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What follows is some sort of transcription of what I put on the board every
day during the winter term of 2020. These notes are based on LATEX lecture
notes prepared by Joe Grosso in real time during lectures. Beware of typos.

Andrew Lewis



Lecture 1
General System Theory
Definition
A general input-output system is a triple (U ,Y ,B ), where

(i) U is a set (the set of inputs),
(ii) Y is a set (the set of outputs), and
(iii) B ⊆ U ×Y (the behaviours).

An element ofB looks like (µ, η) with µ an input and η an output. If
µ ∈ U , we denote

B (µ) = {η ∈ Y | (µ, η) ∈B}.
This is the set of all outputs corresponding to the input µ ∈ U .

Definition
A functional input/output system is a general input/output system
(U(, )Y ,B ) such thatB is the graph of some mapping Φ: U → Y :

B = graph(Φ) = {(µ,Φ(µ)) | µ ∈ U }.
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States

Definition
A response function for a general input/output system (U ,Y ,B ) is a
mapping ρ : U × X → Y such that

B = {(µ, ρ(µ, x)) | µ ∈ U , x ∈ X}.

The set X is called a state object.

One should think of X as parameterising the outputs for a fixed input.

Definition
A linear general input/output system is a general input/output system
(U ,Y ,B ) such that

(i) U and Y are vector spaces and
(ii) B ⊆ U ⊕Y is a subspace.
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States

One also has linear response functions, meaning that U , Y , and X are
vector spaces, and ρ : U ⊕ X → Y is linear.
Nontrivial fact: If (U ,Y ,B ) is a linear input/output system it has a linear
response function.
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Reading for Lecture 1

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections V-2.1.2, V-2.1.3, and V-2.1.5.
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Lecture 2
Time and set-valued functions of time

For a (discrete or continuous time-domain) T, a sub-time-domain is a
subset T′ = T ∩ I where I is an interval.
For a time-domain T and a set X, recall that

XT = {f : T → X}

denotes the set of all X-valued functions on T.
We shall also require “partial functions,” defined by

X(T) = {f : T′ → X | T′ ⊆ T is a sub-time-domain}.

Call T′ the domain of f , denoted dom(f ).
Why do we need partial functions?
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Time and set-valued functions of time

Example
Consider a general input/output system with

U = L1(R;R), Y = C0(R,R).

Given µ ∈ U , the outputs corresponding to this input are given by solutions to
the following initial value problem:

η̇(t) = µ(t)η2(t), η(0) = y0.

This is a differential equation, which we can solve by the method of separation
to give

η(t) =
y0

1 − y0
∫ t

t0
µ(τ) dτ

.
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Time and set-valued functions of time

Example (cont’d)
For example, when µ(t) = u0, i.e., µ is constant (leave aside for the moment
that such inputs are not in L1; they are in L1

loc which we have yet to define),
then

η(t) =
y0

1 − y0µ0(t − t0)
.

Punchline: Although the differential equation defining the outputs seems nice
enough, and although the inputs are nice, the outputs can—and often
do—blow up in finite time.
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General time systems

Definition
A general time-system is (U,Y,T,U ,Y ,B ) such that

(i) U is a set (the set of input values),
(ii) Y is a set (the set of output values),
(iii) T is a time domain,
(iv) U ⊆ U(T) (the inputs),
(v) Y ⊆ Y(T) (the outputs),
(vi) B ⊆ U ×Y is such that, if (µ, η) ∈ B, then µ and η have the same

domain.

Thus inputs are things like µ : T′ → U, where T′ is a sub-time-domain of
T.
Similarly, outputs are things like η : T′ → Y, where T′ is a
sub-time-domain of T.
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General time systems

There is a notational convention for general time systems emerging that
will be repeated throughout the course:

1 Sets are denote by uppercase roman letters like U, Y, and X.
2 Sets of functions of time with values in these sets are denoted by uppercase

script letters like U , Y , and X .
3 Points in these sets are denoted by lowercase roman letters like u, y, and x.
4 Specific functions of time with values in these sets are denoted by lowercase

greek letters that are meant to be brothers of their roman brothers, e.g., µ, η,
and ξ.
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Attributes of general time systems
We will examine, in a general context, three attributes of general time
systems. We shall come to a better understanding of these when we talk
about concrete classes of systems later on in the course. The point here
is that these can be discussed in generality.
In doing this, we suppose we are given a distinguished “starting time”
t0 ∈ T.
For ξ ∈ XT and t ≥ t0 we have

ξ[t0,t) = ξ|[t0, t) and ξ[t0,t] = ξ|[t0, t].

If (U,Y,T,U ,Y ) is a general time system, we denote

B[t0,t) = {(µ[t0,t), η[t0,t)) | (µ, η) ∈B}.

Similarly we haveB[t0,t].
If µ ∈ U is a fixed input, then denote

B (µ)[t0,t) = {η[t0,t) | (µ, η) ∈B}.
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Attributes of general time systems

Definition
Let (U,Y,T,U ,Y ,B ) be a general time system. It is:

(i) causal from t0 ∈ T if

(µ1)[t0,t] = (µ2)[t0,t]

=⇒ B (µ1)[t0,t] =B (µ2)[t0,t] ∀ t ≥ t0;

(ii) strongly causal from t0 ∈ T if

(µ1)[t0,t) = (µ2)[t0,t)

=⇒ B (µ1)[t0,t] =B (µ2)[t0,t] ∀ t ≥ t0.

Causal: The behaviours at time t are determined by inputs for times not
beyond t.
Strongly causal: The behaviours at time t are determined by inputs for
times strictly less than t.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 2 March 7, 2022 12 / 306

Attributes of general time systems

Definition
A general time system (U,Y,T,U ,Y ,B ) is finitely observable from τ ≥ t0
if, for every input µ and for outputs η1, η2 ∈B (µ), we have

(η1)[t0,τ ] = (η2)[t0,τ ]

=⇒ (η1)≥t0 = (η2)≥t0 .

The idea is that the system gets all the information it needs to determine
outputs by time τ .
This seems like a peculiar property, but there are systems that are not
finitely observable from all τ ≥ t0.
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Attributes of general time systems

For t ≥ t0, we can shift a signal to the left by t − t0:

τ∗t0,tξ(s) = ξ(s − (t − t0)), s ≥ t0.

t0 t

ξ

τ∗t0,tξ

We denote
τ∗t0,tB = {(τ∗t0,tµ, τ∗t0,tη) | (µ, η) ∈B}.
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Attributes of general time systems

Definition
A general time system (U,Y,T,U ,Y ,B ) is

(i) stationary if τ∗t0,tB ⊆B and is
(ii) strongly stationary if τ∗t0,tB =B .

Stationary: behaviours are “shift-invariant.”
Strongly stationary: behaviours are “shift-invariant” and no behaviours
are lost by shifting.
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Reading for Lecture 2

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections V-2.2.6, V-2.2.7, and V-2.2.8.
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Lecture 3
More classes of signals

Let T be a continuous time-domain and let p ∈ [1,∞]. Denote by

Lp
loc = {f : T → F | f |K ∈ Lp(K;F) for every compact interval K ⊆ T}

Examples
1 Take T = (0, 1], f (t) = t−1. Then f ̸∈ Lp((0, 1],R) for all p.

However, f ∈ Lp
loc((0, 1],R) for every p ∈ [1,∞]. Indeed, let K ⊆ (0, 1] be a

compact interval so that K = [a, b] for 0 < a < b ≤ 1. Thus, since f is
continuous and K is compact:

f |K ∈ Lp(K;R).

2 Let T = R and take

f (t) =

{
t−1, t > 0,
0, t ≤ 0.

Then f ∈ Lp
loc(R;R) for no p ∈ [1,∞]. Indeed, if K ⊆ R is compact with

0 ∈ int(K), then f |K ̸∈ Lp(K;R).
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More classes of signals

In the spaces Lp
loc(T;F), we have a notion of convergence.

Definition
Let T be a continuous time-domain and let (fj)j∈Z>0 be a sequence in
Lp

loc(T;F). The sequence converges to f ∈ Lp
loc(T;F) if, for every compact

subinterval K ⊆ T, the sequence (fj|K)j∈Z>0 converges to f |K.

Example
Consider the sequence in Lp

loc(R;R) depicted here:

−5 −4 −3 −2 −1 0 1 2 3 4 5

f1 f1f2 f2

f3 f3

f4 f4
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More classes of signals

Example (cont’d)
We claim that (fj)j∈Z>0 converges to zero in Lp

loc(R;R) for every p ∈ [1,∞]. Let
K ⊆ R be a compact subinterval. Choose N ∈ Z>0 be sufficiently large that
K ⊆ [−N,N]. Then, by definition of fj, if j ≥ N, fj|[−N,N] = 0 which means that
fj|K = 0. Thus (fj|K)j∈Z>0 clearly converges to zero in Lp(K;R). This, by
definition, means that (fj)j∈Z>0 converges to zero in Lp

loc(R;R).

Similarly, we can consider C0(T;F) and talk about convergence in this
space.

Definition
A sequence (fj)j∈Z>0 in C0(T;F) converges to f ∈ C0(T;F) if, for every
compact interval K ⊆ T, (fj)j∈Z>0 converges to f |K in C0(K;F) using the
∞-norm.
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Reading for Lecture 3

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections III-6.5.2 and III-6.5.4, Proposition III-6.2.11,
and Section IV-1.3.5.
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Lecture 4
More classes of signals (cont’d)

There are discrete-time analogues to the classes Lp
loc(T;F) and C0(T;F)

of continuous-time signals that we discussed last time. But they are
easier.
Let T ⊆ Z(∆) be a discrete time-domain. Denote

ℓloc(T;F) = F
T.

Because, for finite discrete time-domains T, there are no differences
between the spaces ℓp(T;F), p ∈ [1,∞], there is no discrimination
between various flavours of discrete-time signals spaces in this setting as
there is with continuous-time signal spaces.
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More classes of signals

As concerns convergence in ℓloc(T;F), the rôle of compact subintervals
is played by finite subsets.

Definition
A sequence (fj)j∈Z>0 in ℓloc(T;F) converges to f in ℓloc(T;F) if, for every finite
K ⊆ T, the sequence (fj|K)j∈Z>0 converges to f |K.

Convergence in ℓloc(T;F) is really just pointwise convergence.
Understand this!
In all of the above cases, convergence is not, generally, norm
convergence. It is norm convergence when and only when T is compact
(in the continuous-time case) or finite (in the discrete-time case). The
convergence is with respect to seminorms. The seminorms are:

1 Lp
loc(T;F): ∥f∥K,p = ∥f |K∥, K ⊆ T compact;

2 C0(T;F): ∥f∥K,∞ = ∥f |K∥∞, K ⊆ T compact;
3 ℓloc(T;F): ∥f∥K,p = ∥f |K∥p, K ⊆ T finite (convergence is independent of p).
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More classes of signals

Convergence in these spaces in equivalent to convergence in each of the
seminorms.
One can also talk about continuity of functions to or from these spaces
using sequences, i.e., f is continuous if and only if limj→∞ f (xj) = f (x) for
any sequence (xj)j∈Z>0 converging to x.
Punchline: We can fairly easily enlarge our classes of signal spaces,
using the existing classes of signal spaces we learned about in
MATH/MTHE 334.
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Ordinary differential equations

In your past life, integrals were things you computed and differential
equations were things you solved.
In MATH/MTHE 334 we saw how thinking about the definition of an
integral is important, not just the computation of integrals.
Here we take a similarly elevated view of differential equations. We will
distinguish between a differential equation and a solution to a differential
equation.

Definition
Let X ⊆ Rn be open and let T ⊆ R be a continuous time-domain. An ordinary
differential equation with state space X and time-domain T is a mapping
F̂ : T × X → Rn.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 4 March 7, 2022 24 / 306

Ordinary differential equations

Solutions of differential equations are required to have a certain property.

Definition
Let T be a continuous time-domain. A mapping f : T → R is locally
absolutely continuous if there exists t ∈ T and g ∈ L1

loc(T;R) such that

f (t) = f (t0) +
∫ t

t0
g(τ)dτ

for some t0 ∈ T (the definition in independent of this choice).

Properties of locally absolutely continuous function f as in the definition:
1 f is continuous;
2 f is differentiable almost everywhere, and f ′(t) = g(t) for almost every t ∈ T.
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Ordinary differential equations

Definition
Let F̂ : T × X → Rn be an ordinary differential equation. A solution to F̂ is a
locally absolutely continuous ξ : T′ → X where T′ ⊆ T is a subinterval and
where

ξ̇(t) = F̂(t, ξ(t))

for almost every t ∈ T′.

We will give conditions for F̂ that ensure the existence of solutions and
some sort of uniqueness of solutions.
The conditions are a tiny bit complicated. But they are useful to think
about carefully:

1 because they are an important part of the theory of ordinary differential
equations;

2 because, when we talk about continuity of systems subsequently, we will
make use of conditions like those we give here.
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Ordinary differential equations
Definition
Let X ⊆ Rn be open and let f : X → Rm. Say that

(i) Say that f is Lipschitz if there exists L ∈ R>0 (called a Lipshitz
constant) such that

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥, x1, x2 ∈ X;

(ii) f is locally Lipschitz if, for every compact K ⊆ X, f |K is Lipschitz.

Properties:
1 If f is locally Lipshitz, it is continuous.
2 If f is continuously differentiable, it is locally Lipschitz.

Examples
1 The function f : R → R defined by f (x) =

√
|x| is continuous but not

locally Lipschitz.
2 The function f : R → R defined by f (x) = |x| is locally Lipschitz (in fact, it

is Lipschitz with Lipschitz constant 1) but not continuously differentiable.
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Reading for Lecture 4

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections III-6.5.1 and IV-1.2.5.
2 Sections V-3.1.3.1 and V-3.2.1.
3 Section II-1.10.8.
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Lecture 5
Ordinary differential equations (cont’d)

Theorem
Let T ⊆ R be a continuous time-domain, let X ⊆ Rn be open, and let
F̂ : T × X → Rn be an ordinary differential equation. Let (t0, x0) ∈ T × X.
Suppose that:

(i) for every t ∈ T, the function x 7→ F̂(t, x) is locally Lipschitz;

(ii) for every x ∈ X, the mapping t 7→ F̂(t, x) is locally integrable;
(iii) for every (t, x) ∈ T × X, there exists r, ρ ∈ R>0 and

g0, g1 ∈ L1([t − ρ, t + ρ];R≥0) such that

(a) ∥F̂(t′, x′)∥ ≤ g0(t′), (t′, x′) ∈ [t − ρ, t + ρ]× B(r, x);

(b) ∥F̂(t′, x1)− F̂(t′, x2)∥ ≤ g1(t′)∥x1 −x2∥, t′ ∈ [t−ρ, t+ρ], x1, x2 ∈ B(r, x).

Then there exists a solution ξ : T′ → X for F̂ with t0 ∈ T′ and ξ(t0) = x0.
Moreover, if ξ̃ : T′′ → X is another solution satisfying ξ̃(t0) = x0, then

ξ(t) = ξ̃(t), t ∈ T′ ∩ T′′.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 5 March 7, 2022 29 / 306



Ordinary differential equations

Generally, one cannot “solve” differential equations in any meaningful
way. But one still wants to be able to talk about solutions in an organised
way.
For (t0, x0) ∈ T × X, let IF̂(t0, x0) ⊆ T be the largest interval on which a
solution exists satisfying ξ(t0) = x0.
Then define

DF̂ = {(t, t0, x0) ∈ T × T × X | t ∈ IF̂(t0, x0)}

This is the domain of F̂.
Then define ΦF̂ : DF̂ → X by requiring that

t → ΦF̂(t, t0, x0)

is the solution to F̂ with the initial condition ξ(t0) = x0.
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Ordinary differential equations
Thus:

d
dt
ΦF̂(t, t0, x0) = F̂(t,ΦF̂(t, t0, x0)).

This is the flow of F̂, and encodes all solutions of the differential equation.

Example
Take T = R, X = R, F̂(t, x) = x2. This is a separable first-order equation and
can easily be solved with the initial state x0 at time t0:

ξ(t) =
x0

1 − x0(t − t0)
.

Therefore,

DF̂ =




(t, t0, x0)

∣∣∣∣∣∣∣





t ∈ (−∞, t0 + 1
x0
), x0 > 0,

t ∈ (t0 + 1
x0
,∞), x0 < 0,

t ∈ (−∞,∞), x = 0.




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Ordinary differential equations

Example (cont’d)
and

ΦF̂ : DF̂ → R
(t, t0, x0) 7→

x0

1 − x0(t − t0)
.

Linear ordinary differential equations will play an important rôle in this
course.

Definition
An homogeneous linear ordinary differential equation is a mapping
F̂ : T × X → X, where T ⊆ R is a continuous time-domain, X is an
n-dimensional vector space, and F̂(t, x) = A(t)x, where A : T → L(X;X) (linear
maps from X to X) is locally integrable.
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Ordinary differential equations

A solution to the homogeneous linear ode is a locally absolutely
continuous ξ : T → X satisfying

ξ̇(t) = A(t)ξ(t).

Important facts about homogeneous linear ordinary differential equations:

1 DF̂ = T × T × X;
2 flow is linear in state, i.e., for (t, t0) ∈ T2,

ΦF̂(t, t0, x0) = Φc
A(t, t0)x0

where Φc
A : T × T → L(X;X) is the state transition map.
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Reading for Lecture 5

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections V-3.2.1 and V-3.2.1.3.
2 Sections V-3.1.3.2, V-3.1.3.3, and V-5.2.1.
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Lecture 6
Ordinary differential equations (cont’d)

Next we consider ordinary differential equations with no dependence on
time.

Definition
An ordinary differential equation F̂ : T × X → Rn is autonomous if there
exists F̂0 : X → Rn so that F̂(t, x) = F̂0(x).

The definition just captures you say say that F̂ is independent of time.
The flow of an autonomous ordinary differential equation has the
following property:

ΦF̂(t, t0, x0) = ΨF̂(t − t0, x0)

for some ΨF̂ defined on some subset of T × X to Rn.
For autonomous equations, one often gives initial conditions at t0 = 0.
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Ordinary differential equations

If F̂ : T × X → X is an homogeneous linear ordinary differential equation,
then it is autonomous if and only if F̂(t, x) = Ax for A ∈ L(X;X).
For homogeneous linear ordinary differential equations, autonomous
means constant coefficients.
In this case, we can calculate the state transition map in terms of the
operator exponential of A.
If L ∈ L(X;X), we have

eL = idX +
∞∑

n=1

Ln

n!
.

Consider the initial value problem

ξ̇(t) = Aξ(t), ξ(t0) = x0.

From your past life, you know that the solution is

ξ(t) = eA(t−t0)x0.
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Ordinary differential equations
Thus the state transition map is

Φc
A(t, t0) = eA(t−t0)

and the flow is
ΦF̂(t, t0, x0) = eA(t−t0) · x0.

Let us next consider inhomogeneous linear ordinary differential
equations.
In this case, we have

F̂(t, x) = A(t)x + f (t)

for A ∈ L1
loc(T;L(X;X)) and f ∈ L1

loc(T;X).
The flow is give by the variation of constants formula:

ΦF̂(t, t0, x0) = Φc
A(t, t0)x0 +

∫ t

t0
Φc

A(t, τ)f (τ) dτ.

In the constant coefficient case, this becomes

ΦF̂(t, t0, x0) = eA(t−t0)x0 +

∫ t

t0
eA(t−τ)f (τ) dτ.
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Ordinary difference equations
We now turn to the discrete-time analogue of ordinary differential
equations.

Definition
Let T ⊆ Z(∆) be a discrete time-domain and let X ⊆ Rn be open. An
ordinary difference equation with time-domain T and state space X is a
mapping F̂ : T × X → X. A solution to the difference equation F̂ is a mapping
ξ : T → X satisfying

ξ(t +∆) = F̂(t, ξ(t)).

The question of existence of solutions for difference equations is resolved
by. . . computing them.
If we have an initial condition ξ(t0) = x0, then

ξ(t0 +∆) = F̂(t, x0),

ξ(t0 + 2∆) = F̂(t, F̂(t, x0)),

...
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Ordinary difference equations
Ordinary differential equations have solutions defined for times less than
the initial time.
For an ordinary difference equation with initial condition ξ(t0) = x0, what
is ξ(t0 −∆)? It is determined by

ξ(t0) = F̂(t, ξ(t0 −∆)).

Generally, this expression cannot be solved for ξ(t0 −∆).
Difference equations are thus meant to “Go forward.” If we can go
backwards we say the system is invertible.

Example
Take T = Z, X = R, and F̂(t, x) = 0. Then, for any initial condition ξ(t0) = x0,

ξ(t0 + k∆) = 0 k ∈ Z>0.

Note that this demonstrates that the lack of invertibility of ordinary difference
equations leads to lack of uniqueness of solutions.
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Ordinary difference equations

Although one does not have the same sort of uniqueness as one does for
ordinary differential equations, one has “forward uniqueness;” a solution
from an initial state x0 at initial time t0 has a unique solution for all t ≥ t0.
Thus we define the flow

ΦF̂ : {(t, t0, x0) ∈ T × T × X | t ≥ t0} → X

of a difference equations, by just recursively applying the difference
equation with the initial condition ΦF̂(t0, t0, x0) = x0.
One may talk about all of the particular sorts of ordinary difference
equations as we have done for ordinary differential equations:
homogeneous linear, state transition maps, autonomous, homogeneous
linear with constant coefficients, and so on. We will not go through this in
detail, but will make free use of properties that are entirely analogous to
those for ordinary differential equations.
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Reading for Lecture 6

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections V-3.1.3.1, V-5.2.2, V-5.3.1, and V-5.3.2.
2 Sections V-3.3.3.1, V-3.4.1, V-3.4.1.2, V-3.3.3.2, V-3.3.3.3,

V-5.6.1, V-5.6.2, V-5.7.1, and V-5.7.2.
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Lecture 7
Distributions

Example
Simple ordinary differential equation:

η̇(t) = µj(t), η(0) = 0,

where

µj(t) =

{
j, t ∈ [0, 1

j ],

0, otherwise.

Solve for ηj with input µj:

ηj(t) =

{
jt, t ∈ [0, 1

j ],

1, t ∈ ( 1
j ,∞).
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Distributions

Example (cont’d)

µj ηj

As j → ∞,

µ∞(t) = lim
j→∞

µj(t) =

{
∞, t = 0,
0, otherwise

η∞(t) = lim
j→∞

ηj(t) =

{
1, t ∈ (0,∞),

0, otherwise.
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Distributions

Example (cont’d)
Questions:

1 Is η∞ the output for the input µ∞?
No!

2 Is there any input µ which gives the output η∞?
No! (Not if we restrict to functions as inputs.)

We will consider a new class of thingies (distributions) which can serve
as models for certain physical behaviour.
Distributions are not functions of time. They are functions of test
functions.

Definition
Denote by D (R,F) the set of infinitely differentiable functions with compact
support, i.e., D (R;F) = C∞

cpt(R;F). Elements of D (R;F) are test functions.
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Distributions

Examples
1 ϕ(t) = 0 is in D (R;F).
2 Are there nonzero elements of D (R;F)? You will recall from

MATH/MTHE 281 functions like the following:

⋏(t) =

{
e−1/(1−t2), t ∈ (−1, 1),
0, otherwise

whose graph is

-2 -1 0 1 2

0.0

0.2

0.4

0.6

0.8
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Distributions

Examples (cont’d)
This function clearly has compact support and is infinitely differentiable,
except possibly at t = ±1. One calculates

d
dt

⋏ (t) =
1

P(t)
⋏ (t),

where P is a polynomial that vanishes at t = ±1. As exponentials go to
infinity fast than polynomials, the derivative vanishes at t = ±1. This
process can be continued to show that the derivatives of ⋏ are defined
and equal to zero at t = ±1. Thus ⋏ is infinitely differentiable.

Test functions themselves are not of specific interest; they are “cannon
fodder” in some sense, since we will primarily think of them as being
arguments for the things we actually care about.
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Distributions

But we do need a notion of convergence of a sequence of test functions.

Definition
A sequence (ϕj)j∈Z>0 converges to zero in D (R;F) if

(i) there exists K ⊆ R compact such that supp(ϕj) ⊆ K for j ∈ Z>0;

(ii) (ϕ
(k)
j )j∈Z>0 converges uniformly to zero for every k ∈ Z≥0, i.e., ϕj and all

of its derivatives converge uniformly to zero.

If you like norms, this sort of convergence is not norm convergence.
If you like metrics, this sort of convergence is not metric convergence.
If you like strict inductive limits of locally convex spaces. . . then you are in
luck!
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Reading for Lecture 7

Material related to this lecture can be found in the following sections of the
course notes:

1 Section IV-3.1.
2 Section IV-3.2.1.
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Lecture 8
Distributions (cont’d)
Definition
A distribution is a mapping θ : D (R;F) → F such that

(i) it is linear: i.e.,

θ(ϕ1 + ϕ2) = θ(ϕ1) + θ(ϕ2),

θ(aϕ) = a(θ(ϕ).

(ii) it is continuous: i.e., if (ϕj)j∈Z>0 converges to zero in D (R;F), then
(θ(ϕj))j∈Z>0 converges to zero.

Examples
1 If f ∈ L1

loc(R;F), then define

θf : D (R;F) → F

ϕ 7→
∫

R

f (t)ϕ(t) dt.
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Distributions

Examples (cont’d)
Claim that θf is a distribution.
Step 1 θf is well-defined, i.e., the integral exists.
Proof:

∫

R

|f (t)ϕ(t)| dt =
∫

supp(ϕ)

|f (t)||ϕ(t)| dt

= ∥ϕ∥∞
∫

supp(ϕ)

|f (t)| dt

<∞

because f ∈ L1
loc(R;F).

Step 2 θf is linear.
Proof: Linearity of the integral.
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Distributions

Examples (cont’d)
Step 3 θf is continuous.
Proof: Let (ϕj)j∈Z>0 converge to zero in D (R;F). Let K ⊆ R be compact
and such that supp(ϕj) ⊆ K, j ∈ Z>0. Then

|θf (ϕj)| =
∣∣∣∣
∫

R

f (t)ϕj(t) dt
∣∣∣∣ ≤

∫

R

|f (t)ϕj(t)| dt

=

∫

K
|f (t)ϕj(t)| dt ≤ ∥ϕj∥∞

∫

K
|f (t)| dt

≤ M∥ϕj∥∞.

Thus,
lim

j→∞
|θ(ϕj)| ≤ lim

j→∞
M∥ϕj∥∞ = 0.

Thus, every locally integrable function f defines a distribution θf .
NB. The map f 7→ θf is injective.
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Distributions

Examples (cont’d)
2 Define δ : D (R;F) → F by δ(ϕ) = ϕ(0). Claim that δ is a distribution.

Step 1 δ is linear.
Proof: Obvious.
Step 2 δ is continuous.
Proof: Let (ϕj)j∈Z>0 be a sequence converging to zero in D (R;F). Then

|δ(ϕj)| = |ϕj(0)|
=⇒ lim

j→∞
|δ(ϕj)| = lim

j→∞
|ϕj(0)| = 0.

We call δ the Dirac δ-distribution. Can also define δt0 : D (R;F) → F by
δt0(ϕ) = ϕ(t).

3 Let θ be a distribution. The derivative of θ is the distribution θ′ or θ(1)

defined by
θ(1)(ϕ) = −θ(ϕ(1)).
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Distributions

Examples (cont’d)
We can define higher-derivatives recursively

θ(k)(ϕ) = (−1)kθ(ϕ(k)).

Claim that θ(1) is a distribution.
Step 1 θ(1) is well-defined.
Proof: Must check that ϕ(1) ∈ D (R;F). This is clear.
Step 2 θ(1) is linear.
Proof:

θ(1)(ϕ1 + ϕ2) = − θ((φ1 + φ2)
(1))

= − θ(ϕ
(1)
1 + ϕ

(1)
2 )

= θ(1)(ϕ1) + θ(1)(ϕ2)

θ(aϕ) = aθ(1)(ϕ).
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Distributions

Examples (cont’d)
Step 3 θ(1) is continuous.
Proof: Let (ϕj)j∈Z>0 be a sequence converging to zero in D (R;F). Then

|θ(1)(ϕj)| = |θ(ϕ(1)
j )|.

Because (ϕ
(1)
j )j∈Z>0 converges to zero in D (R;F) and because θ is

continuous,
lim

j→∞
|θ(1)(ϕj)| = lim

j→∞
|θ(ϕ(1))| = 0.

Why is the definition of the derivative of a distribution as it is? Let
f ∈ C1(R;F). We claim that θ(1)

f = θf (1) . Indeed let ϕ ∈ D (R;F) and
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Distributions

Examples (cont’d)
compute

θf (1)(ϕ) =

∫

R

f (1)(t)ϕ(t) dt

= f (t)ϕ(t)
∣∣∣
∞

−∞
−
∫

R

f (t)ϕ(1)(t) dt

= −
∫

R

f (t)ϕ(1)(t) dt

= − θf (ϕ
(1)) = θ

(1)
f (ϕ).

4 Generally, one cannot multiply distributions as one multiplies functions.
However, one can multiply a distribution θ by a function f ∈ C∞(R;F) as
follows:

(f θ)(ϕ) = θ(fϕ).
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Distributions

Examples (cont’d)
To show that f θ is a distribution, one must show (a) that it is well-defined
(meaning we must show that fϕ ∈ D (R;F), which is clear, (b) that it is
linear (this is obvious), and (c) it is continuous. Continuity can be proved
by appeal to the higher-order Leibniz Rule:

(fg)(k) =
k∑

j=0

k!
j!(k − j)!

f (j)g(k−j).

We leave the details to the reader.
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Reading for Lecture 8

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-3.2.2, IV-3.2.3, and IV-3.2.6.
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Lecture 9
Distributions (cont’d)

We showed that, if f ∈ L1
loc(R;F), then θf is a distribution.

Looking at the proof of continuity of θf , we used, in an essential way, the
fact that, if (ϕj)j∈Z>0 converges to zero in D (R;F), then there exists a
compact K ⊆ R such that supp(ϕj) ⊆ K. Thus this condition on
convergence to zero in D (R;F) is necessary for θf to be a distribution.
We also defined, for a distribution θ, its kth derivative. The proof of
continuity of θ(k) used, in an essential way, the fact that, if (ϕj)j∈Z>0

converges to zero in D (R;F), then so does (ϕ
(k)
j )j∈Z>0 .

Punchline: The definition of convergence to zero in D (R;F) is forced
upon us by requiring that

1 θf is a distribution for every f ∈ L1
loc(R;F) and

2 all distributions be differentiable.
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Distributions

We denote by D ′(R;F) the set of distributions.
Note that D ′(R;F) is a subset of the set of linear mappings from
D (R;F) to F. This set of all linear mappings is called the algebraic dual
of D (R;F).
Then D ′(R;F) is the topological dual.
We can talk about convergence of sequences of distributions.

Definition
A sequence (θj)j∈Z>0 in D ′(R;F) converges to θ ∈ D ′(R;F) if (θj(ϕ))j∈Z>0

converges to θ(ϕ) for all ϕ ∈ D (R;F).
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Distributions

Example
Define fj : R → F by

fj(t) =

{
j, t ∈ [0, 1

j ],

0, otherwise.

Claim that (θfj)j∈Z>0 converges to δ. Indeed, let ϕ ∈ D (R;F). Define

ϵj = sup{|ϕ(t)− ϕ(0)| | t ∈ [0, 1
j ]}.

Thus
ϕ(0)− ϵj ≤ ϕ(t) ≤ ϕ(0) + ϵj, t ∈ [0, 1

j ],

and integration j
∫ 1/j

0 dt gives

ϕ(0)− ϵj ≤ θfj(ϕ) ≤ ϕ(0) + ϵj.

As j → ∞, ϵj → 0, and so limj→∞ θfj(ϕ) = ϕ(0) = δ(ϕ), as claimed.
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Distributions

Example
Let

1≥0(t) =

{
1, t ≥ 0
0, t < 0.

Claim that θ(1)
1≥0

= δ. For ϕ ∈ D (R;F),

θ
(1)
1≥0

(ϕ) = − θ1≥0(ϕ
(1))

= −
∫

R

1≥0(t)ϕ(1)(t) dt = −
∫ ∞

0
ϕ(1)(t) dt

= − ϕ(t)
∣∣∣
∞

0
= ϕ(0) = δ(ϕ),

as claimed.
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Reading for Lecture 9

Material related to this lecture can be found in the following sections of the
course notes:

1 Section IV-3.2.5.
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Lecture 10
Distributions (cont’d)

Example
We claim that there is no f ∈ L1

loc(R;R) such that
∫

R

f (t)ϕ(t) = ϕ(0), ϕ ∈ C0
cpt(R,R).

Suppose there is such an f . Define ϕj(t) ∈ C0
cpt(R;R), j ∈ Z>0, as depicted

here:

φ1

φ2
φ3
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Distributions

Example
Suppose that ∫

R

f (t)ϕj(t) dt = ϕj(0) = 1.

By the Dominated Convergence Theorem,

lim
j→∞

∫

R

f (t)ϕj(t) dt =
∫

R

f (t) lim
j→∞

ϕj(t) dt = 0.

But we also have, by assumption,

lim
j→∞

∫

R

f (t)ϕj(t) dt = lim
j→∞

ϕj(0) = 1.

Contradiction shows that no such f exists.
This can easily be adapted to ϕj ∈ C∞

cpt(R;R). Therefore, δ ̸= θf for any
f ∈ L1

loc(R;R).
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Distributions and ordinary differential equations
Distributions are well suited to the study of linear differential equations
(ordinary and partial) with constant coefficients.
Sometimes, if one can prove the existence of a solution that is a
distribution, this can be used to prove the existence of solutions in the
usual sense.
We first consider the scalar case. We represent a kth-order scalar linear
ordinary differential equation with constant coefficients by

F̂(t, x, x(1), x(2), . . . , x(k−1))

= −a0x − a1x(1) − a2x(2) − · · · − ak−1x(k−1), x(j) ∈ R.

A solution is ξ : T → R satisfying

dkξ

dtk (t) = F̂

(
t, ξ(t),

dξ
dt

(t),
d2ξ

dt2 (t), . . . ,
dk−1ξ

dtk−1 (t)

)

=⇒ dkξ

dtk (t) + ak−1
dk−1ξ

dtk−1 (t) + · · ·+ a1
dξ
dt

(t) + a0ξ(t) = 0.
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Distributions and ordinary differential equations

We consider equations like this, but with distributions on the right-hand
side, i.e., an inhomogeneous equation with the inhomogeneous term
being a distribution. We will ask for solutions that are themselves
distributions.
If the solution is θ ∈ D ′(R;R), then

θ(k) + ak−1θ
(k−1) + · · ·+ a1θ

(1) + a0θ = β (1)

for β ∈ D ′(R;R).
To study this equation initial conditions are not meaningful. Instead we
consider restrictions on the “support” of solutions.

Definition
Let θ ∈ D ′(R;R) and let I ⊆ R be an open interval. Say that θ vanishes on I
if θ(ϕ) = 0 for all ϕ ∈ D (R;R) with supp(ϕ) ⊆ I. The support of θ is

supp(θ) = R \ ∪{I ⊆ R | θ vanishes on I}.
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Distributions and ordinary differential equations

Examples
1 supp(θf ) = supp(f ), f ∈ L1

loc(R;R).
2 supp(δ) = {0}. Indeed, since δ(ϕ) = ϕ(0),

δ(ϕ) = 0 ⇐⇒ supp(ϕ) ⊆ (−∞, 0) ∪ (0,∞)

=⇒ supp(δ) = {0}.

Denote by

D ′
+(R;R) = {θ ∈ D ′(R;R) | inf supp(θ) > −∞},
D ′

−(R;R) = {θ ∈ D ′(R;R) | sup supp(θ) <∞}.
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Distributions and ordinary differential equations

Theorem
Let F̂ be a kth-order scalar linear ordinary differential equation with constant
coefficients and let β ∈ D ′(R;R). Denote by Sol(F̂, β) the set of solutions
of (1). Then:

(i) card(Sol(F̂, β)) ≥ 2;

(ii) if β ∈ D ′
+(R;R), then

card(Sol(F̂, β) ∩D ′
+(R;R)) = 1;

(iii) if β ∈ D ′
−(R;R), then

card(Sol(F̂, β) ∩D ′
−(R;R)) = 1.

We will consider parts (ii) and (iii) of the theorem in the case β = δ.
It turns out that all other β’s follow from this, but this involves delving into
things a little outside the scope of what we do here.
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Reading for Lecture 10

Material related to this lecture can be found in the following sections of the
course notes:

1 Proposition IV-3.1.1 and Section IV-3.2.4.
2 Section V-4.4.3.
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Lecture 11
Distributions and ordinary differential equations
(cont’d)

To determine the unique solution in D ′
+(R;R) to (1) with β = δ, let

ξ : R → R be the unique solution to the initial value problem:

dkξ

dtk (t) + ak−1
dk−1ξ

dtk−1 (t) + · · ·+ a1
dξ
dt

(t) + a0ξ(t) = 0,

ξ(0) =
dξ
dt

(0) = · · · = dk−2ξ

dtk−2 (0) = 0,
dk−1ξ

dtk−1 (0) = 1.

Denote by

1≥0(t) =

{
1, t ≥ 0,
0, t < 0

the unit step function.
We will show that θ1≥0ξ is the unique solution in D′

+(R;R) to (1) with
β = δ.
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Distributions and ordinary differential equations
First note that θ1≥0ξ = ξθ1≥0 . Indeed, for ϕ ∈ D (R;R),

θ1≥0ξ(ϕ) =

∫

R

1≥0(t)ξ(t)ϕ(t) dt

= θ1≥0(ξϕ) = ξθ1≥0(ϕ).

Fact
If θ ∈ D ′(R;R) and if f ∈ C∞(R;R), then

(f θ)(1) = f (1)θ + f θ(1).

Proof.
Note that, for ϕ ∈ D (R;R), (fϕ)(1) = f (1)ϕ+ fϕ(1). Thus

(f θ)(1)(ϕ) = − f θ(ϕ(1)) = −θ(fϕ(1)) = −θ((fϕ)(1)) + θ(f (1)ϕ)

= θ(1)(fϕ) + f (1)θ(ϕ) = f θ(1)(ϕ) + f (1)θ(ϕ) = (f θ(1) + f (1)θ)(ϕ).
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Distributions and ordinary differential equations

Then we calculate:

(ξθ1≥0)
(1) = ξ(1)θ1≥0 + ξθ

(1)
1≥0

= ξ(1)θ1≥0 + ξδ.

But
(ξδ)(ϕ) = δ(ξφ) = ξ(0)ϕ(0) = 0.

Thus (ξθ1≥0)
(1) = ξ(1)θ1≥0 .

Then we recursively have

(ξθ1≥0)
(j) = ξ(j)θ1≥0 , j ∈ {0, 1, . . . , k − 2}.

Then

(ξθ1≥0)
(k) = ξ(k)θ1≥0 + ξ(k−1)θ

(1)
1≥0

= ξ(k)θ1≥0 + δ.
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Distributions and ordinary differential equations

We now consider the problem of systems of linear ordinary differential
equations with constant coefficients and with a distribution for an
inhomogeneous term.
The homogeneous equation is thus F̂(t, x) = Ax, x ∈ X (a
finite-dimensional R-vector space).
We look for distributional solutions to

θ(1) = A(θ) + β. (2)

We must make sense of the symbols in this equation before we do
anything else.

Definition
Let X be a finite-dimensional R-vector space. A X-valued distribution is a
continuous linear mapping θ : D (R;R) → X. Denote the set of these
distributions by D ′(R;X).
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Distributions and ordinary differential equations

We shall now give a list of constructions that are necessary to present
solutions to (2).

Constructions
1 Let x0 ∈ X and let θ ∈ D ′(R;R). Define x0 ⊗ θ ∈ D ′(R;X) by

x0 ⊗ θ(ϕ) = θ(ϕ)x0.

The symbol “⊗” is pronounced “tensor” (not “tenser”) and the symbol
x0 ⊗ θ should be thought of as the product of x0 and θ.

2 Let A ∈ L(X;X) and θ ∈ D ′(R;X). Define A(θ) ∈ D ′(R;X) by

A(θ)(ϕ) = A(θ(ϕ)).
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Reading for Lecture 11

Material related to this lecture can be found in the following sections of the
course notes:

1 Section V-4.4.3.
2 Sections IV-3.2.12 and V-5.3.3.2.
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Lecture 12
Distributions and ordinary differential equations
(cont’d)

Constructions (cont’d)
3 If ξ ∈ C∞(R;X), then we can choose a basis (e1, . . . , en) for X and write

ξ(t) = ξ1(t)e1 + · · ·+ ξn(t)en.

for ξ1, . . . , ξn ∈ C∞(R;R). If θ ∈ D ′(R;R), define

ξ ⊗ θ ∈ D ′(R;X).

by
(ξ ⊗ θ)(ϕ) = (ξ1θ)(ϕ) + · · ·+ (ξnθ)(ϕ).

This is the vector version of multiplying a distribution by a C∞-function.
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Distributions and ordinary differential equations

Then, taking ξ(t) = eAtx0, we claim that θ1≥0ξ is the unique solution in
D ′

+(R;X) to (2) with β = x0 ⊗ δ.
Indeed, we have θ1≥0ξ = ξ ⊗ θ1≥0 (this is easily and directly verified), and
so we compute

(ξ ⊗ θ1≥0)
(1) = ξ(1) ⊗ θ1≥0 + ξ ⊗ θ

(1)
1≥0

= (Aξ)⊗ θ1≥0 + ξ ⊗ δ.

Now we can easily and directly verify:
1 (Aξ)⊗ θ1≥0 = A(ξ ⊗ θ1≥0);
2 ξ ⊗ δ = ξ(0)⊗ δ = x0 ⊗ δ.

Thus
(ξ ⊗ θ1≥0)

(1) = A(ξ ⊗ θ1≥0) + x0 ⊗ δ,

as claimed.
Thus ξ ⊗ θ1≥0 is the result of doing nothing up to time 0, applying an
impulse in the direction of x0 at time 0, and then doing nothing thereafter.
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Convolution

Convolution f ∗ g

Continuous-time Discrete-time

f ∗ g(t) =
∫

R

f (t − s)g(s) ds f ∗ g(k∆) =
∞∑

j=−∞
f ((k − j)∆)g(j∆)

We will start with the continuous-time case.
Denote

D(f , g) = {t ∈ R | s 7→ f (t − s)g(s) is in L1(R;F)}.
Say that (f , g) is convolvable if R \ D(f , g) has measure zero.
Exact conditions under which (f , g) is convolvable are not really
meaningful. Instead, one hopes to give conditions on f and g which
ensure that (f , g) is convolvable, and which give some properties of f ∗ g.
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Convolution

Before we get to this, we consider an example illustrating how convolution
works.

Example
Consider:

f (t) =

{
1, t ∈ [−1, 1],
0, otherwise.

Calculate f ∗ f . First we note that

f (t − s) =

{
1, t − s ∈ [−1, 1],
0, otherwise,

=
{

1, −s ∈ [−t − 1,−t + 1],

=
{

1, s ∈ [t − 1, t + 1].
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Convolution

Example (cont’d)
Thus

f ∗ f (t) =
∫

R

f (t − s)f (s) ds

=

∫ 1

−1
f (t − s) ds

= λ([−1, 1] ∩ [t − 1, t + 1])

=

{
2 − |t|, t ∈ [−2, 2],
0, otherwise.

Observation: Convolution “smears support” and “smooths” the functions.
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Reading for Lecture 12

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-3.2.12 and V-5.3.3.2.
2 Section IV-4.1.1.
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Lecture 13
Convolution (cont’d)

Properties of continuous-time convolution

f ∗ g(t) =
∫

R

f (t − s)g(s) ds.

1 If (f , g) is convolvable, then (g, f ) is convolvable, and f ∗ g = g ∗ f .
2 If (f , g) and (f , h) are convolvable, then (f , g + h) is convolvable and

f ∗ (g + h) = f ∗ g + f ∗ h.
3 It is not generally true that

(f ∗ g) ∗ h = f ∗ (g ∗ h).

4 If (f , g) is convolvable and if f , g ∈ L1
loc(R,F), then f ∗ g ∈ L1

loc(R;F).
5 For f ∈ L1

loc(R;F), denote by

σ(f ) = sup{t ∈ R | f (s) = 0 for almost every s ≤ t}.
If f , g ∈ L1

loc(R;F), if σ(f ), σ(g) > −∞, and if (f , g) is convolvable, then

f ∗ g(t) =

{∫ t−σ(f )
σ(g) f (t − s)g(s) ds, t ≥ σ(f ) + σ(g),

0, otherwise.
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Convolution
Indeed, suppose that t < σ(f ) + σ(g). First consider s ≤ σ(g) in which case
f (t − s)g(s) = 0. In the other case, with s ≥ σ(g), we have

t − s < σ(f ) + σ(g)− s ≤ σ(f ) =⇒ f (t − s)g(s) = 0.

If t ≥ σ(f ) + σ(g), consider

s > t − σ(f ) =⇒ t − s < σ(f ) =⇒ f (t − s)g(s) = 0.

6 If σ(f ), σ(g) ≥ 0, this simplifies to

f ∗ g(t) =

{∫ t
0 f (t − s)g(s) ds, t ≥ 0,

0, t < 0.

Compare this to the following term from the variation of constants formula:
∫ t

0
eA(t−τ)f (τ) dτ.

We can see that this expression is, in fact, a convolution if one considers all
signals as having their values set to zero for negative time.
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Convolution
Let us now turn to the case of when a pair of signals (f , g) is convolvable.
There are no useful general conditions, so we can only give special
cases.

Theorem
If f , g ∈ L1(R;F), then

(i) (f , g) is convolvable,
(ii) f ∗ g ∈ L1(R;F), and
(iii) (f ∗ g) ∗ h = f ∗ (g ∗ h).

This shows that L1(R;F) is a commutative ring with the convolution
product. It has some not so great properties as a ring, however. Here are
some additional properties:

1 There is no unit, i.e., there is no signal u ∈ L1(R;F) such that u ∗ f = f for
every f ∈ L1(R;F). If there were a unit, what property should it have?

f ∗ u(t) =
∫

R

f (t − s)u(s) ds = f (t).
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Convolution

Take t = 0. Then ∫

R

f (−s)u(s) ds = f (0).

This looks quite like the behaviour of the Dirac δ-function. But there is no
such “function.”

2 There are nonzero f , g ∈ L1(R,F) such that f ∗ g = 0. (This means that
L1(R;F) is not an “integral domain.”)

3 The convolution product is “surjective,” i.e., if h ∈ L1(R;F), then there exists
f , g ∈ L1(R;F) such that f ∗ g = h.
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Convolution

Theorem
If f , g, h ∈ L1

loc(R≥0;F), then
(i) (f , g) is convolvable,
(ii) (f ∗ g) ∈ L1

loc(R≥0;F), and
(iii) (f ∗ g) ∗ h = f ∗ (g ∗ h).

The ring properties of L1
loc(R≥0;F) are the same as those of L1(R;F),

except for 2, which is replaced with
2’ L1

loc(R≥0;F) is an integral domain, i.e., if f ∗ g = 0, then either f = 0 or g = 0.
This follows from the Titschmarch Convolution Theorem (very hard to prove).
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Convolution

We now consider pairs of convolvable signals where this is not
necessarily symmetry in the properties of each signals in the pair, and
also not necessarily symmetry with the properties of the convolution.

Theorem
Let p, q, r ∈ [1,∞] satisfy 1

p + 1
q = 1 + 1

r . If f ∈ Lp(R;F) and if g ∈ Lq(R;F),
then (f , g) is convolvable and f ∗ g ∈ Lr(R;F).

This follows from “Young’s inequality” whose precise form we shall state
in the next lecture.
Let’s look at some special cases. If p ∈ [1,∞], let p′ ∈ [1,∞] be defined
by 1

p + 1
p′ = 1. Call p′ the conjugate index of p.

1 p = p and q = p′: Then r = ∞. In this case, more is true, namely that
f ∗ g ∈ C0

bdd(R;F) if f ∈ Lp(R;F) and g ∈ Lp′(R;F).
2 p = p and q = 1: Then r = p.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 13 March 7, 2022 88 / 306



Reading for Lecture 13

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-4.1.2, IV-4.2.1, IV-4.2.3, and IV-4.2.2.
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Lecture 14
Convolution (cont’d)

Our last result concerning convolvable pairs of continuous-time signals is
a natural extension of our previous result to the case of signals with
support in R≥0.

Theorem
Let p, q, r ∈ [1,∞] satisfy 1

p + 1
q = 1 + 1

r . If f ∈ Lp
loc(R≥0;F) and if

g ∈ Lq
loc(R≥0;F), then (f , g) is convolvable and f ∗ g ∈ Lr

loc(R≥0;F).

We have the same special cases as previously.
1 p = p and q = p′: Then r = ∞. In this case, more is true, namely that

f ∗ g ∈ C0(R≥0;F) if f ∈ Lp(R≥0;F) and g ∈ Lp′(R≥0;F).
2 p = p and q = 1: Then r = p.
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Convolution

Now we consider the continuity of convolution. There are (at least) two
sorts of continuity one can consider.

1 If we fix a signal g, we can consider the continuity of the mapping f 7→ f ∗ g.
In this case, the continuity is of a type we are familiar with as f will be a
member of some signal space in which we understand convergence (i.e., a
normed space or a space whose topology is defined by seminorms), as will
be f ∗ g. In this case, continuity amounts to: if (fj)j∈Z>0 converges to zero,
then (fj ∗ g)j∈Z>0 converges to zero.

2 We can also consider continuity of (f , g) 7→ f ∗ g. We shall not give here a
precise definition of what continuity of a mapping like this means; the
mapping is not linear, but rather is bilinear, i.e., linear in each entry. All we
shall say is:

1 if the mapping (f , g) 7→ f ∗ g is continuous, then, if we fix g, the mapping
f 7→ f ∗ g is also continuous;

2 we shall see that all of our spaces of convolvable pairs of signals will be such
that the mapping (f , g) 7→ f ∗ g is continuous.

As we shall see, the continuity of (f , g) is determined by giving a bound like
∥f ∗ g∥ ≤ C∥f∥∥g∥, where we are intentionally vague about what
(semi)norms we are using.
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Convolution

We consider four cases of continuity of convolution, corresponding to four
cases of convolvable pairs of signals given above.
For signals with support in R, we use the usual Lp-norms.
For signals with support in R≥0 we shall make use of the following fact:

A sequence (fj)j∈Z>0 in Lp
loc(R≥0;F) converges to zero if and only if,

for every T ∈ R>0, the sequence (fj|[0,T]))j∈Z>0 converges to zero in
Lp([0,T];F).

This amounts to saying that we can replace arbitrary compact
subintervals K ⊆ R≥0 with the particular compact subintervals [0,T],
T ∈ R>0.
We have the associated seminorms ∥·∥[0,T],p.
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Convolution

We then have that the mapping (f , g) 7→ f ∗ g is continuous in the
following four cases:

1 f , g ∈ L1(R;F): continuity is determined by the inequality

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1;

2 f ∈ Lp(R;F) and g ∈ Lq(R;F) with 1
p + 1

q = 1 + 1
r : continuity is determined

by Young’s inequality
∥f ∗ g∥r ≤ ∥f∥p∥g∥q;

3 f , g ∈ L1
loc(R≥0;F): continuity is determined by the inequality

∥f ∗ g∥[0,T],1 ≤ ∥f∥[0,T],1∥g∥[0,T],1;

4 f ∈ Lp(R≥0;F) and g ∈ Lq(R≥0;F) with 1
p + 1

q = 1 + 1
r : continuity is

determined by the inequality

∥f ∗ g∥[0,T],r ≤ ∥f∥[0,T],p∥g∥[0,T],q.
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Convolution

Next we consider discrete-time convolution

f ∗ g(k∆) =

∞∑

j=−∞
f (k∆− j∆)g(j∆).

Definition
A pair (f , g), f , g ∈ FZ(∆), is convolvable if, for each k ∈ Z,

j∆ 7→ f (k∆− j∆)g(j∆)

is in ℓ1(Z(∆);F).
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Convolution
Discrete-time convolution has the following general properties.

1 If (f , g) is convolvable, then (g, f ) is convolvable and f ∗ g = g ∗ f .
2 If (f , g) and (f , h) are convolvable, then (f , g + h) is convolvable and

f ∗ (f + h) = f ∗ g + f ∗ h.
3 It is generally not true that

(f ∗ g) ∗ h = f ∗ (g ∗ h).

4 There exists u ∈ FZ(∆) such that

u ∗ f = f , f ∈ FZ(∆).

Thus u is a multiplicative unit for the convolution product. The signal u is
easily defined explicitly, and we leave this as an exercise.

5 For f ∈ FZ(∆), denote by

σ(f ) = inf supp(f ).

If f , g ∈ FZ(∆) satisfy σ(f ), σ(g) > −∞, then (f , g) is convolvable and

f ∗ g(k∆) =

{∑k−σ(f )/∆
j=σ(g)/∆ f (k∆− j∆)g(j∆), k∆ ≥ σ(f ) + σ(g),

0, k∆ < σ(f ) + σ(g).
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Convolution
6 Specialising to the case of σ(f ), σ(g) ≥ 0,

f ∗ g(k∆) =

{∑k
j=0 f (k∆− j∆)g(j∆), k ≥ 0,

0, k < 0.

We now give some instances of convolvable pairs of discrete-time
signals, essentially mirroring the results we already have for the
continuous-time case.

Theorem
If f , g ∈ ℓ1(Z(∆);F), then f ∗ g ∈ ℓ1(Z(∆);F). Additionally:

(i) (f ∗ g) ∗ h = f ∗ (g ∗ h), f , g, h ∈ ℓ1(Z(∆);F);
(ii) the multiplicative identity u mentioned above is in ℓ1(Z(∆);F), which

implies that the ring ℓ1(Z(∆);F) with the product of convolution has a
unit;

(iii) there exist f , g ∈ ℓ1(Z(∆);F), both nonzero, such that f ∗ g = 0, which
implies that the ring ℓ1(Z(∆);F) is not an integral domain;

(iv) If h ∈ ℓ1(Z(∆);F), then there exists f , g ∈ ℓ1(Z(∆);F) such that h = f ∗ g
(this is trivial in this case: take f = u and g = h).
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Convolution

We now consider convolvablility of pairs of discrete-time signals in
various ℓp-spaces.

Theorem
If p, q, r ∈ [1,∞] satisfies 1

p + 1
q = 1 + 1

r , if f ∈ ℓp(Z(∆);F), and if
g ∈ ℓq(Z(∆);F), then f ∗ g ∈ ℓr(Z(∆);F).
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Reading for Lecture 14

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-4.1.4, IV-4.1.5, IV-4.2.7, and IV-4.2.8.
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Lecture 15
Convolution (cont’d)

Next we consider convolvability for pairs of discrete-time signals with
support in

Z≥0(∆) = {k∆ ∈ Z(∆) | k ≥ 0}.
The situation here is simpler than the corresponding results in the
continuous-time case.

Theorem
If f , g ∈ ℓloc(Z≥0(∆);F), then the pair (f , g) is convolvable, and
f ∗ g ∈ ℓloc(Z≥0(∆);F).

Now we turn to continuity of discrete-time convolution. First we consider
the case where we have no restriction on the supports of the signals.

1 If f , g ∈ ℓ1(Z(∆);F), then

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1.

2 If f ∈ ℓp(Z(∆);F), if g ∈ ℓq(Z(∆);F), and if 1
p + 1

q = 1 + 1
r , then

∥f ∗ g∥r ≤ ∥f∥p∥g∥q.
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Convolution

For signals with support in ℓloc(Z≥0(∆);F), we simplify the description of
convergence by using particular seminorms.
For f ∈ ℓloc(Z≥0(∆);F) and for N ∈ Z≥0, define

∥f∥N,p =




N∑

j=0

|f (j∆)|p



1/p

.

Fact: a sequence (fj)j∈Z>0 in ℓloc(Z≥0(∆);F) converges to zero if and only
if limj→∞∥fj∥N,p = 0 for every N ∈ Z≥0.
Then we have the following.

1 If f , g ∈ ℓloc(Z≥0(∆);F) then

∥f ∗ g∥N,1 ≤ ∥f∥N,1∥g∥N,1.

2 If f , g ∈ ℓloc(Z≥0(∆);F) and if 1
p + 1

q = 1 + 1
r , then

∥f ∗ g∥N,r ≤ ∥f∥N,p∥g∥N,q.
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System theory

We will talk about eight kinds of systems about eight kinds of systems.
These are

{systems, linear systems} × {state-space, input/output}×
{continuous-time, discrete-time}.

We shall start with the more general classes of systems, then move to
the more structured classes of systems, about which we will be able to
say more.
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Continuous-time state space systems

Definition
A continuous-time state space system is a sextuple (X,U,T,U , f ,h),
where

(i) X ⊆ Rn is open (the state space),
(ii) U ⊆ Rm (the input-value space),
(iii) T ⊆ R is a continuous time-domain (the time-domain),
(iv) U ⊆ U(T) (the set of inputs),
(v) f : T × X × U → Rn (the dynamics), and
(vi) h : T × X × U → Rk (the output map).

In order to see the manner in which this is a system, we need a couple of
definitions.
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Continuous-time state space systems

Definition
A controlled trajectory of a continuous-time state space system
σ = (X,U,T,U , f ,h) is a pair (ξ,µ), where µ ∈ U is defined on T′ ⊆ T and
where ξ : T′ → X is locally absolutely continuous and satisfies

ξ̇(t) = f(t, ξ(t),µ(t)).

Definition
A controlled output for σ is a pair (η,µ), where µ ∈ U is defined on T′ ⊆ T
and η satisfies

η(t) = h(t, ξ(t),µ(t)),

and where (ξ,µ) is a controlled trajectory.

Ctraj(Σ) denotes the set of controlled trajectories.
Cout(Σ) denotes the set of controlled outputs.
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Continuous-time state space systems
Thus a controlled output (η,µ) satisfies

ξ̇(t) = f(t, ξ(t),µ(t)),
η(t) = h(t, ξ(t),µ(t)).

Thus one obtains controlled outputs by a two-step process:
1 given the input, determine a controlled trajectory by solving the differential

equation
ξ̇(t) = f(t, ξ(t),µ(t));

2 determine the output from

η(t) = h(t, ξ(t),µ(t)).

A special case we shall study in detail later is given by

ξ̇(t) = A ◦ ξ(t) + B ◦ µ(t),

η(t) = C ◦ ξ(t) + D ◦ µ(t),

for linear maps A, B, C, and D.
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Continuous-time state space systems

Questions
1 What properties should the set U of inputs have?
2 Given properties of U , what properties should f have so that controlled

trajectories exist?
3 Continuous-time state space systems are examples of general time

systems. As general time systems, what properties do they have?
4 We will care about continuity of the map µ 7→ η.
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Reading for Lecture 15

Material related to this lecture can be found in the following sections of the
course notes:

1 Sections IV-4.2.7, IV-4.2.8, and IV-4.2.9.
2 Section V-6.1.1.
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Lecture 16
Continuous-time state space systems (cont’d)

Let us give a few particular properties for continuous-time state space
systems.

Definition
Let Σ = (X,U,T,U , f ,h) be a continuous-time state space system. It is

(i) dynamically autonomous if f is independent of t, i.e., there exists
f 0 : X × U → Rn such that f(t, x,u) = f 0(x,u),

(ii) output autonomous if h is independent of t, i.e., there exists
h0 : X × U → Rn such that h(t, x,u) = h0(x,u),

(iii) autonomous if both dynamically and output autonomous, and
(iv) proper if h is independent of input, i.e., there exists h0 : T × X → Rk such

that h(t, x,u) = h0(t, x).
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Continuous-time state space systems
The “autonomous” terminology mirrors that for ordinary differential
equations.
The terminology “proper” is borrowed from the theory of stationary linear
systems, where it has to do with properties of the transfer function.
Now let us consider the matter of inputs for continuous-time state space
systems.
Notation:

1 Lp
loc((T);U) = {µ ∈ U(T) | µ ∈ Lp

loc(dom(µ);U)};
2 C0((T);U) = {µ ∈ U(T) | µ ∈ C0(dom(µ);U)}.

We do this in such a manner as to ensure that, for an input µ ∈ U , the
mapping

(t, x) 7→ f(t, x,µ(t))

satisfies the hypotheses for existence and uniqueness of solutions for
ordinary differential equations.
The reason for this, of course, is that controlled trajectories (ξ,µ) satisfies

ξ̇(t) = f(t, ξ(t),µ(t)).
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Continuous-time state space systems

Example
Let us see why requiring that inputs be in L1

loc is not enough. Consider the
continuous-time state space system with X = R, U = R, T = R, and
f (t, x, u) = u2. If

µ(t) =

{
t−1/2, t ∈ R>0,

0, t ∈ R≤0.

We have µ ∈ L1
loc(R;R) but

f (t, x, µ(t)) =

{
t−1, t ∈ R>0,

0, t ∈ R≤0

is not locally integrable. Thus being in L1
loc is not, in general, an adequate

property for inputs. We see, however, that if µ ∈ L∞
loc(R;R), then, for this

example, things work out. Indeed, this will be enough for the general result we
now state.
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Continuous-time state space systems

Theorem
Let Σ = (X,U,T,U , f ,h) be a continuous-time state space system and
suppose that

(i) U ⊆ L∞
loc((T);U),

(ii) for fixed (x,u) ∈ X × U, t 7→ f(t, x,u) is locally integrable,
(iii) for fixed (t,u) ∈ T × U, x 7→ f(t, x,u) is locally Lipschitz,
(iv) for fixed t ∈ T, (x,u) 7→ f(t, x,u) is continuous, and
(v) for (t0, x0,u0) ∈ T × X × U, there exists ρ, r1, r2 ∈ R>0 and

g1, g2 ∈ L1([t0 − ρ, t0 + ρ];R≥0) such that

(a) ∥f(t, x,u)∥ ≤ g1(t) for all t ∈ [t0 − ρ, t0 + ρ], for all x ∈ B(r1, x0) and for
all u ∈ B(r2,u0) ∩ U, and

(b) ∥f(t, x1,u)− f(t, x2,u)∥ ≤ g2(t)∥x1 − x2∥ for all t ∈ [t0 − ρ, t0 + ρ], for all
x1, x2 ∈ B(r1, x0) and for all u ∈ B(r2,u0) ∩ U.

Then, for µ ∈ U , the mapping (t, x) 7→ f(t, x,µ(t)) satisfies the conditions for
existence and uniqueness for solutions of ordinary differential equations.
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Continuous-time state space systems
If the conditions for the theorem are satisfied for all (t0, x0) ∈ T × X and
µ ∈ U , there is a unique solution to the initial value problem

ξ̇(t) = f(t, ξ(t),µ(t)), ξ(t0) = x0 (3)

defined for t near t0.
If t0 ∈ T, x0 ∈ X, µ ∈ U , with t0 ∈ dom(µ), we have a largest subinterval
IΣ(t0, x0,µ) on which solutions of the initial value problem (3) are defined.
The domain of Σ is

DΣ = {(t, t0, x0,µ) | t ∈ IΣ(t0, x0,µ)}.

The flow for Σ is ΦΣ : DΣ → X is defined by

d
dt
ΦΣ(t, t0, x0,µ) = f(t,ΦΣ(t, t0, x0,µ),µ(t)), ΦΣ(t0, t0, x0) = x0.

Similarly with the flow and solutions for ordinary differential equations, the
flow encodes all controlled trajectories for Σ.
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Continuous-time state space systems
Note that there are no conditions required for h to give the output

η(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)).

But, when we consider the continuity of the input/output map we will need
conditions on h.
Continuous-time state space systems are examples of general time
systems. Let us consider the general time system properties of
continuous-time state space systems.

1 They are causal: Let t0 ∈ T. Let (η,µ) be a controlled output with
t0 ∈ dom(µ). Then the associated controlled trajectory (ξ,µ) satisfies

ξ̇(t) = f(t, ξ(t),µ(t)) =⇒ ξ(t) = ξ(t0) +

∫ t

t0

f(τ, ξ(τ),µ(τ)) dτ.

Thus ξ(t) depends only on the value of µ on [t0, t]. Since

η(t) = h(t, ξ(t),µ(t)),

we conclude that η(t) depends only on the value of µ on [t0, t].
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Reading for Lecture 16

1 Sections V-6.1.1 and V-6.1.2.
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Lecture 17
Continuous-time state space systems (cont’d)

2 They are sometimes strongly causal: If Σ is proper, then we see, that in the
above argument, ξ(t) depends only on the value of µ on [t0, t) and then also
that η(t) depends only on the value of µ on [t0, t).

3 They are sometimes stationarity: Assuming that the input set U is
translation-invariant, stationarity means that

h(t + a,ΦΣ(t + a, t0 + a, x0, τ
∗
t0,t0+aµ), τ

∗
t0,t0+aµ(t)) = h(t,ΦΣ(t, t0, x0,µ),µ(t))

for every a ∈ R>0 and every x0 ∈ X. One can easily see that this happens if
Σ is autonomous. Thus a continuous-time state space system is stationary if
it is autonomous.

4 They are strongly stationary if they are stationary: Because one can flow
backwards in time, one can show that Σ is strongly stationary if it is
stationary.

5 They are finitely observable: Because an output is determined by (a) an
input and (b) an initial state condition at time t0, a continuous-time state
space system is finitely observable from any τ > t0 and for any t0 ∈ T.
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Continuous-time state space systems

If U ⊆ Rm and if u ∈ U, then we can write u = (u1, . . . , um).

Definition
A continuous-time state space system Σ = (X,U,T,U , f ,h) is control-affine
if there exists f 0, f 1, . . . , f m : T × X → and h0,h1, . . . ,hm : T × X → such that

f(t, x,u) = f 0(t, x) +
m∑

a=1

uaf a(t, x)

and

h(t, x,u) = h0(t, x) +
m∑

a=1

uaha(t, x).

(An affine function has the form “linear + constant.”)
We call f 0 the drift dynamics and f 1, . . . , f m the control dynamics.
We call h0 the drift/output map and h1, . . . ,hm the control/output map.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 17 March 7, 2022 115 / 306

Continuous-time state space systems

If (ξ,µ) ∈ Ctraj(Σ) with (η,µ) the corresponding controlled output, then

ξ̇(t) = f 0(t, ξ(t)) +
m∑

a=1

µa(t)f a(t, ξ(t)),

η(t) = h0(t, ξ(t)) +
m∑

a=1

µa(t)ha(t, ξ(t)).

We see that, if the input µ is zero, then ξ satisfies the ordinary differential
equation

ξ̇(t) = f 0(t, ξ(t));

thus, in the absence of input, trajectories are solutions of the drift
dynamics.
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Continuous-time state space systems

If a control-affine continuous-time state space system is dynamically
autonomous, then we can enlarge our class of inputs from
U ⊆ L∞

loc((T);U) to U ⊆ L1
loc((T);U) since, in this case, we are assured

that, for fixed x, the function

t 7→ f 0(x) +
m∑

a=1

µa(t)f a(x)

is locally integrable.
Control-affine continuous-time state space systems have particular
conditions in order for f to satisfy the conditions of the theorem of
Slide 110.

1 In the general case, we ask that (t, x) 7→ f a(t, x), a ∈ {0, 1, . . . ,m}, satisfy the
conditions from the theorem in Slide 29 for existence and uniqueness of
solutions for ordinary differential equations.

2 In the dynamically autonomous case, we ask that x 7→ f a(x),
a ∈ {0, 1, . . . ,m}, be locally Lipschitz.
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Continuous-time state space systems

One almost always works with autonomous control-affine
continuous-time state space systems.
A particularly interesting class of such systems that we will look at in
detail later is the class of linear systems:

ξ̇(t) = A ◦ ξ(t) + B ◦ µ(t),

η(t) = C ◦ ξ(t) + D ◦ µ(t),

for linear maps A, B, C, and D.
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Reading for Lecture 17

1 Sections V-6.1.1 and V-6.1.3.
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Lecture 18
Continuous-time input/output systems

Unlike continuous-time state space systems which produce outputs by
first determining a controlled trajectory, a continuous-time input/output
system directly produces an output from an input.
We will work with classes of inputs and outputs selected from the
following collections of partially defined S-valued functions (S is a subset
of some Euclidean space):

1 C0((T); S) = {f : S → S | S ⊆ T, f ∈ C0(S; S)};
2 Lp

loc((T); S) = {f : S → S | S ⊆ T, f ∈ Lp
loc(S; S)}, p ∈ [1,∞].

If S is a subset of one of these collections of partially defined signals
and if S ⊆ T, then we denote

S (S) = {f ∈ S | dom(f) = S}.
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Continuous-time input/output systems

We shall require a notion of convergence in a space S of partially
defined signals.

Definition
Let S ⊆ Rn, let T be a continuous time-domain, and let S be a subset of
either C0((T); S) or Lp

loc((T); S), p ∈ [1,∞]. A sequence (f j)j∈Z>0 in S
converges to f ∈ S if

(i) there exists a subinterval S ⊆ T such that

dom(f) = S, dom(f j) = S, j ∈ Z>0,

and
(ii) (f j)j∈Z>0 converges to f in C0(S; S) or Lp

loc(S; S), p ∈ [1,∞], respectively.
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Continuous-time input/output systems
Definition
A continuous-time input/output system is a 5-tuple Σ = (U,T,U ,Y , g) with

(i) U ⊆ Rm,
(ii) T a continuous time-domain,
(iii) U is a subset of either C0((T);U) or Lp

loc((T);U),
(iv) Y is a subset of either C0((T);Rk) or Lp

loc((T);R
k), and

(v) g : U → Y satisfies

(a) for a subinterval S ⊆ T, the restriction gS = g|U (S) takes values in
Y (S),

(b) for subintervals S′ ⊆ S,

gS(µ)|S′ = gS′(µ|S′), µ ∈ U (S),

and
(c) for any subinterval S ⊆ T, gS is continuous (in the sense that it maps

convergent sequences to convergent sequences).
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Continuous-time input/output systems

While we will encounter an important class of continuous-time
input/output systems where we will require the possibility of partially
defined spaces of inputs and outputs, it is common for inputs and outputs
to be defined on all of T, i.e., U (S) = ∅ and Y (S) = ∅ unless S = T.
In such cases, the properties (v)(a) and (v)(b) having to do with restriction
are moot, and so the definition simplifies significantly.
Most interesting classes of input/output systems one encounters in
practice are continuous. And if they are not, they should be.
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Continuous-time input/output systems

Why do we care about continuity?
1 Some problems in system theory are solved by first finding a sequence of

approximating solutions, and then taking a limit. Without continuity, such
constructions are meaningless.

2 In “real life” applications of system theory, the models with which one works
are seldom perfectly accurate, the implementation of solutions of
system-theoretic problems is seldom faithful. In such cases, continuity will
ensure that the idealised solution will still work reasonably well on the actual
system.

3 Optimisation is a common problem in system theory. Thus one wishes to
accomplish a system theoretic task while minimising a cost function.
Continuity is frequently an important ingredient for ensuring the existence of
optimal solutions, e.g., continuous functions on compact sets achieve a
minimum.

4 Certain kinds of stability in system theory can be phrased as continuity with
respect to certain topologies on the spaces of inputs and outputs. For
example, so-called bounded-input/bounded-output stability for linear
systems means continuity of the system when inputs and outputs are
equipped with the L∞-norm.
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Continuous-time input/output systems
Continuous-time input/output systems are examples of general time
systems. As such they are susceptible to possessing attributes of general
time systems.
But these systems have their own definitions of causality that are different
from those for continuous-time state space systems as a result of there
being no natural initial time t0.

Definition
A continuous-time input/output system is:

(i) causal if, for every µ1,µ2 ∈ U with dom(µ1) = dom(µ2) and for every
t ∈ dom(µ1) = dom(µ2),

µ1|(T≤t ∩ dom(µ1)) = µ2|(T≤t ∩ dom(µ2)) =⇒ g(µ1)(t) = g(µ2)(t);

(ii) strongly causal if, for every µ1,µ2 ∈ U with dom(µ1) = dom(µ2) and for
every t ∈ dom(µ1) = dom(µ2),

µ1|(T<t ∩ dom(µ1)) = µ2|(T<t ∩ dom(µ2)) =⇒ g(µ1)(t) = g(µ2)(t).
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Continuous-time input/output systems

Definition
A continuous-time input/output system with supT = ∞ is:

(i) stationary if τ∗a (U ) ⊆ U for every a ∈ R>0 and if, for every µ ∈ U ,

g(τ∗a µ) = τ∗a g(µ);

(ii) strongly stationary if it is stationary and if, for every a ∈ R>0 and every
µ ∈ U , there exists µ′ ∈ U such that

g(µ) = g(τ∗a µ
′).

While the definitions differ in detail from those used for continuous-time
state space systems, the essence is the same:

1 causality means that outputs do not depend on future values of inputs;
2 stationarity means invariance under time shift.
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Continuous-time input/output systems

Given these definitions, we have the following properties of
continuous-time input/output systems.

1 They are generally not causal: As an example, take U = R, T = R,
U = Y = C0(R;R) (no partially defined inputs or outputs), and
g(µ)(t) = µ(−t) or g(µ)(t) = µ(t + a) for a ∈ R>0. Indeed, it is pretty easy to
build noncausal systems.

2 They are generally not stationary: As an example, take U = R, T = R,
U = L1(R;R), Y = C0(R;R), and

g(µ)(t) =
∫ t

−∞
sin(τ)µ(τ) dτ.

It is easy to directly verify that, for arbitrary a ∈ R>0, τ∗a g(µ) ̸= g(τ∗a µ).
3 They are finitely observable: This is just because they are functional as

general time systems.
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Reading for Lecture 18

1 Sections V-6.2.1 and V-6.2.2.
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Lecture 19
Continuous-time input/output systems from
continuous-time state space systems

Let Σ = (X,U,Y,T,U ,Y , f ,h) be a continuous-time state space system
and let (t0, x0) ∈ T × X.
Then we can define a continuous-time input/output system
Σi/o(t0, x0) = (U,T,U ,Y , g) by

g(µ)(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)).

where, we recall that

d
dt
ΦΣ(t, t0, x0,µ) = f(t,ΦΣ(t, t0, x0,µ),µ(t)), ΦΣ(t0, t0, x0,µ) = x0.

We assume that f satisfies the previous conditions giving existence and
uniqueness of trajectories for the existence and uniqueness of controlled
trajectories.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 19 March 7, 2022 129 / 306

Continuous-time input/output systems from
continuous-time state space systems

We can then easily verify that g has all the properties of a
continuous-time input/output systems, except possibly continuity.
To verify continuity, we do two things:

1 give appropriate properties of h;
2 select an appropriate set of outputs based on the properties of h.

We shall state a theorem that considers various special cases. The fully
rigorous proof is difficult. Instead we shall give some reasons for why the
conditions are as they are by examining the system equations

ξ̇(t) = f(t, ξ(t),µ(t)),
η(t) = h(t, ξ(t),µ(t)).

(4)

We shall use the fact that, in general, inputs are in L∞
loc((T);U) and that

trajectories ξ are locally absolutely continuous, and so continuous, as
functions of time.
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Continuous-time input/output systems from
continuous-time state space systems

Theorem
Let Σ = (X,U,T,U , f ,h) be a continuous-time state space system, let
(t0, x0) ∈ T × X, and let Σi/o be as above. Then, under the following sets of
conditions, Σi/o is a continuous-time input/output system.

(i) The most general case:

(a) U ⊆ Rm is locally compact,
(b) the map t 7→ h(t, x,u) is measurable for each (x,u) ∈ X × U,
(c) the map (x,u) 7→ h(t, x,u) is continuous for each t ∈ T, and
(d) for each (t, x,u) ∈ T × X × U, there exist r1, r2, α ∈ R>0 and

g ∈ L1([t − α, t + α];R≥0)

such that

∥h(s, x′,u′)∥ ≤ g(s), (s, x′,u′) ∈ ([t−α, t+α]∩T)×Bn(r1, x)×Bn(r2,u),
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Continuous-time input/output systems from
continuous-time state space systems
Theorem (cont’d)

(e) U = L∞
loc((T);U), and

(f) Y = L1
loc((T);R

k).

Idea of proof.
Referring to (4), the conditions on h ensure that

1 the t-dependence of h is locally integrable;
2 the t-dependence of h on ξ(t) is locally bounded (t 7→ ξ(t) is continuous

and h is continuous in x);
3 the t-dependence of h on µ(t) is locally bounded (t 7→ µ(t) is locally

bounded and h is continuous in u).
Since continuous combinations of locally integrable functions and locally
bounded functions will be locally integrable, we deduce that
Y = L1

loc((T);R
k).
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Continuous-time input/output systems from
continuous-time state space systems

Theorem (cont’d)

(ii) The output autonomous case:

(a) U ⊆ Rm is locally compact,
(b) Σ is output autonomous,
(c) the map (x,u) 7→ h(x,u) is continuous,
(d) U ⊆ L∞

loc((T);U), and
(e) Y = L∞

loc((T);R
k).

Idea of proof.
Similar to Case (i), except that h is independent of t, and so we only have
local boundedness of output.
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Continuous-time input/output systems from
continuous-time state space systems

Theorem (cont’d)

(iii) The output autonomous, proper case:

(a) Σ is output autonomous and proper,
(b) the map x 7→ h(x) is continuous,
(c) U ⊆ L∞

loc((T);U), and
(d) Y = C0((T);Rk).

Idea of proof.
Referring to (4), we see that t 7→ ξ(t) is continuous, and so the output is
continuous since h depends continuously on x.
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Continuous-time input/output systems from
continuous-time state space systems

Theorem (cont’d)
(iv) The general control-affine case:

(a) Σ is control-affine,
(b) the maps t 7→ ha(t, x), a ∈ {0, 1, . . . ,m}, are measurable for each

x ∈ X,
(c) the maps x 7→ ha(t, x), a ∈ {0, 1, . . . ,m}, are continuous for each

t ∈ T, and
(d) for each (t, x) ∈ T × X, there exist r, α ∈ R>0 and

g ∈ L1
loc([t − α, t + α];R≥0)

such that

∥ha(s, x′)∥ ≤ g(s), a ∈ {0, 1, . . . ,m}, (s, x′) ∈ ([t−α, t+α]∩T×Bn(r, x),
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Continuous-time input/output systems from
continuous-time state space systems
Theorem (cont’d)

(e) U ⊆ L∞
loc((T);U), and

(f) Y = L1
loc((T);R

k).

Idea of proof.
Just like Case (i).

(v) The control-affine output autonomous case:

(a) Σ is control-affine and output autonomous,
(b) the maps x 7→ ha(x), a ∈ {0, 1, . . . ,m}, are continuous,
(c) U ⊆ L∞

loc((T);U), and
(d) Y = L∞

loc((T);R
k).

Idea of proof.
Same as Case (ii).
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Continuous-time input/output systems from
continuous-time state space systems

Theorem (cont’d)
(vi) The control-affine output autonomous, proper case:

(a) Σ is control-affine, output autonomous, and proper,
(b) the map x 7→ h0(x) is continuous,
(c) U ⊆ L∞

loc((T);U), and
(d) Y = C0((T);Rk).

Idea of proof.
Same as (iii).
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Continuous-time input/output systems from
continuous-time state space systems

Theorem (cont’d)

(vii) The control-affine autonomous case:

(a) Σ is control-affine and autonomous,
(b) the maps x 7→ ha(x), a ∈ {0, 1, . . . ,m}, are continuous,
(c) U ⊆ L1

loc((T);U), and
(d) Y = L1

loc((T);R
k).

Idea of proof.
Here we note that the differential equation part of (4) permits us to use inputs
that are only locally integrable, and not subject to the stronger condition of
being locally bounded. The reason for this is that f is linear in inputs in the
control-affine case. Then we see that the outputs are similarly naturally locally
integrable.
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Continuous-time input/output systems from
continuous-time state space systems

Theorem (cont’d)
(viii) The control-affine, autonomous, proper case:

(a) Σ is control-affine, autonomous, and proper,
(b) the map x 7→ h0(x) is continuous,
(c) U ⊆ L1

loc((T);U), and
(d) Y = C0((T);Rk).

Idea of proof.
As in Case (vii), we can take inputs to be locally integrable. Then the outputs
are continuous, since t 7→ ξ(t) is continuous and h0 is continuous.
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Reading for Lecture 19

1 Section V-6.2.3.
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Lecture 20
Discrete-time state space systems

The development of discrete-time state space systems proceeds rather
like that for continuous-time state space systems. So what we say will be
a little repetitious. But there are differences we will point out.

Definition
A discrete-time state space system is a sextuple (X,U,T,U , f ,h), where

(i) X ⊆ Rn is open (the state space),
(ii) U ⊆ Rm (the input-value space),
(iii) T ⊆ Z(∆) is a discrete time-domain (the time-domain),
(iv) U ⊆ U(T) (the set of inputs),
(v) f : T × X × U → Rn (the dynamics), and
(vi) h : T × X × U → Rk (the output map).
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Discrete-time state space systems

Definition
A controlled trajectory of a discrete-time state space system
σ = (X,U,T,U , f ,h) is a pair (ξ,µ), where µ ∈ U is defined on T′ ⊆ T and
where ξ : T′ → X satisfies

ξ(t +∆) = f(t, ξ(t),µ(t)).

Definition
A controlled output for σ is a pair (η,µ), where µ ∈ U is defined on T′ ⊆ T
and η satisfies

η(t) = h(t, ξ(t),µ(t)),

and where (ξ,µ) is a controlled trajectory.

Ctraj(Σ) denotes the set of controlled trajectories.
Cout(Σ) denotes the set of controlled outputs.
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Discrete-time state space systems
Thus a controlled output (η,µ) satisfies

ξ(t +∆) = f(t, ξ(t),µ(t)),
η(t) = h(t, ξ(t),µ(t)).

Thus one obtains controlled outputs by a two-step process:
1 given the input, determine a controlled trajectory by solving the difference

equation
ξ(t +∆) = f(t, ξ(t),µ(t));

2 determine the output from

η(t) = h(t, ξ(t),µ(t)).

A special case we shall study in detail later is given by

ξ(t +∆) = A ◦ ξ(t) + B ◦ µ(t),

η(t) = C ◦ ξ(t) + D ◦ µ(t),

for linear maps A, B, C, and D.
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Discrete-time state space systems

Let us give a few particular properties for discrete-time state space
systems.

Definition
Let Σ = (X,U,T,U , f ,h) be a discrete-time state space system. It is

(i) dynamically autonomous if f is independent of t, i.e., there exists
f 0 : X × U → Rn such that f(t, x,u) = f 0(x,u),

(ii) output autonomous if h is independent of t, i.e., there exists
h0 : X × U → Rn such that h(t, x,u) = h0(x,u),

(iii) autonomous if both dynamically and output autonomous, and
(iv) proper if h is independent of input, i.e., there exists h0 : T × X → Rk such

that h(t, x,u) = h0(t, x).
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Discrete-time state space systems

The “autonomous” terminology mirrors that for ordinary difference
equations.
The terminology “proper” is borrowed from the theory of stationary linear
systems, where it has to do with properties of the transfer function.
For discrete-time state space systems, one does not have to think
carefully about the kind of inputs one uses. One can just take
U ⊆ ℓloc((T);U).
For discrete-time systems, one does not have to think carefully about the
property of f to ensure existence of trajectories. Because the trajectory is
simply determined by the difference equation

ξ(t +∆) = f(t, ξ(t),µ(t)),

and difference equations are simply solved by recursion, any mapping f
will give the existence of trajectories.
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Discrete-time state space systems

By the same reasoning as we saw for difference equations, trajectories
are not generally uniquely defined by their initial conditions. This is
because of the lack of invertibility of difference equations. However, one
does have forward uniqueness, meaning that the trajectory with initial
state x0 at time t0 is uniquely defined for t ≥ t0.
So we can define the flow.
The flow for Σ is ΦΣ : DΣ → X is defined by

ΦΣ(t +∆, t0, x0,µ) = f(t,ΦΣ(t, t0, x0,µ),µ(t)), ΦΣ(t0, t0, x0) = x0.

Similarly with the flow and solutions for ordinary difference equations, the
flow encodes all controlled trajectories for Σ.
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Discrete-time state space systems
Note that there are no conditions required for h to give the output

η(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)).

But, when we consider the continuity of the input/output map we will need
conditions on h.
Discrete-time state space systems are examples of general time
systems. Let us consider the general time system properties of
discrete-time state space systems.

1 They are causal: Let t0 ∈ T. Let (η,µ) be a controlled trajectory with
t0 ∈ dom(µ). Then a controlled trajectory (ξ,µ) satisfies

ξ(t +∆) = f(t, ξ(t),µ(t)),

and so is solved by recursion, as we have seen. Thus ξ(t) depends only on
the value of µ on [t0, t]. Since

η(t) = h(t, ξ(t),µ(t)),

we conclude that η(t) depends only on the value of µ on [t0, t].
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Discrete-time state space systems

2 They are sometimes strongly causal: If Σ is proper, then we see, that in the
above argument, ξ(t) depends only on the value of µ on [t0, t) and then also
that η(t) depends only on the value of µ on [t0, t).

3 They are sometimes stationarity: Assuming that the input set U is
translation-invariant, stationarity means that

h(t + a,ΦΣ(t + a, t0 + a, x0, τ
∗
t0,t0+aµ), τ

∗
t0,t0+aµ(t)) = h(t,ΦΣ(t, t0, x0,µ),µ(t))

for every a ∈ Z>0(∆) and every x0 ∈ X. One can easily see that this
happens if Σ is autonomous. Thus a discrete-time state space system is
stationary if it is autonomous.

4 They are not generally strongly stationary even if they are stationary:
Because one cannot flow backwards in time, it is no longer the case that Σ is
strongly stationary if it is stationary. This is an important difference with the
continuous-time case. (See Exercise V-6.3.2.)

5 They are finitely observable: Because an output is determined by (a) an
input and (b) an initial state condition at time t0, a discrete-time state space
system is finitely observable from any τ > t0 and for any t0 ∈ T.
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Discrete-time state space systems

If U ⊆ Rm and if u ∈ U, then we can write u = (u1, . . . , um).

Definition
A discrete-time state space system Σ = (X,U,T,U , f ,h) is control-affine if
there exists f 0, f 1, . . . , f m : T × X → and h0,h1, . . . ,hm : T × X → such that

f(t, x,u) = f 0(t, x) +
m∑

a=1

uaf a(t, x)

and

h(t, x,u) = h0(t, x) +
m∑

a=1

uaha(t, x).

We call f 0 the drift dynamics and f 1, . . . , f m the control dynamics.
We call h0 the drift/output map and f 1, . . . , f m the control/output map.
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Discrete-time state space systems

If (ξ,µ) ∈ Ctraj(Σ) with (η,µ) the corresponding controlled output, then

ξ(t +∆) = f 0(t, ξ(t)) +
m∑

a=1

µa(t)f a(t, ξ(t)),

η(t) = h0(t, ξ(t)) +
m∑

a=1

µa(t)ha(t, ξ(t)).

We see that, if the input µ is zero, then ξ satisfies the ordinary difference
equation

ξ(t +∆) = f 0(t, ξ(t));

thus, in the absence of input, trajectories are solutions of the drift
dynamics.
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Discrete-time state space systems

One almost always works with autonomous control-affine discrete-time
state space systems.
A particularly interesting class of such systems that we will look at in
detail later is the class of linear systems:

ξ(t +∆) = A ◦ ξ(t) + B ◦ µ(t),

η(t) = C ◦ ξ(t) + D ◦ µ(t),

for linear maps A, B, C, and D.
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Reading for Lecture 20

1 Sections V-6.3.1, V-6.3.2, and V-6.3.3.
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Lecture 21
Discrete-time input/output systems

Our constructions for discrete-time input/output systems are conducted
much like those for continuous-time input/output systems. So there is
much repetition here.
Unlike discrete-time state space systems which produce outputs by first
determining a controlled trajectory, a discrete-time input/output system
directly produces an output from an input.
We will work with classes of inputs and outputs selected from the space
ℓloc((T); S) of partially defined S-valued functions (S is a subset of some
Euclidean space).
If S is a subset of one of these collections of partially defined signals
and if S ⊆ T, then we denote

S (S) = {f ∈ S | dom(S) = S}.
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Discrete-time input/output systems

We shall require a notion of convergence in a space S of partially
defined signals.

Definition
Let S ⊆ Rn, let T be a discrete time-domain, and let S be a subset of
ℓloc((T); S). A sequence (f j)j∈Z>0 in S converges to f ∈ S if

(i) there exists a subinterval S ⊆ T such that

dom(f) = S, dom(f j) = S, j ∈ Z>0,

and
(ii) (f j)j∈Z>0 converges to f in ℓloc(S; S).
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Discrete-time input/output systems
Definition
A discrete-time input/output system is a 5-tuple Σ = (U,T,U ,Y , g) with

(i) U ⊆ Rm,
(ii) T a discrete time-domain,
(iii) U is a subset of ℓloc((T);U),
(iv) Y is a subset of ℓloc((T);R

k), and

(v) g : U → Y satisfies

(a) for a sub-time-domain S ⊆ T, the restriction gS = g|U (S) takes
values in Y (S),

(b) for sub-time-domains S′ ⊆ S,

gS(µ)|S′ = gS′(µ|S′), µ ∈ U (S),

and
(c) for any sub-time-domain S ⊆ T, gS is continuous (in the sense that it

maps convergent sequences to convergent sequences).

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 21 March 7, 2022 155 / 306

Discrete-time input/output systems

While we will encounter an important class of discrete-time input/output
systems where we will require the possibility of partially defined spaces of
inputs and outputs, it is common for inputs and outputs to be defined on
all of T, i.e., U (S) = ∅ and Y (S) = ∅ unless S = T.
In such cases, the properties (v)(a) and (v)(b) having to do with restriction
are moot, and so the definition simplifies significantly.
Most interesting classes of input/output systems one encounters in
practice are continuous. And if they are not, they should be.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 21 March 7, 2022 156 / 306



Discrete-time input/output systems
Discrete-time input/output systems are examples of general time
systems. As such they are susceptible to possessing attributes of general
time systems.
But these systems have their own definitions of causality that are different
from those for discrete-time state space systems as a result of there
being no natural initial time t0.

Definition
A discrete-time input/output system is:

(i) causal if, for every µ1,µ2 ∈ U with dom(µ1) = dom(µ2) and for every
t ∈ dom(µ1) = dom(µ2),

µ1|(T≤t ∩ dom(µ1)) = µ2|(T≤t ∩ dom(µ2)) =⇒ g(µ1)(t) = g(µ2)(t);

(ii) strongly causal if, for every µ1,µ2 ∈ U with dom(µ1) = dom(µ2) and for
every t ∈ dom(µ1) = dom(µ2),

µ1|(T<t ∩ dom(µ1)) = µ2|(T<t ∩ dom(µ2)) =⇒ g(µ1)(t) = g(µ2)(t).

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 21 March 7, 2022 157 / 306

Discrete-time input/output systems

Definition
A discrete-time input/output system with supT = ∞ is:

(i) stationary if τ∗a (U ) ⊆ U for every a ∈ Z>0(∆) and if, for every µ ∈ U ,

g(τ∗a µ) = τ∗a g(µ);

(ii) strongly stationary if it is stationary and if, for every a ∈ Z>0(∆) and
every µ ∈ U , there exists µ′ ∈ U such that

g(µ) = g(τ∗a µ
′).

While the definitions differ in detail from those used for discrete-time state
space systems, the essence is the same:

1 causality means that outputs do not depend on future values of inputs;
2 stationarity means invariance under time shift.
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Discrete-time input/output systems

Given these definitions, we have the following properties of discrete-time
input/output systems.

1 They are generally not causal: As an example, take U = R, T = Z,
U = Y = ℓloc(Z;R) (no partially defined inputs or outputs), and
g(µ)(t) = µ(−t) or g(µ)(t) = µ(t + a) for a ∈ Z>0. Indeed, it is pretty easy to
build noncausal systems.

2 They are generally not stationary: As an example, take U = R, T = Z,
U = ℓloc(Z;R), and

g(µ)(t) =
t∑

−∞
sin(τ)µ(τ) dτ.

It is easy to directly verify that, for arbitrary a ∈ Z>0, τ∗a g(µ) ̸= g(τ∗a µ).
3 They are finitely observable: This is just because they are functional as

general time systems.
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Discrete-time input/output systems

We can then easily verify that g has all the properties of a discrete-time
input/output systems, except possibly continuity.
Unlike the continuous-time case, where we had a rather elaborate
theorem giving continuity of the input/output map, in the discrete-time
case things are rather simpler.

Theorem
Let Σ = (X,U,T,U , f ,h) be a discrete-time state space system. Assume that
f is continuous and that h is output autonomous and a continuous mapping
from X × U to Rk. Let (t0, x0) ∈ T × X. Then Σi/o(t0, x0) = (U,T,U ,Y , g), with
g as defined above, defines a discrete-time input/output system.
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Reading for Lecture 21

1 Sections V-6.4.1, V-6.4.2, and V-6.4.3.
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Lecture 22
Linearisation

We have introduced four classes of systems thus far.
The remaining four classes of systems we will study are linear versions of
the first four.
Linear systems are important because

1 they sometimes occur in nature and
2 they arise from linearisation of systems that are not necessarily linear.

In the next few lectures, we will carefully study linearisation.
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Linearisation of continuous-time state space systems

Let Σ = (X,U,T,U , f ,h) be a continuous-time state space system and let
(ξ0,µ0) ∈ Ctraj(Σ) with (η0,µ0) ∈ Cout(Σ) the corresponding controlled
output. Let dom(µ0) = T

′.
Call (ξ0,µ0) the reference trajectory and (η0,µ0) the reference output.
We will linearise about this the reference. This means that we consider a
controlled trajectory (ξ,µ) that is “nearby” (ξ0,µ0). We let ν, ω, and γ be
be the deviations in state, input, and output:

ν(t) = ξ(t)− ξ0(t),

ω(t) = µ(t)− µ0(t),

γ(t) = η(t)− η0(t).

These are assumed “small.”
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Linearisation of continuous-time state space systems

We will be doing a naïve Taylor expansion, and to do so requires taking
derivatives. We establish some notation for this.
First denote by

f t : X × U → Rn

(x,u) 7→ f(x,u)
ht : X × U → Rn

(x,u) 7→ h(x,u)

the mappings for fixed t ∈ T.
Assumptions:

1 U is open (X is always assumed to be open) and
2 f t and ht are continuously differentiable for t ∈ T.
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Linearisation of continuous-time state space systems

Then denote by D1f t(x,u) ∈ L(Rn;Rn) the Jacobian with respect to x.
Explicitly if

f t(x,u) = (ft,1(x,u), . . . , ft,n(x,u)), x

then

D1f t(x,u) =




∂ft,1
∂x1

(x,u) · · · ∂ft,1
∂xn

(x,u)
...

. . .
...

∂ft,n

∂x1
(x,u) · · · ∂ft,n

∂xn
(x,u)


 .

Also denote by D2f t(x,u) ∈ L(Rm;Rn) the Jacobian with respect to u.
Explicitly,

D2f t(x,u) =




∂ft,1
∂u1

(x,u) · · · ∂ft,1
∂um

(x,u)
...

. . .
...

∂ft,n

∂u1
(x,u) · · · ∂ft,n

∂um
(x,u)


 .
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Linearisation of continuous-time state space systems

Similarly, we have the Jacobians of h with respect to x and u:

D1ht(x,u), D2ht(x,u).

Now we get rid of the pesky t subscripts that we used to make the
derivatives clearer. That is, we denote

D1f(t, x,u) = D1f t(x,u),
D2f(t, x,u) = D2f t(x,u),
D1h(t, x,u) = D1ht(x,u),
D2h(t, x,u) = D2ht(x,u).
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Linearisation of continuous-time state space systems
Now we just write the equations for (ξ,µ) and (γ,µ) and nastily Taylor
expand.
The writing down part is

ξ̇(t) = f(t, ξ(t),µ(t)),
η(t) = h(t, ξ(t),µ(t)),

or
ξ̇0(t) + ν̇(t) = f(t, ξ0(t) + ν(t),µ0(t)ω(t)),

η0(t) + γ(t) = h(t, ξ0(t) + ν(t),µ0(t) + ω(t)).
(5)

Now we perform the aforementioned nasty Taylor expansion of (6) about
(ξ(t),µ0(t)), omitting all terms of second-order or more:

ξ̇0(t) + ν̇(t) = f(t, ξ0(t),µ0(t)) + D1f(t, ξ0(t),µ0(t)) · ν(t)
+ D2f(t, ξ0(t),µ0(t)) · ω(t),

η0(t) + γ(t) = h(t, ξ0(t),µ0(t)) + D1h(t, ξ0(t),µ0(t)) · ν(t)
D2h(t, ξ0(t),µ0(t)) · ω(t).
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Linearisation of continuous-time state space systems

The zeroth-order terms cancel since (ξ0,µ0) ∈ Ctraj(Σ) and
(η0,µ0) ∈ Cout(Σ).
Finally, we end up with the “linearised equations:”

ν̇(t) = D1f(t, ξ0(t),µ0(t)) · ν(t) + D2f(t, ξ0(t),µ0(t)) · ω(t),

γ(t) = D1h(t, ξ0(t),µ0(t)) · ν(t) + D2h(t, ξ0(t),µ0(t)) · ω(t).

We note that the state for the linearised system is ν, the input is ω, and
the output is η.
Let us denote for brevity

A(ξ0,µ0)
: T′ → L(Rn;Rn)

t 7→ D1f(t, ξ0(t),µ0(t)),

B(ξ0,µ0)
: T′ → L(Rm;Rn)

t 7→ D2f(t, ξ0(t),µ0(t)),

C(ξ0,µ0)
: T′ → L(Rn;Rk)

t 7→ D1h(t, ξ0(t),µ0(t)),

D(ξ0,µ0)
: T′ → L(Rm;Rk)

t 7→ D2h(t, ξ0(t),µ0(t))
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Linearisation of continuous-time state space systems

Definition
The linearisation of Σ = (X,U,T,U , f ,h) about (ξ0,µ0) ∈ Ctraj(Σ) with
(η0,µ0) ∈ Cout(Σ) the controlled output is

ΣL,(ξ0,µ0)
= (Rn,Rm,T′,L∞

loc(T
′;Rm), f L,(ξ0,µ0)

,hL,(ξ0,µ0)
).

where

f L,(ξ0,µ0)
(t, v,w) = A(ξ0,µ0)

(t)v + B(ξ0,µ0)
(t)w,

hL,(ξ0,µ0)
(t, v,w) = C(ξ0,µ0)

(t)v + D(ξ0,µ0)
(t)w.

Thus a controlled trajectory (ν,ω) ∈ Ctraj(ΣL,(ξ0,µ0)
) with corresponding

controlled output (γ,µ) satisfies the equations

ν̇(t) = A(ξ0,µ0)
(t)ν(t) + B(ξ0,µ0)

(t)ω(t),

γ(t) = C(ξ0,µ0)
(t)ν(t) + D(ξ0,µ0)

(t)ω(t).

This is a time-varying linear system, an object we will study in detail later.
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Reading for Lecture 22

1 Section V-6.5.1.1.
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Lecture 22 supplement
Aside on meaning of linearisation with respect to state

Note that in the sloppy derivation of the linearisation, we supposed that
the perturbations ν and ω were small, but that in the definition of
linearisation, the state space where ν lives is Rn and the input set where
ω lives is Rm.
To understand this bit of weirdness, and for other reasons, one should
think for a moment about what linearisation means. We shall do this for
the part of the linearisation that corresponds to the state.
We suppose that we have a reference trajectory (ξ0,µ0) and we let
(t0, x0) ∈ T × X be such that

ξ(t) = ΦΣ(t, t0, x0,µ0).

Let v ∈ Rn and consider a variation of the initial condition by

s 7→ x0 + sv.

Thus we shall vary the initial condition from x0 in the direction of v.
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Aside on meaning of linearisation with respect to state

Now, for fixed s small, define

ξs(t) = ΦΣ(t, t0, x0 + sx,µ0).

This is a new controlled trajectory (ξs,µ0) with an initial condition close to
that of (ξ0,µ0).
We should think of s 7→ ξs as being a family of trajectories indexed by s.
For each s, we should think of ξs as a curve in X.
We think of

d
dt
ξs(t) =

d
dt
ΦΣ(t, t0, x0 + sv,µ0)

as being the derivative along the trajectory and

d
ds

ξs(t) =
d
ds

ΦΣ(t, t0, x0 + sv,µ0)

as being the derivative in the direction of the variation of the trajectory.
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Aside on meaning of linearisation with respect to state

One can then show, with some effort, that the solution to the initial value
problem

ν̇(t) = D1f(t, ξ0(t),µ0(t)) · ν(t), ν(0) = v,

is exactly

ν(t) =
d
ds

∣∣∣∣
s=0

ΦΣ(t, t0, x0 + sv,µ0).

Thus ν(t) measures how the trajectory varies at time t when the initial
condition varies in the direction v at time t0.
A picture gives all the information.

ξ0

ξsd
dtξs(t)

d
dsξs(t)

x0

v = ν(0)

ν(t) = d
ds

∣∣
s=0

ξs(t)
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Reading for Lecture 22 supplement

1 Section V-5.1.1.3.
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Lecture 23
Linearisation of continuous-time state space systems
(cont’d)

We note that we can combine the equations for a controlled output (η,µ)
with the equations for linearisation about (η,µ):

ξ̇(t) = f(t, ξ(t),µ(t)),
ν̇(t) = D1f(t, ξ(t),µ(t)) · ν(t) + D2f(t, ξ(t),µ(t)) · ω(t),

η(t) = h(t, ξ(t),µ(t)),
γ(t) = D1h(t, ξ(t),µ(t)) · ν(t) + D2h(t, ξ(t),µ(t)) · ω(t).

The first two equations should be thought of as ordinary differential
equations for the state t 7→ (ξ(t),ν(t)) and the second two equations
should be thought of as the output equations for the output
t 7→ (η(t),γ(t)).
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Linearisation of continuous-time state space systems

This suggests a linearisation, not about a reference trajectory, but of the
whole system, with twice as many state and twice as many outputs.

Definition
The linearisation of Σ is

ΣL = (X ×Rn,U ×Rm,T,U × L∞
loc((T);R

m), f L,hL),

where

f L : T × (X ×Rn)× (U ×Rm) → Rn ×Rn

(t, (x, v), (u,w)) 7→ (f(t, x,u),D1f(t, x,u) · v + D2f(t, x,u) · w),

hL : T × (X ×Rn)× (U ×Rm) → Rk ×Rk

(t, (x, v), (u,w)) 7→ (h(t, x,u),D1h(t, x,u) · v + D2h(t, x,u) · w).
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Linearisation of continuous-time state space systems

A controlled trajectory ((ξ,ν), (µ,ω)) giving rise to a controlled output
((η,γ), (µ,ω)) should be thought of as

1 first giving a controlled trajectory (ξ,µ) ∈ Ctraj(Σ) which gives the controlled
output (η,µ) ∈ Cout(Σ) and

2 second, determining the linearization about (η,µ) in the previous lecture,
when linearising about a reference trajectory.

Thus, ΣL contains all of the information contained in ΣL,(ξ,µ), and as well
contains the equations for the reference trajectory itself.
Next we consider linearisation about equilibria.

Definition
A controlled equilibrium for a continuous-time state space system
Σ = (X,U,T,U , f ,h) is a pair (x0,u0) ∈ X × U such that f (t, x0,u0) = 0 for all
t ∈ T.
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Linearisation of continuous-time state space systems
For (x0,u0) ∈ X × U, let us denote by

ξx0
(t) = x0, µu0

(t) = u0

the constant trajectory and the constant input.

Lemma
(x0,u0) is a controlled equilibrium for Σ if and only if (ξx0

,µu0
) ∈ Ctraj(Σ).

Proof.
Suppose that (x0,u0) is a controlled equilibrium. Then

ξ̇x0
(t) = 0 = f(t, x0,u0) = f(t, ξx0

(t),µu0
(t)),

whence (ξx0
,µu0

) ∈ Ctraj(Σ).
Now assume that (ξx0

,µu0
) ∈ Ctraj(Σ). Then

0 = ξ̇x0
(t) = f(t, ξx0

(t),µu0
(t)) = f(t, x0,u0),

whence (x0,u0) is a controlled equilibrium.
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Linearisation of continuous-time state space systems

Thus we can linearise about t 7→ (x0,u0) since it is a controlled trajectory.

Definition
Let (x0,u0) be a controlled equilibrium for a continuous-time state space
system Σ = (X,U,T,U , f ,h). The linearisation of Σ about (x0,u0) is

ΣL,(x0,u0) = (Rn,Rm,T,L∞
loc(T;R

m), f L,(x0,u0)
,hL,(x0,u0)),

where

f L,(x0,u0)
(t, v,w) = D1f(t, x0,u0) · v + D2f(t, x0,u0) · w,

hL,(x0,u0)(t, v,w) = D1h(t, x0,u0) · v + D2h(t, x0,u0) · w.
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Linearisation of continuous-time state space systems

For autonomous systems, we can define constant matrices

A(x0,u0) = D1f(x0,u0),

B(x0,u0) = D2f(x0,u0),

C(x0,u0) = D1h(x0,u0),

D(x0,u0) = D2h(x0,u0)

Then controlled outputs for the linearisation satisfy

ν̇(t) = A(x0,u0)ν(t) + B(x0,u0)ω(t),

γ(t) = C(x0,u0)ν(t) + D(x0,u0)ω(t).

This is a linear time-invariant system, about which we will have much to
say down the road.
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Reading for Lecture 23

1 Sections V-6.5.1.1 and V-6.5.1.2.
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Lecture 24
Linearisation of continuous-time input/output systems

It is possible, but difficult for this level of course, to talk about linearisation
of input/output systems.
We shall not do so.
So. . . you’re welcome!
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Linearisation of discrete-time state space systems

This goes rather like for continuous-time systems, of course. But let’s go
through it.
Let Σ = (X,U,T,U , f ,h) be a discrete-time state space system and let
(ξ0,µ0) ∈ Ctraj(Σ) with (η0,µ0) ∈ Cout(Σ) the corresponding controlled
output. Let dom(µ0) = T

′.
Call (ξ0,µ0) the reference trajectory and (η0,µ0) the reference output.
We will linearise about this the reference. This means that we consider a
controlled trajectory (ξ,µ) that is “nearby” (ξ0,µ0). We let ν, ω, and γ be
be the deviations in state, input, and output:

ν(t) = ξ(t)− ξ0(t),

ω(t) = µ(t)− µ0(t),

γ(t) = η(t)− η0(t).

These are assumed “small.”
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Linearisation of discrete-time state space systems

Assumptions:
1 U is open (X is always assumed to be open) and
2 (x, u) 7→ f(t, u, u and (x, u) 7→ h(t, x, u) are continuously differentiable for

t ∈ T.

Just as in the continuous-time case, we have the Jacobians of f and h
with respect to x and u:

D1f(t, x,u),
D2f(t, x,u),
D1h(t, x,u),
D2h(t, x,u).
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Linearisation of discrete-time state space systems
Now we just write the equations for (ξ,µ) and (γ,µ) and nastily Taylor
expand.
The writing down part is

ξ(t +∆) = f(t, ξ(t),µ(t)),
η(t) = h(t, ξ(t),µ(t)),

or
ξ0(t +∆) + ν(t +∆) = f(t, ξ0(t) + ν(t),µ0(t)ω(t)),

η0(t) + γ(t) = h(t, ξ0(t) + ν(t),µ0(t) + ω(t)).
(6)

Now we perform the aforementioned nasty Taylor expansion of (6) about
(ξ(t),µ0(t)), omitting all terms of second-order or more:

ξ0(t +∆) + ν(t +∆) = f(t, ξ0(t),µ0(t)) + D1f(t, ξ0(t),µ0(t)) · ν(t)
+ D2f(t, ξ0(t),µ0(t)) · ω(t),

η0(t) + γ(t) = h(t, ξ0(t),µ0(t)) + D1h(t, ξ0(t),µ0(t)) · ν(t)
D2h(t, ξ0(t),µ0(t)) · ω(t).
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Linearisation of discrete-time state space systems

The zeroth-order terms cancel since (ξ0,µ0) ∈ Ctraj(Σ) and
(η0,µ0) ∈ Cout(Σ).
Finally, we end up with the “linearised equations:”

ν(t +∆) = D1f(t, ξ0(t),µ0(t)) · ν(t) + D2f(t, ξ0(t),µ0(t)) · ω(t),

γ(t) = D1h(t, ξ0(t),µ0(t)) · ν(t) + D2h(t, ξ0(t),µ0(t)) · ω(t).

We note that the state for the linearised system is ν, the input is ω, and
the output is η.
Let us denote for brevity

A(ξ0,µ0)
: T′ → L(Rn;Rn)

t 7→ D1f(t, ξ0(t),µ0(t)),

B(ξ0,µ0)
: T′ → L(Rm;Rn)

t 7→ D2f(t, ξ0(t),µ0(t)),

C(ξ0,µ0)
: T′ → L(Rn;Rk)

t 7→ D1h(t, ξ0(t),µ0(t)),

D(ξ0,µ0)
: T′ → L(Rm;Rk)

t 7→ D2h(t, ξ0(t),µ0(t))
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Linearisation of discrete-time state space systems

Definition
The linearisation of Σ = (X,U,T,U , f ,h) about (ξ0,µ0) ∈ Ctraj(Σ) with
(η0,µ0) ∈ Cout(Σ) the controlled output is

ΣL,(ξ0,µ0)
= (Rn,Rm,T′, ℓloc(T

′;Rm), f L,(ξ0,µ0)
,hL,(ξ0,µ0)

).

where

f L,(ξ0,µ0)
(t, v,w) = A(ξ0,µ0)

(t)v + B(ξ0,µ0)
(t)w,

hL,(ξ0,µ0)
(t, v,w) = C(ξ0,µ0)

(t)v + D(ξ0,µ0)
(t)w.

Thus a controlled trajectory (ν,ω) ∈ Ctraj(ΣL,(ξ0,µ0)
) with corresponding

controlled output (γ,µ) satisfies the equations

ν(t +∆) = A(ξ0,µ0)
(t)ν(t) + B(ξ0,µ0)

(t)ω(t),

γ(t) = C(ξ0,µ0)
(t)ν(t) + D(ξ0,µ0)

(t)ω(t).

This is a time-varying linear system, an object we will study in detail later.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 24 March 7, 2022 188 / 306

Linearisation of discrete-time state space systems

We note that we can combine the equations for a controlled output (η,µ)
with the equations for linearisation about (η,µ):

ξ(t +∆) = f(t, ξ(t),µ(t)),
ν(t +∆) = D1f(t, ξ(t),µ(t)) · ν(t) + D2f(t, ξ(t),µ(t)) · ω(t),

η(t) = h(t, ξ(t),µ(t)),
γ(t) = D1h(t, ξ(t),µ(t)) · ν(t) + D2h(t, ξ(t),µ(t)) · ω(t).

The first two equations should be thought of as ordinary difference
equations for the state t 7→ (ξ(t),ν(t)) and the second two equations
should be thought of as the output equations for the output
t 7→ (η(t),γ(t)).
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Linearisation of discrete-time state space systems

This suggests a linearisation, not about a reference trajectory, but of the
whole system, with twice as many state and twice as many outputs.

Definition
The linearisation of Σ is

ΣL = (X ×Rn,U ×Rm,T,U × ℓloc((T);R
m), f L,hL),

where

f L : T × (X ×Rn)× (U ×Rm) → Rn ×Rn

(t, (x, v), (u,w)) 7→ (f(t, x,u),D1f(t, x,u) · v + D2f(t, x,u) · w),

hL : T × (X ×Rn)× (U ×Rm) → Rk ×Rk

(t, (x, v), (u,w)) 7→ (h(t, x,u),D1h(t, x,u) · v + D2h(t, x,u) · w).
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Linearisation of discrete-time state space systems

A controlled trajectory ((ξ,ν), (µ,ω)) giving rise to a controlled output
((η,γ), (µ,ω)) should be thought of as

1 first giving a controlled trajectory (ξ,µ) ∈ Ctraj(Σ) which gives the controlled
output (η,µ) ∈ Cout(Σ) and

2 second, determining the linearization about (η,µ) in the previous lecture,
when linearising about a reference trajectory.

Thus, ΣL contains all of the information contained in ΣL,(ξ,µ), and as well
contains the equations for the reference trajectory itself.
Next we consider linearisation about equilibria.

Definition
A controlled equilibrium for a discrete-time state space system
Σ = (X,U,T,U , f ,h) is a pair (x0,u0) ∈ X × U such that f (t, x0,u0) = x0 for all
t ∈ T.
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Linearisation of discrete-time state space systems
For (x0,u0) ∈ X × U, let us denote by

ξx0
(t) = x0, µu0

(t) = u0

the constant trajectory and the constant input.

Lemma
(x0,u0) is a controlled equilibrium for Σ if and only if (ξx0

,µu0
) ∈ Ctraj(Σ).

Proof.
Suppose that (x0,u0) is a controlled equilibrium. Then

ξx0
(t +∆) = x0 = f(t, x0,u0) = f(t, ξx0

(t),µu0
(t)),

whence (ξx0
,µu0

) ∈ Ctraj(Σ).
Now assume that (ξx0

,µu0
) ∈ Ctraj(Σ). Then

x0 = ξx0
(t +∆) = f(t, ξx0

(t),µu0
(t)) = f(t, x0,u0),

whence (x0,u0) is a controlled equilibrium.
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Linearisation of discrete-time state space systems

Thus we can linearise about t 7→ (x0,u0) since it is a controlled trajectory.

Definition
Let (x0,u0) be a controlled equilibrium for a continuous-time state space
system Σ = (X,U,T,U , f ,h). The linearisation of Σ about (x0,u0) is

ΣL,(x0,u0) = (Rn,Rm,T, ℓloc(T;R
m), f L,(x0,u0)

,hL,(x0,u0)),

where

f L,(x0,u0)
(t, v,w) = D1f(t, x0,u0) · v + D2f(t, x0,u0) · w,

hL,(x0,u0)(t, v,w) = D1h(t, x0,u0) · v + D2h(t, x0,u0) · w.
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Linearisation of discrete-time state space systems

For autonomous systems, we can define constant matrices

A(x0,u0) = D1f(x0,u0),

B(x0,u0) = D2f(x0,u0),

C(x0,u0) = D1h(x0,u0),

D(x0,u0) = D2h(x0,u0)

Then controlled outputs for the linearisation satisfy

ν(t +∆) = A(x0,u0)ν(t) + B(x0,u0)ω(t),

γ(t) = C(x0,u0)ν(t) + D(x0,u0)ω(t).

This is a linear time-invariant system, about which we will have much to
say down the road.
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Linearisation of discrete-time input/output systems

It is possible, but difficult for this level of course, to talk about linearisation
of input/output systems.
We shall not do so.
So. . . you’re welcome! (×2)
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Reading for Lecture 24

1 Sections V-6.5.3.1 and V-6.5.3.2.
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Lecture 25
Linear systems

We have considered four classes of systems:

1 continuous-time state
space systems;

2 continuous-time
input/output systems;

3 discrete-time state space
systems;

4 discrete-time input/output
systems.

For these quite general classes of systems, all we could really say were
very general things, e.g., about causality, stationarity, continuity, etc.
We shall now turn our attention exclusively to linear systems, where we
will be able to say more about more useful attributes for systems.
When talking about linear systems, we shall suppose that state spaces,
input sets, and output sets are finite-dimensional R-vector spaces. You
are welcome to think of these as being Rn, Rm, and Rk, respectively.
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Linear continuous-time state space systems
We start with continuous-time state space systems. We might say that
such a system is “linear” when it depends linearly on state and control.

Definition
A linear continuous-time state space system is

Σ = (X,U,Y,T,U ,T,A,B,C,D),

where

(i) X is a finite-dimensional R-vector space
(state space),

(ii) U is a finite-dimensional R-vector space
(input set),

(iii) Y is a finite-dimensional R-vector space
(output set),

(iv) T ⊆ R is a continuous time-domain (time-
domain),

(v) U ⊆ L1
loc(T;U) (inputs),

(vi) A ∈ L1
loc(T;L(X;X)),

(vii) B ∈ L1
loc(T;L(U;X)),

(viii) C ∈ L1
loc(T;L(X;Y)), and

(ix) D ∈ L1
loc(T;L(U;Y)).
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Linear continuous-time state space systems

A linear continuous-time state space system is an instance of a
continuous-time state space system by defining the dynamics and the
output map by

f (t, x, u) = A(t)x + B(t)u, h(t, x, u) = C(t)x + D(t)u.

respectively.
Note that, for linear systems, we do not fuss with partially defined inputs,
state, and outputs, although one can do this. The reason that this is
possible (whereas it is simply not possible for systems that are not linear)
is that solutions for linear differential equations, homogeneous or
inhomogeneous, cannot blow up in finite time. This is pointed out

1 for homogeneous equations in item 1 on Slide 33 and
2 for inhomogeneous equations by virtue of the variation of constants formula

on Slide 37.
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Linear continuous-time state space systems
We see, then, that (ξ, µ) ∈ Ctraj(Σ) if and only if

ξ̇(t) = A(t) · ξ(t) + B(t) · µ(t).

The corresponding controlled output (η, µ) ∈ Cout(Σ) is

η(t) = C(t) · ξ(t) + D(t) · µ(t).

Existence and uniqueness of controlled trajectories is established by the
following comparatively simple result.

Theorem
Let Σ be a linear continuous-time state space system, let t0 ∈ T, let x0 ∈ X,
and suppose that B and U are such that t ∈ B(t) · µ(t) is locally integrable for
every µ ∈ U . Then, for µ ∈ U , there exists a unique locally absolutely
continuous ξ : T → X satisfying

ξ̇(t) = A(t) · ξ(t) + B(t) · µ(t), ξ(t0) = x0.
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Linear continuous-time state space systems

Recall that the homogeneous linear ordinary differential equation

ξ̇(t) = A(t) · ξ(t)

has a flow of the form

(t, t0, x0) 7→ Φc
A(t, t0)(x0),

where Φc
A : T × T → L(X;X) is the state transition map (item 2 on

Slide33).
Assuming that Σ satisfies the conditions of the preceding theorem, we
can then write down an explicit formula for flow using the the variation of
constants formula on Slide 37:

ΦΣ(t, t0, x0, µ) = Φc
A(t, t0)(x0) +

∫ t

t0
Φc

A(t, τ) ◦ B(τ) · µ(τ) dτ
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Linear continuous-time state space systems

The corresponding output is then

η(t) = C(t) ◦ Φc
A(t, t0)(x0)︸ ︷︷ ︸

term 1

+

∫ t

t0
C(t) ◦ Φc

A(t, τ) ◦ B(τ) · µ(τ) dτ
︸ ︷︷ ︸

term 2

+D(t) · µ(t)︸ ︷︷ ︸
term 3

.

We note that the output is comprised of three bits, each interesting in its
own right:

1 term 1: Here is a component of the output determined by the initial condition.
Indeed, the other parts of the solution are independent of initial condition.

2 term 2: This is some weird integral. We shall encounter this sort of thing
when we consider linear continuous-time input/output systems below.

3 term 3: This term consists of the input at time t directly influencing the output
at time t in a memoryless fashion. This is sometimes called a “feedforward”
term.
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Linear continuous-time state space systems

Next we consider systems with constant coefficients.

Definition
A linear continuous-time state space system with constant coefficients
is

Σ = (X,U,Y,T,U ,T,A,B,C,D),

where

(i) X is a finite-dimensional R-vector space
(state space),

(ii) U is a finite-dimensional R-vector space
(input set),

(iii) Y is a finite-dimensional R-vector space
(output set),

(iv) T ⊆ R is a continuous time-domain (time-
domain),

(v) U ⊆ L1
loc(T;U) (inputs),

(vi) A ∈ L(X;X),
(vii) B ∈ L(U;X),
(viii) C ∈ L(X;Y), and
(ix) D ∈ L(U;Y).
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Linear continuous-time state space systems

In short, a “linear continuous time state space system with constant
coefficients” is a linear continuous-time state space system where A, B,
C, and D are independent of time.
As such, a linear continuous-time state space system with constant
coefficients is also an autonomous continuous-time state space system
with

f (x, u) = A(x) + B(u), h(x, u) = C(x) + D(u).

Thus a controlled trajectory (ξ, µ) ∈ Ctraj(Σ) with corresponding
controlled output (η, µ) ∈ Cout(Σ) jointly satisfy

ξ̇(t) = A ◦ ξ(t) + B ◦ µ(t),

η(t) = C ◦ ξ(t) + D ◦ µ(t).

Note that, when A is independent of time,

Φc
A(t, t0) = eA(t−t0).
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Linear continuous-time state space systems

The existence and uniqueness theorem on Slide 200 can then be
simplified to just the requirement that U ⊆ L1

loc(T;U).
Thus the formula for the flow and the output equations is as in the
non-constant coefficient case, but making this substitution for the state
transition map.
Thus we have

ΦΣ(t, t0, x0) = eA(t−t0)(x0) +

∫ t

t0
eA(t−τ) ◦ B ◦ µ(τ) dτ

and

η(t) = C ◦ eA(t−t0)(x0) +

∫ t

t0
C ◦ eA(t−τ) ◦ B ◦ µ(τ) dτ + D ◦ µ(t).
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Linear continuous-time state space systems

Because linear continuous-time state space systems with constant
coefficients are stationary whenever the input set U is
translation-invariant, one commonly makes two assumptions:

1 T = R;
2 one considers the initial time to be t0 = 0.

As a consequence of this, one typically works with inputs defined on R≥0
and with controlled trajectories and outputs determined by

ΦΣ(t, 0, x0) = eAt(x0) +

∫ t

0
eA(t−τ) ◦ B ◦ µ(τ) dτ

and

η(t) = C ◦ eAt(x0)︸ ︷︷ ︸
term 1

+

∫ t

0
C ◦ eA(t−τ) ◦ B ◦ µ(τ) dτ

︸ ︷︷ ︸
term 2

+D ◦ µ(t)︸ ︷︷ ︸
term 3

.

The three terms have a similar interpretation as in the time-varying case,
except that term 2 is a convolution. We shall care about this.
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Reading for Lecture 25

1 Sections V-6.6.1 and V-6.6.2.
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Lecture 26
Linear continuous-time state space systems (cont’d)

For linear continuous-time state space systems, we had the following
formulae for outputs.

1 Time-varying case, input µ, initial condition x0 at initial time t0:

η(t) = C(t) ◦ ΦA(t, t0)(x0)︸ ︷︷ ︸
term 1

+

∫ t

t0

C(t) ◦ ΦA(t, τ) ◦ B(τ) · µ(τ) dτ

︸ ︷︷ ︸
term 2

+D(t) · µ(t)︸ ︷︷ ︸
term 3

.

2 Constant coefficient case, input µ, initial condition x0 at initial time 0:

η(t) = C ◦ eAt(x0)︸ ︷︷ ︸
term 1

+

∫ t

0
C ◦ eA(t−τ) ◦ B ◦ µ(τ) dτ

︸ ︷︷ ︸
term 2

+D ◦ µ(t)︸ ︷︷ ︸
term 3

.

Our objective now is to explore more fully the components labelled in the
preceding formulae as “term 2.”
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Linear continuous-time state space systems

Definition
Let σ be an linear continuous-time state space system.

(i) The proper impulse transmission map is

pitmΣ : T × T → L(U;Y)
(t, τ) 7→ 1≥0(t − τ)C(t) ◦ ΦA(t, τ) ◦ B(τ).

(ii) One can define the “impulse transmission map,” but we will not. It
involves a few too many elementary, but notationally complex,
constructions with distributions. We shall make these constructions below
in the constant coefficient case, where we can more easily understand
what we are doing.

Obviously, the output for an input µ and initial condition x0 at t0 is

η(t) = C(t) ◦ ΦA(t, t0)(x0) +

∫ t

t0
pitmΣ(t, τ) · µ(τ)dτ + D(t) · µ(t). (7)
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Linear continuous-time state space systems

Let us make a few comments about the preceding.
1 When D(t) = 0 for all t, when x0 = 0, and when the input is the

delta-distribution δt0 at t0,

pitmΣ(t, t0) = “
∫ t

t0

pitmΣ(t, τ) · τ∗t0δ(τ) dτ”

gives the output for an input that is an impulse at t0.
2 The formula also gives context to the terminology “impulse transmission

map.” We see that pitmΣ(t, τ) in the integrand serves to “transmit” the effect
of the input at time τ to the output at time t.

Now we look at the impulse transmission map in the constant coefficient
case.
Here we will think a little more carefully about the rôle of distributions,
since we have already seen what we need to make sense of this.
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Linear continuous-time state space systems
We outline the facts we need to define the impulse transmission map in
the constant coefficient case.

1 Recall from Slide 78 that the solution (unique, if we restrict to distributions
with support bounded on the left) to the distributional ordinary differential
equation

θ(1)
u = A(θu) + B(u ⊗ δ)

is the regular distribution associated with the function t 7→ 1≥0(t)eAt ◦ B(u).
(We also refer to the referred for a discussion of the notation in this
equation.)

2 Thus, when D = 0 and x0 = 0, the output for the input µ = u ⊗ δ is

η(t) = 1≥0(t)C ◦ eAt ◦ B(u)

3 When D ̸= 0, the output has to incorporate the term 3 in the output formula,
which is D ◦ µ.

4 But the input µ is now a distribution, namely the U-valued distribution
µ = u ⊗ δ.

5 So the output also will be a distribution, namely the Y-valued distribution

θ1≥0 expA ◦B(u) + D(u ⊗ δ).
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Linear continuous-time state space systems

6 Thus the output for the input u ⊗ δ consists of two bits, one the regular
distribution corresponding to the function t 7→ 1≥0(t)C ◦ eAt ◦ B(u) and the
other the singular distribution D(u ⊗ δ).

With this as backdrop, we make the following definition.

Definition
Let Σ be a linear continuous-time state space system with constant
coefficients.

(i) The proper impulse response is

pirΣ : R → L(U;Y)

t 7→ 1≥0(t)C ◦ eAt ◦ B.

(ii) The impulse response is the L(U;Y)-valued distribution given by

irΣ(u) = θpirΣ(u) + D(u ⊗ δ).
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Linear continuous-time state space systems
Note that a linear continuous-time state space system with constant
coefficients is, in particular, a linear continuous-time state space system.
As such, in the constant coefficient case, we still have the notion of an
impulse transmission map. Indeed, we have

pitmΣ(t, τ) = pirΣ(t − τ)

in the constant coefficient case.
Note that the output associated to the input µ with initial condition x0 at
t = 0 is

η(t) = C ◦ eAt(x0) +

∫ t

0
pirΣ(t − τ) ◦ µ(τ)dτ + D ◦ µ(t). (8)

The middle term is an old friend, namely a convolution!
Summary:

1 Both the impulse transmission map (in the time-varying case) and the
impulse response (in the constant coefficient case) are the output for an
impulse input.

2 The formulae (7) and (8) illustrate that this response to an impulse forms an
integral (pun!) part of the output for a general input.
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Linear continuous-time input/output systems

To use linearity, we need to assume that U and Y are such that linearity
from U to Y makes sense.
Recall that, if U ⊆ L1

loc((T);U), then we had denoted, for S ⊆ T,

U (S) = {µ ∈ U | dom(µ) = S}.

Definition
An linear continuous-time input/output system is Σ = (U,Y,T,U ,Y , g),
where

(i) U is a finite dimensional R-vector space (input set),
(ii) Y is a finite dimensional R-vector space (output set),
(iii) T ⊆ R is a continuous time-domain,
(iv) U is such that, for every S ⊆ T, U (S) is a subspace of US,
(v) Y is such that, for every S ⊆ T, Y (S) is a subspace of YS, and
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Linear continuous-time input/output systems

Definition (cont’d)
(vi) (a) for S ⊆ T, if gS = g|U (S), then gS(µ) ∈ Y (S),

(b) if S′ ⊆ S ⊆ T, then
gS′(µ|S′) = gS(µ)|S′,

and
(c) for S ⊆ T, gS : U (S) → Y (S) is a continuous linear mapping.

In brief, a linear continuous-time input/output system is a continuous-time
input/output system that is. . . linear.

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 26 March 7, 2022 215 / 306



Reading for Lecture 26

1 Section V-6.6.3.
2 Section V-6.7.1.
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Lecture 27
Integral kernel systems

The basic idea:
gK(µ)(t) =

∫

T

K(t, τ)µ(τ)dτ.

We call K the “integral kernel.”
This should remind you of the proper impulse transmission map for linear
continuous-time state space systems.

Definition
Let U,Y be finite-dimensional R-vector spaces, and let T ⊆ R be a
continuous time-domain.

(i) An integral kernel is a mapping

K : T × T → L(U;Y).

(ii) We denote
Kt : T → L(U;Y)

τ 7→ K(t, τ).
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Integral kernel systems

Definition (cont’d)

(iii) If U ⊆ UT, then K is compatible with U if τ 7→ Kt(τ)µ(τ) is in L1(T;Y) for
every µ ∈ U .

(iv) if K is compatible with U ⊆ UT, then the integral operator associated
with K is

gK : U → YT

defined by

gK(µ)(t) =
∫

T

K(t, τ)µ(τ)dτ.

At this point, we cannot quite call this a linear continuous-time
input/output system since we do not have linearity or continuity. We will
have to confront this.
But first we can define what we want.
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Integral kernel systems

Definition
An integral kernel system is

Σ = (U,Y,T,U ,Y ,K),

where
(i) U and Y are finite-dimensional R-vector subspaces,
(ii) U is a subspace of C0(T;U) or Lp

loc(T;U),
(iii) Y is a subspace of C0(T;Y) or Lp

loc(T;Y), and
(iv) K is an integral kernel that is compatible with U and is such that gK is

continuous linear mapping into Y .

We need properties on K, U , and Y to ensure continuity.
There is no perfectly general way to do this, so we give a few special
cases where this works.
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Integral kernel systems
Theorem
Let U and Y be finite-dimensional R-vector spaces, let T ⊆ R be a continuous
time-domain. Let p ∈ [1,∞]. Then Σ = (U,Y,T,U ,Y ,K) is an integral kernel
system (i.e., gK is continuous) if

(i) (a) U ⊆ L1(T;U),
(b) Y ⊆ L∞(T;Y), and
(c) for each t ∈ T, Kt ∈ L1(T;L(U;Y)), and t 7→ ∥Kt∥1 is in

L∞(T;L(U;Y)),
(ii) (a) U ⊆ L∞(T;U),

(b) Y ⊆ L1(T;Y), and
(c) for each t ∈ T, Kt ∈ L∞(T;L(U;Y)), and t 7→ ∥Kt∥1 is in

L1(T;L(U;Y)),
(iii) (a) U ⊆ Lp(T;U),

(b) Y ⊆ Lp(T;Y),
(c) for each t ∈ T, Kt ∈ L1(T;L(U;Y)), and t 7→ ∥Kt∥1 is in

L∞(T;L(U;Y)), and
(d) for each t ∈ T, Kt ∈ L∞(T;L(U;Y)), and t 7→ ∥Kt∥1 is in
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Integral kernel systems
Causality for an integral kernel system means that, in the expression

gK(µ)(t) =
∫

T

K(t, τ)µ(τ)dτ

should only depend on µ(τ) for τ ≤ t.
A moment’s thought then suggests the following definition and
corresponding theorem.

Definition
An integral kernel K is causal if K(t, τ) = 0 for τ > t.

Theorem
If Σ is an integral kernel system with a causal integral kernel K, then gK is
strongly causal.

If we use a causal kernel, then we can allow for more general inputs and
outputs than the Lp-spaces in the theorem above.
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Integral kernel systems
Theorem
Let U and Y be finite-dimensional R-vector spaces, let T ⊆ R be a continuous
time-domain. Let p ∈ [1,∞]. Then Σ = (U,Y,T,U ,Y ,K) is an integral kernel
system (i.e., gK is continuous) if

(i) (a) U ⊆ L1
loc(T;U) and there is t0 such that inf supp(µ) ≥ t0 for µ ∈ U ,

(b) Y ⊆ L∞
loc(T;Y), and

(c) K is causal and, for each t ∈ T, Kt ∈ L1
loc(T;L(U;Y)), and t 7→ ∥Kt∥K,1

is in L∞
loc(T;L(U;Y)) for every compact K ⊆ T,

(ii) (a) U ⊆ L∞
loc(T;U) and there is t0 such that inf supp(µ) ≥ t0 for µ ∈ U ,

(b) Y ⊆ L1
loc(T;Y), and

(c) K is causal and, for each t ∈ T, Kt ∈ L∞
loc(T;L(U;Y)), and t 7→ ∥Kt∥K,1

is in L1
loc(T;L(U;Y)) for every compact K ⊆ T,

(iii) (a) U ⊆ Lp
loc(T;U) and there is t0 such that inf supp(µ) ≥ t0 for µ ∈ U ,

(b) Y ⊆ Lp
loc(T;Y),

(c) (i)(c) and (ii)(c) hold.
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Reading for Lecture 27

1 Section V-6.7.2.
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Lecture 28
Continuous-time convolution systems

Convolution systems arise upon the imposition of stationarity onto
integral kernel systems.
With stationarity, it makes sense to restrict oneself to the time-domain
T = R.

Proposition
Let U and Y be finite-dimensional R-vector spaces and let
K : R ×R → L(U;Y) be an integral kernel compatible with a set U of input
signals. Suppose that U is translation invariant, i.e., that τ∗a µ ∈ U for every
a ∈ R and µ ∈ U . Denote

ΣK = (U,Y,U ,YR ,R, gK).
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Continuous-time convolution systems

Proposition (cont’d)
Then:

(i) if

(a) K ∈ L1
loc(R

2;L(U;Y)),
(b) U has the property that, if f ∈ L1

loc(R;R) satisfies
∫

R

f (t)µ(t) dt = 0, µ ∈ U ,

then f = 0, and
(c) ΣK is stationary,

then there exists k ∈ L1
loc(R;L(U;Y)) such that K(t, τ) = k(t − τ) for

almost every (t, τ) ∈ R2;
(ii) if there exists k ∈ L1

loc(R;L(U;Y)) such that K(t, τ) = k(t − τ) for almost
every (t, τ) ∈ R2, then ΣK is strongly stationary.
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Continuous-time convolution systems

Essentially, then, we see that stationary integral kernel systems have
their input/output map defined by

gK(µ)(t) =
∫

R

k(t − τ)µ(τ) dτ = k ∗ µ(t).

Definition
A continuous-time convolution system is

Σ = (U,Y,R,U ,Y , k),

where
(i) U and Y are finite-dimensional R-vector spaces,
(ii) U is a subspace of C0(T;U) or Lp

loc(T;U),
(iii) Y is a subspace of C0(T;Y) or Lp

loc(T;Y), and
(iv) k : R → L(U;Y)
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Continuous-time convolution systems

Definition (cont’d)
are such that, if we take K(t, τ) = k(t − τ), then

Σ′ = (U,Y,R,U ,Y ,K)

is an integral kernel system.

We call k a convolution kernel.
The notion of causality for integral kernel systems transfers easily to
continuous-time convolution systems.

Definition
A continuous-time convolution kernel

k : R → L(U;Y)

is causal if k(t) = 0 for t ∈ R<0.
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Continuous-time convolution systems

As with integral kernel systems, one must have conditions on U , Y , and
k to ensure continuity of the input/output map.
One can convert the conditions we have for integral kernel systems, but
we have already carefully considered the matter of continuity of
convolution on Slide 92. In the causal case, we restrict ourselves to
signals that are zero for native time. Thus we have continuity of
convolution kernel systems in the following cases:

1 U ⊆ L1(R;U), Y ⊆ L1(R;Y), and k ∈ L1(R; L(U;Y));
2 U ⊆ Lp(R;U), Y ⊆ Lq(R;Y), and k ∈ Lr(R; L(U;Y)), where 1

p − 1
q = 1 − 1

r ;
3 U ⊆ L1

loc(R≥0;U), Y ⊆ L1
loc(R≥0;Y), and k ∈ L1

loc(R≥0; L(U;Y));
4 U ⊆ Lp

loc(R≥0;U), Y ⊆ Lq
loc(R≥0;Y), and k ∈ Lr

loc(R≥0; L(U;Y)), where
1
p − 1

q = 1 − 1
r .
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Linear continuous-time input/output systems from
linear continuous-time state space systems

On Slide 129 we initiated a programme to produce continuous-time
input/output systems from continuous-time state space systems. We saw
that there were substantial technical considerations.
Here we do the same for linear systems, where things are quite a lot
easier.
We shall consider the input/output systems arising from that part of the
output equations we had labelled as term 2, i.e., the parts coming from
the proper impulse transmission map (in the time-varying case) and the
proper impulse response (in the constant coefficient case).
As we saw in the not necessarily linear case, one must take care of the
fact that the input/output map is continuous, and this requires considering
various cases of input, output, and system assumptions.
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Linear continuous-time input/output systems from
linear continuous-time state space systems

Theorem
Let Σ = (X,U,Y,T,U ,A,B,C,D) be a linear continuous-time state space
system and let p ∈ [1,∞]. Let t0 ∈ T and let

U ⊆ {µ ∈ Lp
loc(T;U) | µ(t) = 0, t < t0},

Y = {η ∈ Lp
loc(T;Y) | η(t) = 0, t < t0}.

Then
Σi/o(t0) = (U,Y,T,U ,Y ,pitmΣ)

is a causal integral kernel system in the following cases:
(i) (a) B ∈ L1

loc(T;L(U;X)) and C ∈ L∞
loc(T;L(X;Y)) and

(b) p = ∞;
(ii) (a) B ∈ L∞

loc(T;L(U;X)) and C ∈ L1
loc(T;L(X;Y)) and

(b) p = 1;
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Linear continuous-time input/output systems from
linear continuous-time state space systems

Theorem (cont’d)

(iii) (a) B ∈ L1
loc(T;L(U;X)) and C ∈ L∞

loc(T;L(X;Y)),
(b) B ∈ L∞

loc(T;L(U;X)) and C ∈ L1
loc(T;L(X;Y)), and

(c) p ∈ [1,∞].

Of course, the conditions come directly from the conditions for continuity
of the input/output map from integral kernel systems with a causal
integral kernel, which pitmΣ is.
To state the corresponding result in the constant coefficient case follows
along similar lines, adapting the conditions for a causal continuous-time
convolution system to be continuous.
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Linear continuous-time input/output systems from
linear continuous-time state space systems

Theorem
Let Σ = (X,U,Y,R,U ,A,B,C,D) be a linear continuous-time state space
system with constant coefficients and let p, q, r ∈ [1,∞] satisfy one of the
following two criterion: (1) p = q = r = 1; (2) 1

p − 1
q = 1 − 1

r . Let

U ⊆ {µ ∈ Lp
loc(R;U) | µ(t) = 0, t < 0},

Y = {η ∈ Lq
loc(R;Y) | η(t) = 0, t < 0}.

Then
Σi/o = (U,Y,R,U ,Y ,pirΣ)

is a causal continuous-time convolution system.

Punchline: Integral kernel systems and continuous-time convolutions
systems arise in a natural way from linear continuous-time state space
systems, and this explains, in part, their importance.
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Reading for Lecture 28

1 Section V-6.7.4.
2 Section V-6.7.6.
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Lecture 29
Aside: The generality of integral kernel systems and
continuous-time convolution systems

We have presented integral kernel systems and their stationary sisters,
continuous-time convolution systems, as examples of linear
continuous-time input/output systems.
Question: Are there linear continuous-time input systems that are not
integral kernel systems or continuous-time convolution systems.
Answer: Yes. . . but a lot of linear continuous-time input systems are
integral kernel systems or continuous-time convolution systems.
To be precise about this requires two things:

1 relaxing what one means by an integral kernel system or continuous-time
convolution system;

2 taking advantage of a powerful theorem in the theory of distributions called
the “Schwartz Kernel Theorem.”

For the Schwartz Kernel Theorem, we need two things:
1 one can define test functions D (Rn;F) and corresponding distributions
D ′(Rn;F) in multiple variables, rather like we did in one variable;

2 if ϕ, ψ ∈ D (R;F), define ϕ⊗ ψ ∈ D (R2;F) by ϕ⊗ ψ(x, y) = ϕ(x)ψ(y).
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Aside: The generality of integral kernel systems and
continuous-time convolution systems

Theorem
If Φ: D (R;U) → D ′(R;Y) is a continuous linear map, then there exists a
distribution K ∈ D ′(R2;L(U;Y)) such that

⟨K;ϕ⊗ ψ⟩ = ⟨Φ(ϕ);ψ⟩, ϕ ∈ D (R;U), ψ ∈ D (R;Y).

The way to read the theorem is that Φ is defined by “integrating” with
respect to τ in (t, τ) ∈ R2, but integration means using the distribution K.
Let us now see how to use this rather abstract-seeming theorem in
system theory.

1 Let U ⊆ L1
loc(R;U) be such that, if µ ∈ U , then there is a sequence (ϕj)j∈Z>0

in D (R;U) converging to µ in the topology of U . For example, one can take
U ⊆ Lp(R;U), p ∈ [1,∞), or U ⊆ C0

0(R;U). These are easily believed to
work because they were defined to be the completion of C0

cpt(R;U).
However, we cannot use U ⊆ L∞(R;U) or U ⊆ C0

bdd(R;U).
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Aside: The generality of integral kernel systems and
continuous-time convolution systems

2 Let Y be such that there is a continuous inclusion

Y ∋ η 7→ θη ∈ D ′(R;Y).

This holds for all of the continuous-time signal spaces we have used, either
in MATH/MTHE 334 or in this course.

3 We thus have the following sequence of continuous linear mappings

D (R;U) // U Φ // Y // D ′(R;Y)

4 Now suppose that we have a continuous linear map Φ: U → Y . We then
have a mapping Φ̂ : D (R;U) → Y by restriction of Φ to D (R;U).

5 Then, by the Schwartz Kernel Theorem, there is K ∈ D (R2; L(U;Y)) such
that

⟨K;ϕ⊗ ψ⟩ = ⟨Φ̂(ϕ);ψ⟩, ϕ ∈ D (R;U), ψ ∈ D (R;Y).
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Aside: The generality of integral kernel systems and
continuous-time convolution systems

6 By continuity and since, for every µ ∈ U , there is a sequence (ϕj)j∈Z>0 in
D (R;U) converging to µ, we have

⟨θΦ(µ);ψ⟩ = lim
j→∞

⟨K;ϕj ⊗ ψ⟩, ψ ∈ D (R;Y).

Punchline: A large number of linear continuous-time input/output systems
are integral kernel systems, provided that you allow distributions as
integral kernels.
Corollary to punchline: A large number of stationary linear
continuous-time input/output systems are continuous-time convolution
systems, provided that you allow distributions as convolution kernels.
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Linear discrete-time state space systems
We now carry out the programme for linear discrete-time state space
systems that was carried out previously for linear continuous-time state
space systems.

Definition
A linear discrete-time state space system is

Σ = (X,U,Y,T,U ,T,A,B,C,D),

where

(i) X is a finite-dimensional R-vector space
(state space),

(ii) U is a finite-dimensional R-vector space
(input set),

(iii) Y is a finite-dimensional R-vector space
(output set),

(iv) T ⊆ Z(∆) is a discrete time-domain (time-
domain),

(v) U ⊆ ℓloc(T;U) (inputs),
(vi) A ∈ ℓloc(T;L(X;X)),
(vii) B ∈ ℓloc(T;L(U;X)),
(viii) C ∈ ℓloc(T;L(X;Y)), and
(ix) D ∈ ℓloc(T;L(U;Y)).
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Linear discrete-time state space systems

A linear discrete-time state space system is an instance of a discrete-time
state space system by defining the dynamics and the output map by

f (t, x, u) = A(t)x + B(t)u, h(t, x, u) = C(t)x + D(t)u.

respectively.
Note that, for linear systems, we do not fuss with partially defined inputs,
state, and outputs, although one can do this.
We see, then, that (ξ, µ) ∈ Ctraj(Σ) if and only if

ξ(t +∆) = A(t) · ξ(t) + B(t) · µ(t).

Unlike in the nonlinear case, or even the linear continuous-time case,
there is no existence and uniqueness theorem.

1 Trajectories exist.
2 They are not, in general unique, owing to the system possibly not being

invertible. In this case, invertibility amounts to the invertibility of A(t), t ∈ T.
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Linear discrete-time state space systems
Let us carefully develop the flow for controlled trajectories for a linear
discrete-time state space system, as we did not do this when we talked
about difference equations.
First consider the homogeneous equation

ξ(t +∆) = A(t) · ξ(t), ξ(t0) = x0.

Just by recursion:

ξ(t0) = x0

ξ(t0 +∆) = A(t0)(x0)

ξ(t0 + 2∆) = A(t0 +∆) ◦ A(t0)(x0)

...
ξ(t0 + j∆) = A(t0 + (j − 1)∆) ◦ · · · ◦ A(t0)(x0)

...

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 29 March 7, 2022 240 / 306

Linear discrete-time state space systems

We thus define Φd
A,t0 = A(t0 + (j − 1)∆) ◦ · · · ◦ A(t0), this being the state

transition map in the discrete-time case.
Now we have the variation of constants formula in the discrete-time case:

ΦΣ(t, t0, x0, µ) = Φd
A,t0(t)(x0)+

(t−t0−∆)/∆∑

j=0

Φd
A,t0+(j+1)∆(t)◦B(t0+j∆)(µ(t0+j∆)).

The corresponding output is then

η(t) = C(t) ◦ Φd
A(t, t0)(x0)︸ ︷︷ ︸

term 1

+

(t−t0−∆)/∆∑

j=0

C(t) ◦ Φd
A,t0+(j+1)∆(t) ◦ B(t0 + j∆)(µ(t0 + j∆))

︸ ︷︷ ︸
term 2

+D(t) · µ(t)︸ ︷︷ ︸
term 3

.
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Linear discrete-time state space systems

We note that the output is comprised of three bits, each interesting in its
own right:

1 term 1: Here is a component of the output determined by the initial condition.
Indeed, the other parts of the solution are independent of initial condition.

2 term 2: This is some weird sum. We shall encounter this sort of thing when
we consider linear discrete-time input/output systems below.

3 term 3: This term consists of the input at time t directly influencing the output
at time t in a memoryless fashion. This is sometimes called a “feedforward”
term.
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Linear discrete-time state space systems

Next we consider systems with constant coefficients.

Definition
A linear discrete-time state space system with constant coefficients is

Σ = (X,U,Y,T,U ,T,A,B,C,D),

where

(i) X is a finite-dimensional R-vector space
(state space),

(ii) U is a finite-dimensional R-vector space
(input set),

(iii) Y is a finite-dimensional R-vector space
(output set),

(iv) T ⊆ Z(∆) is a discrete time-domain (time-
domain),

(v) U ⊆ ℓloc(T;U) (inputs),
(vi) A ∈ L(X;X),
(vii) B ∈ L(U;X),
(viii) C ∈ L(X;Y), and
(ix) D ∈ L(U;Y).
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Linear discrete-time state space systems
In short, a “linear discrete time state space system with constant
coefficients” is a linear discrete-time state space system where A, B, C,
and D are independent of time.
As such, a linear discrete-time state space system with constant
coefficients is also an autonomous discrete-time state space system with

f (x, u) = A(x) + B(u), h(x, u) = C(x) + D(u).

Thus a controlled trajectory (ξ, µ) ∈ Ctraj(Σ) with corresponding
controlled output (η, µ) ∈ Cout(Σ) jointly satisfy

ξ(t +∆) = A ◦ ξ(t) + B ◦ µ(t),

η(t) = C ◦ ξ(t) + D ◦ µ(t).

Note that, when A is independent of time,

Φd
A(t0 + j∆, t0) = PA(j),

where PA : Z≥0 → L(X;X) is defined by PA(j) = Aj.
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Linear discrete-time state space systems

Thus the formula for the flow and the output equations is as in the
non-constant coefficient case, but making this substitution for the state
transition map.
Thus we have

ΦΣ(t, t0, x0) = PA
( t−t0

∆

)
(x0) +

(t−t0−∆)/∆∑

j=0

PA

(
t−t0−(j+1)∆

∆

)
(B(µ(t0 + j∆)))

and

η(t) = C ◦ PA
( t−t0

∆

)
(x0)

+

(t−t0−∆)/∆∑

j=0

C ◦ PA

(
t−t0−(j+1)∆

∆

)
(B(µ(t0 + j∆))) + D ◦ µ(t).
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Linear discrete-time state space systems
Because linear continuous-time state space systems with constant
coefficients are stationary whenever the input set U is
translation-invariant, one commonly makes two assumptions:

1 T = Z(∆);
2 one considers the initial time to be t0 = 0.

As a consequence of this, one typically works with inputs defined on
Z≥0(∆) and with controlled trajectories and outputs determined by

ΦΣ(t, 0, x0) = PA
( t
∆

)
(x0) +

(t−∆)/∆∑

j=0

PA

(
t−(j+1)∆

∆

)
(B(µ(j∆)))

and

η(t) = C ◦ PA
( t
∆

)
(x0)︸ ︷︷ ︸

term 1

+

(t−∆)/∆∑

j=0

C ◦ PA

(
t−(j+1)∆

∆

)
(B(µ(j∆)))

︸ ︷︷ ︸
term 2

+D ◦ µ(t)︸ ︷︷ ︸
term 3

.

The three terms have a similar interpretation as in the time-varying case,
except that term 2 is a convolution. We shall care about this.
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Reading for Lecture 29

1 Sections V-6.7.3 and V-6.7.5 (stay tuned. . . ).
2 Sections V-6.8.1 and V-6.8.2.
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Lecture 30
Linear discrete-time state space systems (cont’d)

For linear discrete-time state space systems, we had the following
formulae for outputs.

1 Time-varying case, input µ, initial condition x0 at initial time t0:
2 The corresponding output is then

η(t) = C(t) ◦ Φd
A(t, t0)(x0)︸ ︷︷ ︸

term 1

+

(t−t0−∆)/∆∑

j=0

C(t) ◦ Φd
A,t0+(j+1)∆(t) ◦ B(t0 + j∆)(µ(t0 + j∆))

︸ ︷︷ ︸
term 2

+D(t) · µ(t)︸ ︷︷ ︸
term 3

.

3 Constant coefficient case, input µ, initial condition x0 at initial time 0:

η(t) = C ◦ PA
(

t
∆

)
(x0)︸ ︷︷ ︸

term 1

+

(t−∆)/∆∑

j=0

C ◦ PA

(
t−(j+1)∆

∆

)
(B(µ(j∆)))

︸ ︷︷ ︸
term 2

+D ◦ µ(t)︸ ︷︷ ︸
term 3

.

Our objective now is to explore more fully the components labelled in the
preceding formulae as “term 2.”
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Linear discrete-time state space systems
Let P : Z(∆) → R be the pulse at t = 0.

Definition
Let σ be a linear discrete-time state space system.

(i) The proper impulse transmission map for Σ at t0 is the function
pitmΣ,t0 : T → L(U;Y) defined by

pitmΣ,t0(t) = 1≥0(t − (t0 +∆))C(t) ◦ Φd
A,t0+∆(t) ◦ B(t0).

(ii) The impulse transmission map for Σ at t0 ∈ T is the function
itmΣ,t0 : T → L(U;Y) defined by

itmΣ,t0(t) = pitmΣ,t0(t) + τ∗t0 P(t)D(t).

Obviously, the output for an input µ and initial condition x0 at t0 is

η(t) = C(t)◦Φd
A(t, t0)(x0)+

(t−t0−∆)/∆∑

j=0

pitmΣ,t0+j∆(t)µ(t0+j∆)+D(t)·µ(t). (9)
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Linear discrete-time state space systems

Let us make a few comments about the preceding.
1 When D(t) = 0 for all t and when x0 = 0,

pitmΣ,t0
(t) =

(t−t0−∆)/∆∑

j=0

pitmΣ,t0+j∆(t)τ∗t0 P(t0 + j∆)

gives the output for an input that is a pulse at t0.
2 The formula also gives context to the terminology “impulse transmission

map.” We see that pitmΣ,t0+j∆(t) in the summand serves to “transmit” the
effect of the input at time t0 + j∆ to the output at time t.

Now we look at the impulse transmission map in the constant coefficient
case.
Unlike in the continuous-time case, we do not have to mess about with
distributions.
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Linear discrete-time state space systems

Definition
Let Σ be a linear discrete-time state space system with constant coefficients.

(i) The proper impulse response for Σ is the function

pirΣ : Z(∆) → L(U;Y)

t 7→ 1≥0(t −∆)C ◦ PA
( t−∆

∆

)
◦ B.

(ii) The impulse response for Σ is the function

irΣ : Z(∆) → L(U;Y)
t 7→ pirΣ(t) + P(t)D.
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Linear discrete-time state space systems
Note that a linear discrete-time state space system with constant
coefficients is, in particular, a linear discrete-time state space system. As
such, in the constant coefficient case, we still have the notion of an
impulse transmission map. Indeed, we have

pitmΣ,τ (t) = pirΣ(t − τ), t ≥ τ.

in the constant coefficient case.
Note that the output associated to the input µ with initial condition x0 at
t = 0 is

η(t) = C ◦ PA
( t
∆

)
(x0) +

(t−∆)/∆∑

j=0

pirΣ
(

t−j∆
∆

)
(µ(j∆)) + D ◦ µ(t). (10)

The middle term is an old friend, namely a convolution!
Summary:

1 Both the impulse transmission map (in the time-varying case) and the
impulse response (in the constant coefficient case) are the output for a pulse
input.

2 The formulae (9) and (10) illustrate that this response to an impulse forms an
integral (less effective pun) part of the output for a general input.
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Linear discrete-time input/output systems

To use linearity, we need to assume that U and Y are such that linearity
from U to Y makes sense.
Recall that, if U ⊆ ℓloc((T);U), then we had denoted, for S ⊆ T,

U (S) = {µ ∈ U | dom(µ) = S}.

Definition
An linear discrete-time input/output system is Σ = (U,Y,T,U ,Y , g),
where

(i) U is a finite dimensional R-vector space (input set),
(ii) Y is a finite dimensional R-vector space (output set),
(iii) T ⊆ Z(∆) is a discrete time-domain,
(iv) U is such that, for every S ⊆ T, U (S) is a subspace of US,
(v) Y is such that, for every S ⊆ T, Y (S) is a subspace of YS, and
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Linear discrete-time input/output systems

Definition (cont’d)
(vi) (a) for S ⊆ T, if gS = g|U (S), then gS(µ) ∈ Y (S),

(b) if S′ ⊆ S ⊆ T, then
gS′(µ|S′) = gS(µ)|S′,

and
(c) for S ⊆ T, gS : U (S) → Y (S) is a continuous linear mapping.

In brief, a linear discrete-time input/output system is a discrete-time
input/output system that is. . . linear.
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Summation kernel systems
The basic idea:

gK(µ)(t) =
∑

τ∈T
K(t, τ)µ(τ).

We call K the “summation kernel.”
This should remind you of the proper impulse transmission map for linear
discrete-time state space systems.

Definition
Let U,Y be finite-dimensional R-vector spaces, and let T ⊆ Z(∆) be a
discrete time-domain.

(i) A summation kernel is a mapping

K : T × T → L(U;Y).

(ii) We denote
Kt : T → L(U;Y)

τ 7→ K(t, τ).
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Summation kernel systems

Definition (cont’d)

(iii) If U ⊆ UT, then K is compatible with U if τ 7→ Kt(τ)µ(τ) is in ℓ1(T;Y) for
every µ ∈ U .

(iv) if K is compatible with U ⊆ UT, then the summation operator
associated with K is

gK : U → YT

defined by
gK(µ)(t) =

∑

τ∈T
K(t, τ)µ(τ).

At this point, we cannot quite call this a linear discrete-time input/output
system since we do not have linearity or continuity. We will have to
confront this.
But first we can define what we want.
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Summation kernel systems

Definition
A summation kernel system is

Σ = (U,Y,T,U ,Y ,K),

where
(i) U and Y are finite-dimensional R-vector subspaces,
(ii) U is a subspace of ℓloc(T;U),
(iii) Y is a subspace of ℓloc(T;Y), and
(iv) K is a summation kernel that is compatible with U and is such that gK is

continuous linear mapping into Y .

We need properties on K, U , and Y to ensure continuity.
There is no perfectly general way to do this, so we give a few special
cases where this works.
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Summation kernel systems

Theorem
Let U and Y be finite-dimensional R-vector spaces, let T ⊆ Z(∆) be a
discrete time-domain. Let p ∈ [1,∞]. Then Σ = (U,Y,T,U ,Y ,K) is a
summation kernel system (i.e., gK is continuous) if

(i) (a) U ⊆ ℓ1(T;U),
(b) Y ⊆ ℓ∞(T;Y), and
(c) for each t ∈ T, Kt ∈ ℓ1(T;L(U;Y)), and t 7→ ∥Kt∥1 is in ℓ∞(T;L(U;Y)),

(ii) (a) U ⊆ ℓ∞(T;U),
(b) Y ⊆ ℓ1(T;Y), and
(c) for each t ∈ T, Kt ∈ ℓ∞(T;L(U;Y)), and t 7→ ∥Kt∥1 is in ℓ1(T;L(U;Y)),

(iii) (a) U ⊆ ℓp(T;U),
(b) Y ⊆ ℓp(T;Y),
(c) for each t ∈ T, Kt ∈ ℓ1(T;L(U;Y)), and t 7→ ∥Kt∥1 is in

ℓ∞(T;L(U;Y)), and
(d) for each t ∈ T, Kt ∈ ℓ∞(T;L(U;Y)), and t 7→ ∥Kt∥1 is in ℓ1(T;L(U;Y)).
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Summation kernel systems
Causality for a summation kernel system means that, in the expression

gK(µ)(t) =
∑

τ∈T
K(t, τ)µ(τ)

should only depend on µ(τ) for τ ≤ t.
A moment’s thought then suggests the following definition and
corresponding theorem.

Definition
A summation kernel K is causal if K(t, τ) = 0 for τ > t.

Theorem
If Σ is a summation kernel system with a causal summation kernel K, then gK
is causal.

If we use a causal kernel, then we can allow for more general inputs and
outputs than the ℓp-spaces in the theorem above.
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Summation kernel systems

Theorem
Let U and Y be finite-dimensional R-vector spaces, let T ⊆ R be a continuous
time-domain. Let p ∈ [1,∞]. Then Σ = (U,Y,T,U ,Y ,K) is an integral kernel
system (i.e., gK is continuous) if

(i) U ⊆ ℓloc(T;U) and there is t0 such that inf supp(µ) ≥ t0 for µ ∈ U ,
(ii) Y ⊆ ℓloc(T;Y), and
(iii) K is causal.
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Reading for Lecture 30

1 Section V-6.8.3.
2 Sections V-6.9.1 and V-6.9.2.
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Lecture 31
Discrete-time convolution systems

Convolution systems arise upon the imposition of stationarity onto
summation kernel systems.
With stationarity, it makes sense to restrict oneself to the time-domain
T = Z(∆).

Proposition
Let U and Y be finite-dimensional R-vector spaces and let
K : Z(∆)×Z(∆) → L(U;Y) be an summation kernel compatible with a set U
of input signals. Suppose that U is translation invariant, i.e., that τ∗a µ ∈ U for
every a ∈ Z(∆) and µ ∈ U . Denote

ΣK = (U,Y,U ,YZ(∆),Z(∆), gK).
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Discrete-time convolution systems

Proposition (cont’d)
Then:

(i) if

(a) U has the property that, if f ∈ ℓloc(Z(∆);R) satisfies
∑

t∈Z(∆)

f (t)µ(t) dt = 0, µ ∈ U ,

then f = 0, and
(b) ΣK is stationary,

then there exists k ∈ ℓloc(Z(∆);L(U;Y)) such that K(t, τ) = k(t − τ) for
almost every (t, τ) ∈ Z(∆)2;

(ii) if there exists k ∈ ℓloc(Z(∆);L(U;Y)) such that K(t, τ) = k(t − τ) for
almost every (t, τ) ∈ Z(∆)2, then ΣK is strongly stationary.
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Discrete-time convolution systems
Essentially, then, we see that stationary summation kernel systems have
their input/output map defined by

gK(µ)(t) =
∑

τ∈Z(∆)

k(t − τ)µ(τ) = k ∗ µ(t).

Definition
A discrete-time convolution system is

Σ = (U,Y,Z(∆),U ,Y , k),

where
(i) U and Y are finite-dimensional R-vector spaces,
(ii) U is a subspace of ℓloc(T;U),
(iii) Y is a subspace of ℓloc(T;Y), and
(iv) k : Z(∆) → L(U;Y)

A. D. Lewis (Queen’s University) Slides for MATH/MTHE 335, Lecture 31 March 7, 2022 264 / 306

Discrete-time convolution systems

Definition (cont’d)
are such that, if we take K(t, τ) = k(t − τ), then

Σ′ = (U,Y,Z(∆),U ,Y ,K)

is a summation kernel system.

We call k a convolution kernel.
The notion of causality for summation kernel systems transfers easily to
discrete-time convolution systems.

Definition
A discrete-time convolution kernel

k : Z(∆) → L(U;Y)

is causal if k(t) = 0 for t ∈ Z<0(∆).
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Discrete-time convolution systems

As with summation kernel systems, one must have conditions on U , Y ,
and k to ensure continuity of the input/output map.
One can convert the conditions we have for summation kernel systems,
but we have already carefully considered the matter of continuity of
convolution on Slide 92. In the causal case, we restrict ourselves to
signals that are zero for native time. Thus we have continuity of
convolution kernel systems in the following cases:

1 U ⊆ ℓ1(Z(∆);U), Y ⊆ ℓ1(Z(∆);Y), and k ∈ ℓ1(Z(∆); L(U;Y));
2 U ⊆ ℓp(Z(∆);U), Y ⊆ ℓq(Z(∆);Y), and k ∈ ℓr(Z(∆); L(U;Y)), where

1
p − 1

q = 1 − 1
r ;

3 U ⊆ ℓloc(Z≥0(∆);U), Y ⊆ ℓloc(Z≥0(∆);Y), and k ∈ ℓloc(Z≥0(∆); L(U;Y)).
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Linear discrete-time input/output systems from linear
discrete-time state space systems

On Slide 160 we initiated a programme to produce discrete-time
input/output systems from discrete-time state space systems. We saw
that there were substantial technical considerations.
Here we do the same for linear systems, where things are quite a lot
easier.
We shall consider the input/output systems arising from that part of the
output equations we had labelled as term 2, i.e., the parts coming from
the proper impulse transmission map (in the time-varying case) and the
proper impulse response (in the constant coefficient case).
In the continuous-time case, both in the linear and not necessarily linear
cases, one must take care of the fact that the input/output map is
continuous, and this requires considering various cases of input, output,
and system assumptions.
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Linear discrete-time input/output systems from linear
discrete-time state space systems

Things are considerable simpler in the discrete-time case, owing to the
simpler topological structure of the signal spaces in this case.

Theorem
Let Σ = (X,U,Y,T,U ,A,B,C,D) be a linear discrete-time state space system
and let p ∈ [1,∞]. Let t0 ∈ T and let

U ⊆ {µ ∈ ℓloc(T;U) | µ(t) = 0, t < t0},
Y = {η ∈ ℓloc(T;Y) | η(t) = 0, t < t0}.

Then
Σi/o(t0) = (U,Y,T,U ,Y ,pitmΣ,t0)

is a causal summation kernel system.

To state the corresponding result in the constant coefficient case follows
along similar lines, adapting the conditions for a causal discrete-time
convolution system to be continuous.
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Linear discrete-time input/output systems from linear
discrete-time state space systems

Theorem
Let Σ = (X,U,Y,Z(∆),U ,A,B,C,D) be a linear discrete-time state space
system with constant coefficients. Let

U ⊆ {µ ∈ ℓloc(Z(∆);U) | µ(t) = 0, t < 0},
Y = {η ∈ ℓloc(Z(∆);Y) | η(t) = 0, t < 0}.

Then
Σi/o = (U,Y,Z(∆),U ,Y ,pirΣ)

is a causal discrete-time convolution system.

Punchline: Summation kernel systems and discrete-time convolutions
systems arise in a natural way from linear discrete-time state space
systems, and this explains, in part, their importance.
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Aside: The generality of integral kernel systems and
discrete-time convolution systems

On Slide 234 we considered when a linear continuous-time input/output
system is an integral kernel system or (in the stationary case) a
continuous-time convolution system.
Unlike in the continuous-time case where life was complicated by having
to consider distributions as kernels, in the discrete-time case the situation
is simple and painless.
Suppose that we are given a linear continuous-time input/output system
with a time-domain T ⊆ Z(∆), with input and output sets U and Y, and
with inputs U ⊆ ℓloc(T;U) and Y ⊆ ℓloc(T;Y).
Let the input/output map be g : U → Y and define

K(t, τ)(u) = g(τ∗τ Pu)(t).

Note that, for µ ∈ U , we can write

µ =
∑

τ∈T
τ∗τ Pµ(τ).
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Aside: The generality of integral kernel systems and
discrete-time convolution systems

Then using continuity of g,

g(µ)(t) = g

(∑

τ∈T
τ∗τ Pµ(τ)

)
(t) =

(∑

τ∈T
g(τ∗τ Pµ(τ))

)
(t)

=
∑

τ∈T
K(t, τ)µ(τ) = gK(µ)(t).

Thus the system is a summation kernel system.
If the system is stationary, one similarly shows that it is a discrete-time
convolution system.
Punchline: A very large number of linear discrete-time input/output
systems are summation kernel systems.
Corollary to punchline: A large number of stationary linear discrete-time
input/output systems are discrete-time convolution systems.
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Reading for Lecture 31

1 Sections V-6.9.4 and and V-6.9.6.
2 Sections V-6.9.3 and V-6.9.5.
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Lecture 32
Continuous-time Laplace transform

You will have seen the continuous Laplace transform before, under the
name “Laplace transform.” We will concentrate on some facets of the
theory that you may not have seen before.

Definition
For f ∈ L1

loc(R;F) and for p ∈ [1,∞], denote

Ip(f ) = {x ∈ R | t 7→ e−xtf (t) is in Lp(R;F)}.

We say that f is p-Laplace transformable if Ip(f ) ̸= ∅, and we denote by
LTp(R;F) the set of p-Laplace transformable functions.

Here are some basic facts.
1 If f ∈ LTp(R;F), then Ip(f ) is an interval; moreover, any interval is a priori

possible.
2 If q < p, then int(Ip(f )) ⊆ Iq(f ); in particular int(Ip(f )) ⊆ I1(f ) for every p.
3 If f ∈ LTp(R;F) and if inf(supp(f )) > −∞, then sup Ip(f ) = ∞.
4 If f ∈ LTp(R;F) and if sup(supp(f )) <∞, then inf Ip(f ) = −∞.
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Continuous-time Laplace transform
We shall be exclusively interested in the cases where f is causal
(meaning that inf supp(f ) > −∞) or strictly causal (meaning that
supp(f ) ⊆ R≥0). We denote

1 αp
min(f ) = inf supp(Ip(f )),

2 LTp,+(R;F) = {f ∈ LTp(R;F) | f is causal}, and
3 LTp,+(R≥0;F) = {f ∈ LTp(R;F) | f is strictly causal}.

These LTp,+-spaces will serve as the domain of the continuous Laplace
transform.
We shall also need a codomain.
For an interval I ⊆ R, denote

CI = {z ∈ C | Re(z) ∈ I}

and
H(CI ;C) = {F : CI → C | F is holomorphic on CI}.

For F ∈ H(CI ;C) and x ∈ I, denote

Fx : R → C
y 7→ F(x + iy).
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Continuous-time Laplace transform

Denote
Hp(CI ;C) = {F ∈ H(CI ;C) | Fx ∈ Lp(R;C), x ∈ I}

and
Hp(CI ;C) = {F ∈ Hp(CI ;C) | sup{∥Fx∥p | x ∈ I} <∞}.

The spaces Hp(CR≥0 ;C) are classical, and are known as Hardy spaces.
We will primarily be concerned with the bases p = ∞ and p = 2.
Here are some properties of Hardy spaces. For simplicity (and since it is
all we care about), we suppose that sup(I) = ∞ and that
−∞ < a = inf(I).

1 The limit limx→a Fx exists in Lp(R;C). We will assume that F|C{a} is such
that limx→a Fx = Fa (limit in Lp(R;C)).

2 For “nice” sequences (zj)j∈Z>0 in CI converging to a + iy (“nice” means they
should approach remaining in some cone, i.e., non-tangentially), we have
pointwise convergence limj→∞ F(zj) = F(a + iy) for almost every y.
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Continuous-time Laplace transform

With the domain and codomain in place, we can define the versions of
the continuous Laplace transform we care about.

Definition
If f ∈ LTp,+(R;C), the mapping

L p
C (f ) : CI1(f ) → C

z 7→
∫

R

f (t)e−zt dt

is the causal continuous p-Laplace transform or Lp causal CLT of f .

Note that the domain of the function L p
C (f ) is CI1(f ), no matter the value of

p.
Since int(Ip(f )) ⊆ I1(f ), the only barrier to having Ip(f ) = I1(f ) is that I1(f )
may contain its left endpoint, where as Ip(f ) may not.
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Continuous-time Laplace transform

Let us enumerate some of the elementary properties of L p
C (f ).

Proposition
We let f , g ∈ LTp,+(R;C), a ∈ C, and s ∈ R.

(i) L p
C (f ) ∈ H(CI1(f );C);

(ii) af ∈ LTp,+(R;C), αp
min(af ) = αp

min(f ), and L p
C (af ) = aL p

C (f );

(iii) f + g ∈ LTp,+(R;C), αp
min(f + g) ≤ max{αp

min(f ), α
p
min(g)}, and

L p
C (f + g)(z) = L p

C (f )(z) +L
p

C (g)(z), Re(z) ∈ I1(f ) ∩ I1(g);

(iv) τ∗s f ∈ LTp,+(R;C), αp
min(τ

∗
s f ) = αp

min(f ), and

L p
C (τ

∗
s f )(z) = e−szL p

C (f )(z), Re(z) ∈ I1(f ).

The last property is useful because it allows us to translate some results
concerning LTp,+(R≥0;C) to LTp,+(R;C).
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Continuous-time Laplace transform

There are some obvious connections between the CLT and the CCFT
that are clear when one writes e−zt = e−xte−iyt in the integrand of the
definition of the CLT. Let us record the correspondences.

1 If Ea(t) = eat, we have L p
C (f )(σ + iω) = FCC(f E−σ)

(
ω
2π

)
.

2 The CLT is injective.
3 The analogue of the Fourier integral is the Fourier–Mellin integral:

FMI[f ](t) =
1

2π

∫

R

L 1
C (f )(σ + iω)e(σ+iω)t dω,

where σ ∈ I1(f ). As with the Fourier integral, we disregard the convergence
of the integral in the above “definition.” Indeed, the study of the convergence
of the integral is the study of inversion of the CLT.
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Continuous-time Laplace transform

Results concerning convolution and the continuous Laplace transform
are well-known, but are sometimes stated with imprecision.
A general result for causal signals is the following.

Proposition
Let p, q, r ∈ [1,∞] satisfy 1 + 1

r = 1
p + 1

q . If f ∈ LTp,+(R;C) and
g ∈ LTq,+(R;C), then f ∗ g ∈ LTr,+(R;C), αr

min(f ∗ g) ≤ max{αp
min(f ), α

q
min(g)},

and
L r

C(f ∗ g)(z) = L p
C (f )(z)L

q
C (g)(z)

for z ∈ C(a,∞), and for any a > max{αp
min(f ), α

q
min(g), α

r
min(f ∗ g)}.

We will see a different result for strictly causal signals later.
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Continuous-time Laplace transform

Let us now concentrate for a moment on strictly causal signals. In this
case, the transformed signals have some interesting properties, apart
from simply being holomorphic in the region CI1(f ) where they are defined.

Proposition
Let p ∈ [1,∞]. If f ∈ LTp,+(R≥0;C), then:

(i) L p
C (f ) ∈ C0(CI1(f );C);

(ii) L p
C (f )|C(a,∞) ∈ H∞(C(a,∞);C for every a ∈ I1(f ).

In the case of p = 2, something very special happens, rather inline with
what happens with the CCFT.

Theorem (L2-Paley–Wiener Theorem)
L 2

C is an isomorphism of LT2,+(R≥0;C) with H2(CR≥0 ;C).
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Continuous-time Laplace transform

Strictly causal continuous Laplace transformable signals also have their
own convolution theorem.

Proposition
If f , g ∈ LT∞,+(R≥0;C), then f ∗ g ∈ LT∞,+(R≥0;C),
α∞

min(f ∗ g) ≤ max{α∞
min(f ), α

∞
min(g)}, and

L ∞
C (f ∗ g)(z) = L ∞

C (f )(z)L ∞
C (g)(z)

for z ∈ C(a,∞), and for any a > max{α∞
min(f ), α

∞
min(g), α

∞
min(f ∗ g)}.
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Continuous-time Laplace transform
The rule for the interaction of the CLT with differentiation must be
exercised with care. Here we state the general condition, for higher
derivatives.

Proposition
Let f ∈ Ck−1(R≥0;C), and suppose that f (a) ∈ LT+,∞(R≥0;C),
a ∈ {0, 1, . . . , k − 1}, and that f (k−1) is locally absolutely continuous with

f (k−1)(t) = f (0+) +

∫ t

0
f (k)(τ) dτ, t ∈ R>0,

for f (k) ∈ L1
loc(R≥0;C). Then, for z ∈ Cint(I∞(f (k−1))),

lim
t→∞

∫ t

0
f (k)(τ)e−zτ dτ = zkL ∞

C (f )(z)−f (0+)zk−1−· · ·−f (k−2)(0+)z−f (k−1)(0+).

Note that it is not a conclusion that f (k) is continuous Laplace
transformable; the integral on the left only exists conditionally.
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Reading for Lecture 32

1 Section IV-9.1.
2 Section III-7.4.1.
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Lecture 33
Discrete-time Laplace transform

You may have seen the discrete Laplace transform before under the
name “z-transform.” We will not use this name; it kinda sucks. Again, we
will concentrate on some facets of the theory that you may not have seen.
First of all, we will follow the common practice, not with respect to the
name, but in how this transform is defined.
The “expected” definition of the discrete Laplace transform should be

∆
∑

n∈Z
f (nδ)e−n∆z.

Instead, we will replace “e∆z” with “z,” and so the transform becomes

∆
∑

n∈Z
f (n∆)z−n.
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Discrete-time Laplace transform

We can now make our definition.

Definition
For f ∈ ℓloc(Z(∆);F) and for p ∈ [1,∞], denote

Ip(f ) = {r ∈ R≥0 | t 7→ r−t/∆f (t) is in ℓp(Z(∆);F)}.

We say that f is p-Laplace transformable if Ip(f ) ̸= ∅, and we denote by
LTp(Z(∆);F) the set of p-Laplace transformable functions.

Here are some basic facts.
1 If f ∈ LTp(Z(∆);F), then Ip(f ) is an interval; moreover, any interval is a priori

possible.
2 If q < p, then Iq(f ) ⊆ Ip(f ) and int(Ip(f )) ⊆ Iq(f ); in particular

int(Ip(f )) ⊆ I1(f ) for every p.
3 If f ∈ LTp(Z(∆);F) and if inf(supp(f )) > −∞, then sup Ip(f ) = ∞.
4 If f ∈ LTp(Z(∆);F) and if sup(supp(f )) <∞, then inf Ip(f ) = 0.
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Discrete-time Laplace transform
We shall be exclusively interested in the cases where f is causal
(meaning that inf supp(f ) > −∞) or strictly causal (meaning that
supp(f ) ⊆ Z≥0(∆)). We denote

1 αp
min(f ) = inf supp(Ip(f )),

2 LTp,+(Z(∆);F) = {f ∈ LTp(Z(∆);F) | f is causal}, and
3 LTp,+(Z≥0(∆);F) = {f ∈ LTp(Z(∆);F) | f is strictly causal}.

These LTp,+-spaces will serve as the domain of the discrete Laplace
transform.
We shall also need a codomain.
For an interval I ⊆ R≥0, denote

AI = {z ∈ C | |z| ∈ I}

and
H(AI ;C) = {F : AI → C | F is holomorphic on AI}.

For F ∈ H(AI ;C) and r ∈ I, denote S1 = {z ∈ C | |z| = 1} and

Fr : S
1 → C

(cos θ, sin θ) 7→ F(reiθ).
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Discrete-time Laplace transform

Denote

Hp(AI ;C) = {F ∈ H(AI ;C) | Fr ∈ Lp(S1;C), r ∈ I}

and
Hp(AI ;C) = {F ∈ Hp(AI ;C) | sup{∥Fr∥p | r ∈ I} <∞}.

The spaces Hp(A[0,1];C) are classical, and are known as Hardy spaces.
By the conformal transformation z 7→ z−1, these are transformed into
Hp(A[1,∞);C), and these are the versions relevant to us. We will primarily
be concerned with the bases p = ∞ and p = 2.
Here are some properties of Hardy spaces. For simplicity (and since it is
all we care about), we suppose that sup(I) = ∞ and that 0 < a = inf(I).

1 The limit limr→a Fr exists in Lp(S1;C). We will assume that F|A{a} is such
that limr→a Fr = Fa (limit in Lp(S1;C)).

2 For “nice” sequences (zj)j∈Z>0 in AI converging to aeiθ (“nice” means they
should approach remaining in some cone, i.e., non-tangentially), we have
pointwise convergence limj→∞ F(zj) = F(aeiθ) for almost every θ.
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Discrete-time Laplace transform

With the domain and codomain in place, we can define the versions of
the discrete Laplace transform we care about.

Definition
If f ∈ LTp,+(Z(∆);C), the mapping

L p
D (f ) : AI1(f ) → C

z 7→ ∆
∑

t∈Z(∆)

f (t)z−t/∆

is the causal discrete p-Laplace transform or ℓp causal DLT of f .

Note that the domain of the function L p
D (f ) is AI1(f ), no matter the value

of p.
Since int(Ip(f )) ⊆ I1(f ), the only barrier to having Ip(f ) = I1(f ) is that I1(f )
may contain its left endpoint, where as Ip(f ) may not.
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Discrete-time Laplace transform

Let us enumerate some of the elementary properties of L p
D (f ).

Proposition
We let f , g ∈ LTp,+(Z(∆);C), a ∈ C, and s ∈ Z(∆).

(i) L p
D (f ) ∈ H(AI1(f );C);

(ii) af ∈ LTp,+(Z(∆);C), αp
min(af ) = αp

min(f ), and L p
D (af ) = aL p

D (f );

(iii) f + g ∈ LTp,+(Z(∆);C), αp
min(f + g) ≤ max{αp

min(f ), α
p
min(g)}, and

L p
D (f + g)(z) = L p

D (f )(z) +L
p

D (g)(z), |z| ∈ I1(f ) ∩ I1(g);

(iv) τ∗s f ∈ LTp,+(Z(∆);C), αp
min(τ

∗
s f ) = αp

min(f ), and

L p
D (τ

∗
s f )(z) = z−s/∆L p

D (f )(z), |z| ∈ I1(f ).

The last property is useful because it allows us to translate some results
concerning LTp,+(Z≥0(∆);C) to LTp,+(Z(∆);C).
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Discrete-time Laplace transform

There are some obvious connections between the DLT and the DCFT
that are clear when one writes zt = rte−iθt in the summand of the
definition of the DLT. Let us record the correspondences.

1 If Pa(j) = aj and δb(t) = bt, we have L p
D (f )(reiθ) = FDC(f (P1/r ◦ δ∆−1))

(
θ

2π

)
.

2 The DLT is injective.
3 The analogue of the Fourier series is

f (t) =
rt/∆

2π∆

∫ 2π

0
L p

C (f )(reiθ)eiθt/∆ dθ,

where r ∈ I1(f ). As with the DCFT, this sum converges uniformly and so
gives a direct formula for the inverse of the DLT.
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Discrete-time Laplace transform

Results concerning convolution and the discrete Laplace transform are
well-known, but are sometimes stated with imprecision.
A general result for causal signals is the following.

Proposition
Let p, q, r ∈ [1,∞] satisfy 1 + 1

r = 1
p + 1

q . If f ∈ LTp,+(Z(∆);C) and
g ∈ LTq,+(Z(∆);C), then f ∗ g ∈ LTr,+(Z(∆);C),
αr

min(f ∗ g) ≤ max{αp
min(f ), α

q
min(g)}, and

L r
D(f ∗ g)(z) = L p

D (f )(z)L
q

D g)(z)

for z ∈ A(a,∞), and for any a > max{αp
min(f ), α

q
min(g), α

r
min(f ∗ g)}.

We will see a different result for strictly causal signals later.
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Discrete-time Laplace transform

Let us now concentrate for a moment on strictly causal signals. In this
case, the transformed signals have some interesting properties, apart
from simply being holomorphic in the region CI1(f ) where they are defined.

Proposition
Let p ∈ [1,∞]. If f ∈ LTp,+(Z≥0(∆);C), then

(i) L p
D (f ) ∈ C0(AI1(f );C) and

(ii) L p
D (f )|A(a,∞) ∈ H∞(A(a,∞);C) for every a ∈ I1(f ).

In the case of p = 2, something very special happens, rather inline with
what happens with the CCFT.

Theorem (ℓ2-Paley–Wiener Theorem)
L 2

D is an isomorphism of LT2,+(Z≥0(∆);C) with H2(A[1,∞);C).
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Discrete-time Laplace transform

Strictly causal discrete Laplace transformable signals also have their own
convolution theorem.

Proposition
If f , g ∈ LT1,+(Z≥0(∆);C), then f ∗ g ∈ LT1,+(Z≥0(∆);C),
α∞

min(f ∗ g) ≤ max{α1
min(f ), α

1
min(g)}, and

L 1
D (f ∗ g)(z) = L 1

D (f )(z)L
1

D (g)(z)

for z ∈ A(a,∞), and for any a > max{α1
min(f ), α

1
min(g), α

1
min(f ∗ g)}.
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Discrete-time Laplace transform

The rule for the interaction of the DLT with differences is analogous to
that of the CLT with derivatives. Here we state the general condition, for
higher derivatives.

Proposition
If f ∈ LT1,+(Z≥0(∆);C), then, for z ∈ int(AI1(f )),

L 1
D (τ

∗
−k∆f )(z) = zkL 1

D (f )(z)−(∆z)kf (0)−· · ·−(∆z)2f ((k−2)∆)−(∆z)f ((k−1)∆).

Note that, unlike in the case of the CLT, here we are allowed to conclude
that the forward differences are discrete Laplace transformable.
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Reading for Lecture 33

1 Section IV-9.2.
2 Section III-7.5.1.
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Lecture 34
Transfer functions for continuous-time convolution
systems

We shall consider continuous-time convolution systems and linear
continuous-time state space systems.
In considering transfer functions, we work with (1) the Laplace transform
of the convolution kernel and (2) the Laplace transform of the impulse
response.
There are many systems analysis and design methodologies that have
been developed for implementation using the transfer function. We shall
not get into this, as this is the realm of subjects like filter design and
control theory.
Instead, we are concerned with the mathematical formulation and
properties of transfer functions.
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Transfer functions for continuous-time convolution
systems

Our linear system models have all made use of state/input/output spaces
that are R-vector spaces. Transfer functions involve the complex variable
z. We must “complexify.”

1 If V is a R-vector space, then VC is the C-vector space VC = V × V with
vector space operations

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2), (a + ib)(u, v) = (au − bv, av + bu).

2 If L ∈ L(U;V) is a R-linear map, we define a C-linear map LC ∈ L(UC;VC) by

LC(u, v) = (L(u), L(v)).

If you are following the path of X = Rn, U = Rm, Y = Rk, A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rk×n, and D ∈ Rk×m (and it is fine if you are), then you will
simply have XC = Cn, UC = Cm, YC = Ck, A ∈ Cn×n, B ∈ Cn×m, C ∈ Ck×n,
and D ∈ Ck×m. That is to say, in these cases, complexification is “replace
x ∈ R with z ∈ C.”
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Transfer functions for continuous-time convolution
systems

We can now define the transfer function for continuous-time convolution
systems.

Definition
Let Σ = (U,Y,U ,Y , k) be a continuous-time convolution system and suppose
that k ∈ LT+,p(R;L(U;Y)). The transfer function for Σ is the mapping

TΣ : CI1(k) → L(UC;YC)

z 7→ L p
C (k)(z).

The idea of the transfer function approach is the following transformation
rule for the input/output map upon taking Laplace transforms:

gk(µ)(t) =
∫

R

k(t − τ)(µ(τ)) dτ =⇒ LC(gk(µ))(z) = TΣ(z)LC(µ)(z).
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Transfer functions for continuous-time convolution
systems

However, any assertion such as this requires conditions on inputs,
outputs, and the convolution kernel.
Here are two kinds of conditions, obviously simply derived from the
relationships we have seen for convolution and the Laplace transform.

1 for p, q, r ∈ [1,∞] satisfying 1
p − 1

q = 1 − 1
r ,

(a) k ∈ LTr,+(R; L(U;Y)),
(b) U ⊆ LTp,+(R;U), and
(c) Y ⊆ LTq,+(R;Y);

2 (a) k ∈ LT∞,+(R≥0; L(U;Y)),
(b) U ⊆ LT∞,+(R≥0;U), and
(c) Y ⊆ LT∞,+(R≥0;Y).

Another useful condition is rather connected to the L2-Paley–Wiener
Theorem from Slide 280.

3 (a) k ∈ L1(R≥0; L(U;Y)),
(b) U ⊆ L2(R≥0;U), and
(c) Y ⊆ L2(R≥0;U).

In this case we also get a bound of the H2-norms of the input/output map:

∥L 2
C (k ∗ µ)∥H2,R≥0

≤ ∥L 1
C (k)∥H∞,R≥0∥L 2

C (µ)∥H2,R≥0
.
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Transfer functions for linear continuous-time state
space systems

We now consider linear continuous-time state space systems.

Definition
For a linear continuous-time state space system

Σ = (X,U,Y,R,U ,A,B,C,D)

with constant coefficients, the transfer function is the L(UC;YC)-valued
function

TΣ : C(σmax(A),∞) → L(UC;YC)

z 7→ CC ◦ (z idXC −AC)−1 ◦ BC + DC,

where
σmax(A) = max{Re(λ) | λ ∈ spec(A)}.
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Transfer functions for linear continuous-time state
space systems

This transfer function enjoys the following properties:
1 TΣ = L 1

C (irΣ);
2 upon choosing bases for X, U, and Y, TΣ is a matrix whose entries are

proper (strictly proper, if D = 0) rational functions;
3 for any a > σmax(A), TΣ|C[a,∞) ∈ H∞(C[a,∞); L(UC;YC));
4 if D = 0, then, for any a > σmax(A), TΣ|C[a,∞) ∈ H2(C[a,∞); L(UC;YC)).

Consider especially the case where σmax(A) < 0.
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Transfer functions for discrete-time convolution
systems

We proceed very much as we did in the continuous-time case.

Definition
Let Σ = (U,Y,U ,Y , k) be a discrete-time convolution system and suppose
that k ∈ LT+,p(Z(∆);L(U;Y)). The transfer function for Σ is the mapping

TΣ : AI1(k) → L(UC;YC)

z 7→ L p
D (k)(z).

The idea of the transfer function approach is the following transformation
rule for the input/output map upon taking Laplace transforms:

gk(µ)(k∆) =
∑

j∈Z
k((k−j)∆)(µ(j∆τ)) =⇒ LD(gk(µ))(z) = TΣ(z)LD(µ)(z).
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Transfer functions for discrete-time convolution
systems

However, any assertion such as this requires conditions on inputs,
outputs, and the convolution kernel.
Here are two kinds of conditions, obviously simply derived from the
relationships we have seen for convolution and the Laplace transform.

1 for p, q, r ∈ [1,∞] satisfying 1
p − 1

q = 1 − 1
r ,

(a) k ∈ LTr,+(Z(∆); L(U;Y)),
(b) U ⊆ LTp,+(Z(∆);U), and
(c) Y ⊆ LTq,+(Z(∆);Y);

2 (a) k ∈ LT∞,+(Z≥0(∆); L(U;Y)),
(b) U ⊆ LT∞,+(Z≥0(∆);U), and
(c) Y ⊆ LT∞,+(Z≥0(∆);Y).

Another useful condition is rather connected to the ℓ2-Paley–Wiener
Theorem from Slide 292.

3 (a) k ∈ ℓ1(Z≥0(∆); L(U;Y)),
(b) U ⊆ ℓ2(Z≥0(∆);U), and
(c) Y ⊆ ℓ2(Z≥0(∆);U).

In this case we also get a bound of the H2-norms of the input/output map:

∥L 2
D (k ∗ µ)∥H2,[1,∞) ≤ ∥L 1

D (k)∥H∞,[1,∞)∥L 2
D (µ)∥H2,[1,∞).
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Transfer functions for linear discrete-time state space
systems

Again, we follow closely the continuous-time case. Note carefully the
difference in the relationship between the eigenvalues and the region of
definition of the transfer function.

Definition
For a linear discrete-time state space system

Σ = (X,U,Y,Z(∆),U ,A,B,C,D)

with constant coefficients, the transfer function is the L(UC;YC)-valued
function

TΣ : A(ρmax(A),∞) → L(UC;YC)

z 7→ CC ◦ (z idXC −AC)−1 ◦ BC + DC,

where
ρmax(A) = max{|λ| | λ ∈ spec(A)}.
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Transfer functions for linear discrete-time state space
systems

This transfer function enjoys the following properties:
1 TΣ = L 1

D (irΣ);
2 upon choosing bases for X, U, and Y, TΣ is a matrix whose entries are

proper (strictly proper, if D = 0) rational functions;
3 for any a > ρmax(A), TΣ|A[a,∞) ∈ H∞(A[a,∞); L(UC;YC));
4 if D = 0, then, for any a > ρmax(A), TΣ|A[a,∞) ∈ H2(A[a,∞); L(UC;YC)).

Consider especially the case where ρmax(A) < 1.
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Reading for Lecture 34

1 Sections V-7.1.1 and V-7.2.1.
2 Sections V-7.1.2 and V-7.2.2.
3 Sections V-7.1.4 and V-7.2.4.
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