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What follows is as close to a transcription as I could make of what I put on
the board every day during the fall term of 2008. These notes are provided
as a study aid. Beware of typos.

Andrew Lewis



Lecture 1
What are signals?

A “signal” is really just a function, but we will use the word “signal” since it
is suggestive of some physical meaning.
In this course, we will consider only single-variable signals, i.e., signals of
a single variable. We shall typically think of the single variable as being
“time,” although there is no mathematical significance to this terminology.
Multi-variable signals are also possible.
In this course, signals will generally be considered to be real- or
complex-valued. Signals taking values in more general spaces do arise.
We shall use the symbol “F” to stand for either “R” or “C”.
Correspondingly, if x ∈ F, then we denote

x̄ =

{
x, F = R,

complex conjugate of x, F = C,
|x| =

{
absolute value of x, F = R,

complex modulus of x, F = C.
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Why do we need structure for sets of signals?

If signals are just functions, then why not just deal with functions and
move on?
If we are thinking about functions of time—as we are—then time can be
thought of as being parameterised by R, and so a general signal is
simply a general function. As shall maybe become clear as we go along,
general functions are simply too general to be able to do anything with.
Maybe we can restrict to a useful class of signals like, say, continuous
signals?
Well, there are lots of interesting and useful signals that are not
continuous, so this is too much of a restriction.
Are there useful classes of signals that are not completely general, but
not as restrictive as continuous signals?
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Why do we need structure for sets of signals?

We also need structure for signals based on the chores we wish to do
with signals.

Example
Consider a sort of vague example. A commonly encountered situation is
where we have recorded a signal, but our recording carries some noise. We
would like to eliminate the noise. We can use some sort of technique for doing
this, but there will exist no technique that will eliminate a general sort of noise
from a general sort of signal. (Why do you think this is?) Therefore, to devise
a scheme for eliminating noise from a signal, we should deal with signals with
certain properties and noise with certain properties. What might these
properties be?
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Why do we need structure for sets of signals?

Let us also consider the notion of a system (a notion to be defined
precisely in Math 335) as a motivation for introducing structural properties
of signals.
A system is a “black box” taking as input an input signal and producing as
output an output signal:

inputs System outputs

What properties might a system possess?
▶ It may be linear (as a map from the set of inputs to the set of outputs), in

which case the space of inputs and space of outputs should have the
structure of vector spaces. Some physical systems can be reasonably
approximated by linear systems.

▶ Systems are also often “continuous” in some way. For example, one may
ask that if we have a converging sequence (fj)j∈Z>0 of inputs, the resulting
sequence (gj)j∈Z>0 of outputs also converges. (You should recognise this as
a form of continuity.)
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Why do we need structure for sets of signals?

Thus we see that we might need a vector space structure for sets of
systems and also a means of saying that sequences of signals converge.
The first part of the course will be devoted to exactly these sorts of
structures.
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Representations of signals

Given a R-valued signal as a function of time, we can try to understand it
by considering its graph which depicts how the values vary as a function
of time.
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If the signal is instead C-valued, we may consider the graphs of its real
and imaginary parts.
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Representations of signals

Sometimes one also plots the complex modulus and the complex
argument to represent a C-valued signal.
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(What is the C-valued signal being represented above?)
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Representations of signals

Is a time representation of a signal always best?
This is a very deep question, actually. One way to think of the question a
little more precisely is this: Given a space T of signals that are functions
of time, is there a transformation F : T → W into some other space W
which has useful properties?
What are “useful” properties?

▶ The map F should be such that, if f ∈ T , then F(f ) has desirable attributes.
This idea is vague and problem-dependent.

▶ One should be able to recover the signal f ∈ T from its transformation
F(f ) ∈ W .
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Frequency-domain representations of signals

In this course we shall study so-called “Fourier transforms.”
A Fourier transform can be thought of as taking a time-domain
representation of a signal and returning a frequency-domain
representation of a signal.
The idea of such a transform is that a highly oscillatory signal will have a
frequency-domain representation with a lot of content at high frequencies
and that a more “gentle” signal will have a frequency-domain
representation with a lot of content at low frequencies.
How does one measure the “frequency content” of a signal? Well, that is
what we do in the second part of the course.
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Reading for Lecture 1

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-1.1.1 and IV-1.1.7;
2 Sections IV-2.1, IV-2.2, IV-2.3, IV-2.4, and IV-2.5 (this material may be

best read later in the course).
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Lecture 2
Time

An interval is a subset of R of one of the following forms:

[a, b], [a, b), (a, b], (a, b),

(−∞, b], (−∞, b), [a,∞), (a,∞), (−∞,∞).

Recall that (R,+), the set of real numbers equipped with the operation of
addition, is a group. We are interested in subgroups of R. Some of these
are:

1 the set Z of integers;
2 the set Z(∆) = {k∆ | k ∈ Z} of integer multiples of ∆ ∈ R>0;
3 the set Q of rational numbers.

We wish to allow time to be either continuous or discrete.
Discrete time should be sampled at regular nonzero
intervals, i.e., precluding the use of Q.
We wish to allow time to be bounded in either direction, and infinite in
either or both directions.
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Time

Definition (Time-domain)
A time-domain is a subset of R of the form S ∩ I where S ⊆ R is a subgroup
in (R,+) and I ⊆ R is an interval. A time-domain is

(i) continuous if S = R,
(ii) discrete if S = Z(∆) for some ∆ > 0 called the sampling interval,
(iii) finite if cl(I) is compact,
(iv) infinite if it is not finite,
(v) positively infinite if sup I = ∞,
(vi) negatively infinite if inf I = −∞, and
(vii) totally infinite if I = R.

One can generalise this definition by using semigroups instead of
subgroups. However, we will not use this generality in this course.
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Operations on time-domains
Sometimes one wishes to alter a time-domain.

Definition (Reparameterisation)
For time-domains T1 and T2, a reparameterisation of T1 to T2 is a bijection
τ : T2 → T1 that is either monotonically increasing or monotonically
decreasing.

Examples (Reparameterisations)
1 For a ∈ R, the shift of a time-domain T1 by a is defined by taking the

time-domain
T2 = {t + a | t ∈ T}

and the reparameterisation τa : T2 → T1 of T1 defined by τa(t) = t − a.
2 For a time-domain T1, the transposition of T1 is defined by taking the

time-domain
T2 = {−t | t ∈ T1}

and the reparameterisation σ : T2 → T1 defined by σ(t) = −t. Often we
will use the reparameterisation in the case when σ(T1) = T1.
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Operations on time-domains

Examples (Reparameterisations (cont’d))
3 For a time-domain T1 and for λ ∈ R>0, the dilation of T1 by λ is defined

by taking the time-domain

T2 = {λt | t ∈ T1}

and the reparameterisation ρλ : T2 → T1 defined by ρλ(t) = λ−1t.
4 Here we take T1 = T2 = [0, 1] and define a reparameterisation τ : T2 → T1

of T1 by τ(t) = 1
2 (1 − cos(πt)).
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Time-domain signals

A signal is simply an F-valued function of time.

Definition (Time-domain signal)
Let T = S ∩ I be a time-domain and let F ∈ {R,C}. An F-valued
time-domain signal on T is a map f : T → F. If T is continuous then f is a
continuous-time signal and if T is discrete then f is a discrete-time signal.

We represent signals by their graphs as follows:
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Representation of continuous-time signal (left) and discrete-time signal (right)
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Time-domain signals

Examples (Signals)
1 The signal

1≥0(t) =

{
1, t ≥ 0
0, t < 0

is called the unit step signal and is a continuous-time signal defined on
a totally infinite time-domain.

2 The signal

R(t) =

{
t, t ≥ 0
0, t < 0

is called the unit ramp signal and again is a continuous-time signal
defined on a totally infinite time-domain.

3 A binary data stream is a discrete-time signal defined on T = Z and
taking values in the set {0, 1}.
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Time-domain signals

Examples (Signals)
4 Consider the special binary data stream P : Z → {0, 1} defined by

P(t) =

{
1, t = 0
0, otherwise.

This is called the unit pulse.
5 On [0, 1) define a R-valued signal g by

g(t) =

{
1, t ∈ [0, 1

2 ],

0, t ∈ ( 1
2 , 1).
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Time-domain signals

Examples (Signals (cont’d))
Now for a, f ∈ R>0 and ϕ ∈ R define a signal

□a,ν,ϕ(t) =
∑

n∈Z
ag(νt + ϕ),

which we call the square wave of amplitude a, frequency ν, and phase ϕ.

a

ν−1

φ

Note that as we have defined it, □a,ν,ϕ is a continuous-time signal defined
on a totally infinite time-domain.
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Time-domain signals
Examples (Signals (cont’d))

6 We proceed as in the preceding example, but now take

g(t) =

{
2t, t ∈ [0, 1

2 ],

2 − 2t, t ∈ ( 1
2 , 1),

and define
△a,ν,ϕ(t) =

∑

n∈Z
ag(νt + ϕ),

which we call the sawtooth of amplitude a, frequency ν, and phase shift ϕ.

a

ν−1

φ

As with the square wave defined above, this is a continuous-time signal
defined on a totally infinite time-domain.
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Elementary operations on signals
There are various sorts of elementary ways of transforming a signal into
another signal.

Definition (Codomain transformation)
If F ∈ {R,C}, if T is a time-domain, if f : T → F is a signal, and if ϕ : F → F is
a map, the codomain transformation of f by ϕ is the signal ϕ ◦ f : T → F.

Examples (Codomain transformations)
1 We define ϕ : F → F by ϕ(x) = x̄. Then the codomain transformed signal
ϕ ◦ f we denote by f̄ .

2 Let F = R and define ϕ : R → R by ϕ(x) = |x|. Then, for a signal
f : T → R the codomain transformed signal ϕ ◦ f is the full-wave
rectification of f .
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Elementary operations on signals

Examples (Codomain transformations (cont’d))
Of course the same ideas apply to continuous-time signals.

3 We again let F = R and now we consider ϕ : R → R defined by

ϕ(x) =

{
0, x < 0,
x, x ≥ 0.

In this case, for a signal f : T → R the codomain transformed signal ϕ ◦ f
is the half-wave rectification of f .
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Elementary operations on signals

Examples (Codomain transformations (cont’d))
4 We take F = R and for M ∈ R>0 consider the functions ϕM : R → R

defined by

ϕM(x) =





x, x ∈ [−M,M],

−M, x < −M,
M, x > M

and ψM(x) = M tanh( x
M ). We give the graphs of these functions below.
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Elementary operations on signals
Examples (Codomain transformations (cont’d))

The idea of this codomain transformation is that it truncates the values of a
signal to have a maximum absolute value of M. Such a codomain
transformation is called a saturation function. Sometimes it is advisable to
use a smooth saturation function, and an example of one such is whose
graph we show on the right above.
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we show the two saturation functions applied to a continuous-time signal. Of
course, one can as well apply the idea to a discrete-time signal.

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 2 March 1, 2022 24 / 310

Elementary operations on signals
Examples (Codomain transformations (cont’d))

5 Particularly in our world where almost everything is managed by digital
computers, signals with continuous values are not often what one deals with
in practice. Instead, what one actually has at hand is a signal whose values
live in a discrete set. Thus one would like to convert a signal with continuous
values to one with discrete values. This general process is known as
quantisation. A simple way to quantise a signal is via the codomain
transformation θh : R → R defined by θh(x) = h⌈ x

h⌉, where we recall the
definition of the ceiling function x 7→ ⌈x⌉ as giving the largest integer less than
or equal to x. The graph of the function is depicted in Figure I-2.1. The
quantisation θh is called the uniform h-quantisation.
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we depict the uniform quantisation of a continuous-time signal. The same
idea applies, and indeed is more natural, for discrete-time signals.
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Elementary operations on signals

Definition (Domain transformation)
If F ∈ {R,C}, if T1 and T2 are time-domains, if f : T1 → F is a signal, and if
τ : T2 → T1 is a reparameterisation of T1, the domain transformation of f by
τ is the signal τ∗f : T2 → F defined by τ∗f (t) = f ◦ τ(t).

Examples (Domain transformations)
1 For a ∈ R let us consider the shift τa : T2 → T1 of T1. For a signal

f : T1 → F, the corresponding domain transformed signal is defined by
τ∗a f (t) = f (t − a) for every t ∈ T2.

2 Let us consider the transposition σ : T2 → T1. For a signal f : T1 → F, the
corresponding domain transformed signal is defined by σ∗f (t) = f (−t) for
every t ∈ T2.

3 For λ ∈ R>0, let us consider the dilation ρλ : T2 → T1. For a signal
f : T1 → F, the corresponding domain transformed signal is defined by
ρ∗λf (t) = f (λ−1t).
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Elementary operations on signals

There are other interesting, but rather trivial, operations one can perform
on signals.

1 Sampling: This operation converts a continuous-time signal to a
discrete-time signal in the more or less obvious way: At the times lying in the
discrete time-domain, one takes the value of the sampled signal to be the
corresponding value of the continuous-time signal.

2 Interpolation: This is the “reverse” operation of sampling, taking a
discrete-time signal and returning a continuous-time signal. There is no
unique way to do this.

Please see Section IV-1.1.4 of the course text for details of these
straightforward concepts.
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Reading for Lecture 2

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-1.1.2, IV-1.1.3, and IV-1.1.4.
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Lecture 3
Elementary signal classification

After we have finished with our elementary discussion of signals, we shall
devote significant effort to classification of signals corresponding to their
analytical properties. For now, we have some fairly elementary signal
properties.

1 Periodic: There exists T ∈ R>0 such that f (t + T) = f (t) for every t ∈ T. We
say f is T-periodic in this case.

2 Harmonic: A signal f : T → F is harmonic with frequency ν ∈ R>0,
amplitude a ∈ R>0, and phase ϕ ∈ R if

f (t) =

{
aei(2πνt+ϕ), F = C,

a cos(2πνt + ϕ), F = R,

for all t ∈ T. The angular frequency for the harmonic signal is ω = 2πν.
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Signal structure

After the fairly elementary constructions and definitions of the preceding
lecture, we now begin to do some more or less serious mathematics.
Our objective is to understand the possible structures for sets of signals.
We shall see that a typical signal space for us will be an
“infinite-dimensional normed vector space.” Our objective now is to
understand the meaning of this.
We shall study:

1 the algebraic structure of infinite-dimensional vector spaces;
2 the analytical (okay, topological is really the right word) structure of normed

vector spaces.
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Vector spaces

It is assumed you know what a vector space is: It is a set with two
operations, addition and scalar multiplication, satisfying a list of natural
associativity and distributivity axioms; see Section I-4.5.1 in the course
text if you need a review of the definition.
In this course we will talk about F-vector spaces, where F ∈ {R,C}.

Examples (Vector spaces)
1 The prototypical n-dimensional F-vector space is the set Fn of n-tuples of

numbers in F. The vector space structure is

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn),

a(u1, . . . , un) = (au1, . . . , aun).
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Vector spaces

Examples (Vector spaces (cont’d))
2 Let C0([0, 1];F) denote the set of continuous F-valued functions on the

interval [0, 1]. The vector space structure is defined by

(f + g)(x) = f (x) + g(x), (af )(x) = a(f (x)).

Make sure you understand that this is a definition. Note that these
operations make sense since the sum of continuous functions is
continuous and a multiple of a continuous function is a continuous
function.

3 A good example of a vector space for us, and an example that may well
be new, is the following. Let J be an arbitrary set. Denote by FJ the set of
maps ϕ : J → F. Define a vector space structure on FJ by

(ϕ1 + ϕ2)(j) = ϕ1(j) + ϕ2(j), (aϕ)(j) = a(ϕ(j)).

Again, be sure you understand that these are actually definitions.
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Vector spaces

Examples (Vector spaces (cont’d))
4 To better understand the preceding example, let us consider

J = {1, . . . , n}. Note that if ϕ : {1, . . . , n} → F is an element of F{1,...,n}

then ϕ is defined by the n-tuple

(ϕ(1), . . . , ϕ(n)).

Thus we have a natural map

F{1,...,n} ∋ ϕ 7→ (ϕ(1), . . . , ϕ(n)) ∈ Fn,

and this map is easily verified to be linear and a bijection, i.e., an
isomorphism of F-vector spaces.

5 In like manner, if J = Z>0 then FZ>0 is to be thought of as the set of
sequences in F. Indeed, if ϕ : Z>0 → F is in FZ>0 , then we associate to
this the sequence (ϕ(j))j∈Z>0 . This assignment is easily seen to be an
isomorphism as well.
It is important to understand this example, although it is sort of trivial.
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Vector spaces

Examples (Vector spaces (cont’d))
6 We denote by FJ

0 the subset of FJ consisting of those maps ϕ : J → F
such that the set {j ∈ J | ϕ(j) ̸= 0} is finite. It is readily seen that FJ

0 is a
subspace of FJ; see Section I-4.5.2 in the course notes for a discussion
of subspaces.

7 Note that F{1,...,n}
0 = F{1,...,n}. More generally, and obviously, if and only if

J is finite we have FJ
0 = FJ.

8 Note that if we think of FZ>0 as being the set of sequences, as above,
then FZ>0

0 is the set of sequences that are eventually zero.
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Linear independence

It is assumed that you know about linear independence for
finite-dimensional vector spaces. For general vector spaces the
discussion is not too much different.

Definition (Linear independence)
Let V be an F-vector space.

(i) A finite set {v1, . . . , vk} of vectors in V is linearly independent if the
equality

c1v1 + · · ·+ ckvk = 0V, c1, . . . , ck ∈ F,
is satisfied only if c1 = · · · = ck = 0.

(ii) A nonempty subset S ⊆ V is linearly independent if every nonempty
finite subset of S is linearly independent.

(iii) A nonempty subset S ⊆ V is linearly dependent if it is not linearly
independent.
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Bases
It is assumed that you know about bases for finite-dimensional vector
spaces.

Definition (Span)
Let V be an F-vector space and let S ⊆ V.

(i) A linear combination from S is a vector of the form

a1v1 + · · ·+ akvk,

for k ∈ Z>0, a1, . . . , ak ∈ F, and v1, . . . , vk ∈ S.
(ii) The set of linear combinations from S is the span of S and is denoted by

spanF(S).

Note that elements of spanF(S) are finite linear combinations of vectors
from S. Indeed, infinite linear combinations need care in their
interpretation. This subtlety might confuse you later in the course when
we do consider infinite sums of vectors.
The set spanF(S) is a subspace, and S is a subspace if and only if
spanF(S) = S.
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Bases

Definition (Basis)
Let V be a F-vector space. A subsetB ⊆ V is a basis for V if

(i) B is linearly independent and
(ii) spanF(B ) = V.

This sort of basis is often specifically called a Hamel basis.
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Reading for Lecture 3

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-1.1.6 and IV-1.1.7;
2 Section I-4.5.1 (especially the first part);
3 Section I-4.5.2 (especially the first part);
4 Section I-4.5.3 (especially the first part);
5 Section I-4.5.4 (especially the first part).
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Lecture 4
Bases
Examples (Bases)

1 Take V = Fn and, for j ∈ {1, . . . , n}, define ej ∈ Fn by

ej = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
1 in jth-position

.

We claim that {e1, . . . , en} is a basis. To prove linear independence:

c1e1 + · · ·+ cnen = 0
=⇒ (c1, . . . , cn) = (0, . . . , 0)
=⇒ c1 = · · · = cn = 0,

giving linear independence. To prove that spanF(e1, . . . , en) = Fn, let
v ∈ Fn and note that

(v1, . . . , vn) = v1e1 + · · ·+ vnen.

Thus {e1, . . . , en} is indeed a basis.
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Bases
Examples (Bases (cont’d))

2 Let us redo the preceding example, but now with V = F{1,...,n}. Here, for
j ∈ {1, . . . , n} we define ej ∈ F{1,...,n} by

ej(k) =

{
1, j = k,
0, j ̸= k.

We claim that {e1, . . . , en} is a basis. To show linear independence:

c1e1 + · · ·+ cnen = 0
=⇒ (c1e1 + · · ·+ cnen)(j) = 0, j ∈ {1, . . . , n}
=⇒ c1e1(j) + · · ·+ cnen(j) = 0, j ∈ {1, . . . , n}
=⇒ cj = 0, j ∈ {1, . . . , n}.

To prove that spanF(e1, . . . , en) = F{1,...,n}, let ϕ ∈ F{1,...,n} and note that, for
any j ∈ {1, . . . , n},

ϕ(j) = ϕ(1)e1(j) + · · ·+ ϕ(n)en(j) = (ϕ(1)e1 + · · ·+ ϕ(n)en)(j),

and so ϕ = ϕ(1)e1 + · · ·+ ϕ(n)en. Thus {e1, . . . , en} is a basis.
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Bases
Examples (Bases (cont’d))

3 Now we let J be an arbitrary infinite set and consider V = FJ. For j ∈ J
define ej ∈ FJ by

ej(k) =

{
1, j = k,
0, j ̸= k.

We claim thatB = {ej | j ∈ J} is linearly independent. We must show
that any finite subset ofB is linearly independent. Thus let j1, . . . , jn ∈ J
and note that

c1ej1 + · · ·+ cnejn = 0
=⇒ (c1ej1 + · · ·+ cnejn)(j) = 0, j ∈ J

=⇒ c1ej1(j) + · · ·+ cnejn(j) = 0, j ∈ J

=⇒ ck = 0, k ∈ {1, . . . , n},

giving linear independence. IsB a basis? No. Consider ϕ ∈ FJ defined
by ϕ(j) = 1, j ∈ J. Then ϕ cannot be a finite linear combination of
elements fromB .

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 4 March 1, 2022 41 / 310



Bases

Examples (Bases (cont’d))
4 Let us now restrict the preceding example by considering not FJ, but FJ

0 .
LetB be defined as in the preceding example; clearlyB ⊆ FJ

0 . As we
have already shown thatB is linearly independent, let us show that
spanF(B ) = FJ

0 . Let ϕ ∈ FJ
0 . By definition, there exists a finite distinct set

{j1, . . . , jk} ⊆ J such that {j ∈ J | ϕ(j) ̸= 0} = {j1, . . . , jk}. Then, for j ∈ J,

ϕ(j) = (ϕ(j1)ej1(j) + · · ·+ ϕ(jk)ejk(j) = (ϕ(j1)ej1 + · · ·+ ϕ(jk)ejk)(j).

Thus ϕ = ϕ(j1)ej1 + · · ·+ ϕ(jk)ejk ∈ spanF(B ). ThusB is indeed a basis.
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Reading for Lecture 4

Material related to this lecture can be found in the following sections of the
course notes:

1 Section I-4.5.4 (especially the first part).
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Lecture 5
Bases

Interesting factoids that are not part of this course.
1 By our definition of a basis, every vector space has a basis. You know this

for finite-dimensional vector spaces, but it is true in general.
2 If V is a F-vector space, there is a set J such that V is isomorphic to FJ

0 . This
is analogous to the fact that every finite-dimensional F-vector space is
isomorphic to Fn for some suitable n.
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Dimension
It is helpful for a second or two to have at hand the notion of the
cardinality of a set.1 For a set S, let us denote by card(S), the cardinality
of S, the equivalence class of sets T such that there is a bijection from S
to T. One should think of card(S) as a “number” measuring the “size” of
the set S. If S is a finite set, S = {x1, . . . , xn}, then one trivially identifies
card(S) with the number n. If S is countable, then card(S) = card(Z>0).

Definition (Dimension)
If V is a F-vector space with basisB , the dimension of V is
dimF(V) = card(B ).

Some factoids about dimension.
1 It turns out that two bases always have the same cardinality. You know this

already for finite-dimensional vector spaces, but it is true in general. Thus
dimension is well-defined.

2 If V is n-dimensional according to the definition of dimension with which you
are already familiar, then according to the definition above, dimF(V) = n.
Thus our definition above extends the one with which you are already
familiar.

1The ensuing words are flawed, but will suffice for us for the moment.
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Dimension

Examples (Dimension)
1 dimF(Fn) = n.
2 dimF(F{1,...,n}) = n.
3 dimF(FJ

0 ) = card(J).
4 If J is a finite set then dimF(FJ) = card(J).
5 If J is not finite then dimF(FJ) can be shown to be equal to 2card(J),

whatever that is.a

aStatements like “whatever that is” are intended to tip you off that the corresponding
discussion is not part of the course.

Summary: We shall not make great use of the general notion of
dimension. Mainly, we shall be interested in the case when card(B ) is
finite, in which case we say that V is finite-dimensional, and the case
where card(B ) is not finite, in which case we shall say that V is
infinite-dimensional. Differing flavours in infinity will not be so much of a
concern.
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Discrete-time signals

With a little linear algebra at hand, we now say some things about
signals. It is easiest to start with discrete-time signals.
Let us begin with the most general set of signals defined on a discrete
time-domain.

Definition (FT)
Let F ∈ {R,C} and let T be a discrete time-domain. We denote by FT the set
of maps f : T → F. The F-vector space structure on FT is given by

(f1 + f2)(t) = f1(t) + f2(t), (αf )(t) = α(f (t)),

for f , f1, f2 ∈ FT and for α ∈ F.

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 5 March 1, 2022 47 / 310



Discrete-time signals

Proposition (Dimension of FT)
If T is a discrete time-domain, then FT is finite-dimensional if and only if T is
finite.

Proof.
Homework.

There is not much more that we can say algebraically.
What about other signal structure? The following issue is a standard one
in system theory. Consider a system:

inputs System outputs

The system is bounded-input, bounded-output stable if every bounded
input produces a bounded output. What might a “bounded” signal be?
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Normed vector spaces

To talk about the “size” of an element in a vector space, particularly a
vector space of signals, one can use the notion of a norm.

Definition (Norm)
Let V be a F-vector space. A norm on V assigns to each vector v ∈ V the
number ∥v∥ ∈ R≥0, and the assignment satisfies the following rules:

(i) ∥av∥ = |a|∥v∥ for a ∈ F and v ∈ V (homogeneity);
(ii) ∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥ for v1, v2 ∈ V (triangle inequality);
(iii) ∥v∥ = 0 only if v = 0V (positive-definiteness).

In the course text, the notion of a seminorm is also defined, this by
omitting the property of positive-definiteness. We shall only briefly need
the notion of a seminorm, so will not dwell on properties of norms that are
or are not true for seminorms.
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Normed vector spaces

Examples (Norms)
1 On Fn define

∥v∥2 =
(
|v1|2 + · · ·+ |vn|2

)1/2
.

This norm defines the usual notion of length of a vector in Fn, i.e., ∥v∥ is
the distance from 0Fn to v. We shall also sometimes call it the 2-norm on
Fn or the standard norm. It is pretty evident that ∥·∥2 satisfies the
homogeneity and positive-definiteness properties required of a norm. It is
also true that ∥·∥2 satisfies the triangle inequality. The proof of this relies
on the so-called “Cauchy–Bunyakovsky–Schwarz Inequality.” This
inequality holds because ∥·∥2 is the norm derived from an inner product
on Fn. Thus we shall see how ∥·∥2 satisfies the triangle inequality when
we discuss inner products.

2 Let us consider another norm on Fn which differs from the standard
norm. For v = (v1, . . . , vn) ∈ Fn define

∥v∥1 = |v1|+ · · ·+ |vn|.
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Normed vector spaces

Examples (Norms (cont’d))
All properties of the norm are readily verified, including the triangle
inequality, as this now follows from the triangle inequality for |·|. This
norm is called the 1-norm.

3 Let us consider another norm on Fn given by

∥v∥∞ = max{|vj| | j ∈ {1, . . . , n}}.

This is in fact a norm, called the ∞-norm. The only not entirely trivial
norm property to verify is the triangle inequality. For this, let u, v ∈ Fn and
let j, k, ℓ ∈ {1, . . . , n} have the property that ∥u∥∞ = |uj|, ∥v∥∞ = |vk|, and
∥u + v∥∞ = |uℓ + vℓ|. We then have

∥u + v∥∞ = |uℓ + vℓ| ≤ |uℓ|+ |vℓ| ≤ |uj|+ |vk| = ∥u∥∞ + ∥v∥∞.
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Reading for Lecture 5

Material related to this lecture can be found in the following sections of the
course notes:

1 Section I-4.5.4 (especially the first part);
2 Section IV-1.1.7;
3 Section IV-1.2.1;
4 Section III-3.1.1 (the definition of norm and norm examples); you can

replace every occurrence of “seminorm” with “norm,” for the purposes of
this course.
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Lecture 6
Normed vector spaces

Examples (Norms (cont’d))
4 Let us abbreviate FZ>0 by F∞. Recall then that F∞

0 (essentially) denotes
the sequences (i.e., maps with domain Z>0) (vj)j∈Z>0 for which the set
{j ∈ Z>0 | vj ̸= 0} is finite. Thus sequences in F∞

0 are eventually zero.
We define

∥(vj)j∈Z>0∥2 =
( ∞∑

j=1

|vj|2
)1/2

,

noting that the sum makes sense since it is actually finite. That ∥·∥2
satisfies the properties of a norm is straightforward, using the triangle
inequality for the 2-norm on Fn. This norm is called the 2-norm on F∞

0 .
5 We again consider the vector space F∞

0 and now define

∥(vj)j∈Z>0∥1 =

∞∑

j=1

|vj|,
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Normed vector spaces
Examples (Norms (cont’d))

this sum again making sense since it is finite. It is easy to verify, just as
we did for the 2-norm above, that ∥·∥1 is a norm, and we call it the
1-norm.

6 As a final norm on F∞
0 we define

∥(vj)j∈Z>0∥∞ = sup{|vj| | j ∈ Z>0}.

Because the sequence (vj)j∈Z>0 is finite, it is certainly bounded, and so
the definition makes sense. Moreover, the norm properties follow,
essentially from those of ∥·∥∞ on Fn. This norm we call, of course, the
∞-norm.

7 We consider the F-vector space C0([a, b];F) of continuous F-valued
functions on the compact interval [a, b]. Provided that b > a this is an
infinite-dimensional vector space, cf. Example I-4.5.18–6. On this vector
space we define

∥f∥2 =
(∫ b

a
|f (x)|2 dx

)1/2
.
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Normed vector spaces

Examples (Norms (cont’d))
Note that continuous functions (and therefore their squares) on compact
intervals are always Riemann integrable by Corollary I-3.4.12. It is easy
to see that this possible norm satisfies the homogeneity and
positive-definiteness properties of a norm (see Exercise I-3.4.1 for
positive-definiteness). Thus, like its 2-norm brothers on Fn and F∞

0 , the
difficult norm property to verify is the triangle inequality. We shall do this
subsequently. This norm will be called the 2-norm on C0([a, b];F).

8 On C0([a, b];F) define

∥f∥1 =

∫ b

a
|f (x)| dx.

Again, the integral here is the Riemann integral. The three norm
properties are easily verified. Only the triangle inequality is possibly
nontrivial:
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Normed vector spaces

Examples (Norms (cont’d))

∥f + g∥1 =

∫ b

a
|f (x) + g(x)| dx ≤

∫ b

a

(
|f (x)|+ |g(x)|

)
dx

=

∫ b

a
|f (x)| dx +

∫ b

a
|g(x)| dx = ∥f∥1 + ∥g∥1.

This norm, called the 1-norm, is different than the 2-norm.
9 As a final norm on C0([a, b],F) we take

∥f∥∞ = sup{|f (x)| | x ∈ [a, b]}.

Again, the triangle inequality is the troublesome property to verify. In this
case the verification goes as follows:
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Normed vector spaces

Examples (Norms (cont’d))

∥f + g∥∞ = sup{|f (x) + g(x)| | x ∈ [0, 1]}
≤ sup{|f (x)|+ |g(x)| | x ∈ [0, 1]}
≤ sup{|f (x)|+ |g(y)| | x, y ∈ [0, 1]}
≤ sup{|f (x)| | x ∈ [0, 1]}+ sup{|g(y)| | y ∈ [0, 1]}
= ∥f∥∞ + ∥g∥∞.

This norm is yet again different than the 1- and 2-norms.

The pair (V, ∥·∥), where V is an F-vector space and ∥·∥ is a norm on V, is
called a normed F-vector space.
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Normed vector spaces

We have introduced three norms, ∥·∥2, ∥·∥1, and ∥·∥∞, for Fn. These
norms are different in that they will generally yield a different number for
the norm of the same vector. However, it is a fact that different norms on
finite-dimensional vector spaces are equivalent in a sense that is defined
in Definition III-3.1.13. You will explore this in a homework problem.
Unlike in the finite-dimensional case, the three norms, still denoted by
∥·∥2, ∥·∥1, and ∥·∥∞, for F∞

0 and C0([a, b];F) are genuinely different. In
terms of Definition III-3.1.13, they are not equivalent. This is sort of
subtle, and will not be really comprehensible for us until we discuss
completeness, where we will see that the completions of F∞

0 and
C0([a, b];F) are different for the three norms.
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Completeness

We now come to a difficult to understand concept whose importance
cannot be overstated. Many of the important concepts that follow
subsequently in the course have as their basis the notion of
“completeness” which we now discuss.
The following definitions should be familiar to you from your real analysis
course, although our presentation here is more general.

Definition (Convergent sequence, Cauchy sequence)
Let (V, ∥·∥) be a normed F-vector space. A sequence (vj)j∈Z>0

(i) converges to v0 ∈ V if, for every ϵ ∈ R>0, there exists N ∈ Z>0 such that
∥v0 − vj∥ < ϵ for every j ≥ N;

(ii) is a Cauchy sequence if, for every ϵ ∈ R>0, there exists N ∈ Z>0 such
that ∥vj − vk∥ < ϵ for every j, k ≥ N.
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Completeness

Proposition
Convergent sequences are Cauchy.

Proof.
Let (vj)j∈Z>0 converge to v0 ∈ V. Let ϵ ∈ R>0 and let N ∈ Z>0 be such that
∥v0 − vj∥ < ϵ

2 for all j ≥ N. Then, for j, k ≥ N,

∥vj − vk∥ = ∥vj − v0 + v0 − vk∥ ≤ ∥v0 − vj∥+ ∥v0 − vk∥ < ϵ,

as desired.

Fact: Cauchy sequences in finite-dimensional normed vector spaces
converge. I expect you have seen this for the normed vector space
(R, |·|).
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Reading for Lecture 6

Material related to this lecture can be found in the following sections of the
course notes:

1 Section III-3.1.1 (the definition of norm and norm examples); you can
replace every occurrence of “seminorm” with “norm,” for the purposes of
this course.

2 Sections III-3.2.1 and III-3.3.1.
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Lecture 7
Completeness
Example (Cauchy sequences need not converge)
In this example we shall construct a nonconvergent Cauchy sequence. The
normed vector space must necessarily be infinite-dimensional. We shall use
(F∞

0 , ∥·∥∞). It is convenient to think now of elements of F∞
0 as being maps

ϕ : Z>0 → F such that {j ∈ Z>0 | ϕ(j) ̸= 0} is finite. As we have seen, this is the
same as the set of sequences in F. We consider the sequence (ϕj)j∈Z>0 in F∞

0
defined by

ϕj(n) =

{
1
n , n ≤ j,
0, n > j.
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Completeness

Example (cont’d)

Claim
The sequence is Cauchy.

Proof.
Let ϵ ∈ R>0. Take N ∈ Z>0 such that 1

N < ϵ and let j, k ≥ N with k < j. Then

(ϕj − ϕk)(n) =

{
1
n , n ∈ {k + 1, . . . , j},
0, otherwise.

It then immediately follows that

∥ϕj − ϕk∥∞ = sup{|(ϕj − ϕk)(n)| | n ∈ Z>0} < ϵ,

giving the claim.
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Completeness
Example (cont’d)

Claim
The sequence does not converge.

Proof.
We claim that if the sequence (ϕj)j∈Z>0 converges to ϕ, then ϕ(n) = 1

n for every
n ∈ Z>0. Indeed, suppose that ϕ ∈ F∞

0 satisfies |ϕ(n0)− 1
n0
| = α ∈ R>0 for some

n0 ∈ Z. Now let ϵ < α. Then, for every N > n0 we have, for j ≥ N,

∥ϕ− ϕj∥∞ = sup{|ϕ(n)− ϕj(n)| | n ∈ Z>0} ≥ |ϕ(n0)− 1
n0
| > ϵ.

Thus it must be the case that if (ϕj)j∈Z>0 converges to ϕ, then ϕ(n) = 1
n for every

n ∈ Z>0, as claimed.

Thus the sequence is indeed a Cauchy sequence that does not converge. One
does believe, however, that the sequence converges, and to ϕ satisfying ϕ(n) = 1

n
for every n ∈ Z>0. However, ϕ ̸∈ F∞

0 . Thus F∞
0 is not “big” enough. More

precisely, it is not complete.
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Completeness

Definition (Completeness)
A normed F-vector space (V, ∥·∥) is complete if every Cauchy sequence in V
converges.

A question that often arises with completeness is: “Must convergence of
the Cauchy sequences be to something in V?” Note that the question
strictly does not make sense since the only thing in the universe of V is V.
Convergence to something that is somewhere else makes no sense.
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Completions

If a normed vector space is not complete, one can “complete” it.

Definition (Completion)
A completion of a normed F-vector space (V, ∥·∥) is a complete normed
F-vector space (V, ∥·∥) such that there exists a linear injection ιV : V → V with
the following properties:

(i) ∥ιV(v)∥ = ∥v∥ for every v ∈ V;
(ii) if v ∈ V, then there exists a sequence (vj)j∈Z>0 for which the sequence

(ιV(vj))j∈Z>0 converges to v.

The following result and the sketch of the proof provided are important.
Moreover, the proof is both constructive and instructive.

Theorem (Completions exist)
Every normed F-vector space possesses a completion.
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Completions

Outline of proof.
Let us call two Cauchy sequences (uj)j∈Z>0 and (vj)j∈Z>0 is V equivalent if, for
every ϵ ∈ R>0, there exists N ∈ Z>0 such that ∥uj − vk∥ < ϵ for j, k ≥ N. One
can verify that this defines an equivalence relation on the set of Cauchy
sequences in V. Let V be the set of equivalence classes. Let us denote a
point in V by the usual equivalence class notation: [(vj)j∈Z>0 ]. Define ∥·∥ by

∥[(vj)j∈Z>0 ]∥ = lim
j→∞

∥vj∥.

Define a map ιV : V → V by asking that ιV be the equivalence class containing
the Cauchy sequence (vj = v)j∈Z>0 . The remainder of the proof is a
verification that this construction does indeed define a completion. Steps
include the following.

1 Show that V is an F-vector space. The vector space operations are

[(uj)j∈Z>0 ] + [(vj)j∈Z>0 ] = [(uj + vj)j∈Z>0 ], a[(vj)j∈Z>0 ] = [(avj)j∈Z>0 ].
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Completions
Outline of proof (cont’d).

Besides showing that these operations obey the vector space axioms,
one must also verify that their definitions are independent of the choice of
representative from the equivalence class.

2 Show that ∥·∥ is well-defined and defines a norm.
3 Show that (V, ∥·∥) is a completion.

To understand the preceding proof, it is worth thinking about an
analogous construction: the real numbers are the completion of the
rational numbers.
To define a real number, one can define it as an equivalence class of
Cauchy sequences of rational numbers. For example, for the irrational
number e we have

e =

∞∑

j=0

1
j!
= lim

j→∞

(
1 + 1

j

)j
= lim

j→∞

(
1 + 1

j

)j+1
,
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Completions

giving three different sequences of rational numbers converging to the
real number e. Thus each of these three sequences can be used to
represent the equivalence class of Cauchy sequences that stand for the
real number e.
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Reading for Lecture 7

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections III-3.3.1 and III-3.3.4.
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Lecture 8
Completions

Apart from the assertion above about the existence of completions, one
can also show that completions are “essentially” unique. By this we mean
that if we have two completions (V1, ∥·∥1) and (V2, ∥·∥2) of (V, ∥·∥), then
there exists an isomorphism ϕ : V1 → V2 such that ∥v∥2 = ∥v∥1 for all
v ∈ V1. Thus the two normed vector spaces (V1, ∥·∥1) and (V2, ∥·∥2) are
“the same.”
The matter of concretely describing the completion of a normed vector
space is sometimes nontrivial. We shall see this for continuous-time
signals.
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Completions

Equipped with the notions of completeness and completion, let us
consider some examples.

Examples (Completions)
1 We resume our consideration of the normed vector space (F∞

0 , ∥·∥∞).
We have already shown that this normed vector space is not complete.
What is its completion? There is not necessarily a systematic way of
deducing what the completion is. However, a moment’s reflection might
lead one to conclude that a completion is the set of sequences which
converge to zero. Let us denote these sequences by c0(F), the notation
hopefully suggesting the set of F-valued sequences converging to 0. The
norm we consider is the ∞-norm:

∥ϕ∥∞ = sup{|ϕ(n)| | n ∈ Z>0}, ϕ ∈ c0(F).

After making this educated guess, one can then ask whether the guess is
correct. Let us verify this.
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Completions

Examples (Completions (cont’d))
First of all, note that F∞

0 is a subspace of c0(F), so the natural map from
F∞

0 to its completion is just the inclusion. This clearly preserves the
norm. We do not use notation for this, but simply regard elements of F∞

0
naturally as lying in c0(F). Thus we do not worry about the map ιV from
the definition of the completion.
We need now only verify that if ϕ ∈ c0(F) then there exists a sequence
(ϕj)j∈Z>0 such that ϕ = limj→∞ ϕj. We define this sequence by

ϕj(n) =

{
ϕ(n), n ≤ j,
0, n > j.

To check that it converges to ϕ, let ϵ ∈ R>0. Since the sequence
(ϕ(n))n∈Z>0 converges to zero, let N be sufficiently large that |ϕ(n)| < ϵ for
n ≥ N. Then, for j ≥ N, we have
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Completions
Examples (Completions (cont’d))

∥ϕ− ϕj∥∞ = sup{|ϕ(n)− ϕj(n)| | n ∈ Z>0} = sup{|ϕ(n)| | n > j} < ϵ,

which shows that ϕ = limj→∞ ϕj, as desired. Thus (c0(F), ∥·∥∞) is indeed
a completion of (F∞

0 , ∥·∥∞).a

2 Now we consider the same vector space, F∞
0 , but with a different norm,

the 2-norm:

∥ϕ∥2 =
( ∞∑

n=1

|ϕ(n)|2
)1/2

.

We also consider the same sequence of functions (ϕj)j∈Z>0 considered
above when showing that F∞

0 was not complete with the ∞-norm:

ϕj(n) =

{
1
n , n ≤ j,
0, n > j.

aActually, we still need to prove completeness of c0(F); we shall address this shortly.
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Completions

Examples (Completions (cont’d))
We wish to show that this sequence is Cauchy, but does not converge.

Claim
The sequence is Cauchy.

Proof.
Let ϵ ∈ R>0. Note that the series

∑∞
n=1

1
n2 converges, meaning that its

sequence of partial sums converges. Therefore, its sequence of partial sum is
Cauchy. Therefore, there exists N ∈ Z>0 such that

k∑

n=j+1

1
n2 < ϵ2
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Completions

Examples (Completions (cont’d))

Proof (cont’d).
for j, k ≥ N with k > j (note that the above sum is the difference between the
jth and kth partial sum). Now, for j, k ≥ N with j < k we have

∥ϕj − ϕk∥2 =
( ∞∑

n=1

|ϕj(n)− ϕk(n)|2
)1/2

=
( k∑

n=j+1

|ϕj(n)− ϕk(n)|2
)1/2

< ϵ,

giving that (ϕj)j∈Z>0 is Cauchy.

Claim
The sequence does not converge.
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Completions

Examples (Completions (cont’d))

Proof.
Suppose that the sequence (ϕj)j∈Z>0 converges to ϕ ∈ F∞

0 and let n0 ∈ Z>0.
We claim that ϕ(n0) =

1
n0

. Suppose otherwise, and that
|ϕ(n0)− 1

n0
| = α ∈ R>0. Then, for every N > n0 we have, for j ≥ N.

∥ϕ− ϕj∥2 =
( ∞∑

n=1

|ϕ(n)− ϕj(n)|2
)1/2

≥ |ϕ(n0)− 1
n0
| = α > 0.

Therefore, since we have ϕ(n) = 1
n for every n ∈ Z>0, it follows that ϕ ̸∈ F∞

0 .
Thus (ϕj)j∈Z>0 does not converge.

Thus (F∞
0 , ∥·∥2) is not complete.
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Reading for Lecture 8

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections III-3.3.4 and III-3.8.2.
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Lecture 9
Completions
Examples (Completions (cont’d))

Now we can ponder on what its completion is. Again, there is no recipe for
easily understanding this. However, a moment’s thought might lead you to
conclude that a completion is the set of maps ϕ : Z>0 → F for which

( ∞∑

n=1

|ϕ(n)|2
)1/2

<∞ ⇐⇒
∞∑

n=1

|ϕ(n)|2 <∞.

Let us denote such maps by ℓ2(F). (This sort of notation will be generalised
later. The point is that the subscript “2” means “square” summable
sequences.) The norm on the completion would be

∥ϕ∥2 =
( ∞∑

n=1

|ϕ(n)|2
)1/2

.

Let us verify that this indeed a completion of (F∞
0 , ∥·∥2). Since F∞

0 ⊆ ℓ2(F),
we can sidestep the map ιV in the definition of the completion.
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Completions
Examples (Completions (cont’d))

We must show that if ϕ ∈ ℓ2(F) then there exists a sequence (ϕj)j∈Z>0 in
F∞

0 which converges to ϕ using the norm ∥·∥2. Let us define

ϕj(n) =

{
ϕ(n), n ≤ j,
0, n > j.

To show that (ϕj)j∈Z>0 converges to ϕ, let ϵ ∈ R>0. Since ϕ ∈ ℓ2(F) there
exists N ∈ Z>0 such that

∞∑

n=N+1

|ϕ(n)|2 < ϵ2.

For j ≥ N we then have

∥ϕ− ϕj∥2 =
( ∞∑

n=1

|ϕ(n)− ϕj(n)|2
)1/2

=
( ∞∑

n=j+1

|ϕ(n)|2
)1/2

< ϵ.
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Completions

Examples (Completions (cont’d))
This give the desired convergence, and shows that (ℓ2(F), ∥·∥2) is the
completion of (F∞

0 , ∥·∥2).a

3 As our final example, we again consider the vector space F∞
0 , but now

with the 1-norm:

∥ϕ∥1 =
∞∑

n=1

|ϕ(n)|.

We claim that, as in the cases above, this normed vector space is not
complete. Let us endeavour to prove this with the sequence (ϕj)j∈Z>0

considered above in the previous two cases. Thus we take

ϕj(n) =

{
1
n , n ≤ j,
0, n > j.

aActually, we still need to prove completeness of ℓ2(F); we shall address this shortly.
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Completions
Examples (Completions (cont’d))

Claim
This sequence is not even Cauchy.

Proof.
We must show that there exists α ∈ R>0 such that, for every N ∈ Z>0, there
are some j, k ≥ N such that

∥ϕj − ϕk∥1 =

∞∑

n=1

|ϕj(n)− ϕk(n)| > α.

Let us take α to be any positive number. Since the series
∑∞

n=1
1
n diverges, for

every N ∈ Z>0 we have
∑∞

n=N+1
1
n = ∞. Therefore, there exists some finite

set {j + 1, . . . , k} of integers greater than N such that
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Completions

Examples (Completeness (cont’d))

Proof (cont’d).
k∑

n=j+1

1
n
> α.

For this choice of N, j, and k we have

∥ϕk − ϕj∥1 =

k∑

n=j+1

1
n
> α.

This gives the desired conclusion.

Thus, to show that (F∞
0 , ∥·∥1) is not complete, we should select come

other candidate sequence to be a nonconvergent Cauchy sequence.
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Completions

Examples (Completions (cont’d))
One can show that such a sequence is the sequence (ψj)j∈Z>0 defined by

ψj(n) =

{
1
n2 , n ≤ j,
0, n > j.

The proof that this sequence is Cauchy but nonconvergent follows along
the same lines as the similar claims above. I leave you to sort through the
details.
We should also describe the completion of (F∞

0 , ∥·∥1).
(Thinking. . . thinking. . . ) It seems like a reasonable choice would be the
set of functions ϕ : Z>0 → F such that

∞∑

n=1

|ϕ(n)| <∞.

Let us denote the set of such functions by ℓ1(F) and use the norm
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Completions

Examples (Completions (cont’d))

∥ϕ∥1 =
∞∑

n=1

|ϕ(n)|

on the completion. To show that (ℓ1(F), ∥·∥1) is a completion of (F∞
0 , ∥·∥1)

is done pretty much exactly as in the previous cases. We leave you to do
the straightforward computations.

Remark (Unfinished business)
We have not actually addressed the fact that c0(F), ℓ2(F), and ℓ1(F) must be,
in fact, complete in order to qualify as completions. The strategy to prove that
all of these normed vector spaces is complete is the same in all cases. We
suppose that we have a Cauchy sequence (ϕj)j∈Z>0 and do the following.

1 Using the fact that (ϕj)j∈Z>0 is Cauchy, one can show that (ϕj(n))j∈Z>0 is a
Cauchy sequence in R for each n ∈ Z>0. Thus, by completeness of R,
one can define ϕ(n) = limj→∞ ϕj(n).
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Completions

Remark
2 With ϕ ∈ F∞ defined as above, one can show that ϕ ∈ c0(F), or
ϕ ∈ ℓ2(F), or ϕ ∈ ℓ1(F), as the case may be.

3 Finally, one shows that (ϕj)j∈Z>0 converges to ϕ in the norm ∥·∥∞, ∥·∥2, or
∥·∥1, as the case may be.

The notions of completeness and completions are not always easy to
grasp. The preceding examples are about the simplest illustrations of the
phenomenon, so they are the best place to start gaining understanding.
In the preceding examples we could “guess” a completion. We shall see
that this is not always the case.
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Banach spaces

Definition (Banach space)
An F-Banach space is a complete normed F-vector space.

Based on the observations in the preceding slides, we are interested in
Banach spaces, and not so much in complete normed vector spaces that
are not complete.
We have seen three Banach spaces:

1 (c0(F); ∥·∥∞);
2 (ℓ2(F), ∥·∥2);
3 (ℓ1(F), ∥·∥1).

These are all completions of F∞
0 .

We see clearly the effects of the three different norms on F∞
0 : they each

have a different completion. Indeed, we have

ℓ1(F) ⊂ ℓ2(F) ⊂ c0(F)

(all inclusions are strict).
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Reading for Lecture 9

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections III-3.3.1, III-3.3.4, and III-3.8.2.
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Lecture 10
Why are completions important?

At this point, completions may not seem so complicated since, in the
examples above, the completion arose in a fairly natural way. However,
we will see later that a terrible price must be paid to understand the
completions of spaces of continuous functions with respect to some
norms.
One will then wonder, “Why do we care deeply about completions?”
A good place to understand this sort of question is with the real numbers
since the real numbers are the completion of the rational numbers.
Computationally, the rational numbers are “sufficient” since computers,
and possibly humans, are only capable of understanding things with finite
representations: like rational numbers. If one is only interested in
computation, then rational numbers are all one sees.
But should we then dispense with real numbers? Perhaps we could, but
we would lose much that gives us comfort.
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Why are completions important?
Philosophically, we would have to sacrifice models of the physical world
which make use of a spatio-temporal continuum. This would then
eliminate almost all current mathematical models of the physical world,
like the Newton–Euler equations in mechanics, Maxwell’s equations for
electro-magnetism (from which are derived the basic properties of circuits
about which you learn), the Navier–Stokes equations for fluid mechanics,
and so on and so on.
Mathematically, we would have to forgo calculus as we know it. We would
also have to allow things like a bounded monotonically increasing
sequence not having a limit.
If you think such sacrifices are worth making merely for the efficacy of
numerical computation, then good luck to you in your “rational” world.
In general, completions can be viewed in the above light. One might have
a normed vector space whose elements are natural and easy to
understand (cf. the rational numbers), but for which the completion is
complicated and difficult to understand (cf. the real numbers).
But the property of completeness is itself so useful (cf. the usefulness of
the completeness of R) that one simply cannot function properly without
it.
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Topology of normed vector spaces

In normed vector spaces one can talk easily about many of the topics of
real analysis. The starting point is the following.

Definition (Open ball)
Let (V, ∥·∥) be a normed F-vector space. For r ∈ R>0 and v0 ∈ V, the open
ball of radius r and centre v0 is B(r, v0) = {v ∈ V | ∥v − v0∥ < r} and the
closed ball of radius r and centre v0 is B(r, v0) = {v ∈ V | ∥v − v0∥ ≤ r}.

The notion of an open ball in a normed vector space generalises the
usual notion of a “round” ball in Euclidean space. However, balls are not
always “round,” as you know from a homework problem.
With the notion of a ball, one defines the well-known properties for
subsets of normed vector spaces.
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Topology of normed vector spaces
Definition
Let (V, ∥·∥) be a normed F-vector space.

(i) A subset U ⊆ V is open if, for every v0 ∈ U, there exists ϵ ∈ R>0 such
that B(ϵ, v0) ⊆ U.

(ii) A subset A ⊆ V is closed if V \ A is open.
(iii) A subset B ⊆ V is bounded if B ⊆ B(R, 0V) for some R ∈ R>0.
(iv) A subset K ⊆ V is compact if, for every family (Ui)i∈I of open subsets of

V for which K ⊆ ∪i∈IUi, there exists a finite subset {i1, . . . , ik} ⊆ I such
that K ⊆ ∪k

j=1Uij .

Maybe the definition of compactness we give is not familiar to you. Here
are some facts about this definition that are not part of this course.

1 A subset K ⊆ V of a finite-dimensional normed vector space is compact if
and only if it is closed and bounded. Thus the definition we give agrees with
the one you already know.

2 For infinite-dimensional normed vector space, “compact” and “closed and
bounded” do not necessarily agree. For example, in an infinite-dimensional
normed vector space, closed balls are closed and bounded but not compact.
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Topology of normed vector spaces

Convergent and Cauchy sequences can be characterised using balls.

Definition
Let (V, ∥·∥) be a normed vector space and let (vj)j∈Z>0 be a sequence in V.

(i) The sequence converges to v0 ∈ V if, for every ϵ ∈ R>0, there exists
N ∈ Z>0 such that vj ∈ B(ϵ, v0) for j ≥ N.

(ii) The sequence is Cauchy if, for every ϵ ∈ R>0, there exists N ∈ Z>0 such
that vj, vk ∈ B(ϵ, v) for j, k ≥ N and for some v ∈ V.

We can also talk about continuous functions.

Definition
Let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces and let S ⊆ U. A map
ϕ : S → V is continuous at u0 ∈ S if, for every ϵ ∈ R>0, there exists δ ∈ R>0
such that ϕ(u) ∈ B(ϵ, ϕ(u0)) for every u ∈ S ∩ B(δ, u0).
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Topology of normed vector spaces

Continuous linear maps from (U, ∥·∥U) to (V, ∥·∥V) are important, so here
are some facts:

1 if U is finite-dimensional then any linear map from U to V is continuous;
2 if U is infinite-dimensional, then there are discontinuous linear maps from U

to V.

Continuous linear maps arise in system theory. Consider a system:

inputs System outputs

We have already claimed that it is useful to a system to be linear. Well,
very often a system is required to be continuous.
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Inner products

We now discuss a particular sort of normed vector space.

Definition (Inner product)
An inner product on an F-vector space V assigns to vectors v1, v2 ∈ V the
number ⟨v1, v2⟩ ∈ F, and the assignment satisfies the following rules:

(i) ⟨v1, v2⟩ = ⟨v2, v1⟩ for u, v ∈ V (symmetry);
(ii) ⟨a1 v1 + a2 v2, v⟩ = a1⟨v1, v⟩+ a2⟨v2, v⟩ for a1, a2 ∈ F and v1, v2 ∈ V

(linearity);
(iii) ⟨v, v⟩ ≥ 0 for v ∈ V, (positivity);
(iv) ⟨v, v⟩ = 0 only if v = 0V (definiteness).

Note that ⟨v, v⟩ ∈ R by the symmetry property.
Note that ⟨v1, av2⟩ = ⟨av2, v1⟩ = a⟨v2, v1⟩ = a⟨v1, v2⟩.
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Inner products

Definition (Inner product space)
An F-inner product space is a pair (V, ⟨·, ·⟩) with V an F-vector space and
⟨·, ·⟩ an inner product on V.

From inner products come norms. Indeed, we shall show that for an inner
product ⟨·, ·⟩, the assignment

v 7→ ∥v∥ ≜
√
⟨v, v⟩

defines a norm. (We use the norm notation ∥·∥, although the function has
yet to be shown to be a norm.)

Theorem (Cauchy–Bunyakovsky–Schwarz inequality)
For an F-inner product space (V, ⟨·, ·⟩) we have

|⟨v1, v2⟩| ≤ ∥v1∥ ∥v2∥, v1, v2 ∈ V.
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Inner products

Proof.
The result is obviously true for v2 = 0, so we shall suppose that v2 ̸= 0. We
first prove the result for ∥v2∥ = 1. In this case we have

0 ≤ ∥v1 − ⟨v1, v2⟩v2∥2

= ⟨v1 − ⟨v1, v2⟩v2, v1 − ⟨v1, v2⟩v2⟩
= ⟨v1, v1⟩ − ⟨v1, v2⟩⟨v2, v1⟩ − ⟨v1, v2⟩⟨v1, v2⟩+ ⟨v1, v2⟩⟨v1, v2⟩⟨v2, v2⟩
= ∥v1∥2 − |⟨v1, v2⟩|2,

using properties of inner products. Thus we have shown that, provided
∥v2∥ = 1,

|⟨v1, v2⟩|2 ≤ ∥v1∥2.

Taking square roots yields the result in this case. For ∥v2∥ ≠ 1 we define
v3 = v2

∥v2∥ so that ∥v3∥ = 1. In this case
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Inner products

Proof (cont’d).

|⟨v1, v3⟩| ≤ ∥v1∥

=⇒ |⟨v1, v2⟩|
∥v2∥

≤ ∥v1∥,

and so the inequality in the theorem holds.
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Reading for Lecture 10

Material related to this lecture can be found in the following sections of the
course notes:

1 Section III-3.1.2 (especially the first part);
2 Section III-3.2.1;
3 Section III-3.3.2;
4 Sections III-3.5.1 and III-3.5.2.
5 Section III-3.6.1 (especially the first part);
6 Section III-3.6.3;
7 Sections III-4.1.1 and III-4.1.2.
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Lecture 11
Inner products
Theorem
Let F ∈ {R,C}, let (V, ⟨·, ·⟩) be an F-inner product space, and define
V ∋ v 7→ ∥v∥ ∈ R≥0 be defined by ∥v∥ =

√
⟨v, v⟩. Then (V, ∥·∥) is a normed vector

space.

Proof.
All norm properties except the triangle inequality are easily verified. To verify the
triangle inequality, for v1, v2 ∈ V, we compute

∥v1 + v2∥2 = ⟨v1 + v2, v1 + v2⟩ = ∥v1∥2 + ⟨v1, v2⟩+ ⟨v2, v1⟩+ ∥v2∥2

= ∥v1∥2 + ⟨v1, v2⟩+ ⟨v1, v2⟩+ ∥v2∥2 = ∥v1∥2 + 2Re(⟨v1, v2⟩) + ∥v2∥2

≤ ∥v1∥2 + 2|Re(⟨v1, v2⟩)|+ ∥v2∥2 ≤ ∥v1∥2 + 2|⟨v1, v2⟩|+ ∥v2∥2

≤ ∥v1∥2 + 2∥v1∥∥v2∥+ ∥v2∥2 = (∥v1∥+ ∥v2∥)2,

using the Cauchy–Bunyakovsky–Schwarz inequality. Taking square roots gives
the result.
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Inner products

Definition (Hilbert space)
An F-Hilbert space is an F-inner product space that is a complete normed
vector space.

Do all norms come from inner products? Not hardly.

Theorem
If F ∈ {R,C} and if (V, ∥·∥) is a normed F-vector space, then the following
statements are equivalent:

(i) there exists an inner product ⟨·, ·⟩ on V such that ∥v∥ =
√
⟨v, v⟩ for all

v ∈ V;

(ii) ∥v1 + v2∥2 + ∥v1 − v2∥2 = 2
(
∥v1∥2 + ∥v2∥2

)
for every v1, v2 ∈ V

(parallelogram law).

The proof that (i) implies (ii) is a direct computation. The converse
implication is rather difficult. This is Theorem III-4.1.9 in the course notes.
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Examples of inner product spaces

Examples (Inner products)
1 Let V = Fn and define

⟨u, v⟩ = u1v1 + · · ·+ unvn.

This is easily verified to be an inner product. The corresponding norm is

v 7→ (|v1|2 + · · ·+ |vn|2)1/2,

i.e., the 2-norm on Fn. Since Fn is finite-dimensional, (Fn, ⟨·, ·⟩) is a
Hilbert space.

2 Let V = F∞
0 and define

⟨ϕ, ψ⟩ =
∞∑

n=1

ϕ(n)ψ(n).

This is easily verified to be an inner product. The corresponding norm is
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Examples of inner product spaces
Examples (Inner products (cont’d))

ϕ 7→
( ∞∑

n=1

|ϕ(n)|2
)1/2

,

i.e., the 2-norm on F∞
0 . Note that (F∞

0 , ∥·∥2) is not complete so (F∞
0 , ⟨·, ·⟩)

is not a Hilbert space.
However, if ϕ, ψ ∈ ℓ2(F) then note that, by
Cauchy–Bunyakovsky–Schwarz,

∣∣∣
∞∑

n=1

|ϕ(n)ψ(n)|
∣∣∣ ≤ ∥|ϕ|∥2∥|ψ|∥2 = ∥ϕ∥2∥ψ∥2 <∞.

Thus

⟨ϕ, ψ⟩ =
∞∑

n=1

ϕ(n)ψ(n)

makes sense (the sum on the right is absolutely convergent, and so
convergent) for ϕ, ψ ∈ ℓ2(F), and (ℓ2(F), ⟨·, ·⟩) is a Hilbert space.
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Examples of inner product spaces

Examples (Inner product spaces (cont’d))
3 Take V = C0([a, b];F) and define

⟨f , g⟩ =
∫ b

a
f (x)g(x) dx.

This is easily verified to be an inner product whose norm is

f 7→
(∫ b

a
|f (x)|2 dx

)1/2
,

i.e., the 2-norm. It is a fact that we have not yet explored that
(C0([a, b];F), ⟨·, ·⟩) is not a Hilbert space. We shall examine this, along
with the corresponding completion, later in the course.

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 11 March 1, 2022 104 / 310

Discrete-time signal spaces

We now have some structure that we can impose on spaces of signals,
the structure of a normed vector space or an inner product space.
Let T be a discrete time-domain with sampling interval ∆ and note that
FT denotes the set of F-valued signals on T.
Define

cfin(T;F) = {f ∈ FT | f (t) = 0 for all but finitely many t ∈ T};
c0(T;F) = {f ∈ FT | for each ϵ ∈ R>0 there exists a finite subset S ⊆ T

such that |f (t)| > ϵ iff t ∈ S};
ℓ∞(T;F) = {f ∈ FT | sup{|f (t)| | t ∈ T} <∞};
ℓp(T;F) =

{
f ∈ FT

∣∣∣
∑

t∈T
|f (t)|p <∞

}
,

where p ∈ [1,∞).
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Discrete-time signal spaces
On cfin(T;F), c0(T;F), and ℓ∞(T;F) we use the ∞-norm:

∥f∥∞ = sup{|f (t)| | t ∈ T}
and on ℓp(T;F), p ∈ [1,∞), we use the p-norm:

∥f∥p =
(
∆
∑

t∈T
|f (t)|p

)1/p
.

Let us record some useful facts. Some of these we have essentially
proved, others we state as facts whose proof is given in the course text.

1 If T is finite then

cfin(T;F) = c0(T;F) = ℓ∞(T;F) = ℓp(T;F) = FT,

and so the vector spaces are all finite-dimensional in this case. Because of
this, the use of the norm ∥·∥∞ or ∥·∥p is not significant in that the “topology”
on the spaces will be the same, no matter what norm is used; this is
Theorem III-3.1.15.

2 If T is infinite then

cfin(T;F) ⊂ ℓp(T;F) ⊂ c0(T;F) ⊂ ℓ∞(T;F) ⊂ FT.
This is obvious.
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Discrete-time signal spaces
3 If T is infinite then

c0(T;F) =
{

f ∈ FT
∣∣∣ lim

|t|→∞
f (t) = 0

}
.

4 We have previously considered the vector space F∞
0 which, in our present

language, is simply cfin(Z>0;F). For any infinite discrete time-domain T
there exists an isomorphism of normed vector spaces between
(cfin(T;F), ∥·∥∞) and (cfin(Z>0;F), ∥·∥∞). This isomorphism may not really
be natural; for example there is no really natural way to construct an
isomorphism from cfin(Z>0;F) to cfin(Z;F). However, the mere existence of
an isomorphism of normed vector spaces allows us to deduce for cfin(T;F)
certain of the properties we have deduced for F∞

0 . In particular, if T is
infinite then the normed vector space (cfin(T;F), ∥·∥∞) is not complete.

5 We had defined the vector space c0(F) which, in our present notation, is
precisely c0(Z>0;F). As in the preceding paragraph, there exists an
isomorphism of normed vector spaces between c0(Z>0;F) and c0(T;F) for
any infinite discrete time-domain T. Thus certain of the conclusions we have
deduced for c0(F) hold for c0(T;F) in this case. In particular,
(c0(T;F), ∥·∥∞) is an F-Banach space and is the completion of
(cfin(T;F), ∥·∥∞).
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Discrete-time signal spaces
6 We have considered the normed vector spaces (ℓp(F), ∥·∥p) for p ∈ {1, 2}.

We can also define

ℓp(F) =
{
ϕ : Z>0 → T

∣∣∣
∞∑

n=1

|ϕ(n)|p < ∞
}
.

This can be shown to be a subspace of F∞. Moreover,

∥ϕ∥p =
( ∞∑

n=1

∆|ϕ(n)|p
)1/p

defines a norm on ℓp(F) and the resulting normed vector space is a Banach
space.
In terms of our present notation we have ℓp(F) = ℓp(Z>0;F). It is not difficult
to show that, in fact, the normed vector spaces (ℓp(T;F), ∥·∥p) and
(ℓp(Z>0;F), ∥·∥p) are isomorphic (up to a constant factor of ∆1/p for the
norm) for any infinite discrete time-domain T. This allows us to draw
conclusions for ℓp(T;F) based on conclusions we have already drawn for
ℓp(F). For example (ℓp(T;F), ∥·∥p) is an F-Banach space and is the
completion of (cfin(T;F), ∥·∥p). This Banach space is a Hilbert space if and
only if p = 2.
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Discrete-time signal spaces

The inclusion relations for the most important (for us) discrete-time signal
spaces is as follows, the left diagram for bounded time-domains and the
right diagram for unbounded time-domains.

ℓ1 = ℓ2 = ℓ∞ = c0 ℓ∞c0ℓ2ℓ1
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Reading for Lecture 11

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections III-4.1.1 and III-4.1.2;
2 Sections IV-1.2.2, IV-1.2.3, and IV-1.2.7.
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Lecture 12
Continuous-time signal spaces

Continuous-time signals are much more complicated than discrete-time
signals.
Let T be a continuous time-domain, i.e., an interval. We may still denote
FT as the vector space of F-valued signals on T. For reasons that are
not perfectly clear presently, FT is too large to be of much use. A hint as
to why would be that arbitrary signals are not integrable, and so the
definitions of the norms ∥·∥1 and ∥·∥2 on, for example, C0([a, b];F) are not
defined for general signals.
Question: What is the smallest class of signals one might wish to include
in the collection of all signals?
Possible answer: All continuous signals, denoted by C0(T;F).
Objection: The set of all continuous signals may be too large if one wants
to use the norms ∥·∥1 or ∥·∥2. For example, if T = R, then the continuous
signal t 7→ 1 does not have its 1- or 2-norm defined.
The support of a continuous signal f : T → F is

supp(f ) = cl({t ∈ T | f (t) ̸= 0}) ∩ T.
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Continuous-time signal spaces

For a continuous time-domain T, let C0
cpt(T;F) be the set of continuous

signals f : T → F such that supp(f ) is compact.
Actual answer: We ask that all signal spaces on a continuous
time-domain T contain C0

cpt(T;F).

Proposition
If int(T) ̸= ∅ then C0

cpt(T;F) is infinite-dimensional.

Proof.
We first show that C0([0, 1];R) is infinite-dimensional. We consider the family
of signals F = (fj)j∈Z>0 in C0([0, 1];R) given by fj(t) = sin(2πjt). We claim that
this set is linearly independent. Let j1, . . . , jk ∈ Z>0 and suppose that

c1fj1 + · · ·+ ckfjk = 0.

Then
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Continuous-time signal spaces
Proof (cont’d).

c1 sin(2πj1t) + · · ·+ ck sin(2πjkt) = 0, t ∈ [0, 1]

=⇒
∫ 1

0
(c1 sin(2πj1t) + · · ·+ ck sin(2πjkt)) sin(2πjmt) dt, m ∈ {1, . . . , k}

=⇒ 2cjm = 0, m ∈ {1, . . . , k},

using the fact that

∫ 1

0
sin(2πmt) sin(2πnt) dt =

{
2, m = n,
0, m ̸= n.

Thus every finite subset of F is linearly independent, and so F is linearly
independent.
Now, if T is an arbitrary continuous time-domain with a nonempty interior, there is
some interval [a, b] ⊆ T. The sequence (fj)j∈Z>0 defined by fj(t) = sin( 2πj(t−a)

b−a ) is
linearly independent.
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Norms on continuous-time signal spaces

Now let us investigate the topological structure of continuous-time signal
spaces.
Note that if f ∈ C0

cpt(T,F) then we can define

∥f∥∞ = sup{|f (t)| | t ∈ T}

and
∥f∥p =

(∫

T

|f (t)|p dt
)1/p

, p ∈ [1,∞).

Moreover, ∥·∥p, p ∈ [1,∞] is a norm.
Question: What are the properties of the normed vector space
(C0

cpt(T;F), ∥·∥p)?

Useful analogy: One can think of C0
cpt(T;F) as playing the same rôle for

continuous-time signals as cfin(T;F) plays for discrete-time signals.
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Continuous-time signals with the ∞-norm

We begin by studying the ∞-norm. It turns out that convergence in this
norm is known to you from your past life.

Definition (Pointwise and uniform convergence)
Let T be a continuous time-domain and let (fj)j∈Z>0 be a sequence of
F-valued signals on T.

(i) The sequence converges pointwise to f : T → F if, for each t ∈ T and
for each ϵ ∈ R>0, there exists N ∈ Z>0 such that |f (t)− fj(t)| < ϵ for all
j ≥ N.

(ii) The sequence converges uniformly to f : T → F if, for each ϵ ∈ R>0,
there exists N ∈ Z>0 such that |f (t)− fj(t)| < ϵ for all t ∈ T and for all
j ≥ N.
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Continuous-time signals with the ∞-norm

Example
On T = [0, 1] we consider the sequence of R-valued signals defined by

fj(t) =





2jt, t ∈ [0, 1
2j ],

−2jt + 2, t ∈ ( 1
2j ,

1
j ],

0, t ∈ ( 1
j , 1].

The sequence looks like this:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

f j
(x
)
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Continuous-time signals with the ∞-norm

Example (cont’d)
We claim that the sequence converges pointwise to the limit signal f (t) = 0,
t ∈ T. Since fj(0) = 0 for all j ∈ Z>0, obviously the sequence converges to 0 at
t = 0. For t ∈ (0, 1], if N ∈ Z>0 satisfies 1

N < t then we have fj(t) = 0 for j ≥ N.
Thus we do indeed have pointwise convergence to f .
We claim that the sequence does not converge uniformly. Indeed, for any
positive ϵ < 1, we see that fj( 1

2j ) = 1 > ϵ for every j ∈ Z>0. This prohibits our
asserting the existence of N ∈ Z>0 such that |f (t)− fj(t)| < ϵ for every
t ∈ [0, 1], provided that j ≥ N. Thus convergence is indeed not uniform.

Proposition
For a continuous time-domain T, a sequence (fj)j∈Z>0 of bounded signals
converges uniformly to f if and only if the sequence converges to a bounded
signal f in the norm ∥·∥∞.
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Continuous-time signals with the ∞-norm

“Proof”.
This is more or less simply a matter of working through the definitions.
Consider the following picture as a guide:

f

fj

fk

2ǫ

The point is that both uniform convergence and convergence in the ∞-norm
require that the signals in the sequence get close to the limit signal over the
entire domain.

So convergence in the norm ∥·∥∞ is “simple.”
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Reading for Lecture 12

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-1.3.1, IV-1.3.2, and IV-1.3.3.
2 Sections III-3.3.1 and III-3.8.5.
3 Sections I-3.6.1 and I-3.6.2.
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Lecture 13
Continuous-time signals with the ∞-norm

Next let us consider completeness using the ∞-norm. To do this it is
convenient to define

C0
bdd(T;F) = {f ∈ C0(T;F) | f is bounded}.

We have C0
bdd(T;F) = C0(T;F) if and only if T is compact. Some

intuition for this. . .
1 If T is not bounded, then a continuous signal can grow attain arbitrarily large

values for large times. Consider, for example, T = R≥0 and f (t) = t.
2 If T is bounded but not closed, then at an open boundary of T, a continuous

signal can attain arbitrarily large values. Consider, for example, T = (0, 1]
and f (t) = 1

t .

Useful analogy: One can think of C0
bdd(T;F) as playing the same rôle for

continuous-time signals as ℓ∞(T;F) plays for discrete-time signals. We
shall not deal too often with either class of signals, but they do provide
some helpful structure.
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Continuous-time signals with the ∞-norm
Theorem
For a continuous time-domain T, (C0

bdd(T;F), ∥·∥∞) is a Banach space.

Proof.
Let (fj)j∈Z>0 be a Cauchy sequence in (C0

bdd(T;F), ∥·∥∞).
1 The sequence converges pointwise: Let t ∈ T and let ϵ ∈ R>0. Since

(fj)j∈Z>0 is Cauchy, there exists N ∈ Z>0 such that ∥fj − fk∥∞ < ϵ for
j, k ≥ N. We then have

|fj(t)− fk(t)| ≤ ∥fj − fk∥∞ < ϵ

for j, k ≥ N. This shows that the sequence (fj(t))j∈Z>0 is a Cauchy
sequence in F. Thus it converges to some limit which we denote by f (t).
This defines a signal f : T → F.

2 The sequence converges uniformly: Let ϵ ∈ R>0 and let N1 ∈ Z>0 have
the property that ∥fj − fk∥∞ < ϵ

2 for j, k ≥ N1. Then |fj(t)− fk(t)| < ϵ
2 for

j, k ≥ N1 and for each t ∈ T. Now let t ∈ T and let N2 ∈ Z>0 have the
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Continuous-time signals with the ∞-norm
Proof (cont’d).

property that |f (t)− fk(t)| < ϵ
2 for k ≥ N2. Then, for j ≥ N1, we compute

|f (t)− fj(t)| ≤ |fj(t)− fk(t)|+ |f (t)− fk(t)| < ϵ,

where k ≥ max{N1,N2}. Thus we have uniform convergence, as desired.
3 The limit signal is bounded: Let N ∈ Z>0 be sufficiently large that

|f (t)− fj(t)| < 1 for j ≥ N and for all t ∈ T, this being possible by uniform
convergence. Then, for t ∈ T,

|f (t)| ≤ |f (t)− fN(t)|+ |fN(t)| < ∥fN∥∞ + 1,

giving boundedness of f .
4 The limit signal is continuous: Let ϵ ∈ R>0. By uniform convergence,

there exists N ∈ Z>0 such that |f (t)− fj(t)| < ϵ
3 for all t ∈ T and j ≥ N.

Now fix t0 ∈ T, and consider the N ∈ Z>0 just defined. By continuity of fN ,
there exists δ ∈ R>0 such that, if t ∈ T satisfies |t − t0| < δ, then
|fN(t)− fN(t0)| < ϵ

3 . Then, for t ∈ I satisfying |t − t0| < δ, we have
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Continuous-time signals with the ∞-norm
Proof (cont’d).

|f (t)− f (t0)| = |(f (t)− fN(t)) + (fN(t)− fN(t0)) + (fN(t0)− f (t0))|
≤ |f (t)− fN(t)|+ |fN(t)− fN(t0)|+ |fN(t0)− f (t0)|
< ϵ

3 + ϵ
3 + ϵ

3 = ϵ,

where we have used the triangle inequality. Since this argument is valid
for any t0 ∈ T, it follows that f is continuous.

This shows that the sequence (fj)j∈Z>0 converges to the bounded continuous
signal f in the norm ∥·∥∞.

You may have seen the following result which was arrived at along the
way.

Corollary
A uniformly convergent sequence of continuous bounded functions has a
bounded continuous limit.
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Reading for Lecture 13

Material related to this lecture can be found in the following sections of the
course notes:

1 Section I-3.6.2.
2 Section III-3.8.4.
3 Section IV-1.3.2.
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Lecture 14
Continuous-time signals with the ∞-norm

If T is compact then

C0
cpt(T;F) = C0

bdd(T;F) = C0(T;F).

Thus these three (identical) normed vector spaces are Banach spaces
when equipped with the ∞-norm.
What if T is not compact?
We claim that if T is not compact, then (C0

cpt(T;F), ∥·∥∞) is not a Banach
space. Here is some intuition for this.
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Continuous-time signals with the ∞-norm
1 If T is unbounded, then one can have a Cauchy sequence of signals

whose domain grows in size so that the limit signal is not compact. For
example, consider T = R≥0 and a sequence (fj)j∈Z>0 in C0

cpt(T;F)
defined by

fj(t) =





e−t, t ∈ [0, j],
e−j(j + 1 − t), t ∈ (j, j + 1],
0, t ∈ (j + 1,∞).

Here are the first three terms in the sequence:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

t

f j
(t
)

One can show that this is a nonconvergent Cauchy sequence; this is
done rather in the same way we showed the existence of a
nonconvergent Cauchy sequence in (F∞

0 , ∥·∥∞). The main idea here is
that the “limit signal,” f (t) = e−t, does not have compact support.
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Continuous-time signals with the ∞-norm
2 If T is bounded but not closed, then the construction is more subtle.

Consider T = (0, 1] and the sequence (fj)j∈Z>0 defined by

fj(t) =





t, t ∈ [ 1
j , 1],

(1 + j)t − 1, t ∈ [ 1
j+1 ,

1
j ),

0, t ∈ [0, 1
j+1 ).

Here are the first five terms in the sequence:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t

f j
(t
)

One may show that this is a nonconvergent Cauchy sequence. The issue
is that the “limit signal,” f (t) = t, does not have compact support. Make
sure you understand why this signal does not have compact support.
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Continuous-time signals with the ∞-norm
The preceding discussion hopefully makes the following assertion
believable.

Theorem
The completion of (C0

cpt(T;F), ∥·∥∞) is (C0
0(T;F), ∥·∥∞), where

C0
0(T;F) = {f ∈ C0(T;F)| for every ϵ ∈ R>0 there exists a compact set K ⊆ T

such that {t ∈ T | |f (t)| ≥ ϵ} ⊆ K}.

This theorem is analogous to the statement for discrete-time signals that
(c0(T;F), ∥·∥∞) is the completion of (cfin(T;F), ∥·∥∞).
If T is closed and infinite then

C0
0(T;F) =

{
f ∈ C0(T;F)

∣∣∣ lim
|t|→∞

f (t) = 0
}
.

The point is that, when using the ∞-norm, completions are comprised of
spaces of continuous signals.
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Continuous-time signals with the p-norms
Now we consider the completion of (C0

cpt(T;F), ∥·∥p) where p ∈ [1,∞).
Even when T is compact, these spaces are not complete.

Example
Let T = [0, 1] and consider the sequence of signals (fj)j∈Z>0 in C0(T;R)
defined by

fj(t) =





1, t ∈ [ 1
2 , 1],

2jt + 1 − j, t ∈ [ 1
2 − 1

2j ,
1
2 ),

0, t ∈ [0, 1
2 − 1

2j ).

Here are a few terms in the sequence:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

f j
(x
)
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Continuous-time signals with the p-norms

Example (cont’d)

Claim
The sequence is Cauchy with respect to the norm ∥·∥1.

Proof.
Suppose that k ≥ j so that the signal fj − fk is positive. A simple computation
gives

∥fj − fk∥1 =

∫ 1

0
|fj(t)− fk(t)| dt =

∫ 1

0
(fj(t)− fk(t)) dt =

∫ 1

0
fj(t) dt −

∫ 1

0
fk(t) dt

=
1
2
+

1
4j

− 1
2
− 1

4k
=

1
4j

− 1
4k
.

For N large enough that 1
2N < ϵ we have ∥fj − fk∥1 < ϵ for j, k ≥ N, showing that

the sequence is Cauchy.
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Continuous-time signals with the p-norms

Example (cont’d)

Claim
The sequence does not converge in the norm ∥·∥1.

Proof.
We claim that if (fj)j∈Z>0 converges to g ∈ C0([0, 1];R) then g(t) = 0 for
t ∈ [0, 1

2 ) and g(t) = 1 for t ∈ ( 1
2 , 1]. To see that the first part of this assertion

holds, suppose that g(t0) > 0 for some t0 ∈ [0, 1
2 ). Then, by continuity of g,

there exists a closed interval I such that g(t) ≥ 1
2 g(t0) for all t ∈ I and such that

I ⊆ [0, 1
2 ). Choose N sufficiently large that 1

2 − 1
2j lies to the right of I for j ≥ N.

Then fj(t) = 0 for all t ∈ I and for j ≥ N. Therefore, for j ≥ N,

∥g − fj∥1 =

∫ 1

0
|g(t)− fj(t)| dt ≥

∫

I
|g(t)− fj(t)| dt ≥ 1

2 g(t0)ℓ(I),
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Continuous-time signals with the p-norms

Example (cont’d)

Proof (cont’d).
where ℓ(I) is the length of I. This precludes (fj)j∈Z>0 from converging to g. We
arrive at a similar conclusion in a similar manner if g(t0) < 0 for some
t0 ∈ [0, 1

2 ). Thus g(t) = 0 for t ∈ [0, 1
2 ). The proof that g(t) = 1 for t ∈ ( 1

2 , 1]
follows in a similar way.
The proof is concluded by noting that there is no continuous signal taking the
values of g on [0, 1] \ { 1

2}.

Thus (C0([0, 1];R), ∥·∥1) is not complete.

The same sequence in the example can be used to show that
(C0([0, 1];R), ∥·∥p) is not complete for p ∈ [1,∞).
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Reading for Lecture 14

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections III-3.3.1, III-3.8.4, and III-3.8.7.
2 Sections IV-1.3.2 and IV-1.3.3.
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Lecture 15
Continuous-time signals with the p-norms

Question: What is the completion of (C0
cpt(T;F), ∥·∥p) for a continuous

time-domain T and for p ∈ [1,∞)?
To answer this question, we need to ascertain the sorts of signals that
Cauchy sequences in (C0

cpt(T;F), ∥·∥p) are “trying” to converge to.
Our example above suggests that we need to allow discontinuous signals
as limits of Cauchy sequences. But “how discontinuous” can these limit
signals be?
Possible answer: Based on what we have seen for normed vector spaces
of discrete-time signals, a perfectly reasonable guess for the completion
of (C0

cpt(T;F), ∥·∥p) is

R(p)(T;F) =
{

f : T → F
∣∣∣
∫

T

|f (t)|p dt <∞
}
.

Here “R” denotes “Riemann integrable.”
There are at least two problems with this guess:

1 ∥·∥p does not define a norm on R(p)(T;F) since there are nonzero signals
with zero seminorm (this is easy to deal with);

2 R(p)(T;F) is not complete in the p-norm (dealing with this requires effort).
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The Riemann integral

We sketch the definition of the Riemann integral.
We first consider a bounded function f defined on [a, b].

1 Partition [a, b] into a disjoint collection of intervals I1, . . . , Ik. Call this partition
P.

2 Define two functions s−(f ,P) and s+(f ,P) by asking that, if x ∈ Ij, then

s−(f ,P)(x) = cj,− ≜ inf{f (y) | y ∈ Ij}, s+(f ,P)(x) = cj,+ ≜ sup{f (y) | y ∈ Ij}.

These are the lower step function and the upper step function for the
function and the partition.

3 Define

A−(f ,P) =
k∑

j=1

c−,jℓ(Ij), A+(f ,P) =
k∑

j=1

c+,jℓ(Ij).

These are the lower Riemann sum and the upper Riemann sum for the
function and the partition.
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The Riemann integral
4 The function f is Riemann integrable if, for every ϵ ∈ R>0, there exists a

partition P such that A+(f ,P)− A−(f ,P) < ϵ.
5 If f is Riemann integrable and if Pn is a partition such that

A+(f ,Pn)− A−(f ,Pn) <
1
n , then the Riemann integral of f is

∫ b

a
f (x) dx = lim

n→∞
A−(f ,Pn) = lim

n→∞
A+(f ,Pn),

and the two limits may be verified to indeed be equal, and moreover
independent of the choice of sequence of partitions (Pn)n∈Z>0 .

Examples (Riemann integrable functions)
1 Fact: Continuous functions with compact support are Riemann integrable.
2 If x0 ∈ [a, b] consider f : [a, b] → R defined by

f (x) =

{
1, x = x0,

0, x ̸= x0.

To show that this function is Riemann integrable, consider the sequence
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The Riemann integral

Examples (Riemann integrable functions (cont’d))
of upper and lower step functions

s−,n(x) = 0, s+,n(x) =

{
1, |x − x0| < 1

n ,

0, otherwise.

We obviously have

lim
n→∞

∫ b

a
s−,n(x) dx = lim

n→∞

∫ b

a
s+,n(x) dx = 0,

so the function is Riemann integrable with Riemann integral zero.
3 The Riemann integral is linear. Thus if f and g are Riemann integrable

and if c ∈ R then f + g and cf are Riemann integrable and
∫

I
(f (x) + g(x)) dx =

∫

I
f (x) dx +

∫

I
g(x) dx,

∫

I
cf (x) dx = c

∫

I
f (x) dx.
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Reading for Lecture 15

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-1.3.2 and IV-1.3.3.
2 Sections I-3.4.1 and I-3.4.2.
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Lecture 16
The Riemann integral

Now let I be an arbitrary interval and first suppose that f is
nonnegative-valued and such that f |K is Riemann integrable for every
compact interval K ⊆ I.

1 If I = [a, b] then the Riemann integral of f is as defined in the preceding
section.

2 If I = (a, b] then define
∫ b

a
f (x) dx = lim

ra↓a

∫ b

ra

f (x) dx.

3 If I = [a, b) then define
∫ b

a
f (x) dx = lim

rb↑b

∫ rb

a
f (x) dx.
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The Riemann integral

4 If I = (a, b) then define
∫ b

a
f (x) dx = lim

ra↓a

∫ c

ra

f (x) dx + lim
rb↑b

∫ rb

c
f (x) dx

for some c ∈ (a, b).
5 If I = (−∞, b] then define

∫ b

−∞
f (x) dx = lim

R→∞

∫ b

−R
f (x) dx.

6 If I = (−∞, b) then define
∫ b

−∞
f (x) dx = lim

R→∞

∫ c

−R
f (x) dx + lim

rb↑b

∫ rb

c
f (x) dx

for some c ∈ (−∞, b).
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The Riemann integral
7 If I = [a,∞) then define

∫ ∞

a
f (x) dx = lim

R→∞

∫ R

a
f (x) dx.

8 If I = (a,∞) then define
∫ ∞

a
f (x) dx = lim

ra↓a

∫ c

ra

f (x) dx + lim
R→∞

∫ R

c
f (x) dx

for some c ∈ (a,∞).
9 If I = R then define

∫ ∞

−∞
f (x) dx = lim

R→∞

∫ c

−R
f (x) dx + lim

R→∞

∫ R

c
f (x) dx

for some c ∈ R.
The function f is Riemann integrable if the appropriate of the above
limits is finite. The Riemann integral is the value of the limit and denoted

∫

I
f (x) dx.
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The Riemann integral
If I is a general interval and if f : I → R then define

f−(x) = −min{f (x), 0}, f+(x) = max{f (x), 0}.

Then f is Riemann integrable if both f− and f+ are Riemann integrable
and the Riemann integral of f is

∫

I
f (x) dx =

∫

I
f+(x) dx −

∫

I
f−(x) dx.

Example
Take I = (0, 1] and f (x) = x−1/2. Then

lim
r↓0

∫ 1

r
f (x) dx = lim

r↓0
2
√

x
∣∣1
r = 2.

Thus f is an example of an unbounded function defined on a noncompact
interval that is Riemann integrable.
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The Riemann integral

Example (A function that is not Riemann integrable)
Let (qj)j∈Z>0 be an enumeration of the rational numbers in [0, 1]. Let
fk : [0, 1] → R be defined by

fk(x) =

{
1, x ∈ {q1, . . . , qk},
0, otherwise.

Note that fk is Riemann integrable. Indeed, it is a finite sum of functions, each
of which takes the value 1 at a point in [0, 1] and is zero elsewhere. Each such
function is Riemann integrable, as we have seen.
The pointwise limit function, f (x) = limk→∞ fk(x), is not Riemann integrable.
Indeed,

f (x) =

{
1, x ∈ Q ∩ [0, 1],
0, otherwise.

If s− is a lower step function for f then we claim that s−(x) = 0 for every
x ∈ [0, 1]. Indeed, if I is any interval in the partition defining s− then there is an
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The Riemann integral

Example (A function that is not Riemann integrable (cont’d))
irrational number in I since there is a rational number in any nontrivial interval.
Thus s−(x) ≤ 0 for x ∈ I. Moreover, since f (x) ≥ 0 for every x ∈ I, we also
have s−(x) ≥ 0 for all x ∈ I. Thus s−(x) = 0 for all x ∈ I, and since this holds
for every interval of the partition, s−(x) = 0 for all x ∈ [0, 1]. The same sort of
argument, using the fact that every nontrivial interval contains an irrational
number, shows that if s+ is an upper step function for f , then s+(x) = 1 for
every x ∈ [0, 1]. Therefore, A+(f ,P)− A−(f ,P) = 1 for every partition P. This
precludes f from being Riemann integrable.
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The Riemann integral
Note that not only is f above not Riemann integrable, it is the pointwise
limit of Riemann integrable functions. Thus we do not have

lim
k→∞

∫ 1

0
fk(x) dx =

∫ 1

0
lim

k→∞
fk(x) dx,

since the left limit is zero, whereas the expression on the right makes no
sense, since the integral is not defined. This is problematic. Moreover. . .

Proposition
For p ∈ [1,∞), there exists a Cauchy sequence in (C0([0, 1];R); ∥·∥p) for which
there is no limit in (R(p)([0, 1];R), ∥·∥p).

See course notes for proof.
This is essentially Proposition III-2.1.12 in the course notes. The sequence of
functions in the proof of that result are not continuous, but can be made
continuous without changing the result.
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The Riemann integral

The upshot is that there is an inherent defect in using the Riemann
integral to define the p-norm. This can be rectified by using a more
general notion of the integral, the “Lebesgue integral.” This we now
sketch.
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Lebesgue outer measure
The objective of measure theory is to measure the “size” of sets
according to a rule which has useful properties.
It is convenient to use the extended real numbers,
R = {−∞} ∪R ∪ {∞} on which we inherit the expected operations of
addition, multiplication, absolute value, and order. Note that R is not a
field since, for example, ∞+ (−∞) is not defined. We also denote
R≥0 = R≥0 ∪ {∞}.
The collection of subsets of a set X we denote by 2X.

Definition (Outer measure)
An outer measure on a set X is a map µ∗ : 2X → R≥0 with the following
properties:

(i) µ∗(∅) = 0;
(ii) µ∗(A) ≤ µ∗(B) if A ⊆ B;

(iii) µ∗
(∞⋃

j=1

Aj

)
≤

∞∑

j=1

µ∗(Aj) for Aj ⊆ X, j ∈ Z>0.
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Lebesgue outer measure
The idea is that an outer measure provides some rule for measuring the
“size” of subsets of a set X. Note that the axioms of an outer measure all
agree with one’s intuition about how “size” should behave. What is not so
clear is that these are the right axioms; other axioms might also seem
just as reasonable. This is an important thing to think about, but the only
(lame) answer we will give here is that these rules give the desired
conclusions in examples, mainly in the only example we consider here.
Speaking of this. . .

Definition (Lebesgue outer measure)
The Lebesgue outer measure of a set A ⊆ R is

λ∗(A) = inf
{ ∞∑

j=1

(bj − aj)
∣∣∣ A ⊆

∞⋃

j=1

(aj, bj)
}
.

In words, the Lebesgue outer measure of A is the infimum of the total
length of any countable collection of open intervals which cover A.
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Reading for Lecture 16

Material related to this lecture can be found in the following sections of the
course notes:

1 Section I-3.4.4.
2 Section III-2.3.2 (parts of this).
3 Section III-2.4.1 (parts of this).
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Lecture 17
Lebesgue outer measure
Theorem
The Lebesgue outer measure is an outer measure, and if I ⊆ R is an interval,
then λ∗(I) is the length of I.

Partial proof.
We will only prove the last part of this as it give some idea of the Lebesgue outer
measure works.
We first take I = [a, b]. We may cover [a, b] by {(a − ϵ

4 , b + ϵ
4 )} ∪ ((0, ϵ

2j+1 ))j∈Z>0 .
Therefore,

λ∗([a, b]) ≤ (b + ϵ
4 − a + ϵ

4 ) +

∞∑

j=1

ϵ

2j+1 = b − a + ϵ,

where we use Example I-2.4.2–1. Since ϵ can be made arbitrarily small we have
λ∗([a, b]) ≤ b − a. Also, suppose that ((aj, bj))j∈Z>0 covers [a, b]. By the
Heine–Borel Theorem, there exists n ∈ Z>0 such that [a, b] ⊆ ∪n

j=1(aj, bj). Among
the intervals ((aj, bj))

n
j=1 we can pick a subset ((ajk , bjk))

m
k=1 with the
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Lebesgue outer measure
Partial proof (cont’d).
properties that a ∈ (aj1 , bj1), b ∈ (ajm , bjm), and bjk ∈ (ajk+1 , bjk+1). (Do this by
choosing (aj1 , bj1) such that a is in this interval. Then choose (aj2 , bj2) such that
bj1 is in this interval. Since there are only finitely many intervals covering [a, b],
this can be continued and will stop by finding an interval containing b.) These
intervals then clearly cover [a, b] and also clearly satisfy

∑m
k=1|bjk − ajk | ≥ b − a

since they overlap. Thus we have

b − a ≤
m∑

k=1

|bjk − ajk | ≤
∞∑

j=1

|bj − aj|.

Thus b − a is a lower bound for the set

{ ∞∑

j=1

|bj − aj|
∣∣∣ [a, b] ⊆

⋃

j∈Z>0

(aj, bj)
}
.

Since λ∗([a, b]) is the greatest lower bound we have λ∗([a, b]) ≥ b − a. Thus
λ∗([a, b]) = b − a.
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Lebesgue outer measure

Partial proof (cont’d).
Now let I be a bounded interval and denote cl(I) = [a, b]. Since I ⊆ [a, b] we
have λ∗(I) ≤ b − a using monotonicity of λ∗. If ϵ ∈ R>0 we may find a closed
interval J ⊆ I for which the length of I exceeds that of J by at most ϵ. Since
λ∗(J) ≤ λ∗(I) by monotonicity of λ∗, it follows that λ∗(I) differs from the length
of I by at most ϵ. Thus

λ∗(I) ≥ λ∗(J) = b − a − ϵ.

Since ϵ ∈ R>0 is arbitrary λ∗(I) ≥ b− a, showing that λ∗(I) = b− a, as desired.
Finally, if I is unbounded then for any M ∈ R>0 we may find a closed interval
J ⊆ I for which λ∗(J) > M. Since λ∗(I) ≥ λ∗(J) by monotonicity of λ∗, this
means that λ∗(I) = ∞.

The point: The Lebesgue outer measure provides a way of measuring the
“size” of a subset of R. Moreover, it has the following properties:

1 it is a fairly natural definition;
2 it agrees with our preexisting notions of “size.”
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Measures and measures from outer measures
The Lebesgue outer measure seems like such a natural construction that
one might be tempted to stop in one’s quest to measure “size.” However,
the Lebesgue outer measure has a problem. The problem is that there
exists sets A,B ⊆ R, with A ∩ B = ∅, for which

λ∗(A ∪ B) ̸= λ∗(A) + λ∗(B).

That is, it can happen that the sum of the outer measure of disjoint sets is
not equal to the sum of the union of the sets. This is not a property which
“size” should have. To rectify this is not so straightforward.
The starting point is the following definition.

Definition (σ-algebra)
Let X be a set. A σ-algebra on X is a family A of subsets of X such that

(i) X ∈ A ,
(ii) A ∈ A implies X \ A ∈ A , and
(iii) ∪j∈Z>0 Aj ∈ A for any countable family (Aj)j∈Z>0 of subsets.
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Measures and measures from outer measures
Exercise: ∩j∈Z>0 Aj ∈ A for any countable family (Aj)j∈Z>0 of subsets.
The idea is that a σ-algebra will provide a collection of subsets whose size we
wish to measure.
It is true that 2X is a σ-algebra, but there may well be σ-algebras of interest
that are smaller than this. Indeed, we shall be interested in one of these.
A pair (X,A ) is a measurable space if A is a σ-algebra on X. Sets in A are
called measurable.

Definition (Measure)
For a set X and a σ-algebra A on X, a measure on A is a map µ : A → R such
that

(i) µ(∅) = 0;

(ii) µ
( ⋃

j∈Z>0

Aj

)
=

∞∑

j=1

µ(Aj) for every countable family (Aj)j∈Z>0 of pairwise disjoint

sets from A .

A triple (X,A , µ) is a measure space if A is a σ-algebra on X and if µ is a
measure on A .
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Measures and measures from outer measures
Here are some useful properties of measures:

1 µ(A) ≤ µ(B) if A ⊆ B;
2 if µ(A) < ∞ then µ(B \ A) = µ(B)− µ(A);
3 for every countable family of subsets (Aj)j∈Z>0 from A for which Aj ⊆ Aj+1,

j ∈ Z>0, µ
( ⋃

j∈Z>0

Aj

)
= lim

j→∞
µ(Aj);

4 for every countable family of subsets (Aj)j∈Z>0 from A for which Aj ⊇ Aj+1,

j ∈ Z>0, for which µ(Ak) < ∞ for some k ∈ Z>0, µ
( ⋂

j∈Z>0

Aj

)
= lim

j→∞
µ(Aj).

A common way of arriving at a measure is to begin with an outer
measure. The key is the following definition.

Definition (Measurable set)
Let µ∗ be an outer measure on a set X. A subset A ⊆ X is µ∗-measurable if,
for every subset S ⊆ X, we have

µ∗(S) = µ∗(S ∩ A) + µ∗(S ∩ (S \ A)).
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Measures and measures from outer measures

The idea behind a measurable set is depicted as follows:

X

S A

µ∗(S ∩ (X \A))

µ∗(S ∩A)

Because the defining property of a measurable set is so natural, what is
not obvious is that nonmeasurable sets exist. But they do for the
Lebesgue outer measure. But before we get to that. . .
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Reading for Lecture 17

Material related to this lecture can be found in the following sections of the
course notes:

1 Section III-2.3.2 (parts of this).
2 Section III-2.4.1 (parts of this).
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Lecture 18
Measures and measures from outer measures

Theorem (Measures from outer measures)
Let µ∗ be an outer measure on a set X, denote byM (X, µ∗) the family of µ∗

measurable sets, and denote µ = µ∗|M (X, µ∗). Then (X,M (X, µ∗), µ) is a
measure space.

It may be the case that for a given outer measure, all subsets are
µ∗-measurable. The slightly odd thing is when there are sets that are not
µ∗-measurable. However, this can happen.
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Lebesgue measure
The family of λ∗-measurable subsets of R will be denoted by L (R).
Subsets from L (R) will be said to be Lebesgue measurable and λ is
the Lebesgue measure.
It is a fact that L (R) ⊂ 2R ; that is to say, there are subsets of R that are
not Lebesgue measurable. The construction of such a set is not obviously
done, and indeed relies crucially on the Axiom of Choice. We will never
see in this course an example of a set that is not Lebesgue measurable.
Here is a large class of Lebesgue measurable sets.

Definition (Borel sets)
Denote byB (R) the smallest σ-algebra on R containing the open subsets of
R. Subsets fromB (R) are called Borel sets.

B (R) ⊂ L (R) and the only subsets of R you will see in this course are
Borel sets.
To construct the Borel sets, one first takes complements and countable
unions of open sets. Then one takes complements and countable unions
of the resulting sets. One continues this process “transfinitely often” (this
is a lot of times) to arrive at the Borel sets.
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Lebesgue measure

Interesting facts about L (R) andB (R).
1 card(B(R)) = card(R) and card(L (R)) = card(2R). Thus there are many

more Lebesgue measurable sets than Borel sets.
2 If A ∈ L (R), then there exists B ∈B(R) and Z ∈ L (R) such that λ(Z) = 0

and A = B ∪ Z. Thus Lebesgue measurable sets are “almost” Borel.
3 If A ∈ L (R) then there exists a sequence (Uj)j∈Z>0 of open sets and a

sequence (Kj)j∈Z>0 of compact sets such that A ⊆ Uj and A ⊇ Kj, j ∈ Z>0,
and for which

λ(A) = lim
j→∞

λ(Uj) = lim
j→∞

λ(Kj).

Thus sets from L (R) are “approximated” both by open and compact sets.
4 λ is “translation-invariant.” Thus if A is Lebesgue measurable, then any

translate of A is also Lebesgue measurable, and has the same Lebesgue
measure as A.

To illustrate how to use Lebesgue measure, we give an example.
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Lebesgue measure

Example
We claim that Q is a Lebesgue measurable set having measure zero.
To see that the set is measurable, note that any singleton {x0} ⊆ R is closed.
Therefore, its complement is open. Therefore, it is a Borel set. Borel sets are
Lebesgue measurable and so singletons are Lebesgue measurable. Since Q
is countable, it is a disjoint countable union of singletons: Q = ∪j∈Z>0{qj}.
Since the countable union of Borel sets is a Borel set (the Borel sets form a
σ-algebra), it follows that Q is a Borel set. Since Borel sets are Lebesgue
measurable, Q is Lebesgue measurable.
We show that Q has measure zero in two ways. First of all, note that any
singleton {x0} has measure zero. Indeed, for ϵ ∈ R>0, {x0} can be covered by
(x0 − ϵ

4 , x0 +
ϵ
4 ) ∪ {(0, ϵ

2j+1 )}j∈Z>0 . The total length of these open intervals is

ϵ

2
+

1
2

∞∑

j=1

ϵ

2j = ϵ.
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Lebesgue measure
Example (cont’d)
Since ϵ is arbitrary the infimum of the lengths of the open intervals covering {x0}
must be zero. That is λ({x0}) = 0. Now, using the fact that the measure of
countable disjoint union is the sum of the measures of the sets in the union
(i.e., property (ii) of measures), we have

λ(Q) =
∞∑

j=1

λ({qj}) = 0.

Let us also prove “directly” that λ(Q) = 0. For ϵ ∈ R>0, define
Ij = (qj − ϵ

2j+1 , qj +
ϵ

2j+1 ). Thus Ij is an open interval of length ϵ
2j centred at the jth

rational number in our list. Therefore, Q ⊆ ∪∞
j=1Ij. Now note that

∞∑

j=1

ℓ(Ij) =
∞∑

j=1

ϵ

2j = ϵ.

Since ϵ is arbitrary, it follows that the infimum of the lengths of the open intervals
covering Q is zero. Thus λ(Q) = 0.
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Lebesgue measure

Useful notation: If a property P of the real numbers has the property that
there exists a set A ⊆ X for which µ(A) = 0, and such that P holds for all
x ∈ X \ A, then property P holds almost everywhere or a.e..
The point of our excursion into measure theory: There exists a σ-algebra
L (R) on R whose sets can be usefully measured, the measure of these
sets is prescribed by a function λ : L (R) → R≥0 having a natural
definition which agrees with what we expect the size of a subset of R to
be.
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Reading for Lecture 18

Material related to this lecture can be found in the following sections of the
course notes:

1 Section III-2.3.2 (parts of this).
2 Section III-2.4.1 (parts of this).
3 Section III-2.4.2 (parts of this).
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Lecture 19
The Lebesgue integral

We use the Lebesgue measure to define an integral. We first define the
class of functions whose integrals we will define.
If I ⊆ R is an interval, L (I) = {A ∩ I | A ∈ L (R)}.

Definition (Measurable function)
For an interval I ⊆ R, a function f : I → R is Lebesgue measurable, or just
measurable, if

f−1([−∞, b]) = {x ∈ I | f (x) ≤ b}
is Lebesgue measurable.

A function f : I → R can be shown to be measurable if and only if
f−1(B) ∈ L (I) for every Borel set B.
Compare this to: A function f : I → R is continuous if and only if f−1(U) is
open for every open set U.
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The Lebesgue integral
Just as nonmeasurable sets are not so easy to come up with,
nonmeasurable functions are not so easy to come up with.
All continuous functions are measurable.
For the purposes of this course, unless you are asked to explicitly show
that a function is measurable, you may assume that all functions you see
are measurable.
Our definition of the integral now follows three stages.

1 Integral of simple functions: For a set X and A ⊆ X, the characteristic
function of S is χA : X → R defined by

χA(x) =

{
1, x ∈ A,
0, x ̸∈ A.

A function f : I → R is simple if there exist pairwise disjoint sets
A1, . . . ,An ∈ L (I) and c1, . . . , cn ∈ R such that f =

∑n
j=1 cjχAj . The

Lebesgue integral of such a simple function is
∫

I
f dλ =

n∑

j=1

cjλ(Aj).
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The Lebesgue integral

2 Integral of positive measurable functions: Positive measurable functions are
approximated by simple functions.

Proposition
If f : I → R≥0 is measurable then there exists a sequence (gj)j∈Z>0 is
nonnegative-valued simple functions such that

(i) gj+1(x) ≥ gj(x) for all x ∈ I and j ∈ Z>0 and

(ii) limj→∞ gj(x) = f (x).

Then, for f : I → R≥0 measurable, we define the Lebesgue integral of f by
∫

I
f dλ = sup

{∫

I
g dλ

∣∣∣ g a simple function with g(x) ≤ f (x), x ∈ I
}
,

this definition making sense by the preceding proposition.
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The Lebesgue integral

3 Integral of arbitrary measurable function: If f : I → R is measurable, define

f−(x) = −min{f (x), 0}, f+(x) = max{f (x), 0}.

Then

(i) the Lebesgue integral of f exists if either
∫

I f+ dλ or
∫

I f− dλ is finite,

(ii) f is Lebesgue integrable if both
∫

I f+ dλ and
∫

I f− dλ are finite, and

(iii) the Lebesgue integral of f does not exist if both
∫

I f+ dλ and
∫

I f− dλ
are infinite.

If the Lebesgue integral of f exists then we define
∫

I
f dλ =

∫

I
f+ dλ−

∫

I
f− dλ,

which is the Lebesgue integral of f .
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The Lebesgue integral
Here are some facts about the Lebesgue integral.

1 If a function f : I → R is Riemann integrable, then it is Lebesgue integrable,
and, moreover, ∫

I
f (x) dx =

∫

I
f dλ.

So all the integrals you know how to compute still have the same value.
2 The characteristic function of the set of rationals in [0, 1] (see Slide 143) is

Lebesgue integrable but not Riemann integrable.
3 It is hard to come up with a bounded function on a compact interval that is

not Lebesgue integrable; this is connected with the fact that measurable sets
are complicated.

4 The Lebesgue integral is linear.
5 There is a very powerful theorem, called the Dominated Convergence

Theorem (see course notes), which allows the swapping of limits and
integrals. Thus it gives conditions when we can write

lim
j→∞

∫

I
fj dλ =

∫

I
lim

j→∞
fj dλ.

The example from Slide 143 shows that such a theorem does not hold for
the Riemann integral.
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Reading for Lecture 19

Material related to this lecture can be found in the following sections of the
course notes:

1 Section III-2.6.1 (only small parts of this).
2 Sections III-2.6.5, III-2.7.1, III-2.9.2, and III-2.9.3.
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Lecture 20
Continuous-time signals with the p-norms (cont’d)

For a continuous time-domain T define

L(p)(T;F) = {f : T → F | t 7→ |f (t)|p is Lebesgue integrable}.

For f ∈ L(p)(T;F) define

∥f∥p =
(∫

I
|f |p dλ

)1/p
.

Note that ∥·∥p is not a norm since there are nonzero functions with zero
“norm” (in fact, ∥·∥p is a seminorm).
Define an equivalence relation on L(p)(T;F) by saying that f ∼ g if

λ{t ∈ T | f (t) ̸= g(t)} = 0.

One can show that f ∼ g if and only if ∥f − g∥p.
Denote by Lp(T;F) the set of equivalence classes under this equivalence
relation and denote ∥[f ]∥p = ∥f∥p.
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Continuous-time signals with the p-norms (cont’d)

For us, a factor of primary importance for the Lebesgue integral is the
following result.

Theorem
(Lp(T;F), ∥·∥p) is a Banach space, and is moreover the completion of
(C0

cpt(T;F), ∥·∥p).

Note that the completion of (C0
cpt(T;F); ∥·∥p) consists, not of signals, but

of equivalence classes of signals. Nonetheless, we shall denote
elements of Lp(T;F) by f and not by [f ].
The above theorem is false if one uses the Riemann integral instead of
the Lebesgue integral, cf. the proposition on Slide 146.
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Continuous-time signals with the p-norms (cont’d)

The inclusion relations for the most important (for us) continuous-time
signal spaces is as follows, the left diagram for compact time-domains,
the middle diagram for bounded but not compact time-domains, and the
right diagram for unbounded time-domains.

L1

L2

C0
0 = C0

bdd

L1

L2

C0
bdd

C0
0

L2

C0
0

C0
bdd

L1
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Summary of life until now
This completes the first part of the course. Let us recap.
We have introduced structure for spaces of discrete- and continuous-time
signals. This structure is algebraic (a structure of a vector space) and
topological (the structure of a norm).

1 Algebraically: For all signal spaces, we know their dimension.
2 Topologically:

⋆ We carefully studied completeness and completions of all signal spaces. We
have at the end of the day arrived at a collection of Banach spaces of signals
that we will use for the rest of the course.

⋆ Some of the norms we use are derived from inner products. We shall not say
much about this here, but this will be followed up on in MATH 335.

Here is a summary of signal spaces we will use in the remainder of the
course.

Discrete-time Continuous-time

(ℓ1(T;F), ∥·∥1) (L1(T;F), ∥·∥1)
(ℓ2(T;F), ∥·∥2) (L2(T;F), ∥·∥2)
(ℓ∞(T;F), ∥·∥∞) (C0

bdd(T;F), ∥·∥∞)
(c0(T;F), ∥·∥∞) (C0

0(T;F), ∥·∥∞)
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Summary of life until now
Here are the relationships for the discrete-time signal spaces:

ℓ1 = ℓ2 = ℓ∞ = c0 ℓ∞c0ℓ2ℓ1

Bounded time-domain Unbounded time-domain
Here are the relationships for continuous-time signal spaces:

L1

L2

C0
0 = C0

bdd

L1

L2

C0
bdd

C0
0

L2

C0
0

C0
bdd

L1

Compact time-domain Bounded time-domain Unbounded time-domain
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Reading for Lecture 20

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-1.2.2, IV-1.2.3, IV-1.2.7, IV-1.3.2, IV-1.3.3, and IV-1.3.7.
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Lecture 21
Introduction to Fourier transform theory

Now that we have at our disposal a few classes of signal spaces, we
discuss the theory of Fourier transforms for these spaces.
By taking the Fourier transform of a signal, we change the signal from
one where the independent variable is thought of as “time” to one where
the independent variable is thought of as “frequency.” The motivation for
doing this is discussed in Sections IV-2.1–IV-2.4 in the course notes.
In the discussion of Fourier transform theory we shall consider signals
with both continuous and discrete domains. In all cases, we shall
consider the time-domain as being totally infinite, and so will consider
either T = R or T = Z(∆).
We will consider signals that are either periodic or aperiodic.
Thus we consider Fourier transforms for four different classes of signals:

1 continuous-time aperiodic signals;
2 continuous-time periodic signals;
3 discrete-time aperiodic signals;
4 discrete-time periodic signals.
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Introduction to Fourier transform theory
We shall see that there are some sharp similarities with all of these
cases, but also some sometimes subtle distinctions.
The idea in every case is to transform the time-domain signal into a
frequency-domain signal whose value at a certain frequency ν represents
the “content” of the signal at that frequency.
This requires that we have a “fundamental” signal at each of the
frequencies we consider. The fundamental signals used in Fourier
transform theory are the harmonic signals. For simplicity, we assume all
signals to be complex (real signals are then a special case) and so the
fundamental signal with frequency ν is t 7→ e2πiνt.
For each of the four cases we consider different harmonic signals,
depending on whether the signal is continuous- or discrete-time, and
periodic or aperiodic.
When the signal is aperiodic, we place no restrictions on the frequency of
the harmonic signal. When the signal is T-periodic, we consider only
harmonic signals with the same frequency as the signals in the
class, i.e., with frequency equal to 1

T . These latter are of the form
t 7→ e2πin t

T , n ∈ Z.
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Introduction to Fourier transform theory

To understand this for discrete-time signals, note that a discrete-time
signal takes values at the times k∆ for k ∈ Z and that a discrete-time
signal of period T has the property that T = N∆ for some N ∈ Z>0.
With this in mind, the four types of harmonic signals considered are
summarised in the following table.

Continuous-time Discrete-time

Period T t 7→ e2πin t
T , n ∈ Z k∆ 7→ e2πin k

N , n ∈ Z
Aperiodic t 7→ e2πiνt, ν ∈ R k∆ 7→ e2πiνk∆, ν ∈ R

The objective of Fourier transform theory is this.

Problem
Given a continuous or discrete time-domain T and a T-periodic or aperiodic
signal f : T → C, determine the “content” of the signal at each of the
frequencies of the appropriate fundamental harmonic signals.
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Introduction to Fourier transform theory

The question now is, “How should one determine the ‘content’ of a signal
at a prescribed frequency?”
We first observe that the sets of signals

1 {t 7→ e2πin t
T | n ∈ Z} and {t 7→ e2πiνt | ν ∈ R} for continuous-time and

2 {k∆ 7→ e2πin k
N | n ∈ Z} and {k∆ 7→ e2πiνk∆ | ν ∈ R} for discrete-time

are linearly independent. (This is easy to prove for the first set, and less
easy for the second set.)
Now, imagine the following simpler problem. Given a collection of linearly
independent vectors v1, . . . , vk ∈ Fn and v ∈ Fn, how might one define the
“content” of v in the direction of vj, j ∈ {1, . . . , k}.
One might do this using the standard inner product, saying that the
content of v in the direction of vj is ⟨v, vj⟩.
One can do this for determining frequency content of a signal as well,
taking the appropriate inner product of the signal f with the appropriate
harmonic signal.
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Introduction to Fourier transform theory

The inner products we use are those seen previously for our signal
spaces; see Slide 102. One has to be careful with periodic signals.
Although the signals are defined on R or Z(∆), the integral or sum
defining the inner product is not taken over the entire domain, but only
over one period.
Thus the inner products are:

1 for continuous-time T periodic signals: ⟨f , g⟩ =
∫ T

0
f (t)g(t) dt.

2 for continuous-time aperiodic signals: ⟨f , g⟩ =
∫

R

f (t)g(t) dt.

3 for discrete-time N∆-periodic signals: ⟨f , g⟩ = ∆

N−1∑

k=0

f (k∆)g(k∆).

4 for discrete-time aperiodic signals: ⟨f , g⟩ = ∆
∑

k∈Z
f (k∆)g(k∆).

Of course, these inner products do not make sense for arbitrary signals,
but we will worry about this later.
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Introduction to Fourier transform theory

Doing this gives:

Signal type Transform Name

Continuous-time T-periodic FCD(f )(nT−1) =

∫ T

0
f (t)e−2πin t

T dt CDFT

Continuous-time aperiodic FCC(f )(ν) =
∫

R

f (t)e−2πiνt dt CCFT

Discrete-time N∆-periodic FDD(f )(n(N∆)−1) = ∆

N−1∑

k=0

f (k∆)e−2πin k
N DDFT

Discrete-time aperiodic FDC(f )(ν) = ∆
∑

k∈Z
f (k∆)e−2πiνk∆ DCFT

The names of these transforms are derived as follows. The “CDFT” takes
a continuous function of time and produces a discrete function of
frequency. Thus it is the “continuous discrete Fourier transform,” or
“CDFT.” The reasoning is the same for the other three transforms.
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Introduction to Fourier transform theory

The preceding discussion is mere gibberish unless one addresses a few
basic and important questions.

1 Are the above “frequency content” formulae well-defined?
2 If they are well-defined, what useful properties do these formulae have, if

any?
3 If one computes the “frequency content” representation of a signal, does this

faithfully represent the signal? In particular, can a signal be recovered from
its “frequency content” representation?

We shall devote the remainder of the course to dealing with these
questions.
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Reading for Lecture 21

Material related to this lecture can be found in the following sections of the
course notes:

1 Chapter IV-2.
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Lecture 22
The L1-CDFT (definitions)

The first Fourier transform we consider is that for periodic
continuous-time signals.
Let us introduce some notation:

Lp
per,T(R;F) = {f : R → F | f is T-periodic and f |[0,T] ∈ Lp([0,T];F)};

Cr
per,T(R;F) = {f ∈ Cr(R;F) | f is T-periodic}.

On Lp
per,T(R;F) we have the norm ∥f∥p =

(∫ T

0
|f (t)|p dt

)1/p
.

Given a function f : [0,T) → F we can extend this to a periodic signal in at
least three ways.

1 The periodic extension fper : R → F is defined by asking that
fper(t + kT) = f (t) for every t ∈ [0, T) and k ∈ Z.

2 The even periodic extension feven : R → F is first defined on (−T, T) by
asking that it be even on this domain. Then it is extended to all of R by
periodic extension.

3 The odd periodic extension fodd : R → F is first defined on (−T, T) by
asking that it be odd on this domain. Then it is extended to all of R by
periodic extension.
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The L1-CDFT (definitions)

We depict the periodic, even periodic, and odd periodic extensions of the
function defined on [0, 1] by f (t) = t.
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Definition (CDFT)
The continuous-discrete Fourier transform or CDFT assigns to
f ∈ L1

per,T(R;C) the signal FCD(f ) : Z(T−1) → C by

FCD(f )(nT−1) =

∫ T

0
f (t)e−2πin t

T dt, n ∈ Z.

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 22 March 1, 2022 186 / 310

The L1-CDFT (definitions)

Note that the condition that f ∈ L1
per,T(R;C) is precisely the condition that

the CDFT can be computed using the given formula (this is because
|e−2πin t

T | = 1.
We shall always think of signals as being C-valued, and so R-valued
signals are a special case.

Examples
1 We consider the signal f : R → R defined by f (t) = □2,1,0(t)− 1 and

depicted below.

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

t

f
(t
)

Thus f is the 1-periodic extension of the signal defined on [0, 1] by
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The L1-CDFT (definitions)

Examples (cont’d)

(f |[0, 1])(t) =
{

1, t ∈ [0, 1
2 ],

−1, t ∈ ( 1
2 , 1].

We compute

FCD(f )(0) =
∫ 1

0
f (t) dt = 0.

For n ̸= 0 we have

FCD(f )(n) =
∫ 1

0
f (t)e−2πint dt =

∫ 1
2

0
e−2πint dt −

∫ 1

1
2

e−2πint dt

= − e−2πint

2πin

∣∣∣
1
2

0
+

e−2πint

2πin

∣∣∣
1

1
2

=
1 − einπ

2πin
− einπ − 1

2πin
= i

(−1)n − 1
nπ

,

using the identity einπ = (−1)n for n ∈ Z. Thus we have
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The L1-CDFT (definitions)
Examples (cont’d)

FCD(f )(n) =

{
0, n = 0,
i (−1)n−1

nπ otherwise.

2 Next we consider the signal g = △ 1
2 ,1,0

depicted below.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

t

g
(t
)

Thus g is the 1-periodic extension of the signal

(g|[0, 1])(t) =
{

t, t ∈ [0, 1
2 ],

1 − t, t ∈ ( 1
2 , 1].

We then compute
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The L1-CDFT (definitions)

Examples (cont’d)

FCD(g)(0) =
∫ 1

0
g(t) dt =

∫ 1
2

0
t dt +

∫ 1

1
2

(1 − t) dt =
t2

2

∣∣∣
1
2

0
+
(

t − t2

2

)∣∣∣
1

1
2

=
1
4
,

and for n ̸= 0,

FCD(g)(n) =
∫ 1

0
g(t)e−2πint dt =

∫ 1
2

0
te−2πint dt +

∫ 1

1
2

(1 − t)e−2πint dt

= − te−2πint

2πin

∣∣∣
1
2

0
+

1
2πin

∫ 1
2

0
e−2πint dt

+

∫ 1

1
2

e−2πint dt +
te−2πint

2πin

∣∣∣
1

1
2

− 1
2πin

∫ 1

1
2

e−2πint dt

= − e−inπ

4inπ
+

e−2πint

4n2π2

∣∣∣
1
2

0
− e−2πint

2πin

∣∣∣
1

1
2

+
1

2πin
− e−inπ

4inπ
− e−2πint

4n2π2

∣∣∣
1

1
2
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The L1-CDFT (definitions)

Examples (cont’d)

= − e−inπ

4inπ
+

e−inπ

4n2π2 − 1
4n2π2 − 1

2πin
+

e−inπ

2πin
+

1
2πin

− e−inπ

4inπ
− 1

4n2π2 +
e−inπ

4n2π2 =
e−inπ − 1

2n2π2 =
(−1)n − 1

2n2π2 .

We have used the fact that e−inπ = (−1)n for n ∈ Z. Thus we have

FCD(g)(n) =

{
1
4 , n = 0,
(−1)n−1

2n2π2 , otherwise.

Sometimes for R-valued signals, rather than using the complex
exponential one uses sine’s and cosine’s. Thus one uses the
continuous-discrete cosine transform or CDCT which assigns to
f ∈ L1

per,T(R;C) the signal CCD(f ) : Z≥0(T−1) → C by
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The L1-CDFT (definitions)

CCD(f )(nT−1) =

∫ T

0
f (t) cos(2πn t

T ) dt, n ∈ Z≥0,

and the continuous-discrete sine transform or CDST which assigns to
f ∈ L1

per,T(R;C) the signal SCD(f ) : Z>0(T−1) → C by

SCD(f )(nT−1) = 2
∫ T

0
f (t) sin(2πn t

T ) dt, n ∈ Z>0.

By Euler’s formula:

Proposition
(i) FCD(0) = CCD(f )(0);
(ii) FCD(f )(nT−1) = CCD(f )(nT−1)− iSCD(f )(nT−1) and
FCD(f )(−nT−1) = CCD(f )(nT−1) + iSCD(f )(nT−1) for every n ∈ Z>0;

(iii) CCD(f )(nT−1) = 1
2 (FCD(f )(nT−1) + FCD(f )(−nT−1)) for every n ∈ Z≥0;

(iv) SCD(f )(nT−1) = 1
2i (FCD(f )(−nT−1)− FCD(f )(nT−1)) for every n ∈ Z>0.
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The L1-CDFT (properties)

Now let us turn to some of the properties of the CDFT.
First some things more or less elementary. Recall from Slide 14 the
reparameterisations τa and σ of the time-domain R.

Let us also define F CD(f )(nT−1) =

∫ T

0
f (t)e2πin t

T dt.

Proposition

(i) FCD(f ) = F CD(f̄ );
(ii) FCD(σ

∗f ) = σ∗(FCD(f )) = F CD(f );
(iii) if f is even (resp. odd) then FCD(f ) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) then FCD(f ) is real and even

(resp. imaginary and odd);
(v) FCD(τ

∗
a f )(nT−1) = e−2πin a

TFCD(f )(nT−1).

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 22 March 1, 2022 193 / 310



The L1-CDFT (properties)

Theorem (Riemann–Lebesgue Lemma)
If f ∈ L1([a, b];C) then

lim
|n|→∞

∫ b

a
f (t)e2πin t

T dt = 0.

In particular, if (FCD(f )(nT−1))n∈Z are the values of the CDFT of
f ∈ L1

per,T(R;C) then lim|n|→∞|FCD(f )(nT−1)| = 0.

An immediate consequence of this is that the CDFT is a map
FCD : L1

per,T(R;C) → c0(Z(T−1);C).
In fact, one can easily show that the CDFT is a continuous linear map
(see Slide 94) from (L1

per,T(R;C), ∥·∥1) to (c0(Z(T−1);C), ∥·∥∞); this is
Corollary IV-5.1.10 in the course notes.
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Reading for Lecture 22

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-1.1.6 and IV-1.3.4.
2 Sections IV-5.1.1 and IV-5.1.2.
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Lecture 23
Differentiation and the CDFT

There are some interesting and useful relationships between the character of
a signal and the character of its CDFT.
The simplest relationships involve the differentiability of f .
Recall that a function f : [a, b] → R is piecewise continuous if there exists a
partition of [a, b] into disjoint subintervals I1, . . . , Ik such that f |Ij is continuous
for each j ∈ {1, . . . , k} and such that the limit of the values of the function is
defined as one approaches the endpoints of each of the subintervals.

Proposition (The CDFT and differentiation)
Suppose that f ∈ C0

per,T(R;C) and suppose that there exists a piecewise
continuous signal f ′ : [0,T] → C with the property that

f (t) = f (0) +
∫ t

0
f ′(τ) dτ, t ∈ [0,T].

Then
FCD(f ′per)(nT−1) =

2πin
T
FCD(f )(nT−1), n ∈ Z.
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Differentiation and the CDFT

Proof.
Let (t0, t1, . . . , tk) be the endpoints of a partition having the property that f ′ is
continuous on each subinterval (tj, tj−1), j = 1, . . . , k. Integration by parts of
the expression for FCD(f ′)(nT−1) on (tj, tj−1) gives

∫ tj

tj−1

f ′(t)e−2πin t
T dt = f (t)e−2πin t

T

∣∣∣
tj

tj−1

+
2πin

T

∫ tj

tj−1

f (t)e−2πin t
T dt.

Over the entire interval [0,T] we then have

FCD(f ′per)(nT−1) =

∫ T

0
f ′(t)e−2πin t

T dt =
k∑

j=1

∫ tj

tj−1

f ′(t)e−2πin t
T dt

=
2πin

T

∫ T

0
f (t)e−2πin t

T dt =
2πin

T
FCD(f )(nT−1),

using the fact that f is continuous and that f (0) = f (T).
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Differentiation and the CDFT

Example
Consider the signals f and g whose CDFT’s we computed starting on
Slide 187. Note that g ∈ C0

per,T(R;C) satisfies

g(t) = g(0) +
∫ t

0
f (s) ds, t ∈ [0, 1].

Therefore, we must have

FCD(f )(n) =
2πin

T
FCD(g)(n), n ∈ Z.

Recalling that

FCD(f )(n) =

{
0, n = 0,
i (−1)n−1

nπ otherwise,
FCD(g)(n) =

{
1
4 , n = 0,
(−1)n−1

2n2π2 , otherwise,

we see that the conclusions of the differentiation result are verified.
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Differentiation and the CDFT
Applying the preceding result iteratively for signals that are more than
once differentiable gives the following.

Corollary (The CDFT and higher-order derivatives)
Suppose that f ∈ Cr−1

per,T(R;C) for r ∈ Z>0 and suppose that there exists a
piecewise continuous signal f (r) : [0,T] → C with the property that

f (r−1)(t) = f (r−1)(0) +
∫ t

0
f (r)(τ) dτ.

Then
FCD(f

(r)
per)(nT−1) =

(2πin
T

)r
FCD(f )(nT−1).

We then have the following facts, some of which we will not get to for a
few lectures.

1 If f ∈ L1
per,T(R;C) then the Fourier coefficients satisfy

lim
|n|→∞

|FCD(f )(nT−1)| = 0.

This is the Riemann–Lebesgue Lemma.
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Differentiation and the CDFT

2 If f ∈ L2
per,T(R;C) then FCD(f ) ∈ ℓ2(Z(T−1);C). This will be discussed

further when we discuss the L2-CDFT.
3 If f satisfies the conditions of the differentiation result above, then

(FCD(f )(nT−1))n∈Z ∈ ℓ1(Z(T−1);C) as we shall show when we discuss
uniform convergence of Fourier series later. Note that this is a stronger
condition on the coefficients than one gets from a signal simply being in
L2

per,T(R;C).
4 If f ∈ Cr

per,T(R;C) then the CDFT of f satisfies

lim
|n|→∞

|nrFCD(f )(nT−1)| = 0.

5 If f ∈ C∞
per,T(R;C) is infinitely differentiable then the Fourier coefficients

satisfy
lim

|n|→∞
|nkFCD(f )(nT−1)| = 0

for any k ∈ Z≥0.
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CDFT inversion (warm up)
Next we turn to a very important matter, that of understanding whether a
signal is determined by its CDFT.
More precisely, given two distinct signals f , g ∈ L1

per,T(R;C), is it ensured
that FCD(f ) ̸= FCD(g)? In other words, is FCD injective?

Theorem (CDFT is injective)
FCD : L1

per,T(R;C) → c0(Z(T−1);C) is injective.

Proof.
(Buckle up, it’s going to be a hard one.) We give a lemma dealing with a rather
strange looking T-periodic signal. We define Fper

T,N : R → C by given by

Fper
T,N(t) =

1
N

N−1∑

k=0

∑

|n|≤k

e2πin t
T .

Let us record some useful facts about the signal Fper
T,N .
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CDFT inversion (warm up)

Proof (cont’d).

Lemma
The following statements hold:

(i) we have

Fper
T,N(t) =





1
N
sin2(πN t

T

)

sin2(π t
T )

, t ̸= 0,

N, t = 0;

(ii) Fper
T,N has period T;

(iii) Fper
T,N(t) ∈ R≥0 for t ∈ R;

(iv) 1
T

∫ T
2
− T

2
Fper

T,N(t) dt = 1;

(v) for each α ∈ R>0 we have lim
N→∞

∫

α≤|t|≤ T
2

Fper
T,N(t) dt = 0.
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CDFT inversion (warm up)

Proof (cont’d).

Sketch of proof.
(i) This is a tedious computation involving trigonometric and exponential
manipulations; see the course text for the details.
(ii) This is an easy consequence of the definition of Fper

T,N .
(iii) This too is an easy consequence of the definition of Fper

T,N .
(iv) You can ask your favourite symbolic manipulation program to do this
integral for you.
(v) One can do the estimates here to prove this rigorously, and this is done in
the course notes. However, it is more insightful to look at the graph of Fper

T,N as
N → ∞. In the figure below we show the graph for N ∈ {1, 5, 20}, noting that
the peak at t = 0 gets larger as N gets larger.
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CDFT inversion (warm up)

Proof (cont’d).

Sketch of proof (cont’d).

-6 -4 -2 0 2 4 6
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5

10

15

20

t
F

d T
,N
(t
)

The point is that as N → ∞ the integral of Fper
T,N over a period remains

constant, with value 1, but the function gets more and more concentrated
around t = 0. Thus the integral away from an interval around 0 goes to zero as
N → ∞. (If you find that as unsatisfying as I do, please look at the formal
estimates in the course notes).
The signal Fper

T,N is called the periodic Fejér kernel.
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CDFT inversion (warm up)

Proof (cont’d).

Lemma
Let f1, f2 ∈ C0

per,T(R;F) and suppose that FCD(f1)(nT−1) = FCD(f2)(nT−1) for
all n ∈ Z. Then f1 = f2.

Proof.
By linearity, the lemma amounts to showing that, if f ∈ C0

per,T(R;F) and if
FCD(f )(nT−1) = 0 for n ∈ Z, then f = 0. Also by linearity of the integral, we
may as well suppose that F = R, as if this is not so, we may apply the
theorem separately to the real and imaginary parts of f .
We suppose that FCD(f )(nT−1) = 0 for n ∈ Z and that f ̸= 0. By translation
(cf. Proposition IV-5.1.6) and multiplication by −1 if necessary, we may
suppose that f (0) ∈ R>0. Note that the relation
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CDFT inversion (warm up)

Proof (cont’d).

Proof (cont’d).

FCD(f )(nT−1) =

∫ T

0
f (t)e−2πin t

T dt = 0

implies, by periodicity of f and of e2πin t
T , n ∈ Z, that

∫ T
2

− T
2

f (t)e−2πin t
T dt = 0, n ∈ Z.

By linearity of the integral this means that

∫ T
2

− T
2

f (t)g(t) dt = 0 (1)

where g is any finite linear combination of the harmonic signals (e2πin t
T )n∈Z.
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CDFT inversion (warm up)

Proof (cont’d).

Proof (cont’d).
In particular, we can take g = Fper

T,N . As f is continuous and f (0) ̸= 0, we can
choose α ∈ R>0 so that f (t) ≥ 1

2 f (0) for all t ∈ [−α, α]. We then write

∫ T
2

− T
2

f (t)Fper
T,N dt =

∫ α

−α

f (t)Fper
T,N(t) dt +

∫

α≤|t|≤ T
2

f (t)Fper
T,N(t) dt. (2)

It is now easy to see that, if we take the limit as N → ∞, the second integral
on the left goes to zero by property (v) of Fper

T,N above. The first integral,
however, will be positive and bounded from below uniformly in N. This is less
easy to see, but it is basically because f is positive and bounded away from
zero on the domain of integration, while Fper

T,N is also nonnegative, and with an
integral approaching 1 over the domain of integration as N → ∞. Thus there
is a sufficiently large N such that the integral in (2) is positive, so
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CDFT inversion (warm up)

Proof (cont’d).

Proof (cont’d).
contradicting (1). Thus if f is continuous and nonzero, it must hold that
FCD(f )(nT−1) ̸= 0 for some n ∈ Z, so giving the result. (If you wish to see the
detailed estimates, see the course notes.)

Now let f ∈ L1
per,T(R;C). It is sufficient to show that if FCD(f )(nT−1) = 0 for

every n ∈ Z then f (t) = 0 for almost every t ∈ R. Define F : [0,T] → C by

F(t) =
∫ t

0
f (τ) dτ.

Since F is the indefinite integral of an integrable function it is continuous (note
that this is probably known to you for Riemann integrable functions, but it is
also true for Lebesgue integrable functions). Moreover,
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CDFT inversion (warm up)

Proof (cont’d).

F(T) =
∫ T

0
f (t) dt = FCD(f )(0) = 0 = F(0),

and so we conclude that Fper is continuous. For n ̸= 0, using Fubini’s Theorem
we compute

FCD(Fper)(nT−1) =

∫ T

0
F(t)e−2πin t

T dt =
∫ T

0

(∫ t

0
f (τ)e−2πin t

T dτ
)

dt

=

∫ T

0
f (τ)

(∫ T

τ

e−2πin t
T dt

)
dτ

=
T

2πin

(∫ T

0
f (τ)e−2πin τ

T dτ − e−2πin
∫ T

0
f (τ) dτ

)

=
T

2πin
(FCD(f )(nT−1)− FCD(f )(0)) = 0,

since FCD(f ) = 0. Now consider the signal G ∈ C0
per,T(R;C) defined by
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CDFT inversion (warm up)

Proof (cont’d).
G(t) = Fper(t)− 1

TFCD(Fper)(0). We have

FCD(G)(nT−1) = FCD(Fper)(nT−1)− 1
T
FCD(Fper)(0)

∫ T

0
e−2πin t

T dt = 0, n ∈ Z.

By our second lemma above, G is zero since it is continuous. Now, since f on
the interval [0,T] is the indefinite integral of F, it holds that f (t) = F′

per(t) for
almost every t ∈ [0,T]. This will be familiar to you for the Riemann integral—it
is the Fundamental Theorem of Calculus—but is also true for the Lebesgue
integral. Moreover, since F′(t) = G′(t) = 0 for t ∈ [0,T], we have f (t) = 0 for
almost every t ∈ [0,T], as desired.

The preceding proof is very detailed. This is not surprising since it is
proving something rather important.
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Reading for Lecture 23

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-5.1.3 and IV-5.2.1.
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Lecture 24
CDFT inversion (warm up)

One can also show that FCD : L1
per,T(R;C) → c0(Z(T−1);C) is not

surjective.
Thus it is not invertible. However, since it is injective, it possesses a
left-inverse ICD : c0(Z>0(T−1);C) → L1

per,T(R;C) satisfying
ICD ◦ FCD(f ) = f . Thus the left-inverse recovers f from its CDFT.
Now we might do one of two following things.

1 Find an explicit left-inverse ICD for FCD. If possible, find one that has useful
properties.

2 Propose a potential left-inverse I ′
CD for FCD. This may not be an actual

left-inverse, but nonetheless it may be the case that for a large class of
signals S it holds that I ′

CD ◦ FCD(f ) = f for f ∈ S .

We shall explore both possibilities, starting with the latter.
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Fourier series

If our initial idea for the CDFT is correct, and FCD(f )(nT−1) represents the
“content” of f in the direction of the harmonic t 7→ e2πin t

T , then perhaps we
can write

f (t) =
∑

n∈Z
cne2πin t

T

for some coefficients cn ∈ C, n ∈ Z.
Now, assuming that swapping sums and integrals is permitted (it is not,
actually), we compute

∫ T

0
f (t)e−2πim t

T dt =
∑

n∈Z
cn

∫ T

0
e2πin t

T e−2πim t
T dt = Tcm,

using the identity

∫ T

0
e2πin t

T e−2πim t
T dt =

{
T, n = m,
0, n ̸= m.
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Fourier series
Thus we have cn = 1

TFCD(f )(nT−1).
Motivated by this, we make the following definition.

Definition (Fourier series)
For f ∈ L1

per,T(R;C) the Fourier series of f is the series

FS[f ](t) =
1
T

∑

n∈Z
FCD(f )(nT−1)e2πin t

T ,

disregarding the convergence of this series. The real Fourier series of f is

FS[f ](t) =
1

2T
CCD(0) +

1
T

∞∑

n=1

(
CCD(f )(nT−1) sin(2πn t

T )

+SCD(f )(nT−1) sin(2πn t
T )
)
,

again disregarding convergence of the series.
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Reading for Lecture 24

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-5.2.1 and IV-5.2.2.
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Lecture 25
Fourier series

First of all, we can ask whether the Fourier series is a left-inverse for FCD.
That is, we can ask to what extent it is true that

f (t) =
1
T

∑

n∈Z
FCD(f )(nT−1)e2πin t

T . (3)

This was addressed definitively in 1926 by A. N. Kolmogorov: There
exists f ∈ L1

per,T(R;C) such that, for every t ∈ R, the sequence

fN(t) ≜
1
T

N∑

n=−N

FCD(f )(nT−1)e2πin t
T

of partial sums diverges.
Note that it is not realistic to expect that (3) hold pointwise generally,
since signals which differ on a set of zero measure will always have the
same Fourier series. Do you see this?
We wish to determine conditions on a signal f that ensure that, for t ∈ R,
the above sequence of partial sums converges. Moreover, we will
examine the relationships between the limit signal and the signal f .
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Fourier series
Let us define the discrete Dirichlet kernel on [− T

2 ,
T
2 ]:

Dper
T,N(t) =

{
sin((2N+1)π t

T )

sin(π t
T )

, t ̸= 0,

2N + 1, t = 0.

Here is a sample of the discrete Dirichlet kernel for N ∈ {1, 5, 20}.
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The following formula for the partial sums is critical for assessing
convergence.

Lemma

For f ∈ L1
per,T(R;C) we have fN(t) =

1
T

∫ T
2

− T
2

f (t − τ)Dper
T,N(τ) dτ , N ∈ Z>0.
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Fourier series

Proof.
The proof is a fairly uninteresting combination of exponential identities and
swapping order of integration. We refer to the course notes for details.

The integral in the lemma ought to look familiar. It is a convolution, albeit
a periodic convolution which you may not have seen. Thus, using
convolution notation, fN(t) = 1

T Dper
T,N ∗ f (t).

We get rid of the “∗” and the factor of 1
T and simply write

Dper
T,N f (t) ≜ 1

T

N∑

n=−N

FCD(f )(nT−1)e2πin t
T .

Thus Dper
T,N f (t) is simply funny notation for a partial sum, the notation

being reasonable since it reflects the underlying convolution.

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 25 March 1, 2022 218 / 310

Pointwise convergence of Fourier series

The key to understanding the pointwise convergence of Fourier series is
the following result.

Theorem (Pointwise convergence of Fourier series)
Let f ∈ L1

per,T(R;C), let t0 ∈ R, and let s ∈ C. The following statements are
equivalent:

(i) limN→∞ fN(t0) = s;

(ii) lim
N→∞

1
T

∫ T
2

− T
2

(f (t0 − t)− s)Dper
T,N(t) dt = 0;

(iii) for each ϵ ∈ (0, T
2 ] we have lim

N→∞
1
T

∫ ϵ

−ϵ

(f (t0 − t)− s)Dper
T,N(t) dt = 0;

(iv) for each ϵ ∈ (0, T
2 ] we have

lim
N→∞

1
π

∫ ϵ

−ϵ

(f (t0 − t)− s)
sin

(
(2N + 1)π t

T

)

t
dt = 0.
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Pointwise convergence of Fourier series

Proof.
To prove the equivalence of parts (i) and (ii) we note that by our previous
lemma on the partial sums (fN),

lim
N→∞

fN(t0) = s ⇐⇒ lim
N→∞

1
T

∫ T
2

− T
2

f (t0 − t)Dper
T,N(t) dt = s.

Applying the lemma when f : t 7→ 1 gives

1
T

∫ T
2

− T
2

Dper
T,N(t) dt = 1.

Therefore,

lim
N→∞

fN(t0) = s ⇐⇒ lim
N→∞

1
T

∫ T
2

− T
2

(f (t0 − t)− s)Dper
T,N(t) dt = 0

as desired.
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Pointwise convergence of Fourier series

Proof (cont’d).
To prove the equivalence of parts (ii) and (iii) we observe the character of Dper

T,N
as N → ∞ as depicted in our plots for the discrete Dirichlet kernel. The main
point is that for ϵ ∈ (0, T

2 ] the signal

t 7→ f (t0 − t)− s
sin(π t

T )

is integrable on [− T
2 ,−ϵ] ∪ [ϵ, T

2 ] and independent of N. Therefore, by the
Riemann–Lebesgue Lemma,

lim
N→∞

∫

ϵ≤|t|≤ T
2

f (t0 − t)− s
sin(π t

T )
sin((2N + 1)π

t
T
) = 0.

This gives the desired result.
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Pointwise convergence of Fourier series

Proof (cont’d).
The equivalence of parts (iii) and (iv) is proved by noting that

sin((2N + 1)π t
T )

sin(π t
T )

≈ T
π

sin((2N + 1)π t
T )

t

for t near zero.

An important observation is that the pointwise convergence at t0 for the
Fourier series of an L1 signal depends only on the values of the signal in
an arbitrarily small neighbourhood of t0. This is called the localisation
principle.
Our next chore is to come up with conditions on the signal f in a
neighbourhood of t0 that will ensure that the equivalent conditions of the
preceding theorem are met. There are many such conditions, none of
these being sharp.

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 25 March 1, 2022 222 / 310

Reading for Lecture 25

Material related to this lecture can be found in the following sections of the
course notes:

1 Section IV-5.2.4.
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Lecture 26
Pointwise convergence of Fourier series

Theorem (Dini’s test)
Let f ∈ L1

per,T(R;C) and let t0 ∈ R. If there exists ϵ ∈ (0, T
2 ] so that

∫ ϵ

−ϵ

∣∣∣ f (t0 − t)− s
t

∣∣∣ dt <∞,

then limN→∞ Dper
T,N f (t0) = s.

Proof.
If t 7→ f (t0−t)−s

t is in L1([−ϵ, ϵ];C) then, by the Riemann–Lebesgue Lemma,

lim
N→∞

∫ ϵ

−ϵ

f (t0 − t)− s
t

sin
(
(2N + 1)π t

T

)
dt = 0.

By our pointwise convergence theorem, the result follows.
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Pointwise convergence of Fourier series
Corollary (Fourier series converge at points of differentiability)
Let f ∈ L1

per,T(R;C) and let t0 ∈ R. If f is differentiable at t0 then
limN→∞ Dper

T,N f (t0) = f (t0).

Proof.
If f is differentiable at t0 then limt→t0

f (t0−t)−f (t0)
t exists and so the function

t 7→ f (t0−t)−f (t0)
t is bounded in a neighbourhood of t0. From this is follows that

f (t0−t)−f (t0)
t is integrable in a neighbourhood of t0, and so the corollary follows

from Dini’s test.

Corollary (An alternative version of Dini’s test)
Let f ∈ L1

per,T(R;C) and let t0 ∈ R. If there exists ϵ ∈ (0, T
2 ] such that

∫ ϵ

0

∣∣∣
1
2 (f (t0 + t) + f (t0 − t))− s

t

∣∣∣ dt <∞,

then limN→∞ Dper
T,N f (t0) = s.
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Pointwise convergence of Fourier series

For f : [a, b] → R and t0 ∈ (a, b) define the following limits, when they exist:

f (t0+) = lim
ϵ↓0

f (t0 + ϵ), f (t0−) = lim
ϵ↓0

f (t0 − ϵ),

f ′(t0+) = lim
ϵ↓0

f (t0 + ϵ)− f (t0)
ϵ

, f ′(t0−) = lim
ϵ↓0

− f (t0 − ϵ)− f (t0)
ϵ

.

Thus f (t0+) and f (t0−) are the left and right limits of the values of f
around t0, and f ′(t0+) and f ′(t0−) are the left and right limits of the values
of the derivative of f around t0.

Theorem (Dirichlet’s test)
Let f ∈ L1

per,T(R;C) and suppose that the limits f (t0−), f (t0+), f ′(t0−), and
f ′(t0+) exist for t0 ∈ R. Then

lim
N→∞

Dper
T,N f (t0) =

1
2
(
f (t0+) + f (t0−)

)
.
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Pointwise convergence of Fourier series

Examples (Pointwise convergence of Fourier series)
1 We consider the square wave signal f first considered in Slide 187. To

check pointwise convergence of the Fourier series for f , we first note that
at points that are not of the form n 1

2 , n ∈ Z, f is differentiable, and so its
Fourier series converges to f (t) at these points. The trouble points are,
therefore, those of the form n 1

2 , n ∈ Z. Let us consider t0 = 0, for
example.

(a) Dini’s test: For pointwise convergence, for ϵ ∈ R>0 there must exist s ∈ C
such that ∫ ϵ

−ϵ

∣∣∣ f (−t)− s
t

∣∣∣ dt < ∞

We have
∫ ϵ

−ϵ

∣∣∣ f (−t)− s
t

∣∣∣ dt =
∫ 0

−ϵ

∣∣∣1 − s
t

∣∣∣ dt +
∫ ϵ

0

∣∣∣−1 − s
t

∣∣∣ dt.

The two integrals on the right are both finite if and only if 1 − s = 0 and
−1 − s = 0. There is no s meeting this requirement, so Dini’s test does not
apply.

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 26 March 1, 2022 227 / 310



Pointwise convergence of Fourier series

Examples (Pointwise convergence of Fourier series (cont’d))
(b) Alternate Dini’s test: Here, for ϵ ∈ R>0, there must exist s ∈ C such that

∫ ϵ

0

1
2 (f (t) + f (−t))− s

t
dt < ∞.

Since f (t) + f (−t) = 0 (f is odd), this holds for s = 0. Thus the alternate
Dini’s test gives convergence of the Fourier series to 0 at t0 = 0. This test
can be applied at any time n 1

2 , n ∈ Z, to give the same conclusion for
convergence of the Fourier series at this point.

(c) Dirichlet’s test: Here we note that at times t0 = n 1
2 , n ∈ Z, the limits f (t0+),

f (t0−), f ′(t0+), and f ′(t0−) exist. Moreover, 1
2 (f (t0+) + f (t0−)) = 0, and so

Dirichlet’s test gives convergence of the Fourier series to 0 at these points.
2 We next consider the triangular wave signal g first considered in

Slide 189. This signal is differentiable except at times n 1
2 , n ∈ Z.

Therefore, at these times of differentiability we have
limN→∞ Dper

T,Ng(t0) = g(t0). For the nondifferentiable times we do the
following, using t0 = 0 as typical.
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Pointwise convergence of Fourier series

Examples (Pointwise convergence of Fourier series (cont’d))
(a) Dini’s test: For ϵ ∈ R>0 we must have s ∈ C such that

∫ ϵ

−ϵ

∣∣∣g(−t)− s
t

∣∣∣ dt =
∫ 0

−ϵ

∣∣∣ t − s
t

∣∣∣ dt +
∫ ϵ

0

∣∣∣−t − s
t

∣∣∣ dt < ∞.

This will hold for s = 0, and so gives convergence of the Fourier series to 0 at
t0 = 0. This similarly holds for all times n 1

2 , n ∈ Z.
(b) Alternate Dini’s test: This amounts to Dini’s test since g is even.
(c) Dirichlet’s test: At t0 = n 1

2 , n ∈ Z, the limits g(t0+), g(t0−), g′(t0+), and
g′(t0−) exist, and 1

2 (g(t0+) + g(t0−)) = 0. This agrees with Dini.
3 We introduce a new signal, this being the 2π-periodic extension, denoted

h, of the signal t 7→ (sin t
2 )

1/2. Here’s the signal:

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

t

h
(t
)
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Pointwise convergence of Fourier series

Examples (Pointwise convergence of Fourier series (cont’d))
This signal is differentiable at all times except those of the form t0 = 2nπ,
n ∈ Z. At the points of differentiability we have, as usual
limN→∞ Dper

T,Nh(t) = h(t). For the nondifferentiable points, e.g., t0 = 0, we
have the following.

(a) Dini’s test: Because (sin t
2 )

1/2 ≈
√

t√
2

for t ≈ 0, we must have, for ϵ ∈ R>0, an
s ∈ C such that

∫ 0

−ϵ

∣∣∣
√−t√

2
− s

t

∣∣∣ dt +
∫ ϵ

0

∣∣∣
√

t√
2
− s

t

∣∣∣ dt < ∞.

This holds for s = 0, and so Dini allows us to conclude that at times 2πn the
Fourier series converges to 0.

(b) Alternate Dini’s test: This amounts to Dini’s test since h is even.
(c) Dirichlet’s test: The limits h′(2πn+) and h′(2πn) do not exist, so Dirichlet’s

test does not apply.
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Pointwise convergence of Fourier series

In the notes, as Theorem IV-5.2.31, you will find stated a very powerful
pointwise convergence test, called Jordan’s test. This theorem involves
signals with “locally bounded variation.” You are not allowed to use this
theorem in this course since all signals we encounter will have “locally
bounded variation,” although you do not know what this means. Thus, the
answer, “The Fourier series at t0 converges to 1

2 (f (t0+) + f (t0−)) by
Jordan’s test,” will be a correct answer to most pointwise convergence
problems in this course. But you are not allowed to state this answer,
unless your answer is accompanied by an illustration that you understand
the importance of bounded variation. For example, you could give an
explanation of how functions of bounded variation are (1) in the dual
space of the set of continuous functions, and (2) how Borel measures are
the Radon–Nikodym derivative of functions of bounded variation with
respect to the Lebesgue measure.
So. . . just stick to the Dini tests and Dirichlet’s test.
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Reading for Lecture 26

Material related to this lecture can be found in the following sections of the
course notes:

1 Section IV-5.2.4.
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Lecture 27
Uniform convergence of Fourier series

Next we consider the matter of uniform convergence of the sequence
(Dper

T,N f )N∈Z>0 of partial sums for the Fourier series.
A fundamental theorem is the following.

Theorem (Uniform convergence of Fourier series)
Let f ∈ L1

per,T(R;C). If FCD(f ) ∈ ℓ1(Z(T−1);C) then the following statements
hold:

(i) (Dper
T,N f )N∈Z>0 converges uniformly to a (necessarily continuous)

T-periodic signal g;
(ii) f (t) = g(t) for almost every t ∈ R.

Proof.
The nth term in the CDFT for f satisfies

|FCD(f )(nT−1)e−2πin t
T | = |FCD(f )(nT−1)| ≜ Mn,
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Uniform convergence of Fourier series

Proof (cont’d).
and furthermore the series

∑
n∈ZMn converges. This shows that (Dper

T,N f )N∈Z>0

converges uniformly by the Weierstrass M-test, and we denote the limit signal
by g. This signal is continuous as a consequence of the theorem on Slide 121.
To see that f and g are equal almost everywhere we first note that, swapping
the sum and the integral (this is allowed since the sum converges uniformly),

FCD(g)(nT−1) =

∫ T

0
g(t)e−2πin t

T dt

=

∫ T

0

∑

m∈Z

1
T
FCD(f )(mT−1)e2πim t

T e−2πin t
T dt

=
1
T

∑

m∈Z
FCD(f )(mT−1)

∫ T

0
e2πim t

T e−2πin t
T dt = FCD(f )(nT−1).

The theorem now follows directly from the injectivity of the CDFT.
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Uniform convergence of Fourier series

Corollary (A test for uniform convergence)
Let f ∈ C0

per,T(R;C) and suppose that there exists a piecewise continuous
signal f ′ : [0,T] → C with the property that

f (t) = f (0) +
∫ t

0
f ′(τ) dτ.

Then (Dper
T,N f )N∈Z>0 converges uniformly to f .

Proof.
We shall show that the hypotheses of previous theorem hold. Since
(Dper

N,T f )N∈Z>0 converges pointwise to f by Dirichlet’s test and since f is
continuous, we may write

f (t) =
1
T

∑

n∈Z
FCD(f )(nT−1)e2πin t

T .
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Uniform convergence of Fourier series

Proof (cont’d).
By our CDFT differentiation theorem on Slide 196, the CDFT of f ′ is given by

FCD(f ′)(nT−1) =
2πin

T
FCD(f )(nT−1).

By Bessel’s inequality (here we use some ideas from the L2-CDFT that we
have not yet discussed) we then have

1
T

∑

n∈Z
|FCD(f ′)(nT−1)|2 ≤ ∥f ′∥2

2 <∞,

so that the sum ∑

n∈Z
|FCD(f ′)(nT−1)|2

converges. Now let
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Uniform convergence of Fourier series

Proof (cont’d).

sN =
∑

|n|≤N

|FCD(f )(nT−1)|,

and note that

sN = |FCD(f )(0)|+
∑

|n|≤N
n ̸=0

|FCD(f )(nT−1)| = |FCD(f )(0)|+
∑

|n|≤N
n ̸=0

|TFCD(f ′)(nT−1)|
|2πin|

= |FCD(f )(0)|+
T
2π

∑

|n|≤N
n ̸=0

|FCD(f ′)(nT−1)|
∣∣∣1
n

∣∣∣

≤ |FCD(f )(0)|+
T
2π

( ∑

|n|≤N
n ̸=0

|FCD(f ′)(nT−1)|2
)1/2( ∑

|n|≤N
n ̸=0

1
n2

)1/2
,

using the Cauchy–Bunyakovsky–Schwarz inequality. Now note that both sums
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Uniform convergence of Fourier series
Proof (cont’d).

∑

n∈Z
n ̸=0

|FCD(f ′)(nT−1)|2,
∑

n∈Z
n ̸=0

1
n2

converge. This shows that
lim

N→∞
sN <∞. (4)

Moreover, since the sequence (sN)N∈Z>0 is increasing, (4) implies that the
sequence converges, and this is what we set out to prove.

Examples (Uniform convergence of Fourier series)
We use the signals f , g, and h used in our discussion of pointwise convergence
tests.

1 First we consider the square wave f . We showed that it converges pointwise
to a discontinuous limit signal. Thus convergence cannot be uniform: We
showed in the theorem on Slide 121 that the pointwise limit of a sequence of
bounded continuous signals (e.g., the partial sums for a Fourier series) is
continuous.
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Uniform convergence of Fourier series

Examples (Uniform convergence of Fourier series (cont’d))
3 For the triangular wave signal g, the corollary above implies uniform

convergence.
4 For the signal h we cannot apply any of the tests above. However, using a

test associated with signals of bounded variation (which, remember is
verboten in this course), one can show that the Fourier series for h
converges uniformly to h.
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Gibbs’ phenomenon
A Fourier series cannot converge uniformly to a discontinuous limit
signal; in particular, the Fourier series of a discontinuous signal cannot
converge to the signal.
The exact manner of this lack of uniform convergence can be described.
The precise statement of this is in the notes, but is a little notationally
tedious. However, the idea is simple, so we provide this.
Let f ∈ L1

per,T(R;R), let t0 ∈ R, and suppose that the limits f (t0−), f (t0+),
f ′(t0−), and f ′(t0+) exist. Suppose that f (t0−) ̸= f (t0+).
Dirichlet’s test tells us that

lim
N→∞

Dper
T,N f (t0) = 1

2 (f (t0+) + f (t0−)).

Around t0 consider the subset defined by taking the union of the graph of
f with a vertical line as in the following figure:

∆+

∆−

∆−

∆+
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Gibbs’ phenomenon

Here
∆+ = ∆− = |j(t0)|

( I
π
− 1

2

)
≈ 0.0895|j(t0)|

where
I =

∫ π

0

sin t
t

dt, j(t0) = |f (t0+)− f (t0−)|.

Then a theorem in Bôcher in 1906 states that the graph of the Nth partial
sum for the Fourier series approaches this subset of the plane as N → ∞.
This is best illustrated by a picture:
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0.0
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0.6
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We can see that as N → ∞ the graphs approach something like the
figure on the preceding slide.
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Reading for Lecture 27

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-5.2.5 and IV-5.2.6.
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Lecture 28
Cesàro summability

We just spent a lot of time talking about convergence of Fourier series,
even though we began our discussion of Fourier series by indicating that
this does not provide a left-inverse for the CDFT (recall: Kolmogorov
showed that there exists f ∈ L1

per,T(R;C) whose Fourier series diverges
everywhere).
Let us now instead provide an actual left-inverse. We do this by
averaging the partial sums for the Fourier series to get the Cesàro sums:

1
N

N−1∑

n=0

1
T

∑

|j|≤n

FCD(f )(jT−1)e2πij t
T

Lemma
For f ∈ L1

per,T(R;C) we have

1
N

N−1∑

n=0

1
T

n∑

j=−n

FCD(f )(jT−1)e2πij t
T =

1
T

∫ T
2

− T
2

f (t − τ)Fper
T,N(τ) dτ.
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Cesàro summability

As with the partial sums for the Fourier series, we let

Fper
T,N f (t) =

1
N

N−1∑

n=0

1
T

∑

|j|≤n

FCD(f )(jT−1)e2πij t
T .

Theorem
For f ∈ L(0)

per,T(R;C) the following statements hold:

(i) if f ∈ L(p)
per,T(R;C) then (Fper

T,N f )N∈Z>0 converges to f in Lp
per,T(R;C);

(ii) if f ∈ C0
per,T(R;C) then (Fper

T,N f )N∈Z>0 converges uniformly to f ;

(iii) if f ∈ L(∞)
per,T(R;C) and if, for t0 ∈ R, the limits f (t0−) and f (t0+) exist then

(Fper
T,N f (t0))N∈Z>0 converges to 1

2 (f (t0−) + f (t0+)).
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Cesàro summability

The first statement in the preceding theorem indicates that taking Cesàro
sums does provide a left-inverse for the CDFT in that the sequence of
these sums converges to the original signal in L1

per,T(R;C).
The other statements in the theorem indicate that the convergence
properties for the Cesàro sums are generally far more robust than the
partial sums for Fourier series.
So, why not always use Cesàro sums? Well, there are good reasons for
using Fourier partial sums over Cesàro sums sometimes. For example, in
cases when the Fourier series converges, it will converge faster that the
Cesàro sums. This is something of great interest in signal processing.
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The L2-CDFT
Note that L2

per,T(R;C) ⊂ L1
per,T(R;C) (you should know this). It turns out

that the restriction of FCD to L2
per,T(R;C) has some surprisingly rich

properties. This is related to the fact that the norm on L2
per,T(R;C) is

associated to the inner product

⟨f , g⟩2 =

∫ T

0
f (t)g(t) dt.

This is not something we will explore here, but will be explored more
deeply in Math 335. Here we simply record the most important
consequence of this for our present programme.

Theorem
The CDFT restricted to L2

per,T(R;C) is a Hilbert space isomorphism from
L2

per,T(R;C) to ℓ2(Z(T−1);C).

Theorem
If f ∈ L2

per,T(R;C) then the sequence (Dper
T,N f )N∈Z>0 of partial sums for the

Fourier series of f converges to f in L2
per,T(R;C).
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The L2-CDFT
Thus the Fourier series acts as an inverse for the L2-CDFT. Note, however,
that this does not mean that the Fourier series converges pointwise in any
nice way. Convergence in L2 is very different from pointwise convergence.
Let us say a few words about this.

1 By abstract arguments, if f ∈ L2
per,T(R;C) then there is a subsequence of

(Dper
T,N f )N∈Z>0 which converges pointwise almost everywhere to f .

2 In 1913 Luzin conjectured that if f ∈ L2
per,T(R;C) then the Fourier series for f

converges pointwise almost everywhere to f .
3 Following Kolmogorov’s statement that there exists f ∈ L1

per,T(R;C) whose
Fourier series diverges everywhere, it is believed that Luzin’s conjecture is false.

4 While trying to prove that Luzin’s conjecture was false, Carleson in 1966 proved
that it was actually correct.

5 Kahane and Katznelson in 1966 proved that, given a subset Z ⊆ [0, T] of
measure zero, there exists f ∈ C0

per,T(R;C) such that the Fourier series for f
diverges at all points in Z. Thus Carleson’s theorem cannot be improved.

Fun project: Go to the library and pick out a book with a title like “Signals and
Systems” or “Fourier Analysis for Scientists and Engineers.” Look for the false
statement, “The Fourier series for a continuous function (uniformly) converges
to the function.” Most books like this contain this statement for some reason.
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The L1-CCFT (definitions)
We now turn to the Fourier transform for aperiodic continuous-time
signals. The central ideas here follow those for the CDFT to a surprising
degree. Thus our treatment will be quicker that for the CDFT.

Definition (CCFT)
The continuous-continuous Fourier transform or CCFT assigns to
f ∈ L1(R;C) the signal FCC(f ) : R → C by

FCC(f )(ν) =
∫

R

f (t)e−2πiνt dt.

Examples (CCFT)
1 For a ∈ C with Re(a) ∈ R>0, note that f (t) = 1≥0(t)e−at is a signal in

L1(R;C). We then compute

FCC(f )(ν) =
∫

R

f (t)e−2πiνt dt =
∫ ∞

0
e−(a+2πiν)t dt =

1
a + 2πiν

.
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The L1-CCFT (definitions)

Examples (CCFT (cont’d))
2 Let a ∈ R>0 and consider the signal f = χ[−a,a] given by the characteristic

function of [−a, a]. We then compute

FCC(σ)(ν) =

∫ a

−a
e−2πiνt dt = −e−2πiνt

2πiν

∣∣∣
a

−a
=

sin(2πaν)
πν

.

3 Next we consider a Gaussian γa(t) = e−at2
where a is a positive real

number, and compute

FCC(γa)(ν) =

∫

R

e−at2−2πiνt dt

=

∫

R

e−at2−2πiνt+π2ν2
a e−π2ν2

a dt

= e−π2ν2
a

∫

R

e−a(t+i πν
a )2

dt.
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The L1-CCFT (definitions)
Examples (CCFT (cont’d))

This last integral is an integral along the line through iπνa ∈ C and parallel
to the real axis. To perform this integral we use contour integration in C.
Let us take the case of ν ∈ R>0 first. We define a contour ΓR given by

ΓR = {(x, 0) | x ∈ [−R,R]} ∪
{
(R, y)

∣∣ y ∈ [0, πνa ]
}

∪
{
(x, πνa )

∣∣ x ∈ [−R,R]
}
∪
{
(−R, y)

∣∣ y ∈ [0, πνa ]
}
,

and we take the counterclockwise sense for performing the integration.
Since the function z 7→ e−az2

is analytic in C we have

0 =

∫

ΓR

e−az2
dz

=

∫ R

−R
e−ax2

dx +
∫ πν

a

0
e−a(R+iy)2

dy

+

∫ −R

R
e−a(x+i πν

a )2
dx +

∫ 0

πν
a

e−a(−R+iy)2
dy.
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The L1-CCFT (definitions)

Examples (CCFT (cont’d))
We claim that the second and fourth integrals are zero in the limit as
R → ∞. To see this for the second integral, note that

|e−a(R+iy)2 | = |e−aR2
e−2aiRyeay2 | ≤ e−aR2

e
π2ν2

a .

Thus

∣∣∣
∫ πν

a

0
e−a(R+iy)2

dy
∣∣∣ ≤

∫ πν
a

0
|e−a(R+iy)2 | dy ≤ e

π2ν2
a

∫ πν
a

0
e−aR2

dy.

We then compute

lim
R→∞

∫ πν
a

0
e−aR2

dy = lim
R→∞

πν

a
e−aR2

= 0.

This gives the vanishing of the second integral as R → ∞. The same sort
of argument gives the same conclusion as regards the fourth integral.
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The L1-CCFT (definitions)

Examples (CCFT (cont’d))
Therefore, we get

∫

R

e−a(t+i πν
a )2

dt = lim
R→∞

∫ R

−R
e−a(t+i πν

a )2
dt = lim

R→∞

∫ R

−R
e−at2

dt.

Thus we have
FCC(γa)(ν) = e−π2ν2

a

∫

R

e−at2
dt,

this being valid for ν ∈ R>0. A similar analysis to the above gives the
same formula for ν ∈ R<0. To evaluate the integral on the right we
perform a trick. We denote

I =
∫

R

e−at2
dt
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The L1-CCFT (definitions)
Examples (CCFT (cont’d))

so that

I2 =
(∫

R

e−ax2
dx
)(∫

R

e−ay2
dy
)
=

∫

R

(∫

R

e−a(x2+y2) dy
)

dx

=

∫ ∞

0

(∫ 2π

0
re−ar2

dθ
)

dr = 2π
∫ ∞

0
re−ar2

dr

=
π

a

∫ ∞

0
e−ρ dρ =

π

a
,

where in the third step we make a change of variable for the integral over the
plane from Cartesian to polar coordinates using the relation dxdy = rdrdθ. In
any case, I =

√
π
a and so

FCC(γa)(ν) =

√
π

a
e−π2ν2

a .

Thus we see that the Gaussian has the feature that its CCFT is almost equal
to itself. Indeed, if a = π then the CCFT is exactly equal to the original signal.
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Reading for Lecture 28

Material related to this lecture can be found in the following sections of the
course notes:

1 Section IV-5.2.7.
2 Sections IV-5.3.1 and IV-5.3.2 (mainly Theorem IV-5.3.8).
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Lecture 29
The L1-CCFT (properties)

Now let us turn to some of the properties of the CCFT.
First some things more or less elementary. Recall from Slide 14 the
reparameterisations τa and σ of the time-domain R.

Let us also define F CC(f )(ν) =
∫

R

f (t)e2πiνt dt.

Proposition

(i) FCC(f ) = F CC(f̄ );
(ii) FCC(σ

∗f ) = σ∗(FCC(f )) = F CC(f );
(iii) if f is even (resp. odd) then FCC(f ) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) then FCC(f ) is real and even

(resp. imaginary and odd);
(v) FCC(τ

∗
a f )(ν) = e−2πiaνFCC(f )(ν).
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The L1-CCFT (properties)

Theorem (Riemann–Lebesgue lemma for CCFT)
For f ∈ L1(R;C)

(i) FCC(f ) is a bounded, uniformly continuous function and
(ii) lim|ν|→∞|FCC(f )(ν)| = 0.

An immediate consequence of this is that the CCFT is a map
FCC : L1(R;C) → C0

0(R;C).
In fact, one can easily show that the CCFT is a continuous linear map
(see Slide 94) from (L1(R;C), ∥·∥1) to (C0

0(R;C), ∥·∥∞); this is
Corollary IV-6.1.8 in the course notes.
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Differentiation and the CCFT

As with the CDFT, there are relations between the differentiability of a
signal and the rate of decay of its CCFT. Moreover, because the CCFT is
itself a continuous-frequency signal, it too can have differentiability
properties, and these can be accounted for.

Proposition (The CCFT and differentiation)
Suppose that f ∈ C0(R;C)∩ L1(R;C) and that there exists a signal f ′ : R → C
with the following properties:

(i) for every T ∈ R>0, f ′ is piecewise continuous on [−T,T];
(ii) f ′ is discontinuous at a finite number of points;
(iii) f ′ ∈ L1(R;C);

(iv) f (t) = f (0) +
∫ t

0
f ′(τ) dτ .

Then
FCC(f ′)(ν) = (2πiν)FCC(f )(ν).
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Differentiation and the CCFT
Corollary (The CCFT and higher-order derivatives)
If f ∈ Cr−1(R;C)∩ L1(R;C) for r ∈ Z>0 and suppose that there exists a signal
f (r) : R → C with the following properties:

(i) for every T ∈ R>0, f (r) is piecewise continuous on [−T,T];
(ii) f (r) is discontinuous at a finite number of points;
(iii) f (j) ∈ L1(R;C) for j ∈ {1, . . . , r};

(iv) f (r−1)(t) = f (r−1)(0) +
∫ t

0
f (r)(τ) dτ .

Then
FCC(f (r))(ν) = (2πiν)rFCC(f )(ν).

We then have the following facts, some of which we will not get to for a
few lectures.

1 If f ∈ L1(R;C) then the CCFT satisfies

lim
|ν|→∞

|FCC(f )(ν)| = 0.

This is the Riemann–Lebesgue Lemma.
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Differentiation and the CCFT

2 If f ∈ L2(R;C) then FCC(f ) ∈ L2(R;C). This is nontrivial and will be
discussed when we discuss the L2-CCFT subsequently.

3 If f satisfies the conditions of differentiation proposition above, then
FCC(f ) ∈ L1(R;C). This follows from things we have not yet stated about
uniform convergence of Fourier integrals.

4 If f ∈ Cr(R;C) and if f (k) ∈ L1(R;C) for k ∈ {0, 1, . . . , r} then the CCFT of f
has the property that

lim
|ν|→∞

ν jFCC(f )(ν) = 0

for j ∈ {0, 1, . . . , r}.
5 If f ∈ C∞(R;C) and if f (k) ∈ L1(R;C) for k ∈ Z≥0 then the CCFT of f has the

property that
lim

|ν|→∞
νkFCC(f )(ν) = 0

for any k ∈ Z≥0.
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Differentiation and the CCFT
Proposition (Differentiability of transformed signals)
For f ∈ L1(R;C), if the signals t 7→ tjf (t), j ∈ {0, 1, . . . , k}, are in L1(R;C) then
FCC(f ) is k-times continuously differentiable and

FCC(f )(k)(ν) =

∫

R

(−2πit)kf (t)e−2πiνt dt.

In particular, if f ∈ L1(R;C) has compact support then FCC(f ) is infinitely
differentiable.

Examples (CCFT and differentiation)
1 Take

f (t) =

{
e−t, t ≥ 0,
0, t < 0.

Since f is not continuous, we cannot expect that FCC(f ) will decay quickly
to zero as |ν| → ∞. Since f decays to zero faster than any polynomial as
|t| → ∞, it follows that FCC(f ) is infinitely differentiable.
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Differentiation and the CCFT
Examples (CCFT and differentiation (cont’d))

2 Take f (t) = 1
1+t2k for k ≥ 1. By induction one can show that the rth

derivative of f has the form

f (r)(t) =
Pr

(1 + t2k)−r−1 ,

where Pr is a homogeneous polynomial of degree (2k − 1)r. Thus f (r)(t)
goes to zero as |t| → ∞ like |t|−2k−r. Therefore, f (r) ∈ L1(R;C) if and only
if −2k − r ≤ −2 ⇐⇒ r ≥ 2(1 − k). This holds for all r ≥ 0 and all k ≥ 1
and so f and all of its derivatives are in L1(R;C). Thus FCC(f ) decays to
zero as |ν| → ∞ faster than any polynomial. Also, t 7→ trf (t) is in L1(R;C)
if and only if r − 2k ≤ −2 ⇐⇒ r ≤ 2(k − 1). Thus FCC(f ) is 2(k − 1) times
continuously differentiable.

3 Finally, we take f (t) = e−t2
. We see that f and all of its derivatives are in

L1(R;C) (why?) and so FCC(f ) decays to zero as |ν| → ∞ faster than any
polynomial. Also, t 7→ tkf (t) is in L1(R;C) for any k ∈ Z>0 (why?) and so
FCC(f ) is infinitely differentiable.
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Reading for Lecture 29

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-6.1.2 and IV-6.1.3.
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Lecture 30
CCFT inversion (warm up)

The story we will tell for the inversion of the CCFT mirrors that for the
CDFT. Thus we skip the motivation and get right to it.

Theorem (CCFT is injective)
FCC : L1(R;C) → C0

0(R;C) is injective.

Proof.
The proof bears some resemblance to that for the corresponding assertion for
the CDFT, but is a little more complicated. We thus skip it, and refer to the
course notes.

The map FCC : L1(R;C) → C0
0(R;C) is not surjective.

Being injective it possesses a left-inverse. As with the CDFT we shall do
the following.

1 Propose a left-inverse that actually doesn’t work, but give conditions under
which it does work.

2 Give an actual left-inverse.
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Fourier integrals
Our proposed left-inverse for the CCFT mimics the Fourier series for the
CDFT. Rather than summing over the discrete collection of harmonics
that we have for the CDFT, we integrate over the continuous set of
harmonics for the CCFT.

Definition (Fourier integral)
For f ∈ L1(R;C) the Fourier integral for f is

FI[f ](t) =
∫

R

FCC(f )(ν)e2πiνt dν,

disregarding whether the integral converges.

The “partial sums” for the Fourier integral are

fΩ(t) ≜
∫ Ω

−Ω

FCC(f )(ν)e2πiνt dν, Ω ∈ R>0,

which is always well-defined since FCC(f ) is continuous.
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Fourier integrals

As with the CDFT, the Fourier integral does not give a left-inverse for the
CCFT. We will study conditions on signals which ensure that the Fourier
integral does recover them from their CCFT.
As with Fourier series, the key to understanding convergence of Fourier
integrals is the continuous Dirichlet kernel:

DΩ(t) =





sin(2πΩt)
πt

, t ̸= 0,

2Ω, t = 0.

For Ω ∈ {1, 5, 20} we plot the continuous Dirichlet kernel:

-1.0 -0.5 0.0 0.5 1.0
-10

0

10

20

30

40

t

D
c Ω
(t
)
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Fourier integrals

Lemma

For f ∈ L1(R;C) we have fΩ(t) =
∫

R

f (t − τ)DΩ(τ) dτ , Ω ∈ R>0.

Following our notation for the partial sums for the Fourier series, we
denote

DΩf (t) =
∫

R

f (t − τ)DΩ(τ) dτ.

We will now study the behaviour of these integrals as Ω → ∞.
The story bears much resemblance to that for the CDFT and
convergence of Fourier series.
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Pointwise convergence of Fourier integrals

Theorem (Pointwise convergence of Fourier integrals)
Let f ∈ L1(R;C), let t0 ∈ R, and let s ∈ C. The following statements are
equivalent:

(i) lim
Ω→∞

∫ Ω

−Ω

FCC(f )(ν)e2πiνt0 dν = s;

(ii) lim
Ω→∞

∫

R

(f (t0 − t)− s)DΩ(t) dt = 0 (integral understood in the conditional

sense);
(iii) for each ϵ ∈ R>0 we have

lim
Ω→∞

∫ ϵ

−ϵ

(f (t0 − t)− s)DΩ(t) dt = 0;

Again we see that the localisation principle holds. Since the continuous
Dirichlet kernel looks a lot like the discrete Dirichlet kernel around t = 0,
this explains why pointwise convergence for Fourier integrals is so similar
to that for Fourier series. So we will race through this a little.
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Pointwise convergence of Fourier integrals

Theorem (Dini’s test)
Let f ∈ L1(R;C) and let t0 ∈ R. If there exists ϵ ∈ R>0 so that

∫ ϵ

−ϵ

∣∣∣ f (t0 − t)− s
t

∣∣∣ dt <∞,

then (DΩf (t0))Ω∈R>0 converges to s.

Corollary (An alternative version of Dini’s test)
Let f ∈ L1(R;C) and let t0 ∈ R. If there exists ϵ ∈ R>0 so that

∫ ϵ

0

∣∣∣
1
2 (f (t0 + t) + f (t0 − t))− s

t

∣∣∣ dt <∞,

then (DΩf (t0))Ω∈R>0 converges to s.
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Pointwise convergence of Fourier integrals
Corollary (Fourier integrals converge at points of differentiability)
If f ∈ L1(R;C) is differentiable at t0 then (DΩf (t0))Ω∈R>0 converges to f (t0).

Theorem (Dirichlet’s test)
Let f ∈ L1(R;C) and suppose that the limits f (t0−), f (t0+), f ′(t0−), and f ′(t0+)
exist for t0 ∈ R. Then

lim
Ω→∞

∫ Ω

−Ω

FCC(f )(ν)e2πiνt0 dν =
1
2
(
f (t0+) + f (t0−)

)
.

Examples (Pointwise convergence of Fourier integrals)
1 We consider the signal f which we plot along with its CCFT:
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Pointwise convergence of Fourier integrals

Examples (Pointwise convergence of Fourier integrals (cont’d))
The analysis here is very much like that for the Fourier series for the
square wave, so we omit the details. As always, at points of
differentiability the Fourier integral converges to the signal. The points
remaining are {− 1

2 , 0,
1
2}. The results of applying the convergence tests

are:
(a) Dini’s test: Fails to predict convergence.
(b) Alternate Dini’s test: Gives convergence to 1

2 at t0 = − 1
2 , − 1

2 at t0 = 1
2 , and 0

at t0 = 0.
(c) Dirichlet’s test: Gives the same convergence as Alternate Dini.

2 Here we consider g with its CCFT as plotted below:
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Pointwise convergence of Fourier integrals

Examples (Pointwise convergence of Fourier integrals (cont’d))
In this case, all three convergence tests may be applied to give the
conclusion that the Fourier integral for g converges to g for all t0 ∈ R.

3 The last signal we consider is

h(t) =

{√
sin t+π

2 , |t| ≤ π,

0, otherwise
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h
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)

The tests can be applied as follows.
(a) Dini’s test: Gives convergence to h at all points.
(b) Alternate Dini’s test: Gives convergence to h at all points.
(c) Dirichlet’s test: Fails to apply.
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Uniform convergence of Fourier integrals
We wish to study uniform convergence of the family of signals
(DΩf )Ω∈R≥0 . We should be clear about what this means since this is not a
sequence.

Definition
Let f ∈ L1(R;C). The family (DΩf )Ω∈R≥0 converges uniformly to g : R → C if,
for every ϵ ∈ R>0, there exists Ω0 ∈ R≥0 such that

|g(t)− DΩf (t)| < ϵ

for every t ∈ R and Ω ≥ Ω0.

Theorem (Uniform convergence of Fourier integrals)
If f ∈ L1(R;C) and if FCC(f ) ∈ L1(R;C), then the following statements hold:

(i) (DΩf )Ω∈R>0 converges uniformly to a continuous signal g as Ω → ∞;
(ii) f (t) = g(t) for almost every t ∈ R.
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Uniform convergence of Fourier integrals

Corollary (A test for uniform convergence)
Let f ∈ C0(R;C) and suppose that there exists a signal f ′ : R → C such that

(i) for every T ∈ R>0, f ′ is piecewise continuous on [−T,T],
(ii) f ′ is discontinuous at a finite number of points,
(iii) f ′ ∈ L1(R;C) ∩ L2(R;C), and

(iv) f (t) =
∫ t

−∞
f ′(τ) dτ .

Then (DΩf )Ω∈R>0 converges uniformly to f . In particular, if
f , f (1), f (2) ∈ C0(R;C) ∩ L1(R;C) then (DΩf )N∈Z>0 converges uniformly to f .

Note that the hypotheses in the above corollary are those of the
differentiation rule for the CCFT on Slide 257, but we additionally require
that f ′ ∈ L2(R;C). This condition is needed because in the proof of the
result we use the Cauchy–Bunyakovsky–Schwarz inequality, cf. the proof
of the corresponding result for the CDFT on Slide 235.
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Reading for Lecture 30

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-6.2.1, IV-6.2.2, IV-6.2.4, and IV-6.2.5.

A. D. Lewis (Queen’s University) Slides for Math 334, Lecture 30 March 1, 2022 274 / 310

Lecture 31
Uniform convergence of Fourier integrals

Examples (Uniform convergence of Fourier integrals)
We consider the three signals f , g, and h introduced starting on Slide 269.

1 Since the Fourier integral converges pointwise to a discontinuous limit,
convergence cannot be uniform.

2 Note that

g(t) =
∫ t

−∞
f (τ) dτ

and since f ∈ L1(R;C) ∩ L2(R;C), the Fourier integral converges
uniformly to g by the corollary above.

3 The corollary does not apply since h′ is not piecewise continuous. And
the theorem may apply, but it requires us to compute the CCFT of h. So,
we are unable to conclude whether the Fourier integral converges
uniformly with what we know. There is, however, a bounded variation test
that works. But you do not know this. . .
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Gibbs’ phenomenon redux

Suppose that f ∈ L1(R;R) and that the limits f (t0−), f (t0+), f ′(t0−), and
f ′(t0+) exist.
Near t0 define a subset of the plane:

∆+

∆−

∆−

∆+

Here ∆+ and ∆− are just as they are for the Gibbs phenomenon for the
CDFT on Slide 240.
Then, in a neighbourhood of t0 the graph of DΩf (t0) approaches the
subset of the plane above as Ω → ∞.
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Cesàro convergence
Again we introduce an averaging process to try to rectify the less than
perfect convergence properties of Fourier integrals.
Thus we define

1
Ω

∫ Ω

0

(∫ ω

−ω

FCC(f )(ν)e2πiνt dν
)

dω,

and consider the limit of the resulting signals as Ω → ∞.

Lemma
For f ∈ L1(R;C) we have

1
Ω

∫ Ω

0

(∫ ω

−ω

FCC(f )(ν)e2πiνt dν
)

dω =

∫

R

f (t − τ)FΩ(τ) dτ,

where

FΩ(t) =

{
sin2(πΩt)
π2Ωt2 , t ̸= 0,

Ω, t = 0

is the Fejér kernel.
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Cesàro convergence

Theorem
For f ∈ L(0)(R;C) the following statements hold:

(i) if f ∈ L(p)(R;C) then (FΩf )Ω∈R converges to f in Lp(R;C);

(ii) if f ∈ C0
bdd(R;C) then (FΩf |K)Ω∈R>0 converges uniformly to f |K for every

compact subset K ⊆ R;
(iii) if f ∈ C0

unif,bdd(R;C) is then (FΩf )Ω∈R>0 converges uniformly to f ;

(iv) if f ∈ L(∞)(R;C) and if, for t0 ∈ R, the limits f (t0−) and f (t0+) exist then
(FΩf (t0))Ω∈R>0 converges to 1

2 (f (t0−) + f (t0+)).

Thus, just as with Cesàro means for Fourier series, the Cesàro means for
Fourier integrals provide a means of recovering a signal from its CCFT.
That is, it provides us with an explicit left-inverse for the CCFT.
Despite their desirable convergence properties, there are some trade-offs
involved in using Cesàro means; we refer to Slide 245 for discussion.
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The L2-CCFT
Note that L2(R;C) ̸⊆ L1(R;C) and so, if the CCFT can even be defined
for signals in L2(R;C), the approach cannot be direct as it was for the
CDFT.
Here is the procedure.

1 We state the following fact without proof.

Lemma
If f ∈ L1(R;C) ∩ L2(R;C) then FCC(f ) ∈ L2(R;C).

2 Let f ∈ L2(R;C). For j ∈ Z>0 define

fj(t) =

{
f (t), t ∈ [−j, j],
0, otherwise.

Note that fj ∈ L2([−j, j];C) ⊆ L1([−j, j];C) ⊆ L1(R;C). We state without proof
the following fact.

Lemma
The sequence (fj)j∈Z>0 converges to f in the Banach space L2(R;C).
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The L2-CCFT

3 We state without proof the following fact.

Lemma
The sequence (FCC(fj))j∈Z>0 is a Cauchy sequence in L2(R;C).

4 Completeness of L2(R;C) ensures that there exists FCC(f ) ∈ L2(R;C) such
that

lim
j→∞

(∫

R

∣∣∣FCC(f )(ν)− χ[−j,j]f (t)e
−2πiνt dt

∣∣∣
2)1/2

= 0.

We call FCC(f ) the L2-CCFT of f .

Note that the L2-CCFT does not define a function of frequency, but only
an equivalence class of signals agreeing almost everywhere. This is
rather different than the CCFT for signals in L1(R;C).
Note that since the Fourier integral so closely resembles the CCFT itself,
differing only by a sign in the exponent of the exponential function, the
above construction applies verbatim to the inverse via the Fourier integral.
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Reading for Lecture 31

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-6.2.5, IV-6.2.6, IV-6.2.7, IV-6.3.1, and IV-6.3.3.
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Lecture 32
The L2-CCFT
Theorem
The L2-CCFT is a Hilbert space isomorphism from L2(R;C) to L2(R;C).
Moreover, the inverse is defined by

∫

R

FCC(f )(ν)e2πiνt dν,

where the integral is defined as in the procedure above.

Examples (The L2-CCFT)
1 Take f ∈ L2(R;C) defined by f (t) = 1

1+|t| . Note that f ̸∈ L1(R;C). We
define fj = χ[−j,j]f , as in the procedure above. Since fj ∈ L1(R;C) we can
define FCC(fj). Then, for almost every ν ∈ R, the limit

lim
j→∞

∫ j

−j
f (t)e−2πiνt dt
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The L2-CCFT
Examples (The L2-CCFT (cont’d))

exists in L2(R;C) and defines FCC(f )(ν). A sort of closed form expression for
this CCFT is possible. We plot this:

-4 -2 0 2 4
0

2

4

6

8

ν

F
C
C
(f
)(
ν
)

Whatever we know about this function, we at least know it is in L2(R;C).
2 Let us consider f = χ[−1,1] which is in L1(R;C) ∩ L2(R;C). We had previously

computed

FCC(f )(ν) =
sin(2πν)
πν

.

This function is in L2(R;C), but not in L1(R;C). Thus the integral
∫

R

FCC(f )(ν)e2πiνt dν
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The L2-CCFT

Examples (The L2-CCFT (cont’d))
to determine f from its CCFT cannot be applied directly. However, the
procedure above is applicable, and so, for almost every t ∈ R we have

lim
j→∞

∫ j

−j
FCC(f )(ν)e2πiνt dν

converges to f (t). Moreover, the limit defines a signal in L2(R;C).

Note: We indicate in the examples that the limits exist for almost every ν
and t, respectively. This is not obvious and does not follow from
convergence in L2(R;C) in a direct way. It does, however, follow from
Carleson’s deep theorem on almost everywhere convergence of Fourier
series mentioned on Slide 247.
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The ℓ1-DCFT (definition)

Next we consider the Fourier transform for discrete-time aperiodic
signals.

Definition (DCFT)
The discrete-continuous Fourier transform or DCFT assigns to
f ∈ ℓ1(Z(∆);C) the signal FDC(f ) : R → C by

FDC(f )(ν) = ∆
∑

n∈Z
f (n∆)e−2πin∆ν , ν ∈ R.

This transform is often called the “discrete-time Fourier transform.”
Note that the DCFT looks a lot like a Fourier series. We shall use this fact
to relate much of what we say about the DCFT to what we have already
said about the CDFT.
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The ℓ1-DCFT (definition)
Examples (DCFT)

1 Let us define f : Z(∆) → C by

f (t) =

{
1, t ∈ {−N∆,−∆, 0,∆, . . . ,N∆},
0, otherwise.

Here’s the graph:
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The sum defining the DCFT of f is finite and we can show that

FDC(f )(ν) = ∆

N∑

n=−N

e−2πin∆ν = ∆Dper
∆−1,N(ν).
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The ℓ1-DCFT (definition)
Examples (DCFT (cont’d))

2 We consider the signal g : Z(∆) → C given by

g(t) =





− t
N∆ + 1, t ∈ {0,∆, . . . , (N − 1)∆},

t
N∆ + 1, t ∈ {−(N − 1)∆, . . . ,−∆},
0, otherwise.

Here’s the graph:
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The sum defining the DCFT of f is finite and we can show that

FDC(g)(ν) = ∆Fper
∆−1,N(ν).
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The ℓ1-DCFT (properties)

Recall from Slide 14 the reparameterisations τa and σ of the time-domain
R.
Let us also define F DC(f )(ν) = ∆

∑

n∈Z>0

f (n∆)e2πin∆ν .

Proposition

(i) FDC(f ) = F DC(f̄ );
(ii) FDC(σ

∗f ) = σ∗(FDC(f )) = F DC(f );
(iii) if f is even (resp. odd) then FDC(f ) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) then FDC(f ) is real and even

(resp. imaginary and odd);
(v) if a ∈ Z(∆) then FDC(τ

∗
a f )(ν) = e−2πiaνFDC(f )(ν).
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The ℓ1-DCFT (properties)

Theorem
For f ∈ ℓ1(Z(∆);C), FDC(f ) ∈ C0

per,∆−1(R;C).

Proof.
This follows from the Weierstrass M-test, cf. the proof of the Theorem on
Slide 233.

As with the other Fourier transforms we have seen, it is the case that the
DCFT is a continuous linear map, in this case between the Banach
spaces (ℓ1(Z(∆);C), ∥·∥1) and (C0

per,∆−1(R;C), ∥·∥∞). This is
Theorem IV-7.1.7 in the notes.
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Coefficient decay and the DCFT

Since FDC(f ) is defined on the continuous time-domain R, we can ask
about its smoothness properties; we already know that it is continuous if
f ∈ ℓ1(Z(∆);C).

Proposition (Differentiability of the DCFT of a signal)
For k ∈ Z>0, suppose that f : Z(∆) → C has the property that the signal
t 7→ tkf (t) is in ℓ1(Z(∆);C). Then FDC(f ) ∈ Ck(R;C) and

FDC(f )(k)(ν) = ∆
∑

n∈Z
(−2πin∆)kf (n∆)e−2πin∆ν .

Proof.
This follows from an induction using the Weierstrass M-test, along with the
fact that differentiation and summation can be swapped for a series which
converges and for which the series of derivatives also converges
uniformly.
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Reading for Lecture 32

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-6.3.1 and IV-6.3.3.
2 Sections IV-7.1.1, IV-7.1.2, and IV-7.1.3.
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Lecture 33
DCFT inversion

As with the CDFT and the CCFT, the following result is key.

Theorem (DCFT is injective)
FDC : ℓ

1(Z(∆);C) → C0
per,∆−1(R;C) is injective.

Proof.
Because FDC is linear, to show that it is injective it suffices to show that only
the zero signal in ℓ1(Z(∆);C) maps to the zero signal in C0

per,∆−1(R;C). Thus
suppose that f ∈ ℓ1(Z(∆);C) has the property that FDC(f )(ν) = 0 for every
ν ∈ R. Thus ∑

n∈Z
f (n∆)e−2πin∆ν = 0, ν ∈ R.

The sum on the left converges uniformly by the Weierstrass M-test. For m ∈ Z

0 =
∑

n∈Z
f (n∆)

∫ ∆−1

0
e2πim∆νe−2πin∆ν dν =

f (m∆)

∆
,
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DCFT inversion
Proof (cont’d).
swapping the sum and the integral since the sum converges uniformly, and
also the fact that

∫ ∆−1

0
e2πim∆νe−2πin∆ν dν =

{
∆−1, n = m,
0, n ̸= m.

This gives the result.

Proposition
FDC : ℓ

1(Z(∆);C) → C0
per,∆−1(R;C) is not surjective.

Proof.
When we discussed Fourier series, we claimed that there exists
F ∈ C0

per,∆−1(R;C) whose Fourier series diverges at t = 0. Such a signal,
therefore, cannot be the uniform limit of a series of the form
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DCFT inversion

Proof (cont’d).
∑

n∈Z
cne−2πin∆ν .

Thus F ̸∈ image(FDC).

We seek a left-inverse for the DCFT. The story here is much easier than
for the CDFT and the CCFT since the natural guess actually works.

Theorem
The map F −1

DC : C0
per,∆−1(R;C) → c0(Z(∆);C) defined by

F −1
DC (F)(n∆) =

∫ ∆−1

0
F(ν)e2πin∆ν dν

has the property that F −1
DC ◦ FDC(f ) = f for every f ∈ ℓ1(Z(∆);C). That is to

say, F −1
DC is a left-inverse for FDC.
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DCFT inversion

Proof.
Let f ∈ ℓ1(Z(∆);C), let m ∈ Z, and compute

(F −1
DC ◦ FDC(f ))(m∆) = ∆

∫ ∆−1

0

∑

n∈Z
f (n∆)e−2πin∆νe2πim∆ν dν

= ∆
∑

n∈Z
f (n∆)

∫ ∆−1

0
e−2πin∆νe2πim∆ν dν = f (m∆),

as desired. The integral and sum can be swapped because the sum
converges uniformly.
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The ℓ2-DCFT
Note that ℓ1(Z(∆);C) ⊂ ℓ2(Z(∆);C) and so the sum

∆
∑

n∈Z
f (n∆)e−2πin∆ν

does not obviously converge for f ∈ ℓ2(Z(∆);C).
However, our work with the CDFT helps us out here.

Theorem
If f ∈ ℓ2(Z(∆);C) and if fN ∈ C∞

per,∆−1(R;C) ⊆ L2
per,∆−1(R;C) is defined by

fN(ν) = ∆
∑N

n=−N f (n∆)e−2πin∆ν , then the sequence (fN)N∈Z>0 converges in
L2

per,∆−1(R;C) to a signal which we denote FDC(f ). Moreover, the resulting
map FDC : ℓ

2(Z(∆);C) → L2
per,∆−1(R;C) is a vector space isomorphism with

inverse

F −1
DC (F)(n∆) =

∫ ∆−1

0
F(ν)e2πin∆ν dν.

Finally, FDC is a Hilbert space isomorphism from (ℓ2(Z(∆),C), ⟨·, ·⟩2) to
(L2

per,∆−1(R;C), ⟨·, ·⟩2).
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The ℓ2-DCFT
Compare:

1 For the CCFT, if f ∈ L2(R;C), then the limit

lim
T→∞

∫ T

−T
f (t)e−2πiνt dt

exists in L2(R;C), so defining the L2-CCFT of f .
2 For the DCFT, if f ∈ ℓ2(Z(∆);C), then the limit

lim
N→∞

∆

N∑

n=−N

f (n∆)e−2πin∆ν

exists in L2
per,∆−1(R;C), so defining the ℓ2-DCFT of f .

Examples (ℓ2-DCFT)
1 Consider f : Z → C defined by

f (n) =

{
0, n = 0,
i 1−(−1)n

nπ , otherwise.
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The ℓ2-DCFT
Examples (ℓ2-DCFT (cont’d))

Note that f ∈ ℓ2(Z;C) but that f ̸∈ ℓ1(Z;C). Using our Fourier series
computations from the example on Slide 227 we have

lim
N→∞

N∑

n=−N

i
1 − (−1)n

nπ
e−2πinν =





0, ν ∈ {0, 1
2 , 1},

1, ν ∈ (0, 1
2 ),

−1, ν ∈ ( 1
2 , 1),

with the value of FDC(f ) being defined for all frequencies by periodic
extension. Thus, in this case, the series defining FDC(f ) ∈ L2

per,∆−1(R;C)

converges for every ν ∈ R. Nonetheless, one should be careful to
understand that the Theorem above gives convergence in L2

per,∆−1(R;C),
not pointwise convergence.

2 Next consider the signal f : Z(∆) → C defined by

f (n∆) =

{
0, n = 0,
1
n , otherwise.
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The ℓ2-DCFT

Examples (ℓ2-DCFT (cont’d))
Note that f ∈ ℓ2(Z(∆);C) but that f ̸∈ ℓ1(Z(∆);C). Note that at ν = 0 the
limit

lim
N→∞

∆

N∑

n=−N

1
n

e−2πin∆ν

does not exist. Nonetheless, Theorem IV-7.1.19 ensures that the limit

lim
N→∞

∆

N∑

n=−N

1
N

e−2πin∆ν

exists in L2
per,∆−1(R;C).
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The DDFT (definition)
We now consider the Fourier transform for periodic discrete-time signals.
Note that if f : Z(∆) → C is T-periodic then T = N∆ for some N ∈ Z>0.
Denote by ℓper,N∆(Z(∆);C) the set of T-periodic signals.
Since the signals are periodic with period T = N∆, the transformed
signals in the frequency domain will be discrete with sampling interval
T−1 = (N∆)−1. (Think of the CDFT.)
Because the signals are discrete with sampling interval ∆, the
transformed signals in the frequency domain will be periodic with period
∆−1. (Think of the DCFT.)
Thus the codomain of the DDFT will be ℓper,∆−1(Z((N∆)−1;C).

Definition (DDFT)
The discrete-discrete Fourier transform or DDFT assigns to
f ∈ ℓper,N∆(Z(∆);C) the signal FDD(f ) ∈ ℓper,∆−1(Z((N∆)−1);C) by

FDD(f )( k
N∆ ) = ∆

N−1∑

n=0

f (n∆)e−2πi k
N n, k ∈ Z.
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Reading for Lecture 33

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-7.1.5 and IV-7.1.6.
2 Sections IV-7.2.1 and IV-7.2.2.
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Lecture 34
The DDFT (definition)
Examples (DDFT)

1 We consider a N∆-periodic signal defined by asking that it be the periodic
extension of the signal

f (t) =

{
1, t ∈ {−M∆, . . . ,−∆, 0,∆, . . . ,M∆},
0, otherwise,

where M is a positive integer less than N
2 . One then computes

FDD(f )(k(N∆)−1) = ∆Dper
∆−1,M(k(N∆)−1).

Here are the plots with ∆ = 1, N = 20, and M = 5:
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The DDFT (definition)
Examples (DDFT (cont’d))

2 Here we define an N∆-periodic signal using periodic extension by

g(t) =





− t
M∆ + 1, t ∈ {0,∆, . . . , (M − 1)∆},

t
M∆ + 1, t ∈ {−(M − 1)∆, . . . ,−∆},
0, otherwise,

for some positive integer M less than N
2 . We compute

FDD(g)(k(N∆)−1) = ∆Fper
∆−1,M(k(N∆)−1)

which we plot for ∆ = 1, N = 20, and M = 5:
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The DDFT (properties)

First of all, one should verify that FDD(f ) ∈ ℓper,∆−1(Z((N∆)−1);C) if
f ∈ ℓper,N∆(Z(∆);C). This is a direct computation.
Recall from Slide 14 the reparameterisations τa and σ of the time-domain
R.

Let us also define F DD(f )( k
N∆ ) = ∆

N−1∑

n=0

f (n∆)e2πi k
N n.

Proposition

(i) FDD(f ) = F DD(f̄ );
(ii) FDD(σ

∗f ) = σ∗(FDD(f )) = F DD(f );
(iii) if f is even (resp. odd) then FDD(f ) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) then FDD(f ) is real and even

(resp. imaginary and odd);
(v) if m ∈ Z then FDD(τ

∗
m∆f )( k

N∆ ) = e−2πi k
N mFDC(f )( k

N∆ ).
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The DDFT (properties)
Since FDD is a map between finite-dimensional C-vector spaces, the
determining its deeper properties is much easier than for the other
Fourier transforms.
But we need to give some notation to describe these properties. We
define an inner product on ℓper,N∆(Z(∆);C) by

⟨f , g⟩time = ∆

N−1∑

n=0

f (n∆)g(n∆)

and an inner product on ℓper,∆−1(Z((N∆)−1);C) by

⟨F,G⟩freq = (N∆)−1
N−1∑

n=0

F(n(N∆)−1)G(n(N∆)−1).

Theorem
FDD is a Hilbert space isomorphism of the finite-dimensional Hilbert spaces
(ℓper,N∆(Z(∆);C), ⟨·, ·⟩time) and (ℓper,∆−1(Z((N∆)−1);C), ⟨·, ·⟩freq).
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DDFT inversion
The preceding result already says that FDD is invertible. The following
result records its inverse.

Theorem
The map FDD : ℓper,N∆(Z(∆);C) → ℓper,∆−1(Z((N∆)−1);C) is an isomorphism
with inverse defined by

F −1
DD (F)(k∆) =

1
N∆

N−1∑

n=0

F(n(N∆)−1)e2πi k
N n.

Proof.
This is a direct computation using the relation

N−1∑

n=0

e2πin j
N e−2πin k

N =

{
N, k = j,
0, otherwise.

This is rather analogous to the integral relations for harmonics we have used
many times previously for continuous-time signals.
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The FFT

While many signals in principle are continuous-time signals, they are
approximated in practise by discretised versions which can be processed
easily using a digital computer.
For this reason, the DDFT is the most important of the Fourier transforms
in practise, although it is the simplest.
Therefore, it is of some importance to be able to efficiently compute the
DDFT.
A common measure of computational effort required for an algorithm is
the number of multiplications it must perform; additions are comparatively
cheap.
A direct application of the DDFT to an N∆-periodic signal shows that it
requires N multiplications for each of its N values, i.e., N2 multiplications.
An important algorithm by Cooley and Tukey reduces this to a
computation requiring fewer than 1

2 N log2 N + 2N multiplications in cases
where N is a power of 2.
We shall describe the main idea behind the algorithm.
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The FFT
To simplify notation we work with the map from CN to CN defined by

FDD(z)(k) =
N−1∑

n=0

z(n)e2πi k
N n, k ∈ {0, 1, . . . ,N − 1}.

The relationship between this and the DDFT is clear.

Lemma
Let N ∈ Z>0 be even and, for z1, z2 ∈ CN/2, define

z = (z1(0), z2(0), z1(1), z2(1), . . . , z1(
N
2 − 1), z2(

N
2 − 1)).

Then

FDD(z)(k) = 1
2 (FDD(z1)(k) + e−2πi k

N FDD(z2)(k)),

FDD(z)(k + N
2 ) =

1
2 (FDD(z1)(k)− e2πi k

N FDD(z2)(k))

for k ∈ {0, 1, . . . , N
2 − 1}.
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The FFT

Proof.
The proof is a direct computation.

The point is that the computation can be broken into two parts, each
involving roughly half the number of complex multiplications as the
original computation. This is a significant saving.
Now, if N = 2r for some r ∈ Z>0 then:

1 N
2 is even and so the lemma can be applied to reduce the computations for
FDD(z) to shorter computations for FDD(z1) and FDD(z2);

2 N/2
2 is even and the lemma can be applied to reduce the computations for

FDD(z1) and FDD(z2) to shorter computations for FDD(z11), FDD(z12), FDD(z21),
and FDD(z22);

3 this process can be continued r times.
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Reading for Lecture 34

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-7.2.2, IV-7.2.3, IV-7.2.5, and IV-7.2.6.
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