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Preface for series

The subject of signals and systems, particularly linear systems, is by now
an entrenched part of the curriculum in many engineering disciplines, particu-
larly electrical engineering. Furthermore, the offshoots of signals and systems
theory—e.g., control theory, signal processing, and communications theory—are
themselves well-developed and equally basic to many engineering disciplines. As
many a student will agree, the subject of signals and systems is one with a reliance
on tools from many areas of mathematics. However, much of this mathematics is
not revealed to undergraduates, and necessarily so. Indeed, a complete account-
ing of what is involved in signals and systems theory would take one, at times
quite deeply, into the fields of linear algebra (and to a lesser extent, algebra in gen-
eral), real and complex analysis, measure and probability theory, and functional
analysis. Indeed, in signals and systems theory, many of these topics are woven
together in surprising and often spectacular ways. The existing texts on signals
and systems theory, and there is a true abundance of them, all share the virtue
of presenting the material in such a way that it is comprehensible with the bare
minimum background.

Should I bother reading these volumes?

This virtue comes at a cost, as it must, and the reader must decide whether
this cost is worth paying. Let us consider a concrete example of this, so that the
reader can get an idea of the sorts of matters the volumes in this text are intended
to wrestle with. Consider the function of time

f (t) =

e−t, t ≥ 0,
0, t < 0.

In the text (Example IV-6.1.3–2) we shall show that, were one to represent this
function in the frequency domain with frequency represented by ν, we would get

f̂ (ν) =
∫
R

f (t)e−2iπνt dt =
1

1 + 2iπν
.

The idea, as discussed in Chapter IV-2, is that f̂ (ν) gives a representation of the
“amount” of the signal present at the frequency ν. Now, it is desirable to be able
to reconstruct f from f̂ , and we shall see in Section IV-6.2 that this is done via the
formula

f (t)“=”
∫
R

f̂ (ν)e2iπνt dν. (FT)

The easiest way to do the integral is, of course, using a symbolic manipulation
program. I just tried this with Mathematica®, and I was told it could not do the
computation. Indeed, the integral does not converge! Nonetheless, in many tables of
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Fourier transforms (that is what the preceding computations are about), we are told
that the integral in (FT) does indeed produce f (t). Are the tables wrong? Well, no.
But they are only correct when one understands exactly what the right-hand side
of (FT) means. What it means is that the integral converges, in L2(R;C) to f . Let us
say some things about the story behind this that are of a general nature, and apply
to many ideas in signal and system theory, and indeed to applied mathematics as
a whole.
1. The story—it is the story of the L2-Fourier transform—is not completely trivial.

It requires some delving into functional analysis at least, and some background in
integration theory, if one wishes to understand that “L” stands for “Lebesgue,”
as in “Lebesgue integration.” At its most simple-minded level, the theory is
certainly understandable by many undergraduates. Also, at its most simple-
minded level, it raises more questions than it answers.

2. The story, even at the most simple-minded level alluded to above, takes some
time to deliver. The full story takes a lot of time to deliver.

3. It is not necessary to fully understand the story, perhaps even the most simple-
minded version of it, to be a user of the technology that results.

4. By understanding the story well, one is led to new ideas, otherwise completely
hidden, that are practically useful. In control theory, quadratic regulator theory,
and in signal processing, the Kalman filter, are examples of this.

5. The full story of the L2-Fourier transform, and the issues stemming from it,
directly or otherwise, is beautiful.
The nature of the points above, as they relate to this series, are as follows.

Points 1 and 2 indicate why the story cannot be told to all undergraduates, or
even most graduate students. Point 3 indicates why it is okay that the story not
be told to everyone. Point 4 indicates why it is important that the story be told
to someone. Point 5 should be thought of as a sort of benchmark as to whether
the reader should bother with understanding what is in this series. Here is how to
apply it. If one reads the assertion that this is a beautiful story, and their reaction
is, “Okay, but there better be a payoff,” or, “So what?” or, “Beautiful to who?” then
perhaps they should steer clear of this series. If they read the assertion that this
is a beautiful story, and respond with, “Really? Tell me more,” then I hope they
enjoy these books. They were written for such readers. Of course, most readers’
reactions will fall somewhere in between the above extremes. Such readers will
have to sort out for themselves whether the volumes in this series lie on the right
side, for them, of being worth reading. For these readers I will say that this series
is heavily biased towards readers who react in an unreservedly positive manner to
the assertions of intrinsic beauty.

For readers skeptical of assertions of the usefulness of mathematics, an inter-
esting pair of articles concerning this is [Wigner 1960] and [Hamming 1980].
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What is the best way of getting through this material?

Now that a reader has decided to go through with understanding what is in
these volumes, they are confronted with actually doing so: a possibly nontrivial
matter, depending on their starting point. Let us break down our advice according
to the background of the reader.

I look at the tables of contents, and very little seems familiar. Clearly if nothing seems
familiar at all, then a reader should not bother reading on until they have acquired
an at least passing familiarity with some of the topics in the book. This can be
done by obtaining an undergraduate degree in electrical engineering (or similar),
or pure or applied mathematics.

If a reader already possess an undergraduate degree in mathematics or engi-
neering, then certainly some of the following topics will appear to be familiar: linear
algebra, differential equations, some transform analysis, Fourier series, system the-
ory, real and/or complex analysis. However, it is possible that they have not been
taught in a manner that is sufficiently broad or deep to quickly penetrate the texts
in this series. That is to say, relatively inexperienced readers will find they have
some work to do, even to get into topics with which they have some familiarity.
The best way to proceed in these cases depends, to some extent, on the nature of
one’s background.

I am familiar with some or all of the applied topics, but not with the mathematics. For
readers with an engineering background, even at the graduate level, the depth
with which topics are covered in these books is perhaps a little daunting. The best
approach for such readers is to select the applied topic they wish to learn more
about, and then use the text as a guide. When a new topic is initiated, it is clearly
stated what parts of the book the reader is expected to be familiar with. The reader
with a more applied background will find that they will not be able to get far
without having to unravel the mathematical background almost to the beginning.
Indeed, readers with a typical applied background will normally be lacking a good
background in linear algebra and real analysis. Therefore, they will need to invest
a good deal of effort acquiring some quite basic background. At this time, they will
quickly be able to ascertain whether it is worth proceeding with reading the books
in this series.

I am familiar with some or all of the mathematics, but not with the applied topics. Readers
with an undergraduate degree in mathematics will fall into this camp, and probably
also some readers with a graduate education in engineering, depending on their
discipline. They may want to skim the relevant background material, just to see
what they know and what they don’t know, and then proceed directly to the applied
topics of interest.

I am familiar with most of the contents. For these readers, the series is one of reference
books.
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Comments on organisation

In the current practise of teaching areas of science and engineering connected
with mathematics, there is much emphasis on “just in time” delivery of mathe-
matical ideas and techniques. Certainly I have employed this idea myself in the
classroom, without thinking much about it, and so apparently I think it a good
thing. However, the merits of the “just in time” approach in written work are, in
my opinion, debatable. The most glaring difficulty is that the same mathematical
ideas can be “just in time” for multiple non-mathematical topics. This can even
happen in a single one semester course. For example—to stick to something ger-
mane to this series—are differential equations “just in time” for general system
theory? for modelling? for feedback control theory? The answer is, “For all of
them,” of course. However, were one to choose one of these topics for a “just in
time” written delivery of the material, the presentation would immediately become
awkward, especially in the case where that topic were one that an instructor did
not wish to cover in class.

Another drawback to a “just in time” approach in written work is that, when
combined with the corresponding approach in the classroom, a connection, per-
haps unsuitably strong, is drawn between an area of mathematics and an area
of application of mathematics. Given that one of the strengths of mathematics
is to facilitate the connecting of seemingly disparate topics, inside and outside of
mathematics proper, this is perhaps an overly simplifying way of delivering math-
ematical material. In the “just simple enough, but not too simple” spectrum, we
fall on the side of “not too simple.”

For these reasons and others, the material in this series is generally organised
according to its mathematical structure. That is to say, mathematical topics are
treated independently and thoroughly, reflecting the fact that they have life inde-
pendent of any specific area of application. We do not, however, slavishly follow
the Bourbaki1 ideals of logical structure. That is to say, we do allow ourselves the
occasional forward reference when convenient. However, we are certainly careful
to maintain the standards of deductive logic that currently pervade the subject of
“mainstream” mathematics. We also do not slavishly follow the Bourbaki dictum
of starting with the most general ideas, and proceeding to the more specific. While
there is something to be said for this, we feel that for the subject and intended
readership of this series, such an approach would be unnecessarily off-putting.

Andrew D. Lewis Kingston, ON, Canada
1Bourbaki refers to “Nicolas Bourbaki,” a pseudonym given (by themselves) to a group of French

mathematicians who, beginning in mid-1930’s, undertook to rewrite the subject of mathematics.
Their dictums include presenting material in a completely logical order, where no concept is referred
to before being defined, and starting developments from the most general, and proceeding to
the more specific. The original members include Henri Cartan, André Weil, Jean Delsarte, Jean
Dieudonné, and Claude Chevalley, and the group later counted such mathematicians as Roger
Godement, Jean-Pierre Serre, Laurent Schwartz, Emile Borel, and Alexander Grothendieck among
its members. They have produced eight books on fundamental subjects of mathematics.
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Preface for Volume 2

In this volume, we cover topics that one might lump together as multivariable
calculus, if one regards complex analysis as a form of two-variable real calculus
(something one really should not do).

We begin in Chapter 1 by considering the extension to multiple dimensions of
the topics considered for a single variable in Chapter I-3. The topics here are what
one might encounter in a second year of studies, after a first year of introductory
calculus. The coverage is given in a great deal of detail, as the subject of the chapter
is an important one, and a careful systematic treatment of differential calculus in
multiple variables is an important one in applications, and a good understanding of
it provides an important bridge between the elementary topics of introductory cal-
culus to the more difficult topics in function analysis covered in Chapters III-3, III-4,
and III-6. In this chapter we also delve into some advanced specialised topics, both
foundational and involving applications of multivariable analysis. The applica-
tions, we hope, provides some context for some of the mathematics we have been
developing.

The next topic, vector calculus, is also one that is a part of the undergraduate
education for mathematics students and well-educated students in engineering
and the physical sciences. We have chosen to cover this material in a more modern
way than is normally done. Thus we present the tools to develop a general version
of “Stokes’ Theorem,” and then specialise this to the standard theorems of vector
calculus. As with the presentation of the other “background” material in previous
chapters, we do not emphasise the (very important) computational matters that
arise in vector calculus, concentrating instead on establishing structure and the
basic theorems that can be used subsequently.

The final Chapter 3 in this volume deals with the important subject of com-
plex analysis. This subject will come up in various places in subsequent volumes,
sometimes in ways that appear strange initially. Indeed, for students familiar with
real variable calculus, complex analysis looks like a little strange. It has many sim-
ilarities to the real variable case, but also many important differences. Students in
mathematics will have had a reasonably good course in complex analysis that will
very often be quite similar to what we cover in Chapter 3. Students in engineering
and the physical sciences will very often have some background with complex
numbers, and some sort of background in complex analysis. Such students will
need to take some time to learn the fundamental parts of complex analysis that we
present in this chapter.

Andrew D. Lewis Kingston, ON, Canada
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Chapter 1

Multiple real variables and functions of
multiple real variables

In this chapter we carry on from the preceding chapter and develop the notions
of continuity, differentiability, and integrability for functions with multivariable
domains and codomains. Much of this development goes in a manner that is
strikingly similar to the single-variable case. Therefore, we do not spend as much
time with illustrative examples and motivating discussion as we did in Chapter I-3.
Also some proofs are very similar to their single-variable counterparts, and in these
cases we omit detailed proofs. There are, however, some significant differences in
the presentation that arise in the extension to multiple variables. For example, the
Inverse Function Theorem and the change of variables formula for integrals are
far more complicated in the multivariable case. Also, for the multivariable case,
one has the important Fubini’s Theorem for integrals. Therefore, it is not the case
that everything here is simply a trivial extension of what we have already seen in
Chapter I-3. But it is the case that understanding the material in Chapter I-3 will
make this chapter far easier to get through.

Do I need to read this chapter? As with the material in Chapter I-3, readers who
have had a decent sequence of analysis courses can probably skim this chapter on
a first reading. This is particularly true if the material in Chapter I-3 has been
satisfactorily digested. However, there will be occasions where we will use the
results in this chapter, so it will have to be come back to at some point if it is not
sufficiently well understood. •
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Section 1.1

Norms on Euclidean space and related spaces

In this section we introduce the very most basic structure of Euclidean space:
its algebraic structure along with the structure of a norm. Combined, this struc-
ture allows us to do analysis in n-dimensional Euclidean space, just as we did in
Chapters I-2 and I-3 for R.

Do I need to read this section? The results in Sections 1.1.1 and 1.1.2 are fun-
damental to everything in this chapter, and so are required reading. The material
in the remaining sections on norms for linear and multilinear maps is required
when we define the derivative and higher-order derivatives in Section 1.4. •

1.1.1 The algebraic structure of Rn

We denote by Rn the n-fold Cartesian product of R with itself:

Rn = R × · · · ×R︸       ︷︷       ︸
n copies

.

We shall often refer to Rn as n-dimensional Euclidean space. We shall denote a
typical element of Rn by v = (v1, . . . , vn) when we are talking about the algebraic
structure. We call the numbers v1, . . . ,n the components of v. We may also use the
letters u and w. Later in this section, when we discuss properties of Rn that are
not algebraic, we will denote typical points by x = (x1, . . . , xn), and we may also
use letters like y. Generally speaking, we shall attempt to distinguish between the
algebraic and nonalgebraic parts of the structure of Rn.

In R, as we indicated in Section I-2.2.1, we can perform familiar algebraic
operations like addition, multiplication, and division. Not all of these operations
generally carry over to Rn. One can add elements of Rn using the rule

u + v = (u1 + v1, . . . ,un + vn). (1.1)

One can also multiply elements of Rn by an element of R using the rule

av = (av1, . . . , avn). (1.2)

Let us summarise some of the properties of the algebraic structure of Rn. The
following result states that addition (1.1) and multiplication by scalars (1.2) satisfy
the axioms for a R-vector space.

1.1.1 Proposition (Rn is aR-vector space) The operations (1.1) and (1.2) have the following
properties:
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(i) v1 + v2 = v2 + v1, v1,v2 ∈ Rn (commutativity);
(ii) v1 + (v2 + v3) = (v1 + v2) + v3, v1,v2,v3 ∈ Rn (associativity);
(iii) the element 0 = (0, . . . , 0) ∈ Rn has the property that v + 0 = v for every v ∈ Rn

(zero vector);
(iv) for every v = (v1, . . . ,vn) ∈ Rn the element −v = (−v1, . . . ,−vn) ∈ Rn has the

property that v + (−v) = 0 (negative vector);
(v) a(bv) = (ab)v, a, b ∈ R, v ∈ Rn (associativity again);
(vi) 1v = v, v ∈ Rn;
(vii) a(v1 + v2) = av1 + av2, a ∈ R, v1,v2 ∈ Rn (distributivity);
(viii) (a1 + a2)v = a1v + a2v, a1, a2 ∈ R, v ∈ Rn (distributivity again).

Proof These statements all follow from the properties of algebraic operations on real
numbers. ■

Let us introduce some useful notation for subsets of Rn.look for places where

this is defined ad hoc

1.1.2 Definition (Dilation, sum, and difference of sets) Let A,B ⊆ Rn and let λ ∈ R.
(i) The dilation of A by λ is the set

λA = {λx | x ∈ A}.

(ii) The sum of A and B is the set

A + B = {x + y | x ∈ A, y ∈ B}.

(iii) The difference of A and B is the set

A − B = {x − y | x ∈ A, y ∈ B}.

(iv) If A = {x0} is a singleton, then we denote A + B = x0 + B and A − B = x0 − B. •

Not all of the algebraic structure of R carries over to Rn.
1. Generally, one cannot multiply or divide elements of Rn together in a useful

way. However, for n = 2 it turns out that multiplication and division are also
possible, and this is described in Section I-4.7.1

2. Although Zermelo’s Well Ordering Theorem tells us that Rn possesses a well
order, apart from n = 1 there is no useful (i.e., reacting well with the other
structures ofRn) partial order onRn. Thus any of the results aboutR that relate
to its natural total order ≤will not generally carry over to Rn.
Let us review some other algebraic concepts and notation associated with Rn.

We refer to the general discussions in Sections I-4.5, I-5.1, and I-5.4 for more detailed
and general discussions.

1There are other values of n for which multiplication and division are possible, but this will not
interest us here.
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1. The standard basis for Rn is the collection {e1, . . . , en} of elements of Rn given
by

e j = (0, . . . , 1, . . . , 0),

where the 1 is in the jth position. Obviously we have

(v1, . . . , vn) = v1e1 + · · · + vnen.

2. The set of linear maps fromRn toRm is denoted by HomR(Rn;Rm) and the set of
m×n matrices with real entries is denoted by Matm×n(R). The sets HomR(Rn;Rm)
and Matm×n(R) are R-vector spaces and, moreover, are isomorphic in a natural
way. Indeed, if A ∈Matm×n(R) the corresponding linear map is

v 7→
( n∑

j=1

A(1, j)v j, . . . ,
n∑

j=1

A(m, j)v j

)
.

1.1.2 The Euclidean inner product and norm, and other norms

There is a generalisation toRn of the absolute value function onR. Indeed, this
is one of the more valuable features ofRn. In fact, there are many generalisations of
the absolute value function which go under the name of “norms;” we shall discuss
this idea in detail in Chapter III-3. For now let us just define the norm that is of
interest to us. It turns out that the norm we use most in this section is a special sort
of norm, derived from an inner product.

1.1.3 Definition (Euclidean inner product) The Euclidean inner product on Rn is the
map ⟨·, ·⟩Rn from Rn

×Rn to R defined by

⟨x, y⟩Rn =

n∑
j=1

x jy j. •

This is sometimes called the “dot product” and instead the notation x ·y is used.
We shall absolutely never use this notation; it is something to be used only by small
children.

Let us give some properties of the Euclidean inner product.

1.1.4 Proposition (Properties of the Euclidean inner product) The Euclidean inner
product has the following properties:

(i) ⟨x,y⟩Rn = ⟨y, x⟩Rn for x,y ∈ Rn (symmetry);
(ii) ⟨αx,y⟩Rn = α⟨x,y⟩Rn for α ∈ R and x,y ∈ Rn (linearity I);
(iii) ⟨x1 + x2,y⟩Rn = ⟨x1,y⟩Rn + ⟨x2,y⟩Rn for x1, x2,y ∈ Rn (linearity II);
(iv) ∥x∥Rnx ≥ 0 for x ∈ Rn (positivity);
(v) ∥x∥Rnx = 0 only if x = 0 (definiteness).

Proof These are all elementary deductions using the definition. ■
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As we shall see in Definition III-4.1.1, a map assigning to a pair of vectors in any
R-vector space a number, with the assignment having the five properties above, is
called an “inner product.” These are studied in some generality in Chapter III-4.

Readers knowing a little Euclidean geometry are familiar with the notion of
vectors being “perpendicular.” For grownups, the word is “orthogonal.”

1.1.5 Definition (Orthogonal, orthogonal complement) Two vectors x, y ∈ Rn are
orthogonal if ⟨x, y⟩Rn = 0. If S ⊆ Rn, the orthogonal complement of S is the set

S⊥ = {x ∈ Rn
| ⟨x, y⟩Rn = 0 for all y ∈ S}. •

Let us explore the notion of orthogonality with some examples.

1.1.6 Examples (Orthogonality)
1. Consider two vectors x = (x1, x2), y = (y1, y2) ∈ R2. These vectors are orthogonal

if and only if x1y1+x2y2 = 0. Thinking of one of the vectors, say x, as being fixed,
this is a linear equation in y; we refer to Section I-5.1.8 for a general discussion
of such maps. Here we need only note that the subspace of solutions is two-
dimensional when x = 0 and is one-dimensional otherwise. Thus, obviously,
every vector is orthogonal to 0. To describe the one-dimensional subspace of
vectors orthogonal to x , 0 we note that one such vector is y = (−x2, x1). Thus
this is a basis for one-dimensional subspace of vectors orthogonal to x. We
show the picture in Figure 1.1, noting that, in this case, orthogonality agrees

(x1, x2)

(−x2, x1)

Figure 1.1 Orthogonal vectors in R2

with our usual notion of perpendicularity.
2. Let {e1, . . . , en} be the standard basis for Rn. Then one readily determines that

⟨e j, ek⟩Rn =

1, j = k,
0, j , k.
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A general basis forRn with this property is called orthonormal. Such ideas will
be explored in great depth and generality in Chapter III-4. •

We shall not explore the details of what an inner product buys for us, referring
the reader to for a general discussion of finite-dimensional vector spaces with inner fin-dim hilbert

products. For our purposes the Euclidean inner product is related to the Euclidean
norm which is the generalisation of the absolute value function on R that we shall
use to prescribe the structure of Euclidean space.

1.1.7 Definition (Euclidean norm) The Euclidean norm on Rn is the function ∥·∥Rn from
Rn to R≥0 defined by

∥x∥Rn =
( n∑

j=1

x2
j

)1/2
. •

Note that when n = 1 we have ∥·∥R1 = |·|. When n ∈ {2, 3}, ∥x∥Rn is the usual
notion of length in “physical space.”

Let us record the properties of the Euclidean norm.

1.1.8 Proposition (Properties of the Euclidean norm) The Euclidean norm has the fol-
lowing properties:

(i) ∥αx∥Rn = |α|∥x∥Rn for α ∈ R and x ∈ Rn (homogeneity);
(ii) ∥x∥Rn ≥ 0 for all x ∈ Rn (positivity);
(iii) ∥x∥Rn = 0 only if x = 0 (definiteness);
(iv) ∥x1 + x2∥Rn ≤ ∥x1∥Rn + ∥x2∥Rn (triangle inequality).

Moreover, the Euclidean norm shares the following relationships with the Euclidean inner
product:

(v) ∥x∥Rn =
√
⟨x, x⟩Rn for all x ∈ Rn;

(vi) |⟨x,y⟩Rn | ≤ ∥x∥Rn∥y∥Rn for all x,y ∈ Rn (Cauchy–Bunyakovsky– Schwarz in-
equality).

Proof The only nontrivial properties are the fourth one and the final one. We first
prove the Cauchy–Bunyakovsky–Schwarz inequality and then use it to prove the
triangle inequality.

The Cauchy–Bunyakovsky–Schwarz inequality is obviously true for y = 0, so we
shall suppose that y , 0. We first prove the result for ∥y∥Rn = 1. In this case we have

0 ≤ ∥x − ⟨x, y⟩Rn y∥2Rn

= ⟨x − ⟨x, y⟩Rn y, x − ⟨x, y⟩Rn y⟩Rn

= ⟨x, x⟩Rn − ⟨x, y⟩Rn⟨y, x⟩Rn − ⟨x, y⟩Rn⟨x, y⟩Rn + ⟨x, y⟩Rn⟨x, y⟩Rn⟨y, y⟩Rn

= ∥x∥2Rn − ⟨x, y⟩2Rn .

Thus we have shown that provided ∥y∥Rn = 1, ⟨x, y⟩2
Rn ≤ ∥x∥2Rn . Taking square roots

yields the result in this case. For ∥y∥Rn , 1 we define z = y
∥y∥Rn

so that ∥z∥Rn = 1. In
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this case ∣∣∣⟨x, z⟩Rn

∣∣∣ ≤ ∥x∥Rn =⇒

∣∣∣⟨x, y⟩Rn

∣∣∣
∥y∥Rn

≤ ∥x∥Rn ,

and so the inequality follows.
Now, to prove the triangle inequality, we compute

∥x + y∥2Rn = ⟨x + y, x + y⟩Rn

= ∥x∥2Rn + 2⟨x, y⟩Rn + ∥y∥2Rn

≤ ∥x∥2Rn + 2
∣∣∣⟨x, y⟩Rn

∣∣∣ + ∥y∥2Rn

≤ ∥x∥2Rn + 2∥x∥Rn∥y∥Rn + ∥y∥2Rn

= (∥x∥Rn + ∥y∥Rn)2,

where we have used the lemma. The result now follows by taking square roots. ■

As we shall see in Definition III-3.1.2, a map assigning to vectors in a R-vector
space a number, with the assignment having the three properties above, is a “norm.”
These are studied in detail in Chapter III-3.

Sometimes we will use other norms for Rn. Two common norms are given in
the following definition.

1.1.9 Definition (1- and∞-norm for Euclidean space) The 1-norm onRn is the function
∥·∥1 from Rn to R≥0 defined by

∥x∥1 =
n∑

j=1

|x j|,

and the∞-norm on Rn is the function ∥·∥∞ from Rn to R≥0 defined by

∥x∥∞ = max{|x1|, . . . , |xn|}. •

The 1- and ∞-norms enjoy the following properties, as is easily verified (see
also Examples III-3.1.3–3 and III-4 and Section III-3.8.1).

1.1.10 Proposition (Properties of the 1- and∞-norms) For p ∈ {1,∞}, the p-norm has the
following properties:

(i) ∥αx∥p = |α|∥x∥p for α ∈ R and x ∈ Rn (homogeneity);
(ii) ∥x∥p ≥ 0 for all x ∈ Rn (positivity);
(iii) ∥x∥p = 0 only if x = 0 (definiteness);
(iv) ∥x1 + x2∥p ≤ ∥x1∥p + ∥x2∥p (triangle inequality).

When we are simultaneously discussing and contrasting the various norms, we
will sometime use ∥·∥2 rather than ∥·∥Rn to denote the Euclidean norm, and we may
refer to this norm as the 2-norm.

The following relationships between the 1-, 2-, and∞-norms are often useful.
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1.1.11 Proposition (Relationships between the 1-, 2-, and ∞-norms) For v ∈ Rn we
have the following inequalities:

(i) ∥v∥1 ≤
√

n∥v∥2;
(ii) ∥v∥1 ≤ n∥v∥∞;
(iii) ∥v∥2 ≤ ∥v∥1;
(iv) ∥v∥2 ≤

√
n∥v∥∞;

(v) ∥v∥∞ ≤ ∥v∥1;
(vi) ∥v∥∞ ≤ ∥v∥2.

Moreover, the above inequalities are the best possible in the sense that, in each case, there
exists a vector v ∈ Rn such that equality is satisfied.

Proof (i) Note that the expression

∥v∥1 =
n∑

j=1

|v j|

means that n∥v∥1 is the average of the positive numbers |v1|, . . . , |vn|. Thus we can write
each of these numbers as this average divided by n plus the difference: |v j| =

∥v∥1
n + δ j.

Note that
∑n

j=1 δ j = 0. Now compute

∥v∥2 =
( n∑

j=1

|v j|
2
)1/2
=

( n∑
j=1

(∥v∥1
n
+ δ j

)2)1/2

=
( n∑

j=1

(∥v∥21
n2 + 2

∥v∥1δ j

n
+ δ2

j

))1/2
≥

( n∑
j=1

∥v∥21
n2

)1/2
=
∥v∥1
√

n
,

as desired, using the fact that
∑n

j=1 δ j = 0. The inequality is an equality by taking, for
example, v = (1, . . . , 1).

(ii) We have

∥v∥1 =
n∑

j=1

|v j| ≤

n∑
j=1

max{|v j| | j ∈ {1, . . . ,n}} = n∥v∥∞.

The inequality becomes equality, for example, for the vector (1, . . . , 1).
(iii) We have

∥v∥2 =
∥∥∥∥ n∑

j=1

v je j

∥∥∥∥
2
≤

n∑
j=1

∥v je j∥2 =

n∑
j=1

|v j|∥e j∥2 =

n∑
j=1

|v j| = ∥v∥1.

The inequality becomes equality if, for example, v = (1, 0, . . . , 0).
(iv) First note that the inequality is trivially satisfied when v = 0Fn . If ∥v∥∞ = 1 we

have |v j| ≤ 1 whence |v j|
2
≤ |v j| for j ∈ {1, . . . ,n}. Therefore, in this case we have

∥v∥22 =
n∑

j=1

∥v j∥
2
≤

n∑
j=1

|v j| ≤

n∑
j=1

max{|v j| | j ∈ {1, . . . ,n}} = n∥v∥∞.
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Therefore, taking square roots, when ∥v∥∞ = 1 we have ∥v∥2 ≤
√

n∥v∥∞. For general
nonzero v we write v = λu where ∥u∥∞ = 1 and where λ = ∥v∥∞. We then have

∥v∥2 = |λ|∥u∥2 ≤ λ
√

n∥u∥∞ =
√

n∥v∥∞,

giving the desired result. The inequality becomes equality by taking, for example,
v = (1, . . . , 1).

(v) Let j0 ∈ {1, . . . ,n} be such that

|v j0 | = max{|v j| | j ∈ {1, . . . ,n}}.

Then
∥v∥∞ = |v j0 | ≤

∑
j=1

|v j|.

The inequality becomes equality, for example, for the vector (1, 0, . . . , 0).
(vi) Let j0 ∈ {1, . . . ,n} be such that

|v j0 | = max{|v j| | j ∈ {1, . . . ,n}}.

Then

∥v∥2∞ = |v j0 |
2
≤

n∑
j=1

|v j|
2 = ∥v∥22.

Taking square roots gives ∥v∥∞ ≤ ∥v∥2.
The inequality becomes equality, for example, for the vector (1, 0, . . . , 0). ■

The ideas of norms and inner products are explored in some detail in Chap-
ters III-3 and III-4.

1.1.3 Norms for multilinear maps

One of the places in the development of multivariable differentiation in Sec-
tion 1.4 departs from the single-variable case is in higher-order derivatives. In the
single-variable case, the derivative of a function is again a function, and so higher-
order derivatives can be defined inductively as functions. But in the multivariable
case, the derivative is a linear map as we shall see, and so to talk about higher-order
derivatives one must talk intelligently about functions taking values in the set of
linear maps. There are two facets to this. Firstly we must be comfortable with the
algebraic aspects of multilinear maps. These are dealt with in Section I-5.6, and the
reader will have to understand some material from this section before proceeding.
Secondly, in order to inductively define higher-order derivatives we must have
norms on sets of multilinear maps. We implicitly identify the set HomR(Rn;Rm) of
linear maps from Rn to Rm and the set Matm×n(R) of m × n matrices with entries in
R; see Definition I-5.4.20. Thus for linear maps, the norms are sometimes called
matrix norms.

First of all, we shall use somewhat more compact notation for multilinear maps
than is used in Section I-5.6. Namely, we denote by L(Rn1 , . . . ,Rnk ;Rm) the set of
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R-multilinear maps from Rn1 × · · · × Rnk to Rm. (In Section I-5.6 we denoted this
set of multilinear maps by HomR(Rn1 , . . . ,Rnk ;Rm).) In the particular (and in this
section usual) case when n1 = · · · = nk = n then we denote the multilinear maps
from (Rn)k toRm by Lk(Rn;Rm). We also recall that a multilinear map L ∈ Lk(Rn;Rm)
is symmetric if

L(vσ(1), . . . ,vσ(k)) = L(v1, . . . ,vk)

for every permutation σ ∈ Sk. We denote the set of symmetric multilinear maps
from (Rn)k to Rm by Sk(Rn;Rm).

Our notation for multilinear maps will come back to us in when we talk about what

continuous linear maps between normed vector spaces and in when we talk about what

linear maps between topological vector spaces. In finite-dimensions all multilinear
maps are continuous and so our notationally identifying HomR(Rn1 , . . . ,Rnk ;Rm)
with the continuous multilinear maps is justified. All that justification aside, all we
care about is that L(Rn1 , . . . ,Rnk ;Rm) denotes the set of R-multilinear maps from
Rn1 × · · · ×Rnk to Rm. Now we need to put norms on sets of linear and multilinear
maps. The reader may well wish to refer ahead to Section III-3.1 for a general
introduction to norms. Only the elementary definitions and examples from that
section are needed here.

We will let ∥·∥ denote an arbitrary norm on Rn. In practice, we shall most
often take ∥·∥ to be the Euclidean norm, but we stick to a more general setup for
simplicity. When talking about maps between Rn and Rm, we will have norms on
both spaces, and we shall denote both of these norms, and any norm induced by
them, by ∥·∥, accepting an abuse of notation that does not cause problems.

With all of this preamble, we can now make the following definition.

1.1.12 Definition (Induced norm on the set of multilinear maps) Let ∥·∥α1 , . . . , ∥·∥αk

be norms on Rn1 , . . . ,Rnk , respectively, and let ∥·∥β be a norm on Rm. For L ∈
L(Rn1 , . . . ,Rnk ;Rm) the induced norm of L is

∥L∥α,β = inf{M ∈ R>0 | ∥L(x1, . . . , xk)∥β ≤M∥x1∥α1 · · · ∥xk∥αk , x j ∈ R
n j , j ∈ {1, . . . , k}}.

•

Let us verify that the proposed norm is indeed a norm. The reader may wish
to refer to Section III-3.5.3 for more information in the case of linear maps.

1.1.13 Proposition (The induced norm is a norm) The induced norm defined in Defini-
tion 1.1.12 is a norm on L(Rn1 , . . . ,Rnk ;Rm). Moreover, for every xj ∈ Rnj , j ∈ {1, . . . ,k},

∥L(x1, . . . , xk)∥β ≤ ∥L∥α,β∥x1∥α1 · · · ∥xk∥αk .

Proof Let {e1, . . . , vected} be the standard basis for Rd. For L ∈ L(Rn1 , . . . ,Rnk ;Rm)
define Ll

j1··· jk
, j1 ∈ {1, . . . ,n1}, . . . , jk ∈ {1, . . . ,nk}, l ∈ {1, . . . ,m}, by

L(e j1 , . . . , e jk) =
m∑

l=1

Lm
j1··· jk

el.



14 1 Multiple real variables and functions of multiple real variables 2022/03/07

For x j ∈ R
n j , j ∈ {1, . . . , k}, let us write

x j = x1
j e1 + · · · + x

n j

j en j .

Then we have, by multilinearity of L,

L(x1, . . . , xk) =
n1∑

j1=1

· · ·

nk∑
jk=1

m∑
l=1

Ll
j1··· jk

x j1
1 · · · x

jk
k el.

This shows that L is continuous since its components are polynomial functions of the
components, and such functions are continuous.

Let us denote by B(r, x) the closed ball of radius r centred at x. We shall use the
same notation for balls in any norm. Since L is continuous, by Theorem 1.3.31 it is
bounded when restricted to the compact set B(1, 0) × · · · × B(1, 0). Let

M = sup{∥L(u1, . . . ,uk)∥β | ∥u j∥α j = 1, j ∈ {1, . . . , k}}.

For x j ∈ R
n j \ {0}, j ∈ {1, . . . , k}, we then have

∥L(x1, . . . , xk)∥β = ∥x1∥α1 · · · ∥xk∥αkL
( x1

∥x1∥α1

, . . . ,
xk

∥xk∥αk

)
≤M∥x1∥α1 · · · ∥xk∥αk .

This shows that ∥L∥α,β < ∞ and so is well-defined.
Let us next verify the final assertion of the proposition. Suppose that there exists

x j ∈ R
n j , j ∈ {1, . . . , k}, such that

∥L(x1, . . . , xk)∥β > ∥L∥α,β∥x1∥α1 · · · ∥xk∥αk .

Then there exists ϵ ∈ R>0 such that

∥L(x1, . . . , xk)∥β > (∥L∥α,β − ϵ)∥x1∥α1 · · · ∥xk∥αk ,

and this contradicts the definition of ∥L∥α,β. Thus we must have

∥L(x1, . . . , xk)∥β ≤ ∥L∥α,β∥x1∥α1 · · · ∥xk∥αk , (1.3)

as desired.
Now we show that L 7→ ∥L∥α,β has the properties of a norm. It is clear that ∥L∥α,β ≥ 0

and that ∥L∥α,β = 0 when L = 0. Suppose that ∥L∥α,β = 0. Then, by (1.3), for every
x j ∈ R

n j , j ∈ {1, . . . , k},

∥L(x1, . . . , xk)∥β ≤ ∥L∥α,β∥x1∥α1 · · · ∥xk∥αk = 0,

giving L(x1, . . . , xk) = 0, and so L = 0. Note that ∥0L∥α,β = |0|∥L∥α,β. Also, if a ∈ R \ {0},
then

∥aL∥α,β = inf{M ∈ R>0 | ∥aL(x1, . . . , xk)∥β ≤M∥x1∥α1 · · · ∥xk∥αk , x j ∈ R
n j , j ∈ {1, . . . , k}}

= inf{M ∈ R>0 | |a|∥L(x1, . . . , xk)∥β ≤M∥x1∥α1 · · · ∥xk∥αk , x j ∈ R
n j , j ∈ {1, . . . , k}}

= inf
{
M ∈ R>0

∣∣∣∣ ∥L(x1, . . . , xk)∥β ≤
M
|a|
∥x1∥α1 · · · ∥xk∥αk , x j ∈ R

n j , j ∈ {1, . . . , k}
}

= inf{|a|M′ ∈ R>0 | ∥L(x1, . . . , xk)∥β ≤M′∥x1∥α1 · · · ∥xk∥αk , x j ∈ R
n j , j ∈ {1, . . . , k}}

= |a|∥L∥α,β,
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using Proposition I-2.2.28. Finally, if L1,L2 ∈ L(Rn1 , . . . ,Rnk ;Rm), then

∥L1 + L2∥α,β = inf{M ∈ R>0 | ∥(L1 + L2)(x1, . . . , xk)∥β
≤M∥x∥α1 · · · ∥xk∥αk , x j ∈ R

n j , j ∈ {1, . . . , k}}
≤ inf{M ∈ R>0 | ∥L1(x1, . . . , xk)∥β
+ ∥L2(x1, . . . , xk)∥β ≤M∥x1∥α1 · · · ∥xk∥αk , x j ∈ R

n j , j ∈ {1, . . . , k}}
= inf{M1 +M2 ∈ R>0 | ∥L1(x1, . . . , xk)∥β ≤M1∥x1∥α1 · · · ∥xk∥αk ,

∥L2(x1, . . . , xk)∥β ≤M2∥x1∥α1 · · · ∥xk∥αk , x j ∈ R
n j , j ∈ {1, . . . , k}}

= inf{M ∈ R>0 | ∥L1(x1, . . . , xk)∥β ≤
M∥x1∥α1 · · · ∥xk∥αk , x j ∈ R

n j , j ∈ {1, . . . , k}}
+ inf{M ∈ R>0 | ∥L2(x1, . . . , xk)∥β
≤M∥x1∥α1 · · · ∥xk∥αk , x j ∈ R

n j , j ∈ {1, . . . , k}}
= ∥L1∥α,β + ∥L2∥α,β,

using Proposition I-2.2.28. ■

1.1.4 The nine common induced norms for linear maps

Let us consider a collection of special cases for linear maps. We use the three
norms

∥x∥1 =
n∑

j=1

|x j|, ∥x∥2 =
( n∑

j=1

x2
j

)1/2
, ∥x∥∞ = max{|x1|, . . . , |xn|}

onRn, noting that ∥·∥2 is the Euclidean norm, which we have also denoted by ∥·∥Rn .
Let us characterise the nine possible induced norms

∥L∥p,q ≜ inf{M ∈ R>0 | ∥L(x)∥q ≤M∥x∥p, x ∈ Rn
}, p, q ∈ {1, 2,∞},

on L(Rn;Rm) induced by these three norms. In the statement of the following
theorem, recall from Definition I-5.1.4 that c(L, j) ∈ Rm, j ∈ {1, . . . ,n}, denotes the
jth column vector of L and r(L, a) ∈ Rn, a ∈ {1, . . . ,m}, denotes the ath row vector
of L, where we recall from Theorem I-5.1.13 that there is a natural correspondence
between finite matrices and linear maps.

1.1.14 Theorem (Induced norms for linear maps) Let p,q ∈ {1, 2,∞} and let L ∈
L(Rm;Rm). The induced norm ∥·∥p,q satisfies the following formulae:

(i) ∥L∥1,1 = max{∥c(L, j)∥1 | j ∈ {1, . . . ,n}};
(ii) ∥L∥1,2 = max{∥c(L, j)∥2 | j ∈ {1, . . . ,n}};
(iii) ∥L∥1,∞ = max{|L(a, j)| | a ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}}

= max{∥c(L, j)∥∞ | j ∈ {1, . . . ,n}}
= max{∥r(L, a)∥∞ | a ∈ {1, . . . ,m}}

;

(iv) ∥L∥2,1 = max{∥LT(u)∥2 | u ∈ {−1, 1}m};

(v) ∥L∥2,2 = max{
√
λ | λ is an eigenvalue for LTL};
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(vi) ∥L∥2,∞ = max{∥r(L, a)∥2 | a ∈ {1, . . . ,m}};
(vii) ∥L∥∞,1 = max{∥L(u)∥1 | u ∈ {−1, 1}n};
(viii) ∥L∥∞,2 = max{∥L(u)∥2 | u ∈ {−1, 1}n};
(ix) ∥L∥∞,∞ = max{∥r(L, a)∥1 | a ∈ {1, . . . ,m}}.

Proof In the proof we make free use of results we have not yet proved. We also make
frequent use of the obvious formula

L(x) =
(
⟨r(L, 1), x⟩Rn , . . . , ⟨r(L,m), x⟩Rn

)
.

Let L ∈ L(Rn;Rm) and note that

∥L∥ = inf{M ∈ R>0 | ∥L(x)∥ ≤M∥x∥, x ∈ Rn
}

= {M ∈ R>0 | ∥L(x)∥ ≤M∥x∥, x ∈ Rn
\ {0}}

= {M ∈ R>0 | ∥L( x
∥x∥ )∥ ≤M, x ∈ Rn

\ {0}}

= sup{∥L(x)∥ | ∥x∥ = 1}.

We shall use this characterisation of the norm below.
In the proof, we also let {e1, . . . , ed} be the standard basis for Rd.
(i) We compute

∥L∥1,1 = sup{∥L(x)∥1 | ∥x∥1 = 1}

= sup
{ m∑

a=1

|⟨r(L(x)), x⟩Rn |

∣∣∣∣ ∥x∥1 = 1
}

≤ sup
{ m∑

a=1

n∑
j=1

|L(a, j)||x j|

∣∣∣∣ ∥x∥1 = 1
}

= sup
{ n∑

j=1

|x j|
( m∑

a=1

|L(a, j)|
) ∣∣∣∣ ∥x∥1 = 1

}
≤ max

{ m∑
a=1

|L(a, j)|
∣∣∣∣ j ∈ {1, . . . ,n}

}
= max{∥c(L, j)∥1 | j ∈ {1, . . . ,n}}.

To establish the opposite inequality, suppose that k ∈ {1, . . . ,n} is such that

∥c(L, k)∥1 = max{∥c(L, j)∥1 | j ∈ {1, . . . ,n}}.

Then,

∥L(ek)∥1 =
m∑

a=1

∣∣∣∣( n∑
j=1

L(a, j)ek( j)
)∣∣∣∣ = m∑

a=1

|L(a, k)| = ∥c(L, k)∥1.

Thus
∥L∥1,1 ≥ max{∥c(L, j)∥1 | j ∈ {1, . . . ,n}},

since ∥ek∥1 = 1.
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(ii) We compute

∥L∥1,2 = sup{∥L(x)∥2 | ∥x∥1 = 1}

= sup
{( m∑

a=1

⟨r(L, a), x⟩2Rn

)1/2 ∣∣∣∣ ∥x∥1 = 1
}

≤ sup
{( m∑

a=1

( n∑
j=1

|L(a, j)x j|
)2)1/2 ∣∣∣∣ ∥x∥1 = 1

}
≤ sup

{( m∑
a=1

(max{|L(a, j)| | j ∈ {1, . . . ,n}})2
( n∑

j=1

|x j|
)2)1/2 ∣∣∣∣ ∥x∥1 = 1

}
=

( m∑
a=1

(max{|L(a, j)| | j ∈ {1, . . . ,n}})2
)1/2

=
(
max

{ m∑
a=1

L(a, j)2
∣∣∣∣ j ∈ {1, . . . ,n}

})1/2
= max{∥c(L, j)∥2 | j ∈ {1, . . . ,n}},

using Proposition I-2.2.27 and the fact that

sup{∥x∥2 | ∥x∥1 = 1} = 1.

To establish the other inequality, note that if we take k ∈ {1, . . . ,n} such that

∥c(L, k)∥2 = max{∥c(L, j)∥2 | j ∈ {1, . . . ,n}},

then we have

∥L(ek)∥2 =
( m∑

a=1

( n∑
j=1

L(a, j)ek( j)
)2)1/2

=
( m∑

a=1

L(a, k)2
)1/2
= ∥c(L, k)∥2.

Thus
∥L∥1,2 ≥ max{∥c(L, j)∥2 | j ∈ {1, . . . ,n}},

since ∥ek∥1 = 1.
(iii) Here we compute

∥L∥1,∞ = sup{∥L(x)∥∞ | ∥x∥1 = 1}

= sup
{

max
{∣∣∣∣ n∑

j=1

L(a, j)x j

∣∣∣∣ ∣∣∣∣ a ∈ {1, . . . ,m}
} ∣∣∣∣ ∥x∥1 = 1

}
≤ sup

{
max

{
|L(a, j)|

∣∣∣∣ j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}
}( n∑

j=1

|x j|
) ∣∣∣∣ ∥x∥1 = 1

}
= max{|L(a, j)| | j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}}.

For the converse inequality, let k ∈ {1, . . . ,n} be such that

max{|L(a, k)| | a ∈ {1, . . . ,m}} = max{|L(a, j)| | j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}}.
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Then

∥L(ek)∥∞ = max
{∣∣∣∣ n∑

j=1

L(a, j)ek( j)
∣∣∣∣ ∣∣∣∣ a ∈ {1, . . . ,m}

}
= max{|L(a, k)| | a ∈ {1, . . . ,m}}.

Thus
∥L∥1,∞ ≥ max{|L(a, j)| | j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}},

since ∥ek∥1 = 1.
(iv) In this case we maximise the function x 7→ ∥L(x)∥1 subject to the constraint that

∥x∥2 = 1, or equivalently, subject to the constraint that ∥x∥22 = 1. We shall do this using
Theorem 1.4.44 and defining

f (x) = ∥L(x)∥1, g(x) = ∥x∥22 − 1.

Let us first assume that none of the rows of L are zero. We must exercise some care
because f is not differentiable on Rn. Note that

∥L(x)∥1 =
m∑

a=1

|⟨r(L, a), x⟩Rn |.

Thus f is differentiable at points off the set

BL = {x ∈ Rn
| there exists a ∈ {1, . . . ,m} such that ⟨r(L, a), x⟩Rn = 0}.

To facilitate computations, let us define uL : Rn
→ Rm by asking that

uL,a(x) = sign(⟨r(L, a), x⟩Rn).

Note that BL = u−1
L (0). Note that on Rn

\ BL the function uL is locally constant. That is
to say, if x ∈ Rn

\ B, then there is a neighbourhood U ⊆ Rn
\ BL of x such that uL|U is

constant (why?). Moreover, it is clear that

f (x) = ⟨uL(x),L(x)⟩Rm .

Now let x0 ∈ Rn
\ BL be a maximum of f subject to the constraint that g(x) = 0.

Note that
Dg(x) · v = ⟨x,v⟩Rn + ⟨v, x⟩Rn = 2⟨x,v⟩Rn ,

and so, if x , 0, then we can conclude that Dg(x) has rank 1. Thus, by Theorem 1.4.44,
there exists λ ∈ R such that

D( f − λg)(x0) = 0.

Since uL is locally constant,

D f (x0) · v = ⟨uL(x0),L(v)⟩Rm .

Moreover, Dg(x) · v = 2⟨x,v⟩Rn . Thus D( f − λg)(x0) = 0 if and only if

LT(uL(x0)) = 2λx0 =⇒ |λ| =
1
2
∥LT(uL(x0))∥2,
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since ∥x0∥2 = 1. Thus λ = 0 if and only if LT(uL(x0)) = 0. Therefore, if λ = 0 then

f (x0) = ⟨uL(x0),L(x0)⟩Rm = ⟨LT(uL(x0)), x0⟩Rn = 0.

If λ , 0 then

f (x0) = ⟨LT(uL(x0)), x0⟩Rn =
1

2λ
∥LT(uL(x0))∥22 =

2
λ
λ2 = 2λ.

Observing that |λ| = ∥LT(uL(x0))∥2 and that f is nonnegative-valued, we can conclude
that, at solutions of the constrained maximisation problem, we must have

f (x0) = ∥LT(u)∥2,

where u varies over the nonzero points in the image of uL, i.e., over points from {−1, 1}m.
This would conclude the proof of this part of the theorem in the case that L has no

zero rows, but for the fact that it is possible that f attains its maximum on BL. We now
show that this does not happen. Let x0 ∈ BL satisfy ∥x0∥2 = 1 and denote

A0 = {a ∈ {1, . . . ,m} | uL,a(x0) = 0}.

Let A1 = {1, . . . ,m} \ A0. Let a0 ∈ A0. For ϵ ∈ R define

xϵ =
x0 + ϵr(L, a0)√
1 + ϵ2∥r(L, a0)∥22

.

Note that
∥x0 + ϵr(L, a0)∥22 = ∥x0∥

2
2 + ϵ

2
∥r(L, a0)∥22 = 1 + ϵ2

∥r(L, a0)∥22
since ⟨r(L, a0), x0⟩Rn = 0. Thus xϵ satisfies the constraint ∥xϵ∥22 = 1. Now let ϵ0 ∈ R>0 be
sufficiently small that

⟨r(L, a), xϵ⟩Rn , 0

for all a ∈ A1 and ϵ ∈ [−ϵ0, ϵ0]; this is possible since xϵ depends continuously on ϵ.
Then we compute

∥L(xϵ)∥1 =
m∑

a=1

|⟨r(L, a), xϵ⟩Rn |

=
1√

1 + ϵ2∥r(L, a0)∥22

m∑
a=1

|⟨r(L, a), x0⟩Rn + ϵ⟨r(L, a), r(L, a0)⟩Rn |.

Note that, by Taylor Theorem, , we can write what?

1√
1 + ϵ2∥r(L, a0)∥22

= 1 − ϵ2 ∥r(L, a0)∥22
2

+O(ϵ3),
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so that, for ϵ sufficiently small,

∥L(xϵ)∥1 =
m∑

a=1

|⟨r(L, a), x0⟩Rn + ϵ⟨r(L, a), r(L, a0)⟩Rn | +O(ϵ2)

=
∑
a∈A0

|ϵ||⟨r(L, a), r(L, a0)⟩Rn |

+
∑
a∈A1

|⟨r(L, a), x0⟩Rn + ϵ⟨r(L, a), r(L, a0)⟩Rn | +O(ϵ2). (1.4)

Since we are assuming that none of the rows of L are zero,∑
a∈A0

|ϵ||⟨r(L, a), r(L, a0)⟩Rn | > 0 (1.5)

for ϵ ∈ [−ϵ0, ϵ0]. Now take a ∈ A1. If ϵ is sufficiently small we can write

|⟨r(L, a), x0⟩Rn + ϵ⟨r(L, a), r(L, a0)⟩Rn | = |⟨r(L, a), x0⟩Rn | + ϵCa

for some Ca ∈ R. As a result, and using (1.4), we have

∥L(xϵ)∥1 = ∥L(x0)∥1 +
∑
a∈A0

(|ϵ||⟨r(L, a), r(L, a0)⟩Rn | + ϵ
∑
a∈A1

Ca +O(ϵ2).

It therefore follows, possibly by again choosing ϵ0 to be sufficiently small, that we have

∥L(xϵ)∥1 > ∥L(x0)∥1

either for all ϵ ∈ [−ϵ0, 0) or for all ϵ ∈ (0, ϵ0], taking (1.5) into account. Thus if x0 ∈ BL
then x0 is not a local maximum for f subject to the constraint g−1(0).

Finally, suppose that L has some rows that are zero. Let

A0 = {a ∈ {1, . . . ,m} | r(L, a) = 0}

and let A1 = {1, . . . ,m} \ A0. Let A1 = {a1, . . . , ak} with a1 < · · · < ak, and define
L̂ ∈ L(Rn;Rk) by

L̂(x) =
k∑

r=1

⟨r(L, ar), x⟩Rner,

and note that ∥L(x)∥1 = ∥L̂(x)∥1 for every x ∈ Rn. If y ∈ Rm define ŷ ∈ Rk by removing
from y the elements corresponding to the zero rows of L:

ŷ = (ya1 , . . . , yak).

Then we compute

LT(y) =
n∑

j=1

⟨r(LT, j), y⟩Rne j =

n∑
j=1

( m∑
a=1

L(a, j)ya
)
e j

=

n∑
j=1

( k∑
r=1

L(ar, j)yar

)
e j =

n∑
j=1

⟨c(L̂, r), ŷ⟩Rne j

=

n∑
j=1

⟨t(L̂T, r), ŷ⟩Rne j = L̂T(ŷ).
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Therefore,

∥L∥2,1 = sup{∥L(x)∥1 | ∥x∥2 = 1}

= sup{∥L̂(x)∥1 | ∥x∥2 = 1} = ∥L̂∥2,1
= max{∥L̂T(û)∥2 | û ∈ {−1, 1}k}

= max{∥LT(u)∥2 | u ∈ {−1, 1}m},

and this finally gives the result.
(v) Note that, in this case, we wish to maximise the function x 7→ ∥L(x)∥2 subject

to the constraint that ∥x∥2 = 1. However, this is equivalent to maximising x 7→ ∥L(x)∥22
subject to the constraint that ∥x∥22 = 1. In this case, the function we are maximising and
the function defining the constraint are infinitely differentiable. Therefore, we can use
Theorem 1.4.44 below to determine the character of the maxima. Thus we define

f (x) = ∥L(x)∥22, g(x) = ∥x∥22 − 1.

Note that
Dg(x) · v = ⟨x,v⟩Rn + ⟨v, x⟩Rn = 2⟨x,v⟩Rn ,

and so, if x , 0, then we can conclude that Dg(x) has rank 1. Thus, by Theorem 1.4.44,
if a point x0 ∈ Rn solves the constrained maximisation problem, then there exists λ ∈ R
such that

D( f − λg)(x0) = 0.

Since
f (x) = ⟨L(x),L(x)⟩Rn = ⟨LT

◦ L(x), x⟩Rn ,

we compute

D f (x) · v = ⟨LT
◦ L(x),v⟩Rn + ⟨LT

◦ L(v), x⟩Rn = 2⟨LT
◦ L(x),v⟩Rn .

We also have Dg(x) · v = 2⟨x,v⟩Rn . Thus D( f − λg)(x0) = 0 implies that

LT
◦ L(x0) = λx0.

Thus it must be the case that λ is an eigenvalue for LT ◦ L with eigenvector x0. Let us
record some facts about this eigenvalue/eigenvector combination.

1 Lemma If L ∈ L(Rn;Rm) then the linear map LT ◦L ∈ L(Rn;Rn) has the following properties:
(i) all eigenvalues of LT ◦ L are real and nonnegative;
(ii) the exists a basis for Rn, orthonormal with respect to the Euclidean inner product,

consisting of eigenvectors of LT ◦ L.

Proof First of all, note that
(LT

◦ L)T = LT
◦ L,

and so, by , the linear map LT ◦ L is symmetric with respect to the Euclidean inner what?

product. Thus the eigenvalues of LT ◦ L are real. Also note that

⟨LT
◦ L(x), x⟩Rn = ⟨L(x),L(x)⟩Rn ≥ 0

by , and so the eigenvalues of LT ◦ L are nonnegative by . what

what?That there is a basis of eigenvectors for Rn, orthonormal with respect to ⟨·, ·⟩Rn ,
follows from . ▼ what?
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Let us proceed with our analysis. The lemma implies that there exist λ1, . . . , λn ∈

R≥0 and vectors x1, . . . , xn such that

λ1 ≤ · · · ≤ λn,

such that LT ◦ L(x j) = λ jx j, j ∈ {1, . . . ,n}, and such that a solution to the problem of
maximising f with the constraint g−1(0) is obtained by evaluating f at one of the points
x1, . . . , xn. Thus the problem can be solved by evaluating f at this finite collection of
points, and determining at which of these f has its largest value. Thus we compute

f (x j) = ∥L(x j)∥22 = ⟨L(x),L(x j)⟩Rm = ⟨LT
◦ L(x j), x j⟩Rn = λ j∥x j∥

2
2 = λ j.

The maximum value of f subject to the constraint g−1(0) is then attained at xn and this
maximum value is λn. Thus the maximum value of the function x 7→ ∥L(x)∥2 subject to
the constraint that ∥x∥2 = 1 is

√
λn, and this gives the desired result.

(vi) First of all, we note that this part of the theorem certainly holds when L = 0.
Thus we shall freely assume that L is nonzero when convenient. We maximise the
function x 7→ ∥L(x)∥∞ subject to the constraint that ∥x∥2 = 1, or equivalently subject to
the constraint that ∥x∥22 = 1. We shall use Theorem 1.4.44, defining

f (x) = ∥L(x)∥∞, g(x) = ∥x∥22 − 1.

Note that L is not differentiable on Rn, so we first restrict to a subset where f is
differentiable. Let us define

AL : Rn
→ 2{1,...,m}

x 7→ {a ∈ {1, . . . ,m} | ⟨r(L, a), x⟩Rn = ∥L(x)∥∞}.

Then denote
BL = {x ∈ Rn

| card(AL(x)) > 1}.

Since
∥L(x)∥∞ = max{⟨r(L, 1), x⟩Rn , . . . , ⟨r(Lm), x⟩Rn},

we see that f is differentiable at points that are not in the set BL.
Let us first suppose that x0 ∈ Rn

\ BL is a maximum of f subject to the constraint
that g(x) = 0. Then there exists a unique a0 ∈ {1, . . . ,m} such that f (x0) = ⟨r(L, a0), x0⟩Rn .
Since we are assuming that L is nonzero, it must be that r(L, a0) is nonzero. Moreover,
there exists a neighbourhood U of x0 such that

sign(⟨r(L, a0), x⟩Rn) = sign(⟨r(L, a0), x0⟩Rn)

and
f (x) = ⟨r(L, a0), x⟩Rn

for each x ∈ U. Abbreviating

uL,a0(x) = sign(⟨r(L, a0), x⟩Rn),

we have
f (x) = uL, j(x0)⟨r(L, a0), x⟩Rn
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for every x ∈ U. Note that, as in the proofs of parts (iv) and (v) above, Dg(x) has rank
1 for x , 0. Therefore, by Theorem 1.4.44, there exists λ ∈ R such that

D( f − λg)(x0) = 0.

We compute

D( f − λg)(x0) · v = uL, j(x0)⟨r(L, a0),v⟩Rn − 2λ⟨x0,v⟩Rn

for every v ∈ Rn. Thus we must have

2λx0 = uL,a0(x0)r(L, a0).

This implies that x0 and r(L, a0) are linearly dependent and that

|λ| =
1
2
∥r(L, a0)∥2

since ∥x0∥2 = 1. Therefore,

f (x0) = uL,a0(x0)⟨r(L, a0), 1
2λuL,a0(x0)r(L, a0)⟩Rn =

2
λ
λ2 = 2λ.

Since |λ| = 1
2∥r(L, a0)∥2 it follows that

f (x0) = ∥r(L, a0)∥2.

This completes the proof, but for the fact that maxima of f may occur at points in
BL. Thus let x0 ∈ BL be such that ∥x0∥2 = 1. For a ∈ AL(x0) let us write

r(L, a) = ρax0 + ya,

where ⟨x0, ya⟩Rn = 0. Therefore,

⟨r(L, a), x0⟩Rn = ρa.

We claim that if there exists a0 ∈ AL(x0) for which ya0
, 0, then x0 cannot be a maximum

of f subject to the constraint g−1(0). Indeed, if ya0
, 0 then define

xϵ =
x0 + ϵya0√
1 + ϵ2∥ya0

∥22

.

As in the proof of part (iv) above, one shows that ∥xϵ∥2 = 1, and so xϵ satisfies the
constraint for every ϵ ∈ R. Also as in the proof of part (iv), we have

xϵ = x0 + ϵy0 +O(ϵ2).

Thus
⟨r(L, a0), xϵ⟩Rn = ρa + ϵ∥ya0

∥
2
2 +O(ϵ2)
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and so, for ϵ sufficiently small,

|⟨r(L, a0), xϵ⟩Rn | = |⟨r(L, a0), x0⟩Rn | + ϵCa0 +O(ϵ2)

where Ca0 is nonzero. Therefore, there exists ϵ0 ∈ R>0 such that

|⟨r(L, a0), xϵ⟩Rn | > |⟨r(L, a0), x0⟩Rn |

either for all ϵ ∈ [−ϵ0, 0) or for all ϵ ∈ (0, ϵ0]. In either case, x0 cannot be a maximum
for f subject to the constraint g−1(0).

Finally, suppose that x0 ∈ BL is a maximum for f subject to the constraint g−1(0).
Then, as we saw in the preceding paragraph, for each a ∈ AL(x0), we must have

r(L, a) = ⟨r(L, a), x0⟩Rnx0.

It follows that ∥r(L, a)∥22 = ⟨r(L, a), x0⟩
2
Rn . Moreover, by definition of AL(x0) and since we

are supposing that x0 is a maximum for f subject to the constraint g−1(0), we have

|⟨r(L, a), x0⟩Rn | = ∥L∥2,∞
=⇒ ⟨r(L, a), x0⟩

2
Rn = ∥L∥22,∞

=⇒ ∥r(L, a)∥2 = ∥L∥2,∞. (1.6)

Now, if a ∈ {1, . . . ,m}, we claim that

∥r(L, a)∥2 ≤ ∥L∥2,∞. (1.7)

Indeed suppose that a ∈ {1, . . . ,m} satisfies

∥r(L, a)∥2 > ∥L∥2,∞.

Define x = r(L,a)
∥r(L,a)∥2

so that x satisfies the constraint g(x) = 0. Moreover,

f (x) ≥ ⟨r(L, a), x⟩Rn = ∥r(L, a)∥2 > ∥L∥2,∞,

contradicting the assumption that x0 is a maximum for f . Thus, given that (1.6) holds
for every a ∈ AL(x0) and (1.7) holds for every a ∈ {1, . . . ,m}, we have

∥L∥2,∞ = max{∥r(L, a)∥2 | a ∈ {1, . . . ,m}},

as desired.
For the last three parts of the theorem, the following result is useful.

2 Lemma Let ∥·∥ be a norm on Rn and let ||| · |||∞ be the norm induced on L(Rn;Rm) by the
norm ∥·∥∞ on Rn and the norm ∥·∥ on Rm. Then

|||L|||∞ = max{∥L(u)∥ | u ∈ {−1, 1}n}.
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Proof Note that the set
{x ∈ Rn

| ∥x∥∞ ≤ 1}

is a convex polytope. Therefore, by (1) from the proof of Theorem 1.9.50, this set is
the convex hull of {−1, 1}n. Thus, if ∥x∥∞ = 1 we can write

x =
∑

u∈{−1,1}n
λuu

where λu ∈ [0, 1] for each u ∈ {−1, 1}n and∑
u∈{−1,1}n

λu = 1.

Therefore,

∥L(x)∥ =
∥∥∥∥ ∑

u∈{−1,1}n
λuL(u)

∥∥∥∥ ≤ ∑
u∈{−1,1}n

λu∥L(u)∥

≤

( ∑
u∈{−1,1}n

λu
)

max{∥L(u)∥ | u ∈ {−1, 1}n}

= max{∥L(u)∥ | u ∈ {−1, 1}n}.

Therefore,

sup{∥L(x)∥ | ∥x∥∞ = 1} ≤ max{∥L(u)∥ | u ∈ {−1, 1}n} ≤ sup{∥L(x)∥ | ∥x∥∞ = 1},

the last inequality holding since if u ∈ {−1, 1}n then ∥u∥∞ = 1. The result follows since
the previous inequalities must be equalities. ▼

(vii) This follows immediately from the preceding lemma.
(viii) This too follows immediately from the preceding lemma.
(ix) Note that for u ∈ {−1, 1}n we have

|⟨r(L, a),u⟩Rn | =
∣∣∣∣ n∑

j=1

L(a, j)u j

∣∣∣∣ ≤ n∑
j=1

|L(a, j)| = ∥r(L, a)∥1.

Therefore, using the previous lemma,

∥L∥∞,∞ = max{∥L(u)∥∞ | u ∈ {−1, 1}n}
= max{max{|⟨r(L, a),u⟩Rn | | a ∈ {1, . . . ,m}} | u ∈ {−1, 1}n}
≤ max{∥r(L, a)∥1 | a ∈ {1, . . . ,m}}.

To establish the other inequality, for a ∈ {1, . . . ,m} define ua ∈ {−1, 1}n by

ua, j =

1, L(a, j) ≥ 0,
−1, L(a, j) < 0
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and note that a direct computation gives the ath component of L(ua) as ∥r(L, a)∥1.
Therefore,

max{∥r(L, a)∥1 | a ∈ {1, . . . ,m}} = max{|L(ua)a| | a ∈ {1, . . . ,m}}
≤ max{∥L(ua)∥∞ | a ∈ {1, . . . ,m}}
≤ max{∥L(u)∥∞ | u ∈ {−1, 1}n} = ∥L∥∞,∞,

giving this part of the theorem. ■

Having characterised the nine possible norms on L(Rn;Rm) corresponding to
the norms ∥·∥1, ∥·∥2, and ∥·∥∞, we shall always use the norm ∥·∥2,2, unless explicitly
stated to the contrary. And, as we do for the 2-norm forRn, we will adopt particular
notation for the (2, 2)-norm on L(Rn;Rm), denoting it by ∥·∥Rn,Rm .

1.1.5 The Frobenius norm

Next let us consider a different norm for the set of linear maps. First of all, note
that there is an identification of L(Rn;Rm) with Rmn. Indeed, there are many such
identifications; for example, one could assemble the m rows of A, each consisting of
n numbers, consecutively to get a vector of length mn. OnRmn one has the Euclidean
norm ∥·∥Rmn , and this then defines a norm on L(Rn;Rm) using whatever identification
one chooses. Moreover, since the Euclidean norm is “unbiased” in terms of the
ordering of the indices (i.e., the Euclidean norm of a vector is independent on the
order of its components), this norm on L(Rn;Rm) will be independent of how one
chooses to assemble the components of a matrix into a vector of length mn. Thus,
waiting for the dust to settle, we have the following definition.

1.1.15 Definition (Frobenius2 norm) The Frobenius norm of A ∈Matm×n(R) is

∥A∥Fr = (tr(ATA))1/2
•

Note that, using the definition of transpose, of matrix multiplication, and of
trace we have following formula for the Frobenius norm:

∥A∥Fr =
( m∑

a=1

n∑
j=1

A(a, j)2
)1/2

.

Thus the Frobenius norm is indeed just the square root of the sum of the squares
of the components of A, just as suggested before the definition.

Let us give some properties of the Frobenius norm, including the assertion that
it is indeed a norm.

2Ferdinand Georg Frobenius (1849–1917) was a German mathematician whose primary contri-
butions were to the fields of group theory, operator theory, differential geometry, and other.
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1.1.16 Proposition (Properties of the Frobenius norm) If A,A1,A2 ∈ L(Rn;Rm), if
B ∈ L(Rk;Rn), if a ∈ R, and if x ∈ Rn then the following statements hold:

(i) ∥aA∥Fr = |a|∥A∥Fr;
(ii) ∥A∥Fr ≥ 0;
(iii) ∥A∥Fr = 0 only if A = 0m×n;
(iv) ∥A1 +A2∥Fr ≤ ∥A1∥Fr + ∥A2∥Fr;
(v) ∥Ax∥Rm ≤ ∥A∥Fr∥x∥Rn ;
(vi) ∥AB∥Fr ≤ ∥A∥Fr∥B∥Fr.

Proof The first four properties of the Frobenius norm follow from the corresponding
properties for the Euclidean norm on Rmn. Thus we prove only the last two.

For the fifth property we adopt the notation of Proposition 1.3.16 and compute

∥Ax∥Rm =
( m∑

a=1

⟨r(A, a), x⟩2Rn

)1/2
≤

( m∑
a=1

∥r(A, a)∥2Rn∥x∥2Rn

)1/2

=
( m∑

a=1

∥r(A, a)∥2Rn

)1/2
∥x∥Rn .

The result follows after we notice, and verify via a direct computation, that

∥A∥Fr =
( m∑

a=1

∥r(A, a)∥2Rn

)1/2
.

For the final assertion we first note that

∥A∥Fr =
( n∑

j=1

∥c(A, j)∥2Rm

)1/2
,

where, as in Definition I-5.1.4, c(A, j) is the jth column of A. Also note that the sth
column of AB is given by Ac(B, s). Thus we compute

∥AB∥Fr =
( k∑

s=1

∥c(AB, s)∥2Rm

)1/2
=

( k∑
s=1

∥Ac(B, s)∥2Rn

)1/2

≤

( k∑
s=1

∥A∥2Fr∥c(B, s)∥2Rn

)1/2
≤ ∥A∥Fr

( k∑
s=1

∥c(B, s)∥2Rn

)1/2

= ∥A∥Fr∥B∥Fr,

as desired, and where we have used the result from the previous part. ■

It is natural to ask whether the Frobenius norm is the induced norm for some
pair of norms, one on Rn and one on Rm.
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1.1.17 Proposition (The Frobenius norm is not often induced) If m,n ∈ Z>0, then the
Frobenius norm on L(Rn;Rm) is the induced norm for any pair of norms, one on Rn and
the other on Rm, if and only if m or n are equal to 1.

Proof If ∥·∥ is a norm on Rn, then let us define a norm ∥·∥∗ on Rn by

∥x∥∗ = sup{|⟨x,v⟩Rn | | ∥v∥ = 1}.

It is easy to verify ∥·∥∗ is indeed a norm. Moreover, it is easy to verify that ∥·∥∗∗ = ∥·∥.
Let us give a few lemmata that we will use in the proof. For the following lemma,

if x ∈ Rn and y ∈ Rm then yxT denotes the linear map from Rn to Rm defined by

yxT(ξ) = ⟨x, ξ⟩Rn y.

It is evident that rank(yxT) = 1.

1 Lemma Let ∥·∥α and ∥·∥β be norms on Rn and Rm, respectively, and let ∥·∥α,β be the induced
norm on L(Rn;Rm). Then

∥yxT
∥α,β = ∥x∥∗α∥y∥β

for every x ∈ Rn and y ∈ Rm.

Proof We compute

∥yxT
∥α,β = sup{∥yxT(v)∥β | ∥v∥α = 1} = sup{|⟨x,v⟩Rn |∥y∥β | ∥v∥α} = ∥x∥∗α∥y∥β ▼

For the following lemma, we refer ahead to Definition 1.3.19 for the notion of
an orthogonal matrix, or equivalently linear map. We also recall from the notion ofwhat

singular values for a linear map between inner product spaces.

2 Lemma If ∥·∥ is a norm on L(Rn;Rm) such that

∥U ◦ LV∥ = ∥L∥

for every U ∈ O(m) and every V ∈ O(n), then there exists c ∈ R>0 such that, if L ∈ L(Rn;Rm)
has rank 1, it holds that ∥L∥ = cσmax(L).

Proof Let us denote by L11 ∈ L(Rn;Rm) the linear map defined by

L(x1, . . . , xn) = (x1, 0, . . . , 0).

As we show in , if L has rank 1, then there exists U ∈ O(m) and V ∈ O(n) such thatwhat

L = σmax(L)U ◦ L11 ◦ V. It therefore follows that if L has rank 1 then ∥L∥ = σmax∥L11∥,
giving the result by taking c = ∥L11∥. ▼

Now the following lemma is key.
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3 Lemma Let ∥·∥ be a norm on L(Rn;Rm) satisfy

∥U ◦ LV∥ = ∥L∥

for every U ∈ O(m) and every V ∈ O(n). Then the following statements are equivalent:
(i) there exist norms ∥·∥α on Rn and ∥·∥β on Rm such that ∥·∥ is the corresponding induced

norm;
(ii) there exists c ∈ R>0 such that ∥L∥ = cσmax(L) for every L ∈ L(Rn;Rm).

Proof From Theorem 1.1.14(v), the norm on L(Rn;Rm) induced by the norm ∥·∥2 on
Rn and c∥·∥2 satisfies ∥L∥ = cσmax(L) for every L ∈ L(Rn;Rm). Moreover, since

σmax(U ◦ L ◦ V) = σmax(L)

for every U ∈ O(m) and V ∈ O(n), we arrive at the implication (ii) =⇒ (i).
For the converse implication, suppose that ∥·∥ is induced by ∥·∥α and ∥·∥β on Rn

and Rm, respectively. By Lemma 2 there exists c ∈ R>0 such that ∥L∥ = cσmax(L) for
every L ∈ L(Rn;Rm) having rank 1. From Lemma 1 and we also have singular value of yxT

c∥x∥2∥y∥2 = cσmax(yxT) = ∥x∥∗α∥y∥β

for every x ∈ Rn and y ∈ Rm. By fixing y ∈ Rm we see that there exists c1 ∈ R>0 such
that ∥x∥∗α = c1∥x∥2 for every x ∈ Rn. Similarly, by fixing x there exists c2 ∈ R>0 such that
∥y∥β = c2∥y∥2 for every y ∈ Rm. Since ∥·∥∗∗α = ∥·∥α and since ∥·∥∗2 = ∥·∥2 (verify this), we
conclude that ∥·∥α = c2∥·∥2. From Theorem 1.1.14(v) we conclude that ∥L∥ = c2

c1
σmax(L),

giving the lemma. ▼

Now we prove the proposition. First of all, note that if n = 1 or if m = 1, then
∥·∥Fr = ∥·∥2,2 by Theorem 1.1.14. Conversely, suppose that neither n nor m is equal to 1.
For a ∈ R>0 define La ∈ L(Rn;Rm) by

La(x1, x2, x3, . . . , xn) = (x1, ax2, 0, . . . , 0).

Note that σmax(La) = max{1, a}. However, ∥La∥Fr =
√

1 + a2. Thus we cannot have
∥(∥FrLa) = cσmax(La) for every a ∈ R>0. By Lemma 3 the theorem follows. ■

1.1.6 Notes

Some parts of the proof we give of Theorem 1.1.14 are new, although much
of the result is classically known; see [Horn and Johnson 2013]. The proof of
part (iv) of Theorem 1.1.14 comes from [Drakakis and Pearlmutter 2009]. The
proof of part (vii) of Theorem 1.1.14 comes from [Rohn 2000]. Note that there is
a somewhat different character in certain of the induced norm computations in
Theorem 1.1.14. In particular, the induced norms ∥·∥2,1, ∥·∥∞,1, and ∥·∥∞,2 involve
a search over the 2m points in {−1, 1}m (in the first two cases) or the 2n points in
{−1, 1}n in the third case. The computations of these norms is correspondingly more
involved in terms of the numbers of computations that must be performed. This
is discussed by Rohn [2000] for the norm ∥·∥∞,1.

The proof we give of Proposition 1.1.17 follows [Chellaboina and Haddad
1995].
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Exercises

1.1.1 Show that S⊥ is a subspace of Rn for every nonempty subset S ⊆ Rn.

1.1.2 Let r1, r2 ∈ R>0 satisfy r2 ≤ r1 and let x1, x2 ∈ Rn. Show that if B(r1, x1) ∩
B(r2, x2) , ∅ then B(r2, x2) ⊆ B(3r1, x1). Show that you understand your
proof by drawing a picture.

1.1.3 Show that for each x1, x2 ∈ Rn,
∣∣∣∥x1∥Rn − ∥x2∥Rn

∣∣∣ ≤ ∥x1 − x2∥Rn .
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Section 1.2

The structure of Rn

In this section we summarise the topological (see Chapter III-1) properties ofRn.
Many of the properties here are discussed in a more general context in Chapter III-3.
Therefore, we limit ourselves here to those features of Rn that we will make use
of without needing the abstract development of Chapter III-3. For example, some
of what we do here will be used in Chapter 3. Because some of what we say here
bears a strong resemblance to some of the results of Chapter I-2, and because we
shall generalise much of this structure in Chapter III-3, we shall omit some of the
proofs that resemble their counterparts of Chapters I-2 and III-3.

Do I need to read this section? Much of what we say in this section follows in
the same vein as does much of Chapter I-2. Therefore, perhaps a reader can
overlook some of the details of what we say here until specific parts of it are
needed. •

1.2.1 Sequences in Rn

Note that for R the discussion of sequences and their convergence is reliant
on the absolute value function. Since this can be generalised to Rn, the ideas of
Cauchy sequences and convergent sequences carries over to Rn. Let us give the
definitions in this case.

1.2.1 Definition (Cauchy sequence, convergent sequence, bounded sequence) Let
(x j) j∈Z>0 be a sequence in Rn. The sequence:

(i) is a Cauchy sequence if, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that
∥x j − xk∥Rn < ϵ for j, k ≥ N;

(ii) converges to x0 if, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that ∥x j−x0∥Rn < ϵ
for j ≥ N;

(iii) diverges if it does not converge to any element in Rn;
(iv) is bounded if there exists M ∈ R>0 such that ∥x j∥Rn < M for each j ∈ Z>0;
(v) is constant if x j = x1 for every j ∈ Z>0;
(vi) is eventually constant if there exists N ∈ Z>0 such that x j = xN for every

j ≥ N. •

One can show, just as for sequences of real numbers, that convergent sequences
are Cauchy and that Cauchy sequences are bounded. Let us state these results
here.
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1.2.2 Proposition (Convergent sequences are Cauchy) If a sequence (xj)j∈Z>0 converges
to x0 then it is Cauchy.

Proof Let ϵ ∈ R>0 and let N ∈ Z>0 be sufficiently large that ∥x j − x0∥Rn < ϵ
2 for j ≥ N.

Then, for j, k ≥ N we have

∥x j − xk∥Rn ≤ ∥x j − x0∥Rn + ∥x0 − xk∥Rn < ϵ
2 +

ϵ
2 = ϵ,

as desired. ■

1.2.3 Proposition (Cauchy sequences are bounded) If (xj)j∈Z>0 is a Cauchy sequences
then it is bounded.

Proof Let N ∈ Z>0 be sufficiently large that ∥x j − xk∥Rn < 1 for j, k ≥ N. Let MN =
max{∥x1∥Rn , . . . , ∥xN∥Rn}. For j ≥ N we have

|x j| ≤ ∥x j − xN∥Rn + ∥xN∥Rn < 1 +MN,

showing that ∥x j∥Rn < 1 +MN for each j ∈ Z>0. ■

The following result indicates that, to show the convergence of a sequence in
Rn, it suffices to show the convergence of the sequence of components.

1.2.4 Proposition (Convergence of a sequence in Rn equals convergence of each
of the components) Let (xj)j∈Z>0 be a sequence in Rn and denote xj = (x1

j , . . . , x
n
j ),

j ∈ Z>0. Then the sequence (xj)j∈Z>0 converges to x0 = (x1
0, . . . , x

n
0) if and only if each of the

sequences (xl
j)j∈Z>0 , l ∈ {1, . . . ,n}, converges to xl

0.
Proof Suppose that (x j) j∈Z>0 converges to x0. For ϵ ∈ R>0 let N ∈ Z>0 be sufficiently
large that ∥x j − x0∥Rn < ϵ for j ≥ N. Then

∣∣∣xl
j − xl

0

∣∣∣ ≤ ( n∑
m=1

(xm
j − xm

0 )2
)1/2
= ∥x j − x0∥Rn < ϵ,

showing that (xl
j) j∈Z>0 converges to xl

0.

Now suppose that (xl
j) j∈Z>0 converges to xl

0 for l ∈ {1, . . . ,n}. Let ϵ ∈ R>0 and let N

be sufficiently large that
∣∣∣xm

j − xm
∣∣∣ < ϵ

√
n

for j ≥ N and for m ∈ {1, . . . ,n}. Then

∥x j − x0∥Rn =
( n∑

m=1

(xm
j − xm)2

)1/2
<

( n∑
m=1

ϵ2

n

)1/2
= ϵ,

as desired. ■

Thus the convergence tests for sequences in Section I-2.3.3 can be used to prove
convergence of sequences in Rn by applying them componentwise.

It is also true that Cauchy sequences converge in Rn. As we see in the proof
of the following result, this is reliant on the completeness of R. This notion of
completeness is explored in detail in more generality in Section III-3.3.
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1.2.5 Theorem (Cauchy sequences in Rn converge) If (xj)j∈Z>0 is a Cauchy sequence in
Rn then it converges.

Proof Let (x j) j∈Z>0 be a Cauchy sequence inRn; we write x j = (x1
j , . . . , x

n
j ), j ∈ Z>0. We

claim that (xl
j) j∈Z>0 is a Cauchy sequence in R for l ∈ {1, . . . ,n}. Indeed, for ϵ ∈ R>0 let

N ∈ Z>0 be sufficiently large that ∥x j − xk∥Rn < ϵ for j, k ≥ N. Then∣∣∣xl
j − xl

k

∣∣∣ ≤ ( n∑
m=1

(xm
j − xm

k )2
)1/2
= ∥x j − xk∥Rn < ϵ

for all l ∈ {1, . . . ,n} and j, k ≥ N. By Theorem I-2.3.5 there exists xl
∈ R to which the

sequence (xl
j) j∈Z>0 converges. By Proposition 1.2.4 it follows that (x j) j∈Z>0 converges

to (x1, . . . , xl). ■

It is also possible to discuss convergence of multiple sequences in Rn. The
definitions and results are just like those in Section I-2.3.5 for multiple sequences
in R. Multiple sequences are also discussed in Section III-3.2.3 in a more general
context. The reader who wants to use multiple sequences in Rn, and is somehow
unable to extrapolate from the results of Section I-2.3.5 will find the appropriate
definitions in this more general setting.

It is useful to know the relationship between limits and algebraic operations.

1.2.6 Proposition (Algebraic operations on sequences) Let (xj)j∈Z and (yj)j∈Z>0 be se-
quences in Rn converging to x0 and y0, respectively, let (aj)j∈Z>0 be a sequence in R
converging to a0, and let a ∈ R. Then the following statements hold:

(i) the sequence (axj)j∈Z>0 converges to ax0;
(ii) the sequence (xj + yj)j∈Z>0 converges to x0 + y0;
(iii) the sequence (ajxj)j∈Z>0 converges to a0x0.

Proof This proof will be given in a more general context, but with essentially identical
notation, for Proposition III-3.2.6. The proof is also quite similar to the proof for
Proposition I-2.3.23. Thus we forgo giving the details here. ■

1.2.2 Series in Rn

The extension of series of real numbers to series in Rn is fairly easily achieved.
One begins by considering a series in Rn to bean expression of the form

∞∑
j=1

x j,

where x j ∈ Rn, j ∈ Z>0. As we discussed at the beginning of Section I-2.4.1, one
needs to interpret this expression carefully as it is meaningless as a sum until one
says something about its convergence. However, as a formal expression involving
the elements of the sequence (x j) j∈Z it is sensible, and the summation sign is just a
convenience to indicate in what we are interested.

Let us define the sorts of convergence one can consider for series.
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1.2.7 Definition (Convergence and absolute convergence of series) Let (x j) j∈Z>0 be a
sequence in Rn and consider the series

S =
∞∑
j=1

x j.

The corresponding sequence of partial sums is the sequence (Sk)k∈Z>0 defined by

Sk =

k∑
j=1

x j.

Let x0 ∈ Rn. The series:
(i) converges to x0, and we write

∑
∞

j=1 x j = x0, if the sequence of partial sums
converges to x0;

(ii) has x0 as a limit if it converges to x0;
(iii) is convergent if it converges to some member of Rn;
(iv) converges absolutely, or is absolutely convergent, if the series

∞∑
j=1

∥x j∥Rn

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge;
(vii) has a limit that exists if lim j→∞ S j ∈ Rn. •

We have the following correspondence between convergence and absolute con-
vergence.

1.2.8 Proposition (Absolutely convergent series are convergent) If a series
∑
∞

j=1 xj is
absolutely convergent, then it is convergent.

Proof Let ϵ ∈ R>0 and let N ∈ Z>0 be such that
∞∑

j=N

∥x j∥Rn < ϵ;

this is possible by absolute convergence (why?). Let k, l ≥ N with l > k and compute∥∥∥∥ l∑
j=k+1

x j

∥∥∥∥ ≤ k∑
j=l+1

∥x j∥Rn ≤

∞∑
j=N

∥x j∥Rn < ϵ,

showing that the sequence of partial sums is Cauchy. By Theorem 1.2.5 it follows that
the sequence is convergent. ■
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The importance of the concept of absolute convergence is perhaps not perfectly
clear at a first glance. One of the reasons it is important is that absolutely convergent
series have the property that if you reorder their terms in an arbitrary way, the
resulting series still converges and converges to the same limit. This is shown for
real series in Theorem I-2.4.5 and is explored in detail in a more general setting in
Section III-3.4.2.

The following property of absolutely convergent series is often important,

1.2.9 Proposition (Swapping summation and norm) For a sequence (xj)j∈Z>0 , if the series
S =

∑
∞

j=1 xj is absolutely convergent, then∥∥∥∥ ∞∑
j=1

xj

∥∥∥∥
Rn
≤

∞∑
j=1

∥xj∥Rn .

Proof Define

S1
m =

∥∥∥∥ m∑
j=1

x j

∥∥∥∥
Rn
, S2

m =

m∑
j=1

∥x j∥Rn , m ∈ Z>0.

By Exercise 1.2.1 we have S1
m ≤ S2

m for each m ∈ Z>0. Moreover, by Proposition 1.2.8
and Theorem 1.2.5 the sequences (S1

m)m∈Z>0 and (S2
m)m∈Z>0 are Cauchy sequences inRn

and so converge. It is then clear that

lim
m→∞

S1
m ≤ lim

m→∞
S2

m,

which is the result. ■

One can also talk about multiple series inRn. The definitions are just like those
in Section I-2.4.5 for multiple series in R. We shall also give these definitions in a
more general setting in Section III-3.4.4, so the reader can refer ahead if need be.

We can also give results analogous to those in Section I-2.3.6 for series in R.
First we give some notation for products of series.

1.2.10 Definition (Scalar multiplication of series) Let S =
∑
∞

j=0 x j be a series in Rn and
let s =

∑
∞

j=0 a j be series in R.

(i) The product of s and S is the double series
∑
∞

j,k=0 a jvk.

(ii) The Cauchy product of s and S is the series
∑
∞

k=0

(∑k
j=0 a jvk− j

)
. •

Now we can state the interaction between convergence of series and the vector
space operations.

1.2.11 Proposition (Algebraic operations on series) Let S =
∑
∞

j=0 xj and T =
∑
∞

j=0 yj be
series inRn converging to X0 and Y0, respectively, let s =

∑
∞

j=0 aj be a series inF converging
to A0, and let a ∈ F. Then the following statements hold:

(i) the series
∑
∞

j=0 axj converges to aX0;
(ii) the series

∑
∞

j=0(xj + yj) converges to X0 + Y0;
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(iii) if s and S are absolutely convergent, then the product of s and S is absolutely
convergent and converges to A0X0;

(iv) if s and S are absolutely convergent, then the Cauchy product of s and S is absolutely
convergent and converges to A0X0;

(v) if s or S are absolutely convergent, then the Cauchy product of s and S is convergent
and converges to A0X0.

Proof The proof is identical, except for slight notational changes, to that for Proposi-
tion III-3.4.10. It also bears a resemblance to the proof of Proposition I-2.4.30. Thus
we do not repeat the proof here. ■

1.2.3 Open and closed balls, rectangles

Note that the definition of open (and therefore closed) sets in R relies on the
absolute value function. Therefore, since the absolute value function has an appro-
priate generalisation toRn as the Euclidean norm, the ideas of open and closed sets
carry over to Rn. The key idea is the generalisation of the notion of an open ball as
seen in Example III-1.1.2–3. Here we simply make the following definition.

1.2.12 Definition (Open ball, closed ball) Let x0 ∈ Rn and let r ∈ R≥0.
(i) The open ball centred at x0 of radius r is the set

Bn(r, x0) = {x ∈ Rn
| ∥x − x0∥Rn < r}.

(ii) The closed ball centred at x0 of radius r is the set

Bn(r, x0) = {x ∈ Rn
| ∥x − x0∥Rn ≤ r}. •

For example, in the case when n = 1, we have

B1(r, x0) = (x0 − r, x0 + r), B1(r, x0) = [x0 − r, x0 + r].

Thus open and closed balls can be thought of as generalisations of open and closed
intervals. In Figure 1.2 we depict how one should think of open and closed balls.

1.2.13 Notation (“Balls” versus “spheres”) Note that we have defined a ball of radius
r as containing all points that are a distance at most r from the centre. It is also
interesting to talk about the points that are a distance exactly r from the centre.
Thus we define

S(r, x0) = {x ∈ Rn
| ∥x∥Rn = r},

which is the sphere of radius r and centre x0. In common language, “sphere” is
often used where we mean “ball.” The reader should be aware of our precise
convention as we will never violate it, even casually. •

Another natural generalisation of an interval is the following.
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x0 x0

r r

Figure 1.2 Open (left) and closed (right) balls in Rn

1.2.14 Definition (Rectangle, cube) A rectangle in Rn is a subset of the form

R = I1 × · · · × In

where I1, . . . , In ⊆ R are intervals. A rectangle R = I1 × · · · × In is fat if int(I j) , ∅
for each j ∈ Z>0. If each of the intervals I1, . . . , I+n is bounded and has the same
length, the resulting rectangle is called a cube. •

A rectangle is, somehow, a more faithful generalisation of the notion of an
interval, it being a product of intervals. Both balls (as we have defined then) and
rectangles can serve as the building blocks for what we do in the remainder of this
section. This is made precise only after one knows a little about topology and norm
topologies; we refer to Section III-3.1 for more details. For now we simply stick to
using balls to define many of the useful structural properties of Rn.

However, since we will use rectangles in Section 1.6 to define the Riemann
integral, let us engage in a discussion of some useful constructions involving
rectangles. These are direct generalisations of corresponding notions for intervals.

1.2.15 Definition (Partition of a compact rectangle) If

R = [a1, b1] × · · · × [an, bn],

with a j < b j, j ∈ {1, . . . ,n} is a fat compact rectangle, a partition of R is an n-
tuple P = (P1, . . . ,Pn) where P j = (I j1, . . . , I jk j) is a partition of the interval [a j, b j],
j ∈ {1, . . . ,n}. The rectangles

Rl1,...,ln = I1l1 × · · · × Inln , l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n},

are the subrectangles of the partition. •

Thus the partition is applied to each of the coordinate axes of the rectangle R.
In Figure 1.3 we depict a partition of a two-dimensional rectangle. Note that

R =
◦⋃

l j∈{1,...,k j}

j∈{1,...,n}

Rl1,...,ln .
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Figure 1.3 A partition of a two-dimensional rectangle

As with a partition of an interval we can define a “length” of a partition P =
(P1, . . . ,Pn). We suppose that EP j = (x j0, . . . , x jk j) and then define

|P| = min{|x jl − x jm| | j ∈ {1, . . . ,n}, l ∈ {1, . . . , k j}}.

Thus |P| is the length of the smallest side of each of the rectangles whose union is
R.

It is also possible to say when one partition is contained in another.

1.2.16 Definition (Refinement of a partition) Let R ⊆ Rn be a fat rectangle and let
P = (P1, . . . ,Pn) and P′ = (P′1, . . . ,P

′

n) be partitions of R. Then P′ is a refinement of
P if P′j is a refinement of P j for each j ∈ {1, . . . ,n}. •

The idea is that each of the rectangles from P′ is a subset of a rectangle from P.

1.2.4 Open and closed subsets

We now use open balls to define the notion of open and closed subsets of Rn,
just as we used intervals in Section I-2.5.1 to define open and closed subsets ofR.

1.2.17 Definition (Open and closed sets in Rn) A subset A ⊆ Rn

(i) is open if, for every x ∈ A, there exists ϵ ∈ R>0 such that Bn(ϵ, x) ⊆ A and
(ii) is closed if Rn

\ A is open. •

1.2.18 Remark (Use of the words “topology” and “topological”) We shall on occasion,
and sometimes more frequently than that, make use of words like “topology”
and “topological” in our discussion, although we will not formally introduce such
terminology until Chapter III-1. The way to read our use of such words is this: They
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refer to things broadly related to the use of open subsets of Rn. As we shall see,
almost everything we shall say in this chapter depends in some way on open sets,
their definition, and their properties. This is exactly what the study of topology
consists of. •

The following properties of open and closed sets arise in the general presenta-
tion of topological spaces in Chapter III-1.

1.2.19 Proposition (Properties of open and closed sets) For an arbitrary collection
(Ua)a∈A of open sets and an arbitrary collection (Cb)b∈B of closed sets the following state-
ments hold:

(i) ∪a∈AUa is open;
(ii) ∩b∈BCb is closed.

Moreover, for open sets U1 and U2 and closed sets C1 and C2, the following statements
hold:

(iii) U1 ∩U2 is open;
(iv) C1 ∪ C2 is closed.

Proof This is Exercise 1.2.3. ■

As with open subsets of R the language “neighbourhood” is often useful.

1.2.20 Definition (Neighbourhood) A neighbourhood of x ∈ Rn is an open set U for which
x ∈ U. More generally, a neighbourhood of a subset A ⊆ Rn is an open set U for
which A ⊆ U. •

Many of the properties of open sets in R also hold for open subsets of Rn.

1.2.21 Proposition (Open subsets of Rn are unions of open balls) If U ⊆ Rn is a
nonempty open set then U is a countable union of open balls.

Proof Let x ∈ U so that there exists rx ∈ R>0 for which Bn(rx, x) ⊆ U. By Propo-
sition I-2.2.15 there exists qx ∈ Q>0 such that qx < rx. Therefore, Bn(qx, x) ⊆ U.
Also by Proposition I-2.2.15 there exists qx ∈ R

n with rational components such that
∥x − qx∥Rn <

qx
s . For y ∈ Bn( qx

2 , qx) we have

∥y − x∥Rn ≤ ∥y − qx∥Rn + ∥qx − x∥Rn <
qx

2
+

qx

2
= qx,

and so y ∈ Bn(qx, x) ⊆ U. Thus Bn( qx
2 , qx) is a ball of rational radius centred at a point

with rational components, contained in U and containing x. Doing this for each x gives
a collection of open balls of rational radius centred at points with rational components
that covers U. The result will follow is we can show that the set of balls with rational
radius with centres having rational components is countable. For fixed x ∈ Rn the set
of balls centred at x with rational radius is certainly countable since Q>0 is countable.
The subset Qn

⊆ Rn is also countable by since it has cardinality n · card(Q) which is
equal to card(Q) by Theorem I-1.7.17(ii). Thus the set of balls with rational radius
centred at points with rational coordinates is a countable union of countable sets. Such
sets are countable by Proposition I-1.7.16. ■

result about unions of

rectangles?
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1.2.5 Interior, closure, boundary, etc.

The definitions and results here are similar to those forR given in Section I-2.5.3.
Moreover, they will be discussed in a more general setting in Section III-3.6.2. The
proofs in the most general setting in Section III-3.6.2 are virtually identical to the
proofs in the least general case in Section I-2.5.3. Therefore, we elect to omit
the proofs in this section, and merely state the results for reference. Readers
unable to translate the results from Section I-2.5.3 to this section can refer ahead
to Section III-3.6.2; the only difference between the proofs in that section and
what would appear here are trivial differences in notation. Moreover, examples,
discussion, and motivation can be found in Section I-2.5.3.

1.2.22 Definition (Accumulation point, cluster point, limit point) For a subset A ⊆ Rn,
a point x ∈ Rn is:

(i) an accumulation point for A if, for every neighbourhood U of x, the set
A ∩ (U \ {x}) is nonempty;

(ii) a cluster point for A if, for every neighbourhood U of x, the set A ∩ U is
infinite;

(iii) a limit point of A if there exists a sequence (x j) j∈Z>0 in A converging to x.
The set of accumulation points of A is called the derived set of A, and is denoted
by der(A). •

In Remark I-2.5.12 we made some comments about conventions concerning the
words “accumulation point,” “cluster point,” and “limit point.” Those remarks
apply equally here.

1.2.23 Proposition (“Accumulation point” equals “cluster point”) For a set A ⊆ Rn,
x ∈ Rn is an accumulation point for A if and only if it is a cluster point for A.

1.2.24 Proposition (Properties of the derived set) For A,B ⊆ Rn and for a family of subsets
(Ai)i∈I of Rn, the following statements hold:

(i) der(∅) = ∅;
(ii) der(Rn) = Rn;
(iii) der(der(A)) = der(A);
(iv) if A ⊆ B then der(A) ⊆ der(B);
(v) der(A ∪ B) = der(A) ∪ der(B);
(vi) der(A ∩ B) ⊆ der(A) ∩ der(B).
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1.2.25 Definition (Interior, closure, and boundary) Let A ⊆ Rn.
(i) The interior of A is the set

int(A) = ∪{U | U ⊆ A, U open}.

(ii) The closure of A is the set

cl(A) = ∩{C | A ⊆ C, C closed}.

(iii) The boundary of A is the set bd(A) = cl(A) ∩ cl(Rn
\ A). •

1.2.26 Proposition (Characterisation of interior, closure, and boundary) For A ⊆ Rn,
the following statements hold:

(i) x ∈ int(A) if and only if there exists a neighbourhood U of x such that U ⊆ A;
(ii) x ∈ cl(A) if and only if, for each neighbourhood U of x, the set U ∩A is nonempty;
(iii) x ∈ bd(A) if and only if, for each neighbourhood U of x, the sets U ∩ A and

U ∩ (Rn
\A) are nonempty.

1.2.27 Proposition (Properties of interior) For A,B ⊆ Rn and for a family of subsets (Ai)i∈I

of Rn, the following statements hold:
(i) int(∅) = ∅;
(ii) int(Rn) = Rn;
(iii) int(int(A)) = int(A);
(iv) if A ⊆ B then int(A) ⊆ int(B);
(v) int(A ∪ B) ⊇ int(A) ∪ int(B);
(vi) int(A ∩ B) = int(A) ∩ int(B);
(vii) int(∪i∈IAi) ⊇ ∪i∈I int(Ai);
(viii) int(∩i∈IAi) ⊆ ∩i∈I int(Ai).
Moreover, a set A ⊆ Rn is open if and only if int(A) = A.

1.2.28 Proposition (Properties of closure) For A,B ⊆ Rn and for a family of subsets (Ai)i∈I

of Rn, the following statements hold:
(i) cl(∅) = ∅;
(ii) cl(Rn) = Rn;
(iii) cl(cl(A)) = cl(A);
(iv) if A ⊆ B then cl(A) ⊆ cl(B);
(v) cl(A ∪ B) = cl(A) ∪ cl(B);
(vi) cl(A ∩ B) ⊆ cl(A) ∩ cl(B);
(vii) cl(∪i∈IAi) ⊇ ∪i∈I cl(Ai);
(viii) cl(∩i∈IAi) ⊆ ∩i∈I cl(Ai).
Moreover, a set A ⊆ Rn is closed if and only if cl(A) = A.
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1.2.29 Proposition (Joint properties of interior, closure, boundary, and derived set)
For A ⊆ Rn, the following statements hold:

(i) Rn
\ int(A) = cl(Rn

\A);
(ii) Rn

\ cl(A) = int(Rn
\A).

(iii) cl(A) = A ∪ bd(A);
(iv) int(A) = A − bd(A);
(v) cl(A) = int(A) ∪ bd(A);
(vi) cl(A) = A ∪ der(A);
(vii) Rn = int(A) ∪ bd(A) ∪ int(Rn

\A).

We close this section by defining a useful notion related to the topics of this
section.

1.2.30 Definition (Dense subset) A subset D ⊆ Rn is dense if cl(D) = Rn. •

There is a simple example of a countable dense subset of Rn.

1.2.31 Example (Countable dense subset) The set Qn is a dense subset of Rn. To verify
this one needs only, for x ∈ Rn, to construct a sequence (q j) j∈Z>0 converging to
x. That this is possible follows from the fact that Q ⊆ R is dense, along with
Proposition 1.2.4. Moreover, note that Qn is countable by Theorem I-1.7.17. •

1.2.6 Compact subsets

The notion of compactness, relying as it does only on the idea of an open set,
is transferable from R to Rn, and indeed to the general setting of Chapter III-1 (see
Section III-1.6). That is to say, the idea of an open cover of a subset of Rn transfers
directly from R, and, therefore, the definition of a compact set as being a set for
which every open cover possesses a finite subcover also generalises. In this section
we explore the details of this for Rn.

We begin with some notions associated to open covers.

1.2.32 Definition (Open cover of a subset of Rn) Let A ⊆ Rn.
(i) An open cover for A is a family (Ui)i∈I of open subsets of Rn having the

property that A ⊆ ∪i∈IUi.
(ii) A subcover of an open cover (Ui)i∈I of A is an open cover (V j) j∈J of A having

the property that (V j) j∈J ⊆ (Ui)i∈I. •

The following property of open covers of subsets of Rn is useful.

1.2.33 Lemma (Lindelöf Lemma for Rn) If (Ui)i∈I is an open cover of A ⊆ Rn, then there
exists a countable subcover of A.
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Proof Let B = {Bn(r, x) | r ∈ Q, x ∈ Qn
}. Note that B is a countable union of

countable sets, and so is countable by Proposition I-1.7.16 (also see the last part of the
proof of Proposition 1.2.21). Therefore, we can writeB = (Bn(r j, x j)) j∈Z>0 . Now define

B ′ = {Bn(r j, x j) | Bn(r j, x j) ⊆ Ui for some i ∈ I}.

Let us writeB ′ = (Bn(r jk , x jk))k∈Z>0 . We claim thatB ′ covers A. Indeed, if x ∈ A then
x ∈ Ui for some i ∈ I. Then there exists k ∈ Z>0 such that x ∈ Bn(r jk , x jk) ⊆ Ui. Now, for
each k ∈ Z>0, let ik ∈ I satisfy Bn(r jk , x jk) ⊆ Uik . Then the countable collection of open
sets (Uik)k∈Z>0 clearly covers A sinceB ′ covers A. ■

Now we define the important notion of compactness, along with some other
related useful concepts.

1.2.34 Definition (Bounded, compact, and totally bounded in Rn) A subset A ⊆ Rn is:

(i) bounded if there exists M ∈ R>0 such that A ⊆ Bn(M, 0);
(ii) compact if every open cover (Ui)i∈I of A possesses a finite subcover;
(iii) precompact3 if cl(A) is compact;
(iv) totally bounded if, for every ϵ ∈ R>0 there exists x1, . . . , xk ∈ Rn such that

A ⊆ ∪k
j=1B

n(ϵ, x j). •

The simplest characterisation of compact subsets of Rn is the following. We
shall freely interchange our use of the word compact between the definition given
in Definition 1.2.34 and the conclusions of the following theorem.

1.2.35 Theorem (Heine–Borel Theorem in Rn) A subset K ⊆ Rn is compact if and only if
K is closed and bounded.

Proof We first prove a couple of lemmata.

1 Lemma If K ⊆ Rm is compact and if L ⊆ Rn is compact then K × L ⊆ Rm+n is compact.

Proof Let us denote points in Rm+n by (x, y) ∈ Rm
×Rn.

Let (Ua)a∈A be an open cover of K × L. For (x, y) ∈ K × L, let a(x, y) ∈ A be such
that (x, y) ∈ Ua(x,x). Let V(x,y) ⊆ R

m and W(x,y) ⊆ R
n be open sets such that x ∈ V(x,y),

y ∈W(x,y), and V(x,y) ×W(x,y) ⊆ Ua(x,y).
We claim that, for fixed x ∈ K, (W(x,y))y∈L is an open cover of L. Indeed, if y ∈ L,

then (x, y) ∈ K × L and so (x, y) ∈ Ua(x,y). By construction, we have y ∈ W(x,y), giving
the claim. By compactness of L, let k(x) ∈ Z>0 and y(x)1, . . . , y(x)k(x) ∈ L be such that
L ⊆ ∪k(x)

j=1Wx,y j(x).

Let Vx = ∩
k(x)
j=1V(x,y j(x)), noting that Vx is open by Proposition 1.2.19. Moreover,

(Vx)x∈K covers K since x ∈ Vx. Let x1, . . . , xl ∈ K be such that K ⊆ ∪l
r=1Vxr .

Finally, we claim that

{Ua(xr,y(xr) j) | r ∈ {1, . . . , l}, j ∈ {1, . . . , k(xr)}}

3What we call “precompact” is very often called “relatively compact.” However, we shall use
the term “relatively compact” for something different.
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is an open cover of K × L. Indeed, if (x, y) ∈ K × L, then x ∈ Vxr for some r ∈ {1, . . . , l}.
Moreover, y ∈W(xr,y(xr) j) for some j ∈ {1, . . . , k(xr)}. Therefore,

(x, y) ∈ Vxr ×W(xr,y(xr) j) ⊆ V(xr,y(xr) j) ×W(xr,y(xr) j) ⊆ Ua(xr,y(xr) j),

giving the desired conclusion. ▼

2 Lemma If A is compact and if B ⊆ A is closed, then B is compact.

Proof Let (Ui)i∈I be an open cover for B and define V = Rm
\ B. Since B is closed,

(Ui)i∈I ∪ (V) is an open cover for A. Since A is compact there exists i1, . . . , ik ∈ I such
that A ⊆ ∪k

j=1Ui j ∪ V. Therefore, B ⊆ ∪k
j=1Uik , giving a finite subcover of B. ▼

Suppose that K is closed and bounded. Let R ∈ R>0 be sufficiently large that
K ⊆ [−R,R] × · · · × [−R,R]. By Theorem I-2.5.27 it follows that [−R,R] is compact. By
induction using Lemma 1 it follows that [−R,R]×· · ·× [−R,R] is compact. By Lemma 2
it follows that K is compact.

Next suppose that K is compact. For ϵ ∈ R>0 consider the open cover (Bn(ϵ, x))x∈K
of K. Since K is compact there exists x1, . . . , xk ∈ K such that K ⊆ ∪k

j=1Bn(ϵ, x j). If

M0 = max{∥x j − xl∥Rn | j, l ∈ {i, . . . , k}} + 2ϵ,

then it is easy to see that A ⊆ Bn(M, 0) for any M > M0; thus K is bounded. Now
suppose that K is compact but not closed. Then, by Proposition 1.2.28, there exists
x0 ∈ cl(K) \ K. For each x ∈ K let rx ∈ R>0 be such that Bn(ϵx, x) ∩ Bn(ϵx, x0) = ∅.
Then (Bn(ϵx, x))x∈K is an open cover of K. Therefore, there exists x1, . . . , xk ∈ K such
that K ⊆ ∪k

j=1Bn(ϵx j , x j). But this means that K does not intersect the open subset

∩
k
j=1Bn(ϵx j , x0), so contradicting the existence of x ∈ cl(K) \ K. Thus K = cl(K), giving

the result. ■

The Heine–Borel Theorem has the following useful corollary.

1.2.36 Corollary (Closed subsets of compact sets in Rn are compact) If A ⊆ Rn is
compact and if B ⊆ A is closed, then B is compact.

Proof This was proved as Lemma 2 in the proof of the Heine–Borel Theorem. ■

As we warned the reader in Section I-2.5.4, care must be taken when generalis-
ing the notion of compactness from Rn to the more general notion of a topological
space as defined in Chapter III-1. A key fact is that compactness and closed and
boundedness are not generally equivalent. Perhaps the nicest illustration of this is
given in Theorem III-3.6.15 where it is shown that, for Banach spaces, this equiva-
lence happens only in finite dimensions.

The following result is another equivalent characterisation of compact subsets
of Rn, and is often useful.
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1.2.37 Theorem (Bolzano–Weierstrass Theorem in Rn) A subset K ⊆ Rn is compact if
and only if every sequence in K has a subsequence which converges in K.

Proof Suppose that there exists a sequence (x j) j∈Z>0 in K having no convergent subse-
quence. This means that for each j ∈ Z>0 there exists ϵ j ∈ R>0 such that xk < Bn(ϵ j, x j)
for k , j. Let X ≜ {x j | j ∈ Z>0}. The open cover (Bn(ϵ j, x j)) j∈Z>0 of X possesses no
finite subcover and so X is not compact. We claim that the set is closed. Indeed, if
x ∈ cl(X) it follows by Proposition 1.2.26 that x is the limit of a sequence in X. But the
only such sequences are those that are eventually constant, and so the claim follows.
By Corollary 1.2.36 it now follows that K is not compact since it possesses a closed but
not compact subset.

Next suppose that every sequence (x j) j∈Z>0 in K possesses a convergent subse-
quence. Let (Ui)i∈I be an open cover of K, and by Lemma 1.2.33 choose a countable
subcover which we denote by (U j) j∈Z>0 . Now suppose that every finite subcover of
(U j) j∈Z>0 does not cover K. This means that, for every k ∈ Z>0, the set Ck = K \

(
∪

k
j=1U j

)
is nonempty. Thus we may define a sequence (xk)k∈Z>0 in Rn such that xk ∈ Ck. Since
the sequence (xk)k∈Z>0 is in K, it possesses a convergent subsequence (xkm)m∈Z>0 , by
hypotheses. Let x be the limit of this subsequence. Since x ∈ K and since K = ∪ j∈Z>0U j,
x ∈ Ul for some l ∈ Z>0. Since the sequence (xkm)m∈Z>0 converges to x, it follows that
there exists N ∈ Z>0 such that xkm ∈ Ul for m ≥ N. But this contradicts the definition of
the sequence (xk)k∈Z>0 , forcing us to conclude that our assumption is wrong that there
is no finite subcover of K from the collection (U j) j∈Z>0 . ■

The following property of compact subsets of Rn is useful.

1.2.38 Theorem (Lebesgue number for compact sets) Let K ⊆ Rn be a compact set. Then
for any open cover (Uα)α∈A of K, there exists δ ∈ R>0, called the Lebesgue number of K,
such that, for each x ∈ K, there exists α ∈ A such that Bn(δ, x) ∩ K ⊆ Uα.

Proof Suppose there exists an open cover (Uα)α∈A such that, for all δ ∈ R>0, there
exists x ∈ K such that none of the sets Uα, α ∈ A, contains Bn(δ, x)∩K. Then there exists
a sequence (x j) j∈Z>0 in K such that{

α ∈ A
∣∣∣ Bn( 1

j , x j) ⊆ Uα

}
= ∅

for each j ∈ Z>0. By the Bolzano–Weierstrass Theorem there exists a subsequence
(x jk)k∈Z>0 that converges to a point, say x, in K. Then there exists ϵ ∈ R>0 and α ∈ A
such that Bn(ϵ, x) ⊆ Uα. Now let N ∈ Z>0 be sufficiently large that ∥x jk − x∥Rn < ϵ

2 for
k ≥ N and such that 1

jN
< ϵ

2 . Now let k ≥ N. Then, if y ∈ Bn( 1
jk
, x jk) we have

∥y − x∥Rn = ∥y − x jk + x jk − x∥Rn ≤ ∥y − x jk∥Rn + ∥x − x jk∥Rn < ϵ.

Thus we arrive at the contradiction that Bn( 1
jk
, x jk) ⊆ Uα. ■

The following result is useful and is sometimes known as the Cantor Intersec-
tion Theorem.
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1.2.39 Proposition (Countable intersections of nested compact sets are nonempty)
Let (Kj)j∈Z>0 be a collection of nonempty compact subsets of Rn satisfying Kj+1 ⊆ Kj. Then
∩j∈Z>0Kj is nonempty.

Proof It is clear that K = ∩ j∈Z>0K j is bounded, and moreover it is closed by Exer-
cise 1.2.3. Thus K is compact by the Heine–Borel Theorem. Let (x j) j∈Z>0 be a sequence
for which x j ∈ K j for j ∈ Z>0. This sequence is thus a sequence in K1 and so, by the
Bolzano–Weierstrass Theorem, has a subsequence (x jk)k∈Z>0 converging to x ∈ K1. The
sequence (x jk+1)k∈Z>0 is then a sequence in K2 which is convergent, so showing that
x ∈ K2. Similarly, one shows that x ∈ K j for all j ∈ Z>0, giving the result. ■

Finally, let us indicate the relationship between the notions of relative compact-
ness and total boundedness. We see that for Rn these concepts are the same. This
may not be true in general.example in Chapter III-1?

1.2.40 Proposition (“Precompact” equals “totally bounded” in Rn) A subset of Rn is
precompact if and only if it is totally bounded.

Proof Let A ⊆ Rn.
First suppose that A is precompact. Since A ⊆ cl(A) and since cl(A) is bounded

by the Heine–Borel Theorem, it follows that A is bounded. We claim that A is then
totally bounded. Let M ∈ R>0 be such that A ⊆ Bn(M, 0) so that cl(A) ⊆ Bn(M, 0)
by Proposition 1.2.28(iv). Thus cl(A) is closed and bounded, and so compact by the
Heine–Borel Theorem. For ϵ ∈ R>0 note that (Bn(ϵ, x))x∈cl(A) is an open cover of cl(A).
Thus there exists a finite collection x1, . . . , xk ∈ cl(A) such that cl(A) ⊆ ∪k

j=1Bn(ϵ, x j).
Since A ⊆ cl(A) this shows that A is totally bounded.

Now suppose that A is totally bounded. For ϵ ∈ R>0 let x1, . . . , xk ∈ R
n have the

property that A ⊆ ∪k
j=1Bn(ϵ, x j). If

M0 = max{∥x j − xl∥Rn | j, l ∈ {i, . . . , k}} + 2ϵ,

then it is easy to see that A ⊆ Bn(M, 0) for any M > M0. Then cl(A) ⊆ Bn(M, 0) by
part (iv) of Proposition 1.2.28, and so cl(A) is bounded. Since cl(A) is closed, it follows
from the Heine–Borel Theorem that A is precompact. ■

We close this section with a discussion of a notion of the size of a set.

1.2.41 Definition (Diameter of a set) The diameter of a set A ⊆ Rn is

diam(A) = sup{∥x1 − x2∥Rn | x1, x2 ∈ A}. •

The following properties of the diameter are useful.

1.2.42 Proposition (Properties of diameter) For A ⊆ Rn the following statements hold:
(i) diam(A) < ∞ if and only if A is bounded;
(ii) diam(cl(A)) = diam(A).
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Proof (i) Suppose that diam(A) = D ∈ R>0. Let x0 ∈ A and define M = D + ∥x0∥Rn .
Then, for x ∈ A we have

∥x∥Rn = ∥x − x0∥Rn + ∥x0∥Rn < M

and so A ⊆ Bn(M, 0).
Now suppose that A is bounded and let M ∈ R>0 be such that A ⊆ Bn(M, 0). Let

x1, x2 ∈ A so that
∥x1 − x2∥Rn ≤ ∥x1∥Rn + ∥x2∥Rn < 2M.

Therefore,
sup{∥x1 − x2∥Rn | x1, x2 ∈ A} ≤ 2M,

and so diam(A) ≤ 2M.
(ii) Let x1, x2 ∈ cl(A) and let (x1, j) j∈Z>0 and (x2, j) j∈Z>0 be sequences in A converging

to x1 and x2, respectively. Then, for each j ∈ Z>0,

∥x1, j − x2, j∥Rn ≤ diam(A),

which gives
∥x1 − x2∥Rn = lim

j→∞
∥x1, j − x2, j∥Rn ≤ diam(A),

where we have swapped the limit with the norm using continuity of the norm () and what?

Theorem 1.3.2. ■

1.2.7 Connected subsets

It is pretty easy to characterise connectivity in R, as we saw in Section I-2.5.5.
Here we discuss connectedness in Rn, and as we shall see things are a little more
complicated in this case.

One of the reasons why connectedness is more complicated in dimensions
higher than one is because there are two natural distinct notions of connectivity.
As we shall see, these agree in one dimension, but not in higher dimensions.

The first notion we consider is fairly intuitive. It relies on the notion of paths
in Euclidean spaces which are discussed in Section 2.2.1. Readers who cannot
imagine what is the definition of a path can refer ahead.

1.2.43 Definition (Path-connected subset of Rn) A subset A ⊆ Rn is path-connected if,
for every x0, x1 ∈ Rn there exists a path γ : [a, b] → Rn such that γ(s) ∈ A for every
s ∈ [a, b] and such that γ(a) = x0 and γ(b) = x1. •

The idea is that the map γ is to be thought of as a curve, or path, from x1 to
x2. Path-connectedness of A is the property of going from any point in A to any
other point in A in a continuous manner while remaining in A. This is depicted in
Figure 1.4.

Besides this fairly intuitive notion of path-connectedness (which, as we shall
see, agrees with our notion of connectedness from Definition I-2.5.33) we can
duplicate the definition we have already seen for subsets of R.
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Figure 1.4 A depiction of a path-connected set

1.2.44 Definition (Connected subset ofRn) Subsets A,B ⊆ Rn are separated if A∩cl(B) =
∅ and cl(A) ∩ B = ∅. A subset S ⊆ Rn is disconnected if S = A ∪ B for nonempty
separated subsets A and B. A subset S ⊆ Rn is connected if it is not disconnected. •

For subsets ofR (i.e., in the case when n = 1) we have the simple characterisation
of connected sets from Theorem I-2.5.34. For subsets of Rn with n > 1 there is no
such elementary characterisation. Indeed, as we shall see in Example 1.2.46 below,
some connected sets can be pretty complicated, and not “obviously” connected.

But before we get to this, let us give the relationship between connectedness
and path-connectedness.

1.2.45 Proposition (Path-connected sets are connected) If A ⊆ Rn is path-connected
then it is connected.

Proof Suppose that A is not connected but is path-connected. Let A = A1 ∪ A2 with
A1 and A2 nonempty separated sets. Let x1 ∈ A1 and x2 ∈ A2 and let γ : [0, 1] → R2

be continuous, A-valued, and have the property that γ(0) = x1 and γ(1) = x2. Define
B1 = γ−1(A1) and B2 = γ−1(A2). We claim that B1 and B2 are separated. Indeed, suppose
that B1 ∩ cl(B2) is nonempty and let s0 ∈ B1 ∩ cl(B2). Since s0 ∈ B1 we have γ(s0) ∈ A1.
Note that cl(B2) is closed and bounded, and so compact by the Heine–Borel Theorem.
By Proposition 1.3.29 it follows that γ(cl(B2)) is compact, and so in particular closed.
Since γ is continuous, since cl(B2) is closed, and since γ(cl(B2)) is closed, it follows
from Theorem 1.3.2 and Proposition 1.2.26 that γ(s0) ∈ γ(cl(B2)). But this implies
that γ(s0) ∈ cl(A2) and so this contradicts the connectedness of A. Thus A cannot be
path-connected. ■

1.2.46 Example (A set that is connected but not path connected) Let us consider the
subset S of R2 defined by

S = {(x, y) ∈ R2
| y = sin 1

x , x , 0} ∪ {(0, y) | y ∈ [−1, 1]}.
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Figure 1.5 The topologist’s sine curve

In Figure 1.5 we depict this subset which is sometimes called the topologist’s sine
curve. (Actually, usually the first set in the definition of S is what is the topologist’s
sine curve, and the set S is its closure.)

We first claim that S is connected. Let us write S = S1 ∪ S2 ∪ S3 with

S1 = {(x, y) ∈ R2
| y = sin 1

x , x > 0},

S2 = {(x, y) ∈ R2
| y = sin 1

x , x < 0},
S3 = {(0, y) | y ∈ [−1, 1]}.

It is evident that S1, S2, and S2 are path-connected since they are images of intervals
under continuous maps. Therefore, they are connected by Proposition 1.2.45. Thus
none of S1, S2, or S3 are the union of separated subsets. Moreover, since S is the
closure of S1 ∪ S2 (why?) it follows that S is connected by Exercise 1.2.6.

Next we claim that S is not path-connected. To see this, suppose that there exists
a continuous map γ : [0, 1]→ R2 taking values in S and such that γ(0) = ( 1

π , 0) and
γ(1) = (0, 0). Let

s∗ = inf{s ∈ [0, 1] | γ(s) ∈ {0} ×R}.

Such an s∗ exists since γ(1) = (0, 0) and so s∗ ≤ 1. Therefore, γ([0, s∗]) intersects the
y-axis at exactly one point. However, S3 ⊆ cl(γ([0, s∗]) (why?) which implies that
γ([0, s∗]) is not closed, and so not compact by the Heine–Borel Theorem. But this
contradicts the continuity of γ by Proposition 1.3.29. •

An important class of subsets where connectedness and path-connectedness
agree are open sets. Here one can connect points with particular paths called
polygonal paths. The reader can get the precise definition from Definition 2.2.6,
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although the intuition is easy: a polygonal path is formed from a finite collection
of line segments.

1.2.47 Theorem (Open connected sets are polygonally path connected) If U ⊆ Rn

is open and connected then, given x0, x1 ∈ U, there exists a polygonal path lying in U
connecting x0 and x1.

Proof Let x0 ∈ U and let Ax0 ⊆ U be the set of points that can be connected to x0 with a
polygonal path lying in U. We claim that Ax0 is a nonempty open set. Since U is open
there exists ϵ ∈ R>0 such that Bn(ϵ, x0) ⊆ U. If v ∈ Rn such that ∥v∥Rn = 1 then

x0 + sv ∈ Bn(ϵ, x0) ⊆ U, s ∈ [0, ϵ).

Thus Ax0 is not empty. Now let x ∈ Ax0 . Since x ∈ U there exists ϵ ∈ R>0 such that
Bn(ϵ, x) ⊆ U. Again, for any vector v ∈ Rn such that ∥v∥Rn = 1 we have

x + sv ∈ Bn(ϵ, x0) ⊆ U, s ∈ [0, ϵ).

Thus Bn(ϵ, x) ⊆ Ax0 since x0 can be connected to x by a polygonal path and every point
in Bn(ϵ, x) can be connected to x by a segment. This shows that Ax0 is open.

Next we claim that bd(Ax0)∩U = ∅. Indeed, let x ∈ bd(Ax0)∩U. Since x ∈ U there
exists ϵ ∈ R>0 such that Bn(ϵ, x) ⊆ U. Since x ∈ bd(Ax0) and by Proposition 1.2.26,
there exists x′ ∈ Bn(ϵ, x) such that x′ ∈ Ax0 . But then x can be connected to x′ by a
segment (just as in the preceding parts of the proof) and x0 can be connected to x′ by
a polygonal path, meaning that x0 can be connected to x by a polygonal path. Thus
x ∈ Ax0 ∩ bd(Ax0), contradicting the openness of Ax0 .

Let Bx0 = U \ Ax0 . We claim that Bx0 = ∅. Suppose otherwise. First we claim
that Bx0 is open. Let x ∈ Bx0 . Since x ∈ U there exists ϵ ∈ R>0 such that Bn(ϵ, x) ⊆ U.
As above, x can be connected to any point in Bn(ϵ, x) by a segment. This ensures
that Bn(ϵ, x) ∩ Ax0 = ∅ since otherwise this implies the existence of a polygonal path
connecting x0 to x. Thus Bn(ϵ, x) ⊆ Bx0 and so Bx0 is indeed open.

We next claim that bd(Bx0) ∩ U = ∅. Suppose otherwise and let x ∈ bd(Bx0) ∩ U.
Since x ∈ U there exists ϵ ∈ R>0 such that Bn(ϵ, x) ⊆ U. Since x ∈ bd(Bx0) and by
Proposition 1.2.26, there exists x′ ∈ Bn(ϵ, x) such that x′ ∈ Bx0 . This means, as we have
seen several times now, that x can be connected to x′ by a segment. This means x < Ax0

since otherwise this would imply the existence of a polygonal path from x0 to x′. Thus
x ∈ Bx0 ∩ bd(Bx0), contradicting the openness of Bx0 .

Since cl(Bx0) = Bx0 ∪ bd(Bx0) and cl(A) = Ax0 ∪ bd(Ax0), since bd(Ax0) ∩U = ∅, and
since bd(Bx0) ∩U = ∅, it follows that cl(Ax0) ∩ Bx0 = ∅ and Ax0 ∩ cl(Bx0) = ∅. Thus, by
assuming that Bx0 we show that U is a disjoint union of separated sets, contradicting
the connectedness of U. Thus we must have Bx0 = ∅ and so U = Ax0 , as desired. ■

The preceding proposition implies the following interesting result.

1.2.48 Corollary (Open connected sets are differentiably path connected) If U ⊆ Rn

is open and connected then, given x0, x1 ∈ U, there exists a differentiable path lying in U
connecting x0 and x1.
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Proof From Theorem 1.2.47 let γ be a polygonal path connecting x0 and x1. Let
y1, . . . , yk ∈ U be the points at which γ is not differentiable, i.e., the “corner” points of
the polygonal path. Now let ϵ ∈ R>0 be such that Bn(ϵ, y j) ⊆ U for each j ∈ {1, . . . , k}.
By Theorem 2.2.8 (or more precisely, by following the idea of the proof of that theorem
as depicted in Figure 2.4) there then exists a differentiable path γdiff connecting x0 with
x1 and that lies in U. ■

totally disconnected

sets

1.2.8 Subsets and relative topology

We have thus far been discussing properties of subsets of Rn. However, some-
times it is useful to discuss subsets of subsets, and the properties of the smaller
subset relative to the larger subset, not relative to Rn. We shall revisit this idea
in a more general (and in some sense, more suitable) setting in Section III-1.4.1;
one way to think of this section is that it gives s gentle introduction to the more
general material to come. We shall in this section make occasional and casual
use of the terminology “relative topology,” although it will not be defined until
Section III-1.4.1.

Relatively open and closed sets

The key is the following definition.

1.2.49 Definition (Relatively open and closed subsets) Let S ⊆ Rn and let A ⊆ S.
(i) The subset A ⊆ S is relatively open in S if, for every x ∈ A there exists ϵ ∈ R>0

such that Bn(ϵ, x) ∩ S ⊆ A.
(ii) The subset A ⊆ S is relatively closed in S if S \ A is relatively open in S. •

We shall often omit “in S” in “relatively open in S” when it is understood what
set S is being used.

Let us characterise the notion of relatively open and relatively closed sets in a
useful way.

1.2.50 Proposition (Characterisation of relatively open and closed subsets) For S ⊆
Rn and for A ⊆ S the following statements hold:

(i) A is relatively open in S if and only if there exists an open subset U ⊆ Rn such that
A = S ∩U;

(ii) A is relatively closed in S if and only if there exists a closed subset C ⊆ Rn such that
A = S ∩ C.

Proof (i) Suppose that A is relatively open and let x ∈ A. Let ϵx ∈ R>0 be such that
Bn(ϵx, x) ∩ S ⊆ A. Then U = ∪x∈ABn(ϵx, x) is open and has the property that A = S ∩U.

Conversely, let A = S ∩ U for an open set U. Then, for x ∈ A there exists ϵ ∈ R>0
such that Bn(ϵ, x) ⊆ U. Therefore, Bn(ϵ, x) ∩ S ⊆ U ∩ S = A.



52 1 Multiple real variables and functions of multiple real variables 2022/03/07

(ii) Suppose that A is relatively closed so that S \ A is relatively open. By the
previous part of the result, S \ A = S ∩U for an open subset U ⊆ Rn. Thus

A = S \ (S \ A) = S \ (S ∩ (U ∩ A)) = S ∩ (S \ (U ∩ A)) = S ∩ (Rn
\U),

using DeMorgan’s Laws. Taking C = Rn
\U gives the result.

Conversely, suppose that A = S ∩ C for a closed set C. Then S \ A = (Rn
\ C) ∩ S

so that S \ A is relatively open by the previous part of the result. Thus A is relatively
closed. ■

These ideas of relatively open and closed subsets seems simple, but some care
must be exercised in using them. Some examples illustrate the possible pitfalls.

1.2.51 Examples (Relatively open and closed subsets)
1. For any subset S ⊆ Rn, the subset S ⊆ S is always both relatively open and

relatively closed. It is also true that ∅ ⊆ S is also both open and closed.
2. Let S = (0, 1). Then, as in the preceding general example, S ⊆ S is closed. Note,

however, that S is not a closed subset of R.
3. Let S = [0, 1]. Then S ⊆ S is open although S is not an open subset of R.
4. Let us consider S = Z as a subset of R. We claim every subset of S is open.

Indeed, let A ⊆ Z and let x ∈ A. Then Bn( 1
2 , x) ∩ S = {x} ⊆ A, showing that A

is indeed open. A subset where every subset is open is called a discrete subset,
and agrees with the usual notion of a discrete subset; see Exercise 1.2.7.

5. Let us examine Q ⊆ R, and consider some of its open and closed sets.

(a) We claim that every singleton {q} ⊆ Q is not relatively open but is relatively
closed. Since {q} = {q}∩Q, {q} is relatively closed by Proposition 1.2.50. By
Proposition 1.2.50 it follows that a relatively open subset of Q containing
q must be of the form U ∩ Q where U is an open subset of R containing
q. Since U is a disjoint union of open intervals by Proposition I-2.5.6, any
relatively open subset of Q containing q will contain (a, b)Q for an open
interval (a, b) containing q. However, every subset ofQ of the form (a, b)∩Q
will contain infinitely many elements. Thus any relatively open subset of
Q containing q will contain infinitely many elements. In particular, {q} is
not relatively open. Thus Q is not discrete.

(b) We claim that for every q ∈ Q and for every ϵ ∈ R>0 there exists a neigh-
bourhood of q that is both open and closed and is contained in an interval
of length at most ϵ. Indeed, let r1 ∈ (q− ϵ

2 , q) and r2 ∈ (q, q+ ϵ
2 ) be irrational,

this being possible by Proposition I-2.2.17. We claim that (r1, r2) ∩ Q is
both relatively open and relatively closed. It is relatively open by Proposi-
tion 1.2.50. Note that

Q \ ((r1, r2) ∩Q) = ((−∞, r1] ∩Q) ∪ ([r2,∞) ∩Q)
= ((−∞, r1) ∩Q) ∪ ((r2,∞) ∩Q),
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the latter inequality since r1 and r2 are irrational. This shows, by Proposi-
tion 1.2.50, that Q \ ((r1, r2) ∩Q) is open, and so (r1, r2) ∩Q is closed. •

One can, in the expected way, define the notion of a neighbourhood in this
setup.

1.2.52 Definition (Relative neighbourhood) Let S ⊆ Rn. A relative neighbourhood of
x ∈ S is a relatively open subset U ⊆ S for which x ∈ U. More generally, a relative
neighbourhood of A ⊆ S is a relatively open set U ⊆ S for which A ⊆ U. •

Many of the notions we have given above for subsets ofRn also apply to subsets
of subsets of Rn. For example. . .

1.2.53 Definition (Accumulation point, cluster point, limit point) For S ⊆ Rn and for
A ⊆ S, a point x ∈ S is:

(i) an accumulation point for A in S if, for every relative neighbourhood U of x,
the set A ∩ (U \ x) is nonempty;

(ii) a cluster point for A in S if, for every relative neighbourhood U of x, the set
A ∩U is infinite;

(iii) a limit point of A in S if there exists a sequence (x j) j∈Z>0 in A converging to x.
The set of accumulation points of A in S is called the derived set of A, and is denoted
by derS(A). •

Relative interior, closure, and boundary

One can also define the notions of interior, closure, and boundary for subsets of
subsets.

1.2.54 Definition (Relative interior, closure, and boundary) Let S ⊆ Rn and let A ⊆ S.
(i) The relative interior of A in S is the set

intS(A) = ∪{U | U ⊆ A, U relatively open in S}.

(ii) The relative closure of A in S is the set

clS(A) = ∩{C | A ⊆ C ⊆ S, C relatively closed in S}.

(iii) The relative boundary of A in S is the set bdS(A) = clS(A) ∩ clS(S \ A). •

The properties of the interior, closure, and boundary given in Proposi-
tions 1.2.26, 1.2.27, 1.2.28, and 1.2.29 are also valid for the relative interior,
relative closure, and relative boundary. Indeed, they are valid in the far more
general context of topological spaces (see Chapter III-1). Thus we do not present
the results here, but we shall occasionally use them.

Let us give some examples to illustrate that these notions should be thought
about carefully in examples.
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1.2.55 Examples (Relative interior, closure, and boundary)
1. If S = (0, 1) then intS(S) = S and clS(S) = S since S is both open and closed. Note,

however, that cl(S) = [0, 1]. Also note that bdS(S) = ∅while bd(S) = {0, 1}.
2. If S = [0, 1] then intS(S) = S and clS(S) = S since S is both open and closed. Note,

however, that int(S) = (0, 1). Also note that bdS(S) = ∅while bd(S) = {0, 1}. •

For subsets the notion of denseness carries over in an obvious way.

1.2.56 Definition (Dense subset) If A ⊆ Rn a subset D ⊆ A is dense in A if clA(D) = A. •

Some example illustrate the notion of dense subsets.

1.2.57 Examples (Dense subsets)
1. The set Q ∩ [0, 1] is dense in [0, 1].
2. The set (0, 1) is dense in [0, 1]. •

Relatively compact sets

Let us now consider the matter of when a subset of a set is compact. The following
definition is the obvious one.

1.2.58 Definition (Relatively compact) Let A ⊆ Rn. A subset K ⊆ A is relatively compact4

if, for every family (Ui)i∈I of relatively open subsets of A such that K ⊆ ∪i∈IUi, there
exists i1, . . . , ik ∈ I such that K ⊆ ∪k

j=1Ui j . •

It turns out that this definition of relative compactness is the same as compact-
ness in the usual sense.

1.2.59 Proposition (Characterisation of relatively compact sets) Let A ⊆ Rn. A subset
K ⊆ A is relatively compact if and only if K is compact as a subset of Rn.

Proof First suppose that K is a relatively compact subset of A. Let (U′i )i∈I be a family
of open subsets of Rn such that K ⊆ ∪i∈IU′i . For each i ∈ I define Ui = U′i ∩ A, noting
that Ui is a relatively open subset of A by Proposition 1.2.50. Since K ⊆ ∪i∈IUi and
since K is relatively compact, there exists i1, . . . , ik ∈ I such that K ⊆ ∪k

j=1Ui j . Evidently

K ⊆ ∪k
j=1U′i j

and so K is a compact subset of Rn.
Next suppose that K is a compact subset of Rn. Let (Ui)i∈I be a family of relatively

open subsets of A such that K ⊆ ∪i∈IUi. By Proposition 1.2.50 let (U′i )i∈I be a family of
open subsets of Rn such that Ui = U′i ∩A for every i ∈ I. Clearly K ⊆ ∪i∈IU′i . Since K is
compact there exists i1, . . . , ik ∈ I such that K ⊆ ∪k

j=1U′i j
. By Proposition I-1.1.7 we have

K ⊆ (∪k
j=1U′i j

) ∩ A = ∪k
j=1Ui j ,

showing that K is relatively compact. ■

4This is not the usual meaning given to the words “relatively compact.” Most often, “relatively
compact” is used to refer to what we call “precompact.” However, we think that the meaning we
give to “relatively compact” here is far more natural.
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Let us use the preceding result to characterise relatively compact subsets of
Q ⊆ R.

1.2.60 Examples (Relatively compact subsets of Q) Let us examine some properties
of relatively compact subsets of Q.
1. A finite subset K ⊆ Q is easily seen to be compact; see Exercise 1.2.9.
2. We claim that if K ⊆ Q is compact then K has an isolated point, i.e., there exists a

point q ∈ K and a neighbourhood U of q such that U∩K = {q}. Indeed, suppose
that K has no isolated points. Since finite subsets ofQ are isolated and compact,
we can consider the case when K is countable. Let us enumerate the points in
K as K = {q j} j∈Z>0 . Let us take j1 = 1 and p1 = q j1 . As we saw in (1.2.51)–5, we
can find a sufficiently small relatively closed relative neighbourhood U1 of p1

such that K 1 U1. The subset V1 = K \U1 is relatively open and relatively closed
since U1 is relatively open and relatively closed. Moreover, V1 cannot be finite
since K has no isolated points. Denote

j2 = min{ j ∈ Z>0 | j > 1, q j < U1}

and p2 = q j2 . Since p2 ∈ V1 and since V1 is relatively open, by Proposition 1.2.50
we have that

inf{|p2 − q| | q ∈ U1} > 0.

Therefore, again using the construction of (1.2.51)–5, there exists a sufficiently
small relatively closed relative neighbourhood U2 of p2 such that U2 ∩ U1 = ∅
and V1 1 U2. Then define V2 = V1 \ U2. Again, since K has no isolated
points, V2 is not finite. This process can be carried out to define a sequence
( jk) j∈Z>0 of positive integers, a sequence (pk)k∈Z>0 of elements of K, and a sequence
(Uk)k∈Z>0 of pairwise disjoint subsets of K that are relatively open. We claim that
K ⊆ ∪k∈Z>0Uk. Indeed, suppose that qm ∈ K but qm < ∪k∈Z>0Uk for some m ∈ Z>0.
Denote

km = min{k ∈ Z>0 | jk > m}.

Note that qm < ∪
km−1
k=1 Uk. However, the definition of km is that it is the smallest

integer such that qkm < ∪
km−1
k=1 Uk. Since m < km, we arrive at a contradiction. Thus

the relatively open sets (Uk)k∈Z>0 cover K, but clearly admit no finite subcover
since they are pairwise disjoint. Thus subsets of Q with no isolated points
cannot be compact.

3. The question raised by the previous two points is: “Are all relatively compact
subsets ofQ comprised only of isolated points, or, equivalently, are all relatively
compact subsets of Q finite?” The answer is, “No.” For example, the set

K = {0} ∪ { 1k | k ∈ Z>0}

is relatively compact. To see this, by Proposition 1.2.59 and the Heine–Borel
Theorem we need only show that it is closed and bounded as a subset of R. It
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is clearly bounded. By Proposition 1.2.26 we can easily that cl(K) = K and so
K is closed. Thus this is an example of a relatively compact subset of Q with a
nonisolated point, since 0 is not isolated.

4. Finally, let us show that there are relatively compact subsets of Q having in-
finitely many nonisolated points. Let us define

K = {0} ∪ { 1k | k ∈ Z>0} ∪ {
1
j +

1
k | j, k ∈ Z>0}.

Let us first identity the accumulation points and limit of K.

1 Lemma The set of accumulation points of K is {0}∪ { 1k }k∈Z>0 and the set of limit points
of K is K.

Proof Let the sequence ( 1
jl
+ 1

kl
)l∈Z>0 converge to r ∈ R. The sequence ( 1

jl
)l∈Z>0 has

a convergent subsequence ( 1
jlm

)m∈Z>0 since it is bounded (see Proposition I-2.3.4).
Since

lim
m→∞

1
klm
= r − lim

m→∞

1
jlm
,

the subsequence ( 1
klm

)m∈Z>0 also converges. By Proposition I-2.3.23 we have

lim
m→∞

1
jlm
=

1
limm→∞ jlm

.

There are two possible cases.

1. limm→∞ jlm = ∞: In this case limm→∞
1

jlm
= 0.

2. limm→∞ jlm , ∞: In this case there must be a positive integer j0 such that
limm→∞ jlm = j0. Thus limm→∞

1
jlm
= 1

j0
.

Similarly, either limm→∞
1

klm
= 0 or there exists k0 ∈ Z>0 such that limm→∞

1
klm
= 1

k0
.

Thus, in all cases,

lim
m→∞

( 1
jlm
+

1
klm

)
∈ K

and we conclude that the set of limit points of K is K, as claimed. The accumu-
lation points of K arise as limits of sequences that are not eventually constant.
From the various cases presented above, the converging subsequences that are
not eventually constant arise when one or both of the cases

lim
m→∞

jlm = ∞, lim
m→∞

klm = ∞

occur. In this case,

lim
m→∞

( 1
jlm
+

1
klm

)
∈ {0} ∪ { 1k }k∈Z>0 ,

as desired. ▼
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The lemma allows us to conclude that the set of nonisolated points of K is exactly
{0}∪{ 1k }k∈Z>0 . Thus the set of nonisolated points is infinite. Moreover, K is closed
(because every point is a limit point) and bounded, and hence compact.

3. We claim that relatively compact subsets of Q have empty relative interior. If
a subset of Q has an nonempty interior, it must contain a nonempty relatively
open subset. This means that it must contain a subset of the form I ∩Qwhere I
is an open interval.
We claim that if I ⊆ R is an interval with a nonempty interior, then I ∩ Q is
not relatively compact in Q. By the Bolzano–Weierstrass Theorem it suffices to
show that there are sequences in I∩Q that contain no subsequences converging
in I∩Q. To exhibit such a sequence, let r ∈ int(I) be irrational and let (q j) j∈Z>0 be
a sequence in I∩Q converging to r (by Proposition I-2.2.15). Any subsequence
of this sequence also converges to r < I ∩Q. •

While we are talking about compactness, let us characterise compact subsets of
Rn using relatively open and closed sets.

1.2.61 Proposition (Characterisation of compactness in terms of relatively open
sets) A subset K ⊆ Rn is compact if and only if, for every collection (Ua)a∈A of rela-
tively open subsets of K for which K = ∪a∈AUa, there exists a1, . . . , ak ∈ A such that
K = ∪k

j=1Uaj .
Proof First suppose that K is compact. For a collection (Ua)a∈A of relatively open
subsets of K that covers K, let Va ⊆ Rn be open and such that Ua = K∩Va, a ∈ A, using
Proposition 1.2.50. Thus (Va)a∈A is an open cover of K. Since K is compact there exists
a1, . . . , ak ∈ A such that K ⊆ ∪k

j=1Va j . Thus

K = ∪k
j=1(Va j ∩ K) = ∪k

j=1Ua j ,

as desired.
For the converse, let (Va)a∈A be an open cover of K so that (Ua = Va ∩ K)a∈A is a

cover of K by relatively open sets by Proposition 1.2.50. Thus there exists a1, . . . , ak ∈ A
such that K = ∪k

j=1Ua j and so K ⊆ ∪k
j=1Va j . That is, K is compact. ■

It is also possible to characterise compactness deftly in terms of relatively closed
sets.

1.2.62 Definition (Finite intersection property) Let A ⊆ Rn and let (B j) j∈J be a family of
subset of A. The family has the finite intersection property if, for any finite subset
{ j1, . . . , jk} ⊆ J, the set ∩k

m=1B jm , ∅. •

We then have the following characterisation of compact sets.

1.2.63 Proposition (Compactness and the finite intersection property) A subset K ⊆
Rn is compact if and only if every family (Cj)j∈J of relatively closed subsets of K with the
finite intersection property has the property that ∩j∈JCj , ∅.



58 1 Multiple real variables and functions of multiple real variables 2022/03/07

Proof Suppose that K is compact. Let (C j) j∈J be a family of closed sets with the finite
intersection property and suppose that ∩ j∈JC j = ∅. Then we have

K = K \ (∩ j∈JC j) = ∪ j∈J(K \ C j)

by DeMorgan’s Laws. Then, since K is compact, there exists j1, . . . , jk ∈ J such that
K = ∪k

m=1(A \ C jm). But this gives K = K \ (∩k
m=1C jm), again by DeMorgan’s Laws. This

means that ∩k
m=1C jm = ∅, contradicting the finite intersection property of (C j) j∈J.

Conversely, suppose that (U j) j∈J is an open cover of K and suppose that there is
no finite subcover of this open cover. We claim that the family (K \U j) j∈J has the finite
intersection property. Indeed, let { j1, . . . , jk} ⊆ J so that

∩
k
m=1(K \U jm) = K \ (∪k

m=1U jm) , ∅

since (U j) j∈J possesses no finite subcover. Now, for any finite subset { j1, . . . , jk} ⊆ J we
have

∅ , ∩ j∈J(K \U j) = K \ (∪ j∈JU j)

since (K \ U j) j∈J has the finite intersection property. But this contradicts the fact that
(U j) j∈J covers K. ■

Connectedness using relative constructions

The use of relatively open and closed sets provides an elegant characterisation of
connectedness. This characterisation will generalise to the notion of connectedness
for general topological spaces in Section III-1.7.

1.2.64 Theorem (Characterisation of connectedness in terms of relative topology)
A subset A ⊆ Rn is connected if and only if the only subsets of A that are both relatively
open and relatively closed in A are ∅ and A.

Proof First suppose that A is disconnected so that A = S∪ T for nonempty sets S and
T with cl(S) ∩ T = ∅ and S ∩ cl(T) = ∅. Note that S = A ∩ cl(S) since S ⊆ cl(S) and
cl(S)∩T = ∅. By Proposition 1.2.50 this means that S is relative closed. In like manner
T is relatively closed. Thus both S and T are also relatively open.

Now suppose that S ⊆ A is relatively open and relatively closed, and that S , A
and S , ∅. Then A = S ∪ (A \ S) where S and T ≜ A \ S are both relatively open and
relatively closed. We claim that cl(S) ∩ T = ∅. Indeed, if x ∈ T there exists ϵ ∈ R>0
such that Bn(ϵ, x) ∩ A ⊆ T since T is relatively open. Since S ∩ T = ∅ this implies that
Bn(ϵ, x) ∩ S = ∅. By the analogue of Proposition 1.2.26 for the relative closure this
implies that x < cl(S). Thus we indeed have cl(S) ∩ T = ∅. The same argument gives
S ∩ cl(T) = ∅ and so A is disconnected. ■

1.2.9 Local compactness

In this section we introduce the important idea of local compactness. This
property turns out to be exactly what is needed for certain constructions. Our
investigation here will be rather elementary. In Section III-1.11 we give a deeper
treatment of local compactness.

We begin with the definition.



2022/03/07 1.2 The structure of Rn 59

1.2.65 Definition (Locally compact) A subset A ⊆ Rn is locally compact if, for every
x ∈ A, there exists a relative neighbourhood U ⊆ A of x such that clA(U) is a
relatively compact subset of A. •

Let us give some examples and counterexamples.

1.2.66 Examples (Locally compact subsets)
1. We claim that every open subset U of Rn is locally compact. Indeed, let x ∈ U

and, since U is open, let ϵ ∈ R>0 be such that Bn(ϵ, x) ⊆ U. Then B( ϵ2 , x) ⊆ U is a
relative neighbourhood of x whose closure is a relatively compact subset of U.

2. We claim that every closed subset A of Rn is locally compact. Indeed, let
x ∈ A, let ϵ ∈ R>0, and denote U = Bn(ϵ, x) ∩ A, noting that U is a relative
neighbourhood of x by Proposition 1.2.50. We claim that

clA(U) = Bn(ϵ, x) ∩ A. (1.8)

Note that
U ⊆ Bn(ϵ, x) ∩ A ⊆ A,

the latter inclusion holding since A is closed. Thus

Bn(ϵ, x) ∩ A ⊆ clA(U)

by definition of clA(U). The opposite inclusion holds by Proposition 1.2.28.
Thus we have (1.8). By Proposition 1.2.59 we have that clA(U) is relatively
compact in A. This shows that U is a relative neighbourhood of x possessing a
relatively compact closure.

3. We claim that the subset Q ⊆ R is not locally compact. Indeed, we showed in
Example 1.2.60–3 that all relatively compact subsets of Q have empty relative
interior.

4. Let
A = {(0, 0)} ∪ {(x, y) ∈ R2

| x ∈ R>0} ⊆ R
2

(see Figure 1.6). We claim that A is not locally compact. Indeed, let U = U′ ∩A
(with U′ ⊆ R2 a neighbourhood of (0, 0)) be a relative neighbourhood of (0, 0).
We claim that clA(U) is not compact.
Let ϵ ∈ R>0 be such that B2(ϵ, (0, 0)) ⊆ U′. For j ∈ Z>0 define an open subset
U′j ⊆ R

2 by

U′j = ({(x, y) ∈ R2
| x > j−1y, y ≥ 0}

∪ {(x, y) ∈ R2
| x > − j−1y, y ≤ 0}) ∩ B2(3ϵ, (0, 0))

(see Figure 1.7 for a depiction). Also let

U′0 = B2(
ϵ
2
, (0, 0)), V′ = R2

\ B2(2ϵ, (0, 0)).
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Figure 1.6 A subset of R2 that is not locally compact

y = jx

y = −jx

Figure 1.7 The open set U′j

Note that
A ⊆ V′ ∪U′0 ∪ j∈Z>0 U′j.

Thus, if we define U j = U′j ∩ A, j ∈ Z>0, U0 = U′0 ∩ A, and V = V′ ∩ A, then

clA(U) ⊆ V ∪U0 ∪ j∈Z>0 U j.

We claim that there is no finite subset of the relatively open cover O = {V} ∪
{U0} ∪ {U j} j∈Z>0 that covers clA(U). Indeed, note that B2(ϵ, (0, 0)) ∩ A ⊆ clA(U).
Therefore, any subset of O covering clA(U) must also cover B2(ϵ, (0, 0))∩A. This,
however, implies that all of the subsets U j, j ∈ Z>0, must be contained in any
subcover covering clA(U), and this ensures that clA(U) is not compact. •
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1.2.10 Products of subsets

Next we consider subsets of Cartesian products of Euclidean spaces. Specif-
ically, we consider sets of the form A1 × · · · × Ak where A j ⊆ Rn j , j ∈ {1, . . . , k}.
For such subsets we shall give their properties in terms of properties of the subsets
A1, . . . ,Ak. In studying these sets we make the natural identification ofRn1×· · ·×Rnk

with Rn1+···++nk given by

Rn1 × · · · ×Rnk ∋ ((x1,1, . . . , x1,n1), . . . , (xk,1, . . . , xk,nk))
7→ (x1,1, . . . , x1,n1 , x2,1, . . . , xk−1,nk−1 , xk,1, . . . , xk,nk) ∈ R

n1+···+nk .

Thus, on Rn1 × · · · ×Rnk we shall use the Euclidean norm ∥·∥Rn1+···+nk , and notions of
openness, closedness, etc., will be derived from this. It is useful to relate this norm
to the separate norms for Rn1 , . . . ,Rnk .

1.2.67 Lemma For xj ∈ Rnj , j ∈ {1, . . . ,k}, we have

∥x1∥Rn1 + · · · + ∥xk∥Rnk ≤

√

k∥(x1, . . . , xk)∥Rn1+···+n+k ,

∥(x1, . . . , xk)∥Rn1+···+nk ≤ ∥x1∥Rn1 + · · · + ∥xk∥Rnk .

Proof Define

δ j = ∥x j∥Rnj −
1
k (∥x1∥Rn1 + · · · + ∥xk∥Rnk ), j ∈ {1, . . . , k},

noting that δ1 + · · · + δk = 0 and that

∥x j∥Rnj = 1
k (∥x1∥Rn1 + · · · + ∥xk∥Rnk ) + δ j, j ∈ {1, . . . , k}.

A computation then gives

∥(x1, . . . , xk)∥Rn1+···+nk = (∥x1∥
2
Rn1 + · · · + ∥xk∥

2
Rnk )1/2

=
(

1
k (∥x1∥Rn1 + · · · + ∥xk∥Rnk )2 + δ2

1 + · · · + δ
2
k

)1/2

which gives
∥(x1, . . . , xk)∥Rn1+···+nk ≥

1
√

k
(∥x1∥Rn1 + · · · + ∥xk∥Rnk ),

as desired.
For the second inequality we have

∥(x1, . . . , xk)∥Rn1+···+nk = ∥(x1, 0, . . . , 0) + (0, , . . . , 0, xk)∥Rn1+···+nk

≤ ∥(x1, 0, . . . , 0)∥Rn1+···+nk + ∥(0, . . . , 0, xk)∥Rn1+···+nk

= ∥x1∥Rn1 + · · · + ∥xk∥Rnk ,

as desired. ■

Using these inequalities one can directly check that

Bn1(ϵ, x1) × · · · × Bnk(ϵ, xk) ⊆ Bn1+···+nk(kϵ, (x1, . . . , xk)),

Bn1+···+nk(ϵ, (x1, . . . , xk)) ⊆ Bn1(
√

kϵ, x1) × · · · × Bnk(
√

kϵ, xk).
(1.9)

The following theorem states the results in which we are interested.
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1.2.68 Theorem (Properties of products derived from properties of components) If
Aj ⊆ Rnj , j ∈ {1, . . . ,k}, then the following statements hold:

(i) A1 × · · · ×Ak is open if and only if each of the sets Aj, j ∈ {1, . . . ,k}, is open;
(ii) A1 × · · · ×Ak is closed if and only if each of the sets Aj, j ∈ {1, . . . ,k}, is closed;
(iii) A1 × · · · ×Ak is compact if and only if each of the sets Aj, j ∈ {1, . . . ,k}, is compact;
(iv) A1×· · ·×Ak is connected if and only if each of the sets Aj, j ∈ {1, . . . ,k}, is connected.

Proof By an elementary induction argument in each case it suffices to prove the
theorem in the case when k = 2. In this case, for simplicity of notation, we denote
n1 = m and n2 = n, and write a typical point in Rm

×Rn as (x, y).
(i) Suppose that A × B is open and let x0 ∈ A and y0 ∈ B. Since A × B is open

there exists ϵ ∈ R>0 such that Bm+n(2ϵ, (x0, y0)) ⊆ A × B. By (1.9) it follows that
Bm(ϵ, x0)×Bn(ϵ, y0) ⊆ A× B and so Bm(ϵ, x0) ⊆ A and Bn(ϵ, y0) ⊆ B. Thus both A and B
are open.

Now suppose that A and B are open and let (x0, y0) ∈ A × B. Let ϵ ∈ R>0 be such
that Bm(

√
2ϵ, x0) ⊆ A and Bn(

√
2ϵ, y0) ⊆ B. Then Bm(

√
2ϵ, x0) × Bn(

√
2ϵ, y0) ⊆ A × B.

By (1.9) it follows that Bm+n(ϵ, (x0, y0)) ⊆ A × B and so A × B is open.
(ii) Suppose that A × B is closed and let (x j) j∈Z>0 be a sequence in A that converges

to some x0 ∈ Rm. We will show that x0 ∈ A which will show that A is closed by
Proposition 1.2.26. Note that for y0 ∈ B the sequence ((x j, y0)) j∈Z is in A×B. Moreover,
since

∥(x j, y0) − (x0, y0)∥Rm+n = ∥x j − x0∥Rm ,

the sequence converges to (x0, y0). Since A × B is closed it follows that (x0, y0) ∈ A × B
and so x0 ∈ B, as desired.

Conversely, suppose that both A and B are closed. Then, by part (i), (Rm
\A) ×Rn

and Rm
× (Rn

\ B) are open and so too is their union. However,

(Rm
×Rn) \ (A × B) = ((Rm

\ A) ×Rn) ∪ (Rm
× (Rn

\ B))

and so (Rm
×Rn) \ (A × B) is open. Thus A × B is closed.

(iii) Suppose that A × B is compact, i.e., is closed and bounded by the Heine–Borel
Theorem. Then A and B are closed by part (ii). Moreover, A and B are also bounded.
Indeed, suppose that, say, A were unbounded and let M ∈ R>0. Then there exists
x1, x2 ∈ A such that ∥x1 + x2∥Rm ≥M. Therefore, for y ∈ B we have

∥(x1, y) − (x2, y)∥Rm+n∥x1 − x2∥Rm ≥M,

giving A × B as unbounded since M ∈ R>0 is arbitrary. Thus both A and B are closed
and bounded, and so compact by the Heine–Borel Theorem.

Conversely, suppose that A and B are compact, i.e., closed and bounded by the
Heine–Borel Theorem. Then A × B is closed by part (ii). To see that A × B is bounded,
let M ∈ R>0 be such that

∥x1 − x2∥Rm < M
2 , ∥y1 − y2∥Rn < M

2

for all x1, x2 ∈ A and y1, y2 ∈ B. Then

∥(x1, y1) − (x2, y2)∥Rm+n ≤ ∥x1 − x2∥Rm + ∥y1 − y2∥Rn < M,
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using Lemma 1.2.67.
(iv) Suppose that A is not connected. Then A = S∪T where S and T are nonempty

sets satisfying cl(S) ∩ T = ∅ and S ∩ cl(T) = ∅. Then A × B = (S × B) ∪ (T × B). We
claim that cl(S × B) ∩ (T × B) = ∅. Let ((x j, y j)) j∈Z>0 be a sequence in S × B converging
to (x0, y0) ∈ cl(S × B). It is evident that (x j) j∈Z>0 ⊆ S converges to x0 and so x0 ∈ cl(S).
Therefore, x0 < T and so (x0, y0) < T × B. Thus cl(S × B) ∩ (T × B) = ∅, as claimed. We
similarly show that (S × B) ∩ cl(T × B) = ∅. This shows that A × B is disconnected if A
is disconnected. Similarly one shows that A × B is disconnected if B is disconnected.

Now suppose that A and B are connected but that A × B are disconnected. Thus
we suppose that A × B = S ∪ T for nonempty sets S and T such that cl(S) ∩ T = ∅ and
S ∩ cl(T) = ∅. Let (x1, y1) ∈ S and (x2, y2) ∈ T. We claim that {x1} × B and A × {y2}

are connected. This is clear since if, for example, {x1} × B is disconnected then B is
disconnected. Now note that ({x1}×B)∩(A×{y2}) , ∅ since it contains the point (x2, y1).
By Exercise 1.2.5 it follows that X = ({x1} × B)∪ (A × {y2}) is connected. However, this
is a contradiction since the disconnectedness of A × B implies that

X = (X ∩ S) ∪ (X ∩ T)

where cl(X ∩ S) ∩ (X ∩ T) = ∅ and (X ∩ S) ∩ cl(X ∩ T) = ∅. Thus it must be that A × B
is connected. ■

These characterisations of products allows us to prove the following result.

1.2.69 Proposition (Interior, closure, and boundary of products) If A ⊆ Rm and B ⊆ Rn

then
(i) int(A × B) = int(A) × int(B),
(ii) cl(A × B) = cl(A) × cl(B), and
(iii) bd(A × B) = (bd(A) × cl(B)) ∪ (cl(A) × bd(B)).

Proof (i) Since int(A) × int(B) ⊆ A × B we have int(A) × int(B) ⊆ int(A × B) by the
definition of interior. Now let (x, y) ∈ int(A × B). Then there exists ϵ ∈ R>0 such that
Bm+n(2ϵ, (x, y)) ⊆ A × B. By (1.9) it then follows that

Bm(ϵ, x) × Bn(ϵ, y) ⊆ A × B,

and so Bm(ϵ, x) ⊆ A and Bm(ϵ, y) ⊆ B. Thus x ∈ int(A) and y ∈ int(B).
(ii) Since A × B ⊆ cl(A) × cl(B) and since cl(A) × cl(B) is closed by Theorem 1.2.68,

it follows that cl(A × B) ⊆ cl(A) × cl(B). Now let (x, y) ∈ cl(A) × cl(B). Then, for every
ϵ ∈ R>0 we have

Bm( ϵ2 , x) ∩ A , ∅, Bn( ϵ2 , y) ∩ B , ∅ =⇒ (Bm( ϵ2 , x) × Bn( ϵ2 , y)) ∩ (A × B) , ∅.

Therefore, by (1.9) we have

Bm+n(ϵ, (x, y)) ∩ (A × B) , ∅.

Thus (x, y) ∈ cl(A × B) since this holds for every ϵ ∈ R>0.
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(iii) Let (x, y) ∈ bd(A × B). By Proposition 1.2.26 this means that for every ϵ ∈ R>0

Bm+n( ϵ
√

2
, (x, y)) ∩ (A × B) , ∅, Bm+n( ϵ

√
2
, (x, y)) ∩ ((Rn

×Rm) \ (A × B)) , ∅.

Therefore, by (1.9),

(Bm(ϵ, x) × Bn(ϵ, y)) ∩ (A × B) , ∅, (Bm(ϵ, x) × Bn(ϵ, y)) ∩ ((Rn
×Rm) \ (A × B)) , ∅

for every ϵ ∈ R>0. The condition

(Bm(ϵ, x) × Bn(ϵ, y)) ∩ (A × B) , ∅

means that x ∈ cl(A) and y ∈ cl(B). Let us now these conditions along with the
condition

(Bm(ϵ, x) × Bn(ϵ, y)) ∩ ((Rn
×Rm) \ (A × B)) , ∅, ϵ ∈ R>0.

This condition is exactly the condition that (x, y) ∈ cl((Rn
× Rm) \ (A × B)). We thus

have the following possibilities.
1. x ∈ cl(A), y ∈ cl(B), x ∈ A, and y < B: In this case we must have y ∈ bd(Rm

\ B).
2. x ∈ cl(A), y ∈ cl(B), x ∈ A, and y ∈ B: In this case we cannot have x ∈ int(A) and

y ∈ int(B) and so we must have either (a) x ∈ bd(A) and y ∈ B or (b) x ∈ B and
y ∈ bd(B).

3. x ∈ cl(A), y ∈ cl(B), x < A, and y ∈ A: In this case we must have x ∈ bd(A).
4. x ∈ cl(A), y ∈ cl(B), x < A and y < B: In this case we must have x ∈ bd(A) and

y ∈ bd(B).
This means that we have either (1) (x, y) ∈ bd(A) × cl(B) or (2) (x, y) ∈ cl(A) × bd(B).
Thus gives

bd(A × B) ⊆ (bd(A) × cl(B)) ∪ (cl(A) × bd(B)).

Next suppose that (x, y) ∈ bd(A) × cl(B). This means that for every ϵ ∈ R>0 the
following sets are nonempty:

Bm(
√

2ϵ, x) ∩ A, Bm(
√

2ϵ, x) ∩ (Rn
\ A), Bn(

√

2ϵ, y) ∩ B.

Thus take

x′ ∈ Bm(
√

2ϵ, x) ∩ A, x′′ ∈ Bm(
√

2ϵ, x) ∩ (Rn
\ A), y′ ∈ Bn(

√

2ϵ, y) ∩ B.

Then

(x′, y′) ∈ (Bm(
√

2ϵ, x) × Bn(
√

2ϵ, y)) ∩ (A × B)
=⇒ (x′, y′) ∈ Bm+n(ϵ, (x, y)) ∩ (A × B).

Also

(x′′, y′) ∈ (Bm(
√

2ϵ, x) × Bn(
√

2ϵ, y)) ∩ ((Rm
\ A) × B)

=⇒ (x′′, y′) ∈ Bm+n(ϵ, (x, y)) ∩ ((Rm
\ A) × B)

=⇒ (x′′, y′) ∈ Bm+n(ϵ, (x, y)) ∩ ((Rm
×Rm) \ (A × B)).
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In like manner one shows that if (x, y) ∈ cl(A) × bd(B) then

Bm+n(ϵ, (x, y)) ∩ (A × B), Bm+n(ϵ, (x, y)) ∩ ((Rm
×Rm) \ (A × B))

are nonempty. That is, for every ϵ ∈ R>0 the sets

Bm+n(ϵ, (x, y)) ∩ (A × B), Bm+n(ϵ, (x, y)) ∩ ((Rn
×Rm) \ (A × B))

are nonempty. Thus (bd(A) × cl(B)) ∪ (cl(A) × bd(B)) ⊆ bd(A × B). ■

1.2.70 Remark (Finite Cartesian products) By an elementary induction argument, the
first two statements in the preceding result carry over to finite Cartesian products
of sets A1 × · · · × Ak ⊆ Rn1 × · · · × Rnk . The generalisation of the third statement is
tedious, but straightforward, and left to the reader. •

1.2.11 Sets of measure zero

One can also talk about subsets ofRn which have measure zero. This is done in
the obvious way, using balls instead of intervals to cover sets. While the “volume”
(i.e., length) of an interval is obviously defined, the volume of a ball in Rn is not
so easily deduced. Let us here just define this volume, saving for the calculations what?

needed to verify the formula. Thus we denote by

vol(Bn(r, 0)) =
πn/2rn

Γ(n
2 + 1)

(1.10)

volume of the ball of radius r, and we (reasonably) declare that the volume of
a ball is independent of its centre. In the above formula, the function Γ (called,
unsurprisingly, the Γ-function) is defined by

Γ(x) =
∫
∞

0
e−yyx−1 dy.

This expression can be made more familiar by using property of the Γ-function that

Γ( k
2 + 1) =

( k
2 )!, k an even nonnegative integer,
k!π1/2

2k( k−1
2 )!
, k an odd nonnegative integer.

The reader is asked to explore some properties of the Γ-function in Exercise 1.2.16.
In any case, we suppose that we know the volume of an n-dimensional ball.

With this we can make the following definition.

1.2.71 Definition (Set of measure zero) A subset A ⊆ Rn has measure zero if

inf
{ ∞∑

j=1

vol(Bn(r j, x j))
∣∣∣∣ A ⊆

⋃
j∈Z>0

Bn(r j, x j)
}
= 0. •

We refer the reader to Section I-2.5.6 for examples of sets of zero measure, some
interesting and some not. Ideas concerning the generalisation to Rn of sets of
measure zero are discussed in Section III-2.5.



66 1 Multiple real variables and functions of multiple real variables 2022/03/07

1.2.12 Convergence in Rn-nets and a second glimpse of Landau symbols

In Section I-2.3.7 we discussed convergence for generalisations of sequences
where the index set is a subset of R. In Section I-2.3.8 we used this general
notion of convergence to define Landau symbols. In this section we make a further
generalisation to the case of generalised sequences where the index set is a subset
of Rn.

We begin by defining the sorts of directed sets we consider. The definition we
give is a generalisation of that given for R in Section I-2.3.7, but now we use the
topology of Rn in a more fancy way.

1.2.72 Definition (Rn-directed set) Let A ⊆ Rn and let x0 ∈ Rn.
(i) The Rn-directed set in A at x0 is the family of subsets

D(A, x0) = {U ∩ A | U ⊆ Rn open, x0 ∈ U}

with the partial order ⊇.
(ii) The R-directed set in A at∞ is the family of subsets

D(A,∞) = {U ∩ A | U ⊆ Rn open, Rn
\ Bn(R, 0) ⊆ U for some R ∈ R>0}

with the partial order ⊇. •

Let us verify that Rn-directed sets are indeed directed sets.

1.2.73 Proposition (Rn-directed sets are directed sets) If A ⊆ Rn and if x0 ∈ Rn, then
(D(A, x0),⊇) and (D(A,∞),⊇) are directed sets.

Proof In the first case, let U1∩A,U2∩A ∈ D(A, x0) and note that, since x0 ∈ U1∩A and
x0 ∈ U2∩A, we have U1∩U2 is open and x0 ∈ (U1∩U2)∩A. Thus, (U1∩U2)∩A ∈ D(A, x0)
and

U1 ∩ A,U2 ∩Q ⊇ (U1 ∩U2) ∩ A.

In the second case, let U1 ∩ A,U2 ∩ A ∈ D(A,∞). Let R1,R2 ∈ R>0 be such that
Rn
\ Bn(R1, 0) ⊆ U1 and Rn

\ Bn(R2, 0) ⊆ U2 and define R = max{R1,R2}. Then U1 ∩U2
is open and Rn

\ Bn(R, 0) ⊆ (U1 ∩U2) ∩ A. Thus (U1 ∩U2) ∩ A ∈ D(A,∞) and

U1 ∩ A,U2 ∩ A ⊇ (U1 ∩U2) ∩ A. ■

Now we define the sort of nets we consider in this case.

1.2.74 Definition (Rn-net, convergence in Rn-nets) Let A ⊆ Rn, let x0 ∈ Rn, and let
D ∈ {D(A, x0),D(A,∞)}. A Rn-net in D is a map ϕ : A → Rm for some m ∈ Z>0. A
Rn-net ϕ : A→ Rm in the Rn-directed set D

(i) converges to s0 ∈ R
m if, for any ϵ ∈ R>0, there exists U ∩ A ∈ D such that, for

any V∩A ∈ D for which U∩A ⊇ V∩A, ∥ϕ(x)− s0∥Rm < ϵ for every x ∈ V∩A;
(ii) has s0 ∈ Rm as a limit if it converges to s0, and we write s0 = limDϕ;
(iii) diverges if it does not converge,
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(iv) has a limit that exists if limDϕ ∈ Rm, and
(v) is oscillatory if the limit of the Rn-net does not exist, does not diverge to ∞,

and does not diverge to −∞. •

As with R-nets, it is convenient to have some notation for Rn-nets that allows
us to understand more easily the sort of convergence that is taking place.

1.2.75 Notation (Limits of Rn-nets) Let A ⊆ Rn, let x0 ∈ Rn, let D ∈ {D(A, x0),D(A,∞)},
and let ϕ : A→ Rm be aRn-net in D. Let us look at the two cases and give notation
for each.

(i) D = D(A, x0): In this case we write limDϕ = limx→Ax0 ϕ(x).
(ii) D = D(A,∞): In this case we write limDϕ = limx→A∞ϕ(x). •

As with R-nets, convergence in Rn-nets can be characterised in terms of se-
quences in the case when x0 is a limit of points in A.

1.2.76 Proposition (Convergence in Rn-nets in terms of sequences) Let A ⊆ Rn, let
x0 ∈ Rn, let D ∈ {D(A, x0),D(A,∞)}, and let ϕ : A → Rm be a Rn-net in D. Then,
corresponding to the two cases in Notation 1.2.75, we have the following statements:

(i) if x0 ∈ cl(A), then the following statements are equivalent:

(a) limx→Ax0 ϕ(x) = s0;
(b) limj→∞ϕ(xj) = s0 for every sequence (xj)j∈Z>0 in A converging to x0;

(ii) if sup{∥x∥Rn | x ∈ A} = ∞, then the following statements are equivalent:

(a) limx→A∞ϕ(x) = s0;
(b) limj→∞∥ϕ(xj)∥Rm = s0 for every sequence (xj)j∈Z>0 in A such that

limj→∞∥xj∥Rn = ∞.
Proof For the first equivalence, suppose that limx→Ax0 ϕ(x) = s0 and let (x j) j∈Z>0 be a
sequence in A converging to x0. Let ϵ ∈ R>0 and let U ∩ A ∈ D(A, x0) be such that,
for any V ∩ A ∈ D(A, x0) for which U ∩ A ⊇ V ∩ A, we have ∥ϕ(x) − s0∥Rm < ϵ for any
x ∈ V ∩ A. Let N ∈ Z>0 be sufficiently large that x j ∈ U ∩ A for every j ≥ N, this being
possible since (x j) j∈Z>0 converges to x0. Now note that ∥ϕ(x j) − s0∥Rm < ϵ for every
j ≥ N since x j ∈ U ∩ A for every j ≥ N. This gives lim j→∞ϕ(x j) = s0, as desired.

For the converse, suppose that limx→Ax0 ϕ(x) , s0. Then there exists ϵ ∈ R>0 such
that, for any U∩A ∈ D(A, x0), we have a V∩A ∈ D(A, x0) with U∩A ⊇ V∩A for which
∥ϕ(x) − s0∥Rm ≥ ϵ for some x ∈ V ∩ A. Since x0 ∈ cl(A) it follows that, for any j ∈ Z>0,
there exists x j ∈ Bn( 1

j , x0) ∩ A such that ∥ϕ(x j) − s0∥Rm ≥ ϵ. Thus the sequence (x j) j∈Z>0

in A converging to x0 has the property that (ϕ(x j)) j∈Z>0 does not converge to s0.
For the second equivalence, suppose that limx→A∞ϕ(x) = s0 and let (x j) j∈Z>0 be a

sequence in A such that lim j→∞∥x j∥Rn = ∞. Let M ∈ R>0 and let U ∩ A ∈ D(A,∞) be
such that, for any V∩A ∈ D(A,∞) for which U∩A ⊇ V∩A, we have ∥ϕ(x)− s0∥Rm < ϵ

for every x ∈ V ∩ A. Let R ∈ R>0 be such that Rn
\ Bn(R, 0) ⊆ U and let N ∈ Z>0 be

sufficiently large that ∥x j∥Rn > R for j ≥ N. It then follows that ∥ϕ(x j) − s0∥Rm < ϵ for
every j ≥ N since x j ∈ U ∩ A. Thus lim j→∞ϕ(x j) = s0.
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For the converse, suppose that limx→A∞ ϕ(x). Then there exists ϵ ∈ R>0 such that,
for any U ∩ A ∈ D(A,∞), we have a V ∩ A ∈ D(A,∞) with U ∩ A ⊇ V ∩ A for which
∥ϕ(x)−s0∥Rm ≥ ϵ for some x ∈ V∩A. By our assumption that A is unbounded, it follows
that, for any j ∈ Z>0, there exists x j ∈ (Rn

\ Bn( j, x0)) ∩ A such that ∥ϕ(x j) − s0∥Rm ≥ ϵ.
Thus the sequence (x j) j∈Z>0 in A for which (∥x j∥Rn) j∈Z>0 diverges to∞ has the property
that (ϕ(x j)) j∈Z>0 does not converge to s0. ■

From the preceding result, we can easily establish the equivalence of conver-
gence of Rn-nets with n = 1 with convergence of R-nets from Section I-2.3.7.

Now let us give some examples to make the preceding construction concrete.

1.2.77 Examples (Convergence in Rn-nets) In the examples below we will simply give
“the answer,” leaving to the reader the mundane details of verification.
1. Define ϕ : Rn

→ R by

ϕ(x) =
1

1 + ∥x∥2
Rn

.

If we think of ϕ as a Rn-net in D = D(Rn, 0) then limD ϕ = 1. If we think of ϕ as
a Rn-net in D = D(Rn,∞) then limD ϕ = 0.

2. Define ϕ : Rn
→ R by ϕ(x) = sin(∥x∥Rn). If we think of ϕ as a Rn-net in D =

D(Rn, 0) then limD ϕ = 1. If we think of ϕ as a Rn-net in D = D(Rn,∞) then
limD ϕ does not exist. •

There are also generalisations of lim sup and lim inf to Rn-nets. We let
A ⊆ Rn, x0 ∈ Rn, D =∈ {D(A, x0),D(A,∞)}, and ϕ : A → R. We denote by
supD ϕ, infD ϕ : A→ R the R-nets in D given by

sup
D
ϕ(x) = sup{ϕ(y) | y ∈ U ∩ A for all U ∩ A ∈ D for which x ∈ U ∩ A},

inf
D
ϕ(x) = inf{ϕ(y) | y ∈ U ∩ A for all U ∩ A ∈ D for which x ∈ U ∩ A}.

Then we define

lim sup
D

ϕ = lim
D

sup
D
ϕ, lim inf

D
ϕ = lim

D
inf

D
ϕ.

Let us now adapt our notion of Landau symbols from Section I-2.3.8 to Rn-
nets.

1.2.78 Definition (Landau symbols “O” and “o”) Let A ⊆ Rn, let x0 ∈ Rn, let D ∈
{D(A, x0),D(A,∞)} be a Rn-directed set, and let ϕ : A→ R.

(i) Denote by OD(ϕ) the functions ψ : A→ Rm for which there exists U ∩ A ∈ D
and M ∈ R>0 such that, for every V ∩ A ∈ D for which U ∩ A ⊇ V ∩ A,
∥ψ(x)∥Rm ≤M|ϕ(x)| for every x ∈ V ∩ A.

(ii) Denote by oD(ϕ) the functions ψ : A → R such that, for any ϵ ∈ R>0, there
exists U ∩ A ∈ D such that ∥ψ(x)∥Rm < ϵ|ϕ(x)| for x ∈ V ∩ A.
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If ψ ∈ OD(ϕ) (resp. ψ ∈ oD(ϕ)) then we say that ψ is big oh of ϕ (resp. little oh of
ϕ). •

It is often the case that the comparison function ϕ is positive on A. In such
cases, one can give a somewhat more concrete characterisation of OD and oD.

1.2.79 Proposition (Alternative characterisation of Landau symbols) Let A ⊆ Rn, let
x0 ∈ Rn, let D ∈ {D(A, x0),D(A,∞)} be a Rn-directed set, and let ϕ : A → R>0 and
ψ : A→ R. Then

(i) ψ ∈ OD(ϕ) if and only if lim supD
∥ψ∥Rm

ϕ < ∞ and

(ii) ψ ∈ oD(ϕ) if and only if limD
∥ψ∥Rm

ϕ = 0.

Proof We leave this as Exercise 1.2.15. ■

1.2.80 Examples (Landau symbols)
1. Generalising what we saw in Example I-2.3.34 for differentiability ofR-valued

functions defined on intervals, let U ⊆ Rn be open, let x0 ∈ U, and let f : U→ Rm.
Let k ∈ Z≥0 and for A j ∈ S j(Rn;Rm), j ∈ {0, 1, . . . , k}, define g f ,x0,A : U→ Rm by

g f ,x0,A(x) =
A0

0!
+

A1(x)
1!
+

A2(x, x)
2!

+ · · · +
Ak(x, . . . , x)

k!
.

Define a Rn-net in D = D(U, x0) by ϕk(x) = ∥x − x0∥
k
Rn . Then one can verify

(this is Taylor’s Theorem) that f is k-times continuously differentiable at x0 with
D j f (x0) = A j, j ∈ {0, 1, . . . , k}, if and only if ∥ f − g f ,x0,A∥R

m ∈ oD(ϕm).

Exercises

1.2.1 Show that ∥∥∥∥ m∑
j=1

x j

∥∥∥∥
Rn
≤

m∑
j=1

∥x j∥Rn

for any finite family (x1, . . . , xm) in Rn.
1.2.2 Let A ⊆ Rn be closed and let (x j) j∈Z>0 be a Cauchy sequence. Show that the

sequence converges to a point in A.
1.2.3 Prove Proposition 1.2.19.
1.2.4 Show that a subset C ⊆ Rn is closed if and only if C ∩ K is closed for every

compact subset K of Rn.
1.2.5 Let (Ai)i∈I be a family of connected subsets ofRn and suppose that∩i∈IAi , ∅.

Show that ∪i∈IAi is connected.
1.2.6 Show that the closure of a connected set is connected.
1.2.7 Show that for a subset D ⊆ Rn the following two statements are equivalent:

1. D is discrete, i.e., every subset of D is relatively open in D;
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2. there exists ϵ ∈ R>0 such that, for every x ∈ D, Bn(ϵ, x) ∩D = {x}.
1.2.8 Let U ⊆ Rn be open and C ⊆ Rn be closed.

(a) If A ⊆ U show that intU(A) = int(A).
(b) If A ⊆ C show that clC(A) = int(A).

1.2.9 Show that finite subsets of Q are relatively compact.
1.2.10 Show that if r, s ∈ R>0, and x0 ∈ Rm and y0 ∈ R

n, then Bm(r, x0) × Bn(s, y0) is
an open subset of Rn

×Rm.
1.2.11 Let A ⊆ Rm and B ⊆ Rn. Show that a sequence ((x j, y j)) j∈Z>0 converges to

(x0, y0) if and only if (x j) j∈Z>0 and (y j) j∈Z>0 converge to x0 and y0, respectively.
1.2.12 Let (Z j) j∈Z>0 be a family of subsets ofRn that each have measure zero. Show

that ∪ j∈Z>0Z j also has measure zero.
1.2.13 If V ⊆ Rn is a subspace of dimension at most n− 1 show that V has measure

zero.
1.2.14 Let D ∈ {D(A, x0),D(A,∞)} be a Rn-directed set and let ϕ : A → Rm be a

Rn-net in D. For s0 ∈ Rm define the correspondingRn net ϕx0,s0
: A→ R≥0 by

ϕx0,s0
(x) = ∥ϕ(x) − s0∥Rm . Show that limDϕ = s0 if and only if limDϕx0,s0

= 0.
1.2.15 Prove Proposition 1.2.79.
1.2.16
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Section 1.3

Continuous functions of multiple variables

With the structure of Rn as given in Section 1.2 it is fairly easy to generalise the
notion of continuity from the single-variable case to the multivariable case. Thus
much of what we say in this section bears a strong resemblance to the material
in Section I-3.1. We do, however, add more depth and detail in this section than
we did in Section I-3.1. For example, we discuss the structure of linear maps,
affine maps, isometries of Rn, and homeomorphisms. Reading this section will be
excellent preparation for understanding the general notion of a continuous map
and its properties as presented in Section III-1.3.

Since this section does repeat some of the material from Section I-3.1, we omit
reproducing the illustrative examples that we have already given, and only give
examples that reveal something interesting about the multivariable case.

Do I need to read this section? If one is reading this chapter then one should
read this section. Certain of the sections can be skipped, and these are clearly
labelled. •

1.3.1 Definition and properties of continuous multivariable maps

First let us establish our notation for multivariable functions. If A ⊆ Rn we use
a bold font, f : A → Rm to represent a multivariable function on A, reflecting the
fact that we use a similar bold font to denote points in Rn for n > 1. In keeping
with this convention, we will denote by f : A→ R a typical function taking values
in R, even though the domain is multi-dimensional. Note that, since f : A → Rm

takes values in Rm we can write

f (x) = ( f1(x), . . . , fm(x)),

where the functions f j : A→ R, j ∈ {1, . . . ,m}, are the components of f .
If a function f : A→ Rm takes values in B ⊆ Rm we may write f : A→ B.
The definition of continuity for R-values functions on R is made using the

absolute value function |·| onR in an essential way. Since the Euclidean norm ∥·∥Rn

provides a generalisation of the absolute value function, we shall use this to extend
to multiple dimensions our definitions of continuity.

1.3.1 Definition (Continuous map) Let n,m ∈ Z>0 and let A ⊆ Rn be a subset. A map
f : A→ Rm is:

(i) continuous at x0 ∈ A if, for every ϵ ∈ R>0, there exists δ ∈ R>0 such that
∥ f (x) − f (x0)∥Rn < ϵ whenever x ∈ A satisfies ∥x − x0∥Rm < δ;

(ii) continuous if it is continuous at each x0 ∈ A;
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(iii) discontinuous at x0 ∈ A if it is not continuous at x0;
(iv) discontinuous if it is not continuous.

Note that if f takes values in B ⊆ Rm we shall say that f : A→ B is continuous if it
is continuous as a map into Rm, i.e., if the map iB ◦ f is continuous, where iB is the
inclusion of B into Rm. •

Note that we define continuity for multivariable maps defined on arbitrary
subsets of Rn, whereas for the single-variable case we only considered functions
defined on intervals. We do this principally because there is no really useful
generalisation to higher-dimensions of the notion of an interval. We will mostly
only use fairly well-behaved subsets ofRn, e.g., open sets, or closures of open sets,
although our definition allows rather degenerate domains for maps.

The following equivalent characterisations of continuity, except for the last,
are just as they are in the case when m = n = 1, and, indeed, the proof also
generalises the one-dimensional proof only by replacing open intervals by open
balls. Here, for simplicity, we only consider maps whose domain is an open set
(see Example III-1.1.5–3 for the definition of an open set in this case).

1.3.2 Theorem (Alternative characterisations of continuity) For a map f : A → R
defined on a subset A ⊆ Rn and for x0 ∈ A, the following statements are equivalent:

(i) f is continuous at x0;
(ii) for every neighbourhood V of f(x0) there exists a neighbourhood U of x0 such that

f(U ∩A) ⊆ V;
(iii) limx→Ax0 f(x) = f(x0);
(iv) the components of f are continuous at x0.

Proof We shall show the equivalence of the first three statements, leaving the last as
Exercise 1.3.2.

(i) =⇒ (ii) Let V ⊆ Rm be a neighbourhood of f (x0) and let ϵ ∈ R>0 be such that
Bm(ϵ, f (x0)) ⊆ V. Then, by continuity of f , let δ ∈ R>0 be such that ∥ f (x) − f (x0)∥Rm < ϵ
if x ∈ A satisfies ∥x−x0∥Rn < δ. That is, if U = Bn(δ, x0) then f (U∩A) ⊆ Bm(ϵ, f (x0)) ⊆ V.

(ii) =⇒ (iii) Let (x j) j∈Z>0 be a sequence in A converging to x0. For ϵ ∈ R>0 let U be a
neighbourhood of x0 such that f (U ∩ A) ⊆ Bm(ϵ, f (x0)). Now let δ ∈ R>0 be such that
Bn(δ, x0) ⊆ U and let N ∈ Z>0 be sufficiently large that ∥x j − x0∥Rn < δ for j ≥ N. Then,
for j ≥ N, f (x j) ⊆ Bm(ϵ, f (x0)), i.e., ∥ f (x j) − f (x0)∥Rm < ϵ for j ≥ N. Thus ( f (x0)) j∈Z>0

converges to f (x0).
(iii) =⇒ (i) Suppose that f is not continuous at x0. Then there exists ϵ ∈ R>0 such

that, for any δ ∈ R>0, f (Bn(δ, x0) ∩ A) 1 Bm(ϵ, f (x0)). For each j ∈ Z>0, therefore, let
x j ∈ A satisfy ∥x j − x0∥Rn < 1

j and f (x j) < Bm(ϵ, f (x0)). Then the sequence (x j) j∈Z>0

converges to x0 but the sequence ( f (x j)) j∈Z>0 does not converge to f (x0). ■

Note that the last part of the preceding theorem says that “ f is continuous if
and only if its components are continuous.” This is not to be confused with the
incorrect statement that “ f is continuous if and only if it is a continuous function
of each component.” The following example illustrates the distinction.



2022/03/07 1.3 Continuous functions of multiple variables 73

1.3.3 Example (A discontinuous function that is continuous in each of its vari-
ables) Consider the function f : R2

→ R defined by

f (x1, x2) =

 x1x2

x2
1+x2

2
, (x1, x2) , (0, 0),

0, (0, 0).

We first claim that this function is discontinuous at (0, 0). Indeed, consider
points in R2 of the form (a, a) for a ∈ R∗. At such points we have f (a, a) = 1

2 . Since
f (0, 0) = 0 and since every neighbourhood of (0, 0) contains a point of the form (a, a)
for some a ∈ R∗, it follows that f cannot be continuous at (0, 0).

We also claim that for fixed x10 ∈ R (resp. x20 ∈ R) the function x2 7→ f (x10, x2)
(resp. x1 7→ f (x1, x20)) is continuous. First fix x10 ∈ R∗. Then the function x2 7→

x10x2

x2
10+x2

2

is clearly continuous (since the denominator is nonzero and since sums, products,
and quotients by nonzero functions preserve continuity). If x10 = 0 then we have
f (x10, x2) = 0 for all x2 ∈ R, and this is obviously a continuous function. This shows
that x2 7→ f (x10, x2) is continuous for every x10 ∈ R. An entirely similar argument
shows that x1 7→ f (x1, x20) is continuous for all x20 ∈ R. •

The previous theorem also has the following useful restatement which employs
the relative topology discussed in Section 1.2.8.

1.3.4 Corollary (Characterisation of continuous maps) For A ⊆ Rn and for f : A→ Rm

the following statements are equivalent:
(i) f is continuous;
(ii) f−1(V) is relatively open in A for every open subset V of Rm.

Proof First suppose that f is continuous and let V ⊆ Rm be open. Let x0 ∈ f−1(V) so
that f (x0) ∈ V. Since V is open and so a neighbourhood of f (x0), by Theorem 1.3.2
there exists a neighbourhood U of x0 such that f (U ∩ A) ⊆ V. Thus U ∩ A is a relative
neighbourhood of x0 in f−1(V) and so f−1(V) is open.

Now suppose that f−1(V) is relatively open in A for every open subset V of
Rm. Let x0 ∈ A and let V be a neighbourhood of f (x0). Then f−1(V) is a relative
neighbourhood of x0 in A. By Proposition 1.2.50 there exists an open set U in Rn such
that f−1(V) = U ∩ A. Therefore, since f ( f−1(V)) ⊆ V by Proposition I-1.3.5, it follows
that f is continuous at x0 using Theorem 1.3.2. ■

The notion of uniform continuity can be extended to multivariable functions.

1.3.5 Definition (Uniform continuity) Let A ⊆ Rn. A map f : A → Rm is uniformly
continuous if, for every ϵ ∈ R>0, there exists δ ∈ R>0 such that ∥ f (x1) − f (x2)∥Rn < ϵ
whenever x1, x2 ∈ A satisfy ∥x1 − x2∥Rn < δ. •

Obviously all uniformly continuous functions are continuous. We refer the
reader to Example I-3.1.7 for an example of a continuous but not uniformly con-
tinuous function.

We close this section by initiating a discussion of the relationship between
continuity, interior, closure, and boundary.
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1.3.6 Proposition (Continuity and interior, closure, and boundary) If A ⊆ Rn, if
S ⊆ A, if B ⊆ Rm, and if f : A→ Rm is continuous then the following statements hold:

(i) intB(f(S))) ⊆ f(intA(S));
(ii) f(clS(A)) ⊆ clB(f(S));
(iii) f(bdS(A)) ⊆ bdB(f(S)).

Proof Let y ∈ intB( f (S)) then there exists a relative neighbourhood U of y in f (S) in B
such that U ⊆ f (S). Then f−1(U) is relatively open in A. That is, if y = f (x) for x ∈ S
then x ∈ intA(S). Thus y ∈ f (intA(S)).

Let y ∈ f (clA(S)) with y = f (x) for x ∈ clA(S). Then there exists a sequence (x j) j∈Z>0

in S converging to x. By Theorem 1.3.2 it follows that ( f (x j)) j∈Z>0 converges to y. Since
f (x j) ∈ f (S) it follows that y ∈ clB( f (S)).

Let y ∈ f (bdA(S)) with y = f (x) for x ∈ bdA(S). Then there exist sequences (x j) j∈Z>0

in S and (x′j) j∈Z>0 in A \ S, both converging to x. By continuity of f the sequences
( f (x j)) j∈Z>0 in f (S) and ( f (x′j)) j∈Z>0 in f (A \ S) = f (A) \ f (S) both converge to y. Thus
y ∈ bd f (S)( f (B)). ■

In general, the converse inclusions of the preceding result are not true.

1.3.7 Examples (Continuity and interior, closure, and boundary)
1. Consider A = S = [0, π] ⊆ R, B = [0, 1] ⊆ R, and take f : A → B given by

f (x) = sin(x). Note that f (S) = [0, 1]. Then f (π2 ) = 1 and so 1 ∈ f (intA(S)).
However, 1 < intB( f (S)).

2. Take A = S = R ⊆ R, B = [−π2 ,
π
2 ], and let f : A→ B be given by f (x) = tan−1(x).

Note that f (S) = (−π2 ,
π
2 ). Thus π

2 ∈ clB( f (S)) but π
2 < f (clA(S)) since S is closed.

3. The same example as the preceding works here since π
2 ∈ bdB( f (S)) but π

2 <
f (bdA(S)) since bdA(S) = ∅. •

1.3.2 Discontinuous maps

This section is rather specialised and technical and so can be omitted until needed.
However, the material is needed at certain points in the text.

Next we consider the discontinuities of multivariable functions. The discussion
here is not much different from that in a single variable, so we keep things brief.

1.3.8 Definition (Types of discontinuity) Let A ⊆ Rn and suppose that f : A → Rm is
discontinuous at x0 ∈ A. The point x0 is:

(i) a removable discontinuity if limx→Ax0 f (x) exists;
(ii) an essential discontinuity if the limit limx→Ax0 f (x) exists.

The set of all discontinuities of f is denoted by D f . •

Note that we are not quite able to give as refined a characterisation of a point
of discontinuity as we did in the single-variable case. This is because the discon-
tinuities of multiple-variable functions can be rather more general that those for
single-variable functions. Let us explore this in the context of an example.
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1.3.9 Example (Strangeness of discontinuities for multivariable functions) We
again consider the function f : R2

→ R considered in Example 1.3.3:

f (x1, x2) =

 x1x2

x2
1+x2

2
, (x1, x2) , (0, 0),

0, (0, 0).

In Example 1.3.3 we showed that this function was continuous when thought of
separately as a function of x1 and of x2, but was actually discontinuous at (0, 0).
Here we shall further explore the nature of the discontinuity at (0, 0). First let us
consider how the function behaves as we approach the origin along lines. Thus
consider the line

s 7→ (0, 0) + s(u1,u2), s ∈ R

through (0, 0) in the direction (u1,u2). We easily compute

f ((0, 0) + s(u1,u2)) =
u1u2

u2
1 + u2

2

.

If u1 = 0 or u2 = 0 then we have

lim
s→0

f ((0, 0) + s(u1,u2)) = 0.

For u1 , 0 let us take u2 = au1, i.e., the line has slope a ∈ R. In this case we have

lim
s→0

f ((0, 0) + s(u1,u2)) =
a

1 + a2 .

Similarly, if u2 , 0 and u1 = bu2 then we have

lim
s→0

f ((0, 0) + s(u1,u2)) =
b

1 + b2 .

Thus all of these limits are finite, but the value of the limit depends on the direction
in which one approaches (0, 0). •

As in the single-variable case, we can use the oscillation to measure the discon-
tinuity of a function.

1.3.10 Definition (Oscillation) Let A ⊆ Rn and let f : A→ Rm be a map. The oscillation
of f is the map ω f : A→ R defined by

ω f (x) = inf{sup{∥ f (x1) − f (x2)∥Rm | x1, x2 ∈ Bn(δ, x) ∩ A} | δ ∈ R>0}. •

Note that the definition makes sense since the function

δ 7→ sup{∥ f (x1) − f (x2)∥Rm | x1, x2 ∈ Bn(δ, x) ∩ A}

is monotonically increasing. In particular, if f is bounded (see Definition 1.3.30
below) then ω f is also bounded. The following result indicates in what way ω f

measures the continuity of f .
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1.3.11 Proposition (Oscillation measures discontinuity) For a subset A ⊆ R and a map
f : A→ R, f is continuous at x ∈ A if and only if ωf(x) = 0.

Proof Suppose that f is continuous at x and let ϵ ∈ R>0. Choose δ ∈ R>0 such that if
y ∈ Bn(δ, x) ∩ A then ∥ f (y) − f (x)∥Rm < ϵ

2 . Then, for x1, x2 ∈ Bn(δ, x) we have

∥ f (x1) − f (x2)∥Rm ≤ ∥ f (x1) − f (x)∥Rm + ∥ f (x) − f (x2)∥Rm < ϵ.

Therefore,
sup{∥ f (x1) − f (x2)∥Rn | x1, x2 ∈ Bn(δ, x) ∩ A} < ϵ.

Since ϵ is arbitrary this gives

inf{sup{∥ f (x1) − f (x2)∥Rm | x1, x2 ∈ Bn(δ, x) ∩ A} | δ ∈ R>0} = 0,

meaning that ω f (x) = 0.
Now suppose that ω f (x) = 0. For ϵ ∈ R>0 let δ ∈ R>0 be chosen such that

sup{∥ f (x1) − f (x2)∥Rm | x1, x2 ∈ Bn(δ, x) ∩ A} < ϵ.

In particular, ∥ f (y) − f (x)∥Rm < ϵ for all y ∈ Bn(δ, x) ∩ A, giving continuity of f at x. ■

Let us consider an example where we can compute the oscillation.

1.3.12 Example (Oscillation for a discontinuous function) We again consider the func-
tion f : R2

→ R

f (x1, x2) =

 x1x2

x2
1+x2

2
, (x1, x2) , (0, 0),

0, (0, 0)

that is discontinuous at (0, 0). Let us determine ω f (0, 0). As we saw in Exam-
ple 1.3.9, the function is constant on lines through (0, 0). Therefore, all values of
the function in any neighbourhood of (0, 0) are attained by considering the values
of the function along lines through (0, 0). Moreover, in Example 1.3.9 we did this
computation and we recall that the results were as follows.
1. On the line s 7→ (s, 0), f (s, 0) = 0.
2. On the line s 7→ (0, s), f (0, s) = 0.
3. On the line s 7→ (s, as), f (s, as) = a

1+a2 .
4. On the line s 7→ (bs, s), f (bs, s) = b

1+a2 .
The bottom line is that the values of f in any neighbourhood of (0, 0) are in 1–
1 correspondence with the elements of the set { a

1+a2 | a ∈ R}. Thus one should
look at the graph of the function g : a 7→ a

1+a2 to determine its maxima and minima.
Since g is differentiable and lima→±∞ g(a) = 0, by Theorem I-3.2.16 the maxima and
minima occur where g′ vanishes. We compute g′(a) = 1−a2

(a+12)2 which means that
maxima and minima must occur at a ∈ {−1, 1}. Also by Theorem I-3.2.16, minima
occur when g′′(a) > 0 and maxima occur when g′′(a) < 0. We compute g′′(1) = −1

2
and g′′(−1) = 1

2 . That a = 1 is a maximum for g and a = −1 is a minimum. We
compute g(1) = 1

2 and g(−1) = −1
2 . This then gives ω f (0, 0) = 1.

Normally it will be quite difficult to explicitly compute the oscillation of a
function. •
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Let us now describe the possible set of discontinuities of an arbitrary multivari-
able function. The key to this, just as in the single-variable case, is the following
result.

1.3.13 Proposition (Closed preimages of the oscillation of a function) Let A ⊆ Rn

and let f : I→ R be a function. Then, for every α ≥ 0, the set

Aα = {x ∈ A | ωf(x) ≥ α}

is relatively closed in A.
Proof The result where α = 0 is clear, so we assume that α ∈ R>0. For δ ∈ R>0 define

ω f (x, δ) = sup{∥ f (x1) − f (x2)∥Rm | x1, x2 ∈ Bn(δ, x) ∩ A}

so that ω f (x) = limδ→0ω f (x, δ). Let (x j) j∈Z>0 be a sequence in Aα converging to x ∈ Rn

and let (ϵ j) j∈Z>0 be a sequence in (0, α) converging to zero. Let j ∈ Z>0. We claim that
there exists points y j, z j ∈ Bn(ϵ j, x j) ∩ A such that ∥ f (y j) − f (z j)∥Rm ≥ α − ϵ j. Suppose
otherwise so that for every y, z ∈ Bn(ϵ j, x j)∩A we have ∥ f (y)− f (z)∥Rm < α− ϵ j. It then
follows that limδ→0ω f (x j, δ) ≤ α − ϵ j < α, contradicting the fact that x j ∈ Aα. We claim
that (y j) j∈Z>0 and (z j) j∈Z>0 converge to x. Indeed, let ϵ ∈ R>0 and choose N1 ∈ Z>0

sufficiently large that ϵ j <
ϵ
2 for j ≥ N1 and choose N2 ∈ Z>0 such that ∥x j − x∥Rn < ϵ

2
for j ≥ N2. Then, for j ≥ max{N1,N2}we have

∥y j − x∥Rn ≤ ∥y j − x j∥Rn + ∥x j − x∥Rn < ϵ.

Thus (y j) j∈Z>0 converges to x, and the same argument, and therefore the same conclu-
sion, also applies to (z j) j∈Z>0 .

Thus we have sequences of points (y j) j∈Z>0 and (z j) j∈Z>0 in A converging to x and
a sequence (ϵ j) j∈Z>0 in (0, α) converging to zero for which ∥ f (y j) − f (z j)∥Rm ≥ α − ϵ j.
We claim that this implies that ω f (x) ≥ α. Indeed, suppose that ω f (x) < α. There exists
N ∈ Z>0 such that α − ϵ j > α − ω f (x) for every j ≥ N. Therefore,

∥ f (y j) − f (z j)∥Rm ≥ α − ϵ j > α − ω f (x)

for every j ≥ N. This contradicts the definition of ω f (x) since the sequences (y j) j∈Z>0

and (z j) j∈Z>0 converge to x.
Now we claim that the sequence (x j) j∈Z>0 converges to x. Let ϵ ∈ R>0 and let

N1 ∈ Z>0 be large enough that ∥x − y j∥Rn < ϵ
2 for j ≥ N1 and let N2 ∈ Z>0 be large

enough that ϵ j <
ϵ
2 for j ≥ N2. Then, for j ≥ max{N1,N2}we have

∥x − x j∥Rn ≤ ∥x − y j∥Rn + ∥y j − x j∥Rn < ϵ,

as desired.
This shows that every sequence in Aα converges to a point in Aα. It follows from

Exercise I-2.5.2 that Aα is closed. ■

For readers who like the fancy language, we comment that the preceding result
means exactly that ω f is upper semicontinuous, cf. Proposition 1.10.13.

The following corollary is somewhat remarkable, in that it shows that the set of
discontinuities of a function cannot be arbitrary.
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1.3.14 Corollary (Discontinuities are the countable union of closed sets) Let A ⊆ Rn

and let f : A→ Rm be a function. Then the set

Df = {x ∈ A | f is not continuous at x}

is the countable union of closed sets.
Proof This follows immediately from Proposition 1.3.13 after we note that

D f = ∪k∈Z>0{x ∈ A | ω f (x) ≥ 1
k }. ■

1.3.3 Linear and affine maps

In this section we study a particularly simple, but as it turns out, very interesting
class of continuous maps. While we studied linear maps in detail in Chapter I-5,
let us redefine them here for fun, along with another, closely related type of map.
The reader will recall that if A ∈ Matm×n(R) is an m × n-matrix with real entries
(see Definition I-5.1.1) then the product of A with x ∈ Rn is the element Ax ∈ Rm

defined by

(Ax)a =

n∑
j=1

A(a, j)x j.

With this recollection we then make the following definition.

1.3.15 Definition (Linear map, affine map) A map f : Rn
→ Rm is

(i) linear if there exists A ∈ Matm×n(R) such that f (x) = Ax for every x ∈ Rn and
is

(ii) affine if there exists A ∈ Matm×n(R) and b ∈ Rm such that f (x) = Ax + b for
every x ∈ Rn. •

Recall from Theorem I-5.1.13 that in the above definition we are establishing the
natural identification of Matm×n(R) with HomR(Rn;Rm). Moreover, according to
Proposition I-5.4.25 this identification is of a matrix with the matrix representative
of the linear map with respect to the standard basis. In this chapter we shall
unblinkingly use this identification, and use the words “matrix” and “linear map”
interchangeably, keeping in mind the natural identifications we are making.

Let us give some of the elementary properties of linear and affine maps. Since
linear maps are special cases of affine maps, we sometimes need only consider
them.

1.3.16 Proposition (Affine maps are uniformly continuous) For A ∈ Matm×n(R) and
b ∈ Rm, the affine map f : x 7→ Ax + b is uniformly continuous.

Proof Note that the ath component of Ax is exactly ⟨r(A, a), x⟩Rn , where we recall from
Definition I-5.1.4 that r(A, a) denotes the ath row of A. Let

M = max{|r(A, a)| | a ∈ {1, . . . ,m}}.
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For ϵ ∈ R>0 let δ = ϵ
√

mM
and compute

∥ f (x) − f (y)∥Rm =
( m∑

a=1

⟨r(A, a), x − y⟩Rn

)1/2

≤

( m∑
a=1

∥r(A, a)∥2Rn∥x − y∥2Rn

)1/2

≤
√

mM∥x − y∥Rn .

Thus, if ∥x− y∥Rn < δ then ∥ f (x)− f (y)∥Rm < ϵ, giving uniform continuity as desired.■

1.3.4 Isometries

There is a special class of maps on Rn which (as we shall see) are affine. Let us
first define the desired property of such maps.

1.3.17 Definition (Isometry of Rn) A map f : Rn
→ Rn is an isometry if

∥ f (x1) − f (x2)∥Rn = ∥x1 − x2∥Rn

for every x1, x2 ∈ Rn. •

The idea of an isometry, then, is that it preserves the distance between points.
It is not immediately obvious, but the set of isometries has a very simple structure.
To get at this, we begin by considering linear isometries.

1.3.18 Theorem (Characterisation of linear isometries of Rn) For a matrix R ∈

Matn×n(R) the following statements are equivalent:
(i) R is a linear isometry;
(ii) ∥Rx∥Rn = ∥x∥Rn for all x ∈ Rn;
(iii) ⟨Rx,Ry⟩Rn = ⟨x,y⟩Rn for all x,y ∈ Rn;
(iv) RRT = RTR = In;
(v) R is invertible and R−1 = RT.

Proof (i) =⇒ (ii) If R is a linear isometry then

∥Rx − R0∥Rn = ∥x − 0∥Rn

or ∥Rx∥Rn = ∥x∥Rn , as desired.
(ii) =⇒ (iii) We are assuming that ∥Rx∥Rn = ∥x∥Rn which implies that

∥Rx∥2Rn = ∥x∥2Rn =⇒ ⟨Rx,Rx⟩Rn = ⟨x, x⟩Rn ,

this holding for all x ∈ Rn. Thus, for every x, y ∈ Rn,

⟨R(x + y),R(x + y)⟩Rn = ⟨x + y, x + y⟩Rn

=⇒ ⟨Rx,Rx⟩Rn + ⟨Ry,Ry⟩Rn + 2⟨Rx,Ry⟩Rn = ⟨x, x⟩Rn + ⟨y, y⟩Rn + 2⟨x, y⟩Rn

=⇒ ⟨Rx,Ry⟩Rn = ⟨x, y⟩Rn ,
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as desired.
(iii) =⇒ (iv) Letting {e1, . . . , en} be the standard basis for Rn we have

⟨Re j,Rek⟩Rn = ⟨e j, ek⟩Rn , j, k ∈ {1, . . . ,n}.

We have

⟨e j, ek⟩Rn = In( j, k) =

1, j = k,
0, j , k

and a direct calculation shows that

⟨Re j,Rek⟩Rn =

n∑
i=1

R(i, j)R(i, k) = (RTR)( j, k).

Thus RTR = In. From Theorem I-5.1.42 this means that R is invertible with inverse
RT. This means that we also have RRT = In.

(iv) =⇒ (v) This was proved in the preceding part of the proof.
(v) =⇒ (i) We first note that a direct computation shows that

⟨Ax, y⟩Rn = ⟨x,AT y⟩Rn (1.11)

for all x, y ∈ Rn and A ∈Matn×n(R); this idea will be revealed in a more general setting
in . If R is invertible with inverse RT we havewhat?

RTR = In

=⇒ RTRx = x, x ∈ Rn

=⇒ ⟨RTRx, x⟩Rn = ⟨x, x⟩Rn , x ∈ Rn

=⇒ ⟨Rx,Rx⟩Rn = ⟨x, x⟩Rn , x ∈ Rn,

using (1.11). Thus ∥Rx∥Rn = ∥x∥Rn for every x ∈ Rn. Therefore,

∥Rx1 − Rx2∥Rn = ∥R(x1 − x2)∥Rn = ∥x1 − x2∥Rn

for all x1, x2 ∈ Rn, meaning that R is an isometry. ■

Clearly linear isometries are very special. They are also very important, al-
though we will not engage in a general investigation of these until . For now wewhen?

just make a definition.

1.3.19 Definition (Orthogonal matrix) A matrix R ∈ Matn×n(R) is orthogonal if it is a
linear isometry. The set of orthogonal n × n matrices is denoted by O(n) and is
called the orthogonal group in n-dimensions. •

Since we call O(n) the orthogonal group, it ought to be a group. The reader can
verify that this is the case in Exercise 1.3.9.

With an understanding of linear isometries, it is possible to understand the
structure of a general isometry. The following result gives the characterisation.
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1.3.20 Theorem (Characterisation of isometries of Rn) A map f : Rn
→ Rn is an isometry

if and only if there exists R ∈ O(n) and r ∈ Rn such that

f(x) = Rx + r, x ∈ Rn.

Proof First let us verify that the map x 7→ Rx + r is an isometry. We compute

∥(Rx1 + r) − (Rx2 + r)∥Rn = ∥R(x1 − x2)∥Rn = ∥x1 − x2∥Rn ,

using Theorem 1.3.18. Thus maps of the form given in the theorem statement are
isometries.

Now suppose that f is an isometry. First suppose that f fixes 0 ∈ Rn: f (0) = 0.
We shall use the fact (see Exercise 1.3.1) that the Euclidean norm space satisfies the
parallelogram law:

∥x + y∥2Rn + ∥x − y∥2Rn = 2
(
∥x∥2Rn + ∥y∥2Rn

)
.

Using this equality, and the fact that f is an isometry fixing 0, we compute

∥ f (x) + f (y)∥2Rn = 2∥ f (x)∥2Rn + 2∥ f (y)∥2Rn − ∥ f (x) − f (y)∥2Rn

= 2∥ f (x) − f (0)∥2Rn + 2∥ f (y) − f (0)∥2Rn − ∥ f (x) − f (y)∥2Rn

= 2∥x∥2Rn + 2∥y∥2Rn − ∥x − y∥2Rn = ∥x + y∥2Rn . (1.12)

By the polarization identity, see Exercise 1.3.1, we obtain

⟨x, y⟩Rn = 1
2

(
∥x + y∥2Rn − ∥x∥2Rn − ∥y∥2Rn

)
for every x, y ∈ Rn. In particular, using (1.12) and the fact that f is an isometry fixing
0, we compute

⟨ f (x), f (y)⟩Rn = 1
2

(
∥ f (x) + f (y)∥2Rn − ∥ f (x)∥2Rn − ∥ f (y)∥2Rn

)
= 1

2

(
∥ f (x) + f (y)∥2Rn − ∥ f (x) − f (0)∥2Rn − ∥ f (y) − f (0)∥2Rn

)
= 1

2

(
∥x + y∥2Rn − ∥x∥2Rn − ∥y∥2Rn

)
= ⟨x, y⟩Rn . (1.13)

We now claim that this implies that f is a linear map. Indeed, let {e1, . . . , en} be the
standard basis forRn and let (x1, . . . , xn) be the components of x ∈ Rn in this basis (thus
xi = ⟨x, ei⟩Rn , i ∈ {1, . . . ,n}). Since

⟨ f (ei), f (e j)⟩Rn = ⟨ei, e j⟩Rn , i, j ∈ {1, . . . ,n},

the vectors { f (e1), . . . , f (en)} form an orthonormal basis for Rn (see for the notion of an what

orthonormal basis). The components of f (x) in this basis are given by ⟨ f (x, f (ei)⟩Rn ,
i ∈ {1, . . . ,n}. By (1.13) this means that the components of f (x) are precisely (x1, . . . , xn).
That is,

f
( n∑

i=1

xiei

)
=

n∑
i=1

xi f (ei).
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Therefore, if f fixes 0 ∈ Rn then f is linear and so, by Theorem 1.3.18, there exists
R ∈ O(n) such that f (x) = Rx. Thus the theorem holds when f fixes 0.

Now, suppose that f fixes not 0, but some other point x0 ∈ Rn: f (x0) = x0. Then
define f x0

: Rn
→ Rn by

f x0
(x) = f (x + x0) − x0,

and note that f x0
(0) = 0. Thus f x0

(x) = R(x) for some R ∈ O(n). Therefore,

f (x) = f x0
(x − x0) + x0 = Rx + x0 − Rx0.

Thus the theorem holds when f fixes a general point in Rn.
Finally, suppose that f maps x1 ∈ R

n to x2 ∈ Rn. In this most general case define
f x1,x2

: Rn
→ Rn by

f x1,x2
(x) = f (x) − (x2 − x1),

noting that f x1,x2
(x1) = x1. Therefore, by the previous part of the proof,

f x1,x2
(x) = Rx + r′

for some R ∈ O(n) and some r′ ∈ Rn. Thus we get the theorem by taking r = r′+(x2−x1).
■

Now that we have described the set of isometries, let us name them.

1.3.21 Definition (Euclidean group) The Euclidean group in n-dimensions is the set of
isometries of Rn and is denoted by E(n). •

Of course, the Euclidean group is a group, as the reader may verify in Exer-
cise 1.3.12.

Note that there are two fundamental sorts of isometries. The first are transla-
tions which are of the form x 7→ x + r for some r ∈ Rn. The second fundamental
sort of isometry are those that are linear: x 7→ Rx for R ∈ O(n). These are called
rotations. Theorem 1.3.20 tells us that a general isometry is a rotation followed by
a translation.

1.3.5 Continuity and operations on functions

In this section we prove the hoped for properties of continuous functions with
respect to the algebraic and topological properties of Euclidean space. First of all
let us note that if A ⊆ Rn then the set of Rm-valued maps on A is a R-vector space.
Indeed, the operations of vector addition and scalar multiplication are defined by

( f + g)(x) = f (x) + g(x), (a f )(x) = a( f (x)),

where f , g : A → Rm and where a ∈ R. These operations respect continuous
functions.
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1.3.22 Proposition (Continuity, and addition and scalar multiplication) If A ⊆ Rn, if
f,g : A→ Rm are continuous, and if a ∈ R then f + g and af are continuous.

Proof The proof differs from the relevant parts of the proof of Proposition I-3.1.15
only by change of notation so we omit it here. ■

1.3.23 Proposition (Continuity and composition) Let A ⊆ Rm, B ⊆ Rm and let f : A →
Rm and g : B → Rk have the properties that image(A) ⊆ B and that f is continuous at
x0 ∈ A and g is continuous at f(x0). Then g ◦ f is continuous at x0.

Proof This is proved in the same manner as Proposition I-3.1.16. ■

1.3.24 Proposition (Continuity and restriction) If A ⊆ Rn, if B ⊆ A, and if f : A → Rm

be continuous at x0 ∈ B, then f|B is continuous at x0.
Proof The manner of proof here is like that in Proposition I-3.1.17. ■

Note that the converse of the previous result is not generally true.

1.3.25 Example (Continuity and restriction) Define f : R→ R by

f (x) =

1, x ∈ Z,
0, x < Z.

Then f |Z is continuous (it is constant), but f is not continuous at points in Z. •

Let us also indicate how continuity interacts with products.

1.3.26 Proposition (Continuity and products) The following statements hold:
(i) if Aj ⊆ Rnj , j ∈ {1, . . . ,k}, and if f : A1×· · ·×Ak → Rk is continuous at (x10, . . . , xk0),

then the maps

xj 7→ f(x10, . . . , xj, . . . , xk0), j ∈ {1, . . . ,k},

are continuous at xj0;
(ii) if C ⊆ Rk and if g : C → Rn1 × · · · × Rnk is given by g(z) = (g1(z), . . . ,gk(z)) for

gj : C→ Rnj , j ∈ {1, . . . ,k}, then g is continuous at z0 ∈ C if and only if each of the
maps gj, j ∈ {1, . . . ,k}, are continuous at z0.

Proof By induction it suffices to prove the result for k = 2. We denote n1 = m, n2 = n,
and write a typical point in Rm

×Rn as (x, y).
(i) Suppose that f is continuous at (x0, y0) and let (x j) j∈Z>0 be a sequence converging

to x0. Then the sequence ((x j, y0)) j∈Z>0 is easily verified to converge to (x,y0). Continuity
of f and Theorem 1.3.2 ensures that

lim
j→∞

f (x j, y0) = f (x0, y0),

which in turn gives continuity of x 7→ f (x, y0) at x0 by Theorem 1.3.2. An entirely
similar argument gives continuity of y 7→ f (x0, y) at y0.



84 1 Multiple real variables and functions of multiple real variables 2022/03/07

(ii) First suppose that g is continuous at z0. Then, for a sequence (z j) j∈Z>0 in
C converging to z0, the sequence ((g1(z j), g2(z j))) j∈Z>0 converges to (g1(z0), g2(z0)) by
Theorem 1.3.2. From Exercise 1.2.11 we know that the sequences (g1(z j)) j∈Z>0 and
(g2(z j)) j∈Z>0 converge to g1(z0) and g2(z0), respectively. By Theorem 1.3.2 it follows
that g1 and g2, respectively.

The argument can be reversed, using Exercise 1.2.11 and Theorem 1.3.2, to show
that g is continuous at (x0, y0) if g1 is continuous at x0 and g2 is continuous at y0. ■

The reader will notice that an implication is missing from the preceding result.
This is not an oversight.

1.3.27 Example (Discontinuous function continuous in both variables) Define
f : R2

→ R by

f (x1, x2) =


x2

1x2

x4
1+x2

2
, (x1, x2) , (0, 0),

0, (x1, x2) = (0, 0).

We claim that f is not continuous at (0, 0). Consider a point in R2 of the form
(a, a2) for a ∈ R. At such points we have f (a, a2) = 1

2 . Since f (0, 0) = 0 and since
any neighbourhood of (0, 0) contains a point of the form (a, a2) for some a ∈ R∗, it
follows that f cannot be continuous at (0, 0).

However, the two functions

x1 7→ f (x1, 0) = 0, x2 7→ f (0, x2) = 0

are obviously continuous. •

Let us finally consider the behaviour of continuity with respect to the operations
of selection of maximums and minimums.

1.3.28 Proposition (Continuity and min and max) If A ⊆ Rn and if f,g: I → R are
continuous functions, then the functions

A ∋ x 7→ min{f(x),g(x)} ∈ R, A ∋ x 7→ max{f(x),g(x)} ∈ R

are continuous.
Proof Let x0 ∈ A and let ϵ ∈ R>0. Let us first assume that f (x0) > g(x0). That is to say,
assume that ( f − g)(x0) ∈ R>0. Continuity of f and g ensures that there exists δ1 ∈ R>0
such that if x ∈ Bn(δ1, x0) ∩ A then ( f − g)(x) ∈ R>0. That is, if x ∈ Bn(δ1, x0) ∩ A then

min{ f (x), g(x)} = g(x), max{ f (x), g(x)} = f (x).

Continuity of f ensures that there exists δ2 ∈ R>0 such that if x ∈ Bn(δ2, x0) ∩ A then
| f (x) − f (x0)| < ϵ. Similarly, continuity of f ensures that there exists δ3 ∈ R>0 such that
if x ∈ Bn(δ3, x0) ∩A then |g(x) − g(x0)| < ϵ. Let δ4 = min{δ1, δ2}. If x ∈ B(δ4, x0) ∩A then

|min{ f (x), g(x)} −min{ f (x0), g(x0)}| = |g(x) − g(x0)| < ϵ
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and
|max{ f (x), g(x)} −max{ f (x0), g(x0)}| = | f (x) − f (x0)| < ϵ.

This gives continuity of the two functions in this case. Similarly, swapping the rôle
of f and g, if f (x0) < g(x0) one can arrive at the same conclusion. Thus we need only
consider the case when f (x0) = g(x0). In this case, by continuity of f and g, choose
δ ∈ R>0 such that | f (x) − f (x0)| < ϵ and |g(x) − g(x0)| < ϵ for x ∈ B(δ, x0) ∩ A. Then let
x ∈ B(δ, x0) ∩ A. If f (x) ≥ g(x) then we have

|min{ f (x), g(x)} −min{ f (x0), g(x0)}| = |g(x) − g(x0)| < ϵ

and
|max{ f (x), g(x)} −max{ f (x0), g(x0)}| = | f (x) − f (x0)| < ϵ.

This gives the result in this case, and one similarly gets the result when f (x) < g(x). ■

1.3.6 Continuity, and compactness and connectedness

As we saw in Section I-3.1.4 for single-variable functions, continuity acts nicely
with respect to certain topological notions including compactness and connected-
ness. We give these results here in the multivariable case, noting that there is a
great deal in common with the single-variable case. Thus we will go through this
fairly quickly.

1.3.29 Proposition (The continuous image of a compact set is compact) If A ⊆ Rn

is compact and if f : A→ Rm is continuous, then image(f) is compact.
Proof Let (Ui)i∈I be an open cover of image( f ). Then ( f−1(Ui))i∈I is an open cover of A,
and so there exists a finite subset (i1, . . . , ik) ⊆ I such that∪k

j=1 f−1(Uik) = A. It is then clear

that ( f ( f−1(Ui1)), . . . , f ( f−1(Uik))) covers image( f ). Moreover, by Proposition I-1.3.5,
f ( f−1(Ui j)) ⊆ Ui j , j ∈ {1, . . . , k}. Thus (Ui1 , . . . ,Uik) is a finite subcover of (Ui)i∈I. ■

The following properties of functions interact well with compactness.

1.3.30 Definition (Bounded map) For an subset A ⊆ Rn, a map f : A→ Rm is:

(i) bounded if there exists M ∈ R>0 such that image( f ) ⊆ Bn(M, 0);
(ii) locally bounded if f |K is bounded for every compact subset K ⊆ A;
(iii) unbounded if it is not bounded. •

1.3.31 Theorem (Continuous functions on compact sets are bounded) If A ⊆ Rn is
compact, then a continuous function f : A→ Rm is bounded.

Proof Let x ∈ A. As f is continuous, there exists δ ∈ R>0 so that ∥ f (y) − f (x)∥Rm < 1
provided that ∥y−x∥Rn < δ. In particular, if x ∈ A, there is a neighbourhood Ux of x such
that ∥ f (y)∥Rn ≤ ∥ f (x)∥Rm + 1 for all x ∈ Ux ∩ A. Thus f is bounded on Ux ∩ A. This can
be done for each x ∈ A, so defining a family of open sets (Ux)x∈A. Clearly A ⊆ ∪x∈AUx,
and so, by Theorem 1.2.35, there exists a finite collection of points x1, . . . , xk ∈ A such
that A ⊆ ∪k

j=1Ux j . Obviously for any x ∈ A,

∥ f (x)∥Rm ≤ 1 +max{ f (x1), . . . , f (xk)},
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thus showing that f is bounded. ■

1.3.32 Theorem (Continuous functions on compact sets achieve their extreme val-
ues) If A ⊆ Rn is a compact interval and if f : A → R is continuous, then there exist
points xmin, xmax ∈ A such that

f(xmin) = inf{f(x) | x ∈ A}, f(xmax) = sup{f(x) | x ∈ A}.

Proof It suffices to show that f achieves its maximum on A since if f achieves its
maximum, then − f will achieve its minimum. So let M = sup{ f (x) | x ∈ A}, and
suppose that there is no point xmax ∈ A for which f (xmax) =M. Then f (x) < M for each
x ∈ A. For a given x ∈ A we have

f (x) = 1
2 ( f (x) + f (x)) < 1

2 ( f (x) +M).

Continuity of f ensures that there is an open set Ux containing x such that, for each y ∈
Ux∩A, f (y) < 1

2 ( f (x)+M). Since A ⊆ ∪x∈AUx, by the Heine–Borel theorem, there exists
a finite number of points x1, . . . , xk such that A ⊆ ∪k

j=1Ux j . Let m = max{ f (x1), . . . , f (xk)}
so that, for each y ∈ Ix j , and for each j ∈ {1, . . . , k}, we have

f (y) < 1
2 ( f (x j) +M) < 1

2 (m +M),

which shows that 1
2 (m+M) is an upper bound for f . However, since f attains the value

m on A, we have m < M and so 1
2 (m+M) < M, contradicting the fact that M is the least

upper bound. Thus our assumption that f cannot attain the value M on A is false. ■

As in the single-variable case we saw that continuity and compactness conspire
to give uniform continuity. This is true in the multivariable case as well, and serves
to further establish the connection between “compactness” and “uniformly.”

1.3.33 Theorem (Heine–Cantor Theorem) Let A ⊆ Rn be compact. If f : A → Rm is
continuous, then it is uniformly continuous.

Proof Let x ∈ A and let ϵ ∈ R>0. Since f is continuous, then there exists δx ∈ R>0

such that, if y ∈ Bn(δx, x) ∩ A then f (y) ∈ Bm( ϵ2 , f (x)). Note that A ⊆ ∪x∈ABn( δx
2 , x),

so that the open sets (Bn( δx
2 , x))x∈A cover A. By definition of compactness, there then

exists a finite number of these open sets that cover A. Denote this finite family by

(Bn(
δx1
2 , x1), . . . ,Bn(

δxk
2 , xk)) for some x1, . . . , xk ∈ A. Take δ = 1

2 min{δx1 , . . . , δxk}. Now let

x, y ∈ A satisfy ∥x − y∥Rn < δ. Then there exists j ∈ {1, . . . , k} such that x ∈ Bn(
δxk
2 , x j).

We also have
∥y − x j∥Rn ≤ ∥y − x∥Rn + ∥x − x j∥Rn < δx j ,

using the triangle inequality. Therefore,

∥ f (y) − f (x)∥Rm ≤ ∥ f (y) − f (x j)∥Rm + ∥ f (x j) − f (x)∥Rm < ϵ,

again using the triangle inequality. Since this holds for any x ∈ A, it follows that f is
uniformly continuous. ■

Now let us turn to connectedness and its relation to continuity.
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1.3.34 Proposition (The continuous image of a (path) connected set is (path) con-
nected) If A ⊆ Rn is (path) connected and if f : A → Rm is continuous, then f(A) is
(path) connected.

Proof Suppose that f (A) is not connected. Then there exist nonempty separated sets
S and T such that f (A) = S ∪ T. Let S′ = f−1(S) and T′ = f−1(T) so that A = S′ ∪ T′. By
Propositions 1.2.28 and I-1.3.5, and since f−1(cl(S)) is closed, we have

cl(S′) = cl( f−1(S)) ⊆ cl( f−1(cl(S)) = f−1(cl(S)).

Therefore, by Proposition I-1.3.5,

cl(S′) ∩ T′ ⊆ f−1(cl(S)) ∩ f−1(T) = f−1(cl(S) ∩ T) = ∅.

We also similarly have S′ ∩ cl(T′) = ∅. Thus A is not connected, which gives the result
for connectedness.

Now suppose that A is path connected and let y1, y2 ∈ image( f ). Thus y1 = f (x1)
and y2 = f (x2). Since A is path connected there exists a continuous path γ : [a, b]→ A
such that γ(a) = x1 and x2 = γ(b). The path f ◦ γ in image( f ) is continuous by
Proposition 1.3.23 and has the property that f ◦ γ(a) = y1 and f ◦ γ(b) = y2. Thus
image( f ) is path connected. ■

In multiple variables, the Intermediate Value Theorem is actually significantly
more revealing than it is in the single-variable case. Indeed, it illustrates that it is
connectivity that is the crucial ingredient in the theorem.

1.3.35 Theorem (Intermediate Value Theorem) Let A ⊆ Rn be connected and let f : A→ R
be continuous. If x1, x2 ∈ A then, for any y ∈ [f(x1), f(x2)], there exists x ∈ A such that
f(x) = y.

Proof From Proposition 1.3.34 we know that image( f ) is connected and so is an
interval by virtue of Theorem I-2.5.34. The points f (x1) and f (x2) lie in this interval,
and so too, therefore, does every point between f (x1) and f (x1). ■

1.3.7 Homeomorphisms

As we become more mature, we become more able to digest advanced concepts.
In this section introduce the idea of a homeomorphism. The idea of a homeomor-
phism is an important one; it plays the rôle played by isomorphism for algebraic
objects. That is, a homeomorphism gives the backdrop for understanding those
things that are “continuous invariants,” meaning that they are invariant under con-
tinuous maps. Obviously, not just any continuous map will do. Upon reflection,
the following sort of continuous map is the reasonable one to generate the notion
of “continuous invariants.”

1.3.36 Definition (Homeomorphism, homeomorphic) If A ⊆ Rn and B ⊆ Rm, a homeo-
morphism from A to B is a continuous bijection f : A→ B whose inverse f−1 : B→ A
is also continuous. If A ⊆ Rn and B ⊆ Rm have the property that there exists a
homeomorphism f : A→ B, then A and B are homeomorphic. •

The following result is obvious, but is worth recording so it is out in the open.
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1.3.37 Proposition (“Homeomorphic” is an equivalence relation) If A ⊆ Rn, B ⊆ Rm,
and C ⊆ Rk then the following statements hold:

(i) A is homeomorphic to A;
(ii) if A is homeomorphic to B then B is homeomorphic to A;
(iii) if A and B are homeomorphic and if B and C are homeomorphic, then A and C are

homeomorphic.
In other words, the relation “A ∼ B if A and B are homeomorphic” between subsets of
Euclidean spaces is an equivalence relation.

Let us give some examples so that we develop some feeling for what a homeo-
morphism is and is not.

1.3.38 Examples (Homeomorphisms)
1. For any subset A ⊆ Rn the identity map idA : A→ A is a homeomorphism. This

is easy to check.
2. Let V ⊆ Rn be a subspace and let {v1, . . . ,vk} be a basis for V. We claim that the

map L : Rk
→ V defined by

L(x1, . . . , xk) = x1v1 + · · · + xkvk

is a homeomorphism. Certainly it is bijective (if you do not immediately see
this, this means you need to read up on linear independence in Section I-4.5.3).
To see that it is continuous, denote

M = max{∥v1∥Rk , . . . , ∥vk∥Rk}

and, for ϵ ∈ R>0, choose δ = ϵ
kM . If ∥x − y∥Rk < δ then |x j − y j| < δ for every

j ∈ {1, . . . , k}. Thus we have, for ∥x − y∥Rk < δ,

∥L(x) − L(y)∥Rn = ∥(x1 − y1)v1 + · · · + (xk − yk)vk∥Rm

≤ |x1 − y1|∥v1∥Rm + · · · + |xk − yk|∥vk∥Rm

< kMδ = ϵ.

This shows that L is continuous, indeed uniformly continuous, consistent with
Proposition 1.3.16.
Now let us show that L−1 is continuous. By Theorem I-4.5.26 we take vectors
vk+1, . . . ,vn ∈ Rn such that {v1, . . . ,vn} is a basis forRn. Then define a linear map
L̂ : Rn

→ Rk by asking that

L̂(v j) =

e j, j ∈ {1, . . . , k},
0, j ∈ {k + 1, . . . ,n},

cf. Theorem I-4.5.24. By Proposition 1.3.16 we know that L̂ is continuous and
by Proposition 1.3.24 we know that, as a result, L = L̂|V is continuous.
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3. Let A = (0,∞) and let B = R. Define f : A → B by f (x) = log(x). By Propo-
sition I-3.8.6 f is a homeomorphism. Since every open unbounded interval
that is a strict subset of R is of the form (a,∞) or (−∞, b), one can easily mod-
ify our construction to show that all such intervals homeomorphic to R; see
Exercise 1.3.13.

4. Let A = (0, 1) ⊆ R and let B = R. The map f : A → B given by f (x) =
tan−1(π(x − 1

2 )) is a homeomorphism, this following from Proposition I-3.8.20.
It is possible to modify this example to show that every bounded open interval
is homeomorphic to R; see Exercise 1.3.13.

5. Let A = (−π, π] ⊆ R and let

B = {(x1, x2) ∈ R2
| x2

1 + x2
2 = 1}.

Thus B is the unit circle in R2. Any point in (x1, x2) ∈ B is expressed in the form
(x1, x2) = (cos(x), sin(x)) for some x ∈ R; see Proposition I-3.8.19(iii). Moreover,
if we ask that x ∈ (−π, π] then there exists a unique such point such that (x1, x2) =
(cos(x), sin(x)). That is, the map f : A → B defined by f (x) = (cos(x), sin(x)) is
a bijection. We claim that f is continuous. This follows directly from the
continuity of cos and sin; see Proposition I-3.8.19(i). We also claim that f−1 is
discontinuous at (−1, 0). To see why this is so, note that f−1(−1, 0) = π. Now
let (x1, x2) ∈ B satisfy x1, x2 < 0. Then f−1(x1, x2) ∈ (−π,−π2 ). Thus, for all such
points we have

| f−1(x1, x2) − f−1(−1, 0)| > π
2 .

However, for any δ ∈ R>0 there exists a point (x1, x2) ∈ B with (x1, x2) < 0
such that ∥(x1, x2) − (−1, 0)∥R2 < δ. Thus f−1(B2(δ, (−1, 0))) 1 B1(1, π), giving
discontinuity of f−1 at (−1, 0).
The point is that a continuous bijection need not be a homeomorphism. •

The second of the preceding examples is worth expounding on a little.

1.3.39 Remark (The topology of a subspace) If one has two bases {v1, . . . ,vk} and
{v′1, . . . ,v

′

k} for a subspace V ⊆ Rn, these induce as in Example 2 two homeo-
morphisms L,L′ : Rk

→ V. Thus, by Proposition 1.3.37, the subspace V is home-
omorphic to Rk in a manner not depending in the use of a basis to establish the
homeomorphism. In other words, a k-dimensional subspace inherits in a natural
way the topological structure of Rk. We shall use this fact in the sequel to, without
loss of generality, work with all ofRn rather than a subspace ofRn. This is a special
case of the general principle that it is sometimes convenient to work with a set
homeomorphic to the one in a given problem. •

As mentioned in the preparatory comments of this section, the notion of a
homeomorphism has the intent of allowing us to consider properties that are “con-
tinuous invariants.” The reader may understand this idea by comparing it to a
statement from linear algebra; Proposition I-4.5.30 says that the dimension of a
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vector space is an isomorphism invariant (indeed, it is actually the only isomor-
phism invariant). We are interested in properties of subsets of Euclidean space that
are homeomorphism invariant. Let us make an actual definition so we know what
we are talking about.

1.3.40 Definition (Topological invariant) A property P is a topological invariant if,
whenever A ⊆ Rn has property P then every subset B ⊆ Rm that is homeomorphic
to A also has property P. •

Unlike the comparatively simple situation in linear algebra where the only
isomorphism invariant is dimension, an exhaustive list of topological invariants
(okay, well, “simple” topological invariants) seems not to be practical. However,
let us list some topological invariants that we have already encountered, as well as
some concepts that are not topological invariants.

1.3.41 Theorem (Some topological invariants) The following properties are topological
invariants:

(i) compactness;
(ii) connectedness;
(iii) path-connectedness;
(iv) existence of a continuous map into given subset S ⊆ Rn;
(v) existence of a continuous map from a given subset S ⊆ Rn.

The following properties are not topological invariants:
(vi) openness;
(vii) closedness;
(viii) boundedness;
(ix) total boundedness.

Proof Suppose that A ⊆ Rn is a compact (resp. connected, path connected) and let
f : A → B ⊆ Rm be a homeomorphism. Then B is compact (resp. connected, path
connected) by Proposition 1.3.29 (resp. Proposition 1.3.34). This gives the first three
properties as being topological invariants.

That the last two properties asserted as being topological invariants are, in fact,
topological invariants is a consequence of the composition of continuous maps being
continuous, i.e., of Proposition 1.3.23. For example, if A is homeomorphic to B with a
homeomorphism h : A → B and if f : S → A is continuous, then h ◦ f is a continuous
map of S into B.

To show that a property is not a topological invariant it suffices to give an example,
and this is what we do for the last four parts of the theorem.

Note that A = R is open and is homeomorphic to the set

B = {(x1, x2) ∈ R2
| x2 = 0}

which is not open. Also, B is closed and homeomorphic to (0, 1) (cf. Example 1.3.38–4)
which is not closed.
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The same example will suffice in each of the last two statements. Indeed, let
A = (0, 1) which is both bounded and totally bounded. However, B is homeomorphic
to R by Example 1.3.38–4, and R is neither bounded nor totally bounded. ■

1.3.42 Remark (“Intrinsic” versus “extrinsic” properties) It is interesting to note that
the three topological invariants we give in the preceding theorem differ in a fun-
damental way from the four properties that are not topological invariants. Indeed,
note that the four properties that are not topological invariants have to do, not with
the set itself, but with its properties as a subset of the Euclidean space in which it
resides. The three properties that are topological invariants, however, have to do
with the set itself, not how it sits in Euclidean space. There is something in this
observation. •

Note that Example 1.3.38–5 shows that for a map to be a homeomorphism it is
not sufficient for it to be a continuous bijection. Let us now turn to cases where it
is possible to make this inference.

1.3.43 Theorem (Continuous bijections on compact sets are homeomorphisms) If
A ⊆ Rn is compact and if f : A→ Rm is a continuous injection then f is a homeomorphism
of A with image(f).

Proof Let us denote B = image( f ) and f−1 : B→ A the inverse. By Proposition 1.3.29
it follows that B is compact. We claim that the image of a relatively closed subset of A is
relatively closed in B. Thus let C ⊆ A be relatively closed so that, by Corollary 1.2.36,
C is compact. Then f (C) is a compact subset of B and so relatively closed, again by
Corollary 1.2.36. Therefore, f maps relatively closed sets to relatively closed sets, and
so also maps relatively open sets to relatively open sets by virtue of f being a bijection.
Thus f−1 is continuous. ■

In our proof of the topological invariance of the property of openness in Propo-
sition 1.3.41 we showed that the open subset R ⊆ R is homeomorphic to the
non-open subset of R2 consisting of the x1-axis. The reader might protest that this
is unfair, and that to make the statement interesting we should produce an open
subset of Rn that is homeomorphic to a subset of Rn (the same “n,” note) that
is not open. It turns out, however, that such an example does not exist. This is
nontrivial, but we will give the proof here anyway. The following theorem which
gives the desired conclusion is an extremely important one, and is difficult to prove
by “elementary” methods; the result is most naturally viewed from the point of
view of either dimension theory or algebraic topology (see Section 1.10.10 for
references). Our long but elementary proof relies crucially on Theorem 1.10.51,
which itself relies on the Weierstrass Approximation Theorem (Theorem 1.7.4),
the Tietze Extension Theorem (Theorem 1.10.43), and the Brouwer Fixed Point
Theorem (Theorem 1.11.6).

1.3.44 Theorem (Domain Invariance Theorem) If U is an open subset of Rn and if f : U→
Rn is an injective continuous map, then image(f) is open and f is a homeomorphism
between U and image(f).
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Proof We begin with a couple of lemmata that contain the crux of the proof. We note
that

Sn−1 = {x ∈ Rn
| ∥x∥Rn = 1}

denotes the unit sphere in Rn.

1 Lemma If C ⊆ Rn is closed then the following two statements regarding x ∈ C are equivalent:
(i) x ∈ bd(C);
(ii) for any relative neighbourhood V of x in C there exists a relative neighbourhood U of x

in C having the properties that

(a) U ⊆ V and
(b) if g : C \U→ Sn−1 is continuous then there exists a continuous map ĝ : C→ Sn−1

such that g = ĝ|(C \U).

Proof (i) =⇒ (ii) Suppose that x0 ∈ bd(C) and let V be a relative neighbourhood of x0
in C. By Proposition 1.2.50 there exists an open subset V′ in Rn such that V = C ∩ V′.
Then let ϵ ∈ R>0 be sufficiently small that Bn(ϵ, x0) ⊆ V′ and take U = C∩Bn(ϵ, x0). Let

Sn−1(ϵ, x0) = {x ∈ Rn
| ∥x − x0∥Rn = ϵ}

be the sphere of radius ϵ centred at x0, i.e., Sn−1(ϵ, x0) = bd(Bn(ϵ, x0). Define

C0 = C ∩ Bn(ϵ, x0), C1 = C \ Bn(ϵ, x0),

noting that C = C0 ∪ C1, that C0 ∩ C1 ⊆ S
n−1(ϵ, x0) and that

C0 ∩ S
n−1(ϵ, x0) = C1 ∩ S

n−1(ϵ, x0).

Now let g : C1 → S
n−1 be continuous. We shall define the extension ĝ : C → Sn−1 by

defining it on C0 and then showing that the resulting map is consistently defined on
C0 ∩ C1.

The first observation to make is that Sn−1 is homeomorphic to Sn−1(ϵ, x0) (see
Exercise 1.3.16) and so any homeomorphism ι : Sn−1

→ Sn−1(ϵ, x0) of these two sets
will give a continuous map h = ι ◦ g : C1 → S

n−1(ϵ, x0). We shall define a map ĥ : C →
Sn−1(ϵ, x0) which extends h, and the desired map ĝ is then given by ĝ = ι−1 ◦ ĥ.

Next note that by Corollary 1.10.52 there exists a continuous map h′ : Sn−1(ϵ, x0)→
Sn−1(ϵ, x0) that agrees with h on C1 ∩ S

n−1(ϵ, x0).
To define ĥ on C0 we note that, since x0 ∈ bd(C), there exists a point x1 ∈ Bn(ϵ, x)−C.

If x ∈ C0 ⊆ Bn(ϵ, x0) define

yx = x1 +
∥x − x1∥

2
Rn − ∥x − x0∥

2
Rn + ϵ∥x − x1∥Rn

∥x − x1∥
2
Rn

(x − x1). (1.14)

Note that yx is the point on the sphere Sn−1(ϵ, x0) obtained as the intersection of the
sphere with the ray from x1 passing through x. The essential feature of yx is that it is a
continuous function of x. We take ĥ(x) = h′(yx). Since yx = x for x ∈ C0 ∩ Sn−1(ϵ, x) we
have ĥ(x) = h(x) for x ∈ C0 ∩ C1.
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Thus we can take ĥ(x) = h(x) for x ∈ C1 and the result will be a consistently defined
continuous Sn−1(ϵ, x0)-valued map on C.

(ii) =⇒ (i) Now suppose that x0 ∈ int(C). Then there exists ϵ ∈ R>0 such that
Bn(ϵ, x0) ⊆ C. Now let U be a relatively open neighbourhood of x0 in C with the
property that U ⊆ Bn(ϵ, x0). Now define h : C \U→ Sn−1(ϵ, x0) by

h(x) = x0 + ϵ
x − x0

∥x − x0∥Rn
.

Note that h(x) is the point on the sphere Sn−1(ϵ, x0) which is the intersection of the
sphere with the ray from x0 passing through x. Now suppose that there exists ĥ : C→
Sn−1(ϵ, x0) which extends h. Since Sn−1(ϵ, x0) ⊆ C\U and since h(x) = x for x ∈ Sn−1(ϵ, x0),
it follows that ĥ|Bn(ϵ, x0) is a retraction of Bn(ϵ, x0) onto Sn−1(ϵ, x0). This is not possible
by Proposition 1.11.9, after recalling, as above, that Bn(ϵ, x0) is homeomorphic to Dn

(see Exercise 1.3.15). ▼

2 Lemma If A ⊆ Rn and B ⊆ Rm are closed and if f : A → B is a homeomorphism then
f(bd(A)) = bd(B).

Proof By Proposition 1.3.6 we have f (bd(A)) ⊆ bd(B). Let y ∈ bd(B) so that y = f (x)
for some x ∈ A. Let V be a relative neighbourhood of x in A. Then continuity of f−1

gives V′ = f (V) as a relative neighbourhood of y in B. By Lemma 1 there exists a
relative neighbourhood U′ of y in B such that
1. U′ ⊆ V′ and
2. if g′ : B \U′ → Sn−1 is continuous then there exists a continuous map ĝ′ : B→ Sn−1

such that g = ĝ|(B \U).
Then define U = f−1(U′) which, by continuity of f , is a relative neighbourhood of
x. Moreover, U ⊆ V. Now let g : A \ U → Sn−1 be continuous. Then g′ ≜ g ◦ f−1 is
a continuous map from B \ U′ to Sn−1. There that exists ĝ′ : B → Sn−1 extending g′.
Now define ĝ : A→ Sn−1 by ĝ = ĝ′ ◦ f . The continuity of ĝ allows us to conclude that
x ∈ bd(A) and so y ∈ f (bd(A)). ▼

Proceeding with the proof, if U′ ⊆ U is open we claim that f (U′) is open. Let
us denote V′ = f (U′) and let y ∈ V′. Thus y = f (x) for some x ∈ U′. Let r ∈ R>0

be such that Bn(r, x) ⊆ U′. Then f |Bn(r, x) is a homeomorphism onto its image by
Theorem 1.3.43. Therefore, f (x) ∈ int( f (U′)) by Lemma 2. This shows that every
point in V′ is an interior point and so V′ is open. In other words, if V = f (U) then
f−1 : V → U is continuous, as desired. ■

As we have said, the Domain Invariance Theorem is very important. Let us
explore interpretations of it and some important consequences of it. First of all,
the following result follows directly, and gives a useful topological invariance
property.

1.3.45 Corollary (Openness in Rn is a topological invariant) Let n ∈ Z>0. Then the
property “A is an open subset of Rn” is a topological invariant.
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Proof Suppose that A ⊆ Rn is open and that B ⊆ Rn is homeomorphic to A. Then
there exists a homeomorphism f : A→ B. The map f ◦ iB : A→ Rn is then injective and
continuous. Thus, by Theorem 1.3.44, its image is open. But its image is B. ■

Now let us attempt to understand the Domain Invariance Theorem by trying
to gain some appreciation for why it is nontrivial. Let us see if we can do this
for n = 1. Thus we consider an open subset U ⊆ R and a continuous injective
map f : U → R. Since U is open, it is a union of intervals by Proposition I-2.5.6.
Thus we may as well restrict our attention to the case when U is an interval.
In this case a continuous function will be strictly monotonically increasing or
strictly monotonically decreasing; this is Exercise I-3.3.1. In the case when f is
differentiable with positive or negative derivative the Domain Invariance Theorem
is more or less obvious since, in this case, f is approximately linear with a positive
or negative slope. So the real content of the Domain Invariance Theorem in this
case occurs at points where f is either not differentiable, or has derivative zero. Let
us then give an example which illustrates some facets of the Domain Invariance
Theorem.

1.3.46 Example (A continuous, strictly monotonically increasing function that is not
differentiable on a dense set) We give another peculiar sort of function to illus-
trate a rather subtle point. We define a sequence of functions ( fk)k∈Z≥0 on [0, 1] as
follows. We take f0(x) = x. To define f1 take

f1(0) = f0(0) = 0, f1(1) = f0(1) = 1,

f1( 1
2 ) = (1 − α) f0(0) + α f0(1) = α,

where α ∈ (0, 1). We then define f1 on (0, 1
2 ) and ( 1

2 , 1) by asking that it be continuous
and linear on these intervals. Now suppose that we have defined f0, f1, . . . , fk and
define fk+1 as follows. We require that

fk+1( j
2k ) = fk(

j
2k ), j ∈ {0, 1, . . . , 2k

},

fk+1( 2 j+1
2k+1 ) = (1 − α) fk(

j
2k ) + α fk(

j+1
2k ), j ∈ {0, 1, . . . , 2k

− 1}.

We then define fk+1 on all of [0, 1] by asking that it be linear on each of the subin-
tervals [ j

2k+1 ,
j+1
2k+1 ], j ∈ {0, 1, . . . , 2k+1

− 1}. We then define fα : [0, 1]→ R by

fα(x) = lim
k→∞

fk(x), x ∈ [0, 1].

In Figure 1.8 we show the first step in this construction for various α. The idea is
that this construction is applied recursively to each on the subintervals on which
the function is linear.

Now we record some of the features of this function by proving a series of
lemmata. First let us show that the definition of fα makes sense.
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Figure 1.8 The first step in constructing the function fα for α < 1
2

(top), α = 1
2 (middle), and α > 1

2 (bottom)

1 Lemma For each x ∈ [0, 1] and α ∈ (0, 1) the limit limk→∞ fk(x) exists.
Proof Using the linearity of fk between the endpoints of the intervals used to define
it, we compute

fk+1(2 j+1
2k+1 ) − fk(

2 j+1
2k+1 ) = (1 − α) fk(

j
2k ) + α fk(

j+1
2k ) − 1

2 ( fk(
j

2k ) + fk(
j+1
2k ))

= (α − 1
2 )( fk(

j+1
2k ) − fk(

j
2k )),

for k ∈ Z≥0 and j ∈ {0, 1, . . . , 2k
− 1}. Thus we have three cases.

1. When α = 1
2 we have fk+1( 2 j+1

2k+1 ) = fk(
2 j+1
2k+1 ), giving fk+1 = fk.

2. When α < 1
2 then the sequence ( fk(

2 j+1
2k+1 ))k∈Z≥0 is strictly monotonically decreasing

and bounded below by zero. Thus it converges.
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3. When α > 1
2 then the sequence ( fk(

2 j+1
2k+1 ))k∈Z≥0 is strictly monotonically increasing

and bounded above by zero. Thus it converges. ▼

2 Lemma The function fα is strictly monotonically increasing for α ∈ (0, 1).

Proof We shall first show that each of the functions fk, k ∈ Z≥0, are strictly mono-
tonically increasing. We show this by induction. It is clear that f0 is strictly mono-
tonically increasing. Now suppose that fk is strictly monotonically increasing. We
have

fk+1( j
2k ) − fk+1(2 j+1

2k+1 ) = fk(
j

2k ) − fk+1( 2 j+1
2k+1 )

= fk(
j

2k ) − (1 − α) fk(
j

2k ) − α fk(
j+1
2k )

= α( fk(
j

2k ) − fk(
j+1
2k )) < 0

and

fk+1( j+1
2k ) − fk+1(2 j+1

2k+1 ) = fk(
j+1
2k ) − fk+1(2 j+1

2k+1 )

= fk(
j+1
2k ) − (1 − α) fk(

j
2k ) − α fk(

j+1
2k )

= (1 − α)( fk(
j+1
2k ) − fk(

j
2k )) > 0.

Thus we have

fk+1( j
2k ) < fk+1( 2 j+1

2k+1 ) < fk+1( j+1
2k ), j ∈ {0, 1, . . . , 2k

− 1}.

Since fk+1 is defined to be linear on the subintervals [ j
2k+1 ,

j+1
2k+1 ], j ∈ {0, 1, . . . , 2k+1

− 1},
it follows that fk+1 is strictly monotonically increasing. It therefore follows that fα
is nondecreasing. To show that fα is, in fact, strictly monotonically increasing, let
x1, x2 ∈ [0, 1] satisfy x1 < x2. By Exercise I-2.1.5 let j, k ∈ Z>0 satisfy j

2k ∈ (x1, x2). We
consider three cases.
1. In the case when α = 1

2 it follows easily that fα is strictly monotonically increas-
ing since, as we showed in Lemma 1, f1/2(x) = x.

2. If α > 1
2 we have

fα(x1) ≤ fα( j
2k ) = fk(

j
2k ) ≤ fk(x2) ≤ fα(x2).

3. When α < 1
2 we have

fα(x1) ≤ fk(x1) < fk(
j

2k ) = fα( j
2k ) ≤ fα(x2). ▼
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3 Lemma The function fα is continuous for α ∈ (0, 1).

Proof Let us first make a preliminary construction. We call a sequence ([ak, bk])k∈Z≥0

of subintervals of [0, 1] binary if a0 = 1 and b0 = 1, and if, for each k ∈ Z, either
1. ak+1 = ak and bk+1 = bk −

1
2k+1 or

2. ak+1 = ak +
1

2k+1 and bk+1 = bk.

Thus, for example, either [a1, b1] = [0, 1
2 ] or [a1, b2] = [1

2 , 1]. If ([ak, bk])k∈Z≥0 is a binary
sequence, if k ∈ Z≥0, and if ak+1 = ak, then we compute

fα(bk+1) − fα(ak+1) = fk+1(bk+1) − fk+1(ak+1)
= (1 − α) fk(a j) + α fk(b j) − fk(ak)
= α( fk(b j) − fk(ak)).

In the case when bk+1 = bk we similarly compute

fα(bk+1) − fα(ak+1) = fk+1(bk+1) − fk+1(ak+1)
= fk(bk) − ((1 − α) fk(ak) + α fk(bk))
= (1 − α)( fk(bk) − fk(ak)).

Therefore, using f0(b0) − f0(a0) = 1, a trivial inductive argument gives

fα(bk) − fα(ak) =
k∏

j=1

σ j,

where σ j ∈ {α, 1 − α}, depending on whether a j = a j−1 or b j = b j=1. In any case, the
above computations show that

fα(bk) − fα(ak) ≤

(1 − α)k, α ≤ 1
2 ,

αk, α > 1
2 .

Now we show the continuity of fα. Let ϵ ∈ R>0 and let N ∈ Z>0 be sufficiently
large that (1 − α)N < ϵ

2 if α ≤ 1
2 or αN < ϵ

2 if α > 1
2 . Let x0 ∈ (0, 1) and let ([ak, bk])k∈Z≥0

and ([a′k, b
′

k])k∈Z≥0 be binary intervals such that aN < x0, x0 < b′N, and bN = a′N. (By
choosing N large enough we can ensure that aN > 0 and b′N < 1.) Then let δ ∈ R>0

be such that B1(δ, x0) ⊆ [aN, b′N]. Then we have

fα(b′N) − fα(aN) < ϵ =⇒ | fα(x) − fα(x0)| < ϵ, x ∈ B1(δ, x0),

by monotonicity of fα. Continuity of fα at 0 and 1 is shown in a similar manner, so
we forgo the routine details. ▼
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4 Lemma Suppose that x ∈ [0, 1] has a binary expansion x =
∑
∞

j=1
xj

2j with xj ∈ {0, 1},
j ∈ Z>0, and suppose that the sets

{j ∈ Z>0 | xj = 0}, {j ∈ Z>0 | xj = 1}

are infinite, i.e., suppose that x is irrational in base 2. Then f′α(x) = 0. In particular, fα is
differentiable with zero derivative on a subset of [0, 1] that has full measure.
Proof Since x is irrational in base 2 it follows that for each k ∈ Z there exists a
unique j ∈ Z≥0 such that x ∈ ( j

2k ,
j+1
2k ) (the binary irrationality of x ensures that the

endpoints are not included in the interval ( j
2k ,

j+1
2k )). Moreover, if we write

j
2k
=

y1

2
+ · · · +

yn

2n

as the binary decimal expansion, then we have

ak ≜
l

2k
=

y1

2
+ · · · +

yk

2k
< x <

y1

2
+ · · · +

yk

2k
+

1
2k
=

l + 1
2k
≜ bk,

which implies that y j = x j, j ∈ {1, . . . , k}. Therefore, if xk = 0 then

ak = ak−1, bk = ak−1 +
1
2k =

ak−1+bk−1
2 ,

and if xk = 1 then
ak = ak−1 +

1
2k =

ak−1+bk−1
2 , bk = bk−1.

Therefore, if xk = 0 then

fα(bk) − fα(ak)
1
2k

= 2k
(
(1 − α) fk−1(ak−1) + α fk−1(bk−1) − fk−1(ak−1)

)
= 2kα( fk−1(bk−1) − fk−1(ak−1))

and if xk = 1 then

fα(bk) − fα(ak)
1
2k

= 2k
(

fk−1(bk−1) − (1 − α) fk−1(ak−1) − α fk−1(bk−1)
)

= 2k(1 − α)( fk−1(bk) − fk−1(ak)).

In either case, we have

fα(bk) − fα(ak)
1
2k

= 2(xk + (−1)xkα)2k−1( fk−1(bk) − fk−1(ak)),

and so a simple induction gives

fα(bk) − fα(ak)
1
2k

=

k∏
j=1

2(x j + (−1)x jα).
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Thus

f ′(x) = lim
k→∞

fα(bk) − fα(ak)
1
2k

= 0

since α, (1 − α) < 1.
The final assertion follows since the irrational numbers in base 2 have mea-

sure 1. This can be proved in exactly the same way as it is proved in base 10; see
Exercise I-2.1.4. ▼

In Figure 1.9 we show the graph of fα for a few α’s. Since this function is
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Figure 1.9 The function fα for α = 1
3 (top left), α = 1

2 (top left),
and α = 2

3 (bottom)

continuous and monotonically increasing it is injective by Exercise I-3.3.1. There-
fore, by the Domain Invariance Theorem, f |(0, 1) is a homeomorphism onto (0, 1).
In particular, the Domain Invariance Theorem allows us to conclude that f −1 is
continuous. This may not be perfectly clear from the construction.

Interestingly, there are a number of places where the function fα comes up in
applications. The most common of these is in the “bold play” strategy in probability.
The situation is this. A gambler possesses a fraction x ∈ [0, 1] of what she wants,
and wishes to play a game at even money (i.e., the same amount is either paid out
on a loss or collected on a win) until the desired goal is achieved or the gambler
is bankrupt. The probability of winning a game is the quantity α ∈ (0, 1). It then
turns out that the probability of eventual success is fα(x). Note that if α < 1

2 (i.e., the
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game is biased against the gambler) then the gambler must start with a fraction
x > 1

2 of the desired goal in order to have a greater that 50% chance of winning.
This makes sense, I guess. •

Let us give another consequence of the Domain Invariance Theorem. One
expects, and it is true, that two Euclidean spaces are homeomorphic if and only if
they have the same dimension. Perhaps this seems “obvious,” but it becomes less
so the more one gets to know about the possible complex behaviour of continuous
maps between Euclidean spaces and their subsets. Indeed, the following theorem
is intimately and essentially connected to the Domain Invariance Theorem.

1.3.47 Theorem (Dimension Invariance Theorem) The sets Rn and Rm are homeomorphic
if and only if m = n.

Proof Since “homeomorphic” is an equivalence relation, we suppose without loss of
generality that m ≤ n. Suppose that f : Rn

→ Rm is a homeomorphism. Consider the
m-dimensional subspace V of Rn defined by

V = {x ∈ Rn
| xm+1 = · · · = xn = 0}.

By Example 1.3.38–2 we know that V is homeomorphic to Rm. That there exists a
homeomorphism g : Rm

→ V. Therefore, the composition of homeomorphisms being
a homeomorphism, g ◦ f : Rn

→ V is a homeomorphism. By the Domain Invariance
Theorem this means that V is open in Rn, and this is the case if and only if m = n. ■

1.3.8 Notes

Theorem 1.3.44 on “invariance of domain” is due to Brouwer [1912]. For a
“basic” result, it is rather difficult to prove, and its proof properly belongs to
the domains of dimension theory ([Hurewicz and Wallman 1941] is the classical
reference here) and algebraic topology (Munkres [1984] has a good treatment).

Exercises

1.3.1 Answer the following questions:
(a) Verify that the Euclidean inner product satisfies the parallelogram law:

∥x1 + x2∥
2
Rn + ∥x1 − x2∥

2
Rn = 2

(
∥x1∥

2
Rn + ∥x2∥

2
Rn

)
.

(b) Give an interpretation of the parallelogram law in R2.
(c) Verify that the Euclidean inner product satisfies the polarisation iden-

tity:
4⟨x1, x2⟩Rn = ⟨x1 + x2, x1 + x2⟩Rn − ⟨x1 − x2, x1 − x2⟩Rn .

1.3.2 Let A ⊆ Rn and let f : A→ Rm be a map. Show that f is continuous at x0 ∈ A
if and only if the components of f are continuous at x0.

1.3.3 For A ⊆ Rn, show that f : A → Rm is continuous if and only if f−1(B) is
relatively closed in A for every closed subset B of Rm.
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1.3.4 Let U ⊆ Rn and V ⊆ Rm be open and let f : U × V → R be uniformly
continuous and bounded. Define

f : U→ R

x 7→ sup{ f (x, y) | y ∈ V, }
f : U→ R

x 7→ sup{ f (x, y) | y ∈ V.}

Show that f and f are continuous.

1.3.5 Is the preimage of a (path) connected set under a continuous map (path)
connected?

1.3.6 Consider the subset

S = {(x1, 0) ∈ R2
| x1 ∈ R} ∪ {(0, x2) ∈ R2

| x2 > 0}

of R2 and the subset A = {(x1, 0) | x1 ∈ R} of S.
(a) Is A relatively open in S?
(b) Is A relatively closed in S?
(c) Determine intS(A), clS(A), and bdS(A).

1.3.7 Show that the image of an affine map is an affine subspace.
1.3.8 Let R ∈ O(3).

(a) Show that R has at least one real eigenvalue and that its magnitude must
1.

Let v be an eigenvector for the real eigenvalue ±1 and let v⊥ be the subspace
orthogonal to v.
(a) Show that R(v⊥) ⊆ v⊥.
(b) Argue that if R , I3 then R has no eigenvectors that are not collinear

with v?
Hint: Use the fact that v⊥ is two-dimensional.

(c) Which of the preceding parts of the exercise fail if R ∈ O(n) for n , 3?
1.3.9 Answer the following questions.

(a) Show that O(n) is a group with the group operation given by matrix
multiplication.

(b) Is O(n) a subspace of the R-vector space Matn×n(R)?
1.3.10 Show that if R ∈ O(n) then det R ∈ {−1, 1}.
1.3.11 Show that if R ∈ O(n) and if λ ∈ C is an eigenvalue for the complexification

RC, then |λ| = 1.
1.3.12 Show that E(n) is a group with the group operation of map composition.

Be sure to explicitly given the formulae for the product of two elements and
the inverse of an element.

1.3.13 Let I ⊆ R be an open interval. Explicitly construct a homeomorphism from
I to R.
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1.3.14 Show that Bn(1, 0), the open ball of radius 1 centred at the origin in Rn, is
homeomorphic to Rn.

1.3.15 Show that the following sets are homeomorphic:
1. Dn = {x ∈ Rn

| ∥x∥Rn ≤ 1};
2. Dn(r, x0) = {x ∈ Rn

| ∥x − x0∥Rn ≤ ϵ}where r ∈ R>0 and x0 ∈ Rn;
3. a fat compact rectangle R;
4. Sn

+ = {x ∈ Sn
⊆ Rn+1

| xn+1 ≥ 0}.
1.3.16 Show that the following sets are homeomorphic:

1. Sn = {x ∈ Rn+1
| ∥x∥Rn+1 = 1};

2. Sn(r, x0) = {x ∈ Rn+1
| ∥x − x0∥Rn+1 = ϵ}where r ∈ R>0 and x0 ∈ Rn+1;

3. bd(R) where R ⊆ Rn+1 is a fat compact rectangle.
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Section 1.4

Differentiable multivariable functions

Unlike our discussion of continuity, the notion of differentiability for maps
involving multiple variables is not so much a straightforward generalisation of the
single-variable case. For example, we shall see that the appropriate way to think
about the derivative in the multivariable case (and therefore, by specialisation, the
single-variable case) is as a linear map. This turns out to be an important conceptual
idea in understanding just what the derivative “is.”

Some of the ideas in this section can be illustrated using single-variable exam-
ples, and we refer to Section I-3.2 for these. However, there are phenomenon in
the multivariable case that do not arise in the single-variable case, and we give
particular examples to exhibit these phenomenon.

Do I need to read this section? If you want to understand differentiability of
multivariable functions, and you do not already, then you need to read this section.
It is true that we do not make a great deal of use of the material in this section, but
it does come up on occasion. •

local diffeos are open,

mean value theorem using

only differentiability

and not C1, continuity

of Jacobian derivative
1.4.1 Definition and basic properties of the derivative

The definition of what it means for a map to be differentiable immediately
emphasises the linear algebraic character that is essential to the picture in higher-
dimensions. The definition we give for the derivative in this case should be thought
of as the generalisation of Proposition I-3.2.4; let us therefore present a result along
these lines that will ensure that our definition of derivative makes sense.

1.4.1 Proposition (Uniqueness of linear approximation) Let U ⊆ Rn be an open set and
let f : U→ Rm be a map. For x0 ∈ U, there exists at most one L ∈ L(Rn;Rm) such that

lim
x→x0

∥f(x) − f(x0) − L(x − x0)∥Rm

∥x − x0∥Rn
= 0. (1.15)

Proof Suppose there are two such maps L1 and L2. For any x ∈ U, we may write
x = x0 + av for some a ∈ R>0 and v ∈ Rn such that ∥v∥Rn = 1. We compute

∥L1(v) − L2(v)∥Rm =
∥L1(x − x0) − L2(x − x0)∥Rm

∥x − x0∥Rn

=
∥− f (x) + f (x0) + L1(x − x0) + f (x) − f (x0) − L2(x − x0)∥Rm

∥x − x0∥Rn

≤
∥ f (x) − f (x0) − L1(x − x0)∥Rm

∥x − x0∥Rn
+
∥ f (x) − f (x0) − L2(x − x0)∥Rm

∥x − x0∥Rn
.
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Since L1 and L2 both satisfy (1.15), as we let x → x0 the right-hand side goes to zero
showing that ∥L1(v) − L2(v)∥Rm = ∥(L1 − L2)(v)∥Rm = 0 for every v with ∥v∥Rn = 1. Thus
L1 − L2 is the trivial map sending any vector to zero, or equivalently L1 = L2. ■

We can now state the definition of the derivative for multivariable maps.

1.4.2 Definition (Derivative and differentiable map) Let U ⊆ Rn be an open subset
and let f : U→ Rm be a map.

(i) The map f is differentiable at x0 ∈ U if there exists a linear map L f ,x0 : Rn
→ Rm

such that

lim
x→x0

∥ f (x) − f (x0) − L f ,x0(x − x0)∥Rm

∥x − x0∥Rn
= 0.

(ii) If f is differentiable at x0, then the linear map L f ,x0 is denoted by Df (x0) and
is called the derivative of f at x0.

(iii) If f is differentiable at each point x ∈ U, then f is differentiable.
(iv) If f is differentiable and if the map x 7→ Df (x) is continuous (using any norm

one wishes on L(Rn;Rm)) then f is continuously differentiable, or of class
C1. •

Sometimes the derivative is called the total derivative or the Fréchet deriva-
tive. Similarly, differentiability in the sense of the preceding definition is some-
times called Fréchet differentiability. The reason for this is that the existence of
this derivative implies the existence of other derivatives, such as the directional
derivative which we discuss in Section 1.4.3.

1.4.3 Notation (Evaluation of the derivative) Since Df (x0) ∈ L(Rn;Rm), we can write
Df (x0)(v) as the image of v ∈ Rn under the derivative thought of as a linear map.
To avoid the somewhat cumbersome looking double parentheses, we shall often
write Df (x0) · v instead of Df (x0)(v). •

With the derivative defined, it is now possible to talk about higher-order deriva-
tives in a systematic way. We let U ⊆ Rn be open and let f : U→ Rm be continuously
differentiable. The derivative is then a map U ∋ x 7→ Df (x) ∈ L(Rn;Rm). Given that
from Section 1.1.3 we have a norm on L(Rn;Rm), this map is a candidate for having
its derivative defined. The derivative of Df at x0 ∈ U, if it exists, is the linear map
D2 f ∈ L(Rn; L(Rn;Rm))(x0) satisfying

lim
x→x0

∥Df (x) −Df (x0) −D2 f (x0) · (x − x0)∥Rn,Rm

∥x − x0∥Rn
= 0.

By Proposition I-5.6.7 we implicitly think of D2 f as being an element of L2(Rn;Rm).
Now we can carry on this process recursively to define derivatives of arbitrary
order.
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1.4.4 Definition (Higher-order derivatives) Let U ⊆ Rn be open, let f : U → Rm be
a function, let r ∈ Z>0, and suppose that f is (r − 1) times differentiable with
G : U→ Lr−1(Rn;Rm) denoting the (r − 1)st derivative.

(i) The map f is r times continuously differentiable at x0 ∈ U if there exists
DG(x0) ∈ L(Rn; Lr−1(Rn;Rm)) such that

lim
x→x0

∥G(x) −G(x0) −DG(x0) · (x − x0)∥Rn,Lr−1(Rn;Rm)

∥x − x0∥Rn
= 0. (1.16)

(ii) If (1.16) holds then the map DG(x0) is identified, using Proposition I-5.6.7,
with the multilinear map Dr f (x0) ∈ Lr(Rn;Rm) and called the rth derivative
of f at x0.

(iii) If f is r times differentiable at each point x ∈ U, then f is r times differentiable.
(iv) If f is r times differentiable and if the function x 7→ Dr f (x) is continuous, then

f is r times continuously differentiable, or of class Cr.
If f is of class Cr for each r ∈ Z>0, then f is infinitely differentiable, or of class C∞. •

The following result gives an important property of higher-order derivatives.
Parts of the proof rely on properties of the derivative we have yet to prove. Specif-
ically, the proof properly belongs after the proof of Theorem 1.4.33, but we give it
here since this is where it fits best in terms of the flow of ideas.

1.4.5 Theorem (The derivative is symmetric) If U ⊆ Rn is open and if f : U → Rm is of
class Cr, then Drf ∈ Sr(Rn;Rm).

Proof By Proposition 1.4.17 we can assume, without loss of generality, that m = 1. We
thus take m = 1 and write our function as f . When r = 1 we have S1(Rn;R) = L(Rn;R)
so the result is vacuous in this case. We next consider the case when r = 2. Let
x0 ∈ U and let u,v ∈ Rn. Let a ∈ R>0 be sufficiently small that x0 + su + tv ∈ U for
all (s, t) ∈ B2(a, (0, 0)), this being possible since U is open and since the map (s, t) 7→
x0 + su + tv is linear, and so infinitely differentiable by Corollary 1.4.9. Then define
g : B2(a, (0, 0))→ R by

g(s, t) = f (x0 + su + tv).

The Chain Rule (Theorem 1.4.49) implies that g is of class C2. We then compute the
following iterated partial derivatives using the Chain Rule and Proposition 1.4.7:

D1g(s, t) · 1 = D f (x0 + su + tv) · u,
D2g(s, t) · 1 = D f (x0 + su + tv) · v,

D2D1g(s, t) · (1, 1) = D2 f (x0 + su + tv) · (v,u),

D1D2g(s, t) · (1, 1) = D2 f (x0 + su + tv) · (u,v).

Thus the result for r = 2 will follow if D1D2g(0, 0) = D2D1g(0, 0). This, however, is a
special case of Theorem 1.4.33.
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For r > 2 we proceed by induction, assuming the result true for r = s − 1 and then
supposing that f is of class Cr. For x ∈ U and v1, . . . ,vs ∈ Rn we compute

Ds f (x) · (v1,v2, . . . ,vs) = (D2(Ds−2 f )(x) · (v1,v2)) · (v3, . . . ,vs)

= (D2(Ds−2 f )(x) · (v2,v1)) · (v3, . . . ,vs)
= Ds f (x) · (v2,v1, . . . ,vs),

showing that

Ds f (x) · (vσ(1),vσ(2), . . . ,vσ(s)) = Ds f (x) · (v1,v2, . . . ,vs)

for σ = (1 2). Now let σ ∈ Ss−1 and by the induction hypothesis note that

Ds−1 f (x) · (vσ(1), . . . ,vσ(s−1)) = Ds−1 f (x) · (v1, . . . ,vs−1)

for all x ∈ U and v1, . . . ,vs−1. Then, by Proposition 1.4.7, we have, for any v0 ∈ Rn,

Ds f (x) · (v0,vσ(1), . . . ,vσ(s−1)) = (D(Ds−1 f )(x) · v0) · (vσ(1), . . . ,vσ(s−1))

= (D(Ds−1 f )(x) · v0) · (v1, . . . ,vs−1)
= Ds f (x) · (v0,v1, . . . ,vs−1),

giving
Ds f (x) · (vσ(1),vσ(2), . . . ,vσ(s)) = Ds f (x) · (v1,v2, . . . ,vs)

when σ leaves 1 fixed. Now, by Exercise I-4.1.12 any permutation σ ∈ Ss can be
written as a finite product of (1 2) and permutations leaving 1 fixed. From this the
result follows. ■

We now deal with the problem of having potentially competing definitions of
the derivative for aR-valued function of a single real variable. Let us resolve this.

1.4.6 Theorem (Consistency of differentiability definitions for R-valued functions
of a single variable) Let I ⊆ R be an open interval, let f : I → R, let x0 ∈ I, and let
r ∈ Z≥0. Then f is r times differentiable at x0 in the sense of Definition I-3.2.5 if and only
if f is r times differentiable at x0 in the sense of Definition 1.4.4. Moreover, if f is r times
continuously differentiable at x0 then

Drf(x0)(v1, . . . ,vr) = f(r)(x0)v1 · · ·vr

for every v1, . . . ,vr ∈ R.
Proof We first observe that there is a natural isomorphism fromR to Sr(R;R) assigning
to a ∈ R the symmetric multilinear map

(v1, . . . , vr) 7→ a v1 · · · vr.

This isomorphism is easily verified to preserve the standard norms onR and Sr(R;R).
We shall implicitly use this isomorphism is the proof.
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For r = 0 the result is clearly true since 0 times differentiable means continuous
in the case of each definition. Assume the result is true for r ∈ {0, 1, . . . , k − 1}. Thus
assume that existence of Dk−1 f (x0) is equivalent to existence of f (k−1)(x0) and that

Dk−1 f (x0)(v1, . . . , vk−1) = f (k−1)(x0)v1 · · · vk−1

for all v1, . . . , vk−1 ∈ R.
First let us suppose that f is k times differentiable at x0 in the sense of Defini-

tion 1.4.4. Then Dk−1 f is continuous at x0. Let g : I→ R be defined by asking that g(x)
be the image of Dk−1 f (x) under the isomorphism of Sk−1(R;R) with R. It then holds
that g is differentiable at x0 in the sense of Definition 1.4.4 since Dk−1 f is differentiable
at x0 in the sense of Definition 1.4.4. By the induction hypothesis it then follows from
Proposition I-3.2.4 that f (k−1) is differentiable in the sense of Definition I-3.2.5. This
means that f is k times differentiable at x0 in the sense of Definition I-3.2.5.

Next suppose that f is k times differentiable at x0 in the sense of Definition 1.4.4.
Let L : I → Sk−1(R;R) be defined by asking that L(x) be the image of f (k−1)(x) under
isomorphism ofRwith Sk−1(R;R). Since f (k−1) is differentiable at x0 in the sense of Def-
inition I-3.2.5 it follows that L is differentiable at x0 in the sense of Definition I-3.2.5. By
the induction hypothesis and Proposition I-3.2.4 it follows that Dk−1 f is differentiable
at x0 in the sense of Definition 1.4.4. This means that f is k times differentiable at x0 in
the sense of Definition 1.4.4.

For the final assertion of the proof, for fixed v1, . . . , vk−1 ∈ R consider the function
h : I→ R defined by

h(x) = f (k−1)(x)v1 · · · vk−1.

We claim that h is differentiable at x0 if f is k times differentiable at x0. We use the
derivative of Definition I-3.2.5 to verify this assertion. We have

lim
x→x0

h(x) − h(x0)
x − x0

= lim
x→x0

f (k−1)(x)v1 · · · vk−1 − f (k−1)(x0)v1 · · · vk−1

x − x0

= lim
x→x0

f (k−1)(x) − f (k−1)(x0)
x − x0

v1 · · · vk−1

= f (k)(x0)v1 · · · vk−1,

where we have used Proposition I-2.3.23 and Proposition I-2.3.29. This gives the
differentiability of h at x0 as well as an explicit formula for the derivative. Using
Proposition I-3.2.4 we have

Dh(x0) · v0 = f (k)(x0)v0v1 · · · vk−1,

which gives the theorem. ■

The reader will have noticed that we give no examples to illustrate the multi-
dimensional derivative. There is a reason for this. Based on the definition it is not
that easy to actually compute the derivative in multiple-dimensions. However,
it is actually easy to compute this derivative in practice only knowing how to
differentiate R-valued functions of a single variable. But the development of this
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connection is actually a little involved, and we postpone it until Theorem 1.4.22,
at which time we will also provide some examples.

We close this section with a useful characterisation of differentiability that can
simplify how one handles computations with derivatives.

1.4.7 Proposition (Swapping of differentiation and evaluation) For U ⊆ Rn open, for
f : U→ Rm, and for x0 ∈ U, the following statements are equivalent:

(i) f is r times differentiable at x0;
(ii) f is r − 1 times continuously differentiable in a neighbourhood of x0 and, for each

v1, . . . ,vr−1 ∈ Rn, the map δf;v1,...,vr−1 : U→ Rm defined by

δf;v1,...,vr−1(x) = Dr−1f(x) · (v1, . . . ,vr−1)

is differentiable at x0.
Moreover, if f is r times differentiable at x0 ∈ U then

Drf(x0) · (v0,v1, . . . ,vr−1) = Dδf;v1,...,vr−1(x0) · v0 (1.17)

for every v0,v1, . . . ,vr−1 ∈ Rn.
Proof First suppose that f is r times differentiable at x0. From Proposition 1.4.35 it
follows that f is r − 1 times continuously differentiable in a neighbourhood of x0. For
v1, . . . ,vr−1 ∈ R

n let us define Evv1,...,vr−1 : Lr−1(Rn;Rm;→)Rm by

Evv1,...,vr−1(L) = L(v1, . . . ,vr−1).

Then we have δ f ;v1,...,vr−1 = Evv1,...,vr−1
◦Dr−1 f . Since Evv1,...,vr−1 is linear (this is a simple

verification), it follows from Corollary 1.4.9 that it is infinitely differentiable. Thus
δ f ;v1,...,vr−1 is differentiable by the Chain Rule, Theorem 1.4.49. Moreover, also by the
Chain Rule and Corollary 1.4.9, it follows that

Dδ f ;v1,...,vr−1(x0) · v0 = Evv1,...,vr−1(D(Dr−1 f )(x0) · v0)
= Dr f (x0) · (v0,v1, . . . ,vr−1),

using Proposition I-5.6.7. This gives (1.17).
Next suppose that f is r − 1 times continuously differentiable in a neighbourhood

of x0 and that δ f ;v1,...,vr−1 is differentiable at x0 for every v1, . . . ,vr−1 ∈ R
n. To show that

f is r times differentiable at x0 we claim that it suffices to show that the components of
Dr−1 f are differentiable at x0 (see Definition I-5.6.8 for definition of the components of
a multilinear map). That this is so essentially follows from Proposition 1.4.17 below.
However, the “essentially” warrants a little explanation.

In Proposition 1.4.17 we show that a map taking values in Rm is differentiable if
and only if each of its components is differentiable. But here we are not talking about
a map taking values in Rm, but taking values in Lr−1(Rn;Rm). But, the assignment
taking a multilinear map in Lr−1(Rn;Rm) to its components is a linear isomorphism
taking values in Rmnr−1

. Moreover, the Frobenius norm on Lr−1(Rn;Rm) is “the same
as” the Euclidean norm on Rmnr−1

under this isomorphism; in the language of , thewhat
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isomorphism is norm-preserving. Therefore, Proposition 1.4.17 can essentially be
applied to assert that Dr−1 f is differentiable at x0 if its components are differentiable at
x0.

The matter of showing that the components of Dr−1 f are differentiable at x0 is
straightforward. Indeed, the components of Dr−1 f are simply given by the R-valued
functions

x 7→ (Dr−1 f (x) · (e j1 , . . . , e jr−1))a = (δ f ;e j1 ,...,e jr−1
(x))a,

j1, . . . , jr−1 ∈ {1, . . . ,n}, a ∈ {1, . . . ,m},

defined in a neighbourhood of x0. By assumption and by Proposition 1.4.17 these
functions are, indeed, differentiable at x0. ■

While in these volumes we do not adhere to presentation dictated solely by
logical implications always flowing forwards, we do feel compelled to warn the
reader that in this section we make an abuse of logical ordering so dire as to
merit comment. We shall in the next several sections (and already in the proofs of
Theorem 1.4.5 and Proposition 1.4.7 above) make repeated and crucial use of the
multivariable Chain Rule which we do not prove until Theorem 1.4.49. A reader
who might be bothered by this can go ahead and read the Chain Rule and its proof
right now since the proof relies only on ideas that are presently at our disposal.

1.4.2 Derivatives of multilinear maps

In this section we consider a special class of maps, and show that they are
infinitely differentiable and compute their derivatives of all orders. The maps we
consider are multilinear maps L : Rn1 × · · · × Rnk → Rm. It will turn out that these
maps come up many times for various reasons, and for this reason it is useful to
determine their derivatives. Moreover, it is a good exercise in using the definition
of the derivatives to compute the derivatives of multilinear maps.

Since derivatives are themselves multilinear maps, it will be useful to discrim-
inate notationally between points in the domain of the map and points in the
domain of the derivative of the map. Thus we shall write a point in Rn1 × · · · ×Rnk

as (x1, . . . , xk) when we mean it to be in the domain of the map L and we shall write
a point in Rn1 ⊕ · · · ⊕ Rnk as (v1, . . . ,vk) when we mean it to be an argument of the
derivative. The argument of the rth derivative is an element of (Rn1 ⊕ · · · ⊕ Rnk)r

and will be written as

((v11, . . . ,v1k), . . . , (vr1, . . . ,vrk)).

For r ∈ {1, . . . , k} define

Dr,k = {{ j1, . . . , jr} | j1, . . . , jr ∈ {1, . . . , k} distinct}.

For { j1, . . . , jr} ∈ Dr,k let us denote by { j′1, . . . , j′k−r} the complement of { j1, . . . , jr} in
{1, . . . , k}. Now, for { j1, . . . , jr} ∈ Dr,k define

λ j1,..., jr ∈ L((Rn j′1 ⊕ · · · ⊕R
n j′k−r ) ⊕ (Rn j1 ⊕ · · · ⊕Rn jr );Rn1 ⊕ · · · ⊕Rnk)
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by asking that
λ j1,..., jk((x1, . . . , xk−r), (v1, . . . ,vr))

be obtained by placing xl in slot j′l for l ∈ {1, . . . , k− r} and by placing vl in slot jl for
l ∈ {1, . . . , r}.

With the above notation we have the following description of the derivative of
a multilinear map.

1.4.8 Theorem (Derivatives of multilinear maps) If L ∈ L(Rn1 ⊕ · · · ⊕Rnk ;Rm) then L is
infinitely differentiable. Moreover, for r ∈ {1, . . . ,k} we have

DrL(x1, . . . , xk) · ((v11, . . . ,v1k), . . . , (vr1, . . . ,vrk))

=
∑
σ∈Sr

∑
{j1,...,jr}∈Dr,k

L ◦ λj1,...,jr((xj′1
, . . . , xj′k−r

), (vσ(1)j1 , . . . ,vσ(r)jr))

and for r > k we have DrL(x1, . . . , xk) = 0.
Proof We prove the result by induction on r. For r = 1 the theorem asserts that

DL(x01, . . . , x0k) · (v1, . . . ,vk) = L(v1, x02, . . . , x0k)
+ L(x01,v2, . . . , x0k) + · · · + L(x01, x02, . . . ,vk).

To verify this we must show that

lim
(x1,...,xk)
→(x01,...,x0k)

∥∥∥L(x1, . . . , xk) − L(x01, . . . , x0k) − L(x1 − x01, . . . , x0k)

− L(x01, . . . , xk − x0k)
∥∥∥
Rm/∥(x1 − x01, . . . , xk − x0k)∥Rn1+···+nk = 0. (1.18)

We do this by induction on k. For k = 1 we have

L(x1) − L(x01) − L(x1 − x01) = 0,

and so (1.18) holds trivially. Now suppose that (1.18) holds for k = s ≥ 2 and let
L ∈ L(Rn1 , . . . ,Rns+1 ;Rm). We first note that the numerator in the limit in (1.18) can be
written as

L(x1, . . . , xs, x0(s+1)) − L(x01, . . . , x0s, x0(s+1)) + L(x1, . . . , xs, xs − x0(s+1))
− L(x1 − x01, . . . , x0s, x0(s+1)) − · · · − L(x01, . . . , xs − x0s, x0(s+1))

− L(x01, . . . , x0s, xs+1 − x0(s+1)).

By the induction hypothesis we have

lim
(x1,...,xs)
→(x01,...,x0s)

∥∥∥L(x1, . . . , xs, x0(s+1)) − L(x01, . . . , x0s, x0(s+1))

− L(x1 − x01, . . . , x0s, x0(s+1)) − L(x01, . . . , xs − x0s, x0(s+1))
∥∥∥
Rm

/∥(x1 − x01, . . . , xs − x0s)∥Rn1+···+ns = 0.
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Since

∥(x1 − x01, . . . , xs − x0s)∥Rn1+···+ns ≤ ∥(x1 − x01, . . . , xs − x0s, xs+1 − x0(s+1))∥Rn1+···+ns+ns+1

this implies that

lim
(x1,...,xs,xs+1)

→(x01,...,x0s,x0(s+1))

∥∥∥L(x1, . . . , xs, x0(s+1)) − L(x01, . . . , x0s, x0(s+1))

− L(x1 − x01, . . . , x0s, x0(s+1)) − L(x01, . . . , xs − x0s, x0(s+1))
∥∥∥
Rm

/∥(x1 − x01, . . . , xs − x0s, xs+1 − x0(s+1))∥Rn1+···+ns+ns+1 = 0. (1.19)

We also have

lim
(x1,...,xs,xs+1)

→(x01,...,x0s,x0(s+1))

∥∥∥L
(
x1, . . . , xs,

xs+1−x0(s+1)
∥xs+1−x0(s+1)∥Rns+1

)
− L

(
x01, . . . , x0s,

xs+1−x0(s+1)
∥xs+1−x0(s+1)∥Rns+1

)∥∥∥
Rm = 0

by continuity of L. Since

∥xs+1 − x0(s+1)∥Rns+1 ≤ ∥(x1 − x01, . . . , xs − x0s, xs+1 − x0(s+1))∥Rn1+···+ns+ns+1

this gives

lim
(x1,...,xs,xs+1)

→(x01,...,x0s,x0(s+1))

∥∥∥L(x1, . . . , xs, xs+1 − x0(s+1)) − L(x01, . . . , x0s, xs+1 − x0(s+1))
∥∥∥
Rm

/∥(x1 − x01, . . . , xs − x0s, xs+1 − x0(s+1))∥Rn1+···+ns+ns+1 = 0. (1.20)

Combining (1.19) and (1.20) gives (1.18) for the case when k = s + 1 and so gives the
conclusion of the theorem in the case when r = 1.

Now suppose that the theorem holds for r ∈ {1, . . . , s} with s < k and let L ∈
L(Rn1 , . . . ,Rnk ;Rm). Let us fix { j1, . . . , js} ∈ Ds,k and denote the complement of { j1, . . . , js}
in {1, . . . , k} by { j′1, . . . , j′k−s}, just as in our definitions before the theorem statement. Let
us also fix v jl ∈ R

n jl for l ∈ {1, . . . , s}. Then define

Pv j1 ,...,v js
: Rn1 × · · · ×Rnk → (R

n j′1 × · · · ×R
n′jk−s ) × (Rn j1 × · · · ×Rn js )

(x1, . . . , xk) 7→ ((x j′1
, . . . , x j′k−s

), (v j1 , . . . ,v js)).

Now define gv j1 ,...,v js
: Rn1 × · · · ×Rnk → Rm by gv j1 ,...,v js

= L ◦ λ j1,..., js ◦ Pv j1 ,...,v js
and note

that
gv j1 ,...,v js

(x1, . . . , xk) = L ◦ λ j1,..., js((x j′1
, . . . , x j′k−s

), (v j1 , . . . ,v js)).

By the Chain Rule, Theorem 1.4.49 below, we have

Dgv j1 ,...,v js
(x1, . . . , xk) · (u1, . . . ,uk)

= D(L ◦ λ j1,..., jr)(P(x1, . . . , xk)) ◦DPv j1 ,...,v js
(x1, . . . , xk) · (u1, . . . ,uk).
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Note that since Pv j1 ,...,v js
is essentially a linear map (precisely, it is affine, meaning linear

plus constant) we have

DPv j1 ,...,v js
(x1, . . . , xk) · (u1, . . . ,uk) = ((u j′1

, . . . ,u j′k−s
), (0, . . . , 0)).

Note that since L ◦ λ j1,..., js ∈ L(R
n j′1 , . . . ,R

n j′k−s ,Rn j1 , . . . ,Rn js ;Rm) (as is readily verified),
by the induction hypothesis,

D(L ◦ λ j1,..., js)(x j′1
, . . . , x j′k−s

, x j1 , . . . , x js) · ((u j′1
, . . . ,u j′k−s

), (u j1 , . . . ,u js))

= L ◦ λ j1,..., js((u j′1
, . . . , x j′k−s

), (x j1 , . . . , x js)) + . . .

+ L ◦ λ j1,..., js((x j′1
, . . . , x j′k−s

), (x j1 , . . . ,u js)).

Therefore,

Dgv j1 ,...,v js
(x1, . . . , xk) · (u1, . . . ,uk)

= L ◦ λ j1,..., js((u j′1
, . . . , x j′k−s

), (v j1 , . . . ,v js)) + . . .

+ L ◦ λ j1,..., js((x j′1
, . . . ,u j′k−s

), (v j1 , . . . ,v js)).

Thus, for v j ∈ R
n j , j ∈ {1, . . . , k}, we have

Dgv j1 ,...,v js
(x1, . . . , xk) · (v1, . . . ,vk)

=
∑

js+1<{ j1,..., js}

L ◦ λ j1,..., js, js+1((x j′1
, . . . , x j′k−(s+1)

), (v j1 , . . . ,v js+1)).

Thus, using this relation along with Proposition 1.4.7, linearity of the derivative (see
Proposition 1.4.47), the Chain Rule (see Theorem 1.4.49), and the induction hypothe-
sis, we compute

Ds+1 f (x1, . . . ,xk) · ((v11, . . . ,v1k), (v21, . . . ,v2k), . . . , . . . , (v(s+1)1, . . . ,v(s+1)k))

=
∑
σ∈Ss

∑
{ j2,..., js+1}∈Ds,k

Dgvσ(2) j2 ,...,vσ(s+1) js+1
(x1, . . . , xk) · (v11, . . . ,v1k)

=
∑
σ∈Ss

∑
{ j2,..., js+1}∈Ds,k

∑
j1<{ j2,..., js+1}

L ◦ λ j1,..., js, js+1((x j′1
, . . . , x j′k−(s+1)

),

(v j1 ,vσ(2) j2 , . . . ,vσ(s+1) js+1))

=
∑
σ∈Ss+1

∑
{ j1,..., js+1}∈Ds+1,k

L ◦ λ{ j1,..., js+1}((x j′1
, . . . , x j′k−(s+1)

),

(vσ(1) j1 , . . . ,vσ(s+1) js+1)),

where, in the second and third line, we define σ ∈ Ss to be a bijection of {1, . . . , s + 1}
by permutation of the last s elements.

The preceding argument gives the result when r ∈ {1, . . . , k}. For r > k we argue as
follows. We first note that

DkL((v11, . . . ,v1k), . . . , (vk1, . . . ,vkk)) =
∑
σ∈Sk

L(vσ(1)1, . . . ,vσ(k)k). (1.21)

By Proposition 1.4.7 it follows that DrL = 0 for r > k. ■
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The proof of the preceding theorem, and indeed the statement, is marred by
notational baggage needed to state the result in full generality. However, the result
is actually simple to use, and to illustrate this we explicitly write the result when
k = 3. In this case we have the following formulae:

DL(x1, x2, x3) · (v11,v12,v13) = L(v1, x2, x3) + L(x1,v2, x3) + L(x1, x2,v3),

D2L(x1, x2, x3) · ((v11,v12,v13), (v21,v22,v23))
= L(v21,v12, x3) + L(v11,v22, x3) + L(v21, x2,v13)
+ L(v11, x2,v23) + L(x1,v22,v13) + L(x1,v12,v23),

D3L(x1, x2, x3) · ((v11,v12,v13), (v21,v22,v23), (v31,v32,v33))
= L(v11,v22,v33) + L(v11,v32,v23) + L(v21,v12,v33)
+ L(v21,v32,v13) + L(v31,v12,v23) + L(v31,v22,v13).

For readers who understand the product rule of differentiation well, cf. Theo-
rem 1.4.48, the preceding formulae are easy to derive. For readers for whom the
formulae look mysterious, it is well to develop some facility in using them and like
formulae since they come up often.

A case of particular importance occurs when n1 = · · · = nk = n and when all
arguments of L are the same.

1.4.9 Corollary (Derivatives of multilinear maps II) Let L ∈ Lk(Rn;Rm) and define
fL : Rn

→ Rm by fL(x) = L(x, . . . , x). Then fL is infinitely differentiable and, moreover, for
r ∈ {1, . . . ,k} we have

DrfL(x) · (v1, . . . ,vr) =
∑
σ∈Sr

∑
{j1,...,jr}∈Dr,k

L ◦ λj1,...,jr((x, . . . , x), (vσ(1), . . . ,vσ(r))).

Proof Define D ∈ L(Rn;Rn
⊕ · · · ⊕Rn) by D(x) = (x, . . . , x). Then f L = L ◦D. Let us also

define, for any r ∈ Z>0, D∗r : Lr((Rn)k;Rm)→ Lr(Rn;Rm) by

D∗r(A) · (v1, . . . ,vr) = A(D(v1), . . . ,D(vr)).

Let us record the derivative of f L in this case.

1 Lemma DrfL = D∗r ◦DrL ◦ D.

Proof We prove the lemma by induction on r. For r = 1 we have

Df L(x) · v1 = DL(D(x)) ◦ D(v1),

using the Chain Rule below and the fact that the derivative of D is D since D is linear.
This gives the result when r = 1, using the definition of D∗1. So suppose the result holds
for r ∈ {1, . . . , s}. Thus

Ds f L(x) · (v1, . . . ,vs) = DsL(D(x)) · (D(v1), . . . ,D(vs)).
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Using Proposition 1.4.7 and the Chain Rule we then have

(Ds+1 f L(x) · (v0)) · (v1, . . . ,vs) = (D(DsL)(D(x)) ◦ D(v0)) · (D(v1), . . . ,D(vs))

= Ds+1L(D(x)) · (D(v0),D(v1), . . . ,D(vs)),

where we use the isomorphism of Proposition I-5.6.7. This gives the lemma. ▼

The result now follows directly from Theorem 1.4.8. ■

The following trivial corollary is also worth recording separately.

1.4.10 Corollary (The derivative of a linear map) If L ∈ L(Rn;Rm) then DL(x) = L for
each x ∈ Rn.

1.4.3 The directional derivative

In this section we describe another way of differentiating a function. As we
shall see, this type of derivative is weaker than the derivative in the preceding
section. However, it is perhaps a more intuitive notion of derivative, so we discuss
it here to assist in understanding how one might interpret the derivative.

1.4.11 Definition (Directional derivative) Let U ⊆ Rn be open, let f : U→ Rm, let x0 ∈ U,
and let v ∈ Rn. The map f is differentiable in the direction v at x0 if the map
s 7→ f (x0 + sv) is differentiable at s = 0. If f has a directional derivative at x0 in the
direction v then we denote by

Df (x0; v) =
d
ds

∣∣∣∣∣
s=0

f (x0 + sv)

the directional derivative. If, for all v ∈ Rn, f is differentiable in the direction v at
x0 then f is Gâteaux differentiable at x0. •

We advise the reader to carefully note the distinction in the notation between the
derivative at x0 evaluated at v and the directional derivative at x0 in the direction
v. The former is denoted by Df (x0) · v while the latter is denoted by Df (x0; v).

It is probably the case that the directional derivative is a more easily understood
concept that the derivative. The idea of the directional derivative of f at x0 in the
direction of v is that one measures what is happening to the values of f as one steps
away from x0 in a specific direction. One might imagine that the existence of the
derivative is equivalent to the existence of all partial derivatives. This, however,
is false! Let us explore, therefore, the relationship between the derivative and the
directional derivative.

1.4.12 Proposition (Differentiable maps are directionally differentiable) Let U ⊆ Rn

be open and let f : U→ Rm be differentiable at x0. Then, for any v ∈ Rn, f has a directional
derivative at x0 in the direction of v and, moreover,

Df(x0; v) = Df(x0) · v.
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Proof Let ϵ ∈ R>0 be such that x0 + sv ∈ U for each s ∈ (−ϵ, ϵ); this is possible since
U is open. Then let g : (−ϵ, ϵ) → U be given by g(s) = x0 + sv. The existence of the
directional derivative of f at x0 in the direction of v is then exactly the differentiability
of s 7→ f ◦ g(s) at s = 0. However, by the Chain Rule (Theorem 1.4.49), this function is
indeed differentiable at s = 0 and, moreover,

Df (x0; v) = Df (x0) ◦Dg(0).

Note that Dg(0) ∈ L(R;Rn) is simply the linear map α 7→ αv and so

Df (x0) ◦Dg(0) ∈ L(R;Rm)

is the linear map
α 7→ α(Df (x0) · v).

Upon making the natural identification of Rm with L(R;Rm) (i.e., the identification
which assigns to u ∈ Rm the linear map α 7→ αu) we see that we have the equality of
derivatives asserted in the proposition. ■

In some sense the preceding result is reassuring since it tells us that the di-
rectional derivative interpretation can be made for the derivative when the latter
exists. The following example shows, however, that the converse of the preceding
result does not hold in general. Thus it is not the case that differentiability in all
directions is equivalent to differentiability.

1.4.13 Example (Discontinuous function possessing all directional derivatives) We
consider the function of Example 1.3.27:

f (x1, x2) =


x2

1x2

x4
1+x2

2
, (x1, x2) , (0, 0),

0, (x1, x2) = (0, 0).

In Example 1.3.27 we show that f is discontinuous at (0, 0).
We further claim that f possesses all directional derivatives at (0, 0). Indeed, let

(u1,u2) ∈ R2 and consider the line

s 7→ (0, 0) + s(u1,u2), s ∈ R,

through (0, 0) in the direction of (u1,u2). Along this line we have

f ((0, 0) + s(u1,u2)) =
su2

1u2

s2u4
1 + u2

2

.

A direct computation gives

d
ds

∣∣∣∣∣
s=0

f ((0, 0) + s(u1,u2)) =

u2
1

u2
, u2 , 0,

0, u2 = 0,

which shows that f possesses all directional derivatives at (0, 0). •

Having settled the relationship between the derivative and the directional
derivative, let us give some of the properties of the directional derivative.
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1.4.14 Proposition (Properties of the directional derivative) Let U ⊆ Rn, let f,g : U →
Rm, let x0 ∈ U, let v ∈ Rn, and let a ∈ R. If f and g are differentiable in the direction v at
x0 then the following statements hold:

(i) f is differentiable in the direction αv at x0 for each α ∈ R and the map α 7→ Df(x0;αv)
is linear;

(ii) f + g is differentiable in the direction v at x0 and

D(f + g)(x0; v) = Df(x0; v) +Dg(x0; v);

(iii) af is differentiable in the direction v at x0 and

D(af)(x0; v) = a(Df(x0; v).

Moreover, if m = 1 and we denote f and g by f and g, respectively, then under the same
hypotheses as above we additionally have the following statements:

(iv) fg is differentiable in the direction v at x0 and

D(fg)(x0; v) = g(x0)Df(x0; v) + f(x0)Dg(x0; v);

(v) if g(x0) , 0 then f
g is differentiable in the direction v at x0 and

D( f
g )(x0; v) =

g(x0)Df(x0; v) − f(x0)Dg(x0; v)
g(x0)2 .

Proof (i) For α = 0 we clearly have Df (x0;αv) = 0. So suppose that α , 0. Then,
letting σ = αs and using the Chain Rule, Theorem 1.4.49,

d
ds

∣∣∣∣∣
s=0

f (x0 + sαv) =
dσ
ds

d
dσ

∣∣∣∣∣
σ=0

f (x0 + σv) = αDf (x0; v),

giving this part of the result.
(ii) We have

d
ds

∣∣∣∣∣
s=0

( f + g)(x0 + sv) =
d
ds

∣∣∣∣∣
s=0

f (x0 + sv) +
d
ds

∣∣∣∣∣
s=0

g(x0 + sv)

= Df (x0; v) +Dg(x0; v),

as desired, where we have used Proposition I-3.2.10.
(iii) This part of the result also follows from Proposition I-3.2.10.
(iv) We have

d
ds

∣∣∣∣∣
s=0

( f g)(x0 + sv) =
d
ds

∣∣∣∣∣
s=0

f (x0 + sv)g(x0 + sv)

= D f (x0; v) +Dg(x0; v),

where we have used Proposition I-3.2.10.
(v) This also follows from Proposition I-3.2.10. ■
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It is also possible to define higher-order directional derivatives. We let U ⊆ Rn

be open, let f : U → Rm, let x ∈ U, and let v1,v2 ∈ Rn. We suppose that the
directional derivative Df (x0 + sv2; v1) exists for each s sufficiently close to zero for
some x0 ∈ U. This allows the possibility of defining the directional derivative of
the directional derivative:

d
ds

∣∣∣∣∣
s=0

Df (x0 + sv2; v1).

This procedure can be continued inductively.

1.4.15 Definition (Higher-order directional derivatives) Let U ⊆ Rn be open, let f : U→
Rm, let x0 ∈ U and v0,v1, . . . ,vr−1 ∈ Rn, and suppose that f is differentiable in
the directions v1, . . . ,vr−1 at x0 + sv0 for s ∈ (−ϵ, ϵ) with ϵ ∈ R>0, with Dr−1 f (x0 +
sx0; v1, . . . ,vr−1) be the directional derivative. The vector

Dr f (x0; v0,v1, . . . ,vr−1) ≜
d
ds

∣∣∣∣∣
s=0

Dr−1 f (x0 + sx0; v1, . . . ,vr−1)

in Rm is the directional derivative of f at x0 in the directions v0,v1, . . . ,vr−1, when
the derivative exists. •

We now have the following generalisation of Proposition 1.4.12.

1.4.16 Proposition (Higher-order derivative and directional derivatives) Let U ⊆ Rn

and let f : U→ Rm be r times differentiable at x0 ∈ U. Then, for any v1, . . . ,vr ∈ Rn, the
directional derivative of f at x0 and in the directions v1, . . . ,vr exists and, moreover,

Drf(x0; v1, . . . ,vr) = Drf(x0) · (v1, . . . ,vr).

Proof We prove the result by induction on r, the case of r = 1 being Proposition 1.4.12.
Suppose the result holds for r = s and let f be s+1 times differentiable at x0. By Proposi-
tion 1.4.35 and by the induction hypothesis the directional derivatives Ds f (x; v1, . . . ,vs)
exist for x in a neighbourhood of x0 and for all v1, . . . ,vs. Since

Ds f (x; v1, . . . ,vs) = Ds f (x) · (v1, . . . ,vs)

by the induction hypothesis, it follows from Proposition 1.4.7 that

x 7→ Ds f (x; v1, . . . ,vs)

is differentiable at x0. By Proposition 1.4.12 it then holds that this map has a directional
derivative at x0 in the direction v0 ∈ Rn. Also by Proposition 1.4.12 it follows that

Ds+1 f (x0; v0,v1, . . . ,vs) = (D(Ds f )(x) · v0) · (v1, . . . ,vs)

= Ds+1 f (x0) · (v0,v1, . . . ,vs),

giving the result. ■
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1.4.4 Derivatives and products, partial derivatives

The notion of a partial derivatives is one that is easy to understand in practice.
That is to say, if one can compute derivatives, the matter of computing partial
derivatives poses no problems in principle. However, this simplicity of computa-
tion can serve to obscure the rather important contribution of the concept of partial
derivative to the theory of the derivative, and particularly higher-order derivatives.
Therefore, in this section we present the partial derivative in a slightly general set-
ting in order to give the partial derivative a little context. The appropriate general
setting is that of functions defined on and taking values in products.

We first consider the case when we have a map f : A → Rm1 × · · · × Rmk from
a subset A ⊆ Rn into a product of Euclidean spaces. In this case, following
Example I-1.3.3–9, we write f = f 1 × · · · × f k for maps f j : A → Rm j , j ∈ {1, . . . , k};
that is,

f (x) = ( f 1(x), . . . , f k(x)), x ∈ A.

We note that if f is differentiable at x0 ∈ A then Df (x0) ∈ L(Rn;Rm1 ⊕ · · · ⊕Rmk). As
in Exercise I-5.4.5 we note that a linear map L from Rn into Rm1 ⊕ · · · ⊕Rmk can be
written as

L(v) = L1(v) + · · · + Lk(v)

for linear maps L j : Rn
→ Rm j , j ∈ {1, . . . , k}. Let us use the notation L = L1 ⊕ · · · ⊕ Lk

to represent this fact. This notation can be extended to multilinear maps as well.
Thus if L ∈ Lk(Rn;Rm1 ⊕ · · · ⊕Rmk) then we can write

L(v1, . . . ,vk) = L1(v1, . . . ,vk) + · · · + Lk(v1, . . . ,vk)

for L j ∈ Lk(Rn;Rm j), j ∈ {1, . . . , k}. We also write L = L1 ⊕ · · · ⊕ Lk in this case.
With all this notation we have the following result.

1.4.17 Proposition (Derivatives of maps taking values in products) Let U ⊆ Rn be
open and let f : A→ Rm1 × · · · ×Rmk be a map which we write as f = f1 × · · · × fk. Then
f is r times differentiable at x0 ∈ U if and only if fj is r times differentiable at x0 for each
j ∈ {1, . . . ,k}. Moreover, if f is r times differentiable at x0 then

Drf(x0) = Drf1(x0) ⊕ · · · ⊕Drfk(x0).

Proof Via an elementary inductive argument it suffices to prove the result in the case
of r = 1, and so we restrict ourselves to this case.

Suppose that f is differentiable at x0 with derivative written as Df (x0) = L1⊕· · ·⊕Lk.
Then, using the triangle inequality,

∥ f j(x) − f j(x0) − L j(x − x0)∥Rmj

∥x − x0∥Rn

≤
∥ f (x) − f (x0) −Df (x0) · (x − x0)∥Rm1+···+mk

∥x − x0∥Rn
, j ∈ {1, . . . , k}.
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Therefore,

lim
x→x0

∥ f j(x) − f j(x0) − L j(x − x0)∥Rmj

∥x − x0∥Rn
= 0, j ∈ {1, . . . , k},

giving differentiability of f j at x0 with derivative L j for each j ∈ {1, . . . , k}.
For the converse, suppose that f 1, . . . , f k are differentiable at x0 and let

L = Df 1(x0) ⊕ · · · ⊕Df k(x0).

Then, using the triangle inequality,

∥ f (x) − f (x0) − L(x − x0)∥Rm1+···+mk

∥x − x0∥Rn
≤

k∑
j=1

∥ f j(x) − f j(x0) −Df j(x0) · (x − x0)∥Rmj

∥x − x0∥Rn
.

Thus

lim
x→x0

∥ f (x) − f (x0) − L(x − x0)∥Rm1+···+mk

∥x − x0∥Rn
= 0,

giving differentiability of f at x0. Uniqueness of the derivative now also ensures that
the final assertion of the result holds. ■

Now we turn to the case of primary interest, that when the domain of the
function is a product.

1.4.18 Definition (Partial derivative) Let U ⊆ Rn1 × · · · ×Rnk be open, let f : U→ Rm, let
x0 = (x01, . . . , x0k) ∈ U, and let j ∈ {1, . . . , k}.

(i) The map f is differentiable at x0 with respect to the jth component if the map

U ∩ ({x01} × · · · ×R
n j × · · · × {x0k} ∋ x j) 7→ f (x01, . . . , x j, . . . , x0k) ∈ Rm (1.22)

is differentiable at x0 j.
(ii) If f is differentiable at x0 with respect to the jth component, then the derivative

at x j0 of the map (1.22) is denoted by D j f (x0) and is called the jth partial
derivative of f at x0. •

For the reader who cannot quite imagine what is the connection with the usual
notion of partial derivative, we ask that they hang on for just a moment as this
will be made clear soon enough. First let us record the relationship between the
derivative and the partial derivatives.

1.4.19 Theorem (Partial derivatives and derivatives) If U ⊆ Rn1 × · · · × Rnk is an open
set and if f : U → Rm is a map differentiable at x0 ∈ U, then f is differentiable at x0 with
respect to the jth component for each j ∈ {1, . . . ,k}. Moreover, if f is differentiable at x0

then we have the following relationships between the derivative and the partial derivatives:

Djf(x0) · vj = Df(x0) · (0, . . . ,vj, . . . , 0)

Df(x0) · (v1, . . . ,vk) =
k∑

j=1

Djf(x0) · vj.



120 1 Multiple real variables and functions of multiple real variables 2022/03/07

Proof Let us denote x0 = (x01, . . . , x0k). Differentiability of f at x0 implies, in particular,
that

lim
x j→x0 j

(
∥ f (x01, . . . , x j, . . . , xk0) − f (x01, . . . , x0 j, . . . , x0k)

−Df (x0) · (0, . . . , x j − x0 j, . . . , 0)∥Rm

)
/
(
∥x j − x0 j∥Rnj

)
= 0.

This precisely means that f is differentiable at x0 with respect to the jth component.
Now let v j ∈ R

n j and denote v = (0, . . . ,v j, . . . , 0). By twice applying Proposi-
tion 1.4.12 we have

Df (x0) · v =
d
ds

∣∣∣∣∣
s=0

f (x0 + sv) = f (x01, . . . , x0 j + sv j, . . . , x0k) = D j f (x0) · v j.

By linearity of the derivative we then have

Df (x0) · (v1, . . . ,vk) =
k∑

j=1

Df (x0) · (0, . . . ,v j, . . . , 0) =
k∑

j=1

D j f (x0) · v j,

which completes the proof. ■

If we combine Proposition 1.4.17 and Theorem 1.4.19 then we get the following
general result concerning derivatives and products.

1.4.20 Corollary (Derivatives and products) Let U ⊆ Rn1 × · · · ×Rnr be an open set and let
f : U→ Rm1 × · · · ×Rms be a map that we write as f = f1 × · · · × fs. If f is differentiable at
x0 ∈ U then, for each j ∈ {1, . . . , r} and k ∈ {1, . . . , s}, fk is differentiable at x0 with respect
to the jth component. Moreover, if f is differentiable at x0 ∈ U then

Df(x0) · (v1, . . . ,vr) =
( r∑

j1=1

Dj1f1(x0) · vj1 , . . . ,
r∑

js=1

Djsfs(x0) · vjs

)
,

While the above presentation makes it look like the product structure is special,
of course this is not the case. Every Euclidean space is a product of copies ofR1, by
definition. Therefore, the above presentation can always be applied to this natural
product structure of every Euclidean space. Moreover, using this product structure
sheds some light on the derivative and how to compute it. We see this as follows.

1.4.21 Definition (Jacobian matrix) Let U ⊆ Rn = R × · · · × R be differentiable, let
f : U→ Rm = R × · · · ×R be differentiable at x0 ∈ U, and write f = f1 × · · · × fm for
f1, . . . , fm : U→ R.

(i) The jth partial derivative of f at x0 is D j f (x0) ∈ Rm (noting that L(R;Rm) is
isomorphic to Rm by Exercise I-5.6.5).

(ii) The jth partial derivative of the kth component of f at x0 is D j fk(x0) ∈ R
(noting that L(R;R) is isomorphic to R by Exercise I-5.6.5).
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(iii) The Jacobian matrix of f at x0 is the m × n matrix
D1 f1(x0) · · · Dn f1(x0)

...
. . .

...
D1 fm(x0) · · · Dn fm(x0)

 . •

Note that we use the same terminology “ jth partial derivative” for the specific
case of the preceding definition as we used in the more general case of Defini-
tion 1.4.18. This is a legitimate source of possible confusion, but is also standard
practice.

The next result follows immediately from Corollary 1.4.20, and is quite impor-
tant since it tells us how one computes the derivative in practice.

1.4.22 Theorem (Explicit formula for the derivative) If U ⊆ Rn is an open set and if
f : U → Rm is a map differentiable at x0 ∈ U written as f = f1 × · · · × fm, then the
components f1, . . . , fm : U→ R of f are differentiable at x0 with respect to the jth coordinate
for each j ∈ {1, . . . ,n}. Furthermore, the matrix representative of Df(x0) with respect to
the standard basesBn andBm for Rn and Rm is the Jacobian matrix of f at x0.

We shall frequently think of the derivative as being equal to its Jacobian matrix
with the understanding that we are using the standard basis to represent the
components of the derivative as a linear map. This is convenient to do, and is only
a mild abuse at worst.

1.4.23 Notation (Alternative notation for the partial derivative) As with the notation
for the derivative as discussed in Notation I-3.2.2, there is notation for the partial
derivative that sees more common use that the notation we give. Specifically, it is
frequent to see the symbol ∂ f

∂x j
used for what we denote by D j f . This more common

notation suffers from the same drawbacks as the notation d f
dx for the ordinary

derivative. Namely, it introduces the independent variable x j in a potentially
confusing way. Much of the time, this does not cause problems, and indeed we
will use this notation when it is not imprudent to do so. •

In Exercise 1.4.3 the reader can provide a rule that is often helpful in computing
partial derivatives with respect to coordinates. Let us give a couple of examples to
illustrate the notion of partial derivative and its connection with the derivative.

1.4.24 Examples (Partial derivative)

1. Let U = R2
\ {(0, 0)} and define f : U → R2 by f (x1, x2) =

(
x1√
x2

1+x2
2

, x2√
x2

1+x2
2

)
. We

claim that f possesses both partial derivatives at all points in U. Indeed, we
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compute

lim
h→0

(
x1+h

√
(x1+h)2+x2

2

, x2√
(x1+h)2+x2

2

)
−

(
x1√
x2

1+x2
2

, x2√
x2

1+x2
2

)
h

=

(
lim
h→0

x1+h
√

(x1+h)2+x2
2

−
x1√
x2

1+x2
2

h
, lim

h→0

x2√
(x1+h)2+x2

2

−
x2√
x2

1+x2
2

h

)
=

( x2
2

(x2
1 + x2

2)3/2
,−

x1x2

(x2
1 + x2

2)3/2

)
,

where, in the last step, we have simply computed the usual derivative, using
the rules given in Section I-3.2. In like manner we have

lim
h→0

(
x1√
x2

1+x2
2

, x2+h
√

x2
1+(x2+h)2

)
−

(
x1√

x2
1+(x2+h)2

, x2√
x2

1+x2
2

)
h

=
(
−

x1x2

(x2
1 + x2

2)3/2
,

x2
1

(x2
1 + x2

2)3/2

)
Thus both partial derivatives indeed exist, and we moreover have

D1 f (x1, x2) =
( x2

2

(x2
1 + x2

2)3/2
,−

x1x2

(x2
1 + x2

2)3/2

)
,

D2 f (x1, x2) =
(
−

x1x2

(x2
1 + x2

2)3/2
,

x2
1

(x2
1 + x2

2)3/2

)
,

and so the partial derivatives are also continuous functions on U.
Therefore, if f is differentiable at some point (x01, x02) ∈ R2

\ {(0, 0)} then it must
hold that

Df (x01, x02) =


x2

02

(x2
01+x2

02)3/2 −
x01x02

(x2
01+x2

02)3/2

−
x01x02

(x2
01+x2

02)3/2

x2
01

(x2
01+x2

02)3/2

 ,
where we identify the derivative with its matrix representative in the standard
basis. We should, at this point since we know no better, actually verify that
f is differentiable with this derivative. This can be done directly using the
definition of derivative. Thus one can check directly, using rules for limits as in
Proposition I-2.3.23, that

lim
(x1,x2)→(x01,x02)

(
∥ f (x1, x2) − f (x01, x02)

−Df (x01, x02) · (x1 − x01, x2 − x02)∥R2

)
/∥(x1, x2) − (x01, x02)∥R2 = 0.

We leave the tedious verification of this to the reader, particularly as we shall
see in Theorem 1.4.25 below that in this example there is an easy way to verify
that this function is, in fact, of class C1.
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2. Define f : R2
→ R by

f (x1, x2) =


2x2

1x2

x4
1+x2

2
, (x1, x2) , (0, 0),

0, (x1, x2) = (0, 0).

We claim that f possesses both partial derivatives at (0, 0), but is not differen-
tiable at (0, 0). Let us first show that f possesses both partial derivative at (0, 0).
By definition, this amounts to checking the differentiability (in the sense of Def-
inition I-3.2.1) of the function x1 7→ f (x1, 0) = 0. This function, being constant,
is obviously differentiable at (0, 0) with derivative zero. In like manner one can
show that f possesses the second partial derivative at (0, 0) and that this second
partial derivative is also zero. Now let us show that f is discontinuous, and
therefore not differentiable, at (0, 0). Consider the sequence (( 1

j ,
1
j2 )) j∈Z>0 in R2.

This sequence converges to (0, 0). We directly compute that f ( 1
j ,

1
j2 ) = 1 for all

j ∈ Z>0. Therefore
lim
j→∞

f ( 1
j ,

1
j2 ) = 1 , f (0, 0).

Therefore, f is indeed discontinuous, and so not differentiable, at (0, 0) by
Proposition 1.4.35 below.
Note that the function of Example 1.4.13 also has the property that its partial
derivatives exist, but the function is not differentiable. •

The preceding examples illustrate one of the problems that one has with the
derivative: it is often not so easy to verify its existence since the mere existence of
all partial derivatives is not sufficient. There is an important case, however, where
one can infer differentiability from the properties of the partial derivatives. Here
we return to the general setup for the partial derivative in terms of products.

1.4.25 Theorem (Equivalence of continuous differentiability and continuity of partial
derivatives) For an open set U ⊆ Rn1 × · · · ×Rnk , a map f : U→ Rm, and for r ∈ Z>0,
the following statements are equivalent:

(i) f is of class Cr;
(ii) the partial derivatives Djf(x) exist for each j ∈ {1, . . . ,k} and x ∈ U, and, moreover,

the maps x 7→ Djf(x) are of class Cr−1.
Proof By induction we can assume without loss of generality that k = 2. Moreover,
by Propositions 1.3.26 and 1.4.17 we can take m = 1 without loss of generality. Thus
we prove the theorem for k = 2 and m = 1. Consistent with our standing conventions
we write “ f” as “ f .”

(i) =⇒ (ii) From Theorem 1.4.19 we know that the partial derivatives D1 f (x) and
D2 f (x) exist at all points x ∈ U. To prove continuity of the partial derivatives, define
maps

ϕ1 : L(Rn1 ⊕Rn2 ;R)→ L(Rn1 ;R), ϕ2 : L(Rn1 ⊕Rn2 ;R)→ L(Rn2 ;R)
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by
ϕ1(L1)(v1) = L1(v1, 0), ϕ2(L2)(v2) = L1(0,v2)

for v1 ∈ R
n1 and v2 ∈ Rn2 . These maps are easily verified to be linear and so in

particular are infinitely differentiable, cf. Corollary 1.4.10. Moreover, we easily see
that

D1 f = ϕ1 ◦D f , D2 f = ϕ2 ◦D f .

Therefore, if D f is of class Cr−1 (as it is by Proposition 1.4.35) then the partial derivatives
are also of class Cr−1.

(ii) =⇒ (i) First we show that D f (x) exists for all x ∈ U if all partial derivatives exist
at each point, and are continuous. Let us fix x = (x1, x2) ∈ U and let (h1,h2) ∈ Rn1 ×Rn2

be such that (x1 + s1h1, x2 + s2h2) ∈ U for s1, s2 ∈ [0, 1], this being possible since U is
open. Consider the map

s 7→ f (x1, x2 + sh2).

By the Chain Rule (Theorem 1.4.49), it being applicable since the partial derivative of
f with respect to the second component exists, we have

d
ds

f (x1, x2 + sh2) = D2 f (x1, x2 + sh2) · h2.

By the multivariable Fundamental Theorem of Calculus (this is obtained in this case
by applying the single-variable Fundamental Theorem componentwise, but the reader
can also refer ahead to ) we haveref?

f (x1, x2 + h2) − f (x1, x2) =
∫ 1

0
D2 f (x1, x2 + sh2) · h2 ds. (1.23)

The same argument can be applied to the map

s 7→ f (x1 + sh1, x2 + h2)

to give

f (x1 + h1, x2 + h2) − f (x1, x2 + h2) =
∫ 1

0
D1 f (x1 + sh1, x2 + h2) · h1 ds. (1.24)

Combining (1.23) and (1.24) we get

f (x1+h1, x2 + h2) − f (x1,h2) −D1 f (x1, x2) · h1 −D2 f (x1, x2) · h2

=

∫ 1

0
D1 f (x1 + sh1, x2 + h2) · h1 ds +

∫ 1

0
D2 f (x1, x2 + sh2) · h2 ds

−D1 f (x1, x2) · h1 −D2 f (x1, x2) · h2

=
(∫ 1

0

(
D2 f (x1 + sh1, x2 + h2) −D1 f (x1, x2)

)
ds

)
· h1+(∫ 1

0

(
D2 f (x1, x2 + sh2) −D2 f (x1, x2)

)
,ds

)
· h2



2022/03/07 1.4 Differentiable multivariable functions 125

Now let ϵ ∈ R>0 and by continuity of the partial derivatives choose (h1,h2) such that

sup{∥D2 f (x1 + sh1, x2 + h2) −D1 f (x1, x2)∥Rn,Rm | s ∈ [0, 1]} <
ϵ

2
√

2

sup{∥D2 f (x1, x2 + sh2) −D2 f (x1, x2)∥Rn,Rm | s ∈ [0, 1]} <
ϵ

2
√

2
.

With (h1,h2) so chosen we have∣∣∣(D2 f (x1 + sh1, x2 + h2) −D1 f (x1, x2)
)
· h1

+
(
D2 f (x1, x2 + sh2) −D2 f (x1, x2)

)
· h2

∣∣∣ ≤ ϵ
2
√

2
∥h1∥Rn1 + ϵ

2
√

2
∥h2∥Rn2

≤
ϵ
√

2
(∥h1∥Rn1 + ∥h2∥Rn2 ) ≤ ϵ∥(h1,h2)∥Rn1+n2 ,

using Lemma 1.2.67. Therefore,∣∣∣ f (x1 + h1, x2 + h2) − f (x1,h2) −D1 f (x1, x2) · h1−

D2 f (x1, x2) · h2
∣∣∣/∥(h1,h2)∥Rn1+n2 < ϵ,

and so we conclude that f is differentiable at (x1, x2).
Finally, we show that D f is of class Cr−1 if both D1 f and D2 f are of class Cr−1.

Define maps

ψ1 : L(Rn1 ;R)→ L(Rn1 ⊕Rn2 ;R), ψ2 : L(Rn2 ;R)→ L(Rn1 ⊕Rn2 ;R)

by
ψ1(L1)(v1,v2) = L1(v1), ψ2(L2)(v1,v2) = L2(v2).

These maps are linear and so infinitely differentiable. Moreover, since

D f (x) = ψ1 ◦D1 f + ψ2 ◦D2 f

it follows that D f is of class Cr−1 if D1 f and D2 f are of class Cr−1 by virtue of Proposi-
tion 1.4.47. ■

Let us consider the theorem in view of the examples we introduced above.

1.4.26 Examples (Partial derivatives (cont’d))

1. We take U = R2
\{(0, 0)} and take f : U→ R2 given by f (x1, x2) =

(
x1√
x2

1+x2
2

, x2√
x2

1+x2
2

)
.

In Example 1.4.24–1 we computed

Df (x1, x2) =


x2

2
(x2

1+x2
2)3/2 −

x1x2

(x2
1+x2

2)3/2

−
x1x2

(x2
1+x2

2)3/2

x2
1

(x2
1+x2

2)3/2

 .
Since the components of this matrix are continuous functions on U, it follows
from Theorem 1.4.25 that f is of class C1 on U.
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2. Here we take f : R2
→ R to be defined by

f (x1, x2) =


2x2

1x2

x4
1+x2

2
, (x1, x2) , (0, 0),

0, (x1, x2) = (0, 0).

In Example 1.4.24–2 we showed that both partial derivatives of f exist at (0, 0)
and are zero. For (x1, x2) , (0, 0) we can compute, using Theorem 1.4.22,

D1 f (x1, x2) = 2x1x2
x2

2 − x4
1

(x4
1 + x2

2)2
, D2 f (x1, x2) = x2

1

x4
1 − x2

2

(x4
1 + x2

2)2
.

These partial derivatives are continuous on R2
\ {(0, 0)}, and so it follows from

Theorem 1.4.25 that f is of class C1 onR2
\ {(0, 0)}. However, the partial deriva-

tives are readily verified to be discontinuous at (0, 0), cf. Example 1.4.24–2, and
so it follows from Theorem 1.4.25 that f is not of class C1 in any neighbourhood
of (0, 0). Of course, we knew this already since f is actually discontinuous at
(0, 0). •

1.4.5 Iterated partial derivatives

Now that we have used the notion of partial derivative to get better handle on
how to compute the derivative of a multivariable map, let us see if we can similarly
compute higher-order derivatives of multivariable maps using partial derivatives.
In addressing this matter we will also shed some light on an important property
of higher-order derivatives in the usual sense. In particular, we shall illuminate
clearly the significance of the classical statement that “partial derivatives commute”
by showing that this statement is not true in general.

Suppose we have an open set U ⊆ Rn1 × · · · × Rnk and a map f : U → Rm.
Suppose that for j1 ∈ {1, . . . , k}, f is continuously differentiable with respect to the
j1st component. That is, the map

U ∋ x 7→ D j1 f (x) ∈ L(Rn1 ;Rm)

is defined and continuous. While there are weaker conditions that will guarantee
this, to keep things simple let us suppose that f is of class C1 so the existence and
continuity of the partial derivative is ensured by Theorem 1.4.19. Now let j2 ∈

{1, . . . , k}. We can then talk about the differentiability of the map U ∋ x 7→ D j1 f (x)
with respect to the j2nd component. Indeed, while again weaker hypotheses are
possible, if we assume that f is of class C2 then the map

U ∋ x 7→ D j2D j1 f (x) ∈ L(Rn j2 ,Rn j1 ;Rm)

is defined and continuous by virtue of Theorem 1.4.19. (We use Proposition I-5.6.7
to describe the codomain of this map.) Clearly, if f is of class Cr and if j1, . . . , jr ∈

{1, . . . , k} then we can inductively define

U ∋ x 7→ D jr · · ·D j1 f (x) ∈ L(Rn jr , . . . ,Rn j1 ;Rm),
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again using Proposition I-5.6.7.
Let us organise the preceding discussion by naming the objects.

1.4.27 Definition (Iterated partial derivative) Let U ⊆ Rn1 × · · · ×Rnk be open, let f : U→
Rm, let x0 ∈ U, and let j1, . . . , jr ∈ {1, . . . , k}. The multilinear map

D jr · · ·D j1 f (x0) ∈ L(Rn jr , . . . ,Rn j1 ;Rm),

when it is defined, is an iterated partial derivative of f at x0. The number r ∈ Z>0

is the degree of the iterated partial derivative. •

Let us relate the rth derivative of f to the iterated partial derivatives of degree r.
To do so we generalise the relationship in the case of r = 1 given in Theorem 1.4.19.
This requires that we represent elements of (Rn1 ⊕ · · · ⊕Rnk)r is an appropriate way.
A vector in Rn1 ⊕ · · · ⊕ Rnk we write as (v1, . . . ,vk) for v j ∈ Rn j , j ∈ {1, . . . , k}. Thus
we write an element of (Rn1 ⊕ · · · ⊕Rnk)r as

((vr1, . . . ,vrk), . . . , (v11, . . . ,v1k))

for vaj ∈ Rn j , a ∈ {1, . . . , r}, j ∈ {1, . . . , k}. Note the ordering with respect to the first
index: we list the vectors from r to 1, not from 1 to r. This is to be consistent with
our ordering of indices for iterated partial derivatives from r to 1 as we go from
left to right.

We now have the following generalisation of Theorem 1.4.19.

1.4.28 Theorem (Iterated partial derivatives and higher-order derivatives) If U ⊆
Rn1 × · · · ×Rnk is an open set and if f : U→ Rm is a map that is r times differentiable at
x0 ∈ U, then all iterated partial derivatives of f degree r are defined x0. Moreover, if f is
r times differentiable at x0 then we have the following relationships between the derivative
and the partial derivatives:

(i) for ((vr1, . . . ,vrk), . . . , (v11, . . . ,v1k)) ∈ (Rn1 ⊕ · · · ⊕Rnk)r we have

Drf(x) · ((vr1, . . . ,v1k), . . . , (v11, . . . ,v1k))

=

k∑
j1,...,jr=1

Djr · · ·Dj1f(x) · (vrjr , . . . ,v1j1); (1.25)

(ii) for j1, . . . , jr ∈ {1, . . . ,k} and (vr, . . . ,v1) ∈ Rnjr ⊕ · · · ⊕Rnj1 we have

Djr · · ·Dj1f(x) · (vr, . . . ,v1)
= Drf(x) · ((0, . . . ,vr, . . . , 0)︸             ︷︷             ︸

vr in jrth slot

, . . . , (0, . . . ,v1, . . . , 0)︸              ︷︷              ︸
v1 in j1st slot

). (1.26)

.
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Proof We prove the first implication of the theorem by induction on r. We do this by
simultaneously proving (1.26) by in the induction argument. For r = 1 the assertion
and (1.26) is simply Theorem 1.4.19. So suppose the result true for r ∈ {1, . . . , s} and
suppose that f is s + 1 times differentiable at x0. By the induction hypothesis we have
that all iterated partial derivatives of degree s exist and satisfy

D js · · ·D j1 f (x) · (vs, . . . ,v1) = Ds f (x) · ((0, . . . ,vs, . . . , 0)︸             ︷︷             ︸
vs in jsth slot

, . . . , (0, . . . ,v1, . . . , 0)︸              ︷︷              ︸
v1 in j1st slot

).

By Proposition 1.4.7 and Theorem 1.4.19, differentiability of Ds f at x0 implies that all
iterated partial derivatives of degree s + 1 exist at x0. To prove that (1.26) holds for
r = s + 1 we compute

D js+1D js · · ·D j1 f (x) · (vs+1,vs, . . . ,v1)

=
(
D js+1(Ds f (x) · ((0, . . . ,vs, . . . , 0)︸             ︷︷             ︸

vs in jsth slot

, . . . , (0, . . . ,v1, . . . , 0)︸              ︷︷              ︸
v1 in j1st slot

))
)
· vs+1

= Ds+1 f (x) · ((0, . . . ,vs+1, . . . , 0)︸                ︷︷                ︸
vs+1 in js+1st slot

, (0, . . . ,vs, . . . , 0)︸             ︷︷             ︸
vs in jsth slot

, . . . ,

(0, . . . ,v1, . . . , 0)︸              ︷︷              ︸
v1 in j1st slot

)

using the induction hypotheses and Theorem 1.4.19. This gives (1.26) for r = s + 1.
Finally we need to show that (1.25) holds. We prove this also by induction on r.

For r = 1 the formula holds by Theorem 1.4.19. Suppose, then, that (1.25) holds for
r = s and that f is s + 1 times differentiable at x0. Using the fact that the formula holds
for r = s, we compute

Ds+1 f (x) · ((v(s+1)1, . . . ,v(s+1)k), (vs1, . . . ,vsk), . . . , (v11, . . . ,v1k))

=

k∑
js+1=1

(
D js+1(Ds f · ((vs1, . . . ,vsk), . . . , (v11, . . . ,v1k)))

)
· v(s+1) js+1

=

k∑
js+1=1

(
D js+1

( k∑
j1,..., js=1

D js · · ·D j1 f (x) · (vsjs , . . . ,v1 j1)
))
· v(s+1) js+1

=

k∑
j1,..., js, js+1=1

D js+1D js · · ·D j1 f (x) · (v(s+1) js+1 ,vsjs , . . . ,v1 j1),

giving (1.25) for r = s + 1. ■

Since the preceding theorem contains Theorem 1.4.19 as a special case, it follows
that the converse does not hold. That is to say, the existence of iterated partial
derivatives of degree r does not imply that f is r times differentiable. We refer to
the discussion surrounding Theorem 1.4.19 for more details.

Just as Theorem 1.4.19 allowed us to give an explicit formula for the derivative
in Theorem 1.4.22, we can use apply Theorem 1.4.28 to give an explicit formula
for higher-order derivatives.
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1.4.29 Definition (Iterated partial derivative) Let U ⊆ Rn = R × · · · × R be open, let
f : U→ Rm, let x0 ∈ U, and let j1, . . . , jr ∈ {1, . . . ,n}. The multilinear map

D jr · · ·D j1 f (x0) ∈ Rm

(noting that Lr(R;Rm) is isomorphic to Rm by Exercise I-5.6.5) when it is defined,
is an iterated partial derivative of f at x0. The number r ∈ Z>0 is the degree of the
iterated partial derivative. •

Now, an application of Proposition 1.4.17 and Theorem 1.4.28 gives the fol-
lowing result.

1.4.30 Theorem (Explicit formula for higher-order derivatives) If U ⊆ Rn is open and if
f : U→ Rm is a map that is r times differentiable at x0 and is written as f = f1 × · · · × fm,
then all iterated partial derivatives of degree r of components f1, . . . , fm : U → R exist at
x0. Furthermore, the components of Drf(x0) ∈ Lr(Rn;Rm) are defined by

(Drf(x0)(ejr , . . . , ej1))a = Djr · · ·Dj1fa(x0),

for j1, . . . , jr ∈ {1, . . . ,n} and a ∈ {1, . . . ,m}.

In terms of more commonly used notation, the components of Dr f (x0) are
written as

∂r fa

∂x jr · · · ∂x j1
(x0), j1, . . . , jr ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}.

The following theorem generalises Theorem 1.4.25 and shows that, as long as
the iterated partial derivatives are continuous, one can assert higher-order contin-
uous differentiability.

1.4.31 Theorem (Higher-order continuous differentiability and continuity of iterated
partial derivatives) Let U ⊆ Rn1 × · · · ×Rnk be open, let f : U→ Rm, and let r ∈ Z>0.
Then the following statements are equivalent:

(i) f is of class Cr;
(ii) all iterated partial derivatives of f of degree r exist and are continuous.

Proof (i) =⇒ (ii) By Theorem 1.4.25, if f is of class Cr then D j1 f is of class Cr−1 for
every j1 ∈ {1, . . . , k}. Inductively using Theorem 1.4.25, it then follows that D jr · · ·D j1 f
is defined and continuous for every j1, . . . , jr ∈ {1, . . . , k}.

(ii) =⇒ (i) We prove this implication by induction on r. As part of the proof we shall
prove, included in the induction, that (1.25) holds under the assumption that iterated
partial derivatives of degree r exist. By Theorem 1.4.25 it holds that if all iterated
partial derivatives of degree 1 (i.e., all partial derivatives) exist and are continuous
then f is of class C1. Moreover, we showed in the proof of Theorem 1.4.25 that (1.25)
holds for r = 1. Suppose the implication and (1.25) are true for r ∈ {1, . . . , s} and
suppose that all iterated partial derivatives of degree s+1 exist and are continuous. By
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the induction hypothesis the map x 7→ Ds f (x) is defined and continuous. Moreover,
the assumption that all iterated derivatives of degree s + 1 exist and are continuous
implies, by Proposition 1.4.7 and (1.25) with r = s, that all partial derivatives of Ds f
exist and are continuous. Thus, by Theorem 1.4.25, Ds f is continuously differentiable
and so f is of class Cs+1. The proof that (1.25) holds for r = s+ 1 is then carried out just
as in the proof of Theorem 1.4.28. ■

Next we discuss an important idea, that of commutativity of iterated partial
derivatives. That is, we consider an open subset U ⊆ Rn1 × · · · × Rnk and a map
f : U → Rm for which the iterated partial derivatives D j1D j2 f and D j2D j1 f exist
at x0 ∈ U for some j1, j2 ∈ {1, . . . , k}. The question is, “When are these iterated
partial derivatives equal?” Clearly they cannot be equal when n j1 , n j2 since
D j1D j2 f ∈ L(Rn j1 ,Rn j2 ;Rm) and D j2D j1 f ∈ L(Rn j2 ,Rn j1 ;Rm). Even when n j1 = n j2 they
are not generally equal.

1.4.32 Example (Partial derivatives do not generally commute) Let B ∈
∧2(Rn;Rm);

that is, B is a skew-symmetric bilinear map from Rn
× Rn to Rm. Let us define

f B : Rn
×Rn

→ Rm by f B(x1, x2) = B(x1, x2). By Theorem 1.4.8 we have

D1 f B(x1, x2) · v = B(v, x2)
D2 f B(x1, x2) · v = B(x1,v)

D1D1 f B(x1, x2) · (v1,v2) = 0
D1D2 f B(x1, x2) · (v1,v2) = B(v1,v2)
D2D1 f B(x1, x2) · (v1,v2) = B(v2,v1)
D2D2 f B(x1, x2) · (v1,v2) = 0

for all x1, x2,v,v1,v2 ∈ Rn. Since B is skew-symmetric, we have

D1D2 f B(x1, x2) = D2D1 f B(x1, x2)

if and only if B = 0 (why?). Since the only case when B must be zero is when n = 1
(why?), we conclude that there are lots of possible choices for B when n ≥ 2 for
which the partial derivatives do not commute. •

The preceding example showing that partial derivative do not generally com-
mute is not deep. However, it does help to provide a context as to why, when
n j1 = n j2 = 1 it follows that partial derivatives do, indeed, commute. In particular,
we hope that this suggests that the commuting of partial derivatives in this case is
somewhat deep.

1.4.33 Theorem (One-dimensional partial derivatives commute) Let U ⊆ Rn1×· · ·×Rnk

be open, let f : U → Rm be of class C2, and let j1, j2 ∈ {1, . . . ,k} have the property that
nj1 = nj2 = 1. Then

Dj1Dj2f(x) = Dj2Dj1f(x)

for all x ∈ U.
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Proof By Proposition 1.4.17 we can assume that m = 1 without loss of generality. We
thus denote “ f” by “ f .” Let us write a point in U as

(x1, . . . , x j1 , . . . , x j2 , . . . , xk) ∈ Rn1 × · · · ×R × · · · ×R × · · · ×Rnk .

For each j ∈ {1, . . . , k} choose x0 j ∈ R
n j so that

x0 ≜ (x01, . . . , x0k) ∈ U.

If f is of class C2 then the map

g : (s1, s2) 7→ f (x01, . . . , x j10 + s1, . . . , x j20 + s2, . . . , x0k)

is of class C2 in a neighbourhood of (0, 0) ∈ R2. Moreover, by definition of the partial
derivatives,

D1D2g(0, 0) = D j1D j2 f (x0), D2D1g(0, 0) = D j2D j1 f (x0).

Thus is suffices to show that D1D2g(0, 0) = D2D1g(0, 0).
For (s1, s2) in a neighbourhood of (0, 0) define

D(s1, s2) = g(s1, s2) − g(s1, 0) − g(0, s2) + g(0, 0).

For fixed s2 define gs2(s1) = g(s1, s2) − g(s1, 0) so that D(s1, s2) = gs2(s1) − gs2(0). By the
Mean Value Theorem, Theorem I-3.2.19, we have

D(s1, s2) = gs2(s1) − gs2(0) = s1g′s2
(s̃1) = s1(D1g(s̃1, s2) −D1g(s̃1, 0))

for some s̃1 ∈ [0, s1]. Now we apply the Mean Value Theorem again to the function
s2 7→ D1g(s̃1, s2) to get

D1g(s̃1, s2) −D1g(s̃1, 0) = s2D2D1g(s̃1, s̃2).

Putting the preceding two formulae together we get

D2D1g(s̃1, s̃2) =
D(s1, s2)

s1s2
.

Continuity of the iterated partial derivatives of length two gives

D2D1g(0, 0) = lim
(s1,s2)→(0,0)

D(s1, s2)
s1s2

The above construction can be repeated, swapping the rôles of s1 and s2, to give

D1D2g(0, 0) = lim
(s1,s2)→(0,0)

D(s1, s2)
s1s2

,

giving the result. ■

Let us give a few examples to illuminate this important theorem.
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1.4.34 Examples (Commutativity of one-dimensional partial derivatives)
1.

1.4.6 The derivative and function behaviour

Why is the derivative and differentiability important? Of course, this is an im-
portant question, and in this section we give some simple results that indicate why
one might study the derivative of a map. Somewhat more profound illustrations
of this are given in Section 1.5.

As in the single-variable case, differentiability implies continuity.

1.4.35 Proposition (Differentiable maps are continuous) If U ⊆ Rn is an open set and
if f : U→ Rm is differentiable at x0 ∈ U, then there exists M ∈ R>0 and a neighbourhood
V ⊆ U of x0 such that

∥f(x) − f(x0)∥Rm ≤M∥x − x0∥Rn , x ∈ V.

In particular, f is continuous at x0.
Proof By definition of “differentiable at x0” there exists a neighbourhood V of x0 such
that

∥ f (x) − f (x0) −Df (x0) · (x − x0)∥Rm

∥x − x0∥Rn
< 1

=⇒ ∥ f (x) − f (x0) −Df (x0) · (x − x0)∥Rm < ∥x − x0∥Rn

for x ∈ V. By Proposition 1.1.13 we have

∥Df (x0) · v∥Rm ≤ ∥Df (x0)∥Rn,Rm∥v∥Rn

for all v ∈ Rn. Thus the triangle inequality gives

∥ f (x) − f (x0)∥Rm ≤ ∥ f (x) − f (x0) −Df (x0) · (x − x0)∥Rm

+ ∥Df (x0)∥Rn,Rm∥x − x0∥Rn

≤ ∥x − x0∥Rn + ∥Df (x0)∥Rn,Rm∥x − x0∥Rn

for all x ∈ V, giving the first assertion of the result if we take M = 1 + ∥Df (x0)∥,RnRm.
For the final assertion, let ϵ ∈ R>0 and let δ′ ∈ R>0 be such that B(δ′, x0) ⊆ V.

Taking δ = min{δ′, ϵM } and letting x ∈ B(δ, x0) gives

∥ f (x) − f (x0)∥Rm ≤M∥x − x0∥Rn < ϵ,

giving continuity of f at x0. ■

If the derivative of the function is bounded, then one can infer uniform conti-
nuity.
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1.4.36 Proposition (Functions with bounded derivatives are sometimes uniformly
continuous) If U ⊆ Rn is open and if f : U → Rm is continuously differentiable, then
the following two statements hold:

(i) if U is convex (see the comments before the statement of Theorem 1.4.38 below) and
if Df is bounded, then f is uniformly continuous;

(ii) if K ⊆ U is compact, then f|K is uniformly continuous.
Proof (i) From the Mean Value Theorem, Theorem I-3.2.19 below. there exists M ∈ R>0
such that

∥ f (x) − f (y)∥Rm ≤M∥x − y∥Rn

for every x, y ∈ U. Now let ϵ ∈ R>0 and let x ∈ U. Define δ = ϵ
M and note that if y ∈ U

satisfies ∥x − y∥Rn < δ then we have

∥ f (x) − f (y)∥Rm < ϵ,

giving the desired uniform continuity.
(ii) Let

A = sup{∥ f∥Rm(x) | x ∈ K},
B = sup{∥Df (x)∥ ,| Rn

}Rmx ∈ K,

noting that A,B < ∞ by Theorem 1.3.31. Let x ∈ K and let rx ∈ R>0 be such that
Bn(2rx, x) ⊆ U. For y1, y2 ∈ Bn(rx, x), the Mean Value Theorem gives

∥ f (y1) − f (y2)∥Rm ≤ B∥y1 − y2∥Rn .

Since (Bn(rx, x))x∈K covers K, there exists x1, . . . , xk ∈ K such that K ⊆ ∪k
j=1Bn(rx j , x j). Let

us abbreviate N j = Bn(rx j , x j) for j ∈ {1, . . . , k}. By Theorem 1.2.38 there exists r ∈ R>0
such that if x, y ∈ K satisfy ∥x − y∥Rn < r then x, y ∈ N j for some j ∈ {1, . . . , k}.

We let x, y ∈ K. If ∥x − y∥Rn < r then x, y ∈ N j for some j ∈ {1, . . . , k} and so

∥ f (x) − f (y)∥Rm ≤ B∥x − y∥Rn .

If ∥x − y∥Rn ≥ r then

∥ f (x) − f (y)∥Rm ≤ ∥ f (x)∥Rm + ∥ f (y)∥Rm ≤ 2A =
2Ar

r
≤ 2r−1A∥x − y∥Rn .

Taking M = max{B, 2r−1A}, we then have

∥ f (x) − f (y)∥Rm ≤M∥x − y∥Rn

for all x, y ∈ K. Uniform continuity of f follows as in the proof of the first part of the
result. ■

The two conditions in the preceding result are generally necessary, as the fol-
lowing example shows.
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Figure 1.10 A spiral curve

1.4.37 Example (A function with a bounded derivative that is not uniformly contin-
uous) Consider the curve γ : (1,∞)→ R2 defined by

γ(t) = (1 + tanh(t − 1))(cos(2πt), sin(2πt)).

In Figure 1.10 we depict the traces of this curve, which is a spiral whose radius
grows from a radius of 1 to a limiting radius of 2. Define

ϕ : (− 1
8 ,

1
8 ) × (1,∞)→ R2

(s, t) 7→ (1 + tanh(t + s − 1)(cos(2πt), sin(2πt)).

Let us verify some of the elementary properties of this map.

1 Lemma The map ϕ has the following properties:
(i) it is injective;
(ii) it is continuously differentiable and there exists c ∈ R>0 such that ∥Dϕ(s, t)∥R2,R2 ≥ c

for all (s, t) ∈ (− 1
8 ,

1
8 ) × (1,∞);

(iii) ϕ−1 is continuously differentiable with bounded derivative.

Proof (i) Suppose thatϕ(s1, t1) = ϕ(s2, t2), and without loss of generality take t2 ≥ t1.
Since the two image points must lie on the same ray through the origin we must
have

(cos(2πt1), sin(2πt1)) = (cos(2πt2), sin(2πt2)),
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implying that t2 − t1 ∈ Z≥0. If t1 = t2 then we must immediately have 1 + tanh(t1 +
s1−1) = 1+tanh(t1+s2−1) giving s1 = s2 since tanh is injective (see Exercise I-3.8.5).
So suppose that t2 − t1 = k ∈ Z>0. Then we must have

1 + tanh(t1 + s1 − 1) = 1 + tanh(t1 + k + s2 − 1)
=⇒ t1 + s1 − 1 = s1 + k + s2 − 1
=⇒ s1 − s2 = k.

again using injectivity of tanh. However, since s1, s2 ∈ (1
8 ,

1
8 ) we have

|s1 − s2| < 1
4 , k,

and so we conclude that we must have t2 = t1 and so s2 = s1. This gives the desired
injectivity of ϕ.

(ii) We directly compute

∥Dϕ(s, t)∥R2,R2 = 2(cosh(t + s − 1)(
− 4) + 2π2(1 − tanh(t + s − 1))2).

Note that, for (s, t) in the domain of ϕ, we have

tanh(t + s − 1) ≥ tanh(−1
8 ) = − tanh(1

8 ) ∈ (−1, 0).

Thus
∥Dϕ(s, t)∥R2,R2 ≥ 4π2(1 + tanh(1

8 )2 > 0,

giving this part of the lemma.
(iii) This follows from the Inverse Function Theorem, Theorem 1.5.2 below. ▼

Now we let U = image(ϕ), noting that U is a “thickening” of the trace from
Figure 1.10. By U is open. Next define what

g : (− 1
8 ,

1
2 ) × (1,∞)→ R

(s, t) 7→ t

and we note that clearly g is continuously differentiable with a bounded deriva-
tive. If we define f : U → R by f = g ◦ ϕ−1, then, by the Chain Rule and Propo-
sition 1.1.16(vi), f is continuously differentiable with a bounded derivative. It
remains to show that f is not uniformly continuous.

For k ∈ Z with k ≥ 2 note that xk ≜ (1 + tanh(k − 1)(1, 0) ∈ U and that f (xk) = k.
Let δ ∈ R>0. Since limk→∞(1 + tanh(k − 1)) = 2 let N ∈ Z>0 be sufficiently large that

|(1 + tanh( j − 1)) − (1 + tanh(k − 1))| < δ, j, k ≥ N.

Then let k ∈ Z>0 and note that

| f (xN+k) − f (xN)| = k.

Note that

∥xN+k − xN∥R2 = |(1 + tanh(N + k − 1)) − (1 + tanh(N − 1))| < δ.

Therefore, for any δ ∈ R>0, there are points x, y ∈ U such that ∥x − y∥R2 < δ but
| f (x) − f (y)| ≥ 1. This prohibits uniform continuity of f . •
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As we showed to dramatic effect in Example I-3.2.9, it is very much not the case
that a continuous function is differentiable.

Next we consider the multivariable version of the Mean Value Theorem that
we stated in the single-variable case as Theorem I-3.2.19. The fact that the nat-
ural domain for functions in the single-variable case is an interval needs to be
appropriately generalised to the multivariable case. A natural way to do this is
with the notion of a convex set. We shall investigate convexity in some detail in
Section 1.9, so let us just recall the basic definition here. For x1, x2 ∈ Rn denote by
{(1 − s)x1 + sx2 | s ∈ [0, 1]} the line segment between x1 and x2. A subset C ⊆ Rn is
convex if the line segment between any two points in C is a subset of C.

1.4.38 Theorem (Mean Value Theorem) Let C ⊆ Rn be an open convex set and let f : C→ Rm

be of class C1. If x1, x2 ∈ C then

∥f(x1) − f(x2)∥Rm ≤ sup{∥Df((1 − s)x1 + sx2)∥Rn,Rm | s ∈ [0, 1]}∥x1 − x2∥Rn .

Moreover, if Df is uniformly bounded, i.e., if there exists M ∈ R>0 such that ∥Df(x)∥Rn,Rm ≤

M for every x ∈ C, then

∥f(x1) − f(x2)∥Rm ≤M∥x1 − x2∥Rn .

Proof Let γ : [0, 1]→ Rn be defined by γ(s) = (1− s)x1 + sx2. Then image(γ) ⊆ C since
C is convex. By the Chain Rule, Theorem 1.4.49, we have

D( f ◦ γ)(s) = Df (γ(s)) ◦Dγ(s).

Using the Fundamental Theorem of Calculus applied to the components of the map
g = f ◦ γ : C→ Rm we have

g(1) − g(0) =
∫ 1

0
Dg(s) ds,

which gives

f (x1) − f (x2) =
∫ 1

0
Df ((1 − s)x1 + sx2) · (x2 − x1) ds.

Thus, using Proposition 1.1.16(v) and ,integral triangle ineq

∥ f (x1) − f (x2)∥Rm =
∥∥∥∥∫ 1

0
Df ((1 − s)x1 + sx2) · (x2 − x1) ds

∥∥∥∥
Rm

≤

∫ 1

0
∥Df ((1 − s)x1 + sx2) · (x2 − x1)∥Rm ds

≤

(∫ 1

0
∥Df ((1 − s)x1 + sx2)∥Rn,Rm ds

)
· ∥x1 − x2∥Rm

≤ sup{∥Df ((1 − s)x1 + sx2)∥Rn,Rm | s ∈ [0, 1]}∥x1 − x2∥Rm ,

as desired.
The final assertion of the theorem follows immediately from the first. ■
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1.4.7 Derivatives and maxima and minima

Next we generalise to multiple-dimensions the relationships between deriva-
tives and maxima and minima of functions. First let us define the relevant function
properties.

1.4.39 Definition (Local maximum and local minimum) Let A ⊆ Rn and let A : I → R
be a function. A point x0 ∈ A is a:

(i) local maximum if there exists a neighbourhood U of x0 such that f (x) ≤ f (x0)
for every x ∈ U ∩ A;

(ii) strict local maximum if there exists a neighbourhood U of x0 such that f (x) <
f (x0) for every x ∈ U ∩ (A \ {x0});

(iii) local minimum if there exists a neighbourhood U of x0 such that f (x) ≥ f (x0)
for every x ∈ U ∩ A;

(iv) strict local minimum if there exists a neighbourhood U of x0 such that f (x) >
f (x0) for every x ∈ U ∩ (A \ {x0}). •

To generalise the single-variable characterisation of maxima and minima given
in Theorem I-3.2.16 the reader will want to recall properties of symmetric bilinear
maps from Section I-5.6.4.

1.4.40 Theorem (Derivatives, and maxima and minima) If U ⊆ Rn is open, if f : U→ R
is a function, and if x0 ∈ U then the following statements hold:

(i) if f is differentiable at x0 and if x0 is a local maximum or a local minimum for f, then
Df(x0) = 0;

(ii) if f is twice differentiable at x0, and if x0 is a local maximum (resp. local minimum)
for f, then D2f(x0) is negative-semidefinite (resp. positive-semidefinite);

(iii) if f is twice differentiable at x0, and if Df(x0) = 0 and D2f(x0) is negative definite
(resp. positive-definite), then x0 is a strict local maximum (resp. strict local minimum)
for f;

(iv) if f is twice differentiable at x0, if Df(x0) = 0 and if D2f(x0) is neither positive- nor
negative-semidefinite, then x0 is neither a local minimum nor a local maximum for f.

Proof (i) We shall give the proof for the case when x0 is a local minimum; the case of
a local maximum is similar. Let v ∈ Rn. Since x0 a local minimum we have

f (x0 + sv) − f (x0) ≥ 0

for all s sufficiently near 0. Thus

1
s ( f (x0 + sv) − f (x0)) ≥ 0

for s ∈ R≥0 and so, by Proposition 1.4.12,

D f (x0) · v =
d
ds

∣∣∣∣∣
s=0

f (x0 + sv) = lim
s↓0

1
s ( f (x0 + sv) − f (x0)) ≥ 0.
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Similarly, since
1
s ( f (x0 + sv) − f (x0)) ≤ 0

for s ∈ R≤0 we have D f (x0) · v ≤ 0 and so we conclude that D f (x0) · v = 0. Since this
holds for any v ∈ Rn we must have D f (x0) = 0.

(ii) We prove the result for the case when x0 is a local minimum; the case of a local
maximum is proved similarly. By the multivariable Taylor Theorem, , and noting thewhat?

definition of the Landau symbol from , we havewhere? and get the

notation right

0 ≤ f (x0 + sv) − f (x0) = 1
2 s2D2 f (x0) · (v,v) + o((sv)2)

for every v ∈ Rn and for s sufficiently near 0. Therefore,

D2 f (x0) · (v,v) + 2
s2 o((sv)2) ≥ 0

=⇒ D2 f (x0) · (v,v) + lim
s→0

2
s2 o((sv)2) ≥ 0

=⇒ D2 f (x0) · (v,v) ≥ 0,

giving D2 f (x0) as positive-semidefinite, as desired.
(iii) We first prove a lemma.

1 Lemma If B ∈ S2(Rn;R) is positive-definite then there exists m,M ∈ R>0 such that

m∥v∥2Rn ≤ B(v,v) ≤M∥v∥2Rn

for every v ∈ Rn.
Proof Define B ∈Matn×n(R) by B(i, j) = B(ei, e j) so that

B(v,v) =
n∑

i, j=1

B(i, j)v(i)v( j).

Then BT = B and
n∑

i, j=1

B(i, j)v(i)v( j) > 0

for every v ∈ Rn, cf. the proof of Theorem I-5.6.19. By there exists an orthogonal matrixwhat

R ∈ O(n) such that

B = RT


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 R

for d1, . . . , dn ∈ R>0. Therefore, for any v ∈ Rn, we have
n∑

i, j=1

B(i, j)v(i)v( j) =
n∑

j=1

d j(Rv)( j)2 =

n∑
j=1

d jv( j)2.

Therefore, we directly have

min{d1, . . . , dn}∥v∥2Rn ≤ B(v,v) ≤ max{d1, . . . , dn}∥v∥2Rn

for every v ∈ Rn, giving the result. ▼
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We now prove this part of the theorem for the case when D2 f (x0) is positive-
definite; the case when it is negative-definite follows in the same manner with a
suitable trivial modification to the signs of m and M in the lemma above.

From the lemma there exists m ∈ R>0 such that D2 f (x0) · (v,v) ≥ m∥v∥2
Rn for every

v ∈ Rn. Therefore, by the multivariable Taylor Theorem, , we have what?

f (x0 + v) − f (x0) = 1
2 D2 f (x0) · (v,v) + o(v2) ≥ 1

2 m∥v∥2Rn + o(v2),

for v sufficiently small in norm that x0 + v ∈ U. Now choose ϵ ∈ R>0 sufficiently small
that |o(v2)| ≤ 1

4 m∥v∥2
Rn for v ∈ Bn(ϵ, 0). Then

f (x0 + v) − f (x0) ≥ 1
4 m∥v∥2Rn ,

for all v ∈ Bn(ϵ, 0), giving x0 as a strict local minimum for f .
(iv) Since D2 f (x0) is neither positive- nor negative-semidefinite, there exists v−,v+ ∈

Rn such that
D2 f (x0) · (v,v−) ∈ R<0, D2 f (x0) · (v+,v+) ∈ R>0.

As above, write

f (x0 + sv−) − f (x0) = 1
2 s2D2 f (x0) · (v−,v−) + o((sv−)2).

for s ∈ R>0 be sufficiently small that x0 + sv− ∈ U. Further choosing s0 sufficiently
small that ∣∣∣∣o((sv−)2)

s2

∣∣∣∣ < 1
4

D f (x0) · (v−,v−)

for s ∈ (0, s0], we have

1
2 s2D2 f (x0) · (v−,v−) + o((sv−)2) = s2

(1
2

D2 f (x0) · (v−,v−) +
o((sv−)2)

s2

)
<

s2

4
D f (x0) · (v−,v−) < 0,

giving f (x0+sv−) < f (x0) for s ∈ (0, s0]. In a similar manner, one shows that f (x0+sv+) >
f (x0) for s sufficiently small. Thus x0 is neither a local minimum nor a local minimum.

■

We refer to Example I-3.2.17 for illustrations of the above theorem in the single-
variable case. The same conclusions concerning the lack of converses to the theorem
hold as were drawn from Example I-3.2.17. It is, however, slightly insightful to
give a few additional examples in multiple-variables.

1.4.41 Examples (Derivatives, and maxima and minima)
1. We define fα : R2

→ R by fα(x1, x2) = x2
1+αx2

2 forα ∈ R. We see that (0, 0) is a local
minimum (resp. strict local minimum) when α ∈ R≥0 (resp. α ∈ R>0). When
α ∈ R<0 we have that (0, 0) is neither a local minimum nor a local maximum.
We compute

D fα(0, 0) = 0, D2 fα(0, 0) · ((v1, v2), (v1, v2)) = 2v2
1 + 2αv2

2.
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Thus D2 fα is positive-semidefinite when α = 0, positive-definite when α ∈ R>0,
and indefinite when α ∈ R<0. From Theorem 1.4.40 we see that (0, 0) is a strict
local minimum for fα when α ∈ R>0. When α ∈ R≤0 we can only conclude that
(0, 0) is not a local minimum for fα.

2. We take fα : R2
→ R defined by f (x1, x2) = x2

1 + αx2
2 for α ∈ R. When α ∈ R>0

we see that (0, 0) is a strict local minimum for fα and that when α ∈ R≥0 we
have (0, 0) as a (not strict) local minimum. When α ∈ R<0, (0, 0) is neither a local
minimum nor a local maximum. We compute

D fα(0, 0) = 0, D2 fα(0, 0) · ((v1, v2), (v1, v2)) = 2v2
1.

Thus D2 fα(0, 0) is positive-semidefinite for every α. By Theorem 1.4.40 we can
conclude that (0, 0) cannot be a local minimum for fα for every α, and this is
indeed the case. However, the conclusion that (0, 0) is a strict local minimum of
fα for α ∈ R>0 cannot be deduced from Theorem 1.4.40.

3. Finally, we take fα : R2
→ R defined by fα(x1, x2) = x4

1 + αx4
2. We see that when

α ∈ R>0 (resp. α ∈ R≥0), (0, 0) is a strict local minimum (resp. local minimum)
for fα. For α ∈ R<0 we have that (0, 0) is neither a local minimum nor a
local maximum. Moreover, we compute D2 f (0, 0) · ((v1, v2), (v1, v2)) = 0 and so
D2 f (0, 0) is both positive- and negative-semidefinite. No conclusions can be
drawn using Theorem 1.4.40 to determine whether (0, 0) is a local maximum
or minimum. •

1.4.8 Derivatives and constrained extrema

Let us next consider an important modification of the problem of finding minima
and maxima, that where constraints are added to the mix. We wish to allow equality
and inequality constraints, so let us set this up properly. Given x, y ∈ Rn, let us
write x ≤ y when x j ≤ y j for each j ∈ {1, . . . ,n}. With this convention, we make the
following definition.

1.4.42 Definition (Equality and inequality constraints) Let A ⊆ Rn and let g : A→ Rm.
A point x ∈ A satisfies the equality constraint defined by g if g(x) = 0 and satisfies
the inequality constraint defined by g if g(x) ≤ 0. •

Thus, with the notation of the definition, the set of points in A satisfying the
equality constraint is g−1(0) and the set of points satisfying the inequality constraint
defined by g is g−1(Rm

≤0). We can now define the sorts of minima and maxima in
which we are interested.

1.4.43 Definition (Constrained local maximum and minimum) Let A ⊆ Rn and consider
maps f : A→ R and g : A→ Rm and h : A→ Rk. A point x0 ∈ g−1(0) is

(i) local maximum of the triple ( f , g,h) if there exists a relative neighbourhood
U of x0 in A such that f (x) ≤ f (x0) for every x ∈ g−1(0) ∩ h−1(Rk

≤0) ∩U;
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(ii) strict local maximum of the triple ( f , g,h) if there exists a relative neighbour-
hood U of x0 in A such that f (x) < f (x0) for every x ∈ g−1(0)∩h−1(Rk

≤0)∩(U\{x0});
(iii) local minimum of the triple ( f , g,h) if there exists a relative neighbourhood

U of x0 in A such that f (x) ≥ f (x0) for every x ∈ g−1(0) ∩ h−1(Rk
≤0) ∩U;

(iv) strict local minimum of the triple ( f , g,h) if there exists a relative neighbour-
hood U of x0 in A such that f (x) > f (x0) for every x ∈ g−1(0)∩h−1(Rk

≤0)∩(U\{x0}).
If there are no inequality constraints, we shall say that x0 is a local maximum (etc.)
of ( f , g) with equality constraints. If there are no inequality constraints, we shall
say that x0 is a local maximum (etc.) of ( f ,h) with inequality constraints. •

The following theorem gives conditions for minimising ( f , g,h) under hypothe-
ses of differentiability.

1.4.44 Theorem (Lagrange Multiplier Rule) Let U ⊆ Rn be open, and let f : U → R,
g : U → Rm, and h : U → Rk be continuously differentiable. For λ0 ∈ R, λ ∈ Rm, and
µ ∈ Rk, define

fλ0,λ,µ : U→ R
x 7→ λ0f(x) + ⟨λ,g(x)⟩Rm + ⟨µ,h(x)⟩Rk

.

If x0 is a local minimum of (f,g,h), then there exist λ0 ∈ R, λ ∈ (Rm)∗, and µ ∈ Rk, not
simultaneously zero, such that Dfλ0,λ,µ(x0) = 0. Furthermore, the following statements
hold:

(i) λ0 ∈ R≥0 and µ ≥ 0;
(ii) if, for r ∈ {1, . . . ,k}, hr(x0) < 0, then µr = 0;
(iii) if the vectors satisfy the Kuhn–Tucker condition, namely that

{Dg1(x0), . . . ,Dgm(x0)} ∪ {Dhr(x0) | hr(x0)}

are linearly independent, then λ0 can be taken to be 1.
Proof We assume, without loss of generality, that x0 = 0, that f (0) = 0, and that

h1(0) = · · · = hs(0) = 0, hs+1(0), . . . , hk(0) ∈ R<0.

It will be convenient to denote a+ = max{0, a} for a ∈ R.
Suppose that ϵ̄ ∈ R>0 is such that Bn(ϵ̄, 0) ⊆ U and such that hr(x) < 0 for every

x ∈ B(ϵ̄, 0), r ∈ {s + 1, . . . , k}, the latter being possible since h is continuous. We prove a
lemma.

1 Lemma If ϵ ∈ (0, ϵ̄], then there exists M ∈ R>0 such that

f(x) + ∥x∥2Rn +M
( m∑

a=1

ga(x)2 +

s∑
r=1

(hr(x)+)2
)
∈ R>0

for all x such that ∥x∥Rn = ϵ.
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Proof Suppose the conclusions of the lemma do not hold. Then there exists a sequence
(M j) j∈Z>0 in R>0 and a sequence (x j) j∈Z>0 such that (1) lim j→∞M j = ∞, (2) ∥x j∥Rn = ϵ
for each j ∈ Z>0, and (3)

f (x j) + ∥x j∥
2
Rn ≤ −M j

( m∑
a=1

ga(x j)2 +

s∑
r=1

(hr(x j)+)2
)

(1.27)

for each j ∈ Z>0. Note that the set of points

{x ∈ Rn
| ∥x∥Rn = ϵ}

is closed and bounded, and so compact. By the Bolzano–Weierstrass Theorem, we
can assume that the sequence (x j) j∈Z>0 converges to x̄ such that ∥x̄∥Rn = ϵ. Since g is
continuous and since the function x 7→ hr(x)+ is continuous, we have

m∑
a=1

ga(x̄)2 +

s∑
r=1

(hr(x̄)+)2 = lim
j→∞

( m∑
a=1

ga(x j)2 +

s∑
r=1

(hr(x j)+)2
)
= 0.

Thus g(x̄) = 0 and hr(x̄) = 0, r ∈ {1, . . . , s}. Then x̄ satisfies the equality constraints
defined by g and the inequality constraints defined by h. As such, since 0 is a local
minimum of ( f , g,h), f (x̄) ≥ f (0) = 0. However, by (1.27), f (x j) ≤ −ϵ0 for each j ∈ Z>0,
and so, by continuity of f ,

f (x̄) = lim
j→∞

f (x j) ≤ −ϵ2,

giving a contradiction. ▼

Now another lemma.

2 Lemma If ϵ ∈ (0, ϵ̄], then there exists x̄ ∈ B(ϵ, 0), λ0 ∈ R, λ ∈ Rm, and µ ∈ Rk such that
(i) λ0, µ1, . . . , µs ∈ R≥0,
(ii) µs+1 = · · · = µk = 0,
(iii) ∥(λ0, λ1, . . . , λm, µ1, . . . , µk)∥Rm+k+1 = 1, and
(iv) for each j ∈ {1, . . . ,n},

λ0(D2f(x̄) + 2x̄) +
m∑

a=1

λaDjga(x̄) +
s∑

r=1

µrDjhr(x̄) = 0.

Proof Let M be as in Lemma 1. Define

F(x) = f (x) + ∥x∥2Rn +M
( m∑

a=1

ga(x)2 +

s∑
r=1

(hr(x)+)2
)

for x ∈ U. Since Bn(ϵ, 0) is compact and F is continuous, by Theorem 1.3.32 there exists
x̄ ∈ Bn(ϵ, 0) such that

F(x̄) = inf{F(x) | x ∈ Bn(ϵ, 0)}.

In particular, F(x̄) ≤ F(0) = 0. Thus, by the definition of M from Lemma 1, ∥x̄∥Rn , ϵ.
By Theorem 1.4.40 it follows that DF(x̄) = 0 since x̄ is a local minimum for F|Bn(ϵ, 0).
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Note that the function x 7→ (x+)2 is continuously differentiable. Therefore, by the Chain
Rule, the function x 7→ (hr(x)+)2 is continuously differentiable for each r ∈ {1, . . . , s}.
Moreover, also by the Chain Rule, its j partial derivative is given by

x 7→ 2hs(x)+D jhr(x).

Thus an elementary computation gives

0 = D jF(x̄) = D j f (x̄) + 2x j +

m∑
a=1

2Mga(x̄)D jga(x̄) +
s∑

r=1

2Mhs(x)+D jhr(x).

Now define

λ′0 = 1, λ′a = 2Mga(x̄), a ∈ {1, . . . ,m},
µ′r = 2Mhr(x̄)+, r ∈ {1, . . . , s}, µ′s+1 = · · · = µ

′

k = 0.

Then let ℓ = ∥(λ′0, λ
′

1, . . . , λ
′
m, µ

′

1, . . . , µ
′

k)∥Rm+k+1 and define λa = ℓ−1λ′a, a ∈ {0, 1, . . . ,m},
and µr = ℓ−1µ′r, r ∈ {1, . . . , k}. One easily sees that these definitions satisfy the conclu-
sions of the lemma. ▼

Now let (ϵ j) j∈Z>0 be a sequence in (0, ϵ̄] converging to 0. For each j ∈ Z>0, let
x̄ j ∈ Bn(ϵ j, 0), λ0, j ∈ R≥0, λ j ∈ R

m, and µ j ∈ R
k satisfy the conclusions of Lemma 2 for

ϵ j. Then, since lim j→∞ x̄ j = 0,

0 = lim
j→∞

(
λ0(D2 f (x̄ j) + 2x̄ j) +

m∑
a=1

λaD jga(x̄ j) +
s∑

r=1

µrD jhr(x̄ j)
)

= λ0D2 f (0) +
m∑

a=1

λaD jga(0) +
s∑

r=1

µrD jhr(0).

This gives the conclusions of the theorem, with the exception of the final assertion.
For the final assertion, if λ0 = 0 then the condition D fλ0,λ,µ(0) = 0 with λ = 0

ensures that the set

{Dg1(0), . . . ,Dgm(0),Dh1(0), . . . ,Dhs(0)}

is linearly dependent. As λ0 ∈ R>0 we can define λ′0 = 1, λ′a = λ−1
0 λa, a ∈ {1, . . . ,m}, and

µ′r = λ
−1
0 µr, r ∈ {1, . . . , k}, and the resulting λ′0, λ′, and µ′ will satisfy the conclusions of

the theorem with λ0 = 1. ■

Many presentations of the Lagrange Multiplier Rule will omit the rôle of the
constant λ0, assuming it to be equal to 1. However, this is only valid when the
condition (iii) of the theorem is satisfied, as the following example shows.
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1.4.45 Example (Constrained extrema when the constraints are not linearly inde-
pendent) We take n = 2, and define f : R2

→ R by f (x1, x2) = x1 g : R2
→ R by

g(x1, x2) = x2
1 + x2

2. We do not consider inequality constraints. Note that the only
point satisfying the equality constraint defined by g is (0, 0). Thus there is only one
choice for a local minimum of ( f , g) and so the solution of the problem is trivial.
However, it is not possible to satisfy the conclusions of Theorem 1.4.44 for this
solution unless λ0 = 0. Indeed, if λ0 = 0 then Theorem 1.4.44 tells us that there
exists λ1, λ2 ∈ R, not both zero, such that

D j f (0, 0) + λ1D jg1(0, 0) + λ2D jg2(0, 0) = 0, j ∈ {1, 2}.

Thus gives 1 = 0, which is rather absurd. However, the conclusions of Theo-
rem 1.4.44 are satisfied for arbitrary λ1, λ2 ∈ R if we take λ0 = 0. •

The preceding result gives necessary conditions for a point x0 to be a local
minimum for ( f , g,h). Let us now consider sufficient conditions involving the
second derivative.

To conveniently state the theorem, we introduce some notation. If λ ∈ Rm then
we denote fλ : U→ R the function given by

fλ(x) = f (x) + ⟨λ, g(x)⟩Rm .

Let Qλ(x) denote the restriction of the symmetric bilinear map D2 fλ(x) to the sub-
space ker(Dg(x)). With this notation, we have the following theorem.

1.4.46 Theorem (Second-derivative tests for constrained minima) Let U ⊆ Rn be open,
and let f : U → R and g : U → Rm be twice continuously differentiable. For x0 ∈ U,
assume that Dg(x0) has rank m and that there exists λ ∈ Rm such that Dfλ(x0) = 0. Then
the following statements hold:

(i) if x0 is a local maximum (resp. local minimum) for (f,g), then Qλ(x0) is negative-
semidefinite (resp. positive-semidefinite);

(ii) if Qλ(x0) is negative definite (resp. positive-definite), then x0 is a strict local maximum
(resp. strict local minimum) for f;

(iii) if Qλ(x0) is neither positive- nor negative-semidefinite, then x0 is neither a local
minimum nor a local maximum.

Proof Let
S = {v ∈ ker(Dg(x0)) | ∥v∥Rn = 1}.

The following lemma, relying on the Implicit Function Theorem stated below as The-
orem 1.5.3, is key to our proof.

1 Lemma If v ∈ S there exists δ ∈ R>0 and a continuously differentiable curve γ : [−δ, δ] →
g−1(0) such that γ(0) = x0 and Dγ(0) = v.
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Proof For σ ∈ Sn let Lσ : Rn
→ Rn be defined by

Lσ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Note that
D(g ◦ Lσ)(L−1

σ (x0)) = Dg(x0) ◦ Lσ.

Let σ ∈ Sn be such that the matrix
Dσ(1)g1(x0) · · · Dσ(m)g1(x0)

...
. . .

...
Dσ(1)gm(x0) · · · Dσ(m)gm(x0)


is invertible. Such a σ exists since Dg(x0) has rank m, and so has m linearly independent
columns. The permutation σ is chosen to shift these columns to be leftmost. Let
U′ ⊆ Rm and V′ ⊆ Rn−m be open sets such that x0 ∈ Lσ(U′×V′) ⊆ U, making the obvious
identification of Rn with Rm

× Rn−m. Now note that the map g ◦ Lσ : U′ × V′ → Rm

satisfies the hypotheses of the Implicit Function Theorem at L−1
σ (x0), and so, after

shrinking V′ if necessary, there exists a continuously differentiable map h : V′ → U′

such that
(h(y), y) = (g ◦ Lσ)−1(0) ∩U′ × V′.

Moreover, also by the Implicit Function Theorem, make sure this goes in

there

ker(D(g ◦ Lσ)(L−1
σ (x0))) = {(Dh(0) · u,u) | u ∈ Rn−m

}.

Let y0 ∈ V′ be such that x0 = Lσ(h(y0), y0). Note that

L−1
σ (v) ∈ ker(D(g ◦ Lσ)(L−1

σ (x0)))

and thus there exists u ∈ Rn−m such that (Dh(y0) · u,u) = L−1
σ (v). The curve

γ′(s) = (h(y0 + su), y0 + su),

defined for s sufficiently small, satisfies Dγ′(0) = L−1
σ (v). Therefore, the curve

γ(s) = Lσ ◦ γ′(s)

satisfies Dγ(0) = v. Moreover,

g(γ(s)) = g ◦ Lσ(γ′(s)) = 0

by definition of γ′, and so we get the lemma. ▼

With the lemma at hand, the remainder of the proof is more or less straightforward,
following the proofs of parts (ii), (ii), and (iv) of Theorem 1.4.40. Moreover, we shall
only prove the statements corresponding to local maxima, as the statements for local
minima follow using the same ideas.

(i) Suppose that Qλ(x0) is not positive-semidefinite. Then there exists v ∈ S such
that Qλ(x0) · (v,v) < 0. By the lemma, let γ be a curve in g−1(0) such that γ(0) = x0 and
Dγ(0) = v. Following the ideas in Theorem 1.4.40, write

fλ(γ(s)) − fλ(x0) = 1
2 D2 fλ(x0) + o(s2).
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Let s0 ∈ R>0 be sufficiently small that

|o(s2)| <
1
4

D2 fλ(x0) · (v,v)

for every s ∈ (0, s0]. Then
1
2 D2 fλ(x0) + o(s2) < 0

and so fλ(γ(s)) < fλ(x0) for every s ∈ (0, s0], showing that x0 is not a local minimum for
fλ. Since fλ|g−1(0) = fλ|g−1(0), this part of the result follows.

(ii) Suppose that D2 fλ(x0) is positive-definite. Let

m = inf{ 12 D2 fλ(x0) · (v,v) | v ∈ S},

noting that m ∈ R>0. Let

M = {v ∈ Rn
| x0 + v ∈ g−1(0)}.

Note that

lim
v→0
v∈M

Dg(x0) · ( v
∥v∥Rn

) = lim
v→0
v∈M

(
Dg(x0) · ( v

∥v∥Rn
) −

g(x0 + v) − g(x0)
∥v∥Rn

)
= lim

v→0
v∈M

(Dg(x0) · v − g(x0 + v) − g(x0)
∥v∥Rn

)
= 0.

Thus
lim
v→0
v∈M

v
∥v∥Rn

∈ S.

Thus, given ϵ ∈ R>0, there exists δ ∈ R>0 such that, if ∥v∥Rn < δ then there exists u ∈ S
such that ∥ v

∥v∥Rn
− u∥Rn < ϵ. Because the function

v 7→ 1
2 D2 fλ(x0) · (v,v)

is continuous, it follows from Theorem 1.3.33 that it is uniformly continuous on the
compact set

{u + v ∈ Rn
| u ∈ S, ∥v∥Rn ≤ ϵ}.

Therefore, by choosing δ (and thus ϵ) sufficiently small, we can ensure that ∥ v
∥v∥Rn
∥Rn >

1
2 m for v ∈M such that ∥v∥Rn < δ. As in the proof of Theorem 1.4.40, write

fλ(x0 + v) − fλ(x0) = 1
2 D2 fλ(x0) · (v,v) + o(v2).

By making δ smaller if necessary, we can ensure that

o(v2)
∥v∥2
Rn

<
1
4

m.

In this case, for v ∈M,

1
2 D2 fλ(x0) · (v,v) + o(v2) = ∥v∥2Rn

(
1
2 D2 fλ(x0) · ( v

∥v∥Rn
, v
∥v∥2
Rn

) +
o(v2)
∥v∥2
Rn

)
≥

1
4

m∥v∥2Rn > 0.

This shows that fλ(x) > fλ(x0) for x ∈ g−1(0) is a neighbourhood of x0. Since fλ|g−1(0) =
f |g−1(0), this part of the theorem follows.

(iii) The proof here follows the proof of part (iii). ■
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1.4.9 The derivative and operations on functions

In this section we give the usual results concerning how differentiation interacts
with the usual function operations.

Our first result deals with algebraic operations on functions, and for this we
note that if A ⊆ Rn, if f , g : A→ Rm, and if α ∈ R then we define f + g, α f : U→ Rm

by
( f + g)(x) = f (x) + g(x), (α f )(x) = α( f (x)), x ∈ A.

If, moreover, m = 1 and we denote the maps by f , g : A → R, then we define
f g, f

g : A→ R by

( f g)(x) = f (x)g(x),
(

f
g

)
(x) = f (x)

g(x) , x ∈ A.

With this notation we have the following result.

1.4.47 Proposition (The derivative, and addition and multiplication) Let U ⊆ Rn be
open, let f,g : U → Rm be r times differentiable at x0 ∈ U, and let α ∈ R. Then the
following statements hold:

(i) f + g is r times differentiable at x0 and Dr(f + g)(x0) = Drf(x0) +Drg(x0);
(ii) αf is r times differentiable at x0 ∈ U and D(αf)(x0) = αDf(x0).

Moreover, if m = 1 and if f,g: U→ R are differentiable at x0 then the following statements
hold:

(iii) fg is differentiable at x0 and

D(fg)(x0) = g(x0)Df(x0) + g(x0)Df(x0);

(iv) if g(x0) , 0 then f
g is differentiable at x0 and

D
(

f
g

)
(x0) =

g(x0)Df(x0) − f(x0)Dg(x0)
g(x0)2 .

Proof (i) We shall prove the assertion for r = 1, the general assertion following from
this case by a simple induction. We compute

lim
x→x0

∥( f + g)(x) − ( f + g)(x0) − (Df (x0) +Dg(x0)) · (x − x0)∥Rm

∥x − x0∥Rn

= lim
x→x0

∥ f (x) − f (x0) −Df (x0) · (x − x0)∥Rm

∥x − x0∥Rn

+ lim
x→x0

∥g(x) − g(x0) −Dg(x0) · (x − x0)∥Rm

∥x − x0∥Rn
= 0,

using Proposition 1.2.6.
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(ii) Again we only prove the result for r = 1, the general case following by induction.
We again use Proposition 1.2.6 to get

lim
x→x0

∥(α f )(x) − (α f )(x0) − (αDf (x0)) · (x − x0)∥Rm

∥x − x0∥Rn

= α
(

lim
x→x0

∥ f (x) − f (x0) −Df (x0) · (x − x0)∥Rm

∥x − x0∥Rn

)
= 0.

(iii) We shall simply show how this part of the result follows from Theorem 1.4.48.
Define B ∈ L2(R;R) by B(a1, a2) = a1a2 so that ( f g)(x) = B( f (x), g(x)), and this then
immediately gives this part of the result.

(iv) Since g(x0) , 0 and since g is continuous at x0 by Proposition 1.4.35 there
exists a neighbourhood V ⊆ U of x0 such that g(x) has the same sign as g(x0) for all
x ∈ V. Thus the function ι : y 7→ 1

y is differentiable on g(V). If we define h : V → R by

h(x) = 1
g(x) then h is differentiable at x0 by the Chain Rule and, moreover,

Dh(x0) = Dι(g(x0)) ◦Dg(x0) = −
Dg(x0)
g(x0)2 .

The result now follows from part (iii) noting that f
g = h f . ■

Part (iii) of the preceding result is the product rule. Sometimes a more sophisti-
cated version of this is useful, and so we state this here.

1.4.48 Theorem (Leibniz Rule) Let U ⊆ Rn be open, let f : U → Rr and g : U → Rs

be differentiable at x0 ∈ U, and let B ∈ L(Rr,Rs;Rm). If h : U → Rm is defined by
h(x) = B(f(x),g(x)) then h is differentiable at x0 and, moreover,

Dh(x0) · v = B(Df(x0) · v,g(x0)) + B(f(x0),Dg(x0) · v)

for every v ∈ Rn.
Proof By Theorem 1.4.8 the map B : Rr

×Rs
→ Rm is differentiable and

DB(p0, q0) · (u,w) = B(u, q0) + B(p0,w) (1.28)

for every (u,w) ∈ Rr
⊕ Rs. Since h = B ◦ ( f × g) it follows from the Chain Rule below

that
Dh(x0) · v = DB(( f × g)(x0)) ◦D( f × g)(x0) · v.

By Proposition 1.4.17 we have

D( f × g)(x0) · v = (Df (x0) · v,Dg(x0) · v),

and the result then follows from (1.28). ■

We next state the multivariable Chain Rule, this being one of the most important
theorems concerning the derivative. Indeed, we have already used this result many
times in this section.
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1.4.49 Theorem (Chain Rule) Let U ⊆ Rn and V ⊆ Rm be open, consider maps f : U → V
and g : V→ Rk, and let x0 ∈ U. If f is differentiable at x0 and if g is differentiable at f(x0),
then g ◦ f is differentiable at x0 and, moreover,

D(g ◦ f)(x0) = Dg(f(x0)) ◦Df(x0).

Proof Let ϵ ∈ R>0.
By Proposition 1.4.35 let δ1,M ∈ R>0 be such that

∥ f (x) − f (x0)∥Rm ≤M∥x − x0∥Rn

for x ∈ B(δ1, x0). Since g is differentiable at f (x0) there exists η ∈ R>0 such that

∥g(y) − g ◦ f (x0) −Dg( f (x0)) · (y − f (x0))∥Rk ≤
ϵ

2M∥y − f (x0)∥Rm

for y ∈ B(η, f (x0)). Since f is continuous at x0 there exists δ1 ∈ R>0 such that

∥ f (x) − f (x0)∥Rm ≤ η

for x ∈ B(δ1, x0). Then, letting δ3 = min{δ1, δ2}, if x ∈ B(δ3, x0) we have

∥g ◦ f (x) − g ◦ f (x0) −Dg( f (x0)) · ( f (x) − f (x0))∥Rk ≤

ϵ
2M∥ f (x) − f (x0)∥Rm ≤

ϵ
2∥x − x0∥Rn .

By differentiability of f at x0 let δ4 ∈ R>0 be such that

∥ f (x) − f (x0) −Df (x0) · (x − x0)∥Rm ≤
ϵ

2∥Dg( f (x0))∥Rn ,Rm
∥x − x0∥Rn

for x ∈ B(δ4, x0). By Proposition 1.1.16(v) we then have

∥Dg( f (x0)) · ( f (x) − f (x0) −Df (x0) · (x − x0))∥Rk

≤ ∥Dg( f (x0))∥Rn,Rm∥ f (x) − f (x0) −Df (x0) · (x − x0)∥Rm ≤
ϵ
2∥x − x0∥Rn

for x ∈ B(δ4, x0).
Now let δ = min{δ3, δ4} and note that if x ∈ B(δ, x0) then we have, using the triangle

inequality,

∥g ◦ f (x) − g ◦ f (x0) −Dg( f (x0)) ◦Df (x0) · (x − x0)∥Rk

≤ ∥g ◦ f (x) − g ◦ f (x0) −Dg( f (x0)) · ( f (x) − f (x0))∥Rk

+ ∥Dg( f (x0)) · ( f (x) − f (x0) −Df (x0) · (x − x0))∥Rk

≤
ϵ
2∥x − x0∥Rn + ϵ

2∥x − x0∥Rn = ϵ∥x − x0∥Rn .

This gives
∥g ◦ f (x) − g ◦ f (x0) −Dg( f (x0)) ◦Df (x0) · (x − x0)∥Rk

∥x − x0∥Rn
< ϵ,

for x ∈ B(δ, x0), giving differentiability of g ◦ f at x0 with derivative as asserted in the
theorem. ■
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For completeness let us also give the higher-order versions of the Leibniz and
Chain Rules. To state these results in a compact way it is convenient to borrow
some of our notation concerning the symmetric group that was given preceding
Proposition I-4.1.38. Let r, r1, . . . , rk ∈ Z≥0 have the property that r1 + · · · + rk = r.
Then we recall the subgroup Sr1|···|rk of Sr that leaves the “slots” of length r1, . . . , rk

in {1, . . . , r} invariant. The situation here is slightly different than that preceding the
statement of Proposition I-4.1.38 in that we allow some of the numbers r1, . . . , rk to
be zero. However, this amounts to the same thing since the “slots” of length zero
do not contribute materially. We also denote by Sr1,...,rk the subset of Sr having the
property that σ ∈ Sr1,...,rk satisfies

σ(r1 + · · · + r j + 1) < · · · < σ(r1 + · · · + r j + r j+1), j ∈ {0, 1, . . . , k − 1}.

Again, this notation is in slight conflict with that preceding Proposition I-4.1.38 in
that some of the numbers r1, . . . , rk are allowed to be zero. With this notation we may
state the following version of Leibniz’ Rule, generalising to arbitrary derivatives
and arbitrary multilinear maps.

1.4.50 Theorem (General Leibniz Rule) Let U ⊆ Rn be open, let fj : U→ Rnj , j ∈ {1, . . . ,k},
be r times differentiable at x0 ∈ U, and let L ∈ L(Rn1 , . . . ,Rnk ;Rm). If f : U → Rm is
defined by

f(x) = L(f1(x), . . . , fk(x))

then f is r times differentiable at x0 and, moreover,

Drf(x0) · (v1, . . . ,vr) =
∑

r1,...,rk∈Z≥0
r1+···+rk=r

∑
σ∈Sr1 ,··· ,rk

L(Dr1f1(x0) · (vσ(1), . . . ,vσ(r1)), . . . ,

Drkfk(x0) · (vσ(r1+···+rk−1+1), . . . ,vσ(r)))

for v1, . . . ,vr ∈ Rn.
Proof We prove the theorem by induction on r, noting that the case of r = 1 follows
from the Chain Rule, Theorem 1.4.8, and Proposition 1.4.17, using the fact that f =
L ◦ ( f 1 × · · · × f k).

Assume the result is true for r ∈ {1, . . . , s} and suppose that f 1, . . . , f k are of class
Cs+1. Thus, by Proposition 1.4.7, for fixed v1, . . . ,vs ∈ Rn the function

x 7→ Ds f (x) · (v2, . . . ,vs+1)

=
∑

s1,...,sk∈Z≥0
s1+···+sk=s

∑
σ∈Ss1 ,··· ,sk

L(Ds1 f 1(x) · (vσ(2), . . . ,vσ(s1+1)), . . . ,

Dsk f k(x) · (vσ(s1+···+sk−1+2), . . . ,vσ(s+1))),

is differentiable at x0, where we think of σ ∈ Ss as a permutation of the set {2, . . . , s+ 1}
in the obvious way.
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Let us now make an observation about permutations. Let s′1, . . . , s
′

k ∈ Z>0 have the
property that s′1 + · · ·+ s′k = s+ 1 and let σ′ ∈ Ss′1,...,s

′

k
. For brevity denote t′j = s′1 + · · ·+ s′j

for j ∈ {1, . . . , k}. Then there exist unique s1, . . . , sk ∈ Z≥0 (denote t j = s1 + · · · + s j,
j ∈ {1, . . . , k}), σ ∈ Ss1,...,sk , and j0 ∈ {1, . . . , k} such that

s j =

s′j, j , j0,

s′j − 1, j = j0

and

((σ′(t′1 − s′1 + 1), . . . , σ′(t′1)), . . . , (σ′(t′j0 − s′j0 + 1), . . . , σ′(t′j0)), . . . ,

(σ′(t′k − s′k + 1) + · · · + σ′(t′k))) = ((σ(t1 − s1 + 1), . . . , σ(t1)), . . . ,
(1, σ(t j0 − s j0), . . . , σ(t j0 + 1)), . . . ,

(σ(tk − sk), . . . , σ(tk + 1))), (1.29)

with the convention that σ permutes the set {1, . . . , t′j0 − s′j0 , t
′

j0
− s′j0 + 2, . . . , s + 1} in

the obvious way. The point is that σ′(t′j0 − s′j0 + 1) = 1, and by definition of Ss′1,...,s
′

k

this means that σ′(t′j0 − s′j0 + 1) must appear at the beginning of one of the “slots” of
length s′1, . . . , s

′

k. Conversely, let s1, . . . , sk ∈ Z≥0 be such that s1 + · · ·+ sk = s ≥ 2 and let
σ ∈ Ss1,...,sk . Denote t j = s1 + · · · + s j for j ∈ {1, . . . , k}. Then, for each j0 ∈ {1, . . . , k} there
exist unique s′1, . . . , s

′

k ∈ Z≥0 (denote t′j = s′1 + · · · + s′j, j ∈ {1, . . . , k}) such that

s′j =

s j, j , j0,
s j + 1, j = j0

and σ′ ∈ Ss′1,...,s
′

k
such that (1.29) holds.

Using this observation, and since the result holds for r = 1 and r = s, we can apply
Proposition 1.4.7 to get

Ds+1 f (x0) · (v1, . . . ,vs+1) = (D(Ds f )(x0) · (v2, . . . ,vs+1)) · v1

=
( ∑

s1,...,sk∈Z≥0
s1+···+sk=s

∑
σ∈Ss1 ,··· ,sk

L(Ds1+1 f 1(x0) · (v1,vσ(2), . . . ,vσ(s1+1)), . . . ,

Dsk f k(x0) · (vσ(s1+···+sk−1+2), . . . ,vσ(s+1)))
)
+ . . .

+
( ∑

s1,...,sk∈Z≥0
s1+···+sk=s

∑
σ∈Ss1 ,··· ,sk

L(Ds1 f 1(x0) · (vσ(2), . . . ,vσ(s1+1)), . . . ,

Dsk+1 f k(x0) · (v1,vσ(s1+···+sk−1+2), . . . ,vσ(s+1)))
)

=
∑

s′1,...,s
′

k∈Z≥0

s′1+···+s′k=s+1

∑
σ∈Ss′1 ,··· ,s

′

k

L(Ds′1 f 1(x0) · (vσ(1), . . . ,vσ(s′1+1)), . . . ,

Ds′k f k(x0) · (vσ(s′1+···+s′k−1+1), . . . ,vσ(s+1))),

as desired. ■
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In Exercise 1.4.4 we ask the reader to come to grips with the formula in the
theorem by writing it down explicitly in some simple cases.

Now let us consider the Chain Rule for higher-order derivatives. To conve-
niently state the result we introduce the following notation. Let r ∈ Z>0 and let
r1, . . . , r j ∈ Z≥0 have the property that r1 + · · · + r j = r. Let us denote by S<r1,...,r j

the
subset of Sr1,...,r j given by

S<r1,...,r j
= {σ ∈ Sr1,...,r j | σ(1) < σ(r1 + 1) < · · · < σ(r j−1 + 1)}.

Note, for example, that if σ ∈ S<r1,...,r j
then σ(1) = 1.

With this notation we have the following statement of the Chain Rule.

1.4.51 Theorem (General Chain Rule) Let U ⊆ Rn and V ⊆ Rm be open, consider maps
f : U → V and g : V → Rk, and let x0 ∈ U. If f is r times differentiable at x0 and if g is
r times differentiable at f(x0), then g ◦ f is r times differentiable at x0 and, moreover,

Dr(g ◦ f)(x0) · (v1, . . . ,vr)

=

r∑
j=1

∑
r1,...,rj∈Z>0
r1+···+rj=r

∑
σ∈S<r1 ,...,rj

Djg(f(x0)) · (Dr1f(x0) · (vσ(1), . . . ,vσ(r1)), . . . ,

Drjf(x0) · (vσ(r1+···+rj−1+1), . . . ,vσ(r)))

for v1, . . . ,vr ∈ Rn.
Proof The proof is by induction on r. For r = 1 the result is simply Theorem 1.4.49.
Assume the result is true for r ∈ {1, . . . , s} and let f and g be s + 1 times differentiable
at x0. We thus have

Ds(g ◦ f )(x0) · (v2, . . . ,vs+1)

=

s∑
j=1

∑
s1,...,s j∈Z>0
s1+···+s j=s

∑
σ∈S<s1 ,...,sj

D jg( f (x0)) · (Ds1 f (x0) · (vσ(2), . . . ,vσ(s1+1)), . . . ,

Ds j f (x0) · (vσ(s1+···+s j−1+2), . . . ,vσ(s+1)))

for every v2, . . . ,vs+1 ∈ R
n, and where σ ∈ S<s1,...,s j

⊆ Ss permutes the set {2, . . . , s+ 1} in
the obvious way.

Let us now make an observation about permutations. Let j′ ∈ {1, . . . , s + 1}, let
s′1, . . . , s

′

j′ ∈ Z>0 satisfy s′1 + · · · + s′j′ = s + 1, and let σ′ ∈ S<s′1,...,s′j′
. For brevity denote

t′l = s′1 + · · · + s′l for l ∈ {1, . . . , j′}. We have two cases.
1. s′1 = 1: In this case let j = j′ − 1, define sl = s′l+1 for l ∈ {1, . . . , j′ − 1}, and let

tl = s1 + · · · + sl for l ∈ {1, . . . , j}. We then have

((1), (σ′(t′2 − s′2 + 1), . . . , σ′(t′2)), . . . , (σ′(t′j′ − s′j′ + 1), . . . , σ′(t′j′)))

= ((1), (σ(t2 − s2 + 1), . . . , σ(t2)), . . . , (σ(t j′ − s j′ + 1), . . . , σ(t j′))), (1.30)



2022/03/07 1.4 Differentiable multivariable functions 153

where σ ∈ S<s′1,...,s′j
⊆ Ss permutes {2, . . . , s + 1} in the obvious way. Note that this

uniquely specifies s1, . . . , s j and σ.
2. s′1 , 1: Here we take j = j′, s1 = s′1 − 1, sl = s′l for l ∈ {2, . . . , j}. Let us denote tl =

s1 + · · ·+ sl for l ∈ {1, . . . , j}. Then there exist l0 ∈ {1, . . . , j} giving the corresponding
cycle τ ∈ S j given by τ = (1 · · · l0) and σ ∈ Ssτ(1),sτ(2),...,sτ( j) such that

((σ′(t′1 − s′1 + 1), . . . , σ′(t′1)), . . . , (σ′(t′j′ − s′j′ + 1), . . . , σ′(t′j′)))

= ((1, σ(tτ(1) − sτ(1) + 1), . . . , σ(tτ(1))), . . . , (σ(tτ( j) − sτ( j) + 1), . . . , σ(tτ( j)))), (1.31)

where σ permutes {2, . . . , s+1} in the obvious way. Note that this uniquely specifies
s1, . . . , s j, τ, and σ. Note that the cycle τ is necessary to ensure that σ′(1) = 1, a
necessary condition that σ′ ∈ S<s′1,...,s′j′

. The cycle serves to place the slot into which

the “1” is inserted at the beginning of the slot list.
Conversely, let j ∈ {1, . . . , s}, let s1, . . . , s j ∈ Z>0 have the property that s1 + · · · + s j = s,
and let σ ∈ S<s1,...,sk

. Denote tl = s1+ · · ·+sl for l ∈ {1, . . . , j}. Then we have two scenarios.
1. We take j′ = j+ 1, let s′1 = 1 and s′l = sl−1 for l ∈ {2, . . . , s+ 1}. Define tl = s1 + · · ·+ sl.

Then there exists σ′ ∈ S<s′1,...,s′j
such that (1.30) holds. Moreover, this uniquely

determines s′1, . . . , s
′

j′ and σ′.

2. We take j = j′ and let l0 ∈ {1, . . . , j}. Then take τ ∈ S j to be the cycle (1 · · · l0). We
then define s′1 = sτ(1)+1 and s′l = sτ(l) for l ∈ {2, . . . , j}. Then there exists σ′ ∈ S<s′1,...,s′j′
such that (1.31) holds. Note that this uniquely specifies s′1, . . . , s

′

j′ and σ′.

Using this observation, along with Proposition 1.4.7, Theorems 1.4.49 and 1.4.50,
and the symmetry of the derivatives of g of order up to s, we then compute

Ds+1(g ◦ f )(x0) · (v1, . . . ,vs+1)

=

s∑
j=1

∑
s1,...,s j∈Z>0
s1+···+s j=s

∑
σ∈S<s1 ,...,sj

D j+1g( f (x0)) · (Df (x0) · v1,

Ds1 f (x0) · (vσ(2), . . . ,vσ(s1+1)), . . . ,
Ds j f (x0) · (vσ(s1+···+s j−1+2), . . . ,vσ(s+1)))

+D jg( f (x0)) · (Ds1+1 f (x0) · (v1,vσ(2), . . . ,vσ(s1+1)), . . . ,
Ds j f (x0) · (vσ(s1+···+s j−1+2), . . . ,vσ(s+1))) + . . .

+D jg( f (x0)) · (Ds1 f (x0) · (vσ(2), . . . ,vσ(s1+1)), . . . ,
Ds j f (x0) · (v1,vσ(s1+···+s j−1+2), . . . ,vσ(s+1)))

=

s+1∑
j′=1

∑
s′1,...,s

′

j′∈Z>0

s′1+···+s′j′=s+1

∑
σ′∈S<

s′1 ,...,s
′

j′

D j′g( f (x0)) · (Ds′1 f (x0) · (vσ′(1), . . . ,vσ′(s′1)),

. . . ,Ds′j′ f (x0) · (vσ′(s′1+···+s′j′−1
+1), . . . ,vσ′(s+1))),

as desired. ■
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Let us parse the formula of the preceding result in the case where r = 2. We
denote the components of f by f1, . . . , fm and the components of g by g1, . . . , gk. The
components of D2(g ◦ f )(x) are

m∑
a,b=1

∂2gα( f (x))
∂ya∂yb

∂ fa(x)
∂xi

∂ fb(x)
∂x j

+

m∑
a=1

∂gα( f (x))
∂ya

∂2 fa(x)
∂xi∂x j

,

α ∈ {1, . . . , k}, i, j ∈ {1, . . . ,n}.

Of course, if you are familiar with how the Chain Rule and the product rule work,
this is exactly the formula you would produce. In Exercise 1.4.5 we ask the reader
to directly parse the formula in the theorem in the case when r = 3.

1.4.10 Notes

We refer to [Abraham, Marsden, and Ratiu 1988, Chapter 2] for a thorough pre-
sentation of multivariable calculus, including definitions of higher-order deriva-
tives, the general version of Taylor’s Theorem, the Inverse Function Theorem in
the multivariable case, the multivariable Chain Rule, and much more. We com-
ment that the approach in [Abraham, Marsden, and Ratiu 1988] also extends the
presentation from the multivariable case to the infinite-dimensional case, and that
this is important in some applications.

The proof we give of Theorem 1.4.44 follows the excellent presentation of
McShane [1973]. The companion second-derivative test, Theorem 1.4.46, has hy-
potheses the checking of which has caused many papers to be written. The most
common technique is that of “bordered Hessians” introduced by Mann [1943] and
reiterated, for example, by Spring [1985].

Exercises

1.4.1 Let L ∈ Sk(Rn;Rm) and define f L : Rn
→ Rm by f L(x) = L(x, . . . , x). Show that

for r ∈ {1, . . . , k}we have

Dr f L(x) · (v1, . . . ,vr) =
k!

(k − r)!
L(x, . . . , x,v1, . . . ,vr).

1.4.2 Consider the map f : Rn
→ R given by f (x) = ∥x∥2Rn .

(a) Give explicit and attractive formulae for D f (x) ·v and D2 f (x) · (v1,v2) for
x,v,v1,v2 ∈ Rn.

(b) Show that D j f (x) = 0 for x ∈ Rn and j ≥ 3.
1.4.3 Let U ⊆ Rn be an open set and let f : U → Rm be differentiable at x0 ∈ U.

Show that D j f (x0) = Df (x0; e j) for each j ∈ {1, . . . ,n}.
1.4.4 Expand the formula of Theorem 1.4.50 in the case of r = k = 3.
1.4.5 Expand the formula of Theorem 1.4.51 in the case of r = 3.
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Section 1.5

The rôle of the rank of the derivative

One of the most important features of the derivative is that its rank can often
be used to give make surprisingly strong conclusions about the character of the
function. In this section we shall explore this in some depth. The central result
here is the Inverse Function Theorem, which can thus be thought of as one of the
more important results in analysis.

Do I need to read this section? The material in this section is important, but
maybe not so important for a lot of what we shall do. Thus it can be skipped
until needed if the reader is taking the streamlined approach. •

1.5.1 Critical and regular points and values

To understand the local behaviour of maps between Euclidean spaces it is
important to understand the rôle of the rank of the derivative. In this section we
organise the language needed to do this and prove a simple version of an important
result known as Sard’s Theorem.

1.5.1 Definition (Regular point, critical point, regular value, critical value) Let U ⊆
Rn be open and let f : U→ Rm be of class C1.

(i) A point x ∈ U is a regular point for f if Df (x) is surjective.
(ii) A point x ∈ U is a critical point for f if it is not a regular point.
(iii) A point y ∈ Rm is a regular value for f if the set f−1(y) is comprised solely of

regular points.
(iv) A point y ∈ Rm is a critical value for f if it is not a regular value. •

1.5.2 Inverse Function Theorem and consequences

1.5.2 Theorem (Inverse Function Theorem)

1.5.3 Theorem (Implicit Function Theorem)

1.5.3 Constant Rank Theorem

1.5.4 Sard’s Theorem

1.5.5 Notes
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Section 1.6

The multivariable Riemann integral

In this section we generalise the construction of the Riemann integral given in
Section I-3.4 to functions defined on subsets of Rn. Many of the constructions and
results follow in a manner similar to those for the Riemann integral for compact
intervals, so we do not spend as much time with motivation or explanation. Also,
we may occasionally abbreviate some of the arguments in proofs since they are
straightforward generalisations of those given in Section I-3.4.

One of the less trivial things we do in this section is give a complete statement
and proof of Stokes’ Theorem in Rn for regions with piecewise smooth boundary.
This statement and proof are not so easily located in the literature, many texts
sticking to proofs, and sometimes statements, valid only in special cases. However,
in applications one often wants the general case, and so we give this here.

Do I need to read this section? This material in this section is not much used,
and so can certainly be omitted on a first reading. •

1.6.1 Step functions

As with the Riemann integral for functions on the real line, the key idea in
defining the Riemann integral over regions in Rn is to give a class of functions we
use to approximate arbitrary functions. We call these step functions, even thought
they are a little less like “step” functions than one might like. But what’s in a name?

First let us define the notion of a step function. We recall from Section 1.2.3 the
notion of a rectangle in Rn.

1.6.1 Definition (Step function) Let R = [a1, b1]×· · ·×[an, bn] ⊆ Rn be a compact rectangle.
A function f : R→ R is a step function if there exists a partition P = (P1, . . . ,Pn) of
R such that

(i) f | int(Rl1,...,ln) is a constant function for each l j ∈ {1, . . . , k j}, k j ∈ {1, . . . ,n},
(ii) f (x1, . . . , x j−1, a j+, x j+1, . . . , xn) = f (x1, . . . , x j−1, a j, x j+1, . . . , xn) for xl ∈ [al, bl], l ∈
{1, . . . ,n} \ { j}, j ∈ {1, . . . ,n},

(iii) f (x1, . . . , x j−1, b j−, x j+1, . . . , xn) = f (x1, . . . , x j−1, b j, x j+1, . . . , xn) for xl ∈ [al, bl], l ∈
{1, . . . ,n} \ { j}, j ∈ {1, . . . ,n}, and

(iv) for each j ∈ {1, . . . ,n} and x ∈ EP(P j), either

(a) f (x1, . . . , x j−1, x+, x j+1, . . . , xn) = f (x1, . . . , x j−1, x, x j+1, . . . , xn) or
(b) f (x1, . . . , x j−1, x−, x j+1, . . . , xn) = f (x1, . . . , x j−1, x, x j+1, . . . , xn)

for each xl ∈ [al, bl], l ∈ {1, . . . ,n} \ { j}. •
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The idea is the same as for step functions onR in that we do not care what value
is assumed by the function at the boundaries of the sets defining the partitions. To
define the integral of a step function we need the following simple idea.

1.6.2 Definition (Volume of a rectangle) The volume of a compact rectangle R = [a1, b1]×
· · · × [an, bn] ⊆ Rn is

vol(R) = (b1 − a1) · · · · · (bn − an). •

The integral of a step function is then obviously as follows.

1.6.3 Definition (Riemann integral of a step function) Let R ⊆ Rn be a fat rectangle
and let P = (P1, . . . ,Pn) be a partition of R with P j = (I1, . . . , Ik j). If f : R → R is a
step function such that f |Rl1,...,ln = cl1,...,ln , then the Riemann integral of f is

A( f ) =
k1∑

l1=1

· · ·

kn∑
ln=1

cl1,...,cnvol(Rl1,...,ln). •

1.6.2 The Riemann integral on bounded sets

The initial definition of the Riemann integral is made for bounded functions defined?

f : A→ R defined on a bounded subset A ⊆ Rn. Since A is bounded there exists a defined?

rectangle R such that A ⊆ R. Therefore, by taking f to be zero outside A, we may
consider f as a function from R toR. For this reason we consider in this section the
Riemann integral of bounded functions f : R→ R defined on a rectangle R ⊆ Rn.

We begin by associating a step function to a function on a rectangle and a
partition of that rectangle.

1.6.4 Definition (Lower and upper step functions) Let R = [a1, b1] × · · · × [an, bn] ⊆ Rn

be a fat rectangle, let f : R→ R be a bounded function, and let P = (P1, . . . ,Pn) be a
partition of R.

(i) The lower step function associated to f and P is the function s−( f ,P) : R→ R
defined according to the following:

(a) if x ∈ R lies in the interior of a subrectangle Rl1,...,ln , l j ∈ {1, . . . , k j},
j ∈ {1, . . . ,n}, then s−( f ,P)(x) = inf{ f (x) | x ∈ cl(Rl1,...,ln)};

(b) s−( f ,P)(x1, . . . , x j−1, a j+, x j+1, . . . , xn) = s−( f ,P)(x1, . . . , x j−1, a j, x j+1, . . . , xn)
for xl ∈ [al, bl], l ∈ {1, . . . ,n} \ { j}, j ∈ {1, . . . ,n};

(c) s−( f ,P)(x1, . . . , x j−1, b j−, x j+1, . . . , xn) = s−( f ,P)(x1, . . . , x j−1, b j, x j+1, . . . , xn)
for xl ∈ [al, bl], l ∈ {1, . . . ,n} \ { j}, j ∈ {1, . . . ,n};

(d) for each j ∈ {1, . . . ,n} and x ∈ EP(P j),
s−( f ,P)(x1, . . . , x j−1, x, x j+1, . . . , xn) = s−( f ,P)(x1, . . . , x j−1, x+, x j+1, . . . , xn)
for each xl ∈ [al, bl], l ∈ {1, . . . ,n} \ { j}.

(ii) The upper step function associated to f and P is the function s+( f ,P) : R→ R
defined according to the following:
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(a) if x ∈ R lies in the interior of a subrectangle Rl1,...,ln , l j ∈ {1, . . . , k j},
j ∈ {1, . . . ,n}, then s+( f ,P)(x) = sup{ f (x) | x ∈ cl(Rl1,...,ln)};

(b) s+( f ,P)(x1, . . . , x j−1, a j+, x j+1, . . . , xn) = s+( f ,P)(x1, . . . , x j−1, a j, x j+1, . . . , xn)
for xl ∈ [al, bl], l ∈ {1, . . . ,n} \ { j}, j ∈ {1, . . . ,n};

(c) s+( f ,P)(x1, . . . , x j−1, b j−, x j+1, . . . , xn) = s+( f ,P)(x1, . . . , x j−1, b j, x j+1, . . . , xn)
for xl ∈ [al, bl], l ∈ {1, . . . ,n} \ { j}, j ∈ {1, . . . ,n};

(d) for each j ∈ {1, . . . ,n} and x ∈ EP(P j),
s+( f ,P)(x1, . . . , x j−1, x, x j+1, . . . , xn) = s+( f ,P)(x1, . . . , x j−1, x+, x j+1, . . . , xn)
for each xl ∈ [al, bl], l ∈ {1, . . . ,n} \ { j}. •

The tedium required to make the construction unambiguous does nothing to
hide the fact that the step functions s−( f ,P) and s+( f ,P) are, in essence, the “small-
est” and “largest” step functions that bound f from above and below, respectively.
Thus

s−( f ,P)(x) ≤ f (x) ≤ s+( f ,P)(x)

for every x ∈ R.
Then we have the following definitions.

1.6.5 Definition (Lower and upper Riemann sums) Let R ⊆ Rn be a fat compact rect-
angle, let f : R → R be a bounded function, and let P = (P1, . . . ,Pn) be a partition
of R.

(i) The lower Riemann sum associated to f and P is A−( f ,P) = A(s−( f ,P)).
(ii) The upper Riemann sum associated to f and P is A+( f ,P) = A(s+( f ,P)). •

1.6.6 Definition (Lower and upper Riemann integral) Let R ⊆ Rn be a fat compact
rectangle, let f : R→ R be a bounded function.

(i) The lower Riemann integral of f is

I−( f ) = sup{A−( f ,P) | P ∈ Part(I)}.

(ii) The upper Riemann integral of f is

I+( f ) = inf{A+( f ,P) | P ∈ Part(I)}. •

As with the Riemann integral inR, the lower and upper Riemann integrals exist
since f is assumed to be bounded. The interesting case is when they agree.

1.6.7 Definition (Riemann integrable of a bounded function on a compact rect-
angle) A bounded function f : R → R on a fat compact rectangle is Riemann
integrable if I−( f ) = I+( f ). We denote∫

R
f (x) dx = I−( f ) = I+( f ),

which is the Riemann integral of f . The function f is called the integrand. •

It is also possible to adapt this notion to define the integral over general subsets.
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1.6.8 Definition (Riemann integral for bounded functions defined on bounded sets)
Let A ⊆ Rn be bounded and let f : A→ R be bounded. The function f is Riemann
integrable if, for some fat rectangle R such that A ⊆ R and for fR : R → R defined
by

fR(x) =

 f (x), x ∈ A,
0, x < A,

the function fR is Riemann integrable. The Riemann integral of f is∫
A

f (x) dx =
∫

R
fR(x) dx. •

Of course, a possible problem arises here that the definition may depend on the
rectangle R one chooses to contain the subset A. We do not show here that this is not
the case; it is a straightforward application of the definition of the Riemann integral,
possibly (depending on how one goes about the proof) along with Theorem 1.6.10
below.

1.6.9 Notation (Riemann integral of restrictions) In the construction of Definition 1.6.8
we extended f from A to a fat compact rectangle R, denoting the extension by fR. We
would like to not have to repeat this notation involving the extension. Therefore,
we adopt the convention that if A ⊆ Rn is a bounded set, if f : A→ R is a Riemann
integrable function, and if B ⊆ A, then we denote by∫

B
f (x) dx

the Riemann integral of the function that has the value of f on B and zero otherwise,
when this integral exists (it may not, for some choices of B). We may also say that
this is the Riemann integral of f |B. The point is that we do not want to always
introduce tedious notation for the function that is equal to f on B and is zero
otherwise. This also makes it easier to simply define functions with domain equal
to a fat compact rectangle containing the set A on which the function is actually
defined. •

1.6.3 Characterisations of Riemann integrable functions on compact sets

As with the Riemann integral of a single variable, it is possible to give multiple
equivalent interpretations of Riemann integrable functions. Some of these are more
or less useful, depending on the context.

The first theorem gives four equivalent “ϵ − δ” style characterisations of a
Riemann integrable function. To state the result we need the following terminology.
Let P = (P1, . . . ,Pn) be a partition of a fat compact rectangle R ⊆ Rn and denote
P j = (I j1, . . . , I jk j), j ∈ {1, . . . ,n}. A selection from P is an family

(ξl1,...,ln | l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n})

of points from R such that ξl1,...,ln ∈ cl(Rl1,...,ln).
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1.6.10 Theorem (Riemann, Darboux, and Cauchy characterisations of Riemann in-
tegrable functions) For a fat compact rectangle R ⊆ Rn and a bounded function
f : R→ R, the following statements are equivalent:

(i) f is Riemann integrable;
(ii) for every ϵ ∈ R>0, there exists a partition P such that A+(f,P) − A−(f,P) < ϵ

(Riemann’s condition);
(iii) there exists I(f) ∈ R such that, for every ϵ ∈ R>0 there exists δ ∈ R>0 such that, if

P = (P1, . . . ,Pk) is a partition for which |P| < δ and if (ξl1,...,ln | lj ∈ {1, . . . ,kj}, j ∈
{1, . . . ,n}) is a selection from P, then∣∣∣∣ k1∑

l1=1

· · ·

kn∑
ln=1

f(ξl1,...,ln)vol(Rl1,...,ln) − I(f)
∣∣∣∣ < ϵ,

where Pj = (Ij1, . . . , Inkn), j ∈ {1, . . . ,n} (Darboux’ condition);
(iv) for each ϵ ∈ R>0 there exists δ ∈ R>0 such that, for any partitions P = (P1, . . . ,Pn)

and P′ = (P′1, . . . ,P
′

n) with |P|, |P′| < δ and for any selections (ξl1,...,ln | lj ∈

{1, . . . ,kj}, j ∈ {1, . . . ,n}) and (ξ′l1,...,ln | lj ∈ {1, . . . ,kj}, j ∈ {1, . . . ,n}) from P and P′,
respectively, we have

∣∣∣∣ k1∑
l1=1

· · ·

kn∑
ln=1

f(ξl1,...,ln)vol(Rl1,...,ln) −
k′1∑

l1=1

· · ·

k′n∑
ln=1

f(ξ′l1,...,ln)vol(R′l1,...,ln)
∣∣∣∣ < ϵ,

where Pj = (Ij1, . . . , Inkn) and P′j = (I′1k′1
, . . . , I′nk′n

) (Cauchy’s condition).

Proof We begin by noting that Lemmata I-1 and I-2 of Theorem I-3.4.9 hold for
rectangles, and their proofs are identical, mutatis mutandis, to those for intervals.

(i) =⇒ (ii) The argument here is identical to that for Theorem I-3.4.9.
(ii) =⇒ (i) Again, the argument is identical to that in Theorem I-3.4.9.
(i) =⇒ (iii) Here we prove a lemma analogous to Lemma I-3 from Theorem I-3.4.9.

1 Lemma If P = (P1, . . . ,Pn) is a partition of a fat compact rectangle R ⊆ Rn and if ϵ ∈ R>0,
then there exists δ ∈ R>0 such that, if P = (P′1, . . . ,P

′
n) is a partition of R with |P| < δ and if

L1 = {(l′1, . . . , l
′

n) ∈ {1, . . . ,k′1} × · · · × {1, . . . ,k
′

n} |

cl(Rl′1,...,l
′
n
) 1 cl(Rl1,...,ln) for any (l1, . . . , ln) ∈ {1, . . . ,k1} × · · · × {1, . . . ,kn}},

then ∑
(l′1,...,l

′
n)∈L1

vol(Rl′1,...,l
′
n
) < ϵ,

where Pj = (Ij1, . . . , Ijkj) and P′j = (I′j1, . . . , I
′

jk′n
)) for j ∈ {1, . . . ,n}.

Proof Suppose that R = [a1, b1] × · · · × [an, bn] and define

AP = (k1 + 1)(b2 − a2)(b3 − a3) · · · (bn − an) · (k2 + 1)(b1 − a1)(b3 − a3)
· · · · (bn − an) · · · · (kn + 1)(b1 − a1)(b2 − a2) · · · (bn−1 − an−1),
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noting that AP is the “area” of all of the (n − 1)-dimensional faces of the subrectangles
of P. Let ϵ ∈ R>0 and define δ = ϵ

AP
. Let P′ = (P′1, . . . ,P

′
n) be a partition with

P′j = (I′j1, . . . , I
′

jk′j
) and satisfying |P′| < δ. Define L1 as in the statement of the lemma

and let (l′1, . . . , l
′
n) ∈ L1. Since Rl′1,...,l

′
n

is not contained in any subrectangle of P it must
be the case that Rl′1,...,l

′
n

intersects the (n − 1)-dimensional face of at least one of the
subrectangles of P. This means that the total volume of such subrectangles from P′

will be at most δ times the total area of the (n−1)-dimensional faces of the subrectangles
from P. That is, ∑

(l′1,...,l
′
n)∈L1

vol(Rl′1,...,l
′
n
) ≤ APδ ≤ ϵ,

as desired. ▼

Now let ϵ ∈ R>0 and define M = sup{| f (x)| | x ∈ R}. Denote by I( f ) the Riemann
integral of f . Choose partitions P− = (P−,1, . . . ,P−,n) and P+ = (P+,1, . . . ,P+,n) such that

I( f ) − A−( f ,P−) < ϵ
2 , A+( f ,P+) − I( f ) < ϵ

2 .

If P = (P1, . . . ,Pn) with P j = (I j1, . . . , I jk j), j ∈ {1, . . . ,n}, is chosen such that EP(P j) =
EP(P−, j) ∪ EP(P+, j), j ∈ {1, . . . ,n}, then

I( f ) − A−( f ,P) < ϵ
2 , A+( f ,P) − I( f ) < ϵ

2 .

By the lemma above choose δ ∈ R>0 such that if P′ is any partition for which |P′| < δ then
the sum of the volumes of the subrectangles of P′ not contained in some subrectangle
of P does not exceed ϵ

2M . Let P′ = (P′1, . . . ,P
′
n) be a partition with P′j = (I′j1, . . . , I

′

jk′j
),

j ∈ {1, . . . ,n}, and satisfying |P′| < δ. Denote by L1 the subset defined in the lemma and
take

L2 = ({1, . . . , k′1} × · · · × {1, . . . , k
′

n}) \ L1.

Let (ξl1,...,ln | l j ∈ {1, . . . , k′j}, j ∈ {1, . . . ,n}) be a selection of P′. Then we compute

k′1∑
l1=1

· · ·

k′n∑
ln=1

f (ξl1,...,ln)vol(Rl1,...,ln) =
∑

(l1,...,ln)∈L1

f (ξl1,...,ln)vol(Rl1,...,ln)

+
∑

(l1,...,ln)∈L2

f (ξl1,...,ln)vol(Rl1,...,ln)

≤ A+( f ,P) +M
ϵ

2M
< I( f ) + ϵ.

In like manner we show that

k′1∑
l1=1

· · ·

k′n∑
ln=1

f (ξl1,...,ln)vol(Rl1,...,ln) > I( f ) − ϵ.

This gives ∣∣∣∣ k′1∑
l1=1

· · ·

k′n∑
ln=1

f (ξl1,...,ln)vol(Rl1,...,ln) − I( f )
∣∣∣∣ < ϵ,
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as desired.
(iii) =⇒ (ii) Let ϵ ∈ R>0 and let P = (P1, . . . ,Pn) be a partition with P j = (I j1, . . . , I jk j),

j ∈ {1, . . . ,n}, and for which

∣∣∣∣ k1∑
l1=1

· · ·

kn∑
ln=1

f (ξl1,...,ln)vol(Rl1,...,ln) − I( f )
∣∣∣∣ < ϵ

4

for every selection (ξl1,...,ln | l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n}) from P. Now particularly
choose a selection such that

| f (ξl1,...,ln) − sup{ f (x) | x ∈ cl(Rl1,...,ln)}| <
ϵ

4k1 · · · knvol(Rl1,...,ln)
.

Then

|A+( f ,P) − I( f )| ≤
∣∣∣∣A+( f ,P) −

k1∑
l1=1

· · ·

kn∑
ln=1

f (ξl1,...,ln)vol(Rl1,...,ln)
∣∣∣∣

+
∣∣∣∣ k1∑
l1=1

· · ·

kn∑
ln=1

f (ξl1,...,ln)vol(Rl1,...,ln) − I( f )
∣∣∣∣

<
k1∑

l1=1

· · ·

kn∑
ln=1

ϵ
4k1 · · · knvol(Rl1,...,ln)

vol(Rl1,...,ln) + ϵ
4 <

ϵ
2 .

In like manner one shows that |A−( f ,P) − I( f )| < ϵ
2 . Therefore,

|A+( f ,P) − A−( f ,P)| ≤ |A+( f ,P) − I( f )| + |I( f ) − A−( f ,P)| < ϵ,

as desired.
(iii) =⇒ (iv) The proof goes like the analogous part of the proof of Theorem I-3.4.9.
(iv) =⇒ (iii) The proof here is a straightforward adaptation of the notation from the

corresponding part of Theorem I-3.4.9. ■

The next characterisation of Riemann integrable functions we give is the more
deep one, and generalises Theorem I-3.4.11.

1.6.11 Theorem (Riemann integrable functions are continuous almost everywhere,
and vice versa) For a bounded set A ⊆ Rn, a bounded function f : A→ R is Riemann
integrable if and only if the set

Df = {x ∈ Rn
| f is discontinuous at x}

has measure zero.
Proof Recall the definition of the oscillation of a function from Definition 1.3.10 and
the fact, from Proposition 1.3.11, that a function is continuous at x if and only if its
oscillation at x is zero.

We let R ⊆ Rn be a fat compact rectangle containing A and let f denote the extension
of f from A to R by asking that f take value zero off A.
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Suppose that D f has measure zero and for ϵ ∈ R>0 define

D f ,ϵ = {x ∈ Rn
| ω f (x) ≥ ϵ}.

We claim that D f ,ϵ is compact. Indeed, suppose that x ∈ Rn is an accumulation point
for Dϵ, f . By Proposition III-3.6.8 it follows that Bn(r, x) ∩Dϵ, f , ∅. Thus, by definition
of D f ,ϵ,

sup{| f (x1) − f (x2)| | x1, x2 ∈ Bn(r, x)} ≥ ϵ.

Therefore, ω f (x) ≥ ϵ and so x ∈ D f ,ϵ. Therefore, D f ,ϵ is closed. Since D f ,ϵ ⊆ R and since
R is compact, it follows from that D f ,ϵ is compact for any ϵ ∈ R>0. what

Now let ϵ ∈ R>0 and take ϵ′ = ϵ
2vol(R) . Since D f ,ϵ′ ⊆ D f and since D f has measure

zero, D f ,ϵ′ has measure zero. From this, and since open balls and open rectangles with
equal length sides have volumes that differ only by a multiplicative constant, it follows
that there exists a family (R j) j∈Z>0 of open rectangles such that D f ,ϵ′ ⊆ ∪ j∈Z>0R j and

∞∑
j=1

vol(R j) <
ϵ

4M
,

where M = sup{| f (x)| | x ∈ R}. Since D f ,ϵ′ is compact there exists a finite subset
j1, . . . , jr ∈ Z>0 such that D f ,ϵ′ = ∪

r
k=1R jk .

Now let P = (P1, . . . ,Pn) be a partition of R and denote P j = (I j1, . . . , I jk j), j ∈
{1, . . . ,n}. Denote

L1 = {(l1, . . . , ln) ∈ {1, . . . , k1} × · · · × {1, . . . , kn} |

Rl1,...,ln ⊆ R jk for some k ∈ {1, . . . , r}}

and
L2 = ({1, . . . , k1} × · · · × {1, . . . , kn}) \ L1.

If (l1, . . . , ln) ∈ L2 then ω f (x) < ϵ′ for each x ∈ Rl1,...,ln . Thus, for x ∈ Rl1,...,ln there exists a
rx ∈ R>0 such that

sup{ f (x) | x ∈ Bn(rx, x)} − inf{ f (x) | x ∈ Bn(rx, x)} < ϵ′.

The balls (Bn(rx, x))x∈Rl1 ,...,ln
cover Rl1,...,ln . Since Rl1,...,ln is compact there exists a finite set

of points x1, . . . , xm ∈ Rl1,...,ln such that (Bn(rx j , x j))m
j=1 covers Rl1,...,ln . Now one can make a

refinement of the partition R which gives rise to a partition of the rectangle Rl1,...,ln such
that each subrectangle of this partition lies within one of the balls (Bn(rx j , x j))m

j=1. Doing
this for each (l1, . . . , ln) ∈ L2 gives a partition P′ = (P′1, . . . ,P

′
n) of R with P′j = (I′j1, . . . , I

′

jk′j
).

For this partition define

L′1 = {(l1, . . . , ln) ∈ {1, . . . , k′1} × · · · × {1, . . . , k
′

n} |

Rl1,...,ln ⊆ R jk for some k ∈ {1, . . . , r}}

and
L′2 = ({1, . . . , k′1} × · · · × {1, . . . , k

′

n}) \ L′1.
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For this partition we have

A+( f ,P′) − A−( f ,P′) =∑
(l1,...,ln)∈L′1

(sup{ f (x) | x ∈ Rl1,...,ln} − inf{ f (x) | x ∈ Rl1,...,ln})vol(Rl1,...,ln)

+
∑

(l1,...,ln)∈L′2

(sup{ f (x) | x ∈ Rl1,...,ln} − inf{ f (x) | x ∈ Rl1,...,ln})vol(Rl1,...,ln)

≤

∑
(l1,...,ln)∈L′1

2 sup{| f (x)| | x ∈ R}vol(Rl1,...,ln) + ϵ′vol(R)

≤
ϵ

4M
2M +

ϵ
vol(R)

vol(R) = ϵ,

where we have used the fact that

r∑
k=1

vol(R jk) <
ϵ

4M

and, for (l1, . . . , ln) ∈ L′1, Rl1,...,ln ⊆ R jk for some k ∈ {1, . . . , r}. Thus A+( f ,P′) − A−( f ,P′)
can be made arbitrarily small by a suitable choice of partition P′, and so f is Riemann
integrable.

Now suppose that f is Riemann integrable. For k ∈ Z>0 define

D f ,k =
{
x ∈ R

∣∣∣ ω f (x) ≥ 1
k

}
.

Then the analogue of Proposition I-3.1.11 in Rn implies that D f = ∪k∈Z>0D f ,k. By
Exercise 1.2.12 we can assert that D f has measure zero if and only if each of the sets
D f ,k has measure zero, k ∈ Z>0. Let P = (P1, . . . ,Pn) be a partition of R and denote
P j = (I j1, . . . , I jk j) for j ∈ {1, . . . ,n}. Since f is Riemann integrable we can choose P such
that

A+( f ,P) − A−( f ,P) <
ϵ
k
.

Write D f ,k = A f ,k ∪ B f ,k where

A f ,k = {x ∈ D f ,k | x ∈ bd(Rl1,...,ln)

for some(l1, . . . , ln) ∈ {1, . . . , k1} × · · · × {1, . . . , kn}}

and where B f ,k = D f ,k \ A f ,k. Since the boundaries of the subrectangles of P each have
measure zero (by Exercise 1.2.13), and since there are finitely many such boundaries,
it follows that A f ,k has measure zero. Denote

L1 = {(l1, . . . , ln) ∈ {1, . . . , k1} × · · · × {1, . . . , kn} | int(Rl1,...,ln) ∩D f ,k , ∅}.

For (l1, . . . , ln) ∈ L1 is follows that

sup{ f (x) | x ∈ Rl1,...,ln} − inf{ f (x) | x ∈ Rl1,...,ln} <
1
k
.
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Therefore,

1
k

∑
(l1,...,ln)∈L1

vol(Rl1,...,ln) ≤
∑

(l1,...,ln)∈L1

(sup{ f (x) | x ∈ Rl1,...,ln}

− inf{ f (x) | x ∈ Rl1,...,ln})vol(Rl1,...,ln)

≤ A+( f ,P) − A−( f ,P) <
ϵ
k
.

Thus the rectangles Rl1,...,ln , (l1, . . . , ln) ∈ L1, cover B f ,k and have total volume bounded
above by ϵ. Since ϵ ∈ R>0 is arbitrary it follows that B f ,k has measure zero. Since A f ,k
has measure zero it then follows from Exercise 1.2.12 that D f ,k has measure zero. ■

1.6.4 The Riemann integral and subsets of Rn

For the Riemann integral on the real line there is not much of interest that one
can derive concerning the domains of definition of Riemann integrable functions.
However, for functions defined on Rn the domain of definition of the function
becomes of great interest, and it is not at all obvious, at least immediately, what are
the viable domains of interest for Riemann integrable functions. We comment that
we will examine the topic of this section in more detail in Section III-2.1.1.

We begin by defining the notion of a Jordan measurable set.

1.6.12 Definition (Jordan measurable5 set) A subset A ⊆ Rn is Jordan measurable if
bd(A) is a set of measure zero. •

Sometimes the notion of being Jordan measurable is referred to as having vol-
ume, having content, or having Jordan content.

The definition of Jordan measurable sets as given seems to come from nowhere.
However, for bounded Jordan measurable sets, the following characterisation
brings us back to something reasonable. We recall from Example I-1.3.3–5 the
notion of the characteristic function χA of a set A as the function that takes value 1
on the set and 0 off the set.

1.6.13 Theorem (Characterisation of bounded Jordan measurable sets) For a bounded
subset A ⊆ Rn the following statements are equivalent:

(i) A is Jordan measurable;
(ii) χA is Riemann integrable.

Proof By Theorem 1.6.11 it follows that A is Jordan measurable if and only if the set
of discontinuities of χA has measure zero. Thus we need only show that the set of
discontinuities of χA is equal to bd(A).

First let x0 be a point of discontinuity of χA. Thus there exists ϵ ∈ R>0 such that, for
every δ ∈ R>0, | f (x)− f (x0)| ≥ ϵ for x ∈ Bn(δ, x0). This means that in any neighbourhood

5The term “measurable” seems to come from nowhere at this juncture. The expression will not
have context for us until Chapter III-2.
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of x0 the function χA takes values 0 and 1. By Proposition III-3.6.8 it follows that
x0 ∈ bd(A).

Now let x0 ∈ bd(A). Then, by Proposition III-3.6.8, for every δ ∈ R>0 the ball
Bn(δ, x0) contains points for which χA takes values 0 and 1. However, this precludes
χA from being continuous at x0. ■

The following simple example shows that not all sets are Jordan measurable.
Further examples will be considered in Section III-2.1.1.

1.6.14 Example (A set that is not Jordan measurable) Let A = Q∩ [0, 1]. Then bd(A) =
[0, 1] and so, by the previous result, A is not Jordan measurable. •

Now having a useful characterisation of bounded Jordan measurable sets, let
us assign some notation to these.

1.6.15 Definition (Volume of a bounded Jordan measurable set) If A is a bounded
Jordan measurable set then the volume of A is vol(A) =

∫
A
χA(x) dx. •

We can now give an further characterisation of bounded Jordan measurable
sets which shows that they are quite special.

1.6.16 Theorem (Another characterisation of bounded Jordan measurable sets) For
a bounded subset A ⊆ Rn the following statements are equivalent:

(i) A is Jordan measurable;
(ii) vol(bd(A)) = 0.

Proof Suppose that R is a fat compact rectangle containing A.
(i) =⇒ (ii) Let ϵ ∈ R>0. Since A is Jordan measurable let P be partition of R such

that
A+(χA,P) − A−(χA,P) < ϵ.

The subrectangles of P come in three sorts: (1) the first sort are subrectangles contained
in A; (2) the second sort are rectangles that intersect A but are not contained in A; (3) the
third sort are rectangles that do not intersect A. Clearly, by Proposition 1.2.26, bd(A)
is contained in the union of the subrectangles of the second sort. Moreover, since
s−(χA,P) is equal to s+(χA,P) at all points in subrectangles of the first and third sort,
and since s−(χA,P) has value 0 and s+(χA,P) has value 1 at all points in subrectangles
of the second sort, it follows that the total volume of the subrectangles of the second
sort is exactly

A+(χA,P) − A−(χA,P),

which means that bd(A) is covered by rectangles whose total volume is bounded above
by ϵ. More or less by definition (but see Proposition 1.6.18 below) this implies that
bd(A) has volume zero.

(ii) =⇒ (i) Let ϵ ∈ R>0. If bd(A) has volume zero, by Proposition 1.6.18 below it
follows that there are finitely many rectangles covering bd(A) whose total volume is
bounded above by ϵ. While these rectangles may overlap, it is easy to see that these
rectangles can be written as a union of finitely many rectangles that do not overlap
(why is this?). Now let P be a partition for which these nonoverlapping rectangles are



2022/03/07 1.6 The multivariable Riemann integral 167

subrectangles. The argument in the preceding part of the proof can now be reversed
to show that

A+(χA,P) − A−(χA,P) < ϵ. ■

An interesting corollary is the following.

1.6.17 Corollary (Characterisation of the boundary of a bounded set) The boundary of
a bounded set A has zero measure if and only if it has zero volume.

Thus boundaries of bounded sets have the property that zero measure and
zero volume agree. This is not the usual situation; it is saying that boundaries
of bounded sets are rather special. Indeed, zero volume and zero measure are
generally not the same. In fact, we have the following characterisation of zero
volume which makes clear the distinction.

1.6.18 Proposition (Characterisation of sets of zero volume) For a bounded subset
A ⊆ Rn the following statements are equivalent:

(i) A has zero volume;
(ii) for every ϵ ∈ R>0 there exists a finite collection (Rj)k

j=1 of rectangles such that

A ⊆ ∪k
j=1Rj and

∑k
j=1 vol(Rj) < ϵ;

(iii) for every ϵ ∈ R>0 there exists a finite collection (Bn(rj, xj))k
j=1 of open balls such that

A ⊆ ∪k
j=1B

n(rj, xj) and
∑k

j=1 vol(Bn(rk, xj)) < ϵ.

Proof (i) =⇒ (ii) Let ϵ ∈ R>0. By definition of zero volume there exists a partition P
such that

A+(χA,P) < ϵ.

The subrectangles of A that intersect A form a cover of A by rectangles whose volumes
sum to at most ϵ.

(i) =⇒ (ii) Let ϵ ∈ R>0. Cover A by rectangles R1, . . . ,Rk having total volume at
most ϵ. Since finite intersections of rectangles are rectangles (why?) it follows that
there exists nonoverlapping rectangles R̃1, . . . , R̃k̃ such that

∪
k
j=1R j = ∪

k̃
j̃=1

R̃k̃.

If P is a partition for which the rectangles R̃1, . . . , R̃k̃ are subrectangles (such a partition
exists since the rectangles R̃1, . . . , R̃k̃ do not overlap), then

A+(χA,P) ≤
k∑

j=1

vol(Rk) < ϵ,

showing that A has zero volume.
(i) =⇒ (iii) First suppose that A has zero volume. Let R be a fat compact rectangle

containing A and let P be a partition of R such that

A+(χA,P) − A−(χA,P) <
ϵ
α
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where α ∈ R>0 is the constant for which the volume of the ball of radius 2
√

nr has
volume α times the volume of the rectangle all of whose sides have length r (cf. (1.10)).
By Theorem 1.6.10 we can suppose, without loss of generality, that the partition P has
the property that all subrectangles have sides of equal length δ. For each subrectangle
of P which contains a point from A place an open ball of radius 2

√
nδ at the centre of

the subrectangle. Since the distance from the centre of a rectangle whose sides have
length δ to the furthest point in the rectangle is

√
nδ (why?), it follows that the resulting

balls cover A and have volume

α(A+(χA,P) − A−(χA,P)) < ϵ,

as desired.
(iii) =⇒ (i) Now suppose that, for each ϵ ∈ R>0, A can be covered by a finite

collection of open balls whose total volume does not exceed ϵ. Then let (Bn(r j, x j))k
j=1

be a collection of balls covering A and having total volume less that ϵβ where β ∈ R>0 is
the constant for which the volume of the rectangle whose sides all have length 2δ is β
times the volume of the ball of radius δ (again, cf. (1.10)). For each of the balls Bn(r j, x j),
j ∈ {1, . . . , k}, place a rectangle R j with centre at x j whose sides have length 2r j. Then the
rectangles R1, . . . ,Rk cover A. The total volume of the rectangles R1, . . . ,Rk is then less
than β ϵβ = ϵ. Now let R be a fat compact rectangle containing A and let P be a partition
having the property that all (n − 1)-dimensional faces of the rectangles R1, . . . ,Rk that
lie in R are contained in the (n − 1)-dimensional faces of the subrectangles of P. The
subrectangles from P which intersect A will be contained in the rectangles R1, . . . ,Rk.
Therefore, by definition of χA,

A+(χA,P) ≤
k∑

j=1

vol(R j) < ϵ,

giving χA as Riemann integrable with Riemann integral zero since ϵ ∈ R>0 is arbitrary.
■

This result then gives the following relationship between volume zero and
measure zero.

1.6.19 Corollary (Volume zero implies measure zero) If A ⊆ Rn has volume zero then it
has measure zero.

Proof Let (Bn(r j, x j))k
j=1 be a finite collection of balls covering A and having total

volume less that ϵ. Then this gives a countable collection of balls covering A and
having total volume less than ϵ, and this means A has measure zero. ■

The converse of the corollary is not generally true.

1.6.20 Example (A set that is not Jordan measurable and has zero measure) Let
A = Q ∩ [0, 1]. Then A is not Jordan measurable by Example I-3.4.10. However, A
has measure zero by Exercises I-2.1.3 and I-2.5.10. •

Now let us investigate the relationship between functions with Riemann inte-
gral zero and sets with volume zero.
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1.6.21 Proposition (Functions with zero integral and sets of zero measure) Let A ⊆
Rn be bounded and let f : A→ R be bounded. Then the following statements hold:

(i) if A has measure zero and if f is Riemann integrable then the Riemann integral of f
is zero;

(ii) if image(f) ⊆ R≥0 and if the Riemann integral of f is zero, then {x ∈ A | f(x) = 0}
has measure zero.

Proof (i) Let R be a fat compact rectangle containing A and think of f as being
defined on R by asking it to be zero off A, let P = (P1, . . . ,Pn) be a partition of R
with P j = (I j1, . . . , I jk j), j ∈ {1, . . . ,n}, and denote M = sup{ f (x) | x ∈ A}. We claim that
A−( f ,P) ≤ 0. Indeed, we have

A−( f ,P) =
k1∑

l1=1

· · ·

kn∑
ln=1

inf{ f (x) | x ∈ cl(Rl1,...,ln)}vol(Rl1,...,ln)

≤M
k1∑

l1=1

· · ·

kn∑
ln=1

inf{χA(x) | x ∈ cl(Rl1,...,ln)}vol(Rl1,...,ln).

If
inf{χA(x) | x ∈ cl(Rl1,...,ln)}vol(Rl1,...,ln) , 0

for some (l1, . . . , ln) then this implies that Rl1,...,ln ⊆ A and vol(Rl1,...,ln > 0. However,
this cannot happen since A has measure zero. Therefore, each term in the sum defin-
ing A−( f ,P) is nonpositive. Thus A−( f ,P) ≤ 0. A similarly styled argument gives
A+( f ,P) ≥ 0. Therefore,

I−( f ) ≤ 0 ≤ I+( f )

which gives I−( f ) = I+( f ) = 0 since f is Riemann integrable.
(ii) For k ∈ Z>0 define

Ak =
{
x ∈ A

∣∣∣ f (x) > 1
k

}
.

We claim that Ak has zero volume. Let R be a fat compact rectangle containing A and
extend f to R b making it zero off A. For ϵ ∈ R>0 let P = (P1, . . . ,Pn) be a partition of R
such that A+( f ,P) < ϵ

k . Denote P j = (I j1, . . . , Ik j), j ∈ {1, . . . ,n}. Let

L1 = {(l1, . . . , ln) ∈ {1, . . . , k1} × · · · × {1, . . . , kn} | Rl1,...,ln ∩ Ak , ∅}.

Then ∑
(l1,...,ln)∈L1

vol(Rl1,...,ln) ≤
∑

(l1,...,ln)∈L1

k sup{ f (x) | x ∈ cl(Rl1,...,ln)}vol(Rl1,...,ln) < ϵ,

using the definition of Ak and L1. Since ϵ ∈ R>0 is arbitrary, it follows that Ak has zero
volume by Proposition 1.6.18. Thus, by Corollary 1.6.19, Ak has zero measure. Since
A = ∪∞k=1Ak it follows from Exercise 1.2.12 that A has measure zero. ■
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1.6.5 The Riemann integral for unbounded functions on unbounded
domains

For the Riemann integral on the real line, the extension of the integral from
compact intervals to general intervals is achieved in a more or less direct way
(see Definition I-3.4.14). For the integral over noncompact subsets of Rn it is
not so obvious how this should be done. The procedure we give generalises the
construction of the indefinite integral of Section I-3.4.4. In that section, for functions
defined on R, we considered two notions of integrability, Riemann integrability
and conditional Riemann integrability. For the Riemann integral on Rn we do not
bother with this level of generality since it actually poses certain problems with
respect to how the definition should work.

The definition is made in stages. For r ∈ R>0 denote by

Rr = [−r, r] × · · · × [−r, r]

the rectangle all of sides have length 2r.

1.6.22 Definition (The Riemann integral for unbounded functions and unbounded
domains) Let A ⊆ Rn, let f : A→ R, and also denote by f : Rn

→ R the extension
of f made by asking that f (x) = 0 for x < A. For M ∈ R>0 denote

fM(x) =

 f (x), | f (x)| ≤M,
0, | f (x)| > M.

Also denote by

f+(x) = max{0, f (x)}, f−(x) = −min{0, f (x)}

the positive and negative parts of f .
(i) If image( f ) ⊆ R≥0 and if f |Rr is Riemann integrable (in the sense of Defini-

tion 1.6.7) for every r ∈ R>0, then f is Riemann integrable if the limit

lim
r→∞

∫
Rr

f (x) dx

exists. This limit is denoted by ∫
A

f (x) dx

when it exists, and is called the Riemann integral of f .
(ii) If image( f ) ⊆ R≥0 and if fM is Riemann integrable (as in part (i)) for each

M ∈ R>0, then f is Riemann integrable if the limit

lim
M→∞

∫
A

fM(x) dx
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exists. This limit is denoted by ∫
A

f (x) dx

when it exists, and is called the Riemann integral of f .
(iii) If f+ and f− are Riemann integrable (as in part (ii)) then f is Riemann integrable

and we denote by ∫
A

f (x) dx =
∫

A
f+(x) dx −

∫
A

f−(x) dx

the Riemann integral of f . •

As was the case after Definition I-3.4.15, we now have at hand two possibly
competing definitions for the Riemann integral of a function on a bounded set A.
First we can extend A to a fat compact rectangle R and then apply Definition 1.6.7.
Second we can break up f into its positive and negative parts and then apply
Definition 1.6.22. Let us now make sure these two definitions are equivalent.

1.6.23 Proposition (Consistency of definition of Riemann integral on bounded sub-
sets) Let A ⊆ Rn be a bounded set, let R ⊆ Rn be a fat compact rectangle for which
A ⊆ R, let f : A → R be bounded, and let f+, f− : A → R≥0 be the positive and negative
parts of f. Denote by f, f+, and f− the extensions of the functions from A to R by asking
that they have value zero off A. Then the following two statements are equivalent:

(i) f is integrable as per Definition 1.6.7 with Riemann integral I(f);
(ii) f+ and f− are Riemann integrable as per Definition 1.6.7 with Riemann integrals

I(f+) and I(f−).
Moreover, if one, and therefore both, of parts (i) and (ii) hold, then I(f) = I(f+) − I(f−).

Proof We refer ahead to . what?

Make sure this proof

holds up
(i) =⇒ (ii) Define continuous functions g+, g− : R→ R by

g+(x) = max{0, x}, g−(x) = −min{0, x}

so that f+ = g+ ◦ f and f− = g− ◦ f . By Proposition 1.6.29 (noting that the proof of that
result is valid for the Riemann integral as per Definition 1.6.7) it follows that f+ and
f− are Riemann integrable as per Definition 1.6.7.

(ii) =⇒ (i) Note that f = f+ − f−. Also note that the proof of Proposition 1.6.28
is valid for the Riemann integral as per Definition 1.6.7. Therefore, f is Riemann
integrable as per Definition 1.6.7.

Now we show that I( f ) = I( f+) − I( f−). This, however, follows immediately from
Proposition 1.6.28. ■

Let us give some equivalent characterisations of Riemann integrable functions.
First some notation. A sequence (A j) j∈Z>0 of bounded Jordan measurable subsets
of Rn is called space filling if A j ⊆ A j+1 for each j ∈ Z>0 and if, for any rectangle
R ⊆ Rn, we have R ⊆ A j for some sufficiently large j ∈ Z>0.
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1.6.24 Proposition (Characterisation of locally bounded Riemann integrable func-
tions) Let A ⊆ Rn and let f : A → R have the property that f|Rr is Riemann integrable
(in the sense of Definition 1.6.7). Then the following statements are equivalent:

(i) f is Riemann integrable;
(ii) for any space filling sequence (Aj)j∈Z>0 of subsets of Rn the limit

lim
j→∞

∫
Aj

f(x) dx

exists.
Moreover, if one, and therefore both, of parts (i) and (ii) hold then the limit in part (ii) is
equal to the Riemann integral of f.

Proof (i) =⇒ (ii) Let f be Riemann integrable and let (A j) j∈Z>0 be a space filling
sequence of subsets of Rn. First let us suppose that image( f ) ⊆ Rn. For j ∈ Z>0 let
c j,C j ∈ R>0 be such that Rc j ⊆ A j ⊆ RC j . Note that for small j this may not be possible,
but for sufficiently large j this is always possibly by the definition of space filling. Since
we are interested in the limit as j → ∞, we suppose, without loss of generality, that
this can be done for all j ∈ Z>0. This being the case, we have∫

Rcj

f (x) dx ≤
∫

A j

f (x) dx ≤
∫

RCj

f (x) dx. (1.32)

Then, since

lim
j→∞

∫
Rcj

f (x) dx = lim
j→∞

∫
RCj

f (x) dx

it follows that

lim
j→∞

∫
A j

f (x) dx

exists and is equal to the Riemann integral of f . The case when f is not necessarily
nonnegative follows from Proposition 1.6.23.

(ii) =⇒ (i) First suppose that image( f ) ⊆ R≥0 and let (A j) j∈Z>0 be a space filling
sequence. Then the sequence of numbers whose jth term is

∫
A j

f (x) dx is nondecreasing

(since f is nonnegative and since A j ⊆ A j+1 for j ∈ Z>0) and is also convergent.
Let us denote the limit by L( f ) so that

∫
A j

f (x) dx ≤ L( f ) for all j ∈ Z>0. Since the
sequence (A j) j∈Z>0 is space filling, for each r ∈ R>0 there exists jr ∈ Z>0 such that
Rr ⊆ A jr . Therefore

∫
Rr

f (x) dx ≤ L( f ) for each r. Thus the function r 7→
∫

Rr
f (x) dx is

monotonically increasing and bounded, and so

lim
r→∞

∫
Rr

f (x) dx

exists. That L( f ) is equal to the Riemann integral of f now follows since the inequali-
ties (1.32) hold, and by taking the limit as j→∞ as we did in the preceding part of the
proof. ■
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Next we turn to an alternative characterisation of the Riemann integral for
possibly unbounded functions on bounded domains. For a bounded subset A ⊆ Rn

a sequence of compact Jordan measurable subsets (K j) j∈Z>0 is A-filling if K j ⊆ K j+1

for each j ∈ Z>0 and if A = ∪∞j=1K j.

1.6.25 Proposition (Characterisation of Riemann integrable function on a bounded
domain) Let A ⊆ Rn be a bounded set for which there exists an A-filling sequence (Kj)j∈Z>0

and let f : A → R≥0 have the property that fM is Riemann integrable for each M ∈ R>0.
Then the following statements are equivalent:

(i) f is Riemann integrable;
(ii) for any A-filling sequence (Kj)j∈Z>0 of subsets of Rn for which f|Kj is bounded and

Riemann integrable for each j ∈ Z>0, the limit

lim
j→∞

∫
Kj

f(x) dx

exists.
Moreover, if either statement is true, then the limit in part (ii) is equal to the Riemann
integral of f.

Proof First we prove a lemma.

1 Lemma Let A ⊆ Rn be a bounded Jordan measurable set and let (Kj)j∈Z>0 be an A-filling
sequence of subsets of Rn. Then limj→∞ vol(Kj) = vol(A).
Proof This follows from the Monotone Convergence Theorem, stated as Theo-
rem 1.7.6 below. ▼

(i) =⇒ (ii) Suppose that f is Riemann integrable and let (K j) j∈Z>0 be an A-filling
sequence such that f |K j is Riemann integrable for each j ∈ Z>0. Let M j = sup{ f (x) | x ∈
K j}. We then have ∫

K j

f (x) dx ≤
∫

A
fM j(x) dx ≤ I( f ) ≜

∫
A

f (x) dx.

Note that the sequence whose jth term is
∫

K j
f (x) dx is increasing since K j+1 ⊆ K j for

each j ∈ Z>0 and since f is assumed to take nonnegative values. The inequalities above
show that the sequence is also bounded above by I( f ) and so, by Theorem I-2.3.8, the
sequence converges to a limit bounded above by I( f ).

(ii) =⇒ (i) Let (K j) j∈Z>0 be an A-filling sequence and denote

L( f ) = lim
j→∞

∫
K j

f (x) dx.

For M ∈ R>0 define gM : R≥0 → R by gM(x) = max{x,M} and note that gMis continuous.
From this and from Proposition 1.6.29 it follows that fM|K j is Riemann integrable. We
then have, for each j ∈ Z>0 and M ∈ R>0,∫

K j

fM(x) dx ≤
∫

K j

f (x) dx ≤ L( f ).
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Therefore, since K j+1 ⊆ K j for each j ∈ Z>0 and since f is nonnegative, the sequence
whose jth element is

∫
K j

fM(x) dx is monotonically increasing. The above computation
shows that it is bounded. Therefore, the limit

lim
j→∞

∫
K j

fM(x) dx

exists and is bounded above by L( f ). Moreover, the same computations that we shall
use below to prove the final assertion of the proposition show that this limit is the
Riemann integral of fM. That is, ∫

A
fM(x) dx ≤ L( f )

for each M ∈ R>0. Therefore, since
∫

A fM(x) dx is a monotonically increasing function
of M, it follows that the limit

lim
M→∞

∫
A

fM(x) dx

exists. Thus f is Riemann integrable.
For the final assertion of the proof we need to show that∫

A
f (x) dx = lim

j→∞

∫
K j

f (x) dx.

Let ϵ ∈ R>0. Suppose that for ϵ ∈ R>0 we choose M ∈ R>0 sufficiently large that∫
A

f (x) dx −
∫

A
fM(x) dx <

ϵ
3

Now let N be sufficiently large that vol(A) − vol(K j) < ϵ
3M , this being possible by the

lemma above. Then, for j ≥ N,∫
A

f (x) dx −
∫

K j

f (x) dx =
∣∣∣∣∫

A
f (x) dx −

∫
K j

f (x) dx
∣∣∣∣

≤

∣∣∣∣∫
A

f (x) dx −
∫

A
fM(x) dx

∣∣∣∣
+

∣∣∣∣∫
A

fM(x) dx −
∫

K j

f (x) dx
∣∣∣∣

≤
ϵ
3
+

∣∣∣∣∫
A\K j

fM(x) dx +
∫

K j

fM(x) dx +
∫

K j

f (x) dx
∣∣∣∣

≤
ϵ
3
+

∫
A\K j

fM(x) dx +
∫

K j

( f (x) − fM(x)) dx

≤
ϵ
3
+M

ϵ
3M
+
ϵ
3
= ϵ.

This gives us lim j→∞
∫

K j
f (x) dx =

∫
A f (x) dx as desired. ■

Let us give an example that illustrates that Definition 1.6.22 actually generalises
the definition of the Riemann integral in Section I-3.4.
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1.6.26 Example (An unbounded Riemann integrable function) On I = [−1, 1] define
f : [−1, 1]→ R by

f (x) =


1
√

x , x ∈ (0, 1],
1
√
−x
, x ∈ [−1, 0),

0, x = 0.

Note that this function is not Riemann integrable by the definition of the Riemann
integral in Section I-3.4. Indeed, the definition of the integral in that section requires
that the function be bounded on any compact subset of I, which is not the case for
f . However, f is Riemann integrable according to Definition 1.6.22. Let us verify
this. According to the construction, for M ∈ R>0 we have

fM(x) =



1
√

x , x ∈ [ 1
M2 , 1], M > 1,

1
√
−x
, x ∈ [−1,− 1

M2 ], M > 1,

M, x ∈ (0, 1
M2 ) ∪ (− 1

M2 , 0), M > 1,
0, x = 0,
M, x ∈ (0, 1] ∪ [−1, 0), M ≤ 1.

A direct computation then gives∫ 1

−1
fM(x) dx =

4 − 2
M , M > 1,

2M, M ≤ 1.

Thus the definition of the Riemann integral in Definition 1.6.22 gives∫ 1

−1
f (x) dx = lim

M→∞

∫ 1

−1
fM(x) dx = 4.

This shows the increased flexibility of Definition 1.6.22 over the construction in
Section I-3.4. •

1.6.27 Remark (Now what do we mean when we say “Riemann integrable”) Even
without introducing the complication of conditional integrability as introduced in
Section I-3.4.4, our extension of the Riemann integral in this section to possibly un-
bounded functions defined on possibly unbounded domains can lead to confusion
over whether “Riemann integrable” refers to Definition 1.6.8 or Definition 1.6.22.
Sometimes we will (as we have done in some of the results above) simply say
which definition we intend to apply. But even in absence of this, it will be possible
to deduce from the context which definition is intended. If both the domain and
the function are explicitly given as being bounded, then we intend Definition 1.6.8.
Otherwise we intend Definition 1.6.22. The reader should also keep in mind that
the more general Definition 1.6.22 is derived as a limit of integrals defined using
Definition 1.6.8. •



176 1 Multiple real variables and functions of multiple real variables 2022/03/07

1.6.6 The Riemann integral and operations on functions

In this section we give the results that relate the Riemann integral to the various
algebraic and other operations one can perform on R-valued functions.

First let us indicate how the Riemann integral behaves with respect to the usual
algebraic operations.

1.6.28 Proposition (Algebraic operations and the Riemann integral) Let A ⊆ R, let
f,g: A → R be Riemann integrable functions (as per Definition 1.6.22), and let c ∈ R.
Then the following statements hold:

(i) f + g is Riemann integrable and∫
A

(f + g)(x) dx =
∫

A
f(x) dx +

∫
A

g(x) dx;

(ii) cf is Riemann integrable and∫
A

(cf)(x) dx = c
∫

A
f(x) dx;

(iii) if A is additionally bounded and if f and g are bounded, then fg is Riemann integrable;
(iv) if A is additionally bounded, if f and g are bounded, and if there exists α ∈ R>0 such

that g(x) ≥ α for each x ∈ A, then f
g is Riemann integrable.

Proof The proof goes essentially like the proof of Proposition I-3.4.22, with appropri-
ate changes of notation. ■

We can also consider composing Riemann integrable functions with continuous
functions on the left. Compositions on the right are more complicated and are the
topic of Section 1.6.8.

1.6.29 Proposition (Function composition and the Riemann integral) If A ⊆ Rn is
bounded, if f : A → R is a bounded Riemann integrable function satisfying image(f) ⊆
[c,d], and if g: [c,d]→ R is continuous, then g ◦ f is Riemann integrable.

Proof The proof closely follows the proof of Proposition I-3.4.23 with only changes
of notation necessary. ■

The Riemann integral also behaves in the expected manner with respect to the
total order on R and the absolute value function.

1.6.30 Proposition (Riemann integral and total order onR) Let A ⊆ Rn and let f,g: A→
R be Riemann integrable functions for which f(x) ≤ g(x) for each x ∈ A. Then∫

A
f(x) dx ≤

∫
A

g(x) dx.

Proof The proof here can easily be adapted from the proof of Proposition I-3.4.24. ■
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1.6.31 Proposition (Absolute value and Riemann integral) Let A ⊆ Rn, let f : A → R,
and define |f| : A → R by |f|(x) = |f(x)|. Then |f| is Riemann integrable if f is Riemann
integrable, and, in this case, ∣∣∣∣∫

A
f(x) dx

∣∣∣∣ ≤ ∫
A
|f|(x) dx.

Proof The proof here is just like the proof of Proposition I-3.4.25 with suitable changes
of notation. ■

The final result we state in this section is a generalisation of Proposition I-3.4.26
in the single-variable case. For the multivariable integral the statement is more
complicated since the sets over which one integrates are more complicated. But
the idea is similar.

1.6.32 Proposition (Breaking the Riemann integral in two) Let A,B ⊆ Rn be such that
A ∩ B has measure zero and let f : A ∪ B→ R. Then the following statements hold:

(i) if f|A, f|B, and f|(A ∩ B) are Riemann integrable then f is Riemann integrable;
(ii) if f is Riemann integrable and if A, B, and A ∩ B are Jordan measurable then f|A

and f|B is Riemann integrable.
Moreover, if the hypotheses of either of the above statements hold then∫

A∪B
f(x) dx =

∫
A

f(x) dx +
∫

B
f(x) dx.

Proof Let us first suppose that A and B are bounded and that f is bounded. Then
define

fA = fχA, fB = fχB, fA∩B = fχA∩B. (1.33)

The functions fA, fB, and fA∩B are Riemann integrable by hypothesis. Note that
f = fA + fB − fA∩B. By Proposition 1.6.28 we have∫

A∪B
f (x) dx =

∫
A∪B

fA(x) dx +
∫

A∪B
fB(x) dx −

∫
A∪B

fA∩B(x) dx

=

∫
A

f (x) dx +
∫

B
f (x) dx −

∫
A∩B

f (x) dx.

By Proposition 1.6.21(i) the third integral is zero and so this part of the result follows.
Now, if A, B, and f are not assumed to be bounded, then the result follows from
Proposition I-2.3.23 since the integrals in this case are limits of integrals of bounded
functions over bounded domains.

Again, first assume that A, B, and f are bounded and define fA, fB, and fA∩B as in
(1.33). By Exercise 1.6.2 it follows that fA, fB, and fA∩B are Riemann integrable. The
same computation as in the preceding part of the proof now gives∫

A∪B
f (x) dx =

∫
A

f (x) dx +
∫

B
f (x) dx. (1.34)

If A, B, and f are not bounded then it follows from Definition 1.6.22 that fA and fB
are Riemann integrable. The equality (1.34) then follows in this case from Proposi-
tion I-2.3.23. ■
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1.6.7 Fubini’s Theorem

In our discussion of the single-variable Riemann integral in Section I-3.4 we
investigated the basic properties of the Riemann integral. While we did not spend a
lot of time discussing this, the fact is that one can explicitly compute single-variable
integrals in many cases, and it is valuable to be able to do this. However, the explicit
computation of multivariable integrals is more difficult. It would be helpful,
therefore, were we able to somehow reduce the computation of multivariable
integrals to the single-variable case. This provides some of the motivation for
Fubini’s Theorem which we discuss here. Another motivation for Fubini’s Theorem
is that it describes when one can switch the order of integration in multivariable
integrals. This is something we will subsequently wish to do often.

Fubini’s Theorem has to do with integrals over products. Thus the first thing
we do is consider Rn to be a product: Rn = Rm

×Rn−m for some m ∈ {1, . . . ,n − 1}.
With this product in mind, we write points in Rn as x = (y, z) for y ∈ Rm and
z ∈ Rn−m. If A ⊆ Rm

× Rn−m and if f : A → R then we think of f as being defined
on all of Rm

× Rn−m is the usual manner, by asking that it be zero off A. We shall,
therefore and without loss of generality, think of all functions be being defined on
all of Rm

×Rn−m. For y ∈ Rm define fy : Rn−m
→ R by fy(z) = f (y, z). Thus fy is the

restriction of f to the set {y} ×Rn−m. Similarly we denote by f z the restriction of f
to Rm

× {z}.
Now we can state the result.

1.6.33 Theorem (Fubini’s Theorem) Let n,m ∈ Z>0 satisfy n ≥ 2 and m ∈ {1, . . . ,n − 1}.
Suppose that f : Rm

×Rn−m
→ R has the following properties:

(i) f is Riemann integrable in the sense of Definition 1.6.22;
(ii) for each y ∈ Rm, fy is Riemann integrable in the sense of Definition 1.6.22.

Then the function

y 7→
∫
R

n−m
fy(z) dz

is Riemann integrable in the sense of Definition 1.6.22 and∫
Rn

f(x) dx =
∫
Rm

(∫
Rn−m

fy(z) dz
)
dy.

Similarly, if instead of (ii) we ask that
(iii) for each z ∈ Rn−m, fz is Riemann integrable in the sense of Definition 1.6.22,

then the function

z 7→
∫
Rm

fz(y) dy

is Riemann integrable in the sense of Definition 1.6.22 and∫
Rn

f(x) dx =
∫
Rn−m

(∫
Rm

fz(y) dy
)
dz.
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Proof We first consider the case where f is the extension toRn of a bounded function
defined on a bounded subset A ⊆ Rn. In this case we can use Definition 1.6.8 for the
Riemann integral. And in this case we have the following lemma.

1 Lemma Let n,m ∈ Z>0 satisfy n ≥ 2 and m ∈ {1, . . . ,n − 1} and let R ⊆ Rm and S ⊆ Rn−m

be fat compact rectangles. Let f : R × S→ R be Riemann integrable and define

F(y) = I−(fy), F(y) = I+(fy).

Then F and F are Riemann integrable on R and∫
R×S

f(x) dx =
∫

R
F(y) dy =

∫
R

F(y) dy.

Proof Let P = (P1, . . . ,Pm) be a partition of R and let Q = (Q1, . . . ,Qn−m) be a partition
of S. Note that

P ×Q ≜ (P1, . . . ,Pm,Q1, . . . ,Qn−m)

is then a partition of R × S. For simplicity, let us denote by RP, RQ, and RP×Q the
subrectangles of P, Q, and P × Q, respectively. Note that a typical element of RP×Q
has the form RP × SQ where RP is a subrectangle of P and SQ is a subrectangle of Q.
Let us denote

mRP×SQ( f ) = inf{ f (y, z) | y ∈ cl(RP), z ∈ cl(SQ)}

and
mSQ( fy) = inf{ fy(z) | z ∈ cl(SQ)}.

Since
mRP×SQ( f ) ≤ mSQ( fy)

for each y ∈ RP we compute∑
SQ∈RQ

mRP×SQ( f )vol(SQ) ≤
∑

SQ∈RQ

mSQ( fy)vol(SQ) ≤ F(y).

Therefore, ∑
SQ∈RQ

mRP×SQ( f )vol(SQ) ≤ inf{F(y) | y ∈ cl(RP)} ≜ mRP(F).

A−( f ,P ×Q) =
∑

RP×SQ∈RP×Q

mRP×SQ( f )vol(RP × SQ)

=
∑

RP∈RP

( ∑
SQ∈RQ

mRP×SQ( f )vol(SQ)
)
vol(RP)

≤

∑
RP∈RP

mRP(F)vol(RP) = A−(G,P).

An entirely similarly styled computation yields

A+(F,P) ≤ A+( f ,P ×Q).
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Thus we have

A−( f ,P ×Q) ≤ A−(F,P) ≤ A+(F,P) ≤ A+(F,P) ≤ A+( f ,P ×Q).

Since f is Riemann integrable, for ϵ ∈ R>0 there exists partitions P of R and Q of S such
that

A+( f ,P ×Q) − A−( f ,P ×Q) < ϵ

But this implies that
A+(F,P) − A−(F,P) < ϵ,

and so F is Riemann integrable. Moreover, choosing P and Q such that

I( f ) − A−( f ,P ×Q) < ϵ
3 , A−( f ,P ×Q) − A−(F,P) < ϵ

3 , A−(F,P) − I( f ) < ϵ
3

we have

I( f ) − I(F) = I( f ) − A−( f ,P ×Q) + A−( f ,P ×Q) − A−(F,P) + A−(F,P) − I( f ) < ϵ.

This gives I( f ) = I(F), as desired.
The same argument, mutatis mutandis, can be used to show that F is Riemann

integrable and that I( f ) = I(F). ▼

Now let us assume (ii) which implies that F = F. This then immediately gives the
theorem in the case when f is bounded and is nonzero only on a bounded subset.

Now suppose that f is bounded, nonnegative, but possibly nonzero on an un-
bounded subset of Rn. For r ∈ R>0 let

Rr = [−r, r] × · · · × [−r, r]︸                  ︷︷                  ︸
m times

⊆ Rm, Sr = [−r, r] × · · · × [−r, r]︸                  ︷︷                  ︸
n−m times

⊆ Rn−m.

so that Rr × Sρ is a rectangle in Rn for each r, ρ ∈ R>0. Then the hypotheses of the
lemma are satisfied for f |Rr × Sρ. Therefore, the conclusions of the lemma ensure that
the function

y 7→
∫

Sρ
fy(z) dz

is Riemann integrable on Rr and that∫
Rr×Sρ

f (x) dx =
∫

Rr

(∫
Sρ

fy(z) dz
)

dy.

Since f is nonnegative this gives

lim
ρ→∞

∫
Rr×Sρ

f (x) dx =
∫

Rr×Rn−m
f (x) dx =

∫
Rr

(∫
Rn−m

fy(z) dz
)

dy.

This gives the Riemann integrability of the function

y 7→
∫
Rn−m

fy(z) dz
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defined on Rr. Again since f is nonnegative this gives

lim
r→∞

∫
Rr×Rn−m

f (x) dx =
∫
Rn

f (x) dx =
∫
Rm

(∫
Rn−m

fy(z) dz
)

dy,

giving the Riemann integrability of the function

y 7→
∫
Rn−m

fy(z) dz

defined on Rm, and moreover the conclusions of the theorem in this case.
Next suppose that f is nonnegative, but possibly unbounded. For each M ∈ R>0 the

function fM defined by fM(x) = min{ f (x),M} is then bounded and so by our previous
computations the function

y 7→
∫
Rn−m

fM,y(z) dz

is Riemann integrable and∫
Rn

fM(x) dx =
∫
Rm

(∫
Rn−m

fM,y(z) dz
)
dy.

We then have

lim
M→∞

∫
Rn

fM(x) dx = lim
M→∞

∫
Rm

(∫
Rn−m

fM,y(z) dz
)
dy.

This gives the Riemann integrability of the function

y 7→
∫
Rn−m

fy(z) dz

and the theorem in this case.
The final case is the general one where f takes on both positive and negative values

and is possibly bounded. In this case, however, the theorem applied separately to both
the positive and negative parts of f , and so also applied to f itself.

The assertion of the theorem where condition (ii) is replaced with (iii) is the same as
the assertion we have proved with the order of y and z swapped. Thus it follows from
what we have already proved by considering the function g on Rn−m

×Rm defined by
g(z, y) = f (y, z). ■

A commonly encountered situation where the hypotheses of Fubini’s Theorem
are satisfied is the following.

1.6.34 Corollary (Fubini’s Theorem for continuous functions) Let n,m ∈ Z>0 satisfy
n ≥ 2 and m ∈ {1, . . . ,n − 1} and let f : Rm

× Rn−m
→ R be continuous and Riemann

integrable in the sense of Definition 1.6.22. Then the functions

y 7→
∫
R

n−m
fy(z) dz, z 7→

∫
Rm

fz(y) dy

are Riemann integrable in the sense of Definition 1.6.22 and∫
Rn

f(x) dx =
∫
Rm

(∫
Rn−m

fy(z) dz
)
dy =

∫
Rn−m

(∫
Rm

fz(y) dy
)
dz.
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Proof By the functions fy and f z are Riemann integrable, and with this in mind the what

corollary immediately follows from the theorem. ■

One must take some care with Fubini’s Theorem to understand what are its
hypotheses and what are its conclusions. For example, Fubini’s Theorem requires
the Riemann integrability of f ; this is not a conclusion. The following example
illustrates that one cannot expect a general version of Fubini’s Theorem where the
Riemann integrability of the restriction of f to Rm or Rn−m ensures the Riemann
integrability of f .

1.6.35 Example (Integrability of f is required in Fubini’s Theorem) Let us define a
subset B ⊆ R2 by

B = ∪l∈Z>0

{(
j

2l ,
k
2l )

∣∣∣ j, k ∈ Z odd
}

and take A = B ∩ [0, 1] × [0, 1]. Let us record some facts about the set A.

1 Lemma For each y0, z0 ∈ [0, 1] the sets

{y ∈ [0, 1] | (y, z0) ∈ A}, {z ∈ [0, 1] | (y0, z) ∈ A}

are finite.
Proof Define

Bl =
{(

j
2l ,

k
2l )

∣∣∣ j, k ∈ Z odd
}

Il =
{

j
2l

∣∣∣ j ∈ Z odd
}
.

For j ∈ Z odd and for l ∈ Z>0 note that j and 2l are necessarily coprime. Thus j
2l is

the coprime fractional representative of this rational number. For this reason, we
have

{y | (y, z0) ∈ B} =

Il × {z0}, z0 ∈ Il, l ∈ Z>0,

∅, otherwise.

Thus horizontal lines in R2 intersect B in sets of the form Il × {z0} for some l ∈ Z>0

when this intersection is nonempty. Since at most finitely many points in Il × {z0}

lie in [0, 1] it immediately follows that {y ∈ [0, 1] | (y, z0) ∈ A} is finite. Similarly
one shows that {z ∈ [0, 1] | (y0, z) ∈ A} is finite. ▼

2 Lemma cl(A) = [0, 1] × [0, 1].
Proof We shall show that B is dense in R2. Let (y0, z0) ∈ R2 and let U be a
neighbourhood of (y0, z0). Let ϵ ∈ R>0 be such that (y0−ϵ, y0+ϵ)× (z0−ϵ, z0+ϵ) ⊆ U.
(That such an ϵ exists is clear geometrically. Since U contains an open disk about
(y0, z0) of nonzero radius, it will also contain an open rectangle whose sides have
nonzero length, cf. Exercise III-3.1.6.) Let l ∈ Z>0 be sufficiently large that 2l > 1

2ϵ .
Now let j, k ∈ Z>0 be such that

j ≤ 2l(y0 − ϵ) < j + 1, k ≤ 2l(z0 − ϵ) < k + 1.
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Then
y0 − ϵ <

j+1
2l =

j
2l +

1
2l < y0 − ϵ + 2ϵ = y0 + ϵ

and similarly
z0 − ϵ < k

2l < z0 + ϵ.

Thus ( j
2l ,

k
2l ) ⊆ U, which shows, by Proposition 1.2.26, that (y0, z0) ∈ cl(B). ▼

Now let f : [0, 1] × [0, 1]→ R be defined by

f (y, z) =

1, (y, z) ∈ A,
0, (y, z) < A.

By the first lemma it follows that fy and f z are Riemann integrable for each y, z ∈
[0, 1] (why?). By the second lemma it follows that f is not Riemann integrable (the
reason being entirely analogous to that for Example I-3.4.10). •

Another subtlety in applying Fubini’s Theorem can arise by assuming that the
Riemann integrability of f implies the Riemann integrability of fy or f z. The next
example shows that this is not generally true.

1.6.36 Example (Integrability of f does not imply integrability of fy) We consider the
function f : [0, 1] × [0, 1]→ R defined by

f (y, z) =

1, y = 1
2 , z ∈ Q,

0, otherwise.

We claim first that f is Riemann integrable. To see this, for ϵ ∈ R>0 sufficiently
small that it makes sense, define a partition Pϵ = (P1,ϵ,P2,ϵ) of [0, 1] × [0, 1] by

P1,ϵ = ([0, 1
2 −

ϵ
2 ), [1

2 −
ϵ
2 ,

1
2 +

ϵ
2 ], ( 1

2 +
ϵ
2 , 1]), P2,ϵ = [0, 1].

We directly compute I+( f ,Pϵ) = ϵ and I−( f ,Pϵ) = 0. Thus f is indeed Riemann
integrable with Riemann integral 0.

However, f 1
2

is not Riemann integrable as we saw in Example I-3.4.10. •

Let us give an illustration of Fubini’s Theorem via a nontrivial but interesting
example.

1.6.37 Example (Volume of an n-dimensional ball) For r ∈ R>0 we shall show that

vol(Bn(r, 0)) =


πn/2

( n
2 )! r

n, n even,

2nπ(n−1)/2( n−1
2 )!

n! rn, n odd,
(1.35)

where Bn(r, 0) is the open ball of radius r in Rn. We should first indicate that the
open ball is a set whose volume exists.
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1 Lemma The set Bn(r, 0) is Jordan measurable.
Proof This follows from Theorem 1.9.45 below, but let us give an independent
proof in this case.

According to Theorem 1.6.13 we must show that bd(Bn(r, 0)) has measure zero.
Note that

bd(Bn(r, 0)) = {x ∈ Rn
| ∥x∥Rn = r}.

For j ∈ {1, . . . ,n} define

A j,+ = {x ∈ bd(Bn(r, 0)) | x j ≥ (x2
1 + · · · + x2

j−1 + x2
j+1 + · · · + x2

n)1/2
},

A j,− = {x ∈ bd(Bn(r, 0)) | x j ≤ −(x2
1 + · · · + x2

j−1 + x2
j+1 + · · · + x2

n)1/2
}.

In Figure 1.11 we show these sets in the case when n = 2. In this case it is clear that

Figure 1.11 The sets A1,+ (top left), A1,− (top right), A2,+ (bottom
left), and A2,− (bottom right)

the boundary of the ball is the union of the sets A j,+ and A j,−, j ∈ {1, 2}. Moreover,
some elementary trigonometry shows that this is true for general n.

Now, by Exercise 1.6.3 it suffices to show that each of the sets A j,+ and A j,−,
j ∈ {1, . . . ,n} has zero volume. For concreteness, let us consider in detail the set
A1,+; the argument for the other sets is the same. Let

V1 = {x ∈ Rn
| x1 = 0}

and define
B1 =

{
x ∈ V1

∣∣∣ ∥x∥Rn ≤
1
√

2
r
}
.

Thus B1 is the closed ball of radius 1
√

2
r in the subspace V1. Defineϕ1,+ : Bn(r, 0)→ Rn

by
ϕ1,+(x) = (x1 − (r2

− (x2
2 + · · · + x2

n))1/2, x2, . . . , xn)
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and note that ϕ1,+(B1) = A1,+. One can verify that ϕ1,+ satisfies the conditions of the
change of variables formula, Theorem 1.6.39, on the interior of any compact ball
contained in Bn(r, 0). Since B1 has volume zero by Exercise 1.6.4, it follows from
that A1,+ has volume zero. ▼ what

Since we plan to prove our formula for the volume of the open ball by induction
on n, let us denote by Vn(r) the volume of the ball of radius r inRn. Since there can
be differing conventions on what n means in this formula, let us be explicit:

Vn(r) = vol({x ∈ Rn
| ∥x∥Rn < r}).

Note that V1(r) = 2r.
To simplify things a little we prove the following “obvious” lemma.

2 Lemma Vn(r) = Vn(1)rn.

Proof For r ∈ R>0 the map x 7→ rx maps Bn(1, 0) bijectively onto Bn(r, 0). Moreover,
the hypotheses of the change of variables formula, Theorem 1.6.39, apply and so,
since the Jacobian determinant of the map is obviously rn,∫

Bn(r,0)
dx =

∫
Bn(1,0)

rn dx,

which is the result. ▼

With the lemma in mind let us define vn = Vn(1). It then suffices to determine
vn. As we have mentioned, this is done by induction, and the following lemma is
key.

3 Lemma
vn+1

vn
= 2

∫ π
2

0
(cosθ)n+1 dθ for each n ∈ Z>0.

Proof Let f be the characteristic function of the ball of unit radius inRn+1. Note that
f is Riemann integrable, i.e., Bn(1, 0) is Jordan measurable. Thus vn+1 =

∫
Rn+1 f (x) dx.

Let us write Rn+1 = Rn
×R and denote a point in Rn

×R as (y, z). For z ∈ R, using
the notation of Fubini’s Theorem, note that

f z(y) =

1, ∥y∥Rn <
√

1 − z2, |z| < 1,
0, otherwise.

This function is clearly Riemann integrable for every y ∈ Rn (it is a step function)
and so the hypotheses of Fubini’s Theorem apply. Thus we have

vn+1 =

∫
Rn+1

f (x) dx =
∫
R

(∫
Rn

f z(y) dy
)

dz

=

∫ 1

−1
Vn(
√

1 − z2) dz = vn

∫ 1

−1
(1 − z2)n/2 dz
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Thus the result will follow if we can show that∫ 1

−1
(1 − z2)n/2 dz = 2

∫ π
2

0
(cosθ)n+1 dθ. (1.36)

By symmetry considerations,∫ 1

−1
(1 − z2)n/2 dz = 2

∫ 1

0
(1 − z2)n/2 dz.

Now we make a change of variable as per Proposition I-3.4.27. We let f : [0, 1]→ R
be defined by f (z) = (1 − z2)n/2 and define u : [0, π2 ]→ [0, 1] by u(θ) = sinθ. Then∫ π

2

0
f ◦ u(θ)u′(θ) dθ =

∫ π
2

0
(cosθ)n+1 dθ

and ∫ u( π2 )

u(0)
f (z) dz =

∫ 1

0
(1 − z2)n/2 dz,

and so (1.36), and thus the lemma, follow. ▼

Now we have reduced ourselves to the computation of an integral. Let us do
this computation.

4 Lemma
∫ π

2

0
(cosθ)n+1 dθ =


π

2n+1
n!

( n+1
2 )!( n−1

2 )!
, n odd,

2n ( n
2 !)2

(n+1)! , n even.

Proof We use induction on n. Note that for n ∈ {1, 2}we have∫ π
2

0
(cosθ)2 dθ =

π
4
,

∫ π
2

0
(cosθ)3 dθ =

2
3
,

as may be verified using the trigonometric identities

(cosθ)2 = 1
2 (1 + cos(2θ), (cosθ)3 = 3

4 cosθ + 1
4 cos(3θ).

These expressions may be verified to agree with the asserted formulae of the lemma
in this case. Using integration by parts we compute∫ π

2

0
(cosθ)n+1 dθ = sinθ(cosθ)n

∣∣∣θ= π2
θ=0
+ n

∫ π
2

0
(sinθ)2(cosθ)n−1 dθ

= n
∫ π

2

0
(cosθ)n−1 dθ − n

∫ π
2

0
(cosθ)n+1 dθ.
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From this we conclude that∫ π
2

0
(cosθ)n+1 dθ =

n
n + 1

∫ π
2

0
(cosθ)n−1 dθ.

Now we use the induction hypothesis which gives∫ π
2

0
(cosθ)n−1 dθ =


π

2n−1
(n−2)!

( n−1
2 )!( n−3

2 )!
, n odd,

2n−2 ( n−2
2 !)2

(n−1)! , n even.

The lemma then follows by a direct computation for the even and odd cases. ▼

Now let us complete the computation of the constants vn, n ∈ Z>0.
Let us consider the case when n is even. First of all we have

vn+1

vn−1
=

vn+1

vn

vn

vn−1
= 2n+1

(n
2 !)2

(n + 1)!
π
2n

(n − 1)!
(n

2 )!(n−2
2 )!
=

2π
n + 1

.

Thus, for n even,

vn+1 = v1
v3

v1

v5

v3
· · ·

vn−1

vn−3

vn+1

vn−1
= 2

2π
3

2π
5
· · ·

2π
n − 1

2π
n + 1

= 2n/2+1πn/2 2
2 · 3

4
4 · 5
· · ·

n − 2
(n − 2)(n − 1)

n
n(n + 1)

= 2n/2+1πn/22n/2 (n
2 )!

(n + 1)!
= 2n+1πn/2 (n

2 )!
(n + 1)!

,

using the fact that v1 = 2. This gives the claimed answer in this case.
Now, when n is odd we have

vn+1

vn
=

vn+1

vn

vn

vn−1
=
π
2n

n!
(n+1

2 )!(n−1
2 )!

2n (n−1
2 !)2

n!
=

2π
n + 1

.

Then

vn+1 = v2
v4

v2

v6

v4
· · ·

vn−1

vn−3

vn+1

vn−1
= π

2π
4

2π
6
· · ·

2π
n − 1

2π
n + 1

= π(n+1)/2 1
2

1
3
· · ·

1
n−1

2

1
n+1

2

=
π(n+1)/2

(n+1
2 )!

,

using the fact that v2 = π, as the reader can show in Exercise 1.6.6. This gives (1.35)
when n is odd.

The formula for the volume of the n-dimensional ball can be simplified using
so-called Γ-function,

Γ(x) =
∫
∞

0
e−yyx−1 dy.
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By knowing some stuff about the Γ-function which we do not care to get into, one
can show that

vol(Bn(r, 0)) =
πn/2rn

Γ(n
2 + 1)

.

This is amusing, but only gives insight after one reduces back to the form involving
factorials that we give.

See Exercise 1.6.7 for an interesting fact about the volume of balls as n gets
large. •

1.6.8 The change of variables formula

In this section we give a quite general version of the change of variables formula
for the multidimensional Riemann integral. This result is notoriously difficult to
prove. It is also somewhat nonintuitive on a first encounter. It turns out that the
best way to get insight into the formula is to first consider a special case. Since this
result is actually used in the proof of the change of variables formula, it is worth
recording it here.

1.6.38 Theorem (Volume and determinant) If A ⊆ Rn is bounded and Jordan measurable,
and if L ∈ EndR(Rn) then vol(L(A)) = det L vol(A), i.e.,∫

L(A)
1 dy =

∫
A
|det L|dx.

Proof We first consider the case where A = R with R a compact rectangle:

R = [a1, b1] × · · · × [an, bn].

If det L = 0 then L(Rn) is a subspace whose dimension is less than n by Theo-
rem I-5.3.10. Thus L(R) is contained in this subspace and so has volume zero by
Exercise 1.6.4. Thus the result holds in this case. When det L , 0 then L is invertible
by Theorem I-5.3.10 and so L (as a matrix) is a product of elementary matrices by
Theorem I-5.1.33. Let us then first consider the case when L is an elementary matrix.
As described in Section I-5.1.5 there are three possibilities.
1. L is the elementary matrix obtained from the identity matrix by swapping the ith and jth

rows: Let us suppose that i < j. In this case, by two uses of Fubini’s Theorem, we
have ∫

R
dx =

∫ b1

a1

· · ·

∫ bi

ai

· · ·

∫ b j

a j

· · ·

∫ bn

an

dxn · · ·dx j · · ·dxi · · ·dx1

=

∫ b1

a1

· · ·

∫ b j

a j

· · ·

∫ bi

ai

· · ·

∫ bn

an

dxn · · ·dxi · · ·dx j · · ·dx1

=

∫
L(R)

dx.
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Since |det L| = 1 this gives ∫
R
|det L|dx =

∫
L(R)

dy,

as desired.
2. L is the elementary matrix obtained from the identity matrix by multiplying the ith row

by c ∈ R∗: When c ∈ R>0 we have∫
L(R)

dy =
∫ b1

a1

· · ·

∫ cbi

cai

· · ·

∫ bn

an

dyn · · ·dyi · · ·dy1

= (b1 − a1) · · · (cbi − cai) · · · (bn − an)
= c(b1 − a1) · · · (bi − ai) · · · (bn − an)

=

∫ b1

a1

· · ·

∫ bi

ai

· · ·

∫ bn

an

cdxn · · ·dxi · · ·dx1

=

∫
R
|det L|dx,

as claimed, where we have used the fact that det L = c by Exercise I-5.3.8. When
c ∈ R<0 the computation is similar:∫

L(R)
dy =

∫ b1

a1

· · ·

∫ cai

cbi

· · ·

∫ bn

an

dyn · · ·dyi · · ·dy1

= (b1 − a1) · · · (cai − cbi) · · · (bn − an)
= − c(b1 − a1) · · · (bi − ai) · · · (bn − an)

=

∫ b1

a1

· · ·

∫ bi

ai

· · ·

∫ bn

an

(−c)cdxn · · ·dxi · · ·dx1

=

∫
R
|det L|dx,

since we now have |det L| = −c.
3. L is the elementary matrix obtained from the identity matrix by adding c times the ith row

to the jth row: We may suppose, without loss of generality, that c = 1. Indeed, if
c , 1 then we can write the corresponding elementary matrix as a product of an
elementary matrix of the form in the preceding case with one for which c = 1. Let
us first consider the case when n = 2 (the case n = 1 is vacuous). In this case we
have either

L =
[
1 1
0 1

]
or L =

[
1 0
1 1

]
.

Let us consider the first case, as the second follows in a similar spirit. In this case,

L(R) = {(x1, x1 + x2) | (x1, x2) ∈ [a1, b1] × [a2, b2]}.

In Figure 1.12 we show L(R) in the case when b1 − a1 ≥ b2 − a2. The case when
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(a1 + a2, a2) (b1 + a2, a2)

(a1 + b2, b2) (b1 + b2, b2)

R1

R2

R3

Figure 1.12 L(R)

b2 − a2 ≥ b1 − a1 is similar, so we shall only consider the case in the figure. In this
case, L(R) can be divided into three parts, R1, R2, and R3 as shown in the figure. In
this case we have, using Fubini’s Theorem,∫

L(R)
dx =

∫
R1

dx +
∫

R2

dx +
∫

R3

dx

=

∫ a1+b2

a1+a2

∫ x1−a1

a2

dx2dx1 +

∫ b1+a2

a1+b2

∫ b2

a2

dx2dx1 +

∫ b1+b2

b1+a2

∫ x1−b1

a2

dx2dx1

= 1
2 (b2 − a2)2 + (b2 − a2)(b1 − a1 − (b2 − a2)) + 1

2 (b2 − a2)2

= (b1 − a1)(b2 − a2) =
∫

R
dy.

Since det L = 1 this gives our claim for n = 2. For general n, where the ith row is
added to the jth row, let us define

A1 = L(R) ∩ {x ∈ Rn
| xi = x j = 0}

A2 = L(R) ∩ {x ∈ Rn
| xk = 0, k ∈ {1, . . . ,n} \ {i, j}}.

Note that A1 is a rectangle in Rn−2 and that A2 is a deformation of a rectangle in
R2, like we considered above. Let us write a point inRn as (x1, x2) ∈ Rn−2

×R2. By
Fubini’s Theorem,∫

L(R)
dx =

∫
A1

∫
A2

dx2dx1 =

∫
A1

(bi − a1)(b j − a j) dx1

= (b1 − a1) · · · (bi−1 − ai−1)(bi+1 − ai+1)(b j−1 − a j−1)

· (b j+1 − a j+1) · · · (bn − an)(bi − ai)(b j − a j) =
∫

R
dy,

giving the result in this case since det L = 1.
Having established the theorem in the case when A is a rectangle and L is an

elementary matrix, let us establish the theorem in the case when A is an arbitrary
bounded Jordan measurable set and L is an elementary matrix. Let R be a fat compact
rectangle such that A ⊆ R. Since A is Jordan measurable choose a partition Pϵ of R for
which

vol(A) − A−(χA,Pϵ) <
ϵ

2|det L|
, A+(χA,Pϵ) − vol(A) <

ϵ
2|det L|

.
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Note that A−(χA,Pϵ) is, by definition of χA, the sum of the volumes of the subrectangles
of Pϵ that lie entirely within A. Let Aϵ be the union of such rectangles. Similarly,
A+(χA,Pϵ) is the sum of the volumes of the subrectangles of Pϵ that intersect A. Let Aϵ

be the union of such rectangles. For each subrectangle R′ of R we have vol(L(R′)) =
|det L|vol(R′) by our computations above for elementary matrices. Thus

vol(L(Aϵ)) = |det L|A−(χA,Pϵ), vol(L(Aϵ)) = |det L|A+(χA,Pϵ).

Thus

vol(L(Aϵ)) − vol(L(Aϵ)) = |det L|(A+(χA,Pϵ) − A−(χA,Pϵ))
= |det L|(A+(χA,Pϵ) − vol(A) + vol(A) − A−(χA,Pϵ))

< |det L|
( ϵ
2|det L|

+
ϵ

2|det L|

)
= ϵ.

That is, the functions χL(Aϵ)
and χL(Aϵ) satisfy

χL(Aϵ)(x) ≤ χL(A)(x) ≤ χL(Aϵ)
(x), x ∈ L(R)

and ∫
L(R)

χL(Aϵ)
(x) dx −

∫
L(R)

χL(Aϵ)(x) dx < ϵ.

By Exercise 1.6.1 it follows that χL(A) is Riemann integrable, or equivalently that L(A)
is Jordan measurable. By Exercise 1.6.1 we also have

vol(L(A)) = lim
ϵ→0

vol(L(Aϵ)) = |det L| lim
ϵ→0

A−(χA,Pϵ) = |det L|vol(A),

as desired.
Now we complete the proof of the theorem by letting A be an arbitrary bounded

Jordan measurable set and letting L be an arbitrary invertible matrix. In this case we
write L = L1 · · ·Lk for elementary matrices L1, . . . ,Lk. We then have that Lk(A) is Jordan
measurable, then that Lk−1Lk(A) is Jordan measurable, and, continuing, that L(A) is
Jordan measurable. Moreover,

vol(Lk(A)) = |det Lk|vol(A), vol(Lk−1Lk(A)) = |det Lk−1||det Lk|vol(A),

and, carrying on, we have

vol(L(A)) = |det L1| · · · |det Lk|vol(A) = |det L|vol(A),

using Proposition I-5.3.3(ii). ■

With this somewhat simple situation in hand, let us see if we can derive a
plausibility argument for the change of variables formula before we formally state
and prove it. A plausibility argument is the following. Suppose that we have
an open subset U ⊆ Rn and a continuously differentiable map ϕ : U → Rn. Let
f : ϕ(U)→ Rbe Riemann integrable. From Proposition 1.4.1 we know that, around
x0 ∈ U, ϕ is well approximated (in some sense) by its derivative. Moreover, if
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det Dϕ(x0) , 0, by this approximation is very good if one uses suitable coordinates. what

Furthermore, the Riemann integrable function f is well approximated (in some
sense) by a step function, i.e., by a function that is locally constant. Motivated by
this, we propose that we can take ϕ to be linear in some small rectangle R around
x0. Precisely,

ϕ(x) ≈ Dϕ(x0) · (x − x0) = Dϕ(x0) · x︸     ︷︷     ︸
linear

−Dϕ(x0) · x0︸       ︷︷       ︸
constant

for x ∈ R. We also take f to be constant on the setϕ(R) ofϕ(x0) (i.e., f (y) = f (ϕ(x0))
for y ∈ ϕ(U′)). (Alert: ϕ(R) may not contain a neighbourhood ofϕ(x0.) In this case,∫

R
f ◦ϕ(x)|det Dϕ(x0)|dx = f (ϕ(x0))|det Dϕ(x0)|

∫
R

dx

= f (ϕ(x0))|det Dϕ(x0)|vol(R)
= f (ϕ(x0))vol(ϕ(R))

= f (ϕ(x0))
∫
ϕ(R)

dy.

In the third step we have used Theorem 1.6.38 along with the plausible (and true,
but as yet unproven) fact that the volume of a set is invariant under translations of
the set. Now one can imagine applying the above procedure over the rectangles in
a sequence of increasingly partitions of a rectangle that contains U and arriving at
a formula ∫

U
f ◦ϕ(x)|det Dϕ(x)|dx =

∫
ϕ(U)

f (y) dy.

This is the formula which we set out to verify under appropriate hypotheses. The
proof of the following theorem is exceedingly long and detailed. However, since it
is difficult to find statements and proofs of this theorem with the joint properties
that (1) the statement is correct, (2) the statement is sufficiently general to cover the
situations of common interest, and (3) the proof is correct, we give all of the details.
But the reader not wanting to spend a week understanding the proof is advised to
skip it.

1.6.39 Theorem (The change of variables formula for the Riemann integral) Let U ⊆
Rn, let A ⊆ U, let ϕ : U→ Rn, and let f : ϕ(A)→ R have the following properties:

(i) U is open;
(ii) A is Jordan measurable with cl(A) ⊆ U;
(iii) ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ| int(cl(A)) is injective;
(c) (ϕ| int(cl(A)))−1

|ϕ(int(cl(A))) is continuously differentiable;
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(iv) f is Riemann integrable.
Then ∫

A
f ◦ϕ(x)|det Dϕ(x)|dx =

∫
ϕ(A)

f(y) dy.

Proof We shall prove the theorem under a sequence of hypotheses on U, A, ϕ, and
f that get weaker as we go along, until in the end we arrive at a proof valid for the
hypotheses of the theorem.

Let us introduce some notation. For x ∈ Rn let us recall from Definition 1.1.9 that
we denote

∥x∥∞ = max{|x j| | j ∈ {1, . . . ,n}}.

Note that, for x0 ∈ Rn and r ∈ R>0, the set

{x ∈ Rn
| ∥x − x0∥ < r}

is an open rectangle centred at x0 with sides of length 2r. For L ∈ EndR(Rn) we recall
from Theorem 1.1.14 that the norm of L induced by the∞-norm is

∥L∥∞,∞ = max
{ n∑

j=1

|L(k, j)|
∣∣∣∣ k ∈ {1, . . . ,n}

}
.

Note that ∥Lx∥∞ ≤ ∥L∥∞,∞∥x∥∞. In the proof we will occasionally implicitly use the fact
that the norm ∥·∥∞ is equivalent to the norm ∥·∥Rn in the sense of Definition III-3.1.13.
For example, we will use the fact that continuity with respect to the norm ∥·∥Rn is equiv-
alent to continuity with respect to the norm ∥·∥∞. We will also use the fact that ∥·∥∞,∞ is
a norm on EndR(Rn), and that continuity of the derivative is equivalent to continuity
with respect to this norm. All in all, a reader would benefit from understanding some
basic material from Chapter III-3 in understanding this proof.

Case 1

The simplest case is the following:
1. U is bounded and Jordan measurable;
2. A = U;
3. ϕ is linear, i.e., there exists L ∈ EndR(Rn) such that ϕ(x) = Lx for each x ∈ U;
4. f is constant, i.e., there exists α ∈ R such that f (y) = α for all y ∈ ϕ(A).
When α = 1 this is exactly Theorem 1.6.38. For arbitrary α this case then follows from
the linearity of the integral, Proposition 1.6.28.

Case 2

We suppose the following conditions hold:
1. U is open;
2. A is a compact rectangle (now denoted by R for the remainder of this case) with

R ⊆ U;
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3. ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ is injective;
(c) ϕ−1 : ϕ(U)→ U is continuously differentiable;

4. f is constant, i.e., there exists α ∈ R such that f (y) = α for all y ∈ ϕ(U).
We prove a series of lemmata. Note that in the hypotheses of the lemmata the

conditions on U, R, and ϕ may differ from the hypotheses above. This is a notational
convenience, but the reader should be careful to understand what conditions are in
effect at what place.

First we prove a lemma which shows that a bounded rectangle is mapped inside
another bounded rectangle.

1 Lemma Let U ⊆ Rn, R ⊆ U, and ϕ : U→ Rn have the following properties:
(i) U is open;
(ii) R ⊆ U is a compact rectangle;
(iii) ϕ is continuously differentiable.

Then ϕ(R) is contained in a rectangle R′ satisfying vol(R′) ≤Mn vol(R), where

M = sup
{
∥Dϕ(x)∥∞,∞

∣∣∣ x ∈ R
}
.

Proof First note that since R is compact and since Dϕ is continuous, M is finite. Let
x0 be the centre of R and let us denote

x = (x1, . . . , xn),
x0 = (x0,1, . . . , x0,n),

ϕ(x) = (ϕ1(x), . . . ,ϕn(x)).

Applying the Mean Value Theorem, , we havewhat?

ϕ(x) −ϕ(x0) = Dϕ(x′) · (x − x0) for some
x′ ∈ {sx0 + (1 − s)x | s ∈ [0, 1]},

=⇒ ∥ϕ(x) −ϕ(x0)∥∞ ≤ ∥Dϕ(x′)∥∞,∞∥x − x0∥∞ for some
x′ ∈ {sx0 + (1 − s)x | s ∈ [0, 1]},

=⇒ |ϕ j(x) −ϕ j(x0)| ≤M|x j − x0, j|, j ∈ {1, . . . ,n}.

Thus ϕ(R) is contained a rectangle whose edge parallel to the jth coordinate axis is
at most M times the length of the corresponding edge for R. From this we have the
lemma. ▼

Now we prove a lemma of a converse flavour, telling us that the image of a
bounded rectangle contains a fat rectangle.



2022/03/07 1.6 The multivariable Riemann integral 195

2 Lemma Let U ⊆ Rn, R ⊆ U, x0 ∈ U, ϕ : U → Rn, and σ ∈ (0, 1) have the following
properties:

(i) U is open;
(ii) R ⊆ U is a fat compact rectangle with centre x0;
(iii) ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) Dϕ(x0) = In;
(c) ∥Dϕ(x) −Dϕ(x′)∥∞,∞ ≤ σ for all x, x′ ∈ R.

Then ϕ(R) contains a rectangle R′ centred at ϕ(x0) satisfying vol(R′) = (1 − σ)nvol(R).
Proof The first thing we do is “normalise” the problem to one that is more easily
managed. First let us define

Ũ = {x ∈ Rn
| x + x0 ∈ U}, R̃ = {x ∈ Rn

| x + x0 ∈ R}.

Thus we shift U and R so that 0 is the centre of R̃ ⊆ Ũ. Now let us define ϕ̃ : Ũ → Rn

by ϕ̃(x) = ϕ(x − x0) −ϕ(x0) so that ϕ̃(0) = 0, Dϕ̃(0) = In, and

∥Dϕ̃(x) −Dϕ̃(x′)∥∞,∞ ≤ σ, x, x′ ∈ R̃.

Thus we shift the image of the map ϕ so that 0 is mapped to 0. The lemma will follow
if we can show that ϕ̃(R̃) contains a rectangle with volume (1 − σ)nvol(R). That is to
say, without loss of generality we can additionally assume in the hypotheses of the
lemma that x0 = 0 and that ϕ(0) = 0. This is stage one of our normalisation.

Now we assume thatϕ is as determined in the preceding paragraph and normalise
it further. Let us suppose that

R = [x0,1 − a1, x0,1 + a1] × · · · × [x0,n − an, x0,n + an],

where x0 = (x0,1, . . . , x0,n) so that vol(R) = 2na1 · · · an. Now define a linear map χ : Rn
→

Rn by
χ(x1, . . . , xn) = (a1x1, . . . , anxn).

We then define U1 = χ−1(U) and R1 = χ−1(R). Note that

R1 = [−1, 1] × · · · × [−1, 1].

so that vol(R1) = 2n. Now define and ϕ1 : U1 → R
n by ϕ1 = χ

−1 ◦ ϕ ◦ χ. Note that
ϕ1(0) = 0 and that Dϕ1(0) = In, the latter following from the Chain Rule. We claim
that if ϕ1(R1) contains a cube R′1 with vol(R′1) = (1 − σ)nvol(R1) then ϕ(R) contains a
rectangle R′ with vol(R′) = (1 − σ)nvol(R). Indeed,

R′1 ⊆ ϕ1(R1) = χ−1
◦ϕ ◦ χ(R1) =⇒ χ(R′1) ⊆ ϕ(χ(R1)) = ϕ(R).

We take R′ = χ(R′1) and note that

vol(R′) = vol(χ(R′1)) = detχvol(R′1) ≥ (1 − σ)n detχvol(R1)
= (1 − σ)n2na1 · · · an = (1 − σ)nvol(R),

as desired.
In summary, the above arguments show that we can add the following hypotheses

to those of the lemma:
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1. x0 = 0;
2. ϕ(0) = 0;
3. R = [−1, 1] × · · · × [−1, 1].
Moreover, we have also shown that if we add these hypotheses, the conclusions of the
lemma will follow if we can show that ϕ(R) contains a cube R′ for which vol(R′) =
(1 − σ)nvol(R). This is what we now do.

Let y have the property that ∥y∥∞ ≤ (1 − σ). Define ψy : Rn
→ Rn be defined by

ψy(x) = x −ϕ(x) + y.

If x ∈ R1 then

∥ϕ(x) − x∥∞ = ∥ϕ(x) −ϕ(0) −Dϕ(0) · x∥∞
= ∥Dϕ(x′) · x −Dϕ(0) · x∥∞

≤ ∥x∥∞ sup
{
∥Dϕ(x′) −Dϕ(0)∥∞,∞

∣∣∣ x′ ∈ R1

}
≤ σ,

where x′ ∈ R1 is such that

ϕ(x) −ϕ(0) = Dϕ(x′) · (x − 0),

using the Mean Value Theorem. Therefore, if x ∈ R1 and if ∥y∥∞ ≤ (1 − σ),

∥ψy(x)∥∞ ≤ σ + (1 − σ) = 1.

Thus ψy maps R1 into R1 provided that ∥y∥∞ ≤ (1− σ). Therefore, for x1, x2 ∈ R1 and if
∥y∥∞ ≤ (1 − σ),

∥ψy(x1) − ψy(x2)∥∞ = ∥x1 − x2 − (ϕ(x1) −ϕ(x2))∥∞
= ∥(x1 − x2) −Dϕ(x′) · (x1 − x2)∥∞
≤ ∥x1 − x2∥∞∥Dϕ(x′) −Dϕ(0)∥∞,∞
≤ σ∥x1 − x2∥∞,

where x′ ∈ R1 is such that

ϕ(x1) −ϕ(x2) = Dϕ(x′) · (x1 − x2),

using the Mean Value Theorem. Since σ ∈ (0, 1) we can conclude from Theorem 1.11.3
that ψy possesses a unique fixed point x ∈ R1. Thus

ψy(x) = x −ϕ(x) + y = x =⇒ ϕ(x) = y.

Thus we have shown that ϕ(R1) contains a rectangle R′ with sides of length at least
(1 − σ). Note that

vol(R′) ≥ 2n(1 − σ)n = (1 − σ)nvol(R),

as desired. ▼

We shall on several occasions require a condition guaranteeing that the image of a
set of zero volume has zero volume.
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3 Lemma Let U ⊆ Rn, A ⊆ U, and ϕ : U→ Rn have the following properties:
(i) U is open;
(ii) vol(A) = 0 and cl(A) ⊆ U;
(iii) ϕ is continuously differentiable.

Then vol(ϕ(A)) = 0.
Proof Note that A is bounded since, by definition of zero volume, it can be contained
in the union of a finite number of compact rectangles. Thus cl(A) is closed and bounded
and so compact by the Heine–Borel Theorem.

First we claim that if R is a compact rectangle intersecting A then it is possible
to cover A ∩ R with compact rectangles R1, . . . ,Rm having the properties that R j ⊆ R
and R j ⊆ U for j ∈ {1, . . . ,m} and that

∑m
j=1 vol(R j) ≤ vol(R). To see this, note that

R∩cl(A) is compact since it is a closed subset of the compact set cl(A). Let x ∈ cl(A)∩R.
Since x ∈ U and since U is open there exists a fat compact rectangle Rx containing
x in its interior and having the property that Rx ⊆ U. Since cl(A) ∩ R is compact
there exists a finite subcover of the open cover (int(Rx))x∈cl(A)∩R. Let the corresponding
rectangles in this subcover be denoted by Rx1 , . . . ,Rxm and define R j = Rx j ∩ R for
j ∈ {1, . . . ,m}. The compact rectangles R1, . . . ,Rm are then contained in R, contained in
U, and they cover cl(A) ∩ R. However, because of overlapping, it is possible that the
total volume of the rectangles might exceed that of R. However, it is possible to write
the rectangles R1, . . . ,Rm as a finite disjoint union of rectangles (this is sort of obvious,
but see Proposition III-2.1.2). These finitely many disjoint rectangles will then have a
total volume not exceeding that of R.

Denote
M = sup

{
∥Dϕ(x)∥∞,∞

∣∣∣ x ∈ cl(A)
}
.

Since cl(A) is compact M is finite because Dϕ is continuous. Now let ϵ ∈ R>0 and
let R1, . . . ,Rk be rectangles covering A and such that

∑k
j=1 vol(R j) < ϵ

M ; this is possible
since vol(A) = 0. From the preceding paragraph it is possible to choose the rectangles
R1, . . . ,Rk so that R j ⊆ U for each j ∈ {1, . . . , k}. Thatϕ(A) has zero volume now follows
from Lemma 1. ▼

Let us next prove a lemma ensuring that certain kinds of sets we shall encounter
are Jordan measurable.

4 Lemma Let U ⊆ Rn, A ⊆ U, and ϕ : U→ Rn have the following properties:
(i) U is open;
(ii) A is bounded and Jordan measurable with cl(A) ⊆ U, and
(iii) ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ| int(A) is injective;
(c) (ϕ| int(A))−1

|ϕ(int(A)) is continuously differentiable.

Then ϕ(A) is bounded and Jordan measurable.
Proof First we show that bd(ϕ(A)) ⊆ ϕ(bd(A)). Let y ∈ bd(ϕ(A)) so that there exists
a sequence (y j) j∈Z>0 in ϕ(A) converging to y. Let (x j) j∈Z>0 be a sequence in A such that
ϕ(x j) = y j for each j ∈ Z>0. There are two possibilities.



198 1 Multiple real variables and functions of multiple real variables 2022/03/07

1. For every k ∈ Z>0 there exists jk ≥ k such that x jk < bd(A): In this case the subsequence
(y jk)k∈Z>0 converges to y and each element y jk has the property that y jk = ϕ(x jk) for
x jk ∈ int(A). Let us rename the subsequence (y jk)k∈Z>0 to (y j) j∈Z>0 so that y j = ϕ(x j)
for x j ∈ int(A). Since cl(A) is compact, the sequence (x j) j∈Z>0 has a convergent
subsequence (x jk)k∈Z>0 converging to x ∈ cl(A). We claim that x ∈ bd(A). Indeed, if
x ∈ int(A) then

y ∈ ϕ(int(A)) = int(ϕ(int(A))) ⊆ int(ϕ(A)),

using the fact that ϕ(int(A)) is open. This contradicts the fact that y ∈ bd(ϕ(A)),
and so we indeed must have x ∈ bd(A). However, by Theorem 1.3.2, ϕ(x) = y
since the sequence (y jk)k∈Z>0 converges to y. Thus y ∈ ϕ(bd(A)), as desired.

2. There exists N ∈ Z>0 such that x j ∈ bd(A) for every j ≥ N: In this case we can without
loss of generality (why?) suppose that x j ∈ bd(A) for every j ∈ Z>0. Because bd(A)
is compact there exists a subsequence (x jk)k∈Z>0 converging to some x ∈ bd(A). But,
just as in the previous case, ϕ(x) = y and so y ∈ ϕ(bd(A)).
The lemma now follows from Lemma 3. ▼

Now we prove two lemmas that will allow us to conclude that, under the hypothe-
ses of this case,

vol(ϕ(R)) =
∫

R
|det Dϕ(x)|dx.

We do this by establishing both inequalities.

5 Lemma Let U ⊆ Rn, R ⊆ U, and ϕ : U→ Rn have the following properties:
(i) U is open;
(ii) R is a compact rectangle;
(iii) ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ|U is injective;
(c) ϕ−1 : ϕ(U)→ U is continuously differentiable.

Then
vol(ϕ(R)) ≤

∫
R
|det Dϕ(x)|dx.

Proof Let L ∈ EndR(Rn) be invertible and note that, by Theorem 1.6.38,

|det L−1
|vol(ϕ(R)) = vol(L−1

◦ϕ(R)).

Note that x 7→ L−1
◦ϕ(x) is continuously differentiable and satisfies

D(L−1
◦ϕ)(x) = L−1

◦Dϕ(x).

Thus det D(L−1
◦ ϕ)(x) , 0 for all x ∈ U. By Lemmata 1 and 4 it then follows that

L ◦ϕ(R) is bounded and Jordan measurable and satisfies

vol(L−1
◦ϕ(R)) ≤Mn vol(R)
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where
M = sup

{
∥L ◦Dϕ(x)∥∞,∞

∣∣∣ x ∈ U
}
.

Thus
vol(ϕ(R)) ≤ |det L|Mn vol(R), (1.37)

this equation holding for any invertible matrix L.
Now let ϵ ∈ R>0. Note that since x 7→ |det Dϕ(x)| is continuous and bounded its

restriction to R is Riemann integrable. Choose ϵ′ ∈ R>0 such that

ϵ′
(
1 +

∫
R
|det Dϕ(x)|dx

)
+ (ϵ′)2 < ϵ. (1.38)

Choose δ1 ∈ R>0 such that, if ∥x − x′∥∞ < δ1, then∣∣∣1 − ∥Dϕ−1(x) ◦Dϕ(x′)∥n∞,∞
∣∣∣ < ϵ′. (1.39)

This is possible since

∥Dϕ−1(x) ◦Dϕ(x)∥∞,∞ = 1, x ∈ U,

and since ∥·∥∞,∞, composition of matrices, and Dϕ are all uniformly continuous.
Now let δ2 ∈ R>0 be such that, if P = (P1, . . . ,Pn), P j = (I j1, . . . , I jk j), j ∈ {1, . . . ,n}, is

a partition of R satisfying |P| < δ2 and if

{ξl1,...,ln | l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n}}

is a selection from P, then∣∣∣∣ k1∑
l1=1

· · ·

kn∑
ln=1

|det Dϕ(ξl1,...,ln)|vol(Rl1,...,ln) −
∫

R
|det Dϕ(x)|dx

∣∣∣∣ < ϵ′.
This implies that∫

R
|det Dϕ(x)|dx + ϵ′ <

k1∑
l1=1

· · ·

kn∑
ln=1

|det Dϕ(ξl1,...,ln)|vol(Rl1,...,ln). (1.40)

Take δ = min{δ1, δ2}. Let P = (P1, . . . ,Pn) be a partition satisfying |P| < δ and
denote P j = (I j1, . . . , I jk j), j ∈ {1, . . . ,n}. Let xl1,...,ln be the centre of the subrectangle
Rl1,...,ln , l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n}. For brevity denote L = {1, . . . , k1} × · · · × {1, . . . , kn}.
For (l1, . . . , ln) ∈ L denote

Ml1,...,ln = sup
{
∥Dϕ−1(xl1,...,ln) ◦Dϕ(x)∥∞,∞

∣∣∣ x ∈ Rl1,...,ln

}
,

and note that our choice of δ, along with (1.39), ensures that

1 + ϵ′ ≤Mn
l1,...,ln

. (1.41)

Then
vol(ϕ(Rl1,...,ln)) ≤ |det Dϕ(xl1,...,ln)|Mn

l1,...,ln
vol(Rl1,...,ln)
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by (1.37).
Then, using (1.38), (1.40), and (1.41),

vol(ϕ(R)) =
∑

(l1,...,ln)∈L

vol(ϕ(Rl1,...,ln))

≤

∑
(l1,...,ln)∈L

|det Dϕ(xl1,...,ln)|Mn
l1,...,ln

vol(Rl1,...,ln)

≤ (1 + ϵ′)
∑

(l1,...,ln)∈L

|det Dϕ(xl1,...,ln)|vol(Rl1,...,ln)

≤ (1 + ϵ′)
(∫

R
|det Dϕ(x)|dx + ϵ′

)
<

∫
R
|det Dϕ(x)|dx + ϵ

Since ϵ ∈ R>0 is arbitrary, this gives the lemma. ▼

6 Lemma Let U ⊆ Rn, R ⊆ U, and ϕ : U→ Rn have the following properties:
(i) U is open;
(ii) R is a compact rectangle;
(iii) ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ|U is injective;
(c) ϕ−1 : ϕ(U)→ U is continuously differentiable.

Then ∫
R
|det Dϕ(x)|dx ≤ vol(ϕ(R)).

Proof For ϵ ∈ R>0 let ϵ′ ∈ R>0 be sufficiently small that

(1 − ϵ′)−nvol(ϕ(R)) + ϵ′ = vol(ϕ(R)) + ϵ, (1.42)

This being possible since the expression on the left is a continuous function of ϵ′ in a
neighbourhood of 0 and has the value vol(ϕ(R)) when ϵ′ = 0.

Now let δ1 ∈ R>0 be sufficiently small that, if P is a partition of R with |P| < δ1,
then

∥Dϕ(x) −Dϕ(x′)∥∞,∞ < ϵ′

whenever x and x′ lie in the same subrectangle of P; this is possible since Dϕ|R is
uniformly continuous, being a continuous function on a compact set. Let P be a
partition such that |P| < δ1, write P = (P1, . . . ,Pn) with P j = (I j1, . . . , I jk j), and let

(ξl1,...,ln | l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n})

be the selection from P having the property that ξl1,...,ln is the centre of Rl1,...,ln . Note
that the map

x 7→ Dϕ−1(ξl1,...,ln) ◦ϕ(x)
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has the property that its derivative at ξl1,...,ln is In. By Lemma 2 we thus have

|det Dϕ−1(ξl1,...,ln)|vol(ϕ(Rl1,...,ln)) ≥ (1 − ϵ′)nvol(Rl1,...,ln) (1.43)

for every l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n}.
Now let δ2 ∈ R>0 have the property that if P is a partition with |P| < δ2, if

P = (P1, . . . ,Pn) with P j = (I j1, . . . , I jk j), and if

(ξl1,...,ln | l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n})

is a selection from P, then

∣∣∣∣ k1∑
l1=1

· · ·

kn∑
ln=1

|det Dϕ(ξl1,...,ln)|vol(Rl1,...,ln) −
∫

R
|det Dϕ(x)|dx

∣∣∣∣ < ϵ′.
This implies that∫

R
|det Dϕ(x)|dx <

k1∑
l1=1

· · ·

kn∑
ln=1

|det Dϕ(ξl1,...,ln)|vol(Rl1,...,ln) + ϵ′. (1.44)

Now let δ = min{δ1, δ2} and let P be a partition such that |P| < δ, write P =
(P1, . . . ,Pn) with P j = (I j1, . . . , I jk j), and let

(ξl1,...,ln | l j ∈ {1, . . . , k j}, j ∈ {1, . . . ,n})

be the selection from P having the property that ξl1,...,ln is the centre of Rl1,...,ln . Now,
using (1.42), (1.43), and (1.44) we compute∫

R
|det Dϕ(x)|dx <

k1∑
l1=1

· · ·

kn∑
ln=1

|det Dϕ(ξl1,...,ln)|vol(Rl1,...,ln) + ϵ′

≤ (1 − ϵ′)−n
k1∑

l1=1

· · ·

kn∑
ln=1

vol(ϕ(Rl1,...,ln)) + ϵ′

≤ (1 − ϵ′)−nvol(ϕ(R)) + ϵ′ = vol(ϕ(R)) + ϵ,

and the result then follows since ϵ ∈ R>0 is arbitrary. ▼

From the previous two lemmata we have∫
ϕ(R)

f (y) dy =
∫

R
|det Dϕ(x)|dx

if f is the constant function having the value 1. By linearity of the integral, this case
follows.
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Case 3

Here we weaken the hypotheses from the previous case only by allowing f to be
Riemann integrable:
1. U is open;
2. A is a compact rectangle (now denoted by R for the remainder of this case) with

R ⊆ U;
3. ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ is injective;
(c) ϕ−1 : ϕ(U)→ U is continuously differentiable;

4. f is bounded and Riemann integrable.
First let us determine that f ◦ϕ is Riemann integrable on R.

7 Lemma Let U ⊆ Rn, A ⊆ U, ϕ : U→ Rn, and f : ϕ(A)→ R have the following properties:
(i) U is open;
(ii) A is Jordan measurable with cl(A) ⊆ U;
(iii) ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ is injective;
(c) ϕ−1 : ϕ(U)→ U is continuously differentiable;

(iv) f is bounded and Riemann integrable.
Then (f ◦ϕ)|A is Riemann integrable.

Proof From Lemma 4 we know that ϕ(A) is Jordan measurable. By asking that
f (y) = 0 for y ∈ bd(ϕ(A)) (actually, we can have f be arbitrarily defined on bd(ϕ(A))
by Proposition 1.6.21) we can without loss of generality suppose that A is closed. Let
D ⊆ ϕ(A) be the set of points of discontinuity of f . Let

M = sup{∥Dϕ−1(x)∥∞,∞ | x ∈ A},

noting that M is finite since A is compact and Dϕ−1 is continuous.
Let ϵ ∈ R>0. Since f is bounded and Riemann integrable it follows that D has zero

volume by Theorems 1.6.11 and 1.6.16. By Lemma 3 this means that vol(ϕ−1(D)) = 0.
Moreover, f ◦ϕ(x) is continuous if x < ϕ−1(D) by . Thus ( f ◦ϕ)|A is discontinuous at awhat

set of points whose volume is zero, and so is Riemann integrable by Theorems 1.6.11
and 1.6.16. ▼

Since R is bounded and Jordan measurable and since |det Dϕ| is continuous on
R, it follows that |det Dϕ||R is Riemann integrable. Thus ( f ◦ ϕ)|det Dϕ| is Riemann
integrable on R, being a product of Riemann integrable functions.

Let ϵ ∈ R>0. For Pϵ a partition of R such that∫
R

f ◦ϕ(x) dx − A−( f ◦ϕ,Pϵ) <
ϵ

2M
, A+( f ◦ϕ,Pϵ) −

∫
R

f ◦ϕ(x) dx <
ϵ

2M
,
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denote byR (Pϵ) the subrectangles of Pϵ. For R′ ∈R (Pϵ) denote

mR′( f ) = inf{ f ◦ϕ(x) | x ∈ cl(R′)} = inf{ f (y) | y ∈ ϕ(cl(R′))},
MR′( f ) = sup{ f ◦ϕ(x) | x ∈ cl(R′)} = sup{ f (y) | y ∈ ϕ(cl(R′))}.

Note that ∑
R′∈R (Pϵ)

mR′( f )vol(ϕ(R′)) ≤
∫
ϕ(R)

f (y) dy ≤
∑

R′∈R (Pϵ)

MR′( f )vol(ϕ(R′)).

Since the theorem holds for Case 2 this is equivalent to∑
R′∈R (Pϵ)

∫
R′

mR′( f )|det Dϕ(x)|dx ≤
∫
ϕ(R)

f (y) dy

≤

∑
R′∈R (Pϵ)

∫
R′

MR′( f )|det Dϕ(x)|dx.

We also clearly have∑
R′∈R (Pϵ)

∫
R′

mR′( f )|det Dϕ(x)|dx ≤
∫

R
f ◦ϕ(x)|det Dϕ(x)|dx

≤

∑
R′∈R (Pϵ)

∫
R′

MR′( f )|det Dϕ(x)|dx.

The definitions of the upper and lower step functions then give∣∣∣∣ ∑
R′∈R (Pϵ)

∫
R′

MR′( f )|det Dϕ(x)|dx −
∑

R′∈R (Pϵ)

∫
R′

mR′( f )|det Dϕ(x)|dx
∣∣∣∣

≤M(A+( f ◦ϕ,Pϵ) − A−( f ◦ϕ,Pϵ)) < ϵ.

It then follows that ∣∣∣∣∫
R

f ◦ϕ(x)|det Dϕ(x)|dx −
∫
ϕ(R)

f (y) dy
∣∣∣∣ < ϵ,

which is the theorem in this case.

Case 4

Next we weaken the hypotheses by allowing A to be an arbitrary bounded, Jordan
measurable subset of U:
1. U is open;
2. A is bounded and Jordan measurable with cl(A) ⊆ U;
3. ϕ has the following properties:

(a) ϕ is continuously differentiable;



204 1 Multiple real variables and functions of multiple real variables 2022/03/07

(b) ϕ| int(cl(A)) is injective;
(c) (ϕ| int(cl(A)))−1

|ϕ(int(cl(A))) is continuously differentiable;

4. f is bounded and Riemann integrable.
Since A is bounded and Jordan measurable it follows that vol(bd(A)) we can assume

without loss of generality, by Proposition 1.6.21, that A is closed. Let us denote

M1 = sup{∥Dϕ(x)∥∞,∞ | x ∈ A},
M2 = sup{| f (y)| | y ∈ ϕ(A)},
M3 = sup{| f ◦ϕ(x)||det Dϕ(x)| | x ∈ A}.

Let us first show that ( f ◦ϕ)|A is Riemann integrable. We observe that this does not
follow from Lemma 7 since we do not ask that ϕ be invertible on U, only on int(A).

8 Lemma Let U ⊆ Rn, A ⊆ U, ϕ : U→ Rn, and f : ϕ(A)→ R have the following properties:
(i) U is open;
(ii) A is bounded and Jordan measurable with cl(A) ⊆ U;
(iii) ϕ has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ| int(cl(A)) is injective;
(c) (ϕ| int(cl(A)))−1

|ϕ(int(cl(A))) is continuously differentiable;

(iv) f is bounded and Riemann integrable.
Then (f ◦ϕ)|A is Riemann integrable.
Proof Let ϵ ∈ R>0. Since bd(A) has volume zero by Theorems 1.6.11, 1.6.13,
and 1.6.16 let R1, . . . ,Rk be rectangles that cover bd(A) and whose volumes sum to
less than ϵ

2 . We can assume, without loss of generality (by “fattening the rectan-
gles a little if necessary) that bd(A) ⊆ int(∪k

j=1R j). Let B = A ∩ (∪k
j=1Rk) and let

C = A \ B. Let D ⊆ ϕ(A) be the subset of points at which f is discontinuous, noting
that vol(D) = 0 by Theorems 1.6.11 and 1.6.16. Let us write ϕB = ϕ|B and ϕC = ϕ|C
so that ϕ−1(D) = ϕ−1

B (D) ∪ ϕ−1
C (D) is the set of points of discontinuity of f ◦ ϕ. Since

ϕ−1
B (D) = ϕ−1(D) ∩ B and since B ⊆ ∪k

j=1Rk, it follows that ϕ−1
B (D) is covered by the

rectangles R1, . . . ,Rk whose volumes sum to less than ϵ
2 . Now note that

M = sup{∥Dϕ−1(y)∥∞,∞ | y ∈ ϕ(C)}

is bounded since bd(A) ⊆ int(∪k
j=1R j). Since vol(D) = 0 it follows from Lemma 3 that

vol(ϕ−1
B (D)) = 0 and so is covered by finitely many rectangles whose volumes sum to

less than ϵ
2 . Thus ϕ−1(D) is covered by rectangles whose volumes sum to less than ϵ.

Thus ( f ◦ϕ)|A is discontinuous on a set with zero volume, and so it Riemann integrable
by Theorems 1.6.11 and 1.6.16. ▼

Let ϵ ∈ R>0. Since vol(bd(A)) = 0 it follows that there exists rectangles R1, . . . ,Rk
covering bd(A) such that

k∑
j=1

vol(R j) < min
{ ϵ
2Mn

1M2
,
ϵ

2M3

}
.
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As we argued in the proof of Lemma 3 we can suppose that cl(R j) ⊆ U, j ∈ {1, . . . , k}.
Let Bϵ = A ∩ (∪k

j=1R j) and Cϵ = A \ Bϵ so that vol(Bϵ) < min{ ϵ
2Mn

1M2
, ϵ

2M3
}. (We observe

that Bϵ and Cϵ are Jordan measurable since they are formed by finite unions, finite in-
tersections, and set theoretic differences of Jordan measurable sets, cf. Section III-2.1.1.)
By Lemma 1 we have vol(ϕ(Bϵ)) ≤Mn

1vol(Bϵ). Therefore,∣∣∣∣∫
ϕ(A)

f (y) dy −
∫
ϕ(Cϵ)

f (y) dy
∣∣∣∣ = ∣∣∣∣∫

ϕ(Bϵ)
f (y) dy

∣∣∣∣ ≤M2vol(ϕ(Bϵ)) <
ϵ
2
.

We also have ∣∣∣∣∫
A

f ◦ϕ(x)|det Dϕ(x)|dx −
∫

Cϵ
f ◦ϕ(x)|det Dϕ(x)|dx

∣∣∣∣
=

∣∣∣∣∫
Bϵ

f ◦ϕ(x)|det Dϕ(x)|dx
∣∣∣∣ ≤M3vol(Bϵ) < ϵ

2 .

Using the fact that the theorem holds for Case 3 we then compute∣∣∣∣∫
A

f ◦ϕ(x)|det Dϕ(x)|dx −
∫
ϕ(A)

f (y) dy
∣∣∣∣

≤

∣∣∣∣∫
A

f ◦ϕ(x)|det Dϕ(x)|dx −
∫

Cϵ
f ◦ϕ(x)|det Dϕ(x)|dx

∣∣∣∣
+

∣∣∣∣∫
Cϵ

f ◦ϕ(x)|det Dϕ(x)|dx −
∫
ϕ(Cϵ)

f (y) dy
∣∣∣∣

+
∣∣∣∣∫
ϕ(A)

f (y) dy −
∫
ϕ(Cϵ)

f (y) dy
∣∣∣∣

< ϵ
2 + 0 + ϵ

2 = ϵ,

which gives the theorem in this case.

Case 5

Next we allow A to be possibly unbounded:
1. U is open;
2. A is Jordan measurable with cl(A) ⊆ U;
3. ϕ is has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ| int(cl(A)) is injective;
(c) (ϕ| int(cl(A)))−1

|ϕ(ϕ| int(cl(A))) is continuously differentiable;

4. f is locally bounded, Riemann integrable, and takes values in R≥0. defined?

As in the preceding case, we can without loss of generality assume that A is closed.
This is not perfectly obvious from the beginning, but it can easily be seen as we go
through the proof that this assumption can indeed be made without loss of generality.

Let r ∈ R>0 and let
Rr = [−r, r] × · · · × [−r, r].
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Denote Ar = A ∩ Rr and define

αr = sup{∥Dϕ(x)∥∞,∞ | x ∈ Ar}

and take M(r) = max{r, αr}. By Lemma 1 (more precisely, from the proof of that lemma)
it follows that ϕ(Ar) ⊆ RM(r). Since A is Jordan measurable, Ar is bounded and Jordan
measurable. Therefore, by Lemma 4 it follows that ϕ(Ar) is bounded and Jordan
measurable. Define fr : RM(r) → R≥0 by

fr(y) =

 f (y), y ∈ ϕ(Ar),
0, otherwise.

Since f is locally bounded and Riemann integrable and since ϕ(Ar) is bounded
and Jordan measurable, it follows that fr is Riemann integrable. Moreover, since
limr→∞M(r) = ∞ it follows that the limit

lim
r→∞

∫
RM(r)

fr(y) dy

exists by Riemann integrability of f .
Now, the hypotheses of Case 4 apply to U, Ar, ϕ, and fr. Therefore,∫

Ar

fr ◦ϕ(x)|det Dϕ(x)|dx =
∫
ϕ(Ar)

fr(y) dy.

Therefore,

lim
r→∞

∫
Ar

fr ◦ϕ(x)|det Dϕ(x)|dx = lim
r→∞

∫
ϕ(Ar)

fr(y) dy = lim
r→∞

∫
RM(r)

fr(y) dy

and the first limit is thus equal to the last limit. But this means exactly that∫
A

f ◦ϕ(x)|det Dϕ(x)|dx =
∫
ϕ(A)

f (y) dy,

by the definition of the integral (i.e., Definition 1.6.22) in each case. This gives the
theorem in this case.

Case 6

Next we remove the restriction that f be locally bounded:
1. U is open;
2. A is Jordan measurable with cl(A) ⊆ U;
3. ϕ is has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ| int(cl(A)) is injective;
(c) (ϕ| int(cl(A)))−1

|ϕ(ϕ| int(cl(A))) is continuously differentiable;
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4. f is Riemann integrable and takes values in R≥0.
For M ∈ R>0 define fM : A→ R≥0 and ( f ◦ϕ)M : A→ R≥0 just as in Definition 1.6.22.

Note that ( f ◦ ϕ)M = fM ◦ ϕ. Since fM is bounded and Riemann integrable it follows
from Case 5 that ∫

A
fM ◦ϕ(x)|det Dϕ(x)|dx =

∫
ϕ(A)

fM(y) dy.

Thus we have

lim
M→∞

∫
A

( f ◦ϕ)M(x)|det Dϕ(x)|dx = lim
M→∞

∫
ϕ(A)

fM(y) dy

which gives ∫
A

f ◦ϕ(x)|det Dϕ(x)|dx =
∫
ϕ(A)

f (y) dy

by the definition (i.e., Definition Definition 1.6.22) of the integral on each side of this
equality.

Case 7

Here we eliminate the requirement that f be nonnegative:
1. U is open;
2. A is Jordan measurable with cl(A) ⊆ U;
3. ϕ is has the following properties:

(a) ϕ is continuously differentiable;
(b) ϕ| int(cl(A)) is injective;
(c) (ϕ| int(cl(A)))−1

|ϕ(ϕ| int(cl(A))) is continuously differentiable;

4. f is Riemann integrable.
This follows since the positive/negative decomposition has the property that ( f ◦

ϕ)+(x) = f+ ◦ ϕ(x) and ( f ◦ ϕ)−(x) = f− ◦ ϕ(x). Thus the preceding case can be applied
separately to the positive and negative parts of f . ■

Let us give some examples to illustrate the theorem.

1.6.40 Examples (Change of variables formula)
1. Let us take U = R, A = R, and define ϕ : U → R and f : (−π2 ,

π
2 ) → R by

ϕ(x) = tan−1(x) and f (y) = 1, respectively. We claim that Dϕ(x) = 1
1+x2 . To see

this write tan(x) = sin(x)
cos(x) , compute

tan′(x) =
sin′(x) cos(x) − sin(x) cos′(x)

cos(x)2 =
1

cos(x)2 ,

using the quotient rule. By the Inverse Function Theorem,

ϕ′(x) =
1

(ϕ−1)′(ϕ(x))
=

1
tan′(tan−1(x))

= (cos(tan−1(x)))2.
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If θ = tan−1(x) then
sin(θ)
cos(θ)

= x.

Since sin(θ) > 0 for θ ∈ (0, π), we have sin(θ) =
√

1 − cos(θ) by (I-3.26). There-
fore,

1 − cos(θ)2

cos(θ)2 = x2 =⇒ cos(θ)2 =
1

1 + x2

as desired. Therefore,∫
A

f ◦ ϕ(x)|det Dϕ(x)|dx =
∫
R

1
1 + x2 dx,

∫
ϕ(A)

f (y) dy =
∫ π

2

−
π
2

dy.

The change of variables formula then gives∫
R

1
1 + x2 dx = π.

2. Let us consider U = R and for k ∈ Z define

Ak = [−(k − 1
2 )π, (k − 1

2 )π].

Then take ϕ : U → R and f : [−1, 1] → R to be defined by ϕ(x) = sin(x) and
f (y) = 1, respectively. Let us compare the change of variables formula of
Proposition I-3.4.27 with that of Theorem 1.6.39.
Note that the hypotheses of Proposition I-3.4.27 are satisfied for every k ∈ Z>0.
We have ∫ b

a
f ◦ ϕ(x)ϕ′(x) dx =

∫ (k− 1
2 )π

−(k− 1
2 )π

cos(x) dx,

∫ ϕ(b)

ϕ(a)
dy =

∫ (−1)k+1

(−1)k
dy.

Thus the conclusions of Proposition I-3.4.27 give∫ (k− 1
2 )π

−(k−1
2 )π

sin(x) cos(x) dx = 2(−1)k+1.

The hypotheses of Theorem 1.6.39 hold only when k = 1. Indeed, when k > 1
we do not have injectivity of ϕ on int(Ak). Moreover, we have∫

Ak

f ◦ ϕ(x)|det Dϕ(x)|dx =
∫ (k− 1

2 )π

−(k−1
2 )π
|cos(x)|dx = 4k − 2,∫

ϕ(Ak)
f (y) dy =

∫ 1

−1
dy = 2.
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Thus we see that the conclusions of Theorem 1.6.39 hold only when k = 1, just
in line with when the hypotheses hold.
The point is that the two change of variables formulae, Proposition I-3.4.27 and
Theorem 1.6.39, are not the same, and one needs to exercise some care in using
them. Moreover, the example shows that the hypotheses that the injectivity of
ϕ| int(A) is necessary; this fact is overlooked in some treatments of the change
of variable formula. The final resolution of all of this will not be achieved until
we consider the change of variable formula for the Lebesgue integral in . what?

3. We next consider a well-known situation, that of changing from Cartesian
coordinates (x, y) for R2 to polar coordinates (r, θ). To set this up we take
U = R2,

A = [0,∞) × [−π, π]

and define ϕ : U→ R2 by ϕ(r, θ) = (r cos(θ), r sin(θ)). We compute

Dϕ(r, θ) =
[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]
,

and so det Dϕ(r, θ) = r. Note that

ϕ(int(A)) = R2
\ {(x, y) | y = 0, x ≤ 0}.

One can check that ϕ| int(A) is injective and that

(ϕ| int(A))−1(x, y) = (
√

x2 + y2, atan(x, y)), (x, y) ∈ ϕ(int(A)).

This function is continuously differentiable onϕ(int(A)). Thus, for any Riemann
integrable function f : ϕ(int(A))→ R we have∫

A
f (r cos(θ), r sin(θ))r drdθ =

∫
ϕ(A)

f (x, y) dxdy,

which is the usual change of variable formula for this case.
4. Let us give a concrete illustration of the preceding polar coordinate formula.

We wish to compute ∫
∞

−∞

∫
∞

−∞

exp(−x2
− y2) dxdy.

Using the change of variables formula for polar coordinate derived above we
have ∫

R

∫
R

exp(−x2
− y2) dxdy =

∫
R≥0

∫
[−π,π]

r exp(−r2) dθdr.

We obviously have ∫
[−π,π]

r exp(−r2) dθ = 2πr exp(−r2),
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and so by Fubini’s Theorem we have∫
R

∫
R

exp(−x2
− y2) dxdy = 2π

∫
R≥0

r exp(−r2) dr.

To evaluate the integral on the right we use the change of variables formula
again with U = R, A = R≥0, ϕ(r) = r2, and f (y) = exp(−y). The change of
variables formula then gives

2
∫
R≥0

r exp(−r2) dr =
∫
R≥0

exp(−y) dy = 1

or ∫
R≥0

r exp(−r2) dr =
1
2
.

This gives ∫
∞

−∞

∫
∞

−∞

exp(−x2
− y2) dxdy = π. •

1.6.9 Notes

Exercises

1.6.1 Let A ⊆ Rn be bounded, let f : A → R be bounded, and suppose that, for
each ϵ ∈ R>0, there exists Riemann integrable functions f ϵ, f

ϵ
: A → R such

that
f
ϵ
(x) ≤ f (x) ≤ f ϵ(x), x ∈ A

and ∫
A

f ϵ(x) dx −
∫

A
f
ϵ
(x) dx < ϵ.

Show that f is Riemann integrable and that

I( f ) = lim
ϵ→0

∫
A

f ϵ(x) dx = lim
ϵ→0

∫
A

f
ϵ
(x) dx.

1.6.2 Let R ⊆ Rn be a fat compact rectangle, let f : R → R be Riemann integrable
(in the sense of Definition 1.6.7), and let A ⊆ R. Denote by fA : R → R the
function

fA(x) =

 f (x), x ∈ A,
0, x < A.

Answer the following questions.
(a) Show that fA is Riemann integrable if A is Jordan measurable.
(b) Is it true that, if fA is Riemann integrable, then A is Jordan measurable?
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1.6.3 Let A1, . . . ,Ak ⊆ Rn have volume zero. Show that A1 ∪ · · · ∪ Ak has volume
zero.

1.6.4 Let V ⊆ Rn be a subspace with dimension less than n. Show that V ∩ K has
volume zero for any compact subset K of Rn.

1.6.5 Let A,B,A1, . . . ,Ak ⊆ Rn be bounded and Jordan measurable sets.
(a) Show that ∪k

j=1A j is bounded and Jordan measurable.

(b) Show that ∩k
j=1A j is bounded and Jordan measurable.

(c) Show that A − B is bounded and Jordan measurable.
1.6.6 Use Fubini’s Theorem to directly show that the disk of radius r in R2 has

area πr2.
1.6.7 Show that limn→∞Vn(r) = 0 for each r ∈ R>0, where Vn(r) is the volume of

the ball of radius r in Rn.
Interesting fact: Note that since V2(r) > V1(r) and since limn→∞Vn(r) = 0 it
follows that there exists some n0 such that Vn0(r) = max{Vn(r) | n ∈ Z>0}. It
turns out that this “largest” ball is the ball in R5.

1.6.8 Let L ∈ EndR(R2) be a 2× 2 elementary matrix and let R ⊆ R2 be a rectangle.
For each of the three possible types of elementary matrices, draw the picture
of R and L(R), and verify for yourself that Theorem 1.6.38 holds in each case.



212 1 Multiple real variables and functions of multiple real variables 2022/03/07

Section 1.7

Sequences and series of functions

In this section we generalise the results of Section I-3.6 to functions defined on
subsets of Rn. Much of the discussion will take a similar form to our discussion of
functions whose domain is R. However, because of the more general context, we
will give some results that are of a more advanced nature.

Do I need to read this section? If a reader is acquainted with the results in Sec-
tion I-3.6 then this section can be bypassed on a first reading. However, when we
come to use the greater generality of functions of multiple variables, the reader
will want to refer back to this section to be sure that all of the extensions from the
single variable case work as expected. •

1.7.1 Uniform convergence

1.7.1 Theorem (Weierstrass M-test)

1.7.2 The Weierstrass Approximation Theorem

We now give the multivariable version of the Weierstrass Approximation The-
orem presented in Section I-3.6.6 for the single-variable case. As we shall see,
there are no substantial difficulties with adapting our single-variable proof to the
multivariable case. Thus we limit the discussion, and get right to the point.

1.7.2 Definition (Polynomial functions) A function P : Rn
→ R is a polynomial function

if
P(x1, . . . , xn) =

∑
(k1,...,kn)∈Zn

≥0

ak1···knxk1
1 · · · x

kn
n ,

where the set of numbers ak1···kn ∈ R, (k1, . . . , kn) ∈ Zn
≥0 have the property that the set{

(k1, . . . , kn) ∈ Zn
≥0

∣∣∣ ak1···kn , 0
}

is finite. •

In Section I-4.4.7 we discuss multivariable polynomials in a little detail, so the
reader may be interested in reading about this material there. However, we shall be
interested in only the most pedestrian aspects of such objects. Indeed our interest
is in the following polynomials, recalling from Definition I-3.6.19 the notation Pm

k
for the single-variable Bernstein polynomials.
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1.7.3 Definition (Multivariate Bernstein polynomial, multivariate Bernstein approxi-
mation) For m1, . . . ,mn ∈ Z≥0 and for k j ∈ {0, 1, . . . ,m j}, j ∈ {1, . . . ,n}, the polynomial
function

Pm1···mn
k1···kn

(x1, . . . , xn) = Pm1
k1

(x1) · · ·Pmn
kn

(xn)

=

(
m1

k1

)
· · ·

(
mn

kn

)
xk1

1 (1 − x1)m1−k1 · · · xkn
n (1 − xn)mn−kn

is a Bernstein polynomial in n-variables. For a continuous function f : R → R
defined on a fat compact rectangle

R = [a1, b1] × · · · × [an, bn],

the (m1, . . . ,mn)th Bernstein approximation of f is the function BR
m1···mn

f : R → R
defined by

BR
m1···mn

f (x1, . . . , xn) =
m1∑

k1=0

· · ·

mn∑
kn=0

f
(

k1
m1
, . . . , kn

mn

)
Pm1···mn

k1···kn
(x1, . . . , xn). •

We may now state the multivariable Weierstrass Approximation Theorem.

1.7.4 Theorem (Multivariable Weierstrass Approximation Theorem) Let K ⊆ Rn be a
compact set and let f : K → R be continuous. Then there exists a sequence (Pm)m∈Z>0 of
polynomial functions on Rn such that the sequence (Pm|K)m∈Z>0 converges uniformly to f.

Proof First let us consider the case when K = R is a fat compact rectangle. We
can without loss of generality take the case when R = [0, 1]n, and for brevity denote
Bm1···mn f = BR

m1···mn
f . We will show that the sequence (Bm1···mn f )(m1,...,mn)∈Z≥0 converges

uniformly to f on R. That is to say, given ϵ ∈ R>0 there exists N ∈ Z>0 such that,
whenever m1, . . . ,mn ≥ N,∣∣∣Bm1···mn f (x) − f (x)

∣∣∣ < ϵ, x ∈ R.

Let ϵ ∈ R>0. Since a continuous function on the compact set R is uniformly
continuous (Theorem 1.3.33) it follows that there exists δ ∈ R>0 such that

∥x − y∥Rn ≤ δ =⇒ | f (x) − f (y)| ≤ ϵ
2 .

Also define
M = sup{| f (x)| | x ∈ R},

noting that this is finite by Theorem 1.3.31. Now, it ∥x − y∥Rn ≤ δ then

| f (x) − f (y)| ≤ ϵ
2 ≤

ϵ
2 +

2M
nδ2 (x j − y j)2

for every j ∈ {1, . . . ,n}. If ∥x − y∥Rn > δ then

(x1 − y1)2 + · · · + (xn − yn)2 > δ2.
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This means that, for some j0 ∈ {1, . . . ,n}, (x j0 − y j0)2 > δ2

n . Therefore,

| f (x) − f (y)| ≤ 2M ≤ 2M
( x j0−y j0
√

nδ

)2
≤

ϵ
2 +

2M
nδ2 (x j0 − y j0)2.

Thus, for every x, y ∈ R we have

| f (x) − f (y)| ≤ ϵ
2 +

2M
nδ2 (x j0 − y j0)2

for some j0 ∈ {1, . . . ,n}.
Define f0 : R→ R by f0(x) = 1 and, for j0 ∈ {1, . . . ,n}, define f1, j, f2, j : R→ R by

f1, j(x) = x j, f2, j(x) = x2
j .

Using the lemma from the proof of Theorem I-3.6.21 and the Binomial Theorem, one
can easily verify the following identities:

Bm1···mn f0(x) = 1;
Bm1···mn f1, j(x) = x j;

Bm1···mn f2, j(x) = x2
j +

1
m j

(x j − x2
j ).

In like manner one can also use the lemma of Theorem I-3.6.21 to verify that

|Bm1···mn f (x)| ≤ Bm1···mn g(x), x ∈ R

if | f (x)| ≤ g(x) for every x ∈ R.
Now fix x0 = (x0,1, . . . , x0,n) ∈ R. For x ∈ R let j(x) ∈ {1, . . . ,n} be such that

| f (x) − f (x0)| ≤ ϵ
2 +

2M
nδ2 (x j(x) − x0, j(x))2

For every m1, . . . ,mn ∈ Z≥0 we have

|Bm1···mn f (x) − f (x0)| = |Bm1···mn( f − f (x0) f0)(x)|

≤ Bm1···mn

(
ϵ
2 f0 + 2M

nδ2 ( f1, j(x) − x0, j(x) f0)2
)
(x)

= ϵ
2 +

2M
nδ2 (x2

j(x) +
1

m j(x)
(x j(x) − x2

j(x)) − 2x0, j(x)x j(x) + x2
0, j(x))

= ϵ
2 +

2M
nδ2 (x j(x) − x0, j(x))2 + 2M

nm j(x)δ2 (x j(x) − x2
j(x)).

Now take x = x0, note that j(x0) can be arbitrary, and then get, for any j ∈ {1, . . . ,n},

|Bm1···mn f (x0) − f (x0)| ≤ ϵ
2 +

2M
nm jδ2 (x0, j − x2

0, j) ≤
ϵ
2 +

M
2nm jδ2 ,

using the fact that x − x2
≤

1
4 for x ∈ [0, 1]. Therefore, if N ∈ Z>0 is sufficiently large

that M
2nmδ2 <

ϵ
2 for m ≥ N we have

|Bm1···mn f (x0) − f (x0)| < ϵ,

and this holds for every x0 ∈ R, giving us the desired uniform convergence in the case
where K is a rectangle.
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Now consider the case where K is a general compact set and let R be a fat compact
rectangle such that K ⊆ R. By the Tietze Extension Theorem extend f to a continuous
function f̂ : R→ R such that f̂ |K = f . Our computations above ensure that, for ϵ ∈ R>0
there exists N ∈ Z>0 such that, whenever m1, . . . ,mn ≥ N,

|Bm1···mn f̂ (x) − f̂ (x)| < ϵ, x ∈ R.

If we Pm = Bm···m f̂ , m ∈ Z>0, this gives the sequence of polynomial functions converging
uniformly to f on K. ■

This can then easily be extended to maps taking values in Euclidean space
by applying the preceding theorem to each component. Let us say that a map
P : Rn

→ Rm is a polynomial map if

P(x1, . . . , xn) = (P1(x1, . . . , xn), . . . ,Pm(x1, . . . , xn))

for polynomial functions P j : Rn
→ R.

1.7.5 Corollary (Weierstrass Approximation Theorem for vector-valued maps) Let
K ⊆ Rn be a compact set and let f : K → Rm be continuous. Then there exists a
sequence (Pm)m∈Z>0 of polynomial maps onRn, taking values inRm, such that the sequence
(Pm|K)m∈Z>0 converges uniformly to f.

1.7.3 Swapping limits with other operations

In this section we prove some of the same results as in Section I-3.6.7 concerning
the swapping of limits and other operations, like integration and differentiation.
One significant extension we give in this section concerns limit theorems for Rie-
mann integration. In Section I-3.6.7 we showed that for uniformly convergent
sequences one can swap limit and integral. However, this is true, even for the Rie-
mann integral in a more general setting. Here we state these results. These results
are really best suited to the domain of Lebesgue integration which we discuss in
Chapter III-2. However, since some version of these results are valid for the more
easily understood Riemann integral, it is interesting to record them. Moreover, by
comparing what is true for the Riemann integral with what is true for the more
general Lebesgue integral, one can get a better appreciation of the value of the
Lebesgue integral.

First we record the commutativity of the Riemann integral with increasing
sequences of functions.

1.7.6 Theorem (The Monotone Convergence Theorem for the Riemann integral) Let
R ⊆ Rn be a fat compact rectangle and let (fj)j∈Z>0 be a sequence of R-valued functions on
R satisfying the following conditions:

(i) fj(x) ≥ 0 for each x ∈ R and j ∈ Z>0;
(ii) fj+1(x) ≥ fj(x) for each x ∈ R and j ∈ Z>0;
(iii) fj is Riemann integrable (in the sense of Definition 1.6.22) for each j ∈ Z>0;
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(iv) the map f : R→ R≥0 defined by f(x) = limj→∞ fj(x) exists and is Riemann integrable
(in the sense of Definition 1.6.22).

Then
lim
j→∞

∫
R

fj(x) dx =
∫

R
f(x) dx.

Proof We first prove a couple of lemmata.

1 Lemma Let R ⊆ Rn be a fat compact rectangle, let f : R → R be bounded and Riemann
integrable with

M = sup{|f(x)| | x ∈ R},

and suppose that
∫

R f(x) dx ≥ m vol(R) for some m ∈ R>0. Then the set{
x ∈ R

∣∣∣ f(x) ≥ m
2 vol(R)

}
contains a finite union of rectangles whose total volume is bounded below by m

4M vol(R).

Proof Let P be a partition of R for which

0 ≤
∫

R
f (x) dx − A−( f ,P) ≤

m
4

vol(R).

Therefore A−( f ,P) ≥ 3m
4 vol(R). Let us write P = (P1, . . . ,Pn) with P j = (I j1, . . . , I jk j),

j ∈ {1, . . . ,n}. Let
E =

{
x ∈ R

∣∣∣ f (x) ≥ m
2

}
and denote

L1 = {(l1, . . . , ln) ∈ {1, . . . , k1} × · · · × {1, . . . , kn} | Rl1,...,lm ⊆ E}

and
L2 = ({1, . . . , k1} × · · · × {1, . . . , kn}) \ L1.

We then have

3m
4

vol(R) ≤ A−( f ,P) =
∑

(l1,...,ln)∈L1

inf{ f (x) | x ∈ cl(Rl1,...,ln)}vol(Rl1,...,ln)

+
∑

(l1,...,ln)∈L2

inf{ f (x) | x ∈ cl(Rl1,...,ln)}vol(Rl1,...,ln)

≤

∑
(l1,...,ln)∈L1

Mvol(Rl1,...,ln) +
∑

(l1,...,ln)∈L1

m
2

vol(Rl1,...,ln)

≤

∑
(l1,...,ln)∈L1

Mvol(Rl1,...,ln) +
m
2

vol(R).

Therefore, ∑
(l1,...,ln)∈L1

vol(Rl1,...,ln) ≥
m

4M
vol(R),

giving the lemma. ▼

Using the preceding lemma we prove the following result.
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2 Lemma Let R ⊆ Rn be a fat compact rectangle, let (gj)j∈Z>0 be a sequence of R-valued
functions on R satisfying the following conditions:

(i) gj(x) ≥ 0 for each x ∈ R and j ∈ Z>0;
(ii) gj+1(x) ≤ gj(x) for each x ∈ R and j ∈ Z>0;
(iii) gj is Riemann integrable (in the sense of Definition 1.6.22) for each j ∈ Z>0;
(iv) limj→∞ gj(x) = 0 for all x ∈ R.

Then
lim
j→∞

∫
R

gj(x) dx = 0.

Proof The hypotheses ensure that the sequence whose jth term is
∫

R g j(x) dx is mono-
tonically decreasing and positive. Therefore, it converges by Theorem I-2.3.8. Let us
denote the limit by L̃ ≥ 0 and suppose, in fact, that L̃ > 0. Let us denote L = L̃

vol(R) . For
j ∈ Z>0, let g j,M : R → R≥0 be defined by g j,M(x) = min{g j(x),M}. Since g1 is Riemann
integrable in the sense of Definition 1.6.22, let M0 ∈ R>0 be such that M0 > 2L

5 vol(R)
and such that ∫

R
g1(x) dx −

∫
R

g1,M0(x) dx ≤
L
5

vol(R).

For each j ∈ Z>0 we have

{x ∈ R | g j(x) ≥M0} ⊆ {x ∈ R | g1(x) ≥M0}

since g j(x) ≤ g1(x) for all x ∈ R. This gives

0 ≤
∫

R
(g j(x) − g j,M0(x)) dx ≤

∫
R

(g1(x) − g1,M0(x)) dx ≤
L
5

vol(R).

Since
∫

R g j(x) dx ≥ Lvol(R) (by definition of L) it follows that
∫

R g j,M0(x) dx ≥ 4L
5 vol(R).

Now, for j ∈ Z>0, define

E j =
{
x ∈ R

∣∣∣ g j(x) ≥ 2L
5 vol(R)

}
.

Since M0 ≥
2L
5 vol(R) we also have

E j =
{
x ∈ R

∣∣∣ g j,M0(x) ≥ 2L
5 vol(R)

}
.

By Lemma 1 the set E j contains a finite number of rectangles whose total volume is
bounded below by L

5M0
vol(R). By Theorem 1.6.11 and Exercise 1.2.12 it follows that

the set
D = ∪ j∈Z>0{x ∈ R | g j(x) is discontinuous at x}

has measure zero. Therefore, there is a countable collection of open rectangles covering
D and having total volume bounded above by L

10M0
vol(R). Denote by U the union of

these rectangles. We claim that E j 1 U for each j ∈ Z>0. Indeed, if E j ⊆ U then
vol(E j) ≤ vol(U), but this cannot be since vol(E j) ≥ L

5M0
vol(R) and vol(U) ≤ L

10M0
vol(R).

Let x ∈ cl(E j) \ E j. Thus g j(x) < 2L
5 vol(R) by definition of E j. There then exists a

sequence (xk)k∈Z>0 in E j converging to x0. Since g j(xk) ≥ 2L
5 vol(R) for each k ∈ Z>0 by
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definition of E j it follows that limk→∞ g j(xk) , g j(x), and so g j is discontinuous at x.
Thus x ∈ D ⊆ U. This shows that cl(E j) ⊆ E j∪U. Now, for j ∈ Z>0, define F j = cl(E j)−U
so that F j ⊆ E j. Thus F j is bounded since E j is bounded. We claim that it is also closed.
To see this, let (xk)k∈Z>0 be a sequence in F j converging to x. Since F j ⊆ cl(E j) it follows
that x ∈ cl(E j). We also claim that x < U. Indeed, since U is open, if x ∈ U it must follow
that xk ∈ U for sufficiently large k, contradicting the fact that (xk)k∈Z>0 is a sequence
in F j. Thus x ∈ cl(E j) − U = F j. Thus F j is closed and so compact by the Heine–Borel
Theorem. Since E j+1 ⊆ E j it follows that F j+1 ⊆ F j. By Proposition 1.2.39 it follows that
∩ j∈Z>0F j is nonempty. Thus, ∩ j∈Z>0E j is nonempty. Thus there exists x ∈ R such that
g j(x) ≥ 2L

5 vol(R), contradicting the fact that the sequence (g j) j∈Z>0 converges pointwise
to zero. ▼

Now we proceed with the proof of the theorem. With ( f j) j∈Z>0 and f as in the
statement of the theorem, let g j = f − f j for j ∈ Z>0. One can easily verify that the
sequence (g j) j∈Z>0 satisfies the hypotheses of Lemma 2. Thus, by the lemma,

0 = lim
j→∞

∫
R

g j(x) dx = lim
j→∞

∫
R

( f (x) − f j(x)) dx =
∫

R
f (x) dx − lim

j→∞

∫
R

f j(x) dx,

where we have used Proposition 1.6.28. This gives the result. ■

Let us give some examples which show the value and limitations of the Mono-
tone Convergence Theorem for the Riemann integral.

1.7.7 Examples (The Monotone Convergence Theorem for the Riemann integral)
1. Let ( f j) j∈Z>0 be an enumeration of the rational numbers in the interval [0, 1]; such

an enumeration is possible by Exercise I-2.1.3. Define a sequence of functions
(g j) j∈Z>0 from [0, 1] to R≥0 by

g j(x) =

1, x = q j,

0, otherwise.

Then define fk =
∑k

j=1 g j. One easily verifies that the sequence of functions
( fk)k∈Z>0 satisfies the first three hypotheses of the Monotone Convergence Theo-
rem. Moreover, since the Riemann integral of each of the functions g j, j ∈ Z>0,
is zero (why?) it follows by Proposition 1.6.28 that each of functions fk, k ∈ Z>0,
has Riemann integral zero. Thus

lim
k→∞

fk(x) dx = 0.

However, the pointwise limit of the sequence ( fk)k∈Z>0 is the function f : [0, 1]→
R≥0 defined by

f (x) =

1, x ∈ Q,
0, otherwise,
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i.e., the characteristic function of Q ∩ [0, 1]. However, we have already seen in
Example I-3.4.10 that this function is not Riemann integrable. Thus the Mono-
tone Convergence Theorem for the Riemann integral does not hold in this case.
Punchline: The condition that the pointwise limit function f is Riemann inte-
grable appears in the hypotheses of the Monotone Convergence Theorem, not
in its conclusions. This is a significant defect of the Riemann integral. As we
shall see with the various versions of the Monotone Convergence Theorem in
Chapter III-2, for more general notions of the integral the integrability of the
pointwise limit function follows as a conclusion.

2. On [0, 1] consider the sequence of functions ( f j) j∈Z>0 given by

f j(x) =

 1
( jx)1/2 , x ∈ (0, 1],

0, x = 0.

One can readily verify (cf. Example 1.6.26) that each of the functions f j is
Riemann integrable. Moreover, for each x ∈ [0, 1] it follows that lim j→∞ f j(x) = 0.
Thus the pointwise limit of the sequence ( f j) j∈Z>0 is the zero function. Therefore,
the limit function is Riemann integrable. Note that this sequence does not
quite satisfy the hypotheses of the Monotone Convergence Theorem since the
sequence ( f j(x)) j∈Z>0 is monotonically decreasing, not increasing, for each x ∈
[0, 1]. However, the Monotone Convergence Theorem more or less obviously
applies to this case as well (also see Lemma 2 in the proof of the Monotone
Convergence Theorem). Indeed, the Monotone Convergence Theorem gives

lim
j→∞

∫ 1

0

1
( jx)1/2 dx = 0.

This can also be checked directly.
Punchline: The Monotone Convergence Theorem applies to sequences of possi-
bly unbounded functions. •

The following result gives conditions, in the absence of positivity of the func-
tions in the sequence, under which we can swap limit and integral.

1.7.8 Theorem (Dominated Convergence Theorem for the Riemann integral) Let
R ⊆ Rn be a fat compact rectangle and let (fj)j∈Z>0 be a sequence of R-valued functions on
R satisfying the following conditions:

(i) there exists M ∈ R>0 such that fj(x) ≤M for each x ∈ R and j ∈ Z>0;
(ii) fj is Riemann integrable for each j ∈ Z>0;
(iii) the map f : R→ R defined by f(x) = limj→∞ fj(x) exists and is Riemann integrable.

Then
lim
j→∞

∫
R

fj(x) dx =
∫

R
f(x) dx.

Proof We first prove a lemma.
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1 Lemma Let (Aj)j∈Z>0 be a sequence of subsets of Rn having the properties
(i) Aj+1 ⊆ Aj, j ∈ Z>0, and
(ii) ∩j∈Z>0Aj = ∅.

For j ∈ Z>0 define

νj = inf{vol(B) | B ⊆ Aj is a finite union of rectangles}.

Then limj→∞ νj = 0.
Proof If there exists N ∈ Z>0 such that AN contains no set which is a finite union of
fat rectangles then it follows that the sets A j, j ≥ N, contain no set which is a finite
union of fat rectangles. In this case, the lemma holds vacuously. Thus we can suppose,
without loss of generality, that each set A j contains a set which is a finite union of fat
rectangles. Since the sequence of subsets (A j) j∈Z>0 is decreasing with respect to the
partial order of inclusion it follows that the sequence (ν j) j∈Z>0 is a decreasing sequence
of strictly positive numbers. This sequence converges by Theorem I-2.3.8. Suppose
that it converges to L ∈ R>0. For each j ∈ Z>0 let B j ⊆ A j be a finite union of closed fat
rectangles having the property that

vol(B j) = ν j −
L
2 j . (1.45)

For m ∈ Z>0 let us define Km = ∩
m
j=1B j. Since Km is an intersection of closed sets it

is closed by Exercise 1.2.3. Since the sets Km, m ∈ Z>0, are obviously bounded it
follows from the Heine–Borel Theorem that they are compact. We next claim that Km
is nonempty for each m ∈ Z>0. Let j ∈ Z>0. If B ⊆ A j \ B j is a finite union of rectangles
then we have

vol(B) + vol(B j) = vol(B ∪ B j) ≤ ν j

since B and B j are disjoint. By (1.45) it then follows that

vol(B) ≤
L
2 j . (1.46)

Now, for m ∈ Z>0, let B ⊆ Am \ Km. By Proposition I-1.1.5 we have

B = (B \ B1) ∪ · · · ∪ (B \ Bm). (1.47)

Since B and B j are each finite unions of rectangles, B \ B1 is a finite union of rectangles
for each j ∈ {1, . . . ,m} (why?). Therefore, for each j ∈ {1, . . . ,m}, B \ B j is a subset of
A j \ E j that is a finite union of rectangles. By (1.46) this means that vol(B \ B j) < L

2n ,
j ∈ {1, . . . ,m}. By (1.47) it follows that

vol(B) ≤
m∑

j=1

vol(B \ B j) ≤ L
m∑

j=1

1
2 j < L.

Now, since Am must contain a set which is a finite union of rectangles with the union
having volume at least L, and since any subset of Am \ Km that is a finite union of
rectangles has volume at most L, it follows that Km , ∅. Now, by Proposition 1.2.39
it follows that ∩∞m=1Km , ∅. Since K j ⊆ A j for each j ∈ Z>0, it then follows that
∩
∞

j=1A j , ∅, so violating the hypotheses of the lemma. Thus the assumption that the
sequence (ν j) j∈Z>0 converges to a positive number is invalid. ▼
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Next we prove the theorem for the case when the functions f j, j ∈ Z>0, take values
in R≥0 and when the limit function f is the zero function. In this case, let ϵ ∈ R>0 and
for j ∈ Z>0 define

A j =
{
x ∈ R

∣∣∣ fk(x) ≥ ϵ
4vol(R) for some k ≥ j

}
.

Clearly A j+1 ⊆ A j for all j ∈ Z>0. Moreover, since the sequence ( f j) j∈Z>0 converges
pointwise to zero, ∩ j∈Z>0A j = ∅. By the lemma above let N ∈ Z>0 be sufficiently large
that, for j ≥ N, if B ⊆ A j is a finite union of rectangles then vol(B) < ϵ

4M . Let j ≥ N and
let P be a partition such that∫

R
f j(x) dx −

∫
R

A−( f j,P)(x) dx <
ϵ
2
.

Define
B =

{
x ∈ R

∣∣∣ A−( f j,P)(x) ≥ ϵ
4vol(R)

}
and B′ = R \ B. Since A−( f ,P) is a step function, B, and therefore B′, is a finite union of
rectangles. We then have∫

R
f j(x) dx =

∫
R

f j(x) dx −
∫

R
A−( f ,P)(x) dx +

∫
R

A−( f ,P)(x) dx

≤
ϵ
2
+

∫
B

A−( f ,P)(x) dx +
∫

B′
A−( f ,P)(x) dx

≤
ϵ
2
+Mvol(B) +

ϵ
4vol(R)

vol(B′) ≤
ϵ
2
+
ϵ
4
+
ϵ
4
= ϵ.

Thus lim j→∞
∫

R f j(x) dx = 0 giving the theorem in this case.
Finally to prove the theorem, given the sequence ( f j) j∈Z>0 and f as in the statement

of the theorem, define g j(x) = | f (x) − f j(x)|, x ∈ R, j ∈ Z>0. By Propositions 1.6.28
and 1.6.31 it follows that the functions g j, j ∈ Z>0, are Riemann integrable. Moreover,
they take values in R≥0 and converge pointwise to zero. Therefore, by the special case
we considered above we have

lim
j→∞

∣∣∣∣∫
R

f (x) dx −
∫

R
f j(x) dx

∣∣∣∣ ≤ lim
j→∞

∫
R
| f (x) − f j(x)|dx = 0,

using Proposition 1.6.31. Thus the theorem follows. ■

1.7.4 Notes

The Dominated Convergence Theorem for the Riemann integral is due to Arzelà
[1885] and Arzelà [1900], and the proof we give is an adaptation of the proof of
Lewin [1986]. See also [Gordon 2000].
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Section 1.8

Multivariable R-power series

In this section we study the multivariable generalisation of R-power series
given in the single-variable case in Section I-3.7. The presentation here bears
strong resemblance to the single-variable case, with the main difference being that
the notation is more ponderous.

Do I need to read this section? This section should be read when needed, or
when the reader becomes interested in reading it. •

1.8.1 Multivariable R-formal power series

1.8.2 Multivariable R-convergent power series

1.8.3 Multivariable R-convergent power series and operations on functions

1.8.4 Multivariable Taylor series

1.8.5 Multivariable R-power series

1.8.6 Notes
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Section 1.9

Elementary convexity

Convexity is an important tool in many applications. Restricting domains for
a problem to be convex is often a natural thing to do, and upon doing so one has
at one’s disposal a significant body of knowledge. In this section we work with
convex subsets of Rn. Many of the important applications of convexity arise in an
infinite-dimensional setting, and we shall see a huge portion of this in Chapter III-6.
However, it is useful to have at hand the more elementary finite-dimensional theory
to get some substantial insight into the more difficult applications of convexity.

Do I need to read this section? The material in this section can be skipped until
needed. •

1.9.1 Definitions

There are a few basic concepts one needs to get started, and these are them.

1.9.1 Definition (Convex set, cone, convex cone, affine subspace)
(i) A subset C ⊆ Rn is convex if, for each x1, x2 ∈ C, we have

{sx1 + (1 − s)x2 | s ∈ [0, 1]} ⊆ C.

(ii) A subset K ⊆ Rn is a cone if there exists x0 ∈ Rn such that, for each x ∈ K, we
have

{x0 + λ(x − x0) | λ ∈ R≥0} ⊆ K.
The point x0 is the vertex of the cone.

(iii) A subset K ⊆ Rn is a convex cone if it is both convex and a cone.
(iv) A subset A ⊆ Rn is an affine subspace if, for each x1, x2 ∈ A, we have

{sx1 + (1 − s)x2 | s ∈ R} ⊆ A. •

Note that the set {sx1 + (1− s)x2 | s ∈ [0, 1]} is the line segment in Rn between x1

and x2. Thus a set is convex when the line segment connecting any two points in
the set remains in the set. In a similar manner, {x0 + λ(x − x0) | λ ∈ R≥0} is the ray
emanating from x0 ∈ Rn through the point x. A set is thus a cone when the rays
emanating from x0 through all points remain in the set. An affine subspace is a set
where the (bi-infinite) line through any two points in the set remains in the set. We
illustrate some of the intuition concerning these various sorts of sets in Figure 1.13.

1.9.2 Combinations and hulls

We shall be interested in generating convex sets, cones, and affine subspaces
containing given sets.
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Figure 1.13 An illustration of a convex set (top left), a cone (top
right), a convex cone (bottom left), and an affine subspace
(bottom right)

1.9.2 Definition (Convex hull, coned hull, coned convex hull, affine hull) Let S ⊆ Rn

be nonempty.
(i) A convex combination from S is a linear combination in Rn of the form

k∑
j=1

λ jv j, k ∈ Z>0, λ1, . . . , λk ∈ R≥0,
k∑

j=1

λ j = 1, v1, . . . ,vk ∈ S.

(ii) The convex hull of S, denoted by conv(S), is the smallest convex subset of Rn

containing S.
(iii) The coned hull of S with vertex x0, denoted by cone(S, x0), is the smallest cone

in Rn with vertex at x0 containing S.
(iv) A coned convex combination from S with vertex at x0 is a linear combination
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in Rn of the form

x0 +

k∑
j=1

λ j(v j − x0), k ∈ Z>0, λ1, . . . , λk ∈ R≥0, v1, . . . ,vk ∈ S.

(v) The coned convex hull of S with vertex x0, denoted by conv cone(S, x0), is the
smallest convex cone in Rn with vertex x0 containing S.

(vi) An affine combination from S is a linear combination in Rn of the form

k∑
j=1

λ jv j, k ∈ Z>0, λ1, . . . , λk ∈ R,
k∑

j=1

λ j = 1, v1, . . . ,vk ∈ S.

(vii) The affine hull of S, denoted by aff(S), is the smallest affine subspace of Rn

containing S. •

1.9.3 Remark (Sensibility of hull definitions) The definitions of conv(S), cone(S, x0),
conv cone(S, x0), and aff(S) make sense because intersections of convex sets are
convex, intersections of cones with vertex x0 are cones with vertex x0, and intersec-
tions of affine subspaces are affine subspaces. See Exercise 1.9.3. •

The terms “coned hull” and “coned convex hull” are not standard. In the
literature these will often be called the “cone generated by S” and the “convex cone
generated by S,” respectively.

Convex combinations have the following useful property which also describes
the convex hull.

1.9.4 Proposition (The convex hull is the set of convex combinations) Let S ⊆ Rn be
nonempty and denote by C(S) the set of convex combinations from S. Then C(S) = conv(S).

Proof First we show that C(S) is convex. Consider two elements of C(S) given by

x =
k∑

j=1

λ ju j, y =
m∑

l=1

µlvl.

Then, for s ∈ [0, 1] we have

sx + (1 − s)y =
k∑

j=1

sλ ju j +

m∑
l=1

(1 − s)µ jv j.

For r ∈ {1, . . . , k +m} define

wr =

ur, r ∈ {1, . . . , k},
vr−k, r ∈ {k + 1, . . . , k +m}
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and

ρr =

sλr, r ∈ {1, . . . , k},
(1 − s)µr−k, r ∈ {k + 1, . . . , k +m}.

Clearly wr ∈ S and ρr ∈ R≥0 for r ∈ {1, . . . , k +m}. Also,

k+m∑
r=1

ρr =

k∑
j=1

sλ j +

m∑
l=1

(1 − s)µl = s + (1 − s) = 1.

Thus sx + (1 − s)y ∈ C(S), and so C(S) is convex.
This necessarily implies that conv(S) ⊆ C(S) since conv(S) is the smallest convex set

containing S. To show that C(S) ⊆ conv(S) we will show by induction on the number
of elements in the linear combination that all convex combinations are contained in
the convex hull. This is obvious for the convex combination of one vector. So suppose
that every convex combination of the form

k∑
j=1

λ ju j, k ∈ {1, . . . ,m},

is in conv(S), and consider a convex combination from S of the form

y =
m+1∑
l=1

µlvl =

m∑
l=1

µlvl + µm+1vm+1.

If
∑m

l=1 µl = 0 then µl = 0 for each l ∈ {1, . . . ,m}. Thus y ∈ conv(S) by the induction
hypothesis. So we may suppose that

∑m
l=1 µl , 0 which means that µm+1 , 1. Let us

define µ′l = µl(1 − µm+1)−1 for l ∈ {1, . . . ,m}. Since

1 − µm+1 =

m∑
l=1

µl

it follows that
m∑

l=1

µ′l = 1.

Therefore,
m∑

l=1

µ′l vl ∈ conv(S)

by the induction hypothesis. But we also have

y = (1 − µm+1)
m∑

l=1

µ′l vl + µm+1vm+1

by direct computation. Therefore, y is a convex combination of two elements of
conv(S). Since conv(S) is convex, this means that y ∈ conv(S), giving the result. ■

For cones one has a similar result.



2022/03/07 1.9 Elementary convexity 227

1.9.5 Proposition (The set of positive multiples is the coned hull) Let S ⊆ Rn be
nonempty and denote

K(S, x0) = {λ(x − x0) | x ∈ S, λ ∈ R≥0}.

Then K(S, x0) = cone(S, x0).
Proof Note that K(Sx0) is clearly a cone which contains S. Thus cone(S, x0) ⊆ K(S, x0).
Now suppose that y ∈ K(S, x0). Thus y = λ(x − x0) for x ∈ S and λ ∈ R≥0. Since
cone(S) is a cone with vertex x0 containing x, we must have y ∈ cone(S), giving
K(S, x0) ⊆ cone(S, x0). ■

Finally, one has an interpretation along these lines for convex cones.

1.9.6 Proposition (The coned convex hull is the set of coned convex combinations)
Let S ⊆ Rn be nonempty and denote by K′(S, x0) the set of coned convex combinations

with vertex x0 from S. Then K′(S, x0) = conv cone(S, x0).
Proof Let x, y ∈ K′(S, x0) and write

x = x0 +

k∑
j=1

λ j(u j − x0), y = x0 +

m∑
l=1

µl(vl − x0).

Then, for λ ∈ R≥0,

x0 + λ(x − x0) = x0 +

k∑
j=1

λλ j(u j − x0),

immediately giving x0 + λ(x − x0) ∈ K′(S, x0). We also have

(1 − s)x + sy = x0 + (1 − s)(x − x0) + s(y − x0)

= x0 +

k∑
j=1

(1 − s)λ j(u j − x0) +
m∑

l=1

sµl(vl − x0)

for any x, y ∈ K′(S, x0) and s ∈ [0, 1]. Thus K′(S, x0) is convex. It is evident that K′(S, x0)
is also a cone, and so we must have conv cone(S, x0) ⊆ K′(S, x0).

Now let

y = x0 +

k∑
j=1

λ j(v j − x0) ∈ K′(S, x0).

By the fact that conv cone(S, x0) is a cone containing S we must have x0 + kλ j(v j −

x0) ∈ conv cone(S, x0) for j ∈ {1, . . . , k}. Since conv cone(S, x0) is convex and contains
x0 + kλ j(v j − x0) for j ∈ {1, . . . , k}we must have

k∑
j=1

1
k

(x0 + kλ j(v j − x0)) = y ∈ conv cone(S, x0),

giving the result. ■

Finally, we prove the expected result for affine subspaces, namely that the
affine hull is the set of affine combinations. In order to do this we first give a useful
characterisation of affine subspaces.
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1.9.7 Proposition (Characterisation of an affine subspace) A nonempty subset A ⊆ Rn

is an affine subspace if and only if there exists x0 ∈ Rn and a subspace U ⊆ Rn such that

A = {x0 + u | u ∈ U}.

Proof Let x0 ∈ A and define U = {x− x0 | x ∈ A}. The result will be proved if we prove
that U is a subspace. Let x − x0 ∈ U for some x ∈ A and a ∈ R. Then

a(x − x0) = ax + (1 − a)x0 − x0,

and so a(x − x0) ∈ U since ax + (1 − a)x0 ∈ A. For x1 − x0, x2 − x0 ∈ U with x1, x2 ∈ A we
have

(x1 − x0) + (x2 − x0) = (x1 + x2 − x0) − x0.

Thus we will have (x1−x0)+ (x2−x0) ∈ U if we can show that x1+x2−x0 ∈ A. However,
we have

x1 − x0, x2 − x0 ∈ U,
=⇒ 2(x1 − x0), 2(x2 − x0) ∈ U,
=⇒ 2(x1 − x0) + x0, 2(x2 − x0) + x0 ∈ A,

=⇒ 1
2 (2(x1 − x0) + x0) + 1

2 (2(x2 − x0) + x0) ∈ A,

which gives the result after we notice that

1
2 (2(x1 − x0) + x0) + 1

2 (2(x2 − x0) + x0) = x1 + x2 − x0. ■

Now we can characterise the affine hull as the set of affine combinations.

1.9.8 Proposition (The affine hull is the set of affine combinations) Let S ⊆ Rn be
nonempty and denote by A(S) the set of affine combinations from S. Then A(S) = aff(S).

Proof We first show that the set of affine combinations is an affine subspace. Choose
x0 ∈ S and define

U(S) = {v − x0 | v ∈ A(S)}.

We first claim that U(S) is the set of linear combinations of the form

k∑
j=1

λ jv j, k ∈ Z>0, λ1, . . . , λk ∈ R,
k∑

j=1

λ j = 0, v1, . . . ,vk ∈ S. (1.48)

To see this, note that if

u =
k∑

j=1

λ ju j − x0 ∈ U(S)

then we can write

u =
k+1∑
j=1

λ ju j, λ1, . . . , λk+1 ∈ R,
k+1∑
j=1

λ j = 0, u1, . . . ,uk+1 ∈ S,
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by taking λk+1 = −1 and uk+1 = x0. Similarly, consider a linear combination of the
form (1.48). We can without loss of generality suppose that x0 ∈ {v1, . . . ,vk}, since if
this is not true we can simply add 0x0 to the sum. Thus we suppose, without loss of
generality, that vk = x0. We then have

u =
( k−1∑

j=1

λ jv j + (λk + 1)x0

)
− x0.

Since the term in the parenthesis is clearly an element of A(S) it follows that u ∈ U(S).
With this characterisation of U(S) it is then easy to show that U(S) is a subspace

of Rn. Moreover, it is immediate from Proposition 1.9.8 that A(S) is then an affine
subspace. Since aff(S) is the smallest affine subspace containing S it follows that
aff(S) ⊆ A(S). To show that A(S) ⊆ aff(S) we use induction on the number of elements
in an affine combination in A(S). For an affine combination with one term this is
obvious. So suppose that every affine combination of the form

k∑
j=1

λ jv j, k ∈ {1, . . . ,m},

is in aff(S) and consider an affine combination of the form

x =
m+1∑
j=1

λ jv j =

m∑
j=1

λ jv j + λm+1vm+1.

It must be the case that at least one of the numbers λ1, . . . , λm+1 is not equal to 1. So,
without loss of generality suppose that λm+1 , 1 and then define λ′j = (1 − λ−1

m+1)λ j,
j ∈ {1, . . . ,m}. We then have

m∑
j=1

λ′j = 1,

so that
m∑

j=1

λ′jv j ∈ aff(S)

by the induction hypothesis. It then holds that

x = (1 − λm+1)
m∑

j=1

λ′jv j + λm+1vm+1.

This is then in aff(S). ■

1.9.3 Topology of convex sets and cones

Let us now say a few words about the topology of convex sets. Note that every
convex set is a subset of its affine hull. We first define the notion of the interior of
a subset of an affine subspace.
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1.9.9 Definition (Relative interior of a subset of an affine subspace) If A ⊆ Rn is an
affine subspace and if S ⊆ A, a point x ∈ S is in the interior of S relative to A if
there exists ϵ ∈ R>0 such that A ∩ Bn(ϵ, x) ⊆ S. The set of points in the interior of S
relative to A is denoted by intA(S). •

The idea is that an affine subspace A that is a strict subset of Rn always has
empty interior (why?). However, since A “looks like” Rk for some k < n, one
would like to still talk about subsets of A as having an interior. This all makes a
lot more sense after one knows a little point set topology, particularly as covered
in Section III-1.4.1.

With the notion of the interior relative to an affine subspace, we make the
following definition.

1.9.10 Definition (Relative interior and relative boundary) If C ⊆ Rn is a convex set, the
set

rel int(C) = {x ∈ C | x ∈ intaff(C)(C)}

is the relative interior of C and the set rel bd(C) = cl(C) \ rel int(C) is the relative
boundary of C. •

The point is that, while a convex set may have an empty interior, its interior can
still be defined in a weaker, but still useful, sense. The notion of relative interior
leads to the following useful concept.

1.9.11 Definition (Dimension of a convex set) Let C ⊆ Rn be convex and let U ⊆ Rn be
the subspace for which aff(C) = {x0 + u | u ∈ U} for some x0 ∈ Rn. The dimension
of C, denoted by dim(C), is the dimension of the subspace U. •

The following result will be used in our development.

1.9.12 Proposition (Closures and relative interiors of convex sets and cones are
convex sets and cones) Let C ⊆ Rn be convex and let K ⊆ Rn be a convex cone with
vertex x0. Then

(i) cl(C) is convex and cl(K) is a convex cone and
(ii) rel int(C) is convex and rel int(K) is a convex cone.

Moreover, aff(C) = aff(cl(C)) and aff(K) = aff(cl(K)).
Proof (i) Let x, y ∈ cl(C) and let s ∈ [0, 1]. Suppose that (x j) j∈Z>0 and (y j) j∈Z>0 are
sequences in C converging to x and y, respectively. Note that sx j + (1 − s)y j ∈ C for
each j ∈ Z>0. Moreover, if ϵ ∈ R>0 then

∥sx + (1 − s)y − sx j − (1 − s)y j∥Rn ≤ s∥x − x j∥Rn + (1 − s)∥y − y j∥Rn < ϵ,

provided that j is sufficiently large that s∥x− x j∥Rn < ϵ
2 and (1− s)∥y− y j∥Rn < ϵ

2 . Thus
the sequence (sx j + (1− s)y j) j∈Z>0 converges to sx+ (1 − s)y and so sx+ (1− s)y ∈ cl(C).
This shows that cl(C) is convex. Since C ⊆ cl(C) it follows that aff(C) ⊆ aff(cl(C)).
Moreover, since C ⊆ aff(C) and since aff(C) is closed we have

cl(C) ⊆ cl(aff(C)) = aff(C),
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so giving aff(C) = aff(cl(C)) as desired.
An entirely similar argument shows that cl(K) is convex and that aff(K) = aff(cl(K)).
(ii) Let us first consider the convex set C. To simplify matters, since the relative inte-

rior is the interior relative to the affine subspace containing C, and since the topology of
an affine subspace is “the same as” Euclidean space, we shall assume that dim(C) = n
and show that int(C) is convex; cf. Example 1.3.38–2.

We first prove a lemma.

1 Lemma If C is a convex set, if x ∈ rel int(C), and if y ∈ cl(C) then

[x,y) ≜ {sx + (1 − s)y | s ∈ [0, 1)}

is contained in rel int(C).

Proof As in the proof of (ii), let us assume, without loss of generality, that dim(C) = n.
Since x ∈ int(C) there exists r ∈ R>0 such that Bn(r, x) ⊆ C. Since y ∈ cl(C), for every
ϵ ∈ R>0 there exists yϵ ∈ C ∩ Bn(ϵ, y). Let z = αx + (1 − α)y ∈ [x, y) for α ∈ [0, 1), and
define δ = αr − (1 − α)ϵ. If ϵ is sufficiently small we can ensure that δ ∈ R>0, and we
assume that ϵ is so chosen. For z′ ∈ Bn(δ, z) we have

∥z′ − z∥Rn < δ

=⇒ ∥z′ − (αx + (1 − α)yϵ + (1 − α)(y − yϵ))∥Rn < δ

=⇒ ∥z′ − (αx + (1 − α)yϵ)∥Rn ≤ δ + (1 − α)ϵ = αr
=⇒ z′ ∈ {αx′ + (1 − α)yϵ | x′ ∈ Bn(r, x)}.

Since yϵ ∈ C and Bn(r, x) ⊆ C it follows that z′ ∈ C and so Bn(δ, z) ⊆ C. This gives our
claim that [x, y) ⊆ int(C). ▼

That int(C) is convex follows immediately since, if x, y ∈ int(C), Lemma 1 ensures
that the line segment connecting x and y is contained in int(C).

Now consider the convex cone K with vertex x0. We know now that rel int(K) is
convex so we need only show that it is a cone. This, however, is obvious. Indeed,
if x ∈ rel int(K) suppose that x0 + λ(x − x0) < rel int(K) for some λ ∈ R>0. Since
x0 +λ(x− x0) ∈ K we must then have x0 +λ(x− x0) ∈ rel bd(K). By Lemma 1 this means
that x0 + (λ + ϵ)(x − x0) < K for all ϵ ∈ R>0. This contradicts the fact that K is a cone. ■

The following result will also come up in our constructions.

1.9.13 Proposition (The closure of the relative interior) If C ⊆ Rn is a convex set then
cl(rel int(C)) = cl(C).

Proof It is clear that cl(rel int(C)) ⊆ cl(C). Let x ∈ cl(C) and let y ∈ rel int(C). By
Lemma 1 in the proof of Proposition 1.9.12 it follows that the half-open line segment
[y, x) is contained in rel int(C). Therefore, there exists a sequence (x j) j∈Z>0 in this line
segment, and so in rel int(C), converging to x. Thus x ∈ cl(rel int(C)). ■

We close this section by giving a useful characterisation of compact convex sets.
The proof of the theorem will involve some things that will be covered only in the
sequel.
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1.9.14 Theorem (Compact convex sets are homeomorphic to balls) If C ⊆ Rn has
dimension k then

(i) cl(C) is homeomorphic to Bk(1, 0),
(ii) rel int(C) is homeomorphic to Bk(1, 0),
(iii) bd(C) is homeomorphic to

Sk−1 = {x ∈ Rk
| ∥x∥Rk = 1},

the unit sphere in Rk.
Proof Suppose for simplicity and without loss of generality that n = k. Let x0 ∈ int(C)
and for u ∈ Sn−1 let ρx0,u : R≥0 → Rn be defined by

ρx0,u(s) = x0 + su.

Since x0 ∈
∫

(C), for s sufficiently small we have ρx0,u(s) ∈ int(C). Define

s(x0,u) = sup{s ∈ R≥0 | ρx0,u(s) ∈ rel int(C)},

this making sense by compactness of C and continuity of ρx,u. We claim that ρx0,u(s) <
cl(C) for s > s(x0,u). By Corollary 1.9.17 there exists a separating hyperplane P for
{ρx0,u(s(x0,u)} and C. We write

P = {x ∈ Rn
| ⟨λ, x⟩Rn = a},

and assume that
C ⊆ {x ∈ Rn

| ⟨λ, x⟩Rn ≤ a}.

Then
ρx0,u(s) ∈ cl(C) ⇐⇒ ⟨λ, ρx0,u(s)⟩Rn ≤ a ⇐⇒ s ≤ s(x0,u),

the latter implication following since the function s 7→ ⟨λ, ρx0,u(s)⟩Rn is linear. Therefore,
it follows that ρx0,u(s) ∈ bd(C) if and only if s = s(x0,u). This, then defines a map
ψC : Sn−1

→ bd(C) by ψC(u) = ρx0,u(s(x0,u)). Our arguments above directly imply that
ψC is injective. To see that ψC is surjective, let x ∈ bd(C) and define ux = x0 +

x−x0
∥x−x0∥Rn

.
Then ρx0,ux(s) = x if we take s = ∥x − x0∥Rn . This not only establishes the surjectivity of
ψC but gives an explicit formula for ψ−1

C : bd(C)→ Sn−1:

ψ−1
C (x) =

x − x0

∥x − x0∥Rn
.

Note that this is the restriction to bd(C) of the continuous map x 7→ x−x0
∥x−x0∥Rn

from
Rn
\ {x0} to Sn−1. Thus ψ−1

C is continuous by Proposition 1.3.24. It now follows
from Theorem 1.3.43 that ψ−1

C is, in fact, a homeomorphism and so too must ψC be a
homeomorphism. This gives part (iii) of the theorem.

To prove the remaining two parts of the theorem we use a lemma.
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1 Lemma If C ⊆ Rn is an n-dimensional convex set and if x0 ∈ rel int(C), then

cl(C) = {(1 − s)x0 + sx′ | s ∈ [0, 1], x′ ∈ bd(C)}.

Moreover, if x′1, x
′

2 ∈ bd(C) are distinct then

{(1 − s)x0 + sx′1 | s ∈ [0, 1]} ∩ {(1 − s)x0 + sx′2 | s ∈ [0, 1]} = {x0}.

Proof Convexity of cl(C) ensures that

{(1 − s)x0 + sx′ | s ∈ [0, 1], x′ ∈ bd(C)} ⊆ cl(C).

For the converse inclusion, let x ∈ cl(C). If x = x0 or it x ∈ bd(C) then we obviously
have

x ∈ {(1 − s)x0 + sx′ | s ∈ [0, 1], x′ ∈ bd(C)}.

Thus we suppose that x ∈ int(C) and x , x0. Similarly to the first part of the proof,
let v = x − x0 and define ρx0,v(t) = x0 + tv. For t ∈ R≥0 sufficiently small we have
ρx0,v(t) ∈ int(C) since x0 ∈ int(C). Since C is compact we can define

t0 = sup{t ∈ R≥0 | ρx0,v(t) ∈ int(C)}.

We then take x′ = x0 + t0(x − x0) so that x′ ∈ bd(C), just as we showed in the first part
of the proof. Since ρx0,v(1) = x and since x ∈ int(C) we have t0 > 1. Thus we write

x = (1 − t−1
0 )y + t−1

0 x′

which gives
cl(C) ⊆ {(1 − s)y + sx′ | x′ ∈ bd(C), s ∈ [0, 1]}

since t−1
0 < 1.

Our arguments in the first part of the proof show that the ray

{ρx0,v(t) | t ≥ 0}

intersects bd(C) in exactly one point. From this it follows that two such rays passing
through distinct boundary points of C can only intersect at x0. ▼

Now let x ∈ cl(C). Suppose that x , x0. Then, by the lemma, there exists a unique
x′ ∈ bd(C) and s ∈ (0, 1] such that x = x0 + s(x′ − x0). Moreover,

s =
∥x − x0∥Rn

∥x′ − x0∥Rn
.

Thus we define ϕC : cl(C)→ Bn(1, 0) by

ϕC(x) =

 ∥x−x0∥Rn

∥x′−x0∥Rn
ψ−1

C (x′), x , x0,

0, x = x0.

Continuity of ϕC away from x0 will follow if we can show that the boundary point x′

is a continuous function of x. However, this follows since x′ = ψC( x−x0
∥x−x0∥Rn

), which is
continuous away from x0. To show continuity at x0, define

m = min{∥x′ − x0∥Rn | x′ ∈ bd(C)},
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noting that m ∈ R>0 since bd(C) is compact (using Theorem 1.3.32). Now, if ϵ ∈ R>0
let δ = mϵ and then note that if x ∈ C ∩ Bn(δ, x0) we have

∥ϕC(x) −ϕC(x0)∥Rn =
∥x − x0∥Rn

∥x′ − x0∥Rn
∥ψ−1

C (x′)∥Rn < δ
m = ϵ.

ThusϕC is continuous. Injectivity ofϕC follows from the uniqueness part of the lemma
above, and that ϕC is a homeomorphism now follows from Theorem 1.3.43. ■

In Figure 1.14 we illustrate the idea behind the preceding theorem.

φC

Figure 1.14 Compact convex sets are homeomorphic to balls

1.9.4 Separation theorems for convex sets

One of the most important properties of convex sets in convex analysis is the
notion of certain types of convex sets being separated by hyperplanes. We shall
give only an introduction to this very important topic, and refer the reader to the
notes at the end of the chapter for additional references.

In order to make things clear, let us define all of our terminology precisely.

1.9.15 Definition (Hyperplane, half-space, support hyperplane)
(i) A hyperplane in Rn is a subset of the form

{x ∈ Rn
| ⟨λ, x⟩Rn = a}

for some λ ∈ Rn
\ {0} and a ∈ R. Such a hyperplane is denoted by Pλ,a.

(ii) An half-space in Rn is a subset of the form

{x ∈ Rn
| ⟨λ, x⟩Rn > a}

for some λ ∈ Rn
\ {0} and a ∈ R. We shall denote

H−λ,a = {x ∈ R
n
| ⟨λ, x⟩Rn < a}, H+λ,a = {x ∈ R

n
| ⟨λ, x⟩Rn > a}.

(iii) If A ⊆ Rn, a support hyperplane for A is a hyperplane Pλ,a such that A ⊆
H+λ,a ∪ Pλ,a.
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(iv) For subsets A,B ⊆ Rn, a separating hyperplane is a hyperplane Pλ,a for which

A ⊆ H+λ,a ∪ Pλ,a, B ⊆ H−λ,a ∪ Pλ,a. •

The following result is a basis for many separation theorems for convex sets.

1.9.16 Theorem (Convex sets possess supporting hyperplanes) If C ⊆ Rn is a convex
set not equal to Rn, then C possesses a supporting hyperplane.

Proof Let x0 < cl(C), let z ∈ C, and define r = ∥x0 − z∥Rn . Define A = cl(C) ∩ Bn(r, x0)
noting that A is a nonempty compact set. Define f : A→ R>0 by f (y) = ∥x0− y∥Rn . The
map f is continuous and so there exists y0 ∈ A ⊆ cl(C) such that f (y0) is the minimum
value of f . Let λ = y0 − x0 and a = ⟨y0, y0 − x0⟩Rn . We will show that Pλ,a is a support
hyperplane for C.

First let us show that Pλ,a separates {x0} and cl(C). A direct computation shows
that

⟨λ, x0⟩Rn = −∥x0 − y0∥
2
Rn + a < a.

To show that ⟨λ, x⟩Rn ≥ a for all x ∈ cl(C), suppose otherwise. Thus let x ∈ C be such
that ⟨λ, x⟩Rn < a. By Lemma 1 in the proof of Proposition 1.9.12 the line segment from
y to y0 is contained in cl(C). Define g : [0, 1]→ R by g(s) = ∥(1− s)y0 + sy− x0∥

2
Rn . Thus

g is the square of the distance from x0 to points on the line segment from y to y0. Note
that g(s) ≥ g(0) for all s ∈ (0, 1] since y0 is the closest point in cl(C) to x0. A computation
gives

g(s) = (1 − s)2
∥y0 − x0∥

2
Rn + 2s(1 − s)⟨y − x0, y0 − x0⟩Rn + s2

∥y − x0∥
2
Rn

and another computation gives g′(0) = 2(⟨λ, y⟩Rn − a) which is strictly negative by our
assumption about y. This means that g strictly decreases near zero, which contradicts
the definition of y0. Thus we must have ⟨λ, y⟩Rn ≥ a for all y ∈ cl(C). ■

During the course of the proof of the theorem we almost proved the following
result.

1.9.17 Corollary (Separation of convex sets and points) If C ⊆ Rn is convex and if
x0 < int(C) then there exists a separating hyperplane P for {x0} and C. Moreover, if
x0 < cl(C) then P may be chosen such that x0 < P and such that P ∩ C = ∅.

Proof If x0 < cl(C) then, from the proof of Theorem 1.9.16, there exists λ ∈ Rn and
a ∈ R such that ⟨λ, x0⟩Rn < a and such that ⟨λ, x⟩Rn ≥ a for all x ∈ C. By continuity of the
inner product (as shown in ?) it follows that ⟨λ, x⟩Rn ≥ a for every x ∈ cl(C). Therefore, what

there exists ϵ ∈ R>0 such that

⟨λ, x0⟩Rn < a + ϵ, ⟨λ, x⟩Rn > a − ϵ, x ∈ cl(C).

Thus x0 < Pλ,a and Pλ,a ∩ cl(C) = ∅. Note that this, at the same time, gives the first
statement in the corollary when x0 ∈ cl(C) and the final statement in the corollary.

If x0 ∈ bd(C) then let (x j) j∈Z>0 be a sequence inRn
\ cl(C) converging to x0. For each

j ∈ Z>0 let λ j ∈ R
n
\ {0} and a j ∈ R have the property that

⟨λ j, x j⟩Rn ≤ a j, j ∈ Z>0,

⟨λ j, y⟩Rn > a j, y ∈ C, j ∈ Z>0.
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(That it is possible to find such sequences is a consequence of the continuity of an
inner product, as proved in .) Let us without loss of generality take a j = ⟨λ j, x j⟩Rn ; thiswhere?

corresponds to choosing the hyperplane separating C from x j to pass through x j. Let

α j =
λ j

∥λ j∥Rn
, j ∈ Z>0. The sequence (α j) j∈Z>0 is a sequence in the (n− 1)-sphere which is

compact. Thus we can choose a convergent subsequence which we also denote, by an
abuse of notation, by (α j) j∈Z>0 . Let α ∈ Rn denote the limit of this sequence. Defining
c j = ⟨α j, x j⟩Rn we then have

⟨α j, x j⟩Rn = c j, j ∈ Z>0,

⟨α j, y⟩Rn > c j, y ∈ C, j ∈ Z>0.

Let c = lim j→∞ c j. For y ∈ C this gives

⟨α, x0⟩Rn = lim
j→∞
⟨α j, x j⟩Rn = c,

⟨α, y⟩Rn = lim
j→∞
⟨α j, y⟩Rn ≥ c

(again using continuity of the inner product), as desired. ■

The following consequence of Theorem 1.9.16 is also of independent interest.

1.9.18 Corollary (Disjoint convex sets are separated) If C1,C2 ⊆ Rn are disjoint convex
sets, then there exists a hyperplane separating C1 and C2.

Proof Define
C1 − C2 = {x1 − x2 | x1 ∈ C1, x2 ∈ C2}.

One checks directly that C1 − C2 is convex. Since C1 and C2 are disjoint it follows
that 0 < C1 − C2. By Theorem 1.9.16 there exists a hyperplane P, passing through
0, separating C1 − C2 from 0. We claim that this implies that the same hyperplane
P, appropriately translated, separates C1 and C2. To see this note that P gives rise to
λ ∈ Rn

\ {0} such that

⟨λ, x1 − x2⟩Rn ≥ 0, x1 ∈ C1, x2 ∈ C2.

Let
a1 = inf{⟨λ, x1⟩Rn | x1 ∈ C1}, a2 = sup{⟨λ, x2⟩Rn | x2 ∈ C2}

so that a1 − a2 ≥ 0. For any a ∈ [a2, a1] we have

⟨λ, x1⟩Rn ≥ a, x1 ∈ C1,

⟨λ, x2⟩Rn ≤ a, x2 ∈ C2,

giving the separation of C1 and C2, as desired. ■

The following result is now a fairly general separation theorem for convex sets.
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1.9.19 Theorem (A general separation theorem) If C1,C2 ⊆ Rn are convex sets, then they
possess a separating hyperplane if and only if either of the following two conditions holds:

(i) there exists a hyperplane P such that C1,C2 ⊆ P;
(ii) rel int(C1) ∩ rel int(C2) = ∅.

Proof Suppose that C1 and C2 possess a separating hyperplane P. Therefore, there
exists λ ∈ Rn

\ {0} and a ∈ R such that

⟨λ, x1⟩Rn ≥ a, x1 ∈ C1,

⟨λ, x2⟩Rn ≤ a, x2 ∈ C2.

If ⟨λ, x⟩Rn = a for all x ∈ C1∪C2 then (i) holds. Now suppose that ⟨λ, x1⟩Rn > a for some
x1 ∈ C1 (a similar argument will obviously apply if this holds for some x2 ∈ C2) and let
x0 ∈ rel int(C1). Since P is a support hyperplane for C1 and since C1 1 P, it follows that
the relative interior, and so x0, lies in the appropriate half-space defined by P. Since P
separates C1 and C2 this precludes x0 from being in C2. Thus (ii) holds.

Now suppose that (i) holds. It is then clear that P is a separating hyperplane for
C1 and C2.

Finally, suppose that (ii) holds. From Proposition 1.9.12 and Corollary 1.9.18 it
holds that rel int(C1) and rel int(C2) possess a separating hyperplane. Thus there exists
λ ∈ Rn

\ {0} and a ∈ R such that

⟨λ, x1⟩Rn ≤ a, x1 ∈ rel int(C1),
⟨λ, x2⟩Rn ≥ a, x2 ∈ rel int(C2).

Therefore, by Proposition 1.9.13 we also have

⟨λ, x1⟩Rn ≤ a, x1 ∈ cl(C1),
⟨λ, x2⟩Rn ≥ a, x2 ∈ cl(C2),

which implies this part of the theorem. ■

1.9.5 Simplices and simplex cones

We now concern ourselves with special examples of convex sets and convex
cones, and show that these special objects can always be found as neighbourhoods
in general convex sets and cones.

We begin with the definitions.

1.9.20 Definition (Affine independence, simplex, simplex cone) Let n ∈ Z>0.
(i) A set {x0, x1, . . . , xk} ⊆ Rn is affinely independent if the set {x1 − x0, . . . , xk − x0}

is linearly independent.
(ii) A k-simplex is the convex hull of a set {x0, x1, . . . , xk} of affinely independent

points. We shall denote this simplex by ∆(x0, x1, . . . , xk).
(iii) A k-simplex cone with vertex x0 is the coned convex hull with vertex x0 of a

set {x1, . . . , xk} such that {x1 − x0, . . . , xk − x0} is linearly independent. We shall
denote this simplex cone by K(x1, . . . , xk; x0). •
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The following result shows that choice of x0 from {x0, x1, . . . , xk} is not important
in the definition affine independence.

1.9.21 Proposition (Characterisation of affine independence) For vectors
{x0, x1, . . . , xk} ⊆ Rn the following statements are equivalent:

(i) the set is affinely independent;
(ii) for any j ∈ {1, . . . ,n}, the set {x0 − xj, x1 − xj, . . . , xj−1 − xj, xj+1 − xj, . . . , xk − xj} is

linearly independent.
Proof Suppose that the set is affinely independent and let j ∈ {1, . . . , k}. Let

c0(x0 − x j) + c1(x1 − x j) + · · · + c j−1(x j−1 − x j)
+ c j+1(x j+1 − x j) + · · · + ck(xk − x j) = 0

for c0, c1, . . . , c j−1, c j+1, . . . , ck ∈ R. Adding and subtracting x0 to each of the terms in the
sum yields

c1(x1 − x0 + · · · + c j−1(x j−1 − x0) + c j+1(x j+1 − x0 + · · · + ck(xk − x0)
− (c0 + c1 + · · · + c j−1 + c j+1 + · · · + ck)(x j − x0) = 0.

Affine independence of {x0, x1, . . . , xk} gives

c1 = · · · = c j−1 = c j+1 = · · · = ck = 0,
c0 + c1 + · · · + c j−1 + c j+1 + · · · + ck = 0,

which gives c0, c1, . . . , c j−1, c j+1, . . . , ck all zero and so gives the second statement.
The converse is proved in exactly the same way, swapping the rôles of x0 and x j.■

The idea of a simplex and a simplex cone is that they form the “simplest”
possible examples of convex sets and convex cones. The notion of “simplicity”
considered here is the following: A convex set C1 (resp. convex cone K1) is simpler
than a convex set C2 (resp. a convex cone K2) if the minimum number of points
needed to specify the convex hull (resp. coned convex hull) of C1 (resp. K1) is less
than the minimum number of points needed to specify the convex hull (resp. coned
convex hull) of C2 (resp. K2).

Let us give the standard examples of such objects.

1.9.22 Examples (Standard n-simplex, standard n-simplex cone)
1. The standard n-simplex is the subset of Rn given by

∆n =
{
x ∈ Rn

∣∣∣∣ x1, . . . , xn ∈ R≥0,
n∑

j=1

x j ≤ 1
}
.

Thus ∆n is the convex hull of the n standard basis vectors along with the origin.
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Figure 1.15 The standard 2-simplex (left) and the standard 2-
simplex cone (right)

2. The standard n-simplex cone is the subset of Rn given by

Kn = {x ∈ Rn
| x1, . . . , xn ∈ R≥0}.

Note that Kn is the coned convex hull with vertex at 0 of the n standard basis
vectors.

In Figure 1.15 we depict the standard n-simplex and the standard n-simplex cone
when n = 2. •

The following result about the dimension of simplices and simplex cones is
intuitively clear.

1.9.23 Proposition (Dimension of simplices and simplex cones) If ∆,K ⊆ Rn are a k-
simplex and a k-simplex cone with vertex at x0, respectively, then dim(∆) = dim(K) = k.

Proof Let us first consider the k-simplex ∆ = ∆(x0, x1, . . . , xk). Clearly
aff({x0, x1, . . . , xk}) ⊆ aff(∆) since {x0, x1, . . . , xk} ⊆ ∆. Let x ∈ aff(∆) so that

x =
m∑

l=1

µlyl

for µ1, . . . , µm ∈ R summing to 1 and for y1, . . . , ym ∈ ∆. For each l ∈ {1, . . . ,m}we have

yl =

k∑
j=0

λl jx j

for λl0, λl1, . . . , λlk ∈ R≥0 summing to 1. Therefore,

x =
m∑

l=1

k∑
j=0

µ jλl jx j =

k∑
j=0

( m∑
l=1

λl jµl

)
x j,

and so x ∈ aff({x0, x1, . . . , xk}) since

k∑
j=0

( m∑
l=1

λl jµl

)
= 1.
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Thus aff(∆) = aff({x0, x1, . . . , xk}). That dim(∆) = k follows since the subspace corre-
sponding to the affine subspace aff({x0, x1, . . . , xk}) is generated by {x1 − x0, . . . , xk − x0},
and this subspace has dimension k.

The proof for the k-simplex cone K follows in an entirely similar manner, merely
with convex combinations being replaced by coned convex combinations. ■

One of the things we will need to be able to do is find neighbourhoods of points
in convex sets and convex cones that are simplices and simplex cones, respectively.
For convex sets we have the following result.

1.9.24 Proposition (Existence of simplicial neighbourhoods) Let C ⊆ Rn be convex and
of dimension k, let x0 ∈ rel int(C), and let U be a neighbourhood of x0 in Rn. Then there
exists a k-simplex ∆ ⊆ C such that ∆ ⊆ U and x0 ∈ rel int(∆).

Proof Let r ∈ R>0 be such that Bn(r, x0) ⊆ U and such that Bn(r, x0) ∩ aff(C) ⊆ C. The
existence of such an r follows since x0 ∈ rel int(C). Let {v1, . . . ,vk} be an orthogonal
basis (see ) for the subspace U(C) corresponding to aff(C) and suppose that v1, . . . ,vk ∈what

Bn(r, 0). Then y j ≜ x0 + v j ∈ Bn(r, x0), j ∈ {1, . . . , k}.
We now use a linear algebra lemma; the reader can refer to for a discussion ofwhat

inner product spaces.

1 Lemma If (V, ⟨,̇ ·⟩) is a finite-dimensionalR-inner product space and if {v1, . . . ,vn} is a basis
for V, then there exists v0 ∈ V such that ⟨v0,vj⟩ < 0 for every j ∈ {1, . . . ,n}.

Proof Let L : V → Rn be the unique linear map defined by asking that L(v j) be equal
to e j, the jth standard basis vector for Rn. Note that if we take e0 = (−1, . . . ,−1) ∈ Rn

then, with respect to the standard inner product, ⟨e0, e j⟩Rn = −1 < 0, j ∈ {1, . . . ,n}. Let
α ∈ (Rn)′ correspond to e0 under the identification of Rn with (Rn)′ induced by the
standard inner product (see ) and take β = L′(α). Thenwhat?

β(v j) = L′(α) · v j = α · L(v j) = α · e j = −1

for j ∈ {1, . . . ,n}. Then take v0 to correspond to β under the identification of V′ with V
using the inner product on V (again, see ). We then have ⟨v0, v j⟩ = −1, j ∈ {1, . . . ,n}. ▼what

We now apply the lemma to the subspace U(C) (with the inner product induced
from that on Rn) to assert the existence of v0 ∈ U(C) such that ⟨v0,v j⟩Rn < 0 for
j ∈ {1, . . . , k}. We may assume that ∥v0∥Rn < r. We claim that the set {v0,v1, . . . ,vk} is
affinely independent. Indeed, suppose that

c1(v1 − v0) + · · · + ck(vk − v0) = 0.

Then c j(⟨v j,v j⟩Rn − ⟨v j,v0⟩Rn) = 0 for j ∈ {1, . . . , k}. Since ⟨v j,v j⟩Rn − ⟨v j,v0⟩Rn ∈ R>0
it follows that c j = 0 for j ∈ {1, . . . , k}, so giving affine independence of {v0,v1, . . . ,vk}.
Define y0 = x0 + v0 ∈ Bn(r, x0) and take ∆ = conv({y0, y1, . . . , yk}).

We claim that ∆ ∈ Bn(r, x0) ⊆ U. Indeed, if x ∈ ∆ then we can write x as a convex
combination:

x =
k∑

j=0

λ jy j =⇒ x − x0 =

k∑
j=0

λ j(y j − x0) =
k∑

j=0

v j.
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Applying the triangle inequality a bunch of times gives

∥x − x0∥Rn ≤

k∑
j=0

λ j∥v j∥Rn < r,

as desired.
Finally, we claim that x0 ∈ rel int(∆). This will follow if we can show that

0 ∈ rel int(conv({v0,v1, . . . ,vk})). By the lemma above and since we chose the basis
{v1, . . . ,vk} to be orthogonal,

v0 =

k∑
j=1

⟨v j,v0⟩Rn

∥v j∥
2
Rn

v j =⇒ ∥v1∥
2
Rn · · · ∥vk∥

2
Rnv0 −

k∑
j=1

⟨v j,v0⟩Rnv j = 0,

showing that 0 is a linear combination of the vectors {v0,v1, . . . ,vk}with the coefficients
being strictly positive. By scaling the coefficients this linear combination can be made
convex with all coefficients positive. Therefore, 0 ∈ rel int(conv({v0,v1, . . . ,vk})), as
desired. ■

For cones we have a similarly styled result.

1.9.25 Proposition (Existence of simplex cone neighbourhoods) Let K ⊆ Rn be a
convex cone with vertex at y0 of dimension k, let x0 ∈ rel int(K) \ {y0}, and let U be a
neighbourhood of x0 ∈ Rn. Then there exists a k-simplex cone K0 ⊆ K with vertex y0 such
that K0 ⊆ cone(U,y0) and x0 ∈ rel int(K0).

Proof For simplicity let us assume that y0 = 0. This can be done without loss of
generality by translating the vertex to 0, applying the result with y0 = 0, and then
translating back to y0.

Denote by Px0 the orthogonal complement to x0 and let

Ux0 = {v ∈ Px0 | x0 + v ∈ U}.

Note that Ux0 is a neighbourhood of 0 in Px0 . By Proposition 1.9.24 let ∆ ⊆ Px0 be a
(k − 1)-simplex contained in Ux0 and having 0 in its relative interior. Then define K0
to be the coned convex hull of x0 + ∆ ≜ {x0 + v | v ∈ ∆}, noting that K0 is then the
coned convex hull of the points x j ≜ x0 + v j, j = {1, . . . , k}, where the points v1, . . . ,vk
are defined so that their convex hull is ∆.

We claim that K0 ⊆ cone(U, 0). This follows since

x0 + ∆ ⊆ {x0 + v | v ∈ Ux0} ⊆ U,

and so K0 = cone(x0 + ∆, 0) ⊆ cone(U, 0).
We also claim that x0 ∈ rel int(K0). Since 0 ∈ rel int(∆) we can write

x0 = x0 + 0 = x0 +

k∑
j=1

λ jv j
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for appropriate λ1, . . . , λk ∈ R>0 summing to 1. Therefore

x0 =

k∑
j=1

λ j(v j + x0),

and so x0 is a linear combination of the points x1, . . . , xk with strictly positive coefficients.
Thus x0 ∈ rel int(K0). ■

A useful property of simplices is that they define affine functions by knowing
the values of the function on vertices.

1.9.26 Proposition (Affine functions on simplices) Consider the k-simplex
∆(x0, x1, . . . , xk) and let a0, a1, . . . , ak ∈ R. Then there exists α ∈ (Rn)′ and β ∈ R
such that α · xj + β = aj, j ∈ {0, 1, . . . ,k}. Moreover, if α′ ∈ (Rn)′ and β′ ∈ R define an
affine function

x 7→ α′ · x + β′,

such that α · xj + β = aj, j ∈ {0, 1, . . . ,k}, then

α′ · x + β′ = α · x + β

for all x ∈ aff({x0, x1, . . . , xk}).
Proof Define the linearly independent set of vectors {v1, . . . ,vk} by v j = x j − x0, j ∈
{1, . . . , k}. If necessary, extend these vectors to a basis {v1, . . . ,vk,vk+1, . . . ,vn}. Let
{α1, . . . ,αn} be the dual basis. Then write

α = c1α1 + · · · + cnαn

for c1, . . . , cn ∈ R.
For the existence assertion of the result, take c j = a j − a0, j ∈ {1, . . . ,n}, and take

β = a0 − α · x0. Then compute

α · x j + β = α · (x j − x0) + β + α · x0 = a j, j ∈ {1, . . . , k}.

We also immediately have α · x0 + β = a0. This gives the existence of α ∈ (Rn)′ and
β ∈ R as desired.

Now suppose that α′ ∈ (Rn)′ and β′ ∈ R satisfy α′ · x j + β = a j for j ∈ {0, 1, . . . , k}.
Then β′ = a0 − α′ · x0. Let x ∈ aff({x0, x1, . . . , xk}) and write

x = x0 + ξ1(x1 − x0) + · · · + ξk(xk − x0)

for some suitable ξ1, . . . , ξk ∈ R (why is this possible?). Then

α′ · x + β′ = α′ · x0 + ξ1(a1 − a0) + · · · + ξk(ak − a0) + a0 − α′ · x0

= a0 + ξ1(a1 − a0) + · · · + ξk(ak − a0)
= α · x0 + β + ξ1α · (x1 − x0) + · · · + ξkα · (xk − x0)
= α · x + β,

giving the uniqueness of the linear function on aff({x0, x1, . . . , xk}). ■
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1.9.6 Barycentric coordinates

In this section we give a useful parameterisation of simplices and simplex cones.
The idea is that, using the parameterisation, one makes a simplex or a simplex cone
homeomorphic to the standard simplex or the standard simplex cone, respectively.

To get started we make the following observation about simplices.

1.9.27 Proposition (Property of simplexes) For every x ∈ ∆(x0, x1, . . . , xk) there exists
unique

(λ0, λ1, . . . , λk) ∈
{
(µ0, µ1, . . . , µk) ∈ [0, 1]k+1

∣∣∣∣ k∑
j=0

µj = 1
}

such that

x =
k∑

j=0

λjvj

Proof This is left to the reader as Exercise 1.9.8. ■

Note that the set of λ’s appearing in the linear combination in the previous
proposition have the property that the point

k∑
j=0

λ je j

lies in the standard k-simplex if we take the convention that e0 = 0. Indeed, if
∆ = ∆(x0, x1, . . . , xk) the map β : ∆k → ∆ defined by

β
( k∑

j=0

λ je j

)
=

k∑
j=0

λ jx j

defines a homeomorphism of ∆k with ∆. This homeomorphism has a name.

1.9.28 Definition (Barycentric coordinates for a simplex) The parameterisation of ∆ =
∆(x0, x1, . . . , xk) by the set

{
(λ0, λ1, . . . , λk) ∈ [0, 1]k+1

∣∣∣∣ k∑
j=0

λ j = 1
}

defined by

(λ0, λ1, . . . , λk) 7→
k∑

j=0

λ jv j

gives barycentric coordinates for ∆. The barycentre of ∆ is the image under this
parameterisation of the point ( 1

k+1 , . . . ,
1

k+1 ), and is denoted by bc(∆). •
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The most insightful interpretation of the barycentre is given in Proposi-
tion 1.9.48.

A similar construction can be made for a k-simplex cone K = K(x1, . . . , xk; x0)
with vertex x0. We fix some nonzero vector v0 ∈ rel int(K) \ {x0} and let Pv0 be the
orthogonal complement to v0− x0. We may suppose, without loss of generality (by
scaling if necessary), that

x1, . . . , xk ∈ {v0 + x | x ∈ Pv0},

i.e., that the points x1, . . . , xk lie in a plane parallel to Pv0 passing through v0. We
then define a (k − 1)-simplex ∆v0 ⊆ Pv0 by asking that

∆v0 = {x ∈ Pv0 | v0 + x ∈ K}

(we leave it to the reader to check that ∆v0 is indeed a (k − 1)-simplex). We then let
(λ1, . . . , λk) ∈ ∆k−1 be barycentric coordinates for ∆v0 . Noting that the vertices of ∆v0

are in fact x1 − v0, . . . , xk − v0, this means that a point in ∆v0 has the form

λ1(x1 − v0) + · · · + λk(xk − v0). (1.49)

A direct computation shows that if we define

l(x) =
⟨x − x0,v0 − x0⟩Rn

∥v0 − x0∥
2
Rn

then
l(x)−1(x − x0) − (v0 − x0) ∈ Pv0 .

Thus l(x)−1(x − x0) + x0 lies in the translation of Pv0 through v0. Since K is a cone
with vertex x0 this implies, in fact, that if x ∈ K then

l(x)−1(x − x0) − (v0 − x0) ∈ ∆v0 ,

and so admits an expression of the form (1.49):

l(x)−1(x − x0) − (v0 − x0) = λ1(x)(x1 − v0) + · · · + λk(x)(xk − v0).

Therefore, a computation gives

x = x0 + l(x)
(
v0 − x0 +

(
λ1(x)(x1 − x0) + · · · + λk(x)(xk − x0)

))
.

Based on this development we make the following definition.



2022/03/07 1.9 Elementary convexity 245

1.9.29 Definition (Barycentric coordinates for a simplex cone) Let K = K(x1, . . . , xk; x0).
For v0 ∈ rel int(K) \ {0} let Pv0 be the orthogonal complement of v0 and define the
(k − 1)-simplex

∆v0 = {x ∈ Pv0 | x0 + v0 + x ∈ K}.

The parameterisation of K by the set

R≥0 ×
{
(λ1, . . . , λk) ∈ [0, 1]k

∣∣∣∣ k∑
j=1

λ j = 1
}

defined by

(l, (λ1, . . . , λk)) 7→ x0 + l
(
v0 − x0 +

(
λ1(x1 − x0) + · · · + λk)(xk − x0)

))
gives barycentric coordinates for K. •

For the reader for whom this definition of coordinates (l,λ) for K is not imme-
diately clear, we give an illustration of their meaning in Figure 1.16.

x0

v0Pv0

x

l(x)

λ(x)

Figure 1.16 Barycentric coordinates for a simplex cone



246 1 Multiple real variables and functions of multiple real variables 2022/03/07

1.9.7 Barycentric subdivision of simplices

Our next topic has to do with chopping up simplices into smaller simplices in
a systematic manner. This, for reasons that are by no means obvious at this point,
is an important process in studying the global topological (specifically, algebraic
topological) properties of certain types of spaces. However, we shall only give the
basic construction and its properties. Our only use of this construction will be in our
proof of the Kakutani Fixed Point Theorem in Section 1.11.4. And since this result
is presented mainly as entertainment, a reader can easily forgo the constructions
we are now about to undergo.

While the idea of the barycentric subdivision is simple to understand, it is not
so simple to define precisely. Indeed, many “definitions” have the character of,
“Here’s how to do it in a few low-dimensional cases, and the generalisation is
obvious.” However, if one wants to do anything with the notion, one must give a
useful working definition. To get started we have the following notions.

1.9.30 Definition (Faces of a simplex) Consider a simplex ∆ = ∆(x0, x1, . . . , xk). Let
m ∈ {0, 1, . . . , k} and let J = { j0, j1, . . . , jm} be a distinct subset of {0, 1, . . . , k}. The set

FJ =
{ m∑

l=0

λlx jl

∣∣∣∣ m∑
l=0

λl = 1, λ0, λ1, . . . , λm ∈ R>0

}
is the m-dimensional face of ∆ associated with the vertices J. The set of m-
dimensional faces of ∆ is denoted by Fm(∆). •

The following result records some more or less obvious statements about the
faces of a simplex.

1.9.31 Proposition (Properties of faces of a simplex) For ∆ = ∆(x0, x1, . . . , xk) the fol-
lowing statements hold:

(i) (∪F∈Fl(∆)F) ∩ (∪F′∈Fm(∆)F′) = ∅ if l , m;
(ii) if F ∈ Fm(∆) then cl(F) is an m-simplex;
(iii) rel int(∆) = F where Fk(∆) = {F};
(iv) rel bd(∆) = ∪m−1

j=0 Fj(∆).

Proof (i) This follows from the following obvious statement: a point in an m-
dimensional face of ∆ is an element

k∑
j=0

λ jx j

for which exactly m of the numbers λ0, λ1, . . . , λk are nonzero.
(ii) Suppose that F = FJ for J = { j1, j1, . . . , jm}. We claim that

cl(F) =
{ m∑

l=0

λlx jl

∣∣∣∣ m∑
l=0

λl = 1, λ0, λ1, . . . , λm ∈ R≥0

}
.
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Indeed, if x ∈ cl(F) then there exists a sequence

(
xr =

m∑
l=0

λl,rx jl

)
r∈Z>0

in F such that limr→∞ xr = x. Thus, taking λl = limr→∞ λl,r, we have x =
∑

l=1 λlx jl . The
result follows since

m∑
l=0

λl =

m∑
l=0

lim
r→∞

λl,r = lim
r→∞

m∑
l=0

λl,r = 1

and since λl ∈ R≥0 for l ∈ {0, 1, . . . ,m}.
(iii) By the previous part of the result (particularly understanding its proof) we have

cl(F) = ∆. By Proposition 1.9.13 it follows that cl(rel int(∆)) = ∆. Thus rel int(∆) ⊆ F.
To show that F ⊆ rel int(∆) it suffices to show that F is relatively open since rel int(∆)
is the largest open set whose closure is ∆. To see that F is relatively open, let x0 ∈ F
and write x0 =

∑k
j=0 λ0, jx j for λ0,0, λ0,1, . . . , λ0,k ∈ R>0 summing to 1. Let us denote

λ0 = (λ0,0, λ0,1, . . . , λ0,k) ∈ Rk+1. There then exists ϵ ∈ R>0 such that

Bϵ,λ0 ≜ Bn(ϵ,λ0) ∩ aff({x0, x1, . . . , xk}) ⊆
{ k∑

j=0

λ jx j

∣∣∣∣ k∑
j=0

λ j = 1, λ0, λ1, . . . , λk ∈ R>0

}
.

Thus

T ≜
{ k∑

j=0

λ jx j

∣∣∣∣ k∑
j=0

λ j = 1, λ0, λ1, . . . , λk ∈ R>0

}
is relatively open in aff({x0, x1, . . . , xk}). Now consider the linear map L

Rk+1
∋ λ 7→

k∑
j=0

λ jx j ⊆ R
n.

Let

A =
{ k∑

j=0

λ jx j

∣∣∣∣ k∑
j=0

λ j = 1
}
.

We have L|A as a continuous onto aff({x0, x1, . . . , xk}). As per Example 1.3.38–2 we
have L|A as a homeomorphism onto aff({x0, x1, . . . , xk}). Thus L|T is a homeomorphism
onto F, and so F is relatively open.

(iv) Since ∆ = rel bd(∆)
◦

∪ rel int(∆), this part of the result follows from the previous
part. ■

In order to introduce the barycentric subdivision we shall use the following
notation. If ∆1 and ∆2 are simplices then we write ∆1 ≤ ∆2 if rel int(∆1) ∈ Fm(∆2)
for some m. If ∆1 ≤ ∆2 but ∆1 , ∆2 then we write ∆1 < ∆2.
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1.9.32 Definition (Barycentric subdivision) Let ∆ be a simplex. The barycentric subdi-
vision of ∆ is the collection

{∆(bc(∆′0), bc(∆′1), . . . , bc(∆′m)) | ∆′0 < ∆
′

1 < · · · < ∆
′

m ≤ ∆}

of simplices. The collection of simplices in the barycentric subdivision of ∆ is
denoted by Sbc(∆). •

It takes some time to parse the definition of the barycentric subdivision, so let us
try to help things along by considering the definition for the standard 2-simplex.

1.9.33 Example (The barycentric subdivision of ∆2) We take the standard 2-simplex
∆2 = ∆(0, e1, e2). The faces of ∆2 are the relative interiors of the following simplices.
1. 0-dimensional faces: ∆′01 = ∆(0), ∆′02 = ∆(e1), ∆′03 = ∆(e2).
2. 1-dimensional faces: ∆′11 = ∆(0, e1), ∆′12 = ∆(0, e2), ∆′13 = ∆(e1, e2).
3. 2-dimensional faces: ∆′21 = ∆(0, e1, e2).
Let us list the barycentres of the simplices which define the faces.
1. 0-dimensional faces: bc(∆′01) = (0, 0), bc(∆′02) = (1, 0), bc(∆′03) = (1, 0).
2. 1-dimensional faces: bc(∆′11) = (0, 1

2 ), bc(∆′12) = (0, 1
2 ), bc(∆′13) = (1

2 ,
1
2 ).

3. 2-dimensional faces: bc(∆′21) = ( 1
3 ,

1
3 ).

The possible ways to order these simplices by our order “<” are as follows:

∆′01, ∆
′

02, ,∆′03,

∆′01 < ∆
′

11, ∆
′

01 < ∆
′

12, ∆
′

02 < ∆
′

11, ∆
′

02 < ∆
′

13, ∆
′

03 < ∆
′

12, ∆
′

03 < ∆
′

13,

∆′01 < ∆
′

11 < ∆
′

21, ∆
′

01 < ∆
′

12 < ∆
′

21, ∆
′

02 < ∆
′

11 < ∆
′

21, ∆
′

02 < ∆
′

13 < ∆
′

21,

∆′03 < ∆
′

12 < ∆
′

21, ∆
′

03 < ∆
′

13 < ∆
′

21.

With this data we can then determine the simplices in the barycentric subdivision.
We show these in Figure 1.17. •

Now that we maybe have some intuition about the barycentric subdivision, let
us list some of its properties.

1.9.34 Theorem (Properties of the barycentric subdivision) For a simplex ∆ =
∆(x0, x1, . . . , xk) with barycentric subdivision Sbc(∆) the following statements hold:

(i) the number of r-dimensional simplices in Sbc(∆) is∑
d0,d1,...,dr∈
{0,1,...,k},

d0<d1<···<dr

r∏
j=0

(
dj+1 + 1
dj + 1

)
,

where we take dr+1 = k;
(ii) ∆ =

◦

∪∆′∈Sbc(∆) rel int(∆′);
(iii) max{diam(∆′) | ∆′ ∈ Sbc(∆)} ≤ k

k+1diam(∆).
Proof (i) Let us give some counting lemmata.
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Figure 1.17 The 0-dimensional (top two rows), 1-dimensional
(next two rows), and 2-dimensional (bottom row) simplices
in the barycentric subdivision of ∆2

1 Lemma The number of r-dimensional faces of a k-simplex is
(

k+1
r+1

)
=

(k+1)!
(r+1)!(k−r)! .

Proof By definition an r-dimensional face is specified by a subset J = { j0, j1, . . . , jr} ⊆
{0, 1, . . . , k}. The number of such subsets is exactly

(
k+1
r+1

)
; this is Exercise I-1.1.4. ▼

2 Lemma If ∆ is a k-simplex and if F ∈ Fr(∆) then the number of s-dimensional faces F′ for
which cl(F′) < cl(F) is

(
r+1
s+1

)
.

Proof For an r-dimensional face F there are indices J = { j0, j1, . . . , jr} ⊆ {0, 1, . . . , k} such
that every point x ∈ F is written as

x =
r∑

l=0

λlx jl

for unique numbers λ0, λ1, . . . , λr ∈ R>0 summing to 1. Now, if F′ ∈ Fs(∆) and if
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cl(F′) < cl(F) then F′ is a face of cl(F). If we write a typical point x′ ∈ F′ as

x′ =
s∑

l′=0

λ′l′x j′l′

for J′ = { j′0, j′1, . . . , j′s} then it follows that J′ ⊆ J. Thus there are as many s-dimensional
faces F′ such that cl(F′) < cl(F) as there are subsets of cardinality s + 1 of a set of
cardinality r + 1, i.e.,

(
r+1
s+1

)
. ▼

Every r-dimensional simplex ∆′ ∈ Sbc(∆) has the form

∆′ = ∆(bc(∆′0), bc(∆′1), . . . , bc(∆′r))

for ∆′0 < ∆
′

1 < · · · < ∆
′
r. Suppose that the dimension of ∆′j is d j so that d0 < d1 < · · · < dr.

By the first lemma above there are
(

k+1
dr+1

)
possible faces of dimension dr. Now, fixing

one of these dr-dimensional faces—denote it by Fr—by the second lemma above there
are

(
dr+1

dr−1+1

)
possible dr−1-dimensional faces Fr−1 for which Fr−1 < Fr. Continuing in this

way, upon fixing the dimensions d0 < d1 < · · · < dr, we have(
d1 + 1
d0 + 1

)
· · ·

(
dr + 1

dr−1 + 1

) (
k + 1
dr + 1

)
possible combinations of faces F0,F1, . . . ,Fr of dimensions d0, d1, . . . , dr, respectively
and such that F0 < F1 < · · · < Fr. Summing over all possible dimensions d0, d1, . . . , dr
gives the number of r-dimensional simplices in Sbc(∆) as

∑
d0,d1,...,dr∈
{0,1,...,k},

d0<d1<···<dr

r∏
j=0

(
d j+1 + 1
d j + 1

)
,

as stated upon taking dr+1 = k.
(ii) Let x ∈ rel int(∆′) where ∆′ ∈ Sbc(∆). Suppose that ∆′ has dimension m so that

there exists J = { j0, j1, . . . , jm} ⊆ {0, 1, . . . , k} such that

x =
m∑

l=0

λlbc(∆′l )

for some∆′0,∆
′

1, . . . ,∆
′
m ∈ Sbc(∆) satisfying∆′0 < ∆

′

1 < · · · < ∆
′
m. For each l ∈ {0, 1, . . . ,m}

the simplex ∆′l is given by

∆′l = ∆(xl, j0 , xl, j1 , . . . , xl, jml
)

for xl, js ∈ {x0, x1, . . . , xk}, s ∈ {0, 1, . . . ,ml}. Therefore,

bc(∆′l ) =
ml∑

s=0

1
ml + 1

xl, js ,
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and so

x =
m∑

l=0

ml∑
s=0

λl

ml + 1
xl, js .

This implies that x is a linear combination of the vectors {x0, x1, . . . , xk} with positive
coefficients summing to 1. That is x ∈ ∆ and so

∪∆′∈Sbc(∆)rel int(∆′) ⊆ ∆.

To show the opposite inclusion we use induction on k. The result is trivially true
for k = 0; assume it true for k ∈ {0, 1, . . . , r} and suppose that ∆ is an (r+ 1)-simplex. Let
x ∈ ∆. If

x =
r+1∑
j=0

λ jx j (1.50)

where any one of the coefficients λ j is zero, then x is in some face F of ∆ of dimension
less than r + 1, and the induction hypothesis implies that

x ∈ ∆(bc(∆′0), bc(∆′1), . . . , bc(∆′m))

where ∆′0 < ∆
′

1 < · · · < ∆
′
m ≤ cl(F). Since Sbc(cl(F)) ⊆ Sbc(∆) (do you see why?) it

follows that x ∈ ∪∆′∈Sbc(∆)rel int(∆′). If x ∈ rel int(∆) (i.e., if none of the coefficients
in (1.50) are zero) then we make use of the following lemma.

3 Lemma If the vectors {x0, x1, . . . , xk} are affinely independent, if ∆ = ∆(x0, x1, . . . , xk), and if
y ∈ rel int(∆) then

∆ = {(1 − s)y + sx | x ∈ rel bd(∆), s ∈ [0, 1]}.

Moreover, if x′1, x
′

2 ∈ rel bd(∆) are distinct then

{(1 − s)y + sx′1 | s ∈ [0, 1]} ∩ {(1 − s)y + sx′2 | s ∈ [0, 1]} = {y}.

Proof This is a restatement of Lemma 1 in the proof of Theorem 1.9.14. ▼

Now we take x ∈ rel int(∆). If x = bc(∆) then it immediately follows that x ∈
∪∆′∈Sbc(∆)rel int(∆′). Otherwise, by the lemma, there exists a unique s ∈ (0, 1) and x′ ∈
rel bd(∆) such that x = (1 − s)bc(∆) + sx′. Since x′ ∈ rel bd(∆), by Proposition 1.9.31(iv)
and by the induction hypothesis, there exists ∆′0,∆

′

1, . . . ,∆
′
m such that

∆′0 < ∆
′

1 < · · · < ∆
′

m < ∆

and

x′ =
m∑

l=0

λlbc(∆′l ).

Then

x = (1 − s)bc(∆) +
m∑

l=0

sλlbc(∆′l ) =
m+1∑
l=0

µlbc(∆′l )
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upon taking

µl = sλl, l ∈ {0, 1, . . . ,m}, µm1 = (1 − s), ∆′m+1 = ∆.

Since
∑m+1

l=0 µl = 1 it follows that x ∈ ∪∆′∈Sbc(∆)rel int(∆′).
Now we need to show that if ∆′1,∆

′

2 ∈ Sbc(∆) are distinct then rel int(∆′1) ∩
rel int(∆′2) = ∅. We prove this by induction on k. It is clearly true that the result
holds for k = 0. Assume the result holds for k ∈ {0, 1, . . . , r} and let ∆ be an (r + 1)-
simplex. Let ∆′1,∆

′

2 ∈ Sbc(∆). If ∆′1,∆
′

2 ⊆ rel bd(∆) then the result holds by Proposi-
tion 1.9.31(iv) and the induction hypothesis. If ∆′1 ⊆ rel bd(∆) and ∆′2 1 rel bd(∆) then
∆′2 is (r+1)-dimensional and so it immediately follows that rel int(∆′1)∩ rel int(∆′2) = ∅.
The remaining case to consider is when ∆′1 and ∆′2 are both (r + 1)-dimensional. In
this case, if x1 ∈ rel int(∆′1) and x2 ∈ rel int(∆′2) then, by the lemma above, there exists
unique x′1, x

′

2 ∈ rel bd(∆) and s1, s2 ∈ (0, 1) such that

x1 = (1 − s1)bc(∆) + s1x′1, x2 = (1 − s2)bc(∆) + s2x′2.

Now x′1 ∈ ∆
′′

1 and x′2 ∈ ∆
′′

2 where ∆′′1 ,∆
′′

2 ∈ rel bd(∆) are given by

∆′′1 = ∆(bc(∆′′10), bc(∆′′11), . . . , bc(∆′′1,m1
)),

∆′′2 = ∆(bc(∆′′20), bc(∆′′21), . . . , bc(∆′′2,m2
))

for simplices
∆′′10 < ∆

′′

11 < · · · < ∆
′′

1m1
, ∆′′20 < ∆

′′

21 < · · · < ∆
′′

2m2
.

Now note that if x1 = x2 then x′1 = x′2 and so rel int(∆′′1 ) ∩ rel int(∆′′2 ) , ∅. By the
induction hypothesis this means that ∆′′1 = ∆

′′

2 . This in turn means that ∆′1 = ∆
′

2. This
shows that if rel int(∆′1) ∩ rel int(∆′2) , ∅ then ∆′1 = ∆

′

2, giving this part of the result.
(iii) Let us first reduce ourselves to considering only lengths of 1-dimensional

faces.

4 Lemma If ∆ = ∆(x0, x1, . . . , xk) is a k-simplex then there exists j1, j2 ∈ {0, 1, . . . ,k} such that

diam(∆) = ∥xj1 − xj2∥Rn .

Proof Let j1, j2 ∈ {0, 1, . . . , k} be such that

∥x j1 − x j2∥Rn = max{∥x j′1
− x j′2

∥Rn | j′1, j′2 ∈ {0, 1, . . . , k}}.

Now let x, y ∈ ∆. Let j0 ∈ {0, 1, . . . , k} have the property that

∥x − x j0∥Rn = max{∥x − x j∥Rn | j ∈ {0, 1, . . . , k}},

and denote r = ∥x − x j0∥Rn . Then it follows that Bn(r, x) contains all vertices x j, j ∈
{0, 1, . . . , k}. Moreover, Bn(r, x) is convex by Exercise 1.9.2. Therefore, ∆ ⊆ Bn(r, x) since
∆ is the convex hull of the vertices. Thus ∥x−y∥Rn ≤ ∥x−x j0∥Rn . Next let j′0 ∈ {0, 1, . . . , k}
be such that

∥x j0 − x j′0
∥Rn ≤ max{∥x j0 − x j∥Rn | j ∈ {0, 1, . . . , k}}

and let r′ = ∥x j0 − x j′0
∥Rn . By the same argument as above, ∥x − x j0∥Rn ≤ ∥x j0 − x j′0

∥Rn .
Thus

∥x − y∥Rn ≤ ∥x − x j0∥Rn ≤ ∥x j0 − x j′0
∥Rn .

Thus ∥x − y∥Rn ≤ x j1 − x j2 . ▼
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Now let ∆′ be a 1-dimensional simplex from Sbc(∆) and let bc(∆′1) and bc(∆′2) be
the vertices of ∆′, supposing that ∆′1 < ∆

′

2. Suppose that ∆′1 is m1-dimensional and that
∆′2 is m2-dimensional. Then we can write

∆′1 = ∆(x j0 , x j1 , . . . , x jm1
),

∆′2 = ∆(x j0 , x j1 , . . . , x jm1
, x jm1+1 , . . . , x jm2

)

for suitable j0, j1, . . . , jm2 ∈ {0, 1, . . . , k}. We then compute

bc(∆′1) − bc(∆′2) =
1

m1 + 1

m1∑
l=0

x jl −
1

m2 + 1

m2∑
l=0

x jl

=
( 1
m1 + 1

−
1

m2 + 1

) m1∑
l=0

x jl −
1

m2 + 1

m2∑
l=m1+1

x jl

=
m2 −m1

m2 + 1

( 1
m1 + 1

m1∑
l=1

x jl −
1

m2 −m1

m2∑
l=m1+1

x jl

)
.

Note that since
m1∑
l=0

m1 + 1
=

1,
m2∑

l=m1+1

1
m2 −m1

= 1

it follows that
1

m1 + 1

m1∑
l=1

x jl ,
1

m2 −m1

m2∑
l=m1+1

x jl ∈ ∆
′

2.

Since ∆′2 ⊆ ∆ it follows that∥∥∥∥ 1
m1 + 1

m1∑
l=1

x jl −
1

m2 −m1

m2∑
l=m1+1

x jl

∥∥∥∥
Rn
< diam(∆).

Therefore,

∥bc(∆′1) − bc(∆′2)∥Rn ≤
m2−m1
m2+1 diam(∆) ≤ m2

m2+1 diam(∆) ≤ k
k+1 diam(∆),

giving the result. ■

The most interesting of the numbers from part (i) of the theorem is when r =
k. In this case we get the number of k-dimensional simplices in the barycentric
subdivision as

k∑
j=0

(
2
1

)
· · ·

(
k

k − 1

) (
k + 1

k

)
= (k + 1)!.

It is the number of simplices of dimension k is, in some sense, the most indicative
of the character of the barycentric subdivision.

Having now divided a simplex into a bunch of smaller simplices in a systematic
way, and having acquired an estimate (in the form of part (iii) of the preceding
theorem) on the size of the resulting simplices, we can now repeat this process on
the (k + 1)! simplices of the barycentric subdivision having the highest dimension.
This process can then be repeated inductively, giving the following definition.
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1.9.35 Definition (mth barycentric subdivision) Let ∆ be a k-simplex. For m ∈ Z>0

define the mth barycentric subdivision inductively as follows:
1. let S 1

bc (∆) = Sbc(∆);

2. assuming S j
bc(∆), j ∈ {1, . . . ,m − 1}, defined, let

S m
bc (∆) = {∆′ | ∆′ ∈ Sbc(∆′′), ∆′′ ∈ S m−1

bc (∆)}. •

It is evident that

lim
m→∞

max{diam(∆′) | ∆′ ∈ S m
bc (∆)} = 0. (1.51)

Thus the diameter of the simplices gets smaller and smaller. We shall use this
construction in our proof of the Kakutani Fixed Point Theorem.

1.9.8 Duality

The subject of duality is an important one in the study of convexity. In Sec-
tion I-5.7 we studied duality in the context of linear algebra. There is some relation-
ship with this discussion and our discussion here of duality in convexity. The main
idea is that one studies an object by studying functions related to it. In the case of
vector spaces, the functions are linear functions. For convex sets, the appropriate
objects to study are affine functions, i.e., functions α : Rn

→ R that are affine as per
Definition 1.3.15. Note that such an affine function comes in the form

α(x) = ⟨a, x⟩Rn + b (1.52)

for a ∈ Rn and b ∈ R. We shall often write α in this form without comment. Let
us denote the set of affine functions on Rn by A(Rn;R). Note that A(Rn;R) is a
vector space isomorphic to Rn

⊕R. Thus it makes sense to talk about convexity in
A(Rn;R), and this is something we shall do.

With this in mind, we make the following definition.

1.9.36 Definition (Polar cone, polar) For S ⊆ Rn,
(i) the polar cone of S is

S∗ = {α ∈ A(Rn;R) | α(x) ≤ 0 for all x ∈ S}

and
(ii) the polar of S is

S◦ = {a ∈ Rn
| ⟨a, x⟩Rn ≤ 1 for all x ∈ S}. •

For b ∈ R we denote S∗b ⊆ R
n by

S∗b = {a ∈ R
n
| (a, b) ∈ S∗}. •

The following result contains some useful elementary properties of polar cones
and polars.
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1.9.37 Proposition (Elementary properties of polar cones and polars) For S,T ⊆ Rn,
the following statements hold:

(i) (∗S) = (∗ cl(conv(S))) and (◦S) = (◦ cl(conv(S)));
(ii) if S ⊆ T, then T∗ ⊆ S∗ and T◦ ⊆ S◦;
(iii) (S ∪ T)∗ = S∗ ∩ T∗ and (S ∪ T)◦ = S◦ ∩ T◦;
(iv) if λ ∈ R \ {0} then

(λS)∗ = {(a, b) ∈ A(Rn;R) | (λa, b) ∈ S∗}

(identifying A(Rn;R) with Rn
⊕R as in (1.52)) and (λS)◦ = λ−1(S◦);

(v) if f : Rn
→ Rn is the affine map f(x) = Ax + d for A ∈ L(Rn;Rn) and d ∈ Rn, then

f(S)∗ = {(a′, b′) ∈ Rn
×R | (ATa′, ⟨a′,d⟩Rn + b′) ∈ S∗}

= {(A−Ta, b − ⟨A−Ta,d⟩Rn) ∈ Rn
×R | (a, b) ∈ S∗}

and

f(S)◦ = {a′ ∈ Rn
| ATa′ ∈ S∗

⟨a′,d⟩Rn−1}

= {A−Ta ∈ Rn
| a ∈ S∗

⟨A−Ta,d⟩Rn−1
}.

Proof We leave this to the reader as Exercise 1.9.9. ■

One can verify that S∗ is a convex cone and that S◦ is convex, regardless of what
S might look like.

1.9.38 Proposition (The polar (cone) is a closed convex set (cone)) If S ⊆ Rn then
(i) S∗ is a closed convex cone with 0 as vertex and
(ii) S◦ is a closed convex set containing 0.

Moreover, S∗ and S◦ are related in the following ways:
(iii) if b ∈ R<0, S∗b = |b|(S

◦);
(iv) if b ∈ R>0 then S∗b = ∅ if and only if 0 < cl(conv(S));
(v) if b ∈ R>0 and if S∗b , ∅, then S∗b = b(S◦).

Proof (i) First of all, if α ∈ S∗ is given by

α(x) = ⟨a, x⟩Rn + b

then
(λα)(x) = λα(x)

for λ ∈ R. Thus, if λ ∈ R≥0 we have (λα)(x) ≤ 0 for all x ∈ S, and so λα ∈ S∗. Thus S∗ is
a cone with vertex 0. Next suppose that α1, α2 ∈ S∗. Then, for s ∈ [0, 1],

((1 − s)α1 + sα2)(x) = (1 − s)⟨a1, x⟩Rn + (1 − s)b1 + s⟨a2, x⟩Rn + sb2 ≤ 0,



256 1 Multiple real variables and functions of multiple real variables 2022/03/07

showing that S∗ is convex. Finally, note that, for x ∈ S, the function fx : A(Rn;R) →
R defined by fx(α) = α(x) is itself affine, and so continuous by Proposition 1.3.16.
Therefore, for each x ∈ S, fx(R≤0) is closed by Corollary 1.3.4. Since S∗ = ∩x∈S f−1

x (R≤0),
it follows from Proposition 1.2.19 that S∗ is closed.

(ii) We assume part (iii) proven below. By this result we have S◦ = S∗ ∩ (Rn
× {−1}).

Since S∗ is convex and since Rn
× {−1} is convex (it is a hyperplane), it follows from

Proposition 1.2.19 and Exercise 1.9.4 that S◦ is closed and convex.
(iii) Let us prove the last assertion of the proposition. First suppose that b ∈ R<0.

Then

(a, b) ∈ S∗ ⇐⇒ ⟨a, x⟩Rn + b ≤ 0, x ∈ S

⇐⇒ −b−1
⟨a, x⟩Rn ≤ 1, x ∈ S

⇐⇒ ⟨a, y⟩Rn ≤ 1, y ∈ −b−1S

⇐⇒ a ∈ (−b−1S)◦ ⇐⇒ a ∈ −b(S◦),

using Proposition 1.9.37.
(iv) Let b ∈ R>0. By Proposition 1.9.37(i) we may assume that S is closed and

convex.
If 0 ∈ S and if a ∈ Rn then

⟨a, 0⟩Rn + b = b > 0,

showing that there cannot be any a ∈ Rn such that ⟨a, x⟩Rn + b ≤ 0 for every x ∈ S.
Conversely, suppose that 0 < S. Since S is closed, there exists ϵ ∈ R>0 such that

Bn(ϵ, 0) ∩ S = ∅. By , let a′ ∈ Rn and b′ ∈ R>0 be such that ⟨a′, x⟩Rn + b′ < 0 for everyclosed and compact

strictly separated

x ∈ S and ⟨a′, x⟩Rn + b′ > 0 for every x ∈ Bn(ϵ, 0). Then, taking a = b
b′a
′, we see that

⟨a, x⟩Rn + b < 0 for every x ∈ S, as desired.
(v) If b ∈ R>0,

(a, b) ∈ S∗ ⇐⇒ ⟨a, x⟩Rn + b ≤ 0, x ∈ S

⇐⇒ b−1
⟨a, x⟩Rn ≤ −1, x ∈ S

⇐⇒ ⟨a, y⟩Rn ≤ 1, y ∈ b−1S

⇐⇒ a ∈ (b−1S)◦ ⇐⇒ a ∈ b(S◦),

using Proposition 1.9.37. ■

The following theorem gives the most interesting property of the polar cone.

1.9.39 Theorem (The Polar (Cone) Theorem) If S ⊆ Rn then
(i) {x ∈ Rn

| α(x) ≤ 0 for all α ∈ S∗} = cl(conv(S)) and
(ii) {x ∈ Rn

| ⟨a, x⟩Rn ≤ 1 for all a ∈ S◦} = cl(conv(S ∪ {0})).
Proof (i) First let x ∈ conv(S). Then, by Proposition 1.9.4, there exists x1, . . . , xk ∈ S
and λ1, . . . , λk ∈ (0, 1) satisfying

∑k
j=1 λ j = 1 such that x =

∑k
j=1 λ jx j. Then, for α ∈ S∗,

α(x) =
k∑

j=1

λ j⟨a, x j⟩Rn + b
k∑

j=1

λ j =

k∑
j=1

λ j(⟨a, x j⟩Rn + b) ≤ 0.
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Thus
conv(S) ⊆ {y ∈ Rn

| α(y) ≤ 0 for all α ∈ S∗}.

Next let x ∈ cl(conv(S)). Then, x = lim j→∞ x j for a sequence (x j) j∈Z>0 in conv(S).
As in the preceding paragraph, if α ∈ S∗, then α(x j) ≤ 0 for each j ∈ Z>0. Therefore, by
continuity of α and Theorem 1.3.2,

α(x) = lim
j→∞

α(x j) ≤ 0,

showing that
cl(conv(S)) ⊆ {y ∈ Rn

| α(y) ≤ 0 for all α ∈ S∗}.

For the converse inclusion, suppose that x < cl(conv(S)). By Corollary 1.9.17 there
exists a ∈ Rn and b ∈ R such that

⟨a, x⟩Rn > −b, ⟨a, y⟩Rn < −b, y ∈ cl(conv(S)).

Thus, if α ∈ A(Rn;R) is defined by

α(x) = ⟨a, x⟩Rn + b,

then α(y) < 0 for all y ∈ S and so α ∈ S∗. Since α(x) > 0 it follows that

x < {y ∈ Rn
| α(y) ≤ 0 for all α ∈ S∗}.

This gives
{y ∈ Rn

| α(y) ≤ 0 for all α ∈ S∗} ⊆ cl(conv(S)),

so proving this part of the theorem.
(ii) Let x ∈ conv(S ∪ {0}). By Proposition 1.9.4, there exists x1, . . . , xk ∈ S ∪ {0} and

λ1, . . . , λk ∈ (0, 1) satisfying
∑k

j=1 λ j = 1 such that x =
∑k

j=1 λ jx j. Then, if a ∈ S◦,

⟨a, x⟩Rn =

k∑
j=1

λ j⟨a, x j⟩Rn ≤ 0.

Thus
conv(S) ⊆ {x ∈ Rn

| ⟨a, x⟩Rn ≤ 0 for all a ∈ S◦}.

If x ∈ cl(conv(S∪ {0})) then let x = lim j→∞ x j for a sequence (x j) j∈Z>0 in conv(S). As
above, if a ∈ S◦, then ⟨a, x j⟩Rn ≤ 0 for each j ∈ Z>0. By continuity of the inner product
(see ) and Theorem 1.3.2, what?

⟨a, x⟩Rn = lim
j→∞
⟨a, x j⟩Rn ≤ 0,

giving
cl(conv(S)) ⊆ {x ∈ Rn

| ⟨a, x⟩Rn ≤ 0 for all a ∈ S◦}.

For the converse inclusion, let x < cl(conv(S∪{0})). By Corollary 1.9.17 there exists
a′ ∈ Rn and b′ ∈ R such that

⟨a′, x⟩Rn > b′, ⟨a′, y⟩Rn < b′, y ∈ cl(conv(S ∪ {0})).
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Note that b′ , 0 since 0 ∈ S ∪ {0}. Thus, define a = 1
b′a
′ and note that ⟨a, y⟩Rn < 1 for

every y ∈ cl(conv(S ∪ {0})) and that ⟨a, x⟩Rn > 1. Thus a ∈ S◦ and

x < {y ∈ Rn
| ⟨a, y⟩Rn ≤ 1 for all a ∈ S◦}.

Thus
{y ∈ Rn

| ⟨a, y⟩Rn ≤ 1 for all a ∈ S◦} ⊆ cl(conv(S ∪ {0})),

as desired. ■

The second part of the result immediately gives the following result, illustrating
the importance to the polar of the origin being contained in a convex set.

1.9.40 Corollary (The polar of the polar is identity (sometimes)) If C ⊆ Rn is a closed
convex set for which 0 ∈ C, then C◦◦ = C.

Now, understanding a few fundamental properties of polars and polar cones,
let us give some examples of these objects to get some insight into how the dual
constructions work.

1.9.41 Examples (Polars and polar cones)
1. The reader may verify in Exercise 1.9.10 that {0}∗ = Rn

×R≤0 and {0}◦ = Rn and
that (Rn)∗ = {0} ×R≤0 and (Rn)◦ = {0}. We identify A(Rn;R) with Rn

⊕R in the
above expressions.

2. Let x0 ∈ Rn. Let us first describe {x0}
◦. If x0 = 0 then we already have P = Rn,

so let us suppose that x0 , 0. We first note that {x0}
∗
∩ (Rn

× {b}) is in bijective
correspondence with the half-space

{a ∈ Rn
| ⟨a, x0⟩Rn ≤ −b},

by definition. Let us describe this half space explicitly, first by describing its
bounding hyperplane

P = {a ∈ Rn
| ⟨a, x0⟩Rn = −b}.

By Proposition I-5.4.49 we have that P is an affine subspace whose linear part
is {x0}

⊥. Thus, to determine P, it suffices to find one vector in P. Since x0 , 0 we
have −b x0

∥x0∥
2
Rn
∈ P and so

P =
{
−b x0

∥x0∥
2
Rn

}
+ {x0}

⊥.

From this, one directly characterises {x0}
∗, and we depict the situation in Fig-

ure 1.18. Much insight into polar cones and polars can be gained by thinking
about the polar cones and polars of points, so the pictures in Figure 1.18 should
be studied a little.

The next few examples will deal with sequentially more complicated ellipsoids.
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Figure 1.18 We depict {x0}
∗
∩ (Rn

× {b}). In the top row, b ∈ R<0,
in the middle row b ∈ R>0, and in the bottom row b = 0. In the
first two rows we have ∥x0∥Rn < |b| (left), ∥x0∥Rn = |b| (centre),
and ∥x0∥Rn > |b| (right). The circle is that of radius |b|.

3. First let us take (for brevity) Br = Bn(r, 0) for r ∈ R>0. By Proposition 1.9.38,
(Br)∗b = ∅ for b ∈ R<0. If b ∈ R>0 then, by direct consideration of example 2
above, (Br)∗b = Bn( |b|r , 0), and, in particular, Br

◦ = Bn(r−1, 0). Note, then, that
Bn(1, 0)◦ = Bn(1, 0).

4. Now let us consider an ellipsoid centred at 0. Thus we take E = A(Bn(1, 0)) for
A symmetric and positive-definite. By Proposition 1.9.38, E∗b = ∅ for b ∈ R<0.
By Proposition 1.9.37(v) and the preceding example, E∗b = A−1(Bn(|b|, 0)) for
b ∈ R<0. In particular, E◦ = A−1(Bn(1, 0)).

5. Next we consider a general ellipsoid

E = {Au + d ∈ Rn
| u ∈ Bn(1, 0)}

for A ∈ L(Rn;Rn) symmetric and positive-definite and for d ∈ Rn. Let us
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abbreviate B = Bn(1, 0) so that, as above,

B∗b =

Bn(|b|, 0), b ∈ R≤0,

∅, b ∈ R>0.

By Proposition 1.9.37(v),

E∗ = {(A−1a, b − ⟨A−1a,d⟩Rn) ∈ Rn
| |a| ≤ |b|, b ∈ R≤0}.

finish and get polars of

cubes from Webster

1.9.9 Convex functions

In Sections I-3.1.6 and I-3.2.6 we considered in some detail the notion of a
convex function defined on an interval in R. In this section we extend this to
multivariable functions.

We begin with the definition.

1.9.42 Definition (Convex function) For a convex set C ⊆ Rn, a function f : C → R is
convex if

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2)

for every x1, x2 ∈ C and every s ∈ [0, 1]. If − f is convex, then f is concave. •

It turns out that the notion of convexity for single variable functions is, in an
appropriate sense, sufficient to determine convexity of a multivariable function.

1.9.43 Proposition (Convexity equals convexity on lines) Let C ⊆ Rn be convex. For a
function f : C→ R the following statements are equivalent:

(i) f is convex;
(ii) if x1, x2 ∈ C are distinct, then the function fx1,x2 : [0, ∥x2 − x1∥Rn]→ R given by

fx1,x2(x) = f
((

1 −
x

∥x2 − x1∥Rn

)
x1 +

x
∥x2 − x1∥Rn

x2

)
is convex, i.e., f restricted to the line connecting any two points in C is convex.

Proof (i) =⇒ (ii) Let x1, x2 ∈ C and let x1, x2 ∈ [0, ∥x2 − x1∥Rn]. If s ∈ [0, 1] then

fx1,x2((1 − s)x1 + sx2) = f
((

1 −
(1 − s)x1 + sx2

∥x2 − x1∥Rn

)
x1 +

(1 − s)x1 + sx2

∥x2 − x1∥Rn
x2

)
= f

(
(1 − s)

((
1 −

x1

∥x2 − x1∥Rn

)
x1 +

x1

∥x2 − x1∥Rn
x2

)
+ s

((
1 −

x2

∥x2 − x1∥Rn

)
x1 +

x2

∥x2 − x1∥Rn
x2

))
≤ (1 − s) f

(
1 −

( x1

∥x2 − x1∥Rn

)
x1 +

x1

∥x2 − x1∥Rn
x2

)
+ s f

((
1 −

x2

∥x2 − x1∥Rn

)
x1 +

x2

∥x2 − x1∥Rn
x2

)
= (1 − s) fx1,x2(x1) + s fx1,x2(x2),
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as desired.
(ii) =⇒ (i) Let x1, x2 ∈ C and s ∈ [0, 1]. Then

f ((1 − s)x1 + sx2) = f
((

1 −
s∥x2 − x1∥Rn

∥x2 − x1∥Rn

)
x1 +

s∥x2 − x1∥Rn

∥x2 − x1∥Rn
x2

)
= fx1,x2((1 − s)0 + s∥x2 − x1∥Rn)
≤ (1 − s) fx1,x2(0) + s fx1,x2(∥x2 − x1∥Rn)
= (1 − s) f (x1) + s f (x2),

as desired. ■

As with convex functions defined on intervals, multivariable convex functions
are continuous.

1.9.44 Proposition (Convex functions are continuous) If C ⊆ Rn is open and convex and
if f : C→ R is convex, then f is continuous.

Proof ■

1.9.10 Integration over convex sets

In this section we give a few definitions and results concerning integration over
convex domains. The crucial idea in getting started with this is the following
result.

1.9.45 Theorem (Convex sets are Jordan measurable) If C ⊆ Rn is convex then it is
Jordan measurable.

Proof If int(C) = ∅ this means that C is contained in an affine subspace of Rn and so
necessarily has measure zero, essentially by Exercise 1.2.13. Then we suppose that
int(C) , ∅.

We begin assuming that C is bounded. By a scaling argument using the change of
variables formula for the Riemann integral we will assume, for simplicity and without
loss of generality, that C is contained in the cube R with sides of length one and centred
at 0 ∈ Rn. For k ∈ Z>0 let Pk be the partition of R into cubes whose sides have equal
length 2−k. There are thus 2k subcubes from R. Let R0 be the subcubes from P that
intersect the interior of C and letR0 be the subcubes of P that intersect the boundary of
C. A vertex of R is a point in R having all components equal to± 1

2 . There are 2n vertices
and we denote the collection of vertices by V(R). A face of R is given by the collection
of all points in R where one of the components has a fixed value of ±1

2 . For a given
vertex v there are n faces which contain v and we denote the set of faces containing
v by Fv(R). Let v ∈ V(R) and let R′ be a subcube of Pk intersecting one of the n faces
containing v and let x′ ∈ R′ be the centre of R′. Since there are n faces containing v
and since each face intersects 2k(n−1) subcubes, there are n2k(n−1) such points x′. Now
consider the ray ρx′,v : R≥0 → Rn

ρx′,v(s) = x′ − sv
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emanating from x′ in the direction of −v. By considering all such rays associated with
all vertices we have a total of n2n2k(n−1) rays constructed in this way. Let us denote by
ρ(R) the collection of these rays. The following lemma records a useful property of the
rays constructed in this way.

1 Lemma If R′ is a subcube of Pk then the set

{ρx′,v ∈ ρ(V) | image(ρx′,v) intersects the centre of R′}

has cardinality 2n.
Proof We just sketch the idea, leaving the elementary and notation-filled details to the
reader. Let R′ be a subcube and let xR′ be the centre of R′. For v ∈ V(R) let rv : R≥0 → Rn

be defined by
rv(s) = xR′ + sv,

i.e., the ray through x′ in the direction of v. Since xR′ ∈ int(R) this ray will intersect the
boundary of R and so, before it does, it will pass through the centre x′ (why and why
the centre?) of one of the subcubes intersecting Fv(R). There will be exactly one such
subcube for each ray rv. Thus the ray ρx′,v will pass through the centre of R′, and this
holds for every vertex, and so we arrive at the 2n rays ρx′,v passing through the centre
of R′. ▼

For a subcube R′ of Pk denote by ρ(R′) the 2n rays passing through the centre of
R′. For subcubes R′ ∈R1 we have the following observation.

2 Lemma Let R′ ∈ R1 and for ρx′,v ∈ ρ(R′) let s1(ρx′,v) ∈ R≥0 be such that ρx′,v(s1(ρx′,v)) is
equal to the centre of R′ and let s0(ρx′,v) ∈ R≥0 be smallest number such that ρx′,v(s0(ρx′,v)) is
equal to the centre of a subcube, distinct from R′, fromR0. Then the set

{ρx′ ∈ ρ(R′) | s1(ρx′,v) < s0(ρx′,v)}

is nonempty.
Proof Suppose the conclusions of the lemma do not hold so that s1(ρx′,v) > s0(ρx′,v)
for every ρx′,v ∈ ρ(R′). Let R′(ρx′,v) ∈R0 \ {R′} be the subcube whose centre ρx′,v passes
through before it passes through the centre of R′. From Lemma 1 there are 2n such
subcubes. Choose x(ρx′,v) ∈ int(C) ∩ R′(ρx′,v). We claim that

R′ ⊆ conv({x(ρx′,v) | ρx′,v ∈ ρ(R′)}.

Indeed, let x ∈ R′. As we saw in the proof of Lemma 1, the 2n rays from ρ(R′) pass
through the centre of R′, one in the direction (from 0) of each of the vertices. It follows,
therefore, that the 2n points of the form x(ρx′,v) lie on rays through the centre of R′

in the direction (from 0) of one of the vertices. Moreover, each of the points x(ρx′,v)
does not lie in R′. Therefore, we have the following situation. Let P1, . . . ,Pn be the
hyperplanes passing through x and parallel to the coordinate hyperplanes (i.e., the
hyper planes where exactly one of the coordinates is fixed to be zero). Let H−j and H+j
be the half-spaces defined by the hyperplane P j, j ∈ {1, . . . ,n}. Thus there are 2n such
half-spaces and their intersections partitionRn into 2n regions. The points x(x′,v) have
the property that there is exactly one of these in each of the 2n regions. Using this fact,
all we have to do is prove the following statement:
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If Rn is partitioned by the 2n half-spaces defined by the coordinate hyperplanes, and
if x1, . . . , x2n are chosen so that exactly one of these points lies in the interior of each
region, then 0 ∈ conv({x1, . . . , x2n}).

We prove this assertion by induction on n. For n = 1 it is trivial since it says that 0 ∈ R
is in the convex hull of two points, one being negative the other being positive. Now
suppose the result true for n = m and consider the case when n = m + 1. From the
collection of 2m+1 points x1, . . . , x2m+1 let x−1 , . . . , x

−

2m be those points for which the first
coordinate is negative. Also denote by y1, . . . , y2m the points in the first coordinate
hyper plane obtained by setting the first component to zero in each of the vectors
x−1 , . . . , x

−

2m . By the induction hypothesis,

0 ∈ conv({y1, . . . , y2m}).

Thus conv({x−1 , . . . , x
−

2m}) contains a point of the form (a, 0, . . . , 0) for a < 0. In a similar
manner we denote by x+1 , . . . , x

+
2m those points for which the first coordinate is positive

and show that conv({x+1 , . . . , x
+
2m}) contains a point of the form (b, 0, . . . , 0) for b > 0.

Since
conv({{x−1 , . . . , x

−

2m}) ∪ conv({x+1 , . . . , x
+
2m}) ⊆ conv({x1, . . . , x2m+1})

the line segment
{((1 − s)a + sb, 0, . . . , 0) | s ∈ [0, 1]}

is contained in conv({x1, . . . , x2m+1}) and so 0 is also contained in this convex hull.
Thus we have shown that if the conclusions of the lemma do not hold then R′ <

R1, i.e., the hypotheses of the lemma also do not hold. ▼

This shows that the number of subcubes inR1 cannot exceed n2n2k(n−1). The total
volume of these cubes is then bounded above by 2−kn(n2n2k(n−1)) = n2n2−k. Since this
goes to zero as k → ∞ this means that we can cover bd(C) with cubes whose total
volume is arbitrarily small, and so C is Jordan measurable by Theorem 1.6.16.

If C is not bounded than we argue as follows. Consider the countable family of
cubes

R j = [− j, j] × · · · × [− j, j], j ∈ Z>0,

and define C j = C ∩ R j. Then C j and bounded (obviously) and convex (by Ex-
ercise 1.9.3) and so vol(bd(C j)). Thus bd(C j) has zero measure. Now note that
bd(C) ⊆ ∪ j∈Z>0 bd(C j), the latter being a countable union of sets of measure zero,
and so having measure zero by Exercise 1.2.12. Thus bd(C) is contained in a set of
measure zero, and so has measure zero. ■

An interesting idea that can now be associated with a bounded convex set is
the following.

1.9.46 Definition (Centre of a convex set) If C ⊆ Rn is a bounded n-dimensional convex
set the centre of C is

xC =
1

vol(C)

∫
C

x dx. •

The following property of the centre gives some insight into how one should
interpret it.
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1.9.47 Proposition (Property of the centre) For a bounded n-dimensional convex set C we
have ∫

C
(x − xC) dx = 0.

Proof This is trivial:∫
C

(x − xC) dx =
∫

C
x dx − xCvol(C) = xCvol(C) − xCvol(C) = 0. ■

The idea is that the integral ∫
C
(x − xC) dx

measures the sums of the moments about x0 of uniformly distributed masses located
in the body C. Since these moments sum to zero according to the proposition, this
means that x0 should be interpreted as the “centre of balance” of the body. This
gives the best interpretation of the barycentre.

1.9.48 Proposition (Barycentre equals centre) If ∆ ⊆ Rk is an n-dimensional simplex then
the centre of ∆ is its barycentre.

Proof Suppose that ∆ = ∆(x0, x1, . . . , xn) and denote y j = x j − x0 for j ∈ {1, . . . ,n}.
Since ∆ is a translation by x0 of the simplex ∆(0, y1, . . . , yn), by the change of variables
formula (why?) we can suppose without loss of generality that x0 = 0. That is to
say, we take ∆ to be an n-simplex of the form ∆(0, y1, . . . , yn) for linearly independent
vectors {y1, . . . , yn}.

Define a linear map L∆ : Rn
→ Rn by asking that L∆(e j) = y j, j ∈ {1, . . . ,n}.

This indeed defines a linear map by Theorem I-4.5.24, and is also invertible since
rank(L∆) = n. We claim that L∆ maps the standard n-simplex bijectively onto ∆.
Indeed, a point in

n∑
j=1

x je j, x1, . . . , xn ∈ R≥0,
n∑

j=1

x j ≤ 1

in ∆n is mapped to the point
n∑

j=1

x jy j ∈ ∆.

Therefore, by the change of variables formula,∫
∆

y dy = det L∆

∫
∆n

L∆(x) dx = (det L∆)L∆
(∫
∆n

x dx
)
, (1.53)

using linearity of the integral for the last equality.
Let us compute some integrals.
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1 Lemma
∫
∆n

dx =
1
n!

.

Proof We prove this by induction on n. For n = 1 we have∫
∆1

dx =
∫ 1

0
dx1 = 1,

which gives the result in this case. Now suppose the result holds for n = k − 1 and
consider the integral for n = k. Let us partition the coordinates for Rk as

((x1, . . . , xk−1), xk) = (x′, xk) ∈ Rk−1
×R.

For ξ ∈ [0, 1] define the hyperplane

P(ξ) = {((x1, . . . , xk−1), xk) | xk = ξ}.

Then take ∆k(ξ) = ∆k ∩ P(ξ), noting that

((x1, . . . , xk−1), xk) = (x′, xk) ∈ ∆k(ξ) ⇐⇒ xk = ξ, x1 + · · · + xk−1 = 1 − ξ.

Thus the points in ∆k(ξ) are in 1–1 correspondence with a copy of ∆k−1 scaled by the
factor 1 − ξ. By the change of variables formula we have∫

∆k, j(ξ)
dx′ = (1 − ξ)k−1vol(∆k−1).

Thus, by Fubini’s Theorem and using the induction hypothesis,∫
∆k

dx =
∫ 1

0

∫
∆k(xk)

dx′dxk =

∫ 1

0

(1 − xk)k−1

(k − 1)!
dxk

=

∫ 1

0

ξk−1

(k − 1)!
dξ =

1
k

1
(k − 1)!

=
1
k!
,

as desired. ▼

2 Lemma
∫
∆n

x dx =
(

1
(n+1)! , . . . ,

1
(n+1)!

)
.

Proof The integral we are to compute has a vector argument and so we integrate it
componentwise. Let us fix j ∈ {1, . . . ,n} and partition the coordinates for Rk as

(x j, (x1, . . . , x j−1, x j+1, . . . , xk)) = (x j, x′) ∈ R ×Rk−1.

For ξ ∈ [0, 1] define the hyperplane

P j(ξ) = {(x1, . . . , x j−1, x j, x j+1, . . . , xk) | x j = ξ}.

Then take ∆k, j(ξ) = ∆k ∩ P j(ξ), noting that

(x j, (x1, . . . , x j−1, x j+1, . . . , xk)) ∈ ∆k, j(ξ)

⇐⇒ x j = ξ, x1 + · · · + x j−1 + x j+1 · · · + xk = 1 − ξ.
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Thus the points in ∆k, j(ξ) are in 1–1 correspondence with a copy of ∆k−1 scaled by the
factor 1 − ξ. By the change of variables formula we have∫

∆k, j(ξ)
dx′ = (1 − ξ)k−1vol(∆k−1).

Now, by Fubini’s Theorem and Lemma 1 we have∫
∆k

x j dx =
∫ 1

0

∫
∆k, j(x j)

x j dx′dx j =

∫ 1

0

x j(1 − x j)k−1

(k − 1)!
dx j

=

∫ 1

0

(1 − ξ)ξk−1

(k − 1)!
dξ =

1
(k − 1)!

1
k(k + 1)

=
1

(k + 1)!
,

as desired. ▼

By Theorem 1.6.38 and Lemma 1 we have

det L∆ =
vol(L∆(∆n))

vol(∆n)
= n!vol(∆).

Using this formula and (1.53) we arrive at the formula

1
vol(∆)

∫
∆

y dy = n!L∆
(

1
(n+1)! , . . . ,

1
(n+1)!

)
= L∆

(
1

n+1 , . . . ,
1

n+1

)
,

which gives the result since the last expression is exactly the barycentre of ∆. ■

1.9.11 Convex polyhedra

In this section we describe a particular interesting class of convex sets.
Let us define the various sets in which we are interested. First let us talk about

convex polytopes. Notationally it will be convenient, for x, y ∈ Rn, to write x ≤ y
if x j ≤ y j, j ∈ {1, . . . ,n}.

1.9.49 Definition (Convex polyhedron, convex polytope, finitely generated convex
cones and sets) A nonempty subset C ⊆ Rn is

(i) a convex polyhedron if there exists A ∈ L(Rn;Rk) and b ∈ Rk such that

C = {x ∈ Rn
| Ax ≤ b}

and is
(ii) a convex polytope if it is a compact convex polyhedron.

We also make the following definitions:
(iii) a convex cone K is finitely generated if K = conv cone({x1, . . . , xk}, x0) for some

x0, x1, . . . , xk ∈ Rn;
(iv) a convex set C is finitely generated if C = conv({x1, . . . , xk}) for some x1, . . . , xk ∈

Rn. •
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It is a straightforward exercise to show that a convex polyhedron is, in fact,
convex. The reader is invited to check this in Exercise 1.9.11.

Thus a convex polyhedron is the intersection of the solutions to a finite number
of linear inequalities, i.e., an intersection of a finite number of half-spaces. Let us
denote the half-spaces by H1, . . . ,Hk and the boundary hyperplanes by P1, . . . ,Pk.
Thus

C = cl(H1) ∩ · · · ∩ cl(Hk).

The intersection F j of a convex polyhedron C with the hyperplane P j, j ∈ {1, . . . , k},
is a face of dimension n−1. Thus there are as many faces of dimension n−1 as there
are noncollinear rows in the matrix A. Let F1, . . . ,Fk denote the faces of dimension
n − 1. For fixed j1, j2 ∈ {1, . . . , k} the set F( j1, j2) = C ∩ P j1 ∩ P j2 is a face of dimension
n − 2. Thus we can write the set of faces of dimension n − 2 as F( j11, j12), . . . ,F( jl1, jl2)

for suitable pairs ( j11, j12), . . . , ( jl1, jl2) ∈ {1, . . . , k}2. One can proceed in this way,
defining faces of dimensions n − 1,n − 2, . . . , 1, 0. A face of dimension 0 is called a
vertex and a face of dimension 1 is sometimes called a rib.

With the preceding discussion as backdrop, let us characterise convex polyhedra
and convex polytopes.

1.9.50 Theorem (Farkas6–Minkowski7–Weyl8 Theorem) For a convex set C ⊆ Rn and a
convex cone K ⊆ Rn, the following statements hold:

(i) C is a convex polytope if and only if it is finitely generated;
(ii) K is a convex polyhedron if and only if it is finitely generated.

Proof Let us begin with a general discussion. Let C ⊆ Rn be convex. Let us call a
point x ∈ C an extreme point of C if, for any line segment

ℓx1,x2 ≜ {(1 − s)x1 + sx2 | s ∈ [0, 1]}

contained in C for which x ∈ ℓx1,x2 , it holds that either x = x1 or x = x2. Thus an extreme
point is one not contained in the relative interior of any line segment contained in C.
Let E(C) denote the set of extreme points of C.

We now have a lemma.

1 Lemma If C is a compact convex set, then C = conv(E(C)).

Proof It is clear that conv(E(C)) ⊆ C. The proof of the converse inclusion is by
induction on dim(C). If dim(C) = 0 the result is vacuous. Thus suppose that dim(C) =
d > 0 and let us assume without loss of generality that C ⊆ Rd, since otherwise we

6Gyula (Julius) Farkas (1847–1930) was a Hungarian mathematician and physicist. His mathe-
matical contributions, apart from the convex analysis contributions to which we refer here, were to
function theory. In physics, he also wrote on mechanics, thermodynamics, and electrodynamics.

7Hermann Minkowski (1864–1909) was a Russian-born mathematician who spent his profes-
sional career in what is now Germany. He made mathematical contributions to were geometric in
nature. He gave a mathematical formulation of Einstein’s work on special relativity.

8Hermann Klaus Hugo Weyl (1885–1955) was a Germaan mathematician whose interests were
in algebra and geometry.
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can replace Rd with aff(C). The induction hypotheses is that all compact convex sets
of dimension {0, 1, . . . , d − 1} are the convex hull of their extreme points.

Let x ∈ C.
If x ∈ bd(C) then, by Corollary 1.9.17, x ∈ P where P is a hyperplane separating

{x} and C. Note that C ∩ P is compact and convex (see Exercise 1.9.4) and that
C ∩ P ⊆ bd(C). We also claim that E(C ∩ P) ⊆ E(C). Indeed, suppose that y ∈ E(C ∩ P)
and let ℓx1,x2 be a line segment in C containing y. We have to show that, if y < {x1, x2},
then y < rel int(ℓx1,x2). First note that if y ∈ rel int(ℓx1,x−2) then ℓx1,x2 ⊆ C ∩ P. Indeed,
were this not the case then this would contradict the fact that y ∈ C∩P ⊆ bd(C). Now,
if ℓx1,x2 ⊆ C∩P it follows since y ∈ E(C∩P) that y < rel int(ℓx1,x−2. This gives E(C∩P) ⊆
E(C), as claimed. It follows by the induction hypothesis that x ∈ conv(E(C∩P)) ⊆ E(C).

Now suppose that x ∈ int(C). Let u ∈ Rn and define

L = {x + su | s ∈ R} ∩ C

as the intersection of a line through x with C. Note that L is compact since C is compact.
Then, since C is compact, L is connected and so we have

L = {(1 − s)x1 + sx2 | s ∈ [0, 1]}

for x1, x2 ∈ bd(C). From the preceding paragraph, x1, x2 ∈ conv(E(C)), and, since x ∈ L,
x is a convex combination of x1 and x2. Thus x ∈ conv(E(C)). ▼

(i) Suppose that
C = cl(H1) ∩ · · · ∩ cl(Hk)

for half-spaces H1, . . . ,Hk. If C = {x} then C is obviously finitely generated. Thus we
assume that C is comprised of more than one point. We claim that if x ∈ E(C) then
there exists j1, . . . , jm ∈ {1, . . . , k} such that

{x} = cl(H j1) ∩ · · · ∩ cl(H jm). (1.54)

Indeed, let x ∈ E(C) and define

J(x) = { j ∈ {1, . . . , k} | x ∈ bd(H j)}

and
P(x) = {y ∈ Rn

| y ∈ bd(H j), j ∈ J(x)}.

Since x < bd(H j) for j < J(x), it follows that x ∈ rel int(C ∩ P(x)). However, since
x ∈ E(C) we also have x ∈ E(C ∩ P(x)). Thus x ∈ rel bd(C ∩ P(x)). The only convex
sets for which the relative interior and relative boundary can intersect are the zero
dimensional convex sets. Thus P = {x}. Thus (1.54) holds. Since there are only finitely
many possible intersections of the form cl(H j1) ∩ · · · ∩ cl(H jm), it follows that there can
only be finitely many extreme points. By the lemma above, C is the convex hull of this
finite collection of extreme points, and so is finitely generated.

Next let C = conv({x1, . . . , xk}). We shall assume without loss of generality that
aff(C) = Rn. For each j ∈ {1, . . . , k} let f j : Rn

×R→ R be given by f j(α) = α(x j). If C∗ is
the polar cone of C (see Definition 1.9.36) then, since

C∗ = {(a, b) ∈ Rn
×R | ⟨a, x j⟩Rn + b) ≤ 0, j ∈ {1, . . . , k}}
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(noting that A(Rn;R) is isomorphic to Rn
⊕ R), we see that C∗ is a polyhedron. Since

the function

f : α 7→
k∑

j=1

α(x j)

is linear, the set f−1(−1) is an affine subspace of A(Rn;R). Thus C∗ ∩ f−1(−1) is a
polyhedron in the affine subspace f−1(−1). We claim that C∗ ∩ f−1(−1) is compact. since intersections of

polyhedra are polyhedra

and affine subspaces are

polyhedra

Since we are assuming that aff(C) = Rn, by Proposition 1.9.23 there exists distinct
j0, j1, . . . , jn ∈ {1, . . . , k} such that the set

{x j1 − x j0 , . . . , x jn − x j0}

is linearly independent. By Proposition 1.9.26 the map

A(Rn;R) ∋ α 7→ (α(x j0), α(x j1), . . . , α(x jn)) ∈ Rn+1

is a bijection. Moreover, the map is easily seen to be affine. Therefore, the map and
its inverse map bounded subsets to bounded subsets. In particular, the preimage of
[−1, 0]n+1 is bounded. Since C∗ ∩ f−1(−1) is a subset of this preimage, we conclude
that it is bounded. Since C∗ is closed by Proposition 1.9.38 and f−1(−1) is closed by
Corollary 1.3.4, it follows from Proposition 1.2.19 that C∗ ∩ f−1(−1) is closed, and so
compact.

Next we claim that

C = {y ∈ Rn
| α(y) ≤ 0 for all α ∈ C∗ ∩ f−1(−1)}. (1.55)

First let x ∈ C. Then if α ∈ C∗ ∩ f−1(−1) we have α(x) ≤ 0 by Theorem 1.9.39. Thus

C ⊆ {y ∈ Rn
| α(y) ≤ 0 for all α ∈ C∗ ∩ f−1(−1)}.

Next let
x ∈ {y ∈ Rn

| α(y) ≤ 0 for all α ∈ C∗ ∩ f−1(−1)}.

Let α ∈ C∗ \ {0} and let λ ∈ R>0 be such that f (λα) = −1, this being possible since
f (α) ∈ R<0. Thus λα ∈ C∗ ∩ f−1(−1). Then we have

α(x) = λ−1(λα(x)) ≤ 0.

Since this holds for every α ∈ C∗ we have x ∈ C by Theorem 1.9.39. Thus (1.55) holds,
as desired.

As we showed above, C∗ ∩ f−1(−1) is a polytope, and so, according to the first part
of the proof, is finitely generated. Thus there exists α1, . . . , αm ∈ C∗ ∩ f−1(−1) such that

C∗ ∩ f−1(−1) = conv({α1, . . . , αk}).

We next claim that
C = {y ∈ Rn

| α j(y) ≤ 0, j ∈ {1, . . . ,m}}. (1.56)

From the previous paragraph,

C ⊆ {y ∈ Rn
| α j(y) ≤ 0, j ∈ {1, . . . ,m}}.
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Conversely, let
x ∈ {y ∈ Rn

| α j(y) ≤ 0, j ∈ {1, . . . ,m}}.

Let α ∈ C∗ ∩ f−1(−1) and write α =
∑m

j=1 λ jα j for λ j[0, 1], j ∈ {1, . . . ,m}, satisfying∑m
j=1 λ j = 1. Then we have

α(x) =
m∑

j=1

α j(x) ≤ 0.

Since this holds for every α ∈ C∗ ∩ f−1(−1), from the previous paragraph we conclude
that x ∈ C. Thus (1.56) indeed holds.

Note that (1.56) gives C as a polytope, as desired.change the above

argument to use the

polar and not the polar

cone

(ii) Let K be a convex polyhedron with x0 as vertex. Let C be a convex polytope
with x0 ∈ int(C). Note that K ∩ C is a polytope and so is finitely generated by part (i)

being the intersection

of two polyehra of the theorem. Let us write K ∩ C = conv({x1, . . . , xk}). We shall show that K =
conv cone({x1, . . . , xk}, x0). It is evident that

conv cone({x1, . . . , xk}, x0) ⊆ K

since K is a convex cone. Let x ∈ K and note that there exists λ ∈ R>0 such that
x0 + λ(x − x0) ∈ C since x0 ∈ int(C). Therefore,

x0 + λ(x − x0) ∈ conv({x1, . . . , xk}) ⊆ conv cone({x1, . . . , xk}, x0).

Since
x = x0 + λ

−1λ(x − x0) ∈ conv cone({x1, . . . , xk}, x0),

we have that
K = conv cone({x1, . . . , xk}, x0),

showing that K is finitely generated.
Next suppose that K = conv cone({x1, . . . , xk}, x0). Note that, by part (i) of the

theorem,
conv({x0, x1, . . . , xk})

is the intersection of the closure of half-spaces H1, . . . ,Hm. Let

J = { j ∈ {1, . . . ,m} | x0 ∈ bd(H j)}.

We shall show that K = ∩ j∈J cl(H j).
First we claim that ∩ j∈J cl(H j) is a convex cone with vertex x0. It is convex, being a

polyhedron. To show that it is a cone, let λ j ∈ R
n and a j ∈ R, j ∈ J, be such that

H j = {x ∈ Rn
| ⟨λ j, x⟩Rn > a j}

for each j ∈ J. Since x0 ∈ bd(H j), ⟨λ j, x0⟩Rn = a j for each j ∈ J. Now let x ∈ ∩ j∈J cl(H j)
and let λ ∈ R≥0. Then

⟨λ j, x0 + λ(x − x0)⟩Rn = a j + λ(⟨λ j, x⟩Rn − a j) ≥ a j

for each j ∈ J, showing that ∩ j∈J cl(H j) is indeed a convex cone with vertex x0.
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Now, note that we obviously have

x1, . . . , xk ∈ ∩ j∈J cl(H j)

and so K ⊆ ∩ j∈J cl(H j) since ∩ j∈J cl(H j) is a convex cone with vertex x0.
For the opposite inclusion, let x ∈ ∩ j∈J cl(H j) and note that, for all λ ∈ R≥0,

x0 + λ(x − x0)x ∈ cl(H j), j ∈ J.

Let j ∈ {1, . . . ,m} \ J. Then

x0 + λ(x − x0) = (1 − λ)x0 + λx ∈ cl(H j)

for λ ∈ (0, 1). Therefore, for λ ∈ (0, 1) we have

x0 + λ(x − x0) ∈ cl(H j) ⊆ K, j ∈ {1, . . . ,m}.

Since
x = x0 + λ

−1λ(x − x0) ∈ K

thee theorem follows. ■

1.9.12 Linear programming

In this section we provide, just for fun, an application of elementary convex
analysis. It turns out that in many applications it is useful to know how to minimise
a linear function on a convex polytope (to be defined shortly). This is a well studied
problem, going under the general name of linear programming. In this section we
shall define all the terminology needed in this problem, and give the main result
in linear programming that we shall make use of.

Let us define precisely the fundamental problem of linear programming.

1.9.51 Problem (Linear programming) The linear programming problem is: For a convex
polyhedron

C = {x ∈ Rn
| Ax ≤ b}

and for c ∈ Rn, minimise the function x 7→ ⟨c, x⟩Rn over C. A solution to the linear
programming problem is thus a point x0 ∈ C such that ⟨c, x0⟩Rn ≤ ⟨c, x⟩Rn for every
x ∈ C. •

The following result describes the solutions to the linear programming prob-
lem.

1.9.52 Theorem (Solutions to linear programming problem) Let c ∈ Rn, let

C = {x ∈ Rn
| Ax ≤ b}

be a convex polyhedron, and consider the linear programming problem for the function
x 7→ ⟨c, x⟩Rn . Then the following statements hold:
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(i) the linear programming problem has a solution if and only if x 7→ ⟨c, x⟩Rn is bounded
below on C;

(ii) if C is a convex polytope then the linear programming problem has a solution;
(iii) if x 7→ ⟨c, x⟩Rn is not constant on C then any solution of the linear programming

problem lies in rel bd(C).
Proof We assume, without loss of generality, that the normals of the boundary hy-
perplanes of the defining half-spaces are not collinear. This amounts to saying that no
two rows of the matrix A are collinear. We can also assume, by restricting to the affine
hull of C if necessary, that int(C) , ∅. This simplifies the discussion.

(i) Certainly if the linear programming problem has a solution, then x 7→ ⟨c, x⟩Rn is
bounded below on C. So suppose that x 7→ ⟨c, x⟩Rn is bounded below on C. Specifically,
suppose that ⟨c, x⟩Rn ≥ −M for some M ∈ R>0. If c = 0 then the linear programming
problem obviously has a solution, indeed many of them. So we suppose that c , 0.
Let x0 ∈ C and define

A = {x ∈ Rn
| ⟨c, x⟩Rn ∈ [−M, ⟨c, x0⟩Rn]}.

Note that A is nonempty, closed (since x 7→ ⟨c, x⟩Rn is continuous), and bounded (since
linear functions are proper by ). Thus A ∩ C is nonempty and compact. The functionwhat?

x 7→ ⟨c, x⟩Rn , restricted to A ∩ C, therefore achieves its minimum on A ∩ C at some
point, say x̄. It holds that ⟨c, x̄⟩Rn ≤ ⟨c, x⟩Rn for every x ∈ C since, it clearly holds for
x ∈ A ∩ C, and if x < A ∩ C then ⟨c, x⟩Rn ≥ ⟨c, x0⟩Rn . Thus the point x̄ solves the linear
programming problem.

(ii) This follows immediately since x 7→ ⟨c, x⟩Rn is bounded on C if C is a convex
polytope.

(iii) That x 7→ ⟨c, x⟩Rn is not constant on C is equivalent to x 7→ ⟨c, x⟩Rn not being
constant on aff(C). This is in turn equivalent to the subspace U(C) of Rn associated to
aff(C) not being contained in c⊥. Let x ∈ rel int(C). Let uc ∈ U(C) be the unit vector
such that

⟨uc, c⟩Rn = inf{⟨u, c⟩Rn | u ∈ U(C), ∥u∥Rn = 1}.

That such a uc exists since u 7→ ⟨u, c⟩Rn is a continuous function on the compact set
U(C)∩ Sn−1. Moreover, since ⟨−u, c⟩Rn = −⟨u, c⟩Rn , it follows that ⟨uc, c⟩Rn ∈ R<0. Since
x ∈ rel int(C) there exists r ∈ R>0 such that x + ruc ∈ C. Then

⟨c, x + ruc⟩Rn = ⟨c, x⟩Rn + r⟨c,uc⟩Rn > ⟨c, x⟩Rn ,

showing that c 7→ ⟨c, x⟩Rn cannot achieve its minimum at x ∈ rel int(C). Thus it must
achieve its minimum on rel bd(C). ■

The upshot of the theorem is that in searching for solutions to the linear pro-
gramming problem, one can restrict one’s attention to the boundary of C. Under
certain “genericity” assumptions, the search can further be restricted to the vertices
of C. This, note, is very significant since it reduces the search for minima to a finite
number of computations. Moreover, there is an efficient algorithm, called the sim-
plex method, for searching over the vertices to find the minimum. To describe the
simplex method would take us slightly beyond the fun excursion rôle we envision
for our presentation of linear programming, so we refer to the notes at the end of
the chapter for references.
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1.9.13 Notes

The fact that a convex set is Jordan measurable is due to Minkowski [1903], and
the proof we give is from the paper of Szabó [1997].

That a finitely generated convex set or cone is polyhedral was proved by Weyl
[1934]. The converse statement is proved by Minkowski [1897]. Contributions to
the problem are also made by Farkas [1902].

Exercises

1.9.1 Prove that convex sets and cones are connected.
1.9.2 Show thatDn = {x ∈ Rn+1

| ∥x∥Rn ≤ 1} is convex.
Hint: Use the triangle inequality.

1.9.3 If the following statements are true, prove them true. If they are false, give
a counterexample to demonstrate this.
(a) The intersection of two convex sets is convex.
(b) The intersection of two cones with vertex x0 is a cone with vertex x0.
(c) The union of two convex sets is a convex set.
(d) The union of two cones with vertex x0 is a cone with vertex x0.
(e) The intersection of two affine subspaces is an affine subspace.
(f) The union of two affine subspaces is an affine subspace.

1.9.4 Let (Ca)a∈A be a family of convex subsets ofRn with the property that∩a∈ACa ,
∅. Show that ∩a∈ACa is convex.

1.9.5 If C ⊆ Rn is convex, show that conv(C ∪ {x0}) is comprised of the set of lines
from x0 to points in C.

1.9.6 Let C ⊆ Rm and D ⊆ Rn. Show that C × D ⊆ Rm+n is convex if and only if
both C and D are convex.

1.9.7 Show that the image of a convex set (resp. cone) under an affine map is a
convex set (resp. cone).

1.9.8 Prove Proposition 1.9.27.
1.9.9 Prove Proposition 1.9.37.
1.9.10 Show that {0}∗ = Rn

× R≤0 and {0}◦ = Rn and that (Rn)∗ = {0} × R≤0 and
(Rn)◦ = {0}, where we identify A(Rn;R) with Rn

⊕R.
1.9.11 Show that a convex polyhedron is convex.
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Section 1.10

Some advanced topics on multivariable functions

In this section we collect some results on multivariable functions that are of a
more sophisticated character than the results of Sections 1.3 and 1.4. We choose
to collection these results in a separate section in order to minimise the distraction
that would arise from their being embedded among the more pedestrian results
of the preceding section. It is true, nonetheless, that we will call on results from
this section when we need them. It is also the case that reading Sections 1.10.1–
1.3.7 will be very useful in understanding some of the more abstract material in
Chapter III-1.

Do I need to read this section? Obviously this section can be bypassed until spe-
cific results are needed in the sequel. It also might be a nice idea to read this section
before studying general topology. •

1.10.1 Open, closed, and proper maps

One of the comments one will often hear from students on a first encounter
with the statement “a function is continuous if the preimage of open sets are open”
is, “Why is it not the image of open sets that should be open?” The answer to
this question, of course, is that the requirement that preimages are open is right;
for example, it agrees with the ϵ − δ definition. However, this does lead to the
question of whether it is interesting to think about maps sending open sets to open
sets. It turns out that there is some value to such maps, although they are far less
important than continuous maps.

Let us give the definition.

1.10.1 Definition (Open map, closed map) If A ⊆ Rn and B ⊆ Rm, a map f : A→ B is
(i) open if f (U) is relatively open in B for every relatively open subset U of A,

and is
(ii) closed if f (C) is relatively open in B for every relatively open subset C of A. •

Let us give some examples that discriminate between “open,” “closed,” and
“continuous.”

1.10.2 Examples (Open and closed maps) We shall simply state the examples, leaving
it to the reader the make the easy verifications of the statements we make.
1. Let A = Q \ {0} ⊆ R and let B = R. Define f : A→ B by

f (q) =

q − 1, q ∈ Q<0,

q + 1, q ∈ Q>0.
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Then f is neither continuous, open, nor closed.
2. Let A = [0, 1) ⊆ R and let B = R ⊆ R. The inclusion map iA : A → B is

continuous, but neither open nor closed.
3. Let A = R ⊆ R and let B = R ⊆ R. The map f : A → B given by f (x) = sign(x)

(here sign is the signum function defined following Definition I-2.2.8) is closed,
but neither continuous nor open.

4. Let us take A = (−1, 1) ⊆ R and B = (−1, 0] ∪ (1, 2). If we define f : A→ B by

f (x) =

x, x ∈ (−1, 0],
x + 1, x ∈ (0, 1),

then f is open, but neither continuous nor closed.
5. Let A = R ⊆ R and B = R ⊆ R. The function f : A→ B given by f (x) = ⌊x⌋ (here
⌊·⌋ is the floor function defined following Definition I-2.2.8) is closed and open,
but not continuous.

6. Let A = [0, 1] ⊆ R, let B = R, and let iA : A→ B be the inclusion map. This map
is closed and continuous, but not open.

7. Let A = (0, 1) ⊆ R and B = R ⊆ R. Then the inclusion map iA : A → B is open
and continuous, but not closed.

8. Let A = B = R ⊆ R. The identity map is continuous, closed, and open. •

Now that we have established through examples the impossibility of any gen-
eral connection between openness, closedness, and continuity of a map, let us
examine some connections that do exist.

1.10.3 Proposition (Bijective maps are closed if and only if they are open) If A ⊆ Rn

and B ⊆ Rm then a map f : A→ B is open if and only if it is closed.
Proof Suppose f is an open bijection. Let C ⊆ A be relatively closed so that A \ C is
relatively open. Then f (C) = B \ f (A \ C) since f is a bijection. Moreover, f (A \ C) is
relatively open since f is open. Thus f (C) is relatively closed and so f is closed. A
similar argument shows that a closed bijection is open. ■

An important class of open maps are projections.

1.10.4 Proposition (Projections are continuous) Let A ⊆ Rn and B ⊆ Rm, and define
πA : A × B→ A and πB : A × B→ B by

πA(x,y) = x, πB(x,y) = y.

Then πA and πB are continuous.
Proof Let U ⊆ A×B be relatively open. Then, for (x0, y0) ∈ U there exists ϵ ∈ R>0 such
that Bn+m(2ϵ, (x0, y0)) ∩ (A × B) ⊆ U. By (1.9) this means that (Bn(ϵ, x0) × Bm(ϵ, y0)) ∩
(A × B) ⊆ U. Therefore, Bn(ϵ, x0) ⊆ πA(U) and so πA(U) is open. ■

We have already seen that open maps may not be closed. It is further true that
projections, which are open, need not be closed.
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1.10.5 Example (Projections are not generally closed) Let A = R ⊆ R and B = R ⊆ R
and consider the projection πA(x, y) = x. We claim that πA is not closed. Indeed,
the subset

C = {(x, tan−1(x)) | x ∈ (−π2 ,
π
2 )} ⊆ A × B

which is closed. We have π(C) = (−π2 ,
π
2 ) which is open. •

Possibly the best characterisations of open and closed maps require some
methodology that is most naturally presented in the general context of general
topology. Thus we postpone these nice characterisations until .what?

We now turn to a notion that can be quite useful, although it is not as easy to
see why until one actually needs to use it.

1.10.6 Definition (Proper map) Let A ⊆ Rn and B ⊆ Rm. A map f : A → B is proper if
f−1(K) is a compact subset of A for every compact subset K of B. •

Before we get to some examples which exhibit the notion of properness, let us
give an alternative characterisation of properness. In order to do this we introduce
the following notion about sequences.

1.10.7 Definition (Sequence diverging to infinity) If A ⊆ Rn a sequence (x j) j∈Z>0 diverges
to infinity if, for every compact subset K ⊆ A, there exists N ∈ Z>0 such that
x j ∈ A \ K for all j ≥ N. •

We then have the following characterisation of a proper map.

1.10.8 Proposition (Characterisation of proper maps) If A ⊆ Rn, if B ⊆ Rm, and if
f : A→ B, then the following statements are equivalent:

(i) f is proper;
(ii) for every sequence (xj)j∈Z>0 diverging to infinity, the sequence (f(xj))j∈Z>0 diverges to

infinity;
(iii) if a sequence (xj)j∈Z>0 has the property that the sequence (f(xj))j∈Z>0 converges to

y0 ∈ B, then there exists a subsequence (xjk)k∈Z>0 converging to a point x0 ∈ A for
which f(x0) = y0.

Proof (i) =⇒ (ii) Suppose there exists a sequence (x j) j∈Z>0 diverging to infinity for
which ( f (x j)) j∈Z>0 does not diverge to infinity. Thus there is a compact set K ⊆ B
such that for any N ∈ Z>0 there exists some j ≥ N such that f (x j) ∈ K. In other
words, there exists a subsequence ( f (x jk))k∈Z>0 which is a subset of K. The subsequence
(x jk)k∈Z>0 still diverges to infinity and so every subsequence of (x jk)k∈Z>0 also diverges to
infinity. Therefore, there can be no compact set containing the subsequence (x jk)k∈Z>0 .
In particular, f−1(K) is not compact and so f is not proper.

(ii) =⇒ (i) Suppose that f is not proper and let K ⊆ B be such that f−1(K) is
not compact. Thus there exists a sequence (x j) j∈Z>0 in f−1(K) having no convergent
subsequence. This means that for any compact subset K′ ⊆ f−1(K) and for any N ∈ Z>0
there exists j ≥ N such that x j < K′. (Indeed, were this not the case, then there would
exist a compact set K′ containing x j for all sufficiently large j, and this would imply
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the existence of a convergent subsequence.) This implies that there is a subsequence
(x jk)k∈Z>0 which diverges to infinity. But the sequence ( f (x jk))k∈Z>0 is then a sequence
in K, and so does not diverge to infinity. ■

This allows a convenient and insightful characterisation of properness for a
certain sort of function.

1.10.9 Corollary (Properness of R-valued functions on Rn) A map f : Rn
→ R is proper

if and only if lim∥x∥Rn→∞|f(x)| = ∞.
Proof First suppose that f is proper and let (x j) j∈∞ be a sequence such that the se-
quence (∥x j∥Rn) j∈Z>0 diverges to ∞ (in the sense of Definition I-2.3.2). Then the se-
quence (x j) j∈Z>0 clearly diverges to infinity (in the sense of Definition 1.10.7). By
Proposition 1.10.8 it follows that ( f (x j)) j∈∞ diverges to infinity (in the sense of Defini-
tion 1.10.7). Thus, for any M ∈ R>0 there exists N ∈ Z>0 so that f (x j) < [−M,M] for all
j ≥ N. Thus lim∥x∥Rn→∞| f (x)| = ∞, as desired.

Conversely, suppose that lim∥x∥Rn→∞| f (x)| = ∞. This means that for every sequence
(x j) j∈Z>0 for which the sequence (∥x j∥Rn) j∈Z>0 converges to ∞ (in the sense of Defini-
tion I-2.3.2) the sequence (| f (x j)|) j∈Z>0 diverges to∞ (in the sense of Definition I-2.3.2).
Now let (x j) j∈Z>0 be a sequence in Rn converging to infinity (in the sense of Defini-
tion 1.10.7). Such a sequence also clearly diverges to∞ in the sense of Definition I-2.3.2.
Now let K ⊆ R be compact. Take M ∈ R>0 sufficiently large that K ∈ [−M,M]. Since
the sequence (| f (x j)|) j∈Z>0 diverges to ∞ in the sense of Definition I-2.3.2 let N ∈ Z>0
be sufficiently large that | f (x j)| ≥ M for j ≥ N. Then f (x j) < K for j ≥ N, and so the
sequence ( f (x j)) j∈∞ diverges to infinity in the sense of Definition 1.10.7. Thus f is
proper. ■

Let us give some examples of proper maps.

1.10.10 Examples (Proper maps)
1. By Corollary 1.10.9 the function f : R→ R given by f (x) = EvR(P)(x) is proper

for any polynomial P ∈ R[ξ]. That is to say (for those not wanting algebra
baggage at a moment like this), polynomial functions are proper.

2. By Corollary 1.10.9 the function f : R → R given by f (x) = tan−1(x) is not
proper.

3. Properness and continuity are not generally connected. For example, the func-
tion f : R→ R given by

f (x) =

x + 1, x ≥ 0,
x − 1, x < 0

is proper and discontinuous, while the function g : R → R defined by g(x) =
sign(x) is not proper and discontinuous. •
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1.10.11 Proposition (Properties of proper maps) For A ⊆ Rn, for B ⊆ Rm, and for f : A→
B, the following statements hold:

(i) if A is compact and f is continuous then f is proper and closed;
(ii) if f is continuous and proper then it is closed.

Proof (i) If f is continuous and K ⊆ B is compact then f−1(K) is relatively closed by
Exercise 1.3.3. Therefore, f−1(K) = C ∩ A for a closed subset C by Proposition 1.2.50.
Thus f−1(K) is closed (being the intersection of closed sets) and so compact by Corol-
lary 1.2.36. Thus f is proper.

Also let C ⊆ A be relatively closed, and so C is compact by Corollary 1.2.36.
Therefore, f (C) is compact by Proposition 1.3.29, and so closed. Thus f is closed.

(ii) Let C ⊆ A be relatively closed. Then C = C′ ∩ A for a closed subset C′ of
Rn. Let K ⊆ B be compact so that f−1(K) is compact by properness of f . Thus
C ∩ f−1(K) = C′ ∩ f−1(K) is compact by Exercise 1.2.4 and so

f (C ∩ f−1(K)) = f (C) ∩ f ( f−1(K)) = f (C) ∩ K

(why the last equality?) is compact since f is continuous. Therefore, by Proposi-
tion 1.3.29 it follows that f (C) is closed since K is an arbitrary compact set. ■

1.10.2 Semicontinuity

In this section we study useful generalisations of the notion of continuity. The
definitions and their characterisations are simple enough. The difficult thing is to
accept why the concepts are worth introducing, and we give a glimpse into this
via Proposition 1.10.17 below.

But first let us give the definitions.

1.10.12 Definition (Upper semicontinuous, lower semicontinuous) Let A ⊆ Rn and let
f : A→ R.

(i) The map f is upper semicontinuous at x0 ∈ A if, for every ϵ ∈ R>0, there exists
a relative neighbourhood U of x0 in A such that f (x) < f (x0) + ϵ for all x ∈ U.

(ii) The map f is lower semicontinuous at x0 ∈ A if, for every ϵ ∈ R>0, there exists
a relative neighbourhood U of x0 in A such that f (x) > f (x0) − ϵ for all x ∈ U.

(iii) The map f is upper semicontinuous if it is upper semicontinuous at each
x ∈ A.

(iv) The map f is lower semicontinuous if it is lower semicontinuous at each
x ∈ A. •

Before we get to trying to understand these notions of semicontinuity and give
illustrative examples, let us first give some useful equivalent characterisations.
First we give the results for upper semicontinuity.
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1.10.13 Proposition (Characterisations of upper semicontinuity) For A ⊆ Rn and for
f : A→ R the following statements are equivalent:

(i) f is upper semicontinuous;
(ii) −f is lower semicontinuous;
(iii) f−1([−∞, α)) is relatively open in A for every α ∈ R;
(iv) f−1([α,∞]) is relatively closed in A for every α ∈ R;
(v) for every x0 ∈ A, if (xj)j∈Z>0 is a sequence in A converging to x0 ∈ A, then

lim supj→∞ f(xj) ≤ f(x0).

Proof (i)⇐⇒ (ii) This follows immediately from the definitions.
(i) =⇒ (iii) Let α ∈ R and let x0 ∈ f−1([−∞, α)). Let ϵ ∈ R>0 be such that [−∞, f (x0)+

ϵ) ⊆ [−∞, α), this being possible by openness of [−∞, α). By upper semicontinuity of
f at x0 there exists δ ∈ R>0 such that f (x) < f (x0) + ϵ for all x ∈ A ∩ Bn(δ, x0). Thus
f (x) ∈ [−∞, f (x0) + ϵ) and so x ∈ f−1([−∞, α)). This gives the desired openness of
f−1([−∞, α)).

(iii)⇐⇒ (iv) This is clear since f−1([α,∞]) = A \ f−1([−∞, a)).
(iii) =⇒ (v) Let (x j) j∈Z>0 be a sequence in A converging to x0 ∈ A. If f (x0) = ∞ the

result is trivially true, so we may as well suppose that f (x0) ∈ R. Let α > f (x0). By
assumption the set f−1([−∞, α)) is open. Moreover, x0 ∈ f−1([−∞, α)). Openness of
f−1([−∞, α)) and convergence of (x j) j∈Z>0 to x0 ensures that there exists N ∈ Z>0 such
that x j ∈ f−1([−∞, α)) for all j ≥ N. Therefore,

lim sup
j→∞

f (x j) = inf{sup{ f (x j) | j ≥ k} | k ∈ Z>0}

≤ sup{ f (x j) | j ≥ N} ≤ α.

Thus lim sup j→∞ f (x j) ≤ α for every α > f (x0). Thus lim sup j→∞ f (x j) ≤ f (x0) as
desired.

(v) =⇒ (i) Suppose that f is not upper semicontinuous at x0 ∈ A. Then there exists
ϵ ∈ R>0 such that for any relative neighbourhood U of x0 in A there exists x ∈ U such
that f (x) ≥ f (x0)+ϵ. Now let (x j) j∈Z>0 be a sequence in A converging to x0. It, therefore,
follows that for any N ∈ Z>0 there exists j ≥ N such that f (x j) ≥ f (x0) + ϵ. Therefore,

lim inf
j→∞

f (x j) ≥ f (x0) + ϵ > f (x0),

as desired. ■

The following characterisation of lower semicontinuity is proved by a suitable
modification of the preceding proof.

1.10.14 Proposition (Characterisations of lower semicontinuity) For A ⊆ Rn and for
f : A→ R the following statements are equivalent:

(i) f is lower semicontinuous;
(ii) −f is upper semicontinuous;
(iii) f−1((α,∞])) is relatively open in A for every α ∈ R;
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(iv) f−1([−∞, α])) is relatively closed in A for every α ∈ R;
(v) for every x0 ∈ A, if (xj)j∈Z>0 is a sequence in A converging to x0, then

lim infj→∞ f(xj) ≥ f(x0).

Let us also state the following useful joint property of upper and lower semi-
continuity.

1.10.15 Proposition (Continuity equals upper and lower semicontinuity) If A ⊆ Rn

then a map f : A → R is continuous at x0 ∈ A if and only if it is both upper and lower
semicontinuous at x0.

Proof First suppose that f is continuous at x0. Let ϵ ∈ R>0 and take δ ∈ R>0 such that
if x ∈ A∩Bn(δ, x0) then f (x) ∈ B1(ϵ, f (x0)). Then f (x) < f (x0)+ ϵ and f (x) > f (x0)− ϵ for
every x ∈ Bn(δ, x0). Thus f is both upper and lower semicontinuous at x0.

Now suppose that f is both upper and lower semicontinuous at x0. For ϵ ∈ R>0
let U1 be a relative neighbourhood of x0 such that x ∈ U1 implies that f (x) < f (x0) + ϵ,
this being possible by upper semicontinuity of f . Let U2 be a relative neighbourhood
of x0 such that x ∈ U2 implies that f (x) > f (x0) − ϵ, this being possible by lower
semicontinuity of f . Now let δ ∈ R>0 be such that A ∩ Bn(δ, x0) ⊆ U1 ∩ U2. Then
f (x) ∈ B1(ϵ, f (x0)) for x ∈ A ∩ Bn(δ, x0), giving continuity of f at x0. ■

Now that we understand some basic characterisations of upper and lower
semicontinuity, let us give some examples that, we hope, will help in understanding
these ideas.

1.10.16 Examples (Upper and lower semicontinuous functions)
1. The floor function x 7→ ⌊x⌋ mapping a real number x to the largest integer less

than or equal to x is upper semicontinuous. Indeed, let x0 ∈ R and let ϵ ∈ R>0. If
x0 is not an integer then there exists δ ∈ R>0 such that B1(δ, x0) does not contain
an integer. In this case we have f (x) = f (x0) for all x ∈ B1(δ, x0) and so, in
particular, f (x) < f (x0) + ϵ. If x0 is an integer then f (x0) = x0. If δ = 1

2 and if
x ∈ [x0, x0+δ) then f (x) = x0 = f (x0). If x ∈ (x0−δ, x0) then f (x) = x0−1 = f (x0)−1.
In either case f (x) < f (x0) + ϵ. Thus f is indeed upper semicontinuous.

2. An entirely similar analysis shows that the ceiling function x 7→ ⌈x⌉ which
assigns to a real number x the smallest integer not less that x is lower semicon-
tinuous.

In Figure 1.19 we show the graphs of the floor and ceiling functions. Looking at
these graphs, one might be inclined to say that upper and lower semicontinuity
of piecewise continuous functions has to do with whether the functions takes the
value of the left or right limit at points of discontinuity. This is not correct. At
points of discontinuity of a piecewise continuous function, an upper semicontinu-
ous function takes the larger of the left and right limit, and a lower semicontinuous
function takes the smaller of the left and right limit. This assertion follows imme-
diately from the definition.
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Figure 1.19 The floor function (left) and ceiling function (right)

3. If U ⊆ Rn is open then we claim that the characteristic function χU of U is
lower semicontinuous. To see this first recall from Proposition 1.2.29 that
Rn = int(U) ∪ bd(U) ∪ int(Rn

\ U). If x0 ∈ int(U) then there exists δ ∈ R>0 such
that Bn(δ, x0) ⊆ U. Then χU(x) = 1 for all x ∈ Bn(δ, x0) and so x0 is a point of
continuity of χU. Similarly if x0 ∈ int(Rn

\ U) then χU takes the value 0 in a
neighbourhood of x0. For the remaining case where x0 ∈ bd(U) we note that
χU(x0) = 0 and so χU(x) > χU(x0 − ϵ for every ϵ ∈ R>0 and for every x ∈ Rn. This
gives the desired lower semicontinuity. One can easily show that, conversely,
U is open only if χU is lower semicontinuous.

4. If C ⊆ Rn is closed then the characteristic function χC of C is upper semicontinu-
ous. This is shown in a manner analogous to the preceding example. Moreover,
C is closed only if χC is upper semicontinuous. •

Let us now consider a result which indicates how upper and lower semiconti-
nuity are preserved by certain limits.

1.10.17 Proposition (Pointwise infimum (supremum) of upper (lower) semicontinu-
ous functions) Let A ⊆ Rn , let J be an index set, and let (fj)j∈J be a family of R-valued
functions on A. Define fmin, fmax : A→ R by

fmin(x) = inf{fj(x) | j ∈ J}, fmax(x) = sup{fj(x) | j ∈ J}.

Then the following statements hold:
(i) if each of the functions fj, j ∈ J, is upper semicontinuous then fmin is upper semicon-

tinuous;
(ii) if each of the functions fj, j ∈ J, is lower semicontinuous then fmax is lower semicon-

tinuous.
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Proof We give the proof in the lower semicontinuous case; the upper semicontinuous
case follows similarly.

Let α ∈ R and define

Bα = {x ∈ A | fmax(x) ≤ α}, B j,α = {x ∈ A | f j(x) ≤ α}.

We claim that
Bα = ∩ j∈JB j,α.

If x ∈ Bα then
f j(x) ≤ fmax(x) ≤ α,

implying that x ∈ B j,α for each j ∈ J. Conversely, let x ∈ ∩ j∈JB j,α so that f j(x) ≤ α for
every j ∈ J. Let ϵ ∈ R>0. Then there exists j0 ∈ J such that f j0(x) > fmax(x) − ϵ. Thus

fmax(x) − ϵ < f j0(x) ≤ α.

This gives fmax(x) − ϵ < α for every ϵ ∈ R>0, and so fmax(x) ≤ α and so x ∈ Ba.
The above arguments show that

f−1
max((α,∞]) ∪ j∈J f−1

j ((α,∞]),

being a union of relatively open sets by lower semicontinuity of the functions f j, j ∈ J,
is relatively open for each α ∈ R. In particular, for ϵ ∈ R>0 the set f−1

max(( fmax(x0)−ϵ,∞])
is relatively open. Thus there exists a relative neighbourhood U about x0 such that
fmax(x) > fmax(x0) − ϵ for x ∈ U. ■

It is important to note that the conclusions of the preceding result do not hold
if one replaces upper or lower semicontinuity with continuity.

1.10.18 Example (Pointwise infimum of a family of continuous functions) Let us take
A = [0, 1] ⊆ R and consider the family of functions ( f j) j∈Z>0 defined by

f j(x) =


0, x ∈ [0, 1

2 −
1
2 j ],

2 jx + 1 − j, x ∈ ( 1
2 −

1
2 j ,

1
2 ),

1, x ∈ [ 1
2 , 1].

In Figure 1.20 we depict this sequence of functions. Note that, using the notation
of Proposition 1.10.17, we have

fmin(x) =

0, x ∈ [0, 1
2 ),

1, x ∈ [1
2 , 1],

which is discontinuous, but nonetheless upper semicontinuous. •

The preceding example is one of the principle instances where the notions of
upper and lower semicontinuity are important. The idea is that one has a family of
functions and one wishes to minimise, not just a single function, but the family of
functions. To this end the following result combines with the preceding discussion
to give a valuable tool for solving optimisation problems.
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Figure 1.20 A sequence of continuous functions whose pointwise
infimum is discontinuous

1.10.19 Proposition (Maxima (minima) for upper (lower) semicontinuous functions)
Let A ⊆ Rn be compact and let f : A→ R. Then the following statements hold:

(i) if f is upper semicontinuous then there exists x0 ∈ A such that

f(x0) = sup{f(x) | x ∈ A};

(ii) if f is lower semicontinuous then there exists x0 ∈ A such that

f(x0) = inf{f(x) | x ∈ A}.

Proof We give the proof in the lower semicontinuous case; the upper semicontinuous
case follows similarly.

For α ∈ R denote
Bα = {x ∈ A | f (x) ≤ α},

noting that Bα is closed since f is lower semicontinuous. By Corollary 1.2.36 it follows
that Bα is compact for each α ∈ R. Denote

Λ = {α ∈ R | Bα , ∅}.

We claim that the family of relatively closed subsets (Bα)α∈Λ has the finite intersection
property. Indeed, if α1, . . . , αk ∈ Λ then

∩
k
j=1Bα j = Bα

where α = min{α1, . . . , αk}. Thus, by Proposition 1.2.63, ∩α∈ΛBα , ∅. But

∩α∈ΛBα = {x ∈ A | f (x) = inf{ f (x′) | x′ ∈ A}}

and so the result follows. ■
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1.10.3 Semicontinuity of rank and nullity

One of the other interesting applications of the notions of upper and lower
semicontinuity is as they arise in looking at matrix-valued functions. Recall that
we can defined what it mean for a matrix-valued function to be continuous using
any norm on the set of matrices (i.e., linear maps) discussed in Section 1.1.3. For
such functions we have the following useful result.

1.10.20 Proposition (Semicontinuity of rank and nullity) Let S ⊆ Rn and let A : S →
EndR(Rn;Rm) be continuous. Then the functions x 7→ rank(A(x)) and x 7→ nullity(A(x))
are lower and upper semicontinuous, respectively.

Proof Let α ∈ R and let x0 ∈ rank(A)−1((α,∞)). Thus k ≜ rank(A(x0)) > a. There then
exists j1, . . . , jk ∈ {1, . . . ,n} such that the columns j1, . . . , jk of A are linearly independent.
Therefore, there exists i1, . . . , ik ∈ {1, . . . ,m} such that the submatrix

A(i1, j1)(x0) · · · A(i1, jk)(x0)
...

. . .
...

A(ik, j1)(x0) · · · A(ik, jk)(x0)


has nonzero determinant. Since det is a continuous function on the set of k×k matrices,
it follows that the function

x 7→ det


A(i1, j1)(x) · · · A(i1, jk)(x)

...
. . .

...
A(ik, j1)(x) · · · A(ik, jk)(x)


is continuous. Therefore, there exists a relative neighbourhood U of x0 such that the
matrix 

A(i1, j1)(x) · · · A(i1, jk)(x)
...

. . .
...

A(ik, j1)(x) · · · A(ik, jk)(x)


has nonzero determinant for each x ∈ U. Therefore, rank(A(x)) ≥ k > a for all x ∈ U,
and so U ⊆ rank(A)−1((α,∞)). Thus rank(A)−1((α,∞)) is relatively open, and so rank(A)
is lower semicontinuous.

Now let α ∈ R and let x0 ∈ nullity(A)−1((−∞, α)). Thus k ≜ nullity(A(x0)) < a.
Recall () that the kernel of a matrix is equal to the orthogonal complement of the imagefrom where?

of its transpose. This means that there exists i1, . . . , im−k ∈ {1, . . . ,m} such that the rows
i1, . . . , im−k form a basis for the orthogonal complement to ker(A). Therefore, there
exists j1, . . . , jm−k ∈ {1, . . . ,n} such that the submatrix

A(i1, j1)(x0) · · · A(i1, jm−k)(x0)
...

. . .
...

A(im−k, j1)(x0) · · · A(im−k, jm−k)(x0)


has nonzero determinant. As above, there exists a relative neighbourhood U of
x0 such that this same submatrix has a nonzero determinant. This shows that
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rank(AT(x)) ≥ k in some relative neighbourhood U of x0. Therefore, nullity(A(x)) ≤ k in
the same relative neighbourhood U. This shows that U ⊆ nullity(A)−1((−∞, α)), and so
nullity(A)−1((−∞, α)) is relatively open, giving upper semicontinuity of nullity(A). ■

The value of these results is that they allow one to characterise sets on which
continuous matrix functions have constant rank. This constancy of rank is impor-
tant, for example, in understanding the local behaviour of differentiable maps (see
). To this end we make a definition. what?

1.10.21 Definition (Regular and singular points) Let S ⊆ Rn and let A : S→ EndR(Rn;Rm)
be continuous. A point x0 ∈ S is

(i) a rank regular point for A if there exists a relative neighbourhood U of x0

such that rank(A(x)) = rank(A(x0)) for each x ∈ U, is
(ii) a nullity regular point for A if there exists a relative neighbourhood U of x0

such that nullity(A(x)) = nullity(A(x0)) for each x ∈ U, is
(iii) a rank singular point if it is not a rank regular point, and is
(iv) a nullity singular point if it is not a nullity regular point. •

The sets of rank and nullity regular points have a topological property that is
sometimes useful.

1.10.22 Proposition (Regular points are open and dense) Let S ⊆ Rn and let A : X →
EndR(Rn;Rm) be continuous. Then the sets of rank regular points and nullity regular
points are relatively open and dense.

Proof Let us denote by Rrank the set of rank regular points and let x0 ∈ Rrank. Then, by
definition of Rrank, there exists a relative neighbourhood U of x0 such that U ⊆ Rrank.
Thus Rrank is open. Now let x0 ∈ S and let U be a relative neighbourhood of x0. Since
the function rank is bounded, there exists a least integer M such that rank(A(x)) ≤ M
for each x ∈ U. Moreover, since rank is integer-valued, there exists x′ ∈ U such that
rank(A(x′)) =M. Now, by lower semicontinuity of rank, there exists a neighbourhood
U′ of x′ such that rank(A(x)) ≥ M for all x ∈ U′. By definition of M we also have
rank(A(x)) ≤ M for each x ∈ U′. Thus x′ ∈ Rrank, and so x0 ∈ cl(Rrank). Therefore Rrank
is dense.

The argument for the set of nullity regular points proceeds along identical lines
except that M is chosen to be the maximal integer such that nullity(A(x)) ≥M for each
x ∈ U, and one instead uses upper semicontinuity of nullity. ■

1.10.4 The distance between sets

In the next section we give a brief introduction to the idea of studying maps
that take values in a power set. The basic definition is simple enough, but one can
add some structure to this definition, and here we need some structure concerning
the distance between sets.

We begin with a fairly simple measure of “closeness” of sets.
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1.10.23 Definition (Distance between sets) If A,B ⊆ Rn are nonempty subsets of Rn the
distance between A and B is

dist(A,B) = inf{∥x − y∥Rn | x ∈ A, y ∈ B}.

If A = {x} for some x ∈ Rn then we denote dist(x,B) = dist({x},B) and if B = {y} for
some y ∈ Rn then we denote dist(A, y) = dist(A, {y}). •

Note that dist(A,B) is always defined, being an infimum of a nonempty subset
of R that is bounded below by zero. For general sets A and B there is not much
useful one can say about dist(A,B). However, if we make some assumptions about
the sets, then there is some structure here. Let us explore some of this.

1.10.24 Proposition (Continuity of distance to a set) If B ⊆ Rn then the function x 7→
dist(x,B) on Rn is uniformly continuous.

Proof Let ϵ ∈ R>0 and take δ = ϵ
2 . Let y ∈ B be such that ∥x1 − y∥Rn − dist(x1,B) < ϵ

2 .
Then, if ∥x1 − x2∥Rn < δ,

dist(x2,B) ≤ ∥x2 − y∥Rn ≤ ∥x2 − x1∥Rn + ∥x1 − y∥Rn ≤ dist(x1,B) + ϵ.

In a symmetric manner one shows that

dist(x1,B) ≤ dist(x2,B) + ϵ

provided that ∥x1 − x2∥Rn < δ. Therefore,

|dist(x1,B) − dist(x2,B)| < ϵ

provided that ∥x1 − x2∥Rn < δ, giving uniform continuity, as desired. ■

Now let us consider some properties of the distance function for closed sets.

1.10.25 Proposition (Set distance and closed sets) If A,B ⊆ Rn are closed sets then the
following statements hold:

(i) if A ∩ B = ∅ then dist(x,B),dist(A,y) > 0 for all x ∈ A and y ∈ B;
(ii) if A is compact then there exists x0 ∈ A and y0 ∈ B such that dist(A,B) = ∥x0−y0∥Rn .

Proof (i) Suppose that dist(x,B) = 0. Then there exists a sequence (y j) j∈Z>0 in B such
that ∥y j − x∥Rn < 1

j for each j ∈ Z>0. Thus the sequence (y j) j∈Z>0 converges to x and
so x ∈ cl(B) = B by Proposition 1.2.26. Therefore, if A ∩ B = ∅ we can conclude
that if dist(x,B) = 0 then x < A. That is, dist(x,B) > 0 for every x ∈ A, and similarly
dist(A, y) > 0 for every y ∈ B.

(ii) By Proposition 1.10.24 the function x 7→ dist(x,B) is continuous and so too then
is its restriction to the compact set A by Proposition 1.3.24. Thus, by Theorem 1.3.32
it follows that there exists x0 ∈ A such that dist(A,B) = dist(x0,B). Now there exists
a sequence (y j) j∈Z>0 in B such that ∥y j − x0∥Rn < dist(x0,B) + 1

j for each j ∈ Z>0. The
sequence (y j) j∈Z>0 is bounded, being contained in the compact set Bn(1, x0). Therefore,
by the Bolzano–Weierstrass Theorem, there exists a convergent subsequence (y jk)k∈Z>0
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converging to y0. Since B is closed we necessarily have y0 ∈ B. We claim that
dist(A,B) = ∥x0− y0∥Rn . Indeed, continuity of the norm (see and Theorem 1.3.2 ensurewhat?

that
dist(A,B) = dist(x0,B) = lim

k→∞
∥y jk − x0∥Rn = ∥y0 − x0∥Rn ,

as desired. ■

Let us illustrate this notion of distance with a couple of examples.

1.10.26 Examples (Distance between sets)
1. Take A,B ⊆ R2 defined by

A = {x ∈ R2
| ∥x∥R2 ≤ 1}, B = {x ∈ R2

| ∥x∥R2 ≥ 2};

see Figure 1.21. We first claim that dist(A,B) = 1. Certainly dist(A,B) ≤ 1

A

B

Figure 1.21 Set with many points at which distance achieves its
minimum

since, for example, (1, 0) ∈ A, (2, 0) ∈ B, and ∥(2, 0) − (1, 0)∥R2 = 1. To see that
dist(A,B) ≥ 1 notice that if x ∈ A, if r ∈ (0, 1], and if y ∈ B then

∥y − x∥R2 ≥ |∥y∥R2 − ∥x∥R2 | ≥ 1,

using Exercise 1.1.3. Note that in this case any points x0 ∈ A and y0 ∈ B that
satisfy ∥x0∥R2 = 1 and y0 = 2x0 will have the property that dist(A,B) = ∥x0−y0∥R2 .
There are clearly many such points, and so we see that the points at which
distance is minimised, if they exist (and they do in this case since A is compact),
need not be unique.

2. Next consider A,B ⊆ R2 given by

A =
{
(x1, x2) ∈ R2

∣∣∣ x2 ≥
1
x1

}
, B =

{
(y1, y2) ∈ R2

∣∣∣ y2 ≤ −
1
y1

}
;
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A

B

Figure 1.22 Sets where there are no points at which the distance
achieves its minimum

see Figure 1.22. It is evident that dist(A,B) = 0 since, for any j ∈ Z>0 we have
( j, 1

j ) ∈ A, ( j,−1
j ) ∈ B, and ∥( j, 1

j ) − ( j,−1
j )∥R2 = 2

j . Thus the distance between
such points can be made arbitrarily small. Moreover, note that there are no
points x0 ∈ A and y0 ∈ B for which dist(A,B) = ∥x0 − y0∥R2 . This shows that
compactness of one of the sets A and B is necessary in order that the minimum
distance actually be achieved by points in the set. •

1.10.5 A little set-valued analysis

The preceding section had to do with the minimum distance of points in two
sets. Next let us turn to a different comparison of sets, one that compares their
“shapes.” In order to do this the following notion will be useful.

1.10.27 Definition (r-neighbourhood of a set) For A ⊆ Rn nonempty and for r ∈ R>0, the
set

N(r,A) = ∪x∈ABn(r, x)

is called the r-neighbourhood of A. •

The idea is that one “thickens” the set by r as depicted in Figure 1.23. One now
defines the following numbers associated with nonempty subsets A,B ⊆ Rn:

h∗(A,B) = inf{r ∈ R>0 | B ⊆ N(r,A)},
h∗(A,B) = inf{r ∈ R>0 | A ⊆ N(r,B)}.

Let us record some properties of these numbers.

1.10.28 Lemma (Properties of h∗(A,B) and h∗(A,B)) For nonempty subsets A,B,C ⊆ Rn

the following statements hold:
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A

Figure 1.23 The r-neighbourhood of a set

(i) h∗(A,B) = sup{dist(A,y) | y ∈ B};
(ii) h∗(A,B) = sup{dist(x,B) | x ∈ A};
(iii) if A is bounded then h∗(A,B) < ∞;
(iv) if B is bounded then h∗(A,B) < ∞;
(v) h∗(A,B) = h∗(B,A);
(vi) h∗(A,B) = 0 if and only if B ⊆ cl(A);
(vii) h∗(A,B) = 0 if and only if A ⊆ cl(B);
(viii) h∗(A,C) ≤ h∗(A,B) + h∗(B,C);
(ix) h∗(A,C) ≤ h∗(A,B) + h∗(B,C).

Proof (i) and (ii) We prove (ii).
Let ϵ ∈ R>0. Then, for each x ∈ A there exists yx ∈ B such that

dist(x,B) ≤ ∥x − yx∥Rn < h∗(A,B) + ϵ

(the first inequality follows from the definition of dist(x,B) and the second follows
from the definition of h∗(A,B)). This holding for every x ∈ A we have

sup{dist(x,B) | x ∈ A} ≤ h∗(A,B) + ϵ.

This holding for every ϵ ∈ R>0 we have

sup{dist(x,B) | x ∈ A} ≤ h∗(A,B).

Again let ϵ ∈ R>0 and note that for x ∈ A there exists yx ∈ B such that

∥x − yx∥Rn < dist(x,B) + ϵ.

Thus
sup{∥x − yx∥Rn | x ∈ A} ≤ sup{dist(x,B) | x ∈ A} + ϵ.

This means that every point in A lies within a distance sup{dist(x,B) | x ∈ A} + ϵ of
some point in B. This is the definition of the expression

h∗(A,B) ≤ sup{dist(x,B) | x ∈ A} + ϵ
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or
h∗(A,B) ≤ sup{dist(x,B) | x ∈ A}.

Combining the previous two paragraphs gives this part of the proof.
(iii) and (iv) Let us prove, say, (iii). Suppose that B ⊆ Bn(MB, 0) for some MB ∈ R>0.

Taking r ∈ R>0 sufficiently large ensures that Bn(MB, 0) ⊆ Bn(r, x0) for some x0 ∈ A.
Thus h∗(A,B) ≤ r and so is finite.

(v) This is obvious.
(vi) and (vii) Let us prove, say (vi).
Suppose that h∗(A,B) = 0 and let y ∈ B. Then, for every r ∈ R>0 there exists

x ∈ A such that ∥x − y∥Rn < r. Thus there exists a sequence (x j) j∈Z>0 in A such that
∥x j − y∥Rn < 1

j for every j ∈ Z>0. Thus the sequence converges to y and so y ∈ cl(A).
Next suppose that B ⊆ cl(A) and let y ∈ B. Then there exists a sequence (x j) j∈Z>0 in

A such that ∥x j − y∥Rn < 1
j for every j ∈ Z>0. Thus y ∈ N( 1

j ,A) for every j ∈ Z>0. Since
this holds for every y ∈ B it follows that h∗(A,B) = 0.

(viii) and (ix) Let us prove, say, (ix). Let x ∈ A, y ∈ B, and z ∈ C. We then have

∥x − z∥Rn ≤ ∥x − y∥Rn + ∥y − z∥Rn .

Since this holds for every z ∈ C we then have

inf{∥x − z∥Rn | z ∈ C} ≤ ∥x − y∥Rn + inf{∥y − z∥Rn | z ∈ C}
=⇒ dist(x,C) ≤ ∥x − y∥Rn + dist(y,C).

Since this holds for every y ∈ B we have

dist(x,C) ≤ inf{∥x − y∥Rn | y ∈ B} + sup{dist(y,C) | y ∈ B}
=⇒ dist(x,C) ≤ dist(x,B) + h∗(B,C).

Since this holds for every x ∈ A we have

sup{dist(x,C) | x ∈ A} ≤ sup{dist(x,B) | x ∈ A} + h∗(B,C)
=⇒ h∗(A,C) ≤ h∗(A,B) + h∗(B,C),

as desired. ■

Note that it is not generally the case that h∗(A,B) = h∗(A,B) as we shall see in the
examples below. To “symmetrise” this we then make the following definition.

1.10.29 Definition (Hausdorff distance) For nonempty subsets A,B ⊆ Rn the Hausdorff 9

distance between A and B is

h(A,B) = max{h∗(A,B),h∗(A,B)}. •

From Lemma 1.10.28 we have the following result.

9Felix Hausdorff (1868–1942) was German mathematician who made key contributions to the
burgeoning fields of topology and set theory in the early 1900’s.
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1.10.30 Theorem (Properties of the Hausdorff distance) If A,B,C ⊆ Rn are nonempty
and compact then the following statements hold:

(i) h(A,B) ≥ 0;
(ii) h(A,B) = 0 if and only if A = B;
(iii) h(A,B) = h(B,A);
(iv) h(A,C) ≤ h(A,B) + h(B,C).

As we shall see in Section III-1.1, the properties of the Hausdorff metric from
the preceding theorem makes the collection of compact subsets of Rn into a met-
ric space, and h is called the Hausdorff metric. We refer to Section 1.10.10 for
references.

Let us give a few examples to illustrate the Hausdorff distance.

1.10.31 Examples (Hausdorff distance)
1. Let us take A = (0, 1) and B = [0, 1]. Note that for any r ∈ R>0 we have A ⊆ N(r,B)

and B ⊆ N(r,A). Thus h∗(A,B) = h∗(A,B) and so h(A,B) = 0. However, A , B.
This explains why closedness is an essential property for sets to possess when
using the Hausdorff distance.

2. Let us take A = [0, 1] and B = [0,∞). Since A ⊆ B we have h∗(A,B) = 0.
However, there is no finite r ∈ R>0 for which B ⊆ N(r,A) and so h∗(A,B) = ∞.
Thus h(A,B) = ∞. This explains why boundedness is important when using
the Hausdorff distance.

3. Define A,B ⊆ R2 by

A = {x ∈ R2
| ∥x∥Rn ≤ 1}, B = {x ∈ R2

| ∥x∥Rn ∈ [2, 4]};

we show these sets in Figure 1.24. We leave it for the reader to convince
themselves that

h∗(A,B) = 3, h∗(A,B) = 2,

and so h(A,B) = 3. •

One of the important (but by no means the only) applications of the Hausdorff
distance is in characterising set-valued maps. Let us give the definition so we know
what we are talking about. First let us define some notation associated to general
set-valued maps.

1.10.32 Definition (Set-valued map) Let S and T be sets. A set-valued map from S to T is
a map F : S→ 2T. If F is a set-valued map from S to T we shall write F : S↠ T. The
graph of a set-valued map F : S↠ T is

graph(F) = {(x, y) ∈ S × T | y ∈ F(x)} •

Sometimes what we call a set-valued map is called a correspondence.
Now let us assign some properties to set-valued maps between Euclidean

spaces.
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A

B
h∗(A,B)

h∗(A,B)

Figure 1.24 An illustration of Hausdorff distance

1.10.33 Definition (Upper hemicontinuous, lower hemicontinuous, Hausdorff contin-
uous, bounded, locally bounded) Let A ⊆ Rn and let F : A↠ Rm be a set-valued
map for which F(x) , ∅ for each x ∈ A.

(i) The set-valued map F is upper hemicontinuous at x0 ∈ A if, for every ϵ ∈ R>0,
there exists δ ∈ R>0 such that h∗(F(x0),F(x)) < ϵ for every x ∈ Bn(δ, x0) ∩ A.

(ii) The set-valued map F is lower hemicontinuous at x0 if, for every ϵ ∈ R>0,
there exists δ ∈ R>0 such that h∗(F(x0),F(x)) < ϵ for every x ∈ Bn(δ, x0) ∩ A.

(iii) The set-valued map F is Hausdorff continuous at x0 ∈ A if it is both upper
and lower hemicontinuous at x0. That is, F is Hausdorff continuous at x0 if,
for every ϵ ∈ R>0, there exists δ ∈ R>0 such that h(F(x),F(x0)) < ϵ for every
x ∈ Bn(δ, x0) ∩ A.

(iv) The set-valued map F is upper hemicontinuous if it is upper hemicontinuous
at every point in A.

(v) The set-valued map F is lower hemicontinuous if it is lower hemicontinuous
at every point in A.

(vi) The set-valued map F is Hausdorff continuous if it is Hausdorff continuous
at every point in A.

(vii) The set-valued map F is bounded if there exists M ∈ R>0 such that F(x) ⊆
Bn(M, 0) for each x ∈ A.

(viii) The set-valued map F is locally bounded if F|K is bounded for every compact
subset K of A. •
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There are related notions of continuity of set-valued maps that can be made
using sequences. Let us present these, and then explore the relationships between
all of the notions.

1.10.34 Definition (Upper semicontinuous, lower semicontinuous, continuous) Let
A ⊆ Rn and let F : A↠ Rm be a set-valued map for which F(x) , ∅ for each x ∈ A.

(i) The set-valued map F is upper semicontinuous at x0 ∈ A if, for every sequence
(x j) j∈Z>0 in A converging to x0 and for every open subset V ⊆ Rm for which
F(x0) ⊆ V, there exists N ∈ Z>0 such that F(x j) ⊆ V for j ≥ N.

(ii) The set-valued map F is lower semicontinuous at x0 ∈ A if, for every sequence
(x j) j∈Z>0 in A converging to x0 and for every open subset V ⊆ Rm for which
F(x0) ∩ V , ∅, there exists N ∈ Z>0 such that F(x j) ∩ V , ∅ for j ≥ N.

(iii) The set-valued map F is continuous at x0 if it is both upper and lower semi-
continuous at x0.

(iv) The set-valued map F is upper semicontinuous if it is upper semicontinuous
at every point in A.

(v) The set-valued map F is lower semicontinuous if it is lower semicontinuous
at every point in A.

(vi) The set-valued map F is continuous if it is continuous at every point in A. •

The terminology we use here is very much not standardised. Different authors
will use the words “hemicontinuous” and “semicontinuous” to mean different
things. The reader should be alert to this.

Let us now establish the relationships between the notions of hemicontinuity
and semicontinuity. The following result should be read carefully; the implications
have a potentially confusing asymmetry.

1.10.35 Theorem (Relationship between hemicontinuity and semicontinuity) Let A ⊆
Rn and let F : A↠ Rm be a set-valued map for which F(x) , ∅ for each x ∈ A. Then the
following statements hold:

(i) if F is upper semicontinuous at x0 ∈ A then it is upper hemicontinuous at x0;
(ii) if F is lower hemicontinuous at x0 ∈ A then it is lower semicontinuous at x0;
(iii) if F is upper hemicontinuous at x0 ∈ A and if F(x0) is compact, then F is upper

semicontinuous at x0;
(iv) if F is lower semicontinuous at x0 ∈ A and if F(x0) is totally bounded, then F is

lower hemicontinuous at x0.
Proof (i) Suppose that F is not upper hemicontinuous at x0. Then there exists ϵ ∈ R>0
such that, for every δ ∈ R>0, h∗(F(x0),F(x)) ≥ ϵ for some x ∈ Bn(δ, x0)∩A. Therefore, for
each j ∈ Z>0 there exists x j ∈ A such that ∥x j−x0∥Rn < 1

j and such that h∗(F(x0),F(x j)) ≥
ϵ. This means that, for the sequence (x j) j∈Z>0 so defined and for V = N(ϵ,F(x0)), we
have F(x j) 1 V. Thus F is not upper semicontinuous at x0.

(ii) Let (x j) j∈Z>0 be a sequence converging to x0, let y0 ∈ F(x0), and let V be an open
subset ofRm for which y0 ∈ V. Let ϵ ∈ R>0 be such that Bm(ϵ, y0) ⊆ V. Since F is lower
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hemicontinuous at x0 let δ ∈ R>0 be such that h∗(F(x0),F(x)) < ϵ for x ∈ Bn(δ, x0) ∩ A.
Then there exists N ∈ Z>0 such that x j ∈ Bn(δ, x0) ∩A for all j ≥ N. It then follows that
F(x0) ⊆ N(ϵ,F(x j)) for j ≥ N. In particular, for each j ≥ N there exists y j ∈ F(x j) such
that y j ∈ Bm(ϵ, y j) ⊆ V. Thus F is lower semicontinuous at x0.

(iii) Let (x j) j∈Z>0 be a sequence converging to x0 and let V ⊆ Rm be an open set
such that F(x0) ⊆ V. By part (iii) of Lemma 1.10.28 we have h∗(F(x0),Rm

\ V) < ∞
and by part (vi) of Lemma 1.10.28 we have h∗(F(x0),Rm

\ V) > 0. Let us take ϵ =
h∗(F(x0),Rm

\ V). Then, by upper hemicontinuity of F at x0 there exists δ ∈ R>0 such
that h∗(F(x0),F(x)) < ϵ for every x ∈ Bn(δ, x0) ∩ A. Therefore, choosing N sufficiently
large that x j ∈ Bn(δ, x0) ∩ A for j ≥ N, we have F(x j) ⊆ N(ϵ,F(x0)) for j ≥ N. By the
definition of ϵ this means that F(x j) ∩ (Rm

\ V) = ∅ and so F(x j) ⊆ V for j ≥ N. Thus F
is upper semicontinuous at x0.

(iv) Suppose that F is not lower hemicontinuous at x0. This means that there exists
ϵ ∈ R>0 such that, for every δ ∈ R>0, h∗(F(x0),F(x)) ≥ ϵ for some x ∈ Bn(δ, x0)∩A. Thus
there exists a sequence (x j) j∈Z>0 in A such that, for every j ∈ Z>0, ∥x j−x0∥Rn < 1

j and such
that F(x0) 1 N(ϵ,F(x j)). Since F(x0) is totally bounded there exists y1, . . . , yk ∈ F(x0)
such that

F(x0) ⊆ ∪k
l=1Bm( ϵ2 , yl). (1.57)

We claim that there exists l ∈ {1, . . . , k} such that, for every N ∈ Z>0, there exists j ≥ N
such that F(x j) ∩ Bm( ϵ2 , yl) = ∅. Suppose otherwise. That is, suppose that, for each
l ∈ {1, . . . , k}, there exists N ∈ Z>0 such that F(x j)∩Bm( ϵ2 , yl) , ∅. Let y ∈ F(x0). By (1.57)
there exists l(y) ∈ {1, . . . , k} such that y ∈ Bm( ϵ2 , yl(y)). For l ∈ {1, . . . , k} let Nl ∈ Z>0 be
such that F(x j) ∩ Bm( ϵ2 , yl) for j ≥ Nl. Let N = max{N1, . . . ,Nk}. Then, for j ≥ N and for
y ∈ F(x0) there exists y( j, y) ∈ F(x j) ∩ Bm( ϵ2 , yl(y)). We then have

∥y − y( j, y)∥Rm ≤ ∥y − yl(y)∥Rm + ∥yl(y) − y( j, y)∥Rm < ϵ.

But this contradicts the fact that F(x0) 1 N(ϵ,F(x j)) for every j ∈ Z>0. Thus we can
conclude that there exists l ∈ {1, . . . , k} such that, for every N ∈ Z>0, there exists j ≥ N
such that F(x j)∩ Bm( ϵ2 , yl) = ∅. This means that F is not lower semicontinuous at x0.■

Now having at hand the definitions and the basic characterisations of hemicon-
tinuity and semicontinuity, let us look at some examples and try to get a handle on
what these notions mean.

1.10.36 Examples (Hemicontinuity and semicontinuity)
1. Let A ⊆ Rn. A plain old map f : A→ Rm defines a set-valued map F f : A↠ Rm

according to F f (x) = { f (x)}.
It is easy to show that F f is upper semicontinuous at x0 if and only if f is
continuous at x0 and that F f is lower semicontinuous at x0 if and only if f is
continuous at x0; see Exercise 1.10.3.
Since F f (x) is compact for each x ∈ A it follows from Theorem 1.10.35 that F f

is upper hemicontinuous if and only if it is upper semicontinuous if and only
if it is lower hemicontinuous if and only if it is lower semicontinuous if and
only if it is Hausdorff continuous if and only if it is continuous if and only if
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f is continuous. That is to say, all possible notions of continuity (that we have
defined) agree in this case. This is reassuring. Somewhat less reassuring is
the fact that upper (resp. lower) semicontinuous functions do not correspond
to upper (resp. lower) semicontinuous set-valued maps. This is one of the
commonly accepted and confusing bits of this business. One just gets used to
it.

2. Define F : R↠ Rby F(x) = (x−1, x+1). We claim that F is upper hemicontinuous
but not upper semicontinuous.
Indeed, it is easy to verify that if |x1 − x2| < ϵ then

h∗(F(x1),F(x2)) < ϵ, h∗(F(x1),F(x2)) < ϵ.

Thus F is actually Hausdorff continuous and so, in particular, upper hemicon-
tinuous.
We next claim that F is not upper semicontinuous at 0. To see this, consider
the open subset V = (−1, 1) which has the property that V ⊆ F(0). Consider the
sequence (x j =

1
j ) j∈Z>0 which converges to 0. Since F(x j) 1 V for every j ∈ Z>0 it

follows that F is indeed not upper semicontinuous at 0.
Note that F(0) is not compact.

3. Let us take A = {1k | k ∈ Z>0} ∪ {0} and define F : A↠ R by

F(x) =

{0, 1, . . . , k}, x = 1
k , k ∈ Z>0,

Z≥0, x = 0.

We claim that F is lower semicontinuous but not lower hemicontinuous.
To see that F is lower semicontinuous at x0 =

1
k for k ∈ Z>0, note that any

sequence (x j) j∈Z>0 in A converging to x0 must be eventually constant; that is,
there exists N ∈ Z>0 such that x j =

1
k for all j ≥ N. In this case we clearly have

F(x j) ∩ V = F(x0) ∩ V for any j ≥ N and for any open set V ⊆ R. From this we
easily deduce that F is lower semicontinuous at x0 =

1
k .

Next we show that F is lower semicontinuous at x0 = 0. Indeed, let (x j) j∈Z>0 be
a sequence in A converging to 0. If V ⊆ R is an open set for which F(0)∩V , ∅
then this means exactly that m ∈ V for some m ∈ Z≥0. In particular this means
that F( 1

k ) ∩ V , ∅ for all k ≥ m. This means F(x j) ∩ V , ∅ for all j sufficiently
large. This gives lower semicontinuity of F.
Finally, we claim that F is not lower hemicontinuous at 0. To see this one
need only note that h∗(F(0),F( 1

k )) = ∞ for all k ∈ Z>0. This precludes lower
hemicontinuity of F at 0.
Note that F(0) is not totally bounded.

The preceding two examples show that the converses of the first two parts of
Theorem 1.10.35 are generally false.
4. Let A ⊆ Rn and let f−, f+ : A→ R have the following properties:
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(a) f− is lower semicontinuous;
(b) f+ is upper semicontinuous;
(c) f−(x) ≤ f+(x) for all x ∈ A.

Let us define F : A ↠ R by F(x) = [ f−(x), f+(x)]. It is then an easy exercise to
show that F is upper semicontinuous; see Exercise 1.10.4. In the case where
A = R we depict the situation in Figure 1.25.

Figure 1.25 The graph of an upper continuous set-valued func-
tion (top) and a lower continuous set-valued function (bottom)

5. Now let A ⊆ Rn and let f−, f+ : A→ R have the following properties:

(a) f− is upper semicontinuous;
(b) f+ is lower semicontinuous;
(c) f−(x) ≤ f+(x) for all x ∈ A.

Let us define F : A↠ R by F(x) = [ f−(x), f+(x)]. It is still an easy exercise to show
that F is lower semicontinuous; see Exercise 1.10.4. We refer to Figure 1.25 for
a depiction of this situation. •

Let us now consider some further properties one can assign to set-valued maps,
and the relationships between these properties. First let us consider the important
special case when the assigned sets are closed.
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1.10.37 Definition (Closed set-valued maps) Let A ⊆ Rn. A set-valued map F : A ↠ Rm

is
(i) closed at x0 ∈ A if, for every sequence (x j) j∈Z>0 in A converging to x0 and for

every sequence (y j) j∈Z>0 for which y j ∈ F(x j) and which converges to some
y0 ∈ R

m, it holds that y0 ∈ F(x0), and is
(ii) closed if it is closed at each point in A. •

Let us explore the relationship between closedness and our concepts of conti-
nuity.

1.10.38 Proposition (Closedness and upper semicontinuity) If A ⊆ Rn, if B ⊆ Rm, and
if F : A↠ B is a set-valued map then the following statements hold:

(i) F is closed if and only if graph(F) is a relatively closed subset of A × B;
(ii) if F is upper semicontinuous and if F(x) is relatively closed for every x ∈ A, then F

is closed;
(iii) if B is compact and if F is closed, then F is upper semicontinuous.

Proof (i) Suppose that graph(F) is closed, let x0 ∈ A, let (x j) j∈Z>0 be a sequence con-
verging to x0, and let (y j) j∈Z>0 be a sequence in B such that y j ∈ F(x j) and such
that lim j→∞ y j = y0. Thus ((x j, y j)) j∈Z>0 is a sequence in graph(F) converging to
(x0, y0) ∈ A × B. Therefore, closedness of graph(F) gives (x0, y0) ∈ graph(F), or
y0 ∈ F(x0), as desired.

Now suppose that F is closed at each x ∈ A and let ((x j, y j)) j∈Z>0 be a convergent
sequence in graph(F). Thus lim j→∞ x j = x0 and lim j→∞ y j = y0 and y0 ∈ F(x0). Since
y j ∈ F(x j) it follows that F is closed at x0, and this argument applies to every x0 ∈ A.

(ii) We will show that, under the given hypotheses, the complement of graph(F) in
A×B is relatively open. Let (x0, y0) ∈ (A×B)\graph(F). Since F(x0) is relatively closed,
let V be a relative neighbourhood of y0 for which cl(V) ∩ F(x0) = ∅. Let us define a
relative neighbourhood of F(x0) by V′ = B \ cl(V). By upper semicontinuity of F there
exists a relative neighbourhood U of x0 such that x ∈ U implies that F(x) ⊆ V′. This
means that U × V ∩ graph(F) = ∅ and so U × V is a relative neighbourhood of (x0, y0)
in (A × B) \ graph(F). Thus (A × B) \ graph(F) is open, as desired.

(iii) Suppose that B is compact and that F is not upper semicontinuous at some
x0 ∈ A. Since F is not upper hemicontinuous at x0 (by Theorem 1.10.35) there exists a
relative neighbourhood V of F(x0) such that for every relative neighbourhood U of x0
such that F(x) 1 V for some x ∈ U. Thus there is a sequence (x j) j∈Z>0 in A converging
to x0 and a sequence (y j) j∈Z>0 in B for which y j ∈ F(x j) and for which y j < V for each
j ∈ Z>0. Compactness of B ensures that there is a convergent subsequence (y jk)k∈Z>0

and the limit of this sequence cannot be in V by openness of V. But this means that F
is not closed at x0. ■

Let us give examples to show that there is, in general, no correspondence
between upper semicontinuity and closedness.
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1.10.39 Examples (Closedness and upper semicontinuity)
1. The set-valued map F : R↠ R given by

F(x) =

{1x }, x , 0,
{0}, x = 0

is closed but not upper semicontinuous.
2. The set-valued map F : R ↠ R given by F(x) = (0, 1) is not closed but is upper

semicontinuous. •

Next we consider some additional characterisations of set-valued maps when
the sets assigned are compact. That this is of particular interest is already clear
from Theorem 1.10.35.

1.10.40 Proposition (Compactness and upper semicontinuity) Let A ⊆ Rn and let
F : A ↠ Rm be a set-valued map for which F(x0) is compact for some x0 ∈ A. Then
the following statement are equivalent:

(i) F is upper semicontinuous at x0;
(ii) for every sequence (xj)j∈Z>0 in A converging to x0 and for every sequence (yj)j∈Z>0 in
Rm for which yj ∈ F(xj) there exists a subsequence (yjk

)k∈Z>0 converging to a point
in F(x0).

Proof First suppose that F is upper semicontinuous, let (x j) j∈Z>0 be a sequence in A
converging to x0 ∈ A, and let (y j) j∈Z>0 be a sequence for which y j ∈ F(x j). Let ϵ ∈ R>0.
By compactness of F(x0) the neighbourhood N(ϵ,F(x0)) of F(x0) is bounded. By upper
semicontinuity of F at x0 there exists Nϵ ∈ Z>0 such that y j ∈ N(ϵ,F(x0)) for j ≥ Nϵ.
Now, for k ∈ Z>0 choose jk ≥ N 1

k
and suppose, moreover, that jk+1 > jk for each k ∈ Z>0.

Note that
lim
k→∞

dist(y jk ,F(x0)) = 0. (1.58)

Since the sequence (y jk)k∈Z>0 is bounded (by virtue of boundedness of F(x0)) it possess
a convergent subsequence. By virtue of (1.58) it follows that the limit of this sequence
is in F(x0).

Now suppose F is not upper semicontinuous at x0. Then there exists a neighbour-
hood V of F(x0) and a sequence (x j) j∈Z>0 such that F(x j) 1 V for each j ∈ Z>0. Let
(y j) j∈Z>0 be a sequence for which y j ∈ F(x j) and y j < V. Since Rm

\ V is closed, and
convergent subsequences of (y j) j∈Z>0 must converge to a point inRm

\V. In particular,
such subsequences cannot converge to a point in F(x0). ■

Having tried to develop some intuition for our notions of hemicontinuity and
semicontinuity via examples, and having outlined some of the basic properties of
hemicontinuity and semicontinuity, it is perhaps still far from clear why anyone
would care about these ideas. There are, in fact, many reasons why these properties
of set-valued maps are useful, and we discuss some of this in Section 1.10.10.
However, let us here give a fairly simple theorem which illustrates where this
might come up in practice.
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1.10.41 Theorem (Berge’s10 Maximum Theorem) Let A ⊆ Rn, let P ⊆ Rp, and let F : A↠ P
be lower semicontinuous. For ϕ : A × P→ R define ϕmin, ϕmax : A→ R by

ϕmin(x) = inf{ϕ(x,y) | y ∈ F(x)},
ϕmax(x) = sup{ϕ(x,y) | y ∈ F(x)}.

Then the following statements hold:
(i) if ϕ is upper semicontinuous then so is ϕmin;
(ii) if ϕ is lower semicontinuous then so is ϕmax.

Moreover, if F(x) is compact for every x ∈ A and if we define Fmax : A↠ P by

Fmax(x) = {y ∈ P | ϕ(x,y) = ϕmax(x)},

then the following statement holds:
(iii) if ϕ is continuous at x0 and if F is continuous at x0, then Fmax is upper semicontinuous

at x0 and Fmax(x0) is compact.
Proof We shall prove the first assertion; the second follows along similar lines.

Let α ∈ R and let x0 ∈ ϕ−1
min((−∞, α)). Thus ϕmin(x0) < α. There then exists

y0 ∈ F(x0) such that ϕ(x0, y0) < α. By Proposition 1.10.13 there exists relatively open
sets U ⊆ A and V ⊆ P such that (x0, y0) ∈ U × V and such that ϕ(x, y) < α for every
(x, y) ∈ U × V. Note that y0 ∈ F(x0) ∩ V. By lower semicontinuity of F there exists a
relative neighbourhood U′ of x0 in A such that F(x) ∩ V , ∅ for x ∈ U′. We claim that
U ∩ U′ ⊆ ϕ−1

min((−∞, α)). Indeed, let x ∈ U ∩ U′. Then F(x) ∩ V , ∅. Let y ∈ F(x) ∩ V.
Then (x, y) ∈ U × V and so ϕ(x, y) < α. Since ϕmin(x) ≤ ϕ(x, y) < α we can indeed
conclude that U ∩ U′ ⊆ ϕ−1

min((−∞, α)). This gives openness of ϕ−1
min((−∞, α)) and so

upper semicontinuity of ϕmin by Proposition 1.10.13.
For the final assertion of the theorem, first note that Fmax(x) is not empty for each

x ∈ A by Proposition 1.10.19.
We claim that Fmax is closed at x0. Let (x j) j∈Z>0 be a sequence in A converging to x0

and let (y j) j∈Z>0 be a sequence in P such that y j ∈ Fmax(x j) and such that lim j→∞ y j =
y0 ∈ P. By Proposition 1.10.38 it follows that y0 ∈ F(x0). Suppose that y0 < Fmax(x0).
Then there exists z0 ∈ F(x0) such thatϕ(x0, z0) > ϕ(x0, y0). By Exercise 1.10.2 let (z j) j∈Z>0

be a sequence in P for which z j ∈ F(x j) and for which lim j→∞ z j = z0. Continuity of
ϕ at x0 then implies that, for sufficiently large j, ϕ(x j, z j) > ϕ(x j, y j). But this means
that for these same sufficiently large j we must have y j < Fmax(x j). Therefore, we have
y0 ∈ Fmax(x0), so showing that Fmax is closed at x0.

Next we claim that the closedness of Fmax at x0 implies that Fmax is upper semicon-
tinuous at x0. By Proposition 1.10.38 it suffices to show that there exists a compact set
K ⊆ Rm such that Fmax(x) ⊆ K for x in some neighbourhood of x0. Since Fmax(x) ⊆ F(x)
it suffices to show that there exists a compact subset K such that F(x) ⊆ K for x in some
neighbourhood of x0. Let us take K = cl(N(1,F(x0))) which is compact since F(x0) is
compact (can you explain this?). Then, by continuity of F at x0, there exists δ ∈ R>0
such that F(x) ⊆ K for x ∈ Bn(δ, x0) ∩ A, as desired. ■

10The Berge here is Claude Berge (1926–2002), a French mathematician who made contributions
to combinatorics and graph theory, and also to game theory.
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The way to understand the Maximum Theorem is this. Points in the set A are the
independent variables for the problem, points in the set P are parameters which,
presumably, one has control over, F(x) gives the set of admissible parameters at x,
and ϕ is a cost function. One wishes to choose, for each x ∈ A, a parameter y ∈ P
that minimises (or maximises) ϕ. One would then like for the resulting function
obtained by doing this for each x to have some reasonable properties, and one of
the results of the Maximum Theorem is just what those properties are.

1.10.6 Extending continuous maps

Although it is difficult to imagine why for a newcomer to analysis, the question
of, “When can I extend the definition of something from a subset to the whole set?”
is an extremely important one. It comes up in all manner of existence proofs where
it is easy to define “something” on a subset, but the extension to the entire set is not
so easily done, at least not directly. In this section we investigate this question of
extension in a simple setting. First we talk about extending functions, and then at
the end of the section, we discuss briefly the rather more exotic topic of extending
maps with more general codomains.

The basic building block for extending functions is the following result.

1.10.42 Theorem (Urysohn’s11 Lemma) Let S ⊆ Rn and let a, b ∈ R with a < b. If A,B ⊆ S
are disjoint relatively closed sets then there exists a continuous function f : S→ [a, b] such
that f(x) = a for all x ∈ A and f(x) = b for all x ∈ B.

Proof Since A and B are relatively closed and disjoint it follows from Proposi-
tion 1.10.25 (more precisely, from a slight modification of this result since A and
B are here only relatively closed subsets of S) that dist(x,B),dist(A, y) > 0 for all x ∈ A
and for all y ∈ B. Therefore, the function g : S→ [−1, 1] defined by

g(x) =
dist(x,A) − dist(x,B)
dist(x,A) + dist(x,B)

is continuous by Proposition 1.10.24, along with Propositions I-3.1.15 and 1.3.22. One
directly checks that g(x) = −1 for x ∈ A and that g(x) = 1 for x ∈ B. Taking

f (x) = 1
2 (b − a)g(x) + 1

2 (b + a)

gives the result. ■

The fundamental result on extending continuous functions is the following
important theorem.

11Pavel Samuilovich Urysohn (1898–1924) was a Czechoslovakian mathematician whose main
contributions were to analysis and topology. He passed at a young age from drowning while
swimming off the coast of Brittany.
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1.10.43 Theorem (Tietze12 Extension Theorem) Let S ⊆ Rn and let a, b ∈ R satisfy a < b. If
A ⊆ S is relatively closed and if f : A→ [a, b] is continuous, then there exists a continuous
function f̂ : S→ [a, b] such that f̂|A = f.

Proof Suppose that f (A) ⊆ [a, b] for a < b. Then define

g(x) =
2

b − a
f (x) −

b + a
b − a

so that g(A) ⊆ [−1, 1]. We will first show that there exists a continuous function
ĝ : S→ [−1, 1] such that ĝ|A = g. This will prove the theorem since we can take

f̂ (x) = 1
2 (b − a)ĝ(x) + 1

2 (b + a).

For j ∈ Z≥0 define r j =
1
2

(
2
3

) j
and note that

1. r1 =
1
3 ,

2. r j+1 < r j for j ∈ Z>0, and
3.

∑
∞

j=1 r j = 1 (by Example I-2.4.2–1).
We shall define continuous functions g j : A → [−3r j, 3r j]. We do this inductively, first
taking g1 = g. Suppose now that we have defined g1, . . . , gk. Define

B−,k = {x ∈ A | gk(x) ≤ −rk}, B+,k = {x ∈ A | gk(x) ≥ rk}.

Since fk is continuous, the sets B−,k and B+,k are relatively closed in A, and so relatively
closed in S since A is relatively closed in S. They are also certainly disjoint. Thus,
by Urysohn’s Lemma, there exists a continuous function hk : S → [−rk, rk] having
the property that hk(x) = −rk for x ∈ B−,k and hk(x) = rk for x ∈ B+,k. Now define
gk+1 = gk−hk|A which is a continuous function on A by Propositions 1.3.22 and 1.3.24.
Moreover, since gk(A) ⊆ [−3rk, 3rk] and since hk(A) ⊆ [−rk, rk] it follows that

gk+1(A) ⊆ [−2rk, 2rk] = [−3rk+1, 3rk+1].

Now define ĝ(x) =
∑
∞

k=1 hk(x) for x ∈ S. Since hk(S) ∈ [−rk, rk] and since
∑
∞

k=1 rk con-
verges, it follows from the Weierstrass M-test, Theorem 1.7.1, that the series defining
ĝ converges uniformly and so ĝ is a continuous function. For x ∈ A we have

(h1(x) + · · · + hk(x) = (g1(x) − g2(x) + · · · + (gk(x) − gk+1(x)) = g(x) − gk+1(x).

Since limk→∞ 3rk = 0 and since fk(A) ⊆ [−3rk, 3rk] it follows that

ĝ(x) = g(x) − lim
k→∞

gk+1(x) = g(x), x ∈ A.

Thus ĝ|A = g. Also, for any x ∈ S,

|ĝ(x)| ≤
∞∑

k=1

|hk(x)| ≤
∞∑

k=1

rk = 1.

Thus ĝ(S) ⊆ [−1, 1], as desired. ■

There are some fairly elementary consequences and extensions of the Tietze
Extension Theorem that are worth recording.

12Heinrich Franz Friedrich Tietze (1880-1964) was Austrian and made contributions to the subject
of topology
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1.10.44 Corollary (Extensions of possibly unbounded functions) Let S ⊆ Rn. If A ⊆ S
is relatively closed and if f : A→ R is continuous, then there exists a continuous function
f̂ : S→ R such that f̂|A = f.

Proof Consider the map ϕ : R → (−1, 1) given by ϕ(x) = 2
π tan−1(x). By Proposi-

tion I-3.8.20 this map is a continuous bijection with a continuous inverse. Thus the
function ϕ ◦ f : A → [−1, 1] satisfies the hypotheses of the Tietze Extension Theorem.
Therefore, there exists a continuous function g : S → [−1, 1] agreeing with ϕ ◦ f on A.
Define

B = {x ∈ S | |g(x)| = 1}.

Since the function |g| is continuous it follows that B is closed. It is also evident that A
and B are disjoint since |ϕ ◦ f (x)| < 1 for x ∈ A. By Urysohn’s Lemma let h : S → [0, 1]
have the property that h(x) = 1 for x ∈ A and h(x) = 0 for x ∈ B. Then define
f̂ (x) = ϕ−1(h(x)g(x)) to get the result. ■

1.10.45 Corollary (Extensions of certain bounded multivariable-valued maps) Let S ⊆
Rn. If A ⊆ S is relatively closed and if f : A → [0, 1]m is continuous, then there exists a
continuous map f̂ : S→ [0, 1]m such that f̂|A = f.

Proof This follows by applying the Tietze Extension Theorem to each of the compo-
nents of f . ■

1.10.46 Corollary (Extensions of certain unbounded multivariable-valued maps) Let
S ⊆ Rn. If A ⊆ S is relatively closed and if f : A→ Rm is continuous, then there exists a
continuous map f̂ : S→ Rm such that f̂|A = f.

Proof This follows by applying Corollary 1.10.44 to each of the components of f . ■

The Tietze Extension Theorem can make a person inappropriately optimistic.
The tendency might be to think that every map from a relatively closed subset of a
set can be extended to the whole set. Let us give an example to illustrate why this
is not so.

1.10.47 Example (A continuous map on a closed subset not admitting an extension)
We let S = B2(1, 0) ⊆ R2 be the closed ball of radius 1 about the origin so that
A = S1, the unit circle in R2, is the boundary of S and so a closed subset of S. Then
define f : A→ S1 by f (x) = x. Note that f (A) ⊆ [0, 1]2 and so, by Corollary 1.10.45,
it follows that there exists a continuous map f̂ : S → [0, 1]2 such that f̂ |A = f .
However, let us instead ask a different question: “Can f be extended to a map from
S taking values in S1?” Thus we restrict the codomain of the map as well as extend
the domain. In this case, it is actually not possible to find such an extension. This is
not quite trivial to prove, and indeed follows from the nontrivial Proposition 1.11.9
to the Brouwer Fixed Point Theorem.

However, let us see if we can understand the impossibility of an extension in
this case. Suppose that there does exist a continuous map f̂ : B2(1, 0) → S1 that
restricts to f , the identity map on S1

⊆ B1(1, 0). This means that one maps each
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point x ∈ int(B2(1, 0)) to some point on the boundary. Think of points in B2(1, 0)
as being points in a circular sheet, the map f̂ “rolls up” the sheet to the boundary.
One can imagine that this is not possible without tearing the sheet. This tearing
prohibits continuity. This is the intuition of Proposition 1.11.9. •

The preceding example, while seemingly simple, actually captures the essence
of the continuous extension problem. Let us explore this. The “rolling up” in the
example leads to the following definition.

1.10.48 Definition (Retract) Let S ⊆ Rn. A subset A ⊆ S is a retract of S if there exists
a continuous map r : S → A having the property that r|A = idA. The map r is a
retraction of S onto A. •

We now have the following result which illustrates the importance of retracts
to extending continuous functions.

1.10.49 Theorem (Continuous functions from retracts always possess extensions)
For S ⊆ Rn and for A ⊆ S the following statements are equivalent:

(i) A is a retract of S;
(ii) for every m ∈ Z>0, for every subset B ⊆ Rm, and for every continuous map f : A→ B

there exists a continuous map f̂ : S→ B such that f̂|A = f.
Proof (i) =⇒ (ii) Let B ⊆ Rm, let f : A → B be continuous, and let r : S → A be a
retraction. Then f̂ = f ◦ r is a continuous extension of f from A to S.

(ii) =⇒ (i) Consider the map f : A → A given by f (x) = x. The hypotheses ensure
that there exists f̂ : S → A such that f̂ |A = f . This means exactly that f̂ is a retraction
of S onto A. ■

Let us give some examples of retracts.

1.10.50 Examples (Retracts)
1. Let S = Bn(1, 0) \ {0} be the closed unit ball with the origin removed and let

A = Sn−1 = bd(Bn(1, 0)). The map r : S→ A defined by r(x) = x
∥x∥Rn

is a retraction
of S onto A.

2. Let S = Rn
\ {0} and let A = Sn−1. The map r : S→ A defined by r(x) = x

∥x∥Rn
is a

retraction of S onto A.
3. Let S = Bn(1, 0) and let A = Sn−1 = bd(S). As we claimed above in the case of

n = 2, and as we shall prove in Proposition 1.11.9, A is not a retract of S.

4. Let S = Bn(1, 0) and let A = {0}. Then r : S → A be given by r(x) = 0 is a
retraction. •

Let us close this section with a nontrivial result concerning continuous exten-
sions of functions. It is very much not clear why a result like this is important,
but it actually plays a crucial rôle in the proof of the extremely important Domain
Invariance Theorem, which we state and prove as Theorem 1.3.44.
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1.10.51 Theorem (Extending certain maps to spheres) Let K ⊆ Rn be compact and let
A ⊆ K be relatively closed and such that K \ A has measure zero. If f : A → Sn−1 is
continuous then there exists a continuous map f̂ : K→ Sn−1 such that f̂|A = f.

Proof Let ϵ ∈ (0, 1) so f (A)∩Bn(ϵ, 0) = ∅. By the Weierstrass Approximation Theorem
(more precisely, by Corollary 1.7.5 to the Weierstrass Approximation Theorem) let
f 1 : Rn

→ Rn be such that

∥ f (x) − f 1(x)∥Rn < ϵ
8 , x ∈ A.

Let us prove a useful lemma.

1 Lemma If K ⊆ Rn is compact, if U ⊆ Rn is a neighbourhood of K, if Z ⊆ K has measure
zero, and if f : U→ Rn is differentiable, then f(Z) has measure zero.

Proof By Theorem 1.10.58 below of the proof of Theorem 1.11.5 it holds that there
exists M ∈ R>0 for which

∥ f (y) − f (x)∥Rn ≤M∥y − x∥Rn , x, y ∈ K. (1.59)

Now let ϵ ∈ R>0 and let (Bn(r j, x j)) j∈Z>0 be a cover of Z by balls whose volume sums to
at most ϵ

Mn . We suppose without loss of generality that the points x j, j ∈ Z>0, are in U.
Then

f (Bn(r j, x j)) ⊆ Bn(Mr j, f (x j))

by (1.59). The balls (Bn(Mr j, f (x j))) j∈Z>0 cover f (Z). Moreover,

∞∑
j=1

vol(Bn(Mr j, f (x j)) =
∞∑
j=1

Mnvol(Bn(r j, 0) =Mn
∞∑
j=1

vol(Bn(r j, x j) < ϵ.

This gives the result. ▼

By the lemma f 1(K \ A) cannot contain a neighbourhood of 0. Therefore, let
x0 ∈ Bn( ϵ8 , 0) be a point not in f 1(K \ A). Then define g : Rn

→ Rn by g(x) = f 1(x) − x0.
Note that

∥ f (x) − g(x)∥Rn ≤ ∥ f (x) − f 1(x)∥Rn + ∥ f 1(x) − g(x)∥Rn < ϵ
4 , x ∈ A, (1.60)

and
∥ f (x) − x0∥Rn ≥ |∥ f (x)∥Rn − ∥x0∥Rn | ≥

7ϵ
8 , x ∈ A,

using Exercise 1.1.3 and the fact that ∥ f (x)∥Rn > ϵ for every x ∈ A. Again using Exer-
cise 1.1.3 we have

∥g(x)∥Rn ≥ |∥ f 1(x) − f (x)∥Rn − ∥ f (x) − x0∥Rn | > 3ϵ
4 , x ∈ A. (1.61)

Define r : K → R by r(x) = max{∥g∥Rn(x), ϵ2 }, and note that r is continuous (why?).
From (1.61) we have

r(x) = ∥g(x)∥Rn , x ∈ A. (1.62)

If we define ĝ : K→ Rn by

ĝ(x) = r(x)
g(x)
∥g(x)∥Rn
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we then have
ĝ(x) = g(x), x ∈ A (1.63)

and
∥ĝ∥Rn(x) ≥ ϵ

2 , x ∈ K, (1.64)

by (1.62) and by definition of r. Define h : A→ Rn by

h(x) = f (x) − ĝ(x).

By (1.60) and (1.63) we get
∥h(x)∥Rn < ϵ

4 , x ∈ A.

That is, h(A) ⊆ Bn( ϵ4 , 0). As per Exercise 1.3.15 there exists a continuous bijection
ϕ : Bn( ϵ4 , 0)→ [0, 1]n with a continuous inverse. Thusϕ◦h : A→ [0, 1]n can be extended
to a continuous map h̃ : K → [0, 1]n in view of Theorem ??(??). Then ĥ = ϕ−1

◦ h̃ is a
continuous map from K to Bn( ϵ4 , 0) which agrees with h on A.

Next define f̃ : K→ Rn by f̃ = ĥ + ĝ. Note that, for x ∈ A, we have

f̃ (x) = ĥ(x) + ĝ(x) = h(x) + ĝ(x) = f (x).

Thus f̃ extends f . We claim that 0 < image( f̃ ). Indeed, since image(ĥ) ⊆ Bn( ϵ4 , 0) and
by (1.61), we have

∥ f̃ (x)∥Rn = ∥ĝ(x) − (−ĥ(x))∥Rn ≥

∣∣∣∥ĝ(x)∥Rn − ∥ĥ(x)∥Rn

∣∣∣ ≥ ϵ
2 .

Now define f̂ : K→ Sn−1 by

f̂ (x) =
f̃ (x)

∥ f̃ (x)∥Rn

to give the theorem. ■

This theorem has many fascinating corollaries that really serve to illustrate that
this business of extending continuous maps is rather more intricate than it seems.
One of these is the following.

1.10.52 Corollary (Extensions of continuous maps between spheres) For m,n ∈ Z>0

the following two statements are equivalent:
(i) m ≤ n;
(ii) for every relatively closed subset A ⊆ Sm and every continuous map f : A→ Sn there

exists a continuous map f̂ : Sm
→ Sn for which f̂|A = f.

Proof First suppose that m ≤ n and consider Sm to be the subset of Rn+1 given by

Sm = {(x1, . . . , xn+1) ∈ Rn+1
| x2

1 + · · · + x2
m+1 = 1, xm+2 = · · · = xn+1 = 0}.

Then Sm is compact and has measure zero. Let A ⊆ Sm and let f : A → Sn. By
Theorem 1.10.51 there exists a continuous extension f̂ : Sm

→ Sn.
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Next, for m > n we shall give a closed subset A ⊆ Sm and a continuous map
f : A→ Sn that does not possess an extension to Sm. We let

A = {(x1, . . . , xm+1) ∈ Sm
| x2

1 + · · · + x2
n+1 = 1, xn+2 = · · · = xm+1 = 0}

and define f : A→ Sn by

f (x1, . . . , xn+1, 0, . . . , 0) = (x1, . . . , xn+1).

If f̂ : Sm
→ Sn is an extension of f then

f̂ |{(x1, . . . , xm+1) ∈ Rm+1
| x2

1 + · · · + x2
n+1 ≤ 1, xn+2 = · · · = xm+1}

then defines a retraction of the closed unit ball in Rm+1 onto its boundary, in contra-
diction to Proposition 1.11.9. ■

While we have successfully given elementary (different from “easy”) proofs
of some important results concerning extensions of continuous maps, this subject
is really most naturally presented in the language of either dimension theory or
algebraic topology. We refer to Section 1.10.10 for a discussion.

1.10.7 Partitions of unity

1.10.8 Lipschitz maps

The notion of a Lipschitz map arises naturally in many settings. As we shall
see, a Lipschitz map can be thought of as being “between” continuous and differ-
entiable.

Let us give the definition.

1.10.53 Definition ((Locally) Lipschitz map) Let A ⊆ Rn. A map f : A→ Rm

(i) is Lipschitz if there exists L ∈ R>0 such that

∥ f (x1) − f (x2)∥Rm ≤ L∥x1 − x2∥Rn , x1, x2 ∈ A, (1.65)

and
(ii) is locally Lipschitz if f |K is Lipschitz for every relatively compact subset

K ⊆ A.
For a Lipschitz map f : A→ Rm,

(iii) a number L satisfying (1.65) is a Lipschitz constant for f and
(iv) ∥ f∥Lip = inf{L ∈ R>0 | (1.65) holds} is the Lipschitz norm of f . •

The following result is useful.
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1.10.54 Proposition (Property of the Lipschitz norm) If A ⊆ Rn and if f : A → Rm is
Lipschitz, then

∥f(x1) − f(x2)∥Rm ≤ ∥f∥Lip∥x1 − x2∥Rn

for every x1, x2 ∈ A.
Proof Suppose that there exists x1, x2 ∈ A satisfying

∥ f (x1) − f (x2)∥Rm > ∥ f∥Lip∥x1 − x2∥Rn .

Then there exists L > ∥ f∥Lip such that

∥ f (x1) − f (x2)∥Rm > L∥x1 − x2∥Rn ,

contradicting the definition of ∥ f∥Lip. ■

It is obvious that Lipschitz maps are also locally Lipschitz. In Exercise 1.10.5
the reader can see an example of a map that is locally Lipschitz but not Lipschitz.

First let us state that Lipschitz maps are often continuous.

1.10.55 Proposition ((Locally) Lipschitz maps are continuous) For A ⊆ Rn and for
f : A→ Rm, the following statements hold:

(i) if f is Lipschitz then f is continuous;
(ii) if A is locally compact and if f is locally Lipschitz, then f is continuous.

Proof (i) Let ϵ ∈ R>0 and note that, if x1, x2 ∈ A satisfy ∥x1 − x2∥Rn < ϵ
∥ f∥Lip

, then

∥ f (x1) − f (x2)∥Rm ≤ ∥ f∥Lip∥x1 − x2∥Rn < ϵ.

(ii) Let x ∈ A. Let U ⊆ A be a relative neighbourhood of x such that clA(U) is
relatively compact, this being possible since A is locally compact. Since f is locally
Lipschitz, there exists L ∈ R>0 such that

∥ f (x1) − f (x2)∥Rm ≤ L∥x1 − x2∥Rn

for all x1, x2 ∈ clA(U). From part (i) we conclude that f | clA(U) is continuous, and so f
is continuous at x. ■

Let us show that continuous maps are not necessarily Lipschitz.

1.10.56 Example (Continuous but not Lipschitz map) The function f : R → R defined
by f (x) =

√
|x| is continuous but not Lipschitz. To see that f is not Lipschitz, note

that

lim
x↓0

f (x) − f (0)
x − 0

= lim
x↓0

√
x

x
= ∞

by L’Hôpital’s Rule. This prohibits f from being Lipschitz in any neighbourhood
of 0. •

The following characterisation of locally Lipschitz maps is useful.
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1.10.57 Proposition (Characterisation of locally Lipschitz maps) Let A ⊆ Rn be locally
compact. For a map f : A→ Rm the following statements are equivalent:

(i) f is locally Lipschitz;
(ii) for every x ∈ A there exists r ∈ R>0 and L ∈ R>0 such that

∥f(x1) − f(x2)∥Rm ≤ L∥x1 − x2∥Rn

for every x1, x2 ∈ A ∩ B(r, x).
Proof (i) =⇒ (ii) Let x ∈ A and let U ⊆ A be a relative neighbourhood of x such that
clA(U) is relatively compact in A, this being possible since A is locally compact. There
exists r ∈ R>0 such that Bn(r, x) ∩ A ⊆ U. Since clA(U) is compact and f is locally
Lipschitz, it follows that there exists L ∈ R>0 such that

∥ f (x1) − f (x2)∥Rm ≤ L∥x1 − x2∥Rn

for all x1, x2 ∈ clA(U). In particular, this inequality holds for x1, x2 ∈ A ∩ B(r, x).
(ii) =⇒ (i) Let K ⊆ A be relatively compact. For each x ∈ K, let rx,Lx ∈ R>0 be such

that
∥ f (x1) − x2∥Rm ≤ Lx∥x1 − x2∥Rn

for every x1, x2 ∈ B(rx, x) ∩ A. Let us abbreviate Ux = B(rx, x) ∩ A. Note that (Ux)x∈A is
an open cover of K. Thus there exists y1, . . . , yk ∈ K such that K ⊆ ∪k

j=1Uy j
. Since K is

compact and f is continuous, f is bounded. Let M ∈ R>0 be such that

∥ f (x)∥Rm ≤M, x ∈ K.

Let
L = max{Ly1

, . . . ,Lyk
, 2M
ϵ }.

By Theorem 1.2.38 there exists ϵ ∈ R>0 such that if x1, x2 ∈ K satisfy ∥x1 − x2∥Rn ≤ ϵ,
then x1, x2 ∈ Uy j

for some j ∈ {1, . . . , k}. Now let x1, x2 ∈ K. If ∥x1 − x2∥Rn < ϵ then, as
we just indicated, x1, x2 ∈ Uy j

for some j ∈ {1, . . . , k}. Therefore,

∥ f (x1) − f (x2)∥Rm ≤ Ly j
∥x1 − x2∥Rn ≤ L∥x1 − x2∥Rn .

If ∥x1 − x2∥Rn ≥ ϵ then

∥ f (x1) − f (x2)∥Rm ≤ ∥ f (x1)∥Rm + ∥ f (x2)∥Rm ≤
2M
ϵ
ϵ ≤ L∥x1 − x2∥Rn ,

giving the result. ■

We have established the relationship between continuous and Lipschitz maps.
Let us now consider the relationship between differentiable and Lipschitz maps.
Let us first show that differentiable maps are locally Lipschitz.
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1.10.58 Theorem (Differentiable maps are locally Lipschitz) If U ⊆ Rn and if f : U→ Rk

is of class C1, then f is locally Lipschitz.
Proof Let K ⊆ U be compact. Let B ⊆ U be an open ball and let x, y ∈ B. By the Mean
Value Theorem,

∥ f (y) − f (x)∥Rn+1 ≤MB∥y − x∥Rn+1 , x, y ∈ B,

where
MB = sup{∥Df (x)∥Rn+1 | x ∈ B}.

Now, since K is compact, we can cover it with a finite number of balls B1, . . . ,BN, each
contained in U. Let us denote

C = (K × K) − ∪N
j=1B j × B j

and note that C is compact. Moreover, the function d : Rn
× Rn

→ R≥0 defined by
d(x, y) = ∥x − y∥Rn+1 is strictly positive when restricted to C. Therefore, there exists
m ∈ R>0 such that d(x, y) ≥ m for all (x, y) ∈ C. Let

M0 = sup{∥ f (y) − f (x)∥Rn+1 | x, y ∈ K},

noting that this number is finite since f is continuous and K is compact. Now define

L = max{M0
m ,MB1 , . . . ,MBN }.

Now let x, y ∈ K. If x, y ∈ B j for some j ∈ {1, . . . ,N} then

∥ f (y) − f (x)∥Rn+1 ≤MB j∥y − x∥Rn+1 ≤ L∥y − x∥Rn+1 .

If x and y are not together contained in any of the balls B1, . . . ,BN then (x, y) ∈ C. Thus

∥ f (y) − f (x)∥Rn+1 ≤M0 =
M0
m m ≤ L∥y − x∥Rn+1 .

Thus we have
∥ f (y) − f (x)∥Rn+1 ≤ L∥y − x∥Rn+1 , x, y ∈ K,

as desired. ■

There are Lipschitz maps that are not differentiable.

1.10.59 Example (Lipschitz but not differentiable map) The function x 7→ |x| is Lipschitz,
but is not differentiable at x = 0. •

What is true is that Lipschitz maps are “nearly” differentiable, in a sense made
precise in the following important theorem.
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1.10.60 Theorem (Rademacher’s13 Theorem) Let U ⊆ Rn be open. If f : U→ Rm is locally
Lipschitz, then the following statements hold:

(i) f is differentiable almost everywhere;
(ii) if f is differentiable at x ∈ U and if Lx ∈ R>0 and a neighbourhood V ⊆ U of x are

such that
∥f(x1) − f(x2)∥Rm ≤ Lx∥x1 − x2∥Rn

for all x1, x2 ∈ V, then
∥Df(x)∥Rn,Rm ≤ Lx.

Proof In the proof we shall make free use of advanced ideas that we have not yet
covered. Forward references will be provided. To begin with, all integrals in the proof
are Lebesgue integrals as discussed in Section III-2.10.

Let us first prove the theorem when n = m = 1.

1 Lemma Let U ⊆ R be open. If f : U→ R is locally Lipschitz, then the following statements
hold:

(i) f is differentiable almost everywhere;
(ii) if f is differentiable at x ∈ U and if Lx ∈ R>0 and a neighbourhood V ⊆ U of x are such

that
|f(x1) − f(x2)| ≤ Lx∥x1 − x2∥Rn

for all x1, x2 ∈ V, then |f′(x)| ≤ Lx;
(iii) if ϕ : U→ R is infinitely differentiable with compact support, then∫

U
f′(x)ϕ(x) = −

∫
U

f(x)ϕ′(x) dx.

Proof We first claim that if I ⊆ R is a compact interval and if f : I → R is Lipschitz,
then f is absolutely continuous (see Definition III-2.9.23). Indeed, let ϵ ∈ R>0 and let
δ = ϵ

L where L is a Lipschitz constant for f . Let ((a j, b j)) j∈{1,...,k} be a finite family of
disjoint intervals such that

k∑
j=1

|b j − a j| < δ.

Then
l∑

j=1

| f (b j) − f (a j)| ≤
k∑

j=1

L|b j − a j| < ϵ,

showing that f is indeed absolutely continuous. Thus f is differentiable almost every-
where by Theorem III-2.9.33.

Now, if U ⊆ R is open and if f : U → R is locally Lipschitz, then, by Proposi-
tion 1.10.57, for each x ∈ U there exists an open interval Ix ⊆⊆ U containing x such
that f |Ix is Lipschitz with Lipschitz constant denoted by Lx ∈ R>0. Let Kx ⊆ Ix be a

13Hans Rademacher (1892–1869) was a German mathematician whose primary mathematical
contributions were to number theory, and who also made contributions to analysis.
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compact subinterval containing x in its interior. From the preceding paragraph, since
f |Kx is Lipschitz, f |Kx is absolutely continuous. Thus f is differentiable on the open
set Ux ≜ int(Kx) except possibly at points in a subset Zx ⊆ Ux of measure zero. Note
that (Ux)x∈U is an open cover of U and so, by Lemma I-2.5.25, there exists x j ∈ U,
j ∈ Z>0, such that U = ∪ j∈Z>0U j. It follows that f is differentiable except at points in
the set Z = ∪ j∈Z>0Z j. By Exercise I-2.5.11 it follows that Z has measure zero. Thus f is
differentiable almost everywhere.

Next suppose that f is differentiable at x0 ∈ U and let V ⊆ U be a neighbourhood
of x0 such that f |V is Lipschitz with Lipschitz constant L ∈ R>0. Then, since

f ′(x0) = lim
x→x0

f (x0) − f (x)
x − x0

and since

−L ≤
f (x0) − f (x)

x − x0
≤ L,

it follows that | f ′(x0)| ≤ L, as claimed.
For the final assertion of the lemma, since U is open, it is a countable disjoint union

of open intervals by Proposition I-2.5.6. Let I ⊆ U be one such interval and let K ⊆ I
be a compact interval for which supp(ϕ|I) ⊆ K. By Proposition III-2.9.36, since ϕ must
vanish at the endpoints of K,∫

I
f ′(x)ϕ(x) dx = −

∫
I

f (x)ϕ′(x) dx.

Since ϕ has compact support, there are only finitely many such intervals I ⊆ U such
that supp(ϕ) ∩ I , ∅. Summing over these finitely many intervals gives∫

U
f ′(x)ϕ(x) dx = −

∫
U

f (x)ϕ′(x) dx,

as desired. ▼

Until we state otherwise in the proof, we shall suppose that

U = {x0 + x | x j ∈ (−ϵ, ϵ), j ∈ {1, . . . ,n}},

i.e., that U is a cube of radius ϵ ∈ R>0 and centre x0. We shall also assume that f : U→ R
is Lipschitz with Lipschitz constant L.

Now let U ⊆ Rn and f satisfy these assumptions. As in Section 1.4.4, for j ∈
{1, . . . ,n} we denote the jth partial derivative of f at x by D j f (x) when this derivative
exists. If all partial derivatives of f exist at x then we denote

D̂ f (x) =
[
D1 f (x) . . . Dn f (x))

]
∈ L(Rn;R).

Note that we make no assumptions about the continuity of the partial derivatives, so we
cannot necessarily conclude that f is differentiable if D̂ f (x) exists, cf. Example 1.4.13.

With the above notation, we prove another lemma.
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2 Lemma If U ⊆ Rn is an open cube of radius ϵ and if f : U → R is Lipschitz with Lipschitz
constant L, then the following statements hold:

(i) D̂f(x) exists for almost every x ∈ U;
(ii) if D̂f(x) exists, then |Djf(x)| ≤ L, j ∈ {1, . . . ,n};
(iii) if ϕ : U→ R is infinitely differentiable with compact support, then∫

U
Djf(x)ϕ(x) dx = −

∫
U

f(x)Djϕ(x) dx

for each j ∈ {1, . . . ,n}.

Proof (i) First, fix j ∈ {1, . . . ,n} and for x = (x1, . . . , xn) ∈ U let us denote x̂1 ∈ R and
x̂2 ∈ Rn−1 by

x̂1 = x j, x̂2 = (x1, . . . , x j−1, x j+1, . . . , xn).

We also define
Û = {(x̂1, x̂2) ∈ Rn

| x ∈ U}.

Since Û is itself a cube of radius ϵ, we can write Û = Û1 × Û2 where Û1 ⊆ R is an
interval of length 2ϵ and Û2 is a cube or radius ϵ in Rn−1. Let us also define f̂ : Û→ R
by

f̂ (x̂1, x̂2) = f (x).

Let us show that D j f (x) exists for almost every x ∈ U. This is clearly equivalent to
showing that D1 f̂ (x̂1, x̂2) exists for almost every x ∈ U. Let us fix x̂2 ∈ Û2 and denote

Z j,x̂2 = {x̂1 ∈ Û1 | D1 f̂ (x̂1, x̂2) exists}.

By Lemma 1, Z j,x̂2 has measure zero. We then define

Z j = {(x̂1, x̂2) ∈ Û | x̂1 ∈ Z j,x̂2}.

We claim that Z j is measurable. Since Û is a cube with radius ϵ we can write

Û = (x̂01 − ϵ, x̂01 + ϵ) × · · · × (x̂0n − ϵ, x̂0n + ϵ)

for some x̂0 j ∈ R, j ∈ R. For j ∈ Z>0 and (x̂1, x̂2) ∈ Û define

ρ(x̂1) = ϵ − |x̂1 − x̂01|.

Note that
(x̂1 ± hρ(x̂1), x̂2) ∈ Û

for every x̂2 ∈ Û2 and h ∈ (−1, 1)\ {0}. Note that D1 f̂ (x̂1, x2) exists if and only if the limit

lim
h→0

f̂ (x̂1 + hρ(x̂1), x̂2) − f̂ (x̂1, x̂2)
hρ(x̂1)

exists. Define

gh(x̂1, x̂2) =
f̂ (x̂1 + hρ(x̂1), x̂2) − f̂ (x̂1, x̂2)

hρ(x̂1)
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and note that gh is continuous for each h ∈ (−1, 1) \ {0}. Thus, by Proposition 1.10.17,
if we define hk(x̂1, x̂2) by

hk(x̂1, x̂2) = sup{gh(x̂1, x̂2) | h ∈ (− 1
k ,

1
k ) \ {0}},

then hk is lower semicontinuous, and soB (R)-measurable by Proposition 1.10.14. By
Proposition III-2.6.18 it follows that if

d+ f̂ (x̂1, x̂2) = lim sup
h→0

gh(x̂1, x̂2) = inf{hk(x̂1, x̂2) | k ∈ Z>0},

(using Proposition I-2.3.15) then the function d+ f̂ is measurable. In like manner, one
shows that if

d− f̂ (x̂1, x̂2) = lim inf
h→0

gh(x̂1, x̂2,

then d− f̂ is measurable. Since the set of points where D1 f̂ does not exist is given by

{(x̂1, x̂2) ∈ Û | d+ f̂ (x̂1, x̂2) − d− f̂ (x̂1, x̂2) > 0},

we conclude that Z j is measurable, by definition of measurability of functions.
Now, knowing that Z j is measurable, we can use Fubini’s Theorem in the form

of Theorem III-2.8.2 to conclude that Z j has measure zero. Since D̂ f (x) does not exist
precisely at points in Z = ∪n

j=1Z j, this part of the theorem follows since Z has measure
zero by virtue of the properties of measure.

(ii) Let j ∈ {1, . . . ,n} and retain the notation from the proof of the first part of the
theorem. We have

|D j f (x)| = |D1 f̂ (x̂1, x̂2)| =
∣∣∣∣lim
h→0

f̂ (x̂1 + hρ(x̂1), x̂2) − f̂ (x̂1, x̂2)
hρ(x̂1, x̂2)

∣∣∣∣ ≤ L,

since L is a Lipschitz constant.
(iii) Here we define

ϕ̂(x̂1, x̂2) = ϕ(x)

and use Fubini’s Theorem, the change of variable theorem, and Proposition III-2.9.36:∫
U

D j f (x)ϕ(x) dx =
∫

Û2

(∫
Û1

D1 f̂ (x̂1, x̂2)ϕ̂(x̂1, x̂2) dx̂1

)
dx̂2

= −

∫
Û2

(∫
Û1

f̂ (x̂1, x̂2)D1ϕ̂(x̂1, x̂2) dx̂1

)
dx̂2

=

∫
U

f (x)D jϕ(x) dx,

as desired. ▼

Next we recall the notion of directional derivative from Section 1.4.3.
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3 Lemma If U ⊆ Rn is an open cube of radius ϵ, if f : U → R is Lipschitz with Lipschitz
constant L, and if v ∈ Rn, then the directional derivative Df(x; v) exists for almost every x ∈ U
and, for almost every x ∈ U,

Df(x; v) = D̂f(x) · v.

Proof Let { f 1, . . . , f n}be a basis forRn such that f 1 = v. Then define a mapϕ : Rn
→ Rn

by asking that ϕ(x) = y with y uniquely defined by the requirement that

x = y1 f 1 + · · · + yn f n;

thus y is the vector of components of x in the basis { f 1, . . . , f n}. Then denote f̂ = f ◦ ϕ.
Note that

D f (x; v) =
d
ds

∣∣∣∣∣
s=0

f (x + sv) =
d
ds

∣∣∣∣∣
s=0

f ((y1 + s) f 1 + · · · + yn f n) = D1 f̂ (ϕ(x)).

Thus the directional derivative D f (x; v) exists if and only if D f̂ (ϕ(x)) exists. We now
show two things.
1. ϕ−1 maps sets of measure zero to sets of measure zero: This follows from the change of

variable theorem, , noting that ϕ−1 is an invertible linear map.what

2. f̂ is Lipschitz: To see this we note that for y1 =, y2 ∈ ϕ(U),

| f̂ (y1) − f̂ (y2)| = | f ◦ ϕ−1(y1) − f ◦ ϕ−1(y2)|

≤ L∥ϕ−1(y1 − y2)∥Rn ≤ L∥ϕ−1
∥Rn,R∥y1 − y2∥Rn ,

showing that f̂ is Lipschitz with Lipschitz constant L∥ϕ−1
∥Rn,R.

Now it suffices to show that D1 f̂ (y) exists for almost every y ∈ ϕ(U). We can do
this using Lemma 2. The only problem is that ϕ(U) is not an open cube. However,
if y ∈ ϕ(U) then there exists an open cube Vy ⊆ ϕ(U) containing y. One can use
Lemma 2 to conclude that D1 f̂ exists almost everywhere in Vy. Now, (Vy)y∈ϕ(U) is an
open cover of ϕ(U) and so, by Lemma 1.2.33, there exists y j ∈ ϕ(U), j ∈ Z>0, such that

ϕ(U) = ∪ j∈Z>0Vy j
. If Z j ⊆ Vy j

denotes the set of points where D1 f̂ does not exist in

Vy j
, then the set of points in ϕ(U) where D1 f̂ does not exist is Z = ∪ j∈Z>0Z j. This set

has measure zero, being a countable union of sets of measure zero (this is a result of
countable-subadditivity of measure). Thus we can finally conclude that D f (x; v) exists
for almost every x ∈ U.

Now we show that D f (x; v) = D̂ f (x) · v for almost every x ∈ U. First of all, note
that for almost every x ∈ U, D̂ f (x) and D f (x; v) exist. Therefore, if v = 0 the desired
equality holds trivially. Thus we let v , 0. Following the proof of Lemma 2 we can
write

U = (x01 − ϵ, x01 + ϵ) × · · · × (x0n − ϵ, x0n + ϵ)

for x01, . . . , x0n ∈ R. Then, for x ∈ U, define

ρ j(x) =


ϵ−|x j−x0 j|

|v j|
, v j , 0,

0, v j = 0.
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One can verify that
(x1 + ρ1(x)v1, . . . , xn + ρn(x)vn) ∈ U

for every x ∈ U. Now define

ρ(x) = min{ρ j(x) | ρ j(x) , 0},

noting that ρ(x) ∈ R>0 for every x ∈ U. One can then see that x + ρ(x)v ∈ U for every
x ∈ U. Moreover, if D f (x; v) exists then

D f (x; v) = lim
s→0

f (x + sρ(x)v) − f (x)
sρ(x)

.

Note that ∣∣∣∣ f (x + sρ(x)v) − f (x)
sρ(x)

ϕ(x)
∣∣∣∣ ≤ L∥v∥Rn∥ϕ∥∞,

where ∥·∥∞ denotes the∞-norm as described in . Thus the family of functions what?

x 7→
f (x + sρ(x)v) − f (x)

sρ(x)
ϕ(x), s ∈ [−1, 1],

defined on U is uniformly bounded. Now we use the Dominated Convergence Theo-
rem, Theorem III-2.7.28, the change of variable theorem, , Lemma 1, and the fact that what

ϕ has compact support to compute rho-1rho needs to be

worked out∫
U

D f (x; v)ϕ(x) dx =
∫

U
lim
s→0

f (x + sρ(x)v) − f (x)
sρ(x)

ϕ(x) dx

= lim
s→0

1
s

(∫
U
ρ−1(x) f (x + sv)ϕ(x) dx −

∫
U
ρ−1(x) f (x)ϕ(x) dx

)
= lim

s→0

1
s

(∫
U
ρ−1(x) f (x + sv)ϕ(x) dx −

∫
U
ρ−1(x) f (x)ϕ(x) dx

)
= lim

s→0

1
s

(∫
U
ρ−1(y − sv) f (y)ϕ(y − sv) dy −

∫
U
ρ−1(x) f (x)ϕ(x) dx

)
=

∫
U

lim
s→0

ρ−1(x − sv)ρ(x)ϕ(x − sv) − ϕ(x)
sρ(x)

f (x) dx

=

∫
U

Dϕ(x;−v) f (x) dx =
∫

U
(Dϕ(x) · (−v)) f (x) dx

= −

n∑
j=1

v j

∫
U

D jϕ(x) f (x) dx =
n∑

j=1

v j

∫
U

D j f (x)ϕ(x) dx

=

∫
U

(D̂ f (x) · v)ϕ(x) dx.

Since the equality ∫
U

D f (x; v)ϕ(x) dx =
∫

U
(D̂ f (x) · v)ϕ(x) dx
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holds for every infinitely differentiable function ϕ with compact support, it follows
from that what?

D f (x; v) = D̂ f (x) · v

for almost every x ∈ U, as desired. ▼

Now we can prove the theorem for m = 1 in the case when U is a cube.

4 Lemma If U ⊆ Rn is an open cube of radius ϵ and if f : U → R is Lipschitz with Lipschitz
constant L, then

(i) f is differentiable almost everywhere and
(ii) for each j ∈ {1, . . . ,n}, |Djf(x)| ≤ L at points x where f is differentiable.

Proof Since U is a cube of radius ϵ we write

U = (x01 − ϵ, x01 + ϵ) × · · · × (x0n − ϵ, x0n + ϵ)

for x01, . . . , x0n ∈ R. For j ∈ {1, . . . ,n} and x ∈ U define

ρ j(x) = ϵ − |x j − x0 j|.

Then
x j + sρ j(x) ∈ (x0 j − ϵ, x0 j + ϵ)

for each x ∈ U, j ∈ {1, . . . ,n}, and s ∈ [−1, 1]. Also define

ρ(x) = inf{ρ j(x) | j ∈ {1, . . . ,n}}.

Note that ρ(x) ∈ R>0 and that
B(ρ(x), x) ⊆ U.

Let A0 ⊆ U be the set of points x ∈ U for which D̂ f (x) exists. Let

Sn−1 = {v ∈ Rn
| ∥v∥Rn = 1}.

Define F : A0 × Sn−1
× ([−1, 1] \ {0})→ R by

F(x,u, s) =
f (x + sρ(x)u) − f (x)

sρ(x)
− D̂ f (x) · u.

Note that if u1,u2 ∈ Sn−1 then

|F(x,u1, s) − F(x,u2, t)| ≤
∣∣∣∣ f (x + sρ(x)u1) − f (x + sρ(x)u2)

sρ(x)

∣∣∣∣ + |D̂ f (x) · (u1 − u2)|

≤ (L + ∥D̂ f (x)∥Rn,R)∥u1 − u2∥Rn

≤ L(1 +
√

n)∥u1 − u2∥Rn ,

after noting from Theorem 1.1.14 and Lemma 2 that

∥D̂ f (x)∥Rn,R =
( n∑

j=1

|D j f (x)|2
)1/2
≤ L
√

n.
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Now, by , let (u j) j∈Z>0 be a sequence in Sn−1 such thatwhat?

cl({u j | j ∈ Z>0}) = Sn−1.

For j ∈ Z>0 define

A j = {x ∈ A0 | D f (x; u j) exists and D f (x; u j) = D̂ f (x) · u j},

noting from Lemma 3 that U \ A j has measure zero. Thus, if we define A = ∩ j∈Z>0A j,
then U \ A has measure zero since the countable union of sets of measure zero has
measure zero.

Let x ∈ A and let ϵ ∈ R>0. Abbreviate ϵ′ = ϵ
2L(1+∥ f ∥Rn ,R) . Note that (B(ϵ′,u j)) j∈Z>0

is an open cover of Sn−1. Thus, by the Heine–Borel Theorem, let u j1 , . . . ,u jk be such
that Sn−1

⊆ ∪
k
l=1B(ϵ′,u jl). Since D f (x; u jl) exists and is equal to D̂ f (x) · u jl for each

l ∈ {1, . . . , k}, there exists δ ∈ R>0 such that, if |s| ∈ (0, δ], then |F(x,u jl , s)| ≤ ϵ
2 for each

l ∈ {1, . . . , k}. Now, if u ∈ Sn−1, there exists l ∈ {1, . . . , k} such that

L(1 +
√

n)∥u − u jl∥Rn <
ϵ
2
.

Therefore, for |s| ∈ (0, δ),

|F(x,u, s)| ≤ |F(x,u, s) − F(x,u jl)| + |F(x,u jl , s)|

≤
ϵ
2
+ L(1 +

√
n)∥u − u jl∥Rn < ϵ.

From this we conclude that f is differentiable at x and that D f (x) = D̂ f (x). Since this
holds for every x ∈ A and since U \ A has measure zero, the first part of the lemma
holds.

The second assertion of the lemma follows from follows from Lemma 2 since, if f
is differentiable at x then the partial derivatives D j f (x) exist. ▼

Next we can prove the theorem for arbitrary m, but still assuming that U is a cube.

5 Lemma If U ⊆ Rn is an open cube of radius ϵ and if f : U→ Rm is Lipschitz with Lipschitz
constant L, then

(i) f is differentiable almost everywhere and
(ii) ∥Df(x)∥Rn,Rm ≤ L at points x where f is differentiable.

Proof For a ∈ {1, . . . ,m} let Va ⊆ U be the set of points x ∈ U such that fa is differentiable
at x. By Lemma 4, U \ Va has measure zero. If V = ∪m

a=1Va then U \ V has measure
zero. By 1.4.17 we conclude that f is differentiable at all points in V.

Let u ∈ Rn be such that ∥u∥Rn = 1 and suppose that f is differentiable at x. Then,
by definition of the derivative,

sD f (x) · u = f (x + su) − f (x) + o(s).

Therefore,

∥Df (x) · u∥Rm ≤
∥ f (x + su) − f (x)∥Rm

s∥u∥Rn
+
|o(s)|
|s|
≤ L +

|o(s)|
|s|

.
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Since lims→0
|o(s)|
|s| = 0, we have

∥Df (x) · u∥Rm ≤ L

for every u ∈ Rn such that ∥u∥Rn = 1. Referring to the first few lines of the proof of
Theorem 1.1.14, this gives ∥Df (x)∥Rn,Rm ≤ L, as desired. ▼

Finally, we complete the proof of the theorem in the case that U is a general open
set. Let x ∈ U and let Ux ⊆ U be an open cube for which x ∈ Ux. By Lemma 5, f is
differentiable almost everywhere in Ux. Note that (Ux)x∈U is an open cover for U. By
Lemma 1.2.33 there exists x j ∈ U, j ∈ Z>0, such that U = ∪ j∈Z>0Ux j . Let Z j ⊆ Ux j be the
set of points in Ux j at which f is differentiable. Then the set of points in U for which f
is not differentiable is Z = ∪ j∈Z>0Z j. Since Z has measure zero, the first conclusion of
the theorem applies.

Next, suppose that f is differentiable at x ∈ U, and let V ⊆ U be a neighbourhood
of x and Lx ∈ R>0 be such that f |V has Lipschitz constant Lx. Let Ux ⊆ V be an open
cube containing x. By Lemma 5 we have |D j fa(x)| ≤ Lx. ■

1.10.9 Sard’s Theorem

1.10.10 Notes

The Hausdorffmetric was presented by Felix Hausdorff in 1914 and is described
in his book [Hausdorff 1937]. The basic properties of the Hausdorff metric are
described in many places; we refer to [Searcóid 2007] as a specific instance. A place
where Hausdorff distance is important is in the theory of so-called “fractal” sets.
For a development of this subject we refer to the book of Edgar [2007].

The uses of “hemicontinuity” and “semicontinuity” we adopt for set-valued
maps is that of Klein and Thompson [1984].

The Maximum Theorem we state as Theorem 1.10.41 is stated in some similar
form by Berge [1959].

The very important Theorem 1.10.51 is really a result in either dimension
theory or algebraic topology. In each case, once one understands the basic of these
subjects, Theorem 1.10.51 comes out as a somewhat natural conclusion. However,
such matters are a little beyond even our scope here, and we refer to the classical
text of Hurewicz and Wallman [1941] for a presentation of dimension theory and
to, for example, Munkres [1984] for some background in algebraic topology. The
elementary proof of Theorem 1.10.51 we give is due to [Kulpa and Tursański 1988].

Theorem 1.10.60 was first presented by Rademacher [1919]. The proof we give
follows [Ziemer 1989].

Exercises

1.10.1 Let A = B = R ⊆ R and for each of the functions f : A → B given below,
determine whether f is continuous, open, closed:
(a) f (x) = x2;
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(b) f (x) = sin(x);
(c) f (x) = ex.

1.10.2 Let A ⊆ Rn and let F : A ↠ Rm be a set-valued map. Show that F is
lower semicontinuous at x0 if and only if, for every sequence (x j) j∈Z>0 in A
converging to x0 and for every y0 ∈ F(x0), there exists a sequence (y j) j∈Z>0 in
Rm such that y j ∈ F(x j) and such that lim j→∞ y j = y0.

1.10.3 Let A ⊆ Rn and for f : A→ Rm define F f : A↠ Rm by F f (x) = { f (x)}. Show
that for x0 ∈ A the following three statements are equivalent:
1. f is continuous at x0;
2. F f is upper semicontinuous at x0;
3. F f is lower semicontinuous at x0.

1.10.4 Let A ⊆ Rn, let f−, f+ : A → R satisfy f−(x) ≤ f+(x) for each x ∈ A. Define
F : A↠ R by F(x) = [ f−(x), f+(x)].
(a) Show that if f− is lower semicontinuous and f+ is upper semicontinuous

at x0 then F is upper semicontinuous at x0.
(b) Show that if f− is upper semicontinuous and f+ is lower semicontinuous

at x0 then F is upper semicontinuous at x0.
1.10.5 Show that the map f : R → R defined by f (x) = x2 is locally Lipschitz but

not Lipschitz.
1.10.6 Let I, J ⊆ R be a intervals, and letϕ : I→ J be locally Lipschitz and let f : J→

R be locally absolutely continuous. Show that f ◦ ϕ is locally absolutely
continuous.



320 1 Multiple real variables and functions of multiple real variables 2022/03/07

Section 1.11

Fixed point theorems

In this section we present a few well-known fixed point theorems as a means of
illustrating what can be achieved using the tools we have developed thus far. Such
fixed point theorems are often very important in applications. For example, (1) the
Contraction Mapping Theorem is used in the proof of the existence and uniqueness
theorem for solutions of ordinary differential equations, (2) the Brouwer Fixed Point
Theorem is used crucially in the proof of the Pontryagin Maximum Principle in
optimal control theory, and (3) Nash used both the Brouwer and Kakutani Fixed
Point Theorems in his proof of the existence of (now) so-called “Nash equilibria”
in non-cooperative game theory. We shall say a few things about game theory in
Section 1.12.

Do I need to read this section? The Contraction Mapping Theorem has already
been used in the proof of the change of variables formula (in the proof of Lemma 2),
so it is fair game. However, the other results in this section can be overlooked until
needed, or until the reader has developed sufficient interest. •

1.11.1 The Contraction Mapping Theorem in Rn

Before we get started stating our fixed point theorems, perhaps we should say
what a fixed point is.

1.11.1 Definition (Fixed point) If S is a set and if f : S→ S is a map, a fixed point for f is
a point x0 ∈ S such that f (x0) = x0. •

Let us give some examples of fixed points.

1.11.2 Examples
1. Of course, every element of S is a fixed point for the identity map idS.
2. If V is a vector space over a field F and if L ∈ EndF(V), a fixed point for L is, by

definition, simply an element of the eigenspace for the eigenvalue 1F. Thus L
has nonzero fixed points if and only if L has 1F as an eigenvalue.

3. Another way of understanding the definition of a fixed point is as follows. Let

∆A = {(x, x) | x ∈ S} ⊆ S × S

be the diagonal in S×S. A fixed point is that a point x0 ∈ S such that (x0, f (x0)) ∈
∆S. That is, fixed point occur where graph( f ) intersects ∆S. •

We will be interested here in fixed points of maps from a subsets of Rn to
themselves. Perhaps the simplest such result is the following.
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1.11.3 Theorem (Contraction Mapping Theorem in Rn) If A ⊆ Rn is closed and if f : A→
A has the property that there exists λ ∈ [0, 1) such that

∥f(x1) − f(x2)∥Rn ≤ λ∥x1 − x2∥Rn , x1, x2 ∈ A,

then there exists a unique fixed point for f.
Proof Let y0 ∈ A and define a sequence (y j) j∈Z>0 by asking that y1 = f (y0) and then
inductively by defining y j+1 = f (y j), j ∈ Z>0. We claim that (y j) j∈Z>0 is a Cauchy
sequence. First of all we compute

∥y1 − y2∥Rn = ∥ f (y0) − f (y1)∥Rn ≤ λ∥y0 − y1∥Rn

=⇒ ∥y2 − y3∥Rn = ∥ f (y1) − f (y2)∥Rn ≤ λ∥y1 − y2∥Rn ≤ λ2
∥y0 − y1∥Rn

...

=⇒ ∥y j − y j+1∥Rn = ∥ f (y j−1) − f (y j)∥Rn ≤ λ j
∥y0 − y1∥Rn , j ∈ Z>0.

Therefore, using the triangle inequality, for k, l ∈ Z>0 with l > k,

∥yk − yl∥Rn ≤ ∥yk − yk+1∥Rn + · · · + ∥yl−1 − yl∥Rn ≤ (λk + · · · + λl−1)∥y0 − y1∥Rn .

Now, by Example I-2.4.2–1 the series
∑
∞

j=1 λ
j converges. Thus the corresponding

sequence of partial sums is Cauchy and so there exists N ∈ Z>0 sufficiently large that

∥y0 − y1∥Rn

l−1∑
j=k

λ j < ϵ, k, l ≥ N, l > k.

Then, for k, l ≥ N with l > k we have ∥yk − yl∥Rn < ϵ, giving the sequence (y j) j∈Z>0 as a
Cauchy sequence, as desired. By Theorem 1.2.5 there exists x0 ∈ Rn such that (y j) j∈Z>0

converges to x0. Moreover, by Proposition 1.2.26 we have x0 ∈ cl(A) = A. We claim
that f (x0) = x0. For ϵ ∈ R>0 let j ∈ Z>0 be sufficiently large that ∥x0− y j∥Rn < ϵ

2(1+λ) and
such that λ j

∥y0 − y1∥Rn < ϵ
2 . Then

∥x0 − f (x0)∥Rn ≤ ∥x0 − y j∥Rn + ∥y j − f (y j)∥Rn + ∥ f (y j) − f (x0)∥Rn

≤ (1 + λ)∥x0 − y j∥Rn + λ j
∥y0 − y1∥Rn < ϵ.

Thus ∥x0 − f (x0)∥Rn = 0 and so f (x0) = x0. This gives the existence part of the theorem.
For uniqueness, suppose that x̃0 has the property that f (x̃0) = x̃0. Then

∥x0 − x̃0∥Rn = ∥ f (x0) − f (x̃0)∥Rn ≤ λ∥x0 − x̃0∥Rn < ∥x0 − x̃0∥Rn .

Therefore, ∥x0 − x̃0∥Rn = 0 and so x0 = x̃0. ■

The Contraction Mapping Theorem holds in a more general setup than we give
here, and we state a version of this as Theorem III-1.1.23.
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1.11.2 The Hairy Ball Theorem

In the next section we shall state and prove the Brouwer Fixed Point Theorem.
Our proof is different than many proofs which have an essential topological flavour.
Our proof instead has an analytical flavour, and relies on an initial proof of the
independently interesting Hairy Ball Theorem. We recall that

Sn = {x ∈ Rn+1
| ∥x∥Rn+1 = 1}

denotes the n-dimensional sphere. We will be interested in vector fields on Sn. A
vector field on Sn assigns to x ∈ Sn a vector inRn+1 that is tangent to the sphere at x.
Note that the set of vectors tangent to Sn at x is the set of vectors inRn+1 orthogonal
to x using the standard inner product. Thus we shall think of a vector field on Sn

as being a map f : Sn
→ Rn+1 such that ⟨ f (x), x⟩Rn+1 = 0 for all x ∈ Sn.

The question we are interested in is this: Is there a vector field on Sn that is
nowhere zero?14 First let us consider the case when n is odd.

1.11.4 Proposition (Odd-dimension spheres possess nowhere vanishing vector
fields) If n ∈ Z>0 is odd then there exists an infinitely differentiable vector field
f : Sn

→ Rn+1 such that f(x) , 0 for every x ∈ Sn.
Proof Define f by

f (x1, . . . , xn+1) = (x2,−x1, x4,−x3, . . . , xn,−xn+1),

and check that ⟨ f (x), x⟩Rn+1 = 0 and ∥ f (x)∥Rn+1 . ■

For even n we have the following result.

1.11.5 Theorem (Hairy Ball Theorem) Let n ∈ Z>0 be even. If f : Sn
→ Rn+1 is a continuous

vector field on Sn then there exists x0 ∈ Sn such that f(x0) = 0.
Proof We first prove the result supposing that f is not only continuous but of class
C1.

We use a series of lemmata to prove the theorem in this case.

1 Lemma Let A ⊆ Rn+1 be compact, let U be a neighbourhood of A, let g : U → Rn+1 be of
class C1, and for s ∈ R define hs : A→ Rn+1 by hs(x) = x + sg(x). Then there exists ϵ ∈ R>0
such that

(i) for each s ∈ [−ϵ, ϵ], hs is injective and
(ii) the function s 7→ vol(hs(A)) is a polynomial.

Proof By Theorem 1.10.58 let M ∈ R>0 be such that

∥g(y) − g(x)∥Rn+1 ≤M∥y − x∥Rn+1 , x, y ∈ A,

14The main reason this question is interesting is somewhat beyond the scope of our presentation
here. If there is no vector field on Sn that is nowhere zero this means that the tangent bundle to Sn

is not trivialisable. This is an essentially interesting fact about the topology of spheres.
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and let ϵ ∈ (0,M−1). Then for |s| < ϵwe claim that hs is injective. Indeed, if hs(x) = hs(y)
then

x − y = s(g(y) − g(x))
=⇒ ∥y − x∥Rn+1 = |s|∥g(y) − g(x)∥Rn+1 ≤ |s|M∥x − y∥Rn+1 .

Since |s|M < 1 this implies that x = y. This gives the first assertion in the lemma.
For the second assertion we observe that det Dhs(x) is a polynomial function of s,

it being the determinant of a matrix whose entries are linear in s. Thus we can write

det Dhs(x) = 1 + a1(x)s + · · · + an+1(x)sn+1

for continuous functions a1, . . . , an+1. Therefore, using the change of variables formula,

vol(hs(A)) =
∫

hs(A)
dx1 · · ·dxn+1 =

∫
A

det Dhs(x) dx1 · · ·dxn+1,

which is clearly a polynomial function in s. ▼

2 Lemma Let f : Sn
→ Rn+1 have the following properties:

(i) ⟨f(x), x⟩Rn+1 = 0 for each x ∈ Sn;
(ii) ∥f(x)∥Rn+1 = 1 for each x ∈ Sn.

Let U be a neighbourhood of Sn with f̄ : U → Rn+1 a continuously differentiable extension of
f, and for s ∈ R define hs : U → Rn+1 by hs(x) = x + sf̄(x). Then, for |s| sufficiently small, f̄
maps Sn onto the sphere

Sn(
√

1 + s1) =
{
x ∈ Rn+1

∣∣∣ ∥x∥Rn+1 =
√

1 + s2
}

of radius
√

1 + s2.

Proof First note that hs(Sn) ⊆ Sn(
√

1 + s2) for any s ∈ R by direct computation. As we
saw in the proof of Lemma 1, for s sufficiently small Dhs(x) is nonsingular for each
x ∈ Sn. By the Inverse Function Theorem this means that, for s sufficiently small, hs is a
local diffeomorphism about every point in Sn. Thus hs|Sn maps every sufficiently small
open set to an open set, provided that s is sufficiently small. This in turn means that
hs|Sn is an open mapping for s sufficiently small. In particular, hs(Sn) is an open subset
of Sn(

√

1 + s2) for s sufficiently small. However, hs(Sn) is also compact, the image of
compact sets under continuous maps being compact. The only subset of Sn(

√

1 + s2)
that is open and closed is Sn(

√

1 + s2) since Sn(
√

1 + s2) is connected. ▼

Now suppose that f : Sn
→ Rn+1 is such that

1. f is of class C1,
2. ⟨ f (x), x⟩Rn+1 = 0 for x ∈ Sn, and
3. f (x) , 0 for every x ∈ Sn.
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We may assume without loss of generality (by dividing f by the function x 7→
∥ f (x)∥Rn+1) that ∥ f (x)∥Rn+1 = 1 for each x ∈ Sn. For a, b ∈ R>0 satisfying a < 1 < b
define

A = {x ∈ Rn+1
| a ≤ ∥x∥Rn+1 ≤ b},

and note that A is compact. For the function f as in the theorem statement (but now of
class C1) extend f to A by f (rx) = r f (x), x ∈ Sn. Then, with hs(x) = x + s f (x) for s ∈ R,
hs(rx) = rhs(x) for x ∈ Sn. Therefore, hs maps the sphere of radius r ∈ [a, b] into the
sphere of radius r

√

1 + s2. By Lemma 2, for s sufficiently small hs maps the sphere of
radius r onto the sphere of radius r

√

1 + s2 for each r ∈ [a, b]. Therefore,

vol(hs(A)) = (
√

1 + s2)n+1vol(A)

for s sufficiently small. For n even this is not a polynomial in s, and this contradicts
Lemma 1. This proves the theorem for f of class C1.

Finally, we prove the theorem for f continuous. Thus we let f : Sn
→ Rn+1 have

the following properties:
1. f is continuous;
2. ⟨ f (x), x⟩Rn+1 = 0 for each x ∈ Sn;
3. ∥ f (x)∥Rn+1 , 0 for x ∈ Sn.
Let

m = inf{∥ f (x)∥Rn+1 | x ∈ Sn
}

and let p : Sn
→ Rn+1 be a polynomial function such that

sup{∥p(x) − f (x)∥Rn+1 | x ∈ Sn
} < m

2 ,

this being possible by the Weierstrass Approximation Theorem (precisely, by Corol-
lary 1.7.5). Now define a continuously differentiable function g : Sn

→ Rn+1 by

g(x) = p(x) − ⟨p(x), x⟩Rn+1x,

and note that ⟨g(x), x⟩Rn+1 = 0 by direct computation. We have

⟨p(x) − f (x), x⟩Rn+1 = ⟨p(x), x⟩Rn+1

=⇒ |⟨p(x), x⟩Rn+1 | = |⟨p(x) − f (x), x⟩Rn+1 | ≤ ∥p(x) − f (x)∥Rn+1 < m
2

for each x ∈ Sn. This gives

∥g(x) − p(x)∥Rn+1 = |⟨p(x), x⟩Rn+1 | < m
2 ,

and so

|∥g(x)∥Rn+1 − ∥ f (x)∥Rn+1 | ≤ ∥g(x) − f (x)∥Rn+1

≤ ∥g(x) − p(x)∥Rn+1 + ∥p(x) − f (x)∥Rn+1 < m

for all x ∈ Sn. This implies that ∥g(x)∥Rn+1 > 0 for all x ∈ Sn, which is in contradiction to
what we proved in the first part of the proof since g is continuously differentiable. ■
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We encourage the reader to attempt to ingest the Hairy Ball Theorem by thinking
of the case when n = 2, since the name “Hairy Ball Theorem” is derived in this
context. The idea is that a vector field on S2 can be thought of as assigning a “strand
of hair” tangent to S2 at each point. The theorem says that, if there is a strand of
hair of nonzero length at every point, there is no way combing the hair to lie flat at
each point on S2.

1.11.3 The Brouwer15 Fixed Point Theorem

Now we state and prove (using the Hairy Ball Theorem) the Brouwer Fixed
Point Theorem. We define

Dn = {x ∈ Rn
| ∥x∥Rn ≤ 1}

to be the closed ball of unit radius, or the so-called unit disk. This is redundant
notation that is convenient in this case.

1.11.6 Theorem (Brouwer Fixed Point Theorem) If f : Dn
→ Dn is continuous then there

exists x0 ∈ Dn such that f(x0) = x0.
Proof First let us suppose that n is even. Suppose that f (x) , x for every x ∈ Dn. Then
define g : Dn

→ Rn by

g(x) = x − f (x)
1 − ⟨x, x⟩Rn

1 − ⟨ f (x), x⟩Rn
.

Note that g(x) = x for ⟨x, x⟩Rn = 1, and so g points “outward” on Sn−1 = bd(Dn). Since

|⟨ f (x), x⟩Rn | < | f (x)| ≤ 1

it follows that g is continuous. We also claim that g is nowhere zero. If { f (x), x} is
linearly independent then g(x) is clearly nonzero. If { f (x), x} is linearly dependent then
⟨x, x⟩Rn f (x) = ⟨ f (x), x⟩Rnx and so

g(x) =
x − f (x)

1 − ⟨ f (x), x⟩Rn
, 0.

Now consider Sn
⊆ Rn+1 and denote by

Sn
− = {x ∈ S

n
| xn+1 ≤ 0}, Sn

+ = {x ∈ S
n
| xn+1 ≥ 0}

the southern and northern hemispheres, respectively. We also denote by E = Sn
−
∩ Sn
+

the equator. Now define a map ϕ
−

fromDn to Sn
−

by

ϕ
−

(x) =
(2x1, . . . , 2xn, 1 − ⟨x, x⟩Rn)

1 + ⟨x, x⟩Rn
.

15Luitzen Egbertus Jan Brouwer (1881–1966) was a Dutch mathematician who made significant
contributions to topology and mathematical logic. Brouwer was notable for advocating a “con-
structionist” approach to mathematics. He rejected mathematics as a purely formal occupation,
thinking of it rather as being an intuitive exercise. It is interesting to note that often Brouwer did not
lecture on his mathematical research (mainly in topology) that was not actually done in accordance
with his own mathematical philosophy. He was an interesting character.
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(One may verify that this map is stereographic projection from the north pole, thinking
ofDn as being the disk whose boundary is E.) Now define a vector field h on Sn

−
by

h(z) = Dϕ
−

(ϕ−1
−

(z)) · g(ϕ−1
−

(z)).

This is a nowhere zero vector field on Sn
−

. Moreover, a direct computation shows that
for z ∈ E we have h(z) = (0, . . . , 0, 1). Define a map ϕ+ fromDn to Sn

+ by

ϕ+(x) =
(2x1, . . . , 2xn,−1 + ⟨x, x⟩Rn)

1 + ⟨x, x⟩Rn
.

Then define a vector field h on Sn
+ by

h(z) = −Dϕ+(ϕ−1
+ (z)) · g(ϕ−1

+ (z)).

This vector field does not vanish on Sn
+ and a computation gives h(z) = (0, . . . , 0, 1) for

z ∈ E, so h is consistently defined. Moreover, h is continuous and nowhere zero. This
contradicts the Hairy Ball Theorem since we are assuming that n is even.

If n is odd, suppose again that f (x) , x for every x ∈ Dn. Then define F : Dn+1
→

Dn+1 by
F(z1, . . . , zn+1) = ( f (z1, . . . , zn), 0),

and note that F is continuous and has the property that F(z) , z for every z ∈ Dn+1.
But we have just showed that this is a contradiction since n + 1 is even. ■

For n = 1 this gives something familiar, and maybe helps us understand the
Brouwer Fixed Point Theorem.

1.11.7 Corollary (A version of the Intermediate Value Theorem) If f : [−1, 1] → [−1, 1]
is continuous then f has a fixed point.

1.11.8 Corollary (Brouwer Fixed Point Theorem for sets homeomorphic to a disk)
Let A ⊆ Rn be a set homeomorphic to Dn. If f : A → A is continuous then there exists
x0 ∈ A such that f(x0) = x0.

Proof Let ϕ : A → Dn be a homeomorphism and define g : Dn
→ Dn by g = ϕ ◦ f ◦

ϕ−1, i.e., such that the diagram

A
f //

ϕ
��

A

ϕ
��

Dn
g
// Dn

commutes. Then g is continuous and so has a fixed point y0 by the Brouwer Fixed
Point Theorem. If we take x0 = ϕ−1

∗ y0 then

f (x0) = f ◦ϕ−1(y0) = ϕ−1
◦ g(y0) = x0,

and so x0 is a fixed point for f . ■



2022/03/07 1.11 Fixed point theorems 327

A common application of the preceding corollary occurs when A is a convex
set, cf. Theorem 1.9.14.

The following result also gives some insight into the content of the Brouwer
Foxed Point Theorem. We refer to Definition 1.10.48 and the ensuing discussion
for a little context for the next result.

1.11.9 Proposition The following statements are equivalent:
(i) there exists a continuous map f : Dn

→ Dn that has no fixed point;
(ii) there exists a retraction of Dn onto Sn−1.

In particular, there is no retraction of Dn onto Sn−1.
Proof First suppose that every continuous map f : Dn

→ Dn has a fixed point and
that there exists a retraction r : Dn

→ Sn−1. Let g : Sn−1
→ Sn−1 be continuous and by

Theorem 1.10.49 let f : Dn
→ Dn be a continuous extension of g. Let x0 be a fixed

point of f and note that r ◦ r(x0) = r(x0 since r|Sn−1 = idSn−1 . Therefore,

f ◦ r(r(x0)) = f ◦ r(x0),

giving r(x0) as a fixed point for f |Sn−1 = g. This implies that every continuous map
g : Sn−1

→ Sn−1 has a fixed point. However, this is not true since the continuous map
x 7→ −x from Sn−1 to Sn−1 obviously has no fixed points. Therefore, if every continuous
map f : Dn

→ Dn has a fixed point, there can be no retraction ofDn onto Sn−1.
Next suppose that there exists a continuous map f : Dn

→ Dn having no fixed
points. As in (1.14), the ray emanating from f (x) through x intersects Sn−1 at the point

r(x) ≜ f (x) +
∥x − f (x)∥2

Rn − ∥x∥2Rn + ∥x − f (x)∥Rn

∥x − f (x)∥2
Rn

(x − f (x)).

By construction we have r(x) = x for x ∈ Sn−1 and so r is a retraction ofDn onto Sn−1.■

1.11.4 The Kakutani Fixed Point Theorem

The Kakutani Fixed Point Theorem is a far-reaching generalisation of the
Brouwer Fixed Point Theorem. Its statement and proof rely on notions of set-
valued maps discussed in Section 1.10.5.

1.11.10 Theorem (Kakutani Fixed Point Theorem) Let C ⊆ Rn be compact and convex. If
F : C↠ C is upper semicontinuous and has the property that F(x) is compact and convex
for each x ∈ C, then there exists x0 ∈ C such that x0 ∈ F(x0).

Proof We can assume without loss of generality, essentially by Example 1.3.38–2,
assume that C is n-dimensional.

We first prove the theorem in the case when C = ∆, an n-simplex. For j ∈ Z>0 we
define a map f j : ∆→ ∆ as follows. ConsiderS j

bc(∆), the jth barycentric subdivision of

∆. There are N j simplices of dimension zero inS j
bc(∆) which we denote by u j1, . . . ,u jN j .

For each k ∈ {1, . . . ,N j} let v jk ∈ F(u jk). We then require that f j(u jk) = v jk. To define
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f j at an arbitrary point in ∆ note that every point x ∈ ∆ lies in some uniquely defined

simplex ∆′ ∈ S j
bc(∆). Let us denote

∆′ = ∆(u jk0(x),u jk1(x), . . . ,u jkm(x)).

We then have

x =
m(x)∑
l=0

λl(x)u jkl(x)

for some uniquely defined strictly positive numbers λ0(x), λ1(x), . . . , λm(x)(x) summing
to one. Now define

f j(x) =
m(x)∑
l=0

λl(x)v jkl(x).

To see that f j is continuous, note that we can write

x =
N j∑
k=0

λk(x)u jk,

where we now allow that some of the coefficients λk(x) are zero. It is then easy to see
that the functions λk(x), k ∈ {1, . . . ,N j}, are continuous, essentially because barycentric
coordinates define a homeomorphism of a simplex with the standard simplex. Since
f j is continuous, by the Brouwer Fixed Point Theorem there exists a fixed point x j of
f j. Since ∆ is compact, by the Bolzano–Weierstrass Theorem there exists a convergent
subsequence (x jk)k∈Z>0 of the sequence (x j) j∈Z>0 . We claim that, if x0 = limk→∞ x jk , then
x0 ∈ F(x0).

Suppose that x j ∈ ∆ j for some (possibly not uniquely defined, but that’s okay)
n-dimensional simplex ∆ j ∈ S

j
bc(∆). Write

∆ j = ∆(µ j0,µ j1, . . . ,µ jn).

By (1.51) it follows that limk→∞ µ jkl = x0 for each l ∈ {0, 1, . . . ,n}. Let ν jl = f j(µ jl) for
j ∈ Z>0 and l ∈ {0, 1, . . . ,n}, noting that the definition of f j ensures that ν jl ∈ F(µ jl).
Moreover, if we write

x =
n∑

l=0

λ jlµ jl

for suitable nonnegative coefficients λ j0, λ j1, . . . , λ jn summing to 1, then the definition
of f j gives

x j = f j(x j) =
n∑

l=0

λ jlν jl.

By the Bolzano–Weierstrass Theorem there exists a sequence ( j′r)r∈Z>0 in Z>0 with the
following properties:
1. j′r < j′r+1 for each r ∈ Z>0;
2. for each r ∈ Z>0 there exists k ∈ Z>0 such that j′r = jk, i.e., limr→∞ x j′r = x0;
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3. the sequences (ν j′rl)r∈Z>0 , l ∈ {0, 1, . . . ,n}, converge;
4. the sequences (λ j′rl)r∈Z>0 , l ∈ {0, 1, . . . ,n}, converge.
Let us denote

ν0l = lim
r→∞

ν j′rl, λ0l = lim
r→∞

λ j′rl,

and note that
n∑

l=0

λ0l =

n∑
l=0

lim
r→∞

λ j′rl = lim
r→∞

n∑
l=0

λ j′rl = 1,

λ0l ≥ 0, l ∈ {0, 1, . . . ,n}

and

x0 = lim
r→∞

x j′r = lim
r→∞

n∑
l=0

λ j′rlν j′rl =

n∑
l=0

lim
r→∞

λ j′rlν j′rl =

n∑
l=0

λ0lν0l.

Now fix l ∈ {0, 1, . . . ,n}. Note that

lim
r→∞

µ j′rl
= x0, lim

r→∞
ν j′rl = ν0l, ν j′rl ∈ F(ν j′rl), r ∈ Z>0.

By Proposition 1.10.38 the upper semicontinuity of F ensures that ν0l ∈ F(x0). Con-
vexity of F(x0) then ensures that

x =
n∑

l=0

λ0lν0l ∈ F(x0),

as desired.
Now we prove the theorem for a general compact and convex set C. We let ∆ be

an n-simplex for which C ⊆ ∆. For simplicity of the ensuing constructions, let us also
suppose that bd(C)∩ bd(∆) = ∅. Fix z0 ∈ int(C) ⊆ int(∆). As we saw during the course
of the proof of Theorem 1.9.14, if we let u ∈ Sn−1 then the ray ρx0,u : R≥0 → Rn defined
by ρx,u(s) = x0 + su will intersect bd(C) and bd(∆) for unique sC(u), s∆(u) ∈ R>0. Since
C ⊆ ∆ we have sC(u) < s∆(u). Moreover, as also follows from the constructions of the
proof of Theorem 1.9.14, for every x ∈ ∆ \ {x0}, there exists a unique u(x) ∈ Sn−1 and
s(x) ∈ R>0 such that x = ρx0,u(x)(s(x)). Clearly x ∈ C \ {x0} if and only if s(x) ≤ sC(u(x))
and x ∈ ∆ \ {x0} if and only if s(x) ≤ s∆(u(x)). Now define r : ∆→ C by

r(x) =

x, x ∈ C,
ρx0,u(x)(sC(u(x))), x ∈ ∆ \ C.

Continuity of r follows from continuity of the various maps constructed in the proof
of Theorem 1.9.14. The idea is that r retracts ∆ \ C onto bd(C). Now define F′ : ∆ ↠
C ⊆ ∆ by F′(x) = F(r(x)). It is a dull exercise using continuity of the retraction r and
Proposition 1.10.38 to show that F′ is upper semicontinuous. Therefore, by the first
part of the proof, there exists x0 ∈ ∆ such that x0 ∈ F′(x0). Since F′(x0) ⊆ C it must then
follow that x0 ∈ C. Therefore, F′(x0) = F(x0) and so x0 ∈ F(x0), as desired. ■

We shall give a significant application to game theory of the Kakutani Fixed
Point Theorem in Theorem 1.12.29.
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1.11.5 Notes

Most proofs of the Brouwer Fixed Point Theorem are topological in nature. Our
proof, relying only on multivariable calculus, closely follows Milnor [1978]. The
Kakutani Fixed Point Theorem was proved, oddly enough, by Kakutani [1941].
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Section 1.12

Game theory: An application of multivariable analysis

In this chapter, particularly in Sections 1.10 and 1.11, we have presented some
fairly sophisticated and specialised ideas in real analysis without much context
for how they are important or useful. While later volumes in this series will deal
in great detail with applications of ideas that have their origin in this chapter.
However, perhaps it is interesting to take a little self-contained detour to provide
a non-trivial and (hopefully) interesting application of some of the techniques
presented in this chapter. We have chosen to tell a little story behind game theory
in order to achieve this end. This is extremely far from a complete treatment of game
theory. It is merely a very selective set of ideas intended to serve as an illustration
of real analysis.

Do I need to read this section? Read this section if and only if you think it might
be interesting, or it might be useful to read it to give some context for some ideas
in this chapter. •

1.12.1 Two-player games

Imagine a game with two players, call them A and B; let us restrict ourselves
to two players for simplicity, since it is enough to illustrate the main ideas. The
game consists of each player making a single decision. A decision means that each
player makes a choice from a list of possible moves. Let us be precise about this by
defining the notion of an outcome, by which we mean that which happens upon
playing a game once.

1.12.1 Definition (Decision set, outcome) Let DA and DB be sets, called decision sets.
An element of DA (resp. DB) is a decision for player A (resp. player B). An outcome
is an ordered pair (a, b) ∈ DA ×DB. •

We shall be interested mainly in finite decision sets which we denote by DA =
{a1, . . . , am} and DB = {b1, . . . , bn}. In order to make it possible to declare winners
and losers, we need to assign a value to the outcome of a game.

1.12.2 Definition (Value, two-player game) If DA and DB are decision sets, a pair of maps
vA, vB : DA × DB → R are called the A-value function and the B-value function,
respectively. A two-player game is a quadruple (DA,DB, vA, vB) where DA and
DB are decision sets and vA and vB are A- and B-value functions, respectively. A
two-player game (DA,DB, vA, vB) is a zero-sum game if vB(a, b) = −vA(a, b) for each
outcome (a, b). •

The idea of a zero sum game is that the benefit to player A from outcome (a, b)
is the same as the cost to player B of the same outcome.
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Let us look at some simple examples.

1.12.3 Example (Prisoner’s Dilemma) The Prisoner’s Dilemma is a well-known simple
example in game theory. The situation is this. We have two “players,” let us
call them A =Albert and B =Betty. Albert and Betty have been arrested for rob-
bing a bank and are now being held in separate jail cells (i.e., they are unable to
communicate). The District Attorney makes each of them the following offer.
1. You may confess or remain silent.
2. If you confess and your accomplice confesses, you both get prison sentences of

C years.
3. If you confess and your accomplice remains silent, then you get set free (i.e., you

get zero years in prison) and your accomplice gets D years in prison where
D > C.

4. If you remain silent and your accomplice remains silent, then both get sentences
of S where S < C.

(The letters C, D, and S stand for “confess,” “deal,” and “silence.”) For Albert and
Betty the decision set is thus DA = DB = {confess, silent}. Typically, for two-player
games with finite decision sets, such as the Prisoner’s Dilemma, one represents the
A- and B-value functions via a matrix. For simplicity let us suppose that the value
function is derived directly from the number of years, C and S, each might spend
in prison. Note that these numbers should be thought of as having negative value,
since a larger number for C and S has a lower value. Thus the A- and B-value
functions are represented as follows:

Betty
Albert confess silent

confess −C 0
silent −D −S

Betty
Albert confess silent

confess −C −D
silent 0 −S

The left table represents the A-value function and the right table represents the
B-value function. Note that this is not a zero sum game.

It is possible to arrive at some sort of deductions about how Albert and Betty
might reasonably behave. First of all, remaining silent has the least penalty (apart
from being set free) and so must be thought of as being desirable. However, by
remaining silent you run the risk of also incurring the maximum penalty if your
partner confesses. It is not unreasonable, therefore, for both partners to confess in
order to protect themselves from the maximum penalty. As we go along, we shall
see that this is the outcome predicted by the decision making model we suggest.
Note, however, that this solution is not a good one for either partner. Indeed, if they
had agreed to remain silent, they would have incurred a smaller penalty. This is
one of the contradictory facets that makes the Prisoner’s Dilemma so interesting. •
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1.12.4 Example (De Montmort’s16 gift) A father named Anthony (player A) gives his
son named Bill (player B) an opportunity for a gift. The situation is this. Anthony
grabs a number N of marbles.
1. If Bill guesses that N is even and N is in fact even, Anthony will give Bill $2.
2. If Bill guesses that N is odd and N is in fact even, Bill will have to give Anthony

$1.
3. If Bill guesses that N is even and N is in fact odd, Bill will have to give Anthony

$1.
4. If Bill guesses that N is odd and N is in fact odd, Anthony will give Bill $1.
Thus each player has the two-element decision set given by {even, odd} based
on (1) the number of marbles chosen in the case of Anthony and (2) the guess as
to whether the number of marbles is even or odd in the case of Bill. The tables
representing the values to each player are these:

Bill
Anthony even odd

even −2 1
odd 1 −1

Bill
Anthony even odd

even 2 −1
odd −1 1

The left table is the A-value table and the right table is th B-value table. This game
is zero-sum.

Let us explore how each of Anthony and Bill might approach the game. If Bill
adopts the “conservative” strategy of always choosing odd to minimise his losses.
If Anthony is aware of his son’s conservative nature, he will then choose an even
number of marbles and get $1 from Bill. However, if Bill knows that Anthony
thinks he is conservative, he will then use this against his father and choose even
and so get his maximum gain of $2. But then if Anthony knows that Bill knows
that Anthony believes that Bill will choose conservatively, Anthony will then go
with an odd number of marbles. But then if Bill knows that Anthony knows that
Bill knows that Anthony believes Bill will be conservative, be will then decide on
guessing even. The point is that this second guessing goes in an endless loop, and
neither will be in a position to make a “good” choice. •

Now one can imagine, with the data given thus far, that our two players A and B
play a game, and that after playing the game, one is the winner and loser. Without
any further information, there is not much one can really do in this framework.
To give the affair some depth, there has to be some additional structure, and
much of game theory revolves around what this structure is, and how it is to be
modelled mathematically. The objective of this structure is that it should provide
the players with some sort of basis for making decisions. One way to do this is to

16Pierre R/’emond de Montmort (1678–1719) was a French mathematician who made contribu-
tions to probability theory. The game to which we refer here was communicated in a letter to Nicoli
Bernoulli in 1713.
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add probabilistic effects into the setup. It is convenient to introduce some notation.
For n ∈ Z>0 define

Πn =
{
(p1, . . . , pn) ∈ Rn

∣∣∣∣ p1 ∈ R>0,
n∑

j=1

p j = 1
}
.

Note that Πn is an (n − 1)-dimensional convex set.

1.12.5 Definition (Mixed strategy) For a finite decision set DA = {a1, . . . , am}, a mixed
strategy is a vector p = (p1, . . . , pm) ∈ Πm. A mixed strategy p ∈ Πm is pure if p j = 1
for some j ∈ {1, . . . ,m}. For a mixed strategy p, p j, j ∈ {1, . . . ,m}, is the probability
of player A making decision a j. If DA = {a1, . . . , am} and DB = {b1, . . . , bn} are two
decision sets, a bistrategy is a pair (p, q) ∈ Πm ×Πn. •

It is worth thinking, for a moment, why we require that a mixed strategy be an
element of the standard simplex. First of all, because each number p j, j ∈ {1, . . . ,m},
is a probability, we must have p j ∈ [0, 1]. Moreover, since a move must be made,
and once a move is made this means that none of the other moves have been made,
we must have p1 + · · ·+ pm = 1. It is certainly a debatable point whether the notion
of a mixed strategy is reasonable in all or any instances. The supposition is that, in
playing a game, a player’s strategy amounts to a choice of probabilities she assigns
to each decision. We will, however, sidestep this matter and just suppose that
strategies are of the mixed variety. Note that a pure strategy is an extreme case,
and is tantamount to a decision, which we distinguish from a strategy in general.

Initially, when talking about assessing the outcome of a game, we talked only
about applying the value functions to outcomes of the game. Now, however, we
have opened things up a little and instead wish to evaluate strategies.

1.12.6 Definition (Evaluation function) Let DA and DB be finite decision sets with m
and n elements, respectively. A pair of maps fA, fB : Πm × Πn → R are called the
A-evaluation function and the B-evaluation function, respectively. A two-player
game with mixed strategies if a quadruple (DA,DB, fA, fB) where DA and DB are
finite decision sets and fA and fB are A- and B-evaluation functions, respectively.
A two-player game with mixed strategies (DA,DB, fA, fB) is a zero-sum game with
strategies if fB(p, q) = − fA(p, q) for all bistrategies (p, q) ∈ Πm ×Πn. •

As one might imagine, the notions of value functions for outcomes and evalu-
ation functions for strategies are very often tied to one another. Indeed, there is a
standard manner for relating these.

1.12.7 Definition (Canonical evaluation function) If DA = (a1, . . . , am) and DB =
(b1, . . . , bn) be decision sets with (DA,DB, vA, vB) an associated two-player game.
The canonical evaluation functions for this game are given by

fA(p, q) =
m∑

j=1

n∑
k=1

vA(a j, bk)p jqk, fB(p, q) =
m∑

j=1

n∑
k=1

vB(a j, bk)p jqk,
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respectively. •

These definitions of evaluations for strategies are perfectly reasonable since
they represented the probability-weighted sum of the values of the outcomes. In
most applications it is the canonical evaluation functions one considers, however,
for generality it is interesting to consider the possibility of evaluation functions
that are not necessarily related at all to the value functions.

Let us consider our examples in terms of mixed strategies.

1.12.8 Example (Prisoner’s Dilemma (cont’d)) A mixed strategy for Albert will be a
pair (p1, p2) and a mixed strategy for Betty will be a pair (q1, q2). Since p1 + p2 = 1
and q1 + q2 = 1 we shall simply write p1 = p, p2 = 1 − p, q1 = q, and q2 = 1 − q.
Thus p represents the probability that Albert will confess (and so 1 − p represents
the probability that Albert will remain silent) and q represents the probability that
Betty will confess (and so 1 − q represents the probability that Betty will remain
silent). In this case the canonical evaluation functions are computed to be

fA((p, 1 − p), (q, 1 − q)) = (D − C − S)pq + Sp − (D − S)q − S,
fB((p, 1 − p), (q, 1 − q)) = (D − C − S)pq − (D − S)p + Sq − S.

(1.66)

In Figure 1.26 we show the surface plots of these evaluation functions. •

Figure 1.26 Canonical evaluation functions for the Prisoner’s
Dilemma for C = 5, D = 10, and S = 2, Albert’s on the left
and Betty’s on the right

1.12.9 Example (De Montmort’s gift (cont’d)) A mixed strategy for Anthony will be
denoted by (p, 1 − p) and a mixed strategy for Bill will be denoted by (q, 1 − q).
Thus p is the probability that Anthony will pick an even number of marbles (and
so 1 − p is the probability that Anthony will pick an odd number of marbles) and
q is the probability that Bill will guess an even number of marbles (and so 1 − q
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is the probability that Bill will guess an even number of marbles). The canonical
evaluation functions are then readily computed to be

fA((p, 1 − p), (q, 1 − q)) = − 5pq + 2p + 2q − 1,
fB((p, 1 − p), (q, 1 − q)) = 5pq − 2p − 2q + 1.

Note that fB = − fA since this is a zero sum game. We shall explore this in more
detail in Section 1.12.3. In Figure 1.27 we show the surface plots of the canonical

Figure 1.27 Canonical evaluation functions for de Montmort’s
gift, Anthony’s (the father) on the left and Bill’s (the son) on
the right

evaluation functions. •

1.12.2 Decision theory

Let us summarise where we are now. We have two players A and B who each
have finite decision sets DA and DB representing their “moves” in the game. For
each pair of moves (a j, bk) ∈ DA×DB there is a value vA(a j, bk) that player A attaches
to the outcome and a value vB(a j, bk) that player B attaches to that outcome. We
moreover have decided that each player will play the game by choosing a mixed
strategy which assigns a probability to each of their possible moves. And, in a way
that may or may not be related to the value functions vA and vB, the players have
evaluation functions fA and fB which tell them how good a pair of mixed strategies
are for them. Now each player has to decide on the best strategy. There are various
ways of approaching this, and we will discuss some of them.

To do this, we first generalise our discussion of game theory up to this point to
emphasise the salient (to our objectives here) features.

1.12.10 Definition (Generalised two-player game) A generalised two-player game is a
quadruple (PA,PB, fA, fB) where PA ⊆ Rm and PB ⊆ Rn and fA, fB : PA,PB → R.
The sets PA and PB are the A-strategy set and the B-strategy set, respectively.
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The functions fA and fB are the A-evaluation function and B-evaluation function,
respectively. A strategy for player A (resp. play B) is an element p ∈ PA (resp. q ∈
PB). A bistrategy is a pair (p, q) ∈ PA × PB. •

In this generalisation we have removed the decision sets DA and DB from the
setup, instead focusing on the strategies. As we saw in the preceding section, the
setup with the decision sets is reducible to the setup of a generalised two-player
game after one introduces the idea of a mixed strategy and uses the canonical
evaluation functions. For our purposes this link between the decision sets DA and
DB and the setsΠm andΠn is not as important as just the structure of the evaluation
functions. It is useful to remark that in moving to this generalised setup, a possible
confusion has been introduced. A game has now been reduced to a strategy. One
should be careful to understand that the sets PA and PB represent strategies for
playing the game, and are not the set of actual decisions available to the player.
Therefore, a selection of a bistrategy (p, q) does not lead to a certain outcome of
the game. This facet of strategy sees representation in the way people play actual
games. It is not the case that in identical circumstances the same person will make
the same decisions at all times about the move to make. It is debatable, however,
whether the use of a mixed strategy to represent this variability is accurate. But
this is rather outside the scope of mathematics, per se.

In any event, our focus now is on choosing strategies.

1.12.11 Definition (Decision rule) Let PA ⊆ Rm and PB ⊆ Rn be A- and B-strategy sets. A
pair of set-valued maps dA : PB ↠ PA and dB : PA ↠ PB are called an A-decision
rule and a B-decision rule, respectively. •

The idea of a decision rule is the following. If player A knows that player B
will be using strategy q0 ∈ PB, then the A-decision rule dA : PB → PA indicates that
player A will choose their strategies from dA(q0). Similar interpretations, of course,
hold for a B-decision rule.

Given a generalised two-player game (PA,PB, fA, fB), there is a natural way to
choose a decision rule.

1.12.12 Definition (Canonical decision rule) For a generalised two-player game
(PA,PB, fA, fB), the canonical decision rules are the A- and B-decision rules cA : PB ↠
PA and cB : PA ↠ PB given by

cA(q0) = {p0 ∈ PA | fA(p0, q0) = sup{ fA(p, q0) | p ∈ PA}},

cB(p0) = {q0 ∈ PB | fB(p0, q0) = sup{ fB(p0, q) | q ∈ PB}},

respectively. •

The idea is that, knowing that player B will use strategy q0, player A canon-
ically chooses a strategy that will maximise the A-evaluation function. The set
of such strategies forms the canonical decision rule cA for player A. The same
interpretation, with the players swapped, holds for cB.
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Let us determine the canonical decision rules for the simple games we intro-
duced in the preceding section.

1.12.13 Example (Prisoner’s Dilemma (cont’d)) We fix q0 = (q0, 1 − q0) so that, to deter-
mine the canonical decision rule for Albert at q0 we must find the set of p0’s that
maximise the function

[0, 1] ∋ p 7→ (D − C − S)pq0 + Sp − (D − S)q0 − S.

Maxima can arise in two ways. They can occur in the interior of [0, 1] (where one
can use the derivative tests of Theorem I-3.2.16) or they occur on the boundary of
[0, 1]. To check for the instances in the interior we compute the derivative of the
function we need to maximise to be (D − C)q0 + S(1 − q0). That is, the derivative
is constant; this is obvious as the function is linear in p. Therefore, we need only
compute the boundary values to see where the maximum occurs. However, given
that D > C, S > 0, and q0 ∈ [0, 1], it follows that the derivative is always positive,
and so the value at p = 1 will always exceed the value at p = 0. Thus we have

cA(q0) = {(1, 0)}.

Similarly, for Betty’s canonical decision rule we have, with p0 = (p0, 1 − p0),

cB(p0) = {(1, 0)}.

Thus, for the Prisoner’s Dilemma, the only strategy that is feasible is that of both
players always confessing. Note, however, that both Albert and Betty would both
be better served by always remaining silent. This points out a limitation of this
methodology of modelling human behaviour. •

1.12.14 Example (De Montmort’s gift (cont’d)) For the game between the father Anthony
and the son Bill, let us fix a strategy q0 = (q0, 1−q0) for Bill. The function for Anthony
evaluating his possible strategies is

[0, 1] ∋ p 7→ −5pq0 + 2p + 2q0 − 1.

The derivative of this function is −5q0 + 2. The sign of this derivative varies
depending on the value of q0. Thus to evaluate the maximum value we need to
compare the value at p = 0 (which is 2q0 − 1) with the value at p = 1 (which is
−3q0 + 1). If the former value exceeds the latter, then Bill will choose the strategy
(0, 1) and otherwise will choose the strategy (1, 0). There is the special case when the
values are equal, and in this case Anthony can choose from all possible strategies
for the canonical decision rule. In summary,

cA(q0) =


{(0, 1)}, 5q0 − 2 > 0,
{(1, 0)}, 5q0 − 2 < 0,
Π2, 5q0 − 2 = 0
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and, similarly if p0 = (p0, 1 − p0),

cB(p0) =


{(0, 1)}, 5p0 − 2 < 0,
{(1, 0)}, 5p0 − 2 > 0,
Π2, 5p0 − 2 = 0.

Let us see if this makes sense by looking at some extreme case. If q0 = 0 (i.e., if
Bill selects the strategy of always guessing odd) then the canonical strategy for
Anthony will be to always take an even number of marbles. At the other extreme,
if q0 = 1 (i.e., if Bill selects the strategy of always guessing even) then the canonical
strategy for Anthony will be to always take an odd number of marbles. At the
special value of q0 =

2
5 Anthony will allow all possible strategy. This is reasonable.

We leave it for the reader to verify the reasonableness of the canonical decision rule
for player Bill. •

Given that players A and B have adopted decision rules dA and dB, there are
then distinguished bistrategies.

1.12.15 Definition (Consistent bistrategy) Let PA and PB be strategy sets with dA : PB ↠
PA and dB : PA ↠ PB being A- and B-decision rules. A bistrategy (p0, q0) is (dA, dB)-
consistent if p0 ∈ dA(q0) and if q0 ∈ dB(p0). •

The idea of a consistent bistrategy (q0,p0) is that, if all player A knows is that
player B will use strategy q0 and if all player B knows is that player A will use
strategy p0, then both players will be content with using strategies p0 and q0. That
is to say, with the information they have, there will be no incentive to change their
strategies.

An important concept extracted from the above discussion is the following.

1.12.16 Definition (Non-cooperative equilibrium or Nash equilibrium) Let
(PA,PB, fA, fB) be a generalised two-played game. A non-cooperative equi-
librium or a Nash equilibrium for the game is a consistent bistrategy for the
canonical decision rule. •

The potential problem with a non-cooperative equilibrium (p0, q0) is that there
may be strategies p and q for which

fA(p, q) > fA(p0, q0), fB(p, q) > fB(p0, q0).

This leads to the following notion.

1.12.17 Definition (Pareto optimal) A Pareto optimal bistrategy for a generalised two-
player game (PA,PB, fA, fB) is a bistrategy (p0, q0) such that, for every bistrategy
(p, q) it holds that fA(p, q) ≤ fA(p0, q0) or fB(p, q) ≤ fB(p0, q0). •
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The idea of a Pareto optimal bistrategy is that is may be possible that one player
or the other may be able to do better with a different strategy, but it is not possible
for both players to simultaneously do better. If one chooses a non-cooperative
equilibrium (p0, q0) that is not Pareto optimal, and if Pareto optimal bistrategies
exist, both players would want to choose these other strategies which do better for
them than the non-cooperative equilibrium. To do this, however, they will have to
exchange information, in the sense that each will have to know that the other will
act so as to mutually maximise the value of the outcome of the game. Generally
speaking, it will not be possible for both players to simultaneously maximise their
gains. That is to say, generally there may be no Pareto optimal bistrategies.

There are some obvious sorts of Pareto optimal bistrategies that are interesting
in that they are extreme cases.

1.12.18 Definition (Single-player Pareto optimal) For a generalised two-player game
(PA,PB, fA, fB), a Pareto optimal bistrategy for player A is a bistrategy (p0, q0) for
which

fA(p0, q0) = sup{ fA(p, q) | p ∈ PA, q ∈ PB}.

The value
vmax

A = sup{ fA(p, q) | p ∈ PA, q ∈ PB}

is the maximum gain for player A. •

By definition, a single-player Pareto optimal bistrategy is necessarily Pareto op-
timal. Of course, one can similarly define the notion of a Pareto optimal bistrategy
for player B and the maximum gain vmax

B for player B. Note that player B will only
be content with a Pareto optimal bistrategy for player A if player B’s objective is to
maximise the gain of player A. Thus, in this case, player B is acting solely in the
interests of player A. This is obviously an extreme situation.

Let us consider some of these concepts for our examples.

1.12.19 Example (Prisoner’s Dilemma (cont’d)) Since there is only one strategy played
by each player in the canonical decision rule for the Prisoner’s Dilemma, it is
easy to characterise all the phenomenon we have discussed so far. For example,
there is only one consistent bistrategy for the canonical decision rule, and thus the
only non-cooperative or Nash equilibrium is the bistrategy ((1, 0), (1, 0)) where both
Albert and Betty confess all the time.

We also claim that the only Pareto optimal bistrategy is ((1, 0), (1, 0)). To see
this, one can examine the evaluation functions fA and fB in (1.66) as functions of
p and q. For (p, q) ∈ [0, 1] × [0, 1] \ {(1, 1)} there then exists (r, s) ∈ R≥0 × R≥0 such
that (p+ r, q+ s) ∈ [0, 1]× [0, 1]. The derivative analysis of Example 1.12.13 we can
conclude that for such as (r, s) we have

fA((p + r, 1 − p − r), (q + s, 1 − q − s)) > fA((p, 1 − p), (q, 1 − q)),
fB((p + r, 1 − p − r), (q + s, 1 − q − s)) > fB((p, 1 − p), (q, 1 − q)).
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This prohibits ((p, 1 − p), (q, 1 − q)) from being a Pareto optimal bistrategy unless
p = q = 1, just as claimed. As a consequence of this we have

vmax
A = fA((1, 0), (1, 0)) = −C, vmax

B = fB((1, 0), (1, 0)) = −C.

This makes sense, of course, since under the Pareto optimal bistrategy both Albert
and Betty will confess, and so will go to prison for C years. •

1.12.20 Example (De Montmort’s gift (cont’d)) For the Anthony/Bill gift problem things
are more interesting. We claim that the only Nash equilibrium is ((2

5 ,
3
5 ), ( 2

5 ,
3
5 ))). To

verify this we investigate various cases for a general bistrategy ((p0, 1 − p0), (q0, 1 −
q0)).
1. 5q0 − 2 > 0 and 5p0 − 2 > 0: In this case consistency and 5q0 − 2 > 0 implies that

p0 = 0 and this contradicts 5p0 − 2 > 0. This case, therefore, cannot happen.
2. 5q0 − 2 > 0 and 5p0 − 2 < 0: In this case consistency and 5p0 − 2 < 0 implies that

q0 = 0 and this contradicts 5q0 − 2 > 0. This case, therefore, cannot happen.
3. 5q0 − 2 > 0 and 5p0 − 2 = 0: In this case consistency and p0 =

2
5 implies that

5q0 − 2 = 0. This case, therefore, cannot happen.
4. 5q0 − 2 < 0 and 5p0 − 2 > 0: In this case consistency and 5p0 − 2 > 0 implies that

q0 = 1 and this contradicts 5q0 − 2 < 0. This case, therefore, cannot happen.
5. 5q0 − 2 < 0 and 5p0 − 2 < 0: In this case consistency and 5q0 − 2 < 0 implies that

p0 = 1 and this contradicts 5p0 − 2 < 0. This case, therefore, cannot happen.
6. 5q0 − 2 < 0 and 5p0 − 2 = 0: In this case consistency and p0 =

2
5 implies that

5q0 − 2 = 0. This case, therefore, cannot happen.
7. 5q0 − 2 = 0 and 5p0 − 2 > 0: In this case consistency and q0 =

2
5 implies that

5p0 − 2 − 0. This case, therefore, cannot happen.
8. 5q0 − 2 = 0 and 5p0 − 2 < 0: In this case consistency and q0 =

2
5 implies that

5p0 − 2 − 0. This case, therefore, cannot happen.
9. 5q0 − 2 = 0 and 5p0 − 2 = 0: In this case we see that no contradictions arise.

We claim that every bistrategy is Pareto optimal. Indeed, consider a bistrategies
(p0, q0) ∈ Π2×Π2. If (p0, q0) is not Pareto optimal then there exists a bistrategy (p, q)
for which

fA(p, q) > fA(p0, q0), fB(p, q) > fB(p0, q0).

However, since fB = − fA this is obviously impossible.
Since every neighbourhood of a point (p0, q0) ∈ int(Π2×Π2) must contain points

(p1, q1) and (p2, q2) for which

fA(p1, q1) > fA(p0, q0), fB(p2, q2) > fB(p0, q0),

we conclude that the maximum values of fA and fB must occur on the boundary of
Π2 ×Π2. Thus, to determine vmax

A we need only take the maximum of the following
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four numbers:

sup{2q − 1 | q ∈ [0, 1]}, sup{−3q + 1 | q ∈ [0, 1]},
sup{2p − 1 | p ∈ [0, 1]}, sup{−3p + 1 | p ∈ [0, 1]}.

This gives vmax
A = 1. Similarly, to determine vmax

B we take the maximum of the
following four numbers:

sup{−2q + 1 | q ∈ [0, 1]}, sup{3q − 1 | q ∈ [0, 1]},
sup{−2p + 1 | p ∈ [0, 1]}, sup{3p − 1 | p ∈ [0, 1]}.

This gives vmax
B = 2.

That every strategy is Pareto optimal is something rather special about this
game, and some consequences of this are explored in Section 1.12.3. Moreover, we
will also see in this general development that our prediction above about the Nash
equilibria can be derived from a general theorem for certain types of games. •

Next we consider another extreme situation. In this setup, let us suppose
that (1) player B acts in such a way as to minimise the gains of player A with no
thought to her own gain and/or (2) player A is convinced that player B is going to
act this way. In such a situation, one might expect player A to choose a strategy
that maximises the minimum gain, no matter what player B does. To investigate
this strategy we make the following definition.

1.12.21 Definition (Least gain function) For a generalised two-player game (PA,PB, fA, fB),
the least gain function for player A is the function f min

A : PA → R defined by

f min
A (p) = inf{ fA(p, q) | q ∈ PB}. •

The least gain function tells us that, if player A chooses strategy p ∈ PA, then,
given our assumptions of the malevolence of player B, player A can expect player
B to choose a strategy q ∈ PB to achieve the gain f min

A (p). Now, given this, player A
might be compelled to act in such a way as to maximise the least gain.

1.12.22 Definition (Conservative strategy) For a generalised two-player game
(PA,PB, fA, fB), a conservative strategy for player A is a strategy p0 ∈ PA such
that

f min
A (p0) = sup{ f min

A (p) | p ∈ PA}.

The value

vmin
A = sup{ f min

A (p) | p ∈ PA} = sup{inf{ fA(p, q) | q ∈ PB} | p ∈ PA}

is the conservative value for player A. •
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The way to think of a conservative strategy is this. Player A may use her
conservative strategy as a threat. That is, player A can threaten to reject a bistrategy
(p, q) for which fA(p, q) < vmin

A since, by adopting a conservative strategy, player
A can ensure that her value will exceed the value fA(q,p). So the point is that
player B should consider the possibility of player A using a conservative strategy
in selecting his own strategy.

Of course, the preceding two definitions and the discussion surrounding them
can be applied to player B, assuming the malevolent intentions of player A. This
would define the least gain function f min

B : PB → R for player B and the conservative
value

vmin
B = sup{ f min

B (q) | q ∈ PB} = sup{inf{ fB(p, q) | p ∈ PA} | q ∈ PB}

for player B.
The idea for conservative bistrategies is that the only strategies (p, q) of interest

to both players are those for which

fA(p, q) ≥ vmin
A , fB(p, q) ≥ vmin

B .

Let us determine the conservative strategies for our examples.

1.12.23 Example (Prisoner’s Dilemma (cont’d)) For p = (p, 1 − p), since

∂ fA

∂q
(p, q) = (1 − p)(S −D) − Cp, q ∈ Π2

we see that this partial derivative is always negative. Therefore, q 7→ fA(p, q) will
take its minimum at q = 1. Using this observation we compute

f min
A (p) = −(1 − p)D − Cp.

Therefore, the maximum value of f min
A will always be achieved at p = 1. This gives

vmin
A = −C. A similar analysis gives vmin

B = −C. Therefore, the only conservative
strategy for Albert is (1, 0) (always confess) and the only conservative strategy for
Betty is also (1, 0) (always confess). This is consistent with the “threat” interpreta-
tion of a conservative strategy. •

1.12.24 Example (De Montmort’s gift (cont’d)) For p = (p, 1−p) we compute ∂ fA
∂q = −5p+2

which is positive for p ∈ [0, 2
5 ) and negative for p ∈ (2

5 , 1]. Thus the minimum value
of q 7→ fA(q,p) will be achieved at q = 0 for p ∈ [0, 2

5 ) and at q = 1 for p ∈ ( 2
5 , 1]. This

gives

f min
A (p) =

2p − 1, p ∈ [0, 2
5 ),

−3p + 1, p ∈ [2
5 , 1].
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This function achieves its maximum at p = 2
5 and the value of this maximum is

vmin
A = − 1

5 . For Bill, a similar analysis gives

f min
B (q) =

3q − 1, q ∈ [0, 2
5 ),

−2q + 1, q ∈ [2
5 , 1]

and vmin
B = 1

5 which is achieved at q = 2
5 . Thus Anthony and Bill both have the single

conservative strategy ( 2
5 ,

2
5 ). Note that this also agrees with the Nash equilibrium.

This is not an accident as we shall see in Proposition 1.12.28. •

We have thus characterised strategy choices where players act in the following
four extreme ways:
1. player B acts solely to maximise the gain for player A with no thought to their

own gain;
2. player A acts solely to maximise the gain for player B with no though to their

own gain;
3. player B acts solely to minimise the gain for player A with no thought to their

own gain;
4. player A acts solely to minimise the gain for player B with no thought to their

own gain.
This leads to the following definition of the sorts of strategies in which one ought
to be interested.

1.12.25 Definition (Viable bistrategy) For a generalised two-player game (PA,PB, fA, fB), a
bistrategy (p, q) is viable if

fA(p, q) ∈ [vmin
A , vmax

A ], fB(p, q) ∈ [vmin
B , vmax

B ]. •

The point is that, as long as both players are playing rationally, no matter what
strategy they choose, their joint strategies will be a viable bistrategy.

1.12.3 Zero-sum games

The reader will have noticed an utter lack of results thus far in our discussion.
Indeed, one of the challenges of game theory is to come up with criterion for
limiting the circumstances of the game so that one can make useful assertions
about whether certain strategies exist, etc. One of the instances when one can
prove useful theorems is in the case of zero sum games.

1.12.26 Definition (Zero-sum generalised game) A generalised two-player game
(PA,PB, fA, fB) is a zero-sum if there exists f : PA × PB → R such that

fA(p, q) = − fB(p, q) = f (p, q).

We will denote such a generalised two-player zero-sum game by (PA,PB, f ). •

Let us first state an obvious characterisation of some of the general concepts as
they appear for zero-sum games.
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1.12.27 Proposition (Some properties of zero-sum games) Let (PA,PB, f) be a generalised
two-player zero-sum game and let fA = f and fB = −f. For the generalised two-player game
(PA,PB, fA, fB) the following statements hold:

(i) vmax
A = sup{f(p,q) | p ∈ PA, q ∈ PB};

(ii) vmax
B = inf{f(p,q) | p ∈ PA, q ∈ PB};

(iii) fmin
A (p) = inf{f(p,q) | q ∈ PB};

(iv) fmin
B (q) = sup{f(p,q) | p ∈ PA};

(v) vmin
A = sup{inf{f(p,q) | q ∈ PB} | p ∈ PA};

(vi) vmin
B = inf{sup{f(p,q) | p ∈ PA} | q ∈ PB};

(vii) all bistrategies are Pareto optimal.
Proof The only possibly non-obvious statement is the last one, and it is argued in
general just as we did in particular in Example 1.12.20. ■

We can also give a convenient characterisation of the non-cooperative equilibria
for a zero-sum game.

1.12.28 Proposition (Non-cooperative equilibria for zero-sum games) Let (PA,PB, f) be
a generalised two-player zero-sum game and let fA = f and fB = −f. For a bistrategy
(pq,q0) ∈ PA × PB the following statements are equivalent:

(i) (p0,q0) is a non-cooperative equilibrium;
(ii) f(p,q0) ≤ f(p0,q0) ≤ f(p0,q) for every p ∈ PA and q ∈ PB;
(iii) the following three statements hold:

(a) vmin
A = vmin

B ;
(b) p0 is a conservative strategy for player A;
(c) q0 is a conservative strategy for player B.

Proof (i) =⇒ (ii) If (p0, q0) is a non-cooperative equilibrium then

f (p0, q0) = sup{ f (p, q0) | p ∈ PA}, f (p0, q0) = inf{ f (p0, q) | q ∈ PB}

by definition. From this (ii) immediately follows.
(ii) =⇒ (iii) First we note that

inf{ f (p, q′) | q′ ∈ PB} ≤ sup{ f (p′, q) | p′ ∈ PA}, p ∈ PA, q ∈ PB,

=⇒ sup{inf{ f (p, q) | q ∈ PB} | p ∈ PA}

≤ inf{sup{ f (p, q) | p ∈ PA} | q ∈ PB}

giving vmin
A ≤ vmin

B in all cases. We also always have

f min
A (p) ≤ vmin

A , f min
B (q) ≥ vmin

B , p ∈ PA, q ∈ PB.



346 1 Multiple real variables and functions of multiple real variables 2022/03/07

Now assuming (ii) we have

f (p, q0) ≤ f (p0, q0) ≤ f (p0, q), p ∈ PA, q ∈ PB,

=⇒ sup{ f (p, q0) | p ∈ PA} ≤ f (p0, q0) ≤ inf{ f (p0, q) | q ∈ PB}

=⇒ inf{sup{ f (p, q) | p ∈ PA} | q ∈ PB} ≤ f (p0, q0)
≤ sup{inf{ f (p, q) | q ∈ PB} | p ∈ PA},

giving vmin
B ≤ vmin

A , and so vmin
A = vmin

B . This also gives

f (p0, q0) = vmin
A = vmin

B .

From this we ascertain that

f (p0, q0) ≤ f (p0, q), q ∈ PB

=⇒ vmin
A = f (p0, q0) ≤ f min

A (p0),

giving f min(p0) = vmin
A , and so p0 is a conservative strategy for player A. Similarly,

f (p, q0) ≤ f (p0, q0), p ∈ PA

=⇒ f min
B (q0) ≤ f (p0, q0) = vmin

B ,

giving f min
B (q0) = vmin

B , and so q0 is a conservative strategy for player B.
(iii) =⇒ (i) Note that we always have

f (p, q) ≤ sup{ f (p′, q) | p ∈ PA}, f (p, q) ≥ inf{ f (p, q′) | q ∈ PB}

for any bistrategy (p, q). Under the assumptions of part (iii) we have

vmin
A = f min

A (p0) ≤ f (p0, q0) ≤ f min
B (q0) = vmin

B

which gives, upon using the fact that vmin
A = vmin

B ,

f (p0, q0) = inf{ f (p0, q) | q ∈ PB} = sup{ f (p, q0) | p ∈ PA}.

or that
f (p, q0) ≤ f (p0, q0) ≤ f (p0, q)

for every bistrategy (p, q) (i.e., we are proving part (i) by first proving (ii)). It, therefore,
follows that

sup{ f (p, q0) | p ∈ PA} ≤ f (p0, q0) ≤ inf{ f (p0, q) | q ∈ PB}

which gives

f (p0, q0) = sup{ f (p, q0) | p ∈ PA}, f (p0, q0) = inf{ f (p0, q) | q ∈ PB},

as desired. ■

The Minimax Theorem of von Neumann tells us that there is a large class of
games that possess non-cooperative equilibria.
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1.12.29 Theorem (von Neumann’s17 Minimax Theorem) Let (PA,PB, f) be a generalised
two-player zero-sum game such that

(i) PA ⊆ Rm and PB ⊆ Rn are compact and convex,
(ii) f is continuous,
(iii) for each p0 ∈ PA and α ∈ R the set {q ∈ PB | f(p0,q) ≤ α} is convex, and
(iv) for each q0 ∈ PB and β ∈ R the set {p ∈ PA | f(p,q0) ≥ β} is convex.

Then there are non-cooperative equilibria for the game.
Proof We let fA = f and fB = − f . Note that f min

A is upper semicontinuous and f min
B is

lower semicontinuous by Proposition 1.10.17. Denote

S = {(p0, q0) ∈ PA × PB | f (p0, q0) = f min
A (p0)},

T = {(p0, q0) ∈ PA × PB | f (p0, q0) = f min
B (q0)}.

Compactness of PA × PB and continuity of f ensures that these sets are nonempty by
Theorem 1.3.31. We also claim that both S and T are closed. Let us show that S is
closed. Let ((p j, q j)) j∈Z>0 be a sequence in S converging to (p0, q0) ∈ PA × PB. Using
Proposition 1.10.13 we have

f (p0, q0) = lim
j→∞

f (p j, q j) = lim
j→∞

f min
A (p j) ≤ lim sup

j→∞
f min
A (p j) ≤ f min

A (p0).

By definition of f min
A (p0) it, therefore, follows that f (p0,p0) = f min

A (p0), and so (p0, q0) ∈
S. One similarly shows that T is closed. Let us define

Sp0
= {q ∈ PB | (p0, q) ∈ S} = {q ∈ PB | f (p0, q) ≤ f min

A (p0)},

Tq0
= {p ∈ PA | (p, q0) ∈ T} = {p ∈ PA | f (p, q0) ≥ f min

B (q0)}.

Then Sp0
and Tq0

are nonempty, closed, and convex for each p0 ∈ PA and q0 ∈ PB.
Define F : PA × PB ↠ PA × PB by F(p, q) = Tq × Sp. We claim that F is upper

semicontinuous. By Proposition 1.10.38 it suffices to show that F is closed, i.e., that
graph(F) is a closed subset of (PA × PB) × (PA × PB). Let ((z j, z′j)) j∈Z>0 be a sequence in
graph(F) converging to some (z0, z′0) ∈ PA × PB. Let us write z0 = (p0, q0), z′0 = (p′0, q

′

0),
and z j = (p j, q j) and z′j = (p′j, q

′

j) for j ∈ Z>0. Note that p′j ∈ Tq j
and q′j = Sp j

. It follows
that (p j, q

′

j) ∈ S and (p′j, q j) ∈ T. Closedness of S and T, as shown above, ensures that

(p0, q
′

0) = lim
j→∞

(p j, q
′

j) ∈ S, (p′0, q0) = lim
j→∞

(p′j, q j) ∈ T.

Therefore, p′0 ∈ Tp0
and q′0 ∈ Sq0

and so (z0, z′0) ∈ graph(F).

17John von Neumann (1903–1957) was Hungarian born, and was one of the leading figures in
mathematics, and indeed science, in the twentieth century. He was one of the original members of
the Institute for Advanced Study. His significant mathematical contributions include those made
to game theory and functional analysis. His functional analysis contributions were made as part
of his efforts to put quantum mechanics on a firm mathematical foundation. Von Neumann also
was involved in the Manhattan Project, the undertaking by the United States to develop the atomic
bomb during the Second World War.
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By the Kakutani Fixed Point Theorem it now follows that there exists (p0, q0) ∈
PA × PB such that p0 ∈ Tq0

and q0 ∈ Sp0
. This means that

f (p0, q0) = inf{ f (p0, q) | q ∈ PB} = sup{ f (p, q0) | p ∈ PA}.

Therefore,

inf{sup{ f (p, q) | p ∈ PA} | q ∈ PB} ≤ sup{ f (p, q0) | p ∈ PA}

= f (p0,p0) = inf{ f (p0, q) | q ∈ PB} ≤ sup{inf{ f (p, q) | q ∈ PB} | p ∈ PA}.

On the other hand,

f (p, q) ≤ sup{ f (p, q) | p ∈ PA}, p ∈ PA, q ∈ PB

=⇒ inf{ f (p, q) | q ∈ PB} ≤ inf{sup{ f (p, q) | p ∈ PA} | q ∈ PB}, p ∈ PA

=⇒ sup{inf{ f (p, q) | q ∈ PB} | p ∈ PA}

≤ inf{sup{ f (p, q) | p ∈ PA} | q ∈ PB},

and so the theorem follows. ■

We have seen that the game we have been calling De Montmort’s gift is a zero
sum game. Let us also verify that is satisfies the hypotheses of the von Neumann
Minimax Theorem.

1.12.30 Example (De Montmort’s gift (cont’d)) Note that PA = PB = Π2 and so PA and PB

are certainly compact and convex. As we have been doing, we denote an element of
PA by (p, 1−p) and an element of PB by (q, 1−q). This gives us natural identifications
of PA and PB with [0, 1]. We then have

f ((p, 1 − p), (q, 1 − q)) = −5pq + 2p + 2q − 1,

and so f is obviously continuous. Since the functions

p 7→ f ((p, 1 − p), (q, 1 − q)), q 7→ f ((p, 1 − p), (q, 1 − q)), p, q ∈ [0, 1],

are linear it follows that the sets

{q ∈ PB | f (p, q) ≤ α}, {p ∈ PA | f (p, q) ≥ β}

are subintervals of identified with [0, 1]. In particular, they are convex. This gives
us the hypotheses of the von Neumann Minimax Theorem for this game. Therefore,
we can conclude the existence of non-cooperative equilibria. Moreover, any non-
cooperative equilibria will satisfy the equivalent conditions of Proposition 1.12.28.
We have already seen, in fact, that there is a single non-cooperative equilibrium at
(( 2

5 ,
3
5 ), (2

5 ,
3
5 )), and that the value of this strategy for Anthony is 1

5 and the value for
Bill is − 1

5 . Not much of a gift.
But we do see that the employment of a mixed strategy, i.e., the introduction

of probabilistic aspects into the decision making process, has allowed to arrive at
a conclusion, rather than just engage in the circular reasoning we saw in Exam-
ple 1.12.4. •
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1.12.4 Notes

The Minimax Theorem we give as Theorem 1.12.29 was first proved by Neu-
mann [1928]. A clear and rigorous discussion of issues related to this can be found
in the book of Aubin [1998]. It is for his generalisation of the Minimax Theorem
to more than two players (see [Nash 1951]) that John Nash won a Nobel Prize in
Economics. The term “Prisoner’s Dilemma” is due to Albert Tucker (1905–1995), a
Canadian-born mathematician, is an attempt to make palatable research by math-
ematicians Melvin Dresher (1911–1992) and Merrill M. Flood (????-????) at the
RAND Corporation.
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Chapter 2

Vector Calculus

The subject of this chapter, vector calculus, is a fundamental tool for many
physical models. For example, continuum mechanics and electromagnetism rely
essentially on basic (and sometimes not so basic) machinery from vector calculus.
We shall do some physical modelling in Chapter V-1 and the reader will see then
the rôle of vector calculus. We shall also see in Chapter 3 that ideas from this
chapter play an important part in complex function theory where integration over
paths provides deep and nontrivial insight into what it means for a function to be
holomorphic.

One of the ideas of vector calculus is that one may want to coherently inte-
grate over sets with zero volume. In our development of the Riemann integral in
Section 1.6 we saw that if we use the standard theory to integrate over a set of
volume zero the result will be zero; see Proposition 1.6.21. However, for exam-
ple, one may want to integrate over a n-dimensional sphere in Rn+1 and obtain
something nonzero. We will also need to integrate functions taking values in
multi-dimensional Euclidean space. In some sense this is trivial (one just does
the integration componentwise), but it does not take long before one needs more
sophistication to really understand these integrals.

Do I need to read this chapter? The material in Section 2.2 is essential for read-
ing Chapter 3. However, the remainder of the material in the chapter can be
skipped until it is needed. •
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Section 2.1

The Cauchy–Bochner integral

We have thus far only indicated how to integrate functions that are R-valued.
It is easy to extend the integral to functions taking values in Rn.

2.1.1 Definition (Integral of a Rm-valued function) Let A ⊆ Rn and let f : Rn
→ Rm

be written as f (x) = ( f1(x), . . . , fm(x)). The function f is Riemann integrable (in the
sense of either of Definitions 1.6.8 or 1.6.22) if each of the functions f1, . . . , fm : A→
R are Riemann integrable, and the Riemann integral of f is∫

A
f (x) dx =

(∫
A

f1(x) dx, . . . ,
∫

A
fm(x) dx

)
∈ Rm. •

That is, to integrate a vector-valued function, one simply integrates each of
its components. The following result gives an alternative characterisation that is
useful in that it suggests how one might define the integral for functions taking
values in vector spaces other than Rm. We shall not explore this further here, but
will pick this up in . The statement of the result uses the following notation. Given what?

A ⊆ Rn, f : A→ Rm, and α ∈ (Rm)′, define fα : A→ R by fα(x) = α( f (x)).

2.1.2 Proposition (Characterisation of Rm-valued Riemann integrable functions)
For A ⊆ Rn and for f : A→ Rm the following statements are equivalent:

(i) f is Riemann integrable;
(ii) the function fα is Riemann integrable for each α ∈ (Rn)′.

Moreover, if f is Riemann integrable then∫
A

f(x) dx =
(∫

A
fα1(x) dx, . . . ,

∫
A

fαm(x) dx
)
,

where {α1, . . . ,αm} is the basis for (Rm)′ dual to the standard basis.
Proof First suppose that f is Riemann integrable and let α ∈ (Rm)′. Let α1, . . . , αm ∈ R
be the components of α relative to the basis {α1, . . . ,αm} is the basis for (Rm)′. Then we
have

fα(x) = α1 f1(x) + · · · + αm fm(x). (2.1)

The Riemann integrability of fα now follows from the linearity of the Riemann integral
proved in Proposition 1.6.28.

Conversely, if fα is Riemann integrable for every α ∈ (Rm)′ then, in particular, fα j

is Riemann integrable for each j ∈ {1, . . . ,m}. However, from (2.1) we see that fα j = f j
for each j ∈ {1, . . . ,m}, and so the Riemann integrability of f follows. ■

We have the following useful inequality which generalises that of Proposi-
tion 1.6.31.
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2.1.3 Proposition (Riemann integral and Euclidean norm) If A ⊆ Rn and if f : A→ Rm

is Riemann integrable then the function x 7→ ∥f(x)∥Rm is Riemann integrable and, moreover,∥∥∥∥∫
A

f(x) dx
∥∥∥∥
Rm
≤

∫
A
∥f(x)∥Rn dx.

Proof Let f1, . . . , fm : A → R be the components of f which are each Riemann inte-
grable by definition. By Lemma 1.2.67 we have

∥ f (x)∥Rm ≤ | f1(x)| + · · · + | fm(x)|

for every x ∈ A. By Propositions 1.6.28, 1.6.30, and 1.6.31 we conclude that x 7→
∥ f (x)∥Rm is Riemann integrable.

Then we have∥∥∥∥∫
A

f (x) dx
∥∥∥∥2

Rm
=

∣∣∣∣∫
A

f1(x) dx
∣∣∣∣2 + · · · + ∣∣∣∣∫

A
fm(x) dx

∣∣∣∣2
≤

(∫
A
| f1(x)|dx

)2
+ · · · +

(∫
A
| fm(x)|dx

)2

=
∥∥∥∥∫

A
| f1(x)|dx, . . . ,

∫
A
| fm(x)|dx

∥∥∥∥2

Rm

≤

by Lemma 1.2.67 and

■
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Section 2.2

Path integrals

2.2.1 Paths in Rn

In this section, mainly for organisational purposes, we define what we mean by
a path and indicate some manipulations one can perform with paths. These ideas
will be important in Chapter 3, and will also see other uses in the text.

2.2.1 Definition (Path) A path in Rn is a continuous map γ : [a, b] → Rn, and a path is
said to connect the points γ(a) and γ(b). The trace of a path γ is the subset image(γ)
of Rn. •

2.2.2 Remark (Domains of paths) Note that if γ : [a, b] → Rn is a curve connecting x0

and x1, then the curve γ̃ : [c, d]→ Rn defined by

γ̃(s) = γ
(

d−c
b−as + bc−ad

b−a

)
also connects x0 and x1. Moreover, the paths γ and γ̃ have the same trace. Thus
the trace represents the points through which the path passes, and different paths
are capable of having the same trace. Sometimes a path is restricted to be defined
on [0, 1], and our preceding machinations indicate this can be done without loss of
generality. •

One often has a picture in one’s mind of continuous paths as being far simpler
than they actually are. It is actually quite important to understand that continuous
paths can be rather wild. Indeed, one of the most important theorems in math-
ematics is Cauchy’s Theorem in complex analysis which has to do with integrals
around closed continuous paths in the complex plane. In order to understand
the depth of this theorem in its most general form requires an appreciation of the
possible complexities of continuous paths. This is resolved for the situation of
Cauchy’s Theorem by the so-called “Jordan Curve Theorem” which we state as
Theorem 3.1.5. Let us here illustrate a rather unfriendly continuous path.

2.2.3 Example (A path surjective onto a two-dimensional region) We construct a
path from [0, 1] to [0, 1] × [0, 1] that is surjective and differentiable except on a set
of measure zero.

Let us partition [0, 1] into four closed intervals I1
j , j ∈ {1, 2, 3, 4} of equal length

enumerated from left to right. Let us also partition the square [0, 1]× [0, 1] into four
closed squares S1

j , j ∈ {1, 2, 3, 4} of equal size, enumerating these in some arbitrary
manner. Note that there is a path passing through the four squares in the same
order as the order of the intervals as in Figure 2.1.
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Figure 2.1 The sequential construction of a path from [0, 1] onto
[0, 1] × [0, 1]

Now take each of the intervals I1
j and partition again it into four closed intervals

of equal length. For each j ∈ {1, 2, 3, 4}denote the subintervals of I1
j by I2

4( j−1)+1, . . . , I
2
4 j,

retaining the enumeration from left to right. The result is 42 intervals of equal length
denoted by I2

1, . . . , I
2
42 . Now partition each of the squares S1

j , j ∈ {1, 2, 3, 4}, into four
closed squares of equal size. For each j ∈ {1, 2, 3, 4} denote the subsquares of S1

j

by S2
4( j−1)+1, . . . ,S

2
4 j. Order the indices so that the subsquare S2

4( j−1)+1 has an edge
bordering S1

j−1 if j ∈ {2, 3, 4} and so that the subsquare S2
4 j has an edge bordering

on S1
j+1 for j ∈ {1, 2, 3}. This gives 42 squares of equal size which are denoted by

S2
1, . . . ,S

2
42 . The enumeration of the squares ensures that there is a path passing

through the squares in the same order as the intervals; again see Figure 2.1.
This process can be repeated. At step k one ends up with 4k closed subintervals
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of [0, 1] denoted Ik
1, . . . , I

k
4k , ordered from left to right, and 4k squares Sk

1, . . . ,S
k
4k

enumerated so that there is a path passing through the squares in the same order
as the parameter for the path passes through the intervals. In Figure 2.1 we show
the case where k ∈ {1, 2, 3}.

With this sequential construction we now define γ : [0, 1] → [0, 1] × [0, 1] as
follows. Let s ∈ [0, 1]. For each k ∈ Z>0 the point s lies in an interval Ik

jk(s) for
some jk(s) ∈ {1, . . . , 4k

}. If s lies in more than one of the intervals, i.e., when s lies
on the boundary of one of the intervals, then choose jk(s) arbitrarily between the
two possibilities. Note that if s lies on the intersection of two intervals Ik

j and Ik
j+1

then this means that s will lie in the intersection of two intervals at each of the
subsequent stages, k + 1, k + 2, . . .. That is, once on encounters an ambiguity in
the definition of jk(s) at some stage, this ambiguity will be present in the choice
of jk+1(s), jk+2(s), . . .. We then insist that the choices be made so that Ik+1

jk+1(s) ⊆ Ik
jk(s),

Ik+1
jk+1(s) ⊆ Ik

jk(s), and so on. That is to say, if we adopt this rule, there is at most one
step at which there is ambiguity in the definition of jk(s). Having now chosen a
sequence ( jk(s))k∈Z>0 , one then has the corresponding sequence (Sk

jk(s))k∈Z>0 of squares
having the property that Sk+1

jk+1(s) ⊆ Sk
jk(s) for each k ∈ Z>0 (this is guaranteed by our

way of dealing with subsequent ambiguities in the construction of the sequence
( jk(s))k∈Z). Therefore, ∩∞k=1Sk

jk(s) is nonempty by Proposition 1.2.39. Moreover, since
the squares become arbitrarily small, there exists a unique point in this intersection.
Call this point γ(s), and this defines γ.

We claim that γ is well-defined in that it is independent of the possible choice
made for jk0(s) when s lies on the boundary of one of the intervals Ik0

1 , . . . , I
k0

4k0
for

some k0 ∈ Z>0. According to our construction, when we encounter the first such
case we arbitrarily make a choice between, say, Ik0

j and Ik0
j+1. Let us compare the

consequences of making one choice over the other. In first case we will have γ(s)
as the unique point in ∩∞k=k0

Sk
jk(s) and in the other as the unique point in ∩∞k=k0

Sk
jk(s)+1.

However, since the squares Sk
jk(s) and Sk

jk(s)+1 share a common edge for each k ≥ k0,
and since the common edge for Sk+1

jk+1(s) (and so also for Sk+1
jk+1(s)+1) is contained in

that for Sk
jk(s) (and so also in Sk

jk(s)+1) for each k ≥ k0, it follows that γ(s) is indeed
unambiguously defined.

Next we claim that γ is continuous. Let ϵ ∈ R>0 and let s0 ∈ [0, 1]. Let k
be sufficiently large that any square with sides of length 2−k+1 containing x0 ∈

[0, 1] × [0, 1] is contained in B2(ϵ, x0). Take δ = 4−k so that if |s − s0| < δ then s and s0

are either in the same interval or adjacent intervals at the kth step of our sequential
construction. Thus γ(s) and γ(s0) will lie either in the same square or adjacent
squares at the kth step of the sequential construction. Thus γ(s) lies in a square
with sides of length 2−k+1 and so γ(s) ∈ B2(ϵ,γ(s0)), giving continuity of γ.

Next we claim thatγ is surjective. Let x0 ∈ [0, 1]×[0, 1]. By the very construction
of γ there then exists a convergent sequence (s j) j∈Z>0 (with limit denoted by s0) in
[0, 1] such that the sequence (γ(s j)) j∈Z>0 converges to x0. Since γ is continuous we
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have γ(s0) = x0 by Theorem 1.3.2.
We have thus far constructed a continuous path γ from [0, 1] to [0, 1] × [0, 1]

that is surjective. With a little modification we shall form a path with all of these
properties that is additionally differentiable except on a set of measure zero. Let
fC : [0, 1] → [0, 1] be Cantor function of Example I-3.2.27. This function, recall (or
check), has the following properties:
1. it is continuous;
2. it is differentiable at all points in [0, 1]\C since fC is constant in a neighbourhood

of such points;
3. fC([0, 1] \ C) = {k2− j

| j, k ∈ Z>0, k < 2 j
};

4. fC(C) = [0, 1].
Therefore, the path γ ◦ fC has the following properties:
1. it is continuous (being the composition of continuous functions);
2. it is differentiable at all points in [0, 1] \C since γ ◦ fC is constant in a neighbour-

hood of such points;
3. γ ◦ fC(C) = [0, 1] × [0, 1].
Now this is a strange path indeed. At almost all points (i.e., at points in [0, 1] \ C)
the path goes nowhere. But at the remaining set of points of zero measure, the path
fills out the square [0, 1] × [0, 1]. •

Paths can be “reversed” and “joined together.”

2.2.4 Definition (Inverse of a path, concatenation of two paths) Let γ : [a, b] → Rn,
γ1 : [a1, b1] → Rn, and γ2 : [a2, b2] → Rn be paths, and suppose that b1 = a2 and
γ1(b1) = γ2(a2).

(i) The inverse of γ is the curve γ−1 : [a, b]→ Rn defined by

γ−1(s) = γ(b + a − s).

(ii) The concatenation of γ1 and γ2 is the curve γ1 ∗ γ2 : [a1, b2]→ Rn defined by

γ1 ∗ γ2(s) =

γ1(s), s ∈ [a1, b1],
γ2(s), s ∈ (a2, b2].

In Figure 2.2 we depict how one might think of the inverse of a path and the
concatenation of two paths.

It is interesting to consider paths with special properties. Let us give some such
properties that often arise in applications. In order to do this we first define a very
simple class of paths that make use of the structure of Rn.
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γ(a) γ(b)

γ−1(b) γ−1(a)

γ1(a1) γ1(b1)
γ2(a2) =

γ2(b2)

Figure 2.2 A depiction of the inverse of a path (left) and the
concatenation of two paths (right)

2.2.5 Definition (Segment, rectangular segment) A segment inRn is a path γ : [a, b]→
Rn of the form

γ(s) = x0 + sv

for x0,v ∈ Rn. If v = e j for some j ∈ {1, . . . ,n} (here {e1, . . . , en} is the standard basis
for Rn) then the segment is rectangular. •

Now we can define our special classes of paths.

2.2.6 Definition (Simple path, closed path, polygonal path, rectangular path) Let
γ : [a, b]→ Rn be a path.

(i) The path γ is simple if γ|(a, b) is injective.
(ii) The path γ is closed if γ(a) = γ(b).
(iii) The path γ is polygonal if it is a concatenation of a finite number of segments.
(iv) The path γ is rectangular if it is a concatenation of a finite number of rectan-

gular segments. •

In Figure 2.3 we depict how one might think of these various types of paths.
One of the reasons why special paths are of interest is that one can use them to

approximate more general paths. Let us state some results along these lines.

2.2.7 Theorem (Continuous paths can be approximated by rectangular paths) For
a path γ : [a, b] → Rn and for ϵ ∈ R>0 there exists a rectangular path γrec : [a, b] → Rn

with the property that ∥γ(s) − γrec(s)∥Rn < ϵ for every s ∈ [a, b].
Proof First note that γ is uniformly continuous by the Heine–Cantor Theorem. Thus,
for ϵ ∈ R>0 there exists δ ∈ R>0 such that if |s1 − s2| < δ then ∥γ(s1)−γ(s2)∥Rn < ϵ

2 . Now
consider s0, s1, sk ∈ [a, b] such that
1. s0 = a,
2. sk = b,
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Figure 2.3 A non-simple path (top left), a closed path (top right),
a polygonal path (bottom left), and a rectangular path (bottom
right)

3. s j > s j−1 for j ∈ {1, . . . , k}, and
4. s j − s j−1 < δ for j ∈ {1, . . . , k}.
Denote I j = [s j−1, s j], j ∈ {1, . . . , k}. Then, for each j ∈ {1, . . . , k} there exists x j ∈ R

n such
that γ(I j) ⊆ Bn( ϵ2 , x j). Note that if x, x′ ∈ Bn( ϵ2 , x j) we have

∥x − x′∥Rn ≤ ∥x − x j∥Rn + ∥x′ − x j∥Rn < ϵ,

using the triangle inequality. We now use a simple lemma that captures the essence of
what is going on.

1 Lemma For r ∈ R>0, x0 ∈ Rn, and for x, x′ ∈ Bn(r, x0) there exists a rectangular path
σ : [a, b]→ Bn(r, x0) connecting x and x′.

Proof Let us write

x = (x1, . . . , xn), x′ = (x′1, . . . , x
′

n), x0 = (x0,1, . . . , x0,n).

Let us define γ1 : [0, 1]→ Rn by

γ1(s) = ((1 − s)x1 + sx0,1, x2, . . . , xn)

and define x1 = (x0,1, x2, . . . , xn) = γ1(1). Note that ∥x1 − x0∥Rn ≤ ∥x − x0∥Rn and so
x1 ∈ Bn(r, x0). Then define γ2 : [0, 1]→ Rn by

γ2(s) = (x0,1, (1 − s)x2 + sx0,2, x3, . . . , xn)
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and take x2 = (x0,1, x0,2, x3, . . . , xn) = γ2(1). We have ∥x2 − x0∥Rn ≤ ∥x − x0∥Rn giving
x2 ∈ Bn(r, x0). Doing this repeatedly gives rectangular segments γ j : [0, 1] → Rn,
j ∈ {1, . . . ,n}, having the following properties:
1. γ1(0) = x;
2. γ j(1) = γ j+1(0) ∈ Bn(r, x0) for j ∈ {1, . . . ,n − 1};

3. γn(1) = x0.
Thus the rectangular path γ = γ1 ∗ · · · ∗ γn connects x and x0. We claim that this path
lives in Bn(r, x0). To prove this, we prove something more general. Let y, y′ ∈ Bn(r, x0)
and let s ∈ [0, 1]. Then

∥((1 − s)y + sy′) − x0∥Rn ≤ (1 − s)∥y − x0∥Rn + s∥y′ − x0∥Rn < (1 − s)r + sr = r.

Thus (1 − s)y + sy′ ∈ Bn(r, x0). This ensures that each of the paths γ1, . . . ,γn lives in
Bn(r, x0), and so too, then, does the path γ.

The above process can be repeated to define a rectangular path γ′ from x′ to x0
that lies in Bn(r, x0). Define σ = γ ∗ (γ′)−1. The curve σ is defined on the interval [0, 2n],
but defines a curve on [a, b] with the same trace, as per Remark 2.2.2. ▼

For j ∈ {1, . . . , k} the lemma gives a rectangular path γ j : I j → Bn( ϵ2 , x j) connecting
γ(s j−1) with γ(s j). Since γ(s) ∈ Bn( ϵ2 , x j) for each s ∈ I j it follows that γ j is a rectangular
path such that ∥γ j(s) − γ(s)∥Rn < ϵ for every s ∈ I j. Taking γrec = γ1 ∗ · · · ∗ γk gives the
theorem. ■

Next we consider approximating polygonal paths with “nicer” paths.

2.2.8 Theorem (Polygonal paths can be approximated by differentiable paths) For
a polygonal path γ : [a, b] → Rn and for ϵ ∈ R>0 there exists a differentiable path
γdiff : [a, b]→ Rn with the property that ∥γ(s) − γdiff(s)∥Rn < ϵ for every s ∈ [a, b].

Proof We consider the case where γ = γ1 ∗ γ2 is a concatenation of two segments
γ1 ∗ γ2. We suppose, without loss of generality by Remark 2.2.2, that γ1 is defined on
[0, 1] and that γ2 is defined in [1, 2]. Since γ is differentiable at all points in [0, 1)∪ (1, 2],
we need only alter γ in a suitable way in a neighbourhood of 1 ∈ [0, 2]. Let us suppose
that γ1(1) = x0 so that

γ1(s) = (1 − s)x1 + sx0, γ2(s) = (s − 1)x2 + (2 − s)x0

for some x1, x2 ∈ Rn.
Let us first consider the relatively uninteresting case when x1 − x0 is collinear

with x2 − x0, i.e., when the vectors x1 − x0 and x2 − x0 lie in the same subspace. This
uninteresting case admits an even more uninteresting subcase when one or both of
x1 − x0 and x2 − x0 are zero. In case they are both zero it is immediate that γ(s) = x0 for
all s ∈ [0, 2] and so is differentiable.

Let us suppose that x1 − x0 , 0 but that x2 − x0 = 0. Let ϵ′ ∈ R>0 be such that
∥γ1(1 − ϵ′) − x0∥Rn < ϵ. Then define

a0 = −
1

4ϵ′ ((1 − ϵ
′)2x0 + (1 + ϵ′)2x1),

a1 =
1

2ϵ′ (1 + ϵ
′)(x0 − x1),

a2 =
1

4ϵ′ (x1 − x0).
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One can directly and laboriously check that if γ̃ : [1 − ϵ′, 1 + ϵ′]→ Rn is defined by

γ̃(s) = a0 + a1s + a2s2

then
1. γ̃(1 − ϵ′) = γ1(1 − ϵ′),
2. γ̃(1 + ϵ′) = x0,
3. Dγ̃(1 − ϵ′) = Dγ1(1 − ϵ′), and
4. Dγ̃(1 + ϵ′) = 0
(indeed, a0, a1, and a2 were defined by solving these four equations). Thus γ̃ is a
differentiable path for which the left limit and the left limit of the derivative agree with
γ1 and the right limit and the right limit of the derivative agree with γ0. Thus the
concatenated path (γ1|[0, 1− ϵ

′]) ∗ γ̃ ∗ (γ2|[1+ ϵ
′, 2]) is differentiable and connects γ1(0)

with γ2(2). We need only check that for s ∈ [1 − ϵ′, 1 + ϵ′] it holds that γ̃(s) is within ϵ
of x0. To see this we compute

Dγ̃(s) = 1
2ϵ′ (1 + ϵ

′
− s)(x0 − x1).

Since (1 + ϵ′ − s) > 0 for s ∈ [1 − ϵ′, 1 + ϵ′) it follows that γ̃(s) lies in the line segment

{(1 − σ)γ1(1 − ϵ′) + σx0 | σ ∈ [0, 1]}

between γ1(1 − ϵ′) and x0. By our definition of ϵ′ it follows that γ̃(s) is within ϵ of x0,
as desired.

The case when x1 − x = 0 but x2 − x0 , 0 is handled similarly.
If both x1 − x0 and x2 − x0 are nonzero but collinear then we proceed as follows.

Let ϵ′ ∈ R>0 be such that

∥γ1(1 − ϵ′) − x0∥Rn , ∥γ2(1 + ϵ′) − x0∥Rn < ϵ
2 .

Then define γ̃ : [1 − ϵ′, 1 + ϵ′]→ Rn by

γ̃(s) = a0 + a1s + a2s2,

where

a0 = , 1
4ϵ′ ((1 + ϵ

′)2x1 + (1 − ϵ′)2x2 − 2(1 − ϵ′)2x0),

a1 =
1

2ϵ′
((1 + ϵ′)x1 + (1 − ϵ′)x2 − 2x0),

a2 =
1

4ϵ′ (x1 + x2 − 2x0).

With this definition one directly computes that
1. γ̃(1 − ϵ′) = γ1(1 − ϵ′),
2. γ̃(1 + ϵ′) = γ2(1 + ϵ′),
3. Dγ̃(1 − ϵ′) = Dγ1(1 − ϵ′), and
4. Dγ̃(1 + ϵ′) = Dγ2(1 + ϵ′).
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Thus (γ1|[0, 1 − ϵ
′]) ∗ γ̃ ∗ (γ2|[1 + ϵ

′, 2]) is differentiable and connects γ1(0) with γ2(2).
We next claim that ∥γ̃(s) − x0∥Rn < ϵ

2 for s ∈ [1 − ϵ′, 1 + ϵ′]. To see this we note that
Dγ̃(s) is a linear function of s. Thus, as the path γ̃ moves along the line connecting
γ1(1 − ϵ′) to γ(1 + ϵ′) it changes direction at most once. This is enough to ensure that
the distance of γ̃(s) from x0 is never more than ϵ

2 . Since γ1(s), s ∈ [1 − ϵ′, 1], and γ2(s),
s ∈ [1, 1 + ϵ′], are also within distance ϵ

2 from x0, it follows that γ̃(s) is within ϵ of γ(s)
for all s ∈ [1 − ϵ′, 1 + ϵ′], as desired.

The final case to consider is the most interesting one where x1 − x0 and x2 − x0 are
not collinear. Let V = spanR(x1 − x0, x2 − x0) and note that γ takes its values in the
two-dimensional plane

P = {x0 + v | v ∈ V}

that passes through x0. Choose ϵ′ ∈ R>0 sufficiently small that

ϵ′
(
∥x1 − x0∥Rn + ∥x2 − x0∥Rn

)
< ϵ

2 .

Then define γ̃ : [1 − ϵ′, 1 + ϵ′]→ Rn by

γ̃(s) = x0 +
1

4ϵ′ (1 − s + ϵ′)2(x1 − x0) + (1 − s − ϵ′)2)(x2 − x0),

noting that this is a curve in P. One can directly check that
1. γ̃(1 − ϵ′) = γ1(1 − ϵ′),
2. γ̃(1 + ϵ′) = γ2(1 + ϵ′),
3. Dγ̃(1 − ϵ′) = Dγ1(1 − ϵ′), and
4. Dγ̃(1 + ϵ′) = Dγ2(1 + ϵ′).
Thus (γ1|[0, 1 − ϵ

′]) ∗ γ̃ ∗ (γ2|[1 + ϵ
′, 2]) is differentiable and connects γ1(0) with γ2(2).

Next we check that ∥γ̃(s) − x0∥Rn < ϵ
2 for s ∈ [1 − ϵ′, 1 + ϵ′]. For such s we have

(1 − s + ϵ′)2, (1 − s − ϵ′)2 < 4(ϵ′)2.

Therefore, using the triangle inequality,

∥γ̃(s) − x0∥Rn ≤ ϵ′
(
∥x1 − x0∥Rn + ∥x2 − x0∥Rn

)
< ϵ

2

by our choice of ϵ′. Thus, for s ∈ [1 − ϵ′, 1 + ϵ′], both γ̃(s) and γ(s) are with distance ϵ
2

of x0, and so within distance ϵ of one another, as desired. ■

While the proof of the preceding theorem is lengthy, this is merely because
the proof is explicit. The basic idea is very simple, however, and is illustrated in
Figure 2.4.

As a final topic in our discussion of paths, let us consider the notion of paths
that can be deformed into one another.

2.2.2 Integration along a path

One of the most important
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Figure 2.4 Replacing a polygonal path with a differentiable path

2.2.3 Potential functions

2.2.4 Notes

That there exists a continuous path onto a region inR2 with a nonempty interior
was first proved by Peano in 1890. The construction we give in Example 2.2.3 isref?

attributed by Gelbaum and Olmsted [1964] to Hilbert.ref?
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Section 2.3

Surface integrals

2.3.1 Gaussian regions

2.3.2 Integration on hypersurfaces in Rn

2.3.3 Stokes’ Theorem for hypersurfaces
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Section 2.4

Stokes’ Theorem
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Chapter 3

Complex analysis

The preceding chapter dealt with (possibly C-valued) functions of a real vari-
able. As we shall see, these sorts of functions naturally arise in our setup as
functions of a real time or frequency variable. It is not so evident why one would
be interested in studying functions of a complex variable. Indeed, the reasons for
the appearance of such functions in the theory of signals and systems is somewhat
deep, and, at least initially, a little mysterious. Nonetheless, an understanding of
at least basic ideas concerning complex function theory will arise in any somewhat
complete treatment of signals and systems. And, as we shall see in Chapter III-7,
certain elements of not-so-basic complex function theory arise as well. In this
chapter we shall provide a self-contained treatment of those ideas from the basic
theory of complex functions that will be normally found in a good first course on
the subject. Of course, we cannot be as thorough as would be a text for such a
course, and thus the reader is invited to look into other suitable books and texts.
Good textbooks include [Gamelin 2001, Lang 2003, Needham 1997]. The book by
Needham is particularly interesting, treating complex analysis from a geometric
perspective. Classic references on complex analysis include [Cartan 1963, Knopp
1996, Titchmarsh 1939]. An excellent introduction to those topics in complex vari-
able theory that are useful in control may be found, complete with all details, in
Appendix A of [Seron, Braslavsky, and Goodwin 1997].
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Section 3.1

The geometry of the complex plane

In Chapter I-2 we have already used the notion of a complex number, and so we
assume the reader has had some experience at least with arithmetic. In this section
we discuss in a systematic way some of the properties of the complex plane that
we will use in our treatment of complex function theory.

3.1.1 Complex arithmetic and other simple things

The complex plane C is the set of ordered pairs (x, y) of complex numbers. We
will follow the usual convention of writing (x, y) = x+ iy where x, y ∈ R and where
i =
√
−1. Note that we do not use the symbol j for

√
−1. Only electrical engineers,

and those under their influence, use this notation. Complex numbers of the form
x + i0 for x ∈ R are real and complex numbers of the form z = 0 + iy for y ∈ R are
called imaginary. For z = x + iy, x, y ∈ R, we denote Re(z) = x and Im(z) = y as
the real part and imaginary part, respectively, of z. The complex number 0 + i0
will often simply be denoted 0. We will assume the reader knows how to add and
multiply complex numbers:

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)
(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x2y1 + x1y2).

We note that this notion of complex arithmetic satisfies the same properties as that
for real arithmetic, allowing us to be comfortable with these operations. That is to
say, complex arithmetic satisfies
1. z1(z2z3) = (z1z2)z3,
2. z1z2 = z2z1,
3. z1(z2 + z3) = z1z2 + z1z3.
Furthermore, z ∈ C \ {0} then it is possible to define z−1

∈ C as the unique complex
number satisfying the equation (z−1)z = 1. Explicitly, if z = x + iy then

z−1 =
x

x2 + y2 − i
y

x2 + y2 .

The complex conjugate of z = x + iy is the complex number z̄ = x − iy. By
|x + iy| =

√
x2 + y2 we denote the modulus of z. If z is real, then |z| is the usual

absolute value. By Arg(x + iy) = atan2(x, y) we denote the argument of z. Here
atan2: R2

→ (−π, π] is the intelligent arctangent that knows which quadrant one
is in. This is illustrated in Figure 3.1.
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Im

∡z ∈ ]− π
2 ,−π] ∡z ∈ ]0,−π

2 ]

∡z ∈ ]0, π
2 ]∡z ∈ ]π2 , π]

Figure 3.1 The values for the argument of a complex number

It is often useful to represent a complex number z = x + iy in an alternate form.
To do so we define r = |z| and θ = Arg(z), then write

z = r(cosθ + i sinθ).

As we shall see in Section 3.2.4, an alternate representation for cosθ+ i sinθ is eiθ.
In this case, the expression z = reiθ is called the polar representation for z. One of
the reasons why the polar representation is so useful is that complex multiplication
becomes quite simple: (r1eiθ1)(r2eiθ2) = r1r2ei(θ1+θ2). Note that when adding the
angles θ1 + θ2 one may need to add or subtract 2π to ensure that the result lies in
(−π, π]. For instance, if θ1 =

π
2 and θ2 = π then we take θ1 + θ2 = −

π
2 (= 3π

2 − 2π).

3.1.1 Proposition (Existence of roots of unity)

3.1.2 Curves in C

To give all the desired properties of subsets ofC, we need some simple concepts
concerning curves in C. Furthermore, the notion of a curve will play an important
rôle in Cauchy’s Theorem, which is one of the most powerful results in complex
analysis.

3.1.2 Definition
(i) A curve is a map γ : I → C from an interval I ⊆ R that is continuous. That is,

the real and imaginary parts of γ are continuous functions.
(ii) A continuous curve γ : [a, b]→ C is closed if γ(a) = γ(b).
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(iii) A line in C is a continuous curve γ : I→ C of the form γ(t) = (x0 + αt, y0 + βt)
for some α, β, x0, y0 ∈ R.

(iv) A polygonal path is a continuous curve γ : I→ Cwith the property that there
exists a finite collection I1, . . . , Ik of subintervals of I with the properties

(a) Ii ∩ I j = ∅ for i, j ∈ {1, . . . , k},
(b) I = ∪k

j=1I j,

(c) γ|I j is a line for each j ∈ {1, . . . , k}.

(v) A continuous curve γ : I→ C is simple if it is injective.
(vi) A Jordan curve is a continuous simple curve.
(vii) The trace of a curve γ : I→ C is the subset image(γ) of C.
(viii) Two curves γ1, γ2 : [a, b]→ C are homotopic if there exists a continuous map

Γ : [0, 1] × [a, b] → C with the properties that Γ(0, t) = γ1(t) and Γ(1, t) = γ2(t)
for all t ∈ [a, b]. The map Γ is called a homotopy map from γ1 to γ2. •

Note that if one has a continuous curve γ : [a, b] → C, one can reparameterise
this to give a curve defined on [0, 1] by

γ̃(t) = γ
( t − a
b − a

)
.

Thus any curve defined on a compact interval can be thought of as being defined
on [0, 1]. The trace of the curve remains the same, and all that changes is the speed
at which one traverses the curve. The various sorts of curves are illustrated in
Figure 3.2.

Figure 3.2 Classes of curves inC: closed (top left), polygonal (top
right), Jordan (bottom left), and homotopic curves (bottom
right)
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An important notion associated with a closed curve γ : [a, b] → C and a point
z0 in the complex plane is that of winding number. Suppose that z0 < image(γ). To
define the winding number we let θ : [a, b]→ R be a continuous function with the
property that γ(t) = |γ(t) − z0|eiθ(t). Note that this may require allowing θ to take
values outside (−π, π] in order to ensure continuity. We then define the winding
number of γ with respect to z0 to be W(γ, z0) = 1

2π (θ(b) − θ(a)). Note that W(γ, z0)
will be an integer since γ(a) = γ(b), which implies that θ(b) − θ(a) = 2πn for some
n ∈ Z. Intuitively, W(γ, z0) is the number of times the closed curve γ encircles z0.
A useful means of computing the winding number in examples is the following
procedure.

Computation of winding number Let γ : [a, b] → C be a closed curve and let
z0 ∈ C \ image(γ).
1. Construct a ray ρ emanating from z0 going to infinity, and assume that ρ inter-

sects image(γ) a finite number of times. Often one can alter ρ to ensure that this
is the case.

2. Initialise W(γ, z0) = 0.
3. For each counterclockwise intersection of image(γ) with ρ, add 1 to W(γ, z0).
4. For each clockwise intersection of image(γ) with ρ, subtract 1 from W(γ, z0).
5. For intersections of image(γ) with ρ where image(γ) locally lies on the same

side of ρ, add 0 to W(γ, z0). •

The reader can apply this procedure in some examples in Exercise 3.5.1.
The following observation concerning the winding number is useful.

3.1.3 Theorem Let γ : [a, b] → C be a closed curve, and let ξ : I → C be a curve whose trace
does not intersect that of γ. Then t 7→W(γ, ξ(t)) is constant.

Proof We shall first show that the proposition may be reduced to the case of a closed
polygonal path. To do so requires some technical results. First we note that γ may
be reparameterised so as to be defined on [0, 2π]. Then we note that any continuous
closed curve in C defined on [0, 2π] can be regarded as a continuous map from

S1 = {(x, y) ∈ R2
| x2 + y2 = 1}

into C. For the remainder of the proof we therefore consider a continuous map
γ : S1

→ C.
First we show that compact sets are always separated by a strictly positive distance.

To make sense of this, given sets S1,S2 ⊆ C let us define

d(S1,S2) = inf{|z1 − z2| | z1 ∈ S1, z2 ∈ S2}

to be the distance between the sets S1 and S2.
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1 Lemma If K1,K2 ⊆ C are disjoint compact sets then d(K1,K2) > 0.

Proof Let us show that if S ⊆ C then z 7→ d({z},S) is continuous. In fact it holds that
|d({z1},S) − d({z2},S)| ≤ d({z1}, {z2}) for z1, z2 ∈ C, and from this the result follows. Let
ϵ ∈ R>0 and choose s ∈ S so that d({z1},A) ≤ d({z1}, {s}) ≤ d({z1},A) + ϵ. By definition
we have d({z2},S) ≤ d({z2}, {s}) and by the triangle inequality we have d({z2}, {s}) ≤
d({z2}, {z1}) + d({z1}, {s}). Therefore

d({z2},S) ≤ d({z2}, {z1}) + d({z1},S) + ϵ
=⇒ d({z2},S) − d({z1},S) ≤ d({z2}, {z1}) + ϵ.

Since this is true for every ϵR>0 we infer that d({z2},S) − d({z1},S) ≤ d({z2}, {z1}). Sym-
metry of d gives |d({z1},S) − d({z2},S)| ≤ d({z1}, {z2}), so showing that z 7→ d({z},S) is
continuous.

In particular, z 7→ d({z},K1) is a bounded continuous function on K2, and therefore
attains its minimum on K2. This minimum is nonzero since K1 and K2 are disjoint. ▼ This seems to not care

if K1 is compact

We now construct a closed polygonal path γ′ : S1
→ C with the property that for

each t ∈ [0, 1] we have W(γ′, ξ(t)) = W(γ, ξ(t)). Let ϵ = d(image(γ), image(ξ)), noting
that ϵ1 ∈ R>0 by Lemma 1. The let N ∈ Z>0 have the property that if S1 is divided into N
arcs of equal length, the image of each arc under γ lies in a disk of radius ϵ

2 , this being
possible since γ is uniformly continuous by the generalisation of the Heine–Cantor
Theorem to higher dimensions. Let A1, . . . ,AN ⊆ S1 denote the equal length arcs on
S1. If we replace γ(S j) with a line connected the images of the endpoints of S j under
γ, this defines a continuous closed polygonal path γ′ with N edges, and it is clear that
for each t ∈ [0, 1] we have W(γ′, ξ(t)) =W(γ, ξ(t)).

We now prove the theorem for the polygonal path γ′. To do so, we refer ahead to
the formula

W(γ′, ξ(t)) =
1

2πi

∫
image(γ′)

1
z − ξ(t)

dz

that we give in Proposition 3.6.2. This formula is valid as long as γ′ is piecewise
differentiable, as it is when it is polygonal. Furthermore, in this case we see that the
integrand is bounded uniformly in t since image(γ′) and image(ξ) are disjoint and
compact. Therefore, we can infer continuity of the integral from continuity of the
integrand from, for example, Theorem III-2.9.16. Since W(γ′, ξ(t)) is integer-valued
and continuous, it must be constant. ■

3.1.3 Classification of subsets of C

Let us make a few definitions concerning the nature of subsets of C. First we
denote by B(r, z) the open disk of radius r centered at z:

B(r, z) = {z′ ∈ C | |z′ − z| < r}.

The closed disk of radius r centered at z is denoted:

B(r, z) = {z′ ∈ C | |z′ − z| ≤ r}.

Now we have the following.
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3.1.4 Definition (Subsets of C) Let S ⊆ C.
(i) S is open if for any z ∈ S there exists an ϵR>0 so that B(ϵ, z) ⊆ S.
(ii) S is closed if its complement, C \ S, is open.
(iii) S is bounded if there exists R ∈ R>0 so that S ⊆ B(R, 0).
(iv) S is compact if it is closed and bounded.
(v) A limit point for S is a point z ∈ C so that for every ϵ ∈ R>0 the sets B(ϵ, z)∩ S

and B(ϵ, z) ∩ (C \ S) are both nonempty.
(vi) The boundary of S is the set of all limit points for S and is denoted bd(S).
(vii) The closure of S is S ∪ bd(S) and is denoted cl(S).
(viii) The interior of S is cl(S) \ bd(S) and is denoted int(S).
(ix) An open set S ⊆ C is connected if given z1, z2 ∈ S there exists a continuous

curve γ : [0, 1]→ S with the property that γ(0) = z1 and γ(1) = z2.
(x) An open set S that is not connected is disconnected.
(xi) S is simply connected if for every closed curve γ : [0, 1] → S there exists a

point z0 ∈ S and a homotopy map Γ : [0, 1] × [0, 1] → S from γ to the trivial
curve t 7→ z0.

(xii) An open set S that is not simply connected is multiply connected.
(xiii) S is a domain if it is open and connected.
(xiv) S is a region if it is a domain together with a possibly empty subset of its

boundary. •

A fundamental result is the following seemingly obvious statement. The proof
we give here follows Tverberg [1980]. The proof is quite elementary (meaning it
relies on no big machinery), but is nontrivial. The reader interested in understand-
ing the proof would be well-served to make sketches to go along with the various
parts of the proof to see why they are true.

3.1.5 Theorem (Jordan Curve Theorem) If γ : [0, 1] → C is a closed continuous Jordan
curve then there exists connected open sets Sin, Sout ⊆ C with the following properties:

(i) Sin is bounded;
(ii) Sout is not bounded;
(iii) bd(Sin) and bd(Sout) are both given by the trace of γ.

Furthermore,
(iv) if z0 ∈ Sin then |W(γ, z0)| = 1 and
(v) if z0 ∈ Sout then W(γ, z0) = 0.

Proof As in the proof of Theorem 3.1.3, we suppose that γ is defined on S1. We first
show that the theorem holds for Jordan polygonal paths, called Jordan polygons for
short.
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1 Lemma If γ : S1
→ C is a Jordan polygon then the conclusions of the theorem hold for γ.

Proof The trace of γ is a closed nonintersecting polygon. Let us denote by E1, . . . ,En
the edges of the polygon and v1, . . . , vn the vertices. We assume that the edges are
numbered so that E j and E j+1 are adjacent, j ∈ {1, . . . ,n} if we take En+1 = E1. We also
assume that the vertices are numbered so that v j is the common endpoint for E j and
E j+1, j ∈ {1, . . . ,n}. We let δ be the shortest distance between two nonadjacent edges:

δ = inf{d(E j,Ek) | E j and Ek are not adjacent}.

By Lemma 1 we have δ ∈ R>0. Now fix j ∈ {1, . . . ,n}. Place at a point in z ∈ E j a disk
B( δ2 , z) of radius δ

2 . It is clear that B( δ2 , z) will intersect at most two edges. One may
easily see that image(γ) separates B( δ2 , z) into two connected components, say U′z and
U′′z . The edge E j can be covered by a finite number B( δ2 , z1), . . . ,B( δ2 , zk) of such disks,
and they may be chosen so that they overlap, and so that the components U′z1

, . . . ,U′zk

overlap and so that the components U′′z1
, . . . ,U′′zk

overlap. Note that∪k
j=1U′z j

and∪k
j=1U′′z j

are connected. One can do this for all edges, so producing (at most) two connected sets
U′ and U′′ (it is possible that U′ = U′′). We now claim that every point in C \ image(γ)
can be joined to U′ or U′′ be a continuous curve. To see this, let z ∈ C \ image(γ) and
draw a line from z that intersects image(γ). Let z0 ∈ image(γ) be the first point this line
encounters. Prior to intersecting image(γ) this line will pass through at least one of the
components U′ or U′′. Thus we have shown that C \ image(γ) consists of at most two
connected components.

Now we show that C \ image(γ) has at least two connected components. We note
that one may rotate a Jordan polygon in the complex plane, and that the result will
be another Jordan polygon, and that if the theorem holds for a Jordan polygon, it also
holds for any rotation of that Jordan polygon. Therefore, without loss of generality (by
a suitable rotation, if necessary) we may suppose that image(γ) has the property that
the real parts of all vertices are distinct. We then define a map σ : C\ image(γ)→ {−1, 1}
as follows:
1. draw a vertical ray ρz starting at z and going upwards;
2. if ρz intersects image(γ) an even number of times, define σ(z) = 1;
3. if ρz intersects image(γ) an odd number of times, define σ(z) = −1;
4. if ρz passes through a vertex v j, j ∈ {1, . . . ,n}, of image(γ), this does not count as

an intersection if v j−1 and v j+1 lie on the same side of ρz.
We claim that for each z ∈ C \ image(γ) there exists ϵ ∈ R>0 to that if σ(z′) = σ(z)

provided that |z− z′| < ϵ. This is evident if Re(z) , Re(v j), j ∈ {1, . . . ,n} then σ(z) = σ(z′)
for z′ sufficiently near z. If Re(z) = Re(v j) for some j ∈ {1, . . . ,n}, then one of the
following two circumstances can arise.
1. Im(z) > Im(v j): In this case σ(z) = σ(z′) for z′ sufficiently near z.
2. Re(v j−1) < Re(z) < Re(v j+1): In this case σ(z) = σ(z′) for z′ sufficiently near z.
3. Re(v j+1) < Re(z) < Re(v j−1): In this case σ(z) = σ(z′) for z′ sufficiently near z.
4. Im(z) < Im(v j), and v j−1 and v j+1 lie on the same side of v: In this case the number

of intersections of ρz′ with image(γ) will be the same as that for ρz, or will be two
great than that for ρz.
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In both case σ(z′) = σ(z) provided that z′ is sufficiently close to z. This shows that
σ−1(1) and σ−1(−1) are both open.

We also claim that σ−1(1) and σ−1(−1) are both nonempty. It is clear that σ−1(1) is
nonempty since there are points in C through which the vertical line will not intersect
image(γ) (since image(γ) is compact). Now let ymax be the largest imaginary value
attained by a point on image(γ). If there is a single vertex with ymax as imaginary part
then it is easy to see that there is a point z so that ρz intersects image(γ) only once.
This is also easily seen (even more so) when there are multiple vertices with ymax as
imaginary part.

Finally, we show that any continuous curve in ξ : [0, 1] → C \ image(γ) with
σ(ξ(0)) = 1 has the property that σ(ξ(1)) = 1. Indeed, suppose that there exists t ∈ [0, 1]
for which σ(ξ(t)) = −1, and let t0 be the infimum over all such points in [0, 1]. Since
σ−1(−1) is open, this means that there is a neighbourhood U of ξ(t0) where σ(z) = −1 for
z ∈ U. By continuity of γ this means that there is a point t′0 < t0 for which σ(ξ(t′0)) = −1,
and this contradicts the definition of t0.

Thus we have shown that there are at least two disjoint connected sets σ−1(1) and
σ−1(−1) in C \ image(γ). Combined with the first part of the proof, this gives the
sets Sin = σ−1(−1) and Sout = σ−1(1) in the statement of the theorem (it is clear by
construction in the first part of the proof that Sin and Sout have image(γ) as boundary).

The assertions concerning the winding numbers are demonstrated as follows. We
first claim that W(γ, z) = 0 for z ∈ Sout. This follows from Theorem 3.1.3 along with
the fact that the winding number is zero for some point in Sout. To see this, note
that if we choose a point z0 sufficiently far away from image(γ) we can be sure that
the continuous function θ defined by γ(t) = |γ(t) − z0|eiθ(t) has as small an image as
desired. By definition of winding number, if image(θ) is contained in an interval with
length smaller than 2π, the winding number is zero. To see that W(γ, z0) = ±1 for
z0 ∈ Sin, again by Theorem 3.1.3 it suffices to show that for some z0 ∈ Sin. We choose a
point z0 by asking that it be possible to extend a ray ρ from z0 to infinity that intersects
image(γ) only once. That this is possible was argued above when showing that σ−1(−1)
is nonempty. We claim that W(γ, z0) = 1 if γ intersects ρ going counterclockwise, and
W(γ, z0) = −1 otherwise. Let us deal with just the counterclockwise case, the clockwise
following in the same manner. To see that our assertion holds, consider the ray ρ−
emanating from z0 and going to infinity in the direction opposite to that of ρ. Consider
the numberα(γ, z0) defined as follows. For a crossing ofρ− byγ in the counterclockwise
direction, addπ, and for a crossing ofρ− byγ in the counterclockwise direction, subtract
π. The winding number is then readily deduced to be 1

2π (α(γ, z0) + π). Note that by
definition of z0 and ρ and since γ is closed, for every clockwise intersection of ρ by
γ, there must be one counterclockwise intersection (the polygon must close at z0).
Furthermore, there cannot be more than one counterclockwise intersection that is not
matched with a clockwise intersection (this would result in the curve not closing).
Finally, there must be at least one counterclockwise intersection in order that the curve
close. This then gives W(γ, z0) = 1, as claimed. ▼

The next step is to approximate a Jordan curve with a Jordan polygon. We first
establish the continuity of the “inverse” of γ.need Heine-Borel for Rn

2 Lemma If γ : S1
→ C is continuous, then for every ϵ ∈ R>0 there exists δ ∈ R>0 so that if
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|γ(x1,y1) − γ(x2,y2)| < δ then ∥(x1,y1) − (x2,y2)∥ < ϵ.

Proof We shall show that the image of every closed set in S1 is closed in C. Note
that a closed subset S ⊆ S1 is compact since it is clearly bounded. Now let (Ua)a∈A
be a family of open sets covering image(S). The sets (γ−1(Ua))a∈A cover S. Since S
is compact there is a finite collection γ−1(Ua1), . . . , γ−1(Uak) of these subsets that cover
S. Note then that Ua1 , . . . ,Uak then cover γ(S) since γ is a bijection. This shows
that image(S) is compact. We claim that this implies the closedness of image(S), or
equivalently, openness ofC\image(S). Let z0 ∈ C\image(S). For z ∈ image(S) let Uz be a
neighbourhood of z0 and Vz be a neighbourhood of z with the property that Uz∩Vz = ∅.
Note that image(S) ⊆ ∪z∈image(S)Vz. Therefore, since image(S) is compact, there exists
a finite collection z1, . . . , zk of points in image(S) so that image(S) ⊆ ∪k

j=1Vz j . Note

that the neighbourhood ∩k
j=1Uzk of z0 does not intersect image(S), thus showing that

C\image(S) is open, so image(S) is closed. The result now follows by the generalisation
of Theorem I-3.1.3 to functions between Euclidean spaces of dimension greater than
one (such a generalisation is performed by a mere change of notation in the proof of
Theorem I-3.1.3). ▼

We can now show that every Jordan curve can be approximated arbitrarily well
by a Jordan polygon.

3 Lemma Let γ : S1
→ C be a Jordan curve and let ϵ ∈ R>0. Then there exists a Jordan polygon

γ′ : S1
→ C with the property that |γ(x,y) − γ′(x,y)| < ϵ for each (x,y) ∈ S1.

Proof Let ϵ ∈ R>0 and choose δ1 ∈ R>0 so that if ∥(x1, y1)−(x2, y2)∥ < δ1 gives |γ(x1, y1)−
γ(x2, y2)| < ϵ. This is possible since γ is uniformly continuous by the Heine–Cantor
Theorem. By Lemma 2 let δ2 ∈ R>0 be chosen so that if |γ(x1, y1) − γ(x2, y2)| < δ2 then
∥(x1, y1) − (x2, y2)∥ < min{δ1,

√
3}. The define δ = min{ ϵ2 , δ2}.

Now place on C a grid of squares whose sides have length δ. Since image(γ) is
compact it will intersect only a finite number of these squares, and denote these by
S1, . . . ,Sk. By definition of δ it holds that γ−1(S j) is contained in an arc on S1 of length
less than 2π

3 (this is where the
√

3 comes in). Let A j denote the minimal arc containing
γ−1(S j). Let γ0 = γ and define γ1(t) = γ0(t) for t < A1, and define γ1 on A1 so that its
image is a line, and so that γ1 is continuous. Note that γ−1

1 (S j) ⊆ γ−1
1 (S j) for j ≥ 2. If

γ−1
1 (S2) = ∅ then define γ2 = γ1. Otherwise, repeat the process above to arrive at γ2.

Repeating this process we arrive at a Jordan polygon γk.
It remains to show that γk gives the desired approximation of γ. Let (x, y) ∈ S1

have the property that γ(x, y) , γk(x, y). Then there exists some j ∈ {1, . . . , k} so
that γk(x, y) = γ j(x, y) , γ j−1(x, y). Our construction ensures that (x, y) lies in an
arc A j on S1 whose endpoints (x0, y0) and (x1, y1) satisfy γ j(x0, y0) = γ(x1, y1) and
γ j(x1, y1) = γ(x1, y1). Therefore,

|γ(x, y) − γk(x, y)| = |γ(x, y) − γ(x0, y0) + γ j(x0, y0) − γ j(x, y)|
≤ |γ(x, y) − γ(x0, y0)| + δ
≤ |γ(x, y) − γ(x0, y0)| + ϵ

2 .

Since ∥(x, y)− (x0, y0)∥ ≤ ∥(x1, y1)− (x0, y0)∥ and since |γ(x1, y1)−γ(x0, y0)| < ϵ
2 , the result

follows. ▼
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The idea now if somewhat clear. Given a Jordan curve γ : S1
→ C, one wishes to

find a sequence (γ j) j∈Z>0 of Jordan polygons converging to γ (in the sense of Lemma 3),
and infer the theorem since it holds for each of the approximating polygons. However,
the problem that arises is that the limit of Jordan polygons is not necessarily a Jordan
curve. Therefore, one has to ensure that if a sequence of Jordan polygons converge
to a Jordan curve, then the fact that the theorem holds for each of the approximating
polygons implies that the theorem holds for the limit Jordan curve. The following two
lemmas have this as their objective.

The first lemma shows the existence of points “far away” from one another in S1

that map to points “far away” from one another in Sin.

4 Lemma Let γ : S1
→ C be a Jordan polygon with Sin and Sout the two connected components

of C \ image(γ) as in Lemma 1. Then there is a disk D ⊆ Sin with the property that there are
points z1, z2 ∈ bd(D) for which ∥γ−1(z1) − γ−1(z2)∥ ≥

√
3.

Proof For a disk D ⊆ Sin let us define

ρ(D) = sup{∥γ−1(z1) − γ−1(z2)∥ | z1, z2 ∈ bd(D)}.

Thought of as a function of the centre and radius of D, ρ is a continuous function
by Lemma 2, and since Sin is bounded, ρ is a bounded function of radius and centre.
Therefore, there exists a disk D for which ρ(D) achieves its maximum. Let z1, z2 ∈ bd(D)
be those points for which ρ(D) = |z1 − z2|, and suppose that ∥γ−1(z1) − γ−1(z2)∥ <

√
3.

Let A be the longest arc on S1 joining γ−1(z1) and γ−1(z2), noting that A subtends and
angle greater than 4π

3 .
We first claim that there are no points in int(A) whose image under γ intersect D.

Indeed, suppose there were such a point (x, y). One easily sees that either ∥γ−1(z1) −
(x, y)∥ or ∥γ−1(z2) − (x, y)∥ must exceed ∥γ−1(z1) − γ−1(z2)∥, thereby contradicting the
definition of z1 and z2.

Now let v1, . . . , vk ∈ C be the vertices of image(γ) that are images of points in A
under γ. Suppose that these are ordered so that they are met as one traverses A from
γ−1(z1) to γ−1(z2). We have four cases to consider.
1. First suppose that v1 , z1 and vk , z2. We claim that there exists a disk D′ ⊆ Sin

whose boundary intersects image(γ) at one point in the edge between z1 and v1
and at one point in the edge between vk and z2. This follows since bd(D) is tangent
to image(γ) at z1 and z2, and at no other place along γ(A). The existence of a
disk D′ that is tangent to image(γ) at points z′1 and z′2 near z1 and z2, respectively,
follows from continuity of γ. Continuity also ensures that D′ does not intersect
image(γ) except at z′1 and z′2, thus ensuring that D′ ⊆ Sin. Now we note that
∥γ−1(z′1)− γ−1(z′2)∥ > ∥γ−1(z1)− γ−1(z2)∥, thus contradicting the definition of z1 and
z2.

2. Suppose that v1 , v1 and that vk = z2. Here one argues as in the previous case the
existence of a disk D′ whose boundary passes through z2 and which is tangent to
image(γ) at a point near z1 along the edge between z1 and v1. One similarly arrives
at a contradiction of z1 and z2.

3. Suppose that v1 = v1 and that vk , z2. This case produces a contradiction in a
manner similar to the previous case.
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4. Finally, suppose that v1 = z1 and vk = z2. In this case consider a family of disksD
with the following properties:

1. if D′ ∈ D then z1, z2 ∈ bd(D′);
2. if D′ ∈ D there exists continuous curves c : [0, 1] → Sin and ρ : [0, 1] → R+ for
c(0) is the centre of D, c(1) is the centre of D′, and the circle of radius ρ(t) and centre
c(t) is in Sin for t ∈ [0, 1].

One can see that there will be a curve of circles inD with the property that either
there is a circle in the curve whose boundary meets a point in γ(int(A)) or that there
is a circle in the curve that becomes tangent to the edges between z1 and v1 and vk
and z2. In the former case we immediately have a contradiction of the definition of
z1 and z2. In the latter case one can infer the existence of a disk tangent to image(γ)
at points close to z1 and z2, and that is contained in Sin. One then argues as in the
first case that this again contradicts the definition of z1 and z2. ▼

For the next result, it is convenient to introduce some notation. We are still
considering a Jordan polygon γ : S1

→ C. Suppose that z1 and z2 both lie in S ∈
{Sin,Sout}. If ℓ is a line segment in S that intersects image(γ) only at its endpoints, then
this defines two Jordan polygons having ℓ as their common boundary. Therefore ℓ
divides S into two connected components by Lemma 1. Let L(S) denote the collection
of all segments ℓ such as described above whose length is less than 2.

5 Lemma Withγ, z1, z2, and S as above, suppose that d(image(γ), {z1, z2}) ≥ 1 and that for each
ℓ ∈ L(S), z1 and z2 are in the same connected component of S defined by ℓ. Then there exists a
continuous curve ξ : [0, 1]→ S connecting z1 and z2 and so that d(image(γ), image(ξ)) ≥ 1.

Proof Note that if z′1 can be connected to z1 with a curve ξ′ : [0, 1] → S for which
d(image(γ), image(ξ′)) ≥ 1, then the hypotheses of the lemma hold if z1 is replaced
with z′1 in the statement of the lemma. To see this let ℓ ∈ L(S) and then note that ℓ
does not intersect image(ξ′), since if it did this would contradict the assumption that
d(image(γ), image(ξ′)) ≥ 1. Therefore z1 and z′1 are in the same connected component
of S defined by ℓ. Therefore z′1 and z2 are also in the same connected component of
S defined by ℓ, and this is our claim. The claim ensures that we can without loss
of generality assume that d({z1}, image(γ)) = d({z2}, image(γ)) = 1, since if this is not
the case we can move z1 and z2 via continuous curves to ensure that it is, without
changing the outcome of the lemma. Since image(γ) is compact there are points
(x1, y1), (x2, y2) ∈ S1 with the property that ∥γ(x1, y1) − z1∥ = 1 and ∥γ(x2, y2) − z2∥ = 1.

Let D0 be the unit disk with centre z1 and touching image(γ) at γ(x1, y1). For
t ∈ [0, 1] let Dt be the unit disk obtained by continuously rolling D0 along image(γ)
until D1 touches image(γ) at γ(x2, y2). Let ct ∈ C denote the centre of Dt.

We first claim that Dt ⊆ S for each t ∈ [0, 1]. If not, then there is t0 ∈ [0, 1] so that
there is a line segment across Dt0 with points in image(γ) as endpoints. Let us denote
these endpoints as z′1 and z′2. This line segment ℓ will necessarily have length less than
2, and so will partition S into two connected components, say S1 and S2. Suppose that
ct0 ∈ S1. As we argued at the beginning of the proof, this shows that z2 ∈ S1 (take
z′1 = ct0 in the first part of the proof). Also, γ(x2, y2) ∈ bd(S2) since we are assuming
that ct , z2 for every t ∈ [0, t0]. Let D′ be the unit disk with centre z2. The line segment
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from z2 to γ(x2, y2) must therefore intersect ℓ as z2 and γ(x2, y2) lie on different sides of
ℓ. Thus we arrive at the following argument.
1. We have two unit disks Dt and D′ with centres ct and z2 on the same side of the

line segment ℓ.
2. The line segment ℓ runs across Dt.
3. D′ cannot contain the endpoints of ℓ since this would violate the condition D′ ⊆ S.
4. The line from z2 to the point γ(x2, y2) ∈ bd(D′) intersects ℓ.
5. The point γ(x2, y2) ∈ bd(D′) lies on the opposite side of ℓ than z2.
6. This means that bd(D′) intersects ℓ in two places.
7. The last three statements are contradictory.
Thus we have shown that Dt ⊆ S for each t ∈ [0, 1].

The preceding argument shows that the point γ(x2, y2) must lie on the boundary of
some disk D1 constructed as above. It does not necessarily follow that D1 = D′. Thus
we need to show that z2 can be reached from c1 by a curve that remains a distance at
least 1 from image(γ). If image(γ) is tangent to D1 at γ(x2, y2) then we have D′ = D1.
However, if γ(x2, y2) is a vertex of image(γ) then we have to do some extra work to
see that D1 can be connected to D′ as desired. In this case a problem arises when one
cannot “pivot” D1 around γ(x2, y2) to D′. If this is the case then there exists a unit disk
D′′ with γ(x2, y2) as a point on its boundary, and with a line segment ℓ′ of length less
than two running across it from γ(x2, y2) to a point z′′1 ∈ image(γ). If c′′ is the centre
of D′′ then the points c′′ and z2 lie on opposite sides of the line segment ℓ′. However,
this is in contradiction with the argument in the first part of the lemma. ▼

Now we proceed more or less directly with the proof, using the above technical
results.

6 Lemma If γ : S1
→ C is a Jordan curve then C \ image(γ) consists of at least two connected

components, one of which is bounded, another of which is unbounded.

Proof That there is one connected component that is unbounded is clear since
image(γ) is compact. We therefore show the existence of a bounded component.
Let D0 ⊆ C be a closed disk containing image(γ) in its interior. Let (γ j) j∈Z>0 be a
sequence of Jordan polygons converging to γ. Thus

lim
j→∞

sup{|γ(x, y) − γ j(x, y)| | (x, y) ∈ S1
} = 0.

By Lemma 4 there is a sequence of disks D j whose boundaries contain points γ(x1, j, y1, j)
and γ(x2, j, y2, j) where ∥(x1, j, y1, j) − (x2, j, y2, j)∥ ≥

√
3. Let z j be the centre of the disk D j

for j ∈ Z>0. Since the sequence (γ j) j∈Z>0 converges to γ we may choose a subsequence
(γ jk)k∈Z>0 with the property that image(γ jk) ⊆ D0 for k ∈ Z>0. Then, since the sequence
{z jk} is bounded, by the Bolzano–Weierstrass Theorem we may choose a subsequence
(γ jkm

)m∈Z>0 for which (z jkm
)m∈Z>0 converges. Let us relabel the sequence (γ jkm

)m∈Z>0 as
(γ j) j∈Z>0 .

Now let ϵ ∈ R>0 be chosen so that if ∥(x1, y1) − (x2, y2)∥ ≥
√

3 then |γ(x1, y1) −
γ(x2, y2)| ≥ ϵ. Thus |γ(x1, j, y1, j) − γ(x2, j, y2, j)| ≥ ϵ, from which we deduce that there
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exists N ∈ Z>0 so that |γ j(x1, j, y1, j) − γ j(x2, j, y2, j)| > ϵ
2 for j ≥ N. This implies that the

disk D j has diameter greater than ϵ
2 , and therefore that d({z j}, image(γ j)) > ϵ

4 , provided
that j ≥ N. Thus we have a sequence of disks (D j) j∈Z>0 of diameter greater than ϵ

2
whose centres (z j) j∈Z>0 converge to a point z. Also, we note that int(D j) lies in the
bounded connected component of C \ image(γ j), and that (γ j) j∈Z>0 . Thus the points z j,
j ≥ N, and z all lie in the same connected component of C \ image(γ j) and in the same
connected component of C \ image(γ).

Next, suppose that the point z constructed above can be connected to a point
z0 lying outside the disk D0 by a continuous curve ξ : [0, 1] → C \ image(γ). Let
δ = d(image(ξ), image(γ)) and let N ∈ Z>0 have the property that

sup{|γ(x, y) − γ j(x, y)| | (x, y) ∈ S1
} < δ

2 , j ≥ N.

It follows that d(image(ξ), image(γ j)) > δ
2 for j ≥ N. This implies that z and z j lie in

the unbounded connected component of C \ (γ j) for all sufficiently large j, and this is
a contradiction. ▼

7 Lemma If γ : S1
→ C is a Jordan curve then C \ image(γ) consists of at most two connected

components.

Proof Suppose that C \ image(γ) possess three distinct connected components S1, s2,
and S3, and let za ∈ Sa, a ∈ {1, 2, 3}. Denote ϵ = d({z1, z2, z3}, image(γ)). Let (γ j) j∈Z>0 be
a sequence of Jordan polygons converging to γ as in the proof of Lemma 6. Choose
N ∈ Z>0 so that d({z1, z2, z3}, image(γ j)) ≥ ϵ

2 for j ≥ N. Since C \ image(γ j) consists
of two connected components, for each j at least two of z1, z2, and z3 will lie in the
same connected component of C \ image(γ). We may choose a subsequence (γ jk)k∈Z>0

with the property that for each k ∈ Z>0 the points z1 and z2 lie in the same connected
component of C \ image(γ jk). Let us reindex this subsequence to be (γ j) j∈Z>0 , and let
us denote S j as the connected component of C \ image(γ j) in which z1 and z2 lie.

We next show that for δ ∈ (0, ϵ) there are at most finitely many j ∈ Z>0 for
which there exists a continuous curve ξ j : [0, 1] → C \ image(γ j) connecting z1 to
z2 with the property that d(image(ξ j), image(γ j)) ≥ δ. Indeed, if there is an infinite
sequence ( jk)k∈Z>0 of such j’s, then this would mean that for sufficiently large j we
have d(image(ξ jk), image(γ)) > δ

2 , which then gives a continuous curve in C \ image(γ)
connected z1 and z2. This contradicts our assumption that z1 and z2 lie in distinct
connected components of C \ image(γ).

Let δk =
ϵ
2k , k ∈ Z>0. Our preceding argument ensures the existence of mk ∈ Z>0

for which there is no continuous curve ξmk : [0, 1]→ C \ image(γmk) connecting z1 to z2
with the property that d(image(ξmk), image(γmk)) ≥ δ. By a scaled version of Lemma 5
this ensures that there is a line segment ℓk with the following properties:
1. the interior points of the line int(ℓk) lie in Smk ;
2. Smk has length less that 2δk;
3. the endpoints of ℓk touch image(γmk);
4. z1 and z2 lie in different connected components of Smk \ ℓk.
Let (x1,k, y1,k), (x2,k, y2,k) ∈ S1, k ∈ Z>0 have the property that γmk(x1,k, y1,k) and
γmk(x2,k, y2,k) are the endpoints of ℓk. Since the length of ℓk tends to zero as k→∞, and
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since γ is continuous, it follows that limk→∞∥x1,k, y1,k) − (x2,k, y2,k)∥ = 0. Let Ak ⊆ S
1 be

the shortest arc between (x1,k, y1,k) and (x2,k, y2,k). For infinitely many k ∈ Z>0 one of
z1 and z2, let us say z1 for concreteness, lies in that connected component of Smk \ ℓk
bounded by ℓk∪ image(Ak). As k→∞ the size of this connected component will shrink
to zero since the length of ℓk shrinks to zero and since the length of Ak shrinks to zero.
In particular, this means that limk→∞|z1 − γmk(x1,k, y1,k)| = 0. However, we began by
assuming that z1 lies a distance ϵ ∈ R>0 from image(γ), and so we have achieved a
contradiction since (γmk)k∈Z>0 converges to γ. ▼

8 Lemma Let γ : S1
→ C be a Jordan curve and let Sin and Sout be the connected components of

C \ image(γ). Then W(γ, z0) = 0 for z0 ∈ Sout and |W(γ, z0)| = 1 for z0 ∈ Sin.

Proof This follows immediately from Theorem 3.1.3 since Sin and Sout are connected.
▼

This completes the proof. ■

This theorem was stated first by Jordan [1887],1 although Jordan’s proof was
not satisfactory. It is felt that the first correct proof was due to Veblen [1905]. Sinceget number for OV:05

then, many versions of the proof have been presented. Some, like the one we give
here, are long but elementary (another such can be found in [Whyburn 1942]),
while others, as can be found in texts on algebraic topology [e.g., Munkres 1984],
are shorter, but rely on heavy machinery.

Exercises

3.1.1 Indicate why the name “triangle inequality” makes sense for the complex
magnitude function.be sure this is

referenced

3.1.2

1Marie Ennemond Camille Jordan, 1838–1922.
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Section 3.2

Functions

3.2.1 C-valued functions

For I ∈ I we may talk about functions f : I → C taking values in C rather
than R. For each t ∈ I we may write f (t) = Re( f )(t) + i Im( f )(t), so defining R-
valued functions Re( f ), Im( f ) : I → R called the real part and the imaginary part
of f , respectively. Many of the properties of R-valued functions can be defined
by ascribing these same properties to the real and imaginary part of the function.
Let us summarise this for the various sorts of function properties we described for
R-valued functions.
1. A function f : I → C is continuous at t0 if Re( f ) and Im( f ) are both continuous

at t0. One can verify, using the fact the complex magnitude |·| is continuous, that
if a function f : I → C is continuous at t0 then the R-valued function t 7→ | f (t)|
is continuous at t0. The converse is clearly false (think of a counterexample).

2. A function f : I → C is continuous if Re( f ) and Im( f ) are both continuous.
If a function f : I → C is continuous then the R-valued function t 7→ | f (t)| is
continuous.

3. A function f : I → C is uniformly continuous if Re( f ) and Im( f ) are both uni-
formly continuous. If a function f : I → C is uniformly continuous then the
R-valued function t 7→ | f (t)| is uniformly continuous.

4. A function f : I → C is bounded if there exists M > 0 so that | f (t)| ≤ M for each
t ∈ I. It is pretty clear that f is bounded if and only if Re( f ) and Im( f ) are
bounded. As with R-valued functions, it is true that a continuous C-valued
function defined on a compact interval I is bounded. It is also true that if f
is a continuous C-valued function on a compact interval I then | f | attains its
maximum and minimum in I.

5. A function f : I → C is differentiable at t0 if both Re( f ) and Im( f ) are differen-
tiable at t0. The derivative is defined to be f ′(t0) = Re( f )′(t0) + i Im( f )′(t0).

6. A function f : I → C is continuously differentiable if it is differentiable at each
t ∈ I and if the function t 7→ f ′(t) is continuous.

7. A function f : I → C is r times continuously differentiable if it can be differ-
entiated r times, and if the rth derivative is continuous. The rth derivative is
denoted f (r).

8. For f : I→ C and t0 ∈ I define

f (t0−) = lim
ϵ↓0

f (t0 − ϵ), f (t0+) = lim
ϵ↓0

f (t0 + ϵ).

9. A function f : [a, b] → C is piecewise continuous if there exists a partition
{t0, t1, . . . , tn} of [a, b] with the properties
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(i) f is continuous on each of the intervals (t j, t j−1) for j ∈ {1, . . . ,n};
(ii) for j ∈ {1, . . . ,n − 1} the limits f (t j+) and f (t j−) exist;
(iii) the limits f (a+) and f (b−) exist.

10. Define

f ′(t0−) = lim
ϵ↑0

f (t0 + ϵ) − f (t0)
ϵ

, f ′(t0+) = lim
ϵ↓0

f (t0 + ϵ) − f (t0)
ϵ

.

11. A piecewise continuous function is piecewise differentiable if there exists a
partition {t0, t1, . . . , tn} of [a, b] with the properties

(i) f is continuously differentiable on each of the intervals (t j, t j−1) for j ∈
{1, . . . ,n};

(ii) for j ∈ {1, . . . ,n − 1} the limits f (t j+), f (t j−), f ′(t j+), and f ′(t j−), exist;
(iii) the limits f (a+) , f (b−), f ′(a+), and f ′(b−) exist.

3.2.2 C-valued functions of bounded variation

First let us make the routine extension from theR-valued functions of bounded
variation considered in Section I-3.3 to the case of C-valued functions. First we
make the routine extension of the definition.

3.2.1 Definition (C-valued function of bounded variation) For I = [a, b] a compact
interval and f : I→ C a C-valued function on I, the total variation of f is given by

TV( f ) = sup
{ k∑

j=1

| f (x j) − f (x j−1)|
∣∣∣∣ {x0, x1, . . . , xk} = EP(P), P ∈ Part([a, b])

}
.

If TV( f ) < ∞ then f has bounded variation. We denote by BV([a, b];C)
(resp. BV([a, b];R)) the set of C-valued (resp.R-valued) functions of bounded vari-
ation on [a, b]. •

Now we show that (what anyone would agree is) the natural alternative def-
inition for a C-valued function of bounded variation is equivalent to the one we
give.

3.2.2 Proposition (C-valued functions of bounded variation) Let I = [a, b] be a compact
interval. A C-valued function f : [a, b] → C has bounded variation if and only if the R-
valued functions Re(f), Im(f) : [a, b]→ R have bounded variation.

Proof For z = x + iy ∈ C in Corollary III-2.7.50 we established the formulaemove this result to a

better place? √
x2 + y2 ≤ |x| + |y|, |x| + |y| ≤

√

2
√

x2 + y2.
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Now suppose that Re( f ) and Im( f ) have bounded variation and let (x0, x1, . . . , xk)
be the endpoints of a partition of [a, b]. Then

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

|Re( f )(x j) − Re( f )(x j−1) + i(Im( f )(x j) − Im( f )(x j−1))|

≤

k∑
j=1

(
|Re( f )(x j) − Re( f )(x j−1)| + |Im( f )(x j) − Im( f )(x j−1)|

)
≤

(
TV(Re( f )) + TV(Im( f ))

)
.

Thus TV( f ) < TV(Re( f )) + TV(Im( f )).
Next suppose that TV( f ) < ∞. Then, for (x0, x1, . . . , xk) the endpoints of a partition

of [a, b], we have
k∑

j=1

|Re( f )(x j)−Re( f )(x j−1)|

≤

k∑
j=1

(
|Re( f )(x j) − Re( f )(x j−1)| + |Im( f )(x j) − Im( f )(x j−1)|

)
≤

√

2
k∑

j=1

|Re( f )(x j) − Re( f )(x j−1) + i(Im( f )(x j) − Im( f )(x j−1))|

≤

√

2 TV( f ).

Thus TV(Re( f )) ≤
√

2 TV( f ), and an entirely similar argument shows that TV(Im( f )) ≤
√

2 TV( f ), so giving the result. ■

3.2.3 Absolutely continuous C-valued functions

In exactly the same manner as we proved Proposition 3.2.2 we prove the fol-
lowing result.

3.2.3 Proposition A signal f : T → C on a compact continuous time-domain is absolutely
continuous if and only if the signals Re(f), Im(f) : T→ R are absolutely continuous.

3.2.4 Elementary functions

3.2.4 Definition (Properties of C- valued functions)
(i)

Let D ⊆ C be a domain. A function f : D → C is continuous at z0 if for every
δ > 0 there exists ϵ > 0 so that |z − z0| < ϵ implies that | f (z) − f (z0)| < δ. If f
is continuous at every point in D then f is simply continuous. The function f is
differentiable at z0 if the limit

lim
z→z0

f (z) − f (z0)
z − z0
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exists and is independent of the manner in which the limit is taken.2 The limit
when it so exists is the derivative and denoted f ′(z0). If we write z = x + iy and
f (z) = u(x, y)+ iv(x, y) for R-valued functions u and v, then it may be shown that f
is differentiable at z0 = x0 + iy0 if and only if (1) u and v are differentiable at (x0, y0)
and (2) the Cauchy-Riemann equations are satisfied at z0:

∂u
∂x

(x0, y0) =
∂v
∂y

(x0, y0),
∂u
∂y

(x0, y0) = −
∂v
∂x

(x0, y0).

A function f : D → C on a domain D is analytic at z0 ∈ D if there exists ϵ > 0
so that f is differentiable at every point in D(z0, ϵ). If R ⊆ D is a region, we say f
is analytic in R if it is analytic at each point in R. Note that this may necessitate
differentiability of f at points outside R.

Analytic functions may fail to be defined at isolated points. Let us be systematic
about characterising such points.

3.2.5 Definition Let f : D→ C be analytic.
(i) A point z0 ∈ D is an isolated singularity for f if there exists ϵ > 0 so that f is

defined and analytic on D(z0, r) \ {z0} but is not defined on D(z0, r).
(ii) An isolated singularity z0 for f is removable if there exists an r > 0 and an

analytic function g : D(z0, r)→ C so that g(z) = f (z) for z , z0.
(iii) An isolated singularity z0 for f is a pole if

(a) limz→z0 | f (z)| = ∞ and
(b) there exists k > 0 so that the function g defined by g(z) = (z − z0)k f (z) is

analytic at z0. The smallest k ∈ Z for which this is true is called the order
of the pole.

(iv) An isolated singularity z0 for f is essential if it is neither a pole nor a removable
singularity.

(v) A function f : D → C is meromorphic if it analytic except possibly at a finite
set of poles. •

Another important topic in the theory of complex functions is that of series
expansions. Let D be a domain. If f : D→ C is analytic at z0 ∈ D then one can show
that all derivatives of f exist at z0. The Taylor series for f at z0 is then the series

f (z) =
∞∑
j=0

a j(z − z0) j.

where the coefficients are defined by

a j =
f ( j)(z0)

j!
.

2Thus for any sequence {zk} converging to z0, the sequence
{ f (zk)− f (z0)

zk−z0

}
should converge, and

should converge to the same complex number.
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Analyticity of f guarantees pointwise convergence of the Taylor series in a closed
disk of positive radius. If z0 is an isolated singularity for f then the Taylor series is
not a promising approach to representing the function. However, one can instead
use the Laurent series given by

f (z) =
∞∑
j=0

a j(z − z0) j +

∞∑
j=1

b j

(z − z0) j .

The matter of expressing the coefficients in terms of f obviously cannot be done
by evaluations of f and its derivatives at z0. However, there are formulas for the
coefficients involving contour integrals. So. . .

3.2.5 Roots of unity

3.2.6 Proposition If ζ is a primitive nth root of unity and if k ∈ Z>0, then

n−1∑
j=0

ζjk =

n, n|k,
0, otherwise.

Proof Suppose that n ∤ k. Then we can write k = qn+r for q ∈ Z≥0 and r ∈ {1, . . . ,n−1}.
Therefore,

ζk = ζqn+r = ζqnζr = ζr , 1

since ζ is a primitive nth root of unity. We have

1 + ζk + ζ2k + · · · + ζ(n−1)k = 1 + ζk + ζ2k + · · · + ζ(n−1)k 1 − ζk

1 − ζk

=
1 − znk

1 − zk
= 0.

If n|k then we have ζ jk = 1 for each j ∈ {0, 1, . . . ,N − 1}, and so
∑n−1

j=0 ζ
jk = n. ■

Move this theorem

3.2.7 Theorem (Approximation of finitely many points in the unit circle) Let
a1, . . . , ak ∈ R have the property that {2π, a1, . . . , ak} are linearly independent over Q.
Then, for any z1, . . . , zk ∈ S1 and for any ϵ ∈ R>0, there exists b ∈ Z>0 such that is this the notation I

am using?

max{|eiba1 − z1|, . . . , |eibak − zk|} < ϵ.

Proof We claim that the map

R ∋ θ 7→ eiθ
∈ S1

⊆ C

is uniformly continuous. Indeed, this map is written in its real and imaginary compo-
nents as

θ 7→ (cosθ, sinθ).
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By Proposition I-3.2.8 and Proposition I-3.8.19 it follows that each of the components
is uniformly continuous, and so the uniform continuity of the map follows. Therefore,
there exists δ ∈ R>0 such that, if |θ − θ′| < δ, then |eiθ

− eiθ′
| < ϵ.

For each j ∈ {1, . . . , k}, let us write z j = eiθ j for some θ j ∈ R. By the Kronecker
Approximation Theorem, Theorem I-2.2.20, there exists b ∈ Z>0 and m1, . . . ,mk ∈ Z
such that

|ba j − θ j − 2πm j| < δ, j ∈ {1, . . . , k}.

By our observation from the first paragraph of the proof it follows that

|eiba j − ei(θ j+2πm j)| = |eiba j − eiθ j | = |eiba j − z j| < ϵ

for each j ∈ {1, . . . , k}, as desired. ■
move this

3.2.8 Theorem (Annuli admitting a biholomorphic mapping) Let r1, r2,R1,R2 ∈ R>0

satisfy r1 < R1 and r2 < R2 and consider two annuli in C:

A(r1,R1) = {z ∈ C | |z| ∈ (r1,R1)}, A(r2,R2) = {z ∈ C | |z| ∈ (r2,R2)}.

Then the following statements are equivalent:
(i) there exists a biholomorphic bijection Φ : A(r1,R1)→ A(r2,R2);
(ii) r1

R1
= r2

R2
.

Proof If r1
R1
= r2

R2
, then the mapping

z 7→
r2

r1
z

gives the desired biholomorphic bijection when restricted to A(r1,R1). So we prove
the converse assertion.

We can, without loss of generality, assume that r1 = r2 = 1. Let us thus abbreviate

A1 = A(1,R1), A2 = A(1,R2).

Let Φ : A1 → A2 be a biholomorphic bijection and let r ∈ (1,R2). Denote

C = {z ∈ C | |z| = r}.

Continuity of Φ−1 ensures that Φ−1(C) is compact (Proposition 1.3.29). Since r > 1,
for z ∈ bd(D10) there exists δz ∈ R>0 such that Dδzz ∩ Φ−1(C) = ∅. Since bd(D10) is
compact, there exists z1, . . . , zk ∈ bd(D10) such that

bd(D10) ⊆ ∪k
j=1Dδz jz j

and
C ∩ (∪k

j=1Dδz jz j) = ∅.

Thus there exists δ ∈ R>0 such that A(1, 1 + δ) ∩ C = ∅. Let V = Φ(A(1, 1 + δ)). Since
A(1, 1 + δ) us connected, V is connected by Proposition 1.3.34. Since V ∩ C = ∅, this



2022/03/07 3.2 Functions 389

means that either V ⊆ A(1, r) or V ⊆ A(r,R2). Note that z 7→ R2
Φ(z) is a biholomorphic

bijection ofA1 withA2. Thus, we can assume without loss of generality (by replacing
Φwith R2

Φ if necessary) that V ⊆ A(1, r).
We claim that, if (z j) j∈Z>0 is a sequence in A1 satisfying lim j→∞|z j| = 1, then

lim j→∞|Φ(z j)| = 1. We can assume, with δ defined as above, that z j ∈ A(1, 1 + r) for
every z ∈ Z>0. Note that (Φ(z j)) j∈Z>0 does not have a limit point inA2. Indeed, if it did,
then continuity of Φ ensures that (z j) j∈Z>0 has a limit point in A1 (by Theorem 1.3.2)
which is contradicted by the fact that lim j→∞|z j| = 1. The sequence (|Φ(z j)|) j∈Z>0

converges by Theorem 1.3.2 and continuity of Φ and |·|. Therefore, we either have
lim j→∞|Φ(z j)| = 1 or lim j→∞|Φ(z j)| = R2. By our assumption that V ⊆ A(1, r), it must
be the former of these limits that is valid.

One similarly shows that, if (z j) j∈Z>0 is a sequence inA1 satisfying lim j→∞|z j| = R1,
then lim j→∞|Φ(z j)| = R2.

Now let α = log(R2)
log(R1) and define

Ψ(z) = 2(log(|Φ(z)|) − α log(|z|).

By Example 3.8.4–1,Ψ is harmonic onA1 sinceΦ is nonzero onA1. By the conclusions
of the preceding two paragraphs, Ψ extends to a function on cl(A1) that vanishes on
bd(A1). Therefore, by ,Ψ is zero onA1. In particular, what

0 = Ψ′(z) =
Φ′(z)

z
−
α
z
. (3.1)

Let ρ ∈ (1,R1) and let Γρ be the contour

Γρ = {ρeiθ
| θ ∈ [0, 2π]}.

By Cauchy’s Integral Theorem we have get the reference right

α =
1

2πi

∫
Γρ

α
z

dz =
1

2πi

∫
Γρ

Φ′(z)
Φ(z)

dz,

from which we conclude that α ∈ Z. Now compute

d
dz

(z−αΦ(z)) = z−α−1(−αΦ(z) + zΦ′(z)) = 0

by (3.1). Thus Φ(z) = βzα for some β ∈ C. Since Φ is injective, we must have α = 1, and
so R1 = R2. ■

Exercises

3.2.1
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Section 3.3

C-power series

Exercises

3.3.1
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Section 3.4

Some C-valued functions of interest

3.4.1 The exponential function

3.4.1 Proposition (Properties of the exponential function)

3.4.2 Power functions and general logarithmic functions

Alexandrian on continuous dependence of roots of polynomial on coefficients



392 3 Complex analysis 2022/03/07

Section 3.5

Integration

Much of what interests in complex variable theory centres around integration.
In this section we give a rapid overview of the essential facts.

A curve in C is a continuous map c : [a, b] → C. A closed curve in C is a
curve c : [a, b]→ C for which c(a) = c(b). Thus a closed curve forms a loop with no
intersections (see Figure 3.3). A curve c defined on [a, b] is simple if the restriction of

Re

Im

[ ]
a b

c
c

c(a) = c(b)

Figure 3.3 A closed curve in C

c to (a, b) is injective. Thus for each t1, t2 ∈ (a, b) the points c(t1) and c(t2) are distinct.
Sometimes a simple closed curve is called a Jordan curve. The Jordan Curve
Theorem then states that a simple closed curve separates C into two domains, the
interior and the exterior. This also allows us to make sense of the orientation of a
simple closed curve. We shall speak of simple closed curves as having “clockwise
orientation” or “counterclockwise orientation.” Let us agree not to give these
precise notation as the meaning will be obvious in any application we encounter.

Sometimes we will wish for a curve to have more smoothness, and so speak
of a differentiable curve as one where the functions u, v : [a, b] → R defined by
c(t) = u(t)+ iv(t) are differentiable. For short, we shall call a differentiable curve an
arc. In such cases we denote

c′(t) =
du
dt
+ i

dv
dt
.
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The length of a differentiable curve c : [a, b]→ C is given by∫ b

a
|c′(t)|dt.

A contour is a curve that is a concatenation of a finite collection of disjoint differ-
entiable curves.

If c : [a, b]→ C is a curve then we define∫ b

a
c(t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt,

where u and v are defined by c(t) = u(t) + iv(t). Now we let D be a domain in C,
c : [a, b]→ D be an arc, and f : D→ C be a continuous function. We define∫

c
f (z) dz =

∫ b

a
f (c(t))c′(t) dt. (3.2)

One may verify that this integral does not in fact depend on the parameterisation
of c, and so really only depends on the “shape” of the image of c in U ⊆ C. We shall
typically denote C = image(c) and write

∫
C
=

∫
c
. If c is a contour, then one may

similarly define the integral by defining it over each of the finite arcs comprising c.
If F : D→ C is differentiable with continuous derivative f , then one verifies that∫

c
f (z) dz = F(c(b)) − F(c(a)),

for a contour c : [a, b]→ C.
The following theorem lies at the heart of much of complex analysis, and will

be useful for us here.

3.5.1 Theorem (Cauchy’s Integral Theorem) Let D ⊆ C be a simply connected domain,
suppose that f : D→ C is analytic on the closure of D, and let C be a simple closed contour
contained in D. Then ∫

C
f(z) dz = 0.

Exercises
finish

3.5.1
3.5.2 Graphical calculation of residues from Truxal (page 27)
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Section 3.6

Applications of Cauchy’s Integral Theorem

Cauchy’s Integral Theorem forms the basis for much that is special in the theory
of complex variables. We shall give a few of the applications that are of interest to
us in this book.

Let us begin by providing formulas for the coefficients in the Laurent expansion
in terms of contour integrals. The following result does the job.

3.6.1 Proposition Let f : D→ C be analytic and let z0 ∈ D be an isolated singularity for f. Let
C0 and C1 be circular contours centred at z0 with C1 smaller than C0 (see Figure 3.4). If

Im

z0

C1

C0

Figure 3.4 Contours for definition of Laurent series coefficients

f(z) =
∞∑

j=−∞

cj(z − z0)j

is the Laurent series for f at z0 then we have

cj =
1

2πi

∫
C0

f(z)
(z − z0)j+1 dz, j = 0, 1, . . .

cj =
1

2πi

∫
C1

f(z)
(z − z0)j+1 dz, j = −1,−2, . . .
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3.6.2 Proposition W(γ, z0) =
1

2πi

∫
image(γ)

1
z − z0

dz.

The residue of an analytic function f at an isolated singularity z0 is the coefficient
c−1 in the Laurent series for f at z0. We denote the residue by

Resz=p j f (z) =
1

2πi

∫
C

f (z) dz,

where C is some sufficiently small circular contour centred at z0. The Residue
Theorem is also important for us.

3.6.3 Theorem (Residue Theorem) Let D ⊆ C be a domain with C a simple, clockwise-
oriented, closed contour in D. Let f : D → C be meromorphic in the interior of C and
analytic on C. Denote the poles of f in the interior of C by p1, . . . ,pk. Then∫

C
f(s) ds = 2πi

k∑
j=1

Ress=pj f(s).

3.6.4 Theorem

Another useful result is the Poisson Integral Formula.

3.6.5 Theorem (Poisson Integral Formula) Let D ⊆ C be a domain containing the positive
complex plane C+ and let f : D→ C be analytic in C+. Additionally, we will suppose that
if for R > 0 we define m(R) > 0 by

m(R) = sup
θ∈[− π2 ,

π
2 ]
|f(Reiθ)|, (3.3)

then f has the property that

lim
R→∞

m(R)
R
= 0.

If z0 = x0 + iy0 ∈ C+ then we have

f(z0) =
1
π

∫
∞

−∞

f(iy)
x0

x2
0 + (x − x0)2

dy.

The Poisson Integral Formula has the following useful corollary, stated by
Freudenberg and Looze [1985].

3.6.6 Corollary Suppose that D is a domain containing C and that f : D → C is analytic and
nonzero in C, with the possible exception of zeros on the imaginary axis. Also, assume that
log f satisfies the equality (3.3). Then for each z0 = x0 + iy0 ∈ C+ we have

log|f(z0)| =
1
π

∫
∞

−∞

log|f(iy)|
x0

x2
0 + (x − x0)2

dy.

Finally, we state a sort of stray result, but one that is standard in complex
variable theory, the Maximum Modulus Principle.
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3.6.7 Theorem If f : D→ C is an analytic function on a domain D, then |f| has no maximum
on D unless f is constant.

From this result it follows that if f is analytic in a closed bounded region R, then
the maximum value taken by | f |must occur on the boundary of R.

Exercises
cayley-hamilton-cauchy.pdf

3.6.1
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Section 3.7

Analytic continuation

Exercises

3.7.1
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Section 3.8

Harmonic and subharmonic functions of a complex variable

3.8.1 Harmonic functions

First we discuss harmonic functions.
Now we turn to harmonic and subharmonic functions.

3.8.1 Definition (Harmonic function) Let Ω ⊆ C be open and let u : Ω → R. The
function u is harmonic if it is of class C2 and if ∂2u

∂z∂z̄ (z) = 0 for every z ∈ Ω. •

It will be convenient on occasion to use the notation

∆u(z) = 4
∂2u
∂z∂z̄

(z),

this being the Laplacian of u.
Let us give some of the basic properties of harmonic functions.

3.8.2 Theorem (Properties of harmonic functions) If Ω ⊆ C is open, the following
statements hold:

(i) if Φ ∈ Chol(Ω) then Re(Φ) is harmonic;
(ii) if Ω is an open disk and if u: Ω → R is harmonic, then there exists Φ ∈ Chol(Ω)

such that u = Re(Φ);
(iii) if u: Ω → R is harmonic then, for each z0 ∈ Ω, there exists ρ ∈ R>0 such that

D(ρ, z0) ⊆ Ω and such that

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

for every r ∈ (0, ρ];
(iv) if u: Ω→ R is continuous and if, for every z0 ∈ Ω, there exists ρ ∈ R>0 such that

D(r, z0) ⊆ Ω and such that

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

for every r ∈ (0, ρ], then u is harmonic.
Proof (i) Write Φ(z) = u(z) + iv(z) for R-valued smooth functions u and v on Ω.
Referring to we havewirtinger

∂2u
∂z∂z̄

=
1
4

(
∂2u
∂x2 +

∂2u
∂y2

)
.
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The Cauchy–Riemann equations are

∂u
∂x
=
∂v
∂y
,

∂u
∂y
= −

∂v
∂x
,

and from this we immediately see that ∂2u
∂z∂z̄ = 0 by equality of mixed partials.

(ii) We will define v : Ω→ R such thatΦ ≜ u+ iv is holomorphic. Let z0 = x0+ iy0 ∈

Ω be the centre of the disk Ω and let r ∈ R>0 be the radius. For z = x + iy ∈ Ω define

v(z) =
∫ y

y0

∂u
∂x

(x, η) dη −
∫ x

x0

∂u
∂y

(ξ, y0) dξ.

One can verify by direct computation that Φ = u + iv satisfies the Cauchy–Riemann
equations, and so is holomorphic.

(iii) LetΦ be holomorphic in a neighbourhood of z containing D(r, z). By the Cauchy
integral formula,

Φ(z) =
1

2πi

∫
bd(D(r,z))

Φ(ζ)
ζ − z

dζ.

Letting ζ = z0 + reiθ and taking real parts gives the result.
(iv) Follows from properties of circular convolution ■ finish

3.8.3 Remarks (Harmonic functions)
1. Note that it is clear that the imaginary part of a holomorphic function is also

a harmonic function (since multiplication of a holomorphic function by −i
produces another holomorphic function). Given a harmonic function u and a
holomorphic functionΦ for which u = Re(Φ), we say that Im(Φ) is the harmonic
conjugate of u.

2. Since a harmonic function is the real part of a holomorphic function, it follows
that harmonic functions are infinitely differentiable, although their definition
only requires them to be of class C2. •

The preceding result then allows us to construct some examples of harmonic
functions.

3.8.4 Examples (Harmonic functions)
1. If Ω ⊆ C is open and if f ∈ Chol(Ω) then the function

Ω ∋ z 7→ log(| f |)(z) ≜

log(| f (z)|), f (z) , 0,
−∞, f (z) = 0,

is harmonic on Ω \ f −1(0). To see that log(| f |) is harmonic on Ω \ f −1(0), let
z0 ∈ Ω \ f −1(0) and in a neighbourhood of z0 write

log( f (z)) = log(| f (z)|) + iθ,

where f (z) = reiθ. Thus log(| f |) is the real part of a holomorphic function, and
so harmonic in a neighbourhood of z. •
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3.8.2 Subharmonic functions

In this section we discuss subharmonic functions of a single complex variable.
We can get some insight by thinking first about standard notions of convexity. A
function u : I→ R defined on an interval I is convex if

u((1 − s)x1 + sx2) ≤ (1 − s)u(x1) + su(x2)

for every distinct x1, x2 ∈ I and for every s ∈ (0, 1). In Figure 3.5 we depict how

u(a)

a

u(b)

b

Figure 3.5 A convex function

the definition works. The idea—and one that relates to how we will think of how
subharmonic relates to harmonic—is that if u agrees with a linear function at points
a and b, then u does not exceed the linear function on (a, b). Said in this way, it
is perhaps not unreasonable to think of “convex” functions as being “sublinear.”
Moreover, the linear functions can be thought of those twice differentiable functions
with zero second derivative. It is a classical result that a function of class C2 is con-
vex if and only if u′′(x) ≥ 0 for every x ∈ I [Webster 1994, Theorem 5.5.5]. We shall
see in Theorem 3.8.6(vii) below that a similar interpretation holds for subharmonic
functions, but with “second derivative” being replaced with “Laplacian.”

We recall from Section 1.10.2 that a function f : S→ [−∞,∞) is upper semicon-
tinuous if f −1([−∞, α)) is open for every α ∈ R.

3.8.5 Definition (Subharmonic function) Let Ω ⊆ C be open and let u : Ω → [−∞,∞).
The function u is subharmonic if

(i) it is upper semicontinuous;

(ii) for every r ∈ R>0 and z0 ∈ Ω for which D(r, z0) ⊆ Ω and for every continuous
σ : D(r, z0) → R such that (1) σ|D(r, z0) is harmonic, and (2) σ(z) ≥ u(z) for
z ∈ bd(D(r, z0)), we have σ(z) ≥ u(z) for every z ∈ D(r, z0). •

Let us give some of the basic properties of harmonic functions.
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3.8.6 Theorem (Properties of harmonic functions) If Ω ⊆ C is open, the following
statements hold:

(i) if u is harmonic then it is subharmonic;
(ii) if (uj)j∈Z>0 is a sequence of subharmonic functions onΩ such that uj+1(z) ≤ uj(z) for

each j ∈ Z>0 and z ∈ Ω, then the function u on Ω defined by u(z) = limj→∞ uj(z) is
subharmonic;

(iii) if (ua)a∈A is a family of subharmonic functions onΩ then the function u onΩ defined
by

u(z) = sup{ua(z) | a ∈ A}

is subharmonic if it is upper semicontinuous and everywhere finite;
(iv) if u1, . . . ,uk : Ω → [−∞,∞) are subharmonic and if F: Rk

→ R is contin-
uous, convex, and nondecreasing in each component, and if we extend F to
F̄ : ([−∞,∞))k

→ [−∞,∞) by continuity,3 then the function

z 7→ F(u1(z), . . . ,uk(z))

is subharmonic;
(v) if u: Ω→ R is upper semicontinuous, then it is subharmonic if and only if, for each

z0 ∈ Ω, there exists ρ ∈ R>0 such that D(ρ, z0) ⊆ Ω and such that

u(z0) ≤
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

for every r ∈ (0, ρ];
(vi) if Ω is connected and if u is subharmonic and has a global maximum in Ω, then u

is constant;
(vii) if u is of class C2, then it is subharmonic if and only if ∂2u

∂z∂z̄ (z) ≥ 0 for every z ∈ Ω.
Proof (i) If u is harmonic it is continuous and so upper semicontinuous. By Theo-
rem 3.8.2(iii) and by (v) below, it then follows that if u is harmonic it is subharmonic.

(ii) By [Aliprantis and Border 2006, Lemma 2.41] we have that u is upper semi-
continuous. Let z0 ∈ Ω and r ∈ R>0 be such that D(r, z0) ⊆ Ω. Let σ be a continuous
function on D(r, z0) that is harmonic on D(r, z0) and is such that σ(z) ≥ u(z) for all
z ∈ bd(D(r, z0)). Let ϵ ∈ R>0 and for j ∈ Z>0 define

K j,ϵ = {z ∈ bd(D(r, z0)) | u j(z) ≥ σ(z) + ϵ}.

Note that K j,ϵ is compact, that K j+1,ϵ ⊆ K j,ϵ, and that ∩ j∈Z>0K j,ϵ = ∅, the latter since
lim j→∞ u j(x) = u(x) ≤ σ(x). It follows, since the intersection of a nested sequence of
nonempty compact sets is nonempty [Rudin 1976, Corollary to Theorem 2.36], that

3A little precisely, we define F̄ as follows. Suppose that we wish to evaluate F̄ at a point where
xj1 = · · · = xjm = −∞ for and only for some j1, . . . , jm ∈ {1, . . . ,k}. We then let each of the coordinates
xj1 , . . . , xjm tend together monotonically to∞, while fixing the remaining coordinates at their desired
values. The value of F̄ at this point is then the limit of the values of F.
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there exists N ∈ Z>0 such that KN,ϵ = ∅. Thus, for j ≥ N, u j(z) < σ(z) + ϵ for every
z ∈ bd(D(r, z0)) and so u j(z) < σ(z)+ϵ for every z ∈ D(r, z0). It follows that u(z) < σ(z)+ϵ
for every z ∈ D(r, z0), and so u(z) ≤ σ(z) for every z ∈ D(r, z0), as desired.

(iii) Let z0 ∈ Ω and r ∈ R>0 be such that D(r, z0) ⊆ Ω. Let σ : D(r, z0) → R be
continuous, harmonic on D(r, z0), and satisfying σ(z) ≥ u(z) for z ∈ bd(D(r, z0)). We
then have σ(z) ≥ ua(z) for z ∈ bd(D(r, z0)) and a ∈ A. It follows that σ(z) ≥ ua(z) for
z ∈ D(r, z0) and a ∈ A, and so σ(z) ≥ u(z) for z ∈ D(r, z0), as desired.

(iv) Let (ϕa)a∈A be a family of affine functions ϕa : Rk
→ R such that

{(x, y) ∈ Rk
×R | y ≥ F(x)} = ∩a∈A{(x, y) ∈ Rk

×R | y ≥ ϕa(x) for all a ∈ A}

(this is possible since the epigraph of a convex function is convex). Then we havewhat

F(x) = sup{ϕa(x) | a ∈ A}

for every x ∈ Rk [Webster 1994, Theorem 5.4.2]. If we write ϕa(x) = ⟨ma, x⟩ + ba, a ∈ A,
the fact that F is increasing implies that the components of m are nonnegative. By
subharmonicity of u1, . . . ,uk and part (v) below we thus have

k∑
j=1

ma, ju j(z) + ba ≤
1

2π

k∑
j=1

ma, j

∫ 2π

0
(u j(z + reiθ) + ba) dθ

≤
1

2π

∫ 2π

0
F(u1(z + reiθ), . . . ,uk(z + reiθ)) dθ

for sufficiently small r ∈ R>0 and for all a ∈ A. This part of the result follows by taking
the supremum over a ∈ A and again applying part (v) below.

(v) First consider a general upper semicontinuous function v : Ω→ R that satisfies

v(z0) ≤
1

2π

∫ 2π

0
v(z0 + reiθ) dθ

for r ∈ R>0 and z0 ∈ Ω such that D(r, z0) ⊆ Ω. A look through the proof of part (vi)
below shows that this implies that v is constant on any connected component of Ω on
which it attains its maximum.

Now suppose that

u(z0) ≤
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

for r ∈ R>0 and z0 ∈ Ω such that D(r, z0) ⊆ Ω. Now let r ∈ R>0 and z0 ∈ Ω be such that
D(r, z0) ⊆ Ω and let σ : D(r, z0) → R be continuous, harmonic on D(r, z0), and be such
that u(z) ≤ σ(z) for z ∈ bd(D(r, z0)). If we take v = u − σ then we have, by hypothesis
and harmonicity of σ,

v(z0) ≤
1

2π

∫ 2π

0
v(z0 + reiθ) dθ.

As mentioned in the preceding paragraph, this implies that v attains its maximum on
bd(D(r, z0)). That is,

u(z) − σ(z) ≤ sup{u(ζ) − σ(ζ) | ζ ∈ bd(D(r, z0))} ≤ 0
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for every ζ ∈ D(r, z0). Thus u is subharmonic.
For the converse assertion, we use a lemma which makes reference to the so-called

Poisson kernel. This is a family of maps Pr defined for each r ∈ R>0 by

Pr : D(r, 0) × bd(D(r, 0))→ R

(z, reiθ) 7→
1

2π
r2
− |z|2

|z − reiθ|2
.

We shall require the following fact that is rather important in its own right, as it is the
solution to the so-called Dirichlet Problem for the unit disk.

1 Lemma If u: bd(D(1, 0))→ R is continuous, then the function σ : D(1, 0)→ R defined by

σ(z) =


∫ 2π

0
u(eiϕ)P1(z, eiϕ) dϕ, z ∈ D(1, 0),

u(z), z ∈ bd(D(1, 0)),

is continuous and harmonic on D(1, 0).

Proof First we prove that σ is continuous at points on bd(D(1, 0)). Let z0 = eiθ0 ∈

bd(D(1, 0)). Denote
M = sup{|u(z)| | z ∈ bd(D(1, 0))}.

Let ϵ ∈ R>0 and use uniform continuity of u to choose δ ∈ R>0 such that if |a − b| < δ
then |u(eia) − u(eib)| < ϵ

2 . Let z = reiθ
∈ D(1, 0) be chosen sufficiently close to z0 so that

|θ − θ0| < δ
3 and r ∈ [ 1

2 , 1) and 1 − r < δ2ϵ
100M . We then perform a couple of preliminary

estimates.
First we note that

1
2π

∫ 2π

0

1 − |reiθ
|
2

|reiθ − eiϕ|2
dϕ = 1. (3.4)

(This can be proved by using the Poisson Integral Formula; I used Mathematica®.) We
have∣∣∣∣∣∣ 1

2π

∫
|ϕ−θ0|<δ

(u(eiθ0) − u(eiϕ))
1 − r2

|reiθ − eiϕ|2
dϕ

∣∣∣∣∣∣ ≤ ϵ2 1
2π

∫ 2π

0

1 − r2

|reiθ − eiϕ|2
dϕ ≤

ϵ
2
,

using (3.4) and the fact that
1 − r2

|reiθ − eiϕ|2
≥ 0.

By elementary computations we have

|reiθ
− eiϕ

|
2 = |1 − rei(θ−ϕ)

|
2 = 1 − 2r cos(θ − ϕ) + r2

Now we estimate

|reiθ
− eiϕ

|
2 = (1 − r)2 + 2r(1 − cos(θ − ϕ))

≥ 2r(1 − cos(θ − ϕ)) ≥ 2r
(θ − ϕ)2

2
≥

(θ − ϕ)2

4
,
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using the Taylor expansion of cos for small angles and using the definition of r. Given
that |θ − θ0| < δ

3 and if we take |ϕ − θ0| ≥ δ we have that |θ − ϕ| ≥ 2δ
3 . Thus we have∣∣∣∣∣∣ 1

2π

∫
|ϕ−θ0|≥δ

(u(eiθ0) − u(eiϕ))
1 − r2

|reiθ − eiϕ|2
dϕ

∣∣∣∣∣∣ ≤ 1
2π

8M
∫
|ϕ−θ0|≥δ

1 − r2

(θ − ϕ)2 dϕ

≤
1

2π
72M
4δ2

∫ 2π

0
(1 + r)(1 − r) dϕ

≤
1

2π
72M
4δ2 2

δϵ
100M

≤
ϵ
2
.

Now let us put the preceding estimates together. Using (3.4) we have

σ(z0) − σ(z) =
1

2π

∫ 2π

0
(u(z0) − u(z))

1 − |z2
|

|z − eiϕ|2
dϕ.

Then

|σ(z0) − σ(z)| =

∣∣∣∣∣∣ 1
2π

∫ 2π

0
(u(z0) − u(z))

1 − |z2
|

|z − eiϕ|2
dϕ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
2π

∫
|ϕ−θ0|≤δ

u(z0) − u(z))
1 − |z2

|

|z − eiϕ|2
dϕ

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
2π

∫
|ϕ−θ0|≥δ

u(z0) − u(z))
1 − |z2

|

|z − eiϕ|2
dϕ

∣∣∣∣∣∣ ≤ ϵ,
giving continuity at boundary points, as desired.

Now we show that σ is harmonic on D(1, 0). Here we use the directly verified
identity

1 − |z|2

|z − eiϕ|2
=

eiϕ

eiϕ − z
+

e−iϕ

e−iϕ − z
− 1.

Thus, for z ∈ D(1, 0),

σ(z) =
1

2π

∫ 2π

0
u(eiϕ)

eiϕ

eiϕ − z
dϕ +

1
2π

∫ 2π

0
u(eiϕ)

e−iϕ

e−iϕ − z
dϕ −

1
2π

∫ 2π

0
u(eiϕ) dϕ.

The first term on the right is holomorphic in z. The second term can be verified to
be harmonic (i.e., its real and imaginary parts are harmonic) by simply differentiating
under the integral sign to verify the conditions for a harmonic function. The last term
is constant and so harmonic. Since u is real, we can take real parts to see that the
right-hand side, each of which will be harmonic, to see that u is harmonic. ▼

Now suppose that u is continuous and subharmonic. Let z0 ∈ Ω and r ∈ R>0 be
such that D(r, z0) ⊆ Ω. By the lemma (and an elementary change of variable to translate
1→ r and 0→ z0), if we define

σ(z) =
1

2π

∫ 2π

0
Pr(z − z0, reiθ)(u(z0 + reiθ)) dθ,
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then σ is harmonic on D(r, z0) for each ϵ ∈ R>0. Moreover, σ(z) = u(z) for each
z ∈ bd(D(r, z0)). Since u is subharmonic, this implies that u(z) ≤ σ(z) for z ∈ D(r, z0).
This implies, for example, that

u(z0) ≤ σ(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ) dθ.

It remains to show that if u is upper semicontinuous and subharmonic, then

u(z0) ≤
1

2π

∫ 2π

0
u(z0 + reiθ) dθ.

for z0 ∈ Ω and for sufficiently small r. By [Aliprantis and Border 2006, Theorem 3.13]
we let (u j) j∈Z>0 be a sequence of continuous functions converging pointwise from above
to u on D(r, z0). Then we have

u(z0) = lim
j→∞

u j(z0) ≤ lim
j→∞

1
2π

∫ 2π

0
u j(z0 + reiθ) dθ =

1
2π

∫ 2π

0
u(z0 + reiθ) dθ,

as desired.
(vi) Let

M = sup{u(z) | z ∈ Ω},

noting that M < ∞ by hypothesis. Indeed, there is z0 ∈ Ω such that u(z0) = M. We
first claim that u is constant in some neighbourhood of z0. Suppose otherwise, and let
r ∈ R>0 be such that, for some z1 ∈ bd(D(r, z0)) we have u(z0) > u(z1). Since u is upper
semicontinuous, let (v j) j∈Z>0 be a sequence of continuous functions on bd(D(r, z0))
converging pointwise to u and such that v j(z) ≥ u(z) for every z ∈ bd(D(r, z0)) [Aliprantis
and Border 2006, Theorem 3.13]. Choose N sufficiently large that vN(z1) < M. Then
the function

σ(z) = min{vN(z),M}, z ∈ bd(D(r, z0)),

is continuous. By the lemma above, we can extend σ to a harmonic function, which
we also denote by σ, on D(r, z0). We then have, by part Theorem 3.8.2(iii) and noting
that σ(z1) < M,

σ(z0) =
1

2π

∫ 2π

0
σ(z0 + reiθ) dθ < M = u(z0),

contradicting the fact that u is subharmonic.
Thus u is constant in any neighbourhood of a point where it attains its maximum.

Thus the set of points where u attains its maximum is open. As this set is clearly closed
(its complement is u−1([−∞,M)) which is open since u is upper semicontinuous) and
since Ω is connected, u is everywhere equal to M.

(vii) We first prove a lemma known as Green’s third formula. We use the following
vector calculus notation. If I ⊆ R is an interval, if γ : I → R2 is a differentiable curve
for which ∥γ′(s)∥ = 1 for each s ∈ I, and if u : R2

→ R is differentiable, we denote

∂u
∂nγ

(s) = grad u(γ(s)) · nγ(s),
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where nγ(s) = (γ′2(s),−γ′1(s)) is the normal vector to γ at s. With this notation, if I is
compact we denote ∫

image(γ)

∂u
∂n

ds ≜
∫

I

∂u
∂nγ

(s) ds.

With this notation we have the following result.

2 Lemma LetΩ ⊆ C be a connected open set for which bd(Ω) is the image of a finite number of
differentiable curves and let z0 ∈ Ω. Let u: cl(Ω) → R be continuous on cl(Ω), of class C2

onΩ, and such that Du extends to a continuous function on bd(Ω). Let v: cl(Ω) \ {z0} → R
be continuous, harmonic on Ω \ {z0}, be such that Dv extends to a continuous function on
cl(Ω) \ {z0}, and such that z 7→ v(z) − log(|z − z0|

−1) is harmonic in a neighbourhood of z0.
Then, denoting z = x + iy,

u(z0) = −
1

2π

∫
Ω

v(x,y)
(
∂2u
∂x2 (x,y) +

∂2u
∂y2 (x,y)

)
dxdy −

1
2π

∫
bd(Ω)

(
u
∂v
∂n
− v

∂u
∂n

)
ds.

(3.5)

Proof Let γ j : [0,L j]→ C, j ∈ {1, . . . , k}, be differentiable curves for which (1) γ j|[0,L j)
is a injection into bd(Ω) for each j ∈ {1, . . . , k} and (2) bd(Ω) is a disjoint union of
γ([0,L j)), j ∈ {1, . . . , k}. Let u be as in the statement of the lemma, and let σ also have
the same properties. Then, using Green’s Theorem [Lang 1987, Chapter XIV],∫

bd(Ω)
u
∂σ
∂n

ds =
k∑

j=1

∫ L j

0
u(γ j(s))

(
∂σ
∂x

(γ j(s))γ′j,2(s) −
∂σ
∂y

(γ j(s))γ′j,1(s)
)

ds

=

∫
Ω

(
∂u
∂x

(x, y)
∂σ
∂x

(x, y) +
∂u
∂y

(x, y)
∂σ
∂y

(x, y) + u
∂2v
∂x2 (x, y) + u

∂2σ

∂y2 (x, y)
)

dxdy

=

∫
Ω

(grad u(x, y) · grad σ(x, y) + u(x, y)∆σ(x, y)) dxdy.

This is Green’s first formula. Swapping the rôles of u and σ and subtracting then gives∫
bd(Ω)

(
u
∂σ
∂n
− σ

∂u
∂n

)
ds =

∫
Ω

(u(x, y)∆σ(x, y) − σ(x, y)∆u(x, y)) dxdy,

which is Green’s second formula.
Let u and v be as in the statement of the lemma and let σ satisfy the same conditions

as u, plus the condition that σ is harmonic on Ω. By Green’s second formula we then
have ∫

bd(Ω)

(
u
∂σ
∂n
− σ

∂u
∂n

)
ds +

∫
Ω

σ(x, y)∆u(x, y) dxdy = 0.

Thus, in the formula (3.5), we can add a harmonic function to v and the formula still
holds. In particular, we can add to v the harmonic function z 7→ −v(z) + log(|z − z0|

−1)
to conclude that, without loss of generality, we may take v(z) = log(|z− z0|

−1). Thus, in
the remainder of the proof, we take this as v. One easily verifies that v is harmonic on
C \ {z0}. Indeed, if we write (z − z0)−1 = reiθ,

log((z − z0)−1) = log(|z − z0|
−1) + iθ,
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and so, in any neighbourhood of any point inC\{z0}, v is the real part of a holomorphic
function, and so is harmonic by part Theorem 3.8.2(i).

Now let r ∈ R>0 be such that D(r, z0) ⊆ Ω and define Ωr = Ω \ D(r, z0). One then
applies Green’s second formula on Ωr:∫

bd(Ω)

(
u
∂v
∂n
− v

∂u
∂n

)
ds −

∫
bd(D(r,z0))

(
u
∂v
∂n
− v

∂u
∂n

)
ds = −

∫
Ωr

v(x, y)∆u(x, y) dxdy. (3.6)

Note that the singularity of v at z0 is integrable. Indeed, making the change of variables
to polar coordinates,∫

D(1,0)
log(|z − z0|

−1) dxdy =
∫ 2π

0

∫ 1

0
log(r−1)r drdθ.

Since limr→0 r log(r−1) = 0, the integral is finite. From this we conclude that the right-
hand side of (3.6) tends to 0 as r tends to 0. Let us now turn to the other terms in (3.6).
First we denote by M a bound for grad u in a neighbourhood of z0 containing D(r, z0).
Then we have ∫

bd(D(r,z0))
v
∂u
∂n

ds ≤ 2πrM log(r−1).

Thus

lim
r→0

∫
bd(D(r,z0))

v
∂u
∂n

ds = 0.

On bd(D(r, z0)), writing z = z0 + reiθ, we have

∂v
∂n
=
∂
∂r

log(r−1) = −r−1

and ds = rdθ. Thus

−

∫
bd(Ω)

u
∂v
∂n

ds =
∫ 2π

0
u(z0 + reiθ) dθ.

Now let ϵ ∈ R>0 and choose r sufficiently small that |u(z) − u(z0)| < ϵ
2π for z ∈ D(r, z0).

Then we have∣∣∣∣∣∣2πu(z0) −
∫ 2π

0
u(z0 + reiθ) dθ

∣∣∣∣∣∣ ≤
∫ 2π

0
|u(z0) − u(z0 + reiθ)|dθ < ϵ.

Thus

lim
r→0

(
−

∫
bd(Ω)

u
∂v
∂n

ds
)
= 2πu(z0).

Putting this all together gives the lemma. ▼

Proceeding with the proof of this part of the result, let r ∈ R>0 and z0 be such that
B1(r, z0) ⊆ Ω. By the lemma and the computations from the proof of the lemma we
have

u(z0) = −
1

2π

∫
D(r,z0)

∆u(x, y) log(r|z − z0|
−1) dx dy +

1
2π

∫ 2π

0
u(z0 + reiθ) dθ. (3.7)
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Note that log(r|z − z0|
−1) is nonnegative on D(r, z0) and only zero on the boundary.

Now suppose that ∆u(z0) < 0 for some z0 ∈ Ω. We then choose r ∈ R>0 such that
∆u(z) < 0 for all z ∈ D(r, z0), and we then see from (3.7) that

u(z0) >
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

By part (v) it follows that u is not subharmonic.
Conversely, suppose that u is not subharmonic. By part (v) there exists z0 ∈ Ω and

r ∈ R>0 such that

u(z0) >
1

2π

∫ 2π

0
u(z0 + reiθ) dθ.

By (3.7) we conclude that ∆u must be negative at points in a neighbourhood of z0. ■

3.8.7 Remark (Subharmonic functions) The condition of upper semicontinuity for
subharmonic functions might seem a little unmotivated. Many natural subhar-
monic functions are continuous (and in fact many authors assume continuity in
their definitions of subharmonic functions.) However, it comes as a consequence
of properties (ii) and (iii) that upper semicontinuity can arise in limiting processes
where continuity is present. •

3.8.8 Examples (Subharmonic functions)
1. (Example 3.8.4–1 cont’d) If Ω ⊆ C is open and if f ∈ Chol(Ω) then the function

Ω ∋ z 7→ log(| f |)(z) ≜

log(| f (z)|), f (z) , 0,
−∞, f (z) = 0,

is subharmonic on Ω. If f is identically zero in a neighbourhood of z ∈ Ω, it
is immediate that log(| f |) is subharmonic on this neighbourhood. It remains to
consider points z0 ∈ Ω such that f (z0) = 0 but, on any neighbourhood of z0, f is
not identically zero. Let r ∈ R>0 be such that D(r, z0) ⊆ Ω and let σ : D(r, z0)→ R
be a continuous function, harmonic on D(r, z0), such that log(| f (z)|) ≤ σ(z) for
z ∈ bd(D(r, z0)). Note that we clearly have

log(| f (z0)|) ≤
∫ 2π

0
log(| f (z0 + reiθ)|) dθ.

The same condition holds for log(| f |) − σ. Referring to the proof of part (vi) of
Theorem 3.8.6, we see that this implies that log(| f |) − σ, not being a constant
function, has the property that it must achieve its maximum on bd(D(r, z0)). This
implies that log(| f (z)|) ≤ σ(z) for z ∈ D(r, z0), giving subharmonicity of log(| f |). •

Summary
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Searcóid, M. Ó. [2007] Metric Spaces, Springer Undergraduate Mathematics Series,
Springer-Verlag: New York/Heidelberg/Berlin, isbn: 978-1-84628-369-7.

https://doi.org/10.2307/2323608
https://doi.org/10.2307/2303666
https://doi.org/10.2307/2319406
https://doi.org/10.2307/1969983
https://eudml.org/doc/58391
https://doi.org/10.1007/BF01445180
https://doi.org/10.2307/1969529
https://doi.org/10.1007/BF01448847
https://doi.org/10.1007/BF01498415
https://doi.org/10.1080/03081080008818644


412 Bibliography

Seron, M. M., Braslavsky, J. H., and Goodwin, G. C. [1997] Fundamental Limita-
tions in Filtering and Control, Communications and Control Engineering Series,
Springer-Verlag: New York/Heidelberg/Berlin, isbn: 978-3-540-76126-6.

Spring, D. [1985] On the second derivative test for constrained local extrema, The
American Mathematical Monthly, 92(9), pages 631–643, issn: 0002-9890, doi:
10.2307/2323709.
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