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The principal objects of interest

Let M be a smooth manifold and let ∇ be a smooth affine connection on M.

Definition
The symmetric product is the R-bilinear operator
⟨· : ·⟩ : Γ∞(TM)× Γ∞(TM) → Γ∞(TM) given by

⟨X : Y⟩ = ∇XY +∇YX.

Further let D ⊆ TM be a smooth distribution (constant rank).

Definition
The distribution D is geodesically invariant if, for every x ∈ M, a geodesic
t 7→ γ(t) satisfying γ′(0) ∈ Dx is such that γ′(t) ∈ Dγ(t) for all t.

The talk will be how these two notions arise in various ways in me-
chanics, control theory, and geometry.
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Control theory (generalities)

We consider a control-affine system:

ξ′(t) = f0 ◦ ξ(t) +
m∑

j=1

µj(t)fj ◦ ξ(t). (1)

Here we have:
1 a state manifold M;
2 the drift vector field f0 ∈ Γ∞(TM);
3 control vector fields f1, . . . , fm ∈ Γ∞(TM);
4 a control µ ∈ L1

loc(T;R
m) defined on some interval T ⊆ R;

5 a controlled trajectory ξ : T → M.

The reachable set from x0 in time T ∈ R≥0 is

RT(x0) = {ξ(T) | ξ satisfies (1) with ξ(0) = x0 for some µ ∈ L1([0,T];Rm)}

The reachable set from x0 in time at most T is R≤T(x0) = ∪t∈[0,T]Rt(x0).
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Control theory (generalities) (cont’d)

Accessibility theory
For x ∈ M, let

L(∞)(f0, f1, . . . , fm)x

= spanR([fj1 [fj2 , · · · [fjk−1 , fjk ]]](x)| j1, . . . , jk ∈ {0, 1, . . . ,m}, k ∈ Z>0);

L(∞)(f0, f1, . . . , fm) is the smallest involutive distribution generated by the
vector fields f0, f1, . . . , fm.

Theorem (Sussmann/Jurdjevic1)
1 If L(∞)(f0, f1, . . . , fm)x0 = Tx0M, then int(R≤T(x0)) ̸= ∅ for T ∈ R>0.
2 If M and f0, f1, . . . , fm are real analytic, then the converse is true.

1J. Differential Equations, 12(1), 95–116, 1972
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Control theory (for mechanical systems)
We work with a special class of control-affine systems. We let

1 M be a smooth manifold,
2 ∇ be a smooth affine connection on M, and
3 Y1, . . . , Ym ∈ Γ∞(TM).

For a control µ ∈ L1
loc(T;R

m), we have the differential equation

∇γ′(t)γ
′(t) =

m∑
j=1

µj(t)Yj ◦ γ(t).

If we first-orderify, we have
1 “M = TM,”
2 f0 = Z∇ (the geodesic spray), and
3 fj = Yv

j , j ∈ {1, . . . ,m} (vertical lifts),

and the differential equations are

Υ′(t) = Z∇ ◦ Υ(t) +
m∑

j=1

µj(t)Yv
j ◦ Υ(t).
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Control theory (for mechanical systems) (cont’d)
Accessibility theory

We want to compute L(∞)(Z∇,Yv
1 , . . . ,Yv

m)vx for vx ∈ TM.
If possible, we want to replace Lie brackets of Z∇,Yv

1 , . . . ,Yv
m with lifts of

constructions on M.
Of particular interest is the case of vx = 0x, where many Lie brackets
evaluate to zero.
A key formula is a simple computation:

[Yv
j1 , [Z∇,Yv

j2 ]] = ⟨Yj1 : Yj2⟩v.

Other formulae, noting that T0x TM ≃ TxM ⊕ TxM:2

[Z∇,Yv
j ](0x) = Yj(x)⊕ 0x, [[Z∇,Yv

j1 ], [Z∇,Yv
j2 ]]0x = [Yj1 ,Yj2 ]⊕ 0x.

Let S (∞)(Y1, . . . ,Ym) be the set of all iterated symmetric products of the
vector fields Y1, . . . ,Ym.
Let L (∞)(S (∞)(Y1, . . . ,Ym)) be the set of all iterated Lie brackets of
vector fields from S (∞)(Y1, . . . ,Ym).
For x ∈ M, denote
S(∞)(Y1, . . . ,Ym)x = spanR(X(x) | X ∈ S (∞)(Y1, . . . ,Ym)).

2Order is horizontal⊕vertical.
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Control theory (for mechanical systems) (cont’d)
Accessibility theory (cont’d)

Theorem (L/Murray3)
Noting that T0x0

TM ≃ Tx0M ⊕ Tx0M,

L(∞)(Z∇,Yv
1 , . . . ,Yv

m)0x0
= L(∞)(S ∞(Y1, . . . ,Ym))x0 ⊕ S(∞)(Y1, . . . ,Ym)x0 .

Proof.
Tedious induction.

Corollary
1 If S(∞)(Y1, . . . ,Ym)x0 = Tx0M, then int(R≤T(0x0)) ̸= ∅.
2 If L(∞)(S (∞)Y1, . . . ,Ym))x0 = Tx0M, then int(πTM(R≤T(0x0))) ̸= ∅.
3 If M, ∇, and Y1, . . . ,Ym are real analytic, then the converses are true.

3SIAM J. Control Optim., 35(3), 766–790, 1997
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Control theory (punchline)

The symmetric product features prominently in the control theory for
mechanical systems.
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Geometry (affine connections and distributions)
The preceding constructions beg the following question: What is the
meaning of a distribution being closed under symmetric product?

We make some definitions, including one we had previously.

Definition
Let M be a smooth manifold, let ∇ be a smooth affine connection, and let D
be a smooth distribution (constant rank).

1 D is geodesically invariant if, for every x ∈ M, a geodesic t 7→ γ(t)
satisfying γ′(0) ∈ Dx is such that γ′(t) ∈ Dγ(t) for all t.

2 D is totally geodesic if it is integrable and geodesically invariant.

Suppose that D has a complement D′ with P and P′ the projections onto D
and D′.

Definition
The second fundamental form for D is the section of T2(D)⊗ D′ defined by

SD(X,Y) = −(∇XP′)(Y).
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Geometry (affine connections and distributions)
(cont’d)

Theorem (L4)
TFAE:

1 D is geodesically invariant;
2 D is closed under ⟨· : ·⟩;
3 SD is skew-symmetric.

Theorem
TFAE:

1 D is totally geodesic;
2 D is closed under ⟨· : ·⟩ and [·, ·].

If ∇ is torsion-free, these conditions are equivalent to:
3 SD = 0;
4 D is closed under ∇.

4Rep. Math. Phys., 42(1/2), 135–164, 1998
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Geometry (infinitesimal characterisation of symmetric
product)

For the Lie bracket, we have the following infinitesimal formula:

[X,Y](x) =
1
2

d2

dt2

∣∣∣∣∣
t=0

ΦY
−t ◦ Φ

X
−t ◦ Φ

Y
t ◦ ΦX

t (x).

Letting Xh be the horizontal lift, we have the following infinitesimal
characterisation of the symmetric product.

Theorem (Barbero-Liñán/L5)

⟨X : Y⟩v(vx) =
1
2

d2

dt2

∣∣∣∣∣
t=0

ΦYv

−t ◦ Φ
Xh

−t ◦ Φ
Yv

t ◦ ΦXh

t ◦ ΦXv

−t ◦ Φ
Yh

−t ◦ Φ
Xv

t ◦ ΦYh

t (vx)

Proof.
Understand compositions of flows.

5Int. J. Geom. Methods Mod. Phys., 9(8), 1250073, 2012
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Geometry (infinitesimal characterisation of symmetric
product) (cont’d)

The formula from the theorem can be modified in various ways.

For a curve γ : T → M, let τ (t,s)
γ : Tγ(s)M → Tγ(t)M, s, t ∈ T, be parallel

transport.
For an affine connection ∇, let

∇XY = ∇XY − 1
2

T∇(X,Y)

define the torsion-free affine connection with the same geodesics as ∇.

Let Xh and τ
(t,s)
γ denote horizontal lift and parallel transport for ∇,

respectively.

1 By definition of parallel transport, if γ and η are the integral curves of X
and Y through x:

⟨X : Y⟩v(vx) =
1
2

d2

dt2

∣∣∣∣∣
t=0

ΦYv

−t ◦ τ
(0,t)
γ ◦ ΦYv

t ◦ τ (t,0)
γ ◦ ΦXv

−t ◦ τ
(0,t)
η ◦ ΦXv

t ◦ τ (t,0)
γ (vx)
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Geometry (infinitesimal characterisation of symmetric
product) (cont’d)

2 By understanding the relationship between τ
(t,s)
γ and τ

(t,s)
γ , one shows that

⟨X : Y⟩v(vx) =
1
2

d2

dt2

∣∣∣∣∣
t=0

ΦYv

−t ◦ τ
(0,t)
γ ◦ΦYv

t ◦ τ (t,0)
γ ◦ΦXv

−t ◦ τ
(0,t)
η ◦ΦXv

t ◦ τ (t,0)
η (vx).

3 Therefore, again using the definition of horizontal lift,

⟨X : Y⟩v(vx) =
1
2

d2

dt2

∣∣∣∣∣
t=0

ΦYv

−t ◦ Φ
Xh

−t ◦ Φ
Yv

t ◦ ΦXh

t ◦ ΦXv

−t ◦ Φ
Yh

−t ◦ Φ
Xv

t ◦ ΦYh

t (vx).

4 In the parallel transport formula above, γ and η can be replaced with the
geodesics γX and γY (of ∇, and so also of ∇) with initial condition X(x)
and Y(x):

⟨X : Y⟩v(vx) =
1
2

d2

dt2

∣∣∣∣∣
t=0

ΦYv

−t ◦ τ
(0,t)
γX

◦ΦYv

t ◦ τ (t,0)
γX

◦ΦXv

−t ◦ τ
(0,t)
γY

◦ΦXv

t ◦ τ (t,0)
γY

(vx).
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Geometry (infinitesimal characterisation of symmetric
product) (cont’d)

Proof of geodesically invariant ⇐⇒ closed under ⟨· : ·⟩.
Key is the equivalence of the following:

1 D is geodesically invariant;
2 Z∇ is tangent to D;
3 Xv is tangent to D for all X ∈ Γ∞(D);
4 Xh is tangent to D for all X ∈ Γ∞(D).

Barbero-Liñán/L give intrinsic proofs of these formulae. One then uses the
formula

⟨X : Y⟩v(vx) =
1
2

d2

dt2

∣∣∣∣∣
t=0

ΦYv

−t ◦ τ
(0,t)
γX

◦ ΦYv

t ◦ τ (t,0)
γX

◦ ΦXv

−t ◦ τ
(0,t)
γY

◦ ΦXv

t ◦ τ (t,0)
γY

(vx)

along with a suitable characterisation of what it means for a vector field on the
total space of a vector bundle to be tangent to a subbundle.
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Geometry (punchline)

To understand and make use of the symmetric product and geodesic
invariance, composition of flows is important.
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Mechanics (constrained connection)

Let (M,G) be a Riemannian manifold so vx 7→ 1
2G(vx, vx) is the kinetic

energy function.
The motion t 7→ γ(t) of the mechanical system with this kinetic energy is

∇Gγ′(t)γ
′(t) = 0.6

We wish to subject the system to a nonholonomic constraint , by which
we mean that we require that γ′(t) ∈ Dγ(t) for all t, where D is the
constraint distribution.

Physics
The force that maintains the constraint
γ′(t) ∈ Dγ(t) does no work on admissible
motions.

Mathematics
There exists t 7→ λ(t) ∈ D⊥

γ(t) such that

∇Gγ′(t)γ
′(t) = λ(t),

P⊥
D ◦ γ′(t) = 0.

6Potential energy can be inhcluded in all of this, but I am omitting it for simplicity.
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Mechanics (constrained connection) (cont’d)
A little calculation:

∇Gγ′(t)γ
′(t) = λ(t),

P⊥
D ◦ γ′(t) = 0

=⇒
P⊥

D (∇Gγ′(t)γ
′(t)) = λ(t),

(∇Gγ′(t)P
⊥
D )(γ′(t)) + P⊥

D (∇Gγ′(t)γ
′(t)) = 0

=⇒
∇Gγ′(t)γ

′(t) + (∇Gγ′(t)P
⊥
D )(γ′(t))︸ ︷︷ ︸

∇D
γ′(t)

γ′(t)

= 0

Theorem (L7)
TFAE:

1 γ satisfies the constrained equations of motion;
2 γ is a geodesic for the constrained connection

∇D
X Y = ∇GX Y + (∇GX P⊥

D )(Y)

with initial condition in D.

7Rep. Math. Phys., 42(1/2), 135–164, 1998
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Mechanics (constrained connection) (cont’d)

Note:
1 D is geodesically invariant for ∇D;
2 Γ∞(TM)× Γ∞(D) ∋ (X, Y) 7→ ∇D

X Y ∈ Γ∞(D) is a vector bundle connection
in D (this is stronger than geodesic invariance);

3 for Y ∈ Γ∞(D), ∇D
X Y = PD(∇GX Y).

Another little calculation:

d
dt

1
2
G(γ′(t), γ′(t))

=
1
2
(∇D

γ′(t)G)(γ
′(t), γ′(t)) +G(∇D

γ′(t)γ
′(t), γ′(t))

= −G((∇Gγ′(t)P
⊥
D )(γ′(t)), γ′(t)) +G(∇Gγ′(t)γ

′(t), γ′(t)) +G((∇Gγ′(t)P
⊥
D )(γ′(t)), γ′(t))

= 0.

Energy is conserved!
One can play a variety of mechanical games in this affine connection
framework.
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Mechanics (calculus of variations with constraints)

The geodesics of the constrained connection are not extremals for the
natural constrained variational problem. But it is interesting to compare
these two things.8

Action for γ ∈ H1([t0, t1];M; x0, x1) is

AG(γ) =
∫ t1

t0

1
2G(γ

′(t), γ′(t)) dt.

Action restricted to curves satisfying the constraint is AG,D.

Problem (Nonholonomic (N))
Find γ ∈ H1([t0, t1];M;D; x0, x1) such
that
⟨dAG; δ⟩ = 0,

δ ∈ H1([t0, t1]; γ∗D; x0, x1).

Problem (Variational (V))
Find γ ∈ H1([t0, t1];M;D; x0, x1) such
that
⟨dAG,D; δσ(0)⟩ = 0,

σ : (−ϵ, ϵ) → H1([t0, t1];M;D; x0, x1).

8L, J. Geom. Mech., 12(2), 165–308, 2020
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Mechanics (calculus of variations with constraints)
(cont’d)

Some notation:
1 Fröbenius curvature: FD(X, Y) = P⊥

D ([X, Y]) (X, Y ∈ Γr(D))
2 geodesic curvature: GD(X, Y) = P⊥

D (⟨X : Y⟩) (X, Y ∈ Γr(D))

Problem (N) is equivalent to:

∇D
γ′γ′ = 0

Problem (V) is (sort of) equivalent to:

∇D
γ′γ′ = F∗

D(γ
′)(λ),

∇D⊥

γ′ λ =
1
2

GD(γ
′, γ′) +

1
2

G⋆
D⊥(γ

′)(λ) +
1
2

F⋆
D⊥(γ

′)(λ). (2)

Problem
Given a physical motion t 7→ γ(t) satisfying Problem (N), find all (if any) initial
conditions for λ so that the resulting solution to (2) satisfies F∗

D(γ
′)(λ) = 0.
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Mechanics (calculus of variations with constraints)
(cont’d)

When D and D⊥ are geodesically invariant for ∇G, then these simplify to

∇D
γ′γ′ = 0

and

∇D
γ′γ′ = F∗

D(γ
′)(λ),

∇D⊥

γ′ λ =
1
2

F⋆
D⊥(γ

′)(λ).

Questions
1 What is the significance of geodesic invariance?
2 Can one simply characterise the equivalence of Problems (N) and (V) in

this case?
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Mechanics (punchline)

The symmetric product and geodesic invariance show up, sometimes in not
understood ways, in nonholonomic mechanics.
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In closing. . .

THE END! THANK YOU!
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