t, t0, x, p0) is a bi-Lipschitz homeomorphism onto its image;
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A typical theorem about differential equations (cont’d)

Conclusions (cont’d)
9 for (t0, x0, p0) ∈ T × U×M and for ϵ ∈ R>0, there exists an open

interval t0 ∈ T′ ⊆ T, a neighbourhood V of x0, and a
neighbourhood O of p0 such that

sup Jf (t, x, p) > sup Jf (t0, x0, p0)− ϵ,

inf Jf (t, x, p) < inf Jf (t0, x0, p0) + ϵ

for all (t, x, p) ∈ T′ × U× O.

Questions
1 Can the hypotheses be stated compactly?
2 Can the conclusions be stated compactly?
3 Can the results be extended beyond Lipschitz regularity?
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The main point of this talk

Answer
All of these questions, and more, can be answered by taking a wide
diversion that unifies and clarifies the meaning of “time-varying,
parameter-dependent vector field” and “flow of same”.
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Topologies for spaces of vector fields
An essential ingredient for the framework are effective (meaning
with explicit seminorms) locally convex topologies for spaces of
vector fields, cf. the “chronological calculus” of Agrachev, et al.1

With Jafarpour,2 we have done the following.
1 For regularity class ν ∈ {m,m + lip,∞, ω, hol}, m ∈ Z≥0, we have

produced a useful description of a “compact-open type” topology for
the set Γν(TM) of Cν-vector fields on a Cr-manifold M
(r ∈ {∞, ω, hol} as required).

2 For ν ̸= ω these topologies are the classical topologies that
correspond to “uniform convergence of the required number of
derivatives on compacta.”

3 For ν = ω, the topology is not classical, but derived from work of
Martineau,3 Domanski,4 and Vogt.5

1e.g., Math. USSR-Sb., 107(4), 467-532, 1978
2Time-Varying Vector Fields and Their Flows, Springer-Verlag, 2014
3Math. Ann., 163(1), 62-88, 1966
4Cont. Math., 561, 3-47, 2012
5ArXiv:1309.6292, 2013
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Topologies for spaces of vector fields (cont’d)
4 With these topologies one can provide useful notions of

a continuity for maps from an arbitrary topological space,
b measurability for maps from a measurable space (preimages of Borel

sets are measurable), and
c integrability for maps from a measure space (the classical Bochner

integral).
into Γν(TM).

A time-varying vector field X : T × M → TM that is class Cν for t
fixed defines a mapping X : T → Γν(TM) by

X(t)(x) = X(t, x) (abusing notation).

Theorem
For a time-varying vector field X : T → Γν(TM), the following are
equivalent:

1 X is measurable;
2 for each x ∈ M, the mapping t 7→ X(t)(x) is measurable.

Andrew D. Lewis (Queen’s University) Characterisation of flows
AMS Sectional Meeting, Ann Arbor, MI20/10/2018
9 / 19



Topologies for spaces of vector fields (cont’d)

Proof.
Relevant facts:

1 Γν(TM) is a Suslin space;
2 the family of functions evαx : Γ

ν(TM) → R given by
evαx(X) = ⟨αx;X(x)⟩, αx ∈ T∗M, is point separating.

Now use a result of Thomas on integration in Suslin spaces.a

aTrans. Amer. Math. Soc. 212, 61–81, 1975
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Time-varying vector fields

Definition
A time-varying vector field of class Cν is a locally Bochner
integrable mapping X ∈ L1

loc(T; Γ
ν(TM)).

Remarks
This definition is deceptively simple.

1 The condition X ∈ L1
loc(T; Γ

lip(TM)) is (not obviously) the same as
the usual hypotheses of the Carathéodory existence and
uniqueness theorem.

2 The condition X ∈ L1
loc(T; Γ

∞(TM)) is (not obviously) the same as
in the original “chronological calculus” paper of Agrachev and
Gamkrelidze.a

aMath. USSR-Sb., 107(4), 467-532, 1978
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Time-varying vector fields (cont’d)

The following theorem suggests that our definition of time-varying
vector fields is the “right” one.

Theorem
If X ∈ L1

loc(T; Γ
ν(TM)), ν ≥ lip, then, one gets all of the conditions for a

flow from the introduction, plus. . . the flow of depends on initial
conditions in a Cν-manner!

Punchline
1 The correct class of time-varying vector fields with

Cν-dependence on state is L1
loc(T; Γ

ν(TM)).
2 In the case ν = lip, this reduces to the hypotheses listed in the

introduction.
3 But this works for all regularity classes!
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Time-varying, parameter-dependent vector fields

First topologise L1
loc(T; Γ

ν(TM)) using seminorms

pνK(X) =
∫
K

pν ◦ X(t) dt,

where pν is a seminorm for Γν(TM) and where K ⊆ T is compact.
Let P be an arbitrary (!) topological space.
A time-varying, parameter-dependent vector field
X : T × M × P → TM which is in L1

loc(T; Γ
ν(TM)) for p fixed defines

a mapping X : P → L1
loc(T; Γ

ν(TM)) by

X(p)(t, x) = X(t, x, p) (abusing notation).
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Time-varying, parameter-dependent vector fields
(cont’d)

Definition
A time-varying, parameter-dependent vector field of class Cν is a
continuous mapping X ∈ C0(P; L1

loc(T; Γ
ν(TM))).

Remarks
This definition is deceptively simple.

1 The condition that X ∈ C0(M; L1
loc(T; Γ

lip(TM))) corresponds
exactly to the usual hypotheses of the existence of flows with
parameter dependence (from the introduction).

2 The conditions for regularity ν > lip are seldom produced and look
complicated when written in a concrete form.
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Time-varying, parameteter-dependent vector fields
(cont’d)

The following theorem suggests that our definition of time-varying,
parameter-dependent vector field is the “right” one.

Theorem
If X ∈ C0(P; L1

loc(T; Γ
ν(TM))), ν ≥ lip, then, one gets all of the

conditions for a flow from the introduction (including continuous
dependence of flow on parameter), plus. . . the flow of depends on
initial conditions in a Cν-manner!

Punchline
1 The correct class of time-varying, parameter-dependent vector

fields with Cν-dependence on state is C0(P; L1
loc(T; Γ

ν(TM))).
2 In the case ν = lip, this reduces to the hypotheses listed in the

introduction.
3 But this works for all regularity classes!
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The problem of the exponential map
The machinery allows one to define an exponential map for the
set of time-varying, parameter-dependent vector fields.
In a Panglossian universe:

exp: {time-varying, parameter-dependent vector fields}
→ {parameter-dependent diffeomorphisms}

defined by
exp(X)(x, p) = ΦX(1, 0, x, p).

No such map exists dues to lack of completeness of flows.
Kludges. . .

1 Assume completeness

2 Use cutoff function to force compact supported

Andrew D. Lewis (Queen’s University) Characterisation of flows
AMS Sectional Meeting, Ann Arbor, MI20/10/2018
16 / 19



The problem of the exponential map (cont’d)
One can overcome this by “localising” everything, using sheaves.
Let G ν

CLI(T;TM;P) be the sheaf over T × M × P whose stalk at
(t, x, p) is the set of germs of time-varying, parameter-dependent
vector fields about (t, x, p).
Let LocFlowν(T;M;P) be the “sheaf of local flows” whose stalk
at (t, x, p) is the set of germs of parameter-dependent local flows
about (t, x, p) (work not shown).
Then. . .

1 topologise everything in sight,
2 use the standard existence of local flows,
3 pass to the appropriate direct limit, then
4 define the “stalk exponential map”

exp(t,x,p) : G
ν

CLI(T;TM;P)(t,x,p) → LocFlowν(T;M;P)(t,x,p).

5 Gives the exponential mapping as a sheaf morphism
exp: G ν

CLI(T;TM;P) → LocFlowν(T;M;P).
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The problem of the exponential map (cont’d)

What we know right now: exp is well defined and is a mapping of
topological sheaves.
What is likely true: exp is an isomorphism of topological sheaves.

Punchline
One can replace the lengthy hypotheses and conclusions of the
introduction with the concise and more general statement:

exp: G ν
CLI(T;TM;P) → LocFlowν(T;M;P) is an isomorphism

of topological sheaves.
The drawback is that the definition of all symbols involved is difficult
and a little complicated. But. . . the constructions are quite natural.
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So what?

Application
A control system defines a subsheaf F of G ν

CLI(T;TM;P). The local
structure of the reachable set is described by exp |F . Many interesting
structural properties of the system are contained in this local
structure, e.g., controllability, stabilisability, optimality.
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