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Preface for series

The subject of signals and systems, particularly linear systems, is by now
an entrenched part of the curriculum in many engineering disciplines, particu-
larly electrical engineering. Furthermore, the offshoots of signals and systems
theory—e.g., control theory, signal processing, and communications theory—are
themselves well-developed and equally basic to many engineering disciplines. As
many a student will agree, the subject of signals and systems is one with a reliance
on tools from many areas of mathematics. However, much of this mathematics is
not revealed to undergraduates, and necessarily so. Indeed, a complete account-
ing of what is involved in signals and systems theory would take one, at times
quite deeply, into the fields of linear algebra (and to a lesser extent, algebra in gen-
eral), real and complex analysis, measure and probability theory, and functional
analysis. Indeed, in signals and systems theory, many of these topics are woven
together in surprising and often spectacular ways. The existing texts on signals
and systems theory, and there is a true abundance of them, all share the virtue
of presenting the material in such a way that it is comprehensible with the bare
minimum background.

Should I bother reading these volumes?

This virtue comes at a cost, as it must, and the reader must decide whether
this cost is worth paying. Let us consider a concrete example of this, so that the
reader can get an idea of the sorts of matters the volumes in this text are intended
to wrestle with. Consider the function of time

f (t) =

e−t, t ≥ 0,
0, t < 0.

In the text (Example IV-6.1.3–2) we shall show that, were one to represent this
function in the frequency domain with frequency represented by ν, we would get

f̂ (ν) =
∫
R

f (t)e−2iπνt dt =
1

1 + 2iπν
.

The idea, as discussed in Chapter IV-2, is that f̂ (ν) gives a representation of the
“amount” of the signal present at the frequency ν. Now, it is desirable to be able
to reconstruct f from f̂ , and we shall see in Section IV-6.2 that this is done via the
formula

f (t)“=”
∫
R

f̂ (ν)e2iπνt dν. (FT)

The easiest way to do the integral is, of course, using a symbolic manipulation
program. I just tried this with Mathematica®, and I was told it could not do the
computation. Indeed, the integral does not converge! Nonetheless, in many tables of
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Fourier transforms (that is what the preceding computations are about), we are told
that the integral in (FT) does indeed produce f (t). Are the tables wrong? Well, no.
But they are only correct when one understands exactly what the right-hand side
of (FT) means. What it means is that the integral converges, in L2(R;C) to f . Let us
say some things about the story behind this that are of a general nature, and apply
to many ideas in signal and system theory, and indeed to applied mathematics as
a whole.
1. The story—it is the story of the L2-Fourier transform—is not completely trivial.

It requires some delving into functional analysis at least, and some background in
integration theory, if one wishes to understand that “L” stands for “Lebesgue,”
as in “Lebesgue integration.” At its most simple-minded level, the theory is
certainly understandable by many undergraduates. Also, at its most simple-
minded level, it raises more questions than it answers.

2. The story, even at the most simple-minded level alluded to above, takes some
time to deliver. The full story takes a lot of time to deliver.

3. It is not necessary to fully understand the story, perhaps even the most simple-
minded version of it, to be a user of the technology that results.

4. By understanding the story well, one is led to new ideas, otherwise completely
hidden, that are practically useful. In control theory, quadratic regulator theory,
and in signal processing, the Kalman filter, are examples of this.

5. The full story of the L2-Fourier transform, and the issues stemming from it,
directly or otherwise, is beautiful.
The nature of the points above, as they relate to this series, are as follows.

Points 1 and 2 indicate why the story cannot be told to all undergraduates, or
even most graduate students. Point 3 indicates why it is okay that the story not
be told to everyone. Point 4 indicates why it is important that the story be told
to someone. Point 5 should be thought of as a sort of benchmark as to whether
the reader should bother with understanding what is in this series. Here is how to
apply it. If one reads the assertion that this is a beautiful story, and their reaction
is, “Okay, but there better be a payoff,” or, “So what?” or, “Beautiful to who?” then
perhaps they should steer clear of this series. If they read the assertion that this
is a beautiful story, and respond with, “Really? Tell me more,” then I hope they
enjoy these books. They were written for such readers. Of course, most readers’
reactions will fall somewhere in between the above extremes. Such readers will
have to sort out for themselves whether the volumes in this series lie on the right
side, for them, of being worth reading. For these readers I will say that this series
is heavily biased towards readers who react in an unreservedly positive manner to
the assertions of intrinsic beauty.

For readers skeptical of assertions of the usefulness of mathematics, an inter-
esting pair of articles concerning this is [Wigner 1960] and [Hamming 1980].
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What is the best way of getting through this material?

Now that a reader has decided to go through with understanding what is in
these volumes, they are confronted with actually doing so: a possibly nontrivial
matter, depending on their starting point. Let us break down our advice according
to the background of the reader.

I look at the tables of contents, and very little seems familiar. Clearly if nothing seems
familiar at all, then a reader should not bother reading on until they have acquired
an at least passing familiarity with some of the topics in the book. This can be
done by obtaining an undergraduate degree in electrical engineering (or similar),
or pure or applied mathematics.

If a reader already possess an undergraduate degree in mathematics or engi-
neering, then certainly some of the following topics will appear to be familiar: linear
algebra, differential equations, some transform analysis, Fourier series, system the-
ory, real and/or complex analysis. However, it is possible that they have not been
taught in a manner that is sufficiently broad or deep to quickly penetrate the texts
in this series. That is to say, relatively inexperienced readers will find they have
some work to do, even to get into topics with which they have some familiarity.
The best way to proceed in these cases depends, to some extent, on the nature of
one’s background.

I am familiar with some or all of the applied topics, but not with the mathematics. For
readers with an engineering background, even at the graduate level, the depth
with which topics are covered in these books is perhaps a little daunting. The best
approach for such readers is to select the applied topic they wish to learn more
about, and then use the text as a guide. When a new topic is initiated, it is clearly
stated what parts of the book the reader is expected to be familiar with. The reader
with a more applied background will find that they will not be able to get far
without having to unravel the mathematical background almost to the beginning.
Indeed, readers with a typical applied background will normally be lacking a good
background in linear algebra and real analysis. Therefore, they will need to invest
a good deal of effort acquiring some quite basic background. At this time, they will
quickly be able to ascertain whether it is worth proceeding with reading the books
in this series.

I am familiar with some or all of the mathematics, but not with the applied topics. Readers
with an undergraduate degree in mathematics will fall into this camp, and probably
also some readers with a graduate education in engineering, depending on their
discipline. They may want to skim the relevant background material, just to see
what they know and what they don’t know, and then proceed directly to the applied
topics of interest.

I am familiar with most of the contents. For these readers, the series is one of reference
books.
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Comments on organisation

In the current practise of teaching areas of science and engineering connected
with mathematics, there is much emphasis on “just in time” delivery of mathe-
matical ideas and techniques. Certainly I have employed this idea myself in the
classroom, without thinking much about it, and so apparently I think it a good
thing. However, the merits of the “just in time” approach in written work are, in
my opinion, debatable. The most glaring difficulty is that the same mathematical
ideas can be “just in time” for multiple non-mathematical topics. This can even
happen in a single one semester course. For example—to stick to something ger-
mane to this series—are differential equations “just in time” for general system
theory? for modelling? for feedback control theory? The answer is, “For all of
them,” of course. However, were one to choose one of these topics for a “just in
time” written delivery of the material, the presentation would immediately become
awkward, especially in the case where that topic were one that an instructor did
not wish to cover in class.

Another drawback to a “just in time” approach in written work is that, when
combined with the corresponding approach in the classroom, a connection, per-
haps unsuitably strong, is drawn between an area of mathematics and an area
of application of mathematics. Given that one of the strengths of mathematics
is to facilitate the connecting of seemingly disparate topics, inside and outside of
mathematics proper, this is perhaps an overly simplifying way of delivering math-
ematical material. In the “just simple enough, but not too simple” spectrum, we
fall on the side of “not too simple.”

For these reasons and others, the material in this series is generally organised
according to its mathematical structure. That is to say, mathematical topics are
treated independently and thoroughly, reflecting the fact that they have life inde-
pendent of any specific area of application. We do not, however, slavishly follow
the Bourbaki1 ideals of logical structure. That is to say, we do allow ourselves the
occasional forward reference when convenient. However, we are certainly careful
to maintain the standards of deductive logic that currently pervade the subject of
“mainstream” mathematics. We also do not slavishly follow the Bourbaki dictum
of starting with the most general ideas, and proceeding to the more specific. While
there is something to be said for this, we feel that for the subject and intended
readership of this series, such an approach would be unnecessarily off-putting.

Andrew D. Lewis Kingston, ON, Canada
1Bourbaki refers to “Nicolas Bourbaki,” a pseudonym given (by themselves) to a group of French

mathematicians who, beginning in mid-1930’s, undertook to rewrite the subject of mathematics.
Their dictums include presenting material in a completely logical order, where no concept is referred
to before being defined, and starting developments from the most general, and proceeding to
the more specific. The original members include Henri Cartan, André Weil, Jean Delsarte, Jean
Dieudonné, and Claude Chevalley, and the group later counted such mathematicians as Roger
Godement, Jean-Pierre Serre, Laurent Schwartz, Emile Borel, and Alexander Grothendieck among
its members. They have produced eight books on fundamental subjects of mathematics.
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Preface for Volume 1

In this, the first volume of five volumes in this series, we shall introduce ele-
mentary mathematics, many parts of which comprise an undergraduate degree in
mathematics, either in explicit or implicit form. For readers not having a strong
mathematics background—such as students in engineering or the physical sci-
ences—the material here may look familiar, but are covered in depth, breadth, and
detail in ways that far exceed the mathematics such readers will have previously
encountered. The material covered is, for the main part, required at various points
in subsequent volumes. However, we also present some material for the purpose
of providing context, historical background, or topics of general interest related to
the core material.

Our presentation begins in Chapter 1 with basic a presentation of set theory
and basic mathematical notation. This should be regarded as lighter fare, but
required reading for students with a weaker mathematical background. Oftentimes
mathematics is regarded as a toolbox into which one can reach for the hammer one
needs to smash the nail with which one is presently confronted. This is a rather
dull view of what mathematics can accomplish. Indeed, one way of thinking about
mathematics is that it provides a certain way of approaching problems, an approach
where care, precision, and rigour are as important as methodology. To be able to
take advantage of this way of approaching problems, one must be able to express
problems and solutions using the language that has been especially adapted to the
approach. One way to view Chapter 1 is that it provides the most elementary parts
of the required vocabulary.

The next two chapters, Chapters 2 and 3, deal with a systematic development
of the set of real numbers and functions of a single real variable. The material in
these chapters, then, covers what often comprises a pair of courses in introductory
calculus. It does so, however, in a comprehensive and rigorous way. Also, unlike
in a typical introductory course in calculus, the emphasis is not as much on com-
puting things like derivatives and integrals as on understanding what derivatives
and integrals “really are,” and on proving some of their useful properties. The
computational aspects of the subject can all be gleaned from what is presented in
Chapters 2 and 3, but to be really proficient in these things requires learning from
a more standard introductory level course or textbook.

In Chapter 4 we present the background in algebra that we will subsequently
require. A background in algebra is one thing that is typically deficient for students
in engineering or the physical sciences. However, a decent background in algebra
is essential in these volumes, and we shall often encounter somewhat advanced
algebraic ideas outside the scope of topics that belong to algebra, proper. The
material in this chapter resembles, in some ways, material that might be covered
as part of an undergraduate curriculum in algebra. For example, the high-level
list of topics is what one might cover in an undergraduate programme. However,
there are substantial differences as well, and these resemble the differences between
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Chapters 2 and 3; the topics are covered in greater depth and generality, with an
emphasis on structure over specific examples and computation. This is a decided
drawback of our approach here, and a reader can anticipate needing to fill in some
facility with some more elementary ideas to claim proficiency with basic algebraic
topics.

The final topic in this volume is linear algebra. Unlike “mere algebra,” lin-
ear algebra is often a part of the background of students in engineering and the
physical sciences. We cover linear algebra in Chapter 5. Here the presentation
differs radically from what one typically covers in the linear algebra portion of any
undergraduate education. An undergraduate in engineering and physical sciences
will have seen linear algebra with an emphasis on matrices. An undergradu-
ate in mathematics will preferably have seen an abstract linear algebra course,
where the emphasis is on finite-dimensional vector spaces, and the structure of
homomorphisms of such spaces, with a particular emphasis on the structure of
endomorphisms. Our approach is infinite-dimensional from the start, and works
with general (commutative) rings as well as fields. There is also a coverage of
topics that simply do not appear in an undergraduate curriculum, such as mul-
tilinear algebra. That being said, we do also consider the usual players in linear
algebra, such as matrices (though with possibly infinitely many rows and columns)
and determinants. We also provide a comprehensive treatment of the structure of
endomorphisms of finite-dimensional vector spaces.

Andrew D. Lewis Kingston, ON, Canada
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Chapter 1

Set theory and terminology

The principle purpose of this chapter is to introduce the mathematical notation
and language that will be used in the remainder of these volumes. Much of this
notation is standard, or at least the notation we use is generally among a collection
of standard possibilities. In this respect, the chapter is a simple one. However, we
also wish to introduce the reader to some elementary, although somewhat abstract,
mathematics. The secondary objective behind this has three components.
1. We aim to provide a somewhat rigorous foundation for what follows. This

means being fairly clear about defining the (usually) somewhat simple concepts
that arise in the chapter. Thus “intuitively clear” concepts like sets, subsets,
maps, etc., are given a fairly systematic and detailed discussion. It is at least
interesting to know that this can be done. And, if it is not of interest, it can be
sidestepped at a first reading.

2. This chapter contains some results, and many of these require very simple
proofs. We hope that these simple proofs might be useful to readers who are
new to the world where everything is proved. Proofs in other chapters in these
volumes may not be so useful for achieving this objective.

3. The material is standard mathematical material, and should be known by any-
one purporting to love mathematics.

Do I need to read this chapter? Readers who are familiar with standard mathe-
matical notation (e.g., who understand the symbols ∈, ⊆, ∪, ∩, ×, f : S → T, Z>0,
and Z) can simply skip this chapter in its entirety. Some ideas (e.g., relations, or-
ders, Zorn’s Lemma) may need to be referred to during the course of later chapters,
but this is easily done.

Readers not familiar with the above standard mathematical notation will have
some work to do. They should certainly read Sections 1.1, 1.2, and 1.3 closely
enough that they understand the language, notation, and main ideas. And they
should read enough of Section 1.4 that they know what objects, familiar to them
from their being human, the symbols Z>0 and Z refer to. The remainder of the
material can be overlooked until it is needed later. •
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Section 1.1

Sets

The basic ingredient in modern mathematics is the set. The idea of a set is
familiar to everyone at least in the form of “a collection of objects.” In this section,
we shall not really give a definition of a set that goes beyond that intuitive one.
Rather we shall accept this intuitive idea of a set, and move forward from there.
This way of dealing with sets is called naı̈ve set theory. There are some problems
with naı̈ve set theory, as described in Section 1.8.1, and these lead to a more formal
notion of a set as an object that satisfies certain axioms, those given in Section 1.8.2.
However, these matters will not concern us much at the moment.

Do I need to read this section? Readers familiar with basic set theoretic notation
can skip this section. Other readers should read it, since it contains language,
notation, and ideas that are absolutely commonplace in these volumes. •

1.1.1 Definitions and examples

First let us give our working definition of a set. A set is, for us, a well-defined
collection of objects. Thus one can speak of everyday things like “the set of red-
haired ladies who own yellow cars.” Or one can speak of mathematical things like
“the set of even prime numbers.” Sets are therefore defined by describing their
members or elements, i.e., those objects that are in the set. When we are feeling less
formal, we may refer to an element of a set as a point in that set. The set with no
members is the empty set, and is denoted by ∅. If S is a set with member x, then
we write x ∈ S. If an object x is not in a set S, then we write x < S.

1.1.1 Examples (Sets)
1. If S is the set of even prime numbers, then 2 ∈ S.
2. If S is the set of even prime numbers greater than 3, then S is the empty set.
3. If S is the set of red-haired ladies who own yellow cars and if x = Ghandi, then

x < S. •

If it is possible to write the members of a set, then they are usually written
between braces { }. For example, the set of prime numbers less that 10 is written
as {2, 3, 5, 7} and the set of physicists to have won a Fields Prize as of 2005 is
{Edward Witten}.

A set S is a subset of a set T if x ∈ S implies that x ∈ T. We shall write S ⊆ T,
or equivalently T ⊇ S, in this case. If x ∈ S, then the set {x} ⊆ S with one element,
namely x, is a singleton. Note that x and {x} are different things. For example, x ∈ S
and {x} ⊆ S. If S ⊆ T and if T ⊆ S, then the sets S and T are equal, and we write
S = T. If two sets are not equal, then we write S , T. If S ⊆ T and if S , T, then S



1.1 Sets 5

is a proper or strict subset of T, and we write S ⊂ T if we wish to emphasise this
fact.

1.1.2 Notation (Subsets and proper subsets) We adopt a particular convention for
denoting subsets and proper subsets. That is, we write S ⊆ T when S is a subset
of T, allowing for the possibility that S = T. When S ⊆ T and S , T we write
S ⊂ T. In this latter case, many authors will write S ⊊ T. We elect not to do this.
The convention we use is consistent with the convention one normally uses with
inequalities. That is, one normally writes x ≤ y and x < y. It is not usual to write
x ⪇ y in the latter case. •

Some of the following examples may not be perfectly obvious, so may require
sorting through the definitions.

1.1.3 Examples (Subsets)
1. For any set S, ∅ ⊆ S (see Exercise 1.1.1).
2. {1, 2} ⊆ {1, 2, 3}.
3. {1, 2} ⊂ {1, 2, 3}.
4. {1, 2} = {2, 1}.
5. {1, 2} = {2, 1, 2, 1, 1, 2}. •

A common means of defining a set is to define it as the subset of an existing
set that satisfies conditions. Let us be slightly precise about this. A one-variable
predicate is a statement which, in order that its truth be evaluated, needs a sin-
gle argument to be specified. For example, P(x) = “x is blue” needs the single
argument x in order that it be decided whether it is true or not. We then use the
notation

{x ∈ S | P(x)}

to denote the members x of S for which the predicate P is true when evaluated at
x. This is read as something like, “the set of x’s in S such that P(x) holds.”

For sets S and T, the relative complement of T in S is the set

S − T = {x ∈ S | x < T}.

Note that for this to make sense, we do not require that T be a subset of S. It is a
common occurrence when dealing with complements that one set be a subset of
another. We use different language and notation to deal with this. If S is a set and
if T ⊆ S, then S \ T denotes the absolute complement of T in S, and is defined by

S \ T = {x ∈ S | x < T}.

Note that, if we forget that T is a subset of S, then we have S \T = S−T. Thus S−T
is the more general notation. Of course, if A ⊆ T ⊆ S, one needs to be careful when
using the words “absolute complement of A,” since one must say whether one is
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taking the complement in T or the larger complement in S. For this reason, we
prefer the notation we use rather the commonly encountered notation AC or A′ to
refer to the absolute complement. Note that one should not talk about the absolute
complement to a set, without saying within which subset the complement is being
taken. To do so would imply the existence of “a set containing all sets,” an object
that leads one to certain paradoxes (see Section 1.8).

A useful set associated with every set S is its power set, by which we mean the
set

2S = {A | A ⊆ S}.

The reader can investigate the origins of the peculiar notation in Exercise 1.1.3.

1.1.2 Unions and intersections

In this section we indicate how to construct new sets from existing ones.
Given two sets S and T, the union of S and T is the set S ∪ T whose members

are members of S or T. The intersection of S and T is the set S∩ T whose members
are members of S and T. If two sets S and T have the property that S ∩ T = ∅, then
S and T are said to be disjoint. For sets S and T their symmetric complement is the
set

S△T = (S − T) ∪ (T − S).

Thus S△T is the set of objects in union S∪T that do not lie in the intersection S∩T.
The symmetric complement is so named because S△T = T△S. In Figure 1.1 we

S T S T

S T S T S T

Figure 1.1 S ∪ T (top left), S ∩ T (top right), S − T (bottom left),
S△T (bottom middle), and T − S (bottom right)

give Venn diagrams describing union, intersection, and symmetric complement.
The following result gives some simple properties of pairwise unions and in-

tersections of sets. We leave the straightforward verification of some or all of these
to the reader as Exercise 1.1.5.
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1.1.4 Proposition (Properties of unions and intersections) For sets S and T, the follow-
ing statements hold:

(i) S ∪ ∅ = S;
(ii) S ∩ ∅ = ∅;
(iii) S ∪ S = S;
(iv) S ∩ S = S;
(v) S ∪ T = T ∪ S (commutativity);
(vi) S ∩ T = T ∩ S (commutativity);
(vii) S ⊆ S ∪ T;
(viii) S ∩ T ⊆ S;
(ix) S ∪ (T ∪U) = (S ∪ T) ∪U (associativity);
(x) S ∩ (T ∩U) = (S ∩ T) ∩U (associativity);
(xi) S ∩ (T ∪U) = (S ∩ T) ∪ (S ∩U) (distributivity);
(xii) S ∪ (T ∩U) = (S ∪ T) ∩ (S ∪U) (distributivity).

We may more generally consider not just two sets, but an arbitrary collection
S of sets. In this case we posit the existence of a set, called the union of the sets
S , with the property that it contains each element of each set S ∈ S . Moreover,
one can specify the subset of this big set to only contain members of sets from S .
This set we will denote by ∪S∈S S. We can also perform a similar construction with
intersections of an arbitrary collectionS of sets. Thus we denote by ∩S∈S S the set,
called the intersection of the setsS , having the property that x ∈ ∩S∈S S if x ∈ S for
every S ∈ S . Note that we do not need to posit the existence of the intersection.

Let us give some properties of general unions and intersections as they relate
to complements.

1.1.5 Proposition (De Morgan’s1 Laws) Let T be a set and let S be a collection of subsets
of T. Then the following statements hold:

(i) T \ (∪S∈S S) = ∩S∈S (T \ S);
(ii) T \ (∩S∈S S) = ∪S∈S (T \ S).

Proof (i) Let x ∈ T \ (∪S∈S ). Then, for each S ∈ S , x < S, or x ∈ T \ S. Thus
x ∈ ∩S∈S (T \ S). Therefore, T \ (∪S∈S ) ⊇ ∩S∈S (T \ S). Conversely, if x ∈ ∩S∈S (T \ S),
then, for each S ∈ S , x < S. Therefore, x < ∪S∈S . Therefore, x ∈ T \ (∪S∈S ), thus
showing that ∩S∈S (T \ S) ⊆ T \ (∪S∈S ). It follows that T \ (∪S∈S ) = ∩S∈S (T \ S).

(ii) This follows in much the same manner as part (i), and we leave the details to
the reader. ■

1Augustus De Morgan (1806–1871) was a British mathematician whose principal mathematical
contributions were to analysis and algebra.
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1.1.6 Remark (Showing two sets are equal) Note that in proving part (i) of the preced-
ing result, we proved two things. First we showed that T \ (∪S∈S ) ⊆ ∩S∈S (T \ S)
and then we showed that ∩S∈S (T \ S) ⊆ T \ (∪S∈S ). This is the standard means of
showing that two sets are equal; first show that one is a subset of the other, and
then show that the other is a subset of the one. •

For general unions and intersections, we also have the following generalisation
of the distributive laws for unions and intersections. We leave the straightforward
proof to the reader (Exercise 1.1.6)

1.1.7 Proposition (Distributivity laws for general unions and intersections) Let T be
a set and let S be a collection of sets. Then the following statements hold:

(i) T ∩ (∪S∈S S) = ∪S∈S(T ∩ S);
(ii) T ∪ (∩S∈S S) = ∩S∈S(T ∪ S).

There is an alternative notion of the union of sets, one that retains the notion
of membership in the original set. The issue that arises is this. If S = {1, 2} and
T = {2, 3}, then S ∪ T = {1, 2, 3}. Note that we lose with the usual union the fact
that 1 is an element of S only, but that 2 is an element of both S and T. Sometimes
it is useful to retain these sorts of distinctions, and for this we have the following
definition.

1.1.8 Definition (Disjoint union) For sets S and T, their disjoint union is the set

S
◦

∪T = {(S, x) | x ∈ S} ∪ {(T, y) | y ∈ T}. •

Let us see how the disjoint union differs from the usual union.

1.1.9 Example (Disjoint union) Let us again take the simple example S = {1, 2} and
T = {2, 3}. Then S ∪ T = {1, 2, 3} and

S
◦

∪T = {(S, 1), (S, 2), (T, 2), (T, 3)}.

We see that the idea behind writing an element in the disjoint union as an ordered
pair is that the first entry in the ordered pair simply keeps track of the set from
which the element in the disjoint union was taken. In this way, if S∩T , ∅, we are
guaranteed that there will be no “collapsing” when the disjoint union is formed. •

1.1.3 Finite Cartesian products

As we have seen, if S is a set and if x1, x2 ∈ S, then {x1, x2} = {x2, x1}. There are
times, however, when we wish to keep track of the order of elements in a set. To
accomplish this and other objectives, we introduce the notion of an ordered pair.
First, however, in order to make sure that we understand the distinction between
ordered and unordered pairs, we make the following definition.
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1.1.10 Definition (Unordered pair) If S is a set, an unordered pair from S is any subset of
S with two elements. The collection of unordered pairs from S is denoted by S(2). •

Obviously one can talk about unordered collections of more than two elements
of a set, and the collection of subsets of a set S comprised of k elements is denoted
by S(k) and called the set of unordered k-tuples.

With the simple idea of an unordered pair, the notion of an ordered pair is more
distinct.

1.1.11 Definition (Ordered pair and Cartesian product) Let S and T be sets, and let x ∈ S
and y ∈ T. The ordered pair of x and y is the set (x, y) = {{x}, {x, y}}. The Cartesian
product of S and T is the set

S × T = {(x, y) | x ∈ S, y ∈ T}. •

The definition of the ordered pair seems odd at first. However, it is as it is to
secure the objective that if two ordered pairs (x1, y1) and (x2, y2) are equal, then
x1 = x2 and y1 = y2. The reader can check in Exercise 1.1.8 that this objective is in
fact achieved by the definition. It is also worth noting that the form of the ordered
pair as given in the definition is seldom used after its initial introduction.

Clearly one can define the Cartesian product of any finite number of sets
S1, . . . ,Sk inductively. Thus, for example, S1 × S2 × S3 = (S1 × S2) × S3. Note
that, according to the notation in the definition, an element of S1 × S2 × S3 should
be written as ((x1, x2), x3). However, it is immaterial that we define S1 × S2 × S3

as we did, or as S1 × S2 × S3 = S1 × (S2 × S3). Thus we simply write elements in
S1 × S2 × S3 as (x1, x2, x3), and similarly for a Cartesian product S1 × · · · × Sk. The
Cartesian product of a set with itself k-times is denoted by Sk. That is,

Sk = S × · · · × S︸      ︷︷      ︸
k-times

.

In Section 1.6.2 we shall indicate how to define Cartesian products of more than
finite collections of sets.

Let us give some simple examples.

1.1.12 Examples (Cartesian products)
1. If S is a set then note that S × ∅ = ∅. This is because there are no ordered pairs

from S and ∅. It is just as clear that ∅ × S = ∅. It is also clear that, if S × T = ∅,
then either S = ∅ or T = ∅.

2. If S = {1, 2} and T = {2, 3}, then

S × T = {(1, 2), (1, 3), (2, 2), (2, 3)}. •

Cartesian products have the following properties.
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1.1.13 Proposition (Properties of Cartesian product) For sets S, T, U, and V, the following
statements hold:

(i) (S ∪ T) ×U = (S ×U) ∪ (T ×U);
(ii) (S ∩U) × (T ∩ V) = (S × T) ∩ (U × V);
(iii) (S − T) ×U = (S ×U) − (T ×U).

Proof Let us prove only the first identity, leaving the remaining two to the reader. Let
(x,u) ∈ (S∪T)×U. Then x ∈ S∪T and u ∈ U. Therefore, x is an element of at least one
of S and T. Without loss of generality, suppose that x ∈ S. Then (x,u) ∈ S × U and so
(x,u) ∈ (S×U)∪ (T×U). Therefore, (S∪T)×U = (S×U)∪ (T×U). Conversely, suppose
that (x,u) ∈ (S×U)∪(T×U). Without loss of generality, suppose that (x,u) ∈ S×U. Then
x ∈ S ⊆ S∪T and u ∈ U. Therefore, (x,u) ∈ (S∪T)×U. Thus (S×U)∪(T×U) ⊆ (S∪T)×U,
giving the result. ■

1.1.14 Remark (“Without loss of generality”) In the preceding proof, we twice em-
ployed the expression “without loss of generality.” This is a commonly encoun-
tered expression, and is frequently used in one of the following two contexts. The
first, as above, indicates that one is making an arbitrary selection, but that were
another arbitrary selection to have been made, the same argument holds. This
is a more or less straightforward use of “without loss of generality.” A more so-
phisticated use of the expression might indicate that one is making a simplifying
assumption, and that this is okay, because it can be shown that the general case
follows easily from the simpler one. The trick is to then understand how the general
case follows from the simpler one, and this can sometimes be nontrivial, depending
on the willingness of the writer to describe this process. •

Exercises

1.1.1 Prove that the empty set is a subset of every set.
Hint: Assume the converse and arrive at an absurdity.

1.1.2 Let S be a set, let A,B,C ⊆ S, and let A ,B ⊆ 2S.
(a) Show that A△∅ = A.
(b) Show that (S \ A)△(S \ B) = A△B.
(c) Show that A△C ⊆ (A△B) ∪ (B△C).
(d) Show that

(∪A∈AA)△ (∪B∈BB) ⊆ ∪(A,B)∈A ×B (A△B),
(∩A∈AA)△ (∩B∈BB) ⊆ ∩(A,B)∈A ×B (A△B),
∩(A,B)∈A ×B (A△B) ⊆ (∩A∈AA)△ (∪B∈BB) .

1.1.3 If S is a set with n members, show that 2S is a set with 2n members.
1.1.4 Let S be a set with m elements. Show that the number of subsets of S having

k distinct elements is ( m
k ) = m!

k!(m−k)! .
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1.1.5 Prove as many parts of Proposition 1.1.4 as you wish.
1.1.6 Prove Proposition 1.1.7.
1.1.7 Let S be a set with n members and let T be a set with m members. Show that

S
◦

∪T is a set with nm members.
1.1.8 Let S and T be sets, let x1, x2 ∈ S, and let y1, y2 ∈ T. Show that (x1, y1) = (x2, y2)

if and only if x1 = x2 and y1 = y2.
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Section 1.2

Relations

Relations are a fundamental ingredient in the description of many mathematical
ideas. One of the most valuable features of relations is that they allow many useful
constructions to be explicitly made only using elementary ideas from set theory.

Do I need to read this section? The ideas in this section will appear in many
places in the series, so this material should be regarded as basic. However, readers
looking to proceed with minimal background can skip the section, referring back
to it when needed. •

1.2.1 Definitions

We shall describe in this section “binary relations,” or relations between ele-
ments of two sets. It is possible to define more general sorts of relations where
more sets are involved. However, these will not come up for us.

1.2.1 Definition (Relation) A binary relation from S to T (or simply a relation from S
to T) is a subset of S × T. If R ⊆ S × T and if (x, y) ∈ R, then we shall write x R y,
meaning that x and y are related by R. A relation from S to S is a relation in S. •

The definition is simple. Let us give some examples to give it a little texture.

1.2.2 Examples (Relations)
1. Let S be the set of husbands and let T be the set of wives. Define a relation R

from S to T by asking that (x, y) ∈ R if x is married to y. Thus, to say that x and
y are related in this case means to say that x is married to y.

2. Let S be a set and consider the relation R in the power set 2S of S given by

R = {(A,B) | A ⊆ B}.

Thus A is related to B if A is a subset of B.
3. Let S be a set and define a relation R in S by

R = {(x, x) | x ∈ S}.

Thus, under this relation, two members in S are related if and only if they are
equal.

4. Let S be the set of integers, let k be a positive integer, and define a relation Rk in
S by

Rk = {(n1,n2) | n1 − n2 = k}.

Thus, if n ∈ S, then all integers of the form n+mk for an integer m are related to
n. •
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1.2.3 Remark (“If” versus “if and only if”) In part 3 of the preceding example we used
the expression “if and only if” for the first time. It is, therefore, worth saying a few
words about this commonly used terminology. One says that statement A holds
“if and only if” statement B holds to mean that statements A and B are exactly
equivalent. Typically, this language arises in theorem statements. In proving such
theorems, it is important to note that one must prove both that statement A implies
statement B and that statement B implies statement A.

To confuse matters, when stating a definition, the convention is to use “if” rather
than “if and only if”. It is not uncommon to see “if and only if” used in definitions,
the thinking being that a definition makes the thing being defined as equivalent to
what it is defined to be. However, there is a logical flaw here. Indeed, suppose
one is defining “X” to mean that “Proposition A applies”. If one writes “X if and
only if Proposition A applies” then this makes no sense. Indeed the “only if” part
of this statement says that the statement “Proposition A applies” if “X” holds. But
“X” is undefined except by saying that it holds when “Proposition A applies”. •

In the next section we will encounter the notion of the inverse of a function; this
idea is perhaps known to the reader. However, the notion of inverse also applies
to the more general setting of relations.

1.2.4 Definition (Inverse of a relation) If R ⊆ S × T is a relation from S to T, then the
inverse of R is the relation R−1 from T to S defined by

R−1 = {(y, x) ∈ T × S | (x, y) ∈ R}. •

There are a variety of properties that can be bestowed upon relations to en-
sure they have certain useful attributes. The following is a partial list of such
properties.

1.2.5 Definition (Properties of relations) Let S be a set and let R be a relation in S. The
relation R is:

(i) reflexive if (x, x) ∈ R for each x ∈ S;
(ii) irreflexive if (x, x) < R for each x ∈ S;
(iii) symmetric if (x1, x2) ∈ R implies that (x2, x1) ∈ R;
(iv) antisymmetric if (x1, x2) ∈ R and (x2, x1) ∈ R implies that x1 = x2;
(v) transitive if (x1, x2) ∈ R and (x2, x3) ∈ R implies that (x1, x3) ∈ R. •

1.2.6 Examples (Example 1.2.2 cont’d)
1. The relation of inclusion in the power set 2S of a set S is reflexive, antisymmetric,

and transitive.
2. The relation of equality in a set S is reflexive, symmetric, antisymmetric, and

transitive.
3. The relation Rk in the set S of integers is reflexive, symmetric, and transitive. •
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1.2.2 Equivalence relations

In this section we turn our attention to an important class of relations, and we
indicate why these are important by giving them a characterisation in terms of a
decomposition of a set.

1.2.7 Definition (Equivalence relation, equivalence class) An equivalence relation in
a set S is a relation R that is reflexive, symmetric, and transitive. For x ∈ S, the
set of elements of S related to x is denoted by [x], and is the equivalence class of x
with respect to R. An element x′ in an equivalence class [x] is a representative of
that equivalence class. The set of equivalence classes is denoted by S/R (typically
pronounced as S modulo R). •

It is common to denote that two elements x1, x2 ∈ S are related by an equivalence
relation by writing x1 ∼ x2. Of the relations defined in Example 1.2.2, we see that
those in parts 3 and 4 are equivalence relations, but that in part 2 is not.

Let us now characterise equivalence relations in a more descriptive manner. We
begin by defining a (perhaps seemingly unrelated) notion concerning subsets of a
set.

1.2.8 Definition (Partition of a set) A partition of a set S is a collection A of subsets of
S having the properties that

(i) two distinct subsets in A are disjoint and
(ii) S = ∪A∈AA. •

We now prove that there is an exact correspondence between equivalence classes
associated to an equivalence relation.

1.2.9 Proposition (Equivalence relations and partitions) Let S be a set and let R be an
equivalence relation in S. Then the set of equivalence classes with respect to R is a partition
of S.

Conversely, if A is a partition of S, then the relation

{(x1, x2) | x1, x2 ∈ A for some A ∈ A }

is an equivalence relation in S.
Proof We first claim that two distinct equivalence classes are disjoint. Thus we let
x1, x2 ∈ S and suppose that [x1] , [x2]. Suppose that x ∈ [x1] ∩ [x2]. Then x ∼ x1
and x ∼ x2, or, by transitivity of R, x1 ∼ x and x ∼ x2. By transitivity of R, x1 ∼ x2,
contradicting the fact that [x1] , [x2]. To show that S is the union of its equivalence
classes, merely note that, for each x ∈ S, x ∈ [x] by reflexivity of R.

Now let A be a partition and defined R as in the statement of the proposition.
Let x ∈ S and let A be the element of A that contains x. Then clearly we see that
(x, x) ∈ R since x ∈ A. Thus R is reflexive. Next let (x1, x2) ∈ R and let A be the element
of A such that x1, x2 ∈ A. Clearly then, (x2, x1) ∈ R, so R is symmetric. Finally, let
(x1, x2), (x2, x3 ∈ R. Then there are elements A12,A23 ∈ A such that x1, x2 ∈ A12 and
such that x2, x3 ∈ A23. Since A12 and A23 have the point x2 in common, we must have
A12 = A23. Thus (x1, x3 ∈ A12 = A23, giving transitivity of R. ■
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Exercises

1.2.1 In a set S define a relation R = {(x, y) ∈ S × S | x = y}.
(a) Show that R is an equivalence relation.
(b) Show that S/R = S.



16 1 Set theory and terminology

Section 1.3

Maps

Another basic concept in all of mathematics is that of a map between sets.
Indeed, many of the interesting objects in mathematics are maps of some sort. In
this section we review the notation associated with maps, and give some simple
properties of maps.

Do I need to read this section? The material in this section is basic, and will be
used constantly throughout the series. Unless you are familiar already with maps
and the notation associated to them, this section is essential reading. •

1.3.1 Definitions and notation

We begin with the definition.

1.3.1 Definition (Map) For sets S and T, a map from S to T is a relation R from S to
T having the property that, for each x ∈ S, there exists a unique y ∈ T such that
(x, y) ∈ R. The set S is the domain of the map and the set T is the codomain of the
map. The set of maps from S to T is denoted by TS.2 •

By definition, a map is a relation. This is not how one most commonly thinks
about a map, although the definition serves to render the concept of a map in terms
of concepts we already know. Suppose one has a map from S to T defined by a
relation R. Then, given x ∈ S, there is a single y ∈ T such that x and y are related.
Denote this element of T by f (x), since it is defined by x. When one refers to a
map, one more typically refers to the assignment of the element f (x) ∈ T to x ∈ S.
Thus one refers to the map as f , leaving aside the baggage of the relation as in the
definition. Indeed, this is how we from now on will think of maps. The definition
above does, however, have some use, although we alter our language, since we are
now thinking of a map as an “assignment.” We call the set

graph( f ) = {(x, f (x)) | x ∈ S} ⊆ S × T

(which we originally called the map in Definition 1.3.1) the graph of the map
f : S→ T.

If one wishes to indicate a map f with domain S and codomain T, one typically
writes f : S→ T to compactly express this. If one wishes to define a map by saying
what it does, the notation

f : S→ T
x 7→ what x gets mapped to

2The idea behind this notation is the following. A map from S to T assigns to each point in S
a point in T. If S and T are finite sets with k and l elements, respectively, then there are l possible
values that can be assigned to each of the k elements of S. Thus the set of maps has lk elements.
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is sometimes helpful. Sometimes we shall write this in the text as f : x 7→
“what x gets mapped to”. Note the distinct uses of the symbols “→” and “7→”.

1.3.2 Notation (f versus f(x)) Note that a map is denoted by “ f ”. It is quite common to
see the expression “consider the map f (x)”. Taken literally, these words are difficult
to comprehend. First of all, x is unspecified. Second of all, even if x were specified,
f (x) is an element of T, not a map. Thus it is considered bad form mathematically
to use an expression like “consider the map f (x)”. However, there are times when
it is quite convenient to use this poor notation, with an understanding that some
compromises are being made. For instance, in this volume, we will be frequently
dealing simultaneously with functions of both time (typically denoted by t) and
frequency (typically denoted by ν). Thus it would be convenient to write “consider
the map f (t)” when we wish to write a map that we are considering as a function
of time, and similarly for frequency. Nonetheless, we shall refrain from doing this,
and shall consistently use the mathematically precise language “consider the map
f ”. •

The following is a collection of examples of maps. Some of these examples
are not just illustrative, but also define concepts and notation that we will use
throughout the series.

1.3.3 Examples (Maps)
1. There are no maps having∅ as a domain or codomain since there are no elements

in the empty set.
2. If S is a set and if T ⊆ S, then the map iT : T → S defined by iT(x) = x is called

the inclusion of T in S.
3. The inclusion map iS : S → S of a set S into itself (since S ⊆ S) is the identity

map, and we denote it by idS.
4. If f : S → T is a map and if A ⊆ S, then the map from A to T which assigns to

x ∈ A the value f (x) ∈ T is called the restriction of f to A, and is denoted by
f |A : A→ T.

5. If S is a set with A ⊆ S, then the map χA from S to the integers defined by

χA(x) =

1, x ∈ A,
0, x < A,

is the characteristic function of A.
6. If S1, . . . ,Sk are sets, if S1 × · · · × Sk is the Cartesian product, and if j ∈ {1, . . . , k},

then the map
pr j : S1 × · · · × S j × · · · × Sk → S j

(x1, . . . , x j, . . . , xk) 7→ x j

is the projection onto the jth factor.
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7. If R is an equivalence relation in a set S, then the map πR : S→ S/R defined by
πR(x) = [x] is called the canonical projection associated to R.

8. If S, T, and U are sets and if f : S→ T and g : T → U are maps, then we define
a map g ◦ f : S→ U by g ◦ f (x) = g( f (x)). This is the composition of f and g.

9. If S and T1, . . . ,Tk are sets then a map f : S→ T1 × · · · × Tk can be written as

f (x) = ( f1(x), . . . , fk(x))

for maps f j : S→ T j, j ∈ {1, . . . , k}. In this case we will write f = f1 × · · · × fk. •

Next we introduce the notions of images and preimages of points and sets.

1.3.4 Definition (Image and preimage) Let S and T be sets and let f : S→ T be a map.
(i) If A ⊆ S, then f (A) = { f (x) | x ∈ A}.
(ii) The image of f is the set image( f ) = f (S) ⊆ T.
(iii) If B ⊆ T, then f −1(B) = {x ∈ S | f (x) ∈ B} is the preimage of B under f . If

B = {y} for some y ∈ T, then we shall often write f −1(y) rather that f −1({y}). •

Note that one can think of f as being a map from 2S to 2T and of f −1 as being a
map from 2T to 2S. Here are some elementary properties of f and f −1 thought of in
this way.

1.3.5 Proposition (Properties of images and preimages) Let S and T be sets, let f : S→ T
be a map, let A ⊆ S and B ⊆ T, and let A and B be collections of subsets of S and T,
respectively. Then the following statements hold:

(i) A ⊆ f−1(f(A));
(ii) f(f−1(B)) ⊆ B;
(iii) ∪A∈A f(A) = f(∪A∈AA);
(iv) ∪B∈B f−1(B) = f−1(∪B∈BB);
(v) ∩A∈A f(A) = f(∩A∈AA);
(vi) ∩B∈B f−1(B) = f−1(∩B∈BB).

Proof We shall prove only some of these, leaving the remainder for the reader to
complete.

(i) Let x ∈ A. Then x ∈ f−1( f (x)) since f (x) = f (x).
(iii) Let y ∈ ∪A∈A f (A). Then y = f (x) for some x ∈ ∪A∈A A. Thus y ∈ f (∪A∈A A).

Conversely, let y ∈ f (∪A∈A A). Then, again, y = f (x) for some x ∈ ∪A∈A A, and so
y ∈ ∪A∈A f (A).

(vi) Let x ∈ ∩B∈B f−1(B). Then, for each B ∈ B , x ∈ f−1(B). Thus f (x) ∈ B for all
B ∈ B and so f (x) ∈ ∩B∈BB. Thus x ∈ f−1(∩B∈BB). Conversely, if x ∈ f−1(∩B∈BB),
then f (x) ∈ B for each B ∈B . Thus x ∈ f−1(B) for each B ∈B , or x ∈ ∩B∈B f−1(B). ■

1.3.2 Properties of maps

Certain basic features of maps will be of great interest.
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1.3.6 Definition (Injection, surjection, bijection) Let S and T be sets. A map f : S→ T
is:

(i) injective, or an injection, if f (x) = f (y) implies that x = y;
(ii) surjective, or a surjection, if f (S) = T;
(iii) bijective, or a bijection, if it is both injective and surjective. •

1.3.7 Remarks (One-to-one, onto, 1–1 correspondence)
1. It is not uncommon for an injective map to be said to be 1–1 or one-to-one, and

that a surjective map be said to be onto. In this series, we shall exclusively use
the terms injective and surjective, however. These words appear to have been
given prominence by their adoption by Bourbaki (see footnote on page iv).

2. If there exists a bijection f : S→ T between sets S and T, it is common to say that
there is a 1–1 correspondence between S and T. This can be confusing if one is
familiar with the expression “1–1” as referring to an injective map. The words
“1–1 correspondence” mean that there is a bijection, not an injection. In case S
and T are in 1–1 correspondence, we shall also say that S and T are equivalent. •

Closely related to the above concepts, although not immediately obviously so,
are the following notions of inverse.

1.3.8 Definition (Left-inverse, right-inverse, inverse) Let S and T be sets, and let
f : S→ T be a map. A map g : T→ S is:

(i) a left-inverse of f if g ◦ f = idS;
(ii) a right-inverse of f if f ◦ g = idT;
(iii) an inverse of f if it is both a left- and a right-inverse. •

In Definition 1.2.4 we gave the notion of the inverse of a relation. Functions,
being relations, also possess inverses in the sense of relations. We ask the reader to
explore the relationships between the two concepts of inverse in Exercise 1.3.7.

The following result relates these various notions of inverse to the properties of
injective, surjective, and bijective.

1.3.9 Proposition (Characterisation of various inverses) Let S and T be sets and let
f : S→ T be a map. Then the following statements hold:

(i) f is injective if and only if it possesses a left-inverse;
(ii) f is surjective if and only if it possess a right-inverse;
(iii) f is bijective if and only if it possesses an inverse;
(iv) there is at most one inverse for f;
(v) if f possesses a left-inverse and a right-inverse, then these necessarily agree.

Proof (i) Suppose that f is injective. For y ∈ image( f ), define g(y) = x where f−1(y) =
{x}, this being well-defined since f is injective. For y < image( f ), define g(y) = x0 for
some x0 ∈ S. The map g so defined is readily verified to satisfy g ◦ f = idS, and so is
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a left-inverse. Conversely, suppose that f possesses a left-inverse g, and let x1, x2 ∈ S
satisfy f (x1) = f (x2). Then g ◦ f (x1) = g ◦ f (x2), or x1 = x2. Thus f is injective.

(ii) Suppose that f is surjective. For y ∈ T let x ∈ f−1(y) and define g(y) = x.3 With
g so defined it is easy to see that f ◦ g = idT, so that g is a right-inverse. Conversely,
suppose that f possesses a right-inverse g. Now let y ∈ T and take x = g(y). Then
f (x) = f ◦ g(y) = y, so that f is surjective.

(iii) Since f is bijective, it possesses a left-inverse gL and a right-inverse gR. We
claim that these are equal, and each is actually an inverse of f . We have

gL = gL ◦ idT = gL ◦ f ◦ gR = idS ◦gR = gR,

showing equality of gL and gR. Thus each is a left- and a right-inverse, and therefore
an inverse for f .

(iv) Let g1 and g2 be inverses for f . Then, just as in part (iii),

g1 = g1 ◦ idT = g1 ◦ f ◦ g2 = idS ◦g2 = g2.

(v) This follows from the proof of part (iv), noting that there we only used the facts
that g1 is a left-inverse and that g2 is a right-inverse. ■

In Figure 1.2 we depict maps that have various of the properties of injectivity,

Figure 1.2 A depiction of maps that are injective but not sur-
jective (top left), surjective but not injective (top right), and
bijective (bottom)

surjectivity, or bijectivity. From these cartoons, the reader may develop some

3Note that the ability to choose an x from each set f−1(y) requires the Axiom of Choice (see
Section 1.8.3).
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intuition for Proposition 1.3.9. In the case that f : S → T is a bijection, we denote
its unique inverse by f −1 : T → S. The confluence of the notation f −1 introduced
when discussing preimages is not a problem, in practice.

It is worth mentioning at this point that the characterisation of left- and right-
inverses in Proposition 1.3.9 is not usually very helpful. Normally, in a given set-
ting, one will want these inverses to have certain properties. For vector spaces, for
example, one may want left- or right-inverses to be linear (see Proposition 5.4.46),
and for topological spaces, for another example, one may want a left- or right-
inverse to be continuous (see Chapter III-1).

1.3.3 Graphs and commutative diagrams

Often it is useful to be able to understand the relationship between a number of
maps by representing them together in a diagram. We shall be somewhat precise
about what we mean by a diagram by making it a special instance of a graph.

First the definitions for graphs.

1.3.10 Definition (Graph) A graph is a pair (V,E) where V is a set, an element of which
is called a vertex, and E is a subset of the set V(2) of unordered pairs from V, an
element of which is called an edge. If {v1, v2} ∈ E is an edge, then the vertices v1 and
v2 are the endvertices of this edge. •

In a graph, it is the way that vertices and edges are related that is of interest. To
capture this structure, the following language is useful.

1.3.11 Definition (Adjacent and incident) Let (V,E) be a graph. Two vertices v1, v2 ∈ V
are adjacent if {v1, v2} ∈ E and a vertex v ∈ V and an edge e ∈ E are incident if there
exists v′ ∈ V such that e = {v, v′}. •

One typically represents a graph by placing the vertices in some sort of array on
the page, and then drawing a line connecting two vertices if there is a corresponding
edge associated with the two vertices. Some examples make this process clear.

1.3.12 Examples (Graphs)
1. Consider the graph (V,E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}.

There are many ways one can lay out the vertices on the page, but for this
diagram, it is most convenient to arrange them in a square. Doing so gives rise
to the following representation of the graph:

1 2

3 4
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The vertices 1 and 2 are adjacent, but the vertices 1 and 4 are not. The vertex 1
and the edge {1, 2} are incident, but the vertex 1 and the edge {3, 4} are not.

2. For the graph (V,E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {2, 3}, {3, 4}}

we have the representation

1 2 3 4

Note that we allow the same edge to appear twice, and we allow for an edge to
connect a vertex to itself. We observe that the vertices 2 and 3 are adjacent, but
the vertices 1 and 3 are not. Also, the vertex 3 and the edge {2, 3} are incident,
but the vertex 4 and the edge {1, 2} are not. •

Often one wishes to attach “direction” to vertices. This is done with the follow-
ing notion.

1.3.13 Definition (Directed graph) A directed graph, or digraph, is a pair (V,E) where V
is a set an element of which is called a vertex and E is a subset of the set V × V of
ordered pairs from V an element of which is called an edge. If e = (v1, v2) ∈ E is an
edge, then v1 is the source for e and v2 is the target for e. •

Note that every directed graph is certainly also a graph, since one can assign
an unordered pair to every ordered pair of vertices.

The examples above of graphs are easily turned into directed graphs, and we
see that to represent a directed graph one needs only to put a “direction” on an
edge, typically via an arrow.

1.3.14 Examples (Directed graphs)
1. Consider the directed graph (V,E) with

V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)}.

A convenient representation of this directed graph is as follows:

1 //

��

2

��
3 // 4

2. For the directed graph (V,E) with

V = {1, 2, 3, 4}, E = {(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)}

we have the representation

199 // 2 // 3``
// 4 •

Of interest in graph theory is the notion of connecting two, perhaps nonadjacent,
vertices with a sequence of edges (the notion of a sequence is familiar, but will be
made precise in Section 1.6.3). This is made precise as follows.
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1.3.15 Definition (Path)
(i) If (V,E) is a graph, a path in the graph is a sequence (a j) j∈{1,...,k} in V ∪ E with

the following properties:

(a) a1, ak ∈ V;
(b) for j ∈ {1, . . . , k − 1}, if a j ∈ V (resp. a j ∈ E), then a j+1 ∈ E (resp. a j+1 ∈ V).

(ii) If (V,E) is a directed graph, a path in the graph is a sequence (a j) j∈{1,...,k} in V∪E
with the following properties:

(a) (a j) j∈{1,...,k} is a path in the graph associated to (V,E);
(b) for j ∈ {2, . . . , k − 1}, if a j ∈ E, then a j = (a j−1, a j+1).

(iii) If (a j) j∈{1,...,k} is a path, the length of the path is the number of edges in the path.
(iv) For a path (a j) j∈{1,...,k}, the source is the vertex a1 and the target is the vertex

ak. •

Let us give some examples of paths for graphs and for directed graphs.

1.3.16 Examples (Paths)
1. For the graph (V,E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}},

there are an infinite number of paths. Let us list a few:

(a) (1), (2), (3), and (4);
(b) (4, {3, 4}, 3, {1, 3}, 1);
(c) (1, {1, 2}, 2, {2, 4}, 4, {3, 4}, 3, {1, 3}, 1);
(d) (1, {1, 2}, 2, {1, 2}, 1, {1, 2}, 2, {1, 2}, 1).

Note that for this graph there are infinitely many paths.
2. For the directed graph (V,E) with

V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)},

there are a finite number of paths:

(a) (1), (2), (3), and (4);
(b) (1, (1, 2), 2);
(c) (1, (1, 2), 2, (2, 4), 4);
(d) (1, (1, 3), 3);
(e) (1, (1, 3), 3, (2, 4), 4);
(f) (2, (2, 4));
(g) (3, (3, 4), 4).
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3. For the graph (V,E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {2, 3}, {3, 4}}

some examples of paths are:

(a) (1), (2), (3), and (4);
(b) (1, {1, 2}, 2, {2, 3}, 3, {2, 3}, 2, {1, 2}, 1);
(c) (4, {3, 4}, 3).

There are an infinite number of paths for this graph.
4. For the directed graph (V,E) with

V = {1, 2, 3, 4}, E = {(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)}

some paths include:

(a) (1), (2), (3), and (4);
(b) (1, (1, 2), 2, (2, 3), 3, (3, 2), 2, (2, 3), 3, (3, 4), 4);
(c) (3, (3, 4), 4).

This directed graph has an infinite number of paths by virtue of the fact that
the path (2, (2, 3), 3, (3, 2), 2) can be repeated an infinite number of times. •

1.3.17 Notation (Notation for paths of nonzero length) For paths which contain at
least one edge, i.e., which have length at least 1, the vertices in the path are actually
redundant. For this reason we will often simply write a path as the sequence of
edges contained in the path, since the vertices can be obviously deduced. •

There is a great deal one can say about graphs, however, for our present pur-
poses of defining diagrams, the notions at hand are sufficient. In the definition we
employ Notation 1.3.17.

1.3.18 Definition (Diagram, commutative diagram) Let (V,E) be a directed graph.
(i) A diagram on (V,E) is a family (Sv)v∈V of sets associated with each vertex and

a family ( fe)e∈E of maps associated with each edge such that, if e = (v1, v2),
then fe has domain Sv1 and codomain Sv2 .

(ii) If P = (e j) j∈{1,...,k} is a path of nonzero length in a diagram on (V,E), the compo-
sition along P is the map fek

◦ · · · ◦ fe1 .
(iii) A diagram is commutative if, for every two vertices v1, v2 ∈ V and any two

paths P1 and P2 with source v1 and target v2, the composition along P1 is equal
to the composition along P2. •

The notion of a diagram, and in particular a commutative diagram is straight-
forward.
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1.3.19 Examples (Diagrams and commutative diagrams)
1. Let S1, S2, S3, and S4 be sets and consider maps f21 : S1 → S2, f31 : S1 → S3,

f42 : S2 → S4, and f43 : S3 → S4. Note that if we assign set S j to j for each
j ∈ {1, 2, 3, 4}, then this gives a diagram on (V,E) where

V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)}.

This diagram can be represented by

S1
f21 //

f31
��

S2

f42
��

S3 f43

// 4

The diagram is commutative if and only if f42 ◦ f21 = f43 ◦ f31.
2. Let S1, S2, S3, and S4 be sets and let f11 : S1 → S1, f21 : S1 → S2, f32 : S2 → S3,

f23 : S3 → S2, and f43 : S3 → S4 be maps. This data then represents a commutative
diagram on the directed graph (V,E) where

V = {1, 2, 3, 4}, E = {(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)}.

The diagram is represented as

S1f11 66
f21 // S2

f32 // S3

f23

dd
f43 // S4

While it is possible to write down conditions for this diagram to be commutative,
there will be infinitely many such conditions. In practice, one encounters
commutative diagrams with only finitely many paths with a given source and
target. This example, therefore, is not so interesting as a commutative diagram,
but is more interesting as a signal flow graph, which is interesting in feedback
control theory. •

Exercises

1.3.1 Let S, T, U, and V be sets, and let f : S → T, g : T → U, and h : U → V be
maps. Show that h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

1.3.2 Let S, T, and U be sets and let f : S → T and g : T → U be maps. Show that
(g ◦ f )−1(C) = f −1(g−1(C)) for every subset C ⊆ U.

1.3.3 Let S and T be sets, let f : S → T, and let B ⊆ T. Show that f −1(T \ B) =
S \ f −1(B).

1.3.4 If S, T, and U are sets and if f : S → T and g : T → U are bijections, then
show that (g ◦ f )−1 = f −1

◦ g−1.
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1.3.5 Let S, T and U be sets and let f : S→ T and g : T→ U be maps.
(a) Show that if f and g are injective, then so too is g ◦ f .
(b) Show that if f and g are surjective, then so too is g ◦ f .

1.3.6 Let S and T be sets, let f : S→ T be a map, and let A ⊆ S and B ⊆ T. Do the
following:
(a) show that if f is injective then A = f −1( f (A));
(b) show that if f is surjective then f ( f −1(B)) = B.

1.3.7 Let S and T be sets and let f : S→ T be a map.
(a) Show that if f is invertible as a map, then “the relation of its inverse is the

inverse of its relation.” (Part of the question is to precisely understand
the statement in quotes.)

(b) Show that the inverse of the relation defined by f is itself the relation
associated to a function if and only if f is invertible.

1.3.8 Show that equivalence of sets, as in Remark 1.3.7–2, is an “equivalence
relation”4 on collection of all sets.

4The quotes are present because the notion of equivalence relation, as we have defined it, applies
to sets. However, there is no set containing all sets; see Section 1.8.1.
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Section 1.4

Construction of the integers

It can be supposed that the reader has some idea of what the set of integers is.
In this section we actually give the set of integers a definition. As will be seen, this
is not overly difficult to do. Moreover, the construction has little bearing on what
we do. We merely present it so that the reader can be comfortable with the fact that
the integers, and so subsequently the rational numbers and the real numbers (see
Section 2.1), have a formal definition.

Do I need to read this section? Much of this section is not of importance in the
remainder of this series. The reader should certainly know what the sets Z>0 and
Z are. However, the details of their construction should be read only when the
inclination strikes. •

1.4.1 Construction of the natural numbers

The natural numbers are the numbers 1, 2, 3, and so on, i.e., the “counting
numbers.” As such, we are all quite familiar with them in that we can recognise,
in the absence of trickery, when we are presented with 4 of something. However,
what is 4? This is what we endeavour to define in this section.

The important concept in defining the natural numbers is the following.

1.4.1 Definition (Successor) Let S be a set. The successor of S is the set S+ = S ∪ {S}. •

Thus the successor is a set whose elements are the elements of S, plus an
additional element which is the set S itself. This seems, and indeed is, a simple
enough idea. However, it does make possible the following definition.

1.4.2 Definition (0, 1, 2, etc.)
(i) The number zero, denoted by 0, is the set ∅.
(ii) The number one, denoted by 1, is the set 0+.
(iii) The number two, denoted by 2, is the set 1+.
(iv) The number three, denoted by 3, is the set 2+.
(v) The number four, denoted by 4, is the set 3+.

This procedure can be inductively continued to define any finite nonnegative inte-
ger. •

The procedure above is well-defined, and so gives meaning to the symbol “k”
where k is any nonnegative finite number. Let us give the various explicit ways of
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writing the first few numbers:

0 = ∅,
1 = 0+ = {0} = {∅},

2 = 1+ = {0, 1} = {∅, {∅}},

3 = 2+ = {0, 1, 2} = {∅, {∅}, {∅, {∅}}},

4 = 3+ = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}.

This settles the matter of defining any desired number. We now need to indicate
how to talk about the set of numbers. This necessitates an assumption. As we shall
see in Section 1.8.2, this assumption is framed as an axiom in axiomatic set theory.

1.4.3 Assumption There exists a set containing ∅ and all subsequent successors. •

We are now almost done. The remaining problem is that the set guaranteed
by the assumption may contain more than what we want. However, this is easily
remedied as follows. Let S be the set whose existence is guaranteed by Assump-
tion 1.4.3. Define a collection A of subsets of S by

A = {A ⊆ S | ∅ ∈ A and n+ ∈ A if n ∈ A}.

Note that S ∈ A so thatA is nonempty. The following simple result is now useful.

1.4.4 Lemma With A as above, if B ⊆ A , then (∩B∈BB) ∈ A .
Proof For each B ∈B , ∅ ∈ B. Thus ∅ ∈ ∩B∈BB. Also let n ∈ ∩B∈BB. Since n+ ∈ B for
each B ∈B , n+ ∈ ∩B∈BB. Thus (∩B∈BB) ∈ A , as desired. ■

The lemma shows that ∩A∈AA ∈ A . Now we have the following definition of
the set of numbers.

1.4.5 Definition (Natural numbers) Let S and A be as defined above.
(i) The set ∩A∈AA is denoted by Z≥0, and is the set of nonnegative integers.
(ii) The set Z≥0 \ {0} is denoted by Z>0, and is the set of natural numbers. •

1.4.6 Remark (Convention concerning Z>0 and Z≥0) There are two standard conven-
tions concerning notation for nonnegative and positive integers. Neither agree
with our notation. The two more or less standard bits of notation are:
1. N is the set of natural numbers and something else, maybeZ≥0, denotes the set

of nonnegative integers;
2. N is the set of nonnegative integers (these are called the natural numbers in

this scheme) and something else, maybeN∗, denotes the set of natural numbers
(called the positive natural numbers in this scheme).

Neither of these schemes is optimal on its own, and since there is no standard here,
we opt for notation that is more logical. This will not cause the reader problems
we hope, and may lead some to adopt our entirely sensible notation. •
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Next we turn to the definition of the usual operations of arithmetic with the set
Z≥0. That is to say, we indicate how to “add” and “multiply.” First we consider
addition.

1.4.7 Definition (Addition in Z≥0) For k ∈ Z≥0, inductively define a map ak : Z≥0 → Z≥0,
called addition by k, by

(i) ak(0) = k;
(ii) ak( j+) = (ak( j))+, j ∈ Z>0.

We denote ak( j) = k + j. •

Upon a moments reflection, it is easy to convince yourself that this formal
definition of addition agrees with our established intuition. Roughly speaking,
one defines k + ( j + 1) = (k + j) + 1, where, by definition, the operation of adding
1 means taking the successor. With these definitions it is straightforward to verify
such commonplace assertions as “1 + 1 = 2.”

Now we define multiplication.

1.4.8 Definition (Multiplication inZ≥0) For k ∈ Z≥0, inductively define a map mk : Z≥0 →

Z≥0, called multiplication by k, by
(i) mk(0) = 0;
(ii) mk( j+) = mk( j) + k.

We denote mk( j) = k · j, or simply kj where no confusion can arise. •

Again, this definition of multiplication is in concert with our intuition. The
definition says that k · ( j + 1) = k · j + k. For k,m ∈ Z≥0, define km recursively by
k0 = 1, and km+ = km

· k. The element km
∈ Z≥0 is the mth power of k.

Let us verify that addition and multiplication inZ≥0 have the expected proper-
ties. In stating the properties, we use the usual order of operation rules one learns in
high school; in this case, operations are done with the following precedence: (1) op-
erations enclosed in parentheses, (2) multiplication, then (3) addition.

1.4.9 Proposition (Properties of arithmetic in Z≥0) Addition and multiplication in Z≥0

satisfy the following rules:
(i) k1 + k2 = k2 + k1, k1,k2 ∈ Z≥0 (commutativity of addition);
(ii) (k1 + k2) + k3 = k1 + (k2 + k3), k1,k2,k3 ∈ Z≥0 (associativity of addition);
(iii) k + 0 = k, k ∈ Z≥0 (additive identity);
(iv) k1 · k2 = k2 · k1, k1,k2 ∈ Z≥0 (commutativity of multiplication);
(v) (k1 · k2) · k3 = k1 · (k2 · k3), k1,k2,k3 ∈ Z≥0 (associativity of multiplication);
(vi) k · 1 = k, k ∈ Z≥0 (multiplicative identity);
(vii) j · (k1 + k2) = j · k1 + j · k2, j,k1,k2 ∈ Z≥0 (distributivity);
(viii) jk1 · jk2 = jk1+k2 , j,k1,k2 ∈ Z≥0;
(ix) if j1 + k = j2 + k then j1 = j2, j1, j2,k ∈ Z≥0 (cancellation law for addition);
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(x) if j1 · k = j2 · k then j1 = j2, j1, j2,k ∈ Z>0 (cancellation law for multiplication).
Proof We shall prove these in logical order, rather than the order in which they are
stated.

(ii) We prove this by induction on k3. For k3 = 0 we have (k1 + k2) + 0 = k1 + k2 and
k1 + (k2 + 0) = k1 + k2, giving the result in this case. Now suppose that (k1 + k2) + j =
k1 + (k2 + j) for j ∈ {0, 1, . . . , k3}. Then

(k1 + k2) + k+3 = ((k1 + k2) + k3)+ = (k1 + (k2 + k3))+ = k1 + (k2 + k3)+ = k1 + (k2 + k+3 ),

where we have used the definition of addition, the induction hypothesis, and then
twice used the definition of addition.

(i) We first claim that 0+ k = k for all k ∈ Z≥0. It is certainly true, by definition, that
0 + 0 = 0. Now suppose that 0 + j = j for j ∈ {0, 1, . . . , k}. Then

0 + k+ = 0 + (k + 1) = (0 + k) + 1 = k + 1 = k+.

We next claim that k+1 + k2 = (k1 + k2)+ for k1, k2 ∈ Z≥0. We prove this by induction on
k2. For k2 = 0 we have k+1 + 0 = k+1 and (k1 + 0)+ = k+1 , using the definition of addition.
This gives the claim for k2 = 0. Now suppose that k+1 + j = (k1 + j)+ for j ∈ {0, 1, . . . , k2}.
Then

k+1 + k+2 = k+1 + (k2 + 1) = (k+1 + k2) + 1 = (k+1 + k2)+,

as desired.
We now complete the proof of this part of the result by induction on k1. For k1 = 0

we have 0 + k2 = k2 = k2 + 0, using the first of our claims above and the definition of
addition. Now suppose that j + k2 = k2 + j for j ∈ {0, 1, . . . , k1}. Then

k+1 + k2 = (k1 + k2)+ = (k2 + k1)+ = k2 + k+1 ,

using the second or our claims above and the definition of addition.
(iii) This is part of the definition of addition.
(vii) We prove the this by induction on k2. First note that for k2 = 0 we have

j · (k1 + 0) = j · k1 and j · k1 + j · 0 = j · k1 + 0 = j · k1, so the result holds when k2 = 0.
Now suppose that j · (k1 + k) = j · k1 + j · k for k ∈ {0, 1, . . . , k2}. Then we have

j · (k1 + k+2 ) = j · (k1 + k2)+ = j · (k1 + k2) + j
= ( j · k1 + j · k2) + j = j · k1 + ( j · k2 + j)
= j · k1 + j · k+2 ,

as desired, where we have used, in sequence, the definition of addition, the defini-
tion of multiplication, the induction hypothesis, the associativity of addition, and the
definition of multiplication.

(iv) We first prove by induction on k that 0 · k = 0 for k ∈ Z≥0. For k = 0 the claim
holds by definition of multiplication. So suppose that 0 · j = 0 for j ∈ {0, 1, . . . , k} and
then compute 0 · k+ = 0 · k + 0 = 0, as desired.

We now prove the result by induction on k2. For k2 = 0 we have k1 · 0 = 0 by
definition of multiplication. We also have k2 · 0 = 0 by the first part of the proof. So
now suppose that k1 · j = j · k for j ∈ {0, 1, . . . , k2}. We then have

k1 · k+2 = k1 · k2 + k1 = k2 · k1 + k1 = k1 + k2 · k1 = (1 + k2) · k1 = k+2 · k1,
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where we have used, in sequence, the definition of multiplication, the induction hy-
pothesis, commutativity of addition, distributivity, commutativity of addition, and the
definition of addition.

(v) We prove this part of the result by induction on k3. For k3 = 0 we have
(k1 · k2) · 0 = 0 and k1 · (k2 · 0) = k1 · 0 = 0. Thus the result is true when k3 = 0. Now
suppose that (k1 · k2) · j = k1 · (k2 · j) for j ∈ {0, 1, . . . , k3}. Then

(k1 · k2) · k+3 = (k1 · k2) · k3 + k1 · k2 = k1 · (k2 · k3) + k1 · k2 = k1 · (k2 · k3 + k2) = k1 · (k2 · k+3 ),

where we have used, in sequence, the definition of multiplication, the induction hy-
pothesis, distributivity, and the definition of multiplication.

(vi) This follows from the definition of multiplication.
(viii) We prove the result by induction on k1. The result is obviously true for k2 = 0,

so suppose that jk1+l = jk1 · jl for l ∈ {1, . . . , k2}. Then

jk1+k+2 = j(k1+k2)+ = jk1+k2 · j = jk1 · jk2 · j = jk1 · jk
+
2 ,

as desired.
(ix) We prove the result by induction on k. Since

j1 + 0 = j1, j2 + 0 = j2,

the assertion holds for all j1, j2 ∈ Z≥0 and for k = 0. Now suppose the result holds for
all j1, j2 ∈ Z≥0 and for k ∈ {0, 1, . . . ,m}. Then

j1 + (m + 1) = ( j1 +m) + 1, j2 + (m + 1) = ( j2 +m) + 1

and so

( j1 +m) + 1 = ( j2 +m) + 1 =⇒ j1 +m = j2 +m =⇒ j1 = j2,

using the induction hypotheses. Thus the result holds for k = m + 1, completing our
proof by induction.

(x) We prove this result by induction on j1. First take j1 = 1 and assume that
1 · k = j2 · k for all j2, k ∈ Z>0. If j2 = 1 then we conclude that the assertion holds. If
j2 , 1, then j2 = j′2 + 1 for some j′2 ∈ Z>0 and so we have

1 · k = ( j′2 + 1) · k = j′2 · k + 1 · k,

giving j′2 · k = 0 using the cancellation rule for addition. But the definition of multi-
plication by j′2 implies that we must have k = 0, which is not the case since we are
assuming that k ∈ Z>0. Thus the assertion holds for j1 = 1 and for all j2, k ∈ Z>0. Now
assume that the assertion holds for j2 ∈ {1, . . . ,m} and assume that (m+ 1) · k = j2 · k for
all j2, k ∈ Z>0. We first assert that j2 , 1. Indeed, if j2 = 1 we have m · k = 0 using the
cancellation law for addition, and, as above, this cannot be since k ∈ Z>0. Therefore,
j2 = j′2 + 1 for some j′2 ∈ Z>0 and so

(m + 1) · k = ( j′2 + 1) · k =⇒ m · k = j′2 · k

by the cancellation law for addition. Thus, by the induction hypothesis, m = j′2 and so
j2 = m + 1, which gives this part of the lemma. ■
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1.4.2 Two relations on Z≥0

Another property of the naturals that we would all agree they ought to have is
an “order.” Thus we should have a means of saying when one natural number is
less than another. To get started at this, we have the following result.

1.4.10 Lemma For j,k ∈ Z≥0, exactly one of the following possibilities holds:
(i) j ⊂ k;
(ii) k ⊂ j;
(iii) j = k.

Proof For k ∈ Z≥0 define

S(k) = { j ∈ Z>0 | j ⊂ k, k ⊂ j, or j = k}.

We shall prove by induction that S(k) = Z≥0 for each k ∈ Z≥0.
First take the case of k = 0. Since ∅ is a subset of every set, 0 ∈ S(0). Now suppose

that j ∈ S(0) for j ∈ Z≥0. We have the following cases.
1. j ∈ 0: This is impossible since 0 is the empty set.
2. 0 ∈ j: In this case 0 ∈ j+.
3. 0 = j: In this case 0 ∈ j+.
Thus j ∈ S(0) implies that j+ ∈ S(0), and so S(0) = Z≥0.

Now suppose that S(m) = Z≥0 for m ∈ {0, 1, . . . , k}. We will show that S(k+) = Z≥0.
Clearly 0 ∈ S(k+). So suppose that j ∈ S(k+). We again have three cases.
1. j ∈ k+: We have the following two subcases.

(a) j = k: Here we have j+ = k+.
(b) j ∈ k: Since j+ ∈ S(k) by the induction hypothesis, we have the following three

cases.

(i) k ∈ j+: This is impossible since j ∈ k.
(ii) j+ ∈ k: Here j+ ∈ k+.
(iii) j+ = k: Here again, j+ ∈ n+.

2. k+ ∈ j: In this case k+ ∈ j+.
3. k+ = j: In this case k+ ∈ j+.
In all cases we conclude that j+ ∈ S(k+), and this completes the proof. ■

It is easy to show that j ∈ k if and only if j ⊆ k, and that, if j ∈ k but j , k, then
j ⊂ k (see Exercise 1.4.2). With this result, it is now comparatively easy to prove
the following.
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1.4.11 Proposition (Order5 on Z≥0) On Z≥0 define two relations < and ≤ by

j < k ⇐⇒ j ⊂ k,
j ≤ k ⇐⇒ j ⊆ k.

Then
(i) < and ≤ are transitive,
(ii) < is irreflexive;
(iii) ≤ is reflexive and antisymmetric.

Furthermore, for any j,k ∈ Z≥0, either j ≤ k or k ≤ j.

The following rewording of the final part of the result is distinguished.

1.4.12 Corollary (Trichotomy Law for Z≥0) For j,k ∈ Z≥0, exactly one of the following
possibilities holds:

(i) j < k;
(ii) k < j;
(iii) j = k.

Of course, the symbols “<” and “≤” have their usual meaning, which is “less
than” and “less than or equal to,” respectively. We shall explore such matters in
more depth and generality in Section 1.5.

We shall also sometimes write “ j > k” (resp. “ j ≥ k”) for “k < j” (resp. “k ≤ j”).
The symbols “>” and “≥” then have their usual meaning as “greater than” and
“greater than or equal to,” respectively.

The relations < and ≤ satisfy some natural properties with respect to addition
and multiplication inZ≥0. Let us record these, leaving their proof as Exercise 1.4.3.

1.4.13 Proposition (Relation between addition and multiplication and <) For j,k,m ∈
Z≥0, the following statements hold:

(i) if j < k then j +m < k +m;
(ii) if j < k and if m , 0 then m · j < m · k.

1.4.3 Construction of the integers from the natural numbers

Next we construct negative numbers to arrive at a definition of the integers.
The construction renders the integers as the set of equivalence classes under a
prescribed equivalence relation in Z≥0 ×Z≥0. The equivalence relation is defined
formally as follows:

( j1, k1) ∼ ( j2, k2) ⇐⇒ j1 + k2 = k1 + j2. (1.1)

It is a simple exercise to check that this is indeed an equivalence relation.
We now define the integers.

5We have not introduced the notion of order yet, but refer the reader to Section 1.5.
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1.4.14 Definition (Integers) The set of integers is the set Z = (Z≥0 ×Z≥0)/ ∼, where ∼ is
the equivalence relation in (1.1). •

Now let us try to understand this definition by understanding the equivalence
classes under the relation of (1.1). Key to this is the following result.

1.4.15 Lemma Let Z be the subset of Z≥0 ×Z≥0 defined by

Z = {(k, 0) | k ∈ Z>0} ∪ {(0,k) | k ∈ Z>0} ∪ {(0, 0)},

and define a map fZ : Z→ Z by fZ(j,k) = [(j,k)]. Then fZ is a bijection.
Proof First we show that fZ is injective. Suppose that fZ( j1, k1) = fZ( j2, k2). This means
that ( j1, k1) ∼ ( j2, k2), or that j1 + k2 = k1 + j2. If ( j1, k1) = (0, 0), then this means that
k2 = j2, which means that ( j2, k2) = (0, 0) since this is the only element of Z whose
entries agree. If j1 = 0 and k1 > 0, then we have k2 = k1 + j2. Since at least one of j2
and k2 must be zero, we then deduce that it must be that j2 is zero (or else the equality
k2 = k1 + j2) cannot hold. This then also gives k2 = k1. A similar argument holds if
j1 > 0 and k1 = 0. This shows injectivity of fZ.

Next we show that fZ is surjective. Let [( j, k)] ∈ Z. By the Trichotomy Law, we
have three cases.
1. j = k: We claim that [( j, j)] = fZ(0, 0). Indeed, we need only note that (0, 0) ∼ ( j, j)

since 0 + j = 0 + j.
2. j < k: Let m ∈ Z>0 be defined such that j + m = k. (Why can this be done?) We

then claim that fZ(0,m) = [( j, k)]. Indeed, since 0 + k = m + j, this is so.
3. k < j: Here we let m ∈ Z>0 satisfy k + m = j, and, as in the previous case, we can

easily check that fZ(m, 0) = [( j, k)]. ■

With this in mind, we introduce the following notation to denote an integer.

1.4.16 Notation (Notation for integers) Let [( j, k)] ∈ Z.
(i) If f −1

Z [( j, k)] = [(0, 0)] then we write [( j, k)] = 0.
(ii) If [( j, k)] = [(m, 0)], m > 0, then we write [( j, k)] = m. Such integers are positive.
(iii) If [( j, k)] = [(0,m)], m > 0, then we write [( j, k)] = −m. Such integers are

negative.
An integer is nonnegative if it is either positive or zero, and an integer is nonpositive
if it is either negative or zero. •

This then relates the equivalence class definition of integers to the notion we are
more familiar with: positive and negative numbers. We can also define the familiar
operations of addition and multiplication of integers.

1.4.17 Definition (Addition and multiplication in Z) Define the operations of addition
and multiplication in Z by

(i) [( j1, k1)] + [( j2, k2)] = [( j1 + j2, k1 + k2)] and
(ii) [( j1, k1)] · [( j2, k2)] = [( j1 · j2 + k1 · k2, j1 · k2 + k1 · j2)],
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respectively, for [( j1, k1)], [( j2, k2)] ∈ Z. As with multiplication in Z≥0, we shall
sometimes omit the “·”. •

These definitions do not a priori make sense; this needs to be verified.

1.4.18 Lemma The definitions for addition and multiplication in Z a well-defined in that they
do not depend on the choice of representative.

Proof Let ( j1, k1) ∼ ( j̃1, k̃1) and ( j2, k2) ∼ ( j̃2, k̃2). Thus

j1 + k̃1 = k1 + j̃1, j2 + k̃2 = k2 + j̃2.

It therefore follows that

( j̃1 + j̃2) + (k1 + k2) = (k̃1 + k̃2) + ( j1 + j2),

which gives the independence of addition on representative.
To verify the well-definedness of multiplication, we first see that

j2 · ( j1 + k̃1) + k2 · ( j̃1 + k1) + j̃1 · ( j2 + k̃2) + k̃1 · ( j̃2 + k2)

= j2 · (k1 + j̃1) + k2 · ( j1 + k̃1) + j̃1 · (k2 + j̃2) + k̃1 · ( j2 + k̃2),

and expanding this and rearranging gives

( j1 · j2 + k1 · k2 + k̃1 · j̃2 + j̃1 · k̃2) + (k̃1 · j2 + j̃1 · k2 + j̃1 · j2 + k̃1 · k2)

= (k1 · j2 + j1 · k2 + j̃1 · j̃2 + k̃1 · k̃2) + (k̃1 · j2 + j̃1 · k2 + j̃1 · j2 + k̃1 · k2).

Using the cancellation law for addition we then have

( j̃1 · j̃2 + k̃1 · k̃2) + ( j1 · k2 + k1 · j2) = ( j̃1 · k̃2 + k̃1 · j̃2) + ( j1 · j2 + k1 · k2),

which gives the independence of multiplication on representative. ■

As with elements of Z≥0, we can define powers for integers. Let k ∈ Z and
m ∈ Z≥0. We define km recursively as follows. We take k0 = 1 and define km+ = km

·k.
We call km the mth power of k. Note that, at this point, km only makes sense for
m ∈ Z≥0.

Finally, we give the properties of addition and multiplication in Z. Some of
these properties are as for Z≥0. However, there is a useful new feature that arises
in Z that mirrors our experience with negative numbers. In the statement of the
result, it is convenient to denote an integer as in Notation 1.4.16, rather than as in
the definition.

1.4.19 Proposition (Properties of addition and multiplication in Z) Addition and mul-
tiplication in Z satisfy the following rules:

(i) k1 + k2 = k2 + k1, k1,k2 ∈ Z (commutativity of addition);
(ii) (k1 + k2) + k3 = k1 + (k2 + k3), k1,k2,k3 ∈ Z (associativity of addition);
(iii) k + 0 = k, k ∈ Z (additive identity);
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(iv) k + (−1 · k) = 0, k ∈ Z (additive inverse);
(v) k1 · k2 = k2 · k1, k1,k2 ∈ Z (commutativity of multiplication);
(vi) (k1 · k2) · k3 = k1 · (k2 · k3), k1,k2,k3 ∈ Z (associativity of multiplication);
(vii) k · 1 = k, k ∈ Z (multiplicative identity);
(viii) j · (k1 + k2) = j · k1 + j · k2, j,k1,k2 ∈ Z (distributivity);
(ix) jk1 · jk2 = jk1+k2 , j ∈ Z, k1,k2 ∈ Z≥0.

Moreover, if we define iZ≥0 : Z≥0 → Z by iZ≥0(k) = [(k, 0)], then addition and multiplica-
tion in Z agrees with that in Z≥0:

iZ≥0(k1) + iZ≥0(k2) = iZ≥0(k1 + k2), iZ≥0(k1) · iZ≥0(k2) = iZ≥0(k1 · k2).

Proof These follow easily from the definitions of addition and multiplication, using
the fact that the corresponding properties hold for Z≥0. We leave the details to the
reader as Exercise 1.4.4. We therefore only prove the new property (iv). For this, we
suppose without loss of generality that k ∈ Z≥0, i.e., k = [(k, 0)]. Then −k = [(0, k)] so
that

k + (−k) = [(k + 0, 0 + k)] = [(k, k)] = [(0, 0)] = 0,

as claimed. ■

We shall make the convention that−1·k be written as−k, whether k be positive or
negative. We shall also, particularly as we move along to things of more substance,
think of Z≥0 as a subset of Z, without making explicit reference to the map iZ≥0 .

1.4.4 Two relations in Z

Finally we introduce in Z two relations that extend the relations < and ≤ for
Z≥0. The following result is the analogue of Proposition 1.4.11.

1.4.20 Proposition (Order on Z) On Z define two relations < and ≤ by

[(j1,k1)] < [(j2,k2)] ⇐⇒ j1 + k2 < k1 + j2,
[(j1,k1)] ≤ [(j2,k2)] ⇐⇒ j1 + k2 ≤ k1 + j2.

Then
(i) < and ≤ are transitive,
(ii) < is irreflexive, and
(iii) ≤ is reflexive.

Furthermore, for any j,k ∈ Z, either j ≤ k or k ≤ j.
Proof First one must show that the relations are well-defined in that they do not
depend on the choice of representative. Thus let [( j1, k1)] ∼ [( j̃1, k̃1)] and [( j2, k2)] ∼
[( j̃2, k̃2)], so that

j1 + k̃1 = k1 + j̃1, j2 + k̃2 = k2 + j̃2.

Now suppose that the relation j1+k2 < k1+ j2 holds. Now perform the following steps:
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1. add j̃1 + k1 + j2 + k̃2 + j1 + k̃1 + k2 + j̃2 to both sides of the relation;
2. observe that j1 + k2 + k1 + j2 appears on both sides of the relation;
3. observe that j1 + k̃1 appears on one side of the relation and that j̃1 + k1 appears on

the other;
4. observe that k2 + j̃2 appears on one side of the relation and that j2 + k̃2 appears on

the other.
After simplification using the above observations, and using Proposition 1.4.13, we
note that the relation j̃1+ k̃2 < k̃1+ j̃2 holds, which gives independence of the definition
of < on the choice of representative. The same argument works for the relation ≤.

The remainder of the proof follows in a fairly straightforward manner from the cor-
responding assertions forZ≥0, and we leave the details to the reader as Exercise 1.4.6.

■

As with the natural numbers, the last assertion of the previous result has a
standard restatement.

1.4.21 Corollary (Trichotomy Law forZ) For j,k ∈ Z, exactly one of the following possibilities
holds:

(i) j < k;
(ii) k < j;
(iii) j = k.

Similarly with Z≥0, we shall also write “ j > k” for “k < j” and “ j ≥ k” for
“k ≤ j.” It is also easy to directly verify that the relations < and ≤ have the
expected properties with respect to positive and negative integers. These are given
in Exercise 1.4.7, for the interested reader.

We also have the following extension of Proposition 1.4.13 that relates addition
and multiplication to the relations < and ≤. We again leave these to the reader to
verify in Exercise 1.4.8.

1.4.22 Proposition (Relation between addition and multiplication and <) For j,k,m ∈
Z, the following statements hold:

(i) if j < k then j +m < k +m;
(ii) if j < k and if m > 0 then m · j < m · k;
(iii) if j < k and if m < 0 then m · k < m · j;
(iv) if 0 < j,k then 0 < j · k.

1.4.5 The absolute value function

On the set of integers there is an important map that assigns a nonnegative
integer to each integer.
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1.4.23 Definition (Integer absolute value function) The absolute value function onZ is
the map from Z to Z≥0, denoted by k 7→ |k|, defined by

|k| =


k, 0 < k,
0, k = 0,
−k, k < 0.

•

The absolute value has the following properties.

1.4.24 Proposition (Properties of absolute value on Z) The following statements hold:
(i) |k| ≥ 0 for all k ∈ Z;
(ii) |k| = 0 if and only if k = 0;
(iii) |j · k| = |j| · |k| for all j,k ∈ Z;
(iv) |j + k| ≤ |j| + |k| for all j,k ∈ Z (triangle inequality).

Proof Parts (i) and (ii) follow directly from the definition of |·|.
(iii) We first note that |−k| = |k| for all k ∈ Z. Now, if 0 ≤ j, k, then the result is clear.

If j < 0 and k ≥ 0, then

| j · k| = |−1 · (− j) · k| = |(− j) · k| = |− j| · |k| = | j| · |k|.

A similar argument holds when k < 0 and j ≥ 0.
(iv) We consider various cases.

1. | j| ≤ |k|:

(a) j, k ≥ 0: Here | j + k| = j + k, and | j| = j and |k| = k. So the result is obvious.
(b) j < 0, k ≥ 0: Here one can easily argue, using the definition of addition, that

0 < j + k. From Proposition 1.4.22 we have j + k < 0 + k = k. Therefore,
| j + k| < |k| < | j| + |k|, again by Proposition 1.4.22.

(c) k < 0, j ≥ 0: This follows as in the preceding case, swapping j and k.
(d) j, k < 0: Here | j+ k| = |− j+ (−k)| = |−( j+ k)| = −( j+ k), and | j| = − j and |k| = −k,

so the result follows immediately.

2. |k| ≤ | j|: The argument here is the same as the preceding one, but swapping j and
k. ■

Exercises

1.4.1 Let k ∈ Z>0. Show that k ⊆ Z>0; thus k is both an element ofZ>0 and a subset
of Z>0.

1.4.2 Let j, k ∈ Z≥0. Do the following:
(a) show that j ∈ k if and only if j ⊆ k;
(b) show that if j ⊂ k, then k < j (and so j ∈ k by the Trichotomy Law).

1.4.3 Prove Proposition 1.4.13.
1.4.4 Complete the proof of Proposition 1.4.19.
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1.4.5 For j1, j2, k ∈ Z, prove the distributive rule ( j1 + j2) · k = j1 · k + j2 · k.
1.4.6 Complete the proof of Proposition 1.4.20.
1.4.7 Show that the relations < and ≤ on Z have the following properties:

1. [(0, j)] < [(0, 0)] for all j ∈ Z>0;
2. [(0, j)] < [(k, 0)] for all j, k ∈ Z>0;
3. [(0, j)] < [(0, k)], j, k,∈ Z≥0, if and only if k < j;
4. [(0, 0)] < [( j, 0)] for all j ∈ Z>0;
5. [( j, 0)] < [(k, 0)], j, k ∈ Z≥0, if and only if j < k;
6. [(0, j)] ≤ [(0, 0)] for all j ∈ Z≥0;
7. [(0, j)] ≤ [(k, 0)] for all j, k ∈ Z≥0;
8. [(0, j)] ≤ [(0, k)], j, k,∈ Z≥0, if and only if k ≤ j;
9. [(0, 0)] ≤ [( j, 0)] for all j ∈ Z≥0;
10. [( j, 0)] ≤ [(k, 0)], j, k ∈ Z≥0, if and only if j ≤ k.

1.4.8 Prove Proposition 1.4.22.
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Section 1.5

Orders of various sorts

In Section 1.4 we defined two relations, denoted by< and≤, on bothZ≥0 andZ.
Here we see that these relations have additional properties that fall into a general
class of relations called orders. There are various classes or orders, having varying
degrees of “strictness,” as we shall see.

Do I need to read this section? Much of the material in this section is not used
widely in the series, so perhaps can be overlooked until it is needed. •

1.5.1 Definitions

Let us begin by defining the various types of orders we consider.

1.5.1 Definition (Partial order, total order, well order) Let S be a set and let R be a
relation in S.

(i) R is a partial order in S if it is reflexive, transitive, and antisymmetric.
(ii) A partially ordered set is a pair (S,R) where R is a partial order in S.
(iii) R is a strict partial order in S if it is irreflexive and transitive.
(iv) A strictly partially ordered set is a pair (S,R) where R is a strict partial order

in S.
(v) R is a total order in S if it is a partial order and if, for each x1, x2 ∈ S, either

(x1, x2) ∈ R or (x2, x1) ∈ R.
(vi) A totally ordered set is a pair (S,R) where R is a total order in S.
(vii) R is a well order in S if it is a partial order and if, for every nonempty subset

A ⊆ S, there exists an element x ∈ A such that (x, x′) ∈ R for every x′ ∈ A.
(viii) A well ordered set is a pair (S,R) where R is a well order in S. •

1.5.2 Remark (Mathematical structures as ordered pairs) In the preceding definitions
we see four instances of an “X set,” where X is some property, e.g., a partial order.
In such cases, it is common practice to do as we have done and write the object
as an ordered pair, in the cases above, as (S,R). The practice dictates that the first
element in the ordered pair be the name of the set, and that the second specifies
the structure.

In many cases one simply wishes to refer to the set, with the structure being
understood. For example, one might say, “Consider the partially ordered set S. . . ”
and not make explicit reference to the partial order. Both pieces of language are in
common use by mathematicians, and in mathematical texts. •

Let us consider some simple examples of partial and strict partial orders.
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1.5.3 Examples (Partial orders)
1. Consider the relation R = {(k1, k2) | k1 ≤ k2} in eitherZ≥0 orZ. Then one verifies

that R is a partial order. In fact, it is both a total order and a well order.
2. Consider the relation R = {(k1, k2) | k1 ≤ k2} in either Z≥0 or Z. Here one can

verify that R is a strict partial order.
3. Let S be a set and consider the relation R in 2S defined by R = {(A,B) | A ⊆ B}.

Here one can see that R is a partial order, but it is generally neither a total order
nor a well order (cf. Exercise 1.5.2).

4. Let S be a set and consider the relation R in 2S defined by R = {(A,B) | A ⊂ B}.
In this case R can be verified to be a strict partial order.

5. A well order R is a total order. Indeed, for (x1, x2) ∈ R, there exists an element
x ∈ {x1, x2} such that (x, x′) ∈ R for every x′ ∈ {x1, x2}. But this implies that either
(x1, x2) ∈ R or (x2, x1) ∈ R, meaning that R is a total order. •

Motivated by the first and second of these examples, we utilise the following
more or less commonplace notation for partial orders.

1.5.4 Notation (⪯ and ≺) If R is a partial order in S, we shall normally write x1 ⪯ x2 for
(x1, x2) ∈ R, and shall refer to ⪯ as the partial order. In like manner, if R is a strict
partial order in S, we shall write x1 ≺ x2 for (x1, x2) ∈ R. We shall also use x1 ⪰ x2

and x1 ≻ x2 to stand for x2 ⪯ x1 and x2 ≺ x1, respectively. •

There is a natural way of associating to every partial order a strict partial order,
and vice versa.

1.5.5 Proposition (Relationship between partial and strict partial orders) Let S be a
set.

(i) If ⪯ is a partial order in S, then the relation ≺ defined by

x1 ≺ x2 ⇐⇒ x1 ⪯ x2 and x1 , x2

is a strict partial order in S.
(ii) If ≺ is a strict partial order in S, then the relation ⪯ defined by

x1 ⪯ x2 ⇐⇒ x1 ≺ x2 or x1 = x2

is a partial order in S.
Proof This is a straightforward matter of verifying that the definitions are satisfied.■

When talking about a partial order⪯, the symbol≺will always refer to the strict
partial order as in part (i) of the preceding result. Similarly, given a strict partial
order ≺, the symbol ⪯ will always refer to the partial order as in part (ii) of the
preceding result.
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1.5.6 Examples (Example 1.5.3 cont’d)
1. One can readily verify that< is the strict partial order associated with the partial

order ≤ in either Z≥0 or Z, and that ≤ is the partial order associated to <.
2. It is also easy to verify that, for a set S, ⊂ is the strict partial order in 2S associated

to the partial order ⊆, and that ⊆ is the partial order associated to ⊂. •

1.5.2 Subsets of partially ordered sets

Surrounding subsets of a partially ordered set (S,⪯) there is some useful lan-
guage. For the following definition, it is helpful to think of an order, be it partial,
strictly partial, or whatever, as a relation, and to use the notation of a relation. Thus
we refer to an order as R, and not as ⪯.

1.5.7 Definition (Restriction of an order) Let S be a set and let R be a partial order,
(resp. strict partial order, total order, well order) in S. For a subset T ⊆ S, the
restriction of R to T is the partial order (resp. strict partial order, total order, well
order) in T defined by

R|T = R ∩ {(x1, x2) ∈ S × S | x1, x2 ∈ T}. •

It is a trivial matter to see that if R is an order, then its restriction to T is an order
having the same properties as R, as is tacitly assumed in the definition. The notion
of the restriction of an order allows us to talk unambiguously about the order on a
subset of a given set, and we shall do this freely in this section.

Since most of this section is language, let us begin with some simple language
associated with points.

1.5.8 Definition (Comparing elements in a partially ordered set) Let (S,⪯) be a par-
tially ordered set.

(i) A point x1 ∈ S is less than or smaller than x2, or equivalently is a predecessor
of x2, if x1 ⪯ x2.

(ii) A point x1 ∈ S is greater than or larger than x2, or equivalently is a successor
of x2, if x1 ⪰ x2.

(iii) A point x′ is between x1 and x2 if x1 ⪯ x′ and if x′ ⪯ x2.
Similarly, let (S,≺) be a strictly partially ordered set.

(iv) A point x1 ∈ S is strictly less than or strictly smaller than x2, or equivalently
is a strict predecessor of x2, if x1 ≺ x2.

(v) A point x1 ∈ S is strictly greater than or strictly larger than x2, or equivalently
is a strict successor of x2, if x1 ≻ x2.

(vi) A point x′ is strictly between x1 and x2 if x1 ≺ x′ and if x′ ≺ x2.
(vii) If x1 < x2 and there exists no x′ ∈ S that is strictly between x1 and x2, then x1

is the immediate predecessor of x2. •

Next we talk about some language attached to subsets of a partially ordered
set.
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1.5.9 Definition (Segment, least, greatest, minimal, maximal) Let (S,⪯) be a partially
ordered set.

(i) The initial segment determined by x ∈ S is the set seg(x) = {x′ ∈ S | x′ ⪯ S}.

(ii) A least, smallest, or first element in S is an element x ∈ S with the property
that x ⪯ x′ for every x′ ∈ S.

(iii) A greatest, largest, or last element in S is an element x ∈ S with the property
that x′ ⪯ x for every x′ ∈ S.

(iv) A minimal element of S is an element x ∈ S with the property that x ⪯ x′

implies that x′ = x.
(v) A maximal element of S is an element x ∈ S with the property that x ≺ x′

implies that x′ = x.
Now let (S,⪯) be a partially ordered set.

(vi) The strict initial segment determined by x ∈ S is the set seg(x) = {x′ ∈ S | x′ ≺
S}. •

The least and greatest elements of a set, if they exist, are unique. This is easy to
prove (Exercise 1.5.4).

Let us give an example that distinguishes between least and minimal.

1.5.10 Example (Least and minimal are different) Let S be a set and consider the par-
tially ordered set (2S

\ ∅,⊆). Then any singleton is a minimal element of 2S
\ ∅.

However, unless S is itself a set with only one member, then 2S has no least ele-
ment, i.e., there is no subset which is contained in every other subset. •

Next we turn to two important concepts related to partial orders.

1.5.11 Definition (Greatest lower bound and least upper bound) Let (S,⪯) be a par-
tially ordered set and let A ⊆ S.

(i) An element x ∈ S is a lower bound for A if x ⪯ x′ for every x′ ∈ A.
(ii) An element x ∈ S is an upper bound for A if x′ ⪯ x for every x′ ∈ A.
(iii) If, in the set of lower bounds for A, there is a greatest element, this is the

greatest lower bound, or the infimum, of E. This is denoted by inf(A).
(iv) If, in the set of upper bounds for A, there is a least element, this is the least

upper bound, or the supremum, of E. This is denoted by sup(A).
Now let (S,≺) be a strictly partially ordered set and let A ⊆ S.

(v) An element x ∈ S is a strict lower bound for A if x ≺ x′ for every x′ ∈ A.
(vi) An element x ∈ S is a strict upper bound for A if x′ ≺ x for every x′ ∈ A. •

Let us give some examples that illustrate the various possibilities arising from
the preceding definitions. The examples will be given for lower bounds, but similar
examples can be conjured to give similar conclusions for upper bounds.
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1.5.12 Examples (Greatest lower bounds)
1. A subset A ⊆ S may have no lower bounds. For example, the set of negative

integers has no lower bound if we use the standard partial order in Z.
2. A subset A ⊆ S may have a greatest lower bound in A. For example, the set of

nonnegative integers has as lower bounds all nonpositive integers. The greatest
of these lower bounds is 0, which is itself a nonnegative integer.

3. A subset A ⊆ S may have a greatest lower bound that is not an element of A.
To see this, let S be the set of nonpositive integers, let A be the set of negative
integers, and define a partial order ⪯ in S by

k1 ⪯ k2 ⇐⇒


k1 ≤ k2, k1, k2 ∈ A, or
k1 = k2 = 0, or
k1 = 0, k2 ∈ A.

Thus this is the usual partial order in A ⊆ S, and one declares 0 to be less than all
elements of A. In this case, 0 is the only lower bound for A, and so is, therefore,
the greatest lower bound. But 0 < A. •

1.5.3 Zorn’s Lemma

Zorn’s6 Lemma comes up frequently in mathematics during the course of non-
constructive existence proofs. Since some of these proofs appear in this series and
are important, we state Zorn’s Lemma.

1.5.13 Theorem (Zorn’s Lemma) Every partially ordered set (S,⪯) in which every totally
ordered subset has an upper bound contains at least one maximal member.

Proof Suppose that every totally ordered subset has an upper bound, but that S has
no maximal member. By assumption, if A ⊆ S is a totally ordered subset, then there
exists an upper bound x for A. Since S has no maximal element, there exists x′ ∈ S
such that x < x′. Therefore, x′ is a strict upper bound for A. Thus we have shown that
every totally ordered subset possesses a strict upper bound. Let b be a function from
the collection of totally ordered subsets into S having the property that b(A) is a strict
upper bound for A.7

A b-set is a subset B of S that is well ordered and has the property that, for every
x ∈ B, we have x = b(segB(x)), where segB(x) denotes the strict initial segment of x in
B.

1 Lemma If B1 and B2 are unequal b-sets, then one of the following statements holds:
(i) there exists x1 ∈ B1 such that B2 = segB1

(x1);
(ii) there exists x2 ∈ B2 such that B1 = segB2

(x2).
6Max August Zorn (1906–1993) was a German mathematician who did work in the areas of set

theory, algebra, and topology.
7The existence of the function b relies on the Axiom of Choice (see Section 1.8.3).
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Proof If B2 ⊂ B1, then we claim that (i) holds. Take x1 to be the least member of B1−B2.
We claim that B2 = segB1

(x1). First of all, if x ∈ B2, then x < x1 since x1 is the least
member of B1 − B2. Therefore, B2 ⊆ segB1

(x1). Now suppose that segB1
(x1) − B2 , ∅,

and let x be the least member of this set. Note that for any x′ ∈ B2 we therefore have
x′ < x, contradicting the fact that x1 is the least member of B1 −B2. Thus we must have
segB1

(x1) − B2 = ∅, and so B2 = segB1
(x1).

We now suppose that B2 − B1 , ∅. Let x2 be the least member of B2 − B1. If
x ∈ segB2

(x2) then x < x2 and x must therefore be an element of B1, or else this
contradicts the definition of x2. Now suppose that B1 \ segB2

(x2) , ∅ and let y1 be the
least member of this set. If y ∈ segB1

(y1) and y′ ∈ B2 satisfies y′ < y, then y′ ∈ segB1
(y1).

If z is the least member of B2 \ segB1
(y1), we then have segB2

(z) = segB1
(y1). Therefore

z = b(segB2
(z)) = b(segB1

(y1)) = y1.

Since y1 ∈ B1, z = y1 , x2. Since z ≤ x2, it follows that z < x2. Thus y1 = z ∈ segB2(x2).
This, however, contradicts the choice of y1, so we conclude that B1 \ segB2

(x2) = ∅, and
so that B1 = segB2

(x2). Thus (ii) holds.
A swapping of the rôles of B1 and B2 will complete the proof. ▼

2 Lemma The union of all b-sets is a b-set.
Proof Let U denote the union of all b-sets. First we must show that U is well ordered.
Let A ⊆ U and let x ∈ A. Then there is a b-set B such that x ∈ B. We claim that
segA(x) ⊆ B. Indeed, if x′ < x then, by Lemma 1, either x′ ∈ B or x′ does not lie in any
b-set. Since A lies in the union of all b-sets, it must be the case that x′ ∈ B. Thus segA(x)
is a subset of the well ordered set B, and as such has a least element x0. This is clearly
also a least element for A, so U is well ordered.

Next, let x ∈ U and let B be a b-set such that x ∈ B. Our above argument shows
that segU(x) ⊆ B so that segU(x) = segB(x). Therefore, x = b(segB(x)) = b(segU(x)). This
completes the proof. ▼

To complete the proof, let U be the union of all b-sets and let x = b(U). Then we
claim that U∪ {x} is a b-set. That U∪ {x} is well ordered follows since U is well ordered
and since x is an upper bound for U. Since U is the union of all b-sets, it must hold that
x ∈ U. However, this contradicts the fact that x is a strict upper bound for U. ■

1.5.4 Induction and recursion

In some of the proofs we have given in this section, and in our definition ofZ≥0,
we have used the idea of induction. This idea is an eminently reasonable one. One
starts with a fact or a definition that applies to the element 0 ∈ Z≥0, and a rule for
extending this from the jth number to the ( j + 1)st number, and then asserts that
the fact or definition applies to all elements of Z≥0. In this section we formulate
this principle in a more general setting that the set Z≥0, namely for a well ordered
set.

Since the result will have to do with a property being true for the elements of
a well ordered set, let us formally say that a property defined in a set S is a map
P : S→ {true, false}. A property is true, or holds, at x if P(x) = true.
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1.5.14 Theorem (Principle of Transfinite Induction) Let (W,⪯) be a well ordered set and
let P be a property defined in W. Suppose that, for every w ∈W, the fact that P(w′) is true
for every w′ ≺ w implies that P(w) is true. Then P(w) is true for every w ∈W.

Proof Suppose that the hypothesis is true, but the conclusion is false. Then

F = {w ∈W | P(w) = false} , ∅.

Let w be the least element of F Therefore, for w′ < w it must hold that P(w′) = true. But
then the hypotheses imply that P(w) = true, so that w ∈W \F. This is a contradiction.■

Next we turn to the process of defining something using recursion. As we did
for induction, let us first consider doing this for Z≥0. What we wish to define is a
map f : Z≥0 → S. The idea for doing this is that, if, for each k ∈ Z≥0, one knows the
value of f on the first k elements ofZ≥0, and if one knows a rule for then giving the
value of f at k + 1, then the f extends uniquely to a function on all of Z≥0. To give
a concrete example, if S = Z and if we define f (k + 1) = 2 · f (k), then the resulting
function f : Z≥0 → Z is determined by its value at 0: f (k) = 2k

· f (0).
To state the general theorem requires some notation. We let W be a well ordered

set and let S be a set. For w ∈ W, we let seqS(w) be the set of maps from seg(w)
into S. We then let SeqS(W) be the set of all maps of the form g : seqS(w)→ S. The
idea is that an element of SS(W) tells us how to extend a map from seg(w) to give
its value at w.

The desired result is now the following.

1.5.15 Theorem (Transfinite recursion) Let (W,⪯) be a well ordered set and let S be a
set. Given a member g ∈ SeqS(W), there exists a unique map fg : W → S such that
fg(w) = g(f| seg(w)).

Proof That there can be only one map fg as in the theorem statement follows from the
Principle of Transfinite Induction (take P(w) = true if and only if fg(w) = g( fg| seg(w))).

So we shall prove the existence of fg. Define

Cg = {A ⊆W × S|
w ∈W, h ∈ seqS(w), (w′, h(w′)) ∈ A for all w′ ∈ seg(w) =⇒ (w, g(h)) ∈ A}.

Note that W × S ∈ Cg, so that Cg is not empty. It is easy to check that the intersection
of members of Cg is also a member of Cg. Therefore we let Fg = ∩A∈CgA, and note that
Fg ∈ Cg. We shall show that Fg is the graph of a function fg that satisfies the conditions
in the theorem statement.

First we need to show that, for each w ∈W, there exists exactly one x ∈ S such that
(w, x) ∈ Fg. Define

Ag = {w ∈W | there exists exactly one x ∈ S such that (w, x) ∈ Fg}.

For w ∈W, we claim that if seg(w) ⊆ Ag, then w ∈ Ag. Indeed, if seg(w) ⊆ Ag, define h ∈
seqS(w) by h(w′) = x′ where x′ ∈ S is the unique element such that (w′, x′) ∈ Ag. Since
Fg ∈ Cg, there exists some x ∈ S such that (w, x) ∈ Fg. Suppose that x , g(h). We claim
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that Fg−{(w, x)} ∈ Cg. Let w′ ∈W and let h′ ∈ segS(w′) satisfy (w′′, h′(w′′)) ∈ Fg−{(w, x)}
for all w′′ ∈ seg(w′). If w′ = w then h′ = h by the uniqueness assertion of the theorem,
and therefore (w′, g(h′)) ∈ Fg − {(w, x)} since x , g(h) = g(h′). On the other hand, if
w′ , w then (w′, g(h′)) ∈ Fg − {(w, x)} since Fg ∈ Cg. Thus, indeed, Fg − {(w, x)} ∈ Cg,
contradicting the fact that Fg is the intersection of all sets in Cg. Thus we can conclude
that x = g(h), and therefore that there is exactly one x ∈ S such that (w, x) ∈ Fg. By the
Principle of Transfinite Induction, we can then conclude that for every w ∈ W, there is
exactly one x ∈ S such that (w, x) ∈ Fg. Thus Fg is the graph of a map fg : W → S.

It remains to verify that fg(w) = g( fg| seg(w)). This, however, follows easily from
the definition of Fg. ■

One of the features of transfinite induction and transfinite recursion that re-
quires some getting used to is that, unlike the usual induction with natural numbers
as the well ordered set, one does not begin the induction or recursion by starting at
0 (or, in the case of a well ordered set, the least element), and proceeding element
by element. Rather, one deals with initial segments. The reason for this is that in
a well ordered set one may not have an immediate predecessor for every element,
so that cannot be part of the induction/recursion; so the initial segment serves this
purpose instead.

1.5.5 Zermelo’s Well Ordering Theorem

The final topic in this section is a somewhat counterintuitive one. It says that
every set possesses as well order.

1.5.16 Theorem (Zermelo’s8 Well Ordering Theorem) For every set S, there is a well order
in S.

Proof Define

W = {(W,⪯W) | W ⊆ S and ⪯W is a well order on W}.

Since ∅ ∈ W ,W is nonempty. Define a partial order ⪯ onW by

W1 ⪯W2 ⇐⇒ W2 is similar to a segment of W1.

Suppose that T is a totally ordered subset ofW .

1 Lemma The set ∪A∈T A has a unique well ordering, denoted by ≲, such that A′ ≲ ∪A∈T for
all A′ ∈ T .

Proof Let x1, x2 ∈ ∪A∈T A, and let W1,W2 ∈ T have the property that x1 ∈ W1 and
x2 ∈ W2. Note that since either W1 = W2, W1 ⪯ W2, or W2 ⪯ W1, it must be the case
that x1 and x2 lie in the same set from C , let us call this W. The order in ∪A∈T A is then
defined by giving to the points x1 and x2 their order in W. This is unambiguous since
T is totally ordered. It is then a simple exercise, left to the reader, that this is a well
order. ▼

8Ernst Friedrich Ferdinand Zermelo (1871–1953) was a German mathematician whose mathe-
matical contributions were mainly in the area of set theory.
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The lemma ensures that the hypotheses of Zorn’s Lemma apply to the totally
ordered subsets of W , and therefore the conclusions of Zorn’s Lemma ensure that
there is a maximal element W inW . We claim that this maximal element is S. Suppose
this is not the case, and that x ∈ S −W. We claim that W ∪ {x} ∈ W . To see this, simply
define a well order on W ∪ {x} by asking that points in W have their usual order, and
that x be greater that all points in W. The result is easily verified to be a well order on
W ∪ {x}, so contradiction the maximality of W. This completes the proof. ■

It might be surprising that it should be possible to well order any set. A well
order can be thought of as allowing an arranging of the elements in a set, starting
from the least element, and moving upwards in order:

x0 < x1 < x2 < · · · .

The complicated thing to understand here are the “· · · ,” since they only mean “and
so on” with an appropriate interpretation of these words (this is entirely related
to the idea of ordinal numbers discussed in Section 1.7.1). As an example, the
reader might want to imagine trying to order the real numbers (which we define in
Section 2.1). It might seem absurd that it is possible to well order the real numbers.
However, this is one of the many counterintuitive consequences arising from set
theory, in this case directly related to the Axiom of Choice (Section 1.8.3).

1.5.6 Similarity

Between partially ordered sets, there are classes of maps that are distinguished
by their preserving of the order relation. In this section we look into these and
some of their properties, particularly with respect to well orders.

1.5.17 Definition (Similarity) If (S,⪯S) and (T,⪯T) are partially ordered sets, a bijection
f : S→ T is a similarity, and (S,⪯S) and (T,⪯T) are said to be similar, if f (x1) ⪯T f (x2)
if and only if x1 ⪯S x2. •

Now we prove a few results relating to similarities between well ordered sets.
These shall be useful in our discussion or ordinal numbers in Section 1.7.1.

1.5.18 Proposition (Similarities of a well ordered set with itself) If (S,⪯) is a well
ordered set and if f : S→ S is a similarity, then x ⪯ f(x) for each x ∈ S.

Proof Define A = {x ∈ S | f (x) ≺ x} and let x be the least element of A. Then, for any
x′ < x, we have x/ ⪯ f (x′). In particular, f (x) ⪯ f ◦ f (x). But f (x) < x implies that
f ◦ f (x) < f (x), giving a contradiction. Thus A = ∅. ■

1.5.19 Proposition (Well ordered sets are similar in at most one way) If f,g: S → T
are similarities between well ordered sets (S,⪯S) and (T,⪯T), then f = g.

Proof Let h = f−1 ◦ g, and note that h is a similarity from S to itself. By Proposi-
tion 1.5.18 this implies that x ⪯S h(x) for each x ∈ S. Thus

x ⪯S f−1
◦ g(x), x ∈ S

=⇒ f (x) ⪯T g(x), x ∈ S.
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Reversing the argument gives g(x) ⪯T f (x) for every x ∈ S. This gives the result. ■

1.5.20 Proposition (Well ordered sets are not similar to their segments) If (S,≺) is a
well ordered set and if x ∈ S, then S is not similar to seg(x).

Proof If f (x) ∈ seg(x) then f (x) < x, contradiction Proposition 1.5.18. ■

The final result is the deepest of the results we give here, because it gives a
rather simple structure to the collection of all well ordered sets.

1.5.21 Proposition (Comparing well ordered sets) If (S,⪯S) and (T,⪯T) are well ordered
sets, then one of the following statements holds:

(i) S and T are similar;
(ii) there exists x ∈ S such that seg(x) and T are similar;
(iii) there exists y ∈ T such that seg(y) and S are similar.

Proof Define

S0 = {x ∈ S | there exists y ∈ T such that seg(x) is similar to seg(y)},

noting that S0 is nonempty, since the segment of the least element in S is similar to the
segment of the least element in T. Define f : S0 → T by f (x) = y where seg(x) is similar
to seg(y). Note that this uniquely defines f by Propositions 1.5.19 and 1.5.20. We
then take T0 = image( f ). If S0 = S, then the result immediately follows. If S0 ⊂ S, then
we claim that S0 = seg(x0) for some x0 ∈ S. Indeed, we simply take x0 to be the least
strict upper bound for S0, and then apply the definition of S0 to see that S0 = seg(x0).
We next claim that T0 = T. Indeed, suppose that T0 ⊂ T, let y0 be the least strict upper
bound for T0, and let x0 be the least strict upper bound for S0. We claim that seg(x0)
is similar to seg(y0). Indeed, if this is not the case, then there exists y < y0 such that
seg(y) is not similar to a segment in S. However, this contradicts the definition of T0.■

1.5.7 Notes

The proof of Zorn’s Lemma we give is from the paper of [Lewin 1991].

Exercises

1.5.1 Show that any set S possesses a partial order.
1.5.2 Give conditions on S under which the partial order ⊆ on 2S is

(a) a total order or
(b) a well-order.

1.5.3 Given two partially ordered sets (S,⪯S) and (T,⪯T), we define a relation ⪯S×T

in S × T by

(x1, y1) ⪯S×T (x2, y2) ⇐⇒ (x1 ≺S x2) or (x1 = x2 and y1 ⪯T y2).

This is called the lexicographic order on S × T. Show the following:
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(a) the lexicographic order is a partial order;
(b) if ⪯S and ⪯T are total orders, then the lexicographic order is a total order.

1.5.4 Show that a partially ordered set (S,⪯) possesses at most one least element
and/or at most one greatest element.
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Section 1.6

Indexed families of sets and general Cartesian products

In this section we discuss general collections of sets, and general collections
of members of sets. In Section 1.1.3 we considered Cartesian products of a finite
collection of sets. In this section, we wish to extend this to allow for an arbitrary
collection of sets. The often used idea of an index set is introduced here, and will
come up on many occasions in the text.

Do I need to read this section? The idea of a general family of sets, and notions
related to it, do not arise in a lot of places in these volumes. But they do arise.
The ideas here are simple (although the notational nuances can be confusing), and
so perhaps can be read through. But the reader in a rush can skip the material,
knowing they can look back on it if necessary. •

1.6.1 Indexed families and multisets

Recall that when talking about sets, a set is determined only by the concept of
membership. Therefore, for example, the sets {1, 2, 2, 1, 2} and {1, 2} are the same
since they have the same members. However, what if one wants to consider a set
with two 1’s and three 2’s? The way in which one does this is by the use of an
index to label the members of the set.

1.6.1 Definition (Indexed family of elements) Let A and S be sets. An indexed family
of elements of S with index set A is a map f : A → S. The element f (a) ∈ S is
sometimes denoted as xa and the indexed family is denoted as (xa)a∈A. •

With the notion of an indexed family we can make sense of “repeated entries”
in a set, as is shown in the first of these examples.

1.6.2 Examples (Indexed family)
1. Consider the two index sets A1 = {1, 2, 3, 4, 5} and A2 = {1, 2} and let S be the set

of natural numbers. Then the functions f1 : A1 → S and f2 : A2 → S defined by

f1(1) = 1, f1(2) = 2, f1(3) = 2, f1(4) = 1, f1(5) = 2,
f2(1) = 1, f2(2) = 2,

give the indexed families (x1 = 1, x2 = 2, x3 = 2, x4 = 1, x5 = 2) and (x1 = 1, x2 =
2), respectively. In this way we can arrive at a set with two 1’s and three 2’s, as
desired. Moreover, each of the 1’s and 2’s is assigned a specific place in the list
(x1, . . . , x5).

2. Any set S gives rise in a natural way to an indexed family of elements of S
indexed by S itself: (x)x∈S. •

We can then generalise this notion to an indexed family of sets as follows.
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1.6.3 Definition (Indexed family of sets) Let A and S be sets. An indexed family of
subsets of S with index set A is an indexed family of elements of 2S with index set
A. Thus an indexed family of subsets of S is denoted by (Sa)a∈A where Sa ⊆ S for
a ∈ A. •

We use the notation∪a∈ASa and∩a∈ASa to denote the union and intersection of an
indexed family of subsets indexed by A. Similarly, when considering the disjoint
union of an indexed family of subsets indexed by A, we define this to be

◦

∪
a∈A

Sa = ∪a∈A({a} × Sa).

Thus an element in the disjoint union has the form (a, x) where x ∈ Sa. Just as with
the disjoint union of a pair of sets, the disjoint union of a family of sets keeps track
of the set that element belongs to, now labelled by the index set A, along with the
element. A family of sets (Sa)a∈A is pairwise disjoint if, for every distinct a1, a2 ∈ A,
Sa1 ∩ Sa2 = ∅.

Often when one writes (Sa)a∈A, one omits saying that the family is “indexed
by A,” this being understood from the notation. Moreover, many authors will say
things like, “Consider the family of sets {Sa},” so omitting any reference to the index
set. In such cases, the index set is usually understood (often it is Z>0). However,
we shall not use this notation, and will always give a symbol for the index set.

Sometimes we will simply say something like, “Consider a family of sets
(Sa)a∈A.” When we say this, we tacitly suppose there to be a set S which con-
tains each of the sets Sa as a subset; the union of the sets Sa will serve to give such
a set.

There is an alternative way of achieving the objective of allowing sets where
the same member appears multiple times.

1.6.4 Definition (Multiset, submultiset) A multiset is an ordered pair (S, ϕ) where S is
a set and ϕ : S → Z≥0 is a map. A multiset (T, ψ) is a submultiset of (S, ϕ) if T ⊆ S
and if ψ(x) ≤ ϕ(x) for every x ∈ T. •

This is best illustrated by examples.

1.6.5 Examples (Multisets)
1. The multiset alluded to at the beginning of this section is (S, ϕ) with S = {1, 2},

and ϕ(1) = 2 and ϕ(2) = 3. Note that some information is lost when considering
the multiset (S, ϕ) as compared to the indexed family (1, 2, 2, 1, 2); the order of the
elements is now immaterial and only the number of occurrences is accounted
for.

2. Any set S can be thought of as a multiset (S, ϕ) where ϕ(x) = 1 for each x ∈ S.
3. Let us give an example of how one might use the notion of a multiset. Let

P ⊆ Z>0 be the set of prime numbers and let S be the set {2, 3, 4, . . . } of integers
greater than 1. As we shall prove in Corollary 4.2.73, every element n ∈ S can
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be written in a unique way as n = pk1
1 · · · p

km
m for distinct primes p1, . . . , pm and for

k1, . . . , km ∈ Z>0. Therefore, for every n ∈ S there exists a unique multiset (P, ϕn)
defined by

ϕn(p) =

k j, p = p j,

0, otherwise,

understanding that k1, . . . , km and p1, . . . , pm satisfy n = pk1
1 · · · p

km
m . •

1.6.6 Notation (Sets and multisets from indexed families of elements) Let A and S
be sets and let (xa)a∈A be an indexed family of elements of S. If for each x ∈ S the
set {a ∈ A | xa = x} is finite, then one can associate to (xa)a∈A a multiset (S, ϕ) by

ϕ(x) = card{a ∈ A | xa = x}.

This multiset is denoted by {xa}a∈A. One also has a subset of S associated with the
family (xa)a∈A. This is simply the set

{x ∈ S | x = xa for some a ∈ A}.

This set is denoted by {xa | a ∈ A}. Thus we have three potentially quite different
objects:

(xa)a∈A, {xa}a∈A, {xa | a ∈ A},

arranged in decreasing order of information prescribed (be sure to note that the
multiset in the middle is only defined when the sets {a ∈ A | xa = x} are finite). This
is possibly confusing, although there is not much in it, really.

For example, the indexed family (1, 2, 2, 1, 2) gives the multiset denoted
{1, 1, 2, 2, 2} and the set {1, 2}. Now, this is truly confusing since there is no no-
tational discrimination between the set {1, 1, 2, 2, 2} (which is simply the set {1, 2})
and the multiset {1, 1, 2, 2, 2} (which is not the set {1, 2}). However, the notation is
standard, and the hopefully the intention will be clear from context.

If the map a 7→ xa is injective, i.e., the elements in the family (xa)a∈A are distinct,
then the three objects are in natural correspondence with one another. For this
reason we can sometimes be a bit lax in using one piece of notation over another. •

1.6.2 General Cartesian products

Before giving general definitions, it pays to revisit the idea of the Cartesian
product S1 × S2 of sets S1 and S2 as defined in Section 1.1.3 (the reason for our
change from S and T to S1 and S2 will become clear shortly). Let A = {1, 2}, and let
f : A→ S1∪S2 be a map satisfying f (1) ∈ S1 and f (2) ∈ S2. Then ( f (1), f (2)) ∈ S1×S2.
Conversely, given a point (x1, x2) ∈ S1 × S2, we define a map f : A → S1 ∪ S2 by
f (1) = x1 and f (2) = x2, noting that f (1) ∈ S1 and f (2) ∈ S2.

The punchline is that, for a pair of sets S1 and S2, their Cartesian product is in
1–1 correspondence with maps f from A = {1, 2} to S1∪S1 having the property that
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f (x1) ∈ S1 and f (x2) ∈ S2. There are two things to note here: (1) the use of the set A
to label the sets S1 and S2 and (2) the alternative characterisation of the Cartesian
product.

Now we generalise the Cartesian product to families of sets.

1.6.7 Definition (Cartesian product) The Cartesian product of a family of sets (Sa)a∈A

is the set ∏
a∈A

Sa = { f : A→ ∪a∈ASa | f (a) ∈ Sa}.

For b ∈ A, the bth projection for the Cartesian product
∏

a∈A Sa is the map
prb :

∏
a∈A Sa → Sb defined by prb( f ) = f (b). •

Note that the analogue to the ordered pair in a general Cartesian product is
simply the set f (A) for some f ∈

∏
a∈A Sa. The reader should convince themselves

that this is indeed the appropriate generalisation.

1.6.3 Sequences

The notion of a sequence is very important for us, and we give here a general
definition for sequences in arbitrary sets.

1.6.8 Definition (Sequence, subsequence) Let S be a set.
(i) A sequence in S is an indexed family (x j) j∈Z>0 of elements of S with index set
Z>0.

(ii) A subsequence of a sequence (x j) j∈Z>0 in S is a map f : A→ S where

(a) A ⊆ Z>0 is a nonempty set with no upper bound and
(b) f (k) = xk for all k ∈ A.

If the elements in the set A are ordered as j1 < j2 < j3 < · · · , then the
subsequence may be written as (x jk)k∈Z>0 . •

Note that in a sequence the location of the elements is important, and so the
notation (x j) j∈Z>0 is the correct choice. It is, however, not uncommon to see se-
quences denoted {x j} j∈Z>0 . According to Notation 1.6.6 this would imply that the
same element in S could only appear in the list (x j) j∈Z>0 a finite number of times.
However, this is often not what is intended. However, there is seldom any real
confusion induced by this, but the reader should simply be aware that our (not
uncommon) notational pedantry is not universally followed.

1.6.4 Directed sets and nets

What we discuss in this section is a generalisation of the notion of a sequence.
A sequence is a collection of objects where there is a natural order to the objects
inherited from the total order of Z>0.

First we define the index sets for this more general type of sequence.
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1.6.9 Definition (Directed set) A directed set is a partially ordered set (D,⪯) with the
property that, for x, y ∈ D, there exists z ∈ D such that x ⪯ z and y ⪯ z. •

Thus for any two elements in a directed set D it is possible to find an element
greater than either, relative to the specified partial order. Let us give some examples
to clarify this.

1.6.10 Examples (Directed sets)
1. The set (Z>0,≤) is a directed set since clearly one can find a natural number

exceeding any two specified natural numbers.
2. The partially ordered set ([0,∞),≤) is similarly a directed set.
3. The partially ordered set ((0, 1],≥) is also a directed set since, given x, y ∈ (0, 1],

one can find an element of (0, 1] which is smaller than either x or y.
4. Next take D = R \ {x0} and consider the partial order ⪯ on D defined by x ⪯ y

if |x − x0| ≤ |y − y0|. This may be shown to be a directed set since, given two
elements x, y ∈ R \ {x0}, one can find another element of R \ {x0}which is closer
to x0 than either x or y.

5. Let S be a set with more than one element and consider the partially ordered set
(2S
\ {∅},⪯) specified by A ⪯ B if A ⊇ B. This is readily verified to be a partial

order. However, this order does not make (S,⊇) a directed set. Indeed, suppose
that A,B ∈ 2S

\ {∅} are disjoint. Since the only set contained in both A and B is
the empty set, it follows that there is no element T ∈ 2S

\ {∅} for which A ⊇ T
and B ⊇ T. •

The next definition is of the generalisation of sequences built on the more
general notion of index set given by a directed set.

1.6.11 Definition (Net) Let (D,⪯) be a directed set. A net in a set S defined on D is a map
ϕ : D→ S from D into S. •

As with a sequence, it is convenient to instead write {xα}α∈D where xα = ϕ(α) for
a net. The idea here is that a net generalises the notion of a sequence to the case
where the index set may not be countable and where the order is more general than
the total order of Z.

Exercises

1.6.1
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Section 1.7

Ordinal numbers, cardinal numbers, cardinality

The notion of cardinality has to do with the “size” of a set. For sets with
finite numbers of elements, there is no problem with “size.” For example, it is
clear what it means for one set with a finite number of elements to be “larger” or
“smaller” than another set with a finite number of elements. However, for sets
with infinite numbers of elements, can one be larger than another? If so, how
can this be decided? In this section we see that there is a set, called the cardinal
numbers, which exactly characterises the “size” of all sets, just as natural numbers
characterise the “size” if finite sets.

Do I need to read this section? The material in this section is used only slightly,
so it can be thought of as “cultural,” and hopefully interesting. Certainly the
details of constructing the ordinal numbers, and then the cardinal numbers, plays
no essential rôle in these volumes. The idea of cardinality comes up, but only in
the simple sense of Theorem 1.7.12. •

1.7.1 Ordinal numbers

Ordinal numbers generalise the natural numbers. Recall from Section 1.4.1 that
a natural number is a set, and moreover, from Section 1.4.2, a well ordered set.
Indeed, the number k ∈ Z≥0 is, by definition,

k = {0, 1, . . . , k − 1}.

Moreover, note that, for every j ∈ k, j = seg( j). This motivates our definition of the
ordinal numbers.

1.7.1 Definition (Ordinal number) An ordinal number is a well ordered set (o,≤) with
the property that, for each x ∈ o, x = seg(x). •

Let us give some examples of ordinal numbers. The examples we give are all
of “small” ordinals. We begin our constructions in a fairly detailed way, and then
we omit the details as we move on, since the idea becomes clear after the initial
constructions.

1.7.2 Examples (Ordinal numbers)
1. As we saw before we stated Definition 1.7.1, each nonnegative integer is an

ordinal number.
2. The setZ≥0 is an ordinal number. This is easily verified, but discomforting. We

are saying that the set of numbers is itself a new kind of number, an ordinal
number. Let us call this ordinal number ω. Pressing on. . .
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3. The successor Z+
≥0 = Z≥0 ∪ {Z≥0} is also an ordinal number, in just the same

manner as a natural number is an ordinal number. This ordinal number is
denoted by ω + 1.

4. One carries on in this way defining ordinal numbers ω + (k + 1) = (ω + k)+.
5. Next we assume that there is a set containing ω and all of its successors. In

axiomatic set theory, this follows from a construction like that justifying As-
sumption 1.4.3, along with another axiom (the Axiom of Substitution; see Sec-
tion 1.8.2) saying, essentially, that we can repeat the process. Just as we did
with the definition of Z≥0, we take the smallest of these sets of successors to
arrive at a net set that is to ω as ω is to 0. As was ω = Z≥0, we well order this
set by the partial order ⊆. This set is then clearly an ordinal number, and is
denoted by ω2.

6. One now proceeds to construct the successors ω2+ 1 = ω2+, ω2+ 2 = (ω2+ 1)+,
and so on. These new sets are also ordinal numbers.

7. The preceding process yields ordinal numbers ω,ω2, ω3, and so on.
8. We now again apply the same procedure to define an ordinal number that is

contains ω, ω2, etc. This set we denote by ω2.
9. One then defines ω2 + 1 = (ω2)+, ω2 + 2 = (ω2 + 1)+, etc., noting that these two

are all ordinal numbers.
10. Next comes ω2 + ω, which is the set containing all ordinal numbers ω2 + 1,

ω2 + 2, etc.
11. Then comes ω2 + ω + 1, ω2 + ω + 2, etc.
12. Following these is ω2 + ω2, ω2 + ω2 + 1, and so on.
13. Then comes ω2 + ω3, ω2 + ω3 + 1, and so on.
14. After ω2, ω2 + ω, ω2 + ω2, and so on, we arrive at ω22.
15. One then arrives at ω22 + 1, . . . , ω22 + ω, . . . , ω22 + ω2, etc.
16. After ω22, ω23, and so on comes ω3.
17. After ω, ω2, ω3, etc., comes ωω.
18. After ω, ωω, ωωω , etc., comes ϵ0. The entire construction starts again from ϵ0.

Thus we get to ϵ0 + 1, ϵ0 + 2, and so on reproducing all of the above steps with
an ϵ0 in front of everything.

19. Then we get ϵ02, ϵ03, and so on up to ϵ0ω.
20. These are followed by ϵ0ω2, ϵ0ω3 and so on up to ϵ0ωω.
21. Then comes ϵ0ωω

ω , etc.
22. These are followed by ϵ2

0.
23. We hope the reader is getting the point of these constructions, and can produce

more such ordinals derived from the natural numbers. •

The above constructions of examples of ordinal numbers suggests that there are
a lot of them. However, the concrete constructions do not really do justice to the
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number of ordinals. The ordinals that are elements ofZ≥0 are called finite ordinals,
and all other ordinals are transfinite. All of the ordinals we have named above
are called “enumerable” (see Definition 1.7.13). There are many other ordinals
not included in the above list, but before we can appreciate this, we first have to
describe some properties of ordinals.

First we note that ordinals are exactly defined by similarity. More precisely, we
have the following result.

1.7.3 Proposition (Similar ordinals are equal) If o1 and o2 are similar ordinal numbers
then o1 = o2.

Proof Let f : o1 → o2 be a similarity and define

S = {x ∈ o1 | f (x) = x}.

We wish to show that S = o1. Suppose that seg(x) ⊆ S for x ∈ o1. Then x is the
least element of seg(x) and, since f is a similarity, f (x) is the least element of f (seg(x)).
Therefore, x and f (x) both have seg(x) as their strict initial segment, by definition of S.
Thus, by the definition of ordinal numbers, x = f (x). The result now follows by the
Principle of Transfinite Induction. ■

The next result gives a rather rigid structure to any set of ordinal numbers.

1.7.4 Proposition (Sets of ordinals are always well ordered) If O is a set of ordinal
numbers, then this set is well ordered by ⊆.

Proof First we claim that O is totally ordered. Let o1, o2 ∈ O and note that these are
both well ordered sets. Therefore, by Proposition 1.5.21, either o1 = o2, o1 is similar to
a strict initial segment in o2, or o2 is similar to a strict initial segment in o1. In either
of the last two cases, it follows from Proposition 1.7.3 that either o1 is equal to a strict
initial segment in o2, or vice versa. Thus, either o1 ≤ o2 or o2 ≤ o1. Thus O is totally
ordered, a fact we shall assume in the remainder of the proof.

Let o ∈ O. If o ≤ o′ for every o′ ∈ O, then o is the least member of O, and so O has a
least member, namely o. If o is not the least member of O, then there exists o′ ∈ O such
that o′ < o. Thus o′ ∈ o and so the set o ∩ E is nonempty. Let o0 be the least element
of o. We claim that o0 is also the least element of O. Indeed, let o′ ∈ O. If o′ < o then
o′ ∈ o ∩ E and so o0 ≤ o′. If o ≤ o′ then o0 < o′, so showing that o0 is indeed the least
element of O. ■

Our constructions in Example 1.7.2, and indeed the definition of an ordinal
number, suggest the true fact that every ordinal number has a successor that is an
ordinal number. However, it may not be the case that an ordinal number has an
immediate predecessor. For example, each of the ordinals that are natural numbers
has an immediate predecessor, but the ordinal ω does not have an immediate
predecessor. That is to say, there is no largest ordinal number strictly less ω.

Recall that the set Z≥0 was defined by being the smallest set, having a certain
property, that contains all nonnegative integers. One can then ask, “Is there a set
containing all ordinal numbers?” It turns out the definition of the ordinal numbers
prohibits this.
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1.7.5 Proposition (Burali-Forti9 Paradox) There is no set O having the property that, if o
is an ordinal number, then o ∈ O.

Proof Suppose that such a set O exists. We claim that suppO exists and is an ordinal
number. Indeed, we claim that suppO = ∪o∈Oo. Note that the set ∪o∈Oo is well ordered
by inclusion by Proposition 1.7.4. Clearly, ∪o∈O is the smallest such set containing
each o ∈ O. Moreover, it is also clear from Proposition 1.7.4 that if o′ ∈ ∪o∈O, then
o′ = seg(o′). Thus suppO exists, and is an ordinal number. Moreover, this order
number is greater than all those in O, thus showing that O cannot exist. ■

For our purposes, the most useful feature of the ordinal numbers is the follow-
ing.

1.7.6 Theorem (Ordinal numbers can count the size of a set) If (S,⪯) is a well ordered
set, then there exists a unique ordinal number oS with the property that S and oS are similar.

Proof The uniqueness follows from Proposition 1.7.3. Let x0 ∈ S have the property
that if x < x0 then seg(x) is similar to some (necessarily unique) ordinal. (Why does x0
exist?) Now let P(x, o) be the proposition “o is an ordinal number similar to seg(x)”.
Then define the set of ordinal numbers

o0 = {o | for each x ∈ seg(x0), there exists o such that P(x, o) holds}.

One can easily verify that o0 is itself an ordinal number that is similar to seg(x0).
Therefore, the Principle of Transfinite Induction can be applied to show that S is
similar to an ordinal number. ■

This theorem is important, because it tells us that the ordinal numbers are the
same, essentially, as the well ordered sets. Thus one can use the two concepts
interchangeably; this is not obvious from the definition of an ordinal number.

It is also possible to define addition and multiplication of ordinal numbers.
Since we will not make use of this, let us merely sketch how this goes. For ordinal
numbers o1 and o2, let (S1,⪯1) and (S2,⪯2) be well ordered sets similar to o1 and o2,
respectively. Define a partial order in S1

◦

∪S2 by

(i1, x1) ⪯+ (i2, x2) ⇐⇒

i1 = i2, x1 ⪯i1 , or
i1 < i2.

One may verify that this is a well order. Then define o1 + o2 as the unique ordinal
number equivalent to the well ordered set (S1

◦

∪S2,⪯+). To define product of o1 and
o2, on the Cartesian product S1 × S2 consider the partial order

(x1, x2) ⪯× (y1, y2) ⇐⇒

x2 ≺2 y2, or
x2 = y2, x1 ≺1 y1.

9Cesare Burali-Forti (1861–1931) was an Italian mathematician who made contributions to math-
ematical logic.
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Again, this is verifiable as being a well order. One then defines o1 · o2 to be the
unique ordinal number similar to the well ordered set (S1 × S2,⪯×). One must
exercise care when dealing with addition and multiplication of ordinals, since,
for example, neither addition nor multiplication are commutative. For example,
1 + ω , ω + 1 (why?). However, since we do not make use of this arithmetic, we
shall not explore this further. It is worth noting that the notation in Example 1.7.2
is derived from ordinal arithmetic. Thus, for example, ω2 = ω · 2, etc.

1.7.2 Cardinal numbers

The cardinal numbers, as mentioned at the beginning of this section, are in-
tended to be measures of the size of a set. If one combines the Zermelo’s Well
Ordering Theorem (Theorem 1.5.16) and Theorem 1.7.6, one might be inclined
to say that the ordinal numbers are suited to this task. Indeed, simply place a
well order on the set of interest by Theorem 1.5.16, and then use the associated
ordinal number, given by Theorem 1.7.6, to define “size.” The problem with this
construction is that this notion of the “size” of a set would depend on the choice of
well ordering. As an example, let us take the setZ≥0. We place two well orderings
on Z≥0, one being the natural well ordering ≤ and the other being defined by

k1 ⪯ k2 ⇐⇒


k1 ≤ k2, k1, k2 ∈ Z>0, or
k1 = k2 = 0, or
k1 = 0, k2 ∈ Z>0.

Thus, for the partial order ⪯, one places 0 after all other natural numbers. One
then verifies that (Z≥0,≤) is similar to the ordinal number ω and that (Z≥0,⪯) is
similar to the ordinal number ω + 1. Thus, even in a fairly simple example of a
non-finite set, we see that the well order can change the size, if we go with size
being determined by ordinals.

Therefore, we introduce a special subset of ordinals.

1.7.7 Definition (Cardinal number) A cardinal number is an ordinal number c with the
property that, for all ordinal numbers o for which there exists a bijection from c to
o, we have c ≤ o. •

In other words, a cardinal number is the least ordinal number in a collection of
ordinal numbers that are equivalent. Note that finite ordinals are only equivalent
with a single ordinal, namely themselves. However, transfinite ordinals may be
equivalent to different transfinite ordinals. The following example illustrates this.

1.7.8 Example (Equivalent transfinite ordinals) We claim that there is a 1–1 correspon-
dence between ω and ω + 1. We can establish this correspondence explicitly by
defining a map f : ω→ ω + 1 by

f (x) =

ω, x = 0,
x − 1, x ∈ Z>0,
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where x − 1 denotes the immediate predecessor of x ∈ Z>0.
One can actually check that all of the ordinal numbers presented in Exam-

ple 1.7.2 are equivalent to ω! This is a consequence of Proposition 1.7.16 below.
Accepting this as fact for the moment, we see that the only ordinals from Exam-
ple 1.7.2 that are cardinal numbers are the elements of Z≥0 along with ω. •

Certain of the facts about ordinal numbers translate directly to equivalent facts
about cardinal numbers. Let us record these

1.7.9 Proposition (Properties of cardinal numbers) The following statements hold:
(i) if c1 and c2 are similar cardinal numbers then c1 = c2;
(ii) if C is a set of cardinal numbers, then this set is well ordered by ⊆;
(iii) there is no set C having the property that, if c is a cardinal number, then c ∈ C

(Cantor’s paradox).10

Proof The only thing that does not follow immediately from the corresponding results
for ordinal numbers is Cantor’s Paradox. The proof of this part of the result goes
exactly as does that of Proposition 1.7.5. One only needs to verify that, if C is any set
of cardinal numbers, then there exists a cardinal number greater or equal to suppC.
This, however, is clear since suppC is an ordinal number strictly greater than any
element of C, meaning that there is a corresponding cardinal number c equivalent to
suppC. Thus c ≥ suppC. ■

1.7.3 Cardinality

Cardinality is the measure of the “size” of a set that we have been after. The
following result sets the stage for the definition.

1.7.10 Lemma For a set S there exists a unique cardinal number card(S) such that S and card(S)
are equivalent.

Proof By Theorem 1.7.6 there exists an ordinal number oS that is similar to S, and
therefore equivalent to S. Any ordinal equivalent to oS is therefore also equivalent to
S, since equivalence of sets is an “equivalence relation” (Exercise 1.3.8). Therefore, the
result follows by choosing the unique least element in the set of ordinals equivalent to
oS. ■

With this fact at hand, the following definition makes sense.

1.7.11 Definition (Cardinality) The cardinality of a set S is the unique cardinal number
card(S) that is equivalent to S. •

The next result indicates how one often deals with cardinality in practice. The
important thing to note is that, provided one is interested only in comparing cardi-
nalities of sets, then one need not deal with the complication of cardinal numbers.

10Georg Ferdinand Ludwig Philipp Cantor (1845–1918) was born in Denmark, grew up in St.
Petersburg, and lived much of his mathematical life in Germany. He made many important
contributions to set theory and logic. He is regarded as the founder of set theory as we now know
it.
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1.7.12 Theorem (Cantor–Schröder–Bernstein11 Theorem) For sets S and T, the following
statements are equivalent:

(i) card(S) = card(T);
(ii) there exists a bijection f : S→ T;
(iii) there exists injections f : S→ T and g: T→ S;
(iv) there exists surjections f : S→ T and g: T→ S.

Proof It is clear from Lemma 1.7.10 that (i) and (ii) are equivalent. It is also clear
that (ii) implies both (iii) and (iv).

(iii) =⇒ (ii) We start with a lemma.

1 Lemma If A ⊆ S and if there exists an injection f : S → A, then there exists a bijection
g: S→ A.
Proof Define B0 = S \ A and then inductively define B j, j ∈ Z>0, by B j+1 = f (B j).
We claim that the sets (B j) j∈Z≥0 (this notation for a family of sets will be made clear
in Section 1.6.1) are pairwise disjoint. Suppose not and let ( j, k) ∈ Z≥0 × Z≥0 be the
least pair, with respect to the lexicographic ordering (see Exercise 1.5.3), for which
B j ∩ Bk , ∅. Since clearly B0 ∩ B j = ∅ for j ∈ Z>0, we can assume that j = j̃ + 1
and k = k̃ + 1 for j̃, k̃ ∈ Z≥0, and so therefore that B j = f (B j̃) and Bk = f (Bk̃). Thus
f (B j̃∩Bk̃) , ∅ by Proposition 1.3.5, and so B j̃∩Bk̃ , ∅. Since ( j̃, k̃) is less that ( j, k) with
respect to the lexicographic order, we have a contradiction.

Now let B = ∪ j∈Z≥0B j and define g : S→ A by

g(x) =

 f (x), x ∈ B,
x, x < B.

For x ∈ B, g(x) = f (x) ∈ A. For x < B, we have x ∈ A by definition of B0, so that g indeed
takes values in A. By definition g is injective. Also, let x ∈ A. If x < B then g(x) = x. If
x ∈ B then x ∈ B j+1 for some j ∈ Z≥0. Since B j+1 = f (B j), x ∈ image(g), so showing that
g is surjective. ▼

We now continue with the proof of this part of the theorem. Note that g ◦ f : S→
g(T) is injective (cf. Exercise 1.3.5). Therefore, by the preceding lemma, there exists a
bijection h : S→ g(T). Since g is injective, g : T→ g(T) is bijective, and let us denote the
inverse by, abusing notation, g−1 : g(T) → T. We then define b : S → T by b = g−1 ◦ h,
and leave it to the reader to perform the easy verification that b is a bijection.

(iv) =⇒ (iii) Since f is surjective, by Proposition 1.3.9 there exists a right inverse
fR : T→ S. Thus f ◦ fR = idT. Thus f is a left-inverse for fR, implying that fR is injective,
again by Proposition 1.3.9. In like manner, g being surjective implies that there is an
injective map from S to T, namely a right-inverse for g. ■

Distinguished names are given to certain kinds of sets, based on their cardinality.
Recall that ω is the cardinal number corresponding to the set of natural numbers.

11Friedrich Wilhelm Karl Ernst Schröder (1814–1902) was a German mathematician whose work
was in the area of mathematical logic. Felix Bernstein (1878–1956) was born in Germany. Despite
his name being attached to a basic result in set theory, Bernstein’s main contributions were in the
areas of statistics, mathematical biology, and actuarial mathematics.
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1.7.13 Definition (Finite, countable, enumerable, uncountable) A set S is:
(i) finite if card(S) ∈ Z≥0;
(ii) infinite if card(S) ≥ ω;
(iii) countable if card(S) ≤ ω;
(iv) enumerable if card(S) = ω;
(v) uncountable if card(S) > ω. •

Let us give some examples illustrating the distinctions between the various
notions of set size.

1.7.14 Examples (Cardinality)
1. All elements of Z≥0 are, of course, finite sets.
2. The set Z≥0 is countably infinite. Indeed, card(Z≥0) = ω.
3. We claim that 2Z≥0 is uncountable. More generally, we claim that, for any set

S, card(S) < card(2S). To see this, we shall show that any map f : S→ 2S is not
surjective. For such a map, let

A f = {x ∈ S | x < f (x)}.

We claim that A f < image( f ). Indeed, suppose that A f = f (x). If x ∈ A f then
x < f (x) = A f by definition of A f ; a contradiction. On the other hand, if x < A f ,
then x ∈ f (x) = A f ; again a contradiction. We thus conclude that A f < image( f ).
Thus there is no surjective map from S to 2S. There is, however, a surjective
map from 2S to S; for example, for any x0 ∈ S, the map

g(A) =

x, A = {x},
x0, otherwise

is surjective. Thus S is “smaller than” 2S, or card(S) < card(2S). •

1.7.15 Remark (Uncountable sets exist, Continuum Hypothesis) A consequence of
the last of the preceding examples is that fact that uncountable sets exist since 2Z≥0

has a cardinality strictly greater than that of Z≥0.
It is usual to denote the enumerable ordinal by ℵ0 (pronounced “aleph zero” or

“aleph naught”). The smallest uncountable ordinal is then denoted by ℵ1. An easy
way to characterise ℵ1 is as follows. Note that the cardinal ℵ0 has the property that
each of its initial segments is finite. In like manner, ℵ1 has the property that each of
its segments is enumerable. This does not define ℵ1, but perhaps gives the reader
some idea what it is.

It is conjectured that there are no cardinal numbers between ℵ0 and ℵ1; this
conjecture is called the Continuum Hypothesis. For readers prepared to accept the
existence of the real numbers (or to look ahead to Section 2.1), we comment that
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card(R) = card(2Z≥0) (see Exercise 1.7.5). From this follows a slightly more concrete
statement of the Continuum Hypothesis, namely the conjecture that card(R) = ℵ1.
Said yet otherwise, the Continuum Hypothesis is the conjecture that, among the
subsets of R, the only possibilities are (1) countable sets and (2) sets having the
same cardinality as R. •

It is clear the finite union of finite sets is finite. The following result, however,
is less clearly true.

1.7.16 Proposition (Countable unions of countable sets are countable) Let (Sj)j∈Z≥0 be
a family of sets, each of which is countable. Then ∪j∈Z≥0Sj is countable.

Proof Let us explicitly enumerate the elements in the sets S j, j ∈ Z≥0. Thus we write
S j = (x jk)k∈Z≥0 . We now indicate how one constructs a surjective map f from Z≥0 to
∪ j∈Z≥0S j:

f (0) = x00, f (1) = x01, f (2) = x10, f (3) = x02, f (4) = x11, f (5) = x20,

f (6) = x03, f (7) = x12, f (8) = x21, f (9) = x30, f (10) = x04, . . . .

We leave it to the reader to examine this definition and convince themselves that, if it
were continued indefinitely, it would include every element of the set ∪ j∈Z>0S j in the
domain of f . ■

For cardinal numbers one can define arithmetic in a manner similar to, but
not the same as, that for ordinal numbers. Given cardinal numbers c1 and c2

we let S1 and S2 be sets equivalent to (not necessarily similar to, note) c1 and c2,
respectively. We then define c1 + c2 = card(S1

◦

∪S2) and c1 · c2 = card(S1 × S2). Note
that cardinal number arithmetic is not just ordinal number arithmetic restricted
to the cardinal numbers. That is to say, for example, the sum of two cardinal
numbers is not the ordinal sum of the cardinal numbers thought of as ordinal
numbers. It is easy to see this with an example. If S and T are two countably
infinite sets, then so too is S

◦

∪T a countably infinite set (this is Proposition 1.7.16).
Therefore, card(S) + card(T) = card(S

◦

∪T) = ω = card(S) = card(T). We can also
define exponentiation of cardinal numbers. For cardinal numbers c1 and c2 we, as
above, let S1 and S2 be sets equivalent to c1 and c2, respectively. We then define
cc2

1 = card(SS2
1 ), where we recall that SS2

1 denotes the set of maps from S2 to S1.
The only result that we shall care about concerning cardinal arithmetic is the

following.

1.7.17 Theorem (Sums and products of infinite cardinal numbers) If c is an infinite
cardinal number then

(i) c + k = c for every finite cardinal number k,
(ii) c = c + c, and
(iii) c = c · c.
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Proof (i) Let S and T be disjoint sets such that card(S) = c and card(T) = k. Let
g : T→ {1, . . . , k} be a bijection. Since S is infinite, we may suppose that S containsZ>0
as a subset. Define f : S ∪ T→ S by

f (x) =


g(x), x ∈ T,
x + k, x ∈ Z>0 ⊆ S,
x, x ∈ S \Z>0.

This is readily seen to be a bijection, and so gives the result by definition of cardinal
addition.

(ii) Let S be a set such that card(S) = c and define

G(S) = {( f ,A) | A ⊆ S, f : A × {0, 1} → A is a bijection}.

If A ⊆ S is countably infinite, then card(A × {0, 1}) = card(A), and so G(S) is not empty.
Place a partial order ⪯ on G(S) by ( f1,A1) ⪯ ( f2,A2) if A1 ⊆ A2 and if f2|A1 = f1. This is
readily verified to be a partial order. Moreover, if {( f j,A j) | j ∈ J} is a totally ordered
subset, then we define an upper bound ( f ,A) as follows. We take A = ∪ j∈JA j and
f (x, k) = f j(x, k) where j ∈ J is defined such that x ∈ A j. One can now use Zorn’s
Lemma to assert the existence of a maximal element of G(S) which we denote by ( f ,A).
We claim that S \ A is finite. Indeed, if S \ A is infinite, then there exists a countably
infinite subset B of S \A. Let g be a bijection from B × {0, 1} to B and note that the map
f × g : (A ∪ B) × {0, 1} → A ∪ B defined by

f × g(x, k) =

 f (x, k), x ∈ A,
g(x, k), x ∈ B

if then a bijection, thus contradicting the maximality of ( f ,A). Thus S \ A is indeed
finite. Finally, since ( f ,A) ∈ G(S), we have card(A)+card(A) = card(A). Also, card(S) =
card(A) + card(A \ S). Since card(S \ A) is finite, by part (i) this part of the theorem
follows.

(iii) Let S be a set such that card(S) = c and define

F(S) = {( f ,A) | A ⊆ S, f : A × A→ A f is a bijection}.

If A ⊆ S is countably infinite, then card(A×A) = card(A) and so there exists a bijection
from A × A to A. Thus F(S) is not empty. Place a partial order ⪯ on F(S) by asking
that ( f1,A1) ⪯ ( f2,A2) if A1 ⊆ A2 and f2|A1 × A1 = f1; we leave to the reader the
straightforward verification that this is a partial order. Moreover, if {( f j,A j) | j ∈ J}
is a totally ordered subset, it is easy to define an upper bound ( f ,A) for this set as
follows. Take A = ∪ j∈JA j and define f (x, y) = f j(x, y) where j ∈ J is defined such
that (x, y) ∈ A j × A j. Thus, by Zorn’s Lemma, there exists a maximal element ( f ,A)
of F(S). By definition of F(S) we have card(A) card(A) = card(A). We now show that
card(A) = card(S).

Clearly card(A) ≤ card(S) since A ⊆ S. Thus suppose that card(A) < card(S). We
now use a lemma.
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1 Lemma If c1 and c2 are cardinal numbers at least one of which is infinite, and if c3 is the
larger of c1 and c2, then c1 + c2 = c3.

Proof Let S1 and S2 be disjoint sets such that card(S1) = c1 and card(S2) = c2. Since
c1 ≤ c3 and c2 ≤ c3 it follows that c1 + c2 = c3 + c3. Also, card(c3) ≤ card(c1) + card(c2).
The lemma now follows from part (ii). ▼

From the lemma we know that card(S) is the larger of card(A) and card(S \
A), i.e., that card(S) = card(S \ A). Therefore card(A) < card(S \ A). Thus there
exists a subset B ⊆ (S \ A) such that card(B) = card(A). Therefore,

card(A × B) = card(B × A) = card(B × B) = card(A) = card(B).

Therefore,
card((A × B) ∪ (B × A) ∪ (B × B)) = card(B)

by part (ii). Therefore, there exists a bijection g from (A × B) ∪ (B × A) ∪ (B × B) to B.
Thus we can define a bijection f × g from

(A ∪ B) × (A ∪ B) = (A × A) ∪ (A × B) ∪ (B × A) ∪ (B × B)

to A ∪ B by

f × g(x, y) =

 f (x, y), (x, y) ∈ A × A,
g(x, y), otherwise.

Since A ⊆ (A∪ B) and since f × g|(A ×A) = f , this contradicts the maximality of ( f ,A).
Thus our assumption that card(A) < card(S) is invalid. ■

The following corollary will be particularly useful.

1.7.18 Corollary (Sum and product of a countable cardinal and an infinite cardinal)
If c is an infinite cardinal number then

(i) c ≤ c + card(Z>0) and
(ii) c ≤ c · card(Z>0).

Proof This follows from Theorem 1.7.17 since card(Z>0) is the smallest infinite cardi-
nal number, and so card(Z>0) ≤ c. ■

Exercises

1.7.1 Show that every element of an ordinal number is an ordinal number.
1.7.2 Show that any finite union of finite sets is finite.
1.7.3 Show that the Cartesian product of a finite number of countable sets is

countable.
1.7.4 For a set S, as per Definition 1.3.1, let 2S denote the collection of maps from

the set S to the set 2. Show that card(2S) = card(2S), so justifying the notation
2S as the collection of subsets of S.
Hint: Given a subset A ⊆ S, think of a natural way of assigning a map from S to 2.
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In the next exercise you will show that card(R) = card(2Z>0). We refer to Section 2.1
for the definition of the real numbers. There the reader can also find the definition
of the rational numbers, as these are also used in the next exercise.

1.7.5 Show that card(R) = card(2Z>0) by answering the following questions.
Define f1 : R→ 2Q by

f1(x) = {q ∈ Q | q ≤ x}.

(a) Show that f1 is injective to conclude that card(R) ≤ card(2Q).
(b) Show that card(2Q) = card(2Z>0), and conclude that card(R) ≤ card(2Z>0).
Let {0, 2}Z>0 be the set of maps from Z>0 to {0, 2}, and regard {0, 2}Z>0 as a
subset of [0, 1] by thinking of {0, 2}Z>0 as being a sequence representing a
decimal expansion in base 3. That is, to f : Z>0 → {0, 2} assign the real
number

f2( f ) =
∞∑
j=1

f ( j)
3 j .

Thus f2 is a map from {0, 2}Z>0 to [0, 1].
(c) Show that f2 is injective so that card({0, 2}Z>0) ≤ card([0, 1]).
(d) Show that card([0, 1]) ≤ card(R).
(e) Show that card({0, 2}Z>0) = card(2Z>0), and conclude that card(2Z>0) ≤

card(R).
Hint: Use Exercise 1.7.4.

This shows that card(R) = card(2Z>0), as desired.
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Section 1.8

Some words on axiomatic set theory

The account of set theory in this chapter is, as we said at the beginning of
Section 1.1, called “naı̈ve set theory.” It turns out that the lack of care in saying
what a set is in naı̈ve set theory causes some problems. We indicate the nature
of these problems in Section 1.8.1. To get around these problems, the presently
accepted technique is the define a set as an element of a collection of objects
satisfying certain axioms. This is called axiomatic set theory, and we refer the
reader to the notes at the end of the chapter for references. The most commonly
used such axioms are those of Zermelo–Fränkel set theory, and we give these in
Section 1.8.2. There are alternative collections of axioms, some equivalent to the
Zermelo–Fränkel axioms, and some not. We shall not discuss this here. An axiom
commonly, although not incontroversially, accepted is the Axiom of Choice, which
we discuss in Section 1.8.3. We also discuss the Peano Axioms in Section 1.8.4, as
these are the axioms of arithmetic. We close with a discussion of some of the issues
in set theory, since these are of at least cultural interest.

Do I need to read this section? The material in this section is used exactly
nowhere else in the texts. However, we hope the reader will find the informal
presentation, and historical slant, interesting. •

1.8.1 Russell’s Paradox

Russell’s Paradox12 is the following. Let S be the set of all sets that are not
members of themselves. For example, the set P of prime numbers is in S since the
set of prime numbers is not a prime number. However, the set N of all things that
are not prime numbers is in S since the set of all things that are not prime numbers
is not a prime number. Now argue as follows. Suppose that S ∈ S. Then S is a set
that does not contain itself as a member; that is, S < S. Now suppose that S < S.
Then S is a set that does not contain itself as a member; that is, S ∈ S. This is clearly
absurd, so the set S cannot exist, although there seems to be nothing wrong with
its definition. That a contradiction can be derived from the naı̈ve version of set
theory means that it is inconsistent.

A consequence of Russell’s Paradox is that there is no set containing all sets.
Indeed, let S be any set. Then define

T = {x ∈ S | x < x}.
12So named for Bertrand Arthur William Russell (1872–1970), who was a British philosopher and

mathematician. Russell received a Nobel prize for literature in recognition of his popular writings
on philosophy.



1.8 Some words on axiomatic set theory 69

We claim that T < S. Indeed, suppose that T ∈ S. Then either T ∈ T or T < T. In the
first instance, since T ∈ S, T < T. In the second instance, again since T ∈ S, we have
T < T. This is clearly a contradiction, and so we have concluded that, for every set
S, there exists something that is not in A. Thus there can be no “set of sets.”

Another consequence of Russell’s Paradox is the ridiculous conclusion that
everything is true. This is a simply logical consequence of the fact that, if a
contradiction holds, then all statements hold. Here a contradiction means that a
proposition P and its negation ¬P both hold. The argument is as follows. Consider
a proposition P′. Then P or P′ holds, since P holds. However, since ¬P holds and
either P or P′ holds, it must be the case that P′ holds, no matter what P′ is!

Thus the contradiction arising from Russell’s Paradox is unsettling since it now
calls into question any conclusions that might arise from our discussion of set
theory. Various attempts were made to eliminate the eliminate the inconsistency
in the naı̈ve version of set theory. The presently most widely accepted of these
attempts is the collection of axioms forming Zermelo–Fränkel set theory.

1.8.2 The axioms of Zermelo–Fränkel set theory

The axioms we give here are the culmination of the work of Ernst Friedrich
Ferdinand Zermelo (1871–1953) and Adolf Abraham Halevi Fränkel (1891–1965).13

The axioms were constructed in an attempt to arrive at a basis for set theory that
was free of inconsistencies. At present, it is unknown whether the axioms of
Zermelo–Fränkel set theory, abbreviated ZF, are consistent.

Here we shall state the axioms, give a slight discussion of them, and indicate
some of the places in the chapter where the axioms were employed.

The first axiom merely says that two sets are equal if they have the same
elements. This is not controversial, and we have used this axiom out of hand
throughout the chapter.

Axiom of Extension For sets S and T, if x ∈ S if and only if x ∈ T, then S = T. •

The next axiom indicates that one can form the set of elements for which a
certain property holds. Again, this is not controversial, and is an axiom we have
used throughout the chapter.

Axiom of Separation For a set S and a property P defined in S, there exists a set
A such that x ∈ A if and only if x ∈ S and P(x) = true. •

We also have an axiom which says that one can extract two members from two
sets, and think of these as members of another set. This is another uncontroversial
axiom that we have used without much fuss.

Axiom of the Unordered Pair For sets S1 and S2 and for x1 ∈ S1 and x2 ∈ S2, there
exists a set T such that x ∈ T if and only if x = x1 or x = x2. •

13Fränkel was a German mathematician who worked primarily in the areas of set theory and
mathematical logic.



70 1 Set theory and terminology

To form the union of two sets, one needs an axiom asserting that the union exists.
This is natural, and we have used it whenever we use the notion of union, i.e., fre-
quently.

Axiom of Union For sets S1 and S2 there exists a set T such that x ∈ T if and only
if x ∈ S1 or x ∈ S2. •

The existence of the power set is also included in the axioms. It is natural and
we have used it frequently.

Axiom of the Power Set For a set S there exists a set T such that A ∈ T if and only
if A ⊆ S. •

When we constructed the set of natural numbers, we needed an axiom to ensure
that this set existed (cf. Assumption 1.4.3). This axiom is the following.

Axiom of Infinity There exists a set S such that
(i) ∅ ∈ S and
(ii) for each x ∈ S, x+ ∈ S. •

When we constructed a large number of ordinal numbers in Example 1.7.2, we
repeatedly used an axiom, the essence of which was, “The same principle used to
assert the existence ofZ≥0 can be applied to this more general setting.” Let us now
state this idea more formally.

Axiom of Substitution For a set S, if for all x ∈ S there exists a unique y such that
P(x, y) holds, then there exists a set T and a map f : S→ T such that f (x) = y where
P(x, y) = true. •

The idea is that, for each x ∈ S, the collection of objects y for which P(x, y) holds
forms a set. Let us illustrate how the Axiom of Substitution can be used to define
the ordinal number ω2, as in Example 1.7.2. For k ∈ Z≥0 we define

P(k, y) =

true, y = ω + k,
false, otherwise.

The Axiom of Substitution then says that there is a set T and a map f : Z≥0 → T
such that f (k) = ω+ k. The ordinal number ω2 is then simply the image of the map
f .

The final axiom in ZF is the one whose primary purpose is to eliminate incon-
sistencies such as those arising from Russell’s Paradox.

Axiom of Regularity For each nonempty set S there exists x ∈ S such that x∩S = ∅.
•

The Axiom of Regularity rules out sets like S = {S} whose only members are
themselves. It is no great loss having to live without such sets.
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1.8.3 The Axiom of Choice

The Axiom of Choice has its origins in Zermelo’s proof of his theorem that every
set can be well ordered. In order to prove the theorem, he had to introduce a new
axiom in addition to those accepted at the time to characterise sets. The new axiom
is the following.

Axiom of Choice For each family (Sa)a∈A of nonempty sets, there exists a function,
f : A→ ∪a∈ASa, called a choice function, having the property that f (a) ∈ Sa. •

The combination of the axioms of ZF with the Axiom of Choice is sometimes
called ZF with Choice, or ZFC. Work of Cohen14 shows that the Axiom of Choice is
independent of the axioms of ZF. Thus, when one adopts ZFC, the Axiom of Choice
is really something additional that one is adding to one’s list of assumptions of set
theory.

At first glance, the Axiom of Choice, at least in the form we give it, does not
seem startling. It merely says that, from any collection of sets, it is possible to select
an element from each set. A trivial rephrasing of the Axiom of Choice is that, for
any family (Sa)a∈A of nonempty sets, the Cartesian product

∏
a∈A Sa is nonempty.

What is less settling about the Axiom of Choice is that it can lead to some non-
intuitive conclusions. For example, as mentioned above, Zermelo’s Well Ordering
Theorem follows from the Axiom of Choice. Indeed, the two are equivalent. Let
us, in fact, list the equivalence of the Axiom of Choice with two other important
results from the chapter, one of which is Zermelo’s Well Ordering Theorem.

1.8.1 Theorem (Equivalents of the Axiom of Choice) If the axioms of ZF hold, then the
following statements are equivalent:

(i) the Axiom of Choice holds;
(ii) Zorn’s Lemma holds;
(iii) Zermelo’s Well Ordering Theorem holds.

Proof Let us suppose that the proofs we give of Theorems 1.5.13 and 1.5.16 are valid
using the axioms of ZF. This is true, and can be verified, if tediously. One only needs to
check that no constructions, other than those allowed by the axioms of ZF were used
in the proofs. Assuming this, the implications (i) =⇒ (ii) and (ii) =⇒ (iii) hold, since
these are what is used in the proofs of Theorems 1.5.13 and 1.5.16. It only remains
to prove the implication (iii) =⇒ (i). However, this is straightforward. Let (Sa)a∈A be
a family of sets. By Zermelo’s Well Ordering Theorem, well order each of these sets,
and then define a choice function by assigning to a ∈ A the least member of Sa. ■

There are, in fact, many statements that are equivalent to the Axiom of Choice.
For example, the fact that a surjective map possesses a right-inverse is equivalent
to the Axiom of Choice. In Exercise 1.8.1 we give a few of the more easily proved

14Paul Joseph Cohen was born in the United States in 1934, and has made outstanding contribu-
tions to the foundations of mathematics and set theory.
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equivalents of the Axiom of Choice. At the time of its introduction, the equiva-
lence of the Axiom of Choice with Zermelo’s Well Ordering Theorem led many
mathematicians to reject the validity of the Axiom of Choice. Zermelo, however,
countered that many mathematicians implicitly used the Axiom of Choice without
saying so. This then led to much activity in mathematics along the lines of decid-
ing which results required the Axiom of Choice for their proof. Results can then be
divided into three groups, in ascending order of “goodness,” where the Axiom of
Choice is deemed “bad”:
1. results that are equivalent to the Axiom of Choice;
2. results that are not equivalent to the Axiom of Choice, but can be shown to

require it for their proof;
3. results that are true, whether or not the Axiom of Choice holds.

Somewhat more startling is that, if one accepts the Axiom of Choice, then it is
possible to derive results which seem absurd. Perhaps the most famous of these
is the Banach–Tarski Paradox,15 which says, very roughly, that it is possible to
divide a sphere into a finite number of pieces and then reassemble them, while
maintaining their shape, into two spheres of equal volume. Said in this way, the
result seems impossible. However, if one looks at the result carefully, the nature of
the pieces into which the sphere is divided is, obviously, extremely complicated. In
the language of Chapter III-2, they are nonmeasurable sets. Such sets correspond
poorly with our intuition, and indeed require the Axiom of Choice to assert their
existence. We shall give a proof of the Banach–Tarski Paradox in Section III-2.5.6.

On the flip side of this is the fact that there are statements that seem like they
must be true, and that are equivalent to the Axiom of Choice. One such statement is
the Trichotomy Law for the real numbers, which says that, given two real numbers
x and y, either x < y, y < x, or x = y. If rejecting the Axiom of Choice means
rejecting the Trichotomy Law for real numbers, then many mathematicians would
have to rethink the way they do mathematics!

Indeed, there is a branch of mathematics that is dedicated to just this sort of
rethinking, and this is called constructivism; see the notes at the end of the chapter
for references. The genesis of this branch of mathematics is the dissatisfaction, often
arising from applications of the Axiom of Choice, with nonconstructive proofs
in mathematics (for example, our proof that a surjective map possesses a right-
inverse).

In this book, we will unabashedly assume the validity of the Axiom of Choice.
In doing so, we follow in the mainstream of contemporary mathematics.

15Stefan Banach (1892–1945) was a well-known Polish mathematician who made significant and
foundational contributions to functional analysis. Alfred Tarski (1902–1983) was also Polish, and
his main contributions were to set theory and mathematical logic.



1.8 Some words on axiomatic set theory 73

1.8.4 Peano’s axioms

Peano’s axioms16 were derived in order to establish a basis for arithmetic. They
essentially give those properties of the set of “numbers” that allow the establish-
ment of the usual laws for addition and multiplication of natural numbers. Peano’s
axioms are these:
1. 0 = ∅ is a number;
2. if k is a number, the successor of k is a number;
3. there is no number for which 0 is a successor;
4. if j+ = k+ then j = k for all numbers j and k;
5. if S is a set of numbers containing 0 and having the property that the successor

of every element of S is in S, then S contains the set of numbers.
Peano’s axioms, since they led to the integers, and so there to the rational and

real numbers (as in Section 2.1), were once considered as the basic ingredient from
which all the rest of mathematics stemmed. This idea, however, received a blow
with the publication of a paper by Kurt Gödel17. Gödel showed that in any logical
system sufficiently general to include the Peano axioms, there exist statements
whose truth cannot be validated within the axioms of the system. Thus, this
showed that any system built on arithmetic could not possibly be self-contained.

1.8.5 Discussion of the status of set theory

In this section, we have painted a picture of set theory that suggests it is some-
thing of a morass of questionable assumptions and possibly unverifiable state-
ments. There is some validity in this, in the sense that there are many fundamental
questions unanswered. However, we shall not worry much about these matters as
we proceed onto more concrete topics.

1.8.6 Notes

There are many general references for axiomatic set theory. We cite [Suppes
1960].

The independence of the Axiom of Choice from the ZF axioms was proved
in [Cohen 1963]. An interesting book on the Axiom of Choice is that of Moore
[1982]. Constructivism is discussed by [Bridges and Richman 1987], for example.
It is the paper of Gödel [1931] where the incompleteness of axiomatic systems
which contain the Peano axioms is proved.

16Named after Giuseppe Peano (1858–1932), an Italian mathematician who did work with differ-
ential equations and set theory.

17Kurt Gödel (1906–1978) was born in a part of the Austro-Hungarian Empire that is now
Czechoslovakia. He made outstanding contributions to the subject of mathematical logic.
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Exercises

1.8.1 Prove the following result.

Theorem If the axioms of ZF hold, then the following statements are equivalent:
(i) the Axiom of Choice holds;
(ii) for any family (Sa)a∈A of sets, the Cartesian product

∏
a∈A Sa is nonempty;

(iii) every surjective map possesses a right inverse.
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Section 1.9

Some words about proving things

Rigour is an important part of the presentation in this series, and if you are
so unfortunate as to be using these books as a text, then hopefully you will be
asked to prove some things, for example, from the exercises. In this section we
say a few (almost uselessly) general things about techniques for proving things.
We also say some things about poor proof technique, much (but not all) of which
is delivered with tongue in cheek. The fact of the matter is that the best way to
become proficient at proving things is to (1) read a lot of (needless to say, good)
proofs, and (2) most importantly, get lots of practice. What is certainly true is that
it much easier to begin your theorem-proving career by proving simple things.
In this respect, the proofs and exercises in this chapter are good ones. Similarly,
many of the proofs and exercises in Chapters 4 and 5 provide a good basis for
honing one’s theorem-proving skills. By contrast, some of the results in Chapter 2
are a little more sophisticated, while still not difficult. As we progress through
the preparatory material, we shall increasingly encounter material that is quite
challenging, and so proofs that are quite elaborate. The neophyte should not be so
ambitious as to tackle these early on in their mathematical development.

Do I need to read this section? Go ahead, read it. It will be fun. •

1.9.1 Legitimate proof techniques

The techniques here are the principle ones use in proving simple results. For
very complicated results, many of which appear in this series, one is unlikely to
get much help from this list.
1. Proof by definition: Show that the desired proposition follows directly from the

given definitions and assumptions. Theorems that have already been proven
to follow from the definitions and assumptions may also be used. Proofs of
this sort are often abbreviated by “This is obvious.” While this may well be
true, it is better to replace this hopelessly vague assertion with something more
meaningful like “This follows directly from the definition.”

2. Proof by contradiction: Assume that the hypotheses of the desired proposition
hold, but that the conclusions are false, and make no other assumption. Show
that this leads to an impossible conclusion. This implies that the assumption
must be false, meaning the desired proposition is true.

3. Proof by induction: In this method one wishes to prove a proposition for an
enumerable number of cases, say 1, 2, . . . ,n, . . . . One first proves the proposition
for case 1. Then one proves that, if the proposition is true for the nth case, it is
true for the (n + 1)st case.
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4. Proof by exhaustion: One proves the desired proposition to be true for all cases.
This method only applies when there is a finite number of cases.

5. Proof by contrapositive: To show that proposition A implies proposition B, one
shows that proposition B not being true implies that proposition A is not true.
It is common to see newcomers get proof by contrapositive and proof by con-
tradiction confused.

6. Proof by counterexample: This sort of proof is typically useful in showing that
some general assertion does not hold. That is to say, one wishes to show that
a certain conclusion does not follow from certain hypotheses. To show this, it
suffices to come up with a single example for which the hypotheses hold, but
the conclusion does not. Such an example is called a counterexample.

1.9.2 Improper proof techniques

Many of these seem so simple that a first reaction is, “Who would be dumb
enough to do something so obviously incorrect.” However, it is easy, and some-
times tempting, to hide one of these incorrect arguments inside something compli-
cated.
1. Proof by reverse implication: To prove that A implies B, shows that B implies A.
2. Proof by half proof: One is required to show that A and B are equivalent, but one

only shows that A implies B. Note that the appearance of “if and only if” means
that you have two implications to prove!

3. Proof by example: Show only a single case among many. Assume that only a
single case is sufficient (when it is not) or suggest that the proof of this case
contains most of the ideas of the general proof.

4. Proof by picture: A more convincing form of proof by example. Pictures can
provide nice illustrations, but suffice in no part of a rigorous argument.

5. Proof by special methods: You are allowed to divide by zero, take wrong square
roots, manipulate divergent series, etc.

6. Proof by convergent irrelevancies: Prove a lot of things related to the desired result.
7. Proof by semantic shift: Some standard but inconvenient definitions are changed

for the statement of the result.
8. Proof by limited definition: Define (or implicitly assume) a set S, for which all of

whose elements the desired result is true, then announce that in the future only
members of the set S will be considered.

9. Proof by circular cross-reference: Delay the proof of a lemma until many theorems
have been derived from it. Use one or more of these theorems in the proof of
the lemma.

10. Proof by appeal to intuition: Cloud-shaped drawings frequently help here.
11. Proof by elimination of counterexample: Assume the hypothesis is true. Then show

that a counterexample cannot exist. (This is really just a well-disguised proof by
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reverse implication.) A common variation, known as “begging the question”
involves getting deep into the proof and then using a step that assumes the
hypothesis.

12. Proof by obfuscation: A long plotless sequence of true and/or meaningless syn-
tactically related statements.

13. Proof by cumbersome notation: Best done with access to at least four alphabets
and special symbols. Can help make proofs by special methods look more
convincing.

14. Proof by cosmology: The negation of a proposition is unimaginable or meaning-
less.

15. Proof by reduction to the wrong problem: To show that the result is true, compare
(reduce/translate) the problem (in)to another problem. This is valid if the other
problem is then solvable. The error lies in comparing to an unsolvable problem.

Exercises

1.9.1 Find the flaw in the following inductive “proof” of the fact that, in any class,
if one selects a subset of students, they will have received the same grade.

Suppose that we have a class with students S = {S1, . . . ,Sm}. We
shall prove by induction on the size of the subset that any subset
of students receive the same grade. For a subset {S j1}, the asser-
tion is clearly true. Now suppose that the assertion holds for all
subsets of S with k students with k ∈ {1, . . . , l}, and suppose we
have a subset {S j1 , . . . ,S jl ,S jl+1} of l + 1 students. By the induction
hypothesis, the students from the set {S j1 , . . . ,S jl} all receive the
same grade. Also by the induction hypothesis, the students from
the set {S2, . . . ,S jl ,S jl+1} all receive the same grade. In particular, the
grade received by student S jl+1 is the same as the grade received by
student S jl . But this is the same as the grade received by students
S j1 , . . . ,S jl−1 , and so, by induction, we have proved that all students
receive the same grade.

In the next exercise you will consider one of Zeno’s paradoxes. Zeno18 is best known
for having developed a collection of paradoxes, some of which touch surprisingly
deeply on mathematical ideas that were not perhaps fully appreciated until the
19th century. Many of his paradoxes have a flavour similar to the one we give here,
which may be the most commonly encountered during dinnertime conversations.

1.9.2 Consider the classical problem of the Achilles chasing the tortoise. A tortoise
starts off a race T seconds before Achilles. Achilles, of course, is faster than
the tortoise, but we shall argue that, despite this, Achilles will actually never
overtake the tortoise.

18Zeno of Elea (∼490BC–∼425BC) was an Italian born philosopher of the Greek school.
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At time T when Achilles starts after the tortoise, the tortoise will be
some distance d1 ahead of Achilles. Achilles will reach this point
after some time t1. But, during the time it took Achilles to travel
distance d1, the tortoise will have moved along to some point d2

ahead of d1. Achilles will then take a time t2 to travel the distance
d2. But by then the tortoise will have travelled another distance
d3. This clearly will continue, and when Achilles reaches the point
where the tortoise was at some moment before, the tortoise will
have moved inexorably ahead. Thus Achilles will never actually
catch up to the tortoise.

What is the flaw in the argument?



Chapter 2

Real numbers and their properties

Real numbers and functions of real numbers form an integral part of mathe-
matics. Certainly all students in the sciences receive basic training in these ideas,
normally in the form of courses on calculus and differential equations. In this
chapter we establish the basic properties of the set of real numbers and of func-
tions defined on this set. In particular, using the construction of the integers in
Section 1.4 as a starting point, we define the set of real numbers in Section 2.1,
thus providing a fairly firm basis on which to develop the main ideas in these
volumes. We follow this by discussing various structural properties of the set of
real numbers. These cover both algebraic properties (Section 2.2) and topological
properties (Section 2.5). We also talk in a little details about sequences and series
of real numbers.

Do I need to read this chapter? Yes you do, unless you already know its con-
tents. While the construction of the real numbers in Section 2.1 is perhaps a little
bit of an extravagance, it does set the stage for the remainder of the material. More-
over, the material in the remainder of the chapter is, in some ways, the backbone
of the mathematical presentation. We say this for two reasons.
1. The technical material concerning the structure of the real numbers is, very

simply, assumed knowledge for reading everything else in the series.
2. The ideas introduced in this chapter will similarly reappear constantly through-

out the volumes in the series. But here, many of these ideas are given their
most concrete presentation and, as such, afford the inexperienced reader the
opportunity to gain familiarity with useful techniques (e.g., the ϵ−δ formalism)
in a setting where they presumably possess some degree of comfort. This will
be crucial when we discuss more abstract ideas in Chapters 5, III-1, and III-6, to
name a few. •
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Section 2.1

Construction of the real numbers

In this section we undertake to define the set of real numbers, using as our
starting point the set Z of integers constructed in Section 1.4. The construction
begins by building the rational numbers, which are defined, loosely speaking, as
fractions of integers. We know from our school days that every real number can be
arbitrarily well approximated by a rational number, e.g., using a decimal expansion.
We use this intuitive idea as our basis for defining the set of real numbers from the
set of rational numbers.

Do I need to read this section? If you feel comfortable with your understanding
of what a real number is, then this section is optional reading. However, it is worth
noting that in Section 2.1.2 we first use the ϵ − δ formalism that is so important
in the analysis featured in this series. Readers unfamiliar/uncomfortable with this
idea may find this section a good place to get comfortable with this idea. It is
also worth mentioning at this point that the ϵ − δ formalism is one with which it
is difficult to become fully comfortable. Indeed, PhD theses have been written on
the topic of how difficult it is for students to fully assimilate this idea. We shall
not adopt any unusual pedagogical strategies to address this matter. However,
students are well-advised to spend some time understanding ϵ − δ language, and
instructors are well-advised to appreciate the difficulty students have in coming to
grips with it. •

2.1.1 Construction of the rational numbers

The set of rational numbers is, roughly, the set of fractions of integers. However,
we do not know what a fraction is. To define the set of rational numbers, we
introduce an equivalence relation ∼ in Z ×Z>0 by

( j1, k1) ∼ ( j2, k2) ⇐⇒ j1 · k2 = j2 · k1.

We leave to the reader the straightforward verification that this is an equivalence
relation. Using this relation we define the rational numbers as follows.

2.1.1 Definition (Rational numbers) A rational number is an element of (Z ×Z>0)/ ∼.
The set of rational numbers is denoted by Q. •

2.1.2 Notation (Notation for rationals) For the rational number [( j, k)] we shall typically
write j

k , reflecting the usual fraction notation. We shall also often write a typical
rational number as “q” when we do not care which equivalence class it comes from.
We shall denote by 0 and 1 the rational numbers [(0, 1)] and [(1, 1)], respectively •
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The set of rational numbers has many of the properties of integers. For example,
one can define addition and multiplication for rational numbers, as well as a total
order in the set of rationals. However, there is an important construction that can
be made for rational numbers that cannot generally be made for integers, namely
that of division. Let us see how this is done.

2.1.3 Definition (Addition, multiplication, and division in Q) Define the operations of
addition, multiplication, and division in Q by

(i) [( j1, k1)] + [( j2, k2)] = [( j1 · k2 + j2 · k1, k1 · k2)],
(ii) [( j1, k1)] · [( j2, k2)] = [( j1 · j2, k1 · k2)], and

(iii) [( j1, k1)]/[( j2, k2)] = [( j1·k2, k1· j2)] (we will also write [( j1,k1)]
[( j2,k2)] for [( j1, k1)]/[( j2, k2)]),

respectively, where [( j1, k1)], [( j2, k2)] ∈ Q and where, in the definition of division,
we require that j2 , 0. We will sometimes omit the “·” when in multiplication. •

We leave to the reader as Exercise 2.1.1 the straightforward task of showing that
these definitions are independent of choice of representatives in Z ×Z>0. We also
leave to the reader the assertion that, with respect to Notation 2.1.2, the operations
of addition, multiplication, and division of rational numbers assume the familiar
form:

j1

k1
+

j2

k2
=

j1 · k2 + j2 · k1

k1 · k2
,

j1

k1
·

j2

k2
=

j1 · j2

k2 · k2
,

j1
k1

j2
k2

=
j1 · k2

k1 · j2
.

For the operation of division, it is convenient to introduce a new concept. Given
[( j, k)] ∈ Qwith j , 0, we define [( j, k)]−1

∈ Q by [(k, j)]. With this notation, division
then can be written as [( j1, k1)]/[( j2, k2)] = [( j1, k1)] ·[( j2, k2)]−1. Thus division is really
just multiplication, as we already knew. Also, if q ∈ Q and if k ∈ Z≥0, then we
define qk

∈ Q inductively by q0 = 1 and qk+ = qk
· q. The rational number qk is the

kth power of q.
Let us verify that the operations above satisfy the expected properties. Note

that there are now some new properties, since we have the operation of division,
or multiplicative inversion, to account for. As we did for integers, we shall write
−q for −1 · q.

2.1.4 Proposition (Properties of addition and multiplication in Q) Addition and multi-
plication in Q satisfy the following rules:

(i) q1 + q2 = q2 + q1, q1,q2 ∈ Q (commutativity of addition);
(ii) (q1 + q2) + q3 = q1 + (q2 + q3), q1,q2,q3 ∈ Q (associativity of addition);
(iii) q + 0 = q, q ∈ Q (additive identity);
(iv) q + (−q) = 0, q ∈ Q (additive inverse);
(v) q1 · q2 = q2 · q1, q1,q2 ∈ Q (commutativity of multiplication);
(vi) (q1 · q2) · q3 = q1 · (q2 · q3), q1,q2,q3 ∈ Q (associativity of multiplication);
(vii) q · 1 = q, q ∈ Q (multiplicative identity);
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(viii) q · q−1 = 1, q ∈ Q \ {0} (multiplicative inverse);
(ix) r · (q1 + q2) = r · q1 + r · q2, r,q1,q2 ∈ Q (distributivity);
(x) qk1 · qk2 = qk1+k2 , q ∈ Q, k1,k2 ∈ Z≥0.

Moreover, if we define iZ : Z→ Q by iZ(k) = [(k, 1)], then addition and multiplication in
Q agrees with that in Z:

iZ(k1) + iZ(k2) = iZ(k1 + k2), iZ(k1) · iZ(k2) = iZ(k1 · k2).

Proof All of these properties follow directly from the definitions of addition and
multiplication, using Proposition 1.4.19. ■

Just as we can naturally think ofZ≥0 as being a subset ofZ, so too can we think
ofZ as a subset ofQ. Moreover, we shall very often do so without making explicit
reference to the map iZ.

Next we consider onQ the extension of the partial order ≤ and the strict partial
order <.

2.1.5 Proposition (Order on Q) On Q define two relations < and ≤ by

[(j1,k1)] < [(j2,k2)] ⇐⇒ j1 · k2 < k1 · j2,
[(j1,k1)] ≤ [(j2,k2)] ⇐⇒ j1 · k2 ≤ k1 · j2.

Then ≤ is a total order and < is the corresponding strict partial order.
Proof First let us show that the relations defined make sense, in that they are inde-
pendent of choice of representative. Thus we suppose that [( j1, k1)] = [( j̃1, k̃1)] and that
[( j2, k2)] = [( j̃2, k̃2)]. Then

[( j1, k1)] ≤ [( j2, k2)]
⇐⇒ j1 · k2 ≤ k1 · j2
⇐⇒ j1 · k2 · j2 · k̃2 · j̃1 · k1 ≤ k1 · j2 · j̃2 · k1 · j1 · k̃1

⇐⇒ ( j̃1 · k̃2) · ( j1 · j2 · k1 · k2) ≤ ( j̃2 · k̃1) · ( j1 · j2 · k1 · k2)

⇐⇒ j̃1 · k̃2 ≤ j̃2 · k̃1.

This shows that the definition of ≤ is independent of representative. Of course, a
similar argument holds for <.

That ≤ is a partial order, and that < is its corresponding strict partial order, follow
from a straightforward checking of the definitions, so we leave this to the reader.

Thus we only need to check that ≤ is a total order. Let [( j1, k1)], [( j2, k2)] ∈ Q. Then,
by the Trichotomy Law forZ, either j1 · k2 < k1 · j2, k1 · j2 < j1 · k2, or j1 · k2 = k1 · j2. But
this directly implies that either [( j1, k1)] < [( j2, k2)], [( j2, k2)] < [( j1, k1)], or [( j1, k1)] =
[( j2, k2)], respectively. ■

The total order on Q allows a classification of rational numbers as follows.
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2.1.6 Definition (Positive and negative rational numbers) A rational number q ∈ Q is:
(i) positive if 0 < q;
(ii) negative if q < 0;
(iii) nonnegative if 0 ≤ q;
(iv) nonpositive if q ≤ 0.

The set of positive rational numbers is denoted by Q>0 and the set of nonnegative
rational numbers is denoted by Q≥0. •

As we did with natural numbers and integers, we isolate the Trichotomy Law.

2.1.7 Corollary (Trichotomy Law forQ) For q, r ∈ Q, exactly one of the following possibilities
holds:

(i) q < r;
(ii) r < q;
(iii) q = r.

The following result records the relationship between the order on Q and the
arithmetic operations.

2.1.8 Proposition (Relation between addition and multiplication and <) For q, r, s ∈
Q, the following statements hold:

(i) if q < r then q + s < r + s;
(ii) if q < r and if s > 0 then s · q < s · r;
(iii) if q < r and if s < 0 then s · r < s · q;
(iv) if 0 < q, r then 0 < q · r;
(v) if q < r and if either

(a) 0 < q, r or
(b) q, r < 0,

then r−1 < q−1.
Proof (i) Write q = [( jq, kq)], r = [( jr, kr)], and s = [( js, ks)]. Since q < r, jq · kr ≤ jr · kq.
Therefore,

jq · kr · k2
s < jr · kq · k2

s

=⇒ jq · kr · k2
s + js · kq · kr · ks < jr · kq · k2

s + j2 · kq · kr · ks,

using Proposition 1.4.22. This last inequality is easily seen to be equivalent to q + s <
r + s.

(ii) Write q = [( jq, kq)], r = [( jr, kr)], and s = [( js, ks)]. Since s > 0 it follows that js > 0.
Since q ≤ r it follows that jq · kr ≤ jr · kq. From Proposition 1.4.22 we then have

jq · js · js · ks ≤ jr · kq · js · ks,

which is equivalent to s · q ≤ s · r by definition of multiplication.
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(iii) The result here follows, as does (ii), from Proposition 1.4.22, but now using the
fact that js < 0.

(iv) This is a straightforward application of the definition of multiplication and <.
(v) This follows directly from the definition of <. ■

The final piece of structure we discuss for rational numbers is the extension of
the absolute value function defined for integers.

2.1.9 Definition (Rational absolute value function) The absolute value function on Q
is the map from Q to Q≥0, denoted by q 7→ |q|, defined by

|q| =


q, 0 < q,
0, q = 0,
−q, q < 0.

•

The absolute value function on Q has properties like that on Z.

2.1.10 Proposition (Properties of absolute value on Q) The following statements hold:
(i) |q| ≥ 0 for all q ∈ Q;
(ii) |q| = 0 if and only if q = 0;
(iii) |r · q| = |r| · |q| for all r,q ∈ Q;
(iv) |r + q| ≤ |r| + |q| for all r,q ∈ Q (triangle inequality);
(v) |q−1

| = |q|−1 for all q ∈ Q \ {0}.
Proof Parts (i), (ii), and (v), follow directly from the definition, and part (iii) follows
in the same manner as the analogous statement in Proposition 1.4.24. Thus we have
only to prove part (iv). We consider various cases.
1. |r| ≤ |q|:

(a) 0 ≥ r, q: Since |r + q| = r + q, and |r| = r and |q| = q, this follows directly.
(b) r < 0, 0 ≤ q: Let r = [( jr, kr)] and q = [( jq, kq)]. Then r < 0 gives jr < 0 and 0 ≤ q

gives jq ≥ 0. We now have

|r + q| =

∣∣∣∣∣∣ jr · kq + jq · kr

kr · kq

∣∣∣∣∣∣ = | jr · kq + jq · kr|

kr · kq

and

|r| + |q| =
| jr| · kq + | jq| · kr

kr · kq
.

Therefore,

|r + q| =
| jr · kq + jq · kr|

kr · kq

≤
| jr| · kq + | jq| · kr

kr · kq

= |r| + |q|,

where we have used Proposition 2.1.8.
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(c) r, q < 0: Here |r+ q| = |−r+ (−q)| = |−(r+ q)| = −(r+ q), and |r| = −r and |q| = −q,
so the result follows immediately.

2. |q| ≤ |r|: This argument is the same as above, swapping r and q. ■

2.1.11 Remark Having been quite fussy about how we arrived at the set of integers and
the set of rational numbers, and about characterising their important properties,
we shall now use standard facts about these, some of which we may not have
proved, but which can easily be proved using the definitions of Z and Q. Some
of the arithmetic properties of Z and Q that we use without comment are in fact
proved in Section 4.2 in the more general setting of rings. However, we anticipate
that most readers will not balk at the instances where we use unproved properties
of integers and rational numbers. •

2.1.2 Construction of the real numbers from the rational numbers

Now we use the rational numbers as the building block for the real numbers.
The idea of this construction, which was originally due to Cauchy1, is the intuitive
idea that the rational numbers may be used to approximate well a real number.
For example, we learn in school that any real number is expressible as a decimal
expansion (see Exercise 2.4.8 for the precise construction of a decimal expansion).
However, any finite length decimal expansion (and even some infinite length dec-
imal expansions) is a rational number. So one could define real numbers as a limit
of decimal expansions in some way. The problem is that there may be multiple
decimal expansions giving rise to the same real number. For example, the decimal
expansions 1.0000 and 0.9999 . . . represent the same real number. The way one
gets around this potential problem is to use equivalence classes, of course. But
equivalence classes of what? This is where we begin the presentation, proper.

2.1.12 Definition (Cauchy sequence, convergent sequence) Let (q j) j∈Z>0 be a sequence
in Q. The sequence:

(i) is a Cauchy sequence if, for each ϵ ∈ Q>0, there exists N ∈ Z>0 such that
|q j − qk| < ϵ for j, k ≥ N;

(ii) converges to q0 if, for each ϵ ∈ Q>0, there exists N ∈ Z>0 such that |q j − q0| < ϵ
for j ≥ N.

(iii) is bounded if there exists M ∈ Q>0 such that |q j| < M for each j ∈ Z>0. •

The set of Cauchy sequences in Q is denoted by CS(Q). A sequence converging to
q0 has q0 as its limit. •

The idea of a Cauchy sequence is that the terms in the sequence can be made
arbitrarily close as we get to the tail of the sequence. A convergent sequence,

1The French mathematician Augustin Louis Cauchy (1789–1857) worked in the areas of complex
function theory, partial differential equations, and analysis. His collected works span twenty-seven
volumes.
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however, gets closer and closer to its limit as we get to the tail of the sequence. Our
instinct is probably that there is a relationship between these two ideas. One thing
that is true is the following.

2.1.13 Proposition (Convergent sequences are Cauchy) If a sequence (qj)j∈Z>0 converges
to q0, then it is a Cauchy sequence.

Proof Let ϵ ∈ Q>0 and choose N ∈ Z>0 such that |q j − q0| < ϵ
2 for j ≥ N. Then, for

j, k ≥ N we have

|q j − qk| = |q j − q0 − qk + q0| = |q j − q0| + |qk − q0| < ϵ
2 +

ϵ
2 = ϵ,

using the triangle inequality of Proposition 2.1.10. ■

Cauchy sequences have the property of being bounded.

2.1.14 Proposition (Cauchy sequences are bounded) If (qj)j∈Z>0 is a Cauchy sequence,
then it is bounded.

Proof Choose N ∈ Z>0 such that |q j − qk| < 1 for j, k ∈ Z>0. Then take MN to be the
largest of the nonnegative rational numbers |q1|, . . . , |qN |. Then, for j ≥ N we have,
using the triangle inequality,

|q j| = |q j − qN + qN | ≤ |q j − qN | + |qN | < 1 +MN,

giving the result by taking M =MN + 1. ■

The question as to whether there are nonconvergent Cauchy sequences is now
the obvious one.

2.1.15 Example (Nonconvergent Cauchy sequences in Q exist) If one already knows
the real numbers exist, it is somewhat easy to come up with Cauchy sequences in
Q. However, to fabricate one “out of thin air” is not so easy.

For k ∈ Z>0, since 2k + 5 > k + 4, it follows that 22k+5
− 2k+4 > 0. Let mk be the

smallest nonnegative integer for which

m2
k ≥ 22k+5

− 2k+4. (2.1)

The following contains a useful property of mk.

1 Lemma m2
k ≤ 22k+5.

Proof First we show that mk ≤ 2k+3. Suppose that mk > 2k+3. Then

(mk − 1)2 > (2k+3
− 1)2 = 22k+6

− 2k+4 + 1 = 2(22k+5
− 2k+4) + 1) > 22k+5

− 2k+4,

which contradicts the definition of mk.
Now suppose that m2

k > 22k+5. Then

(mk − 1)2 = m2
k − 2mk + 1 > 22k+5

− 2k+4 + 1 > 22k+5
− 2k+4,

again contradicting the definition of mk. ▼

Now define qk =
mk

2k+2 .
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2 Lemma (qk)k∈Z>0 is a Cauchy sequence.

Proof By Lemma 1 we have

q2
k =

m2
k

22k+4
≤

22k+5

22k+4
= 2, k ∈ Z>0,

and by (2.1) we have

q2
k =

m2
k

22k+4
≥

22k+5

22k+4
−

2k+4

22k+4
= 2 −

1
2k
, k ∈ Z>0.

Summarising, we have

2 −
1
2k
≤ q2

k ≤ 2, k ∈ Z>0. (2.2)

Then, for j, k ∈ Z>0 we have

2 −
1
2k
≤ q2

k ≤ 2, 2 −
1
2 j ≤ q2

k ≤ 2 =⇒ −
1
2 j ≤ q2

j − q2
k ≤

1
2k
.

Next we have, from (2.1),

q2
k =

m2
k

22k+4
≥

22k+5

22k+4
−

2k+4

22k+4
= 2 −

1
2k
, k ∈ Z>0,

from which we deduce that q2
k ≥ 1, which itself implies that qk ≥ 1. Next, using this

fact and (q j − qk)2 = (q j + qk)(q j − qk) we have

−
1
2 j

1
q j + qk

≤ q j − qk ≤
1
2 j

1
q j + qk

=⇒ −
1

2 j+1 ≤ q j − qk ≤
1

2k+1
, j, k ∈ Z>0.

(2.3)
Now let ϵ ∈ Q>0 and choose N ∈ Z>0 such that 1

2N+1 < ϵ. Then we immediately have
|q j − qk| < ϵ, j, k ≥ N, using (2.3). ▼

The following result gives the character of the limit of the sequence (qk)k∈Z>0 ,
were it to be convergent.

3 Lemma If q0 is the limit for the sequence (qk)k∈Z>0 , then q2
0 = 2.

Proof We claim that if (qk)k∈Z>0 converges to q0, then (q2
k)k∈Z>0 converges to q2

0. Let
M ∈ Q>0 satisfy |qk| < M for all k ∈ Z>0, this being possible by Proposition 2.1.14.
Now let ϵ ∈ Q>0 and take N ∈ Z>0 such that

|qk − q0| <
ϵ

M + |q0|
.

Then
|q2

k − q2
0| = |qk − q0||qk + q0| < ϵ,
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giving our claim.
Finally, we prove the lemma by proving that (q2

k)k∈Z>0 converges to 2. Indeed,
let ϵ ∈ Q>0 and note that, if N ∈ Z>0 is chosen to satisfy 1

2N < ϵ. Then, using (2.2),
we have

|q2
k − 2| ≤

1
2k
< ϵ, k ≥ N,

as desired. ▼

Finally, we have the following result, which is contained in the mathematical
works of Euclid.

4 Lemma There exists no q0 ∈ Q such that q2
0 = 2.

Proof Suppose that q2
0 = [( j0, k0)] and further suppose that there is no integer m

such that q0 = [(mj0,mk0)]. We then have

q2
0 =

j2
0

k2
0

= 2 =⇒ j2
0 = 2k2

0.

Thus j2
0 is even, and then so too is j0 (why?). Therefore, j0 = 2 j̃0 and so

q2
0 =

4 j̃2
0

k2
0

= 2 =⇒ k2
0 = 2 j̃2

0

which implies that k2
0, and hence k0 is also even. This contradicts our assumption

that there is no integer m such that q0 = [(mj0,mk0)]. ▼

With these steps, we have constructed a Cauchy sequence that does not con-
verge. •

Having shown that there are Cauchy sequences that do not converge, the idea
is now to define a real number to be, essentially, that to which a nonconvergent
Cauchy sequence would converge if only it could. First we need to allow for the
possibility, realised in practice, that different Cauchy sequences may converge to
the same limit.

2.1.16 Definition (Equivalent Cauchy sequences) Two sequences (q j) j∈Z>0 , (r j) j∈Q ∈

CS(Q) are equivalent if the sequence (q j − r j) j∈Z>0 converges to zero. We write
(q j) j∈Z>0 ∼ (r j) j∈Z>0 if the two sequences are equivalent. •

We should verify that this notion of equivalence of Cauchy sequences is indeed
an equivalence relation.
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2.1.17 Lemma The relation ∼ defined in CS(Q) is an equivalence relation.
Proof It is clear that the relation ∼ is reflexive and symmetric. To prove transitivity,
suppose that (q j) j∈Z>0 ∼ (r j) j∈Z>0 and that (r j) j∈Z>0 ∼ (s j) j∈Z>0 . For ϵ ∈ Q>0 let N ∈ Z>0
satisfy

|q j − r j| <
ϵ
2 , |r j − s j| <

ϵ
2 , j ≥ N.

Then, using the triangle inequality,

|q j − s j| = |q j − r j + r j − s j| ≤ |q j − r j| + |r j − s j| < ϵ, j ≥ Z>0,

showing that (q j) j∈Z>0 ∼ (s j) j∈Z>0 . ■

We are now prepared to define the set of real numbers.

2.1.18 Definition (Real numbers) A real number is an element of CS(Q)/ ∼. The set of
real numbers is denoted by R. •

The definition encodes, in a precise way, our intuition about what a real number
is. In the next section we shall examine some of the properties of the set R.

Let us give the notation we will use for real numbers, since clearly we do not
wish to write these explicitly as equivalence classes of Cauchy sequences.

2.1.19 Notation (Notation for reals) We shall frequently write a typical element in R
as “x”. We shall denote by 0 and 1 the real numbers associated with the Cauchy
sequences (0) j∈Z>0 and (1) j∈Z>0 . •

Exercises

2.1.1 Show that the definitions of addition, multiplication, and division of rational
numbers in Definition 2.1.3 are independent of representative.

2.1.2 Show that the order and absolute value on Q agree with those onZ. That is
to say, show the following:
(a) for j, k ∈ Z, j < k if and only if iZ( j) < iZ(k);
(b) for k ∈ Z, |k| = |iZ(k)|.
(Note that we see clearly here the abuse of notation that follows from using
< for both the order on Z and Q and from using |·| as the absolute value
both on Z and Q. It is expected that the reader can understand where the
notational abuse occurs.)

2.1.3 Show that the set of rational numbers is countable using an argument along
the following lines.
1. Construct a doubly infinite grid in the plane with a point at each integer

coordinate. Note that every rational number q = n
m is represented by the

grid point (n,m).
2. Start at the “centre” of the grid with the rational number 0 being assigned

to the grid point (0, 0), and construct a spiral which passes through each
grid point. Note that this spiral should hit every grid point exactly once.
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3. Use this spiral to infer the existence of a bijection from Q to Z>0.

The following exercise leads you through Cantor’s famous “diagonal argument”
for showing that the set of real numbers is uncountable.

2.1.4 Fill in the gaps in the following construction, justifying all steps.
1. Let {x j | j ∈ Z>0} be a countable subset of (0, 1).
2. Construct a doubly infinite table for which the kth column of the jth row

contains the kth term in the decimal expansion for x j.
3. Construct x̄ ∈ (0, 1) by declaring the kth term in the decimal expansion

for x̄ to be different from the kth term in the decimal expansion for xk.
4. Show that x̄ is not an element of the set {x j | j ∈ Z>0}.

Hint: Be careful to understand that a real number might have different decimal
expansions.

2.1.5 Show that for any x ∈ R and ϵ ∈ R>0 there exists k ∈ Z>0 and an odd integer
j such that |x − j

2k | < ϵ.
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Section 2.2

Properties of the set of real numbers

In this section we present some of the well known properties as the real numbers,
both algebraic and (referring ahead to the language of Chapter III-1) topological.

Do I need to read this section? Many of the properties given in Sec-
tions 2.2.1, 2.2.2 and 2.2.3 will be well known to any student with a high school
education. However, these may be of value as a starting point in understanding
some of the abstract material in Chapters 4 and 5. Similarly, the material in Sec-
tion 2.2.4 is “obvious.” However, since this material will be assumed knowledge,
it might be best for the reader to at least skim the section, to make sure there is
nothing new in it for them. •

2.2.1 Algebraic properties of R

In this section we define addition, multiplication, order, and absolute value for
R, mirroring the presentation forQ in Section 2.1.1. Here, however, the definitions
and verifications are not just trivialities, as they are for Q.

First we define addition and multiplication. We do this by defining these
operations first on elements of CS(Q), and then showing that the operations depend
only on equivalence class. The following is the key step in doing this.

2.2.1 Proposition (Addition, multiplication, and division of Cauchy sequences) Let
(qj)j∈Z>0 , (rj)j∈Z>0 ∈ CS(Q). Then the following statements hold.

(i) The sequence (qj+rj)j∈Z>0 is a Cauchy sequence which we denote by (qj)j∈Z>0+(rj)j∈Z>0 .
(ii) The sequence (qj · rj)j∈Z>0 is a Cauchy sequence which we denote by (qj)j∈Z>0 · (rj)j∈Z>0 .
(iii) If, for all j ∈ Z>0, qj , 0 and if the sequence (qj)j∈Z>0 does not converge to 0, then

(q−1
j )j∈Z>0 is a Cauchy sequence.

Furthermore, if (q̃j)j∈Z>0 , (r̃j)j∈Z>0 ∈ CS(Q) satisfy

(q̃j)j∈Z>0 ∼ (qj)j∈Z>0 , (r̃j)j∈Z>0 ∼ (r̃j)j∈Z>0 ,

then
(iv) (q̃j)j∈Z>0 + (r̃j)j∈Z>0 = (qj)j∈Z>0 + (rj)j∈Z>0 ,
(v) (q̃j)j∈Z>0 · (r̃j)j∈Z>0 = (qj)j∈Z>0 · (rj)j∈Z>0 , and
(vi) if, for all j ∈ Z>0, qj, q̃j , 0 and if the sequences (qj)j∈Z>0 , (q̃j)j∈Z>0 do not converge to

0, then (q̃j)j∈Z>0 ∼ (qj)j∈Z>0 .
Proof (i) Let ϵ ∈ Q>0 and let N ∈ Z>0 have the property that |q j − qk|, |r j − rk| <

ϵ
2 for all

j, k ≥ N. Then, using the triangle inequality,

|(q j + r j) − (qk + rk)| ≤ |q j − qk| + |r j − rk| = ϵ, j, k ≥ N.



2.2 Properties of the set of real numbers 93

(ii) Let M ∈ Q>0 have the property that |q j|, |r j| < M for all j ∈ Z>0. For ϵ ∈ Q>0 let
N ∈ Z>0 have the property that |q j − qk|, |r j − rk| <

ϵ
2M for all j, k ≥ N. Then, using the

triangle inequality,

|(q j · r j) − (qk · rk)| = |q j(r j − rk) − rk(qk − q j)|
≤ |q j||r j − rk| + |rk||qk − q j| < ϵ, j, k ≥ N.

(iii) We claim that if (q j) j∈Z>0 satisfies the conditions stated, then there exists δ ∈ Q>0
such that |qk| ≥ δ for all k ∈ Z>0. Indeed, since (q j) j∈Z>0 does not converge to zero,
choose ϵ ∈ Q>0 such that, for all N ∈ Z>0, there exists j ≥ N for which |q j| ≥ ϵ. Next
take N ∈ Z>0 such that |q j − qk| <

ϵ
2 for j, k ≥ N. Then there exists Ñ ≥ N such that

|qÑ | ≥ ϵ. For any j ≥ N we then have

|q j| = |qÑ − (qÑ − q j)| ≥ ||qÑ | − |qÑ − q j|| ≥ ϵ −
ϵ
2 =

ϵ
2 ,

where we have used Exercise 2.2.8. The claim follows by taking δ to be the smallest of
the numbers ϵ

2 , |q1|, . . . , |qN |.
Now let ϵ ∈ Q>0 and choose N ∈ Z>0 such that |q j − qk| < δ

2ϵ for j, k ≥ N. Then

|q−1
j − q−1

k | =

∣∣∣∣∣∣qk − q j

q jqk

∣∣∣∣∣∣ < δ2ϵ

δ2 = ϵ, j, k ≥ N.

(iv) For ϵ ∈ Q>0 let N ∈ Z>0 have the property that |q̃ j − q j|, |r̃ j − r j| <
ϵ
2 . Then, using

the triangle inequality,

|(q̃ j + r̃ j) − (qk + rk)| ≤ |q̃ j − qk| + |r̃k − rk| < ϵ, j, k ≥ N.

(v) Let M ∈ Q>0 have the property that |q̃ j|, |r j| < M for all j ∈ Z>0. Then, for
ϵ ∈ Q>0, take N ∈ Z>0 such that |r̃ j − rk|, |q̃ j − qk| <

ϵ
2M for j, k ≥ N. We then use the

triangle inequality to give

|(q̃ j · r̃ j) − (qk · rk)| = |q̃ j(r̃ j − rk) − rk(qk − q̃ j)| < ϵ, j, k ≥ N.

(vi) Let δ ∈ Q>0 satisfy |q j|, |q̃ j| ≥ δ for all j ∈ Z>0. Then, for ϵ ∈ Q>0, choose N ∈ Z>0
such that |q̃ j − q j| < δ2ϵ for j ≥ N. Then we have

|q̃−1
j − q−1

j | =

∣∣∣∣∣∣q j − q̃ j

q jq̃ j

∣∣∣∣∣∣ < δ2ϵ

δ2 , j ≥ N,

so completing the proof. ■

The requirement, in parts (iii) and (vi), that the sequence (q j) j∈Z>0 have no zero
elements is not really a restriction in the same way as is the requirement that the
sequence not converge to zero. The reason for this is that, as we showed in the
proof, if the sequence does not converge to zero, then there exists ϵ ∈ Q>0 and
N ∈ Z>0 such that |q j| > ϵ for j ≥ N. Thus the tail of the sequence is guaranteed
to have no zero elements, and the tail of the sequence is all that matters for the
equivalence class.

Now that we have shown how to add and multiply Cauchy sequences inQ, and
that this addition and multiplication depends only on equivalence classes under
the notion of equivalence given in Definition 2.1.16, we can easily define addition
and multiplication in R.
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2.2.2 Definition (Addition, multiplication, and division in R) Define the operations of
addition, multiplication, and division in R by

(i) [(q j) j∈Z>0] + [(r j) j∈Z>0] = [(q j) j∈Z>0 + (r j) j∈Z>0],
(ii) [(q j) j∈Z>0] · [(r j) j∈Z>0] = [(q j) j∈Z>0 · (r j) j∈Z>0],
(iii) [(q j) j∈Z>0]/[(r j) j∈Z>0] = [(q j/r j) j∈Z>0 + (r j) j∈Z>0],

respectively, where, in the definition of division, we require that the sequence
(r j) j∈Z>0 have no zero elements, and that it not converge to 0. We will sometimes
omit the “·” when writing multiplication. •

Similarly to what we have done previously withZ andQ, we let−x = [(−1) j∈Z>0]·
x. For x ∈ R\ {0}, we also denote by x−1 the real number corresponding to a Cauchy
sequence ( 1

q j
) j∈Z>0 , where x = [(q j) j∈Z>0].

As with integers and rational numbers, we can define powers of real numbers.
For x ∈ R \ {0} and k ∈ Z≥0 we define xk

∈ R inductively by x0 = 1 and xk+ = xk
· x.

As usual, we call xk the kth power of x. For k ∈ Z \Z≥0, we take xk = (x−k)−1. For
real numbers, the notion of the power of a number can be extended. Let us show
how this is done. In the statement of the result, we use the notion of positive real
numbers which are not defined until Definition 2.2.8. Also, in our proof, we refer
ahead to properties of R that are not considered until Section 2.3. However, it is
convenient to state the construction here.

2.2.3 Proposition (x1/k) For x ∈ R>0 and k ∈ Z>0, there exists a unique y ∈ R>0 such that
yk = x. We denote the number y by x1/k.

Proof Let Sx = {y ∈ R | yk < x}. Since x ≥ 0, 0 ∈ S so S , ∅. We next claim
that max{1, x} is an upper bound for Sx. First suppose that x < 1. Then, for y ∈ Sx,
yk < x < 1, and so 1 is an upper bound for Sx. If x ≥ 1 and y ∈ Sx, then we claim
that y ≤ x. Indeed, if y > x then yk > xk > x, and so y < Sx. This shows that Sx is
upper bounded by x in this case. Now we know that Sx has a least upper bound by
Theorem 2.3.7. Let y denote this least upper bound.

We shall now show that yk = x. Suppose that yk , x. From Corollary 2.2.9 we
have yk < x or yk > x.

Suppose first that yk < x. Then, for ϵ ∈ R>0 we have

(y + ϵ)k = ϵk + ak−1yϵk−1 + · · · + a1yk−1ϵ + yk

for some numbers a1, . . . , ak−1 (these are the binomial coefficients of Exercise 2.2.1). If
ϵ ≤ 1 then ϵk

≤ ϵ for k ∈ Z>0. Therefore, if ϵ ≤ 1 we have

(y + ϵ)k
≤ ϵ(1 + ak−1y + · · · + a1yk−1) + yk.

Now, if ϵ < min{1, x−yk

1+ak−1 y+···+aa yk−1 }, then (y + ϵ)k < x, contradicting the fact that y is an
upper bound for Sx.

Now suppose that yk > x. Then, for ϵ ∈ R>0, we have

(y − ϵ)k = (−1)kϵk + (−1)k−1ak−1yϵk−1 + · · · − a1yk−1ϵ + yk.
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The sum on the right involves terms that are positive and negative. This sum will
be greater than the corresponding sum with the positive terms involving powers of ϵ
removed. That is to say,

(y − ϵ)k > yk
− a1yk−1ϵ − a3yk−3ϵ3 + · · · .

For ϵ ≤ 1 we again gave ϵk
≤ ϵ for k ∈ Z>0. Therefore

(y − ϵ)k > yk
− (a1yk−1 + a3yk−3 + · · · )ϵ.

Thus, if ϵ < min{1, yk
−x

a1 yk−1+a3 yk−3+···
} we have (y − ϵ)k > x, contradicting the fact that y is

the least upper bound for Sx.
We are forced to conclude that yk = x, so giving the result. ■

If x ∈ R>0 and q = j
k ∈ Qwith j ∈ Z and k ∈ Z>0, we define xq = (x1/k) j.

Let us record the basic properties of addition and multiplication, mirroring
analogous results forQ. The properties all follow easily from the similar properties
forQ, along with Proposition 2.2.1 and the definition of addition and multiplication
in R.

2.2.4 Proposition (Properties of addition and multiplication in R) Addition and mul-
tiplication in R satisfy the following rules:

(i) x1 + x2 = x2 + x1, x1, x2 ∈ R (commutativity of addition);
(ii) (x1 + x2) + x3 = x1 + (x2 + x3), x1, x2, x3 ∈ R (associativity of addition);
(iii) x + 0 = x, t ∈ R (additive identity);
(iv) x + (−x) = 0, x ∈ R (additive inverse);
(v) x1 · x2 = x2 · x1, x1, x2 ∈ R (commutativity of multiplication);
(vi) (x1 · x2) · x3 = x1 · (x2 · x3), x1, x2, x3 ∈ R (associativity of multiplication);
(vii) x · 1 = x, x ∈ R (multiplicative identity);
(viii) x · x−1 = 1, x ∈ R \ {0} (multiplicative inverse);
(ix) y · (x1 + x2) = y · x1 + y · x2, y, x1, x2 ∈ R (distributivity);
(x) xk1 · xk2 = xk1+k2 , x ∈ R, k1,k2 ∈ Z≥0.

Moreover, if we define iQ : Q→ R by iQ(q) = [(q)j∈Z>0], then addition and multiplication
in R agrees with that in Q:

iQ(q1) + iQ(q2) = iQ(q1 + q2), iQ(q1) · iQ(q2) = iQ(q1 · q2).

As we have done in the past with Z ⊆ Q, we will often regard Q as a subset of
R without making explicit mention of the inclusion iQ. Note that this also allows
us to think of both Z≥0 and Z as subsets of R, since Z≥0 is regarded as a subset
of Z, and since Z ⊆ Q. Of course, this is nothing surprising. Indeed, perhaps the
more surprising thing is that it is not actually the case that the definitions do not
precisely give Z≥0 ⊆ Z ⊆ Q ⊆ R!
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Now is probably a good time to mention that an element of R that is not
in the image of iQ is called irrational. Also, one can show that the set Q of
rational numbers is countable (Exercise 2.1.3), but that the setR of real numbers is
uncountable (Exercise 2.1.4). Note that it follows that the set of irrational numbers
is uncountable, since an uncountable set cannot be a union of two countable sets.

2.2.2 The total order on R

Next we define in R a natural total order. To do so requires a little work. The
approach we take is this. On the set CS(Q) of Cauchy sequences in Q we define
a partial order that is not a total order. We then show that, for any two Cauchy
sequences, in each equivalence class in CS(Q) with respect to the equivalence
relation of Definition 2.1.16, there exists representatives that can be compared
using the order. In this way, while the order on the set of Cauchy sequences is not
a total order, there is induced a total order on the set of equivalence classes.

First we define the partial order on the set of Cauchy sequences.

2.2.5 Definition (Partial order on CS(Q)) The partial order ⪯ on CS(Q) is defined by

(q j) j∈Z>0 ⪯ (r j) j∈Z>0 ⇐⇒ q j ≤ r j, j ∈ Z>0. •

This partial order is clearly not a total order. For example, the Cauchy sequences
(1

j ) j∈Z>0 and ( (−1) j

j ) j∈Z>0 are not comparable with respect to this order. However, what
is true is that equivalence classes of Cauchy sequences are comparable. We refer the
reader to Definition 2.1.16 for the definition of the equivalence relation we denote
by ∼ in the following result.

2.2.6 Proposition Let (qj)j∈Z>0 , (rj)j∈Z>0 ∈ CS(Q) and suppose that (qj)j∈Z>0 / (rj)j∈Z>0 . The
following two statements hold:

(i) There exists (q̃j)j∈Z>0 , (r̃j)j∈Z>0 ∈ CS(Q) such that

(a) (q̃j)j∈Z>0 ∼ (qj)j∈Z>0 and (r̃j)j∈Z>0 ∼ (rj)j∈Z>0 , and
(b) either (q̃j)j∈Z>0 ≺ (r̃j)j∈Z>0 or (r̃j)j∈Z>0 ≺ (q̃j)j∈Z>0 .

(ii) There does not exist (q̃j)j∈Z>0 , (q̄j)j∈Z>0 , (r̃j)j∈Z>0 , (r̄j)j∈Z>0 ∈ CS(Q) such that

(a) (q̃j)j∈Z>0 ∼ (q̄j)j∈Z>0 ∼ (qj)j∈Z>0 and (r̃j)j∈Z>0 ∼ (r̄j)j∈Z>0 ∼ (rj)j∈Z>0 , and
(b) one of the following two statements holds:

I. (q̃j)j∈Z>0 ≺ (r̃j)j∈Z>0 and (r̄j)j∈Z>0 ≺ (q̄j)j∈Z>0 ;
II. (r̃j)j∈Z>0 ≺ (q̃j)j∈Z>0 and (q̄j)j∈Z>0 ≺ (r̄j)j∈Z>0 .

Proof (i) We begin with a useful lemma.
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1 Lemma With the given hypotheses, there exists δ ∈ Q>0 and N ∈ Z>0 such that |qj − rj| ≥ δ
for all j ≥ N.
Proof Since (q j − r j) j∈Z>0 does not converge to zero, choose ϵ ∈ Q>0 such that, for
all N ∈ Z>0, there exists j ≥ N such that |q j − r j| ≥ ϵ. Now take N ∈ Z>0 such that
|q j − qk|, |rk − rk| ≤

ϵ
4 for j, k ≥ N. Then, by our assumption about ϵ, there exists Ñ ≥ N

such that |qÑ − rÑ | ≥ ϵ. Then, for any j ≥ N, we have

|q j − r j| = |(qÑ − rÑ) − (qÑ − rÑ) − (q j − r j)|
≥ ||qÑ − rÑ | − |(qÑ − rÑ) − (q j − r j)|| ≥ ϵ − ϵ

2 .

The lemma follows by taking δ = ϵ
2 . ▼

Now take N and δ as in the lemma. Then take Ñ ∈ Z>0 such that |q j−qk|, |r j−rk| <
δ
2

for j, k ≥ Ñ. Then, using the triangle inequality,

|(q j − r j) − (qk − rk)| ≤ δ, j, k ≥ Ñ.

Now take K to be the larger of N and Ñ. We then have either qK − rK ≥ δ or rK − qK ≥ δ.
First suppose that qK − rK ≥ δ and let j ≥ K. Either q j − r j ≥ δ or r j − q j ≥ δ. If the latter,
then

q j − r j ≤ −δ =⇒ (q j − rk) − (qK − rK) ≤ 2δ,

contradicting the definition of K. Therefore, we must have q j − r j ≥ δ for all j ≥ K. A
similar argument when rK − qK ≥ δ shows that r j − q j ≥ δ for all j ≥ K. For j ∈ Z>0 we
then define

q̃ j =

qK, j < K,
q j, j ≥ K,

r̃ j =

rK, j < K,
r j, j ≥ K,

,

and we note that the sequences (q̃ j) j∈Z>0 and (r̃ j) j∈Z>0 satisfy the required conditions.
(ii) Suppose that

1. (q j) j∈Z>0 / (r j) j∈Z>0 ,
2. (q̃ j) j∈Z>0 ∼ (q̄ j) j∈Z>0 ∼ (q j) j∈Z>0 ,
3. (r̃ j) j∈Z>0 ∼ (r̄ j) j∈Z>0 ∼ (r j) j∈Z>0 , and
4. (q̃ j) j∈Z>0 ≺ (r̃ j) j∈Z>0 .
From the previous part of the proof we know that there exists δ ∈ Q>0 and N ∈ Z>0
such that q̃ j − r̃ j ≥ δ for j ≥ N. Then take Ñ ∈ Z>0 such that |q̃ j − q̄ j|, |r̃ j − r̄ j| <

δ
4 for

j ≥ Ñ. This implies that for j ≥ Ñ we have

|(q̃ j − r̃ j) − (q̄ j − r̄ j)| < δ
2 .

Therefore,
(q̄ j − r̄ j) > (q̃ j − r̃ j) − δ

2 , j ≥ Ñ.

If additionally j ≥ N, then we have

(q̄ j − r̄ j) > δ − δ
2 =

δ
2 .

This shows the impossibility of (r̄ j) j∈Z>0 ≺ (q̄ j) j∈Z>0 . A similar argument shows that
(r̃ j) j∈Z>0 ≺ (q̃ j) j∈Z>0 bars the possibility that (q̄ j) j∈Z>0 ≺ (r̄ j) j∈Z>0 . ■

Using the preceding result, the following definition then makes sense.
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2.2.7 Definition (Order on R) The total order on R is defined by x ≤ y if and only if
there exists (q j) j∈Z>0 , (r j) j∈Z>0 ∈ CS(Q) such that

(i) x = [(q j) j∈Z>0] and y = [(r j) j∈Z>0] and
(ii) (q j) j∈Z>0 ⪯ (r j) j∈Z>0 . •

Note that we have used the symbol “≤” for the total order onZ,Q, andR. This
is justified since, if we think of Z ⊆ Q ⊆ R, then the various total orders agree
(Exercises 2.1.2 and 2.2.6).

We have the usual language and notation we associate with various kinds of
numbers.

2.2.8 Definition (Positive and negative real numbers) A real number x is:
(i) positive if 0 < x;
(ii) negative if x < 0;
(iii) nonnegative if 0 ≤ x;
(iv) nonpositive if x ≤ 0.

The set of positive real numbers is denoted by R>0, the set of nonnegative real
numbers is denoted by R≥0, the set of negative real numbers is denoted by R<0,
and the set of nonpositive real numbers is denoted by R≤0. •

Now is a convenient moment to introduce some simple notation and concepts
that are associated with the natural total order on R. The signum function is the
map sign: R→ {−1, 0, 1} defined by

sign(x) =


−1, x < 0,
0, x = 0,
1, x > 0.

For x ∈ R, ⌈x⌉ is the ceiling of x which is the smallest integer not less than x.
Similarly, ⌊x⌋ is the floor of x which is the largest integer less than or equal to x. In
Figure 2.1 we show the ceiling and floor functions.

A consequence of our definition of order is the following extension of the
Trichotomy Law to R.

2.2.9 Corollary (Trichotomy Law for R) For x,y ∈ R, exactly one of the following possibil-
ities holds:

(i) x < y;
(ii) y < x;
(iii) x = y.

As with integers and rational numbers, addition and multiplication of real
numbers satisfy the expected properties with respect to the total order.
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Figure 2.1 The ceiling function (left) and floor function (right)

2.2.10 Proposition (Relation between addition and multiplication and <) For x,y, z ∈
R, the following statements hold:

(i) if x < y then x + z < y + z;
(ii) if x < y and if z > 0 then z · x < z · y;
(iii) if x < y and if z < 0 then z · y < z · x;
(iv) if 0 < x,y then 0 < x · y;
(v) if x < y and if either

(a) 0 < x,y or
(b) x,y < 0,

then y−1 < x−1.
Proof These statements all follow from the similar statements forQ, along with Propo-
sition 2.2.6. We leave the straightforward verifications to the reader as Exercise 2.2.5.

■

2.2.3 The absolute value function on R

In this section we generalise the absolute value function on Q. As we shall see
in subsequent sections, this absolute value function is essential for providing much
of the useful structure of the set of real numbers.

The definition of the absolute value is given as usual.

2.2.11 Definition (Real absolute value function) The absolute value function on R is
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the map from R to R≥0, denoted by x 7→ |x|, defined by

|x| =


x, 0 < x,
0, x = 0,
−x, x < 0. •

Note that we have used the symbol “|·|” for the absolute values onZ,Q, andR.
This is justified since, if we think of Z ⊆ Q ⊆ R, then the various absolute value
functions agree (Exercises 2.1.2 and 2.2.6).

The real absolute value function has the expected properties. The proof of the
following result is straightforward, and so omitted.

2.2.12 Proposition (Properties of absolute value on R) The following statements hold:
(i) |x| ≥ 0 for all x ∈ R;
(ii) |x| = 0 if and only if x = 0;
(iii) |x · y| = |x| · |y| for all x,y ∈ R;
(iv) |x + y| ≤ |x| + |y| for all x,y ∈ R (triangle inequality);
(v) |x−1

| = |x|−1 for all x ∈ R \ {0}.

2.2.4 Properties of Q as a subset of R

In this section we give some seemingly obvious, and indeed not difficult to
prove, properties of the rational numbers as a subset of the real numbers.

The first property bears the name of Archimedes,2 but Archimedes actually
attributes this to Eudoxus.3 In any case, it is an Ancient Greek property.

2.2.13 Proposition (Archimedean property of R) Let ϵ ∈ R>0. Then, for any x ∈ R there
exists k ∈ Z>0 such that k · ϵ > x.

Proof Let (q j) j∈Z>0 and (e j) j∈Z>0 be Cauchy sequences inQ such that x = [(q j) j∈Z>0] and
ϵ = [(e j) j∈Z>0]. By Proposition 2.1.14 there exists M ∈ R>0 such that |q j| < M for all
j ∈ Z>0, and by Proposition 2.2.6 we may suppose that e j > δ for j ∈ Z>0, for some
δ ∈ Q>0. Let k ∈ Z>0 satisfy k > M+1

δ (why is this possible?). Then we have

k · e j >
M + 1
δ
· δ =M + 1 ≥ q j + 1, j ∈ Z>0.

2Archimedes of Syracuse (287 BC–212 BC) was a Greek mathematician and physicist (although
in that era such classifications of scientific aptitude were less rigid than they are today). Much of his
mathematical work was in the area of geometry, but many of Archimedes’ best known achievements
were in physics (e.g., the Archimedean Principle in fluid mechanics). The story goes that when the
Romans captured Syracuse in 212 BC, Archimedes was discovered working on some mathematical
problem, and struck down in the act by a Roman soldier.

3Eudoxus of Cnidus (408 BC–355 BC) was a Greek mathematician and astronomer. His mathe-
matical work was concerned with geometry and numbers.



2.2 Properties of the set of real numbers 101

Now consider the sequence (k · e j − q j) j∈Z>0 . This is a Cauchy sequence by Proposi-
tion 2.2.1 since it is a sum of products of Cauchy sequences. Moreover, our computa-
tions show that each term in the sequence is larger than 1. Also, this Cauchy sequence
has the property that [(k · e j − q j) j∈Z>0] = k · ϵ − x. This shows that k · ϵ − x ∈ R>0, so
giving the result. ■

The Archimedean property roughly says that there are no real numbers which
are greater all rational numbers. The next result says that there are no real numbers
that are smaller than all rational numbers.

2.2.14 Proposition (There is no smallest positive real number) If ϵ ∈ R>0 then there
exists q ∈ Q>0 such that q < ϵ.

Proof Since ϵ−1
∈ R>0 let k ∈ Z>0 satisfy k · 1 > ϵ−1 by Proposition 2.2.13. Then taking

q = k−1
∈ Q>0 gives q < ϵ. ■

Using the preceding two results, it is then easy to see that arbitrarily near any
real number lies a rational number.

2.2.15 Proposition (Real numbers are well approximated by rational numbers I) If
x ∈ R and if ϵ ∈ R>0, then there exists q ∈ Q such that |x − q| < ϵ.

Proof If x = 0 then the result follows by taking q = 0. Let us next suppose that x > 0.
If x < ϵ then the result follows by taking q = 0, so we assume that x ≥ ϵ. Let δ ∈ Q>0
satisfy δ < ϵ by Proposition 2.2.14. Then use Proposition 2.2.13 to choose k ∈ Z>0
to satisfy k · δ > x. Moreover, since x > 0, we will assume that k is the smallest such
number. Since x ≥ ϵ, k ≥ 2. Thus (k − 1) · δ ≤ x since k is the smallest natural number
for which k · δ > x. Now we compute

0 ≤ x − (k − 1) · δ < k · δ − (k − 1) · δ = δ < ϵ.

It is now easy to check that the result holds by taking q = (k− 1) · δ. The situation when
x < 0 is easily shown to follow from the situation when x > 0. ■

The following stronger result is also useful, and can be proved along the same
lines as Proposition 2.2.15, using the Archimedean property of R. The reader is
asked to do this as Exercise 2.2.4.

2.2.16 Corollary (Real numbers are well approximated by rational numbers II) If
x,y ∈ R with x < y, then there exists q ∈ Q such that x < q < y.

One can also show that irrational numbers have the same property.

2.2.17 Proposition (Real numbers are well approximated by irrational numbers) If
x ∈ R and if ϵ ∈ R>0, then there exists y ∈ R \Q such that |x − y| < ϵ.

Proof By Corollary 2.2.16 choose q1, q2 ∈ Q such that x− ϵ < q1 < q2 < x+ ϵ. Then the
number

y = q1 +
q2 − q1
√

2
is irrational and satisfies q1 < y < q2. Therefore, x − ϵ < y < x + ϵ, or |x − y| < ϵ. ■
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It is also possible to state a result regarding the approximation of a collection
of real numbers by rational numbers of a certain form. The following result gives
one such result.

2.2.18 Theorem (Dirichlet Simultaneous Approximation Theorem) If x1, . . . , xk ∈ R
and if N ∈ Z>0, then there exists m ∈ {1, . . . ,Nk

} and m1, . . . ,mk ∈ Z such that

max{|mx1 −m1|, . . . , |mxk −mk|} <
1
N
.

Proof Let
C = [0, 1)k

⊆ Rk

be the “cube” in Rk. For j ∈ {1, . . . ,N} denote I j = [ j−1
N ,

j
N ) and note that the sets

{I j1 × · · · × I jk ⊆ C | j1, . . . , jk ∈ {1, . . . ,N}}

form a partition of the cube C into Nk “subcubes.” Now consider the Nk + 1 points

{(lx1, . . . , lxk) | l ∈ {0, 1, . . . ,Nk
}}

in Rk. If ⌊x⌋ denotes the floor of x ∈ R (i.e., the largest integer less than or equal to x),
then

{(lx1 − ⌊lx1⌋, . . . , lxk − ⌊lxk⌋) | l ∈ {0, 1, . . . ,Nk
}}

is a collection of Nk+1 numbers in C. Since C is partitioned into the Nk cubes, it must be
that at least two of these Nk+1 points lie in the same cube. Let these points correspond
to l1, l2 ∈ {0, 1, . . . ,nk

} with l2 > l1. Then, letting m = l2 − l2 and m j = ⌊l2x j⌋ − ⌊l1x j⌋,
j ∈ {1, . . . , k}, we have

|mx j −m j| = |l2 − ⌊l2x j⌋ − (l1x j − ⌊l1x j⌋)| <
1
N

for every j ∈ {1, . . . , k}, which is the result since m ∈ {1, . . . ,Nk
}. ■

2.2.19 Remark (Dirichlet’s “pigeonhole principle”) The proof of the preceding theorem
is a clever application of the so-called “pigeonhole principle,” whose use seems
to have been pioneered by Dirichlet. The idea behind this principle is simple.
One uses the problem data to define elements x1, . . . , xm of some set S. One then
constructs a partition (S1, . . . ,Sk) of S with the property that, if any x j1 , x j2 ∈ Sl for
some l ∈ {1, . . . , k} and some j1, j2 ∈ {1, . . . ,m}, then the desired result holds. If k > m
this is automatically satisfied. •

Note that the previous result gives an arbitrarily accurate simultaneous approx-
imation of the numbers x1, . . . , x j by rational numbers with the same denominator
since we have ∣∣∣∣∣x j −

m j

m

∣∣∣∣∣ < 1
mNk

≤
1

Nk+1
.
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By choosing N large, our simultaneous approximations can be made as good as
desired.

Let us now ask a somewhat different sort of question. Given a fixed set
a1, . . . , ak ∈ R, what are the conditions on these numbers such that, given any
set x1, . . . , xk ∈ R, we can find another number b ∈ R such that the approximations
|ba j − x j|, j ∈ {1, . . . , k}, are arbitrarily close to integer multiples of a certain num-
ber. The exact reason why this is interesting is not immediately clear, but becomes
clear in Theorem II-3.2.7 when we talk about the geometry of the unit circle in the
complex plane. In any event, the following result addresses this approximation
question, making reference to the notion of linear independence which we discuss
in Section 4.5.3. In the statement of the theorem, we think ofR as being aQ-vector
space.

2.2.20 Theorem (Kronecker Approximation Theorem) For a1, . . . , ak ∈ R and ∆ ∈ R>0

the following statements hold:
(i) if {a1, . . . , ak} are linearly over Q then, for any x1, . . . , xk ∈ R, for any ϵ ∈ R>0 and

for any N ∈ Z>0, there exists b ∈ R with b > N and integers m1, . . . ,mk such that

max{|ba1 − x1 −m1∆|, . . . , |bak − xk −mk∆|} < ϵ;

(ii) if {∆, a1, . . . , ak} are linearly over Q then, for any x1, . . . , xk ∈ R, for any ϵ ∈ R>0,
and for any N ∈ Z>0, there exists b ∈ Z with b > N and integers m1, . . . ,mk such
that

max{|ba1 − x1 −m1∆|, . . . , |bak − xk −mk∆|} < ϵ.

Proof Let us first suppose that ∆ = 1.
We prove the two assertions together, using induction on k.
First we prove (i) for k = 1. Thus suppose that {a1} , {0}. Let x1 ∈ R, let ϵ ∈ R>0,

and let N ∈ Z>0. If m1 is an integer greater than N and if b = a−1
1 (x1+m1), then we have

ba1 − x1 −m1 = 0, giving the result in this case.
Next we prove that if (i) holds for k = r then (ii) also holds for k = r. Thus suppose

that {1, a1, . . . , ar} are linearly independent overQ. Let x1, . . . , xr ∈ R, let ϵ ∈ R>0, and let
N ∈ Z>0. By the Dirichlet Simultaneous Approximation Theorem, let m,m′1, . . . ,m

′
r ∈ Z

with m ∈ Z>0 be such that

|ma j −m′j| <
ϵ
2
, j ∈ {1, . . . , r}.

We claim that {ma1−m′1, . . . ,mar−m′r} are linearly independent overQ. Indeed, suppose
that

q1(ma1 −m′1) + · · · + qr(mar −m′r) = 0

for some q1, . . . , qr ∈ Q. Then we have

(mq1)a1 + · · · + (mqr)ar) − (m′1q1 + · · · +m′rqr)1 = 0.

By linear independence of {1, a1, . . . , ar} over Q it follows that mq j = 0, j ∈ {1, . . . , r},
and so q j = 0, j ∈ {1, . . . , r}, giving the desired linear independence. Since {ma1 −
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m′1, . . . ,mar −m′r} are linearly independent over Q, we may use our assumption that (i)
holds for k = r to give the existence of b′ ∈ R with b′ > N + 1 and integers m′′1 , . . . ,m

′′
r

such that
|b′(ma j −m′j) − x j −m′′j | <

ϵ
2
, j ∈ {1, . . . , r}.

Now let b = ⌊b′⌋m > N and m j = m′′j +⌊b
′
⌋m′j, j ∈ {1, . . . , k}. Using the triangle inequality

we have

|ba j − x j −m j| = |⌊b′m⌋a j − x j − (m′′j + ⌊b
′
⌋m′j)|

= |⌊b′⌋(ma j −m′j) − x j −m′′j |

= |(⌊b′⌋ − b′)(ma j −m′j) + b′(ma j −m′j) − x j −m′′j |

≤ |(⌊b′⌋ − b′)(ma j −m′j)| + |b
′(ma j −m′j) − x j −m′′j | < ϵ,

as desired.
Now we prove that (ii) with k = r implies (i) with k = r + 1. Thus let a1, . . . , ar+1 be

linearly independent over Q. Let x1, . . . , xr+1 ∈ R, let ϵ ∈ R>0, and let N ∈ Z>0. Note
that linear independence implies that ar+1 , 0 (see Proposition 4.5.19(ii)). We claim
that {1, a1

ar+1
, . . . , ar

ar+1
} are linearly independent over Q. Since (ii) holds for k = r there

exists b′ ∈ Zwith b′ > N and integers m′1, . . . ,m
′
r such that∣∣∣∣∣b′ a j

ar+1
−

(
x j − xr+1

a j

ar+1

)
−m′j

∣∣∣∣∣ < ϵ, j ∈ {1, . . . , r}.

Rewriting this as ∣∣∣∣∣∣
(

b′ + xr+1

ar+1

)
a j − x j −m′j

∣∣∣∣∣∣ < ϵ, j ∈ {1, . . . , r},

and noting that (
b′ + xr+1

ar+1

)
ar+1 − xr+1 − b′ = 0,

which gives (i) by taking

b =
b′ + xr+1

ar+1
, m1 = m′1, . . . , mr = m′r, mr+1 = b′.

The above induction arguments give the theorem with ∆ = 1. Now let us relax the
assumption that ∆ = 1. Thus let ∆ ∈ R>0. Let us define a′j = ∆

−1a j, j ∈ {1, . . . , k}. We
claim that {a′1, . . . , a

′

k} is linearly independent overQ if {a1, . . . , ak} is linearly independent
over Q. Indeed, suppose that

q1a′1 + · · · + qka′k = 0

for some q1, . . . , qk ∈ Q. Multiplying by ∆ and using the linear independence of
{a1, . . . , ak} immediately gives q j = 0, j ∈ {1, . . . , k}. We also claim that {1, a′1, . . . , a

′

k} is
linearly independent over Q if {∆, a1, . . . , ak} is linearly independent over Q. Indeed,
suppose that

q0 1 + q1a′1 + · · · + qka′k = 0
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for some q0, q1, . . . , qk ∈ Q. Multiplying by ∆ and using the linear independence of
{∆, a1, . . . , ak} immediately gives q j = 0, j ∈ {1, . . . , k}. Let x1, . . . , xk ∈ R, ϵ ∈ R>0, and
N ∈ Z. Define x′j = ∆

−1x j, j ∈ {1, . . . , k}. Since the theorem holds for ∆ = 1, there exists
b > N (with b ∈ R for part (i) and b ∈ Z for part (ii)) such that

|ba′j − x′j −m1| <
ϵ
∆
, j ∈ {1, . . . , k}.

Multiplying the inequality by ∆ gives the result. ■

2.2.5 The extended real line

It is sometimes convenient to be able to talk about the concept of “infinity” in a
somewhat precise way. We do so by using the following idea.

2.2.21 Definition (Extended real line) The extended real line is the set R ∪ {−∞} ∪ {∞},
and we denote this set by R. •

Note that in this definition the symbols “−∞” and “∞” are to simply be thought
of as labels given to the elements of the singletons {−∞} and {∞}. That they
somehow correspond to our ideas of what “infinity” means is a consequence of
placing some additional structure on R, as we now describe.

First we define “arithmetic” in R. We can also define some rules for arithmetic
in R.

2.2.22 Definition (Addition and multiplication in R) For x, y ∈ R, define

x + y =



x + y, x, y ∈ R,
∞, x ∈ R, y = ∞, or x = ∞, y ∈ R,
∞, x = y = ∞,
−∞, x = −∞, y ∈ R or x ∈ R, y = −∞,
−∞, x = y = −∞.

The operations∞ + (−∞) and (−∞) +∞ are undefined. Also define

x · y =



x · y, x, y ∈ R,
∞, x ∈ R>0, y = ∞, or x = ∞, y ∈ R>0,

∞, x ∈ R<0, y = −∞, or x = −∞, y ∈ R<0,

∞, x = y = ∞, or x = y = −∞,
−∞, x ∈ R>0, y = −∞, or x = −∞, y ∈ R>0,

−∞, x ∈ R<0, y = ∞, or x = ∞, y ∈ R<0,

−∞, x = ∞, y = −∞ or x = −∞, y = ∞,
0, x = 0, y ∈ {−∞,∞} or x ∈ {−∞,∞}, y = 0. •
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2.2.23 Remarks (Algebra in R)
1. The above definitions of addition and multiplication on R do not make this a

field. Thus, in some sense, the operations are simply notation, since they do not
have the usual properties we associate with addition and multiplication.

2. Note we do allow multiplication between 0 and −∞ and ∞. This convention
is not universally agreed upon, but it will be useful for us to do adopt this
convention in Chapter III-2. •

2.2.24 Definition (Order on R) For x, y ∈ R, write

x ≤ y ⇐⇒



x = y, or
x, y ∈ R, x ≤ y, or
x ∈ R, y = ∞, or
x = −∞, y ∈ R, or
x = −∞, y = ∞. •

This is readily verified to be a total order onR, with −∞ being the least element
and∞ being the greatest element of R. As with R, we have the notation

R>0 = {x ∈ R | x > 0}, R≥0 = {x ∈ R | x ≥ 0}.

Finally, we can extend the absolute value on R to R.

2.2.25 Definition (Extended real absolute value function) The extended real absolute
function is the map from R to R≥0, denoted by x 7→ |x|, and defined by

|x| =


|x|, x ∈ R,
∞, x = ∞,
∞, x = −∞. •

2.2.6 sup and inf

We recall from Definition 1.5.11 the notation sup S and inf S for the least upper
bound and greatest lower bound, respectively, associated to a partial order. This
construction applies, in particular to the partially ordered set (R,≤). Note that if
A ⊆ R then we might possibly have sup(A) = ∞ and/or inf(A) = −∞. In brief
section we give a few properties of sup and inf.

The following property of sup and inf is often useful.
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2.2.26 Lemma (Property of sup and inf) Let A ⊆ R be such that inf(A), sup(A) ∈ R and let
ϵ ∈ R>0. Then there exists x+, x− ∈ A such that

x+ + ϵ > sup(A), x− − ϵ < inf(A).

Proof We prove the assertion for sup, as the assertion for inf follows along similar
lines, of course. Suppose that there is no x+ ∈ A such that x+ + ϵ > sup(A). Then
x ≤ sup(A) − ϵ for every x ∈ A, and so sup(A) − ϵ is an upper bound for A. But this
contradicts sup(A) being the least upper bound. ■

Let us record and prove the properties of interest for sup.

2.2.27 Proposition (Properties of sup) For subsets A,B ⊆ R and for a ∈ R>0, the following
statements hold:

(i) if A + B = {x + y | x ∈ A, y ∈ B}, then sup(A + B) = sup(A) + sup(B);
(ii) if −A = {−x | x ∈ A}, then sup(−A) = − inf(A);
(iii) if aA = {ax | x ∈ A}, then sup(aA) = a sup(A);
(iv) if I ⊆ R is an interval, if A ⊆ I is such that sup A ∈ A, if f : I → R is

strictly monotonically (see Definition 3.1.27), and if f(A) = {f(x) | x ∈ A}, then
sup(f(A)) = f(sup(A)).

Proof (i) Let x ∈ A and y ∈ B so that x + y ∈ A + B. Then x + y ≤ sup A + sup B which
implies that sup A + sup B is an upper bound for A + B. Since sup(A + B) is the least
upper bound this implies that sup(A + B) ≤ sup A + sup B. Now let ϵ ∈ R>0 and let
x ∈ A and y ∈ B satisfy sup A − x < ϵ

2 and sup B − y < ϵ
2 . Then

sup A + sup B − (x + y) < ϵ.

Thus, for any ϵ ∈ R>0, there exists x + y ∈ A + B such that sup A + sup B − (x + y) < ϵ.
Therefore, sup A + sup B ≤ sup(A + B).

(ii) Let x ∈ −A. Then sup(−A) ≥ x or − sup(−A) ≤ −x. Thus − sup(−A) is a lower
bound for A and so inf(A) ≥ − sup(−A). Next let ϵ ∈ R>0 and let x ∈ −A satisfy
x + ϵ > sup(−A). Then −x − ϵ < − sup(−A). Thus, for every ϵ ∈ R>0, there exists y ∈ A
such that y − (− sup(−A)) < ϵ. Thus − sup(−A) ≥ inf(A), giving this part of the result.

(iii) Let x ∈ A and note that since sup(A) ≥ x, we have a sup(A) ≥ ax. Thus a sup(A)
is an upper bound for aA, and so we must have sup(aA) ≤ a sup(A). Now let ϵ ∈ R>0
and let x ∈ A be such that x + ϵ

a > sup(A). Then ax + ϵ > a sup(A). Thus, given ϵ ∈ R>0
there exists y ∈ aA such that a sup(A) − ax < ϵ. Thus a sup(A) ≤ sup(aA).

(iv) Let x ∈ A. Since x ≤ sup A and since f is strictly monotonically increasing,
f (x) ≤ f (sup(A)). Thus f (sup(A)) is an upper bound for f (A). Since sup( f (A)) is the
least upper bound, sup( f (A)) ≤ f (sup(A)). Suppose that sup( f (A)) < f (sup(A)). Since
sup(A) ∈ A, we have f (sup(A)) ∈ f (A) and so f (sup(A)) ≤ sup( f (A)). ■

For inf the result is, of course, quite similar. We leave the proof, which mirrors
the above proof for sup, to the reader.
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2.2.28 Proposition (Properties of inf) For subsets A,B ⊆ R and for a ∈ R≥0, the following
statements hold:

(i) if A + B = {x + y | x ∈ A, y ∈ B}, then inf(A + B) = inf(A) + inf(B);
(ii) if −A = {−x | x ∈ A}, then inf(−A) = − sup(A);
(iii) if aA = {ax | x ∈ A}, then inf(aA) = a inf(A);
(iv) if I ⊆ R is an interval, if A ⊆ I is such that inf(A) ∈ A, if f : I → R is strictly

monotonically (see Definition 3.1.27), and if f(A) = {f(x) | x ∈ A}, then inf(f(A)) =
f(inf(A)).

If S ⊆ R is a finite set, then both sup S and inf S are elements of S. In this case
we might denote max S = sup S and min S = inf S.

2.2.7 Notes

The Archimedean property of R seems obvious. The lack of the Archimedean
property would mean that there exists t for which t > N for every natural number N.
This property is actually possessed by certain fields used in so-called “nonstandard
analysis,” and we refer the interested reader to [Robinson 1974].

Theorem 2.2.18 is due to Dirichlet [1842], and the proof is a famous use of the
“pigeonhole principle.” Theorem 2.2.20 is due to [Kronecker 1899], and the proof
we give is from [Kueh 1986].

Exercises

2.2.1 Prove the Binomial Theorem which states that, for x, y ∈ R and k ∈ Z>0,

(x + y)k =

k∑
j=0

Bk, jx jyk− j,

where

Bk, j =

(
k
j

)
≜

k!
j!(k − j)!

, j, k ∈ Z>0, j ≤ k,

are the binomial coefficients, and k! = 1 · 2 · · · · · k is the factorial of k. We
take the convention that 0! = 1.

2.2.2 Prove that, for k ∈ Z>0 and j ∈ {0, 1, . . . , k},(
k
j

)
+

(
k

j − 1

)
=

(
k + 1

j

)
.

2.2.3 Let q ∈ Q \ {0} and x ∈ R \Q. Show the following:
(a) q + x is irrational;
(b) qx is irrational;
(c) x

q is irrational;



2.2 Properties of the set of real numbers 109

(d) q
x is irrational.

2.2.4 Prove Corollary 2.2.16.
2.2.5 Prove Proposition 2.2.10.
2.2.6 Show that the order and absolute value on R agree with those on Q. That is

to say, show the following:
(a) for q, r ∈ Q, q < r if and only if iQ(q) < iQ(r);
(b) for q ∈ Q, |q| = |iQ(q)|.
(Note that we see clearly here the abuse of notation that follows from using
< for both the order on Z and Q and from using |·| as the absolute value
both on Z and Q. It is expected that the reader can understand where the
notational abuse occurs.)

2.2.7 Do the following:
(a) show that if x ∈ R>0 satisfies x < 1, then xk < x for each k ∈ Z>0 satisfying

k ≥ 2;
(b) show that if x ∈ R>0 satisfies x > 1, then xk > x for each k ∈ Z>0 satisfying

k ≥ 2.
2.2.8 Show that, for t, s ∈ R, ||t| − |s|| ≤ |t − s|.
2.2.9 Show that if s, t ∈ R satisfy s < t, then there exists q ∈ Q such that s < q < t.
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Section 2.3

Sequences in R

In our construction of the real numbers, sequences played a key rôle, inasmuch
as Cauchy sequences of rational numbers were integral to our definition of real
numbers. In this section we study sequences of real numbers. In particular, in
Theorem 2.3.5 we prove the result, absolutely fundamental in analysis, that R is
“complete,” meaning that Cauchy sequences of real numbers converge.

Do I need to read this section? If you do not already know the material in this
section, then it ought to be read. It is also worth the reader spending some time
over the idea that Cauchy sequences of real numbers converge, as compared to
rational numbers where this is not the case. The same idea will arise in more
abstract settings in Chapter III-6, and so it will pay to understand it well in the
simplest case. •

2.3.1 Definitions and properties of sequences

In this section we consider the extension to R of some of the ideas considered
in Section 2.1.2 concerning sequences in Q. As we shall see, it is via sequences,
and other equivalent properties, that the nature of the difference betweenQ andR
is spelled out quite clearly.

We begin with definitions, generalising in a trivial way the similar definitions
for Q.

2.3.1 Definition (Cauchy sequence, convergent sequence, bounded sequence,
monotone sequence) Let (x j) j∈Z>0 be a sequence in R. The sequence:

(i) is a Cauchy sequence if, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that
|x j − xk| < ϵ for j, k ≥ N;

(ii) converges to s0 if, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that |x j − s0| < ϵ
for j ≥ N;

(iii) diverges if it does not converge to any element in R;
(iv) is bounded above if there exists M ∈ R such that x j < M for each j ∈ Z>0;
(v) is bounded below if there exists M ∈ R such that x j > M for each j ∈ Z>0;
(vi) is bounded if there exists M ∈ R>0 such that |x j| < M for each j ∈ Z>0;
(vii) is monotonically increasing if x j+1 ≥ x j for j ∈ Z>0;
(viii) is strictly monotonically increasing if x j+1 > x j for j ∈ Z>0;
(ix) is monotonically decreasing if x j+1 ≤ x j for j ∈ Z>0;
(x) is strictly monotonically decreasing if x j+1 < x j for j ∈ Z>0;
(xi) is constant if x j = x1 for every j ∈ Z>0;
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(xii) is eventually constant if there exists N ∈ Z>0 such that x j = xN for every
j ≥ N. •

Associated with the notion of convergence is the notion of a limit. We also, for
convenience, wish to allow sequences with infinite limits. This makes for some
rather subtle use of language, so the reader should pay attention to this.

2.3.2 Definition (Limit of a sequence) Let (x j) j∈Z>0 be a sequence.
(i) If (x j) j∈Z>0 converges to s0, then the sequence has s0 as a limit, and we write

lim j→∞ x j = s0.
(ii) If, for every M ∈ R>0, there exists N ∈ Z>0 such that x j > M (resp. xk < −M)

for j ≥ N, then the sequence diverges to ∞ (resp. diverges to −∞), and we
write lim j→∞ x j = ∞ (resp. lim j→∞ x j = −∞);

(iii) If lim j→∞ x j ∈ R, then the limit of the sequence (x j) j∈Z>0 exists.
(iv) If the limit of the sequence (x j) j∈Z>0 does not exist, does not diverge to ∞, or

does not diverge to −∞, then the sequence is oscillatory. •

The reader can prove in Exercise 2.3.1 that limits, if they exist, are unique.
That convergent sequences are Cauchy, and that Cauchy sequences are bounded

follows in exactly the same manner as the analogous results, stated as Proposi-
tions 2.1.13 and 2.1.14, for Q. Let us state the results here for reference.

2.3.3 Proposition (Convergent sequences are Cauchy) If a sequence (xj)j∈Z>0 converges
to x0, then it is a Cauchy sequence.

2.3.4 Proposition (Cauchy sequences are bounded) If (xj)j∈Z>0 is a Cauchy sequence in
R then it is bounded.

Moreover, what is true for R, and that is not true for Q, is that every Cauchy
sequence converges.

2.3.5 Theorem (Cauchy sequences in R converge) If (xj)j∈Z>0 is a Cauchy sequence in
R then there exists s0 ∈ R such that (xj)j∈Z>0 converges to s0.

Proof For j ∈ Z>0 choose q j ∈ Q>0 such that |x j − q j| <
1
j , this being possible by

Proposition 2.2.15. For ϵ ∈ R>0 let N1 ∈ Z>0 satisfy |x j − xk| <
ϵ
2 for j, k ≥ N1. By

Proposition 2.2.13 let N2 ∈ Z>0 satisfy N2 · 1 > 4ϵ−1, and let N be the larger of N1 and
N2. Then, for j, k ≥ N, we have

|q j − qk| = |q j − x j + x j − xk + xk − qk| ≤ |x j − q j| + |x j − xk| + |xk − qk| <
1
j +

ϵ
2 +

1
k < ϵ.

Thus (q j) j∈Z>0 is a Cauchy sequence, and so we define s0 = [(q j) j∈Z>0].
Now we show that (q j) j∈Z>0 converges to s0. Let ϵ ∈ R>0 and take N ∈ Z>0 such

that |q j − qk| <
ϵ
2 , j, k ≥ N, and rewrite this as

ϵ
2 < q j − qk + ϵ,

ϵ
2 < −qk + qk + ϵ, j, k ≥ N. (2.4)
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For j0 ≥ N consider the sequence (q j − q j0 + ϵ) j∈Z>0 . This is a Cauchy sequence by
Proposition 2.2.1. Moreover, by Proposition 2.2.6, [(q j − q j0 + ϵ) j∈Z>0] > 0, using the
first of the inequalities in (2.4). Thus we have s0 − q j0 + ϵ > 0, or

−ϵ < s0 − q j0 , j0 ≥ N.

Arguing similarly, but using the second of the inequalities (2.4), we determine that

s0 − q j0 < ϵ, j0 ≥ N.

This gives |s0 − q j| < ϵ for j ≥ N, so showing that (q j) j∈Z>0 converges to s0.
Finally, we show that (x j) j∈Z>0 converges to s0. Let ϵ ∈ R>0 and take N1 ∈ Z>0

such that |s0 − q j| <
ϵ
2 for j ≥ N1. Also choose N2 ∈ Z>0 such that N2 · 1 > 2ϵ−1 by

Proposition 2.2.13. If N is the larger of N1 and N2, then we have

|s0 − x j| = |s0 − q j + q j − x j| ≤ |s0 − q j| + |q j − x j| <
ϵ
2 +

1
j < ϵ,

for j ≥ N, so giving the result. ■

2.3.6 Remark (Completeness of R) The property of R that Cauchy sequences are con-
vergent gives, in the more general setting of Section III-1.1.6, R the property of
being complete. Completeness is an extremely important concept in analysis. We
shall say some words about this in Section III-3.3.2; for now let us just say that the
subject of calculus would not exist, but for the completeness of R. •

2.3.2 Some properties equivalent to the completeness of R

Using the fact that Cauchy sequences converge, it is easy to prove two other
important features of R, both of which seem obvious intuitively.

2.3.7 Theorem (Bounded subsets of R have a least upper bound) If S ⊆ R is
nonempty and possesses an upper bound with respect to the standard total order ≤, then S
possesses a least upper bound with respect to the same total order.

Proof Since S has an upper bound, there exists y ∈ R such that x ≤ y for all x ∈ S. Now
choose some x ∈ S. We then define two sequences (x j) j∈Z>0 and (y j) j∈Z>0 recursively as
follows:
1. define x1 = x and y1 = y;
2. suppose that x j and y j have been defined;

3. if there exists z ∈ S with 1
2 (x j + y j) < z ≤ y j, take x j+1 = z and y j+1 = y j;

4. if there is no z ∈ S with 1
2 (x j + y j) < z ≤ y j, take x j+1 = x j and y j+1 =

1
2 (x j + y j).

A lemma characterises these sequences.
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1 Lemma The sequences (xj)j∈Z>0 and (yj)j∈Z>0 have the following properties:
(i) xj ∈ S for j ∈ Z>0;
(ii) xj+1 ≥ xj for j ∈ Z>0;
(iii) yj is an upper bound for S for j ∈ Z>0;
(iv) yj+1 ≤ yj for j ∈ Z>0;

(v) 0 ≤ yj − xj ≤
1
2j (y − x) for j ∈ Z>0.

Proof We prove the result by induction on j. The result is obviously true for= 0. Now
suppose the result true for j ∈ {1, . . . , k}.

First take the case where there exists z ∈ S with 1
2 (xk + yk) < z ≤ yk, so that

xk+1 = z and yk+1 = yk. Clearly xk+1 ∈ S and yk+1 ≥ yk. Since yk ≥ xk by the induction
hypotheses, 1

2 (xk + yk) ≥ xk giving xk+1 = z ≥ xk. By the induction hypotheses, yk+1 is
an upper bound for S. By definition of xk+1 and yk+1,

yk+1 − xk+1 = yk − z ≥ 0

and
yk+1 − xk+1 = yk − z = yk −

1
2 (yk − xk) = 1

2 (yk − xk),

giving yk+1 − xk+1 ≤
1

2k+1 (y − x) by the induction hypotheses.
Now we take the case where there is no z ∈ S with 1

2 (x j + y j) < z ≤ y j, so that
xk+1 = xk and yk+1 =

1
2 (xk+ yk). Clearly xk+1 ≥ xk and xk+1 ∈ S. If yk+1 were not an upper

bound for S, then there exists a ∈ S such that a > yk+1. By the induction hypotheses, yk
is an upper bound for S so a ≤ yk. But this means that 1

2 (yk+xk) < a ≤ yk, contradicting
our assumption concerning the nonexistence of z ∈ S with 1

2 (x j + y j) < z ≤ y j. Thus
yk+1 is an upper bound for S. Since xk ≤ yk by the induction hypotheses,

yk+1 =
1
2 (yk + xk) ≤ yk.

Also
yk+1 − xk+1 =

1
2 (yk − xk)

by the induction hypotheses. This completes the proof. ▼

The following lemma records a useful fact about the sequences (x j) j∈Z>0 and
(y j) j∈Z>0 .

2 Lemma Let (xj)j∈Z>0 and (yj)j∈Z>0 be sequences in R satisfying:
(i) xj+1 ≥ xj, j ∈ Z>0;
(ii) yj+1 ≤ yj, j ∈ Z>0;
(iii) the sequence (yj − xj)j∈Z>0 converges to 0.

Then (xj)j∈Z>0 and (yj)j∈Z>0 converge, and converge to the same limit.

Proof First we claim that x j ≤ yk for all j, k ∈ Z>0. Indeed, suppose not. Then
there exists j, k ∈ Z>0 such that x j > yk. If N is the larger of j and k, then we have
yN ≤ yk < x j ≤ xN. This implies that

xm − ym ≥ x j − ym ≥ x j − yk > 0, m ≥ N,
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which contradicts the fact that (y j − x j) j∈Z>0 converges to zero.
Now, for ϵ ∈ R>0 let N ∈ Z>0 satisfy |y j − x j| < ϵ for j ≥ N, or, simply, y j − x j < ϵ

for j ≥ N. Now let j, k ≥ N, and suppose that j ≥ k. Then

0 ≤ x j − xk ≤ x j − yk < ϵ.

Similarly, if j ≤ k we have 0 ≤ xk − x j < ϵ. In other words, |x j − xk| < ϵ for j, k ≥ N.
Thus (x j) j∈Z>0 is a Cauchy sequence. In like manner one shows that (y j) j∈Z>0 is also a
Cauchy sequence. Therefore, by Theorem 2.3.5, these sequences converge, and let us
denote their limits by s0 and t0, respectively. However, since (x j) j∈Z>0 and (y j) j∈Z>0 are
equivalent Cauchy sequences in the sense of Definition 2.1.16, it follows that s0 = t0. ▼

Using Lemma 1 we easily verify that the sequences (x j) j∈Z>0 and (y j) j∈Z>0 satisfy
the hypotheses of Lemma 2. Therefore these sequences converge to a common limit,
which we denote by s. We claim that s is a least upper bound for S. First we show that
it is an upper bound. Suppose that there is x ∈ S such that x > s and define ϵ = x − s.
Since (y j) j∈Z>0 converges to s, there exists N ∈ Z>0 such that |s− y j| < ϵ for j ≥ N. Then,
for j ≥ N,

y j − s < ϵ = x − s,

implying that y j < x, and so contradicting Lemma 1.
Finally, we need to show that s is a least upper bound. To see this, let b be an upper

bound for S and suppose that b < s. Define ϵ = s − b, and choose N ∈ Z>0 such that
|s − x j| < ϵ for j ≥ N. Then

s − x j < ϵ = s − b,

implying that b < x j for j ≥ N. This contradicts the fact, from Lemma 1, that x j ∈ S and
that b is an upper bound for S. ■

As we shall explain more fully in Aside 2.3.9, the least upper bound property
of the real numbers as stated in the preceding theorem is actually equivalent to the
completeness of R. In fact, the least upper bound property forms the basis for an
alternative definition of the real numbers using Dedekind cuts.4 Here the idea is
that one defines a real number as being a splitting of the rational numbers into
two halves, one corresponding to the rational numbers less than the real number
one is defining, and the other corresponding to the rational numbers greater than
the real number one is defining. Historically, Dedekind cuts provided the first
rigorous construction of the real numbers. We refer to Section 2.3.9 for further
discussion. We also comment, as we discuss in Aside 2.3.9, that any construction
of the real numbers with the property of completeness, or an equivalent, will
produce something that is “essentially” the real numbers as we have defined them.

Another consequence of Theorem 2.3.5 is the following.

4After Julius Wihelm Richard Dedekind (1831–1916), the German mathematician, did work in
the areas of analysis, ring theory, and set theory. His rigorous mathematical style has had a strong
influence on modern mathematical presentation.
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2.3.8 Theorem (Bounded, monotonically increasing sequences in R converge) If
(xj)j∈Z>0 is a bounded, monotonically increasing sequence in R, then it converges.

Proof The subset (x j) j∈Z>0 of R has an upper bound, since it is bounded. By Theo-
rem 2.3.7 let b be the least upper bound for this set. We claim that (x j) j∈Z>0 converges
to b. Indeed, let ϵ ∈ R>0. We claim that there exists some N ∈ Z>0 such that b − xN < ϵ
since b is a least upper bound. Indeed, if there is no such N, then b ≥ x j + ϵ for all
j ∈ Z>0 and so b − ϵ

2 is an upper bound for (x j) j∈Z>0 that is smaller than b. Now, with
N chosen so that b − xN < ϵ, the fact that (x j) j∈Z>0 is monotonically increasing implies
that |b − x j| < ϵ for j ≥ N, as desired. ■

It turns out that Theorems 2.3.5, 2.3.7, and 2.3.8 are equivalent. But to make
sense of this requires one to step outside the concrete representation we have given
for the real numbers to a more axiomatic one. This can be skipped, so we present
it as an aside.

2.3.9 Aside (Complete ordered fields) An ordered field is a fieldF (see Definition 4.3.1
for the definition of a field) equipped with a total order satisfying the conditions
1. if x < y then x + z < y + z for x, y, z ∈ F and
2. if 0 < x, y then 0 < x · y.
Note that in an ordered field one can define the absolute value exactly as we have
done for Z, Q, and R. There are many examples of ordered fields, of which Q and
R are two that we have seen. However, if one adds to the conditions for an ordered
field an additional condition, then this turns out to essentially uniquely specify the
set of real numbers. (We say “essentially” since the uniqueness is up to a bijection
that preserves the field structure as well as the order.) This additional structure
comes in various forms, of which three are as stated in Theorems 2.3.5, 2.3.7,
and 2.3.8. To be precise, we have the following theorem.

Theorem If F is an ordered field, then the following statements are equivalent:
(i) every Cauchy sequence converges;
(ii) each set possessing an upper bound possesses a least upper bound;
(iii) each bounded, monotonically increasing sequence converges.

We have almost proved this theorem with our arguments above. To see this,
note that in the proof of Theorem 2.3.7 we use the fact that Cauchy sequences
converge. Moreover, the argument can easily be adapted from the special case of
R to a general ordered field. This gives the implication (i) =⇒ (ii) in the theorem
above. In like manner, the proof of Theorem 2.3.8 gives the implication (ii) =⇒ (iii),
since the proof is again easily seen to be valid for a general ordered field. The
argument for the implication (iii) =⇒ (i) is outlined in Exercise 2.3.4. An ordered
field satisfying any one of the three equivalent conditions (i), (ii), and (iii) is called
a complete ordered field. Thus there is essentially only one complete ordered field,
and it is R. ♠
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2.3.3 Tests for convergence of sequences

There is generally no algorithmic way, other than checking the definition, to
ascertain when a sequence converges. However, there are a few simple results that
are often useful, and here we state some of these.

2.3.10 Proposition (Squeezing Principle) Let (xj)j∈Z>0 , (yj)j∈Z>0 , and (zj)j∈Z>0 be sequences
in R satisfying

(i) xj ≤ zj ≤ yj for all j ∈ Z>0 and
(ii) limj→∞ xj = limj→∞ yj = α.

Then limj→∞ zj = α.
Proof Let ϵ ∈ R>0 and let N1,N2 ∈ Z>0 have the property that |x j − α| <

ϵ
3 for j ≥ N1

and |y j − α| <
ϵ
3 . Then, for j ≥ max{N1,N2},

|x j − y j| = |x j − α + α − y j| ≤ |x j − α| + |y j − α| <
2ϵ
3 ,

using the triangle inequality. Then, for j ≥ max{N1,N2}, we have

|z j − α| = |z j − x j + x j − α| ≤ |z j − x j| + |x j − α| ≤ |y j − x j| + |x j − α| = ϵ,

again using the triangle inequality. ■

The next test for convergence of a series is sometimes useful.

2.3.11 Proposition (Ratio Test for sequences) Let (xj)j∈Z>0 be a sequence in R for which

limj→∞

∣∣∣∣xj+1

xj

∣∣∣∣ = α. If α < 1 then the sequence (xj)j∈Z>0 converges to 0, and if α > 1 then the
sequence (xj)j∈Z>0 diverges.

Proof For α < 1, define β = 1
2 (α + 1). Then α < β < 1. Now take N ∈ Z>0 such that∣∣∣∣∣∣

∣∣∣∣∣∣x j+1

x j

∣∣∣∣∣∣ − α
∣∣∣∣∣∣ < 1

2 (1 − α), j > N.

This implies that ∣∣∣∣∣∣x j+1

x j

∣∣∣∣∣∣ < β.
Now, for j > N,

|x j| < β|x j−1| < β
2
|x j−1| < · · · < β

j−N
|xN |.

Clearly the sequence (x j) j∈Z>0 converges to 0 if and only if the sequence obtained by
replacing the first N terms by 0 also converges to 0. If this latter sequence is denoted
by (y j) j∈Z>0 , then we have

0 ≤ y j ≤
|xN |

βN β j.

The sequence ( |xN |

βN β
j) j∈Z>0 converges to 0 since β < 1, and so this part of the result

follows from the Squeezing Principle.
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For α > 1, there exists N ∈ Z>0 such that, for all j ≥ N, x j , 0. Consider
the sequence (y j) j∈Z>0 which is 0 for the first N terms, and satisfies y j = x−1

j for the

remaining terms. We then have
∣∣∣∣ y j+1

y j

∣∣∣∣ < α−1 < 1, and so, from the first part of the proof,
the sequence (y j) j∈Z>0 converges to 0. Thus the sequence (|y j|) j∈Z>0 converges to ∞,
which prohibits the sequence (y j) j∈Z>0 from converging. ■

In Exercise 2.3.3 the reader can explore the various possibilities for the ratio

test when lim j→∞

∣∣∣∣ x j+1

x j

∣∣∣∣ = 1.

2.3.4 lim sup and lim inf

Recall from Section 2.2.6 the notions of sup and inf for subsets ofR. Associated
with the least upper bound and greatest lower bound properties of R is a useful
notion that weakens the usual idea of convergence. In order for us to make a
sensible definition, we first prove a simple result.

2.3.12 Proposition (Existence of lim sup and lim inf) For any sequence (xj)j∈Z>0 in R, the
limits

lim
N→∞

(
sup{xj | j ≥ N}

)
, lim

N→∞

(
inf{xj | j ≥ N}

)
exist, diverge to∞, or diverge to −∞.

Proof Note that the sequences (sup{x j | j ≥ N})N∈Z>0 and (inf{x j | j ≥ N})N∈Z>0 in R
are monotonically decreasing and monotonically increasing, respectively, with respect
to the natural order on R. Moreover, note that a monotonically increasing sequence
in R is either bounded by some element of R, or it is not. If the sequence is upper
bounded by some element of R, then by Theorem 2.3.8 it either converges or is the
sequence (−∞) j∈Z>0 . If it is not bounded by some element in R, then either it diverges
to ∞, or it is the sequence (∞) j∈Z>0 (this second case cannot arise in the specific case
of the monotonically increasing sequence (sup{x j | j ≥ N})N∈Z>0 . In all cases, the limit
limN→∞

(
sup{x j | j ≥ N}

)
exists or diverges to ∞. A similar argument for holds for

limN→∞
(
inf{x j | j ≥ N}

)
. ■

2.3.13 Definition (lim sup and lim inf) For a sequence (x j) j∈Z>0 in R denote

lim sup
j→∞

x j = lim
N→∞

(
sup{x j | j ≥ N}

)
,

lim inf
j→∞

x j = lim
N→∞

(
inf{x j | j ≥ N}

)
. •

Before we get to characterising lim sup and lim inf, we give some examples to
illustrate all the cases that can arise.
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2.3.14 Examples (lim sup and lim inf)
1. Consider the sequence (x j = (−1) j) j∈Z>0 . Here we have lim sup j→∞ x j = 1 and

lim inf j→∞ x j = −1.
2. Consider the sequence (x j = j) j∈Z>0 . Here lim sup j→∞ x j = lim inf j→∞ = ∞.

3. Consider the sequence (x j = − j) j∈Z>0 . Here lim sup j→∞ x j = lim inf j→∞ = −∞.

4. Define

x j =

 j, j even,
0, j odd.

We then have lim sup j→∞ x j = ∞ and lim inf j→∞ x j = 0.

5. Define

x j =

− j, j even,
0, j odd.

We then have lim sup j→∞ x j = 0 and lim inf j→∞ = −∞.

6. Define

x j =

 j, j even,
− j, j odd.

We then have lim sup j→∞ x j = ∞ and lim inf j→∞ = −∞. •

There are many ways to characterise lim sup and lim inf, and we shall indicate
but a few of these.

2.3.15 Proposition (Characterisation of lim sup) For a sequence (xj)j∈Z>0 in R and α ∈ R,
the following statements are equivalent:

(i) α = lim supj→∞ xj;

(ii) α = inf{sup{xj | j ≥ k} | k ∈ Z>0};
(iii) for each ϵ ∈ R>0 the following statements hold:

(a) there exists N ∈ Z>0 such that xj < α + ϵ for all j ≥ N;
(b) for an infinite number of j ∈ Z>0 it holds that xj > α − ϵ.

Proof (i) ⇐⇒ (ii) Let yk = sup{x j | j ≥ k} and note that the sequence (yk)k∈Z>0 is
monotonically decreasing. Therefore, the sequence (yk)k∈Z>0 converges if and only if it
is lower bounded. Moreover, if it converges, it converges to inf(yk)k∈Z>0 . Putting this
all together gives the desired implications.

(i) =⇒ (iii) Let yk be as in the preceding part of the proof. Since limk→∞ yk = α,
for each ϵ ∈ R>0 there exists N ∈ Z>0 such that |yk − α| < ϵ for k ≥ N. In particular,
yN < α + ϵ. Therefore, x j < α + ϵ for all j ≥ N, so (a) holds. We also claim that, for
every ϵ ∈ R>0 and for every N ∈ Z>0, there exists j ≥ N such that x j > yN − ϵ. Indeed,
if x j ≤ yN − ϵ for every j ≥ N, then this contradicts the definition of yN. Since yN ≥ α
we have x j > yN − ϵ ≥ α − ϵ for some j. Since N is arbitrary, (b) holds.
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(iii) =⇒ (i) Condition (a) means that there exists N ∈ Z>0 such that yk < α + ϵ for
all k ≥ N. Condition (b) implies that yk > α − ϵ for all k ∈ Z>0. Combining these
conclusions shows that limk→∞ yk = α, as desired. ■

The corresponding result for lim inf is the following. The proof follows in the
same manner as the result for lim sup.

2.3.16 Proposition (Characterisation of lim inf) For a sequence (xj)j∈Z>0 in R and α ∈ R,
the following statements are equivalent:

(i) α = lim infj→∞ xj;
(ii) α = sup{inf{xj | j ≥ k} | k ∈ Z>0};
(iii) for each ϵ ∈ R>0 the following statements hold:

(a) there exists N ∈ Z>0 such that xj > α − ϵ for all j ≥ N;
(b) for an infinite number of j ∈ Z>0 it holds that xj < α + ϵ.

Finally, we characterise the relationship between lim sup, lim inf, and lim.

2.3.17 Proposition (Relationship between lim sup, lim inf, and lim) For a sequence
(xj)j∈Z>0 and s0 ∈ R, the following statements are equivalent:

(i) limj→∞ xj = s0;
(ii) lim supj→∞ xj = lim infj→∞ xj = s0.

Proof (i) =⇒ (ii) Let ϵ ∈ R>0 and take N ∈ Z>0 such that |x j − s0| < ϵ for all j ≥ N.
Then x j < s0 + ϵ and x j > s0 − ϵ for all j ≥ N. The current implication now follows from
Propositions 2.3.15 and 2.3.16.

(ii) =⇒ (i) Let ϵ ∈ R>0. By Propositions 2.3.15 and 2.3.16 there exists N1,N2 ∈ Z>0
such that x j − s0 < ϵ for j ≥ N1 and s0 − x j < ϵ for j ≥ N2. Thus |x j − s0| < ϵ for
j ≥ max{N1,N2}, giving this implication. ■

2.3.5 Multiple sequences

It will be sometimes useful for us to be able to consider sequences indexed, not
by a single index, but by multiple indices. We consider the case here of two indices,
and extensions to more indices are done by induction.

2.3.18 Definition (Double sequence) A double sequence in R is a family of elements of
R indexed by Z>0 ×Z>0. We denote a double sequence by (x jk) j,k∈Z>0 , where x jk is
the image of ( j, k) ∈ Z>0 ×Z>0 in R. •

It is not a priori obvious what it might mean for a double sequence to converge,
so we should carefully say what this means.
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2.3.19 Definition (Convergence of double sequences) Let s0 ∈ R. A double sequence
(x jk) j,k∈Z>0 :

(i) converges to s0, and we write lim j,k→∞ x jk = s0, if, for each ϵ ∈ R>0, there exists
N ∈ Z>0 such that |s0 − x jk| < ϵ for j, k ≥ N;

(ii) has s0 as a limit if it converges to s0.
(iii) is convergent if it converges to some member of R;
(iv) diverges if it does not converge;
(v) diverges to ∞ (resp. diverges to −∞), and we write lim j,k→∞ x jk = ∞

(resp. lim j,k→∞ x jk = −∞) if, for each M ∈ R>0, there exists N ∈ Z>0 such
that x jk > M (resp. x jk < −M) for j, k ≥ N;

(vi) has a limit that exists if lim j,k→∞ x jk ∈ R;
(vii) is oscillatory if the limit of the sequence does not exist, does not diverge to

∞, or does not diverge to −∞. •

Note that the definition of convergence requires that one check both indices at
the same time. Indeed, if one thinks, as it is useful to do, of a double sequence
as assigning a real number to each point in an infinite grid defined by the set
Z>0 ×Z>0, convergence means that the values on the grid can be made arbitrarily
small outside a sufficiently large square (see Figure 2.2). It is useful, however,

Figure 2.2 Convergence of a double sequence: by choosing the
square large enough, the values at the unshaded grid points
can be arbitrarily close to the limit

to have means of computing limits of double sequences by computing limits of
sequences in the usual sense. Our next results are devoted to this.

2.3.20 Proposition (Computation of limits of double sequences I) Suppose that for the
double sequence (xjk)j,k∈Z>0 it holds that

(i) the double sequence is convergent and
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(ii) for each j ∈ Z>0, the limit limk→∞ xjk exists.
Then the limit limj→∞(limk→∞ xjk) exists and is equal to limj,k→∞ xjk.

Proof Let s0 = lim j,k→∞ x jk and denote s j = limk→∞ x jk, j ∈ Z>0. For ϵ ∈ R>0 take
N ∈ Z>0 such that |x jk − s0| < ϵ

2 for j, k ≥ N. Also take N j ∈ Z>0 such that |x jk − s j| <
ϵ
2

for k ≥ N j. Next take j ≥ N and let k ≥ max{N,N j}. We then have

|s j − s0| = |s j − x jk + x jk − s0| ≤ |s j − x jk| + |x jk − s0| < ϵ,

using the triangle inequality. ■

2.3.21 Proposition (Computation of limits of double sequences II) Suppose that for the
double sequence (xjk)j,k∈Z>0 it holds that

(i) the double sequence is convergent,
(ii) for each j ∈ Z>0, the limit limk→∞ xjk exists, and
(iii) for each k ∈ Z>0, the limit limj→∞ xjk exists.

Then the limits limj→∞(limk→∞ xjk) and limk→∞(limj→∞ xjk) exist and are equal to
limj,k→∞ xjk.

Proof This follows from two applications of Proposition 2.3.20. ■

Let us give some examples that illustrate the idea of convergence of a double
sequence.

2.3.22 Examples (Double sequences)
1. It is easy to check that the double sequence ( 1

j+k ) j,k∈Z>0 converges to 0. Indeed,
for ϵ ∈ R>0, if we take N ∈ Z>0 such that 1

2N < ϵ, it follows that 1
j+k < ϵ for

j, k ≥ N.

2. The double sequence ( j
j+k ) j,k∈Z>0 does not converge. To see this we should find

ϵ ∈ R>0such that, for any N ∈ Z>0, there exists j, k ≥ N for which j
j+k ≥ ϵ. Take

ϵ = 1
2 and let N ∈ Z>0. Then, if j, k ≥ N satisfy j ≥ 2k, we have j

j+k ≥ ϵ.

Note that for this sequence, the limits lim j→∞
j

j+k and limk→∞
j

j+k exist for each
fixed k and j, respectively. This cautions about trying to use these limits to infer
convergence of the double sequence.

3. The double sequence ( (−1) j

k ) j,k∈Z>0 is easily seen to converge to 0. However, the
limit lim j→∞

(−1) j

k does not exist for any fixed k. Therefore, one needs condition (ii)
in Proposition 2.3.20 and conditions (ii) and (iii) in Proposition 2.3.21 in order
for the results to be valid. •

2.3.6 Algebraic operations on sequences

It is of frequent interest to add, multiply, or divide sequences and series. In
such cases, one would like to ensure that convergence of the sequences or series is
sufficient to ensure convergence of the sum, product, or quotient. In this section
we address this matter.
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2.3.23 Proposition (Algebraic operations on sequences) Let (xj)j∈Z>0 and (yj)j∈Z>0 be
sequences converging to s0 and t0, respectively, and let α ∈ R. Then the following
statements hold:

(i) the sequence (αxj)j∈Z>0 converges to αs0;
(ii) the sequence (xj + yj)j∈Z>0 converges to s0 + t0;
(iii) the sequence (xjyj)j∈Z>0 converges to s0t0;
(iv) if, for all j ∈ Z>0, yj , 0 and if s0 , 0, then the sequence ( xj

yj
)j∈Z>0 converges to s0

t0
.

Proof (i) The result is trivially true for a = 0, so let us suppose that a , 0. Let ϵ ∈ R>0
and choose N ∈ Z>0 such that |x j − s0| < ϵ

|α| . Then, for j ≥ N,

|αx j − αs0| = |α||x j − s0| < ϵ.

(ii) Let ϵ ∈ R>0 and take N1,N2 ∈ Z>0 such that

|x j − s0| < ϵ
2 , j ≥ N1, |y j − t0| < ϵ

2 , j ≥ N2.

Then, for j ≥ max{N1,N2},

|x j + y j − (s0 + t0)| ≤ |x j − s0| + |y j − t0| = ϵ,

using the triangle inequality.
(iii) Let ϵ ∈ R>0 and define N1,N2,N3 ∈ Z>0 such that

|x j − s0| < 1, j ≥ N1, =⇒ |x j| < |s0| + 1, j ≥ N1,

|x j − s0| <
ϵ

2(|t0| + 1)
, j ≥ N2,

|y j − t0| <
ϵ

2(|s0| + 1)
, j ≥ N2.

Then, for j ≥ max{N1,N2,N3},

|x jy j − s0t0| = |x jy j − x jt0 + x jt0 − s0t0|

= |x j(y j − t0) + t0(x j − s0)|
≤ |x j||y j − t0| + |t0||x j − s0|

≤ (|s0| + 1)
ϵ

2(|s0| + 1)
+ (|t0| + 1)

ϵ
2(|t0| + 1)

= ϵ.

(iv) It suffices using part (iii) to consider the case where x j = 1, j ∈ Z>0. For ϵ ∈ R>0
take N1.N2 ∈ Z>0 such that

|y j − t0| <
|t0|

2
, j ≥ N1, =⇒ |y j| >

|t0|

2
, j ≥ N1,

|y j − t0| <
|t0|

2ϵ
2
, j ≥ N2.

Then, for j ≥ max{N1,N2},∣∣∣∣∣∣ 1
y j
−

1
t0

∣∣∣∣∣∣ =
∣∣∣∣∣∣ y j − t0

y jt0

∣∣∣∣∣∣ ≤ |t0|
2ϵ

2
2
|t0|

1
|t0|
= ϵ,

as desired. ■
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As we saw in the statement of Proposition 2.2.1, the restriction in part (iv) that
y j , 0 for all j ∈ Z>0 is not a real restriction. The salient restriction is that the
sequence (y j) j∈Z>0 not converge to 0.

2.3.7 Convergence using R-nets

Up to this point in this section we have talked about convergence of sequences.
However, in practice it is often useful to take limits of more general objects where
the index set is not Z>0, but a subset of R. In Section 1.6.4 we introduced a
generalisation of sequences called nets. In this section we consider particular
cases of nets, called R-nets, that arise commonly when dealing with real numbers
and subsets of real numbers. These will be particularly useful when considering
the relationships between limits and functions. As we shall see, this slightly
more general notion of convergence can be reduced to standard convergence of
sequences. We comment that the notions of convergence in this section can be
generalised to general nets, and we refer the reader to Section III-1.5 for details.

Our objective is to understand what is meant by an expression like limx→a ϕ(a),
where ϕ : A→ R is a map from a subset A of R to R. We will mainly be interested
in subsets A of a rather specific form. However, we consider the general case so as
to cover all situations that might arise.

2.3.24 Definition (R-directed set) A R-directed set is a pair D = (A,⪯) where the partial
order ⪯ is defined by x ⪯ y if either

(i) x ≤ y,
(ii) x ≥ y, or
(iii) there exists x0 ∈ R such that |x − x0| ≤ |y − x0| (we abbreviate this relation as

x ≤x0 y). •

Note that if D = (A,⪯) is aR-directed set, then it is indeed a directed set because,
corresponding to the three cases of the definition,
1. if x, y ∈ A, then z = max{x, y} has the property that x ⪯ z and y ⪯ z (for the first

case in the definition),
2. if x, y ∈ A, then z = min{x, y} has the property that x ⪯ z and y ⪯ z (for the

second case in the definition), or
3. if x, y ∈ A then, taking z to satisfy |z − x0| = min{|x − x0|, |y − x0|}, we have x ⪯ z

and y ⪯ z (for the third case of the definition).
Let us give some examples to illustrate the sort of phenomenon one can see for

R-directed sets.

2.3.25 Examples (R-directed sets)
1. Let us take the R-directed set ([0, 1],≤). Here we see that, for any x, y ∈ [0, 1],

we have x ≤ 1 and y ≤ 1.
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2. Next take the R-directed set ([0, 1),≤). Here, there is no element z of [0, 1) for
which x ≤ z and y ≤ z for every x, y ∈ [0, 1). However, it obviously holds that
x ≤ 1 and y ≤ 1 for every x, y ∈ [0, 1).

3. Next we consider the R directed set ([0,∞),≥). Here we see that, for any
x, y ∈ [0,∞), x ≥ 0 and y ≥ 0.

4. Next we consider the R directed set ((0,∞),≥). Here we see that there is no
element z ∈ (0,∞) such that, for every x, y ∈ (0,∞), x ≥ z and y ≥ z. However, it
is true that x ≥ 0 and y ≥ 0 for every x, y ∈ (0,∞).

5. Now we take theR-directed set ([0,∞),≤). Here we see that there is no element
z ∈ [0,∞) such that x ≤ z and y ≤ z for every x, y ∈ [0,∞). Moreover, there is
also no element z ∈ R for which x ≤ z and y ≤ z for every x, y ∈ [0,∞).

6. Next we take theR-directed set (Z,≤). As in the preceding example, there is no
element z ∈ [0,∞) such that x ≤ z and y ≤ z for every x, y ∈ [0,∞). Moreover,
there is also no element z ∈ R for which x ≤ z and y ≤ z for every x, y ∈ [0,∞).

7. Now consider the R-directed set (R,≤0). Note that 0 ∈ R has the property that,
for any x, y ∈ R, x ≤0 0 and y ≤0 0.

8. Similar to the preceding example, consider theR-directed set (R \ {0},≤0). Here
there is no element z ∈ R \ {0} such that x ≤0 z and y ≤0 z for every x, y ∈ R \ {0}.
However, we clearly have x ≤0 0 and y ≤0 0 for every x, y ∈ R \ {0}. •

The examples may seem a little silly, but this is just because the notion of a
R-directed set is, in and of itself, not so interesting. What is more interesting is the
following notion.

2.3.26 Definition (R-net, convergence in R-nets) If D = (A,⪯) is a R-directed set, a
R-net in D is a map ϕ : A→ R. A R-net ϕ : A→ R in a R-directed set D = (A,⪯)

(i) converges to s0 ∈ R if, for any ϵ ∈ R>0, there exists x ∈ A such that |ϕ(y)−s0| < ϵ
for any y ∈ A satisfying x ⪯ y,

(ii) has s0 as a limit if it converges to s0, and we write s0 = limD ϕ,
(iii) diverges if it does not converge,
(iv) diverges to∞ ((resp. diverges to−∞, and we write limD ϕ = ∞ (resp. limD ϕ =
−∞), if, for each M ∈ R>0, there exists x ∈ A such that ϕ(y) > M (resp. ϕ(y) <
−M) for every y ∈ A for which x ⪯ y,

(v) has a limit that exists if limD ϕ ∈ R, and
(vi) is oscillatory if the limit of the R-net does not exist, does not diverge to ∞,

and does not diverge to −∞. •

2.3.27 Notation (Limits of R-nets) The importance R-nets can now be illustrated by
showing how they give rise to a collection of convergence phenomenon. Let us
look at various cases for convergence of a R-net in a R-directed set D = (A,⪯).

(i) ⪯=≤: Here there are two subcases to consider.
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(a) sup A = x0 < ∞: In this case we write limD ϕ = limx↑x0 ϕ(x).
(b) sup A = ∞: In this case we write limD ϕ = limx→∞ ϕ(x).

(ii) ⪯=≥: Again we have two subcases.

(a) inf A = x0 > −∞: In this case we write limD ϕ = limx↓x0 ϕ(x).
(b) inf A = −∞: In this case we write limD ϕ = limx→−∞ ϕ(x).

(iii) ⪯=≤x0 : There are three subcases here that we wish to distinguish.

(a) sup A = x0: Here we denote limD ϕ = limx↑x0 ϕ(x).
(b) inf A = x0: Here we denote limD ϕ = limx↓x0 ϕ(x).
(c) x0 < {inf A, sup A}: Here we denote limD ϕ = limx→x0 ϕ(x). •

In the case when the directed set is an interval, we have the following notation
that unifies the various limit notations for this special often encountered case.

2.3.28 Notation (Limit in an interval) Let I ⊆ R be an interval, let ϕ : I → R be a map,
and let a ∈ I. We define limx→Ia ϕ(x) by

(i) limx→Ia ϕ(x) = limx↑a ϕ(x) if a = sup I,
(ii) limx→Ia ϕ(x) = limx↓a ϕ(x) if a = inf I, and
(iii) limx→Ia ϕ(x) = limx→a ϕ(x) otherwise. •

We expect that most readers will be familiar with the idea here, even if the
notation is not conventional. Let us also give the notation a precise characterisation
in terms of limits of sequences in the case when the point x0 is in the closure of the
set A.

2.3.29 Proposition (Convergence in R-nets in terms of sequences) Let (A,⪯) be a
R-directed set and let ϕ : A → R be a R-net in (A,⪯). Then, corresponding to the cases
and subcases of Notation 2.3.27, we have the following statements:

(i) (a) if x0 ∈ cl(A), the following statements are equivalent:

I. limx↑x0 ϕ(x) = s0;
II. limj→∞ ϕ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =

x0;

(b) the following statements are equivalent:

I. limx→∞ ϕ(x) = s0;
II. limj→∞ ϕ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
∞;

(ii) (a) if x0 ∈ cl(A), the following statements are equivalent:

I. limx↓x0 ϕ(x) = s0;
II. limj→∞ ϕ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =

x0;

(b) the following statements are equivalent:
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I. limx→−∞ ϕ(x) = s0;
II. limj→∞ ϕ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
−∞;

(iii) (a) if x0 ∈ cl(A), the following statements are equivalent:
I. limx↑x0 ϕ(x) = s0;

II. limj→∞ ϕ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
x0;

(b) if x0 ∈ cl(A), the following statements are equivalent:
I. limx↓x0 ϕ(x) = s0;

II. limj→∞ ϕ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
x0;

(c) the following statements are equivalent:
I. limx→∞ ϕ(x) = s0;

II. limj→∞ ϕ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
∞;

Proof These statements are all proved in essentially the same way, so let us prove just,
say, part (a).

First suppose that limx↑x0 ϕ(x) = s0, and let (x j) j∈Z>0 be a sequence in A converging
to x0. Let ϵ ∈ R>0 and choose x ∈ A such that |ϕ(y) − s0| < ϵ whenever y ∈ A satisfies
x ≤ y. Then, since lim j→∞ x j = x0, there exists N ∈ Z>0 such that x ≤ x j for all j ≥ N.
Clearly, |ϕ(x j) − s0| < ϵ, so giving convergence of (ϕ(x j)) j∈Z>0 to s0 for every sequence
(x j) j∈Z>0 in A converging to x0.

For the converse, suppose that limx↑x0 ϕ(x) , s0. Then there exists ϵ ∈ R>0 such
that, for any x ∈ A, we have a y ∈ A with x ≤ y for which |ϕ(y)− s0| ≥ ϵ. Since x0 ∈ cl(A)
it follows that, for any j ∈ Z>0, there exists x j ∈ B( 1

j , x0) ∩ A such that |ϕ(x j) − s0| ≥ ϵ.
Thus the sequence (x j) j∈Z>0 in A converging to x0 has the property that (ϕ(x j)) j∈Z>0 does
not converge to s0. ■

Of course, similar conclusions hold when “convergence to s0” is replaced with
“divergence,” “convergence to ∞,” “convergence to −∞,” or “oscillatory.” We
leave the precise statements to the reader.

Let us give some examples to illustrate that this is all really nothing new.

2.3.30 Examples (Convergence in R-nets)
1. Consider the R-directed set ([0,∞),≤) and the corresponding R-net ϕ defined

by ϕ(x) = 1
1+x2 . This R-net then converges to 0. Let us verify this using the

formal definition of convergence of a R-net. For ϵ ∈ R>0 choose x > 0 such that
x2 = 1

ϵ >
1
ϵ − 1. Then, if x ≤ y, we have∣∣∣∣∣ 1

1 + y2 − 0
∣∣∣∣∣ < 1

1 + x2 < ϵ,

giving convergence to limx→∞ ϕ(x) = 0 as stated.
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2. Next consider the R-directed set ((0, 1],≥) and the corresponding R-net ϕ de-
fined by ϕ(x) = x sin 1

x . We claim that this R-net converges to 0. To see this, let
ϵ ∈ R>0 and let x ∈ (0, ϵ). Then we have, for x ≥ y,∣∣∣∣y sin 1

y − 0
∣∣∣∣ = y ≤ x < ϵ,

giving limx↓0 ϕ(x) = 0 as desired.
3. Consider the R-directed set ([0,∞),≤) and the associated R-net ϕ defined by

ϕ(x) = x. In this case we have limx→∞ ϕ(x) = ∞.
4. Consider the R-directed set ([0,∞),≤) and the associated R-net ϕ defined by

ϕ(x) = x sin x. In this case, due to the oscillatory nature of sin, limx→∞ ϕ(x) does
not exist, nor does it diverge to either∞ or −∞.

5. Take the R-directed set (R \ {0},≤0). Define the R-net ϕ by ϕ(x) = x. Clearly,
limx→0 ϕ(x) = 0. •

There are also generalisations of lim sup and lim inf toR-nets. We let D = (A,⪯)
be a R-directed set and let ϕ : A→ R be a R-net in this R-directed set. We denote
by supD ϕ, infD ϕ : A→ R the R-nets in D given by

sup
D
ϕ(x) = sup{ϕ(y) | x ⪯ y}, inf

D
ϕ(x) = inf{ϕ(y) | x ⪯ y}.

Then we define

lim sup
D

ϕ = lim
D

sup
D
ϕ, lim inf

D
ϕ = lim

D
inf

D
ϕ.

These allow us to talk of limits in cases where limits in the usual sense to not exist.
Let us consider this via an example.

2.3.31 Example (lim sup and lim inf in R-nets) We consider the R-directed set D =
([0,∞),≤) and let ϕ be the R-net defined by ϕ(x) = e−x + sin x.5 We claim that
lim supD ϕ = 1 and that lim infD ϕ = −1. Let us prove the first claim, and leave the
second as an exercise. We then have

sup
D
ϕ(x) = sup{e−y + sin y | x ≤ y} = e−x + 1.

First note that supD ϕ(x) ≥ 1 for every x ∈ [0,∞), and so lim supD ϕ ≥ 1. Now let
ϵ ∈ R>0 and take x > log ϵ. Then, for any y ≥ x,

sup
D
ϕ(y) = e−y + 1 ≤ 1 + ϵ.

Therefore, lim supD ϕ ≤ 1, and so lim supD ϕ = 1, as desired. •

5We have not yet defined e−x or sin x. The reader who is unable to go on without knowing what
these functions really are can skip ahead to Section 3.8.
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2.3.8 A first glimpse of Landau symbols

In this section we introduce for the first time the so-called Landau symbols.
These provide commonly used notation for when two functions behave “asymp-
totically” the same. Given our development of R-nets in the preceding section, it
is easy for us to be fairly precise here. We also warn the reader that the Landau
symbols often get used in an imprecise or vague way. We shall try to avoid such
usage.

We begin with the definition.

2.3.32 Definition (Landau symbols “O” and “o”) Let D = (A,⪯) be aR-directed set and
let ϕ : A→ R.

(i) Denote by OD(ϕ) the functions ψ : A → R for which there exists x0 ∈ A and
M ∈ R>0 such that |ψ(x)| ≤M|ϕ(x)| for x ∈ A satisfying x0 ⪯ x.

(ii) Denote by oD(ϕ) the functions ψ : A → R such that, for any ϵ ∈ R>0, there
exists x0 ∈ A such that |ψ(x)| < ϵ|ϕ(x)| for x ∈ A satisfying x0 ⪯ x.

If ψ ∈ OD(ϕ) (resp. ψ ∈ oD(ϕ)) then we say that ψ is big oh of ϕ (resp. little oh of
ϕ). •

It is very common to see simply O(ϕ) and o(ϕ) in place of OD(ϕ) and oD(ϕ). This
is because the most common situation for using this notation is in the case when
sup A = ∞ and ⪯=≤. In such cases, the notation indicates means, essentially, that
ψ ∈ O(ϕ) if ψ has “size” no larger than ϕ for large values of the argument and that
ψ ∈ o(ϕ) if ψ is “small” compared to ϕ for large values of the argument. However,
we shall use the Landau symbols in other cases, so we allow the possibility of
explicitly including the R-directed set in our notation for the sake of clarity.

It is often the case that the comparison function ϕ is positive on A. In such
cases, one can give a somewhat more concrete characterisation of OD and oD.

2.3.33 Proposition (Alternative characterisation of Landau symbols) Let D = (A,⪯)
be a R-directed set, and let ϕ : A→ R>0 and ψ : A→ R. Then

(i) ψ ∈ OD(ϕ) if and only if lim supD
ψ
ϕ < ∞ and

(ii) ψ ∈ oD(ϕ) if and only if limD
ψ
ϕ = 0.

Proof We leave this as Exercise 2.3.5. ■

Let us give some common examples of where the Landau symbols are used.
Some examples will make use of ideas we have not yet discussed, but which we
imagine are familiar to most readers.

2.3.34 Examples (Landau symbols)
1. Let I ⊆ R be an interval for which x0 ∈ I and let f : I → R. Consider the
R-directed set D = (I \ {x0},≤x0) and the R-net ϕ in D given by ϕ(x) = 1. Define
g f ,x0 : I→ R by g f ,x0(x) = f (x0). We claim that f is continuous at x0 if and only if
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f − g f ,x0 ∈ oD(ϕ). Indeed, by Theorem 3.1.3 we have that f is continuous at x0 if
and only if

lim
x→Ix0

f (x) = f (x0)

=⇒ lim
x→Ix0

( f (x) − g f ,x0(x)) = 0

=⇒ lim
x→Ix0

( f (x) − g f ,x0(x))
ϕ(x)

= 0

=⇒ f − g f ,x0 ∈ oD(ϕ).

The idea is that f is continuous at x0 if and only if f is “approximately constant”
near x0.

2. Let I ⊆ R be an interval for which x0 ∈ I and let f : I → R. For L ∈ R define
g f ,x0,L : I \ {x0} → R by

gx0,L(x) = f (x0) + L(x − x0).

Consider the R-directed set D = (I \ {x0},≤x0), and define ϕ : I \ {x0} → R>0

by ϕ(x) = |x − x0|. Then we claim that f is differentiable at x0 with derivative
f ′(x0) = L if and only if f−g f ,x0,L ∈ oD(ϕ). Indeed, by definition, f is differentiable
at x0 with derivative f ′(x0) = L if and only if, then

lim
x→Ix0

f (x) − f (x0)
x − x0

= L

⇐⇒ lim
x→Ix0

1
x − x0

(
f (x) − g f ,x0,L(x)

)
= 0

⇐⇒ lim
x→Ix0

1
|x − x0|

(
f (x) − g f ,x0,L(x)

)
= 0

⇐⇒ f (x) − g f ,x0,L(x) ∈ oD(ϕ),

using Proposition 2.3.33. The idea is that f is differentiable at x0 if and only if
f is “nearly linear” at x0.

3. We can generalise the preceding two examples. Let I ⊆ R be an interval, let
x0 ∈ I, and consider theR-directed set (I\{x0},≤x0). For m ∈ Z≥0 define theR-net
ϕm in D by ϕm(x) = |x − x0|

m. We shall say that a function f : I → R vanishes
to order m at x0 if f ∈ OD(ϕm). Moreover, f is m-times differentiable at x0 with
f ( j)(x0)alpha j, j ∈ {0, 1, . . . ,m}, if and only if f − g f ,x0,α ∈ oD(ϕm), where

g f ,x0,α(x) = α0 + α1x + · · · + αmxm.

4. One of the common places where Landau symbols are used is in the analysis
of the complexity of algorithms. An algorithm, loosely speaking, takes some
input data, performs operations on the data, and gives an outcome. A very
simple example of an algorithm is the multiplication of two square matrices,
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and we will use this simple example to illustrate our discussion. It is assumed
that the size of the input data is measured by an integer N. For example, for
the multiplication of square matrices, this integer is the size of the matrices.
The complexity of an algorithm is then determined by the number of steps,
denoted by, say, ψ(N), of a certain type in the algorithm. For example, for
the multiplication of square matrices, this number is normally taken to be the
number of multiplications that are needed, and this is easily seen to be no more
than N2. To describe the complexity of the algorithm, one finds uses Landau
symbols in the following way. First of all, we use theR-directed set D = (Z>0,≤).
If ϕ : Z>0 → R>0 is such that ψ ∈ OD(ϕ), then we say the algorithm is O(ϕ). For
example, matrix multiplication is O(N2).
In Theorem IV-7.2.20 we show that the computational complexity of the so-
called Cooley–Tukey algorithm for computing the FFT is O(N log N).
Since we are talking about computational complexity of algorithms, it is a
good time to make mention of an important problem in the theory of compu-
tational complexity. This discussion is limited to so-called decision algorithms,
where the outcome is an affirmative or negative declaration about some prob-
lem, e.g., is the determinant of a matrix bounded by some number. For such an
algorithm, a verification algorithm is an algorithm that checks whether given
input data does indeed give an affirmative answer. Denote by P the class of
algorithms that are O(Nm) for some m ∈ Z>0. Such algorithms are known as
polynomial time algorithms. Denote by NP the class of algorithms for which
there exists a verification algorithm that is O(Nm) for some m ∈ Z>0. An impor-
tant unresolved question is, “Does P=NP?” •

2.3.9 Notes

Citation for Dedekind cuts.

Exercises

2.3.1 Show that if (x j) j∈Z>0 is a sequence in R and if lim j→∞ x j = x0 and lim j→∞ x j =
x′0, then x0 = x′0.

2.3.2 Answer the following questions:
(a) find a subset S ⊆ Q that possesses an upper bound in Q, but which has

no least element;
(b) find a bounded monotonic sequence in Q that does not converge in Q.

2.3.3 Do the following.

(a) Find a sequence (x j) j∈Z>0 for which lim j→∞

∣∣∣∣x j+1

x j

∣∣∣∣ = 1 and which converges
in R.

(b) Find a sequence (x j) j∈Z>0 for which lim j→∞

∣∣∣∣ x j+1

x j

∣∣∣∣ = 1 and which diverges
to∞.
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(c) Find a sequence (x j) j∈Z>0 for which lim j→∞

∣∣∣∣ x j+1

x j

∣∣∣∣ = 1 and which diverges
to −∞.

(d) Find a sequence (x j) j∈Z>0 for which lim j→∞

∣∣∣∣x j+1

x j

∣∣∣∣ = 1 and which is oscilla-
tory.

In the next exercise you will show that the property that a bounded, monotonically
increasing sequence converges implies that Cauchy sequences converge. This com-
pletes the argument needed to prove the theorem stated in Aside 2.3.9 concerning
characterisations of complete ordered fields.

2.3.4 Assume that every bounded, monotonically increasing sequence in R con-
verges, and using this show that every Cauchy sequence in R converges
using an argument as follows.
1. Let (x j) j∈Z>0 be a Cauchy sequence.
2. Let I0 = [a, b] be an interval that contains all elements of (x j) j∈Z>0 (why is

this possible?)
3. Split [a, b] into two equal length closed intervals, and argue that in at least

one of these there is an infinite number of points from the sequence. Call
this interval I1 and let xki ∈ (x j) j∈Z>0 ∩ I1.

4. Repeat the process for I1 to find an interval I2 which contains an infinite
number of points from the sequence. Let xk2 ∈ (x j) j∈Z>0 ∩ I2.

5. Carry on doing this to arrive at a sequence (xk j) j∈Z>0 of points in R and a
sequence (I j) j∈Z>0 .

6. Argue that the sequence of left endpoints of the intervals (I j) j∈Z>0 is a
bounded monotonically increasing sequence, and that the sequence of
right endpoints is a bounded monotonically decreasing sequence. and so
both converge.

7. Show that they converge to the same number, and that the sequence
(xk j) j∈Z>0 also converges to this limit.

8. Show that the sequence (x j) j∈Z>0 converges to this limit.
2.3.5 Prove Proposition 2.3.33.
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Section 2.4

Series in R

From a sequence (x j) j∈R in R, one can consider, in principle, the infinite sum∑
∞

j=1 x j. Of course, such a sum a priori makes no sense. However, as we shall see in
Chapter IV-1, such infinite sums are important for characterising certain discrete-
time signal spaces. Moreover, such sums come up frequently in many places in
analysis. In this section we outline some of the principle properties of these sums.

Do I need to read this section? Most readers will probably have seen much of
the material in this section in their introductory calculus course. What might
be new for some readers is the fairly careful discussion in Theorem 2.4.5 of the
difference between convergence and absolute convergence of series. Since absolute
convergence will be of importance to us, it might be worth understanding in what
ways it is different from convergence. The material in Section 2.4.7 can be regarded
as optional until it is needed during the course of reading other material in the text.

•

2.4.1 Definitions and properties of series

A series in R is an expression of the form

S =
∞∑
j=1

x j, (2.5)

where x j ∈ R, j ∈ Z>0. Of course, the problem with this “definition” is that the
expression (2.5) is meaningless as an element of R unless it possesses additional
features. For example, if x j = 1, j ∈ Z>0, then the sum is infinite. Also, if x j = (−1) j,
j ∈ Z>0, then it is not clear what the sum is: perhaps it is 0 or perhaps it is 1.
Therefore, to be precise, a series is prescribed by the sequence of numbers (x j) j∈Z>0 ,
and is represented in the form (2.5) in order to distinguish it from the sequence
with the same terms.

If the expression (2.5) is to have meaning as a number, we need some sort of
condition placed on the terms in the series.

2.4.1 Definition (Convergence and absolute convergence of series) Let (x j) j∈Z>0 be
a sequence in R and consider the series

S =
∞∑
j=1

x j.
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The corresponding sequence of partial sums is the sequence (Sk)k∈Z>0 defined by

Sk =

k∑
j=1

x j.

Let s0 ∈ R. The series:
(i) converges to s0, and we write

∑
∞

j=1 x j = s0, if the sequence of partial sums
converges to s0;

(ii) has s0 as a limit if it converges to s0;
(iii) is convergent if it converges to some member of R;
(iv) converges absolutely, or is absolutely convergent, if the series

∞∑
j=1

|x j|

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge;
(vii) diverges to∞ (resp. diverges to−∞), and we write

∑
∞

j=1 x j = ∞ (resp.
∑
∞

j=1 x j =
−∞), if the sequence of partial sums diverges to∞ (resp. diverges to −∞);

(viii) has a limit that exists if lim j→∞ S j ∈ R;
(ix) is oscillatory if the sequence of partial sums is oscillatory. •

Let us consider some examples of series in R.

2.4.2 Examples (Series in R)
1. First we consider the geometric series

∑
∞

j=1 x j−1 for x ∈ R. We claim that this
series converges if and only if |x| < 1. To prove this we claim that the sequence
(Sk)k∈Z>0 of partial sums is defined by

Sk =

 1−xk+1

1−x , x , 1,
k, x = 1.

The conclusion is obvious for x = 1, so we can suppose that x , 1. The
conclusion is obvious for k = 1, so suppose it true for j ∈ {1, . . . , k}. Then

Sk+1 =

k+1∑
j=1

x j = xk+1 +
1 − xk+1

1 − x
=

xk+1
− xk+2 + 1 − xk+1

1 − x
=

1 − xk+2

1 − x
,
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as desired. It is clear, then, that if x = 1 then the series diverges to∞. If x = −1
then the series is directly checked to be oscillatory; the sequence of partial sums
is {1, 0, 1, . . . }. For x > 1 we have

lim
k→∞

Sk = lim
k→∞

1 − xk+1

1 − x
= ∞,

showing that the series diverges to ∞ in this case. For x < −1 it is easy to see
that the sequence of partial sums is oscillatory, but increasing in magnitude.
This leaves the case when |x| < 1. Here, since the sequence (xk+1)k∈Z>0 converges
to zero, the sequence of partial sums also converges, and converges to 1

1−x .
(We have used the results concerning the swapping of limits with algebraic
operations as described in Section 2.3.6.)

2. We claim that the series
∑
∞

j=1
1
j diverges to ∞. To show this, we show that the

sequence (Sk)k∈Z>0 is not upper bounded. To show this, we shall show that
S2k ≥ 1 + 1

2k for all k ∈ Z>0. This is true directly when k = 1. Next suppose that
S2 j ≥ 1 + 1

2 j for j ∈ {1, . . . , k}. Then

S2k+1 = S2k +
1

2k + 1
+

1
2k + 2

+ · · · +
1

2k+1

≥ 1 +
1
2

k +
1

2k+1
+ · · · +

1
2k+1︸              ︷︷              ︸

2k terms

= 1 +
1
2

k +
2k

2k+1
= 1 +

1
2

(k + 1).

Thus the sequence of partial sums is indeed unbounded, and since it is mono-
tonically increasing, it diverges to∞, as we first claimed.

3. We claim that the series S =
∑
∞

j=1
(−1) j+1

j converges. To see this, we claim that, for
any m ∈ Z>0, we have

S2 ≤ S4 ≤ · · · ≤ S2m ≤ S2m−1 ≤ · · · ≤ S3 ≤ S1.

That S2 ≤ S4 ≤ · · · ≤ S2m follows since S2k −S2k−2 =
1

2k−1 −
1
2k > 0 for k ∈ Z>0. That

S2m ≤ S2m−1 follows since S2m−1 − S2m =
1

2m . Finally, S2m−1 ≤ · · · ≤ S3 ≤ S1

since S2k−1 − S2k+1 =
1
2k −

1
2k+1 > 0 for k ∈ Z>0. Thus the sequences

(S2k)k∈Z>0 and (S2k−1)k∈Z>0 are monotonically increasing and monotonically de-
creasing, respectively, and their tails are getting closer and closer together since
limm→∞ S2m−1 − S2m =

1
2m = 0. By Lemma 2 from the proof of Theorem 2.3.7, it

follows that the sequences (S2k)k∈Z>0 and (S2k−1)k∈Z>0 converge and converge to
the same limit. Therefore, the sequence (Sk)k∈Z>0 converges as well to the same
limit. One can moreover show that the limit of the series is log 2, where log
denotes the natural logarithm.

Note that we have now shown that the series
∑
∞

j=1
(−1) j+1

j converges, but does not
converge absolutely; therefore, it is conditionally convergent.
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4. We next consider the harmonic series
∑
∞

j=1 j−k for k ∈ Z≥0. For k = 1 this agrees
with our example of part 2. We claim that this series converges if and only if
k > 1. We have already considered the case of k = 1. For k < 1 we have j−k

≥ j−1

for j ∈ Z>0. Therefore,
∞∑
j=1

j−k
≥

∞∑
j=1

j−1 = ∞,

showing that the series diverges to∞.
For k > 1 we note that the sequence of partial sums is monotonically increasing.
Thus, so show convergence of the series it suffices by Theorem 2.3.8 to show
that the sequence of partial sums is bounded above. Let N ∈ Z>0 and take
j ∈ Z>0 such that N < 2 j

− 1. Then the Nth partial sum satisfies

SN ≤ S2 j−1 = 1 +
1
2k
+

1
3k
+ · · · +

1
(2 j − 1)k

= 1 +
( 1
2k
+

1
3k

)
︸     ︷︷     ︸

2 terms

+
( 1
4k
+ · · · +

1
7k

)
︸            ︷︷            ︸

4 terms

+ · · · +

(
1

(2 j−1)k
+ · · · +

1
(2 j − 1)k

)
︸                          ︷︷                          ︸

2 j−1 terms

< 1 +
2
2k
+

4
4k
+ · · · +

2 j−1

(2 j−1)k

= 1 +
1

2k−1
+

( 1
2k−1

)2

+ · · · +
( 1
2k−1

) j−1

.

Now we note that the last expression on the right-hand side is bounded above
by the sum

∑
∞

j=1(2k−1) j−1, which is a convergent geometric series as we saw in
part 1. This shows that SN is bounded above by this sum for all N, so showing
that the harmonic series converges for k > 1.

5. The series
∑
∞

j=1(−1) j+1 does not converge, and also does not diverge to∞ or −∞.
Therefore, it is oscillatory. •

Let us next explore relationships between the various notions of convergence.
First we relate the notions of convergence and absolute convergence in the only
possible way, given that the series

∑
j=1

(−1) j+1

j has been shown to be convergent, but
not absolutely convergent.

2.4.3 Proposition (Absolutely convergent series are convergent) If a series
∑
∞

j=1 xj is
absolutely convergent, then it is convergent.

Proof Denote

sk =

k∑
j=1

x j, σk =

k∑
j=1

|x j|,

and note that (σk)k∈Z>0 is a Cauchy sequence since the series
∑
∞

j=1 x j is absolutely
convergent. Thus let ϵ ∈ R>0 and choose N ∈ Z>0 such that |σk − σl| < ϵ for k, l ≥ N.
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For m > k we then have

|sm − sk| =

∣∣∣∣∣∣∣∣
m∑

j=k+1

x j

∣∣∣∣∣∣∣∣ ≤
m∑

j=k+1

|x j| = |σm − σk| < ϵ,

where we have used Exercise 2.4.3. Thus, for m > k ≥ N we have |sm− sk| < ϵ, showing
that (sk)k∈Z>0 is a Cauchy sequence, and so convergent by Theorem 2.3.5. ■

The following result is often useful.

2.4.4 Proposition (Swapping summation and absolute value) For a sequence (xj)j∈Z>0 ,
if the series S =

∑
∞

j=1 xj is absolutely convergent, then∣∣∣∣∣∣∣
∞∑

j=1

xj

∣∣∣∣∣∣∣ ≤
∞∑

j=1

|xj|.

Proof Define

S1
m =

∣∣∣∣∣∣∣∣
m∑

j=1

x j

∣∣∣∣∣∣∣∣ , S2
m =

m∑
j=1

|x j|, m ∈ Z>0.

By Exercise 2.4.3 we have S1
m ≤ S2

m for each m ∈ Z>0. Moreover, by Proposition 2.4.3
the sequences (S1

m)m∈Z>0 and (S2
m)m∈Z>0 converge. It is then clear (why?) that

lim
m→∞

S1
m ≤ lim

m→∞
S2

m,

which is the result. ■

It is not immediately clear on a first encounter why the notion of absolute
convergence is useful. However, as we shall see in Chapter IV-1, it is the notion
of absolute convergence that will be of most use to us in our characterisation
of discrete signal spaces. The following result indicates why mere convergence
of a series is perhaps not as nice a notion as one would like, and that absolute
convergence is in some sense better behaved.

2.4.5 Theorem (Convergence and rearrangement of series) For a series S =
∑
∞

j=1 xj,
the following statements hold:

(i) if S is conditionally convergent then, for any s0 ∈ R, there exists a bijectionϕ : Z>0 →

Z>0 such that the series Sϕ =
∑
∞

j=1 xϕ(j) converges to s0;
(ii) if S is conditionally convergent then there exists a bijection ϕ : Z>0 → Z>0 such that

the series Sϕ =
∑
∞

j=1 xϕ(j) diverges to∞;
(iii) if S is conditionally convergent then there exists a bijection ϕ : Z>0 → Z>0 such that

the series Sϕ =
∑
∞

j=1 xϕ(j) diverges to −∞;
(iv) if S is conditionally convergent then there exists a bijection ϕ : Z>0 → Z>0 such that

the limit of the partial sums for the series Sϕ =
∑
∞

j=1 xϕ(j) is oscillating;
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(v) if S is absolutely convergent then, for any bijection ϕ : Z>0 → Z>0, the series
Sϕ =

∑
∞

j=1 xϕ(j) converges to the same limit as the series S.
Proof We shall be fairly “descriptive” concerning the first four parts of the proof.
More precise arguments can be tediously fabricated from the ideas given. We shall use
the fact, given as Exercise 2.4.1, that if a series is conditionally convergent, then the
two series formed by the positive terms and the negative terms diverge.

(i) First of all, rearrange the terms in the series so that the positive terms are
arranged in decreasing order, and the negative terms are arranged in increasing order.
We suppose that s0 ≥ 0, as a similar argument can be fabricated when s0 < 0. Take as
the first elements of the rearranged sequence the enough of the first few positive terms
in the sequence so that their sum exceeds s0. As the next terms, take enough of the
first few negative terms in the series such that their sum, combined with the already
chosen positive terms, is less than s0. Now repeat this process. Because the series
was initially rearranged so that the positive and negative terms are in descending and
ascending order, respectively, one can show that the construction we have given yields
a sequence of partial sums that starts greater than s0, then monotonically decreases to
a value less than s0, then monotonically increases to a value greater than s0, and so
on. Moreover, at the end of each step, the values get closer to s0 since the sequence of
positive and negative terms both converge to zero. An argument like that used in the
proof of Proposition 2.3.10 can then be used to show that the resulting sequence of
partial sums converges to s0.

(ii) To get the suitable rearrangement, proceed as follows. Partition the negative
terms in the sequence into disjoint finite sets S−j , j ∈ Z>0. Now partition the positive
terms in the sequence as follows. Define S+1 to be the first N1 positive terms in the
sequence, where N1 is sufficiently large that the sum of the elements of S+1 exceeds by
at least 1 in absolute value the sum of the elements from S−1 . This is possible since the
series of positive terms in the sequence diverges to ∞. Now define S+2 by taking the
next N2 positive terms in the sequence so that the sum of the elements of S+2 exceeds
by at least 1 in absolute value the sum of the elements from S−2 . Continue in this way,
defining S+3 ,S

+
4 , . . .. The rearrangement of the terms in the series is then made by taking

the first collection of terms to be the elements of S+1 , the second collection to be the
elements of S−1 , the third collection to be the elements of S+2 , and so on. One can verify
that the resulting sequence of partial sums diverges to∞.

(iii) The argument here is entirely similar to the previous case.
(iv) This result follows from part (i) in the following way. Choose an oscillating

sequence (y j) j∈Z>0 . For y1, by part (i) one can find a finite number of terms from the
original series whose sum is as close as desired to y1. These will form the first terms
in the rearranged series. Next, the same argument can be applied to the remaining
elements of the series to yield a finite number of terms in the series that are as close
as desired to y2. One carries on in this way, noting that since the sequence (y j) j∈Z>0 is
oscillating, so too will be the sequence of partial sums for the rearranged series.

(v) Let y j = xϕ( j) for j ∈ Z>0. Then define sequences (x+j ) j∈Z>0 , (x−j ) j∈Z>0 , (y+j ) j∈Z>0 ,
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and (y−j ) j∈Z>0 by

x+j = max{x j, 0}, x−j = max{−x j, 0},

y+j = max{y j, 0}, y−j = max{−y j, 0}, j ∈ Z>0,

noting that |x j| = max{x−j , x
+
j } and |y j| = max{y−j , y

+
j } for j ∈ Z>0. By Proposition 2.4.8

it follows that the series

S+ =
∞∑
j=1

x+j , S− =
∞∑
j=1

x−j , S+ϕ =
∞∑
j=1

y+j , S−ϕ =
∞∑
j=1

y−j

converge. We claim that for each k ∈ Z>0 we have

k∑
j=1

x+j ≤
∞∑
j=1

y+j .

To see this, we need only note that there exists N ∈ Z>0 such that

{x+1 , . . . , x
+
k } ⊆ {y

+
1 , . . . , y

+
N}.

With N having this property,

k∑
j=1

x+j ≤
N∑

j=1

y+j ≤
∞∑
j=1

y+j ,

as desired. Therefore,
∞∑
j=1

x+j ≤
∞∑
j=1

y+j .

Reversing the argument gives
∞∑
j=1

y+j ≤
∞∑
j=1

x+j =⇒

∞∑
j=1

x+j =
∞∑
j=1

y+j .

A similar argument also gives
∞∑
j=1

x−j =
∞∑
j=1

y−j .

This then gives
∞∑
j=1

y j =

∞∑
j=1

y+j −
∞∑
j=1

y−j =
∞∑
j=1

x+j −
∞∑
j=1

x−j =
∞∑
j=1

x j,

as desired. ■

The theorem says, roughly, that absolute convergence is necessary and sufficient
to ensure that the limit of a series be independent of rearrangement of the terms in
the series. Note that the necessity portion of this statement, which is parts (i)–(iv)
of the theorem, comes in a rather dramatic form which suggests that conditional
convergence behaves maximally poorly with respect to rearrangement.
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2.4.2 Tests for convergence of series

In this section we give some of the more popular tests for convergence of a series.
It is infeasible to expect an easily checkable general condition for convergence.
However, in some cases the tests we give here are sufficient.

First we make a simple general observation that is very often useful; it is merely
a reflection that the convergence of a series depends only on the tail of the series.
We shall often make use of this result without mention.

2.4.6 Proposition (Convergence is unaffected by changing a finite number of
terms) Let

∑
j=1 xj and

∑
∞

j=1 yj be series in R and suppose that there exists K ∈ Z
and N ∈ Z>0 such that xj = yj+K for j ≥ N. Then the following statements hold:

(i) the series
∑
∞

j=1 xj converges if and only if the series
∑
∞

j=1 yj converges;

(ii) the series
∑
∞

j=1 xj diverges if and only if the series
∑
∞

j=1 yj diverges;

(iii) the series
∑
∞

j=1 xj diverges to∞ if and only if the series
∑
∞

j=1 yj diverges to∞;

(iv) the series
∑
∞

j=1 xj diverges to −∞ if and only if the series
∑
∞

j=1 yj diverges to −∞.

The next convergence result is also a more or less obvious one.

2.4.7 Proposition (Sufficient condition for a series to diverge) If the sequence (xj)j∈Z>0

does not converge to zero, then the series
∑
∞

j=1 xj diverges.
Proof Suppose that the series

∑
∞

j=1 x j converges to s0 and let (Sk)k∈Z>0 be the sequence
of partial sums. Then xk = Sk − Sk−1. Then

lim
k→∞

xk = lim
k→∞

Sk − lim
k→∞

Sk−1 = s0 − s0 = 0V,

as desired. ■

Note that Example 2.4.2–2 shows that the converse of this result is false. That
is to say, for a series to converge, it is not sufficient that the terms in the series go
to zero. For this reason, checking the convergence of a series numerically becomes
something that must be done carefully, since the blind use of the computer with
a prescribed numerical accuracy will suggest the false conclusion that a series
converges if and only if the terms in the series go to zero as the index goes to
infinity.

Another more or less obvious result is the following.

2.4.8 Proposition (Comparison Test) Let (xj)j∈Z>0 and (yj)j∈Z>0 be sequences of nonnegative
numbers for which there exists α ∈ R>0 satisfying yj ≤ αxj, j ∈ Z>0. Then the following
statements hold:

(i) the series
∑
∞

j=1 yj converges if the series
∑
∞

j=1 xj converges;

(ii) the series
∑
∞

j=1 xj diverges if the series
∑
∞

j=1 yj diverges.
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Proof We shall show that, if the series
∑
∞

j=1 x j converges, then the sequence (Tk)k∈Z>0

of partial sums for the series
∑
∞

j=1 y j is a Cauchy sequence. Since the sequence (Sk)k∈Z>0

for
∑
∞

j=1 x j is convergent, it is Cauchy. Therefore, for ϵ ∈ R>0 there exists N ∈ Z>0 such
that whenever k,m ≥ N, with k > m without loss of generality,

Sk − Sm =

k∑
j=m+1

x j < ϵα
−1.

Then, for k,m ≥ N with k > m we have

Tk − Tm =

k∑
j=m+1

y j ≤ α
k∑

j=m+1

x j < ϵ,

showing that (Tk)k∈Z>0 is a Cauchy sequence, as desired.
The second statement is the contrapositive of the first. ■

Now we can get to some less obvious results for convergence of series. The first
result concerns series where the terms alternate sign.

2.4.9 Proposition (Alternating Test) Let (xj)j∈Z>0 be a sequence in R satisfying
(i) xj > 0 for j ∈ Z>0,
(ii) xj+1 ≤ xj for j ∈ Z>0, and
(iii) limj→∞ xj = 0.

Then the series
∑
∞

j=1(−1)j+1xj converges.
Proof The proof is a straightforward generalisation of that given for Example 2.4.2–3,
and we leave for the reader the simple exercise of verifying that this is so. ■

Our next result is one that is often useful.

2.4.10 Proposition (Ratio Test for series) Let (xj)j∈Z>0 be a nonzero sequence in R with∑
∞

j=1 xj the corresponding series. Then the following statements hold:

(i) if lim supj→∞

∣∣∣∣xj+1

xj

∣∣∣∣ < 1, then the series converges absolutely;

(ii) if there exists N ∈ Z>0 such that
∣∣∣∣xj+1

xj

∣∣∣∣ > 1 for all j ≥ N, then the series diverges.

Proof (i) By Proposition 2.3.15 there exists β ∈ (0, 1) and N ∈ Z>0 such that
∣∣∣∣x j+1

x j

∣∣∣∣ < β
for j ≥ N. Then ∣∣∣∣∣ x j

xN

∣∣∣∣∣ = ∣∣∣∣∣xN+1

xN

∣∣∣∣∣ ∣∣∣∣∣xN+2

xN+1

∣∣∣∣∣ · · ·
∣∣∣∣∣∣ x j

x j−1

∣∣∣∣∣∣ < β j−N, j > N,

implying that

|x j| <
|xN |

βN β j.
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Since β < 1, the geometric series
∑
∞

j=1 β
j converges. The result for α < 1 now follows

by the Comparison Test.
(ii) The sequence (x j) j∈Z>0 cannot converge to 0 in this case, and so this part of the

result follows from Proposition 2.4.7. ■

The following simpler test is often stated as the Ratio Test.

2.4.11 Corollary (Weaker version of the Ratio Test) If (xj)j∈Z>0 is a nonzero sequence in

R for which limj→∞

∣∣∣∣xj+1

xj

∣∣∣∣ = α, then the series
∑
∞

j=1 xj converges absolutely if α < 1 and
diverges if α > 1.

2.4.12 Remark (Nonzero assumption in Ratio Test) In the preceding two results we
asked that the terms in the series be nonzero. This is not a significant limitation.
Indeed, one can enumerate the nonzero terms in the series, and then apply the
ratio test to this. •

Our next result has a similar character to the previous one.

2.4.13 Proposition (Root Test) Let (xj)j∈Z>0 be a sequence for which lim supj→∞|xj|
1/j = α.

Then the series
∑
∞

j=1 xj converges absolutely if α < 1 and diverges if α > 1.
Proof First take α < 1 and define β = 1

2 (α + 1). Then, just as in the proof of Proposi-
tion 2.4.10, α < β < 1. By Proposition 2.3.15 there exists N ∈ Z>0 such that |x j|

1/ j < β
for j ≥ N. Thus |x j| < β j for j ≥ N. Note that

∑
∞

j=N+1 β
j converges by Example 2.4.2–1.

Now
∑
∞

j=0|x j| converges by the Comparison Test.
Next takeα > 1. In this case we have lim j→∞|x j| , 0, and so we conclude divergence

from Proposition 2.4.7. ■

The following obvious corollary is often stated as the Root Test.

2.4.14 Corollary (Weaker version of Root Test) Let (xj)j∈Z>0 be a sequence for which
limj→∞|xj|

1/j = α. Then the series
∑
∞

j=1 xj converges absolutely if α < 1 and diverges
if α > 1.

The Ratio Test and the Root Test are related, as the following result indicates.

2.4.15 Proposition (Root Test implies Ratio Test) If (pj)j∈Z≥0 is a sequence in R>0 then

lim inf
j→∞

pj+1

pj
≤ lim inf

j→∞
p1/j

j

lim sup
j→∞

p1/j
j ≤ lim sup

j→∞

pj+1

pj
.

In particular, for a sequence (xj)j∈Z>0 , if limj→∞

∣∣∣∣xj+1

xj

∣∣∣∣ exists, then limj→∞|xj|
1/j =

limj→∞

∣∣∣∣xj+1

xj

∣∣∣∣.
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Proof For the first inequality, let α = lim inf j→∞
p j+1

p j
. First consider the case where

α = ∞. Then, given M ∈ R>0, there exists N ∈ Z>0 such that
p j+1

p j
> M for j ≥ N. Then

we have ∣∣∣∣∣ p j

pN

∣∣∣∣∣ = ∣∣∣∣∣pN+1

pN

∣∣∣∣∣ ∣∣∣∣∣pN+1

pN+1

∣∣∣∣∣ · · ·
∣∣∣∣∣∣ p j

p j−1

∣∣∣∣∣∣ > M j−N, j > N.

This gives

p j >
pN

MN M j, j > N.

Thus p1/ j
j > ( pN

MN )1/ jM. Since lim j→∞(pNβ−N)1/ j = 1 (cf. the definition of Pa in Sec-

tion 3.8.3), we have lim inf j→∞ p1/ j
j > M, giving the desired conclusion in this case,

since M is arbitrary. Next consider the case when α ∈ R>0 and let β < α. By Proposi-
tion 2.3.16 there exists N ∈ Z>0 such that

p j+1

p j
≥ β for j ≥ N. Performing just the same

computation as above gives p j ≥ β j−NpN for j ≥ N. Therefore, p1/ j
j ≥ (pNβ−N)1/ jβ. Since

lim j→∞(pNβ−N)1/ j = 1 we have lim inf j→∞ p1/ j
j ≥ β. The first inequality follows since

β < α is arbitrary.
Now we prove the second inequality. Let α = lim sup j→∞

p j+1

p j
. If α = ∞ then the

second inequality in the statement of the result is trivial. If α ∈ R>0 then let β > α and
note that there exists N ∈ Z>0 such that

p j+1

p j
≤ β for j ≥ N by Proposition 2.3.15. In

particular, just as in the proof of Proposition 2.4.10, p j ≤ β j−NpN for j ≥ N. Therefore,
p1/ j

j ≤ (pNβ−N)1/ jβ. Since lim j→∞(pNβ−N)1/ j = 1 we then have lim inf j→∞ p1/ j
j ≤ β. the

second inequality follows since β > α is arbitrary.
The final assertion follows immediately from the two inequalities using Proposi-

tion 2.3.17. ■

In Exercises 2.4.6 and 2.4.7 the reader can explore the various possibilities for

the ratio test and root test when lim j→∞

∣∣∣∣x j+1

x j

∣∣∣∣ = 1 and lim j→∞|x j|
1/ j = 1, respectively.

The final result we state in this section can be thought of as the summation
version of integration by parts.

2.4.16 Proposition (Abel’s6 partial summation formula) For sequences (xj)j∈Z>0 and
(yj)j∈Z>0 of real numbers, denote Sk =

∑k
j=1 xj. Then

k∑
j=1

xjyj = Skyk+1 −

k∑
j=1

Sj(yj+1 − yj) = Sky1 +

k∑
j=1

(Sk − Sj)(yj+1 − yj).

6Niels Henrik Abel (1802–1829) was a Norwegian mathematician who worked in the area of
analysis. An important theorem of Abel, one that is worth knowing for people working in applica-
tion areas, is a theorem stating that there is no expression for the roots of a quintic polynomial in
terms of the coefficients that involves only the operations of addition, subtraction, multiplication,
division and taking roots.
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Proof Let S0 = 0 by convention. Since x j = S j − S j−1 we have

n∑
j=1

x jy j =

n∑
j=1

(S j − S j−1)y j =

n∑
j=1

S jy j −

n∑
j=1

S j−1y j.

Trivially,
n∑

j=1

S j−1y j =

n∑
j=1

S jy j+1 − Snyn+1.

This gives the first equality of the lemma. The second follows from a substitution of

yn+1 =

n∑
j=1

(y j+1 − y j) + y1

into the first equality. ■

2.4.3 e and π

In this section we consider two particular convergent series whose limits are
among the most important of “physical constants.”

2.4.17 Definition (e) e =
∞∑
j=0

1
j!

. •

Note that the series defining e indeed converges, for example, by the Ratio Test.
Another common representation of e as a limit is the following.

2.4.18 Proposition (Alternative representations of e) We have

e = lim
j→∞

(
1 + 1

j

)j
= lim

j→∞

(
1 + 1

j

)j+1
.

Proof First note that if the limit lim j→∞

(
1 + 1

j

) j
exists, then, by Proposition 2.3.23,

lim
j→∞

(
1 + 1

j

) j+1
= lim

j→∞

(
1 + 1

j

) (
1 + 1

j

) j
= lim

j→∞

(
1 + 1

j

) j
.

Thus we will only prove that e = lim j→∞

(
1 + 1

j

) j
.

Let

Sk =

k∑
j=0

1
k!
, Ak =

(
1 + 1

k

)k
, Bk =

(
1 + 1

k

)k+1
,

be the kth partial sum of the series for e and the kth term in the proposed sequence for
e. By the Binomial Theorem (Exercise 2.2.1) we have

Ak =
(
1 + 1

k

)k
=

k∑
j=0

(
k
j

)
1
k j .
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Moreover, the exact form for the binomial coefficients can directly be seen to give

Ak =

k∑
j=0

1
j!

(
1 −

1
k

) (
1 −

2
k

)
. . .

(
1 −

j − 1
k

)
.

Each coefficient of 1
j! , j ∈ {0, 1, . . . , k} is then less than 1. Thus Ak ≤ Sk for each k ∈ Z≥0.

Therefore, lim supk→∞Ak ≤ lim supk→∞ Sk. For m ≤ k the same computation gives

Ak ≥

m∑
j=0

1
j!

(
1 −

1
k

) (
1 −

2
k

)
. . .

(
1 −

j − 1
k

)
.

Fixing m and letting k→∞ gives

lim inf
k→∞

Ak ≥

m∑
j=0

1
j!
= Sm.

Thus lim infk→∞Ak ≥ lim infm→∞ Sm, which gives the result when combined with our
previous estimate lim supk→∞Ak ≤ lim supk→∞ Sk. ■

It is interesting to note that the series representation of e allows us to conclude
that e is irrational.

2.4.19 Proposition (Irrationality of e) e ∈ R \Q.
Proof Suppose that e = l

m for l,m ∈ Z>0. We compute

(m − 1)!l = m!e = m!
∞∑
j=0

1
j!
=

m∑
j=0

m!
j!
+

∞∑
j=m+1

m!
j!
,

which then gives
∞∑

j=m+1

m!
j!
= (m − 1)!l −

m∑
j=0

m!
j!
,

which implies that
∑
∞

j=m+1
m!
j! ∈ Z>0. We then compute, using Example 2.4.2–1,

0 <
∞∑

j=m+1

m!
j!
<

∞∑
j=m+1

1
(m + 1) j−m =

∞∑
j=1

1
(m + 1) j =

1
m+1

1 − 1
m+1

=
1
m
≤ 1.

Thus
∑
∞

j=m+1
m!
j! ∈ Z>0, being an integer, must equal 1, and, moreover, m = 1. Thus we

have
∞∑
j=2

1
j!
= e − 2 = 1 =⇒ e = 3.

Next let

α =
∞∑
j=1

(
1

2 j−1
−

1
j!

)
,
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noting that this series for α converges, and converges to a positive number since each
term in the series is positive. Then, using Example 2.4.2–1,

α = (2 − (e − 1)) =⇒ e = 3 − α.

Thus e < 3, and we have arrived at a contradiction. ■

Next we turn to the number π. Perhaps the best description of π is that it is the
ratio of the circumference of a circle with the diameter of the circle. Indeed, the use
of the Greek letter “p” (i.e., π) has its origins in the word “perimeter.” However,
to make sense of this definition, one must be able to talk effectively about circles,
what the circumference means, etc. This is more trouble than it is worth for us at
this point. Therefore, we give a more analytic description of π, albeit one that, at
this point, is not very revealing of what the reader probably already knows about
it.

2.4.20 Definition (π) π = 4
∞∑
j=0

(−1) j

2 j + 1
. •

By the Alternating Test, this series representation for π converges.
We can also fairly easily show that π is irrational, although our proof uses some

facts about functions on R that we will not discuss until Chapter 3.

2.4.21 Proposition (Irrationality of π) π ∈ R \Q.
Proof In Section 3.8.4 we will give a definition of the trigonometric functions, sin and
cos, and prove that, on (0, π), sin is positive, and that sin 0 = sinπ = 0. We will also
prove the rules of differentiation for trigonometric functions necessary for the proof
we now present.

Note that if π is rational, then π2 is also rational. Therefore, it suffices to show that
π2 is irrational.

Let us suppose that π2 = l
m for l,m ∈ Z>0. For k ∈ Z>0 define fk : [0, 1]→ R by

fk(x) =
xk(1 − x)k

k!
,

noting that image( f ) ⊆ [0, 1
k! ]. It is also useful to write

fk(x) =
1
k!

2k∑
j=k

c jx j,

where we observe that c j, j ∈ {k, k + 1, . . . , 2k} are integers. Define g j : [0, 1]→ R by

gk(x) = k j
k∑

j=0

(−1) jπ2(k− j) f (2 j)(x).

A direct computation shows that

f ( j)
k (0) = 0, j < k, j > 2k,
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and that

f ( j)
k (0) =

j!
k!

c j, j ∈ {k, k + 1, . . . , 2k},

is an integer. Thus f and all of its derivatives take integer values at x = 0, and therefore
also at x = 1 since fk(x) = fk(1 − x). One also verifies directly that gk(0) and gk(1) are
integers.

Now we compute

d
dx

(g′k(x) sinπx − πgk(x) cosπx) = (g′′k (x) + π2gk(x)) sinπx

= mkπ2k+2 f (x) sinπx = π2lk f (x) sinπx,

using the definition of gk and the fact that π2 = l
m . By the Fundamental Theorem of

Calculus we then have, after a calculation,

πlk
∫ 1

0
f (x) sinπx dx = gk(0) + gk(1) ∈ Z>0.

But we then have, since the integrand in the above integral is nonnegative,

0 < πlk
∫ 1

0
f (x) sinπx dx <

πlk

k!

given the bounds on fk. Note that limk→∞
lk
k! = 0. Since the above computations hold

for any k, if we take k sufficiently large that πlk
k! < 1, we arrive at a contradiction. ■

2.4.4 Doubly infinite series

We shall frequently encounter series whose summation index runs not from 1
to ∞, but from −∞ to ∞. Thus we call a family (x j) j∈Z of elements of R a doubly
infinite sequence in R, and a sum of the form

∑
∞

j=−∞ x j a doubly infinite series. A
little care need to be shown when defining convergence for such series, and here
we give the appropriate definitions.

2.4.22 Definition (Convergence and absolute convergence of doubly infinite series)
Let (x j) j∈Z be a doubly infinite sequence and let S =

∑
∞

j=−∞ x j be the corresponding
doubly infinite series. The sequence of single partial sums is the sequence (Sk)k∈Z>0

where

Sk =

k∑
j=−k

x j,

and the sequence of double partial sums is the double sequence (Sk,l)k,l∈Z>0 defined
by

Sk,l =

l∑
j=−k

x j.

Let s0 ∈ R. The doubly infinite series:
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(i) converges to s0 if the double sequence of partial sums converges to s0;
(ii) has s0 as a limit if it converges to s0;
(iii) is convergent if it converges to some element of R;
(iv) converges absolutely, or is absolutely convergent, if the doubly infinite series

∞∑
j=−∞

|x j|

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge;
(vii) diverges to ∞ (resp. diverges to −∞), and we write

∑
∞

j=−∞ x j = ∞

(resp.
∑
∞

j=−∞ x j = −∞), if the sequence of double partial sums diverges to
∞ (resp. diverges to −∞);

(viii) has a limit that exists if
∑
∞

j=−∞ x j ∈ R;
(ix) is oscillatory if the limit of the double sequence of partial sums is oscillatory.

•

2.4.23 Remark (Partial sums versus double partial sums) Note that the convergence
of the sequence of partial sums is not a very helpful notion, in general. For exam-
ple, the series

∑
∞

j=−∞ j possesses a sequence of partial sums that is identically zero,
and so the sequence of partial sums obviously converges to zero. However, it is
not likely that one would wish this doubly infinite series to qualify as convergent.
Thus partial sums are not a particularly good measure of convergence. However,
there are situations—for example, the convergence of Fourier series (see Chap-
ter IV-5)—where the standard notion of convergence of a doubly infinite series is
made using the partial sums. However, in these cases, there is additional structure
on the setup that makes this a reasonable thing to do. •

The convergence of a doubly infinite series has the following useful, intuitive
characterisation.

2.4.24 Proposition (Characterisation of convergence of doubly infinite series) For a
doubly infinite series S =

∑
∞

j=−∞ xj, the following statements are equivalent:
(i) S converges;
(ii) the two series

∑
∞

j=0 xj and
∑
∞

j=1 x−j converge.
Proof For k, l ∈ Z>0, denote

Sk,l =

l∑
−k

x j, S+k =
k∑

j=0

x j, S−k =
−1∑
−k

x j,
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so that Sk,l = S−k + S+l .
(i) =⇒ (ii) Let ϵ ∈ R>0 and choose N ∈ Z>0 such that |S j,k − s0| < ϵ

2 for j, k ≥ N. Now
let j, k ≥ N, choose some l ≥ N, and compute

|S+j − S+k | ≤ |S
+
j + S−l − s0| + |S+k + S−l − s0| < ϵ.

Thus (S+j ) j∈Z>0 is a Cauchy sequence, and so is convergent. A similar argument shows
that (S−j ) j∈Z>0 is also a Cauchy sequence.

(ii) =⇒ (i) Let s+ be the limit of
∑
∞

j=0 x j and let s− be the limit of
∑
∞

j=1 x− j. For ϵ ∈ R>0

define N+,N− ∈ Z>0 such that |S+j − s+| < ϵ
2 , j ≥ N+, and |S−j − s−| < ϵ

2 , j ≤ −N−. Then,
for j, k ≥ max{N−,N+},

|S j,k − (s+ + s−)| = |S+k − s+ + S−j − s−| ≤ |S+k − s+| + |S−j − s−| < ϵ,

thus showing that S converges. ■

Thus convergent doubly infinite series are really just combinations of conver-
gent series in the sense that we have studied in the preceding sections. Thus,
for example, one can use the tests of Section 2.4.2 to check for convergence of a
doubly infinite series by applying them to both “halves” of the series. Also, the
relationships between convergence and absolute convergence for series also hold
for doubly infinite series. And a suitable version of Theorem 2.4.5 also holds
for doubly infinite series. These facts are so straightforward that we will assume
them in the sequel without explicit mention; they all follow directly from Proposi-
tion 2.4.24.

2.4.5 Multiple series

Just as we considered multiple sequences in Section 2.3.5, we can consider
multiple series. As we did with sequences, we content ourselves with double
series.

2.4.25 Definition (Double series) A double series in R is a sum of the form
∑
∞

j,k=1 x jk

where (x jk) j,k∈Z>0 is a double sequence in R. •

While our definition of a series was not entirely sensible since it was not really
identifiable as anything unless it had certain convergence properties, for double
series, things are even worse. In particular, it is not clear what

∑
∞

j,k=1 x jk means. Does

it mean
∑
∞

j=1

(∑
∞

k=1 x jk

)
? Does it mean

∑
∞

k=1

(∑
∞

j=1 x jk

)
? Or does it mean something

different from both of these? The only way to rectify our poor mathematical
manners is to define convergence for double series as quickly as possible.

2.4.26 Definition (Convergence and absolute convergence of double series) Let
(x jk) j,k∈Z>0 be a double sequence in R and consider the double series

S =
∞∑

j,k=1

x jk.
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The corresponding sequence of partial sums is the double sequence (S jk) j,k∈Z>0

defined by

S jk =

j∑
l=1

k∑
m=1

xlm.

Let s0 ∈ R. The double series:
(i) converges to s0, and we write

∑
∞

j,k=1 x jk = s0, if the double sequence of partial
sums converges to s0;

(ii) has s0 as a limit if it converges to s0;
(iii) is convergent if it converges to some member of R;
(iv) converges absolutely, or is absolutely convergent, if the series

∞∑
j,k=1

|x jk|

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge;
(vii) diverges to ∞ (resp. diverges to −∞), and we write

∑
∞

j,k=1 x jk = ∞

(resp.
∑
∞

j,k=1 x jk = −∞), if the double sequence of partial sums diverges to
∞ (resp. diverges to −∞);

(viii) has a limit that exists if
∑
∞

j,k=1 x jk ∈ R;
(ix) is oscillatory if the sequence of partial sums is oscillatory. •

Note that the definition of the partial sums, S jk, j, k ∈ Z>0, for a double series is
unambiguous since

j∑
l=1

k∑
m=1

xlm =

k∑
m=1

j∑
l=1

xlm,

this being valid for finite sums. The idea behind convergence of double series,
then, has an interpretation that can be gleaned from that in Figure 2.2 for double
sequences.

Let us state a result, derived from similar results for double sequences, that
allows the computation of limits of double series by computing one limit at a
time.

2.4.27 Proposition (Computation of limits of double series I) Suppose that for the double
series

∑
∞

j,k=1 xjk it holds that
(i) the double series is convergent and
(ii) for each j ∈ Z>0, the series

∑
∞

k=1 xjk converges.
Then the series

∑
∞

j=1(
∑
∞

k=1 xjk) converges and its limit is equal to
∑
∞

j,k=1 xjk.
Proof This follows directly from Proposition 2.3.20. ■
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2.4.28 Proposition (Computation of limits of double series II) Suppose that for the double
series

∑
∞

j,k=1 xjk it holds that
(i) the double series is convergent,
(ii) for each j ∈ Z>0, the series

∑
∞

k=1 xjk converges, and
(iii) for each k ∈ Z>0, the limit

∑
∞

j=1 xjk converges.
Then the series

∑
∞

j=1(
∑
∞

k=1 xjk) and
∑
∞

k=1(
∑
∞

j=1 xjk) converge and their limits are both equal
to

∑
∞

j,k=1 xjk.
Proof This follows directly from Proposition 2.3.21. ■

2.4.6 Algebraic operations on series

In this section we consider the manner in which series interact with algebraic
operations. The results here mirror, to some extent, the results for sequences in
Section 2.3.6. However, the series structure allows for different ways of thinking
about the product of sequences. Let us first give these definitions. For notational
convenience, we use sums that begin at 0 rather than 1. This clearly has no affect
on the definition of a series, or on any of its properties.

2.4.29 Definition (Products of series) Let S =
∑
∞

j=0 x j and T =
∑
∞

j=0 y j be series in R.
(i) The product of S and T is the double series

∑
∞

j,k=0 x jyk.

(ii) The Cauchy product of S and T is the series
∑
∞

k=0

(∑k
j=0 x jyk− j

)
. •

Now we can state the basic results on algebraic manipulation of series.

2.4.30 Proposition (Algebraic operations on series) Let S =
∑
∞

j=0 xj and T =
∑
∞

j=0 yj be
series in R that converges to s0 and t0, respectively, and let α ∈ R. Then the following
statements hold:

(i) the series
∑
∞

j=0 αxj converges to αs0;
(ii) the series

∑
∞

j=0(xj + yj) converges to s0 + t0;
(iii) if S and T are absolutely convergent, then the product of S and T is absolutely

convergent and converges to s0t0;
(iv) if S and T are absolutely convergent, then the Cauchy product of S and T is absolutely

convergent and converges to s0t0;
(v) if S or T are absolutely convergent, then the Cauchy product of S and T is convergent

and converges to s0t0;
(vi) if S and T are convergent, and if the Cauchy product of S and T is convergent, then

the Cauchy product of S and T converges to s0t0.
Proof (i) Since

∑k
j=0 αx j = α

∑k
j=0 x j, this follows from part (i) of Proposition 2.3.23.

(ii) Since
∑
∞

j=0(x j + y j) =
∑k

j=0 x j +
∑k

j=0 y j, this follows from part (ii) of Proposi-
tion 2.3.23.

(iii) and (iv) To prove these parts of the result, we first make a general argument. We
note thatZ≥0×Z≥0 is a countable set (e.g., by Proposition 1.7.16), and so there exists a
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bijection, in fact many bijections, ϕ : Z>0 → Z≥0 ×Z≥0. For such a bijection ϕ, suppose
that we are given a double sequence (x jk) j,k∈Z≥0 and define a sequence (xϕj ) j∈Z>0 by xϕj =
xkl where (k, l) = ϕ( j). We then claim that, for any bijection ϕ : Z>0 → Z≥0 ×Z≥0, the
double series A =

∑
∞

k,l=1 xkl converges absolutely if and only if the series Aϕ =
∑
∞

j=1 xϕj
converges absolutely.

Indeed, suppose that the double series |A| =
∑
∞

k,l=1|xkl| converges to β ∈ R. For
ϵ ∈ R>0 the set

{(k, l) ∈ Z≥0 ×Z≥0 | ||A|kl − β| ≥ ϵ}

is then finite. Therefore, there exists N ∈ Z>0 such that, if (k, l) = ϕ( j) for j ≥ N, then
||A|kl − β| < ϵ. It therefore follows that ||Aϕ

| j − β| < ϵ for j ≥ N, where |Aϕ
| denotes the

series
∑
∞

j=1|x
ϕ
j |. This shows that the series |Aϕ

| converges to β.

For the converse, suppose that the series |Aϕ
| converges to β. Then, for ϵ ∈ R>0 the

set
{ j ∈ Z>0 | ||Aϕ

| j − β| ≥ ϵ}

is finite. Therefore, there exists N ∈ Z>0 such that

{(k, l) ∈ Z≥0 | k, l ≥ N} ∩ {(k, l) ∈ Z≥0 | ||Aϕ
|ϕ−1(k,l) − β| ≥ ϵ} = ∅.

It then follows that for k, l ≥ N we have ||A|kl − β| < ϵ, showing that |A| converges to β.
Thus we have shown that A is absolutely convergent if and only if Aϕ is absolutely

convergent for any bijection ϕ : Z>0 → Z≥0×Z≥0. From part (v) of Theorem 2.4.5, and
its generalisation to double series, we know that the limit of an absolutely convergent
series or double series is independent of the manner in which the terms in the series
are arranged.

Consider now a term in the product of S and T. It is easy to see that this term
appears exactly once in the Cauchy product of S and T. Conversely, each term in the
Cauchy product appears exactly one in the product. Thus the product and Cauchy
product are simply rearrangements of one another. Moreover, each term in the product
and the Cauchy product appears exactly once in the expression N∑

j=0

x j


 N∑

k=0

yk


as we allow N to go to∞. That is to say,

∞∑
j,k=0

x jyk =

∞∑
k=0

 k∑
j=k

x jyk− j

 = lim
N→∞

 N∑
j=0

x j


 N∑

k=0

yk

 .
However, this last limit is exactly s0t0, using part (iii) of Proposition 2.3.23.

(v) Without loss of generality, suppose that S converges absolutely. Let (Sk)k∈Z>0 ,
(Tk)k∈Z>0 , and ((ST)k)k∈Z>0 be the sequences of partial sums for S, T, and the Cauchy
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product, respectively. Also define τk = Tk − t0, k ∈ Z≥0. Then

(ST)k = x0y0 + (x0y1 + x1y0) + · · · + (x0yk + · · · + xky0)
= x0Tk + x1Tk−1 + · · · + xkT0

= x0(t0 + τk) + x1(t0 + τk−1) + · · · + xk(t0 + τ0)
= Skt0 + x0τk + x1τk−1 + · · · + xkτ0.

Since limk→∞ Skt0 = s0t0 by part (i), this part of the result will follow if we can show
that

lim
k→∞

(x0τk + x1τk−1 + · · · + xkτ0) = 0. (2.6)

Denote

σ =
∞∑
j=0

|x j|,

and for ϵ ∈ R>0 choose N1 ∈ Z>0 such that |τ j| ≤
ϵ

2σ for j ≥ N1, this being possible since
(τ j) j∈Z>0 clearly converges to zero. Then, for k ≥ N1,

|x0τk + x1τk−1 + · · · + xkτ0| ≤ |x0τk + · · · + xk−N1−1τN1−1| + |xk−N1τN1 + · · · + xkτ0|

≤
ϵ
2 + |xk−N1τN1 + · · · + xkτ0|.

Since limk→∞ xk = 0, choose N2 ∈ Z>0 such that

|xk−N1τN1 + · · · + xkτ0| < ϵ
2

for k ≥ N2. Then

lim sup
k→∞

|x0τk + x1τk−1 + · · · + xkτ0| = lim
k→∞

sup{|x0τ j + x1τ j−1 + · · · + x jτ0| | j ≥ k}

≤ lim
k→∞

sup{ ϵ2 + |xk−N1τN1 + · · · + xkτ0| | j ≥ k}

≤ sup{ ϵ2 + |xk−N1τN1 + · · · + xkτ0| | j ≥ N2} ≤ ϵ.

Thus
lim sup

k→∞
|x0τk + x1τk−1 + · · · + xkτ0| ≤ 0,

and since clearly
lim inf

k→∞
|x0τk + x1τk−1 + · · · + xkτ0| ≥ 0,

we infer that (2.6) holds by Proposition 2.3.17.
(vi) The reader can prove this as Exercise 3.7.3. ■

The reader is recommended to remember the Cauchy product when we talk
about convolution of discrete-time signals in Section IV-4.1.4.

2.4.7 Series with arbitrary index sets

It will be helpful on a few occasions to be able to sum series whose index set is
not necessarily countable, and here we indicate how this can be done. This material
should be considered optional until one comes to that point in the text where it is
needed.
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2.4.31 Definition (Sum of series for arbitrary index sets) Let A be a set and let (xa)a∈A

be a family of elements of R. Let A+ = {a ∈ A | xa ∈ [0,∞]} and A− = {a ∈ A | xa ∈

[−∞, 0]}.
(i) If xa ∈ [0,∞] for a ∈ A, then

∑
a∈A xa = sup{

∑
a∈A′ xa | A′ ⊆ A is finite}.

(ii) For a general family,
∑

a∈A xa =
∑

a+∈A+ xa+ −
∑

a−∈A−(−xa−), provided that at least
one of

∑
a+∈A+ xa+ or

∑
a−∈A−(−xa−) is finite.

(iii) If both
∑

a+∈A+ xa+ are
∑

a−∈A−(−xa−) are finite, then (xa)a∈A is summable. •

We should understand the relationship between this sort of summation and our
existing notion of the sum of a series in the case where the index set is Z>0.

2.4.32 Proposition (A summable series with index set Z>0 is absolutely convergent)
A sequence (xj)j∈Z>0 in R is summable if and only if the series S =

∑
∞

j=1 xj is absolutely
convergent.

Proof Consider the sequences (x+j ) j∈Z>0 and (x−j ) j∈Z>0 defined by

x+j = max{x j, 0}, x−j = max{−x j, 0}, j ∈ Z>0.

Then (x j) j∈Z>0 is summable if and only if both of the expressions

sup


∑
j∈A′

x+j

∣∣∣∣∣∣∣∣ A′ ⊆ Z>0 is finite

 , sup


∑
j∈A′

x−j

∣∣∣∣∣∣∣∣ A′ ⊆ Z>0 is finite

 (2.7)

are finite.
First suppose that (x j) j∈Z>0 is summable. Therefore, if (S+k )k∈Z>0 and (S−k )k∈Z>0 are

the sequences of partial sums

S+k =
k∑

j=1

x+j , S−k =
k∑

j=1

x−j ,

then these sequences are increasing and so convergent by (2.7). Then, by Proposi-
tion 2.3.23,

∞∑
j=1

|x j| =

∞∑
j=1

x+j +
∞∑
j=1

x−j

giving absolute convergence of S.
Now suppose that S is absolutely convergent. Then the subsets {S+k | k ∈ Z>0} and

{S−k | k ∈ Z>0} are bounded above (as well as being bounded below by zero) so that
both expressions

sup{S+k | k ∈ Z>0}, sup{S−k | k ∈ Z>0}

are finite. Then for any finite set A′ ⊆ Z>0 we have∑
j∈A′

x+j ≤ S+sup A′ ,
∑
j∈A′

x−j ≤ S−sup A′ .
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From this we deduce that

sup


∑
j∈A′

x+j

∣∣∣∣∣∣∣∣ A′ ⊆ Z>0 is finite

 ≤ sup{S+k | k ∈ Z>0},

sup


∑
j∈A′

x−j

∣∣∣∣∣∣∣∣ A′ ⊆ Z>0 is finite

 ≤ sup{S−k | k ∈ Z>0},

which implies that (x j) j∈Z>0 is summable. ■

Now we can actually show that, for a summable family of real numbers, only
countably many of them can be nonzero.

2.4.33 Proposition (A summable family has countably many nonzero members) If
(xa)a∈A is summable, then the set {a ∈ A | xa , 0} is countable.

Proof Note that for any k ∈ Z>0, the set {a ∈ A | |xa| ≥
1
k } must be finite if (xa)a∈A is

summable (why?). Thus, since

{a ∈ A | |xa| , 0} = ∪k∈Z>0{a ∈ A | |xa| ≥
1
k },

the set {a ∈ A | xa , 0} is a countable union of finite sets, and so is countable by
Proposition 1.7.16. ■

A legitimate question is, since a summable family reduces to essentially being
countable, why should we bother with the idea at all? The reason is simply that it
will be notationally convenient in Section 3.3.4.

2.4.8 Notes

The numbers e and π are not only irrational, but have the much stronger prop-
erty of being transcendental. This means that they are not the roots of any polyno-
mial having rational coefficients (see Definition 4.6.12). That e is transcendental
was proved by Hermite7 in 1873, and the that π is transcendental was proved by
Lindemann8 in 1882.

The proof we give for the irrationality of π is essentially that of Niven [1947];
this is the most commonly encountered proof, and is simpler than the original
proof of Lambert9 presented to the Berlin Academy in 1768.

7Charles Hermite (1822–1901) was a French mathematician who made contributions to the fields
of number theory, algebra, differential equations, and analysis.

8Carl Louis Ferdinand von Lindemann (1852–1939) was born in what is now Germany. His
mathematical contributions were in the areas of analysis and geometry. He also was interested in
physics.

9Johann Heinrich Lambert (1728–1777) was born in France. His mathematical work included
contributions to analysis, geometry, and probability. He also made contributions to astronomical
theory.
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Exercises

2.4.1 Let S =
∑
∞

j=1 x j be a series in R, and, for j ∈ Z>0, define

x+j = max{x j, 0}, x−j = max{0,−x j}.

Show that, if S is conditionally convergent, then the series S+ =
∑
∞

j=1 x+j and
S− =

∑
∞

j=1 x−j diverge to∞.

2.4.2 In this exercise we consider more carefully the paradox of Zeno given in
Exercise 1.9.2. Let us attach some symbols to the relevant data, so that
we can say useful things. Suppose that the tortoise travels with constant
velocity vt and that Achilles travels with constant velocity va. Suppose that
the tortoise gets a head start of t0 seconds.
(a) Compute directly using elementary physics (i.e., time/distance/velocity

relations) the time at which Achilles will overtake the tortoise, and the
distance both will have travelled during that time.

(b) Consider the sequences (d j) j∈Z>0 and (t j) j∈Z>0 defined so that
1. d1 is the distance travelled by the tortoise during the head start time

t0,
2. t j, j ∈ Z>0, is the time it takes Achilles to cover the distance d j,
3. d j, j ≥ 2, is the distance travelled by the tortoise in time t j−1.
Find explicit expressions for these sequences in terms of t0, vt, and va.

(c) Show that the series
∑
∞

j=1 d j and
∑
∞

j=1 t j converge, and compute their
limits.

(d) What is the relationship between the limits of the series in part (c) and
the answers to part (a).

(e) Does this shed some light on how to resolve Zeno’s paradox?
2.4.3 Show that ∣∣∣∣∣∣∣

m∑
j=1

x j

∣∣∣∣∣∣∣ ≤
m∑

j=1

|x j|

for any finite family (x1, . . . , xm) ⊆ R.
2.4.4 State the correct version of Proposition 2.4.4 in the case that S =

∑
∞

j=1 x j is not
absolutely convergent, and indicate why it is not a very interesting result.

2.4.5 For a sum

S =
∞∑
j=1

s j,

answer the following questions.
(a) Show that if S converges then the sequence (s j) j∈Z>0 converges to 0.
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(b) Is the converse of part (a) true? That is to say, if the sequence (s j) j∈Z>0

converges to zero, does S converge? If this is true, prove it. If it is not
true, give a counterexample.

2.4.6 Do the following.

(a) Find a series
∑
∞

j=1 x j for which lim j→∞

∣∣∣∣ x j+1

x j

∣∣∣∣ = 1 and which converges in
R.

(b) Find a series
∑
∞

j=1 x j for which lim j→∞

∣∣∣∣x j+1

x j

∣∣∣∣ = 1 and which diverges to∞.

(c) Find a series
∑
∞

j=1 x j for which lim j→∞

∣∣∣∣ x j+1

x j

∣∣∣∣ = 1 and which diverges to
−∞.

(d) Find a series
∑
∞

j=1 x j for which lim j→∞

∣∣∣∣ x j+1

x j

∣∣∣∣ = 1 and which is oscillatory.

2.4.7 Do the following.
(a) Find a series

∑
∞

j=1 x j for which lim j→∞|x j|
1/ j = 1 and which converges in

R.
(b) Find a series

∑
∞

j=1 x j for which lim j→∞|x j|
1/ j = 1 and which diverges to∞.

(c) Find a series
∑
∞

j=1 x j for which lim j→∞|x j|
1/ j = 1 and which diverges to

−∞.
(d) Find a series

∑
∞

j=1 x j for which lim j→∞|x j|
1/ j = 1 and which is oscillatory.

The next exercise introduces the notion of the decimal expansion of a real number.
An infinite decimal expansion is a series in Q of the form

∞∑
j=0

a j

10 j

where a0 ∈ Z and where a j ∈ {0, 1, . . . , 9}, j ∈ Z>0. An infinite decimal expansion is
eventually periodic if there exists k,m ∈ Z>0 such that a j+k = a j for all j ≥ m.

2.4.8 (a) Show that the sequence of partial sums for an infinite decimal expansion
is a Cauchy sequence.

(b) Show that, for every Cauchy sequence (q j) j∈Z>0 , there exists a sequence
(d j) j∈Z>0 of partial sums for a decimal expansion having the property
that [(q j) j∈Z>0] = [(d j) j∈Z>0] (the equivalence relation is that in the Cauchy
sequences in Q as defined in Definition 2.1.16).

(c) Give an example that shows that two distinct infinite decimal expansions
can be equivalent.

(d) Show that if two distinct infinite decimal expansions are equivalent, and
if one of them is eventually periodic, then the other is also eventually
periodic.

The previous exercises show that every real number is the limit of a (not
necessarily unique) infinite decimal expansion. The next exercises charac-
terise the infinite decimal expansions that correspond to rational numbers.
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First you will show that an eventually periodic decimal expansion corre-
sponds to a rational number. Let

∑
∞

j=0
a j

10 j be an eventually periodic infinite
decimal expansion and let k,m ∈ Z>0 have the property that a j+k = a j for
j ≥ m. Denote by x ∈ R the number to which the infinite decimal expansion
converges.
(e) Show that

10m+kx =
∞∑
j=0

b j

10 j , 10mx =
∞∑
j=0

c j

10 j

are decimal expansions, and give expressions for b j and c j, j ∈ Z>0, in
terms of a j, j ∈ Z>0. In particular, show that b j = c j for j ≥ 1.

(f) Conclude that (10m+k
− 10m)x is an integer, and so x is therefore rational.

Next you will show that the infinite decimal expansion of a rational number
is eventually periodic. Thus let q ∈ Q.
(g) Let q = a

b for a, b ∈ Z and with b > 0. For j ∈ {0, 1, . . . , b}, let r j ∈

{0, 1, . . . , b − 1} satisfy 10 j

b = s j +
r j

b for s j ∈ Z, i.e., r j is the remainder after
dividing 10 j by b. Show that at least two of the numbers {r0, r1, . . . , rb}

must agree, i.e., conclude that rm = rm+k for k,m ∈ Z≥0 satisfying 0 ≤ m <
m + k ≤ b.
Hint: There are only b possible values for these b + 1 numbers.

(h) Show that b exactly divides 10m+k
− 10k with k and m as above. Thus

bc = 10m+k
− 10k for some c ∈ Z.

(i) Show that
a
b
= 10−m ac

10k − 1
,

and so write
q = 10−m

(
s +

r
10k − 1

)
for s ∈ Z and r ∈ {0, 1, . . . , 10k

− 1}, i.e., r is the remainder after dividing
ac by 10k

− 1.
(j) Argue that we can write

b =
k∑

j=1

b j10 j,

for b j ∈ {0, 1, . . . , 9}, j ∈ {1, . . . , k}.
(k) With b j, j ∈ {1, . . . , k} as above, define an infinite decimal expansion∑

∞

j=0
a j

10 j by asking that a0 = 0, that a j = b j, j ∈ {1, . . . , k}, and that a j+km = a j

for j,m ∈ Z>0. Let d ∈ R be the number to which this decimal expansion
converges. Show that (10k

− 1)d = b, so d ∈ Q.
(l) Show that 10mq = s + d, and so conclude that 10mq has the eventually

periodic infinite decimal expansion s +
∑
∞

j=1
a j

10 j .
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(m) Conclude that q has an eventually periodic infinite decimal expansion,
and then conclude from (d) that any infinite decimal expansion for q is
eventually periodic.
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Section 2.5

Subsets of R

In this section we study in some detail the nature of various sorts of subsets of
R. The character of these subsets will be of some importance when we consider
the properties of functions defined on R, and/or taking values in R. Our presen-
tation also gives us an opportunity to introduce, in a fairly simple setting, some
concepts that will appear later in more abstract settings, e.g., open sets, closed sets,
compactness.

Do I need to read this section? Unless you know the material here, it is indeed a
good idea to read this section. Many of the ideas are basic, but some are not (e.g., the
Heine–Borel Theorem). Moreover, many of the not-so-basic ideas will appear again
later, particularly in Chapter III-1, and if a reader does not understand the ideas in
the simple case of R, things will only get more difficult. Also, the ideas expressed
here will be essential in understanding even basic things about signals as presented
in Chapter IV-1. •

2.5.1 Open sets, closed sets, and intervals

One of the basic building blocks in the understanding of the real numbers is the
idea of an open set. In this section we define open sets and some related notions,
and provide some simple properties associated to these ideas.

First, it is convenient to introduce the following ideas.

2.5.1 Definition (Open ball, closed ball) For r ∈ R>0 and x0 ∈ R,
(i) the open ball in R of radius r about x0 is the set

B(r, x0) = {x ∈ R | |x − x0| < r},

and
(ii) the closed ball of radius r about x0 is the set

B(r, x0) = {x ∈ R | |x − x0| ≤ r}. •

These sets are simple to understand, and we depict them in Figure 2.3. With

x x
( ) ][

Figure 2.3 An open ball (left) and a closed ball (right) in R

the notion of an open ball, it is easy to give some preliminary definitions.
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2.5.2 Definition (Open and closed sets in R) A set A ⊆ R is:
(i) open if, for every x ∈ A, there exists ϵ ∈ R>0 such that B(ϵ, x) ⊆ A (the empty

set is also open, by declaration);
(ii) closed if R \ A is open. •

A trivial piece of language associated with an open set is the notion of a neigh-
bourhood.

2.5.3 Definition (Neighbourhood in R) A neighbourhood of an element x ∈ R is an open
set U for which x ∈ U. •

Some authors allow a “neighbourhood” to be a set A which contains a neigh-
bourhood in our sense. Such authors will then frequently call what we call a
neighbourhood an “open neighbourhood.”

Let us give some examples of sets that are open, closed, or neither. The examples
we consider here are important ones, since they are all examples of intervals,
which will be of interest at various times, and for various reasons, throughout
these volumes. In particular, the notation we introduce here for intervals will be
used a great deal.

2.5.4 Examples (Intervals)
1. For a, b ∈ R with a < b the set

(a, b) = {x ∈ R | a < x < b}

is open. Indeed, let x ∈ (a, b) and let ϵ = 1
2 min{b − x, x − a}. It is then easy to see

that B(ϵ, x) ⊆ (a, b). If a ≥ b we take the convention that (a, b) = ∅.
2. For a ∈ R the set

(a,∞) = {x ∈ R | a < x}

is open. For example, if x ∈ (a,∞) then, if we define ϵ = 1
2 (x − a), we have

B(ϵ, x) ⊆ (a,∞).
3. For b ∈ R the set

(−∞, b) = {x ∈ R | x < b}

is open.
4. For a, b ∈ R with a ≤ b the set

[a, b] = {x ∈ R | a ≤ x ≤ b}

is closed. Indeed, R \ [a, b] = (−∞, a) ∪ (b,∞). The sets (−∞, a) and (b,∞) are
both open, as we have already seen. Moreover, it is easy to see, directly from
the definition, that the union of open sets is also an open set. Therefore,R\ [a, b]
is open, and so [a, b] is closed.
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5. For a ∈ R the set
[a,∞) = {x ∈ R | a ≤ x}

is closed since it complement in R is (−∞, a) which is open.
6. For b ∈ R the set

(−∞, b] = {x ∈ R | x ≤ b}

is closed.
7. For a, b ∈ R with a < b the set

(a, b] = {x ∈ R | a < x ≤ b}

is neither open nor closed. To see that it is not open, note that b ∈ (a, b], but that
any open ball about b will contain points not in (a, b]. To see that (a, b] is not
closed, note that a ∈ R \ (a, b], and that any open ball about a will contain points
not in R \ (a, b].

8. For a, b ∈ R with a < b the set

[a, b) = {x ∈ R | a ≤ x < b}

is neither open nor closed.
9. The set R is both open and closed. That it is open is clear. That it is closed

follows since R \ R = ∅, and ∅ is, by convention, open. We will sometimes,
although not often, write R = (−∞,∞). •

We shall frequently denote typical interval by I, and the set of intervals we
denote by I . If I and J are intervals with J ⊆ I, we will say that J is a subinterval
of I. The expressions “open interval” and “closed interval” have their natural
meanings as intervals that are, as subsets of R, open and closed, respectively. An
interval that is neither open nor closed will be called half-open or half-closed. A
left endpoint (resp. right endpoint) for an interval I is a number x ∈ R such that
inf I = x (resp. sup I = x). An endpoint x, be it left or right, is open if x < I and is
closed if x ∈ I. If inf I = −∞ (resp. sup I = ∞), then we saw that I is unbounded on
the left (resp. unbounded on the right). We will also use the interval notation to
denote subsets of the extended real numbers R. Thus, we may write
1. (a,∞] = (a,∞) ∪ {∞},
2. [a,∞] = [a,∞) ∪ {∞},
3. [−∞, b) = (−∞, b) ∪ {−∞},
4. [−∞, b] = (−∞, b] ∪ {−∞}, and
5. [−∞,∞] = (−∞,∞) ∪ {−∞,∞} = R.

The following characterisation of intervals is useful.
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2.5.5 Proposition (Characterisation of intervals) A subset I ⊆ R is an interval if and
only if, for each a, b ∈ I with a < b, [a, b] ⊆ I.

Proof It is clear from the definition that, if I is an interval, then, for each a, b ∈ I with
a < b, [a, b] ⊆ I. So suppose that, for each a, b ∈ I with a < b, [a, b] ⊆ I. Let A = inf I and
let B = sup I. We have the following cases to consider.
1. A = B: Trivially I is an interval.
2. A,B ∈ R and A , B: Choose a1, b1 ∈ I such that a1 < b1. Define a j+1, b j+1 ∈ I,

j ∈ Z>0, inductively as follows. Let a j+1 be a point in I to the left of 1
2 (A + a j)

and let b j+1 be a point in I to the right of 1
2 (b j + B). These constructions make

sense by definition of A and B. Note that (a j) j∈Z>0 is a monotonically decreasing
sequence converging to A and that (b j) j∈Z>0 is a monotonically increasing sequence
converging to B. Also, ⋃

j∈Z>0

[a j, b j] ⊆ I.

We also have either ∪ j∈Z>0[a j, b j] = (A,B), ∪ j∈Z>0[a j, b j] = [A,B), ∪ j∈Z>0[a j, b j] =
(A,B], or ∪ j∈Z>0[a j, b j] = [A,B]. Therefore we conclude that I is an interval with
endpoints A and B.

3. A = −∞ and B ∈ R. Choose a1, b1 ∈ I with aa < b1 < B. Define a j+1, b j+1 ∈ I, j ∈ Z>0,
inductively by asking that a j+1 be a point in I to the left of a j − 1 and that b j+1 be
a point in I to the right of 1

2 (b j + B). These constructions make sense by definition
of A and B. Thus (a j) j∈Z>0 is a monotonically decreasing sequence in I diverging
to −∞ and (b j) j∈Z>0 is a monotonically increasing sequence in I converging to B.
Thus ⋃

j∈Z>0

[a j, b j] =⊆ I.

Note that either
⋃

j∈Z>0
[a j, b j] = (−∞,B) or

⋃
j∈Z>0

[a j, b j] = (−∞,B]. This means
that either I = (−∞,B) or I = (−∞,B].

4. A ∈ R and B = ∞: A construction entirely like the preceding one shows that either
I = (A,∞) or I = [A,∞).

5. A = −∞ and B = ∞: Choose a1, b1 ∈ I with a1 < b1. Inductively define a j+1, b j+1 ∈ I,
j ∈ Z>0, by asking that a j+1 be a point in I to the left of a j and that b j+1 be a point
in I to the right of b j. We then conclude that⋃

j∈Z>0

[a j, b j] = R =⊆ I,

and so I = R.
In all cases we have concluded that I is an interval. ■

The following property of open sets will be useful for us, and tells us a little
about the character of open sets.
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2.5.6 Proposition (Open sets in R are unions of open intervals) If U ⊆ R is a
nonempty open set then U is a countable union of disjoint open intervals.

Proof Let x ∈ U and let Ix be the largest open interval containing x and contained in
U. This definition of Ix makes sense since the union of open intervals containing x is
also an open interval containing x. Now to each interval can be associated a rational
number within the interval. Therefore, the number of intervals to cover U can be
associated with a subset of Q, and is therefore countable. This shows that U is indeed
a countable union of open intervals. ■

2.5.2 Partitions of intervals

In this section we consider the idea of partitioning an interval of the form [a, b].
This is a construction that will be useful in a variety of places, but since we dealt
with intervals in the previous section, this is an appropriate time to make the
definition and the associated constructions.

2.5.7 Definition (Partition of an interval) A partition of an interval [a, b] is a family
(I1, . . . , Ik) of intervals such that

(i) int(I j) , ∅ for j ∈ {1, . . . , k},
(ii) [a, b] = ∪k

j=1I j, and

(iii) I j ∩ Il = ∅ for j , l.
We denote by Part([a, b]) the set of partitions of [a, b]. •

We shall always suppose that a partition (I1, . . . , Ik) is totally ordered so that the
left endpoint of I j+1 agrees with the right endpoint of I j for each j ∈ {1, . . . , k − 1}.
That is to say, when we write a partition, we shall list the elements of the set
according to this total order. Note that associated to a partition (I1, . . . , Ik) are the
endpoints of the intervals. Thus there exists a family (x0, x1, . . . , xk) of [a, b], ordered
with respect to the natural total order on R, such that, for each j ∈ {1, . . . , k}, x j−1

is the left endpoint of I j and x j is the right endpoint of I j. Note that necessarily
we have x0 = a and xk = b. The set of endpoints of the intervals in a partition
P = (I1, . . . , Ik) we denote by EP(P). In Figure 2.4 we show a partition with all

[

t0 = a

]

t7 = b

I1

t1

I2

t2

I3

t3

I4

t4

I5

t5

I6

t6

I7

Figure 2.4 A partition

ingredients labelled. For a partition P with EP(P) = (x0, x1, . . . , xk), denote

|P| = max{|x j − xl| | j, l ∈ {1, . . . , k}},

which is the mesh of P. Thus |P| is the length of the largest interval of the partition.
It is often useful to be able to say one partition is finer than another, and the

following definition makes this precise.
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2.5.8 Definition (Refinement of a partition) If P1 and P2 are partitions of an interval
[a, b], then P2 is a refinement of P1 if EP(P1) ⊆ EP(P2). •

Next we turn to a sometimes useful construction involving the addition of
certain structure onto a partition. This construction is rarely used in the text, so
may be skipped until it is encountered.

2.5.9 Definition (Tagged partition, δ-fine tagged partition) Let [a, b] be an interval and
let δ : [a, b]→ R>0.

(i) A tagged partition of [a, b] is a finite family of pairs ((c1, I1), . . . , (ck, Ik)) where
(I1, . . . , Ik) is a partition and where c j is contained in the union of I j with its
endpoints.

(ii) A tagged partition ((c1, I1), . . . , (ck, Ik)) is δ-fine if the interval I j, along with its
endpoints, is a subset of B(δ(c j), c j). •

The following result asserts that δ-fine tagged partitions always exist.

2.5.10 Proposition (δ-fine tagged partitions exist) For any positive function δ : [a, b] →
R>0, there exists a δ-fine tagged partition.

Proof Let ∆ be the set of all points x ∈ (a, b] such that there exists a δ-fine tagged
partition of [a, x]. Note that (a, a + δ(a)) ⊆ ∆ since, for each x ∈ (a, a + δ(a)), ((a, [a, x]))
is a δ-fine tagged partition of [a, x]. Let b′ = sup∆. We will show that b′ = b and that
b′ ∈ ∆.

Since b′ = sup∆ there exists b′′ ∈ ∆ such that b′ − δ(b′) < b′′ < b′. Then there exists
a δ-fine partition P′ of [a, b′]. Now P′ ∪ ((b′, (b′′, b′])) is δ-fine tagged partition of [a, b′].
Thus b′ ∈ ∆.

Now suppose that b′ < b and choose b′′ < b such that b′ < b′′ < b′ + δ(b′). If P is
a tagged partition of [a, b′] (this exists since b′ ∈ ∆), then P ∪ ((b′, (b′, b′′])) is a δ-fine
tagged partition of [a, b′′]. This contradicts the fact that b′ = sup∆. Thus we conclude
that b′ = b. ■

2.5.3 Interior, closure, boundary, and related notions

Associated with the concepts of open and closed are a collection of useful
concepts.

2.5.11 Definition (Accumulation point, cluster point, limit point in R) Let A ⊆ R. A
point x ∈ R is:

(i) an accumulation point for A if, for every neighbourhood U of x, the set
A ∩ (U \ {x}) is nonempty;

(ii) a cluster point for A if, for every neighbourhood U of x, the set A ∩ U is
infinite;

(iii) a limit point of A if there exists a sequence (x j) j∈Z>0 in A converging to x.
The set of accumulation points of A is called the derived set of A, and is denoted
by der(A). •
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2.5.12 Remark (Conventions concerning “accumulation point,” “cluster point,” and
“limit point”) There seems to be no agreed upon convention about what is meant
by the three concepts of accumulation point, cluster point, and limit point. Some
authors make no distinction between the three concepts at all. Some authors
lump two together, but give the third a different meaning. As we shall see in
Proposition 2.5.13 below, sometimes there is no need to distinguish between two
of the concepts. However, in order to keep as clear as possible the transition to the
more abstract presentation of Chapter III-1, we have gone with the most pedantic
interpretation possible for the concepts of “accumulation point,” “cluster point,”
and “limit point.” •

The three concepts of accumulation point, cluster point, and limit point are
actually excessive for R since, as the next result shall indicate, two of them are
exactly the same. However, in the more general setup of Chapter III-1, the concepts
are no longer equivalent.

2.5.13 Proposition (“Accumulation point” equals “cluster point” inR) For a set A ⊆ R,
x ∈ R is an accumulation point for A if and only if it is a cluster point for A.

Proof It is clear that a cluster point for A is an accumulation point for A. Suppose
that x is not a cluster point. Then there exists a neighbourhood U of x for which the set
A∩U is finite. If A∩U = {x}, then clearly x is not an accumulation point. If A∩U , {x},
then A ∩ (U \ {x}) ⊇ {x1, . . . , xk}where the points x1, . . . , xk are distinct from x. Now let

ϵ = 1
2 min{|x1 − x|, . . . , |xk − x|}.

Clearly A ∩ (B(ϵ, x) \ {x}) is then empty, and so x is not an accumulation point for A. ■

Now let us give some examples that illustrate the differences between accumu-
lation points (or equivalently cluster points) and limit points.

2.5.14 Examples (Accumulation points and limit points)
1. For any subset A ⊆ R and for every x ∈ A, x is a limit point for A. Indeed, the

constant sequence (x j = x) j∈Z>0 is a sequence in A converging to x. However, as
we shall see in the examples to follow, it is not the case that all points in A are
accumulation points.

2. Let A = (0, 1). The set of accumulation points of A is then easily seen to be [0, 1].
The set of limit points is also [0, 1].

3. Let A = [0, 1). Then, as in the preceding example, both the set of accumulation
points and the set of limit points are the set [0, 1].

4. Let A = [0, 1] ∪ {2}. Then the set of accumulation points is [0, 1] whereas the set
of limit points is A.

5. Let A = Q. One can readily check that the set of accumulation points of A is R
and the set of limit points of A is also R. •

The following result gives some properties of the derived set.
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2.5.15 Proposition (Properties of the derived set in R) For A,B ⊆ R and for a family of
subsets (Ai)i∈I of R, the following statements hold:

(i) der(∅) = ∅;
(ii) der(R) = R;
(iii) if A ⊆ B then der(A) ⊆ der(B);
(iv) der(A ∪ B) = der(A) ∪ der(B);
(v) der(A ∩ B) ⊆ der(A) ∩ der(B).

Proof Parts (i) and (ii) follow directly from the definition of the derived set.
(iii) Let x ∈ der(A) and let U be a neighbourhood of x. Then the set A ∩ (U \ {x}) is

nonempty, implying that the set B ∩ (U \ {x}) is also nonempty. Thus x ∈ der(B).
(iv) Let x ∈ der(A∪B) and let U be a neighbourhood of x. Then the set U∩((A∪B)\{x})

is nonempty. But

U ∩ ((A ∪ B) \ {x}) = U ∩ ((A \ {x}) ∪ (B \ {x}))
= (U ∩ (A \ {x})) ∪ (U ∩ (B \ {x})). (2.8)

Thus it cannot be that both U∩ (A\{x}) and U∩ (B\{x}) are empty. Thus x is an element
of either der(A) or der(B).

Now let x ∈ der(A)∪der(A). Then, using (2.8), U∩ ((A∪B) \ {x}) is nonempty, and
so x ∈ der(A ∪ B).

(v) Let x ∈ der(A∩B) and let U be a neighbourhood of x. Then U∩((A∩B)\{x}) , ∅.
We have

U ∩ ((A ∩ B) \ {x}) = U ∩ ((A \ {x}) ∩ (B \ {x}))

Thus the sets U ∩ (A \ {x}) and U ∩ (B \ {x}) are both nonempty, showing that x ∈
der(A) ∩ der(B). ■

Next we turn to characterising distinguished subsets of subsets of R.

2.5.16 Definition (Interior, closure, and boundary in R) Let A ⊆ R.
(i) The interior of A is the set

int(A) = ∪{U | U ⊆ A, U open}.

(ii) The closure of A is the set

cl(A) = ∩{C | A ⊆ C, C closed}.

(iii) The boundary of A is the set bd(A) = cl(A) ∩ cl(R \ A). •

In other words, the interior of A is the largest open set contained in A. Note
that this definition makes sense since a union of open sets is open (Exercise 2.5.1).
In like manner, the closure of A is the smallest closed set containing A, and this
definition makes sense since an intersection of closed sets is closed (Exercise 2.5.1
again). Note that int(A) is open and cl(A) is closed. Moreover, since bd(A) is the
intersection of two closed sets, it too is closed (Exercise 2.5.1 yet again).

Let us give some examples of interiors, closures, and boundaries.
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2.5.17 Examples (Interior, closure, and boundary)
1. Let A = int(0, 1). Then int(A) = (0, 1) since A is open. We claim that cl(A) = [0, 1].

Clearly [0, 1] ⊆ cl(A) since [0, 1] is closed and contains A. Moreover, the only
smaller subsets contained in [0, 1] and containing A are [0, 1), (0, 1], and (0, 1),
none of which are closed. We may then conclude that cl(A) = [0, 1]. Finally
we claim that bd(A) = {0, 1}. To see this, note that we have cl(A) = [0, 1]
and cl(R \ A) = (−∞, 0] ∪ [1,∞) (by an argument like that used to show that
cl(A) = [0, 1]). Therefore, bd(A) = cl(A) ∩ cl(R \ A) = {0, 1}, as desired.

2. Let A = [0, 1]. Then int(A) = (0, 1). To see this, we note that (0, 1) ⊆ int(A) since
(0, 1) is open and contained in A. Moreover, the only larger sets contained in
A are [0, 1), (0, 1], and [0, 1], none of which are open. Thus int(A) = (0, 1), just
as claimed. Since A is closed, cl(A) = A. Finally we claim that bd(A) = {0, 1}.
Indeed, cl(A) = [0, 1] and cl(R \ A) = (−∞, 0] ∪ [1,∞). Therefore, bd(A) =
cl(A) ∩ cl(R \ A) = {0, 1}, as claimed.

3. Let A = (0, 1) ∪ {2}. We have int(A) = (0, 1), cl(A) = [0, 1] ∪ {2}, and bd(A) =
{0, 1, 2}. We leave the simple details of these assertions to the reader.

4. Let A = Q. One readily ascertains that int(A) = ∅, cl(A) = R, and bd(A) = R. •

Now let us give a characterisation of interior, closure, and boundary that are
often useful in practice. Indeed, we shall often use these characterisations without
explicitly mentioning that we are doing so.

2.5.18 Proposition (Characterisation of interior, closure, and boundary in R) For
A ⊆ R, the following statements hold:

(i) x ∈ int(A) if and only if there exists a neighbourhood U of x such that U ⊆ A;
(ii) x ∈ cl(A) if and only if, for each neighbourhood U of x, the set U ∩A is nonempty;
(iii) x ∈ bd(A) if and only if, for each neighbourhood U of x, the sets U∩A and U∩(R\A)

are nonempty.
Proof (i) Suppose that x ∈ int(A). Since int(A) is open, there exists a neighbourhood
U of x contained in int(A). Since int(A) ⊆ A, U ⊆ A.

Next suppose that x < int(A). Then, by definition of interior, for any open set U
for which U ⊆ A, x < U.

(ii) Suppose that there exists a neighbourhood U of x such that U ∩ A = ∅. Then
R \U is a closed set containing A. Thus cl(A) ⊆ R \U. Since x < R \U, it follows that
x < cl(A).

Suppose that x < cl(A). Then x is an element of the open set R \ cl(A). Thus there
exists a neighbourhood U of x such that U ⊆ R \ cl(A). In particular, U ∩ A = ∅.

(iii) This follows directly from part (ii) and the definition of boundary. ■

Now let us state some useful properties of the interior of a set.
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2.5.19 Proposition (Properties of interior in R) For A,B ⊆ R and for a family of subsets
(Ai)i∈I of R, the following statements hold:

(i) int(∅) = ∅;
(ii) int(R) = R;
(iii) int(int(A)) = int(A);
(iv) if A ⊆ B then int(A) ⊆ int(B);
(v) int(A ∪ B) ⊇ int(A) ∪ int(B);
(vi) int(A ∩ B) = int(A) ∩ int(B);
(vii) int(∪i∈IAi) ⊇ ∪i∈I int(Ai);
(viii) int(∩i∈IAi) ⊆ ∩i∈I int(Ai).
Moreover, a set A ⊆ R is open if and only if int(A) = A.

Proof Parts (i) and (ii) are clear by definition of interior. Part (v) follows from part (vii),
so we will only prove the latter.

(iii) This follows since the interior of an open set is the set itself.
(iv) Let x ∈ int(A). Then there exists a neighbourhood U of x such that U ⊆ A. Thus

U ⊆ B, and the result follows from Proposition 2.5.18.
(vi) Let x ∈ int(A) ∩ int(B). Since int(A) ∩ int(B) is open by Exercise 2.5.1, there

exists a neighbourhood U of x such that U ⊆ int(A) ∩ int(B). Thus U ⊆ A ∩ B. This
shows that x ∈ int(A ∩ B). This part of the result follows from part (viii).

(vii) Let x ∈ ∪i∈I int(Ai). By Exercise 2.5.1 the set ∪i∈I int(Ai) is open. Thus there
exists a neighbourhood U of x such that U ⊆ ∪i∈I int(Ai). Thus U ⊆ ∪i∈IAi, from which
we conclude that x ∈ int(∪i∈IAi).

(viii) Let x ∈ int(∩i∈IAi). Then there exists a neighbourhood U of x such that
U ⊆ ∩i∈IAi. It therefore follows that U ⊆ Ai for each i ∈ I, and so that x ∈ int(Ai) for
each i ∈ I.

The final assertion follows directly from Proposition 2.5.18. ■

Next we give analogous results for the closure of a set.

2.5.20 Proposition (Properties of closure in R) For A,B ⊆ R and for a family of subsets
(Ai)i∈I of R, the following statements hold:

(i) cl(∅) = ∅;
(ii) cl(R) = R;
(iii) cl(cl(A)) = cl(A);
(iv) if A ⊆ B then cl(A) ⊆ cl(B);
(v) cl(A ∪ B) = cl(A) ∪ cl(B);
(vi) cl(A ∩ B) ⊆ cl(A) ∩ cl(B);
(vii) cl(∪i∈IAi) ⊇ ∪i∈I cl(Ai);
(viii) cl(∩i∈IAi) ⊆ ∩i∈I cl(Ai).
Moreover, a set A ⊆ R is closed if and only if cl(A) = A.
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Proof Parts (i) and (ii) follow immediately from the definition of closure. Part (vi)
follows from part (viii), so we will only prove the latter.

(iii) This follows since the closure of a closed set is the set itself.
(iv) Suppose that x ∈ cl(A). Then, for any neighbourhood U of x, the set U ∩ A is

nonempty, by Proposition 2.5.18. Since A ⊆ B, it follows that U ∩ B is also nonempty,
and so x ∈ cl(B).

(v) Let x ∈ cl(A ∪ B). Then, for any neighbourhood U of x, the set U ∩ (A ∪ B) is
nonempty by Proposition 2.5.18. By Proposition 1.1.4, U∩ (A∪B) = (U∩A)∪ (U∩B).
Thus the sets U ∩ A and U ∩ B are not both nonempty, and so x ∈ cl(A) ∪ cl(B). That
cl(A) ∪ cl(B) ⊆ cl(A ∪ B) follows from part (vii).

(vi) Let x ∈ cl(A ∩ B). Then, for any neighbourhood U of x, the set U ∩ (A ∩ B) is
nonempty. Thus the sets U ∩ A and U ∩ B are nonempty, and so x ∈ cl(A) ∩ cl(B).

(vii) Let x ∈ ∪i∈I cl(Ai) and let U be a neighbourhood of x. Then, for each i ∈ I,
U∩Ai , ∅. Therefore,∪i∈I(U∩Ai) , ∅. By Proposition 1.1.7,∪i∈I(U∩Ai) = U∩(∪i∈IAi),
showing that U ∩ (∪i∈IAi) , ∅. Thus x ∈ cl(∪i∈IAi).

(viii) Let x ∈ cl(∩i∈IAi) and let U be a neighbourhood of x. Then the set U ∩ (∩i∈IAi)
is nonempty. This means that, for each i ∈ I, the set U∩Ai is nonempty. Thus x ∈ cl(Ai)
for each i ∈ I, giving the result. ■

Note that there is a sort of “duality” between int and cl as concerns their
interactions with union and intersection. This is reflective of the fact that open and
closed sets themselves have such a “duality,” as can be seen from Exercise 2.5.1.
We refer the reader to Exercise 2.5.6 to construct counterexamples to any missing
opposite inclusions in Propositions 2.5.19 and 2.5.20.

Let us state some relationships between certain of the concepts we have thus
far introduced.

2.5.21 Proposition (Joint properties of interior, closure, boundary, and derived set
in R) For A ⊆ R, the following statements hold:

(i) R \ int(A) = cl(R \A);
(ii) R \ cl(A) = int(R \A).
(iii) cl(A) = A ∪ bd(A);
(iv) int(A) = A − bd(A);
(v) cl(A) = int(A) ∪ bd(A);
(vi) cl(A) = A ∪ der(A);
(vii) R = int(A) ∪ bd(A) ∪ int(R \A).

Proof (i) Let x ∈ R \ int(A). Since x < int(A), for every neighbourhood U of x it holds
that U 1 A. Thus, for any neighbourhood U of x, we have U ∩ (R \ A) , ∅, showing
that x ∈ cl(R \ A).

Now let x ∈ cl(R\A). Then for any neighbourhood U of x we have U∩ (R\A) , ∅.
Thus x < int(A), so x ∈ R \ A.

(ii) The proof here strongly resembles that for part (i), and we encourage the reader
to provide the explicit arguments.

(iii) This follows from part (v).
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(iv) Clearly int(A) ⊆ A. Suppose that x ∈ A ∩ bd(A). Then, for any neighbourhood
U of x, the set U ∩ (R \ A) is nonempty. Therefore, no neighbourhood of x is a subset
of A, and so x < int(A). Conversely, if x ∈ int(A) then there is a neighbourhood U of x
such that U ⊆ A. The precludes the set U ∩ (R \ A) from being nonempty, and so we
must have x < bd(A).

(v) Let x ∈ cl(A). For a neighbourhood U of x it then holds that U ∩ A , ∅. If
there exists a neighbourhood V of x such that V ⊆ A, then x ∈ int(A). If there exists no
neighbourhood V of x such that V ⊆ A, then for every neighbourhood V of x we have
V ∩ (R \ A) , ∅, and so x ∈ bd(A).

Now let x ∈ int(A) ∪ bd(A). If x ∈ int(A) then x ∈ A and so x ∈⊆ cl(A). If x ∈ bd(A)
then it follows immediately from Proposition 2.5.18 that x ∈ cl(A).

(vi) Let x ∈ cl(A). If x < A then, for every neighbourhood U of x, U ∩ A =
U ∩ (A \ {x}) , ∅, and so x ∈ der(A).

If x ∈ A ∪ der(A) then either x ∈ A ⊆ cl(A), or x < A. In this latter case, x ∈ der(A)
and so the set U ∩ (A \ {x}) is nonempty for each neighbourhood U of x, and we again
conclude that x ∈ cl(A).

(vii) Clearly int(A)∩ int(R \A) = ∅ since A∩ (R \A) = ∅. Now let x ∈ R \ (int(A)∪
int(R\A)). Then, for any neighbourhood U of x, we have U 1 A and U 1 (R\A). Thus
the sets U ∩ (R \ A) and U ∩ A must both be nonempty, from which we conclude that
x ∈ bd(A). ■

An interesting class of subset of R is the following.

2.5.22 Definition (Discrete subset of R) A subset A ⊆ R is discrete if there exists ϵ ∈ R>0

such that, for each x, y ∈ A, |x − y| ≥ ϵ. •

Let us give a characterisation of discrete sets.

2.5.23 Proposition (Characterisation of discrete sets in R) A discrete subset A ⊆ R is
countable and has no accumulation points.

Proof It is easy to show (Exercise 2.5.8) that if A is discrete and if N ∈ Z>0, then the
set A ∩ [−N,N] is finite. Therefore

A = ∪N∈Z>0A ∩ [−N,N],

which gives A as a countable union of finite sets, implying that A is countable by
Proposition 1.7.16. Now let ϵ ∈ R>0 satisfy |x − y| ≥ ϵ for x, y ∈ A. Then, if x ∈ A then
the set A∩B( ϵ2 , x) is empty, implying that x is not an accumulation point. If x < A then
B( ϵ2 , x) can contain at most one point from A, which again prohibits x from being an
accumulation point. ■

The notion of a discrete set is actually a more general one having to do with
what is known as the discrete topology (cf. Example III-1.2.3–6). The reader can
explore some facts about discrete subsets of R in Exercise 2.5.8.

2.5.4 Compactness

The idea of compactness is absolutely fundamental in much of mathematics.
The reasons for this are not at all clear to a newcomer to analysis. Indeed, the
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definition we give for compactness comes across as extremely unmotivated. This
might be particularly since for R (or more generally, in Rn) compact sets have a
fairly banal characterisation as sets that are closed and bounded (Theorem 2.5.27).
However, the original definition we give for a compact set is the most useful one.
The main reason it is useful is that it allows for certain pointwise properties to be
automatically extended to the entire set. A good example of this is Theorem 3.1.24,
where continuity of a function on a compact set is extended to uniform continuity
on the set. This idea of uniformity is an important one, and accounts for much of
the value of the notion of compactness. But we are getting ahead of ourselves.

As indicated in the above paragraph, we shall give a rather strange seeming
definition of compactness. Readers looking for a quick and dirty definition of
compactness, valid for subsets of R, can refer ahead to Theorem 2.5.27. Our
construction relies on the following idea.

2.5.24 Definition (Open cover of a subset of R) Let A ⊆ R.
(i) An open cover for A is a family (Ui)i∈I of open subsets ofR having the property

that A ⊆ ∪i∈IUi.
(ii) A subcover of an open cover (Ui)i∈I of A is an open cover (V j) j∈J of A having

the property that (V j) j∈J ⊆ (Ui)i∈I. •

The following property of open covers of subsets of R is useful.

2.5.25 Lemma (Lindelöf10 Lemma for R) If (Ui)i∈I is an open cover of A ⊆ R, then there
exists a countable subcover of A.

Proof LetB = {B(r, x) | x, r ∈ Q}. Note thatB is a countable union of countable sets,
and so is countable by Proposition 1.7.16. Therefore, we can writeB = (B(r j, x j)) j∈Z>0 .
Now define

B ′ = {B(r j, x j) | B(r j, x j) ⊆ Ui for some i ∈ I}.

Let us write B ′ = (B(r jk , x jk))k∈Z>0 . We claim that B ′ covers A. Indeed, if x ∈ A
then x ∈ Ui for some i ∈ I. Since Ui is open there then exists k ∈ Z>0 such that
x ∈ B(r jk , x jk) ⊆ Ui. Now, for each k ∈ Z>0, let ik ∈ I satisfy B(r jk , x jk) ⊆ Uik . Then the
countable collection of open sets (Uik)k∈Z>0 clearly covers A sinceB ′ covers A. ■

Now we define the important notion of compactness, along with some other
related useful concepts.

2.5.26 Definition (Bounded, compact, and totally bounded in R) A subset A ⊆ R is:

(i) bounded if there exists M ∈ R>0 such that A ⊆ B(M, 0);
(ii) compact if every open cover (Ui)i∈I of A possesses a finite subcover;
(iii) precompact11 if cl(A) is compact;

10Ernst Leonard Lindelöf (1870–1946) was a Finnish mathematician who worked in the areas of
differential equations and complex analysis.

11What we call “precompact” is very often called “relatively compact.” However, we shall use
the term “relatively compact” for something different.
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(iv) totally bounded if, for every ϵ ∈ R>0 there exists x1, . . . , xk ∈ R such that
A ⊆ ∪k

j=1B(ϵ, x j). •

The simplest characterisation of compact subsets ofR is the following. We shall
freely interchange our use of the word compact between the definition given in
Definition 2.5.26 and the conclusions of the following theorem.

2.5.27 Theorem (Heine–Borel12 Theorem in R) A subset K ⊆ R is compact if and only if it
is closed and bounded.

Proof Suppose that K is closed and bounded. We first consider the case when K =
[a, b]. Let O = (Ui)i∈I be an open cover for [a, b] and let

S[a,b] = {x ∈ R | x ≤ b and [a, x] has a finite subcover in O }.

Note that S[a,b] , ∅ since a ∈ S[a,b]. Let c = sup S[a,b]. We claim that c = b. Suppose
that c < b. Since c ∈ [a, b] there is some ī ∈ I such that c ∈ Uī. As Uī is open, there is
some ϵ ∈ R>0 sufficiently small that B(ϵ, c) ⊆ Uī. By definition of c, there exists some
x ∈ (c− ϵ, c) for which x ∈ S[a,b]. By definition of S[a,b] there is a finite collection of open
sets Ui1 , . . . ,Uim fromO which cover [a, x]. Therefore, the finite collection Ui1 , . . . ,Uim ,Uī
of open sets covers [a, c+ϵ). This then contradicts the fact that c = sup S[a,b], so showing
that b = sup S[a,b]. The result follows by definition of S[a,b].

Now suppose that K is a general closed and bounded set. Then K ⊆ [a, b] for some
suitable a, b ∈ R. Suppose that O = (Ui)i∈I is an open cover of K, and define a new
open cover Õ = O ∪ (R \ K). Note that ∪i∈IUi ∪ (R \ K) = R showing that Õ is an open
cover for R, and therefore also is an open cover for [a, b]. By the first part of the proof,
there exists a finite subset of Õ which covers [a, b], and therefore also covers K. We
must show that this finite cover can be chosen so as not to include the set R \ K as this
set is not necessarily in O . However, if [a, b] is covered by Ui1 , . . . ,Uik ,R \ K, then one
sees that K is covered by Ui1 , . . . ,Uik , since K ∩ (R \ K) = ∅. Thus we have arrived at a
finite subset of O covering K, as desired.

Now suppose that K is compact. Consider the following collection of open subsets:
OK = (B(ϵ, x))x∈K. Clearly this is an open cover of K. Thus there exists a finite collection
of point x1, . . . , xk ∈ K such that (B(ϵ, x j)) j∈{1,...,k} covers K. If we take

M = max{|x1|, . . . , |xk|} + 2

then we easily see that K ⊆ B(M, 0), so that K is bounded. Now suppose that K is not
closed. Then K ⊂ cl(K). By part (vi) of Proposition 2.5.21 there exists an accumulation
point x0 of K that is not in K. Then, for any j ∈ Z>0 there exists a point x j ∈ K such that
|x0 − x j| <

1
j . Define

U j = (−∞, x0 −
1
j ) ∪ (x0 +

1
j ,∞),

noting that U j is open, since it is the union of open sets (see Exercise 2.5.1). We claim
that (U j) j∈Z>0 is an open cover of K. Indeed, we will show that ∪ j∈Z>0U j = R \ {x0}.

12Heinrich Eduard Heine (1821–1881) was a German mathematician who worked mainly with
special functions. Félix Edouard Justin Emile Borel (1871–1956) was a French mathematician, and
he worked mainly in the area of analysis.
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To see this, let x ∈ R \ {x0} and choose k ∈ Z>0 such that 1
k < |x − x0|. Then it follows

by definition of Uk that x ∈ Uk. Since x0 < K, we then have K ⊆ ∪ j∈Z>0U j. Next we
show that there is no finite subset of (U j) j∈Z>0 that covers K. Indeed, consider a finite
set j1, . . . , jk ∈ Z>0, and suppose without loss of generality that j1 < · · · < jk. Then the
point x jk+1 satisfies |x0 − x jk+1| <

1
jk+1 <

1
jk

, implying that x jk+1 < U jk ⊇ · · · ⊇ U j1 . Thus,
if K is not closed, we have constructed an open cover of K having no finite subcover.
From this we conclude that if K is compact, then it is closed. ■

The Heine–Borel Theorem has the following useful corollary.

2.5.28 Corollary (Closed subsets of compact sets in R are compact) If A ⊆ R is
compact and if B ⊆ A is closed, then B is compact.

Proof Since A is bounded by the Heine–Borel Theorem, B is also bounded. Thus B is
also compact, again by the Heine–Borel Theorem. ■

In Chapter III-1 we shall encounter many of the ideas in this section in the more
general setting of topological spaces. Many of the ideas forR transfer directly to this
more general setting. However, with compactness, some care must be exercised.
In particular, it is not true that, in a general topological space, a subset is compact
if and only if it is closed and bounded. Indeed, in a general topological space, the
notion of bounded is not defined. It is not an uncommon error for newcomers to
confuse “compact” with “closed and bounded” in situations where this is not the
case.

The following result is another equivalent characterisation of compact subsets
of R, and is often useful.

2.5.29 Theorem (Bolzano–Weierstrass13 Theorem in R) A subset K ⊆ R is compact if and
only if every sequence in K has a subsequence which converges in K.

Proof First suppose that K is compact. Let (x j) j∈Z>0 be a sequence in K. Since K
is bounded by Theorem 2.5.27, the sequence (x j) j∈Z>0 is bounded. We next show
that there exists either a monotonically increasing, or a monotonically decreasing,
subsequence of (x j) j∈Z>0 . Define

D = { j ∈ Z>0 | xk > x j, k > j}

If the set D is infinite, then we can write D = ( jk)k∈Z>0 . By definition of D, it follows
that x jk+1 > x jk for each k ∈ Z>0. Thus the subsequence (x jk)k∈Z>0 is monotonically
increasing. If the set D is finite choose j1 > sup D. Then there exists j2 > j1 such that
x j2 ≤ x j1 . Since j2 > sup D, there then exists j3 > j2 such that x j3 ≤ x j2 . By definition
of D, this process can be repeated inductively to yield a monotonically decreasing
subsequence (x jk)k∈Z>0 . It now follows from Theorem 2.3.8 that the sequence (x jk)k∈Z>0 ,
be it monotonically increasing or monotonically decreasing, converges.

13Bernard Placidus Johann Nepomuk Bolzano (1781–1848) was a Czechoslovakian philosopher,
mathematician, and theologian who made mathematical contributions to the field of analysis. Karl
Theodor Wilhelm Weierstrass (1815–1897) is one of the greatest of all mathematicians. He made
significant contributions to the fields of analysis, complex function theory, and the calculus of
variations.
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Next suppose that every sequence (x j) j∈Z>0 in K possesses a convergent subse-
quence. Let (Ui)i∈I be an open cover of K, and by Lemma 2.5.25 choose a countable
subcover which we denote by (U j) j∈Z>0 . Now suppose that every finite subcover of

(U j) j∈Z>0 does not cover K. This means that, for every k ∈ Z>0, the set Ck = K \
(
∪

k
j=1U j

)
is nonempty. Thus we may define a sequence (xk)k∈Z>0 in R such that xk ∈ Ck. Since
the sequence (xk)k∈Z>0 is in K, it possesses a convergent subsequence (xkm)m∈Z>0 , by
hypotheses. Let x be the limit of this subsequence. Since x ∈ K and since K = ∪ j∈Z>0U j,
x ∈ Ul for some l ∈ Z>0. Since the sequence (xkm)m∈Z>0 converges to x, it follows that
there exists N ∈ Z>0 such that xkm ∈ Ul for m ≥ N. But this contradicts the definition of
the sequence (xk)k∈Z>0 , forcing us to conclude that our assumption is wrong that there
is no finite subcover of K from the collection (U j) j∈Z>0 . ■

The following property of compact intervals of R is useful.

2.5.30 Theorem (Lebesgue14 number for compact intervals) Let I = [a, b] be a compact
interval. Then for any open cover (Uα)α∈A of [a, b], there exists δ ∈ R>0, called the
Lebesgue number of I, such that, for each x ∈ [a, b], there exists α ∈ A such that
B(δ, x) ∩ I ⊆ Uα.

Proof Suppose there exists an open cover (Uα)α∈A such that, for all δ ∈ R>0, there
exists x ∈ [a, b] such that none of the sets Uα, α ∈ A, contains B(δ, x) ∩ I. Then there
exists a sequence (x j) j∈Z>0 in I such that

{α ∈ A | B( 1
j , x j) ⊆ Uα} = ∅

for each j ∈ Z>0. By the Bolzano–Weierstrass Theorem there exists a subsequence
(x jk)k∈Z>0 that converges to a point, say x, in [a, b]. Then there exists ϵ ∈ R>0 and α ∈ A
such that B(ϵ, x) ⊆ Uα. Now let N ∈ Z>0 be sufficiently large that |x jk − x| < ϵ

2 for k ≥ N
and such that 1

jN
< ϵ

2 . Now let k ≥ N. Then, if y ∈ B( 1
jk
, x jk) we have

|y − x| = |y − x jk + x jk − x| ≤ |y − x jk | + |x − x jk | < ϵ.

Thus we arrive at the contradiction that B( 1
jk
, x jk) ⊆ Uα. ■

The following result is sometimes useful.

2.5.31 Proposition (Countable intersections of nested compact sets are nonempty)
Let (Kj)j∈Z>0 be a collection of compact subsets of R satisfying Kj+1 ⊆ Kj. Then ∩j∈Z>0Kj is
nonempty.

Proof It is clear that K = ∩ j∈Z>0K j is bounded, and moreover it is closed by Exer-
cise 2.5.1. Thus K is compact by the Heine–Borel Theorem. Let (x j) j∈Z>0 be a sequence
for which x j ∈ K j for j ∈ Z>0. This sequence is thus a sequence in K1 and so, by the
Bolzano–Weierstrass Theorem, has a subsequence (x jk)k∈Z>0 converging to x ∈ K1. The
sequence (x jk+1)k∈Z>0 is then a sequence in K2 which is convergent, so showing that
x ∈ K2. Similarly, one shows that x ∈ K j for all j ∈ Z>0, giving the result. ■

14Henri Léon Lebesgue (1875–1941) was a French mathematician. His work was in the area of
analysis. The Lebesgue integral is considered to be one of the most significant contributions to
mathematics in the past century or so.
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Finally, let us indicate the relationship between the notions of relative compact-
ness and total boundedness. We see that for R these concepts are the same. This
may not be true in general; see Exercise III-1.1.19.

2.5.32 Proposition (“Precompact” equals “totally bounded” in R) A subset of R is
precompact if and only if it is totally bounded.

Proof Let A ⊆ R.
First suppose that A is precompact. Since A ⊆ cl(A) and since cl(A) is bounded by

the Heine–Borel Theorem, it follows that A is bounded. It is then easy to see that A is
totally bounded.

Now suppose that A is totally bounded. For ϵ ∈ R>0 let x1, . . . , xk ∈ R have the
property that A ⊆ ∪k

j=1B(ϵ, x j). If

M0 = max{|x j − xl| | j, l ∈ {i, . . . , k}} + 2ϵ,

then it is easy to see that A ⊆ B(M, 0) for any M > M0. Then cl(A) ⊆ B(M, 0) by part (iv)
of Proposition 2.5.20, and so cl(A) is bounded. Since cl(A) is closed, it follows from
the Heine–Borel Theorem that A is precompact. ■

2.5.5 Connectedness

The idea of a connected set will come up occasionally in these volumes. Intu-
itively, a set is connected if it cannot be “broken in two.” We will study it more
systematically in Section III-1.7, and here we only give enough detail to effectively
characterise connected subsets of R.

2.5.33 Definition (Connected subset of R) Subsets A,B ⊆ R are separated if A∩ cl(B) =
∅ and cl(A) ∩ B = ∅. A subset S ⊆ R is disconnected if S = A ∪ B for nonempty
separated subsets A and B. A subset S ⊆ R is connected if it is not disconnected. •

Rather than give examples, let us simply immediately characterise the con-
nected subsets of R, since this renders all examples trivial to understand.

2.5.34 Theorem (Connected subsets ofR are intervals and vice versa) A subset S ⊆ R
is connected if and only if S is an interval.

Proof Suppose that S is not an interval. Then, by Proposition 2.5.5, there exists
a, b ∈ S with a < b and c ∈ (a, b) such that c < S. Let Ac = S∩ (−∞, c) and Bc = S∩ (c,∞),
and note that both Ac and Bc are nonempty. Also, since c < S, S = Ac ∪ Bc. Since
(−∞, c) ∩ [c,∞) = ∅ and (−∞, c] ∩ (c,∞) = ∅, Ac and Bc are separated. That S is not
connected follows.

Now suppose that S is not connected, and write S = A∪B for nonempty separated
sets A and B. Without loss of generality, let a ∈ A and b ∈ B have the property that
a < b. Note that A ∩ [a, b] is bounded so that c = sup A ∩ [a, b] exists in R. Then
c ∈ cl(A ∩ [a, b]) ⊆ cl(A) ∩ [a, b]. In other words, c ∈ cl(A). Since cl(A) ∩ B = ∅, c < B.
If c < A then c < S, and so S is not connected by Proposition 2.5.5. If c ∈ A then, since
A ∩ cl(B) = ∅, c < cl(B). In this case there exists an open interval containing c that
does not intersect cl(B). In particular, there exists d > c such that d < B. Since d > c
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we also have d < A, and so d < S. Again we conclude that S is not an interval by
Proposition 2.5.5. ■

Let us consider a few examples.

2.5.35 Examples (Connected subsets of sets)
1. If D ⊆ R is a discrete set as given in Definition 2.5.22. From Theorem 2.5.34

we see that the only subsets of D that are connected are singletons.
2. Note that it also follows from Theorem 2.5.34 that the only connected subsets

of Q ⊆ R are singletons. However, Q is not discrete. •

2.5.6 Sets of measure zero

The topic of this section will receive a full treatment in the context of measure
theory as presented in Chapter III-2. However, it is convenient here to talk about a
simple concepts from measure theory, one which formalises the idea of a set being
“small.” We shall only give here the definition and a few examples. The reader
should look ahead to Chapter III-2 for more detail.

2.5.36 Definition (Set of measure zero in R) A subset A ⊆ R has measure zero, or is of
measure zero, if

inf

 ∞∑
j=1

|b j − a j|

∣∣∣∣∣∣∣ A ⊆
⋃

j∈Z>0

(a j, b j)

 = 0. •

The idea, then, is that one can cover a set A with open intervals, each of which
have some length. One can add all of these lengths to get a total length for the
intervals used to cover A. Now, if one can make this total length arbitrarily small,
then the set has measure zero.

2.5.37 Notation (“Almost everywhere” and “a.e.”) We give here an important piece of
notation associated to the notion of a set of measure zero. Let A ⊆ R and let
P : A→ {true, false} be a property defined on A (see the prelude to the Principle of
Transfinite Induction, Theorem 1.5.14). The property P holds almost everywhere,
a.e., or for almost every x ∈ A if the set {x ∈ A | P(x) = false} has measure zero. •

This is best illustrated with some examples.

2.5.38 Examples (Sets of measure zero)
1. Let A = {x1, . . . , xk} for some distinct x1, . . . , xk ∈ R. We claim that this set has

measure zero. Note that for any ϵ ∈ R>0 the intervals (x j−
ϵ
4k , x j+

ϵ
4k ), j ∈ {1, . . . , k},

clearly cover A. Now consider the countable collection of open intervals

((x j −
ϵ
4k , x j +

ϵ
4k )) j∈{1,...,k} ∪ ((0, ϵ

2 j+1 )) j∈Z>0
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obtained by adding to the intervals covering A a collection of intervals around
zero. The total length of these intervals is

k∑
j=1

|(x j +
ϵ
4k ) − (x j −

ϵ
4k )| +

ϵ
2

∞∑
j=1

1
2 j =

ϵ
2
+
ϵ
2
,

using the fact that
∑
∞

j=1
ϵ
2 j = 1 (by Example 2.4.2–1). Since inf{2kϵ | ϵ ∈ R>0} = 0,

our claim that A has zero measure is validated.
2. Now let A = Q be the set of rational numbers. To show that A has measure

zero, note that from Exercise 2.1.3 that A is countable. Thus we can write the
elements of A as (q j) j∈Z>0 . Now let ϵ ∈ R>0 and for j ∈ Z>0 define a j = q j −

ϵ
2 j and

b j = q j +
ϵ
2 j . Then the collection (a j, b j), j ∈ Z>0, covers A. Moreover,

∞∑
j=1

|b j − a j| =

∞∑
j=1

2ϵ
2 j = 2ϵ,

using the fact, shown in Example 2.4.2–1, that the series
∑
∞

j=1
1
2 j converges to 1.

Now, since inf{2ϵ | ϵ ∈ R>0} = 0, it follows that A indeed has measure zero.
3. Let A = R \Q be the set of irrational numbers. We claim that this set does not

have measure zero. To see this, let k ∈ Z>0 and consider the set Ak = A∩ [−k, k].
Now let ϵ ∈ R>0. We claim that if ((a j, b j)) j∈Z>0 , is a collection of open intervals
for which Ak ⊆ ∪ j∈Z>0(a j, b j), then

∞∑
j=1

|b j − a j| ≥ 2k − ϵ. (2.9)

To see this, let ((cl, dl))l∈Z>0 be a collection of intervals such that Q ∩ [−k, k] ⊆
∪l∈Z>0(cl, dl) and such that

∞∑
l=1

|dl − cl| < ϵ.

Such a collection of intervals exists since we have already shown that Q, and
therefore Q ∩ [−k, k], has measure zero (see Exercise 2.5.9). Now note that

[−k, k] ⊆

 ⋃
j∈Z>0

(a j, b j)

 ∪
 ⋃

l∈Z>0

(cl, dl)

 ,
so that  ∞∑

j=1

|b j − a j|

 +
 ∞∑

l=1

|dl − cl|

 ≥ 2k.
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From this we immediately conclude that (2.9) does indeed hold. Moreover, (2.9)
holds for every k ∈ Z>0, for every ϵ ∈ R>0, and for every open cover ((a j, b j)) j∈Z>0

of Ak. Thus,

inf

 ∞∑
l=1

|b̃l − ãl|

∣∣∣∣∣∣∣ A ⊆
⋃

l∈Z>0

(ãl, b̃l)


≥ inf

 ∞∑
j=1

|b j − a j|

∣∣∣∣∣∣∣ Ak ⊆

⋃
j∈Z>0

(a j, b j)

 ≥ 2k − ϵ

for every k ∈ Z>0 and for every ϵ ∈ R>0. This precludes A from having measure
zero. •

The preceding examples suggest sets of measure zero are countable. This is
not so, and the next famous example gives an example of an uncountable set with
measure zero.

2.5.39 Example (An uncountable set of measure zero: the middle-thirds Cantor set)
In this example we construct one of the standard “strange” sets used in real analysis
to exhibit some of the characteristics that can possibly be attributed to subsets of
R. We shall also use this set in a construction in Example 3.2.27 to give an example
of a continuous monotonically increasing function whose derivative is zero almost
everywhere.

Let C0 = [0, 1]. Then define

C1 = [0, 1
3 ] ∪ [ 2

3 , 1],

C2 = [0, 1
9 ] ∪ [ 2

9 ,
1
3 ] ∪ [ 2

3 ,
7
9 ] ∪ [ 8

9 , 1],
...

so that Ck is a collection of 2k disjoint closed intervals each of length 3−k (see
Figure 2.5). We define C = ∩k∈Z>0Ck, which we call the middle-thirds Cantor set.

C2

C1

C0

Figure 2.5 The first few sets used in the construction of the
middle-thirds Cantor set

Let us give some of the properties of C.
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1 Lemma C has the same cardinality as [0, 1].

Proof Note that each of the sets Ck, k ∈ Z≥0, is a collection of disjoint closed
intervals. Let us write Ck = ∪

2k

j=1Ik, j, supposing that the intervals Ik, j are enumerated
such that the right endpoint of Ik, j lies to the left of the left endpoint of Ik, j+1 for
each k ∈ Z≥0 and j ∈ {1, . . . , 2k

}. Now note that each interval Ik+1, j, k ∈ Z≥0,
j ∈ {1, . . . , 2k+1

} comes from assigning two intervals to each of the intervals Ik, j,
k ∈ Z≥0, j ∈ {1, . . . , 2k

}. Assign to an interval Ik+1, j, k ∈ Z≥0, j ∈ {1, . . . , 2k
}, the

number 0 (resp. 1) if it the left (resp. right) interval coming from an interval Ik, j′

of Ck. In this way, each interval in Ck, k ∈ Z≥0, is assigned a 0 or a 1 in a unique
manner. Since, for each point in x ∈ C, there is exactly one j ∈ {1, . . . , 2k

} such
that x ∈ Ik, j. Therefore, for each point in C there is a unique decimal expansion
0.n1n2n3 . . . where nk ∈ {0, 1}. Moreover, for every such decimal expansion, there is
a corresponding point in C. However, such decimal expansions are exactly binary
decimal expansions for points in [0, 1]. In other words, there is a bijection from C
to [0, 1]. ▼

2 Lemma C is a set of measure zero.

Proof Let ϵ ∈ R>0. Note that each of the sets Ck can be covered by a finite number

of closed intervals whose lengths sum to
(

2
3

)k
. Therefore, each of the sets Ck can be

covered by open intervals whose lengths sum to
(

2
3

)k
+ ϵ

2 . Choosing k sufficiently

large that
(

2
3

)k
< ϵ

2 we see that C is contained in the union of a finite collection of
open intervals whose lengths sum to ϵ. Since ϵ is arbitrary, it follows that C has
measure zero. ▼

This example thus shows that sets of measure zero, while “small” in some sense,
can be “large” in terms of the number of elements they possess. Indeed, in terms of
cardinality, C has the same size as [0, 1], although their measures differ by as much
as possible. •

2.5.7 Cantor sets

The remainder of this section is devoted to a characterisation of certain sorts of
exotic sets, perhaps the simplest example of which is the middle-thirds Cantor set
of Example 2.5.39. This material is only used occasionally, and so can be omitted
until the reader feels they need/want to understand it.

The qualifier “middle-thirds” in Example 2.5.39 makes one believe that there
might be a general notion of a “Cantor set.” This is indeed the case.

2.5.40 Definition (Cantor set) Let I ⊆ R be a closed interval. A subset A ⊆ I is a Cantor
set if

(i) A is closed,
(ii) int(A) = ∅, and
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(iii) every point of A is an accumulation point of A. •

We leave it to the reader to verify in Exercise 2.5.12 that the middle-thirds
Cantor set is a Cantor set, according to the previous definition.

One might wonder whether all Cantor sets have the properties of having the
cardinality of an interval and of having measure zero. To address this, we give a
result and an example. The result shows that all Cantor sets are uncountable.

2.5.41 Proposition (Cantor sets are uncountable) If A ⊆ R is a nonempty set having
the property that each of its points is an accumulation point, then A is uncountable. In
particular, Cantor sets are uncountable.

Proof Any finite set has no accumulation points by Proposition 2.5.13. Therefore
A must be either enumerable or uncountable. Suppose that A is enumerable and
write A = (x j) j∈Z>0 . Let y1 ∈ A \ {x1}. For r1 < |x1 − y1| we have x1 < B(r1, y1). We
note that y1 is an accumulation point for A \ {x1, x2}; this follows immediately from
Proposition 2.5.13. Thus there exists y2 ∈ A \ {x1, x2} such that y2 ∈ B(r1, y1) and such
that y2 , y1. If r2 < min{|x2− y2|, r1−|y2− y2|} then x2 < B(r2, y2) and B(r2, y2) ⊆ B(r1, y1)
by a simple application of the triangle inequality. Continuing in this way we define a
sequence (B(r j, y j)) j∈Z>0 of closed balls having the following properties:

1. B(r j+1, y j+1) ⊆ B(r j, y j) for each j ∈ Z>0;

2. x j < B(r j, y j) for each j ∈ Z>0.

Note that (B(r j, y j) ∩ A) j∈Z>0 is a nested sequence of compact subsets of A, and so by
Proposition 2.5.31, ∩ j∈Z>0(B(r j, y j) ∩ A) is a nonempty subset of A. However, for any
j ∈ Z>0, x j < ∩ j∈Z>0(B(r j, y j)∩A), and so we arrive, by contradiction, to the conclusion
that A is not enumerable. ■

The following example shows that Cantor sets may not have measure zero.

2.5.42 Example (A Cantor set not having zero measure) We will define a subset of
[0, 1] that is a Cantor set, but does not have measure zero. The construction mirrors
closely that of Example 2.5.39.

We let ϵ ∈ (0, 1). Let Cϵ,0 = [0, 1] and define Cϵ,1 by deleting from Cϵ,0 an open
interval of length ϵ

2 centered at the midpoint of Cϵ,0. Note that Cϵ,1 consists of two
disjoint closed intervals whose lengths sum to 1 − ϵ

2 . Next define Cϵ,2 by deleting
from Cϵ,1 two open intervals, each of length ϵ

8 , centered at the midpoints of each
of the intervals comprising Cϵ,1. Note that Cϵ,2 consists of four disjoint closed
intervals whose lengths sum to 1 − ϵ

4 . Proceed in this way, defining a sequence of
sets (Cϵ,k)k∈Z>0 , where Cϵ,k consists of 2k disjoint closed intervals whose lengths sum
to 1 −

∑k
j=1

ϵ
2 j = 1 − ϵ. Take Cϵ = ∩k∈Z>0Cϵ,k.

Let us give the properties of Cϵ in a series of lemmata.

1 Lemma Cϵ is a Cantor set.

Proof That Cϵ is closed follows from Exercise 2.5.1 and the fact that it is the
intersection of a collection of closed sets. To see that int(Cϵ) = ∅, let I ⊆ [0, 1] be an
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open interval and suppose that I ⊆ Cϵ. This means that I ⊆ Cϵ,k for each k ∈ Z>0.
Note that the sets Cϵ,k, k ∈ Z>0, are unions of closed intervals, and that for any
δ ∈ R>0 there exists N ∈ Z>0 such that the lengths of the intervals comprising Cϵ,k

are less than δ for k ≥ N. Thus the length of I must be zero, and so I = ∅. Thus
Cϵ contains no nonempty open intervals, and so must have an empty interior. To
see that every point of Cϵ is an accumulation point of Cϵ, we note that all points in
Cϵ are endpoints for one of the closed intervals comprising Cϵ,k for some k ∈ Z>0.
Moreover, it is clear that every neighbourhood of a point in Cϵ must contain another
endpoint from one of the closed intervals comprising Cϵ,k for some k ∈ Z>0. Indeed,
were this not the case, this would imply the existence of a nonempty open interval
contained in Cϵ, and we have seen that there can be no such interval. ▼

2 Lemma Cϵ is uncountable.

Proof This can be proved in exactly the same manner as the middle-thirds Cantor
set was shown to be uncountable. ▼

3 Lemma Cϵ does not have measure zero.

Proof Once one knows the basic properties of Lebesgue measure, it follows imme-
diately that Cϵ has, in fact, measure 1 − ϵ. However, since we have not yet defined
measure, let us prove that Cϵ does not have measure zero, using only the definition
of a set of measure zero. Let ((a j, b j)) j∈Z>0 be a countable collection of open intervals
having the property that

Cϵ ⊆

⋃
j∈Z>0

(a j, b j).

Since Cϵ is closed, it is compact by Corollary 2.5.28. Therefore, there exists a finite
collection ((a jl , b jl))l∈{1,...,m} of intervals having the property that

Cϵ ⊆

m⋃
l=1

(a jl , b jl). (2.10)

We claim that there exists k ∈ Z>0 such that

Cϵ,k ⊆

m⋃
l=1

(a jl , b jl). (2.11)

Indeed, suppose that, for each k ∈ Z>0 there exists xk ∈ Cϵ,k such that xk < ∪m
l=1(a jl , b jl).

The sequence (xk)k∈Z>0 is then a sequence in the compact set Cϵ,1, and so by the
Bolzano–Weierstrass Theorem, possesses a subsequence (xkr)r∈Z>0 converging to
x ∈ Cϵ,1. But the sequence (xkr+1)r∈Z>0 is then a convergent sequence in Cϵ,2, so
x ∈ Cϵ,2. Continuing in this way, x ∈ ∩k∈Z>0Cϵ,k. Moreover, the sequence (xk)k∈Z>0

is also a sequence in the closed set [0, 1] − ∪m
l=1(a jl , b jl), and so we conclude that

x ∈ [0, 1]−∪m
l=1(a jl , b jl). Thus we contradict the condition (2.10), and so there indeed
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must be a k ∈ Z>0 such that (2.11) holds. However, this implies that any collection
of open intervals covering Cϵ must have lengths which sum to at least 1 − ϵ. Thus
Cϵ cannot have measure zero. ▼

Cantor sets such as Cϵ are sometimes called fat Cantor sets, reflecting the fact
that they do not have measure zero. Note, however, that they are not that fat, since
they have an empty interior! •

2.5.8 Notes

Some uses of δ-fine tagged partitions in real analysis can be found in the paper
of Gordon [1998].

Exercises

2.5.1 For an arbitrary collection (Ua)a∈A of open sets and an arbitrary collection
(Cb)b∈B of closed sets, do the following:
(a) show that ∪a∈AUa is open;
(b) show that ∩b∈BCb is closed;
For open sets U1 and U2 and closed sets C1 and C2, do the following:
(c) show that U1 ∩U2 is open;
(d) show that C1 ∪ C2 is closed.

2.5.2 Show that a set A ⊆ R is closed if and only if it contains all of its limit points.
2.5.3 Let A ⊆ R. A point x ∈ A is an isolated point if there exists a neighbourhood

U of x such that A ∩U = {x}. Answer the following questions.
(a) Show that the set of isolated points of A is closed.
(b) Show that cl(A) is the disjoint union of der(A) and the set of accumulation

points.
2.5.4 Answer the following questions.

(a) Give an example of a subset A of R for which der(der(A)) = ∅ and
der(A) , ∅.

(b) Show that, if A is a nonempty subset of Rd, then der(der(A)) ⊆ der(A).
(c) Give an example of a subset A of R for which der(der(A)) = der(A).
(d) Give an example of a subset A of R for which ∅ , der(der(A)) , der(A).

2.5.5 For A ⊆ R, show that bd(A) = bd(R \ A).
2.5.6 Find counterexamples to the following statements (cf. Proposi-

tions 2.5.15, 2.5.19, and 2.5.20):
(a) int(A ∪ B) ⊆ int(A) ∪ int(B);
(b) int(∪i∈IAi) ⊆ ∪i∈I int(Ai);
(c) int(∩i∈IAi) ⊇ ∩i∈I int(Ai);
(d) cl(A ∩ B) ⊇ cl(A) ∩ cl(B);
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(e) cl(∪i∈IAi) ⊆ ∪i∈I cl(Ai);
(f) cl(∩i∈IAi) ⊇ ∩i∈I cl(Ai).
Hint: No fancy sets are required. Intervals will suffice in all cases.

2.5.7 For each of the following statements, prove the statement if it is true, and
give a counterexample if it is not:
(a) int(A1 ∪ A2) = int(A1) ∪ int(A2);
(b) int(A1 ∩ A2) = int(A1) ∩ int(A2);
(c) cl(A1 ∪ A2) = cl(A1) ∪ cl(A2);
(d) cl(A1 ∩ A2) = cl(A1) ∩ cl(A2);
(e) bd(A1 ∪ A2) = bd(A1) ∪ bd(A2);
(f) bd(A1 ∩ A2) = bd(A1) ∩ bd(A2).

2.5.8 Do the following:
(a) show that any finite subset of R is discrete;
(b) show that a discrete bounded set is finite;
(c) find a set A ⊆ R that is countable and has no accumulation points, but

that is not discrete.
2.5.9 Show that if A ⊆ R has measure zero and if B ⊆ A, then B has measure zero.
2.5.10 Show that any countable subset of R has measure zero.
2.5.11 Let (Z j) j∈Z>0 be a family of subsets of R that each have measure zero. Show

that ∪ j∈Z>0Z j also has measure zero.
2.5.12 Show that the set C constructed in Example 2.5.39 is a Cantor set.
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Chapter 3

Functions of a single real variable

In the preceding chapter we endowed the setRwith a great deal of structure. In
this chapter we employ this structure to endow functions whose domain and range
is R with some useful properties. These properties include the usual notions of
continuity and differentiability given in first-year courses on calculus. The theory
of the Riemann integral is also covered here, and it can be expected that students
will have at least a functional familiarity with this. However, students who have
had the standard engineering course (at least in North American universities)
dealing with these topics will find the treatment here a little different than what
they are used to. Moreover, there are also topics covered that are simply not part of
the standard undergraduate curriculum, but which still fit under the umbrella of
“functions of a real variable.” These include a detailed discussion of functions of
bounded variation, an introductory treatment of absolutely continuous functions,
and a generalisation of the Riemann integral called the Riemann–Stieltjes integral.

Do I need to read this chapter? For readers having had a good course in anal-
ysis, this chapter can easily be bypassed completely. It can be expected that all
other readers will have some familiarity with the material in this chapter, although
not perhaps with the level of mathematical rigour we undertake. This level of
mathematical rigour is not necessarily needed, if all one wishes to do is deal with
R-valued functions defined on R (as is done in most engineering undergraduate
programs). However, we will wish to use the ideas introduced in this chapter,
particularly those from Section 3.1, in contexts far more general than the simple
one of R-valued functions. Therefore, it will be helpful, at least, to understand the
simple material in this chapter in the rigorous manner in which it is presented.

As for the more advanced material, such as is contained in Sections 3.3 and 3.5,
it is probably best left aside on a first reading. The reader will be warned when
this material is needed in the presentation.

Some of what we cover in this chapter, particularly notions of continuity, dif-
ferentiability, and Riemann integrability, will be covered in more generality in
Chapter II-1. Aggressive readers may want to skip this material here and proceed
directly to the more general case. •
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Section 3.1

Continuous R-valued functions on R

The notion of continuity is one of the most important in all of mathematics.
Here we present this important idea in its simplest form: continuity for functions
whose domain and range are subsets of R.

Do I need to read this section? Unless you are familiar with this material, it is
probably a good idea to read this section fairly carefully. It builds on the structure
ofR built up in Chapter 2 and uses this structure in an essential way. It is essential
to understand this if one is to understand the more general ideas of continuity that
will arise in Chapter III-1. This section also provides an opportunity to improve
one’s facility with the ϵ − δ formalism. •

3.1.1 Definition and properties of continuous functions

In this section we will deal with functions defined on an interval I ⊆ R. This
interval might be open, closed, or neither, and bounded, unbounded, or neither. In
this section, we shall reserve the letter I to denote such a general interval. It will
also be convenient to say that a subset A ⊆ I is open if A = U∩ I for an open subset
U of R.1 For example, if I = [0, 1], then the subset [0, 1

2 ) is an open subset of I, but
not an open subset ofR. We will be careful to explicitly say that a subset is open in
I if this is what we mean. There is a chance for confusion here, so the reader is advised to
be alert!

Let us give the standard definition of continuity.

3.1.1 Definition (Continuous function) Let I ⊆ R be an interval. A map f : I→ R is:
(i) continuous at x0 ∈ I if, for every ϵ ∈ R>0, there exists δ ∈ R>0 such that
| f (x) − f (x0)| < ϵ whenever x ∈ I satisfies |x − x0| < δ;

(ii) continuous if it is continuous at each x0 ∈ I;
(iii) discontinuous at x0 ∈ I if it is not continuous at x0;
(iv) discontinuous if it is not continuous. •

The idea behind the definition of continuity is this: one can make the values
of a continuous function as close as desired by making the points at which the
function is evaluated sufficiently close. Readers not familiar with the definition
should be prepared to spend some time embracing it. An often encountered
oversimplification of continuity is illustrated in Figure 3.1. The idea is supposed
to be that the function whose graph is shown on the left is continuous because its

1This is entirely related to the notion of relative topology which we will discuss in Section II-1.2.8
for sets of multiple real variables and in Definition III-1.4.1 within the general context of topological
spaces.
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x

f(x)

x

f(x)

Figure 3.1 Probably not always the best way to envision conti-
nuity versus discontinuity

graph has no “gaps,” whereas the function on the right is discontinuous because
its graph does have a “gap.” As we shall see in Example 3.1.2–4 below, it is
possible for a function continuous at a point to have a graph with lots of “gaps” in
a neighbourhood of that point. Thus the “graph gap” characterisation of continuity
is a little misleading.

Let us give some examples of functions that are continuous or not. More
examples of discontinuous functions are given in Example 3.1.9 below. We suppose
the reader to be familiar with the usual collection of “standard functions,” at least
for the moment. We shall consider some such functions in detail in Section 3.8.

3.1.2 Examples (Continuous and discontinuous functions)
1. For α ∈ R, define f : R→ R by f (x) = α. Since | f (x) − f (x0)| = 0 for all x, x0 ∈ R,

it follows immediately that f is continuous.
2. Define f : R→ R by f (x) = x. For x0 ∈ R and ϵ ∈ R>0 take δ = ϵ. It then follows

that if |x − x0| < δ then | f (x) − f (x0)| < ϵ, giving continuity of f .
3. Define f : R→ R by

f (x) =

x sin 1
x , x , 0,

0, x = 0.

We claim that f is continuous. We first note that the functions f1, f2 : R → R
defined by

f1(x) = x, f2(x) = sin x

are continuous. Indeed, f1 is continuous from part 2 and in Section 3.8 we will
prove that f2 is continuous. The function f3 : R \ {0} → R defined by f3(x) = 1

x
is continuous on any interval not containing 0 by Proposition 3.1.15 below. It
then follows from Propositions 3.1.15 and 3.1.16 below that f is continuous at
x0, provided that x0 , 0. To show continuity at x = 0, let ϵ ∈ R>0 and take δ = ϵ.
Then, provided that |x| < δ,

| f (x) − f (0)| =
∣∣∣x sin 1

x

∣∣∣ ≤ |x| < ϵ,
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using the fact that image(sin) ⊆ [−1, 1]. This shows that f is continuous at 0,
and so is continuous.

4. Define f : R→ R by

f (x) =

x, x ∈ Q,
0, otherwise.

We claim that f is continuous at x0 = 0 and discontinuous everywhere else.
To see that f is continuous at x0 = 0, let ϵ ∈ R>0 and choose δ = ϵ. Then, for
|x − x0| < δ we have either f (x) = x or f (x) = 0. In either case, | f (x) − f (x0)| < ϵ,
showing that f is indeed continuous at x0 = 0. Note that this is a function whose
continuity at x0 = 0 is not subject to an interpretation like that of Figure 3.1 since
the graph of f has an uncountable number of “gaps” near 0.
Next we show that f is discontinuous at x0 for x0 , 0. We have two possibilities.

(a) x0 ∈ Q: Let ϵ < 1
2 |x0|. For any δ ∈ R>0 the set B(δ, x0) will contain points

x ∈ R for which f (x) = 0. Thus for any δ ∈ R>0 the set B(δ, x0) will contain
points x such that | f (x)− f (x0)| = |x0| > ϵ. This shows that f is discontinuous
at nonzero rational numbers.

(b) x0 ∈ R \Q: Let ϵ = 1
2 |x0|. For any δ ∈ R>0 we claim that the set B(δ, x0) will

contain points x ∈ R for which | f (x)| > ϵ (why?). It then follows that for
any δ ∈ R>0 the set B(δ, x0) will contain points x such that | f (x) − f (x0)| =
| f (x)| > ϵ, so showing that f is discontinuous at all irrational numbers.

5. Let I = (0,∞) and on I define the function f : I→ R by f (x) = 1
x . It follows from

Proposition 3.1.15 below that f is continuous on I.
6. Next take I = [0,∞) and define f : I→ R by

f (x) =

 1
x , x ∈ R>0,

0, x = 0.

In the previous example we saw that f is continuous at all points in (0,∞).
However, at x = 0 the function is discontinuous, as is easily verified. •

The following alternative characterisations of continuity are sometimes useful.
The first of these, part (ii) in the theorem, will also be helpful in motivating the
general definition of continuity given for topological spaces in Section III-1.3. The
reader will wish to recall from Notation 2.3.28 the notation limx→Ix0 f (x) for taking
limits in intervals.

3.1.3 Theorem (Alternative characterisations of continuity) For a function f : I → R
defined on an interval I and for x0 ∈ I, the following statements are equivalent:

(i) f is continuous at x0;
(ii) for every neighbourhood V of f(x0) there exists a neighbourhood U of x0 in I such

that f(U) ⊆ V;
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(iii) limx→Ix0 f(x) = f(x0).
Proof (i) =⇒ (ii) Let V ⊆ R be a neighbourhood of f (x0). Let ϵ ∈ R>0 be defined such
that B(ϵ, f (x0)) ⊆ V, this being possible since V is open. Since f is continuous at x0,
there exists δ ∈ R>0 such that, if x ∈ B(δ, x0) ∩ I, then we have f (x) ∈ B(ϵ, f (x0)). This
shows that, around the point x0, we can find an open set in I whose image lies in V.

(ii) =⇒ (iii) Let (x j) j∈Z>0 be a sequence in I converging to x0 and let ϵ ∈ R>0. By
hypothesis there exists a neighbourhood U of x0 in I such that f (U) ⊆ B(ϵ, f (x0)). Thus
there exists δ ∈ R>0 such that f (B(δ, x0) ∩ I) ⊆ B(ϵ, f (x0)) since U is open in I. Now
choose N ∈ Z>0 sufficiently large that |x j − x0| < δ for j ≥ N. It then follows that
| f (x j) − f (x0)| < ϵ for j ≥ N, so giving convergence of ( f (x j)) j∈Z>0 to f (x0), as desired,
after an application of Proposition 2.3.29.

(iii) =⇒ (i) Let ϵ ∈ R>0. Then, by definition of limx→Ix0 f (x) = f (x0), there exists
δ ∈ R>0 such that, for x ∈ B(δ, x0) ∩ I, | f (x) − f (x0)| < ϵ, which is exactly the definition
of continuity of f at x0. ■

3.1.4 Corollary For an interval I ⊆ R, a function f : I→ R is continuous if and only if f−1(V)
is open in I for every open subset V of R.

Proof Suppose that f is continuous. If V∩image( f ) = ∅ then clearly f−1(V) = ∅which
is open. So assume that V ∩ image( f ) , ∅ and let x ∈ f−1(V). Since f is continuous
at x and since V is a neighbourhood of f (x), there exists a neighbourhood U of x such
that f (U) ⊆ V. Thus U ⊆ f−1(V), showing that f−1(V) is open.

Now suppose that f−1(V) is open for each open set V and let x ∈ R. If V is a
neighbourhood of f (x) then f−1(V) is open. Then there exists a neighbourhood U of
x such that U ⊆ f−1(V). By Proposition 1.3.5 we have f (U) ⊆ f ( f−1(V)) ⊆ V, thus
showing that f is continuous. ■

The reader can explore these alternative representations of continuity in Exer-
cise 3.1.9.

A stronger notion of continuity is sometimes useful. As well, the following
definition introduces for the first time the important notion of “uniform.”

3.1.5 Definition (Uniform continuity) Let I ⊆ R be an interval. A map f : I → R is
uniformly continuous if, for every ϵ ∈ R>0, there exists δ ∈ R>0 such that | f (x1) −
f (x2)| < ϵ whenever x1, x2 ∈ I satisfy |x1 − x2| < δ. •

3.1.6 Remark (On the idea of “uniformly”) In the preceding definition we have en-
countered for the first time the idea of a property holding “uniformly.” This is
an important idea that comes up often in mathematics. Moreover, it is an idea
that is often useful in applications of mathematics, since the absence of a property
holding “uniformly” can have undesirable consequences. Therefore, we shall say
some things about this here.

In fact, the comparison of continuity versus uniform continuity is a good one
for making clear the character of something holding “uniformly.” Let us compare
the definitions.
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1. One defines continuity of a function at a point x0 by asking that, for each ϵ ∈ R>0,
one can find δ ∈ R>0 such that if x is within δ of x0, then f (x) is within ϵ of f (x0).
Note that δwill generally depend on ϵ, and most importantly for our discussion
here, on x0. Often authors explicitly write δ(ϵ, x0) to denote this dependence of
δ on both ϵ and x0.

2. One defines uniform continuity of a function on the interval I by asking that,
for each ϵ ∈ R>0, one can find δ ∈ R>0 such that if x1 and x2 are within δ of one
another, then f (x1) and f (x2) are within ϵ of one another. Here, the number δ
depends only on ϵ. Again, to reflect this, some authors explicitly write δ(ϵ), or
state explicitly that δ is independent of x.

The idea of “uniform” then is that a property, in this case the existence of δ ∈ R>0

with a certain property, holds for the entire set I, and not just for a single point. •

Let us give an example to show that uniformly continuous is not the same as
continuous.

3.1.7 Example (Uniform continuity versus continuity) Let us give an example of a
function that is continuous, but not uniformly continuous. Define f : R → R by
f (x) = x2. We first show that f is continuous at each point x0 ∈ R. Let ϵ ∈ R>0

and choose δ such that 2|x0|δ + δ2 < ϵ (why is this possible?). Then, provided that
|x − x0| < δ, we have

| f (x) − f (x0)| = |x2
− x2

0| = |x − x0||x + x0|

≤ |x − x0|(|x| + |x0|) ≤ |x − x0|(2|x0| + |x − x0|)
≤ δ(2|x0| + δ) < ϵ.

Thus f is continuous.
Now let us show that f is not uniformly continuous. We will show that there

exists ϵ ∈ R>0 such that there is no δ ∈ R>0 for which |x − x0| < δ ensures that
| f (x)− f (x0)| < ϵ for all x0. Let us take ϵ = 1 and let δ ∈ R>0. Then define x0 ∈ R such
that δ

2

∣∣∣2x0 +
δ
2

∣∣∣ > 1 (why is this possible?). We then note that x = x0 +
δ
2 satisfies

|x − x0| < δ, but that

| f (x) − f (x0)| = |x2
− x2

0| = |x − x0||x + x0| =
δ
2

∣∣∣2x0 +
δ
2

∣∣∣ > 1 = ϵ.

This shows that f is not uniformly continuous. •

3.1.2 Discontinuous functions2

It is often useful to be specific about the nature of a discontinuity of a function
that is not continuous. The following definition gives names to all possibilities.
The reader may wish to recall from Section 2.3.7 the discussion concerning taking
limits using an index set that is a subset of R.

2This section is rather specialised and technical and so can be omitted until needed. However,
the material is needed at certain points in the text.
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3.1.8 Definition (Types of discontinuity) Let I ⊆ R be an interval and suppose that
f : I→ R is discontinuous at x0 ∈ I. The point x0 is:

(i) a removable discontinuity if limx→Ix0 f (x) exists;
(ii) a discontinuity of the first kind, or a jump discontinuity, if the limits

limx↓x0 f (x) and limx↑x0 f (x) exist;
(iii) a discontinuity of the second kind, or an essential discontinuity, if at least

one of the limits limx↓x0 f (x) and limx↑x0 f (x) does not exist.
The set of all discontinuities of f is denoted by D f . •

In Figure 3.2 we depict the various sorts of discontinuity. We can also illustrate

x

f(x)

x

f(x)

x

f(x)

x

f(x)

Figure 3.2 A removable discontinuity (top left), a jump disconti-
nuity (top right), and two essential discontinuities (bottom)

these with explicit examples.

3.1.9 Examples (Types of discontinuities)
1. Let I = [0, 1] and let f : I→ R be defined by

f (x) =

x, x ∈ (0, 1],
1, x = 0.
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It is clear that f is continuous for all x ∈ (0, 1], and is discontinuous at x = 0.
However, since we have limx→I0 f (x) = 0 (note that the requirement that this
limit be taken in I amounts to the fact that the limit is given by limx↓0 f (x) = 0),
it follows that the discontinuity is removable.
Note that one might be tempted to also say that the discontinuity is a jump
discontinuity since the limit limx↓0 f (x) exists and since the limit limx↑0 f (x)
cannot be defined here since 0 is a left endpoint for I. However, we do require
that both limits exist at a jump discontinuity, which has as a consequence the
fact that jump discontinuities can only occur at interior points of an interval.

2. Let I = [−1, 1] and define f : I → R by f (x) = sign(x). We may easily see that f
is continuous at x ∈ [−1, 1] \ {0}, and is discontinuous at x = 0. Then, since we
have limx↓0 f (x) = 1 and limx↑0 f (x) = −1, it follows that the discontinuity at 0 is
a jump discontinuity.

3. Let I = [−1, 1] and define f : I→ R by

f (x) =

sin 1
x , x , 0,

0, x = 0.

Then, by Proposition 3.1.15 (and accepting continuity of sin), f is continuous
at x ∈ [−1, 1] \ {0}. At x = 0 we claim that we have an essential discontinuity.
To see this we note that, for any ϵ ∈ R>0, the function f restricted to [0, ϵ) and
(−ϵ, 0] takes all possible values in set [−1, 1]. This is easily seen to preclude
existence of the limits limx↓0 f (x) and limx↑0 f (x).

4. Let I = [−1, 1] and define f : I→ R by

f (x) =

1
x , x ∈ (0, 1],
0, x ∈ [−1, 0].

Then f is continuous at x ∈ [−1, 1] \ {0} by Proposition 3.1.15. At x = 0 we claim
that f has an essential discontinuity. Indeed, we have limx↓ f (x) = ∞, which
precludes f having a removable or jump discontinuity at x = 0. •

The following definition gives a useful quantitative means of measuring the
discontinuity of a function.

3.1.10 Definition (Oscillation) Let I ⊆ R be an interval and let f : I → R be a function.
The oscillation of f is the function ω f : I→ R defined by

ω f (x) = inf{sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I} | δ ∈ R>0}. •

Note that the definition makes sense since the function

δ 7→ sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I}

is monotonically increasing (see Definition 3.1.27 for a definition of monotonically
increasing in this context). In particular, if f is bounded (see Definition 3.1.20
below) then ω f is also bounded. The following result indicates in what way ω f

measures the continuity of f .
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3.1.11 Proposition (Oscillation measures discontinuity) For an interval I ⊆ R and a
function f : I→ R, f is continuous at x ∈ I if and only if ωf(x) = 0.

Proof Suppose that f is continuous at x and let ϵ ∈ R>0. Choose δ ∈ R>0 such that if
y ∈ B(δ, x) ∩ I then | f (y) − f (x)| < ϵ

2 . Then, for x1, x2 ∈ B(δ, x) we have

| f (x1) − f (x2)| ≤ | f (x1) − f (x)| + | f (x) − f (x2)| < ϵ.

Therefore,
sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I} < ϵ.

Since ϵ is arbitrary this gives

inf{sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I} | δ ∈ R>0} = 0,

meaning that ω f (x) = 0.
Now suppose that ω f (x) = 0. For ϵ ∈ R>0 let δ ∈ R>0 be chosen such that

sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I} < ϵ.

In particular, | f (y) − f (x)| < ϵ for all y ∈ B(δ, x) ∩ I, giving continuity of f at x. ■

Let us consider a simple example.

3.1.12 Example (Oscillation for a discontinuous function) We let I = [−1, 1] and define
f : I→ R by f (x) = sign(x). It is then easy to see that

ω f (x) =

0, x , 0,
2, x = 0. •

We close this section with a technical property of the oscillation of a function.
This property will be useful during the course of some proofs in the text.

3.1.13 Proposition (Closed preimages of the oscillation of a function) Let I ⊆ R be an
interval and let f : I→ R be a function. Then, for every α ∈ R≥0, the set

Aα = {x ∈ I | ωf(x) ≥ α}

is closed in I.
Proof The result where α = 0 is clear, so we assume that α ∈ R>0. For δ ∈ R>0 define

ω f (x, δ) = sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I}

so that ω f (x) = limδ→0ω f (x, δ). Let (x j) j∈Z>0 be a sequence in Aα converging to x ∈ R
and let (ϵ j) j∈Z>0 be a sequence in (0, α) converging to zero. Let j ∈ Z>0. We claim
that there exists points y j, z j ∈ B(ϵ j, x j) ∩ I such that | f (y j) − f (z j)| ≥ α − ϵ j. Suppose
otherwise so that for every y, z ∈ B(ϵ j, x j) ∩ I we have | f (y) − f (z)| < α − ϵ j. It then
follows that limδ→0ω f (x j, δ) ≤ α − ϵ j < α, contradicting the fact that x j ∈ Aα. We claim
that (y j) j∈Z>0 and (z j) j∈Z>0 converge to x. Indeed, let ϵ ∈ R>0 and choose N1 ∈ Z>0
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sufficiently large that ϵ j <
ϵ
2 for j ≥ N1 and choose N2 ∈ Z>0 such that |x j − x| < ϵ

2 for
j ≥ N2. Then, for j ≥ max{N1,N2}we have

|y j − x| ≤ |y j − x j| + |x j − x| < ϵ.

Thus (y j) j∈Z>0 converges to x, and the same argument, and therefore the same conclu-
sion, also applies to (z j) j∈Z>0 .

Thus we have sequences of points (y j) j∈Z>0 and (z j) j∈Z>0 in I converging to x and
a sequence (ϵ j) j∈Z>0 in (0, α) converging to zero for which | f (y j) − f (z j)| ≥ α − ϵ j. We
claim that this implies that ω f (x) ≥ α. Indeed, suppose that ω f (x) < α. There exists
N ∈ Z>0 such that α − ϵ j > α − ω f (x) for every j ≥ N. Therefore,

| f (y j) − f (z j)| ≥ α − ϵ j > α − ω f (x)

for every j ≥ N. This contradicts the definition of ω f (x) since the sequences (y j) j∈Z>0

and (z j) j∈Z>0 converge to x.
Now we claim that the sequence (x j) j∈Z>0 converges to x. Let ϵ ∈ R>0 and let

N1 ∈ Z>0 be large enough that |x − y j| <
ϵ
2 for j ≥ N1 and let N2 ∈ Z>0 be large enough

that ϵ j <
ϵ
2 for j ≥ N2. Then, for j ≥ max{N1,N2}we have

|x − x j| ≤ |x − y j| + |y j − x j| < ϵ,

as desired.
This shows that every sequence in Aα converges to a point in Aα. It follows from

Exercise 2.5.2 that Aα is closed. ■

The following corollary is somewhat remarkable, in that it shows that the set of
discontinuities of a function cannot be arbitrary.

3.1.14 Corollary (Discontinuities are the countable union of closed sets) Let I ⊆ R be
an interval and let f : I→ R be a function. Then the set

Df = {x ∈ I | f is not continuous at x}

is the countable union of closed sets.
Proof This follows immediately from Proposition 3.1.13 after we note that

D f = ∪k∈Z>0{x ∈ I | ω f (x) ≥ 1
k }. ■

3.1.3 Continuity and operations on functions

Let us consider how continuity behaves relative to simple operations on func-
tions. To do so, we first note that, given an interval I and two functions f , g : I→ R,
one can define two functions f + g, f g : I→ R by

( f + g)(x) = f (x) + g(x), ( f g)(x) = f (x)g(x),

respectively. Moreover, if g(x) , 0 for all x ∈ I, then we define(
f
g

)
(x) =

f (x)
g(x)

.

Thus one can add and multiplyR-valued functions using the operations of addition
and multiplication in R.
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3.1.15 Proposition (Continuity, and addition and multiplication) For an interval I ⊆ R,
if f,g: I → R are continuous at x0 ∈ I, then both f + g and fg are continuous at x0. If
additionally g(x) , 0 for all x ∈ I, then f

g is continuous at x0.
Proof To show that f + g and f g are continuous at x0 if f and g are continuous at
x0, let (x j) j∈Z>0 be a sequence in I converging to x0. Then, by Theorem 3.1.3 the se-
quences ( f (x j)) j∈Z>0 and (g(x j)) j∈Z>0 converge to f (x0) and g(x0), respectively. Then,
by Proposition 2.3.23, the sequences ( f (x j) + g(x j)) j∈Z>0 and ( f (x j)g(x j)) j∈Z>0 converge
to f (x0) + g(x0) and f (x0)g(x0), respectively. Then lim j→∞( f + g)(x j) = ( f + g)(x0) and
lim j→∞( f g)(x j) = ( f g)(x0), and the result follows by Proposition 2.3.29 and Theo-
rem 3.1.3.

Now suppose that g(x) , 0 for every x ∈ I. Then there exists ϵ ∈ R>0 such that
|g(x0)| > 2ϵ. By Theorem 3.1.3 take δ ∈ R>0 such that g(B(δ, x0)) ⊆ B(ϵ, g(x0)). Thus g is
nonzero on the ball B(δ, x0). Now let (x j) j∈Z>0 be a sequence in B(δ, x0) converging to x0.
Then, as above, the sequences ( f (x j)) j∈Z>0 and (g(x j)) j∈Z>0 converge to f (x0) and g(x0),
respectively. We can now employ Proposition 2.3.23 to conclude that the sequence(

f (x j)
g(x j)

)
j∈Z>0

converges to f (x0)
g(x0) , and the last part of the result follows by Proposition 2.3.29

and Theorem 3.1.3. ■

3.1.16 Proposition (Continuity and composition) Let I, J ⊆ R be intervals and let f : I→ J
and f : J → R be continuous at x0 ∈ I and f(x0) ∈ J, respectively. Then g ◦ f : I → R is
continuous at x0.

Proof Let W be a neighbourhood of g ◦ f (x0). Since g is continuous at f (x0) there exists
a neighbourhood V of f (x0) such that g(V) ⊆W. Since f is continuous at x0 there exists
a neighbourhood U of x0 such that f (U) ⊆ V. Clearly g ◦ f (U) ⊆ W, and the result
follows from Theorem 3.1.3. ■

3.1.17 Proposition (Continuity and restriction) If I, J ⊆ R are intervals for which J ⊆ I,
and if f : I→ R is continuous at x0 ∈ J ⊆ I, then f|J is continuous at x0.

Proof This follows immediately from Theorem 3.1.3, also using Proposition 1.3.5,
after one notes that open subsets of J are of the form U ∩ I where U is an open subset
of I. ■

Note that none of the proofs of the preceding results use the definition of
continuity, but actually use the alternative characterisations of Theorem 3.1.3.
Thus these alternative characterisations, while less intuitive initially (particularly
the one involving open sets), they are in fact quite useful.

Let us finally consider the behaviour of continuity with respect to the operations
of selection of maximums and minimums.

3.1.18 Proposition (Continuity and min and max) If I ⊆ R is an interval and if f,g: I→ R
are continuous functions, then the functions

I ∋ x 7→ min{f(x),g(x)} ∈ R, I ∋ x 7→ max{f(x),g(x)} ∈ R

are continuous.
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Proof Let x0 ∈ I and let ϵ ∈ R>0. Let us first assume that f (x0) > g(x0). That is to say,
assume that ( f − g)(x0) ∈ R>0. Continuity of f and g ensures that there exists δ1 ∈ R>0
such that if x ∈ B(δ1, x0) ∩ I then ( f − g)(x) ∈ R>0. That is, if x ∈ B(δ1, x0) ∩ I then

min{ f (x), g(x)} = g(x), max{ f (x), g(x)} = f (x).

Continuity of f ensures that there exists δ2 ∈ R>0 such that if x ∈ B(δ2, x0) ∩ I then
| f (x) − f (x0)| < ϵ. Similarly, continuity of f ensures that there exists δ3 ∈ R>0 such that
if x ∈ B(δ3, x0) ∩ I then |g(x) − g(x0)| < ϵ. Let δ4 = min{δ1, δ2}. If x ∈ B(δ4, x0) ∩ I then

|min{ f (x), g(x)} −min{ f (x0), g(x0)}| = |g(x) − g(x0)| < ϵ

and
|max{ f (x), g(x)} −max{ f (x0), g(x0)}| = | f (x) − f (x0)| < ϵ.

This gives continuity of the two functions in this case. Similarly, swapping the rôle
of f and g, if f (x0) < g(x0) one can arrive at the same conclusion. Thus we need only
consider the case when f (x0) = g(x0). In this case, by continuity of f and g, choose
δ ∈ R>0 such that | f (x) − f (x0)| < ϵ and |g(x) − g(x0)| < ϵ for x ∈ B(δ, x0) ∩ I. Then let
x ∈ B(δ, x0) ∩ I. If f (x) ≥ g(x) then we have

|min{ f (x), g(x)} −min{ f (x0), g(x0)}| = |g(x) − g(x0)| < ϵ

and
|max{ f (x), g(x)} −max{ f (x0), g(x0)}| = | f (x) − f (x0)| < ϵ.

This gives the result in this case, and one similarly gets the result when f (x) < g(x). ■

3.1.4 Continuity, and compactness and connectedness

In this section we will consider some of the relationships that exist between
continuity, and compactness and connectedness. We see here for the first time
some of the benefits that can be drawn from the notion of continuity. Moreover, if
one studies the proofs of the results in this section, one can see that we use the actual
definition of compactness (rather than the simpler alternative characterisation of
compact sets as being closed and bounded) to great advantage.

The first result is a simple and occasionally useful one.

3.1.19 Proposition (The continuous image of a compact set is compact) If I ⊆ R is a
compact interval and if f : I→ R is continuous, then image(f) is compact.

Proof Let (Ua)a∈A be an open cover of image( f ). Then ( f−1(Ua))a∈A is an open cover
of I, and so there exists a finite subset (a1, . . . , ak) ⊆ A such that ∪k

j=1 f−1(Uak) = I. It

is then clear that ( f ( f−1(Ua1)), . . . , f ( f−1(Uak))) covers image( f ). Moreover, by Propo-
sition 1.3.5, f ( f−1(Ua j)) ⊆ Ua j , j ∈ {1, . . . , k}. Thus (Ua1 , . . . ,Uak) is a finite subcover of
(Ua)a∈A. ■

A useful feature that a function might possess is that of having bounded values.
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3.1.20 Definition (Bounded function) For an interval I, a function f : I→ R is:

(i) bounded if there exists M ∈ R>0 such that image( f ) ⊆ B(M, 0);
(ii) locally bounded if f |J is bounded for every compact interval J ⊆ I;
(iii) unbounded if it is not bounded. •

3.1.21 Remark (On “locally”) This is our first encounter with the qualifier “locally” as-
signed to a property, in this case, of a function. This concept will appear frequently,
as for example in this chapter with the notion of “locally bounded variation” (Def-
inition 3.3.6) and “locally absolutely continuous” (Definition III-2.9.23). The idea
in all cases is the same; that a property holds “locally” if it holds on every compact
subset. •

For continuous functions it is sometimes possible to immediately assert bound-
edness simply from the property of the domain.

3.1.22 Theorem (Continuous functions on compact intervals are bounded) If I =
[a, b] is a compact interval, then a continuous function f : I→ R is bounded.

Proof Let x ∈ I. As f is continuous, there exists δ ∈ R>0 so that | f (y) − f (x)| < 1
provided that |y − x| < δ. In particular, if x ∈ I, there is an open interval Ix in I with
x ∈ Ix such that | f (y)| ≤ | f (x)| + 1 for all x ∈ Ix. Thus f is bounded on Ix. This can be
done for each x ∈ I, so defining a family of open sets (Ix)x∈I. Clearly I ⊆ ∪x∈IIx, and
so, by Theorem 2.5.27, there exists a finite collection of points x1, . . . , xk ∈ I such that
I ⊆ ∪k

j=1Ix j . Obviously for any x ∈ I,

| f (x)| ≤ 1 +max{ f (x1), . . . , f (xk)},

thus showing that f is bounded. ■

In Exercise 3.1.7 the reader can explore cases where the theorem does not hold.
Related to the preceding result is the following.

3.1.23 Theorem (Continuous functions on compact intervals achieve their extreme
values) If I = [a, b] is a compact interval and if f : [a, b]→ R is continuous, then there
exist points xmin, xmax ∈ [a, b] such that

f(xmin) = inf{f(x) | x ∈ [a, b]}, f(xmax) = sup{f(x) | x ∈ [a, b]}.

Proof It suffices to show that f achieves its maximum on I since if f achieves its
maximum, then − f will achieve its minimum. So let M = sup{ f (x) | x ∈ I}, and
suppose that there is no point xmax ∈ I for which f (xmax) =M. Then f (x) < M for each
x ∈ I. For a given x ∈ I we have

f (x) = 1
2 ( f (x) + f (x)) < 1

2 ( f (x) +M).

Continuity of f ensures that there is an open interval Ix containing x such that, for each
y ∈ Ix ∩ I, f (y) < 1

2 ( f (x)+M). Since I ⊆ ∪x∈IIx, by the Heine–Borel theorem, there exists
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a finite number of points x1, . . . , xk such that I ⊆ ∪k
j=1Ix j . Let m = max{ f (x1), . . . , f (xk)}

so that, for each y ∈ Ix j , and for each j ∈ {1, . . . , k}, we have

f (y) < 1
2 ( f (x j) +M) < 1

2 (m +M),

which shows that 1
2 (m+M) is an upper bound for f . However, since f attains the value

m on I, we have m < M and so 1
2 (m +M) < M, contradicting the fact that M is the least

upper bound. Thus our assumption that f cannot attain the value M on I is false. ■

The theorem tells us that a continuous function on a bounded interval actually
attains its maximum and minimum value on the interval. You should understand
that this is not the case if I is neither closed nor bounded (see Exercise 3.1.8).

Our next result gives our first connection between the concepts of uniformity
and compactness. This is something of a theme in analysis where continuity is
involved. A good place to begin to understand the relationship between compact-
ness and uniformity is the proof of the following theorem, since it is one of the
simplest instances of the phenomenon.

3.1.24 Theorem (Heine–Cantor Theorem) Let I = [a, b] be a compact interval. If f : I→ R
is continuous, then it is uniformly continuous.

Proof Let x ∈ [a, b] and let ϵ ∈ R>0. Since f is continuous, then there exists δx ∈

R>0 such that, if |y − x| < δx, then | f (y) − f (x)| < ϵ
2 . Now define an open interval

Ix = (x − 1
2δx, x + 1

2δx). Note that [a, b] ⊆ ∪x∈[a,b]Ix, so that the open sets (Ix)x∈[a,b]
cover [a, b]. By definition of compactness, there then exists a finite number of open
sets from (Ix)x∈[a,b] that cover [a, b]. Denote this finite family by (Ix1 , . . . , Ixk) for some
x1, . . . , xk ∈ [a, b]. Take δ = 1

2 min{δx1 , . . . , δxk}. Now let x, y ∈ [a, b] satisfy |x − y| < δ.
Then there exists j ∈ {1, . . . , k} such that x ∈ Ix j since the sets Ix1 , . . . , Ixk cover [a, b]. We
also have

|y − x j| = |y − x + x − x j| ≤ |y − x| + |x − x j| <
1
2δx j +

1
2δx j = δx j ,

using the triangle inequality. Therefore,

| f (y) − f (x)| = | f (y) − f (x j) + f (x j) − f (x)|
≤ | f (y) − f (x j)| + | f (x j) − f (x)| < ϵ

2 +
ϵ
2 = ϵ,

again using the triangle inequality. Since this holds for any x ∈ [a, b], it follows that f
is uniformly continuous. ■

Next we give a standard result from calculus that is frequently useful.

3.1.25 Theorem (Intermediate Value Theorem) Let I be an interval and let f : I → R be
continuous. If x1, x2 ∈ I then, for any y ∈ [f(x1), f(x2)], there exists x ∈ I such that
f(x) = y.

Proof Since otherwise the result is obviously true, we may suppose that y ∈
( f (x1), f (x2)). Also, since we may otherwise replace f with − f , we may without loss
of generality suppose that x1 < x2. Now define S = {x ∈ [x1, x2] | f (x) ≤ y} and let
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x0 = sup S. We claim that f (x0) = y. Suppose not. Then first consider the case where
f (x0) > y, and define ϵ = f (x0)− y. Then there exists δ ∈ R>0 such that | f (x)− f (x0)| < ϵ
for |x − x0| < δ. In particular, f (x0 − δ) > y, contradicting the fact that x0 = sup S.
Next suppose that f (x0) < y. Let ϵ = y − f (x0) so that there exists δ ∈ R>0 such that
| f (x)− f (x0)| < ϵ for |x− x0| < δ. In particular, f (x0 + δ) < y, contradicting again the fact
that x0 = sup S. ■

In Figure 3.3 we give the idea of the proof of the Intermediate Value Theorem.

x

f(x)

x1

f(x1)

x2

f(x2)

y

x0

Figure 3.3 Illustration of the Intermediate Value Theorem

There is also a useful relationship between continuity and connected sets.

3.1.26 Proposition (The continuous image of a connected set is connected) If I ⊆ R
is an interval, if S ⊆ I is connected, and if f : I→ R is continuous, then f(S) is connected.

Proof Suppose that f (S) is not connected. Then there exist nonempty separated
sets A and B such that f (S) = A ∪ B. Let C = S ∩ f−1(A) and D = S ∩ f−1(B). By
Propositions 1.1.4 and 1.3.5 we have

C ∪D = (S ∩ f−1(A)) ∪ (S ∩ f−1(B))

= S ∩ ( f−1(A) ∪ f−1(B)) = S ∩ f−1(A ∪ B) = S.

By Propositions 2.5.20 and 1.3.5, and since f−1(cl(A)) is closed, we have

cl(C) = cl( f−1(A)) ⊆ cl( f−1(cl(A)) = f−1(cl(A)).

We also clearly have D ⊆ f−1(B). Therefore, by Proposition 1.3.5,

cl(C) ∩D ⊆ f−1(cl(A)) ∩ f−1(B) = f−1(cl(A) ∩ B) = ∅.

We also similarly have C∩cl(D) = ∅. Thus S is not connected, which gives the result.■

3.1.5 Monotonic functions and continuity

In this section we consider a special class of functions, namely those that are
“increasing” or “decreasing.”
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3.1.27 Definition (Monotonic function) For I ⊆ R an interval, a function f : I→ R is:
(i) monotonically increasing if, for every x1, x2 ∈ I with x1 < x2, f (x1) ≤ f (x2);
(ii) strictly monotonically increasing if, for every x1, x2 ∈ I with x1 < x2, f (x1) <

f (x2);
(iii) monotonically decreasing if, for every x1, x2 ∈ I with x1 < x2, f (x1) ≥ f (x2);
(iv) strictly monotonically decreasing if, for every x1, x2 ∈ I with x1 < x2, f (x1) >

f (x2);
(v) constant if there exists α ∈ R such that f (x) = α for every x ∈ I. •

Let us see how monotonicity can be used to make some implications about the
continuity of a function. In Theorem 3.2.26 below we will explore some further
properties of monotonic functions.

3.1.28 Theorem (Characterisation of monotonic functions I) If I ⊆ R is an interval
and if f : I → R is either monotonically increasing or monotonically decreasing, then the
following statements hold:

(i) the limits limx↓x0 f(x) and limx↑x0 f(x) exist whenever they make sense as limits in I;
(ii) the set on which f is discontinuous is countable.

Proof We can assume without loss of generality (why?), we assume that I = [a, b] and
that f is monotonically increasing.

(i) First let us consider limits from the left. Thus let x0 > a and consider limx↑x0 f (x).
For any increasing sequence (x j) j∈Z>0 ⊆ [a, x0) converging to x0 the sequence ( f (x j)) j∈Z>0

is bounded and increasing. Therefore it has a limit by Theorem 2.3.8. In a like manner,
one shows that right limits also exist.

(ii) Define
j(x0) = lim

x↓x0
f (x) − lim

x↑x0
f (x)

as the jump at x0. This is nonzero if and only if x0 is a point of discontinuity of f . Let
A f be the set of points of discontinuity of f . Since f is monotonically increasing and
defined on a compact interval, it is bounded and we have∑

x∈A f

j(x) ≤ f (b) − f (a). (3.1)

Now let n ∈ Z>0 and denote

An =
{
x ∈ [a, b]

∣∣∣ j(x) > 1
n

}
.

The set An must be finite by (3.1). We also have

A f =
⋃

n∈Z>0

An,

meaning that A f is a countable union of finite sets. Thus A f is itself countable. ■

Sometimes the following “local” characterisation of monotonicity is useful.
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3.1.29 Proposition (Monotonicity is “local”) A function f : I→ R defined on an interval I
is

(i) monotonically increasing if and only if, for every x ∈ I, there exists a neighbourhood
U of x such that f|U ∩ I is monotonically increasing;

(ii) strictly monotonically increasing if and only if, for every x ∈ I, there exists a
neighbourhood U of x such that f|U ∩ I is strictly monotonically increasing;

(iii) monotonically decreasing if and only if, for every x ∈ I, there exists a neighbourhood
U of x such that f|U ∩ I is monotonically decreasing;

(iv) strictly monotonically decreasing if and only if, for every x ∈ I, there exists a
neighbourhood U of x such that f|U ∩ I is strictly monotonically decreasing.

Proof We shall only prove the first assertion as the other follow from an identical sort
of argument. Also, the “only if” assertion is clear, so we need only prove the “if”
assertion.

Let x1, x2 ∈ I with x1 < x2. By hypothesis, for x ∈ [x1, x2], there exists ϵx ∈ R>0
such that, if we define Ux = (x − ϵ, x + ϵ), then f |Ux ∩ I is monotonically increasing.
Note that (Ux)x∈[x1,x2] covers [x1, x2] and so, by the Heine–Borel Theorem, there exists
ξ1, . . . , ξk ∈ [x1, x2] such that [x1, x2] ⊆ ∪k

j=1Uξ j . We can assume that ξ1, . . . , ξk are
ordered so that x1 ∈ Uξ1 , that Uξ j+1 ∩ Uξ j , ∅, and such that x2 ∈ Uξk . We have that
f |Uξ1 ∩ I is monotonically increasing. Since f |Uξ2 ∩ I is monotonically increasing and
since Uξ1 ∩Uξ2 , ∅, we deduce that f |(Uξ1 ∪Uξ2) ∩ I is monotonically increasing. We
can continue this process to show that

f |(Uξ1 ∪ · · · ∪Uξk) ∩ I

is monotonically increasing, which is the result. ■

In thinking about the graph of a continuous monotonically increasing function,
it will not be surprising that there might be a relationship between monotonicity
and invertibility. In the next result we explore the precise nature of this relation-
ship.

3.1.30 Theorem (Strict monotonicity and continuity implies invertibility) Let I ⊆ R be
an interval, let f : I→ R be continuous and strictly monotonically increasing (resp. strictly
monotonically decreasing). If J = image(f) then the following statements hold:

(i) J is an interval;
(ii) there exists a continuous, strictly monotonically increasing (resp. strictly monoton-

ically decreasing) inverse g: J→ I for f.
Proof We suppose f to be strictly monotonically increasing; the case where it is strictly
monotonically decreasing is handled similarly (or follows by considering − f , which is
strictly monotonically increasing if f is strictly monotonically decreasing).

(i) This follows from Theorem 2.5.34 and Proposition 3.1.26, where it is shown
that intervals are the only connected sets, and that continuous images of connected
sets are connected.
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(ii) Since f is strictly monotonically increasing, if f (x1) = f (x2), then x1 = x2. Thus f
is injective as a map from I to J. Clearly f : I→ J is also surjective, and so is invertible.
Let y1, y2 ∈ J and suppose that y1 < y2. Then f (g(y1)) < f (g(y2)), implying that
g(y1) < g(y2). Thus g is strictly monotonically increasing. It remains to show that the
inverse g is continuous. Let y0 ∈ J and let ϵ ∈ R>0. First suppose that y0 ∈ int(J). Let
x0 = g(y0) and, supposing ϵ sufficiently small, define y1 = f (x0 − ϵ) and y2 = f (x0 + ϵ).
Then let δ = min{y0 − y1, y2 − y0}. If y ∈ B(δ, y0) then y ∈ (y1, y2), and since g is strictly
monotonically increasing

x0 − ϵ = g(y1) < g(y) < g(y2) = x0 + ϵ.

Thus g(y) ∈ B(ϵ, y0), giving continuity of g at x0. An entirely similar argument can be
given if y0 is an endpoint of J. ■

3.1.6 Convex functions and continuity

In this section we see for the first time the important notion of convexity, here
in a fairly simple setting.

Let us first define what we mean by a convex function.

3.1.31 Definition (Convex function) For an interval I ⊆ R, a function f : I→ R is:
(i) convex if

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2)

for every x1, x2 ∈ I and s ∈ [0, 1];
(ii) strictly convex if

f ((1 − s)x1 + sx2) < (1 − s) f (x1) + s f (x2)

for every distinct x1, x2 ∈ I and for every s ∈ (0, 1);
(iii) concave if − f is convex;
(iv) strictly concave if − f is strictly convex. •

Let us give some examples of convex functions.

3.1.32 Examples (Convex functions)
1. A constant function x 7→ c, defined on any interval, is both convex and concave

in a trivial way. It is neither strictly convex nor strictly concave.
2. A linear function x 7→ ax + b, defined on any interval, is both convex and

concave. It is neither strictly convex nor strictly concave.
3. The function x 7→ x2, defined on any interval, is strictly convex. Let us verify

this. For s ∈ (0, 1) and for x, y ∈ R we have, using the triangle inequality,

((1 − s)x + sy)2
≤ |(1 − s)x + sy|2 < (1 − s)2x2 + s2y2

≤ (1 − s)x2 + sy2.
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4. We refer to Section 3.8.1 for the definition of exponential function exp: R→ R.
We claim that exp is strictly convex. This can be verified explicitly with some
effort. However, it follows easily from the fact, proved as Proposition 3.2.30
below, that a function like exp that is twice continuously differentiable with a
positive second-derivative is strictly convex. (Note that exp′′ = exp.)

5. We claim that the function log defined in Section 3.8.2 is strictly concave as a
function on R>0. Here we compute log′′(x) = − 1

x2 , which gives strict convexity
of − log (and hence strict concavity of log) by Proposition 3.2.30 below.

6. For x0 ∈ R, the function nx0 : R→ R defined by nx0 = |x − x0| is convex. Indeed,
if x1, x2 ∈ R and s ∈ [0, 1] then

nx0((1 − s)x1 + sx2) = |(1 − s)x1 + sx2 − x0| = |(1 − s)(x1 − x0) + s(x2 − x0)|
≤ (1 − s)|x1 − x0| + s|x2 − x0| = (1 − s)nx0(x1) + snx0(x2),

using the triangle inequality. •

Let us give an alternative and insightful characterisation of convex functions.
For an interval I ⊆ R define

EI = {(x, y) ∈ I2
| s < t}

and, for a, b ∈ I, denote

Lb = {a ∈ I | (a, b) ∈ EI}, Ra = {b ∈ I | (a, b) ∈ EI}.

Now, for f : I→ R define s f : EI → R by

s f (a, b) =
f (b) − f (a)

b − a
.

With this notation at hand, we have the following result.

3.1.33 Lemma (Alternative characterisation of convexity) For an interval I ⊆ R, a
function f : I→ R is (strictly) convex if and only if, for every a, b ∈ I, the functions

Lb ∋ a 7→ sf(a, b) ∈ R, Ra ∋ b 7→ sf(a, b) ∈ R (3.2)

are (strictly) monotonically increasing.
Proof First suppose that f is convex. Let a, b, c ∈ I satisfy a < b < c. Define s ∈ (0, 1)
by s = b−a

c−a and note that the definition of convexity using this value of s gives

f (b) ≤
c − b
c − a

f (a) +
b − a
c − a

f (c).

Simple rearrangement gives

c − b
c − a

f (a) +
b − a
c − a

f (c) = f (a) +
f (c) − f (a)

c − a
(b − a) = f (c) −

f (c) − f (a)
c − a

(c − b),
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and so we have
f (b) − f (a)

b − a
≤

f (c) − f (a)
c − a

,
f (c) − f (a)

c − a
≤

f (c) − f (b)
c − b

.

In other words, s f (a, b) ≤ s f (a, c) and s f (a, c) ≤ s f (b, c). Since this holds for every a, b, c ∈ I
with a < b < c, we conclude that the functions (3.2) are monotonically increasing, as
stated. If f is strictly convex, then the inequalities in the above computation are strict,
and one concludes that the functions (3.2) are strictly monotonically increasing.

Next suppose that the functions (3.2) are monotonically increasing and let a, c ∈ I
with a < c and let s ∈ (0, 1). Define b = (1 − s)a + sc. A rearrangement of the inequality
s f (a, b) ≤ s f (a, c) gives

f (b) ≤
c − b
c − a

f (a) +
b − a
c − a

f (c)

=⇒ f ((1 − s)a + sc) ≤ (1 − s) f (a) + s f (c),

showing that f is convex since a, c ∈ I with a < c and s ∈ (0, 1) are arbitrary in the
above computation. If the functions (3.2) are strictly monotonically increasing, then
the inequalities in the preceding computations are strict, and so one deduces that f is
strictly convex. ■

In Figure 3.4 we depict what the lemma is telling us about convex functions.

f(a)

a

f(b)

b

f(c)

c

Figure 3.4 A characterisation of a convex function

The idea is that the slope of the line connecting the points (a, f (a)) and (b, f (b)) in
the plane is nondecreasing in a and b.

The following inequality for convex functions is very often useful.

3.1.34 Theorem (Jensen’s inequality) For an interval I ⊆ R, for a convex function f : I→ R,
for x1, . . . , xk ∈ I, and for λ1, . . . , λk ∈ R≥0, we have

f

 λ1∑
j=1 λj

x1 + · · · +
λk∑k
j=1 λj

xk

 ≤ λ1∑k
j=1 λj

f(x1) + · · · +
λk∑k
j=1 λj

f(xk).
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Moreover, if f is strictly convex and if λ1, . . . , λk ∈ R>0, than we have equality in the
preceding expression if and only if x1 = · · · = xk.

Proof We first comment that, with λ1, . . . , λk and x1, . . . , xk as stated,

λ1∑k
j=1 λ j

x1 + · · · +
λk∑k
j=1 λ j

xk ∈ I.

This is because intervals are convex, something that will become clear in Sec-
tion II-1.9.2.

It is clear that we can without loss of generality, by replacing λ j with

λ′m =
λm∑k
j=1 λ j

, m ∈ {1, . . . , k},

if necessary, that we can assume that
∑k

j=1 λ j = 1.
We first note that if x1 = · · · = xk then the inequality in the statement of the theorem

is an equality, no matter what the character of f .
The proof is by induction on k, the result being obvious when k = 1. So suppose

the result is true when k = m and let x1, . . . , xm+1 ∈ I and let λ1, . . . , λm+1 ∈ R≥0 satisfy∑m+1
j=1 λ j = 1. Without loss of generality (by reindexing if necessary), suppose that

λm+1 ∈ [0, 1). Note that
λ1

1 − λm+1
+ · · · +

λm

1 − λm+1
= 1

so that, by the induction hypothesis,

f
(

λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
≤

λ1

1 − λm+1
f (x1) + · · · +

λm

1 − λm+1
f (xm).

Now, by convexity of f ,

f
(
(1 − λm+1)

(
λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1xm+1

)
≤ (1 − λm+1) f

(
λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1 f (xm+1).

The desired inequality follows by combining the previous two equations.
To prove the final assertion of the theorem, suppose that f is strictly convex, that

λ1, . . . , λk ∈ R>0 satisfy
∑k

j=1 λ j = 1, and that the inequality in the theorem is equality.
We prove by induction that x1 = · · · = xk. For k = 1 the assertion is obvious. Let us
prove the assertion for k = 2. Thus suppose that

f ((1 − λ)x1 + λx2) = (1 − λ) f (x1) + λ f (x2)

for x1, x2 ∈ I and for λ ∈ (0, 1). If x1 , x2 then we have, by definition of strict convexity,

f ((1 − λ)x1 + λx2) < (1 − λ) f (x1) + λ f (x2),
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contradicting our hypotheses. Thus we must have x1 = x2. Now suppose the assertion
is true for k = m and let x1, . . . , xm+1 ∈ I, let λ1, . . . , λm+1 ∈ R>0 satisfy

∑m+1
j=1 λ j = 1, and

suppose that

f (λ1x1 + · · · + λm+1xm+1) = λ1 f (x1) + · · · + λm+1 f (xm+1).

Since none of λ1, . . . , λm+1 are zero we must have λm+1 ∈ (0, 1). Now note that

f (λ1x1 + · · · + λm+1xm+1) = f
(
(1 − λm+1)

(
λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1xm+1

)
(3.3)

and that

λ1 f (x1) + · · · + λm+1 f (xm+1)

= (1 − λm+1) f
(

λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1 f (xm+1).

Therefore, by assumption,

f
(
(1 − λm+1)

(
λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1xm+1

)
= (1 − λm+1) f

(
λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1 f (xm+1). (3.4)

Since the assertion we are proving holds for k = 2 this implies that

xm+1 =
λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm. (3.5)

Now suppose that the numbers x1, . . . , xm are not all equal. Then, by the induction
hypothesis,

f
(

λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
<

λ1

1 − λm+1
f (x1) + · · · +

λm

1 − λm+1
f (xm)

since
λ1

1 − λm+1
+ · · · +

λm

1 − λm+1
= 1.

Therefore, combining (3.3) and (3.4)

f (λ1x1 + · · · + λm+1xm+1) < λ1 f (x1) + · · · + λm+1 f (xm+1),

contradicting our hypotheses. Thus we must have x1 = · · · = xm. From (3.5) we then
conclude that x1 = · · · = xm+1, as desired. ■

An interesting application of Jensen’s inequality is the derivation of the so-
called arithmetic/geometric mean inequalities. If x1, . . . , xk ∈ R>0, their arithmetic
mean is

1
k

(x1 + · · · + xk)

and their geometric mean is
(x1 · · · xk)1/k.

We first state a result which relates generalisations of the arithmetic and geometric
means.
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3.1.35 Corollary (Weighted arithmetic/geometric mean inequality) Let x1, . . . , xk ∈ R≥0

and suppose that λ1, . . . , λk ∈ R>0 satisfy
∑k

j=1 λj = 1. Then

xλ1
1 · · · x

λk
k ≤ λ1x1 + · · · + λkxk,

and equality holds if and only if x1 = · · · = xk.
Proof Since the inequality obviously holds if any of x1, . . . , xk are zero, let us suppose
that these numbers are all positive. By Example 3.1.32–5, − log is convex. Thus
Jensen’s inequality gives

− log(λ1x1 + · · · + λkxk) ≤ −λ1 log(x1) − · · · − λk log(xk) = − log(xλ1
1 · · · x

λk
k ).

Since − log is strictly monotonically decreasing by Proposition 3.8.6(ii), the result fol-
lows. Moreover, since − log is strictly convex by Proposition 3.2.30, the final assertion
of the corollary follows from the final assertion of Theorem 3.1.34. ■

The corollary gives the following inequality as a special case.

3.1.36 Corollary (Arithmetic/geometric mean inequality) If x1, . . . , xk ∈ R≥0 then

(x1 · · · xk)1/k
≤

x1 + · · · + xk

k
,

and equality holds if and only if x1 = · · · = xk.

Let us give some properties of convex functions. Further properties of convex
function are give in Proposition 3.2.29

3.1.37 Proposition (Properties of convex functions I) For an interval I ⊆ R and for a
convex function f : I→ R, the following statements hold:

(i) if I is open, then f is continuous;
(ii) for any compact interval K ⊆ int(I), there exists L ∈ R>0 such that

|f(x1) − f(x2)| ≤ L|x1 − x2|, x1, x2 ∈ K.

Proof (ii) Let K = [a, b] ⊆ int(I) and let a′, b′ ∈ I satisfy a′ < a and b′ > b, this being
possible since K ⊆ int(I). Now let x1, x2 ∈ K and note that, by Lemma 3.1.33,

s f (a′, a) ≤ s f (x1, x2) ≤ s f (b, b′)

since a′ < x1, a ≤ x2, x1 ≤ b, and x2 < b′. Thus, taking L = max{s f (a′, a), s f (b, b′)}, we
have

−L ≤
f (x2) − f (x1)

x2 − x1
≤ L,

which gives the result.
(i) This follows from part (ii) easily. Indeed let x ∈ I and let K be a compact

subinterval of I such that x ∈ int(K), this being possible since I is open. If ϵ ∈ R>0, let
δ = ϵ

L . It then immediately follows that if |x − y| < δ then | f (x) − f (y)| < ϵ. ■

Let us give some an example that illustrates that openness is necessary in the
first part of the preceding result.
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3.1.38 Example (A convex discontinuous function) Let I = [0, 1] and define f : [0, 1]→
R by

f (x) =

1, x = 1,
0, x ∈ [0, 1).

If x1, x2 ∈ [0, 1) and if s ∈ [0, 1] then

0 = f ((1 − s)x1 + sx2) = (1 − s) f (x1) + s f (x2).

If x1 ∈ [0, 1), if x2 = 1, and if s ∈ (0, 1) then

0 = f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2) = s,

showing that f is convex as desired. Note that f is not continuous, but that its
discontinuity is on the boundary, as must be the case since convex functions on
open sets are continuous. •

Let us also present some operations that preserve convexity.

3.1.39 Proposition (Convexity and operations on functions) For an interval I ⊆ R and
for convex functions f,g: I→ R, the following statements hold:

(i) the function I ∋ x 7→ max{f(x),g(x)} is convex;
(ii) the function af is convex if a ∈ R≥0;
(iii) the function f + g is convex;
(iv) if J ⊆ R is an interval, if f takes values in J, and if ϕ : J → R is convex and

monotonically increasing, then ϕ ◦ f is convex;
(v) if x0 ∈ I is a local minimum for f (see Definition 3.2.15). then x0 is a minimum for

f.
Proof (i) Let x1, x2 ∈ I and let s ∈ [0, 1]. Then, by directly applying the definition of
convexity to f and g, we have

max{ f ((1 − s)x1 + sx2), g((1 − s)x1 + sx2)}
≤ (1 − s) max{ f (x1), g(x1)} + s max{ f (x2), g(x2)}.

(ii) This follows immediately from the definition of convexity.
(iii) For x1, x2 ∈ I and for s ∈ [0, 1] we have

f ((1 − s)x1 + sx2) + g((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2) + (1 − s)g(x1) + sg(x2)
= (1 − s)( f (x1) + g(x1)) + s( f (x2 + g(x2)),

by applying the definition of convexity to f and g.
(iv) For x1, x2 ∈ I and for s ∈ [0, 1], convexity of f gives

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2)
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and so monotonicity of ϕ gives

ϕ ◦ f ((1 − s)x1 + sx2) ≤ ϕ((1 − s) f (x1) + s f (x2)).

Now convexity of ϕ gives

ϕ ◦ f ((1 − s)x1 + sx2) ≤ (1 − s)ϕ ◦ f (x1) + sϕ ◦ f (x2),

as desired.
(v) Suppose that x0 is a local minimum for f , i.e., there is a neighbourhood U ⊆ I

of x0 such that f (x) ≥ f (x0) for all x ∈ U. Now let x ∈ I and note that

s 7→ (1 − s)x0 + sx

is continuous and lims→0(1 − s)x0 + sx = x0. Therefore, there exists s0 ∈ (0, 1] such that
(1 − s)x0 + sx ∈ U for all s ∈ (0, s0). Thus

f (x0) ≤ f ((1 − s)x0 + sx) ≤ (1 − s) f (x0) + s f (x)

for s ∈ (0, s0). Simplification gives f (x0) ≤ f (x) and so x0 is a minimum for f . ■

3.1.7 Piecewise continuous functions

It is often of interest to consider functions that are not continuous, but which
possess only jump discontinuities, and only “few” of these. In order to do so, it is
convenient to introduce some notation. For and interval I ⊆ R, a function f : I→ R,
and x ∈ I define

f (x−) = lim
ϵ↓0

f (x − ϵ), f (x+) = lim
ϵ↓0

f (x + ϵ),

allowing that these limits may not be defined (or even make sense if x ∈ bd(I)).
We then have the following definition, recalling our notation concerning parti-

tions of intervals given in and around Definition 2.5.7.

3.1.40 Definition (Piecewise continuous function) A function f : [a, b]→ R is piecewise
continuous if there exists a partition P = (I1, . . . , Ik), with EP(P) = (x0, x1, . . . , xk), of
[a, b] with the following properties:

(i) f | int(I j) is continuous for each j ∈ {1, . . . , k};
(ii) for j ∈ {1, . . . , k − 1}, the limits f (x j+) and f (x j−) exist;
(iii) the limits f (a+) and f (b−) exist. •

Let us give a couple of examples to illustrate some of the things that can happen
with piecewise continuous functions.
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3.1.41 Examples (Piecewise continuous functions)
1. Let I = [−1, 1] and define f1, f2, f3 : I→ R by

f1(x) = sign(x),

f2(x) =

sign(x), x , 0,
1, x = 0,

f2(x) =

sign(x), x , 0,
−1, x = 0.

One readily verifies that all of these functions are piecewise continuous with
a single discontinuity at x = 0. Note that the functions do not have the same
value at the discontinuity. Indeed, the definition of piecewise continuity is
unconcerned with the value of the function at discontinuities.

2. Let I = [−1, 1] and define f : I→ R by

f (x) =

1, x , 0,
0, x = 0.

This function is, by definition, piecewise continuous with a single discontinuity
at x = 0. This shows that the definition of piecewise continuity includes func-
tions, not just with jump discontinuities, but with removable discontinuities. •

Exercises

3.1.1

Oftentimes, a continuity novice will think that the definition of continuity at x0

of a function f : I → R is as follows: for every ϵ ∈ R>0 there exists δ ∈ R>0 such
that if | f (x) − f (x0)| < ϵ then |x − x0| < δ. Motivated by this, let us call a function
fresh-from-high-school continuous if it has the preceding property at each point
x ∈ I.

3.1.2 Answer the following two questions.
(a) Find an interval I ⊆ R and a function f : I→ R such that f is continuous

but not fresh-from-high-school continuous.
(b) Find an interval I ⊆ R and a function f : I→ R such that f is fresh-from-

high-school continuous but not continuous.
3.1.3 Let I ⊆ R be an interval and let f , g : I→ R be functions.

(a) Show that D f g ⊆ D f ∪Dg.
(b) Show that it is not generally true that D f ∩Dg ⊆ D f g.
(c) Suppose that f is bounded. Show that if x ∈ (D f ∩ (I \ Dg)) ∩ (I \ D f g),

then g(x) = 0.
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3.1.4 Let I ⊆ R be an interval and let f : I→ R be a function. For x ∈ I and δ ∈ R>0

define
ω f (x, δ) = sup{| f (x1), f (x2)| | x1, x2 ∈ B(δ, x) ∩ I}.

Show that, if y ∈ B(δ, x), then ω f (y, δ2 ) ≤ ω f (x, δ).
3.1.5 Recall from Theorem 3.1.24 that a continuous function defined on a compact

interval is uniformly continuous. Show that this assertion is generally false
if the interval is not compact.

3.1.6 Give an example of an interval I ⊆ R and a function f : I → R that is locally
bounded but not bounded.

3.1.7 Answer the following three questions.
(a) Find a bounded interval I ⊆ R and a function f : I → R such that f is

continuous but not bounded.
(b) Find a compact interval I ⊆ R and a function f : I → R such that f is

bounded but not continuous.
(c) Find a closed but unbounded interval I ⊆ R and a function f : I → R

such that f is continuous but not bounded.
3.1.8 Answer the following two questions.

(a) For I = [0, 1) find a bounded, continuous function f : I → R that does
not attain its maximum on I.

(b) For I = [0,∞) find a bounded, continuous function f : I → R that does
not attain its maximum on I.

3.1.9 Explore your understanding of Theorem 3.1.3 and its Corollary 3.1.4 by
doing the following.
(a) For the continuous function f : R → R defined by f (x) = x2, verify

Theorem 3.1.3 by (1) determining f −1(I) for a general open interval I
and (2) showing that this is sufficient to ensure continuity.
Hint: For the last part, consider using Proposition 2.5.6 and part (iv) of
Proposition 1.3.5.

(b) For the discontinuous function f : R → R defined by f (x) = sign(x),
verify Theorem 3.1.3 by (1) finding an open subset U ⊆ R for which
f −1(U) is not open and (2) finding a sequence (x j) j∈Z>0 converging to
x0 ∈ R for which ( f (x j)) j∈Z>0 does not converge to f (x0).

3.1.10 Find a continuous function f : I → R defined on some interval I and a
sequence (x j) j∈Z>0 such that the sequence (x j) j∈Z>0 does not converge but the
sequence ( f (x j)) j∈Z>0 does converge.

3.1.11 Let I ⊆ R be an interval and let f , g : I→ R be convex.
(a) Is it true that x 7→ min{ f (x), g(x)} is convex?
(b) Is it true that f − g is convex?
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3.1.12 Let U ⊆ R be open and suppose that f : U → R is continuous and has the
property that

{x ∈ U | f (x) , 0}

has measure zero. Show that f (x) = 0 for all x ∈ U.
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Section 3.2

Differentiable R-valued functions on R

In this section we deal systematically with another topic with which most
readers are at least somewhat familiar: differentiation. However, as with everything
we do, we do this here is a manner that is likely more thorough and systematic
than that seen by some readers. We do suppose that the reader has had that sort
of course where one learns the derivatives of the standard functions, and learns to
apply some of the standard rules of differentiation, such as we give in Section 3.2.3.

Do I need to read this section? If you are familiar with, or perhaps even if you
only think you are familiar with, the meaning of “continuously differentiable,”
then you can probably forgo the details of this section. However, if you have not
had the benefit of a rigorous calculus course, then the material here might at least
be interesting. •

3.2.1 Definition of the derivative

The definition we give of the derivative is as usual, with the exception that,
as we did when we talked about continuity, we allow functions to be defined on
general intervals. In order to do this, we recall from Section 2.3.7 the notation
limx→Ix0 f (x).

3.2.1 Definition (Derivative and differentiable function) Let I ⊆ R be an interval and
let f : I→ R be a function.

(i) The function f is differentiable at x0 ∈ I if the limit

lim
x→Ix0

f (x) − f (x0)
x − x0

(3.6)

exists.
(ii) If the limit (3.6) exists, then it is denoted by f ′(x0) and called the derivative

of f at x0.
(iii) If f is differentiable at each point x ∈ I, then f is differentiable.
(iv) If f is differentiable and if the function x 7→ f ′(x) is continuous, then f is

continuously differentiable, or of class C1. •

3.2.2 Notation (Alternative notation for derivative) In applications where R-valued
functions are clearly to be thought of as functions of “time,” we shall sometimes
write ˙f rather than f ′ for the derivative.

Sometimes it is convenient to write the derivative using the convention f ′(x) =
d f
dx . This notation for derivative suffers from the same problems as the notation
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“ f (x)” to denote a function as discussed in Notation 1.3.2. That is to say, one
cannot really use d f

dx as a substitute for f ′, but only for f ′(x). Sometimes one can
kludge one’s way around this with something like d f

dx

∣∣∣
x=x0

to specify the derivative
at x0. But this still leaves unresolved the matter of what is the rôle of “x” in the
expression d f

dx

∣∣∣
x=x0

. For this reason, we will generally (but not exclusively) stick to

f ′, or sometimes ˙f . For notation for the derivative for multivariable functions, we
refer to Definition II-1.4.2. •

Let us consider some examples that illustrate the definition.

3.2.3 Examples (Derivative)
1. Take I = R and define f : I → R by f (x) = xk for k ∈ Z>0. We claim that f is

continuously differentiable, and that f ′(x) = kxk−1. To prove this we first note
that

(x − x0)(xk−1 + xk−1x0 + · · · + xxk−2
0 + xk−1

0 ) = xk
− xk

0,

as can be directly verified. Then we compute

lim
x→x0

f (x) − f (x0)
x − x0

= lim
x→x0

xk
− xk

0

x − x0

= lim
x→x0

(xk−1 + xk−1x0 + · · · + xxk−2
0 + xk−1

0 ) = kxk−1
0 ,

as desired. Since f ′ is obviously continuous, we obtain that f is continuously
differentiable, as desired.

2. Let I = [0, 1] and define f : I→ R by

f (x) =

x, x , 0,
1, x = 0.

From Example 1 we know that f is continuously differentiable at points in
(0, 1]. We claim that f is not differentiable at x = 0. This will follow from
Proposition 3.2.7 below, but let us show this here directly. We have

lim
x→I0

f (x) − f (0)
x − 0

= lim
x↓0

x − 1
x
= −∞.

Thus the limit does not exist, and so f is not differentiable at x = 0, albeit in a
fairly stupid way.

3. Let I = [0, 1] and define f : I → R by f (x) =
√

x(1 − x). We claim that f is
differentiable at points in (0, 1), but is not differentiable at x = 0 or x = 1.
Providing that one believes that the function x 7→

√
x is differentiable on R>0

(see Section 3.8.3, then the continuous differentiability of f on (0, 1) follows
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from the results of Section 3.2.3. Moreover, the derivative of f at x ∈ (0, 1) can
be explicitly computed as

f ′(x) =
1 − 2x

2
√

x(1 − x)
.

To show that f is not differentiable at x = 0 we compute

lim
x→I0

f (x) − f (0)
x − 0

= lim
x↓0

√
1 − x
√

x
= ∞.

Similarly, at x = 1 we compute

lim
x→I1

f (x) − f (1)
x − 1

= lim
x↑1

−
√

x
√

x − 1
= −∞.

Since neither of these limits are elements of R, it follows that f is not differen-
tiable at x = 0 or x = 1.

4. Let I = R and define f : R→ R by

f (x) =

x2 sin 1
x , x , 0,

0, x = 0.

We first claim that f is differentiable. The differentiability of f at points x ∈ R\{0}
will follow from our results in Section 3.2.3 concerning differentiability, and
algebraic operations along with composition. Indeed, using these rules for
differentiation we compute that for x , 0 we have

f ′(x) = 2x sin 1
x − cos 1

x .

Next let us prove that f is differentiable at x = 0 and that f ′(0) = 0. We have

lim
x→0

f (x) − f (x)
x − 0

= lim
x→0

x sin 1
x .

Now let ϵ ∈ R>0. Then, for δ = ϵ we have∣∣∣x sin 1
x − 0

∣∣∣ < ϵ
since

∣∣∣sin 1
x

∣∣∣ ≤ 1. This shows that f ′(0) = 0, as claimed. This shows that f is
differentiable.
However, we claim that f is not continuously differentiable. Clearly there are
no problems away from x = 0, again by the results of Section 3.2.3. But we
note that f ′ is discontinuous at x = 0. Indeed, we note that f is the sum of
two functions, one (x sin 1

x ) of which goes to zero as x goes to zero, and the
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other (− cos 1
x ) of which, when evaluated in any neighbourhood of x = 0, takes

all possible values in the interval [−1, 1]. This means that in any sufficiently
small neighbourhood of x = 0, the function f ′ will take all possible values in
the interval [−1

2 ,
1
2 ]. This precludes the limit limx→0 f ′(x) from existing, and so

precludes f ′ from being continuous at x = 0 by Theorem 3.1.3. •

Let us give some intuition about the derivative. Given an interval I and func-
tions f , g : I→ R, we say that f and g are tangent at x0 ∈ R if

lim
x→Ix0

f (x) − g(x)
x − x0

= 0.

In Figure 3.5 we depict the idea of two functions being tangent. Using this idea,

x

f(x), g(x)

(
I

)
x0

f

g
f(x0) = g(x0)

Figure 3.5 Functions that are tangent

we can give the following interpretation of the derivative.

3.2.4 Proposition (Derivative and linear approximation) Let I ⊆ R, let x0 ∈ I, and let
f : I→ R be a function. Then there exists at most one number α ∈ R such that f is tangent
at x0 with the function x 7→ f(x0) + α(x − x0). Moreover, such a number α exists if and
only if f is differentiable at x0, in which case α = f′(x0).

Proof Suppose there are two such numbers α1 and α2. Thus

lim
x→Ix0

f (x) − ( f (x0) + α j(x − x0))
x − x0

= 0, j ∈ {1, 2}, (3.7)
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We compute

|α1 − α2| =
|α1(x − x0) − α2(x − x0)|

|x − x0|

=
|− f (x) + f (x0) + α1(x − x0) + f (x) − f (x0) − α2(x − x0)|

|x − x0|

≤
| f (x) − f (x0) − α1(x − x0)|

|x − x0|
+
| f (x) − f (x0) − α2(x − x0)|

|x − x0|
.

Since α1 and α2 satisfy (3.7), as we let x→ x0 the right-hand side goes to zero showing
that |α1 − α2| = 0. This proves the first part of the result.

Next suppose that there exists α ∈ R such that

lim
x→Ix0

f (x) − ( f (x0) + α(x − x0))
x − x0

= 0.

It then immediately follows that

lim
x→Ix0

f (x) − f (x0)
x − x0

= α.

Thus f is differentiable at x0 with derivative equal to α. Conversely, if f is differentiable
at x0 then we have

f ′(x0) = lim
x→Ix0

f (x) − f (x0)
x − x0

,

=⇒ lim
x→Ix0

f (x) − f (x0) − f ′(x0)(x − x0)
x − x0

= 0,

which completes the proof. ■

The idea, then, is that the derivative serves, as we are taught in first-year
calculus, as the best linear approximation to the function, since the function x 7→
f (x0) + α(x − x0) is a linear function with slope α passing through f (x0).

We may also define derivatives of higher-order. Suppose that f : I → R is
differentiable, so that the function f ′ : I→ R can be defined. If the limit

lim
x→Ix0

f ′(x) − f ′(x0)
x − x0

exists, then we say that f is twice differentiable at x0. We denote the limit by f ′′(x0),
and call it the second derivative of f at x0. If f is differentiable at each point x ∈ I
then f is twice differentiable. If additionally the map x 7→ f ′′(x) is continuous, then
f is twice continuously differentiable, or of class C2. Clearly this process can be
continued inductively. Let us record the language coming from this iteration.
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3.2.5 Definition (Higher-order derivatives) Let I ⊆ R be an interval, let f : I → R be a
function, let r ∈ Z>0, and suppose that f is (r − 1) times differentiable with g the
corresponding (r − 1)st derivative.

(i) The function f is r times differentiable at x0 ∈ I if the limit

lim
x→Ix0

g(x) − g(x0)
x − x0

(3.8)

exists.
(ii) If the limit (3.8) exists, then it is denoted by f (r)(x0) and called the rth derivative

of f at x0.
(iii) If f is r times differentiable at each point x ∈ I, then f is r times differentiable.
(iv) If f is r times differentiable and if the function x 7→ f (r)(x) is continuous, then

f is r times continuously differentiable, or of class Cr.
If f is of class Cr for each r ∈ Z>0, then f is infinitely differentiable, or of class C∞. •

3.2.6 Notation (Class C0) A continuous function will sometimes be said to be of class
C0, in keeping with the language used for functions that are differentiable to some
order. •

3.2.2 The derivative and continuity

In this section we simply do two things. We show that differentiable functions
are continuous (Proposition 3.2.7), and we (dramatically) show that the converse
of this is not true (Example 3.2.9).

3.2.7 Proposition (Differentiable functions are continuous) If I ⊆ R is an interval and
if f : I→ R is a function differentiable at x0 ∈ I, then f is continuous at x0.

Proof Using Propositions 2.3.23 and 2.3.29 the limit

lim
x→Ix0

(
f (x) − f (x0)

x − x0

)
(x − x0)

exists, and is equal to the product of the limits

lim
x→Ix0

f (x) − f (x0)
x − x0

, lim
x→Ix0

(x − x0),

i.e., is equal to zero. We therefore can conclude that

lim
x→Ix0

( f (x) − f (x0)) = 0,

and the result now follows from Theorem 3.1.3. ■

If the derivative is bounded, then there is more that one can say.
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3.2.8 Proposition (Functions with bounded derivative are uniformly continuous) If
I ⊆ R is an interval and if f : I → R is differentiable with f′ : I → R bounded, then f is
uniformly continuous.

Proof Let
M = sup{ f ′(t) | t ∈ I}.

Then, for every x, y ∈ I, by the Mean Value Theorem, Theorem 3.2.19 below, there
exists z ∈ [x, y] such that

f (x) − f (y) = f ′(z)(x − y) =⇒ | f (x) − f (y)| ≤M∥x − y∥.

Now let ϵ ∈ R>0 and let x ∈ I. Define δ = ϵ
M and note that if y ∈ I satisfies |x − y| < δ

then we have
| f (x) − f (y)| ≤M∥x − y∥ ≤ ϵ,

giving the desired uniform continuity. ■

Of course, it is not true that a continuous function is differentiable; we have an
example of this as Example 3.2.3–3. However, things are much worse than that,
as the following example indicates.

3.2.9 Example (A continuous but nowhere differentiable function) For k ∈ Z>0 define
gk : R → R as shown in Figure 3.6. Thus gk is periodic with period 4 · 2−2k .3 We

f(x)

1

−1 4 · 2−2k

Figure 3.6 The function gk

then define

f (x) =
∞∑

k=1

2−kgk(x).

3We have not yet defined what is meant by a periodic function, although this is likely clear. In
case it is not, a function f : R→ R is periodic with period T ∈ R>0 if f (x+ T) = f (x) for every x ∈ R.
Periodic functions will be discussed in some detail in Section IV-1.1.6.
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Since gk is bounded in magnitude by 1, and since the sum
∑
∞

k=1 2−k is absolutely
convergent (Example 2.4.2–4), for each x the series defining f converges, and so f
is well-defined. We claim that f is continuous but is nowhere differentiable.

It is easily shown by the Weierstrass M-test (see Theorem 3.6.15 below) that
the series converges uniformly, and so defines a continuous function in the limit
by Theorem 3.6.8. Thus f is continuous.

Now let us show that f is nowhere differentiable. Let x ∈ R, k ∈ Z>0, and choose
hk ∈ R such that |h| = 2−2k and such that x and x + hk lie on the line segment in the
graph of gk (this is possible since hk is small enough, as is easily checked). Let us
prove a few lemmata for this choice of x and hk.

1 Lemma gl(x + hk) = g(x) for l > k.

Proof This follows since gl is periodic with period 4 · 2−2l , and so is therefore also
periodic with period 2−2k since

4 · 2−2l

2−2k = 4 · 2−2l
−2k
∈ Z

for l > k. ▼

2 Lemma |gk(x + hk) − gk(x)| = 1.

Proof This follows from the fact that we have chosen hk such that x and x+hk lie on
the same line segment in the graph of gk, and from the fact that |hk| is one-quarter
the period of gk (cf. Figure 3.6). ▼

3 Lemma
∣∣∣∑k−1

j=1 2−jgj(x + hk) −
∑k−1

j=1 2−jgj(x)
∣∣∣ ≤ 2k2−2k−1 .

Proof We note that if x and x + hk are on the same line segment in the graph of
gk, then they are also on the same line segment of the graph of g j for j ∈ {1, . . . , k}.
Using this fact, along with the fact that the slope of the line segments of the function
g j have magnitude 22 j , we compute∣∣∣∣∣∣∣

k−1∑
j=1

2− jg j(x + hk) −
k−1∑
j=1

2− jg j(x)

∣∣∣∣∣∣∣
≤ (k − 1) max{|2− jg j(x + hk) − 2− jg j(x)| | j ∈ {1, . . . , k}}

= (k − 1)22k−1
2−2k

< 2k2−2k−1
.

The final inequality follows since k − 1 < 2k for k ≥ 1 and since 22k−12−2k
= 2−2k−1 . ▼

Now we can assemble these lemmata to give the conclusion that f is not differ-
entiable at x. Let x ∈ R, let ϵ ∈ R>0, choose k ∈ Z>0 such that 2−2k

< ϵ, and choose
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hk as above. We then have∣∣∣∣∣ f (x + hk) − f (x)
hk

∣∣∣∣∣ = |
∑
∞

j=1 2− jg j(x + hk) −
∑
∞

j=1 2− jg j(x)

hk
|

= |

∑k−1
j=1 2− jg j(x + hk) −

∑k−1
j=1 2− jg j(x)

hk
+

2−k(gk(x + hk) − gk(x))
hk

|

≥ 2−k22k
− 2k2−2k−1

.

Since limk→∞(2−k22k
− 2k2−2k−1) = ∞, it follows that any neighbourhood of x will

contain a point y for which f (y)− f (x)
y−x will be as large in magnitude as desired. This

precludes f from being differentiable at x. Now, since x was arbitrary in our
construction, we have shown that f is nowhere differentiable as claimed.

In Figure 3.7 we plot the function
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Figure 3.7 The first four partial sums for f

fk(x) =
k∑

j=1

2− jg j(x)

for j ∈ {1, 2, 3, 4}. Note that, to the resolution discernible by the eye, there is no
difference between f3 and f4. However, if we were to magnify the scale, we would
see the effects that lead to the limit function not being differentiable. •
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3.2.3 The derivative and operations on functions

In this section we provide the rules for using the derivative in conjunction
with the natural algebraic operations on functions as described at the beginning
of Section 3.1.3. Most readers will probably be familiar with these ideas, at least
inasmuch as how to use them in practice.

3.2.10 Proposition (The derivative, and addition and multiplication) Let I ⊆ R be an
interval and let f,g: I → R be functions differentiable at x0 ∈ I. Then the following
statements hold:

(i) f + g is differentiable at x0 and (f + g)′(x0) = f′(x0) + g′(x0);
(ii) fg is differentiable at x0 and (fg)′(x0) = f′(x0)g(x0) + f(x0)g′(x0) (product rule or

Leibniz’ 4 rule);
(iii) if additionally g(x0) , 0, then f

g is differentiable at x0 and(
f
g

)′
(x0) =

f′(x0)g(x0) − f(x0)g′(x0)
g(x0)2 (quotient rule).

Proof (i) We have

( f + g)(x) − ( f + g)(x0)
x − x0

=
f (x) − f (x0)

x − x0
+

g(x) − g(x0)
x − x0

.

Now we may apply Propositions 2.3.23 and 2.3.29 to deduce that

lim
x→Ix0

( f + g)(x) − ( f + g)(x0)
x − x0

= lim
x→Ix0

f (x) − f (x0)
x − x0

+ lim
x→Ix0

g(x) − g(x0)
x − x0

= f ′(x0) + g′(x0),

as desired.
(ii) Here we note that

( f g)(x) − ( f g)(x0)
x − x0

=
f (x)g(x) − f (x)g(x0) + f (x)g(x0) − f (x0)g(x0)

x − x0

= f (x)
g(x) − g(x0)

x − x0
+ g(x0)

f (x) − f (x0)
x − x0

.

Since f is continuous at x0 by Proposition 3.2.7, we may apply Propositions 2.3.23
and 2.3.29 to conclude that

lim
x→Ix0

( f g)(x) − ( f g)(x0)
x − x0

= f ′(x0)g(x0) + f (x0)g′(x0),

4Gottfried Wilhelm von Leibniz (1646–1716) was born in Leipzig (then a part of Saxony), and
was a lawyer, philosopher, and mathematician. His main mathematical contributions were to the
development of calculus, where he had a well-publicised feud over priority with Newton, and
algebra. His philosophical contributions, mainly in the area of logic, were also of some note.
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just as claimed.
(iii) By using part (ii), it suffices to consider the case where f is defined by f (x) = 1

(why?). Note that if g(x0) , 0, then there is a neighbourhood of x0 to which the
restriction of g is nowhere zero. Thus, without loss of generality, we suppose that
g(x) , 0 for all x ∈ I. But in this case we have

lim
x→Ix0

1
g(x) −

1
g(x0)

x − x0
= lim

x→Ix0

1
g(x)g(x0)

g(x0)
x − x0

= −
g′(x0)
g(x0)2 ,

giving the result in this case. We have used Propositions 2.3.23 and 2.3.29 as usual.■

The following generalisation of the product rule will be occasionally useful.

3.2.11 Proposition (Higher-order product rule) Let I ⊆ R be an interval, let x0 ∈ I, let
r ∈ Z>0, and suppose that f,g: I→ R are of class Cr−1 and are r-times differentiable at x0.
Then fg is r-times differentiable at x0, and

(fg)(r)(x0) =
r∑

j=0

(
r
j

)
f(j)(x0)g(r−j)(x0),

where (
r
j

)
=

r!
j!(r − j)!

.

Proof The result is true for r = 1 by Proposition 3.2.10. So suppose the result true for
k ∈ {1, . . . , r}. We then have

( f g)(r)(x) − ( f g)(r)(x0)
x − x0

=

∑r
j=0

( r
j
)

f ( j)(x)g(r− j)(x) −
∑r

j=0

( r
j
)

f ( j)(x0)g(r− j)(x0)

x − x0

=

r∑
j=0

(
r
j

)
f ( j)(x)g(r− j)(x) − f ( j)(x0)g(r− j)(x0)

x − x0
.

Now we note that

lim
x→Ix0

f ( j)(x)g(r− j)(x) − f ( j)(x0)g(r− j)(x0)
x − x0

= f ( j+1)(x0)g(r− j)(x0) + f ( j)(x0)g(r− j+1)(x0).
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Therefore,

lim
x→Ix0

( f g)(r)(x) − ( f g)(r)(x0)
x − x0

=

r∑
j=0

(
r
j

) (
f ( j+1)(x0)g(r− j)(x0) + f ( j)(x0)g(r− j+1)(x0)

)
= f (x0)g(r+1)(x0) +

r∑
j=0

(
r
j

)
f ( j+1)(x0)g(r− j)(x0) +

r∑
j=1

(
r
j

)
f ( j)(x0)g(r− j+1)(x0)

= f (x0)g(r+1)(x0) +
r+1∑
j=1

(
r

j − 1

)
f ( j)(x0)g(r− j+1)(x0)

+

r∑
j=1

(
r
j

)
f ( j)(x0)g(r− j+1)(x0)

= f (r+1)(x0)g(x0) + f (x0)g(r+1)(x0)

+

r∑
j=1

((
r
j

)
+

(
r

j − 1

))
f ( j)(x0)g(r− j+1)(x0)

= f (r+1)(x0)g(x0) + f (x0)g(r+1)(x0) +
r∑

j=1

(
r + 1

j

)
f ( j)(x0)g(r− j+1)(x0)

=

r+1∑
j=0

(
r + 1

j

)
f ( j)(x0)g(r− j)(x0).

In the penultimate step we have used Pascal’s5 Rule which states that(
r
j

)
+

(
r

j − 1

)
=

(
r + 1

j

)
.

We leave the direct proof of this fact to the reader. ■

The preceding two results had to do with differentiability at a point. For con-
venience, let us record the corresponding results when we consider the derivative,
not just at a point, but on the entire interval.

3.2.12 Proposition (Class Cr, and addition and multiplication) Let I ⊆ R be an interval
and let f,g: I→ R be functions of class Cr. Then the following statements hold:

(i) f + g is of class Cr;
(ii) fg is of class Cr;
(iii) if additionally g(x) , 0 for all x ∈ I, then f

g is of class Cr.
5Blaise Pascal (1623–1662) was a French mathematician and philosopher. Much of his mathe-

matical work was on analytic geometry and probability theory.
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Proof This follows directly from Propositions 3.2.10 and 3.2.11, along with the fact,
following from Proposition 3.1.15, that the expressions for the derivatives of sums,
products, and quotients are continuous, as they are themselves sums, products, and
quotients. ■

The following rule for differentiating the composition of functions is one of the
more useful of the rules concerning the behaviour of the derivative.

3.2.13 Theorem (Chain Rule) Let I, J ⊆ R be intervals and let f : I → J and g: J → R be
functions for which f is differentiable at x0 ∈ I and g is differentiable at f(x0) ∈ J. Then g ◦ f
is differentiable at x0, and (g ◦ f)′(x0) = g′(f(x0))f′(x0).

Proof Let us define h : J→ R by

h(y) =

 g(y)−g( f (x0))
y− f (x0) , g(y) , g( f (x0)),

g′( f (x0)), g(y) = g( f (x0)).

We have

(g ◦ f )(x) − (g ◦ f )(x0)
x − x0

=
(g ◦ f )(x) − (g ◦ f )(x0)

f (x) − f (x0)
f (x) − f (x0)

x − x0
= h( f (x))

f (x) − f (x0)
x − x0

,

provided that f (x) , f (x0). On the other hand, if f (x) = f (x0), we immediately have

(g ◦ f )(x) − (g ◦ f )(x0)
x − x0

= h( f (x))
f (x) − f (x0)

x − x0

since both sides of this equation are zero. Thus we simply have

(g ◦ f )(x) − (g ◦ f )(x0)
x − x0

= h( f (x))
f (x) − f (x0)

x − x0

for all x ∈ I. Note that h is continuous at f (x0) by Theorem 3.1.3 since

lim
y→I f (x0)

h(y) = g′(x0) = h(x0),

using the fact that g is differentiable at x0. Now we can use Propositions 2.3.23
and 2.3.29 to ascertain that

lim
x→Ix0

(g ◦ f )(x) − (g ◦ f )(x0)
x − x0

= lim
x→Ix0

h( f (x))
f (x) − f (x0)

x − x0
= g′( f (x0)) f ′(x0),

as desired. ■

The derivative behaves as one would expect when restricting a differentiable
function.
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3.2.14 Proposition (The derivative and restriction) If I, J ⊆ R are intervals for which J ⊆ I,
and if f : I→ R is differentiable at x0 ∈ J ⊆ I, then f|J is differentiable at x0.

Proof This follows since if the limit

lim
x→Ix0

f (x) − f (x0)
x − x0

exists, then so too does the limit

lim
x→Jx0

f (x) − f (x0)
x − x0

,

provided that J ⊆ I. ■

3.2.4 The derivative and function behaviour

From the behaviour of the derivative of a function, it is often possible to deduce
some important features of the function itself. One of the most important of these
concerns maxima and minima of a function. Let us define these concepts precisely.

3.2.15 Definition (Local maximum and local minimum) Let I ⊆ R be an interval and
let f : I→ R be a function. A point x0 ∈ I is a:

(i) local maximum if there exists a neighbourhood U of x0 such that f (x) ≤ f (x0)
for every x ∈ U;

(ii) strict local maximum if there exists a neighbourhood U of x0 such that f (x) <
f (x0) for every x ∈ U \ {x0};

(iii) local minimum if there exists a neighbourhood U of x0 such that f (x) ≥ f (x0)
for every x ∈ U;

(iv) strict local minimum if there exists a neighbourhood U of x0 such that f (x) >
f (x0) for every x ∈ U \ {x0}. •

Now we have the standard result that relates derivatives to maxima and min-
ima.

3.2.16 Theorem (Derivatives, and maxima and minima) For I ⊆ R an interval, f : I→ R
a function, and x0 ∈ int(I), the following statements hold:

(i) if f is differentiable at x0 and if x0 is a local maximum or a local minimum for f, then
f′(x0) = 0;

(ii) if f is twice differentiable at x0, and if x0 is a local maximum (resp. local minimum)
for f, then f′′(x0) ≤ 0 (resp. f′′(x0) ≥ 0);

(iii) if f is twice differentiable at x0, and if f′(x0) = 0 and f′′(x0) ∈ R<0 (resp. f′′(x0) ∈ R>0),
then x0 is a strict local maximum (resp. strict local minimum) for f.

Proof (i) We will prove the case where x0 is a local minimum, since the case of a local
maximum is similar. If x0 is a local minimum, then there exists ϵ ∈ R>0 such that
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f (x) ≥ f (x0) for all x ∈ B(ϵ, x0). Therefore, f (x)− f (x0)
x−x0

≥ 0 for x ≥ x0 and f (x)− f (x0)
x−x0

≤ 0 for

x ≤ x0. Since the limit limx→x0
f (x)− f (x0)

x−x0
exists, it must be equal to both limits

lim
x↓x0

f (x) − f (x0)
x − x0

, lim
x↑x0

f (x) − f (x0)
x − x0

.

However, since the left limit is nonnegative and the right limit is nonpositive, we
conclude that f ′(x0) = 0.

(ii) We shall show that if f is twice differentiable at x0 and f ′′(x0) is not less than
or equal to zero, then x0 is not a local maximum. The statement concerning the local
minimum is argued in the same way. Now, if f is twice differentiable at x0, and if
f ′′(x0) ∈ R>0, then x0 is a local minimum by part (iii), which prohibits it from being a
local maximum.

(iii) We consider the case where f ′′(x0) ∈ R>0, since the other case follows in the
same manner. Choose ϵ ∈ R>0 such that, for x ∈ B(ϵ, x0),∣∣∣∣∣ f ′(x) − f ′(x0)

x − x0
− f ′′(x0)

∣∣∣∣∣ < 1
2 f ′′(x0),

this being possible since f ′′(x0) > 0 and since f is twice differentiable at x0. Since
f ′′(x0) > 0 it follows that, for x ∈ B(ϵ, x0),

f ′(x) − f ′(x0)
x − x0

> 0,

from which we conclude that f ′(x) > 0 for x ∈ (x0, x0 + ϵ) and that f ′(x) < 0 for
x ∈ (x0 − ϵ, x0). Now we prove a technical lemma.

1 Lemma Let I ⊆ R be an open interval, let f : I → R be a continuous function that is
differentiable, except possibly at x0 ∈ I. If f′(x) > 0 for every x > x0 and if f′(x) < 0 for every
x < x0, then x0 is a strict local minimum for f.

Proof We will use the Mean Value Theorem (Theorem 3.2.19) which we prove below.
Note that our proof of the Mean Value Theorem depends on part (i) of the present
theorem, but not on part that we are now proving. Let x ∈ I \ {x0}. We have two cases.
1. x > x0: By the Mean Value Theorem there exists a ∈ (x, x0) such that f (x) − f (x0) =

(x − x0) f ′(a). Since f ′(a) > 0 it then follows that f (x) > f (x0).
2. x < x0: A similar argument as in the previous case again gives f (x) > f (x0).
Combining these conclusions, we see that f (x) > f (x0) for all x ∈ I, and so x0 is a strict
local maximum for f . ▼

The lemma now immediately applies to the restriction of f to B(ϵ, x0), and so gives
the result. ■

Let us give some examples that illustrate the value and limitations of the pre-
ceding result.
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3.2.17 Examples (Derivatives, and maxima and minima)
1. Let I = R and define f : I → R by f (x) = x2. Note that f is infinitely differen-

tiable, so Theorem 3.2.16 can be applied freely. We compute f ′(x) = 2x, and
so f ′(x) = 0 if and only if x = 0. Therefore, the only local maxima and local
minima must occur at x = 0. To check whether a local maxima, a local minima,
or neither exists at x = 0, we compute the second derivative which is f ′′(x) = 2.
This is positive at x = 0 (and indeed everywhere), so we may conclude that
x = 0 is a strict local maximum for f from part (iii) of the theorem.
Applying the same computations to g(x) = −x2 shows that x = 0 is a strict local
maximum for g.

2. Let I = R and define f : I→ R by f (x) = x3. We compute f ′(x) = 3x2, from which
we ascertain that all maxima and minima must occur, if at all, at x = 0. However,
since f ′′(x) = 6x, f ′′(0) = 0, and we cannot conclude from Theorem 3.2.16
whether there is a local maximum, a local minimum, or neither at x = 0. In
fact, one can see “by hand” that x = 0 is neither a local maximum nor a local
minimum for f .
The same arguments apply to the functions g(x) = x4 and h(x) = −x4 to show that
when the second derivative vanishes, it is possible to have all possibilities—a
local maximum, a local minimum, or neither—at a point where both f ′ and f ′′

are zero.
3. Let I = [−1, 1] and define f : I→ R by

f (x) =

1 − x, x ∈ [0, 1],
1 + x, x ∈ [−1, 0).

“By hand,” one can check that f has a strict local maximum at x = 0, and strict
local minima at x = −1 and x = 1. However, we can detect none of these using
Theorem 3.2.16. Indeed, the local minima at x = −1 and x = 1 occur at the
boundary of I, and so the hypotheses of the theorem do not apply. This, indeed,
is why we demand that x0 lie in int(I) in the theorem statement. For the local
maximum at x = 0, the theorem does not apply since f is not differentiable at
x = 0. However, we do note that Lemma 1 (with modifications to the signs of
the derivative in the hypotheses, and changing “minimum” to “maximum” in
the conclusions) in the proof of the theorem does apply, since f is differentiable
at points in (−1, 0) and (0, 1), and for x > 0 we have f ′(x) < 0 and for x < 0 we
have f ′(x) > 0. The lemma then allows us to conclude that f has a strict local
maximum at x = 0. •

Next let us prove a simple result that, while not always of great value itself,
leads to the important Mean Value Theorem below.

3.2.18 Theorem (Rolle’s6 Theorem) Let I ⊆ R be an interval, let f : I → R be continuous,
6Michel Rolle (1652–1719) was a French mathematician whose primary contributions were to

algebra.
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and suppose that for a, b ∈ I it holds that f|(a, b) is differentiable and that f(a) = f(b). Then
there exists c ∈ (a, b) such that f′(c) = 0.

Proof Since f |[a, b] is continuous, by Theorem 3.1.23 there exists x1, x2 ∈ [a, b] such
that image( f |[a, b]) = [ f (x1), f (x2)]. We have three cases to consider.
1. x1, x2 ∈ bd([a, b]): In this case it holds that f is constant since f (a) = f (b). Thus the

conclusions of the theorem hold for any c ∈ (a, b).
2. x1 ∈ int([a, b]): In this case, f has a local minimum at x1, and so by Theorem 3.2.16(i)

we conclude that f ′(x1) = 0.
3. x2 ∈ int([a, b]): In this case, f has a local maximum at x2, and so by Theorem 3.2.16(i)

we conclude that f ′(x2) = 0. ■

Rolle’s Theorem has the following generalisation, which is often quite useful,
since it establishes links between the values of a function and the values of its
derivative.

3.2.19 Theorem (Mean Value Theorem) Let I ⊆ R be an interval, let f : I→ R be continuous,
and suppose that for a, b ∈ I it holds that f|(a, b) is differentiable. Then there exists c ∈ (a, b)
such that

f′(c) =
f(b) − f(a)

b − a
.

Proof Define g : I→ R by

g(x) = f (x) −
f (b) − f (a)

b − a
(x − a).

Using the results of Section 3.2.3 we conclude that g is continuous and differentiable
on (a, b). Moreover, direct substitution shows that g(b) = g(a). Thus Rolle’s Theorem
allows us to conclude that there exists c ∈ (a, b) such that g′(c) = 0. However, another
direct substitution shows that g′(c) = f ′(c) − f (b)− f (a)

b−a . ■

In Figure 3.8 we give the intuition for Rolle’s Theorem, the Mean Value Theo-

x

f(x)

a b

f(a) = f(b)

c
x

f(x)

a

f(a)

b

f(b)

c

Figure 3.8 Illustration of Rolle’s Theorem (left) and the Mean
Value Theorem (right)
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rem, and the relationship between the two results.
Another version of the Mean Value Theorem relates the values of two functions

with the values of their derivatives.

3.2.20 Theorem (Cauchy’s Mean Value Theorem) Let I ⊆ R be an interval and let f,g: I→
R be continuous, and suppose that for a, b ∈ I it holds that f|(a, b) and g|(a, b) are
differentiable, and that g′(x) , 0 for each x ∈ (a, b). Then there exists c ∈ (a, b) such that

f′(c)
g′(c)

=
f(b) − f(a)
g(b) − g(a)

.

Proof Note that g(b) , g(a) by Rolle’s Theorem, since g′(x) , 0 for x ∈ int(a, b). Let

α =
f (b) − f (a)
g(b) − g(a)

and define h : I → R by h(x) = f (x) − αg(x). Using the results of Section 3.2.3, one
verifies that h is continuous on I and differentiable on (a, b). Moreover, one can also
verify that h(a) = h(b). Thus Rolle’s Theorem implies the existence of c ∈ (a, b) for which
h′(c) = 0. A simple computation verifies that h′(c) = 0 is equivalent to the conclusion
of the theorem. ■

We conclude this section with the useful L’Hôpital’s Rule. This rule for finding
limits is sufficiently useful that we state and prove it here in an unusual level of
generality.

3.2.21 Theorem (L’Hôpital’s7 Rule) Let I ⊆ R be an interval, let x0 ∈ R, and let f,g: I→ R
be differentiable functions with g′(x) , 0 for all x ∈ I−{x0}. Then the following statements
hold.

(i) Suppose that x0 is an open right endpoint for I and suppose that either

(a) limx↑x0 f(x) = 0 and limx↑x0 g(x) = 0 or
(b) limx↑x0 f(x) = ∞ and limx↑x0 g(x) = ∞,

and suppose that limx↑x0
f′(x)
g′(x) = s0 ∈ R. Then limx↑x0

f(x)
g(x) = s0.

(ii) Suppose that x0 is an left right endpoint for I and suppose that either

(a) limx↓x0 f(x) = 0 and limx↓x0 g(x) = 0 or
(b) limx↑x0 f(x) = ∞ and limx↓x0 g(x) = ∞,

and suppose that limx↓x0
f′(x)
g′(x) = s0 ∈ R. Then limx↓x0

f(x)
g(x) = s0.

(iii) Suppose that x0 ∈ int(I) and suppose that either

(a) limx→x0 f(x) = 0 and limx→x0 g(x) = 0 or
(b) limx→x0 f(x) = ∞ and limx→x0 g(x) = ∞,

7Guillaume François Antoine Marquis de L’Hôpital (1661–1704) was one of the early developers
of calculus.
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and suppose that limx→x0
f′(x)
g′(x) = s0 ∈ R. Then limx→x0

f(x)
g(x) = s0.

The following two statements which are independent of x0 (thus we ask that g′(x) , 0 for
all x ∈ I) also hold.

(iv) Suppose that I is unbounded on the right and suppose that either
(a) limx→∞ f(x) = 0 and limx→∞ g(x) = 0 or
(b) limx→∞ f(x) = ∞ and limx→∞ g(x) = ∞,

and suppose that limx→∞
f′(x)
g′(x) = s0 ∈ R. Then limx→∞

f(x)
g(x) = s0.

(v) Suppose that I is unbounded on the left and suppose that either
(a) limx→−∞ f(x) = 0 and limx→−∞ g(x) = 0 or
(b) limx→−∞ f(x) = ∞ and limx→−∞ g(x) = ∞,

and suppose that limx→−∞
f′(x)
g′(x) = s0 ∈ R. Then limx→−∞

f(x)
g(x) = s0.

Proof (i) First suppose that limx↑x0 f (x) = 0 and limx↑x0 g(x) = 0 and that s0 ∈ R. We
may then extend f and g to be defined at x0 by taking their values at x0 to be zero,
and the resulting function will be continuous by Theorem 3.1.3. We may now apply
Cauchy’s Mean Value Theorem to assert that for x ∈ I there exists cx ∈ (x, x0) such that

f ′(cx)
g′(cx)

=
f (x0) − f (x)
g(x0) − g(x)

=
f (x)
g(x)

.

Now let ϵ ∈ R>0 and choose δ ∈ R>0 such that
∣∣∣∣ f ′(x)

g′(x) − s0

∣∣∣∣ < ϵ for x ∈ B(δ, x0) ∩ I. Then,
for x ∈ B(δ, x0) ∩ I we have ∣∣∣∣∣ f (x)

g(x)
− s0

∣∣∣∣∣ = ∣∣∣∣∣ f ′(cx)
g′(cx)

− s0

∣∣∣∣∣ < ϵ
since cx ∈ B(δ, x0) ∩ I. This shows that limx↑x0

f (x)
g(x) = s0, as claimed.

Now suppose that limx↑x0 f (x) = ∞ and limx↑x0 g(x) = ∞ and that s0 ∈ R. Let

ϵ ∈ R>0 and choose δ1 ∈ R>0 such that
∣∣∣∣ f ′(x)

g′(x) − s0

∣∣∣∣ < ϵ
2(1+|s0|)

for x ∈ B(δ1, x0) ∩ I. For
x ∈ B(δ1, x0) ∩ I, by Cauchy’s Mean Value Theorem there exists cx ∈ B(δ1, x0) ∩ I such
that

f ′(cx)
g′(cx)

=
f (x) − f (x − δ1)
g(x) − g(x − δ1)

.

Therefore, ∣∣∣∣∣ f (x) − f (x − δ1)
g(x) − g(x − δ1)

− s0

∣∣∣∣∣ < ϵ
2(1 + |s0|)

for x ∈ B(δ, x0) ∩ I. Now define

h(x) =
1 − f (x−δ1)

f (x)

1 − g(x−δ1)
g(x)

and note that
f (x) − f (x − δ1)
g(x) − g(x − δ1)

= h(x)
f (x)
g(x)

.
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Therefore we have ∣∣∣∣∣h(x)
f (x)
g(x)

− s0

∣∣∣∣∣ < ϵ
2(1 + |s0|)

for x ∈ B(δ1, x0) ∩ I. Note also that limx↑x0 h(x) = 1. Thus we can choose δ2 ∈ R>0 such
that |h(x) − 1| < ϵ

2(1+|s0|)
and h(x) > 1

2 for x ∈ B(δ2, x0) ∩ I. Then define δ = min{δ1, δ2}.
For x ∈ B(δ, x0) ∩ I we then have∣∣∣∣∣∣h(x)

(
f (x)
g(x)

− s0

)∣∣∣∣∣∣ =
∣∣∣∣∣h(x)

f (x)
g(x)

− h(x)s0

∣∣∣∣∣
≤

∣∣∣∣∣h(x)
f (x)
g(x)

− s0

∣∣∣∣∣ + |(1 − h(x))s0|

<
ϵ

2(1 + |s0|)
+

ϵ
2(1 + |s0|)

|s0| =
ϵ
2
.

Then, finally, ∣∣∣∣∣ f (x)
g(x)

− s0

∣∣∣∣∣ < ϵ
2h(x)

< ϵ,

for x ∈ B(δ, x0) ∩ I.
Now we consider the situation when s0 ∈ {−∞,∞}. We shall take only the case

of s0 = ∞ since the other follows in a similar manner. We first take the case where
limx↑x0 f (x) = 0 and limx↑x0 g(x) = 0. In this case, for x ∈ I, from the Cauchy Mean Value
Theorem we can find cx ∈ (x, x0) such that

f ′(cx)
g′(cx)

=
f (x)
g(x)

.

Now for M ∈ R>0 we choose δ ∈ R>0 such that for x ∈ B(δ, x0) ∩ I we have f ′(x)
g′(x) > M.

Then we immediately have
f (x)
g(x)

=
f ′(cx)
g′(cx)

> M

for x ∈ B(δ, x0) ∩ I since cx ∈ B(δ, x0), which gives the desired conclusion.
The final case we consider in this part of the proof is that where s0 = ∞ and

limx↑x0 f (x) = ∞ and limx↑x0 g(x) = ∞. For M ∈ R>0 choose δ1 ∈ R>0 such that
f ′(x)
g′(x) > 2M provided that x ∈ B(δ1, x0) ∩ I. Then, using Cauchy’s Mean Value Theorem,
for x ∈ B(δ1, x0) ∩ I there exists cx ∈ B(δ1, x0) such that

f ′(cx)
g′(cx)

=
f (x) − f (x − δ1)
g(x) − g(x − δ1)

.

Therefore,
f (x) − f (x − δ1)
g(x) − g(x − δ1)

> 2M

for x ∈ B(δ, x0) ∩ I. As above, define

h(x) =
1 − f (x−δ1)

f (x)

1 − g(x−δ1)
g(x)
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and note that
f (x) − f (x − δ1)
g(x) − g(x − δ1)

= h(x)
f (x)
g(x)

.

Therefore

h(x)
f (x)
g(x)

> 2M

for x ∈ B(δ1, x0). Now take δ2 ∈ R>0 such that, if x ∈ B(δ2, x0) ∩ I, then h(x) ∈ [ 1
2 , 2], this

being possible since limx↑x0 h(x) = 1. It then follows that

f (x)
g(x)

>
2M
h(x)

> M

for x ∈ B(δ, x0) ∩ I where δ = min{δ1, δ2}.
(ii) This follows in the same manner as part (i).
(iii) This follows from parts (i) and (ii).
(iv) Let us define ϕ : (0,∞)→ (0,∞) by ϕ(x) = 1

x . Then define Ĩ = ϕ(I), noting that
Ĩ is an interval having 0 as an open left endpoint. Now define f̃ , g̃ : Ĩ→ R by f̃ = f ◦ ϕ
and g̃ = g ◦ ϕ. Using the Chain Rule (Theorem 3.2.13 below) we compute

f̃ ′(x̃) = f ′(ϕ(x̃))ϕ′(x̃) = −
f ′( 1

x̃ )

x̃2

and similarly g̃′(x̃) = −
f ′( 1

x̃ )
x̃2 . Therefore, for x̃ ∈ Ĩ,

f ′( 1
x̃ )

g′( 1
x̃ )
=

f̃ ′(x̃)
g̃′(x̃)

.

and so, using part (ii) (it is easy to see that the hypotheses are verified),

lim
x̃↓0

f ′( 1
x̃ )

g′( 1
x̃ )
= lim

x̃↓0

f̃ ′(x̃)
g̃′(x̃)

=⇒ lim
x→∞

f ′(x)
g′(x)

= lim
x̃↓0

f̃ (x̃)
g̃(x̃)

=⇒ lim
x→∞

f ′(x)
g′(x)

= lim
x→∞

f (x)
g(x)

,

which is the desired conclusion.
(v) This follows in the same manner as part (iv). ■

3.2.22 Examples (Uses of L’Hôpital’s Rule)
1. Let I = R and define f , g : I → R by f (x) = sin x and g(x) = x. Note that f

and g satisfy the hypotheses of Theorem 3.2.21 with x0 = 0. Therefore we may
compute

lim
x→0

f (x)
g(x)

= lim
x→0

f ′(x)
g′(x)

=
cos 0

1
= 1.
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2. Let I = [0, 1] and define f , g : I→ R by f (x) = sin x and g(x) = x2. We can verify
that f and g satisfy the hypotheses of L’Hôpital’s Rule with x0 = 0. Therefore
we compute

lim
x↓0

f (x)
g(x)

= lim
x↓0

f ′(x)
g′(x)

= lim
x↓0

cos x
2x
= ∞.

3. Let I = R>0 and define f , g : I → R by f (x) = ex and g(x) = −x. Note that
limx→∞ f (x) = ∞ and that limx→∞ g(x) = −∞. Thus f and g do not quite satisfy
the hypotheses of part (iv) of Theorem 3.2.21 since limx→∞ g(x) , ∞. However,
the problem is a superficial one, as we now illustrate. Define g̃(x) = −g(x) = x.
Then f and g̃ do satisfy the hypotheses of Theorem 3.2.21(iv). Therefore,

lim
x→∞

f (x)
g̃(x)

= lim
x→∞

f ′(x)
g̃′(x)

= lim
x→∞

ex

1
= ∞,

and so

lim
x→∞

f (x)
g(x)

= lim
x→∞
−

f (x)
g̃(x)

= −∞.

4. Consider the function h : R→ R defined by h(x) = x
√

1+x2
. We wish to determine

limx→∞ h(x), if this limit indeed exists. We will try to use L’Hôpital’s Rule with
f (x) = x and g(x) =

√

1 + x2. First, one should check that f and g satisfy the
hypotheses of the theorem taking x0 = 0. One can check that f and g are differ-
entiable on I and that g′(x) is nonzero for x ∈ I \ {x0}. Moreover, limx→0 f (x) = 0
and limx→0 g(x) = 0. Thus it only remains to check that limx→0

f ′(x)
g′(x) ∈ R. To this

end, one can easily compute that

f ′(x)
g′(x)

=
g(x)
f (x)

,

which immediately implies that an application of L’Hôpital’s Rule is destined
to fail. However, the actual limit limx→∞ h(x) does exist, however, and is readily
computed, using the definition of limit, to be 1. Thus the converse of L’Hôpital’s
Rule does not hold. •

3.2.5 Monotonic functions and differentiability

In Section 3.1.5 we considered the notion of monotonicity, and its relationship
with continuity. In this section we see how monotonicity is related to differentia-
bility.

For functions that are differentiable, the matter of deciding on their monotonic-
ity properties is straightforward.
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3.2.23 Proposition (Monotonicity for differentiable functions) For I ⊆ R an interval and
f : I→ R a differentiable function, the following statements hold:

(i) f is constant if and only if f′(x) = 0 for all x ∈ I;
(ii) f is monotonically increasing if and only f′(x) ≥ 0 for all x ∈ I;
(iii) f is strictly monotonically increasing if and only f′(x) > 0 for all x ∈ I;
(iv) f is monotonically decreasing if and only if f′(x) ≤ 0 for all x ∈ I.
(v) f is strictly monotonically decreasing if and only if f′(x) < 0 for all x ∈ I.

Proof In each case the “only if” assertions follow immediately from the definition of
the derivative. To prove the “if” assertions, let x1, x2 ∈ I with x1 < x2. By the Mean
Value Theorem there exists c ∈ [x1, x2] such that f (x1)− f (x2) = f ′(c)(x1−x2). The result
follows by considering the three cases of f ′(c) = 0, f ′(c) ≤ 0, f ′(c) > 0, f ′(c) ≤ 0, and
f ′(c) < 0, respectively. ■

The previous result gives the relationship between the derivative and mono-
tonicity. Combining this with Theorem 3.1.30 which relates monotonicity with
invertibility, we obtain the following characterisations of the derivative of the in-
verse function.

3.2.24 Theorem (Inverse Function Theorem for R) Let I ⊆ J be an interval, let x0 ∈ I, and
let f : I→ J = image(f) be a continuous, strictly monotonically increasing function that is
differentiable at x0 and for which f′(x0) , 0. Then f−1 : J → I is differentiable at f(x0) and
the derivative is given by

(f−1)′(f(x0)) =
1

f′(x0)
.

Proof From Theorem 3.1.30 we know that f is invertible. Let y0 = f (x0), let y1 ∈ J,
and define x1 ∈ I by f (x1) = y1. Then, if x1 , x0,

f−1(y1) − f−1(y0)
y1 − y0

=
x1 − x0

f (x1) − f (x0)
.

Therefore,

( f−1)′(y0) = lim
y1→J y0

f−1(y1) − f−1(y0)
y1 − y0

= lim
x1→Ix0

x1 − x0

f (x1) − f (x0)
=

1
f ′(x0)

,

as desired. ■

3.2.25 Corollary (Alternate version of Inverse Function Theorem) Let I ⊆ R be an
interval, let x0 ∈ I, and let f : I → R be a function of class C1 such that f′(x0) , 0. Then
there exists a neighbourhood U of x0 in I and a neighbourhood V of f(x0) such that f|U is
invertible, and such that (f|U)−1 is differentiable, and the derivative is given by

((f|U)−1)′(y) =
1

f′(f−1(y))

for each y ∈ V.
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Proof Since f ′ is continuous and is nonzero at x0, there exists a neighbourhood U of
x0 such that f ′(x) has the same sign as f ′(x0) for all x ∈ U. Thus, by Proposition 3.2.23,
f |U is either strictly monotonically increasing (if f ′(x0) > 0) or strictly monotonically
decreasing (if f ′(x0) < 0). The result now follows from Theorem 3.2.24. ■

For general monotonic functions, Proposition 3.2.23 turns out to be “almost”
enough to characterise them. To understand this, we recall from Section 2.5.6 the
notion of a subset of R of measure zero. With this recollection having been made,
we have the following characterisation of general monotonic functions.

3.2.26 Theorem (Characterisation of monotonic functions II) If I ⊆ R is an interval and
if f : I → R is either monotonically increasing (resp. monotonically decreasing), then f is
differentiable almost everywhere, and f′(x) ≥ 0 (resp. f′(x) ≤ 0) at all points x ∈ I where f
is differentiable.

Proof We first prove a technical lemma.

1 Lemma If g: [a, b]→ R has the property that, for each x ∈ [a, b], the limits g(x+) and g(x−)
exist whenever they are defined as limits in [a, b]. If we define

S = {x ∈ [a, b] | there exists x′ > x such that g(x′) > max{g(x−),g(x),g(x+)}},

then S is a disjoint union of a countable collection {Iα | α ∈ A} of intervals that are open as
subsets of [a, b] (cf. the beginning of Section 3.1.1).

Proof Let x ∈ S. We have three cases.
1. There exists x′ > x such that g(x′) > g(x−), and g(x−) ≥ g(x) and g(x−) ≥ g(x+):

Define gx,−, gx,+ : [a, b]→ R by

gx,−(y) =

g(y), y , 1,
g(x−), y = x,

gx,+(y) =

g(y), y , 1,
g(x+), y = x.

Since the limit g(x−) exists, gx,−|[a, x] is continuous at x by Theorem 3.1.3. Since
g(x′) > gx,−(x), there exists ϵ1 ∈ R>0 such that g(x′) > gx,−(y) = g(y) for all y ∈
(x − ϵ1, x). Now note that g(x′) > g(x−) ≥ gx,+(x). Arguing similarly to what we
have done, there exists ϵ2 ∈ R>0 such that g(x′) > gx,+(y) = g(y) for all y ∈ (x, x+ϵ2).
Let ϵ = min{ϵ1, ϵ2}. Since g(x′) > g(x−) ≥ g(x), it follows that g(x′) > g(y) for all
y ∈ (x − ϵ, x + ϵ), so we can conclude that S is open.

2. There exists x′ > x such that g(x′) > g(x), and g(x) ≥ g(x−) and g(x) ≥ g(x+): Define
gx,− and gx,+ as above. Then, since g(x′) > g(x) ≥ g(x−) and g(x′) > g(x) ≥ g(x+),
we can argue as in the previous case that there exists ϵ ∈ R>0 such that g(x′) > g(y)
for all y ∈ (x − ϵ, x + ϵ). Thus S is open.

3. There exists x′ > x such that g(x′) > g(x+), and g(x+) ≥ g(x) and g(x+) ≥ g(x−):
Here we can argue in a manner entirely similar to the first case that S is open.

The preceding arguments show that S is open, and so by Proposition 2.5.6 it is a
countable union of open intervals. ▼



3.2 Differentiable R-valued functions on R 239

Now define

Λl(x) = lim sup
h↓0

f (x − h) − f (x)
−h

λl(x) = lim inf
h↓0

f (x − h) − f (x)
−h

Λr(x) = lim sup
h↓0

f (x + h) − f (x)
h

λr(x) = lim inf
h↓0

f (x + h) − f (x)
h

.

If f is differentiable at x then these four numbers will be finite and equal. We shall
show that
1. Λr(x) < ∞ and
2. Λr(x) ≤ λl(x)
for almost every x ∈ [a, b]. Since the relations

λl ≤ Λl ≤ λr ≤ Λr

hold due to monotonicity of f , the differentiability of f for almost all x will then follow.
For 1, if M ∈ R>0 denote

SM = {x ∈ [a, b] | Λr(x) > M}.

Thus, for x0 ∈ SM, there exists x > x0 such that

f (x) − f (x0)
x − x0

> M.

Defining gM(x) = f (x) −Mx this asserts that gM(x) > gM(x0). The function gM satisfies
the hypotheses of Lemma 1 by part (i). This means that SM is contained in a countable
disjoint union of intervals {Iα | α ∈ A}, open in [a, b], for which

gM(aα) ≤ max{gM(bα−), gM(bα), gM(bα+)}, α ∈ A,

where aα and bα are the left and right endpoints, respectively, for Iα, α ∈ A. In particular,
gM(aα) ≤ gM(bα). A trivial manipulation then gives

M(bα − aα) ≤ f (bα) − f (aα), α ∈ A.

We have
M

∑
α∈A

|bα − aα| ≤
∑
α∈A

| f (bα) − f (aα)| ≤ f (b) − f (a)

since f is monotonically increasing. Since f is bounded, this shows that as M→∞ the
length of the open intervals {(aα, bα) | α ∈ A} covering SM must go to zero. This shows
that the set of points where 1 holds has zero measure.

Now we turn to 2. Let 0 < m < M, define gm(x) = − f (x)+mx and gM(x) = f (x)−Mx.
Also define

Sm = {x ∈ [a, b] | λl(x) < m}.

For x0 ∈ Sm there exists x < x0 such that

f (x) − f (x0)
x − x0

< m,
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which is equivalent to gm(x) > gm(x0). Therefore, by Lemma 1, note that Sm is contained
in a countable disjoint union of intervals {Iα | α ∈ A}, open in [a, b]. Denote by aα and
bα the left and right endpoints, respectively, for Iα for α ∈ A. For α ∈ A denote

Sα,M = {x ∈ [aα, bα] | Λr(x) > M},

and arguing as we did in the proof that 1 holds almost everywhere, denote by {Iα,β | β ∈
Bα} the countable collection of subintervals, open in [a, b], of (aα, bα) that contain Sα,M.
Denote by aα,β and bα,β the left and right endpoints, respectively, of Iα,β for α ∈ A and
β ∈ Bα. Note that the relations

gm(aα) ≤ max{gm(bα−), gm(bα), gm(bα+)}, α ∈ A,
gM(aα,β) ≤ max{gM(bα,β−), gM(bα,β), gM(bα,β+)}, α ∈ A, β ∈ Bα

hold. We then may easily compute

f (bα) − f (aα) ≤ m(bα − aα), α ∈ A,
f (bα,β) − f (aα,β) ≥M(bα,β − bα,β), α ∈ A, β ∈ Aα.

Therefore, for each α ∈ A,

M
∑
β∈Aα

|bα,β − aα,β| ≤
∑
β∈Aα

| f (bα,β − aα,β)| ≤ f (bα) − f (aα) ≤ m(bα − aα).

This then gives
M

∑
α∈A

∑
β∈Aα

|bα,β − aα,β| ≤ m
∑
α∈A

|bα − aα|,

or Σ2 ≤
m
MΣ1, where

Σ1 =
∑
α∈A

∑
βα∈Kα

|bα,β − aα,β|, Σ2 =
∑
α∈A

|bα − aα|.

Now, this process can be repeated, defining

Sα,β,m = {x ∈ [aα,β, bα,β] | λl(x) < m},

and so on. We then generate a sequence of countable disjoint intervals of total length
Σα and satisfying

Σ2α ≤
m
M
Σ2α−1 ≤

( m
M

)α
Σ1, α ∈ A.

It therefore follows that limα→∞ Σα = 0. Thus the set of points

SM,m = {x ∈ [a, b] | m < λl(x) and Λr(x) > M}

is contained in a set of zero measure provided that m < M. Now note that

{x ∈ [a, b] | λl(x) ≥ Λr(x)} ⊆
⋃
{SM,m | m,M ∈ Q, m < M}.
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The union on the left is a countable union of sets of zero measure, and so has zero
measure itself (by Exercise 2.5.11). This shows that f is differentiable on a set whose
complement has zero measure.

To show that f ′(x) ≥ 0 for all points x at which f is differentiable, suppose the
converse. Thus suppose that there exists x ∈ [a, b] such that f ′(x) < 0. This means that
for ϵ sufficiently small and positive,

f (x + ϵ) − f (x)
ϵ

< 0 =⇒ f (x + ϵ) − f (x) < 0,

which contradicts the fact that f is monotonically increasing. This completes the proof
of the theorem. ■

Let us give two examples of functions that illustrate the surprisingly strange
behaviour that can arise from monotonic functions. These functions are admittedly
degenerate, and not something one is likely to encounter in applications. However,
they do show that one cannot strengthen the conclusions of Theorem 3.2.26.

Our first example is one of the standard “peculiar” monotonic functions, and its
construction relies on the middle-thirds Cantor set constructed in Example 2.5.39.

3.2.27 Example (A continuous increasing function with an almost everywhere zero
derivative) Let Ck, k ∈ Z>0, be the sets, comprised of collections of disjoint closed in-
tervals, used in the construction of the middle-thirds Cantor set of Example 2.5.39.
Note that, for x ∈ [0, 1], the set [0, x] ∩ Ck consists of a finite number of inter-
vals. Let gk : [0, 1] → [0, 1] be defined by asking that gC,k(x) be the sum of the
lengths of the intervals comprising [0, x] ∩ Ck. Then define fC,k : [0, 1] → [0, 1] by

fC,k(x) =
(

3
2

)k
gC,k(x). Thus fC,k is a function that is constant on the complement to the

closed intervals comprising Ck, and is linear on those same closed intervals, with
a slope determined in such a way that the function is continuous. We then define
fC : [0, 1] → [0, 1] by fC(x) = limk→∞ fC,k(x). In Figure 3.9 we depict fC. The reader
new to this function should take the requisite moment or two to understand our
definition of fC, perhaps by sketching a couple of the functions fC,k, k ∈ Z>0.

Let us record some properties of the function fC, which is called the Cantor
function or the Devil’s staircase.

1 Lemma fC is continuous.
Proof We prove this by showing that the sequence of functions ( fC,k)k∈Z>0 converges
uniformly, and then using Theorem 3.6.8 to conclude that the limit function is
continuous. Note that the functions fC,k and fC,k+1 differ only on the closed intervals
comprising Ck. Moreover, if Jk, j, k ∈ Z≥0, j ∈ {1, . . . , 2k

− 1}, denotes the set of open
intervals forming [0, 1] \ Ck, numbered from left to right, then the value of fC,k on
Jk, j is j2−k. Therefore,

sup{| fC,k+1(x) − fC,k(x)| | x ∈ [0, 1]} < 2−k, k ∈ Z≥0.

This implies that ( fC,k)k∈Z>0 is uniformly convergent as in Definition 3.6.4. Thus
Theorem 3.6.8 gives continuity of fC, as desired. ▼
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Figure 3.9 A depiction of the Cantor function

2 Lemma fC is differentiable at all points in [0, 1] \ C, and its derivative, where it exists, is
zero.

Proof Since C is constructed as an intersection of the closed sets Ck, and since such
intersections are themselves closed by Exercise 2.5.1, it follows that [0, 1] \ C is
open. Thus if x ∈ [0, 1] \ C, there exists ϵ ∈ R>0 such that B(ϵ, x) ⊆ [0, 1] \ C. Since
B(ϵ, x) contains no endpoints for intervals from the sets Ck, k ∈ Z>0, it follows that
fC,k|B(ϵ, x) is constant for sufficiently large k. Therefore fC|B(ϵ, x) is constant, and it
then follows that fC is differentiable at x, and that f ′C(x) = 0. ▼

In Example 2.5.39 we showed that C has measure zero. Thus we have a
continuous, monotonically increasing function from [0, 1] to [0, 1] whose derivative
is almost everywhere zero. It is perhaps not a priori obvious that such a function
can exist, since one’s first thought might be that zero derivative implies a constant
function. The reasons for the failure of this rule of thumb in this example will
not become perfectly clear until we examine the notion of absolute continuity in
Section III-2.9.6. •

The second example of a “peculiar” monotonic function is not quite as standard
in the literature, but is nonetheless interesting since it exhibits somewhat different
oddities than the Cantor function.

3.2.28 Example (A strictly increasing function, discontinuous on the rationals, with
an almost everywhere zero derivative) We define a strictly monotonically in-
creasing function fQ : R → R as follows. Let (q j) j∈Z>0 be an enumeration of the
rational numbers and for x ∈ R define

I(x) = { j ∈ Z>0 | q j < x}.
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Now define
fQ(x) =

∑
j∈I(x)

1
2 j .

Let us record the properties of fQ in a series of lemmata.

1 Lemma limx→−∞ fQ(x) = 0 and limx→∞ fQ(x) = 1.

Proof Recall from Example 2.4.2–1 that
∑
∞

j=1
1
2 j = 1. Let ϵ ∈ R>0 and choose N ∈ Z>0

such that
∑
∞

j=N+1
1
2 j < ϵ. Now choose M ∈ R>0 such that {q1, . . . , qN} ⊆ [−M,M].

Then, for x < M we have

fQ(x) =
∑
j∈I(x)

1
2 j =

∞∑
j=1

1
2 j −

∑
j∈Z>0\I(x)

1
2 j ≤

∞∑
j=1

1
2 j −

N∑
j=1

1
2 j < ϵ.

Also, for x > M we have

fQ(x) =
∑
j∈I(x)

1
2 j ≥

N∑
j=1

1
2 j > 1 − ϵ.

Thus limx→−∞ fQ(x) = 0 and limx→∞ fQ(x) = 1. ▼

2 Lemma fQ is strictly monotonically increasing.

Proof Let x, y ∈ R with x < y. Then, by Corollary 2.2.16, there exists q ∈ Q such
that x < q < y. Let j0 ∈ Z>0 have the property that q = q j0 . Then

fQ(y) =
∑
j∈I(y)

1
2 j ≥

∑
j∈I(x)

1
2 j +

1
2 j0

> fQ(x),

as desired. ▼

3 Lemma fQ is discontinuous at each point in Q.

Proof Let q ∈ Q and let x > q. Let j0 ∈ Z>0 satisfy q = q j0 . Then

fQ(x) =
∑
j∈I(x)

1
2 j ≥

1
2 j0
+

∑
j∈I(q)

1
2 j =

1
2 j0
+

∑
j∈I(q)

1
2 j .

Therefore, limx↓q fQ(x) ≥ 1
2 j0
+ fQ(q), implying that fQ is discontinuous at q by

Theorem 3.1.3. ▼
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4 Lemma fQ is continuous at each point in R \Q.
Proof Let x ∈ R \ Q and let ϵ ∈ R>0. Take N ∈ Z>0 such that

∑
∞

j=N+1
1
2 j < ϵ and

define δ ∈ R>0 such that B(δ, x) ∩ {q1, . . . , qN} = ∅ (why is this possible?). Now let

I(δ, x) = { j ∈ Z>0 | q j ∈ B(δ, x)}

and note that, for y ∈ B(δ, x) with x < y, we have

fQ(y) − fQ(x) =
∑
j∈I(y)

1
2 j −

∑
j∈I(x)

1
2 j ≤

∑
j∈I(δ,x)

1
2 j =

∞∑
j=1

1
2 j −

∑
Z>0\I(δ,x)

1
2 j

≤

∞∑
j=1

1
2 j −

N∑
j=1

1
2 j =

∞∑
j=N+1

1
2 j < ϵ.

A similar argument holds for y < x giving fQ(x) − fQ(y) < ϵ in this case. Thus
| fQ(y) − fQ(x)| < ϵ for |y − x| < δ, thus showing continuity of f at x. ▼

5 Lemma The set {x ∈ R | f′
Q

(x) , 0} has measure zero.
Proof The proof relies on some concepts from Section 3.6. For k ∈ Z>0 define
fQ,k : R→ R by

fQ,k(x) =
∑

j∈I(x)∩{1,...,k}

1
2 j .

Note that ( fQ,k)k∈Z>0 is a sequence of monotonically increasing functions with the
following properties:
1. limk→∞ fQ,k(x) = fQ(x) for each x ∈ R;
2. the set {x ∈ R | f ′

Q,k(x) , 0} is finite for each k ∈ Q.
The result now follows from Theorem 3.6.25. ▼

Thus we have an example of a strictly monotonically increasing function whose
derivative is zero almost everywhere. Note that this function also has the feature
that in any neighbourhood of a point where it is differentiable, there lie points
where it is not differentiable. This is an altogether peculiar function. •

3.2.6 Convex functions and differentiability

Let us now return to our consideration of convex functions introduced in Sec-
tion 3.1.6. Here we discuss the differentiability properties of convex functions.
The following notation for a function f : I→ R will be convenient:

f ′(x+) = lim
ϵ↓0

f (x + ϵ) − f (x)
ϵ

, f ′(x−) = lim
ϵ↓0

f (x) − f (x − ϵ)
ϵ

,

provided that these limits exist.
With this notation, convex functions have the following properties.
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3.2.29 Proposition (Properties of convex functions II) For an interval I ⊆ R and for a
convex function f : I→ R, the following statements hold:

(i) if I is open then the limits f′(x+) and f′(x−) exist and f′(x−) ≤ f′(x+) for each x ∈ I;
(ii) if I is open then the functions

I ∋ x 7→ f′(x+), I ∋ x 7→ f′(x−)

are monotonically increasing, and strictly monotonically increasing if f is strictly
convex;

(iii) if I is open and if x1, x2 ∈ I satisfy x1 < x2, then f′(x1+) ≤ f′(x2−);
(iv) f is differentiable except at a countable number of points in I.

Proof (i) Since I is open there exists ϵ0 ∈ R>0 such that [x, x + ϵ0) ⊆ I. Let (ϵ j) j∈Z>0

be a sequence in (0, ϵ0) converging to 0 and such that ϵ j+1 < ϵ j for every j ∈ Z>0.
Then the sequence (s f (x, x + ϵ j)) j∈Z>0 is monotonically decreasing. This means that, by
Lemma 3.1.33,

f (x + ϵ j+1) − f (x)
ϵ j+1

≤
f (x + ϵ j) − f (x)

ϵ j

for each j ∈ Z>0. Moreover, if x′ ∈ I satisfies x′ < x then we have s f (x′, x) ≤ s f (x, x + ϵ j)
for each j ∈ Z>0. Thus the sequence (ϵ−1

j ( f (x + ϵ j) − f (x))) j∈Z>0 is decreasing and
bounded from below. Thus it must converge, cf. Theorem 2.3.8.

The proof for the existence of the other asserted limit follows that above, mutatis
mutandis.

To show that f ′(x−) ≤ f ′(x+), note that, for all ϵ sufficiently small,

f (x) − f (x − ϵ)
ϵ

= s f (x − ϵ, x) ≤ s f (x, x + ϵ) =
f (x + ϵ) − f (x)

ϵ
.

Taking limits as ϵ ↓ 0 gives the desired inequality.
(ii) For x1, x2 ∈ I with x1 < x2 we have

f ′(x1+) = lim
ϵ↓0

s f (x1, x1 + ϵ) ≤ lim
ϵ↓0

s f (x2, x2 + ϵ) = f ′(x2+),

using Lemma 3.1.33. A similar computation, mutatis mutandis, shows that the other
function in this part of the result is also monotonically increasing. Moreover, if f is
strictly convex that the inequalities above can be replaced with strict inequalities by
(3.2). From this we conclude that x 7→ f ′(x+) and x 7→ f ′(x−) are strictly monotonically
increasing.

(iii) For ϵ ∈ R>0 sufficiently small we have

x1 + ϵ < x2 − ϵ.

For all such sufficiently small ϵ we have

f (x1 + ϵ) − f (x1)
ϵ

= s f (x1, x1 + ϵ) ≤ s f (x2 − ϵ, x2) =
f (x2) − f (x2 − ϵ)

ϵ
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by Lemma 3.1.33. Taking limits as ϵ ↓ 0 gives this part of the result.
(iv) Let A f be the set of points in I where f is not differentiable. Note that

f (x) − f (x − ϵ)
ϵ

= s f (x − ϵ, x) ≤ s f (x, x + ϵ) =
f (x + ϵ) − f (x)

ϵ

by Lemma 3.1.33. Therefore, if x ∈ A f , then f ′(x−) < f ′(x+). We define a map
ϕ : A f → Q as follows. If x ∈ A f we use the Axiom of Choice and Corollary 2.2.16 to
select ϕ(x) ∈ Q such that f ′(x−) < ϕ(x) < f ′(x+). We claim that ϕ is injective. Indeed,
if x, y ∈ A f are distinct (say x < y) then, using parts (ii) and (iii),

f ′(x−) < ϕ(x) < f ′(x+) < f ′(y−) < ϕ(y) < f ′(y+).

Thus ϕ(x) < ϕ(y) and so ϕ is injective as desired. Thus A f must be countable. ■

For functions that are sufficiently differentiable, it is possible to conclude con-
vexity from properties of the derivative.

3.2.30 Proposition (Convexity and derivatives) For an interval I ⊆ R and for a function
f : I→ R the following statements hold:

(i) for each x1, x2 ∈ I with x1 , x2 we have

f(x2) ≥ f(x1) + f′(x1+)(x2 − x1), f(x2) ≥ f(x1) + f′(x1−)(x2 − x1);

(ii) if f is differentiable, then f is convex if and only if f′ is monotonically increasing;
(iii) if f is differentiable, then f is strictly convex if and only if f′ is strictly monotonically

increasing;
(iv) if f is twice continuously differentiable, then it is convex if and only if f′′(x) ≥ 0 for

every x ∈ I;
(v) if f is twice continuously differentiable, then it is strictly convex if and only if

f′′(x) > 0 for every x ∈ I.
Proof (i) Suppose that x1 < x2. Then, for ϵ ∈ R>0 sufficiently small,

f (x1 + ϵ) − f (x1)
ϵ

≤
f (x2) − f (x1)

x2 − x1

by Lemma 3.1.33. Thus, taking limits as ϵ ↓ 0,

f ′(x1+) ≤
f (x2) − f (x1)

x2 − x1
,

and rearranging gives
f (x2) ≥ f (x1) + f ′(x1+)(x2 − x1).

Since we also have f ′(x1−) ≤ f ′(x1+) by Proposition 3.2.29(i), we have both of the
desired inequalities in this case.

Now suppose that x2 < x1. Again, for ϵ ∈ R>0 sufficiently small, we have

f (x1 + ϵ) − f (x1)
ϵ

≥
f (x1) − f (x2)

x1 − x2
,
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and taking the limit as ϵ ↓ 0 gives

f ′(x1+) ≥
f (x1) − f (x2)

x1 − x2
.

Rearranging gives
f (x2) ≥ f (x1) + f ′(x1+)(x2 − x1)

and since f ′(x1−) ≤ f ′(x1+) the desired inequalities follow in this case.
(ii) From Proposition 3.2.29(ii) we deduce that if f is convex and differentiable then

f ′ is monotonically increasing. Conversely, suppose that f is differentiable and that f ′

is monotonically increasing. Let x1, x2 ∈ I satisfy x1 < x2 and let s ∈ (0, 1). By the Mean
Value Theorem there exists c1, c2 ∈ I satisfying

x1 < c1 < (1 − s)x1 + sx2 < d1 < x2

such that

f ((1 − s)x1 + sx2) − f (x1)
(1 − s)x1 + sx2 − x1

= f ′(c1) ≤ f ′(c2) =
f (x2) − f ((1 − s)x1 + sx2)

x2 − ((1 − s)x1 + sx2)
. (3.9)

Rearranging, we get

f ((1 − s)x1 + sx2) − f (x1)
s(x2 − x1)

≤
f (x2) − f ((1 − s)x1 + sx2)

(1 − s)(x2 − x1)
,

and further rearranging gives

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2),

and so f is convex.
(iii) If f is strictly convex, then from Proposition 3.2.29 we conclude that f ′ is strictly

monotonically increasing. Next suppose that f ′ is strictly monotonically decreasing
and let x1, x2 ∈ I satisfy x1 < x2 and let s ∈ (0, 1). The proof that f is strictly convex
follows as in the preceding part of the proof, noting that, in (3.9), we have f ′(c1) < f ′(c2).
Carrying this strict inequality through the remaining computations shows that

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2),

giving strict convexity of f .
(iv) If f ′′ is nonnegative, then f ′ is monotonically increasing by Proposition 3.2.23.

The result now follows from part (ii).
(iv) If f ′′ is positive, then f ′ is strictly monotonically increasing by Proposi-

tion 3.2.23. The result now follows from part (iii). ■

Let us consider a few examples illustrating how convexity and differentiability
are related.
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3.2.31 Examples (Convex functions and differentiability)
1. The convex function nx0 : R → R defined by nx0(x) = |x − x0| is differentiable

everywhere except for x = x0. But at x = x0 the derivatives from the left and
right exist. Moreover, f ′(x) = −1 for x < x0 and f ′(x) = 1 for x > x0. Thus we
see that the derivative is monotonically increasing, although it is not defined
everywhere.

2. As we showed in Proposition 3.2.29(iv), a convex function is differentiable
except at a countable set of points. Let us show that this conclusion cannot be
improved. Let C ⊆ R be a countable set. We shall construct a convex function
f : R→ Rwhose derivative exists onR \C and does not exist on C. In case C is
finite, we write C = {x1, . . . , xk}. Then one verifies that the function f defined by

f (x) =
k∑

j=1

|x − x j|

is verified to be convex, being a finite sum of convex functions (see Proposi-
tion 3.1.39). It is clear that f is differentiable at points in R \ C and is not
differentiable at points in C. Now suppose that C is not finite. Let us write
C = {x j} j∈Z>0 , i.e., enumerate the points in C. Let us define c j = (2 j max{1, |x j|})−1,
j ∈ Z>0, and define f : R→ R by

f (x) =
∞∑
j=1

c j|x − x j|.

We shall prove that this function is well-defined, convex, differentiable at points
in R \ C, and not differentiable at points in C. In proving this, we shall make
reference to some results we have not yet proved.
First let us show that f is well-defined.

1 Lemma For every compact subset K ⊆ R, the series
∞∑

j=1

cj|x − xj|

converges uniformly on K (see Section 3.6.2 for uniform convergence).
Proof Let K ⊆ R and let R ∈ R>0 be large enough that K ⊆ [−R,R]. Then, for
x ∈ K we have

|c j|x − x j|| ≤ c j(|x| + |x j|) ≤
R + 1

2 j .

By the Weierstrass M-test (Theorem 3.6.15 below) and Example 2.4.2–1 the
lemma follows. ▼

It follows immediately from the lemma that the series defining f converges
pointwise, and so f is well-defined, and is moreover convex by Theorem 3.6.26.
Now we show that f is differentiable at points in R \ C.
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2 Lemma The function f is differentiable at every point in R \ C.
Proof Let us denote g j(x) = c j|x− x j|. Let x0 ∈ R \C and define, for each j ∈ Z>0,

h j,x0 =


g j(x)−g j(x0)

x−x0
, x , x0,

g′j(x0), x = x0,

noting that the functions g j, j ∈ Z>0, are differentiable at points in R \ C.
Let j ∈ Z. We claim that if x0 , x j then

|h j,x0(x)| ≤
3
2 j (3.10)

for all x ∈ R. We consider three cases.

(a) x = x0: Note that g j is differentiable at x = x0 and that |g′j(x0)| = c j ≤
1
2 j <

3
2 j .

Thus the estimate (3.10) holds when x = x0.
(b) x , x0 and (x − x j)(x0 − x j) > 0: We have

|h j,x0(x)| = c j

∣∣∣∣∣∣ (x − x j) − (x0 − x j)
x − x0

∣∣∣∣∣∣ = a j ≤
1
2 j <

3
2 j ,

giving (3.10) in this case.
(c) x , x0 and (x − x j)(x0 − x j) < 0: We have

|h j,x0(x)| = c j

∣∣∣∣∣∣ (x − x j) − (x j − x0)
x − x0

∣∣∣∣∣∣ = c j

∣∣∣∣∣∣1 + 2(x0 − x j)
x0 − x

∣∣∣∣∣∣ ≤ 1
2 j

∣∣∣∣∣∣1 + 2(x0 − x j)
x0 − x

∣∣∣∣∣∣ .
Since (x−x j) and x0−x j have opposite sign, this implies that either (1) x < x j

and x0 > x j or (2) x > x j and x0 < x j. In either case, |x0 − x j| < |x0 − x|. This,
combined with our estimate above, gives (3.10) in this case.

Now, given (3.10), we can use the Weierstrass M-test (Theorem 3.6.15 below)
and Example 2.4.2–1 to conclude that

∑
∞

j=1 h j,x0 converges uniformly on R for
each x0 ∈ R \ C.
Now we prove that f is differentiable at x0 ∈ R \ C. If x , x0 then the definition
of the functions h j,x0 , j ∈ Z>0, gives

f (x) − f (x0)
x − x0

=

∞∑
j=1

h j,x0(x),

the latter sum making sense since we have shown that it converges uniformly.
Moreover, since the functions g j, j ∈ Z>0, are differentiable at x0, it follows that,
for each j ∈ Z>0,

lim
x→x0

h j,x0(x) = lim
x→x0

g j(x) − g j(x0)
x − x0

= g′j(x0) = h j,x0(x0).



250 3 Functions of a single real variable

That is, h j,x0 is continuous at x0. It is clear that h j,x0 is continuous at all x , x0.
Thus, since

∑
∞

j=1 h j,x0 converges uniformly, the limit function is continuous by
Theorem 3.6.8. Thus we have

lim
x→x0

f (x) − f (x0)
x − x0

= lim
x→x0

∞∑
j=1

h j,x0(x) =
∞∑
j=1

h j,x0(x0) =
∞∑
j=1

g′j(x0).

This gives the desired differentiability since the last series converges. ▼

Finally, we show that f is not differentiable at points in C.

3 Lemma The function f is not differentiable at every point in C.

Proof For k ∈ Z>0, let us write

f (x) = gk(x) +
∑
j=1
j,k

g j(x)

︸   ︷︷   ︸
f j(x)

.

The arguments from the proof of the preceding lemma can be applied to show
that the function f j defined by the sum on the right is differentiable at xk. Since
gk is not differentiable at xk, we conclude that f cannot be differentiable at xk by
Proposition 3.2.10. ▼

This shows that the conclusions of Proposition 3.2.29(iv) cannot generally be
improved. •

3.2.7 Piecewise differentiable functions

In Section 3.1.7 we considered functions that were piecewise continuous. In this
section we consider a class of piecewise continuous functions that have additional
properties concerning their differentiability. We let I ⊆ R be an interval with
f : I → R a function. In Section 3.1.7 we defined the notation f (x−) and f (x+).
Here we also define

f ′(x−) = lim
ϵ↓0

f (x − ϵ) − f (x−)
−ϵ

, f ′(x+) = lim
ϵ↓0

f (x + ϵ) − f (x+)
ϵ

.

These limits, of course, may fail to exist, or even to make sense if x ∈ bd(I).
Now, recalling the notion of a partition from Definition 2.5.7, we make the

following definition.

3.2.32 Definition (Piecewise differentiable function) A function f : [a, b] → R is
piecewise differentiable if there exists a partition P = (I1, . . . , Ik), with EP(P) =
(x0, x1, . . . , xk), of [a, b] with the following properties:

(i) f | int(I j) is differentiable for each j ∈ {1, . . . , k};
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(ii) for j ∈ {1, . . . , k − 1}, the limits f (x j+), f (x j−), f ′(x j+), and f ′(x j−) exist;
(iii) the limits f (a+), f (b−), f ′(a+), and f ′(b−) exist. •

It is evident that a piecewise differentiable function is piecewise continuous. It
is not surprising that the converse is not true, and a simple example of this will be
given in the following collection of examples.

3.2.33 Examples (Piecewise differentiable functions)
1. Let I = [−1, 1] and define f : I→ R by

f (x) =

1 + x, x ∈ [−1, 0],
1 − x, (0, 1].

One verifies that f is differentiable on (−1, 0) and (0, 1). Moreover, we compute
the limits

f (−1+) = 0, f ′(−1+) = 1, f (1−) = 0, f ′(1−) = −1,
f (0−) = 1, f (0+) = 1, f ′(0−) = 1, f ′(0+) = −1.

Thus f is piecewise differentiable. Note that f is also continuous.
2. Let I = [−1, 1] and define f : I → R by f (x) = sign(x). On (−1, 0) and (0, 1) we

note that f is differentiable. Moreover, we compute

f (−1+) = −1, f ′(−1+) = 0, f (1−) = 1, f ′(1−) = 0,
f (0−) = −1, f (0+) = 1, f ′(0−) = 0, f ′(0+) = 0.

Note that it is important here to not compute the limits f ′(0−) and f ′(0+) using
the formulae

lim
ϵ↓0

f (0 − ϵ) − f (0)
−ϵ

, lim
ϵ↓0

f (0 + ϵ) − f (0)
ϵ

.

Indeed, these limits do not exist, where as the limits f ′(0−) and f ′(0+) do exist.
In any event, f is piecewise differentiable, although it is not continuous.

3. Let I = [0, 1] and define f : I → R by f (x) =
√

x(1 − x). On (0, 1), f is differen-
tiable. Also, the limits f (0+) and f (1−) exist. However, the limits f ′(0+) and
f ′(1−) do not exist, as we saw in Example 3.2.3–3. Thus f is not piecewise
differentiable. However, it is continuous, and therefore piecewise continuous,
on [0, 1]. •

3.2.8 Notes

It was Weierstrass who first proved the existence of a continuous but nowhere
differentiable function. The example Weierstrass gave was

f̃ (x) =
∞∑
j=0

bn cos(anπx),
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where b ∈ (0, 1) and a satisfies ab > 3
2π+ 1. It requires a little work to show that this

function is nowhere differentiable. The example we give as Example 3.2.9 is fairly
simple by comparison, and is taken from the paper of McCarthy [1953].

Example 3.2.31–2 if from [Siksek and El-Sedy 2004]

Exercises

3.2.1 Let I ⊆ R be an interval and let f , g : I → R be differentiable. Is it true that
the functions

I ∋ x 7→ min{ f (x), g(x)} ∈ R, I ∋ x 7→ max{ f (x), g(x)} ∈ R,

are differentiable? If it is true provide a proof, if it is not true, give a
counterexample.
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Section 3.3

R-valued functions of bounded variation

In this section we present a class of functions, functions of so-called bounded
variation, that are larger than the set of differentiable functions. However, they
are sufficiently friendly that they often play a distinguished rôle in certain parts
of signal theory, as evidenced by the theorems of Jordan concerning inversion of
Fourier transforms (see Theorems IV-5.2.31 and IV-6.2.24). It is often not obvious
after an initial reading on the topic of functions of bounded variation, just why such
functions are important. Historically, the class of functions of bounded variation
arose out of the desire to understand functions that are sums of functions that
are monotonically increasing (see Definition 3.1.27 for the definition). Indeed, as
we shall see in Theorem 3.3.3, functions of bounded variation and monotonically
increasing functions are inextricably linked. The question about the importance
of functions of bounded variation can thus be reduced to the question about the
importance of monotonically increasing functions. An intuitive reason why such
functions might be interesting is that many of the functions one encounters in
practice, while not themselves increasing or decreasing, have intervals on which
they are increasing or decreasing. Thus one hopes that, by understanding increasing
or decreasing functions, one can understand more general functions.

It is also worth mentioning here that the class of functions of bounded variation
arise in functional analysis as the topological dual to Banach spaces of continuous
functions. In this regard, we refer the reader to Theorem III-2.12.6.

Do I need to read this section? This section should be strongly considered for
omission on a first read, and then referred to when the concept of bounded variation
comes up in subsequent chapters, namely in Chapters IV-5 and IV-6. Such an
omission is suggested, not because the material is unimportant or uninteresting,
but rather because it constitutes a significant diversion that might be better left
until it is needed. •

3.3.1 Functions of bounded variation on compact intervals

In this section we define functions of bounded variation on intervals that are
compact. In the next section we shall extend these ideas to general intervals. For
a compact interval I, recall that Part(I) denotes the set of partitions of I, and that if
P ∈ Part(I) then EP(P) denotes the endpoints of the intervals comprising P (see the
discussion surrounding Definition 2.5.7).
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3.3.1 Definition (Total variation, function of bounded variation) For I = [a, b] a com-
pact interval and f : I→ R a function on I, the total variation of f is given by

TV( f ) = sup

 k∑
j=1

| f (x j) − f (x j−1)|

∣∣∣∣∣∣∣ (x0, x1, . . . , xk) = EP(P), P ∈ Part([a, b])

 .
If TV( f ) < ∞ then f has bounded variation. •

Let us characterise real functions of bounded variation on compact intervals.
The principal part of this characterisation is the decomposition of a function of
bounded variation into the difference of monotonically increasing functions. How-
ever, another interesting characterisation involves the following idea which relies
on the notion of the graph of a function, introduced following Definition 1.3.1.

3.3.2 Definition (Arclength of the graph of a function) Let [a, b] be a compact interval
and let f : [a, b]→ R be a function. The arclength of graph( f ) is defined to be

ℓ(graph( f )) = sup

 k∑
j=1

(
( f (x j) − f (x j−1))2 + (x j − x j−1)2

)1/2

∣∣∣∣∣∣∣
(x0, x1, . . . , xk) = EP(P), P ∈ Part([a, b])

 . •
We now have the following result which characterises functions of bounded

variation.

3.3.3 Theorem (Characterisation of functions of bounded variation) For a compact
interval I = [a, b] and a function f : I→ R, the following statements are equivalent:

(i) f has bounded variation;
(ii) there exists monotonically increasing functions f+, f− : I → R such that f = f+ − f−

(Jordan8 decomposition of a function of bounded variation);
(iii) the graph of f has finite arclength in R2.

Furthermore, each of the preceding three statements implies the following:
(iv) the following limits exist:

(a) f(a+);
(b) f(b−);
(c) f(x+) and f(x−) for all x ∈ int(I),

(v) f is continuous except at a countable number of points in I,
8Marie Ennemond Camille Jordan (1838–1922) was a French mathematician who made signif-

icant contributions to the areas of algebra, analysis, complex analysis, and topology. He wrote a
three volume treatise on analysis entitled Cours d’analyse de l’École Polytechnique which was quite
influential.
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(vi) f possesses a derivative almost everywhere in I.
Proof (i) =⇒ (ii) Define V( f )(x) = TV( f |[a, x]) so that x 7→ V( f )(x) is a monotonic
function. Let us define

f+(x) = 1
2 (V( f )(x) + f (x)), f−(x) = 1

2 (V( f )(x) − f (x)). (3.11)

Since we obviously have f = f+ − f−, this part of the theorem will follow if f+ and f−
can be shown to be monotonic. Let ξ2 > ξ1 and let (x0, x1, . . . , xk) be the endpoints of
a partition of [a, ξ1]. Then (x0, x1, . . . , xk, xk+1 = ξ2) are the endpoints of a partition of
[a, ξ2]. We have the inequalities

V( f )(ξ2) ≥
k∑

j=1

| f (x j) − f (x j−1)| + | f (ξ2) − f (ξ1)|.

Since this is true for any partition of [a, ξ1] we have

V( f )(ξ2) ≥ V( f )(ξ1) + | f (ξ2) − f (ξ1)|.

We then have

2 f+(ξ2) = V( f )(ξ2) + f (ξ2)
≥ V( f )(ξ1) + f (ξ1) + | f (ξ2) − f (ξ1)| + f (ξ2) − f (ξ1)
≥ V( f )(ξ1) + f (ξ1) = 2 f+(ξ1)

and

2 f−(ξ2) = V( f )(ξ2) − f (ξ2)
≥ V( f )(ξ1) − f (ξ1) + | f (ξ2) − f (ξ1)| − f (ξ2) + f (ξ1)
≥ V( f )(ξ1) − f (ξ1) = 2 f+(ξ1),

giving this part of the theorem.
(ii) =⇒ (i) If f is monotonically increasing and if (x0, x1, . . . , xk) are the endpoints

for a partition of [a, b], then

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

( f (x j) − f (x j−1)) = f (b) − f (a).

Thus monotonically increasing functions, and similarly monotonically decreasing
functions, have bounded variation. Now consider two functions f and g, both of
bounded variation. By part (i) of Proposition 3.3.12, f + g is also of bounded variation.
In particular, the sum of a monotonically increasing and a monotonically decreasing
function will be a function of bounded variation.

(i)⇐⇒ (iii) First we note that, for any a, b ∈ R,

(|a| + |b|)2 = a2 + b2 + 2|a||b|,
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from which we conclude that (a2 + b2)1/2
≤ |a| + |b|. Therefore, if (x0, x1, . . . , xk) are the

endpoints of a partition of [a, b], then

k∑
j=1

| f (x j) − f (x j−1)| ≤
k∑

j=1

(
( f (x j) − f (x j−1))2 + (x j − x j−1)2

)1/2

≤

k∑
j=1

(
| f (x j) − f (x j−1)| + |x j − x j−1|

)
=

k∑
j=1

| f (x j) − f (x j−1)| + b − a. (3.12)

This implies that
TV( f ) ≤ ℓ(graph( f )) ≤ TV( f ) + b − a,

from which this part of the result follows.
(iv) Let f+ and f− be monotonically increasing functions as per part (ii). By Theo-

rem 3.1.28 we know that the limits asserted in this part of the theorem hold for both
f+ and f−. This part of the theorem now follows from Propositions 2.3.23 and 2.3.29.

(v) This follows from Theorem 3.1.28 and Proposition 3.1.15, using the decompo-
sition f = f+ − f− from part (ii).

(vi) Again using the decomposition f = f+ − f− from part (ii), this part of the
theorem follows from Theorem 3.2.26 and Proposition 3.2.10. ■

3.3.4 Remark We comment the converses of parts (iv), (v), and (vi) of Theorem 3.3.3 do
not generally hold. This is because, as we shall see in Example 3.3.5–4, continuous
functions are not necessarily of bounded variation. •

Let us give some examples of functions that have and do not have bounded
variation.

3.3.5 Examples (Functions of bounded variation on compact intervals)
1. On [0, 1] define f : [0, 1]→ R by f (x) = c, for c ∈ R. We easily see that TV( f ) = 0,

so f has bounded variation.
2. On [0, 1] consider the function f : [0, 1] → R defined by f (x) = x. We claim

that f has bounded variation. Indeed, if (x0, x1, . . . , xk) are the endpoints of a
partition of [0, 1], then we have

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

|x j − x j−1| = 1 − 0 = 1,

thus giving f as having bounded variation.
Note that f is itself a monotonically increasing function, so that for part (ii) of
Theorem 3.3.3 we may take f+ = f and f− to be the zero function. However,
we can also write f = g+ − g− where g+(x) = 2x and g−(x) = x. Thus the
decomposition of part (ii) of Theorem 3.3.3 is not unique.
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3. On I = [0, 1] consider the function

f (x) =

1, x ∈ [0, 1
2 ]

−1, x ∈ ( 1
2 , 1].

We claim that TV( f ) = 1. Let (x0, x1, . . . , xk) be the endpoints of a partition of
[0, 1]. Let k̄ be the least element in {1, . . . , k} for which xk̄ >

1
2 . Then we have

k∑
j=1

| f (x j) − f (x j−1)| =
k̄−1∑
j=1

| f (x j) − f (x j−1)| +
k∑

j=k̄+1

| f (x j) − f (x j−1)|

+ | f (xk̄) − f (xk̄−1)| = 1.

This shows that TV( f ) = 1 and so f has bounded variation. Note that this
also shows that functions of bounded variation need not be continuous. This,
along with the next example, shows that the relationship between continuity
and bounded variation is not a straightforward one.

4. Consider the function on I = [0, 1] defined by

f (x) =

x sin 1
x , x ∈ (0, 1],

0, x = 0.

We first claim that f is continuous. Clearly it is continuous at x provided that
x , 0. To show continuity at x = 0, let ϵ ∈ R>0 and note that, if x < ϵ, we have
| f (x)| < ϵ, thus showing continuity.
However, f does not have bounded variation. Indeed, for j ∈ Z>0 denote
ξ j =

1
( j+ 1

2 )π
. Then, for k ∈ Z>0, consider the partition with endpoints

(x0 = 0, x1 = ξk, . . . , xk+ = ξ1, xk+1 = 1).

Direct computation then gives

k+1∑
j=1

| f (x j) − f (x j−1)| ≥
2
π

k∑
j=1

∣∣∣∣∣∣ (−1) j

2 j + 1
−

(−1) j−1

2 j − 1

∣∣∣∣∣∣
=

2
π

k∑
j=1

∣∣∣∣∣ 1
2 j + 1

+
1

2 j − 1

∣∣∣∣∣ ≥ 2
π

k∑
j=1

∣∣∣∣∣ 2
2 j + 1

∣∣∣∣∣ .
Thus

TV( f ) ≥
2
π

∞∑
j=1

∣∣∣∣∣ 2
2 j + 1

∣∣∣∣∣ = ∞,
showing that f has unbounded variation. •
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3.3.2 Functions of bounded variation on general intervals

Now, with the definitions and properties of bounded variation for functions de-
fined on compact intervals, we can sensibly define notions of variation for general
intervals.

3.3.6 Definition (Bounded variation, locally bounded variation) Let I be an interval
with f : I→ R a function.

(i) If f |[a, b] is a function of bounded variation for every compact interval [a, b] ⊆
I, then f is a function of locally bounded variation.

(ii) If sup{TV( f |[a, b]) | [a, b] ⊆ I} < ∞, then f is a function of bounded variation. •

3.3.7 Remark (Properties of functions of locally bounded variation) We comment
that the characterisations of functions of bounded variation given in Theorem 3.3.3
carry over to functions of locally bounded variation in the sense that the following
statements are equivalent for a function f : I→ R defined on a general interval I:
1. f has locally bounded variation;
2. there exists monotonically increasing functions f+, f− : I → R such that f =

f+ − f−.
Furthermore, each of the preceding two statements implies the following:
3. the following limits exist:

(a) f (a+);
(b) f (b−);
(c) f (x+) and f (x−) for all x ∈ int(I),

4. f is continuous except at a countable number of points in I,
5. f possesses a derivative almost everywhere in I.
These facts follow easily from the definition of locally bounded variation, along
with facts about countable sets, and sets of measure zero. We leave the details to
the reader as Exercise 3.3.4. •

3.3.8 Notation (“Locally bounded variation” versus “bounded variation”) These ex-
tended definitions agree with the previous ones in that, when I is compact, (1) the
new definition of a function of bounded variation agrees with that of Defini-
tion 3.3.1 and (2) the definition of a function of bounded variation agrees with
the definition of a function of locally bounded variation. The second point is par-
ticularly important to remember, because most of the results in the remainder of this
section will be stated for functions of locally bounded variation. Our observation
here is that these results automatically apply to functions of bounded variation,
as per Definition 3.3.1. For this reason, we will generally default from now on to
using “locally bounded variation” in place of “bounded variation,” reserving the
latter for when it is intended in its distinct place when the interval of definition of
a function is compact. •
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Let us give some examples of functions that do and no not have locally bounded
variation.

3.3.9 Examples (Functions of locally bounded variation on general intervals)
1. Let I ⊆ R be an arbitrary interval, let c ∈ R, and consider the function f : I→ R

defined by f (x) = c. Applying the definition shows that TV( f |[a, b])(x) = 0
for all compact intervals [a, b] ⊆ I, no matter the character of I. Thus constant
functions, unsurprisingly, have locally bounded variation.

2. Let us consider the function f : I → R on I = [0,∞) defined by f (x) = x. We
claim that f has locally bounded variation. Indeed, let [a, b] ⊆ I and consider a
partition of [a, b] with endpoints (x0, x1, . . . , xk). We have

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

(x j − x j−1) = b − a.

This shows that f has locally bounded variation. However, since b − a can be
arbitrarily large, f does not have bounded variation.

3. On the interval I = (0, 1] consider the function f : I → R defined by f (x) = 1
x .

Note that, for [a, b] ⊆ (0, 1], the function f |[a, b] is monotonically decreasing,
and so has bounded variation. We can thus conclude that f is a function of
locally bounded variation. We claim that f does not have bounded variation.
To see this, note that if (x0, x1, . . . , xk) are the endpoints of a partition of [a, b] ⊆
(0, 1], then it is easy to see that, since f is strictly monotonically decreasing
and continuous that ( f (xk), . . . , f (x1), f (x0)) are the endpoints of a partition of
[ f (xk), f (x0)]. We thus have

k∑
j=1

| f (x j) − f (x j−1)| = f (x0) − f (xk).

Since f (x0) can be made arbitrarily large by choosing a small, it follows that f
cannot have bounded variation. •

We close this section by introducing the notion of the variation of a function,
and giving a useful property of this concept.

3.3.10 Definition (Variation of a function of bounded variation) Let I ⊆ Rbe an interval,
let a ∈ I, let f : I → R be a function of locally bounded variation, and define
Va( f ) : I→ R>0 by

Va( f )(x) =


TV( f |[x, a]), x < a,
0, x = a,
TV( f |[a, x]), x > a.

The function Va( f ) is the variation of f with reference point a. •
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One can easily check that the choice of a in the definition of Va( f ) serves only
to shift the values of the function. Thus the essential features of the variation are
independent of the reference point.

When a function of bounded variation is continuous, so too is its variation.

3.3.11 Proposition (The variation of a continuous function is continuous and vice
versa) Let I ⊆ R be an interval, let a ∈ I, and let f : I→ R be a function of locally bounded
variation. Then f is continuous at x ∈ I if and only if Va(f) is continuous at x. Moreover,
if f is a continuous function of bounded variation, then f = f+ − f− where f+ and f− are
continuous monotonically increasing functions.

Proof The general result follows easily from the case where I = [a, b] is compact.
Furthermore, in this case it suffices to consider the variation of f with reference points
a or b. We shall consider only the reference point a, since the other case follows in
much the same manner.

Suppose that f is continuous at x0 ∈ I and let ϵ ∈ R>0. First suppose that x0 ∈ [a, b),
and let δ ∈ R>0 be chosen such that x ∈ B(δ, x0)∩I implies that | f (x)− f (x0)| < ϵ

2 . Choose
a partition of [x0, b] with endpoints (x0, x1, . . . , xk) such that

TV( f |[x0, b]) − ϵ
2 ≤

k∑
j=1

| f (x j) − f (x j−1)|. (3.13)

We may without loss of generality suppose that x1 − x0 < δ. Indeed, if this is not the
case, we may add a new endpoint to our partition, noting that the estimate (3.13) will
hold for the new partition. We then have

TV( f |[x0, b]) − ϵ
2 ≤ | f (x1) − f (x0)| +

k∑
j=2

| f (x j) − f (x j−1)|

≤
ϵ
2 +

k∑
j=2

| f (x j) − f (x j−1)| ≤ ϵ
2 + TV( f |[x1, b]).

This then gives

TV( f |[x0, b]) − TV( f |[x1, b]) = Va( f )(x1) − Va( f )(x0) < ϵ.

Since this holds for any partition for which x1−x0 < δ, it follows that limx↓x0 Va( f )(x) =
Va( f )(x0) for every x0 ∈ [a, b) at which f is continuous. One can similarly show that
limx↑x0 Va( f )(x) = Va( f )(x0) for every x0 ∈ (a, b] at which f is continuous. This gives the
result by Theorem 3.1.3.

Suppose that Va( f ) is continuous at x0 ∈ I and let ϵ ∈ R>0. Choose δ ∈ R>0 such
that |Va( f )(x) − Va( f )(x0)| < ϵ for x ∈ B(2δ, x0). Then, for x ∈ B(2δ, x0) with x > x0,

| f (x) − f (x0)| ≤ TV( f |[x0, x]) = Va( f )(x) − Va( f )(x0) < ϵ,

using the fact that (x0, x) are the endpoints of a partition of [x0, x]. In like manner, if
x ∈ B(2δ, x0) with x > x0, then

| f (x) − f (x0)| ≤ TV( f |[x, x0]) = Va( f )(x0) − Va( f )(x) < ϵ.
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Thus | f (x) − f (x0)| < ϵ for every x ∈ B(2δ, x0), and so for every x ∈ B(δ, x0), giving
continuity of f at x0.

The final assertion follows from the definition of the Jordan decomposition given
in (3.11). ■

3.3.3 Bounded variation and operations on functions

In this section we illustrate how functions of locally bounded variation interact
with the usual operations one performs on functions.

3.3.12 Proposition (Addition and multiplication, and locally bounded variation) Let
I ⊆ R be an interval and let f,g: I → R be functions of locally bounded variation. Then
the following statements hold:

(i) f + g is a function of locally bounded variation;
(ii) fg is a function of locally bounded variation;
(iii) if additionally there exists α ∈ R>0 such that |g(x)| ≥ α for all x ∈ I, then f

g is a
function of locally bounded variation.

Proof Without loss of generality we may suppose that I = [a, b] is a compact interval.
(i) Let (x0, x1, . . . , xk) be the endpoints for a partition of [a, b] and compute

k∑
j=1

| f (x j) + g(x j) − f (x j−1) − g(x j−1)| ≤
k∑

j=1

| f (x j) − f (x j−1)| +
k∑

j=1

|g(x j) − g(x j−1)|

using the triangle inequality. It then follows from Proposition 2.2.27 that TV( f + g) ≤
TV( f ) + TV(g), and so f + g has locally bounded variation.

(ii) Let

M f = sup{| f (x)| | x ∈ [a, b]}, Mg = sup{|g(x)| | x ∈ [a, b]}.

Then, for a partition of [a, b] with endpoints (x0, x1, . . . , xk), compute

k∑
j=1

| f (x j)g(x j) − f (x j−1)g(x j−1)| ≤
k∑

j=1

| f (x j)g(x j) − f (x j−1)g(x j)|

+

k∑
j=1

| f (x j−1)g(x j) − f (x j−1)g(x j−1)|

≤

k∑
j=1

Mg| f (x j) − f (x j−1)| +
k∑

j=1

M f |g(x j) − g(x j−1)|

≤Mg TV( f ) +M f TV(g),

giving the result.
(iii) Let (x0, x1, . . . , xk) be a partition of [a, b] and compute

k∑
j=1

∣∣∣∣∣∣ 1
g(x j)

−
1

g(x j−1)

∣∣∣∣∣∣ = k∑
j=1

∣∣∣∣∣∣ g(x j−1) − g(x j)
g(x j)g(x j−1)

∣∣∣∣∣∣ ≤ k∑
j=1

∣∣∣∣∣∣ g(x j) − g(x j−1)

α2

∣∣∣∣∣∣ ≤ TV(g)
α2 .
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Thus 1
g has locally bounded variation, and this part of the result follows from part (ii).■

Next we show that to determine whether a function has locally bounded vari-
ation, one can break up the interval of definition into subintervals.

3.3.13 Proposition (Locally bounded variation on disjoint subintervals) Let I ⊆ R be
an interval and let I = I1 ∪ I2, where I1 ∩ I2 = {c}, where c is the right endpoint of I1 and
the left endpoint of I2. Then f : I→ R has locally bounded variation if and only if f|I1 and
f|I2 have locally bounded variation.

Proof It suffices to consider the case where I = [a, b], I1 = [a, c], and I2 = [c, b]. First
let (x0, x1, . . . , xk) be the endpoints of a partition of [a, c] and let (y0, y1, . . . , yl) be the
endpoints of a partition of [c, b]. Then

k∑
j=1

| f (x j) − f (x j−1)| +
l∑

j=1

| f (y j) − f (y j−1)| ≤ TV( f ),

which shows that TV( f |[a, c]) + TV( f |[c, b]) ≤ TV( f ). Now let (x0, x1, . . . , xk) be the
endpoints of a partition of [a, b]. If c is not one of the endpoints, then let m ∈ {1, . . . , k−1}
satisfy xm−1 < c < xm, and define a new partition with endpoints

(y0 = x0, y1 = x1, . . . , ym − 1 = xm−1, ym = c, ym+1 = xm, . . . , yk+1 = xk).

Then
k∑

j=1

| f (x j) − f (x j−1)| ≤
k+1∑
j=1

| f (y j) − f (y j−1)|

≤

m∑
j=1

| f (y j) − f (y j−1)| +
m+1∑
j=m

| f (y j) − f (y j−1)|

≤ TV([a, c]) + TV( f |[c, b]).

This shows that TV( f ) ≤ TV( f |[a, c]) + TV( f |[c, b]), which gives the result when com-
bined with our previous estimate TV( f |[a, c]) + TV( f |[c, b]) ≤ TV( f ). ■

While Examples Example 3.3.5–3 and 4 illustrate that functions of locally
bounded variation need not be continuous, and that continuous functions need
not have locally bounded variation, the story for differentiability is more pleas-
ant.

3.3.14 Proposition (Differentiable functions have locally bounded variation) If I ⊆ R
is an interval and if the function f : I → R is differentiable with the derivative f′ being
locally bounded, then f has locally bounded variation. In particular, if f is of class C1, then
f is of locally bounded variation.

Proof The general result follows from the case where I = [a, b], so we suppose in the
proof that I is compact. Let (x0, x1, . . . , xk) be a partition of [a, b]. By the Mean Value
Theorem, for each j ∈ {1, . . . , k} there exists y j ∈ (x j−1, x j) such that

f (x j) − f (x j−1) = f ′(y j)(x j − x j−1).
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Moreover, since f ′ is bounded, let M ∈ R>0 satisfy | f ′(x)| < M for each x ∈ [a, b]. Then

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

| f ′(y j)||x j − x j−1| ≤

k∑
j=1

M|x j − x j−1| =M(b − a).

The final assertion follows since, if f is of class C1, then f ′ is continuous and so bounded
by Theorem 3.1.22. ■

In the preceding result we asked that the derivative be locally bounded. This
condition is essential, as the following example shows.

3.3.15 Example (A differentiable function that does not have bounded variation) We
take f : [−1, 1]→ R defined by

f (x) =

x2 sin( 1
x2 ), x , 0,

0, x = 0.

We will show that this function is differentiable but does not have bounded varia-
tion. The differentiability of f at x , 0 follows from the product rule and the Chain
Rule since the functions x 7→ x2, x 7→ 1

x2 , and sin are all differentiable away from
zero. Indeed, by the product and Chain Rule we have

f ′(x) = 2x sin( 1
x2 ) − 2

x cos( 1
x2 ).

For differentiability at x = 0 we compute

lim
h→0

f (0 + h) − f (0)
h

= lim
h→0

h2 sin( 1
h2 ) − 0

h
= lim

h→0
h sin( 1

h2 ) = 0,

giving the derivative at x = 0 to be zero.
To show that f does not have bounded variation, for j ∈ Z>0 define

ξ j =
1√

( j + 1
2 )π

.

For k ∈ Z>0 define a partition of [0, 1] by asking that it have endpoints (x0, x1 =
ξk, . . . , xk = ξ1, xk+1). Then

k+1∑
j=1

| f (x j) − f (x j−1)| ≥
k∑

j=1

| f (x j) − f (x j−1)| =
2
π

k∑
j=1

∣∣∣∣∣∣ (−1) j

2 j + 1
−

(−1) j−1

2 j − 1

∣∣∣∣∣∣
≥

2
π

k∑
j=1

∣∣∣∣∣ 1
2 j + 1

+
1

2 j − 1

∣∣∣∣∣ ≥ 2
π

k∑
j=1

∣∣∣∣∣ 2
2 j + 1

∣∣∣∣∣ .
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Thus

TV( f ) ≥
2
π

∞∑
j=1

∣∣∣∣∣ 2
2 j + 1

∣∣∣∣∣ = ∞,
giving our assertion that f does not have bounded variation.

Note that it follows from Proposition 3.3.14 that f ′ is not bounded. This can be
verified explicitly as well. •

While the composition of continuous functions is again a continuous function,
and the composition of differentiable functions is again a differentiable function,
the same assertion does not hold for functions of locally bounded variation.

3.3.16 Example (Compositions of functions of locally bounded variation need not
be functions of locally bounded variation) Let I = [−1, 1] and define f , g : I→ R
by f (x) = x1/3 and

g(x) =

x3(sin 1
x )3, x , 0,

0, x = 0.

We claim that f and g are functions of bounded variation. To show that f has
bounded variation, we note that f is monotonically increasing, and so necessarily
of bounded variation by Theorem 3.3.3(ii). To show that g is of bounded variation,
we shall show that it is of class C1, and then use Proposition 3.3.14. Clearly g is
differentiable with continuous derivative on the intervals [−1, 0) and (0, 1]. Thus
we need to show that g is differentiable at 0 with continuous derivative there. To
see that g is differentiable at 0, we compute

lim
x→0

g(x) − g(0)
x − 0

= lim
x→0

x2(sin 1
x )1/3 = 0,

since
∣∣∣(sin 1

x )1/3
∣∣∣ ≤ 1. Thus g′(0) = 0. We also can readily compute that limx↓0 g′(x) =

limx↑0 g′(x) = 0. Thus g′ is also continuous at 0, so showing that g has bounded
variation.

However, note that

f ◦ g(x) =

x sin 1
x , x , 0,

0, x = 0,

and in Example 3.3.5–4 we showed that this function does not have bounded
variation on the interval [0, 1]. Therefore, it cannot have bounded variation on the
interval [−1, 1]. This gives our desired conclusion that f ◦ g is not a function of
bounded variation, even though both f and g are. •

3.3.4 Saltus functions

As we saw in part (v) of Theorem 3.3.3, a function of locally bounded variation is
discontinuous at a countable set of points. Moreover, part (iv) of the same theorem
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indicates that all discontinuities are jump discontinuities. In the next section we
shall see that it is possible to separate out these discontinuities into a single function
which, when subtracted from a function of locally bounded variation, leaves a
continuous function of locally bounded variation.

First we give a general definition, unrelated specifically to functions of locally
bounded variation. For this definition we recall from Section 2.4.7 our discussion
of sums over arbitrary index sets.

3.3.17 Definition (Saltus function) Let I ⊆ R be an interval and let I′ be the interval
obtained by removing the right endpoint from I, if I indeed contains its right
endpoint; otherwise take I′ = I. A saltus function9 on I is a function j : I → R of
the form

j(x) =
∑

ξ∈(−∞,x)∩I

rξ +
∑

ξ∈(−∞,x]∩I

lξ,

where (rξ)ξ∈I′ and (lξ)ξ∈I are summable families of real numbers. •

This definition seems mildly ridiculous at a first read, in that there seems to be
no reason why such a function should be of any interest. However, as we shall see,
every function of locally bounded variation naturally gives rise to a saltus function.
Before we get to this, let us look at some properties of saltus function. It might be
helpful to note that the function of Example 3.2.28 is a saltus function, as is easily
seen from its definition. Many of the general properties of saltus functions follow
in the same manner as they did for that example.

3.3.18 Proposition (Continuity of saltus functions) If I ⊆ R is an interval and if j : I→ R
is a saltus function given by

j(x) =
∑

ξ∈(−∞,x)∩I

rξ +
∑

ξ∈(−∞,x]∩I

lξ,

then for x ∈ I the following statements are equivalent:
(i) j is continuous at x;
(ii) rx = lx = 0.

Proof Let ϵ ∈ R>0 and note that, as can be deduced from our proof of Proposi-
tion 2.4.33, there exists a finite set Aϵ ⊆ I such that∑

x∈I′\Aϵ

|rx| +
∑

x∈I\Aϵ

|lx| ≤ ϵ,

where I′ = I \ {b} is I is an interval containing its right endpoint b, and I′ = I otherwise.
Now, for x ∈ I, let δ ∈ R>0 have the property that B(δ, x)∩Aϵ is either empty, or contains

9“Saltus” is a Latin word meaning “to leap.” Indeed, a saltus function is also frequently referred
to as a jump function.
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only x. For y ∈ B(δ, x) ∩ I with y < x we have

| j(y) − j(x) − lx| =

∣∣∣∣∣∣∣∣
∑
ξ∈[y,x)

rξ +
∑
ξ∈[y,x)

lξ

∣∣∣∣∣∣∣∣ ≤
∑

ξ∈I′\Aϵ

|rξ| +
∑
ξ∈I\Aϵ

|lξ| < ϵ.

Also, for x < y we have

| j(y) − ( j(x) + rx)| =

∣∣∣∣∣∣∣∣
∑
ξ∈(x,y)

rξ +
∑
ξ∈(x,y]

lξ

∣∣∣∣∣∣∣∣ ≤
∑

ξ∈I′\Aϵ

|rξ| +
∑
ξ∈I\Aϵ

|lξ| < ϵ.

This gives j(x−) = j(x)−lx provided that x is not the left endpoint of I and j(x+) = j(x)+rx
provided that x is not the right endpoint of I. Thus j is continuous at x if and only if
rx = lx = 0. ■

3.3.19 Proposition (Saltus functions are of locally bounded variation) If I is an interval
and if j : I→ R is a saltus function, then j is a function of locally bounded variation.

Proof We may without loss of generality suppose that I = [a, b]. Let us write

j(x) =
∑

ξ∈(−∞,x)∩I

rξ +
∑

ξ∈(−∞,x]∩I

lξ.

Let x, y ∈ [a, b] with x < y. Then

j(y) − j(x) = rx + ly +
∑
ξ∈(x,y)

(rξ + lξ).

Thus
| j(y) − j(x)| ≤

∑
ξ∈[x,y)

|rξ| +
∑
ξ∈(x,y]

|lξ|.

Now let (x0, x1, . . . , xm) be the endpoints of a partition of [a, b]. Then we compute

m∑
k=1

| j(xk) − j(xk−1)| ≤
m∑

k=1

 ∑
ξ∈[xk−1,xk)

|uξ| +
∑

ξ∈(xk−1,xk]

|lξ|

 ≤ ∑
ξ∈[a,b)

|rξ| +
∑
ξ∈(a,b]

|lξ|,

which gives the result. ■

Note then that we may now attribute to saltus functions all of the properties
associated to functions of locally bounded variation, as presented in Theorem 3.3.3.
In particular, a saltus function is differentiable almost everywhere. However, about
the derivative of a saltus function, more can be said.
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3.3.20 Proposition (Saltus functions have a.e. zero derivative) If I ⊆ R is an interval
and if j : I→ R is a saltus function, then the set {x ∈ I | j′(x) , 0} has measure zero.

Proof Since j is of locally bounded variation, by Theorem 3.3.3(ii) we may write
j = j+ − j− for monotonically increasing functions j+ and j−. It then suffices to prove
the result for the case when j is monotonically increasing, since the derivative is linear
(Proposition 3.2.10) and since the union of two sets of measure zero is a set of measure
zero (Exercise 2.5.11). As we saw in the proof of Proposition 3.3.18, j(x−) = j(x) − lx
and j(x+) = j(x) + rx. Therefore, if j is monotonically increasing, then rx ≥ 0 for all
x ∈ I′ and lx ≥ 0 for all x ∈ I.

By Proposition 2.4.33 we may write

{x ∈ I′ | rx , 0} = ∪a∈A{ξa}, {x ∈ I | lx , 0} = ∪b∈B{ηb},

where the sets A and B are countable. For x ∈ I define

A(x) = {a ∈ A | ξa < x}, B(x) = {b ∈ B | ηb ≤ x}.

Then we have ∑
ξ∈(−∞,x)∩I

rξ =
∑

a∈A(x)

rξa ,
∑

ξ∈(−∞,x]∩I

lξ =
∑

b∈B(x)

rηb .

Now let us suppose that the sets A and B are well ordered and for k ∈ Z>0 define

Ak = {a ∈ A | a ≤ k}, Bk = {b ∈ B | b ≤ k}

and
Ak(x) = {a ∈ Ak | ξa < x}, Bk(x) = {b ∈ Bk | ηb ≤ x}.

We then define jk : I→ R by

jk(x) =
∑

a∈Ak(x)

rξa +
∑

b∈Bk(x)

rηb .

Now we use some facts from Section 3.6. Note the following facts:
1. for each k ∈ Z>0, the functions jk are monotonically increasing since rx ≥ 0 for all

x ∈ I′ and lx ≥ 0 for each x ∈ I;
2. for each k ∈ Z>0, the set {x ∈ I | j′k(x) , 0} is finite;
3. limk→∞ jk(x) = j(x) for each x ∈ I.
Therefore, we may apply Theorem 3.6.25 below to conclude that j′(x) = 0 almost
everywhere. ■

3.3.21 Remark (Functions with a.e. zero derivative need not be saltus functions)
Note that the Cantor function of Example 3.2.27 is a function with a derivative
that is zero almost everywhere. However, since this function is continuous, it is
not a saltus function. More precisely, according to Proposition 3.3.18, the Cantor
function is a saltus function where the two families of summable numbers used
to define it are both identically zero. That is to say, it is not an interesting saltus
function. This observation will be important when we discuss the Lebesgue de-
composition of a function of bounded variation in Theorem III-2.9.27. •
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3.3.5 The saltus function for a function of locally bounded variation

Now that we have outlined the general definition and properties of saltus
functions, let us indicate how they arise from an attempt to generally characterise
functions of locally bounded variation. Since functions of locally bounded variation
are so tightly connected with monotonically increasing functions, we begin by
constructing a saltus function associated to a monotonically increasing function.

3.3.22 Proposition (Saltus function of a monotonically increasing function) Let I =
[a, b] be a compact interval and let f : I → R be monotonically increasing. Define two
families (rf,x)x∈I′ and (lf,x)x∈I of real numbers by

rf,x = f(x+) − f(x), x ∈ [a, b),
lf,a = 0, lf,x = f(x) − f(x−), x ∈ (a, b],

and let jf : I→ R be defined by

jf(x) =
∑

ξ∈(−∞,x)∩I

rf,ξ +
∑

ξ∈(−∞,x]∩I

lf,ξ.

Then jf is a monotonically increasing saltus function, and the function f− jf is a continuous
monotonically increasing function.

Proof Note that since f is monotonically increasing, r f ,x ≥ 0 for all x ∈ [a, b) and l f ,x ≥ 0
for all x ∈ [a, b]. To show that j f is a saltus function, it suffices to show that (r f ,x)x∈I′

and (l f ,x)x∈I are summable. Let (x1, . . . , xk) be a finite family of elements of [a, b] (not
necessarily the endpoints of a partition) and compute

k∑
j=1

(r f ,x j + l f ,x j) =
k∑

j=1

( f (x j+) − f (x j−)) ≤ f (b) − f (a).

Since this holds for every finite family (x1, . . . , xk), we can assert that both families
(r f ,x)x∈I′ and (l f ,x)x∈I are summable.

Now let x, y ∈ [a, b] with x < y. Take a partition of [x, y] with endpoints
(x0, x1, . . . , xk) and compute

f (x+) − f (x) +
k∑

j=1

( f (x j+) − f (x j−)) + f (y) − f (y−),

= f (y) − f (x) +
k+1∑
j=1

( f (x j−) − f (x j−1+)) ≤ f (y) − f (x).

Taking the supremum over all partitions of [x, y] we have

f (x+) − f (x) +
k∑

ξ∈(x,y)

( f (x+) − f (x−)) + f (y) − f (y−) ≤ f (y) − f (x),
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from which we deduce that

j f (y) − j f (x) = f (x+) − f (x) +
k∑

ξ∈(x,y)

( f (x+) − f (x−)) + f (y) − f (y−) ≤ f (y) − f (x).

This shows that j f (y) ≥ j f (x) and that f (y) − j f (y) ≥ f (x) − j f (x), showing that j f and
f − j f are monotonically increasing.

Now note that, as we saw in the proof of Proposition 3.3.18,

j f (x+) − j f (x) = r f ,x, x ∈ [a, b),

j f (x) − j f (x−) = l f ,x, x ∈ (a, b].

We also have j f (a) = 0. Thus, for x ∈ [a, b), we have

( f (x) − j f (x)) − ( f (x−) − j f (x−)) = f (x) − f (x−) − l f ,x = 0

and, for x ∈ (a, b], we have

( f (x+) − j f (x+)) − ( f (x) − j f (x)) = f (x+) − f (x) − r f ,x = 0.

Thus f − j f is continuous, as claimed. ■

This gives the following corollary which follows more or less directly from
Theorem 3.3.3(ii).

3.3.23 Corollary (Saltus function of a function of bounded variation) Let I = [a, b] be
a compact interval and let f : I → R be of bounded variation. Define two families (rf,x)x∈I′

and (lf,x)x∈I of real numbers by

rf,x = f(x+) − f(x), x ∈ [a, b),
lf,a = 0, lf,x = f(x) − f(x−), x ∈ (a, b],

and let jf : I→ R be defined by

jf(x) =
∑

ξ∈(−∞,x)∩I

rf,ξ +
∑

ξ∈(−∞,x]∩I

lf,ξ.

Then jf is a function of bounded variation, and the function f − jf is a continuous function
of bounded variation.

Of course, the preceding two results carry over, with some notational compli-
cations at endpoints, to functions of locally bounded variation defined on general
intervals.

Note that Examples 3.2.27 and 3.2.28 illustrate some of the features of saltus
functions and functions of locally bounded variation. Indeed, the Cantor function
of Example 3.2.27 is a function of locally bounded variation for which the asso-
ciated saltus function is zero, while the function of Example 3.2.28 is “all” saltus
function. Perhaps it is also useful to give a more mundane example to illustrate
the decomposition of a function of locally bounded variation into its saltus and
continuous part.



270 3 Functions of a single real variable

3.3.24 Example (Saltus function of a function of locally bounded variation) Let I =
[0, 1] and consider three functions f1, f2, f3 : I→ R defined by

f1(x) =

1, x ∈ [0, 1
2 ],

−1, x ∈ (1
2 , 1],

f2(x) =


1, x ∈ [0, 1

2 ],
0, x = 1

2 ,

−1, x ∈ (1
2 , 1],

f3(x) =

1, x ∈ [0, 1
2 ),

−1, x ∈ [1
2 , 1].

In Example 3.3.5–3 we explicitly showed that f1 is a function of locally bounded
variation, and a similar argument shows that f2 and f3 are also functions of locally
bounded variation. A direct application of the definition of Corollary 3.3.23 gives

j f1(x) =

0, x ∈ [0, 1
2 ],

−2, x ∈ ( 1
2 , 1],

j f2(x) =


0, x ∈ [0, 1

2 ),
−1, x = 1

2 ,

−2, x ∈ ( 1
2 , 1],

j f3(x) =

0, x ∈ [0, 1
2 ),

−2, x ∈ [ 1
2 , 1].

For k ∈ {1, 2, 3}we have fk(x) = j fk(x) = 1, x ∈ [0, 1]. •

One might think that this is all that can be done as far as goes the decomposition
of a function with locally bounded variation. However, this is not so. However,
to further refine our present decomposition requires the notion of the integral as
we consider it in Chapter III-2. Thus we postpone a more detailed discussion of
functions of locally bounded variation until Theorem III-2.9.27.

Exercises

3.3.1 Show that if I ⊆ R is an interval and if f : I → R is continuous then the
following statements are equivalent:
1. f is injective;
2. f is either strictly monotonically increasing or strictly monotonically de-

creasing.
3.3.2 On the interval I = [−1, 1] consider the function f : I→ R defined by

f (x) =

 1
2x + x2 sin 1

x , x , 0,
0, x = 0.
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(a) Show that f is differentiable at x = 0 and has a positive derivative there.
(b) Show that for every ϵ ∈ R>0 the restriction of f to [−ϵ, ϵ] is neither

monotonically decreasing (not surprisingly) nor monotonically increas-
ing (surprisingly).

(c) Why is this not in contradiction with Proposition 3.2.23?
3.3.3 Give an example of an interval I and a function f : I→ R that is continuous,

strictly monotonically increasing, but not differentiable.
3.3.4 Prove the assertions of Remark 3.3.7.
3.3.5 Let I be an interval and suppose that I = I1 ∪ I2 where I1 ∩ I2 = {x0} for some

x0 ∈ R. If f : I→ F then

V( f )(x) =

V( f |I1)(x), x ∈ I1,

V( f |I2)(x) + V( f |I1)(x0), x ∈ I2

if I1 is finite,

V( f )(x) =

V( f |I1)(x) − V( f |I2)(x0), x ∈ I1,

V( f |I2)(x), x ∈ I2

if I1 is infinite and x0 < 0, and

V( f )(x) =

V( f |I1)(x), x ∈ I1,

V( f |I2)(x) + V( f |I1)(x0), x ∈ I2

if I1 is infinite and x0 ≥ 0.
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Section 3.4

The Riemann integral

Opposite to the derivative, in a sense made precise by Theorem 3.4.30, is the
notion of integration. In this section we describe a “simple” theory of integration,
called Riemann integration,10 that typically works insofar as computations go.
In Chapter III-2 we shall see that the Riemann integration suffers from a defect
somewhat like the defect possessed by rational numbers. That is to say, just
like there are sequences of rational numbers that seem like they should converge
(i.e., are Cauchy) but do not, there are sequences of functions possessing a Riemann
integral which do not converge to a function possessing a Riemann integral (see
Example III-2.1.11). This has some deleterious consequences for developing a
general theory based on the Riemann integral, and the most widely used fix for
this is the Lebesgue integral of Chapter III-2. However, for now let us stick to the
more pedestrian, and more easily understood, Riemann integral.

As we did with differentiation, we suppose that the reader has had the sort
of calculus course where they learn to compute integrals of common functions.
Indeed, while we do not emphasise the art of computing integrals, we do not
intend this to mean that this art should be ignored. The reader should know the
basic integrals and the basic tricks and techniques for computing them.

Do I need to read this section? The best way to think of this section is as a setup
for the general developments of Chapter III-2. Indeed, we begin Chapter III-2 with
essentially a deconstruction of what we do in this section. For this reason, this
chapter should be seen as preparatory to Chapter III-2, and so can be skipped until
one wants to learn Lebesgue integration in a serious way. At that time, a reader
may wish to be prepared by understanding the slightly simpler Riemann integral. •

3.4.1 Step functions

Our discussion begins by our considering intervals that are compact. In Sec-
tion 3.4.4 we consider the case of noncompact intervals.

In a theme that will be repeated when we consider the Lebesgue integral in
Chapter III-2, we first introduce a simple class of functions whose integral is “obvi-
ous.” These functions are then used to approximate a more general class of func-
tions which are those that are considered “integrable.” For the Riemann integral,
the simple class of functions are defined as being constant on the intervals forming
a partition. We recall from Definition 2.5.7 the notion of a partition and from the

10After Georg Friedrich Bernhard Riemann, 1826–1866. Riemann made important and long
lasting contributions to real analysis, geometry, complex function theory, and number theory, to
name a few areas. The presently unsolved Riemann Hypothesis is one of the outstanding problems
in modern mathematics.



3.4 The Riemann integral 273

discussion surrounding the definition the notion of the endpoints associated with
a partition.

3.4.1 Definition (Step function) Let I = [a, b] be a compact interval. A function f : I→ R
is a step function if there exists a partition P = (I1, . . . , Ik) of I such that

(i) f | int(I j) is a constant function for each j ∈ {1, . . . , k},
(ii) f (a+) = f (a) and f (b−) = f (b), and
(iii) for each x ∈ EP(P) \ {a, b}, either f (x−) = f (x) or f (x+) = f (x). •

In Figure 3.10 we depict a typical step function. Note that at discontinuities

[
a

]
bt1 t2 t3 t4 t5 t6

Figure 3.10 A step function

we allow the function to be continuous from either the right or the left. In the
development we undertake, it does not really matter which it is.

The idea of the integral of a function is that it measures the “area” below the
graph of a function. If the value of the function is negative, then the area is taken
to be negative. For step functions, this idea of the area under the graph is clear, so
we simply define this to be the integral of the function.

3.4.2 Definition (Riemann integral of a step function) Let I = [a, b] and let f : I→ R be
a step function defined using the partition P = (I1, . . . , Ik) with endpoints EP(P) =
(x0, x1, . . . , xk). Suppose that the value of f on int(I j) is c j for j ∈ {1, . . . , k}. The
Riemann integral of f is

A( f ) =
k∑

j=1

c j(x j − x j−1). •

The notation A( f ) is intended to suggest “area.”
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3.4.2 The Riemann integral on compact intervals

Next we define the Riemann integral of a function that is not necessarily a step
function. We do this by approximating a function by step functions.

3.4.3 Definition (Lower and upper step functions) Let I = [a, b] be a compact interval,
let f : I→ R be a bounded function, and let P = (I1, . . . , Ik) be a partition of I.

(i) The lower step function associated to f and P is the function s−( f ,P) : I → R
defined according to the following:

(a) if x ∈ I lies in the interior of an interval I j, j ∈ {1, . . . , k}, then s−( f ,P)(x) =
inf{ f (x) | x ∈ cl(I j)};

(b) s−( f ,P)(a) = s−( f ,P)(a+) and s−( f ,P)(b) = s−( f ,P)(b−);
(c) for x ∈ EP(P) \ {a, b}, s−( f ,P)(x) = s−( f ,P)(x+).

(ii) The upper step function associated to f and P is the function s+( f ,P) : I → R
defined according to the following:

(a) if x ∈ I lies in the interior of an interval I j, j ∈ {1, . . . , k}, then s+( f ,P)(x) =
sup{ f (x) | x ∈ cl(I j)};

(b) s+( f ,P)(a) = s+( f ,P)(a+) and s+( f ,P)(b) = s+( f ,P)(b−);
(c) for x ∈ EP(P) \ {a, b}, s+( f ,P)(x) = s+( f ,P)(x+). •

Note that both the lower and upper step functions are well-defined since f is
bounded. Note also that at the middle endpoints for the partition, we ask that the
lower and upper step functions be continuous from the right. This is an arbitrary
choice. Finally, note that for each x ∈ [a, b] we have

s−( f ,P)(x) ≤ f (x) ≤ s+( f ,P)(x).

That is to say, for any bounded function f , we have defined two step functions,
one bounding f from below and one bounding f from above.

Next we associate to the lower and upper step functions their integrals, which
we hope to use to define the integral of the function f .

3.4.4 Definition (Lower and upper Riemann sums) Let I = [a, b] be a compact interval,
let f : I→ R be a bounded function, and let P = (I1, . . . , Ik) be a partition of I.

(i) The lower Riemann sum associated to f and P is A−( f ,P) = A(s−( f ,P)).
(ii) The upper Riemann sum associated to f and P is A+( f ,P) = A(s+( f ,P)). •

Now we define the best approximations of the integral of f using the lower and
upper Riemann sums.
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3.4.5 Definition (Lower and upper Riemann integral) Let I = [a, b] be a compact inter-
val and let f : I→ R be a bounded function.

(i) The lower Riemann integral of f is

I−( f ) = sup{A−( f ,P) | P ∈ Part(I)}.

(ii) The upper Riemann integral of f is

I+( f ) = inf{A+( f ,P) | P ∈ Part(I)}. •

Note that since f is bounded, it follows that the sets

{A−( f ,P) | P ∈ Part(I)}, {A+( f ,P) | P ∈ Part(I)}

are bounded (why?). Therefore, the lower and upper Riemann integral always
exist. So far, then, we have made a some constructions that apply to any bounded
function. That is to say, for any bounded function, it is possible to define the lower
and upper Riemann integral. What is not clear is that these two things should be
equal. In fact, they are not generally equal, which leads to the following definition.

3.4.6 Definition (Riemann integrable function on a compact interval) A bounded
function f : [a, b]→ R on a compact interval is Riemann integrable if I−( f ) = I+( f ).
We denote ∫ b

a
f (x) dx = I−( f ) = I+( f ),

which is the Riemann integral of f . The function f is called the integrand. •

3.4.7 Notation (Swapping limits of integration) In the expression
∫ b

a
f (x) dx, “a” is the

lower limit of integration and “b” is the upper limit of integration. We have tacitly
assumed that a < b in our constructions to this point. However, we can consider
the case where b < a by adopting the convention that∫ a

b
f (x) dx = −

∫ b

a
f (x) dx. •

Let us provide an example which illustrates that, in principle, it is possible to
use the definition of the Riemann integral to perform computations, even though
this is normally tedious. A more common method for computing integrals is to
use the Fundamental Theorem of Calculus to “reverse engineer” the process.
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3.4.8 Example (Computing a Riemann integral) Let I = [0, 1] and define f : I → R by
f (x) = x. Let P = (I1, . . . , Ik) be a partition with s−( f ,P) and s+( f ,P) the associated
lower and upper step functions, respectively. Let EP(P) = (x0, x1, . . . , xk) be the
endpoints of the intervals of the partition. One can then see that, for j ∈ {1, . . . , k},
s−( f ,P)| int(I j) = x j−1 and s+( f ,P)| int(I j) = x j. Therefore,

A−( f ,P) =
k∑

j=1

x j−1(x j − x j−1), A+( f ,P) =
k∑

j=1

x j(x j − x j−1).

We claim that I−( f ) ≥ 1
2 and that I+( f ) ≤ 1

2 , and note that, once we prove this, it
follows that f is Riemann integrable and that I−( f ) = I+( f ) = 1

2 (why?).
For k ∈ Z>0 consider the partition Pk with endpoints EP(Pk) = {

j
k | j ∈

{0, 1, . . . , k}}. Then, using the formula
∑l

j=1 j = 1
2 l(l + 1), we compute

A−( f ,Pk) =
k∑

j=1

j − 1
k2 =

k(k − 1)
2k2 , A+( f ,Pk) =

k∑
j=1

j
k2 =

k(k + 1)
2k2 .

Therefore,
lim
k→∞

A−( f ,Pk) = 1
2 , lim

k→∞
A+( f ,Pk) = 1

2 .

This shows that I−( f ) ≥ 1
2 and that I+( f ) ≤ 1

2 , as desired. •

3.4.3 Characterisations of Riemann integrable functions on compact
intervals

In this section we provide some insightful characterisations of the notion of
Riemann integrability. First we provide four equivalent characterisations of the
Riemann integral. Each of these captures, in a slightly different manner, the notion
of the Riemann integral as a limit. It will be convenient to introduce the language
that a selection from a partition P = (I1, . . . , Ik) is a family ξ = (ξ1, . . . , ξk) of points
such that ξ j ∈ cl(I j), j ∈ {1, . . . , k}.

3.4.9 Theorem (Riemann, Darboux,11 and Cauchy characterisations of Riemann
integrable functions) For a compact interval I = [a, b] and a bounded function f : I→
R, the following statements are equivalent:

(i) f is Riemann integrable;
(ii) for every ϵ ∈ R>0, there exists a partition P such that A+(f,P) − A−(f,P) < ϵ

(Riemann’s condition);
11Jean Gaston Darboux (1842–1917) was a French mathematician. His made important contribu-

tions to analysis and differential geometry.
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(iii) there exists I(f) ∈ R such that, for every ϵ ∈ R>0 there exists δ ∈ R>0 such that, if
P = (I1, . . . , Ik) is a partition for which |P| < δ and if (ξ1, . . . , ξk) is a selection from
P, then ∣∣∣∣∣∣∣

k∑
j=1

f(ξj)(xj − xj−1) − I(f)

∣∣∣∣∣∣∣ < ϵ,
where EP(P) = (x0, x1, . . . , xk) (Darboux’ condition);

(iv) for each ϵ ∈ R>0 there exists δ ∈ R>0 such that, for any partitions P = (I1, . . . , Ik) and
P′ = (I′1, . . . , I

′

k′) with |P|, |P′| < δ and for any selections (ξ1, . . . , ξk) and (ξ′1, . . . , ξ
′

k′)
from P and P′, respectively, we have∣∣∣∣∣∣∣

k∑
j=1

f(ξj)(xj − xj−1) −
k′∑

j=1

f(ξ′j )(x
′

j − x′j−1)

∣∣∣∣∣∣∣ < ϵ,
where EP(P) = (x0, x1, . . . , xk) and EP(P′) = (x′0, x

′

1, . . . , x
′

k′) (Cauchy’s condition).
Proof First let us prove a simple lemma about lower and upper Riemann sums and
refinements of partitions.

1 Lemma Let I = [a, b], let f : I→ R be bounded, and let P1 and P2 be partitions of I with P2
a refinement of P1. Then

A−(f,P2) ≥ A−(f,P1), A+(f,P2) ≤ A+(f,P1).

Proof Let x1, x2 ∈ EP(P1) and denote by y1, . . . , yl the elements of EP(P2) that satisfy

x1 ≤ y1 < · · · < yl ≤ x2.

Then

l∑
j=1

(y j − y j−1) inf{ f (y) | y ∈ [y j, y j−1]} ≥
l∑

j=1

(y j − y j−1) inf{ f (x) | x ∈ [x1, x2]}

= (x2 − x1) inf{ f (x) | x ∈ [x1, x2]}.

Now summing over all consecutive pairs of endpoints for P1 gives A−( f ,P2) ≥
A−( f ,P1). A similar argument gives A+( f ,P2) ≤ A+( f ,P1). ▼

The following trivial lemma will also be useful.

2 Lemma I−(f) ≤ I+(f).

Proof Since, for any two partitions P1 and P2, we have

s−( f ,P1) ≤ f (x) ≤ s+( f ,P2),

it follows that

sup{A−( f ,P) | P ∈ Part(I)} ≤ inf{A+( f ,P) | P ∈ Part(I)},

which is the result. ▼
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(i) =⇒ (ii) Suppose that f is Riemann integrable and let ϵ ∈ R>0. Then there exists
partitions P− and P+ such that

A−( f ,P−) > I−( f ) − ϵ
2 , A+( f ,P+) < I+( f ) + ϵ

2 .

Now let P be a partition that is a refinement of both P1 and P2 (obtained, for example,
by asking that EP(P) = EP(P1) ∪ EP(P2)). By Lemma 1 it follows that

A+( f ,P) − A−( f ,P) ≤ A+( f ,P+) − A−( f ,P−) < I+( f ) + ϵ
2 − I−( f ) + ϵ

2 = ϵ.

(ii) =⇒ (i) Now suppose that ϵ ∈ R>0 and let P be a partition such that A+( f ,P) −
A−( f ,P) < ϵ. Since we additionally have I−( f ) ≤ I+( f ) by Lemma 2, it follows that

A−( f ,P) ≤ I−( f ) ≤ I+( f ) ≤ A+( f ,P),

from which we deduce that
0 ≤ I+( f ) − I−( f ) < ϵ.

Since ϵ is arbitrary, we conclude that I−( f ) = I+( f ), as desired.
(i) =⇒ (iii) We first prove a lemma about partitions of compact intervals.

3 Lemma If P = (I1, . . . , Ik) is a partition of [a, b] and if ϵ ∈ R>0, then there exists δ ∈ R>0
such that, if P′ = (I′1, . . . , I

′

k′) is a partition with |P′| < δ and if

{j′1, . . . , j
′

r} = {j
′
∈ {1, . . . ,k′} | cl(I′j′) 1 cl(Ij) for any j ∈ {1, . . . ,k}},

then
r∑

l=1

|xj′l
− xj′l−1| < ϵ,

where EP(P′) = (x0, x1, . . . , xk′).

Proof Let ϵ ∈ R>0 and take δ = ϵ
k+1 . Let P′ = (I′1, . . . , I

′

k′) be a partition with endpoints
(x0, x1, . . . , xk′) and satisfying |P′| < δ. Define

K1 = { j′ ∈ {1, . . . , k′} | cl(I′j′) 1 cl(I j) for any j ∈ {1, . . . , k}}.

If j′ ∈ K1 then I′j′ is not contained in any interval of P and so I′j′ must contain at least
one endpoint from P. Since P has k+ 1 endpoints we obtain card(K1) ≤ k+ 1. Since the
intervals I′j′ , j′ ∈ K1, have length at most δ we have∑

j′∈K1

(x j′ − x j′−1) ≤ (k + 1)δ ≤ ϵ,

as desired. ▼

Now let ϵ ∈ R>0 and define M = sup{| f (x)| | x ∈ I}. Denote by I( f ) the Riemann
integral of f . Choose partitions P− and P+ such that

I( f ) − A−( f ,P−) < ϵ
2 , A+( f ,P+) − I( f ) < ϵ

2 .
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If P = (I1, . . . , Ik) is chosen such that EP(P) = EP(P−) ∪ EP(P+), then

I( f ) − A−( f ,P) < ϵ
2 , A+( f ,P) − I( f ) < ϵ

2 .

By Lemma 3 choose δ ∈ R>0 such that if P′ is any partition for which |P′| < δ then
the sum of the lengths of the intervals of P′ not contained in some interval of P does
not exceed ϵ

2M . Let P′ = (I′1, . . . , I
′

k′) be a partition with endpoints (x0, x1, . . . , xk′) and
satisfying |P′| < δ. Denote

K1 = { j′ ∈ {1, . . . , k′} | I′j′ 1 I j for some j ∈ {1, . . . , k}}

and K2 = {1, . . . , k′} \ K1. Let (ξ1, . . . , ξk′) be a selection of P′. Then we compute

k′∑
j=1

f (ξ j)(x j − x j−1) =
∑
j∈K1

f (ξ j)(x j − x j−1) +
∑
j∈K2

f (ξ j)(x j − x j−1)

≤ A+( f ,P) +M
ϵ

2M
< I( f ) + ϵ.

In like manner we show that

k′∑
j=1

f (ξ j)(x j − x j−1) > I( f ) − ϵ.

This gives ∣∣∣∣∣∣∣∣
k′∑

j=1

f (ξ j)(x j − x j−1) − I( f )

∣∣∣∣∣∣∣∣ < ϵ,
as desired.

(iii) =⇒ (ii) Let ϵ ∈ R>0 and let P = (I1, . . . , Ik) be a partition for which∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(x j − x j−1) − I( f )

∣∣∣∣∣∣∣∣ < ϵ
4

for every selection (ξ1, . . . , ξk) from P. Now particularly choose a selection such that

| f (ξ j) − sup{ f (x) | x ∈ cl(I j)}| <
ϵ

4k(x j − x j−1)
.

Then

|A+( f ,P) − I( f )| ≤

∣∣∣∣∣∣∣∣A+( f ,P) −
k∑

j=1

f (ξ j)(x j − x j−1)

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣

k∑
j=1

f (ξ j)(x j − x j−1) − I( f )

∣∣∣∣∣∣∣∣
<

k∑
j=1

ϵ
4k(x j − x j−1)

(x j − x j−1) +
ϵ
4
<
ϵ
2
.
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In like manner one shows that |A−( f ,P) − I( f )| < ϵ
2 . Therefore,

|A+( f ,P) − A−( f ,P)| ≤ |A+( f ,P) − I( f )| + |I( f ) − A−( f ,P)| < ϵ,

as desired.
(iii) =⇒ (iv) Let ϵ ∈ R>0 and let δ ∈ R>0 have the property that, whenever P =

(I1, . . .k) is a partition satisfying |P| < δ and (ξ1, . . . , ξk) is a selection from P, it holds
that ∣∣∣∣∣∣∣∣

k∑
j=1

f (ξ j)(x j − x j−1) − I( f )

∣∣∣∣∣∣∣∣ < ϵ
2
.

Now let P = (I1, . . . , Ik) and P′ = (I′1, . . . , I
′

k′) be two partitions with |P|, |P′| < δ, and let
(ξ1, . . . , ξk) and (ξ′1, . . . , ξ

′

k′) selections from P and P′, respectively. Then we have∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(x j − x j−1) −
k′∑

j=1

f (ξ′j)(x
′

j − x′j−1)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(x j − x j−1) − I( f )

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣

k′∑
j=1

f (ξ′j)(x
′

j − x′j−1) − I( f )

∣∣∣∣∣∣∣∣ < ϵ,
which gives this part of the result.

(iv) =⇒ (iii) Let (P j = (I j,1, . . . , I j,k j)) j∈Z>0 be a sequence of partitions for which
lim j→∞|P j| = 0. Then, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that∣∣∣∣∣∣∣∣

kl∑
j=1

f (ξl, j)(xl, j − xl, j−1) −
km∑
j=1

f (ξm, j)(xm, j − xm, j−1)

∣∣∣∣∣∣∣∣ < ϵ,
for l,m ≥ N, where ξ j = (ξ j,1, . . . , ξ j,k j), is a selection from P j, j ∈ Z>0, and where
EP(P j) = (x j,0, x j,1, . . . , x j,k j), j ∈ Z>0. If we define

A( f ,P j, ξ j) =
k j∑

r=1

f (ξr)(x j,r − x j,r−1),

then the sequence (A( f ,P j, ξ j)) j∈Z>0 is a Cauchy sequence inR for any choices of points
ξ j, j ∈ Z>0. Denote the resulting limit of this sequence by I( f ). We claim that I( f ) is the
Riemann integral of f . To see this, let ϵ ∈ R>0 and let δ ∈ R>0 be such that∣∣∣∣∣∣∣∣

k∑
j=1

f (ξ j)(x j − x j−1) −
k′∑

j=1

f (ξ′j)(x
′

j − x′j−1)

∣∣∣∣∣∣∣∣ < ϵ
2

for any two partitions P and P′ satisfying |P|, |P′| < δ and for any selections ξ and ξ′

from P and P′, respectively. Now let N ∈ Z>0 satisfy |P j| < δ for every j ≥ N. Then, if
P is any partition with |P| < δ and if ξ is any selection from P, we have

|A( f ,P, ξ) − I( f )| ≤ |A( f ,P, ξ) − A( f ,PN, ξN)| + |A( f ,PN, ξN) − I( f )| < ϵ,

for any selection ξN of PN. This shows that I( f ) is indeed the Riemann integral of f ,
and so gives this part of the theorem. ■
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A consequence of the proof is that, of course, the quantity I( f ) in part (iii) of the
theorem is nothing other than the Riemann integral of f .

Many of the functions one encounters in practice are, in fact, Riemann inte-
grable. However, not all functions are Riemann integrable, as the following simple
examples shows.

3.4.10 Example (A function that is not Riemann integrable) Let I = [0, 1] and let
f : I→ R be defined by

f (x) =

1, x ∈ Q ∩ I
0, x < Q ∩ I.

Thus f takes the value 1 at all rational points, and is zero elsewhere. Now let
s+, s− : I → R be any step functions satisfying s−(x) ≤ f (x) ≤ s+(x) for all x ∈ I.
Since any nonempty subinterval of I contains infinitely many irrational numbers,
it follows that s−(x) ≤ 0 for every x ∈ I. Since every nonempty subinterval of I
contains infinitely many rational numbers, it follows that s+(x) ≥ 1 for every x ∈ I.
Therefore, A(s+) − A(s−) ≥ 1. It follows from Theorem 3.4.9 that f is not Riemann
integrable. While this example may seem pointless and contrived, it will be used
in Examples II-1.7.7(1) and Example III-2.1.11 to exhibit undesirable features of
the Riemann integral. •

The following result provides an interesting characterisation of Riemann in-
tegrable functions, illustrating precisely the sorts of functions whose Riemann
integrals may be computed.

3.4.11 Theorem (Riemann integrable functions are continuous almost everywhere,
and vice versa) For a compact interval I = [a, b], a bounded function f : I → R is
Riemann integrable if and only if the set

Df = {x ∈ I | f is discontinuous at x}

has measure zero.
Proof Recall from Definition 3.1.10 the notion of the oscillation ω f for a function f ,
and that ω f (x) = 0 if and only if f is continuous at x. For k ∈ Z>0 define

D f ,k =
{
x ∈ I

∣∣∣ ω f (x) ≥ 1
k

}
.

Then Proposition 3.1.11 implies that D f = ∪k∈Z>0D f ,k. By Exercise 2.5.11 we can assert
that D f has measure zero if and only if each of the sets D f ,k has measure zero, k ∈ Z>0.

Now suppose that D f ,k does not have measure zero for some k ∈ Z>0. Then there
exists ϵ ∈ R>0 such that, if a family ((a j, b j)) j∈Z>0 of open intervals has the property that

D f ,k ⊆
⋃

j∈Z>0

(a j, b j),

then
∞∑
j=1

|b j − a j| ≥ ϵ.
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Now let P be a partition of I and denote EP(P) = (x0, x1, . . . , xm). Now let { j1, . . . , jl} ⊆
{1, . . . ,m} be those indices for which jr ∈ { j1, . . . , jl} implies that D f ,k ∩ (x jr−1, x jr) , ∅.
Note that it follows that the set

⋃l
r=1(x jr−1, x jr) covers D f ,k with the possible exception

of a finite number of points. It then follows that one can enlarge the length of each of
the intervals (x jr−1, x jr), r ∈ {1, . . . , l}, by ϵ

2l , and the resulting intervals will cover D f ,k.
The enlarged intervals will have total length at least ϵ, which means that

l∑
r=1

|x jr − x jr−1| ≥
ϵ
2
.

Moreover, for each r ∈ {1, . . . , l},

sup{ f (x) | x ∈ [x jr−1, x jr]} − inf{ f (x) | x ∈ [x jr−1, x jr]} ≥
1
k

since D f ,k ∩ (x jr−1, x jr) , ∅ and by definition of D f ,k and ω f . It now follows that

A+( f ,P) − A−( f ,P) =
m∑

j=1

(x j − x j−1)
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

≥

l∑
r=1

(x jr − x jr−1)
(
sup{ f (x) | x ∈ [x jr−1, x jr]}

− inf{ f (x) | x ∈ [x jr−1, x jr]}
)

≥
ϵ
2k .

Since this must hold for every partition, it follows that f is not Riemann integrable.
Now suppose that D f has measure zero. Since f is bounded, let M = sup{| f (x)| | x ∈

I}. Let ϵ ∈ R>0 and for brevity define ϵ′ = ϵ
b−a+2 . Choose a sequence ((a j, b j)) j∈Z>0 of

open intervals such that

D f ⊆
⋃

j∈Z>0

I j,
∞∑
j=1

|b j − a j| <
ϵ′

M .

Define δ : I→ R>0 such that the following properties hold:
1. if x < D f then δ(x) is taken such that, if y ∈ I ∩ B(δ(x), x), then | f (y) − f (x)| < ϵ′

2 ;
2. if x ∈ D f then δ(x) is taken such that B(δ(x), x) ⊆ I j for some j ∈ Z>0.
Now, by Proposition 2.5.10, let ((c1, I1), . . . , (ck, Ik)) be a δ-fine tagged partition with
P = (I1, . . . , Ik) the associated partition. Now partition the set {1, . . . , k} into two sets K1



3.4 The Riemann integral 283

and K2 such that j ∈ K1 if and only if c j < D f . Then we compute

A+( f ,P) − A−( f ,P) =
k∑

j=1

(x j − x j−1)
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

=
∑
j∈K1

(x j − x j−1)
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

+
∑
j∈K2

(x j − x j−1)
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

≤

∑
j∈K1

ϵ′(x j − x j−1) +
∑
j∈K2

2M(x j − x j−1)

≤ ϵ′(b − a) + 2M
∞∑
j=1

|b j − a j|

< ϵ′(b − a + 2) = ϵ.

This part of the result now follows by Theorem 3.4.9. ■

The theorem indicates why the function of Example 3.4.10 is not Riemann
integrable. Indeed, the function in that example is discontinuous at all points in
[0, 1] (why?). The theorem also has the following obvious corollary which illustrates
why so many functions in practice are Riemann integrable.

3.4.12 Corollary (Continuous functions are Riemann integrable) If f : [a, b] → R is
continuous, then it is Riemann integrable.

By virtue of Theorem 3.3.3, we also have the following result, giving another
large class of Riemann integrable functions, distinct from those that are continu-
ous.

3.4.13 Corollary (Functions of bounded variation are Riemann integrable) If
f : [a, b]→ R has bounded variation, then f is Riemann integrable.

3.4.4 The Riemann integral on noncompact intervals

Up to this point in this section we have only considered the Riemann integral
for bounded functions defined on compact intervals. In this section we extend the
notion of the Riemann integral to allow its definition for unbounded functions and
for general intervals. There are complications that arise in this situation that do
not arise in the case of a compact interval in that one has two possible notions of
what one might call a Riemann integrable function. In all cases, we use the existing



284 3 Functions of a single real variable

definition of the Riemann integral for compact intervals as our basis, and allow the
other cases as limits.

3.4.14 Definition (Positive Riemann integrable function on a general interval) Let
I ⊆ R be an interval and let f : I → R≥0 be a function whose restriction to every
compact subinterval of I is Riemann integrable.

(i) If I = [a, b] then the Riemann integral of f is as defined in the preceding
section.

(ii) If I = (a, b] then define ∫ b

a
f (x) dx = lim

ra↓a

∫ b

ra

f (x) dx.

(iii) If I = [a, b) then define ∫ b

a
f (x) dx = lim

rb↑b

∫ rb

a
f (x) dx.

(iv) If I = (a, b) then define∫ b

a
f (x) dx = lim

ra↓a

∫ c

ra

f (x) dx + lim
rb↑b

∫ rb

c
f (x) dx

for some c ∈ (a, b).
(v) If I = (−∞, b] then define∫ b

−∞

f (x) dx = lim
R→∞

∫ b

−R
f (x) dx.

(vi) If I = (−∞, b) then define∫ b

−∞

f (x) dx = lim
R→∞

∫ c

−R
f (x) dx + lim

rb↑b

∫ rb

c
f (x) dx

for some c ∈ (−∞, b).
(vii) If I = [a,∞) then define∫

∞

a
f (x) dx = lim

R→∞

∫ R

a
f (x) dx.

(viii) If I = (a,∞) then define∫
∞

a
f (x) dx = lim

ra↓a

∫ c

ra

f (x) dx + lim
R→∞

∫ R

c
f (x) dx

for some c ∈ (a,∞).
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(ix) If I = R then define∫
∞

−∞

f (x) dx = lim
R→∞

∫ c

−R
f (x) dx + lim

R→∞

∫ R

c
f (x) dx

for some c ∈ R.
If, for a given I and f , the appropriate of the above limits exists, then f is Riemann
integrable on I, and the Riemann integral is the value of the limit. Let us denote by∫

I
f (x) dx

the Riemann integral. •

One can easily show that where, in the above definitions, one must make a
choice of c, the definition is independent of this choice (cf. Proposition 3.4.26).

The above definition is intended for functions taking nonnegative values. For
more general functions we have the following definition.

3.4.15 Definition (Riemann integrable function on a general interval) Let I ⊆ R be an
interval and let f : I→ R be a function whose restriction to any compact subinterval
of I is Riemann integrable. Define f+, f− : I→ R≥0 by

f+(x) = max{0, f (x)}, f−(x) = −min{0, f (x)}

so that f = f+ − f−. The function f is Riemann integrable if both f+ and f− are
Riemann integrable, and the Riemann integral of f is∫

I
f (x) dx =

∫
I

f+(x) dx −
∫

I
f−(x) dx. •

At this point, if I is compact, we have potentially competing definitions for the
Riemann integral of a bounded function I : f → R. One definition is the direct one
of Definition 3.4.6. The other definition involves computing the Riemann integral,
as per Definition 3.4.6, of the positive and negative parts of f , and then take the
difference of these. Let us resolve the equivalence of these two notions.

3.4.16 Proposition (Consistency of definition of Riemann integral on compact inter-
vals) Let I = [a, b], let f : [a, b] → R, and let f+, f− : [a, b] → R≥0 be the positive and
negative parts of f. Then the following two statements are equivalent:

(i) f is integrable as per Definition 3.4.6 with Riemann integral I(f);
(ii) f+ and f− are Riemann integrable as per Definition 3.4.6 with Riemann integrals

I(f+) and I(f−).
Moreover, if one, and therefore both, of parts (i) and (ii) hold, then I(f) = I(f+) − I(f−).
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Proof We shall refer ahead to the results of Section 3.4.5.
(i) =⇒ (ii) Define continuous functions g+, g− : R→ R by

g+(x) = max{0, x}, g−(x) = −min{0, x}

so that f+ = g+ ◦ f and f− = g− ◦ f . By Proposition 3.4.23 (noting that the proof of that
result is valid for the Riemann integral as per Definition 3.4.6) it follows that f+ and
f− are Riemann integrable as per Definition 3.4.6.

(ii) =⇒ (i) Note that f = f+ − f−. Also note that the proof of Proposition 3.4.22
is valid for the Riemann integral as per Definition 3.4.6. Therefore, f is Riemann
integrable as per Definition 3.4.6.

Now we show that I( f ) = I( f+) − I( f−). This, however, follows immediately from
Proposition 3.4.22. ■

It is not uncommon to see the general integral as we have defined it called the
improper Riemann integral.

The preceding definitions may appear at first to be excessively complicated. The
following examples illustrate the rationale behind the care taken in the definitions.

3.4.17 Examples (Riemann integral on a general interval)
1. Let I = (0, 1] and let f (x) = x−1. Then, if ra ∈ (0, 1), we compute the proper

Riemann integral ∫ 1

ra

f (x) dx = − log ra,

where log is the natural logarithm. Since limra↓ log ra = −∞ this function is not
Riemann integrable on (0, 1].

2. Let I = (0, 1] and let f (x) = x−1/2. Then, if ra ∈ (0, 1), we compute the proper
Riemann integral ∫ 1

ra

f (x) dx = 2 − 2
√

ra.

In this case the function is Riemann integrable on (0, 1] and the value of the
Riemann integral is 2.

3. Let I = R and define f (x) = (1 + x2)−1. In this case we have∫
∞

−∞

1
1 + x2 dx = lim

R→∞

∫ 0

−R

1
1 + x2 dx + lim

R→∞

∫ R

0

1
1 + x2 dx

= lim
R→∞

arctan R + lim
R→∞

arctan R = π.

Thus this function is Riemann integrable onR and has a Riemann integral of π.
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4. The next example we consider is I = R and f (x) = x(1 + x2)−1. In this case we
compute ∫

∞

−∞

x
1 + x2 dx = lim

R→∞

∫ 0

−R

x
1 + x2 dx + lim

R→∞

∫ R

0

x
1 + x2 dx

= lim
R→∞

1
2

log(1 + R2) − lim
R→∞

1
2

log(1 + R2).

Now, it is not permissible to say here that∞−∞ = 0. Therefore, we are forced
to conclude that f is not Riemann integrable on R.

5. To make the preceding example a little more dramatic, and to more convincingly
illustrate why we should not cancel the infinities, we take I = R and f (x) = x3.
Here we compute ∫

∞

−∞

x3 dx = lim
R→∞

1
4

R4
− lim

R→∞

1
4

R4.

In this case again we must conclude that f is not Riemann integrable on R.
Indeed, it seems unlikely that one would wish to conclude that such a function
was Riemann integrable since it is so badly behaved as |t| → ∞. However, if we
reject this function as being Riemann integrable, we must also reject the function
of Example 4, even though it is not as ill behaved as the function here. •

Note that the above constructions involved first separating a function into its
positive and negative parts, and then integrating these separately. However, there
is not a priori reason why we could not have defined the limits in Definition 3.4.14
directly, and not just for positive functions. One can do this in fact. However, as
we shall see, the two ensuing constructions of the integral are not equivalent.

3.4.18 Definition (Conditionally Riemann integrable functions on a general interval)
Let I ⊆ R be an interval and let f : I → R be a function whose restriction to any
compact subinterval of I is Riemann integrable. Then f is conditionally Riemann
integrable if the limit in the appropriate of the nine cases of Definition 3.4.14 exists.
This limit is called the conditional Riemann integral of f . If f is conditionally
integrable we write ∫

C
I
f (x) dx

as the conditional Riemann integral. •

Before we explain the differences between conditionally integrable and inte-
grable functions via examples, let us provide the relationship between the two
notions.

3.4.19 Proposition (Relationship between integrability and conditional integrability)
If I ⊆ R is an interval and if f : I→ R, then the following statements hold:

(i) if f is Riemann integrable then it is conditionally Riemann integrable;
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(ii) if I is additionally compact then, if f is conditionally Riemann integrable it is
Riemann integrable.

Proof In the proof it is convenient to make use of the results from Section 3.4.5.
(i) Let f+ and f− be the positive and negative parts of f . Since f is Riemann

integrable, then so are f+ and f− by Definition 3.4.15. Moreover, since Riemann inte-
grability and conditional Riemann integrability are clearly equivalent for nonnegative
functions, it follows that f+ and f− are conditionally Riemann integrable. Therefore,
by Proposition 3.4.22, it follows that f = f+ − f− is conditionally Riemann integrable.

(ii) This follows from Definition 3.4.15 and Proposition 3.4.16. ■

Let us show that conditional Riemann integrability and Riemann integrability
are not equivalent.

3.4.20 Example (A conditionally Riemann integrable function that is not Riemann
integrable) Let I = [1,∞) and define f (x) = sin x

x . Let us first show that f is
conditionally Riemann integrable. We have, using integration by parts (Proposi-
tion 3.4.28),∫

∞

1

sin x
x

dx = lim
R→∞

∫ R

1

sin x
x

dx = lim
R→∞

(
−

cos x
x

∣∣∣∣R
1
−

∫ R

1

cos x
x2 dx

)
= cos 1 − lim

R→∞

∫ R

1

cos x
x2 dx.

We claim that the last limit exists. Indeed,∣∣∣∣∣∣
∫ R

1

cos x
x2 dx

∣∣∣∣∣∣ ≤
∫ R

1

|cos x|
x2 dx ≤

∫ R

1

1
x2 dx = 1 −

1
R
,

and the limit as R→∞ is then 1. This shows that the limit defining the conditional
integral is indeed finite, and so f is conditionally Riemann integrable on [1,∞).

Now let us show that this function is not Riemann integrable. By Proposi-
tion 3.4.25, f is Riemann integrable if and only if | f | is Riemann integrable. For
R > 0 let NR ∈ Z>0 satisfy R ∈ [NRπ, (NR + 1)π]. We then have∫ R

1

∣∣∣∣∣sin x
x

∣∣∣∣∣ dx ≥
∫ NRπ

π

∣∣∣∣∣sin x
x

∣∣∣∣∣ dx

≥

NR−1∑
j=1

1
jπ

∫ ( j+1)π

jπ
|sin x|dx =

2
π

NR−1∑
j=1

1
j
.

By Example 2.4.2–2, the last sum diverges to∞ as NR →∞, and consequently the
integral on the left diverges to∞ as R→∞, giving the assertion. •
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3.4.21 Remark (“Conditional Riemann integral” versus “Riemann integral”) The pre-
vious example illustrates that one needs to exercise some care when talking about
the Riemann integral. Adding to the possible confusion here is the fact that there is
no established convention concerning what is intended when one says “Riemann
integral.” Many authors use “Riemann integrability” where we use “conditional
Riemann integrability” and then use “absolute Riemann integrability” where we
use “Riemann integrability.” There is a good reason to do this.
1. One can think of integrals as being analogous to sums. When we talked about

convergence of sums in Section 2.4 we used “convergence” to talk about that
concept which, for the Riemann integral, is analogous to “conditional Riemann
integrability” in our terminology. We used the expression “absolute conver-
gence” for that concept which, for the Riemann integral, is analogous to “Rie-
mann integrability” in our terminology. Thus the alternative terminology of
“Riemann integrability” for “conditional Riemann integrability” and “absolute
Riemann integrability” for “Riemann integrability” is more in alignment with
the (more or less) standard terminology for sums.

However, there is also a good reason to use the terminology we use. However, the
reasons here have to do with terminology attached to the Lebesgue integral that
we discuss in Chapter III-2. However, here is as good a place as any to discuss this.
2. For the Lebesgue integral, the most natural notion of integrability is analogous

to the notion of “Riemann integrability” in our terminology. That is, the termi-
nology “Lebesgue integrability” is a generalisation of “Riemann integrability.”
The notion of “conditional Riemann integrability” is not much discussed for the
Lebesgue integral, so there is not so much an established terminology for this.
However, if there were an established terminology it would be “conditional
Lebesgue integrability.”

In Table 3.1 we give a summary of the preceding discussion, noting that apart

Table 3.1 “Conditional” versus “absolute” terminology. In the
top row we give our terminology, in the second row we give
the alternative terminology for the Riemann integral, in the
third row we give the analogous terminology for sums, and
in the fourth row we give the terminology for the Lebesgue
integral.

Riemann integrable conditionally Riemann integrable

Alternative absolutely Riemann integrable Riemann integrable
Sums absolutely convergent convergent
Lebesgue integral Lebesgue integrable conditionally Lebesgue integrable

from overwriting some standard conventions, there is no optimal way to choose
what language to use. Our motivation for the convention we use is that it is best
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that “Lebesgue integrability” should generalise “Riemann integrability.” But it is
necessary to understand what one is reading and what is intended in any case. •

3.4.5 The Riemann integral and operations on functions

In this section we consider the interaction of integration with the usual algebraic
and other operations on functions. We will consider both Riemann integrability and
conditional Riemann integrability. If we wish to make a statement that we intend
to hold for both notions, we shall write “(conditionally) Riemann integrable” to
connote this. We will also write

(C)
∫

I
f (x) dx

to denote either the Riemann integral or the conditional Riemann integral in cases
where we wish for both to apply. The reader should also keep in mind that Riemann
integrability and conditional Riemann integrability agree for compact intervals.

3.4.22 Proposition (Algebraic operations and the Riemann integral) Let I ⊆ R be an
interval, let f,g: I → R be (conditionally) Riemann integrable functions, and let c ∈ R.
Then the following statements hold:

(i) f + g is (conditionally) Riemann integrable and

(C)
∫

I
(f + g)(x) dx = (C)

∫
I
f(x) dx + (C)

∫
I
g(x) dx;

(ii) cf is (conditionally) Riemann integrable and

(C)
∫

I
(cf)(x) dx = c(C)

∫
I
f(x) dx;

(iii) if I is additionally compact, then fg is Riemann integrable;
(iv) if I is additionally compact and if there exists α ∈ R>0 such that g(x) ≥ α for each

x ∈ I, then f
g is Riemann integrable.

Proof (i) We first suppose that I = [a, b] is a compact interval. Let ϵ ∈ R>0 and by
Theorem 3.4.9 we let P f and Pg be partitions of [a, b] such that

A+( f ,P f ) − A−( f ,P f ) < ϵ
2 , A+(g,Pg) − A−(g,Pg) < ϵ

2 ,

and let P be a partition for which (x0, x1, . . . , xk) = EP(P) = EP(P f )∪EP(Pg). Then, using
Proposition 2.2.27,

sup{ f (x) + g(x) | x ∈ [x j−1, x j]} = sup{ f (x) | x ∈ [x j−1, x j]} + sup{g(x) | x ∈ [x j−1, x j]}

and

inf{ f (x) + g(x) | x ∈ [x j−1, x j]} = inf{ f (x) | x ∈ [x j−1, x j]} + inf{g(x) | x ∈ [x j−1, x j]}
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for each j ∈ {1, . . . , k}. Thus

A+( f + g,P) − A−( f + g,P) ≤ A+( f ,P) + A+(g,P) − A−( f ,P) − A−(g,P) < ϵ,

using Lemma 1 from the proof of Theorem 3.4.9. This shows that f + g is Riemann
integrable by Theorem 3.4.9.

Now let P f and Pg be any two partitions and let P satisfy (x0, x1, . . . , xk) = EP(P) =
EP(P f ) ∪ EP(Pg). Then

A+( f ,P f ) + A+(g,Pg) ≥ A+( f ,P) + A+(g,P) ≥ A+( f + g,P) ≥ I+( f + g).

We then have

I+( f + g) ≤ A+( f ,P f ) + A+(g,Pg) =⇒ I+( f + g) ≤ I+( f ) + I+(g).

In like fashion we obtain the estimate

I−( f + g) ≥ I−( f ) + I−(g).

Combining this gives

I−( f ) + I−(g) ≤ I−( f + g) = I+( f + g) ≤ I+( f ) + I+(g),

which implies equality of these four terms since I−( f ) = I+( f ) and I−(g) = I+(g).
This gives this part of the result when I is compact. The result follows for general
intervals from the definition of the Riemann integral for such intervals, and by applying
Proposition 2.3.23.

(ii) As in part (i), the result will follow if we can prove it when I is compact. When
c = 0 the result is trivial, so suppose that c , 0. First consider the case c > 0. For ϵ ∈ R>0
let P be a partition for which A+( f ,P) − A−( f ,P) < ϵ

c . Since A−(c f ,P) = cA−( f ,P) and
A+(c f ,P) = cA+( f ,P) (as is easily checked), we have A+(c f ,P) − A−(c f ,P) < ϵ, showing
that c f is Riemann integrable. The equalities A−(c f ,P) = cA−( f ,P) and A+(c f ,P) =
cA+( f ,P) then directly imply that I−(c f ) = cI−( f ) and I+(c f ) = cI+( f ), giving the result
for c > 0. For c < 0 a similar argument holds, but asking that P be a partition for which
A+( f ,P) − A−( f ,P) < − ϵc .

(iii) First let us show that if I is compact then f 2 is Riemann integrable if f is Riemann
integrable. This, however, follows from Proposition 3.4.23 by taking g : I → R to be
g(x) = x2. To show that a general product f g of Riemann integrable functions on a
compact interval is Riemann integrable, we note that

f g = 1
2 (( f + g)2

− f 2
− g2).

By part (i) and using the fact that the square of a Riemann integrable function is
Riemann integrable, the function on the right is Riemann integrable, so giving the
result.

(iv) That 1
g is Riemann integrable follows from Proposition 3.4.23 by taking g : I→

R to be g(x) = 1
x . ■

In parts (iii) and (iv) we asked that the interval be compact. It is simple to
find counterexamples which indicate that compactness of the interval is generally
necessary (see Exercise 3.4.3).

We now consider the relationship between composition and Riemann integra-
tion.
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3.4.23 Proposition (Function composition and the Riemann integral) If I = [a, b] is a
compact interval, if f : [a, b]→ R is a Riemann integrable function satisfying image(f) ⊆
[c,d], and if g: [c,d]→ R is continuous, then g ◦ f is Riemann integrable.

Proof Denote M = sup{|g(y)| | y ∈ [c, d]}. Let ϵ ∈ R>0 and write ϵ′ = ϵ
2M+d−c . Since g

is uniformly continuous by the Heine–Cantor Theorem, let δ ∈ R be chosen such that
0 < δ < ϵ′ and such that, |y1 − y2| < δ implies that |g(y1) − g(y2)| < ϵ′. Then choose a
partition P of [a, b] such that A+( f ,P)−A−( f ,P) < δ2. Let (x0, x1, . . . , xk) be the endpoints
of P and define

A = { j ∈ {1, . . . , k} | sup{ f (x) | x ∈ [x j−1, x j]} − inf{ f (x) | x ∈ [x j−1, x j]} < δ},
B = { j ∈ {1, . . . , k} | sup{ f (x) | x ∈ [x j−1, x j]} − inf{ f (x) | x ∈ [x j−1, x j]} ≥ δ}.

For j ∈ A we have | f (ξ1) − f (ξ2)| < δ for every ξ1, ξ2 ∈ [x j−1, x j] which implies that
|g ◦ f (ξ1) − g ◦ f (ξ2)| < ϵ′ for every ξ1, ξ2 ∈ [x j−1, x j]. For j ∈ B we have

δ
∑
j∈B

(x j − x j−1) ≤
∑
j∈B

(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

(x j − x j−1)

≤ A+( f ,P) − A−( f ,P) < δ2.

Therefore we conclude that ∑
j∈B

(x j − x j−1) ≤ ϵ′.

Thus

A+(g ◦ f ,P) − A−(g ◦ f ,P) =
k∑

j=1

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)

(x j − x j−1)

=
∑
j∈A

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)

(x j − x j−1)

+
∑
j∈B

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)

(x j − x j−1)

< ϵ′(d − c) + 2ϵ′M < ϵ,

giving the result by Theorem 3.4.9. ■

The Riemann integral also has the expected properties relative to the partial
order and the absolute value function on R.
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3.4.24 Proposition (Riemann integral and total order on R) Let I ⊆ R be an interval and
let f,g: I → R be (conditionally) Riemann integrable functions for which f(x) ≤ g(x) for
each x ∈ I. Then

(C)
∫

I
f(x) dx ≤ (C)

∫
I
g(x) dx.

Proof Note that by part (i) of Proposition 3.4.22 it suffices to take f = 0 and then show
that

∫
I g(x) dx ≥ 0. In the case where I = [a, b] we have∫ b

a
g(x) dx ≥ (b − a) inf{g(x) | x ∈ [a, b]} ≥ 0,

which gives the result in this case. The result for general intervals follows from the
definition, and the fact the a limit of nonnegative numbers is nonnegative. ■

3.4.25 Proposition (Riemann integral and absolute value on R) Let I be an interval, let
f : I→ R, and define |f| : I→ R by |f|(x) = |f(x)|. Then the following statements hold:

(i) if f is Riemann integrable then |f| is Riemann integrable;
(ii) if I is compact and if f is conditionally Riemann integrable then |f| is conditionally

Riemann integrable.
Moreover, if the hypotheses of either part hold then∣∣∣∣∣∫

I
f(x) dx

∣∣∣∣∣ ≤ ∫
I
|f|(x) dx.

Proof (i) If f is Riemann integrable then f+ and f− are Riemann integrable. Since
| f | = f+ + f− it follows from Proposition 3.4.22 that | f | is Riemann integrable.

(ii) When I is compact, the statement follows since conditional Riemann integra-
bility is equivalent to Riemann integrability.

The inequality in the statement of the proposition follows from Proposition 3.4.24
since f (x) ≤ | f (x)| for all x ∈ I. ■

We comment that the preceding result is, in fact, not true if one removes the
condition that I be compact. We also comment that the converse of the result is false,
in that the Riemann integrability of | f | does not imply the Riemann integrability of
f . The reader is asked to sort this out in Exercise 3.4.4.

The Riemann integral also behaves well upon breaking an interval into two
intervals that are disjoint except for a common endpoint.

3.4.26 Proposition (Breaking the Riemann integral in two) Let I ⊆ R be an interval and
let I = I1 ∪ I2, where I1 ∩ I2 = {c}, where c is the right endpoint of I1 and the left endpoint
of I2. Then f : I → R is (conditionally) Riemann integrable if and only if f|I1 and f|I2 are
(conditionally) Riemann integrable. Furthermore, we have

(C)
∫

I
f(x) dx = (C)

∫
I1

f(x) dx + (C)
∫

I2

f(x) dx.
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Proof We first consider the case where I1 = [a, c] and I2 = [c, b].
Let us suppose that f is Riemann integrable and let (x0, x1, . . . , xk) be endpoints of

a partition of [a, b] for which A+( f ,P) − A−( f ,P) < ϵ. If c ∈ (x0, x1, . . . , xk), say c = x j,
then we have

A−( f ,P) = A−( f |I1,P1) + A−( f |I2,P2), A+( f ,P) = A+( f |I1,P1) + A+( f |I2,P2),

where EP(P1) = (x0, x1, . . . , x j) are the endpoints of a partition of [a, c] and EP(P2) =
(x j, . . . , xk) is a partition of [c, b]. From this we directly deduce that

A+( f |I1,P1) − A−( f |I1,P1) < ϵ, A+( f |I2,P2) − A−( f |I2,P2) < ϵ. (3.14)

If c is not an endpoint of P, then one can construct a new partition P′ of [a, b] with c as
an extra endpoint. By Lemma 1 of Theorem 3.4.9 we have A+( f ,P′) − A−( f ,P′) < ϵ.
The argument then proceeds as above to show that (3.14) holds. Thus f |I1 and f |I2 are
Riemann integrable by Theorem 3.4.9.

To prove the equality of the integrals in the statement of the proposition, we
proceed as follows. Let P1 and P2 be partitions of I1 and I2, respectively. From these
construct a partition P(P1,P2) of I by asking that EP(P(P1,P2)) = EP(P1)∪EP(P2). Then

A+( f |I1,P1) + A+( f |I2,P2) = A+( f ,P(P1,P2)).

Thus

inf{A+( f |I1,P1) | P1 ∈ Part(I1)} + inf{A+( f |I2,P2) | P2 ∈ Part(I2)}
≥ inf{A+( f ,P) | P ∈ Part(I)}. (3.15)

Now let P be a partition of I and construct partitions P1(P) and P2(P) of I1 and I2
respectively by adding defining, if necessary, a new partition P′ of I with c as the (say)
jth endpoint, and then defining P1(P) such that EP(P1(P)) are the first j + 1 endpoints
of P′ and then defining P2(P) such that EP(P2(P)) are the last k − j endpoints of P′. By
Lemma 1 of Theorem 3.4.9 we then have

A+( f ,P) ≥ A+( f ,P′) = A+( f |I1,P1(P)) + A+( f |I2,P2(P)).

This gives

inf{A+( f ,P) | P ∈ Part(I)}
≥ inf{A+( f |I1,P1) | P1 ∈ Part(I1)} + inf{A+( f |I2,P2) | P2 ∈ Part(I2)}.

Combining this with (3.15) gives

inf{A+( f ,P) | P ∈ Part(I)}
= inf{A+( f |I1,P1) | P1 ∈ Part(I1)} + inf{A+( f |I2,P2) | P2 ∈ Part(I2)},

which is exactly the desired result.
The result for a general interval follows from the general definition of the Riemann

integral, and from Proposition 2.3.23. ■

The next result gives a useful tool for evaluating integrals, as well as a being a
result of some fundamental importance.
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3.4.27 Proposition (Change of variables for the Riemann integral) Let [a, b] be a com-
pact interval and let u: [a, b]→ R be differentiable with u′ Riemann integrable. Suppose
that image(u) ⊆ [c,d] and that f : [c,d] → R is Riemann integrable and that f = F′ for
some differentiable function F: [c,d]→ R. Then∫ b

a
f ◦ u(x)u′(x) dx =

∫ u(b)

u(a)
f(y) dy.

Proof Let G : [a, b]→ R be defined by G = F ◦u. Then G′ = ( f ◦u)u′ by the Chain Rule.
Moreover, G′ is Riemann integrable by Propositions 3.4.22 and 3.4.23. Thus, twice
using Theorem 3.4.30 below,∫ b

a
f ◦ u(x)u′(x) dx = G(b) − G(a) = F ◦ u(b) − F ◦ u(a) =

∫ u(b)

u(a)
f (y) dy,

as desired. ■

As a final result in this section, we prove the extremely valuable integration by
parts formula.

3.4.28 Proposition (Integration by parts for the Riemann integral) If [a, b] is a com-
pact interval and if f,g: [a, b] → R are differentiable functions with f′ and g′ Riemann
integrable, then∫ b

a
f(x)g′(x) dx +

∫ b

a
f′(x)g(x) dx = f(b)g(b) − f(a)g(a).

Proof By Proposition 3.2.10 it holds that f g is differentiable and that ( f g)′ = f ′g+ f g′.
Thus, by Proposition 3.4.22, f g is differentiable with Riemann integrable derivative.
Therefore, by Theorem 3.4.30 below,∫ b

a
( f g)(x) dx = f (b)g(b) − f (a)g(a),

and the result follows directly from the formula for the product rule. ■

3.4.6 The Fundamental Theorem of Calculus and the Mean Value Theorems

In this section we begin to explore the sense in which differentiation and integra-
tion are inverses of one another. This is, in actuality, and somewhat in contrast to
the manner in which one considers this question in introductory calculus courses,
a quite complicated matter. Indeed, we will not fully answer this question until
Section III-2.9.7, after we have some knowledge of the Lebesgue integral. Nev-
ertheless, in this section we give some simple results, and some examples which
illustrate the value and the limitations of these results. We also present the Mean
Value Theorems for integrals.

The following language is often used in conjunction with the Fundamental
Theorem of Calculus.
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3.4.29 Definition (Primitive) If I ⊆ R is an interval and if f : I → R is a function, a
primitive for f is a function F : I→ R such that F′ = f . •

Note that primitives are not unique since if one adds a constant to a primitive,
the resulting function is again a primitive.

The basic result of this section is the following.

3.4.30 Theorem (Fundamental Theorem of Calculus for Riemann integrals) For a
compact interval I = [a, b], the following statements hold:

(i) if f : I→ R is Riemann integrable with primitive F: I→ R, then∫ b

a
f(x) dx = F(b) − F(a);

(ii) if f : I→ R is Riemann integrable, and if F: I→ R is defined by

F(x) =
∫ x

a
f(ξ) dξ,

then

(a) F is continuous and
(b) at each point x ∈ I for which f is continuous, F is differentiable and F′(x) = f(x).

Proof (i) Let (P j) j∈Z>0 be a sequence of partitions for which lim j→∞|P j| = 0. Denote
by (x j,0, x j,1, . . . , x j,k j) the endpoints of P j, j ∈ Z>0. By the Mean Value Theorem, for
each j ∈ Z>0 and for each r ∈ {1, . . . , kr}, there exists ξ j,r ∈ [x j,r−1, x j,r] such that F(x j,r) −
F(x j,r−1) = f (ξ j,r)(x j,r − x j,r−1). Since f is Riemann integrable we have

∫ b

a
f (x) dx = lim

j→∞

k j∑
r=1

f (ξ j,r)(x j,r − x j,r−1)

= lim
j→∞

k j∑
r=1

(F(x j,r) − F(x j,r−1))

= lim
j→∞

(F(b) − F(a)) = F(b) − F(a),

as desired.
(ii) Let x ∈ (a, b) and note that, for h sufficiently small,

F(x + h) − F(x) =
∫ x+h

x
f (ξ) dξ,

using Proposition 3.4.26. By Proposition 3.4.24 it follows that

h inf{ f (y) | y ∈ [a, b]} ≤
∫ x+h

x
f (ξ) dξ ≤ h sup{ f (y) | y ∈ [a, b]},
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provided that h > 0. This shows that

lim
h↓0

∫ x+h

x
f (ξ) dξ = 0.

A similar argument can be fashioned for the case when h < 0 to show also that

lim
h↑0

∫ x+h

x
f (ξ) dξ = 0,

so showing that F is continuous at point in (a, b). A slight modification to this argument
shows that F is also continuous at a and b.

Now suppose that f is continuous at x. Let h > 0. Again using Proposition 3.4.24
we have

h inf{ f (y) | y ∈ [x, x + h]} ≤
∫ x+h

x
f (ξ) dξ ≤ h sup{ f (y) | y ∈ [x, x + h]}

=⇒ inf{ f (y) | y ∈ [x, x + h]} ≤
F(x + h) − F(x)

h
≤ sup{ f (y) | y ∈ [x, x + h]}.

Continuity of f at x gives

lim
h↓0

inf{ f (y) | y ∈ [x, x + h]} = f (x), lim
h↓0

sup{ f (y) | y ∈ [x, x + h]} = f (x).

Therefore,

lim
h↓0

F(x + h) − F(x)
h

= f (x).

A similar argument can be made for h < 0 to give

lim
h↑0

F(x + h) − F(x)
h

= f (x),

so proving this part of the theorem. ■

Let us give some examples that illustrate what the Fundamental Theorem of
Calculus says and does not say.

3.4.31 Examples (Fundamental Theorem of Calculus)
1. Let I = [0, 1] and define f : I→ R by

f (x) =

x, x ∈ [0, 1
2 ],

1 − x, x ∈ (1
2 , 1].

Then

F(x) ≜
∫ x

0
f (ξ) dξ =

1
2x2, x ∈ [0, 1

2 ],
−

1
2x2 + x − 1

8 , x ∈ (1
2 , 1].
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Then, for any x ∈ [a, b], we see that∫ x

0
f (ξ) dξ = F(x) − F(0).

This is consistent with part (i) of Theorem 3.4.30, whose hypotheses apply since
f is continuous, and so Riemann integrable.

2. Let I = [0, 1] and define f : I→ R by

f (x) =

1, x ∈ [0, 1
2 ],

−1, x ∈ ( 1
2 , 1].

Then

F(x) ≜
∫ x

0
f (ξ) dξ =

x, x ∈ [0, 1
2 ],

1 − x, x ∈ ( 1
2 , 1].

Then, for any x ∈ [a, b], we see that∫ x

0
f (ξ) dξ = F(x) − F(0).

In this case, we have the conclusions of part (i) of Theorem 3.4.30, and indeed
the hypotheses hold, since f is Riemann integrable.

3. Let I and f be as in Example 1 above. Then f is Riemann integrable, and
we see that F is continuous, as per part (ii) of Theorem 3.4.30, and that F is
differentiable, also as per part (ii) of Theorem 3.4.30.

4. Let I and f be as in Example 2 above. Then f is Riemann integrable, and we
see that F is continuous, as per part (ii) of Theorem 3.4.30. However, f is not
continuous at x = 1

2 , and we see that, correspondingly, F is not differentiable at
x = 1

2 .
5. The next example we consider is one with which, at this point, we can only

be sketchy about the details. Consider the Cantor function fC : [0, 1] → R of
Example 3.2.27. Note that f ′C is defined and equal to zero, except at points in
the Cantor set C; thus except at points forming a set of measure zero. It will be
clear when we discuss the Lebesgue integral in Section III-2.9 that this ensures
that

∫ x

0
f ′C(ξ) dξ = 0 for every x ∈ [0, 1], where the integral in this case is the

Lebesgue integral. (By defining f ′C arbitrarily on C, we can also use the Riemann
integral by virtue of Theorem 3.4.11.) This shows that the conclusions of part (i)
of Theorem 3.4.30 can fail to hold, even when the derivative of F is defined
almost everywhere.

6. The last example we give is the most significant, in some sense, and is also
the most complicated. The example we give is of a function F : [0, 1] → R
that is differentiable with bounded derivative, but whose derivative f = F′
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is not Riemann integrable. Thus f possesses a primitive, but is not Riemann
integrable.
To define F, let G : R>0 → R be the function

G(x) =

x2 sin 1
x , x , 0,

0, x = 0.

For c > 0 let xc > 0 be defined by

xc = sup{x ∈ R>0 | G′(x) = 0, x ≤ c},

and define Gc : (0, c]→ R by

Gc(x) =

G(x), x ∈ (0, xc],
G(xc), x ∈ (xc, x].

Now, for ϵ ∈ (0, 1
2 ), let Cϵ ⊆ [0, 1] be a fat Cantor set as constructed in Exam-

ple 2.5.42. Define F as follows. If x ∈ Cϵ we take F(x) = 0. If x < Cϵ, then, since
Cϵ is closed, by Proposition 2.5.6 x lies in some open interval, say (a, b). Then
take c = 1

2 (b − a) and define

F(x) =

Gc(x − a), x ∈ (a, 1
2 (a + b)),

Gc(b − x), x ∈ [1
2 (a + b), b).

Note that F|(a, b) is designed so that its derivative will oscillate wildly in the limit
as the endpoints of (a, b) are approached, but be nicely behaved at all points in
(a, b). This is, as we shall see, the key feature of F.
Let us record some properties of F in a sequence of lemmata.

1 Lemma If x ∈ Cϵ, then F is differentiable at x and F′(x) = 0.
Proof Let y ∈ [0, 1] \ {x}. If y ∈ Cϵ then

f (y) − f (x)
y − x

= 0.

If y < Cϵ, then y must lie in an open interval, say (a, b). Let d be the endpoint of
(a, b) nearest y and let c = 1

2 (b − a). Then∣∣∣∣∣ f (y) − f (x)
y − x

∣∣∣∣∣ = f (y)
y − x

≤
f (y)

y − d
=

Gc(|y − d|)
y − d

≤
|y − d|2

y − d
= |y − d| ≤ |y − x|.

Thus

lim
y→x

f (y) − f (x)
y − x

= 0,

giving the lemma. ▼
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2 Lemma If x < Cϵ, then F is differentiable at x and |F′(x)| ≤ 3.

Proof By definition of F for points not in Cϵ we have

|F′(x)| ≤
∣∣∣∣2y sin 1

y − cos 1
y

∣∣∣∣ ≤ 3,

for some y ∈ [0, 1]. ▼

3 Lemma Cϵ ⊆ DF′ .

Proof By construction of Cϵ, if x ∈ Cϵ then there exists a sequence ((a j, b j)) j∈Z>0

of open intervals in [0, 1]\Cϵ having the property that lim j→∞ a j = lim j→∞ b j = x.
Note that lim supy↓0 g′(y) = 1. Therefore, by the definition of F on the open
intervals (a j, b j), j ∈ Z>0, it holds that lim supy↓a j

F′(y) = lim supy↑b j
F′(y) = 1.

Therefore, lim supy→x F′(y) = 1. Since F′(x) = 0, it follows that F′ is discontinu-
ous at x. ▼

Since F′ is discontinuous at all points in Cϵ, and since Cϵ does not have measure
zero, it follows from Theorem 3.4.11 that F′ is not Riemann integrable. There-
fore, the function f = F′ possesses a primitive, namely F, but is not Riemann
integrable. •

Finally we state two results that, like the Mean Value Theorem for differentiable
functions, relate the integral to the values of a function.

3.4.32 Proposition (First Mean Value Theorem for Riemann integrals) Let [a, b] be
a compact interval and let f,g: [a, b] → R be functions with f continuous and with g
nonnegative and Riemann integrable. Then there exists c ∈ [a, b] such that∫ b

a
f(x)g(x) dx = f(c)

∫ b

a
g(x) dx

Proof Let
m = inf{ f (x) | x ∈ [a, b]}, M = sup{ f (x) | x ∈ [a, b]}.

Since g is nonnegative we have

mg(x) ≤ f (x)g(x) ≤Mg(x), x ∈ [a, b],

from which we deduce that

m
∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤M

∫ b

a
g(x) dx.

Continuity of f and the Intermediate Value Theorem gives c ∈ [a, b] such that the result
holds. ■
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3.4.33 Proposition (Second Mean Value Theorem for Riemann integrals) Let [a, b] be
a compact interval and let f,g: [a, b]→ R be functions with

(i) g Riemann integrable and having the property that there exists G such that g = G′,
and

(ii) f differentiable with Riemann integrable, nonnegative derivative.
Then there exists c ∈ [a, b] so that∫ b

a
f(x)g(x) dx = f(a)

∫ c

a
g(x) dx + f(b)

∫ b

c
g(x) dx.

Proof Without loss of generality we may suppose that

G(x) =
∫ x

a
g(ξ) dξ,

since all we require is that G′ = g. We then compute∫ b

a
f (x)g(x) dx =

∫ b

a
f (x)G′(x) dx = f (b)G(b) −

∫ b

a
f ′(x)G(x) dx

= f (b)G(b) − G(c)
∫ b

a
f ′(x) dx,

for some c ∈ [a, b], using integration by parts and Proposition 3.4.32. Now using
Theorem 3.4.30, ∫ b

a
f (x)g(x) dx = f (b)G(b) − G(c)( f (b) − f (a)),

which gives the desired result after using the definition of G and after some rearrange-
ment. ■

3.4.7 The Cauchy principal value

In Example 3.4.17 we explored some of the nuances of the improper Riemann
integral. There we saw that for integrals that are defined using limits, one often
needs to make the definitions in a particular way. The principal value integral is
intended to relax this, and enable one to have a meaningful notion of the integral
in cases where otherwise one might not. To motivate our discussion we consider
an example.

3.4.34 Example Let I = [−1, 2] and consider the function f : I→ R defined by

f (x) =

1
x , x , 0
0, otherwise.
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This function has a singularity at x = 0, and the integral
∫ 2

−1
f (x) dx is actually

divergent. However, for ϵ ∈ R>0 note that∫
−ϵ

−1

1
x

dx +
∫ 2

ϵ

1
x

dx = − log x|1ϵ + log x|2ϵ = log 2.

Thus we can devise a way around the singularity in this case, the reason being that
the singular behaviour of the function on either side of the function “cancels” that
on the other side. •

With this as motivation, we give a definition.

3.4.35 Definition (Cauchy principal value) Let I ⊆ R be an interval and let f : I → R be
a function. Denote a = inf I and b = sup I, allowing that a = −∞ and b = ∞.

(i) If, for x0 ∈ int(I), there exists ϵ0 ∈ R>0 such that the functions f |(a, x0 − ϵ] and
f |[x0+ϵ, b) are Riemann integrable for all ϵ ∈ (0, ϵ0], then the Cauchy principal
value for f is defined by

pv
∫

I
f (x) dx = lim

ϵ→0

(∫ x0−ϵ

a
f (x) dx +

∫ b

x0+ϵ

f (x) dx
)
.

(ii) If a = −∞ and b = ∞ and if for each R ∈ R>0 the function f |[−R,R] is Riemann
integrable, then the Cauchy principal value for f is defined by

pv
∫
∞

−∞

f (x) dx = lim
R→∞

∫ R

−R
f (x) dx. •

3.4.36 Remarks
1. If f is Riemann integrable on I then the Cauchy principal value is equal to the

Riemann integral.
2. The Cauchy principal value is allowed to be infinite by the preceding definition,

as the following examples will show.
3. It is not standard to define the Cauchy principal value in part (ii) of the definition.

In many texts where the Cauchy principal value is spoken of, it is part (i) that is
being used. However, we will find the definition from part (ii) useful. •

3.4.37 Examples (Cauchy principal value)
1. For the example of Example 3.4.34 we have

pv
∫ 2

−1

1
x

dx = log 2.
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2. For I = R and f (x) = x(1 + x2)−1 we have

pv
∫
∞

−∞

x
1 + x2 dx = lim

R→∞

∫ R

−R

x
1 + x2 dx = lim

R→∞

(1
2

log(1 + R2) −
1
2

log(1 + R2)
)
= 0.

Note that in Example 3.4.17–4 we showed that this function was not Riemann
integrable.

3. Next we consider I = R and f (x) = |x|(1 + x2). In this case we compute

pv
∫
∞

−∞

|x|
1 + x2 dx = lim

R→∞

∫ R

−R

|x|
1 + x2 dx = lim

R→∞

(1
2

log(1 + R2) +
1
2

log(1 + R2)
)
= ∞.

We see then that there is no reason why the Cauchy principal value may not be
infinite. •

3.4.8 Notes

The definition we give for the Riemann integral is actually that used by Darboux,
and the condition given in part (iii) of Theorem 3.4.9 is the original definition of
Riemann. What Darboux showed was that the two definitions are equivalent. It
is not uncommon to instead use the Darboux definition as the standard definition
because, unlike the definition of Riemann, it does not rely on an arbitrary selection
of a point from each of the intervals forming a partition.

Exercises

3.4.1 Let I ⊆ R be an interval and let f : I → R be a function that is Riemann
integrable and satisfies f (x) ≥ 0 for all x ∈ I. Show that

∫
I

f (x) dx ≥ 0.
3.4.2 Let I ⊆ R be an interval, let f , g : I → R be functions, and define D f ,g = {x ∈

I | f (x) , g(x)}.
(a) Show that, if D f ,g is finite and f is Riemann integrable, then g is Riemann

integrable and
∫

I
f (x) dx =

∫
I
g(x) dx.

(b) Is it true that, if D f ,g is countable and f is Riemann integrable, then g is
Riemann integrable and

∫
I

f (x) dx =
∫

I
g(x) dx? If it is true, give a proof;

if it is not true, give a counterexample.
3.4.3 Do the following:

(a) find an interval I and functions f , g : I → R such that f and g are both
Riemann integrable, but f g is not Riemann integrable;

(b) find an interval I and functions f , g : I → R such that f and g are both
Riemann integrable, but g ◦ f is not Riemann integrable.

3.4.4 Do the following:
(a) find an interval I and a conditionally Riemann integrable function f : I→
R such that | f | is not Riemann integrable;
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(b) find a function f : [0, 1]→ R such that | f | is Riemann integrable, but f is
not Riemann integrable.

3.4.5 Show that, if f : [a, b]→ R is continuous, then there exists c ∈ [a, b] such that∫ b

a
f (x) dx = f (c)(b − a).
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Section 3.5

The Riemann–Stieltjes integral

In this section we consider a generalisation of the Riemann integral that has
some important applications, some of which will come up during the course of our
presentation. The character of the development is slightly different than for the
Riemann integral, and we will point out the differences and the reasons for these
differences as they arise.

Do I need to read this section? This section can be skipped until it is needed
in reading other material in the text. The principal references to the Rie-
mann–Stieltjes integral will arise in our characterisation of a certain dual space
in Theorem III-2.12.6 and in characterising certain distributions in Section IV-3.4.5.

•

3.5.1 The Riemann–Stieltjes integral on compact intervals

The definition of the Riemann–Stieltjes12 integral is done in a manner that is
more or less direct, as compared to the Riemann integral, where one introduces
step functions, then lower and upper sums, etc. The reason for this is that, as
we shall see, the characterisation using lower and upper sums is a little more
subtle for the Riemann–Stieltjes integral than for the Riemann integral. Thus we
essentially define the Riemann–Stieltjes integral in a manner similar to the Darboux
characterisation for the Riemann integral as given in Theorem 3.4.9.

We first define the approximation used in the definition of the Riemann–Stieltjes
integral.

3.5.1 Definition (Riemann–Stieltjes sum) Let I = [a, b] be a compact interval and let P be
a partition with endpoints (x0, x1, . . . , xk). Let f , φ : [a, b]→ R be bounded functions.
The Riemann–Stieltjes sum of f with respect to φ associated to a partition P and a
selection ξ from P is

A( f , φ,P, ξ) =
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)). •

Now we can directly define the Riemann–Stieltjes integral.

3.5.2 Definition (Riemann–Stieltjes integral on compact intervals) Let I = [a, b] be a
compact interval and let f , φ : [a, b]→ R be bounded functions. Let I( f , φ) ∈ R. If,

12Thomas Jan Stieltjes 1856–1894 was a Dutch mathematician who worked in the areas of analysis,
number theory, and complex function theory.
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for each ϵ ∈ R>0, there exists δ ∈ R>0 such that, for every partition P of [a, b] with
|P| < δ and for every selection ξ of P, we have

|A( f , φ,P, ξ) − I( f , φ)| < ϵ,

then f is Riemann–Stieltjes integrable with respect to φ. We denote

I( f , φ) =
∫ b

a
f (x) dφ(x),

which is the Riemann–Stieltjes integral of f with respect to φ. The function f is
called the integrand and the function φ is called the integrator. •

The Darboux characterisation of Riemann integrability given in Theorem 3.4.9
immediately gives the following result.

3.5.3 Theorem (The Riemann–Stieltjes integral generalises the Riemann integral)
Let [a, b] be a compact interval and let f, ϱ : [a, b] → R be functions with f bounded and
with ϱ(x) = x. Then f is Riemann integrable if and only if it is Riemann–Stieltjes integrable
with respect to ϱ, and, moreover,∫ b

a
f(x) dx =

∫ b

a
f(x) dϱ(x).

Unlike (for the most part) the Riemann integral, there are essential subtleties in
the definition of the Riemann–Stieltjes integral that can lead to confusion. Let us
address one of these subtleties head-on by giving an alternative definition of the
Riemann–Stieltjes. The definition we give above, which is the one we shall use, is
essentially the classical version. The one we give now is commonly encountered
in more modern treatments of the Riemann–Stieltjes integral.

3.5.4 Definition (Generalised Riemann–Stieltjes integral on compact intervals) Let
I = [a, b] be a compact interval and let f , φ : [a, b] → R be bounded functions. Let
Ig( f , φ) ∈ R. If, for each ϵ ∈ R>0 there exists a partition P such that, for every
refinement P′ of P and for every selection ξ′ of P′, we have

|A( f , φ,P, ξ) − Ig( f , φ)| < ϵ,

then f is generalised Riemann–Stieltjes integrable with respect to φ. We denote

Ig( f , φ) = G
∫ b

a
f (x) dφ(x),

which is the generalised Riemann–Stieltjes integral of f with respect to φ. •

It is fairly evident that, if f is Riemann–Stieltjes integrable with respect toφ, then
it is also generalised Riemann–Stieltjes integrable with respect to φ. The converse
is not true, however. Before we get to a counterexample, let us also consider the
matter of using lower and upper sums in the definition of the Riemann–Stieltjes
integral.
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3.5.5 Definition (Lower and upper Riemann–Stieltjes sums) Let I = [a, b] be a compact
interval, let f , φ : I → R be bounded functions on I, and let P = (I1, . . . , Ik) be a
partition with endpoints (x0, x1, . . . , xk).

(i) The lower Riemann–Stieltjes sum of f with respect to φ and the partition P
is

A−( f , φ,P) =
k∑

j=1

(
inf{ f (x) | x ∈ cl(I j)}

)
(φ(x j) − φ(x j−1)).

(ii) The upper Riemann–Stieltjes sum of f with respect to φ and the partition P is

A+( f , φ,P) =
k∑

j=1

(
sup{ f (x) | x ∈ cl(I j)}

)
(φ(x j) − φ(x j−1)). •

As we did for the Riemann integral, we can now define the lower and upper
Riemann–Stieltjes integrals.

3.5.6 Definition (Lower and upper Riemann–Stieltjes integral) Let I = [a, b] be a
compact interval and let f , φ : I→ R be bounded functions.

(i) The lower Riemann–Stieltjes integral of f with respect to φ is

I−( f , φ) = sup{A−( f , φ,P) | P ∈ Part(I)}.

(ii) The upper Riemann–Stieltjes integral of f with respect to φ is

I+( f , φ) = inf{A+( f , φ,P) | P ∈ Part(I)}. •

Unlike what we saw for Riemann sums, the sets

{A−( f , φ,P) | P ∈ Part(I)}, {A+( f , φ,P) | P ∈ Part(I)}

may not be bounded even though f and φ. However, one does have the following
result which apart from giving conditions for the boundedness of these sets, gives
us our first glimpse of why the notion of bounded variation should come up for
the integrator in the Riemann–Stieltjes integral.

3.5.7 Proposition (Existence of lower and upper Riemann–Stieltjes integrals) Let
I = [a, b] be a compact interval and let f, φ : I → R be functions with f bounded and φ of
bounded variation. Then both I−(f, φ) and I+(f, φ) are finite.
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Proof Let M = sup{| f (x)| | x ∈ [a, b]}. Then

|I−( f , φ)| = |sup{A−( f , φ,P) | P ∈ Part(I)}|

=

∣∣∣∣∣∣∣∣sup


k∑

j=1

inf{ f (x) | x ∈ [x j−1, x j]}(φ(x j) − φ(x j−1))

∣∣∣∣∣∣∣∣
(x0, x1, . . . , xk) = EP(P), P ∈ Part(I)}|

≤ sup


k∑

j=1

M|φ(x j) − φ(x j−1)|

∣∣∣∣∣∣∣∣ (x0, x1, . . . , xk) = EP(P), P ∈ Part(I)


=M TV(φ).

A similar computation shows that |I+( f , φ)| ≤M TV(φ), giving the result. ■

Were life with the Riemann–Stieltjes integrals as they are with Riemann inte-
grals, we would now show that Riemann–Stieltjes integrability is equivalent to the
equality of the upper and lower Riemann–Stieltjes integrals. However, this is not
true, so we instead give an example that shows this, as well as showing the distinc-
tion between the Riemann–Stieltjes integral and the generalised Riemann–Stieltjes
integral.

3.5.8 Example (A simple but subtle example) Consider the interval [0, 1] and the
functions f , φ : [0, 1]→ R defined by

f (x) =

0, x ∈ [0, 1
2 ],

1, x ∈ ( 1
2 , 1],

φ(x) =

0, x ∈ [0, 1
2 ),

1, x ∈ [ 1
2 , 1].

If P is a partition having 1
2 as an endpoint, then it follows immediately that

A+( f , φ,P) = A−( f , φ,P) = 0. For such a partition we also have A( f , φ,P, ξ) = 0
for every selection ξ from P. If P is a partition not having 1

2 as an endpoint then
A+( f , φ,P) = 1 and A−( f , φ,P) = 0. For such a partition let I j be the interval
containing 1

2 in its interior. Then we have

A( f , φ,P, ξ) =

0, ξ j ≤
1
2 ,

1, ξ j > 1
2 .

These calculations give the following conclusions.
1. The function f is not Riemann–Stieltjes integrable with respect to φ. To see this,

note that, for any δ ∈ R>0, there exists partitions P1 and P2 with selections ξ1
and ξ2, respectively, such that |P1|, |P2| < δ and such that A( f , φ,P1, ξ1) = 0 and
A( f , φ,P2, ξ2) = 1.

2. The function f is generalised Riemann–Stieltjes integrable with respect to φ
and G

∫ b

a
f (x) dφ(x) = 0. Indeed, let P have endpoints {0, 1

2 , 1}. Then, for any
refinement P′ of P and for any selection ξ′ from P′, A( f , φ,P′, ξ′) = 0.
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3. The lower and upper Riemann–Stieltjes integrals exist and are equal, and are
both equal to the generalised Riemann–Stieltjes integral. •

This example shows that things are clearly different with the Riemann–Stieltjes
integral(s) than they are with the Riemann integral. In the next section we shall
consider some results which serve to further illustrate this dichotomy by showing
that some of the conditions of Theorem 3.4.9 for the Riemann integral apply to the
Riemann–Stieltjes integral, while others apply to the generalised Riemann–Stieltjes
integral.

The preceding presentation of the definitions and basic properties of the Rie-
mann–Stieltjes integral is one that probably deserves multiple readings to fully
appreciate. Moreover, the impact of some of the ideas may not become clear until
our discussions in the next section. One of the principle causes for the complica-
tion is our multiple, and distinct, definitions of Riemann–Stieltjes integrals. The
reason we do this is that both definitions are in common use, so it is best to ex-
plicitly address this. Each of the definitions has its advantages in terms of the
clarity of presentation. For example, Proposition 3.5.9 gives the Riemann–Stieltjes
a nicer correspondence with the some of the characterisations of Riemann integral
from Theorem 3.4.9, while Theorem 3.5.12 gives nicer correspondence of the gen-
eralised Riemann–Stieltjes integral with the other of the characterisations of the
Riemann integral from Theorem 3.4.9. Moreover, in Theorem 3.5.18 we shall see
that one has an in some sense nicer characterisation of conditions for the existence
of Riemann–Stieltjes integrals than one has for generalised Riemann–Stieltjes inte-
grals. Furthermore, our primary interest in the Riemann–Stieltjes integral (e.g., in
Theorem III-2.12.6) will be restricted to situations where the Riemann–Stieltjes and
the generalised Riemann–Stieltjes integrals exist, and so agree.

3.5.2 Characterisations of Riemann–Stieltjes integrable functions on
compact intervals

Before we get to the matter of providing conditions for (generalised) Rie-
mann–Stieltjes integrability, let us provide useful characterisations, along the lines
of the Cauchy condition of Theorem 3.4.9.

3.5.9 Proposition (Cauchy condition for Riemann–Stieltjes integral) Let I = [a, b] be
a compact interval and let f, φ : [a, b]→ R be functions. Then the following two statements
are equivalent:

(i) f is Riemann–Stieltjes integrable with respect to φ;
(ii) for each ϵ ∈ R>0 there exists δ ∈ R>0 such that, for any partitions P = (I1, . . . , Ik) and

P′ = (I′1, . . . , I
′

k′) with |P|, |P′| < δ and for any selections (ξ1, . . . , ξk) and (ξ′1, . . . , ξ
′

k′)
from P and P′, respectively, we have∣∣∣∣∣∣∣

k∑
j=1

f(ξj)(φ(xj) − φ(xj−1)) −
k′∑

j=1

f(ξ′j )(φ(x′j ) − φ(x′j−1))

∣∣∣∣∣∣∣ < ϵ,
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where EP(P) = (x0, x1, . . . , xk) and EP(P′) = (x′0, x
′

1, . . . , x
′

k′).
Proof The proof here mirrors, up to necessary modifications of notation, the proof
of the equivalence of parts (iii) and (iv) in Theorem 3.4.9. We leave to the reader the
routine matter of checking that this is indeed the case. ■

For the generalised Riemann–Stieltjes integral, we have the following formula-
tion.

3.5.10 Proposition (Cauchy condition for generalised Riemann–Stieltjes integral)
Let I = [a, b] be a compact interval and let f, φ : [a, b] → R be functions. Then the

following two statements are equivalent:
(i) f is Riemann–Stieltjes integrable with respect to φ;
(ii) for each ϵ ∈ R>0 there exists a partition P0 such that, for any refinements

P = (I1, . . . , Ik) and P′ = (I′1, . . . , I
′

k′) of P0 and for any selections (ξ1, . . . , ξk) and
(ξ′1, . . . , ξ

′

k′) from P and P′, respectively, we have∣∣∣∣∣∣∣
k∑

j=1

f(ξj)(φ(xj) − φ(xj−1)) −
k′∑

j=1

f(ξ′j )(φ(x′j ) − φ(x′j−1))

∣∣∣∣∣∣∣ < ϵ,
where EP(P) = (x0, x1, . . . , xk) and EP(P′) = (x′0, x

′

1, . . . , x
′

k′).
Proof Suppose that f is Riemann–Stieltjes integrable with respect to φ, and let I( f , φ)
denote the value of the integral. Let ϵ ∈ R>0 and let P0 be a partition such that,
whenever P = (I1, . . .k) is a refinement of P0 and (ξ1, . . . , ξk) is a selection from P, it
holds that ∣∣∣∣∣∣∣∣

k∑
j=1

f (ξ j)(φ(x j) − φ(x j−1)) − I( f , φ)

∣∣∣∣∣∣∣∣ < ϵ
2
.

Now let P = (I1, . . . , Ik) and P′ = (I′1, . . . , I
′

k′) be two refinements of P0 and let (ξ1, . . . , ξk)
and (ξ′1, . . . , ξ

′

k′) selections from P and P′, respectively. Then we have∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) −
k′∑

j=1

f (ξ′j)(φ(x′j) − φ(x′j−1))

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) − I( f )

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣

k′∑
j=1

f (ξ′j)(φ(x′j) − φ(x′j−1)) − I( f )

∣∣∣∣∣∣∣∣ < ϵ,
which gives this part of the result.

For the converse, let (P j,0) j∈Z>0 be a sequence of partitions for which, if P j and P′j
are refinements of P j,0 and if ξ j and ξ′j are selections from P j and P′j, respectively, then

|A( f , φ,P j, ξ j) − A( f , φ,P′j, ξ
′

j)| <
1
j .

We claim that (A( f , φ,P j,0, ξ j)) j∈Z>0 is a Cauchy sequence for any sequence (ξ j,0) j∈Z>0

for which ξ j,0 is a selection from P j,0, j ∈ Z>0. Indeed, for ϵ ∈ R>0 choose N ∈ Z>0 such
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that, if j, k ≥ N, then max{1j ,
1
k } <

ϵ
2 . Then, if P is any refinement of both P j,0 and Pk,0

and if ξ is a selection from P, we have

|A( f , φ,P j,0, ξ j,0) − A( f , φ,Pk,0, ξk,0)|

≤ |A( f , φ,P j,0, ξ j,0) − A( f , φ,P, ξ)| + |A( f , φ,Pk,0, ξk,0) − A( f , φ,P, ξ)| ≤ 1
j +

1
k < ϵ.

Thus (A( f , φ,P j,0, ξ j)) j∈Z>0 is indeed a Cauchy sequence, and so is convergent. Denote
its limit by I( f , φ). We claim that I( f , φ) is the generalised Riemann–Stieltjes integral of
f with respect to φ. To see this, let ϵ ∈ R>0 and let j ∈ Z>0 be such that P j,0,
1. if P and P′ are refinements of P j,0 and if ξ and ξ′ are selections from P and P′,

respectively, then
|A( f , φ,P, ξ) − A( f , φ,P′, ξ′)| < ϵ

2 ,

and
2. |A( f , φ,P j,0, ξ j,0) − I( f , φ)| < ϵ

2 .
Now let P be a refinement of P0 and let ξ be a selection from P. Then we have

|A( f , φ,P, ξ) − I( f , φ)|
≤ |A( f , φ,P, ξ) − A( f , φ,P j,0, ξ j,0)| + |A( f , φ,P j,0, ξ j,0) − I( f , φ)| < ϵ.

This shows that I( f , φ) is indeed the generalised Riemann–Stieltjes integral of f with
respect to φ, and so gives this part of the result. ■

The matter of ascertaining the most general properties of f and φ such that f is
Riemann–Stieltjes integrable with respect to φ is difficult. Let us focus on a specific
and interesting version of this problem in order to get at something useful. The
question we ask is, “What conditions must be satisfied by φ in order to ensure that,
for every continuous function f , f is Riemann–Stieltjes integrable with respect to
φ?”

3.5.11 Theorem (Riemann–Stieltjes integrability of continuous functions implies an
integrator of bounded variation) Let I = [a, b] be a compact interval and let
φ : [a, b] → R be a bounded function. If every continuous function f : [a, b] → R is
Riemann–Stieltjes integrable with respect to φ, then φ has bounded variation.

Proof For a bounded function φ that does not have bounded variation, we will con-
struct a continuous function f that is not Riemann–Stieltjes integrable with respect to
φ. We will use a series of technical lemmata.

1 Lemma If φ : [a, b] → R is a bounded function not of bounded variation, then there exists
c ∈ [a, b] such that at least one of the following two statements holds:

(i) if J ⊆ [a, b] is a closed interval with c as its left endpoint, then φ|J is not of bounded
variation;

(ii) if J ⊆ [a, b] is a closed interval with c as its right endpoint, then φ|J is not of bounded
variation.
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Proof First we show that there exists c ∈ [a, b] such that, if J ⊆ [a, b] is an interval con-
taining c, thenφ|J is not of bounded variation. Suppose that no such point exists. Then,
for each x ∈ [a, b] there exists an interval Jx containing x for which φ|Jx has bounded
variation. Then, by the Heine–Borel Theorem there exists a finite set, Jx1 , . . . , Jxk , of
these intervals such that [a, b] = ∪k

j=1Jx j . Now, by Proposition 3.3.13 it follows that φ
has bounded variation.

Now we show that c can be assumed to be a right or left endpoint of the intervals
on which φ has unbounded variation. Suppose that there is pair of closed intervals J1
and J2 with c a right endpoint of J1 and a left endpoint of J2 such that φ|J1 and φ|J2 both
have bounded variation. Then φ|J1 ∪ J2 has bounded variation by Proposition 3.3.13,
which is a contradiction of the property for c we proved above. ▼

2 Lemma If φ : [a, b]→ R is a bounded function not of bounded variation then there exists a
sequence (cj)j∈Z>0 of points in [a, b] with the following properties:

(i) the sequence (cj)j∈Z>0 is either strictly monotonically increasing or strictly monotonically
decreasing;

(ii) the series
∑
∞

j=1|φ(cj+1) − φ(cj)| diverges.

Proof Let c ∈ [a, b] be a point as in Lemma 1, and for concreteness suppose that
every interval J having c as a right endpoint has the property that φ|J is of unbounded
variation. A similar argument can be fashioned for the case when every interval J
having c as a left endpoint has the property that φ|J has unbounded variation. Now
let (x j) j∈Z>0 be a sequence in [a, b] that is strictly monotonically increasing and which
converges to c. There are two possibilities.
1. The set

A = { j ∈ Z>0 | φ|[x j, x j+1] has unbounded variation}

is infinite: Let M ∈ R>0. For j ∈ A let x j,0, x j,1, . . . , x j,k j be such that

x j = x j,0 < x j,1 < · · · < x j,k j = x j+1

and for which
∑k j

l=1|φ(x j, l)−φ(x j,l−1)| > M. One now defines the sequence (c j) j∈Z>0

by asking that

(c j) j∈Z>0 = ∪ j∈A ∪
k j

l=1 (x j,l).

2. The set
{ j ∈ Z>0 | φ|[x j, x j+1] has unbounded variation}

is finite: Let N ∈ Z>0 have the property that φ|[x j, x j+1] has bounded variation for
all j ≥ N. Define y j = xN+ j−1, j ∈ Z>0, so that φ|[y j, y j+1] has bounded variation
for j ∈ Z>0. If v j = TV(φ|[x j, x j+1]), we claim that the series

∑
∞

j=1 v j is divergent.
Suppose it converges to s. Let M ∈ R>0 satisfy |φ(x)| < M for x ∈ [a, b] and
take points p0, p1, . . . , pk ∈ [a, b] satisfying a = p0 < p1 < · · · < pk = c and such
that

∑k
j=1|φ(p j) − φ(p j−1)| > s + 2M. This is possible since φ|[a, c] has unbounded

variation. Now denote by q1, . . . , qm the set

{q0, q1, . . . , qm} = {p0, p1, . . . , pk} ∪
{
y ∈ {y j | j ∈ Z>0}

∣∣∣ y < pk−1

}
,
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and ordered such that a = q0 < q1 < · · · < qm = c. We then have

m∑
j=1

|φ(q j) − φ(q j−1)| > s + 2M.

But we also have
m−1∑
j=1

|φ(q j) − φ(q j−1)| <
∞∑
j=1

v j = s,

and
|φ(qm) − φ(qm−1)| ≤ |φ(qm)| + |φ(qm−1)| < 2M.

Combining these last two expressions gives

∑
j=1

|φ(p j) − φ(p j−1)| ≤
m−1∑
j=1

|φ(q j) − φ(q j−1)| ≤ s + 2M,

which is a contradiction. Thus
∑
∞

j=1 v j indeed diverges. Now let (ϵ j) j∈Z>0 be a
sequence of positive numbers such that

∑
∞

j=1 ϵ j converges and such that v j−ϵ j ≥ 0.
Thus the series

∑
∞

j=1(v j− ϵ j) diverges. For each j ∈ Z>0 take points y j,0, y j,1, . . . , y j,k j

such that y j = y j,0 < y j,1 < · · · < y j,k j = y j+1 and such that

k j∑
l=1

|φ(y j,l) − φ(y j,l−1)| ≥ v j − ϵ j.

Now define (c j) j∈Z>0 such that

{c j | j ∈ Z>0} = ∪
∞

j=1 ∪
k j

l=1 {y j,l}

to give the proof of the lemma. ▼

3 Lemma If (aj)j∈Z>0 is a sequence inR>0 such that the series
∑
∞

j=1 aj diverges, then there exists
a sequence (ϵj) in R>0, converging to zero, such that the series

∑
∞

j=1 ajϵj diverges.

Proof Let (Ak)k∈Z>0 denote the sequence of partial sums for
∑
∞

j=1 a j, and note that the
sequence (Ak)k∈Z>0 is strictly monotonically increasing and divergent. For k ∈ Z>0
define ϵk =

1
Ak

. Clearly ϵk ≥ 0 for each k ∈ Z>0 and limk→∞ ϵk = 0. Now compute

ϵ1a1 = 1, ϵ ja j =
A j − A j−1

A j
, j ≥ 2.

We claim that the series
∞∑
j=2

A j − A j−1

A j
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diverges. To see this, let k, l ∈ Z>0 with 2 ≥ k < l and compute

l∑
j=k

A j − A j−1

A j
>

l∑
j=k

A j − A j−1

Al

since (A j) j∈Z>0 is strictly monotonically increasing. But

l∑
j=k

A j − A j−1

Al
=

Al − Ak−1

Al
.

Since the sequence (A j) j∈Z>0 diverges to∞, for k ≥ 2 we can choose lk sufficiently large
that Al ≥ 2Ak−1. Therefore

l∑
j=k

A j − A j−1

A j
≥ 1 −

1
2
=

1
2
.

Now let M ∈ R>0 and let r ∈ Z>0 satisfy 1
2 r > M. Then define k0 = 2, and define k1 to

be sufficiently large that
k1∑

j=k0

A j − A j−1

A j
≥

1
2
.

Then define k2 sufficiently large that

k2∑
j=k1+1

A j − A j−1

A j
≥

1
2
.

Repeat this to define r + 1 positive integers k0, k1, . . . , kr. Then we have

kr∑
j=2

A j − A j−1

A j
≥

1
2

r > M.

Since M ∈ R>0 is arbitrary, we have shown that
∑
∞

j=2
A j−A j−1

A j
diverges, as desired. ▼

Now let c ∈ [a, b] be as in Lemma 1, and suppose that for any interval J ⊆ [a, b] with
c as a right endpoint, φ|J is of unbounded variation. The case where every interval J
possessing c as a left endpoint has the property that φ|J is of unbounded variation is
treated similarly. Now let (c j) j∈Z>0 be an increasing sequence of points converging to
c as in Lemma 2. Let (ϵ j) j∈Z>0 be a sequence of positive numbers, converging to zero,
for which the series

∞∑
j=1

|φ(c j+1) − φ(c j)|ϵ j

diverges, as in Lemma 3. Define f : [a, b]→ R according to the following:
1. f (c j) = sign(φ(c j+1) − φ(c j))ϵ j, j ∈ Z>0;
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2. for x ∈ (c j, c j+1), j ∈ Z>0,

f (x) =
c j+1 f (c j) − c j f (c j+1) + ( f (c j+1) − f (c j))x

c j+1 − c j
;

3. f (x) = f (c1) for x ≤ c1;
4. f (x) = 0 for x ≥ c.
Since f is linear in the intervals between the points c j+1 and c j for each j ∈ Z>0, and
since lim j→∞ f (c j) = 0, it follows that f is continuous.

Now let δ ∈ R>0 have the property that, if P is a partition for which |P| < δ, then
EP(P) must contain a point to the left of c. Then, if P is a partition for which |P| < δ,
take xk to be the greatest element of EP(P) which lies to the left of c and let cm be the
least element of (c j) j∈Z>0 lying to the right of xk. Now for r ∈ Z>0 define a partition Pr
by adding to the endpoints of P the points cm, cm+1, . . . , cm+r. Note that |Pr| < δ. For
j ∈ {m,m + 1, . . . ,m + r} define η j = cm+ j and compute

r∑
j=1

f (η j)(φ(cm+ j) − φ(cm+ j−1)) =
r∑

j=1

|φ(cm+ j) − φ(cm+ j−1)|ϵm+ j−1.

By our choice of the sequence (ϵ j) j∈Z>0 it follows that

lim
r→∞

r∑
j=1

f (η j)(φ(cm+ j) − φ(cm+ j−1)) = ∞.

Now denote the endpoints of Pr by (xr,0, xr,1, . . . , xr,kr) and let (ξr,1, . . . , ξr,kr) be a selection
of Pr such that ξr,l ∈ (η1, . . . , ηr) whenever this is possible. It then follows that

lim
r→∞

kr∑
j=1

f (ξ j)(φ(x j) − φ(x j−1)) = ∞,

showing that f is not Riemann–Stieltjes integrable with respect to φ. ■

Thus we see that there is further motivation, beyond that coming from Propo-
sition 3.5.7, for assuming that the integrator φ has bounded variation. Let us next
consider some characterisations of the generalised Riemann–Stieltjes integral that
mirror those for the Riemann integral given in Theorem 3.4.9.

3.5.12 Theorem (The generalised Riemann–Stieltjes integral for integrators of
bounded variation) Let I = [a, b] be a compact interval and let f, φ : [a, b] → R be
functions with f bounded and φ of bounded variation. Then the following three statements
are equivalent:

(i) f is generalised Riemann–Stieltjes integrable with respect to φ;
(ii) I−(f, φ) = I+(f, φ);
(iii) for any ϵ ∈ R>0 there exists a partition P of I such that A+(f, φ,P)−A−(f, φ,P) < ϵ.
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Moreover, if either of the above conditions are satisfied, then

G
∫ b

a
f(x) dφ(x) = I−(f, φ) = I+(f, φ).

Proof We begin the proof by assuming that φ is monotonically increasing. When φ
is monotonically increasing, one can prove the following lemmata, analogous to those
in Theorem 3.4.9.

1 Lemma Let I = [a, b], let f, φ : I → R be functions with f bounded and φ monotonically
increasing, and let P1 and P2 be partitions of I with P2 a refinement of P1. Then

A−(f, φ,P2) ≥ A−(f, φ,P1), A+(f, φ,P2) ≤ A+(f, φ,P1).

Proof Let x1, x2 ∈ EP(P1) and denote by y1, . . . , yl the elements of EP(P2) that satisfy

x1 ≤ y1 < · · · < yl ≤ x2.

Then

l∑
j=1

(φ(y j) − φ(y j−1)) inf{ f (y) | y ∈ [y j, y j−1]}

≥

l∑
j=1

(φ(y j) − φ(y j−1)) inf{ f (x) | x ∈ [x1, x2]}

= (φ(x2) − φ(x1)) inf{ f (x) | x ∈ [x1, x2]}.

Now summing over all consecutive pairs of endpoints for P1 gives A−( f , φ,P2) ≥
A−( f , φ,P1). A similar argument gives A+( f , φ,P2) ≤ A+( f , φ,P1). ▼

2 Lemma Let I = [a, b], let f, φ : I → R be functions with f bounded and φ monotonically
increasing. Then I−(f, φ) ≤ I+(f, φ).

Proof Consider two partitions P1 and P2 and let P be a partition such that EP(P) =
EP(P1) ∪ EP(P2). Then, by Lemma 1,

A−( f , φ,P) ≥ A−( f , φ,P1), A+( f , φ,P) ≤ A+( f , φ(P2).

Since obviously A−( f , φ,P) ≤ A+( f , φ,P) this gives A−( f , φ,P1) ≤ A+( f , φ,P2). From
this it follows that

sup{A−( f ,P) | P ∈ Part(I)} ≤ inf{A+( f ,P) | P ∈ Part(I)},

which is the result. ▼

(i) =⇒ (iii) Let ϵ ∈ R>0 and let P = (I1, . . . , Ik) be a partition for which∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) − I( f , φ)

∣∣∣∣∣∣∣∣ < ϵ
4
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for every choice of ξ j ∈ cl(I j), j ∈ {1, . . . , k}. Partition the set {1, . . . , k} into sets K1 and
K2 such that j ∈ K1 if and only if φ(x j−1) , φ(x j). Now choose ξ j ∈ cl(I j), j ∈ {1, . . . , k},
such that for j ∈ K1 we have

| f (ξ j) − sup{ f (x) | x ∈ cl(I j)}| <
ϵ

4 card(K1)(φ(x j) − φ(x j−1))
,

and choose ξ j arbitrarily for j ∈ K2. Then

|A+( f , φ,P) − I( f , φ)| ≤

∣∣∣∣∣∣∣∣A+( f , φ,P) −
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1))

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) − I( f , φ)

∣∣∣∣∣∣∣∣
<

∑
j∈K1

ϵ
4 card(K1)(φ(x j) − φ(x j−1))

(φ(x j) − φ(x j−1)) +
ϵ
4
<
ϵ
2
.

In like manner one shows that |A−( f , φ,P) − I( f , φ)| < ϵ
2 . Therefore,

|A+( f , φ,P) − A−( f , φ,P)| ≤ |A+( f , φ,P) − I( f , φ)| + |I( f , φ) − A−( f , φ,P)| < ϵ,

as desired.
(ii) =⇒ (i) Suppose that I−( f , φ) = I+( f , φ), and let Ig( f , φ) denote this quantity. Let

ϵ ∈ R>0. Let P− and P+ be partitions of I such that

Ig( f , φ) − A−( f , φ,P−) < ϵ, A+( f , φ,P+) − Ig( f ) < ϵ.

If P′ is a partition for which EP(P′) = EP(P−) ∪ EP(P+), then

Ig( f , φ) − A−( f , φ,P) < ϵ, A+( f , φ,P) − Ig( f , φ) < ϵ

for any refinement P of P′ by Lemma 1. Denote such a refinement by P = (I1, . . . , Ik)
and let ξ j ∈ cl(I j) for j ∈ {1, . . . , k}. Then

k∑
j=1

f (ξ j)(φ(x j) − φ(x j−1)) ≤
k∑

j=1

sup{ f (x) | x ∈ cl(I j)}(φ(x j) − φ(x j−1))

≤ A+( f , φ,P) < ϵ + Ig( f , φ).

In like manner
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) > Ig( f , φ) − ϵ.

This gives ∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) − Ig( f , φ)

∣∣∣∣∣∣∣∣ < ϵ,



318 3 Functions of a single real variable

as desired. Since this holds for any refinement P of P′ and for any selection ξ of P, it
follows that f is generalised Riemann–Stieltjes integrable with respect to φ.

(ii) =⇒ (iii) Suppose that I−( f , φ) = I+( f , φ) and let ϵ ∈ R>0. Then there exists
partitions P− and P+ such that

A−( f , φ,P−) > I−( f , φ) − ϵ
2 , A+( f , φ,P+) < I+( f , φ) + ϵ

2 .

Now let P be a partition that is a refinement of both P1 and P2 (obtained, for example,
by asking that EP(P) = EP(P1) ∪ EP(P2)). By Lemma 1 it follows that

A+( f , φ,P) − A−( f , φ,P) ≤ A+( f , φ,P+) − A−( f , φ,P−) < I+( f , φ) + ϵ
2 − I−( f , φ) + ϵ

2 = ϵ.

(iii) =⇒ (ii) Now suppose that ϵ ∈ R>0 and let P be a partition such that A+( f , φ,P)−
A−( f , φ,P) < ϵ. Since we additionally have I−( f , φ) ≤ I+( f , φ) by Lemma 2, it follows
that

A−( f , φ,P) ≤ I−( f , φ) ≤ I+( f , φ) ≤ A+( f , φ,P),

from which we deduce that

0 ≤ I+( f , φ) − I−( f , φ) < ϵ.

Since ϵ is arbitrary, we conclude that I−( f , φ) = I+( f , φ), as desired.
The above arguments prove the theorem when φ is monotonically increasing. If

φ is not monotonically increasing, then, by part (ii) of Theorem 3.3.3, we can write
φ = φ+−φ−where bothφ+ andφ− are monotonically increasing. By Proposition 3.5.24
we have ∫ b

a
f (x) dφ(x) =

∫ b

a
f (x) dφ+(x) −

∫ b

a
f (x) dφ−(x),

and the two integrals on the right exist if and only if the integral on the left exists.
Moreover, it is clear that

A( f , φ,P, ξ) = A( f , φ+,P, ξ) − A( f , φ−,P, ξ),
A−( f , φ,P) = A−( f , φ+,P) − A−( f , φ−,P),
A+( f , φ,P) = A+( f , φ+,P) − A+( f , φ−,P)

for every partition P of I and every selection ξ from P, and that

I−( f , φ) = I−( f , φ+) − I−( f , φ−),
I+( f , φ) = I+( f , φ+) − I+( f , φ−).

With these equalities at hand, it is easy to complete the proof of the theorem for general
functions of bounded variation, and we leave the elementary details to the reader. ■

Let us now ask, “If φ has bounded variation, which functions f are Rie-
mann–Stieltjes integrable with respect to φ?” Let us begin our consideration of
this question by first looking at a specific class of functions of bounded variation,
namely saltus functions. The reader may wish to refer to Section 3.3.4 for the
definition and properties of saltus functions.
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3.5.13 Proposition (Riemann–Stieltjes integral with respect to a saltus function) Let
I = [a, b] be a compact interval and let f, φ : I → R be functions with f bounded and φ a
saltus function defined by the summable families (rξ)ξ∈[a,b) and (lξ)ξ∈[a,b]. Let

Df = {x ∈ I | f is discontinuous at x}
Dφ = {x ∈ I | φ is discontinuous at x}.

Then the following statements hold:
(i) if Df ∩Dφ = ∅, then f is Riemann–Stieltjes integrable with respect to φ and∫ b

a
f(x) dφ(x) =

∑
ξ∈[a,b)

f(ξ)rξ +
∑
ξ∈[a,b]

f(ξ)lξ;

(ii) if Df ∩Dφ , ∅, then f is not Riemann–Stieltjes integrable with respect to φ.
Proof (i) Let

M1 = sup{| f (x)| | x ∈ [a, b]},
M2 = sup{|rx| | x ∈ [a, b]},
M3 = sup{|lx| | x ∈ [a, b]},

and take M = max{M1,M2,M3}, let ϵ ∈ R>0, and choose points η = {η1, . . . , ηm} ⊆ Dφ

such that ∑
ξ∈[a,b)−η

|rξ| < ϵ1,
∑

ξ∈[a,b]−η

|lξ| < ϵ1,

where ϵ1 =
ϵ

12M . We will need to allow the possibility that b ∈ {η1, . . . , ηm} or not, so let
us define η′ = η − {b}. Now let δ ∈ R>0 have the properties that
1. if P is a partition with |P| < δ, then there is at most one point from η in each of the

intervals comprising P, and
2. if, for any j ∈ {1, . . . ,m}, x ∈ B(δ, η j) ∩ [a, b], then | f (x) − f (η j)| < ϵ2, where ϵ2 =

ϵ
8mM

(this uses the fact that f is continuous at points in Dφ).
Let P be a partition with |P| < δ, let EP(P) = (x0, x1, . . . , xk), and let ξ be a selection of P.
We compute

k∑
j=1

f (ξ j)(φ(x j) − φ(x j−1)) =
k∑

j=1

f (ξ j)

lx j + rx j−1 +
∑

ξ∈(x j−1,x j)

(rξ + lξ)

 .
Denote EP′(P) = (x1, . . . , xk) and introduce the notation

Ax = f (ξ j)lx j , Bx = f (ξ j)rx j−1



320 3 Functions of a single real variable

where x = x j ∈ EP′(P). Using the fact that f is continuous at points in η and the
properties of δ, it then holds that∑

ξ∈EP′(P)∩η

|Aξ − f (ξ)lξ| ≤
m∑

j=1

ϵ2M = mMϵ2

∑
ξ∈EP′(P)∩η′

|Bξ − f (ξ)rξ| ≤
m∑

j=1

ϵ2M = mMϵ2

k∑
j=1

∑
ξ∈(x j−1,x j)∩η

|( f (ξ j) − f (ξ))(rξ + lξ)| ≤
m∑

j=1

2ϵ2M = 2mMϵ2.

(3.16)

Using the properties of ηwe compute ∑
ξ∈EP′(P)−η

|Aξ| ≤Mϵ1∑
ξ∈EP′(P)−η

|Bξ| ≤Mϵ1

k∑
j=1

∑
ξ∈(x j−1,x j)−η

| f (ξ j)(rξ + lξ)| ≤ 2Mϵ1.

(3.17)

Then we directly compute∣∣∣∣∣∣∣∣
∑
ξ∈[a,b)

f (ξ)rξ +
∑
ξ∈[a,b]

f (ξ)lξ −
∑
ξ∈η′

f (ξ)rξ −
∑
ξ∈η

f (ξ)lξ

∣∣∣∣∣∣∣∣
≤

∑
ξ∈[a,b)−η′

| f (ξ)rξ| +
∑

ξ∈[a,b]−η

| f (ξ)lξ| < 2Mϵ1

and, with the aid of (3.16) and (3.17), we compute∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) −
∑
ξ∈η′

f (ξ)rξ −
∑
ξ∈η

f (ξ)lξ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

ξ∈EP′(P)

(Aξ + Bξ) +
k∑

j=1

∑
ξ∈(x j−1,x j)

f (ξ j)(rξ + lξ) −
∑
ξ∈η′

f (ξ)rξ −
∑
ξ∈η

f (ξ)lξ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

ξ∈EP′(P)∩η

(Aξ − f (ξ)lξ) +
∑

ξ∈EP′(P)∩η′
(Bξ − f (ξ)rξ) +

∑
ξ∈EP′(P)−η

(Aξ + Bξ)

+

k∑
j=1

∑
ξ∈(x j−1,x j)∩η

( f (ξ j) − f (ξ))(rξ + lξ) +
k∑

j=1

∑
ξ∈(x j−1,x j)−η

f (ξ j)(rξ + lξ)

∣∣∣∣∣∣∣∣
≤ 4mMϵ2 + 4Mϵ1.
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Combining these preceding computations gives∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) −
∑
ξ∈[a,b)

f (ξ)rξ −
∑
ξ∈[a,b]

f (ξ)lξ

∣∣∣∣∣∣∣∣ < 4mMϵ2 + 6Mϵ1 = ϵ.

Since P is any partition with |P| < δ and since the selection ξ is arbitrary, this part of
the result follows.

(ii) Suppose that there exists ϵ ∈ R>0 and x0 ∈ [a, b) such that |rx0 − lx0 | > ϵ and such
that ω f (x0) > ϵ. That is to say, suppose that f and φ are both discontinuous at x0. Then
there exists δ0 ∈ R>0 such that if x1, x2 ∈ B(δ0, x0) with x1 < x0 < x2, then

| f (x1) − f (x2)| > ϵ
2 , |φ(x1) − φ(x2)| > ϵ

2 ,

this being possible by the definition of ω f and since the limits φ(x0+) and φ(x0−) exist
(why does this follow?). This means that for any δ ∈ (0, δ0) there exists a partition
P = (I1, . . . , Ik) with the following properties:
1. |P| = δ;
2. there exists j0 ∈ {1, . . . , k} such that x0 ∈ int(I j0);
3. there are points ξ j0 , ξ

′

j0
∈ cl(I j0) such that |ξ j0 − ξ

′

j0
| > ϵ

2 .

Now take selections ξ = (ξ1, . . . , ξ j0 , . . . , ξk) and ξ′ = (ξ′1, . . . , ξ
′

j0
, . . . , ξ′k) from P such

that ξ′j = ξ j for j , j0. Then compute∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) −
k∑

j=1

f (ξ′j)(φ(x j) − φ(x j−1))

∣∣∣∣∣∣∣∣
= | f (ξ j0) − f (ξ′j0)||φ(x j) − φ(x j−1)| > ϵ2

4 .

Since this equality holds for P for which |P| is arbitrarily small, it follows that f is not
Riemann–Stieltjes integrable with respect to φ. ■

3.5.14 Remark (Generalised Riemann–Stieltjes integral with respect to a saltus
function) Note that if, in the setup and notation of the preceding result, D f∩Dφ = ∅,
then f is generalised Riemann–Stieltjes integrable with respect to φ. The converse,
while holding for the Riemann–Stieltjes integral, does not hold for the generalised
Riemann–Stieltjes integral, the functions of Example 3.5.8 being a counterexample.
The characterisation of generalised Riemann–Stieltjes integrability with respect to
a saltus function has to do not only with the shared discontinuities of f and φ, but
also the exact value of the functions at the discontinuities. We do not go into this
since it is rather beside the point of our objective. We merely point the reader to
Exercise 3.5.4. •

This general result about saltus functions has the following corollary, whose
importance is perhaps best understood in the context of its relationship to the idea
of a δ-function introduced in Example IV-3.2.11–3. For readers who are unfamiliar
with δ-functions and are not yet ready to take on Chapter IV-3, the following result
will still make sense, but won’t have much impact.
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3.5.15 Corollary (A Riemann–Stieltjes interpretation of the δ-function) Let I = [a, b] be
a compact interval and let c ∈ [a, b]. If φc : [a, b]→ R is given by

φc(x) =

0, x ∈ [a, c],
1, x ∈ (c, b]

and if f : [a, b]→ R is continuous at c, then∫ b

a
f(x) dφc(x) = f(c).

Proof This follows from Proposition 3.5.13 after noting that φc is the saltus function
defined by the families (rξ)ξ∈[a,b) and (lξ)ξ∈[a,b] given by

rξ =

1, ξ = c,
0, ξ , c,

, lξ = 0, ξ ∈ [a, b]. ■

As the reader may verify in Exercise 3.5.3, various other definitions of φc can
be used to get the same conclusion. Essentially, the exact value of φc at c is
inconsequential in evaluating the Riemann–Stieltjes integral.

To fully understand this question of which functions are Riemann–Stieltjes
integrable with respect to an integrator φ of bounded variation, one needs an
additional concept.

3.5.16 Definition (φ-null set) Let I = [a, b] be a compact interval and let φ : [a, b]→ R be
a function of bounded variation. Extend φ to a function φ̄ : R→ R by

φ̄(x) =


φ(x), x ∈ [a, b],
φ(a), x < a,
φ(b), x > b.

A set A ⊆ R isφ-null if

inf

 ∞∑
j=1

TV(φ̄|[a j, b j])

∣∣∣∣∣∣∣ A ⊆
⋃

j∈Z>0

(a j, b j)

 = 0.

(We allow the possibility of a finite sum in the equation above by allowing the
possibility that a j = b j.)

If A ⊆ R and if P : A → {true, false} is a property defined on A, then the
property P holds φ-almost everywhere, φ-a.e., or for φ-almost every x ∈ A if the
set {x ∈ A | P(x) = false} is φ-null. •
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3.5.17 Remarks (φ-null sets)
1. If φ(x) = x, then TV(φ|[a j, b j]) = b j− a j (cf. Example 3.3.5–2), and so set is φ-null

in this case if and only if it has measure zero.
2. A countable union of φ-null sets is again φ-null. This can be proved in exactly

the same way as one proves the analogous statement for sets of measure zero
(see Exercise 2.5.11). •

With this notion of aφ-null set, we may state the analogue for Riemann–Stieltjes
integrals of Theorem 3.4.11.

3.5.18 Theorem (Riemann–Stieltjes integrable functions are continuous φ-almost
everywhere, and vice versa) For a compact interval I = [a, b] and a functionφ : I→ R
of bounded variation, a bounded function f : I → R, is Riemann–Stieltjes integrable with
respect to φ if and only if the set

Df = {x ∈ I | f is discontinuous at x}

is φ-null.
Proof Recall from the proof of Theorem 3.4.11 the definition of c f and D f ,k, k ∈ Z>0.
Suppose that D f ,k is not φ-null for some k ∈ Z>0. Let us for the moment suppose
that φ is continuous and of bounded variation. By part (ii) of Theorem 3.3.3 and by
Proposition 3.5.24 we can also suppose that φ is monotonically increasing. There
exists ϵ ∈ R>0 such that, if

D f ,k ⊆
⋃

j∈Z>0

(a j, b j),

then
∞∑
j=1

TV(φ̄|[a j, b j]) ≥ ϵ.

Let P be a partition of I and let (x0, x1, . . . , xm) = EP(P). Let { j1, . . . , jl} ⊆ {1, . . . ,m} be
those indices for which jr ∈ { j1, . . . , jl} implies that D f ,k ∩ (x jr−1, x jr) , ∅. Note that
∪

l
r=1(x jr−1, x jr) then covers all but a finite number of points of D fk . It then follows

that one can enlarge the lengths of the intervals (x jr−1, x jr), r ∈ {1, . . . , l}, such that the
resulting intervals cover D f ,k. The sum of the variations of φ̄ restricted to these enlarged
intervals then necessarily is at least ϵ. Since V( f ) is continuous by Proposition 3.3.11,
the intervals can be enlarged slightly enough that

l∑
r=1

TV(φ̄|[x jr , x jr−1]) ≥ ϵ
2 .

For each r ∈ {1, . . . , l},

sup{ f (x) | x ∈ [x jr−1, x jr]} − inf{ f (x) | x ∈ [x jr−1, x jr]} ≥
1
k
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since D f ,k ∩ (x jr−1, x jr) , ∅ and by definition of D f ,k and c f . Then we have

A+( f , φ,P) − A−( f , φ,P) =
m∑

j=1

(φ(x j) − φ(x j−1))
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

≥

l∑
r=1

(φ(x jr) − φ(x jr−1))
(
sup{ f (x) | x ∈ [x jr−1, x jr]}

− inf{ f (x) | x ∈ [x jr−1, x jr]}
)

≥
ϵ
2k ,

using the fact that φ is monotonically increasing, so that

TV(φ̄|[x jr , x jr−1]) = φ(x jr) − φ(x jr−1).

By Theorem 3.5.12 this shows that f is not generalised Riemann–Stieltjes integrable,
and so not Riemann–Stieltjes integrable, with respect to φ.

Now we allow thatφ be discontinuous. By Proposition 3.3.22 we writeφ = gφ+ jφ
where gφ is continuous and jφ is a saltus function. Suppose that f is Riemann–Stieltjes
integrable with respect to φ. We claim that this implies that f and φ have no discon-
tinuities in common, i.e., that D f ∩ Dφ = 0. This can be proved in exactly the same
manner as the second part of Proposition 3.5.13; indeed, the proof there really does not
rely on the fact that the integrator is a saltus function. Now, since the discontinuities
of φ are exactly the discontinuities of jφ, this implies that if f is Riemann–Stieltjes
integrable with respect to jφ by Proposition 3.5.13. By Proposition 3.5.24 we know
then that f is Riemann–Stieltjes integrable with respect to gφ. By our above arguments
D f is gφ-null. We also claim that D f is jφ-null. To see this, let ϵ ∈ R>0 and choose
η = (η1, . . . , ηm) ⊆ D jφ such that ∑

ξ∈[a,b]\η

|φ(ξ+) − φ(ξ−)| < ϵ (3.18)

(recalling from Proposition 3.3.22 the definition of the summable families associated
to the saltus function a function of bounded variation). Now note that [a, b] \ η is a
finite collection of open intervals (or, more precisely, a finite collection of open intervals
intersected with [a, b]). Each of these open intervals can be written as the countable
union of a sequence of intervals of strictly increasing length. In this way we write
[a, b] \ η as a countable collection of open intervals, and let us denote this family of
intervals by ((a j, b j)) j∈Z>0 . By construction,

D f ⊆
⋃

j∈Z>0

(a j, b j).

By (3.18), and since the total variation of a saltus function on any interval is the sum
of the magnitudes of the jumps, we have

∞∑
j=1

TV( jφ|[a j, b j]) < ϵ.
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This shows that D f is jφ-null. Finally, we claim that, if D f is both gφ-null and jφ-null,
then it is φ-null. To see this, let ϵ ∈ R>0 and choose countable collections ((a j, b j)) j∈A
and ((ck, dk))k∈B of open intervals such that

D f ⊆
⋃
j∈A

(a j, b j), D f ⊆
⋃
k∈B

(ck, dk),

and such that ∑
j∈A

TV(gφ|[a j, b j]) <
ϵ
2
,

∑
k∈B

TV( jφ|[ck, dk]) <
ϵ
2
.

Then the set (∪ j∈A(a j, b j))∩ (∪k∈B(ck, dk)) is open by Exercise 2.5.1 and so is a countable
union of open intervals by Proposition 2.5.6. Thus we can write⋃

j∈A

(a j, b j)

 ∩
⋃

k∈B

(ck, dk)

 =⋃
l∈C

(αl, βl)

for a countable collection ((αl, βl))l∈C of open intervals. Moreover,∑
l∈C

TV(φ|[αl, βl]) ≤
∑
l∈C

TV(gφ|[ck, dk]) +
∑
l∈C

TV( jφ|[ck, dk]) < ϵ,

using the fact that the total variation of a sum of functions is bounded above by the
sum of the total variations of the two functions (as was shown during the course of the
proof of Proposition 3.3.12(i)) and that⋃

l∈C

(αl, βl) ⊆
⋃
j∈A

(a j, b j),
⋃
l∈C

(αl, βl) ⊆
⋃
k∈B

(ck, dk).

This completes the proof of this part of the theorem.
Now we show the converse, and so assume that D f is φ-null. In this part of the

proof we drop the assumption that φ is monotonically increasing, since our proof does
not require this. We first prove a technical lemma which gives a sufficient condition
for Riemann–Stieltjes integrability. If J ⊆ [a, b] is an interval, then

ω f (J) = sup{| f (x1) − f (x2)| | x1, x2 ∈ J},

where the notation is suggestive of the notion of the oscillation of a function as intro-
duced in Definition 3.1.10.

1 Lemma Let [a, b] be a compact interval, let f, φ : [a, b]→ R be functions with f bounded and
φ of bounded variation, and suppose that, for every ϵ ∈ R>0, there exists δ ∈ R>0 such that, if
P = (I1, . . . , Ik) is a partition with |P| < δ, then

k∑
j=1

ωf(cl(Ij)) TV(φ| cl(Ij)) < ϵ.

Then f is Riemann–Stieltjes integrable with respect to φ.
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Proof Let ϵ ∈ R>0 and let δ ∈ R>0 be such that

k∑
j=1

ω f (cl(I j)) TV(φ| cl(I j)) <
ϵ
2

for any partition P = (I1, . . . , Ik) satisfying |P| < δ. Now let P1 and P2 be partitions
with |P1|, |P2| < δ, and let P be a partition for which EP(P) = EP(P1) ∪ EP(P2). Denote
EP(Pr) = (xr,0, xr,1, . . . , xr,kr) for r ∈ {1, 2} and denote EP(P) = (x0, x1, . . . , xk). Let ξr =
(ξa,1, . . . , ξr,kr) be selections from Pr, r ∈ {1, 2}, and let ξ = (ξ1, . . . , ξk) be a selection
from P. We now perform a computation with r ∈ {1, 2} fixed but arbitrary. For each
m ∈ {0, 1, . . . , kr} there exists a unique l(m) ∈ {0, 1, . . . , k} such that xl(m) = xr,m. We then
have

f (ξr,m)(φ(xr,m) − φ(xr,m−1)) −
l(m)∑

j=l(m−1)+1

f (ξ j)(φ(x j) − φ(x j−1))

=

l(m)∑
j=l(m−1)+1

( f (ξr,m) − f (ξ j))(φ(x j) − φ(x j−1))

for each m ∈ {1, . . . , kr}. Therefore,∣∣∣∣∣∣∣∣ f (ξr,m)(φ(xr,m) − φ(xr,m−1)) −
l(m)∑

j=l(m−1)+1

f (ξ j)(φ(x j) − φ(x j−1))

∣∣∣∣∣∣∣∣
≤

l(m)∑
j=l(m−1)+1

| f (ξr,m) − f (ξ j)||φ(x j) − φ(x j−1)|

≤ ω f ([xr,m−1, xr,m])
l(m)∑

j=l(m−1)+1

|φ(x j) − φ(x j−1)|

≤ ω f ([xr,m−1, xr,m]) TV(φ|[xr,m−1, xr,m]).

Summing this last estimate over m ∈ {1, . . . , kr}we obtain

|A( f , φ,Pr, ξr) − A( f , φ,P, ξ)| ≤
kr∑

m=1

ω f ([xr,m−1, xr,m]) TV(φ|[xr,m−1, xr,m]) <
ϵ
2
.

Now we have

|A( f , φ,P1, ξ1) − A( f , φ,P2, ξ2)|
≤ |A( f , φ,P1, ξr) − A( f , φ,P, ξ)| + |A( f , φ,P2, ξr) − A( f , φ,P, ξ)| < ϵ.

Now let (P j) j∈Z>0 be a sequence of partitions for which lim j→∞|P j| = 0. By our
above computations, for each ϵ ∈ R>0 there exists N ∈ Z>0 such that,

|A( f , φ,P j, ξ j) − A( f , φ,Pk, ξk)| < ϵ
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for j, k ≥ N and for any selections ξl of Pl, l ∈ Z>0. It this follows that the sequence
(A( f , φ,P j, ξ j)) j∈Z>0 is a Cauchy sequence in R for any selections ξ j of P j, j ∈ Z>0.
Denote the resulting limit of this sequence by I( f , φ). We claim that I( f , φ) is the
Riemann–Stieltjes integral of f with respect to φ. To see this, let ϵ ∈ R>0 and let δ ∈ R>0
be such that

|A( f , φ,P, ξ) − A( f , φ,P′, ξ′)| < ϵ
2

for any two partitions P and P′ satisfying |P|, |P′| < δ and for any selections ξ and ξ′

from P and P′, respectively. Now let N ∈ Z>0 satisfy |P j| < δ for every j ≥ N. Then, if
P is any partition with |P| < δ and if ξ is any selection from P, we have

|A( f , φ,P, ξ) − I( f , φ)| ≤ |A( f , φ,P, ξ) − A( f , φ,PN, ξN)| + |A( f , φ,PN, ξN) − I( f , φ)| < ϵ,

for any selection ξN of PN. This shows that I( f , φ) is indeed the Riemann–Stieltjes
integral of f with respect to φ, and so gives the lemma. ▼

Now, equipped with this lemma, the theorem will be proved if we can show that
the assumption that D f is φ-null implies that, for any ϵ ∈ R>0, there exists δ ∈ R>0 such
that, for any partition P = (I1, . . . , Ik) with |P| < δ, we have

k∑
j=1

ω f (cl(I j)) TV(φ| cl(I j)) < ϵ.

For ϵ ∈ R>0 let ϵ1 =
ϵ

2 TV(φ) and define

D f ,ϵ1 = {x ∈ [a, b] | ω f (x) ≥ ϵ1},

and recall from Proposition 3.1.13 that D f ,ϵ1 is closed. Since D f is φ-null, D f ,ϵ1 is also
φ-null. Thus there exists a countable family ((aα, bα))α∈A of open intervals such that

D f ,ϵ1 ⊆

⋃
α∈A

(aα, bα)

and such that ∑
α∈A

TV(φ|(aα, bα)) < ϵ2,

where ϵ2 =
ϵ

4M . By the Heine–Borel Theorem, we may furthermore assume that the
index set A is finite, by virtue of D f ,ϵ1 being closed and bounded. The set [a, b] \D f ,ϵ1 is
open in [a, b]. Then for each x ∈ [a, b] \D f ,ϵ1 there exists a neighbourhood Ux of x such
that

sup{| f (x1) − f (x2)| | x1, x2 ∈ Ux ∩ [a, b]} < ϵ1.

Now we note that ((aα, bα))α∈A ∪ (Ux)x∈[a,b]\D f ,ϵ1
is an open cover of [a, b]. Thus, by

Theorem 2.5.30 there exists δ ∈ R>0 such that each set B(δ, x) ∩ [a, b] is contained in at
least one of the elements of the open cover. Now let P be a partition for which |P| < δ,
and denote EP(P) = (x0, x1, . . . , xk). Partition the set {1, . . . , k} as K1 ∪ K2 such that if
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j ∈ K1 then [x j−1, x j] ⊆ (aα, bα) for some α ∈ A and such that if j ∈ K2 then [x j−1, x j] ⊆ Ux
for some x ∈ [a, b]. Let M = sup{| f (x)| | x ∈ [a, b]}. Then we have

m∑
j=1

ω f ([x j−1, x j]) TV(φ|[x j−1, x j]) =
∑
j∈K1

ω f ([x j−1, x j]) TV(φ|[x j−1, x j])

+
∑
j∈K2

ω f ([x j−1, x j]) TV(φ|[x j−1, x j])

≤ 2Mϵ2 + TV(φ)ϵ1 < ϵ.

The result now follows from Lemma 1, as desired. ■

The result has the following immediate corollaries.

3.5.19 Corollary (Characterisation of generalised Riemann–Stieltjes integrable
functions) Let I = [a, b] be a compact interval, let f, φ : [a, b] → R be functions
with f bounded and φ of bounded variation, and define

Df = {x ∈ I | f is discontinuous at x}.

Then the following statements hold:
(i) if Df is φ-null, then f is generalised Riemann–Stieltjes integrable;
(ii) if φ is continuous and if f is generalised Riemann–Stieltjes integrable, then Df is

φ-null.
Proof The first assertion follows directly from Theorem 3.4.11, while the second was
proved during the course of the proof of Theorem 3.4.11. ■

3.5.20 Corollary (Riemann–Stieltjes integrability for continuous integrators of
bounded variation) Let [a, b] be a compact interval and let φ : [a, b] → R be a con-
tinuous function of bounded variation. Then a bounded function f : [a, b] → R is Rie-
mann–Stieltjes integrable with respect toφ if and only if it is generalised Riemann–Stieltjes
integrable with respect to φ.

The next result is the most commonly encountered integrability condition of
any generality.

3.5.21 Corollary (Continuous integrands are Riemann–Stieltjes integrable with re-
spect to integrators of bounded variation) Let [a, b] be a compact interval. If
f : [a, b] → R is continuous and φ : [a, b] → R is of bounded variation, then f is Rie-
mann–Stieltjes integrable with respect to φ.

3.5.3 The Riemann–Stieltjes integral on noncompact intervals

Next we do as we did with the Riemann integral, and give the extension of
the Riemann–Stieltjes integral to general intervals. The reader will recall from
Section 3.4.4 that for the general Riemann integral we had two notions, those of
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Riemann integrability and conditional Riemann integrability. We do not duplicate
this for the Riemann–Stieltjes integral, instead giving what is analogous to the
conditional Riemann integral.

3.5.22 Definition (Riemann–Stieltjes integrable functions of a general interval) Let
I ⊆ R be an interval and let f , φ : I → R be functions such that f |J is Rie-
mann–Stieltjes integrable with respect to φ|J for every compact subinterval J of
I.

(i) If I = [a, b] then the Riemann–Stieltjes integral of f with respect to φ is as
defined in the preceding section.

(ii) If I = (a, b] then define∫ b

a
f (x) dφ(x) = lim

ra↓a

∫ b

ra

f (x) dφ(x).

(iii) If I = [a, b) then define∫ b

a
f (x) dφ(x) = lim

rb↑a

∫ rb

a
f (x) dφ(x).

(iv) If I = (a, b) then define∫ b

a
f (x) dφ(x) = lim

ra↓a

∫ c

ra

f (x) dφ(x) + lim
rb↑b

∫ rb

c
f (x) dφ(x)

for any c ∈ (a, b).
(v) If I = (−∞, b] then define∫ b

−∞

f (x) dφ(x) = lim
R→∞

∫ b

−R
f (x) dφ(x).

(vi) If I = (−∞, b) then define∫ b

−∞

f (x) dφ(x) = lim
R→∞

∫ c

−R
f (x) dφ(x) + lim

rb↑b

∫ rb

c
f (x) dφ(x).

(vii) If I = [a,∞) then define∫
∞

a
f (x) dφ(x) = lim

R→∞

∫ R

a
f (x) dφ(x).

(viii) If I = (a,∞) then define∫
∞

a
f (x) dφ(x) = lim

ra↓a

∫ c

ra

f (x) dφ(x) + lim
R→∞

∫ R

c
f (x) dφ(x)

for some c ∈ (a,∞).
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(ix) If I = (−∞,∞) then define∫
∞

−∞

f (x) dφ(x) = lim
R→∞

∫ c

−R
f (x) dφ(x) + lim

R→∞

∫ R

c
f (x) dφ(x)

for some c ∈ R.
If, for a given I, f , and φ, the appropriate of the above limits exists, then f is
Riemann–Stieltjes integrable with respect to φ on I, and the Riemann–Stieltjes
integral is the value of the limit.

By replacing
∫ b

a
with G

∫ b

a
, we also define the notion of a f as being generalised

Riemann–Stieltjes integrable with respect toφon I, and the value of the appropriate
limit is the generalised Riemann–Stieltjes integral. •

As with the Riemann integral, the above definitions are independent of the
choice of the point c, when such a choice must be made (cf. Propositions 3.5.29
and 3.5.31).

3.5.23 Notation (General notation for the Riemann–Stieltjes integral) If I ⊆ R is an
interval and if f , φ : I → R are such that f is Riemann–Stieltjes integrable with
respect to φ, then it is convenient to denote by∫

I
f (x) dφ(x), G

∫
I

f (x) dφ(x)

the values of the Riemann–Stieltjes integral and the generalised Riemann–Stieltjes
integral, respectively, of f on I as a shorthand for any one of the pieces of notation
of Definition 3.5.22. •

We forgo explicit examples for the Riemann–Stieltjes integral on general inter-
vals, since the corresponding examples for the Riemann integral also apply here,
and generally serve to illustrate the desired phenomenon.

3.5.4 The Riemann–Stieltjes integral and operations on functions

In this section we present the usual formulae concerning the relationship be-
tween the Riemann–Stieltjes integral and the usual operations one performs on
functions and subsets of R. The only (possibly) big surprise here is the result
giving the relationship with partitioning of intervals (Proposition 3.5.29). Unlike
the case with the Riemann integral, the implication only goes one way for the Rie-
mann–Stieltjes integral. However, for the generalised Riemann–Stieltjes integral,
things are as they are for the Riemann integral (Proposition 3.5.31). We advise the
reader that the hypotheses we place on the integrator vary; some of the results are
general, some require the integrator to have bounded variation, and some require
the integrator to be monotonically increasing. Thus some attention is required so
as to not apply the results improperly. We also comment that, in all cases, any
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conditions placed on the integrator are necessary for the result to be true, although
we do not provide counterexamples for this assertion in all cases.

Let us begin by considering the algebraic operations on functions. There are
two results to consider here, one for the integrand and one for the integrator.

3.5.24 Proposition (Algebraic operations on the integrand and the Rie-
mann–Stieltjes integral) Let I ⊆ R be an interval, let f,g: I→ R be functions that are
(generalised) Riemann–Stieltjes integrable with respect to φ : I→ R, and let c ∈ R. Then
the following statements hold:

(i) f + g is (generalised) Riemann–Stieltjes integrable with respect to φ and

(G)
∫

I
(f + g)(x) dφ(x) = (G)

∫
I
f(x) dφ(x) + (G)

∫
I
g(x) dφ(x);

(ii) cf is (generalised) Riemann–Stieltjes integrable with respect to φ and

(G)
∫

I
(cf)(x) dφ(x) = c(G)

∫
I
f(x) dφ(x);

(iii) if I is additionally compact and if φ has bounded variation, then fg is (generalised)
Riemann–Stieltjes integrable with respect to φ;

(iv) if I is additionally compact, if φ has bounded variation, and if there exists α ∈ R>0

such that g(x) ≥ α for each x ∈ I, then f
g is (generalised) Riemann–Stieltjes integrable

with respect to φ.
Proof Just as was the case for the corresponding results for the Riemann integral in
Proposition 3.4.22, we can assume, without loss of generality, that I is compact in the
first two parts of the result.

(i) Abbreviate the Riemann–Stieltjes integrals for f and g by I( f , φ) and I(g, φ),
respectively. For any partition P and any selection ξ from P, we have

A( f + g, φ,P, ξ) = A( f , φ,P, ξ) + A(g, φ,P, ξ).

For ϵ ∈ R>0 choose δ ∈ R>0 such that

|A( f , φ,P, ξ) − I( f , φ)| < ϵ
2 , |A(g, φ,P, ξ) − I(g, φ)| < ϵ

2

for any partition P satisfying |P| < δ and for any selection ξ from P. Then

|A( f + g, φ,P, ξ) − I( f , φ) − I(g, φ)|
≤ |A( f , φ,P, ξ) − I( f , φ)| + |A(g, φ,P, ξ) − I(g, φ)|

whenever P is a partition satisfying |P| < δ and for any selection ξ from P. This gives
the result.

For the corresponding result for the generalised Riemann–Stieltjes integral, we
note that, by Theorem 3.5.12, the generalised Riemann–Stieltjes integral is charac-
terised by the equality of the upper and lower integrals (part (ii) of the theorem), and
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also by the close approximation of the integral by the lower and upper sums (part (iii)
of the theorem). Our proof of part (i) of Proposition 3.4.22 relied on just these char-
acterisations of the Riemann integral. Therefore, the proof for the Riemann integral
carries over verbatim to the generalised Riemann–Stieltjes integral.

(ii) Let I( f , φ) denote the Riemann–Stieltjes integral of f with respect to φ. Since
the result is clear when c = 0, we suppose first that c > 0. For ϵ ∈ R>0 let δ ∈ R>0 have
the property that

|A( f , φ,P, ξ) − I( f , φ)| < ϵ
c

for any partition P satisfying |P| < δ and for any selection ξ from P. Then, noting that
A(c f , φ,P, ξ) = cA( f , φ,P, ξ), we have

|A(c f , φ,P, ξ) − cI( f , φ)| < ϵ

for any partition P satisfying |P| < δ and for any selection ξ from P. This gives the
result for c > 0, and a similar argument holds for c < 0.

For the generalised Riemann–Stieltjes integral, the proof goes just like that in
part (ii) of Proposition 3.4.22 in the same way that part (i) above follows from part (i)
of Proposition 3.4.22.

(iii) By taking g(y) = y2 in Proposition 3.5.26 below, we conclude that f 2 is (gen-
eralised) Riemann–Stieltjes integrable with respect to φ whenever f is (generalised)
Riemann–Stieltjes integrable with respect to φ. Since

f g = 1
2 (( f + g)2

− f 2
− g2),

this part of the result then follows from part (i) above.
(iv) This follows from Proposition 3.5.26 below by taking g(y) = 1

y . ■

3.5.25 Proposition (Algebraic operations on the integrator and the Rie-
mann–Stieltjes integral) Let I ⊆ R be an interval, let f : I → R be a function that
is (generalised) Riemann–Stieltjes integrable with respect to both φ,ψ : I → R, and let
c ∈ R. Then the following statements hold:

(i) f is (generalised) Riemann–Stieltjes integrable with respect to φ + ψ and

(G)
∫

I
f(x) d(φ + ψ)(x) = (G)

∫
I
f(x) dφ(x) + (G)

∫
I
f(x) dψ(x);

(ii) f is (generalised) Riemann–Stieltjes integrable with respect to cφ and

(G)
∫

I
f(x) d(cφ)(x) = c(G)

∫
I
f(x) dφ(x).

Proof The proof here follows, mutatis mutandis, as do the corresponding proofs in
Proposition 3.5.24. Alternatively, one can use integration by parts, Theorem 3.5.32
below. ■

We now consider now the case of composition of functions.
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3.5.26 Proposition (Function composition and the Riemann–Stieltjes integral) If I =
[a, b] is a compact interval, if f, φ : [a, b]→ R are functions such that

(i) φ of bounded variation,
(ii) f (generalised) Riemann–Stieltjes integrable with respect to φ, and
(iii) image(f) ⊆ [c,d],

and if g: [c,d]→ R is continuous, then g ◦ f is (generalised) Riemann–Stieltjes integrable.
Proof First we consider the case of the Riemann–Stieltjes integral. Since f is Rie-
mann–Stieltjes integrable with respect to φ, the set D f of discontinuities of f is φ-null
by Theorem 3.5.18. By Proposition 3.1.16, the set Dg◦ f of discontinuities of g ◦ f
is contained in D f , and so is also φ-null. Again by Theorem 3.5.18, g ◦ f is then
Riemann–Stieltjes integrable.

For the generalised Riemann–Stieltjes integral, we proceed as follows. We suppose,
without loss of generality by Theorem 3.3.3 and by Proposition 3.5.25, that φ is
monotonically increasing. Denote M = sup{|g(y)| | y ∈ [c, d]}. Let ϵ ∈ R>0 and write
ϵ′ = ϵ

2M+φ(b)−φ(a) . Since g is uniformly continuous by the Heine–Cantor Theorem,
let δ ∈ R be chosen such that 0 < δ < ϵ′ and such that, |y1 − y2| < δ implies that
|g(y1)−g(y2)| < ϵ′. Then choose a partition P of [a, b] such that A+( f , φ,P)−A−( f , φ,P) <
δ2. Let (x0, x1, . . . , xk) be the endpoints of P and define

A = { j ∈ {1, . . . , k} | sup{ f (x) | x ∈ [x j−1, x j]} − inf{ f (x) | x ∈ [x j−1, x j]} < δ},
B = { j ∈ {1, . . . , k} | sup{ f (x) | x ∈ [x j−1, x j]} − inf{ f (x) | x ∈ [x j−1, x j]} ≥ δ}.

For j ∈ A we have | f (ξ1) − f (ξ2)| < δ for every ξ1, ξ2 ∈ [x j−1, x j] which implies that
|g ◦ f (ξ1) − g ◦ f (ξ2)| < ϵ′ for every ξ1, ξ2 ∈ [x j−1, x j]. For j ∈ B we have

δ
∑
j∈B

(φ(x j) − φ(x j−1)) ≤
∑
j∈B

(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

(φ(x j) − φ(x j−1))

≤ A+( f , φ,P) − A−( f , φ,P) < δ2.

Therefore we conclude that ∑
j∈B

(φ(x j) − φ(x j−1)) ≤ ϵ′,
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using the fact that φ is monotonically increasing. Thus

A+(g ◦ f , φ,P) − A−(g ◦ f , φ,P) =
k∑

j=1

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)

(φ(x j) − φ(x j−1))

=
∑
j∈A

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)

(φ(x j) − φ(x j−1))

+
∑
j∈B

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)

(φ(x j) − φ(x j−1))

< ϵ′(φ(b) − φ(a)) + 2ϵ′M < ϵ,

giving the result by Theorem 3.5.12. ■

With respect to the natural total order on R and the absolute value function on
R, we have the following two results.

3.5.27 Proposition (Riemann–Stieltjes integral and total order on R) Let I ⊆ R be an
interval and let f,g, φ : I→ R be functions for which

(i) φ is monotonically increasing,
(ii) f and g are both (generalised) Riemann–Stieltjes integrable with respect to φ, and
(iii) f(x) ≤ g(x) for each x ∈ I.

Then
(G)

∫
I
f(x) dφ(x) ≤ (G)

∫
I
g(x) dφ(x).

Proof By part (i) of Proposition 3.5.24, it suffices to consider the case when f = 0.
First take the case where I = [a, b]. If P is a partition of [a, b] with EP(P) = (x0, x1, . . . , xk)
and if ξ is a selection from P then

k∑
j=1

g(ξ j)(φ(x j) − φ(x j−1)) ≥ 0.

This allows us to conclude that both∫ b

a
g(x) dφ(x), G

∫ b

a
g(x) dφ(x)

are positive, so giving the result in the case when I is compact. For general intervals,
the result follows from the definition of the (generalised) Riemann–Stieltjes integral in
these cases. ■
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3.5.28 Proposition (Riemann–Stieltjes integral and absolute value on R) Let I = [a, b]
be a compact interval and let f, φ : [a, b]→ R be functions withφmonotonically increasing
and with f (generalised) Riemann–Stieltjes integrable with respect to φ. Then the function
|f| : x 7→ |f(x)| is (generalised) Riemann–Stieltjes integrable with respect to φ and∣∣∣∣∣∣(G)

∫ b

a
f(x) dφ(x)

∣∣∣∣∣∣ ≤ (G)
∫ b

a
|f|(x) dφ(x).

Proof Since φ is monotonically increasing, it also has bounded variation, and so the
result follows from Propositions 3.5.26 and 3.5.27 by taking g(y) = |y| in Proposi-
tion 3.5.26. ■

Now we turn to describing the manner in which the Riemann–Stieltjes integral
can be broken up into two integrals over disjoint intervals. Here we see one of
the more important distinctions between the Riemann–Stieltjes integral and the
generalised Riemann–Stieltjes integral, since the result that holds in the latter case
is the better one.

3.5.29 Proposition (Breaking the Riemann–Stieltjes integral in two) Let I ⊆ R be an
interval and let I = I1 ∪ I2, where I1 ∩ I2 = {c}, where c is the right endpoint of I1 and
the left endpoint of I2. If f, φ : I → R are functions with f Riemann–Stieltjes integrable
with respect to φ, then f|I1 and f|I2 are Riemann–Stieltjes integrable with respect to φ.
Furthermore, we have∫

I
f(x) dφ(x) =

∫
I1

f(x) dφ(x) +
∫

I2

f(x) dφ(x).

Proof It suffices to consider the case where I = [a, b] and where c ∈ (a, b); the general
case follows from this case by using the definition of the Riemann–Stieltjes integral for
general intervals.

Let ϵ ∈ R>0 and let δ ∈ R>0 have the property that, for each pair of partitions P
and P′ of [a, b] satisfying |P|, |P′| < δ and for each pair of selections ξ and ξ′ of P and
P′, respectively, we have

|A( f , φ,P, ξ) − A( f , φ,P′, ξ′)| < ϵ,

this being possible by Proposition 3.5.9. Now let P̃ and P̃′ be partitions of [a, c]
satisfying |P̃|, |P̃′| < δ and let ξ̃ and ξ̃′ be selections from P̃ and P̃′, respectively. Now
let P̂ be a partition of [c, b] for which |P̂| < δ and let ξ̂ be a selection from P̂. Define
partitions P and P′ of [a, b] satisfying EP(P) = EP(P̃)∪EP(P̂) and EP(P′) = EP(P̃′)∪EP(P̂).
Define selections ξ and ξ′ of P and P′, respectively, by ξ = ξ̃ ∪ ξ̂ and ξ′ = ξ̃′ ∪ ξ̂. Then
we have

|A( f , φ,P, ξ) − A( f , φ,P′, ξ′)| = |A( f |[a, c], φ|[a, c], P̃, ξ̃) − A( f |[a, c], φ|[a, c], P̃′, ξ̃′)| < ϵ.

By Proposition 3.5.9 it follows that f |[a, c] is Riemann–Stieltjes integrable with re-
spect to φ|[a, c]. An entirely similar argument shows that f |[c, b] is Riemann–Stieltjes
integrable with respect to φ|[c, b].
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Now let ϵ ∈ R>0 and choose δ ∈ R>0 such that if P, P1, and P2 are partitions of
[a, b], [a, c], and [c, b], respectively, and if ξ, ξ1, and ξ2 are selections from P, P1, and P2,
respectively, then

|I( f , φ) − A( f , φ,P, ξ)| < ϵ
3 ,

|I( f |[a, c], φ|[a, c]) − A( f |[a, c], φ|[a, c],P, ξ)| < ϵ
3 ,

|I( f |[c, b], φ|[c, b]) − A( f |[c, b], φ|[c, b],P, ξ)| < ϵ
3

provided that |P|, |P1|, |P2| < δ. Now let P, P1, and P2 be partitions satisfying
|P|, |P1|, |P2| < δ. Without changing the requirement that |P| < δ we can assume that
c ∈ EP(P), and thus we assume this. Then we let ξ, ξ1, and ξ2 be selections from P, P1,
and P2, respectively. Noting that

A( f , φ,P, ξ) = A( f |[a, c], φ|[a, c],P1, ξ1) + A( f |[c, b], φ|[c, b],P2, ξ2),

we then compute

|I( f , φ)−I( f |[a, c], φ|[a, c]) − I( f |[c, b], φ|[c, b])|
= |I( f , φ) − I( f |[a, c], φ|[a, c]) − I( f |[c, b], f |[c, b])
− A( f , φ,P, ξ) + A( f |[a, c], φ|[a, c],P1, ξ1) + A( f |[c, b], φ|[c, b],P2, ξ2)|

≤ |I( f , φ) − A( f , φ,P, ξ)| + |I( f |[a, c], φ|[a, c]) − A( f |[a, c], φ|[a, c],P1, ξ1)|
+ |I( f |[c, b], φ|[c, b]) − A( f |[c, b], φ|[c, b],P2, ξ2)| < ϵ,

which gives the desired equality in the statement of the result. ■

3.5.30 Example (A counterexample for the converse of Proposition 3.5.29) We take
I = [0, 1] and f and φ as in Example 3.5.8. In that example we saw that f was
not Riemann–Stieltjes integrable with respect to φ. Nonetheless, we claim that
f |[0, 1

2 ] is Riemann–Stieltjes integrable with respect to φ|[0, 1
2 ] and that f |[ 1

2 , 1] is
Riemann–Stieltjes integrable with respect to φ|[ 1

2 , 1]. Indeed, if P is any partition of
[0, 1

2 ] and if ξ is any selection from P, we see directly that A( f |[0, 1
2 ], φ|[0, 1

2 ],P, ξ) = 0.
Thus f |[0, 1

2 ] is Riemann–Stieltjes integrable with respect to φ|[0, 1
2 ]. It is similarly

directly computed that, if P is any partition of [ 1
2 , 1] and if ξ is any selection from P,

then A( f |[1
2 , 1], φ|[ 1

2 , 1],P, ξ) = 0. Thus f |[1
2 , 1] is Riemann–Stieltjes integrable with

respect to φ|[ 1
2 , 1]. Thus the converse of Proposition 3.5.29 fails to hold for this

example. •

The interesting fact is now that the sharp result concerning the splitting of the
domain does hold for the generalised Riemann–Stieltjes integral.

3.5.31 Proposition (Breaking the generalised Riemann–Stieltjes integral in two) Let
I ⊆ R be an interval and let I = I1 ∪ I2, where I1 ∩ I2 = {c}, where c is the right endpoint
of I1 and the left endpoint of I2. If f, φ : I → R are functions, then f is generalised
Riemann–Stieltjes integrable with respect to φ if and only if f|I1 and f|I2 are generalised
Riemann–Stieltjes integrable with respect to φ. Furthermore, we have

G
∫

I
f(x) dφ(x) = G

∫
I1

f(x) dφ(x) +G
∫

I2

f(x) dφ(x).
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Proof Suppose that f is generalised Riemann–Stieltjes integrable with respect to φ.
The implication that both f |I1 and f |I2 are generalised Riemann–Stieltjes integrable, and
that the value of the integral over I is the sum of the integrals over I1 and I2 follows from
Proposition 3.5.10 in the same manner, with minor modifications, as Proposition 3.5.29
follows from Proposition 3.5.9. We leave to the reader the straightforward notational
substitutions.

Now suppose that f |I1 and f |I2 are generalised Riemann–Stieltjes integrable with
respect to φ|I1 and φ|I2, respectively. We can and do assume, without loss of generality,
that I = [a, b], I1 = [a, c], and I2 = [c, b]. Let the Riemann–Stieltjes integrals be denoted
by I( f |[a, c], φ|[a, c]) and I( f |[c, b], φ|[c, b]). Let ϵ ∈ R>0 and choose partitions P1 of [a, c]
and P2 of [c, b] such that, if P′1 is a refinement of P1, if P′2 is a refinement of P2, if ξ′1 is a
selection from P1, and if ξ′2 is a selection from P2, then

|A( f |[a, c], φ|[a, c],P′1, ξ
′

1) − I( f |[a, c], φ|[a, c])| < ϵ
2 ,

|A( f |[c, b], φ|[c, b],P′2, ξ
′

2) − I( f |[c, b], φ|[c, b])| < ϵ
2 .

Let P0 be a partition of [a, b] for which EP(P0) = EP(P1) ∪ EP(P2). Then, if P′ is a
refinement of P0, there exists refinements P′1 and P′2 of P1 and P2, respectively, such
that EP(P′) = EP(P′1) ∪ EP(P′2). For a refinement P′ of P0 and a selection ξ′ of P we
compute

|A( f , φ,P′, ξ′) − I( f |[a, c], φ|[a, c]) − I( f |[c, b], φ|[c, b])|
≤ |A( f |[a, c], φ|[a, c],P′1, ξ

′

1) − I( f |[a, c], φ|[a, c])|
+ |A( f |[c, b], φ|[c, b],P′2, ξ

′

2) − I( f |[c, b], φ|[c, b])| < ϵ.

Thus the Riemann–Stieltjes integral of f with respect to φ exists and is equal to
I( f |[a, c], φ|[a, c]) + I( f |[c, b], φ|[c, b]). ■

There is an integration by parts formula for the Riemann–Stieltjes integral which
is striking in its generality.

3.5.32 Theorem (Integration by parts for the Riemann–Stieltjes integral) Let I = [a, b]
be a compact interval and let f, φ : [a, b] → R be functions. Then f is (generalised)
Riemann–Stieltjes integrable with respect to φ if and only if φ is (generalised) Rie-
mann–Stieltjes integrable with respect to f, and if either of these statements hold, then

(G)
∫ b

a
f(x) dφ(x) + (G)

∫ b

a
φ(x) df(x) = f(b)φ(b) − f(a)φ(a).

Proof Consider first the case of the Riemann–Stieltjes integral. We prove a lemma
concerning partitions.

1 Lemma Let I = [a, b] be a compact interval and let f, φ : [a, b] → R be functions. If P is a
partition of [a, b] and if ξ is a selection of P, then there exists a partition P′ and a selection ξ′

from P′ such that
(i) |P′| ≤ |P| and
(ii) A(φ, f,P, ξ) +A(f, φ,P′, ξ′) = f(b)φ(b) − f(a)φ(a).
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Proof Let P be a partition of [a, b] and denote EP(P) = (x0, x1, . . . , xk). Letξ = (ξ1, . . . , ξk)
be a selection from P. We then have the elementary equalities

f (b)φ(b) − f (a)φ(a) =
k∑

j=1

f (x j)(φ(x j) − φ(x j−1)),

A(φ, f ,P, ξ) =
k∑

j=1

φ(ξ j)( f (x j) − f (x j−1)).

Subtracting these gives

f (b)φ(b) − f (a)φ(a)−A(φ, f ,P, ξ)

=

k∑
j=1

f (x j)(φ(x j) − φ(x j−1)) −
k∑

j=1

φ(ξ j)( f (x j) − f (x j−1))

=

k∑
j=1

f (x j)(φ(x j) − φ(ξ j)) +
k∑

j=1

f (x j−1)(φ(ξ j) − φ(x j−1)). (3.19)

Define a partition P′ having the property that EP(P′) = EP(P)∪ξ, and note that |P′| ≤ |P|.
Note that we allow the case that card(EP(P′)) < card(EP(P)) + card(ξ), since some of
points from the selection ξ might agree with endpoints from P. We then define a
selection ξ′ from P′ by taking ξ′j to be the left endpoint of the jth interval of P′. One
can easily directly check that

A( f , φ,P′, ξ′) =
k∑

j=1

f (x j)(φ(x j) − φ(ξ j)) +
k∑

j=1

f (x j−1)(φ(ξ j) − φ(x j−1)), (3.20)

again allowing that some of the terms in the sum will be zero, corresponding to the
cases where points from ξ agree with endpoints of P. The lemma follows by combining
(3.19) and (3.20). ▼

Let ϵ ∈ R>0 and let δ ∈ R>0 have the property that, if P′ is a partition of [a, b] with
|P′| < δ

2 and if ξ′ is a selection from P,∣∣∣∣∣∣A( f , φ,P′, ξ′) −
∫ b

a
f (x) dφ(x)

∣∣∣∣∣∣ < ϵ.
Now let P be any partition with |P| < δ and let ξ be a selection from P. Let P′ and ξ′ be
as guaranteed by Lemma 1. We then have∣∣∣∣∣∣A(φ, f ,P, ξ) − f (b)φ(b) + f (a)φ(a) −

∫ b

a
f (x) dφ(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣A( f , φ,P′, ξ′) −
∫ b

a
f (x) dφ(x)

∣∣∣∣∣∣ < ϵ.
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This shows that φ is Riemann–Stieltjes integrable with respect to f , and that the value
of the integral is as claimed. The argument can clearly be reversed, giving the desired
result for the Riemann–Stieltjes integral.

For the generalised Riemann–Stieltjes integral, we prove the following lemma,
playing the rôle of Lemma 1 above.

2 Lemma Let I = [a, b] be a compact interval and let f, φ : [a, b] → R be functions. If P0
is a partition of [a, b] then, given a refinement P of P0 and a selection ξ from P, there exists
a refinement P′ of P0 and a selection ξ′ from P′ such that A(φ, f,P, ξ) + A(f, φ,P′, ξ′) =
f(b)φ(b) − f(a)φ(a).

Proof Let P0 be a partition and let P be a refinement of P0 and let ξ be a selection from
P. Note that a partition P′ having the property that EP(P′) = EP(P) ∪ ξ is necessarily a
refinement of P0 since it is a refinement of P, which is itself a refinement of P0. Thus
the result follows by taking P′ and ξ′ to be as in the proof of Lemma 1. ▼

Assume that f is generalised Riemann–Stieltjes integrable with respect to φ. Let
ϵ ∈ R>0 and let P0 be a partition with property that, if P′ is a refinement of P0 and if ξ′

is a selection from P′, then∣∣∣∣∣∣A( f , φ,P′, ξ′) − G
∫ b

a
f (x) dφ(x)

∣∣∣∣∣∣ < ϵ.
Now let P be a refinement of P0 and let ξ be a selection from P, and let P′ and ξ′ the
partition and selection satisfying

A(φ, f ,P, ξ) + A( f , φ,P′, ξ′) = f (b)φ(b) − f (a)φ(a),

as per Lemma 2. Then we have∣∣∣∣∣∣A(φ, f ,P, ξ) − f (b)φ(b) + f (a)φ(a) − G
∫ b

a
f (x) dφ(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣A( f , φ,P′, ξ′) − G
∫ b

a
f (x) dφ(x)

∣∣∣∣∣∣ < ϵ.
This φ is generalised Riemann–Stieltjes integrable with respect to f , with the value
of the integral as claimed. The argument can be reversed to show that the gener-
alised Riemann–Stieltjes integrability of φ with respect to f implies the generalised
Riemann–Stieltjes integrability of f with respect to φ. ■

To close this section, we indicate a relationship between the Riemann–Stieltjes
integral and the Riemann integral when the integrator has certain properties.

3.5.33 Proposition (Riemann–Stieltjes integral for differentiable integrators) Let I =
[a, b] be a compact interval, let f, φ : [a, b]→ R be functions such that

(i) f is Riemann integrable and
(ii) φ is differentiable and φ′ is Riemann integrable.



340 3 Functions of a single real variable

Then f is (generalised) Riemann–Stieltjes integrable with respect to φ if and only if fφ′ is
Riemann integrable. Furthermore, if either of these statements holds, then

(G)
∫ b

a
f(x) dφ(x) =

∫ b

a
f(x)φ′(x) dx.

Proof Since φ is differentiable and has Riemann integrable derivative, it is necessarily
continuous by Proposition 3.2.7 and of bounded variation by Proposition 3.3.14.
Therefore, by Corollaries 3.5.19 and 3.5.20, the following statements are equivalent:
1. f is Riemann–Stieltjes integrable with respect to φ;
2. f is generalised Riemann–Stieltjes integrable with respect to φ;
3. D f is φ-null.

Now suppose that f and φ are as stated and that fφ′ is Riemann integrable. Let
M = sup{|φ′(x)| | x ∈ [a, b]}. Since D f has measure zero, for ϵ ∈ R>0 choose a countable
family ((aα, bα))α∈A of open intervals such that∑

α∈A

|bα − aα| <
ϵ
M

and such that
D fφ′ ⊆

⋃
α∈A

(aα, bα).

If Pα is a partition of [aα, bα] with EP(Pα) = (xα,0, xα,1, . . . , xα,kα) then, by the Mean Value
Theorem, for j ∈ {1, . . . , kα} there exists ξα, j ∈ (xα, j−1, xα, j) such that

φ(xα, j) − φ(xα, j−1) = φ′(ξα, j)(xα, j − xα, j−1).

Then we compute

kα∑
j=1

|φ(xα, j) − φ(xα, j−1)| =
kα∑
j=1

|φ′(ξα, j)||xα, j − xα, j−1|

≤M
kα∑
j=1

|xα, j − xα, j−1| =M(bα − aα).

Therefore, ∑
α∈A

TV(φ|[aα, bα]) ≤M
∑
α∈A

|bα − aα| < ϵ.

This shows that D f is φ-null, and so f is (generalised) Riemann–Stieltjes integrable
with respect to φ. Also note that the hypotheses of the result immediately imply that
fφ′ is Riemann integrable.

Finally, we show the equality of the integrals. Denote by I( fφ′) and I( f , φ) the
Riemann integral of fφ′ and the Riemann–Stieltjes integral of f with respect to φ,
respectively. Let ϵ ∈ R>0 and let δ ∈ R>0 have the property that∣∣∣∣∣∣∣∣

k∑
j=1

f (ξ j)φ′(ξ j)(x j − x j−1) − I( fφ′)

∣∣∣∣∣∣∣∣ < ϵ
2
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and ∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) − I( f , φ)

∣∣∣∣∣∣∣∣ < ϵ
2

for every partition P with |P| < δ (we are denoting EP(P) = (x0, x1, . . . , xk)) and for
every selection (ξ1, . . . , ξk) of P. Then let P be a partition of [a, b] with |P| < δ and
let EP(P) = (x0, x1, . . . , xk). By the Mean Value Theorem, for j ∈ {1, . . . , k} there exists
ξ j ∈ (x j−1, x j) such that

φ(x j) − φ(x j−1) = φ′(ξ j)(x j − x j−1).

Then

|I( fφ′) − I( f , φ)| ≤

∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)φ′(ξ j)(x j − x j−1) − I( fφ′)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
k∑

j=1

f (ξ j)(φ(x j) − φ(x j−1)) − I( f , φ)

∣∣∣∣∣∣∣∣ < ϵ.
Thus I( fφ′) = I( f , φ), as desired. ■

3.5.5 The Fundamental Theorem of Calculus and the Mean Value Theorems

In this section we give an analogue of the Fundamental Theorem of Calculus,
stated as Theorem 3.4.30 for the Riemann integral, for the Riemann–Stieltjes inte-
gral. We also state the integral Mean Value Theorems for the Riemann–Stieltjes in-
tegral; these theorems are, in fact, somewhat more natural in the Riemann–Stieltjes
setting than in the Riemann setting for integration.

3.5.34 Proposition (Fundamental Theorem of Calculus for Riemann–Stieltjes inte-
grals) Let I = [a, b] be a compact interval and let f, φ : [a, b] → R be functions with f
continuous and φ monotonically increasing. If F: [a, b]→ R is defined by

F(x) =
∫ x

a
f(ξ) dφ(ξ),

then F is differentiable at points where φ is differentiable, and, if x is such a point, then
F′(x) = f(x)φ′(x).

Proof For x ∈ [a, b), suppose that φ is differentiable at x. For ϵ ∈ R>0 sufficiently small
we have

F(x + ϵ) − F(x) =
∫ x+ϵ

x
f (ξ) dφ(ξ) = f (ξϵ)(φ(x + ϵ) − φ(x))

for some ξϵ ∈ [x, x + ϵ], by Proposition 3.5.35 and using Proposition 3.5.29. Then

lim
ϵ↓0

F(x + ϵ) − F(x)
ϵ

= lim
ϵ↓0

f (ξϵ)
(φ(x + ϵ) − φ(x))

ϵ
.
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A similar argument shows that, if x ∈ (a, b], then

lim
ϵ↓0

F(x) − F(x − ϵ)
ϵ

= lim
ϵ↓0

f (ξϵ)
φ(x) − φ(x − ϵ)

ϵ

for some ξϵ ∈ [x − ϵ, x]. From Propositions 2.3.23 and 2.3.29, along with the fact that
f is continuous so that limϵ→I f (ξϵ) = f (x), we conclude that F′(x) = f (x)φ′(x). ■

3.5.35 Proposition (First Mean Value Theorem for Riemann–Stieltjes integrals) Let
[a, b] be a compact interval and let f, φ : [a, b]→ R be functions such that f is continuous
and φ is monotonically increasing. Then there exists c ∈ [a, b] such that∫ b

a
f(x) dφ(x) = f(c)(φ(b) − φ(a)).

Proof First note that the integral exists by Corollary 3.5.21. Define

m = inf{ f (x) | x ∈ [a, b]}, M = sup{ f (x) | x ∈ [a, b]}.

Then

m(φ(b) − φ(a)) ≤
∫ b

a
f (x) dφ(x) ≤M(φ(b) − φ(a))

by Exercise 3.5.2. Therefore, there exists µ ∈ [m,M] such that∫ b

a
f (x) = µ(φ(b) − φ(a)).

That there exists c ∈ [a, b] such that f (c) = µ follows from the Intermediate Value
Theorem. ■

3.5.36 Proposition (Second Mean Value Theorem for Riemann–Stieltjes integrals)
Let [a, b] be a compact interval and let f, φ : [a, b]→ R be functions with f monotonically
increasing and with φ continuous. Then there exists c ∈ [a, b] so that∫ b

a
f(x) dφ(x) = f(a)(φ(c) − φ(a)) + f(b)(φ(b) − φ(c)).

Proof Using integration by parts,∫ b

a
f (x) dφ(x) = f (b)φ(b) − f (a)φ(a) −

∫ b

a
φ(x) d f (x).

(This shows, incidentally, that the integral in the statement of the result exists.) By
Proposition 3.5.35 there exists c ∈ [a, b] such that∫ b

a
φ(x) d f (x) = φ(c)( f (b) − f (a)),

and the result immediately follows. ■
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3.5.6 Notes

Pollard [1920] shows that, if every continuous f is Riemann–Stieltjes integrable
with respect to φ, then φ has bounded variation.

Young [1913] states Theorem 3.5.18, but does not give a convincing proof. The
first complete proof seems to be that given by Bliss [1917].

It is tempting to write the Riemann integral as something like

lim
|P|→0

k∑
j=1

f (ξ j)(x j − x j−1),

where it is understood that {x0, x1, . . . , xk} are the endpoints of a partition, and that
{ξ1, . . . , ξk} is a selection from a partition. However, after thinking a little about this
limit, it becomes clear that it is not a limit in any way we have thus far encountered.
However, it is possible, using the language of nets to precisely formulate the
Riemann integral as a limit. One of the advantages of the Darboux characterisation
using upper and lower integrals is that it obviates the need to precisely define such a
limit, as it instead uses the fact that the lower and upper sums increase and decrease,
respectively, monotonically as one decreases the mesh of a partition. However,
the need to reconsider the idea of a limit gets revisited when one turns to the
Riemann–Stieltjes integral. Since only the generalised Riemann–Stieltjes integral
has a valid definition in terms of lower and upper integrals, one cannot employ this
device for the Riemann–Stieltjes integral. Moreover, the subtle differences in the
definitions of the Riemann–Stieltjes integral and the generalised Riemann–Stieltjes
integral points out the need to take care if one wishes to define these integrals as
limits. We do not address this here, but refer to [Hobson 1957] for a formulation of
the Riemann–Stieltjes integral and the generalised Riemann–Stieltjes integrals as
limits using nets.

Exercises

3.5.1 For a compact interval [a, b] and a bounded function φ : [a, b] → R, show
that

∫ b

a
dφ(x) = φ(b) − φ(a).

3.5.2 Let [a, b] be a compact interval and let f , φ : [a, b] → R be functions with f
bounded and φ monotonically increasing. Show that

m(φ(b) − φ(a)) ≤
∫ b

a
f (x) dφ(x) ≤M(φ(b) − φ(a)),

where
m = inf{ f (x) | x ∈ [a, b]}, M = sup{ f (x) | x ∈ [a, b]}.

3.5.3 For a compact interval [a, b], a point c ∈ [a, b], the functions φ1,c, φ2,c : [a, b]→
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R given by

φ1,c(x) =

0, x ∈ [a, c),
1, x ∈ [c, b],

φ2,c(x) =


0, x ∈ [a, c),
1
2 , x = c,
1, x ∈ (c, b],

and for a function f : [a, b]→ R that is continuous at c, show that∫ b

a
f (x) dφ1,c(x) =

∫ b

a
f (x) dφ2,c(x) = f (c).

3.5.4 Take I = [0, 1] and the functions f , φ : [0, 1]→ R defined by

f (x) = φ(x) =

0, x ∈ [0, 1
2 ],

1, x ∈ ( 1
2 , 1].

Show that f is not generalised Riemann–Stieltjes integrable with respect to
φ.
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Section 3.6

Sequences and series of R-valued functions

In this section we present for the first time the important topic of sequences
and series of functions and their convergence. One of the reasons why conver-
gence of sequences of functions is important is that is allows us to classify sets of
functions. The idea of classifying sets of functions according to their possessing
certain properties leads to the general idea of a “function space.” Function spaces
are important to understand when developing any systematic theory dealing with
functions, since sets of general functions are simply too unstructured to allow
much useful to be said. On the other hand, if one restricts the set of functions in the
wrong way (e.g., by asking that they all be continuous), then one can end of with
a framework with unpleasant properties. But this is getting a little ahead of the
issue directly at hand, which is to consider convergence of sequences of functions.

Do I need to read this section? The material in this section is basic, particularly
the concepts of pointwise convergence and uniform convergence and the distinc-
tion between them. However, it is possible to avoid reading this section until the
material becomes necessary, as it will in Chapters IV-3, IV-4, IV-5, and IV-6, for
example. •

3.6.1 Pointwise convergent sequences

The first type of convergence we deal with is probably what a typical first-
year student, at least the rare one who understood convergence for summations of
numbers, would proffer as a good candidate for convergence. As we shall see, it
often leaves something to be desired.

In the discussion of pointwise convergence, one needs no assumptions on the
character of the functions, as one is essentially talking about convergence of num-
bers.

3.6.1 Definition (Pointwise convergence of sequences) Let I ⊆ R be an interval and
let ( f j) j∈Z>0 be a sequence of R-valued functions on I.

(i) The sequence ( f j) j∈Z>0 converges pointwise to a function f : I→ R if, for each
x ∈ I and for each ϵ ∈ R>0, there exists N ∈ Z>0 such that | f (x) − f j(x)| < ϵ
provided that j ≥ N.

(ii) The function f in the preceding part of the definition is the limit function for
the sequence.

(iii) The sequence ( f j) j∈Z>0 is pointwise Cauchy if, for each x ∈ I and for each
ϵ ∈ R>0, there exists N ∈ Z>0 such that | f j(x)− fk(x)| < ϵ provided that j, k ≥ N.

•
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Let us immediately establish the equivalence of pointwise convergent and
pointwise Cauchy sequences. As is clear in the proof of the following result,
the key fact is completeness of R.

3.6.2 Theorem (Pointwise convergent equals pointwise Cauchy) If I ⊆ R is an interval
and if (fj)j∈Z>0 is a sequence of R-valued functions on I then the following statements are
equivalent:

(i) there exists a function f : I→ R such that (fj)j∈Z>0 converges pointwise to f;
(ii) (fj)j∈Z>0 is pointwise Cauchy.

Proof This merely follows from the following facts.
1. If the sequence ( f j(x)) j∈Z>0 converges to f (x) then the sequence is Cauchy by Propo-

sition 2.3.3.
2. If the sequence ( f j(x)) j∈Z>0 is Cauchy then there exists a number f (x) ∈ R such that

lim j→∞ f j(x) = f (x) by Theorem 2.3.5. ■

Based on the preceding theorem we shall switch freely between the notions of
pointwise convergent and pointwise Cauchy sequences of functions.

Pointwise convergence is essentially the most natural form of convergence for
a sequence of functions in that it depends in a trivial way on the basic notion of
convergence of sequences in R. However, as we shall see later in this section, and
in Chapters III-3 and III-6, other forms of convergence of often more useful.

3.6.3 Example (Pointwise convergence) Consider the sequence ( f j) j∈Z>0 of R-valued
functions defined on [0, 1] by

f j(x) =

1, x ∈ [0, 1
j ],

0, x ∈ ( 1
j , 1].

Note that f j(0) = 1 for every j ∈ Z>0, so that the sequence ( f j(0)) j∈Z>0 converges,
trivially, to 1. For any x0 ∈ (0, 1], provided that j > x−1

0 , then f j(x0) = 0. Thus
( f j(x0)) j∈Z>0 converges, as a sequence of real numbers, to 0 for each x0 ∈ (0, 1]. Thus
this sequence converges pointwise, and the limit function is

f (x) =

1, x = 0,
0, x ∈ (0, 1].

If N is the smallest natural number with the property that N > x−1
0 , then we observe,

trivially, that this number does indeed depend on x0. As x0 gets closer and closer
to 0 we have to wait longer and longer in the sequence ( f j(x0)) j∈Z>0 for the arrival
of zero. •

3.6.2 Uniformly convergent sequences

Let us first say what we mean by uniform convergence.
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3.6.4 Definition (Uniform convergence of sequences) Let I ⊆ R be an interval and
let ( f j) j∈Z>0 be a sequence of R-valued functions on I.

(i) The sequence ( f j) j∈Z>0 converges uniformly to a function f : I→ R if, for each
ϵ ∈ R>0, there exists N ∈ Z>0 such that | f (x) − f j(x)| < ϵ for all x ∈ I, provided
that j ≥ N.

(ii) The sequence ( f j) j∈Z>0 is uniformly Cauchy if, for each ϵ ∈ R>0, there exists
N ∈ Z>0 such that | f j(x) − fk(x)| < ϵ for all x ∈ I, provided that j, k ≥ N. •

Let us immediately give the equivalence of the preceding notions of conver-
gence.

3.6.5 Theorem (Uniformly convergent equals uniformly Cauchy) For an interval I ⊆ R
and a sequence of R-valued functions (fj)j∈Z>0 on I the following statements are equivalent:

(i) there exists a function f : I→ R such that (fj)j∈Z>0 converges uniformly to f;
(ii) (fj)j∈Z>0 is uniformly Cauchy.

Proof First suppose that ( f j) j∈Z>0 is uniformly Cauchy. Then, for each x ∈ I the
sequence ( f j(x)) j∈Z>0 is Cauchy and so by Theorem 2.3.5 converges to a number that
we denote by f (x). This defines the function f : I → R to which the sequence ( f j) j∈Z>0

converges pointwise. Let ϵ ∈ R>0 and let N1 ∈ Z>0 have the property that | f j(x)− fk(x)| <
ϵ
2 for j, k ≥ N1 and for each x ∈ I. Now let x ∈ I and let N2 ∈ Z>0 have the property that
| fk(x) − f (x)| < ϵ

2 for k ≥ N2. Then, for j ≥ N1, we compute

| f j(x) − f (x)| ≤ | f j(x) − fk(x)| + | fk(x) − f (x)| < ϵ,

where k ≥ max{N1,N2}, giving the first implication.
Now suppose that, for ϵ ∈ R>0, there exists N ∈ Z>0 such that | f j(x) − f (x)| < ϵ for

all j ≥ N and for all x ∈ I. Then, for ϵ ∈ R>0 let N ∈ Z>0 satisfy | f j(x) − f (x)| < ϵ
2 for

j ≥ N and x ∈ I. Then, for j, k ≥ N and for x ∈ I, we have

| f j(x) − fk(x)| ≤ | f j(x) − f (x)| + | fk(x) − f (x)| < ϵ,

giving the sequence as uniformly Cauchy. ■

Compare this definition to that for pointwise convergence. They sound similar,
but there is a fundamental difference. For pointwise convergence, the sequence
( f j(x)) j∈Z>0 is examined separately for convergence at each value of x. As a con-
sequence of this, the value of N might depend on both ϵ and x. For uniform
convergence, however, we ask that for a given ϵ, the convergence is tested over all
of I. In Figure 3.11 we depict the idea behind uniform convergence. The distinction
between uniform and pointwise convergence is subtle on a first encounter, and it
is sometimes difficult to believe that pointwise convergence is possible without
uniform convergence. However, this is indeed the case, and an example illustrates
this readily.
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f

fj

fk

2ǫ

Figure 3.11 The idea behind uniform convergence

3.6.6 Example (Uniform convergence) On [0, 1] we consider the sequence ofR-valued
functions defined by

f j(x) =


2 jx, x ∈ [0, 1

2 j ],

−2 jx + 2, x ∈ ( 1
2 j ,

1
j ],

0, x ∈ (1
j , 1].

In Figure 3.12 we graph f j for j ∈ {1, 3, 10, 50}. The astute reader will see the point,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.12 A sequence of functions converging pointwise, but
not uniformly

but let’s go through it just to make sure we see how this works.
First of all, we claim that the sequence converges pointwise to the limit function

f (x) = 0, x ∈ [0, 1]. Since f j(0) = 0 for all j ∈ Z>0, obviously the sequence converges
to 0 at x = 0. For x ∈ (0, 1], if N ∈ Z>0 satisfies 1

N < x then we have f j(x) = 0 for
j ≥ N. Thus we do indeed have pointwise convergence.
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We also claim that the sequence does not converge uniformly. Indeed, for any
positive ϵ < 1, we see that f j( 1

2 j ) = 1 > ϵ for every j ∈ Z>0. This prohibits our
asserting the existence of N ∈ Z>0 such that | f j(x) − fk(x)| < ϵ for every x ∈ [0, 1],
provided that j, k ≥ N. Thus convergence is indeed not uniform. •

As we say, this is perhaps subtle, at least until one comes to grips with, after
which point it makes perfect sense. You should not stop thinking about this until
it makes perfect sense. If you overlook this distinction between pointwise and
uniform convergence, you will be missing one of the most important topics in the
theory of frequency representations of signals.

3.6.7 Remark (On “uniformly” again) In Remark 3.1.6 we made some comments on
the notion of what is meant by “uniformly.” Let us reinforce this here. In Defini-
tion 3.1.5 we introduced the notion of uniform continuity, which meant that the
“δ” could be chosen so as to be valid on the entire domain. Here, with uniform
convergence, the idea is that “N” can be chosen to be valid on the entire domain.
Similar uses will occasionally be made of the word “uniformly” throughout the
text, and it is hoped that the meaning should be clear from the context. •

Now we prove an important result concerning uniform convergence. The
significance of this result is perhaps best recognised in a more general setting, such
as that of Theorem III-1.9.1, where the idea of completeness is clear. However, even
in the simple setting of our present discussion, the result is important enough.

3.6.8 Theorem (The uniform limit of bounded, continuous functions is bounded
and continuous) Let I ⊆ R be an interval with (fj)j∈Z>0 a sequence of continuous
bounded functions on I that converge uniformly. Then the limit function is continuous and
bounded. In particular, a uniformly convergent sequence of continuous functions defined
on a compact interval converges to a continuous limit function.

Proof Let x ∈ I define f (x) = lim j→∞ f j(x). This pointwise limit exists since ( f j(x)) j∈Z>0

is a Cauchy sequence in R (why?). We first claim that f is bounded. To see this, for
ϵ ∈ R>0, let N ∈ Z>0 have the property that | f (x) − fN(x)| < ϵ for every x ∈ I. Then

| f (x)| ≤ | f (x) − fN(x)| + | fN(x)| ≤ ϵ + sup{ fN(x) | x ∈ I}.

Since the expression on the right is independent of x, this gives the desired boundedness
of f .

Now we prove that the limit function f is continuous. Since ( f j) j∈Z>0 is uniformly
convergent, for any ϵ ∈ R>0 there exists N ∈ Z>0 such that | f j(x) − f (x)| < ϵ

3 for all x ∈ I
and j ≥ N. Now fix x0 ∈ I, and consider the N ∈ Z>0 just defined. By continuity of
fN, there exists δ ∈ R>0 such that, if x ∈ I satisfies |x − x0| < δ, then | fN(x) − fN(x0)| < ϵ

3 .
Then, for x ∈ I satisfying |x − x0| < δ, we have

| f (x) − f (x0)| = |( f (x) − fN(x)) + ( fN(x) − fN(x0)) + ( fN(x0) − f (x0))|
≤ | f (x) − fN(x)| + | fN(x) − fN(x0)| + | fN(x0) − f (x0)|
< ϵ

3 +
ϵ
3 +

ϵ
3 = ϵ,
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where we have again used the triangle inequality. Since this argument is valid for any
x0 ∈ I, it follows that f is continuous. ■

Note that the hypothesis that the functions be bounded is essential for the
conclusions to hold. As we shall see, the contrapositive of this result is often
helpful. That is, it is useful to remember that if a sequence of continuous functions
defined on a closed bounded interval converges to a discontinuous limit function,
then the convergence is not uniform.

3.6.3 Dominated and bounded convergent sequences

Bounded convergence is a notion that is particularly useful when discussing
convergence of function sequences on noncompact intervals.

3.6.9 Definition (Dominated and bounded convergence of sequences) Let I ⊆ R be
an interval and let ( f j) j∈Z>0 be a sequence ofR-valued functions on I. For a function
g : I→ R>0, the sequence ( f j) j∈Z>0 converges dominated by g if

(i) f j(x) ≤ g(x) for every j ∈ Z>0 and for every x ∈ I and
(ii) if, for each x ∈ I and for each ϵ ∈ R>0, there exists N ∈ Z>0 such that
| f j(x) − fk(x)| < ϵ for j, k ≥ N.

If, moreover, g is a constant function, then a sequence ( f j) j∈Z>0 that converges
dominated by g converges boundedly. •

It is clear that dominated convergence implies pointwise convergence. Indeed,
bounded convergence is merely pointwise convergence with the extra hypothesis
that all functions be bounded by the same positive function.

Let us give some examples that distinguish between the notions of convergence
we have.

3.6.10 Examples (Pointwise, bounded, and uniform convergence)
1. The sequence of functions in Example 3.6.3 converges pointwise, boundedly,

but not uniformly.
2. The sequence of functions in Example 3.6.6 converges pointwise, boundedly,

but not uniformly.
3. Consider now a new sequence ( f j) j∈Z>0 defined on I = [0, 1] by

f j(x) =


2 j2x, x ∈ [0, 1

2 j ],

−2 j2x + 2 j, x ∈ ( 1
2 j ,

1
j ],

0, otherwise.

A few members of the sequence are shown in Figure 3.13. This sequence
converges pointwise to the zero function. Moreover, one can easily check that
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0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

Figure 3.13 A sequence converging pointwise but not boundedly
(shown are f j, j ∈ {1, 5, 10, 20})

the convergence is dominated by the function g : [0, 1]→ R defined by

g(x) =

 1
x , x ∈ (0, 1],
1, x = 0.

The sequence converges neither boundedly nor uniformly.
4. On I = R consider the sequence ( f j) j∈Z>0 defined by f j(x) = x2+ 1

j . This sequence
clearly converges uniformly to f : x 7→ x2. However, it does not converge
boundedly. Of course, the reason is simply that f is itself not bounded. We
shall see that uniform convergence to a bounded function implies bounded
convergence, in a certain sense. •

We have the following relationship between uniform and bounded conver-
gence.

3.6.11 Proposition (Relationship between uniform and bounded convergence) If a
sequence (fj)j∈Z>0 defined on an interval I converges uniformly to a bounded function f, then
there exists N ∈ Z>0 such that the sequence (fN+j)j∈Z>0 converges boundedly to f.

Proof Let M ∈ R>0 have the property that | f (x)| < M
2 for each x ∈ I. Since ( f j) j∈Z>0

converges uniformly to f there exists N ∈ Z>0 such that | f (x) − f j(x)| < M
2 for all x ∈ I

and for j > N. It then follows that

| f j(x)| ≤ | f (x) − f j(x)| + | f (x)| < M

provided that j > N. From this the result follows since pointwise convergence of
( f j) j∈Z>0 to f implies pointwise convergence of ( fN+ j) j∈Z>0 to f . ■
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3.6.4 Series of R-valued functions

In the previous sections we considered the general matter of sequences of
functions. Of course, this discussion carries over to series of functions, by which
we mean expressions of the form S(x) =

∑
∞

j=1 f j(x). This is done in the usual manner
by considering the partial sums. Let us do this formally.

3.6.12 Definition (Convergence of series) Let I ⊆ R be an interval and let ( f j) j∈Z>0 be a
sequence of R-valued functions on I. Let F(x) =

∑
∞

j=1 f j(x) be a series. The corre-
sponding sequence of partial sums is the sequence (Fk)k∈Z>0 of R-valued functions
on I defined by

Sk(x) =
k∑

j=1

f j(x).

Let g : I→ R>0. The series:
(i) converges pointwise if the sequence of partial sums converges pointwise;
(ii) converges uniformly if the sequence of partial sums converges uniformly;
(iii) converges dominated by g if the sequence of partial sums converges domi-

nated by g;
(iv) converges boundedly if the sequence of partial sums converges boundedly. •

A fairly simple extension of pointwise convergence of series is the following
notion which is unique to series (as opposed to sequences).

3.6.13 Definition (Absolute convergence of series) Let I ⊆ R be an interval and let
( f j) j∈Z>0 be a sequence of R-valued functions on I. The sequence ( f j) j∈Z>0 converges
absolutely if, for each x ∈ I and for each ϵ ∈ R>0, there exists N ∈ Z>0 such that
|| f j(x)| − | fk(x)|| < ϵ provided that j, k ≥ N. •

Thus an absolutely convergent sequence is one where, for each x ∈ I, the
sequence (| f j(x)|) j∈Z>0 is Cauchy, and hence convergent. In other words, for each
x ∈ I, the sequence ( f j(x)) j∈Z>0 is absolutely convergent. It is clear, then, that
an absolutely convergent sequence of functions is pointwise convergent. Let us
give some examples that illustrate the difference between pointwise and absolute
convergence.

3.6.14 Examples (Absolute convergence)
1. The sequence of functions of Example 3.6.3 converges absolutely since the

functions all take positive values.

2. For j ∈ Z>0, define f j : [0, 1] → R by f j(x) = (−1) j+1x
j . Then, by Example 2.4.2–3,

the series S(x) =
∑
∞

j=1 f j(x) is absolutely convergent if and only x = 0. But in
Example 2.4.2–3 we showed that the series is pointwise convergent. •
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3.6.5 Some results on uniform convergence of series

At various times in our development, we will find it advantageous to be able to
refer to various standard results on uniform convergence, and we state these here.

Let us first recall the Weierstrass M-test.

3.6.15 Theorem (Weierstrass M-test) If (fj)j∈Z>0 is a sequence of R-valued functions defined
on an interval I ⊆ R and if there exists a sequence of positive constants (Mj)j∈Z>0 such that

(i) |fj(x)| ≤Mj for all x ∈ I and for all j ∈ Z>0 and
(ii)

∑
∞

j=1 Mj < ∞,
then the series

∑
∞

j=1 fj converges uniformly and absolutely.
Proof For ϵ ∈ R>0, there exists N ∈ Z>0 such that, if l ≥ N, we have

|Ml + · · · +Ml+k| < ϵ

for every k ∈ Z>0. Therefore, by the triangle inequality,∣∣∣∣∣∣∣∣
l+k∑
j=l

f j(x)

∣∣∣∣∣∣∣∣ ≤
l+k∑
j=l

| f j(x)| ≤
l+k∑
j=l

M j.

This shows that, for every ϵ ∈ R>0, the tail of the series
∑
∞

j=1 f j can be made smaller
than ϵ, and uniformly in x. This implies uniform and absolute convergence. ■

Next we present Abel’s test.

3.6.16 Theorem (Abel’s test) Let (gj)j∈Z>0 be a sequence of R-valued functions on an interval
I ⊆ R for which gj+1(x) ≤ gj(x) for all j ∈ Z>0 and x ∈ I. Also suppose that there exists
M ∈ R>0 such that gj(x) ≤M for all x ∈ I and j ∈ Z>0. Then, if the series

∑
∞

j=1 fj converges
uniformly on I, then so too does the series

∑
∞

j=1 gjfj.
Proof Denote

Fk(x) =
k∑

j=1

f j(x), Gk(x) =
k∑

j=1

g j(x) f j(x)

as the partial sums. Using Abel’s partial summation formula (Proposition 2.4.16), for
0 < k < l we write

Gl(x) − Gk(x) = (Fl(x) − Fk(x))G1(x) +
l∑

j=k+1

(Fl(x) − F j(x))(g j+1(x) − g j(x)).

An application of the triangle inequality gives

|Gl(x) − Gk(x)| = |(Fl(x) − Fk(x))| |G1(x)| +
l∑

j=k+1

∣∣∣(Fl(x) − F j(x))
∣∣∣ (g j+1(x) − g j(x)),

since |g j+1(x) − g j(x)| = g j+1(x) − g j(x). Now, given ϵ ∈ R>0, let N ∈ Z>0 have the
property that

|Fl(x) − Fk(x)| ≤
ϵ

3M
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for all k, l ≥ N. Then we have

|Gl(x) − Gk(x)| ≤
ϵ
3
+

ϵ
3M

l∑
j=k+1

(g j+1(x) − g j(x))

≤
ϵ
3
+

ϵ
3M

(gk+1(x) − gl+1(x))

≤
ϵ
3
+

ϵ
3M

(|gk+1(x)| + |gl+1(x)|) ≤ ϵ.

Thus the sequence (G j) j∈Z>0 is uniformly Cauchy, and hence uniformly convergent. ■

The final result on general uniform convergence we present is the Dirichlet
test.13

3.6.17 Theorem (Dirichlet’s test) Let (fj)j∈Z>0 and (gj)j∈Z>0 be sequences of R-valued functions
on an interval I and satisfying the following conditions:

(i) there exists M ∈ R>0 such that the partial sums

Fk(x) =
k∑

j=1

fj(x)

satisfy |Fk(x)| ≤M for all k ∈ Z>0 and x ∈ I;
(ii) gj(x) ≥ 0 for all j ∈ Z>0 and x ∈ I;
(iii) gj+1(x) ≤ gj(x) for all j ∈ Z>0 and x ∈ I;
(iv) the sequence (gj)j∈Z>0 converges uniformly to the zero function.

Then the series
∑
∞

j=1 fjgj converges uniformly on I.
Proof We denote

Fk(x) =
k∑

j=1

f j(x), Gk(x) =
k∑

j=1

f j(x)g j(x).

We use again the Abel partial summation formula, Proposition 2.4.16, to write

Gl(x) − Gk(x) = Fl(x)gl+1(x) − Fk(x)gk+1(x) −
l∑

j=k+1

F j(x)(gl+1(x) − gl(x)).

Now we compute

|Gl(x) − Gk(x)| ≤M(gl+1(x) + gk+1(x)) +M
l∑

j=k+1

(g j(x) − g j+1(x))

= 2Mgk+1(x).

13Johann Peter Gustav Lejeune Dirichlet 1805–1859 was born in what is now Germany. His
mathematical work was primarily in the areas of analysis, number theory and mechanics. For
the purposes of these volumes, Dirichlet was gave the first rigorous convergence proof for the
trigonometric series of Fourier. These and related results are presented in Section IV-5.2.
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Now, for ϵ ∈ R>0, if one chooses N ∈ Z>0 such that gk(x) ≤ ϵ
2M for all x ∈ I and k ≥ N,

then it follows that |Gl(x)−Gk(x)| ≤ ϵ for k, l ≥ N and for all x ∈ I. From this we deduce
that the sequence of partial sums (G j) j∈Z>0 is uniformly Cauchy, and hence uniformly
convergent. ■

3.6.6 The Weierstrass Approximation Theorem

In this section we prove an important result in analysis. The theorem is one
on approximating continuous functions with a certain class of easily understood
functions. The idea, then, is that if one say something about the class of easily
understood functions, it may be readily also ascribed to continuous functions. Let
us first describe the class of functions we wish to use to approximate continuous
functions.

3.6.18 Definition (Polynomial functions) A function P : R→ R is a polynomial function
if

P(x) = akxk + · · · + a1x + a0

for some a0, a1, . . . , ak ∈ R. The degree of the polynomial function P is the largest
j ∈ {0, 1, . . . , k} for which a j , 0. •

We shall have a great deal to say about polynomials in an algebraic setting
in Section 4.4. Here we will only think about the most elementary features of
polynomials.

Our constructions are based on a special sort of polynomial. We recall the
notation (

m
k

)
≜

m!
k!(m − k)!

which are the binomial coefficients.

3.6.19 Definition (Bernstein polynomial, Bernstein approximation) For m ∈ Z≥0 and
k ∈ {0, 1, . . . ,m} the polynomial function

Pm
k (x) =

(
m
k

)
xk(1 − x)m−k

is a Bernstein polynomial. For a continuous function f : [a, b] → R the mth Bern-
stein approximation of f is the function B[a,b]

m f : [a, b]→ R defined by

B[a,b]
m f (x) =

m∑
k=0

f (a + k
m (b − a))Pm

k (x−a
b−a ). •

In Figure 3.14 we depict some of the Bernstein polynomials. The way to imagine
the point of these functions is as follows. The polynomial Pm

k on the interval [0, 1]
has a single maximum at k

m . By letting m vary overZ≥0 and letting k ∈ {0, 1, . . . ,m},
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Figure 3.14 The Bernstein polynomials P1
0 and P1
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the points of the form k
m will get arbitrarily close to any point in [0, 1]. The function

f ( k
m )Pm

k thus has a maximum at k
m and the behaviour of f away from k

m is thus
(sort of) attenuated. In fact, for large m the behaviour of the function Pm

k becomes
increasingly “focussed” at k

m . Thus, as m gets large, the function f ( k
m )Pm

k starts
looking like the function taking the value f ( k

m ) at k
m and zero elsewhere. Now,

using the identity
m∑

k=0

(
m
k

)
xk(1 − x)m = 1 (3.21)

which can be derived using the Binomial Theorem (see Exercise 2.2.1), this means
that for large m, B[0,1]

m f ( k
m ) approaches the value f ( k

m ). This is the idea of the Bernstein
approximation.

That being said, let us prove some basic facts about Bernstein approximations.
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3.6.20 Lemma (Properties of Bernstein approximations) For continuous functions
f,g: [a, b]→ R, for α ∈ R, and for m ∈ Z≥0, the following statements hold:

(i) B[a,b]
m (f + g) = B[a,b]

m f + B[a,b]
m g;

(ii) B[a,b]
m (αf) = αB[a,b]

m f;
(iii) B[a,b]

m f(x) ≥ 0 for all x ∈ [a, b] if f(x) ≥ 0 for all x ∈ [a, b];
(iv) B[a,b]

m f(x) ≤ B[a,b]
m g(x) for all x ∈ [a, b] if f(x) ≤ g(x) for all x ∈ [a, b];

(v) |B[a,b]
m f(x)| ≤ B[a,b]

m g(x) for all x ∈ [a, b] if |f(x)| ≤ g(x) for all x ∈ [a, b];
(vi) for k,m ∈ Z≥0 we have

(B[a,b]
m+k)(k)(x) =

(m + k)!
m!

1
(b − a)k

m∑
j=0

∆k
hf(a + j

k+m (b − a))Pm
j ( x−a

b−a ),

where h = 1
k+m and where ∆k

hf : [a, b]→ R is defined by

∆k
hf(x) =

k∑
j=0

(−1)k−j

(
k
j

)
f(x + jh)

(vii) if we define f0, f1, f2 : [0, 1]→ R by

f0(x) = 1, f1(x) = x, f2(x) = x2, x ∈ [0, 1],

then
B[0,1]

m f0(x) = 1, B[0,1]
m f1(x) = x, B[0,1]

m f2(x) = x2 + 1
m (x − x2)

for x ∈ [0, 1] and m ∈ Z≥0.
Proof Let f̂ : [0, 1]→ R be defined by f̂ (y) = f (a + y

( b − a)). One can verify that if the

lemma holds for f̂ then it immediately follows for f , and so without loss of generality
we suppose that [a, b] = [0, 1]. We also abbreviate B[0,1]

m = Bm.
(i)–(iv) These assertions follow directly from the definition of the Bernstein approx-

imations.
(v) If | f (x)| ≤ g(x) for all x ∈ [0, 1] then

− f (x) ≤ g(x) ≤ f (x), x ∈ [0, 1]
=⇒ − Bm f (x) ≤ Bmg(x) ≤ Bm f (x), x ∈ [0, 1],

using the fourth assertion.
(vi) Note that

Bm+k(x) =
m+k∑
j=0

f ( j
m+k )

(
m + k

j

)
x j(1 − x)m+k− j.

Let g j(x) = x j and h j(x) = (1 − x)m+k− j and compute

g(r)
j (x) =

 j!
( j−r)! x

j−r, j − r ≥ 0,

0, j − r < 0
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and

h(k−r)
j (x) =

(−1)k−r (m+k− j)!
(m+r− j)! (1 − x)m+r− j, j − r ≤ m,

0, j − r > m.

By Proposition 3.2.11,

(g jh j)(k)(x) =
k∑

r=0

(
k
r

)
g(r)

j (x)h(k−r)
j (x).

Also note that(
m + k

j

)
j!

( j − r)!
(m + k − j)!
(m + r − j)!

=
(m + k)!

j!(m + k − j)!
j!

( j − r)!
(m + k − j)!
(m + r − j)!

=
(m + k)!

m!
m!

(m − ( j − r))!( j − r)!
=

(m + k)!
m!

(
m

j − r

)
.

Putting this all together we have

B(k)
m+k(x) =

m+k∑
j=0

k∑
r=0

f ( j
m+k )

(
m + k

j

)(
k
r

)
g(r)

j (x)h(k−r)
j (x)

=

k∑
r=0

m+k−r∑
l=−r

f ( l+r
m+k )

(
m + k
l + r

)(
k
r

)
g(r)

l+r(x)h(k−r)
l+r (x)

=

k∑
r=0

m∑
l=0

(−1)k−r
(
k
r

)
f ( l+r

m+k )
(
m
l

)
xl(1 − x)n−l,

where we make the change of index (l, r) = ( j − r, r) in the second step and note that
the derivatives of gl+r and hl+r vanish when l < 0 and l > m. Let h = 1

m+k . Since

∆k
h f ( j

m+k ) =
k∑

r=0

(−1)k−r
(
k
r

)
f ( j+r

m+k )

this part of the result follows.
(vii) It follows from (3.21) that Bm f0(x) = 1 for every x ∈ [0, 1]. We also compute

Bm f0(x) =
m∑

k=0

k
m

m!
m!(m − k)!

xk(1 − x)m−k

= x
m−1∑
k=0

(m − 1)!
(k − 1)!((m − 1) − (k − 1))!

xk(1 − x)m−1−k

= x(x + (1 − x))m−1 = x,
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where we use the Binomial Theorem. To compute Bm f2 we first compute

k2

m2
m!

k!(m − k)!
=

(k − 1) + 1
m

(m − 1)!
(k − 1)!(m − k)!

=
(k − 1)(n − 1)

n(n − 1)
(m − 1)!

(k − 1)!(m − k)!
+

1
m

(m − 1)!
(k − 1)!(m − k)!

=
m − 1

m

(
n − 2
k − 2

)
+

1
m

(
n − 1
k − 1

)
,

where we adopt the convention that
(

j
l

)
= 0 if either j or l are zero. We now compute

Bm f2(x) =
m∑

k=0

k2

m2

(
m
k

)
xk(1 − x)m−k

=
m − 1

m

m∑
k=2

(
m − 2
k − 2

)
xk(1 − x)m−k +

1
m

m∑
k=1

(
m − 1
k − 1

)
xk(1 − x)m−k

=
m − 1

m
x2(x + (1 − x))m−2 +

1
m

x(x + (1 − x))m−1 =
m − 1

m
x2 +

1
m

x,

as desired. ■

Now, heuristics aside, we state the main result in this section, a consequence
of which is that every continuously function on a compact interval can be approx-
imated arbitrarily well (in the sense that the maximum difference can be made as
small as desired) by a polynomial function.

3.6.21 Theorem (Weierstrass Approximation Theorem) Consider a compact interval
[a, b] ⊆ R and let f : [a, b] → R be continuous. Then the sequence (B[a,b]

m f)m∈Z>0 con-
verges uniformly to f on [a, b].

Proof It is evident (why?) that we can take [a, b] = [0, 1] and then let us denote
Bm f = B[0,1]

m f for simplicity.
Let ϵ ∈ R>0. Since f is uniformly continuous by Theorem 3.1.24 there exists

δ ∈ R>0 such that | f (x) − f (y)| ≤ ϵ
2 whenever |x − y| ≤ δ. Let

M = sup{| f (x)| | x ∈ [0, 1]},

noting that M < ∞ by Theorem 3.1.23. Note then that if |x − y| ≤ δ then

| f (x) − f (y)| ≤ ϵ
2 ≤

ϵ
2 +

2M
δ2 (x − y)2.

If |x − y| > δ then

| f (x) − f (y)| ≤ 2M ≤ 2M
(x−y
δ

)2
≤

ϵ
2 +

2M
δ2 (x − y)2.

That is to say, for every x, y ∈ [0, 1],

| f (x) − f (y)| ≤ ϵ
2 +

2M
δ2 (x − y)2. (3.22)
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Now, fix x0 ∈ [0, 1] and compute, using the lemma above (along with the notation
f0, f1, and f2 introduced in the lemma) and (3.22),

|Bm f (x) − f (x0)| = |Bm( f − f (x0) f0)(x)| ≤ Bm
(
ϵ
2 f0 + 2M

δ2 ( f1 − x0 f0)2
)

(x)

= ϵ
2 +

2M
δ2 (x2 + 1

m (x − x2) − 2x0x + x2
0)

= ϵ
2 +

2M
δ2 (x − x0)2 + 2M

mδ2 (x − x2),

this holding for every m ∈ Z≥0. Now evaluate at x = x0 to get

|Bm f (x0) − f (x0)| ≤ ϵ
2 +

2M
mδ2 (x0 − x2

0) ≤ ϵ
2 +

M
2mδ2 ,

using the fact that x0 − x2
0 ≤

1
4 for x0 ∈ [0, 1]. Therefore, if N ∈ Z>0 is sufficiently large

that M
2mδ2 <

ϵ
2 for m ≥ N we have

|Bm f (x0) − f (x0)| < ϵ,

and this holds for every x0 ∈ [0, 1], giving us the desired uniform convergence. ■

For fun, let us illustrate the Bernstein approximations in an example.

3.6.22 Example (Bernstein approximation) Let us consider f : [0, 1]→ R defined by

f (x) =

x, x ∈ [0, 1
2 ],

1 − x, x ∈ ( 1
2 , 1].

In Figure 3.15 we show some Bernstein approximations to f . Note that the con-

0.0 0.2 0.4 0.6 0.8 1.0
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0.1

0.2
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0.4
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Figure 3.15 Bernstein approximations for m ∈ {2, 50, 100}

vergence is rather poor. One might wish to contrast the 100th approximation in
Figure 3.15 with the 10 approximation of the same function using Fourier series
depicted in Figure IV-5.11. (If you have no clue what a Fourier series is, that is fine.
We will get there in time.) •

We shall revisit the Weierstrass Approximation Theorem in Sections II-1.7.2.



3.6 Sequences and series of R-valued functions 361

3.6.7 Swapping limits with other operations

In this section we give some basic result concerning the swapping of various
function operations with limits. The first result we consider pertains to integration.
When we consider Lebesgue integration in Chapter III-2 we shall see that there are
more powerful limit theorems available. Indeed, the raison d’etre for the Lebesgue
integral is just these limit theorems, as these are not true for the Riemann integral.
However, for the moment these theorems have value in that they apply in at least
some cases, and indicate what is true for the Riemann integral.

3.6.23 Theorem (Uniform limits commute with Riemann integration) Let I = [a, b] be
a compact interval and let (fj)j∈Z>0 be a sequence of continuous R-valued functions defined
on [a, b] that converge uniformly to f. Then

lim
j→∞

∫ b

a
fj(x) dx =

∫ b

a
f(x) dx.

Proof As the functions ( f j) j∈Z>0 are continuous and the convergence to f is uniform, f
must be continuous by Theorem 3.6.8. Since the interval [a, b] is compact, the functions
f and f j, j ∈ Z>0, are also bounded. Therefore, by Proposition 3.4.25,∣∣∣∣∣∣

∫ b

a
f (x) dx

∣∣∣∣∣∣ ≤M(b − a)

where M = sup{| f (x)| | x ∈ [a, b]}. Let ϵ ∈ R>0 and select N ∈ Z>0 such that | f j(x)− f (x)| <
ϵ

b−a for all x ∈ [a, b], provided that j ≥ N. Then∣∣∣∣∣∣
∫ b

a
f j(x) dx −

∫ b

a
f (x) dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ b

a
( f j(x) − f (x)) dx

∣∣∣∣∣∣
≤

ϵ
b − a

(b − a) = ϵ.

This is the desired result. ■

Next we state a result that tells us when we may switch limits and differentia-
tion.

3.6.24 Theorem (Uniform limits commute with differentiation) Let I = [a, b] be a compact
interval and let (fj)j∈Z>0 be a sequence continuously differentiable R-valued functions on
[a, b], and suppose that the sequence converges pointwise to f. Also suppose that the
sequence (f′j )j∈Z>0 of derivatives converges uniformly to g. Then f is differentiable and
f′ = g.

Proof Our hypotheses ensure that we may write, for each j ∈ Z>0,

f j(x) = f j(a) +
∫ x

a
f ′j (ξ) dξ.
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for each x ∈ [a, b]. By Theorem 3.6.23, we may interchange the limit as j→∞with the
integral, and so we get

f (t) = f (a) +
∫ x

a
g(ξ) dξ.

Since g is continuous, being the uniform limit of continuous functions (by Theo-
rem 3.6.8), the Fundamental Theorem of Calculus ensures that f ′ = g. ■

The next result in this section has a somewhat different character than the
rest. It actually says that it is possible to differentiate a sequence of monotonically
increasing functions term-by-term, except on a set of measure zero. The interesting
thing here is that only pointwise convergence is needed.

3.6.25 Theorem (Termwise differentiation of sequences of monotonic functions is
a.e. valid) Let I = [a, b] be a compact interval, let (fj)j∈Z>0 be a sequence of monotonically
increasing functions such that the series S =

∑
∞

j=1 fj(x) converges pointwise to a function f.
Then there exists a set Z ⊆ I such that

(i) Z has measure zero and
(ii) f′(x) =

∑
∞

j=1 f′j (x) for all x ∈ I \ Z.

Proof Note that the limit function f is monotonically increasing. Denote by Z1 ⊆ [a, b]
the set of points for which all of the functions f and f j, j ∈ Z>0, do not possess
derivatives. Note that by Theorem 3.2.26 it follows that Z1 is a countable union of sets
of measure zero. Therefore, by Exercise 2.5.11, Z1 has measure zero. Now let x ∈ I \Z1
and let ϵ ∈ R>0 be sufficiently small that x + ϵ ∈ [a, b]. Then

f (x + ϵ) − f (x)
ϵ

=

∞∑
j=1

f j(x + ϵ) − f j(x)
ϵ

.

Since f j(x + ϵ) − f j(x) ≥ 0, for any k ∈ Z>0 we have

f (x + ϵ) − f (x)
ϵ

≥

k∑
j=1

f j(x + ϵ) − f j(x)
ϵ

,

which then gives

f ′(x) ≥
k∑

j=1

f ′j (x).

The sequence of partial sums for the series
∑
∞

j=1 f ′j (x) is therefore bounded above.
Moreover, by Theorem 3.2.26, it is increasing. Therefore, by Theorem 2.3.8 the series∑
∞

j=1 f ′j (x) converges for every x ∈ I \ Z1.
Let us now suppose that f (a) = 0 and f j(a) = 0, j ∈ Z>0. This can be done without

loss of generality by replacing f with f − f (a) and f j with f j − f j(a), j ∈ Z>0. With this
assumption, for each x ∈ [a, b] and k ∈ Z>0, we have f (x) − Sk(x) ≥ 0 where (Sk)k∈Z>0

is the sequence of partial sums for S. Choose a subsequence (Skl)l∈Z>0 of (Sk)k∈Z>0
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having the property that 0 ≤ f (b) − Skl(b) ≤ 2−l, this being possible since the sequence
(Sk(b))k∈Z>0 converges to f (b). Note that

f (x) − Skl(x) =
∞∑

j=kl+1

f j(x),

meaning that f−Skl is a monotonically increasing function. Therefore, 0 ≤ f (x)−Skl(x) ≤
2−l for all x ∈ [a, b]. This shows that the series

∑
∞

l=1( f (x) − Skl(x)) is a pointwise
convergent sequence of monotonically increasing functions. Let g denote the limit
function, and let Z2 ⊆ [a, b] be the set of points where all of the functions g and f − Skl ,
l ∈ Z>0, do not possess derivatives, noting that this set is, in the same manner as
was Z1, a set of measure zero. The argument above applies again to show that, for
x ∈ I \ Z2, the series

∑
∞

l=1( f ′(x) − S′kl
(x)) converges. Thus, for x ∈ I \ Z2, it follows

that liml→∞( f ′(x) − S′kl
(x)) = 0. Now, for x ∈ I \ Z1, we know that (S′k(x))k∈Z>0 is a

monotonically increasing sequence. Therefore, for x ∈ I \ (Z1 ∪ Z2), the sequence
( f ′(x)−S′k(x))k∈Z>0 must converge to zero. This gives the result by taking Z = Z1∪Z2.■

As a final result, we indicate how convexity interacts with pointwise limits.

3.6.26 Theorem (The pointwise limit of convex functions is convex) If I ⊆ R is convex
and if (fj)j∈Z>0 is a sequence of convex functions converging pointwise to f : I→ R, then f
is convex.

Proof Let x1, x2 ∈ I and let s ∈ [0, 1]. Then

f ((1 − s)x1 + sx2) = lim
j→∞

f j((1 − s)x1 + sx2) ≤ lim
j→∞

((1 − s) f j(x1) + s f j(x2))

= (1 − s) lim
j→∞

f j(x1) + s lim
j→∞

f j(x2)

= (1 − s) f (x1) + s f (x2),

where we have used Proposition 2.3.23. ■

3.6.8 Notes

There are many proofs available of the Weierstrass Approximation Theorem,
and the rather explicit proof we give is due to Bernstein [1912].

Exercises

3.6.1 Consider the sequence of functions { f j} j∈Z>0 defined on the interval [0, 1] by
f j(x) = x1/2 j . Thus

f1(x) =
√

x, f2(x) =
√

f1(x) =
√
√

x, . . . , f j(x) =
√

f j−1(x) = x1/2 j
, . . .

(a) Sketch the graph of f j for j ∈ {1, 2, 3}.
(b) Does the sequence of functions ( f j) j∈Z>0 converge pointwise? If so, what

is the limit function?
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(c) Is the convergence of the sequence of functions ( f j) j∈Z>0 uniform?
(d) Is it true that

lim
j→∞

∫ 1

0
f j(x) dx =

∫ 1

0
lim
j→∞

f j(x) dx?

3.6.2 In each of the following exercises, you will be given a sequence of functions
defined on the interval [0, 1]. In each case, answer the following questions.
1. Sketch the first few functions in the sequence.
2. Does the sequence converge pointwise? If so, what is the limit function?
3. Does the sequence converge uniformly?
The sequences are as follows:
(a) ( f j(x) = (x − 1

j2 )2) j∈Z>0 ;

(b) ( f j(x) = x − x j) j∈Z>0 .
3.6.3 Let I ⊆ R be an interval and let ( f j) j∈Z>0 be a sequence of locally bounded

functions on I converging pointwise to f : I → R. Show that there exists a
function g : I→ R such that ( f j) j∈Z>0 converges dominated by g.
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Section 3.7

R-power series

In Section 3.6.4 we considered the convergence of general series of functions.
In this section we consider special series of functions where the functions in the
series are given by f j(x) = a jx j, j ∈ Z≥0. This class of series is important in a
surprising number of ways. For example, as we shall see in Section 3.7.4, one
can associate a power series to every function of class C∞, and this power series
sometimes approximates the function in some sense.

Do I need to read this section? The material in this section is of a somewhat
technical character, and so can probably be skipped until it is needed. One of the
main uses will occur in Section II-3.3 when we explore the intimate relationship
between power series and analytic functions in complex analysis. There will also be
occasions throughout these volumes when it is convenient to use Taylor’s Theorem.

•

3.7.1 R-formal power series

We begin with a discussion that is less analytical, and more algebraic in flavour.
This discussion serves to separate the simpler algebraic features of power series
from the more technical analytical features. A purely logical presentation of this
material would certain present the material Section 4.4 before our present discus-
sion. However, we have decided to make a small sacrifice in logic for the sake of
organisation. Readers wishing to preserve the logical structure may wish to look
ahead at this point to Section 4.4.

Let us first give a formal definition of what we mean by aR-formal power series,
while at the same time defining the operations of addition and multiplication in
this set.

3.7.1 Definition (R-formal power series) AR-formal power series is a sequence (a j) j∈Z≥0

in R. If A = (a j) j∈Z≥0 and B = (b j) j∈Z≥0 are two R-formal power series, then define
R-formal power series A + B and A · B by

A + B = (a j + b j) j∈Z≥0 , A · B =

 k∑
j=0

a jbk− j


k∈Z≥0

,

which are the sum and product of A and B, respectively. If α ∈ R then αA denotes
the R-formal power series (αa j) j∈Z≥0 which is the product of α and A. •

In order to distinguish between multiplication of two R-formal power series
and multiplication of a R-formal power series by a real number, we shall call the
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latter scalar multiplication. This is reflective of the idea of a vector space that we
introduce in Section 4.5. Note that the product of R-formal power series is very
much related to the Cauchy product of series in Definition 2.4.29. As we shall see,
this is not surprising given the natural manner of thinking about R-formal power
series.

Our definition of R-formal power series is meant to be rigorous, but suffers
from being at the same time obtuse. A less obtuse working definition is possible,
and requires the following notion.

3.7.2 Definition (Indeterminate) The indeterminate in the set ofR-formal power series
is the element (a j) j∈Z≥0 defined by

a j =

1, j = 1,
0, otherwise.

If the indeterminate is denoted by the symbol ξ, then R[[ξ]] denotes the set of
R-formal power series in indeterminate ξ. •

Now let us see what are the notational implications of introducing the indeter-
minate into the picture. A direct application of the definition of the product shows
that, if the indeterminate is denoted by ξ and if k ∈ Z>0, then ξk (the k-fold product
of ξ with itself) is the R-formal power series (a j) j∈Z≥0 given by

a j =

1, j = k,
0, otherwise.

Let us adopt the convention that ξ0 denotes the R-formal power series (a j) j∈Z≥0

defined by

a j =

1, j = 0,
0, j ∈ Z>0.

Now let A = (a j) j∈Z≥0 be an arbitrary R-formal power series and, for k ∈ Z≥0, let Ak

denote the R-formal power series (ak, j) j∈Z≥0 defined by

ak, j =

a j, j ≤ k,
0, j > k.

Note that, using the definition of

Ak = (a0, a1, . . . , ak, 0, . . .)
= (a0, 0, . . . , 0, 0, . . .) + (0, a1, . . . , 0, 0, . . .) + · · · + (0, 0, . . . , ak, 0, . . .)

= a0ξ
1 + aaξ

1 + · · · + akξ
k.

We would now like to write A = limk→∞Ak, but the problem is that we do not
really know what the limit means in this case. It certainly does not mean the limit
thinking of the sum as one of real numbers; this limit will generally not exist. Thus
we define what the limit means as follows.
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3.7.3 Definition (Limit of R-formal power series) Let (Ak = (ak, j) j∈Z≥0)k∈Z≥0 be a se-
quence of R-formal power series and let A = (a j) j∈Z≥0 be a R-formal power series.
The sequence (Ak)k∈Z≥0 converges to A, and we write A = limk→∞Ak, if, for each
j ∈ Z≥0, there exists N j ∈ Z≥0 such that ak, j = a j for k ≥ N j. •

With this notion of convergence in the set of R-formal power series we can
prove what we want.

3.7.4 Proposition (R-formal power series as limits of finite sums) If A = (aj)j∈Z≥0 is a
R-formal power series, then

A = lim
k→∞

k∑
j=0

ajξ
j.

Proof Let Ak =
∑k

j=0 a jξ j and denote Ak = (ak, j) j∈Z≥0 . For j ∈ Z≥0 note that ak, j = a j for
k ≥ j, which gives the condition that (Ak)k∈Z≥0 converge to A by taking N j = j in the
definition. ■

The upshot of the preceding exceedingly ponderous discussion is that we can
write the R-formal power (a j) j∈Z≥0 as

∞∑
j=0

a jξ
j,

and all of the symbols in this expression make exact sense. Moreover, with this
representation of a R-formal power series, addition is merely the addition of the
coefficients of like powers of the indeterminate. Multiplication is to be interpreted
as follows. Suppose that one wishes to find the coefficient of ξk in the product A ·B.
One does this by writing, in indeterminate form, the first k + 1 terms in A and B,
and multiplying them using the usual rules for multiplication of finite sums in R.
Thus we write

Ak =

k∑
j=0

a jξ
j, Bk =

k∑
j=0

b jξ
j,

and compute

Ak · Bk =

2k∑
l=0

l∑
j=0

a jbl− jξ
j

(this formula is easily proved, cf. Theorem 4.4.2). One then can see that the
coefficient of ξk in this expression is exactly the (k + 1)st term in the sequence A · B.

Let us present the basic properties of the operations of addition and multiplica-
tion of R-formal power series. To do this, we let 0R[[ξ]] denote the R-formal power
series (0) j∈Z≥0 and we let 1R[[ξ]] denote the R-formal power series (a j) j∈Z≥0 given by

a j =

1, j = 0,
0, j ∈ Z>0.
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If A = (a j) j∈Z≥0 is aR-formal power series, then we let−A denote theR-formal power
series (−a j) j∈Z≥0 . If a0 , 0 then we define the R-formal power series A−1 = (b j) j∈Z≥0

by inductively defining

b0 =
1
a0
,

b1 =
1
a0

(−a1b0),
...

bk = −
1
a0

k∑
j=1

a jbk− j,

...

With these definitions, the following result is straightforward to prove, and follows
from our discussion of polynomials in Section 4.4.

3.7.5 Proposition (Properties of addition and multiplication of R-formal power se-
ries) Let A = (aj)j∈Z≥0 , B = (bj)j∈Z≥0 , and C = (cj)j∈Z≥0 beR-formal power series. Then the
following statements hold:

(i) A + B = B +A (commutativity of addition);
(ii) (A + B) + C = A + (B + C) (associativity of addition);
(iii) A + 0R[[ξ]] = A (additive identity);
(iv) A + (−A) = 0R[[ξ]] (additive inverse);
(v) A · B = B ·A (commutativity of multiplication);
(vi) (A · B) · C = A · (B · C) (associativity of multiplication);
(vii) A · (B + C) = A · B +A · C (left distributivity);
(viii) (A + B) · C = A · C + B · C (right distributivity);
(ix) A · 1R[[ξ]] = A (multiplicative identity);
(x) if a0 , 0 then A ·A−1 = 1R[[ξ]] (multiplicative inverse).

Proof With the exception of the multiplicative inverse, these properties all follow
in the same manner as for polynomials as proved in Theorem 4.4.2. The formula
for the multiplicative inverse arises from writing down the elements in the equation
A · A−1 = 1R[[ξ]], and solving recursively for the unknown elements of the sequence
A−1, starting with the zeroth term. ■

The preceding properties of addition and scalar multiplication can be sum-
marised in the language of Section 4.2 by saying that R[[ξ]] is a ring. Note that
the multiplicative inverse of a formal R-power series does not always exist, even
when A , 0R[[ξ]].

For multiplication of a R-formal power series by a real number, we have the
following properties.
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3.7.6 Proposition (Properties of scalar multiplication of R-formal power series) Let
A = (aj)j∈Z≥0 and B = (bj)j∈Z≥0 be R-formal power series and let α, β ∈ R. Then the
following statements hold:

(i) α(βA) = (αβ)A (associativity);
(ii) 1 A = A;
(iii) α(A + B) = αA + αB (distributivity);
(iv) (α + β)A = αA + βB (distributivity again).

Proof These all follow directly from the definition of scalar multiplication and the
properties of addition and multiplication in R as given in Proposition 2.2.4. ■

According to the terminology of Section 4.5, the preceding result, along with
the properties of addition from Proposition 3.7.5, ensure that R[[ξ]] is a R-vector
space. With the additional structure given by the product, we further see that
R[[ξ]] is, in fact, a commutative and associative R-algebra.

In terms of our definition of convergence inR[[ξ]], one has the following prop-
erties of addition, multiplication, and scalar multiplication.

3.7.7 Proposition (Sums and products, and convergence in R[[ξ]]) Let (Ak =
(ak,j)j∈Z≥0)k∈Z>0 and (Bk = (bk,j)j∈Z≥0)k∈Z>0 be sequences of R-formal power series con-
verging to the R-formal power series A = (aj)j∈Z≥0 and B = (bj)j∈Z≥0 , respectively, and let
α ∈ R. Then the following statements hold:

(i) limk→∞(Ak + Bk) = A + B;
(ii) limk→∞(Ak · Bk) = A · B;
(iii) limk→∞(αAk) = αA.

Proof The first two conclusions follow from the definition of convergence ofR-formal
power series, noting that the operations of addition and multiplication have the prop-
erty that, if two R-formal power series agree for sufficiently large values of the index,
then so too do their sum and product. We leave the elementary, albeit slightly tedious,
details to the reader. The final assertion follows trivially from the definition of conver-
gence. ■

The first two parts of the previous result say that addition and multiplication are
continuous, where continuity is as defined according to the notion of convergence
in Definition 3.7.3.

One can also perform calculus for R-formal power series without having to
worry about the analytical problems concerning limits in R. To do so, we simply
“pretend” that an element of R[[ξ]] can be differentiated and integrated term-
by-term with respect to ξ. After one is finished pretending, then one makes the
following definition.
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3.7.8 Definition (Differentiation and integration of R-formal power series) Let A =
(a j) j∈Z≥0 be a R-formal power series.

(i) The derivative of A is the R-formal power series A′ = (b j) j∈Z≥0 defined by
b j = ( j + 1)a j+1, j ∈ Z≥0.

(ii) The integral of A is the R-formal power series
∫

A = (b j) j∈Z≥0 defined by

b j =

0, j = 0,
a j−1

j , j ∈ Z>0.
•

In terms of the indeterminate representation of a R-formal power series, we
have the following representation. If A = (a j) j∈Z≥0 is a R-formal power series, then

A′ =

 ∞∑
j=0

a jξ
j


′

=

∞∑
j=1

ja jξ
j−1 =

∞∑
j=0

( j + 1)a j+1ξ
j.

This is simply termwise differentiation with respect to the indeterminate. Note that
in this case we can ignore the matter of whether it is valid to switch the sum and
the derivative since we are not actually talking about functions. Similar statements
hold, of course, for the integral of a R-formal power series.

For this derivative operation, one has the usual rules.

3.7.9 Proposition (Properties of differentiation and integration of R-formal power
series) Let A = (aj)j∈Z≥0 and B = (bj)j∈Z≥0 be R-formal power series and let α ∈ R. Then
the following statements hold:

(i) (A + B)′ = A′ + B′;
(ii) (A · B)′ = A′ · B +A · B′;
(iii) (αA)′ = αA′;
(iv)

∫
(A + B) =

∫
A +

∫
B;

(v)
∫

(αA) = α
∫

A.
Proof The second statement is the only possibly nontrivial one, so it is the only thing
we will prove. We note that

A · B =
∞∑

k=0

 k∑
j=0

a jbk− j

 ξk,

so that

(A · B)′ =
∞∑

k=1

 k∑
j=0

a jbk− j

 kξk−1

=

∞∑
k=0

 k∑
j=0

( j + 1)a j+1bk− j

 ξk +

∞∑
k=0

 k∑
j=0

( j + 1)ak− jb j+1

 ξk

= A′ · B + A · B′,

as desired. ■
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The derivative also commutes with limits, as one would hope to be the case.

3.7.10 Proposition (Differentiation and integration, and convergence in R[[ξ]]) If
(Ak = (ak,j)j∈Z≥0)k∈Z>0 is a sequence in R[[ξ]] converging to A, then A′ = limk→∞A′k
and

∫
A = limk→∞

∫
Ak.

Proof This is a more or less obvious result, given the definition of convergence of
R-formal power series. ■

Now that we have finished playing algebraic games, we turn to the matter of
when a formal power series actually represents a function.

3.7.2 R-convergent power series

The one thing that we did not do in the preceding section is think of R-formal
power series as functions. This is because not all R-formal power series can be
thought of as functions. For example, if (a j) j∈Z≥0 is the R-formal power series
defined by a j = j!, j ∈ Z≥0, then the series

∑
∞

j=1 a jx j diverges for any x ∈ R \ {0}. In
this section we address this matter by thinking of power series as being series of
functions, just as we discussed in Section 3.6.4.

First we classifyR-formal power series according to the convergence properties
possessed by the corresponding series of functions.

3.7.11 Proposition (Classification ofR-formal power series by convergence) For each
R-formal power series (aj)j∈Z≥0 , exactly one of the following statements holds:

(i) the series
∑
∞

j=0 ajxj converges absolutely for all x ∈ R;
(ii) the series

∑
∞

j=0 ajxj diverges for all x ∈ R \ {0};
(iii) there exists R ∈ R>0 such that the series

∑
∞

j=0 ajxj converges absolutely for all x ∈
B(R, 0), and diverges for all x ∈ R \ B(R, 0).

Proof First let us prove a lemma.

1 Lemma If the series
∑
∞

j=0 ajx
j
0 converges for some x0 ∈ R, then the series

∑
∞

j=0 ajxj converges
absolutely for x ∈ B(|x0|, 0).

Proof Note that the sequence (a jx
j
0) j∈Z≥0 converges to zero, and so is bounded by

Proposition 2.3.4. Thus let M ∈ R>0 have the property that |a jx
j
0| ≤M for each j ∈ Z≥0.

Then, for x ∈ B(|x0|, 0), we have

|a jx j
| = |a jx

j
0|

∣∣∣∣∣ x
x0

∣∣∣∣∣ j ≤M
∣∣∣∣∣ x
x0

∣∣∣∣∣ j , j ∈ Z≥0.

Since
∣∣∣ x
x0

∣∣∣ < 1 the series
∑
∞

j=0 M
∣∣∣ x
x0

∣∣∣ converges as shown in Example 2.4.2–1. Therefore,
by the Comparison Test, the series

∑
∞

j=0 a jx j converges absolutely for x ∈ B(|x0|, 0). ▼

Now let

R = sup

x ∈ R≥0

∣∣∣∣∣∣∣∣
∞∑
j=0

a jx j converges

 .
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We have three cases.
1. R = ∞: For x ∈ R choose x0 > 0 such that |x| < x0. By the lemma, the series∑

∞

j=0 a jx j converges absolutely. This is case (i) of the statement of the result.

2. R = 0: Let x ∈ R \ {0} and choose x0 > 0 such that |x| > x0. If
∑
∞

j=0 a jx j converges,

then by the lemma, the series
∑
∞

j=0 a jx
j
0 converges absolutely, and so converges.

But this contradicts the definition of R, so the series
∑
∞

j=0 a jx j must diverge for
every nonzero x ∈ R. This is case (ii) of the statement of the result.

3. R ∈ R>0: If x ∈ B(R, 0) then, by the lemma, the series
∑
∞

j=0 a jx j converges absolutely.

If x ∈ R \ B(R, 0) then there exists x0 > R such that |x| > x0. If the series
∑
∞

j=0 a jx j

converges, then by the lemma the series
∑
∞

j=0 a jx
j
0 converges absolutely, and so

converges. But this contradicts the definition of R. This is case (iii) of the statement
of the result.

These three possibilities clearly are exhaustive and mutually exclusive. ■

Now we can sensibly define what we mean by a power series that converges.

3.7.12 Definition (R-convergent power series) AR-formal power series (a j) j∈Z≥0 is aR-
convergent power series if it falls into either case (i) or (iii) of Proposition 3.7.11. •

One can also say that a R-formal power series that is not convergent has a zero
radius of convergence, and sometimes it will be convenient to use this language.

Of course, one is interested in actually determining whether a given R-formal
power series is convergent or not. It turns out that this is actually possible, as the
following result indicates.

3.7.13 Theorem (Cauchy–Hadamard14 test for power series convergence) Let (aj)j∈Z≥0

be a R-formal power series, and define ρ ∈ R≥0 by ρ = lim supj→∞|aj|
1/j. Then define

R ∈ R≥0 by

R =


∞, ρ = 0,
1
ρ , ρ ∈ R>0,

0, ρ = ∞.

Then R is the radius of convergence for (aj)j∈Z≥0 .
Proof Let x ∈ R. We have

lim sup
j→∞

|a jx j
|
1/ j = lim sup

j→∞
|x||a j|

1/ j = |x|ρ.

Now, by the Root Test,
∑

j=0 a jx j converges if |x|ρ < 1 and diverges if |x|ρ > 1. From
these statements, the result follows. ■

14Jacques Salomon Hadamard (1865–1963) was a French mathematician. He made significant
contributions to the fields of complex analysis, number theory, differential equations, geometry and
linear algebra.



3.7 R-power series 373

Note that in Proposition 3.7.11 we make no assertions about the convergence
of power series for values of x whose magnitude us equal to the radius of conver-
gence.

3.7.14 Definition (Region of (absolute) convergence) Let A = (a j) j∈Z≥0 be a R-formal
power series and consider the classification of Proposition 3.7.11. In case (i) the
radius of convergence is∞, and in case (iii) the radius of convergence is the positive
number R asserted in the statement of the proposition. The region of absolute
convergence is Rabs(A) = (−R,R), and the region of convergence is the largest
intervalRconv(A) ⊆ R on which the series

∑
∞

j=0 a jx j converges. •

Note that the region of convergence could be either (−R,R), [−R,R), (−R,R], or
[−R,R]. The following examples show that all possibilities are realised.

3.7.15 Examples (Region of (absolute) convergence)
1. Consider the R-formal power series A = (a j =

1
2 j j2 ) j∈Z>0 (take a0 = 0). We

compute

lim
j→∞

∣∣∣∣∣∣a j+1

a j

∣∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣∣ 2 j j2

2 j+1( j + 1)2

∣∣∣∣∣∣ = 1
2
.

By Proposition 2.4.15 we conclude that the radius of convergence of the power
series

∑
∞

j=1
x j

2 j j2 is 2. When x = 2 the series becomes
∑
∞

j=1
1
j2 , which we know

converges by Example 2.4.2–4. When x = −2 the series becomes
∑
∞

j=1
(−1) j

j2 ,
which again is convergent, this time by the Alternating Test. Thus Rabs(A) =
(−2, 2), whileRconv(A) = [−2, 2].

2. Now consider the R-formal power series A = (a j =
1

2 j j ) j∈Z>0 (take a0 = 0). We
again use Proposition 2.4.15 and the computation

lim
j→∞

∣∣∣∣∣∣a j+1

a j

∣∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣∣ 2 j j
2 j+1( j + 1)

∣∣∣∣∣∣ = 1
2

to deduce that this power series has radius of convergence 2. For x = 2 the series
becomes

∑
∞

j=1
1
j which diverges by Example 2.4.2–4, and for x = −2 the series

becomes
∑
∞

j=1
(−1) j

j which converges by Example 2.4.2–3. ThusRabs(A) = (−2, 2),
whileRconv(A) = [−2, 2).

3. Now we define the R-formal power series (a j) j∈Z≥0 by

a j =


0, j = 0,
0, j odd,

2

2−
j
2 j
, otherwise.

Thus the corresponding series is
∑
∞

k=1
x2k

2kk . We have

lim sup
j→∞

|a j|
1/ j = lim sup

k→∞

∣∣∣∣∣ 1
2kk

∣∣∣∣∣1/2k

=
1
√

2
lim
k→∞

(1
k

)1/2k

=
1
√

2
.



374 3 Functions of a single real variable

Thus the radius of convergence is
√

2. For x = ±
√

2 the series becomes
∑
∞

k=1
1
k

which diverges. ThusRabs(A) =Rconv(A) = (−
√

2,
√

2). •

An important property of R-convergent power series, is that, not only do they
converge absolutely, they converge uniformly on any compact interval in the region
of absolute convergence.

3.7.16 Theorem (Uniform convergence of R-convergent power series) If A = (aj)j∈Z≥0

is aR-convergent power series, then the series
∑
∞

j=0 ajxj converges uniformly on any compact
interval J ⊆Rabs(A).

Proof It suffices to consider the case where J = [−R0,R0] since any compact interval
will be contained in an interval of this form. Let x ∈ [−R0,R0]. Since

∑
∞

j=0 a jR
j
0

converges absolutely and since |a jx j
| ≤ a jR

j
0, uniform convergence follows from the

Weierstrass M-test. ■

The next result gives the value of the limit function at points in the boundary
of the region of convergence.

3.7.17 Theorem (Continuous extension to region of convergence) Let (aj)j∈Z≥0 be
a R-convergent power series with radius of convergence R. If the series

∑
∞

j=0 ajRj

(resp.
∑
∞

j=0 aj(−R)j) converges, then

lim
x↑R

∞∑
j=0

ajxj =

∞∑
j=0

ajRj

resp. lim
x↓−R

∞∑
j=0

ajxj =

∞∑
j=0

aj(−Rj)

 .
Proof We shall only prove the theorem in the limit as x approaches R; the other
case follows entirely similarly (or by a change of variable from x to −x). Denote by
f : B(R, 0) → R the limit function for the power series. Let S−1 = 0 and for k ∈ Z≥0
define

Sk =

k∑
j=0

a jR j.

We then directly have

k∑
j=0

a jx j =

k∑
j=0

(S j − S j−1)( x
R ) j = (1 − x

R )
k−1∑
j=0

S j( x
R ) j + Sk( x

R )k.

For x ∈ B(R, 0) we note that limk→∞ Sk( x
R )k = 0, and therefore

f (x) =
∞∑
j=0

a jx j = (1 − x
R )

∞∑
j=0

S j( x
R ) j.

If S = lim j→∞ S j, for ϵ ∈ R>0 take N ∈ Z>0 such that |S − S j| <
ϵ
2 for j ≥ N. Note that,

from Example 2.4.2–1, we have

(1 − x
R )

∞∑
j=0

( x
R ) j = 1
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for x ∈ B(R, 0). It therefore follows that for x ∈ (0,R) we have

(1 − x
R )

∞∑
j=N+1

|S j − S|( x
R ) j
≤

ϵ
2 (1 − x

R )
∞∑

j=N+1

( x
R ) j < ϵ

2 . (3.23)

Now let δ ∈ R>0 have the property that for x ∈ (R − δ,R)

(1 − x
R )

N∑
j=0

|S j − S| < ϵ
2 .

It therefore follows that for x ∈ (R − δ,R) we also have

(1 − x
R )

N∑
j=0

|S j − S|( x
R ) j < ϵ

2 . (3.24)

We therefore obtain, for x ∈ (R − δ,R),

| f (x) − S| =

∣∣∣∣∣∣∣∣(1 − x
R )

∞∑
j=0

(S j − S)( x
R ) j

∣∣∣∣∣∣∣∣ ≤ (1 − x
R )

∞∑
j=0

|S j − S|( x
R ) j

≤ (1 − x
R )

N∑
j=0

|S j − S|( x
R ) j + (1 − x

R )
∞∑

j=N+1

|S j − S|( x
R ) j

< ϵ
2 +

ϵ
2 = ϵ,

using (3.23) and (3.24). It therefore follows that limx↑R f (x) = S, as desired. ■

The preceding two theorems have the following important corollary.

3.7.18 Corollary (R-convergent power series have a continuous limit function) If
A = (aj)j∈Z≥0 is a R-convergent power series, then the limit function on Rconv(A) is
continuous.

Proof This follows immediately from the previous two theorems along with Theo-
rem 3.6.8. ■

3.7.3 R-convergent power series and operations on functions

In this section we explore how various operations on functions interact with
power series. The results in this section have the usual mundane character of
other similar sections in this chapter. However, it is worth noting that there is
one rather spectacular conclusion that emerges, namely that the limit function of
a R-convergent power series is infinitely differentiable. The significance of this
is perhaps not to be fully appreciated until we realise that, when this conclusion
is extended to power series for complex functions, it allows the correspondence
between analytic functions and power series.

But first some mundane things.
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3.7.19 Proposition (Addition and multiplication, and R-convergent power series) If
A = (aj)j∈Z≥0 and B = (bj)j∈Z≥0 areR-convergent power series, then the following statements
hold:

(i) Rconv(A+B) ⊆Rconv(A)∩Rconv(B), and so, in particular, A+B is aR-convergent
power series;

(ii) Rconv(A · B) ⊆Rconv(A) ∩Rconv(B), and so, in particular, A · B is a R-convergent
power series.

Proof This follows immediately from Proposition 2.4.30. ■

In the language of Section 4.2, the preceding result says that the set of R-
convergent power series is a subring of the set of R-formal power series. This in
and of itself is not hugely interesting. However, the exact properties of the ring
of R-convergent power series is of quite some importance in the study of analytic
functions; we refer the reader to Section 3.7.5 for further discussion and references.

3.7.20 Proposition (Differentiation and integration of R-convergent power series) If
A = (aj)j∈Z≥0 is a R-convergent power series, then the following statements hold:

(i) Rabs(A′) =Rabs(A), and so, in particular, A′ is a R-convergent power series;
(ii) Rabs(

∫
A) =Rabs(A), and so, in particular,

∫
A is a R-convergent power series.

Furthermore, if the series defined by A converges to f : Rabs(A) → R, then the series
defined by A′ converges to f′ on Rabs(A) and the series defined by

∫
A converges to the

function x 7→
∫ x

0
f(ξ) dξ onRabs(A).

Proof ThatRabs(A′) = Rabs(A) andRabs(
∫

A) = Rabs(A) follows since lim j→∞ j1/ j =

lim j→∞( 1
j )

1/ j = 1 by Proposition 3.8.12, allowing us to conclude that

lim sup
j→∞

| ja j|
1/ j = lim sup

j→∞
|a j|

1/ j, lim sup
j→∞

∣∣∣∣∣a j

j

∣∣∣∣∣1/ j
= lim sup

j→∞
|a j|

1/ j.

That the series defined by A′ and
∫

A have the properties stated follows from Theo-
rems 3.6.23 and 3.6.24, along with the definitions of A′ and

∫
A. ■

This gives the following remarkable corollary concerning the character of the
limit function for R-convergent power series.

3.7.21 Corollary (Limits of R-convergent power series are infinitely differentiable) If
A = (aj)j∈Z≥0 is a R-convergent power series converging to f : Rabs(A) → R, then f is
infinitely differentiable onRabs(A), and aj =

f(j)(0)
j! .

Proof This follows simply by a repeated application of Proposition 3.7.20, and by
performing term-by-term differentiation, and evaluating the resulting expressions at
0. ■
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3.7.4 Taylor series

In the preceding section we indicated how, for the special class of R-formal
power series that are convergent, one can construct a limit function that is in-
finitely differentiable. In this section we consider the possibility of “reversing” this
operation, and producing aR-formal power series from an infinitely differentiable
function. Even in cases when a function is not infinitely differentiable, we shall
attempt to approximate it using a truncated power series. What we shall see in this
section is that the correspondence between functions and the power series which
purport to approximate them is a complicated one. Indeed, it is only for a special
class of functions, those which we call “real analytic,” that this correspondence as
a useful one.

Let I ⊆ R be an interval and let x0 ∈ int(I). Suppose that f : I → R is in-
finitely differentiable. If one takes as the final objective the idea that we wish to
approximate f near x0. If x0 = 0 then we might like to write

f (x) =
∞∑
j=0

a jx j.

For x0 , 0 it makes sense to write this approximation as

f (x) =
∞∑
j=0

a j(x − x0) j.

Indeed, if we write our approximation in this way, and then believe that differen-
tiation can be performed term-by-term on the right, we obtain

f (x0) = a0, f (1)(x0) = a1, f (2)(x0) = 2a2, . . . , f ( j)(x0) = j!a j, . . .

With this as motivation, we make the following definition.

3.7.22 Definition (Taylor polynomial and Taylor series) Let I ⊆ R be an interval, let
x0 ∈ int(I), and let f : I→ R be r-times differentiable for r ∈ Z>0 ∪ {∞}.

(i) For k ≤ r, the Taylor polynomial of degree k for f about x0 is the polynomial
function Tk( f , x0) defined by

Tk( f , x0)(x) =
k∑

j=0

f ( j)(x0)
j!

(x − x0) j.

(ii) If r = ∞ then the Taylor series for f about x0 is the R-formal power series
T∞( f , x0) = ( f ( j)(x0)

j! ) j∈Z≥0 . •

Sometimes it can be tedious to compute the derivatives needed to explicitly
exhibit the Taylor polynomial or the Taylor series. In some cases, the following
result is helpful.
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3.7.23 Proposition (Property of Taylor polynomial) Let I ⊆ R be an interval, let r ∈ Z>0,
and let f : I → R be a function that is r-times differentiable with f(r) locally bounded. If
x0 ∈ I and if P: I→ R is a polynomial function of degree r− 1, then P = Tr−1(f, x0) if and
only if

lim
x→Ix0

f(x) − P(x)
(x − x0)r−1 = 0.

Proof We will use Taylor’s Theorem stated below. Suppose that P = Tr−1( f , x0). Then,
by Taylor’s Theorem, for x in a neighbourhood of x0, we have

| f (x) − P(x)| ≤M|x − x0|
r =⇒ lim

x→Ix0

∣∣∣∣∣ f (x) − P(x)
(x − x0)r−1

∣∣∣∣∣ ≤ lim
x→Ix0

M|x − x0| = 0.

Now suppose that

lim
x→Ix0

f (x) − P(x)
(x − x0)r−1

= 0.

By Taylor’s Theorem, write

f (x) = Tr−1( f , x0)(x) + Rr( f , x0)(x),

where Rr( f , x0)(x) is a function defined in a neighbourhood of x0 satisfying
|Rr( f , x0)(x)| ≤M|x − x0|

r. Then, using Exercise 2.2.8,

lim
x→Ix0

∣∣∣∣∣ f (x) − P(x)
(x − x0)r−1

∣∣∣∣∣ = 0,

=⇒ lim
x→Ix0

∣∣∣∣∣Tr−1( f , x0)(x) + Rr( f , x0)(x) − P(x)
(x − x0)r−1

∣∣∣∣∣ = 0,

=⇒ lim
x→Ix0

∣∣∣∣∣∣∣∣∣∣Tr−1( f , x0)(x) − P(x)
(x − x0)r−1

∣∣∣∣∣ − ∣∣∣∣∣Rr( f , x0)(x)
(x − x0)r−1

∣∣∣∣∣∣∣∣∣∣ = 0.

Since

lim
x→Ix0

∣∣∣∣∣Rr( f , x0)(x)
(x − x0)r−1

∣∣∣∣∣ = 0

by the properties of Rr( f , x0), we conclude that

lim
x→Ix0

∣∣∣∣∣Tr−1( f , x0)(x) − P(x)
(x − x0)r−1

∣∣∣∣∣ = 0.

If P and Tr−1( f , x0) were distinct degree r − 1 polynomials, then we would either have

lim
x→Ix0

∣∣∣∣∣Tr−1( f , x0)(x) − P(x)
(x − x0)r−1

∣∣∣∣∣ = α > 0, or lim
x→Ix0

∣∣∣∣∣Tr−1( f , x0)(x) − P(x)
(x − x0)r−1

∣∣∣∣∣ = ∞.
Thus the result follows. ■

The way to interpret the result is that the Taylor polynomial of degree k about x0

provides the best (in some sense) degree k polynomial approximation to f near x0.
In this sense, the Taylor polynomial can be thought of as the generalisation of the
derivative, the derivative providing the best linear approximation of a function.

There are two fundamentally different sorts of questions arising from the no-
tions of the Taylor polynomial and the Taylor series.
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1. Is the Taylor series for an infinitely differentiable function aR-convergent power
series?

2. (a) Does the Taylor polynomial approximate f in some sense?
(b) If f is infinitely differentiable and the Taylor series is aR-convergent power

series, does it approximate f in some sense?
Before we proceed to explore these questions in detail, let us give a definition which
they immediately suggest.

3.7.24 Definition (Real analytic function) Let I ⊆ R be an interval, let x0 ∈ I, and let
f : I → R be an infinitely differentiable function with Taylor series T∞( f , x0) =
( f ( j)(x0)

j! ) j∈Z≥0 . We say that f is real analytic at x0 if T∞( f , x0) is aR-convergent power
series, and if there exists a neighbourhood U of x0 such that

f (x) =
∞∑
j=0

f ( j)(x0)
j!

(x − x0) j

for all x ∈ U. •

Thus real analytic functions are exactly those that are perfectly approximated
by their Taylor series. What is not clear at this time is whether “real analytic” is
actually different than “infinitely differentiable.” The following result addresses
this in rather dramatic fashion.

3.7.25 Theorem (Borel’s Theorem) If (aj)j∈Z≥0 is a R-formal power series, then there exists
an interval I ⊆ R with 0 ∈ int(I) and a function f : I → R of class C∞ such that
T∞(f, 0) = (aj)j∈Z≥0 .

Proof Define ⋏ : [−1, 1]→ R by

⋏(x) =

0, x ∈ {−1, 1},

e−
1

1−x2 e, x ∈ (−1, 1),

and note that
1. ⋏ is infinitely differentiable,
2. ⋏(±1) = 0,
3. ⋏(0) = 1, and
4. ⋏(x) ∈ (0, 1) for |x| ∈ (0, 1).
(We refer the reader to Example 3.7.28–2 for the details concerning this function.) We
take I = [−1, 1] and, for ϵ ∈ (0, 1), define gϵ : I→ R by

gϵ(x) =


0, |x| ∈ [ϵ, 1],
⋏(1 + 2x

ϵ ), x ∈ (−ϵ,− ϵ2 ),
⋏(−1 + 2x

ϵ ), x ∈ ( ϵ2 , ϵ),
1, |x| ∈ [0, ϵ2 ].
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Then, for k ∈ Z≥0, define fϵ,k : I→ R inductively by taking fϵ,0 = gϵ and

fϵ,k(x) =
∫ x

0
fϵ,k−1(ξ) dξ.

Note that
1. f ( j)

ϵ,k(0) = 0, j ∈ {0, 1, . . . , k − 1},

2. f (k)
ϵ,k (0) = 1, and

3.
∣∣∣∣ f ( j)
ϵ,k(x)

∣∣∣∣ ≤ ϵ for j ∈ {0, 1, . . . , k − 1} and x ∈ I.

Now let (ϵ j) j∈Z>0 be a sequence in R>0 for which the series
∑
∞

j=0|a j|ϵ j converges. We
claim that if

f (x) =
∞∑
j=0

a j fϵ j, j(x),

then f is well-defined and infinitely differentiable on [−1, 1], and has the property that
T∞( f , 0) = (a j) j∈Z≥0 .

By our choice of the sequence (ϵ j) j∈Z≥0 , it follows from the Weierstrass M-test
that f is well-defined by virtue of the absolute and uniform convergence of the series∑
∞

j=0 a j fϵ j, j(x) for x ∈ [−1, 1]. Moreover, the hypotheses of Theorem 3.6.24 hold, and
so the series can be differentiated term-by-term. One may then directly verify that
the Weierstrass M-test again ensures that the resulting differentiated series is again
uniformly convergent. This argument may be repeated to show that f is infinitely
differentiable, and the series for the kth derivative is the kth derivative of the series
taken term-by-term. One now uses the properties of the functions fϵ, j, j ∈ Z≥0, to
directly verify that T∞( f , 0) = (a j) j∈Z≥0 . We leave the tedious, but direct, checking of
the details of the assertions in this paragraph to the reader. ■

This result, therefore, rules out any sort of complete correspondence between a
function and its Taylor series. Indeed, it even rules out the convergence of Taylor
series.

It is clear, then, that a real analytic must have a rather specific character to its
Taylor series. The following result precisely characterises this.

3.7.26 Theorem (Derivatives of real analytic functions) If I ⊆ R is an open interval and
if f : I→ R is infinitely differentiable, then the following statements are equivalent:

(i) f is real analytic;
(ii) for each x0 ∈ I there exists a neighbourhood U ⊆ I of x0 and C, r ∈ R>0 such that

|f(m)(x)| ≤ Cm!r−m

for all x ∈ U and m ∈ Z≥0.
Proof First suppose that f is real analytic and let x0 ∈ I. Let δ ∈ R>0 be such that

f (x) =
∞∑

k=0

ak(x − x0)k, |x − x0| < δ.
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This implies that, for each ρ ∈ (0, δ), the sequence (akρ
k)k∈Z≥0 is bounded, say by

C′ ∈ R>0. Therefore, by Corollary 3.7.21 we have

| f (m)(x0)| ≤ C′m!ρ−m.

Let us fix some ρ ∈ (0, δ).
By differentiating the power series for f term-by-term on B(x0, δ) we have

f (m)(t)
m!

=
1

m!

∞∑
k=0

(k + 1) · · · (k +m)ak+m(x − x0)k =

∞∑
k=0

(
k +m

m

)
ak+m(x − x0)k,

where (
j
l

)
=

j!
l!( j − l)!

is the binomial coefficient defined for j, l ∈ Z≥0 with j ≥ l. By Exercise 2.2.1 we have

2 j = (1 + 1) j =

j∑
l=0

(
j
l

)
.

Therefore, (
j
l

)
≤ 2 j, l ∈ {0, 1, . . . , j}.

Therefore, if |x − x0| <
ρ
3 ,∣∣∣∣∣∣ f (m)(x)

m!

∣∣∣∣∣∣ ≤ C′ρ−m
∞∑

k=0

(
k +m

m

)
ρ−k
|x − x0|

k
≤ C′

(ρ
2

)−m ∞∑
k=0

(2
3

)k
= 3C′

(ρ
2

)−m
,

using Example 2.4.2–1. This gives the desired estimate, taking C = 3C′ and r = ρ
2 .

Conversely suppose that for x0 ∈ I, | f (m)(x)| ≤ Cm!r−m for some C, r ∈ R>0 and for
each m ∈ Z≥0. Then, for |x − x0| < r we have

∞∑
k=0

| f (k)(x0)|
k!

|x − x0|
k
≤ C

∞∑
k=0

(
|x − x0|

r

)k
< ∞

by Example 2.4.2–1. Thus the series

∞∑
k=0

f (k)(x0)
k!

(x − x0)k

converges absolutely, and so converges, for each x ∈ B(x0, r). Thus f is real analytic. ■

We now explore the question of how well a Taylor polynomial or Taylor series
approximates the function generating it, under suitable hypotheses. We begin with
the case where the function f is differentiable to finite order.
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3.7.27 Theorem (Taylor’s Theorem) Let I ⊆ R be an interval, let r ∈ Z>0, and let f : I → R
be a function that is r-times differentiable with f(r) locally bounded. Then, if [a, b] ⊆ I is a
compact interval, there exists c ∈ [a, b] such that

f(b) = Tr−1(f, a)(b) +
f(r)(c)

r!
(b − a)r.

In particular, if J ⊆ I is a compact interval containing x0 then there exists M ∈ R>0 such
that

|f(x) − Tr−1(f, x0)(x)| ≤M|x − x0|
r

for all x ∈ J.
Proof Define α ∈ R by asking that f (b) = T ( f , a)(b) + α(b − a)r. Now, if for x ∈ [a, b]
we define

g(x) = f (x) − Tr−1( f , a)(x) − α(x − a)r,

then we have g(r)(x) = f (r)(x) − r!α since Tr−1( f , a) is a polynomial of degree r − 1. We
directly compute, using the definition of T ( f , a), that g( j)(a) = 0 for j ∈ {0, 1, . . . , r − 1}.
We also directly have g(b) = 0. Therefore, there exists c1 ∈ [a, b] such that g(1)(c1) = 0 by
the Mean Value Theorem applied to g. We similarly assert the existence of c2 ∈ [a, c1]
such that g(2)(c2) = 0, again by the Mean Value Theorem, but now applied to g(1).
Continuing in this way we arrive at cr ∈ [a, cr−1] such that g(r)(cr) = 0. Taking c = cr,
the result follows since g(r)(x) = f (r)(x) − r!α. ■

One might be inclined to conjecture that, if f is of class C∞, then increasing
sequences of Taylor polynomials ought to better and better approximate a function.
Of course, Theorem 3.7.25 immediately rules this out. The following examples
serve to illustrate just how complicated is the correspondence between a function
and its Taylor series.

3.7.28 Examples (Taylor series)
1. The first example we give is one of a function that is infinitely differentiable on
R, but whose Taylor series about 0 only converges in a bounded neighbourhood
of 0.
We define f : R → R by f (x) = 1

1+x2 . This function, being the quotient of
an infinitely differentiable function by a nonvanishing infinitely differentiable
function is it self infinitely differentiable. To determine the Taylor series for f ,
let make an educated guess, and then check it using Proposition 3.7.23. By
Example 2.4.2–1 we have, for x2 < 1,

1
1 + x2 =

∞∑
j=0

(−1) jx2 j.

Let us verify that this is actually the series associated to the Taylor series for f
about 0. As we saw during the course of Example 2.4.2–1,

k∑
j=0

(−1) jx2 j =
1 − (−x2)k+1

1 + x2 .
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Therefore ∣∣∣∣∣∣∣ 1
1 + x2 −

k∑
j=0

(−1) jx2 j

∣∣∣∣∣∣∣ = x2k+2

1 + x2 .

Thus

lim
x→0

∣∣∣∣∣∣∣
1

1+x2 −
∑k

j=0(−1) jx2 j

x2k+1

∣∣∣∣∣∣∣ = 0,

and we conclude from Proposition 3.7.23 that
∑k

j=0(−1) jx2 j = T2k+1( f , 0). Thus
we do indeed have T∞( f , 0) = (a j) j∈Z>0 where

a j =

0, j odd,
(−1) j/2, j odd.

By Example 2.4.2–1 the radius of convergence for the Taylor series is 1. Indeed,
one easily sees thatRabs(T∞( f , 0)) =Rconv(T∞( f , 0)) = (−1, 1).
Thus we indeed have a function, infinitely differentiable on all of R, whose
Taylor series converges on a bounded interval. Note that this function is real
analytic at 0. In fact, one can verify that the function is real analytic everywhere.
But even this is not enough to ensure the global convergence of the Taylor series
about a given point. In order to understand why the Taylor series for this
function does not converge on all of R, it is necessary to understand C-power
series, as we do in Section II-3.3.

2. The next function we construct is one with a Taylor series whose radius of
convergence is infinite, but which converges to the function only at one point.
We define f : R→ R by

f (x) =

e−
1

x2 , x , 0,
0, x = 0,

and in Figure 3.16 we show the graph of f . We claim that T∞( f , 0) is the zero
R-formal power series. To prove this, we must compute the derivatives of f at
x = 0. The following lemma is helpful in this regard.

1 Lemma For j ∈ Z≥0 there exists a polynomial pj of degree at most 2j such that

f(j)(x) =
pj(x)
x3j e−

1
x2 , x , 0.

Proof We prove this by induction on j. Clearly the lemma holds for j = 0 by
taking p0(x) = 1. Now suppose the lemma holds for j ∈ {0, 1, . . . , k}. Thus

f (k)(x) =
pk(x)
x3k

e−
1

x2
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Figure 3.16 A function that is infinitely differentiable but not an-
alytic

for a polynomial pk of degree at most 2k. Then we compute

f (k+1)(x) =
x3p′k(x) − 3kx2pk(x) − 2pk(x)

x3(k+1)
e−

1
x2 .

Using the rules for differentiation of polynomials, one easily checks that x 7→
x3p′k(x) − 3kx2pk(x) − 2pk(x) is a polynomial whose degree is at most 2(k + 1). ▼

From the lemma we infer the infinite differentiability of f on R \ {0}. We now
need to consider the derivatives at 0. For this we employ another lemma.

2 Lemma limx→0
e
−

1
x2

xk = 0 for all k ∈ Z≥0.
Proof We note that

lim
x↓0

e−
1

x2

xk
= lim

y→∞

yk

ey2 , lim
x↑0

e−
1

x2

xk
= lim

y→−∞

yk

ey2 .

Using the properties of the exponential function as given in Section 3.8.1, we
have

ey2
=

∞∑
j=0

y2 j

j!

In particular, ey2
≥

y2k

k! , and so ∣∣∣∣∣∣ yk

ey2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ k!
yk

∣∣∣∣∣∣ ,
and so

lim
x→0

e−
1

x2

xk
= 0,
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as desired. ▼

Now, letting pk(x) =
∑2k

j=0 a jx j, we may directly compute

lim
x→0

f (k)(x) = lim
x→0

2k∑
j=0

a jx2 j e
−

1
x2

x3k
=

2k∑
j=0

a j lim
x→0

e−
1

x2

x3k− j
= 0.

Thus we arrive at the conclusion that f is infinitely differentiable on R, and
that f and all of its derivatives are zero at x = 0. Thus T∞( f , 0) = (0) j∈Z≥0 . This
is clearly a R-convergent power series; it converges everywhere to the zero
function. However, f (x) , 0 except when x = 0. Thus the Taylor series about
0 for f , while convergent everywhere, converges to f only at x = 0. This is
therefore an example of a function that is infinitely differentiable at a point, but
not real analytic there. This function may seem rather useless, but in actuality
it is quite an important one. For example, we used it in the construction for the
proof of Theorem 3.7.25. •

These examples, along with Borel’s Theorem, indicate the intricate nature of
the correspondence between a function and its Taylor series. For the correspon-
dence to have any real meaning, the function must be analytic, and even then the
correspondence is only local.

3.7.5 Notes

As we shall see in Section II-3.3, there is, for C-power series, a correspondence
between convergent power series and holomorphic functions. This correspon-
dence also applies to the real case, where “holomorphic” gets replaced with “real
analytic.” The ring-theoretic structure of the R-convergent power series are of
some importance. In particular, this ring possesses the property of being “Noethe-
rian.15” Because of the correspondence between convergent power series and
analytic functions, the ring theoretic structure gets transfered, at least locally, to the
set of analytic functions. This leads to some rather remarkable features of analytic
functions as compared to, say, merely infinitely differentiable functions. We refer
to [Krantz and Parks 2002] for a discussion of this in the real analytic case, and to
[Hörmander 1966] for the holomorphic case.

Exercises

3.7.1 State and prove a version of the Fundamental Theorem of Calculus for R-
formal power series.

3.7.2 State and prove an integration by parts formula for R-formal power series.
3.7.3 Prove part (vi) of Proposition 2.4.30 using Proposition 3.7.17.

15Amalie Emmy Noether (1882-1935) was a German mathematician whose name is attached to
important properties of rings in algebra and to conservation laws in physics



386 3 Functions of a single real variable

Section 3.8

Some R-valued functions of interest

In this section we present, in a formal way, some of the special functions that
will, and indeed already have, come up in these volumes.

Do I need to read this section? It is much more than likely the case that the
reader has already encountered the functions we discuss in this section. However,
it may be the case that the formal definitions and rigorous presentation of their
properties will be new. This section, therefore, fits into the “read for pleasure”
category. •

3.8.1 The exponential function

One of the most important functions in mathematics, particularly in applied
mathematics, is the exponential function. This importance is nowhere to be found
in the following definition, but hopefully at the end of their reading these volumes,
the reader will have some appreciation for the exponential function.

3.8.1 Definition (Exponential function) The exponential function, denoted by
exp: R→ R, is given by

exp(x) =
∞∑
j=0

x j

j!
. •

In Figure 3.17 we show the graphs of exp and its inverse log that we will be

-2 -1 0 1 2
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Figure 3.17 The function exp (left) and its inverse log (right)

discussing in the next section.
One can use Theorem 3.7.13, along with Proposition 2.4.15, to easily show

that the power series for exp has an infinite radius of convergence, and so indeed
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defines a function on R. Let us record some of the more immediate and useful
properties of exp.

3.8.2 Proposition (Properties of the exponential function) The exponential function
enjoys the following properties:

(i) exp is infinitely differentiable;
(ii) exp is strictly monotonically increasing;
(iii) exp(x) > 0 for all x ∈ R;
(iv) limx→∞ exp(x) = ∞;
(v) limx→−∞ exp(x) = 0;
(vi) exp(x + y) = exp(x) exp(y) for all x,y ∈ R;
(vii) exp′ = exp;
(viii) limx→∞ xk exp(−x) = 0 for all k ∈ Z>0.

Proof (i) This follows from Corollary 3.7.21, along with the fact that the radius of
convergence of the power series for exp is infinite.

(vi) Using the Binomial Theorem and Proposition 2.4.30(iv) we compute

exp(x) exp(y) =

 ∞∑
j=0

x j

j!


 ∞∑

j=0

xk

k!

 = ∞∑
k=0

k∑
j=0

x j

j!
yk− j

(k − j)!

=

∞∑
k=0

1
k!

k∑
j=0

(
k
j

)
x jyk− j =

∞∑
k=0

(x + y)k

k!
.

(viii) We have exp(−x) = 1
exp(x) by part (vi), and so we compute

lim
x→∞

xk exp(−x) = lim
x→∞

xk∑
∞

j=0
x j

j!

≤ lim
x→∞

(k + 1)!xk

xk+1
= 0.

(ii) From parts (i) and (viii) we know that exp has an everywhere positive derivative.
Thus, from Proposition 3.2.23 we know that exp is strictly monotonically increasing.

(iii) Clearly exp(x) > 0 for all x ∈ R≥0. From part (vi) we have

exp(x) exp(−x) = exp(0) = 1.

Therefore, for x ∈ R<0 we have exp(x) = 1
exp(−x) > 0.

(iv) We have

lim
x→∞

exp(x) = lim
x→∞

∞∑
j=0

x j

j!
≥ lim

x→∞
x = ∞.

(v) By parts (vi) and (iv) we have

lim
x→−∞

exp(x) = lim
x→∞

1
exp(−x)

= 0.

(vii) Using part (vi) and the power series representation for exp we compute

exp′(x) = lim
h→0

exp(x + h) − exp(x)
h

= lim
h→0

exp(x)(exp(h) − 1)
h

= exp(x). ■
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One of the reasons for the importance of the function exp in applications can
be directly seen from property (vii). From this one can see that exp is the solution
to the “initial value problem”

y′(x) = y(x), y(0) = 1. (3.25)

Most readers will recognise this as the differential equation governing a scalar
process which exhibits “exponential growth.” It turns out that many physical
processes can be modelled, or approximately modelled, by such an equation, or by
a suitable generalisation of such an equation. Indeed, one could use the solution
of (3.25) as the definition of the function exp. However, to be rigorous, one would
then be required to show that this equation has a unique solution; this is not
altogether difficult, but does take one off topic a little. Such are the constraints
imposed by rigour.

In Section 2.4.3 we defined the constant e by

e =
∞∑
j=0

1
j!
.

From this we see immediately that e = exp(1). To explore the relationship between
the exponential function exp and the constant e, we first prove the following result,
which recalls from Proposition 2.2.3 and the discussion immediately following it,
the definition of xq for x ∈ R>0 and q ∈ Q.

3.8.3 Proposition (exp(x) = ex) exp(x) = sup{eq
| q ∈ Q, q < x}.

Proof First let us take the case where x = q ∈ Q. Write q = j
k for j ∈ Z and k ∈ Z>0.

Then, by repeated application of part (vi) of Proposition 3.8.2 we have

exp(q)k = exp(kq) = exp( j) = exp( j · 1) = exp(1) j(e1) j = e j.

By Proposition 2.2.3 this gives, by definition, exp(q) = eq.
Now let x ∈ R and let (q j) j∈Z>0 be a monotonically increasing sequence in Q such

that lim j→∞ q j = x. By Theorem 3.1.3 we have exp(x) = lim j→∞ exp(q j). By part (ii)
of Proposition 3.8.2 the sequence (exp(q j)) j∈Z>0 is strictly monotonically increasing.
Therefore, by Theorem 2.3.8,

lim
j→∞

exp(q j) = lim
j→∞

eq j = sup{eq
| q < x},

as desired. ■

We shall from now on alternately use the notation ex for exp(x), when this is
more convenient.
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3.8.2 The natural logarithmic function

From Proposition 3.8.2 we know that exp is a strictly monotonically increas-
ing, continuous function. Therefore, by Theorem 3.1.30 we know that exp is an
invertible function from R to image(exp). From parts (iii), (iv), and (v) of Proposi-
tion 3.8.2, as well as from Theorem 3.1.30 again, we know that image(exp) = R>0.
This then leads to the following definition.

3.8.4 Definition (Natural logarithmic function) The natural logarithmic function, de-
noted by log: R>0 → R, is the inverse of exp. •

We refer to Figure 3.17 for a depiction of the graph of log.

3.8.5 Notation (log versus ln) It is not uncommon to see the function that we denote by
“log” written instead as “ln.” In such cases, log is often used to refer to the base 10
logarithm (see Definition 3.8.13), since this convention actually sees much use in
applications. However, we shall refer to the base 10 logarithm as log10. •

Now let us record the properties of log that follow immediately from its defini-
tion.

3.8.6 Proposition (Properties of the natural logarithmic function) The natural loga-
rithmic function enjoys the following properties:

(i) log is infinitely differentiable;
(ii) log is strictly monotonically increasing;

(iii) log(x) =
∫ x

1
1
ξ dξ for all x ∈ R>0;

(iv) limx→∞ log(x) = ∞;
(v) limx↓0 log(x) = −∞;
(vi) log(xy) = log(x) + log(y) for all x,y ∈ R>0;
(vii) limx→∞ x−k log(x) = 0 for all k ∈ Z>0.

Proof (iii) From the Chain Rule and using the fact that log ◦ exp(x) = x for all x ∈ Rwe
have

log′(exp(x)) =
1

exp(x)
=⇒ log′(y) =

1
y

for all y ∈ R>0. Using the fact that log(1) = 0 (which follows since exp(0) = 1), we then
apply the Fundamental Theorem of Calculus, this being valid since y 7→ 1

y is Riemann

integrable on any compact interval in R>0, we obtain log(x) =
∫ y

1
1
η dη, as desired.

(i) This follows from part (iii) using the fact that the function x 7→ 1
x is infinitely

differentiable on R>0.
(ii) This follows from Theorem 3.1.30.
(iv) We have

lim
x→∞

log(x) = lim
y→∞

log(exp(y)) = lim
y→∞

y = ∞.

(v) We have
lim
x↓0

log x = lim
y→−∞

log(exp(y)) = lim
y→−∞

y = −∞.
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(vi) For x, y ∈ R>0 write x = exp(a) and y = exp(b). Then

log(xy) = log(exp(a) exp(b)) = log(exp(a + b)) = a + b = log(x) + log(y).

(vii) We compute

lim
x→∞

log x
xk
= lim

y→∞

log exp(y)
exp(y)k

= lim
y→∞

y
exp(y)k

≤ lim
y→∞

y

(1 + y + 1
2 y2)k

= 0. ■

3.8.3 Power functions and general logarithmic functions

For x ∈ R>0 and q ∈ Q we had defined, in and immediately following Propo-
sition 2.2.3, xq by (x1/k) j if q = j

k for j ∈ Z and k ∈ Z>0. In this section we wish to
extend this definition to xy for y ∈ R, and to explore the properties of the resulting
function of both x and y.

3.8.7 Definition (Power function) If a ∈ R>0 then the function Pa : R → R is defined
by Pa(x) = exp(x log(a)). If a ∈ R then the function Pa : R>0 → R is defined by
Pa(x) = exp(a log(x)). •

Let us immediately connect this (when seen for the first time rather nonintuitive)
definition to what we already know.

3.8.8 Proposition (Pa(x) = ax) Pa(x) = sup{aq
| q ∈ Q, q < x}.

Proof Let us first take x = q ∈ Q and write q = j
k for j ∈ Z and k ∈ Z>0. We have

exp(q log(a))k = exp
( j

k log(a)
)k
= exp( j log(a)) = exp(log(a)) j = a j.

Therefore, by Proposition 2.2.3 we have

exp(q log(a)) = aq.

Now let x ∈ R and let (q j) j∈Z>0 be a strictly monotonically increasing sequence in Q
converging to x. Since exp and log are continuous, by Theorem 3.1.3 we have

lim
j→∞

exp(q j log(a)) = exp(x log(a)).

As we shall see in Proposition 3.8.10, the function x 7→ Pa(x) is strictly monotoni-
cally increasing. Therefore the sequence (exp(q j log(a))) j∈Z>0 is strictly monotonically
increasing. Thus

lim
j→∞

exp(q j log(a)) = sup{Pa(q) | q ∈ Q, q < x},

as desired. ■

Clearly we also have the following result.
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3.8.9 Corollary (Pa(x) = xa) Pa(x) = sup{xq
| q ∈ Q, q < a}.

As with the exponential function, we will use the notation ax for Pa(x) and xa

for Pa(x) when it is convenient to do so.
Let us now record some of the properties of the functions Pa and Pa that follow

from their definition. When possible, we state the result using both the notation
Pa(x) and ax (or Pa and xa).

3.8.10 Proposition (Properties of Pa) For a ∈ R>0, the function Pa enjoys the following
properties:

(i) Pa is infinitely differentiable;
(ii) Pa is strictly monotonically increasing when a > 1, is strictly monotonically de-

creasing when a < 1, and is constant when a = 1;
(iii) Pa(x) = ax > 0 for all x ∈ R;

(iv) lim
x→∞

Pa(x) = lim
x→∞

ax =


∞, a > 1,
0, a < 1,
1, a = 1;

(v) lim
x→−∞

Pa(x) == lim
x→−∞

ax =


0, a > 1,
∞, a < 1,
1, a = 1;

(vi) Pa(x + y) = ax+y = axay = Pa(x)Pa(y);
(vii) P′a(x) = log(a)Pa(x);
(viii) if a > 1 then limx→∞ xkPa(−x) = limx→∞ xka−x = 0 for all k ∈ Z>0;
(ix) if a < 1 then limx→∞ xkPa(x) = limx→∞ xkax = 0 for all k ∈ Z>0.

Proof (i) Define f , g : R → R and f (x) = x log(a) and g(x) = exp(x). Then Pa = g ◦ f ,
and so is the composition of infinitely differentiable functions. This part of the result
follows from Theorem 3.2.13.

(ii) Let x1 < x2. If a > 1 then log(a) > 0 and so

x1 log(a) < x2 log(a) =⇒ exp(x1 log(a)) < exp(x2 log(a))

since exp is strictly monotonically increasing. If a < 1 then log(a) < 0 and so

x1 log(a) > x2 log(a) =⇒ exp(x1 log(a)) > exp(x2 log(a)),

again since exp is strictly monotonically increasing. For a = 1 we have log(a) = 0 so
Pa(x) = 1 for all x ∈ R.

(iii) This follows since image(exp) ⊆ R>0.
(iv) For a > 1 we have

lim
x→∞

Pa(x) = lim
x→∞

exp(x log(a)) = lim
y→∞

exp(y) = ∞,
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and for a < 1 we have

lim
x→∞

Pa(x) = lim
x→∞

exp(x log(a)) = lim
y→−∞

exp(y) = 0.

For a = 1 the result is clear since P1(x) = 1 for all x ∈ R.
(v) For a > 1 we have

lim
x→−∞

Pa(x) = lim
x→−∞

exp(x log(a)) = lim
y→−∞

exp(y) = 0,

and for a < 1 we have

lim
x→−∞

Pa(x) = lim
x→−∞

exp(x log(a)) = lim
y→∞

exp(y) = ∞.

Again, for a = 1 the result is obvious.
(vi) We have

Pa(x + y) = exp((x + y) log(a)) = exp(x log(a)) exp(y log(a)) = Pa(x)Pa(y).

(vii) With f and g as in part (i), and using Theorem 3.2.13, we compute

P′a(x) = g′( f (x)) f ′(x) = exp(x log(a)) log(a) = log(a)Pa(x).

(viii) We compute

lim
x→∞

xkPa(−x) = lim
x→∞

xk exp(−x log(a)) = lim
y→∞

(
y

log(a)

)k

exp(−y) = 0,

using part (viii) of Proposition 3.8.2.
(ix) We have

lim
x→∞

xkPa(x) = lim
x→∞

xk exp((−x)(− log(a))) = 0

since log(a) < 0. ■

3.8.11 Proposition (Properties of Pa) For a ∈ R, the function Pa enjoys the following
properties:

(i) Pa is infinitely differentiable;
(ii) Pa is strictly monotonically increasing;
(iii) Pa(x) = xa > 0 for all x ∈ R>0;

(iv) limx→∞ Pa(x) = limx→∞ xa =


∞, a > 0,
0, a < 0,
1, a = 0;

(v) limx↓0 Pa(x) = limx↓0 xa =


0, a > 0,
∞, a < 0,
1, a = 0;
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(vi) Pa(xy) = (xy)a = xaya = Pa(x)Pa(y);
(vii) (Pa)′(x) = aPa−1(x).

Proof (i) Define f : R>0 → R, g : R→ R, and h : R→ R by f (x) = log(x), g(x) = ax, and
h(x) = exp(x). Then Pa = h ◦ g ◦ f . Since each of f , g, and h is infinitely differentiable,
then so too is Pa by Theorem 3.2.13.

(ii) Let x1, x2 ∈ R>0 satisfy x1 < x2. Then

Pa(x1) = exp(a log(x1)) < exp(a log(x2)) = Pa(x2)

using the fact that both log and exp are strictly monotonically increasing.
(iii) This follows since image(exp) ⊆ R>0.
(iv) For a > 0 we have

lim
x→∞

Pa(x) = lim
x→∞

exp(a log(x)) = lim
y→∞

exp(y) = ∞,

and for a < 0 we have

lim
x→∞

Pa(x) = lim
x→∞

exp(a log(x)) = lim
y→−∞

exp(y) = 0.

For a = 0 we have Pa(x) = 1 for all x ∈ R>0.
(v) For a > 0 we have

lim
x↓0

Pa(x) = lim
x↓0

exp(a log(x)) = lim
y→−∞

exp(y) = 0,

and for a < 0 we have

lim
x↓0

Pa(x) = lim
x↓0

exp(a log(x)) = lim
y→∞

exp(y) = ∞.

For a = 1, the result is trivial again.
(vi) We have

Pa(xy) = exp(a log(xy)) = exp(a(log(x)+log(y))) = exp(a log(x)) exp(a log(y)) = Pa(x)Pa(y).

(vii) With f , g, and h as in part (i), and using the Chain Rule, we have

(Pa)′(x) = h′(g( f (x)))g′( f (x)) f ′(x) = a exp(a log(x)) 1
x

= a exp(a log(x)) exp(−1 log(x)) = a exp((a − 1) log(x)) = aPa−1(x),

as desired, using part (vi) of Proposition 3.8.10. ■

The following result is also sometimes useful.
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3.8.12 Proposition (Property of Px(x−1)) limx→∞ Px(x−1) = limx→∞ x1/x = 1.
Proof We have

lim
x→∞

Px(x−1) = lim
x→∞

exp(x−1 log(x)) = lim
y→0

exp(y) = 1,

using part (vii) of Proposition 3.8.6. ■

Now we turn to the process of inverting the power function. For the exponential
function we required that log(ex) = x. Thus, if our inverse of Pa is denoted (for the
moment) by fa, then we expect that fa(ax) = x. This definition clearly has difficulties
when a = 1, reflecting the fact that P1 is not invertible. In all other case, since Pa is
continuous, and either strictly monotonically increasing or strictly monotonically
decreasing, we have the following definition, using Theorem 3.1.30.

3.8.13 Definition (Arbitrary base logarithm) For a ∈ R>0 \ {1}, the function loga : R>0 →

R, called the base a logarithmic function, is the inverse of Pa. When a = 10 we
simply write log10 = log. •

The following result relates the logarithmic function for an arbitrary base to the
natural logarithmic function.

3.8.14 Proposition (Characterisation of loga) loga(x) =
log(x)
log(a)

.

Proof Let x ∈ R>0 and write x = ay for some y ∈ R. First suppose that y , 0. Then
we have log(x) = y log(a) and loga(x) = y, and the result follows by eliminating y from
these two expressions. When y = 0 we have x = a = a1. Therefore, loga(x) = 1 = log(x)

log(a) .
■

With this result we immediately have the following generalisation of Proposi-
tion 3.8.6. We leave the trivial checking of the details to the reader.

3.8.15 Proposition (Properties of loga) For a ∈ R>0 \ {1}, the function loga enjoys the
following properties:

(i) loga is infinitely differentiable;
(ii) loga is strictly monotonically increasing when a > 1 and is strictly monotonically

decreasing when a < 1;

(iii) loga(x) = 1
log(a)

∫ x

1
1
ξ dξ for all x ∈ R>0;

(iv) limx→∞ loga(x) =

∞, a > 1,
−∞, a < 1;

(v) limx↓0 loga(x) =

−∞, a > 1,
∞, a < 1;

(vi) loga(xy) = loga(x) + loga(y) for all x,y ∈ R>0;
(vii) limx→∞ x−k loga(x) = 0 for all k ∈ Z>0.
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3.8.4 Trigonometric functions

Next we turn to describing the standard trigonometric functions. These func-
tions are perhaps most intuitively introduced in terms of the concept of “angle”
in plane geometry. However, to really do this properly would, at this juncture,
require a significant expenditure of effort. Therefore, we define the trigonometric
functions by their power series expansion, and then proceed to show that they
have the expected properties. In the course of our treatment we will also see that
the constant π introduced in Section 2.4.3 has the anticipated relationships to the
trigonometric functions. Convenience in this section forces us to make a fairly
serious logical jump in the presentation. While all constructions and theorems
are stated in terms of real numbers, in the proofs we use complex numbers rather
heavily.

3.8.16 Definition (sin and cos) The sine function, denoted by sin : R→ R, and the cosine
function, denoted by cos : R→ R, are defined by

sin(x) =
∞∑
j=1

(−1) j+1x2 j−1

(2 j − 1)!
, cos(x) =

∞∑
j=0

(−1) jx2 j

(2 j)!
,

respectively. •

In Figure 3.18 we show the graphs of the functions sin and cos.
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Figure 3.18 The functions sin (left) and cos (right)

3.8.17 Notation Following normal conventions, we shall frequently write sin x and cos x
rather than the more correct sin(x) and cos(x). •

An application of Proposition 2.4.15 and Theorem 3.7.13 shows that the power
series expansions for sin and cos are, in fact, convergent for all x, and so the
functions are indeed defined with domain R.

First we prove the existence of a number having the property that we know π to
possess. In fact, we construct the number π

2 , where π is as given in Section 2.4.3.
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3.8.18 Theorem (Construction of π) There exists a positive real number p0 such that

p0 = inf{x ∈ R>0 | cos(x) = 0}.

Moreover, p0 =
π
2 .

Proof First we record the derivative properties for sin and cos.

1 Lemma The functions sin and cos are infinitely differentiable and satisfy sin′ = cos and
cos′ = − sin.
Proof This follows directly from Proposition 3.7.20 where it is shown that convergent
power series can be differentiated term-by-term. ▼

Let us now perform some computations using complex variables that will be
essential to many of the proofs in this section. We suppose the reader to be acquainted
with the necessary elementary facts about complex numbers. The next observation is
the most essential along these lines. We denote SC1 = {z ∈ C | |z| = 1}, and recall that all
points in z ∈ S1

C
can be written as z = eix for some x ∈ R, and that, conversely, for any

x ∈ R we have eix
∈ S1
C

.

2 Lemma eix = cos(x) + i sin(x).
Proof This follows immediately from the C-power series for the complex exponential
function:

ez =

∞∑
j=0

x j

j!
.

Substituting z = ix, using the fact that i2 j = (−1) j for all j ∈ Z>0, and using Proposi-
tion 2.4.30, we get the desired result. ▼

From the preceding lemma we then know that cos(x) = Re(eix) and that sin(x) =
Im(eix). Therefore, since eix

∈ S1
C

, we have

cos(x)2 + sin(x)2 = 1. (3.26)

Let us show that the set {x ∈ R>0 | cos(x) = 0} is nonempty. Suppose that it is
empty. Since cos(0) = 1 and since cos is continuous, it must therefore be the case
(by the Intermediate Value Theorem) that cos(x) > 0 for all x ∈ R. Therefore, by
Lemma 1, sin′(x) > 0 for all x ∈ R, and so sin is strictly monotonically increasing by
Proposition 3.2.23. Therefore, since sin(0) = 0, sin(x) > 0 for x > 0. Therefore, for
x1, x2 ∈ R>0 satisfying x1 < x2, we have

sin(x1)(x2 − x1) <
∫ x2

x1

sin(x) dx = cos(x2) − cos(x1) ≤ 2,

where we have used the fact that sin is strictly monotonically increasing, Lemma 1, the
Fundamental Theorem of Calculus, and (3.26). We thus have arrive at the contradiction
that lim supx2→∞

sin(x1)(x2 − x1) ≤ 2.
Since cos is continuous, the set {x ∈ R>0 | cos(x) = 0} is closed. Therefore,

inf{x ∈ R>0 | cos(x) = 0} is contained in this set, and this gives the existence of p0.
Note that, by (3.26), sin(p0) ∈ {−1, 1}. Since sin(0) = 0 and since sin(x) = cos(x) > 0 for
x ∈ [0, p0), we must have sin(p0) = 1.

The following property of p0 will also be important.
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3 Lemma cos( p0
2 ) = sin( p0

2 ) = 1
√

2
.

Proof Let x0 = cos( p0
2 ), y0 = sin( p0

2 ), and z0 = x0+ iy0. Then, using Proposition II-3.4.1,

(ei
p0
2 )2 = eip0 = i

since cos(p0) = 0 and sin(p0) = 1. Thus

(ei
p0
2 )4 = i2 = −1,

again using Proposition II-3.4.1. Using the definition of complex multiplication we
also have

(ei
p0
2 )4 = (x0 + iy0)4 = x4

0 − 6x2
0y2

0 + y4
0 + 4ix0y0(x2

0 − y2
0).

Thus, in particular, x2
0−y2

0 = 0. Combining this with x2
0+y2

0 = 1 we get x2
0 = y2

0 =
1
2 . Since

both x0 and y0 are positive by virtue of p0
2 lying in (0, p0), we must have x0 = y0 =

1
√

2
,

as claimed. ▼

Now we show, through a sequence of seemingly irrelevant computations, that
p0 =

π
2 . Define the function tan: (−p0, p0) → R by tan(x) = sin(x)

cos(x) , noting that tan is
well-defined since cos(−x) = cos(x) and since cos(x) > 0 for x ∈ [0, p0). We claim that
tan is continuous and strictly monotonically increasing. We have, using the quotient
rule,

tan′(x) =
cos(x)2 + sin(x)2

cos(x)2 =
1

cos(x)2 .

Thus tan′(x) > 0 for all x ∈ (−p0, p0), and so tan is strictly monotonically increasing by
Proposition 3.2.23. Since sin(p0) = 1 and (since sin(−x) = − sin(x)) since sin(−p0) = −1,
we have

lim
x↑p0

tan(x) = ∞, lim
x↓p0

tan(x) = −∞.

This shows that tan is an invertible and differentiable mapping from (−p0, p0) to R.
Moreover, since tan′ is nowhere zero, the inverse, denoted by tan−1 : R→ (−p0, p0), is
also differentiable and the derivative of its inverse is given by

(tan−1)′(x) =
1

tan′(tan−1(x))
,

as per Theorem 3.2.24. We further claim that

(tan−1)′(x) =
1

1 + x2 .

Indeed, our above arguments show that (tan−1)′(x) = (cos(tan−1(x)))2. If y = tan−1(x)
then

sin(y)
cos(y)

= x.

Since sin(y) > 0 for y ∈ (0, p0), we have sin(y) =
√

1 − cos(y) by (3.26). Therefore,

1 − cos(y)2

cos(y)2 = x2 =⇒ cos(y)2 =
1

1 + x2
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as desired.
By the Fundamental Theorem of Calculus we then have∫ 1

0

1
1 + x2 dx = tan−1(1) − tan−1(0).

Since tan−1(1) = p0
2 by Lemma 3 above and since tan−1(0) = 0 (and using part (v) of

Proposition 3.8.19 below), we have∫ 1

0

1
1 + x2 dx =

p0

2
. (3.27)

Now recall from Example 3.7.28–1 that we have

1
1 + x2 =

∞∑
j=0

(−1) jx2 j,

with the series converging uniformly on any compact subinterval of (−1, 1). Therefore,
by Proposition 3.7.20, for ϵ ∈ (0, 1) we have∫ 1−ϵ

0

1
1 + x2 dx =

∫ 1−ϵ

0

∞∑
j=0

(−1) jx2 j dx

=

∞∑
j=0

(−1) j
∫ 1−ϵ

0
x2 j dx

=

∞∑
j=0

(−1) j (1 − ϵ)2 j+1

2 j + 1
.

The following technical lemma will allow us to conclude the proof.

4 Lemma lim
ϵ↓0

∞∑
j=0

(−1)j (1 − ϵ)
2j+1

2j + 1
=

∑
j=0

(−1)j

2j + 1
.

Proof By the Alternating Test, the series
∑
∞

j=0(−1) j (1−ϵ)2 j+1

2 j+1 converges for ϵ ∈ [0, 2].
Define f : [0, 2]→ R by

f (x) =
∞∑
j=0

(−1) j+1 (x − 1)2 j+1

2 j + 1

and define g : [−1, 1]→ R by

g(x) =
∞∑
j=0

(−1) j+1 x2 j+1

2 j + 1

so that f (x) = g(x − 1). Since g is defined by a R-convergent power series, by Corol-
lary 3.7.18 g is continuous. In particular,

g(−1) = lim
x↓−1

∞∑
j=0

(−1) j+1 x2 j+1

2 j + 1
.
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From this it follows that

f (0) = lim
x↓0

∞∑
j=0

(−1) j+1 (x − 1)2 j+1

2 j + 1
,

which is the result. ▼

Combining this with (3.27) we have

p0

2
= lim

ϵ↓0

∫ 1−ϵ

0

1
1 + x2 dx = lim

ϵ↓0

∞∑
j=0

(−1) j (1 − ϵ)2 j+1

2 j + 1
=

∑
j=0

(−1) j

2 j + 1
=
π
4
,

using the definition of π in Definition 2.4.20. ■

Now that we have on hand a reasonable characterisation of π, we can proceed
to state the familiar properties of sin and cos.

3.8.19 Proposition (Properties of sin and cos) The functions sin and cos enjoy the following
properties:

(i) sin and cos are infinitely differentiable, and furthermore satisfy sin′ = cos and
cos′ = − sin;

(ii) sin(−x) = sin(x) and cos(−x) = cos(x) for all x ∈ R;
(iii) sin(x)2 + cos(x)2 = 1 for all x ∈ R;
(iv) sin(x + 2π) = sin(x) and cos(x + 2π) = cos(x) for all x ∈ R;
(v) the map

[0, 2π) ∋ x 7→ (cos(x), sin(x)) ∈ {(x,y) ∈ R2
| x2 + y2 = 1}

is a bijection.
Proof (i) This was proved as Lemma 1 in the proof of Theorem 3.8.18.

(ii) This follows immediately from the R-power series for sin and cos.
(iii) This was proved as (3.26) in the course of the proof of Theorem 3.8.18.
(iv) Since ei π2 = i by Theorem 3.8.18, we use Proposition II-3.4.1 to deduce

e2πi = (ei π2 )4 = i4 = 1.

Again using Proposition II-3.4.1 we then have

ez+2πi = eze2πi = ez

for all z ∈ C. Therefore, for x ∈ R, we have

cos(x + 2π) + i sin(x + 2π) = ei(x+2π) = eix = cos(x) + i sin(x),

which gives the result.
(v) Denote S1 = {(x, y) ∈ R2

| x2 + y2 = 1}, and note that, if we make the standard
identification of C with R2 (as we do), then S1

C
(see the proof of Theorem 3.8.18)
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becomes identified with S1, with the identification explicitly being x + iy 7→ (x, y).
Thus the result we are proving is equivalent to the assertion that the map

f : [0, 2π) ∋ x 7→ eix
∈ S1
C

is a bijection. This is what we will prove. By part (iii), this map is well-defined in the
sense that it actually does take values in S1

C
. Suppose that eix1 = eix2 for distinct points

x1, x2 ∈ [0, 2π), and suppose for concreteness that x1 < x2. Then x2 − x1 ∈ (0, 2π), and
1
4 (x2 − x1) ∈ (0, π2 ). We then have

eix1 = eix2 =⇒ ei(x2−x1) = 1 =⇒ (ei 1
4 (x2−x1))4 = 1.

Let ei 1
4 (x2−x1) = ξ+ iη. Since 1

4 (x2 − x1) ∈ (0, π2 ), we saw during the course of the proof of
Theorem 3.8.18 that ξ, η ∈ (0, 1). We then use the definition of complex multiplication
to compute

(ei 1
4 (x2−x1))4 = ξ4

− 6ξ2η2 + η4 + 4iξη(ξ2
− η2).

Since (ei 1
4 (x2−x1))4 = 1 is real, we conclude that ξ2

− η2 = 0. Combining this with
ξ2 + η2 = 1 gives ξ2 = η2 = 1

2 . Since both ξ and η are positive we have ξ = η = 1
√

2
.

Substituting this into the above expression for (ei 1
4 (x2−x1))4 gives (ei 1

4 (x2−x1))4 = −1. Thus
we arrive at a contradiction, and it cannot be the case that eix1 = eix2 for distinct
x1, x2 ∈ [0, 2π). Thus f is injective.

To show that f is surjective, we let z = x + iy ∈ S1
C

, and consider four cases.
1. x, y ≥ 0: Since cos is monotonically decreasing from 1 to 0 on [0, π2 ], there exists

θ ∈ [0, π2 ] such that cos(θ) = x. Since sin(θ)2 = 1 − cos(θ)2 = 1 − x2 = y2, and since
sin(θ) ≥ 0 for θ ∈ [0, π2 ], we conclude that sin(θ) = y. Thus z = eiθ.

2. x ≥ 0 and y ≤ 0: Let ξ = x and η = −y so that ξ, η ≥ 0. From the preceding case
we deduce the existence of ϕ ∈ [0, π2 ] such that eiϕ = ξ + iη. Thus cos(ϕ) = x and
sin(ϕ) = −y. By part (ii) we then have cos(−ϕ) = x and sin(−ϕ) = y, and we note
that −ϕ ∈ [−π2 , 0]. Define

θ =

2π − ϕ, ϕ ∈ (0, π2 ],
0, ϕ = 0.

By part (iv) we then have cos(θ) = x and sin(θ) = y, and that θ ∈ [ 3π
2 , 2π) if

ϕ ∈ (0, π2 ].
3. x ≤ 0 and y ≥ 0: Let ξ = −x and η = y si that ξ, η ≥ 0. As in the first case we have

ϕ ∈ [0, π2 ] such that cos(ϕ) = ξ and sin(ϕ) = η. We then have − cos(ϕ) = x and
sin(ϕ) = y. Next define θ = π − ϕ and note that

eiθ = eiπe−iϕ = −(cos(ϕ) − i sin(ϕ)) = − cos(ϕ) + i sin(ϕ) = x + iy,

as desired.
4. x ≤ 0 and y ≤ 0: Take ξ = −x and η = −y so that ξ, η ≥ 0. As in the first case,

we have ϕ ∈ [0, π2 ] such that cos(ϕ) = ξ = −x and sin(ϕ) = η = −y. Then, taking
θ = π + ϕ, we have

eiθ = eiπeiϕ = −(cos(ϕ) + i sin(ϕ)) = x + iy,

as desired. ■
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From the basic construction of sin and cos that we give, and the properties
that follow directly from this construction, there is of course a great deal that
one can proceed to do; the resulting subject is broadly called “trigonometry.”
Rigorous proofs of many of the facts of basic trigonometry follow easily from our
constructions here, particularly since we give the necessary properties, along with
a rigorous definition, of π. We do assume that the reader has an acquaintance with
trigonometry, as we shall use certain of these facts without much ado.

The reciprocals of sin and cos are sometimes used. Thus we define csc : (0, 2π)→
R and sec : (−π, π)→ R by csc(x) = 1

sin(x) and sec(x) = 1
cos(x) . These are the cosecant

and secant functions, respectively. One can verify that the restrictions of csc and
sec to (0, π2 ) are bijective. In Figure 3.19
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Figure 3.19 Cosecant and its inverse (top) and secant and its in-
verse (bottom) on (0, π2 )

One useful and not perfectly standard construction is the following. Define
tan: (−π2 ,

π
2 ) → R by tan(x) = sin(x)

cos(x) , noting that the definition makes sense since
cos(x) > 0 for x ∈ (−π2 ,

π
2 ). In Figure 3.20 we depict the graph of tan and its

inverse tan−1. During the course of the proof of Theorem 3.8.18 we showed that
the function tan had the following properties.

3.8.20 Proposition (Properties of tan) The function tan enjoys the following properties:
(i) tan is infinitely differentiable;
(ii) tan is strictly monotonically increasing;
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Figure 3.20 The function tan (left) and its inverse tan−1 (right)

(iii) the inverse of tan, denoted by tan−1 : R→ (−π2 ,
π
2 ) is infinitely differentiable.

It turns out to be useful to extend the definition of tan−1 to (−π, π] by defining
the function atan: R2

\ {(0, 0)} → (−π, π] by

atan(x, y) =


tan−1( y

x ), x > 0,
π − tan−1( y

x ), x < 0,
π
2 , x = 0, y > 0,
−
π
2 , x = 0, y < 0.

As we shall see in Section II-3.1 when we discuss the geometry of the complex
plane, this function returns that angle of a point (x, y) measured from the positive
x-axis.

3.8.5 Hyperbolic trigonometric functions

In this section we shall quickly introduce the hyperbolic trigonometric func-
tions. Just why these functions are called “trigonometric” is only best seen in the
setting of C-valued functions in Section II-3.4.1.

3.8.21 Definition (sinh and cosh) The hyperbolic sine function, denoted by sinh: R→ R,
and the hyperbolic cosine functionm denoted by cosh: R→ R, are defined by

sinh(x) =
∞∑
j=1

x2 j−1

(2 j − 1)!
, cosh(x) =

∞∑
j=0

x2 j

(2 j)!
,

respectively. •

In Figure 3.21 we depict the graphs of sinh and cosh.
As with sin and cos, an application of Proposition 2.4.15 and Theorem 3.7.13

shows that the power series expansions for sinh and cosh are convergent for all x.
The following result gives some of the easily determined properties of sinh and

cosh.
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Figure 3.21 The functions sinh (left) and cosh (right)

3.8.22 Proposition (Properties of sinh and cosh) The functions sinh and cosh enjoy the
following properties:

(i) sinh(x) = 1
2 (ex
− e−x) and cosh(x) = 1

2 (ex + e−x);
(ii) sinh and cosh are infinitely differentiable, and furthermore satisfy sinh′ = cosh and

cosh′ = sinh;
(iii) sinh(−x) = sinh(x) and cosh(−x) = cosh(x) for all x ∈ R;
(iv) cosh(x)2

− sinh(x)2 = 1 for all x ∈ R.
Proof (i) These follows directly from theR-power series definitions for exp, sinh, and
cosh.

(ii) This follows from Corollary 3.7.21 and the fact thatR-convergent power series
can be differentiated term-by-term.

(iii) These follow directly from the R-power series for sinh and cosh.
(iv) This can be proved directly using part (i). ■

Also sometimes useful is the hyperbolic tangent function tanh: R→ R defined
by tanh(x) = sinh(x)

cosh(x) .

Exercises

3.8.1 For representative values of a ∈ R>0, give the graph of Pa, showing the
features outlined in Proposition 3.8.10.

3.8.2 For representative values of a ∈ R, give the graph of Pa, showing the features
outlined in Proposition 3.8.11.

3.8.3 Prove the following trigonometric identities:
(a) cos a cos b = 1

2 (cos(a + b) + cos(a − b));
(b) cos a sin b = 1

2 (sin(a + b) − sin(a − b));
(c) sin a sin b = 1

2 (cos(a − b) − cos(a + b)).
3.8.4 Prove the following trigonometric identities:

(a)
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3.8.5 Show that tanh is injective.



Chapter 4

Algebraic structures

During the course of these volumes, we shall occasionally, sometimes in essen-
tial ways, make use of certain ideas from abstract algebra, particular abstract linear
algebra. In this chapter we provide the necessary background in abstract algebra,
saving the subject of linear algebra for Chapter 5. Our idea is to provide sufficient
detail to give some context to the instances when we make use of algebra.

Do I need to read this chapter? Provided that the reader is comfortable with the
very basic arithmetic ideas concerning integers, real numbers, complex numbers,
and polynomials, the material in Sections 4.1–4.7 can probably be skipped until
it is needed in the course of the text. When it is needed, however, a reader with
little exposure to abstract algebra can expect to expend some effort even for the
basic material we present here. The material in Section 4.5 appears immediately
in Chapter IV-1 in our initial consideration of the concept of spaces of signals. For
this reason, the material should be considered essential. However, it is possible
that certain parts of the chapter can be skimmed at a first reading, since the most
essential concept is that of a vector space as defined and discussed in Section 4.5.
The preparatory material of Sections 4.1–4.7 in not essential for understanding
what a vector space is, particularly if one is comfortable with the algebraic structure
of the set R of real numbers and the set C of complex numbers. Section 4.8 will
not be important for significant portions of the text, so can easily be skipped until
needed or wanted. •
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Section 4.1

Groups

One of the basic structures in mathematics is that of a group. A group structure
often forms the building block for more particular algebraic structures.

Do I need to read this section? Since the material in this section is not difficult,
although it is abstract, it may be useful reading for those who feel as if they need
to get some familiarity with simple abstract constructions and proofs. The content
of the section itself is necessary reading for those who want to understand the
material in Sections 4.2–4.4. •

4.1.1 Definitions and basic properties

There are a few structures possessing less structure than a group, so we first
define these. Many of our definitions of algebraic structure involve the notion of a
“binary operation,” so let us make this precise.

4.1.1 Definition (Binary operation) A binary operation on a set S is a map B : S×S→ S.
A pair (S,B) where B is a binary operation on S is a magma. •

We begin with one of the most basic of algebraic structures, even more basic
than a group.

4.1.2 Definition (Semigroup) A semigroup is a nonempty set S with a binary operation
on S, denoted by (s1, s2) 7→ s1 · s2, having the property that

(i) (s1 · s2) · s3 = s1 · (s2 · s3) for all s1, s2, s3 ∈ S (associativity). •

Slightly more structured than a semigroup is the idea of a monoid.

4.1.3 Definition (Monoid) A monoid is a nonempty set M with a binary operation on M,
denoted by (m1,m2) 7→ m1 ·m2, having the following properties:

(i) m1 · (m2 ·m3) = (m1 ·m2) ·m3 for all m1,m2,m3 ∈ M (associativity);
(ii) there exists e ∈ M such that m · e = e ·m = m for all m ∈ M (identity element). •

Now we define what we mean by a group.

4.1.4 Definition (Group) A group is a nonempty set G endowed with a binary operation,
denoted by (g1, g2) 7→ g1 · g2, having the following properties:

(i) g1 · (g2 · g3) = (g1 · g2) · g3 for all g1, g2, g3 ∈ G (associativity);
(ii) there exists e ∈ G such that g · e = e · g = g for all g ∈ G (identity element);
(iii) for each g ∈ G there exists g−1

∈ G such that g · g−1 = g−1
· g = e (inverse

element).
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A group is Abelian if g1 · g2 = g2 · g1 for all g1, g2 ∈ G. •

As we did when we defined the operation of multiplication in R, we will often
omit the symbol “·” for the binary operation in a group (or semigroup or monoid),
and simply write g1g2 in place of g1 · g2. When talking simultaneously about more
than one group, it is sometimes advantageous to denote the identity element of a
group G by eG.

Clearly the following inclusions hold:

Semigroups ⊆ Monoids ⊆ Groups.

Throughout these volumes, we shall encounter many examples of groups. For
the moment, let us give some very simple examples that illustrate the difference
between the ideas of a semigroup, monoid, and group.

4.1.5 Examples (Semigroups, monoids, and groups)
1. A singleton {x}with the (only possible) binary operation x ·x = x is a group with

identity element x and with inverse element defined by x−1 = x.
2. The set Z>0 with the binary operation of addition is a semigroup. However, it

is not a monoid since it has no identity element, and it is not a group, because
it has no identity element and so there are also no inverse elements.

3. The setZ>0 with the binary operation of multiplication is a monoid with identity
element e = 1. It is not a group.

4. The set Z≥0 with the binary operation of addition is a monoid with identity
element 0, but not a group.

5. The setZ≥0 with the binary operation of multiplication is a monoid with identity
element 1. It is not a group.

6. The setZwith the binary operation of addition is a group with identity element
0, and with inverse defined by k−1 = −k.

7. The setZwith the binary operation of multiplication is a monoid with identity
1, but it is not a group.

8. The setsQ andRwith the binary operations of addition are groups with identity
element 0 and with inverse defined by x−1 = −x.

9. The setsQ andRwith the binary operations of multiplication are monoids with
identity element 1. They are not groups.

10. The setsQ∗ ≜ Q\{0} andR∗ ≜ R\{0}with the binary operation of multiplication
are groups with identity element 1 and with inverse given by x−1 = 1

x .
11. Let Sk, k ∈ Z>0, denote the set of bijections of the set {1, . . . , k}, and equip Sk

with the binary operation (σ1, σ2) 7→ σ1 ◦ σ2. One can easily verify that Sk is
a group with identity given by the identity map, and with inverse given by
the inverse map. This group is called the permutation group or the symmetric
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group on k symbols. It is conventional to represent a permutation σ ∈ Sk using
the following matrix-type representation:(

1 2 · · · k
σ(1) σ(2) · · · σ(k)

)
.

Thus the first row contains the elements {1, . . . , k} in order, and the second row
contains the images of these elements under σ.
We claim that Sk is Abelian when k ∈ {1, 2}, and otherwise is not Abelian. We
leave it to the reader to check directly that S1 and S2 are Abelian. Let us show
that S3 is not Abelian. Define σ1, σ2 ∈ S3 by

σ1(1) = 2, σ1(2) = 1, σ1(3) = 3,
σ2(1) = 1, σ2(2) = 3, σ2(3) = 2.

One can then verify that

σ1 ◦ σ2(1) = 2, σ1 ◦ σ2(2) = 3, σ1 ◦ σ2(3) = 1,
σ2 ◦ σ1(1) = 3, σ2 ◦ σ1(2) = 1, σ2 ◦ σ1(3) = 2.

Thus S3 in indeed not Abelian.
ThatSk is not Abelian for k > 3 follows since in Example 4.1.12–7 we will show
thatS3 is a isomorphic to a subgroup ofSk (asking the readers forgiveness that
the terms “isomorphic” and “subgroup” have yet to be defined; they will be
shortly).
We shall have more to say about the symmetric group in Section 4.1.6.

All groups in the above list may be verified to be Abelian, with the exception of
the permutation group on k symbols for k ≥ 2. •

Having introduced the notions of a semigroup and monoid, we shall not make
much use of them. They are, however, useful in illustrating what a group is and is
not.

The following properties of groups are more or less easily verified, and we leave
the verifications to the reader as Exercise 4.1.1.

4.1.6 Proposition (Elementary properties of groups) If G is a group, then the following
statements hold:

(i) there is exactly one element e ∈ G that satisfies g · e = e ·g = g for all g ∈ G, i.e., the
identity element in a group is unique;

(ii) for g ∈ G, there exists exactly one element g′ ∈ G such that g′ · g = g · g′ =
e, i.e., inverse elements are unique;

(iii) for g ∈ G, (g−1)−1 = g;
(iv) for g1,g2 ∈ G, (g1 · g2)−1 = g−1

2 · g
−1
1 ;
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(v) if g1,g2,h ∈ G satisfy h · g1 = h · g2, then g1 = g2;
(vi) if g1,g2,h ∈ G satisfy g1 · h = g2 · h, then g1 = g2;
(vii) if g1,g2 ∈ G, then there exists a unique h ∈ G such that g1 · h = g2;
(viii) if g1,g2 ∈ G, then there exists a unique h ∈ G such that h · g1 = g2.

There is some useful notation associated with iterated group multiplication.
Namely, if G is a semigroup, if g ∈ G, and if k ∈ Z>0, then we define gk

∈ G
iteratively by g1 = g and gk = g · gk−1. The following result records the fact that this
notation behaves as we expect.

4.1.7 Proposition (Properties of gk) If G is a semigroup, if g ∈ G, and if k1,k2 ∈ Z>0,
then the following statements hold:

(i) gk1 · gk2 = gk1+k2 ;
(ii) (gk1)k2 = gk1k2 .

Proof (i) Let g ∈ G and k1 ∈ Z>0. If k2 = 1 then, by definition,

gk1 · gk2 = gk1 · g = gk1+1 = gk1+k2 ,

so the result holds for k2 = 1. Now suppose that the result holds for k2 ∈ {1, . . . , k}.
Then, if k2 = k + 1,

gk1 gk2 = gk1 · gk+1 = gk1 · gk
· g = gk1+k

· g = gk1+k+1 = gk1+k2 ,

giving the result by induction on k2.
(ii) Let g ∈ G and k1 ∈ Z>0. If k2 = 1 then clearly (gk1)k2 = gk1k2 . Now suppose that

the result holds for k2 ∈ {1, . . . , k}, and for k2 = k + 1 compute

(gk1)k2 = (gk1)k+1 = (gk1)k
· gk1 = gk1k

· gk1 = gk1k+k1 = gk1(k+1) = gk1k2 ,

giving the result by induction on k2. ■

4.1.8 Notation (gk for Abelian groups) When a group is Abelian, then the group
operation is sometimes thought of as addition, since it shares the property of
commutativity possessed by addition. In such cases, one often write “kg” in place
of “gk” to reflect the idea that the group operation is “additive.” •

4.1.2 Subgroups

It is often useful to consider subsets of groups that respect the group operation.

4.1.9 Definition (Subgroup) A nonempty subset H of a group G is a subgroup if
(i) h1 · h2 ∈ H for all h1, h2 ∈ H and
(ii) h−1

∈ H for all h ∈ H. •

The following property of subgroups are easily verified, as the reader can see
by doing Exercise 4.1.5.
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4.1.10 Proposition (A subgroup is a group) A nonempty subset H ⊆ G of a group G is a
subgroup if and only if H is a group using the binary operation of multiplication in G,
restricted to H.

4.1.11 Remark (On sub“objects”) Mathematics can be perhaps thought of as the study
of sets having some prescribed structure. It is frequent that one is interested in
subsets which inherit this structure from the superset. Such subsets are almost
always named with the prefix “sub.” The above notion of a subgroup is our first
encounter with this idea, although it will come up frequently in these volumes. •

Let us give some examples of subgroups.

4.1.12 Examples (Subgroups)
1. For any group G, {e} is a subgroup, often called the trivial subgroup.
2. Let k ∈ Z>0. The subset kZ of Z defined by

kZ = {kj | j ∈ Z}

(i.e., kZ consists of multiples of k) is a subgroup of Z if Z possesses the binary
operation of addition.

3. Z and Q are subgroups of R if R possesses the binary operation of addition.
4. Q∗ is a subgroup of R∗ if R possesses the binary operation of multiplication.
5. Z is not a subgroup of Q if Q possesses the binary operation of multiplication.
6. Neither Z>0 nor Z≥0 are subgroups of Z if Z possesses the binary operation of

addition.
7. Let l, k ∈ Z>0 with l < k. Let Sl,k be the subset of Sk defined by

Sl,k = {σ ∈ Sk | σ( j) = j, j > l}.

We claim thatSl,k is a subgroup ofSk. It is clear by definition that, if σ1, σ2 ∈ Sl,k,
then h1 ◦ h2 ∈ Sl,k. If σ ∈ Sl,k then let us write ψ( j) = σ( j) for j ∈ {1, . . . , l}. This
then defines ψ ∈ Sl. One can then directly verify that σ−1 is defined by

σ−1( j) =

ψ−1( j), j ∈ {1, . . . , l},
j, j > l.

Thus σ−1
∈ Sl,k, as desired.

Note that our above computations show that essentially Sl,k consists of a copy
of Sl sitting inside Sk. In the language we are about to introduce in Defini-
tion 4.1.22, Sl,k is isomorphic to Sl (see Example 4.1.25–2). •

An important idea in many algebraic settings is that of the smallest subobject
containing some subset. For groups this construction rests on the following result.
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4.1.13 Proposition (Existence of subgroup generated by a subset) Let G be a group
and let S ⊆ G. Then there exists a subgroup HS ⊆ G such that

(i) S ⊆ HS and
(ii) if H ⊆ G is a subgroup for which S ⊆ H then HS ⊆ H.

Moreover,
HS = {g1 · · · gk | k ∈ Z>0, gj ∈ S or g−1

j ∈ S, j ∈ {1, . . . ,k}}

is the unique subgroup having the above two properties.
Proof Let

HS = {H ⊆ G | H is a subgroup with S ⊆ H}.

Since G ∈ HS it follows that HS is nonempty. We claim that HS ≜ ∩H∈HSH has the
required properties. First let g ∈ S. Then g ∈ H for every H ∈ HS. Thus g ∈ HS and
so S ⊆ HS. Now let g1, g2 ∈ HS. Then g1, g2 ∈ H for every H ∈ HS and so g1 · g2 ∈ H
for every H ∈ HS. Similarly, if g ∈ H for every H ∈ HS then g−1

∈ H for every H ∈ HS.
Thus HS is a subgroup containing S. Furthermore, if H is a subgroup containing S and
if g ∈ HS then clearly g ∈ H since H ∈ HS. Thus HS ⊆ H. We, moreover, claim that there
is only one subgroup having the two stated properties. Indeed, suppose that H′S ⊆ G
is a subgroup containing S and if H′S is contained in any subgroup containing S. Then
H′S ⊆ HS. Moreover, since H′S ∈ HS we have HS ⊆ H′S. Thus H′S = HS.

To prove the final assertion it now suffices to show that

H′S = {g1 · · · gk | k ∈ Z>0, g j ∈ S or g−1
j ∈ S, j ∈ {1, . . . , k}}

is a subgroup containing S and has the property that H′S ⊆ H for any subgroup H
containing S. Clearly S ⊆ H′S. Now let

g1 · · · gk, g′1, . . . , g
′

k′ ∈ H′S.

Then clearly
g1 · · · gk · g′1, . . . , g

′

k′ ∈ H′S.

Moreover,
(g1 · · · gk)−1 = g−1

k · · · g
−1
1 ∈ H′S

and so H′S is a subgroup. Now let H be a subgroup containing S. Then g1 · g2 ∈ H and
g−1
∈ H for every g, g1, g2 ∈ S. This means that g1 · · · gk ∈ H for every g1, . . . , gk ∈ G

such that either g j or g−1
j are in S, j ∈ {1, . . . , k}. Thus H′S ⊆ H and so we conclude that

H′S = HS. ■

The following notion is one that we shall occasionally make reference to.

4.1.14 Definition (Subgroup generated by a subset) If G is a group and if S ⊆ G, the
subgroup HS of Proposition 4.1.13 is the subgroup generated by S, denoted ⟨S⟩. •
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4.1.15 Remark (On “generated by”) The previous definition is an instance of an impor-
tant idea in mathematics, particularly with algebraic structures. The idea is that
one has some subset of a set with structure, and one wants to talk about the smallest
subset containing the given subset, and which possesses the given structure. For
groups, this is the clear content of Proposition 4.1.13, and we shall see it repeatedly
in other settings. •

4.1.3 Quotients and products

Let us now turn to some important ideas connected with subgroups.

4.1.16 Definition (Left and right cosets) Let G be a group with H a subgroup.
(i) The left coset of H through g ∈ G is the set gH = {gh | h ∈ H}.
(ii) The right coset of H through g ∈ G is the set Hg = {hg | h ∈ H}.

The set of left (resp. right) cosets is denoted by G/H (resp. H\G), and the map
assigning to g ∈ G the coset gH ∈ G/H (resp. Hg ∈ H\G) is denoted by πH (resp. Hπ),
and is called the canonical projection. •

Of course, if G is Abelian, then gH = Hg for each g ∈ G, and, as a consequence,
the sets G/H and H\G are the same. It is common to refer to G/H or H\G as the
quotient of G by H.

An alternative description of cosets is given by the following result.

4.1.17 Proposition (Cosets as equivalence classes) The set G/H (resp. H\G) is the same
as the set of equivalence classes in G associated to the equivalence relation g1 ∼ g2 if
g−1

2 g1 ∈ H (resp. g2g−1
1 ∈ H).

Proof We prove the proposition only for left cosets, and the proof for right cosets
follows, mutatis mutandis. First let us prove that the relation defined by g1 ∼ g2 if
g−1

2 g1 ∈ H is an equivalence relation.

1. Note that g−1g = e ∈ H, so the relation is reflexive.
2. If g1 ∼ g2 then g−1

2 g1 ∈ H, which implies that (g−1
2 g1)−1

∈ H since H is a subgroup.
By Proposition 4.1.6 this means that g−1

1 g2 ∈ H; i.e., that g2 ∼ g1. Thus the relation
is symmetric.

3. If g1 ∼ g2 and g2 ∼ g3, or equivalently that g2 ∼ g1 and g3 ∼ g2, then g−1
1 g2, g−1

2 g3 ∈

H. Then, since H is a subgroup,

(g−1
1 g2)(g−1

2 g3) ∈ H =⇒ g−1
1 g3 ∈ H.

Thus g3 ∼ g1, or g1 ∼ g3, and the relation is transitive.
Now let g ∈ G and let g′ ∈ gH. Then g′ = gh for some h ∈ H, so g−1g′ ∈ H, so g′ ∼ g.
Conversely, suppose that g′ ∼ g so that g−1g′ = h for some h ∈ H. Then g′ = gh, so
g′ ∈ gH. This gives the result. ■

Let us give some examples of cosets and collections of cosets.
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4.1.18 Examples (Cosets)
1. Let k ∈ Z>0. Consider the group Z with the binary operation of addition,

and also consider the subgroup kZ consisting of multiples of k. We claim that
Z/kZ is a set with k elements. Using the Theorem 4.2.45 below, we see that
every element of Z lies in the coset of exactly one of the elements from the set
{0, 1, . . . , k − 1}, which gives our claim. For reasons which will become clear in
Example 4.2.2–4 it is convenient to denote the coset through j ∈ Z by j + kZ.
We will frequently encounter the groupZ/kZ, and so give it the shorthandZk.

2. Consider the group R equipped with the binary operation of addition, and
consider the subgroup Q. We claim that the set R/Q is uncountable. Indeed, if
it were not, then this would imply that R is the countable union of cosets, and
each coset itself must be countable. That is to say, if R/Q is countable, then R
is a countable union of countable sets. But, by Proposition 1.7.16, this means
that R is countable. However, in Exercise 2.1.4 the reader is asked to show R
is actually not countable. The contradiction proves that R/Q is uncountable.
Further investigation of R/Q takes one into the topic of field extensions, which
we consider very briefly in Section 4.3.3, and then into Galois theory, which is
somewhat beyond our focus here.

3. Consider the permutation group S3 in 3 symbols and consider the subgroup
S2,3, which is isomorphic to S2 as we showed in Example 4.1.25–2. Let us
describe the cosets of S3/S2,3. Suppose that σ1, σ2 ∈ S3 lie in the same coset of
S2,3. Then it must hold that σ1 ◦ σ−1

2 (3) = 3, or equivalently that σ−1
1 (3) = σ−1

2 (3).
Thus cosets are identified by their having in common the fact that the same
elements in {1, 2, 3} are images of the element 3. The cosets are then easily seen
to be

(a)
{(

1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)}
,

(b)
{(

1 2 3
2 3 1

)
,

(
1 2 3
3 2 1

)}
, and

(c)
{(

1 2 3
3 1 2

)
,

(
1 2 3
1 3 2

)}
. •

Next we discuss a particular sort of subgroup that, as we shall see, is distin-
guished by the structure of its set of cosets.

4.1.19 Definition (Normal subgroup) A subgroup H of a group G is a normal subgroup
if gH = Hg for all g ∈ G. •

The following result explains why normal subgroups are interesting.

4.1.20 Proposition (Quotients by normal subgroups are groups) Let N be a normal
subgroup of G and define a binary operation on G/N by

(g1N,g2N) 7→ (g1g2)N.
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Then this binary operation satisfies the conditions for group multiplication.
Proof First let us show that this binary operation is well-defined. Let g1, g2, h1, h2 ∈ G
satisfy g1N = h1N and g2N = h2N. Then we must have g−1

1 h1 = n1 and g−1
2 h2 = n2 for

n1,n2 ∈ N, and then we compute

(h1h2N) = {h1h2n | n ∈ N} = {g1n1g2n2n | n ∈ N}
= {g1g2n3n2n | n ∈ N} = {g1g2n | n ∈ N} = (g1g2)N,

where n3 ∈ N is defined so that n1g2 = g2n3, this being possible by Exercise 4.1.8 since
N is normal.

To then verify that the (now) well-defined binary operation satisfies the conditions
for group multiplication is trivial. ■

Another useful construction for groups is the product of two groups.

4.1.21 Definition (Direct product of groups) If G and H are groups, their direct product
is the group G × H with the group operation (g1, h1) · (g2, h2) = (g1g2, h1h2). •

If H,K are subgroups of G, then we denote

HK = {hk | h ∈ H, k ∈ K}.

We note that it need not be the case that HK is itself a subgroup.

4.1.4 Group homomorphisms

Another important concept for groups, and for many other structures in math-
ematics, is that of a map that preserves the structure.

4.1.22 Definition (Group homomorphism, epimorphism, monomorphism, and iso-
morphism) For semigroups (resp. monoids, groups) G and H, a map ϕ : G→ H is
a:

(i) semigroup (resp. monoid, group) homomorphism, or simply a homomor-
phism, if ϕ(g1 · g2) = ϕ(g1) · ϕ(g2) for all g1, g2 ∈ G;

(ii) epimorphism if it is a surjective homomorphism;
(iii) monomorphism if it is an injective homomorphism;
(iv) isomorphism if it a bijective homomorphism. •

We shall mainly be concerned with group homomorphisms, although homo-
morphisms of semigroups and monoids will arise at times.

4.1.23 Remark (On morphisms of various sorts) As with the idea of a sub“object” as
discussed in Remark 4.1.11, the idea of a map between sets that preserves the
structure of those sets, e.g., the group structure in the case of a group homomor-
phism, is of fundamental importance. The expression “morphosis” comes from
Greek for “form,” whereas the prefixes “homo,” “epi,” “mono,” and “isos” are
from the Greek for roughly “alike,” “on,” “one,” and “equal,” respectively. •

The following result gives a couple of basic properties of homomorphisms.



4.1 Groups 417

4.1.24 Proposition (Properties of group homomorphisms) If G and H are monoids and
if ϕ : G→ H is a monoid homomorphism, then

(i) ϕ(eG) = eH, and
(ii) if G and H are additionally groups, then ϕ(g−1) = (ϕ(g))−1.

Proof (i) Let g ∈ G and note that

ϕ(eGg) = ϕ(geG) = ϕ(eG)ϕ(g) = ϕ(g)ϕ(eG) = ϕ(g).

In particular, ϕ(g)ϕ(eG) = ϕ(g)eH, and the result follows by multiplication by ϕ(g)−1.
(ii) Now, if g ∈ G then ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(eG) = eH, which shows that

ϕ(g−1) = (ϕ(g))−1. ■

4.1.25 Examples (Group homomorphisms)
1. If G and H are groups with identity elements eG and eH, respectively, then

the map ϕ : G → H defined by ϕ(g) = eH for all g ∈ G is readily verified
to be a homomorphism. It is an epimorphism if and only if H = {eH} and a
monomorphism if and only if G = {eG}.

2. Let l, k ∈ Z>0 with l < k. The map ϕ : Sl → Sk defined by

ϕ(σ)( j) =

σ( j), j ∈ {1, . . . , l},
j, j > l

is verified to be a monomorphism. In fact, it is easily verified to be an isomor-
phism from Sl to Sl,k ⊆ Sk. •

Associated to every homomorphism of groups are two important subsets, one
of the domain and one of the codomain of the homomorphism.

4.1.26 Definition (Image and kernel of group homomorphism) Let G and H be groups
and let ϕ : G→ H be a homomorphism.

(i) The image of ϕ is image(ϕ) = {ϕ(g) | g ∈ G}.
(ii) The kernel of ϕ is ker(ϕ) = {g ∈ G | ϕ(g) = eH}. •

The image and the kernel have useful properties relative to the group structure.

4.1.27 Proposition (Image and kernel are subgroups) If G and H are groups and if
ϕ : G→ H is a homomorphism, then

(i) image(ϕ) is a subgroup of H and
(ii) ker(ϕ) is a normal subgroup of G.

Proof (i) If g1, g2 ∈ G then ϕ(g1)ϕ(g2) = ϕ(g1g2) ∈ image(ϕ). From part (ii) of Proposi-
tion 4.1.24 we have (ϕ(g))−1

∈ image(ϕ) for every g ∈ G.
(ii) Let g1, g2 ∈ ker(ϕ). Then ϕ(g1g2) = ϕ(g1)ϕ(g2) = eH so that g1g2 ∈ ker(ϕ). If

g ∈ ker(ϕ) then
eH = ϕ(eG) = ϕ(gg−1) = ϕ(g)ϕ(g−1) = ϕ(g−1).
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Thus g−1
∈ ker(ϕ), and so ker(ϕ) is a subgroup. To show that ker(ϕ) is normal, let

g ∈ G and let h ∈ ker(ϕ). Then

ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)ϕ(g−1) = eH.

Thus ghg−1
∈ ker(ϕ) for every g ∈ G and h ∈ ker(ϕ). The result now follows by

Exercise 4.1.8. ■

The following result characterising group monomorphisms is simple, but is one
that we use continually, so it is worth recording.

4.1.28 Proposition (Characterisation of monomorphisms) A group homomorphism
ϕ : G→ H is a monomorphism if and only if ker(ϕ) = eG.

Proof Suppose that ker(ϕ) = {eG} and that ϕ(g1) = ϕ(g2). Then

eH = ϕ(g1)(ϕ(g2))−1 = ϕ(g1)ϕ(g−1
2 ) = ϕ(g1g−1

2 ),

implying that g1g−1
2 ∈ ker(ϕ) whence g1 = g2, and so ϕ is injective.

Conversely, suppose ϕ is a monomorphism and let g ∈ ker(ϕ). Thus ϕ(g) = eH.
However, since ϕ is a monomorphism and since ϕ(eG) = eH, we must have g = eG. ■

4.1.5 The isomorphism theorems

One of the central themes in mathematics is classification, and this means that
one wants to understand equivalence classes, where equivalence of two objects
means that there exists an isomorphism between them. For sets, this gives rise to
the notion of cardinality. For groups, this notion of equivalence is determined by the
notion of group isomorphism. In this section we give three fundamental and quite
elementary results that might be thought of as simple examples of the classification
project for groups. These go under the unimaginative names “First Isomorphism
Theorem,” “Second Isomorphism Theorem,” and “Third Isomorphism Theorem.”

All of the isomorphism theorems can be formulated as special instances of the
following result.

4.1.29 Theorem (Interconnection of normal subgroups and homomorphisms) Let G
and H be groups, let ϕ : G→ H be an homomorphism, and let N be a normal subgroup of G
contained in ker(ϕ). Then there exists a unique homomorphism ϕ : G/N → H satisfying
ϕ(gN) = ϕ(g) for every g ∈ G. Moreover,

(i) image(ϕ) = image(ϕ),

(ii) ker(ϕ) = ker(ϕ)/N, and
(iii) the following three statements are equivalent:

(a) ϕ is an isomorphism;
(b) ϕ is an epimorphism and N = ker(ϕ).
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Proof First let us define ϕ(gN) = ϕ(g). To show that this definition makes sense, we
show that it does not depend on the choice of representative in gN. Indeed, if a = gn
for n ∈ N, then we have

ϕ(g) = ϕ(an) = ϕ(a)ϕ(n) = ϕ(a),

which shows that ϕ(gN) is well defined. Moreover, the very definition of ϕ ensures
that it is the unique homomorphism satisfying the stated condition.

(i) This is immediate.
(ii) We have

gN ∈ ker(ϕ) ⇐⇒ ϕ(gN) = eH ⇐⇒ ϕ(g) = eH ⇐⇒ g ∈ ker(ϕ).

(iii)(a) =⇒ (iii)(b) Since ϕ is an isomorphism, for h ∈ H there exists gN ∈ G/N such
that ϕ(gN) = h. But then ϕ(g) = h and so ϕ is an epimorphism. Also, if g ∈ ker(ϕ), then
gN ∈ ker(ϕ)/N = ker(ϕ) and so gN = eG/H, whence gN = N and so g ∈ N.

(iii)(b) =⇒ (iii)(a) Since image(ϕ) = image(ϕ), we have that ϕ is an epimorphism.
If gN ∈ ker(ϕ) then gN ∈ ker(ϕ)/N = eG/N and so ϕ is a monomorphism by Proposi-
tion 4.1.28. ■

First is the first.

4.1.30 Corollary (First Isomorphism Theorem) If G and H are groups and if ϕ : G → H
is an homomorphism, then there is an isomorphism ϕ : G/ker(ϕ)→ image(ϕ) for which
the diagram

G
ϕ //

��

H

G/ker(ϕ)
ϕ

// image(ϕ)

OO

commutes.
Proof This follows from Theorem 4.1.29 by considering “N = ker(ϕ)” and “H =
image(ϕ).” ■

Second is the second.

4.1.31 Corollary (Second Isomorphism Theorem) Let G be a group, let N ⊆ G be a normal
subgroup, and let H ⊆ G be a subgroup. Then there is an isomorphism of H/(N ∩ H) and
(NH)/N.

Proof By Exercise 4.1.10, NH = ⟨N ∪ H⟩ and N is a normal subgroup of NH. Thus we
have the sequence of homomorphisms

H // NH // (NH)/N

which, by composition, give an homomorphism ϕ : H→ (NH)/N. Note that ϕ(h) = hN,
thinking of hN as a coset in NH. We claim that ker(ϕ) = N∩H. Indeed, if ϕ(h) = e(NH)/N,
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then h ∈ N and so this gives ker(ϕ) ⊆ N ∩ H. On the other hand, if h ∈ N ∩ H, then
ϕ(h) = e(NH)/N, because h ∈ N.

Now we apply the First Isomorphism Theorem to give an isomorphism ϕ : H/(N∩
H) → image(ϕ). Now, if nhN ∈ (NH)/N for n ∈ N and h ∈ H, then nh = hn′ for some
n′ ∈ N since N is normal in NH. Thus nhN = hN = ϕ(h), and so ϕ is an epimorphism.
This gives the result. ■

Third is the third.

4.1.32 Corollary (Third Isomorphism Theorem) If G is a group and if N and K are normal
subgroups of G, with N ⊆ K, then K/N is a normal subgroup of G/N and there is an
isomorphism of (G/N)/(K/N) with G/K.

Proof We define ϕ : G/N → G/K by ϕ(gN) = gK. To see that ϕ is well defined,
suppose that g1N = g2N so that g1 = g2n with n ∈ N. Since N ⊆ K, g1K = g2K, giving
well-definedness of ϕ. Also, it is clear that ϕ is an epimorphism.

Moreover,
ker(ϕ) = {gN | g ∈ K} = K/N.

By Exercise 4.1.11 we conclude that K/N is a normal subgroup of G/N. By the First
Isomorphism Theorem, we have an isomorphism of (G/N)/ker(ϕ) with G/K. Since
ker(ϕ) = K/N, the result follows. ■

4.1.6 The symmetric group

In Example 4.1.5–11 we introduced the symmetric group. We shall have occa-
sion to use some of the structure of the symmetric group, and in this section we
collect the pertinent facts.

First of all let us define a simple collection of elements of the symmetric group
and some notions associated with them.

4.1.33 Definition (Cycle, transposition, even permutation, odd permutation) Let k ∈
Z>0.

(i) An element σ ∈ Sk is a cycle if there exists distinct j1, . . . , jm ∈ {1, . . . , k} such
that

σ( j1) = j2, σ( j2) = j3, · · · , σ( jm−1) = jm, σ( jm) = j1,

and such that σ( j) = j for j < { j1, . . . , jm}. The number m is the length of the
cycle. We denote the above cycle by ( j1 j2 · · · jm).

(ii) An element σ ∈ Sk is a transposition if it is a cycle of length 2. Thus σ = ( j1 j2)
for distinct j1, j2 ∈ {1, . . . , k}.

(iii) An element σ ∈ Sk is even (resp. odd) if it is a finite product of an even
(resp. odd) number of transpositions. •

Let us illustrate the notion of a cycle with an elementary example.
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4.1.34 Example (Cycle) The permutation(
1 2 3 4 5
1 5 3 2 4

)
is a cycle using the elements 2, 4, and 5, and is written as (2 5 4), representing the
fact that σ(2) = 5, σ(5) = 4, and σ(4) = 2. It is clear that one could also write the
cycle as (5 4 2) or (4 2 5), and, therefore, the notation we use to represent a cycle is
not unique. •

It turns out that every permutation is a product of cycles. If we ask that the
cycles have an additional property, then the product is unique. This property is
the following.

4.1.35 Definition (Disjoint permutations) Let k ∈ Z>0. Permutations σ1, σ2 ∈ Sk are
disjoint if, for every j ∈ {1, . . . , k}, σ1( j) , j implies that σ2( j) = j and σ2( j) , j
implies that σ1( j) = j. •

The idea is that the set of elements of {1, . . . , k} not fixed by disjoint permuta-
tions are distinct. It is easy to show that disjoint permutations commute; this is
Exercise 4.1.14.

We now have the following important structural result describing a typical
permutation.

4.1.36 Theorem (Permutations are products of cycles) Let k ∈ Z>0. If σ ∈ Sk then there
exist disjoint cycles σ1, . . . , σr ∈ Sk such that σ = σ1 ◦ · · · ◦σr. Moreover, if σ′1, . . . , σ

′

r′ ∈ Sk

are disjoint permutations such that σ′1 ◦ · · · ◦ σ
′

r′ , then r = r′ and there exists a bijection
ϕ : {1, . . . , r} → {1, . . . , r} such that σ′j = σϕ(j), j ∈ {1, . . . , r}.

Proof For σ ∈ Sk and j ∈ {1, . . . , k} let us denote

O(σ, j) = {σm( j) | m ∈ Z≥0}

and suppose that card(O(σ, j)) = Nσ, j.

1 Lemma With the above notation the following statements hold:
(i) j, σ(j), . . . , σNσ,j−1(j) are distinct;
(ii) σNσ,j(j′) = j′ for each j′ ∈ O(σ, j);
(iii) O(σ, j) = {j, σ(j), . . . , σNσ,j−1(j)};
(iv) O(σ, j′) = O(σ, j) for every j′ ∈ O(σ, j).

Proof (i) Suppose that σm1( j) = σm2( j) for distinct m1,m2 ∈ {0, 1, . . . ,Nσ, j − 1}. Suppose
that m2 > m1 so that σm2−m1( j) = j with m2 − m1 ∈ {1, . . . ,Nσ, j − 1}. For m ∈ Z>0 let
us use the division algorithm for Z (Theorem 4.2.45) to write m = q(m2 − m1) + r for
r ∈ {0, 1, . . . ,m2 −m1 − 1}. Then σm( j) = σr( j) and so it follows that

O(σ, j) ⊆ { j, σ( j), . . . , σm2−m1−1( j)}.
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This, however, contradicts the definition of Nσ, j since m2 −m1 < Nσ, j.
(ii) Since card(O(σ, j)) = Nσ, j and by the previous part of the lemma we must

have σNσ, j( j) = σm( j) for some m ∈ {0, 1, . . . ,Nσ, j − 1}. Thus σNσ, j−m( j) = j and so, by
the previous part of the lemma we must have m = 0. Thus σNσ, j( j) = j. Now, if
m ∈ {1, . . . ,Nσ, j − 1}, then

σNσ, j ◦ σm( j) = σm
◦ σNσ, j( j) = σm( j),

giving this part of the lemma.
(iii) Clearly

{ j, σ( j), . . . , σNσ, j−1( j)} ⊆ O(σ, j).

By definition of Nσ, j and by part (i) equality follows.
(iv) Let m′ ∈ {1, . . . ,Nσ, j − 1} and let j′ = σm′( j).

O(σ, j′) = {σm( j′) | m ∈ Z≥0} = {σ
m+m′( j) | m ∈ Z≥0} ⊆ O(σ, j).

On the other hand, if m ∈ Z>0 we can write m −m′ = qNσ, j + r for r ∈ {0, 1, . . . ,Nσ, j − 1}
using the division algorithm. Then

σm( j) = σm−m′
◦ σm′( j) = σr

◦ σm′( j) = σr( j′),

and so O(σ, j) ⊆ O(σ, j′). ▼

From the lemma and since the set {1, . . . , k} is finite it follows that there exist
j1, . . . , jr ∈ {1, . . . , k} such that
1. {1, . . . , k} = ∪r

l=1O(σ, jl) and
2. O(σ, jl) ∩O(σ, jm) = ∅ for l , m.
Let Nl = card(O(σ, jl)) for l ∈ {1, . . . , r}. For l ∈ {1, . . . , r} define σl ∈ Sk by

σl( j) =

σ( j), j ∈ O(σ, jl),
j, otherwise.

By the lemma we have σl = ( jl σ( jl) · · · σNl−1( jl)). Moreover, for distinct l,m ∈ {1, . . . , r}
the permutations σl and σm are clearly disjoint. Therefore, by Exercise 4.1.14, the
permutations σ1, . . . , σl commute with one another. We claim that σ = σ1 ◦ · · · ◦ σr.
Indeed, let j ∈ {1, . . . , k} and let l j ∈ {1, . . . , r} satisfy j ∈ O(σ, l j). Then, by construction,
σl( j) = j for l , l j. We thus have

σ1 ◦ · · · ◦ σl j
◦ · · · ◦ σr( j) = σl j

◦ σ1 ◦ · · · ◦ σl j−1 ◦ σl j+1 ◦ · · · ◦ σr( j) = σl j( j) = σ( j),

giving the theorem. ■

It is not clear that a permutation cannot be both even and odd, so let us establish
this in an illuminating way. In the statement of the result we consider the set {−1, 1}
to be a group with the product being multiplication in the usual way.
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4.1.37 Theorem (The sign homomorphism from the symmetric group) Let k ∈ Z>0.
If σ ∈ Sk then σ is the product of a finite number of transpositions. Moreover, the map
sign: Sk → {−1, 1} given by

sign(σ) =

1, σ is a product of an even number of transpositions,
−1, σ is a product of an odd number of transpositions

is a well-defined group homomorphism.
Proof By Theorem 4.1.36 it suffices to show that a cycle is a finite product of adjacent
transpositions. However, for a cycle ( j1 · · · jm) we can write

( j1 · · · jm) = ( j1 j2) · ( j1 j3) · · · · · ( j1 jm),

which can be verified directly.
Now we prove that sign is well-defined. Let σ ∈ Sk. By Theorem 4.1.36 there exist

unique (up to order) disjoint cycles σ1, . . . , σr such that σ = σ1 ◦ · · · ◦ σr. Let us define
C(σ) = r. In the following lemma we recall the notation O(σ, j) introduced in the proof
of Theorem 4.1.36.

1 Lemma Let σ ∈ Sk and let τ = (j1, j2). Then
(i) C(σ ◦ τ) = C(σ) + 1 if O(σ, j1) = O(σ, j2) and
(ii) C(σ ◦ τ) = C(σ) − 1 if O(σ, j1) , O(σ, j2).

Proof Suppose that O(σ, j1) = O(σ, j2) and, using the lemma from the proof of Theo-
rem 4.1.36, write

O(σ, j1) = {l1 = j1, . . . , ls = j2, . . . , lm}

with lp = σp(l1) for p ∈ {1, . . . ,m}. Let σ′ = (l1 · · · lp). Then we can directly verify that

σ′ ◦ τ = (l1 · · · lp) · (l1 ls) = (l1 · · · ls−1) · (ls · · · lp),

giving σ′ ◦ τ as a product of two cycles. Now note that if j has the property that
O(σ, j) , O(σ, j1) then, using the lemma from the proof of Theorem 4.1.36, σ◦τ( j) = σ( j).
Thus O(σ ◦ τ, j) = O(σ, j) if j < O(σ, j1). For j ∈ O(σ, j1) we have σ( j) = σ′( j) and also
σ ◦ τ( j) = σ′ ◦ τ( j) since τ( j) ∈ O(σ, j1). Thus

O(σ, j1) = O(σ ◦ τ, j1) ∪O(σ ◦ τ, j2),

giving C(σ ◦ τ) = C(σ) + 1.
Now suppose that O(σ, j1) , O(σ, j2). Let us write

O(σ, j1) = { j1, σ( j1), . . . , σp1−1( j1)}, O(σ, j2) = { j2, σ( j2), . . . , σp2−1( j2)}.

Let us also define

σ′1 = ( j1 σ( j1) · · · σp1−1( j1)), σ′2 = ( j2 σ( j2) · · · σp2−1( j2)).
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One can then directly see that

σ′1 ◦ σ
′

2 ◦ τ = ( j1 σ( j1) · · · σp1−1( j1)) · ( j2 σ( j2) · · · σp2−1( j2)) · ( j1, j2)

= ( j1 σ( j1) · · · σp1−1( j1) j2 σ( j2) · · · σp2−1( j2)).

Now note that if j ∈ O(σ, j1)∪O(σ, j2) then σ( j) = σ′1 ◦σ
′

2( j) whence σ ◦τ( j) = σ′1 ◦σ
′

2
◦τ( j)

since τ( j) ∈ O(σ, j1) ∪ O(σ, j2). Therefore, O(σ, j1) ∪ O(σ, j2) = O(σ ◦ τ, j1). Moreover, if
j < O(σ, j1)∪O(σ, j2) then obviously σ( j) = σ ◦ τ( j). Therefore, O(σ ◦ τ, j) = O(σ, j) in this
case. Summarising, C(σ ◦ τ) = C(σ) − 1. ▼

Let π2 : Z → Z/2Z be the canonical projection. Since π2(m + 1) = π2(m − 1),
the lemma shows that π2(C(σ)) = π2(C(σ ◦ τ) + 1) for every σ ∈ Sk and for every
transposition τ.

To complete the proof note that C(e) = k if e denotes the identity element of Sk.
Now write σ ∈ Sk as a finite product of transpositions: σ = τ1 ◦ · · · ◦ τp. Thus

π2(C(σ)) = π2(C(τ1 ◦ · · · ◦ τp)) = π2(C(e) + p) = π2(k + p).

Note that π2(C(σ)) is defined independently of the choice of transpositions τ1, . . . , τp.
Thus, if σ = τ′1 ◦ · · · ◦ τ

′

p′ for transpositions τ′1, . . . , τ
′

p′ then we must have π2(k + p) =
π2(k + p′) meaning that π2(p) = π2(p′). But this means exactly that p and p′ are either
both even or both odd.

That sign is a homomorphism is a consequence of the obvious fact that the product
of even permutations is even, the product of two odd permutations is even, and the
product of an even and an odd permutation is odd. ■

Let us give some additional properties of the symmetric group that will be
useful to us in our discussions of multilinear maps in Section 5.6, derivatives of
such maps in Section II-1.4.2 and Theorem II-1.4.50.

Let k1, . . . , km ∈ Z≥0 be such that
∑m

j=1 km = k. Let Sk1|···|km be the subgroup of Sk

with the property that elements σ of Sk1|···|km take the form(
1 · · · k1 · · · k1 + · · · + km−1 + 1 · · · k1 + · · · + km

σ1(1) · · · σ1(k1) · · · k1 + · · · + km−1 + σm(1) · · · k1 + · · · + km−1 + σm(km)

)
,

where σ j ∈ Sk j , j ∈ {1, . . . ,m}. The assignment (σ1, . . . , σm) 7→ σ with σ as above is
an isomorphism of Sk1 × · · · × Skm with Sk1|···|km . Also denote by Sk1,...,km the subset
of Sk having the property that σ ∈ Sk1,...,km satisfies

σ(k1 + · · · + k j + 1) < · · · < σ(k1 + · · · + k j + k j+1), j ∈ {0, 1, . . . ,m − 1}.

Now we have the following result.

4.1.38 Proposition (Decompositions of the symmetric group) With the above notation,
the map (σ1, · · · σm) 7→ σ1 ◦ · · · ◦ σm from Sk1,...,km ×Sk1|···|km to Sk is a bijection.
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Proof Let P be the set of partitions (S1, . . . ,Sm) of {1, . . . , k} (i.e., {1, . . . , k} =
◦

∪
m
j=1 S j)

such that card(S j) = k j, j ∈ {1, . . . ,m}. Note that Sk acts in a natural way on P. That
is, if (S1, . . . ,Sm) ∈ P and if σ ∈ Sk then we can define σ(S1, . . . ,Sm) to be the partition
(S′1, . . . ,S

′
m) ∈ P for which σ(S j) = S′j for each j ∈ {1, . . . ,m}. Now specifically choose

S = (S1, . . . ,Sm) ∈ P by

S j = {k0 + · · · + k j−1 + 1, . . . , k1 + · · · + k j}, j ∈ {1, . . . ,m},

taking k0 = 0. Note that σ ∈ Sk has the property that σ(S) = S if and only if σ ∈ Sk1|···|km .
For a general T = (T1, . . . ,Tm) ∈ P let SS→T be the set of σ ∈ Sk that map S to T. Note
that for a given T ∈ P there exists a unique element of Sk1,...,km ∩SS→T (why?). Let us
denote this unique permutation by σT ∈ Sk1,...,km ∩SS→T. We claim that

SS→T = {σT ◦ σ
′
| σ′ ∈ Sk1|···|km}.

Indeed, if σ ∈ SS→T then σ−1
T
◦ σ(S) = S and so σ−1

T
◦ σ = σ′ for some σ′Sk1|···|km . Thus

σ = σT ◦ σ′ and so
SS→T ⊆ {σT ◦ σ

′
| σ′ ∈ Sk1|···|km}.

Conversely, if σ′ ∈ Sk1|···|km then σT ◦ σ′ ∈ SS→T since σ′(S) = S. This gives SS→T =
σTSk1|···|km . Since σT is the unique element of Sk1,...,km for which this holds, it follows
that if σ ∈ SS→T for some T ∈ P we have σ = σ1 ◦ σ2 for unique σ1 ∈ Sk1,...,km and
σ2 ∈ Sk1|···|km . Now, if σ ∈ Sk then σ ∈ SS→T for T = σ−1(S), and so the result holds. ■

Exercises

4.1.1 Do the following;
(a) prove Proposition 4.1.6;
(b) state which of the statements in Proposition 4.1.6 holds for semigroups;
(c) state which of the statements in Proposition 4.1.6 holds for monoids.

4.1.2 Let M be a monoid for which ab = ba for all a, b ∈ M, and let m1, . . . ,mk ∈ M
be elements for which there exists no inverse. Show that there is also no
inverse for m1 · · ·mk.

4.1.3 Let G be a group and let a, b, c ∈ G.
(a) Show that if ab = ac then b = c.
(b) Show that if ac = bc then a = b.

4.1.4 Let G and H be groups. Show that, if ϕ : G→ H is an isomorphism, then ϕ−1

is a homomorphism, and so also an isomorphism.
4.1.5 Prove Proposition 4.1.10.
4.1.6 Show that the following sets are subgroups of R with the group operation

of addition:
(a) Z;
(b) Z(∆) = { jδ | j ∈ Z};
(c) Q.
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The next two parts of this problem suppose that you know something about
polynomials; we consider these in detail in Section 4.4. In any case, you
should also show that the following sets are subgroups of Rwith the group
operation of addition.
(d) the set Q̄ ∩R of real algebraic numbers (recall that z ∈ C is an algebraic

number if there exists a polynomial P ∈ Z[ξ] (i.e., one with integer
coefficients) for which P(z) = 0, and we denote the set of algebraic
numbers by Q̄);

(e) the set K ∩ R of real algebraic integers (recall that z ∈ C is an algebraic
integer if there exists a monic polynomial P ∈ Z[ξ] (i.e., one with integer
coefficients, and with the highest degree coefficient being 1) for which
P(z) = 0, and we denote the set of algebraic integers by K̄).

4.1.7 Show that the subsets
(a) x0 +Q = {x0 + q | q ∈ Q} for x0 ∈ R and
(b) Z(x0,∆) = {x0 + k∆ | k ∈ Z} for x0 ∈ R

of R are semigroups with the binary operation

(x0 + y1) + (x0 + y2) = x0 + y1 + y2.

Answer the following questions.
(c) Show that x0 + Q = Q if and only if x0 ∈ Q and that Z(x0,∆) = Z(∆) if

and only if x0 ∈ Z(∆).
(d) Suppose that the binary operations on the semigroups x0+Q andZ(x0,∆)

are as defined above. Show that the semigroup is a subgroup ofR if and
only if x0 = 0.

4.1.8 Show that N is a normal subgroup of G if and only if gng−1
∈ N for all g ∈ G

and n ∈ N.
4.1.9 Let G and H be groups and let ϕ : G → H be an epimorphism. Show that

the map ϕ0 : G/ker(ϕ)→ H defined by ϕ0(g ker(ϕ)) = ϕ(g) is a well-defined
isomorphism.

4.1.10 Let G be a group and let H and N be subgroups of G with N normal. Prove
that
(a) N ∩ H is a normal subgroup of H,
(b) N is a normal subgroup of ⟨N ∪ H⟩, and
(c) NH = ⟨N ∪ H⟩ = HK.

4.1.11 Show that, if N is a normal subgroup of G, then there is a group H and an
epimorphism ϕ : G→ H for which N = ker(ϕ).

In the following exercise you will use the definition that a transposition σ ∈ Sk is
adjacent if it has the form σ = ( j, j + 1) for some j ∈ {1, . . . , k − 1}. •

4.1.12 Show that any permutation σ ∈ Sk is a finite product of adjacent transposi-
tions.
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4.1.13 Show that the only permutation that is a cycle of length 1 is the identity
map.

4.1.14 Show that if σ1, σ2 ∈ Sk are disjoint then σ1 ◦ σ2 = σ2 ◦ σ1.
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Section 4.2

Rings

The number systems we have thus far considered in the text, Z, Q, and R, are
each endowed with two natural binary operations, those of addition and multipli-
cation. Moreover, in each case the two binary operations fit together in a nice way.
This combination of additive and multiplicative structures has the name “ring.”
In this section we study the basic structure of rings, including an introduction to
some special properties of rings that will be possessed by some of the rings we will
encounter in these volumes.

Do I need to read this section? The material in this section can perhaps be
passed up unless (1) the reader is interested in understanding well the material
from Sections 4.3 and 4.4, or (2) the reader is at one of those points in the text where
ring theory comes up (and there are such points, e.g., Sections 5.8.2 and 5.8.3). •

4.2.1 Definitions and basic properties

4.2.1 Definition (Ring) A ring is a set R with two binary operations, (r1, r2) 7→ r1 + r2

and (r1, r2) 7→ r1 · r2, called addition and multiplication, respectively, and which
together satisfy the following rules:

(i) (r1 + r2) + r3 = r1 + (r2 + r3), r1, r2, r3 ∈ R (associativity of addition);
(ii) r1 + r2 = r2 + r1, r1, r2 ∈ R (commutativity of addition);
(iii) there exists 0R ∈ R such that r + 0R = r, r ∈ R (additive identity);
(iv) for r ∈ R, there exists −r ∈ R such that r + (−r) = 0R (additive inverse);
(v) (r1 · r2) · r3 = r1 · (r2 · r3), r1, r2, r3 ∈ R (associativity of multiplication);
(vi) r1 · (r2 + r3) = (r1 · r2) + (r1 · r3), r1, r2, r3 ∈ R (left distributivity);
(vii) (r1 + r2) · r3 = (r1 · r3) + (r2 · r3), r1, r2, r3 ∈ R (right distributivity).

If there exists 1R ∈ R such that 1R · r = r · 1R for all r ∈ R, then the ring is a unit
ring, or a ring with unit. The element 1R in a unit ring is called the unity element.
If r1 · r2 = r2 · r1 for all r1, r2 ∈ R, then the ring is commutative. •

As usual, we may omit specific reference to “·” when writing the operation of
multiplication, and will write r1r2 in place of r1 · r2.

Let us give some examples of rings.

4.2.2 Examples (Rings)
1. The set Zwith its usual operations of addition and multiplication is a commu-

tative unit ring.
2. The set Qwith its usual operations of addition and multiplication is a commu-

tative unit ring.
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3. The set Rwith its usual operations of addition and multiplication is a commu-
tative unit ring.

4. Let k ∈ Z>0 and on the set Zk = Z/kZ of cosets in Z (see Example 4.1.18–1)
define operations of addition and multiplication by

( j1 + kZ) + ( j2 + kZ) = ( j1 + j2) + kZ, ( j1 + kZ) · ( j2 + kZ) = ( j1 · j2) + kZ.

We should show that these operations are well defined, in that they do not
depend on the choice of representative in an equivalence class. If

ja + kZ = j̃a + kZ, a ∈ {1, 2},

then this implies that there exists l1, l2 ∈ Z such that j̃a = ja + kl, a ∈ {1, 2}.
Therefore,

( j̃1 + j̃2) + kZ = ( j1 + j2 + k(l1 + l2)) + kZ = ( j1 + j2) + kZ

and

( j̃1 · j̃2) + kZ = ( j1 · j2 + k( j1l2 + j2l1 + kl1l2)) + kZ = ( j1 · j2) + kZ.

It is then a straightforward matter to check that these definitions of addition
and multiplication satisfy the ring axioms, and so Zk is indeed a ring.

5. Let S be a nonempty set, let R be a ring, and recall from Definition 1.3.1 the
notation RS for the set of maps from S to R. Define operations of addition and
multiplication on RS by

( f + g)(x) = f (x) + g(x), ( f · g)(x) = f (x) · g(x),

respectively. It is then trivial to verify that RS is a ring when equipped with
these operations. Indeed, if one sits down to check this, one sees that all one is
doing is checking that the ring operations on R satisfy the necessary conditions.
Also, if R is commutative, then so too is RS, and if R is a unit ring with unit
element 1R, then the map x 7→ 1R is easily seen to be a unity element in RS.

6. The set R[[ξ]] of formal R-power series considered in Section 3.7 is a commu-
tative unit ring.

7. If R is a ring with addition denoted by (r1, r2) 7→ r1 + r2 and multiplication
denoted by (r1, r2) 7→ r1 · r2, we define its opposite ring to be the set R with the
operations of addition and multiplication, denoted by +op and ·op, given by

r1 +op r2 = r1 + r2, r1 ·op r2 = r2 · r1.

One can easily verify that these operations do indeed define a ring structure,
and we denote the resulting ring by Rop. If R is commutative, then clearly R=Rop

(where equality is not just as sets, but as rings). •

The following characterisation of the binary operations in a ring is useful to
keep in mind.
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4.2.3 Proposition (Properties of ring operations) If R is a ring, then the following
statements hold:

(i) the set R, with the binary operation of addition, is an Abelian group;
(ii) the set R, with the binary operation of multiplication, is a semigroup;
(iii) if additionally R is a unit ring, then the set R, with the binary operation of multipli-

cation, is a monoid.

The following notation concerning sums and products of ring elements is use-
ful.

4.2.4 Notation (Sums and products in rings) Let R be a ring and let (ri)i∈I be a family
of elements of R, only finitely many of which are nonzero; denote the nonzero
elements by ri1 , . . . , rik . We then denote∑

i∈I

ri = ri1 + · · · + rik .

Similarly, if R is a unit ring and if only finitely many terms in the family (ri)i∈I are
not equal to 1R (say the nonzero elements are ri1 , . . . , rik), then we denote∏

i∈I

ri = ri1 · · · rik . •

Aided by this observation, and by other fairly simple arguments that we leave
to the reader as Exercise 4.2.2, we have the following properties of a ring.

4.2.5 Proposition (Elementary properties of rings) If R is a ring, then the following
statements hold:

(i) there is exactly one element 0R ∈ R that satisfies 0R + r = r + 0R = r for all
r ∈ R, i.e., the additive identity is unique;

(ii) for r ∈ R, there exists exactly one element r′ ∈ R satisfying r + r′ = 0R, i.e., additive
inverses are unique;

(iii) for r ∈ R, −(−r) = r;
(iv) for r1, r2 ∈ R, −(r1 + r2) = −r1 − r2;
(v) if r1, r2,∈ R satisfy r1 + s = r2 + s, then r1 = r2;
(vi) if r1, r2, s ∈ R, then there exists a unique s ∈ S such that r1 + s = r2;
(vii) there is at most one element 1R ∈ R such that r · 1R = 1R · r = r for all r ∈ R, i.e., the

unity element, if it exists, is unique;
(viii) for r ∈ R, r · 0R = 0R · r = 0R;
(ix) for r1, r2 ∈ R, −(r1 · r2) = (−r1) · r2 = r1 · (−r2);
(x) for r1, r2 ∈ R, (−r1) · (−r2) = r1 · r2;
(xi) for r1, r2, s ∈ R, (r1 − r2) · s = r1 · s − r2 · s;
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(xii) for r1, r2, s ∈ R, s · (r1 − r2) = s · r1 − s · r2.

Note that, in a ring R, the equations r1 · s = r2 and s · r1 = r2 may not have
solutions for s given r1, r2 ∈ R. This, of course, is because a ring with multiplication
is only a semigroup, and not necessarily a group. However, it can happen that
some of the elements of a ring may be invertible.

4.2.6 Definition (Unit) Let R be a ring with unity element 1R and let r ∈ R.
(i) The element r is left invertible if there exists a ∈ R such that ar = 1R. The ring

element a is a left-inverse of r.
(ii) The element r is right invertible if there exists b ∈ R such that rb = 1R. The

ring element b is a right-inverse of r.
(iii) The element r is a unit if it is both left and right invertible. •

Let us give some examples of unit elements in some of the rings we have
encountered. We leave the straightforward verification of the assertions we make
to the reader.

4.2.7 Examples (Unit elements)
1. The set of units in the ring Z is {1,−1}.
2. The set of units in the ring Q is Q∗.
3. The set of units in the ring R is R∗.
4. Let us consider the ring Zk = Z/kZ, and describe its units. We shall rely on

some ideas that will only receive a full treatment in Section 4.2.7, although the
reader may well have no difficulty believing the facts we assert based on their
previous experience.
An element j + kZ ∈ Zk, j ∈ {0, 1, . . . , k − 1}, is a unit if there exists j′ ∈ Z such
that ( j + kZ) · ( j′ + kZ) = 1 + kZ. This means that j j′ = 1 + kl for some l ∈ Z.
Equivalently, j + kZ is a unit if and only if the equation

j j′ + kl = 1

has a solution for j′l ∈ Z. As we shall see in Corollary 4.2.78, this is equivalent
to the assertion that j and k have no common prime factors. Thus the set of
units in Zk is exactly

{ j + kZ | j ∈ {0, 1, . . . , k − 1}, j and k have no common prime factors}.

5. Let S be a nonempty set and R be a unit ring, and recall that RS denotes the set
of R-valued maps with domain S. The set of units for the ring RS is then easily
seen to be the set of maps which take values in the units of R.

6. The set of units in the ringR[[ξ]] consists of those formalR-power series whose
zeroth coefficient is nonzero. Indeed, in Proposition 3.7.5 we showed that
such R-formal power series possess a multiplicative inverse. One can easily
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see conversely that if the zeroth coefficient of a R-formal power series is zero,
then it can have no multiplicative inverse, simply by using the definition of
multiplication of R-formal power series.

7. Let us give an example of a ring with an element that is left invertible but not
right invertible. Our construction relies on some concepts we have not yet
introduced, but with which the reader may well be familiar.
We denote by R[ξ] the set of polynomials with real coefficients with indeter-
minate ξ (see Section 4.4). We think of R[ξ] as a R-vector space (see Exam-
ple 4.5.2–6). By R = HomR(R[ξ];R[ξ]) we denote the set of linear maps on
R[ξ] (see Definition 4.5.4), noting that R is a ring with multiplication given by
composition (see Corollary 5.4.18). Now define rd, ri ∈ R by

rd

 k∑
j=0

a jξ
j

 = k∑
j=1

ja jξ
j−1, ri

 k∑
j=0

a jξ
j

 = k∑
j=0

a j

j + 1
ξ j+1.

Note that rd returns the derivative of the polynomial and ri returns the integral
of the polynomial with the condition that the constant term of the integrated
polynomial be zero. With these interpretations of rd and ri (or by direct compu-
tation) one can check that

rd ◦ ri

 k∑
j=0

a jξ
k

 = k∑
j=0

a jξ
k, ri ◦ rd

 k∑
j=0

a jξ
k

 = k∑
j=1

a jξ
j.

Thus rd◦ri is the identity map (i.e., the unity element in R) and ri◦rd(P) = 0 for any
constant polynomial P. Thus ri is left invertible with rd as a left-inverse. This is
reflected by the fact that, as a linear map, ri is injective (cf. Proposition 5.4.46).
In the same vein, since ri is not surjective (no nonzero constant polynomial
is contained in its image), it cannot be right invertible. Note that rd has the
opposite feature: it is right invertible but not left invertible. •

Let us give a description of some of the properties of the set of units of a ring.
The verification of these is an easy application of Proposition 4.1.6

4.2.8 Proposition (Elementary properties of units) If R is a ring with unit. then the
following statements hold:

(i) the set of units in R is a group when equipped with the binary operation of multipli-
cation;

(ii) for a unit r ∈ R, there exists exactly one element r′ ∈ R such that r′ · r = r · r′ = 1R;
(iii) for a unit r ∈ R, r−1 is a unit, and (r−1)−1 = r;
(iv) if r1, r2 ∈ R, if s ∈ R is a unit, and if s · r1 = s · r2, then r1 = r2;
(v) if r1, r2 ∈ R, if s ∈ R is a unit, and if r1 · s = r2 · s, then r1 = r2;
(vi) if r1, r2 ∈ R with r1 a unit, then there exists a unique s ∈ R such that r1 · s = r2;
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(vii) if r1, r2 ∈ R with r2 a unit, then there exists a unique s ∈ R such that s · r1 = r2.

Ring elements which differ by multiplication by a unit arise often in discussion
of rings. We give these a name.

4.2.9 Definition (Associate) If R is a commutative unit ring, two elements r1, r2 ∈ R are
associates if there exists a unit u such that r2 = ur1. Two ring elements that are not
associates are nonassociate. •

Note that the relation of being associates is an equivalence relation in R.
When discussing groups, we introduced the notation gk where g is an element

of a semigroup and k is a natural number. This notation can be profitably applied
to rings. However, we must take more care with the notation since we have two
operations to which the notation can be applied. Thus, for a ring R, for r ∈ R, and
k ∈ Z>0 we define elements rk, kr ∈ R as follows. For k = 1 we take rk = r and kr = r.
For general k ∈ Z>0 we define rk = rk−1

· r and kr = (k − 1)r + r. We also take 0r = 0R

and kr = −(−k)r for k < 0. In the case when R has a unity element, we define r0 = 1R.
It is then a direct application of Proposition 4.1.7 to get the following assertions.

4.2.10 Proposition (Properties of rk and kr) If R is a ring, if r ∈ R, and if k1,k2 ∈ Z>0,
then

(i) rk1 · rk2 = rk1+k2 and
(ii) (rk1)k2 = rk1k2 .

If k,k1,k2 ∈ Z and r1, r2 ∈ R then
(iii) (k1r) + (k2r) = (k1 + k2)r,
(iv) k1(k2r) = (k1k2)r,
(v) k(r1 · r2) = (kr1) · r2 = r1 · (kr2), and
(vi) if R is commutative, (r1 · r2)k = rk

1 · r
k
2 .

Using this notation one can then state and prove a general version of the Bino-
mial Theorem. The proof goes like the usual case (see Exercise 2.2.1).

4.2.11 Proposition (Binomial Theorem for commutative rings) Let R be a commutative
ring and let r, s ∈ R. Then, for any k ∈ Z>0, we have

(r + s)k =

k∑
j=0

Bk,jrjsk−j,

where

Bk,j =

(
k
j

)
≜

k!
j!(k − j)!

, j,k ∈ Z>0, j ≤ k.
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4.2.2 Subrings and ideals

The study of rings is one that takes on a certain amount of depth. We shall need
some topics from ring theory, although not a great many. The first construction
to consider is the usual association of a subset of a ring which inherits the ring
structure. This is the notion of a subring. Rings also have associated to them the
important (for reasons we shall see as we proceed) concept of an ideal, which is
more general than the idea of a subring.

4.2.12 Definition (Subring and ideal) Let R be a ring. A nonempty subset S of R is a:
(i) subsemiring if

(a) r1 + r2 ∈ S for all r1, r2 ∈ S and
(b) r1 · r2 ∈ S for all r1, r2 ∈ S;

(ii) subring if

(a) r1 + r2 ∈ S for all r1, r2 ∈ S,
(b) r1 · r2 ∈ S for all r1, r2 ∈ S, and
(c) −r ∈ S for all r ∈ S;

(iii) right ideal if

(a) it is a subring and
(b) r1 · r2 ∈ S for all r1 ∈ S and r2 ∈ R;

(iv) left ideal if

(a) it is a subring and
(b) r1 · r2 ∈ S for all r1 ∈ R and r2 ∈ S;

(v) two-sided ideal if it is both a right ideal and a left ideal. •

Clearly, for commutative rings, the notions of right ideal, left ideal, and two-
sided ideal coincide. In such cases we may simply say ideal to denote any one of
these equivalent concepts.

As with groups, subrings are themselves rings, as the reader can prove in
Exercise 4.2.5.

4.2.13 Proposition (A subring is a ring) If S is a subring of a ring R, then 0R ∈ S. In
particular, S is a ring using the binary operations inherited from R.

The following characterisation of ideals makes it somewhat easier to check
whether a given subset is an ideal than is the case from simply looking at the
definition.
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4.2.14 Proposition (Characterisation of ideals) A nonempty subset I of a ring R is a left
(resp. right) ideal if and only if

(i) s1 − s2 ∈ I for all s1, s2 ∈ I and
(ii) r · s ∈ I (resp. s · r ∈ I) for all r ∈ R and s ∈ I.

Proof First suppose that I is a left ideal (the case for a right ideal is proved similarly).
It is clear that r · s ∈ I for all r ∈ r and s ∈ I. Now let s1, s2 ∈ I. Since I is a subring, −s2 ∈ I
and so s1 + (−s2) = s1 − s2 ∈ I.

Now suppose that I satisfies the two conditions in the statement of the proposition.
Since the second of the conditions for a left ideal obviously holds, it remains to show
that I is a subring. Note that 0R ∈ I since 0R · s = 0R ∈ I for all s ∈ I. Let s ∈ I. Since 0R ∈ I
we have 0R − s = −s ∈ I. Now let s1, s2 ∈ I. Then −s2 ∈ I and so s1 − (−s2) = s1 + s2 ∈ I. It
is clear that s1 · s2 ∈ I for all s1, s2 ∈ I, and this shows that I is indeed a subring. ■

Let us give some examples of subrings and ideals. The most trivial of the
assertions we make concerning these examples we leave to the reader to verify.

4.2.15 Examples (Subrings and ideals)
1. The subset kZ of Z is a subring, as is easily seen. Although Z is a ring with

unity, kZ is a ring with unity if and only if k = 1. Note that kZ is also an ideal.
Indeed, for kj1, kj2 ∈ kZwe have kj1 − kj2 = k( j1 − j2) ∈ kZ, and for kj1 ∈ kZ and
j2 ∈ Zwe have (kj1) j2 = k( j1 j2) ∈ kZ.

2. Z is a subring of Q, but it is fairly obviously not an ideal (the product of an
integer with a rational number need not be an integer).

3. Q is a subring of R, and it too is fairly obviously not an ideal (the product of a
rational number with a real number need not be a rational number).

4. Let R be a ring and let r0 ∈ R. We claim that the set

(r0) = {r0r | r ∈ R}

is a right ideal. Indeed, if r0r1, r0r2 ∈ (r0) then r0r1 − r0r2 = r0(r1 − r2) ∈ (r0), and
if r0r1 ∈ (r0) and if r2 ∈ R, then (r0r1)r2 = r0(r1r2) ∈ (r0).
We shall explore ideals of this sort more fully in Section 4.2.8; in particular see
Theorem 4.2.54. •

The importance of the notion of an ideal is explained by the following result.

4.2.16 Proposition (Quotients by ideals are rings) Let I be a two-sided ideal of a ring R and
let

r + I = {r + s | s ∈ I} and R/I = {r + I | r ∈ R}.

Then the binary operations on R/I defined by

(r1 + I, r2 + I) 7→ (r1 + r2) + I and (r1 + I, r2 + I) 7→ (r1r2) + I

satisfy the conditions for addition and multiplication for a ring.
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Proof Let us first verify that the binary operations defined make sense, in that they
are independent of choice of representative. Let r1, r2 ∈ R and s1, s2 ∈ I. We easily see
that

((r1 + s1) + (r2 + s2)) + I = (r1 + r2) + I

and
((r1 + s1)(r2 + s2)) + I = (r1r2 + r1s2 + r2s2 + s1s2) + I = (r1r2) + I,

which shows that the binary operations are indeed well-defined.
The matter of verifying that these binary operations satisfy the conditions for a ring

is then a straightforward manipulation of symbols, the details of which we happily
leave to the reader. ■

4.2.3 Prime and maximal ideals

Now we consider ideals having special properties that will be important to us
later in this section, primarily in Section 4.2.9. It is convenient to use the following
notation. Let R be a ring and let I, J ⊆ R be ideals. We then denote

IJ = {r1s1 + · · · + rksk | r j ∈ I, s j ∈ J, j ∈ {1, . . . , k}, k ∈ Z>0}.

With this notation, we have the following definition.

4.2.17 Definition (Prime ideal, maximal ideal) Let R be a ring and let I ⊆ R be a two-sided
ideal. The ideal I is:

(i) prime if A and B are ideals for which AB ⊆ I, then either A ⊆ I or B ⊆ I;
(ii) maximal if I , R and if J ⊆ R is an ideal for which I ⊆ J, then either J = I or

J = R. •

For prime ideals, there is an alternative characterisation, equivalent to the one
we give in the case that the ring is commutative, that often makes it easier to check
whether an ideal is prime.

4.2.18 Proposition (Characterisation of prime ideals) If R is a ring, the following state-
ments hold:

(i) if I ⊂ R is an ideal such that rs ∈ I implies that either r ∈ I or s ∈ I, then I is prime;
(ii) when R is additionally commutative, then it holds that rs ∈ I implies that either r ∈ I

or s ∈ I if I is a prime ideal.
Proof (i) Let A,B ⊆ I be ideals for which AB ⊆ I and suppose that A 1 I. If a ∈ A − I
then ab ∈ I for every b ∈ B. Therefore, b ∈ I, and so B ⊆ I.

(ii) Let ab ∈ I. Let (ab) = {rab | r ∈ R} and recall from Example 4.2.15–4 that (ab)
is an ideal. We shall see in Theorem 4.2.52 that (ab) ⊆ I since (ab) is the smallest ideal
containing ab. Moreover, in Theorem 4.2.54 we shall see that (a)(b) ⊆ (ab), so that
(a)(b) ⊆ I, which implies that either (a) ⊆ I or (b) ⊆ I, or that a ∈ I or b ∈ I. ■

For maximal ideals, one of the interesting and nonobvious properties they
possess is merely existing. Indeed, one has the following result.
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4.2.19 Theorem (Maximal ideals exist) If R is a unit ring with more than one element and
if I ⊂ R is a two-sided ideal, then there exists a maximal ideal M containing I.

Proof Let S(I) be the collection of ideals J ⊂ R such that I ⊆ J. We partially order S(I)
by set inclusion; thus J1 ⪯ J2 if J1 ⊆ J2. Let {Ia | a ∈ A} be a totally ordered subset
of S(I). We claim that Ī = ∪a∈AIa is an ideal. Let r1, r2 ∈ Ī so that r1 ∈ Ia1 and r2 ∈ Ia2

for some a1, a2 ∈ A. Since {Ia | a ∈ A} is totally ordered we may suppose, without
loss of generality, that r1 ∈ Ia2 . Then it follows that r1 − r2 ∈ Ia2 ⊆ Ī. It also holds that
rr1, r1r ∈ Ia1 ⊆ Ī for each r ∈ R. Thus Ī is indeed an ideal. It is clear that I ⊆ Ī. We claim
that Ī , R. This follows since 1R < Ia for each a ∈ A (or else we would have Ia = R for
some a ∈ A). Therefore, 1R < Ī. Thus Ī is an upper bound for {Ia | a ∈ A} in S(I). The
result now follows by Zorn’s Lemma. ■

The theorem has the following corollary that will be useful in Section 4.2.9 in
describing irreducible elements of a ring.

4.2.20 Corollary (Characterisation of maximal ideals) Let R be a unit ring and let S(R)
denote the collection of two-sided ideals that are strict subsets of R, and partially order
S(R) by set inclusion. Then an ideal I is maximal if and only if it is a maximal element of
the partially ordered set S(R).

For many rings, maximal ideals are prime.

4.2.21 Proposition (Maximal ideals are prime in commutative unit rings) If R is a
commutative unit ring and if M is a maximal ideal in R, then M is a prime ideal.

Proof Our proof relies on some constructions from Section 4.2.9.
Suppose that M is not prime so that, by Proposition 4.2.18, there exists r, s ∈ R

such that rs ∈ M but r, s < M. Let Ir and Is be the ideals

Ir = {r1 + r2r | r1 ∈ M, r2 ∈ R}, Is = {r1 + r2s | r1 ∈ M, r2 ∈ R} (4.1)

(one can check that these are indeed ideals, cf. Exercise 4.2.16). Since M is maximal we
must have Ir = Is = R. By Theorem 4.2.54 we have (r)(s) ⊆ (rs) ⊆ M. Now let r′ ∈ R.
Since R is a unit ring, it is easy to see that R = RR which implies that R = IrIs. Thus
every element in R is a finite sum of products of elements from Ir and Is. But such
sums, by (4.1), are necessarily of the form

r1r2 + a1r3 + b1r4 + a2b2,

where r1, r2, r3, r4 ∈ M, a1, a2 ∈ (r), and b1, b2 ∈ (s). But we then have r1r2 ∈ M since M is
a subring, a1r3, b1r4 ∈ M since M is an ideal, and a2b2 ∈ M since (rs) ⊆ M. This shows
that R ⊆ M, contradicting the fact that M is a maximal ideal. Thus we conclude that
either r ∈ M or s ∈ M, and so M is prime. ■

We shall not really see the importance of prime and maximal ideals until we
study prime and irreducible elements of a ring in Section 4.2.9. (Important prop-
erties of prime and maximal ideals are also given in Theorems 4.2.37 and 4.3.9,
respectively.) For now, let us give some elementary examples of prime and maximal
ideals.
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4.2.22 Examples (Prime and maximal ideals) For the first two examples we assume the
reader knows what a prime number is, and knows the property that every integer
can be written as a product of primes. We shall prove these facts in Section 4.2.10.
1. Let p be a prime integer. We claim that (p) = { jp | j ∈ Z} is a prime ideal.

By Example 4.2.15–4 we know that (p) is an ideal. To see that it is prime, let
A,B ⊆ (p) and let a ∈ A and b ∈ B. Then, if AB ⊆ (p) we must have ab ∈ (p),
which means that ab is a multiple of p. Since ab can be factored as a product of
prime numbers, and since p is a factor in ab, it must be a factor for either a or b.
Thus either a ∈ (p) or b ∈ (p), which gives our claim by Proposition 4.2.18.

2. In the ring Zwe consider the ideals

(3) = {3 j | j ∈ Z}, (4) = {4 j | j ∈ Z}.

we claim that (3) is maximal but that (4) is not. To see that (3) is maximal, let
(3) ⊆ J for an ideal J. If J , (3) then there exists k ∈ J that is not a multiple
of 3. Since { jk | j ∈ Z} ⊆ J by virtue of J being an ideal, this means that
every integer not containing a 3 in its prime factorisation lies in J. But since
(3) ⊆ J, this means that J = Z. To see that (4) is not a maximal ideal, Note that
(4) ⊆ (2) = {2 j | j ∈ Z}, but that (2) , Z.

3. Next we consider the ring R[[ξ]] of R-formal power series. We claim that the
ideal

(ξ) = {ξ · A | A ∈ R[[ξ]]},

where ξ denotes the indeterminate in R[[ξ]] (see Definition 3.7.2), is maximal.
Suppose that I is an ideal in R[[ξ]] containing (ξ). Define A0 = (a j) j∈Z≥0 ∈ R[[ξ]]
by

a j =

1, j = 0,
0, j , 0.

Then we have two cases.
(a) A0 ∈ I: In this case, since for any A ∈ R[[ξ]] we have A = A · A0, we must

have I = R[[ξ]].
(b) A0 < I: In this case every member A of I can be written as

A =
∞∑
j=1

a jξ
j = ξ

∞∑
j=1

a jξ
j−1.

In particular, A ∈ (ξ).
This shows that either I = R[[ξ]] or that I ⊆ (ξ). •

As we shall see during the course of Section 4.2.10, for the ring Z, an ideal
is prime if and only if it is maximal. We shall also see that there is a general
relationship that holds between prime ideals and ring elements that we shall call
“prime.” There is also a corresponding concept for ring elements, “irreducibility,”
that corresponds to maximal ideals.
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4.2.4 Ring homomorphisms

As expected, with rings one can talk about the maps between rings that preserve
their structure.

4.2.23 Definition (Ring homomorphism, epimorphism, monomorphism, and iso-
morphism) For rings R and S, a map ϕ : R→ S is a:

(i) ring homomorphism, or simply a homomorphism, if ϕ(r1 + r2) = ϕ(r1) + ϕ(r2)
and ϕ(r1 · r2) = ϕ(r1) · ϕ(r2) for all r1, r2 ∈ G;

(ii) epimorphism if it is a surjective homomorphism;
(iii) monomorphism if it is an injective homomorphism;
(iv) isomorphism if it a bijective homomorphism.

If there exists an isomorphism from R to S then R and S are isomorphic. •

The following result follows directly from Proposition 4.1.24.

4.2.24 Proposition (Properties of ring homomorphisms) If R and S are rings and if
ϕ : R→ S is a homomorphism, then

(i) ϕ(0R) = 0S,
(ii) ϕ(−r) = −ϕ(r) for every r ∈ R, and
(iii) if R and S are additionally unit rings, then ϕ(1R) = 1S.

As with groups, one can certain subsets associated with a homomorphism of
rings.

4.2.25 Definition (Image and kernel of ring homomorphism) Let R and S be rings and
let ϕ : R→ S be a ring homomorphism.

(i) The image of ϕ is image(ϕ) = {ϕ(r) | r ∈ R}.
(ii) The kernel of ϕ is ker(ϕ) = {r ∈ R | ϕ(r) = 0S}. •

4.2.26 Proposition (Image and kernel are subring and ideal, respectively) If R and S
are rings and if ϕ : R→ S is a ring homomorphism, then

(i) image(ϕ) is a subring of S and
(ii) ker(ϕ) is a two-sided ideal of R.

Proof It is easy to see that both image(ϕ) and ker(ϕ) are subrings. The only possibly
non-obvious thing to prove is that ker(ϕ) is a two-sided ideal. To see this, let r1 ∈ R and
r2 ∈ ker(ϕ). Then ϕ(r1r2) = ϕ(r1)ϕ(r2) = 0S since r2 ∈ ker(ϕ) and by Proposition 4.2.5.
Thus r1r2 ∈ ker(ϕ). Similarly one shows that r1r2 ∈ ker(ϕ) if r1 ∈ ker(ϕ) and r2 ∈ R. ■
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4.2.27 Examples (Ring homomorphisms)
1. The natural maps iZ : Z → Q and iQ : Q → R are ring homomorphisms. Each

of these ring homomorphisms is injective, and so has kernel equal to zero
(cf. Exercise 4.2.7).

2. The map ϕk : Z → Zk defined by j 7→ j + kZ is easily verified to be a ring
homomorphism. One can readily see that ker(ϕk) = kZ. •

4.2.5 Characteristic

In this section we consider briefly the notion of the characteristic of a ring. In
the text we shall only be concerned with rings that have characteristic zero. Our
principle intent, therefore, is to consider how these rings are special among the
class of rings with general characteristic.

4.2.28 Definition (Characteristic) Let R be a ring and define

C(R) = {k ∈ Z>0 | kr = 0R for all r ∈ R}.

The characteristic of R is
(i) zero if C(R) = ∅ and is
(ii) inf C(R) if C(R) , ∅. •

Let us give some examples of the characteristic for some of the rings we have
considered.

4.2.29 Examples (Characteristic) We leave to the reader the verification of the statements
we make here.
1. The characteristic of the rings Z, Q, and R is zero.
2. The characteristic of Zk is k. •

The next result shows that the two proceeding examples are, in some sense, the
building blocks for general rings with given characteristic.

4.2.30 Proposition (Property of rings with given characteristic) If R is a commutative
unit ring then the following statements hold:

(i) if R has characteristic zero then there exists a subring S of R that is isomorphic to
Z;

(ii) if R has characteristic k ∈ Z>0 then there exists a subring S of R that is isomorphic
to Zk.

Proof Define ϕ : Z → R by ϕ( j) = j1R. It is a trivial matter to check that ϕ is a
homomorphism. Therefore, image(ϕ) is a subring by Proposition 4.2.26.

First suppose that R has characteristic zero. We claim that ϕ : Z → image(ϕ) is a
monomorphism. Suppose that ϕ( j1) = ϕ( j2). Then ϕ( j1 − j2) = ( j1 − j2)1R = 0R. Since
R has characteristic zero this implies that j1 − j2 = 0, and so ϕ is a monomorphism.
Therefore, the map j 7→ ϕ( j) is an isomorphism from Z to the subring image(ϕ) of R.
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Now suppose that R has characteristic k ∈ Z>0 and consider the ring homomor-
phism ϕk : Z → Zk defined by ϕk( j) = j + kZ. We claim that the map ψ : Zk → R
defined by ψ( j + kZ) = ϕ( j) is an isomorphism onto image(ϕ). First we should show
that ψ is well defined. To see this note that, for any l ∈ Z,

ψ( j + lk + kZ) = ϕ( j + lk) = ( j + lk)1R = j1R + lk1R = j1R + l(k1R) = j1R = ψ( j + kZ).

Next we show thatψ is injective. Suppose thatψ( j1+kZ) = ψ( j2+kZ). Then j11R = j21R
which directly implies that ( j1 − j2)1R = 0R. Therefore j1 = j2 + lk for some l ∈ Z. Thus
j1 + kZ = j2 + kZ. Thus ψ is injective. Now we show that image(ψ) = image(ϕ). Let
j1R ∈ image(ϕ) and then note that ψ( j + kZ) = j1R. Thus image(ϕ) ⊆ image(ψ). Since
obviously image(ψ) ⊆ image(ϕ) we have image(ψ) = image(ϕ) as desired. Therefore
the map j+kZ 7→ ϕ( j) is an isomorphism fromZk to the subring image(ϕ) as desired.■

4.2.6 Integral domains

We now begin a brief excursion into rings with special structure. As we have
seen, elements of a group do not necessarily possess multiplicative inverses. The
following definition gives a special collection of elements that are not units.

4.2.31 Definition (Zerodivisor) An element r in a ring R is a zerodivisor if either there
exists s1 ∈ R \ {0R} such that rs1 = 0R or there exists s2 ∈ R \ {0R} such that s2r = 0R.
An element r ∈ R that is not a zerodivisor is a nonzerodivisor. •

We have already seen certain elements of rings that are not zerodivisors.

4.2.32 Proposition (Units are not zerodivisors) If R is a unit ring and if r is a unit, then r
is not a zerodivisor.

Proof Let r be a unit and suppose that rs1 = 0R for s1 ∈ R. Then r−1(rs1) = r−10R = 0R
which gives s1 = 0R. Similarly we can show that if s2r = 0R then s2 = 0R, which shows
that r is not a zerodivisor. ■

The following properties of elements that are not zerodivisors is useful.

4.2.33 Proposition (Cancellation law for elements that are not zerodivisors) Let R be
a ring and suppose that r ∈ R is not a zerodivisor. Then the following statements hold:

(i) if r · s1 = r · s2 then s1 = s2;
(ii) if s1 · r = s2 · r then s1 = s2.

Proof We shall only prove the first assertion, since the second follows in a similar
manner. If r · s1 = r · s2 then r · (s1 − s2) = 0R. Therefore, since r is not a zerodivisor, it
follows that s1 − s2 = 0R. ■

Let us consider the zerodivisors in some of the rings we have encountered.
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4.2.34 Examples (Zerodivisors)
1. The only zerodivisor in the ring Z is 0.
2. The only zerodivisor in the ring Q is 0.
3. The only zerodivisor in the ring R is 0.
4. Let us construct the zerodivisors in Zk. Again we rely on some ideas from

Section 4.2.7. If j + kZ, j ∈ {0, 1, . . . , k}, is a zerodivisor, then there exists
j′ ∈ {0, 1, . . . , k − 1} such that j j′ + kZ = 0 + kZ. Thus j j′ must be a multiple of k.
We claim that there are no nonzero zerodivisors in Zk if and only if k is prime.
To see this, first let k be prime and suppose that j j′ + kZ = 0 + kZ for j, j′ ∈ Z.
Then j j′ = lk for some l ∈ Z. Thus k appears in the prime factorisation of j j′,
which means that k must appear in the prime factorisation of at least one of j
or j′. But this means that either j + kZ = 0 + kZ or that j′ + kZ = 0 + kZ. Thus
there are no nonzero zerodivisors in Zk when k is prime.
If k is not prime then there exists j, j′ ∈ {1, . . . , k − 1} such that j j′ = k. Thus
j j′ + kZ = 0 + kZ, and so j + kZ is a nonzero zerodivisor.

5. Let S be a nonempty set and let R be a ring, and let RS be the ring of R-valued
functions on S. We claim that f ∈ RS is a zerodivisor if and only if there exists
x0 ∈ S such that f (x0) is a zerodivisor.
To see this, suppose first that f is a zerodivisor. Then there exists a nonzero
function g such that either ( f g)(x) = 0R for all x ∈ S or (g f )(x) = 0R for all x ∈ S.
Since g is nonzero, this means that there exists x0 ∈ S such that g(x0) , 0R.
Therefore, either f (x0)g(x0) = 0R or g(x0) f (x0) = 0R. Thus f (x0) is a zerodivisor.
Conversely, suppose that there exists x0 ∈ S such that f (x0) is a zerodivisor.
Then either there exists s1 ∈ R such that f (x0)s1 = 0R or there exists s2 ∈ R such
that s2 f (x0) = 0R. Then define g1, g2 : S→ R by

g1(x) =

s1, x = x0,

0R, x , x0,
g2(x) =

s2, x = x0,

0R, x , x0.

Then it holds that either ( f g1)(x) = 0R for all x ∈ S or that (g2 f )(x) = 0R for all
x ∈ S. Thus f is a zerodivisor in RS. •

Based on the notion of zerodivisors, we single out a special class of rings as
follows.

4.2.35 Definition (Integral domain) An integral domain is a commutative unit ring for
which the only zerodivisor is 0R. •

We indicate which of our examples of rings are integral domains.

4.2.36 Examples (Integral domains)
1. Z is an integral domain (indeed, “integral” in “integral domain” comes from

the fact that the set of integers is an integral domain).
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2. Q is an integral domain.
3. R is an integral domain.
4. Zk is an integral domain if and only if k is a prime number.
5. If S is a set for which card(S) = 1, then RS is an integral domain if and only if R

is an integral domain. If card(S) > 1, then one can easily verify that RS is not an
integral domain (why?).

6. The ring R[[ξ]] of R-formal power series is an integral domain. To see this we
shall show that if A = (a j) j∈Z≥0 and B = (b j) j∈Z≥0 are nonzero R-formal power
series, then C = A · B is also nonzero. Denote

nA = inf{ j ∈ Z≥0 | a j , 0}, nB = inf{ j ∈ Z≥0 | b j , 0}

and write C = (c j) j∈Z≥0 . Then, using the definition of multiplication of R-formal
power series, we may compute cnA+nB = anAbnB . In particular it follows that
cnA+nB , 0 so that A · B is nonzero. Thus R[[ξ]] is indeed an integral domain. •

The following result relates integral domains to prime ideals, hopefully to the
better understanding of both concepts.

4.2.37 Theorem (Quotients by prime ideals are integral domains, and vice versa) If
R is a commutative unit ring and I is an ideal of R, then the following two statements are
equivalent:

(i) I is a prime ideal;
(ii) R/I is an integral domain.

Proof Suppose that I is prime and that (r + I)(s + I) = 0R + I. Then rs ∈ I, and so by
Proposition 4.2.18, either r ∈ I or s ∈ I. Thus either r + I = 0R + I or s + I = 0R + I. By
Exercise 4.2.11 this implies that R/I is an integral domain.

Now suppose that R/I is an integral domain and let r, s ∈ R have the property
that rs ∈ I. Then (r + I)(s + I) = 0R + I, and so either r + I = 0R + I or s + I = 0R + I by
Exercise 4.2.11. Therefore, either r ∈ I or s ∈ I, and so I is prime by Proposition 4.2.18.■

4.2.7 Euclidean rings and domains

In this section we consider a special class of rings within which the notion of
long division, as learned in school for integers and for polynomials, makes sense.
Let us recall how long division for integers works. If j, k ∈ Z with k , 0, then long
division tells us that there exists q, r ∈ Z with |r| < |k| and such that j = qk + r. The
key ingredients are that j is a sum of a multiple qk of k and a remainder r, and that
the remainder is less in magnitude than k.

We shall prove this form of long division shortly, but for now let us give the
general form of a ring within which long division will turn out to be possible.
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4.2.38 Definition (Euclidean1 ring and domain) A Euclidean ring is a pair (R, δ) where
R is a commutative ring and where δ : R→ Z≥0 has the following properties:

(i) if a, b ∈ R and if ab , 0R, then δ(ab) ≥ δ(a);
(ii) if a, b ∈ R with b , 0R, then there exists q, r ∈ R such that

(a) a = qb + r and such that
(b) δ(r) < δ(b).

A Euclidean domain is a Euclidean ring that is also an integral domain. •

As is the case with many of the structures we talk about that are defined by
ordered pairs, we shall often refer to a Euclidean ring (R, δ) simply as R, under-
standing that δ is in the background. The function δ is sometimes called the degree
function.

Let us give a somewhat uninteresting example of a Euclidean ring, just to get
some idea of how all the pieces tie together.

4.2.39 Example (R is a (boring) Euclidean domain) On the integral domain R define
δ : R→ Z≥0 by

δ(x) =

1, x , 0,
0, x = 0.

Then clearly δ(xy) ≥ δ(x) (indeed, equality holds) for all x, y ∈ R∗. Also, if x, y ∈ R
with y , 0 then we can write x = qy + r where q = xy−1 and r = 0, and we note
that δ(r) = 0 < 1 = δ(y). Thus (R, δ) is a Euclidean domain. After learning about
fields in Section 4.3, the reader will readily see that this example can be extended
to show that any field is a Euclidean domain for an appropriately defined map δ. •

The following language is commonly attached to the second part of the prop-
erties of the map δ in a Euclidean ring.

4.2.40 Notation (Division Algorithm) Let (R, δ) be a Euclidean ring. The fact that, given
a, b ∈ R with b , 0R, we can write a = qb + r with δ(r) < δ(b) is often referenced by
saying that the ring R possesses a division algorithm. The element q is called the
quotient and the element r is called the remainder. •

Let us prove some basic facts about Euclidean rings before we prove that the
integers form a Euclidean ring.

1Named for the Greek mathematician Euclid, whose extraordinarily influential treatise The
Elements dates to around 300BC. Not much is known about Euclid, and indeed there is legitimate
debate over whether he existed, or whether his work is really the work of a group of mathematicians.
Whether or not he existed, the importation of his body of work, along with other things Greek, to
the west by the Islamic culture played a significant rôle in the emergence of western civilisation
from the Dark Ages.
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4.2.41 Proposition (Properties of Euclidean rings) If (R, δ) is a Euclidean ring, then the
following statements hold:

(i) δ(0R) < δ(1R);
(ii) if a ∈ R \ {0R} then δ(a) ≥ δ(1R);
(iii) δ(a) = δ(0R) if and only if a = 0R.

If R is additionally an integral domain then the following statements also hold:
(iv) for a ∈ R \ {0R}, δ(ab) = δ(a) if and only if b is a unit;
(v) a ∈ R is a unit if and only if δ(a) = δ(1R).

Proof (ii) Let a ∈ R \ {0R} so that δ(a) = δ(1Ra) ≥ δ(1R) = δ(1R).
(i) Let a ∈ R\ {0R} and use the definition of Euclidean ring to assert that there exists

q, r ∈ R such that a = q1R + r where δ(r) < δ(1R) = δ(1R). By part (ii) we must therefore
have r = 0R, and consequently also we have δ(0R) < δ(1R).

(iii) This was proved en route to proving part (i).
(iv) Let a and b have the properties that a , 0R and δ(ab) = δ(a). First we claim

that b , 0R. Indeed, if b = 0R then we have δ(a) = δ(ab) = δ(0R), meaning that ab = 0R.
Since R is an integral domain we must have either a = 0R or b = 0R, and so we arrive at
a contradiction. Now, using the definition of a Euclidean domain there exists q, r ∈ R
such that a = q(ab) + r and δ(r) < δ(ab) = δ(a). Rearranging things gives r = a(1R − qb)
so that δ(r) = δ(a(1R − qb)) ≥ δ(a), unless a(1R − qb) = 0R. However, since δ(r) < δ(a)
we must indeed have a(1R − qb) = 0R. Thus, since R is an integral domain, 1R = qb
showing that b is a unit.

Now suppose that b is a unit and that a , 0R. Then δ(ab) ≥ δ(a) and δ(a) = δ(a1R) =
δ(abb−1) ≥ δ(ab). Therefore, δ(a) = δ(ab).

(v) From part (iv) we know that a is a unit if and only if δ(a) = δ(a1R) = δ(1R) = δ(1R).
■

Note that a consequence of the previous result is that the set image(δ) is ordered
as {δ0, δ1, δ2, . . .}, where δ0 = δ(0R), δ1 = δ(1R), and where δk, k ≥ 2, is the image of a
nonzero nonunit.

We have made no assertions concerning the uniqueness of the quotient and
remainder that are produced by the Division Algorithm. Indeed, generally the
quotient and remainder are not unique (see Exercise 4.2.14). However, in some
Euclidean domains, or more generally in some subsets of Euclidean domains, a
unique quotient and remainder can be guaranteed. It will save us having to prove
some things twice (once for the Euclidean ringZ of integers of Theorem 4.2.45, and
once for the Euclidean ring F[ξ] of polynomials over a field F of Corollary 4.4.14)
if we introduce some terminology to cover the matter of uniqueness of the quotient
and remainder, as well as some other ring constructions that we will encounter.

4.2.42 Definition (δ-closed subset, δ-positive subset) Let (R, δ) be a Euclidean domain.
(i) A subset A ⊆ R is trivial if C = {0R}, and is nontrivial otherwise.
(ii) A nonempty subset C ⊆ R is δ-closed if, for each a, b ∈ C with b , 0R, there

exists q, r ∈ C such that a = qb + r and such that δ(r) < δ(b).
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(iii) A subset C ⊆ R admits a unique Division Algorithm if, for each a, b ∈ C with
b , 0R, there exists unique q, r ∈ C such that a = qb+r and such that δ(r) < δ(b).

(iv) A nonempty subset P ⊆ R is δ-positive if, for each a, b ∈ P, we have δ(a− b) ≤
max{δ(a), δ(b)}. •

Our primary interest will be in nontrivial, δ-closed, and δ-positive subsemirings.
The following elementary properties of δ-closed subsets will be useful.

4.2.43 Proposition (δ-closed sets contain 0R and 1R) If (R, δ) is a Euclidean domain and
if C ⊆ R is a nontrivial δ-closed subset, then 0R, 1R ∈ C.

Proof Let b ∈ C− {0R}. Since C is δ-closed there exists q, r ∈ C such that b = qb+ r with
δ(r) < δ(b). We claim that this implies that q = 1R and r = 0R. Suppose that q , 1R.
Then

δ(b) ≤ δ((1R − q)b) = δ(r) < δ(b)

which is a contradiction. Thus q = 1R, and it then follows that r = 0R. ■

The next result is the first of our results that indicates why δ-closed and δ-
positive subsets are important; others are Theorems 4.2.48 and 4.2.84.

4.2.44 Proposition (Uniqueness of quotient and remainder in δ-closed and δ-
positive subsemirings) If (R, δ) is a Euclidean domain and if S is a nontrivial,
δ-closed, and δ-positive subsemiring of R, then S admits a unique Division Algorithm.

Proof Suppose that a = q1b + r1 = q2b + r2 for q1, q2, r1, r2 ∈ S with δ(r1), δ(r2) < δ(b).
Then (q1 − q2)b = r2 − r1, and so

δ((q1 − q2)b) = δ(r1 − r2) ≤ max{δ(r1), δ(r2)} < δ(b),

using δ-closedness of S. This implies that (q1 − q2)b = 0R. Since b , 0R this implies that
q1 − q2 = 0R and so q1 = q2. We then immediately have r1 = r2. ■

Now let us turn to the first of our primary examples of a Euclidean domain.

4.2.45 Theorem (Z is a Euclidean domain) The pair (Z, δ) is a Euclidean domain if we
define δ : Z → Z≥0 by δ(j) = |j|. That is to say, if j,k ∈ Z with k , 0, then there exists
q, r ∈ Z such that j = qk + r and such that |r| < |k|. Moreover, Z≥0 is a nontrivial,
δ-closed, and δ-positive subsemiring of Z; therefore, if j ∈ Z≥0 and k ∈ Z>0, then there
exists unique q, r ∈ Z≥0 such that j = qk + r.

Proof It is clear that if j, k ∈ Z \ 0 then | jk| ≥ | j| since |k| ≥ 1 for when k , 0.
Let us suppose that j ≥ 0 and k > 0. Define

S( j, k) = { j −mk | m ∈ Z, j −mk ≥ 0}.

We claim that S( j, k) is not empty. Indeed, note that j + jk ≥ 0 so that − j ∈ S( j, k).
Thus S( j, k) is a nonempty subset of the well ordered set Z≥0, and so possesses a least
element, which we denote by r. Suppose that q ∈ Z is the number for which r = j− qk.
Clearly we have j = qk + r. Now we show that r ∈ {0, 1, . . . , k − 1}. Suppose that r ≥ k.
Then r − k ≥ 0 and, since r − k = j − (q + 1)k we have r − k ∈ S( j, k). Since b > 0 we also
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have r− b < r which contradicts the fact that r is the least element of S( j, k). This proves
the theorem for j, k > 0.

Suppose that j > 0 and k < 0 so that j,−k > 0. Then there exists q̃, r̃ ∈ Z such that
j = q̃(−k) + r̃ with r̃ ∈ {0, 1, . . . , k − 1}. Therefore, the theorem follows by taking q = −q̃
and r = r̃. The other cases where j < 0 and k > 0, and j, k < 0 follow similarly from the
case where j, k > 0.

The final assertion of the theorem follows since (1) in the first part of the proof,
the q, r ∈ Z≥0 we constructed for j ∈ Z≥0 and k ∈ Z≥0 were members of Z≥0, and (2) if
j, k ∈ Z≥0 then | j − k| ≤ max{| j|, |k|}, as can easily be verified directly. ■

Note that Z is not a δ-positive subset of itself (cf. Exercise 4.2.14). We shall
encounter in Corollary 4.4.14 a Euclidean ring which is a δ-positive subset of
itself, and therefore which has the property that the quotient and remainder of the
Division Algorithm are always unique.

As a corollary to Proposition 4.2.41 we have the following more or less obvious
properties of the integers.

4.2.46 Corollary (Properties of Z) For Z, the following statements hold:
(i) 0 < 1;
(ii) if j ∈ Z \ {0} then |j| ≥ 1;
(iii) |j| = 0 if and only if |j| = 0;
(iv) if j ∈ Z \ {0} then |jk| = |j| if and only if k ∈ {−1, 1};
(v) the only units in Z are 1 and −1.

Of course, if the only Euclidean ring we encounter were to be the ring of integers,
it would not be worth introducing the concept. However, we shall see in Section 4.4
that the ring of polynomials over a field is also a Euclidean domain, as we shall see
in Corollary 4.4.14.

By Proposition 4.2.44 follows the uniqueness of the Division Algorithm in δ-
closed and δ-positive subsemirings. The converse of this assertion is also true in
some case.

4.2.47 Proposition (δ-positivity is sometimes implied by uniqueness of the Division
Algorithm) Let (R, δ) be a Euclidean domain and let S ⊆ R be a nontrivial, δ-closed
subsemiring with the following properties:

(i) S generates R as a ring;
(ii) S admits a unique Division Algorithm.

Then S is δ-positive.
Proof Note that since S is a subsemiring, S generates R as a ring if and only if, for
every r ∈ R, it holds that either r ∈ S or −r ∈ S. Suppose that S is not δ-positive so that
δ(a − b) > max{δ(a), δ(b)} for some a, b ∈ S. Suppose that b − a ∈ S. Then

b = 0R · (b − a) + b, δ(b) < δ(b − a),
b = 1R · (b − a) + a, δ(a) < δ(b − a),
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which shows that S does not admit a unique Division Algorithm. An entirely similar
argument gives the same conclusion when a − b ∈ S. ■

Let us see how the structure of a Euclidean domain lends itself to the a general-
isation of the notion of writing integers with respect to a given base (base 10 being
the one we use in everyday life).

4.2.48 Theorem (Base expansion in δ-closed, δ-positive subsemirings) Let (R, δ) be
a Euclidean domain, let S ⊆ R be a nontrivial, δ-closed, and δ-positive subsemiring, and
let b ∈ S be a nonzero nonunit. Then, given a ∈ S \ {0R}, there exists a unique k ∈ Z≥0

and unique r0, r1, . . . , rk ∈ S such that
(i) rk , 0R,
(ii) δ(r0), δ(r1), . . . , δ(rk) < δ(b) and
(iii) a = r0 + r1b + r2b2 + · · · + rkbk.

Proof We prove the result by induction on δ(a). By Proposition 4.2.43 we have

inf{δ(a) | a ∈ S} = 0.

Since we do not consider the case δ(a) = δ(0R), first consider a ∈ R such that δ(a) = δ(1R).
Then a is a unit by Proposition 4.2.41. Thus, since b is a nonzero nonunit, we have
δ(a) < δ(b), and the existence part of the result follows by taking k = 0 and r0 = a. Now
suppose that the result holds for all a ∈ S such that δ(a) ∈ {δ(1R, . . . ,m}. Let a be such
that

δ(a) = inf{δ(r) | r ∈ S, δ(r) > m}.

If δ(a) < δ(b) then take k = 0 and r0 = a to give existence in this case. Otherwise, apply
the Division Algorithm to give a = qb + r with δ(r) < δ(b). Since S is δ-closed, we
can moreover suppose that q, r ∈ S. Now, since b is a nonzero nonunit, since we are
supposing that δ(a) ≥ δ(b) > δ(r), and since S is δ-positive,

δ(q) < δ(qb) = δ(a − r) ≤ max{δ(a), δ(r)} = δ(a).

Therefore, we may apply the induction hypothesis to q to give

q = r′0 + r′1b + r′2b2 + · · · + r′kbk

for some k ∈ Z≥0 and for r′0, r
′

1, . . . , r
′

k ∈ S. Then

a = (r′0 + r′1b + r′2b2 + · · · + r′kbk)b + r = r + r′0b + r′1b2 + · · · + r′kbk+1,

showing that the existence part of the result holds for δ(a) = inf{δ(r) | r ∈ S, δ(r) > m}.
This proves the existence part of the result for all a ∈ S by induction.

We also prove the uniqueness assertion by induction on δ(a). First we use a
technical lemma concerning the general expansion of 0R in the base b.



4.2 Rings 449

1 Lemma Let (R, δ) be a Euclidean domain with b ∈ R a nonzero nonunit. If k ∈ Z≥0 and
r0, r1, . . . , rk ∈ R satisfy

(i) r0 + r1b + r2b2 + · · · + rkbk = 0R and
(ii) δ(r0), δ(r1), . . . , δ(rk) < δ(b),

then r0 = r1 = · · · = rk = 0R.

Proof We prove this by induction on k. For k = 0 the result is trivial. For k = 1 we
have r0 + r1b = 0R, and we claim that r0 = r1 = 0R. Suppose that r1 , 0R. Then

δ(b) ≤ δ(r1b) = δ(−r0) = δ(r0) < δ(b),

which is a contradiction. Thus r1 = 0R, and then also r0 = 0R. Now suppose the result
holds for k ∈ {0, 1, . . . ,m} and consider the expression

0R = r0 + r1b + r2b2 + · · · + rm+1bm+1 = (r1 + r2b + · · · + rm+1bm)b + r0.

Since the result holds for k = 1, it follows that

r1 + r2b + · · · + rm+1bm = 0R, r0 = 0R.

By the induction hypothesis, r1 = r2 = · · · = rm+1 = 0R, and so the result follows. ▼

Now we carry on with the uniqueness part of the proof. First consider the case
when δ(a) = δ(1R). Then, since b is a nonzero nonunit, δ(a) < δ(b) by Proposition 4.2.41.
Suppose that

a = r0 + r1b + r2b2 + · · · + rkbk = (r1 + r2b + · · · + rkbk−1)b + r0 (4.2)

for r0, r1, . . . , rk ∈ S with δ(r0), δ(r1), . . . , δ(rk) < δ(b). By Proposition 4.2.44 there is only
one way to express a as qb+ r with δ(r) < δ(b) and with q, r ∈ S, and from the existence
part of the proof we know that this implies that

r1 + r2b + · · · + rkbk−1 = 0R, r0 = a.

By the lemma we can then assert that r1 = · · · = rk = 0R, and so we must have k = 0 and
r0 = a as the unique solution to (4.2). Thus the result holds when δ(a) = δ(1R). Next
suppose the result true for δ(a) ∈ {δ(1R, . . . ,m}, and suppose that a ∈ S satisfies

δ(a) = inf{δ(r) | r ∈ S, δ(r) > m}.

Then suppose that

a = r0 + r1b + · · · + rkbk = r′0 + r′1b + · · · + r′k′b
k′

for k, k′ ∈ Z≥0, r0, r1, . . . , rk ∈ S, and r′0, r
′

1, . . . , r
′

k′ ∈ S satisfying δ(r j), δ(r′j′) < δ(b) for
j ∈ {0, 1, . . . , k} and j′ ∈ {0, 1, . . . , k′}. Also suppose that rk, r′k′ , 0R. Then

(r1 + r2b + · · · + rkbk−1)︸                       ︷︷                       ︸
q

b + r0 = (r′1 + r′2b + · · · + r′k′b
k′−1)︸                        ︷︷                        ︸

q′

b + r′0.
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By Proposition 4.2.44 we have q = q′ and r0 = r′0. First suppose that δ(a) < δ(b). Then,
by Proposition 4.2.44, we have q = q′ = 0R and r0 = r′0 = a. By the lemma it follows
that r1 = · · · = rk = 0R and r′1 = · · · = r′k′ = 0R, and so we have k = k′ = 0 and r0 = r′0 = a.
Next suppose that δ(a) ≥ δ(b). Then it follows that q, q′ , 0R, since otherwise we have
a = r0 = r′0, contradicting the fact that δ(r0), δ(r′0) < δ(b). Then we have

δ(q) < δ(qb) = δ(a − r0) ≤ max{δ(a), δ(r0)} = δ(a)

since b is a nonzero nonunit and since δ(a) ≥ δ(b) > δ(r0). Similarly, δ(q′) < δ(a).
Therefore, the induction hypothesis applies to q and q′ and we conclude that k−1 = k′−1
and r j = r′j for j ∈ {1, . . . , k}, so proving the uniqueness part of the result by induction
on δ(a). ■

The proof of the theorem is constructive, and we ask the reader to verify the
procedure for determining the coefficients r0, r1, . . . , rk in Exercise 4.2.15.

Applying Theorem 4.2.48 to the Euclidean domain Z and the δ-closed and
δ-positive subsemiringZ≥0, we have the following conclusion, probably known to
the reader. The case of k = 2 corresponds to the binary expansion of a positive
integer.

4.2.49 Corollary (Base expansion of positive integers) If a, b ∈ Z>0 with b ≥ 2, then
there exists unique k ∈ Z≥0 and r0, r1, . . . , rk ∈ Z≥0 such that

(i) rk , 0,
(ii) r0, r1, . . . , rk < b, and
(iii) a = r0 + r1b + r2b2 + · · · + rkbk.

The base expansion also has the following useful consequence.

4.2.50 Theorem (Base expansion in the smallest base) Let (R, δ) be a Euclidean domain,
let S ⊆ R be a nontrivial, δ-closed, and δ-positive subsemiring of R, and let

U = {r ∈ S | r is a unit} ∪ {0R}.

If U ⊂ S and if x ∈ S satisfies

δ(x) = inf{δ(r) | r ∈ S, δ(r) > δ(1R)},

then, for a ∈ S \ {0R}, there exists a unique k ∈ Z≥0 and c0, c1, . . . , ck ∈ U such that
(i) ck , 0R and
(ii) a = c0 + c1x + · · · + ckxk.

Moreover, if U ⊂ S and if a, b ∈ S \ {0R} are written as

a = c0 + c1x + · · · + ckxk, b = d0 + d1x + · · · + dlxl

for c0, c1, . . . , ck,d0,d1, . . . ,dl ∈ U such that ck,dl , 0R, then δ(a) > δ(b) if and only if
k > l.
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Proof Since x is a nonzero nonunit, from Theorem 4.2.48 we can write a = c0 + c1x +
· · · + ckxk for unique c0, c1, . . . , ck ∈ S with ck , 0R and δ(c0), δ(c1), . . . , δ(ck) < δ(x). The
hypotheses on x immediately give c0, c1, . . . , ck ∈ U.

Now let a and b be as stated in the second assertion and write a = qb+ r for q, r ∈ S
with δ(r) < δ(b), this being possible by δ-closedness of S.

Let us assume that δ(a) > δ(b). We will show by induction on δ(b) that k > l. First
suppose that δ(b) = δ(1R) so that b ∈ U. Since δ(a) > δ(b) it follows that a is a nonzero
nonunit and so, by the first part of the result, k > 1, giving the result in this case.
Assume the result holds for δ(b) ∈ {δ(1R), . . . ,n} and suppose that

δ(b) = inf{δ(r) | r ∈ c, δ(r) > n}.

We claim that the hypothesis that δ(a) > δ(b) implies that q is a nonzero nonunit. If
q = 0R then a = r and so δ(b) > δ(r) = δ(a), in contradiction with our assumption. If q
is a unit then

δ(b) = δ(qb) = δ(a − r) = δ(a),

the last equality holding since δ(r) < δ(b) < δ(a) and since δ(a − r) ≤ max{δ(a), δ(r)} by
δ-positivity of S. Thus q being a unit leads to the contradiction δ(b) = δ(a). Since q is a
nonzero nonunit, by the first conclusion of the proposition we have q = u0 +u1x+ · · ·+
umxm for m ∈ Z>0 with u0,u1, . . . ,um ∈ U and um , 0R. Since δ(r) < δ(b) the induction
hypotheses imply that r = v0 + v1x + · · · + vpxp for p < l with v0, v1, . . . , vp ∈ U and
vp , 0R. Therefore,

a = c0 + c1x + · · · + ckxk

= (u0 + u1x + · · · + umxm)(d0 + d1x + · · · + dlxl) + v0 + v1x + · · · + vpxp,

from which we deduce that k > l since R is a domain and since p < m + l.
Now assume that k > l. Let us write

q = u0 + u1x + · · · + umxm, r = v0 + v1x + · · · + vpxp

with u0,u1, . . . ,um, v0, v1, . . . , vp ∈ U and um, vp , 0R. Since δ(r) < δ(b) the previous
part of the proof gives p < l. By the uniqueness part of Theorem 4.2.48 we must have
m = k− l > 0. Therefore, again by the uniqueness part of Theorem 4.2.48, we conclude
that q is not a unit and so δ(q) > δ(1R). Therefore,

δ(b) < δ(qb) = δ(a − r) ≤ max{δ(a), δ(r)} = δ(a),

the last equality holding since δ(r) < δ(b). This gives the result. ■

An interesting result regarding Euclidean domains admitting a unique Divi-
sion Algorithm now almost immediately follows, and relies on the notion of a
polynomial which we only introduce in Section 4.4.
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4.2.51 Theorem (Characterisation of Euclidean domains admitting a unique Divi-
sion Algorithm) If (R, δ) is a Euclidean domain that admits a unique Division Algorithm,
then

(i) the set of units in R forms a field which we denote by FR and
(ii) if FR ⊂ R then R is isomorphic to FR[ξ].

Proof We claim that R admits a unique Division Algorithm if and only if δ(a + b) ≤
max{δ(a), δ(b)} for every a, b ∈ R. Certainly, if δ(a + b) ≤ max{δ(a), δ(b)} for every
a, b ∈ R, then R is a δ-closed and δ-positive subsemiring of itself, and then uniqueness
of quotient and remainder follows from Proposition 4.2.44. Conversely, suppose that
a, b ∈ R \ {0R} satisfy δ(a + b) > max{δ(a), δ(b)}. Then we can write a = 0R · (a + b) + a
with δ(a) < δ(a + b) and also a = 1R · (a + b) + (−b) with δ(−b) < δ(a + b). Thus R does
not admit a unique Division Algorithm.

That the units in R form a field will follow if we can show that, if units a, b ∈ R
satisfy a + b , 0R, then a + b is a unit. This, however, follows since

δ(1R) ≤ δ(a + b) ≤ max{δ(a), δ(b)} = δ(1R),

and so δ(a + b) = δ(1R), implying that a + b is a unit.
The final assertion of the corollary follows from Theorem 4.2.50 since every r ∈ R

can be written as
r = a0 + a1x + · · · + akxk

for unique a0, a1, . . . , ak ∈ FR with ak , 0R and with x as defined in the statement of
Theorem 4.2.50. We then easily see that the map

R ∋ a0 + a1x + · · · + akxk
7→ a0 + a1ξ + · · · + akξ

k
∈ FR[ξ]

is the desired isomorphism. ■

As a final comment in this section, we note that we have focussed here on
the situation when the map δ is given as part of the data of the Euclidean ring.
This sidesteps the question, “Given a ring R, does there exists a map δ : R → Z≥0

such that (R, δ) is a Euclidean ring?” We will not expound on this in any length,
but we do make the following remark. In subsequent sections we will show that
Euclidean rings possess certain properties (e.g., being a principal ideal ring) that
can be formulated without using the map δ. Therefore, any ring not possessing
these properties cannot be a Euclidean ring for any map δ. We shall also give
in Example 4.2.56 an example of an integral domain that cannot be made into a
Euclidean domain for any map δ.

4.2.8 Principal ideal rings and domains

We now turn to a class of rings which, as we shall see, generalises the notion of
a Euclidean ring. This class of rings is described by the structure of its ideals.

We next restrict our attention to ideals that are of a certain sort.
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4.2.52 Theorem (Intersections of ideal are ideals) Let R be a ring, let S ⊆ R, and let Il(S)
(resp. Ir(S), I(S)) be the collection of left (resp. right,two-sided) ideals of R for which if
I ∈ Il(S), (resp. I ∈ Ir(S), I ∈ I(S)) then S ⊆ I. Then ∩I∈Il(S)I (resp. ∩I∈Ir(S)I, ∩I∈I(S)I) is a left
(resp. right, two-sided) ideal which contains S. Moreover, ∩I∈Il(S)I (resp. ∩I∈Ir(S)I, ∩I∈I(S)I) is
contained in any left (resp. right, two-sided) ideal that contains S.

Proof We shall prove the theorem for left ideals. The result for right and two-sided
ideals follows in a similar manner.

First let us show that S ⊆ ∩I∈Il(S)I. This is clear: let r ∈ S. Then r ∈ I for each
I ∈ Il(S), and so r ∈ ∩I∈Il(S)I and so S ⊆ ∩I∈Il(S)I. Now let s1, s2 ∈ ∩I∈Il(S)I. Let I ∈ Il(S).
Since s1, s2 ∈ I and since I is an ideal, s1 − s2 ∈ I. Thus s1 − s2 ∈ ∩I∈Il(S)I. In an entirely
similar manner one shows that if r ∈ R and s ∈ I for each I ∈ ∩I∈Il(S)I, then rs ∈ ∩I∈Il(S)I.
This shows that ∩I∈Il(S)I is a left ideal by Proposition 4.2.14.

That ∩I∈Il(S)I is contained in any left ideal containing S is obvious by definition. ■

With this result, the following definition makes sense.

4.2.53 Definition (Ideal generated by a set, principal ideal, principal ideal ring) Let
R be a ring and let S ⊆ R. Then, using the notation of Theorem 4.2.52, ∩I∈I(S)I is
the ideal generated by S, and is denoted by (S). If S = {a1, . . . , ak} then we denote
(S) = (a1, . . . , ak). An ideal I of R is principal if I = (a) for some a ∈ R, and R is
a principal ideal ring if every ideal is principal. A principal ideal domain is a
principal ideal ring that is also an integral domain. •

The notation (a1, . . . , ak) for the ideal generated by {a1, . . . , ak} is imperfect because
it suggests that (a1, . . . , ak) is an element of the k-fold Cartesian product of R with
itself. However, the notation is so entrenched that our changing it would only
delude the reader.

Nothing we have said so far gives us much of an idea of what the ideal (S)
generated by S looks like. The next result addresses this rather important matter for
principal ideals.

4.2.54 Theorem (Characterisation of principal ideals) Let R be a ring and let a ∈ R. Then
the following statements hold:

(i) (a) =

r0 · a + a · s0 + la +
k∑

j=1

rj · a · sj

∣∣∣∣∣∣∣ r0, s0, rj, sj ∈ R, k ∈ Z>0, l ∈ Z

;

(ii) if R is a unit ring then (a) =

 k∑
j=1

rj · a · sj

∣∣∣∣∣∣∣ rj, sj ∈ R, k ∈ Z>0

;

(iii) if R is commutative then (a) = {r · a + ka | r ∈ R, k ∈ Z};
(iv) if R is a commutative unit ring then (a) = {r · a | r ∈ R}.

Proof (i) Let Ia =
{
r0 · a + a · s0 + la +

∑k
j=1 r j · a · s j

∣∣∣∣ r0, s0, r j, s j ∈ R, k ∈ Z>0, l ∈ Z
}
.



454 4 Algebraic structures

Note that a ∈ Ia. We also claim that Ia is an ideal. To see this, let

s = r0 · a + a · s0 + la +
k∑

j=1

r j · a · s j ∈ Ia

and let r ∈ R. Then

r · s = (r · r0 + r · ((l − 1)a)) · a + a · 0R + 0Ra +

r · a · s0 +

k∑
j=1

(r · r j) · a · s j

 ∈ Ia

and

s · r = 0R · a + a · (s0 · r) + 0Ra +

r0 · a · r + ((l − 1)a) · a · r +
k∑

j=1

r jas j

 ∈ Ia.

Also, if

s1 = r10 · a + a · s10 + l1a +
k1∑
j=1

r1 j · a · s1 j,

s2 = r20 · a + a · s20 + l2a +
k2∑
j=1

r2 j · a · s2 j

are elements of Ia, then

s1 − s2 = (r10 − r20) · a + a · (s10 − s20) + (l1 − l2) · a

+

 k1∑
j=1

r1 j · a · s1 j +

k2∑
j=1

(−r2 j) · a · s2 j

 ∈ Ia.

Thus Ia is an ideal by Proposition 4.2.14.
Now suppose that I is an ideal containing a. Then, since I is a subring, la ∈ I for all

l ∈ Z≥0. Also since I is a subring, −a ∈ I, so −la ∈ I for all l ∈ Z≥0. Thus la ∈ I for all
l ∈ Z. Also, since I is a left ideal, r · a ∈ I for all r ∈ R, and since I is a right ideal, a · s ∈ I
for all s ∈ R. Since I is a left and right ideal, for each k ∈ Z>0 and for each collection
r1, . . . , rk, s1, . . . , sk ∈ R, r j · a · s j ∈ I, j ∈ {1, . . . , k}. Since I is a subring,

k∑
j=1

r j · a · s j ∈ I

This all shows that Ia ⊆ I. Thus Ia is contained in any ideal that contains a. This gives
the result.

(ii) We know from part (i) that

(a) =

r0 · a + a · s0 + la +
k∑

j=1

r j · a · s j

∣∣∣∣∣∣∣∣ r0, s0, r j, s j ∈ R, k ∈ Z>0, l ∈ Z

 .
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The result follows from the observation that if

r0 · a + a · s0 + la +
k∑

j=1

r j · a · s j ∈ (a),

then we can write

r0 · a + a · s0 + la +
k∑

j=1

r j · a · s j

= r0 · a · 1R + 1R · a · s0 + ((l − 1)a) · a · 1R +

k∑
j=1

r j · a · s j.

(iii) We know from part (i) that

(a) =

r0 · a + a · s0 + la +
k∑

j=1

r j · a · s j

∣∣∣∣∣∣∣∣ r0, s0, r j, s j ∈ R, k ∈ Z>0, l ∈ Z

 .
The result follows from the observation that if

r0 · a + a · s0 + la +
k∑

j=1

r j · a · s j ∈ (a),

then we can write

r0 · a + a · s0 + la +
k∑

j=1

r j · a · s j =

r0 + s0 +

k∑
j=1

r j · s j

 · a + la.

(iv) This follows from combining parts (ii) and (iii). ■

From the theorem, we know that if R is a commutative principal ideal ring with
unit, then every ideal in R can be written as {ra | r ∈ R} for some a ∈ R. Our main
result concerning principal ideal rings is the following, which asserts that principal
ideal rings generalise Euclidean rings.

4.2.55 Theorem (Euclidean rings are principal ideal rings) If (R, δ) is a Euclidean ring,
then R is a principal ideal ring. Moreover, if (a) is an ideal in R, then

δ(a) = inf{δ(b) | b ∈ (a) \ {0R}}.
Proof Let I ⊆ R be an ideal. If I = {0R} then I = (0R) and so the result follows. So
suppose that I , {0R} and define a ∈ I such that

δ(a) = inf{δ(b) | b ∈ I \ {0R}},

this being possible since Z≥0 is well ordered. For b ∈ I we write b = qa + r for q, r ∈ R
with δ(r) < δ(a). Then, since b, qa ∈ I, r ∈ I. Now, either r = 0R or r , 0R and δ(r) < δ(a).
In the latter case we contradict the definition of a, so we must have r = 0R. Thus, if
b ∈ I then b = qa for some q ∈ R. Thus I = (a). ■

There exist principal ideal domains that are not Euclidean domains. The fol-
lowing not entirely trivial example exhibits a principal ideal domain that is not a
Euclidean domain.
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4.2.56 Example (A principal ideal domain that is not a Euclidean domain) Our ex-
ample relies on knowing about complex numbers. The reader who does not know
about complex numbers can refer to Section 4.7, and can also be expected to have
to work to know what we are doing here.

We let R denote the subset of the ring C given by

R =
{
j + 1

2k(1 + i
√

19)
∣∣∣∣ j, k ∈ Z

}
.

We denote α = 1
2 (1+ i

√
19), and we note the following easily verified facts about α:

1. ᾱ = 1 − α;
2. αᾱ = 5;
3. α2 = α − 5;
4. if j + kα ∈ R then α( j + kα) = −5k + ( j + k)α.
Using these facts it is a simple matter, that we leave to the reader, to verify that R
is a subring with unity of C. Since C is an integral domain, so too is R.

As a first step in understanding R, let us determine the units in R. To do so, we
introduce the map N : R→ Z given by

N( j + kα) = ( j + kα)( j + kᾱ) = j2 + jk + 5k2. (4.3)

One can verify directly that N(( j1 + k1α)( j2 + k2α)) = N( j1 + k1α)N( j2 + k2α). It is also
clear that N( j + kα) ≥ 0 and N( j + kα) = 0 if and only if j = k = 0. We then have the
following lemma characterising the units of R.

1 Lemma The set of units of R is {−1, 1}.

Proof Let r be a unit in R so that there exists r−1
∈ R for which rr−1 = 1. Then

1 = N(1) = N(rr−1) = N(r)N(r−1),

which shows that N(r) is a unit in Z, and hence equal to either 1 or −1. Since N
takes values inZ≥0 we must have N(r) = 1. Write r = j+ kα so that j2 + jk+ 5k2 = 1.
First suppose that jk ≥ 0. Then we must have k = 0 from which it follows that
j ∈ {−1, 1}. Thus the lemma follows in this case. Next suppose that jk < 0. Then,
since j + kᾱ = j + k − kα,

1 = N( j + kα) = N( j + kᾱ) = ( j + k)2
− jk + 4k2.

Therefore we again conclude that k = 0 and so j ∈ {−1, 1}. Again, the lemma
follows. ▼

The next lemma will also be useful, and relies on the notion of prime elements
of a ring that we will not introduce until Section 4.2.9.
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2 Lemma 2 and 3 are prime in R.
Proof As will be seen below, R is a principal ideal domain. Therefore, by Lemma 1
of Theorem 4.2.71, it suffices to show that 2 and 3 are irreducible. Thus suppose,
for example, that 2 = ( j1 + k1α)( j2 + k2α). Then

4 = N(2) = N( j1 + k1α)N( j2 + k2α).

If we suppose that neither of j1+k1α or j2+k2α is a unit, this implies that N( j1+k1α) =
N( j2 + k2α) = 2. Therefore, in particular, following the computations of Lemma 1,
we have

2 = N( j1 + k1α) = N( j1 + k1ᾱ) = j2
1 + j1k2 + 5k2

1 = ( j1 + k1)2
− j1k2 + 4k2

1.

Considering separately the case j1k1 ≥ 0 and j1k1 < 0 we deduce that k1 = 0. In
like manner we conclude that k2 = 0. Therefore, we arrive at 2 = j1 j2, meaning that
( j1 + 0α)( j2 + 0α) is a prime factorisation of 2 inZ. Thus one of j1 + 0α and j2 + 0α is
a unit in Z, and hence in R by Lemma 1. Thus 2 is irreducible. An entirely similar
computation shows that 3 is irreducible. ▼

We now show that there exists no map δ : R→ Z≥0 for which (R, δ) is a Euclidean
domain. Suppose that δ is such a map, and let b ∈ R have the property that

δ(b) = inf{δ(r) | r ∈ R \ {−1, 0, 1}}.

Since (R, δ) is a Euclidean domain there exists q, r ∈ R such that 2 = qb + r where
δ(r) < δ(b). Thus we must have r ∈ {−1, 0, 1}, using Proposition 4.2.41. Thus we
have either qb = 3, qb = 2, or qb = 1. We cannot have the last instance since b is
not a unit in R. Thus either b|2 or b|3. Since 2 and 3 are prime this implies that
b ∈ {−3,−2, 2, 3}. Now write q = j + kα so that we have either
1. −3 j − 3kα = −1, −3 j − 3kα = 0, or −3 j − 3kα = 1,
2. −2 j − 2kα = −1, −2 j − 2kα = 0, or −2 j − 2kα = 1,
3. 2 j + 2kα = −1, 2 j + 2kα = 0, or 2 j + 2kα = 1, or
4. 3 j + 3kα = −1, 3 j + 3kα = 0, or 3 j + 3kα = 1.
These in turn imply
1. N(3)( j2 + jk + 5k2) = 1 or N(3)( j2 + jk + 5k2) = 0, or
2. N(2)( j2 + jk + 5k2) = 1 or N(2)( j2 + jk + 5k2) = 0
and, using the equality j + kα = ( j + k) − kα,
1. N(3)(( j + k)2

− jk + 4k2) = 1 or N(3)(( j + k)2
− jk + 4k2) = 0, or

2. N(2)(( j + k)2
− jk + 4k2) = 1 or N(2)(( j + k)2

− jk + 4k2) = 0.
Taking separately the cases jk ≥ 0 and jk < 0, we see that none of these equalities
can be satisfied for j, k ∈ Z, and so we conclude that the map δ : R → Z≥0 having
the property that (R, δ) is a Euclidean domain does not exist.

Next we show that R is a principal ideal domain. We do this employing a
general strategy suggested by the following lemma.
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3 Lemma Let R be an integral domain and suppose that there exists a map σ : R → Z≥0

having the following properties:
(i) if a, b ∈ R with ab , 0, then σ(ab) ≥ σ(a);
(ii) if a, b ∈ R with b , 0 and if σ(a) ≥ σ(b), then either b|a or there exists r, s ∈ R such

that 0 < σ(ra − sb) < σ(b).
Then R is a principal ideal domain.
Proof Let I ⊆ R be an ideal. If I = {0} then I = (0) and so I is principal. If I , {0},
then define b ∈ I such that

σ(b) = inf{σ(a) | a ∈ I \ {0}}.

Suppose that there exists a ∈ I such that, for any r ∈ R, a , rb. Since a , 0 we have
σ(a) ≥ σ(b). Then there exists r, s ∈ R such that σ(ra − sb) < σ(b). Since I is an ideal,
ra − sb ∈ I, and we have thus contradicted the definition of b. ▼

We shall now show that the map N : R→ Z≥0 defined in (4.3) has the properties
of the map σ in the lemma. It is clear that N(ab) ≥ N(a) if ab , 0.

4 Lemma Let R be the ring we are using in this example, and let a, b ∈ R with b , 0, with
N(a) ≥ N(b), and such that b ∤ a. Then there exists r, s ∈ R such that 0 < N(ra − sb) <
N(b).
Proof Let us first say some things about a

b . We have

a
b
=

ab̄
bb̄
.

By the properties of the number α given above we can then write
a
b
= β + γα,

where β, γ ∈ Q. Moreover, since b ∤ a, it must be that at least one of β and γ does
not lie in Z. We shall find r, s ∈ R such that

0 < N
(

a
br − s

)
< 1,

and the lemma follows from this using the properties of N. We consider various
cases. For x ∈ R we denote by {x} the integer nearest x, taking the convention that
{ j + 1

2 } = j for j ∈ Z.
1. γ ∈ Z: Here we have β < Z. Define r = 1 and s = {β} + γα. Then

0 < N
(

a
br − s

)
= N(β + γα − {β} − γα) ≤ 1

4 < 1.

2. β ∈ Z and 5γ < Z: Take r = ᾱ and s = {β + 5γ} − βα. Then, using the properties
of α given above,

0 < N
(

a
br − s

)
= N

(
a
b ᾱ − {β + 5γ} + βα

)
= N(β + 5γ − βα − {β + 5γ} + βα) ≤ 1

4 < 1.
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3. β ∈ Z and 5γ ∈ Z: Note that γ = j
5 for j ∈ Z. Then a simple induction on j

shows that either |γ − {γ}| = 1
5 or |γ − {γ}| = 2

5 . Take r = 1 and s = β + {γ}α. Then

0 < N
(

a
br − s

)
= N(β + γα − β − {γ}α) = N(γ − {γ})N(α) ≤ 4

5 < 1.

4. β, γ < Z and 2β, 2γ < Z: In this case we either have |γ−{γ}| ≤ 1
3 or |2γ−2{γ}| < 1

3 .
In the first case we take r = 1 and s = {β} + {γ}α and compute

0 < N
(

a
br − s

)
= N(β − {β} + (γ − {γ})α)

= (β − {β})2 + (β − {β})(γ − {γ}) + 5(γ − {γ})2
≤

1
4 +

1
2

1
3 +

5
9 =

35
36 < 1.

In the second case we take r = 2 and s = 2{β}+2{γ}α, and the same computation
as the first case gives the same conclusion.

5. β, γ < Z and 2β, 2γ ∈ Z: Note that for β, γ ∈ Qwe have

(β + γα)α = −5γ + (β + γ)α,

as may be verified by direct computation. Moreover, in this case we have
β = j

2 and γ = k
2 for j, k ∈ Z. Therefore, β + γ ∈ Z. Now take r = α and

s = {−5γ} + {β + γ}α so that

0 < N
(

a
br − s

)
= N

(
a
bα − {−5γ} − {β + γ}α

)
= N(−5γ + (β + γ)α − {−5γ} − {β + γ}α) = N(−5γ − {−5γ}) ≤ 1

4 < 1.

6. β, γ < Z, 2β ∈ Z, 2γ < Z, and 5γ ∈ Z: Take r = 5 and s = {5β}+5γα and compute

0 < N
(

a
br − s

)
= N(5β + 5γα − {5β} − 5γα) = N(5β − {5β}) ≤ 1

4 < 1.

7. β, γ < Z, 2β ∈ Z, 2γ < Z, and 5γ < Z: Here take r = 2ᾱ and s = {2β + 10γ} − 2βα
and compute

0 < N
(

a
br − s

)
= N

(
2 a

b ᾱ − {2β + 10γ} + 2βα
)

= N(2β + 10γ − 2βα − {2β + 10γ} + 2βα) = N(2β + 10γ − {2β + 10γ}) ≤ 1
4 < 1.

8. β, γ < Z, 2β < Z, and 2γ ∈ Z: Let r = 2 and s = {2β} + 2γα and compute

0 < N
(

a
br − s

)
= N(2β + 2γα − {2β} − 2γα) = N(2β − {2β}) ≤ 1

4 < 1.

These cases may be easily seen to cover all possibilities, and so the lemma follows.
▼

The lemma, combined with Lemma 3, shows that R is a principal ideal domain.
•

An important property of principal ideal rings is the following which will be
essential in the proof of Theorem 4.2.71. There we will see that the finiteness
assertion in the theorem allows us to conclude a prime factorisation theorem for
principal ideal domains.
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4.2.57 Theorem (Nested sequences of ideals are finite in principal ideal rings) Let
R be a principal ideal ring and let (Ij)j∈Z>0 be a sequence of ideals having the property that
Ij ⊆ Ij+1 for j ∈ Z>0. Then there exists N ∈ Z>0 such that Ij = IN for j ≥ N.

Proof The sequence (I j) j∈Z>0 is totally ordered in the set of ideals of R using the
partial order of set inclusion. Therefore, as we saw during the course of the proof of
Theorem 4.2.19, Ī = ∪ j∈Z>0 I j is an ideal. Since R is a principal ideal ring, Ī = (r) for
some r ∈ R̄. Thus r ∈ IN for some N ∈ Z>0. For j ≥ N it therefore follows that r ∈ I j.
Thus (r) ⊆ I j ⊆ Ī = (r), and so I j = (r)IN for j ≥ N. ■

4.2.9 Divisors, primes, and irreducibles

The reader has more than likely been exposed to the idea of a prime number.
The notion of a prime number is an example of a more general idea of a prime
element in a ring. In this section we study this, along with the sometimes related
notion of an irreducible element of a ring.

To begin the discussion we first discuss the notion of a divisor of an element of
a ring.

4.2.58 Definition (Divisor) Let R be a commutative ring and let r ∈ R. An element
d ∈ R \ {0} is a divisor, or a factor, of e if there exists s ∈ R such that r = sd. If d is
a divisor of r, then d divides r, r is divisible by d, and we write d|r. If d does not
divide r then we write d ∤ r. •

4.2.59 Examples (Divisors)
1. Let R = Z. Then 2 divides every even integer, but does not divide any odd

integer.
2. In the ring Z4, 3 + 4Z divides 2 + 4Z since (3 + 4Z)(2 + 4Z) = 6 + 4Z = 2 + 4Z.
3. In the ring R, every element nonzero element divides every other element.

Indeed, if x ∈ R and if y ∈ R∗, then x = (xy−1)y. Readers who have read
Section 4.3, or who know about fields, know that this is a property of every
field. •

Let us first record some elementary properties of divisors. These all follow in a
straightforward way from the definition, so we leave the proofs as Exercise 4.2.17
for the reader.

4.2.60 Proposition (Elementary properties of divisors) In a commutative ring R with
d, r, s ∈ R, the following statements hold:

(i) if d|r and r|s then d|s;
(ii) d|r if and only if d|(ur) for every unit u;
(iii) d|r if and only if (ud)|r for every unit u;
(iv) u|a for every a ∈ R if and only if u is a unit;
(v) if d , 0 then d|0;
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(vi) if u is a unit and if d|u then d is a unit;
(vii) if r = us for some unit u, then r|s and s|r;
(viii) if R is an integral domain and if r|s and s|r, then r = us for a unit u;
(ix) if d|r and d|s, then d|(ar + bs) for every a, b ∈ R.

Divisors also have relationships to principal ideals as follows.

4.2.61 Proposition (Divisors and principal ideals) If R is a commutative ring with identity,
then the following statements hold for r, s ∈ R:

(i) r|s if and only if (s) ⊆ (r);
(ii) r|s and s|r if and only if (r) = (s);
(iii) r is a unit if and only if (r) = R.

Proof (i) Suppose that r|s and, by Theorem 4.2.54, let r1s ∈ (s) for some r1 ∈ R. Then
r1s = r1r2r for some r2 ∈ R, meaning, again by Theorem 4.2.54, that r1s ∈ (r). Now
suppose that (s) ⊆ (r). Then, by Theorem 4.2.54, s = r′r for some r′ ∈ R, showing that
r|s.

(ii) This follows from part (i).
(iii) Suppose that r is a unit and let r′ ∈ R. Then r′ = (r′r−1)r, showing that R = (r).

Now suppose that (r) = R. Then 1R = r′r for some r′ ∈ R, which shows that r is a
unit. ■

In any commutative ring R with identity and for any r ∈ R, we always have 1R|r
and r|r, and so every element always possesses the divisors 1R and itself. For the
ring Z, we use the terminology that a positive number is “prime” when its only
divisors are 1R and itself. For general rings, this idea can be stated as the following
definition. At this point, it is perhaps not obvious that the concepts we are talking
about amount to our usual notion of a prime integer. However, this will be proved
in Section 4.2.10.

4.2.62 Definition (Irreducible, prime) For a commutative ring R with identity, an element
r ∈ R is:

(i) irreducible if r is nonzero, not a unit, and has the property that, if r = a · b,
then either a or b is a unit;

(ii) reducible if it is not irreducible;
(iii) prime if r is nonzero, not a unit, and has the property that r|(a · b) implies that

r|a or r|b. •

Let us give some examples that show that this really does agree with what one
already knows.
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4.2.63 Examples (Irreducibles and primes)
1. Consider the integral domainZ. We claim that 2 is both irreducible and prime,

but that 4 is neither irreducible nor prime. Note that neither 2 nor 4 are units.
Indeed, suppose that 2 = jk for j, k ∈ Z. Then j, k ∈ {1, 2} or j, k ∈ {−1,−1}, and
then one can directly see that either (1) j = 1 and k = 2 or that (2) j = 2 and k = 1
or that (3) j = −1 and k = −2 or that (4) j = −2 and k = −1. Thus 2 is irreducible.
Next suppose that 2|( jk). This means that jk is even. One can directly see that
this implies that either j or k must be even, so that 2| j or 2|k. Thus 2 is prime.
Now note that 4 = 2 · 2, but that 2 is not a unit. Therefore, 4 is not irreducible.
Also note that 4|(2 · 6), but that 4 divides neither 2 nor 6. Thus 4 is not prime
either.
We shall see below that “prime” and “irreducible” agree forZ, and for a whole
class of integral domains.

2. Consider the ring Z6. We claim that 2 + 6Z is prime but not irreducible. First
note that 2 + 6Z is not a unit in Z6.
Indeed, if (2 + 6Z)|(( j + 6Z)(k + 6Z)) then jk = 2l + 6m for some l,m ∈ Z. In
particular, one can easily see that this implies that jk must be even. Therefore,
either j or k is even, and so either 2+ 6Z divides j+ 6Z or 2+ 6Z divides k+ 6Z.
Thus 2 + 6Z is prime.
Now note that 2+ 6Z = (2+ 6Z)(4+ 6Z), but that neither 2+ 6Z nor 4+ 6Z are
units in Z6. Indeed, both 2 + 6Z and 4 + 6Z are zerodivisors.

3. Next take the ringR. Since all nonzero elements ofR are units, there are neither
any primes nor any irreducibles in R.

4. Our next example is one that gives elements of a ring that are irreducible but
not prime. The ring we need to exhibit this is a little more complicated than our
preceding two examples. We define a subset of the ring R by

R =
{
j + k

√

10
∣∣∣∣ j, k ∈ Z

}
,

and we leave to the reader the straightforward verification that R is a subring
of R. We claim that the elements 2, 3, 4 +

√
10, 4 −

√
10 ∈ R are irreducible, but

not prime. As a first step, let us characterise the units of R. To do so, introduce
the map N : R→ Z defined by

N( j + k
√

10) = j2
− 10k2.

This map will be useful generally, but for now we use it to state the following
lemma.

1 Lemma The set of units in R is {j + k
√

10 | j2 − 10k2
∈ {−1, 1}}.

Proof It is a straightforward calculation to check that N(r1r2) = N(r1)N(r2) for
all r1, r2 ∈ R. Also, suppose that N( j + k

√
10) = j2

− 10k2 = 0 and that k , 0.
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Then j2

k2 = 10 or
∣∣∣ j

k

∣∣∣ = √10. Since
√

10 is irrational (why?) this equation has no
integer solutions for j and k. Thus we must have k = 0 whence also j = 0. Thus
N( j + k

√
10) = 0 if and only if j = k = 0.

Now suppose that j+k
√

10 is a unit with multiplicative inverse j′+k′
√

10. Then

1 = N(1) = N(( j + k
√

10)( j′ + k′
√

10)) = N( j + k
√

10)N( j′ + k′
√

10).

Since N takes values in Z it follows that N( j + k
√

10) is a unit in Z, or that
N( j + k

√
10) = j2

− 10k2
∈ {−1, 1}. ▼

One can then check directly that none of the four elements 2, 3, 4+
√

10, 4−
√

10 ∈
R is a unit.
To see that 2 and 3 are irreducible, let p ∈ {−3,−2, 2, 3}, suppose that

p = ( j1 + k1

√

10)( j2 + k2

√

10).

Then
p2 = N(p) = N( j1 + k1

√

10)N( j2 + k2

√

10).

Since p is prime in Z, in order that j1 + k1

√
10 and j2 + k2

√
10 not be units in R,

by the lemma we must have N( j1 + k1

√
10),N( j2 + k2

√
10) ∈ {−p, p}. We now use

a lemma.

2 Lemma For p ∈ {−3,−2, 2, 3}, there do not exist j,k ∈ Z such that j2 − 10k2 = p.

Proof Let π5 : Z→ Z5 be given by π5( j) = j+5Z. If j, k ∈ Z satisfy j2
−10k2 = p,

then we have j2 = p + 5(2k2), and so π5( j2) = π5(p). Therefore, it suffices to
show that the equation ( j + 5Z)2 = p + 5Z has no solutions in Z5. Note that
−3+ 5Z = 2+ 5Z and −2+ 5Z = 3+ 5Z, so it suffices to consider only p ∈ {2, 3}.
For this, we simply compute

(1 + 5Z)2 = 1 + 5Z, (2 + 5Z)2 = 4 + 5Z,

(3 + 5Z)2 = 4 + 5Z, (4 + 5Z)2 = 1 + 5Z.

Therefore, ( j + 5Z)2 cannot take the value 2 + 5Z or 3 + 5Z, and the lemma
follows. ▼

The lemma immediately implies that if p = ( j1 + k1

√
10)( j2 + k2

√
10) then either

j1 + k1

√
10 or j2 + k2

√
10 must be a unit. Thus either k1 or k2 = 0. In the first

case we must have k2 = 0 and in the second case we must have k1 = 0. Thus
we are left with p = j1 j2, which means that either j1 or j2 must be a unit in Z.
Thus either j1 + k1

√
10 or j2 + k2

√
10 must be a unit in R. Thus p is irreducible

for p ∈ {−3,−2, 2, 3}.
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To see that 4 +
√

10 is irreducible, write 4 +
√

10 = ( j1 + k1

√
10)( j2 + k2

√
10) for

j1 + k1

√
10 and j2 + k2

√
10 nonunits. Then

6 = N(4 +
√

10) = N( j1 + k1

√

10)N( j1 + k1

√

10).

Since j1 + k1

√
10 and j2 + k2

√
10 are nonunits, by Lemma 1 we must have

N( j1 + k2

√
10),N( j2 + k2

√
10) ∈ {−3,−2, 2, 3}. By Lemma 2, however, we know

that this is not possible if j1 + k1

√
10 and j2 + k2

√
10 are nonunits. Thus 4+

√
10

is irreducible. An entirely similar computation also shows that 4 −
√

10 is
irreducible.
Now let us show that 2 is not prime. Note that 2|6, and that 6 = (4+

√
10)(4−

√
10).

It is clear that 2 ∤ (4 +
√

10) and 2 ∤ (4 −
√

10), which means that 2 is not prime.
The matter of showing that 3, 4+

√
10, and 4−

√
10 are irreducible but not prime

can be carried out in an entirely analogous manner, and we leave the details of
this to the reader. •

Next we indicate the relationship between primes and irreducibles, and special
sorts of ideals. The notion of an ideal came about exactly for the reason of a need
to generalise objects such as primes. Therefore, in some sense, the following result
plays a key rôle in comprehending why ideals are important. To state the result, it
is convenient to recall from Corollary 4.2.20 the characterisation of maximal ideals
as maximal elements of the set, partially ordered by set inclusion, S(R) of all proper
ideals. Here we modify this slightly by defining P(R) to be the set of principal
ideals, again ordered by set inclusion.

4.2.64 Theorem (Prime and irreducibles, and ideals) For R a commutative unit ring the
following statements hold:

(i) p ∈ R is prime if and only if (p) is a prime ideal;
(ii) if r is irreducible then (r) is a maximal element of P(R);
(iii) if R is an integral domain and if (s) ⊆ (r) for every (s) ∈ P(R), then r is irreducible.

Proof (i) Suppose that p is prime and let rs ∈ (p). Then p|(rs) by Theorem 4.2.54 so
that either p|r or p|s. By Proposition 4.2.18 it follows that (p) is prime. Now suppose
that (p) is prime and suppose that p|(rs). Therefore, rs ∈ (p) by Theorem 4.2.54 and
so either r ∈ (p) or s ∈ (p). Again using Theorem 4.2.54 we conclude that p|r or p|s,
showing that p is prime.

(ii) Note that if r is irreducible it is not a unit, and so (r) ⊂ R by Proposition 4.2.61.
Therefore, (r) ∈ P(R). Now let (s) ∈ P(R) and suppose that (r) ⊆ (s). Then, by
Proposition 4.2.61, r = ds for some d ∈ R. It must then hold that either d or s is a unit.
By Proposition 4.2.61, if s is a unit then (s) = R and if d is a unit then (r) = (s). Thus (r)
is maximal.

(iii) Suppose that (r) is maximal in P(R). Then r must be a nonzero nonunit by
Proposition 4.2.61. Now suppose that r = ab from which we deduce that (r) ⊆ (a),
again by Proposition 4.2.61. Since (r) is maximal, either (a) = (r) or (a) = R. In the
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first case a = dr for some d ∈ R by Proposition 4.2.61, and so r = ab = rdb. By
Proposition 4.2.33, db = 1R, whence b is a unit. In the second case, a is a unit by
Proposition 4.2.61, and so we conclude that r is irreducible. ■

The following result gives some general relationships that one can infer about
primes and irreducibles when R is an integral domain.

4.2.65 Proposition (Primes and irreducibles in integral domains) If R is be an integral
domain, and consider the following three statements concerning p ∈ R:

(i) p is prime;
(ii) p is irreducible;
(iii) if d|p then either d is a unit or p and d are associates.

Then (i) =⇒ (ii) =⇒ (iii).
Proof Suppose that p is prime and that p = ab. Then p|(ab) and since p is prime,
without loss of generality we can assert that p|a. Thus a = qp for some q ∈ R. Then
p = ab = aqp which implies that aq = 1R by Proposition 4.2.33. Thus a is a unit, and so
p is irreducible. This shows that (i) =⇒ (ii).

Let p be irreducible and suppose that d|p so that (p) ⊆ (d) by Proposition 4.2.61.
By Theorem 4.2.64(ii) we have (p) = (d) or (d) = R. Now, by Proposition 4.2.61, in the
first case we have p|d, and so, by Proposition 4.2.60, p = ud for some unit u. In the
second case, d is a unit by Proposition 4.2.61. This gives the implication (ii) =⇒ (iii). ■

4.2.10 Unique factorisation domains

In this section, as in our earlier sections dealing with special classes of rings,
we will generalise a property of the ring of integers. The property of the integers
that we will generalise is the prime factorisation where every positive integer can
be written as a unique (up to ordering) product of prime numbers.

We can now state the main definition in this section.

4.2.66 Definition (Unique factorisation domain) A unique factorisation domain is an
integral domain R such that:

(i) if r ∈ R is nonzero and not a unit, then there exists irreducible elements
f1, . . . , fk ∈ R such that r = f1 · · · fk;

(ii) if, for irreducible elements f1, . . . , fk, g1, . . . , gl ∈ R, we have f1 · · · fk = g1 · · · gl,
then k = l and there exists σ ∈ Sk such that f j|gσ( j) and gσ( j)| f j for each j ∈
{1, . . . , k}. •

The first part of the definition tells us that every nonzero element of R that is not
a unit is expressible as a product of irreducibles. The second part of the definition,
along with Proposition 4.2.60(viii), tells us that the expression as a product of
irreducibles is unique up to order and the factors differing by a unit. It is often
convenient to eliminate the ambiguity of knowing the irreducible factors only up
to multiplication by units. Let us denote by IR the set of irreducible elements of
a commutative unit ring. On IR define a relation by p1 ∼ p2 if p2 = up1 for some
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unit u. In Exercise 4.2.19 the reader can show that this relation is an equivalence
relation. The following definition develops some terminology associated to this.

4.2.67 Definition (Selection of irreducibles) Let R be a commutative unit ring and let
IR be the set of irreducible elements in R, with∼ the equivalence relation described
above. A selection of irreducibles is a map P : (IR/ ∼)→ IR such that P([p]) ∈ [p].
We shall denote a selection of irreducibles P by (pa)a∈AR where AR = IR/ ∼ and
where pa = P(a). •

The following result encapsulates why the notion of a selection of irreducibles
is valuable.

4.2.68 Proposition (Unique factorisation determined by selection of irreducibles) If
R is a unique factorisation domain and if (pa)a∈AR is a selection of irreducibles, then, given
a nonzero nonunit r ∈ R, there exists unique pa1 , . . . ,pak ∈ (pa)a∈AR and a unique unit
u ∈ R such that r = upa1 · · ·pak .

Proof Let f1, . . . , fk be irreducibles such that r = f1 · · · fk. For j ∈ {1, . . . , k}, define
pa j ∈ {pa | a ∈ AR} so that pa j ∈ [ f j]. Then f j = u jpa j for some unit u j ∈ R, j ∈ {1, . . . , k}.
Then we have

r = u1 · · · ukpa1 · · · pak ,

giving the existence part of the result. Now suppose that

r = upa1 · · · pak = u′pa′1
· · · pa′k′

(4.4)

are two representations of the desired form. Since (upa1)pa2 · · · pak and (u′pa′1
)pa2 · · · pa′k′

are two factorisations by irreducibles, we immediately conclude that k′ = k. For
convenience, let us define f1 = upa1 , f j = pa j , j ∈ {2, . . . , k}, and f ′1 = u′pa′1

, f ′j = pa′j
,

j ∈ {2, . . . , k}. We can then assert the existence of σ ∈ Sk such that f ′j = v j fσ( j),
j ∈ {1, . . . , k}, for units v1, . . . , vk. By the definition of a selection of irreducibles, for each
j ∈ {1, . . . , k} we have f ′j = v j fσ( j) = w jpb j for a unit w j and pb j ∈ (pa)a∈AR . Now we have
a few cases.
1. f ′1 = u′pa′1

= v1 f1 = v1upa1 : In this case we have

u′pa′1
= uv1pa1 = w1pb1 .

We conclude that pa′1
∼ pa1 ∼ pb1 , implying that pa′1

= pa1 = pb1 . By Proposi-
tion 4.2.33 we also conclude that u′ = uv1 = w1.

2. f ′1 = u′pa′1
= fσ(1) = paσ(1) for σ(1) , 1: Here we have

u′pa′1
= v1paσ(1) = w1pb1 ,

and as above we conclude that pa′1
= paσ(1) = pb1 and u′ = v1 = w1.

3. f ′j = pa′j
= v j f1 = v jup1 = w jpb j for j , 1: Here we conclude that pa′j

= p1 = pb j and
1R = v ju = w j.

4. f ′j = pa′j
= v j fσ( j) = v jpa j = w jpb j for j , 1 and σ( j) , 1: In this case we conclude that

pa′j
= pa j = pb j and 1R = v j = w j.
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We then see that pa′1
· · · pa′k

= paσ(1) · · · paσ(k) , and we immediately conclude from (4.4) and
Proposition 4.2.33 that u′ = u, and this completes the proof of uniqueness. ■

Although we have not yet proven that Z is a unique factorisation domain, the
reader has probably at least been told this at some point, so let us use this as an
example to illustrate the definition. ThatZ is, in fact, a unique factorisation domain
will follow from Corollary 4.2.73 below.

4.2.69 Example (Z as a unique factorisation domain) Let us assume for the moment
the following fact: every positive integer not equal to 1 can be written as a product
of positive prime integers. It then follows that every integer j ∈ Z \ {−1, 0, 1} can
be written as

j = (±p1) · · · (±pk)

for positive prime integers p1, . . . , pk. This expression of j as a product of primes
is now unique up to the order, and up to the use of “+” or “−” in each of the
factors. When one recalls that the only units inZ are 1 and −1, then this ambiguity
of the signs in each of the factors corresponds to the fact that, in the definition of
a unique factorisation domain, one only knows the terms in the factorisation up
to multiplication by a unit. This ambiguity is typically resolved by the standard
selection of irreducibles given by P : IZ/ ∼→ IZ having the property that P([p]) =
|p|; thus we select the positive of the two primes in the same equivalence class. If
we denote this selection of primes by (pa)a∈AR , then we can write any integer j as

j = ±p1 · · · pk

where p1, . . . , pk are positive primes. This is the prime factorisation that we learn in
school. •

For unique factorisation domains we have the following valuable characterisa-
tion of primes and irreducibles. This sharpens the conclusions of Proposition 4.2.65
in the case of a unique factorisation domain.

4.2.70 Proposition (Primes and irreducibles in unique factorisation domains) If R
is be a unique factorisation domain, then the following three statements concerning p ∈ R
are equivalent:

(i) p is prime;
(ii) p is irreducible;
(iii) if d|p then either d is a unit or p and d are associates.

Proof From Proposition 4.2.65 it only remains to show that (iii) =⇒ (i). Suppose
that p|(ab) and that p satisfies (iii). Using the properties of a unique factorisation
domain, write p = f1 . . . fk for irreducibles f1, . . . , fk. It follows from (iii) that k = 1 since
irreducibles are not units. Now write

a = g1 . . . gl, b = h1 . . . hm
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for irreducibles g1, . . . , gl, h1, . . . , hm. Then there exists r ∈ R such that

r f1 = g1 . . . glh1 . . . hm.

Now write r as a product of irreducibles: r = s1 · · · sq. Then

s1 · · · sq f1 = g1 . . . glh1 . . . hm.

Using the definition of a unique factorisation domain we conclude that, for some
a ∈ {g1, . . . , gl, h1, . . . , hm}, we have f1|a and a| f1. This allows us to conclude that either
p|a or p|b. Thus p is prime. ■

The main result of this section is now the following.

4.2.71 Theorem (Principal ideal domains are unique factorisation domains) If R is a
principal ideal domain, then it is a unique factorisation domain.

Proof Denote by B(R) ⊆ R those nonzero nonunits of R that cannot be factored as
in part (i) of Definition 4.2.66 and suppose that B(R) is nonempty. Let r ∈ B(R). By
Proposition 4.2.61, (r) ⊂ R. Let (sr) be the maximal ideal containing (r) which exists
by Theorem 4.2.19. By Theorem 4.2.64(ii), sr is irreducible and, by Proposition 4.2.61,
sr|r. Thus we can write r = srar for some ar ∈ R.

We claim that ar ∈ B(R). First of all, ar is nonzero, and moreover it is a nonunit,
since if it were a unit then the relationship r = srar implies that r is irreducible by
Exercise 4.2.18. If ar < B(R) then ar has a factorisation by irreducibles, and since sr is
irreducible, so too does r. Thus ar ∈ B(R).

Now for any r ∈ B(R) use the Axiom of Choice to select an irreducible sr and an
element ar ∈ B(R) such that r = srar. Now we define a map f : B(R)→ B(R) by f (r) = ar.

Next we claim that (r) ⊂ (ar). By Proposition 4.2.61 we have (r) ⊆ (ar). If (r) = (ar)
then ar = urr for some unit ur by Propositions 4.2.60 and 4.2.61. Then r = srar = srurr
which gives srur = 1R by Proposition 4.2.33. This would imply that sr is a unit, and so
not in B(R). Thus we conclude that (r) ⊂ (ar).

Now, taking some r ∈ B(R), recursively define g : Z>0 → B(R) by g(1) = r and
g(k + 1) = f (g(k)). Denote r j = g( j) for j ∈ Z>0. Our above constructions then give a
sequence ((r j)) j∈Z>0 of ideals having the property that

(r1) ⊂ (r2) ⊂ · · · ⊂ (rk) ⊂ · · · .

This contradicts Theorem 4.2.57, and so we conclude that B(R) is finite. Therefore
part (i) of Definition 4.2.66 holds for a principal ideal domain.

Now we show the uniqueness of the factorisation into irreducibles. First we prove
a lemma.

1 Lemma If R is a principal ideal domain and if p ∈ R is irreducible, then p is prime.

Proof If p is irreducible, then (p) is maximal by Theorem 4.2.64 and since R is a
principal ideal domain. Therefore, by Proposition 4.2.21, (p) is prime. Another
application of Theorem 4.2.64 gives p as prime. ▼
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Now let r be a nonzero nonunit and write

r = f1 · · · fk = g1 · · · gl

for irreducibles f1, . . . , fk, g1, . . . , gl. By the lemma, f1 is prime. Therefore, f1|(g1 . . . gk),
and we conclude that f1|g j1 for some j1 ∈ {1, . . . , l}. By Proposition 4.2.70 it must
therefore be the case that f1 = u1g j1 for some unit u1. We now have

g j1u1 f2 . . . fk = g j1 g1 . . . g j1−1g j1+1gl,

which gives, by Proposition 4.2.33,

u1 f2 . . . fk = g1 . . . g j1−1g j1+1gl.

We can now proceed as above to deduce that u1 f2 is a prime which divides g j2 for some
j2 ∈ {1, . . . , l} \ { j1}. Repeating this k times gives part (ii) of Definition 4.2.66. ■

Combining this with Theorem 4.2.55 gives the following useful result.

4.2.72 Corollary (Euclidean domains are unique factorisation domains) If R is a
Euclidean domain, then it is a unique factorisation domain.

Of course, this now also gives the prime factorisation for integers that we have
already used many times.

4.2.73 Corollary (Prime factorisation in Z) If j ∈ Z \ {−1, 0, 1}, then there exists positive
prime integers p1, . . . ,pk and l1, . . . , lk ∈ Z>0 such that j = upl1

1 . . .p
lk
k , where u ∈ {−1, 1}.

The converse of Theorem 4.2.71 is not generally true, as the following example
illustrates.

4.2.74 Example (A unique factorisation domain that is not a principal ideal domain)
For this example we shall require some concepts from Section 4.4.

We claim that the polynomial ring Z[ξ] is a unique factorisation domain, but
not a principal ideal domain. That Z[ξ] is a unique factorisation domain is stated
below as Corollary 4.4.21.

To see that Z[ξ] is not a principal ideal domain, consider the ideal (2, ξ) gener-
ated by two elements. We claim that this ideal is not principal. Indeed, suppose
that (2, ξ) = (P) for some polynomial P with integer coefficients. Then, by Exer-
cise 4.2.16, given any P1,P2 ∈ Z[ξ], we must have Q ∈ Z[ξ] such that

2P1(ξ) + P2(ξ)ξ = Q(ξ)P(ξ).

In particular, taking P1(ξ) = 0 and P2(ξ) = 1 there exists Q1 ∈ Z[ξ] such that
ξ = Q1(ξ)P(ξ). This means that we must have either
1. Q1(ξ) ∈ {1,−1} and P(ξ) ∈ {ξ,−ξ} or
2. Q1(ξ) ∈ {ξ,−ξ} and P(ξ) ∈ {1,−1}.
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We cannot have P(ξ) ∈ {1,−1} since, in this case, this would imply that (P) = Z[ξ]
by Proposition 4.2.61(iii). Thus we must have P(ξ) ∈ {ξ,−ξ}. Also, taking P1(ξ) = 1
and P2(ξ) = 0, there exists Q2 ∈ Z[ξ] such that 2 = Q2(ξ)P(ξ). Thus we must have
either
1. Q2(ξ) ∈ {2,−2} and P(ξ) = {1,−1} or
2. Q2(ξ) ∈ {1,−1} and P(ξ) ∈ {2,−2}.
We still cannot have P(ξ) ∈ {1,−1}, and so we must have P(ξ) ∈ {2,−1}, giving a
contradiction. Thus Z[ξ] is not a principal ideal domain. •

4.2.11 Greatest common divisors, least common multiples, and the
Euclidean Algorithm

The notion of a greatest common divisor for two integers is probably known to
the reader from their school studies. In this section we explore this concept in a
more general setting that will prove useful to us at various points in the text.

4.2.75 Definition (Greatest common divisor) Let R be a commutative ring and let S ⊆ R.
A greatest common divisor for S is an element d ∈ R such that

(i) d|a for every a ∈ S and
(ii) if d′|a for every a ∈ S then d′|d.

If R is additionally a unit ring S = {a1, . . . , ak} and if 1R is a greatest common divisor
for S then the elements a1, . . . , ak are relatively prime or coprime. •

While in the rings that one encounters early in life it is the case that greatest
common divisors exist, generally this is not the case. And when a greatest common
divisor exists, it is not typically not unique.

4.2.76 Examples (Greatest common divisors)
1. Consider the ring 2Z. Note that if S is any subset for which 2 ∈ S, then S has no

greatest common divisor since 2 has no divisors.
2. In the ring Z consider the set S = {−8, 36}. The divisors shared by −8 and

36 are 2, 4, −2, and −4. Note that neither 2 nor −2 are a greatest common
divisor for S since 4 divides all elements of S but 4 divides neither 2 nor −2.
However, both 4 and −4 are greatest common divisors. Note that these two
greatest common divisors differ only by multiplication by a unit in Z. This is
a feature of greatest common divisors in general; see Exercise 4.2.21. In some
cases one has a means of distinguishing a member of the set of greatest common
divisors, and this distinguished member is called the greatest common divisor.
For example, inZ it suffices to ask that the greatest common divisor be positive
to uniquely distinguish it.

3. Consider the ring R and let S ⊆ R be any set of real numbers. If d ∈ R∗ and
x ∈ S then we have x = (xd−1)d, so d is a common divisor for all elements of S.
Now let d1, d2 ∈ R∗. Then we have d1 = (d1d−1

2 )d2. Thus it turns out that every
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element of R∗ is a greatest common divisor for S. In this case there is such an
abundance of greatest common divisors that the concept loses relevance. •

Since greatest common divisors do not generally exist, it becomes useful to
assert conditions under which they do.

4.2.77 Proposition (Existence of greatest common divisors) For R a commutative unit
ring and for S = {a1, . . . , ak} ⊆ R, the following statements hold:

(i) the following statements for d ∈ R are equivalent:

(a) (d) = (a1, . . . , ak);
(b) d is a greatest common divisor for S of the form d = r1a1 + · · · + rkak for some

r1, . . . , rk ∈ R;

(ii) if R is a principal ideal ring then S possesses a greatest common divisor of the form
d = r1a1 + · · · + rkak for r1, . . . , rk ∈ R;

(iii) if R is a unique factorisation domain then S possesses a greatest common divisor.
Proof (i) Suppose that (d) = (a1, . . . , ak). By Theorem 4.2.54 we have

(d) = {rd | r ∈ R}.

Therefore, for each j ∈ {1, . . . , k} there exists s j ∈ R such that a j = s jd. Thus d|a j for each
j ∈ {1, . . . , k}. By Exercise 4.2.16 we have

(a1, . . . , ak) = {r1a1 + · · · + rkak | r1, . . . , rk ∈ R}.

Therefore, if r1a1 + · · · + rkak ∈ (a1, . . . , ak we have

r1a1 + · · · + rkak = (r1s1 + · · · + rksk)d,

so d divides each element of (a1, . . . , ak). If d′|a j for each j ∈ {1, . . . , k} then a j = s′jd
′ for

some s′j ∈ R. Then, since d ∈ (a1, . . . , ak), for some r j ∈ R, j ∈ {1, . . . , k}, we have

d = r1a1 + · · · + rkak = (r1s′1 + · · · + rks′k)d′,

and so d′|d. Thus d is a greatest common divisor for S of the form r1a1 + · · · + rkak.
Now suppose that d = r1a1 + · · · + rkak is a greatest common divisor for S for some

r1, . . . , rk ∈ R. Then d ∈ (a1, . . . , ak) and so (d) ⊆ (a1, . . . , ak). Now let r′1a1 + · · · + r′kak ∈

(a1, . . . , ak). Since d|a j, j ∈ {1, . . . , k}, we have a j = s jd for s j ∈ R. Then

r′1a1 + · · · + r′kak = (r′1s1 + · · · + r′ksk)d,

and so (a1, . . . , ak) ⊆ (d), giving this part of the result.
(ii) Since R is a principal ideal ring, there exists d ∈ R such that (a1, . . . , ak) = (d),

and the result then follows from part (i).
(iii) Let (pa)a∈A be a selection of irreducibles. There will be a finite number of these,

say p1, . . . , pr, such that
a j = u jp

m j1

1 · · · p
m jr
r
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for j ∈ {1, . . . , k} and m j1, . . . ,m jr ∈ Z≥0, and for a unit u j ∈ R. For l ∈ {1, . . . , r}, denote

ml = min{m1l, . . . ,mkl}.

We claim that d = pm1
1 · · · p

mr
r is a greatest common divisor for {a1, . . . , ak}. It is evident

that d|a j, j ∈ {1, . . . , k}. Suppose that e|a j for each j ∈ {1, . . . , k}. Then, by uniqueness of
factorisation, e = upn1

1 · · · p
nr
r where nl ≤ m jl for each l ∈ {1, . . . , r} and j ∈ {1, . . . , k}. Thus

nl ≤ ml, and so e|d. Thus d is a greatest common divisor. ■

Part (ii) of the preceding result has following corollary that is surprisingly
useful, as we have seen already in Example 4.2.7–4, and as we shall see again in
Corollary 4.4.36.

4.2.78 Corollary (Coprime elements in principal ideal rings) If R is a principal ideal ring
with identity then a1, . . . , ak ∈ R are coprime if and only if there exists r1, . . . , rk ∈ R such
that r1a1 + · · · + rkak = 1R.

The special case of the preceding result where a and b are coprime if and only if
there exists r, s ∈ R such that ra+ sb = 1R is alternately called Euclid’s Lemma since
it appears (in slightly different form) in Euclid’s Elements, or Bézout’s identity after
Bézout2 who generalised Euclid’s statement to principal ideal domains.

Closely related to the notion of greatest common divisor is the notion of least
common multiple.

4.2.79 Definition (Least common multiple) Let R be a commutative ring and let S ⊆ R.
A least common multiple for S is an element m ∈ R such that

(i) a|m for every a ∈ S and
(ii) if a|m′ for every a ∈ S then m|m′. •

As with the greatest common divisor, it is not generally the case that a subset of
a ring will possess a least common multiple. Let us give some examples illustrating
this.

4.2.80 Examples (Least common multiples)
1. As an example of a ring where two ring elements may not have a least common

multiple, we work with the polynomial ring R[ξ] and the subring R1 consisting
of those polynomials of the form

a0 + a2ξ
2 + · · · + akξ

k, k ∈ Z≥0 \ {1}, a0, a2, . . . , ak ∈ R.

One can readily check that R1 is a subring of R[ξ]. Let us take P1 = ξ2 and
P2 = ξ3. It is easy to see that the greatest common divisor of P1 and P2 is 1R. We
claim that P1 and P2 have no least common multiple. Suppose otherwise, and
that P is a least common multiple for P1 and P2. Since P1|P1P2 and P2|P1P2, it

2Etienne Bézout (1730–1783) was a French mathematician who did work in the area of algebra.
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follows that P|P1P2. We claim that P1P2
P is a greatest common divisor for P1 and

P2. Indeed, since P2|P,

P1 =
P1P2

P
P
P2

=⇒
P1P2

P

∣∣∣∣∣ P1.

Similarly, P1P2
P |P2. Suppose now that Q|P1 and Q|P2. Then QP2|P1P2 and

QP1|P1P2. Note that QP is a least common multiple for QP1 and QP2 since
P is a least common multiple for P1 and P2. Therefore, QP|P1P2 and so Q|P1P2

P ,
showing that P1P2

P is indeed a greatest common divisor of P1 and P2. But this
means that P1P2

P = 1, whence P = ξ5. However,

ξ6 = ξ2ξ4 = ξ3ξ3

is a common multiple of ξ2 and ξ3. But ξ5 ∤ ξ6 in R1, and we arrive at a
contradiction.

2. Consider the ring R. We consider two cases for a subset S ⊆ R.

(a) Let S ⊆ R∗ be any nonempty set of nonzero real numbers. We claim that
every nonzero real number is a least common multiple for S. Indeed, if
m ∈ R∗ and x ∈ S we can write m = x(x−1m), which shows that x|m for
every s ∈ S. Also, if m′ ∈ R∗ then we can write m′ = m(m−1m′). Since this
particularly holds when m′ has the property that x|m′ for every x ∈ S, it
follows that any m ∈ R∗ is a least common multiple for S.

(b) If 0 ∈ S then we claim that 0 is the only least common multiple for S.
Indeed, we can clearly write 0 = x0 for any x ∈ S, which shows that x|0 for
every x ∈ S. Also, if x|m′ for every x ∈ S, we in particular have m′ = a0 for
some a ∈ R; thus m′ = 0. Therefore, 0|m′, and this shows that 0 is a least
common multiple for S. We also showed (when we showed that m′ = 0)
that 0 is the only least common multiple. •

It is possible to give a characterisation of least common multiples for princi-
pal ideal domains. This mirrors the corresponding results, parts (ii) and (iii) of
Proposition 4.2.77, for greatest common divisors.

4.2.81 Proposition (Existence of least common multiples) For R a commutative unit
ring and for S = {a1, . . . , ak} ⊆ R, the following statements hold:

(i) if R is a principal ideal domain then S possesses a least common multiple m which
satisfies (m) = ∩k

j=1(aj);

(ii) if R is a unique factorisation domain then S possesses a least common multiple.
Proof (i) Since R is a principal ideal domain, and since ∩k

j=1(a j) is an ideal by The-

orem 4.2.52, there does indeed exist m ∈ R such that (m) = ∩k
j=1(a j). Thus we need

only show that m is a least common multiple for S. Since m ∈ (m) ⊆ (a j) for every
j ∈ {1, . . . , k}, we can write m = r ja j for some r j ∈ R. Thus a j|m for every j ∈ {1, . . . , k}.
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Moreover, suppose that a j|m′ for every j ∈ {1, . . . , k}. Then m′ = r′ja j for some r j ∈ R for
each j ∈ {1, . . . , k}. By Theorem 4.2.54 this means that m′ ∈ (a j) for each j ∈ {1, . . . , k}.
Thus m′ ∈ ∩k

j=1(a j), and so, again by Theorem 4.2.54, m′ = rm for some r ∈ R. That is,
m|m′, and so m is indeed a least common multiple.

(ii) Let (pa)a∈A be a selection of irreducibles. There will be a finite number of these,
say p1, . . . , pr, such that

a j = u jp
m j1

1 · · · p
m jr
r

for j ∈ {1, . . . , k} and m j1, . . . ,m jr ∈ Z≥0, and for a unit u j ∈ R. For l ∈ {1, . . . , r}, denote

ml = max{m1l, . . . ,mkl}.

Similarly to the proof of Proposition 4.2.77(iii), one can show that f = pm1
1 · · · p

mr
r is a

least common multiple for {a1, . . . , ak}. ■

Now let us turn to the matter of computing greatest common divisors (and,
thus, least common multiples, at least in some cases). Note that part (ii) of Proposi-
tion 4.2.77 tells us that finite subsets {a1, . . . , ak} of Euclidean rings possess greatest
common divisors of the form d = r1a1 + · · · + rkak for r1, . . . , rk ∈ R. It turns out that
there is also an algorithm for computing a greatest common divisor for a pair of
ring elements in this case.

4.2.82 Theorem (Euclidean Algorithm) Let (R, δ) be a Euclidean domain and let a, b ∈ R
with b , 0R. Then there exists k ∈ Z≥0, q0,q1, . . . ,qk ∈ R, and r0, r1, . . . , rk ∈ R \ {0R}

such that

a = q0r0 + r1, δ(r1) < δ(r0),
r0 = q1r1 + r2, δ(r2) < δ(r1),
... (4.5)

rk−2 = qk−1rk−1 + rk, δ(rk) < δ(rk−1),
rk−1 = qkrk.

Moreover, rk so defined is a greatest common divisor for {a, b}.
Proof Take r0 = b. A repeated application of the properties of a Euclidean domain
ensures that there exists q j ∈ R, j ∈ Z≥0, and r j ∈ R, j ∈ Z>0, such that

a = q0r0 + r1, δ(r1) < δ(r0),
r0 = q1r1 + r2, δ(r2) < δ(r1),
...

r j−2 = q j−1r j−1 + r j, δ(r j) < δ(r j−1),
...

We need to prove that eventually rk+1 = 0R for some k ∈ Z≥0. However, this follows
from Proposition 4.2.41 since the sequence (δ(r j)) j∈Z≥0 is strictly decreasing.
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Now we show that rk is a greatest common divisor for {a, b}. We have rk|rk−1 by
the last of equations (4.5). The second to last of these equations then gives rk|rk−2.
Proceeding in this way we show that rk|r j, j ∈ {0, . . . , k − 1}. In particular, rk|b and rk|a
by the first of equations (4.5). Now suppose that d|a and d|b. Then, by the first of
equations (4.5), d|(a− q0r0) and so d|r1. Using the second of equations (4.5) we similarly
have d|r2, and we may then proceed to show that d|r j, j ∈ {0, 1, . . . , k}. Thus rk is a
greatest common divisor. ■

Let us illustrate the Euclidean Algorithm on an example.

4.2.83 Example (The Euclidean Algorithm) Let us consider the Euclidean domain (Z, δ)
with δ( j) = | j|. Take a = 762 and b = 90. We then can readily compute

762 = 8 · 90 + 42,
90 = 2 · 42 + 6,
42 = 7 · 6

We therefore conclude that 6 is a greatest common divisor for 762 and 90. •

The Euclidean Algorithm is also useful for computing an explicit form for
Bézout’s identity in Euclidean rings. The solutions to Bézout’s identity also have a
sometimes useful additional property.

4.2.84 Theorem (Bézout’s identity using the Euclidean Algorithm) If (R, δ) is a Eu-
clidean domain and if a, b ∈ R \ {0R} are coprime, let k ∈ Z≥0, q0,q1, . . . ,qk ∈ R, and
r0 = b, r1, . . . , rk−1 ∈ R \ {0R} be such that

a = q0r0 + r1, δ(r1) < δ(r0),
r0 = q1r1 + r2, δ(r2) < δ(r1),
...

rk−2 = qk−1rk−1 + u, δ(u) < δ(rk−1),
rk−1 = qku,

where u ∈ R is a unit (this being the case since a and b are coprime). Then let α0 = 1R and
β0 = −qk−1, and recursively define α1, . . . , αk−1 ∈ R and β1, . . . , βk−1 ∈ R by

αj = βj−1, βj = αj−1 − qk−1−jβj−1, j ∈ {1, . . . ,k − 1}.

If we take

r =

0R, δ(b) = δ(1R),
u−1αk−1, δ(b) > δ(1R),

s =

b−1, δ(b) = δ(1R),
u−1βk−1, δ(b) > δ(1R),

then ra + sb = 1R.
Moreover, if S ⊆ R is a nontrivial, δ-closed, and δ-positive subsemiring, and if a and

b additionally have the property that a, b ∈ S and that at least one of a and b is not a unit,
then
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(i) q0,q1 . . . ,qk and r1, . . . , rk−1 may be chosen to lie in S and,
(ii) if q0,q1 . . . ,qk and r1, . . . , rk−1 are so chosen, then r and s as defined above addition-

ally satisfy δ(r) < δ(b) and δ(s) < δ(a).
Proof Let us first reduce to the case when u = 1R. Multiply all equations in the
Euclidean Algorithm for a and b by u−1:

u−1a = q0u−1r0 + u−1r1, δ(u−1r1) < δ(u−1r0),

u−1r0 = q1u−1r1 + u−1r2, δ(u−1r2) < δ(u−1r1),
...

u−1rk−2 = qk−1u−1rk−1 + 1R, δ(1R) < δ(u−1rk−1),

u−1rk−1 = qk.

Note that the resulting equations hold if and only if the original equations hold, by
virtue of R being an integral domain. The resulting equations are then the Euclidean
Algorithm for u−1a and u−1b, and at each step the remainders r0, r1, . . . , rk−1 are multi-
plied by u−1. The quotients q0, q1, . . . , qk remain the same, however. Thus the definitions
of α0, α1, . . . , αk−1 and β0, β1, . . . , βk−1 are unchanged from the Euclidean Algorithm for
a and b. Applying the conclusions of the theorem to the modified Euclidean Algo-
rithm then gives r′, s′ ∈ R such that r′(u−1a) + s′(u−1b) = 1R. Thus the conclusions
of the first part of the theorem in the general case follow from those when u = 1R
by taking r = u−1r′ and s = u−1s′. Also note by Proposition 4.2.41 that the relation
δ(u−1r j−1) < δ(u−1r j) is equivalent to the relation δ(r j−1) < δ(r j), j ∈ {0, 1, . . . , k − 1}.
Therefore, the conclusions of the second part of the theorem in the general case also
follow from those for the case when u = 1R. Thus, in the remainder of the proof we
suppose that u = 1R.

Let us also eliminate the case where δ(b) = δ(1R). If this is the case then we
have a = qb + r with δ(r) = δ(0R), and so r = 0R. Therefore, since b is a unit by
Proposition 4.2.41 q = ab−1. Now, taking r = 0R and s = b−1, we have ra + sb = 1R.
Moreover, for the second part of the theorem, δ(r) < δ(b) and δ(s) < δ(a) since s is a unit
and a is not, the latter by the hypotheses of the theorem. Thus the conclusions of the
theorem hold when δ(b) = δ(1R). Thus, in the remainder of the proof we suppose that
b is a nonzero nonunit.

We now prove the theorem by induction on k. If k = 1 then we have

a = q0 · r0 + 1R, δ(1R) < δ(r0),
r0 = q1.

Thus
1R = 1R · a + (−q0) · b,

and the theorem holds with r = α0 = 1R and s = β0 = −q0. Now suppose the theorem
true for k ∈ {1, . . . ,m − 1} and consider the Euclidean Algorithm for a and b = r0 of the
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form

a = q0r0 + r1, δ(r1) < δ(r0),
r0 = q1r1 + r2, δ(r2) < δ(r1),
...

rm−2 = qm−1rm−1 + 1R, δ(1R) < δ(rm−1),
rm−1 = qm.

By the induction hypothesis, the conclusions of the theorem hold for the last m equa-
tions. But the last m equations are the result of applying the Euclidean Algorithm in
the case where “a = r0” and “b = r1.” Thus, if we define α0 = 1R and β0 = −qk−1, and
recursively define α1, . . . , αm−2 and β1, . . . , βm−2 by

α j = β j−1, β j = α j−1 − qm−1− jβ j−1, j ∈ {1, . . . ,m − 2},

and if we take r′ = αm−2 and s′ = βm−2, then we have r′r0 + s′r1 = 1R. Since r0 = b we
have

1R = αm−2r0 + βm−2(a − q0r0) = (αm−2 − q0βm−2)b + βm−2a,

and so the theorem holds with r = αm−1 = βm−2 and s = βm−1 = αm−2 − q0βm−2, as
desired.

Now we proceed to the second part of the theorem, supposing that a, b ∈ S for a
δ-closed and δ-positive subsemiring S ⊆ R. Since r0 = b, that q0 and r1 can be chosen to
lie in S follows from the fact that S is δ-closed. This reasoning can then be applied to
each line of the Euclidean Algorithm to ensure that all quotients and remainders can
be chosen to lie in S. The following lemma records a useful property of these quotients
and remainders.

1 Lemma Using the notation of the theorem statement, suppose that a, b ∈ S and that
q0,q1, . . . ,qk and r1, . . . , rk−1 are chosen to lie in S. Then, for j ∈ {0, 1, . . . ,k − 1}, either

(i) αj ∈ S and −βj ∈ S or
(ii) −αj ∈ S and βj ∈ S.

Proof The lemma is proved by induction on j. For j = 0 we have α0 = 1R ∈ S and
−β0 = qk−1 ∈ S. Suppose the lemma true for j ∈ {0, 1, . . . ,m}. We have two cases.
1. αm ∈ S and −βm ∈ S: We immediately have −αm+1 = −βm ∈ S. Also, βm+1 =

αm − qk−2−mβm ∈ S since αm ∈ S and qk−m−2(−βm) ∈ S, using the semiring property
of S.

2. −αm ∈ S and βm ∈ S: This case follows, mutatis mutandis, in the manner of the
previous case. ▼

Now, the final thing we need to show is that r and s constructed as above from
a, b ∈ S satisfy δ(r) < δ(b) and δ(s) < δ(a). We prove this by induction on k. For k = 1
we have r = 1R and s = −q0. Therefore,

δ(r) = δ(1R) < δ(b)
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since we are assuming that b is a nonzero nonunit. Also, since b is a nonzero nonunit,

δ(s) = δ(−q0) < δ(−q0b) = δ(a − 1R) ≤ max{δ(a), δ(1R)} ≤ δ(a),

using δ-positivity of S. So the final assertion of the theorem holds for k = 1. Now
suppose that this assertion holds for k ∈ {1, . . . ,m − 1} and consider the Euclidean
Algorithm for a and b of the form

a = q0r0 + r1, δ(r1) < δ(r0),
r0 = q1r1 + r2, δ(r2) < δ(r1),
...

rm−2 = qm−1rm−1 + 1R, δ(1R) < δ(rm−1),
rm−1 = qm.

Considering the last m equations, as in the first part of the proof we have the Euclidean
Algorithm for “a = r0” and “b = r1.” Therefore, considering r′, s′ ∈ R as constructed in
the first part of the proof, we have δ(r′) < δ(r1) and δ(s′) < δ(r0). Again as in the first
part of the proof, we take r = s′ and s = r′ − q0s′ so that ra + sb = 1R. Then

δ(r) = δ(s′) < δ(r0) = δ(b).

It remains to show that δ(s) < δ(a). First suppose that δ(a) < δ(b). Then, by Proposi-
tion 4.2.44 we have a = 0R · b + a as the unique output of the Division Algorithm in S.
Thus we must have q0 = 0R and r1 = a. In this case,

δ(s) = δ(r′) < δ(r1) = δ(a),

giving the norm bound for s if δ(a) < δ(b). Thus we consider the case when δ(b) ≤ δ(a).
By the lemma we have either (1) r′ ∈ S and −q0s′ ∈ S or (2) −r′ ∈ S and q0s′ ∈ S.
Consider the case r′,−q0s′ ∈ S. We then have

a = q0b + r1, s = −q0s′ + r′

with δ(r1) < δ(b), δ(s′) < δ(b), and δ(r′) < δ(r1). Since a, q0, b, r1, s,−s′, r′ ∈ S we use
Theorem 4.2.50 to write these elements of S as uniquely defined polynomials in x,
where

δ(x) = inf{δ(r) | r ∈ S, δ(r) > δ(1R)}.

Let us denote these polynomials by Pa, Pq0 , Pb, Pr1 , Ps, P−s′ , and Pr′ . By Theorem 4.2.50
we have

δ(r1) < δ(b) =⇒ deg(Pr1) < deg(Pb),
δ(s′) < δ(b) =⇒ deg(Ps′) < deg(Pb),
δ(r′) < δ(r1) =⇒ deg(Pr′) < deg(Pr1).

This immediately gives

deg(Pa) = deg(Pq0) + deg(Pb), deg(Ps) ≤ max{deg(Pq0) + deg(Ps′),deg(Pr′)}.
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If
max{deg(Pq0) + deg(Ps′),deg(Pr′)} = deg(Pq0) + deg(Ps′)

then
deg(Pa) = deg(Pq0) + deg(Pb) > deg(Pq0) + deg(Ps′) ≥ deg(Ps)

if
max{deg(Pq0) + deg(Ps′),deg(Pr′)} = deg(Pr′)

then
deg(Pa) = deg(Pq0) + deg(Pb) > deg(Pr1) > deg(Pr′) ≥ deg(Ps).

In either case we have deg(Ps) > deg(Pa), and then we apply Theorem 4.2.50 again to
give δ(s) < δ(a) in the case when r′,−q0s′ ∈ S. When −r′, q0s′ ∈ S then −s ∈ S and we
write

a = q0b + r1, −s = q0s′ + (−r′).

The steps above may now be repeated to give δ(s) = δ(−s) < δ(a) in this case. ■

The preceding theorem is constructive, and the next example illustrates how
the construction can be made. The example also serves to illustrate the proof.

4.2.85 Example (Bézout’s identity) We take R = Z and consider the elements a = 770 =
2 · 5 · 7 · 11 and b = 39 = 3 · 13. These integers are coprime since they have no
common prime factors. We seek r, s ∈ Z such that ra+ sb = 1. Let us first apply the
Euclidean Algorithm:

770 = 19 · 39 + 29,
39 = 1 · 29 + 10,
29 = 2 · 10 + 9,
10 = 1 · 9 + 1,
9 = 9.

The quotients are q0 = 19, q1 = 1, q2 = 2, q3 = 1 and q4 = 1, and the remainders are
r0 = 39, r1 = 29, r2 = 10, r3 = 9, and r4 = 1. One can now immediately apply the
recursive formula from Theorem 4.2.84 to find r and s. But let us proceed directly,
by way of illustrating what is really going on with Theorem 4.2.84. The second to
last of the equations from the Euclidean Algorithm gives us an expression for 1:

1 = 10 − 9.

The right-hand side of this expression is of the form αr2 + βr3. As we go along,
we wish to maintain this structure. Next, the third to last (or the third) equation
in the Euclidean Algorithm gives an expression for 9 that we substitute into the
preceding equation:

1 = 10 − 1 · (29 − 2 · 10) = 3 · 10 − 1 · 29.
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Note that we express this as αr1 − βr2. The second of the equations from the Eu-
clidean Algorithm gives an expression for 10 that we substitute into the preceding
equation:

1 = 3 · (39 − 1 · 29) − 1 · 29 = 3 · 39 − 4 · 29.

The right-hand side of this expression has the form α ·r0+βr1. Noting that r0 = b, we
now only need to use the first equation from the Euclidean Algorithm to involve a:

1 = 3 · 39 − 4 · (770 − 19 · 39) = −4 · 770 + 79 · 39.

Thus we have the desired result by taking r = −4 and s = 79. Note that for the
ring Z we used δ as defined by δ(k) = |k|. Therefore, δ( j − k) ≤ δ( j) + δ(k) for all
j, k ∈ Z. And sure enough, consistent with the second part of Theorem 4.2.84, we
have δ(r) < δ(b) and δ(s) < δ(a). •

4.2.12 Notes

Our Example 4.2.56 of a principal ideal domain that is not a Euclidean domain
comes from the paper of Motzkin [1949]. The proof we give follows that in the
paper of Campoli [1988].

The very particular Examples 4.2.56 and 4.2.63–4 seem like they come out of
thin air. In fact, they come from the general field of algebraic number theory, and
in particular from the study of certain fields called “quadratic number fields.” We
refer the reader to [Theory 1987, Chapter 3] for more details, and for some general
discussion that better motivates the computations in these examples.

Exercises

4.2.1 Prove Proposition 4.2.3.
4.2.2 Prove Proposition 4.2.5.
4.2.3 For a ring R, prove the following:

(a) 0R · r = r · 0R = 0R for all r ∈ R;
(b) if R has unit element 1R, then (−1R) · r = −r for all r ∈ R;
(c) (−r1) · r2 = r1 · (−r2) = −(r1 · r2) for all r1, r2 ∈ R.

4.2.4 Show that in the ring Z2 = Z/2Z it holds that “1 = −1.”
4.2.5 Prove Proposition 4.2.13.
4.2.6 Let R and S be rings. Show that, if ϕ : R→ S is an isomorphism, then ϕ−1 is

a homomorphism, and so also an isomorphism.
4.2.7 Show thatϕ : R→ S is a monomorphism of rings if and only if ker(ϕ) = {0R}.
4.2.8 Let ϕ : R→ S be an epimorphism of rings. Show that the map

r + ker(ϕ) 7→ ϕ(r)

is an isomorphism of the rings R/ker(ϕ) and S.
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4.2.9 Show that ifϕ : Zk → Z is a homomorphism for k ∈ Z>0, then image(ϕ) = {0}.
4.2.10 Let R be a unit ring with characteristic k ∈ Z>0. Show that k = inf{k ∈

Z>0 | k · 1R = 0R}.
4.2.11 For a commutative unit ring R, show that the following statements are

equivalent:
(i) R is an integral domain;
(ii) if r, s ∈ R have the property that rs = 0R, then either r = 0R or s = 0R.

4.2.12 Let R be a commutative ring. Show that the product of nonzerodivisors
r1, r2 ∈ R is a nonzerodivisor.

4.2.13 Show that if (R, δ) is a Euclidean domain and if a, b ∈ R have the property
that δ(ab) < δ(a), then ab = 0R, and consequently that a = 0R or b = 0R.

4.2.14 Consider the Euclidean domain (Z, δ) with δ( j) = | j|. Find j, k ∈ Z>0 such
that there exists q1, q2, r1, r2 ∈ Z such that
1. j = q1k + r1 = q2k + r2, and
2. q1 , q2 and r1 , r2.

4.2.15 Let (R, δ) be a Euclidean domain, let S ⊆ R be a nontrivial δ-closed, and
δ-positive subsemiring, and let a, b ∈ S with a , 0R and with b a nonzero
nonunit.
(a) Show that there exists k ∈ Z>0, q0, q1, . . . , qk−1 ∈ R \ {0R}, and

r0, r1, . . . , rk−1 ∈ R such that

a = q0b + r0, δ(r0) < δ(b),
q0 = q1b + r1, δ(r1) < δ(b),
...

qk−2 = qk−1b + rk−1, δ(rk−1) < δ(b),
qk−1 = 0Rb + qk−1, δ(qk−1) < δ(b).

Hint: Refer to the proof of Theorem 4.2.48 to show that

δ(a) > δ(q0) > δ(q1) > · · · > δ(qk−1).

(b) Show that if we take rk = qk−1 then

a = r0 + r1b + r2b2 + · · · + rkbk.

4.2.16 In a commutative ring R with unit with S ⊆ R, show that

(S) = {r1a1 + · · · + rkak | k ∈ Z>0, r1, . . . , rk ∈ R, a1, . . . , ak ∈ S}.

4.2.17 Prove Proposition 4.2.60.
4.2.18 Let R be an integral domain.
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(a) Show that p is prime if and only if up is prime for every unit u.
(b) Show that p is irreducible if and only if up is irreducible for every unit u.

4.2.19 Let R be a commutative unit ring and let IR be the set of irreducible
elements of R. Show that the relation “p1 ∼ p2 if p2 = up1 for some unit u” is
an equivalence relation.

4.2.20 Show that there are an infinite number of positive primes in Z.
Hint: Suppose that p1, . . . ,pk are the first k primes, and consider the prime factori-
sation of p1 · · ·pk + 1.

4.2.21 Let R be a commutative ring and let S ⊆ R. Show that if d1 and d2 are greatest
common divisors for S then d1|d2 and d2|d1. Show that if R is additionally an
integral domain then d1 and d2 are associates.

4.2.22 Show that, if R is a principal ideal domain and if S ⊆ R, then there exists a
greatest common divisor for S.

4.2.23 Let R be a commutative ring and let S ⊆ R. Show that if m1 and m2 are least
common multiples for S then m1|m2 and m2|m1. Show that if R is additionally
an integral domain then m1 and m2 are associates.

4.2.24 Show that, if R is a principal ideal domain and if S ⊆ R has the property
that ∩s∈S(s) , {0R}, then there exists a least common multiple for S.
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Section 4.3

Fields

In this section we consider a special sort of ring, one whose nonzero elements
are units. These special rings, called fields, are important to us because they form
the backdrop for linear algebra, and as such are distinguished in the set of rings.

Do I need to read this section? Readers who are familiar with the basic arith-
metic properties of real and numbers can probably omit reading this section. Cer-
tain of the ideas we discuss here will be important in our discussion of polynomials
in Section 4.4, and so a reader wishing to learn about polynomials might benefit
from first understanding fields in the degree of generality we present them in this
section. •

4.3.1 Definitions and basic properties

The definition of a field proceeds easily once one has on hand the notion of a
ring. However, in our definition we repeat the basic axiomatic structure so a reader
will not have to refer back to Definition 4.2.1.

4.3.1 Definition A division ring is a unit ring in which every nonzero element is a unit,
and a field is a commutative division ring. Thus a field is a set F with two binary
operations, (a1, a2) 7→ a1+a2 and (a1, a2) 7→ a1 ·a2, called addition and multiplication,
respectively, and which together satisfy the following rules:

(i) (a1 + a2) + a3 = a1 + (a2 + a3), a1, a2, a3 ∈ F (associativity of addition);
(ii) a1 + a2 = a2 + a1, a1, a2 ∈ F (commutativity of addition);
(iii) there exists 0F ∈ F such that a + 0F = a, a ∈ F (additive identity);
(iv) for a ∈ F, there exists −a ∈ F such that a + (−a) = 0F (additive inverse);
(v) (a1 · a2) · a3 = a1 · (a2 · a3), a1, a2, a3 ∈ F (associativity of multiplication);
(vi) a1 · a2 = a2 · a1, a1, a2 ∈ F (commutativity of multiplication);
(vii) a1 · (a2 + a3) = (a1 · a2) + (a1 · a3), a1, a2, a3 ∈ F (left distributivity);
(viii) there exists 1F ∈ F such that 1F · a = a, a ∈ F (multiplicative identity);
(ix) for a ∈ F, there exists a−1

∈ F such that a−1
· a = 1F (multiplicative inverse);

(x) (a1 + a2) · a3 = (a1 · a3) + (a2 · a3), a1, a2, a3 ∈ F (right distributivity). •

The following result gives some properties of fields that follow from the defini-
tions or which follow from general properties of rings.
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4.3.2 Proposition (Basic properties of fields) Let F be a field and denote F∗ = F \ {0F}.
Then the following statements hold:

(i) F∗, equipped with the binary operation of multiplication, is a group;
(ii) F is an integral domain;
(iii) F is a Euclidean domain;
(iv) F is a principal ideal domain;
(v) F is a unique factorisation domain.

4.3.3 Remark (Fields as unique factorisation domains) It is worth commenting on
the nature of fields as unique factorisation domains. The definition of a unique fac-
torisation domain requires that one be able to factor nonzero nonunits as products
of irreducibles. However, in fields there are neither any nonzero nonunits, nor any
irreducibles. Therefore, fields are vacuous unique factorisation domains. •

Let us give some examples of fields.

4.3.4 Examples (Fields)
1. Z is not a field since the only units are −1 and 1.
2. Q is a field.
3. R is a field.
4. The ring Zk is a field if and only if k is prime. This follows from our discussion

in Example 4.2.7–4 of the units in Zk. However, let us repeat the argument
here, using Bézout’s Identity in a coherent manner. We rely on the fact that
Z is a Euclidean domain (Theorem 4.2.45), and so a principal ideal domain
(Theorem 4.2.55), and so a unique factorisation domain (Theorem 4.2.71).
Suppose that k is prime and let j ∈ {1, . . . , k − 1}. Then 1 is a greatest common
divisor for { j, k}, and by Corollary 4.2.78 this means that there exists l,m ∈ Z
such that l j+mk = 1. Therefore, ( j+ kZ)(l+ kZ) = l j+ kZ = 1+ kZ, and so j+ kZ
is a unit.
Now suppose that Zk is a field and let j ∈ {1, . . . , k − 1}. Then there exists
l ∈ {1, . . . , k − 1} such that ( j + kZ)(l + kZ) = 1 + kZ. Therefore, jl + mk = 1
for some m ∈ Z, and by Corollary 4.2.78 we can conclude that j and k are
relatively prime. Since this must hold for every j ∈ {1, . . . , k− 1}, it follows from
Proposition 4.2.70 that k is prime. •

4.3.2 Fraction fields

Corresponding to a commutative unit ring is a natural field given by “fractions”
in R. The construction here strongly resembles the construction of the rational
numbers from the integers, so readers may wish to review Section 2.1.1.
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4.3.5 Definition (Fraction field) Let R be an integral domain and define an equivalence
relation ∼ in R × (R \ {0R}) by

(r, s) ∼ (r′, s′) ⇐⇒ rs′ − r′s = 0R

(the reader may verify in Exercise 4.3.1 that ∼ is indeed an equivalence relation).
The set of equivalence classes under this equivalence relation is the fraction field
of R, and is denoted by FR. The equivalence class of (r, s) is denoted by r

s . •

Let us show that the name fraction field is justified.

4.3.6 Theorem (The fraction field is a field) If R is an integral domain, then FR is a field
when equipped with the binary operations of addition and multiplication defined by

r1

s2
+

r2

s2
=

r1s2 + r2s1

s1s1
,

r1

s1
·

r1 · r2

s1 · s2
.

Moreover, the map r 7→ r
1R

is a ring monomorphism from R to FR.

Proof If one defines the zero element in the field to be 0R
1R

, the unity element to be 1R
1R

,
the additive inverse of r

s to be −r
s , and the multiplicative inverse of r

s to be s
r , then it is a

matter of tediously checking the conditions of Definition 4.3.1 to see that FR is a field.
The final assertion is also easily checked. We leave the details of this to the reader as
Exercise 4.3.2. ■

The only interesting example of a fraction field that we have encountered thus
is the field Q which is obviously the fraction field of Z. In Section 4.4.8 we will
encounter the field of rational functions that is associated with a polynomial ring.

4.3.3 Subfields, field homomorphisms, and characteristic

All of the ideas in this section have been discussed in the more general setting
of rings in Section 4.2. Therefore, we restrict ourselves to making the (obvious)
definitions and pointing out the special features arising when one restricts attention
to fields.

Since fields are also rings, the following definition is the obvious one.

4.3.7 Definition (Subfield) A nonempty subset K of a field F is a subfield if K is a subring
of the ring F that (1) contains 1F and (2) contains a−1 for every a ∈ K \ {0F}. •

Of course, just as in Definition 4.2.12, a subset K ⊆ F is a subfield if and only
if (1) a1 + a2 ∈ K for all a1, a2 ∈ K, (2) a1 · a2 ∈ K for all a1, a2 ∈ K, (3) −a ∈ K for all
a ∈ K, (4) 1F ∈ K, and (4) a−1

∈ K for all nonzero a ∈ K. Note that we do require that
1F be an element of a subfield so as to ensure that subfields are actually fields (see
Exercises 4.3.3 and 4.3.4).

Note that we have not made special mention of ideals which were so important
to our characterisations of rings. The reason for this is that ideals for fields are
simply not very interesting, as the following result suggests.
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4.3.8 Proposition (Ideals of fields) If R is a commutative unit ring with more than one
element, then the following statements are equivalent:

(i) R is a field;
(ii) {0R} is a maximal ideal of R;
(iii) if I is an ideal of R, then either I = {0R} or I = R.

Proof (i) =⇒ (ii) Suppose that I is an ideal of R for which {0R} ⊆ I. If {0R} , I then let
a ∈ I \ {0R}. For any r ∈ R we then have r = (ra−1)a, meaning that r ∈ I. Thus I = R, and
so {0R} is maximal.

(ii) =⇒ (iii) This follows immediately by the definition of maximal ideal.
(iii) =⇒ (i) Let r ∈ R \ {0R} and consider the ideal (r). Since (r) , {0R}we must have

(r) = R. In particular, 1F = rs for some s ∈ R, and so r is a unit. ■

The interesting relationship between fields and ideals, then, does not come from
considering ideals of fields. However, there is an interesting connection of fields
to ideals. This connection, besides being of interest to us in Section 4.6.5, gives
some additional insight to the notion of maximal ideals. The result mirrors that for
prime ideals given as Theorem 4.2.37.

4.3.9 Theorem (Quotients by maximal ideals are fields, and vice versa) If R is a
commutative unit ring with more than one element and if I ⊆ R is an ideal, then the
following two statements are equivalent:

(i) I is a maximal ideal;
(ii) R/I is a field.

Proof Denote by πI : R → R/I the canonical projection. Suppose that I is a maximal
ideal and let J ⊆ R/I be an ideal. We claim that

J̃ = {r ∈ R | πI(r) ∈ J}

is an ideal in R. Indeed, let r1, r2 ∈ J̃ and note that πI(r1 − r2) = πI(r1) − πI(r2) ∈ J since
πI is a ring homomorphism and since J is an ideal. Thus r1 − r2 ∈ J̃. Now let r ∈ J̃ and
s ∈ R and note that πI(sr) = πI(s)πI(r) ∈ J, again since πI is a ring homomorphism and
since J is an ideal. Thus J̃ is an ideal. Clearly I ⊆ J̃ so that either J̃ = I or J̃ = R. In the
first case J = {0R + I} and in the second case J = R/I. Thus the only ideals of R/I are
{0R + I} and R/I. That R/I is a field follows from Proposition 4.3.8.

Now suppose that R/I is a field and let J be an ideal of R for which I ⊆ J. We
claim that πI(J) is an ideal of R/I. Indeed, let r1 + I, r2 + I ∈ πI(J). Then r1, r2 ∈ J and
so r1 − r2 ∈ J, giving (r1 − r2) + I ∈ πI(J). If r + I ∈ πI(J) and if s + I ∈ R/I, then r ∈ J
and so sr ∈ J. Then sr + I ∈ πI(J), thus showing that πI(J) is indeed an ideal. Since
R/I is a field, by Proposition 4.3.8 we may conclude that either πI(J) = {0R + I} or that
πI(J) = R/I. In the first case we have J ⊆ I and hence J = I, and in the second case we
have J = R. Thus I is maximal. ■

The definition of a homomorphism of fields follows from the corresponding
definition for rings.
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4.3.10 Definition (Field homomorphism, epimorphism, monomorphism, and iso-
morphism) For fields F and K, a mapϕ : F→ K is a field homomorphism (resp. epi-
morphism, monomorphism, isomorphism) if it is a homomorphism (resp. epimor-
phism, monomorphism, isomorphism) of rings. If there exists an isomorphism
from F to K, then F and K are isomorphic. •

The definitions of kernel and image for field homomorphisms are then special
cases of the corresponding definitions for rings, and the corresponding properties
also follow, just as for rings.

For fields one adopts the notion of characteristic from rings. Thus a field has
characteristic k if it has characteristic k as a ring. The next result gives the analogue
of Proposition 4.2.30 for fields.

4.3.11 Proposition (Property of fields with given characteristic) If F is a field then the
following statements hold:

(i) if F has characteristic zero then there exists a subfield K of F that is isomorphic toQ;
(ii) if F has characteristic k ∈ Z>0 then k is prime and there exists a subfield K of F that

is isomorphic to Zk.
Proof First suppose that F has characteristic zero. As in the proof of Proposi-
tion 4.2.30, let ϕ : Z→ R be the map ϕ( j) = j1F, and recall that this map is a monomor-
phism, and so an isomorphism from Z to image(ϕ). For j1F ∈ image(ϕ) \ {0F}, since F
is a field there exists ( j1F)−1

∈ F such that ( j1F) · ( j1F)−1 = 1F. We map then define a
map ϕ̄ : Q → F by ϕ̄( j

k ) = ( j1F)(k1F)−1. First let us show that this map is well defined.
Suppose that j1

k1
=

j2
k2

, or equivalently that j1k2 = j2k1. Then, using Proposition 4.2.10,

( j11F)(k21F) = 1F( j1(k21F)) = ( j1k2)1F = ( j2k1)1F = 1F( j2(k11F)) = ( j21F)(k11F).

Thus ( j11F)(k11F)−1 = ( j21F)(k21F)−1, and so ϕ̄( j1
k1

) = ϕ̄( j2
k2

). Now let us show that
ϕ̄ is a monomorphism. Suppose that ( j11F)(k11F)−1 = ( j21F)(k21F)−1 so that, using
Proposition 4.2.10, ( j1k2 − j2k1)1F = 0F. Then it follows that j1

k1
=

j2
k2

since F has
characteristic zero. Next we show that ϕ̄ is a homomorphism. We compute, after an
application of Proposition 4.2.10,

ϕ̄( j1
k1
+

j2
k2

) = (( j1k2 + j2k1)1F)(k1k21F)−1 = ( j1k21F)(k1k21F)−1 + ( j2k11F)(k1k21F)−1.

Another application of Proposition 4.2.10 gives

(k11F)(k21F)ϕ̄( j1
k1
+

j2
k2

) = ( j1k21F) + ( j2k11F),

which in turn gives

ϕ̄( j1
k1
+

j2
k2

) = (k11F)−1(k21F)(( j1k21F) + ( j2k11F)) = ( j11F)(k11F)−1 + ( j21F)(k21F)−1,

or ϕ̄( j1
k1
+

j2
k2

) = ϕ̄( j1
k1

) + ϕ̄( j2
k2

). We also have

ϕ̄( j1
k1

j2
k2

) = ( j1 j21F)(k1k21F)−1,
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which gives, in turn,
(k11F)(k21F)ϕ̄( j1

k1

j2
k2

) = ( j11F)( j21F)

and
ϕ̄( j1

k1

j2
k2

) = ( j11F)(k11F)−1( j21F)(k21F)−1,

or ϕ̄( j1
k1

j2
k2

) = ϕ̄( j1
k1

)ϕ̄( j2
k2

). Thus image(ϕ̄) is a subfield of F isomorphic to Q by the
isomorphism ϕ̄.

For the second part of the result, suppose that k = k1k2 for k1, k2 ∈ {2, . . . , k − 1}.
Then, if F has characteristic k we have

0 = k1F = (k1k2)1F = (k11F)(k21F).

Since F is an integral domain this means, by Exercise 4.2.11, that either k11F = 0 or
k21F = 0. This contradicts the fact that F has characteristic k, and so it must not be
possible to factor k as a product of positive integers in {2, . . . , k − 1}. Thus k is prime.
That F contains a subfield that is isomorphic to Zk follows from Proposition 4.2.30. ■

We note that the construction in the proof of a subfield K isomorphic to Q or
Zk is explicit, and is by construction the smallest subfield of F. This subfield has a
name.

4.3.12 Definition (Prime field) For a field F, the smallest subfield of F is the prime field
of F and is denoted by F0. •

Exercises

4.3.1 Show that the relation ∼ of Definition 4.3.5 is an equivalence relation.
4.3.2 Prove Theorem 4.3.6.
4.3.3 Give a subring of R that is not a subfield.
4.3.4 Show that, if K is a subfield of F, then K is a field using the binary operations

of addition and multiplication of F, restricted to K.
4.3.5 Let F be a field with K ⊆ F. Show that K is a subfield if and only if

1. 1F ∈ K,
2. a − b ∈ K for each a, b ∈ K, and
3. ab−1

∈ K for each a, b ∈ K with b , 0F.



4.4 Polynomials and rational functions 489

Section 4.4

Polynomials and rational functions

The reader no doubt has encountered polynomials before, at least as functions
of a real variable. In this section we study polynomials, not as functions, but
as algebraic objects. Polynomials, while interesting in their own right, intersect
other areas of mathematics and its applications. For example, we shall see in
Section 5.8 that polynomials play an important rôle in the understanding of linear
maps on finite-dimensional vector spaces. We will also see in Section V-10.4 that
an understanding of roots of polynomials is important in determining the stability
of many varieties of linear systems.

Do I need to read this section? Readers familiar with polynomials, particularly
with real coefficients, and the structure of their roots can probably forgo this section
on a first read. However, the material will be important in Section 5.8, and in our
construction of the complex numbers in Section 4.7. A good understanding of
polynomials will really help in understanding why complex numbers are impor-
tant, and where they “come from.” •

4.4.1 Polynomials rings and their basic properties

We shall start by giving a quite formal definition of what we mean by a poly-
nomial. Then we shall introduce the notation needed to make our definition more
closely resemble what the reader may be used to thinking about when they think
about polynomials.

4.4.1 Definition (Polynomials) Let R be a ring. A polynomial over R is a sequence
(a j) j∈Z≥0 with the property that the set { j ∈ Z≥0 | a j , 0R} is finite. If A = (a j) j∈Z≥0 and
B = (b j) j∈Z≥0 are polynomials over R then their sum and product are the polynomials
over R defined by

A + B = (a j + b j) j∈Z≥0 , A · B =

 k∑
j=0

a jbk− j


k∈Z≥0

,

respectively. •

Before we get to introducing the natural notation for writing a polynomial, let
us first give the essential algebraic structure of the set of polynomials over R.

4.4.2 Theorem (The set of polynomials over R is a ring) If R is a ring then the set
of polynomials over R, with the binary operations of addition and multiplication as in
Definition 4.4.1, is a ring. Moreover,

(i) if R is commutative, then so too is the set of polynomials over R,
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(ii) if R is a unit ring, then so too is the set of polynomials over R,
(iii) if R is has no nonzero zerodivisors, then so too does the set of polynomials over R,

and
(iv) if R is an integral domain, then so too is the set of polynomials over R.

Proof We should first make sure that the sum and product of two polynomials over
R is again a polynomial over R. This is clearly true for the sum. To verify this for the
product, let A = (a j) j∈Z≥0 and B = (b j) j∈Z≥0 be two polynomials over R and define

dA = sup{ j ∈ Z>0 | a j , 0R}, dB = sup{ j ∈ Z>0 | b j , 0R}.

If k > dA + dB we claim that
k∑

j=0

a jbk− j = 0R.

Indeed, let j ∈ {0, 1, . . . , dA} so that k − j > dB. Then we have bk− j = 0R. Similarly, if
j ∈ {dA + 1, . . . , k}, then a j = 0R. Therefore, a jbk− j = 0R if k > dA + dB.

The commutativity and associativity properties of addition for rings clearly hold
for addition as defined. Also, if we take the element (0R) j∈Z≥0 to be the zero element, it
has the necessary property. If A = (a j) j∈Z≥0 then−A ≜ (−a j) j∈Z≥0 is readily seen to be the
additive inverse for A. Let A = (a j) j∈Z≥0 , B = (b j) j∈Z≥0 , and C = (c j) j∈Z≥0 be polynomials
over R and compute

(A · B) · C =

 k∑
j=0


j∑

l=0

alb j−l

 ck− j


k∈Z≥0

=


∑
j,l,m

j,l,m≥0, j+l+m=k

(a jbl)cm


k∈Z≥0

=


∑
j,l,m

j,l,m≥0, j+l+m=k

a j(blcm)


k∈Z≥0

=

 k∑
j=0

a j


k− j∑
l=0

blck− j−l




k∈Z≥0

= A · (B · C).

Thus multiplication is associative. Let us verify left distributivity:

A · (B + C) =

 k∑
j=0

a j(b j−k + c j−k)


k∈Z≥0

=

 k∑
j=0

a jbk− j +

k∑
j=0

a jck− j


k∈Z≥0

= A · B + A · C.

Right distributivity is similarly verified, and this shows that the set of polynomials
over R is indeed a ring.

Next suppose that R is commutative. Then

A · B =

 k∑
j=0

a jbk− j


k∈Z≥0

=

 k∑
j=0

ak− jb j

 =
 k∑

j=0

b jak− j

 = B · A,
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and so the ring of polynomials over R is also commutative.
If R has a unit 1R, then the polynomial (a j) j∈Z≥0 defined by

a j =

1R, j = 0,
0R, j , 0

is the multiplicative identity in the ring of polynomials over R.
Suppose that R has no nonzero zerodivisors and let A = (a j) j∈Z≥0 and B = (b j) j∈Z≥0

be nonzero polynomials over R. We shall show that if neither A nor B are the zero
polynomial, then both A · B and B · A are not the zero polynomial. This is equivalent
to the assertion that there are no nonzero zerodivisors in the ring of polynomials over
R. Since both A and B are nonzero, the nonnegative integers

dA = sup{ j ∈ Z≥0 | a j , 0R}, dB = sup{ j ∈ Z≥0 | b j , 0R}

can be defined. Let C = A · B and D = B · A, and write C = (c j) j∈Z≥0 and D = (d j) j∈Z≥0 .
As can be seen from our computations above in showing that the product of two
polynomials is again a polynomial, it follows that c j = 0R and d j = 0R for j > dA + dB.
Moreover, one can directly compute that cdA+dB = adA · bdB and ddA+dB = bdB · adA . Since
R has no nonzerodivisors and since adA and bdB are nonzero, it follows that cdA+dB and
ddA+dB are also nonzero. Therefore, A · B and B · A are nonzero.

Finally, combining the previous three parts of the proof shows that if R is an
integral domain, then so too is the ring of polynomials over R. ■

Before proceeding further it is convenient to define the degree of a polynomial.
As we shall see after we introduce indeterminate notation, the degree is the “highest
power” term in a polynomial.

4.4.3 Definition (Degree of a polynomial) Let R be a ring and let A = (a j) j∈Z≥0 be a
polynomial over R. Define

D(A) = { j ∈ Z≥0 | a j , 0R}.

The degree of A is

deg(A) =

sup D(A), D(A) , ∅,
−∞, D(A) = ∅. •

Note that we think of the map deg as taking values in {−∞} ∪Z≥0 ⊆ R, and we
inherit the algebraic and order structure of R as discussed in Section 2.2.5.

Now let us introduce some notation that will allow us to write polynomials in
a manner that is more customary. To do so we introduce an object which plays
the rôle of the “independent variable” if one thinks of polynomials as functions.
However, since we do not want to think of polynomials as functions, we need to
be a little cagey about this.
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4.4.4 Definition (Indeterminate, R[ξ]) Let R be a unit ring. The indeterminate in the
ring of polynomials over R is the polynomial ξ = (a j) j∈Z≥0 defined by

ξ =

1R, j = 1,
0, j , 1.

The ring of polynomials over R with indeterminate ξ is denoted by R[ξ] (even if R
is not a unit ring). •

The symbol “ξ” for the specific polynomial which we call the indeterminate is
completely arbitrary. But it is this symbol which stands for the “independent vari-
able.” Indeed, many authors us the symbol “x” for the indeterminate. However,
since we use x as the generic symbol for the independent variable for a function
of a real variable, it seems more prudent to use something different. We shall
sometimes use alternative symbols for the indeterminate, if it is convenient to do
so.

In order to obtain the familiar representation of polynomials, the following
result will also be helpful.

4.4.5 Proposition (R is a subring of R[ξ]) The map ιR : R → R[ξ] defined by ιR(r) =
(aj(r))j∈Z≥0 with

aj(r) =

r, j = 0,
0R, j , 0

is a ring monomorphism.
Proof It is clear that ιR is injective. It is a simple matter of using the definitions
of addition and multiplication in R[ξ] to verify that ιR(r1 + r1) = ιR(r1) + ιR(r2) and
ιR(r1 · r2) = ιR(r1) · ιR(r2). ■

Now let us see how we may combine the indeterminate and the fact that R is a
subring of R[ξ] as the basis for a convenient representation of a general polynomial.
Note that since the indeterminate ξ is just an element of the ring of polynomials, the
expression ξk for k ∈ Z≥0 makes sense, just as defined prior to Proposition 4.2.10.

4.4.6 Proposition (Expressing polynomials using the indeterminate) If R is a unit
ring and if A = (aj)j∈Z≥0 ∈ R[ξ], then

A = ιR(a0) · ξ0 + ιR(a1) · ξ1 + · · · + ιR(adeg(A)) · ξdeg(A).

Proof For k ∈ Z≥0, a direct computation gives ξk = (b j) j∈Z≥0 where

b j =

1R, j = k,
0R, j , k.

It is then easy to see that, for k ∈ {0, 1, . . . ,deg(A)}, ιR(ak)ξk = (c j) j∈Z≥0 , where

c j =

ak, j = k,
0R, j , k.
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Since a j = 0R for j > deg(A), the result follows. ■

From now on, except when we feel the need to be pedantic (as we shall on
occasion), we shall simply write “a” for “ιR(a),” so that, if we also omit the “·” for
multiplication and recall that ξ0 = 1R, an element A of R[ξ] is expressed as

A = adeg(A)ξ
deg(A) + · · · + a1ξ + a0

for a0, a1, . . . , adeg(A) ∈ R. Note that this notation makes sense, even if R is not a unit
ring, as it suppresses the need to use the fact that ξ0 = 1R.

Let us introduce some terminology associated to polynomials.

4.4.7 Definition (Coefficients, constant and monic polynomial) Let R be a unit ring
and let A ∈ R[ξ] \ {0R[ξ]}, denoting

A = akξ
k + · · · + a1ξ + a0,

with ak = deg(A).
(i) The ring elements a0, a1, . . . , ak are the coefficients of A.
(ii) The leading coefficient is ak.
(iii) A is a constant polynomial if k = 0 (we also say that the zero polynomial is a

constant polynomial).
(iv) A is a monic polynomial if ak = 1R. •

4.4.2 Homomorphisms and polynomial rings

We have already seen that there is a natural monomorphism ιR : R → R[ξ].
We now consider various other relationships between homomorphisms and poly-
nomials. Specifically, we are interested in determining ways in which ring ho-
momorphisms can be used to define homomorphisms to and/or from polynomial
rings.

The first result we state is one of a form that one might expect: namely that
homomorphisms of rings induce homomorphisms of polynomial rings in a natural
way.

4.4.8 Proposition (Homomorphisms of polynomials induced from homomor-
phisms of rings) If R and S are rings and if ϕ : R → S is a homomorphism, then
the map ϕ∗ : R[ξ] → S[η] given by ϕ∗((aj)j∈Z≥0) = (ϕ(aj))j∈Z≥0 is a homomorphism of the
polynomial rings. Moreover, ϕ∗ is a monomorphism (resp. epimorphism) if ϕ is.

Proof The first assertion is a straightforward application of the definitions of addition
and multiplication in polynomial rings. The final assertion also follows directly from
the definitions; see Exercise 4.4.2. ■

Another important homomorphism is the assignment of a R-valued function to
a polynomial in R[ξ]. To make sense of this, recall that RR denotes the set of maps
from R to itself, and that in Example 4.2.2–5 we showed that RR was a ring.
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4.4.9 Proposition (Polynomials as functions) If R is a commutative ring, then the map
EvR : R[ξ]→ RR defined by

EvR((aj)j∈Z≥0)(r) = a0 +

∞∑
j=1

ajrj

(noting that the sum is finite) is a homomorphism of rings, called the evaluation homo-
morphism.

Proof Let A = (a j) j∈Z≥0 and B = (b j) j∈Z≥0 be polynomials and compute

EvR(A + B)(r) = (a0 + b0) +
∞∑
j=1

(a j + b j)r j

=

a0 +

∞∑
j=1

a jr j

 +
b0 +

∞∑
j=1

b jr j


= EvR(A)(r) + EvR(B)(r),

and

EvR(A · B)(r) = a0b0 +

∞∑
k=1

k∑
j=0

a jbk− jrk

= a0b0 +

∞∑
k=1

k∑
j=1

(a jr j)(bk− jrk− j)

= a0b0 +

 ∞∑
j=1

a jr j


 ∞∑

k=1

bkrk


= EvR(A)(r)EvR(B)(r),

Showing that EvR is a homomorphism. ■

Note that the ring must be commutative in order that the preceding result be
true. To understand why, one should ascertain where commutativity is used in the
proof. Note, however, that the map EvR : R[ξ]→ RR can still be defined, even when
R is not commutative, and indeed, we shall on occasion use this notation below.
However, it is just not guaranteed to be a homomorphism in the noncommutative
case.

The next example shows that, for certain rings, the evaluation homomorphism
can have some unexpected behaviour.

4.4.10 Example (The evaluation homomorphism may not be injective) Let us consider
the ring Z2 = Z/2Z, and consider the polynomial A = (1 + 2Z)ξ2

− (1 + 2Z)ξ. We
then have

EvZ2(A)(k + 2Z) = (k2 + 2Z) − (k + 2Z).
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Since there are only two elements in the ringZ2, 0+ 2Z and 1+ 2Z, we can directly
compute that EvZ2(A)(k+2Z) = 0+2Z for all k+2Z ∈ Z2. That is to say, A evaluates
to the zero function, even though A is itself nonzero. By Exercise 4.2.7 it follows
that EvZ2 is not injective. Thus a polynomial is not uniquely determined by the
function corresponding to it.

The reader may explore a generalisation of this example in Exercise 4.4.4. •

4.4.3 Factorisation in polynomial rings

In this section we turn to the important topic of polynomial factorisation. The
basis of this is polynomial long division which the reader probably learned in
school. However, here we develop this in the abstract setting for polynomials over
general rings. The idea, however, is exactly the same as the idea behind what one
learns in school, so it is important to bear this in mind.

Before we begin with factorisation in earnest, it is important to say a few things
about the properties of the degree of a polynomial. As we shall see, it is the degree
that shall play the rôle of the map δ in Definition 4.2.38 of a Euclidean domain.

4.4.11 Proposition (Properties of degree) If R is a ring and if A,B ∈ R[ξ], then the
following statements hold:

(i) deg(A + B) ≤ max{deg(A),deg(B)};
(ii) deg(A · B) ≤ deg(A) + deg(B);
(iii) if the leading coefficient of either A or B is not a zerodivisor, then deg(A · B) =

deg(A) + deg(B).
Proof The first assertion is obvious from the definition of addition of polynomials,
and the second follows as in the proof of the fact that the product of polynomials is
a polynomial in Theorem 4.4.2. The last assertion follows since, as we saw when we
proved in Theorem 4.4.2 that R[ξ] has no nonzero zerodivisors when R does not, the
(deg(A) + deg(B))th term of A · B is the product of the leading coefficients of A and
B. If these are not zerodivisors, then this product is nonzero, and so deg(A · B) =
deg(A) + deg(B). ■

The following examples illustrate that the inequalities in the preceding result
cannot be replaced with equalities.

4.4.12 Examples (Properties of degree)
1. Consider the polynomials A = ξ3+ξ2+ξ+1 and B = −ξ3 inZ[ξ]. We then have

deg(A) = deg(B) = 3, but deg(A + B) = 2.
2. In Z4 consider the polynomials A = (2 + 4Z)ξ2 + (1 + 4Z)ξ + (2 + 4Z) and

B = (2 + 4Z)ξ2. We then compute

A · B = (4 + 4Z)ξ4 + (2 + 4Z)ξ3 + (4 + 4Z)ξ2 = (2 + 4Z)ξ3.

Then deg(A · B) = 3 < 4 = deg(A) + deg(B). •

The key idea in polynomial factorisation is now the following Division Algo-
rithm that holds for certain types of polynomials.
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4.4.13 Theorem (Division Algorithm for polynomials) Let R be a unit ring and let A,B ∈
R[ξ] \ {0R[ξ]} be such that the leading coefficient of B is a unit in R. Then there exists
unique Q,R ∈ R[ξ] such that A = Q · B + R and such that deg(R) < deg(B).

Proof Throughout the proof we write

A = amξ
m + · · · + a1ξ + a0, B = bkξ

k + · · · + b1ξ + b0,

where am and bk are nonzero. If deg(A) < deg(B), then the theorem holds by taking
Q = 0R[ξ] and R = A. Thus we assume that deg(A) ≥ deg(B), and we proceed by
induction on deg(A). If deg(A) = 0 then deg(B) = 0 and so A = a0 and B = b0, and
by assumption b0 ∈ R is a unit. The result holds taking Q = a0b−1

0 and R = 0R[ξ].
Suppose that the existence assertion holds when deg(A) = l for l ∈ {0, 1, . . . ,m− 1}, and
suppose that deg(A) = m. Also suppose that deg(B) = k ≤ m. Using the definition of
polynomial multiplication we easily see that the polynomial (amb−1

k ξ
m−k)B has degree

m and leading coefficient am. Therefore the polynomial A − (amb−1
k ξ

m−k)B has degree
at most m − 1. By the induction hypotheses there exists polynomials Q′ and R′ with
deg(R′) < deg(B) and such that

A − (amb−1
k ξ

m−k)B = Q′ · B + R′.

The existence part of the result now follows by taking Q = Q′+ (amb−1
k ξ

m−k) and R = R′.
To prove uniqueness, suppose that A = Q1 · B + R1 = Q2 · B + R2 where

deg(R1),deg(R2) < deg(B). Then (Q1 −Q2) · B = R2 − R1, and using Proposition 4.4.11
gives

deg(Q1 −Q2) + deg(B) = deg(R2 − R1) (4.6)

since the leading coefficient of B is a unit. But it also holds that deg(R2 − R1) ≤
max{deg(R1),deg(R2)} < deg(B). Thus the only way that (4.6) can hold is if deg(Q1 −

Q2) = −∞, and this implies also that deg(R2 − R1) = −∞. Therefore Q1 = Q2 and
R1 = R2, as desired. ■

Note that the theorem does not say that R[ξ] is a Euclidean domain for any
ring R since the hypotheses include restrictions on the leading coefficient of B.
However, in some cases these restrictions on B always hold. For example, we have
the following result.

4.4.14 Corollary (F[ξ] is a Euclidean domain) Let F be a field and define δ : F[ξ]→ Z≥0 by

δ(A) =

deg(A) + 1, A , 0R[ξ],

0, A = 0F[ξ].

Then (F[ξ], δ) is a Euclidean domain, hence F[ξ] a principal ideal domain, and hence also
a unique factorisation domain. Moreover, F[ξ] is a δ-closed and δ-positive subset of itself.

Proof We have

δ(A · B) = deg(A) + deg(B) + 1 ≥ deg(A) + 1 = δ(A)
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if A · B , 0F[ξ]. That F[ξ] is a Euclidean domain now follows immediately from
Theorem 4.4.13 since, if B is not the zero polynomial, then its leading coefficient is a
unit. That F[ξ] is a principal ideal domain and a unique factorisation domain follows
from Theorems 4.2.55 and 4.2.71. For the final assertion it is clear that F[ξ] is δ-closed.
We also note that, if both A and B are nonzero, then

δ(A − B) = deg(A − B) + 1 = max{deg(A),deg(B)} + 1
≤ max{deg(A) + 1,deg(B) + 1} = max{δ(A), δ(B)}.

If either A or B is zero then we trivially have δ(A − B) ≤ max{δ(A), δ(B)}. Thus F[ξ] is
indeed a δ-positive subset of itself. ■

The fact that F[ξ] is a δ-closed and δ-positive subset of itself gives the following
two corollaries of Proposition 4.2.44 and Theorem 4.2.48, respectively.

4.4.15 Corollary (Uniqueness of quotient and remainder in F[ξ]) If F is a field and if
A,B ∈ F[ξ] with B , 0F[ξ], then there exists unique Q,R ∈ F[ξ] such that A = Q · B + R
and such that deg(R) < deg(B).

4.4.16 Corollary (Base expansion in F[ξ]) If F is a field and if A,B ∈ F[ξ] \ {0F[ξ]} with
deg(B) ≥ 1, then there exists unique k ∈ Z≥0 and R0,R1, . . . ,Rk ∈ F[ξ] such that

(i) Rk , 0F[ξ],
(ii) deg(R0),deg(R1), . . . ,deg(Rk) < deg(B), and
(iii) A = R0 + R1 · B + R2 · B2 + · · · + Rk · Bk.

It turns out that for polynomials rings over unique factorisation domains, even
though they may not be polynomial rings over fields, are still unique factorisation
domains, although they may no longer be principal ideal domains (see Exam-
ple 4.2.74). Let us now develop a general result which indicates how this can arise.
This will require a little buildup, starting with the following definition.

4.4.17 Definition (Primitive polynomial) Let R be a unique factorisation domain and let
A =

∑k
j=0 a jξ j

∈ R[ξ].
(i) A content of A is a greatest common divisor of {a0, a1, . . . , ak}.
(ii) A is primitive if it has a content that is a unit in R. •

4.4.18 Example (Primitive polynomial) Consider the unique factorisation domainZwith
its polynomial ringZ[ξ]. If A = 2ξ2 + 4ξ− 8 then 2 and −2 are contents of A since 2
and −2 are greatest common divisors of {2, 4,−8}. If B = 3ξ + 5 then B is primitive
since 1 is a greatest common divisor of {3, 5}. •

We now record some results about polynomials over unique factorisation do-
mains. The statement of the result relies on the fact that the polynomial ring over
an integral domain R is naturally a subset of the polynomial ring over the fraction
field FR, a fact that follows from Theorem 4.3.6 and Proposition 4.4.8.
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4.4.19 Proposition (Properties of polynomials over unique factorisation domains)
Let R be a unique factorisation domain with FR its fraction field. Then the following

statements hold for polynomials A,B ∈ R[ξ] ⊆ FR[ξ].
(i) A = cAA′ where cA is a content of A and A′ ∈ R[ξ] is primitive;
(ii) if cA and cB are contents of A and B, respectively, then cAcB is a content of A · B;
(iii) if A and B are primitive, then A · B is primitive;
(iv) if A and B are primitive, then A|B and B|A in R[ξ] if and only if A|B and B|A in

FR[ξ];
(v) if A is primitive and if deg(A) > 0, then A is irreducible in R[ξ] if and only if it is

irreducible in FR[ξ].
Proof (i) Write A =

∑k
j=0 a jξ j and write a j = cAa′j for j ∈ {0, 1, . . . , k}. Then the result

follows by taking A′ =
∑k

j=0 a′jξ
j.

(ii) By part (i), write A = cAA′ and B = cBB′ for A′ and B′ primitive. If c′ is a content
for A′ · B′, it is easy to see that cAcBc′ is a content for A · B = (cAA′) · (cBB′). Thus it
suffices to show that c′ is a unit, i.e., that A′ · B′ is primitive. Suppose that A′ · B′ is
not primitive and write C = A′ · B′ = (ck =

∑k
j=0 a′jb

′

k− j)k∈Z≥0 , where A′ = (a′j) j∈Z≥0 and
B′ = (b′j) j∈Z≥0 . Suppose that p ∈ R is irreducible and that p|c j for all j. If cA′ is a content
for A′ we have p ∤ cA′ since cA′ is a unit. Similarly, p ∤ cB′ where cB′ is a content for B′.
Now define

nA′ = inf{l ∈ {0, 1, . . . ,deg(A)} | p|a′j, j ∈ {0, 1, . . . , l}, p ∤ a′l },

nB′ = inf{l ∈ {0, 1, . . . ,deg(B)} | p|b′j, j ∈ {0, 1, . . . , l}, p ∤ b′l }.

Note that p|cnA′+nB′ , and since

cnA′+nB′ = a′0b′nA′+nB′
+ · · · + a′nA′−1b′nB′+1

+ a′nA′
b′nA′
+ a′nA′+1b′nB′−1 + · · · + a′nA′+nB′

b′0,

p|a′nA′
b′nA′

, which implies that p|a′nA′
or p|b′nA′

since irreducibles are prime in unique
factorisation domains (Proposition 4.2.70). This implies that either A′ or B′ is not
primitive.

(iii) This follows directly from part (ii) since the product of units is again a unit.
(iv) Since R ⊆ FR, it is clear that if A|B and B|A in R, then A|B and B|A in FR. Now

suppose that B|A in FR. Then, by Proposition 4.2.60, A = U · B where U ∈ FR[ξ] is a
unit. By Exercise 4.4.3 this means that U = u for some u ∈ FR, and ;et us write u = a

b
for a, b ∈ R with b , 0R. We thus have bA = aB. Since A and B are primitive, if cA and
cB are contents for A and B, respectively, these must be units. Therefore, both b and bcA
are contents for bA and both a and acB are contents for aB. This means that a = bv for
a unit v ∈ R so that bA = bvB. Since R[ξ] is an integral domain by Theorem 4.4.2, this
implies that A = vB for a unit v ∈ R by Proposition 4.2.33. Now, by Proposition 4.2.60,
A|B and B|A in R[ξ] since v is also a unit in R[ξ].
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(v) Suppose that A is not irreducible in FR[ξ] and write A = B · C for FR[ξ] both
nonunits. By Exercise 4.4.3 we must therefore have deg(B),deg(C) ≥ 1. Write

B =
k∑

j=0

a j

b j
ξ j, C =

l∑
j=0

c j

d j
ξ j

for a j, b j ∈ R with b j , 0R for j ∈ {0, 1, . . . , k} and for c j, d j ∈ R with d j , 0R for
j ∈ {0, 1, . . . , l}. Write b = b0b1 · · · bk and for j ∈ {0, 1, . . . , k} define

b̂ j = bbb1 · · · b j−1b j+1 · · · bk.

Define B′ =
∑k

j=0 a jb̂ jξ j
∈ R[ξ] and write B′ = cB′B′′ where cB′ is a content of B′ and

where B′′ is primitive, by part (i). A direct computation then shows that B = 1R
b B′ =

cB′

b B′′. An entirely similar computation gives C = cC′

d C′′ where cC′ ∈ R and C′′ ∈ R[ξ] is
primitive. Therefore, since A = B ·C, we have bdA = cB′cC′B′′ ·C′′. Since A and B′′ ·C′′

are primitive, the latter by part (ii), it follows that both bd and cB′cC′ are contents for
A. Thus bd = ucB′cC′ for a unit u ∈ R. Thus bdA = bduB′′ · C′′, or A = uB′′ · C′′. Since
deg(B′′) = deg(B) ≥ 1 and deg(C′′) = deg(C) ≥ 1, this implies that A is not irreducible
in R[ξ] by Exercise 4.4.3.

Now suppose that A is irreducible in FR[ξ] and write A = B · C for B,C ∈ R[ξ] ⊆
FR[ξ]. Thus either B or C must be a unit in FR[ξ], and so by Exercise 4.4.3 we must have
either deg(B) = 0 or deg(C) = 0. Suppose, without loss of generality, that deg(B) = 0
so that B = b0 ∈ R \ {0}. Then, if cC is a content for C, b0cC is a content for A = B · C.
Since A is primitive, b0cC must be a unit, and so, in particular, b0 must be a unit in R
by Exercise 4.1.2. Thus B is a unit in R[ξ], showing that A is irreducible in R[ξ]. ■

Now, using the proposition, we can prove our main result concerning the
factorisation properties of polynomials over unique factorisation domains.

4.4.20 Theorem (Polynomial rings over unique factorisation domains are unique
factorisation domains) If R is a unique factorisation domain, then R[ξ] is a unique
factorisation domain.

Proof Let A ∈ R[ξ] be a nonzero nonunit. If deg(A) = 0 then A is an element of
R under the natural inclusion of R in R[ξ] (see Proposition 4.4.5). In this case, A
possesses a factorisation as a product of irreducibles since R is a unique factorisation
domain. Now suppose that deg(A) ≥ 1, and by Proposition 4.4.19(i) write A = cAA′

where cA ∈ R is a content of A and where A′ is primitive. If cA is not a unit then
write cA = cA,1 · · · cA,l where cA, j ∈ R, j ∈ {1, . . . , l}, are irreducible, this being possible
since R is a unique factorisation domain. Note that the elements cA, j, j ∈ {1, . . . , l},
are also irreducible thought of as elements of R[ξ] (why?). Now, since FR is a unique
factorisation domain by Corollary 4.4.14, write A′ = P′1 · · ·P

′

k where P′1, . . . ,P
′

k ∈ FR[ξ]
are irreducible. Now proceed as in the proof of Proposition 4.4.19(v) to show that, for
j ∈ {1, . . . , k}, P′j =

a j

b j
P j for a j, b j ∈ R with b j , 0R and with P j ∈ R[ξ] primitive. Since

a j

b j
is a unit in FR and so in FR[ξ] by Exercise 4.4.3, by Exercise 4.2.18 it follows that

P j is irreducible in FR[ξ], and so in R[ξ] by Proposition 4.4.19(v). Writing a = a1 · · · ak
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and b = b1 · · · bk, we have A′ = a
b P1 · · ·Pk, or bA′ = aP1 · · ·Pk. Since A′ and P1 · · ·Pk are

primitive (the latter by Proposition 4.4.19(iii)), it follows that a = ub for u a unit in R.
Therefore, if cA is not a unit, we have

A = cAA′ = cA,1 · · · cA,l(uP1)P2 · · ·Pk,

where cA,1, . . . , cA,l ∈ R ⊆ R[ξ] and uP1,P2, . . . ,Pk ∈ R[ξ] are all irreducible in R[ξ]
(noting, by Exercise 4.2.18 that uP1 is irreducible). If cA is a unit, then A is primitive
already, and we can directly write

A = (uP1)P2 · · ·Pk,

where (uP1,P2, . . . ,Pk ∈ R[ξ] are irreducible. This gives part (i) of Definition 4.2.66.
Now we verify part (ii) of Definition 4.2.66. We begin with a lemma. We already

know from above that every element of R[ξ] possesses a factorisation as a product of
irreducible. The lemma guarantees that the factorisation is of a certain form.

1 Lemma If R is a unique factorisation domain and if A ∈ R[ξ] is written as a product
of irreducibles, A = F1 · · · Fm, then there exists irreducibles c1, . . . , cl ∈ R and irreducibles
P1, . . . ,Pk ∈ R[ξ] such that l + k = m and such that Fjr = cr, r ∈ {1, . . . , l}, and Fjl+s = Ps,
s ∈ {1, . . . ,k}, where {1, . . . ,m} = {j1, . . . , jm}.

Proof From the first part of the proof of the theorem we can write A =
cA,1 · · · cA,lP1 · · ·Pk for irreducibles cA,1, . . . , cA,l ∈ R and irreducibles P′1, . . . ,P

′

k ∈ R[ξ].
We thus have

F1 · · · Fm = cA,1 · · · cA,lP′1 · · ·P
′

k.

Let { j1, . . . , jl′} be the indices from {1, . . . ,m} such that deg(F j) = 0 if and only if j ∈
{1, . . . , jl′}. Denote by { jl′+1, . . . , jm} the remaining indices, so that deg(F j) ≥ 1 if and
only if j ∈ { jl′+1, . . . , jm}. Since the polynomials F jl′+1 , . . . ,F jm are irreducible, they are
primitive, so that cA,1 · · · cA,l and F j1 · · · F jl′ are both contents for P′1 · · ·P

′

k. Thus there
exists a unit u ∈ R such that F j1 · · · F jl′ = ucA,1 · · · cA,l. By unique factorisation in R,
l′ = l and there exists σ ∈ Sl such that F jr = uσ(r)cA,σ(r) for r ∈ {1, . . . , l}, and where
u1, . . . ,ul are units in R. The result now follows by taking cr = uσ(r)cA,σ(r), r ∈ {1, . . . , l}
and Ps = F jl+s , s ∈ {1, . . . , k}. ▼

Now, using the lemma, let c1 · · · clP1 · · ·Pk and c′1 · · · c
′

l′P
′

1 · · ·P
′

k′ be two factori-
sations of A by irreducibles, where c1, . . . , cl, c′1, . . . , c

′

l′ ∈ R are irreducible and
P1, . . . ,Pk,P′1, . . . ,P

′

k′ ∈ R[ξ] are irreducible. Since P1 · · ·Pk and P′1, . . . ,P
′

k′ are primi-
tive, c1 · · · cl and c′1 · · · c

′

l′ are contents for A, and so there exists a unit u ∈ R such that
c1 · · · cl = uc′1 · · · c

′

l′ . Since R is a unique factorisation domain, l = l′ and there exists a
permutation σ ∈ Sl such that c′

σ( j) = u jc j for j ∈ {1, . . . , l}, and for some set u1, . . . ,ul of
units. Since P1 · · ·Pk and P′1 · · ·P

′

k′ have the same content, up to multiplication by a unit,
it follows that P′1 · · ·P

′

k = UP1 · · ·Pk where U ∈ R[ξ] is a unit. Thus U = v where v ∈ R
is a unit by Exercise 4.4.3. Therefore, since FR[ξ] is a unique factorisation domain by
Corollary 4.4.14, k = k′ and there exists a permutation σ ∈ Sk such that P′

σ( j) = v jP j

for j ∈ {1, . . . , k}, and where v j is a unit in FR. Thus by Proposition 4.2.60, in FR[ξ], we
have P′

σ( j)|P j and P j|P′σ( j), j ∈ {1, . . . , k}. By Proposition 4.4.19(iv) we then have, in R[ξ],
P′
σ( j)|P j and P j|P′σ( j), j ∈ {1, . . . , k}. Therefore, by Proposition 4.2.60 again, there exists
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units u1, . . . ,uk ∈ R such that P′
σ( j) = u jP j, j ∈ {1, . . . , k}. This then gives the uniqueness,

up to units, of factorisation in R[ξ]. ■

The following corollary is then of interest, e.g., in Example 4.2.74.

4.4.21 Corollary (Z[ξ] is a unique factorisation domain) Z[ξ] is a unique factorisation
domain.

4.4.4 Roots, and prime and irreducible polynomials

The reader is probably familiar with the idea of a root of a polynomial, and in
particular with certain facts about polynomials overR, or perhaps overC. We shall
not discuss these two cases until Section 4.7.3. Here we merely say a few things
about the relationships between polynomial roots and irreducible polynomials. As
we shall see, the notion of a reducible polynomial is in general more complicated
than one is led to believe by consideration of only polynomials overR andC. While
it is true that in these volumes we shall principally be interested in polynomials
over R, a little understanding of roots for general polynomials is useful in putting
the special case into more context. Moreover, it also aids in really understanding
why the complex numbers C, constructed in Section 4.7.

Let us first define what is meant by a root.

4.4.22 Definition (Root of a polynomial) If R is a ring and if A =
∑k

j=0 a jξ j
∈ R[ξ], a root

of A is an element r ∈ R such that EvR(A)(r) =
∑k

j=0 a jr j = 0R. •

4.4.23 Remark (Roots and noncommutativity) If a ring is not commutative, one might
also define a root as satisfying

∑k
j=0 r ja j = 0R. Sometimes the definition we give is

referred to as a left root and the alternative definition as a right root. We shall be
interested in cases where this distinction is not important. •

Our immediate objective is to understand how roots of a polynomial relate to
factorisations of the polynomial as products of polynomials. A first step towards
this is the following result.

4.4.24 Proposition (Remainder Theorem) If R is a unit ring, if A =
∑k

j=0 ajξj
∈ R[ξ], and

if r ∈ R, then there exists a unique polynomial Q ∈ R[ξ] such that

A = Q · (ξ − r) + EvR(A)(r).

Proof If A = 0R[ξ] then the result follows by taking Q = 0R[ξ]. If A , 0R[ξ], then, by
Theorem 4.4.13 there exists Q,R ∈ R[ξ] such that A = Q · (x − r) + R, with deg(R) < 1.
Thus R = r0 is a constant polynomial. Now write Q =

∑k−1
j=0 q jξ j and compute

EvR(A)(r) = −q0r +
k−1∑
j=0

(q j−1 − q jr) + qk−1r + r0 = r0,
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as desired. The uniqueness follows from the uniqueness assertion of Theorem 4.4.13.
■

The remainder theorem then gives rise to the following extremely useful con-
sequence of a polynomial having a root.

4.4.25 Proposition (Roots give rise to factorisation) If R is a unit ring, the following
statements concerning A ∈ R[ξ] and r ∈ R hold:

(i) if r is a root for A then (ξ − r)|A;
(ii) if R is additionally commutative, then r is a root for A if (ξ − r)|A.

Proof (i) This follows direction from Proposition 4.4.24.
(ii) By Proposition 4.4.24 write A = Q · (ξ − r) + r0 where r0 = EvR(A)(r). Since

(ξ − r)|A write A = B · (ξ − r) for B ∈ R[ξ]. Thus Q · (ξ − r) + r0 = B · (ξ − r). A direct
computation shows that

EvR(Q · (ξ − r))(r) = EvR(B · (ξ − r)) = 0R

(cf. the proof of Proposition 4.4.24). Thus r0 = 0 and so r is a root of A. ■

This factorisation then gives rise to the following characterisation of the set of
roots of a polynomial, and is our first result of this type.

4.4.26 Proposition (Number of roots of a polynomial is bounded by its degree) Let
R be an integral domain and let A ∈ R[ξ] have degree k. Then A has at most k distinct
roots.

Proof Denote by r1, . . . , rl the distinct roots of A. We claim that

A = Q · (ξ − rl) · · · · · (ξ − r1)

for some Q ∈ R[ξ]. We prove this by induction on l. If l = 1 then the result holds by
Proposition 4.4.25. Now suppose that the result holds for l ∈ {1, . . . ,m} and let l = m+1,
supposing that r1, . . . , rm+1 are distinct roots for A. By the induction hypothesis we have

A = Q̃ · (ξ − rm) · · · · · (ξ − r1).

We must then have

EvR(Q̃)(rm+1)(rm+1 − rm) · · · (rm+1 − r1) = 0R.

Since (rm+1)(rm+1 − rm) · · · (rm+1 − r1) , 0R by virtue of R being an integral domain, it
follows that EvR(Q̃)(rm+1) = 0R, again by virtue of R being an integral domain. Thus
rm+1 is a root of Q̃, and so by Proposition 4.4.25 we have Q̃ = Q · (ξ − rm+1), and so the
result holds for l = m + 1. ■

Next we consider the case where a polynomial may not have all roots distinct.
To make sense of what this even means requires the following definition.
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4.4.27 Definition (Multiplicity of a root) Let R be an integral domain, let A ∈ R[ξ], and
let r ∈ R be a root of A. The root r:

(i) has multiplicity k ∈ Z>0 if (ξ − r)k
|A but (ξ − r)k+1 ∤ A;

(ii) is a simple root if it has multiplicity 1;
(iii) is a multiple root if it is not a simple root. •

It turns out that there is a simple check on when a polynomial has a multiple
root. It involves introducing the notion of the derivative of a polynomial over a
ring. To motivate this definition, note that the derivative of a polynomial function
in calculus is again a polynomial function.

4.4.28 Definition (Formal derivative of a polynomial) If R is a unit ring and if A =∑k
j=0 a jξ j

∈ R[ξ], then the polynomial A′ =
∑k

j=1 ja jξ j−1 is the formal derivative of
A. •

The formal derivative shares many of the properties of the usual derivative
from calculus, but without requiring the notion of a limit for its definition. We
refer the reader to Exercise 4.4.5 for a summary of some of these properties. Our
main interest in the formal derivative is the following result, which the reader can
check themselves for polynomial functions using the Chain Rule.

4.4.29 Proposition (Multiple roots are roots of the formal derivative) Let R be a com-
mutative unit ring and let A ∈ R[ξ]. Then the following statements hold:

(i) if r is a root of multiplicity greater than 1 then r is a root of A′;
(ii) if additionally R is an integral domain and if r is a root of A and A′, then r is a root

of multiplicity greater than 1 of A.
Proof (i) We have A = (ξ− r)k

·B for some k ≥ 2 and for some B ∈ F[ξ]. Then, referring
to Exercise 4.4.5,

A′ = k(ξ − r)k−1
· B + (ξ − r)k

· B′ = (ξ − r)
(
k(ξ − r)k−2

· B + (ξ − r)k−1
· B′

)
.

Thus (ξ − r)|A′ and so r is a root of A′ by Proposition 4.4.25.
(ii) Since r is a root of A, we have A = (ξ− r)k

·B for some k ≥ 1. Suppose that k = 1,
Then, as in the preceding part of the proof, A′ = B + (ξ − r)B′ and so, if r is a root of a′,
we must have that r is a root of B. But then B = (ξ − r) · C for some polynomial C, and
the resulting contradiction allows us to conclude that k > 1. ■

Next we turn to the topic of irreducible and prime polynomials. As a segue
from the topic of roots to this new topic, we have the following result.

4.4.30 Proposition (Roots and irreducibility) If R is a commutative unit ring and if A ∈
R[ξ], then the following statements hold:

(i) if deg(A) > 1 and if A has a root r ∈ R, then A is reducible;
(ii) if R is an integral domain, if A is primitive, and if deg(A) = 1, then A is irreducible.
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Proof (i) If A has a root r ∈ R then, by Proposition 4.4.25, we have A = Q · (ξ − r) for
some Q ∈ R[ξ]. If deg(A) > 1 then, by Proposition 4.4.11, 1 < deg(A) ≤ deg(Q) + 1,
meaning that deg(Q) ≥ 1, and so Q is not a unit in R[ξ] by Exercise 4.4.3. Thus A is
reducible.

(ii) Write A = B · C for B,C ∈ R[ξ]. Then 1 = deg(A) = deg(B) + deg(C) by
Proposition 4.4.11. We must then wither have deg(B) = 0 and deg(C) = 1, or deg(B) = 1
and deg(C) = 0. Thus either B or C, without loss of generality suppose B, must be a
constant. Thus B must be a divisor of all coefficients of A, and since A is primitive, we
conclude that B is a unit. Thus A is irreducible. ■

Let us give a few examples that illustrate the conclusions and necessarily omit-
ted conclusions of the preceding result.

4.4.31 Examples (Roots and irreducibility)
1. The polynomial A = ξ3

− ξ2 + ξ − 1 is not reducible in Z[ξ] since it has 1 as a
root. Note that A = (ξ − 1)(ξ2 + 1) is a factorisation of A into nonunits.

2. The polynomial ξ2 + 1 is irreducible in R[ξ]. Indeed, were A to be reducible
then, sinceR is a field, we could write A = (ξ− r1)(ξ− r2) for r1, r2 ∈ R, meaning
that A would have a root inR. However, there is no real number whose square
is equal to −1 since the square of a real number is always positive. (Of course,
A is reducible in C[ξ], but this is the topic of Section 4.7.)

3. In Z[ξ] the polynomial A = 2ξ + 2 is reducible since A = 2 · (ξ + 1) and neither
2 nor ξ + 1 are units in Z[ξ]. Note, however, that A is irreducible if thought of
as a polynomial in R[ξ]. •

Readers only used to polynomials over R or C will only have encountered
polynomial rings whose irreducibles have degree 0, 1, or 2 (see Section 4.7.3).
However, it is possible for irreducible polynomials to have arbitrarily large degree.
In order to exhibit such a polynomial, we present the following general result.

4.4.32 Theorem (Eisenstein’s Criterion) Let R be a unique factorisation domain and let
A =

∑k
j=0 ajξj be a polynomial in R[ξ] of degree k ≥ 1. If there exists an irreducible p ∈ R

such that
(i) p|aj for j ∈ {0, 1, . . . ,k − 1},
(ii) p ∤ ak, and
(iii) p2 ∤ a0,

then A is irreducible in FR[ξ]. Moreover, if A is primitive, then A is irreducible in R[ξ].
Proof By Proposition 4.4.19(i), write A = cAA′with cA a content for A and A′ primitive
in R[ξ]. Since cA is nonzero, it is a unit in FR, and so the result will follow if A′ is
irreducible in FR[ξ] by Exercise 4.2.18. By Proposition 4.4.19(v) it then suffices to
show that A′ is irreducible in R[ξ]. So suppose that A′ = B · C and write

A′ =
k∑

j=0

a′jξ
j, B =

r∑
j=0

b jξ
j, C =

s∑
j=0

c jξ
j
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with r, s ≥ 1 and with br, cs , 0R. Since p ∤ ak we have p ∤ cA. Therefore, for
j ∈ {0, 1, . . . , k − 1}, p|a′j if and only if p|a j. In particular, p|a′0 = b0c0. Since p is a prime
in R by Proposition 4.2.70, it follows that either p|b0 or p|c0. Suppose without loss of
generality that |b0. Since p2 ∤ a0 and since p ∤ cA, p2 ∤ a′0, from which we conclude that
p ∤ c0. Define

nB = inf{l ∈ Z≥0 | p|b j, j ∈ {0, 1, . . . , l}, p ∤ bl}.

Note that nB is well defined since p ∤ b j for some j, since otherwise p would divides
every coefficient of B · C, contradicting the fact that A′ is primitive. Now note that

a′nB
= b0cnB + b1cnB−1 + · · · + bnB−1c1 + bnBc0.

Since p|anB , p|a′nB
, from which we conclude, using the definition of nB, that p|bnBc0,

which means that either p|bnB or p|c0, which is a contradiction. Thus we cannot write
A′ = B · C where deg(B),deg(C) ≥ 1, and so A′ is irreducible in R[ξ].

The final assertion is one half of Proposition 4.4.19(v). ■

Now let us give an interesting (and important, although for reasons that we
will not touch upon) example of an irreducible polynomial.

4.4.33 Example (Irreducibility of certain cyclotomic polynomials) For k ∈ Z>0 the
cyclotomic polynomial of degree k is the polynomial in Z[ξ] given by

Φk = ξ
k + ξk−1 + · · · + ξ + 1.

We claim that, if p ∈ Z>0 is prime, then Φp−1 is irreducible. The most enlightening
proof of this fact involves Galois theory. We give a less enlightening, but more
direct proof. We nonetheless do rely on something we have yet to develop, namely
rational functions which we introduce in Section 4.4.8.

We use a sequence of lemmata to prove the irreducibility of Φp−1. The first
lemma expresses the cyclotomic polynomial as a rational function.

1 Lemma Φk =
ξk+1
− 1

ξ − 1
.

Proof For k = 1 we have

ξ2
− 1

ξ − 1
=

(ξ + 1)(ξ − 1)
ξ − 1

= ξ + 1 = Φ1.

Now suppose the result true for k ∈ {1, . . . , l − 1} and compute

Φl =

l∑
j=0

ξ j = ξl +
ξl
− 1

ξ − 1
=
ξl(ξ − 1) + ξl

− 1
ξ − 1

=
ξl+1
− ξl + ξl

− 1
ξ − 1

=
ξl+1
− 1

ξ − 1
. ▼
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2 Lemma If k ∈ Z>0, then (ξ+1)k
−1

ξ is a polynomial inZ[ξ]. If k is additionally prime, then
this polynomial is irreducible.

Proof We use the Binomial Theorem, Proposition 4.2.11, to compute

(ξ + 1)k
− 1 = −1 +

k∑
j=0

k!
j!(k − j)!

ξ j = ξ
k−1∑
j=0

k!
( j + 1)!(k − j − 1)!

ξ j

︸                        ︷︷                        ︸
A

.

This shows that (ξ+1)k
−1

ξ is a polynomial for k ∈ Z>0; it is the polynomial A. Now

suppose that k = p is prime and let us write A =
∑p−1

j=0 a jξ j. We then have

1. p|a j for j ∈ {0, 1, . . . , p − 2} since a j =
p!

( j+1)!(p− j−1)! and since p is prime so that
( j + 1) ∤ p and (p − j − 1) ∤ p,

2. p ∤ ap−1 since ap−1 = 1, and

3. p2 ∤ a0 since a0 =
p!

(p−1)! and since p is prime so that (p − 1) ∤ p.

The irreducibility of (ξ+1)p
−1

ξ now follows from Eisenstein’s Criterion. ▼

3 Lemma If Φk−1 is reducible then (ξ+1)k
−1

ξ is reducible.

Proof From Lemma 1 we have

Φk−1 =
ξk
− 1

ξ − 1
=

(η + 1)k
− 1

η

where η = ξ−1. Suppose thatΦk−1 is reducible and writeΦk−1 = A ·B where neither
A nor B is a unit. If either deg(A) = 0 or deg(B) = 0 then it follows that A or B are
contents for Φk. Since Φk is primitive, this means that either A or B must be a unit.
Therefore we may suppose that deg(A),deg(B) ≥ 1. Write

A =
r∑

j=0

a jξ
j, B =

s∑
j=0

b jξ
j.

We then have

(η + 1)k
− 1

η
=
ξk
− 1

ξ − 1
=

 r∑
j=0

a jξ
j


 s∑

j=0

b jξ
j

 =
 r∑

j=0

a j(η + 1) j


 s∑

j=0

b j(η + 1) j

 .
Now note that

∑r
j=0 a j(η+ 1) j and

∑s
j=0 b j(η+ 1) j are polynomials in η of degree r ≥ 1

and s ≥ 1, respectively. Therefore (η+1)k
−1

η = A′ · B′ for polynomials A′,B′ ∈ Z[η] of

positive degree. Thus (η+1)k
−1

η is reducible. ▼
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Combining Lemmas 2 and 3 immediately allows us to conclude that Φp−1 is
irreducible in Z[ξ]. In particular, since there are infinitely many positive prime
numbers by Exercise 4.2.20, this shows that there are irreducible polynomials in
Z[ξ] of arbitrarily large degree. Note that, since Φp−1 is primitive, it follows from
Proposition 4.4.19(v) that Φp−1 is also irreducible in Q[ξ]. •

As a final matter, we give the relationship between irreducibles and primes in
polynomial rings. First of all, since a ring is always a subring of its polynomial
ring by Proposition 4.4.5, any relationships between irreducibles and primes in
the polynomial ring must be inherited from the ring itself. Thus the following
result is about the best one can expect in terms of relating irreducible and prime
polynomials, given our understanding of the relationship between irreducibles
and primes in general rings.

4.4.34 Proposition (Relationship between irreducible and prime polynomials) If R
is an integral domain, then the following statements hold:

(i) if A ∈ R[ξ] is prime then it is irreducible;
(ii) if R is additionally a unique factorisation domain, then A ∈ R[ξ] is prime if it is

irreducible.
Proof (i) Since R[ξ] is an integral domain if R is an integral domain (Theorem 4.4.2),
this part of the result follows from Proposition 4.2.65.

(ii) Since R[ξ] is a unique factorisation domain if R is a unique factorisation domain
(Theorem 4.4.20), this part of the result follows from Proposition 4.2.70. ■

4.4.5 Greatest common divisors of polynomials

In this section we essentially restate, for organisational purposes, some of the
relevant conclusions of Section 4.2.11 in the setting of polynomials rings. We also
illustrate an application of the Euclidean Algorithm for polynomials, since it will
be of interest to be able to compute greatest common divisors for polynomials.

First let us state a result that allows us to conclude the existence and character
of greatest common divisors in polynomial rings in many cases.

4.4.35 Proposition (Existence and form of greatest common divisors for polynomi-
als) For R be a commutative unit ring and for S = {A1, . . . ,Ak} ⊆ R[ξ], the following
statements hold:

(i) the following statements for D ∈ R[ξ] are equivalent:

(a) (D) = (A1, . . . ,Ak);
(b) D is a greatest common divisor for S of the form D = R1 ·A1 + · · · + RkAk for

some R1, . . . ,Rk ∈ R[ξ];

(ii) if R is a field then S possesses a greatest common divisor of the form D = R1 ·A1 +
· · · + RkAk for some R1, . . . ,Rk ∈ R[ξ];

(iii) if R is a unique factorisation domain then S possesses a greatest common divisor.
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Proof (i) This follows from Proposition 4.2.77 since R[ξ] is a commutative unit ring
if R is (Theorem 4.4.2).

(ii) If R is a field then R[ξ] is a Euclidean domain, and hence a principal ideal do-
main, by Corollary 4.4.14. This part of the result now follows from Proposition 4.2.77.

(iii) If R is a unique factorisation domain then so too is R[ξ] (Theorem 4.4.20). This
part of the result then follows from Proposition 4.2.77. ■

For fields, this gives the following useful corollary.

4.4.36 Corollary (Bézout’s identity for polynomials) If F is a field and if A1, . . . ,Ak ∈ F[ξ]
are coprime polynomials, then there exists R1, . . . ,Rk ∈ F[ξ] such that R1·A1+· · ·+Rk·Ak =
1F.

Let us first observe that for polynomials over many rings one can, as can be
done in the ring Z, select a distinguished member from a collection of greatest
common divisors.

4.4.37 Proposition (Selecting from greatest common divisors of polynomials) If F is
a field and if S ⊆ F[ξ], then there exists a unique D ∈ F[ξ] with the properties

(i) D is monic and
(ii) D is a greatest common divisor for S.

In this case we say that D is the greatest common divisor for S.
Proof By Exercise 4.2.22 we know that S possesses a greatest common divisor since
F[ξ] is a principal ideal domain by Corollary 4.4.14. By Exercises 4.2.21 and 4.4.3
we know that, if D′ ∈ F[ξ] is a greatest common divisor for S, then the set of greatest
common divisors has the form

{uD′ | u is a unit in R}.

In particular, if we take u = d−1
k where dk is the leading coefficient of D′, then we

see that the polynomial D = uD′ is monic, and also a greatest common divisor. The
uniqueness of D is established as follows. If D is a monic greatest common divisor for
S then D = uD′ for some unit u. If dk is the leading coefficient of D′ we immediately
see that udk = 1F, so giving u = d−1

k . ■

Of course, a similar statement holds for least common multiples, and we state
this here, noting that the proof is rather like that for greatest common divisors,
making use of Exercises 4.2.24 and 4.2.23.

4.4.38 Proposition (Selecting from least common multiple of polynomials) If F is a
field and if S ⊆ F[ξ], then there exists a unique D ∈ F[ξ] with the properties

(i) D is monic and
(ii) D is a least common multiple for S.

In this case we say that D is the least common multiple for S.

Now let us illustrate the Euclidean Algorithm for polynomials over a field.
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4.4.39 Example (The Euclidean Algorithm for polynomials) Consider the field R and
the polynomials

A = 10ξ6 + 55ξ5 + 105ξ4 + 81ξ3 + 19ξ2 + 2, B = 2ξ5 + 11ξ4 + 21ξ3 + 16ξ2 + 3ξ − 1.

Doing the tedious polynomial long division gives

10ξ6 + 55ξ5 + 105ξ4 + 81ξ3 + 19ξ2 + 2 = (5ξ)(2ξ5 + 11ξ4 + 21ξ3 + 16ξ2 + 3ξ − 1)

+ (ξ3 + 4ξ2 + 5ξ + 2),

2ξ5 + 11ξ4 + 21ξ3 + 16ξ2 + 3ξ − 1 = (2ξ2 + 3ξ − 1)(ξ3 + 4ξ2 + 5ξ + 2)

+ (ξ2 + 2ξ + 1),

ξ3 + 4ξ2 + 5ξ + 2 = (ξ + 2)(ξ2 + 2ξ + 1),

from which we conclude that the greatest common divisor of A and B is ξ2+2ξ+1. •

It is also true that one can, following Theorem 4.2.84, use the Euclidean Algo-
rithm to find polynomials that satisfy the Bézout identity corresponding to a pair
of coprime polynomials. Let us record the result, and then illustrate it with an
example.

4.4.40 Proposition (Bézout’s identity for polynomials using the Euclidean Algo-
rithm) Let F be a field and let A,B ∈ F[ξ] be coprime polynomials. Then there exists
R, S ∈ F[ξ] such that

(i) R ·A + S · B = 1F[ξ] and
(ii) deg(R) < deg(B) and deg(S) < deg(A).

Proof Recall from the proof of Corollary 4.4.14 that for the Euclidean domain F[ξ]
we define δ : F[ξ]→ Z≥0 by

δ(A) =

deg(A) + 1, A , 0R[ξ],

0, A = 0F[ξ].

Therefore,

δ(A − B) = δ(A + (−B)) = deg(A + (−B)) + 1 ≤ max{deg(A),deg(B)} + 1
< deg(A) + deg(B) + 2 < δ(A) + δ(B).

The result now follows immediately from Theorem 4.2.84. ■

Now let us illustrate how to apply the Euclidean Algorithm for polynomials.
The computations are a little tedious, albeit straightforward. Moreover, they can be
implemented systematically in a symbolic manipulation program, enabling quick
computation, at least for low-degree polynomials.
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4.4.41 Example (Solving the Bézout identity for polynomials) We consider the field Q
(or R, but the computations are the same) with polynomials A = x4 + 6x3 + 12x2 +
11x+ 6 = (x2 + x+ 1)(x+ 2)(x+ 3) and B = x2 + 12x+ 35 = (x+ 5)(x+ 7). Since these
polynomials have no common prime factors, they are coprime. Let us write out
the Euclidean Algorithm:

x4 + 6x3 + 12x2 + 11x + 6 = (x2
− 6x + 49)(x2 + 12x + 35) + (−367x − 1709),

(x2 + 12x + 35) = (− 1
367x − 2695

134689 )(−367x − 1709) + 108360
134689

(−367x − 1709) = − 49430863
108360 x − 230183501

108360 .

Note that this tells us that u = 108360
134689 is a greatest common divisor for A and B. Since

any unit multiplied by a greatest common divisor is also a greatest common divisor
(Exercise 4.2.21), it follows that 1 is a greatest common divisor, and so A and B
are coprime. One can now apply Theorem 4.2.84 directly. One defines α0 = 1 and
β0 =

1
367x + 2695

134689 and then

α1 = β0 =
1

367x + 2695
134689 ,

β1 = α0 − (x2
− 6x + 49)β0 = −

1
367x3

−
493

134689x2
−

1813
134689x − 266744

134689 .

Taking R = uα1 and S = uβ1 gives R · A + S · B = 1, as desired. Furthermore,
note that deg(R) = 1 < 2 = deg(B) and deg(S) = 3 < 4 = deg(A), as predicted by
Theorem 4.2.84. •

4.4.6 Quotients of polynomial rings by ideals

As we shall see in Section 4.6, to construct a field which contains the roots of a
given polynomial, one uses quotients of polynomial rings by prime ideals. In this
section we consider quotients of polynomial rings by general ideals. Let us remind
the reader of some facts about ideals of polynomial rings. From Corollary 4.4.14
we know that F[ξ] is a Euclidean domain, and hence a principal ideal domain.
Therefore, every ideal in F[ξ] is generated by some polynomial A. Moreover,
if A ∈ F[ξ] then we can write A = aA′ where s ∈ F∗ and where A′ is a monic
polynomial (simply take a to be the leading coefficient of A). Since A|A′ and A′|A
by Proposition 4.2.60, (A) = (A′) by Proposition 4.2.61. Therefore, in considering
principal ideals (A) in F[ξ], we may without loss of generality suppose that A
is monic. If A is monic and has degree 0, then A is a unit in F[ξ]. Then, by
Proposition 4.2.61, (A) = F[ξ]. This case will not be of interest to us, since we will
be considering the quotient ring F[ξ]/(A), and if (A) = F[ξ], then this quotient ring
is the zero ring. Thus it is most interesting to consider the case when deg(A) ≥ 1.

Our first result gives a convenient representation for elements in the quotient
ring of the polynomial ring and the ideal generated by a general monic polynomial.
The result also explicitly describes the ring structure of the quotient.
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4.4.42 Proposition (Quotients of polynomial rings by principal ideals) Let R be a
commutative unit ring and let A be a monic polynomial of degree k ≥ 1, and write
A = ξk

−
∑k−1

j=0 ajξj. Recursively define α0, α1, . . . , αk−1 ∈ F by α0 = 1R and

αm =

m∑
j=1

ak−jαm−j.

Then, given B ∈ R[ξ] there exists unique b0, b1, . . . , bk−1 ∈ R such that

B + (A) = b0 + b1ξ + · · · + bk−1ξ
k−1 + (A).

Moreover, if

B + (A) = b0 + b1ξ + · · · + bk−1ξ
k−1 + (A),

C + (A) = c0 + c1ξ + · · · + ck−1ξ
k−1 + (A) ∈ R[ξ]/(A),

then

(B + (A)) + (C + (A)) = (b0 + c0) + (b1 + c1)ξ + · · · + (bk−1 + ck−1)ξk−1 + (A),

(B + (A)) · (C + (A)) =
k−1∑
l=0

l∑
j=0

bjcl−jξ
l

+

k−2∑
l=0

l∑
j=0

bk−jck−(l−j)

k−j−1∑
r=0

αr

j+1∑
s=0

asξ
s+(k−j−1)−r + (A).

Proof If B = 0R[ξ] then take b0 = b1 = · · · = bk−1 = 0R. These are clearly the only
elements of R for which

(A) = b0 + b1ξ + · · · + bk−1ξ
k−1 + (A).

Now suppose that deg(B) ≥ 0. Since A is monic, its leading coefficient is not a
zerodivisor (it is a unit), and so we can apply Theorem 4.4.13 to conclude that there
exists Q,R ∈ R[ξ] such that B = Q · A + R, with deg(R) < k. Thus we can write
R =

∑k−1
j=0 b jξ j. Since Q · A ∈ (A) we then have B + (A) = R + (A)¡ and this gives the

existence part of the result. To prove uniqueness, suppose that

b0 + b1ξ + · · · + bk−1ξ
k−1 + (A) = b′0 + b′1ξ + · · · + b′k−1ξ

k−1 + (A).

Then
b0 + b1ξ + · · · + bk−1ξ

k−1 = b′0 + b′1ξ + · · · + b′k−1ξ
k−1 + C · A

for some C ∈ R[ξ] by Theorem 4.2.54. But by Proposition 4.4.11 this implies that
deg(C·A) = deg(C)+deg(A) < k. Since deg(A) = k we must therefore have deg(C) = −∞
or C = 0R[ξ]. Thus b j = b′j for j ∈ {0, 1, . . . , k − 1}.

Now let us prove that ring addition and multiplication in R[ξ] have the stated
form. It is clear by definition of addition in quotient rings that addition has the form
given. For multiplication we use the following lemma.
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1 Lemma For m ∈ {0, 1, . . . ,k − 1},

ξk+m + (A) =
m∑

l=0

αl

k−1−m+l∑
j=0

ajξ
j+m−l + (A).

Proof We have,

ξk + (A) =
k−1∑
j=0

a jξ
j + (A),

and one can check that this agrees with the lemma for m = 0. Now suppose that the
expression in the lemma for ξk+m + (A) holds for m ∈ {0, 1, . . . , r} and compute

ξk+r+1 + (A) = ξξk+r + (A) =
r∑

l=0

αl

k−1−r+l∑
j=0

a jξ
j+r−l+1 + (A)

=

r∑
l=0

αl

k−2−r+l∑
j=0

a jξ
j+r−l+1 +

r∑
l=0

αlak+l−(r+1)ξ
k + (A)

=

r∑
l=0

αl

k−2−r+l∑
j=0

a jξ
j+r−l+1 +

r∑
l=0

αlak+l−(r+1)

k−1∑
s=0

asξ
s + (A)

=

r∑
l=0

αl

k−2−r+l∑
j=0

a jξ
j+r−l+1 +

r+1∑
l=1

ak− jαr+1− j

k−1∑
s=0

asξ
s + (A)

=

r+1∑
l=0

αl

k−1−(r+1)+l∑
j=0

a jξ
j+(r+1)−l + (A),

which may be checked to be the conclusion of the lemma for m = r + 1. ▼

We then compute

(B + (A)) · (C + (A)) =

 k−1∑
j=0

b jξ
j


 k−1∑

j=0

c jξ
j

 + (A)

=

k−1∑
l=0

l∑
j=0

b jcl− jξ
l +

k−2∑
l=0

l∑
j=0

bk− jck−(l− j)ξ
2(k−1)− j + (A)

=

k−1∑
l=0

l∑
j=0

b jcl− jξ
l +

k−2∑
l=0

l∑
j=0

bk− jck−(l− j)ξ
k+(k− j−1) + (A)

=

k−1∑
l=0

l∑
j=0

b jcl− jξ
l

+

k−2∑
l=0

l∑
j=0

bk− jck−(l− j)

k− j−1∑
r=0

αr

j+1∑
s=0

asξ
s+(k− j−1)−r + (A).
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This is the expression stated in the proposition. ■

Note that multiplication in the quotient ring R[ξ]/(A) can be very complicated.
Indeed, it is far from clear that it even has the properties needed for multiplication
in a ring, and the only reason we know it does is that this follows from the devel-
opment of the general theory. In any event, these quotient rings are at least a good
way to generate rings with a very complicated ring structure. However, we also
have other reasons for being interested in these rings.

Let us illustrate the proposition on an example. A more useful, and in fact
simpler, example will come up in Section 4.7.2.

4.4.43 Example (Quotient of a polynomial ring by a principal ideal) We consider the
ring Z with its polynomial ring Z[ξ], and we recall from Example 4.4.33 the
cyclotomic polynomial Φ2 = ξ2 + ξ + 1. By Proposition 4.4.42 we know that every
element of the quotient ring Z[ξ]/(Φ2) is uniquely expressed as b0 + b1ξ + (Φ2) for
b0, b1 ∈ Z. If

B + (Φ2) = b0 + b1ξ + (Φ2),C + (Φ2) = c0 + c1 + (Φ2) ∈ Z[ξ]/(Φ2),

then we have

(B + (Φ2)) + (C + (Φ2)) = (b0 + c0) + (b1 + c1)ξ + (Φ2).

To express the product of B + (Φ2) and C + (Φ2) we note that, in the terminology
of Proposition 4.4.42, a0 = a1 = −1. Rather than apply the cumbersome product
formula of Proposition 4.4.42 (which does have the virtue of being implementable
in a symbolic computation program), let us compute the product directly. We first
compute

ξ2 + (Φ2) = −ξ − 1 + (Φ2).

Then we have

(B + (Φ2)) · (C + (Φ2)) = (b0 + b1ξ)(c0 + c1ξ) + (Φ2)

= b0c0 + (b0c1 + b1c0)ξ + b1c1ξ
2 + (Φ2)

= (b0c0 − b1c1) + (b0c1 + b1c0 − b1c2)ξ + (Φ2).

One could, if one wished, check directly that this sum and product satisfy the
conditions for a ring. However, the general theory gives us this conclusion for
free. •

Now let us state some facts about the character of the quotient ring F[ξ]/(A).

4.4.44 Theorem (Properties of the quotient ring F[ξ]/(A)) If F is a field and if A ∈ F[ξ]
is a monic polynomial of degree at least 1, then the following statements hold:

(i) the ring F/(A) contains a subring isomorphic to F;
(ii) if A is irreducible then F[ξ]/(A) is a field;
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(iii) if A is reducible then F[ξ]/(A) is not an integral domain.
Proof For the first assertion, let π(A) : F[ξ] → F[ξ]/(A) be the canonical projection
mapping B ∈ F[ξ] to B + (A). We claim that the restriction of π(A) to F ⊆ F[ξ] is
injective. Indeed, suppose that π(A)(a) = 0F[ξ]/(A) for some a ∈ F. Then a ∈ (A), whence,
by Theorem 4.2.54, a = B · A for some B ∈ F[ξ]. Since deg(a) = deg(B) + deg(A) and
since deg(A) ≥ 1, it holds that deg(a) = deg(B) = −∞, and so a = 0F. Thus π(A)|F is
injective. Therefore, image(π(A)) is a subring of F[ξ]/(A) isomorphic to F.

Note that, by Theorem 4.2.64, Theorems 4.2.37 and 4.3.9, and Proposition 4.4.34,
the following statements are equivalent:
1. A is prime;
2. A is irreducible;
3. (A) is prime;
4. (A) is maximal;
5. F[ξ]/(A) is a field;
6. F[ξ]/(A) is an integral domain.
From this, the last two statements of the theorem follow immediately. ■

Before we proceed, let us consider Example 4.4.43 in the context of the theo-
rem.

4.4.45 Example (Quotient of a polynomial ring by a principal ideal (cont’d)) We now
consider the field Q with its polynomial ring Q[ξ]. Since Z is a subring of Q, Z[ξ]
is a subring of Q[ξ] (Proposition 4.4.8), and so the polynomial Φ2 = ξ2 + ξ + 1
can be thought of as a polynomial, not only in Z[ξ], but in Q[ξ]. As we showed
in Example 4.4.33, Φ2 is irreducible in Z[ξ]. By Proposition 4.4.19(v), since Φ2

is primitive in Z[ξ], Φ2 is also irreducible in Q[ξ]. Therefore, by Theorem 4.4.44,
Q[ξ]/(Φ2) is a field. As a result, the ring operations from Example 4.4.43 actually
define a field if one allows b0, b1, c0, and c1 to be rational numbers rather than
integers. Again, it is not so easy to verify directly the fact that the product admits
a multiplicative inverse, but this follows directly from Theorem 4.4.44. •

4.4.7 Polynomials in multiple indeterminates

In this section we give a very quick definition of polynomials in more than
one indeterminate. The case of the single indeterminate worked out in detail will
hopefully serve as adequate preparation for the general case.

Let X = (ξi)i∈I be an arbitrary family of indeterminates, i.e., some set indexed by
a set I. Denote by (ZI

≥0)0 the set of maps ϕ : I→ Z≥0 such that the set {ξi | ϕ(ξi) , 0}
is finite. Now denote by F[X] the set of maps Ψ : (ZI

≥0)0 → F such that the set
{ϕ | Ψ(ϕ) , 0F} is finite. If X = (ξ1, . . . , ξk) then we shall write F[X] = F[ξ1, . . . , ξk].
We define the structure of a commutative ring on F[X] by

(Ψ1 +Ψ2)(ϕ) = Ψ1(ϕ) +Ψ2(ϕ), (Ψ1Ψ2)(ϕ) = Ψ1(ϕ)Ψ2(ϕ).
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One should think of F[X] as being the polynomial ring with indeterminates X and
coefficients in F. The monomials are just elements of (ZI

≥0)0, and so an element ϕ
can be written as

ξ j1
i1
· · · ξik

ik
,

where ϕ is defined by

ϕ(ξi) =

 jl, i = il, l ∈ {1, . . . , k},
0, otherwise.

An element of F[X] is then a finite linear combination of these monomials with
coefficients in F. In order to express such a linear combination in a simple way, it
is convenient to use so-called “multi-index notation.” We let X = (ξi)i∈I be a set of
indeterminates indexed by a set I. An element of (ZI

≥0)0 defines a family ( ji)i∈I of
elements of Z≥0, only finitely many of which are nonzero. Such a family we call a
I-multi-index. If J = ( ji)i∈I is an I-multi-index, let ji1 , . . . , jik(J) be the nonzero terms
in the family. Then we denote by

ξJ = ξ
ji1
i1
· · · ξ

jik(J)

ik(J)

the corresponding monomial. Then an element A ∈ F[X] has the form

A =
∑

J an I-multi-index

CA(J)ξJ,

for a function CA : (ZI
≥0)0 → F which is zero except for finitely many values of the

argument. This is the multi-index form for A.
We leave it to the reader to check that F[X] is indeed a commutative ring. This

is relatively easy using multi-index notation.
Given A ∈ F[X] with X = (ξi)i∈I we can define an evaluation homomorphism

EvF which assigns to a polynomial A ∈ F[X] an F-valued function on the vector
space FI

0 (see Example 4.5.43) as follows. Let A ∈ F[X] and write

A =
∑

J an I-multi-index

CA(J)ξJ.

If v ∈ FI
0 then we think of v as a map from I to F which is zero except for finitely

many values of its argument. Thus an element v ∈ FI
0 defines a family (vi)i∈I of

elements of F, only finitely many of which are nonzero. If J is an I-multi-index
with nonzero elements ji1 , . . . , jik(J) , then we write

vJ = v
ji1
i1
· · · v

jik(J)

ik(J)
.

We then define
EvF(A)(v) =

∑
J an I-multi-index

CA(J)vJ.

It is straightforward to check that this is a homomorphism of rings.
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4.4.8 Rational functions

Rational functions are simply fractions of polynomials. As with polynomials,
we regard rational functions (despite their name) as being algebraic objects rather
than functions of an independent variable.

Let us give the formal definition, recalling from Theorem 4.3.6 that the fraction
field of an integral domain is a field, and from Theorem 4.4.2 that the ring of
polynomials over an integral domain is an integral domain.

4.4.46 Definition (Rational function) If R is an integral domain, then the field of rational
functions over R is the fraction field of the integral domain R[ξ]. The field of rational
functions over R is denoted by R(ξ). •

Let us say a few words about the manner in which rational functions are rep-
resented. As per Definition 4.3.5, we denote by N

D the equivalence class associated
with (N,D) ∈ R×R\{0R}. The following result gives a means of choosing a standard
representative from each equivalence class for a rational function over a field.

4.4.47 Proposition (Coprime fractional representative) If F is a field and if R ∈ F(ξ) is a
rational function over F, then there exists unique polynomials N,D ∈ F[ξ] such that

(i) D is monic,
(ii) N and D are coprime, and
(iii) R = N

D .
We call N

D the coprime fractional representative of R.
Proof Suppose that R = N′

D′ (here and throughout the proof, N′ does not mean the
formal derivative of N). Let Q be the greatest common divisor for N′ and D′ so that
N′ = QN′′ and D′ = QD′′. Then, since N′D′′ = N′′D′, N′

D′ =
N′′
D′′ . Moreover, N′′ and D′′

are coprime. Write

N′′ =
k∑

j=0

c jξ
j, D′′ =

l∑
j=0

p jξ
j,

with pl , 0F. Note that
p−1

l N′′

p−1
l D′′

= N′′
D′′ since N′′(p−1

l D′′) = (p−1
l N′′)D′′. Therefore, R =

p−1
l N′′

p−1
l D′′

. Since p−1
l D′′ is monic, the existence part of the result follows.

Now suppose that N
D and N′

D′ are two coprime fractional representatives. Then
ND′ = N′D. Since F[ξ] is a unique factorisation domain let us write

N = P1 · · ·Pk, N′ = P′1 · · ·P
′

k′ , D = Q1 · · ·Ql, D′ = Q′1 · · ·Q
′

l′

for irreducible polynomials Pr, r ∈ {1, . . . , k}, P′r, r ∈ {1, . . . , k′}, Qs, s ∈ {1, . . . , l}, and Q′s,
s ∈ {1, . . . , l′}, all of degree at least 1. Since N and D are coprime and N′ and D′ are
coprime, Pr and Qs are coprime for all r ∈ {1, . . . , k} and s ∈ {1, . . . , l}, and P′r and Q′s
are coprime for all r ∈ {1, . . . , k′} and s ∈ {1, . . . , l′}. In particular, for r ∈ {1, . . . , k} and
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s ∈ {1, . . . , l}, it cannot hold that Pr = uQs for some unit u ∈ F, and, for r ∈ {1, . . . , k′}
and s ∈ {1, . . . , l′}, it cannot hold that P′r = uQ′s for some unit u ∈ F. Now note that

ND′ = N′D = P1 · · ·PkQ′1 · · ·Q
′

l′ = P′1 · · ·P
′

k′Q1 · · ·Ql.

The rightmost two expressions must be factorisations of ND′ = N′D, and so k+l′ = k′+l
and the terms differ only by multiplication by units in F[ξ], i.e., by units in F by
Exercise 4.4.3. By our previous observations about the coprimeness of Pr and Qs,
r ∈ {1, . . . , k}, s ∈ {1, . . . , l}, and P′r and Q′s, r ∈ {1, . . . , k′}, s ∈ {1, . . . , l′}, it must then be
the case that k = k′, l = l′, and there exists units u1, . . . ,ul ∈ F and σ ∈ Sl such that
Q′
σ(s) = usQs for s ∈ {1, . . . , l}. In particular,

Q′σ(1) · · ·Q
′

σ(l) = u1 · · · ulQ1 · · ·Ql,

or D′ = u1 · · · ulD. Since both D and D′ are monic it follows that u1 · · · ul = 1F, and
so D′ = D. Then ND = N′D, whence N′ = N by Proposition 4.2.33 since F[ξ] is an
integral domain. ■

The following simple definitions are of some importance in linear system the-
ory, cf. Sections V-?? and V-??.

4.4.48 Definition (Relative degree, proper, strictly proper, biproper) If F is a field and
if R ∈ F[ξ] has coprime fractional representative N

D , then the relative degree of R is
deg(D) − deg(N). The rational function R is

(i) proper if its relative degree is nonnegative,
(ii) strictly proper if its relative degree is positive, and
(iii) biproper if its relative degree is zero. •

In many applications in system theory one deals only with rational functions
that are proper, and often strictly proper.

Other straightforward and useful language related to the coprime fractional
representative is the following.

4.4.49 Definition (Poles and zeros) Let F be a field, let R ∈ F(ξ), and let N
D be the coprime

fractional representative for R. An element a ∈ F is a zero of R if it is a root of N and
is a pole of R if it is a root of D. The zeros of R are denoted by Z(R) and the poles
of R are denoted by P(R). The multiplicity of a zero (resp. pole) is its multiplicity
as a root of N (resp. D). •

As is the case with polynomials, it is wise to not think of rational functions
as functions, per se, but as algebraic objects. However, as with polynomials, it is
possible to assign to a rational function a function in the usual sense. This is done
as follows, cf. Proposition 4.4.9.
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4.4.50 Definition (Rational functions as functions) Let F be a field and let R ∈ F(ξ) have
coprime fractional representative R = N

D . Define EvF(R) : F \ P(R)→ F by

EvF(R)(a) =
EvF(N)(a)
EvF(D)(a)

. •

The main result that we prove in this section is the so-called partial fraction
decomposition for rational functions.

4.4.51 Theorem (Partial fraction decomposition) Let F be a field, let R ∈ (ξ), and suppose
that R = N

D is a coprime fractional representative.
There exists

(i) m irreducible monic polynomials D1, . . . ,Dm ∈ F[ξ],
(ii) k1, . . . ,km ∈ Z>0,
(iii) k1 + · · · + km polynomials N1,1(x), . . . ,N1,k1 , . . . ,Nm,1, . . . ,Nm,km ∈ F[ξ], and
(iv) a polynomial Q ∈ F[ξ] of degree deg(N)−deg(D) (take Q = 0 if deg(N)−deg(D) <

0),
with the properties

(v) D1, . . . ,Dm are coprime,
(vi) deg(Nr,s) < deg(Dr) for r ∈ {1, . . . ,m} and s ∈ {1, . . . ,kr}, and

(vii) R =
m∑

r=1

kr∑
s=1

Nr,s

Ds
r
+Q.

Furthermore, the objects described in (i)–(iv) are the unique such objects with the proper-
ties (v)–(vii).

Proof Let us first write R = Ñ
D + Q̃ for some polynomials Ñ and Q. If deg(N) < deg(D)

then we take Ñ = N and Q̃ = 0F[ξ]. If deg(N) ≥ deg(D) use the Division Algorithm to
write N = Q̃ ·D + Ñ where deg(Ñ) < deg(D). Then R = Ñ

D + Q̃, as desired.
Since D is monic and since F[ξ] is a unique factorisation domain, we can write

D = D′1 · · ·D
′

k

for irreducible polynomials D′1, . . . ,D
′

k ∈ F. For j ∈ {1, . . . , k} we can write D′j = u jD′′j
where u j ∈ F is a unit and where D′′j is monic. Since D is monic, u1 · · · uk = 1F. Therefore,
D is a product of monic irreducible polynomials. Note that two polynomials D′′j1 and
D′′j2 , j1, j2 ∈ {1, . . . , k}, are coprime if and only if they are distinct by virtue of the fact
that they are irreducible. Thus we can collect the distinct polynomials from the set
{D′′1 , . . . ,D

′′

k }, and we denote these by D1, . . . ,Dm. We can then write

D = Dk1
1 · · ·D

km
m ,

noting that D1, . . . ,Dm are monic, irreducible, and coprime. Thus we can write

Ñ
D
=

Ñ

Dk1
1 · · ·D

km
m

.
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Since Dk1
1 and Dk2

2 · · ·D
km
m are coprime, by Corollary 4.4.36 we have

Dk1
1 A1 + (Dk2

2 · · ·D
km
m )B1 = 1F (4.7)

for some A1,B1 ∈ F[ξ]. Then

Ñ
D
=

Ñ1

Dk1
1

+
ÑA1

Dk2
2 · · ·D

km
m

,

where Ñ1 = ÑB1. Note that Ñ and D1 are coprime and that B1 and D1 are coprime,
the latter by virtue of (4.7). Therefore, Ñ1 and D1 are coprime. Now, since Dk2

2 and
Dk3

3 · · ·D
km
m are coprime we can write

Dk2
2 A2 + (Dk3

3 · · ·D
km
m )B2 = 1F (4.8)

for some A2,B2 ∈ F[ξ]. Thus we have

ÑA1

Dk2
2 · · ·D

km
m

=
Ñ2

Dk2
2

+
ÑA1A2

Dk3
3 · · ·D

km
m

,

where Ñ2 = ÑA1B2. Now we have Ñ and D2 coprime, A1 and D2 coprime (by (4.7)),
and B2 and D2 coprime (by (4.8)). Thus Ñ2 and D2 are coprime. Thus

Ñ
D
=

Ñ1

Dk1
1

+
Ñ2

Dk2
2

+
ÑA1A2

Dk3
3 · · ·D

km
m

.

This can be continued m times (we leave the formal but straightforward induction
argument to the reader) to give

Ñ
D
=

m∑
r=1

Ñr

Dkr
r

for polynomials Ñ1, . . . , Ñm such that Ñr and Dr are coprime for each r ∈ {1, . . . ,m}. At
this point we are not guaranteed that deg(Ñr) < deg(Dkr

r ) for r ∈ {1, . . . ,m} (in fact, this
will generally not be the case). However, if deg(Ñr) ≥ deg(Dkr

r ), then use the Division
Algorithm: Ñr = Q̃rDkr

r +Nr where deg(Nr) < deg(Dkr
r ). Then we have

R =
m∑

r=1

Nr

Dkr
r

+Q, (4.9)

where Q = Q̃ + Q̃1 + · · · + Q̃m. We claim that, for r ∈ {1, . . . ,m}, Nr and Dr are coprime.
Suppose not. Then, since Dr is irreducible, Nr = DrAr for some Ar ∈ F[ξ]. In this case
we have Ñr = Dr(Q̃rDkr−1

r + Ar), and so Dr|Ñr, which we know is not true. Thus we
indeed know that
1. D1, . . . ,Dm are monic, irreducible, and coprime,

2. deg(Nr) < deg(Dkr
r ) for r ∈ {1, . . . ,m}, and

3. Nr and Dr are coprime for r ∈ {1, . . . ,m}.
Let us stop at this point to address the matter of uniqueness of the rep-

resentation (4.9). In the statement of the lemma we refer to m ∈ Z>0 and
Q,D1, . . . ,Dm,N1, . . . ,Nm ∈ F[ξ] as we have constructed them.
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1 Lemma Let R ∈ F(ξ) be expressed as

R =
m′∑
r=1

N′r
(D′r)k′r

+Q′,

where
(i) k′r ∈ Z>0, r ∈ {1, . . . ,m′},
(ii) D′1, . . . ,D

′

m′ ∈ F[ξ] are monic, irreducible, and coprime,
(iii) Q′,N′1, . . . ,N

′

m′ ∈ F[ξ],

(iv) deg(N′r) < deg((D′r)k′r) for r ∈ {1, . . . ,m′},
(v) N′r and D′r are coprime for r ∈ {1, . . . ,m}, and
(vi) k′1, . . . ,k

′

m′ ∈ Z>0.
Then Q′ = Q, m′ = m and there exists σ ∈ Sm such that D′r = Dσ(r), N′r = Nσ(r), and
k′r = kσ(r) for r ∈ {1, . . . ,m}.

Proof Define distinct polynomials D̃1, . . . , D̃m̃ so that

{D̃1, . . . , D̃m̃} = {D1, . . . ,Dm,D′1, . . . ,D
′

m′}.

We can then write
m∑

r=1

Nr

Dkr
r

+Q =
m̃∑

j=1

Ñr

D̃k̃r
r

+Q

and
m′∑
r=1

N′r
(D′r)kr

+Q′ =
m̃∑

j=1

Ñ′r
(D̃′r)k̃′r

+Q′

for polynomials Ñr, Ñ′r, and for k̃r, k̃′r ∈ Z≥0, r ∈ {1, . . . , m̃}. We adopt the convention in
writing these formulae that if k̃r or k̃′r is zero, then this means that Ñr or Ñ′r, respectively,
is zero. Thus we reduce the problem to showing that if

m̃∑
j=1

Ñr

D̃k̃r
r

+Q =
m̃∑

j=1

Ñ′r
(D̃′r)k̃′r

+Q′, (4.10)

then k̃′r = k̃r, Ñ′r = Ñr, r ∈ {1, . . . , m̃}, and Q′ = Q.
Let j ∈ {1, . . . , m̃}. If k̃ j = k̃′j, then the term corresponding to D̃ j does not appear

in either of the expressions in (4.10), so there is nothing more to do in this case. So
suppose that one of k̃ j or k̃′j is nonzero; without loss of generality make it k̃ j. Also

without loss of generality suppose that k̃ j ≥ k̃′j. Now rearrange (4.10):

Ñ j

D̃
k̃ j

j

−

Ñ′j

D̃
k̃′j
j

=
∑

r∈{1,...,m̃}\{ j}

 Ñ′r

D̃k̃′r
r

−
Ñr

D̃k̃r
r

 + (Q′ −Q). (4.11)
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Let M ∈ F[ξ] be a least common multiple for the polynomials D̃k̃r
r , D̃

k̃′r
r , r ∈ {1, . . . , m̃}\{ j}.

Since the polynomials D̃1, . . . , D̃m̃ are all irreducible, they are coprime, and so D̃ j ∤ M.

Now multiply (4.11) by MD
k̃ j

j :

M(Ñ j − D̃
k̃ j−k̃′j
j Ñ′j) = AD̃

k̃ j

j

for some polynomial A. If k̃′j < k̃ j then we have

MÑ j = D̃ j(AD̃
k̃ j−1
j + D̃

k̃ j−k̃′j−1

j Ñ′j),

implying that D̃ j|Ñ j, which contradicts our assumption that Ñ j and D̃ j are coprime. It

must therefore hold that k̃′j = k̃ j. Upon showing this we then conclude that D
k̃ j

j |(Ñ j−Ñ′j).

Since deg(Ñ j−Ñ′j) < deg(D
k̃ j

j ), this can only hold when Ñ j−Ñ′j = 0F[ξ]. It is now obvious
that Q′ = Q, and the lemma is proved. ▼

Fix r ∈ {1, . . . ,m}. Now, by Corollary 4.4.16, write

Nr = Ar,0 + Ar,1Dr + Ar,2D2
r + · · · + Ar,mrD

mr
r

for some unique mr ∈ Z≥0 and unique Ar, j, j ∈ {0, 1, . . . ,mr}, and where deg(Ar, j) <
deg(Dr) for j ∈ {0, 1, . . . ,mr}. Since deg(Nr) < deg(Dkr

r ), by Proposition 4.4.11 we have
mr < kr. If mr < kr − 1 then define Ar, j = 0F[ξ] for j ∈ {mr + 1, . . . , kr − 1}. Then we have

Nr

Dkr
r

=
Ar,0

Dkr
r

+
Ar,1

Dkr−1
r

+ · · · +
Ar,kr−1

Dr
.

Defining Nr,s = Ar,kr−s then gives the unique representation of Nr

Dkr
r

as

Nr

Dkr
r

=

kr∑
s=1

Nr,s

Ds
r
.

This then gives the theorem. ■

The matter of computing the partial fraction expansion is, in general, a little
tedious. In cases where the field F is algebraically closed, or more generally,
where the denominator in the coprime fractional representative splits in F, there
are procedures that enable straightforward computation of the partial fraction
decomposition (see Exercise 4.4.7). Otherwise, one is essentially left with the
construction in the proof of Theorem 4.4.51, which is constructive, provided that
one can factor the denominator. Let us illustrate the computation of a partial
fraction expansion with an example.
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4.4.52 Example (Partial fraction decomposition) Consider the rational function

R =
ξ5 + 3ξ2 + 2

ξ4 + 3ξ3 + 4ξ2 + 3ξ + 1

as an element of Q(ξ). First let us write this as a sum of a strictly proper rational
function and a polynomial. We do this by seeking polynomials Q,P ∈ Q(ξ) such
that

ξ5 + 3ξ2 + 2 = Q(ξ4 + 3ξ3 + 4ξ2 + 3ξ + 1) + P.

This is the Division Algorithm for polynomials, and we leave the details to the
reader:

Q = ξ − 3, P = 5ξ3 + 12ξ2 + 8ξ + 5.

Thus we have

R =
5ξ3 + 12ξ2 + 8ξ + 5

ξ4 + 3ξ3 + 4ξ2 + 3ξ + 1
+ ξ − 3.

The next step is to write the denominator as a product of irreducible polynomials.
This is always the problematic step; for general fields (even for Q) it is difficult
to even determine whether a polynomial is irreducible, never mind write it as a
product of irreducibles. However, in this case, one might be able to, by hook or by
crook or by computer, notice that

ξ4 + 3ξ3 + 4ξ2 + 3ξ + 1 = (ξ + 1)2(ξ2 + ξ + 1),

and that the polynomials ξ + 1 and ξ2 + ξ + 1 are irreducible, the first obviously,
and the second by Example 4.4.33. Next, noting that the polynomials (ξ + 1)2 and
ξ2 + ξ + 1 are coprime, we seek polynomials A and B such that

A(ξ + 1)2 + B(ξ2 + ξ + 1) = 1.

To do this, we use the Euclidean Algorithm as suggested by Theorem 4.2.84.
Doing the (in this case simple) polynomial long division gives the following as the
Euclidean Algorithm:

(ξ + 1)2 = 1(ξ2 + ξ + 1) + ξ,

ξ2 + ξ + 1 = (ξ + 1)ξ + 1,
ξ = 1ξ.

Now, to compute A and B, we follow the prescription of Theorem 4.2.84. We define
α0 = 1 and β0 = −(ξ + 1), and then α1 = −(ξ + 1) and β1 = 1 + 1(ξ + 1) = ξ + 2. Thus
we take A = −(ξ + 1) and B = ξ + 2. That is,

1 = −(ξ + 1)(ξ + 1)2 + (ξ + 2)(ξ2 + ξ + 1),
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and so

5ξ3 + 12ξ2 + 8ξ + 5
(ξ + 1)2(ξ2 + ξ + 1)

= −
(ξ + 1)(5ξ3 + 12ξ2 + 8ξ + 5)

ξ2 + ξ + 1
+

(ξ + 2)(5ξ3 + 12ξ2 + 8ξ + 5)
(ξ + 1)2 .

(4.12)
To put this expression into the desired form, for each of the summands on the right
hand side we expand the numerator as a sum of powers of the denominator, as
per Corollary 4.4.16. We do this by successively applying the Division Algorithm.
Thus we write

(ξ + 1)(5ξ3 + 12ξ2 + 8ξ + 5) = (5ξ2 + 12ξ + 3)(ξ2 + ξ + 1) + (−2ξ + 2),

which gives

−
(ξ + 1)(5ξ3 + 12ξ2 + 8ξ + 5)

ξ2 + ξ + 1
=

2ξ − 2
ξ2 + ξ + 1

− 5ξ2
− 12ξ − 3. (4.13)

We also compute

(ξ + 2)(5ξ3 + 12ξ2 + 8ξ + 5) = (5ξ3 + 17ξ2 + 15ξ + 6)(ξ + 1) + 4

and
5ξ3 + 17ξ2 + 15ξ + 6 = (5ξ2 + 12ξ + 3)(ξ + 1) + 3.

One could continue this process again on 5ξ2 + 12ξ + 3. However, as we shall see,
this is unnecessary. In any case, we have

(ξ + 2)(5ξ3 + 12ξ2 + 8ξ + 5) = ((5ξ2 + 12ξ + 3)(ξ + 1) + 3)(ξ + 1) + 4

= (5ξ2 + 12ξ + 3)(ξ + 1)2 + 3(ξ + 1) + 4.

Therefore,

(ξ + 2)(5ξ3 + 12ξ2 + 8ξ + 5)
(ξ + 1)2 =

3
ξ + 1

+
4

(ξ + 1)2 + 5ξ2 + 12ξ + 3. (4.14)

Substituting (4.13) and (4.14) into (4.12) gives

5ξ3 + 12ξ2 + 8ξ + 5
(ξ + 1)2(ξ2 + ξ + 1)

=
2ξ − 2

ξ2 + ξ + 1
+

3
ξ + 1

+
4

(ξ + 1)2 ,

which in turn gives

R =
2ξ − 2

ξ2 + ξ + 1
+

3
ξ + 1

+
4

(ξ + 1)2 + ξ − 3

as the partial fraction decomposition for R.
The method we have used here is a little cumbersome, but it is entirely sys-

tematic (once one writes the denominator in the coprime fractional representative
as a product of irreducibles), and also illustrates the proof of Theorem 4.4.51. In
practice, when writing the partial fraction expansion for rational functions over the
field of real numbers (which is the most commonly encountered situation in these
volumes), one can benefit from the use of Exercises 4.4.7 and 4.4.8. •
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Exercises

4.4.1 Let R be a commutative unit ring. Show that if R[ξ] is an integral domain
then R is an integral domain.

4.4.2 Prove Proposition 4.4.8.
4.4.3 Let R be an integral domain.

(a) Show that A ∈ R[ξ] is a unit if and only if A = a0 is a constant polynomial
where a0 is a unit in R.

(b) Now suppose that R is additionally a field. Show that A ∈ F[ξ] is a unit
if and only if it is a nonzero constant polynomial.

4.4.4 If R is a commutative ring with a finite number of elements, show that EvR

is not injective.
4.4.5 Let R be an integral domain, let a ∈ R, and let A,B ∈ R[ξ]. Prove the

following properties of the formal derivative:
(a) (aA)′ = a(A′);
(b) (A + B)′ = A′ + B′;
(c) (A · B)′ = A · B′ + A′ · B;
(d) (Ak)′ = kAk−1

· A′, k ∈ Z≥0.

4.4.6 Determine the partial fraction expansion of ξ3+1
(ξ+1)4 .

The next exercise illustrates what is referred to as the Heaviside coverup3 method
for computing the partial fraction expansion in some cases. This method only
works when the denominator of the coprime fractional representative splits in the
field.

4.4.7 Let F be a field, let R ∈ F(ξ), and let N
D be the coprime fractional representative

for R. We suppose that D splits in F so that we can write D = Dk1
1 · · ·D

km
m

for monic coprime degree 1 polynomials Dr = (ξ − ar), r ∈ {1, . . . ,m}, and for
k1, . . . , km ∈ Z>0. It then follows that the partial fraction decomposition of R
is of the form

R =
m∑

r=1

kr∑
s=1

nr,s

Ds
r
+Q

for Q ∈ F[ξ] and for nr,s ∈ F, r ∈ {1, . . . ,m}, s ∈ {1, . . . , kr}.
(a) Show that, if kr = 1, then

nr,1 =
EvF(NDr)(ar)

EvF(Dk1
1 · · ·D

kr−1
r−1 Dkr+1

r+1 · · ·D
km
m )(ar)

3After Oliver Heaviside (1850–1925), an Englishman who, although having terminated his formal
education before its completion, made contributions to the understanding of electromagnetism. He
is remembered for his “operational calculus” which he invented to solve differential equations.
This technique, while lacking in rigour, did allow the use of algebraic manipulations in solving
differential equations.
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for each r ∈ {1, . . . ,m}.
(b) Explain how to extend the previous computation to the computation of

nr,1, . . . ,nr,kr when kr > 1.
Hint: Write

N

Dk1
1 · · ·D

kr−1
r−1 Dkr

r Dkr+1
r+1 · · ·D

km
m

=
1

Dkr−1
r

 N

Dk1
1 · · ·D

kr−1
r−1 DrD

kr+1
r+1 · · ·D

km
m


and apply part (a) to the expression in the parentheses on the right hand side.

(c) Use the previous two parts of the exercise to compute the partial fraction
expansion of 1

(ξ+1)2(ξ+2) as an element of (say) R(ξ).

The preceding exercise always applies to rational functions defined over the field
C of complex numbers since, as we shall see in Theorem 4.7.6, this field is alge-
braically closed. For rational functions defined over the field R of real numbers,
although the method of Exercise 4.4.7 may not apply directly (when the denomi-
nator polynomial does not split overR), it is possible to think of an element ofR(ξ)
as being an element of C(ξ), and thus apply the methods of Exercise 4.4.7. The
next exercise shows how one can then take the resulting partial fraction expansion
in C(ξ) and convert it to a partial fraction expansion in R(ξ). Various ideas from
Section 4.7.3 will be useful here. In particular, the reader will wish to recall that if
r ∈ C is a root of A ∈ R[ξ] ⊆ C[ξ], then r̄, the complex conjugate of r, is also a root
of A.

4.4.8 Note that since C is algebraically closed, if R ∈ C(ξ) then the partial fraction
expansion of R has the form

R =
m∑

r=1

kr∑
s=1

nr,s

(s − ar)s

for nr,s ∈ C, r ∈ {1, . . . ,m}, s ∈ {1, . . . , kr}, and for ar ∈ C, r ∈ {1, . . . ,m}.
Moreover, the coefficients nr,s, r ∈ {1, . . . ,m}, s ∈ {1, . . . , kr}, can be computed
as in Exercise 4.4.7. In this exercise we additionally suppose that R ∈ R(ξ) ⊆
C(ξ).
(a) Argue that the roots a1, . . . , am of the factors in the denominators can be

ordered such that a j+l = ā j, j ∈ {1, . . . , l}, and such that a2l+1, . . . , am ∈ R.
Also argue that, when the roots are so ordered, k j+l = k j, j ∈ {1, . . . , l}.

For the rest of the exercise, we suppose the roots to have been ordered as
in part (a). The coefficients nr,s, r ∈ {2l + 1, . . . ,m}, s ∈ {1, . . . , kr}, can be
computed as in Exercise 4.4.7, so we concern ourselves with the complex
roots.
(b) Show that n j+l,s = n̄ j,s, j ∈ {1, . . . , l}, s ∈ {1, . . . , k j}.
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Now fix j ∈ {1, . . . , l} and s ∈ {1, . . . , k j}, and for notational simplicity define
a = a j and n = n j,s. Corresponding to a root a, j ∈ {1, . . . , l}, of the denominator
will be a term in the partial fraction expansion of the form

n
(ξ − a)s +

n̄
(ξ − ā)s . (4.15)

(c) Show how to convert the expression (4.15) into a term in the partial
fraction expansion of R as an element of R(ξ). Thus the denominators
should be irreducible polynomials over R.
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Section 4.5

Vector spaces

One of the more important structures that we will use at a fairly high degree of
generality is that of a vector space. As with almost everything we have encountered
in this chapter, a vector space is a set equipped with certain operations. In the case
of vector spaces, one of these operations melds the vector space together with
another algebraic structure, in this case a field. A typical first encounter with
vector spaces deals primarily with the so-called finite-dimensional case. In this
case, a great deal, indeed, pretty much everything, can be said about the structure
of these vector spaces. However, in these volumes we shall also encounter so-called
infinite-dimensional vector spaces. A study of the structure of these gets rather
more detailed than the finite-dimensional case. In this section we deal only with
algebraic matters. Important additional structure in the form of a topology is the
topic of Chapter III-6.

Do I need to read this section? If you are not already familiar with the idea of
an abstract vector space, then you need to read this section. If you are, then it
can be bypassed, and perhaps referred to as needed. Parts of this section are also
good ones for readers looking for simple proofs that illustrate certain techniques
for proving things. These ceases to become true when we discuss bases, since we
take an abstract approach motivated by the fact that many of the vector spaces we
deal with in these volumes are infinite-dimensional. •

4.5.1 Definitions and basic properties

Throughout this section we let F be a general field, unless otherwise stated.
The fields of most interest to us will be R (see Section 2.1) and C (see Section 4.7).
However, most constructions done with vector spaces are done just as conveniently
for general fields as for specific ones.

4.5.1 Definition (Vector space) Let F be a field. A vector space over F, or an F-vector
space, is a nonempty set V with two operations: (1) vector addition, denoted
by V × V ∋ (v1, v2) 7→ v1 + v2 ∈ V, and (2) scalar multiplication, denoted by
F × V(a, v) 7→ av ∈ V. Vector addition and scalar multiplication must satisfy the
following rules:

(i) v1 + v2 = v2 + v1, v1, v2 ∈ V (commutativity);
(ii) v1 + (v2 + v3) = (v1 + v2) + v3, v1, v2, v3 ∈ V (associativity);
(iii) there exists an vector 0V ∈ V with the property that v + 0V = v for every v ∈ V

(zero vector);
(iv) for every v ∈ V there exists a vector −v ∈ V such that v + (−v) = 0V (negative

vector);



528 4 Algebraic structures

(v) a(bv) = (ab)v, a, b ∈ F, v ∈ V (associativity);
(vi) 1Fv = v, v ∈ V;
(vii) a(v1 + v2) = av1 + av2, a ∈ F, v1, v2 ∈ V (distributivity);
(viii) (a1 + a2)v = a1v + a2v, a1, a2 ∈ F, v ∈ V (distributivity again).
A vector in a vector space V is an element of V. •

We have already encountered some examples of vector spaces. Let us indicate
what some of these are, as well as introduce some important new examples of
vector spaces. The verifications that the stated sets are vector spaces is routine, and
we leave this to the reader in the exercises.

4.5.2 Examples (Vector spaces)
1. Consider a set 0V = {v} with one element. There are no choices for the F-vector

space structure in this case. We must have v + v = v, av = v for every a ∈ F,
−v = v, and 0V = v. One can then verify that {v} is then indeed an F-vector
space. This vector space is called the trivial vector space, and is sometimes
denoted by {0}, reflecting the fact that the only vector in the vector space is the
zero vector.

2. Let Fn denote the n-fold Cartesian product of F with itself. Let us denote a
typical element of Fn by (v1, . . . , vn). We define vector addition in Fn by

(u1, . . . ,un) + (v1, . . . , vn) = (u1 + v1, . . . ,un + vn)

and we define scalar multiplication in Fn by

a(v1, . . . , vn) = (av1, . . . , avn).

The vector spaces Rn and Cn, over R and C, respectively, will be of particular
importance to us. The reader who has no previous knowledge of vector spaces
would be well served by spending some time understanding the geometry of
vector addition and scalar multiplication in, say, R2.

3. Let us denote by F∞ the set of sequences in F. Thus an element of F∞ is a
sequence (a j) j∈Z>0 with a j ∈ F, j ∈ Z>0. We define vector addition and scalar
multiplication by

(a j) j∈Z>0 + (b j) j∈Z>0 = (a j + b j) j∈Z>0 , a(a j) j∈Z>0 = (aa j) j∈Z>0 ,

respectively. This can be verified to make F∞ into an F-vector space. It is
tempting to think of things like F∞ = limn→∞ Fn, but one must exercise care,
since the limit needs definition. This is the realm of Chapter III-6.

4. Let us denote by F∞0 the subset of F∞ consisting of sequences for which all but
a finite number of terms is zero. Vector addition and scalar multiplication are
defined for F∞0 are defined just as for F∞. It is just as straightforward to verify
that these operations make F∞0 an F-vector space.
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5. If K is a field extension of F (see Definition 4.6.1) and if V is a K-vector space,
then V is also an F-vector space with the operation of vector addition being
exactly that of V as a K-vector space, and with scalar multiplication simply
being the restriction of scalar multiplication by K to F.

6. The set F[ξ] of polynomials over F is an F-vector space. Vector addition is
addition in the usual sense of polynomials, and scalar multiplication is multi-
plication of polynomials, using the fact that F is a subring of F[ξ] consisting of
the constant polynomials.

7. Denote by Fk[ξ] the polynomials over F of degree at most k. Using the same
definitions of vector addition and scalar multiplication as were used for the
F-vector space F[ξ] in the preceding example, Fk[ξ] is an F-vector space.

8. Let S be a set and let V be an F-vector space. As in Definition 1.3.1, let VS be the
set of maps from S to V. Let us define vector addition and scalar multiplication
in VS by

( f + g)(x) = f (x) + g(x), (a f )(x) = a( f (x))

for f , g ∈ VS and a ∈ F. One may directly verify that these operations indeed
satisfy the conditions to make VS into an F-vector space.

9. Let I ⊆ R be an interval and let C0(I;R) denote the set of continuous R-valued
functions on I. Following the preceding example, define vector addition and
scalar multiplication in C0(I;R) by

( f + g)(x) = f (x) + g(x), (a f )(x) = a( f (x)), f , g ∈ C0(I;R), a ∈ R,

respectively. With these operations, one can verify that C0(I;R) is a R-vector
space. •

Let us now prove some elementary facts about vector spaces.

4.5.3 Proposition (Properties of vector spaces) Let F be a field and let V be an F-vector
space. The following statements hold:

(i) there exists exactly one vector 0V ∈ V such that v + 0V = v for all v ∈ V;
(ii) for each v ∈ V there exists exactly one vector −v ∈ V such that v + (−v) = 0V;
(iii) a0V = 0V for all a ∈ F;
(iv) 0Fv = 0V for each v ∈ V;
(v) a(−v) = (−a)v = −(av) for all a ∈ F and v ∈ V;
(vi) if av = 0V, then either a = 0F or v = 0V.

Proof Parts (i) and (ii) follow in the same manner as part (i) of Proposition 4.1.6.
(iii) For some v ∈ V we compute

av = a(v + 0V) = av + a0V.

Therefore,

av + (−(av)) = av + (−(av)) + a0V =⇒ 0V = 0V + a0V = a0V,
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which gives the result.
(iv) For some a ∈ F we compute

av = (a + 0F)v = av + 0Fv.

Therefore,

av + (−(av)) = av + (−(av)) + 0Fv =⇒ 0V = 0V + 0Fv = 0Fv,

giving the result.
(v) We have

0V = a0V = a(v + (−v)) = av + a(−v).

Therefore, a(−v) = −(av). Similarly,

0V = 0Fv = (a − a)v = av + (−a)v.

Therefore (−a)v = −(av).
(vi) Suppose that av = 0V. If a = 0F then there is nothing to prove. If a , 0F then

we have
0V = a−10V = a−1(av) = (a−1a)v = 1Fv = v,

which gives the result. ■

In this section it will be convenient to have on hand the notion of a homomor-
phism of vector spaces. This is a topic about which we will have much to say in
Chapter 5, but here we simply give the definition.

4.5.4 Definition (Linear map) Let F be a field and let U and V be F-vector spaces. An
F-homomorphism of U and V, or equivalently an F-linear map between U and V,
is a map L : U→ V having the properties that

(i) L(u1 + u2) = L(u1) + L(u2) for every u1,u2 ∈ U and
(ii) L(au) = aL(u) for every a ∈ F and u ∈ U.

An F-homomorphism L is an F-monomorphism (resp. F-epimorphism, F-
isomorphism) if L is injective (resp. surjective, bijective). If there exists an iso-
morphism between F-vector spaces U and V, then U and V are F-isomorphic. An
F-homomorphism from V to itself is called an F-endomorphism of V. The set
of F-homomorphisms from U to V is denoted by HomF(U; V), and the set of F-
endomorphisms of V is denoted by EndF(V). •

We shall frequently simply call an “F-homomorphism” or an “F-linear map “
a “homomorphism” or a “linear map” when F is understood. We postpone to
Section 5.4 an exposition of the properties of linear maps, as well as a collection of
illustrative examples. In this section we shall principally encounter a few examples
of isomorphisms.

4.5.2 Subspaces

As with most algebraic objects, with vector spaces it is interesting to talk about
subsets that respect the structure.
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4.5.5 Definition Let F be a field. A nonempty subset U of an F-vector space V is a vector
subspace, or simply a subspace, if u1 + u2 ∈ U for all u1,u2 ∈ U and if au ∈ U for all
a ∈ F and all u ∈ U. •

As we saw with subgroups and subrings, subspaces are themselves vector
spaces.

4.5.6 Proposition (A vector subspace is a vector space) Let F be a field. A nonempty
subset U ⊆ V of an F-vector space V is a subspace if and only if U is a vector space using
the operations of vector addition and scalar multiplication in V, restricted to U.

Proof This is Exercise 4.5.11. ■

Let us give some examples of subspaces. We leave the straightforward verifi-
cations of our claims as exercises.

4.5.7 Examples (Subspaces)
1. For each n ∈ Z>0, Fn can be regarded as a subspace of F∞0 by tacking on zeros to

the n-tuple in Fn to get a sequence indexed by Z>0.
2. The subset F∞0 of F∞ is a subspace.
3. For each k ∈ Z≥0, Fk[ξ] is a subspace of F[ξ]. However, the set of polynomials

of degree k is not a subspace of F[ξ]. Why?
4. In Exercise 4.5.10 the reader can verify that, for r ∈ Z>0, the set Cr(I;R) of

r-times continuously differentiable R-valued functions defined on an interval I
is a R-vector space. In fact, it is a subspace of C0(I;R). •

Analogously with homomorphisms of groups and rings, there are two natural
subspaces associated with a homomorphism of vector spaces.

4.5.8 Definition (Kernel and image of linear map) Let F be a vector space, let U and V
be F-vector spaces, and let L ∈ HomF(U; V).

(i) The image of L is image(L) = {L(u) | u ∈ U}.
(ii) The kernel of L is ker(L) = {u ∈ U | L(u) = 0V}. •

It is straightforward to verify that the image and kernel are subspaces.

4.5.9 Proposition (Kernel and image are subspaces) Let F be a field, let U and V be
F-vector spaces, and let L ∈ HomF(U; V). Then image(L) and ker(L) are subspaces of V
and U, respectively.

Proof This is Exercise 4.5.16. ■

An important sort of subspace arises from taking sums of vectors with arbitrary
coefficients in the field over which the vector space is defined. To make this more
formal, we have the following definition.
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4.5.10 Definition (Linear combination) Let F be a field and let V be an F-vector space. If
S ⊆ V is nonempty, a linear combination from S is an element of V of the form

c1v1 + · · · + ckvk,

where c1, . . . , ck ∈ F and v1, . . . , vk ∈ S. We call c1, . . . , ck the coefficients in the linear
combination. •

The important feature of the set of linear combinations from a subset of a vector
space is that they form a subspace.

4.5.11 Proposition (The set of linear combinations is a subspace) If F is a field, if V
is an F-vector space, and if S ⊆ V is nonempty, then the set of linear combinations from S
is a subspace of V. Moreover, this subspace is the smallest subspace of V containing S.

Proof Let
B = b1u1 + · · · + blvl, C = c1v1 + · · · + ckvk

be linear combinations from S and let a ∈ F. Then

B + C = b1u1 + · · · + blul + c1v1 + · · · + ckvk

is immediately a linear combination from S with vectors u1, . . . ,ul, v1, . . . , vk and coef-
ficients b1, . . . , bl, c1, . . . , ck. Also

aC = (ac1)v1 + · · · + (ack)vk

is a linear combination from S with vectors v1, . . . , vk and coefficients ac1, . . . , ack. Thus
B + C and aC are linear combinations from S.

Now let U be a subspace of V containing S. If c1v1+ · · ·+ckvk is a linear combination
from S then, since S ⊆ U and since U is a subspace, c1v1 + · · · + ckvk ∈ U. Therefore, U
contains the set of linear combinations from S, and hence follows the second assertion
of the proposition. ■

Based on the preceding result we have the following definition. Note that the
definition is “geometric,” whereas the proposition gives a more concrete version
in that the explicit form of elements of the subspace are given.

4.5.12 Definition (Subspace generated by a set) If F is a field, if V is an F-vector space,
and if S ⊆ V is nonempty, then the subspace generated by S is the smallest subspace
of V containing S. This subspace is denoted by spanF(S). •

We close this section with a definition of a “shifted subspace” which will come
up in our discussion in Sections 5.1.8 and 5.4.8.

4.5.13 Definition (Affine subspace) Let F be a field and let V be an F-vector space. A
subset A ⊆ V is an affine subspace if there exists v0 ∈ V and a subspace U of V such
that

A = {v0 + u | u ∈ U}.
The subspace U is the linear part of A. •

Intuitively, an affine subspace is a subspace U shifted by the vector v0. Let us
give some simple examples of affine subspaces.
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4.5.14 Examples (Affine subspaces)
1. Every subspace is also an affine subspace “shifted” by the zero vector.
2. If U is a subspace of a vector space V and if u0 ∈ U, then the affine subspace

{u0 + u | u ∈ U}

is simply the subspace U. That is to say, if we shift a subspace by an element of
itself, the affine subspace is simply a subspace.

3. Let V = R2. The vertical line

{(1, 0) + (0, y) | y ∈ R}

through the point (1, 0) is an affine subspace. •

4.5.3 Linear independence

The notion of linear independence lies at the heart of understanding much of
the theory of vector spaces, and the associated topic of linear algebra which we
treat in detail in Chapter 5. The precise definition we give for linear independence
is one that can be difficult to understand on a first encounter. However, it is
important to understand that this definition has, in actuality, been carefully crafted
to be maximally useful; the definition in its precise form is used again and again in
proofs in this section and in Chapter 5.

4.5.15 Definition (Linearly independent) Let F be a field and let V be an F-vector space.
(i) A finite family (v1, . . . , vk) of vectors in V is linearly independent if the equality

c1v1 + · · · + ckvk = 0V, c1, . . . , ck ∈ F,

is satisfied only if c1 = · · · = ck = 0F.
(ii) A finite set S = {x j | j ∈ {1, . . . , k}} is linearly independent if the finite family

corresponding to the set is linearly independent.
(iii) An nonempty family (va)a∈A of vectors in V is linearly independent if every

finite subfamily of (va)a∈A is linearly independent.
(iv) A nonempty subset S ⊆ V is linearly independent if every nonempty finite

subset of S is linearly independent.
(v) A nonempty family (va)a∈A if vectors in V is linearly dependent if it is not

linearly independent.
(vi) A nonempty subset S ⊆ V is linearly dependent if it is not linearly indepen-

dent. •

The definition we give is not quite the usual one since we define linear inde-
pendence and linear dependence for both sets of vectors and families of vectors.
Corresponding to any set S ⊆ V of vectors is a family of vectors in a natural
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way: (v)v∈S. Thus one can, in actuality, get away with only defining linear inde-
pendence and linear dependence for families of vectors. However, since most
references will consider sets of vectors, we give both flavours of the definition.
Let us see with a simple example that only dealing with sets of vectors may not
suffice.

4.5.16 Example (Sets of vectors versus families of vectors) Let F be a field and let
V = F2. Define v1 = (1F, 0F) and v2 = (1F, 0F). Then the family (v1, v2) is linearly
dependent since 1Fv1 − 1Fv2 = 0V. However, since {v1, v2} = {(1F, 0F}, this set is, in
fact, linearly independent. •

As can easily be gleaned from this example, the distinction between linearly
independent sets and linearly independent families only arises when the family
contains the same vector in two places. We shall frequently talk about sets rather
than families, accepting that in doing so we disallow the possibility of considering
that two vectors in the set might be the same.

There is a potential inconsistency with the above definition of a general linearly
independent set. Specifically, if S = (v1, . . . , vk) is a finite family of vectors, then
Definition 4.5.15 proposes two definitions of linear independence, one from part (i)
and one from part (iv). To resolve this we prove the following result.

4.5.17 Proposition (Subsets of finite linearly independent sets are linearly indepen-
dent) Let F be a field, let V be an F-vector space, and let (v1, . . . ,vk) be linearly independent
according to part (i) of Definition 4.5.15. Then any nonempty subfamily of (v1, . . . ,vk) is
linearly independent.

Proof Let (v j1 , . . . , v jl) be a nonempty subfamily of (v1, . . . , vk) and suppose that

c1v j1 + · · · + clv jl = 0V.

Let { jl+1, . . . , jk} be a distinct set of indices for which {1, . . . , k} = { j1, . . . , jl, jl+1, jk}. Then

c1v j1 + · · · + clv jl + 0Fv jl+1 + · · · + 0Fv jk = 0V.

Since the set (v1, . . . , vk) is linearly independent, it follows that c1 = · · · = cl = 0F, giving
the result. ■

Let us give some examples of linearly independent and linearly dependent sets
to illustrate the ideas.

4.5.18 Examples (Linear independence)
1. In the F-vector space Fn consider the n vectors e1, . . . , en defined by

e j = (0, . . . , 0, 1F︸︷︷︸
jth position

, 0, . . . , 0).

We claim that these vectors are linearly independent. Indeed, suppose that

c1e1 + · · · + cnen = 0Fn
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for c1, . . . , cn ∈ F. Using the definition of vector addition and scalar multiplica-
tion in Fn this means that

(c1, . . . , cn) = (0, . . . , 0),

which immediately gives c1 = · · · = cn = 0F. This gives linear independence, as
desired.

2. In the F-vector space F∞0 define vectors e j, j ∈ Z>0, by asking that e j be the
sequence consisting of zeros except for the jth term in the sequence, which is 1F.
We claim that the family (e j) j∈Z>0 is linearly independent. Indeed. let e j1 , . . . , e jk
be a finite subset of (e j) j∈Z>0 . Then suppose that

c1e j1 + · · · + cke jk = 0F∞0

for c1, . . . , ck ∈ F. Using the definition of vector addition and scalar multipli-
cation in F∞0 , the linear combination c1e j1 + · · · + cke jk is equal to the sequence
(al) j∈Z>0 in F given by

al =

cr, l = jr for some r ∈ {1, . . . , k},
0F, otherwise.

Clearly this sequence is equal to zero if and only if c1 = · · · = ck = 0F, thus
showing that (e j) j∈Z>0 is linearly independent.

3. Since F∞0 is a subspace of F∞, it follows easily that the family (e j) j∈Z>0 is linearly
independent in F∞.

4. In the F-vector space Fk[ξ] of polynomials of degree at most k the family
(1, ξ, . . . , ξk) is linearly independent. Indeed, suppose that

c0 + c1ξ + · · · + ckξ
k = 0F[ξ] (4.16)

for c0, c1, . . . , ck ∈ F. One should now recall the definition of F[ξ] as sequences
in F for which a finite number of elements in the sequence are nonzero. The
elements in the sequence, recall, are simply the coefficients of the polynomial.
Therefore, a polynomial is the zero polynomial if and only if all of its coefficients
are zero. In particular, (4.16) holds if and only if c0 = c1 = · · · = ck = 0F.

5. In the vector space F[ξ] we claim that the set (ξ j) j∈Z≥0 is linearly independent. To
see why this is so, choose a finite subfamily (ξ j1 , . . . , ξ jk) from the family (ξ j) j∈Z≥0

and suppose that
c1ξ

j1 + · · · + ckξ
jk = 0F[ξ] (4.17)

for some c1, . . . , ck ∈ F. As we argued in the previous example, a polynomial is
zero if and only if all of its coefficients is zero. Therefore, (4.17) holds if and only
if c1 = · · · = ck = 0F, thus showing linear independence of the family (ξ j) j∈Z≥0 .
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6. In the R-vector space C0([0, π];R) define vectors (i.e., functions) cos j : I → R,
j ∈ Z≥0, and sin j : I→ R, j ∈ Z>0, by

cos j = cos( jx), sin j(x) = sin( jx).

We claim that the family (cos j) j∈Z≥0 ∪ (sin j) j∈Z>0 is linearly independent. To see
this, suppose that a finite linear combination of these vectors vanishes:

a1 cos j1 + · · · + al cos jl +b1 sink1 + · · · + bm sinkm = 0C0([0,2π];R), (4.18)

for a1, . . . , al, b1, . . . , bm ∈ R. Now multiply (4.18) by the function cos jr for some
r ∈ {1, . . . , l} and integrate both sides of the equation over the interval [0, 2π]:

a1

∫ 2π

0
cos j1(x) cos jr(x) dx + · · · + al

∫ 2π

0
cos jl(x) cos jr(x) dx

+ b1

∫ 2π

0
sink1(x) cos jr(x) dx + · · · + bm

∫ 2π

0
sinkm(x) cos jr(x) dx = 0. (4.19)

Now we recall the following trigonometric identities

cos(a) cos(b) = 1
2 (cos(a − b) + cos(a + b)), cos(a) sin(b) = 1

2 (sin(a + b) − sin(a − b)),

sin(a) sin(b) = 1
2 (cos(a − b) − cos(a + b)),

cos2(a) = 1
2 (1 + cos(2a)), sin2(a) = 1

2 (1 − cos(2a),

for a, b ∈ R. The above identities are easily proved using Euler’s formula
eix = cos(x) + i sin(x) and properties of the exponential function. We recom-
mend that the reader learn these derivations and then overwrite that portion
of their memory used for storing trigonometric identities with something use-
ful like, say, sports statistics or lines from their favourite movies. The above
trigonometric identities can now be used, along with the derivative (and hence
integral, by the Fundamental Theorem of Calculus) rules for trigonometric
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functions to derive the following identities for j, k ∈ Z>0:∫ 2π

0
cos( jx) cos(kx) dx =

0, j , k,
π, j = k,∫ 2π

0
cos( jx) sin(kx) dx = 0,∫ 2π

0
sin( jx) sin(kx) dx =

0, j , k,
π, j = k,∫ 2π

0
cos(0x) cos(0x) dx = 2π,∫ 2π

0
cos(0x) cos(kx) dx = 0,∫ 2π

0
cos(0x) sin(kx) dx = 0.

Applying these identities to (4.19) gives πar = 0 if jr , 0 and gives 2πar = 0
if jr = 0. In either case we deduce that ar = 0, r ∈ {1, . . . , l}. In like manner,
multiplying (4.18) by sinks , s ∈ {1, . . . ,m}, and integrating over the interval
[0, 2π] gives bs = 0, s ∈ {1, . . . ,m}. This shows that the coefficients in the linear
combination (4.18) are zero, and, therefore, that the set (cos j) j∈Z≥0 ∪ (sin j) j∈Z>0 is
indeed linearly independent. •

The reader will hopefully have noticed strong similarities between Examples 1
and 4 and between Examples 2 and 5. This is not an accident, but is due to the fact
that the vector spaces Fk+1 and Fk[ξ] are isomorphic and that the vector spaces F∞0
and F[ξ] are isomorphic. The reader is asked to explicitly write isomorphisms of
these vector spaces in Exercise 4.5.21.

Let us now prove some facts about linearly independent and linearly dependent
sets.

4.5.19 Proposition (Properties of linearly (in)dependent sets) Let F be a field, let V be
an F-vector space, and let S ⊆ V be nonempty. Then the following statements hold:

(i) if S = {v} for some v ∈ V, then S is linearly independent if and only if v , 0V;
(ii) if 0V ∈ S then S is linearly dependent;
(iii) if S is linearly independent and if T ⊆ S is nonempty, then T is linearly independent;
(iv) if S is linearly dependent and if T ⊆ V, then S ∪ T is linearly dependent;
(v) if S is linearly independent, if {v1, . . . ,vk} ⊆ S, and if

a1v1 + · · · + akvk = b1v1 + · · · + bkvk

for a1, . . . , ak, b1, . . . , bk ∈ F, then aj = bj, j ∈ {1, . . . ,k};
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(vi) if S is linearly independent and if v < spanF(S), then S∪{v} is linearly independent.
Proof (i) Note that c0V = 0V if and only if c = 0F by Proposition 4.5.3(vi). This is
exactly equivalent to what we are trying to prove.

(ii) If 0V ∈ S then the finite subset {0V} is linearly dependent by part (i).
(iii) Let {v1, . . . , vk} ⊆ T ⊆ S and suppose that

c1v1 + . . . ckvk = 0V

for c1, . . . , ck ∈ F. Since {v1, . . . , vk} ⊆ S and since S is linearly independent, it follows
that c1 = · · · = ck = 0F.

(iv) Since S is linearly dependent there exists vectors {v1, . . . , vk} ⊆ S and c1, . . . , ck ∈

F not all zero such that
c1v1 + · · · + ckvk = 0V.

Since {v1, . . . , vk} ⊆ S ∪ T, it follows that S ∪ T is linearly dependent.
(v) If

a1v1 + · · · + akvk = b1v1 + · · · + akvk,

then
(a1 − b1)v1 + · · · + (ak − bk)vk = 0V.

Since the set {v1, . . . , vk} is linearly independent, it follows that a j − b j = 0F for j ∈
{1, . . . , k}, which gives the result.

(vi) Let {v1, . . . , vk} ⊆ S ∪ {v}. If {v1, . . . , vk} ⊆ S then the set is immediately linearly
independent. If {v1, . . . , vk} 1 S, then we may without loss of generality suppose that
vk = v. Suppose that

c1v1 + · · · + ck−1vk−1 + ckvk = 0V.

First suppose that ck , 0F. Then

vk = −c−1
k c1v1 + · · · + c−1

k ck−1vk−1,

which contradicts the fact that vk < spanF(S). Thus we must have ck = 0F. However,
since S is linearly independent, it immediately follows that c1 = · · · = ck−1 = 0F. Thus
S ∪ {v} is linearly independent. ■

4.5.4 Basis and dimension

The notion of the dimension of a vector space, which is derived from the
concept of a basis, is an important one. Of particular importance is the dichotomy
between vector spaces whose dimension is finite and those whose dimension is
infinite. Essentially, finite-dimensional vector spaces, particularly those defined
over R, behave in a manner which often correspond somehow to our intuition.
In infinite dimensions, however, our intuition can often lead us astray. And in
these volumes we will be often interested in infinite-dimensional vector spaces.
This infinite-dimensional case is complicated, and any sort of understanding will
require understanding much of Chapter III-6.

For now, we get the ball rolling by introducing the idea of a basis.
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4.5.20 Definition (Basis for a vector space) Let F be a field and let V be a vector space
over F. A basis for V is a subsetB of V with the properties that

(i) B is linearly independent and
(ii) spanF(B ) = V. •

4.5.21 Remark (Hamel4 basis) Readers who have had a first course in linear algebra
should be sure to note that we do not require a basis to be a finite set. Nonetheless,
the definition we give is probably exactly the same as the one encountered in a
typical first course. What is different is that we have defined the notion of linear
independence and the notion associated with the symbol “spanF(·)” in a general
way. Sometimes the word “basis” is reserved for finite sets of vectors, with the
notion we give being called a Hamel basis. •

Let us first prove that every vector space possesses a basis in the sense that we
have defined the notion.

4.5.22 Theorem (Every vector space possesses a basis) If F is a field and if V is an
F-vector space, then there exists a basis for V.

Proof Let C be the collection of subsets of V that are linearly independent. Such
collections exist since, for example, {v} ∈ C if v ∈ V is nonzero. Place a partial order
⪯ on C by asking that S1 ⪯ S2 if S1 ⊆ S2. Let S ⊆ C be a totally ordered subset.
Note that ∪S∈S S is an element of C . Indeed, let {v1, . . . , vk} ⊆ ∪S∈S S. Then v j ∈ S j
for some S j ∈ S . Let j0 ∈ {1, . . . , k} be chosen such that S j0 is the largest of the
sets S1, . . . ,Sk according to the partial order ⪯, this being possible since S is totally
ordered. Then {v1, . . . , vk} ⊆ S j0 and so {v1, . . . , vk} is linearly independent since S j0 is
linearly independent. It is also evident that ∪S∈S S is an upper bound for S . Thus
every totally ordered subset ofC possesses an upper bound, and so by Zorn’s Lemma
possesses a maximal element. Let B be such a maximal element. By construction
B is linearly independent. Let v ∈ V and suppose that v < spanF(B ). Then by
Proposition 4.5.19(vi),B ∪{v} is linearly independent andB ⊆B {v}. This contradicts
the fact thatB is maximal, and so it must hold that if v ∈ V, then v ∈ spanF(B ). That
is to say, spanF(B ) = V. ■

One of the important properties of a basis is the following result.

4.5.23 Proposition (Unique representation of vectors in bases) If F is a field, if V is an
F-vector space, and if B is a basis for V, then, for v ∈ V there exists a unique finite subset
{v1, . . . ,vk} ⊆B and unique nonzero coefficients c1, . . . , ck ∈ F such that

v = c1v1 + · · · + ckvk.

Proof Let v ∈ V. Since spanF(B ) = V, there exists {u1, . . . ,ul} ⊆ B and a1, . . . , al ∈ F
such that

v = a1u1 + · · · + alul. (4.20)

4Georg Karl Wilhelm Hamel (1877–1954) was a German mathematician whose contributions to
mathematics were in the areas of function theory, mechanics, and the foundations of mathematics
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Moreover, given the vectors {u1, . . . ,ul}, the coefficients a1, . . . , al in (4.20) are unique.
Let {v1, . . . , vk} ⊆ {u1, . . . ,ul} be these vectors for which the corresponding coefficient
in (4.20) is nonzero. Denote by c1, . . . , ck the coefficients in (4.20) corresponding to the
vectors {v1, . . . , vk}. This gives the existence part of the result.

Suppose that {v′1, . . . , v
′

k′} ⊆B and c′1, . . . , c
′

k′ ∈ F∗ satisfy

v = c′1v′1 + · · · + c′k′v
′

k′ .

Now take {w1, . . . ,wm} to be a set of vectors such that {w1, . . . ,wm} = {v1, . . . , vk} ∪

{v′1, . . . , v
′

k′}. Note that

{v1, . . . , vk}, {v′1, . . . , v
′

k′} ⊆ {w1, . . . ,wm}.

Since {w1, . . . ,wm} ⊆B it is linearly independent. Therefore, by Proposition 4.5.19(v),
there exists unique coefficients b1, . . . , bm ∈ F such that

v = b1w1 + · · · + bmwm.

But we also have
v = c1v1 + · · · + ckvk = c′1v′1 + · · · + c′k′v

′

k′ .

Therefore, it must hold that {v1, . . . , vk} = {v′1, . . . , v
′

k′} = {w1, . . . ,wm}, and from this the
result follows. ■

One of the more useful characterisations of bases is the following result.

4.5.24 Theorem (Linear maps are uniquely determined by their values on a basis)
Let F be a field, let V be an F-vector space, and letB ⊆ V be a basis. Then, for any F-vector
space W and any map ϕ : B → W there exists a unique linear map Lϕ ∈ HomF(V; W)
such that the diagram

B
ϕ //

��

W

V
Lϕ

>>

commutes, where the vertical arrow is the inclusion.
Proof DenoteB = {ei}i∈I. If v ∈ V we have v =

∑
i∈I viei for vi ∈ F, i ∈ I, all but finitely

many of which are zero. Then define

Lϕ(v) =
∑
i∈I

viϕ(ei).

This map is linear since

Lϕ(u + v) =
∑
i∈I

(ui + vi)ϕ(ei) =
∑
i∈I

uiϕ(ei) +
∑
i∈I

viϕ(ei) = Lϕ(u) + Lϕ(v)

and
Lϕ(av) =

∑
i∈I

aviϕ(ei) = a
∑
i∈I

viϕ(ei) = aLϕ(v),
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where all manipulations make sense by virtue of the sums being finite. This gives the
existence part of the theorem.

Suppose that L ∈ HomF(V; W) is another linear map for which the diagram in
the theorem statement commutes. This implies that L(ei) = Lϕ(ei) for i ∈ I. Now, if
v =

∑
i∈I viei is a finite linear combination of basis elements, then

L

∑
i∈I

viei

 =∑
i∈I

viL(ei) =
∑
i∈I

viLϕ(ei) = Lϕ

∑
i∈I

viei

 ,
giving L = Lϕ. ■

The theorem is very useful, and indeed often used, since it tells us that to define
a linear map one need only define it on each vector of a basis.

As we shall shortly see, the notion of the dimension of a vector space relies
completely on a certain property of any two bases for a vector space, namely that
they have the same cardinality.

4.5.25 Theorem (Different bases have the same size) If F is a field, if V is an F-vector
space, and if B1 andB2 are two bases for V, then card(B1) = card(B2).

Proof The proof is broken into two parts, the first for the case when one of B1 and
B2 is finite, and the second the case when bothB1 andB2 are infinite.

Let us first prove the following lemma.

1 Lemma If {v1, . . . ,vn} is a basis for V then any set of n+1 vectors in V is linearly dependent.

Proof We prove the lemma by induction on n. In the case when n = 1 we have
V = spanF(v1). Let u1,u2 ∈ V so that u1 = a1v1 and u2 = a2v1 for some a1, a2 ∈ F.
If either u1 or u2 is zero then the set {u1,u2} is immediately linearly dependent by
Proposition 4.5.19(ii). Thus we can assume that a1 and a2 are both nonzero. In this
case we have

a2u1 − a1u2 = a2(a1v1) − a1(a2v1) = 0V,

so that {u1,u2} is not linearly independent. Now suppose that the lemma holds for
n ∈ {1, . . . , k} and let {v1, . . . , vk+1} be a basis for V. Consider a set {u1, . . . ,uk+2} and write

us =

k+1∑
r=1

arsvr, s ∈ {1, . . . , k + 2}.

First suppose that a1s = 0F for all s ∈ {1, . . . , k + 2}. It then holds that {u1, . . . ,uk+2} ⊆

spanF(v2, . . . , vk+1). By the induction hypothesis, since spanF(v2, . . . , vk+1) has basis
{v2, . . . , vk+1}, it follows that {u1, . . . ,uk+1} is linearly dependent, and so {u1, . . . ,uk+2} is
also linearly dependent by Proposition 4.5.19(iv). Thus we suppose that not all of the
coefficients a1s, s ∈ {1, . . . , k+2} is zero. For convenience, and without loss of generality,
suppose that a11 , 0F. Then

a−1
11 u1 = v1 + a−1

11 a21v2 + · · · + a−1
11 ak+1,1vk+1.
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We then have

us − a−1
11 a1su1 =

k+1∑
r=2

(ars + a1sa−1
11 ar1)vr, s ∈ {2, . . . , k + 2}.

meaning that us − a−1
11 a1su1 ∈ spanF(v2, . . . , vk+1) for s ∈ {2, . . . , k + 2}. By the induction

hypothesis it follows that the set {u2− a−1
11 a12u1, . . . ,uk+2− a−1

11 a1,k+2u1} is linearly depen-
dent. We claim that this implies that {u1,u2, . . . ,uk+2} is linearly dependent. Indeed, let
c2, . . . , ck+2 ∈ F be not all zero and such that

c2(u2 − a−1
11 a12u1) + · · · + ck+2(uk+2 − a−1

11 a1,k+2u1) = 0V.

Then
(−c2a−1

11 a12 − · · · − ck+2a−1
11 a1,k+2)u1 + c2u2 + · · · + ck+2uk+2 = 0V.

Since not all of the coefficients c2, . . . , ck+2 are zero, it follows that {u1,u2, . . . ,uk+2} is
linearly dependent. This completes the proof. ▼

Now consider the case when either B1 or B2 is finite. Thus, without loss of
generality suppose that B1 = {v1, . . . , vn}. It follows that B2 can have at most n
elements. ThusB2 = {u1, . . . ,um} for m ≤ n. But, sinceB2 is a basis, it also holds that
B1 must have at most m elements. Thus n ≤ m, and so m = n and thus card(B1) =
card(B2).

Now let us turn to the general case when either or both ofB1 andB2 are infinite.
For u ∈B1 letB2(u) be the unique finite subset {v1, . . . , vk} ofB2 such that

u = c1v1 + · · · + ckvk

for some c1, . . . , ck ∈ F∗. We now prove a lemma.

2 Lemma If v ∈B2 then there exists u ∈B1 such that v ∈B2(u).

Proof Suppose otherwise. Thus suppose that there exists v ∈B2 such that, for every
u ∈ B1, v < B2(u). We claim that B1 ∪ {v} is then linearly independent. Indeed, let
{v1, . . . , vk} ⊆B1 ∪ {v}. If {v1, . . . , vk} ⊆B1 then we immediately have that {v1, . . . , vk} is
linearly independent. So suppose that {v1, . . . , vk} 1 B1, and suppose without loss of
generality that vk = v. Let c1, . . . , ck ∈ F satisfy

c1v1 + · · · + ckvk = 0V.

If ck , 0F then
v = −c−1

k c1v1 + · · · − c−1
k ck−1vk−1,

implying that v ∈ spanF(v1, . . . , vk−1). We can thus write v as a linear combination of
vectors from the finite subsets B2(v j), j ∈ {1, . . . , k − 1}. Let {w1, . . . ,wm} be a set of
distinct vectors with the property that

{w1, . . . ,wm} = ∪
k−1
j=1B2(v j).

Thus B2(v j) ⊆ {w1, . . . ,wm} for j ∈ {1, . . . , k − 1}. It then follows that v ∈
spanF(w1, . . . ,wm). However, since v < {w1, . . . ,wm} by our assumption that v < B2(u)
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for every u ∈ B1, it follows that {v,w1, . . . ,wm} is linearly independent, which is a
contradiction. Therefore, ck = 0F.

On the other hand, if ck = 0F then it immediately follows that c1 = · · · = ck−1 = 0F
since {v1, . . . , vk−1} ⊆ B1 and sinceB1 is linearly independent. Therefore, B1 ∪ {v} is
indeed linearly independent. In particular, v < spanF(B1), contradicting the fact that
B1 is a basis. ▼

From the lemma we know that B2 = ∪u∈B1B2(u). By the definition of multi-
plication of cardinal numbers, and using the fact that card(Z>0) exceeds every finite
cardinal number, we have

card(B2) ≤ card(B1) card(Z>0).

By Corollary 1.7.18 it follows that card(B2) ≤ card(B1). By interchanging the
rôles of B1 and B2 we can also show that card(B1) ≤ card(B2). By the Can-
tor–Schröder–Bernstein Theorem, card(B1) = card(B2). ■

Let us give some other useful constructions concerning bases. The proofs we
give are valid for arbitrary bases. We invite the reader to give proofs in the case of
finite bases in Exercise 4.5.18.

4.5.26 Theorem (Bases and linear independence) Let F be a field and let V be an F-vector
space. For a subset S ⊆ V, the following statements hold:

(i) if S is linearly independent, then there exists a basisB for V such that S ⊆B ;
(ii) if spanF(S) = V, then there exists a basisB for V such thatB ⊆ S.

Proof (i) LetC (S) be the collection of linearly independent subsets of V which contain
S. Since S ∈ C (S), C (S) , ∅. The set C (S) can be partially ordered by inclusion. Thus
S1 ⪯ S2 if S1 ⊆ S2. Just as in the proof of Theorem 4.5.22, every totally ordered subset
of C (S) has an upper bound, and so C (S) possesses a maximal elementB by Zorn’s
Lemma. This set may then be shown to be a basis just as in the proof of Theorem 4.5.22.

(ii) Let D (S) be the collection of linearly independent subsets of S, and partially
order D (S) by inclusion, just as we partially ordered C (S) in part (i). JUst as in the
proof of Theorem 4.5.22, every totally ordered subset ofD (S) has an upper bound, and
soD (S) possesses a maximal elementB . We claim that every element of S is a linear
combination of elements ofB . Indeed, if this were not the case, then there exists v ∈ S
such that v < spanF(B ). ThenB ∪ {v} is linear independent by Proposition 4.5.19(vi),
and is also contained in S. This contradicts the maximality of B , and so we indeed
have S ⊆ spanF(B ). Therefore,

spanF(B ) = spanF(S) = V,

giving the theorem. ■

Now it makes sense to talk about the dimension of a vector space.
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4.5.27 Definition (Dimension, finite-dimensional, infinite-dimensional) Let F be a
field, let V be an F-vector space, and let B be a basis for V. The dimension of
the vector space V, denoted by dimF(V), is the cardinal number card(B ). IfB is fi-
nite then V is finite-dimensional, and otherwise V is infinite-dimensional. We will
slightly abuse notation and write dimF(V) = ∞whenever V is infinite-dimensional.

•

Let us give some examples of vector spaces of various dimensions.

4.5.28 Examples (Basis and dimension)
1. The trivial vector space V = {0V} consisting of the zero vector has ∅ as a basis.
2. The F-vector space Fn has as a basis the set B = {e1, . . . , en} defined in Exam-

ple 4.5.18–1. In that example,B was shown to be linearly independent. Also,
since

(v1, . . . , vn) = v1e1 + · · · + vnen,

it follows that spanF(B ) = Fn. Thus dimF(Fn) = n. The basis {e1, . . . , en} is called
the standard basis.

3. The subspace F∞0 of F∞ has a basis which is easily described. Indeed, it is
easy to verify that {e j} j∈Z>0 is a basis for F∞0 . We adopt the notation from the
finite-dimensional case and call this the standard basis.

4. We next consider the F-vector space F∞. Since F∞0 ⊆ F∞, and since the standard
basis {e j} j∈Z>0 is linearly independent in F∞, we know by Theorem 4.5.26 that we
can extend the standard basis for F∞0 to a basis for F∞. This extension is nontrivial
since, for example, the sequence {1F} j∈Z>0 in F cannot be written as a finite
linear combination of standard basis vectors. Thus the set {e j} j∈Z>0 ∪ {{1F} j∈Z>0}

is linearly independent. This linearly set shares with the standard basis the
property of being countable. It turns out, in fact, that any basis for F∞ has the
cardinality of R, and so the process of tacking on linearly independent vectors
to the standard basis for F∞0 will take a long time to produce a basis for F∞. We
will not understand this properly until Section 5.7, where we will see that F∞ is
the algebraic dual of F∞0 , and so thereby derive by general means the dimension
of F∞. For the moment we merely say that F∞ is a much larger vector space
than is F∞0 .

5. In Fk[ξ], it is easy to verify that {1, ξ, . . . , ξk
} is a basis. Indeed, we have already

shown that the set is linearly independent. It follows from the definition of
Fk[ξ] that the set also generates Fk[ξ].

6. The set {ξ j
} j∈Z≥0 forms a basis for F[ξ]. Again, we have shown linear indepen-

dence, and that this set generates F[ξ] follows by definition. •

4.5.29 Remark (Nonuniqueness of bases) Generally, it will not be the case that a vector
spaces possesses a “natural” basis, although one might argue that the bases of
Example 4.5.28 are fairly natural. But, even in cases where one might have a
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basis that is somehow distinguished, it is useful to keep in mind that other bases
are possible, and that one should be careful not to rely overly on the comfort
offered by a specific basis representation. In particular, if one is in the business of
proving theorems using bases, one should make sure that what is being proved
is independent of basis, if this is in fact what is intended. At this point in our
presentation we do not have enough machinery at hand to explore this idea fully.
Also, in Section 5.4.5 we shall discuss the matter of changing bases. •

Finally, let us prove the more or less obvious fact that dimension is preserved
by isomorphism.

4.5.30 Proposition (Dimension characterises a vector space) If F is a field and if V1

and V2 are F-vector spaces, then the following statements are equivalent:
(i) V1 and V2 are isomorphic;
(ii) dimF(V1) = dimF(V2).

Proof (i) =⇒ (ii) Let L : V1 → V2 be an isomorphism and let B1 be a basis for V1.
We claim that B2 = L(B1) is a basis for V2. Let us first show that B2 is linearly
independent. Let v1 = L(u1), . . . , vk = L(uk) ∈B2 be distinct and suppose that

c1v1 + · · · = ckvk = 0V2

for c1, . . . , ck ∈ F. Since L is linear we have

L(c1u1 + · · · + ckuk) = 0V2 .

Since L is injective, by Exercise 4.5.23 we have

c1u1 + · · · + ckuk = 0V1 ,

showing that c1 = · · · = ck = 0F. ThusB2 is linearly independent. Moreover, for v ∈ V2
let u = L−1(v) and then let u1, . . . ,uk ∈B1 and c1, . . . , ck ∈ F satisfy u = c1u1 + · · · + ckuk.
Then

L(u) = c1L(u1) + · · · + ckL(uk)

since L is linear. Therefore v ∈ spanF(B2), and soB2 is indeed a basis. Since L|B1 is a
bijection ontoB2 we have card(B2) = card(B1), and this is the desired result.

(ii) =⇒ (i) Suppose thatB1 andB2 are bases for V1 and V2, respectively, with the
same cardinality. Thus there exists a bijection ϕ : B1 →B2. Now, by Theorem 4.5.24,
define L ∈ HomF(V1; V2) by asking that L|B1 = ϕ. We claim that L is an isomorphism.
To verify injectivity, suppose that L(u) = 0V2 for u ∈ V1. Write

u = c1u1 + · · · + ckuk

for c1, . . . , ck ∈ F and u1, . . . ,uk ∈B1. Then

0V2 = c1L(u1) + · · · + ckL(uk),
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giving c j = 0F, j ∈ {1, . . . , k}, since L(u1), . . . ,L(uk) are distinct elements of B2, and so
linearly independent. Thus L is injective by Exercise 4.5.23. For surjectivity, let v ∈ V2
and write

v = c1v1 + · · · + ckvk

for c1, . . . , ck ∈ F and v1, . . . , vk ∈B2. Then, if we define

u = c1ϕ
−1(v1) + · · · + ckϕ

−1(vk) ∈ V2

we readily verify that L(u) = v. ■

4.5.5 Intersections, sums, and products

In this section we investigate means of manipulating multiple subspaces and
vector spaces. We begin by defining some constructions associated to subspaces of
a vector space.

4.5.31 Definition (Sum and intersection) Let F be a field, let V be an F-vector space, and
let (U j) j∈J be a family of subspaces of V indexed by a set J.

(i) The sum of (U j) j∈J is the subspace generated by ∪ j∈JU j, and is denoted by∑
j∈J U j.

(ii) The intersection of (U j) j∈J is the set∩ j∈JU j (i.e., the set theoretic intersection). •

4.5.32 Notation (Finite sums of subspaces) If U1, . . . ,Uk are a finite number of subspaces
of an F-vector space V, then we will sometimes write

k∑
j=1

U j = U1 + · · · + Uk. •

4.5.33 Notation (Sum of subsets) We will also find it occasionally useful to be able to
talk about sums of subsets that are not subspaces. Thus, if (Ai)i∈I is a family of
subsets of an F-vector space V we denote by∑

i∈I

Ai = {vi1 + · · · + vik | i1, . . . , ik ∈ I distinct, vi j ∈ Ai j , j ∈ {1, . . . , k}, k ∈ Z>0}.

Thus
∑

i∈I Ai consists of finite sums of vectors from the subsets Ai, i ∈ I. Following
our notation above, if I = {1, . . . , k} then we write∑

i∈I

Ai = A1 + · · · + Ak. •

The sum and intersection are the subspace analogues of the set theoretic union
and intersection, with the analogue being exact in the case of intersection. Note
that the union of subspaces need not be a subspace (see Exercise 4.5.17). It is true
that the intersection of subspaces is a subspace.
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4.5.34 Proposition (Intersections of subspaces are subspaces) If F is a field, if V is
an F-vector space, and if (Uj)j∈J is a family of subspaces, then ∩j∈JUj is a subspace.

Proof If v ∈ ∩ j∈JUa and if a ∈ F then av ∈ U j for each j ∈ J. Thus av ∈ ∩ j∈JU j. If
v1, v2 ∈ ∩ j∈JU j then v1 + v2 ∈ U j for each j ∈ J. Thus v1 + v2 ∈ ∩ j∈JU j. ■

Note that, by definition, if (U j) j∈J is a family of subspaces of an F-vector space
V, and if v ∈

∑
j∈J U j, then there exists a finite set j1, . . . , jk ∈ J of indices and vectors

u jl ∈ U jl , l ∈ {1, . . . , k}, such that v = u j1 + · · ·+u jk . In taking sums of subspaces, there
is an important special instance when this decomposition is unique.

4.5.35 Definition (Internal direct sum of subspaces) Let F be a field, let V be an F-
vector space, and let (U j) j∈J be a collection of subspaces of V. The vector space V
is the internal direct sum of the subspaces (U j) j∈J, and we write V =

⊕
j∈J U j, if,

for any v ∈ V \ {0V}, there exists unique indices { j1, . . . , jk} ⊆ J and unique nonzero
vectors u jl ∈ U jl , l ∈ {1, . . . , k}, such that v = u j1 + · · · + u jk . Each of the subspaces U j,
j ∈ J, is a summand in the internal direct sum. •

The following property of internal direct sums is useful.

4.5.36 Proposition (Representation of the zero vector in an internal direct sum of
subspaces) Let F be a field, let V be an F-vector space, and suppose that V is the internal
direct sum of the subspaces (Uj)j∈J. If j1, . . . , jk ∈ J are distinct and if ujl ∈ Ujl , l ∈ {1, . . . ,k},
satisfy

uj1 + · · · + ujk = 0V,

then ujl = 0V, l ∈ {1, . . . ,k}.
Proof Suppose that not all of the vectors u j1 , . . . ,u jk are zero. Without loss of generality,
then, suppose that u j1 , 0V. Then

u j1 , and u j1 + u j1 + u j2 + · · · + u jm + u jm+1

are both representations of u j1 as finite sums of vectors from the subspaces (U j) j∈J. By
the definition of internal direct sum it follows that u j1 = 2u j1 and u j2 = · · · = u jk = 0V.
Thus u j1 = 0V, which is a contradiction. ■

The following alternative characterisation of the internal direct sum is some-
times useful.

4.5.37 Proposition (Characterisation of internal direct sum for vector spaces) Let F
be a field, let V be an F-vector space, and let (Uj)j∈J be a collection of subspaces of V. Then
V =

⊕
j∈J Uj if and only if

(i) V =
∑

j∈J Uj and,

(ii) for any j0 ∈ J, we have Uj0 ∩
(∑

j∈J\{j0}Uj

)
= {0V}.

Proof Suppose that V =
⊕

j∈J U j. By definition we have V =
∑

j∈J U j. Let j0 ∈ J

and suppose that v ∈ U j0 ∩
(∑

j∈J\{ j0}U j

)
. Define V j0 =

∑
j∈J\{ j0}U j and note that V j0 =
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⊕
j∈J\{ j0}

U j. If v , 0V then there exists unique indices j1, . . . , jk ∈ J \ { j0} and unique
nonzero vectors u jl ∈ U jl , l ∈ {1, . . . , k}, such that v = u j1 + · · · + u jl . However, since
we also have v = v, this contradicts the fact that there exists a unique collection
j′1, . . . , j′k′ ∈ J of indices and unique nonzero vectors u j′l

∈ U j′l
, l′ ∈ {1, . . . , k′}, such that

v = u j′1
+ · · · + u j′k

. Thus we must have v = 0V.
Now suppose that (i) and (ii) hold. Let v ∈ V \ {0V}. It is then clear from (i) that

there exists indices j1, . . . , jk ∈ J and nonzero vectors u jl ∈ U jl , l ∈ {1, . . . , k}, such that
v = u j1 + · · ·+u jk . Suppose that j′1, . . . , j′k′ and u′j′1

, . . . ,u′j′k′
is another collection of indices

and nonzero vectors such that v = u′j′1
+ · · · + u′j′k′

. Then

0V = u j1 + · · · + u jk − (u′j′1
+ · · · + u′j′k′

).

By Proposition 4.5.36 it follows that if l ∈ {1, . . . , k} and l′ ∈ {1, . . . , k′} satisfy jl = j′l′ ,
then u jl = u′j′l′

. If for l ∈ {1, . . . , k} there exists no l′ ∈ {1, . . . , k′} such that jl = j′l′ , then

we must have u jl = 0V. Also, if for l′ ∈ {1, . . . , k′} there exists no l ∈ {1, . . . , k} such that
j′l′ = jl, then we must have u′j′l′

= 0V. From this we conclude that V =
⊕

j∈J U j. ■

The notion of internal direct sum has the following important relationship with
the notion of a basis.

4.5.38 Theorem (Bases and internal direct sums for vector spaces) Let F be a field, let
V be an F-vector space, and letB be a basis for V, and define a family (Uu)u∈B of subspaces
by Uu = spanF(u). Then V =

⊕
u∈B Uu.

Proof Let v ∈ V. Since V = spanF(B ), there exists v1, . . . , vk ∈B and unique c1, . . . , ck ∈

F∗ such that v = c1v1+· · ·+ckvk. Therefore, u j = c jv j ∈ U j for j ∈ {1, . . . , k}. Thus u1, . . . ,uk
are the unique nonzero elements of the subspaces (Uu)u∈B such that v = u1 + · · ·+uk.■

Up to this point we have considered only operations on subspaces of a given
vector space. Next we consider ways of combining vector spaces that are not
necessarily subspaces of a certain vector space. The reader will at this point wish
to recall the notion of a general Cartesian product as given in Section 1.6.2. Much
of what will be needed in these volumes relies only on finite Cartesian products,
so readers not wishing to wrap their minds around the infinite case can happily
consider the following constructions only for finite collections of vector spaces.

4.5.39 Definition (Direct product and direct sum of vector spaces) Let F be a field
and let (V j) j∈J be a family of F-vector spaces.

(i) The direct product of the family (V j) j∈J is the F-vector space
∏

j∈J V j with
vector addition and scalar multiplication defined by

( f1 + f2)( j) = f1( j) + f2( j), (a f )( j) = a( f ( j))

for f , f1, f2 ∈
∏

j∈J V j and for a ∈ F.

(ii) The direct sum of the family (V j) j∈J is the subspace
⊕

j∈J V j of
∏

j∈J V j consisting
of those elements f : J → ∪ j∈JV j for which the set { j ∈ J | f ( j) , 0V j} is finite.
Each of the vector spaces V j, j ∈ J, is a summand in the direct sum. •
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4.5.40 Notation (Finite direct products and sums) In the case when the index set J is
finite, say J = {1, . . . , k}, we clearly have

∏k
j=1 V j =

⊕k
j=1 V j. We on occasion adopt

the convention of writing V1 ⊕ · · · ⊕ Vk for the resulting vector space in this case.
This version of the direct sum (or equivalently direct product) is the one that we
will most frequently encounter. •

Let us connect the notion of a direct sum with the notion of an internal direct
sum as encountered in Definition 4.5.35. This also helps to rectify the potential
inconsistency of multiple uses of the symbol

⊕
. The reader will want to be sure

they understand infinite Cartesian products in reading this result.

4.5.41 Proposition (Internal direct sum and direct sum of vector spaces) Let F be a
field, let V be an F-vector space, and let (Uj)j∈J be a family of subspaces of V such that V is
the internal direct sum of these subspaces. Let iUj : Uj → V be the inclusion. Then the map
from the direct sum

⊕
j∈J Uj to V defined by

f 7→
∑
j∈J

iUjf(j)

(noting that the sum is finite) is an isomorphism.
Proof Let us denote the map in the statement of the proposition by L. For f , f1, f2 ∈⊕

j∈J U j and for a ∈ F we have

L( f1 + f2) =
∑
j∈J

( f1 + f2)( j) =
∑
j∈J

( f1( j) + f2( j)) =
∑
j∈J

f1( j) +
∑
j∈J

f2( j) = L( f1) + L( f2)

and
L(a f ) =

∑
j∈J

(a f )( j) =
∑
j∈J

a( f ( j)) = a
∑
j∈J

f ( j) = aL( f ),

using the fact that all sums are finite. This proves linearity of aL.
Next suppose that L( f ) = 0V. By Proposition 4.5.36 it follows that f ( j) = 0V for

each j ∈ J. This gives injectivity of L by Exercise 4.5.23. If v ∈ V, we can write
v = u j1 + · · ·+u jk for j1, . . . , jk ∈ J and for u jl ∈ U jl , l ∈ {1, . . . , k}. If we define f ∈

⊕
j∈J U j

by f ( jl) = u jl , l ∈ {1, . . . , k} and f ( j) = 0V for j < { j1, . . . , jk}, then L( f ) = v, showing that
L is surjective. ■

4.5.42 Notation (“Internal direct sum” versus “direct sum”) In the setup of the propo-
sition, the direct sum

⊕
j∈J U j is sometimes called the external direct sum of the

subspaces (U j) j∈J. The proposition says that the external direct sum is isomorphic
to the internal direct sum. We shall often simply say “direct sum” rather than
explicitly indicating the nature of the sum. •

Let us give an important example of a direct sum.
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4.5.43 Example (The direct sum of copies of F) Let J be an arbitrary index set and let⊕
j∈J F be the direct sum of “J copies” of the field F. In the case when J = {1, . . . ,n}

we have
⊕

j∈J F = Fn and in the case when J = Z>0 we have
⊕

j∈J F = F∞0 . Thus this
example generalises two examples we have already encountered. For j ∈ J define
e j : J→ F by

e j( j′) =

1F, j′ = j,
0F, j′ , j.

(Recall the definition of the Cartesian product to remind yourself that e j ∈
⊕

j∈J F.)
We claim that {e j} j∈J is a basis for

⊕
j∈J F. First let us show that the set is linearly

independent. Let j1, . . . , jk ∈ J be distinct and suppose that, for every j′ ∈ J,

c1e j1( j′) + · · · + cke jk( j′) = 0F

for some c1, . . . , ck ∈ F. Then, taking j′ = jl for l ∈ {1, . . . , k} we obtain cl = 0F. This
gives linear independence. It is clear by definition of the direct sum that

spanF({e j} j∈J) =
⊕

j∈J

F.

We call {e j} j∈J the standard basis for
⊕

j∈J F. •

4.5.44 Notation (Alternative notation for direct sums and direct products of copies
of F) There will be times when it is convenient to use notation that is less trans-
parent, but more compact, than the notation

∏
j∈J F and

⊕
j∈J F. The notation we

adopt, motivated by Examples 4.5.2–3 and 4 is∏
j∈J

F = FJ,
⊕

j∈J

F = FJ
0.

For the direct product, this notation is in fact perfect, since, as sets,
∏

j∈J F and FJ

are identical. •

The importance of the direct sum is now determined by the following theorem.

4.5.45 Theorem (Vector spaces are isomorphic to direct sums of one-dimensional
subspaces) Let F be a field, let V be an F-vector space, and let B ⊆ V be a basis.
Let {eu}u∈B be the standard basis for

⊕
u∈B F and define a map ιB : {eu}u∈B → B by

ιB (eu) = u. Then there exists a unique F-isomorphism ιV :
⊕

u∈B F → V such that the
following diagram commutes:

{eu}u∈B

��

ιB //B

��⊕
u∈B F ιV

// V

where the vertical arrows represent the inclusion maps.
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Proof First we define the map ιV. Denote a typical element of
⊕

u∈B F by

c1eu1 + · · · + ckeuk

for c1, . . . , ck ∈ F and distinct u1, . . . ,uk ∈B . We define

ιV(c1eu1 + · · · + ckeuk) = c1u1 + · · · + ckuk.

It is then a simple matter to check that ιV is a linear map. We also claim that it is an
isomorphism. To see that it is injective suppose that

ιV(c1eu1 + · · · + ckeuk) = 0V.

Then, by Proposition 4.5.36 and by the definition of ιV, we have c1 = · · · = ck = 0F.
Thus the only vector mapping to zero is the zero vector, and this gives injectivity by
Exercise 4.5.23. The proof of surjectivity is similarly straightforward. If v ∈ V then we
can write v = c1u1+ · · ·+ckuk for some c1, . . . , ck ∈ F and u1, . . . ,uk ∈B . Then the vector
c1eu1 + · · · + ckeuk ∈

⊕
u∈B F maps to v under ιV. The commutativity of the diagram in

the theorem is checked directly. ■

4.5.46 Remark (Direct sums versus direct products) Note that the theorem immedi-
ately tells us that, when considering vector spaces, one can without loss of gener-
ality suppose that the vector space is a direct sum of copies of the field F. Thus
direct sums are, actually, the most general form of vector space. Thinking along
these lines, it becomes natural to wonder what is the value of considering direct
products. First of all, Theorem 4.5.45 tells us that the direct product can be written
as a direct sum, although not using the standard basis, cf. Example 4.5.28–4. The
importance of the direct product will not become apparent until Section 5.7 when
we discuss algebraic duals. •

Theorem 4.5.45 has the following corollary which tells us the relationship be-
tween the dimension of a vector space and its cardinality.

4.5.47 Corollary (The cardinality of a vector space) If F is a field and if V is an F-vector
space then

(i) card(V) = card(F)dimF(V) if both dimF(V) and card(F) are finite and
(ii) card(V) = max{card(F),dimF(V)} if either dimF(V) or card(F) is infinite.

Proof By Theorem 4.5.45, and since the dimension and cardinality of isomorphic
vector spaces obviously agree (the former by Proposition 4.5.30), we can without loss
of generality take the case when V =

⊕
j∈J F. We let {e j} j∈J be the standard basis. If J is

finite then card(V) = card(F)card(J) by definition of cardinal multiplication. If card(F) is
finite then the result follows immediately. If card(F) is infinite then

card(F)card(J) = card(F) = max{card(F), card(J)}

by Theorem 1.7.17. This gives the result when dimF(V) is finite.
For the case when card(J) is infinite, we use the following lemma.
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1 Lemma If F is a field and if V is an infinite-dimensional F-vector space, then card(V) =
card(F) · dimF(V).

Proof As in the proof of the theorem, we suppose that V =
⊕

j∈J F. We use the fact
that every vector in V is a finite linear combination of standard basis vectors. Thus

V = {0V} ∪
(
∪k∈Z>0{c1e j1 + · · · + cke jk | c1, . . . , ck ∈ F∗, j1, . . . , jk ∈ J distinct}

)
. (4.21)

Note that

card({c1e j1 + · · · + cke jk | c1, . . . , ck ∈ F∗, j1, . . . , jk ∈ J distinct})

= ((card(F) − 1) card(J))k.

Thus, noting that the union in (4.21) is disjoint,

card(V) =
∞∑

k=0

((card(F) − 1) card(J))k.

By Theorem 1.7.17 we have

card(V) = card(J)
∞∑

k=0

(card(F) − 1).

If card(F) is finite then card(F) ≥ 2 (since F contains a unit and a zero), and so, in this
case,

∑
∞

k=0(card(F)−1) = card(Z>0). If card(F) is infinite then
∑
∞

k=0(card(F)−1) = card(F)
by Theorem 1.7.17. In either case we have card(V) = card(F) · card(J). ▼

We now have two cases.
1. J is infinite and F is finite: In this case we have

card(J) · card(F) ≤ card(J) · card(J) = card(J)

by Theorem 1.7.17, and we clearly have card(J) · card(F) ≥ card(J). Thus card(J) ·
card(F) = card(J).

2. J and F are both infinite: In this case, by Theorem 1.7.17, we have

card(J) · card(F) = max{card(J), card(F)},

and the result follows. ■

We also have the following corollary to Theorem 4.5.45, along with Proposi-
tion 4.5.30, which gives an essential classification of vector spaces.

4.5.48 Corollary (Characterisation of isomorphic vector spaces) If F is a field, F-vector
spaces V1 and V2 are F-isomorphic if and only if dimF(V1) = dimF(V2).

Let us make Theorem 4.5.45 concrete in a simple case, just to bring things down
to earth for a moment. The reader should try to draw the parallels between the
relatively simple example and the more abstract proof of Theorem 4.5.45.
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4.5.49 Example (Direct sum representations of finite-dimensional vector spaces)
Let V be an n-dimensional vector space. By Theorem 4.5.45 we know that V is

isomorphic to Fn. Moreover, the theorem explicitly indicates how an isomorphism
is assigned by a basis. Thus let {e1, . . . , en} be a basis for V and let {e1, . . . , en} be the
standard basis for Fn. Then we define the map

ιB : {e1, . . . , en} → {e1, . . . , en}

by ιB (e j) = e j, j ∈ {1, . . . ,n}. The associated isomorphism ιV : Fn
→ V is then given

by
ιV(v1, . . . , vn) = v1e1 + · · · + vnen.

The idea is simply that linear combinations of the standard basis are mapped to
linear combinations of the basis for V with the coefficients preserved. •

Let us conclude our discussions in this section by understanding the relation-
ship between direct sums and dimension. Note that, given Proposition 4.5.41,
the result applies to both internal direct sums and direct sums, although it is only
stated for internal direct sums.

4.5.50 Proposition (Dimension and direct sum) Let F be a field, let V be an F-vector space,
let (Uj)j∈J be a family of F-vector spaces such that V =

⊕
j∈J Uj, and let (Bj)j∈J be such that

Bj is a basis for Uj. Then ∪j∈JBj is a basis for V. In particular,

dimF(V) = dimF(U1) + · · · + dimF(Uk).

Proof Let v ∈ V. Then there exists unique j1, . . . , jk ∈ J and nonzero u jl ∈ U jl , j ∈
{1, . . . , k}, such that v = u j1 + · · · + u jk . For each l ∈ {1, . . . , k} there exists unique
cl

1, . . . , c
l
k ∈ F∗ and unique ul

1, . . . ,u
l
kl
∈B jl such that

u jl = cl
1ul

1 + · · · + cl
kl

ul
kl
.

Then we have

v =
k∑

l=1

kl∑
r=1

cl
ru

l
r

as a representation of v as a finite linear combination of elements of ∪ j∈JB j with
nonzero coefficients. Moreover, this is the unique such representation since, at each
step in the construction, the representations were unique. ■

4.5.6 Complements and quotients

We next consider another means of construction vector spaces from subspaces.
We first address the question of when, given a subspace, there exists another
subspace which gives a direct sum representation of V.
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4.5.51 Definition (Complement of a subspace) If F is a field, if V is an F-vector space,
and if U is a subspace of V, a complement of U in V is a subspace W of V such that
V = U ⊕W. •

Complements of subspaces always exist.

4.5.52 Theorem (Subspaces possess complements) If F is a field, if V is an F-vector
space, and if U is a subspace of V, then there exists a complement of U.

Proof Let B ′ be a basis for U. By Theorem 4.5.26 there exists a basis B for V such
that B ′ ⊆ B . Let B ′′ = B \B ′ and define W = spanF(B ′′). We claim that W is
a complement of U in V. First let v ∈ V. Then, since B is a basis for V, there exists
c′1, . . . , c

′

k′ , c
′′

1 , . . . , c
′′

k′′ ∈ F, u′1, . . . ,u
′

k′ ∈B
′, and u′′1 , . . . ,u

′′

k′′ ∈B
′′ such that

v = c′1u′1 + · · · + c′k′u
′

k′︸               ︷︷               ︸
∈U

+ c′′1 u′′1 + · · · + c′′k′′u
′′

k′′︸                  ︷︷                  ︸
∈W

.

Thus V = U+W. Next let v ∈ U∩W. If v , 0algV then there exists unique u′1, . . . ,u
′

k′ ∈B
′

and u′′1 , . . . ,u
′′

k′′ ∈B
′′ and unique c′1, . . . , c

′

k′ , c
′′

1 , . . . , c
′′

k′′ ∈ F such that

v = c′1u′1 + · · · + c′k′u
′

k′ = c′′1 u′′1 + · · · + c′′k′′u
′′

k′′ .

This, however, contradicts the uniqueness of the representation of v as a finite linear
combination of elements of B with nonzero coefficients. Thus v = 0V. Therefore,
V = U ⊕W by Proposition 4.5.37. ■

For the same reason that a vector space possesses multiple bases, it is also
the case that a strict subspace i.e., one not equal to the entire vector space, will
generally possess multiple complements. Thus, while complements exist, there is
not normally a natural such choice, except in the presence of additional structure
(the most common such structure being an inner product, something not discussed
until Chapter III-4). However, there is a unique way in which one can associate a
new vector space to a subspace in such a way that this new vector space has some
properties of a complement.

4.5.53 Definition (Quotient by a subspace) Let F be a field, let V be an F-vector space,
and let U be a subspace of V. The quotient of V by U is the set of equivalence classes
in V under the equivalence relation

v1 ∼ v2 ⇐⇒ v1 − v2 ∈ U.

We denote by V/U the quotient of V by U, and we denote by πV/U : V → V/U the
map, called the canonical projection, assigning to v ∈ V its equivalence class. •

Thinking of V as an Abelian group with product defined by vector addition, the
quotient V/U is simply the set of cosets of the subgroup U; see Definition 4.1.16.
We shall adapt the notation for groups to denote a typical element in V/U by

v + U = {v + u | u ∈ U}.
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Since V is Abelian, by Proposition 4.1.20 it follows that V/U possesses a natural
Abelian group structure. It also possesses a natural vector space structure, as the
following result indicates.

4.5.54 Proposition (The quotient by a subspace is a vector space) Let F be a field, let
V be an F-vector space, and let U be a subspace of V. The operations of vector addition and
scalar multiplication in V/U defined by

(v1 + U) + (v2 + U) = (v1 + v2) + U, a(v + U) = (av) + U, v,v1,v2 ∈ V, a ∈ F,

respectively, satisfy the axioms for an F-vector space.
Proof We define the zero vector in V/U by 0V/U = 0V + U and we define the negative
of a vector v + U by (−v) + U. It is then a straightforward matter to check the axioms
of Definition 4.5.1, a matter which we leave to the interested reader. ■

The following “universal” property of quotients is useful.

4.5.55 Proposition (A “universal” property of quotient spaces) Let F be a field, let V be
an F-vector space, and let U be a subspace of V. If W is another F-vector space and if
L ∈ HomF(V; W) has the property that ker(L) ⊆ U, then there exists L ∈ HomF(V/U; W)
such that the diagram

V L //

πV/U

��

W

V/U
L

==

commutes. Moreover, if L′ ∈ HomF(V/U; W) is such that the preceding diagram com-
mutes, then L′ = L.

Proof We define L(v+U) = L(v). This map is well-defined since, if v′ +U = v+U then
v′ = v + u for u ∈ U, whence

L(v′ + U) = L(v′) = L(v + u) = L(v) = L(v + U).

One verifies directly that

L((v1 + U) + (v2 + U)) = L(v1 + U) + L(v2 + U), L(a(v + U)) = aL(v + U),

giving linearity of L. For the final assertion of the proposition, the commuting of the
diagram exactly says that L

′

(v + U) = L(v), as desired. ■

Next we consider the relationship between complements and quotient spaces.

4.5.56 Theorem (Relationship between complements and quotients) Let F be a field,
let V be an F-vector space, and let U be a subspace of V with a complement W. Then the
map ιU,W : W→ V/U defined by

ιU,W(w) = w + U

is an isomorphism. In particular, dimF(W) = dimF(V/U) for any complement W of U in
V.
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Proof The map ιU,W is readily checked to be linear, and we leave this verification to
the reader. Suppose that w + U = 0V + U for w ∈ W. This implies that w ∈ U, which
gives w = 0V by Proposition 4.5.37; thus ιU,W is injective by Exercise 4.5.23. Now let
v + U ∈ V/U. Since V = U ⊕W we can write v = u + w for u ∈ U and w ∈ W. Since
v − w ∈ U we have v + U = w + U. Thus ιU,W is also surjective.

The final assertion follows from Propositions 4.5.30 and 4.5.50. ■

The preceding result gives the dimension of the quotient, and the next result
reinforces this by giving an explicit basis for the quotient.

4.5.57 Proposition (Basis for quotient) Let F be a field, let V be an F-vector space, and let
U be a subspace of V. If B is a basis for V with the property that there exists a subset
B ′
⊆B with the property thatB ′ is a basis for U, then

{v + U | v ∈B \B ′
}

is a basis for V/U.
Proof LetB ′′ be such thatB = B ′ ∪B ′′ andB ′ ∪B ′′ = ∅. If v ∈ V then we can
write

v = c1u1 + · · · + ckuk + d1v1 + · · · + dlvl

for c1, . . . , ck, d1, . . . , dl ∈ F, for u1, . . . ,uk ∈B
′, and for v1, . . . , vl ∈B

′′. Then

v + U = (c1u1 + · · · + ckuk + d1v1 + · · · + dlvl) + U
= (d1v1 + · · · + dlvl) + U = (d1v1 + U) + · · · + (dlvl + U),

showing that {v + U | v ∈B ′′} generates V/U. To show linear independence, suppose
that

(d1v1 + U) + · · · + (dlvl + U) = 0V + U

for v1, . . . , vl ∈B
′′ and d1, . . . , dl ∈ F. Then d1v1+· · ·+dlvl ∈ U, and so d1v1+· · ·+dlvl = 0V

by Proposition 4.5.37. Since B ′′ is linearly independent by Proposition 4.5.19(iii), it
follows that d1 = · · · = dl = 0F, and so {v + U | v ∈B ′′} is linearly independent. ■

The preceding theorem motivates the following definition.

4.5.58 Definition (Codimension of a subspace) Let F be a field, let V be an F-vector
space, and let U be a subspace of V. The codimension of U, denoted by codimF(U),
is dimF(V/U). •

Combining Proposition 4.5.50 and Theorem 4.5.56 immediately gives the fol-
lowing result.

4.5.59 Corollary (Dimension and codimension of a subspace) If F is a field, if V is an
F-vector space, and if U is a subspace of V, then dimF(V) = dimF(U) + codimF(U).

4.5.7 Complexification of R-vector spaces

It will often be useful to regard a vector space defined over R as being defined
over C. This is fairly straightforward to do.



4.5 Vector spaces 557

4.5.60 Definition (Complexification of a R-vector space) If V is a R-vector space, the
complexification of V is the C-vector space VC defined by

(i) VC = V × V,
and with the operations of vector addition and scalar multiplication defined by

(ii) (u1,u2) + (v1, v2) = (u1 + v1,u2 + v2), u1,u2, v1, v2 ∈ V, and
(iii) (a + ib)(u, v) = (au − bv, av + bu) for a, b ∈ R and u, v ∈ V. •

We recall from Example 4.5.2–5 that anyC-vector space is also aR-vector space
by simply restricting scalar multiplication to R. It will be convenient to regard V
as a subspace of the R-vector space VC. There are many ways one might do this.
For example, we can identify V with the either of the two subspaces

{(u, v) ∈ VC | v = 0V}, {(u, v) ∈ VC | u = 0V},

and there are many other possible choices. However, the subspace on the left is
the most natural one for reasons that will be clear shortly. We thus define the
monomorphism ιV : V → VC of R-vector spaces by ι(v) = (v, 0V), and we note that
image(ιV) is a subspace of VC that is isomorphic to V.

The following result records that VC has the desired properties.

4.5.61 Proposition (Properties of complexification) If V is a R-vector space then the
complexification VC has the following properties:

(i) VC is a C-vector space and dimC(VC) = dimR(V);
(ii) VC is a R-vector space and dimR(VC) = 2 dimR(V);
(iii) every element of VC can be uniquely expressed as ιV(u) + i ιV(v) for some u,v ∈ V.

Proof (i) The verification of the axioms for VC to be aC-vector space is straightforward
and relatively unilluminating, so we leave the reader to fill in the details. Let us verify
that dimC(V) = dimR(V). LetB be a basis for V and define

BC = {(u, 0V) | u ∈B }.

We claim thatBC is a basis for VC as a C-vector space. To show linear independence
ofBC, suppose that

(a1 + ib1)(u1, 0V) + · · · + (ak + ibk)(uk, 0V) = (0V, 0V)

for a1, . . . , ak, b1, . . . , bk ∈ R. Using the definition of scalar multiplication this implies
that

(a1u1, b1u1) + · · · + (akuk, bkuk) = (0V, 0V).

Linear independence of B then implies that a j = b j = 0 for j ∈ {1, . . . , k}, so giving
linear independence ofBC. Now let (u, v) ∈ VC. There then exists u1, . . . ,uk ∈ B and
a1, . . . , ak, b1, . . . , bk ∈ R such that

u = a1u1 + · · · + akuk, v = b1u1 + · · · + bkuk.
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We then have

(u, v) = (a1u1 + · · · + akuk, b1u1 + · · · + bkuk) = (a1u1, b1u1) + · · · + (akuk, bkuk).

Using the rules for scalar multiplication in VC this gives

(u, v) = (a1 + ib1)(u1, 0V) + · · · + (ak + ibk)(uk, 0V).

ThusBC spans VC, and so is a basis for VC.
(ii) That VC is a R-vector space follows from Example 4.5.2–5. Note that scalar

multiplication in theR-vector space VC, i.e., restriction of C scalar multiplication toR,
is defined by a(u, v) = (au, av). Thus VC as a R-vector space is none other than V ⊕ V.
That dimR(VC) = 2 dimR(V) then follows from Proposition 4.5.50.

(iii) Using the definition of C scalar multiplication we have

iιV(v) = i(v, 0V) = (0V, v).

Thus we clearly have
(u, v) = ιV(u) + i ιV(v),

giving the existence of the stated representation. Now, if

ιV(u1) + i ιV(v1) = ιV(u2) + i ιV(v2),

then (u1, v1) = (u2, v2), and so u1 = u2 and v1 = v2, giving uniqueness of the represen-
tation. ■

The final assertion in the proposition says that we can think of (u, v) ∈ VC as
(u, 0V) + i(v, 0V). With this as motivation, we shall use the notation (u, v) = u + iv
when it is convenient. This then leads to the following definitions which adapt
those for complex numbers to the complexification of a R-vector space.

4.5.62 Definition (Real part, imaginary part, complex conjugation) Let V be aR-vector
space with VC its complexification.

(i) The real part of (u, v) ∈ VC is Re(u, v) = u.
(ii) The imaginary part of (u, v) ∈ VC is Im(u, v) = v.
(iii) The representation u + iv of (u, v) ∈ VC is the canonical representation.
(iv) Complex conjugation is the map σV : VC → VC defined by σV(u, v) = (u,−v). •

Using the canonical representation of elements in the complexification,C-scalar
multiplication in VC can be thought of as applying the usual rules for C multipli-
cation to the expression (a + ib)(u + iv):

(a + ib)(u + iv) = (au − bv) + i(bu + av).

This is a helpful mnemonic for remembering the scalar multiplication rule for VC.
It is easy to show that σV ∈ EndR(VC), but that σV < EndC(VC) (see Exer-

cise 4.5.25). Moreover, complex conjugation has the following easily verified
properties.

The following example should be thought of, at least in the finite-dimensional
case, as the typical one.
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4.5.63 Example (Rn
C

= Cn) We take the R-vector space Rn and consider its complexifica-
tion Rn

C
. The main point to be made here is the following lemma.

1 Lemma The map (x1, . . . , xn)+ i(y1, . . . ,yn) 7→ (x1+ iy1, . . . , xn+ iyn) is aC-isomorphism
of Rn

C
with Cn.

Proof This follows by the definition of vector addition and C-scalar multiplication
in Rn

C
. ▼

Let us look at some of the constructions associated with complexification in
order to better understand them. First note that Rn

C
has the structure of both a R-

and C-vector space. One can check that a basis for Rn
C

as a R-vector space is given
by the set

{e1 + i0, . . . , en + i0, 0 + ie1, . . . , 0 + ien},

and a basis for Rn
C

as a C-vector space is given by the set

{e1 + i0, . . . , en + i0},

where {e1, . . . , en} is the standard basis for Rn. It is also clear that

Re(x + iy) = x, Im(x + iy) = y, σRn(x + iy) = x − iy.

The idea in this example is, essentially, that one can regard the complexification
of Rn as the vector space obtained by “replacing” the real entries in a vector with
complex entries. •

4.5.8 Extending the scalars for a vector space

In Section 4.5.7 we saw how one can naturally regard a R-vector space as a
C-vector space. In this section we generalise this idea to general field extensions,
as it will be useful in studying endomorphisms of finite-dimensional vector spaces
in Section 5.8. This development relies on the tensor product which itself is a
part of multilinear algebra. Thus a reader will need to make a diversion ahead to
Section 5.6 in order to understand the material in this section.

While we have not yet discussed field extensions (we do so formally and in
detail in Section 4.6), the notion is a simple one. A field K that contains a field F as
a subfield is an extension of F. As we will show in Proposition 4.6.2, and is easily
seen in any case, K is an F-vector space. We shall make essential use of this fact in
this section. Indeed, the key idea in complexification comes from understanding
the R-vector space structure of C. Here we generalise this idea.

We may now define the extension of an F-vector space to an extension K of F.
This definition will seem odd at first glance, relying as it does on the tensor product.
It is only after we explore it a little that it will (hopefully) seem “correct.”
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4.5.64 Definition (Extension of scalars for a vector space) Let F be a field, let K be an
extension of F, and let V be an F-vector space. The extension of V to K is

VK = K ⊗ V. •

At this point, we certainly understand all the symbols in the definition. How-
ever, it is not so clear what VK really is. To begin to understand it, let us first show
that it has the structure of a vector space over K; it is this structure that is of most
interest to us.

4.5.65 Proposition (VK is an K-vector space) Let K be an extension of a field F and let V be an
F-vector space. Using vector addition and scalar multiplication defined by vector addition
in K ⊗ V (as an F-vector space) and b(a ⊗ v) = (ab) ⊗ v, a, b ∈ K, v ∈ V, respectively,
K ⊗ V is a vector space over K.

Proof First let us show that the definition of scalar multiplication in K is well-defined.
We note that for b ∈ K the mapϕb : K×V→ K⊗V defined byϕb(a, v) = (ba)⊗v is bilinear.
Thus there exists a unique linear map Lϕb : K⊗V→ K⊗V satisfying Lϕb(a⊗v) = (ba)⊗v.
Now, if

a1 ⊗ v1 + · · · + ak ⊗ vk

is an arbitrary element of K ⊗ V, it follows that

Lϕb(a1 ⊗ v1 + · · · + ak ⊗ vk) = (ba1) ⊗ v1 + · · · + (bak) ⊗ vk

since Lϕb is linear. Thus scalar multiplication is well-defined on all of K ⊗ V. To show
that vector addition and scalar multiplication satisfy the usual axioms for a vector
space is now straightforward, and we leave the details of this to the reader. ■

Let us show that this complicated notion of scalar extension agrees with com-
plexification.

4.5.66 Example (VC = C⊗V) We let V be aR-vector space with complexification VC. Let
us show that “VC = VC;” i.e., that complexification as in Section 4.5.7 agrees with
extension of scalars as in Definition 4.5.64. To see this we define an isomorphism
ιC from VC (the complexification as in Section 4.5.7) to C ⊗ V by

ιC(u, v) = 1 ⊗ u + i ⊗ v.

Let us show that this is an isomorphism of C-vector spaces. First we note that

ιC((u1, v1) + (u2, v2)) = ιC(u1 + u2, v1 + v2) = 1 ⊗ (u1 + u2) + i(v1 + v2)
= (1 ⊗ u1 + iv1) + (1 ⊗ u2 + i ⊗ v2) = ιC(u1, v1) + ιC(u2, v2)

and

ιC((a + ib)(u, v)) = ιC(au − bv, av + bu) = 1 ⊗ (au − bv) + i(av + bu)
= 1 ⊗ (au) + 1 ⊗ (−bv) + i ⊗ (av) + i ⊗ (bu)
= a ⊗ u + (−b) ⊗ v + (ia) ⊗ v + (ib) ⊗ u
= a(1 ⊗ u + i ⊗ v) + ib(1 ⊗ u + i ⊗ v)
= (a + ib)(1 ⊗ u + i ⊗ v) = (a + ib)ιC(u, v),
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so showing that ιC is a C-linear. To show that ιC is injective, suppose that ιC(u, v) =
0C⊗V. Thus

1 ⊗ u + i ⊗ v = 1 ⊗ 0V + i ⊗ 0V,

and so u = v = 0V. Thus ιC is injective by Exercise 4.5.23. To show that ιC is
surjective, it suffices (why?) to show that (a + ib) ⊗ v ∈ image(ιC) for each a, b ∈ R
and v ∈ V. This follows since

ιC(av, bv) = 1 ⊗ (av) + i ⊗ (bv) = a ⊗ v + (ib) ⊗ v = (a + ib) ⊗ v.

Note that 1 ⊗ u + i ⊗ v is the corresponding decomposition of (u, v) ∈ VC into its
real and imaginary parts. If one keeps this in mind, and uses the usual rules
for manipulating tensor products, it is easy to see why C ⊗ V is, indeed, the
complexification of V. •

4.5.9 Notes

Exercises

4.5.1 Verify the vector space axioms for Example 4.5.2–1.
4.5.2 Verify the vector space axioms for Example 4.5.2–2.
4.5.3 Verify the vector space axioms for Example 4.5.2–3.
4.5.4 Verify the vector space axioms for Example 4.5.2–4.
4.5.5 Verify the vector space axioms for Example 4.5.2–5.
4.5.6 Verify the vector space axioms for Example 4.5.2–6.
4.5.7 Verify the vector space axioms for Example 4.5.2–7.
4.5.8 Verify the vector space axioms for Example 4.5.2–8.
4.5.9 Verify the vector space axioms for Example 4.5.2–9.
4.5.10 Let I ⊆ R, let r ∈ Z>0, and denote by Cr(I;R) the set of R-valued functions

on I that are r-times continuously differentiable. Define vector addition and
scalar multiplication in such a way that Cr(I;R) is a R-vector space.

4.5.11 Prove Proposition 4.5.6.
4.5.12 Verify the claim of Example 4.5.7–1.
4.5.13 Verify the claim of Example 4.5.7–2.
4.5.14 Verify the claim of Example 4.5.7–3.
4.5.15 Verify the claim of Example 4.5.7–4.
4.5.16 Prove Proposition 4.5.9.
4.5.17 Do the following.

(a) Give an example of a vector space V and two subspaces U1 and U2 of V
such that U1 ∪ U2 is not a subspace.
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(b) If V is an F-vector space and if U1, . . . ,Uk are subspaces of V, show that
∪

k
j=1U j is a subspace if and only if there exists j0 ∈ {1, . . . , k} such that

U j ⊆ U j0 for j ∈ {1, . . . , k}.
(c) If V is an F-vector space and if (U j) j∈J is an arbitrary family of subspaces,

give conditions, analogous to those of part (b), that ensure that ∪ j∈JU j is
a subspace.

4.5.18 Prove Theorem 4.5.26 in the case when dimF(V) < ∞.
4.5.19 Let F be a field, let Vand W be F-vector spaces, let B ⊆ V be a basis, let

ϕ : B → W be a map, and let Lϕ ∈ HomF(V; W) be the unique linear map
determined as in Theorem 4.5.24.
(a) Show that Lϕ is injective if and only if the family (ϕ(v))v∈B is linearly

independent.
(b) Show that Lϕ is surjective if and only if spanF(ϕ(B )) =W.

4.5.20 Let F be a field and let V be an F-vector space. If U is a subspace of V and if
v1, v2 ∈ V, show that the affine subspaces

{v1 + u | u ∈ U}, {v2 + u | u ∈ U}

agree if and only if v1 − v2 ∈ U.
4.5.21 Construct explicit isomorphisms between the following pairs of F-vector

spaces:
(a) Fk+1 and Fk[ξ];
(b) F∞0 and F[ξ].

4.5.22 Construct an explicit R-isomorphism between R∞ and the set R[[ξ]] of
R-formal power series.

4.5.23 Let F be a field, let U and V be F-vector spaces, and let L ∈ HomF(U; V).
Show that L is injective if and only if ker(L) = {0U}.

4.5.24 Let F be a field and let V be an F-vector space with U a strict subspace of V.
(a) Show that, if dimF(V) < ∞, then dimF(U) < dimF(V).
(b) Give examples of F, V, and U as above such that dimF(U) = dimF(V).

4.5.25 Let V be a R-vector space with VC its complexification. Show that the
complex conjugation σV is a R-linear map of VC, but not a C-linear map.
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Section 4.6

Field extensions

In this section we study in a little detail the notion of a field extension. This is a
big industry for algebraists going under the name of “Galois Theory.” We shall not
have too much occasion to use the elements of this theory, so we give a very bare
bones presentation, referring to the references in Section 4.6.10 for more details.

The principle point behind studying field extensions is that in a given field
there are polynomials that do not have roots in the field; equivalently, there are
irreducible polynomials of degree greater than one. For example, the polynomial
ξ2
− 2 is irreducible in Q[ξ]. In order to better understand polynomials in a given

field, it may then be useful to consider a larger field in which a given polynomial,
or maybe all polynomials, have roots.

Do I need to read this section? The results in this section lend some context to
our construction in Section 4.7 of the complex numbers. Section 4.6.5 is partic-
ularly useful in this respect, although it is also interesting to know just what an
algebraic closure is in order to understand the phrase, “The complex numbers are
the algebraic closure of the real numbers.” Many of the results in this section will be
used only in Sections 5.8.12 and 5.8.14. In particular, this is the only place we will
have occasion to use notions of normal, separable, and Galois field extensions. •

4.6.1 Definitions and basic constructions

The study of extensions is a little different from what one very often does in
algebra, which is to study subobjects; an extension is a superobject. The reason for
this is that with field extensions, the emphasis is on constructing extensions that
contain roots of polynomials, since we know that it is possible that a polynomial
may not have roots in the field in which one is working.

First the definition.

4.6.1 Definition (Field extension) An extension of a field F is a field K of which F is a
subfield. •

The following algebraic property of extensions is where one begins to look for
much of their interesting structure.

4.6.2 Proposition (Algebraic properties of extensions) If K is an extension of a field F,
then K is an F-algebra with the operations of addition, scalar multiplication, and product
defined by addition in the field K, restriction of scalar multiplication in K to F in the first
argument, and product in K, respectively.

Proof This is an elementary verification of the axioms; see Exercise 4.6.2. ■
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Note that if K is an extension of a field F and if A ∈ F[ξ] is a polynomial with
coefficients in F, then we regard A as a polynomial with coefficients in K by virtue
of the fact that F ⊆ K (cf. Example 4.5.2–5).

Since an extension of a field is a vector space over the field, we have the following
definition.

4.6.3 Definition (Degree of extension, finite extension) If K is an extension of a field
F, the degree of K is [K : F] = dimF(K). An extension is finite if [K : F] is finite. •

Since one can have nested extensions, it is possible to talk about the degree of
these.

4.6.4 Proposition (The degree of nested extensions) Let F be a field, let K be an extension
of F, and let L be an extension of K. Then [L : F] = [L : K][K : F].

Proof Let {ai}i∈I be a basis for K over F and let {b j} j∈J be a basis for L over K. We claim
that {aib j}(i, j)∈I×J is a basis for L over F, noting that this will give the result. Let β ∈ L
and write

β =
∑
j∈J

β jb j

with only finitely many of the β j ∈ K, j ∈ J, being nonzero. For each j ∈ J write

β j =
∑
i∈I

αi jai

where only finitely many of the αi j ∈ F, i ∈ I, being nonzero. Then we have

β =
∑
i∈I

∑
j∈J

αi jaab j,

showing that the set {aib j}(i, j)∈I×J generates L over F. Now suppose that∑
i∈I

∑
j∈J

αi jaib j = 0L

for some αi j ∈ F, (i, j) ∈ I × J, only finitely many of which are nonzero. Then, since
{b j} j∈J is linearly independent, ∑

i∈I

αi jai = 0K, j ∈ J.

Since {ai}i∈I is a basis, αi j = 0F, (i, j) ∈ I× J, giving {aib j}(i, j)∈I×J as linearly independent.■

A common sort of extension comes from “extending” a field in the smallest
possible manner to include a certain set of new numbers. The following definition
makes this precise.
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4.6.5 Definition (Adjoining elements to a field) Let F be a field with K an extension
of F. For a subset S ⊆ K let us denote by F[S] (resp. F(S)) the smallest subring
(resp. subfield) of K containing F ∪ S. The field F(S) is the field obtained by
adjoining the elements from S. We will also say that F(S) is the extension of F
generated by S. •

If S = {a1, . . . , ak} then we shall denote F[S] = F[a1, . . . , ak] and F(S) = F(a1, . . . , ak).
It is possible to describe F[S] and F(S) fairly explicitly. In order to do so, we need
to recall some notation concerning evaluating polynomials with arbitrary sets of
indeterminates. We refer to the end of Section 4.4.7.

4.6.6 Theorem (Characterisation of F[S] and F(S)) Let F be a field with extension K and
let S ⊆ K. Then the following statements hold:

(i) F[S] consists of the elements of K of the form

EvK(A)(a1, . . . , ak), k ∈ Z≥0, A ∈ F[ξ1, . . . , ξk], a1, . . . , ak ∈ S;

(ii) F(S) consists of the elements of K of the form

EvK(A)(a1, . . . , ak)
EvK(B)(a1, . . . , ak)

, k ∈ Z≥0, A,B ∈ F[ξ1, . . . , ξk],

a1, . . . , ak ∈ S, EvK(B)(a1, . . . , ak) , 0K.

Proof (i) Let AS be the set of elements of K of the form

EvK(A)(a1, . . . , ak), k ∈ Z≥0, A ∈ F[ξ1, . . . , ξk], a1, . . . , ak ∈ S.

Then S ⊆ AS and F ⊆ AS. Moreover, one can directly check that AS is a subring of K,
essentially because it is the image of the polynomial ring with indeterminates S under
the evaluation homomorphism. Thus F[S] ⊆ AS since F[S] is the smallest subring of K
containing S and F. Now note that since S ⊆ F[S] and since F[S] is a subring,

a j1
1 · · · a

jk
k ∈ F[S], k ∈ Z>0, a1, . . . , ak ∈ S, j1, . . . , jk ∈ Z≥0. (4.22)

Since F ⊆ F[S] it then follows that all finite F-linear combinations of elements of the
form (4.22) are in F[S]. But this exactly means that AS ⊆ F[S].

(ii) Let BS be the set of elements of K of the form

EvK(A)(a1, . . . , ak)
EvK(B)(a1, . . . , ak)

, k ∈ Z≥0, A,B ∈ F[ξ1, . . . , ξk],

a1, . . . , ak ∈ S, EvK(B)(a1, . . . , ak) , 0K.

Note that S ⊆ BS and F ⊆ BS. We claim that BS is a subfield of K. Consider two
elements α, β ∈ BS given by

α =
EvK(A)(a1, . . . , ak)
EvK(B)(a1, . . . , ak)

, β =
EvK(C)(b1, . . . , bm)
EvK(D)(b1, . . . , bm)

.
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Then

α + β =
EvK(AD + BC)(a1, . . . , ak, b1, . . . , bm)

EvK(BD)(a1, . . . , ak, b1, . . . , bm)
,

αβ =
EvK(AC)(a1, . . . , ak, b1, . . . , bm)
EvK(BD)(a1, . . . , ak, b1, . . . , bm)

,

giving α + β, αβ ∈ BS. Thus BS is a subfield and so F(S) ⊆ BS. Since F[S] ⊆ F(S) and
since F(S) is a subfield, all elements of K of the form α−1β are in F(S) for α, β ∈ F[S]
with β , 0K. In particular, BS ⊆ F(S). ■

Said in plain English, elements of F[S] are polynomial functions of variables in
S and elements of F(S) are rational functions of variables in S.

Let us give some examples of what happens when one adjoins numbers to a
field. In these examples it is convenient for us to suppose that the reader is familiar
with complex numbers, although we have not yet formally introduced them.

4.6.7 Examples (Adjoining elements to a field)
1. We consider the extension R of Q. Recall from Example 2.1.15 that

√
2 is

irrational. Then Q(
√

2) is an extension of Q. By Theorem 4.6.6 we know that
elements of Q(

√
2) are of the form

EvR(A)(
√

2)

EvR(B)(
√

2)
, A,B ∈ Q[ξ].

Note that, for any polynomials A,B ∈ Q[ξ], we have

EvR(A)(
√

2) = α1

√

2 + α0, EvR(B)(
√

2) = β1

√

2 + β0, α0, α1, β0, β1 ∈ Q.

(why?). Therefore, we have

EvR(A)(
√

2)

EvR(B)(
√

2)
=
α1

√
2 + α0

β1

√
2 + β0

β1

√
2 − β0

β1

√
2 − β0

= γ1

√

2 + γ0

where γ0, γ1 ∈ Q are given by

γ1 =
α0β1 − α1β0

2β2
1 − β

2
0

, γ0 =
2α1β1 − α0β0

2β2
1 − β

2
0

.

The upshot is that

Q(
√

2) = {α1

√

2 + α0 | α0, α1 ∈ Q}. (4.23)

In this example we have worked this out in detail. However, we shall see
subsequently that there is a general picture that gives this specific conclusion.
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2. We consider the extensionR ofQ, and we adjoin 4√2 toR to get the fieldQ( 4√2).
By Theorem 4.6.6 we have Q( 4√2) as the elements of R of the form

EvR(A)( 4√2)

EvR(B)( 4√2)
, A,B ∈ Q[ξ].

We could proceed directly, as above, to show that

Q(
4√

2) = {α323/4 + α221/2 + α121/4 + α0 | α0, α1, α2, α3 ∈ Q}.

However, we shall see below (Example 4.6.27) that there is a general idea from
which this follows easily. •

4.6.2 Automorphisms of field extensions

This means that an extension K of F has two natural structures: (1) the structure
of a field and (2) the structure of an F-vector space. One is thus interested in
mappings of field extensions that preserve both of these structures. The following
definition encodes this.

4.6.8 Definition (F-homomorphism, F-automorphism) Let K and K′ be extensions of a
field F. An F-homomorphism is a homomorphism ϕ : K → K′ of fields that is also
a homomorphism of F-vector spaces. An F-automorphism of K is an invertible
F-homomorphism of K with itself. The set of F-automorphisms is the Galois group
of K over F, and is denoted by AutF(K). •

The following result gives a useful alternative characterisation of F-
homomorphisms.

4.6.9 Proposition (Characterisation of F-homomorphisms) Let F be a field and let K
and K′ be extensions of F. A homomorphism ϕ : K → K′ of fields is an F-homomorphism
if and only if ϕ|F = idF.

Proof This is Exercise 4.6.4. ■

One of the most easily understood examples of a field extension is the extension
of the real numbers to the complex numbers. While we will not formally discuss
the complex numbers until Section 4.7, let us give these as an example to illustrate
the Galois group, along with some more elementary examples.

4.6.10 Examples (F-automorphism)
1. Consider the extension Q(

√
2) of Q. As we saw in Example 4.6.7–1 we have

Q(
√

2) = {α1

√

2 + α0 | α0, α1 ∈ Q}.

If we think of Q(
√

2) as a two-dimensional Q-vector space with basis {1,
√

2},
then a Q-automorphism must have the form

ϕ : α1

√

2 + α0 7→ (a11α1 + a12α0)
√

2 + (a21α1 + a22α0)
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for a11, a12, a21, a22 ∈ Q. If ϕ is to restrict to the identity map on Q ⊆ Q(
√

2) then
we must have

a12α0

√

2 + a22α0 = α0

for every α0 ∈ Q. Thus a12 = 0 and a22 = 1. If ϕ is to be a homomorphism of the
field Q(

√
2) then

2 = ϕ(2) = ϕ(
√

2
√

2) = ϕ(
√

2)ϕ(
√

2) = (a11

√

2 + a21)2 = 2a2
11 + a2

21 + 2
√

2a11a21.

Thus we must have a11 = 0 or a21 = 0. If a11 = 0 then this gives a2
21 = 2 which

cannot be solved for a21 ∈ Q. Thus we must have a21 = 0 and so a2
11 = 1.

In summary, there are two Q-automorphisms of Q(
√

2):

α1

√

2 + α0 7→ α1

√

2 + α0, α1

√

2 + α0 7→ −α1

√

2 + α0.

In this example we have done this “by hand.” As we shall see, however, there
are often simpler ways to determine the group of automorphisms of a field
extension.

2. Now let us consider the extension Q( 4√2) of Q. As we asserted in Exam-
ple 4.6.7–2,

Q(
4√

2) = {α323/4 + α221/2 + α121/4 + α0 | α0, α1, α2, α3 ∈ Q}.

For this example, let us not work out explicitly what the automorphisms look
like. Instead we merely write them down; there are two of them:

α323/4 + α221/2 + α1
4√

2 + α0 7→ α323/4 + α221/2 + α1
4√

2 + α0,

α323/4 + α221/2 + α1
4√

2 + α0 7→ α323/4 + α221/2
− α1

4√

2 + α0.

We shall see how this arises in Section 4.6.5.
3. The extension C of the real numbers is two-dimensional, having {1, i} as a basis.

Let us use this basis to represent a R-automorphism ϕ of C by

ϕ(α1i + α0) = (a11α1 + a12α1)i + (a21α1 + a22α0).

The condition that ϕ|R = idR gives a11 = 1 and a21 = 0. If ϕ is a homomorphism
of the field Cwe must have

−1 = ϕ(−1) = ϕ(ii) = ϕ(i)ϕ(i) = (a11i + a21)2 = −a2
11 + a2

21 + 2a11a21i.

Thus a11a21 = 0. If a11 = 0 then we must have a2
21 = −1 which cannot be solved for

a21 ∈ R. Thus a21 = 0 which gives a2
11 = 1. Thus we have twoR-automorphisms

of C:
α1i + α0 7→ α1i + α0, α1i + α0 7→ −α1i + α0. •
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Thus we see that elements of the Galois group can be viewed as generalisations
of complex conjugation. This will be explored in more detail in Section 4.6.6.

As Proposition 4.6.9 shows, an F-automorphism of K fixes points in F. Thus
the subfield F of K is fixed by every F-automorphism. One can then ask whether
other subfields of F are fixed by F-automorphisms. More generally, one has the
following notion.

4.6.11 Definition (Fixed field) Let F be a field and let G be a subgroup of the group of
field isomorphisms of F with itself. The fixed field associated with G is

FG = {a ∈ F | ϕ(a) = a for every ϕ ∈ G}. •

One can then interpret Proposition 4.6.9 as saying that F ⊆ KAutF(K). It is easy to
show that the fixed field is indeed a field.

4.6.3 Algebraic field extensions

In the preceding section we saw that there was an important interaction between
polynomials and field extensions. Namely, we saw that there is always a field
extension that contains the roots of a prescribed polynomial. The converse may
not be true. That is, it is not always the case that a field extension is obtained by
adding the roots of polynomials.

The following definition captures this idea.

4.6.12 Definition (Algebraic extension, transcendental extension) Let F be a field
with K an extension of F.

(i) An element a ∈ K is algebraic over F if there exists a nonzero polynomial
A ∈ F[ξ] which has a as a root in K.

(ii) An element a ∈ K is transcendental over F if it is not algebraic over F.
(iii) The extension K is algebraic over F if every element of K is algebraic.
(iv) The extension K is transcendental if it is not algebraic. •

Let us give some examples of algebraic and transcendental elements of a field.

4.6.13 Examples (Algebraic and transcendental elements)
1. The element

√
2 ∈ R is algebraic over Q, it being a root in R of the polynomial

ξ2
− 2 ∈ Q[ξ]. In like manner 4√2 ∈ R is algebraic over Q since it is a root of the

polynomial ξ4
− 2.

2. One can show that e, π ∈ R are transcendental over Q. This is nontrivial. We
refer to Section 2.4.1 for more discussion of this.

3. The element i ∈ C (we have not yet talked about the complex numbers, but will
do so in Section 4.7) is algebraic over R, it being the root of the polynomial
ξ2
− 1 ∈ R[ξ]. There are no transcendental elements in C over R. This is a

consequence of the fact that C is algebraically closed (see Definition 4.6.22),
something we will prove in Theorem 4.7.6. •
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The case when the degree of an extension is finite is of particular interest.

4.6.14 Proposition (Finite-dimensional field extensions are algebraic) Let F be a field
and let K be an extension of F. If [K : F] is finite then K is algebraic.

Proof Suppose that K is an n-dimensional F-vector space. If a ∈ K this means that the
set {1K, a, . . . , an

} must be linearly dependent. Therefore, there exists c0, c1, . . . , cn ∈ F
such that

cnan + · · · + c1a + c0 = 0K.

Therefore, if we define A = cnξn + · · · + c1ξ + c0, a is a root of A in K. ■

Associated with an element a ∈ K that is algebraic over a field F is an important
polynomial. Let us denote by

Ia = {A ∈ F[ξ] | EvK(A)(a) = 0K}

the set of polynomials in F[ξ] which have a as a root in K. This set is not simply {0F[ξ]}

since a is algebraic. It is straightforward to verify that Ia is an ideal (Exercise 4.6.5).
Therefore, since F[ξ] is a principal ideal domain, we have Ia = (Ma) for some
nonzero, nonconstant polynomial Ma ∈ F[ξ]. Moreover, if we additionally require
that Ma be monic, this uniquely defines Ma (why?).

4.6.15 Definition (Minimal polynomial of an algebraic element) Let F be a field, let K
be an extension of F, and let a ∈ K be algebraic over F. The minimal polynomial of
a is the unique monic polynomial with the property that Ia = (Ma). •

We shall see another instance of the notion of the minimal polynomial in Sec-
tion 5.8.4.

The minimal polynomial has the following important property.

4.6.16 Proposition (The minimal polynomial is irreducible) Let F be a field, let K be an
extension of F, and let a ∈ K be algebraic. Then the minimal polynomial Ma is irreducible.

Proof Suppose that Ma is not irreducible so that Ma = AB for A,B ∈ F[ξ] monic and
of degree at least one. Then

EvK(AB)(a) = EvK(A)(a)EvK(B)(a) = 0K.

Thus either EvK(A)(a) = 0K or EvK(B)(a) = 0K; without loss of generality suppose the
former. Then Ma|A. But this is absurd since A is nonzero and deg(A) < deg(Ma), giving
a contradiction. ■

4.6.17 Proposition (Characterisation of F(a) for algebraic a) Let F be a field, let K be an
extension of F, and let a ∈ K be algebraic. Then the following statements hold:

(i) F[a] = F(a);
(ii) there exists an F-isomorphism from F(a) to F[ξ]/(Ma);
(iii) {1K, a, . . . , ak−1

} is a basis for the F-vector space F(a), where k = deg(Ma).
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Proof (i) Define a ring epimorphism ϕa : F[ξ] → F[a] (this is a ring epimorphism by
Theorem 4.6.6) by ϕa(A) = EvK(A)(a), and note that F[a] is isomorphic to F[ξ]/ker(ϕa)
(see Exercise 4.2.8). Since ker(ϕa) is an ideal by Proposition 4.2.26 and since F[ξ]
is a principal ideal domain, we must have ker(ϕa) = (M̃a) for some unique monic
polynomial M̃a ∈ F[ξ]. Indeed, it is clear by definition of the minimal polynomial that,
in fact, M̃a =Ma. We claim that F[a] is an integral domain. Indeed, suppose that

EvK(A)(a) · EvK(B)(a) = EvK(AB)(a) = 0K.

Then AB ∈ (Ma) and so Ma|AB. Since Ma is irreducible, either Ma|A or Ma|B. Thus either
EvK(A)(a) = 0K or EvK(B)(a) = 0K, giving F[a] as an integral domain. We know that
F[ξ]/ker(ϕa), by virtue of being isomorphic to F[a], is an integral domain. Therefore, by
Theorem 4.2.37, ker(ϕa) is a prime ideal and so a maximal ideal by Proposition 4.2.21.
This means that F[a] is a subfield of K by Theorem 4.3.9. Thus F[a] is a subfield of K
containing F and a. Therefore, F(a) ⊆ F[a] since F(a) is the smallest subfield containing
F and a. It is clear from Theorem 4.6.6 that F[a] ⊆ F(a), giving F[a] = F(a) as desired.

(ii) This was proved en route to proving part (i).
(iii) First let us show that {1K, a, . . . , ak−1

} is linearly independent. Suppose that

ck−1ak−1 + · · · + c1a + c0 = 0K.

This means that a is a root of the polynomial

P = ck−1ξ
k−1 + · · · + c1ξ + c0.

Thus P ∈ Ia and so Ma|P since Ia = (Ma). Since deg(P) < deg(Ma) we must have P = 0F[ξ].
To show that {1K, a, . . . , ak−1

} spans F(a) we use part (i). From this and Theo-
rem 4.6.6, if b ∈ F(a) then we have b = EvK(B)(a) for some B ∈ F[ξ]. We can use the
Euclidean Algorithm to write B = QMa + R for Q,R ∈ F[ξ] with deg(R) < deg(Ma).
Therefore, EvK(B)(a) = EvK(R)(a), meaning that

b = bk−1ak−1 + · · · + b1a + b0

for some b0, b1, . . . , bk−1 ∈ F, as desired. ■

The main point to take away from the previous theorem is that F(a) is a finite-
dimensional F-vector space when a is algebraic. Therefore, combining this with
Proposition 4.6.14 gives the following result.

4.6.18 Corollary (F(a) is algebraic) If F is a field, if K is an extension of F, and if a ∈ K is
algebraic over F, then F(a) is an algebraic extension of K.

Now suppose that we have a finite subset S = {a1, . . . , am} ⊆ K of a field extension
K of F. We denote F(S) = F(a1, . . . , am). It is straightforward to see that

F(a1, . . . , am) = F(a1, . . . , am−1)(am).

Therefore, much can be deduced about F(a1, . . . , am) by considering only the case
when m = 1. In particular, we have the following result.
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4.6.19 Proposition (Characterisation of F(a1, . . . , am)) Let F be a field, let K be an extension
of F, and let a1, . . . , am ∈ K be algebraic. Then F(a1, . . . , am) is a finite-dimensional F-
vector space, and so is an algebraic extension of F.

Proof We prove this by induction on m. The case m = 1 is covered by Proposi-
tion 4.6.17. So suppose that F(a1, . . . , am−1) is a finite-dimensional F-vector space
with basis {b1, . . . , br}. Now let b ∈ F(a1, . . . , am) = F(a1, . . . , am−1)(am) and, by Proposi-
tion 4.6.17, write

b = ck−1ak−1
m + · · · + c1am + c0

for c0, c1, . . . , ck−1 ∈ F(a1, . . . , am−1). Then we can write

b =
k−1∑
j=0

c ja
j
m =

k−1∑
j=0

m∑
l j=1

c j,l jbl ja
j
m,

for c j,l j ∈ F, j ∈ {0, 1, . . . , k − 1}, l j ∈ {1, . . . ,m}. This shows that every element of

F(a1, . . . , am) is a linear combination of the finite set of elements bl ja
j
m, j ∈ {0, 1, . . . , k−1},

l j ∈ {1, . . . ,m} of F(a1, . . . , am).
The final assertion follows from Proposition 4.6.14. ■

A key result that we shall require concerning algebraic extensions is the follow-
ing.

4.6.20 Proposition (The set of algebraic elements is a field) Let F be a field and let K be
an extension of F. Then the set A(F,K) of algebraic elements of K over F is a subfield of K.

Proof Let a, b ∈ A(F,K) and note that F(a, b) is an algebraic extension of F containing
a and b. Thus F(a, b) ⊆ A(F,K). Thus a − b, ab−1

∈ F(a, b) ⊆ K by Exercise 4.3.5. Thus K
is a subfield, again by Exercise 4.3.5. ■

It is useful to see how adjoining an element to a field behaves under isomor-
phisms of the field.

4.6.21 Proposition (Adjoining elements and isomorphisms) Let F1 and F2 be fields with
ϕ : F1 → F2 an isomorphism, and let K1 and K2 be extensions of F1 and F2, respectively.
For A ∈ F1[ξ] given by

A = akξ
k + · · · + a1ξ + a0,

define ϕ∗A ∈ F2[ξ] by

ϕ∗A = ϕ(ak)ξk + · · · + ϕ(a1)ξ + ϕ(a0).

If A is irreducible, if r1 ∈ K1 is a root of A, and if r2 ∈ K2 is a root of ϕ∗A, then there exists
a unique isomorphism ψ : F1(r1)→ F2(r2) such that ψ|F1 = ϕ and such that ψ(r1) = r2.

Proof Let Mr1 and Mr2 be the minimal polynomials of r1 and r2, respectively. We claim
that A = aMr1 and ϕ∗A = ϕ(a)Mr2 for a ∈ F∗1. Since r1 is a root of A in K1, Mr1 |A. Since A
is irreducible this means that A = aMr1 for a nonzero. By similar arguments, since ϕ∗A
is irreducible, ϕ∗A = a′Mr2 . Since a′ is then the leading coefficient of ϕ∗A we must have
a′ = ϕ(a), as desired. Note that Mr2 = ϕ∗Mr1 as a consequence of these arguments.
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By Theorem 4.6.6 and Proposition 4.6.17 we write elements of F1(r1) and F2(r2) as
EvK1(B1)(r1) and EvK2(B2)(r2), respectively, for Ba ∈ Fa[ξ], a ∈ {1, 2}. Then define ψ by

ψ(EvK1(B)(r1)) = EvK2(ϕ∗B)(r2).

First we should show that ψ is well-defined. Suppose that

EvK1(B)(r1) = EvK1(B′)(r1)

for B,B′ ∈ F1[ξ]. Then B − B′ ∈ ker(ϕr1) where ϕr1 : F1[ξ] → F1(r1) is defined by
ϕr1(B) = EvK1(B)(r1). Thus, by Proposition 4.6.17, Mr1 |(B − B′). Since Mr2 = ϕ∗Mr1 this
implies that Mr2 |(ϕ∗B − ϕ∗B

′). Thus

EvK2(ϕ∗B)(r2) = EvK2(ϕ∗B′)(r2),

showing that ψ is well-defined. To see that ψ is a bijective note that ψ(r j
1) = r j

2,
meaning that ψ maps the ordered basis {1F1 , r1, . . . , rk−1

1 } for F1(r1) bijectively onto the
ordered basis {1F2 , r2, . . . , rk−1

2 } for F2(r2). It is easy to verify directly that ψ is a field
homomorphism.

To obtain the uniqueness of ψwe note that, if ψ′ : F1(r1)→ F2(r2) is a field isomor-
phism which maps r1 to r2 and restricts to ϕ on F1, it follows immediately that

ψ′(EvK1(B)(r1)) = EvK2(ϕ∗B)(r2),

as desired. ■

4.6.4 Algebraic closure

In this section we investigate a specific algebraic field extension, one in which
all polynomials are guaranteed to have roots. The following definition describes
what we are after.

4.6.22 Definition (Algebraically closed, algebraic closure) Let K be a field. If every
polynomial in K splits over K, then K is algebraically closed. If F is an algebraically
closed algebraic extension of K, then F is an algebraic closure of K. •

It turns out that every field possesses an algebraic closure, and that, moreover,
all algebraic closures are isomorphic.

4.6.23 Theorem (Existence and uniqueness of the algebraic closure) If F is a field
then there exists a field F̄ that is an algebraic closure of F. Moreover, if F̄1 and F̄2 are
algebraic closures of F, then there exists an F-isomorphism from F1 to F2.

Proof The proof relies on the notion of the polynomial ring with an arbitrary collection
of indeterminates; see Section 4.4.7.

Let
X = {ξA | A ∈ F[ξ] monic of degree at least 1}

be a set of indeterminates indexed by the nonconstant monic polynomials. If A ∈ X
then we have the single indeterminate ξA ∈ X. Since A is a polynomial in a single
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indeterminate, we can think of the indeterminate not as ξ, but as ξA. In this way
we can think of A as an element in F[ξA] ⊆ F[X]. We denote this element by A(ξA).
Let I be the ideal generated by {A(ξA) | ξA ∈ X}. We claim that I ⊂ F[X]. Suppose
otherwise so that 1F[X] ∈ I. Thus, by Theorem 4.2.54, there exists A1, . . . ,Ak ∈ F[ξ] and
Ψ1, . . . ,Ψk ∈ F[X] such that

Ψ1A1(ξA1) + · · · +ΨkAk(ξAk) = 1F[X].

Let us write the polynomialsΨ1, . . . ,Ψk as sums of monomials:

Ψl =
∑

cl
j1··· jmsl

ξ
j1
Bl

1

· · · ξ
jmsl

Bl
msl

, l ∈ {1, . . . , k}.

Now, by Theorem 4.6.26, let K be an extension of F such that the polynomials A1, . . . ,Ak
split in K[ξ]. Let r j ∈ K be a root of A j, j ∈ {1, . . . , k}. Now consider the evaluation of the
indeterminates by letting ξA take the value r j if A = A j for some j ∈ {1, . . . , k}, and by
letting ξA take the value 0K otherwise. Then denote by F : K→ K the function defined
by evaluating

Ψ1A1(ξA1) + · · · +ΨkAk(ξAk)

using these values for the indeterminates. Since A j(ξA j) = 0K using these values for
the indeterminates, we have 0K = 1K. Thus our assumption that 1F[X] ∈ I is invalid.

By Theorem 4.2.19 it follows that there is a maximal ideal J in F[X] containing
I. Let us take K(F) = F[X]/J which is a field by Theorem 4.3.9. We claim that the
restriction to F of the projection π from F[X] to K(F) is injective. Indeed, suppose that
π(a) = 0K(F) for some a ∈ F ⊆ F[X]. This means that a ∈ J ⊇ I. Since I, and therefore J,
contains no constant polynomials other than 0F[X] (since we have I ⊂ F[X]), it follows
that a = 0F. Thus we have F naturally regarded as a subfield of K(F), and so K(F) is
an extension of F. We claim that if A ∈ F[ξ] then A splits in K(F)[ξ]. It suffices to
show (why?) that every polynomial A ∈ F[ξ] has a root in K(F). Let A ∈ F[ξ] be a
nonconstant monic polynomial so that A(ξA) ∈ I ⊆ J. Let us denote by Ā ∈ K(F)[ξ] the
image of A under the inclusion of F[ξ] in K(F)[ξ]. Then

EvK(F)(Ā)(ξA + J) = A(ξA) + J =⇒ EvK(F)(Ā)(ξA + J) = 0F[X] + J.

Thus ξA + J is a root for A in K(F).
Now inductively define field extensions

K1 ⊆ K2 ⊆ K3 ⊆ · · ·

by K1 = K(F) and K j = K(K j−1), using the construction above. Let K = ∪ j∈Z>0K j.
We claim that K is a field. To define the operations of addition and multiplication
we let a, b ∈ K. Then a, b ∈ Kn for some sufficiently large n, and so we merely
define a + b, ab ∈ Kn ⊆ K using the fact that Kn is already a field. We leave it to
the reader to convince themselves that these definitions are independent of n and
satisfy the properties of addition and multiplication for fields. We next claim that K
is algebraically closed. Let A ∈ K[ξ] be irreducible. Since A has only finitely many
nonzero coefficients in K, there exists N ∈ Z>0 such that all coefficients are in KN. Thus
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A splits in KN[ξ] and so is of degree 1. Thus every irreducible polynomial in K[ξ] has
degree 1, and so K is algebraically closed.

The above arguments show that there exists an algebraically closed field K con-
taining F. Let F̄ ⊆ K be the set of algebraic elements of K over F. This is a field by
Proposition 4.6.20. Now let A ∈ F̄[ξ] be irreducible. Since F̄ ⊆ K there exists a root
a ∈ K of F̄. Then F̄(a) is an algebraic extension of F̄ and so an algebraic extension of F
since F̄ is an algebraic extension of F. But this means that a ∈ F̄, and so A is of degree
1.

Finally, we show that two algebraic closures F1 and F2 are isomorphic via an
F-isomorphism. Let

C = {(F′1,F
′

2, ϕ) | F′1,F
′

2 extensions of F, F ⊆ F′1 ⊆ F̄1, F ⊆ F′2 ⊆ F̄2,

ϕ : F′1 → F′2 an isomorphism}.

Since (F,F, idF) ∈ C , this set is nonempty. Let us partially order C by

(F′1,F
′

2, ϕ) ⪯ (E′1,E
′

2, ψ), ⇐⇒ F′1 ⊆ E′1, F′2 ⊆ E′2, ϕ(F′1) ⊆ ψ(E′1).

Let {(F′1,a,F
′

2,a, ϕa)}a∈A be a totally ordered subset of C . Define

E1 = ∪a∈AF′1,a, E2 = ∪a∈AF′2,a,

and define ψ : E1 → E2 by asking that ψ|F1,a = ϕa. It is easy to see that ψ is a bijection.
Moreover, E1 and E2 are fields with addition and multiplication defined by using that
in the sets F1,a and F2,a, a ∈ A (cf. the field operations on K defined above). Thus
(E1,E2, ψ) is an upper bound for {(F′1,a,F

′

2,a, ϕa)}a∈A. By Zorn’s Lemma there exists a
maximal element (F1,F2, ϕ) ofC . We claim that F1 = F̄1. If not, there exists a1 ∈ F̄1 \F1.
Since F̄1 is algebraic over F so is a1. Let M ∈ F[ξ] be the minimal polynomial for a1.
We claim that M has a root in F̄2 \ F2. If not, since ϕ is an isomorphism of F1 and F2,
this would imply that M has all roots in F1. But this cannot be, since a1 is a root of M.
Thus let a2 ∈ F̄2 \ F2 be a root of M. Note that M is the minimal polynomial of a2. By
Proposition 4.6.17 the vector spaces F1(a1) and F2(a2) over F1 and F2 have bases

{1F1 , a1, . . . , ak
1}, {1F2 , a2, . . . , ak

2},

where k = deg(M). Thus the isomorphism ϕ extends in a natural way to an isomor-
phismψof F1(a1) and F2(a2). Then we have (F1,F2, ϕ) ≺ (F1(a1),F2(a2), ψ), contradicting
the maximality of (F1,F2, ϕ). Thus F1 = F̄1. In a similar manner one shows that F2 = F̄2.
Since ϕ is an isomorphism of F1 and F2, the theorem follows. ■

4.6.5 Splitting fields

In the preceding section we saw that a distinguished rôle is played by extensions
whose elements are roots of polynomials. In this section we study systematically
the notion of constructing a field which contains all roots of a certain polynomial.
The key idea in this construction is to quotient the polynomial ring F[ξ] by an ideal
which was considered in Section 4.4.6.

To get started with the programme, the following definition provides the useful
terminology.
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4.6.24 Definition (Splits) If F is a field and if K is an extension of F, a polynomial A ∈ F[ξ]
splits over K if there exists a, r1, . . . , rk ∈ K such that

A = a(ξ − r1) · · · (ξ − rk). •

A field K is a splitting field for A ∈ F[ξ] if A splits over K and but does not split
over any proper subfield of K that is itself an extension of F. •

The idea of a splitting field for A is that it is the smallest field extension of F in
which A is guaranteed to have all of its roots.

Theorem 4.4.44 gives us, for an irreducible monic polynomial A ∈ F[ξ] of
positive degree, a means of constructing a field F[ξ]/(A) that contains a subfield
isomorphic to F. If we identify F with its isomorphic image in F[ξ]/(A), then we
can regard the field F[ξ]/(A) as an extension of F. We now turn to the properties
of this extension, and ideas stemming from this. In the statement of the result we
understand that, if K is a subfield of F, then the K[ξ] is naturally a subring of F[ξ]
(cf. Proposition 4.4.8).

4.6.25 Proposition (A has a root in F[ξ]/(A)) Let F be a field, let A ∈ F[ξ] be an irreducible
monic polynomial of degree at least 1, and let F[ξ]/(A) be the corresponding quotient ring,
thought of as a field extension of F. Then A has a root in F[ξ]/(A).

Proof Define r0 = ξ + (A) ∈ F[ξ]/(A). Then, writing A = ξk
−

∑k−1
j=0 a jξ j, we compute

rk
0 −

k−1∑
j=0

a jr
j
0 = ξ

k
−

k−1∑
j=0

a jξ
j + (A) = A + (A) = 0F[ξ] + (A).

Thus, if we think of A as a polynomial in (F[ξ]/(A))[η], we have EvF[ξ]/(A)(A)(r0) =
0F[ξ]/(A), and so r0 is a root of A in F[ξ]/(A), as desired. ■

Now we can prove that polynomials possess splitting fields. If a polynomial
splits in some field, then it is irreducible in that field if and only if it has degree 1.
With this idea, we now have the following important theorem.

4.6.26 Theorem (Existence and uniqueness of splitting fields) If F is a field and if
A ∈ F[ξ] is a polynomial of degree at least 1, then there exists a field extension F(A) of F
such that A splits in F(A). Moreover, A possesses a splitting field, and any two splitting
fields for A are isomorphic via an F-isomorphism.

Proof If A splits over F then the result follows trivially by taking F(A) = F. So suppose
that A does not split in F, and denote F0 = F and A0 = A. Construct a field F1 and
a polynomial A1 ∈ F1[ξ] as follows. Since A0 does not split over A0, we can write
A0 = B0 ·C0 where B0 is monic, irreducible, and of degree at least 2. Let F1 = F0[ξ]/(B0),
and note that B0, and therefore A0, has a root, say r0, in F1. Therefore, thinking of A0 as
a polynomial over the extension field F1 of F1, we can write A0 = (ξ− r0) ·A1 for some
A1 ∈ F1[ξ] by Proposition 4.4.25. If A1 splits in F1, then the result follows by taking
F(A) = F1. Otherwise, the construction can be repeated to define a field F2 which is
an extension of F1, and so also of F0. Note that A1 has a root in F2 so that we have
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A0 = (ξ − r0) · (ξ − r1) · A2, so defining A2 ∈ F2[ξ]. We claim that by continuing this
process at most k = deg(A) times, we arrive at a field Fk in which A0 splits. This is
trivial since if the construction is carried out k times we arrive at an expression for A0
of the form

A0 = (ξ − r0) · (ξ − r1) · · · (ξ − rk) · Ak+1,

which implies by Proposition 4.4.11 that deg(Ak+1) = 0 and so Ak+1 is a nonzero
constant. Thus A j splits over F j for some j ∈ {0, 1, . . . , k}, and the result follows by
taking F(A) = F j.

Now let us prove the second assertion. The field F(A) constructed in the first part
of the proof contains all roots of A. Let us denote the distinct roots by r1, . . . , rk. Now
consider the subfield K = F(r1, . . . , rk) of F(A). Clearly A splits in K. Moreover, any
proper subfield of K that extends F cannot contain the roots r1, . . . , rk, since K is the
smallest field extension containing these roots.

To show that two splitting fields are isomorphic, we first prove a lemma.

1 Lemma Let F1 and F2 be fields with ϕ : F1 → F2 an isomorphism. Let A ∈ F1[ξ] be given by

A = akξ
k + · · · + a1ξ + a0

and define ϕ∗A ∈ F2[ξ] by

ϕ∗A = ϕ(ak)ξk + · · · + ϕ(a1)ξ + ϕ(a0).

Let K1 be a splitting field for A and K2 be a splitting field for ϕ∗A. Then there exists an
isomorphism ψ : K1 → K2 such that ψ|F = ϕ.

Proof We prove the result by induction on m = [K1 : F1]. For m = 1 we have K1 = F1
and so A splits in F1. It then holds that ϕ∗A splits in F2 and so K2 = F2. The lemma
then holds taking ψ = ϕ. Now suppose that [K1 : F1] ≥ 2. Thus there exists an
irreducible polynomial P of degree at least 2 which divides A in F1[ξ]. Let r1 ∈ K1 be
a root of P. Note that ϕ∗P must divide ϕ∗A, and, therefore, ϕ∗P has a root r2 ∈ K2.
By Proposition 4.6.21 it follows that there exists an isomorphism ψ′ : F1(r1) → F2(r2)
mapping r1 to r2 and restricting to ϕ on F1. Note that K1 is a splitting field of A over
F1(r1) and that K2 is a splitting field of ϕ∗A over F2(r2). Since

[K1 : F1] = [K1 : F1(r1)][F1(r1) : F1]

by Proposition 4.6.4 and since [F1(r1) : F1] ≥ 2 by Proposition 4.6.17, it follows that
[K1 : F1(r1)] < [K1 : F1]. By the induction hypothesis there exists an isomorphism
ψ′′ : K1 → K2 which agrees with ψ′ on F1(r1). Since ψ′ agrees with ϕ on F1, it follows
that ψ′′ agrees with ϕ on F1. ▼

The theorem now follows by applying the lemma to the case when F1 = F2 = F
and ϕ = idF. ■

In the first part of the theorem we construct a field which contains all roots of
A. This could be achieved by merely taking the algebraic closure. However, we
give a simpler, more direct, proof of this fact.

Let us look at some simple examples to illustrate the notion of a splitting field.
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4.6.27 Examples (Splitting field)
1. We consider the field Q and the polynomial A = ξ2

− 2. In Example 4.6.7–1
we constructed the field Q(

√
2) which contains one of the roots,

√
2, of A.

Moreover, because of (4.23) it also follows that −
√

2 ∈ Q(
√

2), and so Q(
√

2)
contains all roots of A. Moreover, because Q(

√
2) is, by definition, the smallest

field containing
√

2, it follows that Q(
√

2) is a splitting field for A.
2. We again take the field Q, but now consider the polynomial A = ξ4

− 2. Any
splitting field for A in R must contain 4√2. Since A is irreducible in Q[ξ] it
follows from Proposition 4.6.17 that

Q(
4√

2) = {α323/4 + α221/2 + α121/4 + α0 | α0, α1, α2, α3 ∈ Q},

as asserted in Example 4.6.7–2. From this it follows that − 4√2 ∈ Q( 4√2). How-
ever, Q( 4√2) is not a splitting field for A since, in Q( 4√2) the prime factorisation
of A is

A = (ξ −
4√

2)(ξ +
4√

2)(ξ2 +
√

2),

i.e., A does not split in Q( 4√2). However, a splitting field for A as a subfield of
C is Q( 4√2, i 4√2). •

Let us give a result concerning automorphisms of field extensions and roots of
polynomials.

4.6.28 Proposition (F-automorphisms and roots) Let F be a field, let A ∈ F[ξ], and let K
be an extension of F that contains a splitting field for A. Denote the distinct roots of A by
{r1, . . . , rk}. If ϕ ∈ AutF(K) then there exists σ ∈ Sk such that ϕ(rj) = rσ(j), j ∈ {1, . . . ,k}.

Proof Since ϕ|F = idF and since ϕ is a field homomorphism we have

EvK(A)(ϕ(r j)) = ϕ(EvK(r j)) = 0K,

so that ϕ(r j) is a root of A for each j ∈ {1, . . . , k}. ■

One can also talk about extensions in which not one polynomial, but all poly-
nomials in a family, split.

4.6.29 Definition (Splitting field for a family of polynomials) Let F be a field and let
(Ai)i∈I be a family of polynomials in F[ξ]. A splitting field for the family is a field
extension K of F such that each polynomial Ai, i ∈ I, splits in K, but such that if K′ is
any proper subfield of K, there exists some polynomial Ai0 in the family that does
not split in K′.

The following result essentially follows from the definitions of all the notions
involved.
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4.6.30 Theorem (Existence of splitting field for families of polynomials) If F is a field
and if (Ai)i∈I is a family of polynomials in F[ξ], then there exists a splitting field for the
family.

Proof In the algebraic closure F let R denote the set of roots of all polynomials in
(Ai)i∈I. It is clear that F(R) is then a field in which all polynomials in (Ai)i∈I split.
Moreover, it is also clear by definition of F(R) that any proper subfield of F(R) must
omit some element of R, precluding all polynomials in (Ai)i∈I from splitting. ■

4.6.6 Normal field extensions

The notion of a normal field extension is a fairly simple one.

4.6.31 Definition (Normal extension) An extension K of a field F is normal if, for every
irreducible polynomial A ∈ F[ξ] having a root in K, it holds that A splits in K. •

The idea is that if K is big enough to contain some root of a polynomial, to be
normal it must be big enough to contain all roots of the polynomial. Let us illustrate
this idea with some examples.

4.6.32 Examples (Normal extension)
1. The extension Q(

√
2) of Q is normal, as we now show. We recall that

Q(
√

2) = {α1

√

2 + α0 | α0, α1 ∈ Q}.

Let a = α1

√
2 + α0 ∈ Q(

√
2) and note that a is a root of the polynomial

ξ2
− 2α0ξ + α

2
0 − 2α1,

as can be verified directly. Note that the other root of this polynomial in R is
−α1

√
2 + α0. Since this number is in Q(

√
2), it follows that Q(

√
2) is normal.

While we have shown “by hand” that Q(
√

2) is normal, we shall see in Propo-
sition 4.6.36 that this actually follows since Q(

√
2) is a splitting field for ξ2

− 2.

2. The extensionQ( 4√2) is not normal since the minimal polynomial of 4√2 is ξ4
−2,

which has a root in Q( 4√2) but does not split. •

To provide a nice characterisation of normal extensions we introduce the fol-
lowing notion which generalises complex conjugation.

4.6.33 Definition (Conjugate extension, conjugate elements) Let F be a field with
algebraic closure F̄, let K and L be extensions of F contained in F̄, and let a, b ∈ F̄.

(i) The extensions K and L are conjugate if there exists ϕ ∈ AutF(F̄) such that
ϕ(K) = L.

(ii) The elements a and b are conjugate if there exists ϕ ∈ AutF(F̄) such that
ϕ(a) = b. •

The following result gives some useful and insightful characterisations of con-
jugate elements.
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4.6.34 Proposition (Characterisations of conjugate elements) Let F be a field with
algebraic closure F̄ and let a, b ∈ F̄. Then the following statements are equivalent:

(i) a and b are conjugate;
(ii) there exists an F-isomorphism ϕ : F(a)→ F(b) such that ϕ(a) = b;
(iii) Ma =Mb.

Proof (i) =⇒ (iii) Let ψ ∈ AutF(F̄) map a to b and note that

EvF̄(Ma)(b) = EvF̄(Ma)(ψ(a)) = ψ(EvF̄(Ma)(a)) = 0F̄,

using the fact that ψ is an F-homomorphism, and so fixes F. Thus Ma is a monic
irreducible polynomial possessing b as a root. In other words, Ma =Mb.

(iii) =⇒ (ii) Here we apply Proposition 4.6.21 with F1 = F2 = F and ϕ = idF.
(ii) =⇒ (i) Note that F̄ is an algebraic closure of F(a) and of ϕ(F(a)). Thus by the

uniqueness part of Theorem 4.6.23 there exists an isomorphism Φ : F̄ → F̄ such that
Φ|F(a) = ϕ. In particular, Φ|F = idF, and so Φ is an F-isomorphism. ■

One of the important consequences of this characterisation of conjugate ele-
ments is the following.

4.6.35 Corollary (Conjugate elements and roots) Let F be a field with algebraic closure F̄
and let a ∈ F̄ have minimal polynomial Ma. Then the set of conjugates of a is equal to the
set of roots of Ma.

Proof By Proposition 4.6.28 it follows that the set of roots of Ma are conjugates of a.
Conversely, if b is a conjugate of a, then by Proposition 4.6.34 it holds that Mb = Ma,
and so b is also a root of Ma. ■

The following result gives equivalent characterisations for normality of an ex-
tension, some of which involve the notion of conjugation.

4.6.36 Proposition (Characterisation of normal extensions) Let F be a field with algebraic
closure F̄. For an extension K ⊆ F̄ of F the following statements are equivalent:

(i) K is normal;
(ii) if a ∈ K then every conjugate of a is also in K;
(iii) if ϕ ∈ AutF(F̄) then ϕ(K) = K;
(iv) if ψ : K→ F̄ is an F-homomorphism then ψ(K) = K;
(v) K is the splitting field for a family of nonconstant polynomials in F[ξ].

Proof (iii) =⇒ (iv) Let ψ : K → F̄ be an F-homomorphism. Since F̄ is an algebraic
closure of both K and ψ(K), the uniqueness part of Theorem 4.6.23 gives the existence
of an isomorphismΨ : F̄→ F̄ such thatΨ|K = ψ. Thus ψ(K) = Ψ(K) = K.

(iv) =⇒ (iii) Let ϕ ∈ AutF(F̄) so that ϕ|K is an F-homomorphism of K into F̄. Then
ϕ(K) = K, as desired.

(i) =⇒ (v) Let (Ma)a∈K be the family of minimal polynomials for elements of K. We
claim that K is the splitting field in F̄ for (Ma)a∈K. Let us denote this splitting field by
K′. If a ∈ K then a is a root of Ma and so a ∈ K′. Conversely, let a ∈ K′. Then a is a root
of Ma′ for some a′ ∈ K. Since K is normal, it follows that a ∈ K. Thus K = K′, as desired.
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(v) =⇒ (iii) Suppose that K is the splitting field for the family (Ai)i∈I of polynomials
in F[ξ]. Let ϕ ∈ AutF(F̄). For i ∈ I, ϕ permutes the roots of Ai by Proposition 4.6.28.
Therefore, since K is the smallest field containing F and all roots of all polynomials
(Ai)i∈I by Theorem 4.6.30, it follows that ϕ(K) = K.

(iii) =⇒ (ii) This is simply the definition of what it means for elements to be
conjugate.

(ii) =⇒ (i) Let A ∈ F[ξ] be monic, irreducible, and with a root in K. In F̄ we have

A = (ξ − r1) · · · (ξ − rk).

Since Mr1 = · · · =Mrk = A it follows from Proposition 4.6.34 that r1, . . . , rk are conjugate.
Thus r1, . . . , rk ∈ K, and A splits in K, as desired. ■

Let us illustrate all of this with some examples.

4.6.37 Examples (Characterisation of normal extensions)
1. The extension Q(

√
2) of Q is normal. As we showed in Example 4.6.32–1

above (also recalling Example 4.6.10–1), the conjugate of α1

√
2+ α0 ∈ Q(

√
2) is

−α1

√
2+ α0, which is also inQ(

√
2). In like manner we see thatQ(

√
2) is closed

under the group of Q-automorphisms of any algebraic closure of Q. Also, the
normality of Q(

√
2) follows from the fact that it is a splitting field for ξ2

− 2.

2. The extension Q( 4√2) of Q is not normal, and this is reflected, for example, by
the fact that Q( 4√2) is not the splitting field for the polynomial ξ4

− 2 (noting
that this is the minimal polynomial for 4√2 ∈ Q( 4√2)).

If one has a field extension that is not normal, it is possible to produce one that
is normal in a natural way.

4.6.38 Definition (Normal closure) Let F be a field with algebraic closure F̄. If K ⊆ F̄ is
an extension of F, the normal closure of K is the extension N(K) generated by

{a ∈ F̄ | a is conjugate to some element of K}. •

The normal closure is a field extension of F, as we show in the following result.

4.6.39 Proposition (Properties of the normal closure) If F is a field with algebraic closure
F̄ and if K ⊆ F̄ is an extension of F, then the following statements hold:

(i) N(K) is a normal field extension of F;
(ii) if K′ ⊂ N(K) is a field extension then K′ is not normal;
(iii) [N(K) : F] is finite if and only if [K : F] is finite.

Proof (i) Note that N(K) is, by definition, the splitting field of (Ma)a∈K, and so is a
normal field extension of F by Proposition 4.6.36.

(ii) As we indicated in the proof of part (i), N(K) is the splitting field for the set of
minimal polynomials of elements in K. Therefore, any proper subfield of N(K) will
necessarily exclude a root of some minimal polynomial Ma for a ∈ K. Thus such a
proper subfield cannot be normal.
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(iii) It is clear from Proposition 4.6.4 that [K : F] is finite if [N(K) : F] is finite.
Conversely, if [K : F] is finite then let {a1, . . . , ak} be a basis for K over F. Then N(K)
is the splitting field for (Ma1 , . . . ,Mak). By Exercise 4.6.6 it follows that [N(K) : F] is
finite. ■

We can easily illustrate the notion of normal closure with an example.

4.6.40 Example (Normal closure) The normal closure of Q( 4√2) is Q( 4√2, i 4√2). Indeed,
Q( 4√2, i 4√2) contains all roots of the minimal polynomial M 4√2. •

4.6.7 Separable polynomials and field extensions

In Sections 5.8.12 and 5.8.14 we shall encounter the need for polynomials with
the property that, as polynomials over the algebraic closure of the field, they factor
into a product of distinct degree one polynomials. This is the following definition.

4.6.41 Definition (Separable polynomial) Let F be a field with F̄ its algebraic closure.
For A ∈ F[ξ], denote by Ā ∈ F̄[ξ] the image of A by the inclusion F[ξ] ⊆ F̄[ξ]. A
polynomial A ∈ F[ξ] is separable if we have

Ā = a(ξ − b1) · · · (ξ − bk)

for a, b1, . . . , bk ∈ F̄ with r1, . . . , rk distinct. •

Let us agree that throughout this section we shall denote by Ā ∈ F̄[ξ] the image
of A ∈ F[ξ] under the inclusion F[ξ] ⊆ F̄[ξ].

The following result characterises separable polynomials. We recall from Defi-
nition 4.4.28 the definition of the formal derivative A′ of a polynomial A.

4.6.42 Proposition (Characterisation of separable polynomials) Let F be a field. For
A ∈ F[ξ] the following statements are equivalent:

(i) A is separable;
(ii) there exists an extension K of F such that, as a polynomial in K[ξ], A has the form

a(ξ − b1) · · · (ξ − bk)

for a, b1, . . . , bk ∈ K with b1, . . . , bk distinct;
(iii) A and A′ are coprime.

Proof (i) =⇒ (ii) Take K = F̄, the algebraic closure of F.
(ii) =⇒ (iii) Suppose that A and A′ are not coprime and let D ∈ F[ξ] be a greatest

common divisor of A and A′ of positive degree. Since D̄|Ā and D̄|Ā′, and since F̄ is
algebraically closed, it follows that Ā and Ā′ have a common root, and so Ā has a root
of multiplicity greater than 1 by Proposition 4.4.29. If K is any extension in which A
splits, then we have two cases: (1) K ⊆ F̄ and (2) K ⊇ F̄. In the first case we have A, as
a polynomial in K[ξ], in the form

a(ξ − b1) · · · (ξ − bk)
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for a, b1, . . . , bk ∈ K. Since K ⊆ F̄ this is also the form of Ā. Thus the roots of A in K have
multiplicity greater than 1. Now, if K ⊇ F̄, we write

Ā = a(ξ − b1) · · · (ξ − bk)

for a, b1, . . . , bk ∈ F̄. However, since F̄ ⊆ K this is also the form of A in K[ξ]. Thus the
roots of A in K have multiplicity greater than 1. Thus there can be no extension of F in
which A splits and the roots of A are of multiplicity 1.

(iii) =⇒ (i) If A and A′ are coprime, then by Corollary 4.4.36 there exists B,C ∈ F[ξ]
such that BA + CA′ = 1F. Suppose that b ∈ F̄ is a root of Ā. Then

1F̄ = EvF̄(B̄Ā + C̄Ā′)(b) = EvF̄(C̄)(b)EvF̄(Ā′)(b),

from which we deduce that b is not a root for Ā′. Thus the roots of Ā have multiplicity
1 by Proposition 4.4.29. ■

In order to get a sufficiently fine understanding of separable polynomials, it
is helpful to understand irreducible separable polynomials. The following result
indicates that only exceptional irreducible polynomials are not separable.

4.6.43 Proposition (Irreducible separable polynomials) Let F be a field and let A ∈ F[ξ]
be irreducible. Then the following statements are equivalent:

(i) A is separable;
(ii) there exists an extension K of F in which A has a root of multiplicity 1;
(iii) A′ , 0F[ξ];
(iv) either

(a) F has characteristic zero or
(b) F has characteristic p ∈ Z>0 and A does not have the form

akξ
kp + · · · + a1ξ

p + a0,

for a0, a1, . . . , ak ∈ F.
Proof (i) =⇒ (ii) Take K to be the algebraic closure of F and use Proposition 4.6.42.

(ii) =⇒ (iii) If A has a root b ∈ K of multiplicity 1 then EvK(A′)(b) , 0K. In particular,
A′ , 0F[ξ].

(iii) =⇒ (iv) We prove the contrapositive. Thus we assume that F does not have
characteristic zero and that A is given by

A = akξ
kp + · · · + a1ξ

p + a0

with p ∈ Z>0 the characteristic of F. Then

A′ = kpakξ
kp−1 + · · · + 2pa2ξ

2p−1 + pa1ξ
p−1,

giving A′ = 0F[ξ] since pξ j = 0F[ξ] for any j ∈ Z≥0.
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(iv) =⇒ (i) Suppose that F has characteristic zero. Since A is irreducible, deg(A) ≥ 1.
Thus write

A = akξ
k + · · · + a1ξ + a0

with k ∈ Z>0 and with ak , 0F. Then

A′ = kakξ
k−1 + · · · + 2a2ξ + a1.

Since F has characteristic zero, kakξ
k−1 , 0F[ξ], and so A′ , 0F[ξ].

Now suppose that F has characteristic p ∈ Z>0 and write

A = akξ
k + · · · + a1ξ + a0

as above, supposing that a j , 0F for some j such that p ∤ j. Then, as above,

A′ = kakξ
k−1 + · · · + 2a2ξ + a1.

Since F has characteristic p, the expression amξ j is zero if and only if p ∤ m. Thus
A′ , 0F[ξ].

(iii) =⇒ (i) Suppose that A is irreducible but not separable. Let K be an extension
of F such that A splits in K[ξ]. Since A is not separable there exists a root b ∈ K of
A of multiplicity at least 2. Let Mb be the minimal polynomial of b over F. We claim
that Mb|A and Mb|A′. Since b is a root of multiplicity greater than 1 it follows from
Proposition 4.4.29 that b is a root of both A and A′. From the definition of Mb, Mb
divides A and A′, as desired. Since Mb|A and since A is irreducible, A = αMb for α ∈ F.
Therefore, A|A′. Since deg(A) > deg(A′), it follows that A′ = 0F[ξ]. ■

Corresponding to the notion of a separable polynomial is that of a separable
field extension.

4.6.44 Definition (Separable extension) An extension K of a field F is separable if, for
every a ∈ K, there exists a separable polynomial A ∈ F[ξ] with a as a root in K. •

Let us characterise separable field extensions.

4.6.45 Proposition (Characterisation of separable field extensions) Let F be a field
with K an algebraic extension of F. Then the following statements are equivalent:

(i) K is separable;
(ii) the minimal polynomial Ma is separable for each a ∈ K;
(iii) for each a ∈ K, a is a root of multiplicity 1 of its minimal polynomial Ma.

Proof (i) =⇒ (ii) Let a ∈ K. Then there exists a separable polynomial A possessing a
as a root. Therefore, Ma|A by definition of the minimal polynomial. If A is separable
then the roots of A in F̄ all have multiplicity 1. This must then also be true of Ma, and
so Ma is separable.

(ii) =⇒ (iii) This is simply the definition of Ma being separable.
(iii) =⇒ (i) Let a ∈ K. If a is a root of multiplicity 1 of Ma then Ma is separable by

Proposition 4.6.43. Therefore K is separable since a is a root of Ma. ■

The following relationship between separability and normality will be useful
for us.
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4.6.46 Corollary (Normal closure of a separable extension is separable) If K is a
separable extension of a field F then the normal closure of K is separable.

Proof This follows since N(K) is the splitting field for (Ma)a∈K (by Proposition 4.6.36)
and since each of the minimal polynomials Ma is separable (by Proposition 4.6.45). ■

The following result indicates that, in many cases of interest, separable exten-
sions agree with algebraic extensions.

4.6.47 Proposition (Separable equals algebraic in characteristic zero) If F is a field of
characteristic zero, then an extension K of F is separable if and only if it is algebraic.

Proof It is clear that separable extensions are algebraic. So suppose that K is an al-
gebraic extension of F and let a ∈ K. Then a is a root in K of the minimal polynomial
Ma which is irreducible by Proposition 4.6.16. But Ma is then separable by Proposi-
tion 4.6.43. ■

There are also fields of nonzero characteristic where all algebraic extensions are
separable. For example, it is possible to show that all finite fields, e.g., Zp for p
prime, have the property that all of their algebraic extensions are separable. Since
this is not of much interest to us, we shall not prove it, but refer the reader to
Section 4.6.10 for references. We shall, however, give an example of a polynomial
that is not separable, and so which gives rise to a nonseparable field extension.

4.6.48 Example (Nonseparable field extension) Consider the field Z2 and its field
F = Z2(η) of rational functions in indeterminate η. Consider the polynomial
A = ξ2

− η ∈ F[ξ]. This polynomial is irreducible since it has no roots in F[ξ].
Indeed, any root would have to be a rational function R satisfying R2 = η. Thus
R should be a polynomial, and its degree should be less than one, which is clearly
absurd. The splitting field for A is denoted F(

√
η), and in this field we have

A = (ξ +
√
η)(ξ +

√
η) since 2

√
η = 0F(

√
2) and −η = η. Thus, while A is irreducible,

it is not separable. Thus the extension F(
√
η) is itself not separable. •

4.6.8 Galois extensions

Now we get to what for us is the main point of studying field extensions: the
notion of a Galois extension. Let us first give the definition and explore some of its
consequences. For the definition, one may wish to recall that F ⊆ KAutF(K).

4.6.49 Definition (Galois extension) If F is a field, an algebraic extension K of F is Galois
if KAutF(K) = F. •

The following characterisations of Galois extensions are useful.

4.6.50 Proposition (Characterisations of Galois extensions) For a field F and an alge-
braic extension K of F, the following statements are equivalent:

(i) K is Galois;
(ii) K is normal and separable;
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(iii) for each a ∈ K, Ma splits in K and each root has multiplicity 1.
Proof (ii) =⇒ (iii) If K is normal then Ma splits in K since it is irreducible and has a
root (a) in K. By Proposition 4.6.45 each of the roots of Ma have multiplicity 1 if K is
separable.

(iii) =⇒ (ii) This follows from Propositions 4.6.36 and 4.6.45, after recalling from
the proof of Proposition 4.6.36 that K is the splitting field for (Ma)a∈K.

(i) =⇒ (iii) Let a ∈ K and let r1, . . . , rk be the distinct roots of the minimal polynomial
Ma. Define

M̃a = (ξ − r1) · · · (ξ − rk).

Since M̃a and Ma have the same roots, but those of M̃a are of multiplicity 1, it follows
that M̃a|Ma. Let ϕ ∈ AutF(K) and recall from Proposition 4.6.28 that there exists
σ ∈ Sk such that ϕ(r j) = rσ( j) for each j ∈ {1, . . . , k}. It follows that ϕ∗M̃a = M̃a (i.e., the
coefficients of M̃a are fixed by ϕ). Since this holds for every ϕ ∈ AutF(K), by hypothesis
it follows that M̃a ∈ F[ξ]. Moreover, EvK(M̃a)(a) = 0K since a ∈ {r1, . . . , rk}. Thus Ma|M̃a
since Ma is the minimal polynomial. Since Ma and M̃a are both monic we must have
Ma = M̃a, giving (iii).

(iii) =⇒ (i) Let F̄ be an algebraic closure of F which is an extension of K. Let a ∈ K\F.
Let {r1, . . . , rk} be the roots in K of the minimal polynomial Ma. By hypothesis we have

Ma = (ξ − r1) · · · (ξ − rk).

Since a ∈ {r1, . . . , rk} it follows from Corollary 4.6.35 that {r1, . . . , rk} are the conjugates
of a in F̄. Now, since deg(Ma) ≥ 2 (since a < F) it follows that k ≥ 2 and so there exists
b ∈ {r1, . . . , rk} such that b , a. Thus there exists ϕ ∈ AutF(F̄) such that ϕ)a) = b. Since
ϕ(K) = K by hypothesis and by Proposition 4.6.36, it follows thatϕdefinesψ ∈ AutF(K)
such that ψ(a) = b. Thus we have shown that AutF(K) can only fix elements in F, as
desired. ■

For us, the following easy consequence of the preceding result will be valuable.

4.6.51 Corollary (Separable extensions have Galois normal closures) If F is a field
with K a separable extension, the normal closure of K is a Galois extension of F.

Proof Let a ∈ N(K). Then a is a conjugate of an element b ∈ K and so Ma = Mb by
Proposition 4.6.34. Since Ma is separable, so is Mb. Thus N(K) is normal and separable,
and so Galois by Proposition 4.6.50. ■

4.6.9 Solvability of polynomials by radicals

One of the classical questions in algebra concerns the derivation of formulae for
the roots of a polynomial. We shall study this is a little detail in Section 4.7.4 for
polynomials with real coefficients, but here we say a few general things that will
help us later on.

The idea is this. Given a field F consider a polynomial A ∈ F[ξ] given by

A = ξk + ck−1ξ
k−1 + · · · + c1ξ + c0.
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We can assume for the purpose of finding roots that A is monic. The objective
is to derive a formula for the roots of A, possible in some appropriate extension,
which involve iterative operations of addition, subtraction, multiplication, divi-
sion, and taking rational powers of the coefficients c0, c1, . . . , ck−1. Note that if we
wish to ensure that we can perform every sum, difference, product, and quotient
of these coefficients we must work in the extension F(c0, c1, . . . , ck−1) if the coeffi-
cients c0, c1, . . . , ck−1 do not already live in F. By taking rational powers we mean
expressions of the form ak/l for k, l ∈ Z>0. Noting that ak/l = (ak)1/l this amounts to
being able to solve the equation b1/l = c for b in our extension.

With this as motivation we make the following definition which gives the sort
of field extension we are interested in.

4.6.52 Definition (Radical extension) An extension K of a field F is radical if there exists
a finite sequence

F = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

of extensions of F with the property that, for each j ∈ {1, . . . ,n}, K j = K j−1(a j) where
a j ∈ K j satisfies ak j

j ∈ K j−1 for some k j ∈ Z>0. •

The idea then is that the extension from K j−1 to K j is obtained by adjoining a
root of the polynomial ξk j − a j, i.e., by adjoining the k jth root of a j.

The corresponding property of polynomials is the following.

4.6.53 Definition (Solvable by radicals) Let F be a field and let A ∈ F[ξ]. The polynomial
A is solvable by radicals if there exists a radical extension K of F in which A splits. •

This notion of solvability by radicals is easily illustrated by the usual quadratic
equation.

4.6.54 Example (Quadratic equations and solvability by radicals) We consider the
field Q with a polynomial A = ξ2 + c1ξ + c0 with c0, c1 ∈ C. We know that the roots
of A are given by the quadratic formula:

r1 = −
1
2 (−c1 +

√
c2

1 − 4c0), r2 = −
1
2 (−c1 −

√
c2

1 − 4c0).

Thus if we successively adjoint c0, c1, and
√

c2
1 − 4c0 to get the field

Q(c0, c1,
√

c2
1 − 4c0), then we are ensured to obtain a field where the roots exist.

That A is solvable by radicals by taking the sequence of field extensions

Q ⊆ Q(c0) ⊆ Q(c0, c1) ⊆ Q(c0, c1,
√

c2
1 − 4c0). •

With this example we hope that the reader can see that any formula for the roots
involving sums, differences, products, quotients, and rational powers starting with
the coefficients will be equivalent to the polynomial being solvable by radicals.
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The key result relates the notion of solvability by radicals to properties of
the Galois group. The key property is the following which is valid for arbitrary
groups.

4.6.55 Definition (Solvable group) A group G is solvable if there exists a finite sequence

{e} = N0 ⊆ N1 ⊆ · · · ⊆ Nn = G

of normal subgroups such that the quotient group (cf. Proposition 4.1.20) is
Abelian. •

The key, and rather surprising, result is then the following.

4.6.56 Theorem (Radical extensions and solvable Galois groups) If K is a radical ex-
tension of a field F then AutF(K) is solvable.

Proof We suppose that we have

F = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

with K j = K j−1(a j) where a
k j

j ∈ K j−1. We now make a few assumptions without loss of
generality.

1. We assume that at each step we have either a
p j

j ∈ K j−1 for a prime p j ∈ Z>0. If this

is not the case, and we instead have a
k j

j ∈ K j−1 for a nonprime k j ∈ Z>0, we write
k j = p j1 · · · p jm j as a product of primes and then add some terms to the sequence.

2. We assume that either

(a) F(a1, . . . , a j) contains no roots of the polynomial ξp j − 1K that are not already
contained in F(a1, . . . , a j−1) or that

(b) a j is itself a root of the polynomial ξp j − 1K.

If this is not the case, then we take b , 1K such that bp j = 1K and add a term in the
sequence:

F = K0 ⊆ K1 ⊆ · · · ⊆ K j−1 ⊆ K j−1(b) ⊆ K j ⊆ · · · ⊆ Kn = K.

Note that this implies that the set {1K, b, b2, . . . , bp j−1
} now contains all roots of

ξp j = 1K (why?). Thus, for this extended sequence, our assumption holds.
Now we prove a lemma; note that the notation F and K in the lemma do not match

that in the theorem.

1 Lemma Let F be a field with extension K and let a ∈ K satisfy ap
∈ F for p prime. Further

suppose that either
(i) F(a) contains no roots of ξp

− 1K that are not already in F or that
(ii) a is itself a root of ξp

− 1K.
Then AutF(a)(K) is a normal subgroup of AutF(K) and AutF(K)/AutF(a)(K) is Abelian.

Proof We first claim that if ϕ ∈ AutF(K) then ϕ(F(a)) ⊆ F(a), i.e., that AutF(K) leaves
F(a) invariant. We have two cases.
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1. If a is not a root of ξp
− 1K then

(ϕ(a))p = ϕ(ap) = ap

since a ∈ F. Thus ϕ(a) is a root of ξp
− ap, and so has the form b ja for some root b of

ξp
− 1K (why?). Since our assumptions ensure that b ∈ F we have ϕ(a) ∈ F(a).

2. If a is a root of ξp
− 1K then we have

(ϕ(a))p = ϕ(ap) = ϕ(1K) = 1K

and so ϕ(a) is a root of ξp
− 1K. Thus ϕ(a) = a j for some j ∈ {1, . . . , p − 1}. Thus

ϕ(a) ∈ F(a).
Thus we have ϕ(a) ∈ F(a) in either case. Since ϕ|F = idF it follows that ϕ(F∪{a}) ⊆ F(a).
Since F ∪ {a} generate F(a) and since ϕ is a homomorphism of fields, it follows that
ϕ(F(a)) ⊆ F(a).

Now let us define Ψ : AutF(K) → AutF(F(a)) by Ψ(ϕ)(b) = ϕ(b), this map making
sense since above we showed that ϕ(F(a)) ⊆ F(a) and since ϕ|F = idF. It is clear that
ker(Ψ) = AutF(a)(K) since

Ψ(ϕ) = idF(a) ⇐⇒ ϕ|F(a) = idF(a) ⇐⇒ ϕ ∈ AutF(a)(K).

To show that AutF(K)/AutF(a)(K) is Abelian we first show that AutF(F(a)) is Abelian.
1. If a is not a root of unity then let us define ϕ j ∈ AutF(F(a)), j ∈ Z≥0, by ϕ j(a) = b ja

where b ∈ F is a root of ξp
− 1K. Note that

ϕ j ◦ ϕk(a) = b j+ka = bk+ ja = ϕk ◦ ϕ j(a).

Thus ϕ j ◦ ϕk(c) = ϕk ◦ ϕ j(c) for all c ∈ F ∪ {a}. Thus ϕ j and ϕk commute on a set of
generators for F(a), and so commute on F(a). Then, as above, if ϕ ∈ AutF(F(a)) we
have ϕ = ϕ j for some j ∈ {0, 1, . . . , p − 1}. This shows that AutF(F(a)) is Abelian in
this case.

2. If a is a root of ξp
− 1K then define ϕ j ∈ AutF(F(a)), j ∈ Z≥0, by ϕ j(a) = a j. We then

have
ϕ j ◦ ϕk(a) = a j+k = ak+ j = ϕ j ◦ ϕk(a).

Now we argue as in the preceding case to see that AutF(F(a)) is Abelian.
Thus we have a surjective homomorphism Ψ : AutF(K) → AutF(F(a)) into

an Abelian group with kernel AutF(a)(K). By Exercise 4.1.9 it follows that
AutF(K)/AutF(a)(K) is isomorphic to AutF(F(a)) which we have shown to be Abelian. ▼

The theorem now follows by applying the lemma to each element in the sequence

F = K0 ⊆ K1 ⊆ · · · ⊆ K j−1 ⊆ K j−1(b) ⊆ K j ⊆ · · · ⊆ Kn = K,

after making the assumptions given at the beginning of the proof. ■

The converse of the theorem is often true, but as we shall not need this, we stop
with what we have.
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4.6.10 Notes

We saw in Proposition 4.6.47 that the notions of algebraic and separable exten-
sions agree for fields of characteristic zero. The same is true for the finite fieldsZp of
prime characteristic p. However, there are nonfinite fields of nonzero characteristic
which possess algebraic extensions that are not separable. Such matters as this are
discussed, for example, in [Bourbaki 1990, A.V].

The proof we give of the existence of the algebraic closure (Theorem 4.6.23)
is stated by [Lang 2005] as being due to Artin. The construction, it turns out, is
more complicated than it needs to be, in some sense. In the proof, one constructs a
nested sequence

K1 ⊆ K2 ⊆ K3 ⊆ · · ·

of field extensions of F and then takes their union to obtain a field which is guar-
anteed to be algebraically closed. The algebraic closure is then the set of algebraic
elements in this big field extension. Gilmer [1968] shows that the algebraic closure
is already contained in K1.

We saw in Example 4.6.48 an example of a polynomial that is not separable.
Such a polynomial must be defined over a field that is (1) of nonzero characteristic
and (2) infinite. It turns out that the key property of a field F which ensures that
its algebraic extensions are separable is that it be “perfect,” by which we mean
that either (1) it has characteristic zero or (2) it has nonzero characteristic p and
the equation ap = b can be solved for a for every b ∈ F. Sometimes one writes this
property as Fp = F. We refer the reader to [Bourbaki 1990, A.V] for more discussion
of this.

Fundamental Theorem of Galois Theory.

Exercises

4.6.1 For a field F denote by F0 the prime field and let S ⊆ F. Show that the
smallest subfield of F containing S is F0(S).

4.6.2 Prove Proposition 4.6.2.
4.6.3 Let K be an extension of a field F and let a ∈ K be algebraic so that F(a) = F[a]

by Proposition 4.6.17. If A ∈ F[ξ], show that the multiplicative inverse of
EvK(A)(a) in F(a), if it exists, is EvK(B)(a) where B satisfies AB + CMa = 1F[ξ]

for some C ∈ F[ξ].
4.6.4 Prove Proposition 4.6.9.
4.6.5 Let F be a field, let K be an extension of F, and let a ∈ K be algebraic over F.

Show that
Ia = {A ∈ F[ξ] | EvK(A)(a) = 0K}

is a nonzero ideal of F[ξ].
4.6.6 Let F be a field and let A1, . . . ,Ak ∈ F[ξ]. Show that K is a splitting field for

(A j) j∈{1,...,k} if and only if it is a splitting field for A = A1 · · ·Ak.
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Section 4.7

Construction of the complex numbers

In this section we give a well-motivated definition of the complex numbers.
The motivation comes from some of our considerations about polynomials in Sec-
tion 4.4. Specifically, we construct the complex numbers, denoted by C, exactly
to ensure that a certain polynomial in R[ξ] splits over C. We then show that the
complex numbers defined in this way are actually the algebraic closure ofR. Thus
every polynomial in R[ξ] splits over C.

Do I need to read this section? The usual presentation of the complex numbers
is as points in a plane, with some specified rules of addition and multiplication.
This presentation leaves much to be desired, but at the end of the day, this is all
one really needs. For this reason, readers who are already familiar with complex
arithmetic can skip this section. However, for such readers who also wish to
have some understanding of what the complex numbers really are, this section is
mandatory reading. •

4.7.1 What are the complex numbers?

Since many readers will likely be familiar with the complex numbers already,
we provide a short summary of the constructions in this section since these con-
structions themselves may be unfamiliar even to readers who have had a course in
complex analysis.

When one encounters polynomials in grade school, one learns the quadratic
formula for degree two polynomials with real coefficients. Such a polynomial is
typically given the form P = aξ2 + bξ + c, where a , 0. To determine the roots, one
uses a valuable trick called “completing the square:”

aξ2 + bξ + c = (
√

aξ + b
2
√

a )2 + 4ac−b2

4a .

The roots are then found by setting the expression equal to zero, and solving for
ξ. In the expression on the right, this is straightforward, and produces the familiar
formula

ξ± =
−b ±

√

b2 − 4ac
2a

.

The interesting thing about this formula is that, when the discriminant b2
− 4ac is

negative, the polynomial has no real roots, and so is therefore irreducible over R.
One can then ask, “What is the smallest field in which all quadratic polynomials in
R[ξ] have roots?” An important simplification can be made with the following
observation. When b2

− 4ac < 0 we can write b2
− 4ac = (−1)(4ac − b2) with

4ac − b2 > 0. Since the existence of the roots of the polynomial P turn on the
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existence of a real square root of b2
− 4ac, this reduces matter of the existence of

these roots to determining a square root of−1 (this assumes some nice properties of
square roots, but let us put this discussion off until Section II-3.4). That is to say, we
need only determine the field in which the polynomial ξ2 + 1 has roots. However,
we know how to do this by virtue of Theorem 4.4.44: since ξ2 + 1 is irreducible in
R[ξ], the quotient ringR[ξ]/(ξ2 + 1) is a field. Moreover, by Proposition 4.6.25, we
know that ξ2 + 1 has a root in R[ξ]/(ξ2 + 1), and therefore obviously splits in this
field. It is this field that we defined to be C.

With the construction to this point we know that every quadratic polynomial
over R splits in C. This, however, does not imply that every polynomial over R
splits in C. Nonetheless, this is indeed the case as we show in Theorem 4.7.6,
the extremely important Fundamental Theorem of Algebra. It is interesting to
observe that one must step out of the realm of the purely algebraic to prove the
Fundamental Theorem of Algebra. However, it is fairly easily proved using the
machinery developed in Chapter 3.

The definition of C asR[ξ]/(ξ2 + 1) allows the easy derivation of the usual rules
of complex arithmetic using Proposition 4.4.42. In this sense, this definition of C
is entirely more satisfactory than the usual definition of C as being equal to R2,
and with complex multiplication seemingly coming from nowhere. Of course, one
pays a heavy price for this better understanding in that one needs to know some
ring theory to appreciate the definition.

4.7.2 Definition and basic properties of complex numbers

Now let us proceed with the formalities.

4.7.1 Definition (Complex numbers, real part, imaginary part) The set of complex
numbers, denoted by C, is the fieldR[ξ]/(ξ2 + 1). Let i = ξ+ (ξ2 + 1) ∈ R[ξ]/(ξ2 + 1)
and, following Proposition 4.4.42, denote a typical element of C by z = x + iy for
x, y ∈ R. Then x is the real part of z denoted by Re(z) and y is the imaginary part
of z denoted by Im(z). A complex number of the form x+ i0, x ∈ R, is called purely
real and a complex number of the form 0 + iy, y ∈ R, is called purely imaginary. •

Let us give the properties of addition and multiplication in the field C.

4.7.2 Proposition (Addition and multiplication in C) If z1 = x1 + iy1, z2 = x2 + iy2 ∈ C
for x1, x2,y1,y2 ∈ R, then

z1 + z2 = (x1 + x2) + i(y1 + y2), z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Also, if z = x + iy ∈ C \ {0 + i0}, x,y ∈ R, then

z−1 =
x

x2 + y2 − i
y

x2 + y2 .

Proof The formula for the sum follows directly from Proposition 4.4.42. The formula
for the product does as well, but it is simpler, and more illustrative, to prove it directly.



4.7 Construction of the complex numbers 593

Using the definition i = ξ + (ξ2 + 1) we have

(x1 + iy1)(x2 + iy2) = (x1 + y1ξ)(x2 + y2ξ) + (ξ2 + 1)

= x1x2 + (x1y2 + x2y1)ξ + y1y2ξ
2 + (ξ2 + 1)

= (x1x2 − y1y2) + (x1y2 + x2y1)ξ + (ξ2 + 1)
= (x1x2 − y1y2) + i(x1y2 + x2y1),

using the fact that ξ2 + (ξ2 + 1) = −1 + (ξ2 + 1). The final assertion is easily verified by
checking that z−1z = zz−1 = 1 + i0. ■

Note that addition and multiplication are consequences of our definition of C,
and are not included in the definition of C as is often the case. Theorem 4.4.44 also
eliminates the responsibility of showing that C is a field, as would be the case were
the operations to be simply defined.

4.7.3 Remark (i =
√
−1) Note that in the field C the element i satisfies i2+1 = 0. For this

reason it is common to see the definition of i given as i =
√
−1. By this it is really

meant that, in the field C, i is defined to be the number whose square is equal to
−1. Again, in our construction this is a consequence of the manner in which C is
built. •

Associated with the complex numbers are two useful operations.

4.7.4 Definition (Complex conjugate and complex modulus) If z = x+iy ∈ C, x, y ∈ R,
then the complex conjugate, or simply the conjugate, of z is the element z̄ ∈ C
defined by z̄ = x − iy. The complex modulus, or simply the modulus, of z is the
element |z| ∈ R≥0 given by |z| = x2 + y2. •

Note that R ⊆ C since C is a field extension of R. More precisely, we have the
injective map iR : R → C given by iR(x) = x + i0. We shall simply think of R as
being a subset ofC. We shall denote by 0 the complex zero, as well as the zero inZ,
Q, and R. We now have the following sequence of number systems that we have
thus far introduced:

Z>0 ⊆ Z ⊆ Q ⊆ R ⊆ C.

We shall have no use for extending this idea any further. Note that the complex
modulus generalises the absolute value first introduced for integers, then extended
to rational and real numbers. One might also wonder whether the order on Z>0,
which then led to orders on Z, Q, and R, also extends to C. It turns out that this
is not possible. However, this is not of particular interest to us, so we say no more
about it. In the references cited Section 4.7.5 the reader will find some discussion
of this.

The following properties of complex conjugate and complex modulus are
mostly easily proved, as the reader can verify in Exercise 4.7.2.
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4.7.5 Proposition (Properties of conjugate and modulus) For z, z1, z2 ∈ C, the follow-
ing statements hold:

(i) ¯̄z = z;
(ii) z1 + z2 = z̄1 + z̄2;
(iii) z1z2 = z̄1z̄2;

(iv) if z , 0 + i0, then z−1 = z̄−1;
(v) z̄ = z if and only if z is purely real;
(vi) z̄ = −z if and only if z is purely imaginary
(vii) |z̄| = |z|;
(viii) |z| = 0 if and only if z = 0 + i0;
(ix) |z1 + z2| ≤ |z1| + |z2| (triangle inequality);
(x) |z1 − z2| ≥

∣∣∣|z1| − |z2|
∣∣∣;

(xi) |z1z2| = |z1||z2|;
(xii) if z , 0 + i0, then |z−1

| = |z|−1.

That the triangle inequality holds for the complex modulus allows us to extend
much of Chapter 3 to C-valued functions. This will be discussed in detail in
Section II-3.2, but we will use some of these ideas in our proof of Theorem 4.7.6.

4.7.3 Polynomials over R and C

In this section we present some important properties of polynomials with coef-
ficients in eitherR or C. The most important part in this development is played by
the following theorem. This theorem completes the story outlined in Section 4.7.1.

4.7.6 Theorem (Fundamental Theorem of Algebra) The field C is algebraically closed.
Proof Note that to show that C is algebraically closed, it suffices to show that if
A ∈ C[ξ] is not constant, then A has a root. Indeed, if this is so, and if A ∈ C[ξ], then
by Proposition 4.4.25 we can write A = (ξ − z1)A2 for z1 ∈ C and for A1 ∈ C[ξ]. It then
follows, since A2 has a root, that A2 = (ξ − z2)A3 for some z2 ∈ C and A3 ∈ C[ξ]. This
can clearly be continued until A is written as a product of degree one polynomials.
Thus we shall show in the proof that every polynomial over C that is not constant has
a root.

Fix A = akξ
k + · · · + a1ξ + a0 ∈ C[ξ] with ak , 0. If a0 = 0, then A immediately has

zero as a root. Thus we suppose that a0 , 0. For notational convenience let us agree to
denote A(z) = EvC(A)(z). The proof will consist largely of a series of lemmata.

1 Lemma There exists R > 0 such that, if |z| ≥ R, then |A(z)| ≥ 1
2 |ak||z|k.

Proof Let M = |a0| + |a1| + · · · + |ak−1|. If M = 0 then A = akzk so that |A(z)| > 1
2 |ak||z|k.

Thus the lemma holds in this case. So we suppose that M > 0. If |z| ≥ 1 then |z|k ≥ |z|.
Therefore, if |z| ≥ 1,

|ak− j|

|z| j
≤
|ak− j|

|z|
.



4.7 Construction of the complex numbers 595

Thus, using the triangle inequality,∣∣∣∣−a0

zk
−

a1

zk−1
− · · · −

ak−1

z

∣∣∣∣ ≤ ∣∣∣∣a0

zk

∣∣∣∣ + ∣∣∣∣ a1

zk−1

∣∣∣∣ + · · · + ∣∣∣∣ak−1

z

∣∣∣∣
≤

M
|z|
.

Now using part (x) of Proposition 4.7.5,

|A(z)| =
∣∣∣∣zk

(
ak −

(
−

a0

zk
−

a1

zk−1
− · · · −

ak−1

z

))∣∣∣∣
≥ |z|k

∣∣∣∣|ak| −
M
|z|

∣∣∣∣,
again provided that |z| ≥ 1. If |z| ≥ 2M

|ak |
then M

|z| ≤
|z|
2 , and so the result follows by taking

R = max{1, 2M
|ak |
}. ▼

2 Lemma There exists r > 0 such that, if |z| ≥ r, then |A(z)| ≥ (|a0| + 1)2.

Proof Let R > 0 be chosen as in Lemma 1. If |z| ≥ max{1, 2(|a0|+1)2

|ak |
} then

|A(z)| ≥ 1
2 |ak||z|k ≥ 1

2 |ak||z|

≥
2(|a0| + 1)2

|ak|

|ak|

2
= (|a0| + 1)2.

Thus the result follows by taking r = max{1, 2(|a0|+1)2

|ak |
}. ▼

3 Lemma There exists z0 ∈ C such that |A(z)| ≥ |A(z0)| for every z ∈ C.

Proof Choose r > 0 as in Lemma 2. Then, for |z| ≥ r we have

|A(z)|2 ≥ |A(z)| ≥ (|a0| + 1)2
≥ |a0|

2 = |A(0)|2.

Thus |A(0)| ≤ |A(z)| for every z satisfying |z| ≥ r. Therefore, it suffices to find a point
z0 such that |z0| ≤ r and such that |A(z0)| ≤ |A(z)| for all |z| ≤ r. However, since the set
{z | |z| ≤ r} is compact, follows from the generalisation of Theorem 3.1.23 which holds
for R-valued functions on R; the generalisation is stated as Theorem II-1.3.32. ▼

4 Lemma If z0 ∈ C satisfies |A(z0)| , 0, then, for ϵ > 0, there exists z ∈ C such that
(i) |z − z0| < ϵ and
(ii) |A(z)| < |A(z0)|.

Proof For w ∈ C use the Binomial Theorem to write

A(z0 + w) = bkwk + · · · + b1w + b0

for some b0, b1, . . . , bk ∈ C. Let l ∈ Z>0 be the smallest number such that bl , 0; since
bk = ak (from the Binomial Theorem) this definition of l makes sense. Now define
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w0 ∈ C such that wl
0 = −

b0
bl

; such a number w0 exists by Proposition II-3.1.1. Now
define g : C→ R≥0 by

g(h) =
∣∣∣h−l(A(z0 + hw0) − b0 − blwl

0hl)
∣∣∣2 = ∣∣∣bl+1wl+1

0 h + · · · + bkwk
0hk−l

∣∣∣2.
Note that this is a continuous function of h and that g(0+ i0) = 0. Now choose h = x+ i0
such that
1. x ∈ (0, 1),
2. |xw0| < ϵ, and
3. |g(x + i0)| < |b0|.
Thus condition (i) is satisfied for z = z0 + hw0. Moreover,

|A(z0)| = |b0| = xl
|b0| + (1 − xl)|b0| = xl

|b0| + |b0 + blwl
0xl
|

≥ xl
|g(x + i0)| + |b0 + blwl

0xl
|

= |A(z0 + xw0) − b0 − blwl
0xl
| + |b0 + blwl

0xl
|

≥ |A(z0 + xw0) − b0 − blwl
0xl + b0 + blwl

0xl
|

= |A(z0 + xw0)| = |A(z)|,

giving the lemma. ▼

Now we complete the proof of the theorem. If A has no roots then it must hold
that |A(z)| > 0 for every z ∈ C. By Lemma 3 there exists z0 such that

0 < |A(z0)| = inf{|A(z)| | z ∈ C}. (4.24)

By Lemma 4 it then follows that any neighbourhood of z0 contains a point z such that
|A(z)| < |A(z0)|. But this contradicts (4.24). ■

As a consequence of the theorem we have the following useful result.

4.7.7 Corollary (C is the algebraic closure of R) The field of complex numbers is the
algebraic closure of the field of real numbers.

Proof Since we know thatC is an algebraically closed extension ofRby Theorem 4.7.6,
it remains to show that all elements ofC are algebraic overR. To see this, let a+ib ∈ C for
a, b ∈ R. One readily checks that a+ ib is a root of the real polynomial ξ2

−2aξ+ (a2+b2),
giving the result. ■

Now we know that the only irreducible polynomials over C are polynomials of
degree one. Let us examine the consequences of this for polynomials over R. A
simple initial observation is the following.

4.7.8 Proposition (Structure of roots for elements of R[ξ]) If r ∈ C is a root of A ∈
R[ξ] ⊆ C[ξ], then r̄ is also a root of A. Moreover, the multiplicities of the roots r and r̄
agree.
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Proof Write A = akξ
k + · · · + a1ξ + a0 with ak , 0. Since r is a root for A we have

akrk + · · · + aar + a0 = 0.

Taking the complex conjugate of this equation, and using Proposition 4.7.5, gives

akr̄k + · · · + a1r̄ + a0 = 0,

thus showing that r̄ is a root of A. To show that the multiplicities of r and r̄ are the
same, we proceed by induction on the multiplicity of r. If r has multiplicity 1 then we
have A = (ξ − r)(ξ − r̄)B where r is not a root of B. Therefore, r̄ is also not a root of B
since ¯̄r = r. Now suppose that the whenever the multiplicity of r is equal to k, then so
too is the multiplicity of r̄ equal to k. Let A be a polynomial for which r is a root of
multiplicity k + 1 and write

A = (ξ − r)(ξ − r̄)B.

Then r is a root of multiplicity k for B. We claim that B ∈ R[ξ]. Indeed, using the
Division Algorithm in R[ξ] we can write

A = Q(ξ − r)(ξ − r̄) + R

for Q,R ∈ R[ξ] with deg(R) < 2. We can also use the Division Algorithm in C[ξ] to
write

A = Q′(ξ − r)(ξ − r̄) + R′

for Q′,R′ ∈ C[ξ] with deg(R′) < 2. Since the quotient and remainder from the Division
Algorithm in C[ξ] are unique by Corollary 4.4.15, we must have Q′ = Q and R′ = R.
It also follows that B = Q and R = 0R[ξ], so showing that B ∈ R[ξ]. Now, by the
induction hypothesis, r̄ is a root of B of multiplicity k, so showing that r̄ is a root of A
of multiplicity k + 1. ■

A consequence of the root structure of polynomials over R is the following
characterisation of irreducible polynomials over R.

4.7.9 Theorem (Irreducible elements of R[ξ]) A polynomial A ∈ R[ξ] is irreducible if and
only if either

(i) A = a1ξ + a0 for a0, a1 ∈ R with a1 , 0, or
(ii) A = a2ξ2 + a1ξ + a0 with a0, a1, a2 ∈ R satisfying

(a) a2 , 0 and
(b) a2

1 − 4a2a0 < 0.
Proof First note that any polynomials inR[ξ] described by one of the two conditions in
the theorem statement is irreducible. This is trivial for condition (i), and for condition (ii)
it follows from our discussion of the quadratic equation in Section 4.7.1.

Now suppose that A is irreducible. Using Proposition 4.7.8 and thinking of A as
an element of C[ξ] we can write

A = a
k∏

j=1

((ξ − ρ j)(ξ − ρ̄ j))
m∏

l=1

(ξ − rl)
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for a ∈ R, ρ j ∈ C \R, j ∈ {1, . . . , k}, and for rl ∈ R, l ∈ {1, . . . ,m}. Note that

(ξ − ρ j)(ξ − ρ̄ j) = ξ2
− 2 Re(ρ j) + |ρ j|

2
∈ R[ξ].

Thus A is irreducible if and only if either k = 1 and l = 0 or if k = 0 and l = 1. The latter
case is condition (i) of the theorem statement. For the former case we have a0 = a|ρ1|

2,
a1 = −2a Re(ρ1), and a2 = a. Therefore

a2
1 − 4a2a0 = 4a2 Re(ρ1)2

− 4a2
|ρ1|

2 < 0

since Re(ρ1)2 < |ρ1|
2. This then gives condition (ii). ■

4.7.4 Solving for roots

As we saw in Section 4.7.1, there is a formula for determining the roots of a
quadratic polynomial inR[ξ]. There are also similar formulae for cubic and quartic
polynomials. Though these are messy, and are only to be used in emergencies, let
us give these formulae in order to make more interesting the natural question to
follow. Each of the following two theorems can be proved by simply substituting
the expressions for the roots into the polynomial, and by brute force checking that
they are indeed roots. In the theorems, we consider only monic polynomials, as
this can be done without loss of generality.

4.7.10 Theorem (Roots of a cubic polynomial) If A = ξ3 + a2ξ2 + a1ξ + a0 ∈ R[ξ], then
the roots of A are given by

r1 = −
1
3a2 + (s + t),

r2 = −
1
3a2 −

1
2 (s + t) + 1

2 i
√

3(s − t),

r3 = −
1
3a2 −

1
2 (s + t) − 1

2 i
√

3(s − t),

where
s = (r +

√

d)1/3, t = (r −
√

d)1/3,

and
d = q3 + r2, q = 1

9 (3a1 − a2
2), r = 1

54 (9a1a2 − 27a0 − 2a3
3).

The formula for the quartic relies on finding a real root of a cubic polynomial.
Note that any cubic polynomial in R[ξ] always has a real root (why?).

4.7.11 Theorem (Roots of a quartic polynomial) If A = ξ4+a3ξ3+a2ξ2+a1ξ+a0 ∈ R[ξ],
then the roots of A are given by

r1 = −
1
4a3 +

1
2r + 1

2d,

r2 = −
1
4a3 +

1
2r − 1

2d,

r3 = −
1
4a3 −

1
2r + 1

2e,

r4 = −
1
4a3 −

1
2r − 1

2e,
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where

r = ( 1
4a2

3 − a2 + s)1/2,

d =

(3
4a2

3 − r2
− 2a2 +

1
4r−1(4a2a3 − 8a1 − a3

3))1/2, r , 0,
(3

4a2
3 − 2a2 + 2(s2

− 4a0)1/2)1/2, r = 0,

e =

(3
4a2

3 − r2
− 2a2 −

1
4r−1(4a2a3 − 8a1 − a3

3))1/2, r , 0,
(3

4a2
3 − 2a2 − 2(s2

− 4a0)1/2)1/2, r = 0,

and where s is any real root of the cubic polynomial

ξ3
− a2ξ

2 + (a1a3 − 4a0)ξ + 4(a0a2 − a2
1 − a0a2

3).

The point of the above two theorems, other than that it must have been hard
work to come up with the formulae for the roots, is that there are closed-form
expressions for the roots of complex polynomials that are quadratic, cubic, and
quartic.

In the preceding results we saw that there are formulae for the roots of quadratic,
cubic, and quartic polynomials over R. This then raises the question, “For a
polynomial inR[ξ] of arbitrary degree, is there an expression for the roots involving
addition, multiplication, and rational powers?” The answer is, “No, for there is no
such formula even for quintic polynomials.” In this section we give the proof of
this fact. The main point of this is that finding the roots of polynomial equations is
hard, and one must typically resort to numerical methods.

Let us state the theorem of Abel and Ruffini.5 The theorem states that some
quintic polynomials are not solvable by radicals. Obviously, some quintic polyno-
mials are solvable by radicals (e.g., ξ5

−a), so one must make sort of assumptions on
the polynomial to ensure that it cannot be solved by radicals. The easiest of these
is the following. Let r1 ∈ R be transcendental. The existence of transcendental
numbers is ensured since the set of algebraic numbers are countable and the set of
real numbers are uncountable. Now let r2 be transcendental overQ(r1). Again, the
existence of r2 follows by a countability argument. Since Q(r1) consists of rational
functions in r1, this is a countable Q-vector space (why?). One can proceed in this
way to get r1, r2, r3, r4, r5 ∈ R such that r j is transcendental over Q(r1, . . . , r j−1) for
j ∈ {2, 3, 4, 5}. Let us call five such real numbers sequentially transcendental.

4.7.12 Theorem (Unsolvability of quintics by radicals) Let a0, a1, a2, a3, a4 ∈ R be such
that the polynomial

A = ξ5 + a4ξ
4 + a3ξ

3 + a3ξ
2 + a1ξ + a0

5Paolo Ruffini (1765–1822) was an Italian mathematician whose main mathematical contribution
was the theorem given here. It can be argued that Ruffini was the first person to believe that the
quintic equation cannot be solved by radicals. The mood in mathematics at the time of Ruffini’s
work was that quintics could be solved by radicals, so the work was largely disregarded.
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has roots r1, r2, r3, r4, r5 ∈ R that are sequentially transcendental. Then any radical exten-
sion of Q(a0, a1, a2, a3, a4) cannot contain these roots. In particular, A is not solvable by
radicals.

Proof We first claim that S5 is not solvable. Let

G0 ⊆ G1 · · · ⊆ Gk = S5

be a nested sequence of normal subgroups such that G j/G j−1 is Abelian for j ∈ {1, . . . , k}.
By Exercise 4.1.9 this means that G j−1 is the kernel of the homomorphism ϕ j : G j →

G j/G j−1 onto an Abelian group. Therefore, if a, b ∈ G j then b−1a−1ba ∈ G j−1 since

ϕ j(b−1a−1ba) = ϕ j(b−1)ϕ j(a−1)ϕ(b)ϕ(a) = ϕ j(b−1)ϕ j(b)ϕ j(a−1)ϕ j(a)
= ϕ j(aG j) = eG j/G j−1 .

A 3-cycle in S5 is a permutation that “cycles” three elements, say { j1, j2, j3} in the
set {1, 2, 3, 4, 5}. Thus a 3-cycle maps ( j1, j2, j3) to ( j3, j1, j2) and leaves the other two
elements in {1, 2, 3, 4, 5} fixed. We shall simply denote such a 3-cycle by ( j1, j2, j3). We
claim that each of the subgroups G0, . . . ,Gk contains all 3-cycles. This is clear for Gk,
so suppose it true for G j, . . . ,Gk. Let σ be a three cycle ( j1, j2, j3). Now note that

( j1, j2, j3) = ( j5, j1, j3)−1
◦ ( j3, j5, j2)−1

◦ ( j5, j1, j3) ◦ ( j3, j5, j2),

where j4 and j5 are distinct from j1, j2, j3. One may verify this by direct computation.
Since ( j5, j1, j3), ( j3, j5, j2) ∈ G j by the induction hypothesis, it follows that ( j1, j2, j3) ∈
G j−1. This precludes G0 from being the trivial group, and so precludes S5 from being
solvable.

Now let K = Q(r1, r2, r3, r4, r5). Note that

A = (ξ − r1)(ξ − r2)(ξ − r3)(ξ − r4)(ξ − r5) ∈ K[ξ],

and so we have

a0 = − r1r2r3r4r5,

a1 = r1r2r3r4 + r1r2r3r5 + r1r2r4r5 + r1r3r4r5 + r2r3r4r5,

a2 = − r1r2r3 − r1r2r4 − r1r3r4 − r2r3r4 − r1r2r5 − r1r3r5

− r2r3r5 − r1r4r5 − r2r4r5 − r3r4r5,

a3 = r1r2 + r1r3 + r2r3 + r1r4 + r2r4 + r3r4 + r1r5 + r2r5 + r3r5 + r4r5,

a4 = − r1 − r2 − r3 − r4 − r5.

Let σ ∈ S5 and note that σ permutes the roots {r1, r2, r3, r4, r5}. Therefore, by Theo-
rem 4.6.6we can think of σ as defining an element of AutQ(K). Thus there are at least
as many elements of AutQ(K) as elements of S5. However, since K is a splitting field
for A it follows from Proposition 4.6.28 that AutQ(K) has at most as many elements as
S5. This shows that AutQ(K) is isomorphic to S5 and so is not solvable. Thus K is not
a radical extension, and so cannot be contained in any radical extension. ■
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4.7.5 Notes

Reference for non-order on C.
Solution by Hermite of quintic using theta functions.
Quintic proof follows [Stillwell 1994].

Exercises

4.7.1 Let A ∈ R[ξ] be an irreducible polynomial of degree 2. Show that R[ξ]/(A)
is a field isomorphic to C.

4.7.2 Prove Proposition 4.7.5.
4.7.3 Give the possible locations in C for the five roots of a quintic polynomial

over R.
4.7.4 Show that if p ∈ R[ξ] is irreducible, then either p(ξ) = ξ − a for a ∈ R or

p(ξ) = (ξ − a)2 + b2 where a, b ∈ R with b , 0.
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Section 4.8

Modules

In this section we introduce a generalisation of vector spaces to allow scalars
which lie in rings, and not just fields. The definitions in this section, for the most
part, exactly mirror those for vector spaces. Indeed, a logically proper treatment
would be to concern ourselves primarily with module theory, thinking of vector
spaces merely as examples; this is in fact the way this material is typically treated
at the graduate level in mathematics. However, since we wish to not put off the
reader who only desires an understanding of the vector space theory, we cover
vector space theory and module theory independently, with the cost merely being
extra pages. We also, perhaps, benefit the more novice reader who wishes to learn
elementary module theory by first presently a thorough account of the simpler,
but related, vector space theory. We also assume that the reader of this section has
read Section 4.5, so we omit some discussion and examples that might otherwise
appear in our treatment.

While most of the constructions surrounding modules look rather the same as
those for vector spaces, the reader should be aware: module theory is significantly
more complicated than vector space theory, and it will not generally be true that the
results from the Sections 4.5.1–4.5.6 will apply to modules. For example, modules
do not necessarily possess bases, and so all results that rely on bases, and there are
many of these, will not have direct generalisations to modules.

Do I need to read this section? This section can be bypassed on a first reading,
and then read when the material is needed in Section 5.8. •

4.8.1 Definitions and basic properties

We proceed with the definitions.

4.8.1 Definition (Module) Let R be a ring. A left module (resp. right module) over R,
or a left R-module (resp. right R-module), is a set M equipped with two oper-
ations: (1) M-addition, denoted by M × M ∋ (x1, x2) 7→ x1 + x2 ∈ M, and (2) R-
multiplication, denoted by R ×M ∋ (r, x) 7→ rx ∈ M (resp. M × R ∋ (x, r) 7→ xr ∈ M).
The operation of M-addition must satisfy the rules

(i) x1 + x2 = x2 + x1, x1, x2 ∈ M (commutativity),
(ii) x1 + (x2 + x3) = (x1 + x2) + x3, x1, x2, x3 ∈ M (associativity),
(iii) there exists an element 0M ∈ M with the property that x + 0M = x for every

x ∈ M (zero element), and
(iv) for every x ∈ M, there exists an element −x ∈ M such that x + (−x) = 0M

(negative element),
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and R-multiplication must satisfy the rules
(v) r1(r2x) = (r1 · r2)x (resp. (xr1)r2 = x(r1 · r2)), r1, r2 ∈ R, x ∈ M (associativity),
(vi) r(x1+x2) = rx1+rx2 (resp. (x1+x2)r = x1r+x2r), r ∈ R, x1, x2 ∈ M (distributivity),

and
(vii) (r1 + r2)x = r1x + r2x (x(r1 + r2) = xr1 + xr2), r1, r2 ∈ R, x ∈ M (distributivity

again).
If R is a unit ring and if R-multiplication additionally satisfies
(viii) 1Rx = x (resp. x1R = x), x ∈ M,
then M is a left unity R-module (resp. right unity R-module). •

We shall principally be interested in left modules, and will often refer to a “left
module” as simply a “module,” always being sure to explicitly say “right module”
when this is what is meant. Moreover, if the ring R is commutative (as many of
the rings we shall encounter are), then the notions of a left R-module and a right
R-module are only distinguished by the notation of writing the ring element on
the left or right side, respectively, of the module element. That is to say, if R is a
commutative ring and M is a left R-module, then there is a natural right R-module
defined simply by using R-multiplication (x, r) 7→ rx.

Let us give some simple examples of modules.

4.8.2 Examples (Modules)
1. Let R be a ring. A trivial left R-module consists of one element: M = {x}.

the operations of M-addition and R multiplication are defined in the only way
possible:

x + x = x, rx = x.

One can verify that, if one takes the zero vector to be x, then this indeed gives the
structure of a left R-module. Since there is essentially only one trivial R-module,
it is often denoted by {0}.

2. We claim that if G is an Abelian group, then it has the structure of a module
over Z. Indeed, one can define addition and multiplication by

g1 + g2 = g1 · g2, jg = g j

for g, g1, g2 ∈ G and for j ∈ Z, and where we use the notation g j introduced
preceding Proposition 4.1.7. That this defines a (left or right, it matters not
which since Z is commutative) Z-module follows from the properties of the
map ( j, g) 7→ g j as given in Proposition 4.1.7.
Note that, since aZ-module is an Abelian group using addition, it immediately
follows that there is a 1–1 correspondence between Abelian groups and Z-
modules.

3. Let R be a ring and let S ⊆ R be a subring. Then R is a left S-module if we
define addition as addition in R and multiplication by (s, r) 7→ sr for s ∈ S and
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r ∈ R. If we define multiplication instead by (r, s) 7→ rs, then this gives R the
structure of a right S-module.

4. If R is a commutative ring and if I is an ideal of R, then one can verify that I is,
in fact, an R-module.
Note that this is an example having no interesting analogue for vector spaces.
Indeed, if F is a field, then the only ideals of F are {0F} and F. It is also true
that, thinking of F as an F-vector space, the only subsets of F that are subspaces
are {0F} and F. In particular, there is no nontrivial strict subset of F that is a
subspace of F.
For rings, however, the story is indeed different. As a concrete example, con-
sider the ideal (ξ2 + 1) ⊆ R[ξ] generated by the polynomial ξ2 + 1. This ideal is
not equal toR[ξ] by Proposition 4.4.42. However, (ξ2 + 1) is a module over the
ring R[ξ].

5. Let M be an Abelian group and let R be a ring, and define R-multiplication
by (r, x) 7→ eM. One can then verify that, if M-addition is taken to be group
multiplication in M, then this gives the structure of a left R-module. Note that,
even if R is a unit ring, it is not the case that M is a unity module, unless M = {eM}.

6. For a ring R and for n ∈ Z>0 we let Rn denote the n-fold Cartesian product of R
with itself. We define Rn-addition and R-multiplication in Rn just as we did for
the vector space Fn in Example 4.5.2–2:

(r1, . . . , rn) + (s1, . . . , sn) = (r1 + s1, . . . , rn + sn), r(r1, . . . , rn) = (rr1, . . . , rrn).

This makes Rn into a left R-module. If we instead defined R-multiplication by

(r1, . . . , rn)r = (r1r, . . . , rnr),

then we have a right R-module.
7. Let R be a ring, let S be a set, and let RS be the set of maps from S to R. We

define sum and multiplication in RS by

( f + g)(x) = f (x) + g(x), (r f )(x) = r( f (x))

for f , g ∈ RS and for r ∈ R. These make RS into a left R-module. One can also
define multiplication by ( f r)(x) = ( f (x))r to give a right R-module.

8. If R is a commutative ring and if M is a left R-module, then M is also naturally
a right R-module with multiplication by ring elements defined by xr = rx for
r ∈ R and x ∈ M. One can check, using commutativity of the ring, this does
indeed define a right R-module structure. •

Certain of the properties of vector space operations also apply to modules.
However, not all do, so we ask the reader to compare the following result with
Proposition 4.5.3, and also to refer to Exercise 4.8.1 for further discussion.
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4.8.3 Proposition (Properties of modules) Let R be a field and let M be a left R-module.
The following statements hold:

(i) there exists exactly one element 0M ∈ M such that x + 0M = x for all x ∈ M;
(ii) for each x ∈ M there exists exactly one element −x ∈ M such that x + (−x) = 0M;
(iii) r0M = 0M for all r ∈ R;
(iv) 0Rv = 0M for each x ∈ M;
(v) r(−x) = (−r)x = −(rx) for all r ∈ R and x ∈ M.

Proof This follows, mutatis mutandis, the proof of Proposition 4.5.3. ■

For modules we have the analogue of linear maps between vector spaces.

4.8.4 Definition (Module homomorphism) Let R be a ring and let M and N be a left
R-modules. An R-homomorphism of M and N is a map L : M → N having the
properties that

(i) L(x1 + x2) = L(x1) + L(x2) for every x1, x2 ∈ M and
(ii) L(rx) = rL(x) for every r ∈ R and x ∈ M.

An R-homomorphism L is an R-monomorphism (resp. R-epimorphism, R-
isomorphism) if L is injective (resp. surjective, bijective). If there exists an iso-
morphism between left R-modules M and N, then M and N are R-isomorphic. An
R-homomorphism from M to itself is called an R-endomorphism of M. The set
of R-homomorphisms from M to N is denoted by HomR(M; N), and the set of R-
endomorphisms of M is denoted by EndR(M). •

4.8.5 Notation (“Linear map” versus “homomorphism”) We shall reserve the term
“linear map” for a homomorphism of vector spaces. The term “homomorphism”
may be used for both vector spaces and modules. •

4.8.2 Submodules

Associated with the concept of a module are various concepts that mirror those
for vector spaces. The following is one such.

4.8.6 Definition (Submodule) Let R be a ring. A subset N of a left (resp. right) R-module
M is a submodule if x1 + x2 ∈ N for all x1, x2 ∈ N, and if rx ∈ N (resp. xr ∈ N) for
every r ∈ R and for every x ∈ N. •

Of course, it holds that a submodule is itself a module.

4.8.7 Proposition (A submodule is a module) Let R be a ring. A nonempty subset N ⊆ M
of an R-module M is a (left or right) submodule if and only if N is a (left or right) module
using the operations of M-addition and R-multiplication in M, restricted to N.

Proof The proof follows that for vector spaces, and the proof in this case is Exer-
cise 4.5.11. ■

As with linear maps, one can define the notions of kernel and image of a
homomorphism, and these are submodules.
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4.8.8 Definition (Kernel and image of a module homomorphism) Let R be a ring, let
N and M be (left or right) R-modules, and let L ∈ HomR(N; M).

(i) The image of L is image(L) = {L(y) | y ∈ N}.
(ii) The kernel of L is ker(L) = {y ∈ N | L(y) = 0M}. •

4.8.9 Proposition (Kernel and image are submodules) Let R be a ring, let N and M
be (left or right) R-modules, and let L ∈ HomR(N; M). Then image(L) and ker(L) are
submodules of M and N, respectively.

Proof This follows as in the vector space case, and the proof in this case is Exer-
cise 4.5.16. ■

One can also form linear combinations from subsets of a module, and the
resulting set of linear combinations is a submodule, in complete analogy to the
situation with vector spaces.

4.8.10 Definition (Linear combination) Let R be a ring and let M be an R-module. If
S ⊆ M is nonempty, a linear combination from S is an element of M of the form

c1x1 + · · · + ckxk,

where c1, . . . , ck ∈ R and x1, . . . , xk ∈ M. We call c1, . . . , ck the coefficients in the linear
combination. •

4.8.11 Proposition (The set of linear combinations is a submodule) If R is a ring, if M
is a (left or right) R-module, and if S ⊆ M is nonempty, then the set of linear combinations
from S is a submodule of M.

Proof Follows the proof of Proposition 4.5.11, mutatis mutandis. ■

Note that we did not state in the preceding result that the set of linear combi-
nations from a set S is the smallest submodule containing S, as we did with vector
spaces in Proposition 4.5.11. Indeed, this is not true. What is true is the following
result, which recalls Notation 4.1.8.

4.8.12 Proposition If R is a ring, if M is a left (resp. right) R-module, and if S ⊆ M is nonempty,
then the smallest submodule of M containing S is the subset given by k∑

j=1

rjxj +

m∑
l=1

klyl

∣∣∣∣∣∣∣ k,m ∈ Z>0, r1, . . . , rk ∈ R,

y1, . . . ,ym ∈ Z, x1, . . . , xk,y1, . . . ,ym ∈ S

 (4.25)
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(resp. k∑
j=1

xjrj +

m∑
l=1

klyl

∣∣∣∣∣∣∣ k,m ∈ Z>0, r1, . . . , rk ∈ R,

y1, . . . ,ym ∈ Z, x1, . . . , xk,y1, . . . ,ym ∈ S

 .


Moreover, if R is a unit ring and if M is a unity module, then the smallest submodule of
M containing S is equal to the set of linear combinations from S.

Proof We shall give the proof only for left modules, the proof for right modules
differing only in notation.

Let NS be the set defined in (4.25). We leave it to the reader to straightforwardly
check that NS is a submodule. Then suppose that N is a submodule of M containing
S. Since N is a submodule, for k ∈ Z and x ∈ S we have kx ∈ N, and for r ∈ R and
x ∈ S we have rx ∈ N. It then immediately follows, again since N is a submodule, that
NS ⊆ N. Thus NS is contained in any submodule containing S, and so is the smallest
such submodule.

If R is a unit ring and M is unitary, then, for k ∈ Z and x ∈ S, we have kx = k(1Rx) =
(k · 1R)x. This shows that NS is contained in the set of linear combinations from S. ■

With this characterisation, the following definition admits a ore or less explicit
description.

4.8.13 Definition (Submodule generated by a set) If R is a ring, if M is a (left or right)
R-module, and if S ⊆ M is nonempty, then the submodule generated by S is the
smallest submodule of M containing S. This submodule is denoted by spanR(S). •

Let us give an example that illustrates how vector spaces and modules can differ
with regard to the notion of subspaces and submodules generated by sets.

4.8.14 Example (Submodule generated by a set) Consider the ring R = 2Z of even
integers, and note that M = Z is a left R-module (see Example 4.8.2–3). Let N
be the submodule of M generated by {1}. Then we see that the odd integers are
elements of N, but are not of form rx for r ∈ R and x ∈ S. That is, there are elements
in the submodule generated by S that are not linear combinations of elements of
S. •

4.8.3 Linear independence, basis, and rank

To this point, the definitions and simple results, with minor and essentially
uninteresting exceptions, have exactly mirrored the development of vector spaces
in Section 4.5. In this section we see one of the principal ways in which modules
differ from vector spaces: they do not generally possess bases. This lies at the heart
of a great deal of why module theory is more difficult than vector space theory.
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Nonetheless, one can define the concept of a basis for a module, so let us do this.
We first define the notion of linear independence.

4.8.15 Definition (Linearly independent) Let R be a ring and let M be a left (resp. right)
R-module.

(i) A finite family (x1, . . . , xk) of elements of M is linearly independent if the
equality

c1x1 + · · · + ckxk = 0M (resp. x1c1 + · · · + xkck = 0M), c1, . . . , ck ∈ R,

is satisfied only if c1 = · · · = ck = 0R.
(ii) A finite set S = {x j | j ∈ {1, . . . , k}} is linearly independent if the finite family

corresponding to the set is linearly independent.
(iii) An nonempty family (va)a∈A of vectors in V is linearly independent if every

finite subfamily of (va)a∈A is linearly independent.
(iv) A nonempty subset S ⊆ M is linearly independent if every nonempty finite

subset of S is linearly independent.
(v) A nonempty subset S ⊆ M is linearly dependent if it is not linearly indepen-

dent. •

As we did for vector spaces in Proposition 4.5.17, one can show that the two
possibly conflicting notions of linear independence of finite sets of vectors are
actually not in conflict.

We have the following properties of linearly independent and linearly depen-
dent sets.

4.8.16 Proposition (Properties of linearly (in)dependent sets) Let R be a ring, let M be
a left (resp. right) R-module, and let S ⊆ M be nonempty. Then the following statements
hold:

(i) if S = {x} for some x ∈ M, then S is linearly independent if and only if x , 0M;
(ii) if 0M ∈ S then S is linearly dependent;
(iii) if S is linearly independent and if T ⊆ S is nonempty, then T is linearly independent;
(iv) if S is linearly dependent and if T ⊆ M, then S ∪ T is linearly dependent;
(v) if S is linearly independent, if {x1, . . . , xk} ⊆ S, and if

r1x1 + · · · + rkxk = s1x1 + · · · + skxk

(resp. x1r1 + · · · + xkrk = x1s1 + · · · + xksk)

for r,1 . . . , rk, s1, . . . , sk ∈ R, then rj = sj, j ∈ {1, . . . ,k}.
Proof This follows along the same lines as the proof of Proposition 4.5.19. ■

Note that we did not include part (vi) from Proposition 4.5.19 in the preceding
result. This is because it is false, as the following example shows.
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4.8.17 Example (A counterexample on linear independence) Let R = Z and let M = Z2.
Let S = {(1, 0), (0, 2)} and take x = (0, 1). Then x < spanZ(S), but we have

(0, 2) − 2(0, 1) = (0, 0),

giving a linear combination in S ∪ {x} that sums to the zero vector, but whose
coefficients are nonzero. Thus S is linearly independent, x < spanR(S), but S ∪ {x}
is linearly dependent. This situation cannot happen for vector spaces. •

We may now define the notion of a basis for a module in exactly the same way
as we did for a vector space.

4.8.18 Definition (Basis for a module) Let R be a ring and let M be a left module over R.
A basis for M is a subsetB of M with the properties that

(i) B is linearly independent and
(ii) spanR(B ) = M.

A module which possesses a basis is a free module. •

First let us settle that the analogue of Theorem 4.5.22 for vector spaces does not
hold for modules.

4.8.19 Example (A module that is not free) Let R = Z6 = Z/6Z and take M to be the
ideal generated by 2 + 6Z. As we indicated in Example 4.8.2–4, an ideal in a ring
is a module. In this case we may easily verify that

M = {0 + 6Z, 2 + 6Z, 4 + 6Z}.

We claim that M has no basis. Indeed, we have

(3 + 6Z)(2 + 6Z) = 0 + 6Z,
(3 + 6Z)(2 + 6Z) = 0 + 6Z,

(1 + 6Z)(2 + 6Z) + (2 + 6Z)(4 + 6Z) = 0 + 6Z,

which shows that, for any finite subset of M not containing the zero element,
there exists a set of nonzero coefficients in Z6 for which the corresponding linear
combination is zero. In particular, any finite subset of M is linearly dependent, and
so M cannot be free.

Furthermore, note that Z6 is itself a Z6-module with basis 1 + 6Z. Thus our
example also shows that, even when a module possesses a basis, it can have
submodules that do not possess a basis. •

Another pitfall of which to be wary is that submodules of a free module may
not be free. An example illustrates this.
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4.8.20 Example (A free module with a nonfree submodule) We let R = Z × Z and
define a ring structure on R by defining addition and scalar multiplication by

( j1, k1) + ( j2, k2) = ( j1 + j2, k1 + k2), ( j1, k1) · ( j2, k2) = ( j1 j2, k1k2),

respectively. We leave it to the reader to verify straightforwardly that these opera-
tions do indeed make R into a commutative unit ring with identity (1, 1). Thus R
is a module over itself (Example 4.8.2–3). Moreover, the module is free as {(1, 1)}
is easily verified to be a basis.

Now consider the subset N = Z × {0} ⊆ R. One can easily verify that this is a
submodule. However, if ( j, 0) ∈ N then (0, 1) · ( j, 0) = (0, 0), whence the set {( j, 0)}
is linearly dependent. Therefore, every subset of N is linearly dependent, and this
prohibits N from being free. •

Since modules do not always possess a basis, one might try to relax the notion
of basis by not requiring the set to be linearly independent. Doing so gives the
following notion.

4.8.21 Definition (Generators for a module) If R is a ring and if M is a (left or right)
R-module, a set of generators for M is a subset G ⊆ M such that spanR(G ) = M. The
module M is finitely generated if it possesses a finite set of generators. •

While not every module is free, it is true that every module possesses a set
of generators: for example, the module itself is obviously a set of generators.
However, one typically wants to choose a smaller set of generators. It is typically
nontrivial to determine the minimum number of generators needed for a given
module.

Having established that not all modules are free, one can then ask, “Do any
modules, apart from vector spaces, possess bases?” The answer to this question is,
“Yes,” and we refer to the notion of direct sum in Example 4.8.36 for an important
example of a module over a general ring having a basis. Next one can ask, “If a
module possesses a basis, does it hold that all bases have the same cardinality?”
The answer here is, “No,” as the following example shows.

4.8.22 Example (A module having bases of different size) This example uses some
concepts from Section 5.2.1, in particular Theorem 5.2.11.

Let R be a unit ring and let R∞0 be the set of maps from Z>0 into R having the
property that if f ∈ R∞0 then the set

{ j ∈ Z>0 | f ( j) , 0R}

is finite (cf. Example 4.5.2–4 and Example 4.8.36 below). As we shall see in
Corollary 5.5.6, the set S = HomR(R∞0 ; R∞0 ) has the structure of a ring, and therefore
the structure of a left module over itself. We claim that, for any k ∈ Z>0, there exists
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a basis for S as a left S-module with k elements. To see this, let {e j} j∈Z>0 be the
standard basis for R∞0 defined by

e j(k) =

1R, j = k,
0R, j , k.

To represent an element of HomR(R∞0 ; R∞0 ) we use matrices with countably infinite
rows and columns and with entries in R, following Theorem 5.2.11. Let us denote
by ε(i, j) the infinite matrix all of whose entries are 0R except that in the ith row and
jth column, which is 1R. In terms of the standard basis, ε(i, j) is uniquely defined
by its mapping the ith standard basis element to the jth standard basis element.
For an arbitrary A ∈ HomR(R∞0 ; R∞0 ) we note that A ◦ ε(i, j) is homomorphism all of
whose columns are zero except the jth column which is equal to the ith column of
A. For k ∈ Z>0 define k elements Ek

1, . . . ,E
k
k of HomR(R∞0 ; R∞0 ) as follows:

1. if k = 1 take E1
1 = idR∞0

;
2. otherwise define

Ek
l =

∞∑
j=0

ε( jk + 1, ( j + 1)k) +
k−1∑
m=1

ε( jk + l + 1, jk + l)

 .
By parsing the definition, one can see that, for k > 1, for l ∈ {1, . . . , k}, and for
A ∈ HomR(R∞0 ; R∞0 ), the homomorphism A ◦ Ek

l has the property that, for j ∈ Z>0,
its (( j− 1)k + l)th column is the jth column of A, and all other columns of A ◦ Ek

l are
zero. Thus the effect of El

k is to “expand” the columns of A so that they lie in the
jk + lth columns, j ∈ Z>0, of A ◦ El

k.
It is clear thatB1 = {E1

1} is a basis for S as a left S-module. Indeed, the setB1

is clearly linearly independent, and also, for any A ∈ S, we have A = A ◦ E1
1, so

S = spanS(B1).
We claim that, for each k ∈ Z>0, the set Bk = {Ek

1, . . . ,E
k
k} is a basis for the

S-module S. First suppose that

A1Ek
1 + · · · + AkEk

k = 0∞×∞, (4.26)

where by 0∞×∞ we mean the zero element of S. By construction of the homomor-
phisms Ek

l , l ∈ {1, . . . , k}, it follows that all columns of all matrices A1, . . . ,Ak appear
as some column of the left-hand side of (4.26). From this it follows that all columns
of all of the matrices A1, . . . ,Ak are zero. This gives linear independence of Bk.
Now let A ∈ S. Define A1, . . . ,Ak ∈ S as follows. For l ∈ {1, . . . , k} and for j ∈ Z>0,
the jth column of Al is the (( j− 1)k+ l)th column of A. Thus Al “collapses” some of
the columns of A. One can readily verify that, if A1, . . . ,Ak are defined in this way,
we have

A = A1Ek
1 + · · · + AkEk

k.



612 4 Algebraic structures

Thus S = spanS(Bk).
Thus we have an example of a module which has finite bases of all possible

cardinality. •

Note that the preceding example was one where we constructed collections
of finite bases of arbitrary size. One might wonder whether a module with an
infinite basis can possess bases with different cardinality. It turns out that this is
not possible.

4.8.23 Theorem (All bases have the same size if there is an infinite basis) If R is a
unit ring and if M is a (left or right) R-module possessing a basisB such that card(B ) ≥
card(Z>0), then any other basis for M has the same cardinality asB .

Proof First we show that if M possesses an infinite basis, then any other basis cannot
be finite. Thus let B be an infinite basis and suppose that B ′ is a finite basis. Since
B ′ generates M, and since every one of the finite elements ofB ′ is itself a finite linear
combination of elements ofB , this means that there exists a finite subset {x1, . . . , xk} ⊆

B which generates M. In particular, if x ∈ B \ {x1, . . . , xm}, it follows that x is a linear
combination of the elements {x1, . . . , xk}. This contradicts linear independence of B ,
and so we conclude that if one basis is finite, all bases must be finite.

The matter of showing that two infinite bases have the same cardinality now goes
just like that part of the proof of Theorem 4.5.25 where we showed that two infinite
bases for a vector space have the same cardinality. We leave to the reader the matter
of checking that the argument indeed carries through to the more general case. ■

Based on this, one can make the following definition.

4.8.24 Definition (Invariant rank property) A ring R has the invariant rank property if,
whenever M is a (left or right) R-module possessing a basis, the cardinality of any
two bases of M agree. •

The content of Theorem 4.5.25 is then that every field has the invariant rank
property. In fact, commutative unit rings have the invariant rank property as the
following result shows.

4.8.25 Theorem (Commutative unit rings have the invariant rank property) A com-
mutative unit ring R has the invariant rank property.

Proof Let M be an R-module and let I ⊆ R be a maximal ideal, the existence of which
follows from Theorem 4.2.19. Note that R/I is then a field by Theorem 4.3.9. Denote
by IM the submodule

IM = {r1x1 + · · · + rkxk | r1, . . . , rk ∈ I, x1, . . . , xk ∈ M, k ∈ Z>0}.

We claim that M/IM is a vector space over R/I using the natural addition and the scalar
multiplication defined by

(r + I)(x + IM) = rx + IM.

It should be verified that this definition makes sense. Thus suppose that

r + I = r′ + I, x + IM = x′ + IM
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and compute

r′x′ + IM = (r′ − r)x′ − r(x − x′) + rx + IM = rx + IM,

as desired. One should also verify that the module axioms are satisfied for this
definition, but this is elementary and we leave it for the reader to supply the details.

LetB ⊆ M and denote

B + IM = {y + IM | y ∈B }.

We claim thatB + IM generates M/IM as an R/I-vector space ifB generates M as an
R-module. Indeed, let x + IM ∈ M/IM and write x =

∑k
j=1 c jx j for some x1, . . . , xk ∈ B

and c1, . . . , ck ∈ R. Then

x + IM =

 k∑
j=1

c jx j

 + IM =
k∑

j=1

c j(x j + IM) =
∑
j=1

(c j + I)(x j + IM),

as desired.
We also claim that if B is linearly independent over R then B + IM is linearly

independent over R/I. Suppose that

k∑
j=1

(c j + I)(x j + IM) = 0M/IM

for x j + IM ∈B + IM, j ∈ {1, . . . , k}. Then
∑k

j=1 c jx j ∈ IM which implies that

k∑
j=1

c jx j =

m∑
j=1

c′jx
′

j

for some c′j ∈ I \ {0R}, x′j ∈B , j ∈ {1, . . . ,m}. SinceB is linearly independent it follows
that m = k and c j = c′j, j ∈ {1, . . . , k}. Thus c j ∈ I and so c j + I = 0R/I, j ∈ {1, . . . , k}, as
desired.

The above argument shows that if B is a basis for M then B + IM is a basis for
M/IM. It remains to show that card(B ) = card(B + IM), which will follow if we can
show that the elements of the set B + IM are distinct. Suppose that x + IM = x′ + IM
for x, x′ ∈ B . Then x − x′ =

∑k
j=1 c jx j for c j ∈ I and x j ∈ B , j ∈ {1, . . . , k}. If x , x′ then

it follows there exists j ∈ {1, . . . , k} such that x j = x and a j = 1R, contradicting the fact
that I is maximal. ■

Despite the fact that two bases, should a basis even exist, may not have the
same cardinality, it still holds that any element of a module is uniquely expressed
as a linear combination of basis elements.
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4.8.26 Proposition (Unique representation of elements in bases) If R is a ring, if M is a
left (resp. right) R-module, and if B is a basis for M, then, for x ∈ M there exists a unique
finite subset {x1, . . . , xk} ⊆B and unique nonzero coefficients c1, . . . , ck ∈ R such that

x = c1x1 + · · · + ckxk (resp. x = x1c1 + · · · + xkck).

Proof This follows as does the proof of Proposition 4.5.23. ■

Finally, let us define the analogue of dimension for modules, in the cases when
it can be defined.

4.8.27 Definition (Rank of a module) Let R be a ring, let M be a (left or right) R-module
having the property that, ifB1 andB2 are bases for M, then card(B1) = card(B2).
Then, ifB is a basis for M, card(B ) is the rank of M, denoted by rank(M). •

4.8.4 Intersections, sums, and products

Next, following what we did for vector spaces, we discuss ways of manipulating
submodules of a module. The definitions here mirror those for vector spaces.
However, not all of the statements we make in Section 4.5.5 have analogues for
modules, with the obstruction typically being that not all modules are free.

We first proceed with the definitions.

4.8.28 Definition (Sum and intersection) Let R be a ring, let M be a (left or right) R-
module, and let (N j) j∈J be a family of submodules of M indexed by a set J.

(i) The sum of (N j) j∈J is the submodule generated by ∪ j∈JN j, and is denoted by∑
j∈J N j.

(ii) The intersection of (N j) j∈J is the set∩ j∈JN j (i.e., the set theoretic intersection). •

As with vector spaces, we will often write finite sums of submodules as

k∑
j=1

N j = N1 + · · · + Nk.

It is also true that the intersection of a family of submodules is a submodule, the
proof going just like that in the vector space case.

As with vector spaces, a special rôle is played by so-called direct sums. Let us
state the definitions and results; the proofs follow the vector space case, mutatis
mutandis.

4.8.29 Definition (Internal direct sum of submodules) Let R be a ring, let M be a (left or
right) R-module, and let (N j) j∈J be a collection of submodules of M. The module M
is the internal direct sum of the submodules (N j) j∈J, and we write M =

⊕
j∈J N j, if,

for any x ∈ M \ {0M}, there exists unique indices { j1, . . . , jk} ⊆ J and unique nonzero
members y jl ∈ N jl , l ∈ {1, . . . , k}, such that x = y j1 + · · ·+ y jk . Each of the submodules
N j, j ∈ J, is a summand in the internal direct sum. •
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4.8.30 Proposition (Representation of the zero vector in an internal direct sum of
submodules) Let R be a ring, let M be a (left or right) R-module, and suppose that M is
the internal direct sum of the submodules (Nj)j∈J. If j1, . . . , jk ∈ J are distinct and if yjl ∈ Njl ,
l ∈ {1, . . . ,k}, satisfy

yj1 + · · · + yjk = 0M,

then yjl = 0M, l ∈ {1, . . . ,k}.

4.8.31 Proposition (Characterisation of internal direct sum for modules) Let R be a
ring, let M be a (left or right) R-module, and let (Nj)j∈J be a collection of submodules of M.
Then M =

⊕
j∈J Nj if and only if

(i) N =
∑

j∈J Nj and

(ii) if, for any j0 ∈ J, we have Nj0 ∩
(∑

j∈J\{j0}Nj

)
= {0M}.

While it is not the case that modules always possess bases, there still holds the
analogy between bases and internal direct sums, when the former do exist. Specif-
ically, we have the following result, whose proof follows that of Theorem 4.5.38.

4.8.32 Theorem (Bases and internal direct sums for modules) Let R be a ring, let M
be a (left or right) R-module, and let B be a basis for M, and define a family (Ny)y∈B of
submodules by Ny = spanR(y). Then M =

⊕
y∈B Ny.

Note that the result holds even when the cardinality of different bases are not
the same.

4.8.33 Example (Example 4.8.22 cont’d) In Example 4.8.22 we gave an example of a
ring S such that the S-module S had bases of any finite cardinality. From this it
follows that the S-modules S, S ⊕ S, S ⊕ S ⊕ S, etc., are all isomorphic! •

The following definition of direct product and direct sum mirrors the situation
for vector spaces. We make use here of the notion of the general Cartesian product
from Section 1.6.2.

4.8.34 Definition (Direct product and direct sum of modules) Let R be a ring and let
(M j) j∈J be a family of (left or right) R-modules.

(i) The direct product of the family (M j) j∈J is the R-module
∏

j∈J M j with addition
and multiplication defined by

( f1 + f2)( j) = f1( j) + f2( j), (r f )( j) = r( f ( j))

for f , f1, f2 ∈
∏

j∈J M j and for r ∈ R.

(ii) The direct sum of the family (M j) j∈J is the submodule
⊕

j∈J M j of
∏

j∈J M j

consisting of those elements f : J→ ∪ j∈JM j for which the set { j ∈ J | f ( j) , 0M j}

is finite. Each of the modules M j, j ∈ J, is a summand in the direct sum. •
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As with vector spaces, the direct product and direct sum agree for finite index
sets, and we shall often write

k∏
j=1

M j =

k⊕
j=1

M j = M1 + · · · +Mk

in this case. We also have a connection, as with vector spaces, with internal direct
sums and direct sums as follows.

4.8.35 Proposition (Internal direct sum and direct sum of modules) Let R be a ring, let
M be a (left or right) R-module, and let (Nj)j∈J be a family of submodules of M such that M
is the internal direct sum of these submodules. Let iNj : Nj → M be the inclusion. Then the
map from the direct sum

⊕
j∈J Nj to M defined by

f 7→
∑
j∈J

iNjf(j)

(noting that the sum is finite) is an isomorphism.

As with vector spaces, the direct sum as we have defined it is often called the
external direct sum. Since the preceding result indicates that the two notions of
direct sum are essentially the same, we shall, again as with the vector space case,
often omit explicit reference to whether we are using the external or internal direct
sum; the precise situation will be clear from the context.

An important example of a direct sum module is the following which mirrors
Example 4.5.43 for vector spaces.

4.8.36 Example (The direct sum of copies of R) The construction of Example 4.5.43
also holds for modules. Thus let J be an arbitrary index set and let

⊕
j∈J R be the

direct sum of “J copies” of the ring R. In the case when J = {1, . . . ,n} we have⊕
j∈J R = Rn and in the case when J = Z>0 we use the notation

⊕
j∈J R = R∞0 . If R

is a unit ring, for j ∈ J define e j : J→ R by

e j( j′) =

1R, j′ = j,
0R, j′ , j.

One can show that {e j} j∈J is a basis for
⊕

j∈J R, just as in the case for the direct sum
of J copies of a field. We call {e j} j∈J the standard basis for

⊕
j∈J R. •

4.8.37 Notation (Alternative notation for direct sums and direct products of copies
of R) Following Notation 4.5.44, we shall find it sometimes convenient to denote∏

j∈J

R = RJ,
⊕

j∈J

R = RJ
0

for the direct product and direct sum, respectively, of J copies of R. •
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Up to this point in this section, everything we have said has been essentially
transcripted from the corresponding Section 4.5.5 for vector spaces. However,
some of the material from Section 4.5.5 has no analogue for modules. Specifically,
for general rings R, it does not hold that every R-module is isomorphic to a direct
sum of copies of R. Correspondingly, all of the nice characterisations one has for
vector spaces being characterised essentially by their dimension have no analogue
for rings.

4.8.5 Complements and quotients

An examination of our discussion in Section 4.5.6 of complements and quotients
for vector spaces reveals that bases played a significant rôle. Therefore, we expect
the discussion to be more complicated for modules, and indeed this is the case.

However, things start out benignly enough.

4.8.38 Definition (Complement of a submodule) If R is a ring, if M is a (left or right)
R-module, and if N is a submodule of M, a complement of N in M is a submodule
P of M such that M = N ⊕ P. •

But right away we run into difficulties since submodules do not necessarily
possess complements.

4.8.39 Example (A submodule without a complement) We take the ring Z thought
of as a Z-module, so that the submodules of Z are the ideals. We claim that the
only submodules ofZ that have complements are {0} andZ. Indeed, suppose that
I1, I2 ⊆ Z are submodules so that, for example, I1 ∩ I2 = {0}. Since Z is a principal
ideal domain, we have I1 = (k1) and I2 = (k2) for k1, k2 ∈ Z. If neither of k1 and k2

are nonzero, then, if k is the greatest common denominator for k1 and k2, we have
k ∈ (k1) ∩ (k2). Thus we must have either k1 = 0 or k2 = 0. It follows that if I ⊆ Z is
a submodule with a complement, then either I = {0} or I = Z. •

Despite the fact that submodules do not always have complements, it is the
case that the quotient module can be constructed, just as can be constructed the
quotient space by a subspace.

4.8.40 Definition (Quotient by a submodule) Let R be a ring, let M be a (left or right)
R-module, and let N be a submodule of M. The quotient of M by N is the set of
equivalence classes in M under the equivalence relation

x1 ∼ x2 ⇐⇒ x1 − x2 ∈ N.

We denote by M/N the quotient of M by N, and we denote by πM/N : M→ M/N the
map assigning to x ∈ M its equivalence class. •

As with vector spaces, we denote by x+N the equivalence class of x ∈ M under
the equivalence relation defined by the submodule N. The set M/N is naturally an
Abelian group using addition in M, just as the quotient by a subspace is an Abelian
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group. However, M/N also has the structure of an R-module, as the following
result indicates.

4.8.41 Proposition (The quotient by a submodule is a module) Let R be a ring, let M be
a left (resp. right) R-module, and let N be a submodule of M. The operations of addition
and multiplication in M/N defined by

(x1 + N) + (x2 + N) = (x1 + x2) + N,
r(x + N) = (rx) + N (resp. (x + N)r = (xr) + N), x, x1, x2 ∈ M, r ∈ R,

respectively, satisfy the axioms for a left (resp. right) R-module. Moreover, if R is a unit
ring and if M is unitary, then M/N is also unitary.

Proof The proof that M/N is a left (or right) R-module follows, mutatis mutandis, along
the lines of the proof of Proposition 4.5.54. The last statement is straightforward:

(1R(x + N)) = (1Rx) + N = x + N

for all x ∈ M. ■

Let us illustrate the character of the quotient module when a complement does
not exist.

4.8.42 Example (Quotient module (Example 4.8.39 cont’d)) We take R = Z, M = Z2,
and N to be the submodule generated by {(1, 0), (0, 2)}. Let us understand the
structure of the quotient module M/N by establishing an isomorphism from it to
something somewhat familiar.

To do this we first note that Z2 = Z/2Z has the structure of a Z-module if we
define addition and multiplication by

(k1 + 2Z) + (k2 + 2Z) = (k1 + k2) + 2Z, j(k + 2Z) = jk + 2Z

for k, k1, k2 ∈ Z2 and for j ∈ Z (this is a special case of Example 4.8.2–2). We now
claim that the Z-modules M/N and Z2 are isomorphic. Indeed, the map

M/N ∋ (k1, k2) + N 7→ k2 + 2Z ∈ Z2 (4.27)

is an isomorphism. That the map is a homomorphism of Z-modules is easily
shown; we leave the details to the reader. To see that the map is injective, suppose
that k2 + 2Z = 0 + 2Z. This implies that k2 is even and so (k1, k2) ∈ N for any
k1 ∈ Z. Thus the preimage of the zero element under the map (4.27) consists only
of the zero element, showing that the map is injective by Exercise 4.8.3. That
the map (4.27) is surjective is clear, and so establishes the fact that the map is a
Z-module isomorphism. •

While it is not true that complements exist in general, it is still true that when
they do exist, they are isomorphic to the quotient.
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4.8.43 Theorem (Relationship between complements and quotients) Let R be a ring,
let M be a (left or right) R-module, and let N be a submodule of M with a complement P.
Then the map ιN,P : P→ M/N defined by

ιN,P(z) = z + N

is an isomorphism of R-modules.
Proof This follows along the lines of the proof of Theorem 4.5.56, using Proposi-
tion 4.8.31. ■

Let us now address the important problem of understanding when a submodule
possesses a complement. Here it turns out that one’s intuition can be enhanced by
the use of commutative diagrams, the precise background for which we refer to
Section 1.3.3.

4.8.44 Definition (Exact sequence) Let R be a ring. A sequence of R-modules is a
commutative diagram on a directed graph (V,E) with the following properties:

(i) V is a subset of Z;

(ii) E =

{( j, j + 1) | j ∈ V \ sup(V)}, V has an upper bound,
{( j, j + 1) | j ∈ V}, V has no upper bound;

(iii) for each j ∈ V, the set assigned to the vertex j is an R-module M j;
(iv) for each ( j, j + 1) ∈ E, f( j, j+1) ∈ HomR(M j; M j+1).

If additionally it holds that
(v) image( f( j−1, j)) = ker( f( j, j+1)) for each j ∈ V \ {inf(V), sup(V)},

then the sequence is exact. •

The definition is complicated by rigour. Stripping away the rigour one is left
with a simple idea. Namely, a sequence of R-modules is a commutative diagram
that can be represented as

· · ·
f( j−2, j−1) // M j−1

f( j−1, j) // M j
f( j, j+1) // M j+1

f( j+1, j+2) // · · ·

where all maps are R-module homomorphisms. The diagram may be finite in
length, unbounded on the left, unbounded on the right, or unbounded on both the
left and the right. If the homomorphism with codomain M j has image equal to the
kernel of the homomorphism with domain M j, then the sequence is exact.

The following properties of exact sequences of modules are useful.

4.8.45 Proposition (Properties of exact sequences) Let algR be a ring and consider an
exact sequence of R-modules on a directed graph (V,E). If for some j ∈ V it holds that
Mj = {0}, then the following statements hold whenever the maps appearing are defined:

(i) f(j−2,j−1) ∈ HomR(Mj−1; Mj) is surjective;
(ii) f(j+1,j+2) ∈ HomR(Mj; Mj+1) is injective.
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Proof (i) The part of the diagram of concern looks like

· · ·
f( j−3, j−2) // M j−2

f( j−2, j−1) // M j−1
f( j−1, j) // {0}

f( j, j+1) // · · ·

and we know that image( f( j−2, j−1)) = ker( f( j−1, j)) = M j−1 since f( j−1, j)(x) = 0 for every
x ∈ M j−1.

(ii) Here the part of the diagram of interest looks like

· · ·
f( j−1, j) // {0}

f( j, j+1) // M j+1
f( j+1, j+2) // M j+2

f( j+2, j+3) // · · ·

and we know that ker( f( j+1, j+2)) = image( f j, j+1) = {0} since f( j, j+1) maps the only element
of {0} to the zero element of M j+1. ■

We shall be primarily interested in a particular sort of exact sequence.

4.8.46 Definition (Short exact sequence) Let R be a ring. A short exact sequence of
R-modules is an exact sequence of R-modules on a directed graph (V,E) with the
following properties:

(i) V = {1, 2, 3, 4, 5};
(ii) M1 = M5 = {0}. •

In terms of our diagrammatic representation of an exact sequence, a short exact
sequence is an exact sequence of the form

{0}
f1 // N

f2 // M
f3 // P

f4 // {0}

Note that the only possibility for the map f1 is that it map the single element in
the trivial module {0} to the zero element of N, and that the only possibility for the
map f5 is that it map all elements of P to the zero element of the trivial module
{0}. For this reason, these maps are sometimes omitted from the diagram. From
Proposition 4.8.45 note that f2 is injective and f3 is surjective.

There are two standard examples of short exact sequences which we give in the
following result.

4.8.47 Proposition (Some short exact sequences) Let R be a ring, let M be a (left or right)
R-module, and let N be a submodule. Then the statements hold:

(i) the sequence

{0} // N
iN // M

πM/N // M/N // {0}

is exact, where iN is the inclusion map;
(ii) the sequence

{0} // N
iN // M

prP // P // {0}

is exact, where P is a complement to N, where iN is the inclusion map, and where prP
is the projection from M = N ⊕ P onto P.
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Proof (i) Since the map iN is injective and since the map πM/N is surjective, the only
thing to check is whether image(iN) = ker(πM/N). However, this is clear since x + N =
0M + N if and only if x ∈ N.

(ii) Again, since iN is injective and prP is surjective, we only have to verify that
image(iN) = ker(prN). This, however, follows from the definition of direct sum. Indeed,
if x ∈ N then x = x + 0M is the unique decomposition of x as a sum of an element of N
and an element of P. Thus pr2(x) = 0M. Conversely, if pr2(x) = 0M, then it follows that
x = x + 0M must be the unique decomposition of x as a sum of an element of N and an
element of P. In particular, x ∈ N. ■

Since we know that quotient modules always exist, but complements to sub-
modules do not, we know that the two parts of the preceding proposition are not in
exact correspondence. We wish to establish conditions under which the diagrams
are in correspondence. In order to do this, we first need to be clear about what
“correspondence” means.

4.8.48 Definition (Isomorphic short exact sequences) Let R be a ring. Two exact
sequences of R-modules represented by the diagrams

{0} // N
f // M

g // P // {0}

and

{0} // N′
f ′ // M′

g′ // P′ // {0}

are isomorphic if there exist isomorphisms ϕ : N→ N′, ψ : M→ M′, and χ : P→ P′

such that the diagram

{0} // N
f //

ϕ
��

M
g //

ψ
��

P //

χ

��

{0}

{0} // N′
f ′
// M′

g′
// P′ // {0}

commutes. •

The idea behind isomorphic short exact sequences, like that of all isomorphic
things, is that two isomorphic short exact sequences are essentially the same. It is
this notion that we shall use to connect the two sequences of Proposition 4.8.47 in
cases when this is possible. Indeed, we have the following result.

4.8.49 Theorem (Complements and short exact sequences) Let R be a ring, let M be a
(left or right) R-module, and let N be a submodule of M. Then the following statements
are equivalent:

(i) there exists a complement P to N in M;
(ii) there exists a submodule P of M and f ∈ HomR(M; P) such that

(a) f(z) = z for all z ∈ P and such that
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(b) the short exact sequences

{0} // N
iN // M

πM/N // M/N // {0}

and
{0} // N

iN // M f // P // {0}

are isomorphic with the corresponding isomorphisms of N and M being the
identity maps.

Moreover, any complement P to N has the property of P from part (ii), and if a submodule
P and a homomorphism f ∈ HomR(M; P) have the properties from part (ii), then P is a
complement to N.

Proof Suppose that there exists a complement P to N. We claim that the diagrams

{0} // N
iN // M

πM/N // M/N // {0}

and

{0} // N
iN // N ⊕ P

prP // P // {0}

are isomorphic, where we use the notation from the statement of Proposition 4.8.47.
To see this, we consider the isomorphisms ϕ ∈ HomR(N; N), ψ ∈ HomR(M; N ⊕ P), and
χ ∈ HomR(M/N; P) defined by

ϕ(y) = y, ψ(x) = prN(x) + prP(x), χ(x + N) = prP(x),

respectively, where prN : M→ N is the projection onto the first component in the direct
sum M = N ⊕ P. The map ψ is an isomorphism by the definition of the internal direct
sum, and the map χ is an isomorphism by Theorem 4.8.43. We must verify that the
diagram

{0} // N
iN //

ϕ
��

M
πM/N //

ψ
��

M/N //

χ

��

{0}

{0} // N
iN
// N ⊕ P prP

// P // {0}

commutes. One can easily see (verify this!) that it is sufficient to show that the two
diagrams

N
iN //

ϕ
��

M

ψ
��

N
iN
// N ⊕ P

M
πM/N //

ψ
��

M/N

χ
��

N ⊕ P prP
// P

commute. For the left diagram, let y ∈ N and compute

ψ ◦ iN(y) = iN(y)

since prN(iN(y)) = iN(y) and since prP(x) = 0M, and also compute

iN ◦ ϕ(y) = iN(y),
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which gives the commutativity of the left of the preceding two diagrams. For the
rightmost diagram, let x ∈ M and write x = y + z for y ∈ N and z ∈ P. Then

χ ◦ πM/N(x) = χ(x + N) = χ(z + N) = z

and
prP ◦ψ(x) = z,

giving the commutativity of the right diagram as well.
Now suppose that P and f satisfy the conditions of part (ii). Define gP = iP ◦ f ∈

HomR(M; M), and note that for x ∈ M

gP ◦ gP(x) = (iP ◦ f ) ◦ (iP ◦ f )(x)︸     ︷︷     ︸
∈P

= iP ◦ f (x) = gP(x),

using the fact that gP(z) = z for z ∈ P. We now use a lemma.

1 Lemma If R is a ring, if M is a (left or right) R-module, and if g ∈ HomR(M; M) satisfies
g ◦ g = g, then M = image(g) ⊕ ker(g).

Proof Suppose that x ∈ ker( f ) ∩ image( f ). Then there exists y ∈ M such that x = f (y).
Also

f (x) = f ( f (y)) = f (y) = x = 0M

which implies that ker( f ) ∩ image( f ) = {0M}. If x ∈ M we can write x = x − f (x) + f (x)
with, clearly, f (x) ∈ image( f ). Since

f (x − f (x)) = f (x) − f ( f (x)) = f (x) − f (x) = 0M,

it also holds that M = ker( f ) + image( f ), and so the result follows from Proposi-
tion 4.8.31. ▼

By the lemma we have M = ker(gP) ⊕ image(gP). We claim that ker(gP) = N and
that image(gP) = P. By exactness of the sequence

{0} // N
iN // M

f // P // {0}

if y ∈ N then y ∈ ker( f ) and so we immediately have gP(y) = 0M; thus N ⊆ ker(gP).
If gP(x) = 0M then, since iP is injective, we have f (x) = 0M by Exercise 4.8.3. Thus
x ∈ ker( f ) = N, so giving N = ker(gP). If z ∈ P then f (z) = z which gives gP(z) = z,
and so z ∈ image(gP). If z ∈ image(gP) then z ∈ image(iP), immediately giving
P = image(gP). Thus P is a complement to N as desired.

The last statement of the theorem is a direct consequence of the proof above. ■

We next give some conditions one can use to test when a given submodule has
a complement. This requires some additional language.
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4.8.50 Definition (Splitting of short exact sequences) Let R be a ring and consider a
sort exact sequence represented by the diagram

{0} // N
f // M

g // P // {0}

The short exact sequence
(i) splits on the left if there exists f ′ ∈ HomR(M; N) such that f ′ ◦ f = idN and
(ii) splits on the right if there exists g′ ∈ HomR(P; M) such that g ◦ g′ = idP. •

Note that the map f ′ in the definition is a left-inverse of f and the map g′

is a right-inverse of g. By Proposition 1.3.9 we know that f possesses a left-
inverse by virtue of being injective, and that g possesses a right-inverse by virtue
of being surjective. Thus the central idea of a short exact sequence that splits on
the left (resp. right) is that the left-inverse (resp. right-inverse) be an R-module
homomorphism.

The next result we give relates split exact sequences to direct sums.

4.8.51 Theorem (Direct sums and split exact sequences) Let R be a ring, let M, N, and
P be (left or right) R-modules, and consider a short exact sequence

{0} // N f // M
g // P // {0}

of R-modules. Then the following statements are equivalent:
(i) the short exact sequence splits on the left;
(ii) the short exact sequence splits on the right;
(iii) the short exact sequence is isomorphic to the short exact sequence

{0} // N
iN // N ⊕ P

prP // P // {0}

where the corresponding isomorphisms of N and P are the identity maps.
Proof (i) =⇒ (iii) Let f ′ ∈ HomR(M; N) be a left-inverse of f and define ψ ∈
HomR(M; N⊕P) by ψ(x) = ( f ′(x), g(x)). It is then a direct computation to check that the
diagram

{0} // N
f //

idN
��

M
g //

ψ
��

P //

idP
��

{0}

{0} // N
iN
// N ⊕ P prP

// P // {0}

commutes. From this we see that Exercise 4.8.7 gives ψ an isomorphism, and so gives
this part of the proof.
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(ii) =⇒ (iii) Let g′ ∈ HomR(P; M) be a right-inverse of g and define ϕ ∈ HomR(N ⊕
P; M) by ϕ(y, z) = ( f (y), g′(z)). One can then verify directly that the diagram

{0} // N
iN //

idN
��

N ⊕ P
prP //

ϕ
��

P //

f
��

{0}

{0} // N
iN
// M g

// P // {0}

commutes, and then, by Exercise 4.8.7, ϕ is an isomorphism, which gives the result.
(iii) =⇒ (i) and (ii) We are given the commutative diagram

{0} // N
iN //

idN
��

N ⊕ P
prP //

ϕ
��

P //

idP
��

{0}

{0} // N
f
// M g

// P // {0}

with ϕ an isomorphism. If we define f ′ ∈ HomR(M; N) and g′ ∈ HomR(P; M) by
f ′ = prN ◦ϕ

−1 and g′ = ϕ ◦ iP, respectively, then we leave as an exercise to reader the
verification that f ′ is a left-inverse of f and that g′ is a right inverse of g. ■

4.8.6 Torsion

One of the features that a module may possess that a vector space does not
possess is “torsion.” For non-mathematicians, torsion refers to a twisting motion.
And in the mathematical context of this section, the reader might try to see how
this non-mathematical notion carries over to the mathematical setting.

First the definition.

4.8.52 Definition (Order ideal, torsion element, torsion submodule, torsion module)
Let R be a commutative ring and let M be an R-module.

(i) For x ∈ M the set
ann(x) = {r ∈ R | rx = 0M}

is the annihilator of x.
(ii) If N is a submodule of M, the set

ann(N) = {r ∈ R | ry = 0M for all y ∈ N}

is the annihilator of N.
(iii) An element x ∈ M is a torsion element if ann(x) contains a nonzerodivisor.
(iv) The set of torsion elements of M is denoted by Tor(M) and is called the torsion

submodule.
(v) If Tor(M) = M then M is a torsion module.
(vi) If Tor(M) = {0M} then M is torsion-free. •

First we should be sure that the name torsion submodule is deserved, and that
some other natural properties hold.



626 4 Algebraic structures

4.8.53 Proposition (The set of torsion elements is a submodule, etc.) If R is a com-
mutative ring and if M is an R-module, then the following statements hold:

(i) ann(x) is an ideal for each x ∈ M;
(ii) Tor(M) is a submodule;
(iii) M/Tor(M) is a torsion-free module.

Proof (i) That ann(x) is an ideal is directly checked.
(ii) Let x, y ∈ Tor(M) and let r, s ∈ R be nonzerodivisors such that rx = sy = 0M.

Then −sy = 0M and so

rx = −sy = 0M =⇒ rsx = −rsy = 0M =⇒ rs(x + y) = 0M.

Since rs is a nonzerodivisor by Exercise 4.2.12, it follows that x + y ∈ Tor(M). Also, if
x ∈ Tor(M) and if r ∈ R is a nonzerodivisor such that rx = 0M, then, for any r′ ∈ R, we
have rr′x = r′rx = 0M so that rx ∈ Tor(M).

(iii) For x ∈ M we have

ann(x + Tor(M)) = {r ∈ R | rx ∈ Tor(M)}.

We must show that ann(x + Tor(M)) consists of only zerodivisors for every x < Tor(M).
If r ∈ ann(x + Tor(M)) there exists a nonzerodivisor r′ ∈ R such that r′rx = 0M. The
following cases may occur.
1. rr′ is a nonzerodivisor: In this case we have x ∈ Tor(M).
2. rr′ is a zerodivisor: This implies that r is a zerodivisor since the product of two

nonzerodivisors is a nonzerodivisor by Exercise 4.2.12.
Therefore, if x < Tor(M) and if r ∈ ann(x + Tor(M)), it follows that r is a zero divisor, as
desired. ■

It is also true that ann(N) is an ideal of R for every submodule N of M. This is
easily checked.

Let us give some examples of torsion elements.

4.8.54 Examples (Torsion elements)
1. Note that 0M ∈ Tor(M) for any module M, so Tor(M) , ∅.
2. By Proposition 4.5.3(vi), for a vector space V over a field F, Tor(V) = {0V}.
3. For an integral domain R and an R-module M, x ∈ Tor(M) if and only if ann(x) ,
{0R}.

4. Consider the Z-module Z4 = Z/4Z. We note that ann(2 + 4Z) = {2 j | j ∈ Z≥0},
and so 2 + 4Z is a torsion element. •

4.8.7 Algebras

It is sometimes of interest to consider additional structure on a vector space,
namely a product between vectors. In this section we provide the definitions for
such a structure. The main examples will only arise later in Sections 5.1 and 5.4.
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4.8.55 Definition (Algebra) If R is a ring, a left R-algebra (resp. right R-algebra) is
a left (resp. right) R-module A equipped with a binary operation, denoted by
(x1, x2) 7→ x1 · x2, satisfying the following conditions:

(i) x1 · (x2 + x3) = (x1 · x2) + (x1 · x3), x1, x2, x3 ∈ A (left distributivity);
(ii) (x1 + x2) · x3 = (x1 · x3) + (x2 · x3), x1, x2, x3 ∈ R (right distributivity);
(iii) (x1 · x2) · x3 = x1 · (x2 · x3), x1, x2, x3 ∈ A (associativity of multiplication);
(iv) r(x1 ·x2) = (rx1)·x2 = x1 ·(rx2) (resp. (x1 ·x2)r = (x1r)·x2 = x1 ·(x2r)) (distributivity

of product). A left (resp. right) R-algebra is a left unity R-algebra (resp. right
unity R-algebra) if it is a left (resp. right) unity R-module. •

Note that an algebra combines three operations: vector addition, scalar multi-
plication, and a product. Most authors assume that an algebra is associative. In
this case one can think of an algebra in one of two ways: (1) it is a vector space
with the addition of a product which gives a ring structure; (2) it is a ring with the
addition of a scalar product which gives a vector space structure.

Let us give some simple examples of algebras.

4.8.56 Examples (Algebras)
1. If M is any R-module, and if we define a product on M by x1 · x2 = 0M for all

x1, x2 ∈ M, then this defines the structure of an algebra.
2. If K is a field extension of F, then we have already seen that K is an F-vector

space. If we take the product between vectors in K to be the product coming
from the ring structure, then one immediately verifies that this makes K an
associative F-algebra.

3. Let us define a product on F3 by

(u1,u2,u3) · (v1, v2, v3) = (u2v3 − u3v2,u3v1 − u1v3,u1v2 − u2v1).

In F3 readers will recognise this as the vector- or cross-product. One can verify
that this product satisfies all properties for an F-algebra except for associativity
of the product. Sometimes nonassociative algebras are of interest, and this is
one such instance. •

As with all algebraic objects we have dealt with in this chapter, there is a notion
of a map between algebras that preserves the algebra structure.

4.8.57 Definition (Algebra homomorphism and antihomomorphism) Let R be a ring
and let A and B be left (resp. right) R-algebras. An R-homomorphism of A and B is
a map ϕ : A→ B with the following properties:

(i) ϕ(x1 + x2) = ϕ(x1) + ϕ(x2) for x1, x2 ∈ A;
(ii) ϕ(rx) = rϕ(x) (resp. ϕ(xr) = ϕ(x)r) for r ∈ R and x ∈ A;
(iii) ϕ(x1 · x2) = ϕ(x1) · ϕ(x2) for x1, x2 ∈ A.

If the last property is replaced with
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(iv) ϕ(x1 · x2) = ϕ(x2) · ϕ(x1) for x1, x2 ∈ A,
then ϕ is an R-antihomomorphism. An R-homomorphism ϕ is an R-
monomorphism (resp. R-epimorphism, R-isomorphism) if ϕ is injective (resp. sur-
jective, bijective). If there exists an isomorphism between left R-algebras A and B,
then A and B are R-isomorphic. •

4.8.8 Notes

Exercises

4.8.1 Give an example of a commutative unit ring R and a left unity R-module M
for which there exists r ∈ R \ {0R} and x ∈ M \ {0M} satisfying rx = 0M.

4.8.2 Give an example of a commutative ring R, an R-module M, and submodules
N1 and N2 of M such that (1) N1 , N2 and (2) N1 ∩ N2 , {0M}. Is this
phenomenon possible for vector spaces?

4.8.3 Let R be a ring, let M and N be (left or right) R-modules, and let
L ∈ HomR(M; N). Show that L is injective if and only if ker(L) = {0M}.

4.8.4 Let R be a ring, let M and N be (left or right) R-modules, and let A ⊆ M and
B ⊆ N be submodules. Show that the modules

(M ⊕ N)/(A ⊕ B), (M/A) ⊕ (N/B)

are isomorphic.
4.8.5 Let R be a ring, let M and N be R-modules, and let L ∈ HomR(M; N) be

an epimorphism. Show that the map L0 ∈ HomR(M/ker(L); N) defined by
L0(x + ker(L)) = L(x) is a well-defined isomorphism of R-modules.

4.8.6 Let R be a ring.
(a) Suppose that two short exact sequences of R-modules

{0} // N
f // M

g // P // {0}

and

{0} // N′
f ′ // M′

g′ // P′ // {0}

are isomorphic so that there exist isomorphisms ϕ : N→ N′, ψ : M→ M′,
and χ : P→ P′ such that the diagram

{0} // N
f //

ϕ
��

M
g //

ψ
��

P //

χ

��

{0}

{0} // N′
f ′
// M′

g′
// P′ // {0}
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commutes. Show that the diagram

{0} // N′
f ′ //

ϕ−1

��

M′
g′ //

ψ−1

��

P′ //

χ−1

��

{0}

{0} // N
f
// M g

// P // {0}

commutes.
(b) Consider three short exact sequences of R-modules

{0} // N
f // M

g // P // {0}

and

{0} // N′
f ′ // M′

g′ // P′ // {0}

and

{0} // N′′
f ′′ // M′′

g′′ // P′′ // {0}

Suppose that the first two are isomorphic and that the second two are
isomorphic so that there exist isomorphisms ϕ : N → N′, ψ : M → M′,
χ : P → P′, ϕ′ : N′ → N′′, ψ′ : M′ → M′′, and χ′ : P′ → P′′ such that the
diagrams

{0} // N
f //

ϕ
��

M
g //

ψ
��

P //

χ

��

{0}

{0} // N′
f ′
// M′

g′
// P′ // {0}

and

{0} // N′
f ′ //

ϕ′

��

M′
g′ //

ψ′

��

P′ //

χ′

��

{0}

{0} // N′′
f ′′
// M′′

g′′
// P′′ // {0}

commute. Show that the diagram

{0} // N
f //

ϕ′◦ϕ
��

M
g //

ψ′◦ψ
��

P //

χ′◦χ
��

{0}

{0} // N′′
f ′′
// M′′

g′′
// P′′ // {0}

commutes.
(c) Conclude that the relation in the set of exact sequences given by “two

sequences are equivalent if they are isomorphic” is an equivalence rela-
tion.
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4.8.7 Let R be a ring. For two exact sequences

{0} // N
f // M

g // P // {0}

and

{0} // N′
f ′ // M′

g′ // P′ // {0}

of R-modules, suppose that the diagram

{0} // N
f //

ϕ
��

M
g //

ψ
��

P //

χ

��

{0}

{0} // N′
f ′ // M′

g′ // P′ // {0}

is commutative.
(a) Show that if ϕ and χ are surjective, then ψ is surjective.
(b) Show that if ϕ and χ are injective, then ψ is injective.
(c) Show that if ϕ and χ are bijective, then ψ is bijective.
(This result is called the Short Five Lemma.)

4.8.8 If R is an integral domain, show that a free R-module is torsion free.
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Section 4.9

Modules over principal ideal domains

In this section we develop a rather special area of module theory: the structure
of modules over a principal ideal domain. In this case, we shall see that certain
of the bad features of general modules do not arise. Moreover, for finitely gener-
ated modules over principal ideal domains, one can be quite explicit about their
structure.

Do I need to read this section? The material here is needed to form a complete
understanding of (1) the equivalence of homomorphisms of modules over principal
ideal domains in Section 5.5.6 and (2) the structure theory for endomorphisms of
vector spaces in Section 5.8. Readers only needing the statements of these results
can skip the details needed from this section. Certainly this section can be bypassed
on a first reading.

It might be pointed out, however, that this section serves quite well the purpose
of showing the ways in which module theory differs from vector space theory. So
for readers feeling as if they might benefit from a better understanding of this,
perhaps this section is a good one to read. •

4.9.1 Free modules over principal ideal domains

We begin our study of modules over principal ideal domains by studying free
modules, i.e., those possessing bases. For a general free module, it may be the
case that submodules are themselves not free (see Example 4.8.19). However, for
principal ideal domains this cannot happen.

4.9.1 Theorem (Submodules of free modules over principal ideal domains) Let R
be a principal ideal domain and let M be a free R-module. If N is a submodule of M then N
is free and rank(N) ≤ rank(M).

Proof Let {e j} j∈J be a basis for M and, for J′ ⊆ J, define

NJ′ = N ∩
⊕
j′∈J′

spanR(e j′).

One may verify, exactly as Proposition 4.5.34 for vector spaces, that NJ′ is a submodule
for each J′ ⊆ J. Now define

PJ = {(J′,BJ′) | J′ ⊆ J,BJ′ is a basis for NJ′ with card(BJ′) ≤ card(J′)}

First let us show that PJ is nonempty. Let J′ = { j} ⊆ J. One can directly check that

I j = {r ∈ R | re j ∈ N}
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is an ideal of R. Therefore, since R is a principal ideal domain, this ideal is of the form
(r j) for some r j ∈ R. If r j = 0R then NJ′ = {0M} and so ∅ is a basis for NJ′ . If r j , 0R
then we claim that {r je j} is a basis for NJ′ . Indeed, since NJ′ = spanR(e j) in this case, if
x ∈ NJ′ we must have x = re j for some r ∈ R. Thus r ∈ I j and so r = sr j for some s ∈ R
since I j = (r j). Therefore, x = s(r je j) and so x ∈ spanR(r je j) and so NJ′ ⊆ spanR(r je j). If
x ∈ spanR(r je j) then clearly x ∈ spanR(e j), and so we have NJ′ = spanR(r je j), as desired.
Therefore, in either of the cases r j = 0R or r j , 0R, we have card({B j}) ≤ card(J′) where
B j is any basis for NJ′ . Thus ({ j},N{ j′}) ∈ PJ.

Now let us place a partial order ⪯ on PJ by

(J1,BJ1) ⪯ (J2,BJ2) ⇐⇒ J1 ⊆ J2, BJ1 ⊆BJ2 .

We claim that this partial order on PJ satisfies the hypotheses of Zorn’s Lemma. Let
{(Ja,BJa) | a ∈ A} be a totally ordered subset of PJ and define J̄ = ∪a∈AJa and B̄ =
∪a∈ABJa . We shall show that ( J̄, B̄ ) is an upper bound for {(Ja,BJa) | a ∈ A}. The total
order on {(Ja,BJa) | a ∈ A} induces a total order on the index set A in the obvious way:

a1 ≤ a2, ⇐⇒ (Ja1 ,BJa1
) ⪯ (Ja2 ,BJa2

).

We shall tacitly use this partial order. Note that the families

(Ja)a∈A,

⊕
j∈Ja

spanR(e j)


of subsets of J and M, respectively, are totally ordered by inclusion since {(Ja,BJa) | a ∈
A} is totally ordered. That is to say,

Ja1 ⊆ Ja2 ⇐⇒ a1 ≤ a2,⊕
j∈Ja1

spanR(e j) ⊆
⊕
j∈Ja2

spanR(e j) ⇐⇒ a1 ≤ a2

(why?). It, therefore, follows directly that the family (NJa)a∈A of subsets of M is also
totally ordered by inclusion, i.e.,

NJa1
⊆ NJa2

⇐⇒ a1 ≤ a2

(again, why?). Therefore, it holds that⋃
a∈A

NJa =
∑
a∈A

NJa
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(cf. Exercise 4.5.17). Thus we compute

∑
a∈A

NJa =
⋃
a∈A

NJa =
⋃
a∈A

N ∩⊕
j∈Ja

spanR(e j)


= N ∩

⋃
a∈A

⊕
j∈Ja

spanR(e j)


= N ∩

∑
a∈A

⊕
j∈Ja

spanR(e j)


= N ∩ (

⊕
j∈Ja

spanR(e j) = N J̄,

using Proposition 1.1.7. We claim that B̄ is a basis for N J̄. Let {e j1 , . . . , e jk} ⊆ B̄ and let
a0 ∈ A be sufficiently large (with respect to the total order on A) that {e j1 , . . . , e jk} ⊆BJa0

.
It follows immediately that {e j1 , . . . , e jk} is linearly independent, and so B̄ is linearly
independent. If x ∈ N J̄ then there exists a0 ∈ A such that x ∈ NJa0

. In particular, x is a
finite linear combination of elements ofBJa0

sinceBJa0
is a basis for NJa0

. Thus x is a
finite linear combination of elements of B̄ , and so B̄ is indeed a basis for NJ̄. Since
card(BJa) ≤ card(Ja) it follows that card(B̄ ) ≤ card(J̄) (why?). Therefore, this shows
that ( J̄, B̄ ) ⊆ PJ. It is clear that (J̄, B̄ ) is an upper bound for {(Ja,BJa) | a ∈ A}, and so
the partially ordered set PJ does indeed satisfy the hypotheses of Zorn’s Lemma.

Now let (K,BK) ∈ PJ be a maximal element. We shall show that K = J. Suppose
that K ⊂ J and let j ∈ J \ K. Take K′ = K ∪ { j} so that NK ⊆ NK′ . If NK = NK′

then (K′,BK) ∈ PJ has the property that (K,BK) ≺ (K′,BK), thus contradicting the
maximality of (K,BK). We may, therefore, suppose that NK ⊂ NK′ . If x ∈ NK′ \ NK then
one can write x = x′ + re j for x′ ∈ NK and where r , 0R. One can then directly check
that

IK′ = {r ∈ R | x − re j ∈ NK for some x ∈ NK′}

is an ideal of R and so we have IK′ = (r0) for some r0 ∈ R \ {0R}. Let x0 ∈ NK′ have the
property that x0 − r0e j ∈ NK.

We claim thatBK ∪ {x0} is a basis for NK′ . Indeed, if x ∈ NK′ then let r ∈ R have the
property that x − re j ∈ NK. We then have r = sr0 for some s ∈ R, and so x − sx0 ∈ NK.
Thus y ∈ spanR(NK ∪ {x0}) or, equivalently, y ∈ spanR(BK ∪ {x0}). Therefore,BK ∪ {x0}

generates NK′ . Moreover, since x0 < NK, it follows thatBK∪{x0} is linearly independent.
Now we have

card(BK ∪ {x0}) = card(BK) + 1 ≤ card(K) + 1 = card(K′).

Thus (K′,BK ∪ {x0}) ∈ PJ and (K,BK) ≺ (K′,BK′), contradicting the maximality of
(K,BK). From this we conclude that K = J. Therefore,

NK = NJ = N ∩
⊕

j∈J

spanR(e j) = N ∩M = N.
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ThusBK is a basis for NK = N. Moreover,

rank(N) = card(BK) ≤ card(K) ≤ card(I) = rank(M),

which gives the theorem. ■

Let us present an example that shows the manner in which modules over
principal ideal domains differ from vector spaces, even though Theorem 4.9.1 tells
us that there are some similarities in the two situations.

4.9.2 Example (Submodule of a module over a principal ideal domain) Let us con-
sider the principal ideal domain Z and the Z-module Z2 of ordered pairs of ele-
ments ofZ. Note that {(1, 0), (0, 1)} is a basis forZ2, and so, by Theorem 4.9.1, every
submodule of Z2 possesses a basis with at most two elements. Let us consider the
submodule N of Z2 generated by the vectors {(1, 0), (0, 2)}. Note that N ⊂ Z2 since,
for example, (0, 1) < N. However, it still holds that rank(N) = 2 = rank(Z2). Note
that this is a situation that cannot happen for finite-dimensional vector spaces. That
is, if U is a strict subspace of a finite-dimensional vector space V, then it always
holds that dim(U) < dim(V). (For infinite-dimensional vector spaces, this is not
necessarily the case; see Exercise 4.5.24.) •

Let us next examine the interplay between freeness and torsion for modules
over principal ideal domains.

4.9.3 Theorem (Torsion-free modules over principal ideal domains are free and
vice versa) If R is a principal ideal domain and if M is a finitely generated R-module,
the following statements are equivalent:

(i) M is free;
(ii) Tor(M) = {0M}.

Proof It is evident (and is Exercise 4.8.8) that a free R-module is torsion-free provided
that R is simply an integral domain.

So suppose that R is a principal ideal domain and that M is a torsion-free R-
module generated by {x1, . . . , xk}. For k = 1 we have {x1} as linearly independent
since M is torsion-free (why?). Now suppose that the generating set {x1, . . . , xk} is
ordered such that the set {x1, . . . , xm} is the largest linearly independent subset for
m ∈ {1, . . . , k}. For j ∈ {m + 1, . . . , k} the set {x1, . . . , xm, x j} is linearly dependent so there
exists c1, . . . , cm, c j ∈ R, not all zero, such that

c1x1 + · · · + cmxm + c jx j = 0M.

Moreover, it is evident that c j , 0R since the set {x1, . . . , xm} is linearly independent.
Define C = cm+1 · · · ck (note that C , 0R) so that

{Cx | x ∈ spanR(x1, . . . , xk)} ⊆ spanR(x1, . . . , xm).

Thus the submodule on the left is a submodule of the free module on the right. By
Theorem 4.9.1 it follows that the module on the left is free. However,

{Cx | x ∈ spanR(x1, . . . , xk)} = {Cx | x ∈ M}.
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We claim that freeness of the module on the right implies freeness of M. Indeed, if

{Cx | x ∈ M} = spanR(Ce1, . . . ,Cen)

then it is easy to see that M = spanR(e1, . . . , en). ■

Let us illustrate the theorem with an example.

4.9.4 Example (Nonfree module over Z) The Z-module Z4 = Z/4Z is not torsion-
free as we saw in Example 4.8.54–4. The module is, however, finitely generated
(indeed, it is consists of only four elements). Thus it should also not be free. Indeed,
note that (2 + 4Z) + (2 + 4Z) = 0 + 4Z. Thus there are two elements in Z4 which
sum to zero. This cannot happen in any free, finitely generated Z-module, since
such modules are isomorphic to Zn for some n ∈ Z>0. •

The next situation we consider is the case when a finitely generated module
over a principal ideal domain is not torsion-free, and hence not free. We see that
in this case one can do the best that could be expected, i.e., “separate” the free and
nonfree parts. This result constitutes the first decomposition theorem that we will
encounter for finitely generated modules over principal ideal domains.

4.9.5 Theorem (Nonfree modules over principal ideal domains) If R is a principal
ideal domain and if M is a finitely generated R-module, then the R-module M/Tor(M) is
free. Moreover, there exists a free submodule Mfree of M such that M = Tor(M) ⊕ Mfree.
Finally, if T and N are torsion and free submodules of M such that M = T ⊕ N, then
T = Tor(M).

Proof Since M/Tor(M) is torsion-free by Proposition 4.8.53(iii), it follows from Theo-
rem 4.9.3 that it is also free. To show that there exists a complement to Tor(M) in M we
use the following lemma.

1 Lemma Let R be a commutative unit ring, let M and N be R-modules, and let L ∈ HomR(M; N)
be an epimorphism. If N is free then there exists a complement to ker(L) in M.
Proof Let { f j} j∈J be a basis for N and for j ∈ J let x j ∈ L−1( f j) (by the Axiom of Choice).
Take P = spanR(x j| j ∈ J). We claim that P is a complement to ker(L). Let x ∈ M and
write

L(x) =
∑
j∈J

c j f j,

for c j ∈ R, j ∈ J, only finitely many of which are nonzero. Then define x′ = x−
∑

j∈J c jx j.
We then have

L(x′) = L(x) −
∑
j∈J

c jL(x j) = 0N

so that x′ ∈ ker(L). Now let y ∈ ker(L) ∩ P. Since y ∈ P we can write y =
∑

j∈J c jx j for
some c j ∈ R, j ∈ J, only finitely many of which are nonzero. Since y ∈ ker(L) we have

L(y) =
∑
j∈J

c jL(x j) =
∑
j∈J

c j f j = 0N.

Since { f j} j∈J is a basis, it follows that c j = 0R for each j ∈ J and so ker(L) ∩ P = {0M},
giving the result. ▼
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Applying this lemma to the case of the projection from M to the free module
M/Tor(M) we see that Tor(M) does indeed possess a complement.

Now we prove the final assertion of the theorem. Clearly we must have T ⊆ Tor(M).
Now suppose that x ∈ Tor(M) and write x = x1 + x2 for x1 ∈ T and x2 ∈ N. Then there
exists nonzero a, a1 ∈ R such that ax = 0M and a1x1 = 0M. Thus aa1x2 = 0M which gives
x2 = 0M since N is free, and so torsion-free. Thus x ∈ T, giving T = Tor(M), as desired.■

Note that the choice of free complement to Tor(M) in Theorem 4.9.5 is not
necessarily unique. However, since any complement is isomorphic to the quotient
M/Tor(M), it follows that any two complements are isomorphic.

4.9.2 Cyclic modules over principal ideal domains

In Theorem 4.9.5 we saw that a finitely generated module over a principal ideal
domain can be decomposed as a direct sum of a torsion module and a free module.
Since free modules are easy to understand, we should focus on understanding
finitely generated torsion modules. It turns out that the way to do this is through
cyclic modules and primary modules. In this section we study cyclic modules.

Let us first give the definition.

4.9.6 Definition (Cyclic module) For a commutative ring R, an R-module M is a cyclic
module if M = {rx | r ∈ R} for some x ∈ M. •

For fields, cyclic submodules are isomorphic to the field thought of as a vector
space. For general modules, cyclic modules can be more complicated, although
one has the following useful characterisation.

4.9.7 Proposition (Characterisation of cyclic modules) If R is a commutative ring M is
a cyclic R-module with M = spanR(x), then M is isomorphic to the R-module R/ ann(x).

Proof Consider the map σ ∈ HomR(R; M) given by σ(r) = rx. It is clear that
this is an epimorphism of R-modules. It is then easy to show that the map
σ0 ∈ HomR(R/ker(σ); M) is an isomorphism (see Exercise 4.8.5). Since ann(x) = ker(σ)
the result follows. ■

For modules over principal ideal domains, there are useful facts that can be
exploited to better understand their structure. We being with a definition that
makes sense since ideals in principal ideal domains are generated by single ring
elements.

4.9.8 Definition (Order) If R is a principal ideal domain, M is an R-module, and if N is a
submodule of M, an order of N is a generator of the ideal ann(N). An order of x ∈ M
is an order of the submodule spanR(x). •

Note that any two orders for a submodule are associates by Propositions 4.2.60
and 4.2.61.

Now let us give some of the basic properties of cyclic modules over principal
ideal domains.
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4.9.9 Proposition (Properties of cyclic modules over principal ideal domains) Let
R be a principal ideal domain and let M = spanR(x) be an R-module with order r. Then
the following statements hold:

(i) if M is cyclic then any submodule of M is cyclic;

(ii) if r = pk1
1 · · ·p

km
m is a prime factorisation with p1, . . . ,pm nonassociate primes, then

M is isomorphic to the R-module

R/(pk1
1 ) ⊕ · · · ⊕ R/(pkm

m ).

Proof (i) Suppose that M = spanR(x) and let ann(x) = (a). Then let σ ∈ HomR(R; M) be
the epimorphism defined by σ(r) = rx. Let N be a submodule of M and note that σ−1(N)
is then a submodule of R; that is, σ−1(N) is an ideal of R. Since R is a principal ideal
domain, σ−1(N) = (r) for some r ∈ R. Then σ(r) is a generator for N, giving the result.

(ii) By Proposition 4.9.7 it suffices to show that R/(r) is isomorphic to

R/(pk1
1 ) ⊕ · · · ⊕ R/(pkm

m ).

It will, therefore, suffice (by induction) to show that R/(r1r2) is isomorphic to R/(r1) ⊕
R/(r2) when r1 and r2 are relatively prime. Let ϕ1 ∈ HomR(R; R) be defined by
ϕ1(r) = rr1 and note that ϕ1 maps (r2) onto (r1r2). One can then easily check that this
induces a well-defined homomorphism ϕ̄1 ∈ HomR(R/(r2); R/(r1r2)) defined by

ϕ̄1(r + (r2)) = ϕ1(r) + (r1r2) = rr1 + (r1r2).

In like manner one defines a homomorphism ϕ̄2 ∈ HomR(R/(r1); R/(r1r2)) given by
ϕ̄2(r + (r1)) = rr2 + (r1r2). Now define

ϕ̄ : R/(r1) ⊕ R/(r2)→ R/(r1r2)
(r + (r1), s + (r2)) 7→ ϕ̄2(r) + ϕ̄1(s) = (rr2 + sr1) + (r1r2).

We leave it to the reader to verify that this map is well-defined. Since r1 and r2 are
relatively prime, by Proposition 4.2.77(ii) there exists s1, s2 ∈ R such that s1r1+s2r2 = 1R.
Therefore, for a ∈ R we compute

ϕ̄(as2 + (r1), as1 + (r2)) = as2r2 + as2r1 + (r1r2) = a + (r1r2),

showing that ϕ̄ is an epimorphism. Now suppose that

ϕ̄(r + (r1), s + (r2)) = 0R + (r1r2) =⇒ rr2 + sr1 ∈ (r1r2).

Thus rr2 + sr1 = ar1r2 for some a ∈ R. Therefore,

s1rr2 + s1sr1 = s1ar1r2.

Now we use the relation

s1r1 + s2r2 = 1R =⇒ sr1s1 = s − sr2s2
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to give
s1rr2 + s − sr2s2 = s1ar1r2 =⇒ s = s1ar1r2 + sr2s2 − s1rr2,

giving s ∈ (r2). A similar argument gives r ∈ (r1). Therefore,

(r + (r1), s + (r2)) = (0R + (r1), 0R + (r2))

showing that ϕ̄ is injective by Exercise 4.8.3. ■

The following example illustrates the preceding result.

4.9.10 Example (Cyclic module over Z) We considerZ6 = Z/6Z as aZ-module, noting
that Z is a principal ideal domain (by Theorems 4.2.45 and 4.2.55). Clearly
Z6 is cyclic and 6 ∈ Z is an order. Since the prime factorisation of 6 is 6 =
2 · 3, Proposition 4.9.9 tells us that Z6 is isomorphic to Z2 ⊕ Z3. The proof of
Proposition 4.9.9 moreover gives the isomorphism as

( j + 2Z, k + 3Z) 7→ (3 j + 2k) + 6Z. •

4.9.3 Primary modules

In a cyclic module all elements have the same orders. We next consider a
generalisation where not all elements have the same orders, but where all orders
are (up to multiplication by a unit) powers of the same prime ring element.

4.9.11 Definition (Primary module) For a principal ideal domain R, a primary module
over R is an R-module M such that there exists a prime p ∈ R such that for each
x ∈ M there exists k ∈ Z>0 for which ann(x) = (pk). •

For modules that are not primary, one can still define submodules that are
primary.

4.9.12 Definition (Primary submodule) For a principal ideal domain R, a prime p ∈ R,
and an R-module M, the p-primary submodule is the subset

M(p) = {x ∈ M | ann(x) = (pk) for some k ∈ Z>0}. •

We should verify that M(p) is indeed a submodule.

4.9.13 Proposition (Primary submodules are submodules) For a principal ideal domain
R, a prime p ∈ R, and an R-module M, M(p) is a submodule.

Proof We begin with a simple lemma which uses the notation from the statement of
the result.
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1 Lemma If pk
∈ ann(x) then ann(x) = (pj) for some j ∈ {1, . . . ,k}.

Proof We have ann(x) = (r) for some r ∈ R and so r|pk. Since R is a unique factorisation
domain we must then have r = up j for some j ∈ {1, . . . , k}. ▼

Let x1, x2 ∈ M(p) with ann(x1) = (pk1) and ann(x2) = (pk2). Let k = max{k1, k2} and
note that pk(x1 + x2) = 0M so that (pk) ⊆ ann(x1 + x2). Then ann(x1 + x2) = (p j) for some
j ∈ {1, . . . , k} by the lemma and so x1 + x2 ∈ M(p). Also let x ∈ M(p) and let r ∈ R,
supposing that ann(x) = (pk). Then pkrx = rpkx = 0M and so (pk) ⊆ ann(rx). The lemma
gives ann(rx) = (p j) for some j ∈ {1, . . . , k} and so rx ∈ M(p). ■

In order to explain the importance of the notion of primary modules in the
theory of modules over a principal ideal domain, the following result tells us that
any torsion module is a direct sum of primary modules.

4.9.14 Theorem (Torsion modules and primary modules over principal ideal do-
mains) If R is a principal ideal domain and if M is a torsion R-module, then

M =
⊕
p∈R,

p prime

M(p).

Proof Let x ∈ M be nonzero and let ann(x) = (r). Write r = pk1
1 · · · p

km
m for nonassociate

primes p1, . . . , pm and for k1, . . . , km ∈ Z>0. For j ∈ {1, . . . ,m} define

r j = pk1
1 · · · p

k j−1

j−1 p
k j+1

j+1 · · · p
km
m .

Since {r1, . . . , rm} are relatively prime, by Proposition 4.2.77(ii) there exists s1, . . . , sk ∈ R
such that

s1r1 + · · · + skrk = 1R.

Since p
k j

j s jr jx = s jrsp
k j

j x = 0M, s jr jx ∈ M(p j) for j ∈ {1, . . . ,m}. Therefore, since

x = 1Rx = s1r1x + · · · + smrmx ∈ M(p1) + · · · +M(pm).

Now we show that the sum is direct. Let p ∈ R be a prime and denote

M(!p) =
∑
q∈R,

q prime,
q,p

M(q).

Suppose that x ∈ M(p) ∩ M(!p) so that pkx = 0M for some k ∈ Z>0 and so that x =
x1 + · · · + xm for x j ∈ M(q j) for some collection q1, . . . , qm of nonassociate primes none

of which equals p. Thus we also have q
k j

j x = 0M for some k j ∈ Z>0, j ∈ {1, . . . ,m}.

If d = qk1
1 · · · q

km
m then x ∈ M(d) and, since d and p are relatively prime (by unique

factorisation), by Proposition 4.2.77(ii) there exists r, s ∈ R such that rpk + sd = 1R.
Therefore,

x = 1Rx = (rpk + sd)x = 0M,

showing that M(p) ∩M(!p) = {0M}, as desired. ■

The decomposition of a torsion module given in the preceding theorem has a
name.
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4.9.15 Definition (Primary decomposition) Let R be a principal ideal domain and let M
be a torsion R-module. The direct sum decomposition

M =
⊕
p∈R,

p prime

M(p)

is the primary decomposition of M. •

The preceding theorem gives us an important decomposition for torsion mod-
ules, and so by virtue of Theorem 4.9.5, of finitely generated modules over principal
ideal domains. Our next result gives a refinement of this theorem by showing that
each of the direct summands in Theorem 4.9.14 admits a decomposition into cyclic
modules in a specific manner. This theorem contains the bulk of the effort required
to understand the structure of modules over principal ideal domains, and the proof
is quite technical in places.

4.9.16 Theorem (Primary modules and cyclic modules over principal ideal domains)
Let R be a principal ideal domain and let M be a finitely generated primary R-module with
M = M(p) for some prime p ∈ R. Then there exists k1, . . . ,km ∈ Z>0 such that

(i) k1 ≥ · · · ≥ km and
(ii) M is isomorphic as an R-module to the direct sum

R/(pk1) ⊕ · · · ⊕ R/(pkm).

Moreover, if q ∈ R is a prime such that M is isomorphic to the R-module

R/(ql1) ⊕ · · · ⊕ R/(qln),

where l1, . . . , ln ∈ Z>0 satisfy l1 ≥ · · · ≥ ln, then q and p are associates, n = m, and lj = kj,
j ∈ {1, . . . ,m}.

Proof For the existence part of the proof we employ a technical lemma. The proof of
technical lemma relies on a simple fact which we prove first.

1 Lemma If R is a principal ideal domain, if M is an R-module, if x ∈ M, and if ann(x) = (pk)
for some prime p ∈ R and some k ∈ Z>0, then pjx , 0M for j ∈ {0, 1, . . . ,k − 1}.

Proof Suppose that p jx = 0M for some j ∈ Z≥0. Then p j
∈ ann(x) and so pk

|p j. Thus,
by unique factorisation, j ≥ k. ▼

Now we state and prove the technical lemma.

2 Lemma Let R be a principal ideal domain, let p ∈ R be a prime, and let M be an R-module
such that, for some k ∈ Z>0, pkx = 0M for each x ∈ M and pk−1x , 0M for some x ∈ M. If
x ∈ M satisfies ann(x) = (pk), then spanR(x) possesses a complement in M.
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Proof The result is vacuous when M = spanR(x) so let us suppose otherwise. Denote
by Cx the set of all submodules P of M satisfying spanR(x) ∩ P = {0M}.

Let us first show that Cx is not empty. Let z ∈ M \ spanR(x). Since pkz = 0M ∈

spanR(x) there exists a least j ∈ Z>0 such that p jz ∈ spanR(x). Thus p j−1z < spanR(x)
and p jz = sx for some s ∈ R. We may then factor s as s = rpm for some r ∈ R and some
m ∈ Z≥0 such that p ∤ r. Therefore,

0M = pkz = pk− jp jz = pk− jrpmx.

Since p ∤ r and pk−1x , 0M (by the lemma above), k − j + m ≥ k; thus m ≥ j ≥ 1. Now
take y = p j−1z − rpm−1x. Since p j−1z < spanR(x) it follows that y , 0M. Also,

py = p jz − rpmx = p jz − sx = p jz − p jz = 0M.

Let sy ∈ spanR(x) ∩ spanR(y) so that sy ∈ spanR(x) for some s ∈ R. Suppose that
sy , 0m. Then p ∤ s since py = 0M. Therefore, s and pk are relatively prime and, by
Proposition 4.2.77(ii), there exists a, b ∈ R such that as + bpk = 1R. Then

y = 1Ry = asy + bpky = a(sy) ∈ spanR(x).

Therefore,
p j−1z = y + rpm−1x ∈ spanR(x).

If j − 1 = 0 then this contradicts the choice that z < spanR(x). If j − 1 , 0 then this
contradicts the fact that j is the least positive integer satisfying p jz ∈ spanR(x). Either
way, we conclude that sy = 0M and so spanR(y)∩spanR(x) = {0M}. ThusCx is nonempty.

Now place a partial order on Cx by set inclusion. Let {P j | j ∈ J} be a totally
ordered subset of Cx. Then ∪ j∈JP j is an upper bound for this totally ordered subset
since

spanR(x) ∩
(
∪ j∈JP j

)
= ∪ j∈J

(
spanR(x) ∩ P j

)
= {0M}

by Proposition 1.1.7. By Zorn’s Lemma we may conclude the existence of a maximal
element N of Cx.

We now work with the quotient module M/N. Note that pk(x + N) = 0M/N. Since
pk−1x , 0M by Lemma 1 and since spanR(x) ∩ N = {0M} we have pk−1x < N. Thus
pk−1(x + N) , 0M/N and so ann(x + N) = (pk). This also shows that pk−1 < ann(M/N).
Thus the R-module M/N shares with M the property that pk(x′ + N) = 0M/N for every
x′ + N ∈ M/N and that there exists x′ + N ∈ M/N such that pk−1(x′ + N) , M/N. Now
we claim that M/N = spanR(x + N). Suppose not. Then, as we saw during the course
of proving that Cx is nonempty, there exists a nonzero y + N ∈ M/N such that

spanR(x + N) ∩ spanR(y + N) = {0M/N}.

Since spanR(x) ∩ N = {0M}, this implies that

spanR(x) ∩
(
spanR(y) + N

)
= {0M}.

Thus we see that spanR(y) + N ∈ Cx. Since y < N this contradicts the maximality of
N, and so we conclude that N is the cyclic module generated by x + N. Thus N is a
complement to spanR(x), as desired. ▼
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Now we proceed with the existence part of the proof of the theorem. The proof
is by induction on the number of generators of M. If M is generated by x ∈ M then
M = R/(pk) for some k ∈ Z>0, and the result is clear. So suppose the result is true for
modules possessing m − 1 generators and let M be generated by x1, . . . , xm. Suppose
that

ann(x1) = (pk1), ann(x j) = (pl j), j ∈ {2, . . . ,m}.

Without loss of generality suppose that k1 = max{k1, l2, . . . , lm}. From this assumption
and from Lemma 1 it follows that pk1x = 0M for every x ∈ M and that pk1−1x , 0M for
some x ∈ M. By Lemma 2 there exists a complement N to spanR(x1) in M. Denote by
π : M→ N the projection defined by the direct sum decomposition M = spanR(x1) ⊕N.
Note that since M is generated by {x1, . . . , xm}, N is generated by {π(x1), . . . , π(xm)}.
Moreover π(x1) = 0N and so N is finitely generated by at most m − 1 elements. By the
induction hypothesis N is isomorphic to

R/(pk2) ⊕ · · · ⊕ R/(pkm)

with k2 ≥ · · · ≥ km. Since pk1x = 0M for every x ∈ N it follows that k1 ≥ k2. Since
spanR(x1) is isomorphic to R/(pk1) the existence part of the theorem follows.

Now we prove the uniqueness. To do so we introduce some notation and an
accompanying lemma. For the moment, let M be a general R-module and define

M[p] = {x ∈ M | px = 0M}

for a prime p ∈ R. Let us adopt the notation

rM = {rx | x ∈ M}

for convenience. Note that R/(p) is a field by Theorem 4.3.9 since (p) is a maximal
ideal by Theorem 4.2.64 and Proposition 4.2.70. Therefore, the following lemma
makes sense.

3 Lemma Let R be a principal ideal domain, let p ∈ R be prime, and let M be an R-module.
Then the following statements hold:

(i) M[p] is a submodule of M;
(ii) M[p] is a vector space over R/(p);
(iii) if M = N ⊕ P then M[p] = N[p] ⊕ P[p].

Proof (i) This is a straightforward computation.
(ii) We define scalar multiplication in the vector space by (r + (p))x = rx. Let us

show that this operation is well-defined. If r + (p) = r′ + (p) then r − r′ = sp for some
s ∈ R. Then

(r′ + (p))x = r′x = (r − sp)x = rx = (r + (p))x,

as desired. To show that this definition of scalar multiplication, combined with vector
addition as inherited from the module structure, makes M[p] into a R/(p)-vector space
is now straightforward.

(iii) It is clean that M[p] ⊆ N[p] ⊕ P[p]. Moreover, since N[p] ⊆ N and P[p] ⊆ P it
follows that N[p] ∩ P[p] = {0M}. Now let x ∈ M[p] and write x = y + z for y ∈ N and
z ∈ P. Since px = 0M we have py + pz = 0M. Since py ∈ N and pz ∈ P it follows that
py = pz = 0M, and so y ∈ N[p] and z ∈ P[p]. Thus M[p] = N[p] ⊕ P[p]. ▼
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Now we proceed to the uniqueness part of the proof of the theorem, returning to
the case where M satisfies the hypotheses of the theorem. We have M isomorphic to
both R-modules

R/(pk1) ⊕ · · · ⊕ R/(pkm), R/(ql1) ⊕ · · · ⊕ R/(qln),

with k1e.g., · · · ≥ km and l1 ≥ · · · ≥ ln. It follows that ann(M) = (pk1) = (ql1). Thus pk1 and
ql1 are associates, and by unique factorisation it follows that q and p are associates and
that k1 = l1.

Let us next show that n = m. Let x1, . . . , xm and y1, . . . , yn have the properties
that ann(x j) is isomorphic to (pk j), j ∈ {1, . . . ,m}, and that ann(y j) is isomorphic to (pl j),
j ∈ {1, . . . ,n}. Then, by Lemma 3, the R/(p)-vector spaces

spanR(x1)[p] ⊕ · · · ⊕ spanR(xm)[p]

and
spanR(y1)[p] ⊕ · · · ⊕ spanR(yn)[p]

are isomorphic to M[p]. Moreover, each of the summands is nontrivial given that they
are each cyclic modules whose order is a power of p. Moreover, given the definition
of scalar multiplication in these R/(p)-vector spaces, each of the summands is one-
dimensional. Thus M[p] is isomorphic to two direct sums of one-dimensional vector
spaces, one with m components and the other with n components. Therefore, m = n.

Finally we show that k j = l j, j ∈ {1, . . . ,m}. We do this by induction on k1. If k1 = 1
then l1 = 1 (as we showed above) and so l j = k j = 1, j ∈ {1, . . . ,m}. Now suppose that
k j = l j, j ∈ {1, . . . ,m}, whenever k j ∈ {1, . . . , a − 1} for some a ≥ 2. Then we can write

(k1, . . . , km) = (k1, . . . , kr, 1, . . . , 1), kr > 1

and
(l1, . . . , lm) = (l1, . . . , ls, 1, . . . , 1), ls > 1,

for some r, s ∈ {1, . . . ,m}. This then gives pM as being isomorphic to both of the
submodules

p spanR(x1) ⊕ · · · ⊕ p spanR(xm) = p spanR(x1) ⊕ · · · ⊕ p spanR(xr)

and
p spanR(y1) ⊕ · · · ⊕ p spanR(ym) = p spanR(y1) ⊕ · · · ⊕ p spanR(ys).

Now note that p spanR(x1) = spanR(px1) is a cyclic R-module with order pk1−1. Thus,
by the induction hypotheses, r = s and k j = l j, j ∈ {1, . . . , r}, giving the result. ■

The decomposition of a primary module as a direct sum of cyclic modules as in
the theorem has a name.
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4.9.17 Definition (Cyclic decomposition) Let R be a principal ideal domain and let M be
a finitely generated primary R-module with M = M(p) for some prime p ∈ R. The
decomposition, as in Theorem 4.9.16,

M = C1 ⊕ · · · ⊕ Cm

with C j isomorphic to R/(pk j), j ∈ {1, . . . ,m}. is the cyclic decomposition of M. •

4.9.4 The primary-cyclic decomposition

With the results of the preceding three sections we can now fairly easily state
and prove two important decomposition theorems for finitely generated modules
over principal ideal domains. As we shall see in Section 5.8, these decomposition
theorems are useful in linear algebra in distinct ways.

Let us simply state the theorem.

4.9.18 Theorem (Primary-cyclic decomposition) If R is a principal ideal domain and if M
is a finitely generated R-module, then there exists

(i) n ∈ Z≥0,
(ii) nonassociate primes p1, . . . ,pn ∈ R,
(iii) mj ∈ Z>0 and lj1, . . . , ljmj ∈ Z>0 for each j ∈ {1, . . . ,n},
(iv) primary submodules P1, . . . ,Pn of M, and
(v) a free submodule F of M

such that
(vi) lj1 ≥ · · · ≥ ljmj for each j ∈ {1, . . . ,n},
(vii) Pj is isomorphic to

R/(plj1
j ) ⊕ · · · ⊕ R/(p

ljmj

j )

for each j ∈ {1, . . . ,n}, and
(viii) M = P1 ⊕ · · · ⊕ Pn ⊕ F.

Moreover, if M is a direct sum

M = Q1 ⊕ · · · ⊕Qm ⊕ E

with Qj a qj-primary submodule isomorphic to

R/(qsj1

j ) ⊕ · · · ⊕ R/(q
sjnj

j )

for a prime qj ∈ R, for nj ∈ Z>0, and for sj1, . . . , sjnj ∈ Z>0 satisfying sj1 ≥ · · · ≥ sjnj ,
j ∈ {1, . . . ,m}, and with E free, then E and F are isomorphic, m = n, and there exists a
bijection σ : {1, . . . ,n} → {1, . . . ,n} such that, for each j ∈ {1, . . . ,n}, Qj = Pσ(j), qj and pσ(j)

are associates, nj = mσ(j), and sja = lσ(j)a for a ∈ {1, . . . ,nj}.
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Proof By Theorem 4.9.5 we can write M = T ⊕ F with T a torsion module and with F
free. Moreover, the torsion part of this decomposition is unique and any two choices
of free complement will be isomorphic since all complements are isomorphic to M/T
and since R has the invariant rank property by Theorem 4.8.25. By Theorem 4.9.14
we know that T is a direct sum over a finite number of nonassociate primes of primary
modules associated with these primes. The theorem then follows from Theorem 4.9.16.

■

The idea is that first M is a finite direct sum of it the primary submodules
P1, . . . ,Pn, along with a free module F. This decomposition follows, as explained
in the proof of the preceding theorem, from Theorems 4.9.5 and 4.9.14. Each of the
primary modules P j = M(p j), j ∈ {1, . . . ,n}, can then be decomposed using the cyclic

decomposition as a finite direct sum of cyclic submodules with orders pl j1

j , . . . , p
l jmj

j
by Theorem 4.9.16. The prime powers

pl11
1 , . . . , p

l1m1
1 , . . . , pln1

n , . . . , p
lmn
n

are called the elementary divisors, and are unique up to multiplication by units.
The decomposition of the theorem has a name.

4.9.19 Definition (Primary-cyclic decomposition) Let R be a principal ideal domain and
let M be a finitely generated R-module. The decomposition M = P1 ⊕ · · · ⊕ Pn ⊕ F
of Theorem 4.9.18 is the primary-cyclic decomposition of M. •

The simplest example of a principal ideal domain is Z, and modules over Z
are simply Abelian groups. Thus, applying Theorem 4.9.18 in this case gives a
classification of finitely generated Abelian groups. Let us record this.

4.9.20 Example (Primary-cyclic decomposition for Z) We let G be a finitely generated
Abelian group, i.e., a finitely generated Z-module by Example 4.8.2–2. Then
Theorem 4.9.18 tells us that G is isomorphic to the group

Z
pk1

1
⊕ · · · ⊕Zpkn

n
⊕Zk

for some n, k ∈ Z≥0 and k1, . . . , kn ∈ Z>0 and for some primes p1, . . . , pn ∈ Z>0. •

4.9.5 The invariant factor decomposition

The next decomposition we give is simply a rearrangement of the primary cyclic
decomposition. However, it is a rearrangement done in such a way that (1) it is
interesting and (2) it is uniquely defined in the same sense that the primary-cyclic
decomposition is uniquely defined.

Let us simply state the theorem.
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4.9.21 Theorem (Invariant factor decomposition) If R is a principal ideal domain and if
M is a finitely generated R-module, then there exists

(i) m ∈ Z≥0,
(ii) (not necessarily distinct) nonzero nonunits r1, . . . , rm ∈ R,
(iii) cyclic submodules N1, . . . ,Nm of M with orders r1, . . . , rm, respectively, and
(iv) a free submodule F of M such that

r1| · · · |rm and such that M = N1 ⊕ . . .Nm ⊕ F.
Moreover, if M is a direct sum

M = P1 ⊕ · · · ⊕ Pn ⊕ E

with Pj cyclic with nonzero nonunit orders sj, j ∈ {1, . . . ,n}, satisfying s1| · · · |sn and with
E free, then E and F are isomorphic, n = m, and (sj) = (rj), j ∈ {1, . . . ,n}.

Proof The existence part of the proof consists of constructing the decomposition from
the primary-cyclic decomposition of Theorem 4.9.18. We do this by arranging the data
from the primary-cyclic decomposition in a particular way. Since the free module F is
“along for the ride,” let us simply suppose that M is a torsion module. We then know
by Theorem 4.9.14 that there are nonassociate primes p1, . . . , pk ∈ R such that

M = M(p1) ⊕ · · · ⊕M(pk).

For each j ∈ {1, . . . , k} we then have l j1, . . . , l jm j ∈ Z>0 such that l j1 ≥ · · · ≥ l jm j and such
that M(p j) is isomorphic to

R/(p
l j1

j ) ⊕ · · · ⊕ R/(p
l jmj

j ).

Let us take m = max{m1, . . . ,mk}. Let us then use this notation to write the following
table for arranging the powers of primes:

pl1m
1 pl2m

2 · · · plkm
k

...
...

. . .
...

pl12
1 pl22

2 · · · plk2
k

pl11
1 pl21

2 · · · plk1
k

We adopt the convention that l js = 0 if s > m j. We then define

rm− j+1 = p
l1 j

1 · · · p
lkj

k , j ∈ {1, . . . ,m},

i.e., r j is the product of the terms in the jth row in the table. Let us also take N j to be the
cyclic module with order r j obtained by taking the direct sum of the cyclic submodules

Asj, of M(ps) of order p
lsj

j , s ∈ {1, . . . , k}. It is clear from our table that r1| · · · |rm, and that
the M = N1 ⊕ · · · ⊕ Nm.
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Now we prove the uniqueness of the decomposition. Two decompositions will
involve only the primes p1, . . . , pk and so will give rise to two tables

pl1m
1 pl2m

2 · · · plkm
k

...
...

. . .
...

pl12
1 pl22

2 · · · plk2
k

pl11
1 pl21

2 · · · plk1
k

,

pq1n
1 pq2n

2 · · · pqkn
k

...
...

. . .
...

pq12
1 pq22

2 · · · pqk2
k

pq11
1 pq21

2 · · · pqk1
k ,

for which the products of the rows are the ring elements r1, . . . , rm and s1, . . . , sn. The
requirement that r1| · · · |rm and s1| · · · |sn ensures that l j1 ≥ · · · ≥ l jm, j ∈ {1, . . . , k} and
q j1 ≥ · · · ≥ q jn, j ∈ {1, . . . , k}. Thus M(p j) is isomorphic to both R-modules

R/(p
l j1

j ) ⊕ · · · ⊕ R/(p
l jm

j )

and
R/(p

q j1

j ) ⊕ · · · ⊕ R/(p
q jn

j )

(allowing that some components in the direct sum are zero). The uniqueness part of
the result then follows from the uniqueness part of Theorem 4.9.16. ■

The ring elements r1, . . . , rm in the statement of the theorem are called invariant
factors of M. These are uniquely defined, up to multiplication by a unit, by the
module M.

The decomposition of the preceding theorem has a name.

4.9.22 Definition (Invariant factor decomposition) Let R be a principal ideal domain
and let M be a finitely generated R-module. The decomposition M = N1⊕ . . .Nm⊕F
of Theorem 4.9.21 is the invariant factor decomposition of M. •

4.9.23 Example (Invariant factor decomposition for Z) Let us give a concrete example
of the structure of a finitely generated Z-module to illustrate how one goes from
the primary-cyclic decomposition to the invariant factor decomposition. As in
Example 4.9.20 we let G be a finitely generated Abelian group and, without loss
of generality, take

G = Z
pk1

1
⊕ · · · ⊕Zpkn

n
⊕Zk.

For concreteness we take the n = 3 and the following data:

j p j k j

1 2 1
2 2 3
3 3 2
4 3 2
5 3 5
6 7 2
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The primes that will participate in our invariant factors are then 2, 3, and 7. There
will be three invariant factors since the most appearances by any prime (in this case
the prime 3) is three. The rule for constructing the invariant factors is to start by
constructing the largest one as the product of the highest powers of participating
primes, in this case 23, 35, and 72. The next to largest invariant factor then takes the
products of the next highest powers of the participating primes, in this case 21, 32,
and 70. This procedure is most easily illustrated in tabular form, just as it was in
the proof of the theorem:

20 32 70

21 32 70

23 35 72

The invariant factors are then

r1 = 20
· 32
· 70 = 9, r2 = 21

· 32
· 70 = 18, r3 = 23

· 35
· 72 = 95256. •

Let us give an entirely related characterisation of the submodules of a free
module over a principal ideal domain. Such submodules are necessarily free by
Theorem 4.9.1 and have a well-defined rank by Theorem 4.8.25.

4.9.24 Theorem (Submodules of free modules over a principal ideal domain) Let R
be a principal ideal domain and let M be a finitely generated, free R-module with N ⊆ M
a submodule of finite rank k. Then there exists a basis B for M, {e1, . . . , ek} ⊆ B , and
r1, . . . , rk ∈ R such that

(i) r1| · · · |rk and
(ii) {r1e1, . . . , rkek} is a basis for N.

Proof Our proof makes use of Theorem 5.5.20 which itself follows from Theo-
rem 5.2.43.

We let iN ∈ HomR(N; M) be the inclusion of N into M. If rank(N) = k then rank(iN) =
k. Therefore, by Theorem 5.5.20 there exists bases { f1, . . . , fk} and {e1, . . . , en} for N and
M, respectively, and r1, . . . , rk ∈ R such that
1. r1| · · · |rk and
2. iN( f j) = r je j for j ∈ {1, . . . , k}.
This implies that f j = r je j (an elements of M) and so the result follows. ■

Thus a finite rank submodule of a free module over a principal ideal domain
comes equipped with invariant factors as well. An example illustrates this.

4.9.25 Example (Subgroups of free, finitely generated Abelian groups) A free, finitely
generated Abelian group is a free, finitely generated Z-module. A free, finitely
generated Z-module is isomorphic to Zn. Let {e1, . . . , en} be the standard basis
for Zn. The “simplest” submodules of Zn are those generated by { j1e1, . . . , jkek}.
Theorem 4.9.24 says that after a change of basis, any submodule ofZn has this form.
Moreover, by properly rearranging the prime factors of j1, . . . , jk, cf. Example 4.9.23,
one can ensure that j1| · · · | jk. This rearrangement of prime factors is uniquely
determined by this divisibility condition. •
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Exercises

4.9.1 Let R be a principal ideal domain.
(a) Show that if M is a finitely generated torsion R-module then ann(M) ,
{0R}.

We wish to now see that the preceding statement is not generally true when
M is not finitely generated. To see this, let P ⊆ Z be the set of prime numbers
(these are taken to be positive, as usual) and define the Z-module

M = ⊕p∈PZp.

For this module answer the following questions.
(b) Show that M is a torsion Z-module, but is not finitely generated.
(c) What is the primary decomposition of M?
(d) What is ann(M)?

4.9.2 Let R be a principal ideal domain and let M be a finitely generated R-module.
Suppose that we have two invariant factor decompositions for M:

M = N11 ⊕ · · · ⊕ N1m ⊕ F1 = N21 ⊕ · · · ⊕ N2m ⊕ F2,

with F1 and F2 free, and with N1 j and N2 j cyclic of order r j with r1| · · · |rm. Is
it the case that N1 j = N2 j for j ∈ {1, . . . ,m}?
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Chapter 5

Linear algebra

Linear algebra is one of the most important branches of mathematics as concerns
its widespread applications. Indeed, the number of applications of mathematics
which rely on linear algebra is quite astonishing. Moreover, the abstract view-
point offered by linear algebra makes disparate topics look “the same,” and it
is precisely to this that linear algebra owes much of its power. In this chapter
we give a fairly thorough description of the algebraic aspects of linear algebra,
paying special attention to both special cases of finite-dimensional linear algebra,
and infinite-dimensional linear algebra. We begin in Sections 5.1, 5.2, and 5.3
by discussing matrices, which can be seen as the concrete side of linear algebra.
Then, in Sections 5.4 and 5.5 we discuss abstract linear algebra. In Section 5.7
we encounter for the first time the important topic of duality. Particularly in Sec-
tions 5.1, 5.4, and 5.7 we give special consideration to understanding linear algebra
where infinite-dimensional vector spaces are involved. The reader will begin to see
here why infinite-dimensional and finite-dimensional linear algebra are actually
quite different. In Section 5.8 we focus on some of the special structure of linear
transformations of finite-dimensional vector spaces.

Do I need to read this chapter? The ideas in this chapter are integral to under-
standing the transform methods in Chapters IV-5–IV-7. More precisely, the material
in Chapter III-6 is essential to understanding transform methods, and the material
in Chapter III-6 is built on the material in this chapter. Also, our discussion in
Chapter V-3 involves some deep knowledge of linear algebra, such as we develop
in this chapter. Thus this chapter is one of the central background chapters in the
volume, and should be comprehended to a large degree before moving on. Excep-
tion can be made for Sections 5.2 and 5.5 which are concerned with linear algebra
over rings, and with the material in Section 5.8, all of which can be omitted until it
is needed. •
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Section 5.1

Matrices over fields

A matrix is a deceptively simple object when one is merely confronted with its
definition. Its simplicity belies its breadth of use, and the comparative complexity
of the operations that can be performed on and with matrices. In this section
we give a comparatively simple presentation of matrices, one that more or less
mirrors the standard presentation, albeit with perhaps more rigour and generality.
In particular, we treat matrices with arbitrary numbers of rows and columns, the
advantage of this being that in Theorem 5.4.21 we will be able to draw a very
general, indeed the most general possible, connection between matrices and linear
maps between arbitrary vector spaces. At present, however, the generality of
arbitrary numbers of rows and columns may seem unnecessarily complicated. In
Section 5.2 we shall add another layer of generality by considering matrices over
rings. Parts of this more general development are similar to that for fields, so we
suffer from some redundancy. However, to complicate the simpler development
of this section, which is all that will be needed by many readers, would be poor
pedagogy.

Do I need to read this section? Readers having had a basic course in linear al-
gebra where basic matrix manipulations are presented can perhaps bypass this
section until some of the results are needed subsequently. Readers having had
a more applied course in linear algebra where the basic ideas are presented, but
perhaps not proved, might be interested in seeing following some of the proofs
concerning topics like row and column rank and row reduction. •

5.1.1 Matrices over fields: definitions and notation

Let us begin with the definition of matrix with entries in a field. In this section
and in the next we shall use the symbol I for an index set, as it is extremely
convenient to do so. We shall also use the letter i as an index. This is at odds with
our use in Chapter 2 of the symbol I to exclusively stand for an interval, and our
use in Section 4.7 and Chapter II-3 of the letter i to represent

√
−1 (although this

latter notational imperfection is less alarming because of the font difference).

5.1.1 Definition (Matrix over a field) Let F be a field and let I and J be index sets. A
matrix over F in I × J is a map A : I × J → F. The expression A(i, j), i ∈ I, j ∈ J, is
the (i, j)th component of the matrix A, and is said to lie in the ith row and the jth
column of A. If, for each i0 ∈ I the set

{ j ∈ J | A(i0, j) , 0F}
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is finite, then A is row finite, and, if for each j0 ∈ J the set

{i ∈ I | A(i, j0) , 0F}

is finite, then A is column finite.
The set of matrices over F in I × J is denoted by MatI×J(F). If I = {1, . . . ,m}

and J = {1, . . . ,n}, then a matrix over F in I × J is an m × n matrix, and the set of
m × n matrices is denoted by Matm×n(F). •

The case that will be by far the most interesting for us will be the case when I
and J are finite. In this case it is customary to represent an m× n matrix as an array
of elements of F:

A =


A(1, 1) · · · A(1,n)
...

. . .
...

A(m, 1) · · · A(m,n)

 . (5.1)

Also, the most commonly encountered matrices will have components from R or
C. However, we shall have occasion to use the more general notion of a matrix
whose components lie in a polynomial ring, and this discussion we postpone until
Section 5.2.

Let us give some specific examples of matrices.

5.1.2 Examples (Matrices over fields)
1. For general index sets I and J, the zero matrix is the element 0I×J of MatI×J(F)

defined by 0I×J(i, j) = 0F for each (i, j) ∈ I × J. If I = {1, . . . ,m} and J = {1, . . . ,n}
then we denote 0m×n = 0I×J.

2. A square matrix is a matrix in I × I for some index set I.
3. A square matrix A : I × I→ F is diagonal if A(i1, i2) = 0F whenever i1 , i2.
4. The diagonal matrix II : I→ F defined by

II(i1, i2) =

1F, i1 = i2,

0F, i1 , i2

is called the identity matrix. If I = {i, . . . ,n} then we denote In = II. Note that
the identity matrix is both row and column finite.

5. A square matrix A ∈Matn×n(F) is upper triangular if A(i1, i2) = 0F for i1 > i2 and
is lower triangular if A(i1, i2) = 0F for i1 < i2. •

A useful, but simple, operation on matrices involves “swapping” rows and
columns.
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5.1.3 Definition (Matrix transpose) Let F be a field, let I and J be index sets, and
let A ∈ MatI×J(F). The transpose of A is the matrix AT

∈ MatJ×I(F) defined by
AT( j, i) = A(i, j), i ∈ I, j ∈ J. •

A nice linear algebraic interpretation of the transpose comes when one studies
duality, as we shall see in Theorem 5.7.22. One can easily verify that the transpose
satisfies the following equality:

(AT)T = A.

Sometimes it is useful to partition the sets of row and column indices as, say

I =
◦

∪
a∈A

Ia, J =
◦

∪
b∈B

Jb.

In this case, if A ∈ MatI×J(F), then for each (a, b) ∈ A × B we can define Aab ∈

MatIa×Jb(F) by Aab(i, j) = A(i, j) for (i, j) ∈ Ia× Jb. This collection of matrices associated
to A and the partitions of I and J is called a partition of A. If the sets A and B that
index the partition of rows and columns, respectively, are countable and well
ordered as

a1 < a2 < a3 < · · · , b1 < b2 < b3 < · · · ,

then it is convenient to represent the partition of A as

A =


Aa1b1 Aa1b2 Aa1b3 · · ·

Aa2b1 Aa2b2 Aa2b3 · · ·

Aa3b1 Aa3b2 Aa3b3 · · ·

...
...

...
. . .

 .
In most cases we will encounter the sets A and B indexing the partitions will be
finite, even though the partition itself may be comprised of infinite sets. This looks
somewhat simpler in the case of finite index sets for the rows and columns, where
one can use the natural order on the a finite index set obtained by enumerating it.
Here it is convenient to use the representation (5.1) of A as an array of elements of
F. Doing so allows us to denote a partition of A ∈Matm×n(F) by

A =


A11 · · · A1s
...

. . .
...

Ar1 · · · Ars

 ,
where Aab ∈Matma×nb(F), a ∈ {1, . . . , r}, b ∈ {1, . . . , s}. Therefore, we must have

r∑
a=1

ma = m,
s∑

b=1

nb = n.
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A special case of this partitioning for square matrices will be of particular
interest. Thus we let A ∈Matn×n(F) and let n1, . . . ,nk ∈ Z>0 sum to n. If

A =


A1 0n1×n2 · · · 0n1×nk

0n2×n1 A2 · · · 0n2×nk
...

...
. . .

...
0nk×n1 0nk×n2 · · · Ak


for A j ∈Matn j×n j(F), then we say that A is block diagonal. We will sometimes write

A = diag(A1, . . . ,Ak) (5.2)

in this case. Note that a diagonal matrix is a special case of a block diagonal matrix
with n1 = · · · = nk = 1.

Another specific partition is by rows and columns of A. Thus we might write
A in such a way as to distinguish its columns by

A =
[

c1 · · · cn

]
for c j ∈Matm×1(F), j ∈ {1, . . . ,n}. To distinguish the rows of A we may write

A =


r1
...

rm


for ri ∈Mat1×n(F), i ∈ {1, . . . ,m}.

We have been a little vague about how one should think about the rows and
columns of a matrix, i.e., what set do columns and rows live in? It will be useful
to be clear about this, so let us do this. Above, when in the finite index set case
we wrote a matrix as partitioned into its rows and columns, we tacitly thought of
columns as being themselves matrices with one column, and rows as themselves
being matrices with one row. However, it is often most useful to think of rows and
columns as being vectors. Let us do this precisely, establishing the notation for this
at the same time.

5.1.4 Definition (Column and row vectors) Let F be a field, let I and J be index sets,
and let A ∈MatI×J(F). For i ∈ I define r(A, i) ∈ FJ and for j ∈ J define c(A, j) ∈ FI by

r(A, i)( j) = A(i, j), c(A, j)(i) = A(i, j),

respectively. The ith row vector of A is the element of FJ defined by j 7→ r(A, i)( j)
and the jth column vector of A is the element of FI defined by i 7→ c(A, j)(i). •

5.1.2 The algebra of matrices over fields

In this section we show how one can add and multiply matrices, and give some
interesting properties of how these operations fit together. As we shall see, matrices
give us nontrivial examples of vector spaces and algebras.

Next we indicate how to add and multiply matrices.
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5.1.5 Definition (Sum and product of matrices over fields) Let F be a field and let I,
J, and K be index sets.

(i) If A,B ∈ MatI×J(F) then the sum of A and B is the matrix A + B ∈ MatI×J(F)
defined by

(A + B)(i, j) = A(i, j) + B(i, j).

(ii) If A ∈ MatI×J(F) and B ∈ MatJ×K(F) then the product of A and B is the matrix
AB ∈MatI×K(F) defined by

(AB)(i, k) =
∑
j∈J

A(i, j)B( j, k),

and is defined whenever the sum is finite.
(iii) If A ∈ MatI×J(F) and a ∈ F then multiplication of A by a is the matrix aA ∈

MatI×J(F) defined by (aA)(i, j) = a(A(i, j)). •

Note that the product of A and B is always defined when I = {1, . . . ,m}, J =
{1, . . . ,n}, and K = {1, . . . , r}. In this case we obtain the usual matrix product with
which the majority of readers will be familiar. The following result gives more
general conditions under which the product can be defined. We ask the reader to
prove this result, and explore some related matters, in Exercise 5.1.1.

5.1.6 Proposition (Definability of the product of matrices over fields) If F is a field
and if I, J, and K are index sets, then the following statements hold for A ∈MatI×J(F) and
B ∈MatJ×K(F):

(i) the product AB is defined if A is row finite;
(ii) the product AB is defined if B is column finite.

Moreover, if both A and B are column (resp. row) finite, then AB is column (resp. row)
finite.

The sum and product of matrices have the following properties.

5.1.7 Proposition (Properties of sum and product of matrices over fields) Let F be a
field, let I, J, K, and L be index sets, and let A1,A2,A3 ∈ MatI×J(F), B1,B2 ∈ MatJ×K(F),
C1 ∈MatK×L(F), and a1, a2 ∈ F. Then the following equalities hold:

(i) A1 +A2 = A2 +A1;
(ii) (A1 +A2) +A3 = A1 + (A2 +A3);
(iii) A1 + 0I×J = A1;
(iv) if −A1 ∈ MatI×J(F) is defined by (−A1)(i, j) = −(A1(i, j)), i ∈ I, j ∈ J, then A1 +

(−A1) = 0I×J;
(v) if A1 is row finite, or if B1 and B2 are column finite, then A1(B1+B2) = A1B1+A1B2;
(vi) if A1 and A2 are row finite, or if B1 is column finite, then (A1+A2)B1 = A1B1+A2B1;
(vii) if A1 and B1 are row finite, or if B1 and C1 are column finite, then (A1B1)C1 =

A1(B1C1);
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(viii) IJA1 = A1II = A1;
(ix) a1(a2A1) = (a1a2)A1;
(x) (a1 + a2)A1 = a1A1 + a2A1;
(xi) a1(A1 +A2) = a1A1 + a1A2;
(xii) 1FA1 = A1.

Proof This is Exercise 5.1.2. ■

The immediately gives the following result concerning the structure of sets of
matrices.

5.1.8 Corollary (Matrices over fields as elements of a vector space) If F is a field and
if I and J are index sets, then MatI×J(F) is an F-vector space with addition given by the sum
of matrices and with scalar multiplication being given by the multiplication of a matrix by
a scalar.

Of special interest is the case for matrices in MatI×I(F). In this case there is useful
additional structure.

5.1.9 Corollary (Matrices over fields as elements of an algebra) If F is a field and if
I is an index set, then the set of column finite matrices in MatI×I(F) is an F-algebra with
the vector space structure of Corollary 5.1.8 and with the product given by the product of
matrices. Moreover, II is a unity element for the ring structure of MatI×I(F).

The transpose interacts with the algebraic operations on matrices in the follow-
ing manner.

5.1.10 Proposition (Matrix algebra and matrix transpose) Let F be a field, let I and J be
index sets, and let A,A1,A2 ∈MatI×J(F). Then the following statements hold:

(i) (A1 +A2)T = AT
1 +AT

2 ;
(ii) the product A1A2 is defined if and only if the product AT

2 AT
1 is defined, and when

these are defined we have (A1A2)T = AT
2 AT

1 .
Proof This is Exercise 5.1.7. ■

5.1.3 Matrices as linear maps

An important interpretation of a matrix is as a linear map between vector
spaces. We shall establish the generality of this interpretation for vector spaces in
Theorem 5.4.21. For the moment we merely indicate how a matrix can be regarded
as a linear map of certain vector spaces. We do this for general row and column
index sets, although most of our interest will be in the case of finite index sets.

Let F be a field and let I be an index set. Following Definition 1.3.1, we denote
by FI the set of maps from a set I to F. As in Definition 4.5.39, and following
Notation 4.5.44, we think of FI as the direct product of I copies of F, which is an
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F-vector space. The direct sum of I copies of F (see Example 4.5.43) we denote by
FI

0. If I = {1, . . . ,n} (the case of most interest to us) then we furthermore have

FI = FI
0 = Fn.

With this notation we have the following definition.

5.1.11 Definition (Matrix-vector product) Let F be a field and let I and J be index sets.
For a matrix A ∈ MatI×J(F) and x ∈ FJ, the product of A and x is the element Ax of
FI given by

Ax(i) =
∑
j∈J

A(i, j)x( j),

and is defined whenever the sum is finite. •

For matrices with finite numbers of rows and columns, the matrix-vector prod-
uct is always defined. Specifically, if I = {1, . . . ,m} and J = {1, . . . ,n} then the product
Ax gives the matrix-vector product with which most readers are familiar. This is
most easily visualised by writing elements of Fn as “column vectors” as follows:

Ax =


A(1, 1) · · · A(1,n)
...

. . .
...

A(m, 1) · · · A(m,n)



x(1)
...

x(n)

 =


A(1, 1)x(1) + · · · + A(1,n)x(n)
...

A(m, 1)x(1) + · · · + A(m,n)x(n)

 . (5.3)

However, the case of arbitrary row and column index sets will be of interest to
us, so let us consider sufficient conditions under which the matrix-vector product
is defined.

5.1.12 Proposition (Definability and properties of the matrix-vector product) Let F
be a field, let I and J be index sets, and let A ∈ MatI×J(F) and x ∈ FJ. Then the following
statements hold:

(i) if x ∈ FJ
0 then Ax is defined;

(ii) if x ∈ FJ
0 and if A is column finite then Ax is defined and is an element of FI

0;
(iii) if A is row finite then Ax is defined.

Proof The definedness of the matrix-vector product in each case is a simple matter
of checking that the sum involved in finite, and this follows easily in each case from
the definition of the matrix-vector product. The additional conclusion in part (ii) that
the matrix-vector product lies in FI

0 follows from the definition of the matrix-vector
product and of column finiteness. ■

The following result gives an interpretation of the matrix-vector product that
introduces an important object: a linear map associated to a column finite matrix.
We also indicate the relationship between row finite matrices and linear maps.
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5.1.13 Theorem (Matrices as linear maps) Let F be a field, let I and J be index sets, and let
A ∈MatI×J(F). Then the following statements hold:

(i) if A is column finite, then the map x 7→ Ax is an F-linear map from FJ
0 to FI

0;
(ii) if A is row finite, then the map x 7→ Ax is an F-linear map from FJ to FI.

Moreover, the following statements also hold:
(iii) if L ∈ HomF(FJ

0; FI
0), then there exists a unique column finite matrix A ∈MatI×J(F)

such that L(x) = Ax for all x ∈ FJ;
(iv) if J is finite, then, if L ∈ HomF(FJ; FI), then there exists a unique (necessarily row

finite) matrix A ∈MatI×J(F) such that L(x) = Ax for all x ∈ FJ
0;

(v) if J is infinite, then there exists L ∈ HomF(FJ; FI) for which there is no row finite
matrix A ∈MatI×J(F) such that L(x) = Ax for each x ∈ FJ.

Proof (i) Denote the map from FJ
0 to FI

0 by LA. That the map is well-defined and takes
values in FI

0 is a consequence of part (ii) of Proposition 5.1.12. For x, x1, x2 ∈ FJ
0 and for

a ∈ F we have

LA(x1 + x2)(i) =
∑
j∈J

A(i, j)(x1( j) + x2( j)) =
∑
j∈J

A(i, j)x1( j) +
∑
j∈J

A(i, j)x2( j)

= LA(x1)(i) + LA(x2)(i)

and
LA(ax)(i) =

∑
j∈J

A(i, j)(ax)( j) = a
∑
j∈J

A(i, j)x( j) = aLA(x),

using the fact that all sums are finite, and using the vector space structure of FI
0 and

FJ
0. This gives linearity of LA.

(ii) This follows in the same manner as part (i).
(iii) Let L ∈ HomF(FJ

0; FI
0). Let {ei}i∈I and { f j} j∈J be the standard bases for FI

0 and FJ
0,

respectively. For j ∈ J we have

L( f j) = ai1 jei1 + · · · + aikj jeikj
(5.4)

for some unique k j ∈ Z≥0, some unique basis elements {ei1 , . . . , eikj
}, and some unique

nonzero ai1 j, . . . , aikj j ∈ F since {ei}i∈I is a basis for FI
0. We then define A ∈MatI×J(F) by

A(i, j) =

ai j, i ∈ {i1, . . . , ik j},

0F, otherwise.

It is now a straightforward matter to show that L(x) = Ax. Indeed, if x ∈ FJ
0 then we

can write
x = x1 f j1 + · · · + xk f jk

for some x1, . . . , xk ∈ F. Now let ei1 , . . . , eim be standard basis elements with the property
that

L( f jl) ∈ spanF(ei1 , . . . , eim)
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for each l ∈ {1, . . . , k}. Then

L(x) = L(x1 f j1 + · · · + xk f jk)

= x1L( f j1) + · · · + xkL( f jk)

= x1ai1 j1ei1 + · · · + x1aim j1eim + · · · + xkai1 jkei1 + · · · + xkaim jkeim

= Ax,

as desired. The uniqueness of A follows from the fact that, for each j ∈ J, the choice of
{ei1 , . . . , eikj

} and ai1 j, . . . , aikj j in (5.4) are unique.

(iv) Suppose that J = {1, . . . ,n} so that FJ = Fn, and let { f 1, . . . , f n} be the standard
basis for Fn. Let L ∈ HomF(Fn; FI) and define A ∈ MatI×J(F) by asking that, for
(i, j) ∈ I× J, L( f j)(i) = A(i, j). We claim that L(x) = Ax for each x ∈ Fn. Indeed, for x ∈ Fn

write
x = x(1) f 1 + · · · + x(n) f n,

and then compute, for i ∈ I,

L(x)(i) = L(x(1) f 1 + · · · + x(n) f n)(i)
= x(1)L( f 1)(i) + · · · + x(n)L( f n)(i)
= A(i, 1)x(1) + · · · + A(i,n)x(n) = (Ax)(i),

as desired.
(v) We let L ∈ HomF(FJ; FI), and we again let { f j} j∈J be the standard basis for FJ

0.
Note that this is not a basis for FJ, but nonetheless is a linearly independent subset.
Now define x0 ∈ FJ by x0( j) = 1F for j ∈ J. If J is infinite then the set { f j} j∈J ∪ {x0} is
linearly independent (why?). Therefore, by Theorem 4.5.26, there exists a basisB for
FJ such that { f j} j∈J ∪ {x0} ⊆ B . Define L ∈ HomF(FJ; FI) by asking that L(x0) = y0 for
some nonzero y0 ∈ FI, and that L(u) = 0FI for u ∈B \ {x0}. To then define L(x) for any
x ∈ FJ we note that we can write

x = c1u1 + · · · + ckuk

for some unique u1, . . . ,uk ∈B and nonzero c1, . . . , ck ∈ F. We claim that there exists no
row finite matrix A ∈ MatI×J(F) such that L(x) = Ax for every x ∈ FJ. We demonstrate
this by a contradiction. Suppose that A is a row finite matrix such that L(x) = Ax for
every x ∈ FJ. Then, for each j ∈ J, Af j = 0FI by the definition of L. However, as can
easily be seen by the definition of matrix-vector multiplication, Af j is exactly the jth
column vector of A. Thus all columns of A are zero, and so A is the zero matrix. But
this contradicts the fact that L is nonzero. ■

Note the lack of general symmetry in the relationship between column finite
matrices and elements of HomF(FJ

0; FI
0) (where there is an exact correspondence)

and in the relationship between row finite matrices and elements of HomF(FJ; FI)
(where a row finite matrix defines a homomorphism, but not necessarily the con-
verse). This will become clear in Theorem 5.1.13 when we indicate exactly which
linear maps from HomF(FJ; FI) are characterised by row finite matrices. The issue,
roughly speaking, is that the vector space FJ is “too big” to have all of linear maps
characterised by row finite matrices.
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5.1.14 Notation (Matrices as linear maps) Accepting an abuse of notation, we shall de-
note by A ∈ HomF(FJ

0; FI
0) (resp. A ∈ HomF(FJ; FI)) the homomorphism associated

to the column finite (resp. row finite) matrix A : I× J→ F. Also, we shall also write
Ax instead of A(x), even when we are thinking of A as a map. •

The next result relates the matrix product to its corresponding concept in terms
of linear maps.

5.1.15 Proposition (Matrix product and composition of linear maps) Let F be a field,
let I, J, and K be index sets, and let A ∈MatI×J(F) and B ∈MatJ×K(F). Then the following
statements hold:

(i) if A and B are column finite then the matrix corresponding to the composition of the
homomorphisms A ∈ HomF(FJ

0; FI
0) and B ∈ HomF(FK

0 ; FJ
0) is AB;

(ii) if A and B are row finite then the matrix corresponding to the composition of the
homomorphisms A ∈ HomF(FJ; FI) and B ∈ HomF(FK; FJ) is AB.

Proof (i) That AB is column finite follows from Proposition 5.1.6. Let {ei}i∈I, { f j} j∈J,

and {gk}k∈K be the standard bases for FI
0, FJ

0, and FK
0 , respectively. We compute

A ◦ B(gk) = A

∑
j∈J

B( j, k) f j

 =∑
j∈J

B( j, k)A( f j) =
∑
j∈J

∑
i∈I

B( j, k)A(i, j)ei,

where all sums are finite since A and B are column finite. This directly gives

A ◦ B(gk) =
∑
i∈I

(AB)(i, k)ei,

using the definition of matrix product. A reference to the proof of Theorem 5.1.13
shows that AB is the matrix associated to the homomorphism A ◦ B, as desired.

(ii) That AB is row finite follows from Proposition 5.1.6. Let z ∈ FK and for i ∈ I
compute

(A ◦ B(x))(i) =
∑
j∈J

A(i, j)((Bx)( j)) =
∑
j∈J

A(i, j)

∑
k∈K

B( j, k)x(k)


=

∑
k∈K

(AB)(i, k)x(k) = (ABx)(i),

giving A ◦ B(x) = ABx, as desired. ■

Next we consider the character of the transpose of a matrix as a linear map. If
I = {1, . . . ,m} and J = {1, . . . ,n}, then, if A ∈Mat AI×J(F), we can think of AT as a linear
map from Fm to Fn. For arbitrary index sets I and J, the story is more complicated
since AT is not a linear map from FI

0 to FJ
0, even if A is column finite, and so itself

a linear map from FJ
0 to FI

0. However, the transpose is a still a homomorphism, as
we shall now show. In order to relate the homomorphisms A and AT in a revealing
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way, it is useful to observe that elements of FI can be regarded as elements of
HomF(FI

0; F). Indeed, to y ∈ FI
0 we associate the element Ly ∈ HomF(FI

0; F) defined
by

Ly(x) =
∑
i∈I

y(i)x(i),

the sum being finite. Following Theorem 5.1.13, one can think of Ly as a matrix
in Mat{1}×I(F) given by Ly(1, i) = y(i). We shall discuss this relationship between FI

and HomF(FI
0; F) in more detail in Proposition 5.7.5. There we will see that, in fact,

FI and HomF(FI
0; F) are isomorphic as F-vector spaces.

5.1.16 Theorem (Transpose as a linear map) Let F be a field and let I and J be index
sets. If A ∈ MatI×J(F) is column finite (and so defines a linear map from FJ

0 to FI
0 by

Theorem 5.1.13), then the map y 7→ ATy is a linear map from FI to FJ. Moreover, the
relation

LAT(y)(x) = Ly(Ax)

holds for every x ∈ FJ
0 and y ∈ FI.

Proof Since A is column finite if and only if AT is row finite, it follows from part (ii)
of Theorem 5.1.13 that AT defines an F-linear map from FI to FJ, and the form of
this linear map is just as stated. The second assertion in the theorem is simply the
straightforward observation that both LAT(y)(x) and Ly(Ax) are given by∑

i∈I

∑
j∈J

A(i, j)x( j)y(i),

the sums both being finite since x ∈ FJ
0 and since A is column finite. ■

For readers only familiar with linear algebra in finite-dimensions, the lack of
symmetry in the character of the linear maps A and AT will seem strange. However,
as we shall see in our development in Section 5.7.2, the lack of symmetry is
explained by the fact that, for infinite-dimensional vector spaces, a vector space
and its algebraic dual are not isomorphic. Indeed, this is one of the important
distinctions that arises between finite- and infinite-dimensional linear algebra.

Let us continue our discussion of the transpose as a linear map by understanding
some of its properties in relation to those of the linear map itself.

5.1.17 Proposition (Properties of transpose as a linear map) Let F be a field, let I and J
be index sets, and let A ∈MatI×J(F) be column finite. Then the following statements hold:

(i) A is surjective if and only if AT is injective;
(ii) A is injective if and only if AT is surjective;
(iii) A is an isomorphism if and only if AT is an isomorphism.

Proof For the proof we will rely on the facts, proved as Proposition 5.4.46, that a
linear map L ∈ HomF(U; V) is injective (resp. surjective) if and only if there exists
M ∈ HomF(V; U) such that M ◦ L = idU (resp. L ◦ M = idV). This is not an especially
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difficult thing to prove, but we postpone the proof until we are dealing with abstract
linear maps, rather than matrices.

(i) Note that A ∈ HomF(FI
0; FI

0) is surjective if and only if there exists B ∈
HomF(FI

0; FI
0) such that AB = II, noting that II, as an element of HomF(FI

0; FI
0) is

the identity map. Since A and B are both column finite matrices by Theorem 5.1.13,
by Proposition 5.1.10 the product BTAT is well-defined, and so we have

(AB)T = IT
I ⇐⇒ BTAT = II.

Note that II, thought of as a row finite matrix, and so an element of HomF(FI; FI),
corresponds to the identity map. Thus A is surjective if and only AT possesses a left
inverse, i.e., if and only if AT is injective, as per Proposition 1.3.9.

(ii) This follows along the same lines as part (i), except that A in injective if and
only if there exists B such that BA = II.

(iii) This is an immediate consequence of parts (i) and (ii). ■

Every matrix in I × J defines two subspaces, one of FI and one of FJ.

5.1.18 Definition (Columnspace and rowspace) Let F be a field, let I and J be index sets,
and let A ∈MatI×J(F).

(i) The columnspace of A is the subspace of FI generated by the column vectors
of A, and is denoted by colspace(A).

(ii) The rowspace of A is the subspace of FJ generated by the row vectors of A,
and is denoted by rowspace(A). •

The following characterisations of the columnspace and rowspace follow im-
mediately from the definition of a matrix as a linear map, and we leave the proof
to the reader as Exercise 5.1.8.

5.1.19 Proposition (Interpretation of columnspace and rowspace) Let F be a field, let I
and J be index sets, and let A ∈MatI×J(F). Then the following statements hold:

(i) if A is column finite then colspace(A) = image(A);
(ii) if A is row finite then rowspace(A) = image(AT).

5.1.4 Invertible matrices over fields

The notion of an invertible matrix, or equivalently an invertible linear map, is
an important one, and we shall encounter this in various places, even in this section
(see Theorems 5.1.33 and 5.1.42). In this section we simply introduce the notion
of an invertible matrix, and give some of its more elementary properties.

When a linear map L ∈ HomF(FJ
0; FI

0) (or L ∈ HomF(FJ
0; FI

0)) is invertible, we
have the following result which mirrors similar conclusions for groups and rings
(see Exercises 4.1.4 and 4.2.6).
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5.1.20 Proposition (The inverse of an isomorphism is linear) If F is a field, if I and J are
index sets, and if L ∈ HomF(FJ

0; FI
0) (resp. L ∈ HomF(FJ; FI)) is an isomorphism, then the

inverse of L is an element of HomF(FI
0,F

J
0) (resp. HomF(FI,FJ)).

Proof For y, y1, y2 ∈ FI
0 (resp. y, y1, y2 ∈ FI) let x = L−1(x), x1 = L−1(y1), and x2 =

L−1(y2). Then compute

L−1(y1 + y2) = L−1(L(x1) + L(x2)) = L−1
◦ L(x1 + x2) = x1 + x2 = L−1(y1) + L−1(x2)

and, for a ∈ F, compute

L−1(ay) = L−1(aL(x)) = L−1
◦ L(ax) = ax = aL−1(y),

which gives the result. ■

If A ∈ MatI×I(F) is column finite and is an isomorphism of FI
0, it follows from

Theorem 5.1.13 that the inverse of the linear map A has associated with it a column
finite matrix. However, if A ∈ HomI×I(F) is row finite and an isomorphism of FI, it
may not be the case that the inverse of this isomorphism is represented by a row
finite matrix (cf. part (v) of Theorem 5.1.13). However, it actually is in fact the case
that this homomorphism is represented by a row finite matrix, and the following
result demonstrates this.

5.1.21 Proposition (The inverse of a row finite matrix is a row finite matrix) Let F be
a field, let I be an index set, and let A ∈MatI×I(F) be row finite and an isomorphism of FI.
Then there exists a row finite matrix A−1

∈MatI×I(F) such that AA−1 = A−1A = II.
Proof Since AT is column finite, it is to be regarded as a linear map from FI

0 to FI
0

by Theorem 5.1.13. Moreover, this linear map is invertible by Proposition 5.1.17. By
Theorem 5.1.13, to the inverse of the linear map AT we can associate a column finite
matrix B ∈ MatI×I(F) such that ATB = BAT = II, noting that II is the matrix associated
with the identity map on FI

0. By Proposition 5.1.10 we then have

(ATB)
T
= BTA = IT

I = II

and
(BAT)

T
= ABT = IT

I = II.

The result follows by taking A−1 = BT since BT is row finite. ■

Theorem 5.1.13 and Propositions 5.1.20 and 5.1.21 make possible the following
definition.

5.1.22 Definition (Invertible matrix over a field) Let F be a field, let I be an index set,
and let A ∈MatI×I(F).

(i) If A is column finite, then it is invertible if it is an isomorphism from FI
0 to FI

0.
(ii) If A is row finite, then it is invertible if it is an isomorphism from FI to FI.

The inverse of an invertible matrix A is the matrix A−1
∈MatI×I(F) associated to the

inverse of the isomorphism from FI
0 to FI

0 (or from FI to FI) associated with A. •

Here is a simple example of an invertible matrix. We shall encounter large
classes of invertible matrices as we go along in this section.
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5.1.23 Example (The identity matrix is invertible) Let F be a field and let I be an index
set. One may verify that, the identity matrix II is invertible in both senses of
Definition 5.1.22, since it is both row and column finite. Indeed, the linear map
associated to it is simply the identity map. Its inverse is then also the identity
matrix: I−1

I = II. •

Let us next consider some of the simpler properties of invertible matrices.

5.1.24 Proposition (Properties of the matrix inverse) Let F be a field, let I be an index set,
and let A,B ∈MatI×I(F). Then the following statements hold:

(i) if A is invertible, then so is A−1, and (A−1)−1 = A;
(ii) A is invertible if and only if AT is invertible and, if A is invertible, then (AT)−1 =

(A−1)T;
(iii) if A and B are invertible, then AB is invertible and (AB)−1 = B−1A−1.

Proof (i) We assume that A is column finite. The case where A is row finite follows
in a similar manner. As a map of sets, we know that A : FI

0 → FI
0 being invertible

implies the existence of a unique map A−1 : FI
0 → FI

0 such that A ◦A−1 = A−1
◦A = idFI

0
by Proposition 1.3.9. Therefore, by Proposition 5.1.20 we know that this set map
A−1 must be exactly the linear map associated to the inverse matrix for A. Note that
A ◦ A−1 = A−1

◦ A = idFI
0

then implies, by Proposition 1.3.9, that A−1 is invertible with
inverse equal to A.

(ii) That A is invertible if and only if AT is invertible is part (iii) of Proposition 5.1.17.
Since II is the matrix associated with both the identity map on both FI and FI

0, if A is
invertible then its inverse matrix A−1 satisfies

AA−1 = A−1A = II.

By Proposition 5.1.10 it makes sense to take the transpose of this equation to get

(A−1)TAT = AT(A−1)T = II.

It follows from Proposition 1.3.9 that (A−1)T = (AT)−1.
(iii) We suppose that A and B are column finite. The case where they are row finite

follows along the same lines. We note that, thinking of matrices as linear maps and
using Proposition 5.1.15,

(B−1A−1)(AB) = (AB)(B−1A−1) = idFI
0
.

By Proposition 1.3.9 this implies that AB is invertible with inverse B−1A−1. ■

5.1.25 Notation (Inverse of transpose) In cases where the equality (AT)−1 = (A−1)T makes
sense (e.g., when A is column and row finite) then one often writes

A−T = (AT)−1 = (A−1)T. •
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5.1.5 Elementary operations and elementary matrices

In this section we deal exclusively with matrices in Matm×n(F), i.e., matrices with
finite numbers of rows and columns.

In this section we describe operations that can be performed on the rows and
columns of matrices to produce new matrices. The best way to motivate these
operations is via the use of systems of linear equations. We postpone a systematic
discussion of this to Section 5.1.8. A reader who (justifiably) thinks that the row
and column operations we discuss here come from thin air may wish to refer to
the discussion in that section before proceeding. For now, we simply give the
definition.

5.1.26 Definition (Elementary row operation) Let F be a field, let m,n ∈ Z>0, and let
A1,A2 ∈ Matm×n(F). The matrix A2 is obtained by an elementary row operation
from A1 if one of the following hold:

(i) there exists distinct i1, i2 ∈ {1, . . . ,n} such that, for (i, j) ∈ {1, . . . ,n} × {1, . . . ,m},

A2(i, j) =


A1(i, j), i < {i1, i2},

A1(i2, j), i = i1,

A1(i1, j), i = i2,

i.e., A1 and A2 agree except that the i1st and i2nd rows are interchanged;
(ii) there exists i0 ∈ {1, . . . ,n} and a nonzero u ∈ F such that, for (i, j) ∈ {1, . . . ,n} ×
{1, . . . ,m},

A2(i, j) =

A1(i, j), i , i0,

uA1(i, j), i = i0,

i.e., A1 and A2 agree, except that the i0th row of A2 is the i0th row of A1

multiplied by u;
(iii) there exists distinct i1, i2 ∈ {1, . . . ,n} and a ∈ F such that, for (i, j) ∈ {1, . . . ,n} ×
{1, . . . ,m},

A2(i, j) =

A1(i, j), i , i1,

A1(i, j) + aA1(i2, j), i = i1,

i.e., A1 and A2 agree except that the i1st row of A2 is obtained by adding a
times the i2nd row of A1 to the i1st row of A1.

The matrix A2 is row equivalent to A1 if there exists k ∈ Z>0 and matrices A′1, . . . ,A
′

k ∈

Matm×n(F) such that A′1 = A1, A′k = A2, and A′j+1 is obtained by an elementary row
operation from A′j for each j ∈ {1, . . . , k − 1}. •

We may analogously define operations on columns of a matrix. Let us record
the definition formally for clarity.
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5.1.27 Definition (Elementary column operation) Let F be a field, let m,n ∈ Z>0, and let
A1,A2 ∈Matm×n(F). The matrix A2 is obtained by an elementary column operation
from A1 if one of the following hold:

(i) there exists distinct j1, j2 ∈ {1, . . . ,m} such that, for (i, j) ∈ {1, . . . ,n}×{1, . . . ,m},

A2(i, j) =


A1(i, j), j < { j1, j2},

A1(i, j2), j = j1,

A1(i, j1), j = j2,

i.e., A1 and A2 agree except that the j1st and j2nd columns are interchanged;
(ii) there exists j0 ∈ {1, . . . ,m} and a nonzero u ∈ F such that, for (i, j) ∈ {1, . . . ,n}×
{1, . . . ,m},

A2(i, j) =

A1(i, j), j , j0,

uA1(i, j), j = j0,

i.e., A1 and A2 agree, except that the j0th column of A2 is the j0th column of
A1 multiplied by u;

(iii) there exists distinct j1, j2 ∈ {1, . . . ,m} and a ∈ F such that, for (i, j) ∈ {1, . . . ,n}×
{1, . . . ,m},

A2(i, j) =

A1(i, j), j , j1,

A1(i, j) + aA1(i, j2), j = j1,

i.e., A1 and A2 agree except that the j1st column of A2 is obtained by adding a
times the j2nd column of A1 to the j1st column of A1.

The matrix A2 is column equivalent to A1 if there exists k ∈ Z>0 and matrices
A′1, . . . ,A

′

k ∈ Matm×n(F) such that A′1 = A1, A′k = A2, and A′j+1 is obtained by an
elementary column operation from A′j for each j ∈ {1, . . . , k − 1}. •

We leave to the reader as Exercise 5.1.9 the verification of the following result.

5.1.28 Proposition (Row and column equivalence are equivalence relations) Let F be
a field, let m,n ∈ Z>0, and define relations ∼r and ∼c in Matm×n(F) by

A1 ∼r A2 ⇐⇒ A1 and A2 are row equivalent,
A1 ∼c A2 ⇐⇒ A1 and A2 are column equivalent,

respectively. Then ∼r and ∼c are equivalence relations.

The following result is more or less obvious, given the definition of the transpose
of a matrix.
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5.1.29 Proposition (Row and column operations and transpose) Let F be a field, let
m,n ∈ Z>0, and let A1,A2 ∈Matm×n(F). Then the following statements are equivalent:

(i) A1 and A2 are row equivalent;
(ii) AT

1 and AT
2 are column equivalent.

Associated to elementary row and column operations are particular matrices
whose properties we now begin to explore.

5.1.30 Definition (Elementary row matrix, elementary column matrix) Let F be a field
and let n ∈ Z>0. A matrix A ∈Matn×n(F) is

(i) an elementary row matrix if A is obtained by an elementary row operation
from In and is

(ii) an elementary column matrix if A is obtained by an elementary column
operation from In. •

The following result then relates the notions of elementary row matrices, ele-
mentary column matrices, and matrix transpose.

5.1.31 Proposition (Elementary row and column operations and transpose) If F is a
field and if n ∈ Z>0, then the following statements for A ∈Matn×n(F) are equivalent:

(i) A is an elementary row matrix;
(ii) A is an elementary column matrix;
(iii) AT is an elementary row matrix;
(iv) AT is an elementary column matrix.

Proof In the proof it will be convenient to let ε(i, j) ∈Matn×n(F), i, j ∈ {1, . . . ,n}, be the
matrix all of whose components are zero, except for the (i, j)th component which is 1F.
One can verify directly from the definition of matrix multiplication that the following
lemma holds.

1 Lemma For A ∈Matn×n(F) and
(i) for i, j ∈ {1, . . . ,n}, ε(i, j)A is the matrix all of whose rows are zero except the ith row,

which is equal to the jth row of A, and
(ii) for i, j ∈ {1, . . . ,n}, Aε(i, j) is the matrix all of whose columns are zero, except the jth

column, which is equal to the ith column of A.

Using this notation, we can write down the elementary matrix associated with the
three types of elementary row and column operations.
1. The swapping of rows i1 and i2: Here we have the elementary matrix

In − ε(i1, i1) − ε(i2, i2) + ε(i1, i2) + ε(i2, i1).

2. The swapping of the columns j1 and j2: Here we have the elementary matrix

In − ε( j1, j1) − ε( j2, j2) + ε( j1, j2) + ε( j2, j1).
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3. The multiplication of row i0 by u: Here we have the elementary matrix

In − ε(i0, i0) + uε(i0, i0).

4. The multiplication of column j0 by u: Here we have the elementary matrix

In − ε( j0, j0) + uε( j0, j0).

5. Adding a times row i2 to row i1: Here the elementary matrix is

In + aε(i2, i1).

6. Adding a times column j2 to column j1: The corresponding elementary matrix is

In + aε( j2, j1).

The proof of the proposition is now a simple matter of verification, with the aid of
Lemma 1, of the conclusions for each of the previous types of elementary matrices. We
leave the trivial verification of this to the reader. ■

Since elementary row and elementary column matrices amount to the same
thing, we shall simply call such matrices elementary matrices.

The following result explains the value of elementary matrices in terms of row
and column operations.

5.1.32 Proposition (Elementary matrices and elementary row and column opera-
tions) Let F be a field, let m,n ∈ Z>0, and let A1,A2 ∈ Matm×n(F). Then the following
statements hold:

(i) if A2 is obtained from A1 by an elementary row operation and if Em ∈ Matm×m(F)
is the elementary matrix obtained by applying the same row operation to Im, then
A2 = EmA1;

(ii) if A2 is obtained from A1 by an elementary column operation and if En ∈Matn×n(F)
is the elementary matrix obtained by applying the same column operation to In, then
A2 = A1En.

Proof By Propositions 5.1.10 and 5.1.29, it suffices to prove the proposition for row
operations.

We now consider the three types of row operations in succession, using the cor-
responding elementary matrices obtained during the course of the proof of Proposi-
tion 5.1.31.
1. Suppose that A2 is obtained from A1 by swapping the i1st and i2nd rows. Suppose

that Em is the matrix obtained by applying the same row operation to Im. Then

Em = Im − ε(i1, i1) − ε(i2, i2) + ε(i1, i2) + ε(i2, i1).

One then computes directly, using Lemma 1 from the proof of Proposition 5.1.31,
that A2 = EmA1.
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2. Suppose that A2 is obtained from A1 by multiplying the i0th row of A1 by a nonzero
u ∈ F, but leaving all other rows unchanged. Let Em be the matrix obtained by
applying the same row operation to Im. Then we have

Em = Im − ε(i0, i0) + uε(i0, i0).

An application of Lemma 1 from the proof of Proposition 5.1.31 gives A2 = EmA1.
3. Suppose that A2 agrees with A1 except that the i1st row of A2 is obtained by adding

a times the i2nd row of A1 to the i1st row of A1, and let Em be the matrix obtained
by applying the same row operation to Im. Thus

Em = Im + aε(i2, i1)

It then immediately from Lemma 1 of the proof of Proposition 5.1.31 that A2 =
EmA1.

This completes the proof. ■

We now establish an important link between invertible matrices and elementary
matrices.

5.1.33 Theorem (Invertible matrices are products of elementary matrices and vice
versa) Let F be a field and let n ∈ Z>0. The following statements for A ∈ Matn×n(F) are
equivalent:

(i) A is invertible;
(ii) A is a product of a finite number of elementary matrices.

Proof We first prove a lemma.

1 Lemma If A is an elementary matrix, then A is invertible, and its inverse is an elementary
matrix.
Proof We consider the three types of elementary row operations that may be used
in forming A. We use the notation introduced in the proof of Proposition 5.1.32 of
ε(i, j) ∈Matn×n(F) for i, j ∈ {1, . . . ,n}.
1. Suppose that A is obtained from In by swapping the i1st and i2nd rows. Then

A = In − ε(i1, i1) − ε(i2, i2) + ε(i1, i2) + ε(i2, i2).

If we define B ∈ Matn×n(F) by B = A then one directly computes, using Lemma 1
from the proof of Proposition 5.1.31, that AB = BA = In. It is clear that B is an
elementary matrix.

2. Suppose that A is obtained from In by multiplying the i0th row of In by u ∈ F∗, but
leaving all other rows unchanged. In this case we have

A = In − ε(i0, j0) + uε(i0, i0).

Then define
B = In − ε(i0, j0) + u−1ε(i0, i0),

and check directly, using Lemma 1 from the proof of Proposition 5.1.31, that
AB = BA = In. One can see that B is, as per Proposition 5.1.32, the elementary
matrix corresponding to the elementary row operation of multiplying the i0th row
by u−1.
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3. Suppose that A agrees with In except that the i1st row of A is obtained by adding r
times the i2nd row of In to the i1st row of In. As in the proof of Proposition 5.1.32
we have

A = In + rε(i2, i1).

By taking
B = In − rε(i2, i1),

one can check that AB = BA = In, showing that A is invertible. Moreover, B is the
elementary matrix corresponding to the elementary row operation of subtracting
r times the i2nd row from the i1st row. ▼

We now proceed with the proof.
(i) =⇒ (ii) We first claim that, since A is invertible, the first column of A must

have at least one nonzero element. Indeed, if the first column of A were comprised
of all zeros, then Ae1 = 0Fn , implying that A is not injective by Exercise 4.5.23. So we
may assume that A has a nonzero element in its first column. By an elementary row
operation of swapping rows, arrive at a matrix A′1 whose (1, 1)-component is nonzero.
Now by the elementary row operation of multiplying the first row of A′1 by the inverse
of the (1, 1)-component, arrive at a matrix A′′1 whose (1, 1)-component is 1F. Now, for
each j ∈ {2, . . . ,n}, perform the elementary row operation of subtracting from the jth
row the product of the first row with the ( j, 1)-component of A′′1 . Upon doing these
row operations one arrives at a matrix of the form[

1F a11
0(n−1)×1 A1

]
(5.5)

for some a11 ∈ Mat1×(n−1)(F) and for some A1 ∈ Mat(n−1)×(n−1)(F). Moreover, by Propo-
sition 5.1.32, the matrix in (5.5) is the product of A with a finite number of elementary
matrices. By the lemma above, an elementary matrix is invertible. Since the product of
invertible matrices is invertible (see Proposition 5.1.24), it then follows that the matrix
in (5.5) is invertible. We claim that this implies that A1 is invertible. Indeed, suppose
that A1 is not invertible. Then by Exercise 4.5.23 and Corollary 5.4.44 there exists
x1 ∈ Fn−1

\ {0Fn−1} such that A1x1 = 0Fn−1 . But then, if we define x ∈ Fn to have a zero
first component with the remaining n − 1 components equal to those of x1, it follows
that x is nonzero and in the kernel of the matrix (5.5). Thus we conclude that A1 is
invertible. We can then apply the above sequence of row operations to the invertible
matrix A1, or equivalently to the last n− 1 rows of the matrix (5.5), to arrive at a matrix
in the form 

1F a21 a21
0F 1F a22

0(n−2)×1 0(n−2)×1 A2


for a21 ∈ F, a21,a22 ∈ Mat1×(n−2)(F), and A2 ∈ Mat(n−2)×(n−2)(F). This process can now
be repeated n− 2 more times to arrive at a matrix B whose diagonal entries are 1F and
whose entries below the diagonal are zero. Then, for j ∈ {1, . . . ,n − 1} one performs
the row operations of subtracting from the jth row the nth row multiplied by the ( j,n)-
component of B. After these row operations, we arrive at a matrix whose last column
is zero, except for the nth row which is 1F. This process can be repeated for the column
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j, j ∈ {2, . . . ,n − 1}, and what results is the n × n identity matrix. Thus we have shown
that an invertible matrix can be transformed by a finite sequence of row operations to
the n × n identity matrix. By Proposition 5.1.32 this means that

E1 · · ·EkA = In

for elementary matrices E1, . . . ,Ek. It, therefore, follows that, since elementary matrices
are invertible,

A = E−1
k · · ·E

−1
1 .

Since the inverse of an elementary matrix is also an elementary matrix by the lemma
above, this then gives A as a product of elementary matrices.

(ii) =⇒ (i) This follows since the product of two (and so any finite number, by
induction) invertible matrices is invertible (see Proposition 5.1.24). ■

5.1.6 Rank and equivalence for matrices over fields

In this section, with the exception of the definition of equivalence in Defini-
tion 5.1.38 and of Example 5.1.44, we deal exclusively with matrices in Matm×n(F)
where F is a field.

The notion of rank is an important one in linear algebra. In this section we
introduce two possible variants of the notion of rank, and show that they are, in
fact, the same for matrices over fields. In Definition 5.4.1 we shall give another
definition of rank, and will show that this one is also equivalent to the one’s we
give here.

We begin with two notions of rank.

5.1.34 Definition (Row rank and column rank for matrices over fields) Let F be a field,
let m,n ∈ Z>0, and let A ∈Matm×n(F).

(i) The row rank of A is the dimension of the rowspace of A.
(ii) The column rank of A is the dimension of the columnspace of A. •

If one restricts to matrices with entries in a field, then it does in fact hold that
row rank and column rank agree. The proof of the theorem is a little clumsy
since it develops in an ad hoc way certain concepts that we will deal with more
systematically in Sections 5.4 and 5.7.

5.1.35 Theorem (Row rank and column rank agree for matrices over fields) If F is a
field, if m,n ∈ Z>0, and if A ∈ Matm×n(F), then dimF(image(A)) = dimF(image(AT)).
In particular, the row rank and the column rank of A are the same.

Proof Let us begin by proving a lemma.

1 Lemma Let F be a field, let m,n ∈ Z>0, and let A ∈ Matm×n(F). Then there exists a basis
{u1, . . . ,un} for Fn such that

(i) {Au1, . . . ,Aur} is a basis for image(A) and
(ii) {ur+1, . . . ,un} is a basis for ker(A).
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Proof Let {ur+1, . . . ,un} be any basis for ker(A), and by Theorem 4.5.26 extend this to
a basis {u1, . . . ,un} for Fn. We claim that {Au1, . . . ,Aur} is a basis for image(A). To show
that the set is linearly independent suppose that

c1Au1 + · · · + crAur = 0Fm

for c1, . . . , cr ∈ F. Then, by linearity,

A(c1u1 + · · · + crur) = 0Fm ,

implying that c1u1 + · · · + crur = 0Fn since Fn = ker(A) ⊕ spanF(u1, . . . ,ur). Therefore,
c1 = · · · = cr = 0F, giving linear independence of {Au1, . . . ,Aur}. Next suppose that
y ∈ image(A). Then there exists x ∈ Fn such that y = Ax. Therefore, if

x = c1u1 + · · · + cnun,

we have
y = Ax = A(c1u1 + · · · + cnun) = c1Au1 + · · · + crAur,

using the fact that A is linear and that ur+1, . . . ,un ∈ ker(A). Thus image(A) =
spanF(Au1, . . . ,Aur). This gives the lemma. ▼

Now let {u1, . . . ,un} be a basis as in the lemma, and, if necessary, extend
{Aur+1, . . . ,Aun} to a basis of Fm which we denote by

{v1 = Au1, . . . ,vr = Aur,vr+1, . . . ,vn}.

For y ∈ Fm define a linear map Ly ∈ Hom(Fm; F) by

Ly(z) = y(1)z(1) + · · · + y(m)z(m).

The following lemma shows that Ly exactly determines y.

2 Lemma The map y 7→ Ly is a bijection from Fm to Hom(Fm; F).

Proof Suppose that Ly1
= Ly2

. Then, if {e1, . . . , em} is the standard basis, for each
j ∈ {1, . . . ,m}we have

Ly1
(e j) = Ly2

(e j) =⇒ y1( j) = y2( j).

Thus y1 = y2, and so the map in question is surjective. Now let L ∈ Hom(Fm; F). By
Theorem 5.1.13 there exists A ∈Mat1×m(F) such that Az = L(z) for every z ∈ Fm. If one
takes y ∈ Fm to be the sole row vector of A, one directly verifies that Ay = Ly(z) for
every z ∈ Fm, and so the map in question is surjective. ▼

Next we prove a lemma asserting the existence of homomorphisms of Fm and F
having certain properties.
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3 Lemma If {v1, . . . ,vm} is a basis for Fm then there exists L1, . . . ,Lm ∈ Hom(Fm; F) such
that, for j,k ∈ {1, . . . ,m},

Lj(vk) =

1F, j = k,
0F, j , k.

Proof Fix j ∈ {1, . . . ,m}. To define L j we merely note that, since {v1, . . . ,vm} is a basis,
for y ∈ Fm we have

y = c1v1 + · · · + cmvm.

Therefore, since L j is linear,

L j(y) = c1L jv1 + · · · + cmL jvm = c j.

That L1, . . . ,Lm have the desired property follows immediately. ▼

Next, for j ∈ {1, . . . ,m}, let v∗j ∈ Fm have the property that

Lv∗j
(vk) =

1F, j = k,
0F, j , k,

this being possible by Lemmas 2 and 3. We claim that the set {v∗1, . . . ,v
∗
m} is linearly

independent. Indeed, suppose that

c1v∗1 + · · · + cmv∗m = 0Fm .

Then we have
(c1Lv∗1

+ · · · + cmLv∗m)(y) = 0F

for every y ∈ Fm. For j ∈ {1, . . . ,m}, one then directly computes

0F = c1Lv∗1
(v j) + · · · + cmLv∗m(v j) = c j,

giving linear independence as desired. Similarly define linearly independent vectors
u∗1, . . . ,u

∗
n ∈ Fn by

Lv∗j
(vk) =

1F, j = k,
0F, j , k.

Next, for j ∈ {1, . . . , r} and for k ∈ {1, . . . ,n}, compute

LATv∗j
(uk) =

n∑
l=1

(ATv∗j)(l)uk(l) =
m∑

s=1

n∑
l=1

A(s, l)v∗j(s)uk(l)

=

m∑
s=1

(Auk)(s)v∗j(s) =
m∑

s=1

vk(s)v∗j(s) = Lv∗j
(vk)

=

1F, j = k,
0F, j , k.

A similar computation shows that LATv∗j
(uk) = 0F for k ∈ {1, . . . ,n} and j ∈ {r+ 1, . . . ,m}.
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Using these computations we now show that {ATv∗1, . . . ,A
Tv∗r} is a basis for

image(AT). To show linear independence suppose that

c1ATv∗1 + · · · + crATv∗r = 0Fn .

Then
AT(c1v∗1 + · · · + crv∗) = 0Fn ,

which gives c1 = · · · = cr = 0F since Fn = ker(AT) ⊕ spanF(v∗1, . . . ,v
∗
r). Also, if x ∈

image(AT), then there exists y ∈ Fm such that AT y = x. Since {v∗1, . . . ,v
∗
m} is linearly

independent, it is a basis for Fm, and so

y = c1v∗1 + · · · + cmv∗m.

Therefore,
AT y = c1ATv∗1 + · · · + crATv∗r,

using linearity of AT and the fact that ATv∗j = 0Fn for j ∈ {r + 1, . . . ,m}. Thus

{ATv∗1, . . . ,A
Tv∗r} spans image(AT). Thus dimF(image(AT)) = r = dimF(image(A)).

That the row and column ranks of A agree follows from Proposition 5.1.19. ■

Based on the theorem we now make the following definition.

5.1.36 Definition (Rank of matrices over fields) If F is a field, if m,n ∈ Z>0, and if
A ∈ Matm×n(F), then the rank of A is equal to the column or row rank of A, and is
denoted by rank(A). •

From Theorem 5.1.35 we have the following result.

5.1.37 Corollary (Rank and rank of transpose agree for matrices over fields) If F is a
field, if m,n ∈ Z>0, and if A ∈Matm×n(F), then rank(A) = rank(AT).

Next we turn to the important notion of equivalence of matrices. This idea
may seem somewhat contrived at the present time. However, we shall see in
Section 5.4.7 that equivalence has a rather natural interpretation in terms of linear
maps between vector spaces.

5.1.38 Definition (Equivalence of matrices over fields) Let F be a field, let I and J be
index sets, and let A1,A2 ∈ MatI×J(F) be column finite. The matrices A1 and A2

are equivalent if there exists column finite invertible matrices P ∈ MatI×I(F) and
Q ∈MatJ×J(F) such that A2 = PA1Q. •

Of course, we have the following result, whose simple proof we leave as an
exercise for the reader (Exercise 5.1.10).
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5.1.39 Proposition (Equivalence of matrices is an equivalence relation) If F is a field
and if m,n ∈ Z>0, then the relation in Matm×n(F) defined by

A1 ∼ A2 ⇐⇒ A1 and A2 are equivalent

is an equivalence relation.

An important part of our approach to understanding equivalence is the follow-
ing property of rank in terms of elementary row and column operations.

5.1.40 Proposition (Elementary operations and rank) Let F be a field, let m,n ∈ Z>0, and
let A1,A2 ∈Matm×n(F). Then the following statements hold:

(i) if A1 and A2 are row equivalent then rank(A1) = rank(A2);
(ii) if A1 and A2 are column equivalent then rank(A1) = rank(A2).

Proof We shall only prove the first statement, the second following from Proposi-
tion 5.1.19 and Theorem 5.1.35.

It is clear that, if A2 is obtained from A1 by a single elementary row operation,
then the row vectors of A2 are contained in the rowspace of A1. Moreover, since row
equivalence is an equivalence relation by Proposition 5.1.28, it also holds that the row
vectors of A1 are contained in the rowspace of A2. Thus rank(A1) = rank(A2) if A2
is obtained from A1 by an elementary row operation. The result follows since row
equivalence of A1 and A2 means that A2 is obtained from A1 by a finite sequence of
elementary row operations. ■

The following result characterises equivalence for matrices over fields. For an
extension of the following result to matrices with infinite rows and/or columns, we
refer to Corollary 5.4.43.

5.1.41 Theorem (Characterisation of equivalence for matrices over fields) Let F be
a field, let m,n ∈ Z>0, and let A1,A2 ∈ Matm×n(F). Then the following statements are
equivalent:

(i) A1 and A2 are equivalent;
(ii) rank(A1) = rank(A2);
(iii) there exists r ∈ Z≥0 such that A1 and A2 are equivalent to a matrix of the form[

Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
.

Moreover, the number r in part (iii) is the rank of A1 and A2.
Proof The following lemma is the key to our proof.
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1 Lemma If F is a field, if m,n ∈ Z>0, and if A ∈ Matm×n(F), then A is equivalent to the
matrix [

Ir 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
,

where r = rank(A).

Proof If A = 0m×n then the result is immediate with r = 0. If A , 0m×n then, by
swapping rows and columns, arrive at a matrix A′1 with the property that A′1(1, 1) , 0F.
By multiplying the first row of A′1 by A′(1, 1)−1 one arrives at a matrix A′′1 whose (1, 1)-
component is 1F. Now, for i ∈ {2, . . . ,m}, subtract A′′(i, 1) times the first row of A′′1 from
the ith row. The resulting matrix has zeros in the first column, except for the first row.
Similarly perform elementary column operations to produce a matrix whose first row
is zero, except for the first column. In summary, by a finite sequence of elementary
row and column operations, we have arrived at a matrix of the form[

1F 01×(n−1)
0(m−1)×1 A1.

]
.

By Proposition 5.1.40 this matrix has rank r. Therefore, it must be the case that
rank(A1) = r−1. If r−1 = 0 then A1 = 0(m−1)×(n−1) and the lemma is proved. Otherwise,
one can continue the process performed on A on the matrix A1 to arrive at a matrix of
the form 

1F 0F 01×(n−2)
0F 1F 01×(m−2)

0(m−2)×1 0(m−2)×1 A2.

 .
This process can be continued r times to arrive, after a finite sequence of elementary
row and column operations, at a matrix in the desired form. The lemma follows
from Propositions 5.1.32 and 5.1.33, along with the fact that the product of invertible
matrices is invertible by virtue that the matrix product corresponds to composition of
maps by Proposition 5.1.15. ▼

Now we can proceed easily with the proof of the theorem.
(i) =⇒ (ii) This follows from Lemma 1 since equivalence is an equivalence relation.
(ii) =⇒ (iii) This follows immediately from Lemma 1.
(iii) =⇒ (i) This follows since equivalence of matrices is an equivalence relation. ■

We next specialise the preceding result to the case of invertible matrices, and
here we see that the additional structure of invertibility allows one to say more.

5.1.42 Theorem (Equivalence for invertible matrices) Let F be a field, let n ∈ Z>0, and let
A ∈Matn×n(F). Then the following statements are equivalent:

(i) A is invertible;
(ii) rank(A) = n;
(iii) A is equivalent to In;
(iv) A is row equivalent to In;
(v) there exists a unique invertible matrix P such that PA = In;
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(vi) A is column equivalent to In;
(vii) there exists a unique invertible matrix Q such that AQ = In.

Moreover, the matrices P and Q in parts (v) and (vii) are equal.
Proof (i) =⇒ (ii) If A is invertible then rank(A) = n by the definition of rank and by
Proposition 5.1.19.

(ii) =⇒ (iii) By Theorem 5.1.41, if rank(A) = n then A can be transformed into In
by a finite number of combined elementary row and column operations. However,
by Proposition 5.1.32 and Theorem 5.1.33 this means that In = PAQ for invertible
matrices P and Q.

(iii) =⇒ (iv) We make use here of the reduced row echelon form introduced in
Definition 5.1.45. By Theorem 5.1.41 we know that rank(A) = n. Therefore, by
Propositions 5.1.40, 5.1.46, and Theorem 5.1.47, we know that A is row equivalent to
a matrix in reduced row echelon form with n leading ones. The only such matrix is
the n × n identity matrix.

(iv) =⇒ (v) If A can be transformed into In by a finite sequence of elementary row
operations, then by Proposition 5.1.32 and Theorem 5.1.33 this means that In = PA
for some invertible matrix P. Since A is row equivalent to In, rank(A) = n by Proposi-
tion 5.1.40. Thus A is invertible so that P is uniquely defined by the requirement that
PA = In, since P = A−1 in this event.

(v) =⇒ (vi) Since PA = In with P invertible, A = P−1 and so A is invertible by
Proposition 5.1.24. Thus A has rank n by definition of rank and by Proposition 5.1.19.
By Theorem 5.1.35 this means that AT also has rank n. By the above proved implica-
tions, (ii) =⇒ (v), and therefore there exists an invertible matrix P such that PAT = In.
Taking the transpose of this equation and using Proposition 5.1.10 gives APT = In.
Since PT is invertible by Proposition 5.1.24 we conclude that (vi) holds.

(vi) =⇒ (vii) If A can be transformed into In by a finite sequence of elementary
column operations, then by Proposition 5.1.32 and Theorem 5.1.33 this means that
In = AQ for some invertible matrix Q. Since A is column equivalent to In, rank(A) = n
by Proposition 5.1.40. Thus A is invertible, so uniqueness of Q follows since Q = A−1.

(vii) =⇒ (i) If AQ = In with Q invertible, then A = Q−1. Since Q−1 is invertible by
Proposition 5.1.24, it follows that A is invertible.

The final statement in the theorem follows from Proposition 1.3.9. ■

The preceding result, along with general properties of maps and inverses as
given in Proposition 1.3.9, has the following immediate corollary.

5.1.43 Corollary (Left and right inverses for finite-dimensional matrices) Let F be a
field, let n ∈ Z>0, and let A ∈Matn×n(F). The following statements are equivalent:

(i) A possesses an inverse;
(ii) A possesses a left inverse;
(iii) A possesses a unique left inverse;
(iv) A possesses a right inverse;
(v) A possesses a unique right inverse;
(vi) A ∈ HomF(Fn; Fn) is injective;
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(vii) A ∈ HomF(Fn; Fn) is surjective;
(viii) A ∈ HomF(Fn; Fn) is bijective.

Note that the preceding result is not generally true for square matrices defined
using infinite index sets, as the following example shows.

5.1.44 Example (An infinite-dimensional counterexample) Let F be a field and take
the index set I = Z>0. Let {e j} j∈Z>0 be the standard basis for FZ>0

0 and define
A ∈ HomF(FZ>0

0 ; FZ>0
0 ) by asking that Ae j = e2 j for each j ∈ Z>0. For a general

x = c1e1 + · · · + ckek ∈ FZ>0
0 , then define

Ax = c1Ae1 + · · · + ckAek.

The matrix associated to this linear map is

A =


0F 0F 0F 0F · · ·

1F 0F 0F 0F · · ·

0F 0F 0F 0F · · ·

0F 1F 0F 0F · · ·
...

...
...

...
. . .

 .
With A so defined, we claim that A is injective but not surjective, and possesses

multiple left-inverses but no right inverse. To see that A is injective, suppose that
x = c1e1 + · · · + ckek, and that Ax = 0FZ>0

0
. Then

c1Ae1 + · · · + ckAek = c1e2 + · · · + cke2k = 0FZ>0
0
.

By linear independence of the standard basis, c1 = · · · = ck = 0F, and so A is injective
by Exercise 4.5.23. That A is not surjective follows since, for example, e j < image(A)
for j odd. Since A is injective, it has a left-inverse by Proposition 1.3.9. In fact, A
has many left-inverses, two of which are given by the matrices

B1 =


0F 1F 0F 0F · · ·

0F 0F 0F 1F · · ·

0F 0F 0F 0F · · ·

0F 0F 0F 0F · · ·
...

...
...

...
. . .

 , B2 =


1F 1F 0F 0F · · ·

1F 0F 0F 1F · · ·

1F 0F 0F 0F · · ·

1F 0F 0F 0F · · ·
...

...
...

...
. . .

 .
Since A is not surjective, it has no right inverse.

This example illustrates another of the important differences between finite-
dimensional linear algebra and infinite-dimensional linear algebra. •
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5.1.7 Characterisations of row and column equivalence for matrices over
fields

In this section we deal exclusively with matrices in Matm×n(F).
Next we turn to a description for row and column equivalent matrices. One of

our objectives will be to produce analogues of Theorems 5.1.41 and 5.1.42 (these
being for equivalence) for row equivalence. In part (iii) of Theorem 5.1.41 we gave
a particular simple form for a representative of the equivalence class of equivalent
matrices. The corresponding form for row equivalence is more complicated, and
is as given in the following definition.

5.1.45 Definition (Row Hermite matrix, reduced row echelon matrix) Let F be a field,
let m,n ∈ Z>0, and let A ∈Matm×n(F). For i ∈ {1, . . . ,m} denote

E(i) =

min{ j ∈ {1, . . . ,n} | A(i, j) , 0F}, the ith row of A is nonzero,
∞, the ith row of A is zero.

Then
(i) A is in row Hermite form if there exists k ∈ {1, . . . ,m} such that

(a) the first k rows of A are nonzero and the last n− k rows of A are zero and
such that

(b) i1 < i2, i1, i2 ∈ {1, . . . , k}, implies that E(i1) < E(i2),

and
(ii) A is in reduced row echelon form if it is in row Hermite form, and if addition-

ally

(a) A(i,E(i)) = 1F for all i ∈ {1, . . . ,m} such that E(i) , ∞ and
(b) A(i, j) = 0F for j , E(i) and for all i ∈ {1, . . . ,m}. •

Sometimes what we call “row Hermite form” is called “row echelon form.” As
we shall see in Section 5.2.7, Hermite form is also relevant for matrices whose
entries are elements of a principal ideal domain.

By parsing the definitions one can easily deduce that a matrix in row Hermite
form looks like

0F · · · 0F # · · · ∗ ∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗
0F · · · 0F 0F · · · 0F # · · · ∗ ∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗
0F · · · 0F 0F · · · 0F 0F · · · 0F # · · · ∗ ∗ · · · ∗ ∗ · · · ∗
0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F # · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

... · · · ...
0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

... · · · ...
0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F
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where an entry denoted by # stands for any nonzero element of F and an entry
denoted by ∗ stands for any element of F. Similarly, a matrix in reduced row
echelon form looks like

0F · · · 0F 1F · · · ∗ 0F · · · ∗ 0F · · · ∗ 0F · · · ∗ ∗ · · · ∗
0F · · · 0F 0F · · · 0F 1F · · · ∗ 0F · · · ∗ 0F · · · ∗ ∗ · · · ∗
0F · · · 0F 0F · · · 0F 0F · · · 0F 1F · · · ∗ 0F · · · ∗ ∗ · · · ∗
0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 1F · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

... · · · ...
0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

... · · · ...
0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F 0F · · · 0F

where, again, an entry denoted by ∗ stands for any element of F. For a matrix in
reduced row echelon form, in a nonzero row the first nonzero element is always
1F. These entries are called leading ones.

The following simple result characterises the rowspace of a matrix in row Her-
mite form.

5.1.46 Proposition (Rowspace of a matrix in row Hermite form) If F is a field, if m,n ∈
Z>0, and if A ∈ Matm×n(F) is in row Hermite form, then the nonzero rows of A form a
basis for rowspace(A).

Proof Let us denote the row vectors of A by {r1, . . . , rm}, thinking of these as vectors
in Fn. Suppose that the first k rows are nonzero. It is clear that rowspace(A) =
spanF(r1, . . . , rk). Next let c1, . . . , ck ∈ F satisfy

c1r1 + · · · + ckrk = 0Fn .

This equation constitutes n equations when one asks that it be satisfied component-
wise. If the first nonzero entry in r1 appears is j1st component, then the j1st of the n
equations reads A(1, j1)c1 = 0F where A(1, j1) , 0F. Thus c1 = 0F. Applying now the
same reasoning to the second equation, if the first nonzero component of r2 is the j2nd
component, then the j2nd equation reads A(2, j2)c2 = 0F where A(2, j2) , 0F. Thus
c2 = 0F. Continuing in this way we conclude that c1 = · · · = ck = 0F, showing linear
independence of {r1, . . . , rk}. ■

In Theorem 5.1.58 we will provide a general result which indicates the signifi-
cance of row Hermite form and reduced row echelon form. Specifically, we will see
that these forms for matrices, when applied to systems of linear equations, make it
easy to explicitly describe the set of solutions for a system of equations. The reader
in need of motivation may wish to look ahead to see how this works. Here we
will just prove the following result which gives some significance to the notion of
reduced row echelon form in terms of row equivalence. Note that the following
result applies only to matrices with components in a field.
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5.1.47 Theorem (Row equivalence and reduced row echelon form) Let F be field and
let m,n ∈ Z>0. Then each equivalence class in Matm×n(F) under the equivalence relation
of row equivalence contains exactly one matrix in reduced row echelon form.

Proof First let us show that every equivalence class contains at least one matrix in
reduced row echelon form. Let A ∈Matm×n(F). If A is the zero matrix, the result holds
trivially, so suppose that A is nonzero. Let j1 be the smallest positive integer for which
that j1st column of A is nonzero, and let i1 have the property that A(i1, j1) , 0F. Let
A′1 be the matrix obtained from A by swapping the 1st and j1st rows. Thus A′1 has the
form

A′1 =


0F · · · 0F a1

11 a1
12 · · · a1

1k1

0F · · · 0F b1
21 b1

22 · · · b1
2k1

...
. . .

...
...

...
. . .

...
0F · · · 0F b1

n1 b1
n2 · · · b1

nk1

 ,
where a1

11 , 0F. Now, for i ∈ {2, . . . ,n} perform successive elementary row operations
of subtracting (a1

11)−1a1
i1 times the first row from the ith row. The resulting matrix we

denote by A1 and we note that this matrix has the form

A1 =


0F · · · 0F a1

11 a1
12 · · · a1

1k1

0F · · · 0F 0F a1
22 · · · a1

2k1
...

. . .
...

...
...

. . .
...

0F · · · 0F 0F a1
n2 · · · a1

nk1

 . (5.6)

The construction can then be applied to the matrix
a1

22 · · · a1
k1

...
. . .

...
a1

n2 · · · a1
nk1

 (5.7)

to obtain a matrix, row equivalent to this one, and of the form of (5.6). Replacing the
block (5.7) in A1 by this new matrix, we obtain a matrix A2, row equivalent to A1, of
the form

A2 =



0F · · · 0F a1
11 a1

12 · · · a1
1 j2

a1
1( j2+1) a1

1( j2+2) · · · a1
1k1

0F · · · 0F 0F 0F · · · 0F a2
11 a2

12 · · · a2
1k2

0F · · · 0F 0F 0F · · · 0F 0F a2
22 · · · a2

2k2
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0F · · · 0F 0F 0F · · · 0F 0F a2
n2 · · · a2

nk2


,

where a2
11 , 0F. Proceeding in this way, after a finite number of steps we arrive at a

matrix in row Hermite form that is row equivalent to A.
Next we indicate how one, by elementary row operations, turns a matrix A in row

Hermite form to one in reduced row echelon form. Suppose that the first k rows of A
are nonzero, and that the first nonzero entry in the ith row occurs in column E(i) for
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i ∈ {1, . . . , k}. By multiplying the ith row of A by (A(i,E(i)))−1 we can ensure that the
(i,E(i))-components are equal to 1F for i ∈ {1, . . . , k}. Next, for i′ ∈ {1, . . . , i − 1}, we can
subtract A(i′,E(i)) times the ith row from the i′th row to get zeros in the E(i)th column,
except for the ith row. Thus we arrive at a matrix in reduced row echelon form after a
finite number of elementary row operations. This establishes the existence part of the
theorem.

For the uniqueness part of the theorem it suffices to show that, if A1 and A2 are
m × n matrices that are row equivalent and in reduced row echelon form, then it must
hold that A1 = A2. We prove this by induction on n. There is only one m × 1 matrix in
reduced row echelon form, and this is the matrix

1F
0F
...

0F

 .
Now suppose that any two row equivalent m× (n−1) matrices that are in reduced row
echelon form are equal and let A1 and A2 be row equivalent m× n matrices in reduced
row echelon form. By Proposition 5.1.32 and Theorem 5.1.33 there exists an invertible
matrix P such that A2 = PA1. Now write

Aa =
[

Ba ba
]
, a ∈ {1, 2},

for Ba ∈ Matm×(n−1)(F) and ba ∈ Matm×1(F), a ∈ {1, 2}. It is easy to see that B2 = PB1,
and so B1 and B2 are row equivalent by Proposition 5.1.32 and Theorem 5.1.33. One
can also easily deduce that B1 and B2 are in reduced row echelon form since A1 and
A2 are. Therefore, by the induction hypothesis, B1 = B2. We now consider two cases.
1. The mth row of b1 is equal to 1F: Since A1 and A2 are row equivalent,

rowspace(A1) = rowspace(A2). By Proposition 5.1.46 it follows that the num-
ber of leading ones in A1 and A2 must agree. Since the number of leading ones
in B1 and B2 agree, it follows that the mth row of b2 is 1F. Since A1 and A2 are in
reduced row echelon form, the first m + 1 components of b1 and b2 are zero. Thus
b1 = b2 and so A1 = A2.

2. The mth row of b1 is not equal to 1F: As we saw in the previous case, the number
of leading ones in A1 and A2 must agree, and from this we conclude that the mth
row of b2 is also zero. Let us write the r nonzero rows of Aa, a ∈ {1, 2}, as[

r j ρa
j

]
, j ∈ {1, . . . , r},

using the fact that the first n − 1 columns of A1 and A2 agree. Since the rowspaces
of A1 and A2 agree by Theorem 5.1.50, we know that, for each j ∈ {1, . . . , j}, there
exists c j

1, . . . , c
j
r ∈ F such that,[

r j ρ2
j

]
= c j

1

[
r1 ρ1

1

]
+ · · · + c j

r

[
rr ρ1

r

]
.

This, in particular, implies that

r j = c j
1r1 + · · · + c j

rrr, j ∈ {1, . . . , r}.
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Since the vectors {r1, . . . , rr} are linearly independent by Proposition 5.1.46, it
follows that

c j
k =

1F, j = k,
0F, j , k.

From this it immediately follows that ρ1
j = ρ

2
j for each j ∈ {1, . . . , r}. Thus A1 = A2,

as desired. ■

Note that the existence part of the proof of the theorem is constructive. Let us
illustrate this with an example.

5.1.48 Example (Reduced row echelon form) For a field F, take A ∈Mat3×4(F) to be

A =

0F 1F 1F 2F

1F 0F 3F 1F

2F 1F 7F 1F

 ,
where by kF, k ∈ Z, we mean k1F (cf. Proposition 4.2.10). We now perform a
sequence of elementary row operations.
1. Swap the first and second row:1F 0F 3F 1F

0F 1F 1F 2F

2F 1F 7F 1F

 .
2. Swap the second and third row:1F 0F 3F 1F

2F 1F 7F 1F

0F 1F 1F 2F

 .
3. Subtract 2F times the first row from the second row:1F 0F 3F 1F

0F 1F 1F −1F

0F 1F 1F 2F

 .
4. Subtract the second row from the third row:1F 0F 3F 1F

0F 1F 1F −1F

0F 0F 0F 3F

 .
5. Multiply the third row by 3−1

F if F does not have characteristic 3 (otherwise, do
nothing): 1F 0F 3F 1F

0F 1F 1F −1F

0F 0F 0F 1F

 .
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6. Add the third row to the second row:1F 0F 3F 1F

0F 1F 1F 0F

0F 0F 0F 1F

 .
7. Subtract the third row from the first row:1F 0F 3F 0F

0F 1F 1F 0F

0F 0F 0F 1F

 ,
which gives a matrix in reduced row echelon form.

From this example, one can perhaps convince oneself that at least the existence
part of Theorem 5.1.47 makes sense. •

5.1.49 Notation (Row reduction) The process by which one starts with some matrix and
performs the elementary row operations to put the system in reduced row echelon
form is called row reduction. •

Now we can state alternative characterisations of row equivalence.

5.1.50 Theorem (Characterisations of row equivalence) Let F be a field, let m,n ∈ Z>0,
and let A1,A2 ∈Matm×n(F). Then the following statements are equivalent:

(i) A1 and A2 are row equivalent;
(ii) there exists an invertible matrix P ∈Matm×m(F) such that PA1 = A2;
(iii) ker(A1) = ker(A2);
(iv) rowspace(A1) = rowspace(A2).

Proof (i)⇐⇒ (ii) This follows from Proposition 5.1.32 and Theorem 5.1.33.
(ii) =⇒ (iii) Since P is invertible, ker(P) = {0Fm} by Exercise 4.5.23. Thus we have

A1x = 0Fm ⇐⇒ PA1x = 0Fm ⇐⇒ x ∈ ker(A2).

(iii) =⇒ (iv) We use a lemma.

1 Lemma For A ∈Matm×n(F) we have

ker(A) =
{
x ∈ Fn

∣∣∣ ∑n
i=1 x(i)z(i) = 0F for all z ∈ image(AT)

}
.

Proof This will be proved in greater generality as Lemma 1 in the proof of Proposi-
tion 5.2.14. ▼

Now suppose that, for x ∈ Fn, A1x = 0Fm if and only if A2x = 0Fm . By the lemma
this means thatx ∈ Fn

∣∣∣∣∣∣∣
n∑

i=1

x(i)z(i) = 0F for all z ∈ image(AT
1 )


=

x ∈ Fn

∣∣∣∣∣∣∣
n∑

i=1

x(i)z(i) = 0F for all z ∈ image(AT
2 )

 .



688 5 Linear algebra

We claim that this implies that image(AT
1 ) = image(AT

2 ). Indeed, if U ⊆ Fn is a subspace,
let us define

U⊥ =

x ∈ Fn

∣∣∣∣∣∣∣
n∑

i=1

x(i)z(i) = 0F for all z ∈ U

 .
It is then easy to see that U⊥⊥ = U. In particular, since we have

(image(AT
1 ))⊥ = (image(AT

2 ))⊥,

it follows that image(AT
1 ) = image(AT

2 ), as desired. This part of the result then follows
from Proposition 5.1.19.

(iv) =⇒ (i) Here we use Theorem 5.1.47 along with the following lemma.

2 Lemma Let F be a field, let m,n ∈ Z>0, and let A1,A2 ∈Matm×n(F). Then rowspace(A1) =
rowspace(A2) if A1 and A2 are row equivalent.
Proof This follows since, if A2 is obtained from A1 by an elementary row operation,
then clearly the rows of A2 are linear combinations of the rows of A1. Moreover, since
row operations are invertible by Theorem 5.1.33, it also follows that the rows of A1 are
linear combinations of the rows of A2. ▼

Since rowspace(A1) = rowspace(A2), it follows from the lemma and from the
existence part of Theorem 5.1.47 that A1 and A2 are row equivalent to a matrices
in reduced row echelon form whose rowspaces agree. However, if two matrices in
reduced row echelon form have equal rowspaces, then these matrices must be equal
(why?). By the uniqueness part of Theorem 5.1.47 we know that A1 and A2 are row
equivalent. ■

Of course, the constructions in this section can be repeated, with appropriate
modifications, for column equivalence. For example, one could define “column
Hermite form” and “reduced column echelon form.” This is not often done, how-
ever, and the reason is that reduced row echelon form is useful for solving systems
of linear equations as we shall see in Section 5.1.8. Therefore, we content ourselves
with stating the column equivalence version of Theorem 5.1.50.

5.1.51 Theorem (Alternative characterisations of column equivalence) Let F be a field,
let m,n ∈ Z>0, and let A1,A2 ∈Matm×n(F). Then the following statements are equivalent:

(i) A1 and A2 are column equivalent;
(ii) there exists an invertible matrix P ∈Matm×m(F) such that A1P = A2.
(iii) ker(AT

1 ) = ker(AT
2 );

(iv) colspace(A1) = colspace(A2);

We close this section by giving an interesting application of reduced row echelon
form to the determination of a basis for the columnspace of a matrix.

5.1.52 Theorem (Basis for the columnspace) Let F be a field, let m,n ∈ Z>0, and let
A ∈ Matm×n(F). If the leading ones in the reduced row echelon form for A appear in the
columns j1, . . . , jr, then the columns j1, . . . , jr of A form a basis for colspace(A).

Proof The theorem follows from the following lemma.
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1 Lemma Let F be a field, let m,n ∈ Z>0, and let A ∈ Matm×n(F). For j1, . . . , jk ∈ {1, . . . ,n},
suppose that columns j1, . . . , jk of A are linearly independent. Let E ∈ Matm×m(F) be an
elementary matrix. Then the columns j1, . . . , jk of EA are linearly independent.

Proof Recall from Definition 5.1.4 that the column vectors of A are denoted by
c(A, 1), . . . , c(A,n). Using the definition of matrix multiplication it is easy to show
that the column vectors of EA are given by c(EA, j) = Ec(A, j) for j ∈ {1, . . . ,n}. Thus
it suffices to show that if {x1, . . . , xk} ⊆ Fn is linearly independent, then so too is
{Ex1, . . . ,Exk}. Suppose that

c1Ex1 + · · · + ckExk = 0Fm .

Then, by linearity,
E(c1x1 + · · · + ckxk) = 0Fm ,

giving c1x1 + · · · + ckxk = 0Fn by Exercise 4.5.23 and since E is invertible. Thus c1 =
· · · = ck = 0F, giving our assertion, and so the lemma. ▼

Now, if B is the reduced row echelon form corresponding to A we have A =
E1 · · ·EkB for elementary matrices E1, . . . ,Ek. By successively applying the lemma,
we see that the columns j1, . . . , jr of A are linearly independent. Moreover, since
r = rank(A) by Proposition 5.1.46, it also holds that the columns j1, . . . , jr form a basis
for colspace(A) since dimF(colspace(A)) = rank(A). ■

Let us illustrate this result with an example.

5.1.53 Example (Basis for the columnspace (Example 5.1.48 cont’d)) For a field F we
take

A =

0F 1F 1F 2F

1F 0F 3F 1F

2F 1F 7F 1F

 ,
As we saw in Example 5.1.48, the reduced row echelon form for A is given by1F 0F 3F 0F

0F 1F 1F 0F

0F 0F 0F 1F

 ,
which gives leading ones in columns 1, 2, and 4. Then the first, second, and fourth
columns of A, i.e.,

{(0F, 1F, 2F), (1F, 0F, 1F), (2F, 1F, 1F)},

form a basis for colspace(A). This choice of columns as a basis for the column space
is not unique, but at least the reduced row echelon form gives some selection of
columns for a basis. •
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5.1.8 Systems of linear equations over fields

Matrices are useful for formulating systems of linear equations. The sorts of
equations we are interested in are linear equations of the form Ax = b, where
A ∈ Matm×n(F), x ∈ Fn, and b ∈ Fm. Given b, we are interested in the set of x’s that
satisfy this equation.

Let us first define precisely what we mean by a system of linear equations.

5.1.54 Definition (System of linear equations over a field) Let F be a field and let I and
J be index sets.

(i) A system of linear equations over F is a pair (A, b) ∈MatI×J(F) × FI
0.

(ii) A system of linear equations (A, b) is homogeneous if b(i) = 0F for every i ∈ I.

(iii) The solution set for a system of linear equations (A, b) is the subset of FJ
0

defined by
Sol(A, b) = {x ∈ FJ

0 | Ax = b}.

A solution to the system of linear equations (A, b) is an element of the solution
set.

(iv) For a system of linear equations (A, b) ∈MatI×J(F)×FI
0, the augmented matrix

for the system is the matrix [A, b] over F in I × (J
◦

∪{ j0}) defined by

[A, b](i, j) =

A(i, j), (i, j) ∈ I × J,
b(i), (i, j) ∈ I × { j0}.

•

Intuitively, the augmented matrix for a system of linear equations is formed
by adding a column to A consisting of b. In the cases when I = {1, . . . ,n} and
J = {1, . . . ,m}, we shall adopt the convention that the augmented matrix have b as
its (n + 1)st column. That is, we have

[A, b] =


A(1, 1) · · · A(1,n), b(1)
...

. . .
...

...
A(m, 1) · · · A(m,n) b(m)

 .
Much of this section will be devoted to understanding Sol(A, b) when A ∈

Matm×n(F) and b ∈ Fm. However, before we simplify to this finite-dimensional case,
let us make some general observations about the character of Sol(A, b). First we
state a result which gives a general, but noncomputational, characterisation of the
set of solutions to a system of linear equations.

5.1.55 Proposition (Existence and uniqueness of solutions) Let F be a field, let I and J
be index sets, and let (A,b) ∈ MatI×J(F) × FI

0 be a system of linear equations. Then the
following statements hold:

(i) Sol(A,b) is nonempty if and only if b ∈ image(A);
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(ii) in particular, Sol(A,b) is nonempty for every b ∈ FI
0 if and only if A is surjective;

(iii) Sol(A,b) is a singleton if and only if

(a) b ∈ image(A) and
(b) A is injective.

Proof The only nonobvious assertion is the last one, so it is the only one we prove.
If Sol(A, b) is a singleton, then by the first part of the proposition it holds that b ∈
image(A). If A is not injective then ker(A) , {0FJ

0
} by Exercise 4.5.23. If x ∈ Sol(A, b)

and if x′ ∈ ker(A) then
A(x + x′) = Ax + Ax′ = b.

This shows that A must be injective if Sol(A, b) is a singleton.
Conversely, suppose that b ∈ image(A) and that A is injective. Then ker(A) = {0FJ

0
}

by Exercise 4.5.23. Now let x1, x2 ∈ Sol(A, b). Then

A(x1 − x2) = Ax1 − Ax2 = b − b = 0FI
0
.

Thus x1 − x2 ∈ ker(A), giving x1 = x2. ■

Next we characterise the set of the solutions. The following result says that
the set of solutions, when it is nonempty, is an affine subspace, referring to the
terminology of Definition 4.5.13.

5.1.56 Proposition (Characterisation of Sol(A, b)) Let F be a field, let I and J be index
sets, and let (A,b) ∈ MatI×J(F) × FI

0 be a system of linear equations in F. Then, for any
x0 ∈ Sol(A,b),

Sol(A,b) = {x + x0 ∈ FJ
0 | x ∈ Sol(A, 0FJ

0
)}.

Proof Let x0 be any solution to (A, b) as stated in the proposition. If x ∈ Sol(A, b) then

A(x − x0) = Ax − Ax0 = b − b = 0FI
0
.

Thus x = x0 + x′ for x′ ∈ Sol(A, 0FI
0
). Conversely, if x = x0 + x′ for some x′ ∈ Sol(A, 0FI

0
),

then
Ax = A(x0 + x′) = Ax0 = b,

and so x ∈ Sol(A, b), giving the result. ■

Note that the preceding result does not say that Sol(A, b) is nonempty. It char-
acterises Sol(A, b) in cases when it is nonempty, i.e., when b ∈ image(A). It is
also worth remarking on the general procedure that the result suggests for finding
Sol(A, b):
1. find some element of Sol(A, b);
2. find all solutions to the homogeneous system (A, 0FI

0
).
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In practice the first step is the most difficult, in some sense. Note that 0FJ
0
∈

Sol(A, 0FI
0
), so the homogeneous system always has solutions. The reader may wish

to compare this procedure with, for example, methods for solving inhomogeneous
linear differential equations. The idea is the same; one first finds some solution
(often called a “particular solution”), and then the set of solutions is formed by
adding to this particular solution the set of all solutions to the homogeneous system.
Moreover, this idea is repeated for many sorts of linear equations, not necessarily
algebraic (e.g., ordinary differential equations and partial differential equations).

Let us now proceed to a description of a method for finding solutions in the case
where A has finitely many rows and columns. We use row reduction to accomplish
this. That this is a feasible thing to do is based on the following result.

5.1.57 Theorem (Elementary row operations do not change the solution set) Let F
be a field, let m,n ∈ Z>0, and let (A1,b1), (A2,b2) ∈Matm×n(F)× Fm be systems of linear
equations. Then Sol(A1,b1) = Sol(A2,b2) if [A1,b1] and [A2,b2] are row equivalent.
Conversely, if Sol(A1,b1) = Sol(A2,b2) with both sets of solutions being nonempty, then
[A1,b1] and [A2,b2] are row equivalent.

Proof First suppose that [A1, b1] and [A2, b2] are row equivalent. It is sufficient to con-
sider the case where [A2, b2] is obtained from [A1, b1] by an elementary row operation.
Moreover, since row and column equivalence are equivalence relations, it suffices to
show that, if [A1, b1] and [A2, b2] are row equivalent, then Sol(A1, b1) ⊆ Sol(A2, b2).
We first consider the case where Sol(A1, b1) , ∅. We consider the three types of row
operations in succession.

Type (i): Suppose x ∈ Sol(A1, b1). Then

m∑
j=1

A1(i, j)x( j) = b1( j), i ∈ {1, . . . ,m}. (5.8)

This represents m equations, and clearly the order in which we write then is inconse-
quential. Thus it immediately follows that x ∈ Sol(A2, b2).

Type (ii): Suppose that x ∈ Sol(A1, b1) so that (5.8) holds. Let i0 ∈ {1, . . . ,n} have
the property that the i0th row of [A2, b2] is equal to u times the i0th row of [A1, b1]. It
also holds that

m∑
j=1

A1(i, j)x( j) = b1(i), i ∈ {1, . . . ,n} \ {i0},

m∑
j=1

uA1(i0, j)x( j) = ub1(i0).

But this is exactly the assertion that x ∈ Sol(A2, b2).
Type (iii): Again, if x ∈ Sol(A1, b1), then (5.8) holds. Let i1, i2 ∈ {1, . . . ,n} have the

property that the i1st row of [A2, b2] is obtained by adding r times the i2nd row of
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[A1, b1] to the i1st row of [A1, b1]. Then we have

m∑
j=1

A1(i, j)x( j) = b1(i), i ∈ {1, . . . ,n} \ {i1},

m∑
j=1

(A1(i1, j) + rA1(i2, j))x( j) = b1(i1) + rb1(i2),

which exactly implies that x ∈ Sol(A2, b2).
If either Sol(A1, b1) or Sol(A2, b2) are empty, it immediately follows that the other

is also empty, since our above computations give a means of construction a solution
for one system of linear equations given a solution for the other.

Now suppose that Sol(A1, b1) = Sol(A2, b2) and that both sets of solutions are
nonempty. By Proposition 5.1.56 it follows that ker(A1) = ker(A2), and so by Theo-
rem 5.1.50 it follows that A1 and A2 are row equivalent. Therefore, by Theorem 5.1.47,
A1 and A2 have the same reduced row echelon form. Let us then write the reduced
row echelon forms for [A1, b1] and [A2, b2] as[

A′1 b′1
]
,

[
A′2 b′2

]
for A′1,A

′

2 ∈ Matm×n(F) and for b′1, b
′

2 ∈ Matm×1(F). Since A1 and A2 have the same
reduced row echelon form, A′1 = A′2. Moreover, by the first part of the theorem,
Sol(A′1, b

′

1) = Sol(A1, b1) and Sol(A′2, b
′

2) = Sol(A2, b2). In particular, Sol(A′1, b
′

1) =
Sol(A′1, b

′

2). This implies that

A′1(Sol(A′1, b
′

1)) = A′1(Sol(A′1, b
′

2)).

But this implies that {b′1} = {b
′

2}, meaning that [A1, b1] = [A2, b2] have the same reduced
row echelon form. Thus they are row equivalent by Theorem 5.1.50. ■

Since the set of solutions Sol(A, b) is only dependent on the equivalence class of
the augmented matrix [A, b] under the equivalence relation of row equivalence, one
might hope that, by choosing a simple representative of this equivalence class, it is
easy to characterise the nature of Sol(A, b). A convenient choice of this representa-
tive is, of course, none other than the reduced row echelon form of Definition 5.1.45.
Let us write the form of a system of linear equations when the augmented matrix
has been put into reduced row echelon form. Suppose that the leading ones appear
in the first r rows and in columns j1, . . . , jr. Then the equations Ax = b have the
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form

x j1 + a1, j1+1x j1+1 + · · · + 0Fx j2 + a1, j2+1x j2+1 + · · · + 0Fx jr + a1, jr+1x jr+1 + · · · = b1

x j2 + a2, j2+1x j2+1 + · · · + 0Fx jr + a2, jr+1x jr+1 + · · · = b2

...

x jr + ar, jr+1x jr+1 + · · · = br

0F = br+1

0F = 0F

...

0F = 0F.

(5.9)

Moreover, concerning the values of b1, . . . , br+1, one of the following two cases
holds.
1. br+1 = 0F: In this case the values of b1, . . . , br are unspecified, i.e., they are what

they are.
2. br+1 = 1F: In this case b1 = · · · = br = 0F.
With this form of the equations in reduced row echelon form, we have the following
result which characterises the solutions.

5.1.58 Theorem (Reduced row echelon form and solutions of systems of linear
equations) Let F be a field, let m,n ∈ Z>0, and let (A,b) ∈ Matm×n(F) × Fm be a
system of linear equations. Let r ∈ Z>0 and j1, . . . , jr be as in (5.9). Then

(i) Sol(A,b) is nonempty if and only if the number of leading ones in the reduced row
echelon form for [A,b] is equal to the number of leading ones in the reduced row
echelon form for A.

Now suppose that the number of leading ones in the reduced row echelon form for [A,b]
is equal to the number of leading ones in the reduced row echelon form for A. Then the
following statements hold:

(ii) we have

Sol(A,b) = {(x1, . . . , xn) ∈ Fn
| xj ∈ F, j < {j1, . . . , jr},

xj are determined by (5.9), j ∈ {j1, . . . , jr}};

(iii) Sol(A,b) is a singleton if and only if the number of leading ones in the reduced row
echelon form for A is n.

Proof Since the theorem has only to do with reduced row echelon form, we suppose
[A, b] (and, therefore, A) to be in reduced row echelon form to save having to repeatedly
say “in the reduced row echelon form of.”

(i) The fact that the number of leading ones in [A, b] is equal to the number of
leading ones in A is exactly the assertion that b lies in the columnspace of A. To see
this, let r denote the number of leading ones in A and let r′ denote the number of
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leading ones in [A, b]. Note that the r columns of A which contain leading ones are the
first r standard basis vectors, e1, . . . , er, for Fm. If r′ = r then clearly b lies in the span
of these columns, and so in the columnspace of A. Conversely, if r′ > r, then b = er+1
and so b does not lie in the columnspace of A. Thus indeed we see that the assertion in
this part of the theorem is equivalent to the assertion that b ∈ colspace(A). However,
by Proposition 5.1.19, this is equivalent to asserting that b ∈ image(A) which is the
obvious necessary and sufficient condition of Proposition 5.1.55 for Sol(A, b) to be
nonempty.

(ii) This follows immediately from (5.9).
(iii) From part (ii) we know that if r = n then there are no components that can be

freely specified for elements of Sol(A, b). This means that there is only one solution,
and it is given by x j = b j, j ∈ {1, . . . ,n}. ■

The first part of the theorem has the following reinterpretation.

5.1.59 Corollary (Rank and solutions of systems of linear equations) Let F be a field,
let m,n ∈ Z>0, and let (A,b) ∈ Matm×n(F) × Fm be a system of linear equations. Then
Sol(A,b) is nonempty if and only if rank([A,b]) = rank(A).

Let us consider this for some examples.

5.1.60 Examples (Reduced row echelon form and solutions of systems of linear
equations) We let F be a field. In each case we consider systems for which
the augmented matrix is already in reduced row echelon form; doing the row
operations is not the point here.
1. Consider the system of linear equations with the augmented matrix

0F 1F 0F 0F

0F 0F 1F 0F

0F 0F 0F 1F

0F 0F 0F 0F

 .
Since the augmented matrix has three leading ones whereas A has only two,
it follows that this system of linear equations, and any system possessing this
system as its reduced row echelon form, has no solutions.

2. Next consider the augmented matrix 0F 1F a13 0F b1

0F 0F 0F 1F b2

0F 0F 0F 0F 0F

 .
Here the system has solutions since the number of leading ones in the aug-
mented matrix agrees with the number of leading ones in A. Applying the
second part of Theorem 5.1.58 (or simply solving the equations “by hand”) one
see that

Sol(A, b) = {(x1, x2, x3, x4) | x1, x3 ∈ F, x2 = b1 − a13x3, x4 = b2}.

In particular, there is not a unique solution.
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3. Finally consider the system with the augmented matrix
1F 0F 0F b1

0F 1F 0F b2

0F 0F 1F b3

0F 0F 0F 0F

 .
This system has the same number of leading ones in [A, b] and A, so it possesses
solutions. Moreover, the number of leading ones is equal to the number of
columns, so there is a unique solution. Indeed, Sol(A, b) = {(b1, b2, b3)}. •

5.1.9 Notes

Material in Köthe on solutions of linear equations with arbitrary index sets.

Exercises

5.1.1 Prove Proposition 5.1.6. Are the sufficient conditions given for existence of
the product AB also necessary?

5.1.2 Prove Proposition 5.1.7.
5.1.3 Let F be a field, let m,n ∈ Z>0, and consider Matm×n(F), the m × n matrices

over F in I × J, thought of as an F-vector space via Corollary 5.1.8. Let
{e1, . . . , en} and { f 1, . . . , f m} be the standard bases for Fn and Fm, respectively.
(a) Give a natural basis for Matm×n(F) defined using the standard bases for

Fn and Fm.
(b) Conclude that dimF(Matm×n(F)) = mn.

In the next exercise, you will use the following definition.

5.1.61 Definition (Lie algebra) A Lie algebra over a field F is a pair (g, [·, ·]) where g is an
F-vector space that is equipped with a map from g×g to g, denoted by (u, v) 7→ [u, v],
having the following three properties:

(i) for fixed v ∈ g the maps u 7→ [u, v] and u 7→ [v,u] are endomorphisms of g;
(ii) [v, v] = 0g for each v ∈ g;
(iii) [u, [v,w]] + [w, [u, v]] + [v, [w,u]] = 0g for every u, v,w ∈ g (Jacobi identity).

The product [·, ·] is called the Lie bracket on g. •

5.1.4 Let F be a field and let I be an index set. Define a map from MatI×I(F) ×
MatI×I(F) to MatI×I(F) by

(A,B) 7→ [A,B] ≜ AB − BA.

Answer the following questions.
(a) Show that (MatI×I(F), [·, ·]) is a Lie algebra.
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(b) Show that if F does not have characteristic 2 then [A,B] = −[B,A] for
every A,B ∈MatI×I(F).

5.1.5 Let F be a field and let I be an index set.
(a) Show that the set of invertible column finite matrices in MatI×I(F) is a

group with product given by matrix multiplication.
In the case when I = {1, . . . ,n} this group of invertible matrices is

denoted by GL(n; F) and is called the general linear group of order n
over F.

(b) Is GL(n; F) a subalgebra of Matn×n(F)?
5.1.6 Let F be a field and let n ∈ Z>0. We consider Matn×n(F) as a ring by Corol-

lary 5.1.9.
(a) For what values of n is it true that Matn×n(F) is a commutative ring?
(b) For what values of n is it true that Matn×n(F) is an integral domain?

5.1.7 Prove Proposition 5.1.10.
5.1.8 Prove Proposition 5.1.19.
5.1.9 Prove Proposition 5.1.28.

Hint: Show first that it suffices to consider matrices where one is obtained from the
other by a single elementary row operation.

5.1.10 Prove Proposition 5.1.39.
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Section 5.2

Matrices over rings

In this section we generalise the discussion in Section 5.1 of matrices whose
entries are elements of a field to matrices whose entries are elements of a ring.
The character of this generalisation bears much resemblance to the extension from
vector spaces (Section 4.5) to modules (Section 4.8). That is to say, many aspects
of the generalisation are simply obtained by replacing the word “field” with the
word “ring,” but there are other parts of the generalisation where care must be
taken in that some things that hold for matrices over fields do not hold for matrices
over rings. Due to the similarities with the presentation in Section 5.1, there will
be some unavoidable redundancy.

Do I need to read this section? The material in this section can probably be
omitted until it is needed. •

5.2.1 Matrices over rings: definitions and notation

Let us just hop into the definition.

5.2.1 Definition (Matrix over a ring) Let R be a ring and let I and J be index sets. A
matrix over R in I × J is a map A : I × J → R. The expression A(i, j), i ∈ I, j ∈ J, is
the (i, j)th component of the matrix A, and is said to lie in the ith row and the jth
column of A. If, for each i0 ∈ I the set

{ j ∈ J | A(i0, j) , 0R}

is finite, then A is row finite, and, if for each j0 ∈ J the set

{i ∈ I | A(i, j0) , 0R}

is finite, then A is column finite.
The set of matrices over R in I × J is denoted by MatI×J(R). If I = {1, . . . ,m}

and J = {1, . . . ,n}, then a matrix over R in I × J is an m × n matrix, and the set of
m × n matrices is denoted by Matm×n(R). •

As with matrices over fields, and indeed even more so for matrices over rings,
the case of most interest for matrices over rings will be the case of matrices with
finitely many rows and columns. As for fields, these will be represented by an
array of the form (5.1), only now the entries are allowed to be elements of a ring.

Of course, all of the examples of matrices over fields given in Example 5.1.2 are
also examples of matrices over rings. We thus only consider examples here that
extend the existing examples.
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5.2.2 Examples (Matrices over rings)
1. As with matrices over fields, the zero matrix over a ring R in I × J is the matrix

0I×J defined by 0I×J(i, j) = 0R. The m × n zero matrix is denoted by 0m×n.
2. A square matrix over a ring R is any matrix in I × I for an index set I. A square

matrix A ∈ MatI×I(R) is diagonal if A(i1, i2) = 0R whenever i1 , i2. If R is a unit
ring, the special diagonal matrix II ∈MatI×I(R) defined by

II(i1, i2) =

1R, i1 = i2,

0R, i1 , 12

is the identity matrix. If I = {1, . . . ,n} then we denote In = II.
3. The most common example of matrices over rings we will encounter occurs

when R = F[ξ] is the polynomial ring over a field F. Note that an m × n matrix
over F[ξ] is represented as 

P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
. . .

...
Pm1 Pm2 · · · Pmn

 ,
for Pi j ∈ F[ξ], i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}. •

One can, of course, define the transpose of A ∈ MatI×J(R) as the matrix AT
∈

MatJ×I(R) given by AT( j, i) = A(i, j).
The partitioning of matrices over a ring R can be done just as for matrices over

fields. There is also an identical notion of a matrix being block diagonal. One can
also define the row and column vectors for a matrix over R as elements of RJ and
RI, respectively. We refer the reader to the discussion for matrices over fields.

5.2.2 The algebra of matrices over rings

Because rings may not have an identity element and may not be commutative,
one has to exercise a little more care in considering the algebraic structure of
matrices over rings when compared to matrices over fields. Nonetheless, the basic
ingredients are the same. In particular, the starting point of the matrix product is
the same, except that one now needs to allow for the fact that rings may not be
commutative.

5.2.3 Definition (Sum and product of matrices over rings) Let R be a ring and let I, J,
and K be index sets.

(i) If A,B ∈ MatI×J(R) then the sum of A and B is the matrix A + B ∈ MatI×J(R)
defined by

(A + B)(i, j) = A(i, j) + B(i, j).



700 5 Linear algebra

(ii) If A ∈ MatI×J(R) and B ∈ MatJ×K(R) then the product of A and B is the matrix
AB ∈MatI×K(R) defined by

(AB)(i, k) =
∑
j∈J

A(i, j)B( j, k),

and is defined whenever the sum is finite.
(iii) If A ∈MatI×J(R) and r ∈ R then left multiplication (resp. right multiplication)

of A by a is the matrix rA ∈ MatI×J(R) (resp. Ar ∈ MatI×J(R)) defined by
(rA)(i, j) = r(A(i, j)) (resp. (Ar)(i, j) = (A(i, j))r). •

As with matrices over fields, there are simple sufficient conditions which ensure
that the product of matrices makes sense. The proof for matrices over rings follows
that for matrices over fields.

5.2.4 Proposition (Definability of the product of matrices over rings) If R is a ring
and if I, J, and K are index sets, then the following statements hold for A ∈MatI×J(R) and
B ∈MatJ×K(R):

(i) the product AB is defined if A is row finite;
(ii) the product AB is defined if B is column finite.

Moreover, if both A and B are column (resp. row) finite, then AB is column (resp. row)
finite.

The sum and product for matrices over rings have the following properties;
note that there are some differences from the case of matrices over fields in that a
ring may not be a unit ring and in that we have two possibilities for products of
matrices with elements of the ring. Nonetheless, the proof of the following result
is essentially like that of Proposition 5.1.7 for matrices over fields.

5.2.5 Proposition (Properties of sum and product of matrices over rings) Let R be a
ring, let I, J, K, and L be index sets, and let A1,A2,A3 ∈ MatI×J(R), B1,B2 ∈ MatJ×K(R),
C1 ∈MatK×L(R), and r1, r2 ∈ R. Then the following equalities hold:

(i) A1 +A2 = A2 +A1;
(ii) (A1 +A2) +A3 = A1 + (A2 +A3);
(iii) A1 + 0I×J = A1;
(iv) if −A1 ∈ MatI×J(R) is defined by (−A1)(i, j) = −(A1(i, j)), i ∈ I, j ∈ J, then A1 +

(−A1) = 0I×J;
(v) if A1 is row finite, or if B1 and B2 are column finite, then A1(B1+B2) = A1B1+A1B2;
(vi) if A1 and A2 are row finite, or if B1 is column finite, then (A1+A2)B1 = A1B1+A2B1;
(vii) if A1 and B1 are row finite, or if B1 and C1 are column finite, then (A1B1)C1 =

A1(B1C1);
(viii) if R is a unit ring then IJA1 = A1II = A1;
(ix) r1(r2A1) = (r1r2)A1;
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(x) (A1r1)r2 = A1(r1r2);
(xi) (r1 + r2)A1 = r1A1 + r2A1;
(xii) A1(r1 + r2) = A1r1 +A1r2;
(xiii) r1(A1 +A2) = r1A1 + r1A2;
(xiv) (A1 +A2)r1 = A1r1 +A2r1;
(xv) if R is a unit ring then 1RA1 = A11R = A1.

Thus, for matrices over rings we have the following structure, echoing Corol-
laries 5.1.8 and 5.1.9 for matrices over fields.

5.2.6 Corollary (Matrices over rings as elements of a module) If R is a ring and if I
and J are index sets, then

(i) MatI×J(R) is a left R-module with addition given by the sum of matrices and with
multiplication being given by left multiplication of a matrix by a scalar,

(ii) MatI×J(R) is a right R-module with addition given by the sum of matrices and with
multiplication being given by right multiplication of a matrix by a scalar, and

(iii) if R is additionally a unit ring, then MatI×J(R) is a unity left R-module and a unity
right R-module.

5.2.7 Corollary (Matrices over rings as elements of an algebra) If R is a ring and if I
is an index set, then

(i) the set of column finite matrices in MatI×I(R) is a left R-algebra with the left R-
module structure of Corollary 5.2.6 and with the product given by the product of
matrices,

(ii) the set of column finite matrices in MatI×I(R) is a right R-algebra with the right
R-module structure of Corollary 5.2.6 and with the product given by the product of
matrices, and

(iii) if R is additionally a unit ring, then the set of column finite matrices in MatI×J(R)
is a left unity R-algebra and a right unity R-algebra whose ring structure has II as a
unity element.

We have the following result which characterises the properties of transpose
with respect to matrix algebra. Note that one needs to be careful in generalising
Proposition 5.1.10 since R may not be commutative.

5.2.8 Proposition (Matrix algebra and matrix transpose) Let R be a field, let I and J be
index sets, and let A,A1,A2 ∈MatI×J(R). Then the following statements hold:

(i) (A1 +A2)T = AT
1 +AT

2 ;
(ii) if R is additionally commutative, then the product A1A2 is defined if and only if the

product AT
2 AT

1 is defined, and when these are defined we have (A1A2)T = AT
2 AT

1 .
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5.2.3 Matrices as homomorphisms

Just as one can, under suitable hypotheses, associate to a matrix over a field a
linear map between certain vector spaces, to a matrix over a ring one can, again
under suitable restrictions, associate to a matrix over a ring a homomorphism of
certain modules. Due to the fact that rings may not be commutative, we need to
make modifications in our definitions of matrix-vector product. We recall from
Example 4.8.36 and Notation 4.8.37 the R-modules RI and RI

0, defined using an
index set I.

5.2.9 Definition (Matrix-vector product) Let R be a ring and let I and J be index sets.
For a matrix A ∈MatI×J(R) and x ∈ RJ,

(i) the right product of A and x is the element Ax of RI given by

(Ax)(i) =
∑
j∈J

A(i, j)x( j),

and
(ii) the left product of A and x is the element xA of RI given by

(xA)(i) =
∑
j∈J

x( j)A(i, j),

and these are defined whenever the sums involved are finite. •

Of course, one needs, as with Proposition 5.1.12 for matrices over fields, con-
ditions which guarantee the definedness of the matrix-vector product.

5.2.10 Proposition (Definability and properties of the matrix-vector product) Let R be
a ring, let I and J be index sets, and let A ∈ MatI×J(R) and x ∈ RJ. Then the following
statements hold:

(i) if x ∈ RJ
0 then Ax and xA are defined;

(ii) if x ∈ RJ
0 and if A is column finite then Ax and xA are defined and are elements of

RI
0;

(iii) if A is row finite then Ax and xA are defined.

Now we state our main result in this section which associates a homomorphism
to a matrix over a ring. Because of the two possible ways of defining matrix-vector
product, this leads to multiple versions of homomorphisms adapted to either the
left or right module structure of RI (see Example 4.8.2–7). In the case where the
ring is commutative, the result boils down to a transcription of Theorem 5.1.13,
exchanging “field” with “commutative ring” (see Exercise 5.2.1).
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5.2.11 Theorem (Matrices as homomorphisms) Let R be a unit ring, let I and J be index
sets, and let A ∈MatI×J(R). Then the following statements hold:

(i) if A is column finite, then the map x 7→ Ax is an R-homomorphism from the right
R-module RJ

0 to the right R-module RI
0;

(ii) if A is column finite, then the map x 7→ xA is an R-homomorphism from the left
R-module RJ

0 to the left R-module RI
0;

(iii) if A is row finite, then the map x 7→ Ax is an R-homomorphism from the right
R-module RJ to the right R-module RI;

(iv) if A is row finite, then the map x 7→ xA is an R-homomorphism from the left
R-module RJ to the left R-module RI.

Moreover, the following statements also hold:
(v) if L ∈ HomR(RJ

0; RI
0) is a homomorphism of right R-modules, then there exists a

unique column finite matrix A ∈MatI×J(R) such that L(x) = Ax for all x ∈ RJ
0;

(vi) if L ∈ HomR(RJ
0; RI

0) is a homomorphism of left R-modules, then there exists a
unique column finite matrix A ∈MatI×J(R) such that L(x) = xA for all x ∈ RJ

0;
(vii) if J is finite, then, if L ∈ HomR(RJ; RI) is a homomorphism of right R-modules,

then there exists a unique (necessarily row finite) matrix A ∈ MatI×J(R) such that
L(x) = Ax for all x ∈ RJ;

(viii) if J is finite, then, if L ∈ HomR(RJ; RI) is a homomorphism of left R-modules,
then there exists a unique (necessarily row finite) matrix A ∈ MatI×J(R) such that
L(x) = Ax for all x ∈ RJ.

Proof Much of the proof follows along the same lines as the proof of Theorem 5.1.13.
Therefore, in the proof here we shall only point out the parts of the proof that differ
from Theorem 5.1.13.

(i) We let LA be the given map from RJ
0 to RI

0. The only place where the proof differs
from Theorem 5.1.13(i) is in the linearity with respect to multiplication by elements of
the ring. For this we check that for r ∈ R and x ∈ RJ

0 we have

LA(xr)(i) =
∑
j∈J

A(i, j)(xr)( j) =

∑
j∈J

A(i, j)x( j)

 r = (LA(x))r,

as desired.
(ii) The proof here follows, mutatis mutandis, along the lines of the preceding part

of the proof.
(iii) Again, the only thing to check that differs from the proof of Theorem 5.1.13(ii)

is the linearity with respect to multiplication by elements of the ring. But this goes
exactly like the corresponding computation for part (i).

(iv) The proof here follows, mutatis mutandis, along the lines of the preceding part
of the proof.

(v) As in the proof of part (iii) of Theorem 5.1.13, we let {ei}i∈I and { f j} j∈J be the

standard bases for RI
0 and RJ

0, respectively. For j ∈ J we have

L( f j) = ei1ai1 j + · · · + eikj
aikj j
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for some unique k j ∈ Z≥0, some unique basis elements {ei1 , . . . , eikj
}, and some unique

nonzero ai1 j, . . . , aikj j ∈ R since {ei}i∈I is a basis for RI
0. We then define A ∈MatI×J(R) by

A(i, j) =

ai j, i ∈ {i1, . . . , ik j},

0R, otherwise.

To check that L(x) = Ax, let x ∈ RJ
0 and write

x = f j1x1 + · · · + f jkxk

for some x1, . . . , xk ∈ R. Now let ei1 , . . . , eim be standard basis elements with the property
that

L( f jl) ∈ spanR(ei1 , . . . , eim)

for each l ∈ {1, . . . , k}. Then

L(x) = L( f j1x1 + · · · + f jkxk)

= (L( f j1))x1 + · · · + (L( f jk))xk

= ei1ai1 j1x1 + · · · + eimaim j1x1 + · · · + ei1ai1 jkxk + · · · + eimaim jkxk

= Ax,

as desired.
(vi) The proof here follows, mutatis mutandis, along the lines of the proof of the

preceding part of the theorem.
(vii) Suppose that J = {1, . . . ,n} so that RJ = Rn, and let { f 1, . . . , f n} be the standard

basis for Rn. Let L ∈ HomR(Rn; RI) and define A ∈ MatI×J(R) by asking that, for
(i, j) ∈ I × J, L( f j)(i) = A(i, j). We claim that L(x) = Ax for each x ∈ Rn. Indeed, for
x ∈ Rn write

x = f 1x(1) + · · · + f nx(n),

and then compute, for i ∈ I,

L(x)(i) = L( f 1x(1) + · · · + f nx(n))(i)
= (L( f 1))(i)x(1) + · · · + (L( f n)(i))x(n)
= A(i, 1)x(1) + · · · + A(i,n)x(n) = (Ax)(i),

as desired.
(viii) The proof here follows like that for the preceding part of the proof. ■

We shall adopt the following notation when thinking of a matrix A over a unit
ring as a homomorphism.

1. We denote by Ar ∈ HomR(RJ
0; RI

0) (if A is column finite) or Ar ∈ HomR(RJ; RI) (if
A is row finite) the homomorphism of right R-modules. We write Ar(x) = Ax in
this case.

2. We denote by Al ∈ HomR(RJ
0; RI

0) (if A is column finite) or Al ∈ HomR(RJ; RI) (if
A is row finite) the homomorphism of left R-modules. We write Al(x) = xA in
this case.
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When R is commutative, then Ar = Al when one makes the natural correspondence
between the right R-modules RJ and RI and the left R-modules RJ and RI (see
Example 4.8.2–8).

The product of matrices corresponds to the composition of homomorphisms,
exactly in analogy to the case of matrices over fields, except that one now needs
notions for both the left and right matrix-vector product.

5.2.12 Proposition (Matrix product and composition of homomorphisms) Let R be a
unit ring, let I, J, and K be index sets, and let A ∈ MatI×J(R) and B ∈ MatJ×K(R). Then
the following statements hold:

(i) if A and B are column finite then the matrix corresponding to the composition of the
homomorphisms Ar ∈ HomR(RJ

0; RI
0) and Br ∈ HomR(RK

0 ; RJ
0) is AB;

(ii) if A and B are column finite then the matrix corresponding to the composition of the
homomorphisms Al ∈ HomR(RJ

0; RI
0) and Bl ∈ HomR(RK

0 ; RJ
0) is AB;

(iii) if A and B are row finite then the matrix corresponding to the composition of the
homomorphisms Ar ∈ HomR(RJ; RI) and Br ∈ HomR(RK; RJ) is AB;

(iv) if A and B are row finite then the matrix corresponding to the composition of the
homomorphisms Ar ∈ HomR(RJ; RI) and Br ∈ HomR(RK; RJ) is AB.

Proof (i) Let {ei}i∈I, { f j} j∈J, and {gk}k∈K be the standard bases for RI
0, RJ

0, and RK
0 ,

respectively. We compute

Ar ◦ Br(gk) = Ar

∑
j∈J

f jB( j, k)

 =∑
j∈J

Ar( f j)B( j, k) =
∑
j∈J

∑
i∈I

eiA(i, j)B( j, k),

where all sums are finite since A and B are column finite. This directly gives

Ar ◦ Br(gk) =
∑
i∈I

ei(AB)(i, k),

using the definition of right matrix product. A reference to the proof of Theorem 5.2.11
shows that AB is the matrix associated to the homomorphism Ar ◦ Br, as desired.

(ii) The proof here goes exactly as in the previous part of the proof, but using the
left module structure.

(iii) Let z ∈ FK and i ∈ I and compute

(Ar ◦ Br)(z)(i) =
∑
j∈J

A(i, j)(Bz)( j) =
∑
j∈J

A(i, j)

∑
k∈K

B( j, k)z(k)


=

∑
k∈K

(AB)(i, k)z(k) = (AB)r(z)(i),

giving Ar ◦ Br(z) = (AB)r(z), as desired.
(iv) The proof here goes exactly as in the previous part of the proof, but using the

left module structure. ■
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As with matrices over rings, the transpose of a matrix can be regarded as
a homomorphism. To give a characterisation of the transpose as a homomor-
phism, note that—analogously to the situation with fields discussed before The-
orem 5.1.16—elements of RI are elements of HomR(RI

0; R), this being the case
for both the left and right module structure on RI

0. For y ∈ RI we denote by
Lr,y ∈ HomR(RI

0; R) the homomorphism of right R-modules defined by

Lr,y(x) =
∑
i∈I

y(i)x(i)

and we denote by Ll,y ∈ HomR(RI
0; R) the homomorphism of left R-modules defined

by
Ll,y(x) =

∑
i∈I

x(i)y(i).

With this notation, we have the following result.

5.2.13 Theorem (Transpose as a homomorphism) Let R be a unit ring, let I and J be
index sets, and let A ∈ MatI×J(R) be column finite (so defining homomorphisms Ar ∈

HomR(RJ
0; RI

0) and Al ∈ HomR(RJ
0; RI

0) of right and left R-modules, respectively). Then
the following statements hold:

(i) the map y 7→ ATy is a homomorphism of the right R-modules RI and RJ, and
furthermore satisfies

Ll,ATy(x) = Ll,y(xA);

(ii) the map y 7→ yAT is a homomorphism of the left R-modules RI and RJ, and further-
more satisfies

Lr,yAT(x) = Lr,y(Ax).

Proof That the maps y 7→ AT y and y 7→ yAT are homomorphisms of right and left R-
modules, respectively, as claimed follows from Theorem 5.2.11 since AT is row finite.
We also directly compute that both Ll,AT y(x) and Ll,y(Ax) are given by∑

i∈I

∑
j∈J

x( j)A(i, j)y(i)

and that both Lr,yAT (x) and Lr,y(xA) are given by∑
i∈I

∑
j∈J

y( j)A(i, j)x(i). ■

In Proposition 5.1.17 we gave some complementary properties of matrices
over fields and their transposes. Specifically we showed that a column finite
matrix A over a field is injective (resp. surjective) if and only if AT is surjective
(resp. injective). For matrices over rings, one must first take care to properly
account for the left and right module structures. But then, after one does this, only
one half of Proposition 5.1.17 remains true for matrices over rings as we show in
the following result and example.
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5.2.14 Proposition (Properties of transpose as a homomorphism) Let R be a unit ring,
let I and J be index sets, and let A ∈MatI×J(R) be column finite. Then

(i) AT
r is injective if Al is surjective and

(ii) AT
l is injective if Ar is surjective.

Proof First we give a lemma.

1 Lemma The following statements hold:
(i) ker(AT

r ) = {y ∈ RI
| Ll,y(z) = 0R for all z ∈ image(Al)};

(ii) ker(AT
l ) = {y ∈ RI

| Lr,y(z) = 0R for all z ∈ image(Ar)}.

Proof We shall only prove the first part of the lemma, since the second part is proved
in the same manner. We rely on the fact that Ll,y(x) = 0R for all x ∈ RI

0 if and only if
y = 0RI . Clearly the “if” part of this statement is true. For the “only if” part, suppose
that y ∈ RI is nonzero. Then y(i0) , 0R for some i0 ∈ I. It then follows that, if {ei}i∈I is
the standard basis for RI

0, we have Ll,y(ei0) = y(i0) , 0R, giving the claim.
With this fact and Theorem 5.2.13 in mind, we have the following computation:

ker(AT
r ) = {y ∈ RI

| AT y = 0RJ }

= {y ∈ RI
| Ll,AT y(x) = 0R for all x ∈ RJ

0}

= {y ∈ RI
| Ll,y(xA) = 0R for all x ∈ RJ

0}

= {y ∈ RI
| Ll,y(z) = 0R for all z ∈ image(Al)},

as desired. ▼

Continuing with the proof, we prove only the first assertion since the second
follows mutatis mutandis.

Suppose that Al is surjective and let y ∈ ker(AT
r ). Since Al is surjective the lemma

tells us that Ll,y(z) = 0R for every z ∈ RI
0. In particular, taking z = ei for i ∈ I shows that

y(i) = 0R for i ∈ I. Thus y = 0RI , and so that AT
r is injective by Exercise 4.8.3. ■

The following example shows that the converses in either part of the preceding
proposition do not generally hold, even for matrices over rather ordinary rings.

5.2.15 Example (Injective matrix with a non-surjective transpose) We take R = Z and
consider the matrix A ∈Mat2×2(Z) given by

A =
[
1 0
0 2

]
.

Since Z is commutative, we do not need to concern ourselves with the distinction
between the left and right module structures, and so we denote the element of
HomZ(Z2;Z2) associated with A (resp. AT) simply by A (resp. AT). We note that
AT = A. We claim that A, as a homomorphism from Z2 to Z2, is injective but that
AT is not surjective. To see that A is injective compute A( j1, j2) = ( j1, 2 j2), and that
( j1, 2 j2) = (0, 0) only if j1 = j2 = 0. Thus ker(A) = {(0, 0)} and so A is injective by
Exercise 4.8.3. Since (0, 1) < image(A) it follows that A, and so AT, is not surjective.

•
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We conclude with definitions and interpretations of columnspace and rowspace
for matrices over rings. Here again one must take care about the left and right
module structures.

5.2.16 Definition (Columnspace and rowspace) Let R be a ring, let I and J be index sets,
and let A ∈MatI×J(R).

(i) The left columnspace of A is the submodule of RI, thought of as a left R-
module, generated by the column vectors of A, and is denoted by colspacel(A).

(ii) The right columnspace of A is the submodule of RI, thought of as a right R-
module, generated by the column vectors of A, and is denoted by colspacer(A).

(iii) The left rowspace of A is the submodule of RJ, thought of as a left R-module,
generated by the column vectors of A, and is denoted by rowspacel(A).

(iv) The right rowspace of A is the submodule of RJ, thought of as a right
R-module, generated by the column vectors of A, and is denoted by
rowspacer(A). •

The following result indicates the meaning of columnspace and rowspace in
terms of the homomorphisms associated with a matrix.

5.2.17 Proposition (Interpretation of columnspace and rowspace) Let R be a unit ring,
let I and J be index sets, and let A ∈MatI×J(R). Then the following statements hold:

(i) if A is column finite then colspacel(A) = image(Al) and colspacer(A) =
image(Ar);

(ii) if A is row finite then rowspacel(A) = image(AT
l ) and rowspacer(A) =

image(AT
r ).

5.2.4 Invertible matrices over rings

The discussion of invertible matrices over rings proceeds much as that for
invertible matrices over fields, but with a few modifications to allow for the fact
that rings may not be commutative. Indeed, this can be seen immediately in the
following result which characterises the nature of the linearity associated with the
inverse of a homomorphism associated with a matrix.

5.2.18 Proposition (The inverse of an isomorphism is a homomorphism) If R is a
unit ring, if I and J are index sets, then the following statements hold:

(i) if L ∈ HomR(RJ
0; RI

0) is an isomorphism of left R-modules (resp. right R-modules),
then the inverse of L is an element of HomR(RI

0; RJ
0), and so is a homomorphism of

left R-modules (resp. right R-modules);
(ii) if L ∈ HomR(RJ; RI) is an isomorphism of left R-modules (resp. right R-modules),

then the inverse of L is an element of HomR(RI; RJ), and so is a homomorphism of
left R-modules (resp. right R-modules).
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Proof We shall prove the result in the case that L ∈ HomR(RJ
0; RI

0) (resp. L ∈
HomR(RJ; RI)) is a homomorphism of left R-modules; the case of right R-modules
follows in a similar vein.

For y, y1, y2 ∈ RI
0 (resp. y, y1, y2 ∈ RI) let x = L−1(x), x1 = L−1(y1), and x2 = L−1(y2).

Then compute

L−1(y1 + y2) = L−1(L(x1) + L(x2)) = L−1
◦ L(x1 + x2) = x1 + x2 = L−1(y1) + L−1(x2)

and, for r ∈ R, compute

L−1(ry) = L−1(rL(x)) = L−1
◦ L(rx) = rx = rL−1(y),

which gives the result. ■

When defining the inverse of a matrix, there is a potential issue that arises from
the fact that, associated to a matrix, there are two homomorphisms, one of left
modules and one of right modules. As far as inverses go, however, this difference
is of no consequence, as the following result indicates.

5.2.19 Proposition (Inverse and homomorphisms associated to a matrix) Let R be a
unit ring, let I be an index set, and let A ∈MatI×I(R). Then the following statements hold:

(i) if A is column finite, then Al is an isomorphism if and only if Ar is an isomorphism,
and, moreover, the column finite matrix associated to the inverse of Ar is the same as
the column finite matrix associated to the inverse of Al;

(ii) if R is commutative and if A is row finite, then Al is an isomorphism if and only if
Ar is an isomorphism, and, moreover, the row finite matrix associated to the inverse
of Ar is the same as the row finite matrix associated to the inverse of Al.

Moreover, in each of the two cases, the matrix A−1 associated to the inverse homomorphism
is uniquely determined by the relation

AA−1 = A−1A = II.

Proof (i) First we note that, by Theorem 5.2.11 and Proposition 5.2.18, Al and Ar
are isomorphisms if and only if there are homomorphisms A−1

l ∈ HomR(RI
0; RI

0) and
A−1

r ∈ HomR(RI
0; RI

0) of left and right R-modules, respectively, such that

Ar ◦ A−1
r = A−1

r ◦ Ar = idRI
0
, Al ◦ A−1

l = A−1
l
◦ Ar = idRI

0
. (5.10)

For convenience, let us denote by Ar and A−1
r the matrices associated by Theorem 5.1.13

to the homomorphisms Ar and A−1
r , and similarly for Al and A−1

l . In terms of matrices,
the relations (5.10) take the form that

(ArA−1
r )x = (A−1

r Ar)x = x, x(A−1
l Al) = x(AlA−1

l ) = x

for every x ∈ RI
0. This shows that Ar is an isomorphism if and only if there exists a

matrix A−1
r such that

ArA−1
r = A−1

r Ar = In
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and that Al is an isomorphism if and only if there exists a matrix A−1
l such that

AlA−1
l = A−1

l Al = In.

Now suppose that Ar is an isomorphism and let A−1
r be its inverse. Using the fact

that, as matrices, we have Ar = A, this means that

AA−1
r = A−1

r A = II.

However, since it also holds that, as matrices, we have Al = A, we may conclude that
A−1

r is the inverse of Al.
(ii) Let us first show that if A is row finite and if Ar (resp. Al) is an isomorphism,

then the inverse of Ar (resp. Al) is represented by a row finite matrix. Since AT
r is

column finite, by Theorem 5.2.11 there exists a column finite matrix B ∈ MatI×I(R)
such that

BAT
r = AT

r B = II,

or, in terms of components,

∑
i′∈I

B(i1, i′)A(i2, i′) =
∑
i′∈I

A(i′, i1)B(i′, i2) =

1R, i1 = i2,
0R, i1 , i2.

Therefore, ∑
i′∈I

B(i′, i1)A(i′, i2) =
∑
i′∈I

A(i1, i′)B(i2, i′) =

1R, i1 = i2,
0R, i1 , i2.

This gives
BTAr = ArBT = II,

showing that the row finite matrix BT represents the inverse of Ar as per part (iii) of
Theorem 5.2.11. The verification for Al follows along the same lines.

Once one has this correspondence between inverses of isomorphisms associated
to a row finite matrix and another row finite matrix, the proof proceeds as in part (i).

The final assertion of the proposition was proved during the course of the proof
above. ■

Theorem 5.2.11 and Propositions 5.2.18 and 5.2.19 make possible the following
definition.

5.2.20 Definition (Invertible matrix over a ring) Let R be a unit ring, let I be an index
set, and let A ∈MatI×I(R).

(i) If A is column finite, then it is invertible if it is an isomorphism from (either
the left or right R-module) RI

0 to itself.
(ii) If A is row finite, then it is invertible if it is an isomorphism from (either the

left or right R-module) RI to itself.
The inverse of an invertible matrix A is the matrix A−1

∈MatI×I(R) associated to the
inverse of the isomorphism from RI

0 to RI
0 (or from RI to RI) associated with A. •
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For readers used to matrices over fields defined with finitely many rows and
columns, care should be taken to note that BA = II does not necessarily imply that
AB = II. For matrices over fields this can fail if I is not finite (Example 5.1.44), but
always holds if I is finite. However, for rings this can fail even for finite matrices,
as the following example shows.

5.2.21 Example (A counterexample on invertibility of finite matrices) We recall from
Example 4.2.7–7 the details behind this example. We let R = HomR(R[ξ];R[ξ]) the
linear maps between theR-vector space of polynomials with real coefficients. By rd

and ri we denote the linear maps corresponding, respectively, to differentiation and
to integration with zero constant coefficient. Then the matrices [rd], [ri] ∈Mat1×1(R)
are 1 × 1 matrices. Note that [rd][ri] = I1 but that [ri][rd] , I1. •

Let us next consider some of the simpler properties of invertible matrices.

5.2.22 Proposition (Properties of the matrix inverse) Let R be a unit ring, let I be an index
set, and let A,B ∈MatI×I(R). Then the following statements hold:

(i) if A is invertible, then so is A−1, and (A−1)−1 = A;
(ii) if R is commutative, then A is invertible if and only if AT is invertible and, if A is

invertible, then (AT)−1 = (A−1)T;
(iii) if A and B are invertible, then AB is invertible and (AB)−1 = B−1A−1.

Proof (i) We assume that A is column finite, the row finite case following in a similar
manner. As a map of sets we know that Ar : RI

0 → RI
0 being invertible implies the

existence of a unique map A−1
r : RI

0 → RI
0 such that Ar ◦ A−1

r = A−1
r ◦ Ar = idRI

0
by

Proposition 1.3.9. Therefore, by Proposition 5.2.18 we know that this set map A−1
r

must be exactly the linear map associated to the inverse matrix for Ar. Note that
Ar ◦A−1

r = A−1
r ◦Ar = idRI

0
then implies, by Proposition 1.3.9, that A−1

r is invertible with

inverse equal to Ar. This is equivalent to the matrix A−1 being invertible with inverse
A.

(ii) Suppose that A is invertible and column finite, so that its inverse is also invertible
and column finite, and satisfies

AA−1 = A−1A = II

by Proposition 5.2.19. By Proposition 5.2.8 it makes sense to take the transpose of this
equation to get

(A−1)TAT = AT(A−1)T = II.

Since II corresponds to the identity map on FI it follows from Proposition 1.3.9 that
(A−1)T = (AT)−1.

(iii) We assume that A is column finite, the row finite case following similarly. We
note that, thinking of matrices as linear maps and using Proposition 5.2.12,

(B−1
r ◦ A−1

r ) ◦ (Ar ◦ Br) = (Ar ◦ Br) ◦ (B−1
r ◦ A−1

r ) = idFI
0
.

By Proposition 1.3.9 this implies that Ar ◦ Br is invertible with inverse B−1
r ◦ A−1

r . This
in turn implies that AB is invertible and that its inverse is B−1A−1. ■
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5.2.23 Notation (Inverse of transpose) In cases where the equality (AT)−1 = (A−1)T makes
sense (e.g., when A is column and row finite) then one often writes

A−T = (AT)−1 = (A−1)T. •

5.2.5 Elementary and secondary operations and elementary and secondary
matrices

As we saw in Sections 5.1.5, 5.1.6, and 5.1.7, the notion of an elementary matrix
is an important one for understanding the problem of equivalence for matrices over
fields. The problem of equivalence for matrices over rings is far more complicated,
and we will not attempt any sort of general treatment. Our objective will be
to provide a useful classification of matrices over principal ideal domains, and
especially Euclidean rings, since the cases we will be interested in are of this sort.
That one ought to be able to do more in these cases is suggested by the results of
Section 4.9.

Before we get to specific sorts of rings, we define various sorts of operations on
matrices over general rings. The first bunch of these echo those for matrices over
fields, beginning with elementary row operations.

5.2.24 Definition (Elementary row operation) Let R be a ring, let m,n ∈ Z>0, and let
A1,A2 ∈ Matm×n(R). The matrix A2 is obtained by an elementary row operation
from A1 if one of the following hold:

(i) there exists distinct i1, i2 ∈ {1, . . . ,n} such that, for (i, j) ∈ {1, . . . ,n} × {1, . . . ,m},

A2(i, j) =


A1(i, j), i < {i1, i2},

A1(i2, j), i = i1,

A1(i1, j), i = i2,

i.e., A1 and A2 agree except that the i1st and i2nd rows are interchanged;
(ii) there exists i0 ∈ {1, . . . ,n} and a unit u ∈ R such that, for (i, j) ∈ {1, . . . ,n} ×
{1, . . . ,m},

A2(i, j) =

A1(i, j), i , i0,

uA1(i, j), i = i0

i.e., A1 and A2 agree, except that the i0th row of A2 is the i0th row of A1

multiplied by u on the left;
(iii) there exists distinct i1, i2 ∈ {1, . . . ,n} and r ∈ R such that, for (i, j) ∈ {1, . . . ,n} ×
{1, . . . ,m},

A2(i, j) =

A1(i, j), i , i1,

A1(i, j) + rA1(i2, j), i = i1,

i.e., A1 and A2 agree except that the i1st row of A2 is obtained by adding r
times the i2nd row of A1 to the i1st row of A1. •

Of course, one also has elementary column operations.
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5.2.25 Definition (Elementary column operation) Let R be a ring, let m,n ∈ Z>0, and let
A1,A2 ∈Matm×n(R). The matrix A2 is obtained by an elementary column operation
from A1 if one of the following hold:

(i) there exists distinct j1, j2 ∈ {1, . . . ,m} such that, for (i, j) ∈ {1, . . . ,n}×{1, . . . ,m},

A2(i, j) =


A1(i, j), j < { j1, j2},

A1(i, j2), j = j1,

A1(i, j1), j = j2,

i.e., A1 and A2 agree except that the j1st and j2nd columns are interchanged;
(ii) there exists j0 ∈ {1, . . . ,m} and a unit u ∈ R such that, for (i, j) ∈ {1, . . . ,n} ×
{1, . . . ,m},

A2(i, j) =

A1(i, j), j , j0,

A1(i, j)u, j = j0

i.e., A1 and A2 agree, except that the j0th column of A2 is the j0th column of
A1 multiplied by u on the right;

(iii) there exists distinct j1, j2 ∈ {1, . . . ,m} and r ∈ R such that, for (i, j) ∈ {1, . . . ,n}×
{1, . . . ,m},

A2(i, j) =

A1(i, j), j , j1,

A1(i, j) + A1(i, j2)r, j = j1,

i.e., A1 and A2 agree except that the j1st column of A2 is obtained by adding
the j2nd column of A1, multiplied by r, to the j1st column of A1. •

For reasons that are not at the moment completely clear, for matrices over rings
it is useful to allow a second type of row and column operation.

5.2.26 Definition (Secondary row and column operations) Let R be a unit ring, let
m,n ∈ Z>0, and let A1,A2 ∈Matm×n(R).

(i) The matrix A2 is obtained by a secondary row operation from A1 if

A2(i, j) =


A1(i, j), i ≥ 2,
aA1(1, j) + bA1(2, j), i = 1,
cA1(1, j) + dA1(2, j), i = 2,

for a, b, c, d ∈ R satisfying

ad − bc = da − cb = da − bc = ad − cb = 1R (5.11)

and
ba − ab = cd − dc = db − bd = ac − ca = 0R. (5.12)



714 5 Linear algebra

(ii) The matrix A2 is obtained by a secondary column operation from A1 if

A2(i, j) =


A1(i, j), j ≥ 2,
A1(i, 1)a + A1(i, 2)c, j = 1,
A1(i, 1)b + A1(i, 2)d, j = 2,

for a, b, c, d ∈ R satisfying (5.11) and (5.12). •

The reader might justifiably ask, “Why are these referred to as row and column
operations?” since the answer here is not so evident as for elementary operations.
The reader will probably best understand this after understanding the matrix ver-
sions of elementary and secondary operations stated as Proposition 5.2.30. Also,
the meaning of the conditions on the ring elements a, b, c, and d are also probably
best understood after one understands the matrix versions of the operations; see
Remark 5.2.32.

In any case, let us define the notions of row equivalence and column equivalence
for commutative unit rings.

5.2.27 Definition (Row equivalence, column equivalence) Let R be a commutative
unit ring, let m,n ∈ Z>0, and let A1,A2 ∈Matm×n(R).

(i) The matrix A2 is row equivalent to A1 if there exists k ∈ Z>0 and matrices
A′1, . . . ,A

′

k ∈ Matm×n(R) such that A′1 = A1, A′k = A2, and A′j+1 is obtained by
either an elementary row operation or a secondary operation from A′j for each
j ∈ {1, . . . , k − 1}.

(ii) The matrix A2 is column equivalent to A1 if there exists k ∈ Z>0 and matrices
A′1, . . . ,A

′

k ∈ Matm×n(R) such that A′1 = A1, A′k = A2, and A′j+1 is obtained by
either an elementary column operation or a secondary operation from A′j for
each j ∈ {1, . . . , k − 1}. •

The reader will notice that we now have competing definitions of row and
column equivalence for fields. This will not be problematic, however, since we will
show in Proposition 5.2.33 that secondary operations can be realised as sequences
of elementary operations for Euclidean domains, and so particularly for fields. We
shall not have much to say about row and column equivalence for matrices over
rings. What we do say is covered in Section 5.2.7.

As for row and column equivalence for matrices over fields, one can show
that row equivalence and column equivalence define equivalence relations for
matrices over commutative unit rings. The situation here is not quite as trivial as
for matrices over fields, as the rôle of secondary operations complicates matters
slightly. However, a reference to the proof of Proposition 5.2.30 will set things
straight. In like manner, one can prove fairly easily, once one understands the rôle
of secondary operations, that A1 and A2 are row equivalent if and only if AT

1 and
AT

2 are column equivalent. We leave it for the reader to verify this.
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For matrices over fields we have seen that it is useful to realise elementary row
and column operations as multiplication by elementary row and column matrices.
The same is true for matrices over rings, of course. Moreover, it is by casting
secondary operations in this way that we can best understand them.

5.2.28 Definition (Elementary and secondary row and column matrices) Let R be a
unit ring and let n ∈ Z>0. A matrix A ∈Matn×n(F)

(i) is an elementary row matrix if A is obtained by an elementary row operation
from In,

(ii) is an elementary column matrix if A is obtained by an elementary column
operation from In,

(iii) is a secondary row matrix if it is obtained by a secondary row operation from
In, and

(iv) is a secondary column matrix if it is obtained by a secondary column operation
from In. •

The following result now usefully characterises the elementary row and column
matrices and the secondary matrices.

5.2.29 Proposition (Elementary and secondary row and column operations and
transpose) If R is a unit ring and if n ∈ Z>0, then the following statements for
A ∈Matn×n(R) are equivalent:

(i) A is an elementary row matrix;
(ii) A is an elementary column matrix;
(iii) AT is an elementary row matrix;
(iv) AT is an elementary column matrix.

Also, the following statements are equivalent:
(v) A is a secondary row matrix;
(vi) A is a secondary column matrix;
(vii) AT is a secondary row matrix;
(viii) AT is a secondary column matrix.

Proof The verification of the equivalence of the first four statements goes in exactly
the same way as the proof of Proposition 5.1.31, taking care that the ring may not be
commutative. Therefore, we only prove the equivalence of the last four statements.
To do this, the following lemma is the key observation, and indeed gives the most
insightful characterisation of a secondary row or column operation.

1 Lemma If A ∈ Matn×n(R) is obtained from In by a secondary row or column operation
corresponding to elements a, b, c,d ∈ R as in Definition 5.2.26, then

A =
[

A′ 02×(n−2)
0(n−2)×2 In−2

]
,
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where

A′ =
[
a b
c d

]
.

Proof Follows directly from the definition. ▼

Now we can easily prove the equivalence of the last four statements in the propo-
sition. Indeed, the condition for a matrix to be a secondary row or column matrix is
simply a condition on the ring elements a, b, c, d ∈ R that comprise the top left 2 × 2
block of the matrix, i.e., the matrix A′ appearing in the proof of the lemma above. These
conditions are (5.11) and (5.12). It is easy to check that these conditions are satisfied
for A′ if and only if they are satisfied for (A′)T, and this gives the result. ■

As for matrices over fields, we shall call elementary row and column matrices
simply elementary matrices. We shall also call a matrix that is either a secondary
row matrix or a secondary column matrix a secondary matrix.

As with matrices over fields, we can realise elementary row and column opera-
tions as multiplication by elementary matrices. The same now holds for secondary
matrices, as the following result indicates.

5.2.30 Proposition (Elementary and secondary matrices, and elementary and sec-
ondary row and column operations) Let R be a unit ring, let m,n ∈ Z>0, and let
A1,A2 ∈Matm×n(R). Then the following statements hold:

(i) if A2 is obtained from A1 by an elementary row operation and if Em ∈ Matm×m(R)
is the elementary matrix obtained by applying the same row operation to Im, then
A2 = EmA1;

(ii) if A2 is obtained from A1 by an elementary column operation and if En ∈Matn×n(R)
is the elementary matrix obtained by applying the same column operation to In, then
A2 = A1En;

(iii) if A2 is obtained from A1 by a secondary row operation and if Sm ∈ Matm×m(F)
is the secondary matrix obtained by applying the same row operation to Im, then
A2 = SmA1;

(iv) if A2 is obtained from A1 by a secondary column operation and if Sn ∈ Matn×n(R)
is the secondary matrix obtained by applying the same column operation to In, then
A2 = A1Sn.

Proof The same proof as given for Proposition 5.1.32 works here for the first two
parts of the result, taking appropriate care with the fact that the ring may not be
commutative. Thus we need prove only the second two parts. And here we only
prove the third part since the fourth follows by an entirely similar argument. From the
lemma in the proof of Proposition 5.2.29 we know that by applying a secondary row
operation associated to a, b, c, d ∈ R to the identity matrix we get the matrix

S =
[

S′ 02×(n−2)
0(n−2)×2 In−2

]
,
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where

S′ =
[
a b
c d

]
.

It is then a simple matter of checking matrix multiplication to see that the matrix SA1 is
the matrix obtained from A1 by applying the secondary row operation corresponding
to a, b, c, d ∈ R. ■

For matrices over fields we showed in Theorem 5.1.33 that every invertible
matrix is a finite product of elementary matrices. An analogous result is too much
to hope for for general rings. However, for principal ideal domains the hoped for
result is true, and really gives validity to the notion of elementary and secondary
operations for matrices over rings. Without such a result, these constructions would
be valueless. And, indeed, their value for matrices over rings is already limited
by the fact that the important implication in the following result only applies to
principal ideal domains.

5.2.31 Theorem (Invertible matrices and products of elementary and secondary ma-
trices) Let R be a unit ring and let n ∈ Z>0. For A ∈ Matn×n(R) consider the following
statements:

(i) A is invertible;
(ii) A is a product of a finite number of elementary and secondary matrices.

Then
(iii) (ii) =⇒ (i) and
(iv) (i) =⇒ (ii) if R is a principal ideal domain.

Proof (iii) In Theorem 5.1.33 we proved this implication for elementary matrices over
fields. That proof is easily adapted, taking care with the possible noncommutativity
of the ring, to general rings to show that every elementary matrix over a unit ring is
invertible. By Proposition 5.2.22 it then suffices to show that every secondary matrix
is invertible. By the lemma of Proposition 5.2.29 it suffices to show that the matrix[

a b
c d

]
is invertible provided that a, b, c, d ∈ R satisfy (5.11) and (5.12). This, however, follows
by the computation [

d −b
−c a

] [
a b
c d

]
=

[
a b
c d

] [
d −b
−c a

]
=

[
1R 0R
0R 1R

]
.

(iv) Our proof relies on Theorem 5.2.43 below. By that theorem, for any A ∈
Matn×n(R) there exists P,Q ∈Matn×n(R) such that

PAQ =
[

Dr 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
,
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with Dr being the diagonal matrix

Dr =


d1 0R · · · 0R
0R d2 · · · 0R
...

...
. . .

...
0R 0R · · · dr


and with d1| · · · |dr.

We claim that A is invertible if and only if (1) r = n and (2) each of d1, . . . , dn is a
unit. To see this we first note that the implication part (iii) proved above gives P and
Q as invertible. Thus A is invertible if and only if[

Dr 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
is invertible. It is clear (why?) that if this matrix is invertible then r = n. Now
suppose that the matrix Dn is invertible. Then there exists a matrix D′n such that
D′nDn = DnD′n = In. One can do the matrix multiplication to see that D′n must be a
diagonal matrix with diagonal entries d′1, . . . , d

′
n which satisfy d′jd j = 1R, j ∈ {1, . . . ,n}.

Thus d1, . . . , dn are units and d′j = d−1
j , j ∈ {1, . . . ,n}. This gives our assertion that A is

invertible if and only if n = r and d1, . . . , dn are units.
Now we simply write

A = P


d1 0R · · · 0R
0R 1R · · · 0R
...

...
. . .

...
0R 0R · · · 1R



1R 0R · · · 0R
0R d2 · · · 0R
...

...
. . .

...
0R 0R · · · 1R

 · · ·

1R 0R · · · 0R
0R 1R · · · 0R
...

...
. . .

...
0R 0R · · · dn

 Q.

Since the n matrices in the middle on the right-hand side are elementary matrices, this
part of the result follows. ■

5.2.32 Remark (On secondary operations) It is fairly easy to understand the character
of elementary operations. These manipulate rows and columns in a way that can
be “undone” (meaning elementary matrices are invertible). Proposition 5.2.30 also
makes clear the way one should think of secondary operations. These manipu-
late the first two rows or columns of a matrix in the most general way that can
be “undone” (meaning that secondary matrices are invertible). While secondary
operations are only applied to the first two rows or columns, by performing ele-
mentary operations of row or column swapping, these can be made on any two
distinct rows or columns. Thus secondary operations are the most general things
that one can do with two rows or columns. •

As a final result in this section, let us show that the possible definitions of row
equivalence and column equivalence for matrices over fields agree. We do this by
first considering secondary matrices over Euclidean domains.
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5.2.33 Proposition (Equivalence of secondary and elementary operations for Eu-
clidean domains) If R is a Euclidean domain, if n ∈ Z>0, and if S ∈ Matn×n(R) is a
secondary matrix, then there exists elementary matrices E1, . . . ,Ek ∈Matn×n(R) such that
S = E1 · · ·Ek.

Proof We denote by δ : R→ Z≥0 the degree function.
By the lemma of Proposition 5.2.29 and using the fact that R is commutative, it

suffices to show that any matrix

S =
[
a b
c d

]
∈Mat2×2(R)

for which ad − bc = 1R can be written as a product of elementary matrices. We first
prove a lemma.

1 Lemma If R is a Euclidean domain and if A ∈ Mat2×2(R) then A can be transformed into a
diagonal matrix by a finite number of elementary row and column operations.

Proof Let us write

A =
[
a b
c d

]
.

Let us first consider the case when a = b = 0R. If c = 0R then the result is already true.
If c , 0R then there exists q1, d1 ∈ R such that d = q1c + d1 with δ(d1) < δ(c). By an
elementary column operation we then transform A into[

0R 0R
c d

]
−→

[
0R 0R
c d − q1c

]
=

[
0R 0R
c d1

]
with δ(d1) < δ(c). If d1 = 0R then by a row or column swap, the lemma is proved. If
d1 , 0R, we write c = q2d1 + c1 with δ(c1) < δ(d1). We then perform elementary column
operations to get [

0R 0R
c d1

]
−→

[
0R 0R

c − q2d1 d1

]
=

[
0R 0R
c1 d1

]
with δ(c1) < δ(d1) < δ(c). This produces a sequence of ring elements with strictly
decreasing degree. This sequence of degrees must terminate with zero, and will do so
when we have made elementary column operations to transform A into a matrix of
the form [

0R 0R
0R r

]
or

[
0R 0R
r 0R

]
.

In the first case we are done, and in the second case we are done after a column swap.
Now suppose that a and b are both nonzero. We shall first use elementary column

operations to transform A into a matrix whose top right entry is zero. First write
b = q1a + b1 with δ(b1) < δ(a). We then perform the following elementary column
operations: [

a b
c d

]
−→

[
a b − q1a
c d − q1c

]
=

[
a b1
c d − q1c

]
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with δ(b1) < δ(a). If b1 = 0R then we have arrived at our desired form with a zero as
the top right entry. Otherwise, write a = q2b1 + a1 with δ(a1) < δ(b1) and perform the
elementary column operations[

a b1
c d − q1c

]
−→

[
a − q2b1 b1

c − q2(d − q1c) d − q1c

]
=

[
a1 b1

c − q2(d − q1c) d − q1c

]
with δ(a1) < δ(b1) < δ(a). We again arrive at a strictly decreasing sequence of degree,
and so must eventually arrive at a matrix of the form[

a′ 0R
c′ d′

]
or

[
0R b′

c′ d′

]
,

giving, possibly after an additional column swap, our desired matrix[
a′ 0R
c′ d′

]
with a zero as the top right entry and with δ(a′) < δ(a).

Now we perform elementary row operations to additionally ensure that the bottom
left entry can be transformed to zero. If c′ = 0R then this is already done. Otherwise
write c′ = q1a′ + c1 with δ(c′1) < δ(a′) and perform the elementary row operations[

a′ 0R
c′ d′

]
−→

[
a′ 0R

c′ − q1a′ d′

]
=

[
a′ 0R
c′1 d′

]
with δ(c′1) < δ(a′). If c′1 = 0R then the proof is complete. Otherwise write a′ = q2c′1 + a′1
with δ(a′1) < δ(c′1) and perform the elementary row operations[

a′ 0R
c′1 d′

]
−→

[
a′ − q2c′1 −q2d′

c′1 d′

]
=

[
a′1 −q2d′

c′1 d′

]
with δ(a′1) < δ(c′1) < δ(a′). By our (by now) usual argument involving strictly decreasing
sequences of degrees we arrive at a matrix of the form[

0R b′′

c′′ d′′

]
or

[
a′′ b′′

0R d′′

]
with δ(c′′) < δ(a′) in the first case, or δ(a′′) < δ(a′) in the second case. A row swap then
gives a matrix of the form [

a′′ b′′

0R d′′

]
with δ(a′′) < δ(a′) < δ(a).

The above arguments can then be repeated, giving rise to a sequence of matrices,
obtained by sequences of elementary row and column operations, of the form[

a b
c d

]
−→

[
a′ 0R
c′ d′

]
−→

[
a′′ b′′

0R d′′

]
−→

[
a′′′ 0R
c′′′ d′′′

]
−→ · · ·
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with δ(a) > δ(a′) > δ(a′′) > δ(a′′′) > · · · . Moreover, the starting point for moving from
the second step to the third is that c′ , 0R, the starting point for moving from the
third step to the fourth is that b′′ , 0R, and so on. Thus since the sequence of degree
of the top left elements is strictly decreasing, this construction must terminate with a
diagonal matrix after a finite number of steps. ▼

Let us now proceed with the proof. We first note that by part (iii) of Theorem 5.2.31
the secondary matrix

S =
[
a b
c d

]
is invertible. By the lemma above and by Proposition 5.2.30 there exists matrices
P,Q ∈Mat2×2(R), each a finite product of elementary matrices, such that

PSQ = D ≜
[
d1 0R
0R d2

]
for some d1, d2 ∈ R. By Theorem 5.2.31 the matrices P and Q are invertible and
so D = P−1SQ−1, whence D is also invertible by Proposition 5.2.22. Note that D
being invertible precludes either of d1 or d2 from being zero (why?). Thus there exists
p, q, r, s ∈ R such that[

p q
r s

] [
d1 0R
0R d2

]
=

[
d1 0R
0R d2

] [
p q
r s

]
=

[
1R 0R
0R 1R

]
.

Doing the matrix multiplication gives

pd1 = sd2 = 1R, qd2 = rd1 = qd1 = sd2 = 0R.

Since neither of d1 and d2 are zero and since R is an integral domain this implies that
q = r = 0R and that d1 and d2 are units with p = d−1

1 and s = d−1
2 . Now write

S = P
[
d1 0R
0R 1R

] [
1R 0R
0R d2

]
Q,

which renders S as a finite product of elementary matrices, as desired, since the middle
two matrices are elementary matrices. ■

Combining the previous result with Proposition 4.3.2 gives the following result.
In the statement, the definition being used for row and column equivalence is that
given by Definition 5.2.27 for matrices over rings.

5.2.34 Corollary (Row and column equivalence for matrices over Euclidean do-
mains) Let R be a Euclidean domain, let m,n ∈ Z>0, and let A1,A2 ∈ Matm×n(R).
Then the following two statements are equivalent:

(i) A1 and A2 are row equivalent;
(ii) there exists k ∈ Z>0 and matrices A′1, . . . ,A

′

k ∈ Matm×n(R) such that A′1 = A1,
A′k = A2, and A′j+1 is obtained by an elementary row operation from A′j for each
j ∈ {1, . . . ,k − 1}.
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Also, the following two statements are equivalent:
(i) A1 and A2 are column equivalent;
(ii) there exists k ∈ Z>0 and matrices A′1, . . . ,A

′

k ∈ Matm×n(R) such that A′1 = A1,
A′k = A2, and A′j+1 is obtained by an elementary column operation from A′j for each
j ∈ {1, . . . ,k − 1}.

In particular, the result holds if R is a field.

5.2.6 Rank and equivalence for matrices over rings

We have not really seen sharply up to this point the reason why matrices over
rings should be so much different than matrices over fields. In this section we shall
see that even defining the rank of a matrix over a general ring is not something one
can do in all cases. There are a few reasons for this.
1. Although the rowspace and columnspace of a matrix over a ring are submodules

of a free module, this does not suffice for them to be themselves free, cf. Exam-
ple 4.8.20. Thus the notion of rank may not be definable for the rowspace and
columnspace.

2. Even if the rowspace and columnspace are free, they may not have a well-
defined rank, cf. Example 4.8.22. This would again make the definition of row
rank and column rank problematic.

Neither of these difficulties arise when the ring is a principal ideal domain (the
first difficulty evaporates by virtue of Theorem 4.9.1 and the second by virtue of
Theorem 4.8.25). Thus we shall see that a distinguished rôle is played by matrices
over principal ideal domains. Fortunately, these are the rings that are of most
interest to us, particularly the case of the principal ideal domain given by the
polynomial ring over a field.

As we did in Section 5.1.6 we restrict to matrices with finite numbers of rows
and columns.

Our definitions of rank for this section are the following.

5.2.35 Definition (Row rank and column rank) Let R be a commutative unit ring, let
m,n ∈ Z>0, and let A ∈Matm×n(R).

(i) If the rowspace of A is free, the row rank of A is the rank of the rowspace.
(ii) If the columnspace of A is free, the column rank of A is the rank of the

columnspace. •

As mentioned above, by Theorem 4.9.1 we have the following result.

5.2.36 Proposition (Definability of row rank and column rank of matrices over prin-
cipal ideal domains) If R is a principal ideal domain, if m,n ∈ Z>0, and if
A ∈Matm×n(R), then the row rank and column rank of A can be defined.

Proof This follows from Theorem 4.9.1 since the rowspace and columnspace are
submodules of the free modules Rm and Rn, respectively. ■
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One of the fundamental questions that arises is the relationship between the
row rank and the column rank, even when they can be defined. The relationship
of equality does not generally hold, as the following example indicates.

5.2.37 Example (Row rank and column rank do not generally agree) We let R = Z30 =
Z/30Z and consider the matrix

A =
[
1 + 30Z 1 + 30Z −1 + 30Z
0 + 30Z 2 + 30Z 3 + 30Z

]
over R. We claim that A has row rank 2 and column rank 1.

To get our claim about the row rank, it suffices to show that the rows of A are
linearly independent. So suppose that

( j1 + 30Z)(1 + 30Z, 1 + 30Z,−1 + 30Z) + ( j2 + 30Z)(0 + 30Z, 2 + 30Z, 3 + 30Z)
= (0 + 30Z, 0 + 30Z, 0 + 30Z),

for j1, j2 ∈ Z. Thus

j1 + 30Z = j1 + 2 j2 + 30Z = − j1 + 3 j2 + 30Z = 0 + 30Z.

Therefore, j1 = 30k1 for some k1 ∈ Z immediately, and thence 2 j2 = 30k2 for some
k2 ∈ Z and 3 j2 = 30l2 for some l2 ∈ Z. Thus j2 = 15k′2 = 10l′2 for some k′2, l

′

2 ∈ Z.
Thus 15| j2 and 10| j2 from which we deduce that j2 must be a multiple of the least
common multiple of {10, 15}, i.e., a multiple of 30. This shows that the rows of A
are linearly independent and so the row rank of A is 2.

To show that the column rank of A is well-defined and equal to 1, we show that
any two columns of A are linearly independent. To see this note that

(15 + 30Z)(1 + 30Z, 0 + 30Z) + (15 + 30Z)(1 + 30Z, 2 + 30Z) =
(0 + 30Z, 0 + 30Z),

(10 + 30Z)(1 + 30Z, 0 + 30Z) + (10 + 30Z)(−1 + 30Z, 3 + 30Z) =
(0 + 30Z, 0 + 30Z),

(24 + 30Z)(1 + 30Z, 2 + 30Z) + (−6 + 30Z)(−1 + 30Z, 3 + 30Z) =
(0 + 30Z, 0 + 30Z),

showing that the first and second, the first and third, and the second and third
columns of A, respectively, are linearly dependent. •

The example shows that we cannot just go ahead and define the rank of a matrix
to be either the column rank or the row rank, since these may not agree for general
rings, even commutative unit rings. However, for principal ideal domains, the row
and column ranks do, in fact, agree. We state this result here, although our proof
relies on Theorem 5.2.43 below. Note that the proof of Theorem 5.1.35 does not
carry over to this case; for example, since it is not generally possible to extend a
basis for a submodule to a basis for the module, even for rings over principal ideal
domains (cf. Example 4.9.2).
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5.2.38 Theorem (Row rank and column rank agree for matrices over principal ideal
domains) If R is a principal ideal domain, if m,n ∈ Z>0, and if A ∈ Matm×n(R), then
dimR(image(A)) = dimR(image(AT)). In particular, the row rank and the column rank
of A are the same.

Proof By Lemma 1 of Theorem 5.2.43 A is equivalent to a matrix of the form

B =
[

Dr 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
,

with Dr being the diagonal matrix

Dr =


d1 0R · · · 0R
0R d2 · · · 0R
...

...
. . .

...
0R 0R · · · dr

 ,
for nonzero d1, . . . , dr ∈ R (we do not need here the additional divisibility properties
of these diagonal elements). That is, A = PBQ for invertible P ∈ Matm×m(R) and Q ∈
Matn×n(R). Thus AT = QTBTPT, whence AT is equivalent to BT by Proposition 5.2.22.
Now by Lemma 2 of Theorem 5.2.43 it follows that the row and column ranks of both
A and AT are equal to r. ■

We can thus define rank for matrices over principal ideal domains.

5.2.39 Definition (Rank of matrices over principal ideal domains) If R is a principal
ideal domain, if m,n ∈ Z>0, and if A ∈Matm×n(R), then the rank of A is equal to the
column or row rank of A, and is denoted by rank(A). •

From Theorem 5.2.38 the following result holds.

5.2.40 Corollary (Rank and rank of transpose agree for matrices over principal ideal
domains) If R is a principal ideal domain, if m,n ∈ Z>0, and if A ∈ Matm×n(R), then
rank(A) = rank(AT

2 ).

Now we discuss equivalence of matrices over rings. We give the definition in
the general setting, although we will not be able to say anything useful except in
the case when the matrices are over a principal ideal domain and have finitely
many rows and columns. The equivalence of arbitrary matrices over general rings
is very complicated.

5.2.41 Definition (Equivalence of matrices over rings) Let R be a ring, let I and J be
index sets, and let A1,A2 ∈ MatI×J(R) be column finite. The matrices A1 and A2

are equivalent if there exist column finite invertible matrices P ∈ MatI×I(R) and
Q ∈MatJ×J(R) such that A2 = PA1Q. •

Just as for matrices over fields (Proposition 5.1.39), the notion of two matrices
being equivalent as in the definition defines an equivalence relation in MatI×J(R).
The problem for equivalence of matrices over general rings being as complicated
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as it is, we simply consider the case of matrices over principal ideal domains.
Fortunately, all cases of matrices over rings that will be of interest to us are covered
by the following theorem.

Before we state this result, let us state a useful result concerning elementary and
secondary operations and rank.

5.2.42 Proposition (Elementary and secondary operations and rank) Let R be a com-
mutative unit ring, let m,n ∈ Z>0, and let A1,A2 ∈ Matm×n(R), supposing that the
rowspace and columnspace of A1 and A2 are free. Then the following statements hold:

(i) if A1 and A2 are row equivalent then the row ranks of A1 and A2 agree;
(ii) if A1 and A2 are column equivalent then the column ranks of A1 and A2 agree.

Proof The idea here is exactly like the corresponding proof for matrices over fields
given in Proposition 5.1.40. ■

5.2.43 Theorem (Characterisation of equivalence for matrices over principal ideal
domains) Let R be a principal ideal domain, let m,n ∈ Z>0, and let A1,A2 ∈Matm×n(R).
Then the following statements are equivalent:

(i) A1 and A2 are equivalent;
(ii) there exists r ∈ Z≥0 and nonzero ideals I1, . . . , Ir ⊆ R uniquely determined by the

conditions

(a) I1 ⊆ · · · ⊆ Ir and
(b) A1 and A2 are equivalent to a matrix of the form[

Dr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
,

with Dr being the diagonal matrix

Dr =


d1 0R · · · 0R

0R d2 · · · 0R
...

...
. . .

...
0R 0R · · · dr

 ,
and where Ij = (dj) for j ∈ {1, . . . , r}.

Proof We first prove the following lemma, from which the rest of the proof is fairly
easily deduced.

1 Lemma Let R be a principal ideal domain, let m,n ∈ Z>0, and let A ∈ Matm×n(R). Then
there exists r ∈ Z≥0, and d1, . . . ,dr ∈ R such that A can be transformed by a finite sequence
of elementary and secondary row and column operations into a matrix of the form[

Dr 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
,
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with Dr being the diagonal matrix

Dr =


d1 0R · · · 0R
0R d2 · · · 0R
...

...
. . .

...
0R 0R · · · dr

 ,
and where d1| · · · |dr.

Proof The proof of the lemma is rather tedious. Let us first describe a few of the basic
procedures that we will use throughout the proof. In these descriptions, M is a general
m × n matrix.
1. Zeroing elements in the first row I: We suppose that M(1, 1) , 0R. The objective is

to perform an elementary or secondary operation that transforms M into a matrix
with a zero as the (1, j)th component for some j ∈ {2, . . . ,n}. In this procedure, we
suppose that M(1, 1)|M(1, j) so that there exists r ∈ R such that M(1, j) = rM(1, 1).
Then subtracting r times the first column from the jth column does the job. Let us
record some features of the transformed matrix.

(a) As desired, the transformed matrix has a zero in the (1, j)th position.
(b) The first column of the transformed matrix is equal to the first column of M.
(c) If a ∈ R is a common divisor for all elements of M, a is also a common

divisor for all elements of the transformed matrix. This is true because the
components of transformed matrix are comprised of linear combinations of
components of M.

2. Zeroing elements in the first row II: The objective here is as in the last procedure: use
elementary and secondary operations to transform M into a matrix with zero as
the (1, j)th component, for some j ∈ {2, . . . ,n}, supposing that M(1, 1) , 0R. Here
we suppose that M(1, 1) ∤ M(1, j). We let d be a greatest common divisor for
M(1, 1) and M(1, j) so that, by Proposition 4.2.77(ii) there exists r1, r2 ∈ R such that
r1M(1, 1) + r2M(1, j) = d. Also let d1, d2 ∈ R satisfy dd1 =M(1, 1) and dd2 =M(1, j).
With this notation one has

d1M(1, j) − d2M(1, 1) = d1dd2 − d2dd1 = 0R.

Define a secondary matrix S whose top left 2 × 2 block is[
r1 −d2
r2 d1

]
.

This is indeed a secondary matrix by virtue of the identity

r1dd1 + r2dd2 = d(r1d1 + r2d2) = d =⇒ r1d1 + r2d2 = 1R

which follows since d , 0R.
Now (1) swap the jth and second columns, (2) then apply secondary column
transformation corresponding to S, and (3) then again swap the jth and second
columns. One directly sees that the (1, j)th component of the resulting matrix is
zero. Let us record some properties of the transformed matrix.
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(a) As desired, the transformed matrix has a zero in the (1, j)th position.
(b) The first column of the transformed matrix may not be equal to the first

column of M.
(c) The (1, 1) component of the matrix is directly shown to be d which is a nonzero

divisor of M(1, 1). Moreover, M(1, 1) ∤ d.
(d) If a ∈ R is a common divisor for all elements of M, a is also a common

divisor for all elements of the transformed matrix. This is true because the
components of transformed matrix are comprised of linear combinations of
components of M.

3. Zeroing elements in the first column I: We suppose that M(1, 1) , 0R and that the
objective is to transform M into a matrix whose (i, 1)st entry is zero for some
i ∈ {2, . . . ,m}. We suppose in this procedure that M(1, 1)|M(i, 1) so that M(i, 1) =
rM(1, 1) for some r ∈ R. By subtracting r times the first row from the ith row
we achieve the desired result. Let us record some properties of the transformed
matrix.

(a) As desired, the transformed matrix has a zero in the (i, 1)st position.
(b) The first row of the transformed matrix is equal to the first row of M.
(c) If a ∈ R is a common divisor for all elements of M, a is also a common

divisor for all elements of the transformed matrix. This is true because the
components of transformed matrix are comprised of linear combinations of
components of M.

4. Zeroing elements in the first column II: Again we suppose that M(1, 1) , 0R and that
the objective is to transform M into a matrix whose (i, 1)st entry is zero for some
i ∈ {2, . . . ,m}. In this case we suppose that M(1, 1) ∤ M(i, 1). We let d be a greatest
common divisor for M(1, 1) and M(i, 1) so that, by Proposition 4.2.77(ii), there
exists r1, r2 ∈ R for which r1M(1, 1) + r2M(i, 1) = d. We also let d1, d2 ∈ R satisfy
dd1 =M(1, 1) and dd2 =M(i, 1). Then we have

d1M(i, 1) − d2M(1, 1) = d1dd2 − d2dd1 = 0R.

Now define a secondary matrix S whose top left 2 × 2 block is[
r1 r2
−d2 d1

]
.

This is a secondary matrix since r1d2 + r2d2 = 1R, just as we argued in procedure 2.
Now (1) swap the ith and second rows, (2) then apply the secondary row transfor-
mation corresponding to S, and (3) then again swap the ith and second rows. The
resulting matrix can be directly checked to have a zero as its (i, 1)st entry. Let us
record some properties of the transformed matrix.

(a) As desired, the transformed matrix has a zero in the (i, 1)st position.
(b) The first row of the transformed matrix may not be equal to the first row of

M.
(c) The (1, 1) component of the matrix is directly shown to be d which is a nonzero

divisor of M(1, 1). Moreover, M(1, 1) ∤ d.
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(d) If a ∈ R is a common divisor for all elements of M, a is also a common
divisor for all elements of the transformed matrix. This is true because the
components of transformed matrix are comprised of linear combinations of
components of M.

5. Making the (1, 1) component a divisor for another component: Here we suppose that
the matrix M has the form [

M(1, 1) 01×(n−1)
0(m−1)×1 M′

]
.

The objective is to transform M, using elementary and secondary operations, into
a matrix whose (i, j)th component has its (1, 1) component as a divisor for some
i ∈ {2, . . . ,m} and j ∈ {2, . . . ,n}. The procedure is this. If M(1, 1)|M(i, j) already, then
nothing needs to be done. Otherwise, add row i to row 1 to get a matrix N. The
first row of N is the ith row of M, except in the first entry where one adds M(1, 1).
If the N(1, 1)|N(1, j) then we are done since N(1, j) = N(i, j). Otherwise, apply
Procedure 2 to N and note that the (1, 1) component in the resulting matrix is a
divisor of N(1, j) = N(i, j). This is what we wanted. Let us make some observations
about the transformed matrix.

(a) As desired the (1, 1) component divides the (i, j) component.
(b) The first row of the transformed matrix may have nonzero (1, j) components

for j ∈ {2, . . . ,n}. Thus the transformed matrix may not have the same form
as M.

In what follows, we shall refer to the procedures above as Procedures 1–5.
If A = 0m×n then there is nothing to prove. So we suppose that A is nonzero. Now

we carry out a sequence of operations as follows.
1. Repeatedly apply Procedures 1 and/or 2 to transform A into a matrix B1 whose

first row is zero except for the first entry which we denote by a1.
2. If a1 divides all elements in the first column of B2, repeatedly apply Procedure 3

to arrive at a matrix B2 whose first row and column is zero except for the first
element. Stop.

3. If a1 does not divide all elements in the first column of B1 then repeatedly apply
Procedures 3 and/or 4 to transform B1 into a matrix B2 whose first column is zero
except for the first entry. The first entry we denote by a2 and we note that a2|a1.
Also note that the first row of B2 may have nonzero entries in positions 2 through
n.

4. If a2 divides all elements in the first row of B2 then repeatedly apply Procedure 1
to arrive at a matrix B3 whose first row and column is zero except for the first
element. Stop.

5. If a2 does not divide all elements in the first column of B2 then repeatedly apply
Procedures 1 and/or 2 to transform B2 into a matrix B3 whose first row is zero
except for the first entry. The first entry we denote by a3 and we note that a3|a2.
Also note that the first column of B3 may have nonzero entries in positions 2
through m.

6. Repeat steps 2 through 5.
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We claim that this process must terminate in a finite number of steps. Suppose other-
wise. Then it must be the case that we successively apply Procedures 2 and 4 (possibly
along with Procedures 1 and 3 as well) to arrive at a sequence B1,B2, . . . of matrices
whose (1, 1) components we denote by b1, b2, . . . and which satisfy b1|b2| · · · . Moreover,
b j+1 ∤ b j for j ∈ Z>0. However, this is not possible since it would imply that b1 has
an infinite number of prime factors, violating the condition that R is a principal ideal
domain.

The above argument shows that A can be transformed by a finite number of
elementary and secondary operations into a matrix of the form

C1 =

[
c1 01×(n−1)

0(m−1)×1 C′1

]
.

Now consider a sequence of operations as follows.
7. If c1 divides every component of C′1 then stop.
8. If c1 does not divide every component of C′1 then c1 ∤ C′1(i − 1, j − 1) for some

(i, j) ∈ {2, . . . ,m} × {2, . . . ,n}. Apply Procedure 5 to obtain a matrix C′2 for which
C′2(1, 1)|c1, but for which the first row may have nonzero entries in positions 2, . . . ,n.

9. Apply steps 1 through 6 above to C′2 to obtain a matrix of the form

C2 =

[
c2 01×(n−1)

0(m−1)×1 C′2

]
where c2|c1 but c1 ∤ c2.

10. Repeat steps 7 through 9 on C2.
We claim that this sequence of operations must terminate after a finite number of steps.
This is so because otherwise one would produce an infinite number of nonassociate
divisors for c1, which contradicts R being a principal ideal domain. Thus we arrive, by
a finite sequence of elementary and secondary operations applied to C1, at a matrix of
the form [

d1 0(n−1)×1
0(m−1)×1 A1

]
,

where d1 is nonzero and divides all entries of the matrix A1. Now one applies the
procedure above (i.e., steps 1 through 10) to the matrix A1. If A1 = 0(m−1)×(n−1) then the
proof is complete. Otherwise one proceeds to transform A1 into a matrix of the form[

d2 0(n−2)×1
0(m−2)×1 A2

]
,

where d2 divides all components of A2. We also claim that d1|d2. This follows since
d1 divides all entries of A1 and since all of the operations performed to transform A1
preserve common divisors, just as stated above for Procedures 1–5.

Now the lemma follows by induction. ▼

Ugh. . . now we proceed with the proof of the theorem. By the lemma there exists
r1, r2 ∈ Z≥0 and d11, . . . , d1r1 ∈ R and d21, . . . , d2r2 ∈ R such that A1 is equivalent to

B1 =

[
D1 0r1×(n−r1)

0(m−r1)×r1 0(m−r1)×(n−r1)

]
,
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with D1 being the diagonal matrix

D1 =


d11 0R · · · 0R
0R d12 · · · 0R
...

...
. . .

...
0R 0R · · · d1r1


and A2 is equivalent to

B2 =

[
D2 0r2×(n−r2)

0(m−r2)×r2 0(m−r2)×(n−r2)

]
,

with D2 being the diagonal matrix

D2 =


d21 0R · · · 0R
0R d22 · · · 0R
...

...
. . .

...
0R 0R · · · d2r2

 .
We also have d11| · · · |d1r1 and d21| · · · |d2r2 .

(i) =⇒ (ii) Equivalence of matrices being an equivalence relation, the matrices A1
and A2 are equivalent if and only if the matrices B1 and B2 are equivalent. Thus r ∈ Z>0
and ideals I1, . . . , Ir exist as stated in the theorem by taking, for example, r = r1 and
I j = (d1 j) for r ∈ {1, . . . , r}. That I1 ⊆ · · · ⊆ Ir follows from Proposition 4.2.61 since
d11| · · · |d1r. Now we show that r and the ideals are uniquely determined by the stated
conditions in part (ii). The following lemma constitutes the first step in this.

2 Lemma Let R be an integral domain, let m,n ∈ Z>0, and let A ∈ Matm×n(R). If A can be
transformed by a finite sequence of elementary and secondary row and column operations into
a matrix of the form [

Dk 0k×(n−k)
0(m−k)×k 0(m−k)×(n−k)

]
where Dk is a diagonal matrix, all of whose diagonal entries are nonzero, then the row rank
and column rank of A can be defined and are both equal to k.

Proof Let us denote by B the matrix in the statement of the lemma with Dk in the top
left corner. By Proposition 5.2.30 and Theorem 5.2.31(iii) we have

A = PBQ

for invertible P ∈ Matm×m(R) and Q ∈ Matn×n(R). Thus A is column equivalent to PB,
and so, by Proposition 5.2.42, A has column rank k if PB has column rank k. To show
this we write B in terms of its columns:

B =
[

r1e1 . . . rkek 0Rm · · · 0Rm

]
so that

PB =
[

r1Pe1 . . . rkPek 0Rm · · · 0Rm

]
,
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where r1, . . . , rk are the diagonal elements of Dk. From this expression it is clear that
the column rank of PB is at most k. To show that it is equal to k we show that the first
k columns of PB are linearly independent. Suppose that

a1r1Pe1 + · · · + akrkPek = 0Rm

for a1, . . . , ak ∈ R. Then since P is invertible we can multiply by P−1 on the left to obtain

a1r1e1 + · · · + akrkek = 0Rm ,

which gives a jr j = 0R, j ∈ {1, . . . , k}, since {e1, . . . , ek} is linearly independent. Since R is
an integral domain and since r1, . . . , rk are nonzero, it follows that a j = 0R, j ∈ {1, . . . , k}.
Thus the first k columns of PB are linearly independent, and so the column rank of PB,
and so of A, is k.

An entirely analogous computation can be used to show that the row rank of A is
k. ▼

Returning now to our matrices B1 and B2, the preceding lemma implies that r1 = r2
if these matrices are equivalent. Now note that

image(B1) = spanR(d11e1) ⊕ · · · ⊕ spanR(d1rer) (5.13)

and so Rm/ image(B1) is isomorphic to

R/(d11) ⊕ · · · ⊕ R/(d1r) ⊕ R ⊕ · · · ⊕ R

by Exercise 4.8.4 and by Proposition 4.9.7. In like manner, Rm/ image(B2) is isomorphic
to

R/(d21) ⊕ · · · ⊕ R/(d2r) ⊕ R ⊕ · · · ⊕ R. (5.14)

Now image(B1) and image(B2) are isomorphic if B1 and B2 are equivalent (why?).
Therefore, the R-modules in (5.13) and (5.14) are isomorphic. Since d11| · · · |d1r1 and
d21| · · · |d2r2 we can apply the uniqueness part of Theorem 4.9.21 to deduce that (d1 j) =
(d2 j) for j ∈ {1, . . . , r}. Thus means that d2 j = u jd2 j for some unit u j ∈ R for each
j ∈ {1, . . . , r}. This gives the uniqueness of the ideals generated by the nonzero diagonals
of the matrices B1 and B2.

(ii) =⇒ (i) This is a tautology. ■

The preceding proof is extremely tedious, although it has the advantage of
providing an explicit construction of the matrix in part (ii) of the theorem by using
elementary and secondary row and column operations.

The form of the matrix in part (ii) of the theorem has a name.

5.2.44 Definition (Smith normal form) Let R be a principal ideal domain, let m,n ∈ Z>0,
and let A ∈Matm×n(R) if r ∈ Z≥0 and d1, . . . , dr ∈ R satisfy the conditions

(i) d1| . . . |dr and
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(ii) A is equivalent to the matrix

B =
[

Dr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
,

with Dr being the diagonal matrix

Dr =


d1 0R · · · 0R

0R d2 · · · 0R
...

...
. . .

...
0R 0R · · · dr

 ,
then the matrix B is the Smith normal form for A. •

Let us give an example of determining the Smith normal form of a matrix over
a principal ideal domain.

5.2.45 Example (Smith normal form) We work with the ring Z and consider the matrix

A =
[
8 4 8
4 8 4

]
.

We now carry out row and column operations.
1. Swap rows: [

4 8 4
8 4 8

]
.

2. Subtract 2 times row 1 from row 2:[
4 8 4
0 −12 0

]
.

3. Subtract 2 times column 1 from column 2:[
4 0 4
0 −12 0

]
.

4. Subtract column 1 from column 3:[
4 0 0
0 −12 0

]
.

5. Multiply row 2 by −1: [
4 0 0
0 12 0

]
.

This gives the Smith normal form in this case. •

Theorem 5.2.43 leads to the following theorem concerning equivalence of ma-
trices over principal ideal domains. The reader should compare the following
theorem to the analogous Theorem 5.1.42 for fields.
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5.2.46 Theorem (Equivalence for invertible matrices over principal ideal domains)
Let R be a principal ideal domain, let n ∈ Z>0, and let A ∈Matn×n(R). Then the following
statements are equivalent:

(i) A is invertible;
(ii) A is equivalent to In;
(iii) A is row equivalent to In;
(iv) there exists a unique invertible matrix P such that PA = In;
(v) A is column equivalent to In;
(vi) there exists a unique invertible matrix Q such that AQ = In.

Moreover, any of the six equivalent statements above implies that rank(A) = n.
Proof (i) =⇒ (ii) This is part (iv) of Theorem 5.2.31, along with part (iii) of the same
theorem and Proposition 5.2.30. In fact, Theorem 5.2.31 gives the equivalence of
parts (i) and (ii).

(ii) =⇒ (iii) Note that part (ii) and the existence part of (iii) are equivalent by
Theorem 5.2.31 and Proposition 5.2.30. We shall use this equivalence to more easily
denote row equivalence. By Theorem 5.2.49 there exists an invertible matrix P′ such
that P′A is in row Hermite form. Since A is invertible, the row Hermite matrix P′A
must also be invertible. Therefore, this row Hermite matrix cannot have any zero
rows (why?) and so must be an upper triangular matrix whose diagonal elements
are nonzero. Moreover, since P′A is invertible, by Theorem 5.3.10 it follows that the
product of its diagonal elements must be a unit. Thus each element of the diagonal must
itself be a unit. Now we refer to the proof of Theorem 5.1.47 where we showed that
for a matrix over a field one could, by elementary row operations, make all elements
above the leading ones zero, and that these row operations leave the elements below
the leading ones untouched. The same argument can be applied here to each column of
P′A to arrive at a matrix P′′P′A that is diagonal and whose diagonal entries are units.
Such a matrix can obviously be transformed into the identity matrix by elementary
row operations. This gives an invertible matrix P such that PA = In. Thus A is row
equivalent to In.

(iii) =⇒ (iv) As mentioned in the preceding part of the proof, the existence part
of this implication follows from Theorem 5.2.31 and Proposition 5.2.30. Thus there
exists an invertible matrix P such that PA = In. Thus A = P−1 which shows that A is
invertible, and so P is uniquely determined by the requirement that P = A−1.

(iv) =⇒ (v) If PA = In for P invertible then A = P−1 which shows that A is invertible
and so P = A−1. Thus AP = In, giving this part of the result by Theorem 5.2.31 and
Proposition 5.2.30.

(v) =⇒ (vi) The existence part of this implication follows from Theorem 5.2.31 and
Proposition 5.2.30. The uniqueness follows since, if AQ = In for Q invertible, then
A = Q−1 which implies that A is invertible, whence Q = A−1.

(vi) =⇒ (i) It is trivial that (vi) implies (ii), and the desired implication follows since,
as mentioned above, (i) and (ii) are equivalent.

The final assertion of the theorem follows since, for example, if A is equivalent to
In, then rank(A) = n since In is a Smith normal form for A. ■
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Conspicuously missing from the list of equivalent statements in the theorem is
the condition that rank(A) = n. Indeed, it does not belong in the list, and we refer
to Exercise 5.2.4 for an exploration of some of the consequences of this.

5.2.7 Characterisations of row and column equivalence for matrices over
rings

In this section we say a few words about row and column equivalence for
matrices over rings. Given all of our caveats thus far concerning matrices defined
over general rings, it should not be surprising that we will not have much to say
about such matrices, restricting instead to the case of matrices over principal ideal
domains.

For matrices over rings, reduced row echelon form is too restrictive to be very
useful. However, we can make use of the generalisation of row Hermite form.

5.2.47 Definition (Row Hermite form) Let R be a ring, let m,n ∈ Z>0, and let A ∈
Matm×n(R). For i ∈ {1, . . . ,m} denote

E(i) =

min{ j ∈ {1, . . . ,n} | A(i, j) , 0R}, the ith row of A is nonzero,
∞, the ith row of A is zero.

Then A is in row Hermite form if there exists k ∈ {1, . . . ,m} such that
(i) the first k rows of A are nonzero and the last n− k rows of A are zero and such

that
(ii) i1 < i2, i1, i2 ∈ {1, . . . , k}, implies that E(i1) < E(i2). •

We refer to the equation following Definition 5.1.45 to remind the reader of the
character of a matrix in row Hermite form.

One can say a few useful things about matrices in row Hermite form over fairly
general rings.

5.2.48 Proposition (Rowspace of a matrix in row Hermite form) If R is an integral
domain, if m,n ∈ Z>0, and if A ∈ Matm×n(R) is in row Hermite form, then the nonzero
rows of A form a basis for rowspace(A).

Proof The argument here exactly follows that for Proposition 5.1.46, making use of
the fact that R is an integral domain to establish linear independence of the rows. ■

Now let us show that a matrix over a principal ideal domain can always be
put into row Hermite form by a finite sequence of elementary and secondary row
operations. Note that the result we get here is nowhere near as strong as that for
matrices over fields. In particular, we use the uniqueness that we have for the
reduced row echelon form.
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5.2.49 Theorem (Row equivalence and row Hermite form) Let R be a principal ideal do-
main and let m,n ∈ Z>0. Then each equivalence class in Matm×n(R) under the equivalence
relation of row equivalence contains at least one matrix in row Hermite form.

Proof The proof is a blending of the techniques used to prove Theorems 5.1.47
and 5.2.43. Thus we shall be a little sketchy about the details since the reader un-
derstanding the other two proofs will quickly understand this one.

Let A ∈ Matm×n(R). If A is the zero matrix, then we are done since this matrix is
in row Hermite form. Let j1 be the smallest positive integer for which the j1st column
of A is nonzero, and let i1 have the property that A(i1, j1) , 0R. Let A′1 be the matrix
obtained from A by swapping the 1st and j1st rows. Thus A′1 has the form

A′1 =


0F · · · 0F a1

11 a1
12 · · · a1

1k1

0F · · · 0F b1
21 b1

22 · · · b1
2k1

...
. . .

...
...

...
. . .

...
0F · · · 0F b1

n1 b1
n2 · · · b1

nk1

 ,
where a1

11 , 0F. Now repeatedly apply Procedures 3 and/or 4 from the proof of
Lemma 1 in Theorem 5.2.43 to the j1st column of A′1 to make all entries in this column
zero except the first. The result is a matrix of the form

A1 =


0F · · · 0F a1

11 a1
12 · · · a1

1k1

0F · · · 0F 0F a1
22 · · · a1

2k1
...

. . .
...

...
...

. . .
...

0F · · · 0F 0F a1
n2 · · · a1

nk1

 .
Now repeat the procedure on the matrix

a1
22 · · · a1

k1
...

. . .
...

a1
n2 · · · a1

nk1

 ,
and then continue inductively to give the desired row Hermite form. ■

Let us give a simple example of this construction. Generally, the process of
putting a matrix into row Hermite form can be involved, since it requires computing
greatest common divisors, cf. the proof of Lemma 1 of Theorem 5.2.43.

5.2.50 Example (Row Hermite form) For the ring Z, take A ∈Mat3×4(Z) to be

A =

0 1 1 2
1 0 3 1
2 1 7 1

 .
We now perform a sequence of elementary row operations.
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1. Swap the first and second row: 1 0 3 1
0 1 1 2
2 1 7 1

 .
2. Swap the second and third row: 1 0 3 1

2 1 7 1
0 1 1 2

 .
3. Subtract 2 times the first row from the second row:1 0 3 1

0 1 1 −1
0 1 1 2

 .
4. Subtract the second row from the third row:1 0 3 1

0 1 1 −1
0 0 0 3

 ,
which gives a matrix in row Hermite form. •

Analogously to Theorem 5.1.50 for fields, we have the following result for
matrices over principal ideal domains.

5.2.51 Theorem (Characterisations of row equivalence) Let R be a principal ideal domain,
let m,n ∈ Z>0, and let A1,A2 ∈Matm×n(R). Then the following statements are equivalent:

(i) A1 and A2 are row equivalent;
(ii) there exists an invertible matrix P ∈Matm×m(R) such that PA1 = A2;
(iii) rowspace(A1) = rowspace(A2).

Moreover, any of the preceding equivalent statements implies that ker(A1) = ker(A2).
Proof (i) =⇒ (ii) This follows from Theorem 5.2.31 and Proposition 5.2.30.

(ii) =⇒ (iii) One can easily see that if PA1 = A2 then the rows of A2 are linear
combinations of the rows of A1. Moreover, the rows of A1 are, by similar reasoning,
linear combinations of the rows of A2 since A1 = P−1A2.

(iii) =⇒ (i) By Theorem 5.2.49 the matrices A1 and A2 possess row Hermite forms
B1 and B2, respectively. Moreover,

rowspace(A1) = rowspace(B1), rowspace(A2) = rowspace(B2)

by the previous part of the proof. Therefore, the rowspaces of B1 and B2 agree. By
Proposition 5.2.48 the nonzero rows of the matrices B1 and B2 form a basis for their
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rowspace. Let us denote the rows of Ba by the vectors {ra1, . . . , ram}, a ∈ {1, 2}. Therefore,
by Theorem 5.5.17, there exists an invertible matrix P such that

r2 j =

m∑
i=1

P( j, i)r1i.

But this means that B2 = PB1. The row equivalence of B1 and B2, and in consequence
of A1 and A2, follows from Theorem 5.2.31 and Proposition 5.2.30.

The last assertion is proved by noting that part (ii) implies that

A1x = 0Rm ⇐⇒ PA1x = 0Rm ⇐⇒ A2x = 0Rm ,

using the fact that ker(P) = {0Rm}. ■

Note that the assertion that ker(A1) = ker(A2) is not generally equivalent to
the other three statements in the theorem. We ask the reader to consider this in
Exercise 5.2.7.

Of course, one also has the analogous theorem for column equivalence. We do
not state this, but refer the reader to Theorem 5.1.51 to make the trivial transcrip-
tions required.

5.2.8 Systems of linear equations over rings

Systems of linear equations over rings are more complicated than their brethren
over fields. In this section we give the definitions and basic results, and indicate
where some of the differences lie with the situation when compared to the results
of Section 5.1.8.

First we give the definitions. For simplicity we deal with commutative rings.
The reader can easily generalise to the multiple definitions needed for left and right
products for noncommutative rings.

5.2.52 Definition (System of linear equations over a ring) Let R be a commutative ring
and let I and J be index sets.

(i) A system of linear equations over R is a pair (A, b) ∈MatI×J(R) × RI
0.

(ii) A system of linear equations (A, b) is homogeneous if b(i) = 0R for every i ∈ I.

(iii) The solution set for a system of linear equations (A, b) is the subset of RJ
0

defined by
Sol(A, b) = {x ∈ RJ

0 | Ax = b}.

A solution to the system of linear equations (A, b) is an element of the solution
set. •

We have the following simple characterisation of solutions of systems of equa-
tions.
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5.2.53 Proposition (Existence and uniqueness of solutions) Let R be a commutative
ring, let I and J be index sets, and let (A,b) ∈ MatI×J(R) × RI

0 be a system of linear
equations. Then the following statements hold:

(i) Sol(A,b) is nonempty if and only if b ∈ image(A);
(ii) in particular, Sol(A,b) is nonempty for every b ∈ RI

0 if and only if A is surjective;
(iii) Sol(A,b) is a singleton if and only if

(a) b ∈ image(A) and
(b) A is injective.

Proof The proof follows that for Proposition 5.1.55, except that one appeals to Exer-
cise 4.8.3 rather than Exercise 4.5.23. ■

Now we can give a “geometric” interpretation of the set of solutions of a system
of linear equations.

5.2.54 Proposition (Characterisation of Sol(A, b)) Let R be a commutative ring, let I and J
be index sets, and let (A,b) ∈ MatI×J(R) × RI

0 be a system of linear equations in R. Then,
for any x0 ∈ Sol(A,b),

Sol(A,b) = {x + x0 ∈ RJ
0 | x ∈ Sol(A, 0RJ

0
)}.

Proof The proof exactly mirrors that of Proposition 5.1.56. ■

Thus far we see that the generalities concerning systems of linear equations
over a ring differ little from those for systems of linear equations over a field. To
illustrate the differences we consider a couple of examples which should not be too
surprising given the considerations of Section 5.2.6.

5.2.55 Examples (System of linear equations over a ring)
1. Let R = Z and take

A =
[
1 0
0 2

]
, b =

[
b1

b2

]
.

Note that rank(A) = 2. Also note that

image(A) = {( j, 2k) ∈ Z2
| j, k ∈ Z}.

Thus, while A has maximal rank, it is not the case that Sol(A, b) is nonempty for
every b. Indeed, b2 must be even for solutions to exist. But when solutions to
exist, they are unique.

2. Let R = Z4 = Z/4Z and take

A =
[
1 + 4Z 0 + 4Z
0 + 4Z 2 + 4Z

]
, b =

[
b1 + 4Z
b2 + 4Z

]
.

Here we see that

image(A) = {( j + 4Z, 2k + 4Z) | j, k ∈ Z}.
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Thus, while rank(A) = 2 is maximal, we again only have Sol(A, b) , ∅ when
b2 is even. In this case, there is an additional feature as well. While, rank(A) is
maximal, we have

Sol(A, 0R2) = {(0 + 4Z, 2k + 4Z) | k ∈ Z},

implying that, when solutions exist, they are not unique. •

Exercises

5.2.1 State and prove the simplified version of Theorem 5.2.11 that results when
the ring R is commutative.

5.2.2 Show that if R is a ring without a unity element and if I is an index set,
then idRI

0
∈ HomR(RI

0; RI
0), but that there is no matrix A ∈MatI×I(R) such that

Ax = idRI
0
(x) for every x ∈ RI

0.

5.2.3 Let R be a ring with unity element and let I be an index set.
(a) Show that the set of invertible column finite matrices in MatI×I(R) is a

group with product given by matrix multiplication.
In the case when I = {1, . . . ,n} this group of invertible matrices is

denoted by GL(n; R) and is called the general linear group of order n
over R.

(b) Is GL(n; R) a subalgebra of Matn×n(R)?
5.2.4 Answer the following questions:

(a) Find A ∈Matn×n(Z) that has rank n but that is not invertible.
(b) Find A ∈ Matn×n(Z) that is injective, but does not possess a left-inverse

that is a Z-module homomorphism from Zn to Zn. Find a left-inverse
for A that is just a map from Zn to Zn.

(c) Can you find A ∈ Matn×n(Z) that is surjective, but does not possess a
right-inverse that is a Z-module homomorphism?

5.2.5 Let R be a commutative unit ring and let m,n ∈ Z>0. Show that row equiva-
lence and column equivalence define equivalence relations in Matm×n(R).

5.2.6 Let R be a commutative unit ring and let m,n ∈ Z>0. Show that A1 and A2

are row equivalent if and only if AT
1 and AT

2 are column equivalent.
5.2.7 Find A1,A2 ∈ Matm×n(Z) such that ker(A1) = ker(A2) but that A1 and A2 are

not row equivalent.
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Section 5.3

Determinant and trace

The determinant is a useful computational tool that is also sometimes helpful
in proving basic facts about matrices. In this section we discuss the determinant
and some of its properties. We also discuss the trace of a matrix, as this will come
up in Proposition 5.8.18 and Theorem V-5.2.6.

Throughout this section we will consider matrices over commutative unit rings
since there is almost nothing that is easier were we to restrict to matrices over fields.
And we will definitely be interested in matrices whose entries are elements from
rings and not just from fields. However, for readers on the “fields only” program,
little is lost by replacing “commutative unit ring” with “field” (or “R” or “C” for
that matter), at least for getting started with the determinant.

Do I need to read this section? If you are familiar with the determinant, its com-
putation, and its properties, then you can forgo this section. What is perhaps true,
even for readers meeting the preceding conditions, is that they may not be aware of
how useful determinants are for dealing with matrices whose entries are elements
of a ring, and not elements of a field. This will come up for us in Section 5.8.4,
and the reader might want to come back to determinants when they get to that
material. •

5.3.1 Definition and basic properties of determinant

The determinant assigns to every square matrix with finitely many rows and
columns a scalar. Thus the determinant is a function on the square matrices taking
values in the ring from which the matrix takes its entries. The determinant, as we
shall see, can be thought of as being a function of the rows or columns of a matrix.
Specifically, the determinant is a multilinear function of the entries in a matrix, and
we refer the reader ahead to Section 5.6 for a discussion of multilinearity.

We use the following result which gives a natural class of multilinear maps. In
the statement of the result {e1, . . . , en} denotes the standard basis for Rn.

5.3.1 Theorem (Multilinear maps on (Rn)n) If R is a commutative unit ring then, for r ∈ R,
there exists a unique multilinear map ϕr : (Rn)n

→ R such that

ϕ(e1, . . . , en) = r.

Proof We show the existence of ϕr by giving an explicit definition. Let x1, . . . , xn ∈ Rn

and define
ϕr(x1, . . . , xn) = r

∑
σ∈Sn

sign(σ)x1(σ(1)) · · · xn(σ(n)).
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Let us first show that this is an alternating multilinear map. First we show that ϕr is
multilinear. Let j0 ∈ {1, . . . ,n}, let x1, . . . , xn, y j0 ∈ Rn, and let a ∈ R, and compute

ϕr(x1, . . . ,ax j0 + y0, . . . , xn)

= r
∑
σ∈Sn

sign(σ)x1(σ(1)) · · · (ax j0(σ( j0)) + y j0(σ( j0))) · · · xn(σ(n))

= ra
∑
σ∈Sn

sign(σ)x1(σ(1)) · · · x j0(σ( j0)) · · · xn(σ(n))

+
∑
σ∈Sn

sign(σ)x1(σ(1)) · · · y j0(σ( j0)) · · · xn(σ(n))

= aϕr(x1, . . . , x j0 , . . . , xn) + ϕr(x1, . . . , y j0 , . . . , xn),

giving multilinearity of ϕr.
To show that ϕr is alternating, let i, j ∈ {1, . . . ,n} be distinct. Denote by σi j ∈ Sn the

permutation that swaps i and j. Let En denote the set of even permutations. We claim
that the map

fi j : σ 7→ σ ◦ σi j

is a bijection from En to the set of odd permutations. Certainly fi j(σ) is odd if σ is even.
That fi j is injective follows since

fi j(σ1) = fi j(σ2) =⇒ σ1 ◦ σ ji = σ2 ◦ σi j =⇒ σ1 = σ2.

Moreover, if σ is an odd permutation then σ = (σ ◦ σ ji) ◦ σi j and so fi j is also surjective.
This means that

Sn = En ∪ { fi j(σ) | σ ∈ En}.

Thus we have

ϕr(x1, . . . , xi, . . . , x j, . . . , xn)

= r
∑
σ∈En

x1(σ(1)) · · · xi(σ(i)) · · · x j(σ( j)) · · · xn(σ(n))

− r
∑
fi j(σ)
σ∈En

x1(σ(1)) · · · xi(σ( j)) · · · x j(σ(i)) · · · xn(σ(n)).

If xi = x j it follows that

ϕr(x1, . . . , xi, . . . , x j, . . . , xn) = 0R.

Thus ϕr is alternating.
Now, since

e j(i) =

1R, i = j,
0R, otherwise,

it follows that the only term in the sum

ϕr(e1, . . . , en) = r
∑
σ∈Sn

sign(σ)e1(σ(1)) · · · en(σ(n))
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is that when σ is the identity map, and this then gives

ϕr(e1, . . . , en) = r.

This gives the existence of ϕr.
Now we show the uniqueness of ϕr. Suppose that ψr is an alternating multilinear

map such that
ψr(e1, . . . , en) = r.

Then

ψr(x1, . . . , xn) = ψr

 n∑
j1=1

x1( j1)e j1 , . . . ,
n∑

jn=1

xn( jn)e jn


=

n∑
j1=1

· · ·

n∑
jn=1

x1( j1) · · · xn( jn)ψr(e j1 , . . . , e jn),

using multilinearity. Since ψr is alternating only terms in the sum for which j1, . . . , jn
are distinct will remain. That is to say,

ψr(x1, . . . , xn) =
∑
σ∈Sn

x1(σ(1)) · · · xn(σ(n))ψr(eσ(1), . . . , eσ(n)).

Since ψr is alternating it is skew-symmetric by Proposition 5.6.5 and so

ψr(x1, . . . , xn) =
∑
σ∈Sn

sign(σ)x1(σ(1)) · · · xn(σ(n))ψr(e1, . . . , en) = ϕr(x1, . . . , xn),

as desired. ■

It is now relatively straightforward to give the definition of the determinant of
a square matrix. We recall from Definition 5.1.4 the notion of the row vectors of a
matrix.

5.3.2 Definition (Determinant) Let R be a commutative unit ring and let n ∈ Z>0. The
determinant is the map det : Matn×n(R)→ R defined by

det A = ϕ1R(r(A, 1), . . . , r(A,n)). •

Since the definition of ϕr in Theorem 5.3.1 is constructive, we can go ahead and
give a formula for the determinant:

det A =
∑
σ∈Sn

sign(σ)A(1, σ(1)) · · ·A(n, σ(n)). (5.15)

Let us give this formula for small n.
1. n = 1: det A = A(1, 1).
2. n = 2: det A = A(1, 1)A(2, 2) − A(1, 2)A(2, 1).
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3. n = 3: A(1, 1)A(2, 2)A(3, 3) + A(1, 2)A(2, 3)A(3, 1) + A(1, 3)A(2, 1)A(3, 2) −
A(1, 3)A(2, 2)A(1, 3) − A(1, 1)A(2, 3)A(3, 2) − A(1, 2)A(2, 1)A(3, 3).

It is common to see graphical tricks for computing the determinant of 2 × 2 and
3 × 3 matrices. These tricks do not carry over to larger matrices, so one should
exercise care when using them.

Let us give some of the basic properties of the determinant that follow relatively
easily from the definition.

5.3.3 Proposition (Elementary properties of determinant) Let R be a commutative unit
ring, let n ∈ Z>0, and let A,B ∈Matn×n(R). Then the following statements hold:

(i) det In = 1R;
(ii) det(AB) = (det A)(det B);
(iii) det AT = det A;
(iv) if A is upper or lower triangular then

det A = A(1, 1) · · ·A(n,n).

Proof We shall only prove those assertions that are not obvious.
(ii) Let us fix B ∈ Matn×n(R) and define ϕB : Matn×n(R) → R by ϕB(A) = det(AB).

We claim that this is an alternating multilinear function of the rows of A. We have

ϕB(A) =
∑
σ∈Sn

sign(σ)AB(1, σ(1)) · · ·AB(n, σ(n))

=
∑
σ∈Sn

sign(σ)

 n∑
j1=1

A(1, j1)B( j1, σ(1)

 · · ·
 n∑

jn=1

A(n, jn)B( jn, σ(n)

 .
With this expression at hand, it is then a matter of direct computation to check that ϕB
is an alternating multilinear function of A. By the definition and characterisation of ϕr
in Theorem 5.3.1 and from the definition of det it follows that ϕB = r det for some r.
Thus det(AB) = r det A for some r ∈ R. But

ϕB(In) = det(InB) = det B = r det In = r.

Thus r = det B and so ϕB = det A det B as claimed.
(iii) Let σ ∈ Sn and note that, by rearranging the terms in the product, we have

A(1, σ(1)) · · ·A(n, σ(n)) = A(1, σ−1(1)) · · ·A(n, σ−1(n)).

Thus

det AT =
∑
σ∈Sn

A(σ(1), 1) · · ·A(σ(n),n)

=
∑
σ∈Sn

A(1, σ−1(1)) · · ·A(n, σ−1(n)) = det A.

(iv) This is part of Exercise 5.3.7. ■
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The definition we give of the determinant, in terms of the linear mapϕ1R defined
in the proof of Theorem 5.3.1, may seem a little roundabout, given that one can
simply directly give the explicit formula (5.15). However, the definition we give is
useful for investigating various properties of the determinant.

It is not uncommon in elementary treatments of the determinant to give a
computationally motivated definition involving expansions about a row or column.
Let us show how these computational formulae follow from our definition. First
let us define some useful terminology.

5.3.4 Definition (Minor, cofactor) Let R be a commutative unit ring, let n ∈ Z>0, and let
A ∈ Matn×n(R). For i, j ∈ {1, . . . ,n} let Â(i, j) be the (n − 1) × (n − 1)-matrix obtained
by deleting the ith row and jth column of A.

(i) The (i, j)th minor is det Â(i, j).
(ii) The (i, j)th cofactor is (−1)i+ j det Â(i, j).

The cofactor matrix of A is the matrix Cof(A) ∈ Matn×n(R) whose (i, j)th entry of
the (i, j)th cofactor. •

A simple example illustrates these concepts.

5.3.5 Example (Minor, cofactor) Consider a general 2 × 2 matrix

A =
[
A(1, 1) A(1, 2)
A(2, 1) A(2, 2)

]
.

We then have

Â(1, 1) =
[
A(2, 2)

]
, Â(1, 2) =

[
A(2, 1)

]
,

Â(2, 1) =
[
A(1, 2)

]
, Â(2, 2) =

[
A(1, 1)

]
.

The (i, j)th minors are then the determinants of these matrices, which are A(2, 2),
A(2, 1), A(1, 2), and A(1, 1), respectively. The cofactor matrix is

Cof(A) =
[

A(2, 2) −A(2, 1)
−A(1, 2) A(2, 2)

]
.

Larger matrices will merely be a larger test of your computing ability. •

The following result then gives what is sometimes given as the definition of the
determinant.

5.3.6 Proposition (Computation of determinant using cofactors) Let R be a commu-
tative unit ring, let n ∈ Z>0, let i0, j0 ∈ {1, . . . ,n}, and let A ∈Matn×n(R). Then

det A =
n∑

i=1

A(i, j0)Cof(A)(i, j0) =
n∑

j=1

A(i0, j)Cof(A)(i0, j).
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Proof We shall prove that

det A =
n∑

i=1

A(i, j0)Cof(A)(i, j0)

by showing that the map

ϕ : A 7→
n∑

i=1

(−1)i+ j0A(i, j0) det Â(i, j0)

is an alternating multilinear function on the rows of A with the property thatϕ(In) = 1R.
This will give the first equality of the proposition by the definition of the determinant
and by Theorem 5.3.1. The second equality can be proved using the fact, proved in
Proposition 5.3.3, that det AT = det A.

First we show that ϕ is a multilinear function of its rows. Let i′ ∈ {1, . . . ,n}. We
take the ith row of A for i , i′ to be ri ∈ Rn and we take the i′th row to be ari′ + si′ for
ri′ , si′ ∈ Rn and for a ∈ R. We let B be the matrix with rows ri, i ∈ {1, . . . ,n}, and let C be
the same matrix, but with the i′th row being si′ . We will show that

ϕ(A) = aϕ(B) + ϕ(C), (5.16)

which will show that ϕ is multilinear. If i = i′ then

det Â(i, j0) = det B̂(i, j0) = det Ĉ(i, j0)

and so
A(i, j0) det Â(i, j0) = aB(i, j0) det B̂(i, j0) + C(i, j0) det Ĉ(i, j0).

For i , i′ we have
det Â(i, j0) = a det B̂(i, j0) + det Â(i, j0)

since the determinant is multilinear. Thus

A(i, j0) det Â(i, j0) = aB(i, j0) det B̂(i, j0) + C(i, j0) det Ĉ(i, j0)

since A(i, j0) = B(i, j0) = C(i, j0) in this case. Thus (5.16) does indeed hold.
Now let us show that if distinct rows i1 and i2 of A are equal then ϕ(A) = 0R.

Without loss of generality suppose that i1 < i2. As long as i < {i1, i2} then det Â(i, j0) = 0R
since the matrix Â(i, j0) will have two equal rows in this case. Now note that Â(i1, j0)
is obtained from Â(i2, j0) by successively swapping row i2 with rows i2 − 1, . . . , i1 + 1.
Thus

det Â(i1, j0) = (−1)i2−i1−1 det Â(i2, j0)

since the determinant is a skew-symmetric function of its rows. Therefore, we have

ϕ(A) = (−1)i1+ j0 det Â(i1, j0) + (−1)i2+ j0 det Â(i2, j0)

= (−1)i1+ j0+i2−i1−1 det Â(i2, j0) + (−1)i2+ j0 det Â(i2, j0) = 0R.

Thus ϕ is an alternating function of its rows.
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Finally we note that a direct computation shows that

det În(i, j0) =

1R, i = j0,
0R, otherwise.

This gives ϕ(In) = 1R, which gives ϕ = det. ■

The expression
n∑

i=1

A(i, j0)Cof(A)(i, j0)

is the expansion of det A along column j0 and the expression

n∑
j=1

A(i0, j)Cof(A)(i0, j)

is the expansion of det A along row i0.
Let us illustrate the application of Proposition 5.3.6 in a simple case.

5.3.7 Example (Computing the determinant using cofactors) Let A be a 3× 3 matrix.
Expanding det A along the first row gives

det A = A(1, 1) det
[
A(2, 2) A(2, 3)
A(3, 2) A(3, 3)

]
− A(1, 2) det

[
A(2, 1) A(2, 3)
A(3, 1) A(3, 3)

]
+ A(1, 3) det

[
A(2, 1) A(2, 2)
A(3, 1) A(3, 2)

]
and expanding det A along the second column gives

det A = −A(1, 2) det
[
A(2, 1) A(2, 3)
A(3, 1) A(3, 3)

]
+ A(2, 2) det

[
A(1, 1) A(1, 3)
A(3, 1) A(3, 3)

]
− A(3, 2) det

[
A(1, 1) A(1, 3)
A(2, 1) A(2, 3)

]
.

Thus we see that the expansions produce determinants of matrices that have one
fewer row and column than A. If one is forced to compute a determinant by hand,
this is the method of choice. •

5.3.2 Determinant and invertibility

To this point the determinant seems like an entirely pointless construction. We
shall now begin to explore the value of the determinant. First let us explore the
relationship between the determinant and invertibility of matrices. In order to do
so we introduce the following idea.
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5.3.8 Definition (Adjugate) Let R be a commutative unit ring, let n ∈ Z>0, and let
A ∈Matn×n(R). The adjugate of A is the matrix Adj(A) ∈Matn×n(R) defined by

Adj(A)(i, j) = (−1)i+ j det Â( j, i). •

Let us illustrate the adjugate.

5.3.9 Example (Adjugate (Example 5.3.5 cont’d)) For the general 2 × 2 matrix the
adjugate is

Adj(A) =
[

A(2, 2) −A(1, 2)
−A(2, 1) A(2, 2)

]
. •

Thus the adjugate is the transpose of the cofactor matrix. Sometimes what
we call the adjugate is called the “adjoint.” However, adjoint has another very
different usage in functional analysis, and so we choose to use terminology that
discriminates the two concepts.

5.3.10 Theorem (Determinant and invertibility) Let R be a commutative unit ring, let
n ∈ Z>0, and let A ∈Matn×n(R). Then

(i) Adj(A)A = AAdj(A) = (det A)In,
(ii) A is invertible if and only if det A is a unit, and
(iii) if A is invertible then

det A−1 = (det A)−1, A−1 = (det A)−1Adj(A).

Proof (i) Note that

AAdj(A)(i, i) =
n∑

l=1

(−1)i+lA(i, l) det Â(i, l) = det A

for each i ∈ {1, . . . ,n}, using Proposition 5.3.6. For i , j let B be the matrix which agree
with A except that the jth row of B is the ith row of A. Thus B has two equal rows and
so det B = 0R. Moreover,

B(i, l) = A(i, l) = B( j, l), det Â( j, l) = det B̂( j, l)

for all l ∈ {1, . . . ,n}. Therefore,

AAdj(A)(i, j) =
n∑

l=1

(−1) j+lA(i, l) det Â( j, l)

=

n∑
l=1

(−1) j+lB( j, l) det B̂( j, l) = det B = 0R,

using Proposition 5.3.6. Therefore, AAdj(A) = det(A)In. Since Adj(AT) = Adj(A)T

(why?) it then holds that

(det A)In = (det AT)In = ATAdj(AT) = ATAdj(A)T = Adj(AA)T.
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Thus
Adj(A)A = (det A)IT

n = (det A)In,

and so AAdj(A) = Adj(A)A = (det A)In, as desired.
(ii) Suppose that A is invertible. Then, using Proposition 5.3.3,

det In = (det A)(det A−1) = (det A−1)(det A) = 1R.

Thus det A is a unit and its inverse is det A−1.
Now suppose that det A is a unit. Then, by part (i).

A(det A)−1Adj(A) = (det A)−1Adj(A)A = In,

giving A as invertible with inverse (det A)−1Adj(A).
(iii) This was proved as part of our proving part (ii). ■

The formula for A−1 given as part (iii) in the preceding theorem is interesting in
that it gives an explicit formula for the inverse in terms of the components of A.
However, in practice this is usually an inefficient means of computing the inverse.
Nonetheless, we shall use it in Sections V-?? and V-?? to say some things about
inverses of matrices with polynomial entries.

Let us compute an inverse using the adjugate.

5.3.11 Example (Inverse using adjugate (Example 5.3.5 cont’d)) For a general invert-
ible 2 × 2 matrix we have

A−1 = (det A)−1Adj(A)

= (A(1, 1)A(2, 2) − A(1, 2)A(2, 1))−1

[
A(2, 2) −A(1, 2)
−A(2, 1) A(2, 2)

]
,

which may be a familiar formula. •

5.3.3 Determinant, systems of equations, and linear independence

In this section we explore another use for determinants, namely in solving linear
equations and for determining linear independence. We work only with finite
matrices. In this case we recall from Definitions 5.1.54 and 5.2.52 that a system of
linear equations over a commutative ring R is a pair (A, b) ∈ Matm×n(R) × Rm. The
set of solutions is then

Sol(A, b) = {x ∈ Rn
| Ax = b}.

In the case when m = n there is a rule for computing solutions using determinants
if A is invertible.
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5.3.12 Proposition (Cramer’s Rule) Let R be a commutative unit ring, let n ∈ Z>0, and let
(A,b) ∈ Matn×n(R) × Rn be a system of linear equations over R. If det A is a unit then
Sol(A,b) = {x} where

x(j) = (det A)−1
n∑

i=1

(−1)i+jb(i) det Â(i, j), j ∈ {1, . . . ,n}.

Proof First of all, if det A is a unit then A is invertible by Theorem 5.3.10 and so
Sol(A, b) is a singleton. Moreover, using the formula for A−1 from Theorem 5.3.10, th
unique solution is

x = A−1b = (det A)−1Adj(A)b,

which is exactly the expression given. ■

The expression
n∑

i=1

(−1)i+ jb(i) det Â(i, j)

bears a little thinking about. Indeed, a moments reflection shows that if one takes
B j to be the matrix equal to A, but with the jth column replaced by b, then we have

det B j =

n∑
i=1

(−1)i+ jb(i) det Â(i, j),

as the expression on the right is the expansion of det B j along the jth column. Let
us illustrate this with an example.

5.3.13 Example (Cramer’s Rule) We take a general system of linear equations (A, b) in
two variables:

A =
[
A(1, 1) A(1, 2)
A(2, 1) A(2, 2)

]
, b =

[
b(1)
b(2)

]
.

We then have

B1 =

[
b(1) A(1, 2)
b(2) A(2, 2)

]
, B2 =

[
A(1, 1) b(1)
A(2, 1) b(2)

]
.

Thus, using Cramer’s Rule, the unique solution is the vector x ∈ R2 given by

x(1) = (det A)−1 det B1

= (A(1, 1)A(2, 2) − A(1, 2)A(2, 1))−1A(2, 2)b(1) − A(1, 2)b(2),

x(2) = (det A)−1 det B2

= (A(1, 1)A(2, 2) − A(1, 2)A(2, 1))−1A(1, 1)b(2) − A(2, 1)b(1).

This, of course, agrees with A−1b. •

Now let us consider an important special case of systems of linear equa-
tions: those that are homogeneous. The following result characterises the solution
of these in terms of the determinant of the coefficient matrix for the system.
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5.3.14 Proposition (Solutions to homogeneous systems of linear equations) Let R
be a commutative unit ring, let n ∈ Z>0, and let A ∈ Matn×n(R). If x ∈ Sol(A, 0Rn) then
det Ax(j) = 0R for each j ∈ {1, . . . ,n}. In particular, if det A , 0R and R is an integral
domain, then Sol(A, 0Rn) = {0Rn}.

Proof Let x ∈ Sol(A, 0Rn). For j ∈ {1, . . . ,n} denote by B j the diagonal matrix whose
diagonal entries are 1R except the jth diagonal, which is x( j). Since det B j = x( j) by
Proposition 5.3.3(iv) we have

det Ax( j) = det A det B j = det(AB j), j ∈ {1, . . . ,n}.

Let us show that det(AB j) = 0R. First, a direct computation shows that the matrix
AB j agrees with A except that the entries in the jth column are multiplied by x( j).
Now fix j ∈ {1, . . . ,n} and let C j be the matrix obtained by adding x(i) times the ith
column of AB j to the jth column of AB j for all i ∈ {1, . . . ,n} \ { j}. Since C j is obtained by
elementary column operations of the second type from AB j, we have det C j = det(AB j)
(cf. Exercise 5.3.1). Moreover, a direct calculation shows that the jth column of C j is
equal to the jth column of Ax which is zero since x ∈ Sol(A, 0Rn). Thus det C j = 0R (by,
say, expanding the determinant about the jth column) and so det Ax( j) = det(AB j) = 0R,
as desired.

The final assertion of the proposition is clear. ■

This result has useful applications for determining when a collection of vec-
tors is linearly independent. To do so we must give some constructions using
determinants for matrices that are not necessarily square. The following definition
is a generalisation of Definition 5.3.4, although the word usage is not in exact
correspondence.

5.3.15 Definition (Minors for a nonsquare matrix) Let R be a commutative unit ring, let
m,n ∈ Z>0, and let A ∈Matm×n(R). Let k ∈ {1, . . . ,min{m,n}} and let I = {i1, . . . , ik} ⊆

{1, . . . ,m} and J = { j1, . . . , jk} ⊆ {1, . . . ,n} satisfy

i1 < · · · < ik, j1 < · · · < jk.

Denote A(I, J) ∈Matk×k(R) the matrix defined by

A(I, J)(a, b) = A(ia, jb), a, b ∈ {1, . . . , k}.

The (I, J)th minor of A is det A(I, J). A k×k-minor of A is an (I, J)th minor for some
I, J having cardinality k. •

Some authors call the matrices A(I, J) the minors of A.
Let us now state how one may determine linear independence of a collection of

vectors by using minors.
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5.3.16 Proposition (Determining linear independence using determinants) Let R be
an integral domain, let k,n ∈ Z>0 satisfy k ≤ n, and let x1, . . . , xk ∈ Rn. Denote by
X ∈ Matn×k(R) the matrix whose jth column is xj, j ∈ {1, . . . ,k}. Then the set {x1, . . . , xk}

is linearly independent if and only if some k × k-minor of X is nonzero.
Proof First of all, note that {x1, . . . , xk} is linearly dependent if and only if there exists
a nonzero vector (c1, . . . , ck) ∈ Rk such that Xc = 0Rn . That is, {x1, . . . , xk} is linearly
dependent if and only if Sol(X, 0Rn) contains vectors other than the zero vector.

Suppose that {x1, . . . , xk} is linear dependent so that Sol(X, 0Rn) contains a nonzero
vector c. Let I = {i1, . . . , ik} satisfy i1 < · · · < ik and let J = {1, . . . , j}. Since Xc = 0Rn it
holds that X(I, J)c = 0Rn . Therefore, by Proposition 5.3.14, det X(I, J)c( j) = 0R for all
j ∈ {1, . . . , k}. Since c( j) , 0R for some j ∈ {1, . . . , k} and since R is an integral domain, it
follows that det X(I, J) = 0R. Therefore, all k × k-minors are zero.

Now suppose that some k × k-minor is nonzero. Then there exists I = {i1, . . . , ik} ⊆
{1, . . . ,n} such that i1 < · · · < ik for which det X(I, J) , 0R for J = {1, . . . , k}. Now let
c ∈ Sol(X, 0Rn), and note that this implies that X(I, J)c = 0Rn . By Proposition 5.3.14 we
then have det X(I, J)c( j) = 0R for all j ∈ {1, . . . , k}. Since R is an integral domain, c = 0Rk

and so {x1, . . . , xk} is linearly independent. ■

When k > n the situation is more complicated, at least for general rings. How-
ever, for principal ideal domains (and so for fields in particular), it holds that if
k > n then any collection of vectors x1, . . . , xk ∈ Rn is linearly dependent; this follows
from Theorem 4.9.1.

5.3.4 Trace and its properties

We shall not attempt to motivate the uses for trace as we did for determinant.
Indeed, the trace is simply not as useful for us as is the determinant. Nevertheless,
it does come up in a few places, so we give the definition and basic properties
here.

5.3.17 Definition (Trace) Let R be a commutative unit ring, let n ∈ Z>0, and let A ∈
Matn×n(R). The trace of A is

tr A = A(1, 1) + · · · + A(n,n). •

The basic properties of trace are as follows.

5.3.18 Proposition (Properties of trace) Let R be a commutative unit ring, let n ∈ Z>0, let
A,B,C ∈Matn×n(R), and let r ∈ R. Then the following statements hold:

(i) tr(A + B) = tr A + tr B;
(ii) tr(rA) = r tr A;
(iii) tr AT = tr A;
(iv) tr(AB) = tr(BA);
(v) tr(ABC) = tr(CAB) = tr(BCA).
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Proof We shall only prove the not completely trivial parts of the result.
(iv) We have

tr(AB) =
n∑

i=1

(AB)(i, i) =
n∑

i=1

n∑
j=1

A(i, j)B( j, i)

=

n∑
j=1

n∑
i=1

B( j, i)A(i, j) =
n∑

j=1

(BA)( j, j) = tr(BA).

(v) Using part (iv) we have

tr(A(BC)) = tr((BC)A) = tr((AB)C) = tr(C(AB)). ■

Exercises

5.3.1 Recall the three flavours of elementary row (resp. column) operations that
lead to elementary matrices: (1) swapping rows (resp. columns), (2) adding
a multiple of a row (resp. column) to another row (resp. column), (3) multi-
plying a row (resp. column) by a unit u.
(a) What is the determinant of an elementary matrix of the first sort?
(b) What is the determinant of an elementary matrix of the second sort?
(c) What is the determinant of an elementary matrix of the third sort?
(d) For matrices over principal ideal domains, what is the determinant of a

secondary matrix?
5.3.2 Let R be a commutative unit ring and let A,B ∈ Matn×n(R) be invertible.

Show that A + rB is invertible for all but a finite number of r ∈ R.
5.3.3 Let R be a commutative unit ring and let A ∈Matn×n(R). Show that det A = 0R

if A has a zero row or column.

In the next exercise you will need to recall Definition 5.1.61. You will also need
the following definition.

Definition (Lie subalgebra) Let F be a field and let (g, [·, ·]) be a Lie algebra over
F. A Lie subalgebra of g is a subspace h of g such that [u, v] ∈ h for every u, v ∈ h. •

Of course, a Lie subalgebra of a Lie algebra is itself a Lie algebra.

5.3.4 Let F be a field, let n ∈ Z>0, and consider the Lie algebra (Matn×n(F), [·, ·]) of
Exercise 5.1.4.
(a) Show that the set of matrices with trace 0F is a Lie subalgebra of

Matn×n(F).
(b) Suppose that the map mn : x 7→ nx (by nx we mean the n-fold sum of x

with itself) is an isomorphism of Fn. Define Tr0 : Matn×n(F)→Matn×n(F)
by

Tr0(A) = A − tr(A)m−1
n ◦ In.

Show that tr(Tr0(A)) = 0F for all A ∈Matn×n(F).
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5.3.5 Let F be a field, let n ∈ Z>0, and recall from Exercise 5.1.5 that GL(n; F)
denotes the group of invertible n × n matrices over F.
(a) Show that the subset of matrices with determinant 1F is a subgroup of

GL(n; F).
This subgroup of invertible matrices with determinant 1F is denoted

by SL(n; F) and is called the special linear group of order n over F.
(b) Is SL(n; F) a subalgebra of Matn×n(F)?

5.3.6 Let R be a commutative unit ring, let n ∈ Z>0, and recall from Exercise 5.2.3
that GL(n; R) denotes the group of invertible n × n matrices over R.
(a) Show that the subset of matrices with determinant 1R is a subgroup of

GL(n; R).
This subgroup of invertible matrices with determinant 1R is denoted

by SL(n; R) and is called the special linear group of order n over R.
(b) Is SL(n; R) a subalgebra of Matn×n(R)?
(c) Describe the difference between GL(n;Z) and SL(n;Z). Contrast this

with the difference between SL(n;R) and GL(n;R).
5.3.7 Let R be a commutative unit ring, let n ∈ Z>0, and let A ∈ Matn×n(R) be

upper triangular.
(a) Show that det A is equal to the product of the diagonal elements of R.
(b) If A is invertible, show that A−1 is upper triangular.

5.3.8 Let R be a commutative unit ring, let A j ∈ Matn j×n j(R) for j ∈ {1, . . . , k}, and
consider the partitioned matrix

A =


A j ∗ · · · ∗

0n2×n1 A2 · · · ∗

...
...

. . .
...

0nk×n1 0nk×n2 · · · Ak

 ,
where an entry ∗ means an arbitrary matrix of the appropriate size. Show
that

det A = det A1 · · ·det Ak.
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Section 5.4

Linear algebra over fields

In this section we carefully study linear maps between vector spaces. It is worth
making a few comments on the relationship between this section and Section 5.1.
First note that by Theorem 5.1.13 there is an exact correspondence between ma-
trices in MatI×J(F) and linear maps between FJ

0 and FI
0. It is also true that, given

vector spaces U and V, there exist sets (for example, bases for U and V) J and I
such that U is isomorphic to FJ

0 and V is isomorphic to FI
0 (this is the content of

Theorem 4.5.38). Therefore, it is reasonable to expect that there be a correspon-
dence between linear maps from U to V and matrices in MatI×J(F). This is in fact
the case (see Proposition 5.4.25). For this reason, certain topics in this section will
have exact analogues in Section 5.1. However, for the most part the development
will proceed rather independently of Section 5.1. Indeed, it is usually the case
that topics in common between this section and Section 5.1 are most naturally de-
veloped in the more abstract setup used in this section. In particular, the abstract
development is more revealing of the “geometry” of linear algebra, as opposed to
the more computational flavour of a treatment based in matrix manipulation.

Now a word of warning. In Section 5.1 quite a lot of attention was paid to the
rôle of the transpose of a matrix. Since much of what is discussed in Section 5.1
extends in a simple way to this section, it is worth pointing out that this extension
is not so simple for the concept of transpose. This can even be seen in Section 5.1
where a column finite matrix A ∈MatI×J(F) gives rise to a linear map from FJ

0 to FI
0,

but its transpose does not necessarily give rise to a linear map from FI
0 to FJ

0, but
does give rise to a linear map from FI to FJ. For readers who are only familiar with
matrices with finite numbers of rows and columns, there is a natural tendency to
think that if U and V are finite-dimensional vector spaces and if L ∈ HomF(U; V),
then there is a natural map, called the transpose of L, from V to U. This is not
the case. As we shall see in Theorem 5.7.22, the transpose is naturally a linear
map between the between the algebraic duals V′ and U′. The transpose will be
completely absent from the present section. The bottom line is this: Unless the
statement, “The transpose of a linear map is a linear map between dual spaces,” is
known to you, erase any preconceptions you have about the transpose.

Do I need to read this section? It is important to understand abstract linear al-
gebra in order to understand many of the topics in these volumes. Therefore, any
time spent understanding the material in this section will be time well spent. •
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5.4.1 Subspaces and vector spaces associated to a linear map

We let F be a field, and in this section U and V will denote F-vector spaces, and
L will denote an element of HomF(U; V).

Associated with every linear map L : U → V are two subspaces, one each of U
and V, and two associated quotient spaces which are useful for understanding the
character of L. The subspaces we have seen before, but we redefine them here in
order to preserve the coherence of the presentation.

5.4.1 Definition (Image, kernel, cokernel, coimage) Let F be a field, let U and V be
F-vector spaces, and let L ∈ HomF(U; V).

(i) The image of L is the subspace of V given by image(L) = {L(u) | u ∈ U}.
(ii) The kernel of L is the subspace of U given by ker(L) = {u ∈ U | L(u) = 0V}.
(iii) The cokernel of L is the F-vector space coker(L) = V/ image(L).
(iv) The coimage of L is the F-vector space coimage(L) = U/ker(L).
(v) The rank of L is rank(L) = dimF(image(L)).
(vi) The nullity of L is nullity(L) = dimF(ker(L)).
(vii) The defect of L is defect(L) = dimF(coker(L)). •

Associated to the linear map L are then three other linear maps between various
of the above subspaces. The idea is that, if L is not injective (resp. surjective,
bijective), there is still a “part” of L that is injective (resp. surjective, bijective).

5.4.2 Theorem (Linear maps derived from a linear map) Let F be a field, let U and V be
F-vector spaces, and let L ∈ HomF(U; V). Then the following statements hold:

(i) there exists a unique linear map Linj ∈ HomF(coimage(L); V) such that the diagram

U L //

πcoimage(L) %%

V

coimage(L)
Linj

99

commutes, where πcoimage(L) : U→ coimage(L) is the canonical projection;
(ii) there exists a unique linear map Lsrj ∈ HomF(U; image(L)) such that the diagram

U L //

Lsrj $$

V

image(L)
iimage(L)

::

commutes;
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(iii) there exists a unique linear map Lbij ∈ HomF(coimage(L); image(L)) such that the
diagram

U L //

πcoimage(L)

��

V

coimage(L)
Lbij

// image(L)

iimage(L)

OO

commutes.
Moreover, Linj is injective, Lsrj is surjective, and Lbij is bijective.

Proof (i) Define Linj by Linj(u + ker(L)) = L(u). We claim first that Linj is well-defined.
Indeed, suppose that u1+ker(L) = u2+ker(L) for u1,u2 ∈ U. Then there exists u ∈ ker(L)
such that u2 = u1 + u. Then

L(u2) = L(u1 + u) = L(u1) + L(u) = L(u1),

thus showing that Linj is well-defined. By definition, the diagram in this part of
the theorem commutes. Moreover, it is clear that any linear map from coimage(L)
which makes the diagram commute must be the same as Linj. To see that Linj is
injective, suppose that Linj(u1+ker(L)) = Linj(u2+ker(L)). Then L(u1−u2) = 0V, whence
u1 − u2 ∈ ker(L). Thus u1 + ker(L) = u2 + ker(L) and so Linj is injective.

(ii) We simply define Lsrj by Lsrj(u) = L(u). The commutativity of the diagram
given, and the uniqueness of the map that forces the commutativity of this diagram,
are immediate. By definition of image(L) it follows that Lsrj is surjective.

(iii) We define Lbij by Lbij(u+ker(L)) = Lsrj(u). The well-definedness of Lbij follows as
above where we showed the well-definedness of Linj. The commutativity of the given
diagram, along with the uniqueness of the map that makes the map commutative,
follow directly. That Lbij is injective follows in the same manner as the injectivity of
Linj, and the surjectivity of Lbij follows from the definition of image(L). ■

The result has the following corollary that shows that coimage(L) and coker(L)
can be thought of as measuring the extent to which L is not injective or surjective,
respectively.

5.4.3 Corollary (Interpretation of coimage(L) and coker(L)) Let F be a field, let U and V
be F-vector spaces, and let L ∈ HomF(U; V). Then

(i) L is injective if and only if dimF(coimage(L)) = 0 and
(ii) L is surjective if and only if dimF(coker(L)) = 0.

Proof This follows from the fact that if U′ is a subspace of an F-vector space V′, then
dimF(V′/U′) = 0 if and only if U′ = V′ (cf. Theorem 4.5.56). ■

Theorem 5.4.2 also has the following well-known corollary which relates the
dimensions of various of the subspaces associated to L.
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5.4.4 Corollary (Rank–Nullity Formula) If F is a field, if U and V are F-vector spaces, and
if L ∈ HomF(U; V), then

dimF(U) = rank(L) + nullity(L).

Proof This follows from Proposition 4.5.50 and Theorem 4.5.56. ■

5.4.2 Invariant subspaces

In the special case where L ∈ HomF(V; V), i.e., L is a linear map from V to itself,
an important sort of subspace associated with L can arise. These will be rather
important in our understanding of the structure of endomorphisms, so we devote
some time to these subspaces.

5.4.5 Definition (Invariant subspace) Let F be a field, let V be an F-vector space, and
let L ∈ HomF(V; V). A subspace U of V is L-invariant, or an invariant subspace for
L, if L(u) ∈ U for every u ∈ U. •

Let us first consider the situation arising when one has multiple invariant
subspaces.

5.4.6 Proposition (Sums and intersections of invariant subspaces are invariant
subspaces) Let F be a field, let V be an F-vector space, and let (Uj)j∈J be a family
of L-invariant subspaces. Then

(i)
∑

j∈J Uj is an L-invariant subspace and
(ii) ∩j∈JUj is an L-invariant subspace.

Proof If v ∈
∑

j∈J U j then v = u1 + · · · + uk where ul ∈ U jl for some k ∈ Z>0 and for
j1, . . . , jk ∈ J. Then L(ul) ∈ U jl for each l ∈ {1, . . . , k}, and so

L(v) = L(u1) + · · · + L(uk) ∈
∑
j∈J

U j,

showing that
∑

j∈J U j is L-invariant.
Next suppose that v ∈ ∩ j∈JU j. Then, for each j ∈ Z>0, L(v) ∈ U j since v ∈ U j. Thus

L(v) ∈ ∩ j∈JU j, and so ∩ j∈JU j is L-invariant. ■

The importance of invariant subspaces is characterised by the following simple
result.

5.4.7 Proposition (Properties of invariant subspaces) Let F be a field, let V be an F-
vector space, and let L ∈ HomF(V; V). For an L-invariant subspace U, the following
statements hold:

(i) L|U ∈ HomF(U; U);
(ii) the map v + U 7→ L(v) + U is a well-defined endomorphism of V/U.
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Proof The first statement is obvious from the definition of L-invariance. For the
second statement, suppose that v1 + U = v2 + U. Then there exists u ∈ U such that
v2 = v1 + u. Then

L(v2) + U = L(v1 + u) + U = (L(v1) + L(u)) + U = L(v1) + U,

using the first part of the proposition. Thus the map is well-defined. That it is also
linear is clear from the definition of the vector space structure on V/U. ■

We shall see in Section 5.8 that invariant subspaces form an important and
surprisingly complicated rôle in the characterisation of endomorphisms of finite-
dimensional vector spaces. In this development the notion of invariant subspaces
possessing invariant an complement. It is convenient to have notation to represent
this.

5.4.8 Definition (Direct sum of endomorphisms) Let F be a field, let V be an F-vector
space, and let L ∈ EndF(V). Suppose that U1, . . . ,Uk ⊆ V are subspaces such that

(i) V = U1 ⊕ · · · ⊕ Uk and
(ii) U j is L-invariant for each j ∈ {1, . . . , k}.

Denote L j = L|U j ∈ EndF(U j). Then L is the direct sum of L1, . . . ,Lk, and we write
L = L1 ⊕ · · · ⊕ Lk. •

The idea is very simple, and the essence is expressed by the following result.

5.4.9 Proposition (Characterisation of direct sum of endomorphisms) Let F be a
field, let V be an F-vector space, and let L ∈ EndF(V). Suppose that U1, . . . ,Uk ⊆ V are
subspaces such that

(i) V = U1 ⊕ · · · ⊕ Uk and
(ii) Uj is L-invariant for each j ∈ {1, . . . ,k}.

Denote Lj = L|Uj and for v ∈ V let

v = v1 + · · · + vk, vj ∈ Vj, j ∈ {1, . . . ,k},

be the decomposition corresponding to the direct sum. Then

L(v) = L1(v1) + · · · + Lk(vk),

and the expression on the right is the decomposition of the expression on the left corre-
sponding to the direct sum.

Proof The reader is asked to give the proof as Exercise 5.4.3. ■

Another useful characterisation of direct sums of endomorphisms involves their
matrix representatives. We refer to (5.2) for the notation used in the following result
for a block diagonal matrix.
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5.4.10 Proposition (The matrix representative of a direct sum) Let F be a field, let V be
an F-vector space, and let L ∈ EndF(V). Suppose that U1, . . . ,Uk ⊆ V are subspaces such
that

(i) V = U1 ⊕ · · · ⊕ Uk and
(ii) Uj is L-invariant for each j ∈ {1, . . . ,k}.

Denote Lj = L|Uj so that L = L1 ⊕ · · · ⊕ Lk. Let B be a basis for V and suppose that
B =B1 ∪ · · · ∪Bk withBj a basis for Uj, j ∈ {1, . . . ,k}. Then

[L]BB = diag([L1]B1
B1
, . . . , [Lk]Bk

Bk
)

Proof This is Exercise 5.4.4. ■

Sometimes we will be interested in cases when U ⊆ V is a subspace that is not
invariant under L ∈ EndF(V), but still can be used to define an invariant subspace
as in the following definition.

5.4.11 Definition (Smallest invariant subspace containing a subspace) Let F be a
field, let V be an F-vector space, and let L ∈ EndF(V). The smallest L-invariant
subspace of V containing U is denoted by ⟨L,U⟩. •

Note that the definition makes sense since
1. V is an L-invariant subspace containing U (i.e., such subspaces exist) and
2. if W1 and W2 are two L-invariant subspaces containing U, then W1∩W2 is itself an

L-invariant subspace containing U (as the reader may verify in Exercise 5.4.1).
Therefore, we have

⟨L,U⟩ = ∩{W | W is an L-invariant subspace containing U}.

The next result gives an explicit characterisation of ⟨L,U⟩.

5.4.12 Theorem (Characterisation of ⟨L,U⟩) Let F be a field, let V be an F-vector space, and
let L ∈ EndF(V). Then

⟨L,U⟩ = spanF(Lj(u)| u ∈ U, j ∈ Z≥0).

Proof Let W = spanF(L j(u)| u ∈ U, j ∈ Z≥0). Clearly W contains U. If w ∈ W then we
can write

w = c1L j1(u1) + · · · + ckL jk(uk)

for c1, . . . , ck ∈ F, j1, . . . , jk ∈ Z≥0, and u1, . . . ,uk ∈ U. Then

L(w) = c1L j1+1(u1) + · · · + ckL jk+1(uk),

which is clearly again an element of W. Thus W is L-invariant. Therefore ⟨L,U⟩ ⊆W.
Now let W′ be any L-invariant subspace containing U. Then u ∈ W for all u ∈ U.

Since W′ is L-invariant, L(u) ∈ W′ for all u ∈ U. Continuing to use the L-invariance of
W′ gives L j(u) ∈ W′ for all j ∈ Z≥0 and u ∈ U. Thus W ⊆ W′. In particular, W ⊆ ⟨L,U⟩,
giving the result. ■
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Now we turn to a characterisation of a particular invariant subspace associated
to an endomorphism. The construction is a little involved, and seems a little
pointless at present. However, it will form the essential part of the definition
of algebraic multiplicity in Definition 5.4.57. We consider some constructions
involving the kernels of powers of an endomorphism. Thus we let F be a field,
V be an F-vector space, and L ∈ EndF(V). We consider the sequence (ker(L j)) j∈Z>0

of subspaces of V, and we note that ker(L j) ⊆ ker(L j+1) for each j ∈ Z>0, i.e., the
sequence is increasing with respect to the partial order of inclusion of subsets. We
denote by UL the subspace generated by ∪ j∈Z>0 ker(L j). Since the sequence

ker(L) ⊆ ker(L2) ⊆ · · · ⊆ ker(L j) ⊆ · · ·

is partially ordered by inclusion, in fact we simply have UL = ∪ j∈Z>0 ker(L j) (cf. Ex-
ercise 4.5.17). Since the subspace UL will be essential in our definition of algebraic
multiplicity, let us make a few comments on its properties and its computation in
practice.

5.4.13 Theorem (Characterisation of UL) Let F be a field, let V be an F-vector space, and
let L ∈ EndF(V). The subspace UL = ∪j∈Z>0 ker(Lj) is the smallest subspace of V with the
properties that

(i) UL is L-invariant and
(ii) the map induced by L on the quotient V/UL and defined by v + UL 7→ L(v) + UL

(cf. Proposition 5.4.7) is injective.
Proof Let us first prove that UL has the two properties stated in the proposition. Let
v ∈ UL so that v ∈ ker(Lk) for some k ∈ Z>0. Then L ◦ Lk(v) = Lk(L(v)) = 0V, and so
L(v) ∈ ker(Lk) ⊆ UL, showing that UL is L-invariant.

Denote by L0 the endomorphism of V/UL as stated. Let v ∈ V be such that
L0(v + UL) = 0V + UL. By definition of L0 this implies that L(v) ∈ UL. Therefore
L(v) ∈ ker(Lk) for some k ∈ Z>0. That is, Lk ◦ L(v) = 0V, and so v ∈ ker(Lk+1) ⊆ UL. Thus
v + UL = 0V + UL, so showing that L0 is injective.

Now we show that UL is the smallest subspace with the two stated properties. Thus
we let U′L be a subspace with the two properties, and we denote by L′0 ∈ EndF(V/U′L)
the induced endomorphism. We first claim that ker(L) ⊆ U′L. To see this, suppose that
ker(L) is not contained in U′L. Then there exists v ∈ ker(L) − U′L. Then

L′0(v + U′L) = L(v) + U′L = 0V + U′L,

so that ker(L′0) , {0V + U′L}. Thus L′0 is not injective by Exercise 4.5.23.
We next claim that ker(L j) ⊆ U′L for j ∈ Z>0. We have already proved this when

j = 1, so suppose it true for j ∈ {1, . . . , k} and let v ∈ ker(Lk+1). Thus Lk+1(v) = Lk(L(v)) =
0V. Thus L(v) ∈ ker(Lk) ⊆ U′L by the induction hypothesis. Thus L′0(v + U′L) = 0V + U′L,
and so v ∈ U′L since L0 is injective. This shows that ker(L j) ⊆ U′L for each j ∈ Z>0, as
desired. Therefore, by definition of UL and since U′L is a subspace, we have UL ⊆ U′L,
which completes the proof. ■
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This result has the following corollary which is useful in limiting the compu-
tations one must do in practice when computing the algebraic multiplicity. The
result says, roughly, that if the sequence

ker(L) ⊆ ker(L2) ⊆ · · · ⊆ ker(L j) ⊆ · · ·

has two neighbouring terms which are equal, then all remaining terms in the
sequence are also equal. This makes the computation of UL simpler in these cases.

5.4.14 Corollary (Computation of UL) Let F be a field, let V be an F-vector space, and let
L ∈ EndF(V). If, for some k ∈ Z>0, ker(Lk) = ker(Lk+1), then ker(Lj) = ker(Lj) for all
j ≥ k, and, moreover, UL = ker(Lk).

Proof The result will follow from the definition of UL if we can show that UL = ker(Lk).
Since ker(Lk) ⊆ UL, this will follow if we can show that ker(Lk) is L-invariant and that
the map induced by L on the quotient V/ker(Lk) is injective. First let v ∈ ker(Lk). Then,
since ker(Lk+1) = ker(Lk), Lk+1(v) = Lk(L(v)) = 0V, showing that L(v) ∈ ker(Lk). Thus
ker(Lk) is L-invariant. Now let L0 be the induced endomorphism on V/ker(Lk) and
suppose that L0(v + ker(Lk)) = 0V + ker(Lk). Then, by definition of L0, L(v) ∈ ker(Lk).
Therefore, Lk(L(v)) = Lk+1(v) = 0V, and so v ∈ ker(Lk+1) = ker(Lk). This shows that
ker(L0) = {0V + ker(Lk)}, or that L0 is injective by Exercise 4.5.23. ■

5.4.3 The algebra of linear maps

Sets of linear maps, like sets of matrices, have defined on them certain algebraic
operations which endow them with familiar algebraic structures.

5.4.15 Definition (Sum and scalar multiplication for linear maps) Let F be a field, let
U and V be F-vector spaces, and let L,K ∈ HomF(U; V) and a ∈ F.

(i) The sum of L and K is the element L + K of HomF(U; V) defined by

(L + K)(u) = L(u) + K(u).

(ii) Multiplication of L with a is the element aL of HomF(U; V) defined by (aL)(u) =
a(L(u)). •

The following result records the manner in which the two preceding operations
interact with the composition of linear maps. The result mirrors Proposition 5.1.7
for matrices, and this will be made precise in Theorem 5.4.22. In the statement of
the result, we denote by 0HomF(U;V),−L ∈ HomF(U; V) the linear maps defined by

0HomF(U;V)(u) = 0V, −L(u) = −(L(u)), u ∈ U.

Thus 0HomF(U;V) is the zero linear map, and −L is negative L. We shall also adopt the
notation that, for k ∈ Z≥0, Lk is the k-fold composition of L with itself. If k = 0 then
we adopt the convention that L0 = idV.
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5.4.16 Proposition (Properties of sum and composition of linear maps) Let F be a
field, let U, V, W, and X be F-vector spaces, and let K1,K2,K3 ∈ HomF(U; V), L1,L2 ∈

HomF(V; W), M1 ∈ HomF(W; X), and a1, a2 ∈ F. Then the following equalities hold:
(i) K1 + K2 = K2 + K1;
(ii) (K1 + K2) + K3 = K1 + (K2 + K3);
(iii) K1 + 0HomF(U;V) = K1;
(iv) K1 + (−K1) = 0HomF(U;V);
(v) L1 ◦ (K1 + K2) = L1 ◦ K1 + L1 ◦ K2;
(vi) (L1 + L2) ◦ K1 = L1 ◦ K1 + L2 ◦ K1;
(vii) (M1 ◦ K1) ◦ L1 = M1 ◦ (K1 ◦ L1);
(viii) a1(a2K1) = (a1a2)K1;
(ix) (a1 + a2)K1 = a1K1 + a2K1;
(x) a1(K1 + K2) = a1K1 + a1K2.

Proof This is Exercise 5.4.7. ■

With these properties of linear maps, we can endow various sets of linear maps
with familiar algebraic structures. The next two results mirror Corollaries 5.1.8
and 5.1.9.

5.4.17 Corollary (Linear maps as elements of a vector space) If F is a field and if U
and V are F-vector spaces, then HomF(U; V) is an F-vector space with addition given by
the sum of linear maps and with multiplication being given by multiplication of a matrix
by a scalar.

5.4.18 Corollary (Linear maps as elements of an algebra) If F is a field and if V is an
F-vector space, then EndF(V) is an F-algebra with the vector space structure of Corol-
lary 5.4.17 and with the product given by the composition of linear maps.

Note that for endomorphisms it makes sense to ask that they commute.

5.4.19 Definition (Commuting endomorphisms) Let F be a field, let V be an F-vector
space. Endomorphisms L,K ∈ EndF(V) commute if L ◦ K = K ◦ L. •

Not all endomorphisms commute (Exercise 5.4.9). In Exercises 5.4.10
and 5.4.13 we ask the reader to examine some properties of commuting endo-
morphisms.

5.4.4 Linear maps and matrices

In this section we make precise the connection between linear maps and matri-
ces. As we shall see, the two concepts are linked by specific choices of basis. This
then gives rise to the question, “What is the effect of choosing different bases,” and
so to the notion of change of basis formulae.
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Let us get things started by making precise the connection between linear maps
and matrices upon the choice of a basis. We let F be a field, and U and V be F-vector
spaces. We letBU andBV be bases for U and V, respectively. In order to make the
connection to matrices notationally convenient, it is useful to introduce index sets
I and J that index the elements of the basesBV andBU, respectively. Precisely, we
let I and J be sets for which there exist bijections ϕV : I → BV and ϕU : J → BU.
Now let L ∈ HomF(U; V). For u ∈BU denote j = ϕ−1

U (u) ∈ J. SinceBV is a basis for
V, for each i ∈ I there exists ai j ∈ F, with ai j being nonzero for only finitely many i,
such that

L(u) =
∑
i∈I

ai jϕV(i),

i.e., L(u) is a finite linear combination of basis vectors fromBV. The matrix [L]BV
BU

: I×

J → F defined by [L]BV
BU

(i, j) = ai j. Summarising this, we have the following
definition.

5.4.20 Definition (Matrix representative of linear map relative to bases) Let F be
a field, let U and V be F-vector spaces, let BU and BV be bases for U and V,
respectively, and let I and J be sets for which there exist bijections ϕU : J→BU and
ϕV : I →BV. If L ∈ HomF(U; V) then the matrix representative of L with respect to
the basesBU andBV and to the bijections ϕU and ϕV is the map [L]BV

BU
: I × J → F

as defined above. •

Let us represent this a little more explicitly in the case where U and V are finite-
dimensional, having basesBU = {u1, . . . ,un} andBV = {v1, . . . , vm}, respectively. In
this case we can write

L(u1) = a11v1 + a21v2 + · · · + am1vm,

L(u2) = a12v1 + a22v2 + · · · + am2vm,
...

L(un) = a1nv1 + a2nv2 + · · · + amnvm,

(5.17)

for uniquely defined ai j, i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}. In this case the matrix repre-
sentative for L with respect to the basesBU andBV is

[L]BV
BU
=


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 . (5.18)

Note carefully the way one assembles the coefficients in (5.17) into the matrix
in (5.18); what appear as “rows” in (5.17) are the columns in the matrix representa-
tive.
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Note that a matrix associated to a linear map L ∈ HomF(U; V) is defined only
once one defines bases for both U and V. As we shall see below, different bases
generally give rise to different matrices for the same linear map. A helpful way to
think about the correspondence between a linear map and its matrix representative
is as follows. Let us first recall from Section 4.5.5 some constructions associated
with a vector space V in the presence of a basisB . In Theorem 4.5.45 we showed
thatB gives rise to an F-isomorphism from V to

⊕
u∈B F. In order to match this

with our matrix constructions, let I be an index set such that there exists a bijection
ϕB : I → B . Then the conclusion of Theorem 4.5.45 is that, associated toB and
ϕB , there is an isomorphism ιB : V → FI

0 defined as follows. If v ∈ V then we can
write

v = c1ϕB (i1) + · · · + ckϕB (ik)

for some unique c1, . . . , ck ∈ F∗ and i1, . . . , ik ∈ I. We then define

ιB (v)(i) =

ϕB (i), i ∈ {1, . . . , ik},

0F, i < {i1, . . . , ik}.

With this construction in place, the following result tells us that [L]BV
BU

is what L
“looks like” when we use the isomorphisms ιBU : U→ FJ

0 and ιBV : V→ FI
0.

5.4.21 Theorem (Interpretation of matrix representative) Let F be a field, let U and V be
F-vector spaces, letBU andBV be bases for U and V, respectively, and let I and J be sets for
which there exist bijections ϕU : J→BU and ϕV : I→BV. If L ∈ HomF(U; V) then, with
the isomorphisms ιBU : U→ FJ

0 and ιBV : V→ FI
0 as defined above, the following diagram

commutes:
U L //

ιBU
��

V
ιBV
��

FJ
0

[L]
BV
BU

// FI
0

In particular, the map L 7→ ιBV
◦L◦ι−1

BU
is an isomorphism of the F-vector spaces HomF(U,V)

and MatI×J(F).
Proof Let u ∈ U and write

u = c1ϕU( j1) + · · · + ckϕU( jk)

for unique c1, . . . , ck ∈ F∗ and j1, . . . , jk ∈ J. Then, using the definition of ιBU , we
compute, for i ∈ I,

[L]BV
BU
◦ ιBU(u)(i) =

k∑
l=1

[L]BV
BU

(i, jl)cl. (5.19)

On the other hand, using the definition of the matrix representative,

L(u) =
k∑

l=1

clL(ϕU( jl)) =
∑
i∈I

k∑
l=1

cl[L]BV
BU

(i, jl)ϕV(i). (5.20)
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The result now follows by comparing (5.19) and (5.20) and from the definition of ιBV .
The final assertion of the theorem follows by noting that the given map is a

bijection, and by directly checking that it is linear. ■

The next result tells us that the matrix representative of the composition of
linear maps is the product of the matrix representatives.

5.4.22 Theorem (Matrix representative of a composition) Let F be a field, let U, V, and
W be F-vector spaces, letBU,BV, andBW be bases for U, V, and W, respectively, and let
I, J, and K be index sets for which there exists bijections ϕU : I → BU, ϕV : J → BV, and
ϕW : K→BW. If L ∈ HomF(U; V) and M ∈ HomF(V; W), then

[M ◦ L]BW
BU
= [M]BW

BV
[L]BV
BU
.

Proof For i ∈ I compute, using the definition of matrix representative and using
linearity,

(M ◦ L)(ϕU(i)) = M

∑
j∈J

[L]BV
BU

( j, i)ϕV( j)


=

∑
j∈J

[L]BV
BU

( j, i)M(ϕV( j))

=
∑
j∈J

∑
k∈K

[L]BV
BU

( j, i)[M]BW
BV

(k, j)ϕW(k)

=
∑
k∈K

[M ◦ L]BW
BU

(k, i)ϕW(k),

which gives the result. ■

For endomorphisms of a vector space, the preceding result, combined with
Theorem 5.4.21 has the following corollary.

5.4.23 Corollary (Matrix representatives of endomorphisms) Let F be a field, let V be an
F-vector space, letB be a basis for V, let I be an index set for which there exists a bijection
ϕ : I → B , and let ιB : V → FI

0 be the isomorphism defined preceding the statement of
Theorem 5.4.21. Then the map L 7→ ιB ◦ L ◦ ι−1

B
is an isomorphism of the F algebras

EndF(V) and MatI×I(F).

Let us give an example of how to construct the matrix representative of a linear
map in a simple case.

5.4.24 Example (Matrix representative of a linear map) Let U = F2 and V = F3. Define
an element L of HomF(U; V) by

L(x1, x2) = (x1 − 2Fx2, x2, 3Fx1 − x2),

where kF = k1F, recalling the notation of Proposition 4.2.10. As bases for F2 and F3,
let us use the standard bases which we denote by {e1, e2} and { f 1, f 2, f 3}. We take
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I = {1, 2, 3} and J = {1, 2}, and use the obvious bijections ϕU( j) = e j, j ∈ {1, 2}, and
ϕV(i) = f i, i ∈ {1, 2, 3}. It is then a simple computation to see that

L(e1) = (1F, 0F, 3F) = 1F f 1 + 0F f 2 + 3F f 3,

L(e2) = (−2F, 1F,−1F) = −2F f 1 + 1F f 2 − 1F f 3.

Thus the matrix representative for L associated to these bases and bijections is given
by

[L]BV
BU
=

1F −2F

0F 1F

3F −1F

 . •

Note that in the preceding example, since the linear map is between F2 and
F3, by Theorem 5.1.13 we already know that there is an exact correspondence
between such linear maps and matrices. The following result records how this
previous correspondence between linear maps and matrices meshes with the one
of Definition 5.4.20. The result says, roughly, that the linear map defined by a
matrix has the matrix itself as its matrix representative with respect to the standard
bases.

5.4.25 Proposition (Matrix representative associated to standard bases) Let F be a
field, let I and J be index sets, let U = FJ

0 and V = FI
0, and letBU = {ej}j∈J andBV = {fi}i∈I

be the standard bases for FJ
0 and FI

0, respectively. Let ϕU : J → BU and ϕV : I → BV be
defined by

ϕU(j) = ej, j ∈ J, ϕV(i) = fi, i ∈ I.

If A ∈ MatI×J(F) is column finite and so defines an element of HomF(U; V) by Theo-
rem 5.1.13, then [A]BV

BU
= A.

Proof This follows directly from the computations in the proof of Theorem 5.1.13 and
the constructions preceding Definition 5.4.20. ■

Note that if one chooses bases for FJ
0 and FI

0 that are not the standard bases,
then the preceding result is generally not true. Thus the result is as much about
the standard bases as it is about the linear map defined by a matrix A. We shall
explore this further below when we discuss changing bases.

5.4.5 Changing of bases

Now let us address the rather important matter of changes of basis. We first
study how one can construct an invertible matrix, called the change of basis matrix,
associated with any two bases for the same vector space. Then we examine how the
change of basis matrix is used to relate matrix representatives relative to different
bases.

The following result provides the existence of a matrix that relates two different
bases. The statement of the result relies on the fact that two bases have the same
cardinality (Theorem 4.5.25).
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5.4.26 Proposition (Existence of change of basis matrix) Let F be a field, let V be an
F-vector space, letB andB ′ be bases for V, and let I be an index set for which there exist
bijections ϕ : I→B and ϕ′ : I→B ′. Then there exists a unique invertible column finite
matrix P ∈MatI×I(F) such that

ϕ(i0) =
∑
i∈I

P(i, i0)ϕ′(i)

for each i0 ∈ I.
Proof Let i0 ∈ I. SinceB ′ is a basis there exists unique i1, . . . , ik ∈ I and c1, . . . , ck ∈ F∗

such that
ϕ(i0) = c1ϕ

′(i1) + · · · + ckϕ
′(ik).

One then defines P by asking that P(i, i0) = c j if i = i j for some j ∈ {1, . . . , k}, and that
P(i, i0) = 0F for i ∈ I\{i1, . . . , ik}. Note that P thus defined is column finite. We next show
that it is invertible. To do this, we construct its inverse. By swapping the rôles ofB
andB ′, our above argument gives the existence a column finite matrix Q ∈MatI×I(F)
such that

ϕ′(i0) =
∑
i∈I

Q(i, i0)ϕ(i)

for each i0 ∈ I. We claim that QP = II. Let i0 ∈ I and note that

ϕ(i0) =
∑
i∈I

P(i, i0)ϕ′(i) =
∑
i∈I

∑
i′∈I

P(i, i0)Q(i′, i)ϕ(i′) =
∑
i′∈I

(QP)(i′, i0)ϕ(i′).

Since {ϕ(i)}i∈I is a basis, and in particular is linearly independent, this implies that

(QP)(i′, i0) =

1F, i′ = i0,
0F, i′ , i0.

In other words, QP = II. In like manner we compute

ϕ′(i0) =
∑
i∈I

Q(i, i0)ϕ(i) =
∑
i∈I

∑
i′∈I

Q(i, i0)P(i′, i)ϕ′(i′) =
∑
i′∈I

(PQ)(i′, i0)ϕ′(i′),

which leads to the conclusion, using the fact that {ϕ′(i)}i∈I is linearly independent, that
PQ = II. Thus Q is the inverse of P. ■

We introduce some notation and terminology associated with the matrix P of
the preceding result.

5.4.27 Definition (Change of basis matrix) Let F be a field, let V be an F-vector space,
letB andB ′ be bases for V, and let I be an index set for which there exist bijections
ϕ : I→B and ϕ′ : I→B ′. The matrix P of Proposition 5.4.26 is called the change
of basis matrix from the basisB to the basisB ′, and is denoted by PB

′

B . •

As a corollary to Proposition 5.4.26 we have the following result.
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5.4.28 Corollary (Inverse of change of basis matrix) Let F be a field, let V be an F-vector
space, letB andB ′ be bases for V, and let I be an index set for which there exist bijections
ϕ : I→B and ϕ′ : I→B ′. Then PBB ′ = (PB

′

B )−1.
Proof This was shown during the course of the proof of Proposition 5.4.26. ■

If one has more than two bases, the change of basis matrices can be related in a
simple way.

5.4.29 Proposition (Product of change of basis matrices is a change of basis matrix)
Let F be a field, let V be an F-vector space, letB ,B ′, andB ′′ be bases for V, and let I be
an index set for which there exist bijections ϕ : I → B , ϕ′ : I → B ′, and ϕ′′ : I → B ′′.
Then

PB
′′

B = PB
′′

B ′ PB
′

B .
Proof Let i0 ∈ I and compute

ϕ(i0) =
∑
i∈I

PB
′

B
(i, i0)ϕ′(i)

=
∑
i∈I

∑
i′∈I

PB
′

B
(i, i0)PB

′′

B ′
(i′, i)ϕ′′(i′)

=
∑
i′∈I

(PB
′′

B ′
PB

′

B
)(i′, i0)ϕ′′(i′),

giving the result by definition of PB
′′

B
. ■

As our final property of change of basis matrices, let us show that the definition
of the change of basis matrix can, in some sense, be inverted.

5.4.30 Proposition (Invertible matrices give rise to changes of basis) Let F be a field,
let V be an F-vector space, letB be a basis for V, and let I be an index set such that there
exists a bijection ϕ : I → B . Then, given an invertible column matrix P ∈ MatI×I(F),
there exists a basisB ′ for V such that P = PB

′

B .
Proof We defineB ′ by defining an injective mapϕ′ : I→ V and takingB ′ = image(ϕ).
We define ϕ′ by

ϕ′(i0) =
∑
i∈I

P−1(i, i0)ϕ(i).

Let us show that {ϕ′(i)}i∈I is a basis for V. First we prove linear independence. Suppose
that c1, . . . , ck ∈ F and i1, . . . , ik ∈ I satisfy

c1ϕ
′(i1) + · · · + ckϕ

′(ik) = 0V.

Then
k∑

j=1

∑
i∈I

P−1(i, i j)c jϕ(i) = 0V.

Since {ϕ(i)}i∈I is a basis we have

k∑
j=1

P−1(i, i j)c j = 0F, i ∈ I. (5.21)
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Now, if we define c ∈ FI
0 by

c(i) =

c j, i = i j, j ∈ {1, . . . , k},
0F, i < {i1, . . . , ik},

then (5.21) is simply Pc = 0FI
0
, and so c = 0FI

0
by Exercise 4.5.23. Thus c1 = · · · = ck = 0F,

giving linear independence. Now we show that {ϕ′(i)}i∈I generates V. Note that∑
i′∈I

P(i′, i0)ϕ(i′) =
∑
i∈I

∑
i′∈I

P(i′, i0)P−1(i, i′)ϕ(i) = ϕ(i0). (5.22)

Therefore, every element in the basis {ϕ(i)}i∈I is a finite linear combination of vectors
from {ϕ′(i)}i∈I. Since every vector in V is a finite linear combination of vectors from
{ϕ(i)}i∈I, it then immediately follows that every vector in V is a finite linear combination
of vectors from {ϕ′(i)}i∈I. ThusB ′ = {ϕ′(i)}i∈I is a basis.

It follows (5.22) that P = PB
′

B
. ■

The result than says that there is a 1–1 correspondence between invertible
matrices and changes of bases, provided one is given an initial basis.

Let us determine the change of basis matrix in an example.

5.4.31 Example (Change of basis matrix) Let V = F3 and consider two bases

B = { f 1 = (1F, 0F, 0F), f 2 = (0F, 1F, 0F), f 3 = (0F, 0F, 1F)},
B ′ = { f ′1 = (1F, 1F, 1F), f ′2 = (0F, 1F, 1F), f ′3 = (0F, 0F, 1F)}.

Note thatB is the standard basis, and we leave to the reader the verification that
B ′ is also a basis. To compute the change of basis matrices we note that

f ′1 = 1F f 1 + 1F f 2 + 1F f 3,

f ′2 = 1F f 2 + 1F f 3,

f ′3 = 1F f 3.

Using the definition of change of basis matrix we then immediately have

PBB ′ =

1F 0F 0F

1F 1F 0F

1F 1F 1F

 .
By Corollary 5.4.28, to compute PB

′

B we need only compute the inverse of PBB ′ .
One can directly verify that

PB
′

B = (PBB ′)
−1 =

 1F 0F 0F

−1F 1F 0F

0F −1F 1F

 .
Note that it is sometimes the case that it is easier to compute the inverse of the
change of basis matrix, and then compute the change of basis matrix by performing
the matrix inverse. •

We may now address the matter of how matrix representations change when
one changes bases.
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5.4.32 Theorem (Change of basis formula) Let F be a field, let U and V be F-vector spaces,
let BU and B ′

U be bases for U, let BV and B ′

V be bases for V, and let I and J be sets for
which there exist bijections ϕU : J → BU, ϕ′U : J → B ′

U, ϕV : I → BV, and ϕ′V : I → B ′

V.
If L ∈ HomF(U; V) then

[L]
B ′V
B ′U
= P

B ′V
BV

[L]BV
BU

(P
B ′U
BU

)−1.

This relation is called the change of basis formula.
Proof For j0 ∈ J we compute

L(ϕ′U( j0)) = L

∑
j∈J

PBU
B ′U

( j, j0)ϕU( j)


=

∑
j∈J

PBU
B ′U

( j, j0)L(ϕU( j))

=
∑
j∈J

∑
i∈I

PBU
B ′U

( j, j0)[L]BV
BU

(i, j)ϕV(i)

=
∑
j∈J

∑
i∈I

∑
i′∈I

PBU
B ′U

( j, j0)[L]BV
BU

(i, j)P
B ′V
BV

(i′, i)ϕ′V(i′)

=
∑
i′∈I

(P
B ′V
BV

[L]BV
BU

PBU
B ′U

)(i′, j0)ϕ′V(i′).

The result now follows from the definition of the matrix representative and from
Corollary 5.4.28. ■

Let us apply the change of basis formula in an example.

5.4.33 Example (Change of basis formula) Let take U = F2, V = F3, and, as in Exam-
ple 5.4.24, take the linear map

L(x1, x2) = (x1 − 2Fx2, x2, 3Fx1 − x2).

As bases for U we take

BU = {e1 = (1F, 0F), e2 = (0F, 1F)},
B ′

U = {e
′

1 = (1F, 1F), e′2 = (0F, 1F)},

and as bases for V we take, as in Example 5.4.31,

BV = { f 1 = (1F, 0F, 0F), f 2 = (0F, 1F, 0F), f 3 = (0F, 0F, 1F)},
B ′

V = { f
′

1 = (1F, 1F, 1F), f ′2 = (0F, 1F, 1F), f ′3 = (0F, 0F, 1F)}.

In Example 5.4.31 we determined that

P
B ′V
BV
=

 1F 0F 0F

−1F 1F 0F

0F −1F 1F

 .
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To determine PBU
B ′U

we note that

e′1 = 1Fe1 + 1Fe2, e′2 = 1Fe2.

Therefore, using the definition of the change of basis matrix,

PBU
B ′U
=

[
1F 0F

1F 1F

]
.

As we saw in Example 5.4.24, the matrix representative of L with respect to the
basesBU andBV is

[L]BV
BU
=

1F −2F

0F 1F

3F −1F

 .
Therefore, we use Theorem 5.4.32 to determine that the matrix representative of L
relative to the basesB ′

U andB ′

V is

[L]
B ′V
B ′U
=

 1F 0F 0F

−1F 1F 0F

0F −1F 1F


1F −2F

0F 1F

3F −1F


[
1F 0F

1F 1F

]
=

−1F −2F

0F 1F

1F −2F

 .
One could also have computed [L]

B ′V
B ′U

by using the definition of matrix represen-
tative applied to the basesB ′

U andB ′

V. Often, when computing matrix represen-
tatives, relative to nonstandard bases, of elements of HomF(Fn; Fm), it is easier to
determine the matrix representative relative to the standard bases, and then use
the change of basis formula. •

5.4.6 Determinant and trace of an endomorphism

In this section we indicate how matrix representatives can be used to define
determinants of endomorphisms of finite-dimensional vector spaces. To motivate
this we recall from Proposition 5.3.3(ii) that if A ∈ Matn×n(F) and if P ∈ Matn×n(F)
is invertible, then

det(PAP−1) = det P det A det P−1 = det A.

Therefore, by Theorem 5.4.32, if V is a finite-dimensional F-vector space, if L ∈
EndF(V), and ifB andB ′ are bases for V, we have

det[L]B
′

B ′ = det(PB
′

B [L]BB (PB
′

B )−1) = det[L]BB .

That is to say, the determinant of the matrix representative of an endomorphism
is independent of choice of basis. With this in mind, we make the following
definition.
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5.4.34 Definition (Determinant of an endomorphism) Let F be a field, let V be a finite-
dimensional F-vector space, and let L ∈ EndF(V). The determinant of L is given by
det L = det[L]B

B
, whereB is any basis for V. •

Determinants of endomorphisms inherit many of the properties of determinants
of square matrices.

5.4.35 Theorem (Properties of determinant) Let F be a field, let V be a finite-dimensional
F-vector space, and let L,K ∈ EndF(V). Then the following statements hold:

(i) det idV = 1F;
(ii) det(L ◦ K) = det L det K;
(iii) L is invertible if and only if det L , 0F;
(iv) if L is invertible then det(L−1) = (det L)−1.

The manner in which one defines the trace is similar. Here one uses the proper-
ties of trace in Proposition 5.3.18 to see that if A ∈ Matn×n(F) and if P ∈ Matn×n(F)
is invertible then we have

tr(PAP−1) = tr(AP−1P) = tr A.

Thus the following definition makes sense.

5.4.36 Definition (Trace of an endomorphism) Let F be a field, let V be a finite-
dimensional F-vector space, and let L ∈ EndF(V). The trace of L is given by
tr L = tr[L]B

B
, whereB is any basis for V. •

The trace has the following properties.

5.4.37 Proposition (Properties of trace) Let F be a field, let V be a finite-dimensional F-vector
space, let L,K,M ∈ EndF(V), and let a ∈ F. Then the following statements hold:

(i) tr(L + K) = tr L + tr K;
(ii) tr(aL) = a tr L;
(iii) tr(L ◦ K) = tr(K ◦ L);
(iv) tr(L ◦ K ◦M) = tr(M ◦ L ◦ K) = tr(K ◦M ◦ L).

5.4.7 Equivalence of linear maps

In Definition 5.1.38 we introduced the idea of equivalence of matrices, say-
ing that matrices A1,A2 ∈ MatI×J(F) are equivalent when there exists invertible
matrices P ∈ MatI×I(F) and Q ∈ MatJ×J(F) such that A2 = PA1Q. Note that, by
Theorem 5.4.32, this is exactly the sort of relationship that relates matrix represen-
tatives of the same linear map relative to different choices of basis. In this section
we flesh out the implications of this observation in a manner analogous to that of
Section 5.1.6.

To begin this process, we begin with a definition of equivalence for linear maps.
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5.4.38 Definition (Equivalence of linear maps) Let F be a field and let U and V be
F-vector spaces. Maps L1,L2 ∈ HomF(U; V) are equivalent if there exists basesBU,1

andBU,2 for U, and basesBV,1 andBV,2 for V such that [L1]BV,1

BU,1
= [L2]BV,2

BU,2
. •

We note that for endomorphisms there is a more natural notion of equivalence,
called “similarity,” which we discuss in Section 5.8.1.

The following result now relates equivalence of linear maps and equivalence of
matrices.

5.4.39 Proposition (Equivalent linear maps and equivalent matrices) Let F be a field,
let U and V be F-vector spaces, and let BU and BV be bases for U and V, respectively.
Then the following statements are equivalent:

(i) the linear maps L1,L2 ∈ HomF(U; V) are equivalent;

(ii) the matrices [L1]BV
BU

and [L2]BV
BU

are equivalent;

(iii) there exists invertible endomorphisms P ∈ EndF(V) and Q ∈ EndF(U) such that
L2 = P ◦ L1 ◦Q.

Proof The equivalence of part (iii) with the other parts is Exercise 5.5.4. Thus we shall
only prove the equivalence of (i) and (ii).

First suppose that L1 and L2 are equivalent and letB ′U andB ′′U be bases for U, and

letB ′V andB ′′V be bases for V such that [L1]
B ′V
B ′U
= [L2]

B ′′V
B ′′U

. By Theorem 5.4.32 we have

[L1]
B ′V
B ′U
= P

B ′V
BV

[L1]BV
BU

(P
B ′U
BU

)−1, [L2]
B ′′V
B ′′U
= P

B ′′V
BV

[L2]BV
BU

(P
B ′′U
BU

)−1.

This immediately gives

[L1]BV
BU
=

(
PBV
B ′V

P
B ′′V
BV

)
[L2]BV

BU

(
PBU
B ′′U

P
B ′U
BU

)
which gives the equivalence of [L1]BV

BU
and [L2]BV

BU
since the product of invertible ma-

trices is invertible by Proposition 5.1.24.
Now suppose that [L1]BV

BU
and [L2]BV

BU
are equivalent. Let I and J be the sets for

which there exist bijections ϕU : J → BU and ϕV : I → BV, and let P ∈ MatI×I(F) and
Q ∈ MatJ×J(F) be such that [L2]BV

BU
= P[L1]BV

BU
Q. By Proposition 5.4.30 letB ′U andB ′V

be bases for U and V, respectively, such that

P = P
B ′V
BV
, Q−1 = P

B ′U
BU
.

Then
[L1]

B ′V
B ′U
= P

B ′V
BV

[L1]BV
BU

(P
B ′U
BU

)−1 = [L2]BV
BU
,

meaning that L1 and L2 are equivalent. ■
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There is a simple way to represent equivalence as per part (iii) of the proposition:

U
L1 //

Q
��

V

P
��

U
L2

// V

The intuition is that L2 is the same as L2 if one looks at things in the right way.
Another manner of interpreting the relationship between equivalent linear

maps and equivalent matrices is the following.

5.4.40 Corollary (Equivalent linear maps and equivalent matrices) Let F be a field, let U
and V be F-vector spaces, letBU andBV be bases for U and V, respectively, and let I and
J be index sets such that there exist bijections ϕU : J → BU and ϕV : I → BV. Then the
F-isomorphism of HomF(U; V) and MatI×J(F) given in Theorem 5.4.21 maps equivalence
classes in HomF(U; V) (with equivalence being as in Definition 5.4.38) to equivalence
classes in MatI×J(F) (with equivalence being as in Definition 5.1.38).

In Theorem 5.1.41(iii) we gave a simple representative for each equivalence
class of matrices in the case where there were finitely many rows and columns. To
prove this equivalence we use row and column operations. Let us prove a result
for equivalence of general linear maps that uses a more geometrically insightful
proof.

5.4.41 Theorem (A simple representative for equivalence classes of linear maps)
Let F be a field, let U and V be F-vector spaces, and let L ∈ HomF(U; V). Then there exists

(i) basesBU andBV for U and V, respectively, and
(ii) sets I, J, and K with bijections ϕU : J→BU and ϕV : I→BV

such that the following properties hold:
(iii) J = K ∪ J′ with K ∩ J′ = ∅;
(iv) I = K ∪ I′ with K ∩ I′ = ∅;
(v) the matrix representative of L relative to the basesBU andBV satisfies

[L]BV
BU

(i, j) =

1F, i, j ∈ K, i = j,
0F, otherwise.

Proof Let B ′′U be a basis for ker(L) and, by Theorem 4.5.26, let B ′U be a linearly
independent set such thatBU = B

′

U ∪B
′′

U is a basis for U. Let K and J′ be sets such

that there exist bijections ϕ′U : K→B ′U and ϕ′′U : J′ →B ′′U . Define J = K
◦

∪ J′ and define
ϕU : J→BU by

ϕU( j) =

ϕ′U( j), j ∈ K,
ϕ′′U( j), j ∈ J′.

Let U′ = spanF(B ′U) so that U = U′ ⊕ ker(L).
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DefineB ′V = {L(u) | u ∈B ′U}. We claim thatB ′V is a basis for image(L). To see this,
let v ∈ image(L) and write v = L(u) for some u ∈ U. We can then write u = u′ + u′′ for
unique u′ ∈ U′ and u′′ ∈ ker(L). We then have L(u) = L(u′). Since u′ is a finite linear
combination of elements ofB ′U, v = L(u′) is a finite linear combination of elements of
B ′V by linearity of L. Thus image(L) = spanF(B ′V). Now let v1, . . . , vk ∈ B

′

V and write
v j = L(u j) for u j ∈B ′U, j ∈ {1, . . . , k}. Then, if c1v1+ · · ·+ ckvk = 0V, it follows by linearity
of L that

c1L(u1) + · · · + ckL(uk) = L(c1u1 + · · · + ckuk) = 0V.

Thus c1u1+ · · ·+ckuk ∈ ker(L), implying that c1u1+ · · ·+ckuk = 0U by Proposition 4.5.37.
Therefore, c1 = · · · = ck = 0F, giving linear independence ofB ′V. ThusB ′V is a basis for
image(L) as claimed.

Using Theorem 4.5.26 letB ′′V ⊆ V be a linearly set such thatBV = B
′

V ∪B
′′

V is a
basis for V. Since L is a bijection fromB ′U toB ′V, there exists a bijection ϕ′U : K→B ′U.

Let I′ be a set such that there exists a bijection ϕ′′V : I′ → B ′′V and take I = K
◦

∪ I′. Then
define a bijection ϕV : I→BV by

ϕV(i) =

ϕ′V(i), i ∈ K,
ϕ′′V(i), i ∈ I′.

We now claim that, with respect to the basesBU andBV, the matrix representative
of L is as claimed. First, if j ∈ K and if i ∈ I then we have

L(ϕU( j)) = ϕV( j),

from which we immediately deduce that

[L]BV
BU

(i, j) =

1F, i, j ∈ K, i = j,
0F, otherwise

in this case. If j ∈ J′, since ϕU( j) ∈ ker(L), it follows that [L]BV
BU

(i, j) = 0F for any i ∈ I.
This gives the desired matrix representative. ■

After understanding the words and symbols, the theorem says that one can
find bases for U and V that are each partitioned into two subsets, and such that the
resulting matrix representative for L is partitioned as follows:

[L]BV
BU
=

[
IK 0K×J′

0I′×K 0I′×J′

]
. (5.23)

We may now indicate a simple characterisation of the equivalence classes in
HomF(U; V).



776 5 Linear algebra

5.4.42 Corollary (Characterisation of equivalent linear maps) Let F be a field, and let U
and V be F-vector space. For linear maps L1,L2 ∈ HomF(U; V), the following statements
hold:

(i) L1 and L2 are equivalent if and only if rank(L1) = rank(L2), nullity(L1) =
nullity(L2), and defect(L1) = defect(L2);

(ii) if U is finite-dimensional, then L1 and L2 are equivalent if and only if rank(L1) =
rank(L2);

(iii) if V is finite-dimensional, then L1 and L2 are equivalent if and only if rank(L1) =
rank(L2) and nullity(L1) = nullity(L2).

Proof (i) Suppose that L1 and L2 are equivalent. By the proof of Theorem 5.4.41 it is
possible to find basesBU,1 andBU,2 for U and basesBV,1 andBV,2 for V such that

[L1]BV,1

BU,1
=

[
IK1 0K1×J′1

0I′1×K1 0I′1×J′1

]
, [L2]BV,2

BU,2
=

[
IK2 0K2×J′2

0I′2×K2 0I′2×J′2

]
,

where card(Ka) = rank(La), card(J′a) = nullity(La), and card(I′a) = defect(La) for a ∈ {1, 2}.
Moreover, by Proposition 5.4.39, the matrices [L1]BV,1

BU,1
and [L2]BV,2

BU,2
are equivalent. The

following lemma is then useful.

1 Lemma Let F be a field and let I and J be index sets. If A1,A2 ∈ MatI×J(F) are equivalent
then rank(A1) = rank(A2), nullity(A1) = nullity(A2), and defect(A1) = defect(A2).

Proof Let P ∈ MatI×I(F) and Q ∈ MatJ×J(F) be invertible matrices such that A2 =
PA1Q.

We claim that the map

image(A1) ∋ y 7→ Py ∈ FI
0

is a bijection onto image(A2). Indeed, let y ∈ image(A1) and suppose that y = A1x.
Then

y = P−1A2Qx =⇒ Py = A2Qx,

showing that Py ∈ image(A2). Swapping the rôles of A1 and A2 shows that if y ∈
image(A2) then P−1y ∈ image(A1). Then P maps image(A1) bijectively onto image(A2),
and so rank(A1) = rank(A2).

We next claim that the map

ker(A2) ∋ x 7→ Qx ∈ FI
0

is a bijection onto ker(A1). Indeed, if x ∈ ker(A2 then

A2x = 0FI
0
=⇒ PA1Qx = 0FI

0
.

Since P is invertible, by Exercise 4.5.23 it follows that A1Qx = 0FI
0
, or that Qx ∈ ker(A1).

An entirely similar computation, but reversing the rôles of A1 and A2, shows that if
x ∈ ker(A1) then Q−1x ∈ ker(A2). Thus Q does indeed map ker(A2) bijectively onto
ker(A1). Thus nullity(A1) = nullity(A2).
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Finally, we claim that the linear map

FI
0/ image(A1) ∋ y + image(A1) 7→ Py + image(A2) ∈ FI

0/ image(A2) (5.24)

is well-defined and a bijection. To check that the map is well-defined, suppose that
y1+ image(A1) = y2+ image(A1). Then there exists x ∈ image(A1) such that y2 = y1+z.
By the first part of the proof, Pz ∈ image(A2), and so Py1+image(A2) = Py2+image(A2).
To see that the map in (5.24) is injective, suppose that Py+image(A2) = 0FI

0
+image(A2).

Thus Py ∈ image(A2) and so, by the first part of the proof, y ∈ image(A1). Thus
y + image(A1) = 0FI

0
, giving injectivity of the map in (5.24). To show surjectivity, let

y + image(A2) ∈ FI
0/ image(A2). One can then see that clearly this vector is the image

of P−1y + image(A1) under the map (5.24). Thus the map (5.24) is indeed a bijection,
and so it follows that defect(A1) = defect(A2). ▼

From the lemma and the fact that the rank, nullity, and defect of a linear map agree
with the rank, nullity, and defect, respectively, of its matrix representative (why?), this
part of part (i) follows.

Conversely, if the ranks, nullities, and defects of L1 and L2 agree, then, by the proof
of Theorem 5.4.41, both possess matrix representatives of the form (5.23) with the sets
K, I′, and J′ having equal cardinalities for both L1 and L2. Thus the matrix representa-
tives are equivalent, and then so too are the linear maps by Proposition 5.4.39.

(ii) By the Rank–Nullity Formula, card(J′a) = dimF(U) − card(Ka) for a ∈ {1, 2}.
Thus nullity(L1) = nullity(L2) if and only if rank(L1) = rank(L2). Moreover, by The-
orem 4.5.56, card(I′a) = dimF(V) − card(Ka). Since Ka is finite, it follows from Theo-
rem 1.7.17 that card(I′a) = dimF(V) in the case when dimF(V) is infinite. Therefore, in
either of the cases when dimF(V) is finite or infinite we have defect(L1) = defect(L2).
Thus equality of the ranks in this case implies equality of the nullities and the defects.

(iii) By Theorem 4.5.56, card(I′a) = dimF(V) − card(Ka) for a ∈ {1, 1}. Thus
defect(L1) = defect(L2) if and only if rank(L1) = rank(L2). ■

The lemma in the preceding proof immediately gives the following generalisa-
tion of Theorem 5.1.41.

5.4.43 Corollary (Equivalence of general matrices over fields) Let F be a field, let I and
J be index sets, and let A1,A2 ∈MatI×J(F). Then the following statements are equivalent:

(i) A1 and A2 are equivalent;
(ii) rank(A1) = rank(A2), nullity(A1) = nullity(A2), and defect(A1) = defect(A2);
(iii) there exists sets K, I′, and J′ such that

(a) I = K ∪ I′ and K ∩ I′ = ∅,
(b) J = K ∪ J′ and K ∩ J′ = ∅, and
(c) the matrices A1 and A2 are equivalent to a matrix of the form (5.23).

For endomorphisms of finite-dimensional vector spaces, our development of
equivalence, along with results from Section 5.1.6, yields the following character-
isation of invertible maps.
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5.4.44 Corollary (Characterisation of invertible endomorphisms of finite-
dimensional vector spaces) Let F be a field and let V be a finite-dimensional
F-vector space. For L ∈ EndF(V), the following statements are equivalent:

(i) L is invertible;
(ii) rank(L) = dimF(V);
(iii) det L , 0F;
(iv) L is equivalent to idV;
(v) L possesses a left inverse;
(vi) L possesses a unique left inverse;
(vii) L possesses a right inverse;
(viii) L possesses a unique right inverse;
(ix) L is injective;
(x) L in surjective.

Proof This follows from Proposition 5.4.39, along with Theorem 5.1.42, Corol-
lary 5.1.43 and Theorem 5.3.10. ■

As is shown in Example 5.1.44, the preceding corollary is not generally true
when V is infinite-dimensional.

It is worth taking a moment to understand why, in infinite dimensions, one
needs equality of not just rank, but of nullity and defect to characterise equivalence
of linear maps. The reason has to do with the arithmetic of infinite cardinal numbers
as evidenced by Theorem 1.7.17, for example. Particularly, it is possible to add
two nonzero cardinal numbers and not arrive at a larger cardinal number. This
may seem strange, but it arises in a straightforward way as the following examples
show.

5.4.45 Examples (Equivalent and inequivalent linear maps)
1. Let us take I = Z>0 so that, in the notation of Example 4.5.2–4, FI

0 = F∞0 . We
take U = V = F∞0 and recall from Theorem 5.1.13 that linear maps from U to V
can be regarded as column finite matrices with a countably infinite number of
rows and columns. Indeed, we shall represent our linear maps exactly in this
way. With this in mind we define L1,L2 ∈ HomF(U; V) by

L1 =



1F 0F 0F 0F 0F 0F · · ·

0F 0F 0F 0F 0F 0F · · ·

0F 0F 1F 0F 0F 0F · · ·

0F 0F 0F 0F 0F 0F · · ·

0F 0F 0F 0F 1F 0F · · ·

0F 0F 0F 0F 0F 0F · · ·
...

...
...

...
...

...
. . .


, L2 =



0F 0F 0F 0F 0F 0F · · ·

0F 1F 0F 0F 0F 0F · · ·

0F 0F 0F 0F 0F 0F · · ·

0F 0F 0F 1F 0F 0F · · ·

0F 0F 0F 0F 0F 0F · · ·

0F 0F 0F 0F 0F 1F · · ·
...

...
...

...
...

...
. . .


.

Let us denote by {e j} j∈Z>0 the standard basis for F∞0 , and make the following
observations about the linear maps L1 and L2:
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(a) ker(L1) = spanF(e j| j even);
(b) ker(L1) = spanF(e j| j odd);
(c) image(L1) = spanF(e j| j odd);
(d) image(L2) = spanF(e j| j even).

Therefore,

rank(L1) = rank(L2) = card(Z>0),
defect(L1) = defect(L2) = card(Z>0),
nullity(L1) = nullity(L2) = card(Z>0).

Therefore, L1 and L2 are equivalent. Indeed, one can check that if we define

P =



0F 1F 0F 0F 0F 0F · · ·

1F 0F 0F 0F 0F 0F · · ·

0F 0F 0F 1F 0F 0F · · ·

0F 0F 1F 0F 0F 0F · · ·

0F 0F 0F 0F 0F 1F · · ·

0F 0F 0F 0F 1F 0F · · ·
...

...
...

...
...

...
. . .


,

then A2 = PA1P−1.
2. We take U = V = F∞0 . Again, let us simply define a linear map by writing the

matrix associated to it. Thus we define L1,L2 ∈ HomF(U; V) by

L1 =



1F 0F 0F 0F 0F 0F · · ·

0F 1F 0F 0F 0F 0F · · ·

0F 0F 1F 0F 0F 0F · · ·

0F 0F 0F 1F 0F 0F · · ·

0F 0F 0F 0F 1F 0F · · ·

0F 0F 0F 0F 0F 1F · · ·
...

...
...

...
...

...
. . .


, L2 =



0F 0F 0F 0F 0F 0F · · ·

1F 0F 0F 0F 0F 0F · · ·

0F 1F 0F 0F 0F 0F · · ·

0F 0F 1F 0F 0F 0F · · ·

0F 0F 0F 1F 0F 0F · · ·

0F 0F 0F 0F 1F 0F · · ·
...

...
...

...
...

...
. . .


.

Denoting by {e j} j∈Z>0 the standard basis for F∞0 , we make the following observa-
tions about the linear maps L1 and L2:

(a) ker(L1) = ker(L2) = {0F∞0
};

(b) image(L1) = V;
(c) image(L2) = spanF(e j| j ∈ Z>0 \ {1}).

In particular this shows that

rank(L1) = rank(L2) = card(Z>0),
0 = defect(L1) < defect(L2) = 1,
nullity(L1) = nullity(L2) = 0.
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Thus while the ranks and nullities of these two linear maps agree, their defects
do not, and so they are not equivalent.

3. We take U = F∞0 and V = F2. Thus a linear map from U to V is represented by a
matrix with two rows and a countably infinite number of columns. We define
L1,L2 ∈ HomF(U; V) by

L1 =

[
1F 0F 1F 0F 1F 0F · · ·

0F 1F 0F 1F 0F 1F · · ·

]
, L2 =

[
0F 1F 0F 1F 0F 1F · · ·

0F 0F 1F 0F 1F 0F · · ·

]
.

Let us denote by {e j} j∈Z>0 and { f 1, f 2} the standard bases for U and V. About
these two linear maps we make the following observations:

(a) image(L1) = image(L2) = V;
(b) ker(L1) = {0F∞0

};
(c) ker(L2) = {e1}.

In particular this shows that

rank(L1) = rank(L2) = 2,
defect(L1) = defect(L2) = 0,
0 = nullity(L1) < nullity(L2) = 1.

Thus while the ranks and defects of these two linear maps agree, their nullities
do not, and so they are not equivalent. •

We close this section by using our characterisations of equivalence to assert the
existence of linear left- and right-inverses for injective and surjective linear maps.
While the existence of left- and right-inverse, not necessarily linear, follows from
the general Proposition 1.3.9, the following result further asserts that these can be
chosen to be linear.

5.4.46 Proposition (Linear left and right inverses) Let F be a field, let U and V be F-vector
spaces, and let L ∈ HomF(U; V). Then the following statements hold:

(i) L is injective if and only if there exists KL ∈ HomF(V; V) such that KL ◦ L = idU;
(ii) L is surjective if and only if there exists KR ∈ HomF(V; V) such that L ◦ KR = idV.

Proof (i) By choosing the bases BU and BV of Theorem 5.4.41, the injectivity of L
ensures that the corresponding matrix representative of L will have the form

[L]BV
BU
=

[
IK

0I′×K

]
.

This matrix possesses a left-inverse [
IK 0K×I′

]
,

and this part of the result follows by taking KL such that the preceding matrix is equal
to [KL]BU

BV
.
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(ii) We again write the matrix representative of L using the bases from Theo-
rem 5.4.41, and in this case the surjectivity of L ensures that

[L]BV
BU
=

[
IK 0K×J′

]
.

This matrix has a right-inverse [
IK

0J′×K

]
,

and this part of the result follows by taking KR such that the preceding matrix is equal
to [KR]BU

BV
. ■

5.4.8 Linear equations in vector spaces

Next we turn to the topic of linear equations in vector spaces, these being a
generalisation of systems of linear equations as discussed in Section 5.1.8. Much
of what we say here is a direct consequence of the results in Section 5.1.8, but
we offer complete proofs in any case, to emphasise the geometric flavour of linear
maps as opposed to the computational flavour of matrices.

We begin with a definition of the object of interest.

5.4.47 Definition (Linear equation) Let F be a field and let U and V be F-vector spaces.
(i) A linear equation is a pair (L, b) ∈ HomF(U; V) × V.
(ii) A linear equation (L, v0) is homogeneous if v0 = 0V.
(iii) The solution set for a linear equation (L, v0) is the subset of U defined by

Sol(L, v0) = {u ∈ U | L(u) = v0}.

A solution of the linear equation (L, v0) is an element of the solution set.
(iv) For a linear equation (L, v0), the augmented linear map for the equation is the

element [L, v0] ∈ HomF(U ⊕ F; V) defined by

[L, v0](u, a) = L(u) + av0. •

Let us record the basic result addressing the matter of existence and uniqueness
of solutions to linear equations.

5.4.48 Proposition (Existence and uniqueness of solutions) Let F be a field, let U and
V be F-vector spaces, and let (L,v0) ∈ HomF(U; V) × V be a linear equation. Then the
following statements hold:

(i) Sol(L,v0) is nonempty if and only if v0 ∈ image(L);
(ii) in particular, Sol(L,v0) is nonempty for every v0 ∈ V if and only if L is surjective;
(iii) Sol(L,v0) is a singleton if and only if

(a) v0 ∈ image(L) and
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(b) L is injective.
Proof We only prove the final assertion since the first two are obvious. Suppose
that Sol(L, v0) is a singleton. By the first part of the result, v0 ∈ image(L). If L is not
injective then, by Exercise 4.5.23, there exists u ∈ U \ {0U} such that L(u) = 0V. Now, if
u0 ∈ Sol(L, v0) then

L(u + u0) = L(u) + L(u0) = 0V + v0 = v0,

showing that u+u0 ∈ Sol(L, v0). Thus if L is not injective, Sol(L, v0) cannot be a singleton.
Conversely, suppose that v0 ∈ image(L) and that L is injective. Then there exists

u0 ∈ U such that L(u0) = v0. Moreover, if u ∈ Sol(L, v0) then

L(u − u0) = L(u) − L(u0) = v0 − v0 = 0V.

Since L is injective, by Exercise 4.5.23 we have u = u0, and so Sol(L, v0) = {u0}. ■

We may also characterise the set of solutions of a linear equation as an affine
subspace, following Definition 4.5.13.

5.4.49 Proposition (Characterisation of Sol(L, v0)) Let F be a field, let U and V be F-vector
spaces, and let (L,v0) ∈ HomF(U; V) × V be a linear equation. Then Sol(L,v0), if it is
nonempty, is an affine subspace of U whose linear part is ker(L).

Proof We assume that Sol(L, v0) is nonempty and so let u0 ∈ Sol(L, v0). Let us define

AL,u0 = {u + u0 | u ∈ ker(L)},

which is an affine subspace of U with linear part ker(L). If u ∈ AL,u0 then u = u0 + u′ for
u′ ∈ ker(L) and so

L(u) = L(u0 + u′) = L(u0) + L(u′) = v0 + 0V = v0,

so showing that AL,u0 ⊆ Sol(L, v0). Now suppose that u ∈ Sol(L, v0) and compute

L(u − u0) = L(u) − L(u0) = v0 − v0 = 0V,

so that u = u0 + u′ for u′ ∈ ker(L). Thus Sol(L, v0) ⊆ AL,u0 . ■

The same comments concerning the determination of Sol(L, v0) in practice can
be made as were made for systems of linear equations (see the paragraph following
Proposition 5.1.56).

It is also possible to characterise the existence of solutions in terms of the
augmented linear map. For matrices this was done in Corollary 5.1.59. Our result
here for linear maps has a slightly different form, and we link the two results in a
corollary following our next result.
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5.4.50 Theorem (Existence and uniqueness of solutions, and the augmented linear
map) Let F be a field, let U and V be F-vector spaces, and let (L,v0) ∈ HomF(U; V) × V
be a linear equation. Then

(i) Sol(L,v0) is nonempty if and only if image([L,v0)]) = image(L), and
(ii) Sol(L,v0) is a singleton if and only if

(a) image([L,v0)]) = image(L) and
(b) there exists u0 ∈ U such that

ker([L,v0]) = {(u, a) ∈ U ⊕ F | u = au0}.

Proof (i) Clearly we always have image(L) ⊆ image([L, v0]). Thus we shall show that
Sol(L, v0) is nonempty if and only if image([L, v0]) ⊆ image(L). Suppose that Sol(L, v0)
is nonempty, say u0 ∈ Sol(L, v0), and let v ∈ image([L, v0]). Thus there exists u ∈ U and
a ∈ F such that

v = L(u) + av0 = L(u) + aL(u0) = L(u + au0).

Thus v ∈ image(L). Conversely suppose that image([L, v0]) ⊆ image(L). Since v0 ∈

image(L) (we have v0 = L(0U) + 1Fv0), it immediately follows that v0 ∈ Sol(L, v0), as
desired.

(ii) By the first part of the theorem, if suffices to suppose that Sol(L, v0) is nonempty,
and then prove that it is a singleton if and only if there exists u0 ∈ U such that

ker([L, v0]) = {(u, a) ∈ U ⊕ F | u = au0}.

First suppose that Sol(L, v0) = {u0} for some u0 ∈ U. By Proposition 5.4.48 this implies
that L is injective. Thus (u, a) ∈ ker([L, v0]) if and only if

0V = [L, v0](u, a) = L(u) + av0 = L(u) + aL(u0) = L(u + au0).

That is to say, by Exercise 4.5.23, (u, a) ∈ ker([L, v0]) if and only if u ∈ spanF(u0).
Conversely, suppose that u0 ∈ U has the property that

ker([L, v0]) = {(u, a) ∈ U ⊕ F | u = au0}.

Then let u ∈ Sol(L, v0) and compute

L(u) = v0 =⇒ (u,−1F) ∈ ker([L, v0]) =⇒ u = −u0.

That is to say, Sol(L, v0) = {−u0}. ■

The next corollary follows mirrors Corollary 5.1.59, but we give here a proof
that does not rely on row reduction.
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5.4.51 Corollary (Rank, and existence and uniqueness of solutions) Let F be a field, let
U and V be F-vector spaces, and let (L,v0) ∈ HomF(U; V) × V be a linear equation with
rank(L) finite. Then

(i) Sol(L,v0) is nonempty if and only if rank([L,v0]) = rank(L), and
(ii) Sol(L,v0) is a singleton if and only if

(a) rank([L,v0]) = rank(L),
(b) dimF(ker([L,v0])) = 1, and
(c) ker([L,v0]) ∩ (U ⊕ {0F}) = {(0U, 0F)}.

Proof (i) Given the form of [L, v0] (and referring to the proof of Theorem 5.4.50) we
have

rank([L, v0]) =

rank(L), v0 ∈ image(L),
rank(L) + 1, v0 < image(L).

Since rank(L) is finite the result follows.
(ii) From the first part of the result it suffices to show that Sol(L, v0) is a singleton

if and only if dimF(ker([L, v0])) = 1. First suppose that Sol(L, v0) is a singleton. By
Theorem 5.4.50 we have

ker([L, v0]) = {(u, a) ∈ U ⊕ F | u = au0}

for some u0 ∈ U. One can easily see that {(u0, 1)} is a basis for ker([L, v0]), and so
dimF(ker([L, v0])) = 1. Also, if (u, a) ∈ ker([L, v0])∩ (U⊕ {0F}), then (u, a) = a(u0, 1F) and
a = 0F. Thus (u, a) = (0U, 0F), as claimed.

Conversely, suppose that dimF([L, v0]) = 1 and that ker([L, v0]) ∩ (U ⊕ {0F}) =
{(0U, 0F)}, and let (u0, a0) be a basis for ker([L, v0]). We claim that a0 , 0F. Indeed, if
a0 = 0F then we have (u0, 0F) ∈ ker([L, v0])∩ (U⊕{0F}). This contradicts the assumption
that ker([L, v0]) ∩ (U ⊕ {0F}) = {(0U, 0F)} since u0 , 0U. Thus we have

ker([L, v0]) = {a(u0, a0) | a ∈ F} = {aa0(a−1
0 u0, 1F) | a ∈ F}

= {a(a−1
0 u0, 1F) | a ∈ F} = {(u, a) | u = aa−1

0 u0}.

The result now follows from Theorem 5.4.50. ■

Note that the corollary is false if rank(L) is infinite since, in this case we have,
using Theorem 1.7.17,

rank([L, v0]) ≤ rank(L) + 1 = rank(L)

and
rank([L, v0]) ≥ rank(L),

i.e., rank([L, v0]) = rank(L) for any v0 ∈ V, even when v0 < image(L). This is entirely
analogous to the difference between the finite- and infinite-dimensional parts of
Corollary 5.4.42.
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5.4.9 Eigenvalues, eigenvectors, and spectral values

In this section we introduce an important concept that can be associated with
an endomorphism: the notion of an eigenvalue, or more generally a spectral value.
As we shall see in Section 5.8, for finite-dimensional vector spaces the structure
of eigenvalues can say a great deal about the character of an endomorphism. For
infinite-dimensional vector spaces, matters are more complex, and, while we hint
at a few of these complexities here, we shall not have much to say in terms of a more
complete discussion of the infinite-dimensional case, which involves the addition
of analysis, not just algebra, to the mix.

We begin with the definitions.

5.4.52 Definition (Eigenvalue, eigenvector, spectral value) Let F be a field, let V be an
F-vector space, and let L ∈ EndF(V. If λ ∈ F define Lλ ∈ EndF(V) by Lλ = idV −λL.

(i) A spectral value for L is an element λ ∈ F for which Lλ is not invertible.
(ii) An eigenvalue for L is a spectral value λ ∈ F for which Lλ is not injective.
(iii) If λ ∈ F is an eigenvalue for L, an eigenvector for λ is a nonzero vector

v ∈ ker(Lλ). •

Let us first establish the equivalence of the concepts of spectral value and
eigenvalue for endomorphisms of finite-dimensional vector spaces.

5.4.53 Proposition (Spectral values and eigenvalues in finite dimensions) If F be a
field, if V be a finite-dimensional F-vector space, and if L ∈ EndF(V), then λ ∈ F is an
eigenvalue for L if and only if it is a spectral value for L. Moreover, λ ∈ F is an eigenvalue
for L if and only if det Lλ = 0F.

Proof Since eigenvalues are spectral values, we need only show the converse. Thus
suppose that Lλ is not invertible. By Corollary 5.4.44 it follows that Lλ is not injective,
and so by Exercise 4.5.23 it follows that λ is an eigenvalue for L. That eigenvalues are
exactly characterised by the equation det Lλ = 0F follows from Theorem 5.4.35(iii). ■

The preceding result introduces an important object, namely the expression
det Lλ. The following result characterises this expression in a way that will be im-
portant to us in Section 5.8, and which recalls from Proposition 4.4.9 the evaluation
homomorphism.

5.4.54 Proposition (Existence of characteristic polynomial for a linear map) Let F be
a field, let V be a finite-dimensional F-vector space, and let L ∈ EndF(V). Then there exists
a polynomial CL ∈ F[ξ] with the following properties:

(i) CL is monic;
(ii) deg(CL) = dimF(V);
(iii) EvF(CL)(λ) = det Lλ for all λ ∈ F.

Moreover, if card(F) ≥ dimF(V) then the preceding three properties uniquely determine
CL.
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Proof Let B = {v1, . . . , vn} be a basis for V and denote AL = [L]B
B

. Now define
ÂL ∈ Matn×n(F[ξ]) by ÂL = ξIn − AL, and then define CL ∈ F[ξ] by CL = det ÂL. We
claim that CL is monic and has degree n. By Proposition 5.3.6, CL is a sum of terms, each
of which is an n-fold product of polynomials of degree at most 1. Moreover, the only
term in the sum that is a product of polynomials of degree exactly 1 is the term which
is the product of the diagonal elements of ÂL. These diagonal elements are themselves
monic, so their product will also be monic, and the degree is obviously equal to the
number of terms in the product, which is exactly n. Thus CL is indeed monic and of
degree n. If we define AL,λ = λIn −AL for λ ∈ F, we clearly have det AL,λ = EvF(CL)(λ).

For the final assertion of the proposition, suppose that P1 and P2 are two distinct
polynomials satisfying the three properties given. Then EvF(P1 − P2)(a) = 0F for every
a ∈ F. The nonzero polynomial P1 − P2 has degree at most dimF(V) − 1 and so has at
most n − 1 roots by Proposition 4.4.26. This is a contradiction if card(F) ≥ dimF(V),
and so we must have P1 = P2. ■

Note that it is possible that there be more than one polynomial having the three
properties given in the proposition (see Example 5.4.56–1 below). However, since
our interest in these volumes will be primarily with vector spaces over R and C,
the three conditions do in fact uniquely prescribe the characteristic polynomial,
since card(R) and card(C) are both infinite. Moreover, the proof of the proposition
gives a natural way of defining one of the possible polynomials satisfying the three
conditions of the proposition, so let us indicate, outside the confines of the proof,
how this is done:
1. Choose a basis (any basis)B = {v1, . . . , vn} for V.
2. Define the matrix AL ∈Matn×n(F) by AL = [L]B

B
.

3. Define the matrix ÂL ∈Matn×n(F[ξ]) by ÂL = ξIn − AL.
4. Define CL ∈ F[ξ] by CL = det ÂL.

The polynomial CL has a name.

5.4.55 Definition (Characteristic polynomial) Let F be a field, let V be a finite-
dimensional vector space, and let L ∈ EndF(V). The polynomial CL ∈ F[ξ] defined
above is the characteristic polynomial of L. •

This construction is somewhat unsatisfying in the way that any computation
involving bases is unsatisfying. We shall give a more sophisticated view of the
characteristic polynomial in Section 5.8.4.

The upshot of the preceding development is that, for endomorphisms of finite-
dimensional vector spaces, the determining of eigenvalues, or equivalently spectral
values, amounts to computing roots of a monic polynomial whose degree is equal to
the dimension of V. We refer the reader to the discussion at the end of Section 4.7.3
as a reminder of the difficulties this imposes on computation of eigenvalues.

Now let us give some examples that illustrate the notions of eigenvalue and
spectral value.
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5.4.56 Examples (Eigenvalues and spectral values)
1. We let F = Z2, V = F3, and consider the linear map L ∈ EndF(V) given by

V(k1 + 2Z, k2 + 2Z, k3 + 2Z) = (k1 + 2Z, k2 + 2Z, k3 + 2Z), i.e., L = idV. Let us
apply the algorithm above for computing the characteristic polynomial. Using
the standard basis

B = {(1 + 2Z, 0 + 2Z, 0 + 2Z), (0 + 2Z, 1 + 2Z, 0 + 2Z), (0 + 2Z, 0 + 2Z, 1 + 2Z)}

for F3 we compute the matrix representative of L to be

AL =

1 + 2Z 0 + 2Z 0 + 2Z
0 + 2Z 1 + 2Z 0 + 2Z
0 + 2Z 0 + 2Z 1 + 2Z

 .
Therefore,

ÂL =

ξ − (1 + 2Z) 0 + 2Z 0 + 2Z
0 + 2Z ξ − (1 + 2Z) 0 + 2Z
0 + 2Z 0 + 2Z ξ − (1 + 2Z)

 ,
and using the standard rules for computing determinants we have

CL = det ÂL = (ξ − (1 + 2Z))3.

We also claim that the polynomial

P′L = (ξ − (1 + 2Z))3 + ξ2
− ξ

satisfies the three conditions of Proposition 5.4.54. Clearly P′L is monic and has
the required degree. But, as we saw in Example 4.4.10, EvF(ξ2

− ξ)(a) = 0F

for every a ∈ F. Thus EvF(CL) = EvF(P′L). Note that, despite the fact that
here are two candidate characteristic polynomials (if candidacy is defined as
satisfying the conditions of Proposition 5.4.54), the one we use is the one of
Definition 5.4.55, i.e., CL = (ξ − (1 + 2Z))3.

2. We let F = R, V = R2, and consider the two linear maps L1,L2 ∈ EndR(R2)
defined (as 2 × 2 matrices) by

L1 =

[
0 1
1 0

]
, L2 =

[
0 1
−1 0

]
.

To compute the eigenvalues, we compute the characteristic polynomials to be

CL1 = ξ
2
− 1, CL2 = ξ

2 + 1.

Note that CL1 has roots−1 and 1, while CL2 has no roots. Thus L1 has eigenvalues
−1 and 1, while L2 has no eigenvalues.



788 5 Linear algebra

3. We let F = C, V = C2, and consider the two linear maps L1,L2 ∈ EndC(C2)
defined (as 2 × 2 matrices) by

L1 =

[
0 1
1 0

]
, L2 =

[
0 1
−1 0

]
.

These are “the same” two linear maps as in the previous example, and so the
characteristic polynomials are “the same:”

CL1 = ξ
2
− 1, CL2 = ξ

2 + 1.

But now both have roots since C is algebraically complete. Specifically, L1 has
eigenvalues −1 and 1, and L2 has eigenvalues −i and i. The punchline is that
eigenvalues depend on the field over which the vector space is being defined.
This is explored further in Section 5.4.10.

4. For a field F we take V = F∞0 (see Example 4.5.2–4). An endomorphism of
V is then, by Theorem 5.1.13, represented by a matrix with an enumerable
number of rows and columns. With this representation in mind, let us define
L ∈ EndF(V) by

L =



0F 0F 0F 0F 0F · · ·

1F 0F 0F 0F 0F · · ·

0F 1F 0F 0F 0F · · ·

0F 0F 1F 0F 0F · · ·

0F 0F 0F 1F 0F · · ·
...

...
...

...
...

. . .


.

For λ ∈ F we then have

Lλ =



λ 0F 0F 0F 0F · · ·

−1F λ 0F 0F 0F · · ·

0F −1F λ 0F 0F · · ·

0F 0F −1F λ 0F · · ·

0F 0F 0F −1F λ · · ·

...
...

...
...

...
. . .


.

About Lλ we make the following observations.

1 Lemma The following statements hold:
(i) Lλ is injective for all λ;
(ii) Lλ is surjective if and only if λ , 0F.

Proof (i) Let {e j} j∈Z>0 be the standard basis for F∞0 . For λ = 0F one can directly
compute that Lλ(x) = 0F∞0

implies that x( j) = 0F for every j ∈ Z>0. Thus Lλ is
injective if λ = 0F by Exercise 4.5.23. If λ , 0F and if Lλ(x) = 0F∞0

, then a direct
computation shows that

λx(1) = 0F, −x( j) + λx( j + 1) = 0F, j ∈ Z>0.
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This implies that x j = 0F for every j ∈ Z>0, and so implies that Lλ is injective for
λ , 0F by Exercise 4.5.23.
(ii) First note that when λ = 0F then Lλ is not surjective since e1 < image(Lλ).
Now suppose that λ , 0F. Let y ∈ F∞0 . Then, defining x ∈ F∞0 by

x(1) = λ−1y(1), x( j + 1) = λ−1(y( j + 1) − x( j)), j ∈ Z>0,

one can directly check that Lλ(x) = y. Thus Lλ is surjective when λ , 0F. ▼

The lemma immediately allows us to conclude that 0F is a spectral value for L,
but that L has no eigenvalues. •

Eigenvalues can occur “more than once,” i.e., with multiplicity. Complicating
matters is the fact that there are two ways of measuring the multiplicity of an
eigenvalue. The distinctions between these two sorts of multiplicity will become
most clear, at least in the finite-dimensional case, in Section 5.8. Here we primarily
consider the definitions and some examples.

Recalling the constructions concerning kernels of powers of endomorphisms
described in Theorem 5.4.13, we may define algebraic and geometric multiplici-
ties.

5.4.57 Definition (Eigenspaces, algebraic and geometric multiplicity) Let F be a field,
let V be a F-vector space, let L ∈ EndF(V), and let λ ∈ F be an eigenvalue for L.

(i) The eigenspace for λ is the subspace W(λ,L) = ker(Lλ).

(ii) The generalised eigenspace for λ is the subspace W(λ,L) = ∪ j∈Z>0 ker(L j
λ).

(iii) The geometric multiplicity of λ is mg(λ,L) = dimF(W(λ,L)).

(iv) The algebraic multiplicity of λ is ma(λ,L) = dimF(W(λ,L)). •

5.4.58 Remarks (Properties of geometric and algebraic multiplicity)
1. Note that both the geometric and algebraic multiplicity are nonzero.
2. The algebraic and geometric multiplicities can be any nonzero cardinal number

(see Example 5.4.61–2).
3. It always holds that ma(λ,L) ≥ mg(λ,L).
4. In Proposition 5.8.31 we will show that, if V is finite-dimensional, then the

algebraic multiplicity of an eigenvalue of L ∈ EndF(V) is equal to the multiplicity
of the corresponding root of the characteristic polynomial. •

It will be useful to know that eigenspaces and generalised eigenspaces are
invariant.
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5.4.59 Proposition (Invariance of eigenspaces and generalised eigenspaces) Let F
be a field, let V be an F-vector space, let L ∈ EndF(V), and let λ be an eigenvalue for L.
Then, for any j ∈ Z>0, ker(Lj

λ) is an L-invariant subspace. As a consequence, W(λ,L) and
W(λ,L) are L-invariant subspaces.

Proof We first claim that L ◦ L j
λ
= L j

λ
◦ L. We prove this by induction. For j = 1 we

simply have

L ◦ (λ idV −L) = λL ◦ idV −L ◦ L = λ idV ◦L − L ◦ L = (λ idV −L) ◦ L.

Now suppose the claim true for j ∈ {1, . . . , k} and compute

L ◦ (λ idV −L)k+1 = L ◦ (λ idV −L) ◦ (λ idV −L)k = (λ idV −L) ◦ L ◦ (λ idV −L)k

= (λ idV −L) ◦ (λ idV −L)k
◦ L = (λ idV −L)k+1

◦ L,

giving our claim.
The first assertion of the proposition now follows easily. If v ∈ ker(L j

λ
) then we

have
L j
λ
(v) = 0V =⇒ L ◦ L j

λ
(v) = L j

λ
(L(v)) = 0V

so that L ∈ ker(L j
λ
). For the second assertion, it immediately follows that W(λ,L) is

L-invariant. The L-invariant of W(λ,L) follows since, if v ∈ W(λ,L), then v ∈ ker(L j
λ
)

for some j ∈ Z>0. ■

It is fairly clear that, if λ1 and λ2 are distinct eigenvalues for L ∈ EndF(V), then
W(λ1,L)∩W(λ2,L) = {0V}. It is less clear, although still true, that the corresponding
statement for the generalised eigenspaces also holds.

5.4.60 Proposition (Intersections of generalised eigenspaces are zero) Let F be a field,
let V be an F-vector space, and let L ∈ EndF(V). If λ1 and λ2 are distinct eigenvalues for
L then W(λ1,L) ∩W(λ2,L) = {0V}.

Proof We first prove a lemma characterising the intersections of generalised
eigenspaces.

1 Lemma W(λ1,L) ∩W(λ2,L) = ∪j∈Z>0(ker(Lj
λ1

) ∩ ker(Lj
λ2

)).

Proof By definition we have

W(λ1,L) ∩W(λ2,L) =
(
∪ j∈Z>0 ker(L j

λ1
)
)
∩

(
∪k∈Z>0 ker(Lk

λ2
)
)
.

By Proposition 1.1.7 we have

W(λ1,L) ∩W(λ2,L) = ∪k∈Z>0

((
∪ j∈Z>0 ker(L j

λ1
)
)
∩ ker(Lk

λ2
)
)

= ∪k∈Z>0

(
∪ j∈Z>0

(
ker(L j

λ1
) ∩ ker(Lk

λ2
)
))

It is clear that the inclusion

∪ j∈Z>0(ker(L j
λ1

) ∩ ker(L j
λ2

)) ⊆ ∪k∈Z>0

(
∪ j∈Z>0

(
ker(L j

λ1
) ∩ ker(Lk

λ2
)
))
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holds. If
v ∈ ∪k∈Z>0

(
∪ j∈Z>0

(
ker(L j

λ1
) ∩ ker(Lk

λ2
)
))

then there exists j, k ∈ Z>0 such that v ∈ ker(L j
λ1

)∩ker(Lk
λ2

). If j = k then we immediately
have

v ∈ ∪ j∈Z>0(ker(L j
λ1

) ∩ ker(L j
λ2

)).

So suppose, without loss of generality, that j > k. Then

ker(Lk
λ2

) ⊆ ker(L j
λ2

),

and so we again arrive at

v ∈ ∪ j∈Z>0(ker(L j
λ1

) ∩ ker(L j
λ2

)),

so giving our claim. ▼

We next claim that ker(L j
λ1

) ∩ ker(L j
λ2

) = {0V} for each j ∈ Z>0. We prove this by
induction on j. For j = 1, let v ∈ ker(Lλ1) ∩ ker(Lλ2). Then

L(v) = λ1v = λ2v =⇒ (λ1 − λ2)v = 0V.

It follows from Proposition 4.5.3(vi) that v = 0V. Now suppose that ker(L j
λ1

)∩ker(L j
λ2

) =
{0V} for j ∈ {1, . . . , k} and let v ∈ ker(Lk+1

λ1
) ∩ ker(Lk+1

λ2
). Then

Lk+1
λ1

(v) = Lk+1
λ2

(v) = 0V.

This means that Lλ1(v) ∈ ker(Lk
λ1

) and Lλ2(v) ∈ ker(Lk
λ2

). Now we note from Exer-
cises 5.4.10 and 5.4.13 that ker(Lk

λ2
) and ker(Lk

λ1
) are invariant under Lλ1 and Lλ2 ,

respectively. Thus we have

Lλ1(Lλ2(v)) ∈ ker(Lk
λ2

), Lλ2(Lλ1(v)) ∈ ker(Lk
λ1

).

Therefore, by the induction hypothesis,

Lλ1(Lλ2(v)) = Lλ2(Lλ1(v)) = 0V,

since Lλ1 and Lλ2 commute. Therefore,

Lλ2(v) ∈ ker(Lλ1) ⊆ ker(Lk
λ1

), Lλ1(v) ∈ ker(Lλ2) ⊆ ker(Lk
λ2

).

That is, Lλ1(v),Lλ2(v) ∈ ker(Lk
λ1

) ∩ ker(Lk
λ2

). Again by the induction hypothesis, this
gives Lλ1(v) = 0V and Lλ2(v) = 0V. Thus v ∈ ker(Lλ1) ∩ ker(Lλ2) = {0V}, so giving our
claim that ker(L j

λ1
) ∩ ker(L j

λ2
) = {0V} for each j ∈ Z>0.

The result now easily follows from this and the above lemma. ■

Let us give some examples that exhibit the character of and relationship between
algebraic and geometric multiplicity.
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5.4.61 Examples (Algebraic and geometric multiplicity)
1. For a field F take V = F3 and define L1,L2 ∈ EndF(V) by the two 3 × 3 matrices

L1 =

0F 0F 0F

0F 0F 0F

0F 0F −1F

 , L2 =

0F 1F 0F

0F 0F 0F

0F 0F −1F

 .
These linear maps both have eigenvalues 0F and −1F. We can readily see that

ker(0F idV −L1) = spanF((1F, 0F, 0F), (0F, 1F, 0F)),
ker(0F idV −L1) = spanF((1F, 0F, 0F)),

ker(−1F idV −L1) = spanF((0F, 0F, 1F)),
ker(−1F idV −L2) = spanF((0F, 0F, 1F)).

From this we deduce that for L1, mg(0F,L1) = 2 and mg(−1F,L1) = 1, and that for
L2, mg(0F,L2) = 1 and mg(−1F,L2) = 1. To compute the algebraic multiplicities,
we must compute the powers of the matrices λ idV −L where λ runs over the
eigenvalues, and L is either L1 or L2. For this purpose it is sufficient to compute

dimF(ker(0F idV −L1)) = 2, dimF(ker(0F idV −L2)) = 1,

dimF(ker(0F idV −L1)2) = 2, dimF(ker(0F idV −L2)2) = 2,

dimF(ker(0F idV −L1)3) = 2, dimF(ker(0F idV −L2)3) = 2,
dimF(ker(−1F idV −L1)) = 1, dimF(ker(−1F idV −L2)) = 1,

dimF(ker(−1F idV −L1)2) = 1, dimF(ker(−1F idV −L2)2) = 1.

We then conclude that ma(0F,L1) = ma(0F,L2) = 2 and ma(−1F,L1) = ma(−1F,L) =
1.

2. For any set I, take V = FI
0 and L = 0V,V, i.e., L is the zero linear map. Then L

has 0F as its only eigenvalue, and it has a geometric multiplicity of card(I) since
ker(L) = V. Note that the algebraic multiplicity of the eigenvalue 0F is also
equal to card(I).

3. For a field F we take V = F∞0 (see Example 4.5.2–4). We let {e j} j∈Z>0 be the
standard basis and define L ∈ EndF(V) by

L(e1 = 0F∞0
, L(e j−1) = e j, j ∈ Z>0.

If we represent L as a column finite matrix with countably many rows and
columns, then we have

L =



0F 1F 0F 0F 0F · · ·

0F 0F 1F 0F 0F · · ·

0F 0F 0F 1F 0F · · ·

0F 0F 0F 0F 1F · · ·

0F 0F 0F 0F 0F · · ·
...

...
...

...
...

. . .


.
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We can directly compute ker(Lk) = spanF(e1, . . . , ek). From this we conclude that
mg(λ,L) = 1 and ma(λ,L) = card(Z>0). Moreover, W(λ,L) = V, even though Lk

is nonzero for every k ∈ Z>0 (in fact, Lk is surjective for every k ∈ Z>0). •

5.4.10 Complexification of R-linear maps

When dealing with linear maps betweenR-vector spaces, it is sometimes useful
to consider instead the linear map between the complexifications of these vector
spaces. This is particularly the case when dealing with eigenvalues of endomor-
phisms. In this section we indicate the manner in which a linear map between
R-vector spaces induces a linear map between the respective complexifications,
and the resulting constructions that arise concerning eigenvalues.

We recall from Section 4.5.7 that if V is aR-vector space, then the complexifica-
tion of V is the C-vector space VC defined by VC = V × V with vector addition and
scalar multiplication defined by

(u1,u2) + (v1, v2) = (u1 + v1,u2 + v2), (a + ib)(u, v) = (au − bv, av + bu).

We now indicate how to associate to every R-linear map from U to V a C-linear
map from UC to VC.

5.4.62 Definition (Complexification of a linear map) Let U and V be R-vector spaces
with UC and VC their complexifications. If L ∈ HomR(U; V) then the complexifica-
tion of L is the element LC ∈ HomC(UC; VC) defined by

LC(u, v) = (L(u),L(v)). •

Of course, one must verify that LC is actually C-linear. To give a useful charac-
terisation of LC, let us recall from Definition 4.5.62 the canonical representation of
(u, v) ∈ VC as u + iv. In this case we simply have

LC(u + iv) = L(u) + iL(v);

thus the definition of LC is that it acts as does L on both the real and imaginary
parts of VC. This representation of LC makes it straightforward to verify that LC is
actually C-linear:

LC((a + ib)(u + iv)) = LC((au − bv) + i(bu + av)) = L(au − bv) + iL(bu + av)
= (a + ib)(L(u) + iL(v) = (a + ib)LC(u + iv).

The set VC has the structure of both a C-vector space and a R-vector space;
see Proposition 4.5.61. Thus, givenR-vector spaces U and V, we may consider the
sets HomC(UC; VC) and HomR(UC; VC) of C-linear and R-linear maps, respectively.
We also have the subset of HomC(UC; VC) consisting of the complexification of
elements of HomR(U; V). Let us denote this subset by

HomC(UC; VC)R = {LC | L ∈ HomR(U; V)}.

To summarise, we have three sets of linear maps between UC and VC:
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1. HomR(UC; VC) is the set of R-linear maps;
2. HomC(UC; VC) is the set of C-linear maps;
3. HomC(UC; VC)R is the set of complexifications of R-linear maps from U to V.
We wish to explore the relationships between these three sets of linear maps. To
do so, we recall from Definition 4.5.62 the complex conjugation map σV : VC → VC.
We also introduce the map iV : VC → VC given by

iV(u + iv) = i(u + iv) = −v + iu,

where we use the canonical representation of elements of VC. One can verify that
this map is both R-linear and C-linear (see Exercise 5.4.23).

We may complex conjugation to define the complex conjugate of a C-linear
map.

5.4.63 Definition (Complex conjugate of a C-endomorphism) Let U and V be a R-
vector spaces with UC and VC the complexifications. The complex conjugate of
L ∈ HomC(UC; VC) is the element L̄ ∈ HomC(UC; VC) defined by L̄ = σV ◦ L ◦ σU. •

While σU and σV are not C-linear, it is nonetheless true that L̄ is C-linear; this
is Exercise 5.4.25. Moreover, one may verify that the complex conjugate has the
following properties.

5.4.64 Proposition (Properties of the complex conjugate) If U, V, and W are R-vector
spaces with UC, VC, and WC their complexifications, then the following statements hold:

(i) L + K = L̄ + K̄ for all L,K ∈ HomC(UC; VC);

(ii) aL = āL̄ for all L ∈ HomC(UC; VC) and a ∈ C;

(iii) L ◦ K = L̄ ◦ K̄ for all L ∈ HomC(VC; WC) and K ∈ HomC(UC; VC).
Proof This is Exercise 5.4.26. ■

We may now clearly state the relationships between the various classes of linear
maps between UC and VC.

5.4.65 Proposition (Characterisation of linear maps between UC and VC) Let U and V
be R-vector spaces with UC and VC the complexifications. Then the following statements
hold:

(i) the map LC 7→ L + iL is a R-monomorphism from the R-subspace HomC(UC; VC)R
of HomC(UC; VC) to the complexification of the R-vector space HomR(U; V);

(ii) HomC(UC; VC) is exactly the subset of linear maps L ∈ HomR(UC; VC) for which
the following diagram commutes:

UC
L //

iU
��

VC
iV
��

UC L
// VC
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(iii) HomC(UC; VC)R is exactly the subset of linear maps L ∈ HomC(UC; VC) for which
the following diagram commutes:

UC
L //

σU

��

VC
σV

��
UC L

// VC

Proof (i) The complexification of HomR(U; V), denoted by HomR(U; V)C, is by defi-
nition the C-vector space HomR(U; V) × HomR(U; V) with vector addition and scalar
multiplication defined by

(L1,L2) + (K1,K2) = (L1 + K1,L2 + K2), (a + ib)(L,K) = (aL − bK, bL + aK).

Using the canonical representation, we write elements in this complexification as L+iK.
It is then clear that the map LC 7→ L + iL is injective. To verify that it is C-linear, we
should first verify that HomC(UC; VC)R is indeed a C-subspace of HomC(UC; VC). To
check this we note that if LC,KC ∈ HomC(UC; VC)R and if a ∈ R then

(LC + KC)(u + iv) = LC(u + iv) + KC(u + iv) = (L + K)(u) + i(L + K)(v),

so that LC + KC = (L + K)C, and

(aLC)(u + iv) = a(LC(u + iv)) = a(L(u) + iL(v)) = (aL)(u) + i(aL)(v),

so that aLC = (aL)C. Thus HomC(UC; VC)R is indeed aR-subspace of HomC(UC; VC). In
the process of verifying this, we have also shown that the map LC 7→ L+ iL isR-linear,
since from our above computations we have

(LC + KC) 7→ (L + K) + i(L + K) = (L + iL) + (K + iK)

and
aLC 7→ aL + iaL = a(L + iL).

(ii) We write a general element L ∈ HomR(UC; VC) as

L(u + iv) = (L11(u) + L12(v)) + i(L21(u) + L22(v))

for L11,L12,L21,L22 ∈ HomR(U; V). The condition that the diagram in the statement of
the proposition commute amounts to the conditions

L11 = L22, L12 = −L21, (5.25)

as may be verified by a direct computation. That these conditions are necessary
for L to be C-linear follows since the commuting of the diagram exactly means that
L(i(u+ iv)) = iL(u+ iv). Conversely, if the relations (5.25) hold, it can be directly verified
by a computation that L is C-linear.

(iii) By the preceding part of the result we can write an element L ∈ HomC(UC; VC)
as

L(u + iv) = (L1(u) + L2(v)) + i(−L2(u) + L1(v))

for L1,L2 ∈ HomR(UC; VC). The commuting of the given diagram then amounts to the
condition that L2 = −L2, i.e., that L2 = 0V. The result follows directly. ■
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5.4.66 Remarks (Characterisation of linear maps between UC and VC)
1. The following set inclusions hold:

HomC(UC; VC)R ⊂ HomC(UC; VC) ⊂ HomR(UC; VC).

2. Part (ii) of the preceding result says that a R-linear map L from UC to VC is
C-linear if and only if L(i(u+ iv)) = iL(u+ iv). That is to say, to check C-linearity
one need only check R-linearity and linearity with respect to multiplication by
i.

3. By using the fact that σ−1
V = σV, part (iii) of the preceding result can be seen

to show that a C-linear map L from UC to VC is the complexification of a R-
linear from U to V if and only if L = L̄. Equivalently, L ∈ HomC(UC; VC) is the
complexification of a R linear map from U to V if and only if L maps the subset
{(u, 0U) | u ∈ U} of real vectors in U to the subset {(v, 0V) | v ∈ V} of real vectors
in V; this is Exercise 5.4.27. •

The primary reason for complexifying a R-vector space and then a R-linear
map is for the purpose of studying eigenvalues and spectral values of R-
endomorphisms. Thus we let V be a R-vector space, let L ∈ EndR(V), with VC
and LC the associated complexifications. We are interested in studying how the
eigenvalues and spectral values of L and LC are related. The following result gives
the relationships we seek.

5.4.67 Theorem (Eigenvalues, spectral values, and eigenspaces of an endomor-
phism and its complexification) If V is a R-vector space and if L ∈ EndR(V)
with LC ∈ EndC(VC) its complexification, then the following statements hold:

(i) λ ∈ R is an eigenvalue (resp. spectral value) for L if and only if λ is an eigenvalue
(resp. spectral value) for LC;

(ii) if λ ∈ C is an eigenvalue (resp. spectral value) for LC, then λ̄ is an eigenvalue
(resp. spectral value) for LC;

(iii) if λ ∈ R is an eigenvalue for L then

W(λ,LC) = {(u,v) | u,v ∈W(λ,L)};

(iv) if λ ∈ R is an eigenvalue for L then

W(λ,LC) = {(u,v) | u,v ∈W(λ,L)};

(v) if λ ∈ C is an eigenvalue for LC then

W(λ̄,LC) = {(u,v) ∈ VC | (u,−v) ∈W(λ,LC)};

(vi) if λ ∈ C is an eigenvalue for LC then

W(λ̄,LC) = {(u,v) ∈ VC | (u,−v) ∈W(λ,LC)}.
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Proof (i) First suppose that λ is an eigenvalue for L. Then Lλ is not injective, and we
denote by W(λ,L) , {0V} the eigenspace. We claim that

ker(LC,λ) = {(u, v) ∈ VC | u, v ∈W(λ,L)}.

Indeed, by definition of the complexification of a linear map, LC,λ(u, v) = (0V, 0V) if and
only if L(u) = λu and L(v) = λv. This shows that λ is an eigenvalue of LC and that the
eigenspace is {(u, v) ∈ VC | u, v ∈W(λ,L)}.

Now suppose that λ ∈ R is an eigenvalue for LC and let W(λ,LC) be the eigenspace.
Thus, by definition of the complexification of a linear map we have

ker(LC,λ) = {(u, v) ∈ VC | u, v ∈ ker(Lλ)},

so giving λ as an eigenvalue for L and also giving

W(λ,LC) = {(u, v) ∈ VC | u, v ∈W(λ,L)}.

That λ ∈ R is a spectral value for L if and only if it is a spectral value for LC follows
from Exercise 5.4.22 and the definition of spectral value.

(ii) We may as well suppose that λ is not real. Thus we write λ = a + ib for a, b ∈ R
and with b , 0. We first claim that LC,λ̄ = L̄C,λ. Indeed, using Proposition 5.4.64 and
Proposition 5.4.65,

L̄C,λ = LC − λ idV = L̄C − λ̄ īdV = L − λ̄ idV = LC,λ̄.

The following lemma gives us a useful characterisation of the kernel and image of
the complex conjugate of an linear map, and this characterisation will be used several
times in the remainder of the proof.

1 Lemma If U and V are R-vector spaces and if L ∈ HomC(UC; VC), then
(i) ker(L̄) = {(u,v) ∈ UC | (u,−v) ∈ ker(L)} and
(ii) image(L̄) = {(u,v) ∈ UC | (u,−v) ∈ image(L)}.

Proof As in the proof of part (ii) of Proposition 5.4.65, we may write

L(u, v) = (L1(u) + L2(v),−L2(u) + L1(v))

for L1,L2 ∈ HomR(U; V). We then compute

ker(L̄) = ker(σV ◦ L ◦ σU)
= {(u, v) ∈ UC | σV ◦ L ◦ σU(u, v) = (0V, 0V)}
= {(u, v) ∈ UC | σV ◦ L(u,−v) = (0V, 0V)}
= {(u, v) ∈ UC | σV(L1(u) − L2(v),−L2(u) − L1(v)) = (0V, 0V)}
= {(u, v) ∈ UC | (L1(u) − L2(v),L2(u) + L1(v)) = (0V, 0V)}
= {(u,−v) ∈ UC | (L1(u) + L2(v),L2(u) − L1(v)) = (0V, 0V)}
= {(u,−v) ∈ UC | (L1(u) + L2(v),−L2(u) + L1(v)) = (0V, 0V)}
= {(u, v) ∈ UC | (u,−v) ∈ ker(L)},
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giving the first part of the lemma.
For the second part we write

image(L̄) = image(σV ◦ L ◦ σU)
= {σV ◦ L ◦ σU(u, v) | (u, v) ∈ UC}
= {σV ◦ L(u,−v) | (u, v) ∈ UC}
= {σV(L1(u) − L2(v),−L2(u) − L1(v)) | (u, v) ∈ UC}
= {(L1(u) − L2(v),L2(u) + L1(v)) | (u, v) ∈ UC}
= {(L1(u) + L2(v),L2(u) − L1(v)) | (u,−v) ∈ UC}
= {(L1(u) + L2(v),L2(u) − L1(v)) | (u, v) ∈ UC}
= {(u′, v′) | (u′,−v′) ∈ image(L)},

so giving the second part of the lemma. ▼

Now we proceed with the proof. Let us first consider the case when λ is an
eigenvalue for LC. By the lemma we have

ker(LC,λ̄) = {(u,−v) | (u, v) ∈ ker(LC,λ)}.

Thus λ̄ is an eigenvalue for LC and

W(λ̄,VC) = {(u, v) ∈ VC | (u,−v) ∈W(λ,LC)}.

Now suppose that λ is a spectral value for LC. We may as well suppose that λ is
not an eigenvalue, and so this means that LC,λ is not surjective. By the lemma above,
this also means that LC,λ̄ is not surjective, and so λ̄ is also a spectral value for L.

(iii) This was proved during the course of proving (i).
(iv) We have L j

C,λ
(u, v) = (L j

λ
(u),L j

λ
(v)) for each j ∈ Z>0 and (u, v) ∈ VC. Therefore,

ker(L j
C,λ

) = {(u, v) ∈ VC | u, v ∈ ker(L j
λ
)}.

From this we infer that

∪ j∈Z>0 ker(L j
C,λ

) =
{
(u, v) ∈ VC

∣∣∣∣ u, v ∈ ∪ j∈Z>0 ker(L j
λ
)
}
,

which is the desired result.
(v) This was proved during the course of the proof of part (ii).
(vi) Since LC,λ̄ = L̄C,λ, it follows from Proposition 5.4.64 that L j

C,λ̄
= L̄ j

C,λ
for each

j ∈ Z>0. From the lemma above we then conclude that, for each j ∈ Z>0,

ker(L j
C,λ̄

) =
{
(u, v) ∈ VC

∣∣∣∣ (u,−v) ∈ ker(L j
C,λ

)
}
.

It follows that

∪ j∈Z>0 ker(L j
C,λ̄

) =
{
(u, v) ∈ VC

∣∣∣∣ (u,−v) ∈ ∪ j∈Z>0 ker(L j
C,λ

)
}
,

which is exactly the claim. ■
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The theorem tells us that every eigenvalue or spectral value of L is also an eigen-
value or spectral value of LC. Of course, it is not generally the case that eigenvalues
or spectral values of LC are also eigenvalues or spectral values of L, since the former
are allowed to be complex, whereas the latter are always real. Nonetheless, one
can wonder what implications the existence of non-real eigenvalues for LC has on
the structure of L. The following result addresses precisely this point. The essential
idea is that eigenspaces for LC give rise to invariant subspaces for L of twice the
dimension.

5.4.68 Theorem (Real invariant subspaces for complex eigenvalues) Let V be a R-
vector space, let L ∈ EndR(V), and let VC and LC be the corresponding complexifications.
Suppose that λ = a+ib, a, b ∈ R, b , 0, is a complex eigenvalue for LC and letBλ andBλ

be bases for the eigenspace W(λ,LC) and the generalised eigenspace W(λ,LC), respectively.
Then the following statements hold:

(i) the sets

B ′

λ = {u ∈ V | (u,v) ∈Bλ} ∪ {v ∈ V | (u,v) ∈Bλ}, (5.26)

B
′

λ = {u ∈ V | (u,v) ∈Bλ} ∪ {v ∈ V | (u,v) ∈Bλ}

are linearly independent;
(ii) if (u,v) ∈Bλ then

L(u) = au − bv, L(v) = bu + av,

and so, in particular, the two-dimensional subspace spanR(u,v) is L-invariant;

(iii) the subspaces spanR(B ′

λ) and spanR(B
′

λ) are L-invariant;
(iv) relative to the partition given in (5.26) for the basis B ′

λ, the restriction of L to
spanR(B ′

λ) has the matrix representative[
aII bII

−bII aII

]
,

where I is a set for which there exists a bijection ϕ : I→Bλ.

Proof (i) We shall prove the result forB
′

λ, the proof forB ′λ being entirely similar. Let
us define

B λ̄ = {(u,−v) ∈ VC | (u, v) ∈Bλ},

noting by Proposition 5.4.60 that spanC(Bλ) ∩ spanC(B λ̄) = {(0V, 0V)}. Moreover, by
Theorem 5.4.67(vi) we also know thatB λ̄ is a basis for W(λ̄,LC). These facts together
ensure thatBλ ∪B λ̄ is a basis for W(λ,LC) ⊕W(λ̄,LC). Now let I be an index set for
which there exists a bijection ϕ : I → Bλ, define J = I

◦

∪ I, and define a column finite

matrix P ∈Mat(J×J)(F) in terms of the natural partition of I
◦

∪ I by

P =
[
II II
II −II

]
.
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This matrix is invertible as one can see by checking that it has an inverse given by

P−1 =
1
2

[
II II
II −II

]
.

Thus P is a change of basis matrix from the basis Bλ ∪B λ̄ for W(λ,LC) ⊕W(λ̄,LC)
to another basis for W(λ,LC) ⊕W(λ̄,LC). Using the definition of the change of basis
matrix one can further check that this new basis is exactly

{(u, 0V) | (u, v) ∈Bλ} ∪ {(0V, v) | (u, v) ∈Bλ}. (5.27)

Using the fact that this is a basis, and so linearly independent, we now prove thatB
′

λ
is linearly independent. Let

u1, . . . ,uk ∈ {u ∈ V | (u, v) ∈Bλ}, v1, . . . , vl ∈ {u ∈ V | (u, v) ∈Bλ}

and suppose that
a1u1 + · · · + akuk + b1v1 + · · · + blvl = 0V

for a1, . . . , ak, b1, . . . , bl ∈ F. Using the definition of scalar multiplication in VC this
implies that

(a1 + i0)(u1, 0V) + · · · + (ak + i0)(uk, 0V)
+ (b1 + i0)(0V, v1) + · · · + (bl + i0)(0V, vl) = (0V, 0V).

Since the set if (5.27) is linearly independent we must have a j+i0 = 0+i0 for j ∈ {1, . . . , k}

and b j + i0 = 0 + i0 for j ∈ {1, . . . , l}. This gives linear independence ofB
′

λ.
(ii) If (u, v) ∈Bλ then we have

(L(u),L(v)) = LC(u, v) = (a + ib)(u, v) = (au − bv, bu + av),

as claimed. Since L(u),L(v) ∈ spanR(u, v), it follows that spanR(u, v) is L-invariant.
(iii) To prove this part of the result it is useful to employ a lemma that captures the

essence of what is going on.

1 Lemma Let V be a R-vector space with complexification VC and let L ∈ EndR(V) have
complexification LC. If U is a subspace of VC which is invariant under LC then

(i) the subspace
U = {(u,−v) | (u,v) ∈ U}

is LC-invariant and
(ii) the subspaces

{u ∈ V | (u,v) ∈ U + U}, {v ∈ V | (u,v) ∈ U + U}

of V are invariant under L.
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Proof (i) Let (u,−v) ∈ U for (u, v) ∈ U. Then (L(u),L(v)) ∈ U since U is LC-invariant.
Therefore

LC(u,−v) = (L(u),−L(v)) ∈ U,

giving invariance of U under LC as desired.
(ii) Let u ∈ {u′ ∈ V | (u′, v′) ∈ U + U} and let v ∈ V have the property that

(u, v) ∈ U + U. Then (u,−v) ∈ U + U. Since U + U is LC-invariant,

(L(u),L(v)), (L(u),−L(v)) ∈ U + U.

Therefore (2L(u), 0V) ∈ U+U and so L(u) ∈ {u′ ∈ V | (u′, v′) ∈ U+U}, giving invariance
of {u′ ∈ V | (u′, v′) ∈ U + U} under L. A similar computation gives invariance of
{v′ ∈ V | (u′, v′) ∈ U + U} under L. ▼

By applying the lemma with U = W(λ,LC) and then with U = W(λ,LC), this part
of the theorem follows.

(iv) Let us represent elements of J = I
◦

∪ I by ({a}, i) where a ∈ {1, 2} and where i ∈ I.
Thus {a} indicates whether i is to be thought of as in the first or second copy of I. Let
us then write

Bλ = {(ui, vi) | i ∈ I},

so indexing the basis elements forBλ. The basisB ′λ can then be written as

B ′λ = {ui | i ∈ I}, {vi | i ∈ I}.

Let ψ : J→B ′λ be defined by

ψ({a}, i) =

ui, a = 1,
vi, a = 2,

this giving the bijection of J withB ′λ as per the partition. We then have

L(ψ({1}, i) = aψ({1}, i) − bψ({2}, i), L(ψ({2}, i) = bψ({1}, i) + aψ({2}, i).

Using the definition of matrix representative, this then gives the matrix representative
of L| spanR(B ′λ) to be [

aII bII
−bII aII

]
,

as desired. ■

The idea is that, for every one-dimensional (over C) subspace of VC that is in-
variant under LC there corresponds a two-dimensional (overR) subspace of V that
is invariant under L. Moreover, if as a basis for this two-dimensional real subspace
one chooses the real and imaginary parts of the basis for the one-dimensional com-
plex subspace, then the representation of L in this two-dimensional real subspace
is related to the complex eigenvalue in a simple way (i.e., as in part (ii)). Some
geometric intuition concerning this will form part of our understanding of linear
ordinary differential equations in Section V-5.2.2.
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5.4.11 Linear maps on vector spaces extended by scalars

In the preceding section we indicated how linear maps betweenR-vector spaces
could be extended to linear maps between the complexifications. In Section 4.5.8
we saw how the notion of complexification of a vector space could be generalised
to arbitrary extensions of a field. In this section we perform the analogue of the
preceding section for general field extensions. Thus we let U and V be F-vector
spaces with L ∈ HomF(U; V), we let K be an extension of F, and we indicate how
to construct, in a natural way, a linear map LK ∈ HomK(UK; VK). This construction
depends on understanding the tensor product definition of the extended vector
spaces UK and VK. This construction was made in Section 4.5.8, and relies on the
tensor product that we will not get to until Section 5.6.3.

Let us first indicate that a natural construction at least fits part of the bill.

5.4.69 Proposition (A linear map between extended vector spaces) Let F be a field,
let U and V be F-vector spaces, and let K be a field extension of F with UK = K ⊗ U and
VK = K ⊗ V the corresponding K-vector spaces. If L ∈ HomF(U; V) then there exists a
unique linear map LK ∈ HomK(UK; VK) satisfying LK(a ⊗ u) = a ⊗ L(u) for a ∈ K and
u ∈ U.

Proof DefineϕL : K×U→ VK byϕL(a,u) = a⊗L(u). Since this map is easily shown to be
bilinear, there exists a unique homomorphism LK(UK; VK) satisfying LK(a⊗u) = a⊗L(u).
It remains to show that LK is not just F-linear, but K-linear. To see this we compute

LK(b(a ⊗ u)) = LK((ba) ⊗ u) = (ba) ⊗ L(u) = b(a ⊗ L(u)) = bLK(a ⊗ u),

so LK commutes with scalar multiplication in K. It is trivial that LK commutes with
vector addition. ■

Let us make a definition based on this result.

5.4.70 Definition (Extension of scalars for a linear map) Let F be a field, let U and V be
F-vector spaces, and let K be a field extension of F with UK = K⊗U and VK = K⊗V
the corresponding K-vector spaces. The linear map LK of Proposition 5.4.69 is the
extension of L by K. •

Let us illustrate that this idea does indeed generalise complexification of linear
maps.

5.4.71 Example (LC = LC) Let U and V be R-vector spaces and let L ∈ HomR(U; V).
We now have two possibly competing notions for the notation LC: one from Sec-
tion 5.4.10 and one from Definition 5.4.70. Let us show that these are the same,
given the isomorphism ιC of Example 4.5.66. For the moment, in order to dis-
tinguish the two linear maps, let us denote by L̃C the complexification of L as in
Section 5.4.10. Let us also denote by UC and VC the complexifications as in Sec-
tion 4.5.7 and by C ⊗U and C ⊗ V the extensions as in Definition 4.5.64. We claim
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that the following diagram commutes:

UC
L̃C //

ιC
��

VC
ιC
��

C ⊗ U
LC
// C ⊗ V

Let us show this explicitly:

ιC ◦ L̃C(u1,u2) = ιC(L(u1),L(u2)) = 1 ⊗ L(u1) + i ⊗ L(u2)

and
LC ◦ ιC(u1,u2) = LC(1 ⊗ u1 + i ⊗ u2) = 1 ⊗ L(u1) + i ⊗ L(u2),

as desired.
The reader may now feel free to think of UC, VC, and LC in whatever of the two

ways they choose. •

Exercises

5.4.1 Let F be a field, let V be an F-vector space, let U be a subspace of V, and
let L ∈ EndF(V). Show that, if W1 and W2 are two L-invariant subspaces
containing U, then W1 ∩W2 is itself an L-invariant subspace containing U.

5.4.2 Let F be a field, let V be an F-vector space, and let L ∈ EndF(V). Show that
if U ⊆ V is an L-invariant subspace then U is an L j-invariant subspace for
j ∈ Z≥0.

5.4.3 Prove Proposition 5.4.9.
5.4.4 Prove Proposition 5.4.10.
5.4.5 Let F be a field and let U1, . . . ,Ur,V1, . . . ,Vs be F-vector spaces. Show that if

L ∈ HomF(U1 ⊕ · · · ⊕ Ur; V1 ⊕ · · · ⊕ Vs),

then there exists unique linear maps L jk ∈ HomF(U j; Vk), j ∈ {1, . . . , r}, k ∈
{1, . . . , s}, such that, for each u j ∈ U j, j ∈ {1, . . . , r},

L(u1 + · · · + ur) = (L11(u1) + · · · + L1r(ur)) + · · · + (Ls1(u1) + · · · + Lsr(ur)).

5.4.6 Let F be a field and let V be an F-vector space. A linear mapping L ∈
EndF(V; V) is idempotent if L ◦ L = L. Show that, if L is idempotent, then
V = image(L) ⊕ ker(L).

5.4.7 Prove Proposition 5.4.16.
5.4.8 Let F be a field and let U and V be finite-dimensional F-vector spaces. Show

that
dimF(HomF(U; V)) = dimF(U) · dimF(U).
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5.4.9 Find a field F, an F-vector space V, and endomorphisms L,K ∈ EndF(V)
which do not commute.

5.4.10 Let F be a field, let V be an F-vector space, and let L,K ∈ EndF(V). For
mL,mK ∈ Z>0 let r1, . . . , rk, p1, . . . , pk ∈ {0, 1, . . . ,mL} and s1, . . . , sl, q1, . . . , ql ∈

{0, 1, . . . ,mK} have the property that

k∑
j=1

r j =

l∑
j=1

p j = mL,
k∑

j=1

s j =

l∑
j=1

q j = mK.

Show that, if L and K commute, then

Lr1 ◦ Ks1 ◦ · · · ◦ Lr1 ◦ Ksk = Lp1 ◦ Kq1 ◦ · · · ◦ Lp1 ◦ Kqk ,

i.e., show that arbitrary powers of L and K commute.
5.4.11 Let F be a field, let V be an F-vector space, let L ∈ EndF(V), and let U ⊆ V be

an L-invariant subspace. Show that if K ∈ EndF(V) commutes with L, then U
is K-invariant.

In the next exercise you will need the following definition.

Definition (Homothety) Let F be a field, let λ ∈ F, and let V be an F-vector space.
The homothety of ratio λ is the endomorphism of V given by v 7→ λv. •

5.4.12 Let F be a field and let V be a finite-dimensional F-vector space. Show that
L ∈ EndF(V) commutes with every linear map K ∈ EndF(V) if and only if L is
a homothety of ratio λ for some λ ∈ F.

5.4.13 Let F be a field, let V be an F-vector space, and let L,K ∈ EndF(V). Show that,
if L and K commute, then ker(L) is K-invariant and that ker(K) is L-invariant.

5.4.14 Let F be a field, let V be a finite-dimensional F-vector space, and let L ∈
EndF(V). Show that there exists a basisB such that [L]B

B
is upper triangular

if and only if there exists a basisB ′ such that [L]B
′

B ′
is lower triangular.

For the following two exercises the reader will wish to recall Definitions 5.1.61 and
the definition preceding Exercise 5.3.4.

5.4.15 Let F be a field and let V be an F-vector space. On EndF(V) define the
product

[L,K] = L ◦ K − K ◦ L.

Answer the following questions.
(a) Show that (EndF(V), [·, ·]) is an F-Lie algebra.
(b) Show that if F does not have characteristic 2 then [L,K] = −[K,L] for

every L,K ∈ EndF(V).
5.4.16 Let F be a field and let V be an F-vector space.
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(a) Show that the set of invertible endomorphisms of V is a group with
group operation given by composition.

This group is called the general linear group of V and is denoted by
GL(V).

(b) Is GL(V) a subalgebra of EndF(V)?
5.4.17 Let F be a field and let V be an n-dimensional F-vector space. We consider

EndF(V) as a ring by Corollary 5.4.18.
(a) For what values of n is it true that EndF(V) is a commutative ring?
(b) For what values of n is it true that EndF(V) is an integral domain?

5.4.18 Let F be a field, let V be a finite-dimensional F-vector space, and consider
the F-lie algebra (EndF(V), [·, ·]) from Exercise 5.4.15.
(a) Show that the set of endomorphisms of trace 0F is a Lie subalgebra of

EndF(V).
(b) Suppose that the map mn : v 7→ nv (by nv we mean the n-fold sum of v

with itself) is an isomorphism of V. Define Tr0 : EndF(V)→ EndF(V) by

Tr0(L) = L − tr(L)m−1
n ◦ idV .

Show that tr(Tr0(L)) = 0F for all L ∈ EndF(V).
5.4.19 Let F be a field, let V be a finite-dimensional F-vector space, and recall from

Exercise 5.4.16 that GL(V) denotes the group of invertible endomorphisms
of V.
(a) Show that the subset of endomorphisms with determinant 1F is a sub-

group of GL(V).
This subgroup of invertible endomorphisms with determinant 1F is

denoted by SL(V) and is called the special linear group of V.
(b) Is SL(V) a subalgebra of EndF(V)?

5.4.20 Let F be a field, let V be a finite-dimensional F-vector space, and let L ∈
EndF(V). Show that, if there exists a basis B for V such that [L]B

B
is upper

triangular, then the eigenvalues of L are the diagonal entries of the matrix
[L]B
B

.
5.4.21 Let F be a field, let V be an F-vector space, let L ∈ EndF(V) and let k ∈ Z≥0.

Show that if λ ∈ F is an eigenvalue for L with eigenvector v, then λk is an
eigenvalue of Lk with eigenvector v.

5.4.22 Let V be a R-vector space and let L ∈ EndR(V). Show that L is invertible
if and only if LC is invertible, and that in case L is invertible, L−1

C
(u, v) =

(L−1(u),L−1(v)).
5.4.23 Let V be a R-vector space with VC its complexification. Show that the map

iV is both a R-linear map and a C-linear map of VC.
5.4.24 Let V be a R-vector space and letB be a basis for V.
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(a) Show that
B ′ = {(u, 0V) | u ∈B } ∪ {(0V,u) | u ∈B }

is a basis for the R-vector space VC.
(b) Show that, with respect to the partition of the basisB ′ for the R-vector

space VC, the matrix representative of σV is

[σV]B
′

B ′ =

[
II 0I×I

0I×I −II

]
,

where I is a set for which there exists a bijection ϕ : I→B .
(c) Show that, with respect to the partition of the basisB ′ for the R-vector

space VC, the matrix representative of σV is

[σV]B
′

B ′ =

[
0I×I −II

II 0I×I

]
,

where I is a set for which there exists a bijection ϕ : I→B .
5.4.25 Let V be a R-vector space with VC the complexification. If L ∈

HomC(UC; VC), show that L̄ ∈ HomC(UC; VC).
5.4.26 Prove Proposition 5.4.64.
5.4.27 Let U and V be R-vector spaces. Show that L ∈ HomC(UC; VC) is the

complexification of a R linear map from U to V if and only if L maps the
subset {(u, 0U) | u ∈ U} of real vectors in U to the subset {(v, 0V) | v ∈ V} of
real vectors in V.
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Section 5.5

Linear algebra over rings

In this section we will study linear algebra over rings, i.e., homomorphisms
of modules. A general discussion here would take us very far afield, and indeed
to places where many parts of the general theory are topics of current research.
The theory of modules is significantly more complicated than the theory of vector
spaces, and this is reflected when one studies homomorphisms in each case. Thus
we will only adapt the results of Section 5.4 in cases where it is profitable or
insightful for us to do so. We shall be more hasty in this section than we were in
Section 5.4, and we assume that the reader already has reaped what benefit there
is from reading the presentation of linear algebra over fields.

Do I need to read this section? This section can be omitted until the results are
subsequently needed. •

5.5.1 Submodules and modules associated to a homomorphism

In this section we let R be a ring and let M and N be (left or right) R-modules.
We will denote a typical element of HomR(M; N) by L.

As with linear maps between vector spaces, a homomorphism of modules has
various submodules and modules associated to it. What is not true for homomor-
phisms of modules is that the dimensions of these submodules and modules can
be defined. Thus we cannot generally define the notions of rank, nullity, or defect
for homomorphisms.

5.5.1 Definition (Image, kernel, cokernel, coimage) Let R be a ring, let M and N be
(left or right) R-modules, and let L ∈ HomR(M; N).

(i) The image of L is the submodule of N given by image(L) = {L(x) | x ∈ M}.
(ii) The kernel of L is the submodule of M given by ker(L) = {x ∈ M | L(x) = 0N}.
(iii) The cokernel of L is the R-module coker(L) = N/ image(L).
(iv) The coimage of L is the R-vector space coimage(L) = M/ker(L). •

As with vector spaces, there are natural injective, surjective, and bijective ho-
momorphisms associated with the various submodules associated with a homo-
morphism. The proof of the following theorem is just like its counterpart, Theo-
rem 5.4.2, for vector spaces.

5.5.2 Theorem (Homomorphisms derived from a homomorphism) Let R be a ring,
let M and N be (left or right) R-modules, and let L ∈ HomR(M; N). Then the following
statements hold:
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(i) there exists a unique homomorphism Linj ∈ HomR(coimage(L); N) such that the
diagram

M L //

πcoimage(L) %%

N

coimage(L)
Linj

99

commutes, where πcoimage(L) : M→ coimage(L) is the canonical projection;
(ii) there exists a unique homomorphism Lsrj ∈ HomR(M; image(L)) such that the dia-

gram

M L //

Lsrj $$

N

image(L)
iimage(L)

::

commutes;
(iii) there exists a unique homomorphism Lbij ∈ HomR(coimage(L); image(L)) such that

the diagram

M L //

πcoimage(L)

��

U

coimage(L)
Lbij

// image(L)

iimage(L)

OO

commutes.
Moreover, Linj is injective, Lsrj is surjective, and Lbij is bijective.

Analogously to Corollary 5.4.3 for linear maps between vector spaces, a homo-
morphism L is injective if and only if coimage(L) = {0} and is surjective if and only
if coker(L) = {0}.

5.5.2 The algebra of homomorphisms

In this section we investigate the algebraic structure of sets of homomorphisms
and endomorphisms. The picture here is much like that for linear maps over fields
given in Section 5.4.3.

5.5.3 Definition (Sum and scalar multiplication for homomorphisms) Let R be a ring,
let M and N be left (resp. right) R-modules, and let A,B ∈ HomR(M; N) and r ∈ R.

(i) The sum of A and B is the element A + B of HomR(M; N) defined by

(A + B)(x) = A(x) + B(x).

(ii) Multiplication of A with r is the element rA (resp. Ar) of HomR(M; N) defined
by (rA)(x) = r(A(x)) (resp. (Ar)(x) = (A(x))r). •
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Of course, just like linear maps between vector spaces, homomorphisms of
modules have a natural product given by composition. Let us indicate the rela-
tionships between the operations of addition, scalar multiplication, and product,
using the notation 0HomR(M;N),−A ∈ HomR(M; N) defined by

0HomR(M;N)(x) = 0N, −A(x) = −(A(x)), x ∈ M.

We then have the following.

5.5.4 Proposition (Properties of sum and composition of homomorphisms) Let R be
a ring, let M, N, P, and Q be left (resp. right) R-modules, and let A1,A2,A3 ∈ HomR(M; N),
B1,B2 ∈ HomR(N; P), C1 ∈ HomR(P; Q), and r1, r2 ∈ R. Then the following equalities
hold:

(i) A1 + A2 = A2 + A1;
(ii) (A1 + A2) + A3 = A1 + (A2 + A3);
(iii) A1 + 0HomR(M;N) = A1;
(iv) A1 + (−A1) = 0HomR(M;N);
(v) B1 ◦ (A1 + A2) = B1 ◦ A1 + B1 ◦ A2;
(vi) (B1 + B2) ◦ A1 = B1 ◦ A1 + B2 ◦ A1;
(vii) (C1 ◦ A1) ◦ B1 = C1 ◦ (A1 ◦ B1);
(viii) r1(r2A1) = (r1r2)A1 (resp. (A1r1)r2 = A1(r1r2));
(ix) (r1 + r2)A1 = r1A1 + r2A1 (resp. A1(r1 + r2) = A1r1 + A1r2);
(x) r1(A1 + A2) = r1A1 + r1A2 (resp. (A1 + A2)r1 = A1r1 + A2r1).

Proof This is Exercise 5.5.1. ■

This then gives the following consequences, analogous to Corollaries 5.4.17
and 5.4.18.

5.5.5 Corollary (Homomorphisms as elements of a module) If R is a ring and if M
and N are left (resp. right) R-modules, then HomR(M; N) is a left (resp. right) R-module
with addition given by the sum of homomorphisms and with multiplication being given by
multiplication of a matrix by a scalar.

5.5.6 Corollary (Homomorphisms as elements of an algebra) If R is a ring and if M is
a left (resp. right) R-module, then EndR(M) is a left (resp. right) R-algebra with the module
structure of Corollary 5.5.5 and with the product given by the composition of linear maps.

5.5.3 Homomorphisms and matrices

Thus far in this section we have not seen much difference between linear algebra
over rings as opposed to that over fields. However, given the caveats expressed
in Sections 4.8 and 5.2, it should come as no surprise that there are substantial
differences between linear algebra over fields and that over rings. In this section
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we experience one of these significant differences. For investigating linear maps
between vector spaces, there is a perfect correspondence between such maps and
matrices, as discussed in Section 5.4.4. For modules one cannot expect that to be
true since modules are not generally free. In this section we say what can be said
about the correspondence between homomorphisms and matrices.

First let us indicate the basic association we can make. We let R be a ring and
let M and N be free left (resp. right) R-modules. We letBM andBN be bases for M
and N, respectively. We do not worry about the fact that M and/or N may possess
bases with different cardinalities; we just fix some basis and go with it. We let I and
J be index sets for which there exists bijections ϕM : I → BM and ϕN : J → BN. Let
L ∈ HomR(M; N). For x ∈BM denote j = ϕ−1

M (x) ∈ J. Now, just as for our definition
of the matrix for a linear map, we can write

L(x) =
∑
i∈I

ri jϕN(i)

resp. L(x) =
∑
i∈I

ϕN(i)ri j

 ,
for suitable uniquely defined constants ri j ∈ R, i ∈ I, only finitely many of which
are nonzero. This then gives a matrix [L] :

BM
BN → I× JR defined by [L]BN

BM
(i, j) = ri j.

The following definition formally records this construction.

5.5.7 Definition (Matrix representative of homomorphism relative to bases) Let
R be a ring, let M and N be (left or right) R-modules, let BM and BN be bases
for M and N, respectively, and let I and J be sets for which there exist bijections
ϕM : J → BM and ϕN : I → BN. If L ∈ HomR(M; N) then the matrix representative
of L with respect to the bases BM and BN and to the bijections ϕM and ϕN is the
map [L]BN

BM
: I × J→ R as defined above. •

Let us now give an interpretation of the matrix representative. We suppose
now that R is a ring with unit and we let M be a free left (resp. right) R-module.
We letB be a basis for M and let I be an index set such that there exists a bijection
ϕB : I→B . We define an isomorphism ιB of M with the left (resp. right) R-module
RI

0 as follows. For x ∈ M we write

x = c1ϕB (i1) + · · · + ckϕB (ik) (resp. x = ϕB (i1)c1 + · · · + ϕB (ik)ck),

for unique nonzero c1, . . . , ck ∈ R and i1, . . . , ik ∈ I. We then take

ιB (x)(i) =

ϕB (i), i ∈ {1, . . . , ik},

0R, i < {1, . . . , ik}.

We can then describe the matrix representative as follows.
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5.5.8 Theorem (Interpretation of matrix representative) Let R be a unit ring, let M and
N be free left (resp. right) R-modules, letBM andBN be bases for M and N, respectively,
and let I and J be sets for which there exist bijections ϕM : J → BM and ϕN : I → BN. If
L ∈ HomR(M; N) then, with the isomorphisms ιBM : M→ RJ

0 and ιBN : N→ RI
0 as defined

above, the following diagram commutes:

M L //

ιBM
��

N
ιBN
��

RJ
0

[L]
BN
BM

// RI
0

In particular, the map L 7→ ιBN
◦L◦ι−1

BM
is an isomorphism of the left (resp. right) R-modules

HomR(M,N) and MatI×J(R).
Proof Let us give the proof for right modules, the proof for left modules being entirely
similar.

Let x ∈ M and write
x = ϕM( j1)c1 + · · · + ϕM( jk)ck

for unique nonzero c1, . . . , ck ∈ R and j1, . . . , jk ∈ J. Then, using the definition of ιBM ,
we compute, for i ∈ I,

[L]BN
BM

◦ ιBM(x)(i) =
k∑

l=1

[L]BN
BM

(i, jl)cl. (5.28)

On the other hand, using the definition of the matrix representative,

L(u) =
k∑

l=1

L(ϕM( jl))cl =
∑
i∈I

k∑
l=1

ϕN(i)[L]BN
BM

(i, jl)cl. (5.29)

The result now follows by comparing (5.28) and (5.29) and from the definition of ιBN .
The final assertion of the theorem follows by noting that the given map is a

bijection, and by directly checking that it is a homomorphism. ■

The next result tells us that the matrix representative of the composition of
linear maps is the product of the matrix representatives.

5.5.9 Theorem (Matrix representative of a composition) Let R be a unit ring, let M, N,
and P be free (left or right) R-modules, let BM, BN, and BP be bases for M, N, and P,
respectively, and let I, J, and K be index sets for which there exists bijections ϕM : I→BM,
ϕN : J→BN, and ϕP : K→BP. If A ∈ HomR(M; N) and B ∈ HomR(N; P), then

[B ◦ A]BP
BM
= [B]BP

BN
[A]BN
BM
.

Proof We shall give the proof for right modules; the proof for left modules follows in
the same vein.
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For i ∈ I compute, using the definition of matrix representative and using linearity,

(B ◦ A)(ϕM(i)) = B

∑
j∈J

ϕN( j)[A]BN
BM

( j, i)


=

∑
j∈J

B(ϕN( j))[A]BN
BM

( j, i)

=
∑
j∈J

∑
k∈K

ϕP(k)[B]BP
BN

(k, j)[A]BN
BM

( j, i)

=
∑
k∈K

ϕP(k)[B ◦ A]BP
BM

(k, i),

which gives the result. ■

For endomorphisms of a module, the preceding result, combined with Theo-
rem 5.5.8 has the following corollary.

5.5.10 Corollary (Matrix representatives of endomorphisms) Let R be a unit ring, let M
be a free (resp. right) R-module, letB be a basis for M, let I be an index set for which there
exists a bijection ϕ : I → B , and let ιB : M → RI

0 be the isomorphism defined preceding
the statement of Theorem 5.5.8. Then the map L 7→ ιB ◦ L ◦ ι−1

B
is an isomorphism of the

left (resp. right) R algebras EndR(M) and MatI×I(R).

As with linear maps between vector spaces, the matrix representative is the
matrix if the homomorphism is defined using a matrix (see Theorem 5.2.11).

5.5.11 Proposition (Matrix representative associated to standard bases) Let R be a
unit ring, let I and J be index sets, let M = FJ

0 and N = FI
0, and let BM = {ej}j∈J and

BN = {fi}i∈I be the standard bases for RJ
0 and RI

0, respectively. Let ϕM : J → BM and
ϕN : I→BN be defined by

ϕM(j) = ej, j ∈ J, ϕN(i) = fi, i ∈ I.

If A ∈ MatI×J(R) is column finite and so defines an element of HomR(M; N) by Theo-
rem 5.2.11, then [A]BN

BM
= A.

Proof This follows directly from the computations in the proof of Theorem 5.2.11 and
the constructions preceding Definition 5.4.20. ■

5.5.4 Changing of bases

The change of basis rules for homomorphisms of free modules goes like that
for linear maps of vector spaces. The biggest difference is that one needs to care-
fully account for the fact that the same module may possess bases of different
cardinalities.
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5.5.12 Proposition (Existence of change of basis matrix) Let R be a unit ring, let M be a
free left (resp. right) R-module, letB andB ′ be bases for M having the same cardinality,
and let I be an index set for which there exist bijections ϕ : I→B and ϕ′ : I→B ′. Then
there exists a unique invertible column finite matrix P ∈MatI×I(R) such that

ϕ(i0) =
∑
i∈I

P(i, i0)ϕ′(i)

resp. ϕ(i0) =
∑
i∈I

ϕ′(i)P(i, i0)


for each i0 ∈ I.

Proof We give the proof for right modules since the proof for left modules follows
along similar lines.

Let i0 ∈ I. Since B ′ is a basis there exists unique i1, . . . , ik ∈ I and nonzero
c1, . . . , ck ∈ R such that

ϕ(i0) = ϕ′(i1)c1 + · · · + ϕ
′(ik)ck.

One then defines P by asking that P(i, i0) = c j if i = i j for some j ∈ {1, . . . , k}, and
that P(i, i0) = 0R for i ∈ I \ {i1, . . . , ik}. Note that P thus defined is column finite. We
next show that it is invertible. To do this, we construct its inverse. By swapping the
rôles of B and B ′, our above argument gives the existence a column finite matrix
Q ∈MatI×I(R) such that

ϕ′(i0) =
∑
i∈I

ϕ(i)Q(i, i0)

for each i0 ∈ I. We claim that QP = II. Let i0 ∈ I and note that

ϕ(i0) =
∑
i∈I

ϕ′(i)P(i, i0) =
∑
i∈I

∑
i′∈I

ϕ(i′)Q(i′, i)P(i, i0) =
∑
i′∈I

ϕ(i′)(QP)(i′, i0).

Since {ϕ(i)}i∈I is a basis, and in particular is linearly independent, this implies that

(QP)(i′, i0) =

1R, i′ = i0,
0R, i′ , i0.

In other words, QP = II. In like manner we compute

ϕ′(i0) =
∑
i∈I

ϕ(i)Q(i, i0) =
∑
i∈I

∑
i′∈I

ϕ′(i′)P(i′, i)Q(i, i0) =
∑
i′∈I

ϕ′(i′)(PQ)(i′, i0),

which leads to the conclusion, using the fact that {ϕ′(i)}i∈I is linearly independent, that
PQ = II. Thus Q is the inverse of P. ■

We introduce some notation and terminology associated with the matrix P of
the preceding result.

5.5.13 Definition (Change of basis matrix) Let R be a unit ring, let M be a free (left or
right) R-module, letB andB ′ be bases for M having the same cardinality, and let
I be an index set for which there exist bijections ϕ : I → B and ϕ′ : I → B ′. The
matrix P of Proposition 5.5.12 is called the change of basis matrix from the basis
B to the basisB ′, and is denoted by PB

′

B . •

As a corollary to Proposition 5.5.12 we have the following result.
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5.5.14 Corollary (Inverse of change of basis matrix) Let R be a unit ring, let M be a free
(left or right) R-module, let B and B ′ be bases for M having the same cardinality, and
let I be an index set for which there exist bijections ϕ : I → B and ϕ′ : I → B ′. Then
PBB ′ = (PB

′

B )−1.
Proof This was shown during the course of the proof of Proposition 5.4.26. ■

If one has more than two bases, the change of basis matrices can be related in a
simple way.

5.5.15 Proposition (Product of change of basis matrices is a change of basis matrix)
Let R be a unit ring, let M be a free (left or right) R-module, letB ,B ′, andB ′′ be bases
for M having the same cardinality, and let I be an index set for which there exist bijections
ϕ : I→B , ϕ′ : I→B ′, and ϕ′′ : I→B ′′. Then

PB
′′

B = PB
′′

B ′ PB
′

B .

Proof We give the proof in the case of right modules.
Let i0 ∈ I and compute

ϕ(i0) =
∑
i∈I

ϕ′(i)PB
′

B
(i, i0)

=
∑
i∈I

∑
i′∈I

ϕ′′(i′)PB
′′

B ′
(i′, i)PB

′

B
(i, i0)

=
∑
i′∈I

ϕ′′(i′)(PB
′′

B ′
PB

′

B
)(i′, i0),

giving the result by definition of PB
′′

B
. ■

Finally we show that every invertible matrix gives rise to a change of basis.

5.5.16 Proposition (Invertible matrices give rise to changes of basis) Let R be a unit
ring, let V be a free (left or right) R-module, letB be a basis for M, and let I be an index
set such that there exists a bijection ϕ : I→ B . Then, given an invertible column matrix
P ∈MatI×I(R), there exists a basisB ′ for M such that P = PB

′

B .
Proof We give the proof for right modules.

We defineB ′ by defining an injective map ϕ′ : I → M and takingB ′ = image(ϕ).
We define ϕ′ by

ϕ′(i0) =
∑
i∈I

ϕ(i)P−1(i, i0).

Let us show that {ϕ′(i)}i∈I is a basis for M. First we prove linear independence. Suppose
that c1, . . . , ck ∈ R and i1, . . . , ik ∈ I satisfy

ϕ′(i1)c1 + · · · + ϕ
′(ik)ck = 0M.

Then
k∑

j=1

∑
i∈I

ϕ(i)c jP−1(i, i j) = 0M.
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Since {ϕ(i)}i∈I is a basis we have

k∑
j=1

c jP−1(i, i j) = 0R, i ∈ I. (5.30)

Now, if we define c ∈ RI
0 by

c(i) =

c j, i = i j, j ∈ {1, . . . , k},
0R, i < {i1, . . . , ik},

then (5.30) is simply cP = 0RI
0
, and so c = 0RI

0
by Exercise 4.8.3. Thus c1 = · · · = ck = 0R,

giving linear independence. Now we show that {ϕ′(i)}i∈I generates V. Note that∑
i′∈I

ϕ(i′)P(i′, i0) =
∑
i∈I

∑
i′∈I

ϕ(i)P−1(i, i′)P(i′, i0) = ϕ(i0). (5.31)

Therefore, every element in the basis {ϕ(i)}i∈I is a finite linear combination of elements
from {ϕ′(i)}i∈I. Since every element in M is a finite linear combination of elements
from {ϕ(i)}i∈I, it then immediately follows that every element in M is a finite linear
combination of vectors from {ϕ′(i)}i∈I. ThusB ′ = {ϕ′(i)}i∈I is a basis.

It follows (5.31) that P = PB
′

B
. ■

We may now address the matter of how matrix representations change when
one changes bases.

5.5.17 Theorem (Change of basis formula) Let R be a unit ring, let M and N be free (left
or right) R-modules, letBM andB ′

M be bases for M having the same cardinality, letBN

and B ′

N be bases for N having the same cardinality, and let I and J be sets for which
there exist bijections ϕM : J → BM, ϕ′M : J → B ′

M, ϕN : I → BN, and ϕ′N : I → B ′

N. If
L ∈ HomR(M; N) then

[L]
B ′N
B ′M
= P

B ′N
BN

[L]BN
BM

(P
B ′M
BM

)−1.

This relation is called the change of basis formula.
Proof We give the proof for right modules.

For j0 ∈ J we compute

L(ϕ′M( j0)) = L

∑
j∈J

ϕM( j)PBM
B ′M

( j, j0)


=

∑
j∈J

L(ϕM( j))PBM
B ′M

( j, j0)

=
∑
j∈J

∑
i∈I

ϕN(i)[L]BN
BM

(i, j)PBM
B ′M

( j, j0)

=
∑
j∈J

∑
i∈I

∑
i′∈I

ϕ′N(i′)P
B ′N
BN

(i′, i)[L]BN
BM

(i, j)PBM
B ′M

( j, j0)

=
∑
i′∈I

(P
B ′N
BN

[L]BN
BM

PBM
B ′M

)(i′, j0)ϕ′N(i′).



816 5 Linear algebra

The result now follows from the definition of the matrix representative and from
Corollary 5.5.14. ■

5.5.5 Determinant and trace of an endomorphism

The entirety of Section 5.4.6 can be transplanted here, with “a field F” replaced
by “a commutative unit ring R.” We do not do this, but leave it as a mental exercise
for the reader.

5.5.6 Equivalence of homomorphisms

In this section we say a few words about equivalence of homomorphisms of
modules. This problem is too difficult to manage in any sort of generality, so we
restrict ourselves to giving a basis-free version of Theorem 5.2.43 for finite matrices
over principal ideal domains. The main theorem we state, Theorem 5.5.20, follows
from Theorem 5.2.43, but we give a more elegant, but unconstructive proof.

We begin by giving the general definition of equivalence of homomorphisms.
If we wish to have a useful form of generality—for example, for homomorphisms
of modules that may not be free—we cannot use anything analogous to Defini-
tion 5.4.38.

5.5.18 Definition (Equivalence of homomorphisms) Let R be a ring and let M and N be
free (left or right) modules. Maps L1,L2 ∈ HomR(M; N) are equivalent if there exists
isomorphisms P ∈ HomR(N; N) and Q ∈ HomR(M; M) such that L2 = P ◦ L2 ◦Q. •

It is not too difficult to show that equivalence of homomorphisms as defined
above agrees with equivalence as in Definition 5.4.38 in the case of vector spaces
over fields. The reader can prove this as Exercise 5.5.4.

According to Corollary 5.4.42, along with Corollary 4.5.48, two linear maps
L1,L2 ∈ HomF(U; V) between vector spaces U and V are equivalent if and only if
the following pairs of vector spaces are isomorphic:
1. image(L1) and image(L2);
2. ker(L1) and ker(L2);
3. coker(L1) and coker(L2).
Moreover, if U and V are finite-dimensional then it is enough that rank(L1) =
rank(L2). This is not true for rings, even for principal ideal domains as the following
simple example shows.

5.5.19 Example (Nonequivalent homomorphisms) We let R = Z and consider homo-
morphisms of Z2 with itself defined by the following 2 × 2 matrices:

A1 =

[
1 0
0 2

]
, A2 =

[
1 0
0 3

]
.
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Note that image(A1) and image(A2) are isomorphic via the isomorphism ( j, 2k) 7→
( j, 3k). Also, ker(A1) and ker(A2) are both equal to {(0, 0)}. However, A1 and A2 are
not equivalent. •

The equivalence problem for homomorphisms of free, finitely generated mod-
ules over principal ideal domains is characterised as follows.

5.5.20 Theorem (Equivalence of homomorphisms for principal ideal domains) Let
R be a principal ideal domain, let M and N be free, finitely generated R-modules, and let
L ∈ HomR(M; N). Then there exists bases BM and BN for M and N, respectively, such
that

[L]BN
BM
=

[
Dr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
with Dr being the diagonal matrix

Dr =


d1 0R · · · 0R

0R d2 · · · 0R
...

...
. . .

...
0R 0R · · · dr

 ,
and where d1| · · · |dr. Moreover, the ideals (d1), . . . , (dr) are uniquely determined by L.

Proof Suppose that rank(M) = n and rank(N) = n. LetB ′M andB ′N be bases for M and
N, respectively. By Theorem 5.2.43 there exists invertible matrices P ∈Matm×m(R) and
Q ∈Matn×n(R) such that

P[L]
B ′N
B ′M

Q =
[

Dr 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
.

The result now follows by taking BM to be the basis for which PBM
B ′M
= Q−1 and by

takingBN to be the basis for which PBN
B ′N
= P. ■

5.5.7 Notes

A fairly general discussion of linear algebra over commutative rings may be
found in the book of McDonald [1984]. In particular, much attention is paid in this
volume to homomorphisms of so-called projective modules.

Exercises

5.5.1 Prove Proposition 5.5.4.
5.5.2 Let R be a commutative unit ring and let M be a finitely-generated, free

R-module.
(a) Show that the set of invertible endomorphisms of M is a group with

group operation given by composition.
This group is called the general linear group of M and is denoted by

GL(M).
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(b) Is GL(M) a subalgebra of EndR(M)?
5.5.3 Let R be a commutative unit, let M be a finitely-generated, free R-module,

and recall from Exercise 5.5.2 that GL(M) denotes the group of invertible
endomorphisms of M.
(a) Show that the subset of endomorphisms with determinant 1R is a sub-

group of GL(M).
This subgroup of invertible endomorphisms with determinant 1R is

denoted by SL(M) and is called the special linear group of M.
(b) Is SL(M) a subalgebra of EndR(M)?

5.5.4 Prove the following result.

Proposition Let F be a field and let U and V be F-vector spaces. Then L1,L2 ∈

HomF(U; V) are equivalent in the sense of Definition 5.4.38 if and only if they are
equivalent in the sense of Definition 5.5.18.
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Section 5.6

Multilinear algebra

Multilinear algebra, not surprisingly, generalises linear algebra to maps which
have multiple vectors as their arguments. This is a subject of significant importance
in algebra, geometry, and in some parts of mathematical physics. However, our
uses of multilinear algebra will generally be a little mundane. Nonetheless, for
purposes of presentation, it is helpful to organise all of our facts about multilinear
algebra in one place, and to do so in a way that indicates that our mundane usage
is part of a bigger story.

Do I need to read this section? This section should be read when it is either
needed, or the reader is ready to appreciate it. •

5.6.1 Multilinear maps

In the following definition we use a basic fact about the symmetric group; see
Example 4.1.5–11 for the definition of the symmetric group and Section 4.1.6 for
more details. Namely we use the fact that every element of the symmetric group is a
product of a finite number of transpositions (i.e., swappings of elements), and that,
while the number of transpositions needed is not uniquely defined, the evenness
or oddness of the number of transpositions is well-defined. Thus, given σ ∈ Sk, we
define sign(σ) to be +1 if σ is a composition of an even number of transpositions
(these are even permutations) and −1 if σ is a composition of an odd number of
transpositions (these are odd permutations).

5.6.1 Definition (Multilinear map) Let R be a commutative unit ring and let M1, . . . ,Mk,N
be R-modules. A map

ϕ : M1 × · · · ×Mk → N

is R-multilinear if for each j0 ∈ {1, . . . , k} and for each x j ∈ M j, j ∈ {1, . . . , k} \ { j0}, the
map

x j0 7→ ϕ(x1, . . . , x j0 , . . . , xn)

is an element of HomR(M j0 ; N). The set of R-multilinear maps from M1 × · · · ×Mk to
N is denoted by HomR(M1, . . . ,Mk; N). If M1 = · · · = Mk = M for some R-modules M
then we denote Homk

R(M; N) = HomR(M, . . . ,M; N). •

It is easy to see that HomR(M1, . . . ,Mk; N) is an R-module.

5.6.2 Proposition (HomR(M1, . . . ,Mk; N) is an R-module) Let R be a commutative unit
ring and let M1, . . . ,Mk,N be R-modules. If we define addition and scalar multiplication
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by

(ϕ1 + ϕ2)(x1, . . . , xk) = ϕ1(x1, . . . , xk) + ϕ2(x1, . . . , xk),
(rϕ)(x1, . . . , xk) = r(ϕ(x1, . . . , xk)),

for ϕ,ϕ1, ϕ2 ∈ HomR(M1, . . . ,Mk; N), r ∈ R, and xj ∈ Mj, j ∈ {1, . . . ,k}, then
HomR(M1, . . . ,Mk; N) is an R-module.

Proof This is left as Exercise 5.6.1. ■

Let us now consider some important classes of multilinear maps.

5.6.3 Definition (Symmetric, skew-symmetric, and alternating multilinear maps)
Let R be a commutative unit ring, let M and N be R-modules, let k ∈ Z>0, and
let ϕ ∈ Homk

R(M; N). Then
(i) ϕ is symmetric if

ϕ(xσ(1), . . . , xσ(k)) = ϕ(x1, . . . , xk)

for every x j ∈ M j, j ∈ {1, . . . , k}, and for every σ ∈ Sk,
(ii) ϕ is skew-symmetric if

ϕ(xσ(1), . . . , xσ(k)) = sign(σ)ϕ(x1, . . . , xk)

for every x j ∈ M j, j ∈ {1, . . . , k}, and for every σ ∈ Sk, and
(iii) ϕ is alternating if ϕ(x1, . . . , xk) = 0N whenever xi = x j for some i, j ∈ {1, . . . , k}.

We denote by Sk(M; N) (resp.
∧k(M; N)) the set of symmetric (resp. skew-symmetric)

multilinear maps from Mk to N. •

Let us make sure to note that Sk(M; N) and
∧k(M; N) are R-modules.

5.6.4 Proposition (Sets of symmetric and skew-symmetric maps are modules) If
R is a commutative unit ring, if M and N are R-modules, and if k ∈ Z>0, then Sk(M; N)
and

∧k(M; N) are submodules of Homk
R(M; N).

Proof This is left as Exercise 5.6.2. ■

It is easy to show that alternating multilinear maps are skew-symmetric.

5.6.5 Proposition (Alternating multilinear maps are skew-symmetric) Let R be a
commutative unit ring and let M and N be R-modules. Then a multilinear mapϕ : Mk

→ N
is skew-symmetric if it is alternating.

Proof Since sign(σ1 ◦ σ2) = sign(σ1) sign(σ2) it suffices to show that

ϕ(xσ(1), . . . , xσ(k)) = sign(σ)ϕ(x1, . . . , xk)
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when σ is a transposition. Thus suppose that σ swaps the ith and jth entries with i < j.
We then compute,

0N = ϕ(x1, . . . , xi + x j︸︷︷︸
ith spot

, . . . , xi + x j︸︷︷︸
jth spot

, . . . , xk)

= ϕ(x1, . . . , xi, . . . , xi, . . . , xk) + ϕ(x1, . . . , xi, . . . , x j, . . . , xk)
+ ϕ(x1, . . . , x j, . . . , xi, . . . , xk) + ϕ(x1, . . . , x j, . . . , x j, . . . , xk)

= ϕ(x1, . . . , xi, . . . , x j, . . . , xk) + ϕ(x1, . . . , x j, . . . , xi, . . . , xk),

giving
ϕ(x1, . . . , xi, . . . , x j, . . . , xk) = −ϕ(x1, . . . , x j, . . . , xi, . . . , xk),

as desired. ■

It is not true that skew-symmetric multilinear maps are alternating, however,
as the following example shows.

5.6.6 Example (Skew-symmetric but non-alternating multilinear map) Let us con-
sider the ring Z2 = Z/2Z and the multilinear map ϕ : Z2

2 → Z2 given by

ϕ(( j1 + 2Z, k1 + 2Z), ( j2 + 2Z, k2 + 2Z)) = ( j1 + 2Z)( j2 + 2Z) + ( j1 + 2Z)(k2 + 2Z)
+ (k1 + 2Z)( j2 + 2Z) + (k1 + 2Z)(k2 + 2Z).

One can directly check thatϕ is skew-symmetric since 1+2Z = −(1+2Z). However,

ϕ((1 + 2Z, 0 + 2Z), (1 + 2Z, 0 + 2Z)) = 1 + 2Z,

and so ϕ is not alternating. •

Let us now explore some connections between linear maps and multilinear
maps. The following result will be important in our discussion of derivatives in
Section II-1.4.

5.6.7 Proposition (Linear functions of multilinear maps) Let R be a commutative unit
ring and let M0,M1, . . . ,Mk and N be R-modules. The map

Ψ : HomR(M0; HomR(M1, . . . ,Mk; N))→ HomR(M0,M1, . . . ,Mk; N)

given by
Ψ(ϕ)(x0, x1, . . . , xk) = ϕ(x0) · (x1, . . . , xk)

is an isomorphism of R-modules. (We use the “·” to separate the arguments in order to
eliminate a proliferation of parentheses.)

Proof If ϕ1, ϕ2 ∈ HomR(M0; HomR(M1, . . . ,Mk; N)) then

Ψ(ϕ1 + ϕ2)(x0, x1, . . . , xk) = (ϕ1 + ϕ2)(x0) · (x1, . . . , xk)
= (ϕ1(x0) + ϕ2(x0)) · (x1, . . . , xk)
= ϕ1(x0) · (x1, . . . , xk) + ϕ2(x0) · (x1, . . . , xk)
= Ψ(ϕ1)(x0) · (x1, . . . , xk) +Ψ(ϕ2)(x0) · (x1, . . . , xk).
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If r ∈ R and ϕ ∈ HomR(M0; HomR(M1, . . . ,Mk; N)) then

Ψ(rϕ)(x0, x1, . . . , xk) = (rϕ)(x0) · (x1, . . . , xk)
= (r(ϕ(x0))) · (x1, . . . , xk)
= r(ϕ(x0) · (x1, . . . , xk))
= r(Ψ(ϕ)(x0, x1, . . . , xk)).

This shows thatΨ is linear.
Suppose thatΨ(ϕ) = 0HomR(M0,M1,...,Mk;N). Then

Ψ(ϕ)(x0, x1, . . . , xk) = 0N

for all x j ∈ M j, j ∈ {0, 1, . . . , k}. Thus

ϕ(x0) · (x1, . . . , xk) = 0N

for all x0 ∈ M0 and for all x j ∈ M j, j ∈ {1, . . . , k}. Thus ϕ(x0) = 0HomR(M1,...,Mk) for all
x0 ∈ M0. Thus ϕ = 0 and soΨ is injective by Exercise 4.5.23.

Now let ψ ∈ HomR(M0,M1, . . . ,Mk; N) and define

ϕ ∈ HomR(M0; HomR(M1, . . . ,Mk; N))

by
ϕ(x0) · (x1, . . . , xk) = ψ(x0, x1, . . . , xk).

We should show that ϕ is linear. For y0, x0 ∈ M0 we compute

ϕ(y0 + x0) · (x1, . . . , xk) = ψ(y0 + x0, x1, . . . , xk)
= ψ(y0, x1, . . . , xk) + ψ(x0, x1, . . . , xk)
= ϕ(y0) · (x1, . . . , xk) + ϕ(x0) · (x1, . . . , xk)
= (ϕ(y0) + ϕ(x0)) · (x1, . . . , xk).

For r ∈ R and x0 ∈ M0 we similarly have

ϕ(rx0) · (x1, . . . , xk) = ψ(rx0, x1, . . . , xk)
= rψ(x0, x1, . . . , xk)
= r(ϕ(x0) · (x1, . . . , xk))
= (rϕ(x0)) · (x1, . . . , xk).

This shows that ϕ is indeed linear, and so also shows that Ψ is surjective since we
clearly haveΨ(ϕ) = ψ. ■

5.6.2 Bases for sets of multilinear maps

It will be convenient to represent multilinear maps in bases, and in this section
we indicate how this is done. For general modules the matter of representing a
multilinear map in a convenient way is a rather complicated issue. However, we
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shall be interested only in the simplest of cases where the modules are free (note
that Theorem 4.8.25 implies that the rank of such modules is well-defined).

We begin by defining a collection of multilinear maps associated to bases for the
modules under consideration. We let R be a commutative unit ring and let M and
N be unity R-modules. We let (ei)i∈I and ( f j) j∈J be basis for M and N, respectively.
We shall define a collection of elements of Homk

R(M; N) that we will show form a
basis for this set of multilinear maps. For x1, . . . , xk ∈ M and for each l ∈ {1, . . . , k},
write xl =

∑
i∈I ai

lei for uniquely defined coefficients ai
l ∈ R, i ∈ I, only finitely many

of which are nonzero. For i1, . . . , ik ∈ I and for j ∈ J define Ei1···ik
j ∈ Homk

R(M; N) by

(Ei1···ik
j (x1, . . . , xk))( j′) =

ai1
1 · · · a

ik
k , j = j′,

0N, j , j′.

Thus
Ei1···ik

j (x1, . . . , xk) = ai1
1 · · · a

ik
k f j.

Let us define a related notion.

5.6.8 Definition (Components of a multilinear map) Let R be a commutative unit ring
and let M and N be unity R-modules with bases (ei)i∈I and ( f j) j∈J, respectively. For
ϕ ∈ Homk

R(M; N) the components of ϕ are defined by

ϕ j
i1···ik
= ϕ(ei1 , . . . , eik)( j). •

The following result puts the preceding notation together.

5.6.9 Proposition (Bases for sets of multilinear maps) Let R be a commutative unit ring
and let M and N be unity R-modules with bases (ei)i∈I and (fj)j∈J, respectively. Then{

Ei1···ik
j

∣∣∣∣ i1, . . . , ik ∈ I, j ∈ J
}

is a basis for Homk
R(M; N). Moreover, if ϕ ∈ Homk

R(M; N) then

ϕ =
∑

i1,...,ik∈I

∑
j∈J

ϕj
i1···ik

Ei1···ik
j .

Proof Suppose that there exist coefficients c j
i1···ik
∈ R, i1, . . . , ik ∈ I, j ∈ J, only finitely

many of which are nonzero, such that∑
i1,...,ik∈I

∑
j∈J

c j
i1···ik

Ei1···ik
j = 0Homk

R(M;N).

Then, for every i′1, . . . , i
′

k ∈ I we have

0N =
∑

i1,...,ik∈I

∑
j∈J

c j
i1···ik

Ei1···ik
j (ei′1

, . . . , ei′k
) =

∑
j∈J

c j
i′1···i

′

k
f j,
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using the definition of Ei1···ik
j . Since ( f j) j∈J is linearly independent this means that

c j
i′1···i

′

k
= 0R for every i′1, . . . , i

′

k ∈ I and j ∈ J. This gives linear independence of{
Ei1···ik

j

∣∣∣∣ i1, . . . , ik ∈ I, j ∈ J
}
.

Let ϕ ∈ Homk
R(M; N) and for x1, . . . , xk ∈ M write xl =

∑
il∈I ail

l eil . Then we compute

ϕ(x1, . . . , xk) =
∑

i1,...,ik∈I

ϕ(ai1
1 ei1 , . . . , a

ik
k eik)

=
∑

i1,...,ik∈I

∑
j∈J

ai1
1 · · · a

ik
k (ϕ(ei1 , . . . , eik)( j)) f j

=
∑

i1,...,ik∈I

∑
j∈J

ai1
1 · · · a

ik
k ϕ

j
i1···ik

f j

=
∑

i1,...,ik∈I

∑
j∈J

ϕ
j
i1···ik

Ei1···ik
j (x1, . . . , xk),

giving the final assertion of the result, and in particular the fact that the set{
Ei1···ik

j

∣∣∣∣ i1, . . . , ik ∈ I, j ∈ J
}

generates Homk
R(M; N). ■

5.6.10 Remark (Warning about bilinear maps) Let R be a commutative unit ring and let
M be a unity R-module with basis (ei)i∈I. Let us make some observations about the
set Hom2

R(M; R) of scalar-valued bilinear maps. Since R has the obvious basis {1R},
from Proposition 5.6.9 the components of B ∈ HomR(M; R) are naturally thought of
as defining an matrix B ∈MatI×I(R) by B(i1, i2) = B(ei1 , ei2). Because of this, there can
be a tendency to confound the notions of linear maps and bilinear maps since both
are represented in bases with matrices. However, it is an error to do this; bilinear
maps and linear maps are very obviously different things. However, when R is a
field and M is thus a vector space, as we shall see in Section 5.7.6, there is a natural
way of thinking of B as a linear map, albeit one whose image is the algebraic dual
M′. •

5.6.3 Tensor products of vector spaces

In this section we give a brief overview of tensor products. Tensor products are
notoriously difficult to get one’s hands on, and since we shall make only limited
use of them, this section can certainly be skipped until the reader feels compelled
to understand tensor products by the need to understand vector spaces over field
extensions (see Section 4.6) and the related concepts that will arise in our discussion
of linear algebra on finite-dimensional vector spaces as described in Section 5.8.9.
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There is no easy definition of the tensor product. The definition we give is the
one that is most useful in practice, since it provides that property of the tensor
product that captures their essence. For simplicity we restrict ourselves to vector
spaces rather than general modules. We also simply define the tensor product
of two vector spaces. This construction can be used to inductively define tensor
products of any finite collection of vector spaces, and it is also possible to directly
define—making fairly obvious modifications to our constructions—tensor prod-
ucts of finitely many vector spaces. However, since we shall not have occasion to
use these constructions, we do not present them here.

We let F be a field and let U, V, and W be F-vector spaces. Recall from the
discussion above that HomF(U,V; W) denotes the set of multilinear maps from
U × V to W. Such multilinear maps we call bilinear since there are only two
components to the domain.

Now we can give the definition of a tensor product.

5.6.11 Definition (Tensor product) Let F be a field and let U and V be F-vector spaces. A
tensor product of U and V is an F-vector space U⊗V and a bilinear map ι : U×V→
U⊗V such that, for any F-vector space W and any bilinear map ϕ ∈ HomF(U,V; W),
there exists a unique linear map Lϕ ∈ HomF(U ⊗ V; W) such that the diagram

U × V
ϕ //

ι
��

W

U ⊗ V
Lϕ

;;

commutes. •

The idea is that associated with a bilinear map from two vector spaces is a linear
map from their tensor product. What is true is that the notion of a tensor product
will take some time to absorb, so the reader should be prepared to accept a few
moments of discomfort before acquiring a facility in using tensor products. We
shall get at this by exploring some of the properties of tensor products.

We begin by showing that tensor products exist and are essentially unique.
The proof of the theorem is constructive, in principle, although perhaps the most
concrete realisation of tensor products will come when we give bases for them in
terms of bases for the vector spaces involved.

5.6.12 Theorem (Existence and uniqueness of tensor products) If F is a field and if U
and V are two F-vector spaces, then there exists a tensor product of U and V. Moreover,
two tensor products of U and V are unique.

Proof The explicit construction of the tensor product is quite abstract. Let FU×V
0 be the

vector space generated by the index set U × V. Thus

FU×V
0 =

⊕
(u,v)∈U×V

F.
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We represent an element of FU×V
0 as a map ϕ : U × V → F which is zero except for a

finite number of elements of its argument. Consider the subspace X of FU×V
0 generated

by elements of the form

(u1 + u2, v) − (u1, v) − (u2, v), (u, v1 + v2) − (u, v1) − (u, v2),
(au, v) − a(u, v), (u, av) − a(u, v)

for u,u1,u2 ∈ U, v, v1, v2 ∈ V, and a ∈ F. Let us denote U ⊗ V = FU×V
0 /X.

We claim that U ⊗ V is a tensor product if we define ι : U × V→ U ⊗ V by ι(u, v) =
(u, v)+X. Let us abbreviate ι(u, v) = u⊗v. It is evident that the set {u⊗v | u ∈ U, v ∈ V}
generates U⊗V since U×V generates FU×V

0 . Thus, given ϕ ∈ HomF(U,V; W), to define
Lϕ ∈ HomF(U ⊗ V; W) it suffices to define Lϕ(u ⊗ v) for (u, v) ∈ U × V. We define
Lϕ(u ⊗ v) = ϕ(u, v).

For this to define a homomorphism, we should show that it is well-defined. Thus
suppose that

ũ ⊗ ṽ = u ⊗ v,

i.e., suppose that
(ũ, ṽ) − (u, v) ∈ X.

Then, by definition of X and since ϕ is bilinear, it follows that

ϕ((ũ, ṽ) − (u, v)) = 0,

so that
Lϕ(ũ ⊗ ṽ) = Lϕ(u ⊗ v).

Thus, our definition of Lϕ on elements of the form u ⊗ v makes sense. It is clear by
mere definition of Lϕ that the diagram of Definition 5.6.11 commutes.

To show uniqueness of the tensor product, let T and T′ be two tensor products
with associated bilinear maps ι : U × V → T and ι′ : U × V → T′. By definition of the
tensor product there exists a unique Lι ∈ HomF(T′; T) such that Lι ◦ ι′ = ι and a unique
Lι′ ∈ HomF(T; T′) such that Lι′ ◦ ι = ι′. Thus

Lι ◦ Lι′ ◦ ι = Lι ◦ ι′ = ι.

Thus the diagram

U × V ι //

ι
��

T

T
Lι◦Lι′

<<

commutes and so uniquely defines Lι ◦ Lι′ = idT. Similarly we get Lι′ ◦ Lι = idT, and so
Lι is an isomorphism with inverse Lι′ . ■

5.6.13 Notation (u⊗v) In the proof we denoted by u⊗v ∈ U⊗V the image of (u, v) ∈ U×V
under the bilinear map ι : U × V → U ⊗ V. We also noted in the proof that the set
{u ⊗ v | u ∈ U, v ∈ V} generates U ⊗ V. We shall use this notation and this fact
often. •

The following result gives perhaps the best toehold into understanding the
tensor product.
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5.6.14 Theorem (Bases for tensor products) Let F be a field, let U and V be F-vector spaces,
and let {ei}i∈I and {fj}j∈J be bases for U and V, respectively. Then

{ei ⊗ fj | i ∈ I, j ∈ J}

is a basis for U ⊗ V.
Proof Let w ∈ U ⊗ V. Then

w = u1 ⊗ v1 + · · · + uk ⊗ vk.

We also write u1, . . . ,uk and v1, . . . , vk as finite linear combinations from {ei}i∈I and
{ f j} j∈J, respectively. This gives w as a finite linear combination of elements of the form
ei ⊗ f j, i ∈ I, j ∈ J. Now suppose that∑

i∈I

∑
j∈J

ci jei ⊗ f j = 0U⊗V

is a linear combination summing to zero with only finitely many of the ci j’s being
nonzero. Define a bilinear map ϕ : U × V→ F on basis elements by

ϕ(ei, f j) = ci j, i ∈ I, j ∈ J,

and then extending to U × V by bilinearity. Thus if

u =
∑
i∈I

uiei ∈ U, v =
∑
j∈J

v j f j ∈ V,

then
ϕ(u, v) =

∑
i∈I

∑
j∈J

ci juiv j.

By Proposition 5.6.9 this means that

ϕ =
∑
i∈I

∑
j∈J

ci jEi j.

Associated to this bilinear map is the linear map Lϕ ∈ HomF(U ⊗ V; F) which satisfies

Lϕ(u ⊗ v) = ϕ(u, v) =
∑
i∈I

∑
j∈J

ci juiv j

=
∑
i∈I

∑
j∈J

∑
k∈I

∑
l∈J

ci jEkl(ei, f j)ukvl

=
∑
i∈I

∑
j∈J

∑
k∈I

∑
l∈J

ci jLEkl(ei ⊗ f j)ukvl

=
∑
k∈I

∑
l∈J

LEkl

∑
i∈I

∑
j∈J

ci jei ⊗ f j

 ukvl = 0F.

Thus ϕ = 0HomF(U,V;F) and so ci j = 0F, i ∈ I, j ∈ J, by Proposition 5.6.9. ■

When both U and V are finite-dimensional, there is a more concrete representa-
tion of the tensor product as follows.



828 5 Linear algebra

5.6.15 Proposition (Sometimes U ⊗ V = HomF(HomF(U,V; F); F)) Let F be a field and let
U and V be finite-dimensional F-vector spaces. Then there exists an isomorphism ΦU,V of
the F-vector spaces U ⊗ V and HomF(HomF(U,V; F); F) that satisfies

ΦU,V(u ⊗ v)(ϕ) = ϕ(u,v), u ∈ U, v ∈ V.

Proof Let {e1, . . . , en} be a basis for U and let { f1, . . . , fm} be a basis for V. Let {Ei j
| i ∈

{1, . . . ,n}, j ∈ {1, . . . ,m}} be the basis for HomF(HomF(U,V; F); F) dual to the basis
{Ei j | i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}} for HomF(U,V; F). We define ΦU,V by asking that
ΦU,V(ei ⊗ e j) = Ei j, and then extend to U⊗V by linearity since {ei ⊗ f j | i ∈ {1, . . . ,n}, j ∈
{1, . . . ,m}} is a basis. It is evident that ΦU,V is an isomorphism since it maps a basis for
U ⊗ V to a basis for HomF(HomF(U,V; F); F). Moreover,

ΦU,V


 n∑

i=1

uiei

 ⊗
 m∑

j=1

v j f j


 (Ekl) =

n∑
i=1

m∑
j=1

uiv jEkl(Ei j) = ukvl = Ekl

 n∑
i=1

uiei,
m∑

j=1

v j f j

 ,
givingΦU,V(u, v)(Ekl) = Ekl(u, v). Therefore, by linearity, the relation in the statement of
the proposition holds. ■

In the next section we shall see an application of the tensor product that we
shall encounter at various points in the text. However, to try to get some intuition
into the tensor product, let us look at an example.

5.6.16 Example (F[ξ1, ξ2] = F[ξ1] ⊗ F[ξ2]) Let us consider two copies of the ring of
polynomials over a field, using two different symbols for the indeterminate: F[ξ1]
and F[ξ2]. These are vector spaces over F with bases {ξ j

1} j∈Z≥0 and {ξ j
2} j∈Z≥0 : see

Example 4.5.2–6 and Example 4.5.28–5. Thus

{ξ j1
1 ⊗ ξ

j2
2 | j1, j2 ∈ Z≥0}

is a basis for F[ξ1]⊗F[ξ2]. By mapping ξ j1
1 ⊗ ξ

j2
2 to the monomial ξ j1

1 ξ
j2
2 we establish

a natural isomorphism from F[ξ1] ⊗ F[ξ2] to F[ξ1, ξ2]. Thus we see that this is
a natural instance where the notion of the tensor product corresponds to taking
products of elements of the two vector spaces. There are other interpretations of
the tensor product. It is a surprisingly useful device. •

If one has linear maps on the components of a tensor product, then there is
a naturally induced linear map on the tensor product, as the following result
records.

5.6.17 Proposition (Linear maps on tensor products) Let F be a field and let U, V, W,
and X be F-vector spaces. If L ∈ HomF(U; W) and L ∈ HomF(V; X), then there exists a
unique L ⊗M ∈ HomF(U ⊗ V; W ⊗ X) satisfying

L ⊗M(u ⊗ v) = L(u) ⊗M(v), u ∈ U, v ∈ V.

Proof Note that the map (u, v) 7→ L(u) ⊗M(v) is bilinear. The result now follows from
the definition of tensor product. ■
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5.6.4 Classification of R-valued bilinear maps

There is a particular sort of multilinear map that is quite important in applica-
tions, and we investigate these here. The multilinear maps we are concerned with
are those for vector spaces defined overR. In this case the natural total order onR
allows for some interesting additional structure.

5.6.18 Definition (Definiteness of symmetric bilinear maps) Let V be aR-vector space,
let B ∈ S2(V;R), and define QB : V → R by QB(v) = B(v, v). We say that B is

(i) positive-semidefinite if image(QB) ⊆ R≥0, is
(ii) positive-definite if it is positive-semidefinite and Q−1

B (0) = {0V}, is
(iii) negative-semidefinite if −B is positive-semidefinite, is
(iv) negative-definite if −B is positive-definite, is
(v) semidefinite if it is either positive- or negative-semidefinite, is
(vi) definite if it is either positive- or negative-definite, and is
(vii) indefinite if it is neither positive- nor negative-semidefinite. •

It is important to be able to check when a symmetric bilinear map is positive-
definite, and the following result offers a simple means of doing this when V is
finite-dimensional. We recall the definition of a minor of a matrix from Defini-
tion 5.3.15.

5.6.19 Theorem (Test for positive-definiteness) Let n ∈ Z>0 and let V be an n-dimensional
R-vector space with basis B = {e1, . . . , en}. For B ∈ S2(V;R) let [B]

B
∈ Matn×n(R) be

defined by
[B]B (i, j) = B(ei, ej), i, j ∈ {1, . . . ,n}.

Then the following statements are equivalent:
(i) B is positive-definite;
(ii) for each k ∈ {1, . . . ,n} the (K,K)th minor of [B]

B
is positive, where K = {1, . . . ,k}.

Proof The following lemma will be useful.

1 Lemma Let A ∈ Matn×N(R) be a matrix satisfying A(i, j) = A(j, i) for each i, j ∈ {1, . . . ,n}
and write

A =
[
A′ a
aT a′

]
for A′ ∈ Mat(n−1)×(n−1)(R), a ∈ Mat(n−1)×1(R), and a′ ∈ R. If A′ is invertible then there
exists an invertible matrix P ∈Matn×n(R) such that

PAPT =

[
A′ 0(n−1)×1

01×(n−1) a′′

]
.

Moreover, if det A′ > 0 and det A > 0 then a′′ > 0.
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Proof Since A′ is invertible it follows that the columns c(A′, 1), . . . , c(A,n− 1) of A′ are
a basis for Rn−1. Thus, thinking of a as an element of Rn let us write

a = α1c(A′, 1) + · · · + αn−1c(A′,n − 1)

for α1, . . . , αn−1 ∈ R. If we define

P =


1 0 · · · 0 −α1
0 1 · · · 0 −α2
...

...
. . .

...
...

0 0 · · · 1 −αn−1
0 0 · · · 0 1


then P is invertible by Exercise 5.3.7. Then a direct computation shows that

PAPT =

[
A′ 0(n−1)×1

01×(n−1) a′′

]
for some a′′ ∈ R. By Proposition 5.3.3 and Exercise 5.3.8 we have (det P)2 det A =
a′′ det A′′ which gives a′′ > 0 if det A > 0 and det A′ > 0. ▼

Now suppose that B is positive-definite and let us abbreviate B = [B]
B

. We have
B(i, j) = B( j, i) for i, j ∈ {1, . . . ,n}. By Exercise 5.6.3 we have

B(v, v) =
n∑

i, j=1

B(i, j)v(i)v( j)

if v(1), . . . ,v(n) are the components of v ∈ V. Thus we have

n∑
i, j=1

B(i, j)v(i)v( j) > 0 (5.32)

for every v ∈ Rn
\{0}. To show that all (K,K)th minors of B are positive for K = {1, . . . , k}

and for each k ∈ {1, . . . ,n} we proceed by induction on n. The assertion is obviously
true for n = 1. Suppose that the assertion is true for n = m − 1 and let B ∈ Matm×m(R)
satisfy B(i, j) = B( j, i) for i, j ∈ {1, . . . ,m} and (5.32). We write

B =
[
B′ b
bT b′

]
(5.33)

as in the lemma above. By the lemma above let P be such that

PBPT =

[
B′ 0(m−1)×1

01×(m−1) b′′

]
. (5.34)

Let {e1, . . . , em} be the standard basis for Rm. We have, using (5.34),

m∑
i, j=1

B(i, j)P(k, i)em(k)P(l, j)em(l) = b′′ > 0
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Also using (5.34) we have

m∑
i, j=1

B(i, j)P(k, i)v(k)P(l, j)v(l) =
m−1∑
i, j=1

B′(i, j)v(i)v( j)

whenever v ∈ spanR(e1, . . . , em−1). Thus, by the induction hypothesis, all (K,K)th
minors of B′ are positive for K = {1, . . . , k} and k ∈ {1, . . . ,m − 1}. Moreover,

det(PBPT) = (det P)2 det B = b′′ det B′ > 0.

Thus det B > 0. Since the (K,K)th minors of B are the same as those of B′ for K =
{1, . . . , k}whenever k ∈ {1, . . . ,m− 1}, it follows that all (K,K)th minors of B are positive
for K = {1, . . . , k} and k ∈ {1, . . . ,m}.

Now suppose that (ii) holds. Then we prove (i) by induction on n. For n = 1
this is obvious. Suppose that (i) holds for n = m − 1 and let B ∈ Matm×m(R) satisfy
B(i, j) = B( j, i) for i, j = {1, . . . ,m} and satisfy (ii). Let us write B as (5.33) and by the
lemma above let P be such that (5.34) holds. Then, for any v ∈ Rn we have

m∑
i, j,k,l=1

B(i, j)P(k, i)v(k)P(l, j)v(l) =
m−1∑
i, j=1

B′(i, j)v(i)v( j) + b′′v(m)2.

By the induction hypothesis the first term on the right is positive. By assumption and
using the lemma we also have b′′ > 0 and so

m∑
i, j,k,l=1

B(i, j)P(k, i)v(k)P(l, j)v(l) > 0

for every v ∈ Rn
\ {0}. However, since P is invertible that this is equivalent to

m∑
i, j=1

B(i, j)v(i)v( j) > 0,

giving the result. ■

Exercises

5.6.1 Prove Proposition 5.6.2.
5.6.2 Prove Proposition 5.6.4.
5.6.3 Let R be a commutative unit ring and let M and N be unity R-modules with

bases (ei)i∈I and ( f j) j∈J, respectively. Letϕ ∈ Homk
R(M; N) and let x1, . . . , xk ∈ M.

Let ϕ j
i1···ik

, j ∈ J, and i1, . . . , ik ∈ I, be the components of ϕ and let xi
l, i ∈ I, be

the components of xl for l ∈ {1, . . . , k}. Show that

ϕ(x1, . . . , xk) =
∑
j∈J

∑
i1,...,ik∈I

ϕ j
i1···ik

xi1
1 · · · x

ik
k f j.
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5.6.4 Let R be a commutative unit ring and let M and N be unity R-modules with
bases (ei)i∈I and ( f j) j∈J, respectively. Show that ϕ ∈ Homk

R(M; N) is symmetric
if and only if its components, ϕ j

i1···ik
, j ∈ J, i1, . . . , ik ∈ I, satisfy

ϕ j
iσ(1)···iσ(k)

= ϕ j
i1···ik

for every σ ∈ Sk.
5.6.5 Let F be a field and let V be an F-vector space.

(a) Show that
∧k(F; V) is the trivial vector space for k ∈ Z>0.

(b) Show that Homk
F(F; V) = Sk(F; V) for every k ∈ Z>0.

(c) Show that Homk
F(F; V) is naturally isomorphic to V.

5.6.6 If V is a two-dimensional R-vector space with basis B = {e1, e2} and if
B ∈ S2(V;R), show that B is positive-definite if and only if tr([B]

B
) > 0 and

det([B]
B

) > 0.
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Section 5.7

The algebraic dual

The notion of duality is one that is of great importance in algebra and analysis.
In this section we focus on the algebraic structure of duality. The notion of duality
can be confusing because it is so simple in finite dimensions. There is an inclination
to disregard the importance of the dual space in finite dimensions since they are
finite dimensional vector spaces with the same dimension, and so are isomorphic.
However, they are not naturally isomorphic. And the fact is that there are times
when the mathematics demands that an object be an element in the dual space. So
one should be sure to understand the dual space on its own terms.

Coming with the notion of the algebraic dual is the notion of the dual of a linear
map. It is here where the connection with the transpose of a matrix come up. The
reader might have noticed that the transpose is completely absent from Section 5.4.
This is because the transpose in linear algebra is connected with the dual of a linear
map.

The reader should be warned that there is another notion of duality, namely
topological duality which is discussed in Sections III-3.9, III-4.2.1, and III-6.4.1. The
two notions are decidedly different (although related in the obvious way that the
topological dual is a subspace of the algebraic dual) and should not be confused.

Do I need to read this section? The reader should certainly know what a dual
space is, just as a matter of course. Similarly, the notion of the dual of a linear
map should be understood. Both of these things are quite elementary. Much of the
technical material in this section is related to infinite-dimensional complications.
Much of this can be sidestepped at a first reading. •

5.7.1 Definitions and first examples

Note that while we only consider vector spaces in this section, many of the constructions
apply to modules over rings, although not all results extend to this case. Since we are only
interested in duals of vector spaces, we do not deal with the more general situation of
modules.

Let us get started with the definition.

5.7.1 Definition (Algebraic dual) Let F be a field and let V be an F-vector space. The
algebraic dual of V is V′ = HomF(V; F). •

5.7.2 Notation (Pairing of element of V′ with element of V) Since an element α ∈ V′

is a map from V to F, the most natural way to write the image of v ∈ V under this
map is as α(v). However, sometimes other notation is used, and we shall use this
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other notation as well. We may, for example, use any of the symbols

α(v), α · v, ⟨α; v⟩

to represent the same thing. Note that ⟨·; ·⟩ is not an inner product since it takes
elements from different vector spaces as its argument. It is sometimes called the
natural pairing of V with V′. Similarly, “·” is not the “dot product.” This will not
be confusing since we will never ever under any circumstances use “·” as the dot
product. •

From Corollary 5.4.17 it follows that V′ is an F-vector space with addition
defined by

(aα)(v) = a(α(v)), (α1 + α2)(v) = α1(v) + α2(v),

for a ∈ F, v ∈ V, and α, α1, α2 ∈ V′. We shall use various forms of notation for how
elements of V′ act on elements of V. Thus we shall use

α(v), ⟨α; v⟩, α · v, α ∈ V′, v ∈ V

to represent the same thing. Do not confuse α · v for dot product. We will never
use this symbol for the dot product, so there can be no confusion over this.

Since V′ is an F-vector space it has a dual. We denote the algebraic dual of V′

is denoted by V′′. We shall have more to say about the dual of the dual as we go
along.

Let us look at some simple examples of elements of the algebraic dual.

5.7.3 Examples (Algebraic dual)
1. Let V be an F-vector space with basis {ei}i∈I. Thus every element v ∈ V is written

as
v =

∑
i∈I

viei

where all but finitely many of the vi, i ∈ I, are zero. For i0 ∈ I we then define
αi0 ∈ V′ by

αi0

∑
i∈I

viei

 = vi0 .

Thus αi0 returns the i0th component of a vector. It is easy to see that this map is
indeed linear, and so is in V′.

2. Let I ⊆ R be an interval and let C0(I;R) be the R-vector space of continuous
functions on I; see Example 4.5.2–9. For t0 ∈ I define δt0 ∈ C0(I;R)′ by

δt0( f ) = f (t0).

It is evident that δt0 is linear and so is an element of the algebraic dual. The map
δt0 is the “Dirac delta-function” about which we shall have a great deal to say
in Chapter IV-3.
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3. We let C0([a, b];R) be theR-vector space of continuous functions on the compact
interval [a, b]. We define α ∈ C0([a, b];R)′ by

α( f ) =
∫ b

a
f (x) dx.

Since all continuous functions on [a, b] are Riemann integrable by Corol-
lary 3.4.12, this definition makes sense. Moreover, since the integral is linear
by Proposition 3.4.22, α is indeed an element of the algebraic dual. •

We close this section with a simple version of an idea that will be of great
importance when we discuss normed and topological vector spaces in Chapters III-3
and III-6. The result has to do with extending linear maps if one knows their
value on a single vector, and such results fall into the category of “Hahn–Banach
Theorems.”

5.7.4 Proposition (Algebraic Hahn1–Banach Theorem) Let F be a field and let V be an
F-vector space. Then the following statements hold:

(i) if U ⊆ V is a subspace and if α ∈ U′ then there exists β ∈ V′ such that β(u) = α(u)
for each u ∈ U;

(ii) if U ⊆ V is a subspace, if v0 ∈ V \U, and if a ∈ F, then there exists α ∈ V′ such that
α(v0) = a and α(u) = 0F for each u ∈ U;

(iii) if a ∈ F and if v0 ∈ V \ {0V} then there exists α ∈ V′ such that α(v0) = a.
Proof (i) Let BU be a basis for U and, by Theorem 4.5.26, let BV be a basis for V
containingBU. Define ϕ : BV → F by

ϕ(v) =

α(v), v ∈ U,
0F, othwerwise.

Then let αϕ ∈ V′ be the unique linear map guaranteed by Theorem 4.5.24. Taking
β = αϕ gives this part of the result.

(ii) Let BU be a basis for U and note that BU ∪ {v0} is linearly independent. By
Theorem 4.5.26 letBV be a basis for V containingBU ∪ {v0}. Then define ϕ : BV → F
by

ϕ(v) =

a, v = v0,

0F, otherwise.

The unique elementαϕ ∈ V′ defined by Theorem 4.5.24 then has the desired properties.
(iii) This follows from part (ii) by taking U = {0V}. ■

Of course, there is no uniqueness in the previous statement since there are
generally many ways to construct an element in the dual that extends the map
v 7→ a.

1Hans Hahn (1879–1934) was an Austrian mathematician who made fundamental contributions
to set theory and the then burgeoning field of functional analysis.
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5.7.2 Bases and dimension for the algebraic dual

Let us first give a representation for the algebraic dual of the “canonical” F-
vector space, FI

0. In the statement of the result we recall that elements of FI (and so
elements of FI

0 since FI
0 ⊆ FI) are maps from I to F.

5.7.5 Proposition (The algebraic dual of FI
0

is FI) Let F be a field and let I is an index set,
and define ι : FI

→ (FI
0)′ by

ι(g)(f) =
∑
i∈I

g(i)f(i)

(this sum making sense since it is finite). Then ι is an isomorphism of F-vector spaces.
Proof It is easy to see that ι is linear, so we do not explicitly show this. To see that ι is
injective, suppose that ι(g) = 0(FI

0)′ . Then, for every f ∈ FI
0,

ι(g)( f ) =
∑
i∈I

g(i) f (i) = 0F,

and this particular holds when f is the ith standard basis vector for FI
0. But this then

gives g(i) = 0F for every i ∈ I, whence ι is injective by Exercise 4.5.23. To show that ι
is surjective, let α ∈ (FI

0)′ and define gα ∈ FI by gα(i) = α(ei), where {ei}i∈I denotes the
standard basis. Then

ι(gα)( f ) =
∑
i∈I

gα(i) f (i) =
∑
i∈I

α(ei) f (i) = α( f ),

giving ι(gα) = α, as desired. ■

The previous result gives a very handy and concrete way of viewing the alge-
braic dual. We shall often simply identify FI with the algebraic dual of FI

0 since this
is so convenient.

As we saw in Example 5.7.31, if iV is an F-vector space with basis {ei}i∈I then
there exists a subset {αi}i∈I of V′ where αi ∈ V′ is defined by αi(ei′) = 1V when i = i′

and αi(ei′) = 0F when i , i′. The following result gives some properties of this
subset.

5.7.6 Theorem (Dual bases for algebraic duals) Let F be a field and let V be an F-vector
space with basis {ei}i∈I. Let {αi}i∈I ⊆ V′ be as defined in Example 5.7.31. Then the following
statements hold:

(i) the family (αi)i∈I is linearly independent;
(ii) the set {αi}i∈I is a basis for V′ if and only if V is finite-dimensional.

Proof To see that (αi)i∈I is linearly independent, suppose that i1, . . . , ik ∈ I and that

c1αi1 + · · · + ckαik = 0V′ .

Then, for any i ∈ I,
c1αi1(ei) + · · · + ckαik(ei) = 0V′ .
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Choosing in particular i ∈ {i1, . . . , ik} gives c j = 0F for j ∈ {1, . . . , k}. This gives linear
independence of (αi)i∈I.

Now suppose that V is finite-dimensional and let β ∈ V′. Then take β j = β(e j) for
j ∈ {1, . . . ,n}. Then

β(v1e1 + · · · + vnen) = v1β1 + · · · + vnβn

= β1α1(v1e1 + · · · + vnen) + · · · + βnαn(v1e1 + · · · + vnen),

giving
β = β1α1 + · · · + βnαn,

and so {α1, . . . , αn} spans V′, and so is a basis.
Finally, suppose that V is infinite-dimensional and define β ∈ V′ by β(ei) = 1F

for i ∈ I. This uniquely defines β by Theorem 4.5.24. We claim that β is not in
spanF(αi | i ∈ I). Indeed, if β ∈ spanF(αi | i ∈ I) then we have

β = β1αi1 + · · · + βkαik

for some k ∈ Z>0, i1, . . . , ik ∈ I, and β1, . . . , βk ∈ F. However, for i < {i1, . . . , ik}we would
then have β(ei) = 0F, giving a contradiction. ■

In the case when V is finite-dimensional the proposition tells us that there is a
natural basis for V′ associated with every basis for V. This basis has a name.

5.7.7 Definition (Dual basis) If F is a field and if V is a finite-dimensional F-vector space
with basis {e1, . . . , en}, the set {α1, . . . , αn} as in Example 5.7.31 is the dual basis for
V. •

Let us work this out in the simplest example.

5.7.8 Example (The dual basis for Fn) The standard basis for Fn is denoted by
{e1, . . . , en}. If we denote the dual basis by {α1, . . . ,αn} then this basis is defined
by

α j(v1, . . . , v j, . . . , vn) = v j, j ∈ {1, . . . ,n}.

It is common to represent elements of Fn by “column vectors” and then elements of
(Fn)′ are represented as 1 × n-matrices, i.e., as “row vectors.” (cf. (5.3)). One must
resist at all costs the temptation to think of “column vectors” and “row vectors”
as being the same thing, but “transposed.” This is gauche at best and wrong at
worst. •

By Theorem 5.7.6 we know that, corresponding to a basis {ei}i∈I for V, there
is a linearly independent family (αi)i∈I in V′, and that this is a basis when V is
finite-dimensional. Thus we can immediately conclude that dimF(V) ≤ dimF(V′)
with equality when V is finite-dimensional. The following result says that this is
the only occasion when we have equality.
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5.7.9 Theorem (dimF(V) < dimF(V′) if V is infinite-dimensional) If F is a field and if V
is an F-vector space then

(i) dimF(V′) = dimF(V) if V is finite-dimensional and
(ii) dimF(V′) = card(F)dimF(V) if V is infinite-dimensional.

Proof The first assertion follows from Theorem 5.7.6, so we prove the second asser-
tion. We let I be a set such that card(I) = dimF(V). Thus V is isomorphic to FI

0 by
Theorem 4.5.45. By Proposition 5.7.5 it suffices to show that dimF(FI) = card(F)card(I).
Let I′ be a set such that card(I′) = dimF(V′) and let {αa}a∈I′ be a basis for FI. An element
of FI is thus of the form

c1αa1 + · · · + ckαak (5.35)

for some unique k ∈ Z≥0, a1, . . . , ak ∈ I′, and c1, . . . , ck ∈ F∗. Thus card(FI) is the number
of such linear combinations. To count the number of such linear combinations, consider
the linear combinations of the form (5.35) with k = 1. Such a linear combination is of
the form cαa for c ∈ F∗ and a ∈ I′. Thus there are

card(I′) · card(F∗) = card(I′) · (card(F) − 1)

elements of the form (5.35) with k = 1. In like manner there are (card(I′) · (card(F) −
1))2 elements of the form (5.35) with k = 2. Including the zero vector and using
Theorem 1.7.17(ii) this shows that

card(FI) = 1 +
∞∑

k=1

(card(I′) · (card(F) − 1))k =

∞∑
k=1

(card(I′) · (card(F) − 1))k.

By Theorem 1.7.17(iii) we have card(I′)k = card(I′) for k ∈ Z>0. Thus

card(FI) = card(I′)
∞∑

k=1

(card(F) − 1)k.

If card(F) is finite then
∞∑

k=1

(card(F) − 1)k = card(Z>0)

(using the rules of cardinal algebra) since the countable union of finite sets is countable
by Proposition 1.7.16. Then we have

card(I′)
∞∑

k=1

(card(F) − 1)k = card(I′) card(Z>0) = card(I′) = card(I′) card(F)

by Corollary 1.7.18. If card(F) is infinite then

∞∑
k=1

(card(F) − 1)k =

∞∑
k=1

card(F) = card(F)
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by Theorem 1.7.17. In this case we again have

card(I′)
∞∑

k=1

(card(F) − 1)k = card(I′) card(F).

This shows that card(FI) = card(I′) card(F). But by the definition of cardinal arithmetic
we have card(FI) = card(F)card(I). Thus we have

card(F)card(I) = card(I′) card(F).

We now prove a lemma.

1 Lemma card(F) ≤ card(I′).
Proof It obviously suffices to prove this for the smallest infinite-dimensional F-vector
space. That is, it suffices to prove the lemma when I = Z>0. Thus we still denote by
{αa}a∈I′ a basis for FZ>0 , and now note that these basis elements are sequences in F. Let us
suppose that card(I′) < card(F). We writeαa = (αaj) j∈Z>0 . Let Sα = {αaj | a ∈ I′, j ∈ Z>0}.
Let K0 be the smallest subfield of F containing Sα and note from Exercise 4.6.1 that
K0 = F0(Sα) where F0 is the prime field of F. By Theorem 4.6.6 elements of K0 are
rational functions with indeterminate taken from Sα and with coefficients taken from
F0. Since the prime field F0 is countable, it follows that card(K0) ≤ card(Z>0) card(I′) =
card(I′), using Corollary 1.7.18. As we are assuming that card(I′) < card(F) there
exists a1 ∈ F \ K0. Let K1 = K0(a1) and note from Theorem 4.6.6 that elements of
K1 are rational functions in indeterminate a1 with coefficients from K0. Since each
such rational function involves finitely many coefficients from K0 we have card(K1) =
card(Z>0) card(K0) and so card(K1) ≤ card(I′). Continuing in this way we arrive at a
sequence

K0 ⊂ K1 ⊂ · · · ⊂ K j ⊂ · · ·

of subfields of F with K j = K j−1(a j) and with card(K j) ≤ card(I′) for j ∈ Z>0.
Let a ∈ FI be defined by a( j) = a j and write

a = c1αa1 + · · · + ckαak (5.36)

for k ∈ Z>0, a1, . . . , ak ∈ I′, and c1, . . . , ck ∈ F∗. Consider the linear map from Fk to FI

defined by
(c1, . . . , ck) 7→ c1αa1 + · · · + ckαak (5.37)

Since {αa}a∈I′ is a basis, this map is injective. The matrix representative for this map
relative to the standard basis for Fk and the basis {αa}a∈I′ for FI is the matrix A ∈
MatI′×{1,...,k}(K0) defined by

A(a, j) =

αal j, a = al for l ∈ {1, . . . , k},
0F, a < {a1, . . . , ak}

(Note that this matrix is over K0 as asserted.) Thus injectivity of the map (5.37) implies
that there exists j1, . . . , jk ∈ Z>0 such that the matrix A′ ∈ Matk×k(K0) defined by
A′(r, s) = A(ar, js) is invertible. The equation (5.36) then gives

a js = a( js) =
k∑

r=1

A′(r, s)cr.
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Since the entries in A′ are in K0 and since a js ∈ KN where N = max{ j1, . . . , jk}, it follows
by solving the preceding equation for c1, . . . , ck that c1, . . . , ck ∈ KN. But then (5.36)
implies that

a j = a( j) = c1αa1 j + · · · + ckαak j,

giving a j ∈ KN for all j ∈ Z>0. This is a contradiction, and so our assumption that
card(I′) < card(F) must be invalid. ▼

Now we use the lemma to complete the proof of the theorem. Prior to the lemma
we showed that card(F)card(I) = card(I′) card(F). If card(F) ≤ card(I′) as asserted by the
lemma then we have

card(I′) card(F) ≤ card(I′)2 = card(I′)

by Theorem 1.7.17(iii). Thus card(I′) card(F) = card(I′) and so card(I′) = card(F)card(I)

as desired. ■

For the cases of most interest to us, this gives the following result.

5.7.10 Corollary (Dimension of algebraic duals over R and C) Let F ∈ {R,C} and let V
be an infinite-dimensional F-vector space. Then dimF(V′) = 2dimF(V).

Proof By Exercise 1.7.5 we have card(R) = 2card(Z>0) and, sinceC is a two-dimensional
R-vector space, by Corollary 4.5.47 we have card(C) = card(R) = 2card(Z>0). Then

dimF(V′) = (2card(Z))dimF(V) = 2card(Z) dimF(V) = 2dimF(V)

by Corollary 1.7.18. ■

This shows that, forR- andC-vector spaces, the dimension of the algebraic dual
is significantly larger than that of the vector space.

5.7.3 Algebraic reflexivity

There is a natural map from V to V′′ which we denote by ιV and define by

ιV(v) · α = α(v).

This map is injective.

5.7.11 Proposition (V is a subspace of V′′) Let F and let V be an F-vector space. The map
ιV is injective so that image(ιV) is a subspace of V′′ isomorphic to V. Moreover, ιV is
surjective if and only if V is finite-dimensional.

Proof If ιV(v) = 0V′′ then α(v) = 0F for every α ∈ V′. We claim that this implies that
v = 0V. Suppose that v , 0V. Then, by Proposition 5.7.4, there exists α ∈ V′ such that
α(v) = 1F. This then precludes having α(v) = 0F for every α ∈ V′. This then gives
injectivity of ιV.

Now suppose that V is finite-dimensional. Then dimF(V′) = dimF(V) by The-
orem 5.7.6. This also gives dimF(V′′) = dimF(V) and so ιV is an isomorphism by
Corollary 5.4.44.
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Finally, suppose that V is infinite-dimensional and let {ei}i∈I be a basis for V. Let
{αi}i∈I be the subset of V′ as in Example 5.7.3–1. Now let β ∈ V′ be defined (using
Theorem 4.5.24) by β(ei) = 1F for i ∈ I. Note that β < spanF(αi| i ∈ I) as we saw in the
proof of Theorem 5.7.6. Thus the set {αi}i∈I ∪ {β} is linearly independent. Let {β j} j∈J be
a basis for V′ that contains {αi}i∈I ∪ {β}. Next let {ω j} j∈J be the subset of V′′ defined by
ω j(β j′) = 1F if j = j′ and ω j(β j′) = 0F otherwise. Thus {ω j} j∈J corresponds to the basis
{β j} j∈J as in Example 5.7.3–1, and so is linearly independent by Theorem 5.7.6. We
claim that ιV({ei}i∈I) ⊆ {ω j} j∈J. Since {αi}i∈I ⊆ {β j} j∈J, for each i ∈ I there exists ji ∈ J such
that β ji = αi. Then, for any j ∈ J we directly have ω ji(β j) = β j(e ji), so giving ιV(ei) = ω ji .
Now let j0 ∈ J be such that ω j0(β) = 1F and ω j0(β j) = 0F for all j such that β j , 0F. Then

ω j0 < spanF(ω ji | i ∈ I) = image(ιV),

so showing that ιV is not surjective. ■

Let us give some terminology associated with the map ιV.

5.7.12 Definition (Algebraic reflexivity) Let F be a field and let V be an F-vector space.
If ιV ∈ HomF(V; V′′) is an isomorphism then V is algebraically reflexive. •

The following result is then simple a rephrasing of Proposition 5.7.11.

5.7.13 Corollary (Only finite-dimensional vector spaces are algebraically reflexive) If
F is a field, an F-vector space is algebraically reflexive if and only if V is finite-dimensional.

In the algebraic setup, algebraic reflexivity is simply not very interesting. How-
ever, we present the idea in order to contrast it with the more interesting notion of
topological reflexivity that we will consider in Sections III-3.9.1 and III-6.4.2.

5.7.4 Annihilators and coannihilators

It is often interesting to examine elements of the algebraic dual that evaluate to
zero on subsets of the vector space. The terminology and notation for organising
this is as follows.

5.7.14 Definition (Annihilator, coannihilator) Let F be a field and let V be an F-vector
space with S ⊆ V and Λ ⊆ V′.

(i) The annihilator of S is the subset

ann(S) = {α ∈ V′ | α(v) = 0 for all v ∈ S}

of V′.
(ii) The coannihilator of Λ is the subset

coann(Λ) = {v ∈ V | α(v) = 0 for all α ∈ Λ}

of V. •

Let us record some of the properties of annihilators and coannihilators.
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5.7.15 Proposition (Properties of annihilators and coannihilators) Let F be a field and
let V be an F-vector space with S,T ⊆ V and Λ,Θ ⊆ V′. Then the following statements
hold:

(i) ann(S) is a subspace of V′;
(ii) coann(Λ) is a subspace of V;
(iii) if S ⊆ T then ann(T) ⊆ ann(S);
(iv) if Λ ⊆ Θ then coann(Θ) ⊆ coann(Λ);
(v) S ⊆ coann(ann(S));
(vi) Λ ⊆ ann(coann(Λ)).

Proof (i) and (ii) These are Exercise 5.7.1.
(iii) If α ∈ ann(T) then α(v) = 0F for every v ∈ T. In particular, α(v) = 0F for every

v ∈ S and so α ∈ ann(S).
(iv) If v ∈ coann(Θ) then α(v) = 0F for every α ∈ Θ. In particular, α(v) = 0F for

every α ∈ Λ and so v ∈ coann(Λ).
(v) Let v ∈ S and α ∈ ann(S). Then α(v) = 0F. As this holds for every α ∈ ann(S) it

follows that v ∈ coann(ann(S)).
(vi) Let α ∈ Λ and let v ∈ coann(Λ). Then α(v) = 0F. As this holds for every

v ∈ coann(Λ) it follows that α ∈ ann(coann(Λ)). ■

Clearly there is no hope that S = coann(ann(S)) (resp. Λ = ann(coann(Λ)))
unless S (resp. Λ) is a subspace. One can then ask whether this holds when S
(resp. Λ) is a subspace. Here is some terminology associated with this question.

5.7.16 Definition (ann-closed, coann-closed) Let F be a field and let V be an F-vector
space.

(i) A subspace U ⊆ V is ann-closed if U = coann(ann(U)).
(ii) A subspace Λ ⊆ V′ is coann-closed if Λ = ann(coann(Λ)). •

As the following result indicates, the notion of ann-closed is simple, but the
notion of coann-closed can be complicated in infinite-dimensions.

5.7.17 Theorem (Characterisations of ann- and coann-closed subspaces) Let F be a
field and let V be an F-vector space. Then the following statements hold:

(i) every subspace of V is ann-closed;
(ii) every subspace of V′ is coann-closed if and only if V is finite-dimensional;
(iii) if Λ is a finite-dimensional subspace of V′ then Λ is coann-closed.

Proof (i) By Proposition 5.7.15 we have U ⊆ coann(ann(U)). Now let v ∈ V \ U. By
Proposition 5.7.4 let α ∈ V′ have the property that α(u) = 0F for every u ∈ U and that
α(v) = 1F. Thus α ∈ ann(U) but α(v) , 0F. In other words, v < coann(ann(U)). Thus
V \ U ⊆ V \ coann(ann(U)), i.e., coann(ann(U)) ⊆ U.

(ii) First suppose that V is finite-dimensional so that V is finite-dimensional with
the same dimension as V by Theorem 5.7.6. Let {α1, . . . , αn} be a basis for V′ such
that {α1, . . . , αk} is a basis for Λ. Denote the dual basis for V′′ by {ω1, . . . , ωn} and let
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e j = ι−1
V (ω j), j ∈ {1, . . . ,n}, so that {e1, . . . , en} is a basis for V. We claim that {ωk+1, . . . , ωn}

is a basis for ann(Λ). It is clear that ω j(αl) = 0F for j ∈ {k + 1, . . . ,n} and l ∈ {1, . . . , k}.
Thus

spanF(ωk+1, . . . , ωn) ⊆ ann(Λ).

Now suppose that
θ = c1ω1 + · · · + cnωn ∈ ann(Λ).

Then θ(α j) = c j, j ∈ {1, . . . ,n}, and so θ being in ann(Λ) implies that c1 = · · · = ck = 0V.
Thusθ is a linear combination ofωk+1, . . . , ωn, giving {ωk+1, . . . , ωn} as a basis for ann(Λ),
as desired. We now claim that ι−1

V maps ann(Λ) isomorphically to coann(Λ). First of
all, for j ∈ {k + 1, . . . ,n} and l ∈ {1, . . . , k}we have

αl(ι−1
V (ω j)) = ω j(αl) = 0F,

giving ι−1
V (ω j) ∈ coann(Λ) for j ∈ {k + 1, . . . ,n}. Therefore, ι−1

V (ann(Λ)) ⊆ coann(Λ).
Now suppose that u ∈ coann(Λ) and write

u = c1e1 + · · · + cnen.

Then, for j ∈ {1, . . . , k}, α j(u) = c j = 0F since u ∈ coann(Λ). Thus u is a linear combi-
nation of ek+1, . . . , en. Thus u ∈ image(ι−1

V ), giving coann(Λ) = ι−1
V (ann(Λ)), as desired.

Finally we show that ann(coann(Λ)) = Λ by showing that {α1, . . . , αk} is a basis for
ann(coann(Λ)). First of all, α j(el) = 0F for j ∈ {1, . . . , k} and l ∈ {k + 1, . . . ,n}. Thus
α1, . . . , αk ∈ ann(coann(Λ)). If

β = c1α1 + · · · + cnαn ∈ ann(coann(Λ))

then we have β(e j) = 0F for j ∈ {k + 1, . . . ,n}, showing that β is a linear combination of
α1, . . . , αk. Thus {α1, . . . , αk} is a basis for ann(coann(Λ)) as desired.

Now suppose that V is infinite-dimensional. By choosing a basis we suppose with-
out loss of generality that V = FI

0 and that V′ = FI for some set I (see Proposition 5.7.5).
In this case FI

0 ⊆ FI. We claim that coann(FI
0) = {0FI

0
}. Indeed, let f : I → F be an

element of coann(FI
0). Think of the standard basis vector ei for FI

0 as being an element
of FI. Since f ∈ coann(FI

0) we have ei( f ) = f (i) = 0F. Since this is true for every i ∈ I we
have f = 0FI

0
, as claimed. Now it immediately follows that ann(coann(FI

0)) = FI and so

FI
0 ⊂ ann(coann(FI

0)), giving this part of the theorem.
(iii) We let Λ be a finite-dimensional subspace of V′ with basis {α1, . . . , αk}.
We claim that there are vectors e1, . . . , ek ∈ V such that α j(e j) = 1F, j ∈ {1, . . . , k}, and

such that α j(el) = 0F wherever j, l ∈ {1, . . . , k} satisfy j , l. We prove this by induction
on k. Since α1 is nonzero there exists e1 ∈ V such that α1(e1) = 1F. Now suppose that
there exists e1, . . . , ek−1 ∈ V having the claimed properties. Then, for v ∈ V, write

v = ⟨α1; v⟩e1 + · · · + ⟨αk−1; v⟩ek−1 + v′ (5.38)

where
v′ = v − (⟨α1; v⟩e1 + · · · + ⟨αk−1; v⟩ek−1).

Then
α j(v′) = α j(v) − ⟨α j; v⟩ = 0F, j ∈ {1, . . . , k − 1}.
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We now claim that there exists some v ∈ V such that αk(v′) = 1F, where v′ is as defined
above. Suppose that αk(v′) = 0F for all v ∈ V. Then this implies that〈

αk −

k−1∑
j=1

⟨αk; e j⟩α j; v
〉
= 0V

for all v ∈ V. But this contradicts the linear independence of {α1, . . . , αk}. Thus let ek ∈ V
satisfy αk(ek) = 1F and also define

ẽ j = e j − ⟨αk; e j⟩ek, j ∈ {1, . . . , k − 1}.

Direct computation then gives

α j(ẽ j) = 1F, j ∈ {1, . . . , k − 1},
α j(ẽl) = 0F, j, l ∈ {1, . . . , k − 1}, j , l,
αk(ẽ j) = 0F, j ∈ {1, . . . , k − 1}.

The set {ẽ1, . . . , ẽk−1, ek} now has the asserted properties, and our claim follows.
The vectors {e1, . . . , ek} are easily shown to be linearly independent. We claim that

V = coann(Λ) ⊕ spanF(e1, . . . , ek). Indeed, if v ∈ V we can write, as in (5.38),

v = ⟨α1; v⟩e1 + · · · + ⟨αk; v⟩ek + v′

where
v′ = v − (⟨α1; v⟩e1 + · · · + ⟨αk; v⟩ek).

Just as above we have α j(v′) = 0F, j ∈ {1, . . . , k}, so that v′ ∈ coann(Λ). Thus V =
coann(Λ) + spanF(e1, . . . , ek). Moreover, if v ∈ coann(Λ) ∩ spanF(e1, . . . , en) we have

v = c1e1 + · · · + ckek

giving α j(v) = v j = 0F, j ∈ {1, . . . , k}. Thus v = 0F which gives our claim.
Now suppose that β ∈ ann(coann(Λ)). For v ∈ V write v = v′ + v′′ with v′ ∈

coann(Λ) and v′′ ∈ spanF(e1, . . . , ek). Let us additionally write

v′′ = c1e1 + · · · + ckek.

We then have, using the fact that Λ ⊆ ann(coann(Λ)),〈
β −

k∑
j=1

⟨β; e j⟩αk; v
〉
=

〈
β −

k∑
j=1

⟨β; e j⟩αk; v′
〉
+

〈
β −

k∑
j=1

⟨β; e j⟩αk; v′′
〉

=

〈
β;

k∑
l=1

clel

〉
−

〈 k∑
j=1

⟨β; e j⟩αk;
k∑

l=1

clel

〉

=

k∑
l=1

cl⟨β; el⟩ −

k∑
l=1

cl⟨β; el⟩ = 0F.
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Therefore,

β =
k∑

j=1

⟨β; e j⟩αk

and so ann(coann(Λ)) ⊆ Λ. ■

The theorem illustrates nicely why the algebraic dual in infinite-dimensions is
so much more difficult to deal with than in finite-dimensions. The following result
gives an additional illustration of this.

5.7.18 Proposition ((Co)annihilators of (co)annihilators) Let F be a field, let V be an
F-vector space, and let U ⊆ V be a subspaces. Then the following statements hold:

(i) ann(ann(U)) ∩ ιV(V) = ιV(U);
(ii) ιV(U) = ann(ann(U)) if and only if V is finite-dimensional.

Proof (i) Let α ∈ ann(U) and let u ∈ U. Then ⟨ιV(u);α⟩ = ⟨α; u⟩ = 0F giving ιV(u) ∈
ann(ann(U)). Thus ιV(U) ⊆ ann(ann(U))∩ ιV(V). Now letω ∈ ann(ann(U))∩ ιV(V). Then
ω = ιV(v) for some v ∈ V. For α ∈ ann U we then have ⟨ω;α⟩ = ⟨α; v⟩ = 0F. This shows
that v ∈ coann(ann(U)) and so v ∈ U by Theorem 5.7.17(i).

(ii) Suppose that V is finite-dimensional. During the course of the proof of part (ii)
of Theorem 5.7.17 we showed that if V is finite-dimensional and if Λ is a subspace of
V′, then ιV maps coann(Λ) isomorphically onto ann(Λ). TakingΛ = ann(U) shows that
ιV maps coann(ann(U)) = U isomorphically onto ann(ann(U)) which is one part of this
part of the result.

Now suppose that V is infinite-dimensional. By choosing a basis we can assume
that V = FI

0 for some appropriate index set I. Then V′ = FI by Proposition 5.7.5. Taking
U = FI

0 we claim that ann(U) = {0FI }. Indeed, if α ∈ ann(U) then α(ei) = 0F for every
i ∈ I, here {ei}i∈I is the standard basis. But this implies that α(i) = 0F for each i ∈ I, as
desired. But now ann(U) = (FI)′. However, ιFI

0
(U) = image(ιFI

0
) is a strict subspace of

(FI)′ since FI
0 is not algebraically reflexive. ■

5.7.5 Duals of linear maps

We close this section by showing that the algebraic dual provides the proper
setup for understand the transpose of a matrix. The key idea is the following.

5.7.19 Definition (Dual of a linear map) Let F be a field and let U and V be F-vector
spaces. The dual of L ∈ HomF(U; V) is the linear map L′ ∈ HomF(V′; U′) defined by

⟨L′(α); u⟩ = ⟨α; L(u)⟩, α ∈ V′, u ∈ U. •

One should first understand that the definition does actually define a map from
V′ to U′. That is to say, the definition gives L′(α) as an element of U′. This is
straightforward, but requires a moment’s thought. It is also easy to see that L′ is
linear. Indeed, for α1, α2 ∈ V′ and for u ∈ U,

⟨L′(α1 + α2); u⟩ = ⟨α1 + α2; L(u)⟩ = ⟨α1; L(u)⟩ + ⟨α2; L(u)⟩
= ⟨L′(α1); u⟩ + ⟨L′(α2); u⟩ = ⟨L′(α1) + L′(α2); u⟩,
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giving L′(α1+α2) = L′(α1)+L′(α2). An altogether similar computation gives L′(aα) =
aL′(α) for a ∈ F and α ∈ V′.

Let us consider the basic properties of the dual of a linear map.

5.7.20 Proposition (Algebraic properties of the algebraic dual) Let F be a field and let
U, V, and W be F-vector spaces. The following statements hold:

(i) the map L 7→ L′ is an injective linear map from HomF(U; V) to HomF(V′; U′), and
is an isomorphism if and only if V is finite-dimensional;

(ii) if L ∈ HomF(U; V) and K ∈ HomF(V; W) then (K ◦ L)′ = L′ ◦ K′;
(iii) if L ∈ HomF(U; V) is an isomorphism then (L′)−1 = (L−1)′.

Proof (i) It is easy to show that

(L1 + L2)′ = L′1 + L′2, (aL)′ = aL′

for a ∈ F and L,L1,L2 ∈ HomF(U; V).
We now show that the map L 7→ L′ is injective. Suppose that L′ = 0HomF(V′;U′) so

L′(α) = 0U′ for every α ∈ V′. Thus

⟨L′(α); u⟩ = ⟨α; L(u)⟩ = 0F, α ∈ V′, u ∈ U. (5.39)

We claim that this implies that L(u) = 0V for every u ∈ U. If not, let L(u0) , 0V.
By Proposition 5.7.4 it follows that there exists α0 ∈ V′ such that ⟨α0; L(u0)⟩ = 1F, in
contradiction with (5.39). Thus L(u) = 0V for every u ∈ U so L = 0HomF(U;V). Therefore,
the map L 7→ L′ is injective by Exercise 4.5.23.

Now suppose that V is finite-dimensional. Let us choose bases BU = {e j} j∈J and
BV = { fi}i∈I for U and V, respectively. Since I is finite let us take I = {1, . . . ,m}. We
first claim that the map A 7→ AT from the set of column finite matrices in MatI×J(F) to
MatJ×I(F) is surjective. Indeed, let B ∈MatJ×I(F) so that BT

∈MatI×J(F). Since I is finite,
BT is column finite. Taking A = BT gives A 7→ B, giving the desired surjectivity. Now
let K ∈ HomF(V′; U′). Since V′ and U′ are isomorphic to FI and FJ, respectively, via the
isomorphisms from V to FI

0 and from V to FJ
0, respectively (cf. part (iii)), it follows that

K gives rise to a homomorphism from FI to FJ. By Theorem 5.1.13(iv) it follows that
there exists a row finite matrix B ∈MatJ×I(F) for which

x ∋ FI
7→ Bx ∈ FJ

is the homomorphism associated to K. Now, by our previous claim, there exists a
column finite matrix A ∈MatI×J(F) such that AT = B. Let L ∈ HomF(U; V) be associated
with A as in Theorem 5.4.21. By Theorem 5.7.22(i) it follows that L′ = K. This shows
that the map L 7→ L′ is surjective, as desired.

Finally suppose that V is infinite-dimensional. Similarly with our argument in the
preceding paragraph, it suffices to prove that there is a homomorphism of FI to FJ that
does not correspond to a row finite matrix. However, this is exactly what we showed
in Theorem 5.1.13(v).

(ii) For β ∈W′ and u ∈ U we have

⟨(K ◦ L)′(β); u⟩ = ⟨β; K ◦ L(u)⟩ = ⟨K′(β); L(u)⟩ = ⟨L′ ◦ K′(β); u⟩,
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which gives (K ◦ L)′ = L′ ◦ K′ as desired.
(iii) For α ∈ U′ and u ∈ U we have

⟨α; u⟩ = ⟨α; L−1
◦ L(u)⟩ = ⟨(L−1)′(α); L(u)⟩ = ⟨L′ ◦ (L−1)′(α); u⟩,

giving L′ ◦ (L−1)′ = idU′ . In a similar manner we get

⟨β; v⟩ = ⟨(L−1)′ ◦ L′(β); v⟩, β ∈ V′, v ∈ V.

Thus (L−1)′ ◦ L′ = idV′ , and so L′ is invertible with inverse (L−1)′. ■

Part (iii) has the following corollary.

5.7.21 Corollary (The algebraic dual is an isomorphism invariant) If F is a field and if
U and V are isomorphic F-vector spaces, then U′ and V′ are isomorphic.

Now we consider matrices associated to duals of linear maps. In finite-
dimensions this is straightforward, but in infinite-dimensions the situation is not
complicated, but does require some interpretation. This is because, given a basis
for a vector space there is only a natural choice of basis for the algebraic dual
when the vector space is finite-dimensional; see Theorem 5.7.6. The result one can
prove is the following, whose statement relies on Proposition 5.7.5 and Proposi-
tion 5.7.20(iii) for its statement.

5.7.22 Theorem (Matrices and duals) Let F be a field, let U and V be F-vector spaces, and
let L ∈ HomF(U; V). LetBU = {ej}j∈J andBV = {fi}i∈I be bases for U and V, respectively,
with {αj}j∈J and {βi}i∈I the linearly independent subsets of U′ and V′ as in Example 5.7.3–1.
Let ϕJ : U → FJ

0 and ϕI : V → FI
0 be the isomorphisms associated with the bases as in

Theorem 4.5.45. Then the following statements hold:
(i) the following diagram commutes:

V′ L′ //

(ϕ−1
I )′
��

U′

(ϕ−1
J )′

��
FI

([L]
BV
BU

)T

// FJ

(ii) ([L]BV
BU

)T(j, i) = ⟨L′(βi); ej⟩;
(iii) if U and V are finite-dimensional then the matrix representative of L′ with respect

to the dual bases associated toBU andBV is ([L]BV
BU

)T.
Proof (i) By Theorem 5.4.21 the diagram

U L //

ϕJ
��

V

ϕI
��

FJ
0

[L]
BV
BU

// FI
0
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commutes. Taking the dual of the diagram and using Proposition 5.7.5 and parts (ii)
and (iii) of Proposition 5.7.20 gives the desired commutative diagram.

(ii) Let {e j} j∈J and { f i}i∈I be the standard bases for FJ
0 and FI

0, respectively. Note that
for j ∈ J and i ∈ I the definition of matrix-vector multiplication gives

⟨([L]BV
BU

)T( f i); e j⟩ = (([L]BV
BU

)T f i)( j) =
∑
i′∈I

([L]BV
BU

)T( j, i′) f i(i
′) = ([L]BV

BU
)T( j, i).

Now we note that f i = (ϕ−1
I )′(βi), i ∈ I, and e j = ϕJ(e j), j ∈ J, where, in the first instance,

we think of f i as an element of FI since FI
0 ⊆ FI. Thus, for i ∈ I and j ∈ J, we compute

⟨L′(βi); e j⟩ = ⟨L′ ◦ ϕ′I( f i);ϕ
−1
J (e j)⟩ = ⟨(ϕ−1

J )′ ◦ L′ ◦ ϕ′I( f i); e j⟩

= ⟨([L]BV
BU

)T( f i); e j⟩ = ([L]BV
BU

)T( j, i),

as desired, where we have used part (i).
(iii) Let us write the bases for U and V as {e1, . . . , en} and { f1, . . . , fm}, respectively,

with the dual bases denoted by {α1, . . . , αn} and {β1, . . . , βm}, respectively. Then write

L′(βi) = c1iα1 + · · · + cniαn.

We then have
⟨L′(βi); e j⟩ = c ji, j ∈ {1, . . . ,m}.

Therefore,

L′(βi) =
m∑

j=1

⟨L′(βi); e j⟩α j,

and the result follows from part (ii) and the definition of the matrix representative. ■

Note that the result cannot be said to say that, “The matrix representative of
the dual is the transpose of the matrix representative,” except in finite-dimensions.
Nonetheless, the result does establish a concrete interpretation of the matrix repre-
sentative of the dual, and moreover makes clear that the matrix transpose should
be thought of as taking the dual of the linear map associated with a matrix.

Let us reformulate part (iii) of the preceding result in order to highlight its simple
character.

5.7.23 Corollary (The matrix representative of the dual in finite-dimensions) Let F be
a field, let U and V be F-vector spaces with basesBU = {e1, . . . , en} andBV = {f1, . . . , fm}.
LetB ′

U = {α1, . . . , αn} andB ′

V = {λ1, . . . , λm} be the dual bases for U′ and V′, respectively.
If L ∈ HomF(U; V) then

[L′]
B ′U
B ′V
= ([L]BV

BU
)T.
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5.7.6 Linear maps from a vector space to its algebraic dual

In this section we address the matter of the algebraic dual of a finite-dimensional
vector space being isomorphic, though not in a natural way, with the vector space.
As we commented in Example 5.7.8, it can be a temptation to believe that a vector
space and its dual are the “same thing.” They are not, although they are isomorphic.
What we do in this section is examine linear maps, in particular isomorphisms,
from a vector space to its dual. As we shall see, every such linear map corresponds
to a particular bit of structure, namely a bilinear map on the vector space. By
showing that such bilinear maps arise from isomorphisms of a vector space and
its dual, we hope to convince the reader that there is no natural isomorphism of a
vector space and its dual. The reader will benefit from a reading of Section 5.6.3.

We recall that HomF(U,V; W) denotes the set of bilinear maps from U × V to W.
Let us define a mapΨV : HomF(V,V; F)→ HomF(V; V′) by

⟨ΨV(B)(v); u⟩ = B(u, v), u, v ∈ V.

With this notation we have the following result.

5.7.24 Theorem (Bilinear maps and linear maps between V and V′) If Fis a field and V
is an F-vector space, then the mapΨV is an isomorphism of the vector spaces HomF(V,V; F)
and HomF(V; V′).

Proof That the map B 7→ LB is linear is shown as follows:

⟨ΨV(B1 + B2)(v); u⟩ = (B1 + B2)(u, v) = B1(u, v) + B2(u, v)
= ⟨ΨV(B1)(v); u⟩ + ⟨ΨV(B2)(v); u⟩
= ⟨(ΨV(B1) +ΨV(B2))(v); u⟩

and
⟨ΨV(aB)(v); u⟩ = (aB)(u, v) = a(B(u, v) = ⟨aΨV(B)(v); u⟩

for u, v ∈ V, a ∈ F, B,B1,B2 ∈ HomF(V,V; F). This gives

ΨV(B1 + B2) = ΨV(B1) +ΨV(B2), ΨV(aB) = aΨV(B).

To show that the ΨV is injective, suppose that ΨV(B) = 0HomF(V;V′). Then, for any
u, v ∈ V, we have

⟨ΨV(B)(v); u⟩ = B(u, v) = 0F.

Thus B is zero, giving injectivity ofΨV by Exercise 4.5.23.
To show that ΨV is surjective let L ∈ HomF(V; V′) and define BL ∈ HomF(V,V; F)

by
BL(u, v) = ⟨L(v); u⟩, u, v ∈ V.

Then we have
⟨ΨV(BL)(v); u⟩ = BL(u, v) = ⟨L(v); u⟩, u, v ∈ V.

ThusΨV(BL) = L, as desired. ■
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The essential point is this: Any linear map between V and V′ is associated
uniquely to a bilinear F-valued map on V. In particular, if V is finite-dimensional
then any isomorphism of V with V′ defines and is defined by a bilinear F-valued
map on V. Let us examine this in an example.

5.7.25 Example (The canonical identification of Fn with (Fn)′) As we saw in Exam-
ple 5.7.8, if one naturally thinks of elements of Fn as “column vectors,” then
elements of (Fn)′ can be naturally thought of as “row vectors.” This then gives an
obvious linear map from Fn to (Fn)′ given asv1

· · ·

vn

 7→ [
v1 · · · vn

]
.

By Theorem 5.7.24, corresponding to this isomorphism is a unique bilinear F-
valued map on V. It is a straightforward exercise to show that the bilinear map
is

B((u1, . . . ,un), (v1, . . . , vn)) = u1v1 + · · · + unvn.

Indeed, to verify that this is indeed the correct bilinear map one need only check
the obvious identity

[
u1 · · · un

] 
v1
...

vn

 = B((u1, . . . ,un), (v1, . . . , vn)).

The bilinear map B is a rather simple one, reflecting the fact that the isomorphism
is correspondingly simple. •

Exercises

5.7.1 Let F be a field, let V be an F-vector space, and let S ⊆ V and Λ ⊆ V′. Show
that ann(S) is a subspace of V′ and that coann(Λ) is a subspace of V.

5.7.2 Let F be a field, let V be an F-vector space, and let L ∈ EndF(V). Show that
U ⊆ V is L-invariant if and only if ann(U) ⊆ V′ is L′-invariant.
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Section 5.8

The structure of linear maps on finite-dimensional vector
spaces

In this section we focus on something rather specific: the structure of an endo-
morphism of a finite-dimensional vector space. By being more specific, we ought
to be able to say more, and indeed we shall see that it is possible to give a quite de-
scriptive characterisation of an endomorphism in the guise of the Jordan canonical
form. This will tell us that, at least if the field is algebraically closed, if you look
at things in the right way (more precisely, choose an appropriate basis) then an
endomorphism behaves in a rather simple way. For fields that are not algebraically
closed, the picture is more complicated. However, for R, the relationship with the
algebraic closure C is sufficiently understandable that one can give an analogue of
the Jordan canonical form in this case.

The crucial element in understanding the structure of an endomorphism in-
volves polynomials in a way which seems initially surprising. To be more specific,
given an endomorphism of a finite-dimensional vector space, one can place a
natural finitely generated module structure on the vector space over the ring of
polynomials. This places one in a position to use the results of Section 4.9 con-
cerning the structure of finitely generated modules over principal ideal domains.
Indeed, doing so makes it rather easy to get at the most important results concern-
ing the classification of endomorphisms. Moreover, this approach is intrinsically
satisfying since one feels that the essence of the problem is being understood by
making it a specific instance of something more general. The approach also gives
one an opportunity to use ones “geometric intuition” by relating the structure to
that of finitely generated Abelian groups, i.e., finitely generated Z-modules. The
difficulty, of course, is that one must stray fairly far afield from basic linear algebra.
For this reason we essentially offer two approaches to understanding the structure
of an endomorphism, one relying on the module structure over the polynomial
ring, and the other independent (in some way) of this. We shall try to indicate as
we go along what parts of the text are associated with which approach.

Do I need to read this section? Certainly the results in this section are of great
importance, and so should be understood. In particular the structure of endo-
morphisms on finite-dimensionalR-vector spaces given in Theorem 5.8.74 will be
essential in understanding ordinary differential equations in Section V-5.2.2. It is
certainly possible that many of the details of the treatment here could be omitted
until the reader feels as if they are suffering by not understanding them. However,
even in these cases, many of the constructions are so revealing that we recommend
that the entirety of this section be at least skimmed. •
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5.8.1 Similarity

In this section we introduce the problem that we solve in this section. The
problem is quite analogous to that for equivalence of linear maps between vector
spaces as studied in Section 5.4.7. There the problem is to find bases for vector
spaces U and V for which the matrix representative of a linear map L ∈ HomF(U; V)
has the “simplest possible form.” This simplest form is given in Theorem 5.4.41.
For endomorphisms, of course, one could do the same trick. That is to say, one could
find basesB1 andB2 for V such that the matrix representative of an endomorphism
L ∈ EndF(V) relative to these bases has the form given in Theorem 5.4.41. However,
this is pretty clearly not the problem one wants to solve. The reasonable thing is
that one should try to find a single basis for V such that the matrix representative
of L in this basis has the simplest possible form.

Given the preceding discussion, the following adaptations of Definitions 5.1.38
and 5.4.38 now hopefully seem natural.

5.8.1 Definition (Similar matrices) Let F be a field and let I be an index set. Column
finite matrices A1,A2 ∈MatI×I(F) are equivalent if there exists an invertible column
finite matrix P ∈MatI×I(F) such that A2 = PA1P−1. •

5.8.2 Definition (Similar endomorphisms) Let F be a field and let V be an F-vector
space. Endomorphisms L1,L2 ∈ EndF(V) are equivalent if there exists basesB1 and
B2 for V such that [L1]B1

B1
= [L2]B2

B2
. •

Of course, similarity is an equivalence relation, as the reader may show in
Exercise 5.8.1. The problem in this section is to arrive at a useful characterisation
of the equivalence classes under this equivalence relation in the case when V is
finite-dimensional. It is perhaps not obvious, although hopefully it is also not
surprising, that classification of endomorphisms by similarity is fundamentally
different than classification by equivalence.

Let us first relate the notions of similarity for matrices and for endomorphisms.
The following result mirrors Proposition 5.4.39 for equivalence, and may be proved
in the same way.

5.8.3 Proposition (Similar endomorphisms and similar matrices) Let F be a field, let
V be an F-vector space, and let B be a basis for V. Then the following statements are
equivalent:

(i) the endomorphisms L1,L2 ∈ EndF(V) are similar;
(ii) [L1]B

B
and [L2]B

B
are similar;

(iii) there exists an invertible endomorphism P ∈ EndF(V) such that L2 = P ◦ L1 ◦ P−1.
Proof This is Exercise 5.8.2. ■
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5.8.2 The F[ξ]-module structure on a vector space induced by an
endomorphism

As mentioned in the preamble to this section, one of the more useful realisations
in studying an endomorphism L ∈ EndF(V) of a finite-dimensional vector space is
that there is a natural F[ξ]-module structure induced on V. Since F[ξ] is a principal
ideal domain (indeed, it is a Euclidean domain; Corollary 4.4.14), we can then
wonder whether the results of Section 4.9 are useful; indeed they are.

We begin by defining the module structure. Let us first set the table; we let F
be a field, let V be an F-vector space, and let L ∈ EndF(V). Let P ∈ F[ξ] and write

P =
k∑

j=0

a jξ
j.

Let us define EvF(P) : EndF(V)→ EndF(V) by

EvF(P)(L) =
k∑

j=0

a jL j. (5.40)

Thus EvF(P)(L) is the polynomial P with L in place of the indeterminate. This
notation is actually a special case of the notation introduced in Proposition 4.4.9,
as we now explain. First note that EndF(V) is a ring (Corollary 5.4.18) and so let us
abbreviate this as R to make the notation simpler. The ring R gives rise to the poly-
nomial ring R[ξ]; these are polynomials whose coefficients are endomorphisms.
The map a 7→ a idV is then a ring monomorphism of F into R. This then gives rise
to a monomorphism from the ring F[ξ] into the ring R[ξ] given by

k∑
j=0

a jξ
j
7→

k∑
j=0

a j idV ξ
j.

The polynomial ring R[ξ] possesses its evaluation homomorphism EvR : R[ξ] →
RR, just as in Proposition 4.4.9. The map EvF : F[ξ]→ RR defined in (5.40) is simply
the restriction of EvR to the image of F[ξ] in R[ξ].

We can now define the product of P ∈ F[ξ] and v ∈ V by

P · v = (EvF(P)(L))(v). (5.41)

Somewhat more explicitly,  k∑
j=0

a jξ
j

 · v = k∑
j=0

a jL j(v).

Note that this product depends on a choice of L. The following result records the
properties of this product in the case when V is finite-dimensional.
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5.8.4 Proposition (The F[ξ]-module structure) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V). Then the set V with addition as usual and with scalar
product given by (5.41) is a finitely generated torsion module over F[ξ].

Proof We leave it as an easy exercise for the reader to verify that V is an F[ξ]-module,
and just show that it is a finitely generated torsion module.

If {e1, . . . , en} is a basis for V as an F-vector space, we claim that this set also
generated V as an F[ξ]-module. Indeed, if v ∈ V then we can write

v = c1e1 + · · · + cnen

for c1, . . . , cn ∈ F. However, this means that

v = c1L0(e1) + · · · + cnL0(en)

since L0 = idV. Thus
v = P1 · e1 + · · · + Pn · en

where P j = c jξ0, j ∈ {1, . . . ,n}. This shows that the set {e1, . . . , en} generated V as an
F[ξ]-module.

To show that V is a torsion module we claim that there exists a nonzero polynomial
P ∈ F[ξ] such that EvF(P)(L) = 0EndF(V). Let n = dimF(V). Since dimF(EndF(V)) =
n2 by Exercise 5.1.3, it follows that the family of endomorphisms (idV,L, . . . ,Ln2

) is
linearly dependent by Lemma 1 in the proof of Theorem 4.5.25. Therefore there exists
a0, a1, . . . , an2 ∈ F∗ such that

a0 idV +a1L + · · · + an2Ln2
= 0EndF(V).

This means that EvF(P)(L) = 0EndF(V). Therefore, P · v = 0V for every v ∈ V, and so
ann(v) , {0F[ξ]}. Since F[ξ] is an integral domain, this implies that all elements of V are
torsion elements. ■

Now the vector space V has two algebraic structures, its natural vector space
structure and the F[ξ]-module structure induced by L. It is sometimes convenient
to notationally distinguish between these two structures.

5.8.5 Definition (The F[ξ]-module) Let F be a field, let V be a finite-dimensional F-vector
space, and let L ∈ EndF(V). The F[ξ]-module V will be denoted by VL. •

This is fine. But in order to make something of there, there should be some
relationship between the F[ξ]-module VL and the structure of the endomorphism
L. There is, in fact, a strong connection between these things, and the following
result begins our understanding of this.

5.8.6 Theorem (Isomorphisms of V as an F[ξ]-module) Let F be a field, let V be a finite-
dimensional F-vector space, and let L1,L2 ∈ EndF(V). Then the F[ξ]-modules VL1 and VL2

are isomorphic if and only if L1 and L2 are similar.
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Proof Suppose that there exists an isomorphism P ∈ HomF[ξ](VL1 ; VL2) of F[ξ]-
modules. Firstly, P is obviously a bijection of the set V. Secondly,

P(v1 + v2) = P(v1) + P(v1), v1, v2 ∈ V,
P(Q · v) = Q · P(v), v ∈ V, Q ∈ F[ξ].

Applying the second of these relations for constant polynomials, Q = aξ0 for a ∈ F,
shows that P ∈ EndF(V; V). Thus P is an isomorphism of F-vector spaces. Now taking
Q = ξ in the relation above gives

P(L1(v)) = L2(P(v)), v ∈ V.

Thus L2 = P ◦ L1 ◦ P−1, and so L1 and L2 are similar by Proposition 5.8.3.
Before we proceed with the next part of the proof we give a simple lemma.

1 Lemma Let F be a field, let V be an F-vector space, and let L ∈ EndF(V). Then, for Q ∈ F[ξ]
and for P ∈ EndF(V) an isomorphism,

EvF(Q)(P ◦ L ◦ P−1) = P ◦ (EvF(Q)(L)) ◦ P−1.

Proof This follows since, for every j ∈ Z≥0,

(P ◦ L ◦ P−1) j = P ◦ L ◦ P−1
◦ · · ·P ◦ L ◦ P−1︸                           ︷︷                           ︸

j times

= P ◦ L j
◦ P−1. ▼

Now suppose that L1 and L2 are similar, with L2 = P ◦ L1 ◦ P−1 for an invertible
endomorphism P ∈ EndF(V). We claim that P is also an isomorphism of F[ξ]-modules.
Since P is a bijection and since P(v1 + v2) = P(v1) + P(v2) for every v1, v2 ∈ V, it only
remains to show that P(Q · v) = Q · P(v) for every Q ∈ F[ξ]. Suppose that

Q =
k∑

j=0

a jξ
j.

Then

P(Q · v) = P


 k∑

j=0

a jξ
j

 · v
 = P

 k∑
j=0

a jL
j
1(v)


=

k∑
j=0

a jL
j
2(P(v)) = Q · P(v),

using the lemma above. Thus P is also an isomorphism of F[ξ]-modules. ■

The preceding result is obviously an important one, since it tells us that classi-
fying endomorphisms under similarity is the same as classifying the F[ξ]-module
structures on V under isomorphism.

Let us explore the relationship between the module and vector space struc-
tures of V further. The following result characterises the L-invariant subspaces of
V. It will become increasingly apparent as things move along that the invariant
subspaces of L play a crucial rôle in understanding its structure.
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5.8.7 Proposition (Submodules of VL) Let F be a field, let V be a finite-dimensional F-vector
space, and let L ∈ EndF(V). Then a subset U ⊆ V is a submodule of the F[ξ]-module VL if
and only if it is an L-invariant subspace.

Proof First suppose that U is a submodule of VL. Then

u1 + u2 ∈ U, u1,u2 ∈ U,
Q · u ∈ U, v ∈ V, Q ∈ F[ξ].

In particular, letting Q = aξ0 for a ∈ F shows that U is a subspace. Now letting Q = ξ
shows that L(u) ∈ U for all u ∈ U, and so U is L-invariant.

Now suppose that U is an L-invariant subspace. Since u1 + u2 ∈ U for all u1,u2 ∈ U
we only need to show that Q · v ∈ U for each Q ∈ F[ξ] and u ∈ U. Let us denote

Q =
k∑

j=0

a jξ
j

and compute

Q · u =
k∑

j=0

a jL j(u),

from which the result follows since L j(u) ∈ U by Exercise 5.4.2. ■

5.8.3 Another F[ξ]-module

In the preceding section we introduced the structure of an F[ξ]-module on
V induced by an endomorphism L. When V is finite-dimensional this module
is a finitely generated torsion module. Now we investigate another F[ξ]-module
structure whose construction is based on V. The module we construct in this way
will allow us to give a more elegant characterisation of the characteristic polynomial
than we were able to give in Definition 5.4.55. Moreover, the construction does
not depend on an endomorphism, and so is intrinsic to the vector space. Our
construction is related to the notion of the tensor product between vector spaces
as considered in Section 5.6.3. We ask the reader to provide this connection in
Exercise 5.8.3.

Let us first try to motivate our more general construction by looking at a specific
case where things are easier to understand. We begin with the n-dimensional F-
vector space Fn. In this vector space, vectors are multiplied by scalars from the
field F. Suppose that we wish to allow vectors to by multiplied, not by elements of
F, but by polynomials from the ring F[ξ]. That is to say, one wishes to extend the F-
vector space structure to an F[ξ]-module structure. In this case there is an obvious
way to do this: merely consider the module F[ξ]n. That is to say, just “replace”
the entries from F in Fn with entries from F[ξ]. If all one were interested in were
Fn, then this would be fine. If one were interested in a general finite-dimensional



5.8 The structure of linear maps on finite-dimensional vector spaces 857

F-vector space, one might choose a basis to reduce to the case of Fn. However, a
more enlightened view is preferable, and it is this that we now describe. The reader
might be well-advised to at this time revisit the construction of the polynomial ring
F[ξ], as the constructions we make have a great deal in common with that.

We let F be a field and let V be an F-vector space. We denote by V[ξ] the set of
maps Φ : Z≥0 → V such that Φ( j) = 0 except for a finite number of j ∈ Z≥0, i.e., as
a set, V[ξ] is the direct sum ⊕ j∈Z≥0V. We wish to endow V[ξ] with the structure
of a module over F[ξ]. Let us for the moment think of F[ξ] as the direct sum
⊕ j∈Z≥0F, this being the definition given in Definition 4.4.1. Now let and ϕ ∈ F[ξ]
and Φ,Φ1,Φ2 ∈ V[ξ]. Define Φ1 + Φ2, ϕΦ ∈ V[ξ] by

(Φ1 + Φ2)(k) = Φ1(k) + Φ2(k),

(ϕΦ)(k) =
k∑

j=0

ϕ( j)Φ(k − j).

The reader should compare these definitions to the definitions for sum and product
of polynomials. These definitions of sum and product make V[ξ] into an F[ξ]-
module.

5.8.8 Theorem (V[ξ] is an F[ξ]-module) If F is a field and if V is an F-vector space, then
V[ξ] is an F[ξ]-module with the above definitions of sum and scalar multiplication.

Proof The proof follows rather closely the proof of Theorem 4.4.2, so let us just give
a sample proof of one of the module axioms. We let ϕ,ψ ∈ F[ξ] and Φ ∈ V[ξ], and
compute

ψ(ϕΦ)(k) =
k∑

j=0

ψ( j)


k− j∑
l=0

ϕ(l)Φ(k − j − l)


=

∑
j,l,m

j,l,m≥0, j+l+m−k

ψ( j)(ϕ(l)Φ(m))

=
∑
j,l,m

j,l,m≥0, j+l+m−k

(ψ( j)ϕ(l))Φ(m)

=

k∑
j=0


j∑

l=0

ψ( j)ϕ(k − j)

Φ(k − j).

We leave the remainder of the verifications to the reader. ■

Now let us adapt the indeterminate notation for polynomials to the module
V[ξ]. For v ∈ V and k ∈ Z≥0 let ξk

· v ∈ V[ξ] be given by

(ξk
· v)( j) =

v, j = k,
0V, otherwise.
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This is analogous to the definition of the indeterminate ξ in F[ξ], cf. Definition 4.4.4.
With this notation, every element Φ ∈ V[ξ] can be uniquely expressed as

Φ =

∞∑
j=0

ξ j
· v j

for vectors v j ∈ V, j ∈ Z≥0, only finitely many of which are nonzero. With this
expression, the module operations on V[ξ] can then be easily figured out by using
the usual rules of associativity and distributivity for polynomials.

Let us see how this construction works out in a particular case, namely the case
we started our discussion with, and the case that represents what is of most interest
to us.

5.8.9 Proposition (Fm[ξ] = F[ξ]m) For a field F, the map

ξkvk + · · · + ξ · v1 + v0 7→

vk(1)ξk + · · · + v1(1)ξ + v0(1)
. . .

vk(n)ξk + · · · + v1(n)ξ + v0(n)


is an isomorphism of the F[ξ]-modules Fn[ξ] and F[ξ]n.

Proof This is simply a matter of checking that the given map is a homomorphism
and is invertible. Both of these things are easy to check directly, and we leave it to the
doubt-filled reader to do this. ■

Let us close this section by relating the two F[ξ]-module structures we have at
hand. We let F be a field, V be an F-vector space, and let L ∈ EndF(V). We then
define L[ξ] ∈ EndF[ξ](V[ξ]) as follows. Let V ∈ V[ξ] and write

V = ξk
· vk + · · · + ξ · v1 + v0,

for v0, v1, . . . , vk ∈ V. We then define

L[ξ](V) = ξk
· L(vk) + · · · + ξ · L(v1) + L(v0).

For V ∈ V[ξ] expressed as above let us define ϕL : V[ξ]→ VL by

ϕL(V) = Lk(vk) + · · · + L(v1) + v0.

One can verify directly that ϕL is a homomorphism of F[ξ]-modules. Let us also
define ψL : V[ξ]→ V[ξ] by

ψL(V) = (ξ idV[ξ] −L[ξ])(V).

With these maps, we have the following result.
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5.8.10 Proposition (Relating the two F[ξ]-modules) Let F be a field, let V be an F-vector
space, and let L ∈ EndF(V). Then the following

{0} // V[ξ]
ψL // V[ξ]

ϕL // VL
// {0}

is an exact sequence of F[ξ]-modules.
Proof It is clear that ϕL is surjective; let us show that ψL is injective. We write

V =
∞∑
j=0

ξ jv j

where only finitely many of the v j’s are nonzero. Then

ψL(V) =
∞∑
j=0

ξ j(v j−1 − L(v j)),

with the convention that v−1 = 0V. If ψL(V) = 0V[ξ], then v j−1 = L(v j) for all j ∈ Z≥0.
We claim that this implies that v j = 0V for all j ∈ Z≥0. If not, let k be the largest integer
such that vk , 0V. We then have vk = L(vk+1) = 0V, which is a contradiction. Thus
V = 0V[ξ], and so ψL is injective by Exercise 4.8.3.

We now show that image(ψL) = ker(ϕL). To see this, we first claim that the
following diagram commutes:

V[ξ]
L[ξ] //

ϕL
��

V[ξ]

ϕL
��

VL L
// VL

Indeed, we have

ϕL ◦ L[ξ]

 ∑
j∈Z≥0

ξ jv j

 = ϕL

 ∑
j∈Z≥0

ξ jL(v j)

 = ∑
j∈Z≥0

L j+1(v j)

and

L ◦ ϕL

 ∑
j∈Z≥0

ξ jv j

 = L

 ∑
j∈Z≥0

L j(v j)

 = ∑
j∈Z≥0

L j+1(v j),

as desired. For V ∈ V[ξ] we have

ϕL(ξ · V) = ξ · ϕL(V) = L ◦ ϕL(V),

using first the fact that ϕL is a homomorphism of F[ξ]-modules, and using second the
definition of the F-module structure on VL. Therefore, by commutativity of the above
diagram,

ϕL ◦ ξ = L ◦ ϕL = ϕL ◦ L[ξ].
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Thus ϕL ◦ (ξ − L[ξ]) is zero, and so image(ψL) ⊆ ker(ϕL). Now let∑
j∈Z≥0

ξ jv j ∈ ker(ϕL) =⇒
∑

j∈Z≥0

L j(v j) = 0V.

Therefore ∑
j∈Z≥0

ξ jv j =
∑

j∈Z≥0

(ξ jv j − L j(v j)).

Now we have

ξ j idV[ξ] −L[ξ] j = (ξ idV[ξ] −L[ξ])(ξ j−1 idV +L j−1)

= (ξ idV[ξ] −L[ξ]) ◦
j−1∑
l=0

ξl idV[ξ] ◦L[ξ] j−l−1,

using the fact that idV[ξ] and L[ξ] commute and using the Binomial Formula. Thus we
have ∑

j∈Z≥0

ξ jv j = (ξ idV[ξ] −L[ξ]) ◦

 ∑
j∈Z≥0

j−1∑
l=0

ξl idV[ξ] ◦L[ξ] j−l−1(v j)

 ,
giving ker(ϕL) ⊆ image(ψL). ■

5.8.4 The minimal and characteristic polynomials

We continue with a field F, a finite-dimensional F-vector space V, and L ∈
EndF(V). Since VL is a finitely generated torsion F[ξ]-module by Proposition 5.8.4,
it follows that ann(V) is a nonzero ideal of F[ξ] (that V is finite-dimensional is
essential here; see Exercise 5.8.9 and cf. Exercise 4.9.1). Since F[ξ] is a principal
ideal domain, it follows that ann(V) = (P) for some polynomial P ∈ F[ξ]. Moreover,
since polynomials generated the same ideal differ only by multiplication by a unit
in F[ξ] (i.e., by a nonzero constant polynomial by Exercise 4.4.3), it follows that P
is uniquely specified once one asks that it be monic. This leads to the following
definition.

5.8.11 Definition (Minimal polynomial) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V). The minimal polynomial of L is the unique
monic polynomial ML ∈ F[ξ] such that ann(V) = (ML). •

Let us give an characterisation of the minimal polynomial that is equivalent to
the definition, but stated in perhaps less intimidating language.

5.8.12 Proposition (Characterisation of minimal polynomial) Let F be a field, let V be a
finite-dimensional F-vector space, and let L ∈ EndF(V). Then the minimal polynomial ML

is the unique monic polynomial with the property that, if P ∈ F[ξ] satisfies EvF(P)(L) =
0EndF(V), then ML|P.
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Proof Let us denote by M̃L the unique monic polynomial such that, if P ∈ F[ξ] satisfies
EvF(P)(L) = 0EndF(V), then M̃L|P.

First let us show that this definition of M̃L makes sense. From the proof of Propo-
sition 5.8.4 the set

{P ∈ F[ξ] | EvF(P)(L) = 0EndF(V)}

is a nonempty, nonzero ideal; it is the ideal ann(V). Let

k = min{deg(P) | P ∈ ann(V) \ {0F[ξ]}

and suppose that M ∈ ann(V) has degree k. Then, by the Euclidean Algorithm, if
P ∈ ann(V) we can write P = Q ·M + R where deg(R) < deg(M). Since R = P − Q ·M,
since M,P ∈ ann(V), and since ann(V) is an ideal, it follows that R ∈ ann(V). But M has
smallest positive degree of the polynomials in ann(V), and so R = 0F[ξ]. Thus M|P, and
so there exists a polynomial M such that M|P for every P ∈ ann(V). There then exists a
monic polynomial M̃L with this property.

Now we claim that M̃L is uniquely defined by its being monic and by its dividing
every polynomial in ann(V). Let M̃′L be another such polynomial. Then write M̃′L =
Q · M̃L + R for deg(R) < deg(M̃L). Just as we argued above, R = 0F[ξ]. Since deg(M̃L) =
deg(M̃′L) the polynomial Q must be a unit. Since both M̃L and M̃′L are both monic,
Q = 1F. Thus the definition of M̃L makes sense.

To prove the result, it remains to show that ML is a monic polynomial of least degree
in ann(V). This, however, follows since ML generates ann(V), cf. Proposition 4.2.61. ■

In other words, the minimal polynomial is the lowest degree monic polynomial
which, when L is substituted for the indeterminate, the result is zero.

As we shall see, the endomorphism L is uniquely characterised up to similarity
by its minimal polynomial. But there is some work to be done before we can prove
this. A key idea in this development is the following result.

5.8.13 Proposition (Eigenvalues are roots of the minimal polynomial) Let F be a field,
let V be a finite-dimensional F-vector space, and let L ∈ EndF(V). Then λ ∈ F is an
eigenvalue for L if and only if it is a root of ML.

Proof Let λ ∈ F be a root of ML so that ML = (ξ − λ) · P for some polynomial P by
Proposition 4.4.25. Since deg(P) < deg(ML) and by Proposition 5.8.12, EvF(P)(L) ,
0EndF(V). Therefore, there exists v ∈ V such that EvF(P)(L) · v , 0V. Then

0V = EvF(ML)(L)v̇ = (L − λ idV) ◦ EvF(P)(L) · v.

Therefore, letting v′ = EvF(P)(L) · v, L(v′) = λv′, and so λ is an eigenvalue.
Conversely, suppose that λ is an eigenvalue of L and let v ∈ V \ {0V} be such that

L(v) = λv. Let us write

ML = ξ
k + ak−1ξ

k−1 + · · · + a1ξ + a0.
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We then have

0V = EvF(ML)(L) · v

= (Lk + ak−1Lk−1 + · · · + a1L + a0 idV)(v)

= (λk + ak−1λ
k−1 + · · · + a1λ + a0)v

= EvF(ML)(λ),

so showing that λ is a root of ML. ■

Despite the preceding result, the eigenvalues alone are not enough to charac-
terise the minimal polynomial, as the following example illustrates.

5.8.14 Examples (Eigenvalues and the minimal polynomial)
1. We take V = F2 and consider the two endomorphisms, in this case these are

simply matrices, given by

L =
[
1F 0F

0F 1F

]
, L′ =

[
1F 1F

0F 1F

]
.

Since these matrices are upper triangular, their eigenvalues are simply the
diagonal entries; see Exercise 5.4.20. Thus both endomorphisms have 1F as
their only eigenvalue. Thus the only root of the minimal polynomial is 1F. Thus
the minimal polynomial must be of the form (ξ − 1F)k

· P for some k ∈ Z>0 and
for some polynomial P. Let us define M = ξ − 1F and M′ = (ξ − 1F)2. We then
have

EvF(M)(L) =
[
0F 0F

0F 0F

]
, EvF(M′)(L′) =

[
0F 1F

0F 0F

]
, EvF(M′)(L′) =

[
0F 0F

0F 0F

]
.

From this we conclude that ML = ξ−1F and ML′ = (ξ−1F)2. Thus, although L and
L′ have the same eigenvalues, they do not have the same minimal polynomials.

2. Let F = R, let V = R2, and consider the endomorphism given as the 2×2-matrix

L =
[

1 1
−1 1

]
.

We note that if P = ξ2
− 2ξ + 2 then EvF(P)(L) = 0EndF(V). Therefore, the minimal

polynomial divides P. However, as an element of R[ξ], P is irreducible. Thus
we must have ML = ξ2

−2ξ+2. This polynomial has no roots, reflecting the fact
that L has no eigenvalues. •

The following result shows that the minimal polynomial is a function of the
equivalence classes under similarity.
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5.8.15 Proposition (Minimal polynomial is invariant under similarity) Let F be a field,
let V be a finite-dimensional F-vector space, and let L1,L2 ∈ EndF(V). Then ML1 =ML2 if
L1 and L2 are similar.

Proof Let P ∈ EndF(V) be such that L2 = P ◦ L1 ◦P−1. By Lemma 1 of Theorem 5.8.6 it
holds that

EvF(ML2)(L2) = P ◦ (EvF(ML2)(L1)) ◦ P−1.

Therefore, EvF(ML2)(L1) = 0EndF(V), and reversing the argument gives EvF(ML1)(L2) =
0EndF(V). By Proposition 5.8.12, ML1 |ML2 and ML2 |ML1 , and so ML2 = aML1 for a ∈ F∗.
Since both minimal polynomials are monic, the result follows. ■

The converse of the result is not true. That is to say, the minimal polynomial is
not enough to distinguish equivalence classes under similarity.

5.8.16 Example (Nonsimilar matrices with the same minimal polynomial) We con-
sider a field F and take V = F4. Define two endomorphisms by the matrices

L =


1F 1F 0F 0F

0F 1F 0F 0F

0F 0F 1F 1F

0F 0F 0F 1F

 , L′ =


1F 1F 0F 0F

0F 1F 0F 0F

0F 0F 1F 0F

0F 0F 0F 1F

 .
One can check that ML = ML′ = (ξ − 1F)2 (we will see as we go along how one can
prove that this is the minimal polynomial). However, L and L′ are not similar, as
will be shown in Example 5.8.37 below. •

Now let us turn our attention to the characteristic polynomial. In Defini-
tion 5.4.55 we gave a definition of the characteristic polynomial based on a con-
struction that involved first choosing a basisB for V, then constructing the matrix
ξIn − [L]B

B
, the taking the determinant of this matrix, to give a polynomial. This

construction does not depend on basis since, ifB ′ is another basis, we have

det(ξIn − [L]B
′

B ′) = det(ξPP−1
− P[L]B

′

B ′P)

= det P det(ξIn − [L]BB ) det P−1

= det(ξIn − [L]BB ),

using the properties of determinant, and if P is the change of basis matrix. Thus
this construction is completely unambiguous and well-defined. However, there is
something ungratifying about the fact that one must use a basis in the definition,
even though in practice one would always choose a basis to do the computation.
To get a more gratifying description of the characteristic polynomial, we use the
F[ξ]-module V[ξ] defined in Section 5.8.3.

We may now give a basis free description of the characteristic polynomial CL,
recalling from Section 5.8.3 the notation L[ξ]. This will simply be the characteri-
sation many readers with some elementary linear algebra under their belt already
know, but presented in fancier language.
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5.8.17 Proposition (Intrinsic definition of characteristic polynomial) If F is a field, V
is a finite-dimensional F-vector space, and L ∈ EndF(V), then CL = det(ξ idV[ξ] − L[ξ]).

Proof Since we may determine CL by choosing a basis as in Definition 5.4.55, we may
as well suppose that V = Fn and that L is naturally regarded as an n × n matrix. Thus
we shall employ matrix notation and replace L with A. As in Proposition 5.8.9 we
have a natural isomorphism of Fn[ξ] with F[ξ]n; let us denote this isomorphism by ϕ.
Let B ∈Matn×n(F) be a general matrix. Since F ⊆ F[ξ], the matrix B has associated with
it in the usual manner an endomorphism of F[ξ]n. Let us denote this endomorphism
by B′. One can then directly check that the diagram

Fn[ξ]
B[ξ] //

ϕ
��

Fn[ξ]

ϕ
��

F[ξ]n
B′
// F[ξ]n

commutes. That is to say, B[ξ] and B′ are “the same” up to the isomorphism ϕ.
Moreover, since ϕ maps the basis vector ξ0

· e j for Fn[ξ] to the basis vector e j for F[ξ]n,
j ∈ {1, . . . ,n}, it holds that

det(Φ) = det(ϕ−1
◦Φ ◦ ϕ)

for Φ ∈ EndF[ξ](Fn[ξ]). Putting all of this together we obtain

det(ξIn[ξ] − A[ξ]) = det(ξIn − A),

as desired. ■

Perhaps the most difficult thing about the preceding proposition is believing
that there is something to prove. Moreover, the result is of limited practical value,
since, as mentioned previously, when one computes the characteristic polynomial
in practice, one always chooses a basis and then computes det(ξIn − A). However,
the result does give a direct, basis free definition of the characteristic polynomial.
Moreover, understanding the abstract construction in this specific case will be
helpful in Section V-7.3 when we consider generalisations of the endomorphism
ξ idV[ξ] − L[ξ] to polynomial systems.

Having defined the characteristic polynomial, one would like to say something
interesting about it. And, indeed, there are many interesting things to be said.
However, it turns out that these interesting features of the characteristic polyno-
mial are not so easy to get at, and so will only fall out after some more general
development. For the moment, let us simply recall from Proposition 5.4.54 that the
eigenvalues of L are exactly the roots of the characteristic polynomial. We also know
from Proposition 5.8.13 that eigenvalues are roots of the minimal polynomial. The
big advantage of the characteristic polynomial over the minimal polynomial in this
respect is that it easy to compute.

An interesting feature of the characteristic polynomial is the following.
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5.8.18 Proposition (Determinant, trace, and the characteristic polynomial) Let F be a
field, let V be a finite-dimensional F-vector space, and let L ∈ EndF(V). If

CL = ξ
n + an−1ξ

n−1 + · · · + a1ξ + a0,

then a0 = (−1)n det L and an−1 = − tr L.
Proof Without loss of generality we suppose that V = Fn and that L is then an n × n-
matrix; let us denote L = A. We have

a0 = EvF(CA)(0F) = det(0FIn − A) = (−1)n det A.

We prove that an−1 = − tr A by induction on n. It is trivial when n = 1, so suppose
that the assertion is true for n ∈ {1, . . . , k − 1} and let A ∈ Matk×n(F). To compute
the characteristic polynomial, let us expand det(ξIk − A) along (say) the first column.
Letting A′ ∈ Mat(k−1)×(k−1)(F) be the matrix obtained by deleting the first row and
column from A, we have

det(ξIk − A) = (ξ − A(1, 1)) det(ξIk−1 − A′) + P,

where P represents the terms coming from the expansion corresponding to the second
through kth rows. We claim that deg(P) ≤ k − 2. To see this note that P will be a linear
combination of terms of the form a det B where a ∈ F and where B is a (k − 1) × (k − 1)
matrix with entries in F[ξ]. Indeed, after a moments thought, one can see that B will
contain k − 2 entries that are of degree one, and all other entries will be degree zero.
Thus deg(det B) ≤ k − 2. Therefore, since we are interested in the coefficient of ξk−1 in
the characteristic polynomial, this will be the coefficient of ξk−1 in the polynomial

(ξ − A(1, 1)) det(ξIk−1 − A′).

Let us write
det(ξIk−1 − A′) = ξk−1 + a′k−2ξ

k−2 + · · · + a′1ξ + a′0
so that

(ξ − A(1, 1)) det(ξIk−1 − A′)

= ξk + (a′k−2 − A(1, 1))ξk−1 + · · · + (a′0 − A(1, 1)a′1)ξ + A(1, 1)a0.

By the induction hypothesis we have

a′k−2 = −A(2, 2) − · · · − A(k, k),

giving the result. ■

The reader is asked to explore this characterisation of the characteristic polyno-
mial for 2 × 2-matrices in Exercise 5.8.8.

As a final bit of business concerning the characteristic polynomial, let us prove
the Cayley–Hamilton2 Theorem. This turns out to be a very important theorem, so
we shall give alternative proofs as Corollaries 5.8.36 and 5.8.62 below.

2Arthur Cayley (1821–1895) was a British mathematician whose principal contributions were to
geometry and linear algebra. He is regarded as the inventor of matrices. William Rowan Hamilton
(1805–1865) was Irish, and his mathematical work was mainly in the area of algebra. He was
knighted, becoming Sir William, in 1835.
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5.8.19 Theorem (Cayley–Hamilton Theorem) If F is a field, if V is a finite-dimensional
F-vector space, and if L ∈ EndF(V), then EvF(CL)(L) = 0EndF(V), i.e., L satisfies its own
characteristic polynomial.

Proof Let us denote
CL = ξ

n + an−1ξ
n−1 + · · · + a1ξ + a0.

For v ∈ V define Av ∈ HomF(Fn+1; V) by

Av(c0, c1, . . . , cn) = c0v + c1L(v) + · · · + cnLn(v).

We will show that
Av(a0, a1, . . . , an) = 0V

for all v ∈ V, noting that this proves the theorem.
Note that the family (v,L(v), . . . ,Ln(v)) must be linearly independent since it con-

sists of n + 1 vectors in the n-dimensional vector space V. Let k ∈ Z≥0 be the least
integer for which the set {v,L(v), . . . ,Lk−1(v)} is linearly independent. Note that this
implies that

L j(v) ∈ spanF(v,L(v), . . . ,Lk−1(v))

for every j ∈ {1, . . . ,n}. (According to our terminology in Definition 5.8.21, the sub-
space spanned by {v,L(v), . . . ,Lk−1(v)} is a cyclic subspace.) Let b0, b1, . . . , bk−1 ∈ F be
such that

Lk(v) = b0v + b1L(v) + · · · + Lk−1(v).

Let us give a lemma which provides the form for ker(Lv).

1 Lemma Let {e1, . . . , en+1} be the standard basis for Fn+1 and define

uj = −b0ej+1 − b1ej+2 − · · · − bk−1ej+k + ej+k+1, j ∈ {1, . . . ,n − k + 1}.

Then {u1, . . . ,un−k+1} is a basis for ker(L(v)).

Proof First note that {u1, . . . ,un−k+1} is linearly independent (why?). Next note that,
byCorollary 5.4.4, dim(ker(Av)) = n − k + 1 since rank(Av) = k ({v,L(v), . . . ,Lk−1(v)}
is a basis for image(Av)). Therefore, we need only show that u j ∈ ker(Av) for j ∈
{1, . . . ,n − k + 1}. But we have

Av(u j) = − b0L j(v) − b1L j+1(v) − · · · − bk−1L j+k−1(v) + L j+k(v)

= L j(−b0v − b1L(v) − · · · − bk−1Lk−1(v) + Lk(v)) = 0V,

giving the result. ▼

Now take a basis B = { f1, . . . , fn} such that f j = L j−1(v) for j ∈ {1, . . . , k}. Then,
using the definition of the matrix representative, one readily sees that

[L]B
B
=

[
A11 A12

0(n−k)×k A22

]
,
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where

A11 =



0F 0F 0F · · · 0F −b0
1F 0F 0F · · · 0F −b1
0F 1F 0F · · · 0F −b2
...

...
...

. . .
...

...
0F 0F 0F · · · 0F −bk−2
0F 0F 0F · · · 1F −bk−1


,

cf. the proof of Theorem 5.8.20. By Exercise 5.3.8 it follows that CL = CA11CA22 . As we
shall see below in Proposition 5.8.26,

CA11 = b0 + b1ξ + · · · + bk−1ξ
k−1 + ξk.

If
CA22 = α0 + α1ξ + · · · + αn−k−1ξ

n−k−1 + ξn−k

that

CL = α0CA11 + α1ξCA11 + · · · + αn−k−1ξ
n−k−1CA11 + ξ

n−kCA11 .

Matching the coefficients ξ j, j ∈ {0, 1, . . . , k}, on each side of the equation gives

(a0, a1, . . . , an) = α0u1 + · · · + αn−k−1un−k + un−k+1,

where {u1, . . . ,un−k+1} ⊆ Fn+1 is the basis for ker(Av) from the lemma above. Thus
shows that (a0, a1, . . . , an) ∈ ker(Av), as desired. ■

5.8.5 Cyclic modules and cyclic vector spaces

In the structural theory of modules over principal ideal domains in Sec-
tion 4.9—and VL is just such an object—the building blocks are cyclic submodules.
This, of course, motivates us to understand cyclic submodules of VL. These, indeed,
possess a very nice structure, as we shall see.

5.8.20 Theorem (When VL is a cyclic module) Let F be a field, let V be a finite-dimensional
F-module, and let L ∈ EndF(V). Suppose that VL is a cyclic F[ξ]-module, supposing that

VL = {P · v0 | P ∈ F[ξ]}

for v0 ∈ VL and with P0 ∈ F[ξ] the unique monic polynomial for which VL is isomorphic
to F[ξ]/(P0) (cf. Proposition 4.9.7). Let k = deg(P0). Then

B = {v0,L(v0), . . . ,Lk−1(v0)}

is a basis (as an F-vector space) for V. Moreover, if

P0 = ξ
k + ak−1ξ

k−1 + · · · + a1ξ + a0, a0, a1, . . . , ak−1 ∈ F,
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then

[L]BB =



0F 0F 0F · · · 0F −a0

1F 0F 0F · · · 0F −a1

0F 1F 0F · · · 0F −a2
...

...
...

. . .
...

...
0F 0F 0F · · · 0F −ak−2

0F 0F 0F · · · 1F −ak−1


.

Proof Let v ∈ V and write v = P · v0 for P ∈ F[ξ], this being possible since v0 generates
VL as an F[ξ]-module. By the Euclidean Algorithm write P = QP0 + R where deg(R) <
deg(P0). We then have P · v0 = R · v0 since P0 · v0 = 0V. This shows that

v = P · v0 ∈ spanF(v0, ξ · v0, . . . , ξ
k−1
· v0).

In other words, the set {v0,L(v0), . . . ,Lk−1(v0)} generates V as an F-vector space.
Now suppose that

c0v0 + c1L(v0) + · · · + ckLk−1(v0) = 0V

for c0, c1, . . . , ck−1 ∈ F. This means that R · v0 = 0V where

R = ck−1ξ
k−1 + · · · + c1ξ + c0.

Thus R ∈ ann(v0). Since ann(v0) = (P0) and since P0 ∤ R it follows that R = 0F[ξ], and
so that c0 = c1 = · · · = ck−1 = 0F. Thus {v0,L(v0), . . . ,Lk−1(v0)} is linearly independent,
and so a basis.

For the final assertion of the theorem let us denote e j = L j(v0), j ∈ {1, . . . , k}. Then

L(e0) = L(v0) = 0Fe0 + 1Fe1 + 0Fe2 + · · · + 0Fek−1,

L(e1) = L2(v0) = 0Fe0 + 0Fe1 + 1Fe2 + · · · + 0Fek−1,

...

L(ek−2) = Lk−1(v0) = 0Fe0 + 0Fe1 + 0Fe2 + · · · + 1Fek−1,

L(ek−1) = Lk(v0) = −a0e0 − a1e1 − a2e2 − · · · − ak−1ek−1.

The theorem now follows from the definition of the matrix representative. ■

Based on the theorem we make the following definition.

5.8.21 Definition (Cyclic vector space) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V). Then V is L-cyclic if there exists v0 ∈ V and
k ∈ Z>0 such that {v0,L(v0), . . . ,Lk−1(v0)} is a basis for V. The vector v0 is a generator
for the L-cyclic vector space V. •

It is useful to be able to characterise a vector v0 ∈ V for which
{v0,L(v0), . . . ,Lk−1(v0)} is a basis of a cyclic vector space. The following result tells
us such a criterion in a special case to which the general case can be reduced, as we
shall see.
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5.8.22 Proposition (Generators for a cyclic vector space) Let F be a field, let V be a
k-dimensional F-vector space, and let L ∈ EndF(V) be such that CL = (ξ − λ)k. If V is
L-cyclic, then the following statements are equivalent ror a vector v0 ∈ V:

(i) v0 is a generator for V as an L-cyclic vector space;
(ii) Lk(v0) = 0V and Lk−1(v0) , 0V.

Proof Let us assemble a few facts that hold under the hypotheses of the proposition.
First of all, by Proposition 5.8.27 below, ML = CL, and so there exists v0 ∈ V such that
(L−λ idV)k−1(v0) , 0. We also note that v0 is a generator for the L-cyclic vector space V
if and only if ann(v0) = (CL), thinking of v0 as an element of the F[ξ]-module VL. This
follows from Theorem 5.8.20 and from Proposition 5.8.26 below.

(i) =⇒ (ii) Suppose that v0 is a generator for the L-cyclic vector space V. Then
it holds that ann(v0) = (CL). Suppose that (L − λ idV)k−1(v0) = 0V. Then we have
(ξ − λ)k−1

∈ ann(v0), but CL ∤ (ξ − λ)k−1 and so (ξ − λ)k−1 < (CL). This contradiction
gives (L − λ idV)k−1(v0) , 0V.

(ii) =⇒ (i) Suppose that (L − idV)k−1(v0) , 0V. Suppose that P ∈ ann(v0) and, by
Corollary 4.4.16, write

P = A0 + A1(ξ − λ) + · · · + Am(ξ − λ)m

where m = deg(P), and for A0,A1, . . . ,Am ∈ F[ξ] of degree 0, i.e., scalars. Then, since
(A − λ idV) j = 0EndF(V) for j ≥ k, we have

P · v0 = A0 · v0 + A1(L − λ idV)(v0) + · · · + Ak−1(L − λ idV)k−1(v0) = 0V.

Then
P(ξ − λ)k−1(v0) = A0(L − λ idV)k−1(v0) = 0V.

Thus, since A0 is a scalar, we must have A0 = 0. One continues in this way, multiplying
by successively lower powers of ξ − λ), that A0 = A1 = · · · = Ak−1 = 0F. But, in this
case, P ∈ (CL). Thus ann(v0) ⊆ (CL). By the Cayley–Hamilton Theorem, (CL) ⊆ ann(v0),
and so we conclude that v0 is a generator for V as an L-cyclic vector space. ■

While it is evident from Theorem 5.8.20 that if VL is cyclic then V is L-cyclic, the
converse is also true.

5.8.23 Proposition (Equivalence of notions of cyclic) Let F be a field, let V be a finite-
dimensional F-vector space, and let L ∈ EndF(V). Then VL is a cyclic F[ξ]-module if and
only if V is an L-cyclic vector space.

Moreover, if V is L-cyclic with basis {v0,L(v0), . . . ,Lk−1(v0)}, and if

Lk(v0) = −a0 − a1ξ − · · · − ak−1ξ
k−1,

then VL is isomorphic to F[ξ]/(P0) where

P0 = ξ
k + ak−1ξ

k−1 + · · · + a1ξ + a0.
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Proof From Theorem 5.8.20 it follows that if VL is a cyclic F[ξ]-module then it
is an L-cyclic vector space. So suppose that v0 ∈ V and k ∈ Z>0 are such that
{v0,L(v0), . . . ,Lk−1(v0)} is a basis for V. Now let v ∈ V and write

v = c0v0 + c1L(v0) + · · · + ck−1Lk−1(v0).

Thus v = R · v0 where
R = ck−1ξ

k−1 + · · · + c1ξ + c0.

Thus v0 generates the F[ξ]-module VL, meaning that this module is cyclic. This gives
the first part of the result.

Now write
Lk(v0) = −ak−1Lk−1(v0) − · · · − a1L(v0) − a0v0

for some a0, a1, . . . , ak−1 ∈ F and define

P0 = ξ
k + ak−1ξ

k−1 + · · · + a1ξ + a0.

It follows that P0 · v0 = 0V and so P0 ∈ ann(v0). If ann(v0) = (Q0) for some polynomial
Q0 (as will be the case since F[ξ] is a principal ideal domain), then we must have
(P0) ⊆ (Q0) and so Q0|P0 by Proposition 4.2.61(i). In particular, this implies that
deg(Q0) ≤ deg(P0). Thus we may write

Q0 = bkξ
k + · · · + b1ξ + b0

for some b0, b1, . . . , bk ∈ F. Then, since Q0 · v0 = 0V, we have

bkLk(v0) + bk−1Lk−1(v0) + · · · + b1L(v0) + b0v0 = 0V

=⇒ bk(−ak−1Lk−1(v0) − · · · − a1L(v0) − a0v0) + bk−1Lk−1(v0)+
+ · · · + b1L(v0) + b0v0 = 0V

=⇒ b j = bka j, j ∈ {1, . . . , k − 1}.

Thus Q0 is an associate of P0, and so (Q0) = (P0) and so V = F[ξ]/(P0) by Proposi-
tion 4.9.7. ■

While the form for the matrix representative of L given in Theorem 5.8.20 is the
most natural from the point of view of the structure of V as a cyclic F[ξ]-module,
it will turn out that for us there is an alternative matrix representative that will be
more revealing. While we shall not see the benefits of this here, let us give this
alternative form here.

5.8.24 Proposition (Alternative matrix representative for L-cyclic vector spaces) Let
F be a field, let V be a finite-dimensional F-vector space, and let L ∈ EndF(V). Suppose
that VL is a cyclic F[ξ]-module, supposing that

VL = {P · v0 | P ∈ F[ξ]}

for v0 ∈ VL and with P0 ∈ F[ξ] the unique monic polynomial for which VL is isomorphic
to F[ξ]/(P0). Write

P0 = ξ
k + ak−1ξ

k−1 + · · · + a1ξ + a0.
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Then there exists a basisB for V such that

[L]BB =



0F 1F 0F 0F · · · 0F

0F 0F 1F 0F · · · 0F

0F 0F 0F 1F · · · 0F
...

...
...

...
. . .

...
0F 0F 0F 0F · · · 1F

−a0 −a1 −a2 −a3 · · · −ak−1


.

Proof Let e j = Lk− j(v0), j ∈ {1, . . . , k} so that B ′ = {ek, . . . , e1} is the basis giving the
matrix representative of Theorem 5.8.20. In particular, {e1, . . . , ek} is a basis. Define
T ∈Matk×k(F) by

T =


1F 0F 0F · · · 0F

ak−1 1F 0F · · · 0F
ak−2 ak−1 1F · · · 0F
...

...
...

. . .
...

a1 a2 a3 · · · 1F


.

Since det T = 1F by Proposition 5.3.3(iv), T is invertible by Theorem 5.3.10. Therefore,
if we define

f j =

k∑
l=1

T(l, j)el, j ∈ {1, . . . , k},

then { f1, . . . , fk} is a basis for V. Rather than explicitly computing the inverse of T to
determine the matrix representative using the change of basis formula, let us take a
more indirect route. Define polynomials Q0,Q1, . . . ,Qk ∈ F[ξ] by

Q j =

k− j∑
l=0

al+ jξ
l,

where we let ak = 1F. Thus

Q0 = P0, Q1 = a1 + a2ξ + · · · + akξ
k−1, . . . , Qk = ak.

Note that

ξQ j =

k− j∑
l=0

al+ jξ
l+1 =

k− j∑
l=0

al+ jξ
l+1 + a j−1 − a j−1 =

k− j∑
l=−1

al+ jξ
l+1
− a j−1Qk

=

k−( j−1)∑
l′=0

al′+( j−1)ξ
l′
− a j−1Qk = Q j−1 − a j−1Qk,

for each j ∈ {0, 1, . . . , k}. One directly sees that

f j = Q j · v0, j ∈ {1, . . . , k},
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and so, by our preceding computation,

L( f j) = f j−1 − a j−1 fk.

Therefore, taking f0 = Q0 · v0 = 0V,

L( f1) = 0F f1 + 0F f2 + · · · + 0F fk−1 − a0 fk,
L( f2) = 1F f1 + 0F f2 + · · · + 0F fk−1 − a1 fk,

...

L( fk−1) = 0F f1 + 0F f1 + · · · + 0F fk−1 − ak−1 fk,
L( fk) = 0F f1 + 0F f1 + · · · + 1F fk−1 − ak fk.

Taking B = { f1, . . . , fk}, the result now follows by the definition of the matrix repre-
sentative. ■

The matrix representative of the preceding result we shall give a name and
some notation.

5.8.25 Definition (Companion matrix) Let F be a field, let k ∈ Z>0, let P ∈ F[ξ] be a monic
polynomial of degree k, and write

P = ξk + ak−1ξ
k−1 + · · · + a1ξ + a0.

The matrix

C(P) ≜



0F 1F 0F 0F · · · 0F

0F 0F 1F 0F · · · 0F

0F 0F 0F 1F · · · 0F
...

...
...

...
. . .

...
0F 0F 0F 0F · · · 1F

−a0 −a1 −a2 −a3 · · · −ak−1


is the companion matrix associated to the polynomial P. •

Some authors call the matrix of Theorem 5.8.20 the companion matrix. There
are also other possible forms, but they are all characterised by having the coeffi-
cients of the polynomial in the first or last row or column, and by having 1F in the
entries just above or just below the diagonal.

It will be useful to know the characteristic polynomial of L when V is L-cyclic.

5.8.26 Proposition (Characteristic polynomial corresponding to cyclic vector
spaces) Let F be a field, let V be a finite-dimensional F-vector space, and let L ∈ EndF(V).
Suppose that P0 ∈ F[ξ] is the unique monic polynomial for which VL is isomorphic to
F[ξ]/(P0). Then CL = P0.

Proof It suffices to prove that the characteristic polynomial for the companion matrix
C(P0) is P0. We prove this by induction on dimF(V). For k = 1 we have C(P0) = [−a0]
if P0 = ξ + a0. The characteristic polynomial of this 1 × 1 matrix is ξ − a0, giving the
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result in this case. Now suppose that the result is true for j× j companion matrices for
j ∈ {1, . . . , k − 1} and let C(P0) be the companion matrix for the polynomial

P0 = ξ
k + ak−1ξ

k−1 + · · · + a1ξ + a0.

Let
P′0 = ξ

k−1 + ak−1ξ
k−2 + · · · + a2ξ + a1.

Expanding the determinant for ξIn − C(P0) about the first column yields

det(ξIn − C(P0)) = ξdet(ξIn−1 − C(P′0)) + (−1)k+1a0 det A′,

where A′ is the lower triangular (k − 1) × (k − 1) matrix with −1F’s on the diagonal
and ξ’s below the diagonal. Thus det A′ = (−1F)k−1 by Proposition 5.3.3(iv). By the
induction hypothesis we then have

det(ξIn − C(P0)) = ξP′0 + a0 = P0,

as desired. ■

As a mildly interesting corollary we note that to every polynomial there corre-
sponds a matrix with that polynomial as its characteristic polynomial.

There is more one can say in terms of characterising the characteristic polyno-
mial for cyclic modules. Indeed, in this special case, and only if this special case,
the minimal polynomial and the characteristic polynomial agree.

5.8.27 Proposition (The minimal and characteristic polynomials agree for cyclic
vector spaces) Let F be a field, let V be a finite-dimensional F-vector space, and let
L ∈ EndF(V). Then the following two statements are equivalent:

(i) V is L-cyclic;
(ii) ML = CL.

Proof Our proof relies on Theorem 5.8.33 and Proposition 5.8.35 below.
The following general lemma about modules over a principal ideal domain is

helpful.

1 Lemma Let R be a principal ideal domain and let M be a torsion R-module. Then M is cyclic
if and only if the elementary divisors of M are of the form pl1

1 , . . . ,p
lk
k for nonassociate primes

p1, . . . ,pk and for l1, . . . , lk ∈ Z>0.
Proof If M is cyclic, then the form of the elementary divisors follows from Proposi-
tion 4.9.9(ii) and Theorem 4.9.18. So suppose that the elementary divisors are pl1

1 , . . . , p
lk
k

as stated. Then the primary-cyclic decomposition gives an isomorphism of M with

R/(pl1
1 ) ⊕ · · · ⊕ R/(pl1

k ).

However, by Proposition 4.9.9(ii) this means that M is isomorphic to R/(r) with r =
pl1

1 . . . p
lk
k . Thus M is cyclic. ▼

The proposition now follows directly from frefprop:min/char-poly since ML = CL

if and only if the elementary divisors are of the form Pl1
1 , · · · ,P

lk
k for distinct, monic,

irreducible polynomials P1, . . . ,Pk and l1, . . . , lk ∈ Z>0. ■
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5.8.6 The primary decomposition of VL

We shall now give a canonical form for an endomorphism based on the de-
composition theorems of Section 4.9 for modules over principal ideal domains.
However, our presentation in this section will be made independently of the gen-
eralities from Section 4.9 in order that we have the presentation be as self-contained
as possible.

First let us give some definitions that adapt those from the general setup.

5.8.28 Definition (Elementary divisor, invariant factor) Let F be a field, let V be a finite-
dimensional F-vector space, and let L ∈ EndF(V). A monic polynomial P ∈ F[ξ] is
an elementary divisor (resp. invariant factor) for L if it is an elementary divisor
(resp. invariant factor) for the F[ξ]-module VL. •

Note that if P ∈ F[ξ] is an elementary divisor or invariant factor for VL, then
there exists a unique monic polynomial P′ such that P′ = aP for some a ∈ F∗. Thus
the elementary divisors or invariant factors for VL are uniquely specified once one
asks that they be monic polynomials. Moreover, once one also fixes this convention
that the elementary divisors and invariant factors be monic, the invariant factors
of L and VL are precisely the same.

We begin our decomposition of VL by describing the primary decomposition in
terms of the minimal polynomial.

5.8.29 Theorem (The primary decomposition of VL) Let F be a field, let V be a finite-
dimensional F-vector space, and let L ∈ EndF(V). Write the minimal polynomial as

ML = Pl1
1 · · ·P

lk
k ,

where the polynomials P1, . . . ,Pk ∈ F[ξ] are distinct, monic, and irreducible, and where
l1, . . . , lk ∈ Z>0. Denote

Pj(L) = ker(EvF(Plj
j )(L)), j ∈ {1, . . . ,k}.

Then dimF(Pj(L)) > 0, j ∈ {1, . . . ,k}, and the primary decomposition of VL is

VL = P1(L) ⊕ · · · ⊕ Pk(L).

Proof This follows from the arguments of Theorem 4.9.14, however, we shall give an
explicit and independent proof here for convenience.

Write ML = Pl1
1 · · ·P

lk
k as in the statement of the proposition. For j ∈ {1, . . . , k} define

Q j = Pl1
1 · · ·P

l j−1

j−1P
l j+1

j+1 · · ·P
lk
k .

Since the polynomials Q1, . . . ,Qk are coprime, by Corollary 4.4.36, there exist polyno-
mials R1, . . . ,Rk such that

R1Q1 + · · · + RkQk = 1F.



5.8 The structure of linear maps on finite-dimensional vector spaces 875

Since
EvF(P

l j

j R jQ j)(L) = 0EndF(V), j ∈ {1, . . . , k},

EvF(R jQ j)(L) ∈ VL(P j) for each j ∈ {1, . . . , k}. Therefore, for each v ∈ VL,

v = 1F · v = (R1Q1) · v + · · · + (RkQk) · v.

This gives VL =
∑k

j=1 VL(P j) as a sum of primary modules.
To show that the sum is direct, suppose that v ∈ VL(P j1) ∩ VL(P j2) for j1 , j2. Thus

Pk1
j1
· v = Pk2

j2
· v = 0V for some k1, k2 ∈ Z>0. By Corollary 4.4.36 there exists polynomials

R1 and R2 such that
R1Pk1

j1
+ R2Pk2

j2
= 1F.

But then

v = 1F · v = (R1Pk1
j1
+ R2Pk2

j2
) · v = (R1Pk1

j1
) · v + (R2Pk2

j2
) · v = 0V.

Thus VL = ⊕
k
j=1VL(P j).

Next we show that VL(P j) = ker(EvF(P
l j

j )(L)) for j ∈ {1, . . . , k}. First we claim that

ker(EvF(Pr
j)(L) = EvF(P

l j

j )(L)

for every r > l j. Indeed, suppose otherwise. Then there exists v ∈ ker(EvF(Pr
j)(L)) such

that EvF(P
l j

j )(L) · v , 0V. Note that v ∈ VL(P j) and so P
l j

j · v ∈ VL(P j) since VL(P j) is a
submodule. Therefore,

ML · v = (Pl1
1 · · ·P

l j−1

j−1P
l j+1

j+1 · · ·P
lk
k P

l j

j ) · v , 0V,

contradicting the definition of ML. Now, by definition of VL(P j), we have

VL(P j) ={v ∈ VL | Pr
j · v = 0V for some r ∈ Z>0}

= ∪r∈Z>0 ker(EvF(Pr
j)(L) = ker(EvF(P

l j

j )(L)),

as desired.
Finally we show that dimF(P j(L)) > 0. Suppose that dimF(P j(L)) = 0. This means

that EvF(P
l j

j )(L) is invertible. Define

P′j = Pl1
1 · · ·P

l j−1

j−1P
l j+1

j+1 · · ·P
lk
k .

Then
0EndF(L) = EvF(ML)(L) = EvF(P

l j

j )(L) ◦ EvF(P′j)(L),

which gives EvF(P′j)(L) = 0EndF(V) since EvF(P
l j

j )(L) is invertible. But this contradicts
the fact that ML is the least degree polynomial in ann(V). ■
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One way of understanding the preceding theorem is that the minimal polyno-
mial serves to determine the primary decomposition of VL. However, the primary
decomposition does not uniquely characterise VL as a module over F[ξ], just as is
the case of the general constructions of Section 4.9. This is reflected by the fact
that the minimal polynomial does not uniquely determine an endomorphism up
to similarity. Let us illustrate this with an example.

5.8.30 Example (Example 5.8.16 cont’d) We consider L and L′ as given in Exam-
ple 5.8.16:

L =


1F 1F 0F 0F

0F 1F 0F 0F

0F 0F 1F 1F

0F 0F 0F 1F

 , L′ =


1F 0F 0F 0F

0F 1F 0F 0F

0F 0F 1F 1F

0F 0F 0F 1F

 .
We have already indicated that both endomorphisms have minimal polynomial
ML =ML′ = (ξ−1F)2. However, the elementary divisors for L are {(ξ−1F)2, (ξ−1F)2

},
whereas the elementary divisors for L′ are {ξ − 1F, ξ − 1F, (ξ − 1F)2

}. That these are
indeed the elementary divisors may not be clear right now, but this will be evident
shortly. •

The primary decomposition is also related to the notion of a generalised
eigenspace as given in Definition 5.4.57.

5.8.31 Proposition (Minimal polynomial and generalised eigenspace) Let F be a field,
let V be a finite-dimensional F-vector space, and let L ∈ EndF(V). If λ ∈ F is an eigenvalue
for L with algebraic multiplicity k, then

W(λ,L) = ker(EvF((ξ − λ)k)(L)).
Proof Let Lλ = λ idV −L. Since

W(λ,L) =
⋃

j∈Z>0

ker(L j
λ
),

we immediately have
ker(EvF((ξ − λ)k)(L)) ⊆W(λ,L).

Since λ is an eigenvalue, by Proposition 5.8.12 we have (ξ − λ)|ML. More specifically
we can write ML = (ξ − λ)mP for some m ∈ Z>0 and for some P ∈ F[ξ] having the
property that (ξ − λ) ∤ P. By Theorem 5.8.29 we have

V = ker(EvF((ξ − λ)m)(L) ⊕ ker(EvF(P)(L)),

and this decomposition is one of L-invariant subspaces. Moreover, since (ξ − λ) ∤ P,
λ is not an eigenvalue of L|ker(EvF(P)(L)). Thus the generalised eigenspace W(λ,L)
is a subspace of ker(EvF((ξ − λ)m)(L). Moreover, m ≤ k by definition of the minimal
polynomial. Thus

W(λ,L) ⊆ ker(EvF((ξ − λ)k)(L),

giving the result. ■

Th result has the following important corollary.
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5.8.32 Corollary (Generalised eigenspace decomposition) Let F be a field, let V be a
finite-dimensional F-vector space, and let L ∈ EndF(V) be such that ML splits in F. If the
distinct eigenvalues of L are λ1, . . . , λk ∈ F, then

V =W(λ1,L) ⊕ · · · ⊕W(λk,L).

Proof Since ML splits we must have

ML = (ξ − λ1)l1 · · · (ξ − λk)lk

as the decomposition of ML into products of powers of primes. The result now follows
from Theorem 5.8.29 and Proposition 5.8.31. ■

5.8.7 The rational canonical form

We are now in a position to give a representation for an endomorphism that
is fully adapted to the primary-cyclic decomposition of a module over a principal
domain as given by Theorem 4.9.18. Indeed, we have the following theorem.

5.8.33 Theorem (Rational canonical form) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V). Let P1, . . . ,Pk ∈ F[ξ] be distinct, monic, irreducible
polynomials, let m1, . . . ,mk ∈ Z>0, and let l11, . . . , l1m1 , . . . , lk1, . . . , lkmk ∈ Z>0 be such
that

l11 ≤ · · · ≤ l1m1 , . . . , lk1 ≤ · · · ≤ lkmk

and be such that the polynomials

Pl11
1 , . . . ,P

l1m1
1 , . . . ,Plk1

k , . . . ,P
lkmk
k

are the elementary divisors of VL, cf. Theorem 4.9.18. Then there exists L-invariant
subspaces U11, . . . ,U1m1 , . . . ,Uk1, . . . ,Ukmk of V such that

(i) V = U11 ⊕ · · · ⊕ U1m1 ⊕ · · · ⊕ Uk1 ⊕ · · · ⊕ Ukmk and such that

(ii) L|Ujr is cyclic with characteristic polynomial Pljr
j for each j ∈ {1, . . . ,k} and r ∈

{1, . . . ,mj}.
Moreover, there exists a basisB for V such that

[L]BB = diag(C(Pl11
1 ), . . . ,C(P

l1m1
1 ), . . . ,C(Plk1

k ), . . . ,C(P
lkmk
k )).

Finally, if

[L]B
′

B ′ = diag(C(Qr11
1 ), . . . ,C(Q

r1n1
1 ), . . . ,C(Qrp1

s ), . . . ,C(Q
rpnp
p ))

is a matrix representative of L in another basis, then p = k and there exists a permutation
σ ∈ Sk such that Qj = Pσ(j), nj = mσ(j), and rja = lσ(j)a for j ∈ {1, . . . ,k} and a ∈ {1, . . . ,mj}.
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Proof Let V = P1(L)⊕· · ·⊕Pk(L) be the primary decomposition as per Theorem 5.8.29,
noting that P j(L) = VL(P j) for j ∈ {1, . . . , k}. According to Theorem 4.9.16, for each
j ∈ {1, . . . , k}we have a decomposition of P j(L) into cyclic modules

P j(L) = U j1 ⊕ · · · ⊕ U jm j

where the submodule U jr has order P
l jr

j for r ∈ {1, . . . ,m j}. According to Proposi-
tion 5.8.7, these submodules of VL are L-invariant subspaces. Moreover, by Proposi-

tion 5.8.26, the characteristic polynomial of L|U jr is P
l jr

j , just as asserted in the statement
of the first part of the result.

Now, as in Proposition 5.8.24, for each of the subspaces U jr, j ∈ {1, . . . , k}, r ∈

{1, . . . ,m j}, there is a basisB jr such that [L|U jr]
B jr

B jr
= C(P

l jr

j ). Taking

B =B11 ∪ · · · ∪B1m1 ∪ · · · ∪Bk1 ∪ · · · ∪Bkmk

gives the second part of the result by Proposition 5.4.10.
The final assertion follows by the uniqueness of the primary-cyclic decomposition

of VL. ■

The matrix representative of the preceding theorem has a name.

5.8.34 Definition (Rational canonical form) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V). The matrix representative of Theorem 5.8.33
is the rational canonical form for L. •

One of the most useful features of the rational canonical form is that it allows
us to easily characterise the minimal and characteristic polynomials.

5.8.35 Proposition (Elementary divisors and the minimal and characteristic polyno-
mials) Let F be a field, let V be a finite-dimensional F-vector space, and let L ∈ EndF(V).
Let P1, . . . ,Pk ∈ F[ξ] be distinct, monic, irreducible polynomials, let m1, . . . ,mk ∈ Z>0,
and let l11, . . . , l1m1 , . . . , lk1, . . . , lkmk ∈ Z>0 be such that

l11 ≤ · · · ≤ l1m1 , . . . , lk1 ≤ · · · ≤ lkmk

and be such that the polynomials

Pl11
1 , . . . ,P

l1m1
1 , . . . ,Plk1

k , . . . ,P
lkmk
k

are the elementary divisors of VL. Then

ML = P
l1m1
1 · · ·P

lkmk
k ,

CL = Pl11
1 · · ·P

l1m1
1 · · ·Plk1

k · · ·P
lkmk
k .
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Proof Let V = U11 ⊕ · · · ⊕ U1m1 ⊕ · · · ⊕ Uk1 ⊕ · · · ⊕ Ukmk be the decomposition of Theo-
rem 5.8.33. For v ∈ V let us write

v = v11 + · · · + v1m1 + · · · + vk1 + · · · + vkmk

as the decomposition of v associated with the direct sum decomposition. For j ∈
{1, . . . , k} and r ∈ {1, . . . ,m j} define L jr = L|U jr. Since

L = L11 ⊕ · · · ⊕ L1m1 ⊕ · · · ⊕ Lk1 ⊕ · · · ⊕ Lkmk ,

it follows that EvF(P)(L) = 0EndF(V) if and only if EvF(P)(L jr) = 0EndF(U jr) for each

j ∈ {1, . . . , k} and r ∈ {1, . . . ,m j}. Now let M̃L = P
l1m1
1 · · ·P

lkmk
k . Since P

l jr

j is an order for the

cyclic module U jr and since l jm j ≥ l jr it follows that EvF(P
l jmj

j )(L jr) = 0EndF(U jr) for each

j ∈ {1, . . . , k} and r ∈ {1, . . . ,m j}. It, therefore, follows that EvF(M̃L)(L) = 0EndF(V). Thus
ML|M̃L by Proposition 5.8.12.

Now let P be any polynomial for which EvF(P)(L) = 0EndF(V). Then EvF(P)(L jr) =

0EndF(U jr) for each j ∈ {1, . . . , k} and r ∈ {1, . . . ,m j}. Therefore, since P
l jr

j is an order for

U jr, it follows that P
l jr

j |P. Since this holds for every j ∈ {1, . . . , k} and r ∈ {1, . . . ,m j} it

follows that M̃L|P. In particular, M̃L|ML and so ML = M̃L since both polynomials are
monic.

Note that

CL = det diag(ξId11 − C(Pl11
1 ), . . . , ξId1m1

− C(P
l1m1
1 ), . . . ,

ξIdk1 − C(Plk1
k ), . . . , ξIdkmk

− C(P
lkmk
1 )),

where d jr = deg(P
l jr

j ), j ∈ {1, . . . , k}, r ∈ {1, . . . ,m j}. The determinant of a block diagonal
matrix is the product of the determinants of the blocks by Exercise 5.3.8. That CL is
the product of the elementary divisors then follows from Proposition 5.8.26. ■

As a consequence of this characterisation we have the following rather impor-
tant result.

5.8.36 Corollary (Cayley–Hamilton Theorem again) If F is a field, if V is a finite-
dimensional F-vector space, and if L ∈ EndF(V), then EvF(CL)(L) = 0EndF(V), i.e., L
satisfies its own characteristic polynomial.

Let us illustrate the rational canonical form with an example.

5.8.37 Example (Rational canonical form) We consider L and L′ as given in Exam-
ple 5.8.16:

L =


1F 1F 0F 0F

0F 1F 0F 0F

0F 0F 1F 1F

0F 0F 0F 1F

 , L′ =


1F 0F 0F 0F

0F 1F 0F 0F

0F 0F 1F 1F

0F 0F 0F 1F

 .
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Let us first define subspaces

U11 = spanF((1F, 0F, 0F, 0F), (0F, 1F, 0F, 0F)),
U12 = spanF((0F, 0F, 1F, 0F), (0F, 0F, 0F, 1F)),
U′11 = spanF((1F, 0F, 0F, 0F)),
U′12 = spanF((0F, 1F, 0F, 0F)),
U′13 = spanF((0F, 0F, 1F, 0F), (0F, 0F, 0F, 1F)),

Noting that
V = U11 ⊕ U12 = U11 ⊕ U12 ⊕ U13.

One can now directly check that the endomorphisms

L|U11, L|U12, L′|U′11, L′|U′12, L|U′13

are cyclic. Moreover, the characteristic polynomials of these endomorphisms are

(ξ − 1F)2, (ξ − 1F)2, ξ − 1F, ξ − 1F, (ξ − 1F)2,

respectively. Therefore, these are the elementary divisors for L and L′ are the
multisets {(ξ−1F)2, (ξ−1F)2

} and {ξ−1F, ξ−1F, (ξ−1F)2
}, respectively. In particular,

this gives the minimal and characteristic polynomials as

ML1 =ML2 = (ξ − 1F)2, PL1 = PL2 = (ξ − 1F)4,

just as we had previously written down.
The rational canonical forms for L and L′ are

0F 1F 0F 0F

−1F 2F 0F 0F

0F 0F 0F 1F

0F 0F −1F 2F

 ,


1F 0F 0F 0F

0F 1F 0F 0F

0F 0F 0F 1F

0F 0F −1F 2F


respectively. •

5.8.8 The invariant factor canonical form

The rational canonical form of Theorem 5.8.33 corresponds to the primary-
cyclic of the F[ξ]-module VL. One also has a canonical form associated with the
invariant factor decomposition. This decomposition is not as often used as the
rational canonical form, but let us give it nonetheless. It will be helpful in our
characterisation of similar endomorphisms over the algebraic closure of a field.

We merely state and prove the theorem.
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5.8.38 Theorem (Invariant factor canonical form) Let F be a field, let V be an F-vector
space, and let L ∈ EndL(V). Then there exists monic polynomials Q1, . . . ,Qm ∈ F[ξ] and
L-invariant subspaces W1, . . . ,Wm such that

(i) Qj|Qj+1, j ∈ {1, . . . ,m − 1},
(ii) V =W1 ⊕ · · · ⊕Wk, and
(iii) the minimal polynomial of L|Wj is Qj, j ∈ {1, . . . ,k}.

Moreover, the polynomials Q1, . . . ,Qm are uniquely determined by L and by the above
conditions.

Proof The existence of the polynomials and the L-invariant subspaces follows from
Theorem 4.9.21 and Proposition 5.8.7. The final uniqueness assertion also follows
from Theorem 4.9.21. It remains to show that the minimal polynomial of L|W j is
Q j. To see this, we recall from the proof of Theorem 4.9.21 the manner in which
one constructs the polynomials Q1, . . . ,Qm. We let P1, . . . ,Pk be the distinct, monic,
irreducible polynomials of Theorem 5.8.33 which give the elementary divisors as

Pl1
1 , . . . ,P

l1m1
1 , . . . ,Plk1

k , . . . ,P
lkmk
k .

Then the polynomials Q1, . . . ,Qm are of the form

Q j = Pα1
1 · · ·P

αk
k , j ∈ {1, . . . ,m},

where αs ∈ {ls1, . . . , lsms} for s ∈ {1, . . . , k}. This gives

W j = ker(EvF(Q j)(L)) = ker(EvF(Pα1
1 )(L)) ⊕ · · · ⊕ ker(EvF(Pαk

k )(L)).

The characteristic polynomial of L|W j is thus Q j. Moreover, since the polynomials
Pα1

1 , . . . ,P
αk
k are coprime, the subspace W j is L-cyclic. Therefore, by Proposition 5.8.27

it follows that the minimal polynomial of L|W j is Q j. ■

Note that the polynomials Q1, . . . ,Qm are not generally irreducible. It is for
this reason that the invariant factor canonical form is not as useful as the rational
canonical form. However, it is also this feature of the invariant canonical form that
will allow us to prove Theorem 5.8.40 below.

Let us give an example of the invariant factor canonical form.

5.8.39 Example (Invariant factor canonical form) We consider a field F, take V = F4,
and define two endomorphisms by the matrices

L =


1F 1F 0F 0F

0F 1F 0F 0F

0F 0F 1F 1F

0F 0F 0F 1F

 , L′ =


1F 1F 0F 0F

0F 1F 0F 0F

0F 0F 1F 0F

0F 0F 0F 1F

 .
In Example 5.8.37 we determined that the elementary divisors of L and L′ are the
multisets {(ξ − 1F)2, (ξ − 1F)2

} and {ξ − 1F, ξ − 1F, (ξ − 1F)2
}, respectively. Therefore,

the invariant factors for L are the multiset

{(ξ − 1F)2, (ξ − 1F)2
}
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and the invariant factors for L′ are the multiset

{ξ − 1F, (ξ − 1F)(ξ − 1F)2
}.

(These are determined using the rules given in the proof of Theorem 4.9.21 and
illustrated in Example 4.9.23.) Thus the invariant factor canonical form is formed
by a block diagonal matrix with the blocks having characteristic polynomials given
by the invariant factors. In this example, because it is somewhat degenerate having
all elementary divisors being a power of the same irreducible polynomial, the
invariant factor canonical form is the same as the rational canonical form. •

5.8.9 The rôle of field extensions

The development thus far in this section, culminating in the rational canonical
form for an endomorphism, is valuable in that it is general: it is valid for any
endomorphism of any finite-dimensional vector space, and for arbitrary fields.
However, one might hope that if the field or if the endomorphism has particular
properties, one may be able to say more about the structure of the equivalence
classes under similarity. This is indeed the case, and the most commonly held
structure is that the minimal polynomial (or, equivalently characteristic polyno-
mial) of the endomorphism splits, i.e., it is a product of polynomials of degree 1.
This will happen, for example, if the field is algebraically closed. Therefore, any
additional information one obtains for the case when the minimal polynomial
splits will hold, in particular, for endomorphisms of C-vector spaces. However,
for endomorphisms of, say, R-vector spaces it might not happen that the minimal
polynomial splits inR[ξ], even though it splits inC[ξ]. Moreover, it is useful to not
necessarily consider algebraically closed fields, but simply fields which contain the
eigenvalues for the endomorphism. The point is this: It is useful to think of an en-
domorphism of an F-vector space as being an endomorphism of an K-vector space
where K is a field extension of F (see Section 4.6 for details about field extensions).

To allow for endomorphisms to be defined over a field extension, we must use
vector spaces over the extended field and endomorphisms of these extended vector
spaces. This is discussed in Sections 4.5.7 and 5.4.10 for the extension from R to
C. For general extensions, using the notion of tensor product, the reader should
refer to Sections 4.5.8 and 5.4.11. Since the extension fromR to Cwill be the most
useful extension for us, the reader may very well want to restrict in their mind to
this case. This should be generally possible without too much difficulty.

Our main interest lies in the following theorem.

5.8.40 Theorem (Independence of similarity with respect to extension) Let F be a field,
let V be an F-vector space, and let L1,L2 ∈ EndF(V). Also let K be an extension of F, and
let VK, and LK,1,LK,2 ∈ EndK(VK) be extensions to K. Then L1 and L2 are similar if and
only if LF,1 and LF,2 are similar.

Proof We let L ∈ EndF(V) and we will show that the invariant factors of L uniquely
determine the elementary divisors of LK. This will give the result by Theorem 5.8.38.



5.8 The structure of linear maps on finite-dimensional vector spaces 883

Let us first consider a few F-modules.
1. We denote by (VK)LK the K[ξ] module associated with the endomorphism LK ∈

EndF(VF).
2. Note that VL is an F[ξ]-module with scalar multiplication given by

(P · v)( j) = akLk( j, l)v(l) + · · · + a1L( j, l)v(l) + a0v(l),

where
P = akξ

k + · · · + a1ξ + a0 ∈ F[ξ]

(here we are using the fact that V = Fn). This F[ξ]-module structure can be
extended to a K[ξ]-module structure by defining the product by

(P̄ · v)( j) = ākLk( j, l)v(l) + · · · + ā1L( j, l)v(l) + ā0v(l),

where
P̄ = ākξ

k + · · · + ā1ξ + ā0 ∈ K[ξ].

Let us denote this K[ξ]-module by (VL)K[ξ].
It is clear that the K[ξ]-modules (VK)LK and (VL)K[ξ] are isomorphic; they are, in fact,
equal.

Let us denote by Q̄1, . . . , Q̄m the inclusions of Q1, . . . ,Qm in F[ξ]. Note that Q̄ j|Q̄ j+1
for k ∈ {1, . . . ,m − 1}. Let W1, . . . ,Wm ⊆ V be the L-invariant subspaces corresponding
to Q1, . . . ,Qm. Let W̄1, . . . , W̄m ⊆ VK be the LK-invariant subspaces corresponding to
Q̄1, . . . , Q̄m. Note that the subspaces W̄ j, j ∈ {1, . . . ,m}, are LF-cyclic for the same reason
(see the proof of Theorem 5.8.38) that the subspaces W j, j ∈ {1, . . . ,m}, are L-cyclic.
Moreover, from the definition of LF it follows that the characteristic polynomial of
LF|W̄ j is Q̄ j. Thus Q̄1, . . . , Q̄m are the invariant factors for (VF)LF . Thus the invariant
factors for LF are uniquely determined by those for L. ■

5.8.10 From the rational canonical form to the Jordan canonical form

With the preceding section as backdrop, in this section we consider the impli-
cations of assuming that the minimal (or equivalently, characteristic) polynomial
splits, i.e., is a product of factors of degree one. We do this in this section by
proceeding directly from the rational canonical form. In the next sections we shall
explore this situation in a manner that does not rely explicitly on the rational
canonical form.

Let us look at the easiest situation first, that where V is L-cyclic, and the minimal
polynomial splits, having a single root of multiplicity dimF(V).

5.8.41 Proposition (Cyclic vector spaces and Jordan blocks) Let F be a field and let
V be a finite-dimensional F-vector space. Suppose that L ∈ EndF(V) has the following
properties:

(i) V is L-cyclic;
(ii) ML = (ξ − λ)k for λ ∈ F and where k = dimF(V).

Let Lλ = λ idV −L. Then the following statements hold:
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(iii) dimF(ker(Lλ)) = 1;
(iv) if v0 generates the F[ξ]-module VL then

B = {v0, (L − λ idV)(v0), . . . , (L − λ idV)k−1(v0)}

is a basis for V;
(v) we have

[L]BB =



λ 0F · · · 0F 0F

1F λ · · · 0F 0F

0F 1F · · · 0F 0F
...

...
. . .

...
...

0F 0F · · · λ 0F

0F 0F · · · 1F λ


.

Proof (iii) Note that λ is an eigenvalue for L by Proposition 5.8.13. Thus
dimF(ker(Lλ)) ≥ 1. If dimF(V) = 1 then this part of the result follows, so we sup-
pose that dimF(V) ≥ 2. Let W(λ,L) = ker(Lλ) and suppose that dimF(W(λ,L)) ≥ 2.
Then there are linearly independent vectors {v1, v2} such that Ua ≜ spanF(va), a ∈ {1, 2},
are L-invariant subspaces for which the characteristic polynomial of L|Ua is ξ − λ. Let
U = U1 ⊕ U2, noting that this subspace is L-invariant. Thus U is a submodule of VL
and so cyclic by Proposition 4.9.9(i). However, the elementary divisors of L|U are the
multiset {ξ − λ, ξ − λ}. This contradicts L|U being cyclic by Proposition 5.8.35.

(iv) From Theorem 5.8.20 we know that

B ′ = {v0,L(v0), . . . ,Lk−1(v0)}

is a basis for V. Denote B = {e1, . . . , ek} and B ′ = {e′1, . . . , e
′

k}. Using the Binomial
Theorem in the form of Proposition 4.2.11, and using the fact that L andλ idV commute,
we have

(L − λ idV)m =

m∑
j=0

Bm, j(−1) jλ jLm− j.

A direct computation then shows that

e j =

j∑
l=1

P(l, j)e′l

where P is lower triangular with 1F’s on the diagonal. Thus this matrix has determinant
1F by Proposition 5.3.3(iv), and so is invertible. ThusB is a basis by (iv).

(v) We have

L(e j) = L ◦ (L − λ idV) j−1(v0)

= (L − λ idV +λ idV) ◦ (L − λ idV) j−1(v0)

= (L − λ idV) j(v0) + λ(L − λ idV) j−1(v0)
= e j+1 + λe j,
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for j ∈ {1, . . . , k − 1}. Using a similar computation we have

L(ek) = (L − λ idV)k(v0) + λ(L − λ idV)k−1(v0) = λek

since (L − λ idV)k = 0EndF(V). Putting this all together gives

L(e1) = λe1 + 1Fe2 + 0Fe3 + · · · + 0Fek−1 + 0Fek,

L(e2) = 0Fe1 + λe2 + 1Fe3 + · · · + 0Fek−1 + 0Fek,

...

L(ek−1) = 0Fe1 + 0Fe2 + 0Fe3 + · · · + λek−1 + 0Fek,

L(ek) = 0Fe1 + 0Fe2 + 0Fe3 + · · · + 1Fek−1 + λek,

which gives the result by definition of the matrix representative. ■

As we did with the companion matrix associated with a L-cyclic vector space,
we shall use an alternative matrix representation for the situation represented by
the previous result. We describe this as follows.

5.8.42 Proposition (An alternative matrix representation) Let F be a field and let V be a
finite-dimensional F-vector space. Suppose that L ∈ EndF(V) has the following properties:

(i) V is L-cyclic;
(ii) ML = (ξ − λ)k for λ ∈ F and where k = dimF(V).

Then there exists a basisB for V such that

[L]BB =


λ 1F 0F · · · 0F 0F

0F λ 1F · · · 0F 0F
...

...
...

. . .
...

...
0F 0F 0F · · · λ 1F

0F 0F 0F · · · 0F λ

 .
Proof LetB ′ = {e′1, . . . , e

′

k} be the basis from Proposition 5.8.41 and letB = {e1, . . . , ek}

with e j = e′k− j+1, j ∈ {1, . . . , k}. Then

L(e1) = L(e′k) = λe′k = λe1

and
L(e j) = L(e′k− j+1) = e′k− j+2 + λe′k− j+1 = e j−1 + λe j, j ∈ {2, . . . , k}.

It now follows from an application of the definition of the matrix representative that
B gives the desired form for [L]B

B
. ■

The matrix representative in the preceding result is important enough to have
a name.
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5.8.43 Definition (Jordan block, Jordan arrangement) Let F be a field and let λ ∈ F.
(i) For k ∈ Z>0, the matrix

J(λ, k) ≜


λ 1F 0F · · · 0F 0F

0F λ 1F · · · 0F 0F
...

...
...

. . .
...

...
0F 0F 0F · · · λ 1F

0F 0F 0F · · · 0F λ


is the Jordan block associated with k and λ.

(ii) For r ∈ Z>0 and k = (k1, . . . , kr) ∈ Zr
>0, the matrix

J(ℓ,k) =


J(ℓ, k1) 0 · · · 0

0 J(ℓ, k2) · · · 0
...

...
. . .

...
0 0 · · · J(ℓ, kr)


is the Jordan arrangement associated with k and λ. •

One can now adapt the preceding discussion to each of the invariant subspaces
associated with the elementary divisors of L and arrive at the following theorem.

5.8.44 Theorem (Jordan canonical form) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V). The following statements are equivalent:

(i) ML (or, equivalently, CL) splits in F;
(ii) there exists

(a) k ∈ Z>0,
(b) distinct λj ∈ F, j ∈ {1, . . . ,k},
(c) pj ∈ Z>0, j ∈ {1, . . . ,k}, and

(d) lj ∈ Z
pj

>0, j ∈ {1, . . . ,k},

such that the elementary divisors of L are the multiset

{(ξ − λ1)l11 , . . . , (ξ − λ1)l1m1 , . . . , (ξ − λk)lk1 , . . . , (ξ − λk)lkmk }.

Moreover, if either statement holds then there exists a basisB for V such that

[L]BB = diag(J(λ1, l1), . . . , J(λk, lk), . . . , J(λk, lkmk)).

Finally, if

[L]B
′

B ′ = diag(J(µ1, r11), . . . , J(µ1, r1n1), . . . , J(µs, rp1), . . . , J(µp, rpnp))

is a matrix representative of L in another basis, then p = k and there exists a permutation
σ ∈ Sk such that µj = λσ(j), nj = mσ(j), and rja = lσ(j)a for j ∈ {1, . . . ,k} and a ∈ {1, . . . ,mj}.
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Proof Suppose that ML splits. Let the elementary divisors for L be the multiset

{Pl11
1 , . . . ,P

l1m1
1 , . . . ,Plk1

k , . . . ,P
lkmk
k }.

Since ML = P
l1m1
1 · · ·P

lkmk
1 by Proposition 5.8.35 and since ML splits, it follows that each

of the polynomials P1, . . . ,Pk must split.
The second statement obviously implies the first since ML is a product of powers

of (ξ − λ1), . . . , (ξ − λk). This gives the fist part of the theorem.
Now let

V = U11 ⊕ · · · ⊕ U1m1 ⊕ · · · ⊕ Uk1 ⊕ · · · ⊕ Ukmk

be the decomposition of V into L-invariant subspaces as per Theorem 5.8.33. By
Proposition 5.8.42 and since L|U jr is cyclic, there exists a basis B jr for U jr such that

[L|U jr]
B jr

B jr
= J(λ j, l jr) for each j ∈ {1, . . . , k} and r ∈ {1, . . . ,m j}. Taking

B =B11 ∪ · · · ∪B1m1 ∪ · · · ∪Bk1 ∪ · · · ∪Bkmk

gives the desired matrix representative.
The uniqueness assertion follows from the uniqueness part of Theorem 5.8.33. ■

The matrix representative of the theorem has a name.

5.8.45 Definition (Jordan canonical form) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V) have a minimal polynomial that splits. The
matrix representative of Theorem 5.8.44 is the Jordan canonical form for L. •

Let us consider our ongoing example in terms of the Jordan canonical form.

5.8.46 Example (Jordan canonical form) We consider L and L′ as given in Exam-
ple 5.8.16:

L =


1F 1F 0F 0F

0F 1F 0F 0F

0F 0F 1F 1F

0F 0F 0F 1F

 , L′ =


1F 0F 0F 0F

0F 1F 0F 0F

0F 0F 1F 1F

0F 0F 0F 1F

 .
These matrices are already in Jordan canonical form, and we have shown them
divided up so as to illustrate the Jordan blocks in each case. •

5.8.11 Diagonalisation

The next few sections will be devoted to understanding the additional conclu-
sions one can come to in the important special case when the minimal polynomial
splits.

We begin with two entirely similar definitions.

5.8.47 Definition (Diagonalisable matrix) Let F be a field and let n ∈ Z>0. A matrix
A ∈Matn×n(F) is diagonalisable if it is similar to a diagonal matrix. •
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5.8.48 Definition (Diagonalisable endomorphism) Let F be a field and let V be a finite-
dimensional F-vector space. An endomorphism L ∈ EndF(V) is diagonalisable if
there exists a basisB for V such that [L]B

B
is diagonal. •

The next result follows immediately from the two definitions of diagonalisabil-
ity and similarity.

5.8.49 Proposition (Diagonalisable matrices and endomorphisms) Let F be a field, let
V be a finite-dimensional F-vector space, and letB be a basis for V. Then L ∈ EndF(V) is
diagonalisable if and only if [L]B

B
is diagonalisable.

From the preceding result it follows that we can simply talk about diagonalisable
endomorphisms since diagonalisable matrices are a special case of this.

The following result gives a precise characterisation of diagonalisability.

5.8.50 Proposition (Characterisation of diagonalisability) Let F be a field, let V be a
finite-dimensional F-vector space, and let L ∈ EndL(V). Then the following statements are
equivalent:

(i) L is diagonalisable;
(ii) there exists a basis of V comprised of eigenvectors of L;
(iii) the minimal polynomial of L has the form

ML = (ξ − λ1) · · · (ξ − λk)

for distinct λ1, . . . , λk ∈ F.
Proof (i) =⇒ (ii) Let B = {e1, . . . , en} be a basis such that [L]B

B
is diagonal. Then, by

definition of the matrix representative, for each j ∈ {1, . . . ,n} we have L(e j) = λ je j for
some λ j ∈ F. Thus e j is an eigenvector with eigenvalue λ j.

(ii) =⇒ (iii) LetB = {e1, . . . , en} be a basis of eigenvectors and define λ1, . . . , λn ∈ F
(not necessarily distinct) by L(e j) = λ je j, j ∈ {1, . . . ,n}. Let us suppose, without loss of
generality, let λ1, . . . , λk be the distinct elements of the multiset {λ1, . . . , λn}. Define

M̃L = (ξ − λ1) · · · (ξ − λk).

Since λ1, . . . , λk are eigenvalues, by Proposition 5.8.13 we have M̃L|ML. For v ∈ V write

v = v1e1 + · · · + vnen

be the representation of v in the basisB . For j ∈ {1, . . . ,n} let l( j) ∈ {1, . . . , k} be uniquely
defined so that λ j = λl( j). Then

EvF(M̃L)(L) · v = (λ1 idV −L) ◦ · · · ◦ (λk idV −L)(v1e1 + · · · + vnen)

=

n∑
j=1

∏
l,l( j)

(λl idV −L)

 (λl( j) idV −L)(v je j) = 0V,

using the fact that the endomorphisms λ j idV −L, j ∈ {1, . . . , k}, commute, and using
the fact that e j is an eigenvector for the eigenvalue λl( j). This shows that ML|M̃L by
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definition of the minimal polynomial. Therefore, ML = M̃L since both polynomials are
monic.

(iii) =⇒ (i) Let ML = (ξ−λ1) · · · (ξ−λk) forλ1, . . . , λk ∈ F distinct. By Theorem 5.8.29
we have

V = ker(λ1 idV −L) ⊕ · · · ⊕ ker(λk idV −L).

Since ker(λ j − L) is the eigenspace for the eigenvalue λ j, j ∈ {1, . . . , k}, it follows that
if B j = {e j1, . . . , e jm j} is a basis for ker(λ j idV −L), then L(e jl) = λ je jl for j ∈ {1, . . . , k},
l ∈ {1, . . . ,m j}, where m j = dimF(ker(λ j id V − L)). Therefore, ifB =B1 ∪ · · · ∪Bk, we
have that [L]B

B
is diagonal. ■

An example illustrates the proposition.

5.8.51 Example (Diagonalisable endomorphisms) We let V = F3 and consider endo-
morphisms

L =

1F 0F 0F

0F 0F 2F

0F 1F 0F

 , L′ =

1F 0F 1F

0F 0F 2F

0F 1F 0F.


One can verify that L and L′ both have as eigenvalues the multiset {1F, 1F, 2F}. We
also have

ker(1F idV −L) = spanF((1F, 0F, 0F), (0F, 0F, 1F)),
ker(2F idV −L) = spanF((0F, 1F, 0F)),

ker(1F idV −L′) = spanF((1F, 0F, 0F)),
ker(2F idV −L′) = spanF((0F, 1F, 0F)).

In particular, L has a basis of eigenvectors whereas L′ does not. Thus L is diagonal-
isable while L′ is not. The minimal polynomials are

ML = (ξ − 1F)(ξ − 2F), ML′ = (ξ − 1F)2(ξ − 2F),

which also bears out the characterisation of diagonalisable endomorphisms in
Proposition 5.8.50. •

5.8.12 Semisimple and absolutely semisimple endomorphisms

Since one can reasonably demand diagonalisability only when the field of
scalars is algebraically closed, it is useful to have a comparable notion for fields
that are not algebraically closed. This notion turns out to be slightly complicated as
it is related to the character of the field F in a nontrivial way. This forces one to con-
sider two flavours of ideas related to diagonalisation: semisimple and absolutely
semisimple. As we shall see, the latter implies the former. Moreover, the two no-
tions are equivalent for fields of characteristic zero, e.g.,R. Thus the reader looking
to simplify their life can equate “semisimple” and “absolutely semisimple.”

Let us first consider the notion of a semisimple endomorphism. Its characteri-
sation has a rather geometric flavour.
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5.8.52 Definition (Semisimple endomorphism) Let F be field and let V be an F-vector
space. An endomorphism L ∈ EndF(V) is semisimple if, for every L-invariant
subspace U ⊆ V, there exists an L-invariant complement to U in V. •

The following result explains the significance of semisimple endomorphisms in
terms of the minimal polynomial.

5.8.53 Theorem (The minimal polynomial of a semisimple endomorphism) Let F be a
field, let V be a finite-dimensional F-vector space, and let L ∈ EndF(V). Let P1, . . . ,Pk ∈

F[ξ] be distinct, monic, irreducible polynomials and let l1, . . . , lk ∈ Z>0 be such that

ML = Pl1
1 · · ·P

lk
k .

Then L is semisimple if and only if l1 = · · · = lk = 1.
Proof First note that, by Proposition 5.8.7, L is semisimple if and only if every sub-
module of VL possesses a complementary submodule. We shall thus deal with the
F[ξ]-module VL, and shall borrow the notation of Theorem 4.9.16.

Suppose that l1, . . . , lk = 1. By Theorem 5.8.29, to show that every submodule of
VL possesses a complement, it suffices to show that every submodule of a primary
submodule M of VL has a complement in M. That is to say, we can assume without
loss of generality that ML = P1 and so VL = VL(P1) = VL[P1]. In this case, Lemma 3
of Theorem 4.9.16 gives VL as a vector space over the field F[ξ]/(P1). Submodule of
VL are then precisely subspaces of VL, and since subspaces possess complements by
Theorem 4.5.52, it follows that every submodule of VL possesses a complementary
submodule.

Now suppose that L is semisimple. Let v ∈ VL and let M j be a complement to
spanF[ξ](P j · v), j ∈ {1, . . . , k}. Then we have v = (PP j) · v + u for some P ∈ F[ξ] and
u ∈ M j. Thus u = (1F − (PP1)) · v, and so P j · u = 0V since

P j · u = P j(1F − (PP1)) · v ∈ spanF[ξ](P j · v) ∩M j.

Moreover, suppose that v ∈ VL[P j] for some j ∈ {1, . . . , k}. Then P
l j

j ·v = 0V. Since VL(P j)
is a submodule, our above argument gives (P j(1 − PP j)) · v = 0V for some P ∈ F[ξ].
Thus

P j · v = (PP2
j ) · v = (P2P3

j ) · v = · · · = (PmPm+1
j ) · v = · · · .

But this implies that VL(P j) = VL[P j] for each j ∈ {1, . . . , k}. This in turn implies, by
Theorem 5.8.29, that ML = P1 · · ·Pk, as desired. ■

For endomorphisms of vector spaces over algebraically closed fields, or more
generally, for endomorphisms whose minimal polynomial splits, we have the fol-
lowing result. This shows that the notion of semisimplicity generalises the notion
of diagonalisability.
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5.8.54 Proposition (Semisimplicity when the minimal polynomial splits) Let F be a
field, let V be a finite-dimensional F-vector space, and let L ∈ EndF(V) have a minimal
polynomial that splits. Then L is semisimple if and only if diagonalisable.

Proof First suppose that L is semisimple. By Theorem 5.8.53, since ML splits we have

ML = (ξ − λ1) · · · (ξ − λk)

for distinct λ1, . . . , λk ∈ F. By Proposition 5.8.50 it follows that L is diagonalisable.
Conversely, if L is diagonalisable, by Proposition 5.8.50 it follows that ML is a

product of distinct degree one factors. By Theorem 5.8.53 it follows that L is semisim-
ple. ■

One might now speculate on the relationship between semisimplicity of an
endomorphism and the diagonalisability of the endomorphism after extending
from a field to a field where the minimal polynomial splits (e.g., the algebraic
closure). The natural conjecture is the following: An endomorphism over a field F
is semisimple if and only if its minimal polynomial splits in some extension K of
F. This is actually not true, in general. It is true much of the time, but not all of the
time. For example, as we shall see, it is true when F has characteristic zero. The
general story is rooted in the notion of separable polynomials and separable field
extensions which we discussed in Section 4.6.7. Let us recall here the main ideas.
1. A polynomial A ∈ F[ξ] is separable when it splits into distinct degree one factors

in the algebraic closure F̄ of F.
2. An irreducible polynomial is always separable if F has characteristic zero

(Proposition 4.6.43).
3. An extension K of F is separable if every a ∈ K is the root of a separable

polynomial A ∈ F[ξ].
4. Algebraic extensions of fields of characteristic zero are separable.
The reader wishing to simplify things to the interesting case where F = R should
keep points 2 and 4 in mind.

Now let us proceed with the development.

5.8.55 Definition (Absolutely semisimple endomorphism) Let F be a field and let V be
a finite-dimensional F-vector space. An endomorphism L ∈ EndF(V) is absolutely
semisimple if there exists an extension K of F such that LK is diagonalisable. •

For absolutely semisimple endomorphisms we have the following characteri-
sation.

5.8.56 Theorem (Characterisation of absolutely semisimple endomorphism) Let F
be a field with algebraic closure F̄ and let V be a finite-dimensional F-vector space. For an
endomorphism L ∈ EndF(V) the following statements are equivalent:

(i) L is absolutely semisimple;
(ii) LF̄ is diagonalisable;
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(iii) ML is separable.
Proof (i) =⇒ (ii) Suppose that K is an extension of F for which LK is diagonalisable.
Then, by Proposition 5.8.50, the minimal polynomial ML splits in K into a product
of distinct degree 1 factors. Thus LF̄ splits into the same product of distinct degree 1
factors, and so is diagonalisable by Proposition 5.8.50.

(ii) =⇒ (iii) If LF̄ is diagonalisable then ML splits in F̄ into a product of distinct
degree 1 factors by Proposition 5.8.50. Thus ML is separable by Proposition 4.6.42.

(iii) =⇒ (i) By Proposition 4.6.42, if ML is separable then there exists an extension
K in which ML splits into a product of distinct degree 1 factors. By Proposition 5.8.50
it follows that LK is diagonalisable. ■

The relationship between semisimple and absolutely semisimple endomor-
phisms is contained in the following result.

5.8.57 Corollary (Absolutely semisimple implies semisimple) Let F be a field with V
a finite-dimensional F-vector space. If L ∈ EndF(V) is absolutely semisimple then it is
semisimple.

Proof If L is absolutely semisimple then ML is separable by Theorem 5.8.56. Write
the decomposition of ML as a product of powers of distinct irreducible factors:

ML = Pl1
1 · · ·P

lk
k .

Separability of ML implies that l1 = · · · = lk = 1 since otherwise ML will certainly have
repeated roots in F̄. It follows from Theorem 5.8.53 that L is semisimple. ■

The following corollary simplifies much of the complicated business concerning
semisimple and absolutely semisimple endomorphisms.

5.8.58 Corollary (In characteristic zero semisimple equals absolutely semisimple)
Let F be a field of characteristic zero with algebraic closure F̄ and let V be a finite-

dimensional F-vector space. For an endomorphism L ∈ EndF(V) the following statements
are equivalent:

(i) L is semisimple;
(ii) L is absolutely semisimple;
(iii) if P1, . . . ,Pk ∈ F[ξ] are distinct, monic, irreducible polynomials and if l1, . . . , lk ∈

Z>0 are such that
ML = Pl1

1 · · ·P
lk
k ,

then l1 = · · · = lk = 1;
(iv) LF̄ is diagonalisable.

Proof The result will follow from Theorems 5.8.53 and 5.8.56 and Corollary 5.8.58 if
we can show that ML is separable. This in turn follows if we can show that P1, . . . ,Pk
are irreducible. But this follows from Proposition 4.6.43 since there it is shown that all
irreducible polynomials over fields of characteristic zero are separable. ■

Let us give an example of an endomorphism that is semisimple, but not abso-
lutely semisimple.
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5.8.59 Example (Semisimple but not absolutely semisimple endomorphism) We use
Example 4.6.48 as our starting point. Thus we consider the fieldZ2 with F = Z2(η)
the field of rational functions in indeterminate η. We take V = F2 and define
L ∈ EndF(V) by the following 2 × 2 matrix in F:

L =
[
0F 1F

η 0F

]
.

The characteristic polynomial is CL = ξ2
− η. As we argue in Example 4.6.48, this

polynomial is irreducible so L is semisimple by Theorem 5.8.53. We also argue in
Example 4.6.48 that CL is not separable, and so L is not absolutely semisimple by
Theorem 5.8.56. •

5.8.13 Triangularisable and nilpotent endomorphisms

In Section 5.8.10 we showed that when the minimal polynomial splits, one
can proceed from the rational canonical form to the Jordan canonical form. Note
that a diagonal matrix is trivially in Jordan canonical form. When a matrix is
not diagonalisable, but its minimal polynomial splits, then the Jordan canonical
form shows us that the matrix can be put into a form where the matrix differs
from a diagonal matrix only by 1F’s in the entries above the diagonal. In this
section we wish to examine this structure without making reference to the rational
canonical form. In this way we can free the discussion from reliance on modules
over principal ideal domains.

Let us begin with the definition of a what seems to be a generalisation of an
endomorphism that can be put into Jordan canonical form.

5.8.60 Definition (Triangularisable endomorphism) Let F be a field and let V be a finite-
dimensional F-vector space. An endomorphism L ∈ EndF(V) is triangularisable if
there exists a basisB for V such that [L]B

B
is upper triangular. •

The condition in the definition that the matrix representative be upper trian-
gular can be replaced with the condition that the matrix representative be lower
triangular; see Exercise 5.8.11.

There is a simple characterisation of triangularisable endomorphisms.

5.8.61 Theorem (Characterisation of triangularisable endomorphism) Let F be a field
and let V be a finite-dimensional F-vector space. An endomorphism L ∈ EndF(V) is
triangularisable if and only if ML splits in V.

Proof Suppose that L is triangularisable and let [L]B
B

be upper diagonal. By Exer-
cise 5.3.7 the eigenvalues of L are the diagonal entries of [L]B

B
, and so are in F. Thus,

since the roots of ML are the eigenvalues of L, it follows that ML splits.
Now suppose that ML splits. By Theorem 5.8.44 it follows that there exists a basis

B in which [L]B
B

is block diagonal with the diagonal blocks being Jordan blocks. In
particular, [L]B

B
is upper triangular. However, let us provide an independent proof of

this.
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Since ML splits in F there exists an eigenvalue of L and so there is a one-dimensional
L-invariant subspace V1 of V. By Exercise 5.7.2 the (n − 1)-dimensional (with n =
dim(V)) subspace ann(V1) is L′-invariant. By Exercise 5.8.5, ML =ML′ . Thus L′| ann(V1)
splits in F and so L′| ann(V1) possesses a one-dimensional L′-invariant subspace which
then gives an (n − 2)-dimensional L′-invariant subspace containing ann(V1). Since V
is finite-dimensional, corresponding to this subspace is a two-dimensional subspace
V2 of V, invariant under L and containing V1. Continuing in this way we arrive at a
sequence

V1 ⊆ V2 ⊆ · · · ⊆ Vn = V

of L-invariant subspaces such that dim(V j) = j, j ∈ {1, . . . ,n}. Now letB = {e1, . . . , en}

be a basis for V for which {e1, . . . , e j} is a basis for V j. By definition of the subspaces
V1, . . . ,Vn we have

L(e1) = a11e1,

L(e2) = a12e1 + a22e2,

...

L(en) = a1ne1 + · · · + annen,

where the ai j’s are in F. By definition of the matrix representative this means that
[L]B
B

. ■

This theorem can be used to give another proof of the Cayley–Hamilton Theo-
rem.

5.8.62 Corollary (Cayley–Hamilton Theorem yet again) If F is a field, if V is a finite-
dimensional F-vector space, and if L ∈ EndF(V), then EvF(CL)(L) = 0EndF(V), i.e., L
satisfies its own characteristic polynomial.

Proof Let us first prove a lemma.

1 Lemma If A ∈ Matn×n(F) is an upper triangular matrix with diagonal entries (d1, . . . ,dn),
then

(A − d1In) · · · (A − dnIn) = 0n×n.

Proof We prove this by induction on n, the result being obviously true when n = 1.
Let {e1, . . . , en} be the standard basis for Fn. We then clearly have (A − dnIn)en = 0Fn ,
simply using the fact that A is upper triangular with A(n,n) = dn. Therefore,

(A − d1In) · · · (A − dnIn)en = 0Fn .

Note that the matrices A − d1In, . . . ,A − dnIn commute so that

(A − d1In) · · · (A − dnIn) = (A − dnIn)(A − d1In) · · · (A − dn−1In).

By the induction hypothesis,

(A − d1In) · · · (A − dn−1In)e j = 0Fn
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for j ∈ {1, . . . ,n − 1} (why?). Therefore,

(A − d1In) · · · (A − dnIn)e j = 0Fn

for all j ∈ {1, . . . ,n}, which is the result. ▼

Now let F̄ be the algebraic closure of F so that ML and CL split in F̄. Then let
{e1, . . . , en} be a basis for F̄n for which A ≜ [LF̄]B

B
is upper triangular. Then, by the

lemma,
(A − λ1In) · · · (A − λnIn) = 0n×n,

where λ1, . . . , λn ∈ F̄ are the eigenvalue of LF̄. But we also have

CL = (ξ − λ1) · · · (ξ − λn)

since the roots up the characteristic polynomial are the eigenvalues. Thus

EvF̄(CL)(LF̄) = 0EndF̄(VF̄).

Since EvF̄(CL)(LF̄) = (EvF(CL)(L))F̄ the result follows. ■

As we know from Theorem 5.8.44, the upper triangular form is too coarse a
canonical form for a matrix with a minimal polynomial that splits. The Jordan
canonical form is a far more structured canonical form. In order to work our way
towards the Jordan canonical form without making use of the rational canonical
form, we introduce a particular class of triangular endomorphisms.

5.8.63 Definition (Nilpotent endomorphism) Let F be a field and let V be a finite-
dimensional F-vector space. An endomorphism L ∈ EndF(V) is nilpotent if there
exists k ∈ Z≥0 such that Lk = 0EndF(V). The least integer k for which this holds is
called the index of nilpotency of L. •

Let us give some characterisations and properties of nilpotent endomor-
phisms.

5.8.64 Proposition (Properties of nilpotent endomorphisms) Let F be a field and let V
be a finite-dimensional F-vector space. For an endomorphism L ∈ EndF(V) the following
statements are equivalent:

(i) L is nilpotent with index of nilpotency k;
(ii) ML = ξk.

If particular, nilpotent endomorphisms are triangularisable.
Proof Suppose that L is nilpotent with index of nilpotency k. Then EvF(ξk)(L) =
0EndF(V) from which we conclude that ML|ξk. Moreover, since EvF(ξk−1)(L) , 0EndF(V) it
follows that ML = ξk.

If ML = ξk then L is nilpotent with index of nilpotency at most k. Since ML is
the minimal polynomial, it follows that EvF(ξk−1)(L) , 0EndF(V) so that the index of
nilpotency is exactly k.

If L is nilpotent the first part of the proof shows that ML splits in F. Thus L is
triangularisable by Theorem 5.8.61. ■

Now we provide a very structured canonical form for nilpotent endomor-
phisms. In order to do this it is convenient to introduce a piece of notation.
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5.8.65 Definition (Nilpotent block) Let F be a field and let k ∈ Z>0. The matrix

N(k) ≜


0F 1F 0F · · · 0F 0F

0F 0F 1F · · · 0F 0F
...

...
...

. . .
...

...
0F 0F 0F · · · 0F 1F

0F 0F 0F · · · 0F 0F


is the nilpotent block associated with k. •

Obviously the nilpotent block is related to the Jordan block by N(k) = J(λ, k).
Now we can give the canonical form for a nilpotent endomorphism.

5.8.66 Theorem (Nilpotent canonical form) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V) be nilpotent. Then there exists k1, . . . ,kr ∈ Z>0 and
a basisB for V such that

[L]BB = diag(N(k1), . . . ,N(kr)).

Moreover, if there exists a basis for V such that the matrix representative of L in this basis
is

diag(N(l1), . . . ,N(ls)),

then r = s and there exists σ ∈ Sr such that lj = kσ(j) for j ∈ {1, . . . , r}.
Proof Some of the ideas in the proof, and indeed the theorem itself, follows from our
discussion of the rational canonical form, particularly Theorem 5.8.44. However, we
give an independent, self-contained proof.

For v0 ∈ V let nil(v0,L) be the least integer k for which Lk(v0) = 0V. Also let

C(v0,L) = spanF(L j(v0)| j ∈ Z≥0).

Let us prove a lemma.

1 Lemma The set {Lnil(v0,L)−1(v0), . . . ,L(v0),v0} is a basis for C(v0,L). Moreover, the matrix
representative for L in this basis is N(nil(v0,L)).

Proof Let us first work with the reordered set {v0,L(v0), . . . ,Lnil(v0,L)−1
}, as it is conve-

nient to do this.
Clearly

spanF(v0,L(v0), . . . ,Lnil(v0,L)−1(v0)) ⊆ C(v0,L).

If v ∈ C(v0,L) then we can write

v = c0v0 + c1L(v0) + · · · + ckLk(v0)

for some k ∈ Z≥0 and c0, c1, . . . , ck ∈ F. Since L j(v0) = 0V for j ≥ nil(v0,L) it follows that

v0 ∈ spanF(v0,L(v0), . . . ,Lnil(v0,L)−1(v0))

and so {v0,L(v0), . . . ,Lnil(v0,L)−1
} spans C(v0,L).
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Now suppose that

c0v0 + c1L(v0) + · · · + cnil(v0,L)−1Lnil(v0,L)−1(v0) = 0V. (5.42)

Applying Lnil(v0,L)−1 to this equation gives c0Lnil(v0,L)−1(v0) = 0V which gives c0 = 0F
by Proposition 4.5.3(vi). Now, with c0 = 0F, apply Lnil(v0,L)−2 to (5.42) to get
c1Lnil(v0,L)−1(v0) = 0V. This gives c1 = 0F. Carrying on in this way we deduce that

c0 = c1 = · · · = cnil(v0,L)−1 = 0F,

giving linear independence of {v0,L(v0), . . . ,Lnil(v0,L)−1
}.

Now we compute

L(Lnil(v0,L)−1(v0)) = 0V,

L(Lnil(v0,L)−2(v0)) = Lnil(v0,L)−1(v0),
...

L(L(v0)) = L2(v0),
L(v0) = L(v0),

from which we immediately deduce that the matrix representative of L in the basis
{Lnil(v0,L)−1(v0), . . . ,L(v0), v0} is indeed N(nil(v0,L)). ▼

The following simple lemma will be useful.

2 Lemma With the above notation, the ideal of F[ξ] given by

{P ∈ F[ξ] | EvF(P)(L)(v0) = 0V}

is generated by ξnil(v0,L).

Proof Let
I(v0,L) = {P ∈ F[ξ] | EvF(P)(L)(v0) = 0V}.

Clearly (ξnil(v0,L)) ⊆ I(v0,L). Let P ∈ I(v0,L) be given by

P = akξ
k + · · · + a1ξ + a0.

Thus
a0v0 + a1L(v0) + · · · + akLk(v0) = 0V.

Arguing as in the linear independence part of the proof of Lemma 1 we can show
that a0 = a1 = · · · = anil(v0,L)−1 = 0F. Thus ξnil(v0,L)−1

|P and so P ∈ (ξnil(v0,L)−1) by
Proposition 4.2.61. ▼

Now we prove another lemma.
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3 Lemma There exists v1, . . . ,vr ∈ V such that

V = C(v1,L) ⊕ · · · ⊕ C(vr,L).

Proof The proof is by induction on dim(V). When dim(V) = 0 the result is trivial.
Now suppose that the result is true for vector spaces of dimension 1, . . . ,n − 1 and
suppose that dim(V) = n. Since L is nilpotent, (det L)k = det(Lk) = 0F for some k ∈ Z≥0.
Thus det L = 0F and so rank(L) < n by Theorem 5.4.35. Therefore, dim(L(V)) < n and
by the induction hypothesis there exists nonzero u1, . . . ,us ∈ L(V) such that

L(V) = C(u1,L|L(V)) ⊕ · · · ⊕ C(us,L|L(V)).

Since u1, . . . ,us ∈ image(L) there exists v1, . . . , vs ∈ V such that L(v j) = u j, j ∈ {1, . . . , s}.
Clearly nil(v j,L) ≥ 2, j ∈ {1, . . . , s}, since u1, . . . ,us are nonzero. We claim that

C(v1,L) ∩ · · · ∩ C(vs,L) = {0V}.

Suppose that w j ∈ C(v j,L), j ∈ {1, . . . , s}, are such that w1 + · · · + ws = 0V. Then

L(w1) + · · · + L(ws) = 0V.

Since

L(w1) + · · · + L(ws) ∈ L(C(v1,L) ∩ · · · ∩ C(vs,L))
= C(u1,L|L(V)) ∩ · · · ∩ C(us,L|L(V)) = {0V},

it follows that L(w j) = 0V, j ∈ {1, . . . , s}. Since w j ∈ C(v j,L), by Lemma 1 it follows that

w j =

nil(v j,L)∑
l=0

c jlLl(v j)

for some c jl ∈ F, j ∈ {1, . . . , s}, l ∈ {0, 1, . . . ,nil(v j,L)}. Define P j ∈ F[ξ] by

P j =

nil(v j,L)∑
l=0

c jlξ
l

so that

0V = L(w j) =
nil(v j,L)∑

l=0

c jlLl(L(v j)) = EvF(P j)(L) · u j

By Lemma 1 it follows that ξnil(u j,L)
|P j. Thus P j = ξQ j for some Q j ∈ F[ξ]. Therefore,

w j = EvF(P j)(L) · v j = EvF(Q j)(L) · u j ∈ C(u j,L|L(V)).

Therefore,
w1 + · · · + ws ∈ C(u1,L|L(V)) ∩ · · · ∩ C(us,L|L(V)) = {0V},
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and so w j = 0V, j ∈ {1, . . . , s}. This gives

C(v1,L) ∩ · · · ∩ C(vs,L) = {0V}

as claimed.
Let U be a complement to ker(L) ∩ image(L) in ker(L). That is, suppose that

ker(L) = (ker(L) ∩ image(L)) ⊕ U.

We claim that
V = C(v1,L) ⊕ · · · ⊕ C(vs,L) ⊕ U.

First let
v ∈ (C(v1,L) ⊕ · · · ⊕ C(vs,L)) ∩ U.

Then
v ∈ (C(v1,L) ⊕ · · · ⊕ C(vs,L)) ∩ ker(L).

Therefore
v = w1 + · · · + ws, w j ∈ C(v j,L), j ∈ {1, . . . , s},

and
L(w1 + · · · + ws) = 0V.

Since L(w j) ∈ C(v j,L) we must have L(w j) = 0V, j ∈ {1, . . . , s}. Now a duplication of the
above argument for w1, . . . ,ws gives w1 = · · · = ws = 0V. Thus

(C(v1,L) ⊕ · · · ⊕ C(vs,L)) ∩ U = {0V}.

Since U ⊆ ker(L) it follows that there exists a basis {u1, . . . ,um} for U such that L(u j) = 0V,
j ∈ {1, . . . ,m}. That is to say, C(u j,L) = spanF(u j), j ∈ {1, . . . ,m}. Thus we have

V = C(v1,L) ⊕ · · · ⊕ C(vs,L) ⊕ C(u1,L) ⊕ · · · ⊕ C(um,L),

giving the lemma. ▼

The above lemma, combined with Lemma 1, gives the existence of a basis as in the
theorem statement. To show uniqueness (up to permutation) we again use induction
on dim(V). Clearly there is only one matrix representation in the form of the theorem
statement when dim(V) = 0. Suppose that this is so for all vector spaces of dimension
1, . . . ,n − 1 and let n = dim(V). Let

V = C(v1,L) ⊕ C(vs,L)

be a decomposition of V corresponding to a basis in which the matrix representative
of L is block diagonal with diagonal blocks being nilpotent blocks. Thus v j is such
that {Lnil(v j,L)−1(v j), . . . ,L(v j), v j} is a basis for C(v j,L). Some of these blocks may be
one-dimensional; let us suppose that these are collected such that

dim(C(v j,L)) > 1, j ∈ {1, . . . ,m},
dim(C(v j,L)) = 1, j ∈ {m + 1, . . . , s}.
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Thus
C(vm+1,L) ⊕ · · · ⊕ C(vs,L) ⊆ ker(L).

Moreover, it is easy to see from the form of the matrix representative for L that

L(V) = C(L(v1),L|L(V)) ⊕ · · · ⊕ C(L(vm),L|L(V))

and that
dim(C(L(v j),L|L(V))) = dim(C(v j,L)) − 1.

By the induction hypothesis the number m and the dimensions of C(L(v j),L|L(V)),
j ∈ {1, . . . ,m}, are determined uniquely by L|V. Thus the number m of blocks of size
greater than one and the dimensions of C(v j,L), j ∈ {1, . . . ,m}, are determined uniquely
by L. Thus the size of all nilpotent blocks in the matrix representative for L are uniquely
determined by L. ■

Note that the given proof of the theorem is independent of the rational canonical
form, and so free from all the business about modules over principal ideal domains.
The price one pays for this is a fairly complicated proof, since one essentially has
to generate “by hand” all of the ideas one gets from the theory of modules over
principal ideal domains.

Let us give a name to the canonical form of the preceding theorem.

5.8.67 Definition (Nilpotent canonical form) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V) be nilpotent. The matrix

diag(N(k1), . . . ,N(kr))

associated with L by Theorem 5.8.66, with k1 ≥ · · · ≥ kr, is the nilpotent canonical
form for L. •

5.8.14 The Jordan decomposition

In this section we shall give what amounts to a generalisation of the Jordan
canonical form. Since the Jordan canonical form is valid only for endomorphisms
whose minimal polynomial splits, one might inquire whether there is an analogue
to this in the case where the minimal polynomial does not split. One might imagine
that this is related to whether the endomorphism has a Jordan canonical form in
some extension of the field in which one is working. This is indeed the case as the
following development shows.

The reader who wants to keep things simple and consider onlyR-vector spaces
may wish to recall that “absolutely semisimple” equals “semisimple” in this case.

5.8.68 Definition (Jordan decomposition of an endomorphism) Let F be a field and let
V be a finite-dimensional F-vector space. A Jordan decomposition for L ∈ EndF(V)
is an additive decomposition L = S(L) + N(L) of L with the following properties:

(i) S(L) is absolutely semisimple;
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(ii) N(L) is nilpotent;
(iii) S(L) and N(L) commute. •

A Jordan decomposition does not always exist. However, it does in all cases
of interest to us. But let us state the general theorem first. The proof of the
theorem makes free use of some ideas from Section 4.6. Readers wanting to
simplify life by thinking of R-vector spaces may think of the extension C of R
where the automorphisms of the extension are either the identify map or complex
conjugation.

5.8.69 Theorem (Existence of Jordan decomposition) Let F be a field, let V be a finite-
dimensional F-vector space, and let L ∈ EndF(V). Then the following statements are
equivalent:

(i) there exists a separable extension K of L containing the eigenvalues of L;
(ii) there exists a unique Jordan decomposition for L.

Moreover, CL = CS(L).
Proof We first prove the theorem when the minimal polynomial splits.

1 Lemma Let F be a field, let V be a finite-dimensional F-vector space, and let L ∈ EndF(V).
If ML splits in F then there exists a unique Jordan decomposition for L. Moreover, the
characteristic polynomial of L agrees with that of its semisimple part.

Proof By Corollary 5.8.32 let us write

V =W(λ1,L) ⊕ · · · ⊕W(λk,L),

where λ1, . . . , λk are the distinct eigenvalues of L. For brevity let us denote W j =

W(λ j,L), j ∈ {1, . . . , k}. Let us denote L j = L|W j, j ∈ {1, . . . , k}, this making sense
by Proposition 5.4.59. Let us define S j = λ j idW j and N j = L j − S j. Clearly S j is
diagonalisable. Also, since

W j = ker((λ j idW j −L j)k j) = ker(N
k j

j )

for some k j ∈ Z≥0, it follows that N j is nilpotent. One can check by direct computation
that S jN j = N jS j.

Now define S(L) by asking that S(L)|W j = S j and define N(L) by asking that
N(L)|W j = N j. It is clear that S(L) is diagonalisable and so absolutely semisimple. It
is also clear that S(L)N(L) = N(L)S(L). That N(L) is nilpotent follows since N(L)k

|W j =
0EndF(W j) if k = max{k1, . . . , kr}. This gives the existence of a Jordan decomposition for
L. It is evident that CL = CS(L).

To see that this decomposition is unique, suppose that L = S + N where S is
absolutely semisimple, N is nilpotent, and S and N commute. Using the fact that
L = S + N one can directly verify that L commutes with both S and N. Thus W j,
j ∈ {1, . . . , k}, is invariant under both S and N by Exercise 5.4.11. We claim that
S|W j = S j = λ j idW j . Since S is absolutely semisimple let K be an extension of F such
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that SK is diagonalisable. Then SK|W j,K is diagonalisable (why?) and so SK|W j,K − S j,K
is diagonalisable since S j,K has a diagonal matrix representative in every basis. Thus

N j,K − NK|W j,K = SK|W j,K − S j,K

is diagonalisable. Note that NK|W j,K commutes with both S j,K and L j,K. Therefore, we
have

(N j,K − NK|W j,K)k =

k∑
l=0

Bk,l(N j,K)l(−NK|W j,K)k−l,

using the Binomial Theorem. Therefore, for k sufficiently large we have

(N j,K − NK|W j,K)k = 0EndK(W j,K),

and so N j,K −NK|W j,K, and therefore, SK|W j,K − S j,K, is nilpotent. Thus SK|W j,K − S j,K is
nilpotent and diagonalisable, and therefore must be zero. This gives S|W j = S j and so
S = S(L). Clearly then N = N(L). ▼

Now let us proceed with the proof of the theorem. First suppose that L admits
a Jordan decomposition, which we denote by L = S + N. Then LF̄ = SF̄ + NF̄ with
SF̄ diagonalisable. By the lemma, CL = CS. By Theorem 5.8.56 it follows that the
eigenvalues of L lie in a separable extension of F.

Now we prove the converse. For simplicity let us suppose that we have chosen
a basis, thus identifying V with Fn and endomorphisms with matrices. Thus we
consider L ∈Matn×n(F). Suppose that the eigenvalues of L lie in a separable extension
K of F. By Corollary 4.6.51 we suppose K to be Galois. Thus ML splits in K by
Proposition 5.8.13. By the lemma we write LK = S + N as the Jordan decomposition
of LK. Thus S ∈ Matn×n(K) is diagonalisable, N ∈ Matn×n(K) is nilpotent, and S and N
commute. If ϕ ∈ AutF(K) and if A ∈ Matn×n(K) denote by Aϕ

∈ Matn×n(K) the matrix
obtained by applying ϕ to the entries in A. We have

LK = LϕK = (S + N)ϕ = Sϕ + Nϕ

and
SϕNϕ = (SN)ϕ = (NS)ϕ = NϕSϕ

for every ϕ ∈ AutF(K), where we use the fact in the first equation that the entries in L
are in F, and so are fixed by ϕ. We claim that Sϕ is diagonalisable. Indeed, since S is
diagonalisable we have

PSP−1 = D

for an invertible matrix P and a diagonal matrix D. Thus

PϕSϕ(P−1)ϕ = Dϕ,

and so Sϕ is indeed diagonalisable. This shows that L = Sϕ +Nϕ is a Jordan decompo-
sition for L. By the uniqueness part of the lemma above this implies that Sϕ = S and
Nϕ = N for every ϕ ∈ AutF(K). By Proposition 4.6.50 this implies that S and N have
entries in F. Thus L = S + N is the unique Jordan decomposition for L, as desired.

The final assertion of the theorem follows from the corresponding assertion from
the lemma above. ■

For us the following result is the most useful.
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5.8.70 Corollary (Jordan decomposition for fields of characteristic zero) Let F be a
field of characteristic zero and let V be a finite-dimensional F-vector space. If L ∈ EndF(V)
then L possesses a unique Jordan decomposition.

Proof By Proposition 4.6.47 any splitting field for the minimal polynomial is separa-
ble, so the eigenvalues of L are always contained in a separable field extension of F. ■

Since a Jordan decomposition generally exists, it is most compelling to consider
an example when it does not.

5.8.71 Example (An endomorphism not having a Jordan decomposition) We con-
tinue with Example 5.8.59. Thus we let F = Z2(η) be the field of rational functions
with coefficients in Z2. We take

L =
[
0F 1F

η 0F

]
.

The characteristic polynomial ξ2
− η is not separable, and so the eigenvalues can-

not be contained in a separable extension. Therefore, L does not have a Jordan
decomposition. However, the matrix form for L is in rational canonical form. This
illustrates one of the advantages of the rational canonical form: it always exists. •

From the Theorem 5.8.69 we arrive at another proof of the Jordan canonical
form, a proof not depending on the rational canonical form with its dependence
on the theory of modules over principal ideal domains.

5.8.72 Corollary (Jordan canonical form again) Let F be a field, let V be a finite-dimensional
F-vector space, and let L ∈ EndF(V). The following statements are equivalent:

(i) ML (or, equivalently, CL) splits in F;
(ii) there exists

(a) k ∈ Z>0,
(b) distinct λj ∈ F, j ∈ {1, . . . ,k},
(c) pj ∈ Z>0, j ∈ {1, . . . ,k}, and
(d) lj ∈ Z

pj

>0, j ∈ {1, . . . ,k},
such that the elementary divisors of L are the multiset

{(ξ − λ1)l11 , . . . , (ξ − λ1)l1m1 , . . . , (ξ − λk)lk1 , . . . , (ξ − λk)lkmk }.

Moreover, if either statement holds then there exists a basisB for V such that

[L]BB = diag(J(λ1, l1), . . . , J(λk, lk), . . . , J(λk, lkmk)).

Finally, if

[L]B
′

B ′ = diag(J(µ1, r11), . . . , J(µ1, r1n1), . . . , J(µs, rp1), . . . , J(µp, rpnp))

is a matrix representative of L in another basis, then p = k and there exists a permutation
σ ∈ Sk such that µj = λσ(j), nj = mσ(j), and rja = lσ(j)a for j ∈ {1, . . . ,k} and a ∈ {1, . . . ,mj}.
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Proof As with Theorem 5.8.44, it is immediate that (ii) implies (i). The converse
follows from the lemma in the proof of Theorem 5.8.69, along with the nilpotent
canonical form from Theorem 5.8.66. We leave to the reader the straightforward task
of putting the pieces together. ■

5.8.15 The R-Jordan canonical form

In this section we focus on endomorphisms ofR-vector spaces. If the eigenval-
ues of an endomorphism are real, then we can apply Corollary 5.8.72 to get a basis
where the matrix representative is in Jordan canonical form. However, if there are
complex eigenvalues, then the Jordan canonical will necessarily be complex. One
can ask whether it is possible to obtain a real canonical form. Indeed it is, and we
give this here.

The key idea to organise the discussion is the following.

5.8.73 Definition (R-Jordan block) Let σ,ω ∈ R with ω , 0 and denote

B(σ,ω) =
[
σ ω
−ω σ

]
.

(i) For k ∈ Z>0, the 2k × 2k-matrix

J(σ,ω, k) ≜


B(σ,ω) I2 02×2 · · · 02×2 02×2

02×2 B(σ,ω) I2 · · · 02×2 02×2
...

...
...

. . .
...

...
02×2 02×2 02×2 · · · B(σ,ω) I2

02×2 02×2 02×2 · · · 02×2 B(σ,ω)


is the R-Jordan block associated with k and σ + iω ∈ C.

(ii) For r ∈ Z>0 and k = (k1, . . . , kr) ∈ Zr
>0, the matrix

J(σ,ω,k) =


J(σ,ω, k1) 0 · · · 0

0 J(σ,ω, k2) · · · 0
...

...
. . .

...
0 0 · · · J(σ,ω, kr)


is the Jordan arrangement associated with k, and σ and ω. •

With this notation we can state the following canonical form for R-
endomorphisms.

5.8.74 Theorem (R-Jordan canonical form) Let V be a finite-dimensional R-vector space.
For L ∈ EndR(V) suppose that λj ∈ R, j ∈ {1, . . . ,m}, and σj, ωj ∈ R, ωj , 0, j ∈ {1, . . . , r},
are such that

λ1, . . . , λm, σ1 + iω1, . . . , σk + iωk

are the distinct eigenvalues of L. Then there exists
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(i) pj ∈ Z>0, j ∈ {1, . . . ,m},
(ii) kj ∈ Z

pj

>0, j ∈ {1, . . . ,m},
(iii) qj ∈ Z>0, j ∈ {1, . . . ,k},
(iv) lj ∈ Z

qj

>0, j ∈ {1, . . . ,k},
and a basisB for V such that

[L]BB = diag(J(λ1,k1), . . . , J(λm,km), J(σ1, ω1, l1), . . . , J(σr, ωr, lk)).

Moreover, this form of the matrix representative is unique up to reordering of the diagonal
blocks.

Proof Let us first consider the case where L has non-real eigenvalues λ = σ + iω and
λ̄ = σ − iω, possibly with multiplicity greater than 1. Thus

VC =W(λ,LC) ⊕W(λ̄,LC).

LetB = {u1+iv1, . . . ,un+ivn} be a basis for W(λ,LC) for which the matrix representative
of LC|W(λ,LC) is in Jordan canonical form. An application of the definition of matrix
representative then shows thatB = {u1 − iv1, . . . ,un − ivn} is a basis W(λ̄,LC) for which
the matrix representative of LC|W(λ̄,LC) is in Jordan canonical form. Suppose that the
first k basis vectors inB correspond to a k×k Jordan block in the matrix representative
for LC|W(λ,LC) and that the first k basis vectors inB correspond to a k× k Jordan block
in the matrix representative for LC|W(λ̄,LC). The subset

{u1 + iv1,u1 − iv1, . . . ,uk + ivk,uk − ivk}

of basis vectors then spans a 2k-dimensional LC-invariant subspace. As was shown
in Lemma 1 in the proof of Theorem 5.4.68, this subspace is the complexification of a
L-invariant R-subspace of V, and a basis for this R-subspace is {u1, v1, . . . ,uk, vk}. Let
us determine the matrix representative of L restricted to this subspace. We have

LC(u1 + iv1) = L(u1) + iL(v1) = λ(u1 + iv1)
= σu1 − ωv1 + i(−ωu1 + σv1)

which gives
L(u1) = σu1 − ωv1, L(v1) = −ωu1 + σv1.

For j ∈ {2, . . . , k}we have

LC(u j + iv j) = L(u j) + iL(v j) = u j−1 + iv j−1 + λ(u j + iv j)
= u j−1 + σu j − ωv j + i(v j−1 − ωu j + σv j)

which gives
L(u j) = u j−1 + σu j − ωv j, L(v j) = v j−1 − ωu j + σv j.

Thus the matrix representative of L restricted to this subspace is J(σ,ω, k). Doing this
for all of the nilpotent blocks in the basis for VC gives the theorem in the special case.

The general case is proved by carrying out the above procedure for each of the
complex generalised eigenspaces, and simply applying Corollary 5.8.72 for the real
generalised eigenspaces. ■
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We shall see in Section V-5.2.2 that this theorem is of great use in determining
the nature of the solutions to linear ordinary differential equations.

Let us give a name to the canonical form of the theorem.

5.8.75 Definition (R-Jordan canonical form) For a R-vector space V and an endomor-
phism L ∈ EndR(V), the matrix representative

[L]BB = diag(J(λ1, k1), . . . , J(λm, km), J(σ1, ω1, l1), . . . , J(σr, ωr, lr)).

of Theorem 5.8.74 is the R-Jordan canonical form. •

5.8.16 A worked example

In this section we work out an example, computing the rational canonical form
and the real Jordan canonical form. The intention is not so much to illustrate how
one computes the canonical form; this is generally impossible and if it needs to be
done can be done effectively by any one of the computational packages available.
The intent is to show how some of the concepts in this section fit together. We
shall omit all elementary linear algebra computations involving solving of linear
equations. These are easily done using computer packages. Only insane people
do such computations by hand anymore.

We take V = R6 and let L be represented by the 6 × 6-matrix

L =



−1 0 0 0 −2 0
−2 2 0 1 0 0
−2 1 2 1 0 0
−6 0 0 2 −4 0
2 0 0 0 −1 0
−2 0 0 0 3 2


.

Characteristic and minimal polynomials

The characteristic polynomial is readily computed to be

CL = det(ξ idV −L) = ξ6
− 6ξ5 + 13ξ4

− 24ξ3 + 72ξ2
− 128ξ + 80 .

Typically this is where the computation will stop, since one cannot effectively
factor polynomials of degree greater than 4 (cf. Theorem 4.7.12). However, we
have cooked this example to have nice eigenvalues, and these are the elements of
the multiset

{2, 2, 2, 2,−1 + 2i,−1 − 2i}.

Thus
CL = (ξ − 2)4(ξ2 + 2ξ + 5)

since the roots of ξ2 + 2ξ + 5 are −1 ± 2i. Now let us determine the minimal
polynomial. We know that since the eigenvalues are roots of the characteristic
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polynomial and vice versa (Proposition 5.8.13), it must be the case that ML =
(ξ − 2)k(ξ2 + 2ξ + 5). All one can do is compute EvF((ξ − 2)k(ξ2 + 2ξ + 5))(L) for
various k and find the smallest k for which this expression is 0EndF(V). We determine
that this minimal k is 3 and so

ML = (ξ − 2)3(ξ2 + 2ξ + 5) .

Invariant subspaces

The key to most of the computations is knowing bases for the eigenspaces and
generalised eigenspaces. These can be computed for L and for its complexification.
The real invariant subspaces corresponding to the eigenvectors will be

W1 = ker(L − 2 idV), W2 = ker(L2 + 2L + 5 idV).

We determine these to be

W1 = spanR((0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1)),
W2 = spanR((1, 0, 0, 2, 0, 0), (0, 0, 0, 0,−1, 1)).

The real invariant subspaces corresponding to the generalised eigenvectors will be

W1 = ker((L − 2 idV)3), W2 = ker(L2 + 2L + 5 idV).

We compute these to be

W1 = spanR((0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1)),

W2 = spanR((1, 0, 0, 2, 0, 0), (0, 0, 0, 0,−1, 1)).

Let us determine the complex invariant subspaces. For the eigenvectors these
are

W1,C = ker(LC − 2 idVC),
W2,C = ker(LC − (−1 + 2i) idVC),
W3,C = ker(LC − (−1 − 2i) idVC).

Doing the computations gives

W1,C = spanR((0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1)),
W2,C = spanR((−i, 0, 0,−2i,−1, 1)),
W3,C = spanR((i, 0, 0, 2i,−1, 1)).

For the generalised eigenspaces we have

W1,C = ker((LC − 2 idVC)3),

W2,C = ker(LC − (−1 + 2i) idVC),

W3,C = ker(LC − (−1 − 2i) idVC).
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For these we compute

W1,C = spanR((0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1)),

W2,C = spanR((−i, 0, 0,−2i,−1, 1)),

W3,C = spanR((i, 0, 0, 2i,−1, 1)).

Note that the basis for W2 is obtained by taking the real and imaginary parts of the
basis for W2,C, just as in Theorem 5.4.68.

Elementary divisors and invariant factors

To determine L up to similarity, we determine its elementary divisors. As we have
seen (for example, in Examples 5.8.16 and 5.8.37), the minimal polynomial does
not necessarily determine the elementary divisors, and so does not necessarily
determine L up to similarity. However, we do know that ML is the least common
multiple of its elementary divisors (this is Exercise 5.8.4). We also know that the
product of the elementary divisors must be the characteristic polynomial (Propo-
sition 5.8.35). In this case this allows us to determine the elementary divisors
uniquely.

First of all, it must be the case that one of the elementary divisors must be
ξ2 + 2ξ + 5. The others must then be of the form (ξ − 2)l where the least common
multiple of the l’s is 3 and the l’s sum to four. This means that we must have l1 = 1
and l2 = 3. Therefore, the elementary divisors are

E1 = ξ − 2, E2 = (ξ − 2)3, E3 = ξ
2 + 2ξ + 5 .

The invariant factors are easily computed from these (cf. the proof of Theo-
rem 4.9.21) to be

D1 = ξ − 2, D2 = (ξ − 2)3(ξ + 2ξ + 5) .

We shall not have any use for the invariant factors in what we do here, but give
them just for fun.

Rational canonical form

From the elementary divisors and invariant factors above we can immediately
write down the rational canonical form and the invariant factor canonical form.
However, we also want the bases in which L have these canonical forms as matrix
representative.

Let us first work with the rational canonical form. We will have one invariant
subspace V j for each elementary divisor E j, j ∈ {1, 2, 3}, and the characteristic
polynomial of L on V j subspace will be E j. Let us first work with the two elementary
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divisors E1 = ξ − 2 and E2 = (ξ − 2)3. The invariant subspace corresponding to
E1 will be a one-dimensional subspace corresponding to some eigenvector for the
eigenvalue 2. This one-dimensional subspace should be chosen from the two-
dimensional subspace W1. We know from the general theory (think about the
Jordan canonical form) that this will be the unique one-dimensional subspace of
W1 that is complementary to image(L). One can verify that

V1 = spanR((0, 0, 0, 0, 0, 1))

does the trick. For the elementary divisor E2 we first take a complement in W1 to
V1. A convenient such complement is

V2 = spanR((0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0)).

We know that L is cyclic restricted to this subspace. Following Theorem 5.8.20, in
this subspace we seek a vector v0 such that {v0,L(v0),L2(v0)} is a basis for V2. By
Proposition 5.8.22, one should choose v0 ∈ V2 that satisfies (L−2 idB)2(v0) , 0V. The
fact is that almost any v0 ∈ V2 will do. However, it is also easy to choose vectors
for which this will not work. In fact, of the three basis vectors we have written for
V2, the only one that will work is

v0 = (0, 0, 0, 1, 0, 0).

We compute
L(v0) = (0, 1, 1, 2, 0, 0), L2(v0) = (0, 4, 5, 4, 0, 0).

We now follow the proof of Proposition 5.8.24 to deduce a basis for V2 for which
L|V2 is in companion form. We first denote

e1 = L2(v0), e2 = L(v0), e3 = v0.

Note that
(ξ − 2)3 = ξ3

− 6ξ2 + 12ξ − 8.

Then we define

T =

 1 0 0
−6 1 0
12 −6 1


and

fk =

3∑
j=1

T( j, k)e j, k ∈ {1, 2, 3},

so that

f1 = (0,−2,−1, 4, 0, 0), f2 = (0, 1, 1,−4, 0, 0), f3 = (0, 0, 0, 1, 0, 0).
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Now we need to choose a basis such that L|W2 is in companion form. We need
to choose v0 ∈W2 such that {v0,L(v0)} is a basis for W2. In this case, because W2 has
no L-invariant subspaces, we can choose any v0 ∈W2. Let us take

v0 = (1, 0, 0, 2, 0, 0).

Now we apply the procedure in the proof of Proposition 5.8.24 to arrive at a basis
where L|W2 is in companion form. We first define e1 = L(v0) and e2 = v0. We then
take

T =
[
1 0
2 1

]
and

fk =

2∑
j=1

T(k, j)e j, k ∈ {1, 2}.

We compute
f1 = (1, 0, 0, 2, 2,−2), f2 = (1, 0, 0, 2, 0, 0).

Now we can determine the rational canonical form by computing the matrix
representative of L in the basis

{(0, 0, 0, 0, 0, 1), (0,−2,−1, 4, 0, 0), (0, 1, 1,−4, 0, 0),
(0, 0, 0, 1, 0, 0), (1, 0, 0, 2, 2,−2), (1, 0, 0, 2, 0, 0)}

This is done by defining P ∈Matn×n(R) by

P−1 =



0 0 0 0 1 1
0 −2 1 0 0 0
0 −1 1 0 0 0
0 4 −4 1 2 2
0 0 0 0 2 0
1 0 0 0 −2 0


,

i.e., by putting the basis vectors in the columns of a matrix, and taking the inverse.
We then have the rational canonical form of L as

PLP−1 =



2 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 8 −12 6 0 0
0 0 0 0 0 1
0 0 0 0 −5 −2


,

noting that L is the matrix representative of L in the standard basis.
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Invariant factor canonical form

Next we determine the invariant factor canonical form, just for completeness. Here
we will have two invariant subspaces, which we denote by V1 and V2, correspond-
ing to the two invariant factors D1 and D2. We already determined a basis for V1

above:
V1 = spanR((0, 0, 0, 0, 0, 1)).

We also have

V2 = spanR{(0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0),
(1, 0, 0, 2, 0, 0), (0, 0, 0, 0,−1, 1)}.

To determine a basis for which L|V2 is in companion form, we first need to find a
vector v0 such that {v0,L(v0), . . . ,L4(v0)} is a basis for V2. We take v0 to be the sum
of the vectors chosen above when we determined the companion for L associated
to the elementary divisors E2 and E3:

v0 = (0, 0, 0, 1, 0, 0) + (1, 0, 0, 2, 0, 0) = (1, 0, 0, 3, 0, 0).

One can verify that
{e1 = L4(v0), . . . , e4 = L(v0), e5 = v0}

is a basis for V2. We then note that

D2 = (ξ − 2)3(ξ2 + 2ξ + 5) = ξ5
− 4ξ4 + 5ξ3

− 14ξ2 + 44ξ − 40.

Following the proof of Proposition 5.8.24 we define

T =


1 0 0 0 0
−4 1 0 0 0
5 −4 1 0 0
−14 5 −4 1 0
44 −14 5 −4 1


and

fk =

5∑
j=1

T( j, k)e j.

This gives

f1 = (−8,−10,−5, 4,−16, 16),
f2 = (4, 1, 3,−4, 24,−24),
f3 = (6, 0, 1, 13,−12, 12),
f4 = (−5, 1, 1,−12, 2,−2),
f5 = (1, 0, 0, 3, 0, 0).
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Now we compute the invariant factor canonical form by determining the matrix
representative of L in the basis

{(0, 0, 0, 0, 0, 1), (−8,−10,−5, 4,−16, 16), (4, 1, 3,−4, 24,−24),
(6, 0, 1, 13,−12, 12), (−5, 1, 1,−12, 2,−2), (1, 0, 0, 3, 0, 0)}.

Thus we take

P−1 =



0 −8 4 6 −5 1
0 −10 1 0 1 0
0 −5 3 1 1 0
0 4 −4 13 −12 3
0 −16 24 −12 2 0
1 16 −24 12 −2 0


and compute the invariant factor canonical form to be

PLP−1 =



2 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 40 −44 14 −5 4


.

Complex Jordan canonical form

The computation of the Jordan canonical form is relatively straightforward. The key
is determining basis where the nilpotent part of the transformation is in nilpotent
canonical form. But this is straightforward, given Lemma 1 of Theorem 5.8.66.

We shall have four Jordan blocks in our canonical form corresponding to the
elementary divisors E1, E2, and E3; there are two Jordan blocks for E3 since there
are two distinct complex conjugate eigenvalues associated with this factor. This
gives us four invariant subspaces of C6 whose bases we have already computed:

V1 = spanC((0, 0, 0, 0, 0, 1)),
V2 = spanC((0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0)),
V3 = spanC((−i, 0, 0,−2i,−1, 1)),
V4 = spanC((i, 0, 0, 2i,−1, 1)).

The only one of these subspaces where we have to fuss about the nilpotent canonical
form is V2. According to Lemma 1 of Theorem 5.8.66 we should find a vector
v0 ∈ V2 such that (L − 2 idVC)2(v0) , 0VC . Such a vector is easily determined to be

v0 = (0, 0, 0, 1, 0, 0).
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Then we are guaranteed that (L−2 idVC)|V2 will be in nilpotent canonical form with
respect to the basis {(L − 2 idVC)2(v0), (L − 2 idVC)(v0), v0}. We compute

(L − 2 idVC)(v0) = (0, 1, 1, 2, 0, 0), (L − 2 idVC)2(v0) = (0, 4, 5, 4, 0, 0).

Now define

P−1 =



0 0 0 0 −i i
0 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 −2i 2i
0 0 0 0 −1 −1
1 0 0 0 1 1


.

We then have the complex Jordan canonical form as

PLP−1 =



2 0 0 0 0 0
0 2 1 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 −1 + 2i 0
0 0 0 0 0 −1 − 2i


.

Real Jordan canonical form

It is now straightforward to compute the real Jordan canonical form. We need only
consider the basis formed by taking the real and imaginary parts of the basis vector
for V3. Thus we define

P−1 =



0 0 0 0 0 −1
0 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 −2
0 0 0 0 −1 0
1 0 0 0 1 0


and compute

PLP−1 =



2 0 0 0 0 0
0 2 1 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 −1 2
0 0 0 0 −2 −1


.

5.8.17 Notes

Our proof of the Cayley–Hamilton Theorem in Theorem 5.8.19 follows Chisala
[1998].
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In [Bourbaki 1990, A.VII] the reader can find a discussion of semisimple en-
domorphisms for arbitrary vector spaces. Along with this discussion there is also
included a discussion of the general notion of the Jordan canonical form. To prop-
erly allow for fields of nonzero characteristic, one must enter lightly into Galois
theory.

Exercises

5.8.1 Let F be a field, let I be an index set, and let V be an F-vector space.
(a) Show that the relation of similarity in MatI×I(F) is an equivalence relation.
(b) Show that the relation of similarity in EndF(V) is an equivalence relation.

5.8.2 Prove Proposition 5.8.3.
5.8.3 Let F be a field with V an F-vector space. Show that there exists a unique

isomorphism ιV of F[ξ] ⊗ V with V[ξ] satisfying ιV(P ⊗ v) = P · v, where

P · v = akξ
k
· v + · · · + a1ξ · v + a0v,

if
P = akξ

k + · · · + a1ξ + a0.

5.8.4 Let F be a field and let V be a finite-dimensional F-vector space. Show that
the minimal polynomial of L is the least common multiple of the elementary
divisors of L.

5.8.5 Let F be a field and let V be a finite-dimensional F-vector space. For L ∈
EndF(V) consider the dual endomorphism L′ ∈ EndF(V′).
(a) Show that L and L′ have the same minimal polynomial.
(b) Show that L and L′ have the same characteristic polynomial.

5.8.6 Let F be a field, let V be a finite-dimensional F-vector space, and let L ∈
EndF(V). Recall from Definition 5.4.11 that ⟨L, {v0}⟩ denotes the smallest
L-invariant subspace containing v0. Show that ⟨L, {v0}⟩ is L-cyclic.

5.8.7 Let F be a field and let V be a finite-dimensional F-vector space. For L ∈
EndF(V) consider the dual endomorphism L′ ∈ EndF(V′). Show that L and
L′ have the same elementary divisors and invariant factors.

5.8.8 Let V be a two-dimensional R-vector space and let L ∈ EndR(V).
(a) Write the characteristic polynomial of L in terms of det L and tr L.
(b) Give the condition, expressed in terms of det L and tr L, for L to have

real eigenvalues.
5.8.9 Let F be a field and let V = F∞0 . Define L ∈ EndF(V) by L(e j) = jF (recall that

jF = 1F+ · · ·+ 1F denotes the j-fold sum of 1F) , where {e j} j∈Z>0 is the standard
basis.
(a) Give the primary decomposition of VL.
(b) What is the “minimal polynomial” of L (using the definition that the

minimal polynomial generates the ideal ann(VL))?
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5.8.10 Let V be a finite-dimensional R-vector space and let L ∈ HomR(V; V) have
the property that its minimal polynomial is irreducible over R. Show that
either L = a idV for a ∈ R or that L = a idV +bJ, where a, b ∈ Rwith b , 0, and
where J ∈ HomR(V; V) has the property that J2 = − idV.
Hint: A polynomial that is irreducible over R has the form ξ − a for a ∈ R or the
form (ξ − a)2 + b2 for a, b ∈ R with b , 0 (see Exercise 4.7.4).

5.8.11 Let F be a field and let V be a finite-dimensional F-vector space. Show that
L ∈ EndF(V) is triangularisable if and only if there exists a basisB for V such
that [L]B

B
is lower triangular.
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