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Preface for series

The subject of signals and systems, particularly linear systems, is by now
an entrenched part of the curriculum in many engineering disciplines, particu-
larly electrical engineering. Furthermore, the offshoots of signals and systems
theory—e.g., control theory, signal processing, and communications theory—are
themselves well-developed and equally basic to many engineering disciplines. As
many a student will agree, the subject of signals and systems is one with a reliance
on tools from many areas of mathematics. However, much of this mathematics is
not revealed to undergraduates, and necessarily so. Indeed, a complete account-
ing of what is involved in signals and systems theory would take one, at times
quite deeply, into the fields of linear algebra (and to a lesser extent, algebra in gen-
eral), real and complex analysis, measure and probability theory, and functional
analysis. Indeed, in signals and systems theory, many of these topics are woven
together in surprising and often spectacular ways. The existing texts on signals
and systems theory, and there is a true abundance of them, all share the virtue
of presenting the material in such a way that it is comprehensible with the bare
minimum background.

Should I bother reading these volumes?

This virtue comes at a cost, as it must, and the reader must decide whether
this cost is worth paying. Let us consider a concrete example of this, so that the
reader can get an idea of the sorts of matters the volumes in this text are intended
to wrestle with. Consider the function of time

f (t) =

e−t, t ≥ 0,
0, t < 0.

In the text (Example IV-6.1.3–2) we shall show that, were one to represent this
function in the frequency domain with frequency represented by ν, we would get

f̂ (ν) =
∫
R

f (t)e−2iπνt dt =
1

1 + 2iπν
.

The idea, as discussed in Chapter IV-2, is that f̂ (ν) gives a representation of the
“amount” of the signal present at the frequency ν. Now, it is desirable to be able
to reconstruct f from f̂ , and we shall see in Section IV-6.2 that this is done via the
formula

f (t)“=”
∫
R

f̂ (ν)e2iπνt dν. (FT)

The easiest way to do the integral is, of course, using a symbolic manipulation
program. I just tried this with Mathematica®, and I was told it could not do the
computation. Indeed, the integral does not converge! Nonetheless, in many tables of
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Fourier transforms (that is what the preceding computations are about), we are told
that the integral in (FT) does indeed produce f (t). Are the tables wrong? Well, no.
But they are only correct when one understands exactly what the right-hand side
of (FT) means. What it means is that the integral converges, in L2(R;C) to f . Let us
say some things about the story behind this that are of a general nature, and apply
to many ideas in signal and system theory, and indeed to applied mathematics as
a whole.
1. The story—it is the story of the L2-Fourier transform—is not completely trivial.

It requires some delving into functional analysis at least, and some background in
integration theory, if one wishes to understand that “L” stands for “Lebesgue,”
as in “Lebesgue integration.” At its most simple-minded level, the theory is
certainly understandable by many undergraduates. Also, at its most simple-
minded level, it raises more questions than it answers.

2. The story, even at the most simple-minded level alluded to above, takes some
time to deliver. The full story takes a lot of time to deliver.

3. It is not necessary to fully understand the story, perhaps even the most simple-
minded version of it, to be a user of the technology that results.

4. By understanding the story well, one is led to new ideas, otherwise completely
hidden, that are practically useful. In control theory, quadratic regulator theory,
and in signal processing, the Kalman filter, are examples of this.

5. The full story of the L2-Fourier transform, and the issues stemming from it,
directly or otherwise, is beautiful.
The nature of the points above, as they relate to this series, are as follows.

Points 1 and 2 indicate why the story cannot be told to all undergraduates, or
even most graduate students. Point 3 indicates why it is okay that the story not
be told to everyone. Point 4 indicates why it is important that the story be told
to someone. Point 5 should be thought of as a sort of benchmark as to whether
the reader should bother with understanding what is in this series. Here is how to
apply it. If one reads the assertion that this is a beautiful story, and their reaction
is, “Okay, but there better be a payoff,” or, “So what?” or, “Beautiful to who?” then
perhaps they should steer clear of this series. If they read the assertion that this
is a beautiful story, and respond with, “Really? Tell me more,” then I hope they
enjoy these books. They were written for such readers. Of course, most readers’
reactions will fall somewhere in between the above extremes. Such readers will
have to sort out for themselves whether the volumes in this series lie on the right
side, for them, of being worth reading. For these readers I will say that this series
is heavily biased towards readers who react in an unreservedly positive manner to
the assertions of intrinsic beauty.

For readers skeptical of assertions of the usefulness of mathematics, an inter-
esting pair of articles concerning this is [Wigner 1960] and [Hamming 1980].
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What is the best way of getting through this material?

Now that a reader has decided to go through with understanding what is in
these volumes, they are confronted with actually doing so: a possibly nontrivial
matter, depending on their starting point. Let us break down our advice according
to the background of the reader.

I look at the tables of contents, and very little seems familiar. Clearly if nothing seems
familiar at all, then a reader should not bother reading on until they have acquired
an at least passing familiarity with some of the topics in the book. This can be
done by obtaining an undergraduate degree in electrical engineering (or similar),
or pure or applied mathematics.

If a reader already possess an undergraduate degree in mathematics or engi-
neering, then certainly some of the following topics will appear to be familiar: linear
algebra, differential equations, some transform analysis, Fourier series, system the-
ory, real and/or complex analysis. However, it is possible that they have not been
taught in a manner that is sufficiently broad or deep to quickly penetrate the texts
in this series. That is to say, relatively inexperienced readers will find they have
some work to do, even to get into topics with which they have some familiarity.
The best way to proceed in these cases depends, to some extent, on the nature of
one’s background.

I am familiar with some or all of the applied topics, but not with the mathematics. For
readers with an engineering background, even at the graduate level, the depth
with which topics are covered in these books is perhaps a little daunting. The best
approach for such readers is to select the applied topic they wish to learn more
about, and then use the text as a guide. When a new topic is initiated, it is clearly
stated what parts of the book the reader is expected to be familiar with. The reader
with a more applied background will find that they will not be able to get far
without having to unravel the mathematical background almost to the beginning.
Indeed, readers with a typical applied background will normally be lacking a good
background in linear algebra and real analysis. Therefore, they will need to invest
a good deal of effort acquiring some quite basic background. At this time, they will
quickly be able to ascertain whether it is worth proceeding with reading the books
in this series.

I am familiar with some or all of the mathematics, but not with the applied topics. Readers
with an undergraduate degree in mathematics will fall into this camp, and probably
also some readers with a graduate education in engineering, depending on their
discipline. They may want to skim the relevant background material, just to see
what they know and what they don’t know, and then proceed directly to the applied
topics of interest.

I am familiar with most of the contents. For these readers, the series is one of reference
books.
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Comments on organisation

In the current practise of teaching areas of science and engineering connected
with mathematics, there is much emphasis on “just in time” delivery of mathe-
matical ideas and techniques. Certainly I have employed this idea myself in the
classroom, without thinking much about it, and so apparently I think it a good
thing. However, the merits of the “just in time” approach in written work are, in
my opinion, debatable. The most glaring difficulty is that the same mathematical
ideas can be “just in time” for multiple non-mathematical topics. This can even
happen in a single one semester course. For example—to stick to something ger-
mane to this series—are differential equations “just in time” for general system
theory? for modelling? for feedback control theory? The answer is, “For all of
them,” of course. However, were one to choose one of these topics for a “just in
time” written delivery of the material, the presentation would immediately become
awkward, especially in the case where that topic were one that an instructor did
not wish to cover in class.

Another drawback to a “just in time” approach in written work is that, when
combined with the corresponding approach in the classroom, a connection, per-
haps unsuitably strong, is drawn between an area of mathematics and an area
of application of mathematics. Given that one of the strengths of mathematics
is to facilitate the connecting of seemingly disparate topics, inside and outside of
mathematics proper, this is perhaps an overly simplifying way of delivering math-
ematical material. In the “just simple enough, but not too simple” spectrum, we
fall on the side of “not too simple.”

For these reasons and others, the material in this series is generally organised
according to its mathematical structure. That is to say, mathematical topics are
treated independently and thoroughly, reflecting the fact that they have life inde-
pendent of any specific area of application. We do not, however, slavishly follow
the Bourbaki1 ideals of logical structure. That is to say, we do allow ourselves the
occasional forward reference when convenient. However, we are certainly careful
to maintain the standards of deductive logic that currently pervade the subject of
“mainstream” mathematics. We also do not slavishly follow the Bourbaki dictum
of starting with the most general ideas, and proceeding to the more specific. While
there is something to be said for this, we feel that for the subject and intended
readership of this series, such an approach would be unnecessarily off-putting.

Andrew D. Lewis Kingston, ON, Canada
1Bourbaki refers to “Nicolas Bourbaki,” a pseudonym given (by themselves) to a group of French

mathematicians who, beginning in mid-1930’s, undertook to rewrite the subject of mathematics.
Their dictums include presenting material in a completely logical order, where no concept is referred
to before being defined, and starting developments from the most general, and proceeding to
the more specific. The original members include Henri Cartan, André Weil, Jean Delsarte, Jean
Dieudonné, and Claude Chevalley, and the group later counted such mathematicians as Roger
Godement, Jean-Pierre Serre, Laurent Schwartz, Emile Borel, and Alexander Grothendieck among
its members. They have produced eight books on fundamental subjects of mathematics.
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Preface for Volume 3

In this third volume of this five volume series, we depart decidedly from the
coverage of material that is typically covered in an undergraduate programme in
either mathematics or in engineering and the physical sciences. Most of the material
in this volume is covered only at the graduate level, with some material being basic
at the graduate level and some material only being covered in specialised courses
of the graduate level.

We begin in Chapter 1 by presenting material at a general level that touches
upon topics touched on in Chapters I-2, I-3, and II-1. The subject of this chapter,
“general topology,” is one that is often not taught at all in an undergraduate cur-
riculum, and also often not in a dedicated course at the graduate level, although
some of the material inevitably finds its way into the corpus through other courses,
where some basic knowledge of topology is essential. Our view is that a systematic
development of topological concepts is important to have at one’s disposal eventu-
ally, as it is often most convenient and clear to introduce ideas in their most general
context. That being said, in Chapter 1 we cover the topics of openness, closedness,
compactness, convergence, and continuity in the general setting of topological
spaces, where they are most naturally defined. We also work with other topics in
general topology, as these provide important context for much material to follow.
Our presentation here is a more or less standard one; in topics covered at the grad-
uate level in mathematics, the style of treatment typically merges with our default
style, which is to be focussed on structure and proving useful theorems related to
this structure.

The next topic covered is measure theory, in Chapter 2. This subject is almost
always part of the core of graduate mathematics education, as it is difficult to do
anything resembling serious analysis without having the tools of measure theory
at hand to understand basic parts of the subject. We present a comprehensive
treatment of measure theory and integration in the general setting, and as well
develop carefully and independently, both the single and multivariable Lebesgue
integral. With the understanding that the Lebesgue measure and the Lebesgue
integral are among the most challenging concepts to learn at a first encounter,
substantial effort is devoted to understanding the motivations for the Lebesgue
integral.

One of the results of a systematic development of measure theory is a collection
of useful Banach spaces. In Chapter 3 we introduce the notion of a Banach space,
and study some basic properties. We shall make essential use of the structure
of Banach spaces subsequently in this volume and also in subsequent volumes.
Banach spaces comprise a basic ingredient of basic functional analysis, and a de-
velopment of their elementary properties is a part of the graduate level curriculum
in mathematics. Moreover, again the graduate level, Banach spaces are a com-
monly used tool in applications of mathematics in engineering and the physical
sciences. We develop the theory a little beyond the introductory level at which it
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is often presented, either to mathematics or to engineering graduate students. Our
motivation for this is to have at hand the fuller context for Banach spaces and some
of the subtleties involved once one explores their structure beyond what is on the
surface.

A special sort of Banach space is the Hilbert space, to which we turn our attention
in Chapter 4. Hilbert spaces are important in mathematics and in applications of
mathematics since they offer a surprisingly rich extra structure beyond that of a
general Banach space. (Indeed, one might say that the interesting thing about the
structural theory of Banach spaces is the way in which they can generally differ
from Hilbert spaces.)

In Chapter 5 we study convexity in a general way. The material we develop
here has already been used in Chapter 3 to explain some important structural
properties of Banach spaces; see Theorems 3.4.8 and 3.7.5. It will also be used in
Chapter 6 to develop some tools in functional analysis. Moreover, basic ideas in
convex analysis arise in essential ways in applied problems in optimisation theory.
Indeed, a common approach in optimisation theory is to convert an optimisation
problem into a convex problem, then declare victory.

One of the topics we cover that is not normally a part of the background of
even the most mathematically inclined engineer or scientist is that of topological
vector spaces, beyond the standard theory of Banach and Hilbert spaces. This
material is covered in Chapter 6 of this volume. The need to cover this material
is a consequence of the way we formulate our theory of differential and difference
equations in Chapters V-4 and V-5, and the way we formulate system theory in
Chapter V-6. Apart from this, the framework of topological vector spaces provides
perhaps the clearest framework for understanding the theory of distributions which
we present in Chapter IV-3.

The final topic of this volume is another mathematically specialised subject, but
one that is important in the theory of linear systems. The subject is that of the
special classes of holomorphic functions, known as “Hardy spaces.” These spaces
serve as a place where concepts from measure theory, functional analysis, complex
analysis, and Fourier theory overlap.

Andrew D. Lewis Kingston, ON, Canada
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Chapter 1

Topology

It is possible to say much of what we have to say in this series in ways that
avoid the subject of topology in its full generality. However, as one progresses
to more and more abstract notions, topology is helpful in connecting seemingly
disparate ideas, and so allowing one’s intuition to extend into areas where it may
have difficulty going otherwise. Moreover, at some point the effort required to not
use topology overtakes the effort of using it.

The subject of topology has as its basis the fact that many concepts in analysis
have at their centre the idea of an open set. For example, the usual “ϵ–δ” notion
of continuity is equivalent to a requirement that the preimage of open sets be
themselves open. Thus, in topology one introduces axioms on what constitutes a
collection of open sets. This forms the starting point for notions like closedness,
compactness, connectedness, etc. While the abstraction of topology is unnecessary
to understand basic material such as we encountered in Chapters I-2 and II-3, it
is very useful to understand topology when we get to the more abstract material
such as in Chapter 3 and particularly Chapter 6.

Our presentation of topology is a little biased because of the use we make of
topology in these volumes. Indeed, our excursions into topology exclusively come
by way of analysis. For this reason, it is notions such as continuity, compactness,
and completeness that are of most interest to us. But there is another important
side to topology and that is as a tool for understanding the geometric properties
of a space. This typically ends up in algebraic topology and we refer the reader to
[Munkres 1984] as an example of a text in this area.

Do I need to read this chapter? At just what point a reader decides to engage
this material is something of a matter of choice. An attempt has been made to
ensure that the presentation builds on the material of a topological nature that
has already been presented in simpler settings in Chapters I-2, I-3, and II-3. Also,
the material in Chapter 3 will provide a useful context for some of the abstraction
encountered here. Some readers may be happier reading Chapter 3 before getting
to the material here. However, this chapter on topology will be assumed in our
presentation in Chapter 6, and also in parts of Chapter 2. •
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Section 1.1

Metric spaces

The simplest, but still reasonably general, form of a what we shall later dub a
topological space is a metric space. Almost all, but not all, topological spaces we
encounter in these volumes will be metric spaces, at least in the sense that their
topology is equivalent (in a sense we shall make precise) to that of a metric space.
Metric spaces, as we shall see, generalise the ideas with which we are familiar
from real and complex analysis. In this section we will not present a complete
picture of metric space theory, or even that part of it that we will use. Instead, we
concentrate on some basic ideas connected with metric spaces—open and closed
sets, continuous maps, sequences, completeness, and compactness—and how these
lead naturally to generalisations of metric spaces to topological spaces. Some other
properties of metric spaces will be presented in the course of the remainder of the
chapter.

Do I need to read this section? If one is encountering the material in this chapter
for the first time, this is the place to start. There are not too many concepts in
topology that are not best introduced via metric spaces. •

1.1.1 Definitions and simple examples

We begin by defining the notion of a metric space. Intuitively, a metric gives the
structure of “distance” between two points in a set. As we shall see, this generalises
our usual perception of distance in Euclidean space.

1.1.1 Definition (Metric space) A metric on a set S is a map d : S × S → R with the
following properties:

(i) d(x1, x2) = d(x2, x1) for all x1, x2 ∈ S (symmetry);
(ii) d(x1, x2) = 0 if and only if x1 = x2 (definiteness);
(iii) d(x1, x3) ≤ d(x1, x2) + d(x2, x3) for all x1, x2, x3 ∈ S (triangle inequality).

A metric space is a pair (S, d) where d is a metric on the set S. •

Note that the triangle inequality gives d(x1, x1) ≤ 2d(x1, x2) for all x1, x2 ∈ S, and
therefore d(x1, x2) ∈ R≥0 for all x1, x2 ∈ S.

Let us give some simple examples of metric spaces, some that we have encoun-
tered before, and some that are new.

1.1.2 Examples (Metric spaces)
1. Let S = R and take dR(x1, x2) = |x1 − x2|. The properties of the absolute value

given in Proposition I-2.2.12 allow us to verify the properties that ensure that
dR is a metric. Unless we explicitly state otherwise, we shall always assume we
are using the metric dR on R.
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2. Let S = C and take dC(z1, z2) = |z1 − z2|. From the properties of the complex
magnitude function given in it follows that dC is a metric. Unless we explicitlywhat

state otherwise, we shall always assume we are using the metric dC on C.
3. Let S = Rn and define

dRn(x, y) =
( n∑

j=1

(x j − y j)2
)1/2

.

That this defines a metric on Rn follows from Proposition II-1.1.8.
4. For any set S, define

ddisc(x1, x2) =

0, x1 = x2,

1, x1 , x2.

In this case, it is straightforward to check the metric properties for d. While
this shows that every set can be made into a metric space, the metric is not that
useful in general. The subscript “disc” stands for discrete metric, and refers to
the fact that, as we shall see, ddisc defines the so-called “discrete topology” on S.

5. On R define a metric d by

d(x, y) =



∣∣∣ x
1+|x| −

y
1+|y|

∣∣∣, x, y ∈ R,∣∣∣ x
1+|x| − 1

∣∣∣, x ∈ R, y = ∞,∣∣∣1 − y
1+|y|

∣∣∣, x = ∞, y ∈ R,∣∣∣ x
1+|x| + 1

∣∣∣, x ∈ R, y = −∞,∣∣∣1 + y
1+|y|

∣∣∣, x = −∞, y ∈ R,
0, x = y = −∞ or x = y = ∞,
2, x = ∞, y = −∞ or x = −∞, y = ∞.

We leave the verification that this is a metric space to the reader as Exercise 1.1.1.
6. If (S, d) is a metric space and A ⊆ S, then the map dA : A × A → R defined by

dA(x1, x2) = d(x1, x2) is a metric on A. •

We shall see many more examples of metric spaces in Chapter 6.
The following is a useful inequality concerning the metric.

1.1.3 Proposition (Two useful metric inequalities) If (S,d) is a metric space, then
(i) |d(x1, x0) − d(x2, x0)| ≤ d(x1, x2) for all x0, x1, x2 ∈ S, and
(ii) |d(x1, x3) − d(x2, x4)| ≤ d(x1, x2) + d(x3, x4) for all x1, x2, x3, x4 ∈ S.

Proof (i) By the triangle inequality we have

d(x2, x0) ≤ d(x1, x0) + d(x1, x2), d(x1, x0) ≤ d(x2, x0) + d(x1, x2).

Therefore,

d(x2, x0) − d(x1, x0) ≤ d(x1, x2), d(x1, x0) − d(x2, x0) ≤ d(x1, x2),
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implying that |d(x2, x0) − d(x1, x0)| ≤ d(x1, x2), as desired.
(ii) We have

|d(x1, x3) − d(x2, x4)| = |d(x1, x3) − d(x2, x3) + d(x2, x3) − d(x2, x4)|
≤ |d(x1, x3) − d(x2, x3)| + |d(x2, x3) − d(x2, x4)|
≤ d(x1, x2) + d(x3, x4),

where we have used the triangle inequality for dR and part (i). ■

1.1.2 Subsets of metric spaces

We have already seen that, forR and C, there exists the notion of what it means
for a set to be open. These notions are easily adapted to general metric spaces.

1.1.4 Definition (Open, closed, and bounded sets in metric spaces) Let (S, d) be a
metric space.

(i) The open d-ball of radius r about x ∈ S is the set

Bd(r, x) = {y ∈ S | d(x, y) < r}.

(ii) The closed d-ball of radius r about x ∈ S is the set

Bd(r, x) = {y ∈ S | d(x, y) ≤ r}.

(iii) A subset U ⊆ S is open if, for each x ∈ U, there exists ϵ ∈ R>0 such that
Bd(ϵ, x) ⊆ U. (The empty set is also open, by declaration.)

(iv) A subset A ⊆ S is closed if S \ A is open.
(v) A subset A ⊆ S is bounded if there exists x0 ∈ S and R ∈ R>0 such that

S ⊆ Bd(R, x0).
(vi) A subset A ⊆ S is totally bounded if, for each ϵ ∈ R>0, there exists a finite set
{x1, . . . , xk} ⊆ S such that A ⊆ Bd(ϵ, x1) ∪ · · · ∪ Bd(ϵ, xk).

(vii) The diameter of a subset A ⊆ S is

diam(A) = sup{d(x1, x2) | x1, x2 ∈ A} •

Let us see what open sets look like in our examples.

1.1.5 Examples (Example 1.1.2 cont’d)
1. The open subsets of the metric space (R, dR) are, recalling their definition from

Definition I-2.5.2, exactly the open sets as we usually think of them.
2. This is similarly true for the metric space (C, dC), recalling from Defini-

tion II-3.1.4 the notion of an open subset of C.
3. Since this is the first occasion we have talked systematically about open subsets

of Rn, we take Definition 1.1.4 as the definition of what we mean by an open
subset of Rn, noting that this agrees with the usual situation when n = 1.
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4. In the case of the metric space (S, ddisc), every subset is open. Indeed, let A ⊆ S
and let x ∈ A. Then clearly Bddisc(x,

1
2 ) = {x} ⊆ A.

5. For a metric space (S, d) and a subset A ⊆ S, we let dA be the metric on A inherited
from S. We then have BdA(r, x) = A ∩ Bd(r, x) for each x ∈ A. Using this fact, one
can easily show that a subset U ⊆ A is open if and only if there exists an open
subset Ũ ⊆ S for which U = A ∩ Ũ. We leave the details of this to the reader as
Exercise 1.1.3. •

Let us discuss the properties of open sets that we will generalise when we
discuss topological spaces in Section 1.2.

1.1.6 Proposition (Properties of open subsets of metric spaces) If (S,d) is a metric
space, then the following statements hold:

(i) for (Ua)a∈A an arbitrary family of open sets, ∪a∈AUa is open;
(ii) for (U1, . . . ,Un) a finite family of open sets, ∩n

j=1Uj is open.
Proof (i) Let x ∈ ∪a∈AUa. Then, since x ∈ Ua0 for some a0 ∈ A, there exists ϵ ∈ R>0 such
that Bd(ϵ, x) ⊆ Ua0 ⊆ ∪a∈AUa.

(ii) Let x ∈ ∩n
j=1U j. For each j ∈ {1, . . . ,n}, choose ϵ j ∈ R>0 such that Bd(ϵ j, x) ⊆ U j,

and let ϵ = min{ϵ1, . . . , ϵn}. Then Bd(ϵ, x) ⊆ U j, j ∈ {1, . . . ,n}, and so Bd(ϵ, x) ⊆ ∩n
j=1U j.■

As with subsets of R we can define the interior, closure, and boundary of a
subset of a metric space. Here we just give the definitions; general definitions and
properties of interior, closure, and boundary in this general setup, will be given in
.where?

1.1.7 Definition (Interior, closure, boundary) Let (S, d) be a metric space and let A ⊆ S.
(i) The interior of A is the set

int(A) = ∪{U | U ⊆ A, U open}.

(ii) The closure of A is the set

cl(A) = ∩{C | A ⊆ C, C closed}.

(iii) The boundary of A is the set bd(A) = cl(A) ∩ cl(R \ A). •

The following example illustrates that things are not always as intuitive for
general metric spaces as they are for the metric spaces with which you are familiar.

1.1.8 Example (The closure of an open ball may not be the closed ball) Let S =
R \ (1, 2) and equip S with the metric d(x, y) = |x − y| coming from the fact that
S ⊆ R. Then

Bd(2, 0) = (−2, 1), cl(Bd(2, 0)) = [−2, 1), Bd(2, 0) = [−2, 1) ∪ {2}.

Thus the closure of the open ball of radius 2 about 0 is strictly contained in closed
ball of radius 2 about 0.

Note that it will always be the case, for any metric space, that cl(Bd(r, x)) ⊆ Bd(r, x)
(why?). •
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1.1.3 Sequences in metric spaces

In this section we continue our project of defining a concept for general metric
spaces that extends, in a fairly obvious way, notions we have already seen. Then
we provide an alternative characterisation that will lead to the more general setting
of topological space in subsequent sections.

In this section, the topic is convergence of sequences.

1.1.9 Definition (Convergent sequences in metric spaces) Let (S, d) be a metric space
and let (x j) j∈Z>0 be a sequence in S.

(i) The sequence converges to x0 ∈ S if, for each ϵ ∈ R>0, there exists N ∈ Z>0

such that d(x j, x0) < ϵ for all j ≥ N.
(ii) If the sequence converges to x0, then x0 is the limit of the sequence.
(iii) The sequence is convergent if it converges to some x0 ∈ S.
(iv) The sequence is divergent if it is not convergent.
(v) The sequence is bounded if there exists x0 ∈ S and R ∈ R>0 such that x j ∈

Bd(R, x0) for all j ∈ Z>0. •

1.1.10 Remark The definition reflects the intuitive idea that the tail of a sequence con-
verging to x0 lies near x0. One can state this as follows. Given ϵ ∈ R>0, there exists
N ∈ Z>0 such that x j ∈ Bd(ϵ, x0) for all j ≥ N. •

The notions of convergent sequences in R, C, or Rn are simple, so we forgo
examples of these. Let us merely look at some more general situations.

1.1.11 Examples (Convergent sequences)
1. If (S, ddisc) is a metric space with the discrete topology, then a sequence (x j) j∈Z>0

that converges to x0 ∈ S must have the property that there exists N ∈ Z>0 such
that x j = x0 for all j ≥ N.

2. If (S, d) is a metric space and if A ⊆ S is equipped with the metric dA defined by
restricting d to A, then a sequence (x j) j∈Z>0 ⊆ A converges to x0 ∈ A if and only
if it converges to x0, thinking of (x j) j∈Z>0 as a sequence in S. •

Now let us give a notion of convergence of sequences in metric spaces that will
suggest how this can be done in topological spaces.

1.1.12 Proposition (Equivalent notion of convergence) Let (S,d) be a metric space. For
a sequence (xj)j∈Z>0 in S, the following statements are equivalent:

(i) the sequence converges to x0 ∈ S;
(ii) for each open subset U ⊆ S containing x0, there exists N ∈ Z>0 such that xj ∈ U for

each j ≥ N.
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Proof (i) =⇒ (ii) Let U ⊆ S be an open subset containing x0 and let ϵ ∈ R>0 have the
property that Bd(ϵ, x0) ⊆ U. Then there exists N ∈ Z>0 such that x j ∈ Bd(ϵ, x0) ⊆ U for
each j ≥ N.

(ii) =⇒ (i) Let ϵ ∈ R>0 and note that Bd(ϵ, x0) is an open set containing x0. Thus
there exists N ∈ Z>0 such that x j ∈ Bd(ϵ, x0) for j ≥ N, so completing the proof. ■

As with our investigation of sequences inQ andR in Section I-2.1, the notion of
a Cauchy sequence is an important one in understanding the properties of a metric
space.

1.1.13 Definition (Cauchy sequence) Let (S, d) be a metric space. A sequence (x j) j∈Z>0 is
a Cauchy sequence if, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that d(x j, xk) < ϵ
for all j, k ≥ N. •

Cauchy sequences have the useful property of being bounded.

1.1.14 Proposition (Cauchy sequences are bounded) If (S,d) is a metric space and if
(xj)j∈Z>0 is a Cauchy sequence then the sequence is also bounded.

Proof Let x0 ∈ S. Choose N ∈ Z>0 such that d(v j, vk) < 1 for j, k ∈ Z>0. Then take
RN to be the largest of the nonnegative real numbers d(x1, x0), . . . , d(xN, x0). Then, for
j ≥ N we have, using the triangle inequality,

d(x j, x0) = d(x j, xN) + d(xN, x0) ≤ 1 + RN,

giving the result by taking R = RN + 1. ■

The notion of a Cauchy sequence is more subtle than that of a convergent
sequence in that elements do not get close to a limit, but only to one another.
Nonetheless, one intuitively expects there to be some connections between Cauchy
sequences and convergent sequences. One implication is true.

1.1.15 Proposition (Convergent sequences are Cauchy) If (S,d) is a metric space, and
if (xj)j∈Z>0 is a sequence converging to x0 ∈ S, then (xj)j∈Z>0 is a Cauchy sequence.

Proof Let ϵ ∈ R>0 and choose N ∈ Z>0 such that d(x j, x0) ≤ ϵ
2 for all j ≥ N. Then, for

j, k ≥ N, we have d(x j, xk) ≤ d(x j, x0) + d(x0, x j) < ϵ, using the triangle inequality. ■

The matter of whether Cauchy sequences converge is the matter of completeness
which we discuss in detail in Section 1.1.6.

1.1.4 Maps between metric spaces

In the preceding section, we discussed open subsets of metric spaces. The
properties of these, as given in Proposition 1.1.6, shall form the basis for our
definition of a topological space. In this section, we carry out this objective for
the notion of continuity. That is to say, we give a definition of a continuous map
between metric spaces, and then characterise this notion of continuity in a way that
is easily generalised to topological spaces.

First the definition which generalises the notions of continuity we have seen in
Definitions I-3.1.1 and II-3.2.4.



2022/03/07 1.1 Metric spaces 9

1.1.16 Definition (Continuity of maps between metric spaces) Let (S1, d1) and (S2, d2)
be metric spaces, and let f : S1 → S2 be a map. Then

(i) f is continuous at x0 if, for each ϵ ∈ R>0, there exists δ ∈ R>0 such that
d1(x, x0) < δ implies that d2( f (x), f (x0)) < ϵ,

(ii) f is continuous if it is continuous at each x ∈ S1,
(iii) f is discontinuous at x0 if it is not continuous at x0, and
(iv) f is discontinuous if it is not continuous.
(v) f is uniformly continuous if, for each ϵ ∈ R>0, there exists δ ∈ R>0 such that

d1(x1, x2) < δ implies that d2( f (x1), f (x2)) < ϵ. •

1.1.17 Remark (Alternative characterisation of continuity) It is easy to give the fol-
lowing useful alternate characterisation of continuity: a map f : S1 → S2 is con-
tinuous at x0 if and only if, for every ϵ ∈ R>0, there exists δ ∈ R>0 such that
f (Bd1(δ, x0)) ⊆ Bd2(ϵ, f (x0)). In words, f is continuous at x0 if and only if every ball
around f (x0) contains the image under f of some ball around x0. •

Let us give some examples of maps that are continuous or not, in order to
illustrate the concept. We refer the reader to Section I-3.1 for simpler examples. In
particular, we refer the reader to Example I-3.1.7 for an example of a map that is
continuous but not uniformly continuous.

1.1.18 Examples (Continuous and discontinuous maps)
1. Let (S, ddisc) be a metric space with the discrete metric, and let (T, d) be any other

metric space. We claim that every map f : S → T is continuous. Indeed, let
x0 ∈ S and let ϵ ∈ R>0. If δ = 1

2 then d(x, x0) < δ implies that x = x0 and so
d( f (x), f (x0)) = 0 < ϵ. •

Now we give an equivalent characterisation of continuity for metric spaces,
one that will be key in motivating our general notion of continuity for topological
spaces.

1.1.19 Theorem (Equivalent notions of continuity) For metric spaces (S1,d1) and (S2,d2),
the following two statements concerning a map f : S1 → S2 are equivalent:

(i) f is continuous at x0;
(ii) for every open set V ⊆ S2 containing f(x0), there exists an open subset U ⊆ S1

containing x0 and such that f(U) ⊆ V;
(iii) if the sequence (xj)j∈Z>0 in S1 converges to x0 then the sequence (f(xj))j∈Z>0 converges

to f(x0) in S2.
In particular, f is continuous if and only if f−1(V) ⊆ S1 is open for every open subset
V ⊆ S2.

Proof (i) =⇒ (ii) Let V ⊆ S2 be an open subset containing f (x0) and let ϵ ∈ R>0 be
such that Bd2(ϵ, f (x0)) ⊆ V. Then, since f is continuous, there exists δ ∈ R>0 such that
f (Bd1(δ, x0)) ⊆ Bd2(ϵ, f (x0)) ⊆ V. The result follows by taking U = Bd1(δ, x0).
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(ii) =⇒ (iii) Let (x j) j∈Z>0 be a sequence in S1 converging to x0 and let ϵ ∈ R>0. By
hypothesis there exists a neighbourhood U of x0 in S1 such that f (U) ⊆ Bd2(ϵ, f (x0)).
Thus there exists δ ∈ R>0 such that f (Bd1(δ, x0) ⊆ Bd2(ϵ, f (x0)) since U is open in S1.
Now choose N ∈ Z>0 sufficiently large that d1(x j, x0) < δ for j ≥ N. It then follows that
d2( f (x j), f (x0)) < ϵ for j ≥ N, so giving convergence of ( f (x j)) j∈Z>0 to f (x0), as desired.

(iii) =⇒ (i) Let ϵ ∈ R>0. Then, by definition of convergence, there exists δ ∈ R>0 such
that, for x ∈ Bd1(δ, x0), d( f (x), f (x0)) < ϵ, which is exactly the definition of continuity of
f at x0.

For the final statement in the proposition, let V be an open subset of S2 and
note that, for each y ∈ V, there exists ϵy ∈ R>0 such that Bd2(ϵy, y) ⊆ U. Therefore,
V = ∪y∈VBd2(ϵy, y), so that f−1(V) = ∪y∈V f−1(Bd2(ϵy, y)). Since each of the subsets
f−1(Bd2(ϵy, y)) is open by the first part of the proposition, it follows from Proposi-
tion 1.1.6(i) that f−1(V) is open if f is continuous. That f is continuous if f−1(V) is
open for every open V follows from the first part of the proposition. ■

A useful fact about metric spaces is that the metric is itself continuous, in the
following sense.

1.1.20 Proposition (Continuity of the metric) If (S,d) is a metric space and if x0 ∈ S, then
the map x 7→ d(x, x0) is a continuous map from (S,d) to (R,dR).

Proof Let x ∈ S, let ϵ ∈ R>0, and choose δ = ϵ. If d(y, x) < δ then we have

|d(y, x0) − d(x, x0)| ≤ d(y, x) < δ = ϵ,

using Proposition 1.1.3(i), showing that the map of the proposition is continuous at
x. ■

Another important feature of maps between metric spaces is one that concerns
preservation of the metric.

1.1.21 Definition (Isometry) Let (S1, d1) and (S2, d2) be metric spaces. A map f : S1 → S2

is an isometry if d2( f (x1), f (x2)) = d1(x1, x2) for each x1, x2 ∈ S1. •

Clearly, isometries are continuous. However, just as clearly, there are many
continuous maps that are not isometries.

An important class of maps from a metric space to itself are those that reduce
distance.

1.1.22 Definition (Contraction map) If (S, d) is a metric space, a map f : S → S is a
contraction map if there exists λ ∈ [0, 1) such that d( f (x1), f (x2)) ≤ λd(x1, x2) for
every x1, x2 ∈ S. •

Contraction maps have the following important property.

1.1.23 Theorem (Contraction Mapping Theorem) If (S,d) is a complete metric space and
if f : S→ S is a contraction map then there exists a unique point x0 ∈ S with the property
that f(x0) = x0.
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Proof Let λ ∈ [0, 1) have the property that d( f (x1), f (x2)) ≤ λd(x1, x2) for every x1, x2 ∈

S. Let y0 ∈ S and define a sequence (y j) j∈Z>0 by asking that y1 = f (y0) and then
inductively by defining y j+1 = f (y j), j ∈ Z>0. We claim that (y j) j∈Z>0 is a Cauchy
sequence. First of all we compute

d(y1, y2) = d( f (y0), f (y1)) ≤ λd(y0, y1)

=⇒ d(y2, y3) = d( f (y1), f (y2)) ≤ λd(y1, y2) ≤ λ2d(y0, y1)
...

=⇒ d(y j, y j+1) = d( f (y j−1), f (y j)) ≤ λ jd(y0, y1), j ∈ Z>0.

Therefore, using the triangle inequality, for k, l ∈ Z>0 with l > k,

d(yk, yl) ≤ d(yk, yk+1) + · · · + d(yl−1, yl) ≤ (λk + · · · + λl−1)d(y0, y1).

Now, by Example I-2.4.2–1 the series
∑
∞

j=1 λ
j converges. Thus the corresponding

sequence of partial sums is Cauchy and so there exists N ∈ Z>0 sufficiently large that

d(y0, y1)
l−1∑
j=k

λ j < ϵ, k, l ≥ N, l > k.

Then, for k, l ≥ N with l > k we have d(yk, yl) < ϵ, giving the sequence (y j) j∈Z>0 as a
Cauchy sequence, as desired. Since S is complete there exists x0 ∈ S such that (y j) j∈Z>0

converges to x0. We claim that f (x0) = x0. For ϵ ∈ R>0 let j ∈ Z>0 be sufficiently large
that d(x0, y j) < ϵ

2(1+λ) and such that λ jd(y0, y1) < ϵ
2 . Then

d(x0, f (x0)) ≤ d(x0, y j) + d(y j, f (y j)) + d( f (y j), f (x0))

≤ (1 + λ)d(x0, y j) + λ jd(y0, y1) < ϵ.

Thus d(x0, f (x0)) = 0 and so f (x0) = x0. This gives the existence part of the theorem.
For uniqueness, suppose that x̃0 has the property that f (x̃0) = x̃0. Then

d(x0, x̃0) = d( f (x0), f (x̃0)) ≤ λd(x0, x̃0) < d(x0, x̃0).

Therefore, d(x0, x̃0) = 0 and so x0 = x̃0. ■

1.1.5 Semimetric spaces

In this section we define a concept that is weaker in terms of its structure than
a metric. It is not immediately clear why this extra flexibility might be useful,
but we shall see in Section 6.2.2 that it is essential in characterising locally convex
topological vector spaces.

As we see, a semimetrics is a metric, sans the requirement of definiteness.
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1.1.24 Definition (Semimetric space) A semimetric on a set S is a map d : S × S → R
with the following properties:

(i) d(x1, x2) = d(x2, x1) for all x1, x2 ∈ S (symmetry);
(ii) d(x1, x2) = 0 if x1 = x2 (semidefiniteness);
(iii) d(x1, x3) ≤ d(x1, x2) + d(x2, x3) for all x1, x2, x3 ∈ S (triangle inequality).

A semimetric space is a pair (S, d) where d is a semimetric on the set S. •

Similarly as we did with metrics, the triangle inequality gives d(x1, x2) ≤
2d(x1, x2) for all x1, x2 ∈ S, so that d(x1, x2) ∈ R≥0 for all x1, x2 ∈ S.

Let us give some examples of semimetric spaces.

1.1.25 Examples (Semimetric spaces)
1. Clearly, every metric space is also a semimetric space.
2. On C define a semimetric d by d(z1, z2) = |Re(z1 − z2)|. It is evident that d is a

semimetric. However, it is not a metric since if z1 and z2 are any two complex
numbers with equal real part, then d(z1, z2) = 0. In a metric space, the distance
between two distinct points should be nonzero.

3. If S is a set, we define the semimetric dtriv by dtriv(x1, x2) = 0 for all x1, x2 ∈ S.
This is clearly a semimetric, and, equally clearly, it is not a very useful one. The
notation suggests that the topology defined by the semimetric is the so-called
“trivial topology.” We call dtriv the trivial semimetric. •

In a semimetric space, it is still possible to define notions of open and closed
sets.

1.1.26 Definition (Open and closed sets in semimetric spaces) Let (S, d) be a semi-
metric space.

(i) The open d-ball of radius r about x ∈ S is the set

Bd(r, x) = {y ∈ S | d(x, y) < r}.

(ii) A subset U ⊆ S is open if, for each x ∈ U, there exists ϵ ∈ R>0 such that Bd(ϵ, x)
such that Bd(ϵ, x) ⊆ U. (The empty set is also open, by declaration.)

(iii) A subset A ⊆ S is closed if S \ A is closed. •

These definitions read exactly like those for metric spaces. However, the inter-
pretations are slightly different, as the following examples show.

1.1.27 Examples (Example 1.1.25 cont’d)
1. For C equipped with the semimetric d(z1, z2) = |Re(z1 − z2)|, an open d-ball is a

vertical strip of the form {z ∈ C | Re(z) ∈ (a, b)}.
2. For the semimetric space (S, dtriv), there are two open sets, the empty set (by

definition) and S itself. Indeed, note that, for any x ∈ S and r ∈ R>0, we have
Bd(r, x) = S by definition. This then implies that S is the only nonempty open
subset of S. •
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For semimetric spaces, one has notions of continuity and convergence of se-
quences. Indeed, if (S1, d1) and (S2, d2) are semimetric spaces, then a map f : S1 → S2

is continuous at x0 ∈ S1 if, for each ϵ ∈ R>0, there exists δ ∈ R>0 such that d1(x, x0) < δ
implies that d2( f (x), f (x0)) < ϵ. The map f is continuous if it is continuous at each
point x ∈ S1. A sequence (x j) j∈Z>0 in a semimetric space (S, d) converges to x0 ∈ S
if, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that d(x j, x0) < ϵ for all j ≥ N.
The reader is invited to explore some of the consequences of these definitions in
Exercises 1.1.11 and 1.1.12.

The main result we wish to record in this section is the following one, which
associates a metric space to every semimetric space.

1.1.28 Theorem (Metric spaces from semimetric spaces) Let (S,d) be a semimetric space
and define an equivalence relation in S by x1 ∼ x2 if d(x1, x2) = 0 (the reader can show this
is an equivalence relation in Exercise 1.1.13). Let ([S], [d]) be defined by letting [S] be the
set of equivalence classes in S, and by letting [d]([x1], [x2]) = d(x1, x2). Then ([S], [d]) is
a metric space.

Proof First we show that [d] is well-defined, meaning that it is independent of choices
of representatives. Let x1 ∼ y1 and x2 ∼ y2. Then

d(x1, x2) ≤ d(x1, y1) + d(y1, y2) + d(y2, x2) ≤ d(y1, y2),

using the triangle inequality. Similarly one shows that d(y1, y2) ≤ d(x1, x2), so that
d(x1, x2) = d(y1, y2). Therefore, [d] is indeed well-defined. Now we show that [d] is
a metric on [S]. It is clear that [d] is symmetric and satisfies the triangle inequality,
since d has these properties. We need only show that [d] is definite. Suppose that
[d]([x1], [x2]) = 0. Then d(x1, x2) = 0 so that [x1] = [x2], as desired. ■

Let us give some examples of this construction of a metric space from a semi-
metric space.

1.1.29 Examples (Example 1.1.25 cont’d)
1. For C with the semimetric d(z1, z2) = |Re(z1 − z2)|, we note that two points z1

and z2 are equivalent under the relation of Theorem 1.1.28 exactly if Re(z1) =
Re(z2). Therefore, points in [C] are simply subsets of points in C with equal
real parts, i.e., vertical lines. Then [d]([z1], [z2]) is simply the horizontal distance
between the vertical lines through z1 and z2.

2. In the case of (S, dtriv), [S] consists of one point since all points in S are equivalent
under the equivalence relation of Theorem 1.1.28. In any metric space consisting
of only one point, the metric must be zero (why?). That is, [d]([x1], [x2]) = 0. •

1.1.6 Completeness

In the development of Section I-2.1 we saw that the property of completeness
of the real numbers was an important one, giving us such familiar conclusions as
“every bounded monotonically increasing sequences converges.” The notion of
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completeness is valid for general metric spaces, and in this section we introduce
the notion and some ideas attached to it. Since we do not yet have at hand
many profound examples of metric spaces (other than R, which we studied in
detail in Chapter I-2), it is difficult to explain the importance of completeness here.
However, the concept is extremely important, and we say a few words about this
in the context of normed vector spaces in Section 3.3.2.

The following definition gets things started, and is a natural one given the
constructions of Section I-2.1.

1.1.30 Definition (Complete metric space) A metric space (S, d) is
(i) complete if every Cauchy sequence in S converges, and is
(ii) incomplete if it is not complete. •

In Proposition 1.1.15 we showed that convergent sequences are Cauchy. The
converse of Proposition 1.1.15 is not generally true.

1.1.31 Examples (Cauchy sequences may not converge)
1. Let S = Q and let dQ be the metric on S inherited from the metric dR on R. In

Example I-2.1.15 we shows that there are Cauchy sequences in Q that do not
converge. Actually, we saw that there are many such nonconvergent Cauchy
sequences. Thus (Q, dQ) is not a complete metric space.

2. Let S = (0, 1] and define dS to be the metric on S inherited fromR. In S consider
the sequence (x j =

1
j ) j∈Z>0 . It is straightforward to check that (a) this is a Cauchy

sequence in S and that (b) it converges, as a sequence in R to x0 = 0. Therefore,
this is a Cauchy sequence in S that does not converge in S.

3. Let S = [0, 1] and define dS to be the metric on S inherited from R. If (x j) j∈Z>0

is a Cauchy sequence, we claim that this sequence is, in fact, convergent in
S. To prove this, one can reproduce the steps used above in proving that R
is complete, since there we began by first showing that a Cauchy sequence
in R is contained in some closed interval. (The reader would benefit from
understanding why this same idea does not work in the case where S = (0, 1].) •

1.1.32 Remark (Convergence to points not in the metric space) In Examples 1.1.31–1
and 2, we showed the nonconvergence of Cauchy sequences by showing that they
converge, but to a point not in the metric space. In these examples, this is sensible,
since the metric spaces were themselves subsets of metric spaces. However, such
examples can oversimplify the situation somewhat, and it is not uncommon to
hear students, when giving the definition of a complete metric space, say, “it is
complete when every Cauchy sequence in S converges in S,” in cases where S is
not a priori a subset of anything. This language is not recommended in such cases,
since all elements in S know is “S-ness.” Indeed, a sequence in S would likely
be gravely offended at even the inference that convergence elsewhere might be
possible. (As we shall see in Theorem 1.1.34, perhaps these sequences are being a
little over-sensitive.) •
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In Examples 1.1.31–1 and 2, the reason why the subsets ofRwere not complete
when equipped with the metric inherited from R is strongly related to their not
being closed. Let us illustrate that this is the case in general. The following result
relies on some properties of closed sets that we shall prove in a more general setting
in Section 1.2.4.

1.1.33 Proposition (Relationship between completeness and closedness) Let (S,d)
be a metric space and let A ⊆ S possess the metric dA inherited from d. Then the following
statements hold:

(i) if (S,d) is complete and A is closed, then (A,dA) is complete;
(ii) if (A,dA) is complete then A is closed.

Proof (i) If (x j) j∈Z>0 is a Cauchy sequence in A, then this is also a Cauchy sequence
S. Thus the sequence converges to some x ∈ S. As we shall see in Corollary 1.5.3,
a closed subset of a metric space contains all limits of sequences in the set; therefore
x ∈ A, and so (A, dA) is complete.

(ii) By Corollary 1.5.3, it suffices to show that if (x j) j∈Z>0 is a sequence in A con-
verging to x ∈ S, then x ∈ A. However, since such a sequence in a Cauchy sequence in
S, it is also a Cauchy sequence in A, by definition of dA. Therefore, it indeed converges
to a point x ∈ A. ■

1.1.7 Completions of metric spaces

Examples 1.1.31–1 and 2 might lead one to think that, for a metric space that is
not complete, it should be a subset of a complete metric space. The idea, intuitively,
is that one “adds” to the space the points corresponding to Cauchy sequences that
do not converge. Less intuitively, but more precisely, we have the proof of the
following theorem.

1.1.34 Theorem (Completion of metric space) If (S,d) is a metric space, then there exists
a complete metric space (S,d) with the following properties:

(i) there exists an isometry ιS : S→ S;

(ii) for each x ∈ S, there exists a sequence (xj)j∈Z>0 for which (ιS(xj))j∈Z>0 converges to x.

Such a metric space (S,d) is a completion of (S,d).
Furthermore, if (S1,d1) and (S2,d2) are two completions of (S,d) with ιS,1 : S → S1

and ιS,2 : S→ S2 being the corresponding isometries, then there exists a bijective isometry
ϕ from S1 to S2 such that the following diagram of commutes:

S
ιS,1

��

ιS,2

��
S1 ϕ

// S2
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Proof Let CS(S) be the collection of Cauchy sequences in S. Define a map d̃ : CS(S) ×
CS(S)→ R by

d̃((x j) j∈Z>0 , (y j) j∈Z>0) = lim
j→∞

d(x j, y j).

To show that this definition makes sense, we must show that lim j→∞ d(x j, y j) exists.
We do this by showing that (d(x j, y j)) j∈Z>0 is a Cauchy sequence for Cauchy sequences
(x j) j∈Z>0 and (y j) j∈Z>0 . Let ϵ ∈ R>0 and let N ∈ Z>0 be chosen such that d(x j, xk) ≤ ϵ

2
and d(y j, yk) < ϵ

2 for j, k ≥ N. Then, by Proposition 1.1.3(ii), we have

|d(x j, y j) − d(xk, yk)| ≤ d(x j, xk) + d(y j, yk) < ϵ

for all j, k ≥ N. Thus (d(x j, y j)) j∈Z>0 is indeed a Cauchy sequence, and so convergent.
We claim that (CS(S), d̃) is a semimetric space. The only not entirely obvious

property to verify is the triangle inequality. To verify this, let (x j) j∈Z>0 , (y j) j∈Z>0 , and
(z j) j∈Z>0 be Cauchy sequences in S. By the triangle inequality in S we have

d(x j, y j) ≤ d(x j, z j) + d(z j, y j), j ∈ Z>0.

Therefore,
lim
j→∞

d(x j, y j) ≤ lim
j→∞

d(x j, z j) + lim
j→∞

d(z j, y j),

which is the triangle inequality for d̃, so showing that (CS(S), d̃) is a semimetric space.
We now let (S, d) be the metric space associated with (CS(S), d̃) as in Theorem 1.1.28.

We let πS : CS(S)→ S be the map assigning to a Cauchy sequence its equivalence class
in S. We then define a map ιS : S → S by ιS(x) = πS((s j(x)) j∈Z>0), where (s j(x)) j∈Z>0 is
the constant sequence s j(x) = x, j ∈ Z>0. It is evident that ιS is an isometry since, for
x, y ∈ S, we have

d(ιS(x), ιS(y)) = d̃((s j(x)) j∈Z>0 , (s j(y)) j∈Z>0) = lim
j→∞

d(s j(x), s j(y)) = d(x, y).

Next we show that, for each x ∈ S, there exists a sequence of the form (ιS(x j)) j∈Z>0

converging to x. Let (x j) j∈Z>0 be a Cauchy sequence in S for which πS((x j) j∈Z>0) = x.
We claim that (ιS(x j)) j∈Z>0 converges to x. Indeed, let ϵ ∈ R>0 and let N ∈ Z>0 satisfy
d(x j, xk) < ϵ for all j, k ≥ N. Then

d(ιS(x j), x) = lim
k→∞

d(x j, xk) < ϵ

for j ≥ N. Now we show that (S, d) is complete. Let (x j) j∈Z>0 be a Cauchy sequence in
(S, d). For each j ∈ Z>0, define x j ∈ S such that d(ιS(x j), x j) < 1

j , this being possible since

for every point in S there is a sequence in image(ιS) converging to that point. We claim
that (x j) j∈Z>0 is a Cauchy sequence in S and that (x j) j∈Z>0 converges to πS((x j) j∈Z>0). For
the first claim, let ϵ ∈ R>0 and choose N ∈ Z>0 such that d(x j, xk) < ϵ for j, k ≥ N, and
such that 1

N < ϵ. Then

d(ιS(x j), ιS(xk)) ≤ d(ιS(x j), x j) + d(x j, xk) + d(xk, ιS(xk)) < ϵ,
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for j, k ≥ N. Thus (x j) j∈Z>0 is a Cauchy sequence. Now we show that (x j) j∈Z>0 converges
to πS((x j) j∈Z>0). Let ϵ ∈ R>0 and choose N ∈ Z>0 such that d(x j, xk) < ϵ

3 for j, k ≥ N and
such that 1

N < ϵ
3 . Then

d(x j, πS((x j) j∈Z>0)) ≤ d(x j, ιS(x j)) + d(ιS(x j), πS((xk)k∈Z>0))

≤
1
j + lim

k→∞
d(x j, xk) < ϵ,

provided that j ≥ N. This gives completeness of (S, d).
Let us now prove the final assertion in the theorem. Let x1 ∈ S1 and let (x j) j∈Z>0 ∈

CS(S) have the property that (ιS,1(x j)) j∈Z>0) converges to x1. Note that (ιS,2(x j)) j∈Z>0 is
a Cauchy sequence in S2 since ιS,2 is an isometry. Therefore, since (S2, d2) is complete,
this sequence converges to some point x2 ∈ S2. Define ϕ(x1) = x2, so defining a map
ϕ : S1 → S2. To show that ϕ is well-defined, we need to show that x2 is independent
of the choice of Cauchy sequence (x j) j∈Z>0 for which (ιS,1(x j)) j∈Z>0) converges to x1.
So let (y j) j∈Z>0 be another Cauchy sequence having this property. Let ϵ ∈ R>0 and
choose N ∈ Z>0 such that d1(ιS,1(x j), x1) < ϵ

2 and d1(x1, ιS,1(y j)) < ϵ
2 . Then, since ιS,1 is

an isometry,

d(x j, y j) = d1(ιS,1(x j), ιS,1(y j)) ≤ d1(ιS,1(x j), x1) + d1(x1, ιS,1(y j)) < ϵ

for j ≥ N. Therefore, lim j→∞ d(x j, y j) = 0. Now, again let ϵ ∈ R>0 and choose N ∈ Z>0

such that d2(ιS,2(y j), ιS,2(x j)) < ϵ
2 and d2(ιS,2(x j), x2) < ϵ

2 for j ≥ N, this being possible
since ιS,2 is an isometry. Then

d2(ιS,2(y j), x2) ≤ d2(ιS,2(y j), ιS,2(x j)) + d2(ιS,2(x j), x2) < ϵ,

provided that j ≥ N. Thus (ιS,2(y j)) j∈Z>0 also converges to x2, and so ϕ is well-defined.
We next need to show that ϕ has the properties of the map asserted in the theorem

statement. It is clear by construction that ιS,2 = ϕ ◦ ιS,1. We now show that ϕ is an
isometry. Let x1, y1 ∈ S1 and let (x j) j∈Z>0 and (y j) j∈Z>0 be sequences in S for which the
sequences (ιS,1(x j)) j∈Z>0 and (ιS,1(y j)) j∈Z>0 converge to x1 and y1, respectively. Since ιS,1
is an isometry, the sequences (x j) j∈Z>0 and (y j) j∈Z>0 are Cauchy. Since ιS,2 is an isometry,
the sequences (ιS,2(x j)) j∈Z>0 and (ιS,2(y j)) j∈Z>0 are Cauchy, and so converge to points x2

and y2 in S2, respectively. We claim that

lim
j→∞

d1(ιS,1(x j), ιS,1(y j)) = d1(x1, y1), lim
j→∞

d2(ιS,2(x j), ιS,2(y j)) = d2(x2, y2). (1.1)

Indeed, let ϵ ∈ R>0 and choose N ∈ Z>0 such that d(ιS,1(x j), x1) < ϵ
2 and d1(ιS,1(y j), y1) <

ϵ
2 for all j ≥ N. Then∣∣∣d1(ιS,1(x j), ιS,1(y j)) − d1(x1, y1)

∣∣∣ ≤ d(ιS,1(x j), x1) + d1(ιS,1(y j), y1) < ϵ,

using Proposition 1.1.3(ii). Thus the first of equations (1.1) holds, and the second holds
in exactly the same manner. Now we note that, since ιS,1 and ιS,2 are isometries,

d1(ιS,1(x j), ιS,1(y j)) = d2(ιS,2(x j), ιS,2(y j)) = d(x j, y j),
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and therefore, from (1.1), d1(x1, y1) = d2(x2, y2). By construction, we note that x2 = ϕ(x1)
and y2 = ϕ(y1), and so it follows that ϕ is an isometry. Finally, ϕ we note that ϕ is
injective as in Exercise 1.1.6. It is also clear that ϕ is surjective. Indeed, let x2 ∈ S2.
Then there exists a sequence (x j) j∈Z>0 such that (ιS,2(x j)) j∈Z>0 converges to x2. Since ιS,2 is
an isometry, (x j) j∈Z>0 is Cauchy. Thus, since ιS,1 is an isometry, (ιS,1(x j)) j∈Z>0 converges
to a point x1 ∈ S1. By definition of ϕ, ϕ(x1) = x2. ■

1.1.35 Remarks (Properties of the completion)
1. As we shall see in Section 1.2.4, the condition (ii) of Theorem 1.1.34 is tanta-more specific?

mount to saying that ιS(S) is a dense subset of S. The final assertion in Theo-
rem 1.1.34 concerning the uniqueness of the completion can be interpreted, in
the language of Section 1.3 as saying that the completion of a metric space ismore precise?

unique up to an isometric homeomorphism.
2. The construction given for the completion in the proof of Theorem 1.1.34 re-

alises the completion using the collection of Cauchy sequences. This is certainly
a natural construction, given the definition of completeness. However, there is
another common construction of the completion that we ask the reader to give
in Exercise 1.1.14. •

1.1.36 Examples (Completions of metric spaces)
1. Example 1.1.31–1 cont’d: We have seen that (Q, dQ) is not a complete metric

space. Moreover, our exertions of Section I-2.1 show that (R, dR) is the comple-
tion of (Q, dQ). Indeed, the constructions of Section I-2.1 are a special case of
the general proof of Theorem 1.1.34. In Section I-2.1 we showed more than just
that R is the completion of Q, but also that the arithmetic properties of Q carry
over to R.

2. Example 1.1.31–2 cont’d: The completion of (0, 1], with the metric inherited from
R, is clearly [0, 1], with it too being equipped with the metric inherited from R.
To see this, one need only show that [0, 1] has the properties of a completion,
and this is easily done. •

The following property of the completion of a metric space is often useful, and
also sometimes is used as a means of proving the existence of the completion. The
following description of the completion gives what is in mathematics known as a
“universal property” of the completion. This means that the completion is defined
by the abstract property of the existence and uniqueness of a map into another
metric space.

1.1.37 Theorem (Property of completion) Let (S,d) be a metric space with (S,d) a completion
of (S,d) and ιS : S → S the isometry of Theorem 1.1.34. Then, for each complete metric
space (T,dT) and for each uniformly continuous map f : S → T, there exists a unique
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uniformly continuous map f : S→ T for which the diagram

S
ιS

��

f

��
S

f
// T

commutes.
Proof Let f : S→ T be uniformly continuous. Let x ∈ S and let (x j) j∈Z>0 be a sequence
in S for which (ιS(x j)) j∈Z>0 converges to x. Thus (ιS(x j)) j∈Z>0 is a Cauchy sequence. We
claim that ( f (x j)) j∈Z>0 is also a Cauchy sequence. Let ϵ ∈ R>0, choose δ ∈ R>0 such
that if d(x, y) < δ then dT( f (x), f (y)) < ϵ, and choose N ∈ Z>0 such that d(x j, xk) < δ for
j, k ≥ N. Then

d(x j, xk) < δ =⇒ dT( f (x j), f (xk)) < ϵ

for j, k ≥ N. Since T is complete, the sequence ( f (x j)) j∈Z>0 converges to a point in T that
we denote by f (x). We claim that f (x) is independent of the Cauchy sequence (x j) j∈Z>0 .
To see this, let (y j) j∈Z>0 be another Cauchy sequence for which (ιS(y j)) j∈Z>0 converges
to x. Let ϵ ∈ R>0. Then choose δ ∈ R>0 such that if d(x, y) < δ then dT( f (x), f (y)) < ϵ

2 ,
and choose N ∈ Z>0 such that d(y j, xk) < δ for j, k ≥ N and such that dT( f (xk), f (x)) < ϵ

2
for k ≥ N. Then

dT( f (y j), f (x)) ≤ dT( f (y j), f (xk)) + dT( f (xk), f (x)) < ϵ

for j, k ≥ N, so giving convergence of ( f (y j)) j∈Z>0 to f (x). Thus this defines a map
f : S→ T.

We claim that f is uniformly continuous. Let ϵ ∈ R>0 and choose δ ∈ R>0 such that
d(x, y) < δ implies that dT( f (x), f (y)) < ϵ

2 . Now let x, y ∈ S satisfy d(x, y) < δ and let
(x j) j∈Z>0 and (y j) j∈Z>0 be sequences in S for which (ιS(x j)) j∈Z>0 and (ιS(y j)) j∈Z>0 converge
to x and y, respectively. By Exercise 1.1.10 d(x, y) = lim j→∞ d(x j, y j). We claim that

dT( f (x), f (y)) = lim
j→∞

dT( f (x j), f (y j)).

Indeed, let ϵ′ ∈ R>0 and choose N ∈ Z>0 such that dT( f (x), f (x j)) < ϵ′

2 and
dT( f (y), f (xk)) < ϵ′

2 for j ∈ Z>0.∣∣∣dT( f (x), f (y)) − dT( f (x j), f (y j))
∣∣∣ ≤ dT( f (x), f (x j)) + dT( f (y), f (xk)) < ϵ′

for j ≥ N. Now we have

lim
j→∞

d(x j, y j) < δ =⇒ lim
j→∞

dT( f (x j), f (y j)) ≤ ϵ
2 < ϵ,

or d(x, y) < δ implies dT( f (x), f (y)), as desired.
Finally, for this part of the proof, we need to show that f is the only map having

the properties given in the theorem statement. Suppose that f̃ : S → T is a uniformly
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continuous map for which f̃ ◦ ιS = f . Let x ∈ S and let (x j) j∈Z>0 be a sequence in S for
which (ιS(x j)) j∈Z>0 converges to x. Note that f (x j) = f (ιS(x j)) = f̃ (ιS(x j)) for all j ∈ Z>0.
Now let ϵ ∈ R>0. Since f and f̃ are uniformly continuous, choose δ ∈ R>0 such that,
if d(x, y) < δ, then dT( f (x), f (y)) < ϵ

2 and dT( f̃ (x), f̃ (y)) < ϵ
2 . Now let N ∈ Z>0 satisfy

d(x, x j) < δ for j ≥ N. Then

dT( f (x), f̃ (x)) ≤ dT( f (x), f (x j)) + dT( f (x j), f̃ (x)) < ϵ

for j ≥ N. Thus f̃ (x) = f (x), as desired. ■

The requirement that f be uniformly continuous is necessary.

1.1.38 Example (A continuous map not extending to the completion) Let S = (0, 1]
with d the standard metric induced from R. The completion of S is S = [0, 1]
and the induced metric on cl S is the standard metric induced from R. The map
f : (0, 1] → R defined by f (x) = 1

x is continuous but not uniformly continuous.
Note that there exists no continuous map f : S→ R extending f . •

1.1.8 Compact subsets of metric spaces

In Section I-2.5 we studied compact subsets of R, giving a simple character-
isation of such sets in terms of the Heine–Borel Theorem. In Section I-3.1.4 we
showed that compact sets possessed many nice properties in terms of continuous
functions. In this section we carry out this same programme for compact subsets
of metric spaces. As we shall see, some of the properties of compact subsets of
R carry over to metric spaces, but some do not. Thus the reader should learn to
exercise the proper care when extending their intuition about compactness fromR
to metric spaces.

We begin with the definition of a cover and subcover.

1.1.39 Definition (Open cover of a subset of a metric space) Let (S, d) be a metric space
and let A ⊆ S.

(i) An open cover for A is a family (Ui)i∈I of open subsets of S having the property
that A ⊆ ∪i∈IUi.

(ii) A subcover of an open cover (Ui)i∈I of A is an open cover (V j) j∈J of A having
the property that (V j) j∈J ⊆ (Ui)i∈I. •

With these, one has the same definitions associated with compactness as one
has for subsets of R.

1.1.40 Definition (Compact, precompact) Let (S, d) be a metric space.
(i) A subset K ⊆ S is compact if every open cover (Ui)i∈I of A possesses a finite

subcover.
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(ii) A subset A ⊆ S is precompact1 if cl(A) is compact. •

Let us explore some equivalent characterisations of compact subsets of metric
spaces. We shall see in Section 1.6 that these characterisations are not generally
valid for topological spaces.

1.1.41 Theorem (Characterisations of compact subsets of metric spaces) If (S,d) is
a metric space then the following statements are equivalent for a subset K ⊆ S:

(i) K is compact;
(ii) if A ⊆ K is infinite then there exists a point x0 ∈ K such that (Bd(ϵ, x0)\{x0})∩A , ∅

for every ϵ ∈ R>0;
(iii) every sequence in S possesses a convergent subsequence;
(iv) K is complete and totally bounded.

Proof (i) =⇒ (ii) Suppose that A is an infinite subset of K that does not have the stated
property. Then for every x ∈ K there exists ϵx ∈ R>0 such that (Bd(ϵx, x) \ {x}) ∩ A = ∅.
Thus (Bd(ϵx, x))x∈K is an open cover of K. We claim that it has no finite subcover. Indeed,
let F ⊆ K be finite. For each x ∈ F we have

(Bd(ϵx, x) \ {x}) ∩ A = ∅ =⇒ Bd(ϵx, x) ∩ A ⊆ {x}.

Therefore, ∪x∈FBd(ϵx, x) can contain at most finitely many points from A, and so cannot
be an open cover. Thus K is not compact.

(ii) =⇒ (iii) Let (x j) j∈Z>0 be a sequence and define A = {x j | j ∈ Z>0}. If card A < ∞
then denote A = {y1, . . . , yk} with the points y1, . . . , yk being distinct. Thus there exists
l ∈ {1, . . . , k} and an increasing sequence (k j) j∈Z>0 such that xk j = yl for all j ∈ Z>0. The
subsequence (xk j) j∈Z>0 is obviously convergent. On the other hand, if card(A) = ∞ then
we claim that it still has a convergent subsequence. Indeed, by assumption on A there
exists x0 ∈ K such that (Bd(ϵ, x0) \ {x0}) ∩ A , ∅ for every ϵ ∈ R>0. We claim that this
implies that Bd(ϵ, x0) ∩ A is infinite for all ϵ ∈ R>0. Indeed, suppose that Bd(ϵ, x0) ∩ A
is finite for some ϵ ∈ R>0, and denote

Bd(ϵ, x0) ∩ A = {y1, . . . , yk}.

Let
ϵ0 =

1
2 min{d(x0, yl) | l ∈ {1, . . . , k}}.

Then Bd(ϵ0, x0) ∩ A ⊆ {x0} which contradicts the assumptions on A. Thus Bd(ϵ, x0) ∩ A
is infinite for all ϵ ∈ R>0. Thus there exists a subsequence (xk j) j∈Z>0 of (x j) j∈Z>0 such
that d(x0, xk j) <

1
2 j . This subsequence then converges to x0.

(iii) =⇒ (iv) First we show that (iii) implies that K is complete. Let (x j) j∈Z>0 be a
Cauchy sequence. By assumption this sequence has a convergent subsequence; let
us denote this subsequence by (xk j) j∈Z>0 and its limit by x0. We claim that (x j) j∈Z>0

converges to x0. Indeed, for ϵ ∈ R>0 let N ∈ Z>0 be sufficiently large that d(x j, xk) < ϵ
2

1What we call “precompact” is very often called “relatively compact.” However, we shall use
the term “relatively compact” for something different.
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for j, k ≥ N. Let l ∈ Z>0 be sufficiently large that kl ≥ N and such that d(xkl , x0) < ϵ
2 .

Then
d(x j, x0) ≤ d(x j, xkl) + d(xkl , x0) < ϵ,

giving convergence, and so completeness of K.
Now suppose that K is not totally bounded. Then there exists ϵ ∈ R>0 such that

any covering of K by balls of radius ϵ must be infinite. Let x1 ∈ K and choose x2 ∈ K
such that d(x2, x1) ≥ ϵ. This is possible since otherwise (Bd(ϵ, x1)) is a finite cover of
K by balls of radius ϵ. Now let x3 ∈ K satisfy d(x3, x1), d(x3, x1) ≥ ϵ. Again, this is
possible since otherwise (Bd(ϵ, x1),Bd(ϵ, x2)) is a finite covering of K by balls of radius ϵ.
Proceeding in this way we define a sequence (x j) j∈Z>0 for which d(x j, xk) ≥ ϵ for j , k.
This sequence cannot possibly possess a convergent subsequence and so (iii) cannot
hold.

(iv) =⇒ (i) Suppose that K is not compact so that there exists an open cover (Ui)i∈I
having no finite subcover. Also suppose that K is complete and totally bounded.
By total boundedness, for each k ∈ Z>0 there exists a finite set Fk ⊆ K such that
K ⊆ ∪x∈FkBd( 1

n , x). Let x1 ∈ F1 be such that no finite subcover of (Ui)i∈I covers C1 ≜

K ∩ Bd(1, x1). Note that
C1 = ∪x∈F2(C1 ∩ Bd( 1

2 , x)

so that there exists x2 ∈ F2 for which no finite subcover of (Ui)i∈I covers C2 ≜ C1 ∩

Bd( 1
2 , x2). Continuing in this way we define a sequence (C j) j∈Z>0 of subsets defined by

C j = C j−1 ∩ Bd( 1
j , x j) and having the property that C j, j ∈ Z>0, cannot be covered by

any finite subcover of (Ui)i∈I. Let (y j) j∈Z>0 be a sequence in K such that y j ∈ C j, j ∈ Z>0.
The sequence (y j) j∈Z>0 is Cauchy. Indeed, for ϵ ∈ R>0 let N be sufficiently large that
2
N < ϵ. Then, since all points in C j are within distance 1

j of x j and since C j ⊆ Ck for
j ≥ k, it follows that d(x j, xk) < ϵ for j, k ≥ N. Since K is complete the sequence (y j) j∈Z>0

converges to y0 ∈ K. Let i0 ∈ I be such that y0 ∈ Ui0 . Then, since y0 ∈ C j for each
j ∈ Z>0 and since the sets C j become arbitrarily small, there exists some N ∈ Z>0 for
which CN ⊆ Ui0 . This is a contradiction. ■

1.1.42 Corollary (Precompact equals totally bounded in complete metric spaces) If
(S,d) is a complete metric space, a subset A ⊆ S is precompact if and only if it is totally
bounded.

Proof Suppose that A is precompact so that cl(A) is compact. By Theorem 1.1.41 it
follows that cl(A) is totally bounded. Since a subset of a totally bounded set is totally
bounded (why?), it follows that A is totally bounded. Now suppose that A is totally
bounded so that cl(A) is complete by Proposition 1.1.33. We claim that cl(A) is also
totally bounded. Indeed, since A is totally bounded, let ϵ ∈ R>0 and let x1, . . . , xk ∈ S
have the property that A ⊆ ∪k

j=1Bd(ϵ, x j). Let y ∈ cl(A) so that by there exists a sequencewhat

(y j) j∈Z>0 in A converging to y. ■

The reader can see in Exercise 1.1.19 that the corollary is not true for metric
spaces that are not complete.

In Theorem I-2.5.27 we indicated that the notion of compactness is concretely
characterised for subsets ofR as being equivalent to closedness and boundedness.
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Of course, one is inclined to ask whether this is generally true. It is not, although
one implication is generally true.

1.1.43 Corollary (Compact sets are closed and bounded) If (S,d) is a metric space and
if K ⊆ S is compact, then K is closed and bounded.

Proof If K is compact then it is complete by Theorem 1.1.41 and so closed by Propo-
sition 1.1.33. Moreover, K is totally bounded by Theorem 1.1.41 and so bounded by
Exercise 1.1.17. ■

The converse of the proposition is not generally true. We shall give a fairly
general and interesting setup for this in Theorem 3.6.15. For now let us give a
somewhat less interesting example of how closed and bounded sets may not be
compact.

1.1.44 Example (Closed and bounded sets may not be compact) Let S = (0, 1) and
define a metric on S by d(x, y) = |x − y|. Note that (S, d) is obviously closed and
bounded. But it is not compact. Indeed, the open cover (( 1

j+2 , 1−
1

j+2 )) j∈Z>0 does not
possess a finite subcover. Indeed, any open cover will be contained in an interval
of the form (1

k , 1 −
1
k ) for some k ≥ 3.

In this case the lack of compactness is directly related to the fact that (S, d) is
not complete. The completion of (S, d) is [0, 1] which is compact. More interesting
closed and bounded sets that are not compact arise when the metric space is
required to be complete. •

Finally, let us indicate that there is a relationship between compactness and
continuity.

1.1.45 Proposition (Compact sets are mapped to compact sets by continuous
maps) If (S1,d1) and (S2,d2) are metric spaces, if f : S1 → S2 is continuous, and if
K ⊆ S1 is compact, then f(K) ⊆ S2 is compact.

Proof Let (Ua)a∈A be an open cover of image( f ). Then ( f−1(Ua))a∈A is an open cover
of S1, and so there exists a finite subset i f ama1, . . . , ak ⊆ A such that ∪k

j=1 f−1(Uak) =

S1. It is then clear that ( f ( f−1(Ua1)), . . . , f ( f−1(Uak))) covers image( f ). Moreover, by
Proposition I-1.3.5, f−1( f (Ua j)) ⊆ Ua j , j ∈ {1, . . . , k}. Thus (Ua1 , . . . ,Uak) is a finite
subcover of (Ua)a∈A. ■

Exercises

1.1.1 Show that the metric of Example 1.1.2–Exercise 1.1.1 is indeed a metric.
1.1.2 If (S, d) is a metric space, show that

d′(x1, x2) =
d(x1, x2)

1 + d(x1, x2)

defines a metric on S, and that image(d′) ⊆ [0, 1).
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1.1.3 Let (S, d) be a metric space, let A ⊆ S, and define a metric dA on A by
dA(x1, x2) = d(x1, x2). Show that a subset U ⊆ A is open if and only if there
exists an open subset Ũ ⊆ S such that U = A ∩ Ũ.

1.1.4 A countable subset A ⊆ R is discrete if there exists r ∈ R>0 such that x1, x2 ∈ R
implies that |x1−x2| > r. Show that the subspace topology on a discrete subset
of R is the same as the discrete topology.

1.1.5 Let (S, d) be a metric space. Show that a subset A ⊆ S is bounded if and only
if, for each x ∈ S, there exists Rx ∈ R>0 such that S ⊆ Bd(Rx, x).

1.1.6 Show that an isometry is injective.
1.1.7 Show that an isometry is uniformly continuous.
1.1.8 Show that the collection of isometric bijections of a metric space is a group.
1.1.9 Show that limits of sequences in metric spaces are unique. That is, show that

if the sequence (x j) j∈Z>0 converges to both x1 and x2, then x1 = x2.
1.1.10 If (S, d) is a metric space, if x, y ∈ S, and if (x j) j∈Z>0 and (y j) j∈Z>0 are sequences

converging to x and y, respectively, show that

d(x, y) = lim
j→∞

d(x j, y j).

1.1.11 Limits in semimetric spaces need not be unique. To see this, answer the
following two questions.
(a) Show that every sequence converges in the semimetric space (S, dtriv).
(b) Come up with an example of a semimetric space (S, d) for which

1. d , dtriv and
2. d is not a metric.
Describe the character of the converging sequences.

1.1.12 Let (T, dtriv) be a semimetric space with the trivial semimetric and let (S, d)
be another semimetric space. Show that every map f : S→ T is continuous.

1.1.13 Let (S, d) be a pseudometric space. Show that the relation “x1 ∼ x2 if
d(x1, x2) = 0” is an equivalence relation.

The following exercise will guide you through a construction of the completion of
a metric space. This construction relies on the fact, proven as Theorem 1.9.1, that
the set of bounded continuous R-valued functions on a metric space is complete.
Note that a consequence of the construction is that every metric space is embedded
isometrically in a normed vector space.

finish

1.1.14
1.1.15 Show that the collection of open subsets of a semimetric space forms a

topology.
1.1.16 Show that the set of open d-balls in a metric space (S, d) forms a base for the

metric topology.true for semimetric?
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1.1.17 Let (S, d) be a metric space. Show that S is totally bounded if and only if
there exists x0 ∈ S and R ∈ R>0 such that d(x, x0) < R for every x ∈ S.

As with any mathematical structure, with metric spaces it is interesting to un-
derstand the “invariants” that are associated with the structure. An invariant is
typically some property that is independent under some class of transformation.
In the following exercises you will see that “total boundedness” and “complete”
are not invariants for a metric space under homeomorphism, but that the two
properties together are. move this to

homeomorphism section?

1.1.18 Answer the following questions.
(a) Find a complete metric space that is homeomorphic to an incomplete

metric space.
(b) Find an totally unbounded metric space that is homeomorphic to a

totally bounded metric space.
(c) Show that if metric spaces (S1, d1) and (S2, d2) are homeomorphic and

if (S1, d1) is complete and totally bounded, then (S2, d2) is complete and
totally bounded.

1.1.19 Answer the following questions.
(a) Let (S, d) be a metric space. Show that if A ⊆ S is precompact, then it is

totally bounded.
(b) Consider Q with the metric d(q1, q2) = |q1 − q2| and let A = (0, 1) ∩ Q.

Show that A is totally bounded but not precompact.



26 1 Topology 2022/03/07

Section 1.2

Topological spaces

In this section, we introduce the notion of a topological space as a family of
subsets that have certain properties relative to unions and intersections. Our
motivation for this is derived from Proposition 1.1.6 where properties of open
subsets of metric spaces are given; see also Exercise I-2.5.1 concerning open subsets
of R. The notion of a topological space is extremely unstructured, but it does
provide just the right structure to discuss many important ideas in almost all areas
of mathematics. The reader is advised to simply take “on faith” the fact that the
definition is the correct one. Experience will reveal that it does indeed serve exactly
the purpose intended.

Do I need to read this section? If you have decided to read this chapter, and if
you found Section 1.1 compelling, then this is indeed the place to start on the path
towards learning point set topology. •

1.2.1 Definitions and simple examples

Let us begin outright with the definition.

1.2.1 Definition (Open set, topological space) A topology on a set S is a family of
subsets O ⊆ 2S having the following properties:

(i) if (Ua)a∈A is an arbitrary family of subsets from O , then ∪a∈AUa ⊆ O ;
(ii) if {U1, . . . ,Uk} is a finite family of subsets from O , then ∩k

j=1U j ∈ O ;

(iii) S ∈ O ;
(iv) ∅ ∈ O .

The sets in O are called open sets and the pair (S,O ) is called a topological space if
O is a topology on S. •

1.2.2 Remark (Why are the axioms for a topological space as they are?) It is
important to always wonder why the mathematical axioms one is given are the
“right ones.” Sometimes the axioms seem natural (as with the vector space axioms,
perhaps), and so the question does not come up so readily. However, sometimes
the rationale for the axioms is not so easy to understand. Perhaps the topological
space axioms fall into this class, so let us say a few words about where these axioms
come from.

The best way to understand the topological space axioms is via the obser-
vation that the axioms (1) hold for open subsets of Euclidean space (see Exer-
cise I-2.5.1 and Proposition II-1.2.19) and (2) are the only properties of open subsets
of Euclidean space needed to formulate concepts like continuity (Theorems I-3.1.3
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and II-1.3.2), compactness (Definitions I-2.5.26 and II-1.2.34), and connectedness
(Definitions I-2.5.33 and II-1.2.44). We shall see as we go along that the basic
axioms of a topological space very often need to be supplemented by additional
properties—e.g., separability axioms (Section 1.8.2) or countability axioms (Sec-
tion 1.8.1)—in order to prove useful theorems. But the basic axioms do capture
many of the features one wishes to capture in a general setting. •

Note that ∩k
j=1U j ∈ O for every finite family {U1, . . . ,Uk} ⊆ O if and only if U1 ∩

U2 ∈ O for every U1,U2 ∈ O . Thus we need only show that pairwise intersections
of open sets are open to show that a family of subsets defines a topology.

Let us consider some examples of topological spaces.

1.2.3 Examples (Topological spaces)
1. The set R with the open sets as defined in Definition I-2.5.2 is a topological

space by Exercise I-2.5.1. This topology on R is called the standard topology,
and will be the topology we use unless we state otherwise.

2. The setRn with the family of open sets defined as in Section II-1.2 is a topological
sets. Again we call this the standard topology and use it as the topology of
choice, unless otherwise stated.

3. More generally, if (S, d) is a metric or semimetric space, then the family of open
subsets of S forms a topology. For metric spaces, this follows from Proposi-
tion 1.1.6, and for semimetric spaces, the reader can show this in Exercise 1.1.15.
This topology is called the metric topology or the semimetric topology, depend-
ing on whether d is a metric or semimetric, respectively.

4. We define a topology on the extended real numbers R by declaring the open
sets to be of the form

U, U ∪ [−∞, b), U ∪ (a,∞], U ∪ [−∞, b)∪ (a,∞], U ⊆ R open, a, b ∈ R.

It is easy to check that this indeed defines a topology if one notes that the
intersection of two sets of the form

[−∞, b), (a,∞], [−∞, b) ∪ (a,∞]

is again a set of this form, and that unions of sets of this form are again sets of
this form. The idea of this topology is that the subsets of R of the form [−∞, b)
and (a,∞] are neighbourhoods (as we will discuss in Section 1.2.3) of −∞ and
∞, respectively.

5. For any set S, we define the trivial topology by Otriv = {∅,S}. As we saw in
Example 1.1.25–3, this topology comes from the semimetric space (S, dtriv).

6. For any set S, we define the discrete topology by Odisc = 2S. By Example 1.1.2–4,
this topology comes from the metric space (S, ddisc).
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It is most common that we will encounter situations where a set comes equipped
with a natural topology, and this is the topology we shall use, e.g., the standard
topology for Rn. However, there are also cases we will encounter where the same
set has multiple natural topologies, and one wishes to be able to compare these in
some way.

1.2.4 Definition (Weaker, stronger, coarser, finer, smaller, larger) Let S be a set and
let O1 and O2 be topologies on S.

(i) The topology O1 is weaker, coarser, or smaller than the topology O2 if O1 ⊆ O2.
(ii) The topology O1 is stronger, finer, or larger than the topology O2 if O2 ⊆ O1. •

1.2.5 Remark (Understanding the grammar of comparisons of topologies) If you
are slightly dyslexic like the author, then you will find it difficult to remember
which word goes with which concept.
1. The expressions “smaller” and “larger” are the most easy to use since O1 is

smaller that O2 (or, equivalently, O2 is larger than O1) if O1 has fewer open sets
than O2.

2. The “coarser” versus “finer” terminology is also fairly intuitive. The idea is
that a topology O1 is coarser than a topology O2 (or, equivalently, O2 is finer than
O1) when the nonempty open sets in O1 are larger than those for O2.

3. The idea behind the terminology “weaker” and “stronger” is best understood
when related to the notion of convergence in a topology which we will discuss
in Section 1.5. Let us record this relationship here anyway, since this is the
most appropriate time to do so; readers who need to know about convergence
in topological spaces can refer ahead. The idea of a topology O1 being weaker
than another topology O2 (or, equivalently, O2 being stronger than O1) is that
there are more convergent sequences in the topology O1 than in O2. Thus the
conditions for convergence are weaker in O1 than in O2. •

Let us give some examples that illustrate the language.

1.2.6 Examples (Weakest and strongest topologies on a set) Let S be a set.
1. The weakest, or coarsest, or smallest topology on S is the trivial topology
Otriv = {∅,S}. Note that this topology obviously has the minimum number
of open sets (it is the smallest topology), every sequence in S converges (it is
the weakest topology), and the nonempty open sets are large (it is the coarsest
topology).

2. The strongest, finest, or largest topology on S is the discrete topology Odisc = 2S.
Note that this topology obviously has the maximum number of open sets (it is
the largest topology), only sequences that are eventually constant converge (it
is the strongest), and the nonempty open sets can be arbitrarily small (it is the
finest topology). •
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As with metric spaces, the notion of a closed set can be defined, and is important,
for reasons that will become most clear when we talk about topological vector
spaces in Chapter 6.

1.2.7 Definition (Closed set) Let (S,O ) be a topological space. A subset A ⊆ S is closed
if S \ A is open. •

The following result records some of the basic properties of closed sets.

1.2.8 Proposition (Properties of closed sets) If (S,O ) is a topological space, then the
following statements hold:

(i) if {A1, . . . ,Ak} is a finite family of closed subsets of S, then ∪k
j=1Aj is closed;

(ii) if (Ab)b∈B is an arbitrary family of closed subsets of S, then ∩b∈BAb is closed;
(iii) S is closed;
(iv) ∅ is closed.

Proof Parts (iii) and (iv) are trivial, and parts (i) and (ii) follow from De Morgan’s Laws,
Proposition I-1.1.5. ■

1.2.9 Remark (Closed sets can define a topology) It is possible to define a topology
by defining, not open sets as we have done and as is usually done, but by defining
closed sets as having the properties of Proposition 1.2.8. One then can define an
open set to be one whose complement is open. Having done this, one can then
proceed to prove that open sets have the properties of Definition 1.2.1. •

1.2.10 Example (Topology defined using closed sets) If S is a set, denote by Cfin the
family of finite subsets of S, along with S and the empty set. One can verify that the
family Cfin satisfies the properties of closed sets given in Proposition 1.2.8. Thus,
if we define an open set to be one whose complement lies in Cfin, these open sets
form a topology. •

1.2.2 Bases and subbases

When specifying the open sets in a topological space, it is often convenient
to specify a smaller, more easily describable family of sets. This motivates the
following definition.

1.2.11 Definition (Base for a topology) A base for a topology O on a set S is a subset
B ⊆ O with the property that, if U ∈ O , then U = ∪a∈ABa for a family of subsets
(Ba)a∈A ⊆B . A topology is said to be generated by a base for it. •

The following is a useful criterion for recognising when a certain family of open
sets forms a base for a topology.
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1.2.12 Proposition (Characterisation of bases) For a topological space (S,O ), a family of
subsets B ⊆ O is a base for O if and only if, for each U ∈ O and for each x ∈ U, there
exists B ∈B such that x ∈ B and B ⊆ U.

Proof First suppose thatB is a base for O , let U ∈ O and let x ∈ U. Since U is a union
of set fromB , say U = ∪a∈ABa, we have x ∈ Ba and Ba ⊆ U for some a ∈ A.

Conversely, suppose that for each U ∈ O and x ∈ U there exists B ∈ B such that
x ∈ B and B ⊆ U. Now choose some U ∈ O , and for each x ∈ U let Ux ∈ O satisfy
x ∈ Ux. By assumption, there exists Bx ∈B such that x ∈ Bx and Bx ⊆ Ux. We the have
U = ∪x∈UBx, implying thatB is a base for O . ■

Let us give some examples of bases for some simple topologies.

1.2.13 Examples (Bases for topologies)
1. By Proposition I-2.5.6 the family of open intervals is a base for the standard

topology on R.
2. The standard topology on Rn has the family of open balls as a base for its

topology. This is a special case of the next example.
3. Let (S, d) be a metric space. One can easily show that the set of open d-balls,

along with the empty set, forms a base for the metric topology. The reader is
asked to prove this in Exercise 1.1.16. As a consequence of this, the standard
topology of Rn is generated by open balls, and the topology of C is generated
by open disks.

4. Let (S,Odisc) be a topological space with the discrete topology. Then family of
singletons, B = {{x} | x ∈ S}, along with the empty set, forms a base for the
topology. Moreover, it is easy to see that any other base for the discrete topology
must containB .

5. Let (S,Otriv) be a topological space with the trivial topology. Then the only base
for the topology isB = {∅,S}. •

It is sometimes useful to know when, given a family of subsets of a set S, the
family is a base for some topology on S.

1.2.14 Proposition (When is a family of subsets a base?) A familyB of subsets of a set
S is a base for a topology on S if and only if

(i) ∅ ∈B ,
(ii) S = ∪B∈BB, and
(iii) for every finite family {B1, . . . ,Bk} of subsets fromB , and for every x ∈ ∩k

j=1Bj, there
exists B ∈B such that x ∈ B and B ⊆ ∩k

j=1Bj.

Proof It is clear from Proposition 1.2.12 that if B is a base for some topology then
it satisfies conditions (i)–(iii). So suppose that B satisfies these three conditions. Let
O be the family of subsets of S that are unions of elements of B . That is to say, an
element of U ∈ O has the form U = ∪a∈ABa for some family (Ba)a∈A of subsets fromB .
We claim that O is a topology, and thatB is a base for O . It is clear that a union of sets
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from O is also in O , by definition of O . Now suppose that U1, . . . ,Uk ∈ O . Then there
exists index sets A1, . . . ,Ak such that we can write U j = ∪a j∈A jBa j for j ∈ {1, . . . , k}. By
De Morgan’s Laws,(

∪a1∈A1Ba1

)
∩ · · · ∩

(
∪ak∈AkBak

)
= ∪a1∈A1 · · · ∪ak∈Ak Ba1 ∩ · · · ∩ Bak .

Now fix (a1, . . . , ak) ∈ A1 × · · · × Ak. For each x ∈ ∩k
j=1Ba j , there exists Bx ∈B such that

x ∈ Bx and Bx ⊆ ∩
k
j=1Ba j . Therefore, we have

Ba1 ∩ · · · ∩ Bak = ∪x∈Ba1∩···∩Bak
Bx,

meaning that Ba1 ∩ · · · ∩ Bak ∈ O for each (a1, . . . , ak) ∈ A1 × · · · × Ak. This means that
∩

k
j=1U j is a union of elements ofB , and so is in O . Since ∅ ∈ O and S ∈ O , this shows

that O is a topology. It is obvious thatB is a base for O . ■

Let us look at some sample families of subsets that do and do not form a base
for a topology.

1.2.15 Examples (Families of sets that are bases)
1. Let (S, d) be a semimetric space. We already know that the family of open d-

balls forms the base for a topology on S. Let us check this by verifying that the
conditions of Proposition 1.2.14 are satisfied. Thus let Bd(r1, x1), . . . ,Bd(rk, xk) be
k open d-balls.
We claim that x ∈ ∩k

j=1Bd(r j, xk) if and only if

k∑
j=1

d(x, x j) <
k∑

j=1

r j. (1.2)

First, if x ∈ ∩k
j=1Bd(r j, x j), then clearly (1.2) holds. Conversely, suppose that

k∑
j=1

d(x, x j) ≥
k∑

j=1

r j.

If x ∈ ∩k−1
j=1Bd(r j, x j) then we have

k−1∑
j=1

d(x, x j) <
k−1∑
j=1

r j.

This then means that d(x, xk) ≥ rk. Thus x cannot lie in x ∈ ∩k
j=1Bd(r j, x j), and this

gives our claim.
Now suppose that x ∈ ∩k

j=1Bd(r j, xk) and let ϵ > 0 have the property that
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2. Let B ⊆ 2R be the family of closed intervals of R that have nonzero length,
along with the empty set. We claim that there is no topology onR for whichB
is a base. To see this, note that [−1, 0], [0, 1] ∈B , but that there is no element of
B contained in [−1, 0] ∩ [0, 1] = {0}.
Note that if we had allowed closed intervals of zero length, i.e., singletons,
then the resulting family of sets would form a base for a topology, the discrete
topology, in fact. •

Now that we understand when a collection of subsets can form the base for a
topology, it is sometimes useful to know when two potential bases generate the
same topology.

1.2.16 Proposition (When do two bases generate the same topology?) Let S be a set
and let B1 and B2 be families of subsets of S that are bases for topologies O1 and O2,
respectively. Then the following statements are equivalent:

(i) O1 = O2;
(ii) it holds that

(a) for any B1 ∈B1 and for any x ∈ B1, there exists B2 ∈B2 such that x ∈ B2 and
B2 ⊆ B1, and

(b) for any B2 ∈B2 and for any x ∈ B2, there exists B1 ∈B1 such that x ∈ B1 and
B1 ⊆ B2.

Proof (i) =⇒ (ii) Let B1 ∈B1 and let x ∈ B1. Since O1 = O2 and since B1 is then open in
the topology O2, it follows from Proposition 1.2.12 that there exists B2 ∈B2 such that
x ∈ B2 and B2 ⊆ B1. This gives one part of (ii) and the other part follows by the same
argument, swapping “1” and “2.”

(ii) =⇒ (i) Let U1 ∈ O1 and let x ∈ U1. By Proposition 1.2.12 there exists B1 ∈ B1
such that x ∈ B1 and B1 ⊆ U1. By the second part of (ii) there exists B2 ∈ B2 such that
x ∈ B2 and B2 ⊆ B1. Thus, by Proposition 1.2.12 it follows that U1 ∈ O2 and so O1 ⊆ O2.
The argument can be repeated, swapping “1” and “2” to give O2 ⊆ O1. ■

Sometimes it is helpful to use a notion that is slightly more flexible than that of
a base.

1.2.17 Definition (Subbase for a topology) A subbase for a topology O on a set S is a
subset S ⊆ O with the property that

BS ≜ {∅} ∪ {S} ∪ {∩k
j=1S j | S1, . . . ,Sk ∈ S }

is a base for O . •

The following characterisation of a subbase gives the essence of the notion.
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1.2.18 Proposition (Characterisation of subbases) Let S be a set with a topology O . A
subset S ⊆ O is a subbase for O if and only if O is the smallest topology containing S .

Proof First suppose that S is a subbase for O and let Õ be a topology containing S .
Let U ∈ O . If U = ∅ or U = S then U ∈ Õ . If U = ∪a∈ABa for a family (Ba)a∈A of subsets
from BS then it follows that each of the subsets Ba, a ∈ A, is in Õ since S ⊆ Õ and
since Õ is a topology and hence closed under finite intersections. Also, ∪a∈ABa ∈ Õ
since BS ⊆ Õ and since Õ is a topology and hence closed under arbitrary unions.
This shows that U ∈ Õ . Thus O ⊆ Õ and so O is the smallest topology containing S .

Now suppose that O is the smallest topology containing S . Since O is closed
under finite intersections and sinceB ⊆ O it follows thatBS ⊆ O . Since O is closed
under arbitrary intersections it follows that the topology generated byBS is contained
in O . Moreover, since O is the smallest topology containing S it follows that O is
equal to the topology generated byBS . From this construction it immediately follows
that S is a subbase for O . ■

The next result explains one of the reasons why the notion of a subbase is so
useful. Any collection of subsets is a subbase for some topology.

1.2.19 Proposition (When is a family of subsets a subbase?) Any family S of subsets
of a set S is a subbase for a topology on S.

Proof We let BS be as in Definition 1.2.17 and let O be the topology generated
by BS . The only thing to show to prove the proposition is that BS satisfies the
conditions of Proposition 1.2.14 required for it to be a base for a topology. Clearly
∅ ∈ BS and S = ∪B∈BS B. Now let B1, . . . ,Bk ∈ BS and let x ∈ ∩k

j=1B j. Since each of

the sets B1, . . . ,Bk is inBS it follows from the definition ofBS that ∩k
j=1B j is also in

BS . Therefore, if x ∈ ∩k
j=1B j then x ∈ B with B = ∩k

j=1B j ∈ BS , so showing thatBS
indeed generates a topology. ■

1.2.3 Neighbourhoods and neighbourhood bases

The notion of a neighbourhood is a simple one, but is convenient terminology.

1.2.20 Definition (Neighbourhood) If (S,O ) is a topological space and if x ∈ S then a
neighbourhood of x is an open set U ∈ O for which x ∈ U. The set of neighbourhoods
of x is denoted by Nx. •

Some authors do not ask that a neighbourhood of x be open, but only ask that
a neighbourhood contain an open set which itself contains x. This is an inferior
definition to the one we give.

Let us give some examples of neighbourhoods.

1.2.21 Examples (Neighbourhoods)
1. If x ∈ R then any open interval (a, b) containing x is a neighbourhood of x in the

standard topology.
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2. Let x = (x1, . . . , xn) ∈ Rn and let a1, . . . , an, b1, . . . , bn ∈ R have the property that
x j ∈ (a j, b j) for each j ∈ {1, . . . ,n}. Then the rectangle

(a1, b1) × · · · × (an, bn) ⊆ Rn

is a neighbourhood of x in the standard topology.
3. If (S, d) is a metric space and if x ∈ S then any open ball Bd(r, x) centred at x is a

neighbourhood of x in the metric topology. •

The idea of a neighbourhood can profitably be viewed as a generalisation of the
notion of an open ball in a metric space. The idea is that the notion of “closeness”
quantified by the metric is replaced by a general notion of “closeness.” The gener-
alisation, however, can exhibit some features that are simply not seen with metric
spaces. The reader is asked to explore ideas along this line in Exercise 1.2.2.

Let us give some properties of the set of neighbourhoods of a point.

1.2.22 Proposition (Properties of neighbourhoods) Let (S,O ) be a topological space and
let x ∈ S. Then the following statements hold:

(i) S ∈ Nx;
(ii) if U ∈ Nx then x ∈ U;
(iii) if U1,U2 ∈ Nx then U1 ∩U2 ∈ Nx;
(iv) if U ∈ Nx and if V ∈ O satisfies U ⊆ V then V ∈ Nx.

Moreover,
(v) U ⊆ S is open if and only if, for each x ∈ U, there exists Ux ∈ Nx such that Ux ⊆ U.

Proof (i) and (ii) These are trivial.
(iii) Since U1 and U2 are open then U1∩U2 is open. Since x ∈ U1∩U2 we then have

U1 ∩U2 ∈ Nx.
(iv) This follows from the definitions.
(v) First suppose that U is open and let x ∈ U. Then U ∈ Nx and so there exists

a neighbourhood of x contained in U. Now suppose that for each x ∈ U there exists
a neighbourhood Ux ∈ Nx contained in U. Then U = ∪x∈UUx and so U is a union of
open sets, and so it open itself. ■

While the notion of a neighbourhood is elementary, the notion still has value
because it defines the topology, as the following result shows.

1.2.23 Proposition (Neighbourhoods define a topology) Let S be a set, for each x ∈ S
let Nx be a family of subsets of S satisfying conditions (i)–(iv) of Proposition 1.2.22, and
define

O = {∅} ∪ {U ⊆ S | for each x ∈ U there exists Ux ∈ Nx such that Ux ⊆ U}.

Then O is a topology for S and Nx is the set of neighbourhoods of x in this topology.
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Proof We obviously have O ,S ∈ O . Let (Ua)a∈A ⊆ O and let x ∈ ∪a∈AUa. For each
fixed a ∈ A there exists Ux ∈ Nx such that Ux ⊆ Ua. Thus Ux ⊆ ∪a∈AUa and so ∪a∈AUa
is open. Now let U1,U2 ∈ O and let x ∈ U1 ∩ U2. Then there exists U1,x,U2,x ∈ Nx
such that U1,x ⊆ U1 and U2,x ⊆ U2. By property (iii) of Proposition 1.2.22 we have
U1,x ∩U2,x ∈ Nx and so U1 ∩U2 ∈ O since U1,x ∩U2,x ⊆ U1 ∩U2. ■

For neighbourhoods there is a notion like that of bases for topologies.

1.2.24 Definition (Neighbourhood base) For a topological space (S,O ) and for x ∈ S,
a neighbourhood base for x is a family (Ba)a∈A of neighbourhoods of x with the
property that, if U is a neighbourhood of x, then there exists a ∈ A such that Ba ⊆ U.

•

Neighbourhood bases have the following properties.

1.2.25 Proposition (Properties of neighbourhood bases) Let (S,O ) be a topological space,
let x ∈ S, and letBx be a neighbourhood base at x. Then the following statements hold:

(i) if B ∈Bx then x ∈ B;
(ii) if B1,B2 ∈Bx then there exists B ∈Bx such that B ⊆ B1 ∩ B2.

Moreover, if we choose a neighbourhood baseBx for each x ∈ S,
(iii) U ⊆ S is open if and only if, for each x ∈ S, there exists Bx ∈Bx such that Bx ⊆ U.

Proof (i) This follows sinceBx ⊆ Nx.
(ii) SinceBx ⊆ Nx we have B1 ∩B2 ∈ Nx by Proposition 1.2.22. Thus, by definition

of a neighbourhood base, there exists B ∈Bx such that B ⊆ B1 ∩ B2.
(iii) Suppose that U is open and let x ∈ U. Then, by Proposition 1.2.22, there exists

Ux ∈ Nx such that Ux ⊆ U. By the property of a neighbourhood base there exists
Bx ⊆ Ux ⊆ U. Now suppose that for each x ∈ U there exists Bx ∈Bx for which Bx ⊆ U.
SinceBx ⊆ Nx for each x ∈ U, it follows from Proposition 1.2.22 that U is open. ■

The great value of neighbourhood bases is that they can be used to define
bases for a topology. That is, to define a topology all one need do is specify a
neighbourhood base satisfying the following conditions.

1.2.26 Proposition (Neighbourhood bases define bases) Let S be a set, for each x ∈ S let
Bx be a family of subsets of S satisfying conditions (i) and (ii), and define

O = {∅} ∪ {S} ∪ {U ⊆ S | for each x ∈ U there exists Bx ∈Bx such that Bx ⊆ U}.

Then O is a topology for S, ∪x∈SBx is a base for S, andBx is a neighbourhood base for x
in this topology.

Proof By construction ∅,S ∈ O . Let U1,U2 ∈ O and let x ∈ U1 ∩U2. Then there exists
B1,x,B2,x ∈ Bx such that B1,x ⊆ U1 and B2,x ⊆ U2. There then also exists Bx ∈ Bx such
that Bx ⊆ B1,x∩B2,x. Then Bx ⊆ U1∩U2 and so U1∩U2 ∈ O . Now let (Ua)a∈A be a family
of subsets of O and let x ∈ ∪a∈AUa. Then, for each fixed a ∈ A, there exists Bx ∈ Bx
such that Bx ⊆ Ua. Therefore, Bx ⊆ ∪a∈AUa and so ∪a∈AUa ∈ O . This O is a topology.
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Now let U ∈ O and for each x ∈ U let Bx ∈Bx have the property that Bx ⊆ U. Then
U = ∪x∈UBx and so ∪x∈SBx is a base for O .

Finally, let U ⊆ S be a neighbourhood of x in the topology O . By definition of O
there exists Bx ∈ Bx such that Bx ⊆ U. ThusBx is a neighbourhood base for x in the
topology O . ■

Let us give some examples of neighbourhood bases.

1.2.27 Examples (Neighbourhood bases) In each of the following examples the reader
is asked to verify that the conditions of Proposition 1.2.26 hold for the proposed
neighbourhood bases.
1. Let x ∈ R. Then, referring to Example 1.2.21–1, the set of open intervals

containing x is a neighbourhood base for x in the standard topology.
2. Let x ∈ Rn. Then, referring to Example 1.2.21–2, the set of open rectangles

containing x is a neighbourhood base for x in the standard topology.
3. For a metric space (S, d) and for x ∈ S, the set of open balls with centre at x is a

neighbourhood base in the metric topology. •

1.2.4 Interior, closure, boundary, etc.

In this section we study some properties of subsets of topological spaces. The
reader will observe that most of the ideas here appear already in Section I-2.5.
Indeed, the proofs here are almost identical to those for the simple case of the
topological space R. We hope that this will serve to make the reader believe in the
axioms of topological spaces.

Let us first consider the various flavours of “boundary points” that can arise in a
topological space. In Section I-2.5 we saw that these notions were interdependent.
For general topological spaces this is not the case. The definition of limit point in
the following definition relies on the notion of a convergent sequence. The reader
may wish to refer forward to Definition 1.5.1 for this.

1.2.28 Definition (Accumulation point, cluster point, limit point) Let (S,O be a topo-
logical space. For a subset A ⊆ S, a point x ∈ S is:

(i) an accumulation point for A if, for every neighbourhood U of x, the set
A ∩ (U \ {x}) is nonempty;

(ii) a cluster point for A if, for every neighbourhood U of x, the set A ∩ U is
infinite;

(iii) a limit point of A if there exists a sequence (x j) j∈Z>0 in A converging to x.
The set of accumulation points of A is called the derived set of A, and is denoted
by der(A). •

Let us flesh out the relationships between these concepts. It turns out that the
only general implication that one can make is the obvious one.
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1.2.29 Proposition (A cluster point is an accumulation point) If (S,O ) is a topological
space, if A ⊆ S, and if x ∈ S is a cluster point for A, then it is an accumulation point for
A.

Proof If U ∩A is infinite then (U \ {x}) ∩A must be nonempty. That is, if x is a cluster
point then it is an accumulation point. ■

The following examples, some of which are somewhat esoteric, show that the
implication of the preceding proposition is the only one that generally holds. We
shall see that there are “niceness” conditions which rule out some of these exam-
ples; see . For more examples we refer the reader to Example I-2.5.14. what?

1.2.30 Examples (Accumulation points, cluster points, limit points)
1. The first example we give is of a point that is an accumulation point, a cluster

point, and a limit point for a set. This is easy to do. Let A = [0, 1] ⊆ R. It is easy
to check that 0 is an accumulation point, a cluster point, and a limit point.

2. We will give an example of an accumulation point that is not a cluster point.
Let S = {x1, x2} be a set with two points and define O = {∅, {x1},S}. It is a
trivial direct verification to see that O is a topology on S. We claim that x2 is an
accumulation point for the set A = {x1}. Indeed, the only neighbourhood of x2

is S and A ∩ (S \ {x2}) = {x1} is nonempty. Thus, x2 is an accumulation point for
A as desired. However, the only neighbourhood of x2 has cardinality 2 and so
x2 is not a cluster point for A.

3. We will give an example of an accumulation point that is not a limit point.
Let S be an uncountable set and let O be the topology whose open sets are
complements of countable subsets of S, along with, of course, S and∅. That this
is a topological space we leave to the reader to verify (this is Exercise 1.2.1). Let
A ⊂ S be uncountable. We claim that if x ∈ S\A then x is an accumulation point of
A. Indeed, let U be a neighbourhood of x. We claim that (U\{x})∩A is nonempty.
Note that U = S\C for a countable set C. Therefore, (U\{x})∩A = (S\({x}∪C))∩A.
If (S\({x}∪C))∩A = ∅ then it must be the case that A ⊆ ({x}∪C) which cannot be
the case since A is uncountable and C is countable. Therefore, (U \ {x})∩A , ∅
and so x is indeed an accumulation point.
In Example 1.5.2–1 we will show that the only sequences in S that converge are
those that are eventually constant. Therefore, if x ∈ S \ A then there can be no
sequence in A converging to x. Thus x is not a limit point.

4. We will give an example of a cluster point that is not a limit point. As in the
preceding example we let S be an uncountable set and let O be the topology
for which open sets are those whose complements are countable, along with
∅ and S. We again let A ⊂ S be an uncountable subset and let x ∈ S \ A. We
take U as a neighbourhood of x and we claim that U ∩ A is infinite. Indeed,
just as in the preceding example, U = S \ C for a countable set C and so
U ∩ A = (S \ C) ∩ A = A − C. Since C is countable and A is uncountable, A − C
is uncountable and so U ∩A is also uncountable. In particular, U ∩A is infinite
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and so x is a cluster point of A. But, as we saw in the preceding example, x is
not a limit point of A.

5. We will give an example of a limit point that is not an accumulation point.
For the set A = [0, 1] ∪ {2} ⊆ R, the point 2 is a limit point of A but not an
accumulation point of A.

6. We will give an example of a limit point that is not a cluster point. Consider the
set A = Z ⊆ R. We claim that 0 is a limit point but not a cluster point. Indeed,
the constant sequence (0) j∈Z>0 converges to 0 and so 0 is a limit point. However,
the neighbourhood (− 1

2 ,
1
2 ) of 0 only contains the point 0 from A and so 0 is not

a cluster point. •

Let us give some properties of the derived set.

1.2.31 Proposition (Properties of the derived set) For a topological space (S,O ) for A,B ⊆
S, and for a family of subsets (Ai)i∈I of S, the following statements hold:

(i) der(∅) = ∅;
(ii) der(S) = S;
(iii) der(der(A)) = der(A);
(iv) if A ⊆ B then der(A) ⊆ der(B);
(v) der(A ∪ B) = der(A) ∪ der(B);
(vi) der(A ∩ B) ⊆ der(A) ∩ der(B).

Proof Parts (i) and (ii) follow directly from the definition of the derived set.
(iii)True or not?

(iv) Let x ∈ der(A) and let U be a neighbourhood of x. Then the set A ∩ (U \ {x}) is
nonempty, implying that the set B ∩ (U \ {x}) is also nonempty. Thus x ∈ der(B).

(v) Let x ∈ der(A∪B) and let U be a neighbourhood of x. Then the set U∩((A∪B)\{x})
is nonempty. But

U ∩ ((A ∪ B) \ {x}) = U ∩ ((A \ {x}) ∪ (B \ {x}))
= (U ∩ (A \ {x})) ∪ (U ∩ (B \ {x})). (1.3)

Thus it cannot be that both U∩ (A\{x}) and U∩ (B\{x}) are empty. Thus x is an element
of either der(A) or der(B).

Now let x ∈ der(A)∪der(A). Then, using (1.3), U∩ ((A∪B) \ {x}) is nonempty, and
so x ∈ der(A ∪ B).

(vi) Let x ∈ der(A∩B) and let U be a neighbourhood of x. Then U∩((A∩B)\{x}) , ∅.
We have

U ∩ ((A ∩ B) \ {x}) = U ∩ ((A \ {x}) ∩ (B \ {x}))

Thus the sets U ∩ (A \ {x}) and U ∩ (B \ {x}) are both nonempty, showing that x ∈
der(A) ∩ der(B). ■

Now let us turn to the notion of interior, closure, and boundary for general
topological spaces.
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1.2.32 Definition (Interior, closure, and boundary) Let (S,O ) be a topological space and
let A ⊆ S.

(i) The interior of A is the set

int(A) = ∪{U | U ⊆ A, U open}.

(ii) The closure of A is the set

cl(A) = ∩{C | A ⊆ C, C closed}.

(iii) The boundary of A is the set bd(A) = cl(A) ∩ cl(S \ A). •

The following characterisations of interior, closure, and boundary are helpful.

1.2.33 Proposition (Characterisation of interior, closure, and boundary) For a topo-
logical space (S,O ) and for A ⊆ S, the following statements hold:

(i) x ∈ int(A) if and only if there exists a neighbourhood U of x such that U ⊆ A;
(ii) x ∈ cl(A) if and only if, for each neighbourhood U of x, the set U ∩A is nonempty;
(iii) x ∈ bd(A) if and only if, for each neighbourhood U of x, the sets U∩A and U∩(S\A)

are nonempty.
Proof (i) Suppose that x ∈ int(A). Since int(A) is open, there exists a neighbourhood
U of x contained in int(A). Since int(A) ⊆ A, U ⊆ A.

Next suppose that x < int(A). Then, by definition of interior, for any open set U
for which U ⊆ A, x < U.

(ii) Suppose that there exists a neighbourhood U of x such that U ∩ A = ∅. Then
S \ U is a closed set containing A. Thus cl(A) ⊆ S \ U. Since x < S \ U, it follows that
x < cl(A).

Suppose that x < cl(A). Then x is an element of the open set S \ cl(A). Thus there
exists a neighbourhood U of x such that U ⊆ S \ cl(A). In particular, U ∩ A = ∅.

(iii) This follows directly from part (ii) and the definition of boundary. ■

The reader should refer to Example I-2.5.17 for some simple examples illus-
trating the concepts of interior, closure, and boundary. Here we give examples to
show what can happen in some atypical cases of topological spaces.

1.2.34 Examples (Interior, closure, and boundary)
1. Let S be a set and consider the trivial topology on S. If A ⊂ S is nonempty then

int(A) = ∅, cl(A) = S, bd(S) = S.

We also have

int(∅) = cl(∅) = bd(∅) = ∅, int(S) = cl(S) = S, bd(S) = ∅.
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2. We again let S be an arbitrary set but now consider the discrete topology. If
A ⊂ S is nonempty then we have

int(A) = cl(A) = A, bd(A) = ∅.

It also holds that

int(∅) = cl(∅) = bd(∅) = ∅, int(S) = cl(S) = S, bd(S) = ∅.

3. Let S be an uncountable set and following Exercise 1.2.1 we let O be the collec-
tion of subsets of S whose complement is countable, along with ∅ and S. We
then have

int(A) =


∅, A countable,
A, S \ A countable,
?, A,S \ A uncountable,

cl(A) =


A, A countable,
S, S \ A countable,
?, A,S \ A uncountable.

The “?” mean that there is no useful general characterisation. The verification
of these statements takes a moments thought, but it is only a matter of checking
the definitions. •

Let us give some general properties of the interior operation.

1.2.35 Proposition (Properties of interior) Let (S,O ) be a topological space. For A,B ⊆ S
and for a family of subsets (Ai)i∈I of S, the following statements hold:

(i) int(∅) = ∅;
(ii) int(S) = S;
(iii) int(int(A)) = int(A);
(iv) if A ⊆ B then int(A) ⊆ int(B);
(v) int(A ∪ B) ⊇ int(A) ∪ int(B);
(vi) int(A ∩ B) = int(A) ∩ int(B);
(vii) int(∪i∈IAi) ⊇ ∪i∈I int(Ai);
(viii) int(∩i∈IAi) ⊆ ∩i∈I int(Ai).
Moreover, a set A ⊆ S is open if and only if int(A) = A.

Proof Parts (i) and (ii) are clear by definition of interior. Part (v) follows from part (vii),
so we will only prove the latter.

(iii) This follows since the interior of an open set is the set itself.
(iv) Let x ∈ int(A). Then there exists a neighbourhood U of x such that U ⊆ A. Thus

U ⊆ B, and the result follows from Proposition 1.2.33.
(vi) Let x ∈ int(A) ∩ int(B). Since int(A) ∩ int(B) is open by Exercise I-2.5.1, there

exists a neighbourhood U of x such that U ⊆ int(A) ∩ int(B). Thus U ⊆ A ∩ B. This
shows that x ∈ int(A ∩ B). This part of the result follows from part (viii).

(vii) Let x ∈ ∪i∈I int(Ai). By Exercise I-2.5.1 the set ∪i∈I int(Ai) is open. Thus there
exists a neighbourhood U of x such that U ⊆ ∪i∈I int(Ai). Thus U ⊆ ∪i∈IAi, from which
we conclude that x ∈ int(∪i∈IAi).
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(viii) Let x ∈ int(∩i∈IAi). Then there exists a neighbourhood U of x such that
U ⊆ ∩i∈IAi. It therefore follows that U ⊆ Ai for each i ∈ I, and so that x ∈ int(Ai) for
each i ∈ I.

The final assertion follows directly from Proposition 1.2.33. ■

Now let us give the analogous result for the closure.

1.2.36 Proposition (Properties of closure) Let (S,O ) be a topological space. For A,B ⊆ S
and for a family of subsets (Ai)i∈I of S, the following statements hold:

(i) cl(∅) = ∅;
(ii) cl(S) = S;
(iii) cl(cl(A)) = cl(A);
(iv) if A ⊆ B then cl(A) ⊆ cl(B);
(v) cl(A ∪ B) = cl(A) ∪ cl(B);
(vi) cl(A ∩ B) ⊆ cl(A) ∩ cl(B);
(vii) cl(∪i∈IAi) ⊇ ∪i∈I cl(Ai);
(viii) cl(∩i∈IAi) ⊆ ∩i∈I cl(Ai).
Moreover, a set A ⊆ S is closed if and only if cl(A) = A.

Proof Parts (i) and (ii) follow immediately from the definition of closure. Part (vi)
follows from part (viii), so we will only prove the latter.

(iii) This follows since the closure of a closed set is the set itself.
(iv) Suppose that x ∈ cl(A). Then, for any neighbourhood U of x, the set U ∩ A is

nonempty, by Proposition 1.2.33. Since A ⊆ B, it follows that U ∩ B is also nonempty,
and so x ∈ cl(B).

(v) Let x ∈ cl(A ∪ B). Then, for any neighbourhood U of x, the set U ∩ (A ∪ B) is
nonempty by Proposition 1.2.33. By Proposition I-1.1.4, U∩(A∪B) = (U∩A)∪(U∩B).
Thus the sets U ∩ A and U ∩ B are not both nonempty, and so x ∈ cl(A) ∪ cl(B). That
cl(A) ∪ cl(B) ⊆ cl(A ∪ B) follows from part (vii).

(vi) Let x ∈ cl(A ∩ B). Then, for any neighbourhood U of x, the set U ∩ (A ∩ B) is
nonempty. Thus the sets U ∩ A and U ∩ B are nonempty, and so x ∈ cl(A) ∩ cl(B).

(vii) Let x ∈ ∪i∈I cl(Ai) and let U be a neighbourhood of x. Then, for each i ∈ I,
U ∩ Ai , ∅. Therefore, ∪i∈I(U ∩ Ai) , ∅. By Proposition I-1.1.7, ∪i∈I(U ∩ Ai) =
U ∩ (∪i∈IAi), showing that U ∩ (∪i∈IAi) , ∅. Thus x ∈ cl(∪i∈IAi).

(viii) Let x ∈ cl(∩i∈IAi) and let U be a neighbourhood of x. Then the set U ∩ (∩i∈IAi)
is nonempty. This means that, for each i ∈ I, the set U∩Ai is nonempty. Thus x ∈ cl(Ai)
for each i ∈ I, giving the result. ■

The interior, closure, and boundary enjoy some joint properties.

1.2.37 Proposition (Joint properties of interior, closure, boundary, and derived set)
Let (S,O ) be a topological space. For A ⊆ S, the following statements hold:

(i) S \ int(A) = cl(S \A);
(ii) S \ cl(A) = int(S \A).
(iii) cl(A) = A ∪ bd(A);
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(iv) int(A) = A − bd(A);
(v) cl(A) = int(A) ∪ bd(A);
(vi) cl(A) = A ∪ der(A);
(vii) S = int(A) ∪ bd(A) ∪ int(S \A).

Proof (i) Let x ∈ S \ int(A). Since x < int(A), for every neighbourhood U of x it holds
that U 1 A. Thus, for any neighbourhood U of x, we have U ∩ (S \ A) , ∅, showing
that x ∈ cl(S \ A).

Now let x ∈ cl(S \A). Then for any neighbourhood U of x we have U∩ (S \A) , ∅.
Thus x < int(A), so x ∈ S \ A.

(ii) The proof here strongly resembles that for part (i), and we encourage the reader
to provide the explicit arguments.

(iii) This follows from part (v).
(iv) Clearly

∫
(A) ⊆ A. Suppose that x ∈ A ∩ bd(A). Then, for any neighbourhood

U of x, the set U ∩ (S \ A) is nonempty. Therefore, no neighbourhood of x is a subset
of A, and so x < int(A). Conversely, if x ∈ int(A) then there is a neighbourhood U of x
such that U ⊆ A. The precludes the set U ∩ (S \ A) from being nonempty, and so we
must have x < bd(A).

(v) Let x ∈ cl(A). For a neighbourhood U of x it then holds that U ∩ A , ∅. If
there exists a neighbourhood V of x such that V ⊆ A, then x ∈ int(A). If there exists no
neighbourhood V of x such that V ⊆ A, then for every neighbourhood V of x we have
V ∩ (S \ A) , ∅, and so x ∈ bd(A).

Now let x ∈ int(A) ∪ bd(A). If x ∈ int(A) then x ∈ A and so x ∈⊆ cl(A). If x ∈ bd(A)
then it follows immediately from Proposition 1.2.33 that x ∈ cl(A).

(vi) Let x ∈ cl(A). If x < A then, for every neighbourhood U of x, U ∩ A =
U ∩ (A \ {x}) , ∅, and so x ∈ der(A).

If x ∈ A ∪ der(A) then either x ∈ A ⊆ cl(A), or x < A. In this latter case, x ∈ der(A)
and so the set U ∩ (A \ {x}) is nonempty for each neighbourhood U of x, and we again
conclude that x ∈ cl(A).

(vii) Clearly int(A) ∩ int(S \ A) = ∅ since A ∩ (S \ A) = ∅. Now let x ∈ S \ (int(A) ∪
int(S \A)). Then, for any neighbourhood U of x, we have U 1 A and U 1 (S \A). Thus
the sets U ∩ (S \ A) and U ∩ A must both be nonempty, from which we conclude that
x ∈ bd(A). ■

Exercises

1.2.1 Let S be an uncountable set and define

O = {∅} ∪ {S} ∪ {U ⊆ S | S \U is countable}.

Show that O is a topology on S.
1.2.2 Answer the following questions.

(a) For a metric space (S, d) and x ∈ S show that the set

{Bd(r, x) | r ∈ R>0}

is totally ordered.
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(b) For a topological space (S,O ) and x ∈ S show thatNx is partially ordered.
(c) Let (S, d) be a metric space and let x, y ∈ S. Show that x is within distance

r of y if and only if y is within distance r of x. That is, show that
“closeness” is symmetric in a metric space.

Example where y is in
every neighbourhood of x
by no neighbourhood of y
contains x

(d)
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Section 1.3

Continuity

One of the most significant contributions made by general topology is that it
allows one to define the notion of continuity in very general settings. We shall
make great use of this in understanding important concepts in linear analysis in
Chapters 3, 4, and 6.

1.3.1 Proposition (Continuity and closed sets) For topological spaces S and T and for
f : S→ T, the following statements are equivalent:

(i) f is continuous;
(ii) f−1(A) is closed for every closed subset A ⊆ T.

1.3.2 Corollary (Homeomorphisms are open and closed)

Exercises

1.3.1
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Section 1.4

Subspaces, products, and quotients

1.4.1 Subspaces of topological spaces

1.4.1 Definition (Relative topology)



46 1 Topology 2022/03/07

Section 1.5

Convergence in topological spaces

1.5.1 Definition (Sequences in topological spaces)

1.5.2 Examples (Convergent sequences)
1. Let S be an uncountable set and letO be the collection of subsets of S whose com-

plement is countable, along with ∅ and S. The reader is asked in Exercise 1.2.1
that O is a topology on S. We claim that the only convergent sequences in
this topology are the eventually constant sequences. Indeed, suppose that a
sequence (x j) j∈Z>0 converges to x. Note that {x} is a neighbourhood of x in the
topology O ; this immediate implies that there exists N ∈ Z>0 such that x j = x
for j ≥ N.
As an aside, note that the convergent sequences in the topology O are the same
as the convergent sequences in the discrete topology. However, O is not equal
to the discrete topology, and this shows that the convergent sequences do not
uniquely determine a topology.

1.5.3 Corollary (Closed subsets of metric spaces) If (S,d) is a metric space then a subset
A ⊆ S is closed if and only if every convergent sequence (xj)j∈Z in A has a limit in A.

1.5.1 The most general setting for Landau symbols
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Section 1.6

Compactness

1.6.1 Example The subset {(0, 0)}∪{(x, y) | x > 0} is not locally compact since no compact
subset contains (0, 0).

1.6.2 Example The long line is sequentially compact but not compact.

1.6.3 Theorem (Bolzano–Weierstrass Theorem)

1.6.4 Proposition (Closed subsets of compact sets are compact)

1.6.5 Proposition (Continuous images of compact sets are compact)

1.6.6 Proposition (Compact sets are closed)

1.6.7 Theorem (Continuous functions achieve their maximum and minimum on
compact sets)

Exercises

1.6.1 For any topological space S and for x ∈ S, show that {x} is compact.
1.6.2 Let S be a topological space.

(a) Show that a finite union of compact subsets of S is compact.
(b) Is it true that a countable union of compact subsets is compact?
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Section 1.7

Connectedness
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Section 1.8

Countability and separability conditions

1.8.1 Countability conditions

1.8.2 Separability definitions

1.8.1 Proposition (Metric spaces are Hausdorff)

1.8.2 Proposition (Accumulation point equals cluster point for T1-spaces) If (S,O )
is a T1-topological space and if A ⊆ S, then x ∈ S is an accumulation point if and only if it
is a cluster point.

Proof By Proposition 1.2.29 cluster points are always accumulation points. Suppose
that x is not a cluster point and that N is a neighbourhood of x that contains only
finitely many points x1, . . . , xk from A. Since S is T1, for each j ∈ {1, . . . , k} there exists
a neighbourhood N j of x such that N j does not contain x j. Then the neighbourhood
∩

k
j=1N j does not contain any of the points x1, . . . , xk and so x cannot be an accumulation

point for A. ■
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Section 1.9

The topologies of convergence of maps

1.9.1 The pointwise convergence topology

1.9.2 The uniform convergence topology

1.9.3 The compact-open topology

1.9.4 Maps between metric spaces

1.9.1 Theorem Let (S,dS) and (T,dT) be metric spaces with (T,dT) complete, and let C0
bdd(S; T)

denote the set of continuous bounded functions from S to T:

C0
bdd(S; T) = {f ∈ C0(S; T) | there exists y ∈ T and R > 0 such that image(f) ⊆ BdT(R,y)}.

If we define a metric dC0
bdd(S;T) on C0

bdd(S; T) by

dC0
bdd(S;T)(f,g) = sup{dT(f(x),g(x)) | x ∈ S},

then (C0
bdd(S; T),dC0

bdd(S;T)) is a complete metric space.
Moreover, the result also holds if we replace C0

bdd(S; T) with the subset C0
unif,bdd(S; T) of

C0
bdd(S; T) consisting of uniformly continuous functions.

Proof First let us show that dC0
bdd(S;T) is a metric. It is clear that dC0

bdd(S;T) is symmetric

and definite, so we need only verify the triangle inequality. For f , g, h ∈ C0
bdd(S; T) we

have

dC0
bdd(S;T)( f , g) = sup{dT( f (x), g(x)) | x ∈ S}

≤ sup{dT( f (x), h(x)) + dT(h(x), g(x)) | x ∈ S}
≤ sup{dT( f (x1), h(x1)) + dT(h(x2), g(x2)) | x1, x2 ∈ S}
≤ sup{dT( f (x1), h(x1)) | x1 ∈ S} + sup{dT(h(x2), g(x2)) | x2 ∈ S}
= dC0

bdd(S;T)( f , h) + dC0
bdd(S;T)(h, g),

where we have used the triangle inequality for dT and for fR.
Let ( f j) j∈Z>0 be a Cauchy sequence in C0

bdd(S; T) and for x ∈ S define f (x) =
lim j→∞ f j(x). This pointwise limit exists since ( f j(x)) j∈Z>0 is a Cauchy sequence in
T (why?), and since (T, dT) is complete. We first claim that f is bounded. To see this,
for ϵ > 0, let N ∈ Z>0 have the property that dC0

bdd(S;T)( f , fN) < ϵ. Let R > 0 and y ∈ T
have the property that dT( f (x), y) < R for all x ∈ S. Now choose an arbitrary x ∈ S.
Then, using the triangle inequality,

dT( f (x), y) ≤ dT( f (x), fN(t)) + dT( fN(x), y) ≤ ϵ + R.

Thus image( f ) ⊆ BdT (R + ϵ, y), so giving the boundedness of f .
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Next we claim that, for any ϵ > 0, there exists N ∈ Z>0 such that dT( f (x), f j(x)) < ϵ
for all x ∈ S whenever j ≥ N. Since ( f j) j∈Z>0 is Cauchy, for any ϵ > 0 there exists
N ∈ Z>0 such that dT( f j(x), fk(x)) < ϵ

2 for all x ∈ S. For each fixed x ∈ S, we may
also find N(x) ∈ Z>0 such that dT( f (x), f j(x)) < ϵ

2 for j ≥ N(x). Still for fixed x, let
k = max{N,N(x)}. For j ≥ N we then have

dT( f j(x), f (x)) ≤ dT( f j(x), fk(x)) + dT( fk(x), f (x)) < ϵ
2 +

ϵ
2 = ϵ,

where we have used the triangle inequality. Since this may be done for each x ∈ S, our
claim follows.

Now we use the previous claim to prove that the limit function f is continuous.
By the previous claim, for any ϵ > 0, there exists N ∈ Z>0 such that dT( fN(x), f (x)) < ϵ

3
for all x ∈ S. Now fix x0 ∈ S and consider the N ∈ Z>0 just defined. By continuity of
fN, there exists δ > 0 such that, if x ∈ S satisfies dS(x, x0) < δ, then dT( fN(x), fN(x0)) < ϵ

3 .
Then, for x ∈ S satisfying dS(x, x0) < δ, we have

dT( f (x), f (x0)) ≤ dT( f (x), fN(x)) + dT( fN(x), fN(x0)) + dT( fN(x0), f (x0))
< ϵ

3 +
ϵ
3 +

ϵ
3 = ϵ,

where we have again used the triangle inequality. Since this argument is valid for any
x0 ∈ S, it follows that f is continuous.

For the final assertion, suppose that ( f j) j∈Z>0 is a Cauchy sequence of bounded
uniformly continuous maps from S to T. For ϵ > 0 choose N ∈ Z>0 such that
dT( fN(x), f (x)) < ϵ

3 for all x ∈ S. Now choose δ > 0 such that dS(x1, x2) < δ implies
that dT( fN(x1), fN(x2)) < ϵ

3 . Then, again provided that dS(x1, x2) < δ, we have

dT( f (x1), f (x2)) ≤ dT( f (x1), fN(x1)) + dT( fN(x1), fN(x2)) + dT( fN(x2), f (x2))
< ϵ

3 +
ϵ
3 +

ϵ
3 = ϵ,

so giving uniform continuity of the limit function f . ■

An application of Proposition 1.1.33 gives the following result.

1.9.2 Corollary If (S,dS) and (T,dT) are metric spaces with (T,dT) complete, then C0
unif,bdd(S; T)

is a closed subset of C0
bdd(S; T) (it is implicit that we are using the metric dC0

bdd(S;T) on
C0

bdd(S; T)).

1.9.3 Remark Note that the preceding results do not require that the domain (S, dS) be
complete, only that the codomain (T, dT) be complete. •

Exercises

1.9.1
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Section 1.10

Metrisable spaces
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Section 1.11

Locally compact topological spaces

This section we devote to the detailed study of a certain character of topological
space, those for which every point possesses a precompact neighbourhood. Just
why we would devote special attention to this particular class of topological spaces
is not entirely evident at this point, except to say that many topological spaces of
interest have this property. We shall see specific examples as we go along. The
main utility of this class of topological spaces will be seen in Section 2.12 when we
discuss measures on these spaces. There it will be seen that the extra topological
structure of these spaces permits an elegant characterisation of certain measures
on them. However, this is getting ahead of ourselves.

Do I need to read this section? The material in this section is quite specialised,
and so can be omitted until one decides to read Section 2.12. •

1.11.1 Locally compact topological groups
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This version: 2022/03/07

Chapter 2

Measure theory and integration

The theory of measure and integration we present in this chapter represents one
of the most important achievements of mathematics in the twentieth century. To a
newcomer to the subject or to someone coming at the material from an “applied”
perspective, it can be difficult to understand why abstract integration provides
anything of value. This is the more so if one comes equipped with the knowledge of
Riemann integration as we have developed in Sections I-3.4 and II-1.6. This theory
of integration appears to be entirely satisfactory. There are certainly functions that
are easily described, but not Riemann integrable (see Example I-3.4.10). However,
these functions typically fall into the class of functions that one will not encounter
in practice, so it is not clear that they represent a serious obstacle to the viability
of Riemann integration. Indeed, if one’s objective is only to compute integrals,
then the Riemann integral is all that is needed. The multiple volumes of tables of
integrals, many of them several hundred pages in length, are all compiled using
good ol’ Riemann integration. But this is not the problem that is being addressed by
modern integration theory! The theory of measure and integration we present in
this chapter is intended to provide a theory whereby spaces of integrable functions
have satisfactory properties. This confusion concerning the objectives of modern
integration theory is widespread. For example, an often encountered statement is
that of Richard W. Hamming (1915–1998):

Does anyone believe that the difference between the Lebesgue and Rie-
mann integrals can have physical significance, and that whether say, an
airplane would or would not fly could depend on this difference? If
such were claimed, I should not care to fly in that plane.

We are uncertain what Hamming was actually saying when he made this statement.
However, it is certainly the case that this statement gets pulled out by many folks
as justification for the statement that the modern theory of integration is simply not
worth learning. Our view on this is that it may well be the case that this is true. If
all you want to be able to do is integrate functions, then there is no need to learn the
modern theory of integration. However, if you find yourself talking about spaces
of integrable functions (as we shall do constantly in Volume 4 in our discussion of other places?

signal theory), then you will find yourself needing a theory of integration that is
better that Riemann integration.
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With the above as backdrop, in Section 2.1 we discuss in detail some of the
limitations of the Riemann integral. After doing this we launch into a treatment
of measure theory and integration. While there is no question that the special case
of Lebesgue measure and integration is of paramount importance for us, we take
the approach that measure theory and integration is actually easier to understand
starting from a general point of view. Thus we start with general measure theory
and the corresponding general integration theory. We then specialise to Lebesgue
measure and integration.

Do I need to read this chapter? The reader ought to be able to decide based on
the discussion above whether they want to read this chapter. If they elect to bypass
it, then they will be directed back to it at appropriate points in the sequel.

That being said, it is worth attempting to disavow a common perception about
the use of measure theory and integration. There appears to be a common feeling
that the theory is difficult, weird, and overly abstract. Part of this may stem from
the fact that many already have a comfort level with integration via the Riemann
integral, and so do not feel compelled to relearn integration theory. But the fact
is that measure theory is no more difficult to learn than anything else about real
analysis. •
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Section 2.1

Some motivation for abstract measure theory and integration

In this section we illustrate the problems with the Riemann integral when it
comes to dealing with spaces of integrable functions. We do this by first deriving
a “measure theory,” the Jordan measure, for Riemann integration, although this is
not a theory of measure that satisfies the criterion we impose in our subsequent
development of measure theory. What we shall see is that the difficulty arises from
the fact that the Jordan measure only behaves well when one uses finite unions and
intersections of sets. This leads to problems with sequential operations where there
is an inherent need to be able to handle countable set theoretic unions and inter-
sections. This is illustrated clearly in Example 2.1.10. We then illustrate why this
phenomenon has repercussions for the Riemann integral. The problem, as we shall
see, is that limits and Riemann integration do not commute; see Example 2.1.11.

Do I need to read this section? If you have already decided to read this chapter,
and you do not already understand why it is necessary to move beyond the Rie-
mann integral, then you should read this section. •

2.1.1 The Jordan measure and its limitations

We begin our discussion of the deficiencies of the Riemann integral by con-
sidering carefully the Jordan measure, which was touched lightly upon in Sec-
tion II-1.6.4. Here we develop the Jordan measure in detail before finally tearing it
down.

In Section II-1.6.4 we introduced the idea of a Jordan measurable set as a set A
whose characteristic function χA is Riemann integrable. In Theorem II-1.6.13 we
showed that a bounded set A is Jordan measurable if and only if bd(A) has zero
volume if and only if bd(A) has zero measure. In this section we shall consider the
Jordan measure in more detail and see that it has certain clear limitations.

First let us give a characterisation of Jordan measurable sets that will echo some
of the constructions that will follow in our development of general measure theory.
The basic building blocks for the Jordan measure are so-called elementary sets.

2.1.1 Definition (Elementary set) A subset E ⊆ Rn is elementary if E = ∪k
j=1C j for

bounded rectangles C1, . . . ,Ck. •

Note that, given a elementary set E, the expression of E as a union of bounded
rectangles is not unique. Moreover, since there is no restriction that the rectangles
do not overlap, the following result is of interest.

2.1.2 Proposition (Elementary sets are finite unions of disjoint rectangles) If E is a
elementary set then there exists disjoint rectangles C1, . . . ,Ck such that E = ∪k

j=1Cj.
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Proof By definition we can write an elementary set as E = ∪k̃
j=1C̃ j for rectangles

C̃1, . . . , C̃k̃. We shall prove the proposition by induction on k̃. The result is clearly true
for k̃ = 1. Suppose that the result is true for k̃ ∈ {1, . . . , m̃} and suppose that E = ∪m̃+1

j=1 C̃ j

and write
E =

(
∪

m̃
j=1(C̃ j ∩ C̃m+1)

)
∪

(
C̃m+1 \ (∪m̃

j=1C̃ j))
)
.

By the induction hypothesis there exists disjoint rectangles C1, . . . ,Cl such that

∪
m̃
j=1C̃ j = ∪

l
j=1C j.

Thus
E =

(
∪

l
j=1(C j ∩ C̃m+1)

)
∪

(
∪

l
j=1(C̃m+1 − C j)

)
.

Thus the result boils down to the following lemma.

1 Lemma If C and C′ are bounded rectangles then C∩C′ is a bounded rectangle if it is nonempty
and C − C′ is a finite union of disjoint bounded rectangles if it is nonempty.

Proof Suppose that

C = I1 × · · · × In, C′ = I′1 × · · · × I′n

for bounded intervals I1, . . . , In and I′1, . . . , I
′
n. Note that x ∈ C∩C′ if and only if x j ∈ I j∩I′j,

j ∈ {1, . . . ,n}. That is,
C ∩ C′ = (I1 ∩ I′1) × · · · × (In ∩ I′n).

Since (I j ∩ I′j), j ∈ {1, . . . ,n}, are bounded intervals if they are nonempty, it follows that
C ∩ C′ is a bounded rectangle if it is nonempty.

Note that C−C′ = C\(C∩C′). We may as well suppose that each of the intersections
I j∩ I′j, j ∈ {1, . . . ,n}, is a nonempty bounded interval. Then write I j = J j∪ (I j∩ I′j) where
J j ∩ (I j ∩ I′j) = ∅. This defines a partition of C where the interval I j is partitioned as
(J j, I j ∩ I′j), j ∈ {1, . . . ,n}. Thus this gives C as a finite disjoint union of rectangles, the
subrectangles of the partition. Moreover, C∩C′ corresponds exactly to the subrectangle

(I1 ∩ I′1) ∩ · · · ∩ (In ∩ I′n)

of this partition. By removing this subrectangle, we have C − C′ as a finite union of
disjoint bounded rectangles, as desired. ▼

This completes the proof. ■

The previous result makes plausible the following definition.

2.1.3 Definition (Jordan measure of an elementary set) If E ⊆ Rn is an elementary
set and if E = ∪k

j=1C j for disjoint bounded rectangles C1, . . . ,Ck, then the Jordan
measure of E is

ρ(E) =
k∑

j=1

vol(C j). •
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This definition has the possible ambiguity that it depends on writing E as a finite
union of disjoint bounded rectangles, and such a union is not uniquely defined.
However, one can refer to Proposition II-1.6.32 to see that the definition is, in fact
independent of how this union is made.

With the Jordan measure of elementary sets, we can introduce the following
concepts which we shall see arise again when we are doing “serious” measure
theory.

2.1.4 Definition (Inner and outer Jordan measure) If A ⊆ Rn is a bounded set then
(i) the Jordan outer measure of A is

ρ∗(A) = inf{ρ(E) | E an elementary set containing A}

and
(ii) the Jordan inner measure of A is

ρ∗(A) = sup{ρ(E) | E an elementary set contained in A} •

Note that the Jordan outer and inner measures of a bounded set always exist,
provided that, for the inner measure, we allow that the empty set be thought of as
an elementary set, and that we adopt the (reasonable) convention that ρ(∅) = 0.

The following result gives a characterisation of bounded Jordan measurable sets,
including some of the characterisations we have already proved in Section II-1.6.4.

2.1.5 Theorem (Characterisations of bounded Jordan measurable sets) For a
bounded subset A ⊆ Rn the following statements are equivalent:

(i) A is Jordan measurable;
(ii) vol(bd(A)) = 0;
(iii) χA is Riemann integrable;
(iv) ρ∗(A) = ρ∗(A).

Proof The equivalent of the first three statements is the content of Theorems II-1.6.13
and II-1.6.16. Thus we only prove the equivalence of the last statement with the other
three.

Let C be a fat compact rectangle containing A.
First suppose that A is Jordan measurable and let ϵ ∈ R>0. Since χA is Riemann

integrable there exists a partition P of C such that

A+(χA,P) − A−(χA,P) < ϵ.

Let the subrectangles of P be divided into three sorts: (1) the first sort are those
subrectangles that lie within A; (2) the second sort are those that intersect A; (3) the
third sort are rectangles that do not intersect A. From the definition of χA, A+(χA,P) is
the total volume of the rectangles of the third sort and A−(χA,P) is the total volume of
the rectangles of the first sort. Moreover, by the definitions of these rectangles,

ρ∗(A) ≤ A+(χA,P), ρ∗(A) ≥ A−(χA,P).
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Thus ρ∗(A) − ρ∗(A) < ϵ, giving ρ∗(A) = ρ∗(A) since ϵ ∈ R>0 is arbitrary.
Now suppose that ρ∗(A) = ρ∗(A), let ϵ ∈ R>0, and let Eϵ and Eϵ be elementary

subsets of Rn such that ρ(Eϵ) − ρ(Eϵ) < ϵ. Since Eϵ is a disjoint union of finitely
many bounded rectangles there exists a partition Pϵ of C such that Eϵ is a union of
subrectangles from Pϵ. Similarly, there exists a partition Pϵ such that Eϵ is a union of
subrectangles of Pϵ. Now let Pϵ be a partition that refines both Pϵ and Pϵ. Then we
have

A+(χA,Pϵ) ≤ ρ∗(Eϵ), A−(χA,Pϵ ≥ ρ∗(Eϵ),

which gives
A+(χA,Pϵ) − A−(χA,Pϵ) < ϵ,

as desired. ■

Note that it is only the basic definition of a Jordan measurable set, i.e., that its
boundary have measure zero, that is applicable to unbounded sets. However, we
can still use the characterisation of bounded Jordan measurable sets to give the
measure of possibly unbounded sets. For the following definition we denote by

CR = [−R,R] × · · · × [−R,R]

the rectangle centred at 0 whose sides have length 2R for R ∈ R>0.

2.1.6 Definition (Jordan measure1) Let J (Rn) denote the collection of Jordan measur-
able sets of Rn and define ρ : J (R)→ R≥0 by

ρ(A) = lim
R→∞

ρ∗(A ∩ CR),

noting that A ∩ CR is a bounded Jordan measurable set for each R ∈ R>0. For
A ∈ J (Rn), ρ(A) is the Jordan measure of A. •

Of course, by Theorem 2.1.5 we could as well have defined

ρ(A) = lim
R→∞

ρ∗(A ∩ CR).

Let us look at some examples that flesh out the definition.

2.1.7 Examples (Jordan measurable sets)
1. Rn is itself Jordan measurable and ρ(Rn) = ∞.
2. Let us consider the set

A = {(x1, x2) ∈ R2
| |x2| ≤ e−|x1|}

1The Jordan measure is not a measure as we shall define the notion in Section 2.3. However, it
is convenient to write as if it is to get prepared for the more general and abstract development to
follow.
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An application of Fubini’s Theorem gives∫
A

dx =
∫
∞

−∞

(∫ e−|x1 |

−e−|x1 |
dx2

)
dx1 = 4.

By the definition of the Riemann integral for unbounded domains (see Defini-
tion II-1.6.22) this means that ρ(A) = 4. Thus unbounded domains can have
finite Jordan measure. •

The following property of Jordan measures—or more precisely the fact that only
the following result applies—is crucial to why they are actually not so useful.

2.1.8 Proposition (Jordan measurable sets are closed under finite intersections
and unions) If A1, . . . ,Ak ∈ J (Rn) are Jordan measurable then ∩k

j=1Aj,∪k
j=1Aj ∈

J (Rn).
Proof This is straightforward and we leave the details to the reader as Exercise 2.1.1.

■

Having now built up the Jordan measure and given some of its useful properties,
let us now proceed to show that it has some very undesirable properties. This
destruction of the Jordan measure is tightly connected with our bringing down of
the Riemann integral in the next section. Sometimes, in order to understand why
something is useful (in this case, the Lebesgue measure), it helps to first understand
why the alternatives are not useful. It is with this in mind that the reader should
undertake to read the remainder of this section.

The most salient question about the Jordan measure is, “What are the Jordan
measurable sets?” The first thing we shall note is that there are “nice” open sets
that are not Jordan measurable. This is not good, since open sets form the building
blocks of the topology of Rn.

2.1.9 Example (A regularly open non-Jordan measurable set) We shall construct a
subset A ⊆ [0, 1] with the following properties:
1. A is open;
2. A = int(cl(A)) (an open set with this property is called regularly open);
3. A is not Jordan measurable.
The construction is involved, and will be presented with the aid of a series of
lemmata. If you are prepared to take the existence of a set A as stated on faith, you
can skip the details. Let us denote I = [0, 1].

Any x ∈ I can be written in the form

∞∑
j=1

a j

3 j

for a j ∈ {0, 1, 2}. This is called a ternary decimal expansion of x, and we refer
the reader to Exercise I-2.4.8 for details of this construction in base 10. There is
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a possible nonuniqueness in such decimal expansions that arises in the following
manner. If a1, . . . , ak ∈ {0, 1, 2} then the numbers

k∑
j=1

a j

3 j +

∞∑
j=k+1

2
3 j and

k−1∑
j=1

a j

3 j +
(ak + 1) mod 3

3k
+

∞∑
j=k+1

0
3k

are the same, where

(ak + 1) mod 3 =

ak + 1, ak ∈ {0, 1},
0, ak = 2.

Now, for k ∈ Z>0, define Bk to be the subset of I for which, if x ∈ Bk is written as

x =
∞∑
j=1

a j

3 j ,

then a j = 1 for j ∈ {2k−1 + 1, 2k−1 + 2, . . . , 2k
}. For numbers with nonunique ternary

decimal expansions, we ask that both representations satisfy the condition.

1 Lemma For k ∈ Z>0, Bk is a disjoint union of 32k−1 open intervals each of length 1
32k .

Proof For a = (a1, . . . , a2k−1) ∈ {0, 1, 2} define Ia to be the open interval whose left
endpoint is

2k−1∑
j=1

a j

3 j +

2k∑
j=2k−1+1

1
3 j

and whose right endpoint is

2k−1∑
j=1

a j

3 j +

2k∑
j=2k−1+1

1
3 j +

∞∑
j=2k+1

2
3 j .

There are obviously 32k−1 such intervals and each such interval has length 32k . One
can directly verify that Bk is the union of all of these intervals. ▼

Now define B = ∪∞k=1Bk which is, therefore, open. The sets Bk, k ∈ Z>0, satisfy
the following.

2 Lemma If l,k ∈ Z>0 satisfy l < k then bd(Bl) ∩ Bk = ∅.
Proof Let x ∈ bd(Bl). Then

x =
∞∑
j=1

a j

3 j

where either a j = 0 for all j ≥ 2l or a j = 2 for all j ≥ 2l. Thus a2k , 1 and so x < Bk. ▼

Now, for k ∈ Z>0, we define

Ak = Bk −
(
cl(Bk+1) ∪

(
∪

k−1
j=1B j

))
.

These sets have the following property.
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3 Lemma Ak = Bk ∩ (I \ cl(Bk+1)) ∩k−1
j=1 (I \ cl(Bj)). In particular, Ak is open for each

k ∈ Z>0.

Proof By DeMorgan’s Laws we have

Ak = Bk ∩ (I \ cl(Bk+1)) ∩k−1
j=1 (I \ B j).

By Lemma 2 we have
Bk ∩ (I \ B j) = Bk ∩ (I \ cl(B j))

for each j ∈ {1, . . . , k − 1}, and the stated formula for Ak follows from this. That Ak

is open follows since finite intersections of open sets are open. ▼

Thus the set A = ∪∞k=1Ak is open, being a union of open sets, and is contained in
B since Ak ⊆ Bk for each k ∈ Z>0.

Now, for k ∈ Z>0, define

Ck = (Bk ∩ Bk+1) \
(
∪

k−1
j=1B j

)
.

By the same argument as employed in the proof of Lemma 3, Lemma 2 implies
that

Ck = Bk ∩ Bk+1 ∩
k−1
j=1 (I \ cl(B j))

and so Ck, k ∈ Z>0, is open, being a finite intersection of open sets. Then define
the open set C = ∪∞k=1Ck. The relationship between the sets Al, l ∈ Z>0, and Ck,
k ∈ Z>0.

4 Lemma For each l,k ∈ Z>0, Al ∩ Ck = ∅.

Proof First suppose that l = k. By definition we have

Ak ⊆ I ∩ cl(Bk+1), Ck ⊆ Bk+1

which immediately gives Ak∩Ck = ∅. Now suppose that l < k. Again by definition
we have

Al ⊆ Bl, Ck ⊆ I \ cl(Bl),

giving Al ∩ Ck = ∅. Finally, for l > k we have

Al ⊆ I \ cl(Bk), Ck ⊆ Bk,

giving Al ∩ Ck = ∅. ▼

The following lemma then gives a relationship between A and C.
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5 Lemma cl(A) = I \ C.
Proof By Lemma 4 we have A ∩ C = ∅. That is, A ⊆ I \ C. Since I \ C is closed it
follows that cl(A) ⊆ I \ C. The difficult bit if the converse inclusion. Let x ∈ I \ C.
We consider three cases.
1. x ∈ ∪∞k=1 bd(Ak): In this case, since bd(Ak) ⊆ cl(Ak) ⊆ cl(A) for each k ∈ Z>0 it

immediately follows that x ∈ cl(A).
2. x < B: In this case we can write

x =
∞∑
j=1

a j

3 j .

Since x < B, for every k ∈ Z>0 there exists j ∈ {2k−1 + 1, . . . , 2k
} such that a j , 1.

Now define a sequence (yk)k∈Z>0 by asking that yk =
∑
∞

j=1
b j

3 j with

b j =

1, j ∈ {2k−1 + 1, . . . , 2k
},

a j, otherwise.

We then have |x − yk| ≤
1

32k (cf. the proof of Lemma 1) and so the sequence
(yk)k∈Z>0 converges to x. Moreover, by construction,

yk ∈ Bk, yk < B1 ∪ · · · ∪ Bk−1, yk < cl(Bk+1).

(Only the last of these statements is potentially not obvious. It, however, follows
from the characterisation of Bk+1, and by implication the characterisation of
cl(Bk+1), obtained in Lemma 1.) That is, by definition of Ak, yk ∈ Ak ⊆ A. Thus
x ∈ cl(A) by Proposition I-2.5.18.

3. x < ∪∞k=1 bd(Ak) and x ∈ B: Let k ∈ Z>0 be the least index for which x ∈ Bk. Since
x < C it follows that x < Ck and so x < Bk+1 and x < B j for j ∈ {1, . . . , k − 1}. We
also have x < bd(Ak+1). We claim that bd(Bk+1) ⊆ bd(Ak+1). Indeed, for each
m ∈ Z>0, by construction of the set Am, bd(Am) consists of those ternary decimal
expansions

∑
∞

j=1
a j

3 j having the following three properties:

(a) for l < m there exists j ∈ {2l−1 + 1, . . . , 2l
} such that a j , 1;

(b) a j = 1 for each j ∈ {2m−1 + 1, . . . , 2m
};

(c) there exists j ∈ {2m + 1, . . . , 2m+1
} such that a j , 1.

Using this characterisation, and by referring to the description of Bm in Lemma 1,
we then see that, indeed, bd(Bk+1) ⊆ bd(Ak+1). Thus we conclude that x <
bd(Bk+1). Then, by definition of Ak, x ∈ Ak ⊆ A ⊆ cl(A), as desired. ▼

We also then have

int(cl(A)) ⊆ int(I \ C) = I \ cl(C).

That is, int(cl(A)) ∩ cl(C) = ∅.
Now we can prove that A has one of the properties we set out for it to have.
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6 Lemma A = int(cl(A)).

Proof Since A ⊆ cl(A) we have A = int(A) ⊆ int(cl(A)). It is thus the converse
inclusion we must prove.

We first claim that int(cl(A)) ⊆ B. Suppose that x < B. Let us write

x =
∞∑
j=1

a j

3 j .

Since x < B, for every k ∈ Z>0 there exists j ∈ {2k−1+ 1, . . . , 2k
} such that a j , 1. Now,

for k ∈ Z>0, define

yk =

∞∑
j=1

c j

3 j

where

c j =

a j, j ≤ 2k−1,

1, j > 2k−1.

Then one can directly verify that

yk ∈ Bk, yk ∈ Bk+1, yk < B1 ∪ · · · ∪ Bk−1.

Thus, by definition of Ck, y ∈ Ck. Moreover, |x − yk| ≤
1

32k−1 and so the sequence
(yk)k∈Z>0 converges to x. Therefore, since yk ∈ C for each k ∈ Z>0, x ∈ cl(C) by
Proposition I-2.5.18. Thus x < int(cl(A)) by our computation just preceding the
statement of the lemma.

Now, if x ∈ int(cl(A)) then x ∈ B and we let k ∈ Z>0 be the least integer for which
x ∈ Bk. We claim that x < cl(Bk+1). We suppose that x ∈ cl(Bk+1) and arrive at a
contradiction. There are two possibilities.
1. x ∈ bd(Bk+1): First of all, using the characterisation of the sets Bl, l ∈ Z>0,

from Lemma 1 and using the definition of the sets Cl, l ∈ Z>0, we deduce
that bd(Bl) ⊆ bd(Cl) for each l ∈ Z>0. Therefore, if x ∈ bd(Bk+1) then x ∈
bd(Ck+1) ⊆ cl(Ck+1) ⊆ cl(C). This contradicts the fact that x ∈ int(cl(A)) and that
int(cl(A)) ∩ cl(C) = ∅.

2. x ∈ Bk+1: In this case x ∈ Bk ∩Bk+1 ⊆ Ck ⊆ cl(C), and we arrive at a contradiction,
just as in the previous case.

Thus we have shown that x < cl(Bk+1). But, by definition, this implies that x ∈ Ak ⊆

A, since x < ∪k−1
j=1B j by definition of k. ▼

Finally, to complete the example, we need only show that A is not Jordan mea-
surable. To do this, we shall show that bd(A) does not have measure zero. In fact,
we shall show that bd(A) has positive measure, but this relies on actually know-
ing what “measure” means; it means Lebesgue measure. We shall subsequently
carefully define Lebesgue measure, but all we need to know here is that (1) the
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Lebesgue measure of a countable collection of intervals is less than or equal to the
sum of the lengths of the intervals and (2) the Lebesgue measure of two disjoint
sets is the sum of their measures. Let us denote by λ(S) the Lebesgue measure of a
set S. We note that, by Lemma 1,

λ(Bk) = 32k−1 1
32k =

1
32k−1 .

Thus

λ(B) ≤
∞∑

k=1

1
32k−1 <

∞∑
j=1

1
3 j =

1
2

(how would you compute this sum?). Since A ⊆ B we also haveλ(A) < 1
2 . Therefore,

since cl(A) = I \ C and since C ⊆ B,

λ(A) + λ(bd(A)) = λ(cl(A)) ≥ λ(I \ B) = 1 − λ(B) > 1
2 > λ(A),

which gives λ(bd(A)) ∈ R>0, so A is not Jordan measurable. •

This is a rather complicated example. However, it says something important.
It says that not all open sets are Jordan measurable, not even “nice” open sets (and
regularly open sets are thought of as being pretty darn nice). Open subsets of R
are pretty easy to describe. Indeed, by Proposition I-2.5.6 such sets are countable
unions of open intervals. If one has an open subset of [0, 1], such as the one just
constructed, this means that the total lengths of these intervals should sum to a
finite number of value at most one. This should, if the world is right, be the
“measure” of this open set. However, the example indicates that this is just not so
if “measure” means “Jordan measure.” We shall see that it is so for the Lebesgue
measure.

In Proposition 2.1.8 we stated that finite unions and intersections of Jordan
measurable sets are Jordan measurable. This no longer holds if one replaces “finite”
with “countable.”

2.1.10 Examples (Jordan measurable sets are not closed under countable intersec-
tions and unions)
1. Let (q j) j∈Z>0 be an enumeration of the rational numbers in the interval [0, 1]. For

each j ∈ Z>0 the set {q j} is Jordan measurable with Jordan measure 0. Thus,
by Proposition 2.1.8 any finite union of these sets is also Jordan measurable
with Jordan measure 0. However, the set ∪∞j=1{q j} is not Jordan measurable by
Example I-3.4.10.

2. Let (q j) j∈Z>0 be as above and define A j = [0, 1] \ {q j}. Then A j is Jordan measur-
able and has Jordan measure 1. Moreover, any finite intersection of these sets
is Jordan measurable with Jordan measure 1. However, ∩∞j=1A j is equal to the
set of irrational numbers in the interval [0, 1] and is not Jordan measurable in
exactly the same manner as the set ∪∞j=1{q j} is not Jordan measurable, cf. Exam-
ple I-3.4.10. •
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A good question is, “Who cares if the Jordan measure is not closed under
countable intersections and unions?” This is not obvious, but it certainly underlies,
for example, the failure of the set in Example 2.1.9 to be Jordan measurable.
Somewhat more precisely, this failure of the Jordan measure to not be closed under
countable set theoretic operations is the reason why the Riemann integral does not
have nice properties with respect to sequences, as we now explain explicitly.

2.1.2 Some limitations of the Riemann integral

In this section we simply give an example that illustrates a fundamental defect
with the theory of Riemann integration. The problem we illustrate is the lack
of commutativity of limits and Riemann integration. The reader may wish to
refer to the discussion in Section II-1.7.3 concerning the Monotone and Dominated
Convergence Theorems for the Riemann integral to get more insight into this.

2.1.11 Example (Limits do not commute with Riemann integration) First recall from
Example I-3.4.10 that the function f : [0, 1] → R defined as taking value 1 on
rational numbers, and value 0 on irrational numbers is not Riemann integrable. It
is legitimate to inquire why one should care if such a degenerate function should
be integrable. The reason is that the function f arises as the limit of a sequence of
integrable functions. We explain this in the following example.

By Exercise I-2.1.3, the set of rational numbers in [0, 1] is countable. Thus it is
possible to write the set of rational numbers as (q j) j∈Z>0 . For each j ∈ Z>0 define
f j : [0, 1]→ R by

f j(x) =

1, x = q j,

0, otherwise.

One may readily verify that f j is Riemann integrable for each j ∈ Z>0, and that the
value of the Riemann integral is zero. By Proposition I-3.4.22 it follows that for
k ∈ Z>0, the function

gk =

k∑
j=1

f j

is Riemann integrable, and that the value of the Riemann integral is zero. Thus we
have

lim
k→∞

gk(x) = f (x), lim
k→∞

∫ b

a
gk(x) dx = 0,

the left limit holding for each x ∈ [0, 1] (i.e., the sequence (gk)k∈Z>0 converges point-
wise to f ). It now follows that

lim
k→∞

∫ b

a
gk(x) dx ,

∫ b

a
lim
k→∞

gn(x) dx.

Indeed, the expression on the right hand side is not even defined! •
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It is perhaps not evident immediately why this lack of commutativity of limits
and integrals is in any way debilitating, particularly given the inherent silliness
of the functions in the preceding example. We shall not really understand the
reasons for this in any depth until we consider in detail convergence theorems in
Section 2.7.3.

Let us illustrate some additional “features” of the Riemann integral, the exact
context for which we will only consider in detail in Chapter 3 (see, in particular,
Sections 3.8.7 and 3.8.8). We shall freely use the language and notation from that
chapter. Let us define

R(1)([0, 1];R) = { f : [0, 1]→ R | f is Riemann integrable},

and recall from Propositions I-3.4.22 and I-3.4.25 that R(1)([0, 1];R) is a R-vector
space. Now let us define a seminorm ∥·∥1 on R(1)([0, 1];R) by

∥ f ∥1 =
∫ 1

0
| f (x)|dx.

This fails to be a norm because there exist nonzero Riemann integrable functions f
on [0, 1] for which ∥ f ∥1 = 0 (for example, take f to be a function that has a nonzero
value at a single point in [0, 1]). To produce a normed vector space we denote

Z([0, 1];R) = { f ∈ R(1)([0, 1];R) | ∥ f ∥1 = 0},

and by Theorem 3.1.8 note that

R1([0, 1];R) ≜ R(1)([0, 1];R)/Z([0, 1];R)

is a normed vector space when equipped with the norm

∥ f + Z([0, 1];R)∥1 ≜ ∥ f ∥1,

where we use the abuse of notation of using the same symbol ∥·∥1 for the norm.
Note that R1([0, 1];R) is a vector space, not of functions, but of equivalence classes
of functions under the equivalence relation that two Riemann integrable functions
are equivalent when the absolute value of their difference has zero integral.

The crux of the matter is now the following result, the proof of which makes
free use of concepts in this chapter that we have not yet introduced.

2.1.12 Proposition (The normed vector space of Riemann integrable functions is
not complete) The R-normed vector space (R1([0, 1];R), ∥·∥1) is not complete.

Proof Let (q j) j∈Z>0 be an enumeration of the rational numbers in [0, 1]. Let ℓ ∈ (0, 1)
and for j ∈ Z>0 define

I j = [0, 1] ∩ (q j −
ℓ

2 j+1 , q j +
ℓ

2 j+1 )

to be the interval of length ℓ
2 j centred at q j. Then define Ak = ∪

k
j=1I j, k ∈ Z>0, and

A = ∪ j∈Z>0A j. Also define fk = χAk , k ∈ Z>0, and f = χA be the characteristic functions
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of Ak and A, respectively. Note that Ak is a union of a finite number of intervals
and so fk is Riemann integrable for each k ∈ Z>0. However, we claim that f is not
Riemann integrable. Indeed, the characteristic function of a set is Riemann integrable
if and only the boundary of the set has measure zero; this is a direct consequence of
Lebesgue’s theorem stating that a function is Riemann integrable if and only if its set
of discontinuities has measure zero (Theorem I-3.4.11). Note that since cl(Q∩ [0, 1]) =
[0, 1] we have

[0, 1] = cl(A) = A ∪ bd(A).

Thus
λ([0, 1]) ≤ λ(A) + λ(bd(A)).

Since

λ(A) ≤
∞∑
j=1

λ(I j) ≤ ℓ,

it follows that λ(bd(A)) ≥ 1 − ℓ ∈ R>0. Thus f is not Riemann integrable, as claimed.
Next we show that if g : [0, 1] → R satisfies [g] = [ f ], then g is not Riemann

integrable. To show this, it suffices to show that g is discontinuous on a set of positive
measure. We shall show that g is discontinuous on the set g−1(0) ∩ bd(A). Indeed,
let x ∈ g−1(0) ∩ bd(A). Then, for any ϵ ∈ R>0 we have (x − ϵ, x + ϵ) ∩ A , ∅ since
x ∈ bd(A). Since (x − ϵ, x + ϵ) ∩ A is a nonempty open set, it has positive measure.
Therefore, since f and g agree almost everywhere, there exists y ∈ (x − ϵ, x + ϵ) ∩ A
such that g(y) = 1. Since this holds for every ϵ ∈ R>0 and since g(x) = 0, it follows
that g is discontinuous at x. Finally, it suffices to show that g−1(0)∩ bd(A) has positive
measure. But this follows since bd(A) = f−1(0) has positive measure and since f and g
agree almost everywhere.

We claim that the sequence ([ fk])k∈Z>0 is Cauchy in R1([0, 1];R). Let ϵ ∈ R>0. Note
that

∑
∞

j=1 λ(I j) ≤ ℓ. This implies that there exists N ∈ Z>0 such that
∑m

j=k+1 λ(I j) < ϵ for
all k,m ≥ N. Now note that for k,m ∈ Z>0 with m > k, the functions fk and fm agree
except on a subset of Ik+1 ∪ · · · ∪ Im. On this subset, fm has value 1 and fk has value 0.
Thus ∫ 1

0
| fm(x) − fk(x)|dx ≤ λ(Ik+1 ∪ · · · ∪ Im) ≤

m∑
j=k+1

λ(I j).

Thus we can choose N ∈ Z>0 sufficiently large that ∥ fm − fk∥1 < ϵ for k,m ≥ N. Thus
the sequence ([ fk])k∈Z>0 is Cauchy, as claimed.

We next show that the sequence ([ fk])k∈Z>0 converges to [ f ] in L1([0, 1];R) (see
Section 3.8.7). Since the sequence ([ f − fk])k∈Z>0 is in the subset

{[ f ] ∈ L1([0, 1];R) | | f (x)| ≤ 1 for almost every x ∈ [0, 1]},

by the Dominated Convergence Theorem, Theorem 2.7.28, it follows that

lim
k→∞
∥ f − fk∥1 =

∫
I

lim
k→∞
| f − fk|dλ = 0.

This gives us the desired convergence of ([ fk])k∈Z>0 to [ f ] in L1([0, 1];R). However,
above we showed that [ f ] < R1([0, 1];R). Thus the Cauchy sequence ([ fk])k∈Z>0 in
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R1([0, 1];R) is not convergent in R1([0, 1];R), giving the desired incompleteness of
(R1([0, 1];R), ∥·∥1). ■

It should be emphasised that all of the above “problems” are not so much one
with using the Riemann integral to compute the integral of a given function, as to
use the notion of a Riemann integrable function in stating theorems, particularly
those where limits are involved. This problem is taken care of by the Lebesgue
integral, to which we turn our attention in Section 2.7.1 in a general setting for
integration.

2.1.3 An heuristic introduction to the Lebesgue integral

Before we get to the powerful general theory, we provide in this section an
alternate way of thinking about the integral of a function defined on a compact
interval. The idea is an essentially simple one. One defines the Riemann integral
by taking increasingly finer partitions of the independent variable axis, where on
each subinterval of the partition the approximation is constant. For the Lebesgue
integral, it turns out that what one should do instead is partition the dependent
variable axis.

The reader should not treat the following discussion as the definition of the
Lebesgue integral. This definition will be provided precisely in the general frame-
work of Section 2.7.1. But let us be a little precise about the idea. We let
I = [a, b] and let f : I → R be a positive bounded function. This means that
f (I) ⊂ [0,M] for some M ∈ R>0. We then let P be a partition of [0,M] with end-
points (y0 = 0, y1, . . . , yn−1, yn = M). Corresponding to this partition let us define
sets

A j = {x ∈ I | f (x) ∈ [y j−1, y j)},

and then define

fP =

n∑
j=1

y jχA j .

The function fP is called a simple function, as we shall see in Section 2.7, and
approximates f from below as depicted in Figure 2.1. The integral of one of these
approximations is then ∫ b

a
fP(x) dx =

n∑
j=1

y jλ(A j),

where µ(A j) is the “size” of the set A j. If A j is a union on intervals, then µ(A j) is the
sum of the lengths of these intervals. More generally, we shall define

λ(A) = inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ A ⊆
⋃

j∈Z>0

(a j, b j)
}
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[
a

]
b

[
a

]
b

Figure 2.1 The idea behind the Riemann integral (left) and the
Lebesgue integral (right)

for a very general class of subsets of R. To define the integral of f we take

“
∫ b

a
f (x) dx” = sup

{ ∫ b

a
fP(x) dx

∣∣∣∣ P a partition of [0,M]
}
.

The idea is that by taking successively finer partitions of the image of f one can
better approximate f .

For the elementary function we are depicting in Figure 2.1, the two approaches
appear to be much the same. However, the power of the Lebesgue integral rests in
its use of the “size” of the sets A j on which the approximating function is constant.
For step functions, these sets are always intervals, and it is there that the problems
arise. By allowing the sets A j to be quite general, the Lebesgue integral becomes a
very powerful tool. However, it does need some buildup, and the first thing to do
is remove the quotes from “size.”

2.1.4 Notes

Example 2.1.9 comes from [Börger 1999]. Frink, Jr. [1933] connects the Riemann
integral and the Jordan measure.

[Cohn 2013, Halmos 1974]

Exercises

2.1.1 Prove Proposition 2.1.8.
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Section 2.2

Measurable sets

The construction of the integral we provide in this chapter proceeds along
different lines than does the usual construction of the Riemann integral. In Riemann
integration one typically jumps right in with a function and starts constructing step
function approximations, etc. However, one could also define the Riemann integral
by first defining the Jordan measure as in Section 2.1.1, and then using this as the
basis for defining the integral. But the idea is still that one uses step functions
as approximations. In the theory for integration that we develop here, a crucial
difference is the sort of functions we use to approximate the functions we wish
to integrate. The construction of these approximating functions, in turn, rests on
some purely set theoretic constructions that play the rôle of the Jordan measure
(which, we remind the reader, is not a measure in the general sense we define in
this chapter) in Riemann integration. In this section we provide the set theoretic
constructions needed to begin this abstract form of integration theory.

Do I need to read this section? If you are reading this chapter, then this is where
the technical material begins. If you are only interested in learning about Lebesgue
measure, you can get away with knowing the definition of “measurable space”
and then proceeding directly to Section 2.4. However, in Section 2.4 we will freely
refer to things proved in this section, so as you read Section 2.4 you will eventually
end up reading many things in this section anyway. •

2.2.1 Algebras and σ-algebras

The idea we develop in this section and the next is that of a means of measuring
the size of a set in a general way. What one first must do is provide a suitable
collection of sets whose size one wishes to measure. One’s first reaction to this
programme might be, “Why not measure the size of all subsets?” The answer to
this question is not immediately obvious, and we shall say some things about this
as we go along. For the moment, the reader should simply trust that the definitions
we give have been thought over pretty carefully by lots of pretty smart people, and
so are possibly “correct.”2

2.2.1 Definition (Algebra, σ-algebra, measurable space) For a set X, a subset of
subsets A ⊆ 2X is an algebra3 if

(i) X ∈ A ,
(ii) A ∈ A implies X \ A ∈ A , and

2That being said, never stop being a skeptic!
3Also sometimes called a field.
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(iii) ∪k
j=1A j ∈ A for any finite family (A1, . . . ,Ak) of subsets,

and a σ-algebra4 on X if
(iv) X ∈ A ,
(v) A ∈ A implies X \ A ∈ A , and
(vi) ∪ j∈Z>0A j ∈ A for any countable family (A j) j∈Z>0 of subsets.

A pair (X,A ) is called a measurable space ifA is a σ-algebra on X and elements of
A are called A -measurable. •

We shall mainly be concerned with σ-algebras, although the notion of an algebra
is occasionally useful even if one is working with σ-algebras.

2.2.2 Remark (Why are the axioms for a measurable space as they are?) In Re-
mark 1.2.2 we attempted to justify why the axioms for a topological space are as
they are. For topological spaces this justification is facilitated by the fact that most
readers will already know about open subsets of Euclidean space. For readers new
to measure theory, it is less easy to justify the axioms of a measurable space. In
particular, why is it that we require countable unions of measurable subsets to be
measurable? Why not finite unions (as with algebras) or arbitrary unions? Why
not intersections instead of unions? The reason for this, at its core, is that we wish
for the theory we develop to have useful properties with respect to sequential limit
operations, and such limit operations have an intrinsic countability in them due to
sequences being countable sets. It may be difficult to see just why this is important
at this point, but this is the justification. •

Let us give some simple examples of σ-algebras.

2.2.3 Examples (Algebras, σ-algebras)
1. It is clear that the power set 2X of a set X is a σ-algebra.
2. For a set X, the collection of subsets {∅,X} is a σ-algebra.
3. For a set X the collection of subsets

A = {A ⊆ X | A or X \ A is countable}

is a σ-algebra.
4. The collection J (Rn) of Jordan measurable subsets of Rn (see Defini-

tion II-1.6.12) is an algebra by Proposition 2.1.8 and not a σ-algebra by virtue
of Example 2.1.10. •

The following result records some useful properties of σ-algebras.

4Also sometimes called a σ-field.
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2.2.4 Proposition (Properties of σ-algebras) Let A be a σ-algebra on X. The following
statements hold:

(i) ∅ ∈ A ;
(ii) if A1, . . . ,Ak ∈ A then ∪k

j=1Aj ∈ A ;
(iii) ∩j∈Z>0Aj ∈ A for any countable collection (Aj)j∈Z>0 of subsets;
(iv) if A1, . . . ,Ak ∈ A then ∩k

j=1Aj ∈ A .
Moreover, condition (vi) in Definition 2.2.1 can be equivalently replaced with condition (iii)
above.

Proof (i) Since X ∈ A we must have X \ X = ∅ ∈ A .
(ii) We define a countable collection (B j) j∈Z>0 of subsets in A by

B j =

A j, j ∈ {1, . . . , k},
∅, j > k,

and the assertion now follows since

∪
k
j=1A j = ∪ j∈Z>0B j ∈ A .

(iii) This follows from De Morgan’s Laws (Proposition I-1.1.5):⋂
j∈Z>0

A j = X \
( ⋃

j∈Z>0

(X \ A j)
)
.

Since X \ A j ∈ A it follows that ∪ j∈Z>0(X \ A j) ∈ A since A is a σ-algebra. Therefore
X \

(
∪ j∈Z>0(X \ A j)

)
∈ A and so this part of the result follows.

(iv) This follows again from De Morgans’s Laws, along with part (ii).
The final assertion of the proposition follows from De Morgans’s Laws, as can

be gleaned from the arguments used in the proof of part (iii), along with a similar
argument, swapping the rôles of union and intersection. ■

The following corollary is now obvious.

2.2.5 Corollary (σ-algebras are algebras) A σ-algebra A on a set X is also an algebra on
X.

Another construction that is sometimes useful is the restriction of a measurable
space (X,A ) to a subset A ⊆ X. If A is measurable, then there is a natural σ-algebra
induced on A.

2.2.6 Proposition (Restriction of a σ-algebra to a measurable subset) Let (X,A ) be
a measurable space, let A ∈ A , and define AA ⊆ 2A by

AA = {B ∩A | B ∈ A }.

Then (A,AA) is a measurable space.
Proof We need to show that AA is a σ-algebra on A. Clearly A ∈ AA since A = X ∩ A
and X ∈ A . Also, since A \ (B ∩ A) = (X \ B) ∩ A by Proposition I-1.1.5, it follows that
A \ (B ∩ A) ∈ AA for B ∩ A ∈ AA. Suppose that (B j ∩ A) j∈Z>0 is a countable family of
sets in AA. Since ∪ j∈Z>0(B j ∩ A) = (∪ j∈Z>0B j) ∩ A by Proposition I-1.1.7 it follows that
∪ j∈Z>0(B j ∩ A) ∈ AA. ■
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2.2.2 Algebras and σ-algebras generated by families of subsets

It is often useful to be able to indirectly define algebras and σ-algebras by
knowing that they contain a certain family of subsets. This is entirely analogous to
the manner in which one defines a topology by a basis or subbasis; see Section 1.2.2.

Let us begin with the construction of a σ-algebra containing a family of subsets.

2.2.7 Proposition (σ-algebras generated by subsets) If X is a set and if S ⊆ 2X then
there exists a unique σ-algebra σ(S ) with the following properties:

(i) S ⊆ σ(S );
(ii) if A is any σ-algebra for which S ⊆ A then σ(S ) ⊆ A .

Proof We let PS be the collection of all σ-algebras with the property that if A ∈ PS
then S ⊆ A . Note that PS is nonempty since 2X

⊆ PS . We then define

σ(S ) =
⋂
{A | A ∈ PS }.

If σ(S ) is a σ-algebra then clearly it satisfies the conditions of the statement of the
result. Let us then show that σ(S ) is a σ-algebra. Since each element of PS is a
σ-algebra we have X ∈ A whenever A ∈ PS . Therefore X ∈ σ(S ). If A ∈ σ(S ) it
follows that A ∈ A whenever A ∈ PS . Therefore X \ A ∈ A whenever A ∈ PS ,
showing that X \ A ∈ σ(S ). Finally, if (A j) j∈Z>0 ⊆ σ(S ) then (A j) j∈Z>0 ⊆ A whenever
A ∈ PS . Therefore, ∪ j∈Z>0A j ∈ A whenever A ∈ PS . Therefore, ∪ j∈Z>0A j ∈ σ(S ). ■

The previous proof applies equally well to algebras. Moreover, it is possible
to give a more or less explicit characterisation of the smallest algebra containing
a given collection of subsets. This is not possible for σ-algebras, cf. the proof of
Theorem 2.2.14.

2.2.8 Proposition (Algebras generated by subsets) If X is a set and if S ⊆ 2X then
there exists a unique algebra σ0(S ) with the following properties:

(i) S ⊆ σ0(S );
(ii) if A is any algebra for which S ⊆ A then σ0(S ) ⊆ A .

Moreover, σ0(S ) is the set of finite unions of sets of the form S1 ∩ · · · ∩ Sk, where each of
the sets S1, . . . , Sk is either in S or its complement is in S .

Proof The existence of σ0(S ) can be argued just as in the proof of Proposition 2.2.7.
To see that σ0(S ) admits the explicit stated form, let S be the collection sets of the
stated form. We first claim that S is an algebra. To see that X ∈ S , let S ∈ S and
note that X \ S ∈ S . Thus X = S∪ (X \ S) ∈ S . If T ∈ S then we show that X \ T ∈ S
as follows. Note that T = T1 ∪ · · · ∪ Tk where, for each j ∈ {1, . . . , k},

T j =

m j⋂
l j=1

S jl j , S jl j ∈ S or X \ S jl j ∈ S , l j ∈ {1, . . . ,m j}.
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Let us for brevity denote A = {1, . . . ,m1} × · · · × {1, . . . ,mk}. Then, using De Morgan’s
Laws and Proposition I-1.1.7,

X \ T = X \
( k⋃

j=1

( m j⋂
l j=1

S jl j

))
=

k⋂
j=1

(
X \

( m j⋂
l j=1

S jl j

))
=

k⋂
j=1

( m j⋃
l j=1

X \ S jl j

)
=

⋃
(l1,...,lk)∈A

( k⋃
j=1

X \ S jl j

)
,

which then gives X \ T ∈ S . It is obvious that finite unions of sets from S are in S ,
which shows that S is an algebra, as desired. Moreover, it is clear that S ⊆ S .

Now suppose that A is an algebra for which S ⊆ A . Since A is an algebra this
implies that X \S ∈ A for S ∈ S and, by Exercise 2.2.1, that S1∩ · · · ∩Sk ∈ A for every
collection S1, . . . ,Sk for which either S j ∈ S or X \ S j ∈ S for each j ∈ {1, . . . , k}. Thus
S ⊆ A and so S = σ0(S ), as desired. ■

This gives the following result as a special case.

2.2.9 Corollary (The algebra generated by a finite collection of sets) Let X be a set
and let S1, . . . , Sk ⊆ X be a finite family of subsets. Then σ0(S1, . . . , Sk) is the collection
of finite unions of sets of the form T1 ∩ · · · ∩ Tm where, for each j ∈ {1, . . . ,m}, either
Tj ∈ {S1, . . . , Sk} or X \ Tj ∈ {S1, . . . , Sk}.

The point is that you can specify any collection of subsets and define an algebra
or σ-algebra associated with this collection in a natural way, i.e., by demanding
that the conditions of an algebra or a σ-algebra hold. The preceding results makes
sense of the next definition.

2.2.10 Definition (Algebras and σ-algebras generated by subsets) If X is a set and
S ⊆ 2X, the algebra σ0(S ) (resp. σ-algebra σ(S )) of Proposition 2.2.8 (resp. Propo-
sition 2.2.7) is the algebra generated byS (resp. σ-algebra generated byS ). •

We now provide an alternative description of the σ-algebra generated by a
collection of subsets. This description relies on the following concept.

2.2.11 Definition (Monotone class) For a set X, a monotone class on X is a collection
M ⊆ 2X of subsets of X with the following properties:

(i) ∪ j∈ZA j ∈ M for every family (A j) j∈Z>0 of subsets fromM such that A j ⊆ A j+1

for every j ∈ Z>0;
(ii) ∩ j∈Z>0A j ∈M for every family (A j) j∈Z>0 of subsets fromM such that A j ⊇ A j+1

for every j ∈ Z>0. •

Let us illustrate how the conditions of a monotone class can be used to relate
algebras and σ-algebras.
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2.2.12 Proposition (Algebras that are σ-algebras) Let X be a set and let A be an algebra.
If either

(i) ∪j∈Z>0Aj ∈ A for every family (Aj)j∈Z>0 of subsets from A for which Aj ⊆ Aj+1,
j ∈ Z>0, or

(ii) ∩j∈Z>0Aj ∈ A for every family (Aj)j∈Z>0 of subsets from A for which Aj ⊇ Aj+1,
j ∈ Z>0,

then A is a σ-algebra.
Proof We clearly have X ∈ A and X \ A ∈ A for A ∈ A .

Now suppose that the first of the two conditions in the proposition holds and let
(A j) j∈Z>0 be a countable collection of subsets from A . For k ∈ Z>0 define Bk ∈ ∪

k
j=1A j.

Since A is an algebra, Bk ∈ A for k ∈ Z>0. Moreover, we clearly have Bk ⊆ Bk+1 for
each k ∈ Z>0 and ∪ j∈Z>0A j = ∪k∈Z>0Bk. Therefore, by assumption, ∪ j∈Z>0A j ∈ A , and
so A is a σ-algebra.

Finally suppose that the second of the two conditions in the proposition holds and
let (A j) j∈Z>0 be a countable collection of subsets from A . Define Bk = X \ ∪k

j=1A j. Since
A is an algebra we have Bk ∈ A for k ∈ Z>0. We also have Bk ⊇ Bk+1 for each k ∈ Z>0
and ∩∞k=1 = X \ ∪ j∈Z>0A j. Thus X \ ∪ j∈Z>0A j ∈ A , and so ∪ j∈Z>0A j ∈ A since A is an
algebra. Thus A is a σ-algebra. ■

Next we state our alternative characterisation of the σ-algebra generated by an
algebra of subsets. It is perhaps not immediately apparent why the result is useful,
but we shall use it in our discussion of product measures in Section 2.8.1.

2.2.13 Theorem (Monotone Class Theorem) Let X be a set and let S ⊆ 2X. Then there
exists a unique monotone class m(S ) on X such that

(i) S ⊆ m(S ) and
(ii) if M is any monotone class on X for which S ⊆M then m(S ) ⊆M .

Moreover, if S is an algebra then m(S ) = σ(S ).
Proof We let PS be the collection of monotone classes with the property that if
M ∈ PS then S ⊆M . Since X ∈ PS it follows that PS is not empty. We define

m(S ) =
⋂
{M | M ∈ PS }.

It is clear that S ⊆ m(S ). Moreover, it is also clear that if M is a monotone class
containing S then m(S ) ⊆ M . It remains to show that m(S ) is a monotone class.
Let (A j) j∈Z>0 be a family of subsets from m(S ) such that A j ⊆ A j+1 for j ∈ Z>0. Since
A j ∈M for each j ∈ Z>0 andM ∈ PS it follows that ∪ j∈Z>0A j ∈M for everyM ∈ PS .
Thus ∪ j∈Z>0A j ∈ m(S ). Similarly, let (A j) j∈Z>0 be a family of subsets from m(S ) for
which A j ⊇ A j+1 for j ∈ Z>0. Since A j ∈ M for every j ∈ Z>0 andM ∈ PS it follows
that ∩ j∈Z>0A j ∈ M for everyM ∈ PS . Thus ∩ j∈Z>0A j ∈ m(S ), showing that m(S ) is
indeed a monotone class.

Now let us prove the final assertion of the theorem, supposing thatS is an algebra.
We claim that m(S ) is an algebra. Indeed, let S ∈ S and define

MS = {A ∈ m(S ) | S ∩ A,S ∩ (X \ A), (X \ S) ∩ A ∈ m(S )}.
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We claim thatMS is a monotone class. Indeed, let (A j) j∈Z>0 be a family of subsets from
MS such that A j ⊆ A j+1 for j ∈ Z>0. Thus

S ∩ A j,S ∩ (X \ A j), (X \ S) ∩ A j ∈ m(S ), j ∈ Z>0.

Then, using Propositions I-1.1.5 and I-1.1.7,

S ∩
(
∪ j∈Z>0A j

)
= ∪ j∈Z>0(S ∩ A j),

S ∩
(
X \

(
∪ j∈Z>0A j

))
= S ∩

(
∩ j∈Z>0X \ A j

)
= ∩ j∈Z>0S ∩ (X \ A j),

(X \ S) ∩
(
∪ j∈Z>0A j

)
= ∪ j∈Z>0(X \ S) ∩ A j.

Since

S ∩ A j ⊆ S ∩ A j+1, S ∩ (X \ A j) ⊇ S ∩ (X \ A j+1), (X \ S) ∩ A j ⊆ (X \ S) ∩ A j+1,

for j ∈ Z>0, we conclude that

S ∩
(
∪ j∈Z>0A j

)
,S ∩

(
X \

(
∪ j∈Z>0A j

))
, (X \ S) ∩

(
∪ j∈Z>0A j

)
∈ m(S ),

and so ∪ j∈Z>0A j ∈ MS. A similarly styled argument gives ∩ j∈Z>0 ∈ MS for a countable
family (A j) j∈Z>0 of subsets fromMS satisfying A j ⊇ A j+1, j ∈ Z>0. ThusMS is indeed a
monotone class.

We claim that MS = m(S ). To see this we first claim that S ⊆ MS. Indeed, if
A ∈ S then

S ∩ A,S ∩ (X \ A), (X \ S) ∩ A ∈ S ⊆ m(S )

since S is a field. Thus MS is a monotone class containing S and so m(S ) ⊆ MS.
Since MS ⊆ m(S ) by definition, we conclude that MS = m(S ). Note that S ∈ S is
arbitrary in this construction.

Next we claim that MS, and so m(S ), is an algebra. First of all, since X ∈ S by
virtue of S being an algebra, we have

X ∈ S ⊆ m(S ) =MS.

Also, if A ∈MS we have

A ∈MS =⇒ A ∈MX =⇒ X ∩ (X \ A) ∈ m(S ) =⇒ X \ A ∈ m(S ) =MS.

Also, let A,B ∈MS. Then

A,B ∈MS =⇒ A,B ∈MA =⇒ B ∩ A ∈ m(S ) =MS.

Thus the intersection of sets fromMS lies inMS. This means that if A,B ∈MS then

X \ A,X \ B ∈MS =⇒ (X \ A) ∩ (X \ B) = X \ (A ∪ B) ∈MS,

implying that A ∪ B ∈ MS. Thus pairwise unions of sets from MX are in MS. An
elementary induction then gives ∩k

j=1A j ∈ MS for every family of subsets (A1, . . . ,A j)
fromMS. This shows thatMS = m(S ) is an algebra.

SinceMS is a monotone class it is a σ-algebra by Proposition 2.2.12. Thus σ(S ) ⊆
MS = m(S ). Moreover, σ(S ) is a monotone class by the properties of a σ-algebra
and by Proposition 2.2.4. Since S ⊆ σ(S ) we conclude from Proposition 2.2.12 that
m(S ) ⊆ σ(S ), giving m(S ) = σ(S ), as desired. ■
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The following “fun fact” about the σ-algebra generated by a collection of sub-
sets is useful to understand how big this σ-algebra is. We will use this result in
Proposition 2.4.13 to compare the cardinalities of Borel and Lebesgue measurable
sets. Recall that ℵ0 = card(Z≥0).

2.2.14 Theorem (Cardinality of the σ-algebra generated by a collection of subsets)
Let X be a set and let S ⊆ 2X be such that ∅ ∈ S and that card(S ) ≥ 2. Then

card(σ(S )) ≤ card(S )ℵ0 .
Proof Let ℵ1 be the smallest uncountable cardinal number (the cardinal number that
the Continuum Hypothesis asserts is equal to card(R)). DefineS0 = S . For a cardinal
number c < ℵ1 we shall use Transfinite Induction (Theorem I-1.5.14) to define Sc as
follows. Suppose thatSc′ has been defined for a cardinal number c′ such that 0 < c′ < c.
Then defineSc to be the collection of sets of the form ∪ j∈Z>0A j where either A j or X \A j
is an element of the family ∪0≤c′<cSc′ of subsets of X. We claim that ∪0≤c<ℵ1Sc = σ(S ).

We first prove by Transfinite Induction that∪0≤c<ℵ1Sc ⊆ σ(S ). ClearlyS0 ⊆ σ(S ).
Suppose that Sc′ ⊆ σ(S ) for 0 ≤ c′ < c < ℵ1. Then let ∪ j∈Z>0A j ∈ Sc for set A j such
that either A j or X \ A j are in the family ∪0≤c′<cSc′ of subsets of X. It follows from the
induction hypothesis that A j,X \ A j ∈ σ(S ). Thus ∪ j∈Z>0A j ∈ σ(S ) since a σ-algebra
is closed under countable unions. Therefore, Sc ∈ σ(S ) and so we conclude from
Transfinite Induction that ∪0≤c<ℵ1Sc ⊆ σ(S ).

To prove that ∪0≤c<ℵ1Sc = σ(S ) it now suffices to show that ∪0≤c<ℵ1Sc is a σ-
algebra since it contains S and since σ(S ) is the smallest σ-algebra containing S .
Since ∅ ∈ S we have

X = (X \ ∅) ∪ ∅ ∪ ∅ · · · ∈ S1,

and so X ∈ ∪0≤c<ℵ1Sc. Now suppose that A ∈ ∪0≤c<ℵ1Sc so that A ∈ Sc0 for some c0
satisfying 0 ≤ c0 ≤ ℵ1. For c1 > c0 it then holds that

X \ A = (X \ A) ∪ (X \ A) ∪ · · · ∈ Sc1 ,

and so (X \ A) ∈ ∪0≤c<ℵ1Sc. Finally, let (A j) j∈Z>0 be a countable family of subsets
from ∪0≤c<ℵ1Sc. For j ∈ Z>0 let c j be a cardinal number satisfying 0 ≤ c j < ℵ1
and A j ∈ Sc j . Since ℵ1 is uncountable it cannot be a countable union of countable
sets (by Proposition I-1.7.16) and since each of the cardinal numbers c j, j ∈ Z>0, are
countable, it follows that there exists a cardinal number c∞ such that 0 ≤ c∞ < ℵ1
and such that c j < c∞. Then ∪ j∈Z>0A j ∈ Sc∞ ⊆ ∪0≤c<ℵ1Sc, completing the proof that
∪0≤c<ℵ1Sc = σ(S ).

We now prove by Transfinite Induction that card(Sc) ≤ card(S )ℵ0 for every cardi-
nal number c satisfying 0 ≤ c ≤ ℵ1. Certainly card(S0) ≤ card(S )ℵ0 . Now suppose that
c is a cardinal number satisfying 0 ≤ c < ℵ1 and suppose that card(Sc′) ≤ card(S )ℵ0

for cardinals c′ satisfying 0 ≤ c′ < c. Since c is countable it follows that

card(∪0≤c′<cSc′) ≤ ℵ0 card(S )ℵ0 = card(S )ℵ0

by Theorem I-1.7.17, Exercises I-1.7.4 and I-1.7.5, and since card(S ) ≥ 2. Now,
considering the definition of Sc we see that

card(Sc) = 2 card(∪0≤c′<cSc′) ≤ card(S )ℵ0 ,
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as claimed.
From this we deduce that

card(σ(S )) = card(∪0≤c<ℵ1Sc) ≤ card(S )ℵ0ℵ1 = card(S )ℵ0 ,

using Theorem I-1.7.17 and the fact that card(S )ℵ0 ≥ ℵ1 since card(S ) ≥ 2 and using
Exercises I-1.7.4 and I-1.7.5. ■

2.2.3 Products of measurable spaces

The development of measure theory on products is a little more challenging
than, say, the development of topology on products. In this section we introduce
the basic tool for studying measure theory for products by considering the products
of sets equipped with algebras or σ-algebras of subsets.

We begin by considering products of sets equipped with algebras of subsets.

2.2.15 Definition (Measurable rectangles) For sets X1, . . . ,Xk with algebras A j ⊆ 2X j ,
j ∈ {1, . . . , k}, a measurable rectangle is a subset

A1 × · · · × Ak ⊆ X1 × · · · × Xk

where A j ∈ A j, j ∈ {1, . . . , k}. The set of measurable rectangles is denoted by
A1 × · · · ×Ak. •

By Corollary 2.2.5 the preceding definition can be applied to the case when
each of the collections of subsets A1, . . . ,Ak is a σ-algebra.

The following property of the set of measurable rectangles is then useful.

2.2.16 Proposition (Finite unions of measurable rectangles form an algebra) For sets
X1, . . . ,Xk with algebras Aj ⊆ 2Xj , j ∈ {1, . . . ,k}, the set of finite unions of sets from
A1×· · ·×Ak is an algebra on X1×· · ·×Xk, and is necessarily the algebra σ0(A1×· · ·×Ak).

Proof Clearly X1 × · · · ×Xk is a measurable rectangle. Next, for measurable rectangles
A1 × · · · × Ak and B1 × · · · × Bk we have

(A1 × · · · × Ak) ∩ (B1 × · · · × Bk) = (A1 ∩ B1) × · · · × (Ak ∩ Bk).

This shows that the intersection of two measurable rectangles is a measurable rectangle.
From Proposition I-1.1.4 we can then conclude that the intersection of two finite unions
of measurable rectangles is a finite union of measurable rectangles. Next let A1×· · ·×Ak
be a measurable rectangle and note that

(X1 × · · · × Xk) \ (A1 × · · · × Ak)

is the union of sets of the form B1 × · · · × Bk where B j ∈ {A j,X j \ A j} and where
at least one of the sets B j is not equal to A j. That is to say, the complement of a
measurable rectangle is a finite union of measurable rectangles. By De Morgan’s Laws
we then conclude that the complement of a finite union of measurable rectangles is
a finite union of measurable rectangles. By Exercise 2.2.1 this proves that the set of
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finite unions of measurable rectangles is an algebra. Moreover, if A is any σ-algebra
containing A1 × · · · ×Ak then A must necessarily contain finite unions of measurable
rectangles. ThusA is contained in the set of finite unions of measurable rectangles. By
Proposition 2.2.8 this means that the algebra of finite unions of measurable rectangles
is the algebra generated by A1 × · · · ×Ak. ■

The principal object of interest to us will be the σ-algebra generated by the
measurable rectangles. The following result gives a characterisation of this σ-
algebra.

2.2.17 Proposition (The σ-algebra generated by the algebra of measurable rectan-
gles) For sets X1, . . . ,Xk with algebras Aj ⊆ 2Xj , j ∈ {1, . . . ,k}, we have

σ(A1 × · · · ×Ak) = σ(σ(A1) × · · · × σ(Ak)).

Proof Clearly we have

σ(A1 × · · · ×Ak) ⊆ σ(σ(A1) × · · · × σ(Ak)).

To prove the opposite inclusion it suffices to show that

σ(A1) × · · · × σ(Ak) ⊆ σ(A1 × · · · ×Ak)

since this will imply that the σ-algebra of the left-hand side is contained in the right-
hand side. We prove the preceding inclusion by induction on k. For k = 1 the assertion
is trivial. So suppose that for k = m we have

σ(A1) × · · · × σ(Am) ⊆ σ(A1 × · · · ×Am),

and suppose that we have a set Xm+1 with an algebraAm+1. Fix A j ∈ σ(A j), j ∈ {1, . . . ,m},
and define

σ′(Am+1) = {A ∈ σ(Am+1) | A1 × · · · × Am × A ∈ σ(A1 × · · · ×Am+1)}.

We claim that σ′(Am+1) is a σ-algebra on Xm+1. Certainly Xm+1 ∈ σ′(Am+1) since

A1 × · · · × Am × Xm+1 ∈ A1 × · · · ×Am ×Am+1 ⊆ σ(A1 × · · · ×Am+1).

Let A ∈ σ′(Am+1). Then we note that

A1 × · · · × Am × (Xm+1 \ A) = (A1 × · · · × Am × Xm+1) \ (A1 × · · · × Am × A).

By assumption,
A1 × · · · × Am × A ∈ σ(A1 × · · · ×Am ×Am+1)

from which we conclude that

(A1 × · · · × Am × Xm+1) \ (A1 × · · · × Am × A) ∈ σ(A1 × · · · ×Am ×Am+1).
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Thus Xm+1 \ A ∈ σ′(sAm+1). Finally, if (B j) j∈Z>0 is a countable family of subsets from
σ′(Am+1) we have

A1 × · · · × Am ×
( ⋃

j∈Z>0

B j

)
=

⋃
j∈Z>0

A1 × · · · × Am × B j ∈ σ(A1 × · · · ×Am ×Am+1).

Thus ∪ j∈Z>0B j ∈ σ′(Am+1), showing that σ′(Am+1) is indeed a σ-algebra. Since Ak+1 ⊆

σ′(Am+1) and since σ′(Am+1) ⊆ σ(Am+1), we conclude that σ(Am+1) = σ(Am+1). This
shows that

σ(A1) × · · · × σ(Am) × σ(Am+1) ⊆ σ(A1 × · · · ×Am ×Am+1),

as desired. ■

The following property of the product of σ-algebras is useful.

2.2.18 Proposition (Intersections of measurable sets with factors in products are
measurable) Let (Xj,Aj), j ∈ {1, . . . ,k}, be measurable spaces. For A ∈ σ(A1× · · · ×Ak),
for j ∈ {1, . . . ,k}, and for xj ∈ Xj define

Axj = {(x1, . . . , xj−1, xj+1, . . . , xk) ∈ X1 × · · · × Xj−1 × Xj+1 × · · · × Xk|

(x1, . . . , xj−1, xj, xj+1, . . . , xk) ∈ A}.

Then Axj ∈ σ(A1 × · · · ×Aj−1 ×Aj+1 × · · · ×Ak).
Proof Let Fx j be the subsets A ⊆ X1 × · · · ×Xk with the property that Ax j ∈ σ(A1 × · · · ×

A j−1 ×A j+1 × · · · ×Ak). We claim that if B j ∈ X j, j ∈ {1, . . . , k}, then B1 × · · · × Bk ∈ Fx j .
Indeed, we have Ax j = B1 × · · · × B j−1 × B j+1 × · · · × Bk if x j ∈ B j and Ax j = ∅ otherwise.
We also claim that Fx j is a σ-algebra. We have just shown that X1 × · · · × Xk ∈ Fx j . If
A ∈ Fx j and Al ∈ Fx j , l ∈ Z>0, then we have the easily verified identities

((X1 × · · · × Xk) \ A)x j = (X1 × · · · × Xk) \ Ax j

and (
∪l∈Z>0Al

)
x j
= ∪ j∈Z>0(Al)x j ,

which shows thatFx j is indeed a σ-algebra. Since it contains the measurable rectangles
we must have

σ(A1 × · · · ×Ak) ⊆ Fx j .

It, therefore, immediately follows that Ax j ∈ σ(A1×· · ·×A j−1×A j+1×· · ·×Ak) whenever
A ∈ σ(A1 × · · · ×Ak, as desired. ■

Exercises

2.2.1 Let X be a set and let A be an algebra on X.
(a) Prove the following:

(i) ∅ ∈ A ;
(ii) if A1, . . . ,Ak ∈ A then ∩k

j=1A j ∈ A .
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(b) Show that condition (iii) in Definition 2.2.1 can be equivalently replaced
with condition (ii) above.

2.2.2 Let X be an infinite set. Indicate which of the following collections of subsets
are algebras, σ-algebras, or neither:
(a) the collection of finite subsets X;
(b) the collection of subsets A for which X \ A is finite;
(c) the collection of countable subsets X;
(d) the collection of subsets A for which X \ A is countable.

2.2.3 Answer the following questions.
(a) Is the collection of open subsets of R an algebra or a σ-algebra?
(b) Is the collection of closed subsets of R an algebra or a σ-algebra?

2.2.4 Let X be a set and let S ⊆ 2X. Show that if

S ′ =
{ ⋃

j∈Z>0

A j

∣∣∣∣ A j ∈ S , j ∈ Z>0

}
then the σ-algebras σ(S ) and σ(S ′) are generated by S and S ′ agree.

2.2.5 Let X and Y be disjoint sets and let A and B be σ-algebras on X and Y,
respectively. Let

A ∪B = {A ∪ B ∈ 2X∪Y
| A ∈ A , B ∈B }.

Show that A ∪B is a σ-algebra on X ∪ Y.



86 2 Measure theory and integration 2022/03/07

Section 2.3

Measures

The nomenclature “measurable space” from the preceding section makes one
think that one ought to be able to measure things in it. This is done with the
concept of a measure that we now introduce, and which serves to provide a general
framework for talking about the “size” of a subset. The notion of what we shall
below call an “outer measure” is perhaps the most intuitive notion of size one
can utilise. It has the great advantage of being able to be applied to measure the
size of all subsets. However, and surprisingly, outer measure has an important
defect, namely that it does not have the seemingly natural property of “countable-
additivity.” The way one gets around this is by restricting outer measure to a
collection of subsets where this property of countable-additivity does hold. This
leads to a natural σ-algebra. At the high level of abstraction in this section, it is not
easy to see the justification for the definitions of outer measure and measure. This
justification will only become clear in Section 2.4 where there is a fairly intuitive
definition of outer measure on R, but that natural outer measure is actually not a
measure.

Do I need to read this section? In order to appreciate the framework in which
the Lebesgue measure is developed in Sections 2.4 and 2.5, one should understand
the notions of measure and outer measure. •

2.3.1 Functions on families of subsets

Before getting to the more specific definitions that we shall mainly use, it is
useful to provide some terminology that helps to organise these definitions.

2.3.1 Definition (Properties of functions on subsets) For a set X and a collection
S ⊆ 2X of subsets of X, a map µ : S → R≥0 is:

(i) monotonic if µ(S) ≤ µ(T) for subsets S,T ∈ S such that S ⊆ T;

(ii) finitely-subadditive if µ
( k⋃

j=1

S j

)
≤

k∑
j=1

µ(S j) for every finite family (S1, . . . ,Sk)

of sets from S whose union is also in S ;

(iii) countably-subadditive if µ
( ⋃

j∈Z>0

S j

)
≤

∞∑
j=1

µ(S j) for every countable family

(S j) j∈Z>0 of sets from S whose union is also in S ;
(iv) monotonically increasing if, for every countable family of subsets (S j) j∈Z>0

from S for which S j ⊆ S j+1, j ∈ Z>0, and whose union is in S , µ
( ⋃

j∈Z>0

S j

)
=
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lim
j→∞

µ(S j);

(v) monotonically decreasing if, for every countable family of subsets (S j) j∈Z>0

from S for which S j ⊇ S j+1, j ∈ Z>0, for which µ(Sk) < ∞ for some k ∈ Z>0,
and whose intersection is in S , µ

( ⋂
j∈Z>0

S j

)
= lim

j→∞
µ(S j).

If µ is R-valued then µ is:
(iii) finite if X ∈ S and if µ takes values in R;
(iv) σ-finite if there exists subsets (S j) j∈Z>0 fromS such that |µ(S j)| < ∞ for j ∈ Z>0

and such that X = ∪ j∈Z>0S j.

(v) finitely-additive if µ
( k⋃

j=1

S j

)
=

k∑
j=1

µ(S j) for every finite family (S1, . . . ,Sk) of

pairwise disjoint sets from S whose union is also in S ;

(vi) countably-additive if µ
( ⋃

j∈Z>0

S j

)
=

∞∑
j=1

µ(S j) for every countable family

(S j) j∈Z>0 of pairwise disjoint sets from S whose union is also in S .
(vii) consistent if at most one of∞ and −∞ is in image(µ). •

Initially, we shall only use the preceding definitions in the case where µ takes
values in R≥0. However, in Sections 2.3.7 and 2.3.8 we shall need to consider the
case where µ takes values in R.

The following result records some obvious relationships between the preceding
concepts.

2.3.2 Proposition (Relationships between properties of functions on subsets) If X
is a set, if S ⊆ 2X, and if µ : S → R≥0, then the following statements hold:

(i) if µ(∅) = 0 and if µ is countably-subadditive then it is finitely-subadditive;
(ii) if µ(∅) = 0 and if µ is finitely-additive then it is finitely-subadditive;
(iii) if µ(∅) = 0 and if µ is countably-additive then it is countably-subadditive;
(iv) if µ is countably-additive then it is monotonically increasing;
(v) if µ is countably-additive then it is monotonically decreasing;
(vi) if µ is finitely-additive then it is monotonic and, moreover, µ(T \ S) = µ(T) − µ(S)

if µ(S) < ∞.

If µ takes values in R then the following statement holds:
(vii) if µ(∅) = 0 and if µ is countably-additive then it is finitely-additive.

If µ takes values inR and if S has the property that S ∈ S implies that X \ S ∈ S , then
the following statement holds:
(viii) if µ is finitely additive then it is consistent.
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Proof (i) Let (S1, . . . ,Sk) be a finite family of subsets from S . Define (T j) j∈Z>0 by

T j =

S j, j ∈ {1, . . . , k},
∅, j > k.

Then

µ
( k⋃

j=1

S j

)
= µ

( ⋃
j∈Z>0

T j

)
≤

∞∑
j=1

µ(T j) =
k∑

j=1

µ(S j),

since µ(∅) = 0.
The following lemma will be useful in the next two parts of the proof, as well as

in various other arguments in this chapter.

1 Lemma Let X be a set, let either J = {1, . . . ,m} for some m ∈ Z>0 or J = Z>0, and let (Sj)j∈J
be a countable family of subsets of X. Then there exists a family (Tj)j∈J of subsets of X such that

(i) Tj1 ∩ Tj2 = ∅ for j1 , j2;
(ii) Tj ⊆ Sj, j ∈ J;
(iii) ∪j∈JTj = ∪j∈JSj.

Moreover, if Sj ∈ A , j ∈ Z>0, for an algebra A on X, then the sets (Tj)j∈Z>0 can also be chosen
to be in A .

Proof Let j0 ∈ J and define

T′j0 =
⋃
j< j0

(S j0 ∩ S j), T j0 = S j0 \ T′j0 .

Thus T′j0 is the set of points in S j0 that are already contained in at least one of the
“previous” subsets {S j} j< j0 , and T j0 is the set of points in S j0 not in one of the sets
{S j} j< j0 . Thus we immediately have T j0 ⊆ S j0 for each j0 ∈ J. Let j1, j2 ∈ J be distinct
and suppose, without loss of generality, that j1 < j2. Then, by construction, T j2
contains no points from S j1 and since T j1 ⊆ S j1 our claim follows. Finally, we show
that ∪ j∈JT j = ∪ j∈JS j. This is clear since T j0 is defined to contain those points from S j0
not already in S1, . . . ,S j0−1.

The last assertion of the lemma follows since the sets T j, j ∈ Z>0, are of the form
(X\A)∩B where A ∈ A and where B is a union of sets of the form B1∩B2 for B1,B2 ∈ A .
Thus B ∈ A by Exercise 2.2.1 and so (X \ A) ∩ B ∈ A , also by Exercise 2.2.1. ▼

(ii) By the lemma above let (T1, . . . ,Tm) be pairwise disjoint, such that T j ⊆ S j for
j ∈ {1, . . . ,m}, and such that ∪m

j=1T j = ∪
m
j=1S j. Then, by finite-additivity,

µ
( m⋃

k=1

Sk

)
=

m∑
k=1

µ(Tk).

But, for each k ∈ {1, . . . ,m}, Sk = S′k ∪ Tk and the union is disjoint. Monotonicity of µ
gives µ(S j) ≥ µ(T j) for j ∈ {1, . . . ,m}which then gives

µ
( m⋃

k=1

Sk

)
=

m∑
k=1

µ(Tk) ≤
m∑

k=1

µ(Sk),
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as desired.
(iii) This follows from Lemma 1 just as does part (ii), with only trivial modifications

to replace finite-additivity with countable-additivity.
(iv) Let (S j) j∈Z>0 be a countable family of subsets from S for which S j ⊆ S j+1,

j ∈ Z>0. For j ∈ Z>0 define

T j =

S1, j = 1,
S j \ S j−1, j > 1.

Note that the sets {T j} j∈Z>0 are pairwise disjoint by construction and that⋃
j∈Z>0

S j =
⋃

j∈Z>0

T j.

Therefore, by countable-additivity,

µ
( ⋃

j∈Z>0

S j

)
=

∞∑
j=1

µ(T j).

But, since ∪k
j=1T j = Sk,

∞∑
j=1

µ(T j) = lim
k→∞

k∑
j=1

µ(T j) = lim
k→∞

µ
( k⋃

j=1

T j

)
= lim

k→∞
µ(Sk),

which gives
µ
( ⋃

j∈Z>0

S j

)
= lim

k→∞
µ(Sk),

as desired.
(v) Let (S j) j∈Z>0 be a countable family of sets from S such that S j ⊇ S j+1, j ∈ Z>0,

and such that µ(Sk) for some k ∈ Z>0. Define (T j) j∈Z>0 by T j = S j+k so that⋂
j∈Z>0

S j =
⋂

j∈Z>0

T j.

Now define (U j) j∈Z>0 by U j = T1 \ T j so that U j ⊆ U j+1 for each j ∈ Z>0. We also have⋃
j∈Z>0

U j = T1 \
( ⋂

j∈Z>0

T j

)
.

By parts (vi) (since µ(T1) < ∞) and (iv) we then have

µ(T1) − µ
( ⋂

j∈Z>0

S j

)
= µ

(
T1 \

( ⋂
j∈Z>0

S j

))
= µ

(
T1 \

( ⋂
j∈Z>0

T j

))
= µ

( ⋃
j∈Z>0

U j

)
= µ

( ⋃
j∈Z>0

U j

)
= lim

j→∞
µ(U j)

= lim
j→∞

µ(T1 \ T j) = µ(T1) − lim
j→∞

µ(T j)

= µ(T1) − lim
j→∞

µ(S j),
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from which we deduce
µ
( ⋂

j∈Z>0

S j

)
= lim

j→∞
µ(S j)

since µ(T1) < ∞.
(vi) Let S,T ∈ S be such that S ⊆ T. Then, by finite-additivity,

µ(S) ≤ µ(S) + µ(T − S) = µ(T),

as desired. The formula µ(T \ S) = µ(T) − µ(S) if µ(S) = ∞ follows immediately from
finite-additivity.

(vii) Let (S1, . . . ,Sk) be a finite family of subsets from S . Define (T j) j∈Z>0 by

T j =

S j, j ∈ {1, . . . , k},
∅, j > k,

noting that the family (T j) j∈Z>0 is pairwise disjoint. Then

µ
( k⋃

j=1

S j

)
= µ

( ⋃
j∈Z>0

T j

)
=

∞∑
j=1

µ(T j) =
k∑

j=1

µ(S j),

since µ(∅) = 0.
(viii) Suppose that there exists sets S+,S− ∈ S such thatµ(S+) = ∞ andµ(S−) = −∞.

Then, finite-additivity and the assumption that sets from S have complements in S
implies that

µ(X) = µ(S+) + µ(X \ S+) = µ(A−) + µ(X \ S−).

Since µ(S+) = ∞ and since µ(S−) = −∞ and since the addition∞+ (−∞) is not defined,
we must have

µ(X \ S+) ∈ R \ {−∞}, µ(X \ S−) ∈ R \ {∞}.

Therefore,
µ(X) = ∞, µ(X) = −∞,

giving a contradiction. ■

The following relationships between finite-additivity, countable-additivity, and
monotonicity are also useful.

2.3.3 Proposition (Additivity and monotonicity) Let X be a set with A ⊆ 2X an algebra
on A , and let µ0 : A → R be consistent, finitely-additive, and have the property that
µ0(∅) = 0. The following three statements are equivalent:

(i) µ0 is countably-additive;
(ii) for every sequence (Aj)j∈Z>0 of subsets from A for which Aj ⊆ Aj+1, j ∈ Z>0, and for

which ∪j∈Z>0Aj ∈ A , it holds that

µ0

(⋃
j∈Z>0

Aj

)
= lim

j→∞
µ0(Aj);
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(iii) for every sequence (Aj)j∈Z>0 of subsets from A for which Aj ⊇ Aj+1, j ∈ Z>0, for
which ∩j∈Z>0Aj = ∅, it holds that limj→∞ µ0(Aj) = 0.

Proof (i) =⇒ (ii) Let (A j) j∈Z>0 be a sequence of subsets from A for which A j ⊆ A j+1,
j ∈ Z>0, and for which ∪ j∈Z>0A j ∈ A . Let us denote A = ∪ j∈Z>0A j. Define B1 = A1
and for j ≥ 2 define B j = A j \ A j−1. Then the family (B j) j∈Z>0 is pairwise disjoint and
satisfies ∪ j∈Z>0B j = A. The assumed consistency and countable-additivity of µ0 then
gives

µ0(A) =
∞∑
j=1

µ0(B j).

Moreover, since Ak = ∪
k
j=1B j we have

µ0(Ak) =
k∑

j=1

µ0(B j) =⇒ lim
k→∞

µ0(Ak) =
∞∑
j=1

µ0(B j) = µ0(A),

as desired.
(ii) =⇒ (iii) Let us define B j = Ak+ j−1 for j ∈ Z>0. Thenµ0(B1) < ∞ and∩ j∈Z>0B j = ∅.

Also define C j = B1 \ B j+1 for j ∈ Z>0. Then the family of subsets (C j) j∈Z>0 is in A and
satisfies C j ⊆ C j+1 for each j ∈ Z>0. Moreover,⋃

j∈Z>0

C j =
⋃

j∈Z>0

B1 \ B j+1 = B1 \
⋂

j∈Z>0

B j+1 = B1,

using De Morgan’s Laws. By assumption we then have

lim
j→∞

µ0(C j) = µ0(B1).

Therefore,

lim
j→∞

µ0(C j) = lim
j→∞

µ0(B1 \ B j+1) = lim
j→∞

(µ0(B1) − µ0(B j+1)) = µ0(B1),

allowing us to conclude that

lim
j→∞

µ0(A j) = lim
j→∞

µ0(B j) = 0,

as desired.
(iii) =⇒ (i) Let (A j) j∈Z>0 be a family of pairwise disjoint sets and denote A =

∪ j∈Z>0A j, supposing that A ∈ A . For k ∈ Z>0 define Bk = A \ ∪k
j=1A j. Then Bk ⊇ Bk+1

and ∩k∈Z>0Bk = ∅. By assumption we then have limk→∞ µ0(Bk) = 0. We have A =
Bk ∪ (∪k

j=1A j) with the union being disjoint. Finite-additivity of µ0 gives

µ0(A) = µ0(Bk) +
k∑

j=1

µ0(A j),

which gives

µ0(A) = lim
k→∞

µ0(Bk) +
∞∑
j=1

µ0(A j) =
∞∑
j=1

µ0(A j),

as desired. ■
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2.3.2 Outer measures, measures, and their relationship

With the general properties of functions on subsets from the preceding section,
we now introduce our first notion of “size” of a subset.

2.3.4 Definition (Outer measure) Let X be a set. An outer measure on X is a map
µ∗ : 2X

→ R≥0 with the following properties:
(i) µ∗(∅) = 0;
(ii) µ∗ is monotonic;
(iii) µ∗ is countably-subadditive. •

2.3.5 Remark (Why are the axioms for an outer measure as they are?) The notion of
outer measure is intuitive, in the sense that its properties are included in those that
we anticipate a reasonable notion of “size” to possess. What is not immediately
clear is that these are the only properties that one might demand of our notion of
size. This latter matter is difficult to address a priori, and indeed is only really
addressed by knowing that these are indeed the properties that one uses in the
development of the general theory. •

Let us consider some simple examples of outer measures. We shall postpone to
Sections 2.4 and 2.5 the presentation of more interesting examples.

2.3.6 Examples (Outer measures)
1. For a set X, the map µ∗ : 2X

→ R≥0 defined by µ∗(A) = 0 is an outer measure. We
call this the zero outer measure.

2. Let us consider a set X with µ∗ : 2X
→ R≥0 defined by

µ∗(A) =

0, A = ∅,
∞, A , ∅.

It is then easy to see that µ∗ is an outer measure.

3. For a set X define µ∗ : 2X
→ R≥0 by

µ∗(A) =

card(A), card(A) < ∞,
∞, otherwise.

It is easy to verify that µ∗ is an outer measure.

4. For a set X define δ∗x : 2X
→ R≥0 by

δ∗x(A) =

1, x ∈ A,
0, x < A.

One can easily see that δ∗x is indeed an outer measure. •
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The notion of outer measure is a nice one in that it allows the measurement of
size for any subset of the set X. However, it turns out that some outer measures lack
an important property. Namely, there are outer measures µ∗ (namely, the Lebesgue
outer measure of Definition 2.4.1) that lack the property that, if S,T ⊆ X are disjoint,
then µ∗(S ∪ T) = µ∗(S) + µ∗(T). Upon reflection, we hope the reader can see that
this is indeed a property one would like any notion of size to possess. In order to
ensure that this property is satisfied, it turns out that one needs to restrict oneself
to measuring a subset of the collection of all sets. It is here where the notions of
algebras and σ-algebras come into play.

2.3.7 Definition (Measure, measure space) Let X be a set and let S ⊆ 2X. A finitely-
additive measure on S is a map µ : S → R≥0 with the following properties:

(i) µ(∅) = 0;
(ii) µ is finitely-additive.

A countably-additive measure, or simply a measure, on S is a map µ : S → R≥0

with the following properties:
(iii) µ(∅) = 0;
(iv) µ is countably-additive.

A triple (X,A , µ) is called a measure space is A is a σ-algebra on X and if µ is a
countably-additive measure on A . •

Just as we are primarily interested in σ-algebras in preference to algebras, we are
also primarily interested in countably-additive measures in preference to finitely-
additive measures. However, finitely-additive measures will come up, usually in
the course of a construction of a countably-additive measure.

2.3.8 Remark (Why are the axioms for a measure as they are?) Again, it is not
perfectly evident why a measure has the stated properties. In particular, the
conditions that (1) a measure space involves a σ-algebra and that (2) a measure be
countably-additive seem like they ought to admit many viable alternatives. Why
not allow a measure space to be defined using any collection of subsets? Why not
finite-additivity? finite-subadditivity? countable-subadditivity? The reasons to
restrict to a σ-algebra (possibly) smaller than the collection of all subsets will be
made clear shortly. As concerns countable-additivity, the reasons for this are much
like they are for the countability conditions for σ-algebras; countability is what we
want here since we are after nice behaviour of our constructions with sequential
operations. The requirement of disjointness in the definition is not so easy to
understand. Indeed, in our definition of an outer measure in Definition 2.3.4 we
relaxed this, and possibly the definition of an outer measure seems like the one
that we should really be interested in. However, it is not, although the reasons for
this will only be made clear as we go along. •

Let us give some simple examples of measures.
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2.3.9 Examples (Measures)
1. For a measurable space (X,A ), the map µ : A → R≥0 defined by µ∗(A) = 0 is a

measure. We call this the outer measure.
2. For a measurable space (X,A ) define µ : A → R≥0 by

µ(A) =

0, A = ∅,
∞, A , ∅.

This defines a measure on (X,A ).
3. If (X,A ) is a measurable space then define µΣ : A → R≥0 by

µΣ(A) =

card(A), card(A) < ∞,
∞, otherwise.

One may verify that this defines a measure for the measurable space (X,A )
called the counting measure.

4. If (X,A ) is a measurable space and if x ∈ X we define δx : A → R≥0 by

δx(A) =

1, x ∈ A,
0, x < A.

One may verify that this defines a measure and is called the point mass con-
centrated at x.

5. On the algebra J (Rn) of Jordan measurable subsets ofRn the map ρ : J (Rn)→
R≥0 of Definition 2.1.6 is a finitely-additive measure. This follows from Propo-
sition 2.1.8. •

Let us give some properties of measures that follow more or less directly from
the definitions.

2.3.10 Proposition (Properties of measures) For a set X, a collection of subsets S ⊆ 2X,
and a measure µ on S , the following statements hold:

(i) µ is finitely-additive;
(ii) µ is monotonic and µ(T \ S) = µ(T) − µ(S) if µ(S) < ∞;
(iii) µ is countably-subadditive;
(iv) µ is monotonically increasing;
(v) µ is monotonically decreasing.

Proof (i) This follows immediately from Proposition 2.3.2(vii).
(ii) This follows from Proposition 2.3.2(vi) and part (i).
(iii) This follows from Proposition 2.3.2(iii).
(iv) This follows from Proposition 2.3.2(iv).
(v) This follows from Proposition 2.3.2(v). ■

Now let us examine the relationships between outer measure and measure. Let
us begin with something elementary, given what we already know.



2022/03/07 2.3 Measures 95

2.3.11 Proposition (When are measures outer measures?) If (X,A , µ) is a measure
space then µ is an outer measure if and only if A = 2X.

Proof This follows immediately from Proposition 2.3.10. ■

Since the outer measures in the examples are all actually measures, this leads
one to the following line of questioning.
1. Are all outer measures measures?
2. Given a measure space (X,A , µ) does there exist an outer measure µ∗ on X for

which µ = µ∗|A ?
We shall see in Corollary 2.3.29 that the answer to the second question is, “Yes.”
The answer to the first question is, “No,” but we will have to wait until Section 2.4
(in particular, Example 2.4.3) to see an example of an outer measure that is not a
measure. The key issue concerning whether an outer measure is a measure hinges
on the following characterisation of a distinguished class of subsets of a set with
an outer measure.

2.3.12 Definition (Measurable subsets for an outer measure) If µ∗ is an outer measure
on a set X, a subset A ⊆ X is µ∗-measurable if

µ∗(S) = µ∗(S ∩ A) + µ∗(S ∩ (X \ A))

for all S ⊆ X. The set of µ∗-measurable subsets is denoted byM (X, µ∗). •

Note that an outer measure is finitely-subadditive by Proposition 2.3.2(i). Thus
we always have

µ∗(S) ≤ µ∗(S ∩ A) + µ∗(S ∩ (X \ A)).

Therefore, a set A is not µ∗-measurable then we have

µ∗(S) > µ∗(S ∩ A) + µ∗(S ∩ (X \ A)).

The definition of µ∗-measurability looks like it provides a “reasonable” property
of a subset A: that the outer measure of a set S should be the outer measure of the
points in S that are in A plus the outer measure of the points in S that are not in
A. In Figure 2.2 we attempt to depict what is going on. What is not so obvious
is that not all subsets need be µ∗-measurable. In the examples of outer measures
in Example 2.3.6 above, they all turn out to be measures. It is only when we get
to the more sophisticated construction of the Lebesgue measure in Section 2.4 that
we see that nonmeasurable sets exist. Indeed, it is precisely in the constructions of
Section 2.4 that the general ideas we are presently discussing were developed.

For the purposes of our present development, the following theorem is im-
portant in that it gives a natural passage from an outer measure to a measure
space.
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X

S A

µ∗(S ∩ (X \A))

µ∗(S ∩A)

Figure 2.2 The notion of a µ∗-measurable set

2.3.13 Theorem (Outer measures give measure spaces) If µ∗ is an outer measure on a
set X then (X,M (X, µ∗), µ∗|M (X, µ∗)) is a measure space.

Proof Let us first show that X ∈M (X, µ∗). Let S ∈ 2X and note that

µ∗(S ∩ X) + µ∗(S ∩ (X \ X)) = µ∗(S)

since µ∗(∅) = 0.
Now let us show that if A ∈M (X, µ∗) then X \ A ∈M (X, µ∗). This follows since

µ∗(S ∩ (X \ A)) + µ∗(S ∩ (X \ (X \ A))) = µ∗(S ∩ A) + µ∗(S ∩ (X \ A)) = µ∗(S).

Next we show that if A1, . . . ,An ∈ M (X, µ∗) then ∪n
j=1A j ∈ M (X, µ∗). This will

follow by a trivial induction if we can prove it for n = 2. Thus we let A1,A2 ∈M (X, µ∗),
S ⊆ X, and compute

µ∗(S ∩ (A1 ∪ A2)) + µ∗(S ∩ (X \ (A1 ∪ A2)))
= µ∗((S ∩ (A1 ∪ A2)) ∩ A1) + µ∗((S ∩ (A1 ∪ A2)) ∩ (X \ A1)) + µ∗(S ∩ (X \ (A1 ∪ A2)))
= µ∗(S ∩ A1) + µ∗(S ∩ (X \ A1) ∩ A2) + µ∗(S ∩ (X \ A1) ∩ (X \ A2))
= µ∗(S ∩ A1) + µ∗(S ∩ (X \ A1)) = µ∗(S).

In going from the first line to the second line we have used the fact that A1 ∈M (X, µ∗).
In going from the second line to the third line we have used some set theoretic identities
for union and intersection that can be easily verified, e.g., by using Propositions I-1.1.4
and I-1.1.5. In going from the third line to the fourth line we have used the fact that
A2 ∈M (X, µ∗).

Next we show that property (vi) of Definition 2.2.1 holds. Thus we let (A j) j∈Z>0 ⊆

M (X, µ∗). To show that∪ j∈Z>0A j ∈M (X, µ∗) we may without loss of generality suppose
that the sets (A j) j∈Z>0 are disjoint. Indeed, if they are not then we may replace their
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union with the union of the sets

Ã1 = A1

Ã2 = A2 ∩ (X \ A1)
...

Ã j = A j ∩ (X \ A1) ∩ · · · ∩ (X \ A j−1)
...

where the collection (Ã j) j∈Z>0 is disjoint. First we claim that under this assumption
that (A j) j∈Z>0 ⊆M (X, µ∗) is disjoint we have

µ∗(S) =
n∑

j=1

µ∗(S ∩ A j) + µ∗
(
S ∩

( n⋂
j=1

(X \ A j)
))
. (2.1)

We prove this by induction. For n = 1 the claim follows since A1 ∈ M (X, µ∗). Now
suppose the claim true for n = k and compute

µ∗
(
S ∩

( k⋂
j=1

(X \ A j)
))

= µ∗
(
S ∩

( k⋂
j=1

(X \ A j)
)
∩ Ak+1

)
+ µ∗

(
S ∩

( k⋂
j=1

(X \ A j)
)
∩ (X \ Ak+1)

)
= µ∗(S ∩ Ak+1) + µ∗

(
S ∩

(k+1⋂
j=1

(X \ A j)
))
,

so establishing (2.1) after an application of the induction hypothesis. In the first line
we use the fact that Ak+1 ∈ M (X, µ∗) and in the second line we have used the fact that
the set (A j) j∈Z>0 are disjoint.

By monotonicity of outer measures we have

µ∗(S) ≥
n∑

j=1

µ∗(S ∩ A j) + µ∗
(
S ∩

( ∞⋂
j=1

(X \ A j)
))

=⇒ µ∗(S) ≥
n∑

j=1

µ∗(S ∩ A j) + µ∗
(
S ∩

(
X \

∞⋃
j=1

A j

))
=⇒ µ∗(S) ≥

∞∑
j=1

µ∗(S ∩ A j) + µ∗
(
S ∩

(
X \

∞⋃
j=1

A j

))
(2.2)

=⇒ µ∗(S) ≥ µ∗
(
S ∩

( ∞⋃
j=1

A j

))
+ µ∗

(
S ∩

(
X \

∞⋃
j=1

A j

))
.

In the first line we have used (2.1) along with monotonicity of outer measures. In the
second line we have used a simple set theoretic identity. In the third line we have
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simply taken the limit of a bounded monotonically increasing sequence of numbers.
In the fourth line we have used countable-subadditivity of outer measures. This then
gives

µ∗(S) ≥ µ∗
(
S ∩

( ∞⋃
j=1

A j

))
+ µ∗

(
S ∩

(
X \

∞⋃
j=1

A j

))
≥ µ∗(S),

by another application countable-subadditivity of outer measures. It therefore follows
that ∪ j∈Z>0A j ∈M (X, µ∗), as was to be shown.

The next thing we show is that µ ≜ µ∗|M (X, µ∗) is a measure on (X,M (X, µ∗)). Since

µ∗(S) = µ∗(S ∩ ∅) + µ∗(S ∩ X) = µ∗(∅) + µ∗(S),

for every S ∈ 2X it follows that µ(∅) = µ∗(∅) = 0. Now let (A j) j∈Z>0 be a collection of
disjoint sets inM (X, µ∗). We have

µ
( ∞⋃

j=1

A j

)
= µ∗

( ∞⋃
j=1

A j

)
≥

∞∑
j=1

µ∗(A j) + 0,

using (2.2) with S = ∪∞j=1A j. By monotonicity of outer measures we also have

µ
( ∞⋃

j=1

A j

)
≤

∞∑
j=1

µ∗(A j),

and so µ is countably-additive. ■

The theorem immediately has the following corollary which helps to clarify the
relationship between measures and outer measures.

2.3.14 Corollary (An outer measure is a measure if and only if all subsets are mea-
surable) If µ∗ is an outer measure on X then (X, 2X, µ∗) is a measure space if and only if
every subset of X is µ∗-measurable.

Proof From Theorem 2.3.13 it follows that (X, 2X, µ∗) is a measure space ifM (X, µ∗) =
2X. For the converse, suppose that A ⊆ X is not µ∗-measurable. Then there exists a set
S ⊆ X such that

µ∗(S) , µ∗(S ∩ A) + µ∗(S ∩ (X \ A)).

However, since S = (S∩A)∪ (S∩ (X \A)) this prohibits µ∗ from being a measure since,
if it were a measure, we would have

µ∗(S) = µ∗(S ∩ A) + µ∗(S ∩ (X \ A)). ■

Thus the existence of nonmeasurable sets is exactly the obstruction to an outer
measure being a measure. Said otherwise, if we wish for an outer measure to
behave like a measure— i.e., have the property that

µ∗
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ∗(A j)

for a family (A j) j∈Z>0 of disjoint sets—then the sacrifice we have to make is that we
possibly restrict the sets which we apply the outer measure to.

The following notions are also sometimes useful.
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2.3.15 Definition (Continuous measure, discrete measure) Let (X,A , µ) be a measure
space for which {x} ∈ A for every x ∈ X. The measure µ is

(i) continuous if µ({x}) = 0 for every x ∈ X and
(ii) discrete if there exists a countable subset D ∈ A such that µ(X \D) = 0. •

Let us consider how these various properties show up in our simple examples
of measure spaces.

2.3.16 Examples (Properties of measures)
1. We consider the measure space (X,A , µ) where µ(∅) = 0 and µ(A) = ∞ for all

nonempty measurable sets. This measure space is σ-finite if and only if X = ∅,
is continuous if and only if X = ∅, and is discrete if and only if X is countable.

2. Let us consider a measurable space (X,A ) and for simplicity assume that {x} ∈ A
for every x ∈ X. The counting measure is σ-finite if and only if X is countable,
is not continuous, and is discrete if and only if X is countable.

3. For a measurable space (X,A ) the point mass measure δx is σ-finite if and only
if X is a countable union of measurable sets, is not continuous, and is discrete if
and only if there exists a countable set D ∈ A such that x < D. •

Let us close this section by introducing an important piece of lingo.

2.3.17 Notation (Almost everywhere, a.e.) Let (X,A , µ) be a measure space. A property
P of the set X holds µ-almost everywhere (µ-a.e.) if there exists a set A ⊆ X for
which µ(A) = 0, and such that P holds for all x ∈ X \ A. If µ is understood, then
we may simply write almost everywhere (a.e.). Some authors use “p.p.” after the
French “presque partout.” Lebesgue, after all, was French. •

Let us finally show that the restriction of a measure to a subset makes sense if
the subset is measurable.

2.3.18 Proposition (Restriction of measure to measurable subsets) Let (X,A , µ) be a
measure space, let A ∈ A , let (A,AA) be the measurable space of Proposition 2.2.6, and
define µA : AA → R≥0 by µA(A ∩ B) = µ(A ∩ B). Then (A,AA, µA) is a measure space.

Proof It is clear that µA(∅) = 0. Also let (B j ∩A) j∈Z>0 be a countable family of disjoint
sets in AA. Since B j ∩ A ∈ A for j ∈ Z>0 this immediately implies that

µA

( ⋃
j∈Z>0

B j ∩ A
)
=

∞∑
j=1

µA(B j ∩ A),

thus showing that µA is a measure on (A,AA). ■

2.3.3 Complete measures and completions of measures

In this section we consider a rather technical property of measure spaces, but one
that does arise on occasion. It is a property that is at the same time (occasionally)
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essential and (occasionally) bothersome. This is especially true of the Lebesgue
measure we consider in Sections 2.4 and 2.5. We shall point out instances of both
of these attributes as we go along.

First we give the definition.

2.3.19 Definition (Complete measure) A measure space (X,A , µ) is complete if for every
pair of sets A and B with the properties that A ⊆ B, B ∈ A , and µ(B) = 0, we have
A ∈ A . •

Note that completeness has the interpretation that every subset of a set of
measure zero should itself be in the set of measurable subsets, and have measure
zero. This seems like a reasonable restriction, but it is one that is not met in certain
common examples (see ). In cases where we have a measure space that is notwhat?

complete one can simply add some sets to the collection of measurable sets that
make the resulting measure space complete. This is done as follows.

2.3.20 Definition (Completion of a measure space) For a measure space (X,A , µ) the
completion A under µ is the collection Aµ of subsets A ⊆ X for which there
exists L,U ∈ A such that L ⊆ A ⊆ U and µ(U \ L) = 0. Define µ : Aµ → R≥0

by µ(A) = µ(U) = µ(L) where U and L are any sets satisfying L ⊆ A ⊆ U and
µ(U \ L) = 0. The triple (X,Aµ, µ) is the completion of (X,A , µ). •

The completion of a measure space is a complete measure space, as we now
show.

2.3.21 Proposition (The completion of a measure space is complete) If (X,Aµ, µ) is
the completion of (X,A , µ) then (X,Aµ, µ) is a complete measure space for whichA ⊆ Aµ.

Proof If A ∈ A then A ⊆ A ⊆ A so that A ∈ Aµ. In particular, X ∈ Aµ. Note
that L ⊆ A ⊆ U and µ(U \ L) = 0 implies that (X \ U) ⊆ (X \ A) ⊆ (X \ L) and that
µ((X \ L) \ (X \U)) = 0, thus showing that X \ A ∈ Aµ. Now let (A j) j∈Z>0 ⊆ Aµ and let
(L j) j∈Z>0 and (U j) j∈Z>0 satisfy

L j ⊆ A j ⊆ U j, µ(U j \ L j) = 0, j ∈ Z>0. (2.3)

A direct computation shows that⋃
j∈Z>0

L j ⊆
⋃

j∈Z>0

A j ⊆
⋃

j∈Z>0

U j, µ
(( ⋃

j∈Z>0

U j

)
\

( ⋃
j∈Z>0

L j

))
≤

∞∑
j=1

µ(U j \ L j) = 0.

This shows that Aµ is a σ-algebra.
Note that µ(∅) = 0. Also let (A j) j∈Z>0 be a collection of disjoint subsets in Aµ and

take (L j) j∈Z>0 and (U j) j∈Z>0 to satisfy (2.3). Note that the sets (L j) j∈Z>0 are disjoint. From
the definition of µ it then follows that µ is countably-additive. It remains to show that
(X,Aµ, µ) is complete. If A ∈ Aµ and B ⊆ X satisfy B ⊆ A and µ(A) = 0 then, since
A ∈ Aµ, we have U ∈ A so that A ⊆ U and µ(U) = 0. Taking L = ∅ we have L ⊆ B ⊆ U
and µ(U \ L) = 0, showing that B ∈ Aµ, as desired. ■

It turns out that the construction in Theorem 2.3.13 of a measure space from an
outer measure yields a complete measure space.
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2.3.22 Proposition (Completeness of measure space constructed from outer mea-
sures) If µ∗ is an outer measure on a set X then (X,M (X, µ∗), µ∗|M (X, µ∗)) is a complete
measure space.

Proof From Theorem 2.3.13 we need only prove completeness. We let µ =
µ∗|M (X, µ∗). Let B ∈M (X, µ∗) and let A ⊆ B. For S ∈ 2X we then have

µ∗(S ∩ A) + µ∗(S ∩ (X \ A)) ≤ µ∗(S ∩ B) + µ∗(S ∩ (X \ A))
= 0 + µ∗(S ∩ (X \ A)) ≤ µ∗(S),

using the fact that µ∗(S ∩ B) ≤ µ∗(B) = 0 and monotonicity of outer measures. By
countable-subadditivity of µ∗ we have

µ∗(S) ≤ µ∗(S ∩ A) + µ∗(S ∩ (X \ A)),

and so it follows that A ∈M (X, µ∗). ■

Let us finally show that completeness is preserved by restriction.

2.3.23 Proposition (The restriction of a complete measure is complete) If (X,A , µ)
is a complete measure space then the measure space (A,AA, µA) of Proposition 2.3.18 is
complete.

Proof If B∩A ∈ AA satisfiesµA(B∩A) = 0 thenµ(B∩A) = 0. Therefore, by completeness
of µ, if C ⊆ (B ∩ A) it follows that µA(C) = 0. ■

2.3.4 Outer and inner measures associated to a measure

In this section we continue our exploration of the relationship between outer
measure and measure, now going from a measure to an outer measure. We begin
with a discussion of ways in which one may generate an outer measure from other
data.

2.3.24 Proposition (Outer measure generated by a collection of subsets) Let X be a
set, let S ⊆ 2X have the property that ∅ ∈ S , and let µ0 : S → R≥0 have the property
that

inf{µ0(S) | S ∈ S } = 0.

If we define µ∗ : 2X
→ R≥0 by

µ∗(A) = inf
{ ∞∑

j=1

µ0(Sj)
∣∣∣∣ A ⊆

⋃
j∈Z>0

Sj, Sj ∈ S , j ∈ Z>0

}
,

then µ∗ is an outer measure on X. Moreover, if S is an algebra on X and if µ0 is a
countably-additive measure, then µ∗(S) = µ0(S) for every S ∈ S .

Proof First let us show that µ∗(∅) = 0. Let ϵ ∈ R>0. By hypothesis there exists S ∈ S
such that µ0(S) ≤ ϵ, and since ∅ ⊆ S we have

µ∗(∅) ≤ µ0(S) ≤ ϵ.
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As this holds for every ϵ ∈ R>0 it follows that µ∗(∅) = 0. That µ∗(A) ≤ µ∗(B) if A ⊆ B is
clear. Now let (A j) j∈Z>0 be a countable family of subsets of X. If

∑
∞

j=1 µ
∗(A j) = ∞ then

the property of countable-subadditivity holds for the family (A j) j∈Z>0 . Thus suppose
that

∑
∞

j=1 µ
∗(A j) < ∞ and let ϵ ∈ R>0. For each j ∈ Z>0 let (S jk)k∈Z>0 be a family of

subsets from S with the properties that A j ⊆ ∪k∈Z>0S jk and

∞∑
k=1

µ0(S jk) < µ∗(A j) +
ϵ

2 j ,

this being possible by definition of µ∗. Then⋃
j∈Z>0

A j ⊆
⋃

j,k∈Z>0

S jk =⇒ µ∗
( ⋃

j∈Z>0

A j

)
≤ µ∗

( ⋃
j,k∈Z>0

S jk

)
.

Also ⋃
j,k∈Z>0

S jk ⊆
⋃

j,k∈Z>0

S jk =⇒ µ∗
( ⋃

j,k∈Z>0

S jk

)
≤

∞∑
j,k=1

µ0(S jk) <
∞∑
j=1

µ∗(A j) + ϵ,

using the fact that
∑
∞

j=1
1
2 j = 1 (see Example I-2.4.2–1). From this we conclude that

µ∗
( ⋃

j∈Z>0

A j

)
≤

∞∑
j=1

µ∗(A j)

since ϵ ∈ R>0 is arbitrary in the above development. Thus shows that µ∗ is indeed an
outer measure.

Now we prove the final assertion. Let S ∈ S . Since S ⊆ S we have µ∗(S) ≤ µ0(S).
Now let (S j) j∈Z>0 be a family of subsets such that S ⊆ ∪ j∈Z>0S j. Then we define

S̃1 = S1

S̃2 = S2 ∩ (X \ S1)
...

S̃ j = S j ∩ (X \ S1) ∩ · · · ∩ (X \ S j−1)
...

noting that the family of sets (S̃ j) j∈Z>0 is in S since S is an algebra. Moreover, by
construction, the sets (S̃ j) j∈Z>0 are pairwise disjoint and satisfy⋃

j∈Z>0

S j =
⋃

j∈Z>0

S̃ j.

Since S̃ j ⊆ S j we have
∞∑
j=1

µ0(S̃ j) ≤
∞∑
j=1

µ0(S j).
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Now, for each j ∈ Z>0, define T j = S ∩ S̃ j, noting that T j ∈ S since S is an algebra.
Note that S = ∪ j∈Z>0T j. Moreover, by construction the family of sets (T j) j∈Z>0 is disjoint.
Since µ0 is a measure we have

µ0(S) = µ0

( ⋃
j∈Z>0

T̃ j

)
=

∞∑
j=1

µ0(T̃ j).

Since T j ⊆ S̃ j we have
∞∑
j=1

µ0(T j) ≤
∞∑
j=1

µ0(S̃ j),

giving
∞∑
j=1

µ0(S j) ≥ µ0(S).

This allows us to conclude that µ∗(S) ≥ µ0(S), and so µ∗(S) = µ0(S), as desired. ■

The outer measure of the preceding proposition has a name.

2.3.25 Definition (Outer measure generated by a collection of sets and a function
on those sets) Let X be a set, let S ⊆ 2X have the property that ∅ ∈ S , and let
µ0 : S → R≥0 have the property that

inf{µ0(S) | S ∈ S } = 0.

The outer measure µ∗ : 2X
→ R≥0 defined in Proposition 2.3.24 is the outer measure

generated by the pair (S , µ0). •

Let us give an application of the preceding constructions. A common con-
struction with measures is the extension of a R≥0-valued function on a collection
of subsets to a measure on the σ-algebra generated by the subsets. There are a
number of such statements, but the one that we will use is the following.

2.3.26 Theorem (Hahn–Kolmogorov5 Extension Theorem) Let X be a set, let A be an
algebra on X, and let µ0 : A → R≥0 be a σ-finite measure onA . Then there exists a unique
measure µ on σ(S ) such that µ(A) = µ0(A) for every A ∈ A .

Proof First let us assume that µ0(X) < ∞. Let µ∗ : 2X
→ R≥0 be the outer measure

generated by A and µ0 as in Proposition 2.3.24. Then Proposition 2.3.24 ensures that
µ∗(A) = µ0(A) for every A ∈ A .

We wish to show thatµ∗|σ(A ) is a measure. To do this we define dµ∗ : 2X
×2X

→ R≥0
by

dµ∗(S,T) = µ∗(S△T),

5Hans Hahn (1879–1934) was an Austrian mathematician whose contributions to mathematics
were primarily in the areas of set theory and functional analysis. Andrey Nikolaevich Kolmogorov
(1903–1987) is an important Russian mathematician. He made essential contributions to analysis,
algebra, and dynamical systems. He also established the axiomatic foundations of probability
theory.
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recalling from Section I-1.1.2 the definition of the symmetric complement△. We clearly
have dµ∗(S,T) = dµ∗(T,S) for every S,T ⊆ X. Since µ∗ is an outer measure we have

dµ∗(S,U) = µ∗(S△U) ≤ µ∗((S△T) ∪ (T△U))
≤ µ∗(S△T) + µ∗(T△U) = dµ∗(S,T) + dµ∗(T,U)

for every S,T,U ⊆ X, using Exercise I-1.1.2. Thus dµ∗ is a semimetric on 2X. Moreover,
dµ∗(S,T) = 0 if and only if µ∗(S − T) = 0 and µ∗(T − S) = 0. Thus the implication

dµ∗(S,T) = 0 =⇒ S = T

holds only if (µ∗)−1(0) = ∅. That is, dµ∗ is a metric if and only if the only set of µ∗-
measure zero is the empty set. We claim that µ∗ : 2X

→ R≥0 is continuous with respect
to the semimetric topology defined by dµ∗ . To see this, let ϵ ∈ R>0 and take δ = ϵ. Then,ref for this?

if S,T satisfy dµ∗(S,T) < δ, we have

|µ∗(S) − µ∗(T)| = |µ∗(S△∅) − µ∗(T△∅)|
= |dµ∗(S,∅) − dµ∗(T,∅)| ≤ dµ∗(S,T) = ϵ,

using Exercise I-1.1.2 and Proposition 1.1.3 (noting that this holds for semimetrics, as
well as for metrics).ref?

Now define cl(A ) to be the closure of A ⊆ 2X using the semimetric dµ∗ . Thus
B ∈ cl(A ) if there exists a sequence (A j) j∈Z>0 in A such that lim j→∞ dµ∗(B,A j) = 0. We
claim that cl(A ) is a σ-algebra. Certainly ∅ ∈ cl(A ). Let B ∈ cl(A ). Then there exists
a sequence (A j) j∈Z>0 in A such that lim j→∞ dµ∗(B,A j) = 0. Using Exercise I-1.1.2 we
have

dµ∗(X \ B,X \ A j) = dµ∗(B,A j), j ∈ Z>0.

Thus
lim
j→∞

dµ∗(X \ B,X \ A j) = 0

and so X \ B ∈ cl(A ). Now let B,C ∈ cl(A ) and let (S j) j∈Z>0 and (T j) j∈Z>0 be sequences
in A such that

lim
j→∞

dµ∗(B,S j) = 0, lim
j→∞

dµ∗(C,T j) = 0.

Then

lim
j→∞

dµ∗(B ∪ C,S j ∪ T j) = lim
j→∞

µ∗((B ∪ C)△(S j ∪ T j))

≤ lim
j→∞

µ∗((B△S j) ∪ (C△T j))

≤ lim
j→∞

µ∗(B△S j) + lim
j→∞

µ∗(C△T j) = 0,

using Exercise I-1.1.2. Thus B ∪ C ∈ cl(A ). This shows that cl(A ) is an algebra. Now
let (B j) j∈Z>0 be a countable family of subsets from cl(A ). Define Ck = ∪

k
j=1B j so that

Ck ∈ cl(A ), k ∈ Z>0. Then

lim
k→∞

dµ∗(∪ j∈Z>0B j,Ck) = lim
k→∞

µ∗((∪ j∈Z>0B j)△(∪k
j=1B j))

≤ lim
k→∞

µ∗(∪∞j=k+1B j).
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Since µ∗(X) < ∞ by assumption, the sequence (µ∗(∪k
j=1B j))k∈Z>0 is a bounded monoton-

ically increasing sequence, and so converges. This implies that

lim
k→∞

dµ∗(∪ j∈Z>0B j,Ck) = lim
k→∞

µ∗(∪∞j=k+1B j) = 0.

Thus ∪ j∈Z>0B j ∈ cl(A ) since cl(A ) is closed and since Ck ∈ cl(A ) for each k ∈ Z>0. This ref for semimetrics

shows that cl(A ) is a σ-algebra, as desired.
We will now show that µ∗| cl(A ) is a measure. We certainly have µ∗(∅) = 0. We

next claim that µ∗| cl(A ) is finitely-additive. To see this, let B,C ∈ cl(A ) be disjoint and
let (S j) j∈Z>0 and (T j) j∈Z>0 be sequences in A such that

lim
j→∞

dµ∗(B,S j) = 0, lim
j→∞

dµ∗(C,T j) = 0.

We then have, using continuity of µ∗ and additivity of µ∗|A = µ0,

µ∗(B ∪ C) = lim
j→∞

µ∗(S j ∪ T j) = lim
j→∞

µ∗(S j) + lim
j→∞

µ∗(T j − S j) = µ∗(B) + µ∗(C).

A simple induction then gives finite-additivity. Finally, let (B j) j∈Z>0 be a countable
collection of disjoint sets from cl(A ). Because µ∗ is an outer measure we have

µ∗
( ⋃

j∈Z>0

B j) ≤
∞∑
j=1

µ∗(B j).

Since µ∗| cl(A ) is finitely-additive we have

µ∗
( ⋃

j∈Z>0

B j) ≥ µ∗
( k⋃

j=1

B j) =
k∑

j=1

µ∗(B j)

for every k ∈ Z>0. Thus

µ∗
( ⋃

j∈Z>0

B j

)
≥

∞∑
j=1

µ∗(B j),

which allows us to conclude countable-additivity of µ∗| cl(A ).
Since A ⊆ cl(A ) it follows from Proposition 2.2.7 that σ(A ) ⊆ cl(A ). Since

µ∗| cl(A ) is a measure, it is surely also true that µ ≜ µ∗|σ(A ) is a measure. This proves
the existence assertion of the theorem under the assumption that µ0(X) < ∞.

For uniqueness, let µ̃ : cl(A )→ R≥0 be a measure having the property that µ̃|A =
µ0. Let B ∈ σ(A ) and let (A j) j∈Z>0 be a family of subsets such that B ⊆ ∪ j∈Z>0A j. Since
µ̃|A = µ0 we have

µ̃(B) ≤
∞∑
j=1

µ̃(A j) =
∞∑
j=1

µ0(A j),

using Proposition 2.3.10. From this we infer that

µ̃(B) ≤ inf
{ ∞∑

j=1

µ0(A j)
∣∣∣∣ B ⊆

⋃
j∈Z>0

A j, A j ∈ A , j ∈ Z>0

}
= µ(B).
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In like manner we have that µ̃(X \ B) ≤ µ(X \ B). Thus

µ̃(B) = µ̃(X) − µ̃(X \ B) ≥ µ(X) − µ(X \ B) = µ(B).

Thus µ̃(B) = µ(B), as desired.
Finally, we prove the theorem, removing the assumption that µ0(X) < ∞. Since the

hypotheses of the theorem include µ0 being σ-finite, there exists a countable collection
(Y j) j∈Z>0 of subsets from A such that µ0(Y j) < ∞, j ∈ Z>0, and such that X = ∪ j∈Z>0Y j.
Then define

X1 = Y1

X2 = Y2 ∩ (X \ Y1)
...

X j = Y j ∩ (X \ Y1) ∩ · · · ∩ (X \ Y j−1)
...

noting that the family of sets (X j) j∈Z>0 is in A since A is an algebra. Moreover, by
construction the sets (X j) j∈Z>0 are pairwise disjoint, have the property that µ(X j) < ∞,
j ∈ Z>0, and satisfy X = ∪ j∈Z>0X j. Denote

A j = {X j ∩ A | A ∈ A }, σ(A ) j = {X j ∩ B | B ∈ σ(A )}, µ0, j = µ0|A j.

We claim that σ(A ) j = σ(A j). To show this one must show that σ(A ) j is a σ-algebra
on X j containing A j and that any σ-algebra containing on X j containing A j contains
σ(A ) j. It is a straightforward exercise manipulating sets to show that σ(A ) j is a σ-
algebra containing A j, and we leave this to a sufficiently bored reader. So let A ′j be a
σ-algebra on X j containing A j. Let

A ′ = {A ∪ B | A ∈ A ′j ,B = (X \ X j) ∩ B′, B′ ∈ σ(A )}.

By Exercise 2.2.5 we conclude that A ′ is a σ-algebra on X = X j ∪ (X \ X j). Moreover,
A ⊆ A ′ and so σ(A ) ⊆ A ′. But this means that if X j ∩ B ∈ σ(A ) j then X j ∩ B ∈ A ′j ,
giving our claim.

Now note that, for each j ∈ Z>0, the data X j, A j, and µ0, j satisfy the hypotheses
used in the first part of the proof. Therefore, there exists a measure µ j on σ(A j) = σ(A ) j

agreeing with µ0, j on A j. Now define µ : σ(A )→ R≥0 by

µ(B) =
∞∑
j=1

µ j(X j ∩ B).

That µ is a measure is easily verified using the fact that µ j, j ∈ Z>0 is a measure and that
the family of sets (X j) j∈Z>0 is pairwise disjoint. We leave the straightforward working
out of this to the, again sufficiently bored, reader. It is also clear that µ|A = µ0. This
gives the existence part of the proof. For uniqueness, suppose that µ̃ : σ(A ) → R≥0 is



2022/03/07 2.3 Measures 107

a measure such that µ̃|A = µ0 and let B ∈ σ(A ). By uniqueness from the first part of
the proof we have µ̃(X j ∩ B) = µ(X j ∩ B). Therefore, by countable-additivity of µ̃,

µ̃(B) =
∞∑
j=1

µ̃(X j ∩ B) =
∞∑
j=1

µ(X j ∩ B) = µ(B),

as desired. ■

The proof of the preceding theorem introduced an important construction. As
we shall not make use of this in any subsequent part of the text, let us expound a
little on this here.

2.3.27 Remark (Semimetrics and measures) A key ingredient in our proof of the
Hahn–Kolmogorov Extension Theorem was a semimetric associated with a mea-
sure. This construction can be generalised somewhat. Let X be a set, let S ⊆ 2X,
and let µ : S → R≥0 be a finite-valued finitely-subadditive measure, i.e.,

µ
(
∪

k
j=1A j

)
≤

k∑
j=1

µ(A j), A1, . . . ,Ak ∈ A .

Then we define dµ : S × S → R≥0 by dµ(S,T) = µ(S△T), recalling from Sec-
tion I-1.1.2 the definition of the symmetric complement △. As in the above proof,
we can verify that dµ is a semimetric, and is a metric if and only if the only set of
measure zero is the empty set. If µ is not finite-valued, then we can instead use

d′µ(S,T) = max{1, µ(S△T)},

with the same conclusions.
In the proof we used this semimetric to define, in a topological sense, the closure

cl(A ) of the algebraA , and we showed that σ(A ) ⊆ cl(A ). In fact, although we did
not need this in the proof above, cl(A ) is the completion of σ(A ). This gives a neat
loop-closing for the use of the word “completion” in this context, since it gives this
a standard topological meaning. The Hahn–Kolmogorov Extension Theorem, then,
becomes sort of a result about the extension of uniformly continuous functions to
the completion, a la Theorem 1.1.37. When one digs more deeply into measure
theory per se, these sorts of matters become more important. •

Now let us both specialise and extend our discussion of outer measures gener-
ated by a collection of subsets. We consider in detail the situation where we begin
with a measure space.

2.3.28 Definition (Inner and outer measure of a measure) Let (X,A , µ) be a measure
space.

(i) The outer measure associated to µ is the map µ∗ : 2X
→ R≥0 defined by

µ∗(S) = inf{µ(A) | A ∈ A , S ⊆ A}.
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(ii) The inner measure associated to µ is the map µ∗ : 2X
→ R≥0 defined by

µ∗(S) = sup{µ(A) | A ∈ A , A ⊆ S}. •

The following corollary to Proposition 2.3.24 answers one of the basic questions
we raised upon defining the concept of an outer measure.

2.3.29 Corollary (The outer measure of a measure is an outer measure) If (X,A , µ)
be a measure space then the outer measure µ∗ associated to µ is an outer measure as per
Definition 2.3.4.

Proof Since a σ-algebra is an algebra and since countable unions of measurable sets
are measurable, this follows directly from Proposition 2.3.24. ■

One way to interpret the preceding result is that it provides a natural way of
extending a measure, possibly only defined on a strict subset of the collection of
all subsets, to a means of measuring “size” for all subsets, and that this extension
is, in fact, an outer measure. This provides, then, a nice characterisation how a
measure approximates sets “from above.” What about the rôle of the inner measure
that approximates sets “from below”? The following result clarifies this rôle, and
illustrates one place where completeness is important.

2.3.30 Proposition (Sets for which inner and outer measure agree are in the com-
pletion) Let (X,A , µ) be a measure space and let A ⊆ X be such that µ∗(A) < ∞. Then
µ∗(A) = µ∗(A) if and only if A ∈ Aµ.

Proof Suppose that A ∈ Aµ and let L,U ∈ A satisfy L ⊆ A ⊆ U and µ(U \ L) = 0. Then

µ(L) ≤ µ∗(A) ≤ µ∗(A) ≤ µ(U),

giving µ∗(A) = µ∗(A) since µ(L) = µ(U).
Conversely, suppose that µ∗(A) = µ∗(A). Let k ∈ Z>0. Then there exists sets

Mk,Vk ∈ A such that Mk ⊆ A ⊆ Vk and such that

µ∗(A) < µ(Mk) + 1
k , µ(Vk) < µ∗(A) + 1

k .

Then, for k ∈ Z>0 define

Lk = ∪
k
j=1M j ∈ A , Uk = ∩

k
j=1V j ∈ A ,

noting that Mk ⊆ Lk ⊆ A, A ⊆ Uk ⊆ Vk, Lk ⊆ Lk+1, and Uk+1 ⊆ Uk for k ∈ Z>0. We then
have

µ∗(A) − 1
k < µ(Mk) ≤ µ(Lk) ≤ µ(Uk) ≤ µ(Vk) < µ∗(A) + 1

k .

Taking the limit as k→∞ gives

lim
k→∞

µ(Lk) = lim
k→∞

µ(Lk).

If we define L = ∪k∈Z>0Lk ∈ A and U = ∩k∈Z>0Uk ∈ A then we have L ⊆ A ⊆ U and, by
Proposition 2.3.10, µ(L) = µ(U). Thus A ⊆ Aµ. ■
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2.3.5 Probability measures

In this section we introduce the notion of a probability measure. As the name
suggests, probability measures arise naturally in the study of probability theory,
but this is something we will not take up here, postponing a general study of this
for . what?

Let us first define what we mean by a probability measure.

2.3.31 Definition (Probability space, probability measure) A probability space is a
measure space (X,A , µ) for which µ(X) = 1. The set X is called the sample space,
the σ-algebraA is called the set of events, and the measure µ is called a probability
measure. •

Let us give some examples.

2.3.32 Examples (Probability spaces)
1. Let us consider the classical example of a problem in so-called “discrete prob-

ability.” We suppose that we have a coin which, when we flip it, has two
outcomes, denoted “H” for “heads” and “T” for “tails.” Let us suppose that we
know that the coin is biased in a known way, so that the likelihood of seeing
a head on any flip is p ∈ [0, 1]. Then the likelihood of seeing a tail on any flip
is 1 − p. We shall flip this coin once, and the record the outcome. Thus the
sample space is X = {H,T}. The σ-algebra of events we take to beA = 2X. Thus
there are four events: (a) ∅ (corresponding to an outcome of neither “heads”
nor “tails”); (b) {H} (corresponding to an outcome of “heads”); (c) {T} (corre-
sponding to an outcome of “tails”); (d) {H,T} (corresponding to an outcome of
either “heads” or “tails”). The probability measure is defined by

µ({H}) = p, µ({T}) = (1 − p).

The probability measure for the events ∅ and {H,T} must be 0 (because the
measure of the empty set is always zero) and 1 (by countable additivity of the
measure), respectively. Thus µ is a probability measure.

2. We have a biased coin as above. But now we perform an trial where we flip
the coin n times and record the outcome each time. An element of the sample
space X is an outcome of a single trial. Thus an element of the sample space
is an element of X = {H,T}{1,...,n}, the set of maps from {1, . . . ,n} to {H,T}. Note
that card(X) = 2n. If ϕ ∈ X then the outcome of this trial is represented by the
sequence

(ϕ(1), . . . , ϕ(n)) ∈ {H,T}n.

The σ-algebra defining the set of events is the set of subsets of all trials:A = 2X.
Now let us define a meaningful probability measure. For a trial ϕ ∈ X let nH(ϕ)
be the number of heads appearing in the trial and let nT(ϕ) be the number of
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tails appearing in the trial. Obviously, nH(ϕ) + nT(ϕ) = n for every ϕ ∈ X. We
then define

µ(ϕ) = pnH(ϕ)(1 − p)nT(ϕ).

This then defines µ on 2X by countable additivity. We should check that this is
a probability measure, i.e., that µ(X) = 1. For fixed k ∈ {1, . . . , k}, the number of
trials in which k heads appears is(

n
k

)
≜

n!
k!(n − k)!

,

i.e., the binomial coefficient Bn,k from Exercise I-2.2.1. Note that, according to
Exercise I-2.2.1,

n∑
k=0

(
n
k

)
pk(1 − p)n−k = (p + (1 − p))n = 1.

Since the expression on the left is the sum over the trials with any possible
number of heads, it is the sum over all possible trials.

3. Consider the problem of “randomly” choosing a number in the interval [0, 1].
Thus X = [0, 1]. We wish to use the Lebesgue measure as a probability measure.
Note that, according to our constructions of Section 2.4, to do this pretty much
necessitates taking A = L ([0, 1]) as the set of events.

4. Let x0 ∈ R and let σ ∈ R>0. Let us consider the sample space X = R, the set of
events A = L (R), and the measure γx0,σ : L (R)→ R defined by

γx0,σ(A) =
1
√

2πσ

∫
R

χA(x) exp(− 1
2σ2 (x − x0)2) dx.

We claim that γx0,σ is a probability measure, i.e., that γx0,σ(R) = 1. The following
lemma is useful in verifying this.

1 Lemma
∫
R

e−ξ
2
dξ =

√
π.

Proof By Fubini’s Theorem we write(∫
R

e−ξ
2
dξ

)2
=

(∫
R

e−x2
dx

)(∫
R

e−y2
dy

)
=

∫
R2

e−x2
−y2

dxdy.

By Example II-1.6.40–3 we have(∫
R

e−ξ
2
dξ

)2
=

∫
R>0×[−π,π]

re−r2
drdθ = 2π

∫
R>0

re−r2
dr.

Now we make another change of variable ρ = r2 to obtain(∫
R

e−ξ
2
dξ

)2
= π

∫
R>0

e−ρ dρ = π,

and so we get the result. ▼
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By making the change of variable ξ = 1
√

2σ
(x − x0), we can then directly verify

that γx0,σ(R) = 1. This probability measure is called the Gaussian measure with
mean x0 and variance σ. •

2.3.6 Product measures

In Section 2.2.3 we showed how algebras on the factors of a product give
algebras and σ-algebras on the product. In this section we investigate how to define
measures on products given measures on each of the factors. The procedure for
this is surprisingly technical; we use the Hahn–Kolmogorov Extension Theorem. It
is also possible to define measures on products using the integral, after the integral
has been defined. We refer to Section 2.8.1 for this construction.

For now, let us state and prove the basic result concerning the construction of
measures on products of measure spaces.

2.3.33 Theorem (Measures on products of measure spaces) If (Xj,Aj, µj), j ∈ {1, . . . ,k},
are σ-finite measure spaces then there exists a unique measure

µ1 × · · · × µk : σ(A1 × · · · ×Ak)→ R≥0

such that
µ1 × · · · × µk(A1 × · · · ×Ak) = µ1(A1) · · ·µk(Ak)

for every A1 × · · · ×Ak ∈ A1 × · · · ×Ak.
Proof We use a couple of technical lemmata.

1 Lemma Let X be a set and let S0 ⊆ 2X be a family of subsets for which
(i) S1 ∩ S2 ∈ S0 for every S1, S2 ∈ S0 and
(ii) if S ∈ S0 then X \ S = S1 ∪ · · · ∪ Sk for some pairwise disjoint S1, . . . , Sk ∈ S0.

Then σ0(S0) is equal to the collection of finite unions of sets from S0 and, if µ0 : S0 → R≥0 is
finitely-additive, then there exists a unique finitely-additive function µ0 : σ0(S )→ R≥0 such
that µ|S0 = µ0.

Proof First we claim that the set of finite unions of sets from S0, let us denote this
collection of subsets by S 0, is an algebra. To see that X ∈ S 0, let S ∈ S0 and write, by
hypothesis,

X = S ∪ (X \ S) = S ∪ (S1 · · · ∪ Sk)

for some S1, . . . ,Sk ∈ S0. Thus X ∈ S 0. Now let S ∈ S 0 and write S = S1 ∪ · · · ∪ Sk for
S1, . . . ,Sk ∈ S0. Then, by De Morgan’s Laws,

X \ S = (X \ S1) ∩ · · · ∩ (X \ Sk).

Thus X \S is, by assumption, a finite intersection of finite unions of sets fromS0. Since
intersections of finitely many sets from S0 are in S0, it then follows that X \ S ∈ S 0.
Thus, by Exercise 2.2.1, S 0 is an algebra. Moreover, ifA is any algebra containingS0
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then A must necessarily contain the finite unions of sets from S0. Thus S 0 ⊆ A . By
Proposition 2.2.8 this shows that S 0 = σ0(S0), as desired.

Now let A ∈ σ0(S0) so that A = A1∪ · · ·∪Ak for some A1, . . . ,Ak ∈ S0. By Lemma 1
in the proof of Proposition 2.3.2, there are then disjoint sets T1, . . . ,Tm ∈ S0 such that
A = T1 ∪ · · · ∪ Tm. We then define

µ(A) = µ0(T1) + · · · + µ0(Tm).

We must show that this definition is independent of the particular way in which one
writes A as a disjoint union of sets from S0. Suppose that A = T′1 ∪ · · · ∪ T′n for disjoint
T′1, . . . ,T

′
n ∈ S0. Then

A = ∪m
j=1T j = ∪

n
l=1T′l = ∪

m
j=1 ∪

n
l=1 T j ∩ T′l ,

as may be easily verified. It then follows that

µ
(
∪

m
j=1T j

)
=

m∑
j=1

µ0(T j) =
m∑

j=1

n∑
l=1

µ0(T j ∩ T′l ) =
n∑

l=1

m∑
j=1

µ0(T′l ∩ T j) =
n∑

l=1

µ0(T′l ),

giving the well-definedness of µ, and so the existence assertion of the lemma. Unique-
ness follows immediately from finite-additivity of µ. ▼

2 Lemma For sets X1, . . . ,Xk with algebras Aj ⊆ 2Xj , j ∈ {1, . . . ,k}, let µj : Aj → R≥0,
j ∈ {1, . . . ,k}, be finitely-additive. Then there exists a unique finitely-additive

µ : σ0(A1 × · · · ×Ak)→ R≥0

such that
µ(A1 × · · · ×Ak) = µ1(A1) · · ·µk(Ak) (2.4)

for every Aj ∈ Aj, j ∈ {1, . . . ,k}.

Proof Let us abbreviate A = σ0(A1 × · · · × Ak). By Proposition 2.2.16, if A ∈ A then
we can write

A = R1 ∪ · · · ∪ Rm

for disjoint measurable rectangles R1, . . . ,Rm. We then define

µ(A) = µ(R1) + · · · + µ(Rm), (2.5)

where µ(R j), j ∈ {1, . . . ,m}, is defined as in (2.4). We must show that this definition
of µ is independent of the way in which one expresses A as a finite disjoint union of
measurable rectangles. First let us suppose that

A = A1 × · · · × Ak ∈ A1 × · · · ×Ak.

We shall prove by induction on k that if A is written as a finite disjoint union of
measurable rectangles, A = R1∪ · · · ∪Rm, that (2.5) holds. This assertion is vacuous for
k = 1, so assume it holds for k = n − 1 and let

A1 × · · · × An = ∪
m
j=1B′j × B j
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where B′j ∈ A1 × · · · × An−1 and B j ∈ An for each j ∈ {1, . . . ,m}. By the induction
hypothesis and by our knowing the volumes of measurable rectangles, there exists a
finitely-additive function µ′ : σ0(A1 × · · · ×An−1)→ R≥0 such that

µ′(A′1 × · · · × A′n−1) = µ1(A′1) · · ·µn−1(A′n−1)

for every A′1 × · · · × A′n−1 ∈ A1 × · · · ×An−1. We are charged with showing that

µ(A1 × · · · × An) = µ1(A1) · · ·µn−1(An−1)µn(An)

= µ′(A1 × · · · × An−1)µn(An) =
m∑

j=1

µ′(B′j)µn(B j),

the last equality being the only that is not obvious.
From Lemma 1 in the proof of Proposition 2.3.2, there exists pairwise disjoint sets

C1, . . . ,Cr ⊆ An such that each of the sets B1, . . . ,Bk is a finite union of the sets C1, . . . ,Cr.
Thus, for each j ∈ {1, . . . , k}, there exists pairwise disjoint sets S j1, . . . ,S jm j ⊆ An, taken
from the collection of sets C1, . . . ,Cr, for which B j = S j1 ∪ · · · ∪ S jm j . Thus

A1 × · · · × An = ∪
m
j=1B′j ×

(
∪

m j

l j=1S jl j

)
= ∪m

j=1 ∪
m j

l j=1 B′j × S jl j .

Now, for each s ∈ {1, . . . , r}, let Js ⊆ {1, . . . , k} be defined so that j ∈ Js if and only if there
exists l j ∈ {1, . . . ,m j} (necessarily unique) such that S jl j = Cs. Then define B′′s = ∪ j∈JsB

′

j.
Since the measurable rectangles B′j × B j, j ∈ {1, . . . , k}, are pairwise disjoint, it follows
that the measurable rectangles B′j, j ∈ Js, are pairwise disjoint. Also note that we then
have

A1 × · · · × An = ∪
r
s=1B′′s × Cs,

noting that C1, . . . ,Cs are pairwise disjoint. This implies that ∪r
s=1Cs = An. This, in

turn, forces us to conclude that B′′s = A1 × · · · × An−1 for each s ∈ {1, . . . , r}.
Now let us use the above facts, along with the induction hypothesis. Finite-

additivity of µn gives

µn(B j) =
m j∑

l j=1

µn(S jl j), j ∈ {1, . . . , k},

and
r∑

s=1

µn(Cs) = µn(An).

Also, finite-additivity of µ′ gives

µ′(A1 × · · · × An−1) = µ′(∪ j∈JsB
′

j) =
∑
j∈Js

µ′(B j).

Putting this all together gives

k∑
j=1

µ′(B′j)µn(B j) =
k∑

j=1

µ′(Bn)
m j∑

l j=1

µn(S jl j) =
r∑

s=1

∑
j∈Js

µ′(B′j)µn(Cs)

= µ′(A1 × · · · × An−1)µn(An).
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This proves that the definition of volume of measurable rectangles is independent
of how these rectangles are decomposed into finite disjoint unions of measurable
rectangles.

The existence part of the lemma now follows from Lemma 1, along with Proposi-
tion 2.2.16. Uniqueness immediately follows from Proposition 2.2.16, along with the
uniqueness assertion from Lemma 1. ▼

We complete the proof by induction on k, the assertion being clear when k = 1. So
suppose that the conclusions of the theorem hold for k = 1, . . . ,m − 1 for some m ≥ 2,
and let (X j,A j, µ j), j ∈ {1, . . . ,m}, be measure spaces satisfying the hypotheses of the
theorem. Let us denote Y = X1 × · · · × Xm−1 and Z = Xm,B = σ(A1 × · · · ×Am−1) and
C = Am, and ν = µ1×· · ·×µm−1 and λ = µm. We use the induction hypothesis to define
ν : B → R≥0. We now wish to show that there exists a unique map ν×λ : B×C → R≥0
such that

ν × λ(B × C) = ν(B)λ(C)

for every B × C ∈ B × C . Note that by Proposition 2.2.16 and Lemma 2, and since
a countably-additive measure is also finitely-additive, there exists a unique finitely-
additive measure ν0 : σ0(B ×C )→ R≥0 such that

ν0(B × C) = ν(B)λ(C)

for every B×C ∈B ×C . By the Hahn–Kolmogorov Extension Theorem we need only
show that ν0 is countably-additive.

Let us first suppose that ν and λ are finite. Then, by Proposition 2.3.3, it suffices
to show that if (A j) j∈Z>0 is a sequence of subsets from σ0(B × C ) such that A j ⊇ A j+1
and such that ∩ j∈Z>0A j = ∅, then lim j→∞ ν0(A j) = 0. By Proposition 2.2.16, for each
j ∈ Z>0 we have

A j = ∪
m j

k=1B jk × C jk

for nonempty sets B j1, . . . ,B1m j ∈ B and C j1, . . . ,C jm j ∈ C . Moreover, as we argued
in the proof of Lemma 2, we may suppose without loss of generality that the sets
B j1, . . . ,B jm j are pairwise disjoint. Now define f j : Y→ R≥0 by

f j(y) =

λ(C jk), y ∈ B jk,

0, y < ∪
m j

k=1B jk.

For y ∈ Y and j ∈ Z>0 there exists a unique k( j, y) ∈ {1, . . . ,m j} such that y ∈ B jk( j,y).
Moreover, if j1 < j2 we have

C j1k( j1,y) = {z ∈ Z | (y, z) ∈ A j1} ⊆ {z ∈ Z | (y, z) ∈ A j2} = C j2k( j2,y)

Therefore, the sequence ( f j(y)) j∈Z>0 is monotonically decreasing for each y ∈ Y. More-
over, lim j→∞ f j(y) = 0 since

∩ j∈Z>0C jk( j,y) ⊆ ∩ j∈Z>0{z ∈ Z | (y, z) ∈ A j} = ∅.

Now let ϵ ∈ R>0 and j ∈ Z>0 and define

B j,ϵ = {y ∈ Y | f j(y) > ϵ}.
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We can easily see that B j,ϵ ⊆ ∪
m j

k=1B jk, that B j,ϵ ⊇ B j+1,ϵ for j ∈ Z>0, and that∩ j∈Z>0B j,ϵ = ∅.
We therefore compute

ν0(A j) =
m j∑
k=1

ν(B jk)λ(C jk) ≤ ν(B j,ϵ)λ(Z) + ν(Y)ϵ.

Since lim j→∞ ν(B j,ϵ) = 0 by Proposition 2.3.3, it follows that

lim
j→∞

ν0(A j) ≤ ϵν(Y),

giving lim j→∞ ν0(A j) = 0 since ϵ ∈ R>0 is arbitrary. This shows that ν0 is a measure on
σ0(B ×C ).

Next suppose that ν and λ are not finite, but are σ-finite. Then let (Sk)k∈Z>0 and
(Tk)k∈Z>0 be subsets of Y and Z, respectively, such that ν(Sk) < ∞ and λ(Tk) < ∞ for
k ∈ Z>0, and such that Y = ∪k∈Z>0Sk and Z = ∪k∈Z>0Tk. We may without loss of
generality suppose that Sk ⊆ Sk+1 and Tk ⊆ Tk+1 for k ∈ Z>0. Let us denote

Bk = {B ∩ Sk | B ∈B }, Ck = {C ∩ Tk | C ∈ C }

and νk = ν0|sBk × Ck, noting from what we have already proved that νk is a measure.
Then, for disjoint sets (A j) j∈Z>0 inB ×C we have

∞∑
j=1

ν0(A j) =
∞∑
j=1

lim
k→∞

ν0(A j ∩ (Sk × Tk)) = lim
k→∞

∞∑
j=1

νk(A j ∩ (Sk × Tk))

= lim
k→∞

νk(∪ j∈Z>0A j ∩ (Sk × Tk)) = ν0(∪ j∈Z>0A j).

This shows that ν0 is a measure onB ×C .
Finally, to complete the proof by induction, one needs only to reinstate the defi-

nitions Y = X1 × · · · × Xm−1 and Z = Xm, B = σ(A1 × · · · × Am−1) and C = Am, and
ν = µ1 × · · · × µm−1 and λ = µm, and then apply the induction hypothesis. ■

Let us name the measure from the preceding theorem.

2.3.34 Definition (Product measure) If (X j,A j, µ j), j ∈ {1, . . . , k}, are σ-finite measure
spaces then the measure µ1 × · · · × µk is the product measure. •

Let us give simple examples of product measures.

2.3.35 Examples (Product measures)
1. Let X and Y be sets with A andB σ-algebras on X and Y, respectively. Define

µ : A → R≥0 and ν : B → R≥0 by

µ(A) =

0, A = ∅,
∞, A , ∅,

ν(B) =

0, B = ∅,
∞, B , ∅.
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Then the map µ × ν : σ(A ×B )→ R≥0 defined by

µ × ν(S) =

0, S = ∅,
∞, S , ∅,

is a measure and satisfies µ × ν(A × B) = µ(A)ν(B). Note, however, that since µ
and ν are not σ-finite, we cannot use Theorem 2.3.33 to assert the existence of
this measure except in the trivial case when X = Y = ∅.

2. Let X and Y be sets with A andB σ-algebras on X and Y, respectively. Define
µ : A → R≥0 and ν : B → R≥0 by

µ(A) =

card(A), card(A) < ∞,
∞, otherwise,

ν(B) =

card(B), card(B) < ∞,
∞, otherwise.

Then the map µ × ν : σ(A ×B )→ R≥0 defined by

µ × ν(S) =

card(S), card(S) < ∞,
∞, otherwise,

satisfies µ× ν(A× B) = µ(A)ν(B). By Theorem 2.3.33 we can infer that µ× ν is a
measure and is the unique measure with this property. •

2.3.36 Remark (Completeness of product measures) The product measure of com-
plete measure spaces may be incomplete. We shall see a concrete instance of this
in Section 2.5.4, but it is revealing to see how this can arise in a general way.
Suppose that we have complete measure spaces (X,A , µ) and (Y,B , ν). Let A ⊆ X
be a nonempty set such that µ(A) = 0 (thus A is measurable since (X,A , µ) is
complete) and let B ⊆ Y be a nonmeasurable set. (Note that it might happen that
there are no sets A and B with these properties.) Note that A × B ⊆ A × Y and
that A × Y is measurable, being a product of measurable rectangles. Moreover,
µ × ν(A × Y) = µ(A)ν(Y) = 0 and so A × B is a subset of a set of measure zero.
However, we claim that A × B is not σ(A ×B )-measurable. Indeed, by Propo-
sition 2.2.18, were A × B to be σ(A ×B )-measurable, it would follow that B is
B -measurable, which we suppose not to be the case. •

2.3.7 Signed measures

In this section until now, a measure has been thought of as measuring the
“size” of a measurable set, and so is an intrinsically nonnegative quantity. How-
ever, sometimes one wishes to use measures in ways more subtle than simply to
measure “size,” and in this case one wishes to allow for the measure of a set to be
negative. In this section we carry out the steps needed to make such a definition,
and we give a few basic properties of the sorts of measures we produce. The most



2022/03/07 2.3 Measures 117

interesting examples arise through integration; see Proposition 2.7.65. However,
in Theorem 2.3.42 we will characterise signed measures to the degree that it is easy
to see exactly what they “are.”

We can begin with the definition.

2.3.37 Definition (Signed measure) For a measurable space (X,A ), a signed measure on
A is a map µ : A → R such that

(i) µ(∅) = 0 and
(ii) µ is countably-additive.

A signed measure space is a triple (X,A , µ) where (X,A ) is a measurable space and
µ is a signed measure on A . •

Note that, by Proposition 2.3.2(viii), a signed measure is consistent, and so a
signed measure cannot take both values∞ and−∞. If, for emphasis, we wish to dif-
ferentiate between a signed measure and a measure in the sense of Definition 2.3.7,
we shall sometimes call the latter a positive measure. However, whenever we say
“measure,” we always mean a measure in the sense of Definition 2.3.7.

Let us provide some simple examples of signed measures.

2.3.38 Examples (Signed measures)
1. Let X be a set and let x1, x2 ∈ X be distinct points. Let us takeA = 2X and define

µ : 2X
→ R by

µ(A) =


m1, x1 ∈ A, x2 < A,
−m2, x2 ∈ A, x1 < A,
m1 −m2, x1, x2 ∈ A,
0, x1, x2 < A,

for m1,m2 ∈ R. Intuitively, µ has a positive mass m1 at x1 and a negative mass
−m2 and x2.

2. Let X = Z be a set and take A = 2X. Suppose that the sequences (p j) j∈Z≥0 and
(n j) j∈Z>0 of positive numbers are such that

∞∑
j=0

p j < ∞,
∞∑
j=1

n j < ∞.

For A ⊆ Z define
µ(A) =

∑
j∈A∩Z≥0

p j −

∑
j∈A∩Z<0

n− j,

which can easily be verified to define a signed measure. •

Let us now indicate some of the essential features of signed measures.
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2.3.39 Definition (Positive and negative sets, Hahn decomposition) For a signed mea-
sure space (X,A , µ), a set A ∈ A is positive (resp. negative) if, for every B ⊆ A such
that B ∈ A , it holds that µ(B) ∈ R≥0 (resp. µ(B) ∈ R≤0). A Hahn decomposition for
(X,A , µ) is a pair (P,N) with the following properties:

(i) P,N ∈ A ;
(ii) X = P ∪N and P ∩N = ∅;
(iii) P is a positive set and N is a negative set. •

It is clear that if A is a positive (resp. negative) set, every measurable subset of
A is also positive (resp. negative).

We can prove that Hahn decompositions exist.

2.3.40 Theorem (Hahn Decomposition Theorem) Every signed measure space possesses a
Hahn decomposition. Moreover, if (P1,N1) and (P2,N2) are Hahn decompositions for a
signed measure space (X,A , µ), then P1 ∩N2 and P2 ∩N1 both have measure zero.

Proof Since µ is consistent, we assume without loss of generality that µ cannot take
the value −∞. Let us define

L = inf{µ(A) | A is a negative set}.

Note that there are negative sets since ∅ is negative. Also, L > −∞. Indeed, if
L = −∞ this would imply that for each j ∈ Z>0 there exists a negative set A j for which
µ(A j) < − j. Let Bk = ∪

k
j=1Ak so that Bk ⊆ Bk+1. Note that µ(Bk) < −k. Countable-

additivity of µ and Proposition 2.3.3 imply that

µ
( ⋃

k∈Z>0

Bk

)
= lim

k→∞
µ(Bk) = −∞,

and so indeed we must have L > −∞ if µ cannot take the value −∞. Now let (A j) j∈Z>0

be a sequence of sets from A for which lim j→∞ µ(A j) = L and define N = ∪ j∈Z>0A j.
We claim that N is a negative set. Certainly N ∈ A , N being a countable union of sets
fromA . By Lemma 1 from the proof of Proposition 2.3.2 we can write N = ∪ j∈∞N j for
a pairwise disjoint family of negative sets (N j) j∈Z>0 . Now, if A ⊆ N is A -measurable
then A = ∪ j∈Z>0A ∩ N j. Since A ∩ N j ⊆ N j it follows that µ(A ∩ N j) ∈ R≤0. Thus, by
countable-additivity of µ,

µ(A) =
∞∑
j=1

µ(A ∩N j) ≤ 0,

so showing that N is a negative set.
Now define P = X \N. To prove that P is a positive set, we need a lemma.

1 Lemma If (X,A , µ) is a signed measure space and if A ∈ A satisfies µ(A) ∈ R<0, then there
exists a negative set B ⊆ A such that µ(B) ≤ µ(A).

Proof We define a sequence (m j) j∈Z>0 of nonnegative real numbers and a sequence
(A j) j∈Z>0 of pairwise disjointA -measurable subsets of A with nonnegative measure as
follows. Let

m1 = sup{µ(B) | B ∈ A , B ⊆ A}.
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Note that m1 ∈ R≥0 since ∅ ∈ A and ∅ ⊆ A. Now let A1 ∈ A be a subset of A
that satisfies µ(A1) ≥ min{m1

2 , 1}, this being possible by the definition of m1. Note
that µ(A1) ∈ R≥0. Now suppose that we have defined m1, . . . ,mk ∈ R≥0 and pairwise
disjointA -measurable sets A1, . . . ,Ak ⊆ A such that µ(A j) ∈ R≥0, j ∈ {1, . . . , k}. Then let

mk+1 = sup{µ(B) | B ∈ A , B ⊆ A \ ∪k
j=1A j}

and let Ak+1 ⊆ A \ ∪k
j=1A j have the property that µ(Ak+1) ≥ min{mk+1

2 , 1}. As we argued
above for m1 and A1, mk+1, µ(Ak+1) ∈ R≥0. It is clear that Ak+1 ∩ A j = ∅, j ∈ {1, . . . , k}.
Thus (A1, . . . ,Ak+1) are pairwise disjoint.

Let us take B = A \ ∪ j∈Z>0A j. Note that

µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j)

since the sets (A j) j∈Z>0 are pairwise disjoint. Therefore,

µ(A) = µ(B) + µ
( ⋃

j∈Z>0

A j

)
≥ µ(B).

Now we show that B is a negative set. Note that

µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j) < ∞.

since |µ(A)| < ∞. Thus the sum in the middle converges, and by Proposition I-2.4.7
it follows that lim j→∞ µ(A j) = 0. Therefore, lim j→∞m j = 0. Now let E ⊆ B be A -
measurable. Thus E ⊆ A \ ∪k

j=1A j for every k ∈ Z>0. Therefore, by definition of mk1 ,
µ(E) ≤ mk+1 for every k ∈ Z≥0. Therefore, it must be the case that µ(E) ∈ R≤0 since
lim j→∞m j = 0. ▼

Now suppose that there exists a set A ⊆ P such that µ(A) ∈ R<0. Then, by the
lemma, there exists a negative set B ⊆ A such that µ(B) ≤ µ(A). Now N∪B is a negative
set such that

µ(N ∪ B) = µ(N) + µ(B) ≤ µ(N) + µ(A) < µ(N) = L,

which contradicts the definition of L. Thus P is indeed positive.
To prove the final assertion of the theorem, note that both P1 ∩N2 and P2 ∩N1 are

both positive and negative sets. It must, therefore, be the case that both have measure
zero. ■

The Hahn decomposition can be illustrated for our examples above of signed
measures.
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2.3.41 Examples (Hahn decomposition)
1. We consider Example 2.3.38–1. A Hahn decomposition in this case consists of

any subsets P and N such that

(a) P ∩N = ∅,
(b) P ∪N = X, and
(c) x1 ∈ P and x2 ∈ N.

Note that there will generally be many possible Hahn decompositions in this
case, since there are possible many sets of measure zero.

2. For Example 2.3.38–2, a Hahn decomposition is given by P = Z≥0 and N = Z<0.
If none of the numbers p j, j ∈ Z≥0, and n j, j ∈ Z>0, are zero (as was assumed),
then this is the only Hahn decomposition. •

As a direct consequence of the Hahn Decomposition Theorem we have the
following decomposition of µ.

2.3.42 Theorem (Jordan Decomposition Theorem) For a measurable space (X,A ) the
following statement hold:

(i) if ν+ and ν− are two positive measures on A , at least one of which is finite, then the
map ν : A → R defined by ν(A) = ν+(A) − ν−(A) is a signed measure on A ;

(ii) if µ is a signed measure on A then there exist unique positive measures µ+ and µ−
on A such that

(a) at least one of µ+ and µ− is finite,
(b) µ(A) = µ+(A) − µ−(A) for every A ∈ A , and
(c) µ+(A) = µ(A) for every positive set A and µ−(B) = −µ(B) for every negative

set B;

(iii) if ν+ and ν− are positive measures on A , at least one of which is finite, such that
µ(A) = ν+(A) − ν−(A) for every A ∈ A and if µ+ and µ− are as in part (ii), then
ν+(A) ≥ µ+(A) and ν−(A) ≥ µ−(A) for every A ∈ A .

Proof (i) This is a straightforward verification that ν as defined in the statement of the
theorem is countably-additive and satisfies µ(∅) = 0.

(ii) Let (P,N) be a Hahn decomposition for (X,A , µ). Note that at most one of the
relations µ(P) = ∞ and µ(N) = −∞ can hold by consistency of µ. Define µ+, µ− : A →
R≥0 by

µ+(A) = µ(P ∩ A), µ−(A) = −µ(N ∩ A).

Clearly µ+(∅) = µ−(∅) = 0. Also, for a pairwise disjoint family (A j) j∈Z>0 of A -
measurable sets, we have

µ+
( ⋃

j∈Z>0

A j

)
= µ

(
P ∩

⋃
j∈Z>0

A j

)
= µ

( ⋃
j∈Z>0

P ∩ A j

)
=

∞∑
j=1

µ(P ∩ A j) =
∞∑
j=1

µ+(A j),



2022/03/07 2.3 Measures 121

giving countable-additivity of µ+. One similarly shows countable-additivity of µ−.
Also, if A ∈ A , we have

µ(A) = µ(P ∩ A) + µ(N ∩ A) = µ+(A) − µ−(A).

This gives the existence assertion of this part of the theorem.
We make an observation before we begin the proof of the uniqueness assertion of

this part of the theorem. We continue with the notation from the proof of existence
above, with µ+ and µ− as defined in that part of the proof, relative to the Hahn
decomposition (P,N) for (X,A , µ). Let (P′,N′) be another Hahn decomposition. We
can then write

P = (P′ ∩ P) ∪ (N′ ∩ P),

where, by Theorem 2.3.40, µ(N′ ∩ P) = 0. Now note that, for every A ∈ A ,

µ(P ∩ A) = µ(((P′ ∩ P) ∪ (N′ ∩ P)) ∩ A)
= µ(((P′ ∩ P) ∩ A) ∪ ((N′ ∩ P) ∩ A)) = µ(((P′ ∩ P) ∩ A)).

Now we have
P′ = (P′ ∩ P) ∪ (P′ ∩N),

where µ(P′ ∩N) = 0 by Theorem 2.3.40. Therefore,

µ(P′ ∩ A) = µ((P′ ∩ P) ∩ A),

from which we deduce that µ(P ∩ A) = µ(P′ ∩ A). Similarly, we show that µ(N ∩ A) =
µ(N′ ∩ A).

Let µ′+ and µ′
−

be positive measures satisfying

µ(A) = µ′+(A) − µ′−(A), A ∈ A ,

and suppose that µ′+(A) = µ(A) for every positive set A and that µ′
−

(B) = µ(B) for every
negative set B. Let A ∈ A be a positive set and let B ∈ A be a negative set. Then, for
the Hahn decomposition (P,N), we write

A = (P ∩ A) ∪ (N ∩ A).

Since A is a positive set, we must have µ(N ∩ A) = 0. Define P′ = P ∪ (N ∩ A) and
N′ = X \P′. Obviously P′ is a positive set, being the union of a positive set with a set of
measure zero. Since N′ = N \ (N ∩A), it follows that N′ is a negative set. Thus (P′,N′)
is a Hahn decomposition. Moreover, P′ ∩ A = A, and so

µ′+(A) = µ(P′ ∩ A) = µ(P ∩ A) = µ+(A),

the second equality following from the remarks beginning this part of the proof.
Similarly one shows that µ′

−
(B) = µ−(B). Thus any positive measures µ′+ and µ′

−

having the three stated properties must agree with the measures µ+ and µ− explicitly
constructed in part (ii).

(iii) For a positive set A we have

µ(A) = µ+(A) = ν+(A) − ν−(A)
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and so ν+(A) ≥ µ+(A) for every positive set A. For a negative set B we have µ+(B) = 0
and so we immediately have ν+(B) ≥ µ+(B). Therefore, for A ∈ A we have

A = (P ∩ A) ∪ (N ∩ A)
=⇒ ν+(A) = ν+(P ∩ A) + ν+(N ∩ A) ≥ µ+(P ∩ A) + µ+(N ∩ A) = µ+(A).

By the same arguments, mutatis mutandis, one shows that ν−(A) ≥ µ−(A) for every
A ∈ A . ■

Note that, without all of the assumptions from part (ii) of the theorem, unique-
ness of µ+ and µ− cannot be guaranteed. Indeed, if µ is a positive measure then we
can write

µ(A) = µ+(A) − µ−(A) = ν+(A) − ν−(B)

where µ+ = µ, µ− is the zero measure, ν+ = 2µ, and ν− = µ. Note that ν+(A) ≥ µ+(A)
and ν−(A) ≥ µ−(A), as asserted in part (iii).

Thus we make the following definition.

2.3.43 Definition (Jordan decomposition) If (X,A , µ) is a signed measure space, the
positive part and the negative part of µ are the positive measures µ+ and µ−,
respectively, having the following properties:

(i) µ(A) = µ+(A) − µ−(A) for every A ∈ A ;
(ii) µ′+(A) = µ(A) for every positive set A;
(iii) µ′

−
(B) = −µ(B) for every negative set B.

The Jordan decomposition of µ is given by the representation µ = µ+ − µ− which
signifies the first of the above properties of µ+ and µ−. •

2.3.44 Remark (Connections to functions with bounded variation) In Theorem I-3.3.3
we considered the Jordan decomposition for a function of bounded variation. This
decomposition, like the one in Theorem 2.3.42, gives an additive decomposition
with a (sort of) positive component and a (sort of) negative component. There is, as
one might hope, a concrete relationship between the two Jordan decompositions.
However, this will not be realised until . •what?

For our ongoing examples we can illustrate the Jordan decomposition.

2.3.45 Examples (Jordan decomposition)
1. For the signed measure of Example 2.3.38–1, the positive and negative parts of

the signed measure µ are defined by

µ+(A) =

m1, x1 ∈ A,
0, x1 < A,

µ−(A) =

m2, x2 ∈ A,
0, x2 < A.
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2. For the signed measure of Example 2.3.38–2, the positive and negative parts of
the signed measure µ are defined by

µ+(A) =


∑

j∈A∩Z≥0
p j, A ∩Z≥0 , ∅,

0, A ∩Z≥0 = ∅,
µ−(A) =


∑

j∈A∩Z<0
n− j, A ∩Z<0 , ∅,

0, A ∩Z<0 = ∅.
•

Now that we have at hand the decompositions which we use to characterise
signed measures, we can use these to provide a new measure associated with a
signed measure. The value of this construction may not be immediately apparent,
but will be made clear in . what?

2.3.46 Definition (Variation and total variation of a signed measure) For a signed
measure space (X,A , µ), the variation of µ is the positive measure |µ| : A → R≥0

defined by
|µ|(A) = µ+(A) + µ−(A),

where µ+ and µ− are the positive and negative parts, respectively, µ. The total
variation of µ is ∥µ∥ = |µ|(X) •

It is a simple verification to check that |µ| is indeed a positive measure. The
following result characterises it among all positive measures which relate to µ in a
prescribed manner.

2.3.47 Proposition (Property of the variation of a signed measure) For (X,A , µ) a
signed measure space, |µ(A)| ≤ |µ|(A) for all A ∈ A . Moreover, if ν : A → R≥0 is a
positive measure such that |µ(A)| ≤ ν(A) for every A ∈ A , then |µ|(A) ≤ ν(A) for every
A ∈ A .

Proof The first assertion of the result is clear, for if A ∈ A then

|µ(A)| = |µ+(A) − µ−(A)| ≤ µ+(A) + µ−(A) = |µ|(A).

For the second assertion, suppose that ν is a positive measure with the property that
|µ(A)| ≤ ν(A) for every A ∈ A . If (P,N) is a Hahn decomposition for (X,A , µ) then, for
any A ∈ A ,

µ+(P ∩ A) = |µ(P ∩ A)| ≤ ν(P ∩ A)

and
µ−(N ∩ A) = |µ(N ∩ A)| ≤ ν(N ∩ A).

Therefore, using the definition of µ+ and µ−,

|µ|(A) = µ+(A) + µ−(A) = µ+(P ∩ A) + µ−(N ∩ A) ≤ ν(P ∩ A) + ν(N ∩ A) = ν(A),

as desired. ■

The following property of the variation of a signed measure is also useful.
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2.3.48 Proposition (Characterisation of the variation of a signed measure) For a
signed measure space (X,A , µ) and for A ∈ A ,

|µ|(A) = sup
{ k∑

j=1

|µ(Aj)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of A

}
.

Proof Let A ∈ A . For a partition (A1, . . . ,Ak) of A we have

|µ|(A) =
k∑

j=1

|µ|(A j) ≥
k∑

j=1

|µ(A j)|.

by Proposition 2.3.47 and using countable-additivity (and hence finite-additivity) of
|µ|. Taking the supremum of the expression on the right over all partitions gives

|µ|(A) ≥ sup
{ k∑

j=1

|µ(B j)|
∣∣∣∣ (B1, . . . ,Bk) is a partition of A

}
.

We also have, for a Hahn decomposition (P,N) for (X,A , µ) and a partition (A1, . . . ,Ak)
for A,

µ+(P ∩ A) = |µ(P ∩ A)| =
∣∣∣∣ k∑

j=1

µ(P ∩ A j)
∣∣∣∣ ≤ k∑

j=1

|µ(P ∩ A j)|

and similarly

µ−(N ∩ A) ≤
k∑

j=1

|µ(N ∩ A j)|.

Therefore, using the definition of µ+ and µ−,

|µ|(A) = µ+(P ∩ A) + µ−(N ∩ A) ≤
k∑

j=1

|µ(P ∩ A j)| +
k∑

j=1

|µ(N ∩ A j)|.

Since (P ∩ A1, . . . ,P ∩ Ak,N ∩ A1, . . . ,N ∩ Ak) is a partition of A we have

|µ|(A) ≤ sup
{ k∑

j=1

|µ(B j)|
∣∣∣∣ (B1, . . . ,Bk) is a partition of A

}
,

which gives the result. ■

The total variation is, in fact, an interesting quantity; it is a norm on the set of
finite signed measures. This point of view will be taken up in Section 3.8.9.

As with measures, we can restrict signed measures to measurable subsets.
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2.3.49 Proposition (Restriction of a signed measure) If (X,A , µ) is a signed measure
space and if A ∈ A , then (A,AA, µ|AA) is a signed measure space. (See Proposition 2.2.6
for the definition of AA.)

Proof This follows very much along the lines of Proposition 2.3.18. ■

2.3.8 Complex measures

Next we consider measures taking not just general real values, but complex
values. As with signed measures, we shall not be able to see interesting examples
of complex measures until we talk about integration; see Proposition 2.7.65.

We begin with the definition.

2.3.50 Definition (Complex measure) For a measurable space (X,A ), a signed measure
on A is a map µ : A → C such that

(i) µ(∅) = 0 and

(ii) µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j) for every family (A j) j∈Z>0 of pairwise disjoint sets from

A (countable-additivity).
A complex measure space is a triple (X,A , µ) where (X,A ) is a measurable space
and µ is a complex measure on A . •

Note that a complex measure is intrinsically finite since it must take values in
C. This makes complex measures a little different and more restrictive in scope
than positive or signed measures.

For a complex measure space (X,A , µ), we can define finite signed measures
Re(µ), Im(µ) : A → R by

Re(µ)(A) = Re(µ(A)), Im(µ)(A) = Im(µ(A)), A ∈ A .

We obviously call Re(µ) the real part of µ and Im(µ) the imaginary part of µ. It
is trivial to verify that Re(µ) and Im(µ) are indeed finite signed measures, and the
reader can do this as Exercise 2.3.5. We can then write

µ(A) = Re(µ)(A) + i Im(µ)(A),

or µ = Re(µ) + i Im(µ) for short. Since Re(µ) and Im(µ) are signed measures, they
have Jordan decompositions

Re(µ) = Re(µ)+ − Re(µ)−, Im(µ) = Im(µ)+ − Im(µ)−.

We can then write

µ = Re(µ)+ − Re(µ)− + i(Im(µ)+ − Im(µ)−),

to which we refer as the Jordan decomposition of the complex measure µ. It is
clear that a finite signed measure can be thought of as a complex measure whose
imaginary part is the zero measure.

Now let us turn to the variation of a complex measure.
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2.3.51 Definition (Variation and total variation of a complex measure) Let (X,A , µ) be
a complex measure space. The variation of µ is the map |µ| : A → R≥0 defined by

|µ|(A) = sup
{ k∑

j=1

|µ(A j)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of A

}
.

The total variation of µ is ∥µ∥ = |µ|(X). •

Different from the case of a signed measure, it is not immediately clear that the
variation is a measure. Thus we verify this.

2.3.52 Proposition (Variation is a positive finite measure) If (X,A , µ) is a complex
measure space then |µ| is a finite positive measure that satisfies |µ(A)| ≤ |µ|(A) for every
A ∈ A . Moreover, if ν : A → R≥0 is a positive measure satisfying |µ(A)| ≤ ν(A) for every
A ∈ A , then |µ|(A) ≤ ν(A) for every A ∈ A .

Proof It is evident that |µ|(∅) = 0. To verify countable-additivity of |µ|, we first verify
finite-additivity. Let A1,A2 ∈ A be disjoint and let (B1, . . . ,Bk) be a partition of A1∪A2.
We then have

k∑
j=1

|µ(B j)| =
k∑

j=1

|µ(A1 ∩ B j) + µ(A2 ∩ B j)|

≤

k∑
j=1

(|µ(A1 ∩ B j)| + |µ(A2 ∩ B j)|) ≤ |µ|(A1) + |µ|(A2),

the last inequality by definition of |µ|. Since

|µ|(A1 ∪ A2) = sup
{ k∑

j=1

|µ(B j)|
∣∣∣∣ (B1, . . . ,Bk) is a partition of A1 ∪ A2

}
,

we have
|µ|(A1 ∪ A2) ≤ |µ|(A1) + |µ|(A2).

Now let (B1,1, . . . ,B1,k1) be a partition of A1 and let (B2,1, . . . ,B2,k2) be a partition of A2.
Since

(B1,1, . . . ,B1,k1) ∪ (B2,1, . . . ,B2,k2)

is a partition of A1 ∪ A2 we have

k1∑
j1=1

|µ(B1, j1)| +
k2∑

j2=1

|µ(B2, j2)| ≤ |µ|(A1 ∪ A2).

Since

|µ|(A1) = sup
{ k1∑

j1=1

|µ(B1, j1)|
∣∣∣∣ (B1,1, . . . ,B1,k1) is a partition of A1

}
,

|µ|(A2) = sup
{ k2∑

j2=1

|µ(B2, j2)|
∣∣∣∣ (B2,1, . . . ,B2,k2) is a partition of A2

}
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we have
|µ|(A1) + |µ|(A2) ≤ |µ|(A1 ∪ A2).

Thus |µ|(A1 ∪ A2) = |µ|(A1) + |µ|(A2), whence follows the finite additivity of |µ|.
Now note that for A ∈ A we have

|µ(A)| ≤ |Re(µ)(A)| + |Im(µ)(A)| (2.6)

by . Therefore, for A ∈ A and for a finite partition (A1, . . . ,Ak) for A, we have something from the

complex chapter

k∑
j=1

|µ(A j)| ≤
k∑

j=1

(|Re(µ)(A j)| + |Im(µ)(A j)|)

≤

k∑
j=1

(Re(µ)+(A j) + Re(µ)−(A j) + Im(µ)+(A j) + Im(µ)−(A j))

=

k∑
j=1

Re(µ)+(A) + Re(µ)−(A) + Im(µ)+(A) + Im(µ)−(A).

Taking the supremum of the leftmost expression over all partitions we have

|µ|(A) ≤ Re(µ)+(A) + Re(µ)−(A) + Im(µ)+(A) + Im(µ)−(A). (2.7)

Therefore, if (A j) j∈Z>0 is a sequence of sets fromA having the properties that A j ⊇ A j+1,
j ∈ Z>0, and that ∩ j∈Z>0A j = ∅, we have

lim
j→∞
|µ|(A j) ≤ lim

j→∞
(Re(µ)+(A j) + Re(µ)−(A j) + Im(µ)+(A j) + Im(µ)−(A j)) = 0.

Countable-additivity of |µ| now follows from Proposition 2.3.3.
The finiteness of |µ| follows immediately from (2.7), noting that the four positive

measures on the right are finite.
For A ∈ A and for a partition (A1, . . . ,Ak) of A we have

|µ(A)| ≤
k∑

j=1

|µ(A j)| ≤ |µ|(A),

which gives the stated property of |µ|.
Now suppose that ν is a positive measure on A for which |µ(A)| ≤ ν(A) for every

A ∈ A . Therefore, for A ∈ A and for a partition (A1, . . . ,Ak) of A, we have

k∑
j=1

|µ(A j)| ≤
k∑

j=1

ν(A j) = ν(A).

Taking the supremum of the left-hand side over all partitions then gives |µ|(A) ≤ ν(A),
as desired. ■
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Note that Proposition 2.3.48 ensures that if a finite signed measureµ is regarded
as a complex measure with zero imaginary part, the definition of |µ| agrees when
defined thinking of µ as a signed measure and when defined thinking of µ as a
complex measure.

As with signed measures, the total variation for a complex measure is interest-
ing, and will be studied in Section 3.8.9.

2.3.9 Vector measures

The development of vector measures follows rather like that for complex mea-
sures in the preceding section. While it is possible to consider measures taking
values in general vector spaces, in this section we restrict ourselves to Rn-valued
measures.

2.3.53 Definition (Vector measure) For a measurable space (X,A ), a vector measure on
A is a map µ : A → Rn such that

(i) µ(∅) = 0 and

(ii) µ
(⋃

j∈Z

A j

)
=

∞∑
j=1

µ(A j) for every family (A j) j∈Z>0 of pairwise disjoint sets from

A (countable-additivity).
A vector measure space is a triple (X,A ,µ) where (X,A ) is a measurable space and
µ is a vector measure on A . •

For a vector measure space (X,A ,µ) with µ taking values in Rn and for j ∈
{1, . . . ,n} we can define a finite signed measure µ j by µ j(A) = pr j(µ(A)), where
pr j : R

n
→ R is the projection onto the jth component. We can write

µ(A) = µ j(A)e1 + · · · + µn(A)en, A ∈ A ,

where {e1, . . . , en} is the standard basis for Rn. Of course, we can also decompose
each of the signed measures µ1, . . . , µn into its positive and negative parts, and so
arrive at the Jordan decomposition of µ:

µ = µ1,+ − µ1,− + · · · + µn,+ − µn,−.

The definition of the variation for vector measures mirrors that for complex
measures.

2.3.54 Definition (Variation and total variation of a vector measure) Let (X,A ,µ) be a
vector measure space with µ taking values in Rn. The variation of µ is the map
∥µ∥Rn : A → R≥0 defined by

∥µ∥Rn(A) = sup
{ k∑

j=1

∥µ(A j)∥Rn

∣∣∣∣ (A1, . . . ,Ak) is a partition of A
}
.

The total variation of µ is |||µ|||Rn = ∥µ∥Rn(X). •
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As with complex measures, one can verify that the variation of a vector measure
defines a positive measure.

2.3.55 Proposition (Variation is a positive finite measure) If (X,A ,µ) is a vector measure
space with µ taking values in Rn, then ∥µ∥Rn is a finite positive measure that satisfies
∥µ(A)∥Rn ≤ ∥µ∥Rn(A) for every A ∈ A . Moreover, if ν : A → R≥0 is a positive measure
satisfying ∥µ(A)∥Rn ≤ ν(A) for every A ∈ A , then ∥µ∥Rn(A) ≤ ν(A) for every A ∈ A .

Proof The proof is very similar to the corresponding Proposition 2.3.52 for complex
measures, so we skip the details of the computations, only pointing out the important
differences with the previous proof.

It is still clear that ∥µ∥Rn(∅) = 0. The proof of finite-additivity of ∥µ∥Rn follows
in exactly the same manner as the complex case, but with the complex modulus |·|
being replaced by the Euclidean norm ∥·∥Rn . In the proof of countable-additivity, the
relation (2.6) in the complex case is replaced with the relation

∥µ(A)∥Rn ≤

n∑
j=1

|µ j(A)|,

following Proposition II-1.1.11. This results in the relation (2.7) in the complex case
being replaced with the relation

∥µ(A)∥Rn ≤

n∑
j=1

(µ j,+(A) + µ j,−(A)) =
n∑

j=1

|µ j|(A). (2.8)

Then the proof of countable-additivity, using Proposition 2.3.3, follows just as in the
complex case, as does finiteness of ∥µ∥Rn .

The property for ∥µ∥Rn in the proposition is proved just as in the complex case: for
A ∈ A and for a partition (A1, . . . ,Ak) for A, we have

∥µ(A)∥Rn ≤

k∑
j=1

∥µ(A j)∥Rn ≤ ∥µ∥Rn(A).

If ν is a positive measure such that ∥µ(A)∥Rn ≤ ν(A) for every A ∈ A , we have, just
as in the complex case, for a partition (A1, . . . ,Ak) of A:

k∑
j=1

∥µ(A j)∥Rn ≤

k∑
j=1

ν(A j) = ν(A),

and taking the supremum of the left-hand side over all partitions gives ∥µ∥Rn(A) ≤ ν(A).
■

2.3.10 Spaces of positive, signed, complex, and vector measures

In this section we briefly consider the various spaces of measures on a measur-
able space (X,A ). Further structural properties of these spaces will be explored in
Section 3.8.9.
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2.3.56 Definition (Spaces of positive, signed, complex, and vector measures) For a
measurable space (X,A ), we use the following notation:

(i) M((X,A );R≥0) is the set of positive measures on A ;

(ii) M((X,A );R) is the set of signed measures on A ;
(iii) M((X,A );R) is the set of finite signed measures on A ;
(iv) M((X,A );C) is the set of complex measures on A ;
(v) M((X,A );Rn) is the set of vector measures on A taking values in Rn.

For brevity, we may use M(X;R≥0), . . . ,M(X;Rn) if the σ-algebraA is understood. •

Let us first explore the algebraic structure of these spaces of measures.

2.3.57 Proposition (The vector space structure of spaces of measures) For a measur-
able space (X,A ), the following statements hold:

(i) the set M((X,A );R) has a R-vector space structure with vector addition and scalar
multiplication, respectively, defined by

(µ1 + µ2)(A) = µ1(A) + µ2(A), (aµ)(A) = a(µ(A))

for measures µ, µ1, and µ2 in M((X,A );R), and for a ∈ R;
(ii) the set M((X,A );Rn) has aR-vector space structure with vector addition and scalar

multiplication, respectively, defined by

(µ1 + µ2)(A) = µ1(A) + µ2(A), (aµ)(A) = a(µ(A))

for measures µ,µ1,µ2 ∈ M((X,A );Rn) and for a ∈ R;
(iii) the set M((X,A );C) has a C-vector space structure with vector addition and scalar

multiplication, respectively, defined by

(µ1 + µ2)(A) = µ1(A) + µ2(A), (aµ)(A) = a(µ(A))

for measures µ, µ1, µ2 ∈ M((X,A );C) and for a ∈ C.
Proof To check that µ1 + µ2 and aµ (or µ1 + µ2 and aµ) have the properties of a
measure is straightforward. The remainder of the proof is just a matter of verifying the
vector space axioms. The reader who believes this verification might be interesting is
welcomed to perform it. ■

2.3.58 Remark (Vector space structures for infinite-valued measures) The reader will
have noticed the absence from the above list the vector space structures for the set of
positive measures and the set of signed measures. This absence is deserved since,
using the natural vector space operations from the statement of the proposition,
these sets of measures do not have vector space structures. Let us be sure we
understand why in each case.
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1. M((X,A );R≥0) is not aR-vector space. The problem here is not just the fact that
we allow infinite values for the measures. Even if we restrict to finite positive
measures, we do not have a natural vector space structure for which vector
addition is given by

(µ1 + µ2)(A) = µ1(A) + µ2(A).

To see this, let µ be a finite positive measure on A . In order for the operation
above to be vector space addition, there must exist a finite positive measure −µ
onA such that µ+ (−µ) is the zero measure. Thus, for example, we would have
to have µ(X) + (−µ(X)) = 0 and so −µ(X) ∈ R<0 if µ(X) ∈ R>0. In particular, −µ
cannot be a positive measure.

2. M((X,A );R) is not a R-vector space. Indeed, if (X,A , µ1) and (X,A , µ2) are
signed measure spaces for which µ1 takes the value ∞ and µ2 takes the value
−∞, then (cf. the proof of Proposition 2.3.2(viii)) it follows that µ1(X) = ∞ and
µ2(X) = −∞. Therefore, (µ1 + µ2)(X) cannot be defined in the natural way. •

Despite the fact that M((X,A );R≥0) is not aR-vector space, we would like for it
to have some structure since it comprises the set of positive measures on A , and
as such is an interesting object. The following result says that this set is, in fact, a
convex cone.

2.3.59 Proposition (The set of positive measures is a convex cone) Let (X,A ) be
a measurable space, let µ, µ1, µ2 ∈ M((X,A );R≥0), and let a ∈ R≥0. Then the maps
aµ, µ1 + µ2 : A → R≥0 defined by

(aµ)(A) = a(µ(A)), (µ1 + µ2)(A) = µ1(A) + µ2(A)

are positive measures on A . Moreover, for every µ, µ1, µ2, µ3 ∈ M((X,A );R≥0) and for
every a, a1, a2 ∈ R≥0, the following statements hold:

(i) µ1 + µ2 = µ2 + µ1;
(ii) µ1 + (µ2 + µ3) = (µ1 + µ2) + µ3;
(iii) a1(a2µ) = (a1a2)µ;
(iv) a(µ1 + µ2) = aµ1 + aµ2;
(v) (a1 + a2)µ = a1µ + a2µ.

Proof As with the proof of Proposition 2.3.57, the verification of the statements are
simple matters of checking the properties. ■

2.3.11 Notes

Exercises

2.3.1 Let X be a set and let A ⊆ 2X be an algebra. Let µ : A → R≥0 have the
property that µ(∅) = 0. Show that µ is countably-additive if and only if it is
finitely-additive and countably-subadditive.
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2.3.2 Let X be a countable set, letA be the algebraA = 2X, and defineµ : 2X
→ R≥0

by

µ(A) =

0, card(A) < ∞,
∞, card(A) = ∞.

Answer the following questions.
(a) Show that µ is a σ-finite, finitely-additive measure.
(b) Show that if (A j) j∈Z>0 if a sequence of subsets fromA for which A j ⊇ A j+1,

j ∈ Z>0, for which ∩ j∈Z>0A j = ∅, and for which µ(Ak) < ∞ for some
k ∈ Z>0, it holds that lim j→∞ µ(A j) = 0.

(c) Show that µ is not countably-additive.
2.3.3 Let X be a set and consider the collection S of subsets of X defined by

S = {∅}. Define µ0 : S → R≥0 by µ0(∅) = 0. Compute the outer measure
generated by (S , µ0).

2.3.4 For a measure space (X,A , µ) do the following.
(a) Show that if (A j) j∈Z>0 is a countable collection of sets of measure zero

then
µ
( ⋃

j∈Z>0

A j

)
= 0.

(b) When will there exist an uncountable collection of sets of measure zero
whose union has positive measure.

2.3.5 For a complex measure space (X,A , µ), show that Re(µ) and Im(µ) are finite
signed measures on A .

2.3.6 Let (X,A ,µ) be a vector measure space with µ taking values in Rn. Show
that for A ∈ A we have

n∑
l=1

|µl|(A) ≤
√

n∥µ∥Rn(A).

Hint: Use Proposition II-1.1.11.
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Section 2.4

Lebesgue measure on R

In this section we specialise the general constructions of the preceding section
to a special measure on the set R. Our construction proceeds by first defining an
outer measure, then using Theorem 2.3.13 to infer from this a complete measure
space. The idea of measure that we use in this section is to be thought of as a
generalisation of “length,” and we shall point out as we go along that it does
indeed share the features of “length” where the latter makes sense. However, the
measure we define can be applied to sets for which it is perhaps not clear that a
naı̈ve definition of length is possible.

We shall see as we progress through this section that the σ-algebra we define
is (1) not the collection of all subsets of R and (2) contains any reasonable set one
could desire, and many more that one may not desire.

Do I need to read this section? If you are in the business of learning about the
Lebesgue measure, this is where you go about it. •

2.4.1 The Lebesgue outer measure and the Lebesgue measure on R

Our construction of the Lebesgue measure is carried out as per the idea in
Section 2.3.2. That is to say, we construct an outer measure on R and take the
measurable sets for this outer measure as the σ-algebra for the Lebesgue measure.

We first define the outer measure we use.

2.4.1 Definition (Lebesgue outer measure on R) The Lebesgue outer measure on R is
defined by

λ∗(S) = inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ S ⊆
⋃

j∈Z>0

(a j, b j)
}
. •

Thus the Lebesgue outer measure of S ⊆ R is the smallest sum of the lengths
of open intervals that are needed to cover S. Let us define the length of a general
interval I by

ℓ(I) =

b − a, cl(I) = [a, b],
∞, I is unbounded.

We next verify that the Lebesgue outer measure is indeed an outer measure,
and we give its value on intervals.

2.4.2 Theorem (Lebesgue outer measure is an outer measure) The Lebesgue outer
measure is an outer measure on R. Furthermore, if I is an interval then λ∗(I) is the length
of I.
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Proof First we show that λ∗(∅) = 0. Indeed, let (ϵ j) j∈Z>0 be a sequence converging to
zero in R>0 and note that ∅ ⊆ (−ϵ j, ϵ j), j ∈ Z>0. Since lim j→∞|ϵ j + ϵ j| = 0, our assertion
follows.

Next we show that λ∗ is monotonic. This is clear since if A ⊆ B ⊆ R and if
a collection of intervals ((a j, b j)) j∈Z>0 covers B, then the same collection of intervals
covers A.

For countable-subadditivity, let (A j) j∈Z>0 be a collection of subsets of R. If∑
∞

j=1 λ
∗(A j) = ∞ then countable-subadditivity follows trivially in this case, so we

may as well suppose that
∑
∞

j=1 λ
∗(A j) < ∞. For j ∈ Z>0 and ϵ ∈ R>0 let ((a j,k, b j,k))k∈Z>0

be a collection of open sets covering A j and for which
∞∑

k=1

|b j,k − a j,k| < λ
∗(A j) +

ϵ

2 j .

By Proposition I-1.7.16,Z>0×Z>0 is countable. Therefore we may arrange the intervals
((a j,k, b j,k)) j,k∈Z>0 into a single sequence ((an, bn))n∈Z>0 so that
1. ∪ j∈Z>0A j ⊆ ∪n∈Z>0(an, bn) and

2.
∞∑

n=1

|bn − an| <
∞∑

n=1

(
λ∗(An) +

ϵ
2n

)
=

∞∑
n=1

λ∗(An) + ϵ.

This shows that

λ∗
( ⋃

j∈Z>0

A j

)
≤

∞∑
n=1

λ∗(An),

giving countable-subadditivity.
We finally show that λ∗(I) = ℓ(I) for any interval I. We first take I = [a, b]. We may

cover [a, b] by {(a − ϵ
4 , b +

ϵ
4 )} ∪ ((0, ϵ

2 j+1 )) j∈Z>0 . Therefore,

λ∗([a, b]) ≤ (b + ϵ
4 − a + ϵ

4 ) +
∞∑
j=1

ϵ

2 j+1
= b − a + ϵ,

where we use Example I-2.4.2–1. Since ϵ can be made arbitrarily small we have
λ∗([a, b]) ≤ b − a. Also, suppose that ((a j, b j)) j∈Z>0 covers [a, b]. By Theorem I-2.5.27
there exists n ∈ Z>0 such that [a, b] ⊆ ∪n

j=1(a j, b j). Among the intervals ((a j, b j))n
j=1 we

can pick a subset ((a jk , b jk))
m
k=1 with the properties that a ∈ (a j1 , b j1), b ∈ (a jm , b jm), and

b jk ∈ (a jk+1 , b jk+1). (Do this by choosing (a j1 , b j1) such that a is in this interval. Then choose
(a j2 , b j2) such that b j1 is in this interval. Since there are only finitely many intervals
covering [a, b], this can be continued and will stop by finding an interval containing
b.) These intervals then clearly cover [a, b] and also clearly satisfy

∑m
k=1|b jk − a jk | ≥ b− a

since they overlap. Thus we have

b − a ≤
m∑

k=1

|b jk − a jk | ≤

∞∑
j=1

|b j − a j|.

Thus b − a is a lower bound for the set{ ∞∑
j=1

|b j − a j|

∣∣∣∣ [a, b] ⊆
⋃

j∈Z>0

(a j, b j)
}
.
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Since λ∗([a, b]) is the greatest lower bound we have λ∗([a, b]) ≥ b − a. Thus λ∗([a, b]) =
b − a.

Now let I be a bounded interval and denote cl(I) = [a, b]. Since I ⊆ [a, b] we have
λ∗(I) ≤ b− a using monotonicity of λ∗. If ϵ ∈ R>0 we may find a closed interval J ⊆ I for
which the length of I exceeds that of J by at most ϵ. Since λ∗(J) ≤ λ∗(I) by monotonicity
of λ∗, it follows that λ∗(I) differs from the length of I by at most ϵ. Thus

λ∗(I) ≥ λ∗(J) = b − a − ϵ.

Since ϵ ∈ R>0 is arbitrary λ∗(I) ≥ b − a, showing that λ∗(I) = b − a, as desired.
Finally, if I is unbounded then for any M ∈ R>0 we may find a closed interval

J ⊆ I for which λ∗(J) > M. Since λ∗(I) ≥ λ∗(J) by monotonicity of λ∗, this means that
λ∗(I) = ∞. ■

Now, having an outer measure onR one can ask, “Is λ∗ a measure?” As we saw
in Corollary 2.3.14 this amounts to asking, “Are all subsets of R λ∗-measurable?”
Let us answer this question in the negative.

2.4.3 Example (A set that is not λ∗-measurable) Define an equivalence relation ∼ on
R by

x ∼ y ⇐⇒ x − y ∈ Q.

By Proposition I-1.2.9 it follows that R is the disjoint union of the equivalence
classes for this equivalence relation. Moreover, each equivalence class has an
element in the interval (0, 1) since, for any x ∈ R, the set

{x + q | q ∈ Q}

intersects (0, 1). By the Axiom of Choice, let A ⊆ (0, 1) be defined by asking that A
contain exactly one element from each equivalence class. We claim that A is not
λ∗-measurable.

Let {q j} j∈Z>0 be an enumeration of the set of rational numbers in (−1, 1) and for
j ∈ Z>0 define

A j = {a + q j | a ∈ A}.

Note that ∪ j∈Z>0A j ⊆ (−1, 2).
We claim that A j∩Ak , ∅ if and only if j = k. Indeed, suppose that A j∩Ak = {x}.

Then
x = a j + q j = ak + qk, a j, ak ∈ A.

Therefore, a j ∼ ak and, by construction of A, this implies that a j = ak. Thus q j = qk

and so j = k.
We also claim that (0, 1) ⊆ ∪ j∈Z>0A j. Indeed, if x ∈ (0, 1) then there exists a ∈ A

such that x ∼ a. Note that x − a ∈ Q ∩ (−1, 1) and so x = a + q j for some j ∈ Z>0.
Thus x ∈ A j.

Now suppose that A isλ∗-measurable. As we shall see in Theorem 2.4.23 below,
this implies that A j is λ∗-measurable for each j ∈ Z>0 and that λ∗(A j) = λ∗(A). We
consider two cases.
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1. λ∗(A) = 0: In this case, since the sets A j, j ∈ Z>0, are disjoint, by properties of
the measure we have

µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j) = 0.

But this contradicts the fact that (0, 1) ⊆ ∪ j∈Z>0A j.
2. λ∗(A) ∈ R>0: In this case we have

µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j) = ∞.

But this contradicts the fact that ∪ j∈Z>0A j ⊆ (−1, 2).
The contradiction that arises for both possibilities forces us to conclude that A is
not measurable. •

Thus, making the following definition is not a vacuous procedure, and gives a
strict subset of 2R of λ∗-measurable sets.

2.4.4 Definition (Lebesgue measurable subset of R, Lebesgue measure on R) Let
λ∗ be the Lebesgue outer measure onR and denote byL (R) the set ofλ∗-measurable
subsets of R. The sets in L (R) are called Lebesgue measurable, or merely mea-
surable, and the complete measure λ : L (R) → R≥0 induced by λ∗ is called the
Lebesgue measure on R. •

The fairly concrete Example 2.4.3 can actually be sharpened considerably.

2.4.5 Theorem (The wealth of nonmeasurable subsets) If A ∈ L (R) satisfies λ(A) ∈
R>0 then there exists S ⊆ A that is not inL (R).

Proof We have A = ∪k∈Z>0[−k, k] ∩ A giving

0 < λ(A) ≤
∞∑

k=1

λ([−k, k] ∩ A).

Thus there exists N ∈ Z>0 such that λ([−N,N] ∩ A > 0. Therefore, without loss of
generality we may suppose that A ⊆ [−N,N] for some N ∈ Z>0. Let C ⊆ A be a
countable subset of A and denote by HC the subgroup of (R,+) generated by C (see
Definition I-4.1.14). Therefore, by Proposition I-4.1.13 it follows that

HC =
{ k∑

j=1

n jx j

∣∣∣∣ k ∈ Z>0, n1, . . . ,nk ∈ Z>0, x1, . . . , xk ∈ C
}
.

Note that HC is then a countable union of countable sets and so is countable by
Proposition I-1.7.16. Now note that the cosets of HC form a partition of R. Let S′ ⊆ R
be chosen (using the Axiom of Choice) such that S′ contains exactly one representative
from each coset of HC. Then define

S = {x ∈ A | x ∈ (x′ + HC) ∩ A, x′ ∈ S′}.
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We will show that S < L (R).
For subsets X,Y ⊆ R let us denote

X + Y = {x + y | x ∈ X, y ∈ Y}, X − Y = {x − y | x ∈ X, y ∈ Y}.

Let B = HC ∩ (A − A). Since C − C ⊆ B we conclude that B is countable. We claim that
if (x1 + S) ∩ (x2 + S) , ∅ for x1, x2 ∈ B then x1 = x2. Indeed, let x ∈ (x1 + S) ∩ (x2 + S) so
that

x = x1 + y1 = x2 + y2, y1, y2 ∈ S.

Since x1, x2 ∈ HC this implies that y2 − y1 ∈ HC ∩ S and so y1 = y2 by construction of
S. Thus (x + S)x∈B is a family of pairwise disjoint sets. Moreover, x + S ⊆ [−3N, 3N]
for every x ∈ B since B,S ⊆ [−N,N]. We further claim that A ⊆ B + S. Indeed, if x ∈ A
then x is in some coset of HC: x = y′ + HC for y′ ∈ S′. Then, since x ∈ A, there exists
y ∈ S such that y + HC = y′ + HC. Thus x = y + h for y ∈ S and h ∈ HC. Therefore,
h = x − z ∈ A − A and so h ∈ B. Thus x ∈ B + S as desired.

Now suppose that S ∈ L (R). There are two possibilities.
1. λ(S) = 0: In this case we have

λ(B + S) =
∑
x∈B

λ(x + S) =
∑
x∈B

λ(S) = 0,

where we have used the translation-invariance of the Lebesgue measure which
we shall prove as Theorem 2.4.23 below. Since A ⊆ B + S and λ(A) ∈ R>0 this is
impossible.

2. λ(S) ∈ R>0: In this case we have

λ(B + S) =
∑
x∈B

λ(x + S) =
∑
x∈B

λ(S) = ∞.

Again, this is impossible, this time because B + S ⊆ [−3N, 3N].
The impossibility of the two possible choices if S is Lebesgue measurable forces us to
conclude that S is not Lebesgue measurable. ■

The reader might benefit by comparing the proof of the preceding theorem with
the more concrete construction of Example 2.4.3.

We will very often wish to consider the Lebesgue measure not on all of R, but
on subsets of R. Generally the subsets we consider will be intervals, but let us
indicate how to restrict the Lebesgue measure to quite general subsets.

2.4.6 Proposition (Restriction of Lebesgue measure to measurable subsets) Let
A ∈ L (R) and denote

(i) L (A) = {B ∩A | B ∈ L (R)} and
(ii) λA : L (A)→ R≥0 given by λA(B ∩A) = λ(B ∩A).

Then (A,L (A), λA) is a complete measure space.
Proof This follows from Propositions 2.2.6, 2.3.18, and 2.3.23. ■
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2.4.2 Borel sets in R as examples of Lebesgue measurable sets

As we saw in Example 2.4.3, there are subsets of R that are not Lebesgue mea-
surable. This then forces us to ask, “Which subsets ofR are Lebesgue measurable?”
To completely answer this question is rather difficult. What we shall do instead
is provide a large collection of subsets that (1) are Lebesgue measurable, (2) are
somewhat easy to understand (or at least convince ourselves that we understand),
and (3) in an appropriate sense approximately characterise the Lebesgue measur-
able sets.

The sets we describe are given in the following definition. Denote by O (R) ⊆ 2R

be the collection of open subsets of R.

2.4.7 Definition (Borel subsets of R) The collection of Borel sets in R is the σ-algebra
generated by O (R) (see Proposition 2.2.7). We denote byB (R) the Borel sets inR.
If A ∈B (R) then we denote

B (A) = {A ∩ B | B ∈B (R)} •

It is not so easy to provide a characterisation of the general Borel set, but
certainly Borel sets can account for many sorts of sets. Borel sets are a large class
of sets, and we shall pretty much only encounter Borel sets except when we are in
the process of trying to be pathological. Furthermore, as we shall shortly see, Borel
sets are Lebesgue measurable, and so serve to generate a large class of fairly easily
described Lebesgue measurable sets.

Let us give some simple classes of Borel sets.

2.4.8 Examples (Borel sets)
1. All open sets are Borel sets, obviously.
2. All closed sets are Borel sets since closed sets are complements of open sets, and

since σ-algebras are closed under complementation.
3. All intervals are Borel sets; Exercise 2.4.3.
4. The set Q of rational numbers is a Borel set; Exercise 2.4.4.
5. A subset A ⊆ R is a Gδ if A = ∩ j∈Z>0O j for a family (O j) j∈Z>0 of open sets. A Gδ

is a Borel set; Exercise 2.4.5.
6. A subset A ⊆ R is an Fσ if A = ∪ j∈Z>0C j for a family (C j) j∈Z>0 of closed sets. An

Fσ is a Borel set; Exercise 2.4.5.

The practice of calling a set “a Gδ” or “an Fσ” is one of the unfortunate tra-
ditions involving poor notation in mathematics, notwithstanding that “G” stands
for “Gebiet” (“open” in German), “F” stands for “fermé” (“closed” in French), “δ”
stands for “Durchschnitt” (“intersection” in German), and “σ” stands for “Summe”
(“sum” in German).

Let us first prove a result which gives interesting and sometimes useful alter-
native characterisations of Borel sets.
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2.4.9 Proposition (Alternative characterisations of Borel sets) B (R) is equal to the
following collections of sets:

(i) the σ-algebraB1 generated by the closed subsets;
(ii) the σ-algebraB2 generated by intervals of the form (−∞, b], b ∈ R;
(iii) the σ-algebraB3 generated by intervals of the form (a, b], a, b ∈ R, a < b.

Proof First note that B (R) contains the σ-algebra B1 generated by all closed sets,
since the complements of all open sets, i.e., all closed sets, are contained inB (R). Note
that the sets of the form (−∞, b] are closed, so the σ-algebra B2 generated by these
subsets is contained in B1. Since (a, b] = (−∞, b] ∩ (R \ (−∞, a]) it follows that the
σ-algebraB3 generated by subsets of the form (a, b] is contained inB2. Finally, note
that

(a, b) = ∪∞n=1(a, b − 1
n ].

Thus, by Proposition I-2.5.6, it follows that every open set is a countable union of
sets, each of which is a countable intersection of generators ofB3. ThusB (R) ⊆ B3.
Putting this all together gives

B (R) ⊆B3 ⊆B2 ⊆B1 ⊆B (R).

Thus we must conclude thatB1 =B2 =B3 =B (R). ■

We can then assert that all Borel sets are Lebesgue measurable.

2.4.10 Theorem (Borel sets are Lebesgue measurable)B (R) ⊆ L (R).
Proof The theorem will follow from Proposition 2.4.9 if we can show that any set of
the form (−∞, b] is Lebesgue measurable. Let A be such an interval and note that since

λ∗(S) ≤ λ∗(S ∩ A) + λ∗(S ∩ (R \ A))

we need only show the opposite inequality to show that A is Lebesgue measurable.
If λ∗(S) = ∞ this is clearly true, so we may as well suppose that λ∗(S) < ∞. Let
((a j, b j)) j∈Z>0 cover S so that

∞∑
j=1

|b j − a j| < λ
∗(S) + ϵ.

For j ∈ Z>0 choose intervals (c j, d j) and (e j, f j), possibly empty, for which

(a j, b j) ∩ A ⊆ (c j, d j),
(a j, b j) ∩ (R \ A) ⊆ (e j, f j),

(d j − c j) + ( f j − e j) ≤ (b j − a j) +
ϵ

2 j .

Note that the intervals ((c j, d j)) j∈Z>0 cover S∩A and that the intervals ((e j, f j)) j∈Z>0 cover
R \ A so that

λ∗(S ∩ A) ≤
∞∑
j=1

|d j − c j|, λ∗(S ∩ (R \ A)) ≤
∞∑
j=1

| f j − e j|.



140 2 Measure theory and integration 2022/03/07

From this we have

λ∗(S ∩ A) + λ∗(S ∩ (R \ A)) ≤
∞∑
j=1

|b j − a j| + ϵ < λ
∗(S) + 2ϵ,

using the fact that
∑
∞

j=1
1
2 j = 1 by Example I-2.4.2–1. Since ϵ can be taken arbitrarily

small, the inequality
λ∗(S) ≥ λ∗(S ∩ A) + λ∗(S ∩ (R \ A))

follows, and so too does the result. ■

The next result sharpens the preceding assertion considerably.

2.4.11 Theorem (Lebesgue measurable sets are the completion of the Borel sets)
(R,L (R), λ) is the completion of (R,B (R), λ|B (R)).

Proof First, given A ∈ L (R), we find L,U ∈ B (R) such that L ⊆ A ⊆ U and such
that λ(U \ L) = 0. We first suppose that λ(A) < ∞. Using Theorem 2.4.19 below, let
(U j) j∈Z>0 be a sequence of open sets containing A and for which λ(U j) ≤ λ(A) + 1

j and

let (L j) j∈Z>0 be a sequence of compact subsets of A for which λ(L j) ≥ λ(A) − 1
j . If we

take L = ∪ j∈Z>0L j and U = ∩ j∈Z>0U j then we have L ⊆ A ⊆ U. We also have

λ(U \ L) ≤ λ(U j \ L j) = λ(U j \ A) + λ(A \ L j) ≤ 1
2 j .

Since this holds for every j ∈ Z>0, this gives our claim when A has finite measure, since
L and U are Borel sets. If λ(A) = ∞ then we can write A = ∪ j∈Z>0A j with A j = (− j, j)∩A.
For each j ∈ Z>0 we may find L j,U j ∈ B (R) such that L j ⊆ A j ⊆ U j and λ(U j \ L j).
Taking L = ∪ j∈Z>0L j and U = ∪ j∈Z>0 gives L ⊆ A ⊆ U and λ(U \ L) = 0.

The above shows that L (R) ⊆ Bλ(R). Now let B ∈ Bλ(R) and take Borel sets L
and U for which L ⊆ B ⊆ U and λ(U \ L) = 0. Note that (B \ L) ⊆ (U \ L). Note also
that since U \ L ∈ B (R) we have U \ L ∈ L (R) and λ(U \ L) = 0. By completeness of
the Lebesgue measure this implies that B \ L ∈ L (R). Since B = (B \ L)∪ L this implies
that B ∈ L (R). ■

The following corollary indicates that Borel sets closely approximate Lebesgue
measurable sets.

2.4.12 Corollary (Borel approximations to Lebesgue measurable sets) If A ∈ L (R)
then there exists a Borel set B and a set Z of measure zero such that A = B ∪ Z.

Proof This follows directly from Theorem 2.4.11 and the definition of the completion.
■

The preceding result looks like good news in that, except for seemingly irrel-
evant sets of measure zero, Lebesgue measurable sets agree with Borel sets. The
problem is that there are lots of sets of measure zero. The following result indicates
that this is reflected by a big difference in the number of Lebesgue measurable sets
versus the number of Borel sets.
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2.4.13 Proposition (The cardinalities of Borel and Lebesgue measurable sets) We
have card(B (R)) = card(R) and card(L (R)) = card(2R).

Proof Since {x} ∈ B (R) for every x ∈ R is follows that card(B (R)) ≥ card(R). Let
OQ be the collection of open intervals with rational (or infinite) endpoints. The set
OQ is a countable union of countable sets and so is countable by Proposition I-1.7.16.
Since every open set is a countable union of sets from OQ (cf. Proposition I-2.5.6 and see
Proposition II-1.2.21) it that if we takeS = OQ then, in the notation of Theorem 2.2.14,
S1 includes the collection of open sets. Then it follows that B (R) is the σ-algebra
generated by the countable family OQ of subsets of R. By Theorem 2.2.14 it follows
that card(B (R)) ≤ ℵℵ0

0 = card(R), using the computation

2ℵ0 ≤ ℵ
ℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 ,

which holds since 2 ≤ ℵ0 ≤ 2ℵ0 by Example I-1.7.14–3 and Exercise I-1.7.4.
To show that card(L (R)) = card(2R) first note that card(L (R)) ≤ card(2R). For

the opposite inequality, recall from Example I-2.5.39 that the middle-thirds Cantor set
C ⊆ [0, 1] has the properties (1) λ(C) = 0 and (2) card(C) = card([0, 1]) = card(R). Since
the Lebesgue measure is complete, every subset of C is Lebesgue measurable and has
Lebesgue measure zero. This shows that card(2C) = card(2R) ≤ card(L (R)). ■

While the preceding result is interesting in that it tells us that there are many
more Lebesgue measurable sets than Borel sets, Corollary 2.4.12 notwithstanding,
it does not tell us what a non-Borel Lebesgue measurable set might look like. The
following is a concrete example of such a set. Our construction uses some facts
about measurable functions that we will not introduce until Section 2.6.

2.4.14 Example (A non-Borel Lebesgue measurable set) Recall from Example I-3.2.27
the construction of the Cantor function fC : [0, 1] → [0, 1], and recall that fC is
continuous, monotonically increasing, and satisfies fC(0) = 0 and fC(1) = 1. Thus,
by the Intermediate Value Theorem, for each y ∈ [0, 1] there exists x ∈ [0, 1] such
that fC(x) = y. We use this fact to define gC : [0, 1]→ [0, 1] by

gC(y) = inf{x ∈ [0, 1] | fC(x) = y}.

Let us prove some facts about gC.

1 Lemma We have fC ◦ gC(y) = y and so gC is injective.

Proof Let (x j) j∈Z>0 be a sequence in [0, 1] for which lim j→∞ fC(x j) = y. This sequence
contains a convergent subsequence (x jk)k∈Z>0 by the Bolzano–Weierstrass Theorem;
let x = limk→∞ x jk . Then, by continuity of fC, y = fC(x). We also have gC(y) = x by
definition, and so this gives fC ◦ gC(y) = y, as desired. Injectivity of gC follows from
Proposition I-1.3.9. ▼
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2 Lemma The function gC is monotonically increasing.

Proof Let y1, y2 ∈ [0, 1] satisfy y1 < y2 and suppose that gC(y1) > gC(y2). Then
fC ◦ gC(y1) ≥ fC ◦ gC(y2) since fC is monotonically increasing. From the previous
lemma this implies that y1 ≥ y2 which is a contradiction. Thus we must have
gC(y1) ≤ gC(y2). ▼

3 Lemma image(gC) ⊆ C.

Proof For y ∈ R the set
{x ∈ [0, 1] | fC(x) = y}

is an interval, possibly with empty interior, on which fC is constant. The endpoints
of the interval are points in C. In particular, gC(y) ∈ C. ▼

Now let A ⊆ [0, 1] be the non-Lebesgue measurable subset of Example 2.4.3
and take B = gC(A). Then B ⊆ C and so is a subset of a set of measure zero by
Example I-2.5.39. Since the Lebesgue measure is complete it follows that B is
Lebesgue measurable. Because gC is monotone, we claim that the preimage of a
Borel set under gC is a Borel set. Since intervals of the form (−∞, b] generate the
σ-algebra of Borel sets, it suffices by Proposition I-1.3.5 to show that g−1

C ((−∞, b])
is a Borel set. However, by monotonicity, we can directly verify that g−1

C ((−∞, b])
is either empty or is the intersection of some unbounded interval with [0, 1], i.e., a
Borel set. Therefore, were B to be a Borel set, g−1

C (B) would also be a Borel set.
However, injectivity of gC gives g−1

C (B) = A, and A is not Lebesgue measurable, and
so certainly not Borel. Thus B is not a Borel set. •

When we come to talk about functions defined on measurable spaces in Sec-
tion 2.6 we will consider functions taking values in R. It will then be occasionally
useful to have a notion of a Borel subset of R. Let us, therefore, define what these
subsets are.

2.4.15 Definition (Borel subsets of R) The collection of Borel sets in R is the σ-algebra
generated by the subsets of R having the following form:

U, U ∪ [−∞, b), U ∪ (a,∞], U ∪ [−∞, b) ∪ (a,∞], U ∈ O (R), a, b ∈ R.

We denote byB (R) the Borel sets in R. •

The idea of the preceding definition is thatB (R) is the σ-algebra generated by
open subsets of R, where open subsets of R are those used in the definition. That
these open subsets are indeed the open subsets for a topology on R is argued in
Example 1.2.3–4.

The following characterisation ofB (R) is useful.
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2.4.16 Proposition (Characterisation ofB (R)) Theσ-algebraB (R) is generated byB (R)∪
{−∞} ∪ {∞}.

Proof ClearlyB (R) ⊆B (R). Since

{∞} = ∩k∈Z(k,∞], {−∞} = ∩k∈Z[−∞,−k),

and since (k,∞], [−∞,−k) ∈ B (R) for each k ∈ Z>0, it follows that {−∞}, {∞} ∈ B (R).
Therefore, the σ-algebra generated byB (R) ∪ {−∞} ∪ {∞} is contained inB (R).

Next we note that U ∈B (R) if U ∈ O (R). Also, for b ∈ R,

U ∪ [−∞, b) = U ∪ {−∞} ∪ (−∞, b)

and so U ∪ [−∞, b) is a union of sets fromB (R) ∪ {−∞} ∪ {∞}. In similar fashion sets
of the form

U ∪ (a,∞], U ∪ [−∞, b) ∪ (a,∞]

for a, b ∈ R are unions of sets fromB (R)∪{−∞}∪{∞}. This implies that the generators
for the σ-algebraB (R) are contained in the σ-algebra generated byB (R)∪{−∞}∪{∞}.
ThusB (R) is contained in the σ-algebra generated byB (R) ∪ {−∞} ∪ {∞}. ■

2.4.3 Further properties of the Lebesgue measure on R

In this section we give some additional properties of the Lebesgue measure
that (1) illustrate a sort of friendliness of this measure and (2) justify its being in
some way natural.

Let us illustrate first an important property of the Lebesgue measure. Let us do
this by giving a general definition that creates a little context for this property of
Lebesgue measure.

2.4.17 Definition (Regular measure on R) Let A be a σ-algebra on R that contains the
Borel σ-algebraB (R). A measure µ : A → R≥0 is regular if

(i) µ(K) < ∞ for each compact subset K ⊆ R,
(ii) if A ∈ A then µ(A) = inf{µ(U) | U open and A ⊆ U}, and
(iii) if U ⊆ R is open then µ(U) = sup{µ(K) | K open and K ⊆ U}. •

Before we prove that the Lebesgue measure is regular, let us give some examples
that show that irregular measures are possible.

2.4.18 Examples (Regular and irregular measures)
1. For x ∈ R the point mass measure δx : B (R)→ R≥0 defined by

δ(B) =

1, x ∈ B,
0, x < B

is regular, as may be readily verified; see Exercise 2.4.6.
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2. One can check that the counting measure µ : B (R)→ R≥0 defined by

µ(B) =

card(B), card(B) < ∞,
∞, otherwise

is not regular; see Exercise 2.4.7. •

We begin with a theorem that characterises the Lebesgue measure of measurable
sets.

2.4.19 Theorem (Regularity of the Lebesgue measure) The Lebesgue measure
λ : L (R) → R≥0 is σ-finite and regular. Moreover, for A ∈ L (R) we have λ(A) =
sup{λ(K) | K compact and K ⊆ A}.

Proof To see that λ is σ-finite note that R = ∪k∈Z>0[−k, k] with λ([−k, k]) < ∞.
Next we show that if A ∈ L (R) then

λ(A) = inf{λ(U) | U open and A ⊆ U}.

Assume that λ(A) < ∞ since the result is obvious otherwise. Let ϵ ∈ R>0 and let
((a j, b j)) j∈Z>0 be a sequence of open intervals for which A ⊆ ∪ j∈Z>0(a j, b j) and for which

∞∑
j=1

|b j − a j| = λ(A) + ϵ.

Now let U = ∪ j∈Z>0(a j, b j), noting that U is open and that A ⊆ U. By Proposi-
tion 2.3.10(iii) and the fact that the measure of an interval is its length we have

λ(U) ≤
∞∑
j=1

|b j − a j| = λ(A) + ϵ.

Since ϵ ∈ R>0 is arbitrary this shows that

λ(A) ≥ inf{λ(U) | U open and A ⊆ U}.

Since the other inequality is obvious by the basic properties of a measure, this part of
the result follows.

Note that to show that λ is regular it suffices to prove the final assertion of the
theorem since open sets are Lebesgue measurable; thus we prove the final assertion
of the theorem. First suppose that A ∈ L (R) is bounded. Then let K̃ be a compact
set containing A. For ϵ ∈ R>0 choose U open and containing K̃ \ A and for which
λ(U) ≤ λ(K̃ \ A) + ϵ, this being possible from by the first part of the proof. Note that
K = K̃ \U is then a compact set contained in A and that the basic properties of measure
then give

λ(U) ≤ λ(K̃ \ A) + ϵ and λ(K̃) ≤ λ(K) − λ(A) =⇒ λ(K) > λ(A) − ϵ.



2022/03/07 2.4 Lebesgue measure on R 145

Since ϵ can be made as small as desired, this gives the second part of the proposition
when A is bounded. Define

A j = (− j, j) ∩ A,

and note that (A j) j∈Z>0 is an increasing sequence of sets and that A = ∪ j∈Z>0A j. There-
fore, by Proposition 2.3.10(iv),λ(A) = lim j→∞ λ(A j). Then for any M < λ(A) there exists
N ∈ Z>0 such that λ(AN) > M. We may now find a compact K such that λ(K) > M by
the fact that we have proved our assertion for bounded sets (as is AN). Note that K ⊆ A
and that M < λ(A) is arbitrary, and so the result follows. ■

This result has the following obvious corollary.

2.4.20 Corollary (Approximation of Lebesgue measurable sets by open and com-
pact sets) If A ∈ L (R) satisfies λ(A) < ∞ and if ϵ ∈ R>0 then there exists an open set
U ⊆ R and a compact set K ⊆ R such that

λ(U \A) < ϵ, λ(A \ K) < ϵ.

Let us next show that the Lebesgue measure is, in some way, natural. We do
this by considering a particular property of the Lebesgue measure, namely that
it is “translation-invariant.” In order to define what it means for a measure to
be translation-invariant, we first need to say what it means for a σ-algebra to be
translation-invariant.

2.4.21 Definition (Translation-invariant σ-algebra and measure onR) Aσ-algebraA ⊆
2R is translation-invariant if, for every A ∈ A and every x ∈ R,

x + A ≜ {x + y | y ∈ A} ∈ A .

A translation-invariant measure on a translation-invariant σ-algebra A is a map
µ : A → R≥0 for which µ(x + A) = µ(A) for every A ∈ A and x ∈ R. •

The two σ-algebras we are considering in this section are translation-invariant.

2.4.22 Proposition (Translation-invariance of Borel and Lebesgue measurable sets)
BothB (R) andL (R) are translation-invariant.

Proof Let us denote

B ′(R) = {B | x + B ∈B (R) for every x ∈ R}.

We claim that B ′(R) is a σ-algebra containing the open subsets of R. First of all, if
U ⊆ R is open then x + U is open for every x ∈ R (why?) and so U ∈ B ′(R). To see
thatB ′(R) is a σ-algebra, first note that R = x +R for every x ∈ R and so R ∈ B ′(R).
Next, let B ∈B ′(R) and let x ∈ R. Then

x + (R \ B) = {x + z | z < B} = {y | y − x < B} = {y | y , x + z, z ∈ B}
= {y | y < (x + B)} = R \ (x + B) ∈B (R).
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Thus x+ (R \ B) ∈B (R) for every x ∈ R and so R \ B ∈B ′(R). Finally, let (B j) jZ>0 be a
countable collection of subsets fromB ′(R). Then, for x ∈ R we have

x + ∪ j∈Z>0B j = ∪ j∈Z>0(x + B j) ∈B (R)

and so ∪ j∈Z>0B j ∈ B ′(R). ThusB ′(R) is indeed a σ-algebra containing the open sets
and so we conclude thatB (R) ⊆B ′(R) sinceB (R) is the σ-algebra generated by the
open sets. This shows thatB (R) is translation-invariant.

Next let us show that L (R) is translation-invariant. To do this we first show that
if S ⊆ R and if x ∈ R then λ∗(x + S) = λ∗(S). Indeed,

λ∗(x + S) = inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ x + S ⊆
⋃

j∈Z>0

(a j, b j)
}

= inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ x + S ⊆
⋃

j∈Z>0

(x + a j, x + b j)
}

= inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ S ⊆
⋃

j∈Z>0

(a j, b j)
}
= λ∗(S).

Now let A ∈ L (R) so that, for every subset S ⊆ R,

λ∗(S) = λ∗(S ∩ A) + λ∗(S ∩ (R \ A)).

Then, for x ∈ R and S ⊆ R,

λ∗(S ∩ (x + A)) = λ∗((x + (−x + S)) ∩ (x + A)) = λ∗((−x + S) ∩ A)

and, similarly,

λ∗(S ∩ (R \ (x + A))) = λ∗((x + (−x + S)) ∩ (x +R \ A)) = λ∗((−x + S) ∩ (R \ A)).

Since λ∗(−x + S) = λ∗(S) this immediately gives

λ∗(S) = λ∗(S ∩ (x + A)) + λ∗(S ∩ (R \ (x + A))),

showing that x + A ∈ L (R). ■

Now that the σ-algebras are known to be translation-invariant, we can make
the following characterisation of the Lebesgue measure.

2.4.23 Theorem (Translation invariance of the Lebesgue measure) If µ : B (R)→ R≥0

is a nonzero translation-invariant measure for which µ(B) < ∞ for every bounded B ∈
B (R), then there exists c ∈ R>0 such that µ(B) = cλ(B) for every B ∈ B (R). Moreover,
the Lebesgue measure λ : L (R)→ R≥0 is translation-invariant.

Proof That λ is translation-invariant follows from the proof of Proposition 2.4.22
where we showed that λ∗(x + S) = λ∗(S) for every S ⊆ R and x ∈ R. To show that λ
is, up to a positive scalar, the only translation-invariant measure we first prove two
lemmata.
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1 Lemma If U ⊆ R is a nonempty open set, then there exists a countable collection of disjoint
half-open intervals (Ij)j∈Z>0 such that U = ∪j∈Z>0Ij.
Proof For k ∈ Z≥0 define

Ck = {[ j2−k, ( j + 1)2−k) | j ∈ Z}.

Note that, for each k ∈ Z≥0, the sets fromCk form a countable partition ofR. Also note
that for k < l, every interval in Cl is also an interval in Ck. Now let U ⊆ R be open. Let
D0 = ∅. Let

D1 = {I ∈ C1 | I ⊆ U},
D2 = {I ∈ C2 | I ⊆ U, I < D1},

...

Dk = {I ∈ Ck | I ⊆ U, I < D1 ∪ · · · ∪Dk−1}

...

The result will follow if we can show that each point x ∈ U is contained in some Dk,
k ∈ Z>0. However, this follows since U is open, and so, for each x ∈ U, one can find a
smallest k ∈ Z≥0 with the property that there exists I ∈ Ck with x ∈ I and I ⊆ U. ▼

2 Lemma The Lebesgue measure is the unique measure on (R,B (R)) for which the measure of
an interval is its length.
Proof From Theorem 2.4.2 we know thatλ(I) = ℓ(I) for every interval I. Now suppose
that µ : B (R)→ R≥0 is a measure with the property that µ(I) = ℓ(I) for every interval
I.

First let U ⊆ R be open. By Lemma 1 we can write U = ∪ j∈Z>0I j for a countable
family (I j) j∈Z>0 of disjoint intervals. Therefore, since µ is a measure,

µ(U) = µ
( ⋃

j∈Z>0

I j

)
=

∞∑
j=1

µ(I j) =
∞∑
j=1

λ(I j) = λ(U).

Now let B be a bounded Borel set and let U be an open set for which B ⊆ U. Then

µ(B) ≤ µ(U) = λ(U).

Therefore,
µ(B) ≤ inf{λ(U) | U open and B ⊆ U} = λ(B)

by regularity of λ. Therefore, if U is a bounded open set containing B we have

µ(U) = µ(B) + µ(U \ B) ≤ λ(B) + λ(U \ B) = λ(U).

Since µ(U) = λ(U) it follows that µ(B) = λ(B) and µ(U \ B) = λ(U \ B).
Finally let B be an unbounded Borel set. We can then write B = ∪ j∈ZB j where

(B j) j∈Z>0 is the countable family of disjoint Borel sets B j = B ∩ [ j, j + 1), j ∈ Z. Then

µ(B) =
∑
j∈Z

µ(B j) =
∑
j∈Z

λ(B j) = λ(B),

as desired. ▼
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To proceed with the proof, let µ : B (R)→ R≥0 be a translation-invariant measure
and let c = µ([0, 1)). By assumption c ∈ R>0 since, were c = 0,

µ(R) =
∞∑
j=1

µ([ j, j + 1)) = 0

by translation-invariance of µ. Now let µ′ : B (R) → R≥0 be the measure defined by
µ′(B) = c−1µ(B). Now, for k ∈ Z≥0 let

Ck = {[ j2−k, ( j + 1)2−k) | j ∈ Z}

as in the proof of Lemma 1. Let I ∈ Ck. We can write [0, 1) as a disjoint union of 2k

intervals of the form x j + I. Therefore, by translation-invariance of µ′,

µ′([0, 1)) = 2kµ′(I), λ([0, 1)) = 2kλ(I).

Since µ′([0, 1)) = λ([0, 1)) it follows that µ′(I) = λ(I). Since every interval is a disjoint
union of intervals from the sets Ck, k ∈ Z≥0, by Lemma 1 it follows that µ′(I) = λ(I) for
every interval I. Thus µ′ = λ by Lemma 2 above and so µ = cλ, as desired. ■

It is then natural question to ask, “Are there larger σ-algebras thanB (R) which
admit a translation-invariant measure?” Obviously one such is the collectionL (R)
of Lebesgue measurable sets. But are there larger ones? The following result gives
a partial answer, and indicates that the “best possible” construction is impossible.

2.4.24 Theorem (There are no translation-invariant, length-preserving measures on
all subsets of R) There exists no measure space (R,A , µ) having the joint properties
that

(i) A = 2R,
(ii) µ((0, 1)) = 1, and
(iii) µ is translation-invariant.

Proof Were such a measure to exist, then the non-Lebesgue measurable set A ⊆ (0, 1)
of Example 2.4.3 would be measurable. But during the course of Example 2.4.3 we
showed that (0, 1) is a countable disjoint union of translates of A. The dichotomy
illustrated in Example 2.4.3 then applies. That is, if µ(A) = 0 then we get µ((0, 1)) = 0
and if µ(A) ∈ R>0 then µ((0, 1)) = ∞, both of which conclusions are false. ■

It is now possible to provide a summary of the “reasonableness” of the Lebesgue
measure by providing a natural line of reasoning, the natural terminus of which is
the Lebesgue measure. In Figure 2.3 we show a “flow chart” for how one might
justify the Lebesgue measure as being the process of some rational line of thought.
Note that we are not saying that this actually described the historical development
of the Lebesgue measure, but just that, after the fact, it indicates that the Lebesgue
measure is not a strange thing to arrive at. It is rare that scientific discovery actually
proceeds along the lines that make it most understandable in hindsight.
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Decide to measure size
of subsets of R

measure of intervals = length

Lebesgue
outer measure

Decide on countable-
additivity

Lebesgue
measurable sets

Lebesgue measure

Decide a measure is
the right thing to use

Need to measure the
size of open sets

Borel sets

Translation-invariance
+ measure of intervals = length

unique

Lebesgue measure
on Borel sets

Completeness

Figure 2.3 Lines of reasoning for arriving at Lebesgue measure.
Dashed arrows represent choices that can be made and solid
arrows represent conclusions that follow from the preceding
decisions

2.4.4 Notes

The construction of the non-Lebesgue measurable subset of Example 2.4.3 is
due to Vitali.

Exercises

2.4.1 Using the definition of the Lebesgue measure show that the measure of a
singleton is zero.
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2.4.2 Let A ⊆ R be Lebesgue measurable and for ρ ∈ R>0 define

ρA = {ρx | x ∈ A}.

Show that λ(ρA) = ρλ(A).
2.4.3 For the following subsets of R, verify that they are Borel subsets (and there-

fore measurable sets), and determine their Lebesgue measure:
(a) the bounded, open interval (a, b);
(b) the bounded, open-closed interval (a, b];
(c) the bounded, closed-open interval [a, b);
(d) the singleton {x} for any x ∈ R;
(e) the unbounded closed interval [a,∞);
(f) the unbounded open interval (a,∞).

2.4.4 Show that the set Q of rational numbers is a Borel set.
2.4.5 Show that Gδ’s and Fσ’s are Borel sets.
2.4.6 Show that for x ∈ R, the point mass δx : B (R)→ R≥0 is regular.

2.4.7 Show that the counting measure µ : B (R)→ R≥0 is not regular.
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Section 2.5

Lebesgue measure on Rn

Although we will make most use of the Lebesgue measure on R, we shall
certainly have occasion to refer to the Lebesgue measure in higher dimensions,
and so in this section we present this. The discussion here mirrors, for the most
part, that in Section 2.4, so we will on occasion be a little sparse in our discussion.

Do I need to read this section? The material in this section can be bypassed until
it is needed. •

2.5.1 The Lebesgue outer measure and the Lebesgue measure on Rn

As with the Lebesgue measure onR, we construct the Lebesgue measure onRn

by first defining an outer measure. It is convenient to first define the volume of a
rectangle. If R = I1 × · · · × In is a rectangle in Rn we define its volume to be

ν(R) =


∏n

j=1 ℓ(I j), ℓ(I j) < ∞, j ∈ {1, . . . ,n},
∞, otherwise.

With this notation we have the following definition.

2.5.1 Definition (Lebesgue outer measure on Rn) The Lebesgue outer measure on Rn

is defined by

λ∗n(S) = inf
{ ∞∑

j=1

ν(R j)
∣∣∣∣ S ⊆

⋃
j∈Z>0

R j, R j an open bounded rectangle, j ∈ Z>0

}
. •

The Lebesgue outer measure on Rn has the same sort of naturality property
with respect to volumes of rectangles that the Lebesgue outer measure on R has
with respect to lengths of intervals.

2.5.2 Theorem (Lebesgue outer measure is an outer measure) The Lebesgue outer
measure on Rn is an outer measure. Furthermore, if R = I1 × · · · × In is a rectangle then
λ∗n(Λ) = ν(Λ).

Proof First we show that λ∗n(∅) = 0. Indeed, let (ϵ j) j∈Z>0 be a sequence converging
to zero in R>0 and note that ∅ ⊆ (−ϵ j, ϵ j)n, j ∈ Z>0. Since lim j→∞|ϵ j + ϵ j|

n = 0, our
assertion follows.

Next we show monotonicity of λ∗n. This is clear since if A ⊆ B ⊆ Rn and if a
collection of bounded open rectangles (R j) j∈Z>0 covers B, then the same collection of
intervals covers A.

For countable-subadditivity of λ∗n, let (A j) j∈Z>0 be a collection of subsets of Rn. If∑
∞

j=1 λ
∗
n(A j) = ∞ then countable-subadditivity follows trivially in this case, so we may
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as well suppose that
∑
∞

j=1 λ
∗
n(A j) < ∞. For j ∈ Z>0 and ϵ ∈ R>0 let (R j,k)k∈Z>0 be a

collection of bounded open rectangles covering A j and for which

∞∑
k=1

ν(R j,k) < λ∗n(A j) +
ϵ

2 j .

By Proposition I-1.7.16, Z>0 ×Z>0 is countable. Therefore, we may arrange the rect-
angles (R j,k) j,k∈Z>0 into a single sequence (Rl)l∈Z>0 so that
1. ∪ j∈Z>0A j ⊆ ∪l∈Z>0Rl and

2.
∞∑

l=1

ν(Rl) <
∞∑

l=1

(
λ∗n(Al) +

ϵ

2l

)
=

∞∑
l=1

λ∗n(A j) + ϵ.

This shows that

λ∗n
( ⋃

j∈Z>0

A j

)
≤

∞∑
j=1

λ∗n(A j),

giving countable-subadditivity of λ∗n.
We finally show thatλ∗(R) = ν(R) for any rectangle R. We first take R to be compact.

Let Rϵ be an open rectangle containing R and for which ν(Rϵ) = ν(R) + ϵ. Then

R ⊆ Rϵ ∪
(
∪
∞

j=2R j

)
,

where R j = ∅, j ≥ 2. Thus we have λ∗n(R) < ν(R) + ϵ, and since this holds for every
ϵ ∈ R>0 it follows that ν(R) ≤ λ∗n(R). Now suppose that (R j) j∈Z>0 is a family of bounded
open rectangles for which R ⊆ ∪ j∈Z>0R j. Since R is compact, there is a finite subset of
these rectangles, let us abuse notation slightly and denote them by (R1, . . . ,Rk), such
that R ⊆ ∪k

j=1R j. Now let P be a partition of R such that each of the subrectangles of
P is contained in one of the rectangles R1, . . . ,Rn. This is possible since there are only
finitely many of the rectangles R1, . . . ,Rn. By definition of the volume of a rectangle
we have

ν(R) =
∑
R′∈P

ν(R′) ≤
k∑

j=1

ν(R j) =
k∑

j=1

λ∗n(R j).

This gives ν(R) = λ∗n(R), as desired.
Now let R be a bounded rectangle. Since R ⊆ cl(R) we have λ∗n(R) ≤ ν(cl(R)) = ν(R)

using monotonicity of λ∗n. If ϵ ∈ R>0 we may find a compact rectangle Rϵ ⊆ R for which
ν(R) ≤ ν(Rϵ) + ϵ. Since λ∗n(Rϵ) ≤ λ∗n(R) by monotonicity, it follows that

λ∗(R) ≥ λ∗(Rϵ) = ν(Rϵ) ≥ ν(R) − ϵ.

Since ϵ ∈ R>0 is arbitrary λ∗n(R) ≥ ν(R), showing that λ∗n(R) = ν(R), as desired.
Finally, if R is unbounded then for any M ∈ R>0 we may find a compact rectangle

R′ ⊆ R for which λ∗n(R′) > M. Since λ∗n(R) ≥ λ∗n(R′) by monotonicity this means that
λ∗n(R) = ∞. ■

As with the Lebesgue outer measure on R, there are subsets of Rn that are not
Lebesgue measurable.
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2.5.3 Example (A set that is not λ∗n-measurable) Let A ⊆ (0, 1) be the subset of R
constructed in Example 2.4.3 that is not λ∗-measurable. Then define An = A ×
(0, 1) × · · · × (0, 1) ⊆ Rn. Then recall from Example 2.4.3 that (0, 1) is a countable
union of translates of A. Thus (0, 1)n is a countable union of translates of An. Since
λ∗n is translation-invariant as we shall show in Theorem 2.5.22, it follows that, if
An is λ∗n-measurable, then we have the same dichotomy for An as we had for A:
1. if λ∗n(An) = 0 then λ∗n((0, 1)n) = 0;
2. if λ∗n(An) ∈ R>0 then λ∗n((0, 1)n) = ∞.
Since both of these conclusions are false, it must be the case that An is not λ∗n-
measurable. •

This then leads to the following definition.

2.5.4 Definition (Lebesgue measurable subsets of Rn, Lebesgue measure on Rn)
Let λ∗n be the Lebesgue outer measure on Rn and denote by L (Rn) the set of λ∗n-
measurable subsets of Rn. The sets in L (Rn) are called Lebesgue measurable, or
merely measurable, and the complete measure λn : L (Rn)→ R≥0 induced by λ∗n is
called the Lebesgue measure on Rn. •

As with the Lebesgue measure on R, the Lebesgue measure on Rn can be
restricted to measurable sets.

2.5.5 Proposition (Restriction of Lebesgue measure to measurable sets) Let A ∈
L (Rn) and denote

(i) L (A) = {B ∩A | B ∈ L (Rn)} and
(ii) λA : L (A)→ R≥0 given by λA(B ∩A) = λ(B ∩A).

Then (A,L (A), λA) is a complete measure space.
Proof This follows from Propositions 2.2.6, 2.3.18, and 2.3.23. ■

2.5.2 Borel sets in Rn as examples of Lebesgue measurable sets

Next we turn to the Borel sets in Rn which provide a large and somewhat
comprehensible collection of Lebesgue measurable sets. We denote by O (Rn) the
open subsets of Rn.

2.5.6 Definition (Borel subsets of Rn) The collection of Borel sets inRn is the σ-algebra
generated by O (Rn) (see Proposition 2.2.7). We denote byB (Rn) the Borel sets in
Rn. If A ∈B (Rn) then we denote

B (A) = {A ∩ B | B ∈B (Rn)} •

While it is not so easy to come up with a satisfactory description of all Borel
sets, it is the case that we will only encounter non-Borel sets as examples of things
that are peculiar. Thus one can frequently get away with only thinking of Borel
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sets when one thinks about Lebesgue measurable sets. We shall be a little more
precise about just what this means later.

For the moment, let us give a few examples of Borel sets. The following result
gives us a ready made and very large class of Borel sets. In the following result we
make the natural identification of Rn1 ×Rn2 with Rn1+n2 .

2.5.7 Proposition (Products of Borel sets) Let σ(B (Rn1)×B (Rn2)) denote the σ-algebra
on Rn1 ×Rn2 generated by subsets of the form B1 × B2, where B1 ∈ B (Rn1) andB (Rn2).
ThenB (Rn1+n2) = σ(B (Rn1) ×B (Rn2)).

Proof By it follows that the open sets in Rn1 ×Rn2 are countable unions of sets of thewhat, make sure

countability is included

here form U1 × U2 where U1 ⊆ R
n1 and U2 ⊆ Rn2 are open. By Exercise 2.2.4 it follows

thatB (Rn1+n2) is generated by subsets from the σ-algebra σ(B (Rn1) ×B (Rn2)). Thus
B (Rn1+n2) ⊆ σ(B (Rn1) ×B (Rn2)).

For the converse inclusion, note that the projections pr1 : Rn1+n2 → Rn1 and
pr2 : Rn1+n2 → Rn2 are continuous. From this one can easily show (and this will
be shown in Example 2.5.10–3) that π−1

1 (B1),pr−1
2 (B2) ∈ B (Rn1+n2) for B1 ∈ B (Rn1)

and B2 ∈B (Rn2). Therefore,

B1 ∩ B2 = π
−1
1 (B1) ∩ pr−1

2 (B2) ∈B (Rn1+n2)

for B1 ∈ B (Rn1) and B2 ∈ B (Rn2). Thus σ(B (Rn1) × B (Rn2)) ⊆ B (Rn1+n2) since
σ(B (Rn1) ×B (Rn2)) is the smallest σ-algebra containing products of Borel sets. ■

2.5.8 Remark (σ(L (Rn1) ×L (Rn2)) , L (Rn1+n2)) The reader will notice that the result
analogous to the preceding one, but for Lebesgue measurable sets was not stated.
This is because it is actually not true, as will be seen . This is an instance thatwhere

illustrates that the mantra “What seems like it should be true is true” should
always be verified explicitly. •

The following alternative characterisations of Borel sets are sometimes useful.

2.5.9 Proposition (Alternative characterisation of Borel sets) B (Rn) is equal to the
following collections of sets:

(i) the σ-algebraB1 generated by the closed subsets;
(ii) the σ-algebra B2 generated by rectangles of the form (−∞, b1] × · · · × (−∞, bn],

b1, . . . , bn ∈ R;
(iii) the σ-algebraB3 generated by intervals of the form (a1, b1]×· · ·× (an, bn], aj, bj ∈ R,

aj < bn ∈ R, j ∈ {1, . . . ,n}.
Proof First note that B (Rn) contains the σ-algebra B1 generated by all closed sets,
since the complements of all open sets, i.e., all closed sets, are contained in B (Rn).
Note that the sets of the form (−∞, b1] × · · · × (−∞, bn] are closed, so the σ-algebraB2
generated by these subsets is contained inB1. Since (a j, b j] = (−∞, b j] ∩ (R \ (−∞, a j]),
j ∈ {1, . . . ,n}, it follows that the σ-algebraB3 is contained inB2. Finally, note that

(a j, b j) = ∪∞k=1(a j, bk −
1
k ], j ∈ {1, . . . ,n}.
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Thus, by , each open subset of Rn is a countable union of sets, each of which is awhat? make sure to get

countability countable intersection of generators of sets ofB3. ThusB (Rn) ⊆ B3. Putting this all
together gives

B (Rn) ⊆B3 ⊆B2 ⊆B1 ⊆B (Rn).

Thus we must conclude thatB1 =B2 =B3 =B (Rn). ■

We can now give some examples of Borel sets in Rn.

2.5.10 Examples (Borel sets)
1. We claim that if B1, . . . ,Bn ∈ B (R) then B1 × · · · × Bn ∈ B (Rn); this follows

by a simple induction from Proposition 2.5.7. This provides us with a large
collection of Borel sets, provided we have Borel sets in R.

2. As for Borel sets in R, a set that is a countable intersection of open sets is called
a Gδ and a set that is a countable union of closed sets is called an Fσ.

3. If B ∈B (Rn) and if f : Rn
→ Rm is continuous, then f−1(B) ∈B (Rn). To see, by

Proposition 2.5.9 it suffices to show that

f−1((−∞, b1] × · · · × (−∞, bn])

is closed. If f (x) = ( f1(x, . . . , fm(x)) then

f−1((−∞, b1] × · · · × (−∞, bn]) = f −1
1 ((−∞, b1]) ∩ · · · ∩ f −1

n ((−∞, bn]).

Since each of the functions f1, . . . , fn are continuous it follows from Corol-
lary II-1.3.4 that f −1

j ((−∞, bn]) is closed for each j ∈ {1, . . . ,n}. Thus

f−1((−∞, b1] × · · · × (−∞, bn])

is closed, being a finite intersection of closed sets. This gives the desired con-
clusion.
This again gives us a wealth of Borel sets. •

Now that we understand a little of the character of Borel sets, let us provide
their relationship with the Lebesgue measurable sets. As with the relationship of
B (R) with L (R), the correspondence between Borel and Lebesgue measurable
sets in Rn has its nice points and its somewhat deficient aspects.

2.5.11 Theorem (Borel sets are Lebesgue measurable)B (Rn) ⊆ L (Rn).
Proof The theorem will follow from Proposition 2.5.9 if we can show that any set of
the form (−∞, b1]× · · · × (−∞, bn] is Lebesgue measurable. Let A be such a set and note
that since

λ∗n(S) ≤ λ∗n(S ∩ A) + λ∗n(S ∩ (Rn
\ A))

we need only show the opposite inequality to show that A is Lebesgue measurable. If
λ∗n(S) = ∞ this is clearly true, so we may as well suppose that λ∗n(S) < ∞. Let (R j) j∈Z>0

be bounded open rectangles that cover S and be such that
∞∑
j=1

ν(R j) < λ∗n(S) + ϵ.
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For j ∈ Z>0 choose bounded open rectangles D j and E j, possibly empty, for which

R j ∩ A ⊆ D j,

R j ∩ (Rn
\ A) ⊆ E j,

ν(D j) + ν(E j) ≤ ν(R j) +
ϵ

2 j .

Note that the bounded open rectangles (D j) j∈Z>0 cover S ∩ A and that the bounded
open rectangles (E j) j∈Z>0 cover Rn

\ A so that

λ∗n(S ∩ A) ≤
∞∑
j=1

ν(D j), λ∗n(S ∩ (Rn
\ A)) ≤

∞∑
j=1

ν(E j).

From this we have

λ∗n(S ∩ A) + λ∗n(S ∩ (Rn
\ A)) ≤

∞∑
j=1

ν(R j) + ϵ < λ∗n(S) + 2ϵ,

using the fact that
∑
∞

j=1
1
2 j = 1 by Example I-2.4.2–1. Since ϵ can be taken arbitrarily

small, the inequality
λ∗n(S) ≥ λ∗n(S ∩ A) + λ∗n(S ∩ (R \ A))

follows, and so too does the result. ■

While the preceding result is useful in that it tells us that the large class of (sort
of) easily understood Borel sets are Lebesgue measurable, the following result
says that much more is true. Namely, up to sets of measure zero, all Lebesgue
measurable sets are Borel sets.

2.5.12 Theorem (Lebesgue measurable sets are the completion of the Borel sets)
(Rn,L (Rn), λn) is the completion of (Rn,B (Rn), λn|B (Rn)).

Proof First, given A ∈ L (Rn), we find L,U ∈ B (Rn) such that L ⊆ A ⊆ U and such
that λn(U \ L) = 0. We first suppose that λn(A) < ∞. Using Theorem 2.5.18 below, let
(U j) j∈Z>0 be a sequence of open sets containing A and for which λn(U j) ≤ λn(A)+ 1

j and

let (L j) j∈Z>0 be a sequence of compact subsets of A for which λn(L j) ≥ λn(A) − 1
j . If we

take L = ∪ j∈Z>0L j and U = ∩ j∈Z>0U j then we have L ⊆ A ⊆ U. We also have

λn(U \ L) ≤ λn(U j \ L j) = λn(U j \ A) + λn(A \ L j) ≤ 1
2 j .

Since this holds for every j ∈ Z>0, this gives our claim when A has finite measure,
since L and U are Borel sets. If λn(A) = ∞ then we can write A = ∪ j∈Z>0A j with
A j = (− j, j)n

∩ A. For each j ∈ Z>0 we may find L j,U j ∈ B (R) such that L j ⊆ A j ⊆ U j
and λn(U j \ L j. Taking L = ∪ j∈Z>0L j and U = ∪ j∈Z>0 gives L ⊆ A ⊆ U and λn(U \ L) = 0.

The above shows thatL (Rn) ⊆Bλn(Rn). Now let B ∈Bλn(R) and take Borel sets
L and U for which L ⊆ B ⊆ U and λn(U \ L) = 0. Note that (B \ L) ⊆ (U \ L). Note also
that since U \ L ∈B (R) we have U \ L ∈ L (R) and λn(U \ L) = 0. By completeness of
the Lebesgue measure this implies that B \ L ∈ L (R). Since B = (B \ L)∪ L this implies
that B ∈ L (R). ■

The theorem has the following corollary which explicitly indicates what it means
to approximate a Lebesgue measurable set with a Borel set.



2022/03/07 2.5 Lebesgue measure on Rn 157

2.5.13 Corollary (Borel approximations to Lebesgue measurable sets) If A ∈ L (Rn)
then there exists a Borel set B and a set Z of measure zero such that A = B ∪ Z.

Proof This follows directly from Theorem 2.5.12 and the definition of the completion.
■

As is the case for B (R) and L (R), there are many more sets in L (Rn) than
there are inB (Rn), the preceding corollary notwithstanding.

2.5.14 Proposition (The cardinalities of Borel and Lebesgue measurable sets) We
have card(B (Rn)) = card(R) and card(L (Rn)) = card(2R).

Proof Since {x} ∈ B (Rn) for every x ∈ Rn we obviously have card(B (Rn)) ≥
card(Rn) = card(R), the last equality holding by virtue of Theorem I-1.7.17. For
the opposite inequality, note that Proposition II-1.2.21 it holds that every open set is a
union of open balls with rational radius and whose centres have rational coordinates
in Rn. There are countable many such balls by Proposition I-1.7.16. Let S be the
set of such balls and note that, adopting the notation of Theorem 2.2.14, S1 therefore
includes the open subsets of Rn. ThusB (Rn) is the σ-algebra generated by S and so,
by Theorem 2.2.14, card(B (Rn)) ≤ ℵℵ0

0 . Since

2ℵ0 ≤ ℵ
ℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 ,

using the fact that 2 ≤ ℵ0 ≤ 2ℵ0 by Example I-1.7.14–3 and Exercise I-1.7.4, it follows
that card(B (Rn)) ≤ card(R), as desired.

Next, we obviously have

card(L (Rn)) ≤ card(2R
n
) = card(2R),

using the fact that card(Rn) = card(R) by Theorem I-1.7.17. For the opposite inequality,
we note that the Cantor set C ⊆ [0, 1] has Lebesgue measure zero and has the cardinality
of [0, 1], and thus the cardinality ofR. Thus the set Cn = C×Rn−1

⊆ Rn also has measure
zero (why?), and satisfies

card(Cn) = card(C) · card(Rn) = card(R)n = card(R),

using Theorem I-1.7.17. Since L (Rn) is complete it follows that every subset of Cn is
Lebesgue measurable, and so

card(L (Rn)) ≥ card(2Cn) = card(2R).

Thus card(L (Rn)) = card(2R), as desired. ■

Using the fact that this is possible when n = 1, it is possible to construct a
Lebesgue measurable subset of Rn that is not Borel.
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2.5.15 Example (A non-Borel Lebesgue measurable set) Let B ⊆ [0, 1] be the subset
defined in Example 2.4.14, recalling that B is Lebesgue measurable but not Borel.
We claim that Bn = B × Rn−1

⊆ Rn is Lebesgue measurable but not Borel. It
is Lebesgue measurable since B is a subset of the Cantor set C which has zero
measure, and so Bn ⊆ C ×Rn−1 with C ×Rn−1 having zero measure. Completeness
of L (Rn) ensures that Bn is Lebesgue measurable. However, Bn cannot be a Borel
set. Indeed, let i1 : R→ Rn be the continuous map i1(x) = (x, 0, . . . , 0). Then one can
easily see that B = i−1

1 (Bn). Were Bn a Borel set, this would imply that B is a Borel
set by Example 2.5.10–3. •

2.5.3 Further properties of the Lebesgue measure on Rn

In this section we shall establish some important properties of the Lebesgue
measure. These are intended to show the extent to which the Lebesgue measure is
a natural and well-behaved construction.

We begin with an important attribute of measures in general.

2.5.16 Definition (Regular measure on Rn) LetA be a σ-algebra onRn that contains the
Borel σ-algebraB (Rn). A measure µ : A → R≥0 is regular if

(i) µ(K) < ∞ for each compact subset K ⊆ Rn,
(ii) if A ∈ A then µ(A) = inf{µ(U) | U open and A ⊆ U}, and
(iii) if U ⊆ Rn is open then µ(U) = sup{µ(K) | K open and K ⊆ U}. •

Let us give some simple examples to illustrate what regular means.

2.5.17 Examples (Regular and irregular measures)
1. If x ∈ Rn, the point mass measure δx : B (Rn)→ R≥0 defined by

δ(B) =

1, x ∈ B,
0, x < B

is regular, as may be readily verified; see Exercise 2.5.2.

2. One can check that the counting measure µ : B (Rn)→ R≥0 defined by

µ(B) =

card(B), card(B) < ∞,
∞, otherwise

is not regular; see Exercise 2.5.3. •
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2.5.18 Theorem (Regularity of the Lebesgue measure) The Lebesgue measure
λn : L (Rn) → R≥0 is σ-finite and regular. Moreover, for A ∈ L (Rn) we have
λn(A) = sup{λ + n(K) | K compact and K ⊆ A}.

Proof To see that λn is σ-finite note that Rn = ∪k∈Z>0[−k, k]n with λn([−k, k]n) < ∞.
Next we show that if A ∈ L (Rn) then

λn(A) = inf{λn(U) | U open and A ⊆ U}.

Assume that λn(A) < ∞ since the result is obvious otherwise. Let ϵ ∈ R>0 and let
(R j) j∈Z>0 be a sequence of bounded open rectangles for which A ⊆ ∪ j∈Z>0R j and for
which

∞∑
j=1

ν(R j) = λn(A) + ϵ.

Now let U = ∪ j∈Z>0R j, noting that U is open and that A ⊆ U. By Proposition 2.3.10(iii)
and the fact that the measure of a rectangle is its we have

λn(U) ≤
∞∑
j=1

ν(R j) = λn(A) + ϵ.

Since ϵ ∈ R>0 is arbitrary this shows that

λn(A) ≥ inf{λn(U) | U open and A ⊆ U}.

Since the other inequality is obvious by the basic properties of a measure, this part of
the result follows.

Note that to show that λn is regular it suffices to prove the final assertion of the
theorem since open sets are Lebesgue measurable; thus we prove the final assertion
of the theorem. First suppose that A ∈ L (Rn) is bounded. Then let K̃ be a compact
set containing A. For ϵ ∈ R>0 choose U open and containing K̃ \ A and for which
λn(U) ≤ λn(K̃ \ A) + ϵ, this being possible from by the first part of the proof. Note that
K = K̃ \U is then a compact set contained in A and that the basic properties of measure
then give

λn(U) ≤ λn(K̃ \ A) + ϵ and λn(K̃) ≤ λn(K) − λn(A) =⇒ λn(K) > λn(A) − ϵ.

Since ϵ can be made as small as desired, this gives the second part of the proposition
when A is bounded. Define

A j = (− j, j)n
∩ A,

and note that (A j) j∈Z>0 is an increasing sequence of sets and that A = ∪ j∈Z>0A j. There-
fore, by Proposition 2.3.10(iv), λn(A) = lim j→∞ λn(A j). Then for any M < λn(A) there
exists N ∈ Z>0 such that λn(AN) > M. We may now find a compact K such that
λn(K) > M by the fact that we have proved our assertion for bounded sets (as is AN).
Note that K ⊆ A and that M < λn(A) is arbitrary, and so the result follows. ■

The theorem has the following corollary.



160 2 Measure theory and integration 2022/03/07

2.5.19 Corollary (Approximation of Lebesgue measurable sets by open and com-
pact sets) If A ∈ L (Rn) satisfies λn(A) < ∞ and if ϵ ∈ R>0 then there exists an open
set U ⊆ Rn and a compact set K ⊆ Rn such that

λn(U \A) < ϵ, λn(A \ K) < ϵ.

Next we show that the Lebesgue measure has the quite natural property of
being translation-invariant. First we provide definitions for translation-invariant
σ-algebras and measures.

2.5.20 Definition (Translation-invariant σ-algebra and measure on Rn) A σ-algebra
A ⊆ 2R

n
is translation-invariant if, for every A ∈ A and every x ∈ Rn,

x + A ≜ {x + y | y ∈ A} ∈ A .

A translation-invariant measure on a translation-invariant σ-algebra A is a map
µ : A → R≥0 for which µ(x + A) = µ(A) for every A ∈ A and x ∈ Rn. •

The Borel and Lebesgue measurable sets are translation-invariant.

2.5.21 Proposition (Translation-invariance of Borel and Lebesgue measurable sets)
BothB (Rn) andL (Rn) are translation-invariant.

Proof Let us denote

B ′(Rn) = {B | x + B ∈B (Rn) for every x ∈ Rn
}.

We claim that B ′(Rn) is a σ-algebra containing the open subsets of Rn. First of all,
if U ⊆ Rn is open then x + U is open for every x ∈ Rn (why?) and so U ∈ B ′(Rn).
To see thatB ′(Rn) is a σ-algebra, first note that Rn = x + Rn for every x ∈ Rn and so
Rn
∈B ′(Rn). Next, let B ∈B ′(Rn) and let x ∈ Rn. Then

x + (Rn
\ B) = {x + z | z < B} = {y | y − x < B} = {y | y , x + z, z ∈ B}
= {y | y < (x + B)} = Rn

\ (x + B) ∈B (Rn).

Thus x+ (Rn
\B) ∈B (Rn) for every x ∈ Rn and soRn

\B ∈B ′(Rn). Finally, let (B j) jZ>0

be a countable collection of subsets fromB ′(Rn). Then, for x ∈ Rn we have

x + ∪ j∈Z>0B j = ∪ j∈Z>0(x + B j) ∈B (Rn)

and so ∪ j∈Z>0B j ∈B ′(Rn). ThusB ′(Rn) is indeed a σ-algebra containing the open sets
and so we conclude thatB (Rn) ⊆ B ′(Rn) sinceB (Rn) is the σ-algebra generated by
the open sets. This shows thatB (Rn) is translation-invariant.
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Next let us show thatL (Rn) is translation-invariant. To do this we first show that
if S ⊆ Rn and if x ∈ Rn then λ∗n(x + S) = λ∗n(S). Indeed,

λ∗n(x + S) = inf
{ ∞∑

j=1

ν(R j)
∣∣∣∣ x + S ⊆

⋃
j∈Z>0

R j

}
= inf

{ ∞∑
j=1

ν(R′j)
∣∣∣∣ x + S ⊆

⋃
j∈Z>0

ν(x + R′j)
}

= inf
{ ∞∑

j=1

ν(R′j)
∣∣∣∣ S ⊆

⋃
j∈Z>0

R′j
}
= λ∗n(S),

using the fact that for a rectangle R we have ν(R) = ν(x + R). Now let A ∈ L (Rn) so
that, for every subset S ⊆ Rn,

λ∗n(S) = λ∗n(S ∩ A) + λ∗n(S ∩ (Rn
\ A)).

Then, for x ∈ Rn and S ⊆ Rn,

λ∗n(S ∩ (x + A)) = λ∗n((x + (−x + S)) ∩ (x + A)) = λ∗n((−x + S) ∩ A)

and, similarly,

λ∗n(S ∩ (Rn
\ (x + A))) = λ∗n((x + (−x + S)) ∩ (x +Rn

\ A)) = λ∗n((−x + S) ∩ (Rn
\ A)).

Since λ∗n(−x + S) = λ∗n(S) this immediately gives

λ∗n(S) = λ∗n(S ∩ (x + A)) + λ∗n(S ∩ (Rn
\ (x + A))),

showing that x + A ∈ L (Rn). ■

We may also show that the Lebesgue measure is translation-invariant, and is,
moreover, in some sense unique.

2.5.22 Theorem (Translation invariance of the Lebesgue measure) If µ : B (Rn) →
R≥0 is a nonzero translation-invariant measure for which µ(B) < ∞ for every bounded
B ∈ B (Rn), then there exists c ∈ R>0 such that µ(B) = cλn(B) for every B ∈ B (Rn).
Moreover, the Lebesgue measure λn : L (Rn)→ R≥0 is translation-invariant.

Proof That λn is translation-invariant follows from the proof of Proposition 2.4.22
where we showed that λ∗n(x + S) = λ∗n(S) for every S ⊆ Rn and x ∈ Rn. To show that
λn is, up to a positive scalar, the only translation-invariant measure we first prove two
lemmata.

1 Lemma If U ⊆ Rn is a nonempty open set, then there exists a countable collection of disjoint
rectangles (Rj)j∈Z>0 of the form

Rj = [aj,1, bj,1) × · · · × [aj,n, bj,n)

such that U = ∪j∈Z>0Rj.
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Proof For k ∈ Z≥0 define

Ck = {[ j12−k, ( j1 + 1)2−k) × · · · × [ jn2−k, ( jn + 1)2−k) | j1, . . . , jn ∈ Z}.

Note that, for each k ∈ Z≥0, the sets from Ck form a countable partition of Rn. Also
note that for k < l, every cube in Cl is also a cube in Ck. Now let U ⊆ Rn be open. Let
D0 = ∅. Let

D1 = {C ∈ C1 | C ⊆ U},
D2 = {C ∈ C2 | C ⊆ U, C < D1},

...

Dk = {C ∈ Ck | C ⊆ U, C < D1 ∪ · · · ∪Dk−1}

...

The result will follow if we can show that each point x ∈ U is contained in some Dk,
k ∈ Z>0. However, this follows since U is open, and so, for each x ∈ U, one can find a
smallest k ∈ Z≥0 with the property that there exists C ∈ Ck with x ∈ C and C ⊆ U. ▼

2 Lemma The Lebesgue measure is the unique measure on (Rn,B (Rn)) for which the measure
of a rectangle is its volume.
Proof From Theorem 2.4.2 we know that λn(R) = ν(R) for every rectangle R. Now
suppose that µ : B (Rn) → R≥0 is a measure with the property that µ(R) = ν(R) for
every rectangle R.

First let U ⊆ Rn be open. By Lemma 1 we can write U = ∪ j∈Z>0C j for a countable
family (C j) j∈Z>0 of disjoint bounded cubes. Therefore, since µ is a measure,

µ(U) = µ
( ⋃

j∈Z>0

C j

)
=

∞∑
j=1

µ(C j) =
∞∑
j=1

λn(C j) = λn(U).

Now let B be a bounded Borel set and let U be an open set for which B ⊆ U. Then

µ(B) ≤ µ(U) = λn(U).

Therefore,
µ(B) ≤ inf{λ)n(U) | U open and B ⊆ U} = λn(B)

by regularity of λn. Therefore, if U is a bounded open set containing B we have

µ(U) = µ(B) + µ(U \ B) ≤ λn(B) + λn(U \ B) = λn(U).

Since µ(U) = λn(U) it follows that µ(B) = λn(B) and µ(U \ B) = λn(U \ B).
Finally let B be an unbounded Borel set. We can then write B = ∪ j1,..., jn∈ZB j1··· jn

where (B j1··· jn) j1,..., jn∈Z is the (countable by Proposition I-1.7.16) family of disjoint Borel
sets

B j1··· jn = B ∩ ([ j1, j1 + 1) × · · · × [ j1, j1 + 1)), j1, . . . , jn ∈ Z.

Then
µ(B) =

∑
j1,..., jn∈Z

µ(B j) =
∑

j1,..., jn∈Z

λn(B j) = λn(B),

as desired. ▼
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To proceed with the proof, let µ : B (Rn)→ R≥0 be a translation-invariant measure
and let c = µ([0, 1)n). By

µ(Rn) =
∑

j1,..., jn∈Z

ν([ j1, j1 + 1) × · · · × [ jn, jn + 1)) = 0

by translation-invariance of µ. Now let µ′ : B (Rn) → R≥0 be the measure defined by
µ′(B) = c−1µ(B). Now, for k ∈ Z≥0 let Ck be as in the proof of Lemma 1. Let C ∈ Ck.
We can write [0, 1)n as a disjoint union of 2nk intervals of the form x j +C. Therefore, by
translation-invariance of µ′,

µ′([0, 1)n) = 2nkµ′(C), λn([0, 1)n) = 2nkλn(C).

Since µ′([0, 1)n) = λn([0, 1)n) it follows that µ′(C) = λn(C). Since every interval is a
disjoint union of intervals from the sets Ck, k ∈ Z≥0, by Lemma 1 it follows that
µ′(C) = λn(C) for every cube C. Thus µ′ = λn by Lemma 2 above and so µ = cλn, as
desired. ■

2.5.23 Theorem (There are no translation-invariant, length-preserving measures on
all subsets of Rn) There exists no measure space (Rn,A , µ) having the joint properties
that

(i) A = 2R
n
,

(ii) µ((0, 1)n) = 1, and
(iii) µ is translation-invariant.

Proof Were such a measure to exist, then the non-Lebesgue measurable set An ⊆ (0, 1)n

of Example 2.5.3 would be measurable. But during the course of Example 2.5.3 we saw
that (0, 1)n is a countable disjoint union of translates of An. The dichotomy illustrated
in Example 2.5.3 then applies. That is, if µ(An) = 0 then we get µ((0, 1)n) = 0 and if
µ(An) ∈ R>0 then µ((0, 1)n) = ∞, both of which conclusions are false. ■

Finally in this section, let us record another useful property of the Lebesgue
measure, related to its being translation-invariant. From Definition II-1.3.19 the
notion of an orthogonal matrix, and the notation O(n) to denote the set of n × n
orthogonal matrices. Invariance of measure

too

2.5.24 Definition (Rotation-invariant σ-algebra and measure on Rn) A σ-algebra A ⊆
2R

n
is rotation-invariant if, for every A ∈ A and every R ∈ O(n), R(A) ∈ A . A

rotation-invariant measure on a rotation-invariant σ-algebra A is a map µ : A →
R≥0 for which µ(R(A)) = µ(A) for every A ∈ A and R ∈ O(n). •

We can then repeat the translation-invariant programme above for rotation-
invariance. This begins with the following result.
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2.5.25 Proposition (Rotation-invariance of the Borel and Lebesgue measurable
sets) Both B (Rn) and L (Rn) are rotation-invariant σ-algebras, and, moreover, λn

is rotation invariant.
Proof Let us denote

B ′(Rn) = {B | R(B) ∈B (Rn) for every R ∈ O(n)}.

We claim thatB ′(Rn) is a σ-algebra containing the open subsets of Rn. First of all, if
U ⊆ Rn is open then R(U) is open for every R ∈ O(n) since R is a homeomorphism of
Rn. Thus U ∈B ′(Rn). To see thatB ′(Rn) is a σ-algebra, first note that Rn = R(Rn) for
every R ∈ O(n) and so Rn

∈B ′(Rn). Next, let B ∈B ′(Rn) and let R ∈ O(n). Then

R(Rn
\ B) = {R(z) | z < B} = {y | R−1(y) < B} = {y | y , R(z), z ∈ B}
= {y | y < R(B)} = Rn

\ (R(B)) ∈B (Rn).

Thus R(Rn
\B) ∈B (Rn) for every R ∈ O(n) and soRn

\B ∈B ′(Rn). Finally, let (B j) jZ>0

be a countable collection of subsets fromB ′(Rn). Then, for R ∈ O(n) we have

R(∪ j∈Z>0B j) = ∪ j∈Z>0R(B j) ∈B (Rn)

and so ∪ j∈Z>0B j ∈B ′(Rn). ThusB ′(Rn) is indeed a σ-algebra containing the open sets
and so we conclude thatB (Rn) ⊆ B ′(Rn) sinceB (Rn) is the σ-algebra generated by
the open sets. This shows thatB (Rn) is rotation-invariant.

Next let us show that L (Rn) is rotation-invariant. To do this we first show that
if S ⊆ Rn and if R ∈ O(n) then λ∗n(R(S)) = λ∗n(S). First note by Theorem II-1.6.38 that
ν(R(R)) = ν(R) since det R ∈ {−1, 1} (see Exercise II-1.3.10). Then we compute

λ∗n(R(S)) = inf
{ ∞∑

j=1

ν(R j)
∣∣∣∣ R(S) ⊆

⋃
j∈Z>0

R j

}
= inf

{ ∞∑
j=1

ν(R′j)
∣∣∣∣ R(S) ⊆

⋃
j∈Z>0

ν(R(R′j))
}

= inf
{ ∞∑

j=1

ν(R′j)
∣∣∣∣ S ⊆

⋃
j∈Z>0

R′j
}
= λ∗n(S).

Now let A ∈ L (Rn) so that, for every subset S ⊆ Rn,

λ∗n(S) = λ∗n(S ∩ A) + λ∗n(S ∩ (Rn
\ A)).

Then, for R ∈ O(n) and S ⊆ Rn,

λ∗n(S ∩ (R(A))) = λ∗n((RR−1(S)) ∩ (R(A))) = λ∗n((R−1(S)) ∩ A)

and, similarly,

λ∗n(S ∩ (Rn
\ (R(A)))) = λ∗n((RR−1(S)) ∩ (R(Rn

\ A))) = λ∗n((R−1(S)) ∩ (Rn
\ A)).
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Since λ∗n(R−1(S)) = λ∗n(S) this immediately gives

λ∗n(S) = λ∗n(S ∩ (R(A))) + λ∗n(S ∩ (Rn
\ (R(A)))),

showing that R(A) ∈ L (Rn).
The final assertion in the statement of the result, that λn is rotation-invariant,

follows from the fact, proved above, that λ∗n(S) = λ∗n(R(S)) for every S ⊆ Rn. ■

The following generalisation of the preceding result is also useful.

2.5.26 Proposition (Lebesgue measure and linear maps) If L ∈ L(Rn;Rm) then
matL(B) ∈ B (Rm) if B ∈ B (Rn) and L(A) ∈ L (Rm) if A ∈ L (Rn). Moreover, if
A ∈ L (Rn) then λm(L(A)) = det Lλn(A).

Proof ■

2.5.4 Lebesgue measure on Rn as a product measure

The Lebesgue measure on Rn is not the product of the Lebesgue measures on
the factors of Rn = R × · · · ×R. The problem, as we shall see, is that the product of
the Lebesgue measures is not complete. Fortunately, while the Principle of Desired
Commutativity does not apply in its simplest form, it is not too far off since the
Lebesgue measure on Rn is the completion of the product measure.

First we consider the relationship between the measure spaces (Rn, σ(L (R) ×
· · ·×L (R)), λ×· · ·×λ) and (Rn,L (Rn), λn). The first observation is the following.

2.5.27 Proposition (σ(L (R) × · · · × L (R)) ⊆ L (Rn)) We have σ(L (R) × · · · ×L (R)) ⊆
L (Rn).

Proof By definition, σ(L (R)×· · ·×L (R)) is the σ-algebra generated by the measurable
rectangles in Rn. It, therefore, suffices to show that measurable rectangles are λn-
measurable. Thus let A1 × · · · ×An be a measurable rectangle and, by Corollary 2.4.12,
write A j = B j ∪ Z j for B j ∈B (R) and Z j ⊆ R having measure zero. Then A1 × · · · × An
is a union of measurable rectangles of the form S1 × · · · × Sn where S j ∈ {B j,Z j},
j ∈ {1, . . . ,n}. We claim that if S j = Z j for some j ∈ {1, . . . ,n} then the corresponding
measurable rectangle has Lebesgue measure zero, and so in particular is Lebesgue
measurable. To see this, consider a measurable rectangle of the form

S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn.

Let k ∈ Z>0 and let Ck = [−k, k]. Let ϵ ∈ R>0. Since Z j has measure zero, there exists
intervals (al, bl), l ∈ Z>0, such that Z j ⊆ ∪l∈Z>0(al, bl) and

∞∑
l=1

(bl − al) <
ϵ

(2k)n−1
.

Therefore,

λn(Ck ∩ (S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn)) < (2k)n−1 ϵ

(2k)n−1
= ϵ.
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Thus
λn(Ck ∩ (S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn)) = 0

and, since

S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn

= ∪k∈Z>0(Ck ∩ (S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn)),

it follows from Proposition 2.3.3 that

λn(S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn) = 0,

as desired. Thus the only measurable rectangle comprising A1×· · ·×An that is possibly
not of measure zero is B1×· · ·×Bn. By Proposition 2.5.7 (and its natural generalisation
to more than two factors using a trivial induction) it follows that this set will be Borel
measurable, and so Lebesgue measurable. Thus A1 × · · · × An is a finite union of
Lebesgue measurable sets and so is Lebesgue measurable. ■

An example illustrates that the inclusion from the preceding proposition is
strict.

2.5.28 Example (σ(L (R) × · · · ×L (R)) ⊂ L (Rn)) Let

A = R × {0n−1} ⊆ R
n

and note that by Theorem 2.3.33 we have λ × · · · × λ(A) = 0. Now let E ⊆ R
be a non-Lebesgue measurable set and note that S ≜ E × {0n−1} ⊆ A is thus a
subset of measure zero, and thus an element of L (Rn) by completeness of the n-
dimensional Lebesgue measure. We claim that S < σ(L (R) × · · · ×L (R)). Indeed,
by Proposition 2.2.18 it follows that if S is measurable then E must be measurable,
which it is not. •

Thus the Lebesgue measure on Rn is not the product of the Lebesgue measures
on its R factors. However, all is not lost, as the following result suggests.

2.5.29 Proposition (The Lebesgue measure is the completion of the product mea-
sure) The measure space (Rn,L (Rn), λn) is the completion of the measure space
(Rn, σ(L (R) × · · · ×L (R)), λ × · · · × λ).

Proof Note that open rectangles are in L (R) × · · · ×L (R). Thus, sinceB (Rn) is the
σ-algebra generated by open rectangles, B (Rn) ⊆ σ(L (R) × · · · ×L (R)). Moreover,
for an open rectangle we have U1 × · · · ×Un we have

λ × · · · × λ(U1 × · · · ×Un) = λn(U1 × · · · ×Un).

By Lemma 2 of Theorem 2.5.22 we then have

λ × · · · × λ|B (Rn) = λn|B (Rn).

Now, by Proposition 2.5.27, we have

B (Rn) ⊆ σ(L (R) × · · · ×L (R)) ⊆ L (Rn)

with λ× · · ·×λ and λn agreeing on the left and right sets. By Theorem 2.5.12 the result
follows. ■
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2.5.5 Coverings of subsets of Rn

It is useful to sometimes be able to cover subsets of Rn with certain types of
sets—say, open balls—and such that the covering has certain desired properties.
In this section we give a few such results that are useful and some of which are
related to the Lebesgue measure. Various versions of the results here are known as
the Vitali6 Covering Lemma.

The most basic such result, and the starting point for other results, is the fol-
lowing.

2.5.30 Lemma (Properties of coverings by balls) Let J be an index set and let (Bn(rj, xj))j∈Z>0

be a family of balls such that
sup{rj | j ∈ J} < ∞.

Then there exists a subset J′ ⊆ J with the following properties:
(i) J′ is countable;
(ii) the balls (Bn(rj′ , xj′))j′∈J′ are pairwise disjoint;

(iii) ∪j∈JBn(rj, xj) ⊆ ∪j′∈J′Bn(5rj′ , xj′).

Proof Let us first suppose that ∪ j∈JBn(r j, x j) is bounded. We inductively construct a
subset J′ of J as follows. Let ρ1 = sup{r j | j ∈ J} and let j1 ∈ J be chosen so that r j ≥

1
2ρ1.

Now suppose that j1, . . . , jk have been defined and let

ρk+1 = sup{r j | j satisfies Bn(r j, x j) ∩ ∪k
s=1Bn(r js , x js) = ∅}.

If ρk+1 = 0 then take J′ = { j1, . . . , jk}. Otherwise define jk+1 ∈ J \ { j1, . . . , jk} such that
r jk+1 ≥

1
2ρk+1. In the case where this inductive procedure does not terminate in finitely

many steps, take J′ = { jk | k ∈ Z>0}.
The family (Bn(r j′ , x j′)) j′∈J′ so constructed is clearly pairwise disjoint. Moreover, if

x ∈ Bn(r j, x j) for some j ∈ J we have two possibilities.

1. j ∈ J′: In this case we immediately have x ∈ ∪ j′∈J′Bn(r j′ , x j′).

2. j < J′: Here we claim that there exists j′ ∈ J such that x ∈ Bn(r j′ , x j′). Suppose
otherwise. Note that since we are assuming that ∪ j∈JBn(r j, x j) is bounded and
since (Bn(r j′ , x j′)) j′∈J′ is pairwise disjoint, for every ϵ ∈ R>0 we have limk→∞ r jk = 0.
Therefore, there must exist k ∈ Z>0 such that 2r jk < r j. This, however, contradicts
the definition of rk, and so we must have x ∈ Bn(r j′ , x j′) for some j′ ∈ J′.

To complete the proof in this case we prove a simple geometrical lemma.

1 Sublemma Let x1, x2 ∈ Rn, let r1, r2 ∈ R>0 satisfy r1 ≥
1
2 r2, and suppose that Bn(r1, x1) ∩

Bn(r2, x2) , ∅. Then Bn(r2, x2) ⊆ Bn(5r1, x1).

6Giuseppe Vitali (1875–1932) was an Italian Mathematician who made important contributions
to analysis.
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Proof Let x ∈ Bn(r2, x2) and let y ∈ Bn(r1, x1) ∩ Bn(r2, x2). Multiple applications of the
triangle inequality gives

∥x − x1∥Rn ≤ ∥x − x2∥Rn + ∥y − x2∥Rn + ∥y − x1∥Rn ≤ 5r1,

as desired. ▼

From the sublemma and since we have shown that, for each j ∈ J, Bn(r j, x j)
intersects at least one of the balls Bn(r j′ , x j′), j′ ∈ J′, it follows that

∪ j∈JBn(r j, x j) ⊆ ∪ j′∈J′Bn(r j′ , x j′),

as claimed.
Next we consider the case where ∪ j∈JBn(r j, x j) is not bounded. Let ρ = sup{r j | j ∈

J}. We inductively define J′k, k ∈ Z>0, of J as follows. Define

J1 = { j ∈ J | Bn(r j, x j) ∩ Bn(4ρ, 0n) , ∅}

and note that ∪ j∈J1B
n(r j, x j) is bounded since ρ is finite. Let J′′1 ⊆ J1 be defined by the

applying the procedure from the first part of the proof to the set J1. Then denote

J′1 = { j ∈ J′′1 | Bn(r j, x j) ∩ Bn(ρ, 0n) , ∅}.

Note that
1. (Bn(r j′ , x j′)) j′∈J′1

are pairwise disjoint and that

2. ∪{Bn(r j, x j) | Bn(r j, x j) ∩ Bn(ρ, 0n)} ⊆ ∪ j′∈J′1
Bn(5r j′ , x j′).

Next define

J2 = J1 ∪ { j ∈ J | Bn(r j, x j) ∩ (Bn(5ρ, 0n) \ Bn(4ρ, 0n)) , ∅}.

Also take J′′2 ⊆ J2 to be the subset constructed as in the first part of the proof. Then
define

J′2 = { j ∈ J′′2 | Bn(r j, x j) ∩ Bn(2ρ, 0n) , ∅}.

Note that since the only balls added to J1 in forming J2 do not intersect Bn(ρ, 0n), it
follows that J′′1 ⊆ J′′2 , and thus that J′1 ⊆ J′2. Moreover, note that

1. (Bn(r j′ , x j′)) j′∈J′2
are pairwise disjoint and that

2. ∪{Bn(r j, x j) | Bn(r j, x j) ∩ Bn(2ρ, 0n)} ⊆ ∪ j′∈J′2
Bn(5r j′ , x j′).

Proceeding in this way we define J′1 ⊆ · · · ⊆ J′k ⊆ · · · . Then take J′ = ∪k∈Z>0 J′k. By
Proposition I-1.7.16 it follows that J′ is countable. If j′1, j′2 ∈ J′ then, by construction,
there exists k ∈ Z>0 such that j′1, j′2 ∈ J′k. It thus follows that Bn(r j′1

, x j′1
) and Bn(r j′2

, x j′2
) are

disjoint. If x ∈ ∪ j∈JBn(r j, x j) we have x ∈ Bn(r j0 , x j0) where Bn(r j0 , x j0) ∩ Bn(kρ, 0m) , ∅
for some k ∈ Z>0. Then x ∈ ∪ j′∈J′k

Bn(5r j′ , x j′). This gives the lemma. ■
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2.5.31 Remark (The Vitali Covering Lemma for finite coverings) If the index set J is
finite in the preceding result, then one can strengthen the conclusions to assert that

∪ j∈JBn(r j, x j) ⊆ ∪ j′∈J′Bn(3r j′ , x j′).

This is achieved merely by noting that one can choose the numbers j1, . . . , jk so that
rs = ρs for s ∈ {1, . . . , k}. In this case, the factor of 1

2 in the sublemma can be removed
with the resulting change of the factor 5 to 3. •

There is a similar such result for, not balls, but cubes. Recall from Section II-1.2.3
that a cube in Rn is a rectangle, all of whose sides have the same length. We shall
denote by

C(r, x) = [x1 − r, x1 + r] × · · · × [xn − r, xn + r]

the cube centred at x ∈ Rn and with sides of length 2r.

2.5.32 Lemma (Properties of coverings by cubes) Let J ∈ {{1, . . . ,m},Z>0} and let
(C(rj, xj))j∈Z>0 be a countable family of cubes. Then there exists a subset J′ ⊆ J with
the following properties:

(i) the cubes (C(rj′ , xj′))j′∈J′ are pairwise disjoint;

(ii) ∪j∈JC(rj, xj) ⊆ ∪j′∈J′C(5rj′ , xj′).
Proof The result follows easily after making some observations about cubes, relying
on the general notion of a norm that we will introduce and discuss in Section 3.1. If
we define

∥(x1, . . . , xn)∥∞ = max{|x1|, . . . , |xn|},

then we note from Example 3.1.3–4 that this defines a norm onRn. Moreover, the balls
in this norm are cubes, as can be easily verified. A review of the proof of Lemma 2.5.30
shows that it is the norm properties of ∥·∥Rn that are used, along with the fact that the
balls in the norm ∥·∥Rn are the balls in the usual sense. Thus the entire proof of
Lemma 2.5.30 carries over, replacing Bn(r, x) with C(r, x) and ∥·∥Rn with ∥·∥∞. ■

The importance of the preceding results is not so readily seen at a first glance.
To illustrate the essence of the result, consider the following observation. Using the
notation of Lemma 2.5.30, suppose that ∪ j∈JBn(r j, x j) is bounded. The preceding
result says that there is a countable disjoint subset these balls that covers at least
1
5n of the volume of region covered by the complete collection of balls. The main
point is that the volume fraction covered by the disjoint balls is bounded below by
a quantity, 1

5n , that is independent of the covering. It is this property that will make
these preceding lemmata useful in the subsequent discussion.

First we give a definition for a sort of covering which we shall show has useful
properties. In the following definition, let us call the number 2r the diameter of
a ball Bn(r, x) or a cube C(r, x). We denote the diameter of a ball or cube B by
diam(B).
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2.5.33 Definition (Vitali covering) Let J be an index set, let A ⊆ Rn, and let (B j) j∈J be a
family of either closed balls or closed cubes, i.e., either (1) B j is a closed ball for
every j ∈ J or (2) B j is a closed cube for every j ∈ J. Suppose that int(B j) , ∅ for
each j ∈ J. This family of balls or cubes is a Vitali covering of A if, for every ϵ ∈ R>0

and for every x ∈ A there exists j ∈ J such that x ∈ B j and such that diam(B j) < ϵ. •

Before giving the essential theorem about Vitali coverings, let us give an example
of a Vitali covering.

2.5.34 Example (Vitali covering) If A ⊆ Rn, define

CA = {Bn(r, x) ⊆ Rn
| r ∈ R>0, A ∩ Bn(r, x) , ∅}.

If ϵ ∈ R>0 and x ∈ A then Bn(ϵ, x) contains x and is in CA. This implies that CA is a
Vitali covering. •

As the definition implies and the above example illustrates, one might expect
that a Vitali covering of a set will involve a plentiful, rather than a barely sufficient,
collection of balls or cubes.

The following theorem will be useful for us in a few different places in the text.

2.5.35 Theorem (Property of Vitali coverings) Let A ⊆ Rn be nonempty and let (Bj)j∈J be a
Vitali covering of A by cubes or balls. Then there exists a countable subset J′ ⊆ J such that

(i) the sets (Bj′)j′∈J′ are pairwise disjoint and
(ii) λ∗n(A − ∪j′∈JBj′) = 0.

Proof First we suppose that A is bounded and let U be a bounded open set such that
A ⊆ U and define

J′′ = { j ∈ J | B j ⊆ U}

and note that (B j) j∈J′′ is a Vitali cover of A (why?). We now apply the construction of
either of Lemma 2.5.30 or 2.5.32 as appropriate to arrive at a countable subset J′ ⊆ J′′.
For the remainder of the proof, for concreteness let us suppose that J′ is infinite and
write J′ = { jk}k∈Z>0 . We also recall from the proof of Lemma 2.5.30 the sequence
(ρk)k∈Z>0 of positive numbers.

Now let N ∈ Z>0 and let x ∈ A − ∪N
k=1B jk . Since the set ∪N

k=1B jk is closed by
Proposition II-1.2.19 and since (B j) j∈J′′ is a Vitali covering of A, there exists j ∈ J′′ such
that x ∈ B j and B j ∩ (∪N

k=1B jk) = ∅. Suppose m ∈ Z>0 is such that B j ∩ (∪m
k=1B jk = ∅.

Then diam(B j) ≤ ρk+1 by definition of ρk+1. Since limk→∞ ρk = 0 (see the proof of
Lemma 2.5.30) it must therefore be the case that there exists m0 ∈ Z>0 such that
B j ∩ (∪m

k=1B jk) , ∅ for all m ≥ m0. Thus diam(B j) ≤ ρm0 and so diam(B j) ≤ 2diam(Bm0)
since diam(Bm0) ≥ 1

2ρm0 . Since B j ∩ (∪m0−1
k=1 B jk) = ∅ we must have B j ∩ Cm0 , ∅.

For j ∈ J let B′j be the ball or cube whose centre agrees with that of B j but for which
diam(B′j) = 5diam(B j). The lemma from the proof of Lemma 2.5.30 then gives B j ⊆ B′m0

.

Since m0 ≥ N + 1 by virtue of the fact that B j ∩ (∪N
k=1B jk) = ∅, we then have

x ∈ B j ⊆ B′m0
⊆ ∪k=N+1B′jk .
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This shows that
A − ∪N

k=1B jk ⊆ ∪k=N+1B′jk .

Now note that
∑
∞

k=1 λn(B jk) < ∞, as was shown during the proof of Lemma 2.5.30.
An application of Exercise 2.5.1 then gives

∑
∞

k=1 λn(B′jk) < ∞. Let ϵ ∈ R>0. By Proposi-
tion I-2.4.7 it follows that there exists N ∈ Z>0 sufficiently large that

∑
∞

k=N+1 λn(B′jk) < ϵ.
Therefore,

λ∗n
(
A − ∪N

k=1B jk

)
≤ λ∗n

(
∪k=N+1B′jk

)
=

∞∑
k=N+1

λ∗n(B′jk) < ϵ,

using monotonicity and subadditivity of the Lebesgue outer measure. Monotonicity
of the Lebesgue outer measure shows that

λ∗n
(
A − ∪∞k=1B jk

)
≤ λ∗n

(
A − ∪N

k=1B jk

)
< ϵ,

which completes the proof in the case that A is bounded.
If A is unbounded, proceed as follows. Let (Uk)k∈Z>0 be a countable collection of

pairwise disjoint bounded open sets for which

λn(Rn
\ ∪
∞

k=1Uk) = 0.

Let Ak = Uk ∩A. For every k ∈ Z>0 for which Ak , ∅ the first part of the proof yields a
countable subset J′k ⊆ J such that the family (B j′k

) j′k∈J′K
is pairwise disjoint and such that

λ∗n
(
Ak − ∪ j′k∈J′k

B j′k

)
= 0.

Let us define J′ = ∪∞k=1J′k and note that, by virtue of the constructions in the first part
of the proof, (B j′) j′∈J′ is pairwise disjoint. Moreover,

A = ∪∞k=1Ak ∪ (A ∩ (Rn
\ ∪
∞

l=1Ul))

from which we conclude that

A − ∪ j′∈J′B j′ = (∪∞k=1Ak − ∪
∞

jk=1B j′k
).

Note that J′ is countable by Proposition I-1.7.16. Thus A−∪ j′∈J′B j′ is a countable union
of sets of measure zero, and so is a set of measure zero. ■

2.5.6 The Banach–Tarski Paradox

In this section we give an “elementary” proof of an (in)famous result regarding
the strangeness of sets that are not Lebesgue measurable. Let us state the result
first and then provide some discussion. After this we will devote the remainder of
the section to the proof of the theorem.

To state the result we first introduce some language to organise the statement.
We recall from Definition II-1.3.17 the definition of an isometry and from Theo-
rem II-1.3.20 the characterisation of characterisation of isometries. The group of
isometries is denoted in Definition II-1.3.21 by E(n).
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2.5.36 Definition (Piecewise congruent) Subsets X,Y ⊆ Rn are piecewise congruent if
there exists

(i) N ∈ Z>0,
(ii) a partition (X1, . . . ,XN) of X, and
(iii) ρ1, . . . ,ρN ∈ E(n)

such that (ρ1(X1), . . . ,ρN(XN)) is a partition of Y. •

Piecewise congruence should be viewed as follows. The set X is chopped up into
N bits, and these bits are rearranged without distortion to give Y. An illustration
of this in a simple case is given in Figure 2.4. The idea seems innocuous enough,

Figure 2.4 Piecewise congruent sets

but the Banach–Tarski Paradox tells us that some unexpected sets can be piecewise
congruent.

2.5.37 Theorem (Banach–Tarski Paradox) If X,Y ⊆ R3 are bounded sets with nonempty
interiors then they are piecewise congruent.

For example, the result says that one can cut up a set the size a pea into a finite
number of disjoint components and reassemble these into a set the size of Jupiter.
A common first reaction to this is that it is obviously false. But one should take
care to understand that the theorem does not say this is true in the physical world,
only in the mathematical world. In the mathematical world, or at least the one
with the Axiom of Choice, there are sets whose volume does not behave as one
normally expects volume to behave. It is this sort of set into which the set X is
being partitioned in the theorem. For example, one should consider the set A of
Example 2.4.3 that is not Lebesgue measurable. The main idea in showing that
A is not Lebesgue measurable consists of showing that (0, 1) can be written as a
countable disjoint union of translates of A. This led us directly to contradictory
conclusions that, if the volume of A is well-behaved, then (0, 1) has either zero or
infinite volume. Well, the subsets into which the sets of the Banach–Tarski Paradox
are partitioned are non-Lebesgue measurable too. Thus we should not expect that
the volumes of these sets behave in a decent way.
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Let us now prove the Banach–Tarski Paradox. The proof is involved, but
elementary. In the proof we denote by S2 the boundary of B3(1, 0), i.e., S2 is the
sphere of radius 1 in R3.

Our proof begins with some algebraic constructions. Define A,B ∈ O(3) by

A =

− cosθ 0 sinθ
0 −1 0

sinθ 0 cosθ

 , B =


−

1
2 −

√
3

2 0
√

3
2 −

1
2 0

0 0 1

 .
The value of θ ∈ R will be chosen shortly. One verifies directly that

B2 =


−

1
2

√
3

2 0
−

√
3

2 −
1
2 0

0 0 1

 , B3 = A2 = I3.

Thus A−1 = A and B−1 = B2. It then follows that if we define

G = {R1 · · ·Rk | k ∈ Z>0, R j ∈ {A,B}, j ∈ {1, . . . , k}} ∪ {I3},

then G is a subgroup of O(3). Note that it is possible that

R1 · · ·Rk = R′1, . . . ,R
′

k′ ,

i.e., that different products will actually agree. We wish to eliminate this ambiguity.
First of all, note that the relations A3 = B2 = I3 ensure that if R1, . . . ,Rk ∈ {A,B} then
we can write

R1 · · ·Rk = R′1 · · ·R
′

k′

for R′j ∈ {A,B,B
2
}, j ∈ {1, . . . , k′}. Next we claim that if R1, . . . ,Rk ∈ {A,B,B2

} for
k ≥ 2 then

R ≜ R1 · · ·Rk = R′1 · · ·R
′

k

where R′j ∈ {BA,B2A}. This, however, follows from the fact that the relations
A3 = B2 = I3 ensure that at least one of the following four possibilities hold:
1. R = Br1ABr2A · · ·BrmA;
2. R = ABr1ABr2 · · ·ABrm ;
3. R = Br1ABr2A · · ·Brm−1ABrm ;
4. R = ABr1ABr2 · · ·ABrmA.
where r1, . . . , rm ∈ {1, 2}. This gives the desired conclusion. We shall call any one
of these four representations a reduced representation. It is still possible, after
reduction to a product in {BA,B2A}, that the representation as such a product will
not be unique. For example, of θ = π then we have BA = AB2. The following result
gives a condition under which this lack of uniqueness cannot happen.
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2.5.38 Lemma If cosθ is transcendental, i.e., it is not a root of any polynomial with rational
coefficients, then for R ∈ G \ {I3} there exists a unique reduced representation

R = R1 · · ·Rk

for k ∈ Z>0 and Rj ∈ {A,B,B2
}, j ∈ {1, . . . ,k}.

Proof The existence of the representation follows from the fact that A−1 = A and
B−1 = B2. Thus we need only show uniqueness. It suffices to show that it is not
possible to write

I3 = R1 · · ·Rk

for k ∈ Z>0 and R j ∈ {A,B,B2
}, j ∈ {1, . . . , k}. Indeed, if we have

R1 · · ·Rk = R′1 · · ·R
′

k′

with the factors in the products not being identical on the left and right, then

I3 = R−1
k · · ·R

−1
1 R′1 · · ·R

′

k′ ,

giving I3 as a product in the factors {A,B,B2
}.

It is clear that A,B,B2 , I3.
Now let R be one of the first of the four reduced representations given preceding

the statement of the lemma. Thus R = R1 · · ·Rk with R j ∈ {BA,B2A}, j ∈ {1, . . . , k}. By
an elementary inductive computation on k one can check that the third component of
the vector Re3 is a polynomial in cosθ whose coefficients are rational. Since cosθ is
transcendental is cannot hold that Re3 = e3 and so R , I3.

If R has the second of the four reduced representations then R′ = ARA has the first
of the four forms, and so cannot be equal to I3. Therefore, R , I3 since, if it did, we
would have R′ = A2 = I3.

Next let R be of the third of the reduced representations, assuming that m has been
chosen to be the smallest positive integer for which the representation is possible; note
that we must have m > 1. Suppose that R = I3. Note that

I3 = B−r1RBr1 = ABr2 · · ·ABr1+rm .

If r1 = rm then Br1+rm ∈ {B2,B4 = B} and so this gives I3 as a reduced representation in
the second of the four forms. This cannot be, so we cannot have r1 = rm. Therefore,
the only other possibility is r1 + rm = 3. In this case, if m > 3 we have

I3 = ABrmRBr1A = Br2A · · ·ABrm−1 ,

contradicting our assumption that m is the smallest positive integer giving the reduced
representation. Thus we must have m ∈ {2, 3}. For m = 2 we then have

I3 = Br2RBr1 = B

and if m = 3 we then have
I3 = ABr3RBr1A = Br2 .

Both of these conclusions are not possible, and so we cannot have R = I3.
Finally, we consider R to have the fourth of the four reduced representations. In

this case, if R = I3 then I3 = ARA has the third reduced representation, giving a
contradiction. ■
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We now fix θ such that cosθ is transcendental; this is possible since only a
countable subset of numbers are not transcendental and since image(cos) = [−1, 1].
If R ∈ G, by the preceding lemma we can write

R = R1 · · ·Rk

for R1, . . . ,Rk ∈ {A,B,B2
}with this representation being unique when it is reduced.

In this case we call k the length of R which we denote by ℓ(R). The following lemma
now uses the preceding lemma to give an essential decomposition of G.

2.5.39 Lemma The group G has a partition (G1,G2,G3) into three nonempty subsets such that
(i) R ∈ G1 if and only if AR ∈ G2 ∪G3;
(ii) R ∈ G1 if and only if BR ∈ G2;
(iii) R ∈ G1 if and only if B2R ∈ G3.

Proof We define the partitions inductively by the length of their elements. For ℓ(R) = 1
we assign

I3 ∈ G1, A ∈ G2, B ∈ G2, B2
∈ G3. (2.9)

Now suppose that all elements R ∈ G for which ℓ(R) = m have been assigned to G1,
G2, or G3. If ℓ(R) = m+1 then write the reduced representation of R as R = R1 · · ·Rm+1.
Let R′ = R2 · · ·Rm+1 so that ℓ(R′) = m. We then assign R to either G1, G2, or G3 as
follows:

R1 = A, R2 ∈ {B,B2
}, R′ ∈ G1 =⇒ R ∈ G2,

R1 = A, R2 ∈ {B,B2
}, R′ ∈ G2 ∪G3 =⇒ R ∈ G1, (2.10)

R1 = B, R2 = A, R′ ∈ G j, =⇒ R ∈ G j+1, (2.11)

R1 = B2, R2 = A, R′ ∈ G j, =⇒ R ∈ G j+2, (2.12)

where we adopt the notational convention that G4 = G1 and G5 = G2. Doing this for
each m gives subsets G1, G2, and G3 of G whose union equals G. Moreover, one can
check that our inductive construction is unambiguous and so assigns each R ∈ G to a
unique component G1, G2, or G3. It remains to show that the partition defined has the
desired properties (i)–(iii).

We do this by induction on the length of the elements of G. It is obviously true for
elements of length 1, using the rules prescribed above for forming the partitions. Now
suppose that if R ∈ G has length less than m ∈ Z>0 we have verified properties (i)–(iii).
We then let R ∈ G with R = R1 · · ·Rm the unique reduced representation. We denote
R′ = R2 · · ·Rm. We consider various cases.
1. R1 = A: We have AR = R′. Thus ℓ(AR) = m − 1 and so the induction hypothesis

can be applied to AR. Doing so yields

R < G1 ⇐⇒ A2R < G1 ⇐⇒ A(AR) ∈ G2 ∪G3

⇐⇒ AR ∈ G1 ⇐⇒ AR < G2 ∪G3.

Thus R ∈ G1 if and only if AR ∈ G2∪G3 and so (i) holds. Moreover, (2.11) and (2.12)
give

BR ∈ G2 ⇐⇒ R ∈ G1, B2R ∈ G3 ⇐⇒ R ∈ G1,

which gives properties (ii) and (iii).
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2. R1 = B: In this case, (2.10) immediately gives

AR ∈ G2 ∪G3 ⇐⇒ R ∈ G1,

which gives condition (i). We also have BR = B2R′ with ℓ(R′) = m − 1 and with
R2 = A. Thus we can apply (2.11) and (2.12) to get

BR ∈ G2 ⇐⇒ B2R′ ∈ G2 ⇐⇒ B2R′ ∈ G5

⇐⇒ R′ ∈ G3, ⇐⇒ BR′ ∈ G4

⇐⇒ BR′ ∈ G1 ⇐⇒ R ∈ G1

which gives condition (ii). We also immediately have, borrowing an implication
from the preceding line,

B2R ∈ G3 ⇐⇒ R′ ∈ G3 ⇐⇒ R ∈ G1

giving condition (iii).
3. R1 = B2: From (2.10) we have

AR ∈ G2 ∪G3 ⇐⇒ R ∈ G1,

which gives condition (i). We have BR = R′ with ℓ(R′) = m − 1 and with R2 = A.
We then have, using (2.11) and (2.12),

BR ∈ G2 ⇐⇒ R′ ∈ G2 ⇐⇒ B2R′ ∈ G4

⇐⇒ B2R′ ∈ G1 ⇐⇒ R ∈ G1

which gives condition (ii). Finally, we have

B2R ∈ G3 ⇐⇒ BR′ ∈ G3 ⇐⇒ R′ ∈ G2 ⇐⇒ R ∈ G1,

borrowing an implication from the preceding line. Thus we also have condition (iii).
■

Now we state the result on which the entire proof hinges. It relates the algebraic
constructions thus far seen in the proof to conclusions about subsets of S2. It is here
that we employ the Axiom of Choice in an essential way.

2.5.40 Lemma There exists a partition (P, S1, S2, S3) of S2 for which
(i) P is countable,
(ii) A(S1) = S2 ∪ S3,
(iii) B(S1) = S2, and
(iv) B2(S2) = S3.

Proof Define
P = {x ∈ S2

| R(x) = x, R ∈ G \ {I3}}.



2022/03/07 2.5 Lebesgue measure on Rn 177

Since G is countable and since R(x) = x for two point x ∈ S2 by Exercise II-1.3.8, it
follows that P is countable. If x ∈ S2

\ P denote

Gx = {R(x) | R ∈ G}.

We claim that Gx ⊆ S2
\ P. Indeed, suppose otherwise. Then there exists R ∈ G such

that R(x) ∈ P. Then SR(x) = R(x) for S ∈ G \ {I3}. Then R−1SR(x) = x with R−1SR , I3,
contradicting the assumption that x < P. If x, y ∈ P, we claim that either Gx = Gy or
Gx∩Gy = ∅. Indeed, suppose that z ∈ Gx∩Gy so that z = Rx = Sy for R,S ∈ G. Then
let z ∈ Gx with z = Tx. Then z = TR−1Sy and so z ∈ Gy. Thus

{Gx | x ∈ S2
\ P} (2.13)

is a partition of S2
\ P. Let C ⊆ S2

\ P be chosen so that it contains exactly one element
of each component of this partition, using the Axiom of Choice. Now define

S j = {Rx | x ∈ C, R ∈ G j}, j ∈ {1, 2, 3}.

We claim that S2
\ P = S1 ∪ S2 ∪ S3. Indeed, let x ∈ S2

\ P. Then x = R(x′) for some
x′ ∈ C and for some R ∈ G. Since G = G1 ∪ G2 ∪ G3 it follows that x ∈ S j for some
j ∈ {1, 2, 3}. We also claim that S j ∩ Sk = ∅ for j , k. Indeed, suppose that x ∈ S j ∩ Sk.
Then x = R j(x j) = Rk(xk) for some R j ∈ G j, Rk ∈ Gk, x j, xk ∈ C. Since C contains exactly
one element from each component in the partition (2.13), it follows from the fact that
x j = R−1

j Rkxk that x j and xk are in the same component of the partition and so are equal.

Since C ⊆ S2
\ P it follows that R−1

j Rk = I3 and so R j = Rk. Thus j = k. This shows that
(P,S1,S2,S3) is indeed a partition of S2.

Moreover, we compute

A(S1) = {AR(x) | R ∈ G1, x ∈ C} = {Tx | T ∈ G2 ∪G3, x ∈ C} = S2 ∪ S3,

B(S1) = {BR(x) | R ∈ G1, x ∈ C} = {Tx | T ∈ G2, x ∈ C} = S2,

B2(S2) = {B2R(x) | R ∈ G1, x ∈ C} = {Tx | T ∈ G3, x ∈ C} = S3,

giving conditions (ii)–(iv). ■

The following rather technical lemma will be crucial to our proof.

2.5.41 Lemma If P ⊆ S2 is countable then there exists Q ⊆ S2 countable and T ∈ O(3) such
that P ⊆ Q and such that T(Q) = Q − P.

Proof Let v = (v1, v2, 0) ∈ S1 be such that v,−v < P; since P is countable this is possible.
Define

T0 =


v1 v2 0
−v2 v1 0

0 0 1

 ,
and note that T0 ∈ O(3) since v2

1 + v2
2 = 1. Note that T0(v) = e1 and that e1,−e1 < T0(P).

For t ∈ R define the orthogonal matrix

Ut =


1 0 0
0 cos t − sin t
0 sin t cos t

 .
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Note that

Uk
t =


1 0 0
0 cos(kt) − sin(kt)
0 sin(kt) cos(kt)

 , k ∈ Z>0.

For x, y ∈ P and for k ∈ Z>0 consider the equation Uk
t (x) = y. In components this

equation reads

x1 = y1, cos(kt)x2 − sin(kt)x3 = y2, sin(kt)x2 + cos(kt)x3 = y3.

If y1 , x1 then these equations have no solution in t. If y1 = x1 then there are infinitely
many solutions in t, all satisfying cos(kt) = 1 and sin(kt) = 0. In particular, in [0, 2π)
there are exactly k solutions if y1 = x1. Therefore, since the set P×P×Z>0 is countable
by Proposition I-1.7.16, it follows that the complement to the set{

t ∈ R
∣∣∣∣ T0(P) ∩

(
∪k∈Z>0Uk

t (T0(P))
)
= ∅

}
(2.14)

is countable. Thus choose a t in the set (2.14) and denote U = Ut. Then define
T = T−1

0 UT0 and
Q = P ∪

(
∪k∈Z>0Tk(P)

)
.

One can directly check that UkT0 = T0Tk for k ∈ Z>0. Thus, using the fact that U is
defined by t satisfying (2.14), we have

T0(P ∩ T(Q)) = T0

(
P ∩

(
∪k∈Z>0Tk(P)

))
= ∅.

We then conclude that P ∩ T(Q) = ∅, and since Q = P ∪ T(Q), as follows from the
definition of Q, it follows that T(Q) = Q − P. ■

Using the previous lemma, we now make a decomposition of S2.

2.5.42 Lemma There exists a partition (Tj)1≤j≤10 of S2 and isometries σ1, . . . ,σ10 ∈ E(n) such
that (σj(Tj))1≤j≤6 and (σj(Tj))7≤j≤10 are both partitions of S2.

Proof We use the partition (P,S1,S2,S3) from Lemma 2.5.40. We define

U1 = A(S2), U2 = BA(S2), U3 = B2A(S2),

V1 = A(S3), U2 = BA(S3), U3 = B2A(S3).

By Lemma 2.5.40 we see that (U j,V j) is a partition of S j for each j ∈ {1, 2, 3}. Now
define

T7 = U1, T8 = U2, T9 = U3, T10 = P,

σ7 = B2A, σ8 = AB2, ρ9 = BAB, ρ10 = I3.

We can then check that σ10(T10) = P and σ j(T j) = S j−6 for j ∈ {7, 8, 9}. Thus (σ j(T j))7≤ j≤10
is a partition of S2. Next note that

S2
\ (T7 ∪ T8 ∪ T9 ∪ T10) = V1 ∪ V2 ∪ V3.
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Let Q ⊆ S2 and T ∈ O(3) be as in Lemma 2.5.41 and define

T1 = σ8(S1 ∩Q), T2 = σ9(S2 ∩Q), T3 = σ7(S3 ∩Q),
T1 = σ8(S1 \Q), T2 = σ9(S2 \Q), T3 = σ7(S3 \Q).

Then (T1,T4) partitions ρ8(S1) = V1, (T2,T5) partitions ρ9(S2) = V2, and (T3,T6) parti-
tions ρ7(S3) = V3. Therefore, (T j)1≤ j≤10 is a partition of S2. Finally, define

σ4 = σ
−1
8 , σ5 = σ−1

9 , σ6 = σ−1
7 , σ j = Rσ j+3, j ∈ {1, 2, 3}.

One can then directly check that σ j+3(T j+3) = S j \Q, j ∈ {1, 2, 3} so that

∪
3
j=1σ j+3(T j+3) = S2

\Q

by virtue of the fact that P ⊆ Q. Moreover,

σ j(T j) = R−1σ j+3(T j) = R−1(S j ∩Q), j ∈ {1, 2, 3},

which shows that σ j(T j) ∩ σk(Tk) = ∅ if j , k. This also shows that

∪
3
j=1σ j(T j) = R−1(Q − P) = Q.

Thus (σ j(T j))1≤ j≤6 is a partition of S2, completing the proof. ■

2.5.43 Lemma For r ∈ R>0 and x0 ∈ R3 there exists a partition (Bj)1≤j≤40 of B3(r, x0) and
isometries ρ1, . . . ,ρ40 ∈ E(n) such that (ρj(Bj))1≤j≤24 and (ρj(Bj))25≤j≤40 are both partitions

of B3(r, x0).
Proof Let us first prove the result when r = 1 and x0 = 0 in which case bd(B3(1, 0)) = S2.
For S ⊆ S2 let us denote

Ŝ = {λx | λ ∈ (0, 1], x ∈ S}.

Thus, for example, Ŝ2 = B3(1, 0) \ {0}.
Let P = {e1} and, by Lemma 2.5.41, let Q ⊆ S2 and R0 ∈ O(3) be such that Q is

countable, P ⊆ Q, and R0(Q) = Q \ P. Define

N1 =
{

1
2 (x − e1)

∣∣∣ x ∈ Q
}

and define ρ0 ∈ E(3) by
ρ0(x) = R0(x + 1

2 e1) − 1
2 e1;

thus ρ0 is a rotation about 1
2 e1. Note that 0 ∈ N1 and that ρ0(N1) = N1 \ {0}. Denote

N2 = B3(1, 0) \N1, f 1 = ρ0, f 2 = I3, Mk = f k(Nk), j ∈ {1, 2}.

Then we have (N1,N2) as a partition of B3(1, 0) and (M1,M2) as a partition of Ŝ2. Let
(T j)1≤ j≤10 and (σ j)1≤ j≤10 be as in Lemma 2.5.42, noting that (T̂ j)1≤ j≤10 is a partition of
Ŝ2.
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Note that
(Mk ∩ T̂ j ∩ σ j(Ml) | k, l ∈ {1, 2}, j ∈ {1, . . . , 10})

is a partition of Ŝ2 into forty components. Moreover, if we define

Bkl j = f−1
k (Mk ∩ T̂ j ∩ σ

−1
j (Ml)), k, l ∈ {1, 2}, j ∈ {1, . . . , 10},

then these sets partition B3(1, 0). Moreover, for fixed j ∈ {1, . . . , 10}, the sets

σ j ◦ f k(Bkl j) =Ml ∩ σ j(Mk ∩ T̂ j), k, l ∈ {1, 2},

partition σ j(T̂ j). By Lemma 2.5.42 we have that

(σ j ◦ f k(Bkl j) | k, l ∈ {1, 2}, j ∈ {1, . . . , 6}),

(σ j ◦ f k(Bkl j) | k, l ∈ {1, 2}, j ∈ {7, . . . , 10})

each partition Ŝ2. Therefore, if we define ρkl j = f−1
l ◦ σ j ◦ f k we see that

(ρkl j(Bkl j) | k, l ∈ {1, 2}, j ∈ {1, . . . , 6}),

(ρkl j(Bkl j) | k, l ∈ {1, 2}, j ∈ {7, . . . , 10})

each partition B3(1, 0). This proves the lemma for r = 1 and x0 = 0.
In general, we define B′kl j ⊆ B3(r, x0) and ρ′kl j ∈ E(3), k, l ∈ {1, 2}, j ∈ {1, . . . , 10}, by

B′kl j = {rx + x0 | x ∈ Bkl j}

and
ρ′kl j(x) = rρkl j(r

−1(x − x0)) + x0

and then directly verify that

(ρ′kl j(B
′

kl j) | k, l ∈ {1, 2}, j ∈ {1, . . . , 6}),

(ρ′kl j(B
′

kl j) | k, l ∈ {1, 2}, j ∈ {7, . . . , 10})

each partition B3(r, x0). ■

Now let us introduce some notation that will be convenient in the remainder
of the proof. If set X,Y ⊆ Rn are piecewise congruent then we write X ∼ Y. If X is
piecewise congruent to a subset of Y then we write X ≾ Y. The following lemma
records some useful facts about these relations.

2.5.44 Lemma For X,Y,Z ⊆ Rn the following statements hold:
(i) X ∼ X;
(ii) if X ∼ Y then Y ∼ X;
(iii) if X ∼ Y and Y ∼ Z then X ∼ Z;
(iv) if X ∼ Y then X ≾ Y;
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(v) if X ≾ Y and Y ≾ Z then X ≾ Z;
(vi) if X ⊆ Y then X ≾ Y;
(vii) if X ≾ Y and Y ≾ X then X ∼ Y.

Proof (i) This is obvious.
(ii) This follows since if ρ is an isometry then it is invertible and ρ−1 is an isometry.
(iii) Let (X1, . . . ,XN) and (Y1, . . . ,YM) be partitions of X and Y, respectively, with

ρ1, . . . ,ρN ∈ E(n) and σ1, . . . , σM ∈ E(n) such that (ρ j(X j)) j∈{1,...,N} and (σk(Yk))k∈{1,...,M}

are partitions of Y and Z, respectively. Then, for j ∈ {1, . . . ,N} and k ∈ {1, . . . ,M}, define
A jk = X j∩ρ−1

j (Yk), noting that the sets A jk, j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, form a partition
of X. Thus the sets ρ j(A jk) = Yk ∩ ρ j(X j), j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, form a partition
of Y and the sets σk ◦ ρ j(Ai j), j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, form a partition of Z. Since
σk ◦ ρ j ∈ E(n) for each j ∈ {1, . . . ,N} and k ∈ {1, . . . ,M}, it follows that X ∼ Z, as desired.

(iv) This follows because Y ⊆ Y.
(v) Let (X1, . . . ,XN) and (Y1, . . . ,YM) be partitions of X and Y, respectively, with

ρ1, . . . ,ρN ∈ E(n) and σ1, . . . , σM ∈ E(n) such that (ρ j(X j)) j∈{1,...,N} and (σk(Yk))k∈{1,...,M} are
partitions of Y′ ⊆ Y and Z′ ⊆ Z, respectively. Then, for j ∈ {1, . . . ,N} and k ∈ {1, . . . ,M},
define A jk = X j ∩ ρ−1

j (Yk), noting that the sets A jk, j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, form a
partition of X. Thus, for fixed k ∈ {1, . . . ,M}, the sets ρ j(A jk) = Yk∩ρ j(X j), j ∈ {1, . . . ,N},
form a partition of Yk ∩ Y′ and the sets σk ◦ ρ j(Ai j), j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, then
form a partition for some subset Z′′ ⊆ Z. Since σk ◦ ρ j ∈ E(n) for each j ∈ {1, . . . ,N} and
k ∈ {1, . . . ,M}, it follows that X ≾ Z, as desired.

(vi) This is obvious.
(vii) Suppose that X ∼ Y′ and Y ∼ X′ for X′ ⊆ X and Y′ ⊆ Y. Let (X1, . . . ,XN)

and (Y1, . . . ,YM) be partitions of X and Y, respectively, with ρ1, . . . ,ρN ∈ E(n) and
σ1, . . . , σM ∈ E(n) such that (ρ j(X j)) j∈{1,...,N} and (σk(Yk))k∈{1,...,M} are partitions of Y′ ⊆ Y
and X′ ⊆ X, respectively. Define bijections ρ : X → Y′ and σ : Y → X′ by asking that
ρ|X j = ρ j and that σ|Yk = σk for j ∈ {1, . . . ,N} and k ∈ {1, . . . ,M}. If A ⊆ X denote

Ã = X \ σ(Y \ ρ(A)).

It is easy to verify that of A ⊆ B ⊆ X that Ã ⊆ B̃. Now define S = {A ⊆ X | A ⊆ Ã}.
Since ∅ ∈ S , S is not empty. Let S = ∪S . If A ∈ S then A ⊆ S and so Ã ⊆ S̃.
Therefore, S ⊆ S̃ and so S̃ ⊆ ˜̃S. Thus S̃ ∈ S and so S̃ ⊆ S. Therefore, S = S̃. Therefore,
by definition of ·̃,

S = X \ σ(Y \ ρ(S)) =⇒ X \ S = σ(Y \ ρ(S)).

This implies that X \ S ∈ X′. Now let l ∈ {1, . . . ,N +M} and define

Al =

S ∩ Xl, l ∈ {1, . . . ,N},
σl−N(Yl−N \ ρ(S)), l ∈ {N + 1, . . . ,N +M}

and

τl =

ρl, l ∈ {1, . . . ,N},
σ−1

l−N, l ∈ {N + 1, . . . ,N +M}.
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One then verifies that (A1, . . . ,AN) partitions S, (AN+1, . . . ,AN+M) partitions X \ S,
(τ1(A1), . . . , τN(AN)) partitions ρ(S), and (τN+1(AN+1), . . . , τN+M(AN+M)) partitions Y \
ρ(S). This gives X ∼ Y. ■

Next we state a lemma about piecewise congruence of identical balls with finite
unions of the same sized balls.

2.5.45 Lemma If r ∈ R>0 and x0, x1, . . . , xk ∈ Rn then B3(r, x0) ∼ ∪k
j=1B

3(r, xj).
Proof We first prove the lemma in the case of k = 2, assuming that ∥x1 − x2∥R3 >

2ϵ, i.e., assuming that B3(r, x1) and B3(r, x2) do not intersect. Let (B j)1≤ j≤40 be the
partition of B3(r, x0) and let (ρ j)1≤ j≤40 be the isometries given by Lemma 2.5.43. Then
define σ j ∈ E(n), j ∈ {1, . . . , 40}, by

σ j(x) =

ρ j(x) − x0 + x1, j ∈ {1, . . . , 24},

ρ j(x) − x0 + x2, j ∈ {25, . . . , 40}.

Then (σ j(B j))1≤ j≤24 is a partition of B3(r, x1) and (σ j(B j))25≤ j≤40 is a partition of B3(r, x2)
by Lemma 2.5.43. Thus we have B3(r, x0) ∼ B3(r, x1) ∪ B3(r, x2) under the stated
hypotheses.

Now we prove the lemma by induction on k. The result is clear for k = 1: one need
only translate B3(r, x0) to B3(r, x1) by the isometry x 7→ x − x0 + x1. Suppose the result
holds for k = m− 1 and consider x1, . . . , xm ∈ Rn. Choose an arbitrary x′0 ∈ R

n such that
∥x0 − x′0∥R3 > 2ϵ. By the induction hypothesis we have B3(r, x0) ∼ ∪m−1

j=1 B3(r, x j). Note
that

B3(r, xm) \
(
∪

m−1
j=1 B3(r, x j)

)
⊆ B3(r, xm) ∼ B3(r, x′0),

and so
B3(r, xm) \

(
∪

m−1
j=1 B3(r, x j)

)
≾ B3(r, x′0).

From this we conclude that

B3(r, x0) ≾ ∪m
j=1B3(r, x j) ≾ B3(r, x0) ∪ B3(r, x′0) ≾ B3(r, x0)

from the first part of the proof. From part (vii) of Lemma 2.5.44 we deduce that
B3(r, x0) ∼ ∪m

j=1B3(r, x j) as desired. ■

Now we may conclude the proof of the Banach–Tarski Paradox. Let X and Y
be as in the statement of the theorem and let x ∈ int(X) and y ∈ int(Y). Choose
ϵ ∈ R>0 such that B3(ϵ, x) ⊆ int(X) and B3(ϵ, y) ⊆ int(Y). Boundedness of X ensures
that there exists x1, . . . , xk ∈ R3 such that X ⊆ ∪k

j=1B
3(ϵ, x j). By Lemma 2.5.45 and

part (vi) of Lemma 2.5.44 we have

B3(ϵ, 0) ≾ X ⊆ ∪k
j=1B

3(ϵ, x j) ≾ B3(ϵ, 0).

By part (vii) of Lemma 2.5.44 it follows that X ∼ A. Similarly we show that Y ∼ A.
By part (iii) of Lemma 2.5.44 it follows that X ∼ Y, which is the result.
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2.5.7 Notes

The Banach–Tarski Paradox is due to none other than Banach and Tarski [1924].
The proof we give follows that of Stromberg [1979]. The number 40 used in
Lemma 2.5.43 is not optimal. Indeed, Dekker and de Groot [1956] show that one
can decompose a ball into five disjoint components which can then be rearranged
into two balls of the same size.

Exercises

2.5.1 Let A ⊆ Rn be Lebesgue measurable and for ρ ∈ R>0 define

ρA = {ρx | x ∈ A}.

Show that λn(ρA) = ρnλn(A).

2.5.2 Show that for x ∈ Rn, the point mass δx : B (Rn)→ R≥0 is regular.

2.5.3 Show that the counting measure µ : B (Rn)→ R≥0 is not regular.
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Section 2.6

Measurable functions

In order to define the Lebesgue integral, one first defines functions for which
it is possible to define the Lebesgue integral. What results is a quite general class
of functions, certainly general enough to capture any function one is likely to
encounter in that fantastic place called “The Real World.”

Our approach, as with basic measure theory, is to start with generalities, and
then proceed to particular aspects of Lebesgue measurable functions.

Do I need to read this section? If you are wanting to learn about integration in
general, and the Lebesgue integral in particular, then this section is essential to
this. •

2.6.1 General measurable maps and functions

We begin with a rather general definition of a measurable map between mea-
surable spaces. The reader will observe that this definition harkens one back to the
definition of continuity (cf. ), and so can perhaps be seen as natural, provided youwhat?

are comfortable with the naturality of continuity as in .what?

2.6.1 Definition (Measurable map) Let (X,A ) and (Y,B ) be measurable spaces. A
map f : X → Y is (A ,B )-measurable if f −1(B) ∈ A for every B ∈ B . The set of
(A ,B )-measurable maps is denoted by L(0)((X,A ); (Y,B )), or simply by L(0)(X; Y),
with the understanding that the σ-algebras A andB are implicit. •

We shall not often consider maps between general measure spaces. However,
the above general definition is useful because it gives some context for the particular
definitions to follow.

It is often useful to be able to check measurability of a map by using generators
for the σ-algebra involved. The following result is helpful for doing this.

2.6.2 Proposition (Measurability of maps using generators for σ-algebras) Let X
and Y be sets, let S ⊆ 2X and T ⊆ 2Y, and let AS and AT be the σ-algebras generated
by S and T , respectively. If f : X→ Y is a map and if

T ⊆ {T ⊆ Y | f−1(T) ∈ S }

then f is (AS ,AT )-measurable.
Proof Let us denote

A ′ = {T ⊆ Y | f−1(T) ∈ AS }.

We claim that A ′ is a σ-algebra containing T . To see that it is a σ-algebra, first note
that f−1(Y) = X ∈ AS and so Y ∈ A ′. If T ∈ A ′ then

f−1(Y \ T) = X \ f−1(T)
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by Exercise I-1.3.3. Since X \ f−1(T) ∈ AS by virtue ofAS being a σ-algebra, it follows
that Y\T ∈ A ′. Finally, suppose that (T j) j∈Z>0 is a countable family of sets inA ′. Then,
by Proposition I-1.3.5 we have

f−1
( ⋃

j∈Z>0

T j

)
=

⋃
j∈Z>0

f−1(T j) ∈ AS

since AS is a σ-algebra. We thus conclude that ∪ j∈Z>0T j ∈ A ′. This shows that A ′ is a
σ-algebra. By hypothesis, if

B ∈ T ⊆ {T ⊆ Y | f−1(T) ∈ S }

then f−1(B) ∈ S ⊆ AS . Thus T ⊆ A ′ and so AT ⊆ A ′ since AT is the smallest
σ-algebra containing T . It therefore follows that if B ∈ AT then f−1(B) ∈ AS , i.e., that
f is (AS ,AT )-measurable. ■

We can give an application of the preceding result that gives an important class
of measurable maps.

2.6.3 Example (Continuous maps are Borel-measurable) We claim that if f : Rn
→

Rm is continuous then it is (B (Rn),B (Rm))-measurable. Indeed,B (Rn) andB (Rm)
are the σ-algebras generated by the collections O (Rn) and O (Rm) of open subsets
of Rn and Rm. Since f is continuous it follows from Corollary II-1.3.4 that

O (Rm) ⊆ {U ⊆ Rm
| f−1(U) ∈ O (Rn)}.

From Proposition 2.6.2 we conclude that f is (B (Rn),B (Rm))-measurable. •

What we are really interested in in this section are R-valued functions. It turns
out to be interesting to consider R-valued functions. The reason for this degree of
generality is not that we are interested in infinite-valued functions per se, but that
we are interested in sequences of R-valued functions that turn out to have infinite
limits. The reader will want to be familiar with the order relations on R defined in
Section I-2.2.5.

In any case, we now turn our attention to functions f : X → R defined on a
measurable space (X,A ). For such functions we have the following equivalent
properties.

2.6.4 Proposition (Characterisations of measurable functions) For a measurable space
(X,A ) and a map f : X→ [−∞,∞], the following statements are equivalent:

(i) for each b ∈ R the set f−1([−∞, b]) = {x ∈ X | f(x) ≤ b} is measurable;
(ii) for each b ∈ R the set f−1([−∞, b)) = {x ∈ X | f(x) < b} is measurable;
(iii) for each a ∈ R the set f−1([a,∞]) = {x ∈ X | f(x) ≥ a} is measurable;
(iv) for each a ∈ R the set f−1((a,∞]) = {x ∈ X | f(x) > a} is measurable.
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Proof (i) =⇒ (ii) We write

f−1([−∞, b)) = f−1(∪k∈Z>0 f−1([−∞, b − 1
k ]) = ∪k∈Z>0 f−1([−∞, b − 1

k ])

by Proposition I-1.3.5. Since f−1([−∞, b − 1
k ] ∈ A by assumption and since A is a

σ-algebra, we conclude that f−1([−∞, b)) ∈ A .
(ii) =⇒ (iii) Here we note that

f−1([a,∞]) = X \ f−1([−∞, a))

by Exercise I-1.3.3. Since A is a σ-algebra and since f−1([−∞, a)) ∈ A by assumption,
it follows that f−1([a,∞]) ∈ A .

(iii) =⇒ (iv) Here we write

f−1((a,∞]) = ∪k∈Z>0 f−1([a + 1
k ,∞]) =

by Proposition I-1.3.5. As in the first part of the proof we conclude that f−1((a,∞]) ∈ A .
(iv) =⇒ (i) Here we note that

f−1([−∞, b]) = X \ f−1((b,∞])

by Exercise I-1.3.3 and then argue as in the second part of the proof that f−1([−∞, b]) ∈
A . ■

With this result at hand, the following definition makes sense.

2.6.5 Definition (Measurable function) For a measurable space (X,A ) a function
f : X→ R satisfying any one of the four equivalent conditions of Proposition 2.6.4
is an A -measurable function. We shall frequently just say that f is measurable
if A is understood. For any subset I ⊆ R (typically we will be concerned with
I ∈ {R,R≥0}) we denote the set of measurable I-valued maps by L(0)((X,A ); I), or by
L(0)(X; I), with the understanding that the σ-algebra A is implicit. •

The relationship of this notion of measurability with that of Definition 2.6.1 is
perhaps not immediately clear. So let us make this clear, recalling from Defini-
tion 2.4.15 the definition of the σ-algebraB (R) on R.

2.6.6 Proposition (Characterisation of measurable functions) For a measurable space
(X,A ) and a map f : X→ R, the following statements are equivalent:

(i) f ∈ L(0)((X,A );R);
(ii) the sets {x ∈ X | f(x) = −∞} and {x ∈ X | f(x) = ∞} are measurable and f−1(B) ∈ A

for every B ∈B (R);

(iii) f is (A ,B (R))-measurable.
Proof (i) =⇒ (ii) We have

f−1(−∞) = f−1(∩k∈Z>0[−∞,−k]) = ∩k∈Z f−1([−∞,−k]),

f−1(∞) = f−1(∩k∈Z>0[k,∞]) = ∩k∈Z f−1([k,∞]),
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by Proposition I-1.3.5. Thus f−1(−∞) and f−1(∞) are countable intersections of measur-
able sets and so themselves measurable. We must also show that f−1(B) is measurable
for a Borel set B. To prove this, we denote

B ′(R) = {S ⊆ R | f−1(S) ∈ A }.

We claim that B ′(R) is a σ-algebra containing B (R). Certainly R ∈ B ′(R) since
f−1(R) = X ∈ A . If (S j) j∈Z>0 is a countable collection of subsets fromB ′(R) we have

f−1
( ⋃

j∈Z>0

S j

)
=

⋃
j∈Z>0

f−1(S j) ∈ A ,

where we have used Proposition I-1.3.5. Thus ∪ j∈Z>0S j ∈ B ′(R). Also, by Exer-
cise I-1.3.3, if S ∈B ′(R) then

f−1(R \ S) = X \ f−1(S) ∈ A

and so R \ S ∈ B ′(R). Thus B ′(R) is a σ-algebra. By hypothesis we have (−∞, b] ∈
B ′(R) for every b ∈ R. Thus B ′(R) contains the σ-algebra generated by sets of the
form (−∞, b] for b ∈ R. By Proposition 2.4.9 this means thatB (R) ⊆B ′(R), as claimed.
This proves that f−1(B) ∈ A for B ∈B (R).

(ii) =⇒ (iii) Let
B ′(R) = {T ⊆ R | f−1(T) ∈ A },

and note that, by hypothesis, B (R) ∪ {−∞} ∪ {∞} ⊆ B ′(R). By Proposition 2.4.16 it
follows that f is (A ,B (R))-measurable.

(iii) =⇒ (i) For a ∈ R we have

f−1((a,∞]) = f−1((a,∞) ∪ {∞}) = f−1((a,∞)) ∪ f−1({∞})

by Proposition I-1.3.5. Since (a,∞) is open it is a Borel set and so inB (R) by Propo-
sition 2.4.16. Thus f−1((a,∞)) ∈ A by hypothesis. Also, {∞} ∈ B (R) by Proposi-
tion 2.4.16 and so f−1({∞}) ∈ A . Therefore, f−1((a,∞]) is a union of measurable sets
and so is measurable. Thus f is A -measurable. ■

For functions that are R-valued this gives the following result.

2.6.7 Corollary (Measurability of R-valued functions) For a measurable space (X,A ), a
function f : X→ R is measurable if and only if it is (A ,B (R))-measurable.

It is often fairly easy to apply Definition 2.6.5 to ascertain whether a given
function is measurable (as opposed to employing the equivalent characterisation
of Proposition 2.6.6).



188 2 Measure theory and integration 2022/03/07

2.6.8 Examples (Measurable functions)
1. For a measurable space (X,A ) and forα ∈ R, we claim that the constant function

fα : x 7→ α is A -measurable. To see this we let b ∈ R and determine that

f −1
α ([−∞, b)) =

∅, b ≤ α,
X, b > α,

provided that α , −∞. If α = −∞ then f −1
α ([−∞, b)) = X for every b ∈ R. In any

case, f −1
α ([−∞, b)) ∈ A for all b ∈ R and so fα is A -measurable.

2. Let (X,A ) be a measurable space and let A ∈ A . We claim that the characteristic
function χA : X→ R is A -measurable. Indeed,

χ−1
A ([a,∞]) =


X, a ≤ 0,
A, a ∈ (0, 1],
∅, a > 1.

Since X,A,∅ ∈ A it follows that χA is indeed A -measurable.
Note that the same argument shows that, if A < A , thenχA is notA -measurable.

3. Let A ∈ L (Rn) and let f : A → R be continuous. We claim that f is
L (Rn)-measurable. Indeed, for a ∈ R the set f −1((a,∞)) is open in A by
Corollary II-1.3.4. Thus there exists an open subset Ua ⊆ Rn such that
f −1((a,∞)) = Ua ∩ A. Since Ua ∈ L (Rn) (open sets are Borel sets and so are
Lebesgue measurable) we have f −1((a,∞)) ∈ L (Rn) and so is a measurable
subset of A. •

Let (X,A ) be a measurable space. By Corollary 2.6.7, measurability of f : X→ R
is equivalent to (A ,B (R))-measurability of f . A natural question to ask is: “Why
use the σ-algebra of Borel sets on R to define measurability of a function? Why
not use the σ-algebra of Lebesgue measurable sets?” The answer to this question
perhaps cannot be divined immediately. The reason for using the Borel measurable
sets is answered by answering the question, “What is it we are trying to achieve
with our definition of a measurable function?” We shall not address this here,
but instead refer ahead to Section 2.6.5. For now, let us simply illustrate thatmore to say here?

(A ,B (R))-measurability and (A ,L (R))-measurability are not equivalent.

2.6.9 Example ((A ,B (R))- and (A ,L (R))-measurability are different) SinceB (R) ⊆
L (R) it follows that f : X → R is (A ,B (R))-measurable if it is (A ,L (R))-
measurable. The converse implication is not generally true, however. We illustrate
this with an example. We take X = [0, 1] and A = L ([0, 1]). We define a func-
tion f : [0, 1] → R that is (L ([0, 1]),B (R))-measurable but not (L ([0, 1]),L (R))-
measurable. Our construction relies on the reader understanding the construction
of the sets Cϵ and C from Examples I-2.5.42 and I-2.5.39.

Let ϵ ∈ R>0 and let Cϵ ⊆ [0, 1] be the “fat” Cantor set of Example I-2.5.42. Let
C ⊆ [0, 1] be the standard middle-thirds Cantor set of Example I-2.5.39. Recall that
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the inductive construction of these sets is the same in that they are defined by, at
step k, removing 2k open intervals from the set defined at step k − 1. This defines
countable collections (Iϵ,k)k∈Z>0 and (Ik)k∈Z>0 of disjoint open intervals such that

Cϵ = [0, 1] \ ∪ j∈Z>0Iϵ, j, C = [0, 1] \ ∪ j∈Z>0I j.

Moreover, since the constructions of Cϵ and C proceed in the same way, the intervals
(Iϵ, j) j∈Z>0 and (I j) j∈Z>0 can be enumerated consistently such Iϵ,1 and I1 are the intervals
removed in the first step in the inductive constructions of Cϵ and C, Iϵ,2 and Iϵ,3, and
I2 and I3 are the intervals, ordered from left to right, removed in the second step in
the inductive constructions of Cϵ and C, and so on. We then define f : [0, 1]→ R by
asking that f |Iϵ, j maps Iϵ, j linearly onto the interval I j, mapping the left (resp. right)
endpoint of Iϵ, j to the left (resp. right) endpoint of I j. Note that since cl([0, 1] \Cϵ) =
[0, 1], it follows that this definition of f on [0, 1] \ Cϵ extends to a continuous
function f from [0, 1] toR. By Example 2.6.8–3 it follows that f is (L ([0, 1]),B (R))-
measurable. Moreover, f (Cϵ) = C since, by construction, the points in Cϵ and C are
the endpoints of intervals from (Iϵ, j) j∈Z>0 and (I j) j∈Z>0 . Moreover, we claim that f is
strictly monotonically increasing. It is obviously monotonically increasing. To see
that it is strictly monotonically increasing, suppose that x1, x2 ∈ [0, 1] satisfy x1 < x2

and f (x1) = f (x2). This means that f |[x1, x2] is constant which, by construction of f
implies that [x1, x2] ⊆ Cϵ, contradicting the fact that int(Cϵ) = ∅. Thus f is strictly
monotonically increasing and so injective by Theorem I-3.1.30. By Theorem 2.4.5
there exists a subset S ⊆ Cϵ that is not Lebesgue measurable. Let T = f (S) ⊆ C so
that T ∈ L (R) since λ(C) = 0 and since L (R) is complete. Injectivity of f implies
that f −1(T) = S < L ([0, 1]). Thus f is not (L ([0, 1]),L (R))-measurable. •

It is often the case that one is able to draw conclusions about a function only
almost everywhere, not everywhere. In such cases, one would like to assert that this
almost everywhere knowledge of the function is enough to ensure its measurability.
It should not be surprising that completeness plays a rôle here. Note that this is
the first time we have used a measure in our discussion of measurable functions.
Up to now we have only used measurable spaces.

2.6.10 Proposition (Measurability of almost everywhere known functions) If
(X,A , µ) is a complete measure space, if f ∈ L(0)((X,A );R) is A -measurable, and if
g: X→ R satisfies

µ({x ∈ X | f(x) , g(x)}) = 0,

then g ∈ L(0)((X,A );R).
Proof Let

A f ,g = {x ∈ A | f (x) = g(x)}

and let b ∈ R. Then

{x ∈ X | g(x) ≤ b} = ({x ∈ X | f (x) ≤ b} ∩ A f ,g) ∪ ({x ∈ X | g(x) ≤ b} ∩ (X \ A f ,g)).



190 2 Measure theory and integration 2022/03/07

The set X \ A f ,g has measure zero and so is measurable. Thus A f ,g is measurable and
so the set

{x ∈ X | f (x) ≤ b} ∩ A f ,g

is measurable. Since the set

{x ∈ X | g(x) ≤ b} ∩ (X \ A f ,g)

is a subset of the set A f ,g which has measure zero, completeness of (X,A , µ) ensures
that it has measure zero, and in particular is measurable. Thus

{x ∈ X | g(x) ≤ b}

is the intersection of measurable sets, and so is measurable. ■

2.6.2 Measurability and operations on functions

At this point we are still not clear on the significance of measurable functions,
and we will continue to postpone this until Section 2.6.5. All we really know at
the moment is that the set of measurable functions on (Rn,L (Rn)) contains the
continuous functions, and so there is a nice subset of measurable functions in this
case. It turns out that measurable functions also have nice properties with respect
to the natural operations one performs on functions and sequences of functions. In
this section we prove these properties.

We begin with the interaction of measurable functions with standard algebraic
operations. In order to do this, the reader will wish to recall from Section I-2.2.5 the
“algebraic” operations on R. This is complicated a little for measurable functions
since these are R-valued. To properly state the result we need, it is, therefore,
convenient to introduce some notation to account for the fact that certain algebraic
operations are ill-defined on R. If X is a set, if f : X → R, and if α−, α+ ∈ R, then
we denote by fα−,α+ : X→ R the function given by

fα−,α+(x) =


f (x), f (x) ∈ R,
α−, f (x) = −∞,
α+, f (x) = ∞.

Similarly, for α−, α+, α0 ∈ R we denote by fα−,α+,α0 : X→ R the function given by

fα−,α+,α0(x) =


α−, f (x) = −∞,
α+, f (x) = ∞,
α0, f (x) = 0,
f (x), otherwise.

Next, for f , g ∈ L(0)((X,A );R) and for α ∈ R denote f +α g : X → R the function
defined by

( f +α g)(x) =

α, f (x) = ∞, g(x) = −∞ or f (x) = −∞, g(x) = ∞,
f (x) + g(x), otherwise.
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With these tedious bits of notation out of the way, we can now state the desired
result.

2.6.11 Proposition (Algebraic operations on measurable functions) Let (X,A ) be a
measurable space, let f,g ∈ L(0)((X,A );R), let β ∈ R, let β−, β+, β0 ∈ R∗, let α, α−, α+ ∈ R,
let p ∈ R>0, and let k ∈ Z>0. Then the following functions are A -measurable:

(i) βf;
(ii) f +α g;
(iii) fg;

(iv)
f

gβ−,β+,β0

;

(v) (|f|p)α−,α+ ;
(vi) (fk)α−,α+ .

Proof We shall freely make use of Proposition 2.6.13 below.
(i) Let ϕβ : R→ R be defined by ϕβ(y) = βy. Then β f = ϕβ ◦ f . Since

ϕ−1
β (U) = {βy | y ∈ U}

it follows that ϕ−1
β (U) is open for open set U. Also,

ϕ−1
β ([−∞, b)) =


[−∞, βb), β ∈ R>0,

{0}, β = 0,
(βb,∞], β ∈ R<0,

and so ϕ−1
β ([−∞, b)) ∈ B (R) for every β, b ∈ R. Similarly, ϕ−1

β ((a,∞]) ∈ B (R) for
every β, a ∈ R. From this we deduce, using Proposition I-1.3.5, that the preimage
by ϕβ of the generators of the σ-algebra B (R) are in B (R). By Proposition 2.6.2 we
conclude that ϕβ isB (R)-measurable. By Proposition 2.6.13 we then conclude that β f
is A -measurable.

(ii) Here we use a pair of fairly simple lemmata.

1 Lemma For a measurable space (X,A ) and A -measurable functions f,g: X → R, the
following sets are measurable:

(i) {x ∈ X | f(x) > g(x)};
(ii) {x ∈ X | f(x) ≥ g(x)};
(iii) {x ∈ X | f(x) = g(x)}.

Proof (i) We claim that

{x ∈ X | f (x) > g(x)} =
⋃
q∈Q

(
{x ∈ X | f (x) > q} ∩ {x ∈ X | g(x) < q}

)
.

Indeed, let x ∈ {x′ ∈ X | f (x′) > g(x′)}. If f (x) = ∞ then g(x) < ∞. Thus there exists
q ∈ Q such that f (x) > q and g(x) < q. If f (x) < ∞ then f (x) ∈ R since we cannot have
f (x) = −∞. Therefore, there exists q ∈ Q such that f (x) > q and g(x) < q. This shows
that

{x ∈ X | f (x) > g(x)} ⊆
⋃
q∈Q

(
{x ∈ X | f (x) > q} ∩ {x ∈ X | g(x) < q}

)
.
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For the converse inclusion, suppose that x ∈ X has the property that there exists q ∈ Q
such that g(x) < q < f (x). Clearly x ∈ {x′ ∈ X | f (x′) > g(x′)}, giving our claim.

Now, since f and g are A -measurable, the sets

{x ∈ X | f (x) > q}, {x ∈ X | g(x) < q}, q ∈ Q,

are measurable, and so too then is their intersection. Thus {x ∈ X | f (x) > g(x)} is a
countable union of measurable sets, which is then measurable.

(ii) Note that

{x ∈ X | f (x) ≥ g(x)} = X \ {x ∈ X | g(x) > f (x)}.

Since {x ∈ X | g(x) > f (x)} is measurable by the first part of the lemma it follows that
{x ∈ X | f (x) ≥ g(x)} is also measurable.

(iii) We have

{x ∈ X | f (x) = g(x)} = {x ∈ X | f (x) ≥ g(x)} ∩ {x ∈ X | g(x) ≥ f (x)}.

The right-hand side is the intersection of two measurable sets by the second part of
the lemma, and so is measurable. ▼

2 Lemma If (X,A ) is a measurable space, if f : X → R is A -measurable, and if β ∈ R, then
the function x 7→ f(x) + β is A -measurable.

Proof Define ϕβ : R → R by ϕβ(y) = y + β. By Proposition 2.4.22 it follows that
ϕ−1
β (B) ∈B (R) for B ∈B (R). It is clear thatϕ−1

β ({−∞}) = {−∞} and thatϕ−1
β ({∞}) = {∞}.

Therefore, by Propositions 2.4.16 and 2.6.2, it follows that ϕβ is B (R)-measurable.
Thus ϕβ ◦ f is A -measurable by Proposition 2.6.13. ▼

To proceed with the proof, let a ∈ R and let

Aa,α = ({x ∈ X | f (x) = ∞} ∩ {x ∈ X | g(x) = −∞})
∪ ({x ∈ X | f (x) = −∞} ∩ {x ∈ X | g(x) = ∞})

if a < α and let Aa,α = ∅ if a ≥ α. We then have

( f +α g)−1((a,∞]) = {x ∈ X | f (x) + g(x) > a} ∪ Aa,α

= {x ∈ X | f (x) > a − g(x)} ∪ Aa,α.

By the two lemmata above, the set {x ∈ X | f (x) > a − g(x)} is measurable. By
Proposition 2.6.6 each of the four sets comprising the definition of Aa,α when a < α is
measurable. Thus Aa,α is measurable and so ( f +α g)−1((a,∞]) is measurable, being a
union of measurable sets.

(iii) We denote

A f ,− = {x ∈ X | f (x) = −∞}, A f ,+ = {x ∈ X | f (x) = ∞},

Ag,− = {x ∈ X | g(x) = −∞}, Ag,+ = {x ∈ X | g(x) = ∞}.
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By Proposition 2.6.4 these sets are measurable. For x < A f ,− ∪ A f ,+ ∪ Ag,− ∪ Ag,+ we
have

f (x)g(x) = 1
2 (( f (x) + g(x))2

− f (x)2
− g(x)2).

If x ∈ A f ,− ∩ Ag,+ or x ∈ A f ,+ ∩ Ag,− then f (x)g(x) = −∞ and if x ∈ A f ,− ∩ Ag,− or
x ∈ A f ,+ ∩ Ag,+ then f (x)g(x) = ∞. Then, for a ∈ R we have

( f g)−1((a,∞]) = {x ∈ X | f (x)g(x) > a}
= {x ∈ (A f ,− ∩ Ag,+) ∪ (A f ,+ ∩ Ag,−) | f (x)g(x) > a}

∪ {x ∈ (A f ,− ∩ Ag,−) ∪ (A f ,+ ∩ Ag,+) | f (x)g(x) > a}

∪ {x ∈ X \ (A f ,− ∪ A f ,+ ∪ Ag,− ∪ Ag,+) |
1
2 (( f (x) + g(x))2

− f (x)2
− g(x)2) > a}.

The set
{x ∈ (A f ,− ∩ Ag,+) ∪ (A f ,+ ∩ Ag,−) | f (x)g(x) > a}

is empty, the set

{x ∈ (A f ,− ∩ Ag,−) ∪ (A f ,+ ∩ Ag,+) | f (x)g(x) > a}

is measurable being a union of measurable sets, and the set

{x ∈ X \ (A f ,− ∪ A f ,+ ∪ Ag,− ∪ Ag,+) | 1
2 (( f (x) + g(x))2

− f (x)2
− g(x)2) > a}

is measurable by parts (ii) and (vi). Thus ( f g)−1((a,∞]) is a union of three measurable
sets and so measurable.

(iv) We first consider the case when f (x) = 1 for every x ∈ X. In this case let us
define ϕβ−,β+,β0 : R→ R by

ϕβ−,β+,β0(y) =



1
y , y ∈ R,
1
β0
, y = 0,

1
β−
, y = −∞,

1
β+
, y = ∞.

Note that y 7→ 1
y is (B (R),B (R))-measurable by Example 2.6.3. Therefore, by Propo-

sitions 2.4.16 and 2.6.2 it is easy to see that ϕβ−,β+,β0 is B (R)-measurable. Since
1

gβ− ,β+,β0
= ϕβ−,β+,β0

◦ g this part of the result follows from Proposition 2.6.13 in the case
that f = 1. For general f the result follows from the result for f = 1 and from part (iii).

(v) Here we define ϕα−,α+ : R→ R by

ϕα−,α+(y) =


|y|p, y ∈ R,
α−, y = −∞,
α+, y = ∞.

It is easy to verify by Propositions 2.4.16 and 2.6.2 that ϕα−,α+ is B (R)-measurable.
Since the function y 7→ |y|p is continuous and so (B (R),B (R))-measurable by Ex-
ample 2.6.3. Thus, since (| f |p)α−,α+ = ϕα−,α+ ◦ f , this part of the result follows from
Proposition 2.6.13.
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(vi) If we define ϕα−,α+ : R → R as in the proof of part (v), this part of the proof is
carried out exactly as that for part (v). ■

We now consider the interaction of composition and measurability. First of all,
the most general result is false as the following example shows.

2.6.12 Example (Compositions of measurable functions may not be measurable)
We recall from Exercise 2.6.9 the construction of a map f : [0, 1] → [0, 1] that
is (L ([0, 1]),B (R))-measurable but not (L ([0, 1]),L (R))-measurable. Let S,T ⊆
[0, 1] be the subsets constructed in Exercise 2.6.9 and let χT : [0, 1]→ R be the char-
acteristic function. Since T is Lebesgue measurable, as we showed in Exercise 2.6.9,
it follows from Example 2.6.8–2 that χT isL ([0, 1])-measurable. However, by con-
struction of f , χT ◦ f = χS. Since S < L ([0, 1]) by construction, it follows from
Example 2.6.8–2 that χS is not L ([0, 1])-measurable. Thus the composition of
measurable functions need not be measurable. •

The preceding counterexample notwithstanding, there is a useful result con-
cerning measurability of compositions. The result relies on the notion of the σ-
algebraB (R) on R as defined in Definition 2.4.15.

2.6.13 Proposition (Composition and measurable functions) Let (X,A ) be a measurable
space, let f ∈ L(0)((X,A );R), and let ϕ : R → R be B (R)-measurable. Then ϕ ◦ f ∈
L(0)((X,A );R).

Proof Let B ∈B (R). By assumption and by Proposition 2.6.6 we haveϕ−1(B) ∈B (R).
Thus, using Exercise I-1.3.2,

(ϕ ◦ f )−1(B) = f−1(ϕ−1(B)) ∈ A ,

and so ϕ ◦ f is A -measurable, as desired. ■

2.6.14 Corollary (Composition by continuous functions and measurability) Let
(X,A ) be a measurable space, let f ∈ L(0)((X,A );R), and let ϕ : R → R be continu-
ous. Then ϕ ◦ f ∈ L(0)((X,A );R).

Proof This follows from Proposition 2.6.13, along with Example 2.6.3. ■

In the following result we consider measurability of functions restricted to
measurable sets. We recall from Proposition 2.2.6 the definition of the restriction
AA of a measurable space (X,A ) to a measurable subset A ∈ A .

2.6.15 Proposition (Measurability and restriction) Let (X,A ) be a measurable space, let
f : X→ R be A -measurable, and let A ∈ A . Then f|A is AA-measurable.

Moreover, if B = X \A and if we have AA- and AB-measurable functions fA : A→ R
and fB : B→ R, respectively, then the function f : X→ R defined by

f(x) =

fA(x), x ∈ A,
fB(x), x ∈ B

is A -measurable.
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Proof Let E ∈ A so that A ∩ E ∈ AA. Then, by Proposition I-1.3.5,

f−1(A ∩ E) = f−1(A) ∩ f−1(E),

and from this we deduce that f−1(A ∩ E) is the intersection of measurable sets, and so
measurable.

For the second assertion of the proposition, let E ∈ A and write E = (A∩E)∪(B∩E).
Then, again by Proposition I-1.3.5,

f−1(E) = f−1(A ∩ E) ∪ f−1(B ∩ E) = f−1
A (A ∩ E) ∪ f−1

B (B ∩ E).

Since fA and fB areAA- andAB-measurable, f−1
A (A∩E) ∈ AA and f−1

B (B∩E) ∈ AB. Since
AA,AB ⊆ A , f−1(E) is the union of A -measurable sets, and so is A -measurable. ■

Let us consider the rôle of measurability with respect to the operations of min
and max.

2.6.16 Proposition (Measurability and max and min) If (X,A ) is a measure space and if
f,g ∈ L(0)((X,A );R), then the functions

X ∋ x 7→ min{f(x),g(x)} ∈ R, X ∋ x 7→ max{f(x),g(x)} ∈ R.

are A -measurable.
Proof Let a ∈ R and note that

{x ∈ X | min{ f (x), g(x)} ≤ a} = {x ∈ X | f (x) ≤ a} ∪ {x ∈ X | g(x) ≤ a}

and
{x ∈ X | max{ f (x), g(x)} ≤ a} = {x ∈ X | f (x) ≤ a} ∩ {x ∈ X | g(x) ≤ b}.

Thus {x ∈ X | min{ f (x), g(x)} ≤ a} and {x ∈ X | max{ f (x), g(x)} ≤ a} are measurable
and this gives the result. ■

The previous result has the following obvious corollary that will be useful when
we define the integral.

2.6.17 Corollary (Measurability of positive and negative parts of a function) Let
(X,A ) be a measurable space and let f ∈ L(0)((X,A );R) be A -measurable. Then the
functions f−, f+ : X→ R defined by

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0}

are A -measurable.
Proof By Example 2.6.8–1 the function x 7→ 0 is A -measurable. The corollary now
follows immediately from Proposition 2.6.16. ■
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2.6.3 Sequences of measurable functions

In Sections I-3.6 and II-1.7 we considered sequences of continuous functions. on topological spaces?

We saw that notions of uniform convergence are important for the preservation of
continuity of the limit function. Measurable functions are far more flexible in this
regard, and so we are able to assert the measurability of a fairly general collection of
operations applied to sequences of measurable functions. First let us define some
notation to facilitate the statement of the result. We let (X,A ) be a measurable
space with S = ( f j) j∈Z>0 a sequence of A -measurable functions. We then define
functions inf S, sup S, lim inf S, lim sup S : X→ R by

inf S(x) = inf{ f j(x) | j ∈ Z>0}, sup S(x) = sup{ f j(x) | j ∈ Z>0},

lim inf S(x) = lim inf
j→∞

f j(x), lim sup S(x) = lim sup
j→∞

f j(x).

Note that these four functions are always defined, regardless of the sequence. Let
us also define

AS = {x ∈ X | lim inf S(x) = lim sup S(x)}

and define lim S : AS → R by lim S(x) = lim j→∞ f j(x), noting that this is also a
well-defined function. With this notation we have the following result.

2.6.18 Proposition (Limit operations on measurable functions) Let (X,A ) be a mea-
surable space and let S = (fj)j∈Z>0 be a sequence in L(0)((X,A );R). Then the following
statements hold:

(i) inf S ∈ L(0)((X,A );R);
(ii) sup S ∈ L(0)((X,A );R);

(iii) lim inf S ∈ L(0)((X,A );R);
(iv) lim sup S ∈ L(0)((X,A );R);

(v) AS ∈ A and lim S ∈ L(0)((X,A );R).
Proof (i) For b ∈ R we have

{x ∈ X | inf S(x) < b} =
⋃

j∈Z>0

{x ∈ X | f j(x) < b}.

Since the sets of the right are measurable, so is their union.
(ii) For b ∈ R we have

{x ∈ X | sup S(x) ≤ b} =
⋂

j∈Z>0

{x ∈ X | f j(x) ≤ b}.

Since the sets on the right are measurable, so is their intersection.
(iii) Define a sequence of functions ( f

j
) j∈Z>0 by f

j
(x) = supk≥ j fk(x). These functions

are A -measurable by part (i). By Proposition I-2.3.16 we have

lim inf
j→∞

f j(x) = sup
{

f
k
(x)

∣∣∣ k ∈ Z>0

}
,



2022/03/07 2.6 Measurable functions 197

and so this part of the result follows from part (i).
(iv) Define a sequence of functions ( f j) j∈Z>0 by f j(x) = supk≥ j fk(x). These functions

are A -measurable by part (ii). By Proposition I-2.3.15 we have

lim sup
j→∞

f j(x) = inf
{

f k(x)
∣∣∣ k ∈ Z>0

}
,

and so this part of the result follows from part (ii).
(v) Measurability of AS follows from parts (iii) and (iv), along with Lemma 1 from

the proof of Proposition 2.6.11. Now let b ∈ R and note that

{x ∈ AS | lim f (x) ≤ b} = AS ∩ {x ∈ X | lim sup S(x) ≤ b}.

The set on the right is the intersection of measurable sets and so is measurable. This
then gives A -measurability of lim S by Proposition 2.2.6. ■

The following corollary will come up often. Note that this result is unlike most
of the results thus far in this section in that it depends on a measure.

2.6.19 Corollary (Measurability of almost everywhere convergent sequences) Let
(X,A , µ) be a complete measure space, let (fj)j∈Z>0 be a sequence in L(0)((X,A );R), and let
f : X→ R be such that

µ
(
X \

{
x ∈ X

∣∣∣∣ f(x) = lim
j→∞

fj(x)
})
= 0.

Then f is A -measurable.
Proof Let S = ( f j) j∈Z>0 and define

BS =
{
x ∈ X

∣∣∣∣ f (x) = lim
j→∞

f j(x)
}
.

From Proposition 2.6.18 the function lim inf S is A -measurable. Since f and lim inf S
agree except on the set BS which has measure zero, it follows from Proposition 2.6.10
that f is A -measurable since µ is complete. ■

The preceding few results had to do with the measurability of various sorts of
limits of measurable functions. Let us now study systematically the various sorts of
convergence that may be experienced by sequences of measurable functions. In we what

described the notions of pointwise and uniform convergence in a general way using
topological ideas. These definitions carry over to sequences of functions defined on
measure spaces, but there are additional notions arising from the measure theoretic
setting, as the following definitions make clear.

2.6.20 Definition (Modes of convergence for sequences of measurable functions)
Let (X,A , µ) be a measure space, let ( f j) j∈Z>0 be a sequence in L(0)((X,A );R), and

let f ∈ L(0)((X,A );R). The sequence
(i) converges pointwise to f if lim j→∞ f j(x) = f (x) for every x ∈ X,
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(ii) converges pointwise almost everywhere to f if

µ
(
X \

{
x ∈ X

∣∣∣∣ f (x) = lim
j→∞

f j(x)
})
= 0,

(iii) converges uniformly to f if, for every ϵ ∈ R>0, there exists N ∈ Z>0 such that
| f (x) − f j(x)| < ϵ for every x ∈ X and for every j ≥ N,

(iv) converges almost uniformly to f if, for every δ ∈ R>0, there exists a set Eδ ⊆ X
having the following properties:

(a) µ(Eδ) < δ;
(b) for every ϵ ∈ R>0 there exists N ∈ Z>0 such that | f (x)− f j(x)| < ϵ for every

x ∈ X \ Eδ and for every j ≥ N,

and
(v) converges in measure to f if, for every ϵ ∈ R>0,

lim
j→∞

µ
(
{x ∈ X | | f (x) − f j(x)| > ϵ}

)
= 0. •

Some of the relationships between the various notions of convergence are ob-
vious. For example, the implications

(iv)⇐= (iii) =⇒ (i) =⇒ (ii)

obviously hold. Moreover, the converse implications of some of the preceding
implications fairly obviously do not hold in general. For example, we know from
Section I-3.6.2 that generally (i)⇏(iii). It is also pretty evident that generally (ii)⇏(i);
see Exercise 2.6.4. Let us now explore the possibility of other implications. The first
result shows that, perhaps a little surprisingly, (ii) implies (iv) when the functions in
the sequence and the limit function areR-valued, and when the measure is finite.

2.6.21 Theorem (Egorov’s7 Theorem) Let (X,A , µ) be a finite measure space and let fj, f ∈
L(0)((X,A );R), j ∈ Z>0, have the following properties:

(i) the sets {x ∈ X | fj(x) < R}, j ∈ Z>0, and {x ∈ X | f(x) < R} have measure zero;
(ii) (fj)j∈Z>0 converges pointwise almost everywhere to f.

Then (fj)j∈Z>0 converges almost uniformly to f.
Proof First let us suppose that f and f j, j ∈ Z>0, are R-valued. For k,m ∈ Z>0 define

Ekm =
{
x ∈ X

∣∣∣ | f (x) − fm(x)| < 1
k

}
.

Since ( f j) j∈Z>0 converges almost everywhere to f , there exists a set Z ⊆ X such that
1. µ(Z) = 0 and

7Dimitri Fedorovich Egorov (1869–1931) was a Russian mathematician whose main mathemat-
ical contributions were to differential geometry and analysis.
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2. for k ∈ Z>0 and x ∈ X \Z, there exists m ∈ Z>0 such that | f (x)− f j(x)| < 1
k for j ≥ m.

That is to say,

X \ Z ⊆
⋃

n∈Z>0

⋂
m≥n

Ekm =⇒ Z ⊆
⋂

n∈Z>0

⋃
m≥n

X \ Ekm

for every k ∈ Z>0, using De Morgan’s Laws. Denote Akn = ∪m≥nX \ Ekm. Note that
Akn ⊇ Ak(n+1) for every k,n ∈ Z>0, and that ∩n∈Z>0Akn ⊆ Z which implies that ∩n∈Z>0Akn
has zero measure, being a subset of a set with zero measure. Let Zk = ∩n∈Z>0Akn and
note that

lim
n→∞

µ(Akn) = lim
n→∞

µ(Akn \ Zk) = 0

using Proposition 2.3.3.
Let δ ∈ R>0. For k ∈ Z>0 let Nk ∈ Z>0 be such that µ(Akn) < δ

2k for n ≥ Nk. Define

Eδ =
⋃

k∈Z>0

AkNk .

Then

µ(Eδ) ≤
∞∑

k=1

µ(AkNk) <
∞∑

k=1

δ

2k
= δ

by Example I-2.4.2–1.
Now let ϵ ∈ R>0 and take K ∈ Z>0 such that 1

K < ϵ. If x ∈ X \ Eδ we have, by
definition of Eδ and De Morgan’s Laws,

x ∈
⋂

k∈Z>0

⋂
m≥Nk

Ekm,

which implies in particular that x ∈ EKm whenever m ≥ NK. That is to say, if j ≥ NK
then | f (x) − f j(x)| < ϵ for every x ∈ X \ Eδ, as desired.

To conclude the proof, let us relax the assumption made above that f and f j,
j ∈ Z>0, are R-valued. Define

N = {x ∈ X | f (x) < R}, N j = {x ∈ X | f j(x) < R}, j ∈ Z>0.

If Z = N ∪ (∪ j∈Z>0N j) then Z is a measurable set with zero measure, being a countable
union of sets with zero measure. The hypotheses from the first part of the proof hold
for X \ Z and for f and f j, j ∈ Z>0, restricted to X \ Z. That is to say, for every δ ∈ R>0
there exists a set E′δ ⊆ (X \Z) such that µ(E′δ) < δ and such that, for every ϵ ∈ R>0 there
exists N ∈ Z>0 such that | f (x)− f j(x)| < ϵ for every x ∈ X \ (Z∪ E′δ) and for every j ≥ N.
Now let δ ∈ R>0 and take Eδ = E′δ ∪ Z. Note that µ(Eδ) = µ(E′δ) < δ. Now, for ϵ ∈ R>0
let N be chosen as above, so that | f (x) − f j(x)| < ϵ for every x ∈ X \ Eδ and for every
j ≥ N. This gives almost uniform convergence of ( f j) j∈Z>0 to f , as desired. ■

Note that the theorem allows us to immediately conclude that generally (iv)⇏(iii)
from Definition 2.6.20. Indeed, suppose that ( f j) j∈Z>0 is a sequence of R-valued
functions on [0, 1] that converges pointwise, but not uniformly, to a function f .
Then the preceding theorem implies that the sequence converges almost uniformly
to f .

The next example shows that finiteness of the measure space in Egorov’s The-
orem is necessary.
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2.6.22 Example (Egorov’s Theorem generally fails for measure spaces that are not
finite) We take X = R,A = L (R), and µ = λ. We consider the sequence ( f j) j∈Z>0 in
L(0)((R,L (R));R) defined by f j = χ[ j, j+1). We also define f ∈ L(0)((R,L (R));R) by
f (x) = 0 for all x ∈ R. We claim that ( f j) j∈Z>0 converges pointwise, and so pointwise
almost everywhere, to f , but does not converge almost uniformly to f . To verify
pointwise convergence, let x ∈ R and choose N ∈ Z>0 such that N+ 1 > x, Then we
have f j(x) = 0 for all j ≥ N, so verifying pointwise convergence to f . To see that
the sequence does not converge almost uniformly, let δ, ϵ ∈ (0, 1) and suppose that
Eδ ⊆ R is such that there exists N ∈ Z>0 for which | f (x) − f j(x)| < ϵ for x ∈ R \ Eδ
and for j ≥ N. This means that | f j(x)| ≥ ϵ on a set A contained in Eδ for j ≥ N. But
this implies that [N,N + 1) ⊆ Eδ, implying that µ(Eδ) > δ. This precludes almost
uniform convergence. •

The preceding discussion concerning the relationships between modes of con-
vergence has not involved convergence in measure. Let us now investigate the rôle
of convergence in measure relative to the other modes of convergence. The first
result establishes that for finite measure spaces we have the implication (ii) =⇒ (v)
from Definition 2.6.20.

2.6.23 Proposition (Almost everywhere pointwise convergence sometimes implies
convergence in measure) Let (X,A , µ) be a finite measure space. Consider a sequence
(fj)j∈Z>0 and a function f in L(0)((X,A );R) with the following properties:

(i) the sets {x ∈ X | f(x) < R} and {x ∈ X | fj(x) < R}, j ∈ Z>0, have measure zero;
(ii) (fj)j∈Z>0 converges pointwise almost everywhere to f.

Then (fj)j∈Z>0 converges in measure to f.
Proof First suppose that f and f j, j ∈ Z>0, are R-valued. Let ϵ ∈ R>0 and define

Aϵ, j = {x ∈ X | | f (x) − f j(x)| > ϵ}, j ∈ Z>0

and Bϵ,k = ∪k
j=1Aϵ, j, k ∈ Z>0. Then we have Bk+1 ⊇ Bk for k ∈ Z>0 and

∩k∈Z>0Bϵ,k ⊆ {x ∈ X | ( f j(x)) j∈Z>0 does not converge to f (x)}

Therefore, µ(∩k∈Z>0Bϵ,k) = 0 and so, by Proposition 2.3.3, limk→∞ Bϵ,k = 0. Therefore,
since Aϵ, j ⊆ Bϵ, j for j ∈ Z>0, we have lim j→∞Aϵ, j = 0. This is exactly the statement that
( f j) j∈Z>0 converges to f in measure.

To complete the proof, suppose that f j, j ∈ Z>0, are not necessarily R-valued. Let

N = {x ∈ X | f (x) < R}, N j = {x ∈ X | f j(x) < R}, j ∈ Z>0

so that Z = N ∪ (∪ j∈Z>0N j) is a measurable set with zero measure, it being a countable
union of sets with zero measure. The first part of the proof then applies for X \ Z and
for f and f j, j ∈ Z>0, restricted to X \ Z. Thus, for ϵ ∈ R>0 we have

lim
j→∞

µ({x ∈ X \ Z | | f (x) − f j(x)| > ϵ}) = 0.



2022/03/07 2.6 Measurable functions 201

Since

{x ∈ X | | f (x) − f j(x)| > ϵ} = {x ∈ X \ Z | | f (x) − f j(x)| > ϵ} ∪ {x ∈ Z | | f (x) − f j(x)| > ϵ}
⊆ {x ∈ X \ Z | | f (x) − f j(x)| > ϵ} ∪ Z,

we have
lim
j→∞

µ({x ∈ X | | f (x) − f j(x)| > ϵ}) = 0,

giving convergence in measure as desired. ■

The condition that the measure space be finite is generally necessary in the
preceding result.

2.6.24 Example (Almost everywhere pointwise convergence does not always imply
convergence in measure) Here we take X = R,A = L (R), and µ = λ. We define
a sequence ( f j) j∈Z>0 and a function f in L(0)((R,L (R));R) by f j = χ[ j, j+1) and f (x) = 0
for x ∈ R. We saw in Example 2.6.22 that the sequence converges pointwise to f ,
and so converges pointwise almost everywhere to f . However, if ϵ ∈ (0, 1) then

λ({x ∈ R | | f (x) − f j(x)| > ϵ}) = 1

which clearly precludes the sequence from converging to f in measure. •

Now let us investigate the extent to which convergence in measure implies
almost everywhere pointwise convergence. The following example shows that the
general implication fails to hold, even for finite measure spaces.

2.6.25 Example (Convergence in measure does not imply almost everywhere point-
wise convergence) We take X = [0, 1), A = L ([0, 1)), and µ = λ[0,1). We define
a sequence ( f j) j∈Z>0 in L(0)(([0, 1),L ([0, 1)));R) as follows. For k ∈ Z≥0 we define
f2k , f2k+1, . . . , f2k+1−1 by f2k+ j = χ[ j2−k,( j+1)2−k), j ∈ {0, 1, . . . , 2k

− 1}. Thus, for example,

f1 = χ[0,1),

f2 = χ[0, 12 ), f3 = χ[ 1
2 ,1),

f4 = χ[0, 14 ), f5 = χ[ 1
4 ,

1
2 ), f6 = χ[ 1

2 ,
3
4 ), f7 = χ[ 3

4 ,1).

We also define f ∈ L(0)(([0, 1),L ([0, 1)));R) by f (x) = 0 for x ∈ [0, 1). We claim that
this sequence converges in measure to f , but does not converge pointwise almost
everywhere to f .

To verify convergence in measure, let ϵ ∈ R>0 and note that for any j ∈ Z>0 we
have

{x ∈ [0, 1) | | f (x) − f j(x)| > ϵ} ⊆ {x ∈ [0, 1) | | f j(x)| > 0}.

If j ∈ {2k, 2k + 1, . . . , 2k+1
− 1} then

λ({x ∈ [0, 1) | | f j(x)| > 0}) = 2−k.
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Therefore, it follows that

lim
j→∞

λ({x ∈ [0, 1) | | f j(x)| > 0}) = 0,

giving convergence in measure.
Now we verify that the sequence does not converge pointwise almost every-

where. Let x ∈ [0, 1) and let N ∈ Z>0. Choose k ∈ Z>0 such that 2k > N and choose
j ∈ {0, 1, . . . , 2k

−1} such that x ∈ [ j2−k, ( j+1)2−k). Then, for m ∈ {2k, 2k+1, . . . , 2k+1
−1}

we have

fm(x) =

1, m = 2k + j,
0, otherwise.

Thus, no matter how large we choose N, there are terms beyond the Nth term in
the sequence ( f j(x)) j∈Z>0 that have value 1 and terms beyond the Nth term in the
sequence ( f j(x)) j∈Z>0 that have value 0. This precludes pointwise convergence at x.
Since this is true for every x ∈ [0, 1) it follows that almost everywhere pointwise
convergence is precluded. Indeed, the sequence converges pointwise nowhere. •

The situation is not entirely hopeless, however. Indeed, one has the following
result.

2.6.26 Proposition (Convergence in measure implies almost everywhere pointwise
convergence of a subsequence) Let (X,A , µ) be a measure space, let (fj)j∈Z>0 be a
sequence in L(0)((X,A );R) and let f ∈ L(0)((X,A );R) satisfy the following:

(i) the sets {x ∈ X | f(x) < R} and {x ∈ X | fj(x) < R} have measure zero;
(ii) the sequence (fj)j∈Z>0 converges to f in measure.

Then there exists a subsequence of (fj)j∈Z>0 which converges pointwise almost everywhere
to f.

Proof Define a strictly increasing sequence ( jk)k∈Z>0 in Z>0 as follows. Let j1 be such
that

µ({x ∈ X | | f (x) − f j1(x)| > 1}) ≤ 1
2 ,

this being possible by definition of convergence in measure. Then suppose that j1, . . . , jk
have been defined. Define jk+1 such that jk+1 > jk and such that

µ({x ∈ X | | f (x) − f jk+1(x)| > 1
k+1 } ≤

1
2k+1 ,

this again being possible by definition of convergence in measure. Now define

Ak = {x ∈ X | | f (x) − f jk(x)| < 1
k }, k ∈ Z>0,

and Bm = ∪
∞

k=mAk, m ∈ Z>0. Note that Bm+1 ⊇ Bm for m ∈ Z>0. Moreover,

µ(Bm) ≤
∞∑

k=m

µ(Ak) ≤
∞∑

k=m

1
2k
=

1
2m−1

∞∑
k=1

1
2k
=

1
2m−1
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by Example I-2.4.2–1. Therefore, by Proposition 2.3.3,

µ(∩∞m=1Bm) = lim
m→∞

µ(Bm) ≤ lim
m→∞

1
2m−1

= 0.

Now, if x < ∩∞m=1Bm there exists m ∈ Z>0 such that x < Bm. Thus x < ∪∞k=mAk and so

| f (x) − f jk(x)| < 1
2k , k ≥ m.

Thus limk→∞ f jk(x) = f (x). Thus ( f jk)k∈Z>0 converges pointwise to f on X \ (∩∞m=1Bm).
This gives almost everywhere pointwise convergence of this subsequence to f . ■

2.6.4 C- and vector-valued measurable functions

It is important to be able to talk about functions taking values in spaces more
interesting thanR. In particular,C-valued functions will be frequently encountered
in these volumes. Here we allow this by considering functions taking values inRn.

First let us define what we mean by a measurable Rn-valued function.

2.6.27 Definition (Measurable vector-valued function) For a measurable space (X,A ),
a function f : X → Rn is A -measurable if its components f1, . . . , fn : X → R are
measurable in the sense of Definition 2.6.5. We denote the set of measurable Rn-
valued maps by L(0)((X,A );Rn), or simply by L(0)(X;Rn) with the understanding
that the σ-algebra A is implicit. •

Let us relate this notion of measurability to that in Definition 2.6.1.

2.6.28 Proposition (Characterisation of vector-valued measurable functions) For a
measurable space (X,A ) and for a function f : X → Rn the following statements are
equivalent:

(i) f ∈ L(0)((X,A );Rn);
(ii) f is (A ,B (Rn))-measurable.

Proof Suppose that f ∈ L(0)((X,A );Rn). By Propositions 2.4.9 it follows that
f−1
j ((−∞, b j]) ∈ A for every b j ∈ R and for j ∈ {1, . . . ,n}. Now note that

f−1((−∞, b1] × · · · × (−∞, bn]) = f−1
1 ((−∞, b1]) ∩ · · · ∩ f−1

n ((−∞, bn]) ∈ A

for every b1, . . . , bn ∈ R. By Propositions 2.5.9 and 2.6.2 it follows that f is (A ,B (Rn))-
measurable.

Next suppose that f is (A ,B (Rn))-measurable. Then, for j ∈ {1, . . . ,n} and b j ∈ R,

f−1
j ((−∞, b j]) = X ∩ · · · ∩ f−1

j ((−∞, b j]) ∩ · · · ∩ X

= f−1
1 (R) ∩ · · · ∩ f−1

j ((−∞, b j]) ∩ · · · ∩ f−1
n (R)

= f−1(R × · · · × (−∞, b j] × · · · ×R).

Since R × · · · × (−∞, b j] × · · · ×R is a Borel set (it is closed), it follows that f−1
j ((−∞, b j])

is a Borel set, and so the result follows from Propositions 2.4.9 and 2.6.2. ■
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The definition of measurable C-valued functions follows directly from the pre-
ceding constructions. Indeed, we note that C is isomorphic as a R-vector space to
Rn via the isomorphism z 7→ (Re(z), Im(z)). Thus the following definition simply
specialises the above general definition.

2.6.29 Definition (Measurable C-valued functions) For a measurable space (X,A ), a
function f : X→ C is A -measurable if the R-valued functions

Re( f ) : x 7→ Re( f (x)), Im( f ) : x 7→ Im( f (x))

are measurable in the sense of Definition 2.6.5. We denote the set of measurable
C-valued maps by L(0)((X,A );C), with the understanding that the σ-algebra A is
implicit. •

It is straightforward to adapt the results concerning operations on measur-
able functions in Section 2.6.2 to vector-valued functions. Let us record this here
for Rn-valued functions, noting that these results apply immediately to C-valued
functions.

2.6.30 Proposition (Algebraic operations on measurable functions) Let (X,A ) be a
measurable space, let f,g ∈ L(0)((X,A );Rn), and let a ∈ R. Then the functions f + g and
af defined by

(f + g)(x) = f(x) + g(x), (af)(x) = a(f(x))

are A -measurable.
Proof This follows directly from the definition of A -measurable vector-valued func-
tions, the definitions of vector addition and scalar multiplication, and Proposi-
tion 2.6.11. ■

Next we consider compositions of measurable functions with functions between
Euclidean spaces.

2.6.31 Proposition (Composition and measurable functions) Let (X,A ) be a measurable
space, let f ∈ L(0)((X,A );Rn), and let ϕ : Rn

→ Rm beB (R)-measurable. Then ϕ ◦ f ∈
L(0)((X,A );Rm).

Proof Let B ∈ B (Rm). By assumption and by Proposition 2.6.6 we have ϕ−1(B) ∈
B (Rn). Thus, using Exercise I-1.3.2,

(ϕ ◦ f )−1(B) = f−1(ϕ−1(B)) ∈ A ,

and so ϕ ◦ f is A -measurable, as desired. ■

2.6.32 Corollary (Composition by continuous functions and measurability) Let (X,A )
be a measurable space, let f ∈ L(0)((X,A );Rn), and let ϕ : Rn

→ Rn be continuous. Then
ϕ ◦ f ∈ L(0)((X,A );Rm).

Proof This follows from Proposition 2.6.31, along with Example 2.6.3. ■
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2.6.33 Corollary (Measurability of norms of functions) Let (X,A ) be a measurable space,
let f ∈ L(0)((X,A );Rn), and let ϕ : Rn

→ Rn be continuous. Then the function x 7→
∥f(x)∥Rn is A -measurable.

Proof This follows from the previous corollary, along with continuity of the norm ().■ what?

Next we consider the restrictions of measurable functions, recalling from Propo-
sition 2.2.6 the definition of the restriction AA of a measurable space (X,A ) to a
measurable subset A ∈ A .

2.6.34 Proposition (Measurability and restriction) Let (X,A ) be a measurable space, let
f : X→ Rn be A -measurable, and let A ∈ A . Then f|A is AA-measurable.

Moreover, if B = X \A and if we haveAA- andAB-measurable functions fA : A→ Rn

and fB : B→ Rn, respectively, then the function f : X→ Rn defined by

f(x) =

fA(x), x ∈ A,
fB(x), x ∈ B

is A -measurable.
Proof Let B ∈ A so that A ∩ B ∈ AA. Then, by Proposition I-1.3.5,

f−1(A ∩ B) = f−1(A) ∩ f−1(B),

and from this we deduce that f−1(A ∩ B) is the intersection of measurable sets, and so
measurable.

For the second assertion of the proposition, let E ∈ A and write E = (A∩E)∪(B∩E).
Then, again by Proposition I-1.3.5,

f−1(E) = f−1(A ∩ E) ∪ f−1(B ∩ E) = f−1
A (A ∩ E) ∪ f−1

B (B ∩ E).

Since f A and f B areAA- andAB-measurable, f−1
A (A∩E) ∈ AA and f−1

B (B∩E) ∈ AB. Since
AA,AB ⊆ A , f−1(E) is the union of A -measurable sets, and so is A -measurable. ■

Finally, we consider measurability of limits of vector-valued functions. We
consider a sequence S = ( f j) j∈Z>0 of Rn-valued functions on a measurable space
(X,A ). Let us denote

AS =
{
x ∈ X

∣∣∣ lim
j→∞

f j(x) exists
}

and define lim S : AS → Rn by lim S(x) = lim j→∞ f j(x). With this notation we have
the following result.

2.6.35 Proposition (Pointwise limits of sequences of measurable functions) Let
(X,A ) be a measurable space and let S = (fj)j∈Z>0 be a sequence in L(0)((X,A );Rn).
Then the set AS and the function lim S are A -measurable.

Proof Let f1, j, . . . , fn, j be the components of f j, j ∈ Z>0, and for k ∈ {1, . . . ,n} define

AS,k =
{
x ∈ X

∣∣∣ lim
j→∞

fk, j(x) exists
}
.
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Note that AS = ∩
n
k=1AS,k so that AS is measurable, being a finite intersection of measur-

able sets. From Propositions 2.6.15 and 2.6.18 it follows that the function

AS ∋ x 7→ lim
j→∞

fk, j(x) ∈ R

isA -measurable. The definition of measurability of vector-valued functions now gives
the result. ■

For almost everywhere pointwise convergent sequences, this gives the follow-
ing result.

2.6.36 Corollary (Measurability of almost everywhere convergent sequences) Let
(X,A , µ) be a complete measure space, let (fj)j∈Z>0 be a sequence in L(0)((X,A );Rn), and
let f : X→ Rn be such that

µ
(
X \

{
x ∈ X

∣∣∣∣ f(x) = lim
j→∞

fj(x)
})
= 0.

Then f is A -measurable.
Proof Let f1, j, . . . , fn, j be the components of f j, j ∈ Z>0, let f1, . . . , fn be the components
of f , and define

Bk =
{
x ∈ A

∣∣∣ fk(x) = lim
j→∞

fk, j(x)
}
, k ∈ {1, . . . ,n},

and
B =

{
x ∈ A

∣∣∣ f (x) = lim
j→∞

f j(x)
}
.

Note that B = ∩n
k=1Bk. By hypothesis, µ(X \ B) = 0, and we claim that µ(X \ Bk) = 0 for

k ∈ {1, . . . ,n}. Indeed, suppose that µ(X \ Bk) > 0 for some k0 ∈ {1, . . . ,n}. Then

µ(X \ B) = µ(X \ ∩k
j=1Bk) = µ(∪n

k=1X \ Bk) ≥ µ(X \ Bk0) > 0,

contrary to our hypothesis. Since µ(X \ Bk) = 0 for every k ∈ {1, . . . ,n}, it follows from
Corollary 2.6.19 that fk is measurable, and so f is also measurable. ■

2.6.5 Simple functions and approximations of measurable functions

In this section we consider a specific class of measurable functions that will be
fundamental to our construction of the integral in Section 2.7. There are various
ways to characterise this class of functions, and the following result gives some of
these.

2.6.37 Proposition (Characterisations of simple functions) For a measurable space
(X,A ) and a function f : X→ R the following statements are equivalent:

(i) image(f) = {a1, . . . , ak} ⊆ R and the sets f−1(aj), j ∈ {1, . . . ,k}, are measurable;

(ii) there exists B1, . . . ,Bm ∈ A and b1, . . . , bm ∈ R such that f =
∑m

j=1 bjχBj ;
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(iii) there exist pairwise disjoint sets C1, . . . ,Cr ∈ A and c1, . . . , cr ∈ R such that
f =

∑r
j=1 cjχCj .

Proof (i) =⇒ (ii) Given f : X → R satisfying condition (i), take m = k, b j = a j, and
B j = f−1(a j), j ∈ {1, . . . , k}. If x ∈ B j then we clearly have f (x) = b j and so f =

∑m
j=1 b jχB j ,

as desired.
(ii) =⇒ (iii) Let f : X→ R satisfy condition (ii). If x ∈ ∪m

j=1B j then there exists unique
j1(x), . . . , jr(x)(x) ∈ {1, . . . ,m} such that x ∈ C(x) ≜ B j1(x) ∩ · · · ∩ B jr(x)(x), but x < B j for
j < { j1(x), . . . , jr(x)(x)}. Moreover, f (x) = b j1(x)+ · · ·+b jr(x)(x). Since there is a finite number
of sets B1, . . . ,Bm there are only finitely many possible intersections of these sets. Thus
{C(x)}x∈X = {C1, . . . ,Cr} for disjoint sets C1, . . . ,Cr. Since each of the sets C1, . . . ,Cr is a
finite intersection of measurable sets, these sets are measurable. By construction of the
sets C(x), x ∈ X, the sets C1, . . . ,Cm are pairwise disjoint. Moreover, the value of f on
C j is constant for j ∈ {1, . . . , r}. From these observations we immediately conclude that
f satisfies property (iii).

(iii) =⇒ (i) First suppose that ∪r
j=1C j = X. Then, given f : X → R satisfying

condition (iii), define k = r and a j = c j, j ∈ {1, . . . , r}. Clearly image( f ) = {a1, . . . , ar} and,
since f−1(a j) is a union of the measurable sets C1, . . . ,Cr (it might be a union in case
the numbers c1, . . . , cr are not distinct), these sets are measurable. If ∪r

j=1C j ⊂ X then
define k = r + 1 and let Cr+1 = X \ ∪r

j=1C j and cr+1 = 0. The first part of the proof can
now be repeated to give the desired conclusion in this case. ■

We now give a function having any of the preceding properties a name.

2.6.38 Definition (Simple function) If (X,A ) is a measurable space, a function f : X→ R
satisfying any one of the three equivalent properties of Proposition 2.6.37 is a
simple function. For any subset I ⊆ R (typically we will be concerned with I ∈
{R,R≥0}) we denote

S(X; I) = { f : X→ I | f is simple},

with the understanding that the σ-algebra A is implicit. •

Simple functions can be thought of playing for the integral on measure spaces
the rôle of step functions in the construction of the Riemann integral. For the
Riemann integral, Riemann integrable functions are defined by their ability to be
well approximated by step functions. For the integral defined on measure spaces,
there exists a notion, definable only in terms of measurable sets, of a class of
functions that are well approximated by simple functions. These are none other
than the measurable functions that we have been talking about in this section. The
following result illustrates this.

2.6.39 Proposition (Approximations of measurable functions by simple functions)
For a measurable space (X,A ) and for anA -measurable function f : A→ R, the following
statements hold:
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(i) there exists a sequence (fk)k∈Z>0 of simple functions having the property that, for each
x ∈ X, we have

lim
k→∞

fk(x) = f(x);

(ii) if f isR≥0-valued, the sequence (fk)k∈Z>0 of part (i) may be chosen so that the functions
are R≥0-valued, and so that, for each x ∈ X, the sequence (fk(x))k∈Z>0 is increasing.

Proof We prove part (ii) first, with (i) then following easily. Thus suppose that f (x) ≥ 0
for each x ∈ X. Let k ∈ Z>0. For j ∈ {1, . . . , k2k

}, define

Ak, j = {x ∈ X | 2−k( j − 1) ≤ f (x) < 2−k j}.

As f is measurable, each of these sets is measurable (why?). We then define fk(x) by

fk(x) =

2−k( j − 1), x ∈ Ak, j,

k, x ∈ A \ (∪k2k

j=1Ak, j).

If f (x) < ∞ then the sequence ( fk(x))k∈Z>0 converges to f (x) by construction. If f (x) = ∞
then fk(x) = k for all k ∈ Z>0, and again the sequence converges, i.e., diverges to∞.

This proves the result when f is positive-valued. If f is not positive-valued, then
one writes f = f+ − f− where

f+(x) = max{ f (x), 0}, f−(x) = max{− f (x), 0},

cf. Corollary 2.6.17. In this case, the preceding argument can be applied to f+ and f−
separately, giving (i). ■

One can also consider simple functions that are C- or Rn-valued. Let us first
consider the vector-valued case.

2.6.40 Definition (Vector-valued simple function) For a measurable space (X,A ), a
function f : X → Rn is a simple function if each of its components f j : X → R,
j ∈ {1, . . . ,n}, is a simple function. •

The following characterisation of Rn-valued simple functions is then useful.

2.6.41 Proposition (Characterisation of vector-valued simple functions) For a measur-
able space (X,A ) and for f : X→ Rn, the following statements are equivalent:

(i) f is a simple function;
(ii) image(f) = {a1, . . . , ak} ⊆ Rn and the sets f−1(aj), j ∈ {1, . . . ,k}, are measurable;
(iii) there exists B1, . . . ,Bm ∈ A and b1, . . . ,bm ∈ Rn such that f =

∑m
j=1 bjχBj ;

(iv) there exist pairwise disjoint sets C1, . . . ,Cr ∈ A and c1, . . . , cr ∈ Rn such that
f =

∑r
j=1 cjχCj .

Proof It suffices to show the equivalence of any of the last three statements with
the first. The arguments from Proposition 2.6.37 can then be applied to show the
equivalence with the other two statements, the only difference being the replacement
of R with Rn. We shall show that the first statement is equivalent to the fourth.
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First suppose that f is a simple function and write

f j =

r j∑
k=1

c j,kχC j,k ,

for c j,k ∈ R and for pairwise disjoint sets C j,k ∈ A , j ∈ {1, . . . ,n}, k ∈ {1, . . . , r j}. Let x ∈ X
and denote

C(x) = ∩{C j,k | j ∈ {1, . . . ,n}, k ∈ {1, . . . , r j}, x ∈ C j,k}.

Since there are finitely many sets C j,k, j ∈ {1, . . . ,n}, k ∈ {1, . . . , r j}, it follows that there
are finitely many possible intersections of these sets. Therefore, there are pairwise
disjoint measurable sets C1, . . . ,Cr such that {C(x)}x∈X = {C1, . . . ,Cr}. Moreover, if x ∈ X
and if f (x) , 0, then x ∈ Cl for some l ∈ {1, . . . , r}. Moreover, since Cl = C j1,k1∩· · ·∩C jm,km

for some distinct j1, . . . , jm ∈ {1, . . . ,n} and some kl ∈ {1, . . . , r jl}, l ∈ {1 . . . ,m}, we have

f j(x) =

c jl,kl , j = jl for some l ∈ {1, . . . ,m},
0, otherwise.

Therefore, taking cl to be the vector whose jth component is given by the expression
on the right above, we have

f =
r∑

l=1

clχCl ,

as desired.
Conversely, suppose that f satisfies the fourth condition with

f =
r∑

l=1

clχCl .

Then

f j =

r∑
l=1

cl, jχCl ,

where cl, j, j ∈ {1, . . . ,n}, is the jth component of cl, l ∈ {1, . . . , r}. This shows that f is a
simple function. ■

The same constructions obviously apply to C-valued functions, and we record
the constructions here.

2.6.42 Definition (C-valued simple function) For a measurable space (X,A ), a function
f : X→ C is a simple function if Re( f ), Im( f ) : X→ R are simple functions. •
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2.6.43 Corollary (Characterisation of C-valued simple functions) For a measurable space
(X,A ) and for f : X→ C, the following statements are equivalent:

(i) f is a simple function;
(ii) image(f) = {a1, . . . , ak} ⊆ C and the sets f−1(aj), j ∈ {1, . . . ,k}, are measurable;
(iii) there exists B1, . . . ,Bm ∈ A and b1, . . . , bm ∈ C such that f =

∑m
j=1 bjχBj ;

(iv) there exist pairwise disjoint sets C1, . . . ,Cr ∈ A and c1, . . . , cr ∈ C such that
f =

∑r
j=1 cjχCj .

One can also use C- or vector-valued simple functions to approximate C- or
vector-valued measurable functions.

2.6.44 Proposition (Approximation of vector-valued measurable functions by sim-
ple functions) If (X,A ) is a measure space and if f : X→ Rn is measurable, then there
exists a sequence (fk)k∈Z>0 of Rn-valued simple functions such that

(i) limk→∞ fk(x) = f(x) for each x ∈ X and
(ii) ∥fk(x)∥Rn ≤ ∥f(x)∥Rn for each x ∈ X.

Proof Let f1, . . . , fn be the components of f . For each j ∈ {1, . . . ,n}, if we apply
the construction of Proposition 2.6.39, we arrive at a sequence ( f j,k)k∈Z>0 of simple
functions for which
1. limk→∞ f j,k(x) = f j(x) for every x ∈ X and
2. | f j,k(x)| ≤ | f j(x)| for every x ∈ X
(the verification of the second property requires looking for a moment at the particular
construction of Proposition 2.6.39. If we take

f k(x) = ( f1,k(x), . . . , fn,k(x)), x ∈ X, k ∈ Z>0

then one sees easily that the sequence ( f k)k∈Z>0 has the desired properties. ■

Of course, this specialises to the C case.

2.6.45 Corollary (Approximation of C-valued measurable functions by simple func-
tions) If (X,A ) is a measure space and if f : X → C is measurable, then there exists a
sequence (fk)k∈Z>0 of C-valued simple functions such that

(i) limk→∞ fk(x) = f(x) for each x ∈ X and
(ii) |fk(x)| ≤ |f(x)| for each x ∈ X.

2.6.6 Topological characterisations of convergence for sequences of
measurable functions8

In this section we characterise some of the modes of convergence for sequences
of measurable functions in terms of topological constructions. We let (X,A , µ)
be a measure space. It will be useful to characterise measurable functions as

8The results in this section are not used in an essential way elsewhere in the text, except in
Sections 2.7.5 and 2.9.11.
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equivalence classes of functions that agree up to sets of measure zero. Thus we say
that f , g ∈ L(0)((X,A );R) are equivalent if

µ({x ∈ X | f (x) , g(x)}) = 0.

This is readily seen to define an equivalence relation in L(0)((X,A );R) and we
denote by L0((X,A );R) the set of equivalence classes, an equivalence class being
denoted by [ f ] for f ∈ L(0)((X,A );R). The following result shows that convergence
pointwise almost everywhere is defined independently of equivalence classes.

2.6.46 Lemma (Almost everywhere pointwise convergence is independent of equiv-
alence) Let (X,A , µ) be a measure space. For a sequence ([fj])j∈Z>0 in L0((X,A );R) and
for [f] ∈ L0((X,A );R) the following statements are equivalent:

(i) there exists a sequence (gj)j∈Z>0 in L(0)((X,A );R) and g ∈ L(0)((X,A );R) such that

(a) [gj] = [fj] for j ∈ Z>0,
(b) [g] = [f], and
(c) (gj)j∈Z>0 converges pointwise almost everywhere to g.

(ii) for every sequence (gj)j∈Z>0 in L(0)((X,A );R) and for every g ∈ L(0)((X,A );R)
satisfying

(a) [gj] = [fj] for j ∈ Z>0 and
(b) [g] = [f],

it holds that (gj)j∈Z>0 converges pointwise almost everywhere to g.
Proof It is clear that the second statement implies the first, so we only prove the
converse. Thus we let (g j) j∈Z>0 in L(0)((X,A );R) and g ∈ L(0)((X,A );R) be such that
1. [g j] = [ f j] for j ∈ Z>0,
2. [g] = [ f ], and
3. (g j) j∈Z>0 converges pointwise almost everywhere to g.

Let (h j) j∈Z>0 be a sequence in L(0)((X,A );R) and let h ∈ L(0)((X,A );R) be such that
1. [h j] = [ f j] for j ∈ Z>0 and
2. [h] = [ f ].
Define

A = {x ∈ X | g(x) , f (x)}, B = {x ∈ X | h(x) , f (x)}

and, for j ∈ Z>0, define

A j = {x ∈ X | g j(x) , f j(x)}, B j = {x ∈ X | h j(x) , f j(x)}

and note that

x ∈ X \ (A ∪ B) = (X \ A) ∩ (X \ B) =⇒ h(x) = f (x) = g(x)

and
x ∈ X \ (A j ∪ B j) = (X \ A j) ∩ (X \ B j) =⇒ h j(x) = f j(x) = g j(x).
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Thus,

x ∈ X \
(
(∪ j∈Z>0A j ∪ B j) ∪ (A ∪ B)

)
=⇒ lim

j→∞
h j(x) = lim

j→∞
g j(x) = g(x) = h(x).

Since (∪ j∈Z>0A j ∪ B j) ∪ (A ∪ B) is a countable union of sets of measure zero, it has zero
measure, and so (h j) j∈Z>0 converges pointwise almost everywhere to h. ■

With the preceding lemma, the following definition makes sense.

2.6.47 Definition (Almost everywhere convergence of sequences of equivalence
classes of functions) Let (X,A , µ) be a measure space, let ([ f j]) j∈Z>0 be a sequence
in L0((X,A );R), and let [ f ] ∈ L0((X,A );R). The sequence ([ f j]) j∈Z>0 converges
pointwise almost everywhere to [ f ] if

µ
(
X \

{
x ∈ X

∣∣∣∣ f (x) = lim
j→∞

f j(x)
})
= 0. •

We begin by indicating that the convergence defined by almost everywhere
pointwise convergence cannot arise from a topology.

2.6.48 Proposition (Almost everywhere pointwise convergence is not always topo-
logical) Let (X,A , µ) be a measure space and let Ta.e. be the set of topologies τ on
L0((X,A );R) such that the convergent sequences in τ are precisely the almost everywhere
pointwise convergent sequences. If there exists a sequence (fj)j∈Z>0 in L(0)((X,A );R) and
f ∈ L(0)((X,A );R) such that (fj)j∈Z>0 converges in measure to f but does not converge
pointwise almost everywhere to f, then Ta.e. = ∅.

Proof Let us denote by z ∈ L(0)((X,A );R) the zero function. The hypotheses ensure
that the sequence (g j ≜ f j − f ) j∈Z>0 converges to z in measure, but does not converges
pointwise almost everywhere to z. Suppose that Ta.e. , ∅ and let τ ∈ Ta.e.. Since
almost everywhere pointwise convergence agrees with convergence in τ, there exists
a neighbourhood U of [z] in L0((X,A );R) such that the set

{ j ∈ Z>0 | [ f j] ∈ U}

is finite. By Proposition 2.6.26 there exists a subsequence ( f jk)k∈Z>0 of ( f j) j∈Z>0 that
converges pointwise almost everywhere to z. Thus the sequence ([ f jk])k∈Z>0 converges
pointwise almost everywhere to [z], and so converges to [z] in τ. Thus, in particular,
the set

{k ∈ Z>0 | [ f jk] ∈ U}

is infinite, which is a contradiction. ■

In particular, we have the following result which shows that in the most common
situation where one wishes to study almost everywhere pointwise convergence,
this sort of convergence is not topological.
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2.6.49 Corollary (Almost everywhere pointwise convergence is not topological for
the Lebesgue measure) Let Ta.e. be the set of topologies τ on L0((Rn,L (Rn));R) such
that the convergent sequences in τ are precisely the almost everywhere pointwise convergent
sequences using the Lebesgue measure on Rn. Then Ta.e. = ∅.

Proof In Example 2.6.25 we have seen that there exists a sequence in L(0)((R,L (R));R)
that converges in measure but does not converge pointwise almost everywhere. This
example is easily adapted to L(0)((Rn,L (Rn));R), and the result then follows from
Proposition 2.6.48. ■

Now one can ask if there is a framework in which almost everywhere pointwise
convergence can be studied. Indeed there is such a framework. The construction
relies on notions concerning filters and nets from . where?

2.6.50 Definition (Limit structure) A limit structure on a set S is a subsetL ⊆ F (S) × S
with the following properties:

(i) if x ∈ S then (Fx, x) ∈ L ;
(ii) if (F, x) ∈ L and if F ⊆ G ∈ F (S) then (G, x) ∈ L ;
(iii) if (F, x), (G, x) ∈ L then (F ∩ G, x) ∈ L .

If (Λ,⪯) is a directed set, a Λ-net ϕ : Λ→ S isL -convergent to x ∈ S if (Fϕ, x) ∈ L .
Let us denote by S (L ) the set of L -convergent Z>0-nets, i.e., the set of L -
convergent sequences. •

The intuition behind the notion of a limit structure is as follows. Condition (i)
says that the trivial filter converging to x should be included in the limit structure,
condition (ii) says that if a filter converges to x, then every coarser filter also
converges to x, and condition (iii) says that “mixing” filters converging to x should
give a filter converging to x. Starting from the definition of a limit structure, one
can reproduce many of the concepts from topology, e.g., openness, closedness,
compactness, continuity.

We are interested in the special case of limit structures on a vector space V. We
suppose that V is defined over a field F. For F,G ∈ F (V) and for a ∈ F we denote

F + G = {A + B | A ∈ F, B ∈ G}, aF = {aA | A ∈ F},

where, as usual,

A + B = {u + v | u ∈ A, v ∈ B}, aA = {au | u ∈ A}.

We say that a limit structureL on a vector space V is linear if (F1, v1), (F2, v2) ∈ L
implies that (F1 + F2, v1 + v2) ∈ L and if a ∈ F and (F, v) ∈ L then (aF, av) ∈ L .

For [ f ] ∈ L0((X,A );R) define

F[ f ] = {F ∈ F (L0((X,A );R)) | Fϕ ⊆ F for some Z>0-net ϕ such that
(ϕ( j)) j∈Z>0 is almost everywhere pointwise convergent to [ f ]}.

We may now define a limit structure on L0((X,A );R) as follows.
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2.6.51 Theorem (Almost everywhere pointwise convergence is defined by a limit
structure) The subset of F (L0((X,A );R)) × L0((X,A );R) defined by

Lµ = {(F, [f]) | F ∈ F[f]}

is a linear limit structure on L0((X,A );R). Moreover, a sequence ([fj])j∈Z>0 is Lµ-
convergent to [f] if and only if the sequence is almost everywhere pointwise convergent to
[f].

Proof Let [ f ] ∈ L0((X,A );R). Consider the trivial Z>0-net ϕ[ f ] : Z>0 → L0((X,A );R)
defined by ϕ[ f ]( j) = [ f ]. Since Fϕ = F[ f ] and since (Fϕ, [ f ]) ∈ Lµ, the condition (i) for a
limit structure is satisfied.

Let (F, [ f ]) ∈ Lµ and suppose that F ⊆ G. Then F ∈ F[ f ] and so F ⊇ Fϕ for
some Z>0-net ϕ that converges pointwise almost everywhere to [ f ]. Therefore, we
immediately have Fϕ ⊆ G and so (G, [ f ]) ∈ Lµ. This verifies condition (ii) in the
definition of a limit structure.

Finally, let (F, [ f ]), (G, [ f ]) ∈ Lµ and letϕ andψbeZ>0-nets that converge pointwise
almost everywhere to [ f ] and satisfy Fϕ ⊆ F and Fψ ⊆ G. Define a Z>0-net ϕ ∧ ψ by

ϕ ∧ ψ( j) =

ϕ( 1
2 ( j + 1)), j odd,

ψ( 1
2 j), j even.

We first claim that ϕ ∧ ψ converges pointwise almost everywhere to [ f ]. Let

A =
{
x ∈ X

∣∣∣ lim
j→∞

ϕ( j)(x) , f (x)
}
, B =

{
x ∈ X

∣∣∣ lim
j→∞

ψ( j)(x) , f (x)
}
.

If x ∈ X \ (A ∪ B) then
lim
j→∞

ϕ( j)(x) = lim
j→∞

ψ( j)(x) = f (x).

Thus, for x ∈ X \ (A ∪ B) and ϵ ∈ R>0 there exists N ∈ Z>0 such that

| f (x) − ϕ( j)(x)|, | f (x) − ψ( j)(x)| < ϵ, j ≥ N.

Therefore, for j ≥ 2N and for x ∈ X \ (A ∪ B) we have | f (x) − ϕ ∧ ψ( j)(x)| < ϵ and so

lim
j→∞

ϕ ∧ ψ( j)(x) = f (x), x ∈ X \ (A ∪ B).

Since µ(A∪B) = 0 it indeed follows that ϕ∧ψ converges pointwise almost everywhere
to [ f ].

We next claim that Fϕ∧ψ ⊆ F ∩ G. Indeed, let S ∈ Fϕ∧ψ. Then there exists N ∈ Z>0
such that Tϕ∧ψ(N) ⊆ S. Therefore, there exists Nϕ,Nψ ∈ Z>0 such that Tϕ(Nϕ) ⊆ S and
Tψ(Nψ) ⊆ S. That is, S ∈ Fϕ ∩ Fψ ⊆ F ∩ G. This shows that (F ∩ G, [ f ]) ∈ Lµ and so
shows that condition (iii) in the definition of a limit structure holds.

Thus we have shown that Lµ is a limit structure. Let us show that it is a linear
limit structure. Let (F1, [ f1]), (F2, v2) ∈ Lµ. Thus there exists Z-nets ϕ1 and ϕ2 in
L0((X,A );R) converging pointwise almost everywhere to [ f1] and [ f2], respectively,
and such that Fϕ1 ⊆ F1 and Fϕ2 ⊆ F2. Let us denote by ( f1, j) j∈Z>0 and ( f2, j) j∈Z>0
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sequences in L(0)((X,A );R) such that [ f1, j] = ϕ1( j) and [ f2, j] = ϕ2( j) for j ∈ Z>0. Then,
as in the proof of Lemma 2.6.46, there exists a subset A ⊆ X of zero measure such that

lim
j→∞

f j,1(x) = f1(x), lim
j→∞

f2, j(x) = f2(x), x ∈ X \ A.

Thus, for x ∈ X \ A,
lim
j→∞

( f1, j + f2, j)(x) = ( f1 + f2)(x).

This shows that theZ>0-netϕ1+ϕ2 converges pointwise almost everywhere to [ f1+ f2].
Since Fϕ1+ϕ2 ⊆ F1 + F2, it follows that (F1 + F2, [ f1 + f2]) ∈ Lµ. An entirely similarly
styled argument gives (aF, av) ∈ Lµ for (F, v) ∈ Lµ.

We now need to show that S (Lµ) consists exactly of the almost everywhere
pointwise convergent sequences. The very definition ofLµ ensures that if aZ>0-net ϕ
is almost everywhere pointwise convergent then ϕ ∈ S (Lµ). We prove the converse,
and so let ϕ be Lµ-convergent to [ f ]. Therefore, by definition of Lµ, there exists a
Z>0-net ψ converging pointwise almost everywhere to [ f ] such that Fψ ⊆ Fϕ.

1 Lemma There exists of a subsequence ψ′ of ψ such that Fψ′ = Fϕ.

Proof Let n ∈ Z>0 and note that Tψ(n) ∈ Fψ ⊆ Fϕ. Thus there exists k ∈ Z>0 such that
Tϕ(k) ⊆ Tψ(n). Then define

kn = min{k ∈ Z>0 | Tϕ(k) ⊆ Tψ(n)},

the minimum being well-defined since

k > k′ =⇒ Tϕ(k) ⊆ Tϕ(k′).

This uniquely defines, therefore, a sequence (kn)n∈Z>0 . Moreover, if n1 > n2 then
Tψ(n2) ⊆ Tψ(n1) which implies that Tϕ(kn2) ⊆ Tψ(n1). Therefore, kn2 ≥ kn1 , showing that
the sequence (kn)n∈Z>0 is nondecreasing.

Now define θ : Z>0 → Z>0 as follows. If j < kn for every n ∈ Z>0 then define θ( j)
in an arbitrary manner. If j ≥ k1 then note that ϕ( j) ∈ Tϕ(k1) ⊆ Tψ(1). Thus there exists
(possibly many) m ∈ Z>0 such that ϕ( j) = ψ(m). If j ≥ kn for n ∈ Z>0 then there exists
(possibly many) m ≥ n such that ϕ( j) = ψ(m). Thus for any j ∈ Z>0 we can define
θ( j) ∈ Z>0 such that ϕ( j) = ψ(θ( j)) if j ≥ k1 and such that θ( j) ≥ n if j ≥ kn.

Note that any function θ : Z>0 → Z>0 as constructed above is unbounded. There-
fore, there exists a strictly increasing function ρ : Z>0 → Z>0 such that image(ρ) =
image(θ). We claim that Fρ = Fθ. First let n ∈ Z>0 and let j ≥ kρ(n). Then θ( j) ≥ ρ(n).
Since image(ρ) = image(θ) there exists m ∈ Z>0 such that ρ(m) = θ( j) ≥ ρ(n). Since ρ is
strictly increasing, m ≥ n. Thus θ( j) ∈ Tρ(n) and so Tθ(kρ(n)) ⊆ Tρ(n). This implies that
Fρ ⊆ Fθ.

Conversely, let n ∈ Z>0 and let rn ∈ Z>0 be such that

ρ(rn) > max{θ(1), . . . , θ(n)};

this is possible since ρ is unbounded. If j ≥ rn then

ρ( j) ≥ ρ(rn) > max{θ(1), . . . , θ(n)}.
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Since image(ρ) = image(θ) we have ρ( j) = θ(m) for some m ∈ Z>0. We must have
m > n and so ρ( j) ∈ Tθ(n). Thus Tρ(rn) ⊆ Tθ(n) and so Fθ ⊆ Fρ.

To arrive at the conclusions of the lemma we first note that, by definition of θ,
Fϕ = Fψ◦θ. We now define ψ′ = ψ ◦ ρ and note that

Fϕ = Fψ◦θ = ψ(Fθ) = ψ(Fρ) = Fψ◦ρ,

as desired. ▼

Since a subsequence of an almost everywhere pointwise convergent sequence is
almost everywhere pointwise convergent to the same limit, it follows that ψ′, and so
ϕ, converges almost everywhere pointwise to [ f ]. ■

Note that we have already seen in Sections 1.9.1 and 1.9.2 that pointwise and
uniform convergence is prescribed by a topology. We shall see in that convergencewhat?

in measure is topological.

Exercises

2.6.1 Let (X,A , µ) be a measure space that is not complete. Show that Proposi-
tion 2.6.10 fails in this case.

2.6.2 Let (X,A , µ) be a measure space that is not complete. Show that Corol-
lary 2.6.19 fails in this case.

2.6.3 Let (X,A ) be a measurable space and let A,B ∈ A be such that X = A
◦

∪B. Let
fA : A → R be AA-measurable and let fB : B → R be AB-measurable. Show
that f : X→ R defined by

f (x) =

 fA(x), x ∈ A,
fB(x), x ∈ B

is A -measurable.
2.6.4 Give an example of a measure space (X,A , µ), a sequence ( f j) j∈Z>0 in

L(0)((X,A );R), and a function f ∈ L(0)((X,A );R) such that ( f j) j∈Z>0 converges
pointwise almost everywhere to f , but does not converges pointwise to f .
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Section 2.7

Integration on measure spaces

Up to now, we have studied measurable and measure spaces in some detail.
These subjects certainly have some value in their own right, particularly in the do-
main of probability theory which we discuss in . In particular, the properties of the where?

Lebesgue measure onR andRn considered in Sections 2.4 and 2.5 are substantially
useful. Following our discussion of measure, we introduced a particular class of
functions on measurable spaces called measurable functions. While we showed in
Sections 2.9.1 and 2.10.1 that for the Lebesgue measure that these functions are not
too far from easily understood functions such as step or continuous functions, the
importance of measurable functions is perhaps not so easily understood. What we
see in this section is that these functions form the basis for a powerful and general
theory of integration. For the Lebesgue measure, this construction of the integral
generalises the Riemann integral, and repairs some of the defects of the latter as
seen in Section 2.1.

The treatment of the integral is as easily carried out in the general setting of
a general measure space as it is for the specific case of the Lebesgue integral in
particular. Thus we do much of the work in this general setting. In Sections 2.9
and 2.10 we consider the Lebesgue integral, but only its particular properties that
rely on the structure of Lebesgue measure. Thus a reader wanting only to learn
about the Lebesgue integral will have to learn it here. A reader only believing they
are interested in Lebesgue integration will have to be satisfied by mentally making
the replacement of “(X,A , µ)” with “(R,L (R), λ)” or “(Rn,L (Rn), λn).”

Do I need to read this section? Clearly if you are reading this chapter, then you
must read this section. •

2.7.1 Definition of the integral

We consider a measure space (X,A , µ). The objective is to define the integral of
a measurable function f : X→ R. We do this in three stages.

Integration of nonnegative simple functions

Let f ∈ S(X;R≥0) be written as f =
∑k

j=1 a jχA j for a partition (A1, . . . ,Ak) of X into
measurable sets. Let us first make an observation concerning the fact that the
numbers a1, . . . , ak and the sets A1, . . . ,Ak are not uniquely prescribed by f .
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2.7.1 Proposition (Independence of integral of simple functions on partition) For a
measure space (X,A , µ) suppose that f ∈ S(X;R≥0) satisfies

f =
k∑

j=1

ajχAj =

m∑
l=1

blχBl

for a1, . . . , ak, b1, . . . , bm ∈ R≥0 and A1, . . . ,Ak ∈ A disjoint and B1, . . . ,Bm ∈ A disjoint.
Then

k∑
j=1

ajµ(Aj) =
m∑

l=1

blµ(Bl).

Proof Without loss of generality we suppose that none of a1, . . . , ak and b1, . . . , bm are
zero. It therefore follows that ∪k

j=1A j = ∪
m
l=1Bl. Note that if A j ∩ Bm , ∅ for some

j ∈ {1, . . . , k} and l ∈ {1, . . . ,m}, it follows that a j = bl. Therefore, we have

k∑
j=1

a jµ(A j) =
k∑

j=1

m∑
l=1

a jµ(A j ∩ Bl) =
m∑

l=1

k∑
j=1

blµ(Bl ∩ A j) =
m∑

l=1

blµ(Bl),

as desired. ■

Given the preceding result, the following definition makes sense.

2.7.2 Definition (Integral of nonnegative simple function) For a measure space
(X,A , µ) and for f ∈ S(X;R≥0) given by f =

∑k
j=1 a jχA j for a partition (A1, . . . ,Ak) of

X into measurable sets, the integral of f is∫
X

f dµ =
k∑

j=1

a jµ(A j). •

Note that the notion of integral for a simple function is a natural adaptation
of the notion of integral for a step function in our development of the Riemann
integral in Sections I-3.4 and II-1.6.

Let us give some examples of simple functions and their integrals.

2.7.3 Examples (Positive simple functions and their integrals)
1. Let P = (I1, . . . , Ik) be a partition of [a, b] ⊆ R with endpoints EP(P) =

(x0, x1, . . . , xk) and let f : [a, b] → R be a step function taking value c j on the
interval I j, j ∈ {1, . . . , k}. Clearly then, f is also a simple function since intervals
are measurable. Moreover,∫

[a,b]
f dλ =

∫ b

a
f (x) dx =

k∑
j=1

c j(x j − x j−1),

since the Lebesgue measure of an interval is its length.
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2. Let us consider the measure space (R,L (R), λ) and take A = Q. By Exer-
cise I-2.5.10 it follows that λ(A) = 0. Therefore, the simple function χA has
measure zero.

3. Let X be a set, let A = 2X, and let µΣ be the counting measure on X; see Exam-
ple 2.3.9–3. Let A1, . . . ,Ak ⊆ X be nonempty disjoint subsets, let a1, . . . , ak ∈ R≥0,
and define f =

∑k
j=1 a jχA j . If card(A j) = ∞ for any j ∈ {1, . . . , k} for which a j , 0

or if a j = ∞ for any j ∈ {1, . . . , k}, then
∫

X
f dµΣ = ∞. Otherwise,∫

X
f dµΣ =

k∑
j=1

a j card(A j). •

Integration of nonnegative measurable functions

Using the definition of the integral for simple functions, it is possible to immediately
deduce a definition of the integral for nonnegative-valued functions. This is done
as follows.

2.7.4 Definition (Integral of a nonnegative measurable function) For a measure space
(X,A , µ) and for f ∈ L(0)((X,A );R≥0), the integral of f is∫

X
f dµ = sup

{∫
X

g dµ

∣∣∣∣∣∣ g ∈ S(X;R≥0) satisfies 0 ≤ g(x) ≤ f (x) for x ∈ X
}
. •

The following result gives a useful characterisation of the integral of
nonnegative-valued functions. It also gives an idea of why measurable functions
are the “right” class of functions to integrate, since they are well-approximated by
simple functions.

2.7.5 Proposition (Sequential characterisation of the integral for nonnegative func-
tions) Let (X,A , µ) be a measure space, let f ∈ L(0)((X,A );R≥0), and let (fj)j∈Z>0 be a
sequence of increasing positive simple functions converging to f as in Proposition 2.6.39.
Then ∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof First we prove the result in the case that f is a simple function.

1 Lemma Let (X,A , µ) be a measure space, let f ∈ S(X;R≥0), and let (fj)j∈Z>0 be a sequence of
increasing positive simple functions converging to f as in Proposition 2.6.39. Then∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof By Exercise 2.7.1 the sequence (
∫

X f j dµ) j∈Z>0 is increasing and bounded above
by

∫
X f dµ. Thus the sequence (

∫
X f j dµ) j∈Z>0 converges in R≥0, by Theorem I-2.3.8 if
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the limit is finite, tautologically otherwise. Thus we have

lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

Next let ϵ ∈ (0, 1). Let us write f =
∑m

l=1 alχAl for a1, . . . , am ∈ R≥0 and disjoint
A1, . . . ,Am ∈ A . For l ∈ {1, . . . ,m} and j ∈ Z>0 denote

A j,l = {x ∈ Al | f j(x) ≥ (1 − ϵ)al},

noting that A j,l ∈ A since f j is measurable. Since the sequence ( f j) j∈Z>0 is monotonically
increasing, the sequence (A j,l) j∈Z>0 satisfies

A j,l ⊆ A j+1,l, ∪ j∈Z>0A j,l = Al.

Let us define simple functions

g j =

m∑
l=1

(1 − ϵ)alχA j,l , j ∈ Z>0.

By Proposition 2.3.3 we have

lim
j→∞

∫
X

g j dµ = lim
j→∞

m∑
l=1

(1 − ϵ)alµ(A j,l) =
m∑

l=1

(1 − ϵ)alµ(Al) = (1 − ϵ)
∫

X
f dµ.

Since g j(x) ≤ f j(x) for every j ∈ Z>0, by Exercise 2.7.1 we have∫
X

g j dµ ≤
∫

X
f j dµ

=⇒ lim
j→∞

∫
X

g j dµ ≤ lim
j→∞

∫
X

f j dµ

=⇒ (1 − ϵ)
∫

X
f dµ ≤ lim

j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

Since ϵ is arbitrary, this implies that

lim
j→∞

∫
X

f j dµ =
∫

X
f dµ,

as desired. ▼

In the case that f is a general nonnegative-valued measurable function, we note
that ∫

X
f j dµ ≤

∫
X

f j+1 dµ, j ∈ Z>0,

and ∫
X

f j dµ ≤
∫

X
f dµ, j ∈ Z>0.
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Thus the sequence (
∫

X f j dµ) j∈Z>0 converges in R≥0 to a limit (by Theorem I-2.3.8 if the
limit is finite, tautologically otherwise) and this limit satisfies

lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

Next let ϵ ∈ R>0 and let g ∈ S(X;R≥0) be such that∫
X

g dµ ≥ (1 − ϵ)
∫

X
f dµ.

Define g j(x) = min{g(x), f j(x)}, and note that g j is a nonnegative simple function, and
that the sequence (g j(x)) j∈Z>0 converges to g(x) for each x ∈ X. By the lemma above we
thus have

lim
j→∞

∫
X

g j dµ =
∫

X
g dµ.

By Exercise 2.7.1 we have∫
X

g j dµ ≤
∫

X
f j dµ =⇒

∫
X

g dµ ≤ lim
j→∞

∫
X

f j dµ

which gives

(1 − ϵ)
∫

X
f dµ ≤

∫
X

g dµ ≤ lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ,

which gives

lim
j→∞

∫
X

f j dµ =
∫

X
f dµ

since ϵ is arbitrary. ■

The following corollary to the preceding result ensures consistency of Defini-
tion 2.7.4 with Definition 2.7.2.

2.7.6 Corollary (Consistency of integral definitions) If (X,A , µ) is a measure space and
if f ∈ S(X;R≥0) then the integral of f as in Definition 2.7.4 agrees with the integral of f
as in Definition 2.7.2.

Proof Consider the constant sequence ( f j) j∈Z>0 defined by f j = f , j ∈ Z>0. By Propo-
sition 2.7.5 it follows that the integral of f from Definition 2.7.4 satisfies∫

X
f dµ = lim

j→∞

∫
X

f j dµ,

where the integrals on the left are as in Definition 2.7.2. However, each of these
integrals is exactly the integral of f itself as in Definition 2.7.2. ■

Let us give a somewhat simple application of the preceding result that uses
the counting measure. This example is interesting in and of itself as it begins the
casting of the notion of summation using general index sets from Section I-2.4.7
in the framework of integration on measure spaces; this programme is completed
in Example 2.7.10 below. For other examples of integration we shall wait until
Sections 2.9 and 2.10.
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2.7.7 Example (Sums as integrals) Let X be a set, take A = 2X, and let µΣ be the
counting measure; see Example 2.3.9–3. Note that all functions f : X → R are
measurable. Let f ∈ L(0)((X,A ),R≥0) be a positive nonnegative-valued function.
Let us attempt to understand the integral of f . We denote

supp( f ) = {x ∈ X | f (x) , 0}

and then consider three cases.
1. supp( f ) is finite: Here f is a simple function and we immediately have∫

X
f dµΣ =

∑
x∈supp( f )

f (x),

using the definition of the integral of a simple function and the definition of the
counting measure.

2. supp( f ) is countably infinite: In this case we write supp( f ) = {x j} j∈Z>0 for distinct
x j ∈ X, j ∈ Z>0. Let us then define a sequence ( fk)k∈Z>0 of R≥0-valued functions
on X by

fk(x) =

 f (x), x ∈ {x1, . . . , xk},

0, otherwise.

Then the sequence ( fk)k∈Z>0 is monotonically increasing and satisfies
limk→∞ fk(x) = f (x) for every x ∈ X. Note that the functions fk, k ∈ Z>0, are
simple and that ∫

X
fk dµΣ =

k∑
j=1

f (x j),

using the definition of the integral of a simple function and the definition of the
counting measure. Thus, by Proposition 2.7.5 we have∫

X
f dµΣ = lim

k→∞

∫
X

fk(x) dµΣ =
∞∑
j=1

f (x j).

In other words, ∫
X

f dµΣ =
∑
x∈X

f (x),

where the sum is interpreted as in Section I-2.4.7, and where we allow the sum
to be infinite.

3. supp( f ) is uncountable: For k ∈ Z>0 define

Ak =
{
x ∈ X

∣∣∣ f (x) ≥ 1
k

}
.
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We claim that one of the sets Ak must be infinite for some k ∈ Z>0. Indeed, if
all of the sets Ak, k ∈ Z>0, is finite then, since supp( f ) = ∪k∈Z>0Ak, it follows that
supp( f ) is countable by Proposition I-1.7.16. Thus it must be the case that Ak is
infinite for some k ∈ Z>0. In case Ak is uncountable, let A′k be a countable subset
of Ak. Now define fk : X→ R≥0 by

fk(x) =

 f (x), x ∈ A′k,
0, otherwise.

Note that fk(x) ≤ f (x) for every x ∈ X. Then, using Exercise 2.7.1 and the fact
that we know how to integrate fk from the preceding case, we have∫

X
f dµΣ ≥

∫
Ak

f dµΣ =
∑
x∈Ak

fk(x) ≥
∑
x∈Ak

1
k
= ∞.

Thus the integral of f is infinite.
Thus, in summary, we have ∫

X
f dµΣ =

∑
x∈X

f (x),

using the definition of series using arbitrary index sets in Section I-2.4.7, and with
the convention that the integral is allowed to be infinite, and indeed will be infinite
if supp( f ) is uncountable. •

Integration of general measurable functions

It is now relatively easy to define the integral for general measurable functions
on a measure space (X,A , µ). To do so, if f ∈ L(0)((X,A );R) we define f+, f− ∈
L(0)((X,A );R≥0) by

f+(x) = max{ f (x), 0}, f−(x) = max{− f (x), 0},

noting that these functions are indeed measurable by Corollary 2.6.17. We may
now directly give the definition of the integral.

2.7.8 Definition (Integral of measurable function) For a measure space (X,A , µ) and
for f ∈ L(0)((X,A );R), we have the following definitions.

(i) If at least one of
∫

X
f+ dµ or

∫
X

f− dµ are finite then the integral of f with respect
to µ exists and is given by∫

X
f dµ =

∫
X

f+ dµ −
∫

X
f− dµ,

this being the integral of f with respect to µ.
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(ii) If both
∫

X
f+ dµ and

∫
X

f− dµ are infinite then the integral of f with respect to
µ does not exist.

(iii) If
∫

X
f+ dµ < ∞ and

∫
X

f− dµ < ∞ then f is integrable with respect to µ.

For a subset I ⊆ R we denote the set of I-valued functions integrable with respect
to µ by L(1)((X,A , µ); I), or simply by L(1)(X; I) if A and µ are understood. •

2.7.9 Notation (L(1)((X,A , µ);R)) The notation L(1)((X,A , µ);R) seems a little odd at this
point. For example, what does the superscript “1” mean? And why are there
parentheses around the “1.” This will be presented in context in Section 3.8.8, so
the reader should perhaps not worry at this point what is the precise meaning of
the “1.” We might mention, however, that the “L” refers to “Lebesgue,” as this
notation was first used in the context of the Lebesgue integral, and this will be the
setting where the notation will be mainly used by us in these volumes. •

Again, we delay until Sections 2.9 and 2.10 the presentation of examples related
to the Lebesgue measure. However, we can at this point complete our example of
how the integral includes the usual notion of series.

2.7.10 Example (Sums as integrals (cont’d)) As in Example 2.7.7 we consider a set X,
we letA = 2X, and we let µΣ be the counting measure defined in Example 2.3.9–3.
We let f : X → R, noting again that all functions are measurable. We then note
that, as in Example 2.7.7, we have∫

X
f+ dµΣ =

∑
x∈X

f+(x),
∫

X
f− dµΣ =

∑
x∈X

f−(x), (2.15)

using the notion of sums with arbitrary index sets from Section I-2.4.7, and allowing
that these quantities may be infinite. Note that the general summation construction
of Section I-2.4.7, along with the definition of the integral, then immediately gives∫

X
f dµΣ =

∑
x∈X

f (x)

if either of the sums in (2.15) is finite, and otherwise the integral is undefined.
Using Proposition I-2.4.32 we see that in the case that X = Z>0, a function

is integrable if and only if the sum
∑
∞

j=1 f ( j) is absolutely convergent. In this
case, the value of the integral is exactly the sum of the series. Thus we see that
the construction of the integral we give generalises the notion of an absolutely
convergent series. Note that it does not generalise the notion of a convergent
series. It can be made to do so by using special constructions. We do this for the
Lebesgue integral in Sections 2.9.2 and 2.10.2. •

Let us close this section by giving a few more or less obvious properties of the
integral.
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2.7.11 Proposition (Integrals of functions agreeing almost everywhere) Let (X,A , µ)
be a measure space and let f,g ∈ L(0)((X,A );R) have the property that f(x) = g(x) for
almost every x ∈ X. Then the integral of f exists if and only if the integral of g exists, and
if either integral exists then we have∫

X
f dµ =

∫
X

g dµ.

Proof By breaking both f and g into their positive and negative parts, we can without
loss of generality suppose that both functions take values in R≥0. Let Z be the set
where f and g are not equal and let h take the value∞ on Z and zero elsewhere. Since
f ≤ g + h we have ∫

X
f dµ ≤

∫
X

g dµ +
∫

X
h dµ,

by Propositions 2.7.16 and 2.7.19. The argument can be reversed to give∫
X

g dµ ≤
∫

X
f dµ +

∫
X

h dµ,

and the result follows since
∫

X h dµ = 0. ■

The following simple result comes up on occasion in our presentation, so we
state it explicitly. Since the result is “obvious,” we shall often use it without
mention.

2.7.12 Proposition (Integrable functions are almost everywhere finite) If (X,A , µ) is
a measure space and if f ∈ L(1)((X,A , µ);R) then

µ
(
{x ∈ X | f(x) < R}

)
= 0.

Proof Since f is integrable if both its positive and negative parts, f+ and f−, are
integrable, we may as well assume that f takes values in R≥0. Suppose that f (x) = ∞
for x ∈ A with µ(A) > 0. For N ∈ Z>0 consider the simple function

gN(x) =

N, x ∈ A,
0, otherwise.

We have gN(x) ≤ f (x) for all x ∈ A and
∫

X gN dµ = Nµ(A) > 0. By the definition of the
integral we have

∫
X f dµ ≥ Nµ(A), so showing that the integral of f is not finite, since

this holds for all N ∈ Z>0. ■

2.7.13 Remark (Integrable functions may as well be R-valued) Combining Proposi-
tions 2.7.11 and 2.7.12 we see that if f ∈ L(1)((X,A , µ);R) then, for the purposes of
integration, we may as well suppose that f is R-valued. Indeed, if we define

g(x) =

 f (x), f (x) ∈ R,
0, f (x) ∈ {−∞,∞},
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then
∫

X
g dµ =

∫
X

f dµ. For this reason, when we discuss spaces of integrable
functions in Section 3.8, we will assume all functions are finite-valued. It is really
only useful to allow functions to take infinite values when doing constructions
with pointwise limits. •

The following result is another “obvious” result that we will use without men-
tion throughout the text.

2.7.14 Proposition (Positive functions with zero integral) If (X,A , µ) is a measure space
and if f ∈ L(0)((X,A );R≥0) satisfies

∫
X

f dµ = 0 then

µ
(
{x ∈ X | f(x) , 0}

)
= 0.

Proof Suppose that A ⊆ X has positive Lebesgue measure and that f (x) > 0 for all
x ∈ A. Since f ≥ fχA, by Proposition 2.7.19 it follows that∫

X
f dµ ≥

∫
X

fχA dµ > 0,

which gives the result. ■

As a final result in this section we record the relationship between functions that
are measurable on the completion of a measure space and those that are measurable
on the incomplete measure space.

2.7.15 Proposition (Integrable functions on the completion) Let (X,Aµ, µ) be the com-
pletion of the measure space (X,A , µ) and let f : X → R be Aµ-measurable. Then there
exists a function g: X→ R that is A -measurable and with the property that

µ({x ∈ X | g(x) , f(x)}) = 0.

Moreover, the integral of f with respect to µ exists if and only if the integral of g with
respect to µ exists, and in this case,∫

X
f dµ =

∫
X

g dµ.

Proof First suppose that f takes values inR≥0. By Proposition 2.6.39 let (g j) j∈Z>0 be a
monotonically increasing sequence of simple functions for which lim j→∞ g j(x) = f (x)
for all x ∈ X. This means that we may write f as an infinite sum of characteristic
functions:

f (x) =
∞∑
j=1

c jχA j(x),

where c j ∈ R≥0 and A j ∈ Aµ, j ∈ Z>0. For j ∈ Z>0 let L j,U j ∈ A have the property that
L j ⊆ A j ⊆ U j and µ(U j \ L j) = 0. Taking

g(x) =
∞∑
j=1

c jχU j(x)
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for x ∈ X gives the first part of the result in this case since f and g differ on the set
(∪ j∈Z>0U j \A j) ⊆ (∪ j∈Z>0U j \ L j), and this latter set has measure zero by Exercise 2.3.4.

Now suppose that f is now allowed to take arbitrary values inR. Write f = f+− f−,
where

f+(x) = max{ f (x), 0}, f−(x) = max{− f (x), 0}.

These functions are Aµ-measurable by Corollary 2.6.17. Therefore, there exist A -
measurable functions g+ and g− such that f+ differs from g+ and f− differs from g− on
a set of measure zero. Therefore, f differs from g = g+ − g− on a set of measure zero.
The result follows since g is A -measurable by Proposition 2.6.11.

Now let us prove the last assertion of the proposition. Write f = g + h for f being
Aµ-measurable, for g being A -measurable, and for

µ({x ∈ X | h(x) , 0}) = 0.

Let Z ∈ A be a set such that h(x) = 0 for x ∈ X \ Z and such that µ(Z) = 0. Then∫
X

f dµ =
∫

X\Z
g dµ +

∫
Z

(g + h) dµ =
∫

X\Z
g dµ =

∫
X

g dµ,

using Proposition 2.7.11. Now note that since g if integrable with respect to µ, its
integral with respect toµ can be constructed using the definition of the integral without
reference to the distinction between µ and µ. That is to say,∫

X
g dµ =

∫
X

g dµ,

and from this the result follows. ■

2.7.2 The integral and operations on functions

In this section we provide the more or less expected result regarding the inter-
action of the integral with the standard operations one may perform on functions.
It is useful to record two different versions of results, one for arbitrary positive
measurable functions and one for integrable functions.

We begin with the relationships between the integral and the standard algebraic
operations on functions. We recall from Proposition 2.6.11 that L(0)((X,A );R) is

a subset of the set R
X

of all R-valued functions on X, and this subset is closed
under addition and multiplication on R. With this in mind we have the following
results.

2.7.16 Proposition (Algebraic operations on positive measurable functions) For a
measure space (X,A , µ), for f,g ∈ L(0)((X,A );R≥0), and for α ∈ R≥0, the following
statements hold:

(i)
∫

X
(f + g) dµ =

∫
X

f dµ +
∫

X
g dµ;

(ii)
∫

X
αf dµ = α

∫
X

f dµ.
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Proof We let ( f j) j∈Z>0 and (g j) j∈Z>0 be sequences of simple functions converging to f
and g, respectively, as in Proposition 2.6.39.

(i) Note that if either lim j→∞ f j(x) or lim j→∞ g j(x) is infinite, then

lim
j→∞

( f j + g j)(x) = lim
j→∞

f j(x) + lim
j→∞

g j(x) = f (x) + g(x) = ∞.

If both lim j→∞ f j(x) and lim j→∞ g j(x) are finite then we have

lim
j→∞

( f j + g j)(x) = lim
j→∞

f j(x) + lim
j→∞

g j(x) = f (x) + g(x)

by Proposition I-2.3.23. Thus ( f j + g j) j∈Z>0 is a monotonically increasing sequence of
simple functions converging to f + g. Thus this part of the result will follow from
Proposition 2.7.5 if we can establish it for simple functions. Thus we assume that f
and g are simple functions and denote

f =
k∑

j=1

a jχA j , g =
m∑

l=1

blχBl .

for a1, . . . , ak, b1, . . . , bl ∈ R and A1, . . . ,Ak and B1, . . . ,Bm are disjoint. We assume
without loss of generality that ∪k

j=1A j = ∪
m
l=1Bl. Then

∫
A

( f + g) dµ =
k∑

j=1

m∑
l=1

(a j + bl)µ(A j ∩ Bl)

=

k∑
j=1

m∑
l=1

a jµ(A j ∩ Bl) +
k∑

j=1

m∑
l=1

blµ(A j ∩ Bl)

=

k∑
j=1

a jµ(A j) +
m∑

l=1

blµ(Bl)

=

∫
A

f dµ +
∫

A
g dµ,

so giving (i).
(ii) If either α or lim j→∞ f j(x) is infinite then obviously we have

lim
j→∞

α f j(x) = α f (x) = ∞.

If both α and lim j→∞ f j(x) are finite then we have

lim
j→∞

α f j(x) = α f (x)

by Proposition I-2.3.23. Thus (α f j) j∈Z>0 is a monotonically increasing sequence of
positive simple functions that converges to α f . Part (ii) then follows from Proposi-
tion 2.7.5. ■
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2.7.17 Proposition (Algebraic operations on integrable functions) For a measure space
(X,A , µ), for f,g ∈ L(1)((X,A , µ);R), and for α ∈ R, the following statements hold:

(i) f + g ∈ L(1)((X,A , µ);R) and∫
X
(f + g) dµ =

∫
X

f dµ +
∫

X
g dµ;

(ii) αf ∈ L(1)((X,A , µ);R) and ∫
X
αf dµ = α

∫
X

f dµ.

Proof The proposition follows from Proposition 2.7.16 by breaking f and g into their
positive and negative parts, and applying the lemma to both resulting integrals. ■

One might wonder about the relationships between integrals and other alge-
braic operations on functions, like multiplication and division. Generally speaking,
these operations fail to preserve integrability.

2.7.18 Examples (Multiplication, division, and the integral)
1. We take X = Z>0 with the σ-algebra A = 2Z>0 and the counting measure

µΣ. In this case, integrable functions are those functions f : Z>0 → R sat-
isfying

∑
∞

j=1| f ( j)| < ∞; this follows from Example 2.7.10, or more straight-
forwardly from Exercise 2.7.3. Let us define f : Z>0 → R by f ( j) = 1

j2 . By
Example I-2.4.2–4 it follows that f ∈ L(1)((Z>0, 2Z>0 , µΣ);R). However, since
f 2( j) = 1

j , it follows from Example I-2.4.2–2 that f 2 < L(1)((Z>0, 2Z>0 , µΣ);R).
Thus products of integrable functions need not be integrable functions.

2. We take X = Z>0, A = 2Z>0 , and µ = µΣ as in the previous example.
We note that if we define f , g : Z>0 → R by f ( j) = 1

j2 and g( j) = 1
j3 ;

as above, f , g ∈ L(1)((Z>0, 2Z>0 , µΣ);R). However, clearly f
g ( j) = 1

j and so
f
g < L(1)((Z>0, 2Z>0 , µΣ);R). Thus the quotient of two integrable functions is
not necessarily integrable, even when the denominator function is nowhere
zero. •

For functions whose values are related by the total order on R we have the
following result applies.

2.7.19 Proposition (The integral and total order on R) If (X,A , µ) is a measure space and
if f,g ∈ L(1)((X,A , µ);R) (resp. f,g ∈ L(0)((X,A );R≥0)) satisfy f(x) ≤ g(x) for almost all
x ∈ X, then ∫

X
f dµ ≤

∫
X

g dµ.
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Proof Without loss of generality we may suppose that f (x) ≤ g(x) for all x ∈ X. Indeed,
if this inequality holds except on a set Z which has zero measure, then we have∫

X
f dµ =

∫
X\Z

f dµ +
∫

Z
f dµ =

∫
X\Z

f dµ,

and so we can simply replace X with X \ Z.
Now we may use part (i) from Proposition 2.7.16 or Proposition 2.7.17 to write∫

X
g dµ =

∫
X

( f + (g − f )) dµ =
∫

X
f dµ +

∫
X

(g − f ) dµ ≥
∫

A
f dµ,

as desired. ■

This result has the following corollary which we often apply.

2.7.20 Corollary (Functions bounded by integrable functions are integrable) Let
(X,A , µ) be a measure space and let f,g ∈ L(0)((X,A );R) satisfy |f(x)| ≤ |g(x)| for al-
most every x ∈ X. If g ∈ L(1)((X,A , µ);R) then f ∈ L(1)((X,A , µ);R).

Proof Write f = f+ − f− and g = g+ − g− for f+, g+, f−, g− ∈ L(0)((X,A );R≥0). Then we
obviously have

f+(x) ≤ g+(x), f− ≤ g−(x)

for almost every x ∈ X. Thus, by Proposition 2.7.19 we have∫
X

f+ dµ ≤
∫

X
g+ dµ,

∫
X

f− dµ ≤
∫

X
g− dµ.

Therefore,∫
X
| f |dµ =

∫
X

f+ dµ +
∫

X
f− dµ ≤

∫
X

g+ dµ +
∫

X
g− dµ =

∫
X
|g|dµ,

as desired. ■

The following result follows pretty much from the definitions surrounding the
Lebesgue integral.

2.7.21 Proposition (The integral and absolute value) Let (X,A , µ) be a measure space and
let f ∈ L(0)((X,A );R). Then f ∈ L(1)((X,A , µ);R) if and only if |f| ∈ L(1)((X,A , µ);R),
and if f ∈ L(1)((X,A , µ);R) then ∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∫
X
|f|dµ.

Proof The first assertion is Exercise 2.7.4. For the second assertion, write f = f+ − f−
as the sum of its positive and negative parts. Then∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
X

f+ dµ
∣∣∣∣ + ∣∣∣∣∫

X
f− dµ

∣∣∣∣ = ∫
X
| f |dµ,

using the fact that for a positive function the integral is positive. ■

It is at times useful to break an integral into two parts by breaking the domain
of integration into two parts.
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2.7.22 Proposition (Breaking the integral in two) Let (X,A , µ) be a measure space,
let A,B ∈ A be sets such that X = A

◦

∪B, and let f ∈ L(0)((X,A );R). Then
f ∈ L(1)((X,A , µ);R) if and only if f|A ∈ L(1)((A,AA, µ|AA);R) and f|B ∈

L(1)((B,Ab, µ|AB);R). Furthermore, if f ∈ L(1)((X,A , µ);R) then we have∫
X

f dµ =
∫

A
(f|A) dµA +

∫
B
(f|B) dµB.

Proof Let us define fA, fB : X → R by fA = fχA and fB = fχB. By Proposition 2.6.15
the functions fA and fB are measurable. We claim that, provided that fA and f |A are
integrable, ∫

X
fA dµ =

∫
A

( f |A) dµA. (2.16)

To see this, first suppose that f is R≥0-valued and let ( f j) j∈Z>0 be a sequence of sim-
ple functions converging to f as in Proposition 2.6.39. Then the sequence ( fA, j) j∈Z>0

defined by fA, j = f jχA is a sequence of simple functions converging to fA as in Propo-
sition 2.6.39. Moreover, ∫

X
fA, j dµ =

∫
A

( f j|A) dµA

by Exercise 2.7.2. Therefore, by Proposition 2.7.5 we have∫
X

fA dµ = lim
j→∞

∫
X

fA, j dµ = lim
j→∞

∫
A

( f j|A) dµA =

∫
A

( f |A) dµA,

giving (2.16) when f is R≥0-valued. For R-valued f the same conclusion follows by
breaking f into its positive and negative parts. Similarly, of course, we have∫

X
fB dµ =

∫
B
( f |B) dµB,

and so Proposition 2.7.17 gives the final assertion of the result provided that f , fA, and
fB are integrable.

Now, if fA and fB are integrable, by Proposition 2.7.17 it follows that f is integrable.
Conversely, if either of fA or fB are not integrable, then neither can f be integrable
(why?). ■

A more general version of the preceding result is useful, but is only valid for
complete measure spaces.

2.7.23 Corollary (Breaking the integral almost in two) Let (X,A , µ) be a complete measure
space, let A,B ∈ A be such that µ(A ∩ B) = 0 and such that X = A ∪ B, and let
f ∈ L(0)((X,A );R). Then f ∈ L(1)((X,A , µ);R) if and only if f|A ∈ L(1)((A,AA, µ|AA);R)
and f|B ∈ L(1)((B,AB, µ|AB);R). Furthermore, if f ∈ L(1)((X,A , µ);R) then we have∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB.
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Proof Let Z = A ∩ B, let A′ = A − Z and B′ = B − Z and write X = A′
◦

∪B′
◦

∪Z. Note
that Z, A′, and B′ are measurable since X is complete. Applying Proposition 2.7.22 (or
more properly, its obvious extension to finitely many disjoint components) gives∫

X
f dµ =

∫
A′

( f |A′) dµA′ +

∫
B′

( f |B′)dµB′ +

∫
Z

( f |Z) dµ.

The last integral is zero by Proposition 2.7.11 and, by the same result,∫
A′

( f |A′) dµA′ =

∫
A

( f |A) dµA

and ∫
B′

( f |B′) dµB′ =

∫
B
( f |B) dµB,

giving the result. ■

2.7.3 Limit theorems

In Section 2.1 we suggested that one of the reasons why the Riemann integral
was not satisfactory was that it did not have useful properties with respect to swap-
ping of limits and integration. In this section we prove some powerful theorems
for the integral on measure spaces which give very general conditions under which
limits and integrals will swap. When these are applied to the Lebesgue integral in
Sections 2.9 and 2.10, this will show that we have produced a theory of integration
that generalises the Riemann integral, and which has at least some more desirable
properties.

Our first theorem has very weak hypotheses, but only applies to nonnegative
functions.

2.7.24 Theorem (Monotone Convergence Theorem I) Let (X,A , µ) be a measure space and
let (fj)j∈Z>0 be a sequence in L(0)((X,A );R≥0) such that, for almost every x ∈ X, fj(x) ≤ fj+1(x)
for every j ∈ Z>0. If f ∈ L(0)((X,A );R) has the property that f(x) = limj→∞ fj(x) for almost
every x ∈ X, then ∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof First let us show that we may assume without loss of generality that the relations
f j(x) ≤ f j+1(x), j ∈ Z>0, and f (x) = lim j→∞ f j(x) hold for all x ∈ X. Let Z be the set
on which these relation do not hold, noting that Z has measure zero being a union of
two sets of measure zero. Let Y = X \Z. The sequence of functions ( f jχY) j∈Z>0 and the
function fχY then satisfy the relations for all x ∈ X. If the theorem holds in this case,
then the result will follow from Proposition 2.7.11. For the remainder of the proof we
therefore assume that f j(x) ≤ f j+1(x), j ∈ Z>0, and f (x) = lim j→∞ f j(x) for all x ∈ X.

By Proposition 2.7.19 we have∫
X

f j dµ ≤
∫

X
f j+1 dµ, j ∈ Z>0,
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and ∫
X

f j dµ ≤
∫

X
f dµ, j ∈ Z>0.

Thus the sequence (
∫

X f j dµ) j∈Z>0 converges in R≥0 to a limit and this limit satisfies

lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

We wish to establish the opposite inequality. For each j ∈ Z>0 let (g j,k)k∈Z>0 be a
sequence of simple functions whose limit is f j, as in Proposition 2.6.39. Now define
hk(x) = max{g1,k(x), . . . , gk,k(x)}, and note that (hk)k∈Z>0 is a monotonically increasing
sequence of simple functions converging to f , and that hk(x) ≤ fk(x) for all x ∈ X. By
our above arguments for the sequence ( f j) j∈Z>0 , we have

lim
k→∞

∫
X

hk dµ ≤ lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

The theorem now follows by Proposition 2.7.5. ■

In the next assertion, the condition that the functions be nonnegative is re-
laxed, but one must add an integrability condition for one of the functions in the
sequence.

2.7.25 Theorem (Monotone Convergence Theorem II) Let (X,A , µ) be a measure space
and let (fj)j∈Z>0 be a sequence in L(0)((X,A );R) such that, for almost every x ∈ X, fj(x) ≤
fj+1(x) for every j ∈ Z>0 and such that f1 ∈ L(1)((X,A , µ);R). If f ∈ L(0)((X,A );R≥0) has
the property that f(x) = limj→∞ fj(x) for almost every x ∈ X, then∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof As in the proof of Theorem 2.7.24 we can assume that f j(x) ≤ f j+1(x), j ∈ Z>0,
and f (x) = lim j→∞ f j(x) for every x ∈ X. Note that the sequence ( f j − f1) is then in
L(0)((X,A );R≥0) and satisfies lim j→∞( f j(x) − f1(x)) = f (x) − f1(x) for every x ∈ X. Note
that if f ∈ L(1)((X,A , µ);R) then we have∫

X
f dµ −

∫
X

f1 dµ =
∫

X
( f − f1) dµ

by Proposition 2.7.17. If f < L(1)((X,A , µ);R) then the previous relation still holds
with value∞ on both sides (why?). Therefore, by Theorem 2.7.24, we have∫

X
f dµ −

∫
X

f1 dµ =
∫

X
( f − f1) dµ = lim

j→∞

∫
X

( f j − f1) dµ = lim
j→∞

∫
X

f j dµ −
∫

X
f1 dµ,

which gives the result since f1 ∈ L(1)((X,A , µ);R). ■

We also have the following immediate corollary to the Monotone Convergence
Theorem.
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2.7.26 Corollary (Beppo Levi’s9 Theorem) Let (X,A , µ) be a measure space and let (fj)j∈Z>0

be a sequence in L(0)((X,A );R≥0). If f : X→ R≥0 is defined by

f(x) =
∞∑

j=1

fj(x),

then f is measurable and we have∫
X

f dµ =
∞∑

j=1

∫
X

fj dµ.

Proof Define gk(x) =
∑k

j=1 f j(x), noting that gk ∈ L(0)((X,A );R≥0) by Proposi-
tion 2.6.11. Moreover, for every x ∈ X we have gk(x) ≤ gk+1(x). Thus Theorem 2.7.24
and Proposition 2.7.16 imply that∫

X
f dµ = lim

k→∞

∫
X

gk dµ = lim
k→∞

k∑
j=1

∫
X

f j dµ =
∞∑
j=1

∫
X

f j dµ,

as desired. ■

The following result is also useful, but with weaker hypotheses and conclusions
than the Monotone Convergence Theorem.

2.7.27 Theorem (Fatou’s10 Lemma) If (X,A , µ) is a measure space and if (fj)j∈Z>0 is a sequence
in L(0)((X,A );R≥0), then ∫

X
lim inf

j→∞
fj dµ ≤ lim inf

j→∞

∫
X

fj dµ.

Proof For k ∈ Z>0 define gk(x) = inf j≥k f j(x), noting that gk so defined is measurable
by Proposition 2.6.18. We then note that the sequence (gk)k∈Z>0 is increasing and that

lim inf
j→∞

f j(x) = lim
k→∞

gk(x)

for x ∈ X. From Theorem 2.7.24 we then have∫
X

lim inf
j→∞

f j dµ = lim
k→∞

∫
X

gk dµ ≤ lim inf
j→∞

∫
X

f j dµ,

since g j(x) ≤ f j(x) for j ∈ Z>0 and x ∈ X. ■

The most frequently useful of the limit theorems is the following. It is a result
that is used with great regularity in integration theory. For example, many of
the fundamental results we state in Sections 3.8 and IV-1.3 and in Chapters IV-5
and IV-6 rely at their core on this important theorem.

9Beppo Levi (1875–1961) was an Italian mathematician who made mathematical contributions
to algebra and analysis. As a Jew, he left Italy after the rise of Mussolini for Argentina, where he
spent much of his professional life.

10Pierre Joseph Louis Fatou (1878–1929) was a French mathematician who made substantial
contributions to analysis, particularly complex analysis.
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2.7.28 Theorem (Dominated Convergence Theorem I) Let (X,A , µ) be a measure space
and let (fj)j∈Z>0 be a sequence in L(0)((X,A );R) having the following properties:

(i) the limit f(x) = limj→∞ fj(x) exists for almost every x ∈ X;

(ii) there exists g ∈ L(1)((X,A , µ);R≥0) such that, for almost every x ∈ X, |fj(x)| ≤ g(x)
for every j ∈ Z>0.

Then the functions f and fj, j ∈ Z>0, are integrable and∫
X

f dµ = lim
j→∞

∫
X

fj dµ.

Proof The integrability of f and f j, j ∈ Z>0, follows from Corollary 2.7.20. As with
our proof of Theorem 2.7.24, we can without loss of generality suppose that (i) and (ii)
hold for all x ∈ X. Furthermore, since g is integrable, we may as well suppose that
g(x) ∈ R for every x, again by Proposition 2.7.11. The sequence (g + f j) j∈Z>0 is then a
sequence of nonnegative functions for which

lim
j→∞

(g + f j)(x) = (g + f )(x), x ∈ X.

By Fatou’s Lemma this gives∫
X

(g + f ) dµ ≤ lim inf
j→∞

∫
X

(g + f j) dµ

=⇒

∫
X

f dµ ≤ lim inf
j→∞

∫
X

f j dµ.

Similarly we can show that ∫
X

(g − f ) dµ ≤ lim inf
j→∞

∫
X

(g − f j) dµ

=⇒

∫
X

f dµ ≤ lim sup
j→∞

∫
X

f j dµ.

This gives the result. ■

The Dominated Convergence Theorem also has the following weaker form for
more general sequences.

2.7.29 Theorem (Dominated Convergence Theorem II) Let (X,A , µ) be a measure
space and let (fj)j∈Z>0 be a sequence in L(0)((X,A );R) for which there exists g ∈
L(1)((X,A , µ);R≥0) such that, for almost every x ∈ X, |fj(x)| ≤ g(x) for every j ∈ Z>0.
Then the functions fj, j ∈ Z>0, are integrable and

(i)
∫

X
lim inf

j→∞
fj dµ ≤ lim inf

j→∞

∫
X

fj dµ and

(ii)
∫

X
lim sup

j→∞
fj dµ ≥ lim sup

j→∞

∫
X

fj dµ.
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Proof The proofs for both conclusions are similar, so we only prove (i). The integrabil-
ity f j, j ∈ Z>0, follows from Corollary 2.7.20. The measurability of x 7→ lim inf j→∞ f j(x)
follows from Proposition 2.6.18. As in the proof of Theorem 2.7.24 we may as well as-
sume that | f j(x)| ≤ |g(x)| for all x ∈ X and j ∈ Z>0. In this case, the sequence (g+ f j) j∈Z>0

is a sequence in L(0)((X,A );R≥0) and so, by Fatou’s Lemma and Proposition 2.7.16, we
have ∫

X
g dµ +

∫
X

lim inf
j∈∞

f j dµ =
∫

X
lim inf

j→∞
(g + f j) dµ

≤ lim inf
j→∞

∫
X

(g + f j) dµ

=

∫
X

g dµ + lim inf
j→∞

∫
X

f j dµ,

which gives the result since g ∈ L(1)((X,A , µ);R). ■

Let us illustrate how one might use the preceding results.

2.7.30 Examples (Illustration of limit theorems) In both of the examples, we consider
the measure space (X,A , µ) with X = Z>0,A = 2Z>0 , and µ = µΣ, the counting mea-
sure. Thus, as we have seen in Example 2.7.10, integrable functions are absolutely
convergent series.
1. The Monotone Convergence Theorem is often helpful for showing that a certain

integral diverges. Let us illustrate this as follows. We wish to ascertain whether
the limit

lim
α↓1

∞∑
k=1

1
kα

(2.17)

exists. Let us define fα ∈ L(0)((Z>0, 2Z>0);R≥0) by fα(k) = 1
kα for α ∈ [1, 2]. Let

(α j) j∈Z>0 be a strictly monotonically decreasing sequence such that α1 = 2 and
lim j→∞ α j = 1. We then have

lim
α↓1

∞∑
k=1

1
kα
= lim

α↓1

∫
Z>0

fα dµΣ = lim
j→∞

∫
Z>0

fα j dµΣ.

Note that fα j(k) < fα j+1(k) for every k ∈ Z>0 and j ∈ Z>0. Therefore, the se-
quence ( fα j) j∈Z>0 satisfies the hypotheses of the Monotone Convergence Theo-
rem. Therefore, we have

lim
j→∞

∫
Z>0

fα j dµΣ =
∫
Z>0

lim
j→∞

fα j dµΣ =
∞∑

k=1

1
k
= ∞.

Thus the limit (2.17) does not exist, at least not in R.
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2. Let us use the Dominated Convergence Theorem to determine the value of the
following limit:

lim
α↓1

∞∑
k=1

(−1)k+1

k2α .

We proceed much as above, defining fα ∈ L(0)((Z>0, 2Z>0);R) by fα(k) = (−1)k+1

k2α .
We let (α j) j∈Z>0 be a strictly monotonically decreasing sequence such that α1 = 2
and lim j→∞ α j = 1. It then holds that

lim
α↓1

∞∑
k=1

(−1)k+1

k2α = lim
α↓1

∫
Z>0

fα j dµΣ = lim
j→∞

∫
Z>0

fα j dµΣ.

We then have
| fα j(k)| =

1
k2α j

<
1
k2

for every j ∈ Z>0 and k ∈ Z>0. Define g ∈ L(0)((Z>0, 2Z>0);R) by g(k) = 1
k2 and

note that ∫
X

g dµΣ =
∞∑

k=1

1
k2 < ∞

by Example I-2.4.2–4. Therefore, the hypotheses of the Dominated Conver-
gence Theorem apply, and we have

lim
j→∞

∫
Z>0

fα j dµΣ =
∫
Z>0

lim
j→∞

fα j dµΣ =
∞∑

k=1

(−1)k+1

k2 =
π2

12
,

where we look up the last sum. •

2.7.4 Integration with respect to probability measures

In Section 2.3.5 we introduced the notion of a probability space. In this section
we investigate integration on probability spaces, giving a few results peculiar and
useful for such measure spaces.

The following general result concerning how integrals behave under compo-
sition by certain classes of functions. Recall from Sections I-3.1.6 and I-3.2.6 the
notion of a convex function. We shall use properties of convex functions we proved
in those sections.

2.7.31 Theorem (Jensen’s11 inequality) Let (X,A , µ) be a finite measure space, let f ∈
L(1)((X,A , µ);R), and let ϕ : R→ R be convex. Then

ϕ
(∫

X
f dµ

)
≤

∫
X
(ϕ ◦ f) dµ.

11Johan Ludwig William Valdemar Jensen (1859–1925) was a Danish telephone company em-
ployee who did some mathematics in his spare time.
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Proof From Proposition I-3.2.30(i) we have

ϕ′(y0+)(y − y0) + ϕ(y0) ≤ ϕ(y)

for every y ∈ R. Let x ∈ X and let us take

y0 =

∫
X

f dµ, y = f (x),

so that the above inequality reads

ϕ(y0) ≤ ϕ ◦ f (x) − ϕ′(y0+)( f (x) − y0).

By Proposition 2.7.19 we have∫
X
ϕ(y0) dµ ≤

∫
X
ϕ ◦ f dµ −

∫
X
ϕ′(y0+)( f − y0) dµ.

Since µ is a probability measure (i.e.,
∫

X dµ = 1) and since the integral is linear, we have∫
X
ϕ(y0) dµ = ϕ(y0)

and ∫
X
ϕ′(y0+)( f − y0) dµ = ϕ′(y0+)

∫
X

f dµ − ϕ′(y0+)y0 = 0.

This immediately gives the result. ■

The following version of Jensen’s inequality is often useful. Here we make use
of the Lebesgue integral on R discussed in detail in Section 2.9.

2.7.32 Corollary (Jensen’s inequality for integration on intervals) Let [a, b] ⊆ R be a
compact interval, let f ∈ L(1)(([a, b],L ([a, b]), λ[a,b]);R), and let ϕ : R → R be convex.
Then

ϕ
(∫

[a,b]
f dλ[a,b]

)
≤

1
b − a

∫
[a,b]

ϕ ◦ ((b − a)f) dλ[a,b].

Proof We shall use Riemann integral notation in the proof, cf. Notation 2.9.13. By the
change of variable theorem, Theorem 2.9.38,∫ b

a
f (x) dx =

∫ 1

0
(b − a) f (a + (b − a)s) ds.

By Jensen’s inequality above,

ϕ
(∫ b

a
f (x) dx

)
≤

∫ 1

0
ϕ(b − a) f (a + (b − a)s)) ds =

1
b − a

∫ b

a
ϕ((b − a) f (x)) dx,

which is the result. ■

Now we give a few characterisations of how a function deviates from its mean.
For this, the following simple definition is useful.
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2.7.33 Definition (Mean of a function) Let (X,A , µ) be a measure space and let f ∈
L(1)((X,A , µ);R). The mean of f is

mean( f ) =
∫

X
f dµ. •

With this notion, we have the following results.

2.7.34 Theorem (Markov’s12 inequality) Let (X,A , µ) be a measure space and let f ∈
L(1)((X,A , µ);R≥0). Then, for any a ∈ R>0 it holds that

µ({x ∈ X | f(x) ≥ a}) ≤
1
a

mean(f).

Proof Let us abbreviate
Ma = {x ∈ X | f (x) ≥ a}.

Then, for every x ∈ X.
a ≤ aχMa(x) ≤ f (x)χMa(x) ≤ f (x).

Therefore, by Proposition 2.7.19,∫
X

(aχMa) dµ ≤
∫

Ma

f dµMa ≤

∫
X

f dµ.

Dividing by a gives µ(Ma) ≤ 1
a mean( f ), as desired. ■

Very often Markov’s inequality gives rather course estimates, and moreover
only applies to nonnegative-valued functions. In this respect, the following results
are sometimes useful.

2.7.35 Theorem (General Chebychev13 inequality) Let (X,A , µ) be a measure space, let f ∈
L(1)((X,A , µ);R), and let ϕ : R→ R be such that ϕ(y1) ≤ g(y2) for all y1,y2 ∈ image(f)
with y1 < y2. Then, for any a ∈ R for which ϕ(a) ∈ R, it holds that

µ({x ∈ X | f(x) ≥ a}) ≤
1
ϕ(a)

mean(ϕ ◦ f).

Proof Let
Ma = {x ∈ X | f (x) ≥ a}.

Then, for any x ∈ X,

ϕ(a)χMa(x) ≤ ϕ ◦ f (x)χMa(x) ≤ ϕ ◦ f (x),

12Andrei Andreyevich Markov (1856–1922) did mathematical research in analysis, and was one
of the pioneers in the early development of what we now know as probability theory. He also
involved himself in the political turmoil in which Russia was involved during his lifetime.

13Pafnuty Lvovich Chebyshev (1821–1894) was a Russian mathematician, making contributions
to the areas of analysis, number theory, and approximation theory, and was one of the early
researchers in the area of modern probability theory.
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noting that ϕ ◦ f (x) ≥ ϕ(a) for x ∈ Ma since ϕ is monotonically increasing. Using
Proposition 2.7.19, just as in the proof of Markov’s inequality, we have

ϕ(a)µ(Ma) ≤ mean(ϕ ◦ f ),

as desired. ■

The usual form of Chebychev’s inequality is the following.

2.7.36 Corollary (Usual form of Chebychev’s inequality) Let (X,A , µ) be a measure space
and let f ∈ L(1)((X,A , µ);R≥0). Then, for any a ∈ R>0 it holds that

µ({x ∈ X | |f(x)| ≥ a}) ≤
1
a2

∫
X

f2 dµ.

Proof Applying the general form of Chebychev’s inequality with

ϕ(y) =

y2, y ∈ R≥0,

0, otherwise

and replacing f with | f | gives the result. ■

Our final result of this form is the following result which follows from our
general for the Chebychev inequality. For c ∈ R let us denote expc : R→ R≥0 by

expc(y) =


ecy, y ∈ R≥0,

limy→−∞ ecy, y = −∞,
limy→∞ ecy, y = ∞,

allowing that one of the limits will be∞. With this notation we have the following
result.

2.7.37 Corollary (Chernoff’s14 inequality) Let (X,A , µ) be a measure space and let f ∈
L(1)((X,A , µ);R). Then, for any a, c ∈ R>0, it holds that

µ({x ∈ X | f(x) ≥ a}) ≤ e−ca
∫

X
expc

◦f dµ.

Proof Applying the general form of Chebychev’s inequality with ϕ = expc gives the
result. ■

Note that it might very well be the case that the right-hand side of either of
the inequalities in the preceding two corollaries will be infinite. In this case the
inequalities hold vacuously, and so do not give useful information.

14Herman Chernoff, born in New York in 1923, is an American statistician.



2022/03/07 2.7 Integration on measure spaces 241

2.7.5 Topological characterisations of limit theorems15

It turns out that there is a very simple way to restate usual version of the
Dominated Convergence Theorem using the notion of a limit structure for almost
everywhere pointwise convergence from Theorem 2.6.51. For this purpose, it
is advantageous to have at hand two versions of the Dominated Convergence
Theorem. One is that stated as Theorem 2.7.28, and the other, an “everywhere”
rather than an “almost everywhere” version, being the following.

2.7.38 Theorem (“Everywhere” Dominated Convergence Theorem) Let (X,A , µ) be
a measure space and let (fj)j∈Z>0 be a sequence in L(0)((X,A );R) having the following
properties:

(i) the limit f(x) = limj→∞ fj(x) exists for every x ∈ X;

(ii) there exists g ∈ L(1)((X,A , µ);R≥0) such that, for every x ∈ X, |fj(x)| ≤ g(x) for
every j ∈ Z>0.

Then the functions f and fj, j ∈ Z>0, are integrable and∫
X

f dµ = lim
j→∞

∫
X

fj dµ.

Proof This follows immediately from Theorem 2.7.28. ■

Our objective is to restate the “everywhere” and “almost everywhere” ver-
sions of the Dominated Convergence Theorem in topological terms. First let us
consider the “everywhere” version of the Dominated Convergence Theorem, The-
orem 2.7.38. In this case we use the topology Cp of pointwise convergence on
L(0)((X,A );R) described in Section 1.9.1. Note that Proposition 2.6.18 implies that
L(0)((X,A );R) is a sequentially closed subspace of RX using this topology. Let us
say that a subset A ⊆ L(0)((X,A );R) is Cp-sequentially closed if every Cp convergent
sequence ( f j) j∈Z>0 in A converges to a function in A. A subset B ⊆ RX is Cp-bounded
if, for every sequence ( f j) j∈Z>0 in B and every sequence (a j) j∈Z>0 in R converging to
0, the sequence (a j f j) j∈Z>0 converges to the zero function in the Cp-topology. This
notion of boundedness may look strange at present. We shall examine the general
context from which this definition is derived in . where?

The following result characterises Cp-bounded sets.

2.7.39 Proposition (Characterisation of Cp-bounded functions) Let X be a set. A subset
B ⊆ RX is Cp-bounded if and only if there exists a nonnegative-valued g ∈ RX such that

B ⊆ {f ∈ RX
| |f(x)| ≤ g(x) for every x ∈ X}.

Proof Suppose that there exists a nonnegative-valued g ∈ RX such that | f (x)| ≤ g(x)
for every x ∈ X if f ∈ B. Let ( f j) j∈Z>0 be a sequence in B and let (a j) j∈Z>0 be a sequence

15The results in this section are not used in an essential way elsewhere in the text, except in
Section 2.9.11.
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in R converging to 0. If x ∈ X then

lim
j→∞
|a j f j(x)| ≤ lim

j→∞
|a j|g(x) = 0,

which gives Cp-convergence of the sequence (a j f j) j∈Z>0 to zero.
Next suppose that there exists no nonnegative-valued function g ∈ RX such that

| f (x)| ≤ g(x) for every x ∈ X if f ∈ B. This means that there exists x0 ∈ X such that,
for every M ∈ R>0, there exists f ∈ B such that | f (x0)| > M. Let (a j) j∈Z>0 be a sequence
in R converging to 0 and such that a j , 0 for every j ∈ Z>0. Then let ( f j) j∈Z>0 be a
sequence in B such that | f j(x0)| > |a−1

j | for every j ∈ Z>0. Then |a j f j(x0)| > 1 for every
j ∈ Z>0, implying that the sequence (a j f j) j∈Z>0 cannot Cp-converge to zero. Thus B is
not Cp-bounded. ■

With the preceding development, we can now state the “everywhere” Domi-
nated Convergence Theorem in terms of the Cp-topology.

2.7.40 Theorem (Topological “everywhere” Dominated Convergence Theorem) If
(X,A , µ) is a measure space then Cp-bounded subsets of L(1)((X,A , µ);R) are Cp-
sequentially closed.

Proof This follows immediately from Theorem 2.7.38 and the definitions of the terms
involved. ■

Now we turn to the “almost everywhere” Dominated Convergence Theorem.
Here matters are possibly (and often) complicated by the fact that almost every-
where pointwise convergence is not topological, as shown in Proposition 2.6.48.
However, we can effectively replace the rôle of the Cp-topology above with the
Lµ-limit structure. To this end, let us say that a subset A ⊆ L0((X,A );R) is Lµ-
sequentially closed if everyLµ convergent sequence ([ f j]) j∈Z>0 in A converges to an
equivalence class of functions in A. A subset B ⊆ L0((X,A );R) isLµ-bounded if, for
every sequence ([ f j]) j∈Z>0 in B and every sequence (a j) j∈Z>0 inR converging to 0, the
sequence ([a j f j]) j∈Z>0 converges to the zero equivalence class in theLµ-topology.

The following result characterisesLµ-bounded sets.

2.7.41 Proposition A subset B ⊆ L0((X,A );R) is Lµ-bounded if and only if there exists a
nonnegative-valued g ∈ L(0)((X,A );R) such that

B ⊆ {[f] ∈ L0((X,A );R) | |f(x)| ≤ g(x) for almost every x ∈ X}.

Proof We first observe that the condition that | f (x)| ≤ g(x) for almost every x ∈ X is
independent of the choice of representative f from the equivalence class [ f ].

Suppose that there exists a nonnegative-valued g ∈ L(0)((X,A );R) such that, if
[ f ] ∈ B, then | f (x)| ≤ g(x) for almost every x ∈ X. Let ([ f j]) j∈Z>0 be a sequence in B and
let (a j) j∈Z>0 be a sequence in R converging to zero. For j ∈ Z>0 define

A j = {x ∈ X | | f j(x)| ≤ g(x)}.

Note that if x ∈ X \ (∪ j∈Z>0A j) then

lim
j→∞
|a j f j(x)| ≤ lim

j→∞
|a j|g(x) = 0.
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Since µ(∪ j∈Z>0A j) = 0 this implies that the sequence (a j[ f j]) j∈Z>0 is Lµ-convergent to
zero. One may show that this argument is independent of the choice of representatives
f j from the equivalence classes [ f j], j ∈ Z>0.

Conversely, suppose that there exists no nonnegative-valued function g ∈
L(0)((X,A );R) such that, for every [ f ] ∈ B, | f (x)| ≤ g(x) for almost every x ∈ X. This
means that there exists a set E ⊆ X of positive measure such that, for any M ∈ R>0, there
exists [ f ] ∈ B such that | f (x)| > M for almost every x ∈ E. Let (a j) j∈Z>0 be a sequence
in R converging to 0 and such that a j , 0 for every j ∈ Z>0. Then let ([ f j]) j∈Z>0 be a
sequence in B such that | f j(x)| > |a−1

j | for almost every x ∈ E and for every j ∈ Z>0.
Define

A j = {x ∈ E | | f j(x)| > |a−1
j |}.

If x ∈ E \ (∪ j∈Z>0A j) then |a j f j(x)| > 1 for every j ∈ Z>0. Since µ(E \ (∪ j∈Z>0A j)) > 0 it
follows that (a j[ f j]) j∈Z>0 cannotLµ-converge to zero, and so B is notLµ-bounded. ■

We can then state the following characterisation of the “almost everywhere”
Dominated Convergence Theorem. We denote by L1((X,A , µ);R) the image of
L(1)((X,A , µ);R) under the projection from L(0)((X,A );R) to L0((X,A );R). Thus
elements of L1((X,A , µ);R) are equivalence classes of integrable R-valued func-
tions under the equivalence relation of almost everywhere equality. The space
L1((X,A , µ);R) will be studied in detail as part of Section 3.8.8.

2.7.42 Theorem (Limit structure “almost everywhere” Dominated Convergence The-
orem) If (X,A , µ) is a measure space then Lµ-bounded subsets of L1((X,A , µ);R) are
Lµ-sequentially closed.

Proof This follows immediately from Theorem 2.7.28 and the definitions of the terms
involved. ■

2.7.6 Image measure and integration by image measure

In this section we provide the definition of a measure induced by a map. We
shall not use this construction frequently, but it does arise, for example, in parts of
our discussion of convolution in Chapter IV-4. anywhere else?

The construction is as follows.

2.7.43 Proposition (Characterisation of image measure) Let (X,A , µ) be a measure space,
let (Y,B ) be a measurable space, and let ϕ : X → Y be a (A ,B )-measurable map. If we
define µϕ−1 : B → R≥0 by µϕ−1(B) = µ(ϕ−1(B)), then (Y,B , µϕ−1) is a measure space.

Proof Since ϕ−1(∅) = ∅we have µϕ−1(∅) = 0. Now let (B j) j∈Z>0 be a pairwise disjoint
family of subsets fromB . We claim that (ϕ−1(B j)) j∈Z>0 is pairwise disjoint. This follows
since ϕ−1(B j)∩ ϕ−1(Bk) = ϕ−1(B j ∩ Bk) by Proposition I-1.3.5. It, therefore, follows that

∞∑
j=1

µϕ−1(B j) =
∞∑
j=1

µ(ϕ−1(B j)) = µ
( ⋃

j∈Z>0

ϕ−1(B j)
)
= µϕ−1

( ⋃
j∈Z>0

B j

)
,

again with an application of Proposition I-1.3.5. ■

The measure µϕ−1 has a name.
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2.7.44 Definition (Image measure) For (X,A , µ), (Y,B ), and ϕ as in Proposition 2.7.43,
the measure µϕ−1 is the image measure of µ by ϕ. •

One can characterise the functions integrable by the image measure.

2.7.45 Proposition (Integration by the image measure) Let (X,A , µ) be a measure space,
letϕ : X→ Y be a (Y,B ) be a (A ,B )-measurable map, and let µϕ−1 be the image measure
of µ by ϕ. Then f ∈ L(0)((Y,B );R) is integrable with respect to µϕ−1 if and only if f ◦ ϕ
is integrable with respect to µ. Moreover, if f ∈ L(1)((Y,B , µϕ−1);R) then we have∫

Y
f d(µϕ−1) =

∫
X
(f ◦ ϕ) dµ.

Proof Suppose that f is µϕ−1-integrable. By Proposition 2.6.6 this means that f is
(B ,B (R))-measurable. Since ϕ is (A ,B )-measurable, it follows easily that f ◦ ϕ is
(A ,B (R))-measurable, and so measurable.

Now let B ∈B and note that χB ◦ϕ = χϕ−1(B), as can be directly verified. Therefore,∫
Y
χB d(µϕ−1) = µϕ−1(B) = µ(ϕ−1(B)) =

∫
X
χϕ−1(B) dµ =

∫
X
χB ◦ ϕdµ.

By linearity of the integral, Proposition 2.7.17, this implies that if f ∈ L(0)((Y,B );R) is
a simple function we have ∫

Y
f d(µϕ−1) =

∫
X

( f ◦ ϕ) dµ. (2.18)

If f ∈ L(1)((Y,B , µϕ−1);R≥0) then by Proposition 2.6.39 there exists a sequence of
monotonically increasing simple functions (g j) j∈Z>0 such that f (y) = lim j→∞ g j(y) for
each y ∈ Y. The sequence (g j ◦ ϕ) j∈Z>0 is then itself a sequence of monotonically in-
creasing functions such that f ◦ϕ(x) = lim j→∞ g j ◦ϕ(x). By the Monotone Convergence
Theorem, (2.18) then holds for f ∈ L(1)((Y,B , µϕ−1);R≥0). For general integrable func-
tions, breaking the function f into its positive and negative parts and using linearity
of the integral gives (2.18) in this case. This shows that if f ∈ L(1)((Y,B , µϕ−1);R) then
f ◦ ϕ ∈ L(1)((X,A , µ);R) and the functions have equal integrals.

The argument above also clearly shows that if f ◦ ϕ ∈ L(1)((X,A , µ);R) then f ∈
L(1)((Y,B , µϕ−1);R), as desired. ■

2.7.7 The integral for C- and vector-valued functions

Thus far, we have always assumed that functions take values in R or subsets
of R. Some of the time, however, we wish to integrate functions that are vector-
valued, or particularly C-valued. The extension to these sorts of functions is easily
made, and in this section we write the (hopefully) expected results. The reader
will wish to recall our discussion in Section 2.6.4 of measurable vector-valued
functions.

We begin with the definitions.
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2.7.46 Definition (Integrable vector-valued function) For a measure space (X,A , µ), a
function f : X → Rn is integrable if its components f1, . . . , fn are integrable in the
sense of Definition 2.7.8. The integral of an integrable function f : X→ Rn is∫

X
f dµ =

(∫
X

f1 dµ, . . . ,
∫

X
fn dµ

)
.

We denote the set of integrable Rn-valued maps by L(1)((X,A , µ);Rn). •

The following result gives a useful characterisation of the integrability of Rn-
valued functions.

2.7.47 Proposition (Characterisation of vector-valued integrable functions) For a
measure space (X,A , µ) and f ∈ L(0)((X,A );Rn), the following statements are equivalent:

(i) f ∈ L(1)((X,A , µ);Rn);
(ii) the R-valued function x 7→ ∥f∥Rn(x) is integrable.

Moreover, if either of the above equivalent conditions holds, then∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
≤

∫
X
∥f∥Rn dµ.

Proof (i) =⇒ (ii) By Proposition 2.6.11 and Corollary 2.6.33 it follows that x 7→
∥ f (x)∥Rn is measurable. From Lemma II-1.2.67 we have

∥ f (x)∥Rn ≤ | f1(x)| + · · · + | fn(x)|

for every x ∈ X. Therefore, by Propositions 2.7.17 and 2.7.19,∫
X
∥ f∥Rn dµ ≤

∫
X
| f1|dµ + · · · +

∫
X
| fn|dµ < ∞,

giving the result.
(ii) =⇒ (i) From Lemma II-1.2.67 we have

| f1(x)| + · · · + | fn(x)| ≤
√

n∥ f (x)∥Rn

for every x ∈ X. Therefore, by Proposition 2.7.19, for each j ∈ {1, . . . ,n}we have∫
X
| f j|dµ ≤

∫
X
∥ f∥Rn dµ < ∞,

as desired.
Now we prove the final assertion of the proposition. The inequality obviously

holds if
∫

X f dµ = 0, so we may suppose that
∫

X f dµ , 0. Let u ∈ Rn be such that
∥u∥Rn = 1 and ∫

X
f dµ = u

∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
.
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Therefore, using linearity of the integral and the fact that ⟨u,u⟩Rn = 1,∫
X
⟨u, f ⟩Rn dµ =

〈
u,

∫
X

f dµ
〉
Rn
=

∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
.

Since |u j| ≤ 1 for each j ∈ {1, . . . ,n} we can use the Cauchy–Bunyakovsky–Schwarz
inequality and Lemma II-1.2.67 to get

⟨u, f (x)⟩Rn ≤ |⟨u, f (x)⟩Rn | ≤ ∥u∥Rn∥ f (x)∥Rn = ∥ f (x)∥Rn .

Therefore, by Proposition 2.7.19,∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
≤

∫
X
∥ f (x)∥Rn dµ,

as desired. ■

This result has the following immediate and useful corollary which gives an
easy means of checking the integrability of a vector-valued function.

2.7.48 Corollary (Integrability of vector-valued functions) Let (X,A , µ) be a measure
space and let f ∈ L(0)((X,A );Rn) and g ∈ L(0)((X,A ),R≥0) satisfy ∥f(x)∥Rn ≤ g(x) for
almost every x ∈ X. Then f ∈ L(1)((X,A , µ);Rn) if g ∈ L(1)((X,A , µ);R≥0) and, in this
case, ∥∥∥∥∫

X
f dµ

∥∥∥∥
Rn
≤

∫
X

g dµ.

Of course, the preceding definition and characterisation of integrable vector-
valued functions applies immediately to C-valued functions, using the fact that C
and R2 are isomorphic as R-vector spaces.

2.7.49 Definition (Integrable C-valued function) For a measure space (X,A , µ), a func-
tion f : X→ C is integrable if the R-valued functions

Re( f ) : x 7→ Re( f (x)), Im( f ) : x 7→ Im( f (x))

are integrable in the sense of Definition 2.7.8. The integral of an integrable function
f : X→ C is ∫

X
f dµ =

(∫
X

Re( f ) dµ,
∫

X
Im( f ) dµ

)
.

We denote the set of integrable C-valued maps by L(1)((X,A , µ);C). •

Following immediately from Proposition 2.7.47 is the following result.
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2.7.50 Corollary (Characterisation of C-valued integrable functions) For a measure
space (X,A , µ) and f ∈ L(0)((X,A );C), the following statements are equivalent:

(i) f ∈ L(1)((X,A , µ);C);
(ii) the R-valued function x 7→ |f|(x) is integrable.

Moreover, if either of the above equivalent statements holds then∣∣∣∣∫
X

f dµ
∣∣∣∣ ≤ ∫

X
|f|dµ.

Most of the properties of the integral generalise to vector- orC-valued integrals.
For completeness we record the results explicitly for Rn-valued functions, noting
that these results apply immediately to C-valued functions.

The following result is fundamental and often used without explicit mention.

2.7.51 Proposition (Integrals of functions agreeing almost everywhere) Let (X,A , µ)
be a measure space and let f,g ∈ L(0)((X,A );Rn) have the property that f(x) = g(x) for
almost every x ∈ X. Then the integral of f exists if and only if the integral of g exists, and
if either integral exists then we have∫

X
f dµ =

∫
X

g dµ.

Proof This follows immediately from Proposition 2.7.11, along with the definition of
the integral for vector-valued functions. ■

Next let us see that the vector-valued integral is linear.

2.7.52 Proposition (Algebraic operations on integrable functions) For a measure space
(X,A , µ), for f,g ∈ L(1)((X,A , µ);Rn), and for α ∈ R, the following statements hold:

(i) f + g ∈ L(1)((X,A , µ);Rn) and∫
X
(f + g) dµ =

∫
X

f dµ +
∫

X
g dµ;

(ii) αf ∈ L(1)((X,A , µ);Rn) and ∫
X
αf dµ = α

∫
X

f dµ.

Proof This follows directly from Proposition 2.7.17 and the definition of the vector-
valued integral. ■

It is also useful to know that the integral of C-valued functions is C-linear.
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2.7.53 Corollary (Linearity of the C integral) For a measure space (X,A , µ), for f,g ∈
L(1)((X,A , µ);C), and for α ∈ C, the following statements hold:

(i) f + g ∈ L(1)((X,A , µ);C) and∫
X
(f + g) dµ =

∫
X

f dµ +
∫

X
g dµ;

(ii) αf ∈ L(1)((X,A , µ);C) and ∫
X
αf dµ = α

∫
X

f dµ.

Proof The first assertion is a special case of the first assertion of Proposition 2.7.52.
The second assertion also follows from Proposition 2.7.52 since

Re(α f ) = Re(α) Re( f ) − Im(α) Im( f ), Im(α f ) = Re(α) Im( f ) + Im(α) Re( f ). ■

For integrating vector-valued functions over disjoint subsets, we have the fol-
lowing result.

2.7.54 Proposition (Breaking the integral in two) Let (X,A , µ), let A,B ∈ A be sets
such that X = A

◦

∪B, and let f ∈ L(0)((X,A );Rn). Then f ∈ L(1)((X,A , µ);Rn) if and
only if f|A ∈ L(1)((A,AA, µ|AA);Rn) and f|B ∈ L(1)((B,AB, µ|AB);Rn). Furthermore, if
f ∈ L(1)((X,A , µ);Rn) then we have∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB.

Proof Thus follows from Proposition 2.7.22, along with the definition of the integral
for vector-valued functions. ■

As in the scalar case, this result has the following corollary.

2.7.55 Corollary (Breaking the integral almost in two) Let (X,A , µ) be a complete measure
space, let A,B ∈ A be such that µ(A ∩ B) = 0 and such that X = A ∪ B, and let f ∈
L(0)((X,A );Rn). Then f ∈ L(1)((X,A , µ);Rn) if and only if f|A ∈ L(1)((A,AA, µ|AA);Rn)
and f|B ∈ L(1)((B,AB, µ|AB);Rn). Furthermore, if f ∈ L(1)((X,A , µ);Rn) then we have∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB.

Proof This follows from Proposition 2.7.23, along with the definition of the vector-
valued integral. ■

Finally, we can also state a version of the Dominated Convergence Theorem for
vector-valued integrals.
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2.7.56 Theorem (Vector-valued Dominated Convergence Theorem) Let (X,A , µ) be
a measure space and let (fj)j∈Z>0 be a sequence in L(0)((X,A );Rn) having the following
properties:

(i) the limit f(x) = limj→∞ fj(x) exists for almost every x ∈ X;
(ii) there exists g ∈ L(1)((X,A , µ);R≥0) such that, for almost every x ∈ X, ∥fj(x)∥Rn ≤

g(x) for every j ∈ Z>0.
Then the functions f and fj, j ∈ Z>0, are integrable and∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof For k ∈ {1, . . . ,n} denote by fk the kth component of f and by f j,k the kth
component of f j, j ∈ Z>0. Then, for almost every x ∈ X, we have

| fk(x)| ≤ ∥ f (x)∥Rn ≤ g(x), k ∈ {1, . . . ,n},
| f j,k(x)| ≤ ∥ f j(x)∥Rn ≤ g(x), k ∈ {1, . . . ,n}, j ∈ Z>0.

This gives integrability of f and f j, j ∈ Z>0, by definition of the vector-valued integral.
The final equality of the theorem now follows from the scalar Dominated Convergence
Theorem, Theorem 2.7.28. ■

2.7.8 Integration with respect to signed, complex, and vector measures

In this section to this point we have talked solely about positive measure spaces.
Let us now see how signed, complex, and vector measure spaces arise in the
integration story.

We begin by indicating how one can define integrals with respect to signed,
complex, and vector measures. Here we use the Jordan decomposition of such
measures in an essential way. Let us consider first the case where (X,A , µ) is a
signed measure space.

2.7.57 Definition (Integration with respect to a signed measure) For a signed mea-
sure space (X,A , µ) let µ = µ+ − µ− be the Jordan decomposition of µ. For
f ∈ L(0)((X,A );R), we have the following definitions.

(i) If neither of the conditions

(a)
∫

X
f dµ+ = ∞ and

∫
X

f dµ− = ∞ and

(b)
∫

X
f dµ+ = −∞ and

∫
X

f dµ− = −∞

holds, then the integral of f with respect to µ exists and is given by∫
X

f dµ =
∫

X
f dµ+ −

∫
X

f dµ−,

this being the integral of f with respect to µ.
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(ii) If either of the two conditions from part (i) hold then the integral of f with
respect to µ does not exist.

(iii) If f ∈ L(1)((X,A , µ+);R) and f ∈ L(1)((X,A , µ−);R) then f is integrable with
respect to µ.

For a subset I ⊆ R we denote the set of I-valued functions integrable with respect
to µ by L(1)((X,A , µ); I), or simply by L(1)(X; I) if A and µ are understood. •

Using this definition of integrability and integral for signed measures, it is
straightforward to define the corresponding notions for complex and vector mea-
sures. The essential idea is that a complex measure µ can be written as

µ = Re(µ) + i Im(µ)

for finite signed measures Re(µ) and Im(µ). For a vector measure µ taking values
in Rn, we can write

µ = µ1e1 + · · · + µnen

for finite signed measures µ1, . . . , µ j and where {e1, . . . , en} is the standard basis for
Rn.

2.7.58 Definition (Integration with respect to complex and vector measures) For a
measurable space (X,A ) and for a complex measure µ on A and a vector measure
µ taking values in Rn, write them as above. For f ∈ L(0)((X,A );R), we have the
following definitions.

(i) the integral of f with respect to µ exists if the integrals of f with respect to
Re(µ) and Im(µ) exist, and is given by∫

X
f dµ =

(∫
X

f d(Re(µ))
)
+ i

(∫
X

f d(Im(µ))
)
,

this being the integral of f with respect to µ.
(ii) the integral of f with respect to µ exists if the integrals of f with respect to

µ1, . . . , µn exist, and is given by∫
X

f dµ =
(∫

X
f dµ1, . . . ,

∫
X

f dµn

)
,

this being the integral of f with respect to µ.
(iii) If the integral of f does not exist with respect to at least one of Re(µ) and

Im(µ), then the integral of f does not exist.
(iv) If the integral of f does not exist with respect to at least one of Re(µ) and

Im(µ), then the integral of f does not exist.

(v) If f ∈ L(1)((X,A ,Re(µ));R) and f ∈ L(1)((X,A , Im(µ));R) then f is integrable
with respect to µ.
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(vi) If f ∈ L(1)((X,A , µ j);R), j ∈ {1, . . . ,n}, f is integrable with respect to µ.

For a subset I ⊆ R we denote the set of I-valued functions integrable with respect
to µ (resp. µ) by L(1)((X,A , µ); I) (resp. L(1)((X,A ,µ); I)), or simply by L(1)(X; I) if A
and µ (resp. µ) are understood. •

Since, by virtue of the Jordan decomposition, integration with respect to signed,
complex, and vector measures boils down to integration with respect to positive
measures as usual, one anticipates that many of the properties of the integral
with respect to positive measures will carry over to signed, complex, and vector
measures. Let us record some of these.

First we relate the integral of a function with the integral with respect to a
measure to the integral with respect to the variation of the measure.

2.7.59 Proposition (Characterisation of integrals with respect to signed, complex,
and vector measures) For a measurable space (X,A ) and for f ∈ L(0)((X,A );R), the
following statements hold:

(i) if µ is a signed or complex measure on A , then f ∈ L(1)((X,A , µ);R) if and only if
f ∈ L(1)((X,A , |µ|);R), and if either of these equivalent statements holds, then∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∫
X
|f|d|µ|;

(ii) if µ is a vector measure on A taking values in Rn, then f ∈ L(1)((X,A ,µ);R) if and
only if f ∈ L(1)((X,A , ∥µ∥Rn);R), and if either of these equivalent statements holds,
then ∥∥∥∥∫

X
f dµ

∥∥∥∥
Rn
≤

∫
X
|f|d∥µ∥Rn .

Proof Let us first consider the case where µ is a signed measure on A with Jor-
dan decomposition µ = µ+ − µ−. If f ∈ L(1)((X,A , µ);R) then, by definition
f ∈ L(1)((X,A , µ+);R) and f ∈ L(1)((X,A , µ−);R). Therefore,∫

X
| f |d|µ| =

∫
X
| f |dµ+ +

∫
X
| f |dµ− < ∞,

and so f ∈ L(1)((X,A , |µ|);R). Conversely, suppose that f ∈ L(1)((X,A , |µ|);R). Then∫
X
| f |d|µ| =

∫
X
| f |dµ+ +

∫
X
| f |dµ− < ∞.

Thus f ∈ L (1)((X,A , µ+);R) and ∈ L (1)((X,A , µ−);R). Therefore,∫
X

f dµ =
∫

X
f dµ+ −

∫
X

f dµ−

is well-defined, and so f ∈ L (1)((X,A , µ);R).
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For the final assertion of this part of the theorem, we compute∣∣∣∣∫
X

f dµ
∣∣∣∣ = ∣∣∣∣∫

X
f dµ+ −

∫
X

f dµ−
∣∣∣∣ ≤ ∣∣∣∣∫

X
f dµ+

∣∣∣∣ + ∣∣∣∣∫
X

f dµ−
∣∣∣∣

≤

∫
X
| f |dµ+ +

∫
X
| f |dµ− =

∫
X
| f |d|µ|,

as claimed.
Now we consider the case of a vector measure µ, the case of a complex measure

following from this as a special case. Suppose first that f ∈ L(1)((X,A ,µ);R) so that,
by definition, f ∈ L(1)((X,A , µ j);R) for each j ∈ {1, . . . ,n}. Let us first suppose that f is
a nonnegative-valued simple function. Thus

f =
k∑

j=1

c jχA j

for c j ∈ R≥0, j ∈ {1, . . . , k}, and for pairwise disjoint measurable sets A j, j ∈ {1, . . . , k}.
Then ∫

X
f d∥µ∥Rn =

k∑
j=1

c j∥µ∥Rn(A j) ≤
k∑

j=1

c j

n∑
l=1

|µl|(A j),

the last inequality holding by (2.8). Noting that∫
X

f d|µl| =

k∑
j=1

c j|µl|(A j),

we deduce that ∫
X

f d∥µ∥Rn ≤

n∑
l=1

∫
X

f d|µl|,

giving f ∈ L(1)((X,A , ∥µ∥Rn);R) in the case when f is a nonnegative simple function.
For a general nonnegative function f ∈ L(1)((X,A ,µ);R) we let ( f j) j∈Z>0 be a sequence
of nonnegative simple functions such that f j(x) ≤ f j+1(x) for x ∈ X and j ∈ Z>0 and
such that lim j→∞ f j(x) = f (x); see Proposition 2.6.39. Then∫

X
f j d∥µ∥Rn ≤

n∑
l=1

∫
X

f jd|µl| ≤

n∑
l=1

∫
X

f d|µl|,

the last inequality by Proposition 2.7.19. Thus, by the Monotone Convergence Theo-
rem, ∫

X
f d∥µ∥Rn = lim

j→∞

∫
X

f j d∥µ∥Rn ≤

n∑
l=1

∫
X

f d|µl|,

giving f ∈ L(1)((X,A , ∥µ∥Rn);R) for a nonnegativeµ-integrable function f . For a general
µ-integrable function f we then have∫

X
| f |d∥µ∥Rn = lim

j→∞

∫
X

f j d∥µ∥Rn ≤

n∑
l=1

∫
X
| f |d|µl|,
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giving f ∈ L(1)((X,A , ∥µ∥Rn);R).
Now we suppose that f ∈ L(1)((X,A , ∥µ∥Rn);R). As above, we first suppose that f

is a nonnegative-valued simple function:

f =
k∑

j=1

c jχA j .

For l ∈ {1, . . . ,n}we have∫
X

f d|µl| ≤

n∑
l=1

∫
X

f d|µl| ≤

n∑
l=1

k∑
j=1

c j|µl|(A j)

≤
√

n
k∑

j=1

c j∥µ∥Rn(A j) =
√

n
∫

X
f d∥µ∥Rn ,

using Exercise 2.3.6 and Proposition 2.3.55. Thus, for nonnegative simple functions
f ∈ L(1)((X,A , ∥µ∥Rn);R) we have f ∈ L(1)((X,A , µl);R), l ∈ {1, . . . ,n}, and so f ∈
L(1)((X,A ,µ);R). Now one can prove that∫

X
f d|µl| ≤

n∑
l=1

∫
X

f d|µl| ≤
√

n
∫

X
f d∥µ∥Rn

for general nonnegative functions f ∈ L(1)((X,A , ∥µ∥Rn);R) using an argument involv-
ing a sequence of simple functions a ( f j) j∈Z>0 approximating f , just as in the preceding
paragraph. Also just as in the preceding paragraph, it follows that, for a general
f ∈ L(1)((X,A , ∥µ∥Rn);R),∫

X
| f |d|µl| ≤

n∑
l=1

∫
X
| f |d|µl| ≤

√
n
∫

X
| f |d∥µ∥Rn , (2.19)

and so f ∈ L(1)((X,A ,µ);R).
Moreover, by Proposition II-1.1.11, by the fact that the proposition holds for signed

measures, and by (2.19), we have∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
≤

n∑
l=1

∣∣∣∣∫
X

f dµl

∣∣∣∣ ≤ n∑
l=1

∫
X
| f |d|µl| ≤

√
n
∫

X
| f |d∥µ∥Rn ,

which gives the final assertion of the proposition. ■

First we can show that the integral depends, in the appropriate sense, on the
value of a function up to a set of measure zero.
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2.7.60 Proposition (Integrals of functions agreeing almost everywhere) For a measur-
able space (X,A ) and for f,g ∈ L(0)((X,A );R), the following statements hold:

(i) if µ is a signed or complex measure on A and if

|µ|({x ∈ X | f(x) , g(x)}) = 0,

then f ∈ L(1)((X,A , µ);R) if and only if g ∈ L(1)((X,A , µ);R) and, if either of these
conditions holds, ∫

X
f dµ =

∫
X

g dµ;

(ii) if µ is a vector measure on A taking values in Rn and if

∥µ∥Rn({x ∈ X | f(x) , g(x)}) = 0,

then f ∈ L(1)((X,A ,µ);R) if and only if g ∈ L(1)((X,A ,µ);R) and, if either of these
conditions holds, ∫

X
f dµ =

∫
X

g dµ.

Proof Let us first consider the case of a signed measure µ. First suppose that f ∈
L(1)((X,A , µ);R). By Proposition 2.7.59 it follows that f ∈ L(1)((X,A , |µ|);R). Since g
differs from f on a set whose |µ|-measure is zero, it follows from Proposition 2.7.11
that g ∈ L(1)((X,A , |µ|);R) and so g ∈ L(1)((X,A , µ);R), again by Proposition 2.7.59.
Of course, the argument is reversible, showing that if g ∈ L(1)((X,A , µ);R) then f ∈
L(1)((X,A , µ);R). If Z is the set of points where f and g differ, then∣∣∣∣∫

Z
( f − g) dµ

∣∣∣∣ ≤ ∫
Z
| f − g|d|µ| = 0,

the first inequality by Proposition 2.7.59. Therefore, using the Proposition 2.7.62
below, we have∫

X
( f − g) dµ =

∫
X\Z

( f − g) dµ +
∫

Z
( f − g) dµ =

∫
X\Z

( f − g) dµ = 0.

By Proposition 2.7.61 we then have∫
X

f dµ =
∫

X
g dµ,

giving the first part of the result.
To conclude, we prove the proposition for vector measures, the complex case being

a consequence of this. Suppose that Z denotes the set of points where f and g differ.
Then

|µl|(Z) =
∫

X
χZ dµl ≤

√
n
∫

X
χZ d∥µ∥Rn = 0, (2.20)



2022/03/07 2.7 Integration on measure spaces 255

where we have used (2.19). Then the first part of the proof gives f ∈ L(1)((X,A , µl);R)
if and only if g ∈ L(1)((X,A , µl);R) for each l ∈ {1, . . . ,n}. The definition of the integral
with respect to µ, along with the conclusions from the first part of the result, gives∫

X
f dµ =

∫
X

g dµ,

as desired. ■

The following result concerning algebraic operations can be deduced imme-
diately by applying the corresponding result for positive measures to the Jordan
decomposition of the measures involved.

2.7.61 Proposition (Algebraic operations for the integral with respect to signed,
complex, and signed measures) For a measurable space (X,A ), the following state-
ments hold:

(i) if µ is a signed or complex measure and if f,g ∈ L(1)((X,A , µ);R), then f + g ∈
L(1)((X,A , µ);R) and ∫

X
(f + g) dµ =

∫
X

f dµ +
∫

X
g dµ;

(ii) if µ is a vector measure taking values in Rn and if f,g ∈ L(1)((X,A ,µ);R), then
f + g ∈ L(1)((X,A ,µ);R) and∫

X
(f + g) dµ =

∫
X

f dµ +
∫

X
g dµ;

(iii) if µ is a signed or complex measure, if f ∈ L(1)((X,A , µ);R) and if α ∈ R, then
αf ∈ L(1)((X,A , µ);R) and ∫

X
αf dµ = α

∫
X

f dµ;

(iv) if µ is a vector measure taking values in Rn, if f ∈ L(1)((X,A ,µ);R), and if α ∈ R,
then αf ∈ L(1)((X,A ,µ);R) and∫

X
αf dµ = α

∫
X

f dµ.

Proof We first consider the case of a signed measure µ with Jordan decomposition
µ = µ+ − µ−. We then have∫

X
( f + g) dµ =

∫
X

( f + g) dµ+ −
∫

X
( f − g) dµ−

=

∫
X

f dµ+ +
∫

X
g dµ+ −

∫
X

f dµ− −
∫

X
g dµ−

=

∫
X

f dµ +
∫

X
g dµ
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by Proposition 2.7.17. A similarly styled argument gives∫
X
α f dµ = α

∫
X

f dµ.

The result for vector measures then follows immediately from the result for signed
measures by the definition of the integral with respect to a vector measure. The result
for complex measures is a special case of the result for vector measures. ■

We can also break integrals with respect to signed, complex, and vector mea-
sures into separate integrals over disjoint sets.

2.7.62 Proposition (Breaking the integral in two) For a measurable space (X,A ) let A,B ∈
A be such that X = A

◦

∪B and let f ∈ L(0)((X,A );R). Then the following statements hold:

(i) if µ is a signed or complex measure on A , then f ∈ L(1)((X,A , µ);R) if and only if
f|A ∈ L(1)((A,AA, µ|AA);R) and f|B ∈ L(1)((B,AB, µ|AB);R), and if either of these
two equivalent conditions holds,∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB;

(ii) if µ is a vector measure on A , then f ∈ L(1)((X,A ,µ);R) if and only if f|A ∈
L(1)((A,AA,µ|AA);R) and f|B ∈ L(1)((B,AB,µ|AB);R), and if either of these two
equivalent conditions holds,∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB;

Proof We first consider the case of a signed measure µ. By Proposition 2.7.22 it
follows that f ∈ L(1)((X,A , |µ|);R) if and only if f |A ∈ L(1)((A,AA, |µ||AA);R) and f |B ∈
L(1)((B,AB, |µ||AB);R). By Proposition 2.7.59 it follows that f ∈ L(1)((X,A ,µ);R) if
and only if f |A ∈ L(1)((A,AA,µ|AA);R) and f |B ∈ L(1)((B,AB,µ|AB);R), as claimed.
Moreover, writing f = fχA + fχB, we use Proposition 2.7.61 to give∫

X
f dµ =

∫
A

( f |A) dµA +

∫
B
( f |B) dµB.

The result for vector and complex measures follows immediately from the conclu-
sion for signed measures, using the definition of the integral in these cases. ■

2.7.63 Corollary (Breaking the integral almost in two) For a measurable space (X,A ) letwhat about the

completeness that is

needed in the positive

case?
A,B ∈ A be such that X = A∪B and let f ∈ L(0)((X,A );R). Then the following statements
hold:

(i) if µ is a signed or complex measure onA and if |µ|(A) = 0, then f ∈ L(1)((X,A , µ);R)
if and only if f|A ∈ L(1)((A,AA, µ|AA);R) and f|B ∈ L(1)((B,AB, µ|AB);R);
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(ii) if µ is a vector measure onA and if ∥µ∥Rn(A) = 0, then f ∈ L(1)((X,A ,µ);R) if and
only if f|A ∈ L(1)((A,AA,µ|AA);R) and f|B ∈ L(1)((B,AB,µ|AB);R).

Proof This follows from Propositions 2.7.60 2.7.62. ■

Finally, for signed, complex, and vector measures we have a version of the
Dominated Convergence Theorem. Note here that a little care must be exercised
in stating the hypotheses.

2.7.64 Theorem (Dominated Convergence Theorem for signed, complex, and vector
measures) For a measurable space (X,A ) and for a sequence (fj)j∈Z>0 in L(0)((X,A );R)
the following statements hold:

(i) if µ is a signed or complex measure and if

(a) the limit f(x) = limj→∞ fj(x) exists for |µ|-almost every x ∈ X and if

(b) there exists g ∈ L(1)((X,A , |µ|);R≥0) such that, for |µ|-almost every x ∈ X,
|fj|(x) ≤ g(x) for every j ∈ Z>0,

then f, fj ∈ L(1)((X,A , µ);R), j ∈ Z>0, and∫
X

f dµ = lim
j→∞

∫
X

fj dµ;

(ii) if µ is a vector measure taking values in Rn and if

(a) the limit f(x) = limj→∞ fj(x) exists for ∥µ∥Rn-almost every x ∈ X and if

(b) there exists g ∈ L(1)((X,A , ∥µ∥Rn);R≥0) such that, for ∥µ∥Rn-almost every
x ∈ X, |fj|(x) ≤ g(x) for every j ∈ Z>0,

then f, fj ∈ L(1)((X,A ,µ);R), j ∈ Z>0, and∫
X

f dµ = lim
j→∞

∫
X

fj dµ.

Proof We first consider the case of a signed measure µ with Jordan decomposition
µ = µ+ − µ−. The integrability of f and f j, j ∈ Z>0, with respect to µ follows from
their assumed integrability with respect to |µ|, along with Proposition 2.7.59. Since
|µ| = µ+ + µ−, it follows that the limit f (x) = lim j→∞ f j(x) exists for µ+-almost every
x ∈ X and for µ−-almost every x ∈ X. Also, |µ|-integrability of g implies µ+- and
µ−-integrability of g. Finally, we have | f j|(x) ≤ g(x) for µ+- and µ−-almost every x ∈ X
and for every j ∈ Z>0. Then we compute

lim
j→∞

∫
X

f j dµ = lim
j→∞

(∫
X

f j µ+ −

∫
X

f j dµ−
)

= lim
j→∞

∫
X

f j µ+ − lim
j→∞

∫
X

f j dµ−

=

∫
X

f dµ+ −
∫

X
f dµ− =

∫
X

f dµ,
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using the Dominated Convergence Theorem for positive measures, along with the
commutativity of limits with sums (Proposition I-2.3.23).

We next prove the theorem for the case of a vector measure, noting that the case
of complex measures follows from this. As in (2.20), if Z has ∥µ∥Rn-measure zero, then
Z also has |µl|-measure zero for each l ∈ {1, . . . ,n}. Therefore, the hypotheses of the
theorem give:
1. the limit f (x) = lim j→∞ f j(x) exists for |µl|-almost x ∈ X for each l ∈ {1, . . . , l};
2. | f j|(x) ≤ g(x) for |µl|-almost every x ∈ X for each j ∈ Z>0 and l ∈ {1, . . . ,n}.
As we saw in the proof of Proposition 2.7.59,∫

X
g d|µl| ≤

√
n
∫

X
g d∥µ∥Rn ,

and so our hypotheses imply that g ∈ L(1)((X,A , |µl|);R≥0) for each l ∈ Z>0. This all
implies that the result from the first part of the theorem gives the result for vector
measures. ■

We next show how signed, complex, and vector measures can be built from
positive measures and integrable functions. This gives us a wealth of signed,
complex, and vector measures. We shall see in , moreover, that an important classwhat

of measures arise exactly in the manner of the next result.

2.7.65 Proposition (Signed, complex, and vector measures from functions) If
(X,A , µ) is a measure space, then the following statements hold:

(i) if f ∈ L(1)((X,A , µ);R) then f · µ : A → R defined by

(f · µ)(A) =
∫

X
fχA dµ

is a finite signed measure on A ;
(ii) if f ∈ L(1)((X,A , µ);C) then f · µ : A → C defined by

(f · µ)(A) =
∫

X
fχA dµ

is a complex measure on A ;
(iii) if f ∈ L(1)((X,A , µ);Rn) then f · µ : A → Rn defined by

(f · µ)(A) =
∫

X
fχA dµ

is a vector measure on A .
Proof We prove the statement for vector measures, since the other cases are a special
case of this.

It is clear that ( f · µ)(∅) = 0. Now let (A j) j∈Z>0 be a family of pairwise disjoint
elements of A and let A = ∪ j∈Z>0A j. If g = ∥ f∥RnχA then g(x) ≤ ∥ f∥Rn(x) for every
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x ∈ X and so g ∈ L(1)((X,A , µ);R≥0) by Proposition 2.7.47. If we define Bk = ∪
k
j=1A j

and f k = fχk, k ∈ Z>0, then

lim
k→∞

f k(x) = f (x)χA(x), x ∈ X.

Therefore, by the Dominated Convergence Theorem, Theorem 2.7.56,

( f · µ)(A) =
∫

X
fχA dµ = lim

k→∞

∫
X

f k dµ = lim
k→∞

k∑
j=1

∫
X

fχA j dµ =
∞∑
j=1

( f · µ)(A j),

giving countable-additivity of f · µ. ■

For the measures determined by integrable functions, as in Proposition 2.7.65,
it is possible to explicitly characterise the integrals with respect to these measures.
The notation from the previous proposition will be used in the statement of the
next.

2.7.66 Proposition (Integration with respect to measures from functions) If (X,A , µ)
is a measure space and if f ∈ L(1)((X,A , µ);R), g ∈ L(1)((X,A , µ);C), and f ∈
L(1)((X,A , µ);Rn), then the following statements hold:

(i) if f ∈ L(1)((X,A , µ);R) then g ∈ L(1)((X,A , f · µ);R) if and only if fg ∈
L(1)((X,A , µ);R), and if either of these equivalent conditions holds,∫

X
g d(f · µ) =

∫
X
(fg) dµ;

(ii) if f ∈ L(1)((X,A , µ);C) then g ∈ L(1)((X,A , f · µ);R) if and only if fg ∈
L(1)((X,A , µ);C), and if either of these equivalent conditions holds,∫

X
g d(f · µ) =

∫
X
(fg) dµ;

(iii) if f ∈ L(1)((X,A , µ);Rn) then g ∈ L(1)((X,A , f · µ);R) if and only if gf ∈
L(1)((X,A , µ);Rn), and if either of these equivalent conditions holds,∫

X
g d(f · µ) =

∫
X
(gf) dµ.

Proof Let us first consider the case where f ∈ L(1)((X,A , µ);R). Let us define

P = {x ∈ X | f (x) ≥ 0}, N = X \ P,

noting that P (and so N) is measurable by Proposition 2.6.16. Clearly (P,N) is a Hahn
decomposition for (X,A , f · µ). Moreover, the corresponding Jordan decomposition is

f · µ = f+ · µ − f− · µ,
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where, as usual, f+(x) = max{ f (x), 0} and f−(x) = max{− f (x), 0}. Noting that g f is
integrable if and only if both g f+ and g f− are integrable, and computing∫

X
( f g) dµ =

∫
X

( f+g) dµ −
∫

X
( f−g) dµ =

∫
X

g d( f+ · µ) −
∫

X
g d( f− · µ) =

∫
X

g d( f · µ),

the result for signed measures follows.
To complete the proof, we suppose that f ∈ L(1)((X,A , µ);Rn), and prove the last

assertion in the statement of the proposition. The proof of the second assertion is a
consequence of this. For A ∈ A and l ∈ {1, . . . ,n}we have

( f · µ)l(A) = prl

(∫
X

fχA dµ
)
=

∫
X

flχA dµ = ( fl · µ)(A),

where prl : Rn
→ R is the projection onto the lth component. Given this, and the

definitions of the integral with respect to a vector measure and the integral of a vector-
valued function, the result follows from the result proved above forR-valued functions.

■

2.7.9 Notes

There is no standard convention on what Beppo Levi’s Theorem is. Sometimes
what we call the Monotone Convergence Theorem is called Beppo Levi’s Theorem.

Exercises

2.7.1 Let (X,A , µ) be a measure space and let f , g ∈ S(X;R≥0) satisfy f (x) ≤ g(x)
for each x ∈ X. Show that ∫

X
f dµ ≤

∫
X

g dµ.

2.7.2 Let (X,A , µ) be a measure space and let f ∈ S(X;R). For A ∈ A define
fA : X→ R by fA = fχA. Show that∫

X
fA dµ =

∫
A

( f |A) dµA.

2.7.3 Let X = Z>0, let A = 2Z>0 , and let µΣ : A → R≥0 be the counting measure:

µΣ(A) =

card(A), card(A) < ∞,
∞, otherwise.

Verify the following statements using only the definition of the inte-
gral, i.e., do not use the general constructions of Examples 2.7.7 and 2.7.10.
(a) A function f : Z>0 → R is integrable if and only if the series

∑
∞

j=1 f ( j) is
absolutely convergent.
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(b) If f is integrable then ∫
Z>0

f dµΣ =
∞∑
j=1

f ( j).

2.7.4 For a measure space (X,A , µ) and for f ∈ L(0)((X,A );R), show that f ∈
L(1)((X,A , µ);R) if and only if | f | ∈ L(1)((X,A , µ);R).

2.7.5 Let X = Z>0, A = 2X, and let µΣ be the counting measure on A . Define
f : Z>0 → R by f ( j) = j. Use the Monotone Convergence Theorem to show
that f < L(1)((Z>0, 2Z, µΣ);R).

The following exercise requires the notion of the concept of a norm which will be
introduced in Section 3.1.

2.7.6 Let (X,A , µ) be a measure space, let f ∈ L(1)((X,A , µ),Rn), and let ∥·∥ be a
norm on Rn. Show that ∥∥∥∥∫

X
f dµ

∥∥∥∥ ≤ ∫
X
∥ f∥dµ.

Hint: Use Proposition 2.7.47 and Theorem 3.1.15. figure this out
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Section 2.8

Integration on products

In Section II-1.6.7 we presented Fubini’s Theorem for the Riemann integral
which showed how the n-dimensional Riemann integral could be computed by
means of one-dimensional integrals. In Section 2.3.6 we introduced the product
measure on a finite product of measure spaces. Understanding these two things, it
is then naturally ask whether the integral for a product measure can be understood
in terms of the measure of the component measure spaces. The result is the general
version of Fubini’s Theorem. As part of our treatment of Fubini’s Theorem, we
give an alternative characterisation of the product measure.

Do I need to read this section? We shall make frequent use of Fubini’s Theorem.
That being said, to make use of Fubini’s Theorem it is not necessary to understand
all of the details we present here. What is most important is to understand the
hypotheses of Fubini’s Theorem. •

2.8.1 The product measure by integration

In Section 2.3.6 we defined a unique measure on a product of measure spaces
that had a natural property in terms of the measure of measurable rectangles.
In this section we retrieve this measure in another way, using the integral. This
construction has the benefit of being simpler than that in Section 2.3.6, but only
after one has the integral at hand.

In Section 2.3.6 we defined product measures for arbitrary finite products.
However, it is notationally easier to deal with a product with two factors, and then
use induction to arrive at the general case. Thus we consider two measure spaces
(X,A , µ) and (Y,B , ν). As in Section 2.2.3, a measurable rectangle is a subset
A × B ⊆ X × Y where A ∈ A and B ∈ B . We denote by σ(A ×B ) the σ-algebra
generated by the collection of measurable rectangles. For a set E ⊆ X × Y and for
(x, y) ∈ X × Y we define subsets Ex ⊆ Y and Ey

⊆ X by

Ex = {y′ ∈ Y | (x, y′) ∈ E}, Ey = {x′ ∈ X | (x′, y) ∈ E}.

One calls the sets Ex and Ey sections of the set E.
The following result begins our construction of the product measure using the

integral. The reader will hopefully recognise something Fubini-like in this result.

2.8.1 Lemma (Integrals of sections) For σ-finite measure spaces (X,A , µ) and (Y,B , ν)
and for E ∈ σ(A ×B ), define

ϕE : X→ R
x 7→ ν(Ex),

ψE : Y→ R
y 7→ µ(Ey).
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Then ϕE and ψE are A -measurable andB -measurable, respectively. Moreover,∫
X
ϕE dµ =

∫
Y
ψE dν.

Proof Denote byM (X×Y) the collection of all sets E for which the conclusions of the
lemma hold. We shall show that M (X × Y) is a monotone class containing the set of
measurable rectangles.

For A ∈ A and B ∈B we have

ϕA×B(x) = ν(B)χA(x), ψA×B(y) = µ(A)χB(y),

which shows that A × B ∈ M (X × Y). Therefore, ϕA×B and ψA×B are measurable (by
Example 2.6.8–2) and ∫

X
ϕA×B dµ =

∫
Y
ψA×B dν = µ(A)ν(B).

ThusM (X × Y) contains the measurable rectangles.
Now let (E j) j∈Z>0 be a collection of subsets ofM (A×B) for which E j ⊆ E j+1, j ∈ Z>0.

Then, denoting E = ∪ j∈Z>0E j,

lim
j→∞

ϕE j(x) = ϕE(x), lim
j→∞

ψE j(y) = ψE(y).

Thus ϕE ∈ L(0)((X,A ),R) and ψE ∈ L(0)((Y,B );R) by Proposition 2.6.18. Note that the
sequences (ϕE j(x)) j∈Z>0 and (ψE j(x)) j∈Z>0 are monotonically increasing, so the Monotone
Convergence Theorem gives∫

X
ϕE dµ = lim

j→∞

∫
X
ϕE j dµ = lim

j→∞

∫
Y
ψE j dν =

∫
Y
ψE dν.

Therefore, E ∈M (X × Y), which is part (i) of the definition of a monotone class.
Now, for the moment, suppose that µ(X) and ν(Y) are finite. Let (E j) j∈Z>0 be a

sequence in σ(A ×B ) such that E j ⊇ E j+1, j ∈ Z>0. Define E = ∩ j∈Z>0E j and note that

lim
j→∞

ϕE j(x) = ϕE(x), lim
j→∞

ψE j(y) = ψE(y).

Thus ϕE ∈ L(0)((X,A ),R) and ψE ∈ L(0)((Y,B );R) by Proposition 2.6.18. Note that we
obviously have

ϕE j(x) ≤ ν(Y)χX(x), ϕE(x) ≤ ν(Y)χX(x), ψE j(y) ≤ µ(X)χY(y), ψE(y) ≤ µ(X)χY(y)

for every (x, y) ∈ X,Y. Moreover, since we are assuming that X and Y have finite
measure we have χX ∈ L(1)((X,A , µ);R) and χY ∈ L(1)((Y,B , ν);R). Therefore, the
hypotheses of the Dominated Convergence Theorem hold and we have∫

X
ϕE dµ = lim

j→∞

∫
X
ϕE j dµ = lim

j→∞

∫
Y
ψE j dν =

∫
Y
ψE dν,
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from which we conclude that E ∈M (X × X). This verifies part (ii) of Definition 2.2.11
in this case. Thus this shows that, when µ(X), ν(Y) < ∞, M (X × Y) is a monotone
class containing the measurable rectangles. From Theorem 2.2.13 it then follows that
σ(A ×B ) ⊆M (X × Y). Thus the lemma holds in this case.

Now let us suppose that µ(X) and ν(Y) are not necessarily finite, but that using
our assumption of σ-additivity we can write X = ∪k∈Z>0Xk and Y = ∪k∈Z>0Yk where
µ(Xk), ν(Yk) < ∞, k ∈ Z>0, and where (Xk)k∈Z>0 and (Yk)k∈Z>0 are pairwise disjoint
measurable sets. Thus X × Y is the disjoint union of the measurable rectangles X×Yl,
k, l ∈ Z>0. Let f : Z>0 → Z>0 ×Z>0 be a bijection and, for m ∈ Z>0, define Zm = Xk ×Yl
where ϕ(m) = (k, l). Now X × Y is a disjoint union of the measurable sets Zm, m ∈ Z>0.
Finally, define Sn = ∪

n
m=1Zm so that X×Y is a union of the measurable sets Sn, n ∈ Z>0,

where Sn ⊆ Sn+1. Note that µ(Sn) < ∞ for every n ∈ Z>0 since Sn is a finite union of
sets of finite measure.

Now let E ∈ σ(A × B ) and denote En = E ∩ Sn. From our argument above,
En ∈ σ(A ×B ) and ∫

X
ϕEn dµ =

∫
Y
ψEn dν.

We also have
lim
n→∞

ϕEn(x) = ϕE(x), lim
n→∞

ψEn(y) = ψE(y)

for every (x, y) ∈ X × Y. Since Sn ⊆ Sn+1 for every n ∈ Z>0, the sequences (ϕEn(x))n∈Z>0

and (ψEn(y))n∈Z>0 are increasing for every (x, y) ∈ X × Y. Therefore, by the Monotone
Convergence Theorem,∫

X
ϕE dµ = lim

n→∞

∫
X
ϕEn dµ = lim

n→∞

∫
Y
ψEn dν =

∫
Y
ψE dν,

giving the lemma. ■

With the preceding, we can fairly easily derive the product measure using the
integral.

2.8.2 Theorem (The product measure using the integral) For σ-finite measure spaces
(X,A , µ) and (Y,B , ν), the map µ × ν : σ(A ×B )→ R≥0 defined by

µ × ν(E) =
∫

X
ϕE dµ =

∫
Y
ψE dν

makes (X × Y, σ(A ×B ), µ × ν) a σ-finite measure space. Moreover, the measure µ × ν is
the product measure as defined in Definition 2.3.34.

Proof It is clear that µ×λ(∅) = 0 since ∅ = ∅×∅ is a measurable rectangle, being the
product of two sets with zero measure. For a sequence (E j) j∈Z>0 of disjoint subsets of
σ(A ×B ) define E = ∪ j∈Z>0E j. Note that

ϕE(x) =
∞∑
j=1

ϕE j(x),
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and so Beppo Levi’s Theorem gives

µ × ν(E) =
∫

X
ϕE dµ =

∞∑
j=1

∫
X
ϕE j dµ =

∞∑
j=1

µ × ν(E j),

as desired.
That µ × ν is the product measure follows from Theorem 2.3.33, along with the

fact that we showed in the proof of Lemma 2.8.1 that µ×ν(A×B) = µ(A)ν(B) for A ∈ A
and B ∈B . ■

Now that we have established the product measure using the integral for a
product with two factors, it is more or less a straightforward induction to do the
same for products with three or more factors. Indeed, suppose we have σ-finite
measure spaces (X j,A j, µ j), j ∈ {1, . . . , k}. For E ⊆ X1 × · · · × Xk and for xk ∈ Xk,
denote

Exk = {(x1, . . . , xk−1) ∈ X1 × · · · × Xk−1 | (x1, . . . , xk−1, xk) ∈ E}.

Suppose that we have defined the product measure µ1× · · ·×µk−1 on X1× · · ·×Xk−1.
Then define ϕE : Xk → R by

ϕE(xk) = µ1 × · · · × µk−1(Exk).

We then have

µ1 × · · · × µk(E) =
∫

Xk

ϕEk dµk,

which is the product measure.

2.8.2 The integral on product spaces

Either by the construction of the previous section, or by the construction of
Section 2.3.6, we have defined on the product X1 × · · · × Xk, for measure spaces
(X j,A j, µ j), j ∈ {1, . . . , k}, a natural measure. One can then apply the construction
of the integral from Section 2.7 to define the integral of measurable functions on
the product. There is a slight hitch here that one needs to account for if one is to
use this theory for the n-dimensional Lebesgue integral. To wit, in Section 2.5.4
we observed that the n-dimensional Lebesgue measure is not the product of the
1-dimensional Lebesgue measures on R × · · · × R, but is the completion of this
measure. Thus we should develop integration for, not just the product measure, but
its completion. This is not particularly difficult, but just requires a few additional
words.

As in the preceding section, for simplicity we start with two measure spaces
(X,A , µ) and (Y,B , ν). As in the preceding section, we denote by σ(A ×B ) the
natural product σ-algebra on X×Y, i.e., the σ-algebra generated by the measurable
rectangles. By µ × ν we denote the product measure. As we saw in Section 2.5.4
(and more generally in Remark 2.3.36), there are cases where the measure µ × ν is
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not complete (although there are also cases where the product measure is complete).
Thus we denote by (X×Y, σ(A ×B ), µ × ν) the completion of (X×Y, σ(A ×B ), µ×ν).

In the previous section we defined the notion of the sections for a subset E ⊆
X×Y. This can also be done for functions. For a function f : X×Y→ R, we define
functions fx : Y→ R and f y : X→ R by

fx(y) = f y(x) = f (x, y).

One calls the functions fx and f y sections of the function f . The following result
give the measurability properties of sections of sets and functions.

2.8.3 Lemma (Measurability of sections) For measure spaces (X,A , µ) and (Y,B , ν), the
following statements hold:

(i) if E ⊆ X × Y is σ(A ×B )-measurable, then Ex ∈ B for every x ∈ X and Ey
∈ A

for every y ∈ Y;
(ii) if (X,A , µ) and (Y,B , ν) are complete and if E ⊆ X × Y is σ(A ×B )-measurable,

then Ex ∈B for every x ∈ X and Ey
∈ A for every y ∈ Y;

(iii) if f : X×Y→ R is σ(A ×B )-measurable, then fx ∈ L(0)((Y,B );R) for almost every
x ∈ X and fy

∈ L(0)((X,A );R) for almost every y ∈ Y;

(iv) if (X,A , µ) and (Y,B , ν) are complete and if f : X×Y→ R is σ(A ×B )-measurable,
then fx ∈ L(0)((Y sB);R) and fy

∈ L(0)((X,A );R).
Proof (i) This is a special case of Proposition 2.2.18.

(ii) Next suppose that E ∈ σ(A ×B ). We let U ⊆ E ⊆ L have the property that
U,L ∈ σ(A ×B ) and µ × ν(U \ L) = 0. We may apply the first part of the proof to U to
assert that Ux and Lx are measurable for all x ∈ X. Since (Ux \ Ex) ⊆ (Ux \ Lx) and since
Ux \ Lx has measure zero, it follows that Ux \ Ex is measurable by completeness of A .
Thus Ex is σ(A ×B )-measurable. Similarly, Ey is also σ(A ×B )-measurable.

(iii) Note that for S ⊆ R we have f−1
x (S) = ( f−1(S))x and ( f y)−1(S) = ( f−1(S))y. This

part of the lemma now follows from part (i).
(iv) By Proposition 2.7.15 we may find g that is σ(A ×B )-measurable and for

which f (x, y) = g(x, y) except on a set that has zero measure relative to µ × ν. Thus
h = f − g is zero except on a set that has zero measure relative to µ × ν. This part of
the lemma will follow from part (iii) if we can show that hx and hy are measurable for
almost every x ∈ X and y ∈ Y. If E is the set of points in X×Y where h does not vanish
then E ∈ σ(A ×B ). Thus we may find E ⊆ U with U ∈ σ(A ×B ) with (µ × ν)(U) = 0.
By Lemma 2.8.1 we have ∫

X
ϕU dµ = 0.

Now let Z = {x ∈ X | ϕU(x) , 0}. We must have µ(Z) = 0. Thus, for almost every
x ∈ X we have µ(Ux) = 0. Since Ex ⊆ Ux and since µ is complete, it follows that Ex is
B -measurable for almost every x ∈ X. If y < Ex then we must have hx(y) = 0. This
implies that, as long as x < Z then hx is measurable and zero almost everywhere. This
completes the proof. ■
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2.8.3 Fubini’s Theorem

Now let us investigate swapping the order of integration in computing integrals
on products. Let us see what we might mean by this. If f : X×Y→ R is σ(A ×B )-
measurable or σ(A ×B )-measurable, then we define

ϕ f (x) =


∫

Y
fx dν, the integral exists,

0, otherwise,
ψ f (y) =


∫

X
f y dµ, the integral exists,

0, otherwise.

We may then ask when it holds that∫
X
ϕ f dµ =

∫
Y
ψ f dν,

and when, if the preceding equality holds, both sides are, in fact, the integral of f
with respect to the product measure. We have two more or less identical theorems,
one for the product measure and one for its completion.

The first theorem deals with the product measure on A × B.

2.8.4 Theorem (Fubini’s Theorem for the product measure) Let (X,A , µ) and (Y,B , ν)
be σ-finite measure spaces and let f : A × B → R be σ(A ×B )-measurable. Then the
following statements hold:

(i) if f is R≥0-valued then ϕf and ψf are measurable and∫
X
ϕf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(ii) if ϕ|f| ∈ L(1)((X,A , µ);R) or if ψ|f| ∈ L(1)((Y,B , ν),R), then

f ∈ L(1)((X × Y, σ(A ×B ), µ × ν);R)

and ∫
X
ϕf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(iii) if f ∈ L(1)((X × Y, σ(A ×B ), µ × ν);R) then

(a) fx ∈ L(1)((Y,B , ν);R) and fy
∈ L(1)((X,A , µ);R) for almost every x ∈ X and

y ∈ Y,

(b) ϕf ∈ L(1)((X,A , µ);R) and ψf ∈ L(1)((Y,B , ν);R), and
(c) it holds that ∫

X
ϕf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν).
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Proof (i) By Lemma 2.8.3 the functions ϕ f and ψ f are everywhere defined since the
integral of a nonnegative-valued measurable function always exists. By Lemma 2.8.1
this part of the theorem holds for characteristic functions ofL (A)×L (B)-measurable
sets. Therefore, it also holds for simple functions by Proposition 2.7.16 since sim-
ple functions are finite linear combinations of characteristic functions. By Propo-
sition 2.6.39 let (g j) j∈Z>0 be a monotonically increasing sequence of simple functions
such that f (x, y) = lim j→∞ g j(x, y) for each (x, y) ∈ X×Y. By the Monotone Convergence
Theorem we have∫

X
ϕ f dµ = lim

j→∞

∫
X
ϕg j dµ = lim

j→∞

∫
X×Y

g j d(µ × ν) =
∫

X×Y
f d(µ × ν),

and similarly for ψ f . This gives the result.
(ii) By part (i) we have∫

X
ϕ| f | dµ =

∫
X
ψ| f | dν =

∫
X×Y
| f |d(µ × ν) < ∞.

Thus f is µ× ν-integrable, as desired. Note, then, that f+, f− are µ× ν-integrable. Thus
f ∈ L(1)((X × Y),A ×B , µ × ν);R) by Exercise 2.7.4. By part (i) we have∫

X
ϕ f+ dµ =

∫
X
ψ f+ dν =

∫
X×Y

f+ d(µ × ν),

and similarly for f−. By Proposition 2.7.17 it then follows that∫
X
ϕ f dµ =

∫
X
ψ f dν =

∫
X×Y

f d(µ × ν),

as desired.
(iii) Write f = f+ − f− and note that fx, f+,x, and f−,x are B -measurable by

Lemma 2.8.3. By part (i) the functions ϕ f+ and ϕ f− are A -measurable. Also by
part (i) we have ∫

X
ϕ f+ dµ =

∫
X
ψ f+ dν =

∫
X×Y

f+ d(µ × ν),

and similarly for f−. Therefore, ϕ f+ and ϕ f− are integrable with respect to µ. Therefore,
ϕ f+ and ϕ f− are finite for almost all x ∈ X by Proposition 2.7.12. If

Z = {x ∈ X | ϕ f+(x) = ∞} ∪ {x ∈ X | ϕ f−(x) = ∞}

then Z ∈ A by Proposition 2.6.6 and µ(Z) = 0. If x < Z then we have

ϕ f (x) =
∫

X
f+ dµ −

∫
X

f− dµ = ϕ f+(x) − ϕ f−(x)

and if x ∈ Z we have ϕ f (x) = 0. Thus ϕ f almost everywhere agrees with ϕ f+ − ϕ f− . By
Propositions 2.7.11 and 2.7.17 we have∫

X
ϕ f dµ =

∫
X
ϕ f+ dµ −

∫
X
ϕ f− dµ

=

∫
X×Y

f+ d(µ × ν) −
∫

X×Y
f− d(µ × ν)

=

∫
X×Y

f d(µ × ν),
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as desired. A similar argument gives∫
Y
ψ f dν =

∫
X×Y

f d(µ × ν)

which completes the proof. ■

We shall also use the following result, which follows from the previous theo-
rem, along with the definition of the integral for vector-valued functions. In the
statement of the theorem, we use the obvious definitions for f x and f y for a function
f : X × Y→ Rn and for functions ϕ f : X→ Rn and ψ f : Y→ Rn.

2.8.5 Corollary (Vector-valued Fubini’s Theorem for the product measure) Let
(X,A , µ) and (Y,B , ν) be σ-finite measure spaces and let f : A × B→ Rn be σ(A ×B )-
measurable. Then the following statements hold:

(i) if ϕ∥f∥Rn ∈ L(1)((X,A , µ);Rn) or if ψ∥f∥Rn ∈ L(1)((Y,B , ν),Rn), then

f ∈ L(1)((X × Y, σ(A ×B ), µ × ν);Rn)

and ∫
X
ϕf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(ii) if f ∈ L(1)((X × Y, σ(A ×B ), µ × ν);Rn) then
(a) fx ∈ L(1)((Y,B , ν);Rn) and fy

∈ L(1)((X,A , µ);Rn) for almost every x ∈ X and
y ∈ Y,

(b) ϕf ∈ L(1)((X,A , µ);Rn) and ψf ∈ L(1)((Y,B , ν);Rn), and
(c) it holds that ∫

X
ϕf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν).

Of course, the theorem applies to the space case of R2 and so to C-valued
functions.

Let us give some examples that illustrate how to use Fubini’s Theorem, as well
as some of the caveats one must be aware of when applying the theorem.

2.8.6 Examples (Fubini’s Theorem)
1. Let us take X = Y = Z>0, A = B = 2Z>0 , and µ = ν = µΣ, where we recall from

Example 2.3.9–3 that µΣ denotes the counting measure. For f : Z>0 ×Z>0 → R
and m ∈ Z>0 define fm : Z>0 ×Z>0 → R by

fm( j, k) =

 f ( j, k), j, k ∈ {1, . . . ,m},
0, otherwise.

Note that ∫
Z>0×Z>0

fm d(µΣ × µΣ) =
m∑

j=1

m∑
k=1

f ( j, k)
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since fm is a simple function. Clearly, f ( j, k) = limm→∞ fm( j, k) for every ( j, k) ∈
Z>0 ×Z>0. Thus, by the Monotone Convergence Theorem,∫

Z>0×Z>0

| f |dµΣ × µΣ = lim
m→∞

m∑
j=1

m∑
j=1

| f ( j, k)|.

In other words, f ∈ L(1)((Z>0 ×Z>0), 2Z>0 × 2Z>0 , µΣ × µΣ);R) if and only if

∞∑
j,k=1

| f ( j, k)| < ∞,

noting that the doubly infinite sum is unambiguously defined since it is a sum
of positive terms, cf. Theorem I-2.4.5.
Now, Fubini’s Theorem in this case tells us that when f ∈ L(1)((Z>0 ×Z>0, 2Z>0 ×

2Z>0 , µΣ × µΣ);R) then

∞∑
j=1

∞∑
k=1

f ( j, k) =
∞∑

k=1

∞∑
j=1

f ( j, k) =
∞∑

j,k=1

f ( j, k),

i.e., the order of summation can be swapped.
2. We take X = Y = Z, A =B = 2Z, and µ = ν = µΣ. We define f : Z ×Z→ R by

f ( j, k) =


1, j ∈ Z≥0, k = j,
−1, j ∈ Z≥0, k = j + 1,
0, otherwise.

We directly compute

ϕ f ( j) = 0, ψ f (k) =

1, k = 0,
0, otherwise.

Therefore, ∫
Z

ϕ f dµΣ = 0,
∫
Z

ψ f dµΣ = 1,

which shows that the order of integration (order of summation, in this case)
cannot be swapped. This does not contradict Theorem 2.8.4, however. Indeed,
note that

ϕ| f |( j) =

2, j ∈ Z≥0,

0, otherwise,
ψ| f | =


1, j = 0,
2, j ∈ Z>0,

0, otherwise.

Since neither of these functions is integrable, part (ii) of Theorem 2.8.4 cannot
be applied.
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3. One might wonder whether the fact that the measure spaces are infinite in the
preceding example is the reason for the failure of Fubini’s Theorem. In this
example, we shall show that this is not the case. Here we shall use the Lebesgue
integral, which is defined using the Lebesgue measure. Although we do not
discuss this in detail until Sections 2.9 and 2.10, this should not cause problems
since for this example it suffices to consider the functions as being Riemann
integrable.
We take X = Y = [0, 1],A =B = L ([0, 1]), andµ = ν = λ[0,1]. Define ξ j = 1− 1

j+1 ,
j ∈ Z>0, and let g j : [0, 1] → R be a positive continuous function such that∫
[0,1]

g j dλ[0,1] = 1 and such that supp(g j) ⊆ (ξ j, ξ j+1) (for example, a “triangular”
function of the right height and base). Then define f : [0, 1] × [0, 1]→ R by

f (x, y) =
∞∑
j=1

(g j(x) − g j+1(x))g j(y).

It is clear that for each (x, y) ∈ [0, 1] × [0, 1] this sum has at most one nonzero
term, and so is well-defined. By construction, we have

ϕ f (x) =
∞∑
j=1

(g j(x) − g j+1(x))
∫

[0,1]
g j dλ[0,1] =

∞∑
j=1

(g j(x) − g j+1(x))

and

ψ f (y) =
∞∑
j=1

g j(y)
∫

[0,1]
(g j − g j+1) dλ[0,1] = 0.

Therefore, observing that

∞∑
j=1

(g j(x) − g j+1(x)) = g1(x),

we have ∫
[0,1]

ϕ f dλ[0,1] = 1,
∫

[0,1]
ψ f dλ[0,1] = 0,

showing that the order of integration cannot be swapped. But this does not
contradict part (ii) of Theorem 2.8.4 since

ϕ| f |(x) =
∞∑
j=1

|g j(x) − g j+1(x)|
∫

[0,1]
g j dλ[0,1] =

∞∑
j=1

(g j(x) + g j+1(x))

=⇒

∫
[0,1]

ϕ| f | dλ[0,1] = ∞,

using the fact that the functions g j, j ∈ Z>0, are positive and have pairwise
disjoint support. Thus the hypotheses of part (ii) of Theorem 2.8.4 do not hold.



272 2 Measure theory and integration 2022/03/07

4. Let us consider now a case where Fubini’s Theorem can fail for a positive-valued
function. Again, we make use of the Lebesgue integral. We take X = Y = [0, 1],
A = 2[0,1]a,B = L ([0, 1]), and µ = µΣ and ν = λ[0,1]. We define f : Z × R → R
by

f (x, y) =

1, x = y,
0, otherwise.

Then we compute
ϕ f (x) = 0, ψ f (y) = 1

for all (x, y) ∈ [0, 1] × [0, 1]. Therefore,∫
[0,1]

ϕ f dµΣ = 0,
∫

[0,1]
ψ f dλ[0,1] = 1.

Again, the order of integration cannot be swapped. In this case, the issue cannot
be with the hypotheses of part (ii) of Theorem 2.8.4 since f is nonnegative-
valued, and so it is part (i) that should be applied. However, the problem with
this example is that the measure space ([0, 1], 2[0,1], µΣ) is not σ-finite.

finish

5. •

Next we state the version of Fubini’s Theorem for the completion of the product
measure. This is actually the version of Fubini’s Theorem that gets the most use
since it applies to the Lebesgue integral on Rn as a product measure. Fortunately,
it differs from Theorem 2.8.4 only in the use of the completed measure in the
statement.

2.8.7 Theorem (Fubini’s Theorem for the completion of the product measure) Let
(X,A , µ) and (Y,B , ν) be σ-finite measure spaces and let f : A × B → R be σ(A ×B )-
measurable. Then the following statements hold:

(i) if f is R≥0-valued then ϕf and ψf are measurable and∫
X
ϕf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(ii) if ϕf ∈ L(1)((X,A , µ);R) or if ψf ∈ L(1)((Y,B , ν),R), then

f ∈ L(1)((X × Y, σ(A ×B ), µ × ν);R)

and ∫
X
ϕf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(iii) if f ∈ L(1)((X × Y, σ(A ×B ), µ × ν);R) then
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(a) fx ∈ L(1)((Y,B , ν);R) and fy
∈ L(1)((X,A , µ);R) for almost every x ∈ X and

y ∈ Y,

(b) ϕf ∈ L(1)((X,A , µ);R) and ψf ∈ L(1)((Y,B , ν);R), and
(c) it holds that ∫

X
ϕf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν).

Proof By Proposition 2.7.15 we can write f = g + h where

µ × ν({(x, y) ∈ X × Y | h(x, y) , 0}) = 0

and where g is σ(A ×B )-measurable. One now applies Theorem 2.8.4 to g, notes
that fx = gx for almost every x by Lemma 2.8.3, and therefore deduces from Proposi-
tion 2.7.15 that∫

X×Y
f d(µ × ν) =

∫
X
ϕ f dµ =

∫
X
ϕg dµ =

∫
X×Y

g d(µ × ν),

provided that all integrals exist. A similar conclusion holds using f y, gy, ψ f , and ψg.
The theorem follows directly from this. ■

The next result deals with a situation we will commonly encounter when using
Fubini’s theorem.

2.8.8 Corollary (A special case of Fubini’s Theorem) Let (X,A , µ) and (Y,B , ν) be σ-
finite measure spaces, let f ∈ L(0)((X,A );R) and g ∈ L(0)((Y,B );R), and define F: X×Y→
R by F(x,y) = f(x)g(y). Then

(i) F is both σ(A ×B )- and σ(A ×B )-measurable and
(ii) F is integrable with respect to both µ × ν and µ × ν if f ∈ L(1)((X,A , µ);R) and

g ∈ L(1)((Y,B , ν);R).
Proof (i) Denote f̃ , g̃ : X × Y→ R by f̃ (x, y) = f (x) and g̃(x, y) = g(y). Then

f̃−1([a,∞]) = f−1([a,∞]) × Y ∈ A ×B ,

and so both f̃ is σ(A ×B )- andσ(A ×B )-measurable. Similarly, g̃ is bothσ(A ×B )- and
σ(A ×B )-measurable. Therefore, by Proposition 2.6.11, f̃ g̃ is both σ(L (A) ×L (B))-
and σ(A ×B )-measurable. This part of the result follows since F = f̃ g̃.

(ii) By part (i) of Theorem 2.8.4 we compute∫
X×Y
|F|d(µ × ν) =

∫
Y
|g|

(∫
X
| f |dµ

)
dν =

(∫
X
| f |dµ

)(∫
Y
|g|dν

)
< ∞.

The result now follows from part (ii) of Theorem 2.8.4. ■
Move this to Lebesgue

section?
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2.8.9 Example (Fubini’s Theorem for the Lebesgue measure) Let us consider X =
Y = R, A =B = L (R), and µ = ν = λ. Define f : R ×R→ R by

f (x, y) =


1, x ∈ R≥0, y ∈ [x, x + 1],
−1, x ∈ R>0, y ∈ [x + 1, x + 2],
0, otherwise.

In Sections 2.9 and 2.10 we shall show that the Lebesgue integral agrees with the
Riemann integral in cases where the latter is defined. Therefore, to work out this
example, it suffices to perform integration using the usual Riemann integral. Let
us then denote the integral with respect to the first factor by

∫
dx and the integral

with respect to the second factor by
∫

dy. In Figure 2.5 we depict the function.

x

y

f
=
1

f
=
−1

Figure 2.5 A function for which Fubini’s Theorem does not hold

With this figure in mind we compute∫
R

(∫
R

f (x, y) dx
)

dy =
∫ 1

0

(∫ y

0
dx

)
dy +

∫ 2

1

(∫ y

y−1
dx −

∫ y−1

0

)
dy

+

∫
∞

2

(∫ y

y−1
dx −

∫ y−1

y−2
dx

)
dy

=
1
2
+

1
2
+ 0 = 1

and ∫
R

(∫
R

f (x, y) dy
)

dx =
∫
∞

0

(∫ x+1

x
dy −

∫ x+2

x+1

)
dx = 0.
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Thus both integrals∫
R

(∫
R

f (x, y) dx
)

dy,
∫
R

(∫
R

f (x, y) dy
)

dx

exist, but they are not equal to one another. However, this does not contradict
Theorem 2.8.7. To see this, note that

ϕ| f |(x) =

2, x ∈ R≥0,

0, otherwise,
ψ| f |(y) =


y, y ∈ [0, 2],
y − 2, y ∈ (2,∞),
0, otherwise.

Since neither of these functions is integrable, part (ii) of Theorem 2.8.7 does not
apply. More directly, | f | is the characteristic function of the union of the shaded
regions in Figure 2.5. Therefore, the integral of | f | is the area of this region which
is infinity. Thus f is not integrable. •

Exercises

2.8.1
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Section 2.9

The single-variable Lebesgue integral

The Lebesgue integral on R is nothing but the integral defined in Section 2.7.1
when the measure space is (R,L (R), λ). We shall not develop the definition of
Lebesgue integral beyond this observation, so the reader looking to understand
this definition will have to read Section 2.4 and then read Section 2.7 replacing all
occurrences of (X,A , µ) with (R,L (R), λ). This will give the reader most of what
they will need to use the Lebesgue integral effectively. In this section we gather a
few results and observations that are particuar to the Lebesgue integral on R.

Do I need to read this section? The reader looking for the definition of the
Lebesgue integral and some of its basic properties will get that by reading Sec-
tions 2.4 and 2.7 as described above. If this is all one is interested in, then this
section can be bypassed, and the results consulted when needed. One topic in this
section that may be of interest, and which is not contained in Sections 2.4 and 2.7,
is the relationship between the Lebesgue integral and the Riemann integral. This,
after all, is how we motivated the constructions that have gotten us to where we
are. •

2.9.1 Lebesgue measurable functions

We begin by studying the character of Lebesgue measurable functions onR. In
this case, the additional structure of R allows us to give some further refinements
of the properties of measurable functions.

Let us introduce the common terminology for the particular measurable func-
tions we discuss in this section.

2.9.1 Definition (Borel measurable, Lebesgue measurable) Let A ⊆ R. A function
f : A→ R is

(i) Borel measurable if A ∈B (R) and if f isB (A)-measurable and
(ii) Lebesgue measurable if A ∈ L (R) and if f isL (A)-measurable.

We shall almost always write L(0)(A;R) for the Lebesgue measurable functions on
A, rather than L(0)((R,L (A));R). •

Now let us consider the approximation of measurable functions by “nice” func-
tions like step functions and continuous functions. We recall from Section I-3.4.1
the notion of a step function defined on a compact interval.

2.9.2 Theorem (Lebesgue measurable functions are approximated by step func-
tions) If I = [a, b] is a compact interval, if f : I→ R is measurable and satisfies

λ({x ∈ I | f(x) ∈ {−∞,∞}} = 0,
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and if ϵ1, ϵ2 ∈ R>0, then there exists a step function g: I→ R≥0 such that

λ({x ∈ I | |f(x) − g(x)| ≥ ϵ1}) < ϵ2.

Proof It suffices to prove the theorem when ϵ1 = ϵ2 = ϵ. Thus we take ϵ ∈ R>0.
For k ∈ Z>0 define

Ak = {x ∈ I | | f (x)| ≥ k},

and note that the sequence (λ(I \ Ak))k∈Z>0 is monotonically increasing and bounded
above by b − a. Thus it is convergent by Theorem I-2.3.8. Moreover, it converges
to b − a. Indeed, if the sequence converges to ℓ < b − a then this would imply, by
Proposition 2.3.3, that

lim
k→∞

λ(I \ Ak) = λ(I \ ∪k∈Z>0Ak) < b − a.

Thus there exists a set B ⊆ I of positive measure such that I = (∪k∈Z>0Ak

◦

∪B). Note
if x ∈ B then | f (x)| = ∞, contradicting our assumptions on f . Thus we indeed have
limk→∞ λ(I \ Ak) = b − a. Thus there exists M ∈ Z>0 such that λ(I \ AM) < b − a −
ϵ
2 , i.e., λ(AM) < ϵ

2 . Therefore,

λ({x ∈ I | | f (x)| ≥M}) < ϵ
2 .

Then define fM : I→ R by

fM(x) =


f (x), | f (x)| < M,
M, | f (x)| ≥M,
−M, f (x) < −M.

Note that fM is measurable by Proposition 2.6.16.
Now take K ∈ Z>0 such that 2−K < ϵ and such that K ≥ M. If we follow the

construction in the proof of Proposition 2.6.39 then we define

A+,K, j = {x ∈ I | 2−K( j − 1) ≤ fM(x) < 2−K j}

and
A−,K, j = {x ∈ I | − 2−K j ≤ fM(x) < −2−K( j − 1)}

for j ∈ {1, . . . ,K2K
}. Since K ≥M we have

I = (∪K2K

j=1 A+,K, j) ∪ (∪K2K

j=1 A−,K, j).

Moreover, if we define a simple function h : I→ R by

h(x) =

2−K( j − 1), x ∈ A+,K, j,
−2−K j, x ∈ A−,K, j,

then we have |h(x) − fM(x)| < ϵ for every x ∈ I.
Now that we have a R-valued simple function h that approximates fM to within

ϵ on I, let us dispense with the cumbersome notation above we introduced to define
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h, and instead write h =
∑k

j=1 a jχA j for a1, . . . , ak ∈ R and for a partition (A1, . . . ,Ak)
of I into Lebesgue measurable sets. Fix j ∈ {1, . . . , k}. Since A j is measurable, by
Corollary 2.4.20 we can write A j = U j \ B j where U j is open and where B j ⊆ U j
satisfiesλ(B j) < ϵ

8k . Since U j is open, it is a countable union of disjoint open intervals by
Proposition I-2.5.6. If U j is in fact a finite union of open intervals then denote V j = U j.
If any of the intervals comprising V j have common endpoints, then these intervals
may be shrunk so that their complement in A j has measure at most ϵ

2k . Next suppose
that U j is a countable union of open intervals (J j,l)l∈Z>0 . Since U j is bounded we must
have

∑
∞

l=1 λ(J j,l) < ∞. Therefore, there exists N j ∈ Z>0 such that
∑
∞

j=N j+1 λ(Jl, j) < ϵ
8k . We

then define V j = ∪
N j

l=1J j,l. If any of the intervals J1, j, . . . , JN j+1, j have common endpoints,
they can be shrunk while maintaining the fact that the measure of their complement
in A j is at most ϵ

2k . Define g : I → R on V j by asking that g(x) = a j for x ∈ V j. Doing
this for each j ∈ {1, . . . , k} defines g : I → R on the set ∪k

j=1V j which is a finite union of

open intervals whose complement has measure at most ϵ
2 . The complement to ∪k

j=1V j

is a union of intervals, and on these intervals define g to be, say, 0. Note that g as
constructed is a step function, and that g(x) = h(x) for x ∈ ∪k

j=1V j.

Note that if x ∈ (∪k
j=1V j) ∪ (I \ AM) we have

|g(x) − f (x)| = |h(x) − fM(x)| < ϵ.

Therefore,
λ({x ∈ I | f (x) − g(x) ≥ ϵ}) ⊆ I \ ((∪k

j=1V j) ∪ (I \ AM)),

and
λ(I \ ((∪k

j=1V j) ∪ (I \ AM))) < ϵ,

giving the result. ■

A similar sort of result holds for approximations of measurable functions by
continuous functions.

2.9.3 Theorem (Lebesgue measurable functions are approximated by continuous
functions) If I = [a, b] is a compact interval, if f : I→ R is measurable and satisfies

λ({x ∈ I | f(x) ∈ {−∞,∞}} = 0,

and if ϵ1, ϵ2 ∈ R>0, then there exists a continuous function h: I→ R≥0 such that

λ({x ∈ I | |f(x) − h(x)| ≥ ϵ1}) < ϵ2.

Proof We shall merely outline how this works, since this is “obvious” once one has
the basic idea at hand. We assume that ϵ1 = ϵ2 = ϵ. By the method of Theorem 2.9.2,
we approximate f with a step function g such that

λ({x ∈ I | | f (x) − g(x)| ≥ ϵ}) < ϵ.

Note that the set of points in I where | f (x) − g(x)| < ϵ is a finite union of intervals with
pairwise disjoint closures on each of which g is constant. The value of g on the intervals
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complementary to these intervals is of no consequence. To define the continuous
function h we ask that h agree with g on the intervals upon which g is constant, and
between these intervals we ask that h be a linear function that interpolates between the
values of h at the two endpoints. The resulting function clearly satisfies the conclusions
of the theorem. ■

In Definition 3.8.28 we will define the support for continuous functions as the still ‘‘will’’?

closure of the set of points where the function is nonzero. For continuous functions,
this is a satisfactory definition. For more general classes of functions, this is not so.
For example, if f : R→ R is the characteristic function of Q, then the definition of
support for continuous functions, when applied to f , gives supp( f ) = R. However,
this does not reflect the fact that f is zero almost everywhere. So we adapt the notion
of support for continuous functions to measurable functions as follows.

2.9.4 Definition (Support of a measurable function) Let f ∈ L(0)(R;R) and define

O f = {U ⊆ R | U open and f (x) = 0 for almost every x ∈ U}.

Then the support of f is supp( f ) = R \ (∪U∈O f U). •

Being the complement of an open set, the support of a measurable function is
closed. The following result gives the essential property of closure.

2.9.5 Proposition (Characterisation of support) For f,g ∈ L(0)(R;R), the following two
statements hold:

(i) f(x) = 0 for almost every x ∈ R \ supp(f);
(ii) if f(x) = g(x) for almost every x ∈ R then supp(f) = supp(g).

Proof (i) We have R \ supp( f ) = O f in the notation of Definition 2.9.4. Recall from
Definition II-1.10.23 that the distance between x ∈ R and A ⊆ R is denoted by

dist(x,A) = inf{|y − x| | y ∈ A}.

Let k ∈ Z>0 and define

Kk = {x ∈ O f | dist(x, supp( f )) ≥ 1
k , |x| ≤ k}.

By Proposition II-1.10.24, the function x 7→ dist(x,A) is continuous. By Corol-
lary I-3.1.4, since the set [ 1

k ,∞) is closed and since B(k, 0) is closed, Kk is the intersection
of closed sets, and so closed. Therefore, since it is also bounded, it is compact. Since
Kk ⊆ O f and since O f is a union of open sets, by the Heine–Borel Theorem, Kk is a finite
union of open sets from O f , say Kk = ∪

mk
j=1Uk, j. Denote

Zk, j = {x ∈ Uk, j | f (x) , 0}, j ∈ {1, . . . ,mk}.

Since f (x) = 0 for almost every x ∈ U jk for each jk ∈ {1, . . . ,mk}, it follows thatλ(Zk, j) = 0.
Therefore, since the set of points in Kk at which f is nonzero is ∪mk

j=1Zk, j, it follows that
f (x) = 0 for almost every x ∈ Kk. Now note that O f = ∪k∈Z>0Kk. Thus the set of points
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x ∈ O f such that f (x) , 0 is a countable union of sets of measure zero, and so has
measure zero. That is, f (x) = 0 for almost every x ∈ O f .

(ii) We claim that if f and g agree almost everywhere, then O f = Og. Indeed,
suppose that U ∈ O f so that f (x) = 0 for almost every x ∈ U. Define

Z1 = {x ∈ U | f (x) , 0}, Z2 = {x ∈ U | g(x) , f (x)}.

Note that Z1 and Z2 have measure zero and so Z1∪Z2 also has measure zero. Moreover,
if x ∈ U \ (Z1 ∪ Z2) then g(x) = f (x) = 0. Thus U ∈ Og and so O f ⊆ Og. Reversing the
argument shows that Og ⊆ O f . It then immediately follows that supp( f ) = supp(g). ■

Let us give an example which shows that the notion of support must be treated
with some care, the previous result notwithstanding.

2.9.6 Example (A caveat concerning the support of a function) Note that Q ⊆ R has
Lebesgue measure zero. It follows, by definition of measure zero, that there exists
a countable collection of intervals ((a j, b j)) j∈Z>0 such that

∞∑
j=1

|b j − a j| < 1

and such that Q ⊆ ∪ j∈Z>0(a j, b j). Let us define A = ∪ j∈Z>0(a j, b j). By countable-
subadditivity of the Lebesgue measure we haveλ(A) ≤ 1. We claim that supp(χA) =
R. Indeed, if U ∈ OχA thenλ(A∩U) = o. If U is nonempty then it contains an interval,
say (a, b). Note that A is a nonempty open set by Exercise I-2.5.1. Moreover, since
there are rational numbers in (a, b) by Proposition I-2.2.15, it follows that A ∩ U
is a nonempty open set, and so has positive Lebesgue measure. We conclude,
therefore, that if U ∈ OχA then U = ∅. Thus supp(χA) = R, as claimed. The point is
that we have

λ(A) ≤ 1 < λ(supp(A)) = ∞.
Thus the measure of the support of a function can far exceed the measure of the set
of points where the function is nonzero. This is a consequence of our asking that
the support be a closed set. •

For continuous functions, the preceding definition of support reduces to the
usual one, i.e., the one used in Definition 3.8.28.

2.9.7 Proposition (The support of a continuous function) If f : R → R is continuous
then

supp(f) = cl({x ∈ R | f(x) , 0}).
Proof Let x0 ∈ R \ supp( f ). Then there exists U ∈ O f such that x0 ∈ U. By Exer-
cise I-3.1.12 we have f (x) = 0 for every x ∈ U. In particular, f (x0) = 0 and, moreover,
f (x) = 0 in the neighbourhood U of x0. Thus x0 cannot be a limit lim j→∞ x j with
f (x j) , 0. That is,

x0 < cl({x ∈ R | f (x) , 0}).

Conversely, suppose that x0 ∈ R \ cl({x ∈ R | f (x) , 0}). Then there must be a
neighbourhood U of x0 such that f (x) = 0 for every x ∈ U. Thus U ⊆ O f and so
x ∈ R \ supp( f ). ■
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2.9.2 The (conditional) Lebesgue integral

Let L (R) be the collection of Lebesgue measurable subsets of R (see Defini-
tion 2.4.4) and let λ : L (R)→ R≥0 be the Lebesgue measure (see Definition 2.4.4).
From Proposition 2.4.6, recall also that if A ∈ L (R) then we denote by L (A) the
Lebesgue measurable subsets of A and by λA the restriction of λ toL (A).

Although it is pretty clear if you have been reading this chapter from the begin-
ning, perhaps the following definition ought to be made for those who “skipped
to the good bit.”

2.9.8 Definition (Lebesgue integral onR) If f ∈ L(0)(R;R) then f is Lebesgue integrable
and the Lebesgue integral of f is the integral of f with respect to the Lebesgue
measure when the integral exists: ∫

R

f dλ.

If f ∈ L(0)(A;R), then f is Lebesgue integrable and the Lebesgue integral of f is the
integral of f with respect to the Lebesgue measure when the integral exists:∫

A
f dλA.

We shall almost always denote the Lebesgue integrable functions on A by L(1)(A;R)
rather than L(1)((A,L (A), λA);R). •

Of course, if A ∈ L (R) and if f ∈ L(0)(A;R), we can think of f as being in
L(0)(R;R) by making it zero outside A. The resulting function can be directly
verified to be measurable (cf. Exercise 2.6.3). We can, therefore, write∫

A
f dλA =

∫
R

f dλ

without risk of confusion. When it is convenient to do so, we shall do this. We will
also omit the subscript “A” in “dλA” when the resulting compactness of notation
is desired. Thus, we will use the symbols∫

A
f dλA,

∫
A

f dλ,
∫
R

f dλ

to stand for the same thing when it is clear from context what is meant.
It is worth making some connections at this point with how we defined the

single-variable Riemann integral in Section I-3.4. For the Riemann integral we
had two constructions which we showed were equivalent when the domain of
the function was a compact interval. However, the so-called conditional Riemann
integral generalises the Riemann integral when the domain of the function is a not
a compact interval. This can be generalised for the Lebesgue integral as follows.
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2.9.9 Definition (Conditionally Lebesgue integrable functions on a general inter-
val) Let I ⊆ R be an interval and let f : I → R be a function whose restriction to
every compact subinterval of I is Lebesgue integrable.

(i) If I = [a, b] then define ∫
C

I
f dλI =

∫
I

f dλ.

(ii) If I = (a, b] then define ∫
C

I
f dλI = lim

ra↓a

∫
[ra,b]

f dλ[ra,b]

if the limit exists.
(iii) If I = [a, b) then define ∫

C
I
f dλI = lim

rb↑b

∫
[a,rb]

f dλ[a,rb]

if the limit exists.
(iv) If I = (a, b) then define∫

C
I
f dλI = lim

ra↓a

∫
[ra,c]

f dλ[ra,c] + lim
rb↑b

∫
[c,rb]

f dλ[c,rb]

for some c ∈ (a, b), if the limit exists.
(v) If I = (−∞, b] then define∫

C
I
f dλI = lim

R→∞

∫
[−R,b]

f dλ[−R,b]

if the limit exists.
(vi) If I = (−∞, b) then define∫

C
I
f dλI = lim

R→∞

∫
[−R,c]

f dλ[−R,c] + lim
rb↑b

∫
[c,rb]

f dλ[c,rb]

for some c ∈ (−∞, b), if the limit exists.
(vii) If I = [a,∞) then define ∫

C
I
f dλI = lim

R→∞

∫
[a,R]

f dλ[a,R]

if the limit exists.
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(viii) If I = (a,∞) then define∫
C

I
f dλI = lim

ra↓a

∫
[ra,c]

f dλ[ra,c] + lim
R→∞

∫
[c,R]

f dλ[c,R]

for some c ∈ (a,∞), if the limit exists.
(ix) If I = R then define∫

C
R

f dλ = lim
R→∞

∫
[−R,c]

f dλ[−R,c] + lim
R→∞

∫
[c,R]

f dλ[c,R]

for some c ∈ R, if the limit exists.
If, for a given I and f , the appropriate of the above limits exists, then f is condition-
ally Lebesgue integrable on I, and the conditional Lebesgue integral is the value of
the limit. •

It is not usual to define the conditional Lebesgue integral, but we do so in order
to make our analogies with the Riemann integral, explored in Section 2.9.3, more
clear. Thus a few comments are relevant at this point.

2.9.10 Remarks (On the conditional Lebesgue integral)
1. Since the Lebesgue integral is so general, it is not really natural to restrict the

definition of the Lebesgue integral to functions defined on intervals. Indeed,
a somewhat more natural construction would be as follows. Let A ∈ L (R)
and let f : A → R be measurable. By Theorem 2.4.19 let (K j) j∈Z>0 be a family
of compact sets such that K j ⊆ A, K j ⊆ K j+1, j ∈ Z>0, and λ(A) = lim j→∞ λ(K j).
Then we can define the conditional Lebesgue integral of f by∫

C
A

f dλA = lim
j→∞

∫
K j

( f |K j) dλK j .

This construction generalises the more complicated, but more direct construc-
tion of Definition 2.9.9. Since we will not use this level of generality for the con-
ditional Lebesgue integral, we shall stick to the more concrete Definition 2.9.9
as our definition of the conditional Lebesgue integral. It also make more clear
the comparison with the Riemann integral.

2. The conditional Lebesgue integral shares with the Lebesgue integral the usual
properties with respect to operations on functions, i.e., those properties given
in Section 2.7.2 for the general integral. The verification of this is a matter of
using the results of Section 2.7.2, the fact that the conditional Lebesgue integral
is defined as a limit, and the fact that limits commute with natural operations
as shown in Section I-2.3.6. We leave the details of proving this statement to
a sufficiently bored reader. However, we shall make free use of these facts
ourselves.
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3. In Theorem 2.9.11 we shall show that the (conditional) Lebesgue integral gen-
eralises the (conditional) Riemann integral. For this reason, to give an example
of a function that is conditionally Lebesgue integrable but not Lebesgue inte-
grable, it suffices to give an example of a function that is conditionally Riemann
integrable but not Riemann integrable. Such a function is given in Exam-
ple I-3.4.20. •

2.9.3 Properties of the Lebesgue integral

In this section we shall give some useful properties of the Lebesgue integral
and the conditional Lebesgue integral. In the preceding section we constructed
two versions of the Lebesgue integral for functions of a single variable. As was
pointed out in the course of these constructions, these two integral mirror in spirit
the development in Section I-3.4 for the Riemann integral. We begin this section
by showing that the Riemann integral is generalised by the Lebesgue integral.

One of the intentions of Section 2.1 was to show that the Riemann integral suffers
a few theoretical defects. If the Lebesgue integral is to redress these problems, it
would be helpful it applied in all cases when the Riemann integral applies. This is
indeed the case.

2.9.11 Theorem (The (conditional) Lebesgue integral generalises the (conditional)
Riemann integral) If I ⊆ R is an interval and if f : I → R is (conditionally) Riemann
integrable, then f is (conditionally) Lebesgue integrable, and

(C)
∫

I
f(x) dx = (C)

∫
I
f dλ.

Proof First let us consider the case where I = [a, b] is compact. Suppose that
f : [a, b] → R is Riemann integrable. For k ∈ Z>0 let Pk be a partition with the
property that A+( f ,Pk) − A−( f ,Pk) < 1

k . By redefining partitions if necessary we can
assume that the endpoints of the intervals for Pk+1 contain those for Pk, cf. Lemma I-1
from the proof of Theorem I-3.4.9. Upon doing this, the sequences (s+( f ,Pk)(x))k∈Z>0

and (s−( f ,Pk)(x))k∈Z>0 are increasing and decreasing, respectively, for each x ∈ [a, b].
Moreover, since the functions in these sequences are step functions, they are simple
functions and so are measurable. It is also clear that the Riemann integral of a step
function is equal to the Lebesgue integral of the same function, by definition of the
Riemann integral of a step function and the Lebesgue integral of a simple function.
Thus ∫

[a,b]
s+( f ,Pk) dλ = A+( f ,Pk),

∫
[a,b]

s−( f ,Pk) dλ = A−( f ,Pk).

Denote
f+(x) = lim

k→∞
s+( f ,Pk)(x), f−(x) = lim

k→∞
s−( f ,Pk)(x),

for x ∈ [a, b]. Proposition 2.6.18 implies that f+ and f− are measurable. Note that
f , and therefore f+ and f−, are bounded. Thus f+ and f− are bounded in absolute
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value by a constant function. Such a function is obviously inL (1)([a, b];R), and so the
Dominated Convergence Theorem implies that∫

[a,b]
f+ dλ = lim

k→∞
A+( f ,Pk) =

∫ b

a
f (x) dx

and ∫
[a,b]

f− dλ = lim
k→∞

A−( f ,Pk) =
∫ b

a
f (x) dx,

where we have used the characterisation of the Riemann integral in Theorem I-3.4.9.
From this we conclude that ∫

[a,b]
( f+ − f−) dλ = 0,

which implies that f+(x) = f−(x) for almost every x ∈ [a, b] by Proposition 2.7.14. Since
f−(x) ≤ f (x) ≤ f+(x) for every x ∈ []1, b], it, therefore, follows that f is itself measurable
(being almost everywhere equal to the measurable functions f+ and f−) and Lebesgue
integrable (again, being almost everywhere equal to the Lebesgue integrable functions
f+ and f−). Moreover, by Proposition 2.7.11 it follows that∫

[a,b]
f+ dλ =

∫
[a,b]

f− dλ =
∫

[a,b]
f dλ =

∫ b

a
f (x) dx,

as desired.
Now we consider an arbitrary interval I ⊆ R and suppose that f is Riemann

integrable. Here, we first take f to be nonnegative-valued. In this case, the definition
of the Riemann integral from Definition I-3.4.14 implies that there exists a sequence
(Ik)k∈Z>0 of compact intervals such that Ik ⊆ Ik+1, k ∈ Z>0, such that I = ∪k∈Z>0Ik, and
such that ∫

I
f (x) dx = lim

k→∞

∫
Ik

f (x) dx.

From the Monotone Convergence Theorem, Theorem 2.7.24, and the first part of the
proof it then follows that∫

I
f dλ = lim

k→∞

∫
Ik

f (x) dx =
∫

I
f (x) dx.

For generalR-valued f , the result follows from writing f = f+− f−, and using linearity
of the Riemann and Lebesgue integrals, Propositions I-3.4.22 and 2.7.17.

Finally, we consider an arbitrary interval I and suppose that f is conditionally
Riemann integrable. According to Definition 2.9.9 there exists a sequence (K j =
[a j, b j]) j∈Z>0 of compact intervals such that K j ⊆ K j+1, j ∈ Z>0, and such that I∪ j∈Z>0 K j.
By our arguments above we have∫

K j

( f |K j) dλK j =

∫ b j

a j

f (x) dx, j ∈ Z>0.
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Therefore,

lim
j→∞

∫
K j

( f |K j) dλK j = lim
j→∞

∫ b j

a j

f (x) dx,

and the result follows by the definitions of the conditional Riemann and Lebesgue
integrals. ■

We must, of course, also show that there are Lebesgue integrable functions that
are not Riemann integrable.

2.9.12 Example (A Lebesgue integrable, but not Riemann integrable, function) Let
I = [0, 1] and let A = Q ∩ [0, 1]. Then define f : [0, 1]→ R by f = χA. Note that f is
not Riemann integrable; see Example I-3.4.10. However, f is Lebesgue integrable,
as can be seen in many ways. Most directly, f is the characteristic function of the
Lebesgue measurable set A, and so is Lebesgue integrable simply by definition. If
one wishes, one can also “derive” the Lebesgue integrability of f . For example, if
we let (qk)k∈Z>0 be an enumeration of the set A, we can define gk : [0, 1]→ R by

gk(x) =

1, x ∈ {q1, . . . , qk},

0, otherwise.

The functions gk, k ∈ Z>0, are Lebesgue integrable, indeed Riemann inte-
grable, cf. Example 2.1.11. Moreover, f (x) = limk→∞ gk(x) for all x ∈ [0, 1]. By
the Dominated Convergence Theorem (verify its hypotheses!), we then have∫

[0,1]
f dλ = lim

k→∞

∫
[0,1]

gk dλ = lim
k→∞

∫ 1

0
gk(x) dx = 0.

Thus f is indeed Lebesgue integrable, with Lebesgue integral zero. •

It is rather important not to overstate the importance of this example. It is not
interesting, but it does serve to easily verify that the Lebesgue integral generalises
the Riemann integral.

2.9.13 Notation and Remarks (Riemann integral versus Lebesgue integral) Having
now established the relationship between the Riemann and Lebesgue integrals, we
shall often use the sometimes more convenient notation for the Riemann integral
when we actually are using the Lebesgue integral. Thus, for example, we may well
write ∫ b

a
f (x) dx,

∫ b

−∞

f (x) dx,
∫
C
∞

a
f (x) dx

where we really mean∫
[a,b]

f dλ[a,b],

∫
(−∞,b]

f dλ(−∞,b],

∫
C

[a,∞)
f dλ[a,∞),



2022/03/07 2.9 The single-variable Lebesgue integral 287

respectively.
This confounding of notation for the Lebesgue and Riemann integrals suggests

that the additional generality of the Lebesgue integral is not of great importance.
This is both true and not true. It is true that we shall not encounter specific examples
of Lebesgue integrable functions that are not Riemann integrable. That is to say, we
shall not often care to compute the Lebesgue integral in cases where the Riemann
integral will not suffice. However, it is the case that the Riemann integral has
certain undesirable features, as we discussed in Section 2.1.2. These undesirable
features come in two basic flavours.
1. The Riemann and Lebesgue integrals both possess a Dominated Convergence

Theorem, Theorems II-1.7.8 and 2.7.28, respectively. However, the two the-
orems differ in a crucial way. Specifically, in the Dominated Convergence
Theorem for the Riemann integral, the Riemann integrability of the limit func-
tion is an hypothesis, while in the Dominated Convergence Theorem for the
Lebesgue integral, the integrability of the limit function is a conclusion. This
inability of the Dominated Convergence Theorem for the Riemann integral to
predict the integrability of the limit function is a crucial defect. We shall discuss
this further in Section 2.9.11.

2. It is interesting to consider not just individual Riemann or Lebesgue integrable
functions, but the set of all Riemann or Lebesgue integrable functions. We have
already denoted by L(1)(I;R) the set of R-valued Lebesgue integrable functions
on the interval I. Let us denote by R(1)(I;R) the set of R-valued Riemann
integrable functions on I, cf. the discussion preceding Proposition 2.1.12. Both
L(1)(I;R) and R(1)(I;R) are R-vector spaces by the standard linearity properties
of the integral. In Chapter 3 we shall discuss the notion of a normed vector
space and the important related notion of completeness. We shall show in
Theorem 3.8.59 (essentially) that the set of Lebesgue integrable functions form
a complete normed vector space. This is not the case for Riemann integrable
functions, as we show in Proposition 2.1.12. It may not be clear at this point
why this is important, but this is, in fact, extremely important. As we go along,
and we use the Lebesgue integral at various points in these volumes, we shall
point out instances where the particular properties of the Lebesgue integral are
crucial. •

Now that we have established the close relationship between the Lebesgue and
Riemann integrals, let us explore some of the properties of Lebesgue integrable
functions. In Section 2.9.1 we explored the manner in which Lebesgue measurable
functions can be pointwise approximated by “nice” functions like step functions
or continuous functions. Lebesgue integrable functions, being Lebesgue measur-
able, are subject to the same approximations. However, for Lebesgue integrable
functions we have another sort of approximation that is possible by virtue of the
integral.

2.9.14 Theorem (Lebesgue integrable functions are approximated by step func-
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tions) If I = [a, b] is a compact interval, if f ∈ L(1)(I;R), and if ϵ ∈ R>0, then there exists
a step function g: I→ R such that ∫

I
|f − g|dλI < ϵ.

Proof Let us first consider the case when f is bounded. Let M ∈ R>0 be such that
f (x) ≤M for all x ∈ I. Let ϵ ∈ R>0. By Theorem 2.9.2 there exists a continuous function
g : I→ R≥0 such that

λ
({

x ∈ I
∣∣∣ | f (x) − g(x)| < ϵ

(2(b−a))

})
<

ϵ
2M

.

Then ∫
I
| f (x) − g(x)|dλI <

ϵ
2(b − a)

(b − a) +
ϵ

2M
M < ϵ,

giving the result in this case.
Next we consider the case when f is possibly unbounded and takes values inR≥0.

Let ϵ ∈ R>0. For M ∈ R>0 define

fM(x) =

 f (x), f (x) ≤M,
M, f (x) > M.

Since f ∈ L(1)(I;R) we have f (x) = limM→∞ fM(x) for almost every x ∈ I. By the
Dominated Convergence Theorem,

lim
M→∞

∫
I
( f − fM) dλI = 0.

Thus there exists M sufficiently large that∫
I
| f (x) − fM(x)|dλI <

ϵ
2
.

By the argument in the previous paragraph there exists a step function g : I → R≥0
such that ∫

I
| fM − g|dλI <

ϵ
2
.

Then, using the triangle inequality and monotonicity of the integral, Proposition 2.7.19,∫
I
| f − g|dλI ≤

∫
I
| f − fM|dλI +

∫
I
| fM − g|dλI < ϵ,

giving the result in this case.
Finally, if f is R-valued, we write f = f+ − f− for f+ and f− taking values in R≥0.

Let ϵ ∈ R>0. By our arguments above there exists step functions g+, g− : I → R≥0 such
that ∫

I
| f+ − g+|dλI <

ϵ
2
,

∫
I
| f− − g−|dλI <

ϵ
2
.
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Taking g = g+ − g−, the triangle inequality and Proposition 2.7.19 then give∫
I
| f − g|dλI ≤

∫
I
| f+ − g+|dλI +

∫
I
| f− − g−|dλI < ϵ,

as desired. ■

A similar result as the previous holds for approximations of integrable functions
by continuous functions. However, in this case it is possible to even be more general
in terms of the domain of definition of the functions involved. The notion of support
is used in the title of this theorem, but will only be introduced in Definition 3.8.28.

2.9.15 Theorem (Lebesgue integrable functions are approximated by compactly
supported continuous functions) If I ⊆ R is an interval, if f ∈ L(1)(I;R), and if
ϵ ∈ R>0, then there exists a continuous function g: I→ R such that∫

I
|f − g|dλI < ϵ

and such that the support of f, i.e., the set

clI({x ∈ I | f(x) , 0}),

is compact.
Proof If I is compact, then the result follows just like Theorem 2.9.14, but using
Theorem 2.9.3 rather than Theorem 2.9.2. Thus the result holds when I is compact.

Thus we need only consider the case when I is not compact. Let ϵ ∈ R>0. We let
(I j) j∈Z>0 be a sequence of compact intervals such that I j ⊆ I j+1 for each j ∈ Z>0 and such
that ∪ j∈Z>0I j = I. Define a sequence ( f j) j∈Z>0 in L(1)(I;R) by

f j(x) =

 f (x), x ∈ I j,

0, otherwise.

By the Monotone Convergence Theorem we have

lim
j→∞

∫
I
| f − f j|dλI =

∫
I

lim
j→∞
| f − f j|dλI = 0.

Thus ( f j) j∈Z>0 converges to f in L(1)(I;F). Now, for each j ∈ Z>0, the fact that the
theorem holds for compact intervals ensures the existence of a continuous function
h j : I j → R≥0 such that ∫

I j

| f j|I j − h j|dλI j <
ϵ
4
.

Note that if we extend h j to I by asking that it be zero on I \ I j then this extension may
not be continuous. However, we can linearly taper h j to zero on I \ I j to arrive at a
continuous function g j : I→ R≥0 with compact support satisfying∫

I\I j

|g j|dλI\I j <
ϵ
4
.
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Then ∫
I
| f j − g j|dλI =

∫
I j

| f j − h j|dλI j +

∫
I\I j

|g j(x)|dλI\I j <
ϵ
4
+
ϵ
4
<
ϵ
2
.

Now choose N ∈ Z>0 sufficiently large that∫
I
| f − f j|dλI <

ϵ
2
.

Then, by the triangle inequality,∫
I
| f − g j|dλI ≤

∫
I
| f − f j|dλI +

∫
I
| f j − g j|dλI < ϵ,

as desired. ■

2.9.4 Swapping operations with the Lebesgue integral

It is useful to have at hand results that tell us the nature of an integral as a
function of a parameter. Thus we let A ∈ L (R) and let (a, b) be an open interval.
We suppose that f : (a, b) × A→ R has the property that, for p ∈ (a, b), the function
x 7→ f (p, x) is integrable. We denote f p(x) = f (p, x) and fx(p) = f (p, x). We then
define

I f (p) =
∫

A
f p(x) dx.

The next result indicates when such a function is continuous or differentiable.

2.9.16 Theorem (Continuous and differentiable dependence of integral on a param-
eter) Let (a, b) ⊆ R, let A ∈ L (R), and let f : (a, b) × A → R have the property that
fp
∈ L(1)(A;R)) for every p ∈ (a, b). Let p0 ∈ (a, b).
(i) If fx is continuous at p0 for almost every x ∈ A and if there exists g ∈ L(1)(A;R) and

a neighbourhood U of p0 in (a, b) for which |fp(x)| ≤ g(x) for all p ∈ U, then If is
continuous at p0.

(ii) If there exists ϵ ∈ R>0 so that
(a) (p0 − ϵ,p0 + ϵ) ⊆ (a, b),
(b) fp is differentiable on (p0 − ϵ,p0 + ϵ), and
(c) there exists g ∈ L(1)(A;R) so that

∣∣∣ ∂f
∂p (p, x)

∣∣∣ ≤ g(x) for p ∈ (p0 − ϵ,p0 + ϵ) and
for almost every x ∈ A,

then If is differentiable at p0 and

I′f(p0) =
∫

A

∂f
∂p

(p0, x) dx.

Proof (i) Let (p j) j∈Z>0 be a sequence in U this neighbourhood converging to p0. By the
Dominated Convergence Theorem we have

lim
j→∞

∫
A

f (p j, x) dx =
∫

A
lim
j→∞

f (p j, x) dx =
∫

A
f (p0, x) dx,
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the final equality by continuity of fx for almost every x ∈ A and by Theorem I-3.1.3.
This shows that lim j→∞ I f (p j) = I f (p0), giving the result by another application of
Theorem I-3.1.3.

(ii) We again let (p j) j∈Z>0 be a sequence approaching p0. By the Mean Value Theo-
rem, for each j ∈ Z>0, there exists q j between p j and p0 such that

f (p j, x) − f (p0, x)
p j − p0

=
∂ f
∂p

(q j, x).

Note that we necessarily have lim j→∞ q j = p0. Then we compute

lim
j→∞

I f (p j) − I f (p0)

p j − p0
= lim

j→∞

∫
A

f (p j, x) − f (p0, x)
p j − p0

dx =
∫

A
lim
j→∞

f (p j, x) − f (p0, x)
p j − p0

dx

=

∫
A

lim
j→∞

∂ f
∂p

(q j, x) dx =
∫

A

∂ f
∂p

(p0, x) dx.

Here the interchanging of the limit and the integral is valid by the Dominated Conver-
gence Theorem. ■

The above theorem is proved using tools that we presently have at our disposal.
It suffices for many purposes. However, it is possible to weaken the hypotheses
significantly while retaining the same conclusions, but at a price of using the
notion of absolute continuity we introduce in Section 2.9.6 and the formalism of
distributions we introduce in Chapter IV-3.

2.9.17 Theorem (A strong theorem on differential dependence of integral on a pa-
rameter) Let A ∈ L (R) and let f : R ×A→ R have the properties

(i) that fx is locally absolutely continuous for almost every x ∈ A and
(ii) that, for every compact subset K ⊆ R, the functions

(p, x) 7→ f(p, x), (p, x) 7→ D1f(p, x),

when restricted to K ×A, are integrable.
Then, if If : R→ R is as above, If is locally absolutely continuous and

I′f(p) =
∫

A
D1f(p, x) dx

for almost every p ∈ I.
Proof For x ∈ A let θ f (x) ∈ D ′(R;R) be the regular distribution associated with fx.
Adopting and slightly modifying the notation used in Proposition IV-3.2.42, let us
define F f : A ×D (R;R)→ R by

F f (x, ϕ) = ⟨θ f (x);ϕ⟩ =
∫
R

f (p, x)ϕ(p) dp,
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for ϕ ∈ D (R;R) define F f ,ϕ : A→ R by

F f ,ϕ(x) = F f (x, ϕ),

and then define Θ f : D (R;R)→ R by

Θ f (ϕ) =
∫

A
F f ,ϕ dλ =

∫
A

(∫
R

f (p, x)ϕ(p) dp
)

dx.

We first claim that Θ f ∈ D
′(R;R). We prove this by verifying that the hypotheses of

Proposition IV-3.2.42 are satisfied. Let (ϕ j) j∈Z>0 be a sequence converging to zero in
D (R;R). Let K ⊆ R be a compact interval for which supp(ϕ j) ⊆ K for every j ∈ Z>0.
Let

M = sup{|ϕ j(p)| | j ∈ Z>0, p ∈ R},

noting that M < ∞ since the sequence (ϕ j) j∈Z>0 converges uniformly to zero. Then we
have ∫

A
|sup{F f ,ϕ j(x) | j ∈ Z>0}|dx ≤

∫
A

(∫
R

sup{| f (p, x)ϕ j(p)| | j ∈ Z>0}dp
)

dx

≤M
∫

A

(∫
K
| f (p, x)|dp

)
dx < ∞,

by hypothesis.
Now, for ϕ ∈ D (R;R) we compute

Θ′f (ϕ) = −Θ f (ϕ′) = −
∫

A

(∫
R

f (p, x)ϕ′(p) dp
)

dx

=

∫
A

(∫
R

D1 f (p, x)ϕ(p) dp
)

dx =
∫
R

(∫
A

D1 f (p, x) dx
)
ϕ(p) dp

using Proposition 2.9.36, the fact that ϕ has compact support, and Fubini’s Theorem.
This shows that Θ′f is equal to the regular distribution associated with the function

p 7→
∫

A
D1 f (p, x) dx.

By Proposition IV-3.2.31 it follows that this function is locally absolutely continuous
and that it is equal almost everywhere to the derivative of the function

p 7→
∫

A
f (p, x) dx,

which is the desired result. ■

It is also useful to have at hand a result which indicates when holomorphicity
of the integrand implies holomorphicity of the integral.
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2.9.18 Theorem (Holomorphic dependence on a parameter) Suppose we have the fol-
lowing data:

(i) a measurable subset A ⊆ R;
(ii) an open subset D ⊆ C;
(iii) a function G: A ×D→ C such that

(a) the function x 7→ G(x, z) is in L(1)(A;C) for each z ∈ D,
(b) the function z 7→ G(x, z) is in H(D,C) for each x ∈ A, and
(c) for each z0 ∈ D there exists a neighbourhood U of z0 in D and h ∈ L(1)(A;R≥0)

such that |G(x, z)| ≤ h(x) for each z ∈ U.

Then the function F: D→ C defined by

F(z) =
∫

A
G(x, z) dx

is in H(D;C).
Proof By Theorem 2.9.16 we know that F is continuous in D. Now let Γ be a closed
contour in D. Parameterise Γwith a map γ : [0,L]→ D so that make sure this is right∫

Γ

F(z) dz =
∫ L

0

(∫
A

G(x, γ(s)) dx
)

ds.

Then the function x 7→ G(x, γ(s)) is in L(1)(A;C) for every s ∈ [0,L]. Also, the function
s 7→ G(x, γ(s)) is in L(1)([0,L];C) for every x ∈ A since it is a continuous function defined
on a compact interval. Therefore, Fubini’s Theorem gives∫

Γ

F(z) dz =
∫

A

(∫ L

0
G(x, γ(s)) ds

)
dx =

∫
A

(∫
Γ

G(x, z) dz
)
= 0,

using Cauchy’s Theorem and holomorphicity of z 7→ G(x, z). Since this holds for every
closed contour in D, Morera’s Theorem allows us to conclude that F is holomorphic in
D. ■ make sure this is right

2.9.5 Locally Lebesgue integrable functions

Very often on wants to speak of functions that are integrable about every point,
but which may not be integrable on their entire domain. This is another instance
of the concept of “locality” that we have encountered many times before.

2.9.19 Definition (Locally Lebesgue integrable function) If A ∈ L (R) then f ∈
L(0)(A;R) is locally Lebesgue integrable, or merely locally integrable, if, for ev-
ery compact set K ⊆ A, f |K ∈ L(1)(K;R). The set of locally Lebesgue integrable
functions on A is denoted by L(1)

loc(A;R). •
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Note that if f ∈ L(0)(A;R) then one can define f̄ : R→ R to be defined to be equal
to f on A and zero elsewhere. Moreover, f ∈ L(1)

loc(A;R) if and only if f̄ ∈ L(1)
loc(R;R).

Therefore, when talking about locally integrable functions one can, without loss of
generality, think about functions whose domain is R. When it is convenient to do
this, we shall.

It is obvious that if f is integrable then it is locally integrable. Let us give
some examples which clarify the meaning of local integrability as opposed to
integrability.

2.9.20 Examples (Local integrability)
1. The function f : R→ R given by f (x) = x2 is locally integrable (its restriction to

every compact set is continuous and bounded) but not integrable.
2. The function f : R→ R defined by

f (x) =

x−1/2, x ∈ R>0,

0, otherwise,

is locally integrable but not integrable.
3. The function f : [0, 1]→ R defined by

f (x) =

x−1/2, x ∈ (0, 1],
0, x = 0,

is both locally integrable and integrable.
4. The function f : R→ R defined by

f (x) =

x−1, x ∈ (0, 1],
0, otherwise,

is both locally integrable and integrable. •

The following characterisation of locally integrable functions is sometimes use-
ful.

2.9.21 Proposition (Characterisation of locally Lebesgue integrable functions) For
a function f : R→ R the following statements are equivalent:

(i) f is locally Lebesgue integrable;

(ii) for each x ∈ R there exists a neighbourhood U of x such that f|U ∈ L(1)(U;R);
(iii) for every continuous function g: R→ R such that supp(g) is compact, it holds that

fg ∈ L(1)(R;R).
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Proof (i) =⇒ (ii) Let x ∈ R and let K = [x − 1, x + 1]. By hypothesis, f |K ∈ L(1)(K;R)
and so f ∈ L(1)((x − 1, x + 1);R) by Proposition 2.7.22. This gives the result with
U = (x − 1, x + 1).

(ii) =⇒ (iii) Let g : R → R be continuous with compact support. For x ∈ supp(g)
there exists a neighbourhood Ux of x such that f ∈ L(1)(Ux,R). Since (Ux)x∈supp(g) covers
the compact set supp(g) there exists x1, . . . , xk ∈ supp(g) such that supp(g) ⊆ ∪k

j=1Ux j .
Since g is continuous with compact support there exists M ∈ R>0 such that |g(x)| ≤ M
for every x ∈ R by Theorem I-3.1.22. Then∫

R
| f g|dλ ≤M

∫
supp(g)

f dλsupp(g) ≤M
k∑

j=1

∫
Uxj

f dλUxj
< ∞,

since supp(g) ⊆ ∪k
j=1Ux j . This gives the desired conclusion.

(iii) =⇒ (i) Let K ⊆ R be compact and let a, b ∈ R be such that K ⊆ [a, b]. Now take
g : R→ R defined by

g(x) =


1, x ∈ [a, b],
x − (a − 1), x ∈ [a − 1, a),
−x + (b + 1), x ∈ (b, b + 1],
0, otherwise.

Note that g is positive, continuous with compact support, and g(x) = 1 for all x ∈ [a, b].
Then ∫

K
| f |dλK ≤

∫
[a,b]
| f |dλ[a,b] ≤

∫
R
| f g|dλ < ∞,

giving the result. ■

Using the preceding characterisation of locally integrable functions, one can eas-
ily prove that the set of locally integrable functions is a subspace of the measurable
functions.

2.9.22 Proposition (Algebraic operations on locally integrable functions) If A ∈

L (R), if f,g ∈ L(1)
loc(A;R), and if a ∈ R, then

(i) f + g ∈ L(1)
loc(A;R) and

(ii) af ∈ L(1)
loc(A;R).

Proof This follows from the definition of local integrability, along with Proposi-
tion 2.7.17. ■

Local integrability is not preserved by products and quotients, cf. Exam-
ple 2.7.18.
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2.9.6 Absolute continuity

In this section we introduce a special class of continuous functions that are
almost everywhere differentiable. With this class of functions one can prove a
stronger form of the Fundamental Theorem of Calculus than was possible when
we initially discussed this in Section I-3.4.6.

The definition of absolute continuity shares with the definition of bounded
variation the feature of being unbearably cryptic at first sight. However, we shall
see as we go along that absolute continuity is a notion that arises naturally from
the Lebesgue integral.

2.9.23 Definition ((Locally) absolutely continuous function) Let [a, b] be a compact
interval. A function f : [a, b] → R is absolutely continuous if, for each ϵ ∈ R>0,
there exists δ ∈ R>0 such that, if ((a j, b j)) j∈{1,...,k} is a finite family of disjoint open
intervals for which

k∑
j=1

|b j − a j| < δ,

then
k∑

j=1

| f (b j) − f (a j)| < ϵ.

For a general interval I ⊆ R, a function f : I → R is locally absolutely continuous
if f |J is absolutely continuous for every compact interval J ⊆ I. We denote by
AC(I;R) (resp. ACloc(I;R)) the set of absolutely continuous (resp. locally absolutely
continuous) functions on the interval I. •

We can make the same sort of comments concerning “absolute continuity”
versus “local absolute continuity” as were made in Notation I-3.3.8 concerning the
relationship between “bounded variation” and “locally bounded variation.”

The following result gives the most basic properties of absolutely functions.

2.9.24 Proposition (Locally absolutely continuous functions are continuous and of
locally bounded variation) If I ⊆ R is an interval and if f : I → R is a locally
absolutely continuous function, then f is continuous and has locally bounded variation.

Proof We first consider the case where I = [a, b]. Let x ∈ [a, b] and let ϵ ∈ R>0. Then,
by definition of absolute continuity, there exists δ ∈ R>0 such that, if [c, d] ⊆ [a, b] is an
interval for which d − c < δ, then | f (d) − f (c)| < ϵ. In particular, if y ∈ B(δ, x) ∩ I, then
| f (y) − f (x)| < ϵ, giving continuity of f at x. Now let ϵ ∈ R>0 and let δ ∈ R>0 have the
property that for any family ((a j, b j)) j∈{1,...,k} of disjoint intervals for which

k∑
j=1

|b j − a j| < δ,
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we have
k∑

j=1

| f (b j) − f (a j)| < ϵ.

Now let P be a partition of [a, b] for which |P| < δ, and let EP(P) = (x0, x1, . . . , xk). Noting
that ((x j−1, x j)) j∈{1,...,k} is a finite family of disjoint intervals, we have

k∑
j=1

| f (x j) − f (x j−1)| < kϵ.

Since this holds for any partition P for which |P| < δ, and since the expression

k∑
j=1

| f (x j) − f (x j−1)|

is monotonically increasing as a function of |P|, it follows that

TV( f ) = sup
{ l∑

j=1

| f (x j) − f (x j−1)|
∣∣∣∣ (x0, x1, . . . , xl) = EP(P), P ∈ Part([a, b])

}
≤ kϵ,

showing that f has bounded variation.
The result for general intervals follows directly from the result for compact inter-

vals, along with the definition of local absolute continuity. ■

The converse of the preceding result is generally not true, as the following
example illustrates.

2.9.25 Example (A continuous function of bounded variation that is not absolutely
continuous) We consider the Cantor function fC : [0, 1]→ R of Example I-3.2.27.
We have shown that fC is continuous, and since it is monotonically increasing, it
is necessarily of bounded variation by Theorem I-3.3.3. We claim, nonetheless,
that fC is not locally absolutely continuous. To see this, let δ ∈ R>0. Recall from
Example I-2.5.39 that C is the intersection of a family (Ck)k∈Z>0 of sets for which each
of the sets Ck is a collection of 2k disjoint closed intervals of length 3−k. Therefore,
since the total lengths of the intervals comprising Ck (i.e., limk→∞ 2k3−k) goes to zero
as k goes to infinity, there exists N ∈ Z>0 such that we can cover CN with a finite
family, say ((a j, b j)) j∈{1,...,2N}, of disjoint open intervals for which

2N∑
j=1

|b j − a j| < δ.

Now note that since C is closed, [0, 1] \ C is open, and so, by Proposition I-2.5.6,
is a countable union of open intervals. By construction, fC is constant on each of
these open intervals. Since C ⊆ CN, it follows that [0, 1] \ CN ⊆ [0, 1] \ C and so
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[0, 1]\CN is itself a countable (in fact, finite) collection of open intervals, each having
the property that fC is constant when restricted to it. Since fC is monotonically
increasing and continuous, it then follows that

2N∑
j=1

| fC(b j) − fC(a j)| = f (1) − f (0) = 1.

Since this conclusion is independent of δ ∈ R>0, we therefore are forced to deduce
that fC is not absolutely continuous. •

This example illustrates that there is a “gap” between the notion of absolute
continuity and the notion of continuous and bounded variation. It is perhaps not
immediately clear why we should care about this. In order to clarify this, we have
the following definition.

2.9.26 Definition (Singular function) Let I ⊆ R be an interval. A function f : I → R is
singular if

(i) it is continuous,
(ii) it is if of locally bounded variation, and
(iii) f ′(x) = 0 for almost every x ∈ I. •

As we can see from our discussion in Example I-3.2.27, the Cantor function is
singular. The following result explains the importance of singular functions.

2.9.27 Theorem (Lebesgue decomposition of a function of bounded variation) If
I ⊆ R is an interval and if f : I→ R has locally bounded variation, then f = fac+fsing+fjump,
where fabs is locally absolutely continuous, fsing is a singular function, and fjump is a saltus
function.

Proof It is sufficient to take I = [a, b] (by definition of locally bounded variation)
and assume that f is monotonically increasing (by Theorem I-3.3.3(ii)). By Proposi-
tion I-3.3.22, we can write f = fcont + fjump for a monotonically increasing continuous
function fcont (necessarily of bounded variation by Theorem I-3.3.3(ii)) and for a saltus
function fjump. Define

fabs(x) =
∫ x

a
f ′cont(x) dx, fsing(x) = fcont(x) − fabs(x)

and note that fabs is absolutely continuous by Theorem 2.9.33(i) below. Also, for almost
every x ∈ [a, b],

f ′sing(x) = f ′cont(x) −
d

dx

∫ x

a
f ′cont(x) dx = 0

by Theorem 2.9.33(ii) below. ■

Locally absolutely continuous functions, by virtue of also being of locally
bounded variation, are almost everywhere differentiable. The next result we state
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provides us with a large collection of locally absolutely continuous functions based
on their differentiability. The result also strengthens Proposition I-3.3.14 where the
hypotheses are the same, but here we draw the sharper conclusion of absolute
continuity, not just bounded variation.

2.9.28 Proposition (Nice differentiable functions are locally absolutely continuous)
If I ⊆ R is an interval and if f : I→ R is a differentiable function having the property that
f′ is locally bounded, then f is locally absolutely continuous.

Proof Clearly it suffices to consider the case where I = [a, b]. Let M ∈ R>0 have the
property that | f ′(x)| < M for each x ∈ [a, b]. Then, for ϵ ∈ R>0 take δ = ϵ

M and note that,
if ((a j, b j)) j∈{1,...,k} is a finite family of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < ϵ,

then
k∑

j=1

| f (b j) − f (a j)| =
k∑

j=1

| f ′(c j)(b j − a j)| < ϵ,

where c j ∈ (a j, b j), j ∈ {1, . . . , k}, are as asserted by the Mean Value Theorem. ■

The boundedness of the derivative in the preceding result is essential, as Exam-
ple I-3.3.15 shows.

Let us next consider how absolutely continuous functions behave under the
standard algebraic operations on functions. First we consider the standard alge-
braic operations.

2.9.29 Proposition (Addition and multiplication, and local absolute continuity) Let
I ⊆ R be an interval and let f,g: I → R be locally absolutely continuous. Then the
following statements hold:

(i) f + g is locally absolutely continuous;
(ii) fg is locally absolutely continuous;
(iii) if additionally there exists α ∈ R>0 such that |g(x)| ≥ α for all x ∈ I, then f

g is locally
absolutely continuous.

Proof Throughout the proof we suppose, without loss of generality, that I = [a, b] is a
compact interval.

(i) For ϵ ∈ R>0 let δ ∈ R>0 have the property that, if ((a j, b j)) j∈{1,...,k} is a finite family
of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

then
k∑

j=1

| f (b j) − f (a j)| < ϵ
2 ,

k∑
j=1

|g(b j) − g(a j)| < ϵ
2 .
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Then, again for any finite collection ((a j, b j)) j∈{1,...,k} of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

we have

k∑
j=1

|( f + g)(b j) − ( f + g)(a j)| ≤
k∑

j=1

| f (b j) − f (a j)| +
k∑

j=1

|g(b j) − g(a j)| < ϵ,

using the triangle inequality.
(ii) Let

M f = sup{| f (x)| | x ∈ [a, b]}, Mg = sup{|g(x)| | x ∈ [a, b]}.

Let ϵ ∈ R>0 and let δ ∈ R>0 have the property that, if ((a j, b j)) j∈{1,...,k} is a finite family of
disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

then
k∑

j=1

| f (b j) − f (a j)| <
ϵ

2M f
,

k∑
j=1

|g(b j) − g(a j)| <
ϵ

2Mg
.

Then, for any finite collection ((a j, b j)) j∈{1,...,k} of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

we compute

k∑
j=1

| f (b j)g(b j) − f (a j)g(a j)| ≤
k∑

j=1

| f (b j)g(b j) − f (a j)g(b j)|

+

k∑
j=1

| f (a j)g(b j) − f (a j)g(a j)|

≤

k∑
j=1

Mg| f (b j) − f (a j)| +
k∑

j=1

M f |g(b j) − g(a j)|

< ϵ
2 +

ϵ
2 = ϵ,

giving the result.
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(iii) Let ϵ ∈ R>0 and let δ ∈ R>0 have the property that, if ((a j, b j)) j∈{1,...,k} is a finite
collection of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

then
k∑

j=1

| f (b j) − f (a j)| < α2ϵ.

Then, for any finite collection ((a j, b j)) j∈{1,...,k} of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

we compute

k∑
j=1

∣∣∣∣ 1
g(b j)

−
1

g(a j)

∣∣∣∣ = k∑
j=1

∣∣∣∣ g(a j) − g(b j)
g(b j)g(a j)

∣∣∣∣ ≤ k∑
j=1

∣∣∣∣ g(b j) − g(a j)

α2

∣∣∣∣ < ϵ.
Thus 1

g is locally absolutely continuous, and this part of the result follows from part (ii).
■

Next let us show that local absolute continuity for a function on an interval can
be determined by breaking the interval into parts, and determining local absolute
continuity on each.

2.9.30 Proposition (Local absolute continuity on disjoint subintervals) Let I ⊆ R be
an interval and let I = I1 ∪ I2, where I1 ∩ I2 = {c}, where c is the right endpoint of I1 and
the left endpoint of I2. Then f is locally absolutely continuous if and only if f|I1 and f|I2 are
locally absolutely continuous.

Proof It suffices to consider the case where I = [a, c], I1 = [a, c], and I2 = [c, b].
First suppose that f is absolutely continuous and, for ϵ ∈ R>0, choose δ ∈ R>0 such

that, if ((a j, b j)) j∈{1,...,k} is a finite family of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < 2δ.

then
k∑

j=1

| f (b j) − f (a j)| < ϵ.

Then let ((a j, c j)) j∈{1,...,k1} and ((d j, b j)) j∈{1,...,k2} be finite families of disjoint open subinter-
vals of [a, c] and [a, c], respectively, satisfying

k1∑
j=1

|c j − a j| < δ,
k2∑
j=1

|b j − d j| < δ.
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Then ((a j, c j)) j∈{1,...,k1}∪ ((d j, b j)) j∈{1,...,k2} is a finite collection of disjoint open subintervals
of [a, b] satisfying

k1∑
j=1

|c j − a j| +

k2∑
j=1

|b j − d j| < 2δ.

Therefore,
k1∑
j=1

| f (c j) − f (a j)| +
k2∑
j=1

| f (b j) − f (d j)| < ϵ,

implying that
k1∑
j=1

| f (c j) − f (a j)| < ϵ,
k2∑
j=1

| f (b j) − f (d j)| < ϵ.

Thus f |[a, c] and f |[c, b] are absolutely continuous.
Now suppose that f |[a, c] and f |[c, b] are absolutely continuous. Let ϵ ∈ R>0 and let

δ ∈ R>0 be chosen such that, if ((a j, c j)) j∈{1,...,k1} and ((d j, b j)) j∈{1,...,k2} are finite collections
of disjoint open subintervals of [a, c] and [c, b], respectively, satisfying

k1∑
j=1

|c j − a j| < δ,
k2∑
j=1

|b j − d j| < δ,

then
k1∑
j=1

| f (c j) − f (a j)| < ϵ
2 ,

k2∑
j=1

| f (b j) − f (d j)| < ϵ
2 .

Now let ((a j, b j)) j∈{1,...,k} be a finite collection of disjoint subintervals of [a, b] satisfying

k∑
j=1

|b j − a j| < δ.

If c ∈ (a j0 , b j0) for some j0 ∈ {1, . . . , k}, then define the collection of disjoint open intervals

(((a j, b j)) j∈{1,...,k} \ ((a j0 , b j0))) ∪ ((a j0 , c), (c, b j0)),

i.e., split the interval containing c into two intervals. Denote this collection of dis-
joint open intervals by ((ã j, b̃ j)) j∈{1,...,k̃}. If c is not contained in any of the intervals
((a j, b j)) j∈{1,...,k}, then denote ((ã j, b̃ j)) j∈{1,...,k̃} = ((a j, b j)) j∈{1,...,k}. Note that

k̃∑
j=1

|b̃ j − ã j| < δ.

This new collection of disjoint open intervals is then the union of two collections of
disjoint open intervals, ((ã j, c̃ j)) j∈{1,...,k1} and ((d̃ j, b̃ j)) j∈{1,...,k2}, the first being subintervals
of [a, c] and the second being subintervals of [c, b]. These collections satisfy

k1∑
j=1

|c̃ j − ã j| < δ,
k2∑
j=1

|b̃ j − d̃ j| < δ,
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and so we have

k∑
j=1

| f (b j) − f (a j)| ≤
k̃∑

j=1

| f (b̃ j) − f (ã j)| =
k1∑
j=1

| f (c̃ j) − f (ã j)| +
k2∑
j=1

| f (b̃ j) − f (d̃ j)| < ϵ,

which shows that f is absolutely continuous. ■

Next we show that one of the standard operations on functions does not respect
absolute continuity.

2.9.31 Example (Compositions of locally absolutely continuous functions need not
be locally absolutely continuous) In Example I-3.3.16 we gave two functions of
bounded variation whose composition was not a function of bounded variation.
In fact, the functions we used were not only of bounded variation, but absolutely
continuous. These functions, therefore, show that the composition of absolutely
continuous functions may not be an absolutely continuous function.

Let us show that the functions in question are, in fact, absolutely continuous.
Recall that the functions f , g : [−1, 1]→ R were given by f (x) = x1/3 and by

g(x) =

x3(sin 1
x )3, x , 0,

0, x = 0.

That g is absolutely continuous follows from Proposition 2.9.28 since we showed
in Example I-3.3.16 that g was of class C1. It then only remains to show that f is
absolutely continuous. Let ϵ ∈ R>0 and take δ = ϵ3

4 . Now let ((a j, b j)) j∈{1,...,k} be a
finite collection of open intervals satisfying

k∑
j=1

|b j − a j| < δ.

Let ℓ ≤ 2 and let [a, b] ⊆ [−1, 1] be an interval of length ℓ. One can easily see that, if
one fixes the length of the interval at ℓ, then the quantity | f (b) − f (a)| is maximum
when one takes a = − ℓ2 and b = ℓ

2 . From this it follows that

k∑
j=1

| f (b j) − f (a j)| < | f ( δ2 ) − f (− δ2 )| = ϵ.

Thus f is absolutely continuous, as desired. •

2.9.7 The Fundamental Theorem of Calculus for the Lebesgue integral

In this section we explore the Fundamental Theorem of Calculus that is asso-
ciated with the Lebesgue integral. As we shall see, it is here that the notion of
absolute continuity comes up in a natural way.

Before we state the main result,
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2.9.32 Lemma (Locally absolutely continuous functions with a.e. zero derivative)
Let I ⊆ R be an interval and let f : I→ R be locally absolutely continuous and having the
property that the set

{x ∈ I | f is not differentiable at x} ∩ {x ∈ I | f′(x) , 0}

has measure zero. Then there exists c ∈ R such that f(x) = c for all x ∈ I.
Proof Consider an interval [a, b] ⊆ I. Let

E = {x ∈ I | f is not differentiable at x} ∩ {x ∈ I | f ′(x) , 0}.

For ϵ ∈ R>0 choose η ∈ R>0 such that, if ((a j, b j)) j∈{1,...,k} is a finite collection of disjoint
intervals having the property that

k∑
j=1

|b j − a j| < η,

then
k∑

j=1

| f (b j) − f (a j)| < ϵ.

Let ((cα, dα))α∈A be a countable collection of open intervals satisfying

E ⊆
⋃
α∈A

(cα, dα)

and ∑
α∈A

|dα − cα| < η.

Now define δ : [a, b]→ R>0 according to the following:
1. if x ∈ E take δ(x) such that B(δ(x), x) ∩ [a, b] ⊆ (cα, dα) for some α ∈ A;
2. if x < E take δ(x) such that | f (y) − f (x)| < ϵ|y − x| for y ∈ B(δ(x), x) ∩ [a, b].

Now let ((c1, I1), . . . , (ck, Ik)) be a δ-fine tagged partition and write {1, . . . , k} = K1
◦

∪K2
where

K1 = { j ∈ {1, . . . , k} | c j ∈ E}, K2 = { j ∈ {1, . . . , k} | c j < E}.

We then compute, denoting EP(P) = (x0, x1, . . . , xk),

| f (b) − f (a)| =
∣∣∣∣ k∑

j=1

( f (x j) − f (x j−1))
∣∣∣∣

≤

∑
j∈K1

| f (x j) − f (x j−1)| +
∑
j∈K2

| f (x j) − f (x j−1)|

≤ ϵ +
∑
j∈K2

ϵ(x j − x j−1) ≤ ϵ(1 + b − a).

This shows that | f (b)− f (a)| can be made arbitrarily small, and so gives the result since
a and b are arbitrary. ■

The main result in this section is the following.
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2.9.33 Theorem (The Fundamental Theorem of Calculus for the Lebesgue integral)
For an interval I ⊆ R the following statements hold:

(i) a function F: I→ R defined on an interval I is locally absolutely continuous if and
only if there exists f ∈ L(1)

loc(I;R) and x0 ∈ I such that

F(x) = F(x0) +
∫ x

x0

f(ξ) dξ,

where we adopt the convention that if x < x0 we have∫ x

x0

g(ξ) dξ = −
∫ x0

x
g(ξ) dξ;

(ii) if x0 ∈ I, if f ∈ L(1)
loc(I;R), and define F: I→ R by

F(x) =
∫ x

x0

f(ξ) dξ,

then F is differentiable for almost every x ∈ I and F′(x) = f(x) for almost every x ∈ I.
Proof (i) We first consider the case when I is compact: I = [a, b].

First suppose that

F(x) = F(x0) +
∫ x

x0

f (ξ) dξ

for x0 ∈ [a, b] and f ∈ L(1)([a, b];R). Note that, by Proposition 2.7.22, we have

F(x) = F(x0) +
∫ x

a
f (ξ) dξ −

∫ x0

a
f (ξ) dξ

= F(x0) +
∫ x

a
f (ξ) dξ + (F(a) − F(x0) = F(a) +

∫ x

a
f (ξ) dξ.

Thus we can take x0 = a without loss of generality. First assume that f is nonnegative-
valued. For k ∈ Z>0 define

fk(x) =

 f (x), f (x) ≤ k
k, otherwise.

Note that fk is bounded and that for each x ∈ [a, b] we have limk→∞ fk(t) = f (t).
Therefore, the Monotone Convergence Theorem asserts that

lim
k→∞

∫ b

a
( f (x) − fk(x)) dx = 0.

Now let ϵ ∈ R>0. Choose N ∈ Z>0 such that∫ b

a
( f (x) − fk(x)) dx <

ϵ
2
, k ≥ N.
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Letting δ = ϵ
2N and letting ((a j, b j)) j∈{1,...,n} be any finite family of nonoverlapping inter-

vals in [a, b] satisfying
n∑

j=1

|b j − a j| < δ,

we have ∫
A

f (x) dx =
∫

A
( f (x) − fN(x)) dx +

∫
A

fN(x) dx ≤
ϵ
2
+
ϵ
2
= ϵ,

where A denotes the union of the intervals ((a j, b j)) j∈{1,...,n}. Note that since f is nonneg-
ative, it follows that F is monotonically increasing. Thus

n∑
j=1

|F(b j) − F(a j)| =
n∑

j=1

(F(b j) − F(a j)).

Given the definition of F we thus have
n∑

j=1

|F(b j) − F(a j)| =
∫

A
f (x) dx < ϵ,

and we conclude that F is absolutely continuous.
If f is not nonnegative-valued, then we write f = f+ − f− where f+ and f− are

nonnegative. Our arguments above show that the functions

x 7→
∫ x

a
f+(ξ) dξ, x 7→

∫ x

a
f−(ξ) dξ

are absolutely continuous. Therefore, since

F(x) = F(a) +
∫ x

a
f+(ξ) dξ −

∫ x

a
f−(ξ) dξ,

it follows that F is the sum of three absolutely continuous functions (a constant func-
tion is trivially absolutely continuous) and so F is itself absolutely continuous by
Proposition 2.9.29.

Now suppose that F is absolutely continuous, and so of bounded variation by
Proposition 2.9.24. Now, by part (I-ii) of Theorem I-3.3.3, write F = F+ − F− for
monotonic functions F+ and F−. By part (I-vi) of Theorem I-3.3.3 the derivative of F
exists almost everywhere and we then have

F′(x) = F′+(x) − F′−(x) =⇒ |F′(x)| ≤ |F′+(x)| + |F′−(x)|

for almost every x ∈ [a, b]. Therefore we have∫ b

a
|F′(x)|dx ≤ F+(b) + F−(b) − F+(a) − F−(a),

implying that F′ ∈ L(1)([a, b];R). Note that the function

x 7→
∫ x

a
F′(ξ) dξ
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is now absolutely continuous by our arguments from the first part of the proof, so that
the function

x 7→ F(x) −
∫ x

a
F′(ξ) dξ

is also absolutely continuous by Proposition 2.9.29. This function also has derivative
zero, and the result now follows by Lemma 2.9.32.

Now suppose that I is an arbitrary interval. We first suppose that

F(x) = F(x0) +
∫ x

x0

f (ξ) dξ

for some x0 ∈ I and some locally integrable function f . Let [a, b] ⊆ I be a compact
subinterval. As we determined in the first part of the proof, we have

F(x) = F(a) +
∫ x

a
f (ξ) dξ,

from which we conclude that F|[a, b] is absolutely continuous, since we proved have
already proved the theorem for compact intervals. It then follows that F is locally
absolutely continuous since this can be done for any compact subinterval. Conversely,
suppose that F is locally absolutely continuous and let x0 ∈ I. Let x ∈ I, supposing
that x > x0. Note that, since F|[x0, x] is absolutely continuous, the first part of the proof
allows us to conclude that

F(x) = F(x0) +
∫ x

x0

f (ξ) dξ.

If x < x0 we have that F|[x, x0] is absolutely continuous and so we can write

F(x0) = F(x) +
∫ x0

x
f (ξ) dξ,

and the theorem follows by a rearrangement of this equation, using the stated conven-
tion for integrals whose lower limit exceeds the upper limit.

(ii) We first prove a technical lemma from which this part of the theorem will
follow.

1 Lemma If A ⊆ R then

lim
β↓0

λ(A ∩ (x, x + β))
β

= lim
α↓0

λ(A ∩ (x − α, x))
α

= lim
α,β↓0

λ(A ∩ (x − α, x + β))
α + β

= 1

for almost every x ∈ A. If we additionally have A ∈ L (R) then the above limits are equal to
zero for almost every x ∈ R \A.

Proof First suppose that A is bounded so that λ∗(A) < ∞. By definition of Lebesgue
outer measure, for k ∈ Z>0 there exists a countable collection ((ak, j, bk, j)) j∈Z>0 of open
intervals such that

∞∑
j=1

|bk, j − ak, j| − 2−k < λ∗(A).
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If we define U′′k = ∪
∞

j=1(ak, j, bk, j) then we have

λ(U′′k ) − 2−k
≤

∞∑
j=1

|bk, j − ak, j| − 2−k < λ∗(A).

Then define U′m = ∩m
k=1U′′k so that U′m+1 ⊆ U′m, m ∈ Z>0, and

λ(U′m) − 2−m
≤ λ(U′′m) − 2−m < λ∗(A).

Finally, let (a, b) be such that A ⊆ (a, b) and define Uk = U′k ∩ (a, b), k ∈ Z>0. Then
A ⊆ ∩k∈Z>0Uk, Uk+1 ⊆ Uk, k ∈ Z>0, and λ(Uk) − 2−k < λ∗(A), k ∈ Z>0.

Now define fk : R→ R, k ∈ Z>0, and f : R→ R by

fk(x) = λ(Uk ∩ (a, x)), f (x) = λ(A ∩ (a, x)).

Since Uk is open for k ∈ Z>0, if x ∈ Uk and if ϵ ∈ R>0 is such that (x − ϵ, x + ϵ) ⊆ Uk we
have

fk(x + ϵ) − fk(x)
ϵ

=
fk(x) − fk(x − ϵ)

ϵ
= 1.

Thus fk|Uk is differentiable with derivative 1.
Let x1, x2 ∈ R with a ≤ x1 < x2. Then, for each k ∈ Z>0,

fk(x2) − f (x2) − ( fk(x1) − f (x1)) = λ(Uk ∩ [x1, x2)) − λ(A ∩ (a, x2)) + λ(A ∩ (a, x1))
= λ(Uk ∩ [x1, x2)) − λ(A ∩ [x1, x2)) ≥ 0

by monotonicity of Lebesgue measure. This shows that the function fk − f is mono-
tonically increasing for each k ∈ Z>0. We also have

fk(b) − f (b) = λ(Uk) − λ(A) < 2−k

which gives
∞∑

k=1

( fk(x) − f (x)) ≤
∞∑

k=1

( fk(b) − f (b)) ≤
∞∑

k=1

2−k < ∞,

using Example I-2.4.2–1. If we define

g(x) =
∞∑

k=1

( fk(x) − f (x)),

then, by Theorems I-3.2.26 and I-3.6.25, g is almost everywhere differentiable and

g′(x) =
∞∑

k=1

( f ′k (x) − f ′(x))

for almost every x ∈ (a, b). Since g is monotonically increasing, g′(x) is finite for almost
every x ∈ [a, b]. This gives

∞∑
k=1

( f ′k (x) − f ′(x)) < ∞



2022/03/07 2.9 The single-variable Lebesgue integral 309

for almost every x ∈ (a, b). Since f ′k (x) − f ′(x) ≥ 0 for almost every x ∈ (a, b) we must
have

lim
k→∞

f ′k (x) − f ′(x) = 0

for almost every x ∈ (a, b). Let N ⊆ (a, b) be the set of points on which the above limit
does not hold, so λ∗(N) = 0. Let x ∈ (∩k∈Z>0Uk) − N. Then f ′k (x) = 1 for every k ∈ Z>0
and so f ′(x) = 1. Thus f ′(x) = 1 for x ∈ A−N, giving the first assertion of the lemma in
the case when A is bounded. If A is not bounded then we can write A as a countable
union of bounded sets: A = ∪ j∈Z>0A j. Let N j ⊆ A j be the subset of A j where the limits
in the first assertion of the theorem do not have the value 1. Then the limits in the first
assertion of the theorem hold for all x ∈ A \ ∪ j∈Z>0N j. Since ∪ j∈Z>0N j has measure zero
by Exercise I-2.5.11, the first part of the theorem is proved.

For the second assertion, if A is measurable then we have

α + β = λ((x − α, x + β)) = λ(A ∩ (x − α, x + β)) + λ((R \ A)(x − α, x + β)).

Thus

1 =
λ(A ∩ (x − α, x + β))

α + β
+
λ((R \ A)(x − α, x + β))

α + β
,

and taking the limit as α and β decrease to zero gives

lim
α,β↓0

λ((R \ A)(x − α, x + β))
α + β

,

using the fact that the first part of the proof has been proved. ▼

Proceeding with the proof of the theorem, first consider the case when I = [a, b]
and

F(x) =
∫ x

a
f (ξ) dξ;

the lower limit can be taken to be a as we saw in the first part of the proof. We first
consider the case where f is a finite nonnegative simple function,

f (x) =
k∑

j=1

a jχA j(x).

Then, by linearity of the integral,

F(x) =
∫ x

a
f (ξ) dξ =

k∑
j=1

a jλ(A j ∩ (a, x)).

By the lemma it follows that F is differentiable for almost every x ∈ (a, b) and that
F′(x) = f (x) for almost every x ∈ (a, b).

Now suppose that f is a nonnegative simple function and let (g j) j∈Z>0 be a sequence
of nonnegative simple functions as in part (ii) of Proposition 2.6.39. For j ∈ Z>0 define

G j(x) =
∫ x

a
g j(ξ) dξ.
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By the Monotone Convergence Theorem,

F(x) =
∫ x

a
f (ξ) dξ = lim

j→∞

∫ x

a
g j(ξ) dξ = lim

j→∞
G j(x)

= G1(x) +
∞∑
j=1

(G j+1(x) − G j(x))

for every x ∈ [a, b]. Note that for each j ∈ Z>0 the functions G j and G j+1 −G j are mono-
tonically increasing, being the indefinite integrals of nonnegative functions. Therefore,
we can apply Theorem I-3.6.25 to arrive at the equality

F′(x) = G′1(x) +
∞∑
j=1

(G′j+1(x) − G′j(x)) = lim
j→∞

G′j(x)

for almost every x ∈ (a, b). Since the theorem has been proved for nonnegative simple
functions, we have

lim
j→∞

G′j(x) = lim
j→∞

g j(x) = f (x)

for almost every x ∈ (a, b). Therefore, F′(x) = f (x) for almost every x ∈ (a, b).
Now let I be an arbitrary interval with x0 ∈ I and

F(x) =
∫ x

x0

f (ξ) dξ.

Let (I j) j∈Z>0 be a sequence of bounded intervals all containing x0 such that I j ⊆ I j+1,
j ∈ Z>0, and such that ∪ j∈Z>0I j = I (make sure you understand why this is possible).
By the arguments above, F′(x) = f (x) for almost every x ∈ I j and for every j ∈ Z>0.
Thus, if N j ⊆ I j is the set of measure zero for which F′ does not exist or, if it exists is
not equal to f (x), then F′(x) = f (x) for all x ∈ I \ ∪ j∈Z>0N j. Since λ(∪ j∈Z>0N j) = 0 by
Exercise I-2.5.11, the theorem follows. ■

In Example I-3.4.31 we considered a collection of examples illustrating the
Fundamental Theorem of Calculus for the Riemann integral. The examples where
this version of the Fundamental Theorem applies still apply for the Lebesgue
integral by virtue of Theorem 2.9.11. However, in Example I-3.4.31 we saw
an instance of a differentiable function on [0, 1] that is everywhere differentiable
and with bounded derivative, but the derivative is not Riemann integrable. This
example is more satisfactory with the Lebesgue integral.

2.9.34 Example (The Fundamental Theorem of Calculus for the Lebesgue integral)
The reader should go back and carefully read the construction of Example I-3.4.31.
The reader will see that the example is of a function F : [0, 1]→ Rwith the property
that F is everywhere differentiable with a bounded derivative. However, F′ is not
Riemann integrable. By Proposition 2.9.28, however, F is absolutely continuous,
and so F′ is Lebesgue integrable by Theorem 2.9.33. •
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One of the conclusions of the Fundamental Theorem of Calculus for the
Lebesgue integral is that an absolutely continuous function is almost everywhere
differentiable. As we saw in Proposition 2.9.24, absolutely continuous functions
are continuous. One might speculate, then, that a characterisation of absolute con-
tinuity using continuity and the derivative might be possible. For example, here
are some guesses, along with counterexamples.
1. An absolutely continuous function is one that is continuous and differentiable almost

everywhere. This is false as seen by Example I-3.3.15.
2. An absolutely continuous function is one that is continuous, differentiable almost

everywhere, and with integrable derivative. This is false by virtue of Example 2.9.25.
3. An absolutely continuous function is one that is differentiable almost everywhere. This

is false by virtue of Example I-3.3.15.
However, there is the following result, which is sometimes enough to understand
absolute continuity.

2.9.35 Theorem (A class of absolutely continuous functions) If F: [a, b]→ R is
(i) continuous,
(ii) differentiable at all but countable many points in [a, b], and
(iii) the function

f(x) =

F′(x), the derivative exists,
0, otherwise,

is in L(1)([a, b];R),
then F is absolutely continuous.

Proof Our proof relies on the definition in Section II-1.10.2 of lower semicontinuous
functions. Note that, by Proposition II-1.10.14, lower semicontinuous functions are
Borel measurable. With this notion recalled, we have the following lemma.

1 Lemma If f ∈ L(1)([a, b];R) then, for each ϵ ∈ R>0, there exists a lower semicontinuous
g ∈ L(1)([a, b]; (−∞,∞]) such that f(x) ≤ g(x) for every x ∈ [a, b] and∫ b

a
g(x) dx <

∫ b

a
f(x) dx + ϵ.

Proof Let ϵ ∈ R>0. We first consider the case when f is nonnegative-valued. We let
( f j) j∈Z>0 be a sequence of simple functions as in part (ii) of Proposition 2.6.39. Then

f (x) = lim
j→∞

f j(x) = f1(x) +
∞∑
j=1

( f j+1(x) − f j(x)). (2.21)

Let j ∈ Z>0 and write

f j =

m∑
k=1

akχAk , f j+1 =

n∑
l=1

blχBl .
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For each l ∈ {1, . . . ,n}write
Bl = ∪

n
k=1(Ak ∩ Bl).

If Ak ∩ Bl , ∅ then, on Ak ∩ Bl the value of f j+1 − f j is bl − ak ∈ R>0. Thus ( f j+1 − f j)|Bl
is a nonnegative simple function. Since this is true for every l it follows that f j+1 − f j
is a nonnegative simple function. Thus, by (2.21), f is an infinite sum of nonnegative
simple functions. Thus we write

f =
∞∑

k=1

akχAk

where the numbers ak ∈ R>0 and the sets Ak, k ∈ Z>0, are not related to those above.
For k ∈ Z>0 let Uk be an open set such that Ak ⊆ Uk and such that

λ(Uk) < λ(Ak) + ϵ
ak2k .

Then
∞∑

k=1

akλ(Uk) <
∞∑

k=1

akλ(Ak) +
∞∑

k=1

ϵ

2k
=

∞∑
k=1

akλ(Ak) + ϵ,

where we use Example I-2.4.2–1. By Example II-1.10.16–3 each of the functions akχUk

is lower semicontinuous. Define

hm(x) =
m∑

k=1

akλ(Uk)

and

h(x) =
∞∑

k=1

akλ(Uk).

Then hm is lower semicontinuous by , and, sinceneed result on addition

of lower semicontinuous

functions

h(x) = sup{hm(x) | m ∈ Z>0},

h is also lower semicontinuous by Proposition II-1.10.17. We then have∫ b

a
h(x) dx <

∫ b

a
f (x) dx + ϵ

and f (x) ≤ h(x) for all x ∈ [a, b].
Now suppose that f ∈ L(1)([a, b];R) and, for k ∈ Z>0, define

fk(x) =

 f (x), f (x) > −k,
−k, f (x) ≤ −k.

By the Dominated Convergence Theorem,∫ b

a
f (x) dx = lim

k→∞

∫ b

a
fk(x) dx.
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Now let N ∈ Z>0 be sufficiently large that∫ b

a
fN(x) dx <

∫ b

a
f (x) dx −

ϵ
2
.

Since fN + Nχ[a,b] is nonnegative, from the first part of the proof there exists a lower
semicontinuous function h such that fN(x) +N ≤ h(x) for every x ∈ [a, b] and such that∫ b

a
h(x) dx <

∫ b

a
( fN(x) +Nχ[a,b]) dx +

ϵ
2
.

Define g = h −Nχ[a,b]. Then f (x) ≤ fN(x) ≤ g(x) for every x ∈ [a, b] and∫ b

a
g(x) dx =

∫ b

a
(h(x) −Nχ[a,b]) dx <

∫ b

a
fN(x) dx <

∫ b

a
f (x) dx −

ϵ
2
,

as desired. ▼

2 Lemma Let h: [a, b] → R be continuous and let C ⊆ [a, b] be countable. If, for each
x ∈ [a, b) − C, there exists rx ∈ R>0 such that h(z) > h(x) for each z ∈ (x, x + rx), then h is
monotonically increasing.

Proof Suppose that h is continuous and that x1, x2 ∈ [a, b] satisfy x1 < x2 and h(x1) >
h(x2). For y ∈ (h(x2), h(x1)) define

xy = sup{x ∈ [x1, x2] | h(x) > y}.

Then there exists a sequence (x j) j∈Z>0 in [x1, x2] such that x j ≤ xy, j ∈ Z>0, and such
that lim j→∞ x j = xy. By continuity of h, lim j→∞ h(x j) = y, using Theorem I-3.1.3. We
claim that, for any ry ∈ R>0, there exists z ∈ (xy, xy + ry) such that h(z) ≤ h(xy). Indeed,
were this not so, then there would exist z > xy such that h(z) > h(xy) = y, contradicting
the definition of xy. Since this construction can be made for every y ∈ (h(x2), h(x1)), this
shows, therefore, that the complement to the set

{x ∈ [a, b) | there exists rx ∈ R>0 such that h(z) > h(x) for each z ∈ (x, x + rx)}

is not countable, which give the lemma. ▼

Proceeding with the proof, let ϵ ∈ R>0. Denote by C ⊆ [a, b] the countable subset
at whose points F is not differentiable. By Lemma 1 let h : [a, b] → (−∞,∞] be lower
semicontinuous and such that f (t) ≤ h(t) for t ∈ [a, b] \ C and such that∫ b

a
h(x) dx <

∫ b

a
f (x) dx +

ϵ
2
.

Then, if we define g = h + ϵ
2(b−a) , then f (t) < g(t) for t ∈ [a, b] \ C and∫ b

a
g(x) dx <

∫ b

a
f (x) dx + ϵ.
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Let G : [a, b]→ R be defined by

G(x) = F(a) +
∫ x

a
g(ξ) dξ

Let x ∈ [a, b). Since g is lower semicontinuous, for each η ∈ R>0 there exists δ ∈ R>0
such that, if x′ ∈ [x, x+ δ], we have g(x′) > g(x)− η. Then, for any y ∈ [x, x+ δ] we have

G(y) − G(x) = F(a) +
∫ y

a
g(ξ) dξ − F(a) −

∫ x

a
g(ξ) dξ =

∫ y

x
g(ξ) dξ

>

∫ y

x
(g(x) − η) dξ = (g(x) − η)(y − x),

or
G(y) − G(x)

y − x
> g(x) − η.

This implies that

lim inf
y↓x

G(y) − G(x)
y − x

≥ g(x)

for every x ∈ [a, b). Therefore, if x ∈ [a, b] \ C we have

lim inf
y↓x

(G(y) − F(y)) − (G(x) − F(x))
y − x

= lim inf
y↓x

G(y) − G(x)
y − x

− lim inf
y↓x

F(y) − F(x)
y − x

≥ g(x) − f (x) > 0.

This implies that, if x ∈ [a, b] \ C, there exists rx ∈ R>0 such that

(G(y) − F(y)) − (G(x) − F(x))
y − x

> 0

for y ∈ (x, x + rx). Since y − x > 0 for y ∈ (x, x + rx) this implies that

(G(y) − F(y)) − (G(x) − F(x)) > 0, y ∈ (x, x + rx).

By Lemma 2 this implies that G − F is nondecreasing. Therefore, since G(a) = F(a) it
follows that F(x) ≤ G(x) for x ∈ [a, b]. Therefore,

F(x) ≤ G(x) = F(a) +
∫ x

a
g(ξ) dξ

= F(a) +
∫ x

a
f (ξ) dξ +

∫ x

a
(g(ξ) − f (ξ)) dξ

≤ F(a) +
∫ x

a
f (ξ) dξ + ϵ

by the definition of g. Since ϵ ∈ R>0 is arbitrary, this shows that

F(x) ≤ F(a) +
∫ x

a
f (ξ) dξ.
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A similar argument to the above, applied to −F, gives

−F(x) ≤ −F(a) −
∫ x

a
f (ξ) dξ =⇒ F(x) ≥ F(a) +

∫ x

a
f (ξ) dξ,

which gives the theorem. ■

Our definition of absolute continuity allows us to state a more powerful version
of the integration by parts formula than was given as Proposition I-3.4.28 for the
Riemann integral.

2.9.36 Proposition (Integration by parts) If f,g: [a, b]→ R are absolutely continuous, then∫ b

a
f(x)g′(x) dx = f(b)g(b) − f(a)g(a) −

∫ b

a
f′(x)g(x) dx.

Proof We have

f (x) = f (a) +
∫ x

a
f ′(ξ) dξ

=⇒

∫ b

a
f (x)g′(x) dx =

∫ b

a
f (a)g′(x) dx +

∫ b

a
g′(x)

(∫ x

a
f ′(ξ) dξ

)
dx

=⇒

∫ b

a
f (x)g′(x) dx = f (a)(g(b) − g(a)) +

∫ b

a
g′(x)

(∫ b

a
χ[a,x](ξ) f ′(ξ) dξ

)
dx. (2.22)

By Corollary 2.8.8 the function F(x, ξ) = g(x)χ[a,x](ξ) f ′(ξ) is integrable with respect to
λ[a,b] × λ[a,b]. Thus we may apply Fubini’s Theorem (the version in Theorem 2.8.4) to
the last of the above integrals to get∫ b

a
g′(x)

(∫ b

a
χ[a,x](ξ) f ′(ξ) dξ

)
dx =

∫ b

a
f ′(ξ)

(∫ b

a
χ[ξ,b](x)g′(x) dx

)
dξ

=

∫ b

a
f ′(ξ)

(∫ b

ξ
g′(x) dx

)
dξ

=

∫ b

a
f ′(ξ)(g(b) − g(ξ)) dξ

= f (b)g(b) − f (a)g(b) −
∫ b

a
f ′(ξ)g(ξ) dξ,

using the fact that χ[a,x](ξ) = χ[ξ,b](x). Combining this with (2.22) gives the result. ■

2.9.8 Lebesgue points

One might speculate that Lebesgue measurable functions are very nasty. How-
ever, in Theorems 2.9.2 and 2.9.3 we show that measurable functions can be
approximated well by “nice” functions. In this section we show that if a function
is additionally integrable, then we can make some further conclusions about how
nice it is.
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The main result we state relies on taking a limit over intervals where the length
of the interval goes to zero. To make this precise we need to define a directed set
for the limit to be well-defined. We refer to for this notion of convergence usingwhat

directed sets and nets. We let I ⊆ R be an interval, let x0 ∈ I, and let C (x0, I) be the
set of closed subintervals of I containing x0. This set is partially ordered by saying
that J1 ⪯ J2 if J1 ⊇ J2. It is easily verified that C (x0) is a directed set with this partial
order. If f ∈ L(1)

loc(I;R) then we define P f ,x0 : C (x0, I)→ R by

P f ,x0(J) =
1
λ(J)

∫
J
| f (x) − f (x0)|dx,

which defines a C (x0, I) net.

2.9.37 Theorem (Almost every point is a Lebesgue point for an integrable function)
If f ∈ L(1)(I;R) then lim Pf,x0 = 0 for almost every x0 ∈ R.

Proof We begin with a technical lemma.

1 Lemma If f ∈ L(1)([a, b];R) then there exists A ⊆ [a, b] such that
(i) λ([a, b] \A) = 0 and such that
(ii) for all α ∈ R and for all x ∈ A,

lim
δ↓0

1
δ

∫ x+δ

x
|f(ξ) − α|dξ = lim

δ↓0

1
δ

∫ x

x−δ
|f(ξ) − α|dξ = |f(x) − α|.

Proof Let α ∈ R, let (q j) j∈Z>0 be an enumeration of the rationals and, for j ∈ Z>0,
define f j ∈ L(1)([a, b];R) by

f j(x) = | f (x) − α|.

By part (ii) of Theorem 2.9.33, for each j ∈ Z>0 there exists a set A j ⊆ [a, b] such that
λ([a, b] \ A j) = 0 and such that, for all x ∈ A j,

lim
δ↓0

1
δ

∫ x+δ

x
g j(ξ) dξ = lim

δ↓0

1
δ

∫ x

x−δ
g j(ξ) dξ = g j(x).

Take A = ∩ j∈Z>0A j, and note that

λ([a, b] \ A) = λ(∪ j∈Z>0[a, b] \ A j) = 0,

where we have used De Morgan’s Laws and Exercise I-2.5.11.
Let δ ∈ R>0 and let k ∈ Z>0 be such that |qk − α| <

δ
3 . By Exercise I-2.2.8 we have

|| f (x) − α| − | f (x) − qk|| ≤ |q j − α| <
δ
3

for all x ∈ [a, b]. Therefore,∣∣∣∣1δ
∫ x+δ

x
| f (ξ) − α|dξ −

1
δ

∫ x+δ

x
|gk(ξ) − α|dξ

∣∣∣∣ ≤ f rac1δ
∫ x+δ

x

δ
3

dξ =
δ
3
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for every δ ∈ R>0 such that the integrals are defined. Therefore, we let x ∈ A and let
δ0 ∈ R>0 be such that ∣∣∣∣1δ

∫ x+δ

x
gk(ξ) dξ − gk(x)

∣∣∣∣ < δ
3

for all δ ∈ (0, δ0). Then, provided that δ ∈ (0, δ0) we have∣∣∣∣1δ
∫ x+δ

x
| f (ξ) − α|dξ − f (x)

∣∣∣∣ ≤ ∣∣∣∣1δ
∫ x+δ

x
| f (ξ) − α|dξ −

1
δ

∫ x+δ

x
|gk(ξ) − α|dξ

∣∣∣∣
+
∣∣∣∣1δ

∫ x+δ

x
gk(ξ) dξ − gk(x)

∣∣∣∣ + |qk − α| <
δ
3
+
δ
3
+
δ
3
= δ,

using the triangle inequality. This gives the left limit equal to the right expression
in the statement of the lemma. The proof that the middle limit is equal to the right
expression follows along entirely similar lines. ▼

It is now somewhat easy to complete the proof of the theorem. First suppose
that I = [a, b] is compact. As per the preceding lemma, let A ⊆ [a, b] be such that
λ([a, b] \ A) = 0 and such that, for all α ∈ R and x ∈ A,

lim
δ↓0

1
δ

∫ x+δ

x
| f (ξ) − α|dξ = lim

δ↓0

1
δ

∫ x

x−δ
| f (ξ) − α|dξ = | f (x) − α|.

Now let x0 ∈ A ∩ (a, b) and let ϵ ∈ R>0. Then there exists δ0 ∈ R>0 such that∣∣∣∣1δ
∫ x0+δ

x0

| f (x) − f (x0)|dx
∣∣∣∣ < ϵ

2

and ∣∣∣∣1δ
∫ x0

x0−δ
| f (x) − f (x0)|dx

∣∣∣∣ < ϵ
2

for δ ∈ (0, δ0). Define J0 = [x0−δ0, x0+δ0]. We may suppose that δ0 is sufficiently small
that J0 ∈ [a, b]. If J0 ⪯ J then J ⊆ J0 and so we have∣∣∣∣ 1
λ(J)

∫
J
| f (x) − f (x0)|dx

∣∣∣∣
≤

∣∣∣∣ 1
δ0

∫ x0+δ0

x0

| f (x) − f (x0)|dx +
1
δ0

∫ x0

x0−δ0

| f (x) − f (x0)|dx
∣∣∣∣ ≤ ϵ2 + ϵ2 = ϵ.

This shows that lim P f ,x0 = 0, giving the theorem when I is compact. When I is not
compact, then we can write I as a countable union of compact intervals (I j) j∈Z>0 . For
each j ∈ Z>0 let N j ⊆ I j be the set of measure zero such that if x ∈ N j we have
lim P f ,x , 0. Since λ(∪ j∈Z>0N j) = 0 by Exercise I-2.5.11, and since if x ∈ I \ ∪ j∈Z>0N j we
have lim P f ,x = 0, the theorem follows. ■
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2.9.9 Maximal functions

2.9.10 The change of variables formula

In this section we state and prove a simple version of the change of variables
formula for the Lebesgue integral. This is one of the places in our development
where the extension to the Lebesgue integral on Rn is not so easily accomplished.
Indeed, the higher-dimensional versions are difficult to prove in any useful de-
gree of generality, and normally require the Radon–Nikodym Theorem (see, for
example, Rudin [1986]). We refer to [Varberg 1971] for a quite general statement
of the multivariable change of variable formula. Fortunately, we shall only need
the single-variable change of variable, and this can be proved more directly, even
though, as the reader can see, the proof is not quite trivial.

2.9.38 Theorem (Change of variable) Let I, J ⊆ R be intervals with ϕ : I→ J a map with the
properties that

(i) ϕ is surjective,
(ii) ϕ is either monotonically decreasing or monotonically increasing, and
(iii) there exists an integrable function ϕ′ : I→ R and x0 ∈ I so thatabsolute continuity

ϕ(x) = ϕ(x0) +
∫

[x0,x]
ϕ′ dλ[x0,x].

If f : J→ R is integrable then f ◦ ϕ is measurable, f ◦ ϕ|ϕ′| is integrable, and∫
J
f dλJ =

∫
I
f ◦ ϕ|ϕ′|dλI.

Proof We first take the case where I = [a, b] and J = [c, d]. We claim that the theorem
is true for step functions in this case. Indeed, let g : [c, d] → R be a step function and
write

g =
k∑

j=1

α jχI j

where I j = (x j, x j−1], j ∈ {0, 1, . . . , k}, are the endpoints of a partition (I1, . . . , Ik) of
[c, d]. Corresponding to this partition of [c, d] we define a partition (J1, . . . , Jk) of [a, b]
endpoints (ξ0, ξ1, . . . , ξk) such that ϕ(ξ j) = x j, j ∈ {0, 1, . . . , k}. There may be ambiguity
in this definition of ξ j, j ∈ {0, 1, . . . , k}, but this does not matter. Assuming thatϕ′(x) ≥ 0
for all x we then compute∫ b

a
g ◦ ϕ(ξ)ϕ′(ξ) dξ =

k∑
j=1

∫ ξ j

ξ j−1

α jϕ
′(ξ) dξ

=

k∑
j=1

α j(ϕ(ξ j) − ϕ(ξ j−1))

=

k∑
j=1

α j(x j − x j−1) =
∫ d

c
g(x) dx.
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A similarly styled computation shows that the result is also true if ϕ′(x) ≤ 0.
Now suppose that f takes values in [0,∞). Using Theorem 2.9.2, let (g j) j∈Z>0 be a

sequence of step functions on [c, d] with the property that for almost every x ∈ [c, d] we
have lim j→∞ g j(x) = f (x). Let us denote by Z1 the subset of measure zero where this
limit does not hold. By examining the proofs of Proposition 2.6.39 and Theorem 2.9.2
we see that we can take the sequence (g j) j∈Z>0 so that for each x ∈ [c, d] \ Z1 the
sequence (g j(x)) j∈Z>0 is nondecreasing. Therefore the sequence (g j ◦ ϕ(ξ)|ϕ′(ξ)|) j∈Z>0 is
also nondecreasing provided that ϕ(ξ) < Z1. Indeed, provided that either
1. ϕ(ξ) < Z1 or
2. ϕ′(x) = 0
hold, then we have lim j→∞ g j ◦ ϕ(ξ)|ϕ′(ξ)| = f ◦ ϕ(ξ)|ϕ′(ξ)|. We claim that the set of
points Z2 ⊆ [a, b] where both conditions 1 and 2 fail to hold has measure zero. We do
this with the aid of a lemma.

1 Lemma Z ⊆ R has Lebesgue measure zero if and only if there exists a sequence (Ij)j∈Z>0 of
nonempty open intervals such that

(i)
∑
∞

j=1 λ(Ij) < ∞ and
(ii) for each x ∈ Z there exists a sequence (jk)k∈Z>0 of Z>0 so that x ∈ Ijk , k ∈ Z>0.

Proof By definition, Z has Lebesgue measure zero if for each ϵ ∈ R>0 there exists a
family (Ĩℓ)ℓ∈Z>0 of open intervals, some possibly empty, for which Z ⊆ ∪ℓ∈Z>0 Ĩℓ and∑
∞

ℓ=1 λ(Ĩℓ) < ϵ.
Suppose that there exists a collection of intervals (I j) j∈Z>0 having properties (i)

and (ii) and let ϵ ∈ R>0. Choose a finite collection I j1 , . . . , I jm of intervals so that
∞∑
j=1

λ(I j) −
m∑

k=1

λ(I jk) < ϵ.

It then follows that the family (I j) j∈Z>0 \ (I jk)k∈{1,...,m} of open intervals has total length
less than ϵ. Furthermore, since only a finite number of intervals are removed from
(I j) j∈Z>0 , the remaining intervals still cover Z. Thus Z has Lebesgue measure zero.

Now suppose that Z has measure zero. For n ∈ Z>0 let (In, j) j∈Z>0 have the property
that Z ⊆ ∪ j∈Z>0In, j and that

∞∑
j=1

λ(In, j) <
1
2n .

Then the collection (I j,n) j,n∈Z>0 satisfies (i) and (ii). ▼

According to the lemma, choose a sequence (I j) j∈Z>0 of intervals covering Z1 and
whose total length is finite. Define a step function gn : [c, d]→ R by

gn =

n∑
j=1

χI j ,

and note that for each x ∈ Z1 we have limn→∞ gn(x) = ∞. If ξ ∈ Z2 it follows that
limn→∞ gn ◦ ϕ(ξ)|ϕ′(ξ)| = ∞. Now note that∫ b

a
gn ◦ ϕ(ξ)|ϕ′(ξ)|dξ =

∫ d

c
gn(x) dx <

∞∑
j=1

λ(I j) < ∞.
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It follows from Proposition 2.7.12 that λ(Z2) = 0.
Thus we have shown that, provided that I = [a, b], that J = [c, d], and that f (J) ⊆

[0,∞), for almost every ξ ∈ [a, b] and almost every x ∈ [c, d] we have

lim
j→∞

g j(x) = f (x), lim
j→∞

g j ◦ ϕ(ξ)|ϕ′(ξ)| = f ◦ ϕ(ξ)|ϕ′(ξ)|

with both limits being monotonic, and that for each j ∈ Z>0 we have∫ b

a
g j ◦ ϕ(ξ) dξ =

∫ d

c
g j(x) dx.

The result under the current assumptions now follows by the Monotone Convergence
Theorem. For an arbitrary f with I = [a, b] and J = [c, d] the result follows from
breaking f into its positive and negative parts.

It remains to prove the result for general intervals I and J. Let (In = [an, bn]) j∈Z>0

be a sequence of intervals with the property that int(I) = ∪n∈Z>0In. Define Jn = ϕ(In),
n ∈ Z>0, noting that Jn so defined is a closed interval by monotonicity of ϕ. We then
have, by the Dominated Convergence Theorem,∫

I
f dλI = lim

n→∞

∫
I
χIn f dλI,

∫
J

f ◦ ϕ|ϕ′|dλJ = lim
n→∞

∫
J
χJn f ◦ ϕ|ϕ′|dλJ.

From this the result follows since∫
I
χIn f dλI =

∫
J
χJn f ◦ ϕ|ϕ′|dλJ. ■

2.9.11 Topological characterisations of the deficiencies of the Riemann
integral16

In Section 2.7.5 we saw that it was possible to give interesting topological
characterisations of the Dominated Convergence Theorem for the general measure
theoretic integral. These characterisations are, of course, inherited by the Lebesgue
integral. That is to say, one can specialise Theorems 2.7.40 and 2.7.42 to the
Lebesgue integral as follows.

2.9.39 Theorem (Topological “everywhere” Dominated Convergence Theorem for
the Lebesgue integral) If A ∈ L (R) then Cp-bounded subsets of L(1)(A;R) are Cp-
sequentially closed.

2.9.40 Theorem (Limit structure “almost everywhere” Dominated Convergence The-
orem for the Lebesgue integral) If A ∈ L (R) thenLλA-bounded subsets of L1(A;R)
areLλA-sequentially closed.

In this section we give a couple of examples that show that these theorems do
not hold for the Riemann integral. First we consider the “everywhere” version of
the Dominated Convergence Theorem.

16The results in this section are not used in an essential way anywhere else in the text.
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2.9.41 Example (The topological “everywhere” Dominated Convergence Theorem
does not hold for the Riemann integral) By means of an example, we show that
there are Cp-bounded subsets of the seminormed vector space R(1)([0, 1];R) that are
not Cp-sequentially closed. Let us denote

B = { f ∈ R(1)([0, 1];R) | | f (x)| ≤ 1},

noting by Proposition 2.7.39 that B is Cp-bounded. Let (q j) j∈Z>0 be an enumeration
of the rational numbers in [0, 1] and define a sequence ( fk)k∈Z>0 in R(1)([0, 1];R) by

fk(x) =

1, x ∈ {q1, . . . , qk},

0, otherwise.

The sequence converges in the Cp-topology to the characteristic function ofQ∩[0, 1];
let us denote this function by f . This limit function is not Riemann integrable and
so not in R(1)([0, 1];R). Thus B is not Cp-sequentially closed. •

Next we turn to the “almost everywhere” version of the Dominated Conver-
gence Theorem for the Riemann integral.

2.9.42 Example (The limit structure “almost everywhere” Dominated Convergence
Theorem does not hold for the Riemann integral) Recall from Section 2.6.6 that
L0([0, 1];R) denotes the set of equivalence classes ofR-valued measurable functions
on [0, 1] under the equivalence relation of almost everywhere equality. We denote
by R1([0, 1];R) the image of R(1)([0, 1];R) by the projection from L(0)([0, 1];R) to
L0([0, 1];R). Thus elements of R1([0, 1];R) are equivalence classes of R-valued
Riemann integrable functions under the equivalence relation of almost everywhere
equality. We denote elements of R1([0, 1];R) by [ f ], reflecting the fact that they are
equivalence classes of functions. For brevity we denote the Lebesgue measure on
[0, 1] by λ.

We give an example that shows thatLλ-bounded subsets of the normed vector
space R1([0, 1];R) are not Lλ-sequentially closed. We first remark that the con-
struction of Example 2.9.41, projected to R1([0, 1];R), does not suffice because [ f ]
is equal to the equivalence class of the zero function which is Riemann integrable,
even though f is not. The fact that [ f ] contains functions that are Riemann inte-
grable and functions that are not Riemann integrable is a reflection of the fact that
the set

R0([0, 1];R) =
{

f : [0, 1]→ R
∣∣∣∣ f Riemann integrable and

∫ 1

0
f (x) dx = 0

}
is not sequentially closed. This is a phenomenon of interest, but it is not what is of
interest here.

We use the construction of the function f from the proof of Proposition 2.1.12.
In that proof, the function f was shown to have the following properties:
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1. f is the pointwise limit of a sequence ( fk)k∈Z>0 of Riemann integrable functions;
2. any function almost everywhere equal to f is not Riemann integrable.
Therefore, by Theorem 2.6.51 it follows that ([ fk])k∈Z>0 is Lλ-convergent to [ f ].
Moreover, [ f ] < R1([0, 1];R). To complete the example, we note that the sequence
([Gk]) j∈Z>0 is in the set

B = {[ f ] ∈ R1([0, 1];R) | | f (x)| ≤ 1 for almost every x ∈ [0, 1]},

which is Lλ-bounded by Proposition 2.7.41. The example shows that this Lλ-
bounded subset of R1([0, 1];R) is notLλ-sequentially closed. •

Exercises

2.9.1 Use Lemma 2.9.32 to directly conclude that the Cantor function of Exam-
ple 2.9.25 is not absolutely continuous.

2.9.2 Give an example of a function f : R→ R such that | f | is Lebesgue measurable,
but f is not Lebesgue measurable.

2.9.3 Answer the following two questions.
(a) Why must a Riemann integrable function f : [a, b] → R on a compact

interval be bounded?
(b) Provide an unbounded function on [a, b] that is continuous when re-

stricted to (a, b), and that is Lebesgue integrable.

One of the differences between the Lebesgue and Riemann integral is that the
Lebesgue integral is defined by first approximating a measurable function by a
sequence of simple function only from below. In contrast, for the Riemann inte-
gral, one asks that the function be approximated from below and above by step
functions. One might legitimately wonder whether this is asking too much of the
approximation, and whether one can get away, as one does with the Lebesgue
integral, by approximation from (say) below. The following exercise asks you to
explore this.

2.9.4 Let I = [0, 1] and let
f = χI∩Q, g = χI∩(R\Q).

Answer the following questions.
(a) Show that I−( f ) = I−(g) = 0. Thus, when approximated just by step

functions from below, both f and g have zero “integral.”
(b) Show that I−( f + g) , I−( f ) + I−(g). Thus the “integral” is not linear.

2.9.5 Let A ⊆ I = [0, 1] be the subset of irrational numbers, and let χA be the
characteristic function. Show that

∫
I
χA dλ = 1.

2.9.6 Show that there is a function f : [0, 1] → R that is not Riemann integrable,
but for which | f | is Riemann integrable.
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2.9.7 Let I = [0,∞) and define f : I → R by f (x) = x. Use the Monotone Conver-
gence Theorem to show that f is not integrable.

2.9.8 Let I ⊆ R be an interval, and let f : I→ R be continuous. Show that if

λ({x ∈ I | f (x) , 0}) = 0

then f (x) = 0 for every x ∈ I.
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Section 2.10

The multivariable Lebesgue integral

2.10.1 Lebesgue measurable functions

In this section we repeat for the n-dimensional Lebesgue measure the results of
the preceding section. The general ideas of the proofs are the same, but there are a
few points where additional technicalities arise.

We begin with the definitions.

2.10.1 Definition (Borel measurable, Lebesgue measurable) Let A ⊆ Rn. A function
f : A→ R is

(i) Borel measurable if A ∈B (Rn) and if f isB (A)-measurable and
(ii) Lebesgue measurable if A ∈ L (Rn) and if f isL (A)-measurable. •

We recall from Section II-1.6.1 the notion of a step function defined on a fat
compact rectangle in Rn.

2.10.2 Theorem (Lebesgue measurable functions are approximated by step func-
tions) If R ⊆ Rn is a fat compact rectangle, if f : R→ R is measurable and satisfies

λn({x ∈ R | f(x) ∈ {−∞,∞}} = 0,

and if ϵ1, ϵ2 ∈ R>0, then there exists a step function g: R→ R≥0 such that

λn({x ∈ R | |f(x) − g(x)| ≥ ϵ1}) < ϵ2.

Proof It suffices to prove the theorem when ϵ1 = ϵ2 = ϵ. Thus we take ϵ ∈ R>0.
For k ∈ Z>0 define

Ak = {x ∈ R | | f (x)| ≥ k},

and note that the sequence (λn(R \Ak))k∈Z>0 is monotonically increasing and bounded
above by λn(R). Thus it is convergent by Theorem I-2.3.8. Moreover, it converges
to λn(R). Indeed, if the sequence converges to ν < λn(R) then this would imply, by
Proposition 2.3.3, that

lim
k→∞

λn(R \ Ak) = λn(R \ ∪k∈Z>0Ak) < λn(R).

Thus there exists a set B ⊆ R of positive measure such that R = (∪k∈Z>0Ak

◦

∪B). Note
if x ∈ B then | f (x)| = ∞, contradicting our assumptions on f . Thus we indeed have
limk→∞ λn(R \ Ak) = λn(R). Thus there exists M ∈ Z>0 such that λn(R \ AM) < λn(R) −
ϵ
2 , i.e., λn(AM) < ϵ

2 . Therefore,

λn({x ∈ R | | f (x)| ≥M}) < ϵ
2 .
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Then define fM : R→ R by

fM(x) =


f (x), | f (x)| < M,
M, | f (x)| ≥M,
−M, f (x) < −M.

Note that fM is measurable by Proposition 2.6.16.
Now take K ∈ Z>0 such that 2−K < ϵ and such that K ≥ M. If we follow the

construction in the proof of Proposition 2.6.39 then we define

A+,K, j = {x ∈ R | 2−K( j − 1) ≤ fM(x) < 2−K j}

and
A−,K, j = {x ∈ R | − 2−K j ≤ fM(x) < −2−K( j − 1)}

for j ∈ {1, . . . ,K2K
}. Since K ≥M we have

R = (∪K2K

j=1 A+,K, j) ∪ (∪K2K

j=1 A−,K, j).

Moreover, if we define a simple function h : R→ R by

h(x) =

2−K( j − 1), x ∈ A+,K, j,
−2−K j, x ∈ A−,K, j,

then we have |h(x) − fM(x)| < ϵ for every x ∈ R.
Now that we have a R-valued simple function h that approximates fM to within

ϵ on R, let us dispense with the cumbersome notation above we introduced to define
h, and instead write h =

∑k
j=1 a jχA j for a1, . . . , ak ∈ R and for a partition (A1, . . . ,Ak)

of R into Lebesgue measurable sets. Fix j ∈ {1, . . . , k}. Since A j is measurable, by
Corollary 2.5.19 we can write A j = U j ∪ B j where U j is open and where B j ⊆ U j
satisfies λn(B j) < ϵ

8k . Recall from Proposition II-1.2.21 that open sets are countable
unions of open balls. This result holds also for cubes as well as balls, cf. the proof of
Lemma 2.5.32. Thus, since U j is open, it is a countable union of open rectangles. If U j
is in fact a finite union of open rectangles then recall from Proposition 2.1.2 that U j is a
finite disjoint union of (not necessarily open) rectangles. Let V j denote the union of the
interiors of these rectangles. If any of the disjoint open rectangles comprising V j have
common boundary, then these rectangles may be shrunk so that they their complement
in A j has measure at most ϵ

2k . Next suppose that U j is a countably infinite union of open
rectangles (R j,l)l∈Z>0 . Since U j is bounded we must have

∑
∞

l=1 λn(R j,l) < ∞. Therefore,
there exists N j ∈ Z>0 such that

∑
∞

j=N j+1 λn(Rl, j) < ϵ
8k . As above, by Proposition 2.1.2

we write the union of R1, j, . . . ,RN j, j as a finite disjoint union of (not necessarily open)
rectangles. Let V j denote the union of the interiors of these rectangles. If any of the
disjoint open rectangles comprising V j have common boundary, they can be shrunk
while maintaining the fact that the measure of their complement in A j is at most ϵ

2k .
Define g : R → R on V j by asking that g(x) = a j for x ∈ V j. Doing this for each
j ∈ {1, . . . , k} defines g : R→ R on the set ∪k

j=1V j which is a finite disjoint union of open

rectangles whose complement has measure at most ϵ
2 . The complement to ∪k

j=1V j is
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a union of rectangles by Proposition 2.1.8. On these rectangles define g to be, say,
0. Note that g as constructed is not quite a step function since the rectangles will not
generally be those of a partition of R. However, one can define a partition which has
all of the rectangles used to define g as unions of subrectangles. To do this, one merely
takes as endpoints for the partitions of the n axes the union of the endpoints of all
rectangles. Note that g(x) = h(x) for x ∈ ∪k

j=1V j.

Note that if x ∈ (∪k
j=1V j) ∪ (R \ AM) we have

|g(x) − f (x)| = |h(x) − fM(x)| < ϵ.

Therefore,
λn({x ∈ R | f (x) − g(x) ≥ ϵ}) ⊆ R \ ((∪k

j=1V j) ∪ (R \ AM)),

and
λn(R \ ((∪k

j=1V j) ∪ (R \ AM))) < ϵ,

giving the result. ■

A similar sort of result holds for approximations of measurable functions by
continuous functions.

2.10.3 Theorem (Lebesgue measurable functions are approximated by continuous
functions) If R ⊆ Rn is a fat compact rectangle, if f : R→ R is measurable and satisfies

λn({x ∈ R | f(x) ∈ {−∞,∞}} = 0,

and if ϵ1, ϵ2 ∈ R>0, then there exists a step function g: R→ R≥0 such that

λn({x ∈ R | |f(x) − g(x)| ≥ ϵ1}) < ϵ2.

Proof We shall merely outline how this works, since the details are straightforward
once one has the idea at hand. We assume that ϵ1 = ϵ2 = ϵ. By the procedure of
Theorem 2.9.2, we approximate f with a step function g such that

λn({x ∈ R | | f (x) − g(x)| ≥ ϵ}) < ϵ
2 .

Moreover, the subset of R where | f (x) − g(x)| < ϵ is a finite union of rectangles whose
closures are disjoint; let us denote these rectangles by R1, . . . ,Rk. On each of the
rectangles, g is constant. On the complement of these rectangles the value of g can be
taken to be zero without loss of generality. Let us fix j ∈ {1, . . . , k} and let R′j ⊆ R j be a
closed rectangle such that λn(R′j) > λn(R j) − ϵ

2k . Let us suppose that R j = I j1 × · · · × I jn

and that R′j = I j1 × · · · × I jn. Then define h jl : I jl → R such that

1. h jl is continuous,
2. h jl|I′jl takes the constant value of g|R j, and

3. limx→I jl a jl h jl(x) = 0 and limx→I jl b jl h jl(x) = 0, where a jl and b jl are the left and right
endpoints of I jl.
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Then define h on R j by asking that

h(x) = h j1(x1) · · · h jn(xn), x ∈ R j.

Doing this for each of the rectangles R1, . . . ,Rk, and defining h to be zero at points
outside these rectangles yields a continuous function h agreeing with g on R′1∪· · ·∪R′k.
Finally, note that

λn(R \ ∪k
j=1R′j) < ϵ,

which completes the proof. ■

The notion of support given in Definition 2.9.4 for functions of a single variable
are trivially adapted to functions of multiple variables.

2.10.4 Definition (Support of a measurable function) Let f ∈ L(0)(Rn;R) and define

O f = {U ⊆ Rn
| U open and f (x) = 0 for almost every x ∈ U}.

Then the support of f is supp( f ) = R \ (∪U∈O f U). •

The following two results are proved exactly in the same way as their single
variable counterparts.

2.10.5 Proposition (Characterisation of support) For f,g ∈ L(0)(Rn;R), the following state-
ments hold:

(i) f(x) = 0 for almost every x ∈ R \ supp(f);
(ii) if f(x) = g(x) for almost every x ∈ Rn then supp(f) = supp(g).

2.10.6 Proposition (The support of a continuous function) If f : Rn
→ R is continuous

then
supp(f) = cl({x ∈ Rn

| f(x) , 0}).

2.10.2 The (conditional) Lebesgue integral

2.10.3 Properties of the Lebesgue integral

2.10.4 Swapping operations with the Lebesgue integral

2.10.5 The change of variables formula

2.10.7 Theorem (The multivariable change of variable theorem)

2.10.6 Locally integrable functions
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2.10.8 Proposition (Characterisation of locally Lebesgue integrable functions) For
a function f : Rn

→ R the following statements are equivalent:
(i) f is locally Lebesgue integrable;

(ii) for each x ∈ Rn there exists a neighbourhood U of x such that f|U ∈ L(1)(U;R);
(iii) for every continuous function g: Rn

→ R such that supp(g) is compact, it holds
that fg ∈ L(1)(Rn;R).

Proof (i) =⇒ (ii) Let x ∈ Rn and let K be the cube with sides of length 2 and centre x:

K = [x1 − 1, x1 + 1] × · · · × [xn − 1, xn + 1].

By hypothesis, f |K ∈ L(1)(K;R) and so f ∈ L(1)(int(K);R) by Proposition 2.7.22. This
gives the result with U = int(K).

(ii) =⇒ (iii) Let g : R → R be continuous with compact support. For x ∈ supp(g)
there exists a neighbourhood Ux of x such that f ∈ L(1)(Ux,R). Since (Ux)x∈supp(g) covers
the compact set supp(g) there exists x1, . . . , xk ∈ supp(g) such that supp(g) ⊆ ∪k

j=1Ux j .
Since g is continuous with compact support there exists M ∈ R>0 such that |g(x)| ≤ M
for every x ∈ R by Theorem II-1.3.31. Then∫

Rn
| f g|dλn ≤M

∫
supp(g)

f dλsupp(g) ≤M
k∑

j=1

∫
Ux j

f dλUx j
< ∞,

since supp(g) ⊆ ∪k
j=1Ux j . This gives the desired conclusion.

(iii) =⇒ (i) Let K ⊆ R be compact and let a j, b j ∈ R, j ∈ {1, . . . ,n}, be such that

K ⊆ [a1, b1] × · · · × [an, bn] ≜ R.

For j ∈ {1, . . . ,n} define

g j(x) =


1, x j ∈ [a j, b j],
x j − (a j − 1), x j ∈ [a j − 1, a j),
−x j + (b j + 1), x ∈ (b j, b j + 1],
0, otherwise.

Now take g : R→ R defined by g = g1 . . . gn. Note that g is positive, continuous with
compact support, and g(x) = 1 for all x ∈ R. Then∫

K
| f |dλK ≤

∫
R
| f |dλR ≤

∫
R
| f g|dλn < ∞,

giving the result. ■
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Section 2.11

Differentiation of measures

In this section we consider the matter of comparing measures on a measur-
able space. As we shall see, there are natural classifications of measures relative
to a fixed measure. This classification is helpful in understanding the nature of
measures in general. The constructions arising from this section are also useful
in many more or less concrete and important measure theoretic developments. In
this regard, we particularly mention the multivariable change of variables theo-
rem (Theorem 2.10.7) and the topological duals of spaces of integrable functions
(Section 3.10.1).

Do I need to read this section? This section should be read when a need to read
it is encountered. •

2.11.1 Absolutely continuous measures

In Section 2.9.6 we studied absolutely continuous functions of a real variable.
In this section we consider the notion of a measure being absolutely continuous to
another measure. The connection between these two concepts is that an absolutely
continuous function has associated with it a measure that is absolutely continuous
with respect to the Lebesgue measure. We shall not understand this fully until . what?

We begin with the definition, recalling that we sometimes call a “measure”
a “positive measure” when we wish to explicitly distinguish it from a signed,
complex, or vector measure.

2.11.1 Definition (Absolutely continuous measure) Let (X,A ) and let µ be a positive
measure on A .

(i) A positive measure ν is absolutely continuous with respect to µ if, for every
A ∈ A for which µ(A) = 0, it follows that ν(A) = 0.

(ii) A signed or complex measure ν is absolutely continuous with respect to µ if,
for every A ∈ A for which µ(A) = 0, it follows that |ν|(A) = 0.

(iii) A vector measure ν taking values inRn is absolutely continuous with respect
to µ if, for every A ∈ A for which µ(A) = 0, it follows that ∥ν∥Rn(A) = 0.

Sometimes one writes ν≪ µ to signify that ν is absolutely continuous with respect
to µ. •

In order that we have a few example to hang onto as we discuss the various
topics in this section, let us give a few simple example.

2.11.2 Examples (Absolutely continuous measures)
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1. Let (X,A , µ) be a measure space and let f ∈ L(0)((X,A );R≥0). Then the measure
f · µ, (cf. Proposition 2.7.65), defined by

( f · µ)(A) =
∫

X
fχA dµ

is absolutely continuous, since, if Z ∈ A satisfies µ(Z) = 0, then

( f · µ)(A) =
∫

X
fχZ dµ = 0

by virtue of Proposition 2.7.11.
2. Let (X,A , µ) be a measure space with µ continuous, i.e., µ({x}) = 0 for every

x ∈ X. Then the point mass measure δx defined by δx : A → R≥0 by

δx(A) =

1, x ∈ A,
0, x < A

is not absolutely continuous with respect to µ since µ({x}) = 0 but δx({x}) = 1. •

Let us now characterise the absolutely continuous positive measures.

2.11.3 Theorem (Radon–Nikodym17 Theorem for positive measures) Let (X,A ) be a
measurable space and let µ and ν be positive measures on A with µ being σ-finite. Then ν
is absolutely continuous with respect to µ if and only if there exists hν ∈ L(0)((X,A );R≥0)
such that

ν(A) =
∫

X
hνχA dµ

for every A ∈ A . If ν is also σ-finite then hν can be taken to be R≥0-valued. Moreover, if
h′ν ∈ L(0)((X,A );R≥0) is another such function, then

µ({x ∈ X | hν(x) , h′ν(x)}) = 0.

Proof Note that the “if” assertion of the theorem is obvious since if µ(A) = 0 then∫
X

hνχA dµ = 0

by Proposition 2.7.11.
For the converse, we first suppose that µ and ν are finite.
In this case, let us denote

Sν =
{

f ∈ L(0)((X,A );R≥0)
∣∣∣∣ ∫

X
fχA dµ ≤ ν(A), A ∈ A

}
.

17Johann Radon (1887–1956) was born in what is now the Czech Republic and made mathematical
contributions to analysis and differential geometry. Otton Marcin Nikodym (1887–1974) was born in
what is now the Ukraine, but in 1887 was part of the Austro–Hungarian Empire. His mathematical
work was in the area of analysis.
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Note that Fν , ∅ since the zero function is in Fν. Let (g j) j∈Z>0 be a sequence in Fν for
which

lim
j→∞

∫
X

g j dµ = sup
{ ∫

X
f dµ

∣∣∣∣ f ∈ Fν
}
,

the expression on the right being finite since µ is finite. For k ∈ Z>0 and x ∈ X define

fk(x) = max{g1(x), . . . , gk(x)}.

Note that f j ∈ L(0)((X,A );R≥0) by Proposition 2.6.16 (along with an induction for
k > 2). Moreover, if

A j = {x ∈ X | fk(x) = g j(x)}, j ∈ {1, . . . , k},

then we have, for A ∈ A ,∫
X

f jχA dµ =
∫

X
g1χA∩A1 dµ + · · · +

∫
X

gkχA∩Ak dµ

≤ ν(A ∩ A1) + · · · + ν(A ∩ Ak) = ν(A).

Thus fk ∈ Fν for each k ∈ Z>0. Moreover, fk+1(x) ≥ fk(x) for every k ∈ Z>0 and x ∈ X.
Therefore, if we define fν(x) = limk→∞ fk(x), fν ∈ L(0)((X,A );R≥0) by Proposition 2.6.18.
Moreover, by the Monotone Convergence Theorem,∫

X
fνχA dµ = lim

j→∞

∫
X

f jχA dµ =
{ ∫

X
f dµ

∣∣∣∣ f ∈ Fν
}
≤ ν(A)

for A ∈ A . Thus fν ∈ Fν.
Note that since fν ∈ Fν it follows that

ν(A) ≜ ν(A) −
∫

X
fνχA dµ ≥ 0

for every A ∈ A . Moreover, one can readily verify that ν(∅) = 0 and that ν is countably-
additive. Thus ν is a positive measure. We claim that it is the zero measure. Suppose
not. Then ν(X), µ(X) ∈ R>0, and so there exists ϵ ∈ R>0 such that ν(X) > ϵµ(X). Note
that ν − ϵµ is a finite signed measure. Let (P,N) be a Hahn decomposition for this
signed measure. If A ∈ A then A ∩ P ⊆ P and so, positivity of P gives

(ν − ϵµ)(A ∩ P) ≥ 0.

Thus

ν(A) =
∫

X
fνχA dµ + ν(A) ≥

∫
X

fνχA dµ + ν(A ∩ P)

≥

∫
X

fνχA dµ + ϵµ(A ∩ P) =
∫

X
( fν + ϵχP)χA dµ

and so fν + ϵχP ∈ Fν. Note that µ(P) ∈ R>0. Indeed, suppose that µ(P) = 0. Then
ν(P) = 0 by absolute continuity of ν with respect to µ, and

ν(P) = ν(P) −
∫

X
gνχP dµ = 0
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by Proposition 2.7.11. We would then have

ν(X) − ϵµ(X) = ν(N) − ϵµ(N) ≤ 0,

contradicting our definition of ϵ. Thus we must indeed have µ(P) ∈ R>0. Therefore,∫
X

( fν + ϵχP) dµ >
∫

X
fν dµ.

Since we have shown above that fν + ϵχP ∈ Fν, this contradicts the definition of fν.
Therefore, we conclude that ν is the zero measure, and so that

ν(A) =
∫

X
fνχA dµ

for every A ∈ A . Now we define

hν(x) =

 fν(x), fν(x) ∈ R>0,

0, fν(x) = ∞.

By Proposition 2.7.11 we have

ν(A) =
∫

X
hνχA dµ

for every A ∈ A , and so this gives the existence assertion of the theorem in the case
when µ and ν are finite.

Now suppose that µ and ν are σ-finite. We can use Lemma 1 from the proof of
Proposition 2.3.2 to assert that there exists families (A j) j∈Z>0 and (B j) j∈Z>0 of pairwise
disjoint A -measurable sets such that

X =
⋃

j∈Z>0

A j =
⋃

j∈Z>0

B j

and such that µ(A j), ν(B j) < ∞ for each j ∈ Z>0. For j ∈ Z>0 define

K j = {k ∈ Z>0 | Bk ∩ A j , ∅}.

Thus K j is an empty or countable set. Let us define C j = (Bk ∩A j)k∈K j . Then the family
∪ j∈Z>0C j is a countable (by Proposition I-1.7.16) family of pairwise disjoint measurable
sets, all of which have finite measure for both µ and ν, and whose union is X. Let us
write this countable family of sets as (C j) j∈Z>0 , after making a choice for indexing the
sets. From the proof above, for each j ∈ Z>0 there exists hν, j ∈ L(0)((X,A );R≥0) such
that hν, j(x) = 0 for x ∈ X \ C j and such that

ν(A ∩ C j) =
∫

X
hν, jχA∩C j dµ
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for every A ∈ A . Let us then define hν : X→ R≥0 by asking that hν|C j = hν, j|C j. Note that
hν isA -measurable by Proposition 2.6.18, after noting that hν(x) = limk→∞

∑k
j=1 hν, j(x).

Moreover, by the Monotone Convergence Theorem,∫
X

hνχA dµ =
∞∑
j=1

∫
X

hν, jχA∩C j dµ =
∞∑
j=1

ν(A ∩ C j) = ν(A),

giving the existence assertion of the theorem when µ and ν are σ-finite.
For uniqueness, suppose that hν, h′ν ∈ L(0)((X,A );R≥0) satisfy

ν(A) =
∫

X
hνχA dµ =

∫
X

h′νχA dµ.

First we suppose that ν is finite. Then hν, h′ν ∈ L(1)((X,A , µ);R≥0). Let us define

Ahν−h′ν = {x ∈ X | hν(x) − h′ν(x) > 0}, Ah′ν−hν = {x ∈ X | h′ν(x) − hν(x) > 0}.

Then

ν(Ahν−h′ν) − ν(Ahν−h′ν) =
∫

X
(hν − h′ν)χAhν−h′ν

dµ = 0,

and we conclude from Proposition 2.7.14 that µ(Ahν−h′ν) = 0. Similarly, µ(Ah′ν−hν) = 0.
Since

X = Ahν−h′ν ∪ Ah′ν−hν ∪ {x ∈ X | hν(x) = h′ν(x)},

we conclude that hν(x) = h′ν(x) for µ-almost every x ∈ X.
If ν(X) is not finite, but ν is σ-finite, let (A j) j∈Z>0 be a family of A -measurable sets

such that ν(A j) < ∞ for j ∈ Z>0 and such that X = ∪ j∈Z>0A j. If

Z = {x ∈ X | hν(x) , h′ν(x)}

then Z = ∪ j∈Z>0Z ∩ A j. Since µ(Z ∩ A j) = 0 it follows that µ(Z) = 0 by Exercise 2.3.4.
Finally, we consider the case where ν may not be σ-finite. Here the following

lemma is helpful.

1 Lemma If (X,A , µ) is a σ-finite measure space and if ν is a positive measure that is absolutely
continuous with respect to µ, then there exist sets X∞,X0 ∈ A such that

(i) X∞ ∩ X0 = ∅,
(ii) X = X∞ ∪ X0,
(iii) ν|AX0 is σ-finite, and
(iv) if A ∈ A satisfies µ(A ∩ X∞) ∈ R>0 then ν(A ∩ X∞) = ∞.

Proof Let us first suppose that µ is finite. Let (P j,N j) be a Hahn decomposition for
the signed measure ν− jµ, noting that this measure is consistent by finiteness of µ. Let
us take X∞ = ∩ j∈Z>0P j and X0 = X \ X∞. The first two conditions of the lemma are
trivially satisfied. Let A ⊆ X∞ satisfy µ(A) ∈ R>0. Then, since A ⊆ P j for every j ∈ Z>0,
ν(A) − jµ(A) ≥ 0 for every j ∈ Z>0. Therefore, ν(A) = ∞, giving the fourth condition in
the lemma. Now note that

X0 = X \ X∞ = X \ (∩ j∈Z>0P j) = ∪ j∈Z>0X \ P j = ∪ j∈Z>0N j,
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by De Morgan’s Laws. Note that ν(N j)− jµ(N j) ≤ 0 which implies that ν(N j) < ∞ since
µ is finite. Thus X0 is a countable union of sets whose ν-measure is finite, and so ν|AX0

is σ-finite. This gives the third condition of the lemma.
Now suppose that µ is σ-finite, being the union (without loss of generality disjoint

by Lemma 1 from the proof of Proposition 2.3.2) of µ-finite sets (A j) j∈Z>0 . By the
proof above for the finite case, for each j ∈ Z>0 we have A -measurable disjoint sets
X j,∞X j,0 ⊆ A j such that
1. A j = X j,∞ ∪ X j,0,
2. ν|AX j,0 is σ-finite, and
3. ν(B ∩ X j,∞) = ∞ for any set B ⊆ A j for which µ(B ∩ X j,∞) ∈ R>0.
We can then take X∞ = ∪ j∈Z>0X j,∞ and X0 = ∪ j∈Z>0X j,0. It is clear that X∞ has the first
two properties and the fourth property is the statement of the lemma. To verify the
third, note that X j,0 = ∪k∈Z>0B j,k for A -measurable sets B j,k ⊆ A j for which ν(Bk, j < ∞
for k ∈ Z>0. Then the (countably many by Proposition I-1.7.16) sets B j,k, j, k ∈ Z>0 each
have finite ν-measure and their union is X0, as desired. ▼

Now we proceed with the proof, letting X∞ and X0 be as in the lemma. Since ν|AX0

is σ-finite, our proof in the σ-finite case gives the existence of fν : X0 → R such that

ν(A) =
∫

X
fνχA dµ

for A ⊆ X0. Let us also define gν : X∞ → R≥0 by gν(x) = ∞ for all x ∈ X∞. We then take

hν(x) =

 fν(x), x ∈ X0,

gν(x), x ∈ X∞,

and one can readily check that

ν(A) =
∫

X
hνχA dµ (2.23)

for every A ∈ A . This gives the existence assertion of the theorem in the general case.
The uniqueness assertion follows from that in the case where ν is σ-finite, along with
the fact that the relation (2.23) implies that hν must be almost everywhere equal to ∞
on X∞. ■

Now we turn to the case of signed, complex, or vector measures that are abso-
lutely continuous with respect to a positive measure. First let us see how absolute
continuity is reflected in the Jordan decompositions

ν = ν+ − ν−

for a signed measure,

ν = (Re(ν)+ − Re(ν)−) + i(Im(nu)+ − Im(ν)−)
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for a complex measure, and

ν =
n∑

j=1

(ν j,+ − ν j,−)e j

for a vector measure.

2.11.4 Proposition (Characterisation of absolute continuity of signed, complex, and
vector measures) For a measure space (X,A , µ) the following statements hold:

(i) if ν is a signed measure, then ν is absolutely continuous with respect to µ if and only
if ν+ and ν− are absolutely continuous with respect to µ;

(ii) if ν is a complex measure, then ν is absolutely continuous with respect to µ if and
only if Re(ν)+, Re(ν)−, Im(ν)+, and Im(ν)− are absolutely continuous with respect
to µ;

(iii) if ν is a vector measure taking values in Rn, then ν is absolutely continuous with
respect to µ if and only if νj,+ and νj,−, j ∈ {1, . . . ,n}, are absolutely continuous with
respect to µ.

Proof First let µ be a signed measure. Suppose that ν is absolutely continuous with
respect to µ. Let A ∈ A be such that µ(A) = 0 and so |ν|(A) = 0. Then, since
|ν| = ν+ + ν−, it immediately follows that µ+(A) = µ−(A) = 0. Also, if µ+ and µ− are
absolutely continuous with respect to µ, then, if µ(A) = 0 we have

|ν|(A) = ν+(A) + ν−(A) = 0,

giving absolute continuity of ν with respect to µ.
Next we consider the case where ν is a vector measure; the case of a complex

measure is a special case of this one. Let A ∈ A satisfy µ(A) = 0. First suppose that ν
is absolutely continuous with respect to µ. Let (A1, . . . ,Ak) be a partition of A and note
that monotonicity of µ implies that µ(A j) = 0, j ∈ {1, . . . , k}. Then, for l ∈ {1, . . . ,n} and
j ∈ {1, . . . , k},

|νl(A j)| ≤
n∑

l=1

|νl(A j)| ≤
√

n∥ν(A j)∥Rn ≤
√

n∥ν∥Rn(A j) = 0,

where we have used Proposition II-1.1.11 and the definition of ∥ν∥Rn . Therefore,

k∑
j=1

|νl(A j)| = 0

for every partition (A1, . . . ,Ak) of A. By Proposition 2.3.47 it follows that |ν j|(A) = 0
and so νl is absolutely continuous with respect to µ for each l ∈ {1, . . . ,n}.

Finally, suppose that ν1, . . . , νn are absolutely continuous with respect to µ. As
above, let (A1, . . . ,Ak) be a partition of A. Since ∥νl∥Rn(A j) = 0 we have νl(A j) = 0 for
each j ∈ {1, . . . , k} and l ∈ {1, . . . ,n}. We have, for j ∈ {1, . . . , k},

∥ν(A j)∥Rn ≤

n∑
l=1

|νl(A j)| = 0
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using Proposition II-1.1.11. Thus

k∑
j=1

∥ν(A j)∥Rn = 0

for every partition (A1, . . . ,Ak) of A. The definition of the variation of ν then gives
∥ν∥Rn(A) = 0, and so gives absolute continuity of νwith respect to µ. ■

We can now characterise the absolutely continuous signed, complex, and vector
measures.

2.11.5 Theorem (Radon–Nikodym Theorem for signed, complex, and vector mea-
sures) If (A,A , µ) is a σ-finite measure space then the following statements hold:

(i) for ν ∈ M((X,A );R), ν is absolutely continuous with respect to µ if and only if there
exists hν ∈ L(1)((X,A , µ);R) such that

ν(A) =
∫

X
hνχA dµ

for every A ∈ A ;
(ii) for ν ∈ M((X,A );C), ν is absolutely continuous with respect to µ if and only if there

exists hν ∈ L(1)((X,A , µ);C) such that

ν(A) =
∫

X
hνχA dµ

for every A ∈ A ;
(iii) for ν ∈ M((X,A );Rn), ν is absolutely continuous with respect to µ if and only if

there exists hν ∈ L(1)((X,A , µ);Rn) such that

ν(A) =
∫

X
hνχA dµ

for every A ∈ A .
Moreover, the functions hν and hν whose existence is asserted above are unique in that any
other functions with the asserted properties agree almost everywhere with hν and hν.

Proof As with Theorem 2.11.3, the “if” assertions of the theorem follow from Propo-
sition 2.7.11.

For the converse, first suppose that the finite signed measure ν is absolutely con-
tinuous with respect to µ. By Proposition 2.11.4 it follows that ν+ and ν− are absolutely
continuous with respect to ν. By Theorem 2.11.3 there exists hν+ , hν− ∈ L(0)((X,A );R≥0)
such that

ν+(A) =
∫

X
hν+χA dµ, ν−(A) =

∫
X

hν−χA dµ
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for every A ∈ A . Since ν is finite, hν+ and hν− areµ-integrable. Moreover, if hν = hν+−hν− ,∫
X

hνχA dµ = ν+(A) − ν−(A) = ν(A).

Moreover, if h′ν+ , h
′
ν− ∈ L(0)((X,A );R≥0) also satisfy

ν+(A) =
∫

X
h′ν+χA dµ, ν−(A) =

∫
X

h′ν−χA dµ

for every A ∈ A , then, by Theorem 2.11.3 the sets

A+ = {x ∈ X | hν+(x) , h′ν+(x)}, A− = {x ∈ X | hν−(x) , h′ν−(x)}

have µ-measure zero. Since hν and h′ν = h′ν+ − h′ν− agree on X \ (A+ ∪ A−), they agree µ
almost everywhere, giving the theorem for finite signed measures.

To prove the theorem for a vector measure ν, note that Proposition 2.11.4 implies
that the components ν1, . . . , νn are absolutely continuous with respect to µ. As in the
first part of the proof, this implies the existence of functions hν j,+ , hν j,− ∈ L(0)((X,A );R≥0)
such that

ν j,+(A) =
∫

X
hν j,+χA dµ, ν j,−(A) =

∫
X

hν j,−χA dµ

for every A ∈ A . If we define hν by

hν(A) = (hν1,+(A) − hν1,−(A), . . . , hνn,+(A) − hνn,−(A)),

it immediately follows that

ν(A) =
∫

X
hνχA dµ.

The uniqueness of hν follows from that for hν j,+ and hν j,− , j ∈ {1, . . . ,n}. ■

We can now give some language to the two versions of the Radon–Nikodym
Theorem.

2.11.6 Definition (Radon–Nikodym derivative) Let (X,A , µ) be a σ-finite measure space.
(i) If ν is a positive, finite signed, or complex measure, absolutely continu-

ous with respect to µ, then the function hν from Theorem 2.11.3, Theo-
rem 2.11.5(i), or Theorem 2.11.5(ii) is a Radon–Nikodym derivative of ν
with respect to µ. This function is denoted by dν

dµ , understanding that dν
dµ is

only defined up to its value on a set of measure zero.
(ii) If ν is a vector measure, absolutely continuous with respect to µ, then the

function hν from Theorem 2.11.5(iii) is a Radon–Nikodym derivative of ν
with respect to µ. This function is denoted by dν

dµ , understanding that dν
dµ is

only defined up to its value on a set of measure zero. •

It is possible to use the Radon–Nikodym derivative to characterise the variation
of a measure that is absolutely continuous with respect to another measure.
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2.11.7 Proposition (Variation of absolutely continuous measures) For a measure space
(X,A , µ) the following statements hold:

(i) if ν is a finite signed or complex measure that is absolutely continuous with respect
to µ, then

|ν|(A) =
∫

X

∣∣∣∣dνdµ

∣∣∣∣χA dµ

for every A ∈ A ;
(ii) if ν is a Rn-valued vector measure that is absolutely continuous with respect to µ,

then
∥ν∥Rn(A) =

∫
X

∥∥∥∥dν
dµ

∥∥∥∥
Rn
χA dµ

for every A ∈ A .
Proof It suffices to prove the theorem for vector-valued measures, since the finite
signed and complex cases follow from this. First let A ∈ A and let (A1, . . . ,Ak) be a
partition of A. Then

k∑
j=1

∥ν(A j)∥Rn =

k∑
j=1

∥∥∥∥∫
X

dν
dµ
χA j dµ

∥∥∥∥
Rn
≤

k∑
j=1

∫
X

∥∥∥∥dν
dµ

∥∥∥∥
Rn
χA j dµ =

∫
X

∥∥∥∥dν
dµ

∥∥∥∥
Rn
χA dµ.

Taking the supremum of the left-hand side over all partitions gives the inequality

∥ν(A)∥Rn ≤

∫
X

∥∥∥∥dν
dµ

∥∥∥∥
Rn
χA dµ.

To establish the opposite inequality, we use a lemma.

1 Lemma For a measure space (X,A ) and for f ∈ L(0)((X,A );Rn) there exists a sequence
(fk)k∈Z>0 of Rn-valued simple functions on X such that

(i) ∥fk(x)∥Rn ≤ 1 for each x ∈ X and k ∈ Z>0 and
(ii) limk→∞⟨fk(x), f(x)⟩Rn = ∥f(x)∥Rn for every x ∈ X.

Proof Let us denote

X0 = {x ∈ X | f (x) = 0}, X1 = {x ∈ X | f (x) , 0}.

Note that, by Proposition 2.6.11 and Corollary 2.6.14, the function x 7→ f (x)
∥ f (x)∥Rn

is
measurable since the norm is continuous by . By Proposition 2.6.44, choose a sequencewhat

( f k)k∈Z>0 of simple functions with domain X1 with the following properties:

1. limk→∞ f k(x) = f (x)
∥ f (x)∥Rn

for every x ∈ X;

2. ∥ f k(x)∥Rn ≤
f (x)

∥ f (x)∥Rn
= 1 for every x ∈ X and k ∈ Z>0.

For x ∈ X1 we have

lim
k→∞
⟨ f k(x), f (x)⟩Rn =

〈 f (x)
∥ f (x)∥Rn

, f (x)
〉
Rn
= ∥ f (x)∥Rn ,

where we swap the limit and the inner product by continuity of the inner product ().what

We then extend each of the functions f k, k ∈ Z>0, to X by taking them to be zero on X0,
so the resulting function is still a simple function. This proves the lemma. ▼
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By the lemma, let ( f k)k∈Z>0 be a sequence of simple functions such that
1. limk→∞⟨ f k(x), dν

dµ (x)⟩Rn = ∥dν
dµ (x)∥Rn and

2. ∥ f k(x)∥Rn ≤ 1 for each x ∈ X and k ∈ Z>0.
Let k ∈ Z>0 and write

f k =

rk∑
j=1

ak, jχAk, j

for ak, j ∈ R
n and pairwise disjoint sets Ak, j ∈ A , j ∈ {1, . . . , rk}. Note that ∥ak, j∥Rn ≤ 1,

j ∈ {1, . . . , rk}, by construction. For A ∈ A we then compute∣∣∣∣∫
X

〈
f k,

dν
dµ

〉
Rn
χA dµ

∣∣∣∣ = ∣∣∣∣ rk∑
j=1

∫
X

〈
ak, j,

dν
dµ

〉
χA∩Ak, j dµ

∣∣∣∣ = ∣∣∣∣ rk∑
j=1

⟨ak, j,ν(A ∩ A j)⟩Rn

∣∣∣∣
≤

rk∑
j=1

|⟨ak, j,ν(A ∩ A j)⟩Rn | ≤

rk∑
j=1

∥ak, j∥Rn∥ν(A ∩ Ak, j)∥Rn

≤ sumrk
j=1∥ν(A ∩ Ak, j)∥Rn ≤ ∥ν∥Rn(A),

using the Cauchy–Bunyakovsky–Schwarz inequality and the fact that (A∩A1, . . . ,A∩
Ark) is a partition of A. Thus we have, by the Dominated Convergence Theorem,∫

X

∥∥∥∥dν
dµ

∥∥∥∥
Rn
χA dµ = lim

k→∞

∫
X

〈
f k,

dν
dµ

〉
Rn
χA dµ ≤ ∥ν∥Rn(A),

giving the result. ■

This characterisation of the variation for a signed, complex, or vector measure
allows one to neatly characterise integration with respect to such measures in a
convenient way. This is recorded in the following two corollaries. For the first,
we comment that a signed, complex, or vector measure is obviously absolutely
continuous with respect to its own variation.

2.11.8 Corollary (Radon–Nikodym derivative with respect to variation) If (X,A ) is a
measurable space, the following statements hold:

(i) if ν is a finite signed or complex measure on A then | dνd|ν| (x)| = 1 for almost every
x ∈ X;

(ii) if ν is aRn-valued vector measure onA , then ∥ dν
d∥ν∥Rn

∥Rn = 1 for almost every x ∈ X.
Proof We prove this for the case of vector measures, the other two cases following
from this. For A ∈ A we note that

∥ν∥Rn(A) =
∫

X

∥∥∥∥ dν
d∥ν∥Rn

∥∥∥∥
Rn
χA d∥ν∥Rn ,

by Proposition 2.11.7. This shows that x 7→ ∥ dν
d∥ν∥Rn

(x)∥Rn is a Radon–Nikodym deriva-
tive of ∥ν∥Rn with respect to ∥ν∥Rn . However, x 7→ 1 is also such a Radon–Nikodym
derivative, and so by the uniqueness assertion of Theorem 2.11.5, the result follows.■

The next result then shows that integration with respect to a signed, complex,
or vector measure amounts to integration of a function, C-valued function, or
vector-valued function, respectively, with respect to a positive measure.



340 2 Measure theory and integration 2022/03/07

2.11.9 Corollary (Integration by absolutely continuous measures) For a measurable
space (X,A ), the following statements hold:

(i) for a finite signed or complex measure ν on A and for f ∈ L(1)((X,A , ν);R) we have∫
X

f dν =
∫

X
f

dν
d|ν|

d|ν|;

(ii) for a Rn-valued vector measure ν on A and for f ∈ L(1)((X,A ,ν);R) we have∫
X

f dν =
∫

X
f

dν
d∥ν∥Rn

d∥ν∥Rn .

Proof It suffices to prove the result for vector measures. For A ∈ A we have

ν(A) =
∫

X

dν
d∥ν∥Rn

χA d∥ν∥Rn ,

by the properties of the Radon–Nikodym derivative. Thus, in the language of Propo-
sition 2.7.65, ν = ( dν

d∥ν∥Rn
) · ∥ν∥Rn . The result then follows from Proposition 2.7.66. ■

It is illustrative to see how the preceding constructions, relying as they do on
the rather complicated concept of the Radon–Nikodym derivative, are used every
day in introductory calculus.

2.11.10 Example (Integration by absolutely continuous measures) We consider the
measure space ([0, 1],L ([0, 1]), λ[0,1]). Let us consider the (okay, not so difficult)
problem of integrating the function f : [0, 1] → R defined by f (x) =

√

1 − x2. One
way to perform such an integral is with a substitution x = sin(2πy). One then
writes ∫ 1

0

√

1 − x2 dx =
∫ √

1 − sin2(2πy)
dx
dy

dy

2.11.2 Singular measures

2.11.3 Notes

The idea of the Radon–Nikodym Theorem, Theorem 2.11.3, we give is based
on that of [Wilansky 1989], with the extension to the case where ν is not σ finite
following the lemma of [Schep 2003].
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Section 2.12

Measures on locally compact topological spaces

In this section we prove an important theorem about the set of measures on
certain sorts of sets, locally compact topological spaces which we discussed in
Section 1.11. The characterisation of measures we provide is often very useful
when dealing with these objects, and moreover easily permits the extension to
these spaces, and measures on these spaces, of concepts of Fourier theory such as
will be discussed in Chapters IV-5, IV-6, and IV-7. We shall see specific instances of
this in Sections IV-5.7 and IV-6.6. is this all?

The presentation in this section proceeds, like much in this chapter, from the
general to the specific. While it is true that it is easy to carry out the program on,
for example, the locally compact topological space R, the fact is that the story is
complicated in all cases, so it is best to treat specific cases as instances of a general
one to avoid repetition of somewhat complex arguments.

Do I need to read this section? The material in this section is specialised and
can be skipped until needed.

2.12.1 Haar measure on a locally compact topological group

2.12.2 The case of T

2.12.3 The case of R

In this section we consider the norm topology of the set of functions of bounded
variation defined on a compact interval.

Let F ∈ {R,C}. Now we define a proposed norm ∥·∥BV on BV([a, b];F) by
∥ f ∥BV = | f (a)| + TV( f ). We claim that this makes the set of functions of bounded
variation a Banach space.

2.12.1 Theorem (BV([a, b];F) is a Banach space) BV([a, b];F) is a Banach space.
Proof First let λ ∈ F and f ∈ BV([a, b];F) and, for a partition with endpoints
(x0, x1, . . . , xk), compute

|λ f (a)| +
k∑

j=1

|λ f (x j) − λ f (x j−1)| = |λ|
(
| f (a)| +

k∑
j=1

| f (x j) − f (x j−1)|
)
.

Taking the supremum over all partitions of [a, b] gives ∥λ f ∥BV = |λ|∥ f ∥BV. We also
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have, for f , g ∈ BV([a, b];F) and a partition with endpoints (x0, x1, . . . , xk),

|( f + g)(a)| +
k∑

j=1

|( f + g)(x j) − ( f + g)(x j−1)|

≤ | f (a)| + |g(a)| +
k∑

j=1

| f (x j) − f (x j−1)| +
k∑

j=1

|g(x j) − g(x j−1)|.

Taking the supremum over all partitions of [a, b] gives ∥ f+g∥BV ≤ ∥ f ∥BV+∥g∥BV. Finally,
it is clear that ∥ f ∥BV ≥ 0 for all f ∈ BV([a, b];F), and that ∥0∥BV = 0. Moreover, suppose
that ∥ f ∥BV = 0. Then it follows that | f (a)| = 0 and TV f = 0. From the definition of total
variation, it follows easily that TV( f ) > 0 if f is not constant, and so we conclude that
f is constant, and therefore takes is value at a, which is zero. This all shows that ∥·∥BV
is a norm.

Now let ( f j) j∈Z>0 be a Cauchy sequence in BV([a, b];F). We claim that, for each
x ∈ [a, b], the sequence ( f j(x)) j∈Z>0 is a Cauchy sequence in R. Let x ∈ [a, b], let ϵ > 0,
and let P be a partition with EP(P) = (a, x, b). Choose N ∈ Z>0 sufficiently large that

|( f j − fk)(a)| + TV( f j − fk) < ϵ

for j, k ≥ N. This immediately gives |( f j − fk)(a)| < ϵ. We also have, corresponding to
the partition P,

|( f j − fk)(x) − ( f j − fk)(a)| + |( f j − fk)(b) − ( f j − fk)(x)| ≤ TV( f j − fk), j, k ≥ N,

implying that

||( f j − fk)(x)| − |( f j − fk)(a)|| ≤ TV( f j − fk), j, k ≥ N,

by Exercise I-2.2.8. In particular this gives

|( f j − fk)(x)| ≤ |( f j − fk)(a)| + TV( f j − fk) < ϵ, j, k ≥ N.

This shows that, not only is ( f j) j∈Z>0 a Cauchy sequence for each x ∈ [a, b], but that
the sequence is Cauchy uniformly in x. Now let f : [a, b]→ F be the limit function for
the sequence ( f j) j∈Z>0 and let (x0, x1, . . . , xk) be the endpoints of a partition of [a, b]. Let
N ∈ Z>0 have the property that, | f j(x) − f (x)| < ϵ

2k for j ≥ N. Then we compute

k∑
j=1

| f (x j) − f (x j−1)| ≤
k∑

j=1

(
| f (x j) − fN(x j)| + | f (x j−1) − fN(x j−1)| + | fN(x j) − fN(x j−1)|

)
≤

k∑
j=1

(
| fN(x j) − fN(x j−1)| + ϵ

k

)
≤ TV( fN) + ϵ.

Since this holds for any partition P and any ϵ > 0, we have TV( f ) ≤ TV( fN). Thus
f ∈ BV([a, b];F), giving completeness as desired. ■

Let us also record some of the properties of the Banach space BV([a, b];F).
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2.12.2 Proposition (Properties of BV([a, b];F)) BV([a, b];F) is not separable.
Proof We take the case when F = R since this implies the case when F = C. For
c ∈ (a, b) let fc : [a, b]→ R be defined by

fc(x) =

1, x = c,
0, x , c.

By a direct computation one can see that ∥ fc∥BV = 2 for c ∈ (a, b) and that ∥ fc1− fc2∥BV = 4
provided that c1 , c2. For c ∈ (a, b) note that f ∈ B(1, fc) implies that

|∥ f ∥BV − ∥ fc∥BV| ≤ ∥ f − fc∥BV =⇒ |∥ f ∥BV − 2| ≤ 1 =⇒ ∥ f ∥BV ≤ 3,

using Exercise 3.1.3. Thus, for each c ∈ (a, b), B(1, fc) ⊆ B(3, 0BV([a,b];F)). Moreover, note
that if f1 ∈ B(1, fc1) and f2 ∈ B(1, fc2) for c1 , c2, then

∥ f1 − fc2∥BV ≥ |∥ f1 − fc1∥BV − ∥ fc2 − fc1∥BV| ≥ 3,

using Proposition 1.1.3. Thus f1 < B(1, fc2), and one similarly shows that f2 < B(1, fc1).
Therefore, B(3, 0BV([a,b];F)) contains the uncountable collection (B(1, fc))c∈(a,b) of disjoint
open balls. In particular, if ( f j) j∈Z>0 is any countable subset of BV([a, b];R), then a
countable number of the open balls (B(1, fc))c∈(a,b) can contain a function from the
set ( f j) j∈Z>0 . Let the set of such open balls be denoted by (B(1, fcα))α∈A. Note that
cl(( f j) j∈Z>0) ⊆ ∪α∈AB(1, fcα). This precludes points in the balls

{B(1, fc) | c < {cα | α ∈ A}}

from lying in cl(( f j) j∈Z>0). Thus any countable subset of BV([a, b];R) is not dense. ■

We comment that there are other possible norms one can use on BV([a, b];F)
that are separable; we refer the reader to Section 3.8.10 for a few words on this, as
well as references.

In the course of our discussion of the Riemann–Stieltjes integral in Sec-
tion I-3.5, and particularly during the course of the constructions surrounding
Theorem I-3.5.11, we ran into the idea of bounded linear functions on the Banach
space (C0([a, b];R), ∥·∥∞). In this section we complete the discussion that was started
there by establishing a Banach isomorphism between the dual of (C0([a, b];R), ∥·∥∞)
and a closed subspace of BV([a, b];R).

The first thing we need to do is define the appropriate subspace of BV([a, b];R).
The first step is an equivalence relation. Two functions φ1, φ2 ∈ BV([a, b];R) are
equivalent, and we write φ1 ∼ φ2, if∫ b

a
f (x) dφ1(x) =

∫ b

a
f (x) dφ2(x)

for every f ∈ C0([a, b];R). The following result describes the equivalence classes in
BV([a, b];R).
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2.12.3 Lemma Let φ1, φ2 ∈ BV([a, b];R). Then φ1 ∼ φ2 if and only if
(i) φ1(a) − φ2(a) = φ1(b) − φ2(b) and
(ii) φ1(t+) − φ2(t+) = φ1(t−) − φ2(t−) = φ1(a) − φ2(a) for all t ∈ (a, b).

Proof By Proposition I-3.5.24 it suffices to determine the equivalence class of the zero
function in BV([a, b];R).

First suppose that ∫ b

a
f (x) dφ(x) = 0

for all f ∈ C0([a, b];R). Taking f to be the function f (x) = 1 for all x ∈ [a, b] we have, by
Exercise I-3.5.1, ∫ b

a
dφ(x) = φ(b) − φ(a),

giving (i). For ξ ∈ [a, b) and ϵ > 0 sufficiently small that ξ+ϵ < b define fϵ ∈ C0([a, b];R)
by

fξ,ϵ(x) =


1, x ∈ [a, ξ],
1 − x−ξ

ϵ , x ∈ (ξ, ξ + ϵ),
0, x ∈ [ξ + ϵ, b].

Now compute ∫ b

a
fξ,ϵ(x) dφ(x) = φ(ξ) − φ(a) +

∫ ξ+ϵ

ξ
fξ,ϵ(x) dφ(x)

= φ(ξ) − φ(a) − φ(ξ) +
1
ϵ

∫ ξ+ϵ

ξ
φ(x) dx,

using integration by parts. We next claim that

lim
ϵ↓0

1
ϵ

∫ ξ+ϵ

ξ
dφ(x) = φ(ξ+).

Indeed, if we define φ̃ by

φ̃(x) =

φ(x), x ∈ (ξ, b],
φ(ξ+), x ∈ [a, ξ],

then ξ is a point of continuity for φ̃, and so by Theorem I-3.4.30,

lim
ϵ↓0

1
ϵ

∫ ξ+ϵ

ξ
φ(x) dx = lim

ϵ↓0

1
ϵ

∫ ξ+ϵ

ξ
φ̃(x) dx = φ̃(ξ) = φ(ξ+).

Thus ∫ b

a
fξ,ϵ(x) dφ(x) = φ(ξ+) − φ(a),

showing that φ(ξ+) = φ(a). An altogether similar argument gives φ(ξ−) = φ(b) = φ(a)
for ξ ∈ (a, b]. Thus (ii) holds.
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Now suppose that (i) and (ii) hold. Then at all points of continuity, i.e., almost
everywhere by Theorem I-3.3.3(v), φ(x) = φ(a). Then it is clear from the definition of

the Riemann–Stieltjes integral that
∫ b

a f (x) dφ(x) = 0 for every f ∈ C0([a, b];R). ■

We now provide a means of identifying a unique representative of each equiv-
alence class.

2.12.4 Definition (Normalised functions in BV([a, b];R)) A function φ ∈ BV([a, b];R) is
normalised if

(i) φ(a) = 0 and
(ii) φ(x) = φ(x+) for each x ∈ [a, b).

The set of normalised functions in BV([a, b];R) is denoted by BV([a, b];R). •

2.12.5 Lemma If φ ∈ BV([a, b];R) and if we define φ : [a, b]→ R by

φ(x) =


0, x = a,
φ(x+) − φ(a), x ∈ (a, b),
φ(b) − φ(a), x = b,

then φ ∈ BV([a, b];R). Moreover, the following statements hold:

(i) for φ ∈ BV([a, b];R), φ is the unique element of BV([a, b];R) for which φ ∼ φ;
(ii) TV(φ) ≤ TV(φ).

Proof That φ ∈ BV([a, b];R) is a simple matter of verifying the definition. That φ
is the unique element of BV([a, b];R) for which φ ∼ φ follows from the fact that any
normalised function from BV([a, b];R) that is equivalent to the zero function is the
zero function. It remains, then, to prove the last assertion. Let (x0, x1, . . . , xk) be the
endpoints of a partition of [a, b] and, for ϵ > 0, choose y j > x j, j ∈ {1, . . . , k − 1}, such
that φ is continuous at yk and such that

|φ(x j+) − φ(y j)| < ϵ
2k .

This is possible since the set of discontinuities of φ is countable by Theorem I-3.3.3(v)
(why does this follow?). Also take y0 = a and yk = b. Then we have

k∑
j=1

|φ(x j) − φ(x j−1)| ≤
k∑

j=1

(
|φ(x j) − φ(y j)| + |φ(x j−1) − φ(y j−1)| + |φ(y j) − φ(y j−1)|

)
≤

k∑
j=1

|φ(y j) − φ(y j−1)| + ϵ.

Since ϵ > 0 and the partition are arbitrary, it follows that TV(φ) ≤ TV(φ), as desired. ■
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2.12.6 Theorem ((C0([a, b];R))∗) The map L : BV([a, b];R)→ (C0([a, b];R))∗ defined by

L(φ) · f =
∫ b

a
f(x)dφ(x)

is a Banach isomorphism of (BV([a, b];R),TV) with the topological dual of
(C0([a, b];R), ∥·∥∞).

Proof Let ||| · |||∞ denote the norm on (C0([a, b];R))∗ induced by the norms on ∥·∥∞
and |·|. We also note that, by Theorem I-3.5.18, f ∈ C0([a, b];R) is Riemann–Stieltjes
integrable with respect to φ ∈ BV([a, b];R). So we do not have to prove that L is
well-defined.

Let us first show that L is continuous. For a partition with endpoints (x0, x1, . . . , xk)
we have

|L(φ)( f )| =
∣∣∣∣∫ b

a
f (x) dφ(x)

∣∣∣∣ ≤ ∫ b

a
| f (x)|dφ(x)

≤ ∥ f ∥∞

∫ b

a
dφ(x) ≤ ∥ f ∥∞

k∑
j=1

(φ(x j) − φ(x j−1))

≤ ∥ f ∥∞
k∑

j=1

|φ(x j) − φ(x j−1)| ≤ ∥ f ∥∞TV(φ).

Therefore,

|||L(φ)|||∞ = sup
{ |L(φ)( f )|
∥ f ∥∞

∣∣∣∣ f ∈ C0([a, b];R), ∥ f ∥∞ , 0
}
≤ TV(φ),

giving continuity of L with the induced norm of L not exceeding 1.
Next let us show that L is surjective. Thus let α ∈ (C0([a, b];R))∗. By the

Hahn–Banach Theorem we can extend α to a continuous linear function βα on
L∞([a, b];R) which satisfies |||βα|||∞ = |||α|||∞; we use the symbol ||| · |||∞ to denote the
induced norm on (L∞([a, b];R))∗. For ξ ∈ [a, b] define gξ ∈ L∞([a, b];R) by

gξ(x) =

1, x ∈ [a, ξ],
0, x ∈ (ξ, b].

Define φα : [a, b]→ R by φα(x) = βα(gx). We will show that φα has bounded variation
and that ∫ b

a
f (x,dφα(x) = α( f ), f ∈ C0([a, b];R). (2.24)

First we show that φα has bounded variation. Let (x0, x1, . . . , xk) be the endpoints
of a partition P of [a, b] and define a function hP ∈ L∞([a, b];R) by

hP(x) =

sign(φα(x1) − φα(x0)), x ∈ [x0, x1],
sign(φα(x j) − φα(x j−1)), x ∈ (x j−1, x j].
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Note that, by the definition of the functions gξ, ξ ∈ [a, b] and of the function φα we
have

hP(x) =
k∑

j=1

sign(φα(x j) − φα(x j−1))(gx j − gx j−1).

Therefore, ∣∣∣∣∣∣∣∣∣∣∣∣ k∑
j=1

sign(φα(x j) − φα(x j−1))(gx j − gx j−1)
∣∣∣∣∣∣∣∣∣∣∣∣
∞

≤ 1.

Now compute

k∑
j=1

|φα(x j) − φα(x j−1)| =
k∑

j=1

sign(φα(x j) − φα(x j−1))(φα(x j) − φα(x j−1))

=

k∑
j=1

sign(φα(x j) − φα(x j−1))(βα(gx j) − βα(gx j−1))

= βα
( k∑

j=1

sign(φα(x j) − φα(x j−1))(gx j − gx j−1)
)

= |||βα|||∞
∣∣∣∣∣∣∣∣∣∣∣∣ k∑

j=1

sign(φα(x j) − φα(x j−1))(gx j − gx j−1)
∣∣∣∣∣∣∣∣∣∣∣∣
∞

≤ |||βα|||∞.

This shows that TV(φα) ≤ |||βα|||∞ = |||α|||∞. Thus φα has bounded variation.
Now we show that (2.24) holds. For k ∈ Z>0 define a partition of [a, b] with

endpoints (x0, x1, . . . , xk) defined by x j = a + j(b−a)
k , j ∈ {0, 1, . . . , k}. Thus the endpoints

are evenly spaced. Now, for f ∈ C0([a, b];R) define fk ∈ L∞([a, b];R) by

fk =
k∑

j=1

f (x j)(gx j − gx j−1).

We claim that limk→∞ fk(x) = f (x) for all x ∈ [a, b]. Indeed, let ϵ > 0 and choose δ > 0
sufficiently small that, for each x ∈ [a, b], y ∈ B(δ, x)∩ [a, b] implies that f (y) ∈ B(ϵ, f (x)).
This is possible since f is uniformly continuous by the Heine–Cantor Theorem. Now,
if N ∈ Z>0 is chosen such that b−a

N < δ, then we have | f (x) − fk(x)| < ϵ for each k ≥ N,
giving our claim. Now, using we compute commuting evaluation and

limit
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α( f ) = lim
k→∞

βα( fk) = lim
k→∞

βα
( k∑

j=1

f (x j)(gx j − gx j−1)
)

= lim
k→∞

k∑
j=1

f (x j)(βα(gx j) − βα(gx j−1))

= lim
k→∞

k∑
j=1

f (x j)(φα(x j) − φα(x j−1))

=

∫ b

a
f (x) dφα(x),

as desired.
Note that φα may not be an element of BV([a, b];R). We will now construct

φα ∈ BV([a, b];R) and show that L(φα) = α. We construct φα ∈ BV([a, b];R) from φα as
in Lemma 2.12.5. By Lemma 2.12.3∫ b

a
f (x) dφα − φα(x) = 0

for every f ∈ C0([a, b];R). Therefore, L(φα) = α, and so L is surjective as desired.
Next we show the injectivity of L. Suppose that for φ ∈ BV([a, b];R) we have

L(φ) = 0. By Lemma 2.12.3 and the fact that a normalised function equivalent to zero
is itself zero, we then have φ(x) = 0 for every x ∈ [a, b]. Thus L is injective.

Thus we have shown that L is a continuous bijection. Moreover, during the course
of the proof we have shown that |||L(φ)|||∞ ≤ TV(ϕ) and that |||L(φ)|||∞ ≥ TV(ϕ). Thus
L is also norm-preserving. ■

2.12.4 The case of Rn
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Chapter 3

Banach spaces

In Chapter I-5, particularly in Sections I-5.4 and I-5.8, we studied linear algebra
over arbitrary fields. Here we relied on the notion, introduced in Section I-4.5,
of a vector space. In many instances in applications, one is interested in the
case where the field is either R or C. In finite-dimensions, the story here is not
too complicated; finite-dimensional vector spaces over R or C are fairly easy to
understand and linear maps on these spaces are also fairly easy to understand.
However, in applications, it turns out that infinite-dimensional vector spaces are
often what is of most interest. We make no attempt to motivate this here, but
refer the reader to Chapter IV-1. The reader will note that we were careful to
understand the algebra of infinite-dimensional vector spaces in Section I-4.5 and
linear maps between them in Section I-5.4. It turns out, though, that the key to
understanding the infinite-dimensional vector spaces that arise in applications is
through the various topologies one can put on these. This is the genesis of the
huge subject of topological vector spaces which we spend the next three chapters
introducing. The present chapter is devoted to topologies defined by a “norm.”
These are the most basic topologies, and suffice to cover many, but by no means
all, areas of application.

Certain parts of what we say in this chapter have already been accounted for
in Chapter 1. However, we it seems like a good idea to make the treatment
here independent, for the most part, of the more general and abstract treatment
in Chapter 1. Therefore, at the cost of repetitiveness we make treat all of the
topological ideas for normed vector spaces independently of the fact that we have
already considered them.

Do I need to read this chapter? This chapter is fundamental to understanding
in any rigorous way topics like Fourier series, Fourier transforms, linear system
theory, signal processing, etc. This makes at least the basic material in this chapter
essential reading. Perhaps a reading of the detailed examples of dual spaces in
Section 3.9 can be postponed until it is needed, although it is at least interesting. •

Contents

3.1 Definitions and properties of normed vector spaces . . . . . . . . . . . . . . . . 352
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Section 3.1

Definitions and properties of normed vector spaces

The basic ingredient in this chapter is a norm on a vector space. While it is
possible to introduce this notion for other classes of fields, we restrict our attention
to vector spaces over eitherR orC. It will often be convenient to be able to consider
both of these cases together, and so let us introduce some notation for doing this.

3.1.1 Notation (F) The symbol Fwill denote eitherR or C. That is to say, whenever the
symbol F is present, the statement can be read by replacing it with either R or C.
In order to use this convenient notation as much as possible we have the following
conventions.

(i) If F = R and if a ∈ F then |a| denotes the absolute value of a.
(ii) If F = C and if a ∈ F then |a| denotes the modulus of a.
(iii) If F = R and if a ∈ F then ā = a.
(iv) If F = C if a ∈ F then ā is the complex conjugate of a. •

Do I need to read this section? Accepting that normed vector spaces are impor-
tant (they are), this section must then be important. •

3.1.1 Norms and seminorms

In this section we consider norms and seminorms. While the notion of a norm is
the most important for us, we will see that seminorms come up in two natural ways.
One is in Section 3.8.8 when we give an extremely important class of normed vector
spaces. As we shall see, in the construction of this class it is natural to first define
a seminorm. Thus, although one is interested in a norm in the end, a seminorm
naturally arises along the way. In a completely different manner, seminorms will
be important in Chapter 6 in their own right. As we shall see, particularly in the
context of so-called “generalised signals” in Chapter IV-3, seminorms often arise
in natural way independently of whether they are used to define a norm.

In any event, here are the definitions.

3.1.2 Definition (Seminorm, norm) Let F ∈ {R,C} and let V be an F-vector space. A
seminorm on V is a map V ∋ v 7→ ∥v∥ ∈ R≥0 with the following properties:

(i) ∥av∥ = |a|∥v∥ for a ∈ F and v ∈ V (homogeneity);
(ii) ∥v1 + v2∥ ≤ ∥v1∥ + ∥v2∥ for v1, v2 ∈ V (triangle inequality).

A norm on V is a seminorm v 7→ ∥v∥with the additional property that
(iii) ∥v∥ = 0 only if v = 0V (positive-definiteness).

We shall often denote a seminorm by ∥·∥. •
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Let us give some examples of norms and seminorms. Sometimes examples are
illustrative and sometimes they are of great value in their own right. The examples
below, with the exception of the first one, are all of great independent interest, as
well as illustrating the concept of a norm.

3.1.3 Examples (Seminorm, norm)
1. For any F-vector space V there is a useless seminorm defined by v 7→ 0. Let us

call this the trivial seminorm since it is good for giving trivial examples. Unless
V = {0V}, the trivial seminorm is never a norm.

2. On Fn define
∥v∥2 =

(
|v1|

2 + · · · + |vn|
2
)1/2

.

In the case when F = R this is the standard norm on Rn as discussed in
Section II-1.2. In particular, this norm defines the usual notion of length of a
vector inFn, i.e., ∥v∥ is the distance from 0Fn to v. Note that we now use different
notation for this norm. We shall also sometimes call it the 2-norm on Fn rather
than the standard norm. It is pretty evident that ∥·∥2 satisfies the homogeneity
and positive-definiteness properties required of a norm. It is also true that ∥·∥2
satisfies the triangle inequality. We do not prove this here, although it was
proved in the case when F = R as part of Proposition II-1.1.8. The proof of
this relies on the so-called “Cauchy–Bunyakovsky–Schwarz Inequality.” This
inequality holds because ∥·∥2 is the norm derived from an inner product on Fn.
Thus we shall see how ∥·∥2 satisfies the triangle inequality when we discuss
inner products in Section 4.1. Moreover, we shall see this example come up in
another general context in Section 3.8.1. The point is that we will subsequently
see multiple proofs of the triangle inequality for ∥·∥2.

3. Let us consider another norm on Fn which differs from the standard norm. For
v = (v1, . . . , vn) ∈ Fn define

∥v∥1 = |v1| + · · · + |vn|.

All properties of the norm are readily verified, including the triangle inequality,
as this now follows from the triangle inequality for |·|. Although different from
the standard norm, this norm is in some sense equivalent to it, and we refer to
Exercise 3.1.6 for an exploration of this. This norm is called the 1-norm.

4. Let us consider a final (for now) norm on Fn given by

∥v∥∞ = max{|v j| | j ∈ {1, . . . ,n}}.

This is in fact a norm, called the ∞-norm. The only not entirely trivial norm
property to verify is the triangle inequality. For this, let u,v ∈ Fn and let j, k, ℓ ∈
{1, . . . ,n} have the property that ∥u∥∞ = |u j|, ∥v∥∞ = |vk|, and ∥u + v∥∞ = |uℓ + vℓ|.
We then have

∥u + v∥∞ = |uℓ + vℓ| ≤ |uℓ| + |vℓ| ≤ |u j| + |vk| = ∥u∥∞ + ∥v∥∞.
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Note that this norm is also different from the standard norm, but it is equivalent
in some sense; Exercise 3.1.6.

The above three examples of norms were all defined on the finite-dimensional
F-vector space Fn. Let us now consider infinite-dimensional analogues of these
norms.
5. Recall from Example I-4.5.2–4 that F∞0 denotes the sequences (v j) j∈Z>0 for which

the set { j ∈ Z>0 | v j , 0} is finite. Thus sequences in F∞0 are eventually zero. We
define

∥(v j) j∈Z>0∥2 =
( ∞∑

j=1

|v j|
2
)1/2

,

noting that the sum makes sense since it is actually finite. That ∥·∥2 satisfies the
properties of a norm is straightforward. Let us verify just the triangle inequality,
since its proof gives the idea of how the norm works. We let (u j) j∈Z>0 , (v j) j∈Z>0 ∈

F∞0 and let N ∈ Z>0 be such that u j = v j = 0 for j ≥ N. Then

∥(u j) j∈Z>0 + (v j) j∈Z>0∥2 =
( ∞∑

j=1

|u j|
2 +

∞∑
j=1

|v j|
2
)1/2
=

( ∞∑
j=1

(|u j|
2 + |v j|

2)
)1/2

=
( N∑

j=1

(|u j|
2 + |v j|

2)
)1/2
≤

( N∑
j=1

|u j|
2
)1/2
+

( N∑
j=1

|u j|
2
)1/2

=
( ∞∑

j=1

|u j|
2
)1/2
+

( ∞∑
j=1

|u j|
2
)1/2

= ∥(u j) j∈Z>0∥2 + ∥(v j) j∈Z>0∥2,

where we have used the triangle inequality for the 2-norm on FN. This norm is
called the 2-norm on F∞0 .

6. We again consider the vector space F∞0 and now define

∥(v j) j∈Z>0∥1 =

∞∑
j=1

|v j|,

this sum again making sense since it is finite. It is easy to verify, just as we did
for the 2-norm above, that ∥·∥1 is a norm, and we call it the 1-norm.

7. As a final norm on F∞0 we define

∥(v j) j∈Z>0∥∞ = sup{|v j| | j ∈ Z>0}.

Because the sequence (v j) j∈Z>0 is finite, it is certainly bounded, and so the defini-
tion makes sense. Moreover, the norm properties follow, essentially from those
of ∥·∥∞ on Fn. This norm we call, of course, the∞-norm.
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Now we consider yet another generalisation of the three types of norms we have
been considering, now thinking about, not sequences, but functions. The reader
should note the very strong analogies between the definitions of the norms that
follow and the norms above: the sums are replaced with integrals and the “max” is
replaced with a “sup.” Since the issues surrounding norms on infinite-dimensional
vector spaces can be complex, one should cling to familiarity where possible.
8. We consider the F-vector space C0([a, b];F) of continuous F-valued functions

on the compact interval [a, b]. Provided that b > a this is an infinite-dimensional
vector space, cf. Example I-4.5.18–6. On this vector space we define

∥ f ∥2 =
(∫ b

a
| f (x)|2 dx

)1/2
.

Note that continuous functions (and therefore their squares) on compact inter-
vals are always Riemann integrable by Corollary I-3.4.12, and so the integral
here is the friendly Riemann integral. It is easy to see that this possible norm
satisfies the homogeneity and positive-definiteness properties of a norm (see
Exercise I-3.4.1 for positive-definiteness). Thus, like its 2-norm brother on Fn,
the difficult norm property to verify is the triangle inequality. However, we
shall see in that this norm is derived from an inner product, and so this will where?

give the triangle inequality just like the 2-norm on Fn. We shall also see this
norm arise from the more general setting of Section 3.8.8. Again, the point is
that we will subsequently prove the triangle inequality for ∥·∥2 in a few different
ways.
This norm will be called the 2-norm on C0([a, b];F).

9. On C0([a, b];F) define

∥ f ∥1 =
∫ b

a
| f (x)|dx.

Again, the integral here is the Riemann integral. The three norm properties are
easily verified. Only the triangle inequality is possibly nontrivial:

∥ f + g∥1 =
∫ b

a
| f (x) + g(x)|dx ≤

∫ b

a

(
| f (x)| + |g(x)|

)
dx

=

∫ b

a
| f (x)|dx +

∫ b

a
|g(x)|dx = ∥ f ∥1 + ∥g∥1.

This norm, called the 1-norm, is different than the 2-norm. As the reader can
explore in Exercise 3.1.6, for the 1- and 2-norms on Fn, there is some sort of
equivalence between these. However, for the 1- and 2-norms on C0([a, b];F) this
is no longer true. This is not perfectly obvious right now, and the reader will
have to wait until to start understanding this. But this is where we start to see what?

how things are more complicated for infinite-dimensional vector spaces.
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10. As a final norm on C0([a, b],F) we take

∥ f ∥∞ = sup{| f (x)| | x ∈ [a, b]}.

Again, the triangle inequality is the troublesome property to verify. In this case
the verification goes as follows:

∥ f + g∥∞ = sup{| f (x) + g(x)| | x ∈ [0, 1]}
≤ sup{| f (x)| + |g(x)| | x ∈ [0, 1]}
≤ sup{| f (x)| + |g(y)| | x, y ∈ [0, 1]}
≤ sup{| f (x)| | x ∈ [0, 1]} + sup{|g(y)| | y ∈ [0, 1]}
= ∥ f ∥∞ + ∥g∥∞.

This norm is yet again different than the 1- and 2-norms. Moreover, it is yet
again fundamentally not equivalent, distinguishing the infinite-dimensional
case from the finite-dimensional case. This will be elucidated in . •what?

An obvious question is whether a vector space always possesses a norm. The
answer is, “Yes, it does,” and the astute reader will have seen from Examples 5, 6,
and 7 above how this can be done. We record this as the following result.

3.1.4 Proposition (Vector spaces always have at least one norm) If F ∈ {R,C} and if
V is an F-vector space then there is a norm on V.

Proof By Theorem I-4.5.45 we know the vector space V possesses a basis which
establishes an isomorphism ι of V with FJ

0 for some set J. Let us first define a norm on
FJ

0. Writing a typical element of FJ
0 as (v j) j∈J we define

∥(v j) j∈J∥J =
∑
j∈J

|v j|,

noting that this sum exists since all but finitely many of the v j’s are zero. To verify that
this is a norm is straightforward, cf. Example 3.1.3–5. Now define ∥·∥V by ∥v∥V = ∥ι(v)∥J.
That this is indeed defines a norm follows from linearity of ι:

∥av∥V = ∥ι(av)∥J = ∥aι(v)∥J = |a|∥ι(v)∥ = |a|∥v∥V;
∥v1 + v2∥V = ∥ι(v1) + ι(v2)∥J ≤ ∥ι(v1)∥J + ∥ι(v2)∥J = ∥v1∥V + ∥v2∥V.

Also, if ∥v∥V = 0 this ∥ι(v)∥J = 0 which means that ι(v) = 0
FJ

0
. Thus v = 0V since ι is an

isomorphism. ■

One needs to take care with the preceding result: (1) it does not say that there
is a unique norm on a given vector space; (2) it does not say that there is a useful
norm on a given vector space. Indeed, we will see in Corollary 3.6.27 that some
vector spaces do not possess “useful” norms. Thus the result should be thought
of as being in the interesting vein rather than the useful vein, particularly for
infinite-dimensional normed vector spaces.

In terms of convenient lingo the following definition is helpful.
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3.1.5 Definition (Seminormed vector space, normed vector space) Let F ∈ {R,C}.
(i) A seminormed F-vector space is a pair (V, ∥·∥) where V is a F-vector space

and ∥·∥ is a seminorm on V.
(ii) A normed F-vector space is a pair (V, ∥·∥) where V is a F-vector space and ∥·∥

is a norm on V. •

3.1.6 Notation ((Semi)normed vector spaces) If a norm or seminorm is understood,
we shall often say, “the (semi)normed F-vector space V.” One really needs to
exercise caution with this abuse, however, since the same vector space can have
multiple norms, and the behaviour can depend in a drastic way on the norm. •

Let us give some more or less trivial properties of normed vector spaces.

3.1.7 Proposition (Properties of seminormed and normed vector spaces) Let F ∈
{R,C}, let (V, ∥·∥) be a seminormed F-vector space, and let U ⊆ V be a subspace. Then the
following statements hold:

(i) the map (v1,v2) 7→ ∥v1 − v2∥ is a semimetric on V, and is a metric when ∥·∥ is a
norm;

(ii)
∣∣∣∥v1∥ − ∥v2∥

∣∣∣ ≤ ∥v1 − v2∥ for all v1,v2 ∈ V;

(iii)
∣∣∣∥v1 − v3∥ − ∥v2 − v4∥

∣∣∣ ≤ ∥v1 − v2∥ + ∥v3 − v4∥ for all v1,v2,v3,v4 ∈ V;
(iv) the restriction of ∥·∥ to U defines a seminorm on U, and this seminorm is a norm

when ∥·∥ is a norm.
Proof (i) This is just a matter of plugging in the definitions. Perhaps the only nontrivial
fact is the triangle inequality:

∥v1 − v3∥ = ∥(v1 − v2) + (v2 − v3)∥ ≤ ∥v1 − v2∥ + ∥v2 − v3∥.

(ii) This is Exercise 3.1.3.
(iii) We use the triangle inequality and part (ii):∣∣∣∥v1 − v3∥ − ∥v2 − v4∥

∣∣∣ = ∣∣∣∥v1 − v3∥ − ∥v2 − v3∥ + ∥v3 − v2∥ − ∥v2 − v4∥
∣∣∣

≤

∣∣∣∥v1 − v3∥ − ∥v2 − v3∥
∣∣∣ + ∣∣∣∥v3 − v2∥ + ∥v2 − v4∥

∣∣∣
≤ ∥v1 − v2∥ + ∥v3 − v4∥,

as desired.
(iv) This is trivial. ■

Now we indicate how one can pass from a seminormed vector space to a
normed vector space in a natural way. This mirrors our result Theorem 1.1.28 for
semimetric spaces.
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3.1.8 Theorem (Normed vector spaces from seminormed vector spaces) Let F ∈
{R,C} and let (V, ∥·∥) be a seminormed F-vector space. Then the following statements hold:

(i) the set V0 = {v ∈ V | ∥v∥ = 0} is a subspace of V;
(ii) the function V/V0 ∋ v + V0 7→ ∥v∥ is a norm on V/V0.

Proof (i) If u, v ∈ V0 and if a ∈ F then

0 ≤ ∥u + v∥ ≤ ∥u∥ + ∥v∥ = 0

and
∥av∥ = |a|∥v∥ = 0,

giving u + v, av ∈ V0, as desired.
(ii) First let us show that the function is well-defined. Suppose that v+V0 = v′+V0

so that v − v′ ∈ V0. Then

∥v′∥ = ∥v + (v′ − v)∥ ≤ ∥v∥ + ∥v′ − v∥ = ∥v∥

and
∥v∥ = ∥v′ + (v − v′)∥ ≤ ∥v′∥ + ∥v − v′∥ = ∥v′∥

using the triangle inequality. Thus ∥v′∥ = ∥v∥, and the map is then well-defined. It
clearly has the homogeneity and triangle inequality properties of a norm. To check the
positive-definiteness, suppose that ∥v + V0∥ = 0. Then ∥v∥ = 0 and so v ∈ V0, giving
v + V0 = 0V + V0, as desired. ■

3.1.2 Open and closed subsets of normed vector spaces

As we saw in Proposition 3.1.7 a seminorm (resp. norm) ∥·∥ on V determines
a semimetric (resp. metric) on V by d∥·∥(v1, v2) = ∥v1 − v2∥. A semimetric then
determines a topology, and, if the semimetric is a metric, this topology is Hausdorff
(see ). Therefore, seminormed vector spaces are topological spaces, and normedwhat

vector spaces are Hausdorff topological spaces. In this section we describe this
topology in more detail. Some of what we say is redundant since it follows from
what we have already said for metric spaces. However, we aim to make our
treatment of normed vector spaces as self-contained as possible. In this section we
make statements that are valid for seminormed vector spaces, and not just normed
vector spaces, although it is the latter that are of most immediate interest. We
adopt the convention of writing “(semi)norm” when we mean that the object can
be either a norm or a seminorm. Readers caring only about norms can omit the
“(semi)” in their heads.

As with metrics, the building block of the topology of a normed vector space is
the open ball.

3.1.9 Definition (Open, closed, and bounded sets in (semi)normed vector spaces)
Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space.

(i) The open ball of radius r about v0 ∈ V is the set

B(r, v0) = {v ∈ V | ∥v − v0∥ < r}.
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(ii) The closed ball of radius r about v0 ∈ V is the set

B(r, v0) = {v ∈ V | ∥v − v0∥ ≤ r}.

(iii) A subset U ⊆ V is open if, for each v ∈ U, there exists ϵ ∈ R>0 such that
B(ϵ, v) ⊆ U. (The empty set is also open, by declaration.)

(iv) A subset A ⊆ V is closed is V \ A if open.
(v) A subset A ⊆ V is bounded if there exists R ∈ R>0 such that A ⊆ B(R, 0V). •

One can easily show that the open ball is open (this is Exercise 3.1.1).
We shall not attempt to systematically distinguish notationally the rôle of ∥·∥ in

the open ball B(r, v0). If there is a potential cause of confusion we will handle it as
it comes up. For example, if we are working with multiple (semi)normed vector
spaces, we may use the notation BV(r, v0) to specify that a ball is in V.

Let us give some properties of open sets.

3.1.10 Proposition (Properties of open subsets of (semi)normed vector spaces) Let
F ∈ {R,C} and let (V, ∥·∥) be a (semi)normedF-vector space. Then the following statements
hold:

(i) for (Ua)a∈A an arbitrary family of open sets, ∪a∈AUa is open;
(ii) for (U1, . . . ,Un) a finite family of open sets, ∩n

j=1Uj is open.
Proof (i) Let v ∈ ∪a∈AUa. Then, since v ∈ Ua0 for some a0 ∈ A, there exists ϵ ∈ R>0 such
that B(ϵ, v) ⊆ Ua0 ⊆ ∪a∈AUa.

(ii) Let v ∈ ∩n
j=1U j. For each j ∈ {1, . . . ,n}, choose ϵ j ∈ R>0 such that B(ϵ j, v) ⊆ U j,

and let ϵ = min{ϵ1, . . . , ϵn}. Then B(ϵ, v) ⊆ U j, j ∈ {1, . . . ,n}, and so B(ϵ, v) ⊆ ∩n
j=1U j. ■

This result shows that the collection of open subsets of a (semi)normed vector
space define a topology.

3.1.11 Definition ((Semi)norm topology) LetF ∈ {R,C} and let (V, ∥·∥) be a (semi)normed
F-vector space. The topology on V whose open sets are the open sets defined by
the (semi)norm ∥·∥ is the (semi)norm topology on V. •

One of the most important properties about the norm topology is that it is
translation invariant. Let us see what this means. For v0 ∈ V define τv0 : V→ V by
τv0(v) = v + v0. Thus τv0 is “translation by v0.” We then have the following result.

3.1.12 Proposition (Translation invariance of the (semi)norm topology) LetF ∈ {R,C}
and let (V, ∥·∥) be a (semi)normed F-vector space. Then a subset U ⊆ V is open if and only
if τv0(U) is open.

Proof Suppose that U ⊆ V is open and let v ∈ τv0(U). Then τ−v0(v) ∈ U and so there
exists ϵ > 0 such that B(ϵ, v) ⊆ U. Note that

τv0(B(ϵ, v)) = τv0({u ∈ V | ∥u − v∥ < ϵ})
= {v0 + u ∈ V | ∥u − v∥ < ϵ}
= {u′ ∈ V | ∥u′ − (v + v0)∥ < ϵ}
= B(ϵ, τv0(v)).
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Thus
B(ϵ, v) ⊆ U =⇒ τv0(B(ϵ, v)) ⊆ τv0(U) =⇒ B(ϵ, τv0(v)) ⊆ τv0(U).

Thus τv0(U) is open.
Conversely, if τv0(U) is open then, by the first part of the proof, τ−v0(τv0(U)) = U is

open. ■

As the proof of the preceding result makes clear, the key to the translation
invariance of the norm topology is the fact that τv0(B(r, v)) = B(r, τv0(v)) for every
r ∈ R>0 and v, v0 ∈ V. This is a pretty obvious fact, but is so useful that it is worth
pointing out explicitly.

The norm topology generally depends on the norm. However, it is possible that
two different norms will give the same topology. The following definition captures
this idea.

3.1.13 Definition (Equivalent norms) Let F ∈ {R,C} and let V be a F-vector space. Two
norms ∥·∥1 and ∥·∥2 (the subscripts “1” and “2” have nothing to do with the 1- and
2-norms considered in Example 3.1.3) are equivalent if a subset U ⊆ V is open in
the norm topology defined by ∥·∥1 if and only if it is open in the norm topology
defined by ∥·∥2. •

We will not be interested in the notion of equivalence for seminorms.
In short, equivalent norms define the same open sets. It is useful to be able to

characterise equivalent norms in a more computational manner, one that might be
able to check in practice. The following result gives just such a characterisation.

3.1.14 Theorem (Characterisation of equivalent norms) Let F ∈ {R,C} and let V be a
F-vector space. Two norms ∥·∥1 and ∥·∥2 on V are equivalent if and only if there exists
C ∈ R>0 such that

C−1
∥v∥2 ≤ ∥v∥1 ≤ C∥v∥2

for all v ∈ V.
Proof First suppose that ∥·∥1 and ∥·∥2 are equivalent. Let B1(r, v0) and B2(r, v0) denote
the open balls of radius r centred at v0 for ∥·∥1 and ∥·∥2, respectively. By , equivalencewhat?

of the two norm topologies implies that for every R ∈ R>0 there exists C1,C2 ∈ R>0
such that

B2(C1, 0V) ⊆ B1(R, 0V) ⊆ B2(C2, 0V).

Let us consider the inclusion B2(C1, 0V) ⊆ B1(R, 0V). If v ∈ V is nonzero then this
inclusion gives

∥v∥2 ≤ 1 =⇒ ∥C1v∥2 ≤ C1 =⇒ ∥C1v∥1 ≤ R =⇒
∥C1v∥1
∥C1v∥2

≤
R

∥C1v∥2

=⇒
∥v∥1
∥v∥2

≤
R
C1
=⇒ ∥v∥1 ≤

R
C1
∥v∥2.
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Thus ∥v∥1 ≤ R
C1
∥v∥2 holds if v is nonzero and if ∥v∥2 ≤ 1. Clearly the same equality

holds for v = 0V. For v ∈ V nonzero we also have∥∥∥∥ v
∥v∥2

∥∥∥∥
1
≤

R
C1

∥∥∥∥ v
∥v∥2

∥∥∥∥
2
=⇒ ∥v∥1 ≤

R
C1
∥v∥2.

Thus the relation ∥v∥1 ≤ R
C1
∥v∥2 holds for all v ∈ V.

An entirely similar argument shows that the inclusion B1(R, 0V) ⊆ B2(C2, 0V) im-
plies that ∥v∥2 ≤

C2
R ∥v∥1 for all v ∈ V. Thus we have

C2

R
∥v∥2 ≤ ∥v∥1 ≤

R
C1
∥v∥2

for all v ∈ V. Taking C = max{ R
C1
, R

C2
} gives

C−1
∥v∥2 ≤ ∥v∥1 ≤ C∥v∥2, v ∈ V,

as desired.
Now suppose that there exists C ∈ R>0 such that

C−1
∥v∥2 ≤ ∥v∥1 ≤ C∥v∥2

for all v ∈ V. Let R ∈ R>0 and note that

v ∈ B1(R, 0V) =⇒ ∥v∥1 < R =⇒ ∥v∥2 ≤ RC =⇒ vB2(RC, 0V).

Thus B1(R, 0V) ⊆ B2(RC, 0V). Similarly we show that B2( R
C , 0V) ⊆ B1(R, 0V). Thus we

have
B2( R

C , 0V) ⊆ B1(R, 0V) ⊆ B2(RC, 0V)

for every R ∈ R>0. From the remarks following the proof of Proposition 3.1.12 it
follows that

B2( R
C , v0) ⊆ B1(R, v0) ⊆ B2(RC, v0)

for every R ∈ R>0 and every v0 ∈ V. The equivalence of the two norm topologies now
follows from . ■ what?

The following result shows that, on a finite-dimensional normed vector space
there is really only one norm topology, although one can use different norms to
define it.

3.1.15 Theorem (Uniqueness of the norm topology on finite-dimensional normed
vector spaces) If F ∈ {R,C} and if V is a finite-dimensional F-vector space, then any
two norms on V are equivalent.

Proof Let {e1, . . . , en} be a basis for V and let ι : V→ Fn be defined by

ι(v1e1, . . . , vnen) = (v1, . . . , vn).
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Define norms ∥·∥1 and ∥·∥2 on V by

∥v∥1 = ∥ι(v)∥1 =
n∑

j=1

|v j|,

∥v∥2 = ∥ι(v)∥2 =
( n∑

j=1

|v j|
2
)1/2

.

Thus we are abusing notation and using ∥·∥1 and ∥·∥2 for norms both on V andFn. These
do define norms on V by Example 3.1.3 (also, cf. the proof of Proposition 3.1.4). Since
the notion of equivalence of norms is an equivalence relation (this is Exercise 3.1.5), it
suffices to show that any other norm of V is equivalent to ∥·∥2. Let ∥·∥ be another norm
on V and write, for u, v ∈ V,

u = u1e1 + · · · + unen, v = v1e1 + · · · + vnen.

We then have, by Exercise 3.1.3 and Proposition II-1.1.11, and the triangle inequality,

|∥u∥ − ∥v∥| ≤ ∥u − v∥ =
∥∥∥∥ n∑

j=1

(u j − v j)e j

∥∥∥∥ ≤ n∑
j=1

|u j − v j|∥e j∥

≤ max{∥e j∥ | j ∈ {1, . . . ,n}}∥u − v∥1 ≤ C∥v∥2,

where C = max{∥e j∥ | j ∈ {1, . . . ,n}}
√

n. We claim that this implies that the function
v 7→ ∥ι−1(v)∥ on Fn is continuous with respect to the norm ∥·∥2. Indeed, for ϵ ∈ R>0 let
δ = ϵ

C . For v0 ∈ Fn suppose that ∥v − v0∥2 < δ. Then, from our computations above,

|∥ι−1(v)∥ − ∥ι−1(v0)∥| ≤ C∥v − v0∥2 < ϵ,

giving continuity of v 7→ ∥ι−1(v)∥ at v0. Let B2(1, 0Fn) be the unit ball with respect to
the norm ∥·∥2 centred at the origin in Fn and let B2(1, 0V) be the unit ball with respect
to the norm ∥·∥2 centred at the origin in V. The boundary of B2(1, 0Fn) is closed and
bounded with respect to the norm ∥·∥2 and its topology, and so is compact in Fn with
respect to the usual topology by the Heine–Borel Theorem. Therefore, by , the functionwhat

v 7→ ∥ι−1(v)∥ attains a minimum value m ∈ R>0 and a maximum value M ∈ R>0 on
bd(B2(1, 0Fn). Thus, for v ∈ B2(1, 0Fn) we have

m ≤ ∥ι−1(v)∥ ≤M

which is equivalent to saying that, for v ∈ bd(B2(1, 0V)) (boundary being taken with
respect to the norm topology on V for the norm ∥·∥2) we have

m ≤ ∥v∥ ≤M.

For arbitrary v ∈ V \ {0V} this gives

m ≤
∥∥∥∥ v
∥v∥2

∥∥∥∥ ≤M =⇒ m∥v∥2 ≤ ∥v∥ ≤M∥v∥2,

showing that ∥·∥ and ∥·∥2 are equivalent if we take C = max{M,m−1
}. ■

We will use this theorem to unambiguously talk about the norm topology on
Fn, or any finite-dimensional F-vector space, as being the topology defined by any
norm.
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3.1.3 Subspaces, direct sums, and quotients

We have studied in Section I-4.5 the notions of subspace, direct sum, and
quotient from an algebraic point of view. Let us see now how these notions
interact with the structure of a norm.

For subspaces we record the following trivial result. We will have much more
to say about subspaces of normed vector spaces in Section 3.6.4.

3.1.16 Proposition (Subspaces of (semi)normed vector spaces are (semi)normed
vector spaces) Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. If
U ⊆ V is a subspace then the map U ∋ u 7→ ∥u∥ ∈ R≥0 is a (semi)norm on U.

Now we consider direct sums of normed vector spaces. Let us first consider
the general case, and then consider the case of finite direct sums as a special case.
We recall from Definition I-4.5.39 that the direct sum of a family (Vi)i∈I of vector
spaces is the set of maps ϕ : I → ∪i∈IVi for which ϕ(i) ∈ Vi, i ∈ I, and for which the
set {i ∈ I | ϕ(i) , 0Vi} is finite. This set has a natural vector space structure and is
denoted

⊕
i∈I Vi.

3.1.17 Theorem (Direct sums of (semi)normed vector spaces are (semi)normed vec-
tor spaces) Let F ∈ {R,C} and let ((Vi, ∥·∥i))i∈I be a family of (semi)normed F-vector
spaces. For ϕ ∈

⊕
i∈I Vi define

∥ϕ∥I =
∑
i∈I

∥ϕ(i)∥i,

this sum being well-defined since it is finite. Then (
⊕

i∈I Vi, ∥·∥I) is a (semi)normed F-
vector space, and is moreover a normed vector space if each of the components (Vi, ∥·∥i),
i ∈ I, is a normed vector space.

Proof Let a ∈ F and compute

∥aϕ∥I =
∑
i∈I

∥aϕ(i)∥a =
∑
i∈I

|a|∥ϕ(i)∥i = |a|
∑
i∈I

∥ϕ(i)∥a = |a|∥ϕ∥I,

where all operations make sense since the sums are finite.
If ϕ,ψ ∈

⊕
i∈I Vi we compute

∥ϕ + ψ∥I =
∑
i∈I

∥ϕ(i) + ψ(i)∥i ≤
∑
i∈I

∥ϕ(i)∥i +
∑
i∈I

∥ψ(i)∥i = ∥ϕ∥I + ∥ψ∥I,

as desired.
Finally, if

∥ϕ∥ =
∑
i∈I

∥ϕ(i)∥i = 0

then we must have ∥ϕ(i)∥i = 0 for each i ∈ I. If each of the seminorms ∥·∥i, i ∈ I, are
norms then this implies that ϕ(i) = 0Vi , i ∈ I, implying that ∥·∥I is a norm. ■

We can now make the following definition.
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3.1.18 Definition (Direct sum of (semi)normed vector spaces) Let F ∈ {R,C} and let
((Vi, ∥·∥i))i∈I be a family of (semi)normed F-vector spaces. The (semi)normed vector
space (

⊕
i∈I Vi, ∥·∥I) is the direct sum of ((Vi, ∥·∥i))i∈I. •

Let us record how this works for the direct sum of two (semi)normed vector
spaces. Thus let (V1, ∥·∥1) and (V2, ∥·∥2) be (semi)normed F-vector spaces. Their
direct sum is the vector space V1 ⊕ V2, points in which we denote by (v1, v2), with
the (semi)norm

∥(v1, v2)∥1,2 = ∥v1∥1 + ∥v2∥2.

Now we consider quotients of normed vector spaces by subspaces.

3.1.19 Proposition (The quotient of a (semi)normed vector space is a (semi)normed
vector space) Let F ∈ {R,C}, let (V, ∥·∥) be a (semi)normed F-vector space, and let U
be a subspace. If we define

∥v + U∥/U = inf{∥v + u∥ | u ∈ U}

then ∥·∥/U is a seminorm on V/U. Moreover, if ∥·∥ is a norm and if U is closed, then ∥·∥/U
is a norm.

Proof It is evident that ∥v + U∥/U ∈ R>0. If a = 0 we have

∥0(v + U)∥/U = ∥0v + U∥/U = inf{∥0V + u∥ | u ∈ U} = 0 = |a|∥v + U∥/U.

For a ∈ F \ {0}we have

∥a(v + U)∥/U = ∥av + U∥/U = inf{∥av + u∥ | u ∈ U}
= inf{∥av + au′∥ | u′ ∈ U} = inf{|a|∥v + u′∥ | u′ ∈ U}
= |a| inf{∥v + u′∥ | u′ ∈ U} = |a|∥v + U∥/U.

For the triangle inequality we have

∥(v1 + U) + (v2 + U)∥/U = ∥(v1 + v2) + U∥/U = inf{∥v1 + v2 + u∥ | u ∈ U}
= inf{∥v1 + v2 + u1 + u2∥ | u1,u2 ∈ U}
≤ inf{∥v1 + u1∥ + ∥v2 + u2∥ | u1,u2 ∈ U}
= inf{∥v1 + u1∥ | u1 ∈ U} + inf{∥v2 + u2∥ | u2 ∈ U}
= ∥v1 + U∥/U + ∥v2 + U∥/U,

as desired, where we have used Proposition I-2.2.27.
To prove the final assertion we rely on some facts about closed sets that we will

not prove until Section 3.6.2. Let v + U ∈ V/U satisfy ∥v + U∥/U = 0. Thus

inf{∥v + u∥ | u ∈ U} = 0.

Therefore, for j ∈ Z>0, there exists u j ∈ U such that ∥v + u j∥ <
1
j . Thus the sequence

(v+ u j) j∈Z>0 converges to 0V. By Proposition 3.2.6 it follows that the sequence (u j) j∈Z>0

converges to−v. Since the sequence is in U and since U is closed, by Proposition 3.6.8(ii)
it follows that −v ∈ U and so v ∈ U. Thus v + U = 0V + U, giving ∥·∥/U as a norm. ■
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One should be a little careful with the result. It does not say that ∥·∥/U is a norm
if ∥·∥ is a norm; this requires the additional assumption that U is closed.

Let us examine some properties of the canonical projection from V to V/U.
Let us examine some properties of the canonical projection from V to V/U. Here

we refer ahead to Section 3.5 for notion of continuity and back to for the notion of what

the quotient topology.

3.1.20 Proposition (The canonical projection onto the quotient is continuous) Let
F ∈ {R,C}, let (V, ∥·∥) be a (semi)normed F-vector space, and let U be a subspace. Then
the canonical projection πU : V → V/U is continuous. Moreover, the seminorm topology
on V/U coincides with the quotient topology.

Proof Let v ∈ V with v + U the projection to V/U. Let (v j) j∈Z>0 be a sequence in V
converging to v. We claim that (v j +U) j∈Z>0 converges to v+U. Indeed, if ϵ ∈ R>0, take
N ∈ Z>0 such that ∥v − v j∥ < ϵ for j ≥ N. Then

∥(v − v j) + U∥/U ≤ ∥v − v j∥ < ϵ

for j ≥ N, giving convergence as desired. Continuity of v 7→ v + U now follows from
Theorem 3.5.2.

Let π : V → V/U denote the canonical projection. Now let S ⊆ V/U be such that
π−1(S) is a open. We claim that S is a open. For v0 + U ∈ S let BV(ϵ, v0) be an open ball
about v0 contained in π−1(S). We have

π(BV(ϵ, v0)) = {v + U | ∥v − v0∥ < ϵ} = {v + U | ∥(v − v0) + U∥/U < ϵ}
= BV/U(ϵ, v0 + U).

Since π(BV(ϵ, v0)) ⊆ S it follows that S is open. ■

Exercises

3.1.1 Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. Show that
B(r, v0) is open for every r ∈ R>0 and v0 ∈ V.

3.1.2 Let F ∈ {R,C} and let (V, ∥·∥) be a F-vector space. Let r1, r2 ∈ R>0 satisfy
r2 ≤ r1 and let v1, v2 ∈ Rn. Show that if B(r1, v1)∩B(r2, v2) , ∅ then B(r2, v2) ⊆
B(3r1, v1). Show that you understand your proof by drawing a picture.

3.1.3 In a (semi)normed vector space (V, ∥·∥) show that for each v1, v2 ∈ V, |∥v1∥ −

∥v2∥| ≤ ∥v1 − v2∥.
3.1.4 Denote by C1([0, 1];R) the set of R-valued functions on [0, 1] which are

continuously differentiable, derivatives at 0 and 1 being taken from the right
and left, respectively.
(a) For f ∈ C1([0, 1];R) define

∥ f ∥ =
∫ 1

0
| f ′(x)|dx.

Show that ∥·∥ is a seminorm on C1([0, 1];R), but not a norm.
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(b) For f ∈ C1([0, 1];R) define

∥ f ∥ = | f (0)| +
∫ 1

0
| f ′(x)|dx.

Show that ∥·∥ is a norm on C1([0, 1];R).
3.1.5 Let F ∈ {R,C} and let V be an F-vector space. Define a relation ∼ on the set

of norms on V by saying that ∥·∥1 ∼ ∥·∥2 if ∥·∥1 and ∥·∥2 are equivalent in the
sense of Definition 3.1.13. Show that ∼ is an equivalence relation.

3.1.6 On V = R2 consider the three norms ∥·∥2, ∥·∥1, and ∥·∥∞ given by Exam-
ples 3.1.3–2, 3.1.3–3, and 3.1.3–4, respectively.
(a) Draw the subsets B2(r, 0), B1(r, 0), and B∞(r, 0) of R2 defined by

B2(r, 0) = {v ∈ R2
| ∥v∥2 ≤ r}

B1(r, 0) = {v ∈ R2
| ∥v∥1 ≤ r}

B∞(r, 0) = {v ∈ R2
| ∥v∥∞ ≤ r}.

(b) Using your drawings from part (a), argue that if and only if a sequence
of points (v j) j∈Z>0 inR2 converges in one of the three norms, it converges
in the other two norms.

3.1.7 Let F ∈ {R,C} and let (V, ∥·∥) be a finite-dimensional normed F-vector space.
Let {e1, . . . , en} be a basis for V for which ∥e1∥ = · · · = ∥en∥ = 1.
(a) For v = v1e1 + · · · + vnen ∈ V define

∥v∥1 = |v1| + · · · + |vn|.

Show that ∥·∥1 is a norm on V that satisfies ∥e1∥1 = · · · = ∥en∥1 = 1.
(b) Let B(1, 0V) and B1(1, 0V) be the unit balls for the norms ∥·∥ and ∥·∥1,

respectively. Show that B1(1, 0V) ⊆ B(1, 0V).
(The point is that the balls in the norm ∥·∥1 are the smallest among the balls
for all norms in which the basis vectors have unit length.)
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Section 3.2

Sequences in normed vector spaces

Much of the structure of normed vector spaces can be captured by studying
sequences in these spaces. Much of the presentation here follows the presentation
of Section I-2.3. Indeed, many of the proofs are mere changes of notation of the
analogous proofs for sequences in R. However, we give all of the details of the
presentation here for both (1) completeness and (2) because not all results are
exactly the same as those for R. This has the disadvantage of repetitiveness, but
the advantage of making this section more self-contained.

Do I need to read this section? The ideas in this section are basic, so the defini-
tions should be read and the results understood. Readers who are familiar with
the material in Section I-2.3 will find this section reads pretty easily. •

3.2.1 Definitions and properties of sequences

Let V be a F-vector space. A sequence in V is, in accordance with Defini-
tion I-1.6.8, a map from Z>0 to V, and we denote a sequence by (v j) j∈Z>0 . For
sequences we have the usual definitions corresponding to notions of convergence.

3.2.1 Definition (Convergence of sequences) LetF ∈ {R,C} and let (V, ∥·∥) be a
(semi)normed F-vector space. Let (v j) j∈Z>0 be a sequence in R and let v0 ∈ V.
The sequence:

(i) is a Cauchy sequence if, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that
∥v j − vk∥ < ϵ for j, k ≥ N;

(ii) converges to v0 if, for each ϵ ∈ R>0, there exists N ∈ Z>0 such that ∥v j− v0∥ < ϵ
for j ≥ N;

(iii) diverges if it does not converge to any element in V;
(iv) is bounded if there exists M ∈ R>0 such that ∥v j∥ < M for each j ∈ Z>0.

If the sequence converges to v0 then v0 is the limit of the sequence and we write
v0 = lim j→∞ v j. •

3.2.2 Notation (Limits with general index sets) As in Section I-2.3.7 we can talk about
limits of things more general than sequences. The setup where we will use this idea
is the following. Let F ∈ {R,C} and let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector
spaces. We consider an open subset O ⊆ U and a map ϕ : O → V. For u0 ∈ O,
we wish to define what we mean by limu→u0 ϕ(u). What we mean is this. If, there
exists v0 ∈ V such that, for any sequence (u j) j∈Z>0 converging to u0, the sequence
(ϕ(u j)) j∈Z>0 converges to 0, then we write limu→u0 ϕ(u0) = v0. •

As for sequences in Q, R, or C, convergent sequences are Cauchy.
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3.2.3 Proposition (Convergent sequences are Cauchy) Let F ∈ {R,C} and let (V, ∥·∥)
be a (semi)normed F-vector space. If (vj)j∈Z>0 is a sequence converging to v0 then it is a
Cauchy sequence.

Proof Let ϵ ∈ R>0 and choose N ∈ Z>0 such that |v j − v0| < ϵ
2 for j ≥ N. Then, for

j, k ≥ N we have

∥v j − vk∥ = ∥v j − v0 − vk + v0∥ = ∥v j − v0∥ + ∥vk − v0∥ < ϵ
2 +

ϵ
2 = ϵ,

using the triangle inequality. ■

Cauchy sequences are bounded.

3.2.4 Proposition (Cauchy sequences are bounded) Let F ∈ {R,C} and let (V, ∥·∥) be a
(semi)normed F-vector space. If (vj)j∈Z>0 is a Cauchy sequence, then it is bounded.

Proof Choose N ∈ Z>0 such that ∥v j − vk∥ < 1 for j, k ∈ Z>0. Then take MN to be the
largest of the nonnegative real numbers ∥v1∥, . . . , ∥vN∥. Then, for j ≥ N we have, using
the triangle inequality,

∥v j∥ = ∥v j − vN + vN∥ ≤ ∥v j − vN∥ + ∥vN∥ < 1 +MN,

giving the result by taking M =MN + 1. ■

Since we often deal simultaneously with seminorms rather than just norms, it is
useful to record what is different about the two cases. What we lose for seminorms
is the uniqueness of limits for convergent sequences.

3.2.5 Proposition ((Non)uniqueness of limits for (semi)normed vector spaces) Let
F ∈ {R,C} and let (V, ∥·∥) be a seminormedF-vector space. If a sequence (vj)j∈Z>0 converges
to limits u0 and v0, then

u0 − v0 ∈ V0 ≜ {v ∈ V | ∥v∥ = 0}.

In particular, if ∥·∥ is a norm then convergent sequences have unique limits.
Proof Suppose that the sequence (v j) j∈Z>0 converges to u0 and v0 and let ϵ ∈ R>0.
Choose N ∈ Z>0 such that

∥u0 − v j∥ ≤
ϵ
2 , ∥v0 − v j∥ <

ϵ
2 , j ≥ N.

For j ≥ N we then have

∥u0 − v0∥ = ∥u0 − v j − (v0 − v j)∥ ≤ ∥u0 − v j∥ + ∥v0 − v j∥ ≤ ϵ.

Therefore, ∥u0 − v0∥ = 0, giving the result. ■

As is the case in our previous discussions of sequences in Q, R, and C, one can
wonder whether all Cauchy sequences converge. In cases where they do, we call
the normed vector space complete (see Definition 3.3.2). In Section 3.3 we shall
see that all finite-dimensional normed vector spaces are complete (Theorem 3.3.3)
but that there are easy examples of infinite-dimensional normed vector spaces
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that are not complete (Example 3.3.1). This is one of the factors that tends to
make the theory of infinite-dimensional normed vector spaces significantly more
complicated than the finite-dimensional theory. For sequences in R and C there
are useful tests for convergence. There are no significant analogues for sequences
in normed vector spaces.

3.2.2 Algebraic operations on sequences

Convergence is compatible with the standard algebraic operations on vector
spaces.

3.2.6 Proposition (Algebraic operations on sequences) Let F ∈ {R,C} and let (V, ∥·∥)
be a (semi)normed F-vector space. Let (uj)j∈Z and (vj)j∈Z>0 be sequences in V converging
to u0 and v0, respectively, let (aj)j∈Z>0 be a sequence in F converging to a0, and let a ∈ F.
Then the following statements hold:

(i) the sequence (avj)j∈Z>0 converges to av0;
(ii) the sequence (uj + vj)j∈Z>0 converges to u0 + v0;
(iii) the sequence (ajvj)j∈Z>0 converges to a0v0.

Proof (i) The result is trivially true for a = 0, so let us suppose that a , 0. Let ϵ > 0
and choose N ∈ Z>0 such that ∥v j − v0∥ < ϵ

|a| . Then, for j ≥ N,

∥av j − av0∥ = |a|∥v j − v0∥ < ϵ.

(ii) Let ϵ > 0 and take N1,N2 ∈ Z>0 such that

∥u j − u0∥ < ϵ
2 , j ≥ N1, ∥v j − v0∥ < ϵ

2 , j ≥ N2.

Then, for j ≥ max{N1,N2},

∥u j + v j − (u0 + v0)∥ ≤ ∥u j − u0∥ + ∥v j − v0∥ = ϵ,

using the triangle inequality.
(iii) Let ϵ > 0 and define N1,N2,N3 ∈ Z>0 such that

|a j − a0| < 1, j ≥ N1, =⇒ |a j| < |a0| + 1, j ≥ N1,

|a j − a0| <
ϵ

2(|a0| + 1)
, j ≥ N2,

∥v j − v0∥ <
ϵ

2(∥v0∥ + 1)
, j ≥ N2.

Then, for j ≥ max{N1,N2,N3},

∥a jv j − a0v0∥ = ∥a jv j − a jv0 + a jv0 − a0v0∥

= ∥a j(v j − v0) + (a j − a0)v0∥

≤ |a j|∥v j − v0∥ + |a j − a0|∥v0∥

≤ (|a0| + 1)
ϵ

2(|a0| + 1)
+

ϵ
2(∥v0∥ + 1)

(∥v0∥ + 1) = ϵ,

as desired. ■
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3.2.3 Multiple sequences

Finally, let us introduce the notion of a double sequence in a normed vector
space.

3.2.7 Definition (Double sequence) Let F ∈ {R,C} and let V be an F-vector space. A
double sequence in V is a family of elements of V indexed byZ>0 ×Z>0. We denote
a double sequence by (v jk) j,k∈Z>0 , where v jk is the image of ( j, k) ∈ Z>0 ×Z>0 in V. •

For double sequences we have the following notions of convergence.

3.2.8 Definition (Convergence of double sequences) Let F ∈ {R,C}, let (V, ∥·∥ be a
(semi)normed F-vector space, and let v0 ∈ V. A double sequence (v jk) j,k∈Z>0 :

(i) converges to v0, and we write lim j,k→∞ v jk = v0, if, for each ϵ > 0, there exists
N ∈ Z>0 such that ∥v0 − v jk∥ < ϵ for j, k ≥ N;

(ii) has v0 as a limit if it converges to v0.
(iii) is convergent if it converges to some member of V;
(iv) diverges if it does not converge. •

Some results here?

Exercises

3.2.1 In the F-vector space F∞0 , if possible find sequences with the following
properties:
(a) Cauchy in the∞-norm but not the 2-norm;
(b) Cauchy in the 2-norm but not the 1-norm;
(c) Cauchy in the 1-norm;
(d) Cauchy in the 1-norm but not the 2-norm;
(e) Cauchy in the 2-norm but not the∞-norm.

3.2.2 Give an example of a sequence in C0([0, 1];R) that is Cauchy with respect to
the norm ∥·∥1 but not with respect to the norm ∥·∥2.
Hint: Consider the function f : [0, 1]→ R defined by

f(x) =

x−1/2, x ∈ (0, 1],
0, x = 0.

3.2.3 Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector space. Let (u j) j∈Z>0 and
(v j) j∈Z>0 be Cauchy sequences in V, let (a j) j∈Z>0 be a Cauchy sequence in F,
and let a ∈ F.
(a) Show that (av j) j∈Z>0 is a Cauchy sequence.
(b) Show that (a jv j) j∈Z>0 is a Cauchy sequence.
(c) Show that (u j + v j) j∈Z>0 is a Cauchy sequence.
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Section 3.3

Completeness and completions

In Theorem I-2.3.5 we showed that the set of real numbers is complete in
that every Cauchy sequence of real numbers converges. In Theorem II-1.2.5 we
used the completeness of R to conclude that Rn is complete. As we shall see in
Theorem 3.3.3, every finite-dimensional normed vector space is complete. This
is not true for infinite-dimensional normed vector spaces, and so for these spaces
the notion of completeness has teeth: in infinite-dimensional normed vector spaces
there may well be Cauchy sequences that do not converge.

For reasons that are may not be perfectly clear initially, completeness is an
essential property for a normed vector space to possess. If one is confronted with
a normed vector space that is not complete, the first thing one does is complete it.
We have already seen in Section 1.1.7 how this works for metric spaces, and the
same ideas apply for normed vector spaces. Completions are easier to understand
in general than they are in specific cases. This will become painfully clear in some
of the examples in Section 3.8.

Do I need to read this section? Completeness is important, so the basic ideas in
this section should be understood. The technicalities can be glossed over on a first
reading. •

3.3.1 Completeness (Banach spaces)

Let us begin with two examples that illustrate that for normed vector spaces,
the notions of Cauchy sequences and convergent sequences are not the same.

3.3.1 Examples (Nonconvergent Cauchy sequences)
1. First consider the normed vector space (F∞0 , ∥·∥1) of Example 3.1.3–6. Consider

the sequence (sk)k∈Z>0 in F∞0 defined by asking that sk be the sequence (vkj) j∈Z>0

with

vkj =

 1
j2 , j ∈ {1, . . . , k},
0, j > k.

Thus the sequence sk is the truncation to k terms of the sequence ( 1
j2 ) j∈Z>0 in R.

We claim that this is a Cauchy sequence. Indeed, let ϵ > 0 and choose N ∈ Z>0

sufficiently large that, for k, l ≥ N with l > k,
l∑

j=k+1

1
j2 < ϵ.

This is possible since the series
∑
∞

j=1
1
j2 is convergent by Example I-2.4.2–4, and

so its sequence of partial sums is Cauchy. Now let k, l ≥ N with l > k and
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compute

∥sl − sk∥1 =

∞∑
j=1

|vl j − vkj| =

l∑
j=k+1

1
j2 < ϵ.

Thus the sequence (sk)k∈Z>0 is indeed Cauchy. However, it does not converge,
as we now show. Suppose that σ = (v j) j∈Z>0 is an element of F∞0 such that
limk→∞∥σ − sk∥1 = 0, i.e., such that (sk)k∈Z>0 converges to σ. We claim that this
implies that v j =

1
j2 for each j ∈ Z>0. Indeed, suppose that v j0 ,

1
j20

for some
j0 ∈ Z>0. Then

∥σ − sk∥1 =

∞∑
j=1

|v j − sk| ≥
∣∣∣v j0 −

1
j20

∣∣∣
for every k ∈ Z>0. This implies that if v j0 ,

1
j20

for some j0 ∈ Z>0 then (sk)k∈Z>0

cannot converge to σ. However, the sequence ( 1
j2 ) j∈Z>0 is not in F∞0 , as so we

conclude that the sequence (sk)k∈Z>0 does not converge.
2. We work next with the normed vector space (C0([0, 1];R), ∥·∥1) of Exam-

ple 3.1.3–9. In this vector space, consider the sequence of functions ( f j) j∈Z>0

given by

f j(x) =


0, x ∈ [0, 1

2 −
1
2 j ],

2 jx + 1 − j, x ∈ (1
2 −

1
2 j ,

1
2 ),

1, x ∈ [1
2 , 1].

In Figure 3.1 a few terms in this sequence are graphed. Suppose that k ≥ j so

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1 A Cauchy sequence ( f1, f2, and f10 are shown) in
(C0([0, 1];R), ∥·∥1)
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that the function f j − fk is positive. A simple computation gives

∥ f j − fk∥1 =

∫ 1

0
| f j(x) − fk(x)|dx

=

∫ 1

0
( f j(x) − fk(x)) dx

=

∫ 1

0
f j(x) dx −

∫ 1

0
fk(x) dx

=
1
2
+

1
4 j
−

1
2
−

1
4k
=

1
4 j
−

1
4k
.

Now let ϵ > 0 and take N = ⌈ 1
2ϵ⌉. This means that for any j ≥ N we have

j ≥ N ≥
1
2ϵ

=⇒
1
2 j
≤ ϵ.

We then have, for j, k ≥ N,

∥ f j − fk∥1 =
∣∣∣∣ 1
4 j
−

1
4k

∣∣∣∣ < 1
4 j
+

1
4k
≤
ϵ
2
+
ϵ
2
= ϵ.

This shows that ( f j) j∈Z>0 is a Cauchy sequence. However, it is evident that for
any x ∈ [0, 1] we have

lim
j→∞

f j(x) = f (x)

where f : [0, 1]→ R is the function

f (x) =

0, x ∈ [0, 1
2 ),

1, x ∈ [ 1
2 , 1].

Note that f < C0([0, 1];R). One might want to conclude that the sequence
( f j) j∈Z>0 does not converge since it converges pointwise to a discontinuous func-
tion. However, we should not really feel so comfortable with our knowledge
of the normed vector space (C0([0, 1];R), ∥·∥1) at this point. Thus we prove a
lemma that really settles that ( f j) j∈Z>0 does not, in fact, converge.

1 Lemma Consider the sequence (fj)j∈Z>0 as above. If g ∈ C0([0, 1];R) is such that the
sequence (fj)j∈Z>0 converges to g in the norm ∥·∥1, then

g(x) =

0, x ∈ (0, 1
2 ),

1, x ∈ (1
2 , 1).
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Proof Suppose that g(x0) > 0 for some x0 ∈ [0, 1
2 ). Then, by continuity of g, there

exists δ ∈ R>0 such that
(x0 − δ, x0 + δ) ⊆ (0, 1

2 )

and such that g(x) > 1
2 g(x0) for all x ∈ (x0 − δ, x0 + δ) has the same sign as g(x0).

Let N ∈ Z>0 be sufficiently large that fN(x) = 0 for all x ∈ (x0 − δ, x0 + δ). It then
holds that for j ≥ N we have

∥g − f j∥1 =

∫ 1

0
|g(x) − f j(x)|dx ≥

∫ x0+δ

x0−δ

|g(x) − f j(x)|dx

=

∫ x0+δ

x0−δ

|g(x)|dx ≥ δg(x0).

This shows that the sequence ( f j) j∈Z>0 cannot converge to g if g(x0) > 0 for some
x0 ∈ (0, 1

2 ). A completely similar argument shows that the sequence ( f j) j∈Z>0

cannot converge to g if g(x0) < 0 for some x0 ∈ (0, 1
2 ).

Now suppose that g(x0) > 1 for some x0(1
2 , 1). Then there exists δ > 0 such that

(x0 − δ, x0 + δ) ⊆ ( 1
2 , 1)

and such that g(x) − 1 > 1
2 (g(x0) − 1) for all x ∈ (x0 − δ, x0 + δ). Then, for any

j ∈ Z>0,

∥g − f j∥1 =

∫ 1

0
|g(x) − f j(x)|dx ≥

∫ x0+δ

x0−δ

|g(x) − f j(x)|dx

=

∫ x0+δ

x0−δ

|g(x) − 1|dx ≥ δ(g(x0) − 1).

This shows that the sequence ( f j) j∈Z>0 cannot converge to g if g(x0) > 1 for some
x0 ∈ ( 1

2 , 1). A completely similar argument shows that the sequence ( f j) j∈Z>0

cannot converge to g if g(x0) < 1 for some x0 ∈ ( 1
2 , 1). ▼

There is obviously no continuous function satisfying the conditions of the
lemma. Thus we have found a Cauchy sequence in (C0([0, 1];R), ∥·∥1) that
does not converge. •

The examples show something very important: that there is a genuine distinc-
tion between Cauchy sequences and convergent sequences. Moreover, normed
vector spaces where the two notions agree are important.

3.3.2 Definition (Completeness, Banach space) Let F ∈ {R,C}. A normed F-vector
space (V, ∥·∥) is complete if every Cauchy sequence in V converges. A F-Banach
space is a complete normed F-vector space. •

The following result is important in the same way that completeness of R is
important.
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3.3.3 Theorem (Completeness of finite-dimensional normed vector spaces) If F ∈
{R,C} and if (V, ∥·∥) is a finite-dimensional normed F-vector space, then V is complete.

Proof Let {e1, . . . , en} be a basis for V which defines an isomorphism ι : V→ Fn by

ι(v1e1 + · · · + vnen) = (v1, . . . , vn).

Define a norm ∥·∥2 on V by ∥v∥2 = ∥ι(v)∥2 where ∥·∥2 also denotes the standard norm
on Fn. This is a norm, cf. the proof of Proposition 3.1.4. By Theorem 3.1.15 it follows
that there exists C ∈ R>0 such that

C−1
∥v∥2 ≤ ∥v∥ ≤ C∥v∥2.

Now let (v j) j∈Z>0 be a Cauchy sequence in V. Let’s write

v j = v j1e1 + · · · + v jnen

for v jl ∈ F, j ∈ Z>0, l ∈ {1, . . . ,n}. For ϵ ∈ R>0 let N ∈ Z>0 by such that ∥v j − vk∥ < C−1ϵ
for j, k ∈ Z>0. We then have

C−1ϵ > ∥v j − vk∥ ≥ C−1
∥v j − vk∥2 = C−1

( n∑
l=1

|v jl − vkl|
)1/2
≥ C−1

|v jl0 − vkl0 |

for j, k ≥ N and for each l0 ∈ {1, . . . ,n}. Thus |v jl0 − vkl0 | < ϵ for j, k ≥ N and for each
l0 ∈ {1, . . . ,n}. Thus (v jl0) j∈Z>0 is a Cauchy sequence in F for each l0 ∈ {1, . . . ,n}. Since F
is complete by Theorem II-1.2.5 it follows that there exists vl0 ∈ F, l0 ∈ {1, . . . ,n}, such
that lim j→∞ v jl0vl0 . Now define v = v1e1 + · · · + vnen. We claim that (v j) j∈Z>0 converges
to v. To see this, for ϵ ∈ R>0 let N ∈ Z>0 be such that ∥vl − v jl∥ <

ϵ
C
√

n
. Then

∥v − v j∥ ≤ C∥v − v j∥2 = C
( n∑

l=1

|vl − v jl|
2
)1/2
≤ C

( n∑
l=1

( ϵ

C
√

n

)2)1/2
= ϵ,

as desired. ■

3.3.2 Why completeness is important

We have now seen completeness arise in three important cases. The first was
with the incompleteness of the rational numbers and the second and third were
in Example 3.3.1. It is fair to ask, “Who cares whether a normed vector space is
complete?” In this section we address this.

First let us consider the simple case of the incompleteness of the rational num-
bers. Rational numbers are fairly simple to define and pretty easy to understand.
Real numbers are somewhat more difficult to define, and we think we understand
them only because we live in a world where the notion of a real number has been
accepted for so long that they are as integral a part of science as are the integers.
However, it is worth reflecting that the notion of numbers that were not rational
numbers has not always been as acceptable as it is now. Indeed, the development
of mathematics is marked by strong resistance to any of the “unusual” kinds of new
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numbers that arose, whether they be negative numbers, real numbers, or complex
numbers. As concerns real numbers, many Greek mathematicians were dedicated
to the existence only of rational numbers. There is an amusing story—completely
unsubstantiated by any historical record and thus almost certainly false—that a
student of Pythagoras was thrown into the sea for proving that

√
2 was not ratio-

nal. It is also worth reflecting that, if one is only interested in computation, rational
numbers are all one can represent in a digital computer. Thus it is difficult to justify
the construction of the real numbers from a purely practical point of view. So why
are the real numbers important? They are important precisely because they are
complete. It is completeness that makes true “obvious” statements like, “every
bounded increasing sequence converges.” Relatively simple ideas like continuity
and differentiability of functions, the Riemann integral, convergence of sequences
of functions, all rely on the completeness of the real numbers for their power. Sci-
entific life would be very difficult and complicated without the completeness of
the real numbers.

The point of the above paragraph is this:
1. The real numbers arise in a natural way from the incompleteness of the rational

numbers.
2. The completeness of the real numbers is not important for the purposes of

computation.
3. The completeness of the real numbers is important for the very basic ideas we

use every day concerning real variables and functions of a real variable.
4. You are probably comfortable with the real numbers, but this is only because of

societal norms.
Now let us think about the notion of completeness in normed vector spaces.

Indeed, let us think specifically about Example 3.3.1–2. In that example we saw
that there is a simple Cauchy sequence in (C0([0, 1];R), ∥·∥1) that does not converge.
But the sequence of functions certainly converges to a perfectly nice, albeit discon-
tinuous, function. So why not just include this limit function in our set and move
on? Well, one can certainly do this, but it also leads to the question, “What are the
functions that we need to add to C0([0, 1];R) in order to be sure that all Cauchy
sequences of continuous functions converge?” This is a little like saying that, since
√

2 is irrational, why not just add it to our collection of numbers and move on (the
result would be the field extensionQ(

√
2)). One could do this, but then eventually

one would need to address the matter of what other kinds of numbers need to be
added to the rational numbers. Thinking about things in this sort of ad hoc way is
not satisfying, and is really just faking your way around the real issue, which is
this: one should be sure to always be dealing with complete normed vector spaces.

The difficulty that arises, as we shall see in Section 3.8.7, is that it is difficult to
describe the set of functions that need to be added to C0([0, 1];R) in order to ensure
completeness with respect to the norm ∥·∥1. But the point is that just because it is
difficult does not mean that it is not important to do. It is important to do. Indeed,
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at some point one must do it.

3.3.3 Completeness and direct sums and quotients

In this section we consider how completeness interacts with direct sums and
quotients. We first consider direct sums. Recall from Theorem 3.1.17 that if
((Vi, ∥·∥i))i∈I is a family of normed vector spaces then we define a norm ∥·∥I on the
direct sum

⊕
i∈I Vi by

∥ϕ∥I =
∑
i∈I

∥ϕ(i)∥i,

the sum making sense since it is finite.

3.3.4 Proposition (Completeness of direct sums of Banach spaces) Let F ∈ {R,C}
and let ((Vi, ∥·∥i))i∈I be a family of F-Banach spaces. Then (

⊕
i∈I Vi, ∥·∥I) is complete if and

only if I is finite.
Proof First suppose that I is finite and so take I = {1, . . . , k}. Let us denote elements
of

⊕k
l=1 V j as (v1, . . . , vk). Let ((v1 j, . . . , vkj)) j∈Z>0 be a Cauchy sequence in

⊕k
l=1 V j. We

claim that, for each l ∈ {1, . . . , k}, (vl j) j∈Z>0 is a Cauchy sequence in Vl. Let ϵ ∈ R>0 and
take N ∈ Z>0 sufficiently large that

∥(v1 j, . . . , vkj) − (v1m, . . . , vkm)∥I < ϵ, j,m ≥ N.

Since
∥(v1 j, . . . , vkj) − (v1m, . . . , vkm)∥I = ∥v1 j − v1m∥1 + · · · + ∥vkj − vkm∥k

it follows that
∥vl j − vlm∥l < ϵ, j,m ≥ N,

and so the sequence (vl j) j∈Z>0 is indeed Cauchy. Therefore, since Vl is a Banach space,
the sequence converges to vl ∈ Vl. We next claim that the sequence ((v1 j, . . . , vkj)) j∈Z>0

converges to (v1, . . . , vk). Indeed, let ϵ ∈ R>0 and take N ∈ Z>0 sufficiently large that

∥vl j − vl∥l <
ϵ
k , l ∈ {1, . . . , k}, j ≥ N.

Then
∥(v1 j, . . . , vkj) − (v1, . . . , vk)∥I = ∥v1 j − v1∥1 + · · · + ∥vkj − vk∥k < ϵ,

for j ≥ N, giving the desired convergence.
Next suppose that I is infinite and, for each i ∈ I, choose vi ∈ Vi such that ∥vi∥i = 1.

Let {il}l∈Z>0 be a set of distinct elements of I and then define a sequence (ϕk)k∈Z>0 in⊕
i∈I Vi by

ϕk(i) =

2− jvi j , i = i j, j ∈ {1, . . . , k},
0, otherwise.

We claim that (ϕk)k∈Z>0 is a Cauchy sequence. Indeed, let ϵ > 0 and let N ∈ Z>0 be
such that for k,m ≥ N with m > k we have

∑m
j=k+1 < ϵ. This is possible since the series
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∑
∞

j=1 2− j converges by Example I-2.4.2–1. Now note that, for k,m ≥ N with m > k we
have

∥ϕk − ϕm∥I =

m∑
j=k+1

∥2− jvi j∥i j =

m∑
j=k+1

2− j < ϵ,

showing that the sequence (ϕk)k∈Z>0 is indeed Cauchy. However, the sequence does
not converge. Indeed, if ϕ ∈

⊕
i∈I Vi has the property that limk→∞∥ϕ − ϕk∥I = 0 then

this implies that ϕ(i j) = 2− jvi j for j ∈ Z>0, cf. Example 3.3.1–1. But then ϕ <
⊕

i∈I Vi.■

In Section 3.8.3 we will revisit the matter of the completeness of direct sums.
For now we turn to quotients. We recall from Proposition 3.1.19 the definition

of the norm ∥·∥/U on V/U.

3.3.5 Proposition (Quotients of Banach spaces by closed subspaces are Banach
spaces) If F ∈ {R,C}, if (V, ∥·∥) is an F-Banach space, and if U is a closed subspace of
V, then (V/U, ∥·∥/U) is an F-Banach space.

Proof We already know from Proposition 3.1.19 that (V/U, ∥·∥/U) is a normed vector
space, so it is completeness that e must prove here. Let (v j + U) j∈Z>0 be a Cauchy
sequence. By passing to a subsequence if necessary we can suppose that ∥(v j+1 − v j) +
U∥/U < 2− j, j ∈ Z>0. By definition of ∥·∥/U this means that there exists u2 ∈ U such
that ∥v2 + u2 − v1∥ < 2−1. Define v′2 = v2 + u2. Similarly, there exists u3 ∈ U such that
∥v3 + u3 − v2∥ < 2−2. Define v′3 = v3 + u3. Proceeding in this way we define a sequence
(v′j) j∈Z>0 such that ∥v′j+1 − v′j∥ < 2− j and such that v′j + U = v j + U for j ∈ Z>0. In
particular, the sequence (v j) j∈Z>0 is Cauchy and so converges to some v ∈ V since V is
complete. Then, by Theorem 3.5.2,

lim
j→∞

(v′j + U) = ( lim
j→∞

v′j) + U = v + U

since the projection from V to V/U is continuous. ■

3.3.4 Completions

Having been confronted in Section 3.3.1 with the reality of normed vector spaces
that are not complete, and having seen evidence of the importance of completeness
in Section 3.3.2, it becomes important to know the answer to this question: “What
do we do when we have an incomplete normed vector space?” The answer is: “We
complete it!”

The notion of a completion was discussed in detail in Section 1.1.7 for metric
spaces. Since normed vector spaces are metric spaces by Proposition 3.1.7, that en-
tire discussion can be transported here to define the completion of a normed vector
space. However, we will develop at least some of this discussion independently.

The main result is the following. In the statement of the result we make reference
to the notion of an isomorphism of normed vector spaces. We will not formally
get to this idea until Section 3.5.2, but let us just say here that an isomorphism
of normed vector spaces is an invertible linear map that is continuous and has a
continuous inverse.
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3.3.6 Theorem (Completion of a normed vector space) Let F ∈ {R,C} and let (V, ∥·∥)
be a normed F-vector space. Then there exists a Banach space (V, ∥·∥) with the following
properties:

(i) there exists an injective linear map ιV : V → V such that ∥ιV(v)∥ = ∥v∥ for every
v ∈ V;

(ii) for each v ∈ V there exists a sequence (vj)j∈Z>0 in V such that (ιV(vj))j∈Z>0 converges
to v.

Such a Banach space (V, ∥·∥) is a completion of (V, ∥·∥).
Furthermore, if (V1, ∥·∥1) and (V2, ∥·∥2) are two completions of (V, ∥·∥) with ιV,1 : V→

V1 and ιV,2 : V → V2 being the corresponding injective linear maps, then there exists an
isomorphism L : V1 → V2 of Banach space such that the following diagram commutes:

V
ιV,1

��

ιV,2

��
V1 L

// V2

Proof Many of the details of this proof follow that of Theorem 1.1.34, and we therefore
omit them, only making reference to the existing proof.

We let CS(V) denote the collection of Cauchy sequences in V. If we define vector
addition and scalar multiplication by

(u j) j∈Z>0 + (v j) j∈Z>0 = (u j + v j) j∈Z>0 , a(v j) j∈Z>0 = (av j) j∈Z>0 ,

then CS(V) is an F-vector space by Exercise 3.2.3.
For a Cauchy sequences (v j) j∈Z>0 let us define

˜∥(v j) j∈Z>0∥ = lim
j→∞
∥v j∥.

To make the connection with the proof of Theorem 1.1.34 we note that we can define

d̃((u j) j∈Z>0 , (v j) j∈Z) = lim
j→∞
∥u j − v j∥.

Then we obviously have

˜∥(v j) j∈Z>0∥ = d̃((v j) j∈Z>0 , (0) j∈Z>0).

This identity can be used to easily prove many of the assertions we are about to make
about ∥̃·∥. In particular, the definition of ∥̃·∥ is shown to make sense in that the limit
exists. Moreover, ∥̃·∥ is readily seen to be a seminorm on CS(V). For example, we
compute

˜∥a(v j) j∈Z>0∥ = lim
j→∞
∥av j∥ = |a| lim

j→∞
∥v j∥ = |a| ˜∥(v j) j∈Z>0∥.

(Note that in the third step we make use of continuity of the norm which we will
prove as Proposition 3.5.4.) The remaining seminorm properties follow just as do the
corresponding assertions from Theorem 1.1.34.
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We now let (V, ∥·∥) be the normed vector space associated with (CS(V), ∥̃·∥) as in
Theorem 3.1.8. Note that (V, ∥·∥) as in Theorem 3.1.8 is the normed vector space
whose associated metric space is the metric space (V, d) of Theorem 1.1.28. From
Exercise 3.3.4 it immediately follows that (V, ∥·∥) is a Banach space.

Recalling from Theorem 3.1.8 that V is a quotient of CS(V) by a subspace, denote by
πV : CS(V) → V the canonical projection. Now define ιV : V → V by ιV(v) = πV((v) j∈V).
As for the corresponding assertion from Theorem 1.1.34, we readily show that ∥ιV(v)∥ =
∥v∥ for each v ∈ V. Since the injection ιV of V into V is the same as the injection in the
proof of Theorem 1.1.34, it follows from Theorem 1.1.34 that for any v ∈ V there is a
sequence (v j) j∈Z>0 for which (ιV(v j)) j∈Z>0 converges to v.

Now we prove the final assertion of the theorem, letting (V1, ∥·∥1) and (V1, ∥·∥2) be
completions of (V, ∥·∥). Let v1 ∈ V1 and let (v j) j∈Z>0 be a sequence for which (ιV,1) j∈Z>0

converges to v1. Thus (ιV,1(v j)) j∈Z>0 is Cauchy. Since ιV,1 preserves the norm, one
easily shows that (v j) j∈Z>0 is Cauchy. Since ιV,2 also preserves the norm, the sequence
(ιV,2(v j)) j∈Z>0 is Cauchy, and so converges since V2 is complete. Let v2 denote its limit.
We define L : V1 → V2 by L(v1) = v2, according to the preceding construction. As with
the corresponding assertion in the proof of Theorem 1.1.34, one can show that this
definition is independent of the choice of sequence converging to v1. Moreover, just
as in the proof of Theorem 1.1.34, we can show that L is a bijection and an isometry.
Therefore, it is continuous and has a continuous inverse. All that remains is to showIs this obvious?

that L is linear. To see this, let u1, v1 ∈ V1 and let a ∈ F. Let (u j) j∈Z>0 and (v j) j∈Z>0 be
sequences in V for which lim j→∞ ιV,1(u j) = u1 and lim j→∞ ιV,1(u j) = u1. We then have

L(av1) = lim
j→∞

ιV,2(av j) = a lim
j→∞

ιV,2(v j) = aL(v1)

and

L(u1 + v1) = lim
j→∞

ιV,2(u j + v j) = lim
j→∞

ιV,2(u j) + lim
j→∞

ιV,2(v j) = L(u1) + L(v1),

where we have used the continuity properties of the norm as in Proposition 3.5.4
below. ■

The preceding theorem is nice in that the proof is constructive. The completion
consists of equivalence classes of Cauchy sequences, just as was the case for the
construction of R in Section I-2.1.2. The problem is that it may not be so easy
to understand what elements in the completion “look like.” For example, in
Example 3.3.1 we gave two instances of incomplete normed vector spaces. For
the incomplete normed vector space (F∞0 , ∥·∥1) it is fairly easy to understand the
completion; we do this in Section 3.8.2. However, for the incomplete normed
vector space (C0([0, 1];R), ∥·∥1) the completion is harder to understand. Indeed, try
to imagine what might be the set of limits of all Cauchy sequences in C0([0, 1];R).
Surely these limits can be pretty complicated! And we shall see in Section 3.8.7 that
to describe these limits is possible by using Lebesgue’s integral that we dedicated
so much effort to in Chapter 2. Indeed, many of the examples of Banach spaces in
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Section 3.8 are constructed as completions. The diversity of the examples in that
section should, alone, convince the reader of the importance of completeness and
completions.

Exercises

3.3.1 For F ∈ {R,C} show that (F∞0 , ∥·∥∞) (see Example 3.1.3–7) is not complete.
3.3.2 Consider the sequence ( f j) j∈Z>0 of signals in C0([0, 1];R) as defined in Exam-

ple 3.3.1–2. In this exercise, use the norm ∥·∥∞.
(a) Show by explicit calculation that the sequence is not a Cauchy sequence.
(b) Is it possible to deduce that the sequence is not Cauchy without doing

any calculations?
3.3.3 Consider the sequence { f j} j∈Z>0 of functions in C0([0, 1];R) defined by f j(x) =

x j. For the vector space C0([0, 1];R) consider two norms, ∥·∥∞ and ∥·∥1,
defined by:

∥ f ∥∞ = sup{| f (x)| | x ∈ [0, 1]},

∥ f ∥1 =
∫ 1

0
| f (x)|dx.

Answer the following questions.
(a) Sketch the graphs of the first few functions in the sequence { f j} j∈Z>0 .
(b) Is the sequence { f j} j∈Z>0 a Cauchy sequence in (C0([0, 1];R), ∥·∥∞)?
(c) Is the sequence { f j} j∈Z>0 a Cauchy sequence in (C0([0, 1];R), ∥·∥1)?
(d) Does the sequence { f j} j∈Z>0 converge in (C0([0, 1];R), ∥·∥∞)?
(e) If the sequence { f j} j∈Z>0 does not converge in (C0([0, 1];R), ∥·∥∞), does it

converge in the completion of (C0([0, 1];R), ∥·∥∞)? If so, to what function
does it converge?

(f) Does the sequence { f j} j∈Z>0 converge in (C0([0, 1];R), ∥·∥1)?
(g) If the sequence { f j} j∈Z>0 does not converge in (C0([0, 1];R), ∥·∥1), does it

converge in the completion of (C0([0, 1];R), ∥·∥1)? If so, to what function
does it converge?

3.3.4 Show that a normed vector space (V, ∥·∥) is complete if and if the associated
metric space (from Proposition 3.1.7) is complete.

3.3.5 Let ((Vi, ∥·∥i))i∈I be a family of normed vector spaces with (
⊕

i∈I Vi, ∥·∥I) the
corresponding direct sum normed vector space. Show that, if (

⊕
i∈I Vi, ∥·∥I)

is complete, then (Vi, ∥·∥i) is complete for each i ∈ I.
3.3.6 Let ((Vi, ∥·∥i))i∈I be a family of Banach spaces and define the norm ∥·∥I,∞ on⊕

i∈I Vi by
∥ϕ∥I,∞ = max{|ϕ(i)| | i ∈ I}.

Show that (
⊕

i∈I Vi, ∥·∥I,∞) is incomplete if I is infinite.
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3.3.7 On the vector space AC([a, c];F) ofF-valued absolutely continuous functions
on [a, b], define the function f 7→ ∥ f ∥ by

∥ f ∥ =
∫ b

a
| f (x)|dx.

Answer the following questions.
(a) Show that (AC([a, b];F), ∥·∥) is a normed vector space.
(b) Show that you understand why (AC([a, b];F), ∥·∥) is not a Banach space

by providing a nonconvergent Cauchy sequence.
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Section 3.4

Series in normed vector spaces

We now consider series in normed vector spaces. While some of the develop-
ment here bears a strong resemblance to that for series in R given in Section I-2.4,
there are some significant differences. In particular, we introduce two new notions
of convergence, condition and unconditional convergence. The latter of these is
equivalent for series inR to absolute convergence, as we show in Proposition 3.4.5.
However, in infinite-dimensions the two notions are not equivalent, and we prove
this as the nontrivial Theorem 3.4.8. Much of the rest of the development follows
in the same vein as that for series in R.

Do I need to read this section? The reader should understand the notion of a
series in a normed vector space since this will be important to us in Section 4.4,
which in turn is important in the theory of Fourier series. The material in Sec-
tion 3.4.2, while interesting, is also somewhat technical and can be skipped at a
first reading. The material in Sections 3.4.5 and 3.4.6 can likewise be overlooked
until it is needed. •

3.4.1 Definitions and properties of series

A series in an F-vector space is an expression of the form
∞∑
j=1

v j,

where v j ∈ V, j ∈ Z>0. As with series in R or C, this expression is merely symbolic
(but still sensible as a formal expression) unless something can be said about its
convergence. For vector spaces without any structure, series can be nothing more
than formal. Fortunately, (semi)normed vector spaces have topologies defined on
them, and so notions of convergence can be defined. These are as follows.

3.4.1 Definition (Convergence, absolute convergence, and conditional conver-
gence of series) Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space.
Let (v j) j∈Z>0 be a sequence in V and consider the series

S =
∞∑
j=1

v j.

The corresponding sequence of partial sums is the sequence (Sk)k∈Z>0 in V defined
by

Sk =

k∑
j=1

v j.
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Let v0 ∈ V. The series:
(i) is Cauchy if the sequence of partial sums is a Cauchy sequence;
(ii) converges to v0, and we write

∑
∞

j=1 v j = v0, if the sequence of partial sums
converges to v0;

(iii) has v0 as a limit if it converges to v0;
(iv) is convergent if it converges to some member of V;
(v) converges absolutely, or is absolutely convergent, if the series

∞∑
j=1

∥v j∥

converges;
(vi) is unconditionally Cauchy if, for every bijection ϕ : Z>0 → Z>0, the series

Sϕ =
∑
∞

j=1 vϕ( j) is Cauchy;
(vii) converges unconditionally, or is unconditionally convergent, if, for every

bijection ϕ : Z>0 → Z>0, the series Sϕ =
∑
∞

j=1 vϕ( j) converges;
(viii) is conditionally Cauchy if it is not unconditionally Cauchy;
(ix) converges conditionally, or is conditionally convergent, if it is not uncondi-

tionally convergent;
(x) diverges if it does not converge. •

There are a few differences between the definitions we give here and those for
given in Definition I-2.4.1 for series of real numbers. These differences have real
substance, so let us record why they arise.
1. In Definition I-2.4.1 we did not have the notion of Cauchy series. This is be-

cause this is not necessary for series in R since Cauchy sequences converge.
However, in infinite-dimensional normed vector spaces there may well be non-
convergent Cauchy sequences. Therefore, it is useful to distinguish between
Cauchy sequences of partial sums and convergent sequences of partial sums.
Whenever possible we state results for Cauchy series rather than convergent
series, keeping in mind that convergent series are Cauchy.

2. There is a difference between the notions of conditional convergence for series in
normed vector spaces and for real numbers as given in Definition I-2.4.1. There
is some substance to this difference, and we shall explore this in Section 3.4.2,
particularly Theorem 3.4.8.
Just as for series of real numbers and complex numbers, there is a useful rela-

tionship between the norm of a sum and the sum of the norms.
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3.4.2 Proposition (Swapping summation and norm) Let F ∈ {R,C} and let (V, ∥·∥) be a
(semi)normed F-vector space. For a sequence (vj)j∈Z>0 , if the series S =

∑
∞

j=1 vj is absolutely
convergent, then ∥∥∥∥ ∞∑

j=1

vj

∥∥∥∥ ≤ ∞∑
j=1

∥vj∥.

Proof Define

S1
m =

∥∥∥∥ m∑
j=1

v j

∥∥∥∥, S2
m =

m∑
j=1

∥v j∥, m ∈ Z>0.

By Exercise 3.4.1 we have S1
m ≤ S2

m for each m ∈ Z>0. Moreover, by Proposition 3.4.5
the sequences (S1

m)m∈Z>0 and (S2
m)m∈Z>0 are Cauchy sequences in R and so converge. It

is then clear that
lim

m→∞
S1

m ≤ lim
m→∞

S2
m,

which is the result. ■

While we do not have for series in normed vector spaces the bevy of tests for
convergence, we do have the obvious sufficient condition.

3.4.3 Proposition (Sufficient condition for a series to diverge) Let F ∈ {R,C} and let
(V, ∥·∥) be a (semi)normed F-vector space. If the sequence (∥vj∥)j∈Z>0 does not converge to
zero, then the series

∑
∞

j=1 vj diverges.
Proof Suppose that the series

∑
∞

j=1 v j converges to v0 and let (Sk)k∈Z>0 be the sequence
of partial sums. Then vk = Sk − Sk−1. Then

lim
k→∞

vk = lim
k→∞

Sk − lim
k→∞

Sk−1 = v0 − v0 = 0V,

as desired. ■

3.4.2 Absolute and unconditional convergence

In this section we explore the relationship between absolute and unconditional
convergence. For finite-dimensional normed vector spaces we will see that the two
notions are equivalent.

Let us begin by showing why unconditional convergence is useful, in the same
way we showed that absolute convergence is useful in Theorem I-2.4.5.

3.4.4 Proposition (Unconditional limits are rearrangement independent) Let F ∈
{R,C} and let (V, ∥·∥) be a normed F-vector space. If the series

∑
∞

j=1 vj is unconditionally
convergent and converges to v0, then, for any bijection ϕ : Z>0 → Z>0, the series

∑
∞

j=1 vϕ(j)

also converges to v0.
Proof In order to avoid duplication of part of the proof, we make use of the im-
plication (ii) =⇒ (i) of Theorem 3.4.20. We do this in the following way. Let
S =

∑
∞

j=1 v j. Since S is unconditionally convergent it is unconditionally Cauchy by
Proposition 3.2.3. By the implication (ii) =⇒ (i) of Theorem 3.4.20 it follows that
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∑
j∈Z>0

v j is Cauchy in the sense of Definition 3.4.16. Now let ϵ ∈ R>0 and let I ⊆ Z>0
be a finite set with the property that ∥∥∥∥∑

j∈J

v j

∥∥∥∥ < ϵ
2

for any finite set J such that J ∩ I = ∅. Now let N1 ∈ Z>0 be such that

∥∥∥∥ k∑
j=1

v j − v0

∥∥∥∥ < ϵ
2

for every k ≥ N1 (this being possible since
∑
∞

j=1 v j converges to v0) and such that
I ⊆ {1, . . . ,N1}. Let ϕ : Z>0 → Z>0 be a bijection and choose N2 ∈ Z>0 sufficiently large
that {1, . . . ,N1} ⊆ {ϕ(1), . . . , ϕ(N2)}. Then we write

{ϕ(1), . . . , ϕ(N2)} = {1, . . . ,N1} ∪ J

where J ∩ {1, . . . ,N1} = ∅. Note that J ∩ I = ∅ since I ⊆ {1, . . . ,N1}. Therefore, we
compute

∥∥∥∥ N2∑
j=1

vϕ( j) − v0

∥∥∥∥ = ∥∥∥∥ N1∑
j=1

v j +
∑
j∈J

v j − v0

∥∥∥∥ ≤ ∥∥∥∥ N1∑
j=1

v j − v0

∥∥∥∥ + ∥∥∥∥∑
j∈J

v j

∥∥∥∥ < ϵ
2
+
ϵ
2
= ϵ,

giving convergence of
∑
∞

j=1 vϕ( j) to v0. ■

As with series inR, one of the essential features of absolutely convergent series
is that their convergence is independent of rearrangement of terms. This mirrors
the situation for series in R.

3.4.5 Proposition (Absolute convergence implies unconditional Cauchy) Let F ∈
{R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. For a sequence (vj)j∈Z>0 consider
the series S =

∑
∞

j=1 vj. If S is absolutely convergent then it is unconditionally Cauchy.
Moreover, if S converges then, for any bijection ϕ : Z>0 → Z>0, the series Sϕ =

∑
∞

j=1 vϕ(j)

converges absolutely to the same limit as S.
Proof Let ϕ : Z>0 → Z>0 be a bijection. First let us show that Sϕ is absolutely conver-
gent. Since S is absolutely convergent the sequence (|S|k)k∈Z>0 defined by

|S|k =
k∑

j=1

∥v j∥

is bounded and monotonically increasing. Thus there exists M ∈ R>0 such that |S|k ≤M
for every k ∈ Z>0. Now define the sequence (|Sϕ|k)k∈Z>0 by

|Sϕ|k =
k∑

j=1

vϕ( j).
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For k ∈ Z>0 there exists N ∈ Z>0 such that {ϕ(1), . . . , ϕ(k)} ⊆ {1, . . . ,N}. Then

|Sϕ|k ≤
N∑

j=1

∥v j∥ ≤M.

Thus (|Sϕ|k)k∈Z>0 is bounded and monotonically increasing, and so convergent. Thus
Sϕ is absolutely convergent.

Next we show that if S is absolutely convergent then it is unconditionally Cauchy.
Let ϵ ∈ R>0 and let N1 ∈ Z>0 be such that

∞∑
j=N1

∥v j∥ < ϵ.

Now let N2 ∈ Z>0 be such that {ϕ(1), . . . , ϕ(N1)} ⊆ {1, . . . ,N2}. Let k, l ≥ N2 with l > k
and note that if j ∈ {k + 1, . . . , l} then ϕ−1( j) ≥ N1. Thus

∥∥∥∥ l∑
j=k+1

vϕ( j)

∥∥∥∥ ≤ l∑
j=k+1

∥vϕ( j)∥ ≤

∞∑
j=N1

∥v j∥ < ϵ,

showing that Sϕ is Cauchy.
Now suppose that S converges to v0 and let us show that Sϕ converges to v0. For

ϵ ∈ R>0 let N1 ∈ Z>0 be such that

∥∥∥∥ N1∑
j=1

v j − v0

∥∥∥∥ < ϵ
2

(this is possible since S converges to v0) and such that

∞∑
j=N1

∥v j∥ <
ϵ
2

(3.1)

(this is possible since S is absolutely convergent). There then exists N2 ∈ Z>0 such that
{ϕ(1), . . . , ϕ(N1)} ⊆ {1, . . . ,N2}. Then

N2∑
j=1

vϕ( j) =

N1∑
j=1

v j +
∑
j∈J

vϕ( j),

where J = {1, . . . ,N2} \ {ϕ(1), . . . , ϕ(N1)}. Note that

∑
j∈J

∥vϕ( j)∥ ≤

∞∑
j=N1

∥v j∥ <
ϵ
2
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by (3.1). Then

∥∥∥∥ N2∑
j=1

vϕ( j) − v0

∥∥∥∥ = ∥∥∥∥ N1∑
j=1

v j +
∑
j∈J

vϕ( j) − v0

∥∥∥∥
≤

∥∥∥∥ N1∑
j=1

v j − v0

∥∥∥∥ + ∥∥∥∥∑
j∈J

vϕ( j)

∥∥∥∥
≤
ϵ
2
+

∑
j∈J

∥vϕ( j)∥ ≤
ϵ
2 +

ϵ
2 = ϵ,

giving convergence of Sϕ to v0 as desired. ■

Thus Proposition 3.4.5 says that absolute convergence implies unconditional
convergence. We shall see below in Theorem 3.4.8 that the two notions are equiv-
alent if and only if the normed vector space is finite-dimensional. Thus the notion
of unconditional convergence is the more general notion, and one may wonder
whether absolute convergence is important. It is, and here is why.

3.4.6 Theorem (Absolute convergence and completeness) Let F ∈ {R,C}. A normed
F-vector space (V, ∥·∥) is complete if and only if every absolutely convergent series in V
converges.

Proof Suppose that V is complete and let
∑
∞

j=1 v j be an absolutely convergent series.
From Proposition 3.4.5 it follows that

∑
∞

j=1 v j is Cauchy, and so it converges since V is
complete.

Now suppose that every absolutely convergent series converges, and let (v j) j∈Z>0 be
a Cauchy sequence. Choose a subsequence (v jk)k∈Z>0 for which ∥u jk+1 −u jk∥ <

1
2k+1 . Then

define u1 = vk1 and uk = v jk − v jk−1 so that the series
∑
∞

k=1 uk is absolutely convergent,
and so convergent. This means therefore that

lim
k→∞
∥uk∥ = lim

k→∞
∥v jk − v jk−1∥ = 0.

Thus the sequence (v jk)k∈Z>0 is convergent. Suppose it converges to v. Now, for ϵ > 0
choose k and j sufficiently large that ∥v j − v jk∥ <

ϵ
2 and ∥v − v jk∥ <

ϵ
2 . Then we have

∥v − v j∥ ≤ ∥v − v jk∥ + ∥v jk − v j∥ < ϵ,

so showing that (v j) j∈Z>0 converges to v. ■

The following trivial corollary is sometimes useful by itself.

3.4.7 Corollary (Absolutely convergent sequences in Banach spaces converge) Let
F ∈ {R,C}. If (V, ∥·∥) is a F-Banach space and if

∑
∞

j=1 vj is an absolutely convergent series
in V, then

∑
∞

j=1 vj is convergent.

Now let us explore the possibility of a converse to Proposition 3.4.5. That is,
let us consider the question, “Is it true that an unconditionally convergent series
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is absolutely convergent?” In Theorem I-2.4.5 we saw that this was true for series
in R. However, this is not generally true in normed vector spaces, but holds if
and only if the vector space is finite-dimensional. This is an instance of where the
difference between finite- and infinite-dimensions shows up.

3.4.8 Theorem (Absolute convergence and unconditional Cauchy agree (only) in
finite-dimensions) Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector space. Then the
set of absolutely convergent series and the set of unconditionally Cauchy series coincide if
and only if V is finite-dimensional.

Proof From Proposition 3.4.5 we know that absolutely convergent series are always
unconditionally convergent. Suppose that V is finite-dimensional and that

∑
∞

j=1 v j is
unconditionally convergent. Let us also suppose that F = R for the moment. Choose
a basis {e1, . . . , en} for V and write

v j = v1
j e1 + · · · + vn

j en

for vl
j ∈ F, j ∈ Z>0, l ∈ {1, . . . ,n}. By Theorem 3.1.15 we can use any norm on V we

wish to discuss convergence, so let us use the∞-norm induced by the basis:

∥v1e1 + · · · + vnen∥ = max{|v1
|, . . . , |vn

|}.

Let ϕ : Z>0 → Z>0 be a bijection so that
∑
∞

j=1 vϕ( j) converges, say to v0 ∈ V. Let us write

v0 = v1
0e1 + · · · + vn

0en.

Now let ϵ ∈ R>0 and choose N ∈ Z>0 such that∥∥∥∥ N∑
j=1

vϕ( j) − v0

∥∥∥∥ < ϵ.
Then ∣∣∣∣ N∑

j=1

vl
ϕ( j) − vl

0

∣∣∣∣ ≤ ∥∥∥∥ N∑
j=1

vϕ( j) − v0

∥∥∥∥ < ϵ.
Thus

∑
∞

j=1 vl
ϕ( j) converges to vl

0 for each l ∈ {1, . . . ,n}. Thus
∑
∞

j=1 vl
j is unconditionally

convergent, and so absolutely convergent by Theorem I-2.4.5. Now again let ϵ ∈ R>0
and let N ∈ Z>0 be such that

∞∑
j=N+1

|vl
j| < ϵ, l ∈ {1, . . . ,n},

this being possible by absolute convergence of
∑
∞

j=1 vl
j. Then, for any l ∈ {1, . . . ,n},

∞∑
j=N+1

∥v j∥ ≤

∞∑
j=N+1

|vl
j| < ϵ,
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giving absolute convergence of
∑
∞

j=1 v j.
If V is a finite-dimensional C-vector space, then it is also a finite-dimensional R-

vector space of twice the dimension, and so the above arguments can be used to show
that an unconditionally convergent sum is absolutely convergent.

It remains to show that if V is infinite-dimensional then there exists an uncondi-
tionally convergent series that is not absolutely convergent. We do this via a sequence
of lemmata, the first of which seems to have nothing to do with the problem at hand.
Let us suppose that F = R.

The following lemma is crucial, and is called the Dvoretzky–Rogers Lemma.

1 Lemma Let C ⊆ Rn be a compact convex set with nonempty interior and with centre at 0Rn

and let k ∈ {1, . . . ,n}. Then there exists x1, . . . , xn ∈ bd(C) such that, for any λ1, . . . , λk ∈ R,

λ1x1 + · · · + λkxk ∈ λC ≜ {λx | x ∈ C},

where
λ2 =

(
2 + k(k−1)

n

)
(λ2

1 + · · · + λ
2
k).

Proof By Theorem 5.1.6 let E be the ellipsoid with largest volume contained in C. If
A ∈Matn×n(R) is invertible then hypotheses of the lemma hold for the convex set A(C)
and the conclusions hold for the points Ax1, . . . ,Axn. Thus we can apply an invertible
linear transformation of Rn to the problem without changing either the hypotheses or
the conclusions. Let us suppose that A has been chosen such that A(E) = B(1, 0Rn), the
closed unit ball in the 2-norm in Rn. For the remainder of the proof we work with the
transformed problem.

We next claim that there exists an orthogonal matrix R, thought of as a linear
mapping from Rn to itself, and points x1, . . . , xn ∈ B(1, 0Rn) ∩ C such that

y j ≜ Rx j = (y1
j , . . . , y

j
j, 0, . . . , 0), j ∈ {1, . . . ,n}, (3.2)

(i.e., the last n − j components of Rx j are zero) and such that

(y1
j )

2 + · · · + (y j−1
j )2 = 1 − (y j

j)
2
≤

j−1
n , j ∈ {1, . . . ,n}. (3.3)

We construct the points x1, . . . , xn inductively. For j = 1 we take x1 ∈ B(1, 0Rn) ∩ C
(this is possible by our initial definition of E). We then make an orthogonal change of
basis for which x1 is the first basis vector. This defines an orthogonal transformation
R1 satisfying (3.2) and (3.3) for j = 1. Suppose now, for k− 1 < n, that we have defined
Rk−1 and x1, . . . , xk−1 ∈ B(1, 0Rn)∩C satisfying (3.2) and (3.3) for j ∈ {1, . . . , k−1}. Define
fk : R≥0 ×Rn

→ R by

fk(ϵ, x) = (1 + ϵ)n−k+1((y1)2 + · · · + (yk−1)2) + (1 + ϵ + ϵ2)−k+1((yk)2 + · · · + (yn)2),

where y = Rk−1x. For ϵ ∈ R≥0 define

Eϵ = {x ∈ Rn
| f (ϵ, x) ≤ 1}.
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Thus Eϵ is an ellipsoid. We claim that for ϵ ∈ R>0 the volume of Eϵ exceeds that of
B(1, 0Rn). To see this, consider the linear transformation Tϵ of Rn defined by

Tϵ(y1, . . . , yn) = (
√

(1 + ϵ)n−k+1y1, . . . ,
√

(1 + ϵ)n−k+1yk−1,√
(1 + ϵ + ϵ2)−k+1yk, . . . ,

√
(1 + ϵ + ϵ2)−k+1yn).

Thus Tϵ(Eϵ) = B(1, 0Rn). Using the change of variables formula for the integral in Rn

we have the volume of Eϵ as det T−1
ϵ times the volume of B(1, 0Rn). Since

det T−1
ϵ =

(1 + ϵ + ϵ2

1 + ϵ

)(n−k+1)(k−1)/2
> 1

for ϵ ∈ R>0, we indeed have the volume of Eϵ as exceeding that of B(1, 0Rn).
Now, since B(1, 0Rn) is the largest ellipsoid contained in C, there exists a point

xϵ ∈ bd(C)∩Eϵ. Since xϵ ∈ bd(C) and since B(1, 0Rn) ⊆ C it follows that ∥xϵ∥ ≥ 1 (where
∥·∥ is the 2-norm on Rn). Letting yϵ = Rk−1xϵ we have

((y1
ϵ)

2 + · · · + (yk−1
ϵ )2) + ((yk

ϵ)
2 + · · · + (yn

ϵ )2) ≥ 1.

Subtracting this inequality from the inequality f (ϵ, xϵ) ≤ 1 gives

((1 + ϵ)n−k+1
− 1)((y1

ϵ)
2 + · · · + (yk−1

ϵ )2)

+ ((1 + ϵ + ϵ2)−k+1
− 1)((yk

ϵ)
2 + · · · + (yn

ϵ )2) ≤ 0. (3.4)

Let (ϵ j) j∈Z>0 be a sequence inR>0 converging to zero. The resulting sequence (xϵ j) j∈Z>0 is
in bd(C) which is compact, being a closed subset of a compact set (Corollary II-1.2.36).
Therefore, by the Bolzano–Weierstrass Theorem, there exists a subsequence of (xϵ j) j∈Z>0

converging to some x0 ∈ B(1, 0Rn) ∩ bd(C). Moreover, denoting y0 = Rx0, (3.4) gives

1
ϵ

((1 + ϵ)n−k+1
− 1)((y1

ϵ)
2 + · · · + (yk−1

ϵ )2)

+ ((1 + ϵ + ϵ2)−k+1
− 1)((yk

ϵ)
2 + · · · + (yn

ϵ )2) ≤ 0

=⇒ lim
ϵ↓0

1
ϵ

((1 + ϵ)n−k+1
− 1)((y1

ϵ)
2 + · · · + (yk−1

ϵ )2)

+ ((1 + ϵ + ϵ2)−k+1
− 1)((yk

ϵ)
2 + · · · + (yn

ϵ )2) ≤ 0

=⇒ (n − k + 1)((y1
0)2 + · · · + (yk−1

0 )2) + (−k + 1)((yk
0)2 + · · · + (yn

0)2) ≤ 0.

Now define xk = x0. If Rk−1xk ∈ spanR(e1, . . . , ek−1) then clearly the last n − k com-
ponents of Rk−1xk are zero in the basis defined by Rk−1. If not, then the vectors
{R−1

k−1e1, . . . ,R−1
k−1ek−1, xk} span a subspace of dimension k and by choosing an orthogo-

nal complement in this subspace to spanR(R−1
k−1e1, . . . ,R−1

k−1ek−1) we get an orthonormal
basis for Rn where the first k − 1 basis vectors are those defined by Rk−1 and the first k
basis vectors span a subspace containing xk. Thus the last n−k components of xk in this
basis will be zero, and the components of x1, . . . , xk−1 will be unchanged from those in
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the basis defined by Rk−1. This new orthonormal basis defines an orthogonal matrix
Rk. This gives condition (3.2). Moreover, if we abuse notation slightly and denote by
(y1, . . . , yn) the coordinates in the basis defined by Rk, the point yk = Rkxk satisfies

(n − k + 1)((y1
k)2 + · · · + (yk−1

k )2) + (−k + 1)(yk
k)2
≤ 0.

Since we also have (y1
k)2 + · · · + (yk

k)2 = 1 we then get

(y1
k)2 + · · · + (yk−1

k )2 = 1 − (yk
k)2 =

k − 1
n

,

and so (3.3) also holds.
Finally, let λ1, . . . , λk ∈ R. We compute the square of the length of λ1x1 + · · ·+ λkxk

as

k∑
j=1

( k∑
l=1

λly
j
l

)2
≤

k∑
j=1

(
2λ2

j (y j
j)

2 + 2
( k∑

l= j+1

λly
j
l

)2)
≤ 2

k∑
j=1

(
λ2

j (y j
j)

2 +
( k∑

l= j+1

λ2
l

)( k∑
m= j+1

(y j
m)2

))

= 2
k∑

j=1

(
(y j

j)
2 +

k∑
l=1

min{ j−1,l−1}∑
m=1

(ym
l )2

)
λ2

j .

Since (3.3) holds we have

(y j
j)

2 +

k∑
l=1

min{ j−1,l−1}∑
m=1

(ym
l )2
≤ 1 +

k∑
l=1

l − 1
n
, j ∈ {1, . . . , k}.

Therefore, the length of λ1x1 + · · · + λkxk is bounded above by

k∑
j=1

(
1 +

k∑
l=1

l − 1
n

)
λ2

j =
(
2 +

k(k − 1)
n

) k∑
j=1

λ2
j .

In other words, λ1x1 + · · · + λkxk ∈ B(λ, 0Rn) where

λ2 =
(
2 +

k(k − 1)
n

) k∑
j=1

λ2
j .

Thus λ1x1 + · · · + λkxk ∈ λC since B(1, 0Rn) ⊆ C. ▼
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2 Lemma Let (V, ∥·∥) be an infinite-dimensional normed R-vector space, let k ∈ Z>0, and let
c1, . . . , ck ∈ R>0. Then there exists v1, . . . ,vk ∈ V such that

(i) ∥vj∥
2 = cj, j ∈ {1, . . . ,k}, and

(ii)
∥∥∥∑j∈J vj

∥∥∥2
≤ 3

∑
j∈J cj for every subset J ⊆ {1, . . . ,k}.

Proof Let n = k(k − 1) and let u1, . . . ,un ∈ V be linearly independent. Define

C =
{
(x1, . . . , xn) ∈ Rn

∣∣∣ ∥x1u1 + · · · + xnun∥ ≤ 1
}
.

We claim that C is convex, compact, has nonempty interior, and has centre 0Rn . One
sees this as follows. The map

L : (x1, . . . , xn) 7→ x1u1 + · · · + xnun

is a linear injection of Rn onto the n-dimensional subspace spanned by u1, . . . ,un. One
can then define a norm on Rn to be the norm induced from the restriction of the norm
in V to the subspace L(Rn). The closed unit ball in this norm is simply C. Then L(C)
is the intersection of the closed unit ball in V with the subspace L(Rn). Thus L(C) is
the intersection of convex sets and so is convex by Exercise II-1.9.4. Moreover, L(C) is
clearly a closed and bounded subset of L(Rn) and so is compact by the Heine–Borel
Theorem. The unit ball in any norm clearly has nonempty interior (see Exercise 3.1.1).
Also, 0Rn is the centre of C since x ∈ C if and only if −x ∈ C.

Let x1, . . . , xn be as in Lemma 1 and define

v j =
√

c jL(x j), j ∈ {1, . . . , k},

where L : Rn
→ V is the map from the preceding paragraph. Then

∥v j∥
2 = c j∥x1

j u1 + · · · + xn
j un∥ = c j, j ∈ {1, . . . , k},

since x1, . . . , xk ∈ bd(C). Now let J ⊆ {1, . . . , k}. Then, by Lemma 1,∑
j∈J

√
c jx j ∈ λC

where

λ2 =
(
2 +

k(k − 1)
n

)∑
j∈J

c j = 3
∑
j∈J

c j.

This implies that

L
(∑

j∈J

√
c jx j

)
∈ L(λC) =⇒

∥∥∥∥∑
j∈J

v j

∥∥∥∥ ≤ (
3
∑
j∈J

c j

)1/2
,

as claimed. ▼
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3 Lemma Let (V, ∥·∥) be an infinite-dimensional normed R-vector space and let
∑
∞

j=1 cj be a
convergent series inR>0. Then there exists an unconditionally Cauchy series

∑
∞

j=1 vj in V such
that ∥vj∥

2 = cj, j ∈ Z>0.
Proof Define n0 = 0 and define n1 such that( ∞∑

j=n1+1

c j

)1/2
< 1,

this being possible since
∑
∞

j=1 c j is a convergent series of positive terms. Then define
n2 > n1 such that ( ∞∑

j=n2+1

c j

)1/2
<

1
4
.

Carrying on in this way we define an increasing sequence (n j) j∈Z≥0 such that

( nk+1∑
j=nk+1

c j

)1/2
<

( ∞∑
j=nk+1

c j

)1/2
<

1
k2 , k ∈ Z>0.

The series
∞∑

k=0

( nk+1∑
j=nk+1

c j

)1/2

then converges by Example I-2.4.2–4. Take k ∈ Z≥0. By Lemma 2 let v j, j ∈ {nk +
1, . . . ,nk+1}, be such that ∥v j∥

2 = c j and such that∥∥∥∥∑
j∈J

v j

∥∥∥∥2
≤ 3

∑
j∈J

c j

for any J ⊆ {nk + 1, . . . ,nk+1}. Let ϵ ∈ R>0 and choose N1 ∈ Z>0 such that

∞∑
k=N1

( nk+1∑
j=nk+1

c j

)1/2
<
ϵ
3
.

Let ϕ : Z>0 → Z>0 be a bijection and choose N2 ∈ Z>0 such that

{1, . . . ,nN1} ⊆ {ϕ(1), . . . , ϕ(N2)}.

Thus
(vϕ( j))∞j=N2

⊆ (v j)∞j=N1+1.

Let N3 > N2 and let k ≥ N1. Denote by Jk ⊆ {nk + 1, . . . ,nk+1} the indices such that j ∈ Jk
if and only if ϕ( j) ∈ {N2, . . . ,N3}. Then we have∥∥∥∥ N3∑

j=N2

vϕ( j)

∥∥∥∥ = ∥∥∥∥ ∞∑
k=N1

∑
j∈Jk

v j

∥∥∥∥ ≤ ∞∑
k=N1

∥∥∥∥∑
j∈Jk

v j

∥∥∥∥ ≤ ∞∑
k=N1

(
3

nk∑
j=nk+1

c j

)1/2
< ϵ.

Thus the norm of the N3rd partial sum minus the N2nd partial sum for the series∑
∞

j=1 vϕ( j) is less than ϵ. Thus this series is Cauchy and so
∑
∞

j=1 v j is unconditionally
Cauchy. ▼
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Now let us prove the theorem. Consider the sequence
(
c j =

1
j2

)
j∈Z>0

and by

Lemma 3 let (v j) j∈Z>0 be a sequence for which ∥v j∥
2 = c j and for which the series

∑
∞

j=1 v j

is unconditionally Cauchy. But
∑
∞

j=1∥v j∥ =
∑
∞

j=1
1
j is divergent by Example I-2.4.2–2

and so
∑
∞

j=1 v j is not absolutely convergent. This proves the theorem for normed R-
vector spaces. For normedC-vector spaces we note that these are also normedR-vector
spaces. Since none of the constructions in the proof alter when complex scalars are
replaced with real scalars, the proof is also valid for normed C-vector spaces. ■

3.4.3 Algebraic operations on series

Let us close by indicating that convergence of series respects the algebraic
structure of vector spaces. We first give two definitions of products of series of
scalars and vectors.

3.4.9 Definition (Scalar multiplication of series) Let F ∈ {R,C} and let (V, ∥·∥) be a
(semi)normed F-vector space. Let S =

∑
∞

j=0 v j be a series in V and let s =
∑
∞

j=0 a j be
series in R.

(i) The product of s and S is the double series
∑
∞

j,k=0 a jvk.

(ii) The Cauchy product of s and S is the series
∑
∞

k=0

(∑k
j=0 a jvk− j

)
. •

Now we can state the interaction between convergence of series and the vector
space operations.

3.4.10 Proposition (Algebraic operations on series) Let F ∈ {R,C} and let (V, ∥·∥) be a
(semi)normed F-vector space. Let S =

∑
∞

j=0 uj and T =
∑
∞

j=0 vj be series in V converging to
U0 and V0, respectively, let s =

∑
∞

j=0 aj be a series in F converging to A0, and let a ∈ F.
Then the following statements hold:

(i) the series
∑
∞

j=0 avj converges to aV0;

(ii) the series
∑
∞

j=0(uj + vj) converges to U0 + V0;
(iii) if s and T are absolutely convergent, then the product of s and T is absolutely

convergent and converges to A0V0;
(iv) if s and T are absolutely convergent, then the Cauchy product of s and T is absolutely

convergent and converges to A0V0;
(v) if s or T are absolutely convergent, then the Cauchy product of s and T is convergent

and converges to A0V0.

Proof (i) Since
∑k

j=0 av j = a
∑k

j=0 v j, this follows from part (i) of Proposition 3.2.6.

(ii) Since
∑
∞

j=0(u j + v j) =
∑k

j=0 u j +
∑k

j=0 v j, this follows from part (ii) of Proposi-
tion 3.2.6.

(iii) and (iv) To prove these parts of the result, we first make a general argument. We
note thatZ≥0×Z≥0 is a countable set (e.g., by Proposition I-1.7.16), and so there exists a
bijection, in fact many bijections, ϕ : Z>0 → Z≥0 ×Z≥0. For such a bijection ϕ, suppose
that we are given a double sequence (v jk) j,k∈Z≥0 and define a sequence (vϕj ) j∈Z>0 by vϕj =
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xkl where (k, l) = ϕ( j). We then claim that, for any bijection ϕ : Z>0 → Z≥0 ×Z≥0, the
double series A =

∑
∞

k,l=1 vkl converges absolutely if and only if the series Aϕ =
∑
∞

j=1 vϕj
converges absolutely.

Indeed, suppose that the double series ∥A∥ =
∑
∞

k,l=1∥vkl∥ converges to β ∈ R. For
ϵ > 0 the set

{(k, l) ∈ Z≥0 ×Z≥0 | |∥A∥kl − β| ≥ ϵ}

is then finite. Therefore, there exists N ∈ Z>0 such that, if (k, l) = ϕ( j) for j ≥ N, then
|∥A∥kl − β| < ϵ. It therefore follows that |∥Aϕ

∥ j − β| < ϵ for j ≥ N, where ∥Aϕ
∥ denotes

the series
∑
∞

j=1|v
ϕ
j |. This shows that the series ∥Aϕ

∥ converges to β.

For the converse, suppose that the series ∥Aϕ
∥ converges to β. Then, for ϵ > 0 the

set
{ j ∈ Z>0 | ||Aϕ

| j − β| ≥ ϵ}

is finite. Therefore, there exists N ∈ Z>0 such that

{(k, l) ∈ Z≥0 | k, l ≥ N} ∩ {(k, l) ∈ Z≥0 | ||Aϕ
|ϕ−1(k,l) − β| ≥ ϵ} = ∅.

It then follows that for k, l ≥ N we have ||A|kl − β| < ϵ, showing that |A| converges to β.
Thus we have shown that A is absolutely convergent if and only if Aϕ is absolutely

convergent for any bijection ϕ : Z>0 → Z≥0 × Z≥0. From Proposition 3.4.5 we know
that the limit of an absolutely convergent series or double series is independent of the
manner in which the terms in the series are arranged.

Consider now a term in the product of s and T. It is easy to see that this term
appears exactly once in the Cauchy product of s and T. Conversely, each term in the
Cauchy product appears exactly one in the product. Thus the product and Cauchy
product are simply rearrangements of one another. Moreover, each term in the product
and the Cauchy product appears exactly once in the expression

( N∑
j=0

a j

)( N∑
k=0

vk

)
as we allow N to go to∞. That is to say,

∞∑
j,k=0

a jvk =

∞∑
k=0

( k∑
j=k

a jvk− j

)
= lim

N→∞

( N∑
j=0

a j

)( N∑
k=0

vk

)
.

However, this last limit is exactly A0V0, using part (iii) of Proposition 3.2.6.
(v) Suppose that s converges absolutely. Let (sk)k∈Z>0 , (Tk)k∈Z>0 , and ((sT)k)k∈Z>0

be the sequences of partial sums for s, T, and the Cauchy product, respectively. Also
define τk = Tk − V0, k ∈ Z≥0. Then

(sT)k = a0v0 + (a0v1 + a1v0) + · · · + (a0vk + · · · + akv0)
= a0Tk + a1Tk−1 + · · · + akT0

= a0(V0 + τk) + a1(V0 + τk−1) + · · · + ak(V0 + τ0)
= skV0 + a0τk + a1τk−1 + · · · + akτ0.
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Since limk→∞ skV0 = A0V0 by Proposition I-2.4.30(i), this part of the result will follow
if we can show that

lim
k→∞

(a0τk + a1τk−1 + · · · + akτ0) = 0. (3.5)

Denote

σ =
∞∑
j=0

|a j|,

and for ϵ > 0 choose N1 ∈ Z>0 such that ∥τ j∥ ≤
ϵ

2σ for j ≥ N1, this being possible since
(τ j) j∈Z>0 clearly converges to zero. Then, for k ≥ N1,

∥a0τk + a1τk−1 + · · · + akτ0∥ ≤ ∥a0τk + · · · + ak−N1−1τN1−1∥ + ∥ak−N1τN1 + · · · + akτ0∥

≤
ϵ
2 + ∥ak−N1τN1 + · · · + akτ0∥.

Since limk→∞ ak = 0, choose N2 ∈ Z>0 such that

∥ak−N1τN1 + · · · + akτ0∥ < ϵ
2

for k ≥ N2. Then

lim sup
k→∞

∥a0τk + a1τk−1 + · · · + akτ0∥

= lim
k→∞

sup{∥a0τ j + a1τ j−1 + · · · + a jτ0∥ | j ≥ k}

≤ lim
k→∞

sup{ ϵ2 + ∥ak−N1τN1 + · · · + akτ0∥ | j ≥ k}

≤ sup{ ϵ2 + ∥ak−N1τN1 + · · · + akτ0∥ | j ≥ N2} ≤ ϵ.

Thus
lim sup

k→∞
∥a0τk + a1τk−1 + · · · + akτ0∥ ≤ 0,

and since clearly
lim inf

k→∞
∥a0τk + a1τk−1 + · · · + akτ0∥ ≥ 0,

we infer that (3.5) holds by Proposition I-2.3.17.
If T converges absolutely, the above argument can be modified by defining

σ =
∞∑
j=0

∥v j∥

and swapping the rôles of s and T in the remainder of the proof. ■

3.4.4 Multiple series

One also has the notion of double series in normed vector spaces.

3.4.11 Definition (Double series) Let F ∈ {R,C} and let V be a F-vector space. A double
series in V is a sum of the form

∑
∞

j,k=1 v jk where (v jk) j,k∈Z>0 is a double sequence in
V. •

We then have the following notions of convergence of double series.
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3.4.12 Definition (Convergence and absolute convergence of double series) Let F ∈
{R,C} and let (V, ∥·∥) be a F-vector (semi)normed space. Let (v jk) j,k∈Z>0 be a double
sequence in V and consider the double series

S =
∞∑

j,k=1

v jk.

The corresponding sequence of partial sums is the double sequence (S jk) j,k∈Z>0

defined by

S jk =

j∑
l=1

k∑
m=1

vlm.

Let v0 ∈ V. The double series:
(i) converges to v0, and we write

∑
∞

j,k=1 v jk = v0, if the double sequence of partial
sums converges to v0;

(ii) has v0 as a limit if it converges to v0;
(iii) is convergent if it converges to some member of V;
(iv) converges absolutely, or is absolutely convergent, if the series

∞∑
j,k=1

∥v jk∥

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge. •

3.4.5 Cesàro convergence of sequences and series

If a sequence diverges, all hope may not be lost. Indeed, it is possible that con-
vergence may not actually be what one was interested in. This seems a somewhat
absurd proposition at first glance, but it actually forms the first steps towards a
powerful theory of Fourier series, as we shall see in Section IV-5.2.7. The point
is that when one has a divergent sequence or series, one should not just throw
in the towel. It is possible that by modifying one’s notion of convergence, useful
information can still be extracted.

The idea of Cesàro convergence is that one should average the sequence and
see if the averaged sequence converges. The same idea can be applied to sums via
their partial sums.
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3.4.13 Definition (Cesàro1 convergence) Let F ∈ {R,C}, let (V, ∥·∥) be a normed F-vector
space, and let (v j) j∈Z>0 be a sequence in V.

(i) The Cesàro means for the sequence (v j) j∈Z>0 is the sequence (v̄1
k))k∈Z>0 where

v̄1
k =

1
k

k∑
j=1

vk.

(ii) The Cesàro means for the series S =
∑
∞

j=1 v j is the sequence (S̄1
k)k∈Z>0 of Cesàro

means for the sequence of partial sums. Thus

S̄1
k =

1
k

k∑
j=1

S j =
1
k

k∑
j=1

j∑
l=1

vl.

(iii) The sequence (v j) j∈Z>0 is Cesàro convergent if the sequence (v̄1
k)k∈Z>0 of Cesàro

means converges.
(iv) The series S =

∑
∞

j=1 v j is Cesàro convergent or Cesàro summable if the se-
quence (S̄1

k)k∈Z>0 of Cesàro means converges. •

The us give some examples to illustrate the concept.

3.4.14 Examples (Cesàro convergence)
1. The sequence (x j ≜ (−1) j+1) j∈Z>0 in R is oscillatory and so does not converge.

However, the sequence is Cesàro convergent since the Cesàro means are given
by

x̄1
j =

1
j , j odd,

0, j even,

and so the sequence is Cesàro convergent.
2. Let us consider the sum S =

∑
∞

j=1(−1) j+1 in R. The sequence of partial sums is
(Sk)k∈Z>0 with

Sk =

1, k odd,
0, k even.

Thus this series is oscillatory. The Cesàro means for the series are (S̄1
k)k∈Z>0 with

S̄1
k =

 k+1
2k , k odd,

1
2 , k even.

Thus the series is Cesàro convergent and the Cesàro means converge to 1
2 . •

1Ernesto Cesàro (1859–1906) was an Italian mathematician who made contributions to analysis,
number theory, and differential geometry.
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The examples illustrate that when one has a divergent sequence or series, it is
possible to have Cesàro convergence. This is a useful property that one would
ask of a modified version of convergence. The other natural notion is that it
should actually generalise the standard notion of convergence. Thus a convergent
sequence should still converge with any modified version of convergence. Cesàro
convergence possesses this property.

3.4.15 Theorem (Convergence implies Cesàro convergence) Let F ∈ {R,C} and let
(V, ∥·∥) be a normed F-vector space. If a sequence (vj)j∈Z>0 (resp. a series

∑
∞

j=1 vj) converges
to v0 ∈ V then the sequence (resp. series) converges to v0 in the sense of Cesàro convergence.

Proof Since the statement for series follows, by definition, from the statement for
sequences, we only show that a convergent sequence is Cesàro convergent with the
same limit.

Define v̄1
k =

1
k (v1 + · · · + vk). Let ϵ ∈ R>0 and take N1 ∈ Z>0 such that ∥v j − v0∥ < ϵ

2
for j ≥ N1. Also take N2 ∈ Z>0 sufficiently large that

1
N2

(∥v1∥ + · · · + ∥vN1∥ +N1∥v0∥) < ϵ
2 .

Then, for j ≥ {N1,N2}, we have

∥v̄1
k − v0∥ =

∥∥∥ 1
k (v1 + · · · + vk) − v0

∥∥∥ = 1
k ∥(v1 − v0) + · · · + (vk − v0)∥

≤
1
k ∥(v1 − v0) + · · · + (vN1 − v0)∥ + 1

k ∥(vN1+1 − v0) + · · · + (vk − v0)∥

≤
1
k (∥v1∥ + · · · + ∥vN1∥ +N1∥v0∥) + 1

k (∥vN1+1 − v0∥ + · · · + ∥vk − v0∥)

≤
ϵ
2
+

k −N1

k
ϵ
2
<
ϵ
2
,

giving the result. ■mean in convex hull

interpretation

Note that the Cesàro means for a sequence (v j) j∈Z>0 form a sequence (v̄1
j ) j∈Z>0 . If

this sequence diverges one can ask whether its sequence of Cesàro means converges.
That is, we can define

v̄2
k =

1
k

k∑
j=1

v̄1
j =

1
k

k∑
j=1

1
j

j∑
l=1

v j,

and consider the convergence of the sequence (v̄2
k)k∈Z>0 . This can clearly be iterated

any finite number of times. This is interesting, although we shall not consider it
here. We refer to the notes in Section 3.4.7 for references.

3.4.6 Series in normed vector spaces with arbitrary index sets

In Section I-2.4.7 we presented the notion of a series in R with an arbitrary
index set. Such series were useful in discussion saltus functions. Here we discuss
series in normed vector spaces with arbitrary index sets. This will be helpful for
us in Section 4.4 when we discuss Hilbert bases in general inner product spaces.
In any case, much of the treatment mirrors to some extent that for arbitrary series
in R.

Let us begin with the definition.
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3.4.16 Definition (Convergence of series with arbitrary index sets) Let F ∈ {R,C} and
let (V, ∥·∥) be a (semi)normed F-vector space. Let A be an index set, consider a
family (va)a∈A in V, and denote S =

∑
a∈A va. Let v0 ∈ V.

(i) The series S converges to v0 if, for any ϵ ∈ R>0, there exists a finite set I ⊆ A
such that ∥∥∥∥∑

a∈J

va − v0

∥∥∥∥ < ϵ
for every finite subset J ⊆ A for which I ⊆ J.

(ii) The series S is Cauchy if, for every ϵ ∈ R>0, there exists a finite set I ⊆ A such
that ∥∥∥∥∑

a∈J

va

∥∥∥∥ < ϵ
for every finite subset J ⊆ A for which J ∩ I = ∅. •

We already have one point of difference with the results in Section I-2.4.7 in
that here we have the notion of Cauchy series. This is because we need to allow
for the possibility of sums that seem like they should converge, but do not. The
next result is analogous to the fact that convergent sequences are always Cauchy,
but Cauchy sequences need not converge, but only generally converge when the
normed vector space is complete.

3.4.17 Theorem (Relationship between convergent series and Cauchy series) Let
F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. For a series S =

∑
a∈A va the

following statements hold:
(i) if S is convergent then it is Cauchy;
(ii) if V is complete and if S is Cauchy then it is convergent.

Proof (i) Let ϵ ∈ R>0 and let I ⊆ A be a finite subset such that∥∥∥∥∑
a∈J

va − v0

∥∥∥∥ < ϵ
2

for every finite subset J for which I ⊆ J. Let K ⊆ A be finite and such that K ∩ I = ∅.
Then ∥∥∥∥∑

a∈K

va

∥∥∥∥ = ∥∥∥∥∑
a∈K

va +
(∑

a∈I

va − v0

)
−

(∑
a∈I

va − v0

)∥∥∥∥
≤

∥∥∥∥ ∑
a∈K∪I

va − v0

∥∥∥∥ + ∥∥∥∥∑
a∈I

va − v0

∥∥∥∥
≤

ϵ
2 +

ϵ
2 = ϵ,

as desired.
(ii) Let k ∈ Z>0 and let Ik ⊆ A be a finite subset such that∥∥∥∥∑

a∈J

va

∥∥∥∥ < 1
k
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for every finite subset J for which J ∩ Ik = ∅. Then define

uk =
∑
a∈Ik

va.

We claim that the sequence (uk)k∈Z>0 is Cauchy. Indeed, let N ∈ Z>0 be such that 1
N < ϵ

2 .
Then, for j, k ≥ N, we have

∥u j − uk∥ =
∥∥∥∥∑

a∈I j

va −
∑
a∈Ik

va

∥∥∥∥ = ∥∥∥∥ ∑
a∈I j−Ik

va −
∑

a∈Ik−I j

va

∥∥∥∥
≤

∥∥∥∥ ∑
a∈I j−Ik

va

∥∥∥∥ + ∥∥∥∥ ∑
a∈Ik−I j

va

∥∥∥∥ = 1
j +

1
k < ϵ,

giving (uk)k∈Z>0 as a Cauchy sequence. Since V is complete there exists a limit u0 of
(uk)k∈Z>0 . Thus, for ϵ ∈ R>0, there exists N1 ∈ Z>0 such that ∥u j − u0∥ < ϵ

2 for j ≥ N1. If
N2 = max{N1,

2
ϵ } then∥∥∥∥∑

a∈J

va − u0

∥∥∥∥ = ∥∥∥∥∑
a∈IN2

va − u0 +
∑

a∈J\IN2

va

∥∥∥∥
≤

∥∥∥∥∑
a∈IN2

va − u0

∥∥∥∥ + ∥∥∥∥ ∑
a∈J\IN2

va

∥∥∥∥ ≤ ϵ
2 +

1
N2

< ϵ,

where J is any finite set for which IN2 ⊆ J. Thus S converges to u0. ■

The theorem illustrates the difference between a convergent series and a Cauchy
series. The most important fact is that the two notions are equivalent when V is a
Banach space.

Just as with arbitrary sums of real numbers, any convergent arbitrary sum in
normed vector space can have only countably many nonzero elements.

3.4.18 Proposition (There are only countably many nonzero terms in a convergent
series) Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector space. If S =

∑
a∈A va is a

convergent series then the set {a ∈ A | va , 0V} is countable.
Proof By Theorem 3.4.17, since S converges, for any k ∈ Z>0 there exists a finite set
Ik ⊆ A such that ∥∥∥∥∑

a∈J

va

∥∥∥∥ < 1
k

for any finite set J such that J ∩ Ik = ∅. Let I = ∪k∈Z>0Ik so that I is countable by
Proposition I-1.7.16. If a < I then a < Ik for all k ∈ Z>0, i.e., {a} ∩ Ik = ∅ for all k ∈ Z>0.
Therefore, ∥va∥ < 1

k for all k ∈ Z>0 and so ∥va∥ = 0. Thus va = 0V for all a < I. ■

Note that Definition 3.4.16 is not the generalisation of Definition I-2.4.31, or at
least not obviously. Let us prove that the two definitions are, in fact, consistent.
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3.4.19 Proposition (Consistency of two notions of arbitrary sums) Let A be an index set
and let S =

∑
a∈A xa be a series inR. This series converges according to Definition I-2.4.31

if and only if it converges according to Definition 3.4.16, and in case the series converge,
they converge to the same limit.

Proof It suffices to consider the case when the numbers xa, a ∈ A, are nonnegative
(why?). First suppose that S converges according to Definition I-2.4.31. Thus

sup
{∑

a∈I

xa

∣∣∣∣ I ⊆ A is finite
}
= L < ∞.

Let ϵ ∈ R>0 and let I ⊆ A be a finite set such that

L − ϵ ≤
∑
a∈I

xa ≤ L.

Therefore, for any finite set J ⊆ A for which I ⊆ J it holds that

L − ϵ ≤
∑
a∈I

xa ≤
∑
a∈J

xa ≤ L

since the elements in the family (xa)a∈A are nonnegative. This implies that∥∥∥∥∑
a∈J

xa − L
∥∥∥∥ < ϵ

for any finite set J for which I ⊆ J, giving convergence of S to R in the sense of
Definition 3.4.16.

The argument above can be essentially reversed to show that if S converges to L in
the sense of Definition 3.4.16 then it converges to L in the sense of Definition I-2.4.31.■

For arbitrary series inRwe saw that convergence amounted to absolute conver-
gence in the case when the index set was Z>0. The same is true for arbitrary series
in formed vector spaces. For the following result, recall from Proposition 3.4.4 that
limits of unconditionally convergent series are independent of rearrangement.

3.4.20 Theorem (A convergent series with index set Z>0 is unconditionally conver-
gent) Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. For a sequence
(vj)j∈Z>0 the statements are equivalent:

(i) the series
∑

j∈Z>0
vj is Cauchy in the sense of Definition 3.4.16;

(ii) the series
∑
∞

j=1 vj is unconditionally Cauchy.
Moreover, for v0 ∈ V, the following statements are also equivalent:

(iii) the series
∑

j∈Z>0
vj converges to v0;

(iv) the series
∑
∞

j=1 converges unconditionally to v0.
Proof (i) =⇒ (ii) Let ϵ ∈ R>0 and let I ⊆ Z>0 be a finite subset such that∥∥∥∥∑

j∈J

v j

∥∥∥∥ < ϵ
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for any finite set J ⊆ Z>0 for which J ∩ I = ∅. Let ϕ : Z>0 → Z>0 be a bijection and
choose N ∈ Z>0 sufficiently large that I ⊆ {ϕ(1), . . . , ϕ(N)}. Then, for k, l ≥ N with l > k
the set {ϕ(k + 1), . . . , ϕ(l)} does not intersect I. Thus

∥∥∥∥ l∑
j=k+1

vϕ( j)

∥∥∥∥ < ϵ,
showing that the lth partial sum minus the kth partial sum is bounded above in norm
by ϵ for any k, l ≥ N. Thus

∑
∞

j=1 vϕ( j) is Cauchy.
(ii) =⇒ (i) Suppose that (ii) does not hold. Then there exists ϵ ∈ R>0 such that, for

any finite set I ⊆ Z>0, there exists a finite set J ⊆ Z>0 with J ∩ I = ∅ and such that∥∥∥∥∑
j∈J

v j

∥∥∥∥ > ϵ.
Now let I1 ⊆ Z>0 be finite and let J1 ⊆ Z>0 be finite with J1 ∩ I1 = ∅ and with∥∥∥∥∑

j∈J1

v j

∥∥∥∥ > ϵ.
Note that I2 = I1∪ J1 is finite. Thus there exists a finite set J2 ⊆ Z>0 such that J2∩ I2 = ∅
and such that ∥∥∥∥∑

j∈J2

v j

∥∥∥∥ > ϵ.
We can continue in this way to define a sequence (Jk)k∈Z>0 of finite pairwise disjoint
subsets of Z>0 with the property that∥∥∥∥∑

j∈Jk

v j

∥∥∥∥ > ϵ, k ∈ Z>0.

Let us denote min Jk = mk and max Jk = Mk. Also denote Jk = { jk,1, . . . , jk,rk}. Now let
ϕ : Z>0 → Z>0 be a bijection such that

ϕ({mk, . . . ,Mk}) ⊆ {mk, . . . ,Mk}

and such that
ϕ(mk) = jk,1, . . . , ϕ(mk + rk − 1) = jk,rk

for each k ∈ Z>0. Then, for any k ∈ Z>0 we have

∥∥∥∥mk+rk−1∑
j=mk

vϕ( j)

∥∥∥∥ = ∥∥∥∥∑
j∈Jk

v j

∥∥∥∥ > ϵ.
Therefore, no matter how large we choose N ∈ Z>0, there exists k, l ≥ N such that the
lth partial sum minus the kth partial sum for the series

∑
∞

j=1 vϕ( j) is bounded below in
norm by ϵ. Thus the series is not Cauchy.
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(iii) =⇒ (iv) Suppose that
∑

j∈Z>0
v j converges to v0 in the sense of Definition 3.4.16

to v0. Let ϵ ∈ R>0 and let I ⊆ Z>0 be a finite set such that∥∥∥∥∑
j∈J

v j − v0

∥∥∥∥ < ϵ
for any finite subset J ⊆ Z>0 for which I ⊆ J. Let ϕ : Z>0 → Z>0 be a bijection. Choose
N ∈ Z>0 sufficiently large that I ⊆ {ϕ(1), . . . , ϕ(N)} and note that, for k ≥ N we have∥∥∥∥ k∑

j=1

vϕ( j) − v0

∥∥∥∥ < ϵ
since S ⊆ {ϕ(1), . . . , ϕ(k)}. Thus

∑
∞

j=1 vϕ( j) converges to v0.
(iv) =⇒ (iii) Now suppose that

∑
∞

j=1 v j converges unconditionally to v0. Then∑
∞

j=1 v j is unconditionally Cauchy and so Cauchy in the sense of Definition 3.4.16 by
the implication (ii) =⇒ (i). Let ϵ ∈ R>0 and let I′ ⊆ Z>0 be a finite subset such that∥∥∥∥∑

j∈J′
v j

∥∥∥∥ < ϵ
2

for every finite subset J′ ⊆ Z>0 for which J′ ∩ I′ = ∅. Let N ∈ Z>0 be such that∥∥∥∥ k∑
j=1

v j − v0

∥∥∥∥ < ϵ
2

for every k ≥ N and such that I′ ⊆ N. Define I = {1, . . . ,N} and let J ⊆ Z>0 be a finite
set such that I ⊆ J. Write J = I ∪ J′ with J′ ∩ I = ∅. Note that J′ ∩ I′ = ∅. Therefore,∥∥∥∥∑

j∈J

v j − v0

∥∥∥∥ = ∥∥∥∥ N∑
j=1

v j − v0 +
∑
j∈J′

v j

∥∥∥∥ ≤ ∥∥∥∥ N∑
j=1

v j − v0

∥∥∥∥ + ∥∥∥∥∑
j∈J′

v j

∥∥∥∥ < ϵ
2
+
ϵ
2
= ϵ.

Thus
∑

j∈Z>0
v j converges to v0 in the sense of Definition 3.4.16. ■

3.4.7 Notes

We saw in Section 3.4.5 that revised notions of convergence can be applied to
divergent series. The classic book of Hardy [1949] discusses divergent series in
detail.

Theorem 3.4.8 was first proved by Dvoretzky and Rogers [1950], and the proof
we give follows the original proof in form.

Exercises

3.4.1 Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. Show that∥∥∥∥ m∑
j=1

v j

∥∥∥∥ ≤ m∑
j=1

∥v j∥

for any finite family (v1, . . . , vm) in V.
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3.4.2 In Definition 3.4.1 we defined the notions of “convergent series,” “Cauchy
series,” “unconditionally convergent series,” and “unconditionally Cauchy
series.” We also defined the notion of “absolutely convergent series.” Why
did we not define the notion of “absolutely Cauchy series”?
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Section 3.5

Continuous maps between normed vector spaces

As with so many areas of mathematics, for normed vector spaces it is interesting
to study maps that preserve the structure, in this case the structure defined by the
norm. Normed vector spaces have two facets to their structure: (1) the vector space
structure and (2) the topology defined by the norm. Thus the interesting maps
to consider are linear and continuous. We studied linear maps from an algebraic
point of view in Sections I-5.1 and I-5.4, with particular emphasis on the finite-
dimensional setting in Section I-5.8. Maps between topological spaces were the
subject of Section 1.3. As we shall see, in combining these points of view, one ends
up with some quite rich structure.

Do I need to read this section? Continuous linear maps are extremely impor-
tant in applications. Indeed, the Fourier and Laplace transforms studied in Vol-
ume 3 are important examples of continuous linear maps. Therefore, the basic
material in this section is important to understand. Some of the more detailed
material, for example that in , can be skimmed at a first reading, and referred to as what?

needed. •

3.5.1 General continuous maps between normed vector spaces

Most often we will be interested in continuous linear maps between normed
vector spaces. However, there are also times when it will be helpful to have on
hand the notion of continuity for general maps. Thus we present this first.

3.5.1 Definition (Continuous maps between normed vector spaces) Let F ∈ {R,C}
and let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces. For open sets S ⊆ U and
T ⊆ V and for u0 ∈ S, a map f : S→ T is:

(i) continuous at u0 if, for each ϵ ∈ R>0 there exists δ ∈ R>0 such that ∥ f (u) −
f (u0)∥V < ϵ whenever u ∈ S satisfies ∥u − u0∥U < δ;

(ii) continuous if it is continuous at each u0 ∈ S;
(iii) uniformly continuous if, for each ϵ ∈ R>0 there exists δ ∈ R>0 such that
∥ f (u1) − f (u2)∥ < ϵ for all u1,u2 ∈ S satisfying ∥u1 − u2∥ < δ;

(iv) discontinuous at u0 if it is not continuous at u0;
(v) discontinuous if it is not continuous. •

We will give interesting examples of continuous linear maps in Example 3.5.10.
Here let us record some alternative characterisations of continuity.
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3.5.2 Theorem (Alternative characterisations of continuity) Let F ∈ {R,C} and let
(U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces. For a map f : S→ V defined on an open
subset S ⊆ U and for u0 ∈ S, the following statements are equivalent:

(i) f is continuous at u0;
(ii) for every neighbourhood B of f(u0) there exists a neighbourhood A of u0 in S such

that f(A) ⊆ B;
(iii) limu→u0 f(u) = f(u0).

Proof In the proof we denote open balls in U and V by BU(r,u) and BV(r, v), respectively.
(i) =⇒ (ii) Let B ⊆ V be a neighbourhood of f (u0). Let ϵ ∈ R>0 be defined such that

BV(ϵ, f (u0)) ⊆ B, this being possible since B is open. Since f is continuous at u0, there
exists δ ∈ R>0 such that, if u ∈ BU(δ,u0)∩S, then we have f (u) ∈ B(ϵ, f (u0)). This shows
that, around the point u0, we can find an open set A in S whose image lies in B.

(ii) =⇒ (iii) Let (u j) j∈Z>0 be a sequence in S converging to u0 and let ϵ ∈ R>0. By
hypothesis there exists a neighbourhood A of u0 in S such that f (A) ⊆ BV(ϵ, f (u0)).
Thus there exists δ ∈ R>0 such that f (BU(δ,u0) ∩ S) ⊆ BV(ϵ, f (u0)) since A is open in S.
Now choose N ∈ Z>0 sufficiently large that |u j − u0| < δ for j ≥ N. It then follows that
| f (u j) − f (u0)| < ϵ for j ≥ N, so giving convergence of ( f (u j)) j∈Z>0 to f (u0), as desired,
keeping in mind Notation 3.2.2.

(iii) =⇒ (i) Let ϵ ∈ R>0. Then, by definition of limu→u0 f (u) = f (u0) from Nota-
tion 3.2.2, there exists δ ∈ R>0 such that, for u ∈ BU(δ,u0) ∩ S, | f (u) − f (u0)| < ϵ, which
is exactly the definition of continuity of f at u0. ■

As we have seen, different norms can really be different (i.e., not equivalent),
and so, in particular, maps continuous in one norm may not be continuous in
another. Moreover, even in finite-dimensions where all norms are equivalent, it
is sometimes convenient to use one norm or another, and in this case one would
like to ensure that one’s conclusions concerning continuity are not dependent on
norm. In some sense this is trivial, since equivalent norms define the same topology
(Theorem 3.1.14), and it is the topology that determines continuity. However, it
is instructive to verify independence of continuity on a choice of equivalent norm.
Thus we state the result here, and leave the proof to the reader as Exercise 3.5.3.
The result assumes the fact that open sets are the same for equivalent norms; this
is exactly what Theorem 3.1.14 shows.

3.5.3 Proposition (Continuity is independent of equivalent norm) Let F ∈ {R,C}, let
U and V be F-vector spaces, let ∥·∥1,U and ∥·∥2,U be equivalent norms on U, let ∥·∥1,V and
∥·∥2,V be equivalent norms on V, and let S ⊆ U and T ⊆ V be open sets. Then, for a map
f : S→ T, the following statements are equivalent:

(i) f is continuous relative to the norms ∥·∥1,U on U and ∥·∥1,V on V;
(ii) f is continuous relative to the norms ∥·∥1,U on U and ∥·∥2,V on V;
(iii) f is continuous relative to the norms ∥·∥2,U on U and ∥·∥1,V on V;
(iv) f is continuous relative to the norms ∥·∥2,U on U and ∥·∥2,V on V.

With the definition of continuity, let us prove the continuity of some of the
standard vector space operations relative to the norm.
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3.5.4 Proposition (Continuity properties of operations on normed vector spaces)
Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector space. Then the following maps are

continuous:
(i) V ∋ v 7→ v + v0 ∈ V for v0 ∈ V;
(ii) V ⊕ V ∋ (v1,v2) 7→ v1 + v2 ∈ V;
(iii) V ∋ v 7→ av ∈ V for a ∈ F;
(iv) F ⊕ V ∋ (a,v) 7→ av ∈ V;
(v) V ∋ v 7→ ∥v∥ ∈ R.

Moreover, the maps in parts (i), (ii), (iii), and (v) are uniformly continuous.
Proof (i) For ϵ ∈ R>0 let δ = ϵ. Let v, v′ ∈ V satisfy ∥v′ − v∥ < δ. We then have

∥(v′ + v0) − (v − v0)∥ = ∥v′ − v∥ < δ = ϵ,

giving uniform continuity of the stated map.
(ii) Let ϵ ∈ R>0 and let δ = ϵ. Let (u1,u2), (v1, v2) ∈ V⊕V satisfy ∥(v1, v2)−(u1,u2)∥ < δ,

where, by abuse of notation, ∥·∥ denotes the norm on V ⊕ V. Then we have

∥v1 − v2 − (u1 + u2)∥ ≤ ∥v1 − u1∥ + ∥v2 − u2∥ = ∥(v1, v2) − (u1,u2)∥ < ϵ,

giving uniform continuity of the stated map.
(iii) If a = 0 then the map is constant, and so certainly uniformly continuous. If

a , 0, let ϵ ∈ R>0 and define δ = ϵ
|a| . Then, if ∥v − v′∥ < δ we have

∥av − av′∥ = |a|∥v − v′∥ < ϵ,

giving uniform continuity as desired.
(iv) Let ϵ ∈ R>0 and let (a0, v0) ∈ F ⊕ V. Define

δ = min
{
1,

ϵ
2(|a0| + 1)

,
ϵ

2(∥v0∥ + 1)

}
and note that if ∥(a, v) − (a0, v0)∥ < δ (again we abuse notation and denote by ∥·∥ the
norm on F ⊕ V) then we have

|a − a0| + ∥v − v0∥ < δ

which in turn implies that

|a − a0| < 1 =⇒ |a| < |a0| + 1,

|a − a0| <
ϵ

2(|a0| + 1)
,

∥v − v0∥ <
ϵ

2(∥v0∥ + 1)
.

We then compute, for ∥(a, v) − (a0, v0)∥ < δ,

∥av − a0v0∥ = ∥av − av0 + av0 − a0v0∥ = ∥a(v − v0) + (a − a0)v0∥

≤ |a|∥v − v0∥ + |a − a0|∥v0∥

≤ (|a0| + 1)
ϵ

2(|a0| + 1)
+

ϵ
2(∥v0∥ + 1)

(∥v0∥ + 1) = ϵ.
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(v) For ϵ ∈ R>0 define δ = ϵ. Then, if v, v′ ∈ V satisfy ∥v − v′∥ < δ, we have

|∥v∥ − ∥v′∥| ≤ ∥v − v′∥ < δ = ϵ,

giving uniform continuity of the norm. ■

Particularly interesting are continuous bijections with continuous inverses.

3.5.5 Definition (Homeomorphism) Let F ∈ {R,C}, let (U, ∥·∥U) and (V, ∥·∥V) be normed
F-vector spaces, and let S ⊆ U and T ⊆ V be open sets. A map f : S → T is a
homeomorphism if f is a continuous bijection with a continuous inverse. •

Let us give some examples of homeomorphisms.

3.5.6 Examples (Homeomorphism)
1. The map f : (−π2 ,

π
2 ) → R defined by f (x) = tan(x) is a homeomorphism with

inverse f −1 = arctan.
2. Let (V, ∥·∥) be a normed F-vector space and let v0 ∈ V. The map v 7→ v + v0 is a

homeomorphism of V with itself, and has inverse v 7→ v − v0.
3. Let (V, ∥·∥) be a normed F-vector space and let a ∈ F \ {0}. The map v 7→ av is a

homeomorphism of V with itself, and has inverse v 7→ a−1v. •

3.5.2 Continuous linear maps between normed vector spaces

For vector spaces the maps that preserve the structure are linear maps. For
topological spaces the maps that preserve the structure are continuous maps. Thus
is makes sense that for normed vector spaces, as they have both the structure of a
vector space and a topological space, the most informative maps to consider are
those that are linear and continuous. These have a surprisingly rich structure. In
this section we give some of their more elementary properties.

Let us first give the notation we will use for continuous linear maps, along with
some other useful concepts that can be attached to a linear map.

3.5.7 Definition (Continuous linear maps between normed vector spaces) Let F ∈
{R,C} and let (U; ∥·∥U) and (V, ∥·∥V) be normedF-vector spaces. The set of continuous
linear maps from U to V is denoted by L(U; V). A linear map L ∈ HomF(U; V) is:

(i) bounded if there exists M ∈ R>0 such that ∥L(u)∥V ≤M∥u∥U for every u ∈ U;
(ii) unbounded if it is not bounded;
(iii) norm-preserving if ∥L(u)∥V = ∥u∥U for all u ∈ U;
(iv) an isomorphism of normed vector spaces if it is an isomorphism of vector

spaces and is norm-preserving. •

Note that a homeomorphism of normed vector spaces is not necessarily an
isomorphism of normed vector spaces, as can be seen in Exercise 3.5.4.

The following result gives a collection of useful conditions that are equivalent
to continuity.
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3.5.8 Theorem (Characterisations of continuous linear maps) Let F ∈ {R,C} and let
(U; ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces. For L ∈ HomF(U; V) the following
conditions are equivalent:

(i) L is continuous;
(ii) L is continuous at 0U;
(iii) L is uniformly continuous;
(iv) L is bounded.

Moreover, any of the preceding four conditions implies the following:
(v) ker(L) is a closed subspace of U.

Proof (i) =⇒ (ii) This is clear.
(ii) =⇒ (iii) Let ϵ ∈ R>0 and take δ ∈ R>0 such that ∥L(u)∥V < ϵ if ∥u∥U < δ; this is

possible since L is linear at 0U. Now let u0 ∈ U and suppose that ∥u − u0∥U < δ. Then

∥L(u) − L(u0)∥ = ∥L(u − u0)∥ < ϵ,

which gives uniform continuity, as desired.
(iii) =⇒ (iv) Since L is uniformly continuous, it is continuous at 0U. Let M ∈ R>0 be

such that if ∥u∥U < 2
M then ∥L(u)∥V < 1. Let u ∈ U and note that∥∥∥∥ u

M∥u∥U

∥∥∥∥
U
<

2
M

=⇒
∥∥∥∥ L(u)

M∥u∥U

∥∥∥∥
V
< 1 =⇒ ∥L(u)∥V < M∥u∥U.

Thus L is bounded.
(iv) =⇒ (i) Let M ∈ R>0 be such that ∥L(u)∥V < M∥u∥U for all u ∈ U. For ϵ ∈ R>0 let

δ = ϵ
M . If u0 ∈ U and if ∥u − u0∥U < δ we have

∥L(u) − L(u0)∥V = ∥L(u − u0)∥V ≤M∥u − u0∥U < ϵ.

This gives continuity of L.
(iv) =⇒ (v) Let (u j) j∈Z>0 be a sequence in ker(L) converging to v ∈ V. Then, since L

is bounded,
∥L(v) − L(u j)∥V = ∥L(v − u j)∥V ≤M∥v − u j∥U.

Therefore, if ϵ ∈ R>0 we can take N ∈ Z>0 sufficiently large that ∥v− u j∥U <
ϵ
M , and for

j ≥ N we have
∥L(v)∥V = ∥L(v) − L(u j)∥V < ϵ.

Thus L(v) = 0U and so v ∈ ker(L). Thus ker(L) is closed by Proposition 3.6.8 below. ■

In finite-dimensions, as is so often the case, things simplify.

3.5.9 Theorem (Linear maps from finite-dimensional spaces are continuous) Let
F ∈ {R,C} and let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces. If U is finite-
dimensional then L(U; V) = HomF(U; V).
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Proof Let {e1, . . . ,n} be a basis for U and denote

M′ = max{∥L(e1)∥V, . . . , ∥L(en)∥V}.

Define a norm ∥·∥1,U on U by

∥u1e1 + · · · + unen∥ = |u1| + · · · + |un|.

By Theorem 3.1.15 there exists C ∈ R>0 such that ∥u∥1,U ≤ C∥u∥U for all u ∈ U. Take
M = CM′. Then, for u = u1e1 + · · · + unen ∈ U,

∥L(u)∥V = ∥L(u1e1 + · · · + unen)∥V
≤ |u1|∥L(e1)∥V + · · · + |un|∥L(en)∥V
≤M′∥u∥1,U ≤M∥u∥U,

showing that L is bounded, and so continuous. ■

Let us give some examples of continuous and discontinuous linear maps, noting
that the only interesting examples are infinite-dimensional.

3.5.10 Examples (Continuous linear maps)
1. On any normed vector space (V, ∥·∥) the linear operator (idV,V) is continuous

and invertible.
2. Let (V, ⟨·, ·⟩) be an inner product space with (e j) j∈Z>0 a complete orthonormal fam-

ily in V. For v ∈ V let a j(v) be the components of v in the complete orthonormal
family so that

v =
∞∑
j=1

a j(v)e j.

We define the shift operator on V to be the linear operator (L,dom(L) = V)
defined by

L(v) =
∞∑
j=1

a j(v)e j+1.

By Parseval’s inequality we have ∥L(v)∥ ≤ ∥v∥, thus L is continuous.
3. We take the normed F-vector space C0([a, b];F) of continuous F-valued func-

tions on [a, b] equipped with the norm ∥·∥∞ as in Example 3.1.3–10. Define
L : C0([a, b];F)→ C0([a, b];F) by

L( f )(x) =
∫ x

a
f (ξ) dξ.

It is easy to show that L is linear, using linearity of the integral. We claim that
L is also continuous. To prove this, it suffices to prove that L is continuous at
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zero. Let ϵ ∈ R>0 and let δ = ϵ
b−a . Then, if ∥ f ∥∞ < δ,

∥L( f )∥∞ = sup{|L( f )(x)| | x ∈ [a, b]}

= sup
{∣∣∣∣∫ x

a
f (ξ) dξ

∣∣∣∣ ∣∣∣∣ x ∈ [a, b]
}

≤ sup
{ ∫ x

a
| f (ξ)|dξ

∣∣∣∣ x ∈ [a, b]
}

≤ δ(b − a) = ϵ,

as desired.
4. Let C1([0, 1];R) be the R-vector space of continuously differentiable R-valued

functions on [0, 1]. Define L : C1([0, 1];R) → C0([0, 1];R) by L( f ) = f ′. By
linearity of the derivative, L is linear. We claim that L is not continuous if we
use the norm ∥·∥∞ on both C1([0, 1];R) and C0([0, 1];R). To show this we shall
use the following lemma that is useful in its own right.

1 Lemma Let F ∈ {R,C}, let (U; ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces, and let
L ∈ HomF(U; V). Then L is discontinuous if and only if there exists a sequence (uj)j∈Z>0

in BU(1, 0U) such that the sequence (∥L(uj)∥V)j∈Z>0 diverges.
Proof Suppose that L is continuous. Then there exists M ∈ R>0 such that
L(BU(1, 0U)) ⊆ BV(M, 0V) by boundedness of L. Thus, there can exist no sequence
(u j) j∈Z>0 in BU(1, 0U) such that the sequence (∥L(u j)∥V) j∈Z>0 is unbounded.
No suppose that there is a sequence (u j) j∈Z>0 in BU(1, 0U) such that the sequence
(∥L(u j)∥V) j∈Z>0 diverges. Then, for any M ∈ R>0 there exists N ∈ Z>0 such that

∥L(u j)∥V ≥M ≥M∥u j∥U, j ≥ N.

Thus L is unbounded, and so not continuous. ▼

Now consider the sequence ( f j) j∈Z>0 in C1([0, 1];R) given by f j(x) = x j. This
sequence satisfies ∥ f j∥∞ = 1. But L( f j)(x) = jx j−1, and so ∥L( f j)∥∞ = j, showing
that the sequence (∥L( f j)∥∞) j∈Z>0 diverges. By the lemma it follows that L is
discontinuous.

5. •

As a final basic result, let us show that continuous linear maps extend uniquely
to the closure. We have not yet defined closure for normed vector spaces, so if
you feel like you need to be reminded about what it is, you may refer ahead to
Definition 3.6.7.

3.5.11 Proposition (Extension of continuous linear maps to the closure) Let F ∈
{R,C}, let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces with V complete, and let
W ⊆ U be a subspace for which cl(W) = U. Then, for L ∈ L(W; V) there exists a unique
L̄ ∈ L(U; V) such that L̄(w) = L(w) for all w ∈W.
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Proof We let u ∈ U and let (w j) j∈Z>0 be a sequence with the property that lim j→∞∥u −
w j∥U = 0. We first claim that (L(w j)) j∈Z>0 is a Cauchy sequence. Let M ∈ R>0 be such
that ∥L(w)∥V ≤M∥w∥U for all w ∈W. Then

∥L(w j) − L(wk)∥V = ∥L(w j − wk)∥V ≤M∥w j − wk∥U.

Since (w j) j∈Z>0 converges it is a Cauchy sequence, and so it follows that there exists
N ∈ Z>0 for which ∥w j − wk∥U < ϵ

M for j, k ≥ N. This gives ∥L(w j) − L(wk)∥V < ϵ for
j, k ≥ N, so showing that (L(w j)) j∈Z>0 is indeed a Cauchy sequence. Since (V, ∥·∥V) is
complete, there exists L̄(u) ∈ V which is the limit of the sequence (L(w j)) j∈Z>0 . Next we
claim that this limit is independent of the sequence (w j) j∈Z>0 in W that converges to
u ∈ U. Thus let (w̃ j) j∈Z>0 be another sequence in W converging to u. We denote by L̃(u)
the limit in V of the Cauchy sequence (L(w̃ j)) j∈Z>0 . For j ∈ Z>0 we have

∥w j − w̃ j∥U ≤ ∥w j − u∥U + ∥w̃ j − u∥U,

implying that lim j→∞∥w j − w̃ j∥U = 0. Therefore

∥L̄(u) − L̃(u)∥V ≤ ∥L̄(u) − L(w j)∥V + ∥L̃(u) − L(w̃ j)∥V + ∥L(w̃ j) − L(w j)∥V.

Taking the limit as j → ∞ we see that ∥L̄(u) − L̃(u)∥V can be made smaller than any
positive number, and so must be zero.

This then gives us a well-defined element L̄(u) associated to each u ∈ U. We next
claim that the assignment u 7→ L̄(u) is linear. For u, ũ ∈ U let (w j) j∈Z>0 and (w̃ j) j∈Z>0 be
sequences in W converging to u and ũ, respectively. Then (w j + w̃ j) j∈Z>0 converges to
u + ũ by Proposition 3.2.6. Similarly, (aw j) j∈Z>0 converges to au for a ∈ F. Therefore

∥L̄(u) + L̄(ũ) − L̄(u + ũ)∥V ≤ ∥L̄(u) + L̄(ũ) − L(w j) − L(w̃ j)∥V
+ ∥L̄(u + ũ) − L(w j + w̃ j)∥V

≤ ∥L̄(u) − L(w j)∥V + ∥L̄(ũ) − L(w̃ j)∥V
+ ∥L̄(u + ũ) − L(w j + w̃ j)∥V.

Taking the limit as j→∞ shows that the left hand side must be zero, giving L̄(u+ ũ) =
L̄(u) + L̄(u). In an entirely similar way we have

∥L̄(au) − aL̄(u)∥V ≤ ∥L̄(au) − L(aw j)∥V + ∥aL̄(u) − aL(w j)∥V,

and taking the limit j→∞ gives L̄(au) − aL̄(u).
Let us now demonstrate the uniqueness of the extension L̄. Suppose that L̃ ∈

L(U; V) is another continuous linear map with the property that it agrees with L on W.
For u ∈ U let (w j) j∈Z>0 be a sequence in W converging to u. Then

L̃(u) = lim
j→∞

L̃(w j) = lim
j→∞

L(w j) = L̄(w j)

by continuity of L̃.Move

Finally we show that the operator norm of L̄ is the same as that of L. Since L̄ and
L agree on W we have

∥L̄∥U,V = sup
∥u∥U=1

∥L(u)∥V ≥ sup
∥w∥U=1

∥L(w)∥V = ∥L∥W,V.
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Now we prove the opposite inequality. Let u ∈ U and let (w j) j∈Z>0 be a sequence in W
converging to u. We then have

∥L̄(u)∥V = lim
j→∞
∥L(w j)∥ ≤ lim

j→∞
∥L∥W,V∥w j∥U = ∥L∥W,V∥u∥U.

This gives the desired inequality since this must hold for all u ∈ U, and so concludes
the proof. ■

We also have the following related result.

3.5.12 Proposition (Extension of isomorphisms from dense subspaces) Let (V, ∥·∥)
be a Banach space with W a dense subspace. Suppose that L ∈ Lc(V; V) is a continuous
linear map with the property that L|W is a continuous norm preserving bijection from W to
itself with (L|W)−1 being continuous.2 Then L is an isomorphism, and L−1 is the extension,
as defined by Proposition 3.5.11, of (L|W)−1 to V.

Proof First we note that by Proposition 3.5.11, ∥L∥V,V = ∥L|W∥W,W. We claim that this
implies that L is norm-preserving. Indeed, let v ∈ V and let (w j) j∈Z>0 be a sequence in
W converging to v. Then

∥L(u)∥ = lim
j→∞
∥L(w j)∥ = lim

j→∞
∥w j∥ = ∥u∥,

as desired. We next claim that this implies injectivity of L. Indeed, if L(v) = 0 for
v ∈ V we must then have ∥v∥ = ∥L(v)∥ = 0, giving v = 0. Thus L is injective. We also
claim that image(L) is a closed subspace. Let (L(v j)) j∈Z>0 be a sequence in image(L)
converging to u ∈ V. Then since ∥L(v j) − L(vk)∥ = ∥v j − vk∥ it follows that (v j) j∈Z>0 is a
Cauchy sequence. Let v ∈ V denote the limit of this sequence. We need to show that
L(v) = u. Indeed,

∥L(v) − u∥ ≤ ∥L(v) − L(v j)∥ + ∥u − L(v j)∥,

and taking the limit as j→∞ gives ∥L(v) − u∥ = 0, so showing that image(L) is closed.
Since W ⊆ image(L) and since cl(W) = V we must have cl(image(L)) = image(L) = V,
thus showing surjectivity of L.

Finally we must show that L−1 is the unique continuous extension of (L|W)−1 to V.
Let M denote the unique continuous extension of (L|W)−1 to V. Just as L is a continuous
bijection, so too is M. Let v ∈ V and let (w j) j∈Z>0 be a sequence in W converging to L(v).
Then

M ◦ L(v) = lim
j→∞

(L|W)−1(w j).

There then exists a sequence (u j) j∈Z>0 so that L(u j) = w j, j ∈ Z>0. We then have

M ◦ L(v) = lim
j→∞

(L|W)−1
◦ L(u j) = lim

j→∞
u j.

We claim that lim j→∞ u j = v. Since L is continuous and injective, this is equivalent to
showing that lim j→∞ L(u j) = L(v). However, this follows directly from the definition of

2The assumption that (L|W)−1 be continuous is actually superfluous by the Banach Isomorphism
Theorem.
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the sequence (u j) j∈Z>0 . Next let v ∈ V and let (w j) j∈Z>0 be a sequence in W converging
to M(v). Then

L ◦M(v) = lim
j→∞

L(w j).

Let (u j) j∈Z>0 be a sequence in W with the property that (L|W)−1(u j) = w j, j ∈ Z>0. Then
we have

L ◦M(v) = lim
j→∞

L ◦ (L|W)−1(u j) = lim
j→∞

u j.

We must show that lim j→∞ u j = v. Since M is continuous and injective this is equivalent
to showing that lim j→∞M(u j) = M(v). This follows, however, from the definition of the
sequence (u j) j∈Z>0 . Thus we have shown that M ◦ L(v) = L ◦M(v) = v for all v ∈ V. Thus
M = L−1. ■

3.5.3 Induced topologies on continuous linear maps

Let F ∈ {R,C} and let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces. In
Corollary I-5.4.17 we showed that HomF(U; V) is anF-vector space. This is a purely
algebraic observation. Now we wish to study the structure of the continuous linear
maps. As we shall see, this is itself a normed vector space.

First we should establish that the set of continuous linear maps form a vector
space.

3.5.13 Proposition (L(U; V) is a subspace of HomF(U; V)) If F ∈ {R,C} and if (U, ∥·∥U)
and (V, ∥·∥V) are normed F-vector spaces, then L(U; V) is a subspace of HomF(U; V).

Proof Let L1,L2 ∈ L(U; V). For ϵ ∈ R>0 let δ ∈ R>0 be such that ∥L1(u)∥V < ϵ
2 and

∥L2(u)∥V < ϵ
2 for ∥u∥U < δ. Then compute

∥(L1 + L2)(u)∥V ≤ ∥L1(u)∥V + ∥L2(u)∥V < ϵ,

showing that L1 + L2 is continuous at 0U, and so continuous. Also let a ∈ F and
L ∈ L(U; V). If a = 0 it is clear that aL is continuous. So suppose that a , 0, let ϵ ∈ R>0,
and let δ ∈ R>0 be such that if ∥u∥U < δ then ∥L(u)∥V < ϵ

|a| . For ∥u∥U < δ we then have

∥(aL)(u)∥V = |a|∥L(u)∥V < ϵ,

giving continuity of aL. ■

This shows that L(U; V) is indeed an F-vector space. It is moreover true that it
is a normed vector space.

3.5.14 Theorem (L(U; V) is a normed vector space) Let F ∈ {R,C} and let (U, ∥·∥U) and
(V, ∥·∥V) be normed F-vector spaces. For L ∈ L(U; V) define

∥L∥U,V = inf{M ∈ R>0 | ∥L(u)∥V ≤M∥u∥U, u ∈ U}.

Then ∥·∥U,V is a norm on L(U; V). Moreover,
(i) ∥L(u)∥V ≤ ∥L∥U,V∥u∥U for all u ∈ U,
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(ii) ∥L∥U,V = sup
{∥L(u)∥V
∥u∥U

∣∣∣∣ u ∈ U \ {0V}
}
,

(iii) ∥L∥U,V = sup{∥L(u)∥V | ∥u∥U = 1}, and
(iv) ∥L∥U,V = sup{∥L(u)∥V | ∥u∥U ≤ 1}, and
(v) if (V, ∥·∥V) is complete then so is (L(U; V), ∥·∥U,V).

Proof Let us first verify (i), disregarding whether or not ∥·∥U,V is a norm. Suppose
that (i) does not hold. Then there exists u ∈ U such that ∥L(u)∥V > ∥L∥U,V∥u∥U. Thus
there exists ϵ ∈ R>0 such that

∥L(u)∥V > (∥L∥U,V − ϵ)∥u∥U,

and this contradicts the definition of ∥L∥U,V.
We next note that ∥L∥U,V ∈ R>0 for every L ∈ L(U; V). Moreover, ∥0L(U;V)∥U,V = 0.

Now suppose that ∥L∥U,V = 0. Then

∥L(u)∥V ≤ ∥L∥U,V∥u∥U = 0, u ∈ U.

Thus L = 0L(U;V). Clearly we have ∥0L∥U,V = |0|∥L∥U,V. If a ∈ F \ {0} then we compute

∥aL∥U,V = inf{M ∈ R>0 | ∥aL(u)∥V ≤M∥u∥U,u ∈ U}
= inf{M ∈ R>0 | |a|∥L(u)∥V ≤M∥u∥U,u ∈ U}

= inf
{
M ∈ R>0

∣∣∣∣ ∥L(u)∥V ≤
M
|a|
∥u∥U,u ∈ U

}
= inf{|a|M′ ∈ R>0 | ∥L(u)∥V ≤M′∥u∥U,u ∈ U} = |a|∥L∥U,V,

using Proposition I-2.2.28. Finally, if L1,L2 ∈ L(U; V) then

∥L1 + L2∥U,V = inf{M ∈ R>0 | ∥(L1 + L2)(u)∥V ≤M∥u∥U, u ∈ U}
≤ inf{M ∈ R>0 | ∥L1(u)∥V + ∥L2(u)∥V ≤M∥u∥U, u ∈ U}
= inf{M1 +M2 ∈ R>0 | ∥L1(u)∥V ≤M1∥u∥U,
∥L2(u)∥V ≤M2∥u∥U, u ∈ U}
= inf{M ∈ R>0 | ∥L1(u)∥V ≤M∥u∥U, u ∈ U}
+ inf{M ∈ R>0 | ∥L2(u)∥V ≤M∥u∥U, u ∈ U}

= ∥L1∥U,V + ∥L2∥U,V,

where we have used Proposition I-2.2.28. This verifies that ∥·∥U,V has the properties
demanded of a norm.

(ii) First note that the equality is trivial when L = 0L(U;V), so we suppose this is not
the case. In this case, ∥L∥U,V > 0 and so

∥L∥U,V = inf{M ∈ R>0 | ∥L(u)∥V ≤M∥u∥U, u ∈ U \ {0V}}

and so

∥L∥U,V = inf{M ∈ R>0 | ∥L(u)∥V ≤M∥u∥U, u ∈ U \ {0V}}

= inf
{
M ∈ R>0

∣∣∣∣ ∥L(u)∥V
∥u∥U

≤M, u ∈ U \ {0U}
}

= sup
{∥L(u)∥V
∥u∥U

∣∣∣∣ u ∈ U \ {0U}
}
.
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(iii) Carrying on from part (ii) we have

∥L∥U,V = sup
{∥L(u)∥V
∥u∥U

∣∣∣∣ u ∈ U \ {0U}
}

= sup
{∥∥∥∥L

( u
∥u∥U

)∥∥∥∥ ∣∣∣∣ u ∈ U \ {0U}
}

= sup{∥L(u)∥V | ∥u∥U = 1}.

(iv) It is evident that

sup{∥L(u)∥V | ∥u∥U ≤ 1} ≥ sup{∥L(u)∥V | ∥u∥U = 1},

the supremum on the left being taken over a larger set. On the other hand,

sup{∥L(u)∥V | ∥u∥U ≤ 1} = sup{∥L(λu)∥V | λ ∈ [0, 1], ∥u∥U = 1}
= sup{λ∥L(u)∥V | λ ∈ [0, 1], ∥u∥U = 1}
≤ sup{∥L(u)∥V | ∥u∥U = 1},

giving the result.
(v) Let (L j) j∈Z>0 be a Cauchy sequence in L(U; V). We claim that (L j(u)) j∈Z>0 is a

Cauchy sequence in V. This is clear if u = 0U, so let us suppose otherwise. Let ϵ ∈ R>0
and let N ∈ Z>0 be sufficiently large that ∥L j − Lk∥U,V <

ϵ
∥u∥U

for j, k ≥ N. Then

∥L j(u) − Lk(u)∥V ≤ ∥L j − Lk∥U,V∥u∥V < ϵ

for j, k ≥ N. Thus the sequence (L j(u)) j∈Z>0 converges to an element in V which we
denote by L(u). One may easily show that the assignment u 7→ L(u) is well-defined
and linear, cf. the proof of Proposition 3.5.11. Thus this defines L ∈ HomF(U; V).

We now show that L is continuous. Let ϵ ∈ R>0 and let N ∈ Z>0 be such that
∥L j − Lk∥U,V < ϵ for j, k ≥ N. Then, if ∥u∥U ≤ 1,

∥(L j − Lk)(u)∥V ≤ ∥L j − Lk∥U,V∥u∥U < ϵ.

Using continuity of the norm and Theorem 3.5.2 we have, for fixed j ≥ N,

lim
k→∞
∥(L j − Lk)(u)∥V =

∥∥∥(L j − lim
k→∞

Lk)(u)
∥∥∥

V = ∥(L j − L)(u)∥V < ϵ.

Therefore, for any u ∈ U we have

∥(L j − L)(u)∥V < ϵ∥u∥U,

implying that L j − L is bounded and so L j − L ∈ L(U; V). Since L j ∈ L(U; V) and since
L(U; V) is a subspace it follows that L ∈ L(U; V).

Moreover, our computations also show that, for any ϵ ∈ R>0 there exists N ∈ Z>0
such that ∥L j − L∥U,V < ϵ for j ≥ N. Thus (L j) j∈Z>0 converges to L. ■

Let us attach some terminology to our norm on L(U; V).
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3.5.15 Definition (Induced norm, operator norm, convergence in norm) LetF ∈ {R,C}
and let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces.

(i) The norm ∥·∥U,V is the induced norm or the operator norm on L(U; V).
(ii) A sequence (L j) j∈Z>0 converges in norm if it converges in the normed F-vector

space (L(U; V), ∥·∥U,V). •

Let us explicitly compute some operator norms.

3.5.16 Example (Example 3.5.10 cont’d)
1. We first consider the case of a linear map L : Rm

→ Rn. We claim that ∥L∥Rm,Rn

is equal to the largest eigenvalue of the matrix LTL. First note that LTL is a
symmetric matrix, so its eigenvalues are all real. Furthermore, its eigenvalues
are nonnegative since LTL is positive-semidefinite. Let x ∈ Rm be an eigenvector
for the largest eigenvalue λ of LTL. We then compute

∥Lx∥2 = xTLTLx = λ2xTx = λ2
∥x∥2.

This shows that ∥L∥Rm,Rn ≥ λ. Now note that since LTL is symmetric we may
find an orthonormal basis {v1, . . . ,vm} for Rm comprised of eigenvectors of LTL.
We may then write

x = (x · v1)v1 + · · · + (x · vm)vm

for any x ∈ Rm. We then have

∥Lx∥2 = xTLTLx

=

m∑
i, j=1

(x · vi)(x · v j)vT
i LTLv j

=

m∑
i, j=1

(x · vi)(x · v j)λiλ jvT
i vi

=

m∑
i=1

λ2
i (x · vi)2

≤ λ2
m∑

i=1

(x · vi)2 = λ2
∥x∥2,

thus showing that ∥L∥Rm,Rn ≤ λ.

2. For the linear map L( f )(t) =
∫ t

0
f (τ) dτ defined on (C0([0, 1];R), ∥·∥∞) we claim

that the operator norm is 1. In Example 3.5.10 we showed that the operator
norm is at least 1. To show that it is at most 1, consider the function f (t) = c for
some nonzero constant c. We then have ∥L( f )∥∞ = c, giving our assertion. •

The induced norm also satisfies nice properties with respect to composition.
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3.5.17 Proposition (Induced norm and composition) Let F ∈ {R,C} and let (U, ∥·∥U),
(V, ∥·∥V), and (W, ∥·∥W) be normed F-vector spaces. If L ∈ L(U; V) and K ∈ L(V; W) then

∥K ◦ L∥U,W ≤ ∥K∥V,W∥L∥U,V.

In particular, K ◦ L ∈ L(U; W).
Proof For u ∈ U we compute

∥K ◦ L(u)∥W ≤ ∥K∥V,WL(u) ≤ ∥K∥V,W∥L∥U,V∥u∥U,

as desired. ■

As suggested by the terminology “converges in norm,” we wish to allow other
versions of convergence of sequences of continuous linear maps. The principal
such notion is the following.

3.5.18 Definition (Weak convergence) Let F ∈ {R,C} and let (U, ∥·∥U) and (V, ∥·∥V) be
normed F-vector spaces. A sequence (L j) j∈Z>0 in L(U; V) converges weakly to L ∈
L(U; V) if, for each u ∈ U, the sequence (L j(u)) j∈Z>0 converges. •

Let us explore weak convergence by providing its relationship with convergence
in norm.

3.5.19 Proposition (Convergence in norm implies weak convergence) Let F ∈ {R,C}
and let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces. A sequence (Lj)j∈Z>0 in L(U; V)
converges weakly if it converges in norm.

Proof This is Exercise 3.5.5. ■

It is not generally true that weak convergence implies convergence in norm. The
following example relies on the reader knowing about Banach spaces of sequences
as discussed in Section 3.8.2.

3.5.20 Example (Weak convergence may not imply norm convergence) We consider
the F-Banach space ℓ2(F) of sequences (a j) j∈Z>0 in F for which

∑
∞

j=1|a j|
2 < ∞. This is

a Banach space with norm

∥(a j) j∈Z>0∥2 =
( ∞∑

j=1

|a j|
2
)1/2

.

For k ∈ Z>0 define Lk ∈ L(ℓ2(R);F) by Lk((a j) j∈Z>0) = ak (it is clear that Lk is linear
and bounded). Now note that

(Lk − Ll)((a j) j∈Z>0) = ak − al

so that

|(Lk − Ll)((a j) j∈Z>0)| ≤ |ak| + |al| ≤
√

2(|ak|
2 + |al|

2)1/2
≤

√

2∥(a j) j∈Z>0∥2,
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where we have used Proposition II-1.1.11. Thus ∥Lk − Ll∥ℓ2(F),F ≤
√

2. However,
taking the particular sequence

a j =


1, j = k,
−1, j = l,
0, otherwise,

we have
|(Lk − Ll)((a j) j∈Z>0)| =

√

2∥(a j) j∈Z>0∥2,

showing that ∥Lk−Ll∥ℓ2(F),F ≤
√

2. In particular, the sequence (L j) j∈Z>0 is not Cauchy,
and so does not converge in norm. We claim that it does, however, converge weakly.
Indeed, if (a j) j∈Z>0 ∈ ℓ

2(F) then we have lim j→∞|a j|
2 = 0 by Proposition I-2.4.7.

Therefore,
lim
k→∞

Lk((a j) j∈Z>0) = lim
k→∞

ak = 0,

showing that the sequence (L j) j∈Z>0 converges weakly to the zero linear map. •

The preceding example notwithstanding, the reader may not be surprised to
learn that weak and norm convergence agree in finite-dimensions.

3.5.21 Proposition (Equivalence of weak and norm convergence in finite-
dimensions) Let F ∈ {R,C} and let (U, ∥·∥U) and (V, ∥·∥V) be finite-dimensional normed
F-vector spaces. A sequence (Lj)j∈Z>0 in L(U; V) converges weakly if and only if it converges
in norm.

Proof Let {e1, . . . , en} be a basis for U. We claim that

|||L||| = max{∥L(e1)∥V, . . . , ∥L(en)∥V}

is a norm on L(U; V). The only possibly nontrivial fact to verify is the triangle inequality.
For this we have

|||L1 + L2||| = max{∥(L1 + L2)(e1)∥V, . . . , ∥(L1 + L2)(en)∥V}
≤ max{∥L1(e1)∥V + ∥L2(e1)∥V, . . . , ∥L1(en)∥V + ∥L2(en)∥V}
= max{∥L1(e1)∥V, . . . , ∥L1(en)∥V} +max{∥L2(e1)∥V, . . . , ∥L2(en)∥V}
= |||L1||| + |||L2|||,

as desired.
Now we claim that a sequence (L j) j∈Z>0 in L(U; V) converges weakly to L if and only

if it converges to L in the norm ||| · |||. Indeed, weak convergence implies immediately
that lim j→∞ L j(ek) = L(ek) for each k ∈ {1, . . . ,n}. This in turn implies convergence in
the norm ||| · |||. Conversely, if a sequence (L j) j∈Z>0 converges in the norm ||| · ||| then, for
each k ∈ {1, . . . ,n}, (L j(ek)) j∈Z>0 converges in V to L(ek). Thus, if u = u1e1 + · · ·+ unen ∈ U
we have,

lim
j→∞

L j(u1e1 + · · · + unen) =
n∑

k=1

uk lim
j→∞

L(ek) = L(u1e1 + · · · + unen).
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Thus (L j) j∈Z>0 converges to L weakly.
The result follows from this since the norms ||| · ||| and ∥·∥U,V are equivalent by virtue

of L(U; V) being finite-dimensional (see Exercise I-5.4.8). ■

We close this section by indicating that weak convergence is, in fact, conver-
gence in a suitable topology. The material here relies on an understanding of
topics covered in . It is not necessary to understand this to understand weakwhat?

convergence.

3.5.22 Definition (Weak operator topology) Let F ∈ {R,C} and let (U, ∥·∥U) and (V, ∥·∥V)
be normed F-vector spaces. The weak operator topology is the topology for which
sets of the form

∩
m
k=1{L ∈ L(U; V) | ∥L(uk) − L0(uk)∥ < ϵk}, u1, . . . ,um ∈ U, ϵ1, . . . , ϵm ∈ R>0,

are a neighbourhood basis about L0. •

That this does indeed define a topology on L(U; V) follows from .what?

The following result connects the weak operator topology with the notion of
weak convergence.

3.5.23 Theorem (Weak convergence is convergence in the weak operator topology)
Let F ∈ {R,C} and let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces. Then a sequence
(Lj)j∈Z>0 in L(U; V) converges weakly to L0 if and only if it converges to L0 in the weak
operator topology.

Proof First suppose that (L j) j∈Z>0 converges weakly to L0. Let S ⊆ L(U; V) be a
neighbourhood of L0 in the weak operator topology and let ϵ1, . . . , ϵk ∈ R>0 and
u1, . . . ,uk ∈ U be such that

∩
m
k=1{L ∈ L(U; V) | ∥L(uk) − L0(uk)∥V < ϵk} ⊆ S.

For k ∈ {1, . . . ,m} let Nk ∈ Z>0 be sufficiently large that ∥L j(uk)−L0(uk)∥V < ϵk for j ≥ Nk
and let N = max{N1, . . . ,Nm}. Then, for j ≥ N and for k ∈ {1, . . . ,m},

∥L j(uk) − L0(uk)∥V < ϵk

so that
L j ∈ ∩

m
k=1{L ∈ L(U; V) | ∥L(uk) − L0(uk)∥V < ϵk}.

Thus (L j) j∈Z>0 converges in the weak operator topology.
Now suppose that (L j) j∈Z>0 converges to L0 in the weak operator topology. For

ϵ ∈ R>0 and u ∈ U note that

S(L0,u, ϵ) ≜ {L ∈ L(U; V) | ∥L(u) − L0(u)∥V < ϵ}

is a neighbourhood of L0 in the weak operator topology. Thus, for ϵ ∈ R>0 and u ∈ U,
there exists N ∈ Z>0 such that L j ∈ S(L0,u, ϵ) for j ≥ N. That is, for each ϵ ∈ R>0 and for
each u ∈ U, there exists N ∈ Z>0 such that ∥L(u) − L0(u)∥V < ϵ showing that (L j(u)) j∈Z>0

converges to L0(u). This is exactly weak convergence of (L j) j∈Z>0 to L0. ■
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3.5.24 Remark (The weak operator topology is locally convex) As a glimpse ahead to
Chapter 6 we make the observation that the weak operator topology is the locally
convex topology defined by the family of seminorms (pu)u∈U where pu(L) = ∥L(u)∥V.

• normable? metrisable?

3.5.4 Invertibility of continuous linear maps

The notion of invertibility of a linear map L : Rn
→ Rn is well understood, and

is equivalent to the condition that if we think of L as an n×n matrix then det(L) , 0.
As expected, for linear operators defined on infinite-dimensional normed vector
spaces, the issues are more complicated. Indeed, as we shall see, there are various
ways in which a linear operator can be singular, and only some of the possibilities
will be of interest to us.

Let us first consider injective linear operators. In the following discussion we
let (L,dom(L)) be a linear operator on V. The following result has likely been
encountered in a basic linear algebra course.

3.5.25 Lemma A linear operator (L,dom(L)) on V is injective if and only if ker(L) = {0}.
Proof First suppose that L is injective and that L(v) = 0. Since L(0) = 0 this implies
that v = 0. Next suppose that ker(L) = {0} and that L(v1) = L(v2). Then L(v1 − v2) = 0
by linearity, implying that v1 = v2. ■

If (L,dom(L)) is injective then L : dom(L)→ image(L) is necessarily an isomor-
phism. In this case we define a linear operator (L−1, image(L)) where L : image(L) ⊆
V → dom(L) ⊆ U. Note that L−1 defined in this manner is not defined on all of V,
only on image(L). We shall say that (L−1, image(L)) is the inverse of L, and so say
that (L,dom(L)) is invertible.

3.5.26 Definition Let (V, ∥·∥) be a normed vector space and let (L,dom(L)) be a linear
operator on V.

(i) (L,dom(L)) is essentially regular if

(a) L is injective,
(b) (L−1, image(L)) is continuous, and
(c) cl(image(L)) = V.

(ii) (L,dom(L)) is regular if it is essentially regular and if image(L) = V.
(iii) (L,dom(L)) is singular if it is neither regular nor essentially regular. •

In a manner resembling closed and closable linear operators, one can go from
an essentially regular linear operator to a regular linear operator in a natural way.

3.5.27 Proposition Let (V, ∥·∥) be a Banach space and let (L,dom(L)) be a linear operator on V.
If (L,dom(L)) is essentially regular then there exists a regular linear operator (L,dom(L))
on V which is an extension of (L,dom(L)). (L,dom(L)) is called the regularisation of
(L,dom(L)).
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Proof We proceed by defining L
−1

. For any v0 ∈ V there exists a Cauchy sequence
(v j) j∈Z>0 in image(L) and converging to v0. Since L−1 is continuous the sequence

(L−1(v j)) j∈Z>0 converges to u0 ∈ V. We define L
−1

(v0) = u0. One shows that the
collection of u ∈ V that are images under L−1 of Cauchy sequences in image(L) form a

subspace of V, and we denote this subspace by dom(L). One then defines L = (L
−1

)−1.■

Often one is interested in solutions of equations of the form L(v) = u. To ensure
the existence to such an equation, one wants u ∈ image(L); to guarantee uniqueness
of the solution, one wants L to be injective; and to ensure that the solutions of the
equation do not vary wildly as one varies u, one wants the inverse to be continuous.
This motivates our interest in regular linear operators.classification of

invertibility for

continuous linear maps

3.5.28 Examples
1. On any normed vector space (V, ∥·∥) the linear operator (idV,V) is continuous

and invertible. Furthermore, image(idV) = V, so this linear operator is regular.
2. On any normed vector space (V, ∥·∥) the linear operator (L,V) defined by L(v) = 0

is continuous. It is certainly not invertible, however, so it represents an example
of case of the theorem.what?

3. On V = (L2([0, 1];F) consider the linear operator (L,dom(L)) given by dom(L) =
V and L( f )(t) = t f (t). It is clear that L is continuous since we have

∥L( f )∥22 =
∫ 1

0
|t f (t)|2 dt ≤

∫ 1

0
| f (t)|2 dt = ∥ f ∥22.

It is also evident that L is invertible since L( f ) = 0 obviously implies that f = 0
a.e. We note that image(L) ⊂ V since the function f (t) = 1 is not in the image
of L. Indeed, if this function were in image(L) then there would be a function
f ∈ L2([0, 1];F) so that t f (t) = 1. Thus f (t) = 1

t , but this function is not in
L2([0, 1];F). However, if we define

S = { f ∈ L2([0, 1];F) | there exists a neighbourhood of 0 on which f vanishes},

then clearly S ⊆ image(L). Furthermore, one easily sees that S is dense in V,
showing that image(L) is dense in V. This shows that (L,dom(L)) belongs to the
functions of case of the theorem.what?

4. Let (V, ⟨·, ·⟩) be an inner product space with (e j) j∈Z>0 a complete orthonormal fam-
ily in V. For v ∈ V let a j(v) be the components of v in the complete orthonormal
family so that

v =
∞∑
j=1

a j(v)e j.

We define the shift operator on V to be the linear operator (L,dom(L) = V)
defined by

L(v) =
∞∑
j=1

a j(v)e j+1.
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By Parseval’s inequality we have ∥L(v)∥ ≤ ∥v∥, thus L is continuous.
It is also evident that (L,dom(L)) is invertible. Indeed, suppose that L(v) = 0.
Then

0 =
∞∑
j=1

a j(v)e j+1 = 0e1 +

∞∑
j=1

a j(v)e j+1.

By Proposition 4.4.23 it follows that a j(v) = 0, j ∈ Z>0, or that v = 0.
We also claim that image(L) is not dense in V. Indeed, it is clear that the function
e1 is orthogonal to image(L), which prohibits image(L) from being dense.
All this shows that L belongs to the class of linear operator described by case of what?

the theorem. •

3.5.5 Spectral properties for continuous operators on Banach spaces

3.5.29 Definition Let (V, ∥·∥) be a Banach space with (L,dom(L)) a linear operator for which
dom(L) is dense in V.

(i) λ ∈ C is in the resolvent set for (L,dom(L)) if (Lλ,dom(Lλ)) is regular.
(ii) λ ∈ C is in the spectrum for (L,dom(L)) if (Lλ,dom(Lλ)) is singular. We denote

the spectrum of (L,dom(L)) by spec(L).
(iii) If (Lλ,dom(Lλ)) is not invertible then λ is an eigenvalue for (L,dom(L)) and

nonzero vectors in ker(Lλ) are eigenvectors for (L,dom(L)) corresponding
to the eigenvalue λ. The dimension of ker(Lλ) is the multiplicity of λ. The
collection of eigenvalues is the point spectrum of (L,dom(L)) which we denote
by spec0(L).

(iv) If (Lλ,dom(Lλ)) is invertible but

(a) L−1
λ is unbounded,

(b) image(Lλ) ⊂ V, and
(c) cl(image(Lλ)) = V

then λ is in the continuous spectrum of (L,dom(L)). The continuous spectrum
of (L,dom(L)) is denoted spec1(L).

(v) If (Lλ,dom(Lλ)) is invertible but cl(image(Lλ)) ⊂ V then λ is in the residual
spectrum of (L,dom(L)). The residual spectrum of (L,dom(L)) is denoted
spec

−1(L). The dimension of V/ cl(image(Lλ)) is the deficiency of λ. •

Note that our definition of deficiency in part (v) requires the notion of a quotient
V/U of a vector space V by a subspace U. Readers unfamiliar with the notion of a
quotient space need not despair since, as we shall shortly see, the linear operators
of interest to us have empty residual spectrum. Let us give an example to illustrate
our notions of spectrum.
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3.5.30 Example On (V = L2([0, 1];F), ∥·∥2) we consider the linear operator (L,dom(L) = V)
defined by

L( f )(t) =
∫ t

0
f (ξ) dξ. (3.6)

To examine the spectrum of L we need to consider the operator Lλ = L − λ idV.
First we take λ = 0 where Lλ = L. We note that image(L) consists of functions
which vanish at t = 0 and which possess an L2-derivative. The collection of all such
functions is dense in L2([0, 1];F). Indeed, note that the differentiable functions
vanishing at t = 0 are dense in image(L) by Theorem IV-1.3.11(i). One can also
easily see that the differentiable functions vanishing at t = 0 are dense in the set of
all differentiable functions. Thus image(L) is dense in V by Theorem IV-1.3.11(i).
We claim that (L,dom(L)) is invertible and that (L−1, image(L)) is unbounded. That
L is invertible is clear since∫ t

0
f (ξ) dξ = 0 =⇒ f (ξ) = 0 a.e.

The unboundedness of L−1 follows since if f possess an L2-derivative and vanishes
at t = 0 then L−1( f ) = f ′. We have seen in that this map in unbounded. Thiswhat?

shows that image(L0) ⊂ V, cl(image(L0)) = V, and that L−1
0 is unbounded. Thus

0 ∈ spec1(L).
Now we consider λ , 0. Here we claim that (Lλ,dom(Lλ)) is regular. First let

us show that it is invertible. Let Lλ( f ) = 0. Thus∫ t

0
f (ξ) dξ − λ f (t) = 0 =⇒ f ′(t) −

1
λ

f (t) = 0.

The solution to this ordinary differential equation is f (t) = Cet/λ. Using the initial
condition f (0) = 0 we see that C = 0, thus showing that Lλ is invertible. Next we
show that image(Lλ) = V. For f ∈ V we must find g ∈ dom(L) so that Lλ(g) = f , or
equivalently ∫ t

0
g(ξ) dξ − λg(t) = f (t).

Define h(t) = f (t) + λg(t) so that

h(t) =
∫ t

0
f (ξ) dξ.

In particular, it follows that h possesses an L2-derivative and that h(0) = 0. Therefore

g(t) = h′(r) =⇒ h′(t) −
1
λ

h(t) = −
1
λ

f (t).
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This equations can now be solved using an integrating factor, as you learned when
you were a child, and the solution is

h(t) = −
f (t)
λ
−

et/λ

λ

∫ t

0
f (ξ)e−ξ/λ dξ,

using the fact that h(0) = 0. Differentiating this then gives a function g satisfying
Lλ(g) = f :

g(t) = −
f (t)
λ
−

et/λ

λ2

∫ t

0
f (ξ)e−ξ/λ dξ. (3.7)

Thus image(Lλ) = V. Finally, we show that L−1
λ is continuous. We compute,

using (3.7),

|L−1
λ ( f )(t)|2 =

∣∣∣∣ f (t)
λ
+

et/λ

λ2

∫ t

0
f (ξ)e−ξ/λ dξ

∣∣∣∣2
≤

1
|λ|2
| f (t)|2 +

2M
|λ3|
| f (t)|

∣∣∣∣∫ t

0
f (ξ)e−ξ/λ dξ

∣∣∣∣
+

M
|λ|4

∣∣∣∣∫ t

0
f (ξ)e−ξ/λ dξ

∣∣∣∣2
where

M = sup
t∈[0,1]
{|et/λ
|}.

Now we use the Cauchy-Schwarz-Bunyakovsky inequality to further compute

|L−1
λ ( f )(t)|2 ≤

1
|λ|2
| f (t)|2 +

2M
|λ3|
| f (t)|

(∫ t

0
| f (ξ)|2 dξ

)(∫ t

0
|e−ξ/λ|dξ

)
+

M
|λ|4

(∫ t

0
| f (ξ)|2 dξ

)2(∫ t

0
|e−ξ/λ|dξ

)2

≤ a| f (t)|2 + b| f (t)|∥ f ∥ + c∥ f ∥2,

where a, b, c > 0 are messy constants that are independent of f . Then we compute,
again using the Cauchy-Schwarz-Bunyakovsky inequality,

∥L−1
λ ( f )∥2 =

∫ 1

0
|L−1
λ ( f )(t)|2 dt

≤

∫ 1

0

(
a| f (t)|2 + b| f (t)|∥ f ∥ + c∥ f ∥2

)
dt

= a∥ f ∥2 + b∥ f ∥
(∫ 1

0
dt

)1/2( ∫ 1

0
| f (t)|2 dt

)1/2
+ c∥ f ∥2

= (a + b + c)∥ f ∥2.
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This shows that L−1
λ is continuous for λ , 0.

Thus, all of the above shows the following: On (L2([0, 1];F), ⟨·, ·⟩2) the linear L
given in (3.6) satisfies
1. spec0(L) = ∅,
2. spec1(L) = {0}, and
3. spec

−1(L) = ∅.
While some of the computations used to deduce these conclusions may be tedious,
they are not essentially difficult. •

3.5.6 The Open Mapping Theorem and Closed Graph Theorem

In the preceding two sections we studied some of the more basic characterisa-still two?

tions of continuous linear maps between normed vector spaces. In the next sectionshow many?

we give some deeper results which provide some very useful structure for Banach
spaces.

3.5.31 Theorem (Banach–Schauder Open Mapping Theorem) Let F ∈ {R,C} and
let (U, ∥·∥U) and (V, ∥·∥V) be F-Banach spaces. If L ∈ L(U; V) is surjective then it is
open, i.e., L(S) is open for every open subset S ⊆ U.

Proof ■

It is worth reflecting on whether it is necessary that U and V be Banach spaces
in order for the result to hold. It turns out that these assumptions are necessary.

3.5.32 Examples (Open Mapping Theorem fails for normed vector spaces)
1. Consider the following data:

(a) U = C0([0, 1],R);
(b) ∥·∥U = ∥·∥∞;
(c) V is the subspace of functions f in C0([0, 1];R) that are continuously dif-

ferentiable and that satisfy f (0) = 0;
(d) ∥·∥V = ∥·∥∞;
(e) L ∈ HomR(U; V) is defined by

L( f )(x) =
∫ x

0
f (ξ) dξ.

Note that V is not complete; we invite the reader to adapt Example 3.6.25–2 to
provide a Cauchy sequence in V that does not converge.
We claim that L is a continuous bijection but its inverse is not continuous.
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2. Let (V, ∥·∥) be a Banach space of infinite-dimension and let {ei}i∈I be a basis for
V, and suppose without loss of generality that ∥ei∥ = 1 for each i ∈ I. As in the
proof of Proposition 3.1.4 define a norm ∥·∥1 on V by∥∥∥∥∑

i∈I

ciei

∥∥∥∥
1
=

∑
i∈I

|ci|,

this definition making sense since the sum is finite. As in , (V, ∥·∥1) is incomplete. what?

We claim that the identity map on V, thought of as a linear map from the normed
vector space (V, ∥·∥1) to the Banach space (V, ∥·∥), is a continuous bijection but
has an inverse that is not continuous.

Exercises

3.5.1 Let F ∈ {R,C}, let (U, ∥·∥U) and (V, ∥·∥V) be normed F-vector spaces, and let
L ∈ L(U; V). Show that L is norm-preserving if and only if it is an isometry
of the metric spaces associated with the norms (cf. Proposition 3.1.7).

3.5.2 Show that the operator norm ∥·∥Rm,Rn defined in Example 3.5.16–1 is not
derived from an inner product on L(Rm;Rn).

3.5.3 Prove Proposition 3.5.3.
3.5.4 LetF ∈ {R,C}. OnFn consider the two norms ∥·∥1 and ∥·∥2 as in Example 3.1.3.

Show that idFn is a homeomorphism of the normed vector spaces (Fn, ∥·∥1)
and (Fn, ∥·∥2) but is not an isomorphism of normed vector spaces.

3.5.5 Prove Proposition 3.5.19.
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Section 3.6

Topology of normed vector spaces

Since a (semi)normed vector space is a metric space, and so a topological space,
one has all of the usual notions associated with topological spaces: interior, closure,
boundary, compactness, etc. These notions inherit all of the attributes from general
topological spaces as discussed in detail in Chapter 1. We would like, however,
for the reader to be able to at least read the results in this section without having
first read Chapter 1. Therefore, we adopt the following approach for presentation.
All definitions and theorems are stated so that they can be read independently of
having read Chapter 1. When it is easily done, proofs are given in a way that does
not rely on understanding general notions from topology. However, we also do not
shy away from using some general ideas from Chapter 1 in a proof when doing so
avoids duplication. The bottom line is this: A reader should be able to understand
the flow of ideas without having read Chapter 1, but understanding all proofs may
require understanding some parts of Chapter 1.

It is also the case that, like quite a few of the results in this chapter, the statements
and proofs bear a strong resemblance to those for real numbers; the reader should
thus compare what we say here with what has been said already in Section I-2.5.
The similarities and the differences together will help reader understand normed
vector spaces.

Do I need to read this section? Readers already familiar with topology can
forgo the basic definitions and theorems. The notion of a Schauder basis in Sec-Say more here

tion 3.6.5 will come up in . •what?

3.6.1 Properties of balls in normed vector spaces

In this section we give some fairly easy and pretty “obvious” results concerning
the character of open and closed balls in normed vector spaces. These results will
be used constantly in our description of the topology of normed vector spaces.

We know that, by definition, the open balls in a normed vector space form a
basis for the norm topology; every open set is by definition a union of open balls.
This description can be refined a little to show that it is really open balls about 0V

that are important.

3.6.1 Proposition (Balls about the origin are sufficient to describe the norm topol-
ogy) Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector space. For any open set U ⊆ V
there exists an index set I, positive numbers (ri)i∈I, vectors (vi)i∈I such that

U = ∪i∈I{vi + B(ri, 0V)},

where
vi + B(ri, 0V) = {v + vi | v ∈ B(ri, 0V)}.
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Proof This follows since B(r, v) is the translation by v of B(r, 0V), cf. the proof of
Proposition 3.1.12. ■

Let us next give some fairly elementary properties of open and closed balls.

3.6.2 Proposition (Properties of open and closed balls) Let F ∈ {R,C}, let (V, ∥·∥) be a
normed F-vector space, and let r ∈ R>0 and v0 ∈ V. Then the following statements hold:

(i) B(r,v0) is open;

(ii) B(r,v0) is closed and bounded;
(iii) B(r,v0) is compact if and only if B(1, 0V) is compact.

Proof (i) This is Exercise 3.1.1.
(ii) If M = ∥v∥ + r and if v ∈ B(r, v) then

∥v∥ = ∥v − v0 + v0∥ ≤ ∥v − v0∥ + ∥v0∥ ≤M,

showing that B(r, v0) ⊆ B(M, 0V) and so B(r, v0) is bounded. Define f : V → R by
f (v) = ∥v∥ and note that B(1, 0V) = f−1([0, 1]). Since f is continuous by Proposition 3.5.4
and since [0, 1] is closed, it follows that B(1, 0V) is closed by Proposition 1.3.1. Now
define fr, fv0 : V→ V by fr(v) = rv and fv0(v) = v + v0. By Proposition 3.5.4 these maps
are homeomorphisms. Therefore, fv0

◦ fr is continuous. Since B(r, v0) = fv0
◦ fr(B(1, 0V))

and since the homeomorphic image of a closed set is closed (Corollary 1.3.2), it follows
that B(r, v0) is closed.

(iii) As in the preceding part of the proof, B(r, v0) = fv0
◦ fr(B(1, 0V)), and since the

continuous image of compact sets is compact (Proposition 1.6.5), the result follows.■

3.6.2 Interior, closure, boundary, etc.

The definitions and results here are similar to those forR given in Section I-2.5.3,
so we will go through them quickly. Examples, discussion, and motivation can be
found in Section I-2.5.3.

3.6.3 Definition (Neighbourhood) Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector
space. For v ∈ V, a neighbourhood of v is an open set U for which v ∈ U. •

3.6.4 Definition (Accumulation point, cluster point, limit point) Let F ∈ {R,C} and let
(V, ∥·∥) be a normed F-vector space. For a subset A ⊆ V, a point v ∈ V is:

(i) an accumulation point for A if, for every neighbourhood U of v, the set
A ∩ (U \ {v}) is nonempty;

(ii) a cluster point for A if, for every neighbourhood U of v, the set A ∩ U is
infinite;

(iii) a limit point of A if there exists a sequence (v j) j∈Z>0 in A converging to v.
The set of accumulation points of A is called the derived set of A, and is denoted
by der(A). •



432 3 Banach spaces 2022/03/07

In Remark I-2.5.12 we made some comments about conventions concerning the
words “accumulation point,” “cluster point,” and “limit point.” Those remarks
apply equally here.

3.6.5 Proposition (“Accumulation point” equals “cluster point”) Let F ∈ {R,C} and
let (V, ∥·∥) be a normed F-vector space. For a set A ⊆ V, v ∈ V is an accumulation point
for A if and only if it is a cluster point for A.

Proof It is clear that a cluster point for A is an accumulation point for A. Suppose
that v is not a cluster point. Then there exists a neighbourhood U of v for which the set
A∩U is finite. If A∩U = {v}, then clearly v is not an accumulation point. If A∩U , {v},
then A ∩ (U \ {v}) ⊇ {v1, . . . , vk}where the points v1, . . . , vk are distinct from v. Now let

ϵ = 1
2 min{∥v1 − v∥, . . . , ∥vk − v∥}.

Clearly A ∩ (B(ϵ, v) \ {v}) is then empty, and so v is not an accumulation point for A. ■

3.6.6 Proposition (Properties of the derived set) Let F ∈ {R,C} and let (V, ∥·∥) be a
normed F-vector space. For A,B ⊆ V and for a family of subsets (Ai)i∈I of V, the following
statements hold:

(i) der(∅) = ∅;
(ii) der(V) = V;
(iii) der(der(A)) = der(A);
(iv) if A ⊆ B then der(A) ⊆ der(B);
(v) der(A ∪ B) = der(A) ∪ der(B);
(vi) der(A ∩ B) ⊆ der(A) ∩ der(B).

Proof Parts (i) and (ii) follow directly from the definition of the derived set.
(iii)True or not?

(iv) Let v ∈ der(A) and let U be a neighbourhood of v. Then the set A ∩ (U \ {v}) is
nonempty, implying that the set B ∩ (U \ {v}) is also nonempty. Thus v ∈ der(B).

(v) Let v ∈ der(A∪B) and let U be a neighbourhood of v. Then the set U∩((A∪B)\{v})
is nonempty. But

U ∩ ((A ∪ B) \ {v}) = U ∩ ((A \ {v}) ∪ (B \ {v}))
= (U ∩ (A \ {v})) ∪ (U ∩ (B \ {v})). (3.8)

Thus it cannot be that both U∩ (A\{v}) and U∩ (B\{v}) are empty. Thus x is an element
of either der(A) or der(B).

Now let v ∈ der(A)∪der(A). Then, using (3.8), U∩ ((A∪B) \ {v}) is nonempty, and
so v ∈ der(A ∪ B).

(vi) Let x ∈ der(A∩B) and let U be a neighbourhood of v. Then U∩((A∩B)\{v}) , ∅.
We have

U ∩ ((A ∩ B) \ {v}) = U ∩ ((A \ {v}) ∩ (B \ {v}))

Thus the sets U ∩ (A \ {v}) and U ∩ (B \ {v}) are both nonempty, showing that v ∈
der(A) ∩ der(B). ■
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3.6.7 Definition (Interior, closure, and boundary) Let F ∈ {R,C} and let (V, ∥·∥) be a
normed F-vector space. Let A ⊆ V.

(i) The interior of A is the set

int(A) = ∪{U | U ⊆ A, U open}.

(ii) The closure of A is the set

cl(A) = ∩{C | A ⊆ C, C closed}.

(iii) The boundary of A is the set bd(A) = cl(A) ∩ cl(V \ A). •

3.6.8 Proposition (Characterisation of interior, closure, and boundary) Let F ∈
{R,C} and let (V, ∥·∥) be a normed F-vector space. For A ⊆ V, the following statements
hold:

(i) v ∈ int(A) if and only if there exists a neighbourhood U of v such that U ⊆ A;
(ii) v ∈ cl(A) if and only if, for each neighbourhood U of v, the set U ∩A is nonempty;
(iii) v ∈ bd(A) if and only if, for each neighbourhood U of v, the sets U∩A and U∩(V\A)

are nonempty.
Proof (i) Suppose that v ∈ int(A). Since int(A) is open, there exists a neighbourhood
U of v contained in int(A). Since int(A) ⊆ A, U ⊆ A.

Next suppose that v < int(A). Then, by definition of interior, for any open set U
for which U ⊆ A, v < U.

(ii) Suppose that there exists a neighbourhood U of v such that U ∩ A = ∅. Then
V \ U is a closed set containing A. Thus cl(A) ⊆ V \ U. Since v < V \ U, it follows that
v < cl(A).

Suppose that v < cl(A). Then v is an element of the open set V \ cl(A). Thus there
exists a neighbourhood U of v such that U ⊆ V \ cl(A). In particular, U ∩ A = ∅.

(iii) This follows directly from part (ii) and the definition of boundary. ■

3.6.9 Proposition (Properties of interior) Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-
vector space. For A,B ⊆ V and for a family of subsets (Ai)i∈I of V, the following statements
hold:

(i) int(∅) = ∅;
(ii) int(V) = V;
(iii) int(int(A)) = int(A);
(iv) if A ⊆ B then int(A) ⊆ int(B);
(v) int(A ∪ B) ⊇ int(A) ∪ int(B);
(vi) int(A ∩ B) = int(A) ∩ int(B);
(vii) int(∪i∈IAi) ⊇ ∪i∈I int(Ai);
(viii) int(∩i∈IAi) ⊆ ∩i∈I int(Ai).
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Moreover, a set A ⊆ V is open if and only if int(A) = A.
Proof Parts (i) and (ii) are clear by definition of interior. Part (v) follows from part (vii),
so we will only prove the latter.

(iii) This follows since the interior of an open set is the set itself.
(iv) Let v ∈ int(A). Then there exists a neighbourhood U of v such that U ⊆ A. Thus

U ⊆ B, and the result follows from Proposition 3.6.8.
(vi) Let v ∈ int(A) ∩ int(B). Since int(A) ∩ int(B) is open by Exercise I-2.5.1, there

exists a neighbourhood U of v such that U ⊆ int(A) ∩ int(B). Thus U ⊆ A ∩ B. This
shows that v ∈ int(A ∩ B). This part of the result follows from part (viii).

(vii) Let v ∈ ∪i∈I int(Ai). By Exercise I-2.5.1 the set ∪i∈I int(Ai) is open. Thus there
exists a neighbourhood U of v such that U ⊆ ∪i∈I int(Ai). Thus U ⊆ ∪i∈IAi, from which
we conclude that v ∈ int(∪i∈IAi).

(viii) Let v ∈ int(∩i∈IAi). Then there exists a neighbourhood U of v such that
U ⊆ ∩i∈IAi. It therefore follows that U ⊆ Ai for each i ∈ I, and so that v ∈ int(Ai) for
each i ∈ I.

The final assertion follows directly from Proposition 3.6.8. ■

3.6.10 Proposition (Properties of closure) Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-
vector space. For A,B ⊆ V and for a family of subsets (Ai)i∈I of V, the following statements
hold:

(i) cl(∅) = ∅;
(ii) cl(V) = V;
(iii) cl(cl(A)) = cl(A);
(iv) if A ⊆ B then cl(A) ⊆ cl(B);
(v) cl(A ∪ B) = cl(A) ∪ cl(B);
(vi) cl(A ∩ B) ⊆ cl(A) ∩ cl(B);
(vii) cl(∪i∈IAi) ⊇ ∪i∈I cl(Ai);
(viii) cl(∩i∈IAi) ⊆ ∩i∈I cl(Ai).
Moreover, a set A ⊆ V is closed if and only if cl(A) = A.

Proof Parts (i) and (ii) follow immediately from the definition of closure. Part (vi)
follows from part (viii), so we will only prove the latter.

(iii) This follows since the closure of a closed set is the set itself.
(iv) Suppose that v ∈ cl(A). Then, for any neighbourhood U of v, the set U ∩ A is

nonempty, by Proposition 3.6.8. Since A ⊆ B, it follows that U ∩ B is also nonempty,
and so v ∈ cl(B).

(v) Let v ∈ cl(A ∪ B). Then, for any neighbourhood U of v, the set U ∩ (A ∪ B) is
nonempty by Proposition 3.6.8. By Proposition I-1.1.4, U∩ (A∪B) = (U∩A)∪ (U∩B).
Thus the sets U ∩ A and U ∩ B are not both nonempty, and so v ∈ cl(A) ∪ cl(B). That
cl(A) ∪ cl(B) ⊆ cl(A ∪ B) follows from part (vii).

(vi) Let v ∈ cl(A ∩ B). Then, for any neighbourhood U of v, the set U ∩ (A ∩ B) is
nonempty. Thus the sets U ∩ A and U ∩ B are nonempty, and so v ∈ cl(A) ∩ cl(B).
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(vii) Let v ∈ ∪i∈I cl(Ai) and let U be a neighbourhood of v. Then, for each i ∈ I,
U ∩ Ai , ∅. Therefore, ∪i∈I(U ∩ Ai) , ∅. By Proposition I-1.1.7, ∪i∈I(U ∩ Ai) =
U ∩ (∪i∈IAi), showing that U ∩ (∪i∈IAi) , ∅. Thus v ∈ cl(∪i∈IAi).

(viii) Let v ∈ cl(∩i∈IAi) and let U be a neighbourhood of v. Then the set U ∩ (∩i∈IAi)
is nonempty. This means that, for each i ∈ I, the set U∩Ai is nonempty. Thus v ∈ cl(Ai)
for each i ∈ I, giving the result. ■

3.6.11 Proposition (Joint properties of interior, closure, boundary, and derived set)
Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector space. For A ⊆ V, the following
statements hold:

(i) V \ int(A) = cl(V \A);
(ii) V \ cl(A) = int(V \A).
(iii) cl(A) = A ∪ bd(A);
(iv) int(A) = A − bd(A);
(v) cl(A) = int(A) ∪ bd(A);
(vi) cl(A) = A ∪ der(A);
(vii) V = int(A) ∪ bd(A) ∪ int(V \A).

Proof (i) Let v ∈ V \ int(A). Since v < int(A), for every neighbourhood U of v it holds
that U 1 A. Thus, for any neighbourhood U of v, we have U ∩ (V \ A) , ∅, showing
that v ∈ cl(V \ A).

Now let v ∈ cl(V \A). Then for any neighbourhood U of v we have U∩ (V \A) , ∅.
Thus v < int(A), so v ∈ V \ A.

(ii) The proof here strongly resembles that for part (i), and we encourage the reader
to provide the explicit arguments.

(iii) This follows from part (v).
(iv) Clearly

∫
(A) ⊆ A. Suppose that v ∈ A ∩ bd(A). Then, for any neighbourhood

U of v, the set U ∩ (V \ A) is nonempty. Therefore, no neighbourhood of v is a subset
of A, and so v < int(A). Conversely, if v ∈ int(A) then there is a neighbourhood U of v
such that U ⊆ A. The precludes the set U ∩ (V \ A) from being nonempty, and so we
must have v < bd(A).

(v) Let v ∈ cl(A). For a neighbourhood U of v it then holds that U ∩ A , ∅. If
there exists a neighbourhood V of v such that V ⊆ A, then v ∈ int(A). If there exists no
neighbourhood V of v such that V ⊆ A, then for every neighbourhood V of v we have
V ∩ (V \ A) , ∅, and so v ∈ bd(A).

Now let v ∈ int(A) ∪ bd(A). If v ∈ int(A) then v ∈ A and so v ∈⊆ cl(A). If v ∈ bd(A)
then it follows immediately from Proposition 3.6.8 that v ∈ cl(A).

(vi) Let v ∈ cl(A). If v < A then, for every neighbourhood U of v, U ∩ A =
U ∩ (A \ {v}) , ∅, and so v ∈ der(A).

If v ∈ A ∪ der(A) then either v ∈ A ⊆ cl(A), or v < A. In this latter case, v ∈ der(A)
and so the set U ∩ (A \ {v}) is nonempty for each neighbourhood U of v, and we again
conclude that v ∈ cl(A).

(vii) Clearly int(A)∩ int(V \A) = ∅ since A∩ (V \A) = ∅. Now let v ∈ V \ (int(A)∪
int(V \A)). Then, for any neighbourhood U of v, we have U 1 A and U 1 (V \A). Thus
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the sets U ∩ (V \ A) and U ∩ A must both be nonempty, from which we conclude that
v ∈ bd(A). ■

Let us close this section with a discussion of some notions not present in Sec-
tion I-2.5, but which are important for normed vector spaces. General topological
versions of these ideas have been discussed in .what?

3.6.12 Definition (Dense, nowhere dense, separable) Let F ∈ {R,C} and let (V, ∥·∥) be
a normed F-vector space. Let A,B ⊆ V with A ⊆ B.

(i) The set A is dense in B if cl(A) = B.
(ii) The set A is nowhere dense in B if B \ cl(A) is dense in B.
(iii) The set A is separable if there exists a countable dense subset of A. •

We refer to for simple examples that illustrate these definitions. Generallywhat?

speaking, it is not uncommon to see the requirement that a Banach space be sep-
arable, although there are important examples of nonseparable Banach spaces, as
we shall see in Section 3.8.

3.6.3 Compactness

As we shall shortly see, the discussion of compactness for normed vector spaces
has a different flavour than that for compact subsets of R. This is because com-
pactness in infinite-dimensional normed vector spaces is quite a strict notion, for
example more strict than closed and bounded. However, the initial definitions
proceed just as for R.

We begin with simple definitions concerning open covers.

3.6.13 Definition (Open cover) Let F ∈ {R,C}, let (V, ∥·∥) be a normed F-vector space,
and let A ⊆ V.

(i) An open cover for A is a family (Ui)i∈I of open subsets of V having the property
that A ⊆ ∪i∈IUi.

(ii) A subcover of an open cover (Ui)i∈I of A is an open cover (V j) j∈J of A having
the property that (V j) j∈J ⊆ (Ui)i∈I. •

We may now define compactness and other related properties of a subset of a
normed vector space.

3.6.14 Definition (Bounded, compact, totally bounded) Let F ∈ {R,C} and let (V, ∥·∥)
be a normed F-vector space. A subset A ⊆ V is:

(i) bounded if there exists M ∈ R>0 such that A ⊆ B(M, 0);
(ii) compact if every open cover (Ui)i∈I of A possesses a finite subcover;
(iii) precompact3 if cl(A) is compact;

3What we call “precompact” is very often called “relatively compact.” However, we shall use
the term “relatively compact” for something different.
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(iv) totally bounded if, for every ϵ ∈ R>0 there exists v1, . . . , vk ∈ V such that
A ⊆ ∪k

j=1B(ϵ, v j). •

3.6.15 Theorem (Compactness and dimension) LetF ∈ {R,C} and let (V, ∥·∥) be a normed
F-vector space. Then the following statements are equivalent:

(i) V is finite-dimensional;

(ii) the closed unit ball B(1, 0V) is compact;
(iii) a subset K ⊆ V is compact if and only if it is closed and bounded;
(iv) V with the norm topology is locally compact.

Proof (i) =⇒ (ii) By Proposition 3.6.2 B(1, 0V) is closed and bounded. Now, if
{e1, . . . , en} is a basis for V, we have a map ι : V→ Fn defined by

ι(v1e1 + · · · + vnen) = (v1, . . . , en)

which induces a norm on Fn (cf. the proof of Proposition 3.1.4), which we also denote
by ∥·∥. Since ι is a homeomorphism of the normed vector spaces (V, ∥·∥) and (Fn, ∥·∥),
it follows from the Heine–Borel Theorem that B(1, 0Fn) is compact. Since the image of
compact sets under continuous maps is compact (Proposition 1.6.5), we conclude that
B(1, 0V) is compact.

(ii) =⇒ (iii) Suppose that B(1, 0V) is compact and let K ⊆ V be compact. By
Proposition 1.6.6 we immediately have that K is closed. Let ϵ ∈ R>0 and note that
(B(ϵ, v))v∈K is an open cover of K. Then there exists a finite subset v1, . . . , vk ∈ K such
that

K ⊆ B(ϵ, v1) ∪ · · · ∪ B(ϵ, vk).

We claim that ∪k
j=1B(ϵ, vk) is bounded. Let

M = max{∥v j∥ | j, l ∈ {1, . . . , k}} + ϵ.

For j ∈ {1, . . . , k} and v ∈ B(ϵ, v j) we compute

∥v∥ = ∥v − v j + v j∥ ≤ ∥v − v j∥ + ∥v j∥ ≤M.

Thus ∪k
j=1B(ϵ, vk) ⊆ B(M, 0V). Thus K is bounded as well as being closed.

Now suppose that B(1, 0V) is compact and let K ⊆ V be closed and bounded. Since K
is bounded K ⊆ B(M, 0V) for some M ∈ R>0. By Proposition 3.6.2, B(M, 0V) is compact.
Then K is a closed subset of a compact set, and so is compact by Proposition 1.6.4.

(iii) =⇒ (iv) Since V is a metric space it is Hausdorff by Proposition 1.8.1. Thus we
need only show that v ∈ V possesses a precompact neighbourhood. However, for any
ϵ ∈ R>0, B(ϵ, v) is a neighbourhood of v. We claim that B(ϵ, 0V) is closed and bounded,
and so compact by hypothesis. It is clearly bounded since B(ϵ, v) ⊆ B(M, 0V) where
M = ∥v∥ + ϵ (why?). It is moreover closed since, as we showed in the first part of the
proof, it is the preimage of a closed set under a continuous map.
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(iv) =⇒ (i) Let us first show that, if B(1, 0V) is compact, then V is finite-dimensional.
Note that (B( 1

2 , v))v∈B(1,0V) is an open covering of B( 1
2 , 0V). Therefore, there exists

v1, . . . , vk ∈ B( 1
2 , 0V) such that

B(1, 0V) ⊆ B( 1
2 , v1) ∪ · · · ∪ B( 1

2 , vk).

Let U = spanR(v1, . . . , vk), which is then a finite-dimensional subspace of V. Since U
is complete by Theorem 3.3.3 it is closed by Proposition 1.1.33. We will show that
U = V. Suppose this is not so and let v0 ∈ V \ U. Since U is closed, v0 < cl(U) and so by
Proposition 3.6.8 the number

r = inf{∥u − v0∥ | u ∈ V}

is in R>0. Let R ∈ R>0 be such that B(R, v0) ∩ U , ∅. Then B(R, v0) ∩ U is closed
since it is the intersection of closed sets. The set B(R, v0) ∩ U is also clearly bounded.
Since we have proved that (i) =⇒ (iii) it follows that B(R, v0) ∩ U is compact. Define
f : B(R, v0)∩U→ R by f (u) = ∥u−v0∥. By Proposition 3.5.4 this function is continuous.
By Theorem 1.6.7 it follows that f achieves its minimum on B(R, v0)∩U. Since R ≥ r it
follows that there exists u0 ∈ B(R, v0)∩U such that f (u0−v0) = r. Since v0−u0

∥v0−u0∥
∈ B(1, 0V)

there is some j ∈ {1, . . . , k} such that v0−u0
∥v0−u0∥

∈ B( 1
2 , v j). Therefore,∥∥∥∥ v0 − u0

∥v0 − u0∥
− v j

∥∥∥∥ ≤ 1
2

=⇒
∥∥∥v0 − u0 − ∥v0 − u0∥v j

∥∥∥ ≤ 1
2∥v0 − u0∥ =

r
2 .

But we also have v0 − u0 − ∥v0 − u0∥v j ∈ U and so∥∥∥v0 − u0 − ∥v0 − u0∥v j
∥∥∥ ≥ r,

giving a contradiction. Thus U = V and so compactness of B(1, 0V) implies finite-
dimensionality of V.

Now suppose that V is locally compact. Then there exists a neighbourhood U of
0V for which cl(U) is compact. Openness of U implies that there exists ϵ ∈ R>0 such
that B(ϵ, 0V) ⊆ U. Then B(ϵ, 0V) is a closed subset of the compact set cl(U), implying by
Proposition 1.6.4 that B(ϵ, 0V) is compact. By Proposition 3.6.2 it follows that B(1, 0V)
is compact. Our argument above implies that V is finite-dimensional. ■

The theorem is rather an important one, given that compact sets have important
properties that one often makes use of in applications (see, for example, ). Since, incompact operators

infinite dimensions, one loses the convenient interpretation of compact sets as being
equivalent to closed and bounded sets, it then becomes important to understand
the nature of the compact sets in a given normed vector space. This can really only
be done on a case-by-case basis. For example, we do this in for . The fact thatwhere?

what? the closed unit ball is not compact in infinite dimensions is also responsible for
the sometimes nonintuitive distinctions between finite- and infinite-dimensional
normed vector spaces. We shall try to point out specific instances of this as we go
along.
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3.6.4 Closed subspaces

Subspaces of normed vector spaces are again normed vector spaces by Propo-
sition 3.1.7(iv). It is interesting to know what properties a subspace inherits from
the space in which is sits. This is simple in finite-dimensions, but rather more
complicated in infinite-dimensions. For reasons that are perhaps not a priori clear,
closed subspaces play an important rôle in Banach space theory and practice, and
for this reason we here study closed subspaces in a little detail.

First we characterise the closed subspaces of a Banach space in a manner com-
pletely analogous to Proposition 1.1.33 for metric spaces.

3.6.16 Proposition (Characterisations of closed subspaces) Let F ∈ {R,C} and let
(V, ∥·∥) be a normed F-vector space. For a subspace U ⊆ V and with ∥·∥U the restriction of
∥·∥ to U, the following statements hold:

(i) if V is a Banach space and if U is closed, then (U, ∥·∥U) is a Banach space;
(ii) if (U, ∥·∥U) is a Banach space then U is closed.

Proof (i) If (u j) j∈Z>0 is a Cauchy sequence in U, then this is also a Cauchy sequence
V. Thus the sequence converges to some v ∈ V. By Proposition 3.6.8(ii) it follows that
v ∈ cl(U) = U, and so U is complete.

(ii) Let (v j) j∈Z>0 be a sequence in U converging to v ∈ V. This is a Cauchy sequence
in V and so is also a Cauchy sequence in U, by definition of ∥·∥U. Therefore, v ∈ U since
U is complete. By Proposition 3.6.8(ii) it follows that U is closed. ■

The result has the following useful corollaries. The first is simply a useful
rewording of Proposition 3.6.16. But the result is nice, because it says that closed
subspaces of Banach spaces are Banach spaces, and so closed subspaces are the
proper notion of “subobject” when dealing with Banach spaces.

3.6.17 Corollary (Subspaces of Banach spaces are closed if and only if they are
complete) If F ∈ {R,C} and if (V, ∥·∥) is a F-Banach space, a subspace U ⊆ V is closed
if and only if it is complete.

The next corollary provides some insight into how one should view the com-
pletion of a normed vector space.

3.6.18 Corollary (The closure of a subspace is a completion of the subspace) Let
F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector space. For a subspace U ⊆ V denote by
∥·∥U and ∥·∥cl(U) the restriction of ∥·∥ to U and cl(U), respectively. Then (cl(U), ∥·∥cl(U)) is a
completion of (U, ∥·∥U).

Proof It is clear that the inclusion map of U into cl(U) preserves the norm, i.e., that
∥u∥U = ∥u∥cl(U). Moreover, by Proposition 3.6.8(ii) it follows that, given v ∈ cl(U), there
exists a sequence (u j) j∈Z>0 converging to v. Thus (cl(U), ∥·∥cl(U)) is indeed a completion
of (U, ∥·∥U). ■

The next two corollaries concern finite-dimensional cases.
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3.6.19 Corollary (Finite-dimensional subspaces are closed) Let F ∈ {R,C} and let
(V, ∥·∥) be a normed F-vector space. If U ⊆ V is a finite-dimensional subspace then U is
closed.

Proof By Theorem 3.3.3, U is complete, and so is closed by part (ii) of Proposi-
tion 3.6.16. ■

3.6.20 Corollary (Subspaces of finite-dimensional normed vector spaces are
closed) Let F ∈ {R,C} and let (V, ∥·∥) be a finite-dimensional normed F-vector space. If
U ⊆ V is subspace then U is closed.

Proof Subspaces of finite-dimensional vector spaces are finite-dimensional, and so
closed by Corollary 3.6.19. ■

Let us record the topological properties of the basic subspace operations of sum
and intersection. For intersections the story is fairly simple.

3.6.21 Proposition (Intersections of closed subspaces) If F ∈ {R,C}, if (V, ∥·∥) is a
normed F-vector space, and if (Ua)a∈A is a family of closed subspaces of V, then ∩a∈A is a
closed subspace of V.

Proof The set ∩a∈AUa is a subspace by Proposition I-4.5.34 and is closed by Proposi-
tion 1.2.8. ■

For sums the story is significantly more complex. First we give a counterexam-
ple to the simplest statement one may wish to make.

3.6.22 Example (The sum of closed subspaces may not be closed) The example we
use here begins with the Banach space ℓ2(F) consisting of sequences (a j) j∈Z>0 for
which

∑
∞

j=1|a j|
2 < ∞. The norm we use is

∥(a j) j∈Z>0∥2 =
( ∞∑

j=1

|a j|
2
)1/2

.

In Corollary 3.8.21 we show that this is a Banach space and is, moreover, the
completion of F∞0 under the norm ∥·∥2. We denote by (e j) j∈Z>0 the standard basis for
F∞0 . Thus

e j(k) =

1, j = k,
0, j , k.

For the purposes of this example we consider two subspaces of ℓ2(F). We let

U = cl(spanF(e2 j−1| j ∈ Z>0)),

V = cl(spanF(e2 j−1 +
1
j e2 j| j ∈ Z>0))

so that U and V are closed subspaces.
Let us establish some facts about these subspaces via a sequence of lemmata.
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1 Lemma U ∩ V = {0ℓ2(F)}.

Proof Let us denote

U′ = spanF(e2 j−1| j ∈ Z>0), V′ = spanF(e2 j−1 +
1
j e2 j| j ∈ Z>0).

Let (a j) j∈Z>0 ∈ U ∩ V. By definition of U and V there exist sequences ((x jl) j∈Z>0)l∈Z>0

and ((y jl) j∈Z>0)l∈Z>0 in U′ and V′, respectively, such that

lim
l→∞

(x jl) j∈Z>0 = lim
l→∞

(y jl) j∈Z>0 = (a j) j∈Z>0 .

Since (x jl) j∈Z>0 ∈ U′ for each l ∈ Z>0 it follows that a2 j = 0 for j ∈ Z>0. Therefore,
liml→∞ y(2 j)l = 0 for j ∈ Z>0. Since y(2 j−1)l = jy(2 j)l for each j, l ∈ Z>0 it then follows
that liml→∞ y(2 j−1)l = 0 for each j ∈ Z>0. Therefore, a j = 0 for each j ∈ Z>0, giving
the lemma. ▼

2 Lemma cl(U + V) = ℓ2(F).

Proof Let U′ and V′ be as in the proof of Lemma 1. We claim that U′ +V′ = F∞0 . To
see this, let (a j) j∈Z>0 and write a j = x j + y j where

x j =

a j − ja j+1, j odd,
0, j even,

y j =

 ja j+1, j odd,
a j, j even.

Note that (x j) j∈Z>0 ∈ U′ and (y j) j∈Z>0 ∈ V′. Thus U′ + V′ = F∞0 , as desired. Therefore,

cl(U′ + V′) = cl(F∞0 ) = ℓ2(F)

and so
cl(U′ + V′) ⊆ cl(U + V) = ℓ2(F),

as desired. ▼

3 Lemma U + V ⊂ ℓ2(F).

Proof Following the proof of Lemma 1, elements of U and V have the form

(x1, 0, x2, 0, x3, 0, . . . ), (y1, y1, y2, 1
2 y2, y3, 1

3 y3, . . . ),

respectively, where

∞∑
j=1

|x j|
2 < ∞,

∞∑
j=1

|y j|
2 +

∞∑
j=1

|y j|
2

j2 < ∞. (3.9)

Thus an element of U + V has the form

(x1 + y1, y1, x2 + y2, 1
2 y2, x3 + y3, 1

3 y3, . . . ), (3.10)
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where the inequalities (3.9) hold. Now consider the sequence

(1, 1, 1
2 ,

1
2 ,

1
3 ,

1
3 , . . . ) ∈ ℓ

2(F).

We claim that this sequence is not in U+V. Indeed, suppose that the sequence can
be expressed in the form (3.10). Then we must have x j+ y j =

1
j and 1

j y j =
1
j for each

j ∈ Z>0. Thus x j =
1
j − 1 and y j = 1. The inequalities (3.9) do not hold in this case,

so the sequence cannot be in U + V. ▼

Now we make the following observation. The subspaces U and V are closed
and complementary. The sum U + V is a strict subspace of ℓ2(F) but is dense in
ℓ2(F). Thus U + V ⊂ cl(U + V) and so U + V is not closed. That is, the sum of closed
subspaces need not be closed. •

Now being deprived of access to the nicest result concerning sums of closed
subspaces, we must now wonder what is true. It turns out that the story here is
a little complicated, but it is worth understanding since it actually reveals some-
thing interesting about Banach space geometry. So let us spend a few moments
understanding this. Suppose that we have a Banach space (V, ∥·∥) with two closed
subspaces U1 and U2. Then define

δ(U1,U2) = sup{ρ ∈ [0, 1] | B(ρ, 0V) ∩ (U1 + U2) ⊆ (B(1, 0V) ∩ U1) + U2},

with the convention that if A,B ⊆ V then

A + B = {u + v | u ∈ A, v ∈ B}.

This is a definition with geometric character so let us examine it in a simple case so
that we have a little insight into what it means.

3.6.23 Example (δ(U1,U2)) Let V = R2 and let

U1 = spanR((1, 0)), U2 = spanR((1, 1)).

We use the standard norm on R2: ∥(x1, x2)∥ =
√

x2
1 + x2

2. The set (B(1, 0V) ∩U1) +U2

is depicted on the left in Figure 3.2 and B(ρ, 0V) ∩ (U1 + U2) is shown on the right.
The idea is that (B(1, 0V) ∩ U1) + U2 is obtained by translating the unit ball in U1

by all vectors in U2. Thus one “thickens” U2 by the unit ball in U1. Now one
take balls of increasing radius in U1 + U2 until the ball is no longer contained in
(B(1, 0V) ∩ U1) + U2. In this example one can see that δ(U1,U2) = 1. •

In finite dimensions the constructions we give are not so insightful. For example,
if V is finite-dimensional then δ(U1,U2) > 0. However, in infinite dimensions it turns
out that δ(U1,U2) measures when U1 + U2 is not closed.
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Figure 3.2 The definition of δ(U1,U2): (B(1, 0V) ∩U1) +U2 on the
left and B(ρ, 0V) ∩ (U1 + U2) on the right

3.6.24 Theorem (When is the sum of closed subspaces closed?) If (V, ∥·∥) is a Banach
space and if U1 and U2 are closed subspaces of V, then U1 + U2 is closed if and only if
δ(U1,U2) > 0.

Proof Let us define

α(U1,U2) = sup{ρ ∈ [0, 1] | B(ρ, 0V) ∩ cl(U1 + U2) ⊆ cl((B(1, 0V) ∩ U1) + U2)},

β(U1,U2) = sup{ρ ∈ [0, 1] | B(ρ, 0V) ∩ cl(U1 + U2) ⊆ (B(1, 0V) ∩ U1) + U2}.

Both of these quantities are, in fact, equal to δ(U1,U2).

1 Lemma α(U1,U2) = β(U1,U2) = δ(U1,U2).

Proof Let us abbreviate

α = α(U1,U2), β = β(U1,U2), δ = δ(U1,U2).

Let us first prove that α ≤ β. This is clearly true if α = 0 so suppose that α > 0. Since
cl((B(1, 0V) ∩ U1) + U2) is closed we have

B(α, 0V) ∩ cl(U1 + U2) ⊆ cl((B(1, 0V) ∩ U1) + U2).

Note that
(B(1, 0V) ∩ U1) + U2 = ∩r∈(0,1)((B( 1

1−r , 0V) ∩ U1) + U2).

Therefore, if
B(α, 0V) ∩ cl(U1 + U2) ⊆ (B( 1

1−r , 0V) ∩ U1) + U2 (3.11)

for every r ∈ (0, 1) then we have

B(α, 0V) ∩ cl(U1 + U2) ⊆ (B(1, 0V) ∩ U1) + U2 (3.12)

since B(α, 0V) ∩ cl(U1 + U2) is closed. Moreover, if (3.11) holds then α ≤ β, and so it
thus suffices for this part of the proof to show that (3.11) holds for every r ∈ (0, 1). By
Proposition 3.6.8 we have

cl((B(1, 0V) ∩ U1) + U2) ⊆ ((B(1, 0V) ∩ U1) + U2) + B(αr, 0V) ∩ cl(U1 + U2)



444 3 Banach spaces 2022/03/07

for every r ∈ (0, 1). By definition of α we then have

B(α, 0V) ∩ cl(U1 + U2) ⊆ cl((B(1, 0V) ∩ U1) + U2)

⊆ ((B(1, 0V) ∩ U1) + U2) + B(αr, 0V) ∩ cl(U1 + U2) (3.13)

for every r ∈ (0, 1). Let
u0 ∈ B(α, 0V) ∩ cl(U1 + U2).

By (3.13) there exists

u1 ∈ B(αr, 0V) ∩ cl(U1 + U2), v0 ∈ (B(1, 0V) ∩ U1) + U2

such that u0 = v0 + u1. By definition of α we have

B(αr, 0V) ∩ cl(U1 + U2) ⊆ r cl((B(1, 0V) ∩ U1) + U2),

where, if a ∈ F and A ⊆ V, we denote aA = {av | v ∈ A}. Thus, again by (3.13), there
exists

u2 ∈ B(αr2, 0V) ∩ cl(U1 + U2), v1 ∈ (B(1, 0V) ∩ U1) + U2

such that u1 = rv1 + u2. Continuing in this way, there exist sequences (u j) j∈Z≥0 and
(v j) j∈Z≥0 such that

1. u j ∈ B(αr j, 0V) ∩ cl(U1 + U2) ⊆ r j cl((B(1, 0V) ∩ U1) + U2),

2. v j ∈ (B(1, 0V) ∩ U1) + U2, and

3. u j = r jv j + v j+1

for each j ∈ Z>0. Clearly, then, lim j→∞ u j = 0V. Therefore,

u0 − uk =

k∑
j=0

q jv j =⇒ u0 = lim
k→∞

(u0 − uk) =
∞∑
j=0

r jv j.

Also,
∥v j∥ = r− j

∥u j − u j+1∥ ≤ r− j(∥u j∥ + u j+1) ≤ r− j(αr j + αr j+1) = α(1 + r).

Thus the sequence (v j) j∈Z≥0 is bounded. Now, for each j ∈ Z≥0 define w j ∈ B(1, 0V)∩U1
and z j ∈ U2 such that v j = w j + z j. Then we have

∥z j∥ = ∥v j − w j∥ ≤ ∥v j∥ + ∥w j∥ ≤ α(1 + r) + 1,

and so the sequence (z j) j∈Z≥0 is bounded. Therefore,∥∥∥∥ ∞∑
j=0

r jw j

∥∥∥∥ ≤ ∞∑
j=0

r j
∥w j∥ ≤

1
1 − r

=⇒

∞∑
j=0

r jw j ∈ B(1, 0V) ∩ U1

since B(1, 0V) ∩ U1 is closed. Similarly,∥∥∥∥ ∞∑
j=0

r jz j

∥∥∥∥ ≤ ∞∑
j=0

r j
∥z j∥ ≤

1
1 − r

(α(1 + r) + 1) =⇒

∞∑
j=0

r jz j ∈ U2
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since U2 is closed. Thus

u0 =

∞∑
j=0

r jv j =

∞∑
j=0

r jw j +

∞∑
j=0

r jz j ∈ B(1, 0V) ∩ U1 + U2.

Since u0 was chosen arbitrarily from B(α, 0V)∩ cl(U1 +U2) and since the argument can
be made for every r ∈ (0, 1), we have shown that (3.11) holds for every r ∈ (0, 1), giving
α ≤ β.

That β ≤ δ follows directly from the definitions.
To show that δ ≤ α, and so to complete the proof, it suffices to show that

cl(B(1, 0V) ∩ (U1 + U2)) = B(1, 0V) cl(U1 + U2)

(why?). To show this, let v ∈ B(1, 0V) cl(U1 + U2). If v = 0V then we obviously have
v ∈ cl(B(1, 0V) ∩ (U1 + U2)). Thus we can suppose that v , 0V. Let (v j) j∈Z>0 be a
sequence in U1 + U2 converging to v. We can without loss of generality suppose
that v j , 0V for each j ∈ Z>0. Then define u j =

∥v∥
∥v j∥

v j for each j ∈ Z>0, noting that

u j ∈ B(1, 0V) cl(U1 + U2). Moreover, lim j→∞ u j = v and so v ∈ cl(B(1, 0V) ∩ (U1 + U2)).
This gives

B(1, 0V) cl(U1 + U2) ⊆ cl(B(1, 0V) ∩ (U1 + U2)).

By Proposition 3.6.10 we have

cl(B(1, 0V) ∩ (U1 + U2)) ⊆ B(1, 0V) ∩ cl(U1 + U2).

This gives δ < α be the definitions. ▼

Carrying on with the proof of the theorem, first suppose that U1 +U2 is closed. By
Corollary 3.6.17 it follows that U1 + U2 is complete. We obviously have

U1 + U2 = ∪
∞

j=1 j((B(1, 0V) ∩ U1) + U2).

Therefore, by the Baire Category Theorem there exists at least one j ∈ Z>0 for which a corollary of it?

int(cl( j((B(1, 0V) ∩ U1) + U2))) , ∅.

Thus there exist v ∈ cl((B(1, 0V) ∩ U1) + U2) and r ∈ R>0 such that

B(r, v) ∩ (U1 + U2) ⊆ j cl((B(1, 0V) ∩ U1) + U2).

Therefore,
B( r

j , v) ∩ (U1 + U2) ⊆ cl((B(1, 0V) ∩ U1) + U2),

giving α(U1,U1) > 0 and so, by the lemma, δ(U1,U2) > 0.
Conversely, suppose that δ(U1,U2) > 0 and so, by the lemma, β(U1,U2) > 0. Let

β ∈ (0, β(U1,U2)). We obviously have

cl(U1 + U2) = ∪∞j=1 j(B(β, 0V)) ∩ cl(U1 + U2).
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By definition of β(U1,U2) it holds that

B(β, 0V) ∩ cl(U1 + U2) ⊆ (B(1, 0V) ∩ U1) + U2.

Moreover, we then obviously have

∪
∞

j=1 j(B(β, 0V)) ∩ cl(U1 + U2) ⊆ U1 + U2.

This gives cl(U1 + U2) ⊆ U1 + U2 which gives U1 + U2 as being closed, as desired. ■

Let us close our discussion of closed subspaces by considering some examples
of closed and non-closed subspaces of normed vector spaces.

3.6.25 Examples (Closed subspace) Both examples we consider are subspaces of the
normed vector space (C0

bdd(R;R), ∥·∥∞). By C0
bdd(R;R) we denote the set of bounded,

continuous R-valued functions on R and the norm ∥·∥∞ is defined thusly:

∥ f ∥∞ = sup{| f (x)| | x ∈ R}.

Note that convergence in the norm ∥·∥∞ is, by definition, uniform convergence. In
Theorem I-3.6.8 we essentially showed that (C0

bdd(R;R), ∥·∥∞) is a Banach space,
although we shall revisit this in Section 3.8.4.
1. Let C0

0(R;R) be the subset of C0
bdd(R;R) consisting of those functions satisfying

lim
x→−∞

f (x) = 0, lim
x→∞

f (x) = 0.

It is easy to verify (cf. Proposition I-2.3.23) that C0
0(R;R) is a subspace of

C0
bdd(R;R). We claim that it is a closed subspace. To show this, it suffices to

show that, if ( f j) j∈Z>0 is any sequence in C0
0(R;R) converging in Cbdd(R;R), then

the limit function is in C0
0(R;R). We shall prove this below as Theorem 3.8.40,

but it is not too hard to imagine why it is true. Uniform convergence requires
that the limit function be approximated uniformly over all of R by sufficiently
large terms in the sequence. Since all functions in the sequence tend to zero at
infinity, they will pull the limit function down to zero with them.

2. Let C1
bdd(R;R) be the subset of C0

bdd(R;R) consisting of those functions that are
continuously differentiable. By Proposition I-3.2.10 it follows that C1

bdd(R;R)
is a subspace of C0

bdd(R;R). We claim that it is not closed. To see this, define a
sequence of functions ( f j) j∈Z>0 as follows:

f j(x) =



−1, x ∈ (−∞,−1 − 1
j ),

1
4 jx2 + 1

2 ( j + 1)x + ( j−1)2

4 j , x ∈ [−1 − 1
j ,−1 + 1

j ],

x, x ∈ (−1 + 1
j , 1 −

1
j ),

−
1
4 jx2 + 1

2 ( j + 1)x − ( j−1)2

4 j , x ∈ [1 − 1
j , 1 +

1
j ],

1, x ∈ (1 + 1
j ,∞).
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Figure 3.3 A sequence in C1
bdd(R;R) not converging in

C1
bdd(R;R) (the terms f1, f2, and f10 are shown)

We depict this sequence in Figure 3.3. One can show by direct computation
that f j is differentiable for each j ∈ Z>0; one need only check that the left and
right limits for the function and its derivative match at the points −1− 1

j , −1+ 1
j ,

1 − 1
j , and 1 + 1

j . A direct computation also shows that the sequence ( f j) j∈Z>0

converges pointwise to the function

f (x) =


−1, x ∈ (−∞,−1),
x, x ∈ [−1, 1],
1, x ∈ (1,∞).

To show that ( f j) j∈Z>0 converges to f in C0
bdd(R;R) we need to show that the

convergence is uniform.
This is sort of “obvious” from Figure 3.3, but let us go through the details
anyway. The only possible problems can occur on the intervals [−1 − 1

j ,−1 + 1
j ]

and [1 − 1
j , 1 +

1
j ] since off these intervals f j agrees with f . So let ϵ ∈ R>0 and let

N be sufficiently large that 1
4N < ϵ. On [1 − 1

j , 1] the maximum deviation of f j

from f will occur at x = 1. Thus, for x ∈ [1 − 1
j , 1] we have

| f j(x) − f (x)| ≤ | f j(1) − f (1)|

=
∣∣∣− 1

4 j + 1
2 ( j + 1) − ( j−1)2

4 j − 1
∣∣∣ = ∣∣∣ 1

4 j

∣∣∣ < ϵ
for j ≥ N. Similarly, on [1, 1+ 1

j ] the maximum deviation of f j from f will occur
at x = 1, and the same computation gives | f j(x) − f (x)| < ϵ for x ∈ [1, 1 + 1

j ] for
j ≥ N. This gives | f j(x) − f (x)| < ϵ for x ∈ [1 − 1

j , 1 +
1
j ]. An entirely similar

argument gives | f j(x) − f (x)| < ϵ for x ∈ [−1 − 1
j ,−1 + 1

j ].
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The point is that the sequence ( f j) j∈Z>0 in C1
bdd(R;R) converges to f ∈ C0

bdd(R;R).
But since f < C1

bdd(R;R), it follows that C1
bdd(R;R) is not closed. The reason

for this is fairly evident. The norm ∥·∥∞ does not know anything about the
derivative of a function, and so it cannot be expected that the sequence of
derivatives will converge to the derivative of the limit function, nor even that
the limit function will indeed be even differentiable. •

3.6.5 Bases for normed vector spaces

In Section I-4.5.4 we discussed at length the notion of a basis for a vector space,
sometimes called a Hamel basis. The fact that every vector space possesses a
Hamel basis is of great use in algebra, but not great value in analysis. To exhibit
the limitations of the effectiveness of Hamel bases, let us prove that certain vector
spaces are incapable of supporting a norm for which the resulting normed vector
space is complete (thus we are supposing here familiarity with completeness, a
notion we discuss in detail in Section 3.3).

3.6.26 Theorem (Dimension of an infinite-dimensional Banach space) If F ∈ {R,C}
and if (V, ⟨·, ·⟩) is an infinite-dimensional F-Banach space, then dimF(V) ≥ card(R). If V
is separable then dimF(V) = card(R).

Proof Let v1 ∈ V \ {0V} be such that ∥v1∥ = 1. Define α̂1 : spanF(v1)→ F by α̂1(av1) = a.
It is trivial to check that α̂1 is a continuous linear function satisfying α̂1(v1) = 1. By
the Hahn–Banach Theorem, Theorem 3.9.2, there exists α1 ∈ V∗ such that α1(v1) = 1.
Next consider the closed subspace V2 = ker(α1) and let v2 ∈ V2 so that α1(v2) = 0. Also
suppose that ∥v2∥ = 1. Then define α̂2 : spanF(v1, v2) → F by α̂2(a1v1 + a2v2) = a2. As
above, use the Hahn–Banach Theorem to deduce the existence of α2 ∈ V∗ such that
α2(a1v2 + a2v2) = a2 for every a1, a2 ∈ F. We may continue inductively in this way to
define sequences (v j) j∈Z>0 and (α j) j∈Z>0 such that ∥v j∥ = 1, j ∈ Z>0, and such that

α j(vk) =

1, j = k,
0, j , k.

We claim that the family (v j) j∈Z>0 is linearly independent. Indeed, suppose that

c1v j1 + · · · + ckv jk = 0

for some c1, . . . , ck ∈ F and j1, . . . , jk ∈ Z>0. For each l ∈ {1, . . . , k}, apply α jl to the
preceding equality to get cl = 0. This give the desired linear independence. We also
claim that

vk < cl(spanF(v j| j , k))

for each k ∈ Z>0. Indeed, if (wl)l∈Z>0 is a convergent sequence in spanF(v j| j , k) then
αk(wl) = 0 for all l ∈ Z>0. Continuity of αk and Theorem 3.5.2 ensure that

αk(lim
l→∞

wl) = lim
l→∞

αk(wl) = 0.

Thus cl(spanF(v j| j , k)) ⊆ ker(αk). Since αk(vk) = 1 our claim follows.
Now we use a lemma.
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1 Lemma If S is a countably infinite set then there exists a family (At)t∈[0,1] of infinite subsets
of S such that At1 ∩At2 is finite for t1 , t2.

Proof For θ ∈ [0, π) denote

Σθ = {(x cosθ − y sinθ, x sinθ + y cosθ) ∈ R2
| x ∈ R, y ∈ [−1, 1]}.

Thus Σθ is a bi-infinite strip of width 2 inclined at an angle θ to the x-axis in R2. For
θ ∈ [0, π) define

Âθ = {(x, y) ∈ Z2
⊆ R2

| (x, y) ∈ Σθ}

as the points in Z2 lying in Σθ. Some elementary geometry can be used to verify the
fact that if θ1 , θ2 then Σθ1 ∩Σθ2 is compact. From this fact it follows that Âθ1 ∩ Âθ2 is
finite for θ1 , θ2. Moreover, one can verify that Âθ is infinite for every θ. To see this
note that every ball of the form B(1, (r cosθ, r sinθ)) must contain a point with integer
coordinates.

Since S andZ2 are both countable there exists a bijectionϕ : S→ Z2. Since [0, 1] and
[0, π) both have the cardinality of R (why?), there exists a bijection ψ : [0, 1] → [0, π).
Then, for t ∈ [0, 1], define

At = {s ∈ S | ϕ(s) ∈ Âψ(t)}.

It then follows that At is infinite since Âψ(t) is infinite and that At1 ∩ At2 is finite since
Âψ(t1) ∩ Âψ(t2) is finite. ▼

Now, using the lemma, let (At)t∈[0,1] be a family of subsets ofZ>0 such that At1∩At2

is finite for t1 , t2. Then define

ut =
∑
j∈At

v j

2 j , t ∈ [0, 1].

Note that

∥ut∥ =
∥∥∥∥∑

j∈At

v j

2 j

∥∥∥∥ ≤∑
j∈At

∥v j∥

2 j < ∞

by Example I-2.4.2–4. Thus the series for ut is absolutely convergent and so convergent
by Theorem 3.4.6. We claim that the set {ut}t∈[0,1] is linearly independent. For l ∈
{1, . . . , k} and m ∈ Z>0 we have

αm(utl) = αm
(∑

j∈At

v j

2 j

)
=

∑
j∈At

αm(v j)

2 j ,

using Theorem 3.5.2. Thus

αm(utl) =

2−m, m ∈ Atl ,

0, m < Atl .

Now suppose that
c1ut1 + · · · + ckutk = 0 (3.14)
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for c1, . . . , ck ∈ F and t1, . . . , tk ∈ [0, 1]. Without loss of generality we may suppose that
the numbers t1, . . . , tk are distinct. Then ∩k

l=1Atl is finite; let us denote it by {m1, . . . ,mr}.
For l ∈ {1, . . . , k} define A′l = Atl \ {m1, . . . ,mr}, noting that the sets A′l , l ∈ {1, . . . , k}, are
enumerable and disjoint. We can then rewrite (3.14) as

a1vm1 + · · · + arvmr + c1

∑
j1∈A′1

v j1

2 j1
+ · · · + ck

∑
jk∈A′k

v jk

2 jk

for suitable constants a1, . . . , ar ∈ F that depend on the coefficients c1, . . . , ck and factors
of 1

2 ; the precise form of these is immaterial to our computations. Indeed, for each
l ∈ {1, . . . , k} let ml ∈ A′l . Then, by the properties for (v j) j∈Z>0 and (α j) j∈Z>0 given before
the lemma,

0 = αml(c1ut1 + · · · + ckutk) =
cl

2ml
.

Thus cl = 0 for each l ∈ {1, . . . , k}, giving linear independence of {ut}t∈[0,1]. Since
card([0, 1]) = card(R) the first assertion of the theorem follows.

For the final assertion of the theorem we shall prove that card(V) = card(R) if V is
separable. It is clear that card(V) ≥ card(R). For the opposite inequality, let D ⊆ V be
a countable dense subset of V. For v ∈ V we can write v = lim j→∞ v j for a sequence
(v j) j∈Z>0 in D. Thus to every point in V we assign a sequence in the countable set D.
The set of such sequences is DZ>0 , and so card(V) ≤ card(DZ>0) = ℵℵ0

0 . Now note that
2 ≤ ℵ0 ≤ 2ℵ0 by Example I-1.7.14–3 and Exercise I-1.7.4. Thus

2ℵ0 ≤ ℵ
ℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0

by Theorem I-1.7.17. Thusℵℵ0
0 = 2ℵ0 and so card(V) ≤ 2ℵ0 = card(R) by Exercise I-1.7.5.

■

3.6.27 Corollary (There are no Banach spaces of countable dimension) If F ∈ {R,C}
and if V is an F-vector space with an enumerable Hamel basis, then there is no norm on V
for which the resulting normed F-vector space is complete.

applied analysis.ps.gz

for Schauder basis C0

3.6.6 Notes

Our approach to characterising the closedness of sums of closed subspaces
follows Mennicken and Sagraloff [1979], who base their presentation on that of
Kailath [1980]. Note that we also used this characterisation of sums of closed
subspaces in our proofs of the Open Mapping Theorem and the Closed Graph
Theorem. This idea is included in the paper of Mennicken and Sagraloff [1979].

The proof we give for Theorem 3.6.26 is due to Lacey [1973]. The proof of
the lemma used in the proof of the theorem is from [Buddenhagen 1971]. An
elementary proof of Corollary 3.6.27 can be found in [Bauer and Benner 1971].
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Exercises

3.6.1 Let F ∈ {R,C} and let (V, ∥·∥) be a finite-dimensional normed F-vector space.
Show that a subspace U ⊆ V is dense in V if and only if U = V. Point out
which parts of your argument are not generally valid when V is infinite-
dimensional.

3.6.2 Let (V, ∥·∥) be a normed vector space and let A,B,C ⊆ V be subsets with
A ⊆ B ⊆ C. Show that if A is dense in B and if B is dense in C then A is dense
in C.

3.6.3 Consider Example 3.6.22. On the subspace U (resp. V) denote the restriction
of ∥·∥2 by ∥·∥U (resp. ∥·∥V). By Proposition 3.3.4 the normed vector space
U1 ⊕ U2 is complete. But in Example 3.6.22 we showed that U1 ⊕ U2 is not a
closed subspace of ℓ2(F) and so is not complete by Corollary 3.6.17.

Why are these conclusions not in contradiction?
3.6.4 Let F ∈ {R,C} and let (V, ∥·∥) be a normed F-vector space. If U ⊆ V is a

subspace, show that cl(U) is a subspace.
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Section 3.7

Split subspaces?

In this section we examine the problem of when all closed subspaces of a Ba-
nach space are split. This is an interesting and natural question, and to examine the
question appropriately requires some effort and leads one to a deeper understand-
ing of the geometry of Banach spaces. In particular, we shall delve into the topics
of concentration of Gaussian measure and its relationship to the famous Dvoretzky
Theorem.

Do I need to read this section? The main result we state in this section is inter-
esting and worth knowing. It is stated as Theorem 3.7.5 below. The remainder of
the material can be thought of as optional. •

3.7.1 Split subspaces

Now understanding, or at least pretending to understand, closed subspaces of
normed vector spaces, let us examine when such a subspace possesses a closed
complement. As with closed subspaces, it is perhaps not clear why one wishes to
devote a lot of energy to this situation. Hopefully this will become clear as we go
along.

3.7.1 Definition (Split subspace) Let F ∈ {R,C} and let (V, ∥·∥) be a normed vector
space. A subspace U ⊆ V is split if there exists a closed subspace W of V such that
V = U ⊕W. •

Note that the immediate question that comes to mind in the definition of a split
subspace is whether, if one complement is closed, all complements are closed. We
resolve this as follows.

3.7.2 Proposition (Characterisation of split subspaces) Let F ∈ {R,C} and let (V, ∥·∥)
be a normed F-vector space. For a closed subspace U ⊆ V the following statements are
equivalent:

(i) U is split;
(ii) if W is a complement to U in V then W is closed;
(iii) V/U is a Banach space.

Proof We first prove a lemma.

1 Lemma Let F ∈ {R,C}, let (V, ∥·∥) be a normed F-vector space, and let U be a closed subspace
with ∥·∥/U the norm on V/U as in Proposition 3.1.19. Let πU : V → V/U be the canonical
projection. If W is an (algebraic) complement to U and if ∥·∥W denotes the restriction of ∥·∥ to
W, then πU|W is a Banach space isomorphism from (W, ∥·∥W) to (V/U, ∥·∥/U).
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Proof Let v ∈ V and write v = u + w for u ∈ U and w ∈W. Then

∥v + U∥/U = ∥w + U∥/U ≤ ∥w∥ = ∥w∥W,

using the definition of ∥·∥/U.
For j ∈ Z>0 let u j ∈ U have the property that

∥w + u j∥ − ∥πU(w)∥/U < 1
j ,

noting that the expression on the left of the inequality is always positive. ▼

(i) =⇒ (iii)
(iii) =⇒ (ii)
(ii) =⇒ (i) This is a tautology. ■

One reason why split subspaces are distinguished is the following.

3.7.3 Theorem (Algebraic direct sums of closed subspaces are topological direct
sums) Let F ∈ {R,C}, let (V, ∥·∥) be a normed F-vector space, and let U be a split subspace complete?

of V with closed complement W. On U and W let ∥·∥U and ∥·∥W, respectively, be the
restrictions of ∥·∥. Then the map

U ⊕W ∋ (u,w) 7→ u +w ∈ V

is a homeomorphism.
Proof Let us first show that the map (u,w) 7→ u + w is continuous. Let us denote the
direct sum norm on U ⊕W by ∥·∥U⊕W, noting that, by definition,

∥(u,w)∥U⊕W = ∥u∥U + ∥w∥W.

For ϵ ∈ R>0 and (u0,w0) ∈ U ⊕ W suppose that (u,w) ∈ U ⊕ W satisfy ∥(u,w) −
(u0,w0)∥U⊕W < ϵ. Then

∥(u + w) − (u0 + w0)∥ ≤ ∥u − u0∥ + ∥w − w0∥ = ∥u − u0∥U + ∥w − w0∥W

= ∥(u − u0,w − w0)∥U⊕W = ∥(u,w) − (u0,w0)∥U⊕W < ϵ.

This gives (uniform) continuity of the map (u,w) 7→ u+w. Since this map is clearly an
isomorphism of vector spaces, it follows from Theorem 3.5.31 that it is a homeomor-
phism. ■

So the point is that a split subspace gives V not just as an algebraic direct sum,
but as a topological direct sum. Thus the topology of V is determined from the
topology of U and its closed complement W.

3.7.2 Questions and answers about closed and split subspaces

An obvious first question one asks about closed and split subspaces is whether
all closed subspaces are split. They are not, as the following examples shows.
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3.7.4 Examples (Closed subspaces that are not split)
1. We claim that c0(R) is a closed but not split subspace of ℓ∞(R).
Theorem 17.26 of rudin’s real and complex analysis

Example 5.19 of Rudin’s functional analysis
A subspace is split if and only if there is a continuous projection onto it (Corol-

lary 2.2.18 in AMR)

A next natural question regarding closed and split subspaces is that of whether
there is anything special about Banach spaces for which all closed subspaces are
split. The following theorem indicates that the topology of such Banach spaces is
that of a Hilbert space. (We shall engage in a detailed study of Hilbert spaces in
Chapter 4.)

3.7.5 Theorem (The Split Subspace Theorem) For a Banach space (V, ∥·∥) the following
statements are equivalent:

(i) every closed subspace of V is split;
(ii) there exists an inner product on V whose induced norm is equivalent to ∥·∥.

3.7.3 Projection constants
kadec-snobar.pdf.gz

3.7.4 The proof of the Split Subspace Theorem
complemented-subspace-problem.pdf.gz

3.7.5 Notes

[Lindenstrauss and Tzafriri 1971] [Joichi 1966] [Davis, Dean, and Singer 1968]
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Section 3.8

Examples of Banach spaces

In this section we consider some of the common Banach spaces we will en-
counter in these volumes. As has already been mentioned, these examples serve
as more than just an illustration of the concept of a Banach space; the examples
are of great interest per se. Many of the examples are interconnected in that there
is a very general example that contains simpler ones as a subcase. Logically, the
proper way to present such examples is to give the most general construction first,
and then provide the particular situations as following from the general. However,
this method of presentation has serious defect that we are often most interested in
the simpler situation, and a purely logical presentation would require the reader
to understand some unnecessary abstraction. Therefore, we present our examples
in order from the most particular to the most general. This has the drawback of
being repetitive, but the advantage that a reader will not have to absorb a degree
of abstraction that is not needed in the simpler examples.

Do I need to read this section? As we have said, some of the examples in this
section are crucial in understanding a lot of the applied material that will follow.
As the very least the reader should understand the spaces Lp(I;F) and ℓp(F). Some
of the other examples can perhaps be omitted on a first reading, and covered when
needed. •

3.8.1 The p-norms on Fn

Let F ∈ {R,C}. Let us begin our presentation with the simplest situation of
a class of norms on a finite-dimensional F-vector space. We are interested in a
concrete collection of norms on the vector space Fn. Specifically, for p ∈ [1,∞] we
define a norm ∥·∥p on Fn by

∥(v1, . . . , vn)∥p =


(∑n

j=1|v j|
p
)1/p

, p ∈ [1,∞),
max{|v1|, . . . , |vn|}, p = ∞.

That this is a norm for p ∈ {1,∞} has already been shown in Examples 3.1.3–3
and 3.1.3–4. In order to show that ∥·∥p is a norm for p ∈ [1,∞), the only nontrivial
verification is of the triangle inequality. We verify this by using the following
lemma.

3.8.1 Lemma (Hölder’s inequality) If a1, . . . , an, b1, . . . , bn ∈ R≥0 and if p ∈ (1,∞) then

n∑
j=1

ajbj ≤

 n∑
j=1

ap
j


1/p  n∑

j=1

bp′

j


1/p′

,
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where 1
p +

1
p′ = 1. Moreover, equality holds if and only if (ap

1 , . . . , a
p
n) and (bp′

1 , . . . , b
p′
n ) are

collinear.
Proof We first prove a lemma.

1 Sublemma If a, b ∈ R≥0 and if α ∈ (0, 1) then

aαb1−α
≤ αa + (1 − α)b,

and equality holds if and only if a = b.

Proof If a = b then both sides of the inequality are equal to a, and so the result holds
in this case. Thus we consider the case when a , b. Since the desired inequality is
symmetric with respect to a and b we can assume that b > a without loss of generality.
Consider the function f : [a, b]→ Rdefined by f (x) = x1−α. By the Mean Value Theorem
there exists c ∈ (a, b) such that

f ′(c) = (1 − α)c−α =
f (b) − f (a)

b − a
=

b1−α
− a1−α

b − a
.

Thus b1−α
− a1−α = (b − a)(1 − α)c−α. Since α ∈ (0, 1) and since c > a it follows that

c−α < a−α. Therefore,

b1−α
− a1−α < (b − a)(1 − α)a−α,

=⇒ aαb1−α
− a < (b − a)(1 − α)

=⇒ aαb1−α < αa + (1 − α)b.

Since this inequality is strict for b > a the result follows. ▼

Let us denote α = 1
p and β = 1

p′ = 1 − α. Define a′j = a1/α
j and b′j = b1/β

j and suppose
initially that

∑n
j=1 a′j = 1 and

∑n
j=1 b′j = 1. By Sublemma 1 we have

(a′j)
α(b′j)

β
≤ αa′j + βb′j, j ∈ {1, . . . ,n},

=⇒

n∑
j=1

((a′j)
α(b′j)

β) ≤
n∑

j=1

(αa′j + βb′j) = α + β = 1 =

 n∑
j=1

a′j


α  n∑

j=1

b′j


β

,

=⇒

n∑
j=1

a jb j ≤

 n∑
j=1

ap
j


1/p  n∑

j=1

bp′

j


1/p′

,

with equality holding if and only if a′j = b′j, j ∈ {1, . . . ,n}. This gives inequality in the
sublemma when

∑n
j=1 a′j = 1 and

∑n
j=1 b′j = 1. If these relations do not hold then we have∑n

j=1 a′j = λ and
∑n

j=1 b′j = µ for some λ, µ ∈ R≥0. Since the inequality is clearly equality
if either λ = 0 or µ = 0, we can suppose that λ, µ ∈ R>0 without loss of generality. We
can then write a′′j =

1
λa′j and b′′j =

1
µb′j for j ∈ {1, . . . ,n} so that

∑n
j=1 a′′j =

∑n
j=1 b′′j = 1.
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Then

n∑
j=1

a jb j =

n∑
j=1

(a′j)
α(b′j)

β = λαµβ
n∑

j=1

(a′′j )α(b′′j )β

≤ λαµβ

 n∑
j=1

a′′j


α  n∑

j=1

b′′j


β

=

 n∑
j=1

a′j


α  n∑

j=1

b′j


β

=

 n∑
j=1

ap
j


1/p  n∑

j=1

bp′

j


1/p′

,

giving the desired inequality. Moreover, from our previous computations, equality
holds if and only if a′′j = b′′j , j ∈ {1, . . . ,n}. This, in turn, holds if and only if µa′j = λb′j,
j ∈ {1, . . . ,n}. In turn, this holds if and only if

µap
j = λbp′

j , j ∈ {1, . . . ,n},

which is the result. ■

3.8.2 Notation (Conjugate index) For p ∈ (1,∞) the number p′ ∈ (1,∞) such that 1
p +

1
p′ =

1 is called the conjugate index for the index p. As we shall see, principally in
Section 3.10.1, the conjugate index plays a surprisingly important rôle, although
at this point it comes up as something of a conjurer’s trick. Note that when p = 2
we have p′ = 2. This in the important special case when the norm is derived from
an inner product. We hope that the reader is tantalised at this moment. •

A variant of Hölder’s inequality holds when p = 1, and we refer to Exercise 3.8.1
for this.

We next prove the useful Minkowski inequality.

3.8.3 Lemma (Minkowski’s inequality) If F ∈ {R,C}, if a1, . . . , an, b1, . . . , bn ∈ F, and if
p ∈ [1,∞) then  n∑

j=1

|aj + bj|
p


1/p

≤

 n∑
j=1

|aj|
p


1/p

+

 n∑
j=1

|bj|
p


1/p

.

Moreover, equality holds if and only if the following conditions hold:
(i) p = 1: for each j ∈ {1, . . . ,n} there exists αj, βj ∈ R≥0, not both zero, such that
αjaj = βjbj;

(ii) p ∈ (1,∞): there exists α, β ∈ R≥0, not both zero, such that αaj = βbj for every
j ∈ {1, . . . ,n}.

Proof The first part of the lemma has been proved for p = 1 in Example 3.1.3–3. Let
us also prove the second part of the lemma for p = 1. First of all, it is easy to check that
(i) is sufficient for equality in the Minkowski inequality. For the converse, note that, no



458 3 Banach spaces 2022/03/07

matter whetherF = R orF = C, equality holds in the triangle inequality |a+b| ≤ |a|+ |b|,
a, b ∈ F, if and only if there exists α, β ∈ R≥0, not both zero, such that αa = βb. The
reader not seeing this is encouraged to do the elementary geometry needed to verify
this. From this observation,

n∑
j=1

|a j + b j| =

n∑
j=1

|a j| +

n∑
j=1

|b j|

if and only if (i) holds.
Since the case of p = 1 has already been proved, we consider p ∈ (1,∞). We

compute, using Lemma 3.8.1,
n∑

j=1

|a j + b j|
p =

n∑
j=1

|a j + b j||a j + b j|
p−1

≤

n∑
j=1

|a j||a j + b j|
p−1 +

n∑
j=1

|b j||a j + b j|
p−1

≤

 n∑
j=1

|a j|
p


1/p  n∑

j=1

|a j + b j|
p


1/p′

+

 n∑
j=1

|b j|
p


1/p  n∑

j=1

|a j + b j|
p


1/p′

=


 n∑

j=1

|a j|
p


1/p

+

 n∑
j=1

|b j|
p


1/p

 n∑
j=1

|a j + b j|
p


1/p′

from which we deduce, using the fact that 1
p = 1 − 1

p′ , n∑
j=1

|a j + b j|
p


1/p

≤

 n∑
j=1

|a j|
p


1/p

+

 n∑
j=1

|b j|
p


1/p

,

as desired. By considering where the possible inequality is introduced in the preceding
computation, and in view of Lemma 3.8.1, equality in the statement of the sublemma
holds if and only if
1. for each j ∈ {1, . . . ,n} there exists α j, β j ∈ R≥0, not both zero, such that α ja j = β jb j

and
2. both (|a1|

p, . . . , |an|
p) and (|b1|

p, . . . , |bn|
p) are collinear with (|a1 + b1|

p, . . . , |an + bn|
p).

The second of these conditions is equivalent to the existence of α, λ ∈ R≥0, not both
zero, and β, µ ∈ R≥0, not both zero, such that

α|a j|
p = λ|a j + b j|

p, β|b j|
p = µ|a j + b j|

p.

We consider a few cases.
1. a j, b j , 0 for every j: In this case we must have α j, β j ∈ R>0. Then a j = δ jb j for

δ j =
β j

α j
∈ R>0. We can then solve for δ j to give δ j =

λ
α−λ . Note that α , λ since

b j , 0. This gives
(α − λ)a j = λb j

for every j ∈ {1, . . . ,n}, giving the result in this case.
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2. a j, b j , 0 for some j ∈ {1, . . . ,n}: In this case, whenever a j, b j , 0 the argument from
the previous case gives

(α − λ)a j = λb j

Now we consider some subcases, taking into account that a j and/or b j might be
zero for some j.

(a) a j = 0, b j , 0: In this case we have λ = β j = 0 and β = µ. It, therefore, holds
that

(α − λ)a j = λb j.

(b) a j , 0, b j = 0: In this case µ = α j = 0 and α = λ. It, therefore, holds that

(α − λ)a j = λb j.

3. a j = 0 for all j ∈ {1, . . . ,n}: In this case we have, for any α ∈ R>0 and with β = 0,

αa j = βb j

for all j ∈ {1, . . . ,n}.
4. b j = 0 for all j ∈ {1, . . . ,n}: In this case we have, for any β ∈ R>0 with α = 0,

αa j = βb j

for all j ∈ {1, . . . ,n}.
The upshot of the preceding monotony is that condition (ii) holds when equality in the
Minkowski inequality holds. ■

There is another version of the Minkowski inequality that is sometimes useful.
We call this the “integral version” of the Minkowski inequality for reasons that are
best made clear in . what?

3.8.4 Lemma (Integral version of Minkowski’s inequality) If F ∈ {R,C}, if ajk ∈ F, must prove when equality

occurs

j ∈ {1, . . . ,m}, k ∈ {1, . . . ,n}, and if p ∈ [1,∞) then m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

ajk

∣∣∣∣∣∣∣
p

1/p

≤

n∑
k=1

 m∑
j=1

|ajk|
p


1/p

.

Moreover, equality holds if and only if there exists b1, . . . , bm, c1, . . . , cn ∈ F such that
ajk = bjck.

Proof For p = 1 we have

m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣ ≤
m∑

j=1

 n∑
k=1

|a jk|

 = n∑
k=1

 m∑
j=1

|a jk|

 ,
giving the result in this case.
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Now let p ∈ (1,∞). Here we compute

m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

=

m∑
j=1


∣∣∣∣∣∣∣

n∑
k=1

a jk

∣∣∣∣∣∣∣
p−1


∣∣∣∣∣∣∣

n∑
l=1

a jl

∣∣∣∣∣∣∣


≤

m∑
j=1

 n∑
l=1

|a jl|

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p−1


=

n∑
l=1

 m∑
j=1

|a jl|

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p−1

 ,
swapping the order of summation in the last step. Now let p′ = p

p−1 be the conjugate
index. Now, by Hölder’s inequality,

m∑
j=1

|a jl|

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p−1 ≤

 m∑
j=1

|a jl|
p


1/p  m∑

j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p′(p−1)

1/p′

=

 m∑
j=1

|a jl|
p


1/p  m∑

j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′

.

Substituting this last relation into the preceding equation yields

m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

≤

n∑
l=1


 m∑

j=1

|a jl|
p


1/p  m∑

j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′
=


n∑

l=1

 m∑
j=1

|a jl|
p


1/p

 m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′

.

Now we note that the lemma is obviously true when

m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

= 0.

So we suppose that this quantity is nonzero and divide the above-derived inequality

m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

≤


n∑

l=1

 m∑
j=1

|a jl|
p


1/p

 m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′

by  m∑
j=1

∣∣∣∣∣∣∣
n∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′

,

which gives the desired inequality after noting that p′ is conjugate to p. ■

From Minkowski’s inequality we immediately have the following result.
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3.8.5 Proposition ((Fn, ∥·∥p) is a Banach space) If F ∈ {R,C} and if p ∈ [1,∞] then
(Fn, ∥·∥p) is an F-Banach space.

Moreover, we know from Theorem 3.1.15 that the norms ∥·∥p are equivalent.
One can then wonder at why one would not just choose one of these norms and be
done with it. There are at least two reasons why not.
1. Sometimes one norm is more convenient than another.
2. The finite-dimensional setting provides an opportunity to begin to understand

the rôle p in how the norms “look.” These sorts of p-norms will come up in
increasingly more abstract settings, and the finite-dimensional example gives
some useful intuition.
Along the lines of using the finite-dimensional setting to provide some intuition

for more complicated ideas that will arise later, let us consider a variant of the p-
norm for p ∈ (0, 1). The definition is the same. For p ∈ (0, 1) we define

∥(v1, . . . , vn)∥p =

 n∑
j=1

|v j|
p


1/p

.

The function v 7→ ∥v∥p clearly has the positivity and homogeneity properties
needed for a norm. What we lose is the triangle inequality. Indeed, for p ∈ (0, 1)
we have the following results which mirror Lemmata 3.8.1 and 3.8.3.

3.8.6 Lemma (Hölder’s inequality for p ∈ (0, 1)) If a1, . . . , an, b1, . . . , bn ∈ R≥0 and if
p ∈ (0, 1) then

n∑
j=1

ajbj ≥

 n∑
j=1

ap
j


1/p  n∑

j=1

bp′

j


1/p′

,

where 1
p +

1
p′ = 1.

Proof Let q = p−1 so that q ∈ (1,∞) and define c j = b−1/q
j and d j = a1/q

j b1/q
j , j ∈ {1, . . . ,n}.

Let q′ satisfy 1
q+

1
q′ = 1. Then one shows directly that cq′

j = bp′

j and ap
j = c jd j, j ∈ {1, . . . ,n}.

Then we have, using Lemma 3.8.1,

n∑
j=1

ap
j =

n∑
j=1

c jd j ≤

 n∑
j=1

dq
j


1/q  n∑

j=1

cq′

j


1/q′

=

 n∑
j=1

a jb j


p  n∑

j=1

bp′

j


1/q′

,

from which we deduce that

n∑
j=1

a jb j ≥

 n∑
j=1

ap
j


1/p  n∑

j=1

bp′

j


−1/(q′p)

,

from which the result follows since − 1
q′p =

1
p′ . ■
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3.8.7 Lemma (Minkowski’s inequality for p ∈ (0, 1)) If a1, . . . , an, b1, . . . , bn ∈ R≥0 and if
p ∈ (0, 1) then  n∑

j=1

(aj + bj)p


1/p

≥

 n∑
j=1

ap
j


1/p

+

 n∑
j=1

bp
j


1/p

,

Proof This follows from Lemma 3.8.6 using the same sequence of computations used
in proving that Lemma 3.8.3 follows from Lemma 3.8.1. ■

In Figure 3.4 we depict the boundaries of the balls Bp(1, 0) in R2. The main

Figure 3.4 The unit spheres for the (if p > 1, at least) norms ∥·∥p
on R2 (shown are, from inside to out, p ∈ {1/3, 1, 3,∞})

point is that the balls are convex of and only if p ∈ [1,∞). In the present finite-
dimensional setting this has no consequences. One can define a topology on Fn

as being generated by the open balls, even though they are not convex. This
topology is equivalent to the standard topology (one can see this by applying ),what?

and so all the usual notions of convergence, continuity, etc., carry over to this
case. However, when we generalise this to infinite-dimensions, it turns out that
the lack of convexity causes problems. For example, in we shall see that the lack ofwhat?

convexity causes the topological dual to consist only of the zero functional.
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3.8.2 Banach spaces of sequences

Among the more important classes of Banach spaces we will encounter are
those that are sequences characterised by certain summability properties. As we
shall expound on in detail in , such Banach spaces are models for discrete time- what?

and frequency-domain representations of signals. Here we are merely interested
in some basic definitions and properties.

The most fundamental Banach space of sequences are those that are bounded.

3.8.8 Definition (ℓ∞(F)) Let F ∈ {R,C}. Define a subspace ℓ∞(F) of FZ>0 by

ℓ∞(F) = {(a j) j∈∞ | there exists M ∈ R>0 such that |a j| ≤M, j ∈ Z>0}

and define
∥(a j) j∈Z>0∥∞ = sup{|a j| | j ∈ Z>0}

for (a j) j∈Z>0 ∈ ℓ
∞(F). •

Thus ℓ∞(F) consists of the set of bounded sequences in F and ∥·∥∞ is the least
upper bound for the terms in the sequence.

3.8.9 Theorem (ℓ∞(F) is a Banach space) If F ∈ {R,C} then (ℓ∞(F), ∥·∥∞) is an F-Banach
space.

Proof The only not entirely trivial norm property to verify for ∥·∥∞ is the triangle
inequality:

∥(a j) j∈Z>0 + (b j) j∈Z>0∥∞ = sup{|a j + b j| | j ∈ Z>0}

≤ sup{|a j| + |b j| | j ∈ Z>0}

= sup{|a j| | j ∈ Z>0} + sup{|b j| | j ∈ Z>0}

= ∥(a j) j∈Z>0∥∞ + ∥(b j) j∈Z>0∥∞,

where we have used Proposition I-2.2.27.
Now let us verify that (ℓ∞(F), ∥·∥∞) is complete. We let ((a(l)

j ) j∈Z>0)l∈Z>0 be a Cauchy

sequence in ℓ∞(F). We claim that, for each j ∈ Z>0, (a(l)
j )l∈Z>0 is a Cauchy sequence in

F. To see this, let ϵ ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥∥(a(l)
j ) j∈Z>0 − (a(k)

j ) j∈Z>0

∥∥∥∥
∞

< ϵ

for k, l ≥ N. Then, by definition of ∥·∥∞,∣∣∣∣a(l)
j − a(k)

j

∣∣∣∣ < ϵ
for k, l ≥ N and for j ∈ Z>0. Thus (a(l)

j )l∈Z>0 is indeed a Cauchy sequence, and so

converges to some a j ∈ F. We now claim that the sequence ((a(l)
j ) j∈Z>0)l∈Z>0 converges

to (a j) j∈Z>0 . To see this, let ϵ ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥∥(a(l)
j ) j∈Z>0 − (a(k)

j ) j∈Z>0

∥∥∥∥
∞

< ϵ
2
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for k, l ≥ N. Thus ∣∣∣∣a(l)
j − a(l)

j

∣∣∣∣ < ϵ
2 , k, l ≥ N.

Now, for fixed j ∈ Z>0, let N′ ∈ Z>0 be sufficiently large that
∣∣∣∣a(k)

j − a j

∣∣∣∣ < ϵ
2 for k ≥ N′.

In this case, if l ≥ N and k ≥ max{N,N′}, we have∣∣∣∣a(l)
j − a j

∣∣∣∣ ≤ ∣∣∣∣a(l)
j − a(k)

j

∣∣∣∣ + ∣∣∣∣a(k)
j − a j

∣∣∣∣ < ϵ.
Since this holds for each j ∈ Z>0 we have∥∥∥∥(a(l)

j ) j∈Z>0 − (a j) j∈Z>0

∥∥∥∥
∞

≤ ϵ,

as desired. ■

One property of ℓ∞(F) that makes it different than some of the other Banach
spaces we consider is the following.

3.8.10 Proposition (ℓ∞(F) is not separable) For F ∈ {R,C}, the Banach space (ℓ∞(F), ∥·∥∞)
is not separable.

Proof Let U be the collection of sequences (a j) j∈Z>0 ∈ ℓ
∞(F) such that a j ∈ {−1, 1},

j ∈ Z>0. It follows from Exercises I-1.7.4, I-1.7.5, and I-2.1.4 that U is countable. Note
that if (a j) j∈Z>0 , (b j) j∈Z>0 ∈ U are distinct then

∥(a j) j∈Z>0∥∞ = 1, ∥(a j) j∈Z>0 − (b j) j∈Z>0∥∞ = 2.

Let (a j) j∈Z>0 ∈ U and let (b j) j∈Z>0 ∈ B(1, (a j) j∈Z>0). By Exercise 3.1.3 we have∣∣∣∥(b j) j∈Z>0∥ − ∥(a j) j∈Z>0∥∞

∣∣∣ ≤ ∥∥∥(b j) j∈Z>0 − (a j) j∈Z>0

∥∥∥
∞

=⇒
∣∣∣∥(b j) j∈Z>0∥ − 1

∣∣∣ ≤ 1

=⇒
∥∥∥(b j) j∈Z>0

∥∥∥
∞
≤ 2.

Thus B(1, (a j) j∈Z>0) ⊆ B(2, 0ℓ∞(F)) for each (a j) j∈Z>0 ∈ U . If

(a j) j∈Z>0 , (b j) j∈Z>0 ∈ U

and
(c j) j∈Z>0 ∈ B(1, (a j) j∈Z>0), (d j) j∈Z>0 ∈ B(1, (b j) j∈Z>0)

then

∥(c j) j∈Z>0 − (b j) j∈Z>0∥∞

≥ |∥(c j) j∈Z>0 − (a j) j∈Z>0∥∞ − ∥(a j) j∈Z>0 − (b j) j∈Z>0∥∞| ≥ 2

using Proposition 1.1.3. Thus (c j) j∈Z>0 < B(1, (b j) j∈Z>0). One similarly shows that
(d j) j∈Z>0 < B(1, (a j) j∈Z>0). This shows that B(2, 0ℓ∞(F)) contains the collection

{B(1, (a j) j∈Z>0) | (a j) j∈Z>0 ∈ U }
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of disjoint open balls. In particular, if ((b(l)
j ) j∈Z>0)l∈Z>0 is any countable subset of ℓ∞(F)

then there is a countable subset ((a(α)
j ) j∈Z>0)α∈A of U in which are contained all of the

sequences ((b(l)
j ) j∈Z>0)l∈Z>0 . Note that

cl
(
((b(l)

j ) j∈Z>0)l∈Z>0

)
⊆ ∪α∈AB(1, (a(α)

j ) j∈Z>0).

Therefore, any of the set of balls

{B(1, (a j) j∈Z>0) | (a j) j∈Z>0 ∈ U , (a j) j∈Z>0 , (a(α)
j ) j∈Z>0 , α ∈ A}

cannot lie in cl
(
((b(l)

j ) j∈Z>0)l∈Z>0

)
which prohibits ((b(l)

j ) j∈Z>0)l∈Z>0 from being dense. ■

Now we begin looking at subspaces of ℓ∞(F). We begin with subspaces of
sequences that converge.

3.8.11 Definition (c(F) and c0(F)) Let F ∈ {R,C}. Define subspaces c(F) and c0(F) of FZ>0

by

c(F) =
{

(a j) j∈Z>0

∣∣∣∣∣ there exists a ∈ F such that lim
j→∞

a j = a
}

and

c0(F) =
{

(a j) j∈Z>0

∣∣∣∣∣ lim
j→∞

a j = 0
}
,

respectively. •

Note that by Propositions I-2.3.23 and it follows that c(F) and c0(F) are sub- complex versions

spaces. Moreover, by Propositions I-2.3.3 and it follows that c(F) and c0(F) are complex version

subspaces of ℓ∞(F). The appropriate norm to use on the spaces of sequences c(F)
and c0(F) is the restriction of norm ∥·∥∞ on ℓ∞(F). We denote this norm simply by
∥·∥∞. With this norm our spaces of convergent sequences are Banach spaces.

3.8.12 Theorem ((c(F), ∥·∥∞) and (c0(F), ∥·∥∞) are Banach spaces) If F ∈ {R,C} then
(c(F), ∥·∥∞) and (c0(F), ∥·∥∞) are F-Banach spaces.

Proof Let ((a(l)
j ) j∈Z>0)l∈Z>0 be a Cauchy sequence in c(F). By Theorem 3.8.9 this means

that the sequence converges to (a j) j∈Z>0 ∈ ℓ
∞(F). Since each sequence (a(l)

j ) j∈Z>0 is in

c(F) there exists a(l)
∈ F such that lim j→∞ a(l)

j = a(l). We claim that (a(l))l∈Z>0 is a Cauchy
sequence. For ϵ ∈ R>0 let N ∈ Z>0 be sufficiently large that∥∥∥∥(a(k)

j ) j∈Z>0 − (a(l)
j ) j∈Z>0

∥∥∥∥
∞

< ϵ
3 ,

which implies that ∣∣∣∣a(k)
j − a(l)

j

∣∣∣∣ < ϵ
3 , k, l ≥ N, j ∈ Z>0.
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Now let k, l ≥ N and let j ∈ Z>0 be sufficiently large that∣∣∣∣a(k)
j − a(k)

∣∣∣∣ < ϵ
3 ,

∣∣∣∣a(l)
j − a(k)

∣∣∣∣ < ϵ
3 .

Then ∣∣∣a(k)
− a(l)

∣∣∣ ≤ ∣∣∣∣a(k)
− a(k)

j

∣∣∣∣ + ∣∣∣∣a(k)
j − a(l)

j

∣∣∣∣ + ∣∣∣∣a(l)
j − a(l)

∣∣∣∣ < ϵ.
As this holds for every k, l ≥ N it follows that (a(l))l∈Z>0 is a Cauchy sequence in F. We
denote its limit by a.

Finally we show that lim j→∞ a j = a, which shows that (a j) j∈Z>0 ∈ c(F). Let ϵ ∈ R>0

and let N′ ∈ Z>0 be sufficiently large that
∣∣∣a(k)
− a

∣∣∣ < ϵ
3 for k ≥ N′. Now fix k ≥ N′ and

let N ∈ Z>0 be sufficiently large that∣∣∣∣a j − a(k)
j

∣∣∣∣ < ϵ
3 ,

∣∣∣∣a(k)
j − a(k)

∣∣∣∣ < ϵ
3 , j ≥ N.

Then, for j ≥ N,

|a j − a| ≤
∣∣∣∣a j − a(k)

j

∣∣∣∣ + ∣∣∣∣a(k)
j − a(k)

∣∣∣∣ + ∣∣∣a(k)
− a

∣∣∣ < ϵ,
which completes the proof that (c(F), ∥·∥∞) is a Banach space.

If ((a(l)
j ) j∈Z>0)l∈Z>0 is a Cauchy sequence in c0(F) ⊆ c(F) the above argument is easily

modified to show that the limit sequence, denoted (a j) j∈Z>0 ∈ c(F) above is actually
in c0(F). The key point is that a(l) = 0 for each l ∈ Z>0 and so a = 0 as well. Thus
(c0(F), ∥·∥∞) is also a Banach space. ■

The Banach spaces c(F) an c0(F) have the friendly property of being separable.

3.8.13 Proposition (c(F) and c0(F) are separable) If F ∈ {R,C} then the Banach spaces
(c(F), ∥·∥∞) and (c0(F), ∥·∥∞) are separable.

Proof It suffices to prove the proposition for c(F). We first take the case when F = R.
In this case, for q ∈ Q, we let Dq(R) be the subset of c(R) consisting of sequences
(q j) j∈Z>0 with q j ∈ Q, j ∈ Z>0, and such that q j = q for all j sufficiently large. We then
take

D (R) = ∪q∈QDq(R).

We claim thatD (R) is countable. We note thatDq(R) is a countable (indexed by Z>0)
disjoint union of copies ofQ and so is countable by Proposition I-1.7.16. ThusD (R) is
a countable union of countable sets, and so is again countable by Proposition I-1.7.16.
We should also show thatD (R) is dense in c(R). Let (a j) j∈Z>0 and let ϵ ∈ R>0. Suppose
that q ∈ Q is such that ∣∣∣∣∣∣ limj→∞

a j − q

∣∣∣∣∣∣ < ϵ
and let N ∈ Z>0 be sufficiently large that |a j−q| < ϵ for j ≥ N. Now choose q1, . . . , qN ∈ Q
such that |a j − q j| < ϵ for j ∈ {1, . . . ,N}. Now define (q j) j∈Z>0 by asking that q j = q for
j > N. Then (q j) j∈Z>0 ∈ D (R) and

∥(a j) j∈Z>0 − (q j) j∈Z>0∥∞ < ϵ.
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ThusD (R) is dense in c(R).
For F = C the procedure above can be duplicated by letting D (C) be the set of

sequences (q j + ir j) j∈Z>0 ∈ c(C) with (q j) j∈Z>0 , (r j) j∈Z>0 ∈ D (R). ■

The result has the following interesting corollary.

3.8.14 Corollary (c0(F) is the completion of F∞
0

) If F ∈ {R,C} then (c0(F), ∥·∥∞) is the
completion of (F∞0 , ∥·∥∞).

Proof Borrowing the notation from the proof of Proposition 3.8.13 we have

D0(F) ⊆ F∞0 ⊆ c0(F)

from which we deduce that

c0(F) = cl(D0(F)) ⊆ cl(F∞0 ) ⊆ cl(c0(F)) = c0(F).

Therefore, cl(F∞0 ) = c0(F), as desired. ■

Now we consider Banach spaces of sequences which naturally use a different
norm that the∞-norm.

3.8.15 Definition (ℓp(F)) Let F ∈ {R,C} and let p ∈ [1,∞). Define a subspace ℓp(F) of FZ>0

by

ℓp(F) =

(a j) j∈Z>0

∣∣∣∣∣∣∣
∞∑
j=1

|a j|
p < ∞


and define

∥(a j) j∈Z>0∥p =

 ∞∑
j=1

|a j|
p


1/p

for (a j) j∈Z>0 ∈ ℓ
p(F). •

At this point it is not necessarily clear that ℓp(F) is actually a subspace of FZ>0 ,
but we shall show shortly that it is, and is in fact a Banach space when equipped
with ∥·∥p as a norm.

Let us give some properties of the function ∥·∥p analogous to Lemmata 3.8.1
and 3.8.3.

3.8.16 Lemma (Hölder’s inequality) If p ∈ (1,∞) and if (aj)j∈Z>0 ∈ ℓ
p(F) and (bj)j∈Z>0 ∈

ℓp′(F), then
∞∑

j=1

|ajbj| ≤

 ∞∑
j=1

|aj|
p


1/p  ∞∑

j=1

|bj|
p′


1/p′

,

where 1
p +

1
p′ = 1. Moreover, equality holds if and only if (|aj|

p)j∈Z>0 and (|bj|
p′)j∈Z>0 are

collinear.



468 3 Banach spaces 2022/03/07

Proof For N ∈ Z>0, by Lemma 3.8.1 we have

N∑
j=1

|a jb j| ≤

 N∑
j=1

|a j|
p


1/p  N∑

j=1

|b j|
p′


1/p′

≤

 ∞∑
j=1

|a j|
p


1/p  ∞∑

j=1

|b j|
p′


1/p′

.

Thus
∞∑
j=1

|a jb j| = lim
N→∞

N∑
j=1

|a jb j| ≤

 ∞∑
j=1

|a j|
p


1/p  ∞∑

j=1

|b j|
p′


1/p′

,

as desired.
For the final assertion of the lemma, first note that a direction computation shows

that equality holds in the Hölder equality if (|a j|
p) j∈Z>0 and (|b j|

p′) j∈Z>0 are collinear.
For the converse, suppose that (|a j|

p) j∈Z>0 and (|b j|
p′) j∈Z>0 are not collinear. Then there

exists N ∈ Z>0 such that (|a1|
p, . . . , |aN |

p) and (|b1|
p′ , . . . , |bN |

p′) are not collinear. By
Lemma 3.8.1 we then have

N∑
j=1

|a jb j| <

 N∑
j=1

|a j|
p


1/p  N∑

j=1

|bj|p
′


1/p′

.

Since
∞∑

j=N+1

|a jb j| <

 ∞∑
j=N+1

|a j|
p


1/p  ∞∑

j=N+1

|bj|p
′


1/p′

it follows that equality cannot hold in the Hölder inequality. ■

A version of Hölder’s inequality holds for p = 1 and we refer to Exercise 3.8.2
for this.

The Minkowski inequality also holds in this case.

3.8.17 Lemma (Minkowski’s inequality) If p ∈ [1,∞) and if (aj)j∈Z>0 , (bj)j∈Z>0 ∈ ℓ
p(F) then ∞∑

j=1

|aj + bj|
p


1/p

≤

 ∞∑
j=1

|aj|
p


1/p

+

 ∞∑
j=1

|bj|
p


1/p

.

Moreover, equality holds if and only if the following conditions hold:
(i) p = 1: for each j ∈ Z>0 there exists αj, βj ∈ R≥0, not both zero, such that αjaj = βjbj;
(ii) p ∈ (1,∞): there exists α, β ∈ R≥0, not both zero, such that αaj = βbj for every

j ∈ Z>0.
Proof Let p ∈ [1,∞) and let (a j) j∈Z>0 , (b j) j∈Z>0 ∈ ℓ

p(F). For each N ∈ Z>0 N∑
j=1

|a j + b j|
p


1/p

≤

 N∑
j=1

|a j|
p


1/p

+

 N∑
j=1

|b j|
p


1/p

≤ ∥(a j) j∈Z>0∥p + ∥(b j) j∈Z>0∥p
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by Lemma 3.8.3. Therefore,

∥(a j) j∈Z>0 + (b j) j∈Z>0∥p = lim
N→∞

 N∑
j=1

|a j + b j|
p


1/p

≤ ∥(a j) j∈Z>0∥p + ∥(b j) j∈Z>0∥p.

This shows that (a j) j∈Z>0 + (b j) j∈Z>0 ∈ ℓ
p(F).

An argument similar to that used in the last part of Lemma 3.8.16 can be used to
prove the last assertion of the lemma. ■

The integral version of Minkowski’s inequality also holds in this case.

3.8.18 Lemma (Integral version of Minkowski’s inequality) If F ∈ {R,C}, if p ∈ [1,∞), if Must prove when equality

occurs

ajk ∈ F, j,k ∈ Z>0, are such that (ajk)j∈Z>0 ∈ ℓ
p(F) for every k ∈ Z>0 and (ajk)k∈Z>0 ∈ ℓ

p(F)
for every j ∈ Z>0, then  ∞∑

j=1

∣∣∣∣∣∣∣
∞∑

k=1

ajk

∣∣∣∣∣∣∣
p

1/p

≤

∞∑
k=1

 ∞∑
j=1

|ajk|
p


1/p

.

Moreover, equality holds if and only if there exists bj, , ck ∈ F, j,k ∈]integerp, such that
ajk = bjck.

Proof For p = 1 we have

∞∑
j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣ ≤
∞∑
j=1

 ∞∑
k=1

|a jk|

 = ∞∑
k=1

 ∞∑
j=1

|a jk|

 ,
giving the result in this case.

Now let p ∈ (1,∞). Here we compute

∞∑
j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

=

∞∑
j=1


∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p−1


∣∣∣∣∣∣∣
∞∑

l=1

a jl

∣∣∣∣∣∣∣


≤

∞∑
j=1

 ∞∑
l=1

|a jl|

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p−1


=

∞∑
l=1

 ∞∑
j=1

|a jl|

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p−1

 ,
swapping the order of summation in the last step. Now let p′ = p

p−1 be the conjugate
index. Now, by Hölder’s inequality,

∞∑
j=1

|a jl|

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p−1 ≤

 ∞∑
j=1

|a jl|
∞


1/p  ∞∑

j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p′(p−1)

1/p′

=

 ∞∑
j=1

|a jl|
p


1/p  ∞∑

j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′

.
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Substituting this last relation into the preceding equation yields

∞∑
j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

≤

∞∑
l=1


 ∞∑

j=1

|a jl|
p


1/p  ∞∑

j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′
=


∞∑

l=1

 ∞∑
j=1

|a jl|
p


1/p

 ∞∑
j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′

.

Now we note that the lemma is obviously true when

∞∑
j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

= 0.

So we suppose that this quantity is nonzero and divide the above-derived inequality

∞∑
j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

≤


∞∑

l=1

 ∞∑
j=1

|a jl|
p


1/p

 ∞∑
j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′

by  ∞∑
j=1

∣∣∣∣∣∣∣
∞∑

k=1

a jk

∣∣∣∣∣∣∣
p

1/p′

,

which gives the desired inequality after noting that p′ is conjugate to p. ■

Now we can prove that ℓp(F) is a Banach space.

3.8.19 Theorem ((ℓp(F), ∥·∥p) is a Banach space) If F ∈ R,C} and if p ∈ [1,∞) then
(ℓp(F), ∥·∥p) is an F-Banach space.

Proof Let us first verify that ℓp(F) is a subspace. We first consider the case of p = 1.
Let (a j) j∈Z>0 , (b j) j∈Z>0 ∈ ℓ

1(F). By Lemma 3.8.17 we have (a j + b j) j∈Z>0 ∈ ℓ
1(F). If α ∈ F

we have
∞∑
j=1

|αa j| = |α|
∞∑
j=1

|a j|

by Proposition I-2.4.30. Thus α(a j) j∈Z>0 ∈ ℓ
1(F), which shows that ℓ1(F) is a subspace

of FZ>0 .
By Lemma 3.8.17, if (a j) j∈Z>0 , (b j) j∈Z>0 ∈ ℓ

p(F) then (a j + b j) j∈Z>0 ∈ ℓ
p(F). It is easy

to see, just as for the case of p = 1, that α(a j) j∈Z>0 ∈ ℓ
p(F) if α ∈ F and if (a j) j∈Z>0 ∈ ℓ

p(F),
p ∈ (1,∞).

As we have shown the triangle inequality for ∥·∥p already in Lemma 3.8.17, and
since the other norm properties for ∥·∥p hold trivially, it follows that ℓp(F) is a normed
vector space. It remains to show that it is complete. Let ((a(l)

j ) j∈Z>0)l∈Z>0 be a Cauchy
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sequence in ℓp(F). We claim that the sequence (a(l)
j )l∈Z>0 is a Cauchy sequence for each

j ∈ Z>0. For every ϵ ∈ R>0 there exists N ∈ Z>0 such that

∥∥∥∥(a(k)
j ) j∈Z>0 − (a(l)

j ) j∈Z>0

∥∥∥∥
p
=

 ∞∑
j=1

∣∣∣∣a(k)
j − a(l)

j

∣∣∣∣p


1/p

< ϵ.

Now let ϵ ∈ R>0 and let N ∈ Z>0 be such that∥∥∥∥(a(k)
j ) j∈Z>0 − (b(l)

j ) j∈Z>0

∥∥∥∥
p
< ϵ.

Then ∣∣∣∣a(k)
j − a(l)

j

∣∣∣∣p ≤ ∞∑
j=1

∣∣∣∣a(k)
j − a(l)

j

∣∣∣∣p < ϵp,

giving (a(l)
j )l∈Z>0 as a Cauchy sequence. Denote its limit by a j ∈ F. We next claim that

(a(l)
j )l∈Z>0 converges to (a j) j∈Z>0 in ℓp(F). Let ϵ ∈ R>0 and let N ∈ Z>0 be such that∥∥∥∥(a(l)

j ) j∈Z>0 − (a(k)
j ) j∈Z>0

∥∥∥∥
p
< ϵ

2 , l, k ≥ N.

For n ∈ Z>0 the sequence ((a(l)
j )n

j=1)l∈Z converges to (a j)n
j=1 in Fn with respect to the

norm ∥·∥p by Theorem 3.3.3. Thus there exists N′ ∈ Z>0 such that n∑
j=1

∣∣∣∣a(k)
j − a j

∣∣∣∣p


1/p

<
ϵ
2
, k ≥ N′.

Then, for k ≥ max{N,N′}, n∑
j=1

∣∣∣∣a(l)
j − a j

∣∣∣∣p


1/p

≤

 n∑
j=1

∣∣∣∣a(l)
j − a(k)

j

∣∣∣∣p


1/p

+

 n∑
j=1

∣∣∣∣a(k)
j − a j

∣∣∣∣p


1/p

≤

∥∥∥∥(a(l)
j ) j∈Z>0 − (a(k)

j ) j∈Z>0

∥∥∥∥
p
+

 n∑
j=1

∣∣∣∣a(k)
j − a j

∣∣∣∣p


1/p

< ϵ.

Now we have

∥∥∥∥(a(l)
j ) j∈Z>0 − (a j) j∈Z>0

∥∥∥∥
p
= lim

n→∞

 n∑
j=1

∣∣∣∣a(l)
j − a j

∣∣∣∣p


1/p

≤ ϵ.

This gives convergence of (a(l)
j )l∈Z>0 to (a j) j∈Z>0 in ℓp(F), as desired. ■

Let us show that, unlike ℓ∞(F), the Banach spaces ℓp(F), p ∈ [1,∞), have the
property of being separable.
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3.8.20 Proposition (ℓp(F) is separable for p ∈ [1,∞)) If F ∈ {R,C} and if p ∈ [1,∞) then
the Banach space (ℓp(F), ∥·∥p) is separable.

Proof We recall the definition ofDq(F) from the proof of Proposition 3.8.13 for q ∈ Q.
There we showed thatD (F) was countable. We will show thatD0(R) is dense in ℓp(F).
It is clear thatD0(F) ⊆ ℓp(F) for p ∈ [1,∞). To show that it is dense in ℓp(F) let ϵ ∈ R>0
and let (a j) j∈Z>0 ∈ ℓ

p(F). Let N ∈ Z>0 be sufficiently large that ∞∑
j=N+1

|a j|
p


1/p

<
ϵ
2
.

Now let q1, . . . , qN ∈ Q be such that N∑
j=1

|a j − q j|
p


1/p

<
ϵ
2
.

Then, taking q j = 0 for j > N,

∥∥∥(a j) j∈Z>0 − (q j) j∈Z>0

∥∥∥
p =

 N∑
j=1

|a j − q j|
p


1/p

+

 ∞∑
j=N+1

|a j|
p


1/p

< ϵ.

Since (q j) j∈Z>0 ∈ D0(R) the result follows. ■

From this result we have the following useful corollary which finishes off Ex-
ample 3.3.1–1.

3.8.21 Corollary (ℓp(F) is the completion of F∞
0

) If F ∈ {R,C} and if p ∈ [1,∞) then
(ℓp(F), ∥·∥p) is the completion of (F∞0 , ∥·∥p).

Proof Borrowing the notation from the proof of Proposition 3.8.20 we have

D0(F) ⊆ F∞0 ⊆ ℓ
p(F)

from which we deduce, using the proof of Proposition 3.8.20, that

ℓp(F) = cl(D0(F)) ⊆ cl(F∞0 ) ⊆ cl(ℓp(F)) = ℓp(F).

Therefore, cl(F∞0 ) = ℓp(F), as desired. ■

3.8.3 Banach spaces of direct sums

Let F ∈ {R,C} and let ((Vi, ∥·∥i))i∈I be a family of nontrivial F-Banach spaces.
We shall generalise the situation of Proposition 3.3.4 as follows. For p ∈ [1,∞] we
define a norm ∥·∥I,p on

⊕
i∈I Vi by

∥(vi)i∈I∥I,p =


(∑

i∈I∥vi∥
p
i

)1/p
, p ∈ [1,∞),

sup{∥vi∥i | i ∈ I}, p = ∞.
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The argument in the proof of Proposition 3.3.4 used to show incompleteness of
(
⊕

i∈I Vi, ∥·∥I,1) when I is infinite is easily adapted to the case when p ∈ [1,∞).
Moreover, for p = ∞ one can also show that (

⊕
i∈I Vi, ∥·∥I,∞) is incomplete; we leave

this to the reader as Exercise 3.3.6.
Note that the situation we consider here is a generalisation of the spaces of se-

quences considered in detail in Section 3.8.2. Indeed, the situation in Section 3.8.2
occurs upon taking I = Z>0 and Vi = F for each i ∈ I. For this reason, many of
the particulars in this section go just as they do in Section 3.8.2, and we encour-
age the reader to understand this. It will be helpful in understanding the further
generalisations we will make from families to functions.

That ∥·∥p is a norm for each p ∈ [1,∞) is not difficult to show, but we will show
this as we go along in any event. In fact, we shall follow closely the course set out in
Section 3.8.2. In keeping with this, we start offmaking the following definition.

3.8.22 Definition (ℓ∞(
⊕

i∈I Vi)) If F ∈ {R,C} and if ((Vi, ∥·∥i)i∈I is a family of normed F-
vector spaces then we define

ℓ∞(
⊕

i∈IVi) =
{
(vi)i∈I ∈

∏
i∈IVi

∣∣∣ sup{∥vi∥i | i ∈ I} < ∞
}

and define
∥(vi)i∈I∥I,∞ = sup{∥vi∥i | i ∈ I}

for (vi)i∈I ∈ ℓ∞(
⊕

i∈I Vi. •

It is evident (and see Exercise 3.8.5) that it is necessary that each of the normed
vector spaces Vi be a Banach space if ℓ∞(

⊕
i∈I Vi) is to be a Banach space. Moreover,

this is sufficient.

3.8.23 Theorem ((ℓ∞(
⊕

i∈I Vi), ∥·∥I,∞) is a Banach space) Let F ∈ {R,C} and let
((Vi, ∥·∥i))i∈I be a family of F-Banach spaces. Then (ℓ∞(

⊕
i∈I Vi), ∥·∥I,∞) is an F-Banach

space.
Proof The only not entirely trivial norm property to verify for ∥·∥I,∞ is the triangle
inequality:

∥(ui)i∈I + (vi)i∈I∥I,∞ = sup{∥ui + vi∥i | i ∈ I}
≤ sup{∥ui∥i + ∥vi∥i | i ∈ I}
= sup{∥ui∥i | i ∈ I} + sup{∥vi∥i | i ∈ I}
= ∥(ui)i∈I∥∞ + ∥(vi)i∈I∥∞,

where we have used Proposition I-2.2.27.
Now let us verify that (ℓ∞(

⊕
i∈I Vi), ∥·∥I,∞) is complete. We let ((v(l)

i )i∈I)l∈Z>0 be a

Cauchy sequence in ℓ∞(
⊕

i∈I Vi). We claim that, for each i ∈ I, (v(l)
i )l∈Z>0 is a Cauchy

sequence in Vi. To see this, let ϵ ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥∥(v(l)
i )i∈I − (v(k)

i )i∈I

∥∥∥∥
I,∞

< ϵ
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for k, l ≥ N. Then, by definition of ∥·∥I,∞,∥∥∥∥v(l)
i − v(k)

i

∥∥∥∥
i
< ϵ

for k, l ≥ N and for i ∈ I. Thus (v(l)
i )l∈Z>0 is indeed a Cauchy sequence, and so converges

to some vi ∈ Vi. We now claim that the sequence ((v(l)
i )i∈I)l∈Z>0 converges to (vi)i∈I. To

see this, let ϵ ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥∥(v(l)
i )i∈I − (v(k)

i )i∈I

∥∥∥∥
I,∞

< ϵ
2

for k, l ≥ N. Thus ∥∥∥∥v(l)
i − v(l)

i

∥∥∥∥
i
< ϵ

2 , k, l ≥ N.

Now, for fixed i ∈ I, let N′ ∈ Z>0 be sufficiently large that
∥∥∥∥v(k)

i − vi

∥∥∥∥
i
< ϵ

2 for k ≥ N′. In
this case, if l ≥ N and k ≥ max{N,N′}, we have∥∥∥∥v(l)

i − vi

∥∥∥∥
i
≤

∥∥∥∥v(l)
i − v(k)

i

∥∥∥∥
i
+

∥∥∥∥v(k)
i − vi

∥∥∥∥
i
< ϵ.

Since this holds for each i ∈ I we have∥∥∥∥(v(l)
i )i∈I − (vi)i∈I

∥∥∥∥
I,∞
≤ ϵ,

as desired. ■

Again sticking with the plan of Section 3.8.2, let us consider a subspace of
ℓ∞(

⊕
i∈I Vi) that is analogous to the subspace c0(F) of ℓ∞(F).

3.8.24 Definition (c0(
⊕

i∈I Vi)) If F ∈ {R,C} and if ((Vi, ∥·∥i)i∈I is a family of normed F-
vector spaces then we define c0(

⊕
i∈I Vi) to be the elements (vi)i∈I ∈ ℓ∞(

⊕
i∈I Vi)

with the property that, for each ϵ ∈ R>0 the set {i ∈ I | ∥vi∥i ≥ ϵ} is finite. •

As with the corresponding conclusion in Section 3.8.2, we have the following
result.

3.8.25 Theorem (c0(
⊕

i∈I Vi) is a Banach space) Let F ∈ {R,C} and let ((Vi, ∥·∥i))i∈I be
a family of F-Banach spaces. Then (c0(

⊕
i∈I Vi), ∥·∥I,∞) is an F-Banach space, and is

moreover the completion of
⊕

i∈I Vi with respect to the norm ∥·∥I,∞.
Proof Let ((v(l)

i )i∈I)l∈Z>0 be a Cauchy sequence in c0(
⊕

i∈I Vi). By Theorem 3.8.23
this means that the sequence converges to (vi)i∈I ∈ ℓ∞(

⊕
i∈I Vi). We next show that

(vi)i∈I ∈ c0(
⊕

i∈I Vi). Let ϵ ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥∥vi − v(k)
i

∥∥∥∥
i
< ϵ

2 , k ≥ N, i ∈ I.

For fixed k ≥ N let J ⊆ I be a finite set such that
∥∥∥∥v(k)

i

∥∥∥∥ < ϵ
2 for each i ∈ I \ J. Then, for

i ∈ I \ J,
∥vi∥i ≤

∥∥∥∥vi − v(k)
i

∥∥∥∥
i
+

∥∥∥∥v(k)
i

∥∥∥∥
i
< ϵ,
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which completes the proof that c0(
⊕

i∈I Vi) is a Banach space.
To see that c0(

⊕
i∈I Vi) is the completion of

⊕
i∈I Vi, let ϵ ∈ R>0 and let (vi)i∈I ∈

c0(
⊕

i∈I Vi). Let J ⊆ I be a finite set such that ∥vi∥i < ϵ for each i ∈ I \ J. Then define
(ui)i∈I ∈

⊕
i∈I Vi by

ui =

vi, i ∈ J,
0Vi , i ∈ I \ J.

It then follows immediately that ∥(vi)i∈I − (ui)i∈I∥I,p < ϵ, and so
⊕

i∈I Vi is dense in
c0(

⊕
i∈I Vi). ■

Now let us turn to the case of p ∈ [1,∞).

3.8.26 Definition (ℓp(
⊕

i∈I Vi)) Let F ∈ {R,C} and let ((Vi, ∥·∥i))i∈I be a family of normed
F-vector spaces. For p ∈ [1,∞) we define

ℓp(
⊕

i∈IVi) =

(vi)i∈I ∈
∏

i∈IVi

∣∣∣∣∣∣∣ ∑
i∈I

∥vi∥
p
i < ∞


and

∥(vi)i∈I∥I,p =

∑
i∈I

∥vi∥
p
i

1/p

,

for (vi)i∈I ∈ ℓp(
⊕

i∈I Vi). •

Since the sum in the definition of ∥·∥I,p for p ∈ [1,∞) is over a general index set,
it must be interpreted as in Section I-2.4.7 (see also Section 3.4.6).

We now have the expected result that ℓp(
⊕

i∈I Vi) is a Banach space.

3.8.27 Theorem ((ℓp(
⊕

i∈I Vi), ∥·∥I,p) is a Banach space) LetF ∈ {R,C} and let ((Vi, ∥·∥i))i∈I

be a family of F-Banach spaces. Then (ℓp(
⊕

i∈I Vi), ∥·∥I,p) is an F-Banach space, and is
moreover the completion of

⊕
i∈I Vi with respect to the norm ∥·∥I,p.

Proof Let us first verify that ℓp(
⊕

i∈I Vi) is a subspace. We first consider the case of
p = 1. Let (ui)i∈I, (vi)i∈I ∈ ℓ1(

⊕
i∈I Vi) and note that for each finite subset J ⊆ I we have∑

j∈J

∥u j + v j∥ j ≤
∑
j∈J

∥u j∥ j +
∑
j∈J

∥v j∥ j ≤ ∥(ui)i∈I∥I,1 + ∥(vi)i∈I∥I,1,

where we have used the triangle inequality for ∥·∥i, i ∈ I. Therefore, by definition of
sums over arbitrary index sets,

∥(ui)i∈I + (vi)i∈I∥I,1 =
∑
i∈I

∥ui + vi∥i ≤ ∥(ui)i∈I∥I,1 + ∥(vi)i∈I∥I,1. (3.15)

This shows that (ui)i∈I + (vi)i∈I ∈ ℓ1(
⊕

i∈I Vi). If α ∈ Fwe have∑
i∈I

∥αvi∥i = |α|
∑
i∈I

∥vi∥i



476 3 Banach spaces 2022/03/07

by Proposition I-2.4.30 (noting that the sum is over a countable subset of I). Thus
α(vi)i∈I ∈ ℓ1(

⊕
i∈I Vi), which shows that ℓ1(

⊕
i∈I Vi) is a subspace of

∏
i∈I Vi.

Now let p ∈ (1,∞) and let (ui)i∈I, (vi)i∈I ∈ ℓp(
⊕

i∈I Vi). For each finite subset J ⊆ I∑
j∈J

∥u j + v j∥
p
j


1/p

≤

∑
j∈J

∥u j∥
p
j


1/p

+

∑
j∈J

∥v j∥)
p
j


1/p

≤ ∥(ui)i∈I∥I,p + ∥(vi)i∈I∥I,p

by Lemma 3.8.3. Therefore,

∥(ui)i∈I + (vi)i∈I∥I,p =

∑
i∈I

∥ui + vi∥
p
i


1/p

≤ ∥(ui)i∈I∥I,p + ∥(vi)i∈I∥I,p. (3.16)

This shows that (ui)i∈I + (vi)i∈I ∈ ℓp(
⊕

i∈I Vi). It is easy to see, just as for the case of
p = 1, that α(vi)i∈I ∈ ℓp(

⊕
i∈I Vi) if α ∈ F and if (vi)i∈I ∈ ℓp(

⊕
i∈I Vi), p ∈ (1,∞).

As we have shown the triangle inequality for ∥·∥I,p already in (3.15) and (3.16),
and since the other norm properties for ∥·∥I,p hold trivially, it follows that ℓp(

⊕
i∈I Vi)

is a normed vector space. It remains to show that it is complete. Let ((v(l)
i )i∈I) j∈Z>0 be

a Cauchy sequence in ℓp(
⊕

i∈I Vi). We claim that the sequence (v(l)
i )l∈Z>0 is a Cauchy

sequence for each i ∈ I. For every ϵ ∈ R>0 there exists N ∈ Z>0 such that

∥∥∥∥(v(k)
i )i∈I − (v(l)

i )i∈I

∥∥∥∥
I,p
=

∑
i∈I

∥∥∥∥v(k)
i − v(l)

i

∥∥∥∥p

i


1/p

< ϵ.

Now let ϵ ∈ R>0 and let N ∈ Z>0 be such that∥∥∥∥(v(k)
i )i∈I − (v(l)

i )i∈I

∥∥∥∥
I,p
< ϵ.

Then ∥∥∥∥v(k)
i − v(l)

i

∥∥∥∥p

i
≤

∑
i∈I

∥∥∥∥v(k)
i − v(l)

i

∥∥∥∥p

i
< ϵp,

giving (v(l)
i )l∈Z>0 as a Cauchy sequence. Denote its limit by vi ∈ Vi. We next claim that

(v(l)
i )l∈Z>0 converges to (vi)i∈I in ℓp(

⊕
i∈I Vi). Let ϵ ∈ R>0 and let N ∈ Z>0 be such that∥∥∥∥(v(l)

i )i∈I − (v(k)
i )i∈I

∥∥∥∥
p
< ϵ

2 , l, k ≥ N.

For any finite subset J ⊆ I we claim that the sequence ((v(l)
j ) j∈J)l∈Z converges to (v j) j∈J

in
⊕

j∈J V j with respect to the norm ∥·∥J,p defined by

∥(v j) j∈J∥J,p =

∑
j∈J

∥v j∥
p
j


1/p

.
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This claim is proved for p = 1 in Proposition 3.3.4. The proof for p ∈ (1,∞) is exactly
the same, save for notation. Thus there exists N′ ∈ Z>0 such that∑

j∈J

∥∥∥∥v(k)
j − v j

∥∥∥∥p

j


1/p

<
ϵ
2
, k ≥ N′.

Then, for k ≥ max{N,N′},∑
j∈J

∥∥∥∥v(l)
j − v j

∥∥∥∥p

j


1/p

≤

∑
j∈J

∥∥∥∥v(l)
j − v(k)

j

∥∥∥∥p

j


1/p

+

∑
j∈J

∥∥∥∥v(k)
j − v j

∥∥∥∥p

j


1/p

≤

∥∥∥∥(v(l)
i )i∈I − (v(k)

i )i∈I

∥∥∥∥
I,p
+

∑
j∈J

∥∥∥∥v(k)
j − v j

∥∥∥∥p

j


1/p

< ϵ.

Since this can be done for any finite set J ⊆ I we have∥∥∥∥(v(l)
i )i∈I − (ai)i∈I

∥∥∥∥
p
≤ ϵ.

This gives convergence of (v(l)
i )l∈Z>0 to (ai)i∈I in ℓp(

⊕
i∈I Vi), as desired. ■

Of significant interest is the case when I is finite. In this case, all of the Banach
spaces ℓp(

⊕
i∈I Vi), p ∈ [1,∞], and c0(

⊕
i∈I Vi) are the same and equal to

⊕
i∈I Vi.

In particular,
⊕

i∈I Vi is a Banach space if I is finite and if all of the normed vector
spaces Vi, i ∈ I, are complete.

3.8.4 Banach spaces of continuous functions on R

One way to think of this section is as giving a generalisation of the construction
of ℓ∞(F) and its subspaces in Section 3.8.2. The generalisation is to functions on
the real line from sequences, which can be thought of as functions on Z>0. For
functions on the real line one has the possible property of continuity that one is
compelled to keep track of.

We begin by providing the classes of continuous functions we will talk about.
We recall from Definition II-1.2.49 that if I ⊆ R is an interval and if A ⊆ I then
clI(A) = cl(A) ∩ I.

3.8.28 Definition (C0(I;F), C0
cpt

(I;F), C0
bdd

(I;F), C0
0
(I;F)) Let F ∈ {R,C} and let I ⊆ R be

an interval.
(i) C0(I;F) = { f : I→ F | f is continuous}.
(ii) If f ∈ C0(I;F) then the support of f is Is this the best place

for this?

supp( f ) = clI({x ∈ I | f (x) , 0}).

(iii) C0
cpt(I;F) = { f ∈ C0(I;F) | f has compact support}.
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(iv) C0
0(I;F) = { f ∈ C0(I;F)| for every ϵ ∈ R>0 there exists a compact set K ⊆

I such that {x ∈ I | | f (x)| ≥ ϵ} ⊆ K}.
(v) C0

bdd(I;F) = { f ∈ C0(I;F)| there exists M ∈ R>0 such that | f (x)| ≤ M for all x ∈
I}. •

One should be a little careful about the meaning of compact support when I is
not closed. For example, the function f ∈ C0

bdd((0, 1];F) defined by f (x) = 1 does
not have compact support since its support is (0, 1].

We first understand the case when I = R. In this case, one can verify that

C0
0(R;F) =

{
f ∈ C0

bdd(R;F)
∣∣∣∣∣ lim
|x|→∞
| f (x)| = 0

}
(3.17)

(this is Exercise 3.8.6). Thus C0
0(R;F) consists of those functions which “die off” at

infinity.
Clearly

C0
cpt(R;F) ⊂ C0

0(R;F) ⊂ C0
bdd(R;F) ⊂ C0(R;F). (3.18)

For I = R the vector space C0(I;F) is too large to be of interest for the purposes
of the discussion here. This is simply because continuous functions on R can be
unbounded, and we wish to use a norm that is reliant on functions being bounded.
Indeed, we define ∥·∥∞ by

∥ f ∥∞ = sup{| f (x)| | x ∈ R}

for f ∈ C0
bdd(R;F). That this is a norm follows just as do the norm properties of

Example 3.1.3–10.
Let us get the ball rolling by giving an important property of C0

cpt(R;F). This
result should be thought of as being analogous to (F∞0 , ∥·∥∞) not being complete.

3.8.29 Proposition ((C0
cpt

(R;F), ∥·∥∞) is not complete) If F ∈ {R,C} then (C0
cpt(R;F), ∥·∥∞)

is not complete.
Proof Let us define a sequence ( f j) j∈Z>0 in C0

cpt(R;F) by

f j(x) =

 1
1+x2 , x ∈ [− j, j],
0, otherwise.

Let ϵ ∈ R>0. Since limx→∞
1

1+x2 = 0 it follows that there exists N ∈ Z>0 such that∣∣∣∣∣ 1
1+x2

1
−

1
1+x2

2

∣∣∣∣∣ < ϵ for every x1, x2 ≥ N. It then holds that | f j(x) − fk(x)| < ϵ for every

j, k ≥ N and for every x ∈ R. This shows that ( f j) j∈Z>0 is a Cauchy sequence. We
next claim that this sequence does not converge. The argument used in the lemma in
Example 3.3.1–2 can be adapted to show that if g ∈ C0

bdd(R;F) is a function to which
the sequence ( f j) j∈Z>0 converges then g(x) = 1

1+x2 for every x ∈ R. In particular, the
sequence ( f j) j∈Z>0 does not converge in C0

cpt(R;F), and so C0
cpt(R;F) is not complete.■
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With this in our back pocket let us proceed in a manner entirely analogous
to what we did in Section 3.8.2 in looking at ℓ∞(F) and its subspaces. Here the
key observation is the following fairly obvious translation from the language of
Section I-3.6.2 to the current language of convergence in normed vector spaces.

3.8.30 Proposition (Characterisation of convergence in (C0
bdd

(R;F), ∥·∥∞)) If F ∈
{R,C} and if (fj)j∈Z>0 is a sequence in C0

bdd(R;F) then the following statements are equiv-
alent:

(i) the sequence (fj)j∈Z>0 converges uniformly to f ∈ C0
bdd(R;F);

(ii) the sequence (fj)j∈Z>0 converges to f ∈ C0
bdd(R;F) with respect to the norm ∥·∥∞.

Proof This just follows directly from the definitions of each sort of convergence. If
the reader does not see this, they ought to convince themselves that this is the case. ■

The following theorem is now fairly easily proved, given what we already did
in Section I-3.6.2.

3.8.31 Theorem ((C0
bdd

(R;F), ∥·∥∞) is a Banach space) If F ∈ {R,C} then
(C0

bdd(R;F), ∥·∥∞) is an F-Banach space.
Proof Let ( f j) j∈Z>0 be a Cauchy sequence in C0

bdd(R;F). By Theorem I-3.6.8 it follows complex version?

that this sequence converges to a function f ∈ C0
bdd(R;F), and so the theorem follows.

■

As with ℓ∞(F), C0
bdd(R;F) is not separable.

3.8.32 Proposition (C0
bdd

(R;F) is not separable) If F ∈ {R,C} then (C0
bdd(R;F), ∥·∥∞) is

not separable.
Proof Define a function g0 : R→ F by

g0(x) =


1 + x, x ∈ [− 1

2 , 0],
1 − x, x ∈ (0, 1

2 ],
0, otherwise.

Then let U be the collection of functions f ∈ C0
bdd(R;F) of the form

f (x) =
∑

j∈Z>0

(−1)k j g0(x − j)

where (k j) j∈Z>0 is a sequence in {0, 1}. The reader ought to sketch the graph of a typical
function in U to understand what they are doing. Upon doing this it will be clear
that, if f ∈ U then ∥ f ∥∞ = 1 and if f1, f2 ∈ U are distinct then ∥ f1 − f2∥∞ = 2. The
remainder of the proof follows the proof of Proposition 3.8.10, but we give it here for
completeness.

Note that there are as many distinct functions inU as there are maps fromZ>0 into
{0, 1}. Thus card(U ) = 2ℵ0 . It then follows from Exercises I-1.7.4, I-1.7.5, and I-2.1.4
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that U is uncountable. By Exercise 3.1.3 we have

|∥g∥∞ − ∥ f ∥∞| ≤ ∥g − f ∥∞
=⇒ |∥g∥∞ − 1| ≤ 1

=⇒
∥∥∥g

∥∥∥
∞
≤ 2

for f ∈ U . Thus B(1, f ) ⊆ B(2, 0C0
bdd(R;F)) for each f ∈ U . If f , g ∈ U are distinct, and

α ∈ B(1, f ) and β ∈ B(1, g) then

∥α − g∥∞ ≥ |∥α − f ∥∞ − ∥ f − g∥∞| ≥ 2

using Proposition 1.1.3. Thus α < B(1, g). One similarly shows that β < B(1, f ). This
shows that B(2, 0C0

bdd(R;F)) contains the collection

{B(1, f ) | f ∈ U }

of disjoint open balls. In particular, if (g j) j∈Z>0 is any countable subset of C0
bdd(R;F)

then there is a countable subset ( fα)α∈A ofU in which are contained all of the functions
(g j) j∈Z>0 . Note that

cl((g j) j∈Z>0) ⊆ ∪α∈AB(1, fα).

Therefore, any of the set of balls

{B(1, f ) | f ∈ U , f , fα, α ∈ A}

cannot lie in cl((g j) j∈Z>0) which prohibits (g j) j∈Z>0 from being dense. ■

Next let us characterise the completion of C0
cpt(R;F). The following result is

entirely analogous to Corollary 3.8.14 which asserts that c0(F) is the completion of
F∞0 .

3.8.33 Theorem ((C0
0
(R;F), ∥·∥∞) is a Banach space) If F ∈ {R,C} then C0

0(R;F) is an
F-Banach space, and moreover is the completion of (C0

cpt(R;F), ∥·∥∞).
Proof We first make the observation that C0

0(R;F) is a subspace of C0
bdd(R;F). This

follows from Propositions I-2.3.23 and I-2.3.29. Now suppose that ( f j) j∈Z>0 is a Cauchy
sequence in C0

0(R;F). By Theorem 3.8.31 there exists a function f ∈ C0
bdd(R;F) such

that ( f j) j∈Z>0 converges to f . We need only show that f ∈ C0
0(R;F). Let ϵ ∈ R>0 and let

N ∈ Z>0 be sufficiently large that | f (x)− f j(x)| < ϵ
2 for all x ∈ R provided that j ≥ N. Let

K ⊆ R be a compact set such that | fN(x)| < ϵ
2 for x ∈ R \ K. Then, for x ∈ R \ K we have

| f (x)| ≤ | f (x) − fN(x)| + | fN(x)| < ϵ,

giving f ∈ C0
0(R;F), as desired.

To show that C0
0(R;F) is the completion of C0

cpt(R;F), let f ∈ C0
0(R;F) and define

( f j) j∈Z>0 by

f j(x) =


f (x), x ∈ [− j, j],
f (− j)( j + 1 + x), x ∈ [− j − 1,− j),
f ( j)( j + 1 − x), x ∈ ( j, j + 1],
0, otherwise.
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We claim that this sequence converges to f . For ϵ ∈ R>0 let N ∈ Z>0 have the property
that | f (x)| < ϵ if |x| ≥ N. Then we immediately have | f (x) − f j(x)| < ϵ for j ≥ N, giving
the desired convergence, and showing that C0

cpt(R;F) is dense in C0
0(R;F). ■

Just as c0(F) is separable, so too is C0
0(R;F).

3.8.34 Proposition (C0
0
(R;F) is separable) If F ∈ {R,C} then (C0

0(R;F), ∥·∥∞) is separable.
Proof For N ∈ Z>0 let us denote by PN(F) the set of functions f : R → F having the
form

f (x) =


zkxk + · · · + z1x + z0, x ∈ [−N,N],
(zkNk + · · · + z1N + z0)(N + 1 − x), x ∈ (N,N + 1),
((−1)kzkNk + · · · − z1N + z0)(N + 1 + x), x ∈ (−N − 1,−N),
0, |x| ≥ N + 1,

where k ∈ Z≥0 and z0, z1, . . . , zk ∈ F are rational if F = R and whose real and imaginary
parts are rational of F = C. Note that functions in PN(F) are continuous. Moreover, for
each N ∈ Z>0 the set PN(F) is countable by Proposition I-1.7.16. Thus ∪N∈Z>0PN(F) is
also countable, again by Proposition I-1.7.16.

We claim that ∪N∈Z>0PN(F) is dense in C0
0(R;F). Indeed, let f ∈ C0

0(R;F) and let
ϵ ∈ R>0. Let N ∈ Z>0 be sufficiently large that | f (x)| < ϵ for |x| ≥ N. By the Weierstrass
Approximation Theorem, Theorem I-3.6.21, let g ∈ PN(F) be such that | f (x) − g(x)| < ϵ
for x ∈ [−N,N]. Our construction of functions in PN(F) then ensures that | f (x)−g(x)| < ϵ
for all x ∈ R. ■

In the preceding discussion we have pointed out various analogies with con-
structions concerning sequences in Section 3.8.2. In Table 3.1 we summarise the

Table 3.1 The relationships between the objects in the left column
are analogous to the relationships between the objects in the
right column

Sequence space Function space

F∞0 C0
cpt(R;F)

ℓ∞(F) C0
bdd(R;F)

c0(F) C0
0(R;F)

correspondences. The correspondences for the sequence spaces ℓp(F) for p ∈ [1,∞)
are more complicated, and we present these in Table 3.2.

Having now somewhat understood the structure of the spaces C0
cpt(I;F), C0

0(I;F),
and C0

bdd(I;F) when I = R, let us turn to the case of a general interval. It is fairly easy
to carry out the programme directly in this case, adapting the arguments above.
However, it is also the case that we shall do this in some generality in Section 3.8.5.
Therefore, we abbreviate the discussion somewhat, mostly only giving outlines of
proofs and referring to the more general results for complete arguments.

First let us observe that Proposition 3.8.30 holds for arbitrary intervals.
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3.8.35 Proposition (Characterisation of convergence in (C0
bdd

(R;F), ∥·∥∞)) If F ∈
{R,C}, if I ⊆ R, and if (fj)j∈Z>0 is a sequence in C0

bdd(I;F) then the following statements
are equivalent:

(i) the sequence (fj)j∈Z>0 converges uniformly to f ∈ C0
bdd(I;F);

(ii) the sequence (fj)j∈Z>0 converges to f ∈ C0
bdd(I;F) with respect to the norm ∥·∥∞.

Proof As with Proposition 3.8.30, this follows directly from the definitions. ■

Now let us indicate that things are significantly more trivial for compact inter-
vals than for general intervals.

3.8.36 Proposition (Continuous function spaces for compact intervals) If F ∈ {R,C}
and if I ⊆ R is a compact interval, then

C0
cpt(I;F) = C0

0(I;F) = C0
bdd(I;F) = C0(I;F).

Proof This is a consequence of (3.18) along with the fact that C0
cpt(I;F) = C0(I;F) since

every closed subset of I is compact according to Corollary I-2.5.28. ■

For compact intervals this gives the following characterisation of their contin-
uous functions as forming a particularly nice Banach space.

3.8.37 Corollary (Properties of continuous function spaces for compact intervals)
If F ∈ {R,C} and if I ⊆ R is a compact interval, then C0

cpt(I;F), C0
0(I;F), C0

bdd(I;F), and
C0(I;F) are separable F-Banach spaces with the norm ∥·∥∞.

Proof That these are Banach spaces follows from Theorem I-3.6.8 since there wecomplex version?

showed that in C0
bdd(I;F) all Cauchy sequences converge. Separability follows from

the Weierstrass Approximation Theorem, just as does Proposition 3.8.34. ■

Since C0
cpt(I;F) is the smallest of the spaces we consider, let us characterise

precisely when it is a Banach space.

3.8.38 Proposition (Completeness of (C0
cpt

(I;F), ∥·∥∞)) If F ∈ {R,C} and if I ⊆ R is an
interval, then (C0

cpt(I;F), ∥·∥∞) is complete if and only if I is compact.
Proof For the noncompleteness of C0

cpt(I;F) when I is not compact, we consider two
cases of intervals: I = (0, 1] and I = [0,∞). The proof for an arbitrary noncompact
interval follows by a trivial modification of these two cases.

First we show that C0
cpt((0, 1];F) is not complete. We consider a sequence of

functions ( f j) j∈Z>0 in C0
cpt((0, 1];F) defined by

f j(x) =


0, x ∈ (0, 1

j ],

2 jx−1
j−2 , x ∈ [ 1

j ,
1
2 ],

1, x ∈ [ 1
2 , 1].



2022/03/07 3.8 Examples of Banach spaces 483

The reader is encouraged to plot the graphs of a few of the functions in this sequence to
see what they are doing. Upon doing this it is easy to see that the sequence converges
pointwise, in fact uniformly, to the function f : (0, 1]→ F defined by

f (x) =

x, x ∈ (0, 1
2 ],

1, x ∈ ( 1
2 , 1].

We leave the elementary formal verification of this to the reader. Thus the sequence
( f j) j∈Z>0 converges in the normed vector space (C0

bdd((0, 1];F), ∥·∥∞). It is, therefore, a
Cauchy sequence. However, since f does not have compact support, the sequence
does not converge in C0

cpt((0, 1];F), giving the incompleteness of C0
cpt((0, 1];F).

Now we show that C0
cpt([0,∞);F) is not complete. Let us define a sequence ( f j) j∈Z>0

in C0
cpt([0,∞);F) by

f j(x) =

 1
1+x2 , x ∈ [0, j],
0, otherwise.

It then follows, just as in the proof of Proposition 3.8.29, that this is a Cauchy sequence
that does not converge.

That C0
cpt(I;F) is complete when I is compact is Proposition 3.8.36. ■

The bounded continuous functions on I form a Banach space.

3.8.39 Theorem ((C0
bdd

(I;F), ∥·∥∞) is a Banach space) If F ∈ {R,C} and if I ⊆ R is an
interval then (C0

bdd(I;F), ∥·∥∞) is an F-Banach space. This Banach space is separable if and
only if I is compact.

Proof While the first assertion follows from Theorem I-3.6.8 just as does Theo- complex version

rem 3.8.31, we give a complete self-contained proof here, since this is an important
result for us.

Let ( f j) j∈Z>0 be a Cauchy sequence in C0
bdd(I;F) and for x ∈ I define f (x) =

lim j→∞ f j(x). This pointwise limit exists since ( f j(x)) j∈Z>0 is a Cauchy sequence in
R (why?).

First we claim that for any ϵ > 0 there exists N ∈ Z>0 such that | f (x) − f j(x)| < ϵ
for all x ∈ I whenever j ≥ N. Let ϵ ∈ R>0 and let x ∈ I. Since ( f j) j∈Z>0 is Cauchy there
exists N ∈ Z>0 such that | f j(x) − fk(x)| < ϵ

2 . We may also find N(x) ∈ Z>0 such that
| f (x) − f j(x)| < ϵ

2 for j ≥ N(x). Let k = max{N,N(x)}. For j ≥ N we then have

| f j(x) − f (x)| = |( f j(x) − fk(x)) + ( fk(x) − f (x))|
≤ | f j(x) − fk(x)| + | fk(x) − f (x)|
< ϵ

2 +
ϵ
2 = ϵ,

where we have used the triangle inequality. Note that this shows uniform convergence
to f of the sequence ( f j) j∈Z>0 , and so convergence to f using the norm ∥·∥∞.

We next claim that f is bounded. To see this, for ϵ > 0 let N ∈ Z>0 have the
property that ∥ f − fN∥∞ < ϵ. Then

| f (x)| ≤ | f (x) − fN(x)| + | fN(x)| ≤ ϵ + ∥ fN∥∞.
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Since the expression on the right is independent of x, this gives the desired boundedness
of f .

Finally we prove that the limit function f is continuous. As we showed above, for
any ϵ > 0 there exists N ∈ Z>0 such that | fN(x) − f (x)| < ϵ

3 for all x ∈ I. Now fix x0 ∈ I,
and consider the N ∈ Z>0 just defined. By continuity of fN, there exists δ > 0 such
that if x ∈ I satisfies |x − x0| < δ, then | fN(x) − fN(x0)| < ϵ

3 . Then, for x ∈ I satisfying
|x − x0| < δ, we have

| f (x) − f (x0)| = |( f (x) − fN(x)) + ( fN(x) − fN(x0)) + ( fN(x0) − f (x0))|
≤ | f (x) − fN(x)| + | fN(x) − fN(x0)| + | fN(x0) − f (x0)|
< ϵ

3 +
ϵ
3 +

ϵ
3 = ϵ,

where we have again used the triangle inequality. Since this argument is valid for any
x0 ∈ I, it follows that f is continuous.

Now let us turn to the separability of C0
bdd(I;F). The separability of C0

bdd(I;F)
when I is compact is part of Corollary 3.8.37. If I is not compact, there are two cases
to consider, when I is bounded and when I is not bounded. If I is not bounded a
modification of the argument used in Proposition 3.8.32 can be used to show that
C0

bdd(I;F) is not separable. Thus we need only consider the case when I is bounded
but not compact.

We consider the case of I = (0, 1], the general case following, mutatis mutandis,
from this. For j ∈ Z>0 define g j : (0, 1]→ F by

g j(x) =


2 j(Herex( j + 1) − 1), x ∈ [ 1

j+1 ,
1+2 j

2 j( j+1) ],

2( j + 1)(1 − jx), x ∈ ( 1+2 j
2 j( j+1) ,

1
j ],

0, otherwise.

The reader would probably benefit from sketching the graph of this function to un-
derstand what the proof is achieving. We now let U be the collection of functions
f ∈ C0

bdd((0, 1];F) of the form

f (x) =
∑

j∈Z>0

(−1)k j g j(x).

One can now repeat the argument of Proposition 3.8.32 using this collection U of
functions to show that C0

bdd((0, 1];F) is not separable. ■

The generalisation of Theorem 3.8.33 also holds.

3.8.40 Theorem ((C0
0
(I;F), ∥·∥∞) is a Banach space) If F ∈ {R,C} and if I ⊆ R is an

interval then (C0
0(I;F), ∥·∥∞) is a separableF-Banach space, and moreover, is the completion

of (C0
cpt(I;F), ∥·∥∞).

Proof A modification of the proof of Theorem 3.8.33 is easily made to give a direct
proof; we leave the details to the reader. We also note that the present theorem also
follows directly from the more general Theorem 3.8.43 below. ■
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3.8.5 Banach spaces of continuous functions on metric spaces

We let F ∈ {R,C} and let (S, d) be a metric space and define

C0
bdd(S;F) = { f : S→ F | f is continuous and bounded}.

For f ∈ C0
bdd(S;F) we define

∥ f ∥∞ = sup{| f (x)| | x ∈ S}.

We claim that (C0
bdd(S,F), ∥·∥∞) is a Banach space.

3.8.41 Theorem ((C0
bdd

(S,F), ∥·∥∞) is a Banach space) (C0
bdd(S,F), ∥·∥∞) is a Banach space.

Move this first part?

Proof First let us show that ∥·∥∞ is a norm. It is clear that ∥λ f ∥∞ = |λ|∥ f ∥∞ for all
λ ∈ F and f ∈ C0

bdd(S,F), and that ∥ f ∥∞ ≥ 0 and ∥ f ∥∞ = 0 if and only if f = 0. We also
compute, using Proposition I-2.2.27,

∥ f + g∥∞ = sup{| f (x) + g(x)| | x ∈ S}
≤ sup{| f (x) + g(y)| | (x, y) ∈ S × S}
≤ sup{| f (x)| | x ∈ S} + sup{|g(y)| | y ∈ S}
= ∥ f ∥∞ + ∥g∥∞

for f , g ∈ C0
bdd(S,F). To show that (C0

bdd(S,F), ∥·∥∞) is a complete normed vector space,
we note that the norm topology is exactly the metric topology defined in general
in Theorem 1.9.1. Since (F, |·|) is complete, it then follows from Theorem 1.9.1 that
(C0

bdd(S,F), ∥·∥∞) is also complete. ■

Let us record some of the properties of the Banach space C0
bdd(S,F).

3.8.42 Proposition (Properties of C0
bdd

(S;F)) finish

3.8.43 Theorem ((C0
0
(S;F), ∥·∥∞) is a Banach space)

Proof ■

3.8.6 Banach spaces of continuous functions on locally compact
topological spaces

3.8.7 Banach spaces of integrable functions on R

In this section we look at an extremely important class of Banach spaces. In some
sense, these are adaptations of the spaces of sequences considered in Section 3.8.2
to functions defined on intervals. These classes of functions play an essential rôle
in Fourier analysis as we shall see in Chapters IV-5 and IV-6.

We begin, as we did with sequences, by considering functions that are, in the
appropriate sense, bounded.
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3.8.44 Definition (L(∞)(I;F)) Let F ∈ {R,C} and let I ⊆ R be an interval. A measurable
function f : I→ F is essentially bounded if there exists M ∈ R≥0 such that the set

λ({x ∈ I | | f (x)| > M}) = 0.

The set of essentially bounded functions from I to F is denoted by L(∞)(I;F) and
define

∥ f ∥∞ = inf{M ∈ R≥0 | λ({x ∈ I | | f (x)| > M}) = 0}

for f ∈ L(∞)(I;F). •

Let us give some initial properties of L(∞)(I;F).

3.8.45 Proposition (Properties of (L(∞)(I;F), ∥·∥∞)) If F ∈ {R,C} and if I ⊆ R is an interval
then (L(∞)(I;F), ∥·∥∞) is a seminormed F-vector space. Moreover, ∥f∥∞ = 0 if and only if
f(x) = 0 for almost every x ∈ I.

Proof The only seminorm property that is not completely trivial is the triangle in-
equality, so let us verify this. If f : ϕ → R is an arbitrary measurable function we
denoteMove this defn

ess sup{ϕ(x) | x ∈ I} = inf{M ∈ R≥0 | λ({x ∈ I | ϕ(x) > M} = 0)}.

If
Zϕ = {x ∈ I | ϕ(x) > ess sup{ϕ(x) | x ∈ I}}

and if Z is any set of measure zero containing Zϕ then

ess sup{ϕ(x) | x ∈ I} = sup{ϕ(x) | x ∈ I \ Z}.

Now let f , g ∈ L(∞)(I;F) and compute

∥ f + g∥∞ = ess sup{| f (x) + g(x)| | x ∈ I}
= sup{| f (x) + g(x)| | x ∈ I \ Z| f+g|}

≤ sup{| f (x)| + |g(x)| | x ∈ I \ Z| f+g|}

≤ sup{| f (x)| | x ∈ I \ Z| f+g|} + sup{| f (x)| | x ∈ I \ Z| f+g|}

= sup{| f (x)| | x ∈ I \ (Z| f+g| ∪ Z f )} + sup{| f (x)| | x ∈ I \ (Z| f+g| ∪ Zg)}

≤ sup{| f (x)| | x ∈ I \ Z f } + sup{| f (x)| | x ∈ I \ Zg}

= ∥ f ∥∞ + ∥g∥∞.

Thus (L(∞)(I;F), ∥·∥∞) is a seminormed F-vector space, as claimed.
The final assertion of the result is clear. ■

Now let
Z∞(I;F) = { f ∈ L(∞)(I;F) | ∥ f ∥∞ = 0}.

By Theorem 3.1.8 we know that L(∞)(I;F)/Z∞(I;F),—i.e., the set of equivalence
classes in L(∞)(I;F) where functions are equivalent if they agree almost every-
where—is a normed F-vector space where the norm on the equivalence class
f + Z∞(I;F) is defined by

∥ f + Z∞(I;F)∥∞ = ∥ f ∥∞;

it is convenient to use the same symbol for the norm.
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3.8.46 Definition (L∞(I;F)) For F ∈ {R,C} and for an interval I ⊆ R,

L∞(I;F) = L(∞)(I;F)/Z∞(I;F). •

Let us verify that L∞(I;F) is a Banach space.

3.8.47 Theorem ((L∞(I;F), ∥·∥∞) is a Banach space) If F ∈ {R,C} and if I ⊆ R then
(L∞(I;F), ∥·∥∞) is an F-Banach space.

Proof For brevity, let us denote [ f ] = f +Z∞(I;F) the equivalence class of f ∈ L(∞)(I;F)
in L∞(I;F). We use the characterisation of completeness of Theorem 3.4.6. We let∑
∞

j=1[ f j] be an absolutely convergent series. For j ∈ Z>0 define

Z j = {x ∈ I | | f j(x)| > ∥ f j∥∞},

noting that λ(Z j) = 0. For x < ∪∞j=1Z j we have

∞∑
j=1

| f j(x)| ≤
∞∑
j=1

∥ f j∥∞ =

∞∑
j=1

∥[ f j]∥∞ < ∞

since
∑
∞

j=1[ f j] is absolutely convergent. This means that
∑
∞

j=1 f j(x) converges since
absolute convergence in F implies convergence by Proposition I-2.4.3. Now define complex version

f (x) =


∑
∞

j=1 f j(x), x < ∪∞j=1Z j

0, otherwise.

By Proposition 2.6.18 the function f is measurable. We then have

f (x) −
n∑

j=1

f j(x) =
∞∑

j=n+1

f j(x), x < ∪∞j=1Z j

=⇒

∥∥∥∥∥∥∥∥ f −
n∑

j=1

f j

∥∥∥∥∥∥∥∥
∞

≤

∞∑
j=n+1

∥ f j∥∞

=⇒

∥∥∥∥∥∥∥∥
 f −

n∑
j=1

f j


∥∥∥∥∥∥∥∥
∞

≤

∞∑
j=n+1

∥[ f j]∥∞

=⇒ lim
n→∞

∥∥∥∥∥∥∥∥[ f ] −
n∑

j=1

[ f j]

∥∥∥∥∥∥∥∥
∞

≤ lim
n→∞

∞∑
j=n+1

∥[ f j]∥∞ = 0,

thus giving convergence of
∑
∞

j=1[ f j] to [ f ] in L∞(I;F). ■

3.8.48 Notation (Representing functions in L∞(I;F)) While functions in L∞(I;F) are,
by definition, equivalence classes of functions in L(∞)(I;F). The usual convention,
however, is to in practice identify the equivalence class with one of its represen-
tatives. Most of the time the identification of an equivalence class with one of its
representatives does not cause problems. However, there do arise instances where
the distinction between these things becomes important, and so one must keep in
mind what one is actually doing in writing “ f ” rather than “ f + Z∞(I;F).” •

As with its brother ℓ∞(F), L∞(I;F) is not separable.



488 3 Banach spaces 2022/03/07

3.8.49 Proposition (L∞(I;F) is not separable) If F ∈ {R,C} and if I ⊆ R is an interval with
a nonempty interior then L∞(I;F) is not separable.

Proof We shall only sketch the argument here as the details are already present in
the proof of Proposition 3.8.32 and Theorem 3.8.39. If I is not bounded then an
appropriate adaptation of the proof of the proof of Proposition 3.8.32 can be used
to show that L∞(I;F) is not separable. If I is bounded then the idea in the proof of
Theorem 3.8.39 can be used to give non-separability of L∞(I;F) in this case. Note that
functions in L∞(I;F) are not required to be continuous and so the idea in the proof of
Theorem 3.8.39 does indeed carry over to all bounded intervals, even those that are
compact. ■

Let us relate convergence of sequences in L∞(I;F) with pointwise convergence.
In fact, we can relate convergence in L∞(I;F) with a strong version of almost
uniform convergence (see Definition 2.6.20(iv). In the statement of the result we
denote [ f ] = f + Z∞(I;F) for brevity.

3.8.50 Proposition (Uniform convergence and convergence in L∞(I;F)) Let F ∈ {R,C}
and let I ⊆ R be an interval. Let ([fj])j∈Z>0 be a sequence in L∞(I;F) converging to
[f] ∈ L∞(I;F), and consider representatives fj ∈ [fj], j ∈ Z>0, and f ∈ [f]. Then there exists
a set Z ⊆ I of measure zero such that the sequence (fj|(I \ Z))j∈Z>0 converges uniformly to
f|(I \ Z).

Proof Let ([ f j]) j∈Z>0 converge to [ f ] in L∞(I;F) and let f j ∈ [ f j] and f ∈ [ f ]. Let

Z j = {x ∈ I | | f j(x) − f (x)| > ∥[ f j] − [ f ]∥∞},

noting that Z j, j ∈ Z>0, has measure zero. Let Z = ∪ j∈Z>0Z j, noting that Z has measure
zero. We claim that the assertion of the proposition holds for Z as defined. Indeed, let
ϵ ∈ R>0 and let N ∈ Z>0 be such that ∥[ f j] − [ f ]∥∞ < ϵ for j ≥ N. Then, for j ≥ N and
x ∈ I \ Z,

| f j(x) − f (x)| ≤ ∥[ f j] − [ f ]∥∞ < ϵ,

giving the desired conclusion. ■

We have the following corollary, immediately from the definition of almost
uniform convergence.

3.8.51 Corollary (Almost uniform convergence and convergence in L∞(I;F)) Let F ∈
{R,C} and let I ⊆ R be an interval. Let ([fj])j∈Z>0 be a sequence in L∞(I;F) converging to
[f] ∈ L∞(I;F), and consider representatives fj ∈ [fj], j ∈ Z>0, and f ∈ [f]. Then (fj)j∈Z>0

converges almost uniformly to f.

The following example distinguishes between convergence in L∞(I;F) and al-
most uniform convergence.



2022/03/07 3.8 Examples of Banach spaces 489

3.8.52 Example (Almost uniform convergence does not imply convergence in
L∞(I;F)) Let I = [−1, 1] and define f j : [−1, 1]→ R by

f j(x) =

1, j ∈ (− 1
j ,

1
j ),

0, otherwise.

Also define

f (x) =

1, x = 0,
0, otherwise.

We claim that ( f j) j∈Z>0 converges almost uniformly to f . Indeed, let ϵ, δ ∈ R>0.
Take N ∈ Z>0 with N > 2

δ and take Eδ = [− 1
N ,

1
N ]. Then | f (x) − f j(x)| = 0 for j ≥ N

and x ∈ I \ Eδ. This shows almost uniform convergence.
Next we claim that ([ f j]) j∈Z>0 does not converge to [ f ] in L∞(I;R). Let ϵ = 1

2 . For
N > 1

ϵ , j ≥ N, and x ∈ [− 1
N ,

1
N ], we have | f (x) − f j(x)| = 1 > ϵ. Thus ∥[ f j] − [ f ]∥∞ > ϵ

for j ≥ N, and this precludes convergence in L∞(I;R). •

Before we leave L∞(I;F) to talk about the spaces Lp(I;F) for p ∈ [1,∞) let us point
out a possible source of confusion. We note that the Banach space (L∞(I;F), ∥(∥·)∞)
contains the Banach spaces (C0

bdd(I;F); ∥·∥∞) and C0
0(I;F) as a closed proper sub-

spaces (they is a closed by Proposition 3.6.16 since it is complete). Thus L∞(I;F)
is not the completion of these spaces. This is to be contrasted with the conclusion
of Theorem 3.8.59 where we show that Lp(I;F) is the completion of a space of
continuous functions when p ∈ [1,∞). This explains why the reader does not see
L∞(I;F) in Tables 3.1 and 3.2.

Next we consider functions defined by their integrals. This is analogous to the
sequence spaces ℓp(F), p ∈ [1,∞), being defined by their infinite sums.

3.8.53 Definition (L(p)(I;F)) Let F ∈ {R,C}, let p ∈ [1,∞), and let I ⊆ R be an interval.
Define a subspace L(p)(I;F) of the measurable functions from I to F by

L(p)(I;F) =
{

f : I→ F
∣∣∣∣∣ f measurable,

∫
I
| f |pdλ < ∞

}
and define

∥ f ∥p =
(∫

I
| f |pdλ

)1/p

for f ∈ L(p)(I;F). •

In the preceding definition it turns out to be crucial that the integral used is the
Lebesgue integral. Indeed, many of the results we prove in this section simply do
not hold if we instead attempt to use the Riemann integral. We shall, nonetheless,
generally adopt the policy of writing the Lebesgue integral as

∫
dx rather than

∫
dλ

for simplicity.
Let us give the analogues of Lemmata 3.8.16 and 3.8.17 in this setup.
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3.8.54 Lemma (Hölder’s inequality) Let F ∈ {R,C} and let I ⊆ R be an interval, and let
p ∈ (1,∞) with p′ defined by 1

p +
1
p′ = 1. Then, for f ∈ L(p)(I;F) and g ∈ L(p′)(I;F),

fg ∈ L(1)(I;F) and
∥fg∥1 ≤ ∥f∥p∥g∥p′ .

Moreover, equality holds if and only if there exists α, β ∈ R≥0, not both zero, such that

α|f(x)|p = β|g(x)|p
′

, a.e. x ∈ I.
Proof For p, p′ ∈ (1,∞) satisfying 1

p +
1
p′ = 1 we claim that for x, y ∈ R≥0 we have

xy ≤
xp

p
+

yp′

p′
.

This is trivial if either x or y are zero. So suppose that x, y ∈ R>0. Taking ξ = xp

yp′ we
easily check that

xy ≤
xp

p
+

yp′

p′
⇐⇒ ξ1/p

≤
ξ
p
+

1
p′
.

One can check using Theorem I-3.2.16 that the function

ξ 7→
ξ
p
+

1
p′
− ξ1/p

has a minimum value of 0 attained at ξ = 1. Thus

ξ
p
+

1
p′
− ξ1/p

≥ 0 =⇒ =⇒ xy ≤
xp

p
+

yp′

p′
,

as desired.
Now let us proceed with the proof. The result is clearly true if ∥ f ∥p = 0 or ∥g∥p′ = 0.

So we assume neither of these are true. For all x ∈ I we have

| f (x)g(x)| ≤
| f (x)|p

p
+
|g(x)|p

′

p′
.

Therefore, if ∥ f ∥p = ∥g∥p′ = 1, we immediately have

∥ f g∥1 ≤
1
p
+

1
p′
= ∥ f ∥p∥g∥p′ .

In general we have

∥ f g∥1 = ∥ f ∥p∥g∥p′

∥∥∥∥∥∥ f
∥ f ∥p

g
∥g∥p′

∥∥∥∥∥∥
1
≤ 1,

and the first part of the result follows.
If one chases through the argument above one sees that equality is achieved only

when

| f (x)g(x)|
| f (x)|p

p
+
|g(x)|p

′

p′

for almost every x ∈ I. A tedious argument like that for the last part of Lemma 3.8.1,
but replacing sums with integrals, shows that the above equality implies the final
conclusion of the lemma. ■
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There is a version of Hölder’s inequality for the case when p = 1, and we refer
to Exercise 3.8.8 for this.

Let us prove the Minkowski inequality in this case.

3.8.55 Lemma (Minkowski’s inequality) Let F ∈ {R,C}, let I ⊆ R be an interval, and let
p ∈ [1,∞). Then, for f,g ∈ L(p)(I;F), we have f + g ∈ L(p)(I;F) and

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Moreover, equality holds if and only if the following conditions hold:
(i) p = 1: there exists nonnegative measurable functions α, β : I → R≥0 such that
α(x)f(x) = β(x)g(x) and α(x) and β(x) are not both zero for almost every ∈ I;

(ii) p ∈ (1,∞): there exists α, β ∈ R≥0, not both zero, such that αf(x) = βg(x) for almost
every x ∈ I.

Proof For p = 1 we have

∥ f + g∥1 =
∫

I
| f (x) + g(x)|dx ≤

∫
I
| f (x)|dx +

∫
I
|g(x)|dx = ∥ f ∥1 + ∥g∥1.

The second assertion of the lemma for p = 1 follows from the fact, pointed out in the
proof of Lemma 3.8.1, that |a+b| = |a|+ |b| for a, b ∈ F if and only if αa = βb for α, β ∈ R≥0
not both zero. Note that the sets

A f = {x ∈ I | f (x) = 0}, Ag = {x ∈ I | g(x) = 0}, A f ,g = {x ∈ I | f (x)g(x) = 0}

are measurable and so, therefore, are their complements. We then define α, β : I→ R≥0
by

α(x) =


g(x), x ∈ I \ A f ,g,

g(x), x ∈ A f ,g − A f ,

0, x ∈ Ag

and

β(x) =


f (x), x ∈ I \ A f ,g,

0, x ∈ Ag,

f (x), x ∈ A f ,g − Ag.

For p ∈ (1,∞) we let 1
p +

1
p′ = 1. We then have(
| f (x) + g(x)|p−1

)p′
= | f (x) + g(x)|p

from which we deduce that | f + g|p−1
∈ L(p′)(I;F). Therefore, using Lemma 3.8.54,∫

I
| f (x) + g(x)|p dx ≤

∫
I
| f (x)|| f (x) + g(x)|p−1 dx +

∫
I
|g(x)|| f (x) + g(x)|p−1 dx

≤ ∥ f ∥p∥| f + g|p−1
∥p′ + ∥g∥p∥| f + g|p−1

∥p′

= (∥ f ∥p + ∥g∥p)
(∫

I
| f (x) + g(x)|p dx

)1/p′

,
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which implies that
∥ f + g∥p−p/p′

p ≤ ∥ f ∥p + ∥g∥p,

provided that ∥ f + g∥p , 0 (if it is zero, the result is trivial). The first part of the result
follows since p − p/p′ = 1. The second part of the result for p ∈ (1,∞) follows as does
the second part of the proof of Lemma 3.8.1, replacing “for every j ∈ {1, . . . ,n}” with
“for almost every x ∈ I” and replacing “for some j ∈ {1, . . . ,n}” with “for x ∈ A with
A ⊆ I of positive measure.” We leave the tedious details to the reader. ■

The following version of the Minkowski inequality is also useful.

3.8.56 Lemma (Integral version of Minkowski inequality) Let F ∈ {R,C}, let I, J ⊆ R beMust prove when equality

occurs

intervals, and let p ∈ [1,∞). Let f : I × J → F have the property that x 7→ f(x,y) is in
L(p)(I;F) for almost every y ∈ J and that y 7→ f(x,y) is in L(p)(J;F) for almost every x ∈ I.
Then, we have (∫

I

∣∣∣∣∣∣
∫

J
f(x,y) dy

∣∣∣∣∣∣
p

dx
)1/p

≤

∫
J

(∫
I
|f(x,y)|pdx

)1/p

dy.

Proof For p = 1 we have∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣ dx ≤
∫

I

(∫
J
| f (x, y)|dy

)
dx =

∫
J

(∫
I
| f (x, y)|dx

)
dy,

giving the result in this case by Fubini’s Theorem.
Now let p ∈ (1,∞). Here we compute∫

I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx =
∫

I



∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p−1 (
∣∣∣∣∣∣
∫

J
f (x, z) dz

∣∣∣∣∣∣
) dx

≤

∫
I

∫
J

| f (x, z)|

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p−1 dz

 dx

=

∫
J

∫
I

| f (x, z)|

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p−1 dx

 dz

using Fubini’s Theorem in the last step. Now let p′ = p
p−1 be the conjugate index. Now,

by Hölder’s inequality,

∫
I

| f (x, z)|

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p−1 dx ≤
(∫

I
| f (x, z)|p dx

)1/p
∫

I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p
′(p−1)

dx


1/p′

=

(∫
I
| f (x, z)|p dx

)1/p ∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx

1/p′

.
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Substituting this last relation into the preceding equation yields∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx ≤
∫

J

(∫
I
| f (x, z)|p dx

)1/p ∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx

1/p′ dz

=

∫
J

(∫
I
| f (x, z)|p dx

)1/p

dz

 ∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx

1/p′

Now we note that the lemma is obviously true when∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx = 0.

So we suppose that this quantity is nonzero and divide the above-derived inequality∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx ≤

∫
J

(∫
I
| f (x, z)|p dx

)1/p

dz

 ∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx

1/p′

by ∫
I

∣∣∣∣∣∣
∫

J
f (x, y) dy

∣∣∣∣∣∣p dx

1/p′

which gives the desired inequality after noting that p′ is conjugate to p. ■

Now we can prove the basic fact about the spaces L(p)(I;F).

3.8.57 Proposition (Properties of (L(p)(I;F), ∥·∥∞)) If F ∈ {R,C}, if p ∈ [1,∞), and if I ⊆ R
is an interval then (L(p)(I;F), ∥·∥∞) is a seminormed F-vector space. Moreover, ∥f∥p = 0 if
and only if f(x) = 0 for almost every x ∈ I.

Proof That L(p)(I;F) is a seminormed vector space follows from Lemma 3.8.55 which
gives the triangle inequality; the other seminorm properties are clear. The final asser-
tion is clear. ■

Now we proceed much as we did for L(∞)(I;F). That is, we define

Zp(I;F) = { f ∈ L(p)(I;F) | ∥ f ∥p = 0}

and note that, by Theorem 3.1.8, L(p)(I;F)/Zp(I;F) is a normed F-vector space if we
define the norm by

∥ f + Zp(I;F)∥p = ∥ f ∥p.

This leads to the following definition.

3.8.58 Definition (Lp(I;F)) For F ∈ {R,C}, for p ∈ [1,∞), and for an interval I ⊆ R,

Lp(I;F) = L(p)(I;F)/Zp(I;F). •

We can prove that Lp(I;F) is a Banach space.
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3.8.59 Theorem ((Lp(I;F), ∥·∥p) is a Banach space) If F ∈ {R,C}, if p ∈ [1,∞), and if
I ⊆ R is an interval, then (Lp(I;F), ∥·∥p) is an F-Banach space. Moreover, Lp(I;F) is
isomorphic, as a normed vector space, to the completion of C0

cpt(I;F).
Proof For brevity let us denote [ f ] = f + Zp(I;F) for f ∈ L(p)(I;F). We use the char-
acterisation of completeness of Theorem 3.4.6. Let

∑
∞

j=1[ f j] be absolutely convergent.
Define g : I→ F ∪ {∞} by

g(x) =

 ∞∑
j=1

| f j(x)|


p

,

and note that Minkowski’s inequality gives

∥g∥1 ≤
∞∑
j=1

∥ f j∥p =

∞∑
j=1

∥[ f j]∥p < ∞

since
∑
∞

j=1[ f j] is absolutely convergent. Therefore, g ∈ L(1)(I;F), and it, therefore,
follows that g is finite for almost every x ∈ I. This implies that for almost every x ∈ I
the series

∑
∞

j=1 f j(x) is absolutely convergent and so convergent. Now define

f (x) =


∑
∞

j=1 f j(x), g(x) < ∞

0, otherwise.

Since f is almost everywhere equal to the measurable function g, it is itself measurable,
and further ∥ f ∥p ≤ ∥g∥1 < ∞ so that f ∈ L(p)(I;F). Furthermore, the Dominated
Convergence Theorem gives

f (x) −
n∑

j=1

f j(x) =
∞∑

j=n+1

f j(x), a.e. x ∈ I

=⇒

∣∣∣∣∣∣∣∣ f (x) −
n∑

j=1

f j(x)

∣∣∣∣∣∣∣∣ ≤
∞∑

j=n+1

| f j(x)|, a.e. x ∈ I

=⇒ lim
n→∞

∥∥∥∥∥∥∥∥ f −
n∑

j=1

f j

∥∥∥∥∥∥∥∥
p

≤ lim
n→∞

∞∑
j=n+1

∥ f j∥p = 0

=⇒ lim
n→∞

∥∥∥∥∥∥∥∥
 f −

n∑
j=1

f j


∥∥∥∥∥∥∥∥

p

≤ lim
n→∞

∞∑
j=n+1

∥[ f j]∥p = 0,

so giving convergence of
∑
∞

j=1[ f j].
Now let us prove that Lp(I;F) is isomorphic, as a normed vector space, to the

completion of C0
cpt(I;F). We first note that C0

cpt(I;F) is a subspace of L(p)(I;F). Moreover,
by Exercise 2.9.8 it follows that if ∥ f ∥p = 0 for f ∈ C0

cpt(I;F) then f (x) = 0 for every
x ∈ I. That is to say, the map

C0
cpt(I;F) ∋ f 7→ [ f ] ∈ Lp(I;F)
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is injective and so C0
cpt(I;F) is a subspace of Lp(I;F). Thus to prove the theorem we

need only show that Lp(I;F) is the closure of C0
cpt(I;F). Thus we will show that if

f ∈ L(p)(I;F) then, for every ϵ ∈ R>0 there exists g ∈ C0
cpt(I;F) such that ∥ f − g∥p < ϵ.

By Exercise 2.7.4, we can without loss of generality restrict to the case where f takes
values in R≥0. We shall make this restriction in the arguments below.

Let us first consider the case when I = [a, b] is compact and f is bounded. Let
M ∈ R>0 be such that f (x) ≤M for all x ∈ I. Let ϵ ∈ R>0. By Theorem 2.9.3 there exists
a continuous function g : I→ R≥0 such that

λ
({

x ∈ I
∣∣∣∣ | f (x) − g(x)| < ϵ

(2(b−a))1/p

})
<

ϵp

2Mp .

Then ∫ b

a
| f (x) − g(x)|dx <

ϵp

2(b − a)
(b − a) +

ϵp

2Mp Mp < ϵp.

Thus ∥ f − g∥p < ϵ, giving the result in this case.
Next we consider the case when I = [a, b] is compact and f is possibly unbounded.

Let ϵ ∈ R>0. For M ∈ R>0 define

fM(x) =

 f (x), f (x) ≤M,
M, f (x) > M.

Since f ∈ L(p)(I;F) there exists M sufficiently large that∫ b

a
| f (x) − fM(x)|p dx <

ϵp

2p .

By the argument in the previous paragraph there exists a continuous function g : I →
R≥0 such that ∥ fM − g∥p < ϵ

2 . Then, using the triangle inequality,

∥ f − g∥p ≤ ∥ f − fM∥p + ∥ fM − g∥p < ϵ,

giving the result in this case.
Finally, we consider the case when I is not compact. Let ϵ ∈ R>0. We let (I j) j∈Z>0

be a sequence of compact intervals such that I j ⊆ I j+1 for each j ∈ Z>0 and such that
∪ j∈Z>0I j = I. Define a sequence ( f j) j∈Z>0 in Lp(I;R) by

f j(x) =

 f (x), x ∈ I j,

0, otherwise.

By the Monotone Convergence Theorem we have

lim
j→∞

∫
I
| f (x) − f j(x)|p dx =

∫
I

lim
j→∞
| f (x) − f j(x)|p dx = 0.

Thus ( f j) j∈Z>0 converges to f in L(p)(I;F). Now, for each j ∈ Z>0, our arguments above
ensure the existence of a continuous function h j : I j → R≥0 such that ∥ f j|I j − h j∥

p
p <

ϵp

2p+1 .
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Note that if we extend h j to I by asking that it be zero on I \ I j then this extension may
not be continuous. However, we can linearly taper h j to zero on I \ I j to arrive at a
continuous function g j : I→ R≥0 with compact support satisfying∫

I\I j

|g j(x)|p dx <
ϵp

2p+1
.

Then∫
I
| f j(x) − g j(x)|p dx =

∫
I j

| f j(x) − h j(x)|p dx +
∫

I\I j

|g j(x)|p dx <
ϵp

2p+1
+

ϵp

2p+1
<
ϵp

2p .

Now choose N ∈ Z>0 sufficiently large that ∥ f − f j∥p < ϵ
2 . Then, by the triangle

inequality,
∥ f − g j∥p ≤ ∥ f − f j∥p + ∥ f j − g j∥p < ϵ,

as desired. ■

3.8.60 Notation (Representing functions in Lp(I;F)) Just as we indicated for L∞(I;F) in
Notation 3.8.48, we shall make use of the widespread and convenient convention
of identifying an equivalence class in L(p)(I;F), p ∈ [1,∞), with one of its represen-
tatives. This is mostly innocuous; however, there are times when this distinction
must be made in order for things to make sense. While we do adopt the convention
of writing elements of Lp(I;F) as f rather than f +Zp(I;F), we shall try to be careful
to point out places where it really is the equivalence class that is being used. •

The second part of the Theorem 3.8.59 bears attention. As we commented after
the proof of Theorem 3.3.6, although it is not difficult to demonstrate the existence
of a completion of a normed vector space, it is not necessarily easy to understand
what the meaning of points in the completion are relative to the original normed
vector space. The second part of Theorem 3.8.59 says that although elements in
the completion of C0

cpt(I;F) are not functions, they are at least related to functions in
that they are equivalence classes of functions. It might also be helpful to view the
relationship between C0

cpt(I;F) and Lp(I;F) as being analogous to the relationship
between F∞0 and ℓp(F), as born out in Table 3.2. What is interesting is that, to make

Table 3.2 The relationships between the objects in the left column
are analogous to the relationships between the objects in the
right column

Sequence space Function space

F∞0 C0
cpt(I;F)

ℓp(F) Lp(I;F)

this seemingly innocent analogy, one must go through the trials of defining the
Lebesgue integral.

Let us prove the separability of Lp(I;F).
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3.8.61 Proposition (Lp(I;F) is separable) If F ∈ {R,C}, if I ⊆ R is an interval, and if
p ∈ [1,∞), then Lp(I;F) is separable.

Proof From Theorem 3.8.40 we know that C0
0(I;F) is separable and so Ccpt(I;F) is also

separable, being a subspace of C0
0(I;F). Thus a countable dense subset D ⊆ C0

cpt(I;F) is
also dense in Lp(I;F) by Exercise 3.6.2. ■

It is useful to be able to relate convergence in Lp(I;F) to pointwise convergence.
The precise statement of this is as follows. Here we are careful to express the result
in terms of equivalence classes of functions, since this is important to the meaning
of the result. In the statement of the result we denote [ f ] = f +Zp(I;F) for brevity.

3.8.62 Proposition (Pointwise convergence and convergence in Lp(I;F)) Let F ∈
{R,C}, let p ∈ [1,∞], and let I ⊆ R be an interval. If ([fj])j∈Z>0 is a sequence in
Lp(I;F) converging to [f] ∈ Lp(I;F), then there exists a subsequence ([fjk])k∈Z>0 with the
property that, for any representatives fjk ∈ [fjk], k ∈ Z>0, and any representative f ∈ [f],
we have limk→∞ fjk(x) = f(x) for almost every x ∈ I.

Proof Throughout the proof we work with arbitrary representatives f jk , k ∈ Z>0, as
stated in the proof. Since lim j→∞∥ f − f j∥p = 0 there exists a subsequence ( f jk)k∈Z>0

satisfying ∥ f jk+1 − f jk∥p ≤ 2−k. We then define

gk(x) =
k∑
ℓ=1

| f jk+1(x) − f jk(x)|

and g(x) = limk→∞ gk(x) whenever these quantities are finite, taking them to be zero
otherwise. Using Minkowski’s inequality, ∥gk∥p ≤ 1. Fatou’s Lemma then gives
∥g∥p ≤ 1. This means that g(x) is finite for almost every x ∈ I. Now define

f (x) = f j1(x) +
∞∑
j=1

( f jk+1(x) − f jk(x)) (3.19)

when this limit exists, taking it to be zero otherwise. Since the sum converges absolutely
for almost every x ∈ I this implies that the limit in (3.19) exists for almost every x ∈ I.
The matter of showing that f ∈ Lp(I;F) goes like the last steps in the proof of the
completeness of in Theorems 3.8.47 and 3.8.59. This gives the result for a particular
representative of the limit class in Lp(I;F). That the result holds for any representative
follows since any two representatives differ on a set of zero measure. ■

3.8.8 Banach spaces of integrable functions on measure spaces

3.8.9 Banach spaces of measures

In this section we let (X,A ) be a measurable space, and we recall from Sec-
tion 2.3.10 theR-vector spaces M((X,A );R) and M((X,A );Rn) of finite signed and
Rn-valued vector measures on A , and the C-vector space M((X,A );C) of complex
measures onA . For µ in either M((X,A );R) or M((X,A );C) the total variation of µ
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is defined to be

∥µ∥ = sup

 k∑
j=1

|µ(A j)|

∣∣∣∣∣∣∣ (A1, . . . ,Ak) is a partition of X


(for signed measures this follows from Proposition 2.3.48). If µ ∈ M((X,A );Rn)
then the total variation of µ is defined by

|||µ|||Rn = sup

 k∑
j=1

∥µ(A j)∥Rn

∣∣∣∣∣∣∣ (A1, . . . ,Ak) is a partition of X

 .
We can now state the main result of this section.

3.8.63 Theorem (Banach spaces of measures) The pairs (M((X,A );R), ∥·∥) and
(M((X,A );Rn), ||| · |||Rn) are R-Banach spaces and the pair (M((X,A );C), ∥·∥) is a C-
Banach space.

Proof We first must verify that ∥·∥ and ||| · |||Rn are norms. For ∥·∥, we clearly have
∥µ∥ ∈ R>0 for µ ∈ M((X,A );R). Also, if α ∈ F for F ∈ {R,C},

∥αµ∥ = sup


k∑

j=1

|αµ(A j)|

∣∣∣∣∣∣∣∣ (A1, . . . ,Ak) is a partition of X


= |α| sup


k∑

j=1

|µ(A j)|

∣∣∣∣∣∣∣∣ (A1, . . . ,Ak) is a partition of X

 = |α|∥µ∥.
If µ1, µ2 ∈ M((X,A );F) then we have

∥µ1 + µ2∥ = sup


k∑

j=1

|µ1(A j) + µ2(A j)|

∣∣∣∣∣∣∣∣ (A1, . . . ,Ak) is a partition of X


≤ sup


k∑

j=1

|µ1(A j)| + |µ2(A j)|

∣∣∣∣∣∣∣∣ (A1, . . . ,Ak) is a partition of X


= ∥µ1∥ + ∥µ2∥

using Proposition I-2.2.27. This gives the triangle inequality for ∥·∥. Finally, we
suppose that ∥µ∥ = 0. For A ∈ A we have

|µ(A)| ≤ |µ(A)| + |µ(X \ A)| ≤ ∥µ∥

since (A,X \A) is a partition of X. Thus it follows that µ(A) = 0 for every A ∈ A . Thus
µ is the zero measure. This verifies positive-definiteness of ∥·∥ and so verifies that it is
a norm. An entirely similar analysis yields the same conclusion for ||| · |||Rn .

It now remains to verify the completeness of the normed vector spaces. We
consider the case of a signed or complex measure, letting F ∈ {R,C}. We consider a
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Cauchy sequence (µ j) j∈Z>0 in M((X,A );F). Let ϵ ∈ R>0 and let N ∈ Z>0 be such that
∥µ j − µk∥ ≤ ϵ for j, k ≥ N. Then, for A ∈ A , we have, since (A,X \A) is a partition of X,

|µ j(A) − µk(A)| ≤ |(µ j − µk)(A)| + |(µ j − µk)(X \ A)| ≤ ∥µ j − µk∥ ≤ ϵ

for j, k ≥ N. Thus, for every A ∈ A , (µ j(A)) j∈Z>0 is a Cauchy sequence in F. We
then denote the limit of this Cauchy sequence by µ(A). We must show that the map
A 7→ µ(A) is a signed or complex measure.

The following lemma will be useful, saying that the limit lim j→∞ µ j(A) = µ(A) in
uniform in A.

1 Lemma For ϵ ∈ R>0 there exists N ∈ Z>0 such that |µ(A) − µj(A)| < ϵ for each j ≥ N and
A ∈ A .

Proof Let ϵ ∈ R>0 and choose N ∈ Z>0 such that ∥µ j − µk∥ <
ϵ
2 for j, k ≥ N. Thus, as

we saw above, |µ j(A) − µk(A)| < ϵ
2 for j, k ≥ N. Now let N1 be sufficiently large that

|µ(A) − µk(A)| < ϵ
2 for k ≥ N1. Now, if A ∈ A and j ≥ N we have

|µ(A) − µ j(A)| ≤ |µ(A) − µk(A)| + |µk(A) − µ j(A)| < ϵ,

where k ≥ max{N,N1}. ▼

Since µ j(∅) = 0 for every j ∈ Z>0 we obviously have

µ(∅) = lim
j→∞

µ j(∅) = 0.

Let A1, . . . ,Am be a finite family of pairwise disjoint A -measurable sets. Since µ j,
j ∈ Z>0, is countably-additive, it is finitely-additive, and so

µ j(∪m
l=1Al) =

m∑
l=1

µ j(Al), j ∈ Z>0.

Therefore,

µ(∪m
l=1Al) = lim

j→∞
µ j(∪m

l=1Al) = lim
j→∞

m∑
l=1

µ j(Al) =
m∑

l=1

µ(Al),

swapping the finite sum with the limit. This gives finite-additivity of µ. It also holds
that µ is consistent since, by construction, it takes values in R.

Now let (Al)l∈Z>0 be a family of A -measurable sets such that Al+1 ⊆ Al, l ∈ Z>0,
and such that ∩l∈Z>0Al = ∅. Since µ j, j ∈ Z>0, is countably-additive and consistent, by
Proposition 2.3.3 we have

lim
l→∞

µ j(Al) = 0, j ∈ Z>0.

Let ϵ ∈ R>0 and, by Lemma 1, let N1 ∈ Z>0 be such that |µ(A) − µ j(A)| < ϵ
2 for j ≥ N1

and A ∈ A . Let N ∈ Z>0 be such that |µN1(Al)| < ϵ
2 for l ≥ N. Then, for l ≥ N we have

|µ(Al)| ≤ |µ(Al) − µN1(Al)| + |µN1(Al)| < ϵ.

Thus liml→∞ µ(Al) = 0 and so µ is countable additive by Proposition 2.3.3.



500 3 Banach spaces 2022/03/07

Finally, we must show that (µ j) j∈Z>0 converges to µ. Let ϵ ∈ R>0 and let N ∈ Z>0
be such that ∥µ j −µk∥ < ϵ for j, k ≥ N. Let (A1, . . . ,Am) be a partition of X and note that,
by definition of ∥·∥,

m∑
l=1

|µ j(Al) − µk(Al)| =
m∑

l=1

|(µ j − µk)(Al)| ≤ ∥µ j − µk∥ < ϵ

for j, k ≥ N. Therefore,

m∑
l=1

|µ(Al) − µk(Al)| = lim
j→∞

m∑
l=1

|µ j(Al) − µk(Al)| ≤ ϵ

for k ≥ N. Since this holds for every partition (A1, . . . ,Am) of X, taking the supremum
over all such partitions gives ∥µ − µk∥ ≤ ϵ for k ≥ N, so giving convergence of (µ j) j∈Z>0

to µ. ■

3.8.10 Notes

Exercises

3.8.1 For a1, . . . , an, b1, . . . , bn ∈ R>0 show that

n∑
j=1

a jb j ≤ max{b1, . . . , bn}

n∑
j=1

a j.

3.8.2 LetF ∈ {R,C}. For (a j) j∈Z>0 ∈ ℓ
1(F) and (b j) j∈Z>0 ∈ ℓ

∞(F), show that (a jb j) j∈Z>0 ∈

ℓ1(F) and that
∥(a jb j) j∈Z>0∥1 ≤ ∥(a j) j∈Z>0∥1∥(b j) j∈Z>0∥∞.

3.8.3 Show that F∞0 is not dense in ℓ∞(F).
3.8.4 Let F ∈ {R,C}.

(a) Show that ℓp(F) ⊆ c0(F) for p ∈ [1,∞).
(b) Is ℓ∞(F) ⊆ c0(F)?

3.8.5 Let F ∈ {R,C} and let ((Vi, ∥·∥i))i∈I be a family of normed F-vector spaces.
Show that if ℓp(

⊕
i∈I Vi) is a Banach space for any p ∈ [1,∞) then Vi is a

Banach space for every i ∈ I.
3.8.6 Show that C0

0(R;F) can be defined alternatively by (3.17).
3.8.7 Show that C0

cpt((0, 1);F) is not dense in L∞((0, 1);R).
Hint: Consider f(x) = 1, x ∈ (0, 1).

3.8.8 Let F ∈ {R,C}, let I ⊆ R be an interval, and let f ∈ L(1)(I;F) and g ∈ L(∞)(I;F).
Show that f g ∈ L(1)(I;F) and ∥ f g∥1 ≤ ∥ f ∥1∥g∥∞.
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Section 3.9

Topological duals of Banach spaces

Examples: integral, delta-function

3.9.1 Theorem (Characterisation of topological dual) Let F ∈ {R,C} and let (V; ∥·∥) be a
normed F-vector space. For α ∈ V′ the following conditions are equivalent:

(i) α is continuous;
(ii) α is continuous at 0V;
(iii) α is uniformly continuous;
(iv) α is bounded;
(v) ker(α) is a closed subspace of V.

Proof The equivalence of the first four conditions is simply a specialisation of The-
orem 3.5.8. That the first four conditions imply the fifth is also a specialisation of
Theorem 3.5.8.

(v) =⇒ (i): Suppose that α is discontinuous; we claim that there exists a sequence
(v j) j∈Z>0 in BV(1, 0U) such that the sequence (∥α(v j)∥) j∈Z>0 diverges. If not, then there
exists R ∈ R>0 such that α(BV(1, 0V) ⊆ BF(R, 0). Linearity of α then implies that, for
α(BV(ϵ, 0V)) ⊆ BF(Rϵ, 0), which in turn implies continuity of α at 0V. But this implies
continuity of α. Thus a sequence as claimed exists. Let us further assume that the
sequence (v j) j∈Z>0 is nonzero; this can be done without loss of generality. Now let
v < ker(α) and define ṽ j = v − α(v)

α(v j)
v j. We then have α(ṽ j) = 0. Moreover,

lim
j→∞
∥ṽ j − v∥V = lim

j→∞

∥∥∥∥ α(v)
α(v j)

v j

∥∥∥∥
V
= 0.

Thus the sequence (ṽ j) j∈Z>0 in ker(α) converges to v < ker(α), implying that ker(α) is
not closed by Proposition 3.6.8 below. ■

Our next technical result is one that is in actuality extremely useful on many
occasions.

3.9.2 Theorem (Hahn–Banach Theorem) If F ∈ {R,C}, if (V, ∥·∥) is a normed F-vector
space, if U ⊆ V is a subspace, and if α ∈ U∗, then there exists ᾱ ∈ V∗ such that ᾱ|U = α
and ∥ᾱ∥V,F = ∥α∥U,F.

Proof First we assume that F = R. If α = 0 the result is trivial, so suppose that
∥α∥U,F > 0. Define a new norm ||| · ||| on V by |||v||| = ∥α∥U;F∥v∥ and note that for u ∈ U
we have

|α(u)| ≤ ∥α∥U;R∥u∥ = |||u|||.

Thus we suppose that α is a continuous linear map for which |α(u)| ≤ |||u||| for all u ∈ U.
The result is also trivial if U = V, so we assume this is not the case. Then we take
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v0 < U. We then have, for u1,u2 ∈ U,

α(u1) + α(u2) = α(u1 + u2) ≤ |||u1 + u2||| ≤ |||u1 + v0||| + |||u2 − v0|||

=⇒ α(u2) − |||u2 − v0||| ≤ |||u1 + v0||| − α(u1)
=⇒ sup

u2∈U
{α(u2) − |||u2 − v0|||} ≤ inf

u1∈U
{|||u1 + v0||| − α(u1)}. (3.20)

Choose a0 to lie between the “sup” and the “inf” in the preceding equation and for
u + cv0 ∈ U ⊕ spanR(v0) define ᾱ(u + cv0) = α(u) + ca0. Clearly ᾱ is linear and ᾱ|U = α.
By the rightmost of the inequalities of (3.20) we also have

|ᾱ(u + cv0)| = |α(u) + ca0| ≤ |α(u) + c|||u + v0||| − cα(u)| ≤ |||u + cv0|||,

provided that c ≥ 0. If c < 0 then we similarly have

|ᾱ(u + cv0)| ≤ |||u + cv0|||,

using the leftmost of the inequalities (3.20). Let S denote the collection of ordered pairs
(W, β) where
1. W is a subspace of V satisfying U ⊆W ⊆ V,
2. β : W→ R is a continuous linear map on W,
3. |β(w)| ≤ |||w||| for all w ∈W.
On S place a partial order⪯ by (W1, β1) ⪯ (W2, β2) if W1 ⊆W2 and β2|W1 = β1. Since any
(W, β) ∈ S must satisfy W ⊆ V every well ordered subset must have an upper bound.
Therefore, by Zorn’s Lemma, there exists a maximal element (W0, β0) of S. If W0 , V
then W0 can always be extended by one-dimension as above. Therefore we must have
W0 = V, and we have shown that when F = R we may find ᾱ : V→ R so that ᾱ|U = α
and |ᾱ(v)| ≤ |||v||| for all v ∈ V.

If F = C let α = αR + iαI and note that by complex linearity of α we have αI(u) =
−αR(iu) for all u ∈ U. By the real part of the theorem let ᾱR : V → R have the
property that ᾱR|U = αR and |ᾱR(v)| ≤ |||v||| for all v ∈ V. Then define ᾱ : V → C
by ᾱ(v) = ᾱR(v) − iᾱR(iv). One readily checks that ᾱ is C-linear and that ᾱ|U = α. We
also compute, using the polar form ᾱ(v) = |ᾱ(v)|eiθ,

|ᾱ(v)| = e−iθᾱ(v) = ᾱR(ve−iθ) ≤ |||ve−iθ
||| = |||v|||.

We have now shown that there exists ᾱ : U→ F so that ᾱ|U = α and so that |ᾱ(v)| ≤
|||v||| for all v ∈ V. But this immediately gives ∥ᾱ∥V,F ≤ ∥α∥V,F by the definition of ||| · |||.
However, since ᾱ extends α we also have ∥ᾱ∥V,F ≥ ∥α∥V,F. This gives ∥ᾱ∥V,F = ∥α∥V,F,
as desired. ■

3.9.1 Reflexivity in Banach spaces
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Section 3.10

Examples of duals of Banach spaces

3.10.1 The dual of Lp(I;F)

We next consider two technical results that we present for completeness, as
they are used in the proofs of Theorems IV-3.2.45 and IV-3.3.23. These next re-
sults can be skipped if one does not feel the need to understand the proofs of
Theorems IV-3.2.45 and IV-3.3.23. The first result is an extension of the Riesz Rep-
resentation Theorem. Note that the Riesz Representation Theorem says that the
dual of L2(T;F) is naturally isomorphic to L2(T;F) for any continuous time-domain
T. This raises the question of the character of the dual of Lp(T;F) for p , 2. The
following result gives this characterisation for p ∈ [1,∞).

3.10.1 Theorem (The dual of Lp(T;F)) LetT be a continuous time-domain and let p ∈ [1,∞).
If α : Lp(T;F)→ F is continuous then there exists a unique gα ∈ Lq(T;F) so that

α(f) =
∫
T

f(t)gα(t) dt, f ∈ Lp(T;F),

where 1
p +

1
q = 1. Furthermore, ∥α∥Lp,F = ∥gα∥q.

Proof We first a technical lemma.

1 Lemma If g ∈ L1([a, b];F) and if there exists M > 0 so that∣∣∣∣∫ b

a
f(t)g(t) dt

∣∣∣∣ ≤M∥f∥p

for each f ∈ L∞([a, b];F) then g ∈ Lq([a, b];F) and ∥g∥q ≤M for 1
p +

1
q = 1.

Proof Let us first consider the case p = 1. Denote

Aϵ = {t | |g(t)| ≥M + ϵ}

and define f = sign(g)χAϵ . Then

Mλ(Aϵ) =M∥ f ∥1 ≥
∣∣∣∣∫ b

a
f (t)g(t) dt

∣∣∣∣ ≥ (M + ϵ)λ(Aϵ).

From this we deduce that λ(Aϵ) = 0 and so ∥g∥∞ ≤M.
For p ∈ (1,∞) we define

gn =

0, |g(t)| > n
g(t), |g(t)| ≤ n.
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Then take fn(t) = |gn(t)| sign(gn(t)). Note that ∥ fn∥p = ∥gn∥
q/p
q and that |gn(t)|q =

fn(t)gn(t) = fn(t)g(t). Therefore

∥gn∥
q
q =

∫ b

a
fn(t)g(t) dt ≤M∥ fn∥p =M∥gn∥

q/p
q .

Thus

∥gn∥
q
q ≤M∥gn∥

q/p
q =⇒ ∥gn∥q ≤M =⇒

∫ b

a
|gn(t)|q dt ≤Mq,

using the fact that q − q
p = 1. Since limn→∞ gn(t) = g(t) for a.e. t we have, by the

Monotone Convergence Theorem,

∥g∥qq =
∫ b

a
lim
n→∞
|gn(t)|q dt = lim

n→∞

∫ b

a
|gn(t)|q dt ≤M,

as desired. ▼

We now prove the theorem when T is bounded, say T ∈ {[a, b], (a, b], [a, b), (a, b)}.
Define µα : [a, b] → F by µα(t) = α(χ[a,t]). We claim that µα is absolutely continuous.
For ϵ > 0 let δ =

(
ϵ

∥α∥Lp ,F

)p
. For a collection ((t1, j, t2, j)) j∈{1,...,n} of disjoint intervals of total

measure less than δ, and define

f =
k∑

j=1

(χ[a,t2, j] − χ[a,t1, j]) sign(µα(t2, j) − µα(t1, j)).

Note that ∥ f ∥pp < δ. We then have

k∑
j=1

|µα(t2, j) − µα(t1, j)| = α( f ) ≤ ∥α∥Lp,F∥ f ∥p < ∥α∥Lp,Fδ
1/p < ϵ.

Now, since µα is absolutely continuous there exists gα ∈ L1(T;F) so that

µα(t) =
∫ t

a
gα(τ) dτ

by Theorem 2.9.33. Since

α(χ[0,s]) =
∫ b

a
gα(t)χ[0,s](t) dt

and since every step function is a.e. a finite linear combination of step functions of the
sort χ[0,s] for suitable choices of s, it follows that for any step function f on Twe have

α( f ) =
∫ b

a
gα(t) f (t) dt.
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Now let f be an arbitrary bounded measurable signal on T and let ( fn)n∈Z>0 be a
sequence of step functions converging a.e. to f , this being possible by virtue of Theo-
rem 2.9.2. Since f is bounded the sequence ( f − fn)n∈Z>0 in bounded uniformly in n,
and so the Dominated Convergence Theorem gives

lim
n→∞
∥ f − fn∥

p
p =

∫ b

a
lim
n→∞
| f (t) − fn(t)|p dt = 0.

Therefore, by continuity of α,

lim
n→∞
|α( f ) − α( fn)| ≤ lim

n→∞
∥α∥Lp,F∥ f − fn∥p = 0.

By the Dominated Convergence Theorem we then have

α( f ) = lim
n→∞

α( fn) = lim
n→∞

∫ b

a
fn(t)gα(t) dt =

∫ b

a
f (t)gα(t) dt,

by virtue of the fact that | fn(t)gα(t)| ≤ M|gα(t)| where M uniformly bounds | fn(t)| both
in n and t. Since ∥α( f )∥ ≤ ∥α∥Lp,F∥ f ∥p this implies that ∥gα∥q < ∥α∥Lp,F by virtue of
Lemma 1. It remains to show that the result holds if f is not bounded, but f ∈ Lp(T;F).
By Theorem 3.8.59, for any ϵ > 0 we can find a step function h for which ∥ f − h∥p < ϵ,
and since h is bounded we have

α(h) =
∫ b

a
h(t)gα(t) dt.

Now we have∣∣∣∣α( f ) −
∫ b

a
f (t)gα(t) dt

∣∣∣∣ = ∣∣∣∣α( f ) − α(h) +
∫ b

a
(h(t) − f (t))gα(t) dt

∣∣∣∣
≤ |α( f − h)| +

∫ b

a
|( f (t) − h(t))gα(t)|dt

≤ ∥α∥Lp;F∥ f − h∥p + ∥gα∥q∥ f − h∥p < (∥α∥Lp;F + ∥gα∥q)ϵ,

by Lemma 3.8.54. To see that ∥α∥Lp,F = ∥gα∥q we take, for p > 1, f (t) =
|gα(t)|q/p sign(gα(t)). We then have | f (t)|p = |gα(t)|q = f (t)gα(t). Therefore f ∈ Lp(T;F)
and

α( f ) =
∫ b

a
f (t)gα(t) dt = ∥gα∥

q
q = ∥ f ∥p∥g∥q.

Thus ∥α∥Lp,F ≥ ∥gα∥q, provided that p > 1. For p = 1 and q = ∞we argue this as follows.
Let ϵ > 0 and define

Aϵ = {t | gα(t) ≥ ∥gα∥∞ − ϵ}

and let fϵ = χAϵ . Then

α( fϵ) =
∫ b

a
fϵ(t)gα(t) dt =

∫
Aϵ

gα(t) dt

≥ (∥gα∥∞ − ϵ)λ(Aϵ) = (∥gα∥∞ − ϵ)∥ fϵ∥1.
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The above all proves the theorem for bounded time-domains. IfT is an unbounded
time-domain then we let (T j) j∈Z>0 be a collection of disjoint bounded time-domains for
which T = ∪ j∈Z>0T j. On each of the time-domains T j we define α j : Lp(T j;F) → F by
α j( f ) = α( f̄χT j) where f̄ is any signal on T agreeing with f on T j. We may then define
gα j ∈ Lq(T j;F) as above. We then define fα on T by asking that it agree with fα j on T j.
We must show that fα ∈ Lq(T;F) and that α( f ) =

∫
T

f (t) fα(t) dt for all f ∈ Lp(T;F). For
the former we proceed as follows. Define An = ∪

n
j=1T j so that (An)n∈Z>0 is an increasing

sequence of subsets whose union is T. Then define gn = gαχAn and αn : Lp(T;F) → F
by αn( f ) = α( fχAn). Note that we clearly have ∥αn∥Lp,F ≤ ∥α∥Lp;F. From this it follows
that that the sequence (∥gn∥q)n∈Z>0 is bounded. It then follows that ∥gα∥q < ∞. If
f ∈ Lp(T;F) then we define fn = fχAn and note that∫

T
f (t)gα(t) dt =

∫
T

lim
n→∞

fn(t)gα(t) dt = lim
n→∞

∫
T

fn(t)gα(t) dt =
∫
T

f (t)gα(t) dt,

by the Dominated Convergence Theorem. ■
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Chapter 4

Hilbert spaces

The notion of a Hilbert space is one of the most important in mathematics and
applications of mathematics. It will arise in a crucial way in Fourier analysis in
Chapters IV-5, IV-6, and IV-7. Hilbert space theory also plays an important rôle
in optimisation theory, system theory, and partial differential equations, to name
just as a few applications. As we shall see, Hilbert spaces are examples of Banach
spaces, so all of our discussions of Chapter 3 apply to Hilbert spaces. However,
the norm in a Hilbert space arises in a particular way, from an inner product. The
inner product structure gives rise to important concepts such as orthogonality and
self-duality, and it is concepts such as these that account for the importance of
Hilbert spaces as examples of Banach spaces.

In this chapter we give a systematic overview of the notion of a Hilbert space,
developing the theory starting in the simple but insightful finite-dimensional case.
We endeavour to indicate how all of the concepts in general Banach space theory
as developed in Chapter 3 specialise to Hilbert spaces.

Do I need to read this chapter? This chapter is an important one and most of
the material in it is essential to the applied material that follows in later volumes.
Certain specialised topics can be omitted on an initial reading. In particular, the
details of uncountable orthonormal sets in Section 4.4.1 can be initially sidestepped,
instead referring explicitly to the enumerable case considered in Section 4.4.3. •
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Section 4.1

Definitions and properties of inner product spaces

We have already encountered an important example of inner product, the stan-
dard inner product on Rn in Section II-1.2. The axioms defining a general inner
product are exactly those for the standard inner product on Rn, with the slight
added generality that we allow for vector spaces over C as well as over R.

Do I need to read this section? If you are reading this chapter then you should
read this section. •

4.1.1 Inner products and semi-inner products

Just as we did in Chapter 3, we will simultaneously deal with the fields R and
C by letting F denote wither R or C, by letting |a|, a ∈ F, denote the absolute value
or modulus, and by letting ā, a ∈ F, denote either a or the complex conjugate of a.
We refer to Notation 3.1.1.

Just as in parts of Chapter 3 we considered seminorms, we will also consider
semi-inner products in parts of this chapter. There is an additional caveat to
make in this respect. The notion of a seminorm has an important independent life
separate from its defining a norm as in Theorem 3.1.8. Indeed, in Chapter 6 we
will devote significant time and effort to how seminorms arise in linear analysis.
However, this is much less the case with the notion of a semi-inner product. Indeed,
most authors do not mention the concept. We do so for two reasons: (1) there are
examples of semi-inner products that arise en route to the construction of certain
inner products; (2) we wish to maintain some consistency with the presentation in
Chapter 3. Nonetheless, the reader is well-advised to not place much stock in the
concept of a semi-inner product and to focus instead on the special case of an inner
product.

With all that said, we can give the definitions.

4.1.1 Definition (Semi-inner product, inner product) Let F ∈ {R,C} and let V be an
F-vector space. A semi-inner product on V is a map V × V ∋ (v1, v2) 7→ ⟨v1, v2⟩ ∈ F
with the following properties:

(i) ⟨v1, v2⟩ = ⟨v2, v1⟩ for v1, v2 ∈ V (symmetry);
(ii) ⟨a1 v1 + a2 v2, v⟩ = a1⟨v1, v⟩ + a2⟨v2, v⟩ for a1, a2 ∈ F and v1, v2 ∈ V (linearity);
(iii) ⟨v, v⟩ ≥ 0 for v ∈ V, (positivity).

An inner product on V is a semi-inner product (v1, v2) 7→ ⟨v1, v2⟩with the additional
property that

(iv) ⟨v, v⟩ = 0 only if v = 0V (definiteness).
We shall often denote a semi-inner product by ⟨·, ·⟩. •
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Note that the condition for positivity makes sense even when F = C since ⟨v, v⟩
is always real. Indeed, using symmetry of the semi-inner product,

⟨v, v⟩ = ⟨v, v⟩ = ⟨v, v⟩,

and since the subset R ⊆ C is exactly characterised by its being the subset fixed by
complex conjugation, it follows that ⟨v, v⟩ ∈ R.

Let us record a trivial consequence of the properties of a semi-inner product.

4.1.2 Proposition (Bilinearity or sesquilinearity of a semi-inner product) Let F ∈
{R,C}, let V be an F-vector space, and let ⟨·, ·⟩ be a semi-inner product on V. Then, for
a1, a2, b1, b2 ∈ F and u1,u2,v1,v2 ∈ V we have

⟨a1u1 + a2u2, b1v1 + b2v2⟩

= a1b̄1⟨u1,v1⟩ + a1b̄2⟨u1,v2⟩ + a2b̄1⟨u2,v1⟩ + a2b̄2⟨u2,v2⟩.

Proof We leave this as Exercise 4.1.1. ■

In the case when F = R this property is called bilinearity and when F = C this
property is called sesquilinearity.

Let us give some examples of inner products and semi-inner products.

4.1.3 Examples (Semi-inner product, inner product)
1. Any F-vector space V has the useless semi-inner product defined by ⟨v1, v2⟩ = 0

for all v1, v2 ∈ V. This is only an inner product in the uninteresting case when
V = {0V}.

2. On Fn define

⟨u,v⟩2 =
n∑

j=1

u jv̄ j.

This is readily seen to be an inner product on Fn. In the case when F = R this
specialises to the standard inner product onRn discussed in Section II-1.2. Note
that we use different notation for this object than was used in Chapter II-1, but
we will still refer to it as the standard inner product.

3. Recall from Example I-4.5.2–4 that F∞0 denotes the sequences (a j) j∈Z>0 in F for
which the set { j ∈ Z>0 | v j , 0} is finite. Thus sequences in F∞0 are eventually
zero. We define

⟨(a j) j∈Z>0 , (b j) j∈Z>0⟩2 =

∞∑
j=1

a jb̄ j,

noting that the sum makes sense since it is finite. It is a straightforward exercise
to show that ⟨·, ·⟩2 is an inner product.
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4. Finally, we consider the F-vector space C0([a, b];F) of continuous F-valued
functions on the compact interval [a, b]. Here we define an inner product on
C0([a, b];F) by

⟨ f , g⟩ =
∫ b

a
f (x)ḡ(x) dx.

One readily verifies all properties of the inner product, possibly resorting to
Exercise I-3.4.1 for the positive-definiteness. •

Just as all vector spaces were shown to possess a norm in Proposition 3.1.4, we
can use a similar strategy to show that all vector spaces possess an inner product.

4.1.4 Proposition (Vector spaces always have at least one inner product) If F ∈
{R,C} and if V is an F-vector space then there is an inner product on V.

Proof By Theorem I-4.5.45 we know the vector space V possesses a basis which
establishes an isomorphism ι of V with FJ

0 for some set J. Let us first define an inner
product on FJ

0. Writing a typical element of FJ
0 as (v j) j∈J we define

⟨(u j) j∈J, (v j) j∈J⟩J =
∑
j∈J

ū jv j,

the sum being well-defined since it is finite. To show that ⟨·, ·⟩J is an inner product is a
mere matter of checking the definitions. Now define

⟨u, v⟩V = ⟨ι(u), ι(v)⟩J, u, v ∈ V.

To verify that ⟨·, ·⟩V is an inner product is straightforward. Symmetry is obvious. For
linearity we compute

⟨a1v1 + a2v2, v⟩V = ⟨ι(a1v1 + a2v2), v⟩J = ιa1ι(v1) + a2ι(v2)vJ = a1⟨v1, v⟩ + a2⟨v2, v⟩V,

using linearity of ⟨·, ·⟩J and ι. Positivity follows immediately from positivity of ⟨·, ·⟩J.
Definiteness is shown as follows. Suppose that ⟨v, v⟩V = 0. Then ⟨ι(v), ι(v)⟩J = 0 and so
ι(v) = 0

FJ
0

by definiteness of ⟨·, ·⟩J. Thus v = 0V since ι is an isomorphism. ■

As with the corresponding Proposition 3.1.4, one must take care to understand
that the preceding result asserts neither the existence of a unique or even natural
inner product. Moreover, there is no assurance that the inner product defined in
the preceding result is useful. We refer to Corollary 3.6.27 to see why some vector
spaces are incapable of supporting interesting norms; the same idea applies to
inner products since, as we shall shortly see, inner products give rise to norms.

Analogous to normed vector spaces we have the following terminology.

4.1.5 Definition (Semi-inner product space, inner product space) Let F ∈ {R,C}.
(i) An F-semi-inner product space is a pair (V, ⟨·, ·⟩) where V is a F-vector space

and ⟨·, ·⟩ is a semi-inner product on V.
(ii) An F-inner product space is a pair (V, ⟨·, ·⟩) where V is a F-vector space and
⟨·, ·⟩ is an inner product on V. •
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4.1.6 Notation ((Semi-)inner product spaces) As was the case when we were working
with seminormed and normed vector spaces, it will be convenient to be able to
state results for both semi-inner product spaces and inner product spaces at the
same time. In order to facilitate this we will write “(semi-)inner product space”
when we wish to mean that either sorts of objects may be used in the statement. •

4.1.2 Inner product spaces as normed vector spaces

In this section we show that a (semi-)inner product space gives rise in a natural
way to an associated (semi)normed vector space. In order to do so, let (V, ⟨·, ·⟩) be a
F-(semi-)inner product space and define a map V ∋ v 7→ ∥v∥ ∈ R≥0 by ∥v∥ =

√
⟨v, v⟩.

While we use the notation ∥·∥ as if this function is a (semi)norm, we do not in fact
know that this is a (semi)norm at this point. It is, however, easy to see that ∥·∥
satisfies all (semi)norm properties except the triangle inequality. In order to verify
this we first prove the following result that is of independent interest.

4.1.7 Theorem (Cauchy–Bunyakovsky–Schwarz inequality) For an F-(semi-)inner
product space (V, ⟨·, ·⟩) we have

|⟨v1,v2⟩| ≤ ∥v1∥ ∥v2∥, v1,v2 ∈ V.

Moreover, if ⟨·, ·⟩ is an inner product then equality holds in the above expression if and
only if v1 and v2 are collinear, i.e., if and only if

spanF(v1) ⊆ spanF(v2) or spanF(v2) ⊆ spanF(v1).

Proof The result is obviously true for v2 = 0, so we shall suppose that v2 , 0. We first
prove the result for ∥v2∥ = 1. In this case we have

0 ≤ ∥v1 − ⟨v1, v2⟩v2∥
2

= ⟨v1 − ⟨v1, v2⟩v2, v1 − ⟨v1, v2⟩v2⟩

= ⟨v1, v1⟩ − ⟨v1, v2⟩⟨v2, v1⟩ − ⟨v1, v2⟩⟨v1, v2⟩ + ⟨v1, v2⟩⟨v1, v2⟩⟨v2, v2⟩

= ∥v1∥
2
− |⟨v1, v2⟩|

2,

where we have used Proposition 4.1.2. Thus we have shown that, provided ∥v2∥ = 1,

|⟨v1, v2⟩|
2
≤ ∥v1∥

2.

Taking square roots yields the result in this case. For ∥v2∥ , 1 we define v3 =
v2
∥v2∥

so
that ∥v3∥ = 1. In this case

|⟨v1, v3⟩| ≤ ∥v1∥ =⇒
|⟨v1, v2⟩|

∥v2∥
≤ ∥v1∥,

and so the inequality in the theorem holds.
Note that spanF(v1) ⊂ spanF(v2) if and only if v1 = 0V. In this case it is obvious

that equality holds in the stated inequality. Similarly, equality holds if spanF(v2) ⊂
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spanF(v1). If spanF(v1) = spanF(v2) then v1 = av2 for some a ∈ F. In this case it is
a direct computation, using properties of the inner product, to show that the stated
inequality is in fact achieved with equality.

Conversely, suppose that the inequality in the theorem is achieved with equality.
If equality is achieved with zero on each side then either or both of ∥v1∥ and ∥v2∥ = 0
hold, i.e., either or both of v1 and v2 are zero. In this case we have either

spanF(v1) ⊆ spanF(v2) or spanF(v2) ⊆ spanF(v1),

as desired. Thus the final assertion to prove is that one of the preceding inclusions
holds when equality is obtained with both sides of the equality being strictly positive.
In this case both of v1 and v2 are nonzero. Let us first suppose that ∥v2∥ = 1. If equality
holds in the theorem statement then, going backwards through the argument in the
first part of the proof, we must have

∥v1 − ⟨v1, v2⟩v2∥
2 = 0 =⇒ v1 = ⟨v1, v2⟩v2,

giving the result in this case. If ∥v2∥ , 0 then define v3 =
v2
∥v3∥

so that ∥v3∥ = 1. Moreover,

|⟨v1, v3⟩| =
|⟨v1, v2⟩|

∥v2∥
= ∥v1∥ = ∥v1∥∥v3∥,

and so equality holds for v1 and v3 in the inequality in the theorem. By the preceding
argument we then have

v1 = ⟨v1, v3⟩v3 =⇒ v1 =
⟨v1, v2⟩

∥v2∥2
v2,

giving the final assertion for ∥v2∥ , 0. ■

Using the Cauchy–Bunyakovsky–Schwarz inequality it is possible to show that
the quantity ∥·∥ associated with an inner product is indeed a norm.

4.1.8 Theorem ((Semi-)inner product spaces are (semi)normed vector spaces) Let
F ∈ {R,C}, let (V, ⟨·, ·⟩) be anF-(semi-)inner product space, and define V ∋ v 7→ ∥v∥ ∈ R≥0

be defined by ∥v∥ =
√
⟨v,v⟩. Then (V, ∥·∥) is a (semi)normed vector space.

Proof All (semi)norm properties except the triangle inequality are easily verified. To
verify the triangle inequality, for v1, v2 ∈ V, we compute

∥v1 + v2∥
2 = ⟨v1 + v2, v1 + v2⟩ = ∥v1∥

2 + ⟨v1, v2⟩ + ⟨v2, v1⟩ + ∥v2∥
2

= ∥v1∥
2 + ⟨v1, v2⟩ + ⟨v1, v2⟩ + ∥v2∥

2 = ∥v1∥
2 + 2 Re(⟨v1, v2⟩) + ∥v2∥

2

≤ ∥v1∥
2 + 2|Re(⟨v1, v2⟩)| + ∥v2∥

2
≤ ∥v1∥

2 + 2|⟨v1, v2⟩| + ∥v2∥
2

≤ ∥v1∥
2 + 2∥v1∥∥v2∥ + ∥v2∥

2 = (∥v1∥ + ∥v2∥)2,

using the Cauchy–Bunyakovsky–Schwartz inequality. Taking square roots gives the
result. ■

Needless to say, when we talk about the (semi)norm on a (semi-)inner product
space, it is the norm of the preceding theorem to which we will refer.

A natural question that arises is then, “Given a norm on a vector space, can one
tell when it comes from an inner product?” This question admits an easily stated,
but not so easily proved, answer.
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4.1.9 Theorem (When does a norm come from an inner product?) If F ∈ {R,C} and
if (V, ∥·∥) is a (semi)normed F-vector space, then the following statements are equivalent:

(i) there exists an (semi-)inner product ⟨·, ·⟩ on V such that ∥v∥ =
√
⟨v,v⟩ for all v ∈ V;

(ii) ∥v1 + v2∥
2 + ∥v1 − v2∥

2 = 2
(
∥v1∥

2 + ∥v2∥
2
)

for every v1,v2 ∈ V (parallelogram
law).

Proof We leave to the reader as Exercise 4.1.4 the fairly easy task of showing that a
(semi)norm derived from a (semi-)inner product satisfies the parallelogram law. Here
we show the converse.

The proof for F = R and F = C are carried out separately. Let us consider the case
of F = R first. We claim that if a (semi)norm satisfies the parallelogram law then

⟨u, v⟩ ≜ 1
4

(
∥u + v∥2 − ∥u − v∥2

)
is a (semi-)inner product on V. It is clear that ⟨u, v⟩ = ⟨v,u⟩ and that ⟨v, v⟩ ≥ 0 for all
v ∈ V and that (in the case when ∥·∥ is a norm) ⟨v, v⟩ = 0 if and only if v = 0V.

Let u, v1, v2 ∈ V. Then

⟨u, v1⟩+⟨u, v2⟩ =
1
4

(
∥u + v1∥

2
− ∥u − v1∥

2 + ∥u + v2∥
2
− ∥u − v2∥

2
)

= 1
4

(∥∥∥u + 1
2 (v1 + v2) + 1

2 (v1 − v2)
∥∥∥2
−

∥∥∥u − 1
2 (v1 + v2) − 1

2 (v1 − v2)
∥∥∥2
+∥∥∥u + 1

2 (v1 + v2) − 1
2 (v1 − v2)

∥∥∥2
−

∥∥∥u − 1
2 (v1 + v2) + 1

2 (v1 − v2)
∥∥∥2)
. (4.1)

By the parallelogram law we have∥∥∥u + 1
2 (v1 + v2) + 1

2 (v1 − v2)
∥∥∥2
+

∥∥∥u + 1
2 (v1 + v2) − 1

2 (v1 − v2)
∥∥∥2
=

2
∥∥∥u + 1

2 (v1 + v2)
∥∥∥2
+ 2

∥∥∥1
2 (v1 − v2)

∥∥∥2
(4.2)

and∥∥∥u − 1
2 (v1 + v2) + 1

2 (v1 − v2)
∥∥∥2
+

∥∥∥u − 1
2 (v1 + v2) − 1

2 (v1 − v2)
∥∥∥2
=

2
∥∥∥u − 1

2 (v1 + v2)
∥∥∥2
+ 2

∥∥∥ 1
2 (v1 − v2)

∥∥∥2
. (4.3)

If we substitute (4.2) and (4.3) into (4.1) we get

⟨u, v1⟩ + ⟨u, v2⟩ =
1
4

(∥∥∥u + 1
2 (v1 + v2)

∥∥∥2
−

∥∥∥u − 1
2 (v1 + v2)

∥∥∥2)
= 2

〈
u, 1

2 (v1 + v2)
〉
. (4.4)

With this we prove a lemma.

1 Lemma If k ∈ Z≥0 then
〈

1
2k u,v

〉
= 1

2k ⟨u,v⟩ for all u,v ∈ V.

Proof The result is vacuously true for k = 0. If we let v2 = 0 in (4.4) we have〈
1
2 u, v

〉
= 1

2⟨u, v⟩, giving the lemma for k = 1. Now we proceed by induction. Suppose
that the lemma holds for k = m ≥ 2. Then〈

1
2m+1 u, v

〉
=

〈
1

2m
1
2 u, v

〉
= 1

2m

〈
1
2 u, v

〉
= 1

2m+1 ⟨u, v⟩,

using the induction hypotheses. ▼
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Note that we now have

⟨u, v1 + v2⟩ = ⟨v1 + v2,u⟩ = 2
〈

1
2 (v1 + v1),u

〉
= 2

〈
u, 1

2 (v1 + v2)
〉
= ⟨u, v1⟩ + ⟨u, v2⟩

where we have used (4.4).
Now we give another lemma.

2 Lemma We have
〈

m
2k u,v

〉
= m

2k ⟨u,v⟩ for all u,v ∈ V, m ∈ Z, and k ∈ Z≥0.

Proof We shall prove the result for m ∈ Z>0. The result for m = 0 is trivial, and the
proof for m ∈ Z<0 follows along the same lines as the proof for m ∈ Z>0.

The result is clearly true for m = 1. Now suppose it is true for m = l ≥ 2. Then we
have 〈

l+1
2k u, v

〉
=

〈
l+1
2k u, v

〉
=

〈
l

2k u + 1
2k u, v

〉
=

〈
l

2k u, v
〉
+

〈
1
2k u, v

〉
=

〈
l

2k u, v
〉
+

〈
1
2k u, v

〉
= l

2k ⟨u, v⟩ + 1
2k ⟨u, v⟩ = l+1

2k ⟨u, v⟩,

using the induction hypotheses. ▼

Now need a pair of technical lemmata.

3 Lemma Let a, b ∈ R be such that a < b. Then there exist m ∈ Z and k ∈ Z≥0 such that
a < m

2k < b.

Proof This is Exercise I-2.1.5. ▼

4 Lemma Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. Fix u,v ∈ V and
define ϕ : F→ R by ϕ(a) = ∥au + v∥. Then ϕ is continuous.

Proof This follows from Proposition 3.5.4 along with the fact that the composition of
continuous maps is continuous. ▼

We may now prove the final property needed to show that ⟨·, ·⟩ is a (semi-)inner
product. That is, we show that ⟨au, v⟩ = a⟨u, v⟩ for all a ∈ F and u, v ∈ V. We will show
that |⟨au, v⟩ − a⟨u, v⟩| < ϵ for any ϵ ∈ R>0. Let δm,k = a − m/2k for m ∈ Z and k ∈ Z≥0.
Note that we can make |δm,k| as small as we like by appropriately choosing m and k.
We thus have

|⟨au, v⟩ − a⟨u, v⟩| = |⟨(m2n + δm,k)u, v⟩ − (m/2n + δm,k)⟨u, v⟩|
= |⟨δm,ku, v⟩ − δm,k⟨u, v⟩| ≤ |⟨δm,ku, v⟩| + |δm,k⟨u, v⟩|.

For ϵ > 0 let δ1 =
∣∣∣ ϵ
2⟨u,v⟩

∣∣∣ and let δ2 be such that |⟨δ2u, v⟩| ≤ ϵ/2. This is possible since
a 7→ ⟨au, v⟩ is continuous by Proposition 4.2.1. Now choose m ∈ Z and k ∈ Z>0 so that
δm,k < min(δ1, δ2). Then

|⟨au, v⟩ − a⟨u, v⟩| ≤ |⟨δm,ku, v⟩| + |δm,k⟨u, v⟩| < ϵ/2 + ϵ/2 = ϵ,

as desired. This shows that ⟨·, ·⟩ is a (semi-)inner product. Now we show that ∥·∥ is
derived from this (semi-)inner product. This is easy since

⟨v, v⟩ = 1
4∥v + v∥2 = ∥v∥2.
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This completes the proof for the case when F = R.
When F = Cwe claim that

⟨u, v⟩ ≜ 1
4

(
∥u + v∥2 − ∥u − v∥2

)
+ i

4

(
∥u + iv∥2 − ∥u − iv∥2

)
is a (semi-)inner product on V. First note that

⟨v,u⟩ = 1
4

(
∥v + u∥2 − ∥v − u∥2

)
−

i
4

(
∥v + iu∥2 − ∥v − iu∥2

)
= 1

4

(
∥u + v∥2 − ∥u − v∥2

)
−

i
4

(
∥−iiv + iu∥2 − ∥−iiv − iu∥2

)
= 1

4

(
∥u + v∥2 − ∥u − v∥2

)
+ i

4

(
∥iiv + iu∥2 − ∥iiv − iu∥2

)
= 1

4

(
∥u + v∥2 − ∥u − v∥2

)
+ i

4

(
∥u + iv∥2 − ∥u − iv∥2

)
= ⟨u, v⟩.

We also compute

⟨u, v1 + v2⟩ = ⟨u, v1⟩ + ⟨u, v2⟩, ⟨au, v⟩ = a⟨u, v⟩

for u, v, v1, v2 ∈ V and for a ∈ R. We also compute

⟨iu, v⟩ = 1
4

(
∥iu + v∥2 − ∥iu − v∥2

)
+ i

4

(
∥iu + iv∥2 − ∥iu − iv∥2

)
= i

4

(
∥u + v∥2 − ∥u − v∥2

)
+ 1

4

(
∥iu − iiv∥ − ∥iu + iiv∥

)
= i 1

4

(
∥u + v∥2 − ∥u − v∥2

)
+ i i

4

(
∥u + iv∥2 − ∥u − iv∥2

)
= i⟨u, v⟩

We can then readily check that ⟨au, v⟩ = a⟨u, v⟩ for every u, v ∈ V and a ∈ C. This shows
that ⟨·, ·⟩ is a (semi-)inner product. We also have

⟨v, v⟩ = 1
4∥2v∥2 + i

4 |1 + i|2∥v∥2 − |1 − i|2∥v∥2 = 1
4∥2v∥2 = ∥v∥2.

Taking square roots shows that ∥·∥ is the (semi)norm derived from the inner product
⟨·, ·⟩, and so gives the theorem when F = C. ■

As a consequence of the proof we have the following formulae which relate an
inner product to the norm defined by it.

4.1.10 Corollary (Polarisation identity) Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be an F-(semi-)inner
product space with ∥·∥ the norm defined by ⟨·, ·⟩. The following statements hold:

(i) if F = R then
⟨u,v⟩ = 1

4

(
∥u + v∥2 − ∥u − v∥2

)
for all u,v ∈ V;

(ii) if F = C then

⟨u,v⟩ ≜ 1
4

(
∥u + v∥2 − ∥u − v∥2

)
+ i

4

(
∥u + iv∥2 − ∥u − iv∥2

)
for all u,v ∈ V.
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The fact is that it is unusual for a norm to be derived from an inner product.
However, since norms coming from inner products are so important, we will devote
a great deal of effort to this special case.

With (semi-)inner product spaces now being normed vector spaces, all the norm
machinery can be piled into a (semi-)inner product space. Indeed, we shall in this
chapter freely refer to any part of Chapter 3. Also, we shall frequently apply the
name for a (semi)normed vector space concepts directly to a (semi-)inner product
space.

4.1.3 Orthogonality

One of the essential features of an inner product spaces that distinguish them
from more general normed vector spaces is that one has the notion of orthogonal-
ity. We have some intuition about what orthogonality means in low dimensions
(see Section II-1.2), and some of this intuition carries over to general inner prod-
uct spaces. However, as is often the case when one makes the leap to infinite-
dimensions, one must be careful in relying solely on intuition in making assertions
about what is true or not.

Let us give the definitions. Note that the word “orthogonal” has multiple
meanings, depending on context.

4.1.11 Definition (Orthogonal, orthogonal complement) Let F ∈ {R,C} and let (V, ⟨·, ·⟩)
be an F-(semi-)inner product space.

(i) Vectors v1, v2 ∈ V are orthogonal if ⟨v1, v2⟩ = 0. We shall write v1 ⊥ v2 to
denote v1 and v2 being orthogonal.

(ii) Sets A1,A2 ⊆ V are orthogonal if ⟨v1, v2⟩ = 0 for every v1 ∈ A1 and v2 ∈ A2. We
shall write A1 ⊥ A2 to denote A1 and A2 being orthogonal.

(iii) If A ⊆ V then the orthogonal complement of A is the set

A⊥ = {u ∈ V | ⟨u, v⟩ = 0 for all v ∈ A}. •

Let us give some elementary examples of orthogonal sets.

4.1.12 Examples (Orthogonality)
1. The vectors (1, 2i,−1), (1, 3

2 +
i
2 , 3i) ∈ C3 are orthogonal.

2. In F3 the sets

A1 = spanF((1, 1, 1), (0, 1, 1)), A2 = spanF((0, 1,−1))

are orthogonal. Moreover, A1 is the orthogonal complement of A2 and A2 is the
orthogonal complement of A1. •

In some sense, this entire chapter is about orthogonality. Let us here give a few
simple consequences of the definitions.
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4.1.13 Proposition (Properties of orthogonal complement) Let F ∈ {R,C}, let (V, ⟨·, ·⟩)
be an F(semi-)-inner product space, and let A,B ⊆ V. Then the following statements hold:

(i) if A ⊆ B then B⊥ ⊆ A⊥;
(ii) A ⊆ (A⊥)⊥;
(iii) A⊥ is a closed subspace of V;
(iv) A⊥ = (cl(spanF(A)))⊥.

If ⟨·, ·⟩ is additionally an inner product then
(v) cl(spanF(A)) ∩A⊥ = {0V}.

Proof The proof of parts (i), (ii), and (iii) are left to the reader as Exercise 4.1.11.
(iv) Since A ⊆ cl(spanF(A)) it follows from part (i) that

A⊥ ⊇ (cl(spanF(A)))⊥.

Now let u ∈ A⊥ so that ⟨u, v⟩ = 0 for every v ∈ A. Next let v̂ ∈ cl(spanF(A)) and by
Proposition 3.6.8 let (v̂ j) j∈Z>0 be a sequence in spanF(A) converging to v̂. For each
j ∈ Z>0 we can write

v̂ j =

k j∑
r=1

c jrv jr

for some k j ∈ Z>0 and c jr ∈ F and v jr ∈ A, r ∈ {1, . . . , k j}. It therefore follows that

〈
u, v̂ j

〉
=

〈
u,

k j∑
r=1

c jrv jr

〉
=

k j∑
j=1

c̄ jr⟨u, v jr⟩ = 0

for each j ∈ Z>0. This allows us to deduce that〈
u, v̂

〉
= lim

j→∞

〈
u, v̂ j

〉
= 0

by Proposition 4.2.1 and Theorem 3.5.2. Thus u ∈ (cl(spanF(A)))⊥ as desired.
(v) If

v ∈ cl(spanF(A)) ∩ A⊥ = cl(spanF(A)) ∩ (cl(spanF(A)))⊥

then ⟨v, v⟩ = 0 which gives v = 0V if ⟨·, ·⟩ is an inner product. ■

The equality A⊥ = (cl(spanF(A)))⊥ is an important one. It tells us that the
orthogonal complement of a set is not a feature of the set, but of the closure of
the subspace generated by this set. Thus there are two operations happening
when taking orthogonal complements: “span” and “closure” (in that order). The
appearance of the topological closure operation here is perhaps surprising at first
encounter. Indeed, since all subspaces are closed in finite dimensions, closure does
not make an appearance in that case.

It is fairly obviously true that A , (A⊥)⊥ in general, merely because A may not
be a subspace but (A⊥)⊥ is a subspace. So the question of when A = (A⊥)⊥ is only
interesting when A is a subspace. However, even in this case equality does not
generally hold. This is something that we will explore in greater detail in , so herewhat?

we merely content ourselves with a counterexample.
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4.1.14 Example (U , (U⊥)⊥) Let us take V = ℓ2(F) with the inner product

⟨(a j) j∈Z>0 , (b j) j∈Z>0⟩ =

∞∑
j=1

a jb̄ j.

This is a specialisation to p = 2 of the Banach space ℓp(F) considered in Section 3.8.2.
We showed in Theorem 3.8.19 that this is a Banach space and in Corollary 3.8.21
that this Banach space is the completion of F∞0 . Let us then take the subspace F∞0
of ℓ2(F). We claim that F∞0 is a strict subspace of ((ℓ∞0 )⊥)⊥. To see this we first claim
that (F∞0 )⊥ = {0ℓ2(F)}. Indeed, let (e j) j∈Z>0 be the standard basis for F∞0 . Thus, as a
reminder,

e j(k) =

1, j = k,
0, j , k.

Then, if (a j) j∈Z>0 ∈ (F∞0 )⊥ then

⟨(a j) j∈Z>0 , ek⟩ = ak = 0

for every k ∈ Z>0. Thus (F∞0 )⊥ = {0ℓ2(F)} as claimed. It, therefore, follows that
((F∞0 )⊥)⊥ = ℓ2(F) and so we have F∞0 as a strict subspace of ((F∞0 )⊥)⊥ as claimed. •

The issue with the preceding example, as we shall see in Theorem 4.1.19, is that
F∞0 is not a closed subspace of ℓ2(F).

Let us also record how orthogonality interacts with sums and intersections of
subsets of V. For A,B ⊆ V we denote

A + B ≜ {u + v | u ∈ A, v ∈ B}.

We now have the following assertions.

4.1.15 Proposition (Orthogonality and sum and intersection) LetF ∈ {R,C}, let (V, ⟨·, ·⟩)
be a F-inner product space, and let A,B ⊆ V. Then the following statements hold:

(i) (A + B)⊥ = A⊥ ∩ B⊥.
(ii) (cl(spanF(A)) ∩ cl(spanF(B)))⊥ = A⊥ + B⊥.

Proof (i) By part (iv) of Proposition 4.1.13 we have

(A + B)⊥ = (spanF(A + B))⊥ = (spanF(A) + spanF(B))⊥,

using the easily verified identity spanF(A+B) = spanF(A)+spanF(B). Let w ∈ (A+B)⊥.
Then ⟨w,u + v⟩ = 0 for every u ∈ spanF(A) and v ∈ spanF(B). In particular, ⟨w,u⟩ = 0
and ⟨w, v⟩ = 0 for every u ∈ spanF(A) and v ∈ spanF(B). Thus w ∈ A⊥ ∩ B⊥. Next
suppose that w ∈ A⊥ ∩ B⊥. Then, using part (iv) of Proposition 4.1.13,

w ∈ (spanF(A))⊥ ∩ (spanF(B))⊥.
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Therefore, ⟨w,u⟩ = ⟨w, v⟩ = 0 for every u ∈ spanF(A) and v ∈ spanF(B). Thus ⟨w,u+v⟩ =
0 u ∈ spanF(A) and v ∈ spanF(B), giving

w ∈ (spanF(A) + spanF(B))⊥ = (A + B)⊥,

as desired.
(ii)
Conversely, since

cl(spanF(A)) ∩ cl(spanF(A)) ⊆ cl(spanF(A))

we have
(cl(spanF(A)))⊥ ⊆ (cl(spanF(A)) ∩ cl(spanF(A)))⊥

by part (i) of Proposition 4.1.13. By part (iv) of the same result we then have

A⊥ ⊆ (cl(spanF(A)) ∩ cl(spanF(A)))⊥.

In like manner
B⊥ ⊆ (cl(spanF(A)) ∩ cl(spanF(A)))⊥.

Since (cl(spanF(A)) ∩ cl(spanF(A)))⊥ is a subspace by part (iii) of Proposition 4.1.13 it
then follows that

A⊥ + B⊥ ⊆ (cl(spanF(A)) ∩ cl(spanF(A)))⊥,

giving the desired conclusion. ■

4.1.4 Hilbert spaces and their subspaces

As inner-product spaces are normed vector spaces, the whole discussion of
Cauchy sequences, convergent sequences, and completeness in Sections 3.2 and 3.3
can be applied to inner product spaces. The notion of a complete inner product
space is important enough to have its own name.

4.1.16 Definition (Completeness, Hilbert space) Let F ∈ {R,C}. A F-inner product
space (V, ⟨·, ·⟩) is complete if the corresponding normed vector space is complete.
A F-Hilbert1 space is a complete F-inner product space. •

Since inner product spaces are also normed vector spaces, the construction of
the completion in Theorem 3.3.6 also applies to inner product spaces. That is to
say, every inner product space possesses a completion that is a Banach space. Of
course, one would also like to have the completion be a Hilbert space, and this is
the content of the next result.

1David Hilbert (1862–1943) in one of history’s greatest mathematicians. At the 1900 International
Congress of Mathematics in Paris, Hilbert gave a list of twenty three problems which he felt should
guide mathematical research in the upcoming centuries. Many of Hilbert’s problems have been
solved, some to great aplomb. Hilbert’s own contributions were in many fields, including geometry,
analysis, logic, and algebra.
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4.1.17 Theorem (Completion of an inner product space) If (V, ⟨·, ·⟩) is an inner product
space then there exists a Hilbert space (V, ⟨·, ·⟩) and an injective linear map iV : V → V
with the following properties:

(i) image(iV) is dense in V;

(ii) ⟨v1,v2⟩ = ⟨iV(v1), iV(v2)⟩.
Proof We let V be the vector space constructed from the normed vector space asso-
ciated to V as in Theorem 3.3.6, and we let iV also be the linear map constructed in
the proof of that result. Now let v ∈ V and v ∈ V and let (v j) j∈Z>0 be a sequence in
V for which v = lim j→∞ v j. We claim that the sequence (⟨v j, v⟩) j∈Z>0 in F converges.
We may suppose that v , 0 without loss of generality. Let ϵ > 0 and choose N ∈ Z>0
so that ∥v j − vk∥ <

ϵ
∥v∥ for j, k ≥ N; this is possible by continuity of the norm. By the

Cauchy–Bunyakovsky–Schwarz inequality we then have

|⟨v j, v⟩ − ⟨vk, v⟩| ≤ |⟨v j − vk, v⟩| ≤ ∥v j − vk∥∥v∥ ≤ ϵ

for j, k ≥ N, showing that (⟨v j, v⟩) j∈Z>0 is Cauchy, and so convergent. Thus we may
sensibly define ⟨v, v⟩ = lim j→∞⟨v j, v⟩. We may similarly, of course, define ⟨v, v⟩, thus
defining ⟨·, ·⟩ on V×V and V×V. The same sort of arguments also allow one to define
⟨v1, v2⟩ for v1, v2 ∈ V. To show that the resulting map V × V ∋ (v1, v2) 7→ ⟨v1, v2⟩ ∈ F
is an inner product is a simple verification of the axioms, using the fact, for example,
that if a sequence (v j) j∈Z>0 converges to v, then the sequence (av j) j∈Z>0 converges to
av for a ∈ F. That (i) holds is an immediate consequence of Theorem 3.3.6, and (ii) is
obvious. ■

Let us consider our inner product space examples to determine which are
Hilbert spaces.

4.1.18 Examples (Hilbert spaces and non-Hilbert spaces)
1. The inner product space (Fn, ⟨·, ·⟩2) is a Banach space by virtue of the fact that

every finite-dimensional inner product space is complete (Theorem 3.3.3).
2. The inner product space (F∞0 , ⟨·, ·⟩2) is not complete. Indeed, in Corollary 3.8.21

we saw that its completion is ℓ2(F) which contains F∞0 as a strict subset. To
“by hand” show that (F∞0 , ⟨·, ·⟩2) is not complete can be done following the
strategy of Example 3.3.1–1. We leave the working out of this to the reader
as Exercise 4.1.6. The completion of (F∞0 , ⟨·, ·⟩2) is (ℓ2(F), ⟨·, ·⟩2) as is proved in
Corollary 3.8.21.

3. The inner product space (C0([a, b];F), ⟨·, ·⟩2) is not a Hilbert space if b > a.
In we showed that L2([a, b];F) is the completion of C0([a, b];F) with respect what

to the norm induced by the inner product ⟨·, ·⟩. Since C0([a, b];F) is a strict
subset of L2([a, b];F) this allows us to conclude that (C0([a, b];F), ⟨·, ·⟩2) is not
complete. Moreover, one can show this explicitly following the arguments of
Example 3.3.1–2; see Exercise 4.1.7. •

The following conclusion for complete subspaces of inner product spaces is
important. Note that definiteness of the inner product is essential here.
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4.1.19 Theorem (Complete subspaces and direct sum decompositions) If F ∈ {R,C},
if (V, ⟨·, ·⟩) is an F-inner product space, and if U is a complete subspace of V, then
V = U ⊕ U⊥.

Proof We refer ahead to Theorem 4.1.25 for a characterisation of the minimisation of
the distance from a point to a convex subset. There is nothing in that theorem that
involves machinery not yet available to us.

Let v0 ∈ V and, by Theorem 4.1.25, let v̂0 ∈ U be the unique vector such that

∥v0 − v̂0∥ = inf{∥v0 − u∥ | u ∈ U}.

We claim that v0 − v̂0 ∈ U⊥.
First we do a little computation. Let v ∈ V, let u ∈ U \ {0V}, and let a ∈ F. Then we

compute

∥v − au∥2 = ⟨v − au, v − au⟩

= ∥v∥2 − a⟨u, v⟩ − ā⟨v,u⟩ + aā∥u∥2

= ∥v∥2 + ∥u∥2
(
aā − a

⟨v,u⟩
∥u∥2

− ā
⟨v,u⟩
∥u∥2

)
= ∥v∥2 + ∥u∥2

(
a −
⟨v,u⟩
∥u∥2

)(
ā −
⟨v,u⟩
∥u∥2

)
−
|⟨v,u⟩|2

∥u∥2

= ∥v∥2 + ∥u∥2
∣∣∣∣∣∣a − ⟨v,u⟩∥u∥2

∣∣∣∣∣∣
2

−
|⟨v,u⟩|2

∥u∥2
.

As a function of a this quantity is minimised when a = a0 ≜=
⟨v,u⟩
∥u∥2 and the minimum

value of the function is

∥v∥2 −
|⟨v,u⟩|2

∥u∥2
.

Now apply this to v = v0 − v̂0 to give

∥v0 − v̂0 − a0u∥ = ∥v0 − v̂0∥ −
|⟨v0 − v̂0,u⟩|2

∥u∥2
(4.5)

for every u ∈ U \ {0V}. By definition of v̂0 we have

∥v0 − v̂0 + a0u∥2 ≥ ∥v0 − v̂0∥
2,

and from this and (4.5) we have

|⟨v0 − v̂0,u⟩|2

∥u∥2
= 0 =⇒ |⟨v0 − v̂0,u⟩|2 = 0

for all u ∈ U \ {0V}. Thus v0 − v̂0 ∈ U⊥, as claimed above.
Therefore, for every v ∈ V we can write v = (v− v̂)− v̂ where v̂ ∈ U and v− v̂ ∈ U⊥.

Since U ∩ U⊥ = {0V} by Proposition 4.1.13 we have V = U ⊕ U⊥, giving the theorem.■

As concerns Hilbert spaces, we have the following result.
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4.1.20 Corollary (Closed subspaces and direct sum decompositions) If F ∈ {R,C},
if (V, ⟨·, ·⟩) is an F-Hilbert space, and if U is a closed subspace of V, then V = U ⊕ U⊥.

Proof By Proposition 1.1.33 closed subspaces of Hilbert spaces are complete. Thus
the result follows from Theorem 4.1.19. ■

In finite dimensions the hypotheses of the theorem are always satisfied for any
inner product.

4.1.21 Corollary (Orthogonal decompositions of finite-dimensional inner product
spaces) If F ∈ {R,C}, if (V, ⟨·, ·⟩) is a finite-dimensional F-inner product space, and if
U is a subspace of V, then V = U ⊕ U⊥.

Let us give an examples exploring the necessity of the hypotheses of the pre-
ceding results concerning direct sum decompositions.

4.1.22 Examples (Direct sum decomposition of inner product spaces)
1. The assumption in Theorem 4.1.19 that U is complete is essential. Indeed,

consider the Hilbert space (ℓ2(F), ⟨·, ·⟩2) with

⟨(a j) j∈Z>0 , (b j) j∈Z>0⟩ =

∞∑
j=1

a jb̄ j.

Take the subspace F∞0 which is not complete since its completion is ℓ2(F) by
Corollary 3.8.21. By Proposition 4.1.13 we have

(F∞0 )⊥ = (cl(F∞0 ))⊥ = ℓ2(F)⊥ = {0ℓ2(F)}.

Thus we have ℓ2(F) , F∞0 ⊕ (F∞0 )⊥.
2. Let us now consider the necessity that V be a Hilbert space in Corollary 4.1.20.

We consider the incomplete inner product space (F∞0 , ⟨·, ·⟩2) and the subspace

U =
{
(a j) j∈Z>0

∣∣∣∣ ∞∑
j=1

a j

j
= 0

}
.

We leave to the reader the elementary verification that U is a proper subspace
of F∞0 .
Let us verify that U is closed. Let ((a jl) j∈Z>0)l∈Z>0 be a sequence in U converging
to (a j) j∈Z>0 in F∞0 . Fix j ∈ Z>0 and let ϵ ∈ R>0. Choose N ∈ Z>0 sufficiently large
that

∥(a j) j∈Z>0 − (a jl) j∈Z>0∥ < ϵ

for l ≥ N. Then, for l ≥ N,

|a j − a jl|
2
≤

∞∑
k=1

|ak − akl|
2 = ∥(ak)k∈Z>0 − (akl)k∈Z>0∥

2 < ϵ2.
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That is to say, liml→∞ a jl = a j for each j ∈ Z>0. Define

bnl =

n∑
j=1

a jl

j
.

We claim that the double sequence (bnl)n,l∈Z converges to zero. Since (a j) j∈Z>0 ∈

F∞0 there exists N1 ∈ Z>0 such that a j = 0 for j > N1. Now let ϵ ∈ R>0 and let
N2 ∈ Z>0 be sufficiently large that

∥(a j) j∈Z>0 − (a jl) j∈Z>0∥ <
ϵ
M

for l ≥ N2, where

M ≜
∞∑
j=1

1
j2 ,

this series being summable by Example I-2.4.2–4. Then, using the
Cauchy–Bunyakovsky–Schwarz inequality, for l,n ≥ max{N1,N2},

|bnl| =
∣∣∣∣ n∑

j=1

a jl

j

∣∣∣∣ ≤ ∣∣∣∣ n∑
j=1

a jl − a j

j

∣∣∣∣ + ∣∣∣∣ n∑
j=1

a j

j

∣∣∣∣
≤

( n∑
j=1

|a j − a jl|
2
)1/2( n∑

j=1

1
j2

)1/2

≤

( ∞∑
j=1

|a j − a jl|
2
)1/2( ∞∑

j=1

1
j2

)1/2
< ϵ,

as desired. Then we have
∞∑
j=1

a j

j
=

∞∑
j=1

lim
l→∞

a jl

j
= lim

n→∞
lim
l→∞

bnl = 0,

using Proposition I-2.3.21. Thus we indeed have (a j) j∈Z>0 ∈ U and so U is closed.
Now let us show that U⊥ = {0F∞0 }. Let (a j) j∈Z>0 ∈ U⊥ and let N ∈ Z>0 be such that
a j = 0 for j > N. Then define (b jl) j∈Z>0 ∈ U, l ∈ {1, . . . ,N + 1}, by

b jl =


−l, j = l,
N + 1, j = N + 1,
0, otherwise.

Then
∞∑
j=1

b jl

j
= −

l
l
+

N + 1
N + 1

= 0,
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so (b jl) j∈Z>0 is indeed in U for each l ∈ {1, . . . ,N + 1}. Moreover, for each l ∈
{1, . . . ,N},

0 = ⟨(a j) j∈Z>0 , (b jl) j∈Z>0⟩ = −lal,

and so al = 0 for l ∈ {1, . . . ,N}. Thus U⊥ = {0F∞0 } as claimed. •

The preceding examples suggest that there is some sort of relationship between
completeness of inner product spaces and properties of closed subspaces. Let us
clarify this with the following result.

4.1.23 Theorem (Subspace characterisations of completeness of inner product
spaces) ForF ∈ {R,C} and for aF-inner product space (V, ⟨·, ·⟩), the following statements
are equivalent:

(i) V is a Hilbert space;
(ii) for every closed subspace U of V it holds that V = U ⊕ U⊥;
(iii) for every closed subspace U of V it holds that U = (U⊥)⊥;
(iv) for every proper closed subspace U of V it holds that U⊥ , {0V}.

Proof (i) =⇒ (ii) This is Corollary 4.1.20.
(ii) =⇒ (iii) By Proposition 4.1.13 we have U ⊆ (U⊥)⊥. Now let v ∈ (U⊥)⊥ and write

v = v1 + v2 for v1 ∈ U and v2 ∈ U⊥. Then v2 = v − v1 ∈ (U⊥)⊥ since v ∈ (U⊥)⊥ and
v1 ∈ U ⊆ (U⊥)⊥. But this means that v2 ∈ U⊥ ∩ (U⊥)⊥ = {0V} and so v = v1 ∈ U.

(iii) =⇒ (iv) Let U be a subspace of V for which U⊥ = {0V}. By assumption,
U = {0V}

⊥ = V. Thus U is not proper.
(iv) =⇒ (i) Let V be a completion of V and regard V as a subspace of V. Let v̄ ∈ V.

If v̄ = 0V then v̄ ∈ V. So suppose that v̄ , 0V. Define fv̄ : V→ F by fv̄(u) = ⟨u, v̄⟩ noting
that fv̄ is continuous by Proposition 4.2.1. Thus ker( fv̄) is closed by Theorem 3.5.2,
being the preimage of the closed set {0V}. We claim that ker( fv̄) is a proper subspace.
To see this, suppose that ker( fv̄) = V and let (v j) j∈Z>0 be a sequence in V converging to
v̄. Then, by Theorem 3.5.2 and Proposition 4.2.1, we have

⟨v̄, v̄⟩ = ⟨ lim
j→∞

v j, v̄⟩ = lim
j→∞
⟨v j, v̄⟩ = 0,

contradicting the definiteness of the inner product. Thus we have ker( fv̄) ⊂ V. By
assumption there exists v′ ∈ ker( fv̄)⊥ such that ∥v∥ = 1. One can verify, cf. the proof of
Theorem 4.2.2 below, that if we take v = fv(v′)v′ then ⟨u, v̄⟩ = ⟨u, v⟩ for every u ∈ V.
Thus ⟨u, v̄ − v⟩ = 0 for every u ∈ V and so v̄ = v. Thus V = V. ■

For other conditions equivalent to completeness we refer to Theorems 4.2.4
and 4.4.10.

4.1.5 Minimising distance to a set

One of the very interesting and useful features of inner product spaces is that
they allow one to solve certain sorts of problems. In this section we consider the
following problem.
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4.1.24 Problem (Distance minimisation problem) Let F ∈ {R,C} and let (V, ∥·∥) be a
F-normed vector space. For v0 ∈ V and for a subset S ⊆ V do the following:

(i) determine dist(v0,S) ≜ inf{∥v0 − v∥ | v ∈ S};
(ii) ascertain whether there exists v̂0 ∈ S such that ∥v0 − v̂0∥ = dist(v0,S). •

In general, the previous problem is too difficult to be approachable. There
are a couple of reasons for this. First of all, by stating the problem for arbitrary
subsets the problem is simply unreasonable. One really must place some additional
structure on the set S. Below we will consider the case when S is convex. However,
even if one restricts the set S to be something “reasonable,” the problem can still be
too difficult to solve. One of the reasons this may be so is that general norms are
difficult to understand. The reader can explore this a little in the finite-dimensional
situation in Exercise 4.1.14. However, if one restricts the norm to come from an
inner product it turns out that it is possible to characterise the solutions to some
distance minimisation problems in a useful way. Thus we restrict our attention in
this section to the distance minimisation problem for inner product spaces.

The most accessible sufficiently interesting result concerns the minimisation of
the distance from a point to a convex set. We dealt with convexity in Rn in detail
in Section II-1.9 and in general vector spaces in Chapter 5. Here we simply recall
that a convex subset of a F-vector space V is a subset C for which

u, v ∈ C =⇒ {(1 − s)u + sv | s ∈ [0, 1]} ⊆ C.

We then have the following result which gives a case where the distance minimi-
sation problem possesses a unique solution.

4.1.25 Theorem (Minimisation of distance to convex subsets) Let F ∈ {R,C}, let
(V, ⟨·, ·⟩) be an F-inner product space, and let v0 ∈ V. If C ⊆ V is a complete convex set
then there exists a unique vector v̂0 ∈ C for which

∥v0 − v̂0∥ = dist(v0,C).
Proof Denote m = dist(v,C) and let (v j) j∈Z>0 be a sequence in C such that ∥v0 − v j∥

2 <
m2 + 1

j . We claim that the set

{v0} + C = {v0 + v | v ∈ C}

is convex. Indeed, if v0 + v1, v0 + v2 ∈ {v0} + C for v1, v2 ∈ C and if s ∈ [0, 1] then

(1 − s)(v0 + v1) + s(v0 + v2) = v0 + (1 − s)v1 + sv2 ∈ {v0} + C.

Now, since {v0}+C is convex, for each j, k ∈ Z>0 we have
∥∥∥1

2 ((v0+v j)+ (v0+vk))
∥∥∥2
≥ m2.

Now let ϵ ∈ R>0 and let N ∈ Z>0 be such that 4
N < ϵ2. For j, k ≥ N, using the

parallelogram law we then have

∥v j − vk∥
2 = ∥(v0 − v j) − (v0 − vk)∥2

= 2∥v0 − v j∥
2 + 2∥v0 − vk∥

2
− 4

∥∥∥ 1
2 ((v0 + v j) + (v0 + vk))

∥∥∥2

< 2m2 + 2
j + 2m2 + 2

k − 4m2 < 4
N < ϵ2.
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Thus ∥v j−vk∥ < ϵ for j, k ≥ N and so (v j) j∈Z>0 is a Cauchy sequence. Since C is complete
there exists v̂0 ∈ C such that (v j) j∈Z>0 converges to v̂0. This gives the existence part of
the lemma.

If û0 ∈ C has the property that ∥v0 − û0∥ = m then, using the parallelogram law,

∥û0 − v̂0∥
2 = 2∥v0 − û0∥

2 + 2∥v0 − v̂0∥
2

− 4
∥∥∥ 1

2 ((v0 + û0) + (v0 + v̂0))
∥∥∥ ≤ 2m2 + 2m2

− 4m2 = 0.

Thus ∥û0 − v̂0∥ = 0 and so û0 = v̂0. ■

Since a subspace of a vector space is obviously convex we can immediately
apply the preceding result to the case when C is a subspace. For subspaces,
however, there is more that can be said about the character of the points that solve
the distance minimisation problem: they are orthogonal to the subspace.

4.1.26 Theorem (Minimisation of distance to subspaces) LetF ∈ {R,C} and let (V, ⟨·, ·⟩)
be an F-inner product with v0 ∈ V and U ⊆ V a subspace. Then v̂0 ∈ U satisfies

∥v0 − v̂0∥ = dist(v0,U) (4.6)

if and only if v0 − v̂0 ∈ U⊥. Furthermore, if U is complete then there exists a unique vector
v̂0 ∈ U such that (4.6) holds.

Proof First suppose that v0 − v̂0 ∈ U⊥. Then, since v̂0 − u ∈ U for any u ∈ U, v0 − v̂0
and v̂0 − u are orthogonal. The Pythagorean identity (Exercise 4.1.12) then gives

∥v0 − u∥2 = ∥v0 − v̂0∥
2 + ∥v̂0 − u∥2

for any u ∈ U. From this we conclude that ∥v0 − v̂0∥
2
≤ ∥v0 − u∥2 for every u ∈ U. This

exactly means that v̂0 satisfies (4.6).
Now suppose that v̂0 satisfies (4.6). Let α ∈ F \ {0} and define fα : U → U by

fα(u) = v̂0 + α(u − v̂0). Since v̂0 satisfies (4.6) we have

∥v0 − v̂0∥
2
≤ ∥v0 − fα(u)∥2

= ∥(v0 − v̂0) − α(u − v̂0)∥2

= ∥v0 − v̂0∥
2 + |α|2∥u − v̂0∥ − α⟨u − v̂0, v0 − v̂0⟩ − ᾱ⟨v0 − v̂0,u − v̂0⟩.

From this we conclude that

α⟨u − v̂0, v0 − v̂0⟩ + ᾱ⟨u − v̂0, v0 − v̂0⟩ ≤ |α|
2
∥u − v̂0∥ (4.7)

for every u ∈ U. Now we write α = |α|eiθ for θ ∈ (−π, π]. If F = R we restrict to
θ ∈ {0, π}. Now divide (4.7) by |α| and take the limit as |α| → 0. Also note that

{u − v̂0 | u ∈ U} = U.

Putting this all together gives

eiθ
⟨u, v0 − v̂0⟩ + e−iθ

⟨u, v0 − v̂0⟩ ≤ 0,
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which again holds for all u ∈ U and θ ∈ (−π, π]. Taking θ = 0 gives

2 Re(⟨u, v0 − v̂0⟩) ≤ 0,

and taking θ = π gives
−2 Re(⟨u, v0 − v̂0⟩) ≤ 0

for all u ∈ U. From this we conclude that Re(⟨u, v0 − v̂0⟩) = 0 for all u ∈ U. A similar
argument, using θ = π

2 and θ = −π2 , gives Im(⟨u, v0 − v̂0⟩) = 0. Thus v0 − v̂0 ∈ U⊥, as
desired.

The final assertion of the theorem follows directly from Theorem 4.1.25. ■

The preceding result is insightful as it gives us a concrete description of the set of
points that minimise the distance from a vector v0 to a subspace U. This description
will be important for us in Section 4.4.4 subsequently for applications of the ideas
in Section 4.4.4. You will observe that the most difficult part of Theorem 4.1.26
is showing that the set of points minimising the distance is nonempty, and in fact
contains a single point, at least when U is complete. In finite-dimensions, these
issues are not so complicated, as can be seen in Exercise 4.1.15.nonexistence for

nonclosed subspaces

4.1.6 Norms

Theorem 4.1.9 was proved by John von Neumann.
Example 4.1.22–2 is taken from [Gudder 1974], as are the characterisations of

completeness in Theorem 4.1.23.

Exercises

4.1.1 Prove Proposition 4.1.2.
4.1.2 Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be a F-(semi-)inner product space. For a

subspace U ⊆ V, define a map from U×U toFby (u1,u2) 7→ ⟨u1,u2⟩ ≜ ⟨u1,u2⟩U.
Show that (U, ⟨·, ·⟩U) is an F-(semi-)inner product space.

4.1.3 Show that a C-inner product space is always aR-inner product space, using
the fact that a C-vector space is always a R-vector space.

4.1.4 Answer the following three questions.
(a) Show that the norm defined by an inner product satisfies the parallelo-

gram law.
(b) Show that the norm defined in Example 3.1.3–4 does not come from an

inner product.
(c) Give an interpretation of the parallelogram law in R2 with the standard

inner product.
4.1.5 Show using the parallelogram law that the norms ∥·∥1 and ∥·∥∞ on Fn are not

derived from an inner product if n ≥ 2.
4.1.6 Show explicitly (i.e., as is done in Example 3.3.1–1) that (F∞0 , ⟨·, ·⟩2) is not

complete.



2022/03/07 4.1 Definitions and properties of inner product spaces 529

4.1.7 Show explicitly (i.e., as is done in Example 3.3.1–2) that (C0([a, b],F), ⟨·, ·⟩2)
is not complete.

4.1.8 Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. Show that
the following two assertions are equivalent:

(i) there exists a (semi-)inner product ⟨·, ·⟩ on V such that ∥v∥ =
√
⟨v, v⟩ for

every v ∈ V;
(ii) the expression

∥u + v + w∥2 + ∥u + v − w∥2 − ∥u − v − w∥2 − ∥u − v + w∥2

is independent of w.
Hint: Use Theorem 4.1.9.

4.1.9 Let F ∈ {R,C} and let (V, ∥·∥) be a (semi)normed F-vector space. Show that
the following two assertions are equivalent:

(i) there exists a (semi-)inner product ∥·∥· on V such that ∥v∥ =
√
⟨v, v⟩ for

every v ∈ V;
(ii) the function s 7→ ∥u+ sv∥2 is a polynomial function of degree 2 for every

u, v ∈ V.
Hint: Use Theorem 4.1.9.

4.1.10 Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be an F-inner product space. Show that if
subsets A,B ⊆ V are orthogonal then so too are the subsets spanF(A) and
spanF(B).

4.1.11 Prove parts (i), (ii), and (iii) of Proposition 4.1.13.
4.1.12 Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be a F-semi-inner product space.

(a) Prove the Pythagorean identity:

∥v1 + v2∥
2 = ∥v1∥

2 + ∥v2∥
2

if v1 and v2 are orthogonal.
(b) Show that if F = R then the Pythagorean identity for v1 and v2 implies

that v1 and v2 are orthogonal.
(c) Give an example showing that the assertion in part (b) is generally false

if F = C.
4.1.13 For F ∈ {R,C}, for an F-inner product space (V, ⟨·, ·⟩), and for a subspace

U ⊆ V, answer the following two questions.
(a) Show that U ∩ U⊥ = {0}.
(b) Show that if U is closed then for every v ∈ V there exists unique vectors

u1 ∈ U and u2 ∈ U⊥ so that v = u1 + u2.
4.1.14 Consider the Banach space (R2, ∥·∥2) of Example 3.1.3–2 and the Banach

space (R2, ∥·∥∞) of Example 3.1.3–4. For each of these norms, and for the
subsets S and the points v0 given below, determine dist(v0,S) and determine
the set of points v̂0 ∈ S such that ∥v0 − v̂0∥ = dist(v0,S).
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(a) v0 = (0, 1) and S = {(v1, 0) | v1 ∈ [−1, 1]}.
(b) v0 = (0, 1) and S = spanR((1, 0)).
(c) v0 = (0, 1) and S = spanR((1, 1)).
(d) v0 = (0, 0) and S = {(v1, v2) | v2

1 + v2
2 ≥ 1}.

(e) v0 = (0, 0) and S = {(v1, v2) | v2
1 + v2

2 > 1}.

In the next exercise you will prove Theorem 4.1.26 when V is finite-dimensional.
As you will see, it is possible to be somewhat more concrete in this case, making you
appreciate that there is something real happening in the proof of Theorem 4.1.26.

4.1.15 Let (V, ⟨·, ·⟩) be a finite-dimensional inner product space, and let v0 ∈ V with
U ⊆ V a subspace. Provide a proof of Theorem 4.1.26 in this case along the
following lines.
1. Argue that the result is trivial unless v0 < U. Thus assume this for the

remainder of the proof.
2. For a subspace U ⊆ V let {u1, . . . ,um} be an orthonormal basis for U. Can

this always be done?
3. Extend the basis from the previous part of the question to an orthonormal

basis {v1 = u1, . . . , vm = um, vm+1, . . . , vn} for V. Can this always be done?
4. As a function on U, use the above basis to explicitly write down the

function defining the distance from U to v0.
5. Show that the unique point in U that minimises the distance function is

v̂0 =

m∑
j=1

⟨v,u j⟩u j.
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Section 4.2

Continuous maps between inner product spaces

Inner product spaces, being normed vector spaces, are of course subject to all the
definitions and results concerning maps between normed vector spaces as stated
in Section 3.5. We shall take all of these definitions and results for granted, and
instead emphasise the things that are distinctive for inner product spaces.

Do I need to read this section? The results in this section complement those of
Section 3.5, and so should be absorbed if one is in the business of understanding
continuous maps between infinite-dimensional spaces. •

4.2.1 The dual of an inner product space

Much of the special character of inner product spaces, as opposed to more
general normed vector spaces, is reflected in the structure of the topological dual
of an inner product space. In order to understand this it is useful to first record
some elementary properties of inner products.

4.2.1 Proposition (Continuity properties of operations in an inner product space)
Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be an inner product space. Then the following maps are

uniformly continuous:
(i) V ∋ v 7→ ⟨v,v0⟩ ∈ F for v0 ∈ V;
(ii) V ∋ v 7→ ⟨v0,v⟩ ∈ F for v0 ∈ V;
(iii) F ∋ a 7→ ⟨av1,v2⟩ ∈ F for v1,v2 ∈ V;
(iv) F ∋ a 7→ ⟨v1, av2⟩ ∈ F for v1,v2 ∈ V.

Proof (i) If v0 = 0V the assertion is clearly true as the map is the constant map with
value zero. Thus consider v0 , 0V. Let ϵ ∈ R>0 and take δ = ϵ

∥v0∥
. Then, using the

Cauchy–Bunyakovsky–Schwarz inequality,

|⟨v1, v0⟩ − ⟨v2, v0⟩| = |⟨v1 − v2, v0⟩| ≤ ∥v1 − v2∥∥v0∥ ≤ ϵ

for ∥v1 − v2∥ < δ.
(ii) Conjugation a 7→ ā is clearly uniformly continuous. Therefore, v 7→ ⟨v0, v⟩ =

⟨v, v0⟩ is uniformly continuous, being a composition of uniformly continuous maps.
(iii) If ⟨v1, v2⟩ = 0 then clearly the given map is continuous since it is the constant

map with value zero. So suppose that ⟨v1, v2⟩ is nonzero. Let ϵ ∈ R>0 and take
δ = ϵ

|⟨v1,v2⟩|
. Then

|⟨a1v1, v2⟩ − ⟨a2v1, v2⟩| = |⟨(a1 − a2)v1, v2⟩| = |a1 − a2||⟨v1, v2⟩| ≤ ϵ

for |a1 − a2| < δ.
(iv) This follows from part (iii) as part (ii) follows from (i). ■

The central result concerning the dual of an inner product space is then the
following.
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4.2.2 Theorem (Riesz Representation Theorem) Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be a
Hilbert space with topological dual V∗. If α ∈ V∗ then there exists a unique vα ∈ V such
that ⟨u,vα⟩ = α(u) for every u ∈ V.

Proof If α = 0 then we can take vα = 0. So let α ∈ V∗ \ {0}. We claim that ker(α) is a
closed subspace of V. It is certainly a subspace. To show that it is closed, let (v j) j∈Z>0 be
a sequence in ker(α) converging to v0 ∈ V. Then, by continuity of α and Theorem 3.5.2
we have

α(v0) = α
(
lim
j→∞

v j

)
= lim

j→∞
α(v j) = 0.

Thus v0 ∈ ker(α) and so ker(α) is closed by Proposition 3.6.8. Since α , 0, ker(α) , V.
By Theorem 4.1.19, since ker(α) is closed we can choose a nonzero vector v0 ∈ ker(α)⊥,
supposing this vector to further have length 1. We claim that we can take vα = ᾱ(v0)v0,
where ᾱ : V → F is defined by ᾱ(v) = α(v). Indeed note that for u ∈ V the vector
α(u)v0 − α(v0)u is in ker(α). Therefore

0 = ⟨α(u)v0 − α(v0)u, v0⟩ = α(u) − α(v0)⟨u, v0⟩.

Thus
α(u) = ⟨u, ᾱ(v0)v0⟩ = ⟨u, vα⟩.

Thus vα as defined meets the desired criterion. Let us show that this is the only vector
satisfying the conditions of the theorem. Suppose that v1, v2 ∈ V have the property
that α(u) = ⟨u, v1⟩ = ⟨u, v2⟩ for all u ∈ V. Then ⟨u, v1−v2⟩ = 0 for all u ∈ V. In particular,
taking u = v1 − v2 we have ∥v1 − v2∥

2 = 0, giving v1 = v2. ■

The assumption that V is a Hilbert space is essential as the following example
shows.

4.2.3 Example (The dual of an incomplete inner product space) Let us consider the
F-inner product space (F∞0 , ⟨·, ·⟩2) where, we recall, that

⟨(a j) j∈Z>0 , (b j) j∈Z>0⟩ =

∞∑
j=1

a jb̄ j;

the sum is finite. Recall from Proposition I-5.7.5 that (F∞0 )′ = F∞ and so (F∞0 )∗ is a
subspace of F∞. Define α ∈ F∞ by α( j) = 1

j for each j ∈ Z>0. By Example I-2.4.2–4
note that

( 1
j ) j∈Z>0 ∈ ℓ

2(F) ⊆ F∞ =⇒ M2 ≜
∞∑
j=1

1
j2 < ∞.

(In fact, M2 = π2

6 but this precise number is not important for us, only that it is
finite.)

We claim that α is a continuous linear function on F∞0 . Indeed, let ϵ ∈ R>0 and
take δ = ϵ

M . Let a = (a j) j∈Z>0 , b = (b j) j∈Z>0 be such that

∥(a j) j∈Z>0 − (b j) j∈Z>0∥2 < δ.
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Then, using the Cauchy–Bunyakovsky–Schwarz inequality,

|α(a) − α(b)| = |α(a − b)| =
∣∣∣∣ ∞∑

j=1

a j − b j

j2

∣∣∣∣ ≤ ( ∞∑
j=1

|a j − b j|
2
)1/2( ∞∑

j=1

1
j2

)1/2
< ϵ.

Thus α is indeed continuous.
We next claim that there exists no fα ∈ F

∞

0 such that ⟨ fα,a⟩ = α(a) for every
a ∈ F∞0 . To see this, let (e j) j∈Z>0 be the standard basis for F∞0 so that e j(k) = 1 for
j = k and 0 otherwise. Then, if fα ∈ F

∞

0 we have ⟨ fα, e j⟩ = fα( j). Also, α(e j) = 1
j for

each j ∈ Z>0. Thus if fα ∈ F
∞ has the property that ⟨ fα, e j⟩ = α(e j) for every j ∈ Z>0

then it follows that fα( j) = 1
j for each j ∈ Z>0. But this means that fα( j) < F∞0 . •

The preceding example is, actually, representative of the general situation in the
sense of the following result which states that the assumption that V be a Hilbert
space is essential in the Riesz Representation Theorem.

4.2.4 Theorem (The Riesz Representation Theorem does not hold for non-Hilbert
spaces) ForF ∈ {R,C} and for aF-inner product space (V, ⟨·, ·⟩), the following statements
are equivalent:

(i) V is a Hilbert space;
(ii) for every α ∈ V∗ there exists vα ∈ V such that ⟨u,vα⟩ = α(u) for every u ∈ V.

Proof That (i) =⇒ (ii) is simply Theorem 4.2.2, so we need only prove the converse.
Thus we let V be a completion of V, let v̄ ∈ V, and define fv̄ : V → F by fv̄(u) = ⟨u, v̄⟩.
By Proposition 4.2.1 it follows that fv̄ is continuous. By assumption there exists v ∈ V
such that ⟨u, v⟩ = fv̄(u) = ⟨u, v̄⟩ for every u ∈ V. Thus v = v̄ and so V = V. ■

Let us examine a consequence of the Riesz Representation Theorem.

4.2.5 Corollary (The dual of a Hilbert space) Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be an F-
Hilbert space. Then the map α 7→ vα from V∗ to V is an isomorphism of R-normed vector
spaces that further satisfies vaα = āvα.

Proof According to the proof of Theorem 4.2.2 we have vα = ᾱ(v0)v0, where ᾱ ∈ V∗

is defined by ᾱ(v) = α(v) and where v0 is a fixed vector of unit length in ker(α)⊥. The
conclusions of the corollary are directly verified. ■

Note that V∗ are V are not isomorphic asF-vector spaces in the case whenF = C.
Sometimes the property of a linear map L : U→ V that
1. L(u1 + u2) = L(u1) + L(u2), u1,u2 ∈ U, and
2. L(au) = āL(u), a ∈ F, u ∈ U,
is called conjugate linearity and agree with the property of linearity if and only if
F = R.

Let us examine the Riesz Representation Theorem in a few special cases.
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4.2.6 Examples (Riesz Representation Theorem)
1. Let us consider the inner product space (Fn, ⟨·, ·⟩2). We represent an element
α ∈ (Fn)∗ by a 1 × n matrix:

α =
[
α(1) · · · α(n)

]
.

The vector vα ∈ Fn corresponding to αmust then satisfy

α(u) = ⟨u,vα⟩, u ∈ Fn

=⇒

n∑
j=1

α( j)u( j) =
n∑

j=1

u( j)vα( j), u ∈ Fn

=⇒ vα( j) = α( j), j ∈ {1, . . . ,n}.

2. Next we consider the Hilbert space (ℓ2(F), ⟨·, ·⟩2) and let α ∈ ℓ2(F)∗. Then Corol-
lary 4.2.5 ensures that there exists vα ∈ ℓ2(F) such that

α(u) =
∞∑
j=1

u( j)vα( j)

for every u ∈ ℓ2(F). From this expression we easily see that vα( j) = α(e j), j ∈ Z>0,
where {e j} j∈Z>0 is the standard basis for F∞0 .

3. Finally, we consider the Hilbert space (L2([a, b];F), ⟨·, ·⟩2). If α ∈ L2([a, b];F)∗ then
Corollary 4.2.5 ensures that there exists fα ∈ L2([a, b];F) such that

α(g) =
∫ b

a
g(x) fα(x) dx

for every g ∈ L2([a, b];F). To extract a more explicit characterisation of fα is
possible once one has on hand the notion of a maximal orthonormal family. We
refer to Exercise 4.4.8 for a working out of this characterisation. •

4.2.2 Particular aspects of continuity for inner product spaces

To get started we give a few constructions concerning linear maps between
inner product spaces that are specific to the inner product structure. We begin with
the notion of the adjoint of a continuous linear map.

4.2.7 Definition
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4.2.8 Remark (Self-adjointness in Sturm–Liouville2 theory) One of the important ar-
eas of application of inner product spaces is in so-called “Sturm–Liouville theory,”
which deals with a certain sort of ordinary differential equation. In this subject
one is interested in linear maps that are self-adjoint. The sort of maps that arise
in Sturm–Liouville theory are not of the sort coming from the preceding defi-
nition. There are many reasons why this is so, and we refer the reader to for where?

details. We mention this here because in reading some elementary treatments of
Sturm–Liouville theory one might be led to believe that the theory has to do with
the more or less simple situation of Definition 4.2.7. •

4.2.3 The adjoint of a continuous linear map

Consider two F-inner product spaces (U, ⟨·, ·⟩U) and (V, ⟨·, ·⟩V). For fixed v ∈ V
consider the map from U to F given by u 7→ ⟨L(u), v⟩. Since the inner product is
continuous (Proposition 4.2.1) this map is an element of U∗. In this way we assign
to each v ∈ V an element αv ∈ U∗. By the Riesz representation theorem this therefore
defines an element uv ∈ U. In other words, we have defined a map L∗ : V → U. It
is a straightforward exercise, given as Exercise 4.2.1, to show that L∗ is linear. We
call L∗ the adjoint of L in this case.

Let us consider an example of an adjoint defined on an infinite-dimensional
vector space.

4.2.9 Example On L2([0, 1];F) we consider the linear transformation defined by L( f )(t) =
t f (t), as in Example 3.5.28–3. We showed in that preceding example that L is
continuous, so it certainly possesses an adjoint as we describe here. Let f , g ∈ V
and compute

⟨L( f ), g⟩ =
∫ 1

0
t f (t)g(t) dt =

∫ 1

0
f (t)tg(t) dt = ⟨ f ,L∗(g)⟩

where L∗(g)(t) = tg(t). Thus we see in this case that L∗ = L. •

The following results might help in understanding the adjoint, telling us what
it looks like in Fn with the inner product being the dot product.

4.2.10 Proposition Consider the inner product on Fn given by the dot product:

⟨x,y⟩ = x · ȳ =
n∑

j=1

xiȳi.

If L ∈ L(Fn;Fm) is a linear map (i.e., an m × n matrix with entries in F), then L∗ = L̄T.
That is, the matrix corresponding to the linear map L∗ is obtained by taking the conjugate
of all entries in the transpose LT.

2Friedrich Otto Rudolf Sturm (1841–1919) was a German mathematician whose contributions
were mainly in the area of geometry. Joseph Liouville (1809–1882) was a French mathematician
who made contributions to many areas of mathematics and its applications. These areas include
mathematical physics, differential equations, number theory, and analysis.
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Proof One may write the dot product in terms of matrix multiplication like this:

x · ȳ = xT ȳ.

The definition of adjoint is then as follows. For x ∈ Fm, L∗x ∈ Fn satisfies

(L∗x) · ȳ = x ·
(
Ly

)
for every y ∈ Fn. Using the matrix multiplication characterisation of the dot product,
this gives, for every y ∈ Fn,

(L∗x)T ȳ = xT
(
Ly

)
=⇒

(
xT(L∗)T

)
ȳ = xT

(
L̄ȳ

)
=⇒

(
xT(L∗)T

)
ȳ =

(
xTL̄

)
ȳ.

Since this must be true for every y ∈ Fn we can assert that

xT(L∗)T = xTL̄

=⇒ L∗x = L̄Tx.

Thus we have shown that L∗ = L̄T, as desired. ■

Thus, if F = R, a self-adjoint linear on Rn is simply a symmetric matrix. However,
our principal interest is in understanding self-adjoint maps in the case when V is
infinite-dimensional.

4.2.4 Spectral properties for operators on Hilbert spaces

The eigenvalues and eigenvectors of a self-adjoint or symmetric linear operator
have some useful properties. Let us first consider eigenvalues for symmetric linear
operators. Note that the following result does not say that a symmetric linear has
eigenvalues.

4.2.11 Theorem Let (V, ⟨·, ·⟩) be an F-inner product space and let (L,dom(L)) be a symmetric
linear transformation on V. The following statements hold:

(i) ⟨L(v),v⟩ is real for each v ∈ dom(L);
(ii) spec0(L) ⊆ R;
(iii) spec1(L) ⊆ R;
(iv) if λ1 and λ2 are distinct eigenvalues for L, and if vi is an eigenvector for λi, i = 1, 2,

then ⟨v1,v2⟩ = 0.
Proof (i) We have

⟨L(v), v⟩ = ⟨v,L(v)⟩ = ⟨L(v), v⟩,

using the fact that L is symmetric.
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(ii) Suppose that λ ∈ spec0(L) and that λ , 0, otherwise the result is trivial. Let v
be an eigenvector for λ and note that

⟨L(v), v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩.

We also have, using the properties of the inner product,

⟨L(v), v⟩ = ⟨v,L(v)⟩

= ⟨L(v), v⟩

= λ⟨v, v⟩
= λ̄⟨v, v⟩,

since ⟨v, v⟩ is real. This shows that

λ⟨v, v⟩ = λ̄⟨v, v⟩,

giving λ̄ = λ as ⟨v, v⟩ , 0.
(iii) This is the most difficult part of the theorem, and to prove it we use two

technical lemmas.

1 Lemma If (L,dom(L)) is an invertible linear operator on a normed vector space (V, ∥·∥) for
which (L−1, image(L)) is unbounded, then there exists a sequence (vj)j∈Z>0 with the following
properties:

(i) ∥vj∥ = 1, j ∈ Z>0;

(ii) ∥L(vj)∥ < 1
j , j ∈ Z>0.

Proof Let S = {v ∈ image(L) | ∥v∥ = 1}. We claim that L−1(S) ⊆ V is unbounded. To
see this, suppose that L−1(S) is bounded. Denote by B(r, 0) = {v ∈ V | ∥v∥ ≤ r} the
closed ball of radius r centred at 0 ∈ V. Since L−1(S) is bounded there exists M > 0 with
the property that L−1(B(1, 0)) ⊆ B(M, 0). Now let ϵ > 0. Choosing δ = ϵ

M we see that
L−1(B(δ, 0)) ⊆ B(ϵ, 0) by linearity of L−1. This shows that if L−1(S) is bounded then L−1

is bounded.
Now, since L−1(S) is unbounded there exists a sequence (uk)k∈Z>0 in S so that

limk→∞∥L−1(uk)∥ = ∞. Since u j ∈ image(L) there exists a sequence (ṽ j) j∈Z>0 in dom(L)
so that L(ṽ j) = u j, j ∈ Z>0. Therefore L−1 ◦ L(ṽ j) = ṽ j = L−1(u j). Thus lim j→∞∥ṽ j∥ = ∞.

Defining
(
v j =

ṽ j

∥v j∥

)
j∈Z>0

we see that lim j→∞∥L(v j)∥ = lim j→∞
∥u j∥

∥ṽ j∥
= 0. Thus there exists

a subsequence (v jk)k∈Z>0 of (v j) j∈Z>0 having the property as asserted in the lemma. ▼

2 Lemma If (L,dom(L)) is a symmetric linear operator on an inner product space (V, ⟨·, ·⟩) and
if λ = ξ + iη ∈ C then ∥(L − λ idV)(v)∥2 ≥ η2

∥v∥2 for each v ∈ dom(L).
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Proof We compute

∥(L − λ idV)(v)∥2 = ⟨(L − λ idV)(v), (L − λ idV)(v)⟩

= ∥L(v)∥2 − ⟨L(v), λv⟩ − ⟨λv,L(v)⟩ + ∥λv∥2

= ∥L(v)∥2 − λ⟨L(v), v⟩ − λ⟨L(v), v⟩ + (ξ2 + η2)∥v∥2

= ∥L(v)∥2 − 2ξ⟨L(v), v⟩ + ξ2
∥v∥2 + η2

∥v∥2

= ∥(L(v) − ξ idV)(v)∥2 + η2
∥v∥2

≥ η2
∥v∥2,

as desired. ▼

We now proceed with the proof by showing that if Im(λ) , 0 then L − λ idV is
bounded. Let us write λ = ξ + iη. For any sequence (v j) j∈Z>0 with the property that
∥v j∥ = 1, j ∈ Z>0, by Lemma 2 we have ∥(L − λ idV)(v j)∥ ≥ |η| for j ∈ Z>0. Thus there
exists N ∈ Z>0 so that ∥(L − λ idV)(v j)∥ > 1

j provided that j ≥ N. By Lemma 1 this
means that (L− λ idV)−1 must be bounded if Im(λ) , 0, meaning that no such λ can lie
in the continuous spectrum of L.

(iv) Let λ1, λ2 ∈ R and v1, v2 ∈ dom(L) be as specified. Then we compute

(λ1 − λ2)⟨v1, v2⟩ = ⟨λ1v1, v2⟩ − ⟨v1, λ2v2⟩

= ⟨L(v1), v2⟩ − ⟨v1,L(v2)⟩
= 0,

using properties of the inner product and self-adjointness of L. Since λ1 , λ2, it follows
that v1 and v2 are orthogonal as stated. ■

With part (i) of the theorem at hand, the following definition makes sense.

4.2.12 Definition Suppose that (L,dom(L)) is a symmetric linear operator on (V, ⟨·, ·⟩).
(i) (L,dom(L)) is positive-definite if ⟨L(v), v⟩ ≥ 0 for each v ∈ V and ⟨L(v), v⟩ = 0

only if v = 0.
(ii) (L,dom(L)) is negative-definite if (−L,dom(L)) is positive-definite. •

Now let us consider a further refinement that can be made for linear operators
that are not only symmetric, but self-adjoint.

4.2.13 Theorem If (L,dom(L)) is a self-adjoint linear operator on a Hilbert space (V, ⟨·, ·⟩) then
spec(L) ⊆ R and spec

−1(L) = ∅.
Proof Since a self-adjoint linear operator is symmetric, from Theorem 4.2.11 we need
only show that spec

−1(L) = ∅. We begin with a lemma that is of interest in its own
right.
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1 Lemma Let (L,dom(L)) be a linear operator, not necessarily self-adjoint, on a Hilbert space
(V, ⟨·, ·⟩) with dom(L) dense in V, and let λ ∈ spec

−1(L) have deficiency m. Then λ̄ is an
eigenvalue of L∗ with multiplicity m.

Proof Note that dim(V/ cl(image(Lλ))) = dim(image(Lλ)⊥). Indeed, for those familiar
with the notation involved with quotient spaces, the map sending v + cl(image(Lλ)) ∈
V/ cl(image(Lλ)) to the orthogonal projection of v onto image(Lλ)⊥ is an isomorphism
of V/ cl(image(Lλ)) with image(Lλ)⊥. For v ∈ dom(L) and u ∈ image(Lλ)⊥ we have
⟨(L − λ idV)(v),u⟩ = 0 = ⟨v, 0⟩. This shows that 0 ∈ dom((L − λ idV)∗) and that (L −
λ idV)∗(u) = 0. Now note that (L − λ idV)∗ = L∗ − λ̄ idV (this is Exercise 4.2.2). This
shows that u ∈ image(Lλ)⊥ is an eigenvector for L∗ with eigenvalue λ̄, as desired. ▼

Now we proceed with the proof. If λ ∈ spec
−1(L) then, since (L,dom(L)) is self-

adjoint and by Lemma 1, we know that λ ∈ spec0(L). Thus spec
−1(L) ⊆ R. However,

if λ ∈ R is in spec
−1(L) then Lemma 1 implies that λ is an eigenvalue of L∗ and so

an eigenvalue of L. However, points in spec
−1(L) cannot be eigenvalues, so the result

follows. ■

The reader might recall that if V is a finite-dimensional inner product space,
then there is always a basis of orthogonal eigenvectors for a self-adjoint linear
transformation. The reader is led through a proof of this in Exercise 4.2.5. In
infinite-dimensions, things are more subtle. Indeed, in infinite dimensions it is
possible that there be no eigenvalues, that there be finitely many eigenvalues, or
that there be infinitely many eigenvalues. The first two of these possibilities is
exhibited in Exercises 4.2.7 and 4.2.8. Orthogonal

transformations

and representations in

finite-dimensions

4.2.5 Notes

The Riesz Representation Theorem is frequently attributed to Riesz [1907c] and
Riesz [1909] and also to Fréchet [1907].

Exercises

4.2.1 Let L be a continuous linear transformation of an inner product space
(V, ⟨·, ·⟩). Show that the resulting map L∗ is linear.

4.2.2 Let (V, ⟨·, ·⟩) be a Hilbert space and let λ ∈ F. What is the adjoint of the linear
operator (Iλ,V) defined by Iλ(v) = λv?

4.2.3 On (V = L2([0, 1];F), ⟨·, ·⟩) consider the linear operator (L,dom(L) = V) de-
fined by

L( f )(t) =
∫ t

0
f (ξ) dξ.

Show that dom(L∗) = V and that

L∗( f )(t) =
∫

t
f (ξ) dξ.
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4.2.4 If (V, ⟨·, ·⟩) is an inner product space and if L ∈ Lc(V; V) is a self-adjoint linear
map, continuous with respect to the norm defined by the inner product,
show that the operator norm, which we denote by ||| · |||, satisfies

|||L||| = sup
∥v∥=1
⟨L(v), v⟩.

In the following exercise you will be led through an unconventional proof that a
self-adjoint linear transformation on a finite-dimensional vector space possesses a
basis of eigenvectors.

4.2.5 Let (V, ⟨·, ·⟩) be a finite-dimensional R-inner product space and let L : V→ V
be a self-adjoint linear map. Define

S1 = {v ∈ v | ∥v∥ = 1}

to be the sphere of radius r in V in the norm ∥·∥ defined by the inner product
⟨·, ·⟩.
(a) Show that S is closed and bounded.
Consider the function ϕ1 : V→ R defined by ϕ1(v) = |⟨L(v), v⟩|.
(b) Argue that the restriction of ϕ1 to S1 attains its maximum on S1.
Now recall the Lagrange multiplier theorem.

Lagrange multiplier theorem On the finite-dimensionalR-inner product space
(V, ⟨·, ·⟩) let f,g: V → R be functions with g having the property that for every
v ∈ g−1(0), g′(v) , 0. Then the derivative of the restriction of f to g−1(0) vanishes
at a point v0 ∈ g−1(0) if and only if there exists λ ∈ R so that the derivative of the
function

V ∋ v 7→ f(v) + λg(v) ∈ R

vanishes at v0.

Motivated by this, defineψ1 : V→ R byψ1(v) = ⟨v, v⟩−1 so that S1 = ψ−1
1 (0).

(c) Show that ψ′1(v) , 0 for all v ∈ ψ−1
1 (0).

Hint: To differentiate a function on V, use an orthonormal basis for V to write
the function in terms of the components of a point v ∈ V, and then differentiate
in the usual manner (you may have seen before the derivative of a function on
a vector space as the “gradient” of the function).

Now note that by (b), the restriction of the function ϕ1 to S1 attains its
maximum on S1. Thus, at the point v1 ∈ S1 where the restriction of ϕ1 attains
its maximum, the derivative of the restriction must vanish.
(d) Show that the point v1 ∈ S1 where the restriction of ϕ1 attains its maxi-

mum is an eigenvector for L.
Hint: Use the Lagrange multiplier theorem, this being valid by (c).
Hint: There are two cases to consider: (1) ⟨L(v1),v1⟩ > 0 and ⟨L(v1),v1⟩ < 0.



2022/03/07 4.2 Continuous maps between inner product spaces 541

Let v1 be as in part (d) and consider the subspace V2 = v⊥1 which is the
orthogonal complement to span(v1). Define ϕ2 : V→ R by

ϕ2(v) = ϕ1(v − ⟨v, v1⟩v1),

let S2 = S1 ∩ V2, and define ψ2 : V2 → R by

ψ2(v) = ⟨v, v⟩ − 1.

(e) Show that there exists a linear map L2 : V2 → R so that ϕ2(v) = |⟨L2(v), v⟩|
for v ∈ V2.

(f) Using part (e), argue that the above procedure can be emulated to show
that the point at which ϕ2 attains its maximum on S2 is an eigenvector
v2 for L2.

(g) Show that v2 ∈ V2 is an eigenvector for L, as well as being an eigenvector
for L2.

(h) Show that this process terminates after at most n = dim(V) applications
of the above procedure.
Hint: Determine what causes the process to terminate?

(i) Show that the procedure produces a collection, {v1, . . . , vn} of orthonor-
mal eigenvectors for L. Be careful that you handle properly the case
when the above process terminates before n steps.

4.2.6 Come to grips with Exercise 4.2.5 in the case when V = R2, ⟨·, ·⟩ is the “dot
product,” and for each of the following three self-adjoint linear maps.
(a) L(x, y) = (2x, y).
(b) L(x, y) = (−x, 2y).
(c) L(x, y) = (x, 0).
Thus you should in each case identify the maps ϕ1 and ϕ2, and show ge-
ometrically why maximising these functions picks off the eigenvectors as
stated in Exercise 4.2.5.

4.2.7 Consider again the inner product space (L2([0, 1],R), ⟨·, ·⟩2), and define a
function k : [0, 1] → R by k(t) = t. Now define a linear transformation Lk by
(Lk( f ))(t) = k(t) f (t). Show that Lk is self-adjoint, but has no eigenvalues.

4.2.8 Consider the inner product space (L2([0, 1],R), ⟨·, ·⟩2), and define a function
k : [0, 1]→ R by

k(t) =

0, t ∈ [0, 1
2 )

1, t ∈ [ 1
2 , 1].

Now define a linear transformation Lk as in Exercise 4.2.7. Show that the only
eigenvalues for Lk are λ1 = 0 and λ2 = 1, and characterise all eigenvectors
for each eigenvalue.
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Section 4.3

Examples of Hilbert spaces

That (Lp(T;F), ∥·∥p) is a Hilbert space if and only if p = 2 can be shown using
the parallelogram law, Theorem 4.1.9, and the reader is encouraged to do this
(Exercise 4.3.1).

Exercises

4.3.1 Using the parallelogram law, show that (Lp(T;F), ∥·∥p) is a Hilbert space if
and only if p = 2.
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Section 4.4

Orthonormal bases in Hilbert spaces

One of the features distinguishing Hilbert spaces from their more general Ba-
nach space brethren is that Hilbert spaces always possess a Schauder basis. In
the theory of Hilbert space these bases go by various names, including maximal
orthonormal set or complete orthonormal families; we use the former convention.
The idea that every vector in a Hilbert space can be written as a (possibly infinite)
sum of distinguished basis vectors is an important one, and plays an important
rôle in the theory of, for example, Fourier series; see Chapter IV-5. Our presenta-
tion in this section begins with the finite-dimensional case in order to build some
important intuition. We then progress to enumerable then general bases.

Do I need to read this section? This chapter, at least that part dealing with
countable maximal orthonormal sets, is important in our study of Fourier series in
Chapter IV-5. Moreover, understanding the “geometry” of Hilbert spaces will be
facilitated by understanding the notion of a maximal orthonormal set. •

4.4.1 General definitions and results

Before we proceed with our incremental treatment of orthonormal bases, let us
give the definitions that apply to all inner product spaces.

4.4.1 Definition (Orthonormal set) Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be an F-inner product
space.

(i) An orthogonal set is a collection {ei}i∈I of nonzero vectors in V such that
⟨ei1 , ei2⟩ = 0 for all distinct i1, i2 ∈ I.

(ii) An orthonormal set is an orthogonal set {ei}i∈I such that ∥ei∥ = 1 for all i ∈ I. •

Sometimes we will talk about orthonormal and orthogonal families rather than
sets. In this case we shall use the notation (ei)i∈I. The idea is the same, however.

Let us first indicate a useful construction for constructing orthonormal sets from
linearly independent sets.

4.4.2 Theorem (Gram–Schmidt3 orthonormalisation) Let F ∈ {R,C}, let (V, ⟨·, ·⟩) be an
F-inner product space, and let J be either the set {1, . . . ,n} for some n ∈ Z>0 or the set

3Jorgen Pedersen Gram (1850–1916) was a Danish mathematician whose principal employer
was the Hafnia Insurance Company. Much of Gram’s mathematical work was devoted to using
mathematical and statistical methods in forestry management. Despite being somewhat outside
the main circle of activity in mathematics, Gram made real contributions to algebra, number theory,
probability theory, and numerical analysis. Erhard Schmidt (1876–1959) was born in what is now
Estonia. His principal mathematical contributions were to the areas of integral equations and
functional analysis.
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Z>0. For a family (vj)j∈J of nonzero vectors in V define a family (u′j )j∈J in V recursively by
u′1 = v1 and

u′j = vj −

j−1∑
k=1

⟨vj,u′k⟩
∥u′k∥

2 u′k, j ∈ J \ {1}.

If the family (vj)j∈J is linearly independent then the family (u′j )j∈J is orthogonal. Moreover,

if we additionally define uj =
u′j
∥u′j ∥

, j ∈ J, then (uj)j∈J is orthonormal.

Proof Let us prove that for any m ∈ J the set {u′1, . . . ,u
′
m} is orthogonal. We prove this

by induction on m. The claim is clearly true for m = 1. Suppose that the claim is true
for m = r so that {u′1, . . . ,u

′
r} is orthogonal. If J = {1, . . . ,n} and if r = n then the claim

is established. Otherwise we can carry on to show that {u′1, . . . ,u
′

r+1} is orthogonal as
follows. For any j ∈ {1, . . . , r},

⟨u′r+1,u
′

j⟩ =
〈
vr+1 −

r∑
k=1

⟨vr+1,u′k⟩

∥u′k∥
2 u′k,u

′

j

〉
= ⟨vr+1,u′j⟩ − ⟨vr+1,u′j⟩ = 0.

Thus u′r+1 is orthogonal to the set {u′1, . . . ,u
′
r}. We claim that u′r+1 is nonzero. Indeed,

by Exercise 4.4.1 we know that {u′1, . . . ,u
′
r} is linearly independent. Therefore,

spanF(v1, . . . , vr) = spanF(u′1, . . . ,u
′

r).

Therefore, we have
u′r+1 = vr+1 + c1v1 + · · · + crvr

for c1, . . . , cr ∈ F. If u′r+1 = 0V then linear independence of {v1, . . . , vr+1} gives c1 = · · · =
cr = 0 and 1 = 0. This last assertion is absurd, and so we must have u′r+1 , 0V. This
shows that {u′1, . . . ,u

′

r+1} is indeed orthogonal.
Next we claim that orthogonality of {u′1, . . . ,u

′
m} for any m ∈ J suffices to establish

orthogonality of (u′j) j∈J. If J is finite this is obvious, so we consider the case where
J = Z>0. In this case the family (u′j) j∈Z>0 could not be orthonormal in two ways.

1. One of the vectors u′j, j ∈ Z>0, could be nonzero. This cannot happen, however,
since for any j ∈ Z>0 the set {u1, . . . ,u j} is orthogonal.

2. For distinct j1, j2 ∈ Z>0 it could hold that ⟨u j1 ,u j2⟩ , 0. This cannot happen,
however, since for any distinct j1, j2 ∈ Z>0 the set {u1, . . . ,um} is orthogonal for
m > max{ j1, j2}.
The last assertion of the theorem is obvious. ■

4.4.3 Notation (Orthogonal sets) Generally we will use the notion of orthonormal set
and not of an orthogonal set. However, in practice it is sometimes convenient to be
able to talk about orthogonal sets as the objects which naturally present themselves
are orthogonal, but not orthonormal. Note, however, that the two notions differ
only in the trivial (but sometimes annoying) manner of nonzero constants. •

The following properties of orthonormal sets will be important to us in this
section, and indeed in the study of inner product spaces in general.
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4.4.4 Definition (Maximal, total, and basic orthonormal sets) Let F ∈ {R,C}, let
(V, ⟨·, ·⟩) be an F-inner product space, and let {ei}i∈I be an orthogonal (resp. or-
thonormal) set.

(i) The orthogonal (resp. orthonormal) set {ei}i∈I is maximal if, for any orthogonal
(resp. orthonormal) set { f j} j∈J such that {ei}i∈I ⊆ { f j} j∈J, { f j} j∈J ⊆ {ei}i∈I.

(ii) The orthogonal (resp. orthonormal) set {ei}i∈I is total if cl(spanF({ei}i∈I)) = V.
(iii) An orthogonal (resp. orthonormal) set {ei}i∈I is basic if, for any v ∈ V, there

exist constants ci ∈ F, i ∈ I, for which the series∑
i∈I

ciei

converges to v in the sense of Definition 3.4.16. •

For convenience, let us recall here the definition of convergence used in the
above definition for basic orthonormal sets. Convergence of the series∑

i∈I

ciei (4.8)

to v means that, for every ϵ ∈ R>0, there exists a finite set J ⊆ I such that∥∥∥∥∑
j∈J

c je j − v
∥∥∥∥ < ϵ.

By Proposition 3.4.18 it follows that a convergent sum of the form (4.8) is such
that only countably many of the coefficients ci, i ∈ I, are nonzero. Moreover, by
Theorem 3.4.20, if the index set I is countable, say I = Z>0, then a sum∑

j∈Z>0

c je j

converges to v in the sense of Definition 3.4.16 if and only if it converges uncon-
ditionally to v. In particular, if this series converges to v in the sense of Defini-
tion 3.4.16 then it converges in the usual sense. It is usually the case that one deals
with countable orthonormal sets.

Before we begin to explore properties of orthonormal sets of various flavours,
let us give a few useful general results. First let us give the character of coefficients
in any convergent series of orthonormal vectors.

4.4.5 Proposition (Coefficients in a convergent series of orthonormal vectors) Let
F ∈ {R,C}, let (V, ⟨·, ·⟩) be an F-inner product space, and let {ei}i∈I be an orthonormal set.
If the series ∑

i∈I

ciei

converges to v ∈ V then the coefficients must satisfy ci = ⟨v, ei⟩, i ∈ I.
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Proof If I is finite then this is Exercise 4.4.4. Let us suppose, therefore, that I is infinite.
Since the series converges, by Proposition 3.4.18 it follows that there exists an injection
ϕ : Z>0 → I such that ci = 0 for i < image(ϕ) and such that

v =
∞∑
j=1

cϕ( j)eϕ( j).

Then, using Proposition 4.2.1 and Theorem 3.5.2, we deduce that for j0 ∈ Z>0 we have

⟨v, eϕ( j0)⟩ =
〈 ∞∑

j=1

c jeϕ( j), eϕ( j0)

〉
=

∞∑
j=1

c j⟨eϕ( j), eϕ( j0)⟩ = cϕ( j0),

giving ci = ⟨v, ei⟩ for i ∈ image(ϕ). For i < image(ϕ) a similar computation gives
⟨v, ei⟩ = 0¡ and so gives the result. ■

The following result is also useful.

4.4.6 Theorem (Bessel’s4 inequality) If F ∈ {R,C}, if (V, ⟨·, ·⟩) is anF-inner product space,
if {ei}i∈I is an orthonormal set, and if v ∈ V, then∑

i∈I

|⟨v, ei⟩|
2
≤ ∥v∥2;

in particular, the sum on the left converges.
Proof By Exercise 4.4.5 we have

n∑
j=1

|⟨v, ei j⟩|
2
≤ ∥v∥2

for every finite subset {i1, . . . , in} ⊆ I. If I is finite this immediately gives the result. Let
us consider the case where I is not finite. We claim that in this case ⟨v, ei⟩ = 0 for all
but countably many i ∈ I. To see this, define

I0 = {i ∈ I | |⟨v, ei⟩| > 0}

and suppose that I0 is not countable. For k ∈ Z>0 define

Ik = {i ∈ I | |⟨v, ei⟩|
2
≥

1
k }.

Note that I0 = ∪k∈Z>0Ik, implying by Proposition I-1.7.16 that for at least one k ∈ Z>0
the set Ik must be infinite (uncountable, actually, although this is not necessary). Let
N ∈ Z>0 be such that N > k∥v∥2. Then, for any finite subset {i1, . . . , iN} ⊆ Ik we have

N∑
j=1

|⟨v, ei j⟩|
2
≥

N∑
j=1

1
k
=

N
k
> ∥v∥2,

4Friedrich Wilhelm Bessel (1784–1846) was born in what is now Germany and made mathemat-
ical contributions to analysis. His primary scientific activities were directed towards astronomy.
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which gives a contradiction. Thus I0 must indeed be countable.
Thus we have an injection ϕ : Z>0 → I such that ⟨v, ei⟩ = 0 for i < image(ϕ) and

such that
∞∑
j=1

|⟨v, eϕ( j)⟩|
2 = lim

n→∞

n∑
j=1

|⟨v, eϕ( j)⟩|
2
≤ ∥v∥2.

Thus we have ∑
i∈I

|⟨v, ei⟩|
2
≤ ∥v∥2

for every index set I. Since this is a sum of positive terms, the series∑
i∈I

|⟨v, ei⟩|
2

converges for arbitrary index sets I. ■

Bessel’s inequality makes the following definition reasonable.

4.4.7 Definition (Orthonormal expansion) Let F ∈ {R,C}, let (V, ⟨·, ·⟩) be an F-inner
product space, and let {ei}i∈I be an orthonormal set. The orthonormal expansion of
v ∈ V with respect to {ei}i∈I is the series∑

i∈I

⟨v, ei⟩ei,

disregarding convergence. •

Let us give some examples of orthonormal sets.

4.4.8 Examples (Orthonormal sets)
1. In Fn with the standard inner product, one can check that the standard basis,

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1),

is orthonormal. That is to say, the set {e1, . . . , en} is orthonormal. Moreover, the
set {λ1e1, . . . , λnen} is orthogonal for any collection of constantsλ1, . . . , λn ∈ F\{0}.
Orthonormality of this set occurs precisely when λ j = 1, j ∈ {1, . . . ,n}.
It is easy to see that {e1, . . . , en} is a maximal orthonormal set. Indeed, let us
consider an orthonormal set {e1, . . . , en, en+1, . . . , ek} containing {e1, . . . , en}. We
claim that k = n. Suppose otherwise. Since {e1, . . . , en} is a basis for Fn it follows
that for each a ∈ {n + 1, . . . , k},

ea = ca1e1 + · · · + canen

for some constants ca1, . . . , can. Since ⟨ea, e j⟩ = 0 it follows that caj = 0 for
a ∈ {n + 1, . . . , k} and j ∈ {1, . . . ,n}. Thus en+1 = · · · = ek = 0, contradicting the
orthonormality of {e1, . . . , ek}. Thus k = n.
Moreover, since {e1, . . . , en} is a basis for Fn it follows that spanF(e1, . . . , en) = Fn,
and so the orthonormal set is total and basic.
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2. Next let us consider the inner product space (F∞0 , ⟨·, ·⟩2). We note that the
standard basis {e j} j∈Z>0 , which we recall is defined by

e j(k) =

1, j = k,
0, j , k,

is orthonormal; this is straightforward to verify. Moreover, the set (λ je j) j∈Z>0

is orthogonal for every collection of constants λ j ∈ F \ {0}, j ∈ Z>0, and is
orthonormal if and only if λ j = 1, j ∈ Z>0.
We leave it to the reader to show in Exercise 4.4.2 to show that {e j} j∈Z>0 is a
maximal orthonormal family.
Moreover, since {e j} j∈Z>0 is a basis for F∞0 it follows that spanF({e j} j∈Z>0) = F

∞

0 ,
and so the orthonormal set is total and basic.

3. The preceding examples might make one believe that the notions of maxi-
mal, total, and basic orthonormal sets are equivalent for general inner product
spaces. They are not. Let us give an example to illustrate this. We consider the
Hilbert space (ℓ2(F), ⟨·, ·⟩2) with {e j} j∈Z>0 the orthonormal set from the preceding
example, i.e., the standard (Hamel) basis for F∞0 ⊆ ℓ2(F). We then take the
subspace

U = spanF
( ∞∑

j=1

e j

j
, e2, e3, . . .

)
and consider (U, ⟨·, ·⟩2) as an inner product space. We claim thatB = {e2, e3, . . . }
is a maximal orthonormal set in U that is neither total nor basic.
To show that it is maximal, suppose that u ∈ U is orthogonal toB . Since u ∈ U
we can write

u = c1

( ∞∑
j=1

e j

j

)
+ c2e2 + · · · + ckek

for some k ∈ Z>0 and for c1, . . . , ck ∈ F. Since〈
u,

∞∑
j=1

e j

j

〉
= 0, ⟨u, e j⟩ = 0, j ∈ {2, 3, . . . },

it follows that c j = 0, j ∈ {1, . . . , k}, and so u = 0F∞0 . Thus there can be no
orthonormal subset of U containingB .
That B is not basic is plain since

∑
∞

j=1
e j

j is in U but is not a sum of the form∑
∞

j=2 c je j (this follows from Proposition 4.4.5).
ThatB is not total follows since the subspace spanF(e2, e3, . . . ) is a closed sub-
space containingB but is a strict subspace of V. •

The preceding examples illustrate that the notions of maximal, total, and basic
need not be equivalent for an orthonormal set. Let us explore the relationships
between these concepts in a general setting.
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4.4.9 Theorem (Relationship between maximal, total, and basic orthonormal sets)
Let F ∈ {R,C}, let (V, ⟨·, ·⟩) be an F-inner product space, and let B = {ei}i∈I be an

orthonormal set. The following four statements are equivalent:
(i) B is basic;
(ii) B is total;
(iii) for every v ∈ V the equality

∥v∥2 =
∑
i∈I

|⟨v, ei⟩|
2

holds, where convergence of the sum on the right is interpreted as in Defini-
tion I-2.4.31 (Parseval’s equality);

(iv) for all u,v ∈ V we have
⟨u,v⟩ =

∑
i∈I

⟨u, ei⟩⟨v, ei⟩,

where convergence of the sum on the right is interpreted as in Definition I-2.4.31.
Also, the following two statements are equivalent:

(v) B⊥ = {0V};
(vi) B is maximal.

Finally, if V is a Hilbert space, the first four equivalent statements are equivalent to the
last two equivalent statements.

Proof (i) =⇒ (ii) LetB = {ei}i∈I be basic and let v ∈ V. We can then write

v =
∑
i∈I

ciei

for some coefficients ci ∈ F, i ∈ I. If I is finite this immediately implies that v ∈
cl(spanF(B )). If I is not finite, by Proposition 3.4.18 and Theorem 3.4.20 there exists
an injection ϕ : Z>0 → I such that ci = 0 for i < image(ϕ) and such that

v =
∞∑
j=1

c jeϕ( j).

If we define

vk =

k∑
j=1

c je j

then the sequence (vk)k∈Z>0 converges to v. Thus v ∈ cl(spanF(B )) and soB is total.
(ii) =⇒ (iii) Let v ∈ V. SinceB is total there exists a sequence (v j) j∈Z>0 in spanF(B )

such that v = lim j→∞ v j. For each j ∈ Z>0 write

v j = c j1ei j1 + · · · + c jk jei jk j

for k j ∈ Z>0, coefficients c j1, . . . , c jk j ∈ F, and distinct i j1, . . . , i jk j ∈ I. By Exercise 4.4.4
it follows that c jl = ⟨v j, ei jl⟩ for each j ∈ Z>0, l ∈ {1, . . . , k j}. Note that the set
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∪ j∈Z>0{i j1, . . . , i jk j} is countable by Proposition I-1.7.16. This means that there exists
a countable set K ⊆ I such that

v j =
∑
k∈K

⟨v j, ek⟩ek

for each j ∈ Z>0, with the sum being finite. We claim that ⟨v, ei⟩ = 0 for i < K. Indeed,
for i ∈ I,

⟨v, ei⟩ = lim
j→∞
⟨v j, ei⟩ = lim

j→∞

∑
k∈K

⟨v j, ek⟩⟨ek, ei⟩ = 0,

using continuity of the inner product and Theorem 3.5.2.
We now have

∥v j∥
2 =

〈∑
k∈K

⟨v j, ek⟩ek,
∑
k′∈K

⟨v j, ek′⟩ek′
〉

=
∑
k∈K

∑
k′∈K

⟨v j, ek⟩⟨v j, ek′⟩⟨ek, ek′⟩

=
∑
k∈K

|⟨v j, ek⟩|
2,

using the fact that the inner product commutes with finite sums. Now, using continuity
of the norm and inner product, along with Theorem 3.5.2, gives

∥v∥2 = lim
j→∞
∥v j∥

2 = lim
j→∞

∑
k∈K

|⟨v j, ek⟩|
2 =

∑
k∈K

|⟨v, ek⟩|
2 =

∑
i∈I

|⟨v, ei⟩|
2,

as desired.
(iii) =⇒ (iv) For u, v ∈ V we have

∥u + v∥2 =
∑
i∈I

|⟨u + v, ei⟩|
2

=⇒ ∥u∥2 + ∥v∥2 + ⟨u, v⟩ + ⟨u, v⟩

=
∑
i∈I

|⟨u, ei⟩|
2 +

∑
i∈I

|⟨v, ei⟩|
2 +

∑
i∈I

(⟨u, ei⟩⟨v, ei⟩ + ⟨u, ei⟩⟨v, ei⟩)

=⇒ Re(⟨u, v⟩) =
∑
i∈I

Re(⟨u, ei⟩⟨v, ei⟩).

If F = R this establishes the result. If F = C, a similar computation using the equality

∥u + iv∥2 =
∑
i∈I

|⟨u + iv, ei⟩|
2

gives
Im(⟨u, v⟩) =

∑
i∈I

Im(⟨u, ei⟩⟨v, ei⟩).

(iv) =⇒ (i) Since part (iv) obviously implies part (iii), we shall prove that (iii)
implies (i). Thus we have

∥v∥2 =
∑
i∈I

|⟨v, ei⟩|
2
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for every v ∈ V. By Proposition I-2.4.33, for v ∈ V, it follows that there exists a bijection
ϕ : Z>0 → I such that ⟨v, ei⟩ = 0 for i < image(ϕ) and such that

∥v∥2 =
∞∑
j=1

|⟨v, eϕ( j)⟩|
2.

For k ∈ Z>0 let us define

vk =

k∑
j=1

⟨v, eϕ( j)⟩eϕ( j).

Note that

⟨v − vk, vk⟩ =
〈
v −

k∑
j=1

⟨v, eϕ( j)⟩eϕ( j),
k∑

l=1

⟨v, eϕ(l)⟩eϕ(l)

〉
=

〈
v,

k∑
l=1

⟨v, eϕ(l)⟩eϕ(l)

〉
−

〈 k∑
j=1

⟨v, eϕ( j)⟩eϕ( j),
k∑

l=1

⟨v, eϕ(l)⟩eϕ(l)

〉
=

k∑
l=1

|⟨v, eϕ(l)⟩|
2
−

k∑
j=1

|⟨v, eϕ( j)⟩|
2 = 0

for every k ∈ Z>0. By the Pythagorean equality,

∥v∥2 = ∥v − vk + vk∥
2 = ∥v − vk∥

2 + ∥vk∥
2 =⇒ ∥v − vk∥

2 = ∥v∥2 − ∥vk∥
2.

By assumption,
lim
k→∞
∥vk∥

2 = ∥v∥2

and so
lim
k→∞
∥v − vk∥ = 0,

implying that
v =

∑
i∈I

⟨v, ei⟩ei,

and so in particular implying thatB is basic.
(v) =⇒ (vi) Suppose thatB is not maximal. Then there exists an orthonormal set

B ′ such that B ⊂ B ′. Let v ∈ B ′ \B . Then, clearly, v ∈ B⊥ and v , 0V. Thus
B⊥ , {0V}.

(vi) =⇒ (v) Suppose thatB⊥ , {0V} and let v ∈B⊥ have unit length. Then the set
B ∪ {v} is an orthonormal set that strictly containsB . ThusB is not maximal.

(ii) =⇒ (v) By Proposition 4.1.13(iv) we haveB⊥ = cl(spanF(B ))⊥. From this fact,
ifB is total it immediately follows thatB⊥ = {0V}.

(vi) =⇒ (i) (assuming V is a Hilbert space) Let v ∈ V. Bessel’s inequality gives∑
i∈I

|⟨v, ei⟩|
2
≤ ∥v∥2,
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and this implies that the series on the right converges and so is Cauchy. Let ϵ ∈ R>0
and let J ⊆ I be a finite set for which∑

j∈J′
|⟨v, e j⟩|

2 < ϵ

for every finite subset J′ ⊆ I such that J ∩ J′ = ∅ (see Definition 3.4.16). A direct
computation using properties of inner products then gives∥∥∥∥∑

j∈J′
⟨v, e j⟩e j

∥∥∥∥2
=

∑
j∈J′
|⟨v, e j⟩|

2 < ϵ,

which shows that the series ∑
i∈I

⟨v, ei⟩ei

is Cauchy. By Theorem 3.4.17 this series converges, implying thatB is basic. ■

The following result records the fact that completeness is essential if all six of
the statements in the preceding theorem are to be equivalent.

4.4.10 Theorem (Maximal orthonormal sets are not generally Hilbert bases for non-
Hilbert spaces) For F ∈ {R,C} and for a F-inner product space (V, ⟨·, ·⟩), the following
statements are equivalent:

(i) V is a Hilbert space;
(ii) every maximal orthonormal set is a Hilbert basis.

Proof The implication of part (ii) from part (i) follows from Theorem 4.4.9, so we prove
the converse implication. Let U be a proper closed subspace of V. By Theorem 4.1.23, to
show that V is a Hilbert space it suffices to show that U⊥ , {0V}. So suppose otherwise.
Now let B = {ei}i∈I be a maximal orthonormal set in U and let B ′ = B ∪ { f j} j∈J be
a maximal orthonormal set in V that extends that B (that such a set exists may be
proved just as one proves Theorem I-4.5.26). Let j0 ∈ J. Since f j0 , 0V it follows that
f j0 < U⊥. Thus there exists u ∈ U such that ⟨u, f j0⟩ , 0. By hypothesis, B ′ is a basic
orthonormal set and so we may write

u =
∑
i∈I

aiei +
∑
j∈J

b j f j

for some coefficients ai ∈ F, i ∈ I, b j ∈ F, j ∈ J. Then∑
j∈J

b j f j = u −
∑
i∈I

aiei ∈ U.

We also have ∑
j∈J

b j f j ∈B
⊥.
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SinceB is a maximal orthonormal set in U it follows that∑
j∈J

b j f j = 0V

and so
⟨u, f j0⟩ =

〈∑
i∈I

aiei, f j0

〉
=

∑
i∈I

ai⟨ei, f j0⟩ = 0,

where we have used Proposition 4.2.1. This is a contradiction. Thus it must be the
case that U⊥ , {0V}. ■

Now that we have a clear understanding of the relationships between basic,
total, and maximal orthonormal sets, let us introduce some useful terminology.

4.4.11 Definition (Hilbert basis) Let F ∈ {R,C}. A Hilbert basis for an F-inner product
space (V, ⟨·, ·⟩) is a basic (or, equivalently, total) orthonormal set in V. •

As we shall see, the notion of a Hilbert basis and a basis (sometimes also called
a Hamel basis, cf. Remark I-4.5.21) can be different in a potentially confusing way.
In particular, we refer to to clarify some aspects of the relationship between the what

two notions of basis.
We have already seen in Example 4.4.8–3 that not every inner product space

possesses a Hilbert basis. This, however, is where the value of the notion of a
maximal orthonormal set arises.

4.4.12 Theorem (Every inner product spaces possesses a maximal orthonormal
set) If F ∈ {R,C} and if (V, ⟨·, ·⟩) is a F-inner product space, then there exists a maximal
orthonormal set in V.

Proof The proof goes very much like that for existence of a (Hamel) basis. Let O be
the collection of orthonormal subsets of V. This set is nonempty since, if V is not the
trivial vector space, {v} ∈ O for any vector v of unit length. Place a partial order ⪯ on
O by asking that S1 ⪯ S2 if S1 ⊆ S2. Let S ⊆ O be a totally ordered subset. Note
that ∪S∈S S is an element of O . Indeed, let {v1, . . . , vk} ⊆ ∪S∈S S. Then v j ∈ S j for some
S j ∈ S . Let j0 ∈ {1, . . . , k} be chosen such that S j0 is the largest of the sets S1, . . . ,Sk
according to the partial order ⪯, this being possible since S is totally ordered. Then
{v1, . . . , vk} ⊆ S j0 and so {v1, . . . , vk} is orthonormal since S j0 is orthonormal. It is also
evident that ∪S∈S S is an upper bound for S . Thus every totally ordered subset of
O possesses an upper bound, and so by Zorn’s Lemma possesses a maximal element.
LetB be such a maximal element. By constructionB is orthonormal. We claim that
it is also a maximal orthonormal set. Indeed, letB ′ be an orthonormal set such that
B ⊆B ′. This immediately contradicts the fact thatB is a maximal element of O , and
so we can conclude thatB is a maximal orthonormal set. ■

For Hilbert spaces this leads to the following important result.
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4.4.13 Corollary (Hilbert spaces possess a Hilbert basis) If F ∈ {R,C} and if (V, ⟨·, ·⟩)
is an F-Hilbert space, then there exists a Hilbert basis for V.

Proof By Theorem 4.4.12 V possesses a maximal orthonormal set. By Theorem 4.4.9
every maximal orthonormal set is a Hilbert basis. ■

Note that it is not necessary for an inner product space to be a Hilbert space in
order that it possess a Hilbert basis, cf. Example 4.4.8–2.

Now we consider a few important special cases of inner product spaces with
orthonormal bases. While many of the result we give in the next two sections are
actually special cases of the results above, we give independent proofs that are not
dependent on the notion of a sum with an arbitrary index set. The relieves some
of the complication present in the general setup.

4.4.2 Finite orthonormal sets and finite Hilbert bases

In this section we essentially generalise Example 4.4.8–1 to arbitrary finite-
dimensional inner product spaces. The starting point is the following result. Note
that we independently prove the existence of a Hilbert basis in this case, although
this actually follows from Theorem 4.4.12.

4.4.14 Theorem (Characterisation of existence of finite Hilbert bases) If F ∈ {R,C}
and if (V, ⟨·, ·⟩) is an inner product space of dimension n ∈ Z≥0, then there exists a Hilbert
basis for V. Moreover, every Hilbert basis for V is a basis and so has cardinality n.

Proof If V = {0V} then there is nothing to prove, so let us suppose that n ∈ Z>0.
By Theorem I-4.5.22 V possesses a basis and by Theorem I-4.5.25 the cardinality of
any two bases are the same. Let {v1, . . . , vn} be a basis for V and by Gram–Schmidt
orthonormalisation construct an orthonormal set {u1, . . . ,un}. This set is linearly inde-
pendent by Exercise 4.4.1 and so forms a basis for an n-dimensional subspace of V. By
Proposition I-4.5.19 this subspace must be V. That is to say, {u1, . . . ,un} is a basis for V.
We claim that this implies that {u1, . . . ,un} is a Hilbert basis. Since finite-dimensional
inner product spaces are Hilbert spaces, it suffices to show that B is maximal. To
prove maximality, suppose that {u1, . . . ,un,un+1, . . . ,uk} is an orthonormal set contain-
ing {u1, . . . ,un}. By Exercise 4.4.1 it follows that {u1, . . . ,uk} is linearly independent.
By Lemma I-1 from the proof of Theorem I-4.5.25 it follows that k = n, so proving
maximality. This gives the existence of a Hilbert basis.

For the last assertion of the theorem, suppose that we have a Hilbert basis
{u1, . . . ,um} for V. Since {u1, . . . ,um} is linearly independent by Exercise 4.4.1 it fol-
lows that m ≤ n by Lemma I-1 from the proof of Theorem I-4.5.25. To see that m = n
suppose otherwise so that n > m. Then spanF(u1, . . . ,um) is a subspace of V of dimen-
sion m < n. By Theorem I-4.5.26 there exists um+1, . . . ,un ∈ V such that {u1, . . . ,un}

is a basis for V. Applying the Gram–Schmidt orthonormalisation procedure gives a
set {u′1, . . . ,u

′
m,u′m+1, . . . ,u

′
n} where, by Exercise 4.4.3, u′j = u j for j ∈ {1, . . . ,m}. This

contradicts the maximality of {u1, . . . ,um} and so shows that we must have m = n. Thus
every Hilbert basis is a linearly independent set of vectors having the same cardinality
as the dimension of V, i.e., a basis. ■
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A companion to the preceding result is the following more or less obvious fact.

4.4.15 Proposition (Necessary conditions for a finite Hilbert basis) If F ∈ {R,C} and
if (V, ⟨·, ·⟩) is an F-inner product space having a finite Hilbert basis, then V is finite-
dimensional.

Proof Let {e1, . . . , en} be a finite Hilbert basis for V. We claim that dim(V) = n. Sup-
pose otherwise. Then, by Theorem I-4.5.26, there exists a basis B for V such that
{e1, . . . , en} ⊂ B . Let v ∈ B \ {e1, . . . , en}. By applying Gram–Schmidt orthonormal-
isation procedure to {e1, . . . , en, v} we arrive at an orthonormal set {e1, . . . , en, en+1}; by
virtue of Exercise 4.4.3 the first n vectors remain unchanged. This, however, contra-
dicts the maximality of {e1, . . . , en}, and so we must have dim(V) = n. ■

Having established the existence of a Hilbert basis for a finite-dimensional inner
product space, let us examine the set of all such bases. To motivate how one does
this, recall from Section I-5.4.5 that there is a 1–1 correspondence between bases and
invertible matrices. That is to say, if one chooses a basisB = {e1, . . . , en} for V, then
any other basisB ′ = {e′1, . . . , e

′

n} is uniquely determined by the invertible change of
basis matrix PB

′

B ∈Matn×n(F) which is defined by its satisfying the equality

e j0 =

n∑
j=1

PB
′

B ( j, j0)e′j

for each j0 ∈ {1, . . . ,n}. We wish to understand the character of the change of basis
matrix in the case whereB andB ′ are both Hilbert bases.

The following result tells the story. In the statement, ⟨·, ·⟩2 denotes the standard
inner product on Fn and ∥·∥2 denotes the corresponding norm. Also, for a matrix
A we denote by Ā the matrix obtained by applying ·̄ to the entries of A.

4.4.16 Theorem (Change of basis matrices for finite Hilbert bases) For F ∈ {R,C}, for
an n-dimensional F-inner product space (V, ⟨·, ·⟩), for a Hilbert basisB = {e1, . . . , en} for
V, and for U ∈Matn×n(F) the following statements are equivalent:

(i) there exists a Hilbert basisB ′ = {e′1, . . . , e
′

n} for V such that U = PB
′

B ;
(ii) ∥Ux∥2 = ∥x∥2 for all x ∈ Fn;
(iii) ⟨Ux,Uy⟩2 = ⟨x,y⟩2 for all x,y ∈ Fn;
(iv) UŪT = ŪTU = In;
(v) U is invertible and U−1 = ŪT.

Proof (i) =⇒ (ii) By hypothesis we have

e j0 =

n∑
j=1

U( j, j0)e′j, j0 ∈ {1, . . . ,n},

so that, for every j1, j2 ∈ {1, . . . ,n},

⟨e j1 , e j2⟩ =
〈 n∑

k=1

U(k, j1)e′k,
n∑

l=1

U(l, j2)e′l
〉
=

n∑
k=1

U(k, j1)Ū(k, j2). (4.9)
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That is,
n∑

k=1

U(k, j1)Ū(k, j2) =

1, j1 = j2,
0, j1 , j2.

(4.10)

Now, for x ∈ Fn, a direct computation gives

∥Ux∥22 =
n∑

i=1

n∑
j=1

n∑
k=1

U(i, j)Ū(i, k)x( j)x(k)

which gives ∥Ux∥22 = ∥x∥
2
2 after using (4.10). This part of the result now follows by

taking square roots.
(ii) =⇒ (iii) We are assuming that ∥Ux∥2 = ∥x∥2 which implies that

∥Ux∥22 = ∥x∥
2
2 =⇒ ⟨Ux,Ux⟩2 = ⟨x, x⟩2,

this holding for all x ∈ Fn. Thus, for every x, y ∈ Fn,

⟨U(x + y),U(x + y)⟩2 = ⟨x + y, x + y⟩2
=⇒ ⟨Ux,Ux⟩2 + ⟨Uy,Uy⟩2 + 2 Re(⟨Ux,Uy⟩2) = ⟨x, x⟩2 + ⟨y, y⟩2 + 2 Re(⟨x, y⟩2)
=⇒ Re(⟨Ux,Uy⟩2) = Re(⟨x, y⟩2).

If F = R then this gives this part of the result. If F = C, a computation entirely similar
to the preceding one shows that

⟨U(x + iy),U(x + iy)⟩2 = ⟨x + iy, x + iy⟩2 =⇒ Im(⟨Ux,Uy⟩2) = Im(⟨x, y⟩2),

which gives this part of the result.
(iii) =⇒ (iv) Letting {e1, . . . , en} be the standard basis for Fn we have

⟨Ue j,Uek⟩2 = ⟨e j, ek⟩2, j, k ∈ {1, . . . ,n}.

We have

⟨e j, ek⟩2 = In( j, k) =

1, j = k,
0, j , k

and a direct calculation shows that

⟨Ue j,Uek⟩2 =

n∑
i=1

U(i, j)Ū(i, k) = (UTŪ)( j, k).

Thus UTŪ = In which, upon conjugation, gives ŪTU = In. From Theorem I-5.1.42 this
means that U is invertible with inverse ŪT. This means that we also have UŪT = In.

(iv) =⇒ (v) This was proved in the preceding part of the proof.
(v) =⇒ (i) By hypothesis we have

ŪTU = In =⇒ U−1Ū−T = In.

By Theorem I-5.1.42 this implies that U−1 is invertible with inverse Ū−T. Thus

Ū−TU−1 = In =⇒ U−TŪ−1 = In.
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Let us define a basis {e′1, . . . , e
′
n} for V by asking that

e′j0 =
n∑

j=1

U−1( j, j0)e j. (4.11)

The computation (4.9), but using U−1 in place of U, gives

⟨e′j1 , e
′

j2
⟩ =

n∑
k=1

U−1(k, j1)Ū−1(k, j2) = (U−TŪ−1)( j1, j2) = In( j1, j2).

Thus

⟨e′j1 , e
′

j2
⟩ =

1, j1 = j2,
0, j1 , j2,

showing that {e′1, . . . , e
′
n} is a Hilbert basis. Since (4.11) implies that

e j0 =

n∑
j=1

U( j, j0)e′j,

this part of the result follows. ■

In the case where F = R the previous result, along with Theorem II-1.3.18,
shows that the change of basis matrices between Hilbert bases are precisely the
orthogonal matrices. The set of n × n orthogonal matrices were denoted by O(n).
In the case where F = C the matrices of the preceding result are called unitary
matrices and the set of n × n unitary matrices are denoted by U(n).

One of the interesting features of Hilbert bases is that it is easy to determine the
components of a vector relative to the basis. The following result records this.

4.4.17 Proposition (Components relative to a finite orthonormal set) Let F ∈ {R,C},
let (V, ⟨·, ·⟩2) be a (not necessarily finite-dimensional) F-inner product space, and let
{e1, . . . , en} be a finite orthonormal set. If v ∈ spanF(e1, . . . , en) then

v = ⟨v, e1⟩e1 + · · · + ⟨v, en⟩en.

Proof This is Exercise 4.4.4. ■

The preceding result has the following obvious corollary.

4.4.18 Corollary (Components relative to a finite Hilbert basis) Let F ∈ {R,C}, let
(V, ⟨·, ·⟩2) be a finite-dimensional F-inner product space, and let {e1, . . . , en} be a finite
Hilbert basis for V. For v ∈ V the components of v are ⟨v, ej⟩, j ∈ {1, . . . ,n}.

We shall now give some properties of Hilbert bases for finite-dimensional inner
product spaces that may, at first glance, seem obvious and/or silly. However, they
arise in the infinite-dimensional setting in a rather less obvious and hopefully less
silly way. Therefore, it is worth recording them in the present setup.

The first result is the finite-dimensional version of Bessel’s inequality.
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4.4.19 Proposition (Bessel’s inequality for finite orthonormal sets) If F ∈ {R,C},
(V, ⟨·, ·⟩) is a (not necessarily finite-dimensional) F-inner product space, and if {e1, . . . , en}

is a finite orthonormal set, then, for any v ∈ V,

n∑
j=1

|⟨v, ej⟩|
2
≤ ∥v∥2.

Proof This is Exercise 4.4.5. ■

Our final result gives several conditions equivalent to that of being a Hilbert
basis. These are more or less “obvious” in finite-dimensions, but are a little less so
in infinite-dimensions.

4.4.20 Theorem (Characterisations of finite Hilbert bases) Let F ∈ {R,C}, let (V, ⟨·, ·⟩)
be a finite-dimensional F-inner product space, and letB = {e1, . . . , en} be an orthonormal
set. The following statements are equivalent:

(i) B is basic;
(ii) B is total;
(iii) for all v ∈ V we have

∥v∥2 =
n∑

j=1

|⟨v, ej⟩|
2

(Parseval’s equality);
(iv) for all u,v ∈ V we have

⟨u,v⟩ =
n∑

j=1

⟨u, ej⟩⟨v, ej⟩;

(v) B⊥ = {0V};
(vi) B is a maximal.

Proof We leave this to the reader as Exercise 4.4.6. ■

4.4.3 Enumerable orthonormal sets and enumerable Hilbert bases

In the finite-dimensional case we see that Hilbert bases are always bases in the
usual sense. Thus a Hilbert basis for a finite-dimensional inner product space is
simply an instance of something we are already familiar with. This is no longer
true in infinite-dimensions. Complications can arise in multiple ways. From
Theorem 4.4.12 we know that every inner product space possesses a maximal
orthonormal subset. For Hilbert spaces, these maximal orthonormal sets are neces-
sarily Hilbert bases by Corollary 4.4.13. However, in infinite-dimensions it is not
necessarily the case that a Hilbert basis is a basis. It can be the case that a Hilbert
basis is a basis (see Example 4.4.8–2), but it is also true that enumerable Hilbert
bases for Hilbert spaces are never bases. Also, for non-Hilbert spaces it can happen
that they do not possess a Hilbert basis (see Example 4.4.8–3).
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What we do in this section is consider the special case of inner product spaces
that admit an enumerable Hilbert basis. Thus we consider the case where we have
an enumerable orthonormal set (e j) j∈Z>0 for an inner product space and we assume
that for any v ∈ V we can write

v =
∞∑
j=1

c je j. (4.12)

Note that this sum is infinite, not finite as for a Hamel basis. The definition of
convergence we use for this sum is made exactly as with the discussion of series in
Banach spaces in Definition 3.4.1. That is to say, the existence of the infinite sum
in (4.12) means that, for every ϵ ∈ R>0, there exists N ∈ Z>0 such that∥∥∥∥v −

k∑
j=1

c je j

∥∥∥∥ < ϵ
for every k ≥ N. Note that it is not obvious that this coincides with the notion
of convergence used in our general discussion in Section 4.4.1. Indeed, conver-
gence for series using general index sets as used in Section 4.4.1 is equivalent to
unconditional convergence for series using the index set Z>0. This sort of con-
vergence implies convergence in the usual sense, but is not equivalent to it. This
notwithstanding, we shall see that the usual definition of convergence for series is
the appropriate one to use in the setting of enumerable Hilbert bases.

First we establish the appropriate condition under which an inner product
space admits a enumerable Hilbert basis. In Theorem 4.4.14 we saw that the
appropriate condition for the existence of a finite Hilbert basis was that the inner
product space be, not surprisingly, finite-dimensional. For enumerable Hilbert
bases, the condition turns out to be that the inner product space be separable (see
Definition 3.6.12).

4.4.21 Theorem (Characterisation of existence of enumerable Hilbert bases) If F ∈
{R,C} and if (V, ⟨·, ·⟩) is a separable, infinite-dimensional F-inner product space, then the
following statements hold:

(i) if V is a Hilbert space then it possesses an enumerable Hilbert basis;
(ii) every Hilbert basis for V is enumerable.

Proof By Corollary 4.4.13 we know that if V is a Hilbert space then it possesses a
Hilbert basis and by Proposition 4.4.15 we know that every Hilbert basis is infinite.
It remains to show that every Hilbert basis is enumerable. Suppose otherwise and so
there exists an uncountable Hilbert basisB = {ei}i∈I. If i1, i2 ∈ I then

∥ei1 − ei2∥ = (⟨ei1 − ei2 , ei1 − ei2⟩)
1/2 = (∥ei1∥

2 + ∥ei2∥
2)1/2 =

√

2. (4.13)

since ei1 and ei2 are orthogonal. For each i ∈ I define Ui = B( 1
4 , ei) and note that

Ui1∩Ui2 = ∅ by (4.13). Now let S ⊆ V be enumerable. Then there exists an uncountable
set J ⊆ I such that S ∩ (∪ j∈JU j) = ∅. Thus S ⊆ V \ (∪ j∈JU j) and so cl(S) ⊆ V \ (∪ j∈JU j).
Thus cl(S) , V and so V is not separable. ■
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The companion result to this is that enumerable Hilbert bases exist only for
separable inner product spaces.

4.4.22 Theorem (Necessary conditions for a enumerable Hilbert basis) If F ∈ {R,C}
and if (V, ⟨·, ·⟩) is an F-inner product space having an enumerable Hilbert basis, then V is
separable and infinite-dimensional.

Proof That V is infinite-dimensional follows from Proposition 4.4.15. To show that V
is separable we letB = {e j} j∈Z>0 be an enumerable Hilbert basis and let V0 = spanF(B ).
By Theorem 4.4.9 we know thatB is total and so cl(V0) = V. Now define

FQ =

Q, F = R,

qr + iqi, F = C

and consider the set

SB = {q1e j1 + · · · + qke jk | k ∈ Z>0, q1, . . . , qk ∈ FQ}

of finite linear combinations of elements fromB with coefficients in FQ. Using Propo-
sition I-1.7.16 we may conclude that SB is enumerable. We claim that SB is dense in
V. From Exercise 3.6.2 it suffices to show that SB is dense in V0. Let v ∈ V0 so that we
may write

v = c1e j1 + · · · + cke jk

for some j1, . . . , jk ∈ Z>0 and c1, . . . , ck ∈ F. Let ϵ ∈ R>0 and choose qa ∈ FQ such that
|ca − qa| < ϵ

k , a ∈ {1, . . . , k}. Then

∥v − q1e j1 − · · · − qke jk∥ ≤ |c1 − q1|∥e j1∥ + · · · + |ck − qk|∥e jk∥ < ϵ

by the triangle inequality. Thus v ∈ cl(SB ) by Proposition 3.6.8. We have thus shown
that the enumerable set SB is dense in V, as desired. ■

First let us determine the form of the coefficients in the summation (4.12)
if it does indeed converge. The reader should compare this result to Proposi-
tion 4.4.17.

4.4.23 Proposition (Components relative to an enumerable orthonormal set) Let
F ∈ {R,C}, let (V, ⟨·, ·⟩) be an F-inner product space, and let {ej}j∈Z>0 be an orthonormal
set in V. If the sum

∞∑
j=1

cjej

converges to v ∈ V, then for each j ∈ Z>0, cj = ⟨v, ej⟩.
Proof By Proposition 4.2.1 and Theorem 3.5.2 we have

⟨v, ek⟩ =
〈 ∞∑

j=1

c je j, ek

〉
=

〈
lim
n→∞

n∑
j=1

c je j, ek

〉
= lim

n→∞

n∑
j=1

c j⟨e j, ek⟩ = ck

for every k ∈ Z>0. ■
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The reader should be sure to appreciate that, while the formula for the coeffi-
cients is exactly as given in the finite-dimensional case in Proposition 4.4.17, one
must be a little more careful in arriving at this formula as there are issues with
swapping limits with the inner product that must be accounted for.

The following result holds even for orthonormal sets that are not basic and
should be compared to Proposition 4.4.19.

4.4.24 Theorem (Bessel’s inequality for enumerable orthonormal sets) LetF ∈ {R,C},
let (V, ⟨·, ·⟩) be aF-inner product space, and letB = {ej}j∈Z>0 be an enumerable orthonormal
set. Then, for any v ∈ V, the sum

∞∑
j=1

|⟨v, ej⟩|
2 (4.14)

converges and satisfies
∞∑

j=1

|⟨v, ej⟩|
2
≤ ∥v∥2.

Proof Let vk denote the kth partial sum:

vk =

k∑
j=1

⟨v, e j⟩e j.

We claim that for j ∈ {1, . . . , k}, e j is orthogonal to v − vk. Indeed,

⟨v − vk, e j⟩ = ⟨v, e j⟩ − ⟨vk, e j⟩.

We also have, by a direct computation, ⟨vk, e j⟩ as the jth term in the sum, i.e., ⟨vk, e j⟩ =
⟨v, e j⟩. Thus ⟨v − vk, e j⟩ = 0 as claimed. From this, since vk is a linear combination of
{e1, . . . , ek}, it follows that v − vk and vk are orthogonal. By the Pythagorean identity
(Exercise 4.1.12) we then have

∥v∥2 = ∥v − vk + vk∥
2 = ∥v − vk∥

2 + ∥vk∥
2,

giving
∥vk∥

2
≤ ∥v∥2. (4.15)

Since the vectors {e1, . . . , ek} are orthonormal we compute

∥vk∥
2 =

〈 k∑
j=1

⟨v, e j⟩e j,
k∑

l=1

⟨v, el⟩el

〉
=

k∑
j=1

k∑
l=1

⟨v, e j⟩⟨v, el⟩⟨e j, el⟩ =

k∑
j=1

|⟨v, e j⟩|
2. (4.16)

Thus, combining (4.15) and (4.16), we have shown that the inequality

k∑
j=1

|⟨v, e j⟩|
2
≤ ∥v∥2

holds for any k ∈ Z>0. Thus the sum (4.14) is a sum of positive terms with each partial
sum being bounded above by ∥v∥2. It follows that the sequence of partial sums must
converge to a number being at most ∥v∥2. ■
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We also have the following result which should be compared to Theo-
rem 4.4.20.

4.4.25 Theorem (Characterisations of enumerable Hilbert bases) Let F ∈ {R,C}, let
(V, ⟨·, ·⟩) be a separable F-inner product space, and letB = {ej}j∈Z>0 be an orthonormal set.
The following four statements are equivalent:

(i) B is basic;
(ii) B is total;
(iii) for every v ∈ V the equality

∥v∥2 =
∞∑

j=1

|⟨v, ej⟩|
2

holds (Parseval’s equality);
(iv) for all u,v ∈ V we have

⟨u,v⟩ =
∞∑

j=1

⟨u, ej⟩⟨v, ej⟩;

Also, the following two statements are equivalent:
(v) B⊥ = {0V};
(vi) B is maximal.

Finally, if V is a Hilbert space, the first four equivalent statements are equivalent to the
last two equivalent statements.

Proof (i) =⇒ (ii) LetB = {e j} j∈Z>0 be basic and let v ∈ V. We can then write

v =
∑

j∈Z>0

c je j

for some coefficients c j ∈ F, j ∈ Z>0. If we define

vk =

k∑
j=1

c je j

then the sequence (vk)k∈Z>0 converges to v. Thus v ∈ cl(spanF(B )) and soB is total.
(ii) =⇒ (iii) Let v ∈ V. SinceB is total there exists a sequence (vk)k∈Z>0 in spanF(B )

such that v = limk→∞ vk. For each k ∈ Z>0 write

vk = ck1e jk1 + · · · + ckmke jkmk

for mk ∈ Z>0, coefficients ck1, . . . , ckmk ∈ F, and distinct jk1, . . . , jkmk ∈ I. By Proposi-
tion 4.4.23 it follows that ckl = ⟨vk, e jkl⟩ for each k ∈ Z>0, l ∈ {1, . . . ,mk}. This means that
we can write

vk =

∞∑
j=1

⟨vk, e j⟩e j
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for each k ∈ Z>0, with the sum being finite.
We may also directly compute (cf. the proof of Theorem 4.4.24)

∥vk∥
2 =

∞∑
j=1

|⟨vk, e j⟩|
2,

using the fact that the inner product commutes with finite sums. Now, using continuity
of the norm and inner product, along with Theorem 3.5.2, gives

∥v∥2 = lim
k→∞
∥vk∥

2 = lim
k→∞

∞∑
j=1

|⟨vk, e j⟩|
2 =

∞∑
j=1

|⟨v, e j⟩|
2,

as desired.
(iii) =⇒ (iv) For u, v ∈ V we have

∥u + v∥2 =
∞∑
j=1

|⟨u + v, e j⟩|
2

=⇒ ∥u∥2 + ∥v∥2 + ⟨u, v⟩ + ⟨u, v⟩

=

∞∑
j=1

|⟨u, e j⟩|
2 +

∞∑
j=1

|⟨v, e j⟩|
2 +

∞∑
j=1

(⟨u, e j⟩⟨v, e j⟩ + ⟨u, e j⟩⟨v, e j⟩)

=⇒ Re(⟨u, v⟩) =
∞∑
j=1

Re(⟨u, e j⟩⟨v, e j⟩).

If F = R this establishes the result. If F = C, a similar computation using the equality

∥u + iv∥2 =
∞∑
j=1

|⟨u + iv, e j⟩|
2

gives

Im(⟨u, v⟩) =
∞∑
j=1

Im(⟨u, e j⟩⟨v, e j⟩).

(iv) =⇒ (i) Since part (iv) obviously implies part (iii), we shall prove that (iii)
implies (i). Thus we have

∥v∥2 =
∞∑
j=1

|⟨v, e j⟩|
2

for every v ∈ V. For k ∈ Z>0 let us define

vk =

k∑
j=1

⟨v, e j⟩e j.
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Note that

⟨v − vk, vk⟩ =
〈
v −

k∑
j=1

⟨v, e j⟩e j,
k∑

l=1

⟨v, el⟩el

〉
=

〈
v,

k∑
l=1

⟨v, el⟩el

〉
−

〈 k∑
j=1

⟨v, e j⟩e j,
k∑

l=1

⟨v, el⟩el

〉
=

k∑
l=1

|⟨v, el⟩|
2
−

k∑
j=1

|⟨v, e j⟩|
2 = 0

for every k ∈ Z>0. By the Pythagorean equality,

∥v∥2 = ∥v − vk + vk∥
2 = ∥v − vk∥

2 + ∥vk∥
2 =⇒ ∥v − vk∥

2 = ∥v∥2 − ∥vk∥
2.

By assumption,
lim
k→∞
∥vk∥

2 = ∥v∥2

and so
lim
k→∞
∥v − vk∥ = 0,

implying that

v =
∞∑
j=1

⟨v, e j⟩e j,

and so in particular implying thatB is basic.
(v) =⇒ (vi) Suppose thatB is not maximal. Then there exists an orthonormal set

B ′ such that B ⊂ B ′. Let v ∈ B ′ \B . Then, clearly, v ∈ B⊥ and v , 0V. Thus
B⊥ , {0V}.

(vi) =⇒ (v) Suppose thatB⊥ , {0V} and let v ∈B⊥ have unit length. Then the set
B ∪ {v} is an orthonormal set that strictly containsB . ThusB is not maximal.

(ii) =⇒ (v) By Proposition 4.1.13(iv) we haveB⊥ = cl(spanF(B ))⊥. From this fact,
ifB is total it immediately follows thatB⊥ = {0V}.

(vi) =⇒ (i) (assuming V is a Hilbert space) Let v ∈ V. Bessel’s inequality gives

∞∑
j=1

|⟨v, e j⟩|
2
≤ ∥v∥2,

and this implies that the series on the right converges and so is Cauchy. Let ϵ ∈ R>0
and let N ∈ Z>0 be such that

l∑
j=k+1

|⟨v, e j⟩|
2 < ϵ

for every k, l ≥ N with l > k. A direct computation using properties of inner products
then gives ∥∥∥∥ l∑

j=k+1

⟨v, e j⟩e j

∥∥∥∥2
=

l∑
j=k+1

|⟨v, e j⟩|
2 < ϵ,
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which shows that the series
∞∑
j=1

⟨v, e j⟩e j

is Cauchy. By Theorem 3.4.17 this series converges, implying thatB is basic. ■

4.4.4 Generalised Fourier series

In our general framework, the notion of a Fourier series is easily discussed.
We shall discuss Fourier series (although we will think of this as being a means of
getting at the inverse of the so-called CDFT) in Chapter IV-5. In this case, as we
shall see, other issues not present in our general inner product space constructions,
become relevant. Thus we focus our discussion in this section on the generalities.
This will allow us to separate out these general considerations from the more
specific ones in Chapter IV-5.

We begin with a definition that at this point is simply the giving of a name to
something we already have been talking about.

4.4.26 Definition (Generalised Fourier series) Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be a F-
inner product space. If {ei}i∈I is a Hilbert basis for V and if v ∈ V, the generalised
Fourier series for v is the series

v =
∑
i∈I

⟨v, ei⟩ei,

which converges to v. •

Let us consider some general and, therefore, more or less elementary examples.

4.4.27 Examples (Generalised Fourier series)
1. Let (V, ⟨·, ·⟩) be a finite-dimensional inner product space with Hilbert basis
{e1, . . . , en}. The generalised Fourier series for v ∈ V is then simply the represen-
tation of v in the (Hamel) basis {e1, . . . , en}, just as prescribed by Corollary 4.4.18:

v = ⟨v, e1⟩e1 + · · · + ⟨v, en⟩en.

2. Next consider the inner product space (F∞0 , ⟨·, ·⟩1) with its standard basis {e j} j∈Z>0 ;
this is a Hilbert basis as we saw in Example 4.4.8–2. In this case the Hilbert
basis is also a basis in the usual sense. Thus the generalised Fourier series for
v ∈ F∞0 ,

v =
∞∑
j=1

v( j)e j,

is simply the representation of v with respect to a basis in the usual sense.
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3. Finally, let us consider the completion (ℓ2(F), ⟨·, ·⟩2) of (F∞0 , ⟨·, ·⟩2). In this case
the generalised Fourier series for v ∈ ℓ2(F) has the form

v =
∞∑
j=1

v( j)e j.

Note that this is not the representation of v in a basis in the usual sense because
the sum is possibly finite. Indeed, it is quite clear that {e j} j∈Z>0 is not a (Hamel;)
basis. Moreover, we shall see in Theorem 4.4.36 that any (Hamel) basis for
ℓ2(F) has cardinality strictly greater than that of Z>0. •

The preceding two examples illustrate the difference between the purely alge-
braic notion of a Hamel basis and the analytical notion of a Hilbert basis. It is
probably worth understanding the message these examples are trying to pass on.

Let us now give a useful geometric interpretation of the generalised Fourier
series. We recall from Section 4.1.5 the notation dist(v,S) for the distance from
v ∈ V to a subset S ⊆ V.

4.4.28 Theorem (The best approximation property of generalised Fourier series) Let
F ∈ {R,C}, let (V, ⟨·, ·⟩) be an F-inner product space, and let {ei}i∈I be a Hilbert basis for
V. For J ⊆ I let us abbreviate

VJ = cl(spanF(ej| j ∈ J)),

and assume that VJ is complete. If v ∈ V and if J ⊆ I, then

vJ ≜
∑
j∈J

⟨v, ej⟩ej

is the unique vector in VJ for which dist(v,VJ) = ∥v − vJ∥.
Proof We first claim that the series vJ converges. Since we are assuming that VJ is
complete, it suffices by Theorem 3.4.17 to show that the series vJ is Cauchy. Let ϵ ∈ R>0.
Since the series ∑

j∈J

|⟨v, c j⟩|
2

is convergent by Theorem 4.4.6 it is also Cauchy. Thus there exists a finite subset J ⊆ I
such that ∑

j∈J′
|⟨v, e j⟩|

2 < ϵ

for every finite subset J′ ⊆ I for which J′ ∩ J = ∅. Then, by Theorem 4.4.20,∥∥∥∥∑
j∈J′
⟨v, e j⟩e j

∥∥∥∥2
=

∑
j∈J′
|c j|

2 < ϵ

for every finite subset J′ ⊆ I for which J′ ∩ J = ∅. This gives convergence of the series
for vJ, as desired.
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Now, by Theorem 4.1.26, it suffices to show that v − vJ ∈ V⊥J . By Proposi-
tion 4.1.13(iv) it suffices to show that ⟨v − vJ, e j⟩ = 0 for every j ∈ J. But this holds
since

⟨v − vJ, e j⟩ =
〈
v −

∑
j′∈J

⟨v, e j′⟩e j′ , e j

〉
= ⟨v, e j′⟩ − ⟨v, e j′⟩ = 0,

where we swap the sum and inner product by Proposition 4.2.1 and Theorem 3.5.2.■

The preceding discussion has to do with representing a vector in an inner
product space by a generalised Fourier series. The next result tells us that any
“reasonable” collection of coefficients are those of a generalised Fourier series.

4.4.29 Theorem (Riesz–Fischer5 Theorem) Let F ∈ {R,C}, let (V, ⟨·, ·⟩) be an F-Hilbert
space, and let (ei)i∈I be an orthonormal family. If (ci)i∈I is a family of numbers such that
the series ∑

i∈I

|ci|
2 (4.17)

converges in the sense of Definition I-2.4.31, then the series∑
i∈I

ciei (4.18)

converges in the sense of Definition 3.4.16. Moreover, if the series converges to v ∈ V then
ci = ⟨v, ei⟩, i ∈ I.

Proof We claim that the sum (4.18) is Cauchy. Let ϵ ∈ R>0. Since the series (4.17) is
convergent and so Cauchy, there exists a finite set J ⊆ I such that∑

j∈J′
|c j|

2 < ϵ

for every finite subset J′ ⊆ I for which J ∩ J′ = ∅. By Theorem 4.4.20 we then have∥∥∥∥∑
j∈J′

c je j

∥∥∥∥2
=

∑
j∈J′
|c j|

2 < ϵ

for every finite subset J′ ⊆ I for which J ∩ J′ = ∅. Thus the series (4.18) is Cauchy, and
so convergent by Theorem 3.4.17. The last assertion is simply Proposition 4.4.5. ■

4.4.5 Classification of Hilbert spaces

In this section we use the idea of Hilbert bases to characterise all Hilbert spaces.
As we shall see, the classification is actually quite simple, just as with the classifi-
cation of all vector spaces induced by the size of their bases.

First let us assert that the dimension of an inner product space, when it exists,
is well defined.

5Frigyes Riesz (1880–1956) was born in what is now Hungary and was one of the founders of
functional analysis. His younger brother Marcel was also a mathematician of some note. Ernst
Sigismund Fischer (1875–1954) was an Austrian mathematician whose contributions to mathematics
were in the areas of algebra and analysis.
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4.4.30 Theorem (Invariance of cardinality of maximal orthonormal sets) If F ∈ {R,C},
if (V, ⟨·, ·⟩) is an F-inner product space, and if {ei}i∈I and {fj}j∈J are Hilbert bases for V, then
card(I) = card(J).

Proof If V possesses a finite maximal orthonormal set, then this set is a Hilbert basis
and so also a Hamel basis by Theorem 4.4.14. Moreover, from the same result, every
Hilbert basis for V is a Hamel basis. By Theorem I-4.5.25 every Hamel basis for V has
the same cardinality, and so the result follows when V has a finite maximal orthonormal
set.

Next suppose that V has two infinite maximal orthonormal sets {ei}i∈I and { f j} j∈J.
For j ∈ J denote

I j = {i ∈ I | ⟨ f j, ei⟩ , 0}.

Since, by Theorem 4.4.6, we have∑
i∈I

⟨ f j, ei⟩ ≤ ∥ f j∥
2 = 1,

it follows from Proposition I-2.4.33 that I j is enumerable for each j ∈ J. We claim that
I = ∪ j∈JI j. It is clear that ∪ j∈JI j ⊆ I. Suppose that the converse inclusion does not hold
and let i ∈ I \ (∪ j∈JI j). This means, by definition of the sets I j, j ∈ J, that ⟨ f j, ei⟩ = 0
for every j ∈ J. By Theorem 4.4.9 this means that f j = 0V; from this we conclude that
I ⊆ ∪ j∈JI j. Now we have

card(I) = card(∪ j∈JI j) ≤ card(Z>0) card(J) ≤ card(J) card(J) = card(J),

using Theorem I-1.7.17 and its Corollary I-1.7.18. By swapping the rôles of I and
J we similarly prove that card(J) ≤ card(I), and so the theorem follows from Theo-
rem I-1.7.12. ■

The result has the following obvious (by Theorem 4.4.9) corollary.

4.4.31 Corollary (Invariance of cardinality of Hilbert bases) If F ∈ {R,C}, if (V, ⟨·, ·⟩) is
an F-inner product space, and if {ei}i∈I and {fj}j∈J are Hilbert bases for V, then card(I) =
card(J).

The preceding theorem and corollary make sense of the following definition.

4.4.32 Definition (Hilbert dimension) LetF ∈ {R,C} and let (V, ⟨·, ·⟩) be aF-inner product
space. The Hilbert dimension of V is the cardinality of any maximal orthonormal
set in V. We denote by hdimF(V) the Hilbert dimension of V. •

For vector spaces we saw in Proposition I-4.5.30 that the dimension was an
isomorphism invariant, indeed the only isomorphism. That is to say, two vector
spaces are isomorphic if and only if they have the same dimension. We would like
to establish a similar assertion for inner product spaces, but replacing “dimension”
with “Hilbert dimension” and replacing “isomorphism” with “isomorphism of
inner product spaces.” But such a result is not actually true, as we shall see. The
desired result is true, however, if we restrict ourselves to the most interesting case
of Hilbert spaces.
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4.4.33 Theorem (Hilbert dimension characterises Hilbert spaces) If F ∈ {R,C}, and if
(V1, ⟨·, ·⟩1) and (V2, ⟨·, ·⟩2) are F-Hilbert spaces, then the following statements are equiva-
lent:

(i) V1 and V2 are isomorphic as inner product spaces;
(ii) hdimF(V1) = hdimF(V2).

Proof (i) =⇒ (ii) Let L : V1 → V2 be an inner product space isomorphism and let B1
be a Hilbert basis for V1. Define

B2 = {L(u) | u ∈B1};

we claim thatB2 is a Hilbert basis for V2. First let us prove thatB2 is orthonormal. If
L(u1),L(u2) ∈B2 we have

⟨L(u1),L(u2)⟩2 = ⟨u1,u2⟩2,

using the fact that L is an isomorphism of inner product spaces. Thus L(u1) and L(u2)
are orthogonal if and only if they are distinct. Similarly one computes ∥L(u)∥ = 1
for u ∈ B1. Thus B2 is indeed orthonormal. Now suppose that v0 ∈ B⊥2 and let
u0 = L−1(v). Then, for every u ∈B1,

⟨v0,L(u)⟩2 = ⟨u0,u⟩1 = 0,

implying that u0 = 0V1 by Theorem 4.4.9, since L is an isomorphism of inner product
spaces, and since B1 is maximal. We conclude that B2 is maximal and so a Hilbert
basis By Theorem 4.4.9.

(ii) =⇒ (i) LetB1 andB2 be Hilbert bases for V1 and V2, respectively. By assump-
tion there exists a bijection ϕ : B1 → B2. Note that by Theorem 4.4.9 every vector in
V1 can be written as ∑

u∈B1

cuu

for coefficients cu ∈ F, u ∈B1, such that∑
u∈B1

|cu|
2 < ∞.

Using this fact, let us define L : V1 → V2 by

L
( ∑

u∈B1

cuu
)
=

∑
u∈B1

cuϕ(u).

We must show that L is well-defined and is an isomorphism of inner product spaces.
To show that L is well-defined, we must show that it defines an element of V2. This,
however, follows from the Riesz-Fischer Theorem. Linearity of L follows from the fact
that L(u) = ϕ(u) for every u ∈B1 (why?) and from the calculations

L
( ∑

u∈B1

(auu + buu)
)
=

∑
u∈B

auϕ(u) +
∑
u∈B

buϕ(u) = L
( ∑

u∈B1

auu
)
+ L

( ∑
u∈B1

buu
)
,
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for au, bu ∈ F, u ∈B1, and

L
( ∑

u∈B1

α(cuu)
)
= α

∑
u∈B1

cuϕ(u) = αL
( ∑

u∈B1

cuu
)
,

for α ∈ F and cu ∈ F, u ∈ B1. (Of course, in the above computations we require that∑
u∈B1
|au|

2,
∑

u∈B1
|bu|

2, and
∑

u∈B1
|cu|

2 be finite.) The swapping of sums with addition
and multiplication is justified by Proposition 4.2.1 and Theorem 3.5.2. Finally, we
must show that L preserves the inner product. Using Theorem 4.4.9 we compute〈

L
( ∑

u∈B1

auu
)
,L

( ∑
u′∈B1

bu′u′
)〉

2
=

〈 ∑
u∈B1

auϕ(u),
∑

u′∈B1

bu′ϕ(u′)
〉

2

=
∑

u∈B1

aubu

=
〈 ∑

u∈B1

auu,
∑

u′∈B1

bu′u′
〉

1
,

as desired. ■

Now that we have decided that the Hilbert dimension of a Hilbert space is
its only property invariant under isomorphism of inner product spaces, let us
provide for the set of Hilbert spaces with a prescribed Hilbert dimension a simple
representative. It is perhaps useful to remind ourselves how this is done for vector
spaces. If V is a vector space over a field F with dimension card(I), then we showed
in Theorem I-4.5.45 that V is isomorphic to the direct sum

⊕
i∈I F. Thus the direct

sum
⊕

i∈I F serves as a simple representative of all vector spaces with dimension
equal to V. The situation is rather similar for Hilbert spaces.

The following theorem describes the simple representative we are after.

4.4.34 Theorem (A “canonical” Hilbert space of a prescribed Hilbert dimension) For
F ∈ {R,C} and for a set I, define

ℓ2(I;F) =
{
ϕ : I→ F

∣∣∣∣ ∑
i∈I

|ϕ(i)|2 < ∞
}

and define an inner product on ℓ2(I;F) by

⟨ϕ,ψ⟩2 =
∑
i∈I

ϕ(i)ψ(i).

Then (ℓ2(I;F), ⟨·, ·⟩2) is a Hilbert space with Hilbert dimension card(I).
Proof Note that ℓ2(I;F) = ℓ2(

⊕
i∈I F) in the context of Definition 3.8.26. It then

follows from Theorem 3.8.27 that ℓ2(I;F) is a Banach space with respect to the norm
∥·∥2 defined by

∥ϕ∥2 =
∑
i∈I

|ϕ(i)|2.
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In order to show that it is a Hilbert space we should show that the norm is derived from
the given inner product ⟨·, ·⟩2. First of all, for ϕ,ψ ∈ ℓ2(I;F), by Proposition I-2.4.33
there exists an injection κ : Z>0 → I such that ϕ(i) = ψ(i) = 0 for i < image(κ) and such
that ∑

i∈I

|ϕ(i)|2 =
∞∑
j=1

|ϕ(κ( j))|2,
∑
i∈I

|ψ(i)|2 =
∞∑
j=1

|ψ(κ( j))|2.

Then, for n ∈ Z>0,∣∣∣∣ n∑
j=1

ϕ(κ( j))ψ(κ( j))
∣∣∣∣ ≤ ( n∑

j=1

|ϕ(κ( j))|2
)1/2( n∑

j=1

|ψ(κ( j))|2
)1/2

,

using the Cauchy–Bunyakovsky–Schwarz inequality. Letting n→∞we get∣∣∣∣∑
i∈I

ϕ(i)ψ(i)
∣∣∣∣2 ≤ ∥ϕ∥2∥ψ∥2 < ∞.

Thus the sum defining the inner product converges. Completing the proof is now
a matter of verifying the inner product axioms for ⟨·, ·⟩2, justifying the swapping of
infinite sums and inner products using Proposition 4.2.1 and Theorem 3.5.2. ■

From the preceding result and from Theorem 4.4.33 (and its proof) we deduce
the following interesting conclusion.

4.4.35 Corollary (Characterisation of Hilbert spaces up to isomorphism of inner
product spaces) If F ∈ {R,C}, if (V, ⟨·, ·⟩) is a Hilbert space, and if {ei}i∈I is a
Hilbert basis for V, then the map L : V→ ℓ2(I;F) defined by

L
(∑

i∈I

ciei

)
=

∑
i∈I

ciei

is an isomorphism of inner product spaces.

It is worth digesting and understanding clearly the difference between the
preceding corollary and its counterpart Theorem I-4.5.45 for vector spaces. For a
given set I the “canonical” F-vector space of Hamel dimension card(I) is FI

0 and
the “canonical” F-Hilbert space of Hilbert dimension card(I) is ℓ2(I;F). Both are
subspaces of FI (see Notation I-4.5.44 for this notation). Moreover, FI

0 is a subspace
of ℓ2(I;F), and is a strict subspace unless card(I) is finite. Indeed, FI

0 and ℓ2(I;F) are
rather different objects when card(I) is not finite. For example, to make sense of
the vector space ℓ2(I;F) requires some analysis that is not required to make sense
of FI

0. Note, for example, that we have not defined ℓ2(I; F) for a general field F
as a general field does not possess the absolute value structure of R or C that is
needed to make things go. Thus ℓ2(I;F) is, in some sense, a “deeper” object than
FI

0. However, there is a strong connection between FI
0 and ℓ2(I;F) in that the latter

is the completion of the former if one uses the inner product

⟨ϕ,ψ⟩2 =
∑
i∈I

ϕ(i)ψ(i) (sum finite)
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on FI
0.

The preceding discussion leads one to the following natural question: “What
is the relationship between the Hamel dimension and the Hilbert dimension of
an inner product space?” For inner product spaces the answer can be, “They are
equal.” For example, FI

0 with the inner product ⟨·, ·⟩2 defined above has the same
Hilbert and Hamel dimension. The question is deeper for Hilbert spaces. Indeed,
from Theorem 3.6.26 and Theorem 4.4.21 we have the following result.

4.4.36 Theorem (Dimension of separable Hilbert space) If F ∈ {R,C} and if (V, ⟨·, ·⟩) is
a separable infinite-dimensional F-Hilbert space, then dimF(V) = card(R).

In particular, this shows thatF∞0 and ℓ2(F) have different Hamel dimension, and
so are not isomorphic. The story for Hilbert spaces of general dimension is more
complicated, and we refer to the notes in Section 4.4.6.

4.4.6 Notes

The Riesz–Fischer Theorem was published independently by Fischer [1907] and
Riesz [1907a] and Riesz [1907b].

Evans and Tapia [1970] study the relationship between the Hamel and Schauder
dimensions of a Banach space. Applying their result to Hilbert spaces, their con-
clusions are that there is a condition on the cardinal numbers that characterise
those infinite-dimensional Hilbert spaces whose Hamel and Hilbert dimensions
agree. They point out that ℵ0 = card(Z>0) does not satisfy this condition (and so
separable Hilbert spaces necessarily have different Hamel and Hilbert dimension)
while ℵ1 = card(R) does satisfy this condition (and so the Hilbert space ℓ2(R;F)
has equal Hamel and Hilbert dimension). The proof of Evans and Tapia assumes
the so-called Generalised Continuum Hypothesis which asserts that 2ℵo = ℵo+1 for
every ordinal o.6

Exercises

4.4.1 Let F ∈ {R,C} and let (V, ⟨·, ·⟩) be an F-inner product space. Show that an
orthogonal set is linearly independent.

4.4.2 Let F ∈ {R,C}. Show that the standard basis {e j} j∈Z>0 for F∞0 is a maximal
orthonormal family.

4.4.3 Let F ∈ {R,C}, let (V, ⟨·, ·⟩) be an F-inner product space, and let J be either
the set {1, . . . ,n} for some n ∈ Z>0 or the set Z>0. Show that if (u j) j∈J is or-
thonormal, then applying the Gram–Schmidt orthonormalisation procedure
to this family gives the same family back again.

6The cardinals ℵo, defined for ordinals o, are defined using transfinite recursion as follows. Take
ℵ0 to be the cardinality of Z>0. Assuming that ℵo has been defined, one defines ℵo+1 to be the
successor (see Definition I-1.4.1) of ℵo.
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4.4.4 Prove Proposition 4.4.17. Point out the parts of your argument that are not
valid in the infinite-dimensional case.

4.4.5 Prove Proposition 4.4.19. Point out the parts of your argument that are not
generally valid for enumerable orthonormal sets (e j) j∈Z>0 .

4.4.6 Prove Theorem 4.4.20. Point out the parts of your argument that are not
generally valid for enumerable orthonormal sets (e j) j∈Z>0 .

In the following exercise you will see just how fine is the notion of a maximal
orthonormal set. Taking away any vector, or attempting to add a vector, ruins the
maximality.

4.4.7 Let B = {e j} j∈Z>0 be a maximal orthonormal set in an inner product space
(V, ⟨·, ·⟩).
(a) Show that for any k ∈ Z>0 the setB \ {ek} is not maximal.
(b) Show that there is no vector e0 ∈ V with the property that {e0} ∪B is a

maximal orthonormal set.
4.4.8 Let F ∈ {R,C} and let (V, ⟨·, ·⟩2) be an F-Hilbert space. Let {ei}i∈I be a Hilbert

basis. Show that if α ∈ V∗ then the vector vα ∈ V associated with α by
Corollary 4.2.5 satisfies ⟨vα, ei⟩ = α(ei) for each i ∈ I.
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Chapter 5

Convexity

In Section II-1.9 we studied convexity in the context of n-dimensional Euclidean
space Rn. In this chapter we generalise this discussion to arbitrary vector spaces,
and also provide more a more advanced discussion of topics in convexity. The
results in this chapter will be essential in our constructions of locally convex topolo-
gies in Chapter 6.

Do I need to read this chapter? The material in this chapter is essential reading
for the important material in Chapter 6. •



576 5 Convexity 2022/03/07

Section 5.1

Convex bodies

In this section we study in some detail a particular class of convex sets, those
with nonempty interior. Of course, since every convex set has a nonempty interior
in the affine hull of the convex set, i.e., the smallest affine subspace containing the
convex set. Thus, convex sets with a nonempty interior are very general. However,
thinking about them specifically reveals many interesting features of these bodies.

Do I need to read this section? The results in this section can be bypassed on
a first reading and/or until needed. Some of the constructions are interesting,
however, so if you like interesting things, then read this section. •

5.1.1 Definitions

In this section we give a few results concerning convex sets with nonempty
interior. These sets have a name.move balanced?

5.1.1 Definition (Convex body, balanced convex body) A convex body is a convex set
C ⊆ Rn for which int(C) , ∅. A convex body C is balanced if x ∈ C implies that
−x ∈ C. •

Associated with a convex body is the following notion.

5.1.2 Definition (Gauge of a convex body) If C ⊆ Rn is a convex body, the gauge of C
is the map µC : Rn

→ R≥0 given by

µC(x) = inf{λ ∈ R>0 | x ∈ λC}. •

The gauge of a compact convex set is important.

5.1.3 Theorem (The gauge of a balanced compact convex body is a norm) If C ⊆ Rn

is a balanced compact convex body, then the gauge µC of C is a norm onRn. That is to say,
(i) µC(αx) = |α|µC(x) for α ∈ R and x ∈ Rn,
(ii) µC(x) ≥ 0 for all x ∈ Rn,
(iii) µC(x) = 0 only if x = 0,
(iv) µC(x1 + x2) ≤ µC(x1) + µC(x2).

Moreover, C is the unit ball for the norm µC, i.e.,

C = {x ∈ Rn
| µC(x) ≤ 1}.

Proof (i) If α = 0 and x ∈ C, then

µC(αx) = µC(0) = inf{λ ∈ R>0 | 0 ∈ λC} = infR>0 = 0,
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since 0 ∈ C. Now let α ∈ R>0. Then

µC(αx) = inf{λ ∈ R>0 | αx ∈ λC}

= inf{λ ∈ R>0 | x ∈ λ
αC}

= inf{αλ ∈ R>0 | x ∈ λC}
= α inf{λ ∈ R>0 | x ∈ λC} = αµC(x),

using Proposition I-2.2.28. Finally, if α ∈ R<0, then

µC(αx) = inf{λ ∈ R>0 | αx ∈ λC}
= inf{λ ∈ R>0 | αx ∈ (−λ)C}
= inf{λ ∈ R>0 | (−α)x) ∈ λC}
= − α inf{λ ∈ R>0 | x ∈ λC} = −αµC(x),

using the fact that C is balanced and using the fact that this part of the result has been
proved for α ∈ R>0.

(ii) This is obvious.
(iii) Suppose that µC(x) = 0 and let ϵ ∈ R>0. Let δ ∈ R>0 be such that δC ⊆ Bn(ϵ, 0).

By definition of µC, x ∈ Bn(ϵ, 0). As this holds for every ϵ ∈ R>0 we much have x = 0.
(iv) Let x1, x2 ∈ Rn. Note that if x1 ∈ λ1C and if x2 ∈ λ2C for λ1, λ2 ∈ R>0, then we

write x1 = λ1y1 and x2 = λ2y2 for y1, y2 ∈ C. Then

λ1

λ1 + λ2
y1 +

λ2

λ1 + λ2
y1 ∈ C =⇒ λ1y1 + λ2y2 ∈ (λ1 + λ2)C

=⇒ x1 + x2 ∈ (λ1 + λ2)C.

Thus

{λ1, λ2 ∈ R>0 | x1 ∈ λ1C, x2 ∈ λ2C} ⊆ {λ1, λ2 ∈ R>0 | x1 + x2 ∈ (λ1 + λ2)C}.

Thus we have

µC(x1 + x2) = inf{λ ∈ R | x1 + x2 ∈ λC}
= inf{λ1 + λ2 | x1 + x2 ∈ (λ1 + λ2)C}
≤ inf{λ1 + λ2 | x1 ∈ λ1C, x2 ∈ λ2C}
= inf{λ1 | x1 ∈ λ1C} + inf{λ2 | x2 ∈ λ2C} = µC(x1) + µC(x2),

using Proposition I-2.2.28.
For the final assertion of the theorem, first let x ∈ B(1, 0) be in the unit ball for the

norm ∥·∥. Then µC(x) ∈ [0, 1]. Let (ϵ j) j∈Z>0 be a sequence converging to 0 and note that
x ∈ (1 + ϵ j)C for every j ∈ Z>0. Thus, for each j ∈ Z>0, there exists x j ∈ C such that
x = (1 + ϵ j)x j. Thus lim j→∞ x j = x, giving x ∈ C since C is closed. Next, suppose that
x ∈ C. Then, since C is symmetric, λx ∈ C for λ ∈ [0, 1]. Therefore,

µC(x) = inf{λ ∈ R>0 | x ∈ λC} ≤ 1,

giving x ∈ B(1, 0), as desired. ■

An important class of convex sets are the ellipsoids.
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5.1.4 Definition (Ellipsoid) An ellipsoid is a subset E ⊆ Rn that is given by f (Bn(1, 0))
where f : Rn

→ Rn is an invertible affine map. •

By Exercise II-1.9.7 it follows that an ellipsoid is convex. Let us show that this
definition of ellipsoid agrees with the perhaps more familiar one. We refer the
reader ahead to for a discussion of linear maps defined on finite-dimensional innerwhat

product spaces.

5.1.5 Proposition (Characterisation of ellipsoids) For a subset E ⊆ Rn, the following
statements are equivalent:

(i) E ⊆ Rn is an ellipsoid;
(ii) there exists a symmetric and positive-definite map A ∈ L(Rn;Rn) and b ∈ Rn such

that
E = {Ax + b | x ∈ Bn(1, 0)};

(iii) there exists x0 ∈ Rn, λ1, . . . , λn ∈ R>0, and an orthonormal basis {f1, . . . , fn} for Rn

such that

E = {y1f1 + · · · + ynfn ∈ R
n
| λ1(y1 − y01)2 + · · · + λn(yn − y0n)2

≤ 1},

where
x0 = y1f1 + · · · + ynfn;

(iv) there exists a symmetric and positive-definite map B ∈ L(Rn;Rn) and x0 ∈ Rn such
that

E = {x ∈ Rn
| ⟨B(x − x0), x − x0⟩Rn ≤ 1}.

Moreover, if A and B are as in parts (ii) and (iv), respectively, then A = B−1/2 (refer to forwhat?

the notion of the square root of a symmetric positive-definite linear map).
Proof (i) =⇒ (ii) By definition, E = f ′(x) where f ′(x) = A′x+b with A invertible. By the
Polar Decomposition Theorem, , A′ = A ◦U where U ∈ O(n) and where A is symmetricwhat?

and positive-definite. Then

E = {A′x + b | x ∈ Bn(1, 0)}

= {AUx + b | x ∈ Bn(1, 0)}

= {Ax + b | x ∈ Bn(1, 0)},

noting that U(Bn(1, 0)) = Bn(1, 0).
(ii) =⇒ (iii) By assumption, E = f (Bn(1, 0) where the affine map f : Rn

→ Rn is
given by f (x) = Ax + b where A ∈ L(Rn;Rn) is symmetric and positive-definite and
b ∈ Rn. Thus, by , there exist eigenvalues µ′1, . . . , µ

′
n ∈ R>0 for A and a basis { f 1, . . . , f n}what?

of orthonormal eigenvectors for A. Let x0 = A−1b and write

x0 = y01 f 1 + · · · + y0n f n.

Also, if x ∈ Rn, let us write
x = y1 f 1 + · · · + yn f n,
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and note that
A(y1 f 1 + · · · + yn f n) = µ′1y1 f 1 + · · · + µ

′

nyn f n.

Thus
A−1(y1 f 1 + · · · + yn f n) = µ1y1 f 1 + · · · + µnyn f n,

where µ j =
1
µ′j

, j ∈ {1, . . . ,n}. Thus, if E = f (Bn(1, 0)), we have

E = { f (z) | z ∈ Bn(1, 0)} = {Az + b | z ∈ Bn(1, 0)}

= {x ∈ Rn
| A−1(x − b) ∈ Bn(1, 0)}

= {y1 f 1 + · · · + yn f n | µ1(y1 − y01) f 1 + · · · + µn(yn − y0n) f n ∈ Bn(1, 0)}

= {y1 f 1 + · · · + yn f n | λ1(y1 − y01)2 + · · · + λn(yn − y0n)2
≤ 1}

where λ j = µ2
j , j ∈ {1, . . . ,n}, since the basis { f 1, . . . , f n} is orthonormal.

(iii) =⇒ (iv) Withλ1, . . . , λn ∈ R>0 and { f 1, . . . , f n} as in part (iii), define B ∈ L(Rn;Rn)
by asking that Bf j = λ j f j, j ∈ {1, . . . ,n}, noting that this defines a linear map by
Theorem I-4.5.24. Also let x0 ∈ Rn be as in part (iii). If we write

x0 = y1 f 1 + · · · + yn f n,

then the relation
λ1(y1 − y01)2 + · · · + λn(yn − y0n)2

≤ 1

exactly corresponds to the relation ⟨B(x − x0), x − x0⟩Rn ≤ 1, if we write

x = y1 f 1 + · · · + yn f n.

(iv) =⇒ (i) We have

{x ∈ Rn
| ⟨B(x − x0), x − x0⟩Rn ≤ 1} = {x ∈ Rn

| ⟨B1/2(x − x0),B1/2(x − x0)⟩Rn ≤ 1}

= {x ∈ Rn
| B1/2(x − x0) ∈ Bn(1, 0)}

= {B−1/2y + x0 | y ∈ Bn(1, 0)},

showing that E is an ellipsoid if it satisfies condition (iv). This also proves the final
assertion of the proposition. ■

5.1.2 Maximal and minimal ellipsoids

Given a convex body, one can obviously fit an ellipsoid inside the body; since
a convex body has a nonempty interior, there exists a ball around every point
contained in the convex body. One can then imagine growing an ellipsoid within
the convex body. A question that arises is, “How large can an ellipsoid within a
convex body be made?” The following result gives the somewhat unsurprising
result that there is an ellipsoid of maximal volume, and the more surprising result
that this maximal volume ellipsoid is unique.
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5.1.6 Theorem (The maximal volume ellipsoid contained in a convex body) Let
C ⊆ Rn be a compact convex set with nonempty interior. Then the following statements
hold:

(i) there exists a unique ellipsoid EC ⊆ C such that, among all ellipsoids contained in C,
EC has the maximum volume;

(ii) there exists m ∈ Z>0, u1, . . . ,um ∈ bd(C) ∩ bd(EC), and λ1, . . . , λm ∈ R>0 such
that

(a)
m∑

j=1

λjA−1(uj − x0) = 0 and

(b)
m∑

j=1

λj⟨A−1(uj − x0), x⟩2Rn = ∥x∥2Rn for all x ∈ Rn,

where A ∈ L(Rn;Rn) and x0 ∈ Rn are such that

EC = {Ay + x0 | y ∈ Bn(1, 0)};

(iii) if xC is the centre of EC (see Definition II-1.9.46), then

C ⊆ xC + n(EC − xC);

(iv) if C is balanced then C ⊆
√

nC.
Proof (i) First let us prove the existence of EC. Consider the map vol : L(Rn;Rn)×Rn

→

R defined by asking that vol(A, b) is the volume of the ellipsoid

EA,b = {Ax + b | x ∈ Bn(1, 0Rn)}.

Note that vol is a continuous map. We claim that the set

MC = {(A, b) ∈ L(Rn;Rn) ×Rn
| EA,b ⊆ C}

is compact. That it is bounded follows from the fact that if S ⊆ L(Rn;Rn) × Rn is an
unbounded set, then given R ∈ R>0 there exists x ∈ Rn such that ∥Ax + b∥Rn > R (we
leave the simple verification of this fact to the reader). Thus we need only show that
the complement of MC is open. Let (A, b) ∈ (L(Rn;Rn)×Rn) \MC and let x ∈ Bn(1, 0Rn)
be such that Ax + b < C. Since Rn

\ C is open and since the map

(A, b) 7→ Ax + b

is continuous, there exists a neighbourhood U ⊆ L(Rn;Rn) × Rn of (A, b) such that, if
(A′, b′) ∈ U, then Ax + b < C. This shows that MC is closed.

Now, note that vol|MC is a continuous map defined on a compact subset of a finite-
dimensional normed vector space. Thus it has a maximum by Theorem II-1.3.32, and
this shows that a maximal volume ellipsoid exists.

To prove the uniqueness part of the theorem is a little harder. First we prove a few
lemmata. For these lemmata we recall the binomial coefficient(

n
m

)
=

n!
m!(n −m)!

.

With this notation we have the following lemma.
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1 Lemma If a1, . . . , an ∈ R then

n∏
k=1

(1 + ak) = 1 +
n∑

k=1

∑
j1,...,jk∈{1,...,n}

j1<···<jk

aj1 · · · ajk

and, for each k ∈ {1, . . . ,n}. ∏
j1,...,jk∈{1,...,n}

j1<···<jk

aj1 · · · ajk = (a1 · · · an)(
n−1
k−1).

Proof Let us prove the first assertion first. We prove this by induction on n. For n = 1
the result is clearly true. So suppose the result is true for n = m and let a1, . . . , am+1 ∈ R.
Then, using the induction hypothesis,

m+1∏
k=1

(1 + ak) =
( m∏

k=1

(1 + ak)
)
(1 + am+1)

=
(
1 +

m∑
k=1

∑
j1,..., jk∈{1,...,m}

j1<···< jk

a j1 · · · a jk

)
(1 + am+1)

= 1 +
m∑

k=1

∑
j1,..., jk∈{1,...,m}

j1<···< jk

a j1 · · · a jk +

m∑
k=1

∑
j1,..., jk∈{1,...,m}

j1<···< jk

a j1 · · · a jkam+1 + am+1

= 1 +
m+1∑
k=1

∑
j1,..., jk∈{1,...,m}

j1<···< jk

a j1 · · · a jk ,

giving the first assertion.
We prove the second assertion by induction on k, fixing n. For k = 1 we have

{ j1, . . . , jk ∈ {1, . . . ,n} | j1 < · · · < jk} = {1, . . . ,n}.

Then ∏
j1,..., jk∈{1,...,n}

j1<···< jk

= a1 · · · an.

Since
(n−1

0
)
= 1 the assertion follows in this case. Now suppose that the second assertion

holds for k = m < n and compute finish∏
j1,..., jm, jm+1∈{1,...,n}

j1<···< jk< jk+1

a j1 · · · a jka jk+1 =

▼
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2 Lemma For k,n ∈ Z>0 with k ≤ n,

card({j1, . . . , jk ∈ {1, . . . ,n} | j1 < · · · < jk}) =
(
n
k

)
.

Proof We fix n and prove the lemma by induction on k. For k = 1 we have

{ j1, . . . , jk ∈ {1, . . . ,n} | j1 < · · · < jk} = {1, . . . ,n}

and
(n

k
)
= n and so the result holds in this case. Next suppose that the lemma holds for

k ∈ {1, . . . ,m}. Let m ∈ {1, . . . ,n} and note that

card({ j1, . . . , jk ∈ {1, . . . ,n} | j1 < · · · < jk < m}) =

card({ j1, . . . , jk ∈ {1, . . . ,m − 1} | j1 < · · · < jk}) =
(
m − 1

k

)
.

Note that this equality still holds when k ≥ m − 1, as long as we adopt the conven-
tion that

(m−1
k

)
= 0 in these cases. Therefore, using Pascal’s Rule (see the proof of

Proposition I-3.2.11),

card({ j1, . . . , jk, jk+1 ∈{1, . . . ,n} | j1 ≤ · · · ≤ jk ≤ jk+1}

=

n∑
m=1

(
m − 1

k

)
=

n∑
m=1

(
m

k + 1

)
−

n∑
m=1

(
m − 1
k + 1

)

=

n∑
m=1

(
m

k + 1

)
−

n−1∑
m=0

(
m

k + 1

)
=

(
n

k + 1

)
−

(
0

k + 1

)
=

(
n

k + 1

)
as desired. ▼

3 Lemma If A,B ∈ L(Rn;Rn) are symmetric and positive-definite, then

det(A + B)1/n
≥ det(A)1/n + det(B)1/n.

Moreover, if equality holds and if det(A) = det(B), then A = B.

Proof First let us prove the result assuming that A = In. In this case, we let λ1, . . . , λn ∈

R>0 denote the eigenvalues of B (these are real and positive by ). For k ∈ {1, . . . ,n} letwhat?

us define
σk =

∑
j1,..., jk∈{1,...,n}

j1<···< jk

λ j1 · · ·λ jk .

Note that, by Lemma 2, σk has
(n

k
)

summands. Thus, by Corollary I-3.1.36,∑
j1,..., jk∈{1,...,n}

j1<···< jk

λ j1 · · ·λ jk(n
k
) ≥

∏
j1,..., jk∈{1,...,n}

j1<···< jk

(λ j1 · · ·λ jk)
1/(n

k).
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We then compute, using the preceding relation and the second part of Lemma 1,

σk =

(
n
k

) ∑
j1,..., jk∈{1,...,n}

j1<···< jk

λ j1 · · ·λ jk(n
k
)

≥

(
n
k

) ∏
j1,..., jk∈{1,...,n}

j1<···< jk

(λ j1 · · ·λ jk)
1/(n

k)

=

(
n
k

)
(λ1 · · ·λn)(

n−1
k−1)/(n

k) =
(
n
k

)
(λ1 · · ·λn)k/n.

By Corollary I-3.1.36 we have equality above if and only if

λ j1 · · ·λ jk = λl1 · · ·λlk

for every j1, . . . , jk, l1, . . . , lk ∈ {1, . . . ,n} satisfying

j1 < · · · < jk, l1 < · · · < lk.

In particular, if this holds for k = 1 we see that λ1 = · · · = λn. By Lemma 1,

n∏
k=1

(1 + λk) = 1 + σ1 + · · · + σn

and so, using the Binomial Theorem, Exercise I-2.2.1,

(1 + (λ1 · · ·λn)1/n)n =

n∑
k=0

(
n
k

)
(λ1 · · · )k/n

≤ 1 + σ1 + · · · + σn =

n∏
k=1

(1 + λk).

Noting that

det(In)1/n = 1, det(B)1/n = (λ1 · · ·λn)1/n, det(In + B)1/n =
( n∏

k=1

(1 + λk)
)1/n

,

we see that the first assertion of the lemma holds when A = In. Moreover, equality holds
in the above inequality if and only if all eigenvalues of B are equal. If det(In) = det(B)
then it follows that B = In, and this gives the second assertion of the lemma when
A = In.

For the general case, write A = S2 where S is positive-definition, using . Then what?

A + B = P2 + B = P(In + P−1BP−1)P

=⇒ det(A + B)1/n = det(P)2/n det(In + P−1BP−1)1/n

and

det(A)1/n + det(B)1/n = det(P2) + det(PP−1BP−1P)1/n

= det(P)2/n(1 + det(P−1BP−1)1/n),
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using Theorem I-5.4.35. Then the first assertion of the lemma is equivalent to

det(In + P−1BP−1)1/n
≥ 1 + det(P−1BP−1)1/n.

Since P−1BP−1 is symmetric and positive-definite (as can be directly verified), this
follows from the first part of the proof where we assumed that A = In. From the first
part of the proof, if equality holds and if det(P−1BP−1) = det In = 1 then P−1BP−1 = In
and so A = B. Since

det(P−1BP−1) = det(B) det(P)−2 = det(B) det(A)−1

we get the second assertion of the lemma in the general case. ▼

Now we complete the proof. Let S+n denote the set of symmetric positive-definite
matrices. One can easily directly verify that S+n is convex. Let

EC = {(A, b) ∈ S+n ×R
n
| A(Bn(1, 0)) + b ⊆ C}.

One can check directly that EC is itself convex. Suppose that E1 = A1(Bn(1, 0)) + b1

and E2 = A2(Bn(1, 0)) + b2 are ellipsoids contained in C having maximal volume.
Since the volume of E1 and E2 are det(A1) and det(A2), respectively, it follows that
det(A1) = det(A2). Let A3 =

1
2 (A1 + A2) and b3 =

1
2 (b1 + b2), noting that (A3, b3) ∈ EC

since EC is convex. By Lemma 3 it holds that

det(A3)1/n
≥

1
2 (det(A1)1/n + det(A2)1/n) = det(A1)1/n.

Since E1 has maximal volume, the inequalities must be equalities in the above expres-
sion, and so, by the second assertion of Lemma 3, A1 = A2 = A3.

It remains to show that b1 = b2. Suppose that b1 , b2 and let b3 =
1
2 (b1 + b2). Let

K = conv(E1 ∪ E2). For a suitable affine transformation f we have f (E1) = Bn(1, ren)
and f (E2) = Bn(1,−ren) for some r ∈ R>0. Then define E3 by asking that

f (E3) = {(y1, . . . , yn) ∈ Rn
| y2

1 + · · · + y2
n−1 +

1
r2 y2

n ≤ 1}.

Note that Bn(1, 0) ⊂ f (E3) and so the volume of f (E3) is greater than that of Bn(1, 0).
Since the latter volume agrees with that of f (E1) and f (E2), it follows that the volume
of E3 is greater than that of E1 and E2, contradicting the maximality of the latter two
volumes.

(ii) First let us prove this part of the theorem assuming that EC = Bn(1, 0). For
u ∈ Rn let us denote by Lu ∈ L(Rn;Rn) the linear map

Lu(x) = ⟨u, x⟩Rnu.

Note that rank(Lu) = 1. Let us denote

KC = conv({(Lu,u) ∈ L(Rn;Rn) ⊕Rn
| u ∈ bd(C) ∩ bd(Bn(1, 0))}.

Note that bd(C) ∩ bd(Bn(1, 0)) , ∅ since Bn(1, 0) is the maximal ellipsoid for C. As
useful observation is that if (A, x) ∈ KC then tr((A) = 1. Indeed, note that, if (Lu,u) ∈ KC
for u ∈ bd(C) ∩ bd(Bn(1, 0)), then a direct computation gives

tr(Lu) = ∥u∥2Rn = 1.
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Now, if (A, x) ∈ KC then

(A, x) =
k∑

j=1

λ j(Lu j ,u j) =⇒ A =
k∑

j=1

λ jLu j

where λ j ∈ [0, 1], j ∈ {1, . . . , k}, and
∑k

j=1 λ j = 1. Therefore,

tr(A) =
k∑

j=1

λ j tr(Lu j) = 1

as claimed.
We shall first show that ( 1

n In, 0) ∈ KC. Suppose otherwise. Then, by Corol-
lary II-1.9.17, let α : L(Rn;Rn) ⊕Rn

→ R and a ∈ R be such that

α( 1
n In, 0) < a, α(A, x) > a, (A, x) ∈ KC.

Note that there exists Bα ∈ L(Rn;Rn) and yα ∈ R
n such that such that

α(A, x) = tr(BT
αA) + ⟨yα, x⟩Rn

for any (A, x) ∈ L(Rn;Rn) (since

((A, x), (B, y)) 7→ tr(ATB) + ⟨x, y⟩Rn

is an inner product, cf. ). Since 1
n In and all matrices A such that (A, x) ∈ KC for some what?

x ∈ Rn are symmetric, we can, without loss of generality, assume that Bα is symmetric.
Moreover, if we take

B̂α = Bα − tr(Bα)In

and define
α̂(A, x) = tr(B̂αA) + ⟨yα, x⟩Rn = α(A, x) − tr(Bα)

(recalling that tr(A) = 1), then we have

α̂( 1
n In, 0) = 0 = α( 1

n In, 0) − tr(Bα) < a − tr(Bα),
α̂(A, x) = α(A, x) − tr(Bα) > a − tr(Bα), (A, x) ∈ KC.

Therefore, for (A, x) ∈ KC, we have

α̂(A, x) > a − tr(Bα) > 0.

Since
tr(B̂αLu) = ⟨B̂αu,u⟩Rn

for every u ∈ Rn (this is directly verifiable), it follows that

⟨B̂αu,u⟩Rn + ⟨yα,u⟩Rn > 0 (5.1)

for every u ∈ bd(C) ∩ bd(Bn(1, 0)).
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Let δ ∈ R>0 and let δ0 ∈ R>0 be sufficiently small that In + δB̂α is positive-definite
for every δ ∈ [0, δ0]. (This is possible since In + δB̂α is positive-definite for δ = 0 and
since the condition for positive-definiteness from Theorem I-5.6.19 are continuous in
δ.) We shall always assume that δ ∈ (0, δ0]. Then define

xδ = −
1
2

(In + δB̂α)−1yα

and
Eδ = {x ∈ Rn

| ⟨(In + δB)(x − xδ), x − xδ⟩Rn ≤ 1}.

Note that, given the definition of xδ,

⟨(In + δB)(x − xδ), x − xδ⟩Rn = ∥x∥2Rn + δ⟨B̂αx, x⟩Rn + ⟨yα, x⟩Rn . (5.2)

We claim that there exists δ ∈ R>0 sufficiently small that Eδ ⊂ C. Let x ∈ bd(C) −
bd(Bn(1, 0)). By continuity of the function

(δ, y) 7→ ⟨(In + δB)(y − xδ), y − xδ⟩Rn

and since the value of this function is greater than 1 at x when δ = 0, it follows that
there exists δx ∈ R>0 and a neighbourhood Ux of x such that

⟨(In + δB)(y − xδ), y − xδ⟩Rn > 1

for all δ ∈ (0, δx] and all y ∈ Ux. Now, if x ∈ bd(C) ∩ bd(Bn(1, 0)) we use (5.1) and (5.2)
to get

⟨(In + δB)(x − xδ), x − xδ⟩Rn > 1

for δ ∈ (0, δ0]. Thus there exists δx ∈ R>0 and a neighbourhood Ux of x such that

⟨(In + δB)(y − xδ), y − xδ⟩Rn > 1

for all δ ∈ (0, δx] and all y ∈ Ux. Now note that (Ux)x∈bd(C) covers bd(C) and so, by
compactness of bd(C), there exists x1, . . . , xk ∈ bd(C) such that bd(C) ⊆ ∪k

j=1Ux j . If

δ = min{δx1 , . . . , δxk}

then we have
⟨(In + δB)(x − xδ), x − xδ⟩Rn > 1

for all x ∈ bd(C). Thus Eδ ⊆ C as claimed.
Next we claim that vol(Eδ) ≥ vol(Bn(1, 0)). Note that

Eδ = {(In + δB̂α)−1/2x + x0 | x ∈ Bn(1, 0)}

by Proposition 5.1.5. Let µ1, . . . , µn ∈ R>0 be the eigenvalues for In+δB. By the change
of variable theorem,

vol(Eδ) =
vol(Bn(1, 0))

det(In + δB)1/2
=

vol(Bn(1, 0))
(
∏n

j=1 µ j)1/2
.
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Now note that
∑n

j=1 µ j = tr(In + δB) = n. Then, using Corollary I-3.1.36,

n∏
j=1

µ j ≤
(1
n

n∑
j=1

µ j

)n
= 1,

giving vol(Eδ) ≥ vol(Bn(1, 0)). Since Eδ ⊂ C there exists r slightly larger than 1 such
that the ellipsoid rEδ ⊆ C (do you spot the hidden use of compactness here?). Since

vol(rEδ) > vol(Eδ) ≥ vol(Bn(1, 0)),

we contradict the fact that Bn(1, 0) is the unique ellipsoid of maximal volume for C.
Thus our assumption that ( 1

n In, 0) < KC is false and so, by Proposition II-1.9.4,

1
n

In =

m∑
j=1

c jLu j , 0 =
n∑

j=1

c ju j

for c j ∈ R>0 and u j ∈ bd(C) ∩ bd(Bn(1, 0)), j ∈ {1, . . . ,m}. Let us define λ j = nc j,
j ∈ {1, . . . ,n}, and note that

In =

m∑
j=1

λ jLu j , 0 =
n∑

j=1

λ ju j.

Thus
m∑

j=1

λ j⟨u j, x⟩Rnu j = x

for every x ∈ Rn, and taking the inner product of this expression with y ∈ Rn gives

m∑
j=1

λ j⟨u j, x⟩Rn⟨u j, y⟩Rn = ⟨x, y⟩Rn .

Letting y = x gives this part of the theorem in the case that EC = Bn(1, 0).
In the general case, write EC = f (Bn(1, 0)) for an invertible affine map f . The above

proof then shows that there are points u′j ∈ bd( f−1(C)) ∩ bd(Bn(1, 0)) and λ j ∈ R>0,
j ∈ {1, . . . ,m}, such that

∥x∥2Rn =

m∑
j=1

λ j⟨u′j, x⟩Rn , 0 =
n∑

j=1

λ ju′j

for every x ∈ Rn. Defining u j = f (u′j) we get the desired result.

(iii) We begin by assuming that EC = Bn(1, 0). Using part (ii), let u1, . . . ,um ∈

bd(C) ∩ bd(Bn(1, 0)) and λ1, . . . , λm ∈ R>0 be such that

m∑
j=1

λ jLu j = In.
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Define
K = {x ∈ Rn

| ⟨u j, x⟩Rn ≤ 1, j ∈ {1, . . . ,m}}.

Note that K is convex (it is a convex polyhedron according to Definition II-1.9.49). We
claim that C ⊆ K. To see this, note that for each j ∈ {1, . . . ,m} the hyperplane

P j = {x ∈ Rn
| ⟨u j, x⟩Rn = 1}

is a support hyperplane for K passing through u j. Moreover, it is also a support hyper-
plane for Bn(1, 0) passing through u j; in fact, it is the unique support hyperplane for
Bn(1, 0) passing through u j by . Thus P j is a support hyperplane for C passing throughwhat?

u j. Since the hyperplanes P j, j ∈ {1, . . . ,m}, are the only supporting hyperplanes for K,
we conclude that C ⊆ K as claimed.

Now let x ∈ K and note that

−∥x∥Rn ≤ ⟨u j, x⟩Rn ≤ 1, j ∈ {1, . . . ,m},

the first inequality by Cauchy–Bunyakovsky–Schwartz and the second by definition
of K. Also note that, as we saw in the proof of part (ii),

In =

m∑
j=1

λ jLu j .

Taking traces and noting that tr(Lu j) = 1, we have

m∑
j=1

λ j = n.

Therefore,

0 ≤
m∑

j=1

λ j(1 − ⟨u j, x⟩Rn)(∥x∥Rn + ⟨u j, x⟩Rn)

= ∥x∥Rn

n∑
j=1

λ j + (1 − ∥x∥Rn)
m∑

j=1

λ j⟨u j, x⟩Rn −

m∑
j=1

λ j⟨u j, x⟩2Rn

= n∥x∥Rn − ∥x∥2Rn .

Thus ∥x∥Rn ≤ n, giving this part of the result when EC = Bn(1, 0) since x ∈ K ⊇ C.
In the general case, write

EC = {Ay + xC | y ∈ Bn(1, 0)}.

Let f (x) = Ax+xC. The first part of the proof above then gives f−1(C) ⊆ nBn(1, 0). Thus

C ⊆ {Ay + xC | y ∈ nBn(1, 0)} = xC + n(EC − xC),

as desired.
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(iv) Suppose that C is balanced and let u′1, . . . ,u
′
m ∈ bd(C) ∩ bd(Bn(1, 0)) and

λ′1, . . . , λ
′
m ∈ R>0 satisfy

m∑
j=1

λ′j⟨u
′

j, x⟩
2
Rn = ∥x∥2Rn .

Then define
u2 j−1 = u′j, u2 j = −u′j, j ∈ {1, . . . ,m},

noting that uk ∈ bd(C) ∩ bd(Bn(1, 0)), k ∈ {1, . . . , 2m}, since C and Bn(1, 0) are balanced.
Also define

λ2 j−1 = λ2 j =
1
2
λ′j, j ∈ {1, . . . ,m}.

One then directly verifies that

2m∑
k=1

λkuk = 0,
2m∑
k=1

λk⟨uk, x⟩2Rn = ∥x∥2Rn , x ∈ Rn.

Now let
K = {x ∈ Rn

| ⟨uk, x⟩Rn ≤ 1, k ∈ {1, . . . , 2m}}.

As in the previous part of the proof, C ⊆ K and, if x ∈ K then

−∥x∥Rn ≤ ⟨uk, x⟩Rn ≤ 1, k ∈ {1, . . . , 2m}.

Since if u ∈ {uk | k ∈ {1, . . . , 2m}} it also holds that −u ∈ {uk | k ∈ {1, . . . , 2m}}, we also
have

−1 ≤ ⟨uk, x⟩Rn ≤ ∥x∥Rn , k ∈ {1, . . . , 2m}.

Thus ⟨uk, x⟩Rn ∈ [−1, 1] for k ∈ {1, . . . , 2m} and x ∈ K. As in the previous part of the
proof, we have

2m∑
k=1

λk = n.

Therefore, for x ∈ K,

∥x∥2Rn =

2m∑
k=1

λk⟨uk, x⟩2Rn ≤ n,

and so ∥x∥Rn ≤
√

n. This gives this part of the theorem when EC = Bn(1, 0).
In the general case, write EC = L(Bn(1, 0)) for an invertible linear (instead of linear

since the centre of EC is 0 if C is balanced) map L. Then the preceding part of the proof
gives L−1(C) ⊆

√
nBn(1, 0) which immediately gives C ⊆

√
nEC by linearity of L. ■

Let us give some examples that illustrate the preceding theorem, and also show
that the estimates given in parts (iii) and (iv) are sharp.

5.1.7 Examples (Maximal ellipsoid of a convex body) Both examples will be convex
polytopes, as per Definition II-1.9.49. It is useful, therefore, to consider the fol-
lowing general result. We let S>0(Rn;Rn) be the set of symmetric, positive-definite is this the right

notation?

linear maps on Rn.
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1 Lemma Let C be a convex polytope defined by

C = {x ∈ Rn
| ⟨aj, x⟩Rn ≤ bj, j ∈ {1, . . . ,k}}

for aj ∈ Rn and b ∈ Rk, j ∈ {1, . . . ,k}, and let E be the ellipsoid

E0 = {B0x + d0 | x ∈ Bn(1, 0)}

for a symmetric, positive-definite B0 ∈ S>0(Rn;Rn) and d0 ∈ Rn. Define f : S>0(Rn;Rn) ⊕
Rn
→ R and h : S>0(Rn;Rn) ⊕R→ Rk by

f(B,d) = log det B, hj(B, x) = ∥Baj∥Rn + ⟨aj,d⟩Rn , j ∈ {1, . . . ,k}.

Then E0 is the maximal volume ellipsoid for C if and only if (C, x0) is a local maximum of
(f,h) with inequality constraints (see Definition II-1.4.43).

Proof For (B,d) ∈ S>0(Rn;Rn) define the ellipsoid

EB,d = {Bx + d | x ∈ Bn(1, 0)}.

Then

EB,d ⊆ C

⇐⇒ ⟨a j,Bx⟩Rn + ⟨a j,d⟩Rn ≤ b j, j ∈ {1, . . . , k}, x ∈ Bn(1, 0)

⇐⇒ sup{⟨a j,Bx⟩Rn + ⟨a j,d⟩Rn | x ∈ Bn(1, 0)} ≤ b j, j ∈ {1, . . . , k}

⇐⇒ sup{|⟨Ba j, x⟩Rn | | x ∈ Bn(1, 0)} + ⟨a j,d⟩Rn ≤ b j, j ∈ {1, . . . , k}
⇐⇒ ∥Ba j∥Rn + ⟨a j,d⟩Rn ≤ b j, j ∈ {1, . . . , k},

since B is symmetric, and using Proposition I-2.2.27 and the fact that the induced
norm of the linear map x 7→ ⟨c, x⟩Rn is ∥c∥Rn according to Theorem II-1.1.14. Thus the
set of ellipsoids contained in C is prescribed by the inequality constraints defined
by h. Since vol(EB,d) = det Bvol(Bn(1, 0)) by the change of variables theorem, the
maximum volume ellipsoid is the maximum of the function (B,d) 7→ det B subject
to the inequality constraints defined by h. Since log is monotonically increasing,
the lemma follows, cf. Proposition I-2.2.27. ▼

Note that maximising B 7→ log det B is nothing more than maximising B 7→
det B. However, there are advantages to using log det rather than det. One of these
is the simple form for the derivative of the function log det.

2 Lemma For B,V ∈ L(Rn;Rn) with B invertible, the derivative of log det at B in the
direction of V is D log det(B) ·V = tr(B−1V).

Proof By Theorem I-5.3.10,

(det B)In = BAdj(B).
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In this formula, we shall think of B ∈ L(Rn;Rn) as being a variable, and shall write
the components of B as B jk, j, k ∈ {1, . . . ,n}. Let j, k ∈ {1, . . . ,n} and note that the
above formula gives

det B =
n∑

m=1

B jmAdj(B)mj.

Note that Adj(B)mj is, possibly up to sign, the determinant of the (n − 1) × (n − 1)
matrix obtained by deleting the jth row and mth column of A. This implies, in
particular, that Adj(B)mj is independent of B jk for every m ∈ {1, . . . ,n}. Thus

∂det B
∂B jk

=

n∑
m=1

∂B jm

∂B jk
Adj(B)mj = Adj(B)kj.

Thus, by Proposition I-3.8.6(iii) and the Fundamental Theorem of Calculus,

∂ log det B
∂B jk

=
1

det B
Adj(B)kj = (B−T) jk.

Thus

D log det(B) · V =
n∑

j,k=1

∂ log det B
∂B jk

V jk =

n∑
j,k=1

B−1
kj V jk = tr(B−1V),

as claimed. ▼

Let us now consider a few special cases of the preceding lemma.
1. Let us take C = [−1, 1]n to be the unit cube in Rn.

3 Lemma EC = Bn(1, 0).

Proof Let {e1, . . . , en} be the standard basis for Rn and define a1, . . . ,a2n ∈ Rn by

a2 j−1 = e j, a2 j = −e j, j ∈ {1, . . . ,n}.

Note that
C = {x ∈ Rn

| ⟨ak, x⟩Rn ≤ 1, k ∈ {1, . . . , 2n}}.

Note that, for B ∈ S>0(Rn;Rn), we have Be j = c(B, j) for each j ∈ {1, . . . ,n}.
Let EC be the ellipsoid of maximal volume contained in C. Note that since C
is balanced, EC is also balanced (why?). Thus, according to Lemma 1 above,
EC = B0(Bn(1, 0)) where B0 minimises B 7→ log det B subject to the constraints
∥c(B, j)∥Rn ≤ 1, j ∈ {1, . . . ,n}.

D log det(In) · (B − In) = tr(In(B − In)) = tr(B − In) ≤ 0

▼
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5.1.3 Notes

Theorem 5.1.6 is often called the John Ellipsoid Theorem, and was proved by
John [1948]. John actually proves more, giving some measure of how much of
the convex body is filled by the maximal ellipsoid.
Now note that, by Proposition II-1.1.11(iv),

inf{r ∈ R>0 | C ⊆ rBn(1, 0)} =
√

n.

Thus, in this case, C ⊆
√

nBn(1, 0), and
√

n is the smallest factor for which this
inclusion holds.

2.
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Section 5.2

Dvoretzky’s Theorem

In this section we present an important theorem on the nature of high-
dimensional convex bodies. This theorem is valuable for understanding the so-
called local geometry of Banach spaces. Indeed, we have already used Dvoretzky’s
Theorem in a crucial way in the proof of Theorem 3.7.5. The proof of Dvoretzky’s
Theorem is rather nonobvious, and has a probabilistic flavour. For this reason, our
discussion of Dvoretzky’s Theorem begins with a discussion of the so-called “con-
centration” of Gaussian measure. This subject itself is one of great independent
interest.

Do I need to read this section? This section can be passed over unless one needs
to use it. However, if one is interested in gaining some insights into the structure
of infinite-dimensional Banach spaces, Dvoretzky’s Theorem is indispensable. •

5.2.1 Concentration of Gaussian measure

Our proof of Dvoretzky’s Theorem relies on a trick from measure theory known
as concentration of measure. This is a rather general subject area, and we shall only
touch upon a very specific facet of this, the concentration of Gaussian measure.

We work withRn and on the σ-algebraB (Rn) of Borel sets we define a measure,
called the standard Gaussian measure, γn by

γn(B) =
1

(
√

2π)n

∫
B

exp(− 1
2∥x∥

2
Rn) dx,

where we use Riemann integral notation, but actually use the Lebesgue integral on
Rn. Let us state some useful facts about this measure.

5.2.1 Lemma (Properties of standard Gaussian measure) The standard Gaussian mea-
sure has the following properties:

(i) γn is the n-fold product of the measures γ1:

γn = γ1
× · · · × γ1;

(ii) γn(Rn) = 1;
(iii) if R ∈ O(n) and if B ∈B (Rn), then γn(R(B)) = γn(B).

Proof (i) Let B1, . . . ,Bn ∈B (R) so that

B ≜ B1 × · · · × Bn ∈B (Rn)
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by Proposition 2.5.7. We compute

γn(B) =
1

(
√

2π)n

∫
B

exp(−1
2∥x∥

2
Rn) dx =

1

(
√

2π)n

∫
B1×···×Bn

exp(− 1
2 x2

1) · · · exp(−1
2 x2

n) dx

=
( 1
√

2π

∫
B1

exp(−1
2 x2

1) dx1

)
· · ·

( 1
√

2π

∫
Bn

exp(−1
2 x2

n) dxn
)
= γ1(B1) · · ·γ1(Bn),

giving this part of the result by Theorem 2.3.33.
(ii) By Lemma 1 from Example 2.3.32–4 and a change of variable we haveγ1(R) = 1.

This part of the lemma now follows from part (i).
(iii) We compute

γn(R(B)) =
∫

R(B)
exp(− 1

2∥x∥
2
Rn) dx =

∫
B

exp(− 1
2∥R

−1y∥2Rn)|det R|dy

=

∫
B

exp(−1
2∥y∥

2
Rn) dy = γn(B),

using the change of variables theorem and Theorem II-1.3.18. ■

Let us denote the integral of aB (Rn)-measurable function f : Rn
→ R by∫

Rn
f (x) dγn(x),

noting by Proposition 2.7.65 that∫
Rn

f (x) exp(−1
2∥x∥

2
Rn) dx.

The following estimate will be useful for us.

5.2.2 Lemma (Gaussian mean of supremum) There exists C ∈ R>0 such that∫
Rn
∥x∥∞ dγn(x) ≥ C

√
log(n)

for every n ∈ Z>0.
Proof By the change of variable formula, t 7→ −e f rac12t2

is a primitive of te−
1
2 t2

. Let
α ∈ R>0 and compute, using this fact and integration by parts,∫

∞

α
e−

1
2 t2

dt =
∫
∞

α

te−
1
2 t2

t
dt =

e−
1
2α

2

α
−

∫
∞

α

e−
1
2 t2

t2 dt.

Now we compute ∫
∞

α

e−
1
2 t2

t2 dt ≤
1
α3

∫
∞

α
te−

1
2 t2

dt =
e−

1
2α

2

α3 .

Therefore, ∫
∞

α
e−

1
2 t2

dt ≥
(
1 −

1
α2

)e−
1
2α

2

α
.
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Now let α = αn ≜
√

log(n) and note that, with this value of α,make sure this is the

right log ∫
∞

αn

e−
1
2 t2

dt ≥
1 − 1

log(n)√
n log(n)

.

Note that

lim
n→∞

n
1 − 1

log(n)√
n log(n)

= ∞.

Thus we let N ∈ Z>0 be sufficiently large that

1 − 1
log(n)√

n log(n)
≥

√
2π

2n
, n ≥ N.

Thus
2
√

2π

∫
∞

αn

e−
1
2 t2

dt ≥
1
n
, n ≥ N.

Note that
{x ∈ Rn

| ∥x∥∞ ≤ αn}

is the cube of radius αn centred at 0Rn . Thus

γn({x ∈ Rn
| ∥x∥∞ ≤ αn}) =

( 1
√

2π

∫ αn

−αn

e−
1
2 t2

dt
)n

=
( 1
√

2π

∫
R

e−
1
2 t2

dt −
2

2
√
π

∫
∞

αn

e−
1
2 t2

dt
)n
≤

(
1 −

1
n

)n
.

Note that (
1 −

1
n

)n
=

(n − 1
n

)n
=

( n
n − 1

)−n
=

(n − 1 + 1
n − 1

)−n
=

(
1 +

1
n − 1

)−n
.

Let m = n − 1 and note that(
1 −

1
n

)n
=

(
1 +

1
m

)−m−1
=

1
(1 + 1

m )m(1 + 1
m )
.

Thus
lim
n→∞

(
1 −

1
n

)n
= lim

m→∞

1
(1 + 1

m )m(1 + 1
m )
=

1
e
,

by Proposition I-2.4.18, using Proposition I-2.3.23. Thus we assume that N is also
sufficiently large that

γn({x ∈ Rn
| ∥x∥∞ ≤ αn}) ≤

1
2
, n ≥ N.

Let
An = {x ∈ Rn

| ∥x∥∞ ≥ αn}
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so that γn(An) ≥ 1
2 when n ≥ N. Then∫

Rn
∥x∥∞dγn(x) =

∫
An

∥x∥dγn(x) +
∫
Rn\An

∥x∥dγn(x) ≥ αnγ
n(An) ≥

1
2

√
log(n),

provided that n ≥ N. Letting

C = min
{1
2

}
∪


∫
Rn∥x∥∞ dγn(x)√

log(n)

∣∣∣∣∣∣∣ n ∈ {1, . . . ,N}

 ,
we have the estimate as given. ■

Now let us state the result we will use on the so-called concentration of Gaussian
measure.

5.2.3 Theorem (Concentration of standard Gaussian measure) If r ∈ R>0 and if
f : Rn

→ R satisfies
|f(x1) − f(x2)| ≤ ∥x1 − x2∥Rn

for every x1, x2 ∈ Rn, then

γn
({

x ∈ Rn
∣∣∣∣ ∣∣∣∣f(x) −

∫
Rn

f(y)dγn(y)
∣∣∣∣ ≥ r

})
≤ 2e−

2
π2 r2
.

Proof We first show that f is integrable so that the statement in the theorem makes
sense.

1 Lemma f ∈ L(1)((Rn,B (Rn), γn);R).
Proof Note that for every x ∈ Rn we have

| f (x) − f (0)| ≤ ∥x∥Rn

=⇒ f (0) − ∥x∥Rn ≤ f (x) ≤ f (0) + ∥x∥Rn

=⇒ | f (x)| ≤ | f (0)| + ∥x∥Rn .

Therefore,

| f (x) exp(−1
2∥x∥

2
Rn)| ≤ | f (0)| exp(− 1

2∥x∥
2
Rn) + ∥x∥Rn exp(− 1

2∥x∥
2
Rn).

Thus our claim will follow if we can show that

x 7→ ∥x∥Rn exp(− 1
2∥x∥

2
Rn)

is integrable with respect to Lebesgue measure. Note that one can use L’Hôpital’s Rule
to prove that

lim
r→∞

rk exp(− 1
2 r2) = 0

for every k ∈ Z>0. Thus let R ∈ R>0 be sufficiently large that r(1 + r2)n exp(−1
2 r2) ≤ 1

for r ≥ R. Then we compute∫
Rn
∥x∥Rn exp(−1

2∥x∥
2
Rn) dx =

∫
Bn(R,0)

∥x∥Rn exp(− 1
2∥x∥

2
Rn) dx

+

∫
Rn\Bn(R,0)

∥x∥Rn exp(− 1
2∥x∥

2
Rn) dx.
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The first integral on the right is that of a bounded function on a compact set, and so is
finite. As for the second integral on the right, we have∫

Rn\Bn(R,0)
∥x∥Rn exp(−1

2∥x∥
2
Rn) dx ≤

∫
Rn

1
(1 + ∥x∥2)n dx

≤

(∫
R

1
1 + |x1|

2 dx1

)
· · ·

(∫
R

1
1 + |xn|2

dxn
)
= πn,

where we have used Fubini’s Theorem and the fact that

d
dx

tan−1(x) =
1

1 + x2 ,

cf. the proof of Theorem I-3.8.18. ▼

Note that f is Lipschitz with Lipschitz constant 1. By Rademacher’s Theorem, The-
orem II-1.10.60, it follows that f is almost everywhere differentiable and that, at points
x where f is differentiable, ∥D f (x)∥Rn,R ≤ 1. As can be see from Theorem II-1.1.14,

∥D f (x)∥Rn,R =
( n∑

j=1

|D j f (x)|2
)1/2

. (5.3)

In the computations below, we shall only be integrating expressions involving the
derivative of f , so we shall suppose that D f is everywhere defined by taking it to be 0
at points where f is not differentiable.

Now let us assume that ∫
Rn

f (x) dγn(x) = 0, (5.4)

i.e., that mean( f ) = 0, and prove that

γn({x ∈ Rn
| f (x) ≥ r}) ≤ e−

2
π2 r2

. (5.5)

Note that, by the Chernoff inequality (Corollary 2.7.37) we have

γn({x ∈ Rn
| f (x) ≥ r}) ≤ e−cr

∫
Rn

exp(c f (x)) dγn(x) (5.6)

for every c ∈ R>0. Let us estimate the integral in the preceding expression.

2 Lemma If f is Lipschitz with Lipschitz constant 1, if mean(f) = 0, and if c ∈ R>0, then∫
Rn

exp(cf(x)) dγn(x) ≤ exp
(c2π2

8

)
.

Proof Note that the second derivative of x 7→ exp(−cx) is c2 exp(−cx), which is posi-
tive. Therefore, by Proposition I-3.2.30(iii) we conclude that x 7→ exp(−cx) is convex.
Therefore, by Jensen’s inequality, Theorem 2.7.31, we have∫

Rn
exp(−c f (y)) dγn(y) ≥ exp

(
−c

∫
Rn

f (y) dγn(y)
)
= 1,
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the latter equality holding since we are assuming that
∫
Rn f (y) dγn = 0. Therefore,

exp(c f (x)) ≤ exp(c f (x))
∫
Rn

exp(−c f (y)) dγn(y)

=⇒

∫
Rn

exp(c f (x))dγn
≤

∫
Rn

∫
Rn

exp(c( f (x) − f (y))) dγn(x)dγn(y) (5.7)

by Proposition 2.7.19 and Fubini’s Theorem.
For x, y ∈ Rm define a curve σx,y : [0, π2 ]→ Rn

⊕Rn by

σx,y(θ) = (cosθy, sinθx).

Let p : Rn
⊕Rn

→ Rn be the map p(x, y) = x + y. Note that

p∗ f ◦ σx,y(θ) = f (cosθy + sinθx).

Thus, for fixed x, y ∈ Rn we have, by the Fundamental Theorem of Calculus,∫ π
2

0

d
dθ

p∗ f ◦ σx,y(θ) dθ = p∗ f ◦ σx,y(π2 ) − p∗ f ◦ σx,y(0) = f (y) − f (x).

By Corollary 2.7.32 of Jensen’s inequality,

exp(c( f (y) − f (x))) ≤
2
π

∫ π
2

0
exp

(cπ
2

d
dθ

p∗ f ◦ Rθ(x, y)
)

dθ

=
2
π

∫ π
2

0
exp

(cπ
2

D f (cosθy + sinθx) · (− sinθy + cosθx)
)

dθ.

Let us define a linear transformation Rθ of Rn
⊕Rn by

Rθ(x, y) = (cosθy + sinθx,− sinθy + cosθx).

One immediately computes

∥Rθ(x, y)∥R2n = ∥(x, y)∥R2n ,

and so Rθ ∈ O(2n) by Theorem II-1.3.18. Thus, by the change of variable theorem and
Fubini’s Theorem, denoting (ξ,η) = Rθ(x, y),∫

Rn

∫
Rn

exp(c( f (y) − f (x))) dγn(x)dγn(y)

≤
2
π

∫ π
2

0

∫
Rn

∫
Rn

exp
(cπ

2
D f (ξ) · η

)
dγn(ξ)dγn(η)dθ. (5.8)

Let us evaluate the integral∫
Rn

exp
(cπ

2
D f (ξ) · η

)
dγn(η) =

1

(
√

2π)n

∫
Rn

exp
(cπ

2
D f (ξ) · η −

1
2
∥η∥2Rn

)
dη
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with ξ ∈ Rn fixed. Let us abbreviate a j =
cπ
2 D j f (ξ). Then∫

Rn
exp(⟨a,η⟩Rn −

1
2∥η∥

2
Rn) dη

=
(∫
R

exp(a1η1 −
1
2η

2
1) dη1

)
· · ·

(∫
R

exp(anηn −
1
2η

2
n) dηn

)
by Fubini’s Theorem. Noting that

−
1
2η

2
j + a jη j = −

1
2 (η j − a j)2 + 1

2 a2
j ,

we have ∫
R

exp(a jη j −
1
2η

2
j ) dη j = exp( 1

2 a2
j )

∫
R

exp(− 1
2 (η j − a j)2) dη j

=
√

2π exp( 1
2 a2

j )

for every j ∈ {1, . . . ,n}, using Lemma 1 from Example 2.3.32–4. Note that we are
assuming that ∥D f (ξ)∥Rn,R ≤ 1 and so, using (5.3),∫

Rn
exp

(cπ
2

D f (ξ) · η
)

dγn(η) = exp
(1
2

(cπ
2

)2
∥D f (ξ)∥2Rn,R

)
≤ exp

(c2π2

8

)
. (5.9)

Combining (5.7), (5.8) (and integrating the right-hand side with respect to θ and ξ
in this equation), and (5.9) gives∫

Rn
exp(c f (x))dγn

≤ exp
(c2π2

8

)
,

which is the lemma. ▼

Combining (5.6) with the lemma we have that

γn({x ∈ Rn
| f (x) ≥ r}) ≤ exp

(
−rc +

c2π2

8

)
for every c ∈ R>0. The expression on the right achieves its minimum when the
argument of the exponential achieves its minimum, i.e., when c = 4r

π2 . With this value
of c we have

γn({x ∈ Rn
| f (x) ≥ r}) ≤ exp

(
−

2
π2 r2

)
This gives the estimate (5.5) in the case when (5.4) holds. The same analysis, applied
to − f , gives

γn
({

x ∈ Rn
∣∣∣∣ f (x) −

∫
Rn

f (x)dγn
≤ −r

})
≤ exp

(
−

2
π2 r2

)
,

under the assumption that (5.4) holds. Thus the theorem holds when (5.4) holds.
In case (5.4) does not hold, then the function x 7→ f (x)−mean( f ) satisfies (5.4) and

so

γn
({

x ∈ Rn
∣∣∣∣ ∣∣∣∣( f (x) −mean( f )) −

∫
Rn

( f (x) −mean( f ))dγn
∣∣∣∣ ≥ r

})
≤ 2 exp

(
−

2
π2 r2

)
.
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Since ∫
Rn

mean( f ) dγn = mean( f )

by Lemma 5.2.1(ii), we get the desired conclusion. ■

One should understand the theorem as indicating the extend to which the values
of a Lipschitz function are concentrated around its mean.

5.2.2 Dvoretzky’s Theorem

In this section we present an important theorem regarding the nature of convex
bodies in sufficiently high-dimensional Euclidean spaces. As we shall see, this is
related to the character of the norms on subspaces of sufficiently high-dimensional
Banach spaces. In particular, it is related to the question of whether there are
subspaces of Banach spaces for which the unit ball is “nearly round.” Let us put
this into some context with an example.

5.2.4 Example (Balls for the∞-norm on Rn) Note that the unit ball inRn with respect
to the∞-norm

∥x∥∞ = max{|x1|, . . . , |xn|}

is the unit cube [−1, 1]n, and this cube is not very round. We shall show that as n
gets large, there is a two-dimensional subspace of Rn for which the intersection of
the unit cube with this subspace gets more and more round.

For n ≥ 2 we define

v1 = (1, cos(πn ), cos(2π
n ), . . . , cos( (n−1)π

n ))

v2 = (0, sin(πn ), sin(2π
n ), . . . , sin( (n−1)π

n ))

and u j =
v j

∥v j∥Rn
, j ∈ {1, 2}. We claim that ⟨u1,u2⟩Rn = 0. To see this, note that e

2πi
n is a

primitive nth root of unity. Therefore, by Proposition II-3.2.6,
n−1∑
j=0

e2πi j
n = 0 =⇒

n−1∑
j=0

sin(2π j
n ) = 0,

the latter equality following by taking the imaginary part of the former. Thus

⟨v1,v2⟩Rn =

n−1∑
j=0

cos(π j
n ) sin(π j

n ) =
1
2

n−1∑
j=0

sin(2π j
n ) = 0,

using the identity 2 cosθ sinθ = sin(2θ) that follows by an easy application of
Euler’s formula. Thus u1 and u2 are also orthogonal, and so form an orthonormalref

basis for the two-dimensional subspace Pn = spanR(u1,u2). In Figure 5.1 we show
the intersection of Pn with the unit cube in Rn for increasing n. As claimed, the
unit ball in Pn becomes more round as n gets large. As we shall see, Dvoretzky’s
Theorem says that this phenomenon happens, in some sense, for general convex
bodies. •
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Figure 5.1 The intersection of the unit cube in Rn with the plane
Pn for n ∈ {2, 4, 6, 8}

Let us be precise about this.

5.2.5 Theorem (Dvoretzky’s Theorem) If ϵ ∈ R>0 then there exists Nϵ ∈ Z>0 and∆ϵ ∈ R>0

such that,
(i) if n > Nϵ,
(ii) if k ∈ Z>0 satisfies k ≤ ⌊∆ϵ log(n)⌋, and
(iii) if (V, ∥·∥) is an n-dimensional Banach space

then there are vectors v1, . . . ,vk ∈ V for which

(1 − ϵ)∥(a1, . . . , ak)∥Rk ≤

∥∥∥∥ k∑
j=1

ajvj

∥∥∥∥ ≤ (1 + ϵ)∥(a1, . . . , ak)∥Rk

for every (a1, . . . , ak) ∈ Rk.
Proof We start by proving a bunch of rather technical lemmata that seem rather
irrelevant, but will nonetheless be important.
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1 Lemma Let (V, ∥·∥) be an n-dimensional Banach space and let m = ⌊n
2 ⌋ be the largest integer

less than or equal to n
2 . Then there exists w1, . . . ,wm ∈ V such that

(i) ∥wj∥ ≥
1
2 , j ∈ {1, . . . ,m}, and

(ii) ∥
m∑

j=1

xjwj∥ ≤ ∥(x1, . . . , xm)∥Rm for every x1, . . . , xm ∈ R.

Proof Let α = 2 + m(m−1)
n and let L : Rn

→ V be an isomorphism for which ∥L∥Rn,V ≤
1
α

(we use the Euclidean norm on Rn). Let C = ϕ(B( 1
2 , 0V)) and, by Lemma 1 from the

proof of Theorem 3.4.8, let z1, . . . , zm ∈ bd(C) be such that∥∥∥∥ m∑
j=1

x jz j

∥∥∥∥
Rn
≤ α∥(x1, . . . , xm)∥Rm

for every x1, . . . , xm ∈ R. Defining w j = ϕ(z j), j ∈ {1, . . . ,m}, we then have∥∥∥∥ m∑
j=1

x jw j

∥∥∥∥ ≤ 1
α

∥∥∥∥ m∑
j=1

x jz j

∥∥∥∥
Rn
≤ ∥(x1, . . . , xm)∥Rm ,

giving the desired result. ▼

Now, using the lemma, take m = ⌊n
2 ⌋ and let w1, . . . ,wm ∈ V satisfy ∥w j∥ ≥

1
2 ,

j ∈ {1, . . . ,m}, and ∥∥∥∥ m∑
j=1

x jw j

∥∥∥∥ ≤ ∥(x1, . . . , xm)∥Rm

for each (x1, . . . , xm) ∈ Rm. Define f : Rm
→ R by

f (x1, . . . , xm) =
∥∥∥∥ m∑

j=1

x jw j

∥∥∥∥.
We have

| f (x1) − f (x2)| ≤
∥∥∥∥ m∑

j=1

(x1, j − x2, j)w j

∥∥∥∥ ≤ ∥x1 − x2∥Rn ,

using Exercise 3.1.3. Thus f is Lipschitz with Lipschitz constant 1. Let us prove a
useful inequality for mean( f ).

2 Lemma There exists c ∈ R>0 such that, given the following data:
(i) n ∈ Z>0 and m = ⌊n

2 ⌋;
(ii) an n-dimensional Banach space (V, ∥·∥);
(iii) vectors w1, . . . ,wm ∈ V such that ∥wj∥ ≥

1
2 , j ∈ {1, . . . ,m};

(iv) the function f : Rm
→ R defined by

f(x1, . . . , xm) =
∥∥∥∥ m∑

j=1

xjwj

∥∥∥∥,
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we have mean(f) ≥ c
√

log(n), the mean being taken with respect to the Gaussian measure on
Rm.

Proof Let ϵ ∈ {−1, 1}m and define the isomorphism ϕϵ : Rm
→ Rm by

ϕϵ(x1, . . . , xm) = (ϵ1x1, . . . , ϵmxm).

Note that, by the change of variable theorem, since |detϕx| = 1,∫
Rm

f (x) dγm(x) =
1

(
√

2π)m

∫
Rm

f (x)e−
1
2 ∥x∥

2
Rm dx

=
1

(
√

2π)m

∫
Rm

f (ϵ1x1, . . . , ϵmxm)e−
1
2 ∥ϕϵ(x)∥2

Rm dx

=
1

(
√

2π)m

∫
Rm

f (ϵ1x1, . . . , ϵmxm)e−
1
2 ∥x∥

2
Rm dx

=

∫
Rm

f ◦ϕϵ(x) dγm(x).

Therefore, we have

mean( f ) =
∫
Rm

f (x) dγm(x) =
1

2m

∑
ϵ∈{−1,1}m

∫
Rm

f ◦ϕϵ(x) dγm(x)

=

∫
Rm

1
2m

∑
ϵ∈{−1,1}m

∥∥∥∥ m∑
j=1

ϵ jx jw j

∥∥∥∥ dγm(x).

Now let r ∈ {1, . . . ,m} and note that

∥xrwr∥ =
∥∥∥∥1

2

(
xrwr +

1
2m−1

∑
ϵ∈{−1,1}m
ϵr=1

m∑
j=1
j,r

ϵ jx jw j

)
+

1
2

(
xrwr −

1
2m−1

∑
ϵ∈{−1,1}m
ϵr=1

m∑
j=1
j,r

ϵ jx jw j

)∥∥∥∥
≤

1
2

∥∥∥∥xrwr +
1

2m−1

∑
ϵ∈{−1,1}m
ϵr=1

m∑
j=1
j,r

ϵ jx jw j

∥∥∥∥ + 1
2

∥∥∥∥ 1
2m−1

∑
ϵ∈{−1,1}m
ϵr=−1

m∑
j=1
j,r

ϵ jx jw j − xrwr

∥∥∥∥
=

1
2

∥∥∥∥ 1
2m−1

∑
ϵ∈{−1,1}m
ϵr=1

m∑
j=1

ϵ jx jw j

∥∥∥∥ + 1
2

∥∥∥∥ 1
2m−1

∑
ϵ∈{−1,1}m
ϵr=−1

m∑
j=1

ϵ jx jw j

∥∥∥∥
≤

1
2m

( ∑
ϵ∈{−1,1}m
ϵr=1

∥∥∥∥ m∑
j=1

ϵ jx jw j

∥∥∥∥ + ∑
ϵ∈{−1,1}m
ϵr=−1

∥∥∥∥ m∑
j=1

ϵ jx jw j

∥∥∥∥)

=
1

2m

∑
ϵ∈{−1,1}m

∥∥∥∥ m∑
j=1

ϵ jx jw j

∥∥∥∥.
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As this holds for every r ∈ {1, . . . ,m}we have

mean( f ) ≥
∫
Rm

max{∥x1w1∥, . . . , ∥xmwm∥}dγm(x)

≥
1
2

∫
Rm
∥x∥∞ dγm(x) ≥

C
2

√
log(⌊n

2 ⌋),

where C is as in Lemma 5.2.2. Note that

lim
n→∞

√
log(⌊n

2 ⌋)√
log(n)

= 1.

Thus let N ∈ Z>0 be sufficiently large that√
log(⌊n

2 ⌋)√
log(n)

≥
1
2

for n ≥ N. If we take

c = min
{C

4
} ∪

{
C
2

√
log(⌊n

2 ⌋)√
log(n)

∣∣∣∣∣∣ n ∈ {1, . . . ,N}
}
,

then we get the desired estimate. ▼

Next we prove a couple of lemmata concerning collections of points in the unit
sphere. We let

Sk−1 = {a ∈ Rk
| ∥a∥Rk = 1}

be the unit sphere in Rk. As in , if r ∈ R>0, an r-net for Sk−1 is a collection (a j) j∈{1,...,N}what

of points in Sk−1 such that, if a ∈ Sk−1, then there exists j ∈ {1, . . . ,N} such that
∥a − a j∥Rk ≤ r.

3 Lemma For each ϵ ∈ R>0 there exists δ ∈ R>0 such that, given the following data:
(i) k ∈ Z>0;
(ii) a δ net N for Sk−1;
(iii) a Banach space (V, ∥·∥);
(iv) v1, . . . ,vk ∈ V satisfying

(1 − δ) ≤
∥∥∥∥ k∑

j=1

ajvj

∥∥∥∥ ≤ (1 + δ)

for all a ∈ N ,
it holds that

(1 − ϵ)∥a∥Rk ≤

∥∥∥∥ k∑
j=1

ajvj

∥∥∥∥ ≤ (1 + ϵ)∥a∥Rk

for all a ∈ Rk.
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Proof Note that
lim
r↓0

1 − 3r
1 − r

= 1.

Thus there exists r̄′ ∈ R>0 such that 1−3r
1−r ≥

1
2 for r ∈ (0, r̄′]. We take r̄ = min{1, r̄′}. Let

k ∈ Z>0, let r ∈ (0, r̄), let N be an r-net of Sk−1, let (V, ∥·∥) be a Banach space, and let
v1, . . . , vk ∈ V be such that

(1 − r) ≤
∥∥∥∥ k∑

j=1

a jv j

∥∥∥∥ ≤ (1 + r) (5.10)

for all a ∈ N . Let a ∈ Sk−1. Then, since N is an r-net, there exists a0 ∈ N such that
∥a − a0∥Rk ≤ r. Define

u1 =
a − a0

∥a − a0∥Rk

so that a = a0 + r1u1 with r1 ∈ (0, r). Now apply the same procedure to u1 ∈ S
k−1 to get

u1 = a1 + r′2u2 for a1 ∈ N , u2 ∈ Sk−1, and r′2 ∈ (0, r). Then

a = a0 + r1a1 + r2u2

where r2 = r1r′2. This procedure can be iterated to give a =
∑
∞

l=0 rlxl for xl ∈ N

and rl ∈ (0, rl) for each l ∈ Z>0. Note that r0 = 1. Note that this sum converges by
Proposition 3.4.2 and Example I-2.4.2–1 since ∥al∥Rk = 1 for each l ∈ Z>0.

Now note that, for a =
∑
∞

l=0 rlal ∈ S
k−1 (with r0 = 1 as above),∥∥∥∥ k∑

j=1

a jv j

∥∥∥∥ = ∥∥∥∥ ∞∑
l=0

rl

k∑
j=1

al, jv j

∥∥∥∥ ≤ ( ∞∑
l=0

rl
∥∥∥∥ k∑

j=1

al, jv j

∥∥∥∥) ≤ 1 + r
1 − r

,

using Example I-2.4.2–1 and (5.10).
Note that ∥∥∥∥ k∑

j=1

x0, jv j

∥∥∥∥ ≥ 1 − r

since a1 ∈ N . We also have∥∥∥∥ k∑
j=1

∞∑
l=1

rlal, jv j

∥∥∥∥ ≤ ( ∞∑
l=1

rl

∥∥∥∥ k∑
j=1

al, jv j

∥∥∥∥) ≤ r(1 + r)
1 − r

.

Noting that r0 = 1 and using these last two relations we compute∥∥∥∥ k∑
j=1

a jv j

∥∥∥∥ = ∥∥∥∥ k∑
j=1

(
a0, jv j +

∞∑
l=1

rlal, jv j

)∥∥∥∥
≥

∣∣∣∣∥∥∥∥ k∑
j=1

a0, jv j

∥∥∥∥ − ∥∥∥∥ k∑
j=1

∞∑
l=1

rlal, jv j

∥∥∥∥∣∣∣∣
≥

∣∣∣∣1 − r −
r(1 + r)

1 − r

∣∣∣∣ = 1 − 3r
1 − r

.
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Now let ϵ ∈ R>0 and, since

lim
r↓0

1 + r
1 − r

= 1, lim
r↓0

1 − 3r
1 − r

= 1,

choose δ ∈ R>0 such that

1 + δ
1 − δ

≤ (1 + ϵ),
1 − 3δ
1 − δ

≥ (1 − ϵ).

Then

(1 − ϵ) ≤
∥∥∥∥ k∑

j=1

a jv j

∥∥∥∥ ≤ (1 + ϵ).

This establishes the conclusions of the lemma for a ∈ Sk−1. If a ∈ Rk then define
a′ = a

∥a∥
Rk
∈ Sk−1. Then

(1 − ϵ) ≤
∥∥∥∥ k∑

j=1

a′jv j

∥∥∥∥ ≤ (1 + ϵ)

=⇒ (1 − ϵ)∥a∥Rk ≤

∥∥∥∥ k∑
j=1

a jv j

∥∥∥∥ ≤ (1 + ϵ)∥a∥Rk ,

as desired. ▼

4 Lemma For r ∈ R>0, there exists an r-net N for Sk−1 such that card(N ) ≤ e
2k
δ .

Proof Let a ∈ Sk−1 and let a2 ∈ Sk−1 satisfy ∥a1 − a2∥Rk > r. Then choose a3 ∈ Sk−1 such
that

∥a1 − a3∥Rk , ∥a2 − a3∥Rk > r.

Carrying on this way, we define a sequence a1,a2, . . . in Sk−1. We claim that this
sequence is finite. First, note that Sk−1 is closed (it is the preimage of the closed set {1}
under the continuous map ∥·∥Rk , cf. ) and bounded (obviously). Next, suppose thatwhat

we have a countable sequence (a j) j∈Z>0 in Sk−1 such that ∥a j − al∥Rk > r for j , l. Then
there can clearly be no convergent subsequence of this sequence since all terms are
separated from the others by distance at least r. By the Bolzano–Weierstrass Theorem,
this contradicts the compactness of Sk−1. Thus the sequence above can be written as
a1, . . . ,aN. We claim that this sequence is an r-net. If not, there exists a ∈ Sk−1 such
that ∥a − a j∥Rk > r for each j ∈ {1, . . . ,N}. This contradicts the definition of the points
a1, . . . ,aN.

Next we estimate N. Note that the balls Bk( r
2 ,a j), j ∈ {1, . . . ,N}, are disjoint.

Moreover, these balls are contained in the ball Bk(1 + r
2 , 0). By Example II-1.6.37 there

exists vk ∈ R>0 such that

λ(Bk(1 +
r
2
, 0)) = vk(1 + r

2 )k, λ(Bk(
r
2
,a j)) = vk( r

2 )k, j ∈ {1, . . . ,N}.
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Since the balls Bk( r
2 ,a j), j ∈ {1, . . . ,N}, are disjoint and contained in Bk(1 + r

2 , 0), we
must have

Nvk( r
2 )k = λ(∪N

j=1Bk(
r
2
,a j)) < λ(Bk(1 +

r
2
, 0)) = vk(1 + r

2 )k.

Thus N( r
2 )k < (1 + r

2 )k which gives

N < (1 + 2
r )k < 1 + 2k

r < e
2k
r ,

using Exercise I-2.2.1 and the definition in Section I-3.8.1 of the exponential function. ▼

Now we complete the proof. We let ϵ ∈ R>0 and n ∈ Z>0 be given, and we let
(V, ∥·∥) be a Banach space of dimension n. We let m = ⌊n

2 ⌋ and let w1, . . . ,wm ∈ V be
such that ∥w j∥ ≥

1
2 , j ∈ {1, . . . ,m}, and

∥∥∥∥ m∑
j=1

x jw j

∥∥∥∥ ≤ ∥(x1, . . . , xm)∥Rm

for each x ∈ Rm. As above, define f : Rm
→ R by

f (x1, . . . , xm) =
∥∥∥∥ m∑

j=1

x jw j

∥∥∥∥,
noting, as we showed above, that f is Lipschitz with Lipschitz constant 1. Let k ∈ Z>0
and let a ∈ Sk−1. Let us define πa : (Rm)k

→ Rm by

πa(x1, . . . , xk) =
k∑

j=1

a jx j.

Following the constructions of Section 2.7.6, let γmk ◦ π−1
a be the image measure on

Rm.

5 Lemma For each a ∈ Sk−1, γmk ◦ π−1
a = γ

m.

Proof Let { f 1, . . . , f k} be an orthonormal (with respect to the Euclidean inner product)
basis for Rk such that f 1 = a (see Section 4.4.2 for a discussion of orthonormal bases).
Let us write

f r = ( fr1, . . . , frk), r ∈ {1, . . . , k}.

Let F ∈ L(Rk;Rk) be the matrix whose (r, j)th component is frj. By , F ∈ O(k). For what

(x1, . . . , xk) ∈ (Rm)k let us write

x j = (x j1, . . . , x jm), j ∈ {1, . . . , k}.

Then, denote x̂α ∈ Rk, α ∈ {1, . . . ,m}, by

x̂α = (x1α, . . . , xkα).



608 5 Convexity 2022/03/07

Define R : (Rm)k
→ (Rm)k by

R(x1, . . . , xk) =
( k∑

j=1

f1 jx j, . . . ,
k∑

j=1

fkjx j

)
We claim that R is orthogonal with respect to the Euclidean inner product on (Rm)k.
Indeed, we compute

∥R(x1, . . . , xk)∥2
Rmk =

k∑
r=1

k∑
j=1

k∑
l=1

frj frl⟨x j, xl⟩Rm

=

k∑
r=1

k∑
j=1

k∑
l=1

frj frl

m∑
α=1

m∑
β=1

x jαxlβ⟨eα, eβ⟩Rm

=

m∑
α=1

k∑
r=1

( k∑
j=1

frjx jα

)( k∑
l=1

frlxlα

)
=

m∑
α=1

⟨Fx̂α,Fx̂α⟩Rk

=

m∑
α=1

∥x̂α∥Rk =

m∑
α=1

k∑
j=1

x2
jα =

k∑
j=1

∥x j∥
2
Rm = ∥(x1, . . . , xk)∥2

Rmk .

Therefore, by Theorem II-1.3.18, R ∈ O(mk) as claimed.
Let y ∈ Rm and define

Sy = {(x1, . . . , xk) ∈ (Rm)k
| R(x1, . . . , xk) = (y, y1, . . . , yk), y2, . . . , yk ∈ R

m
}.

We claim that π−1
a (y) = Sy. From the definition of R, if (x1, . . . , xk) ∈ Sy we immediately

have
πa(x1, . . . , xk) = y.

Thus Sy ⊆ π−1
a (y). For the converse inclusion, let (x1, . . . , xm) ∈ π−1

a (y). Then, by
definition of R again,

R(x1, . . . , xk) = (y, y2, . . . , yk)

where

y j =

k∑
l=1

f jlxl, j ∈ {2, . . . , k}.

Thus π−1
a (y) ⊆ Sy.

Now let B ∈B (Rm) and note that, by the preceding paragraph,

π−1
a (B) = {(x1, . . . , xk) ∈ (Rm)k

| R(x1, . . . , xk) = (y, y2, . . . , yk), y ∈ B, y2, . . . , yk ∈ R
m
}.

By definition of image measure, Lemma 5.2.1(iii), and Fubini’s Theorem,∫
B

dγmk
◦ π−1

a (y) =
∫
π−1

a (B)
dγmk(x1, . . . , xk) =

∫
R(π−1

a (B))
dγmk(y1, . . . , yk)

=

∫
(Rm)k−1

(∫
B

dγ(y)
)

dγm(k−1)(y2, . . . , ym) =
∫

B
dγ(y),

as desired. ▼
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Using the lemma and Theorem 5.2.3 we have

γmk
({

(x1, . . . , xk) ∈ (Rm)k
∣∣∣∣ ∣∣∣∣ f ( k∑

j=1

a jx j

)
−mean( f )

∣∣∣∣ ≥ r
})
≤ 2e−αr2

for every a ∈ Sk−1 and r ∈ R>0, where α = 2
π2 .

Now let ϵ ∈ R>0 and, by Lemmata 3 and 4, let δ ∈ R>0 be such that there exists a
δ-net N of cardinality at most e

2k
δ for Sk−1 for which, if

(1 − δ) ≤
∥∥∥∥ k∑

j=1

a jv j

∥∥∥∥ ≤ (1 + δ)

for every a ∈ N , then

(1 − ϵ)∥a∥Rk ≤

∥∥∥∥ k∑
j=1

a jv j

∥∥∥∥ ≤ (1 + ϵ)∥a∥Rk

for every a ∈ Rk. Note that δ depends only on ϵ, and not on k. Define r = δmean( f )
and note that

{
(x1, . . . , xk) ∈ (Rm)k

∣∣∣∣ ∣∣∣∣ f ( k∑
j=1

a jx j

)
−mean( f )

∣∣∣∣ ≥ r
}

=
{
(x1, . . . , xk) ∈ (Rm)k

∣∣∣∣ ∣∣∣∣∥∥∥∥ k∑
j=1

m∑
α=1

a j
x jαwα

mean( f )

∥∥∥∥ − 1
∣∣∣∣ ≥ δ}

for every a ∈ N . Thus let us define

S(k, δ,a) =
{
(x1, . . . , xk) ∈ (Rm)k

∣∣∣∣ ∣∣∣∣∥∥∥∥ k∑
j=1

m∑
α=1

a j
x jαwα

mean( f )

∥∥∥∥ − 1
∣∣∣∣ ≥ δ}

and note that
γmk(S(k, δ,a)) ≤ 2e−αδ

2mean( f )2
,

where c ∈ R>0 is as specified by Lemma 2. By Lemma 4 and countable additivity of
the Gaussian measure, this means that

γmk(∪a∈N S(k, δ,a)) ≤ 2 exp
(2k
δ
− αδ2mean( f )2

)
≤ 2 exp

(2k
δ
− αδ2c2 log(n)

)
. (5.11)

Note that α and c are absolute constants, independent of any other data. Let

Nϵ = min
{
m ≥ 2

∣∣∣∣ 1
2
δ

log( 1
2 )

log(m)
+

1
2
αδ3c2 > 0

}
.
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Note that Nϵ indeed depends only on ϵ via its dependence on δ. Now define

∆ϵ =
1
2
δ

log( 1
2 )

log(Nϵ)
+

1
2
αδ3c2.

If n > Nϵ then

∆ log(n) =
1
2
δ log( 1

2 )
log(n)

log(Nϵ)
+

1
2
αδ3c2 log(n) <

1
2
δ log( 1

2 ) +
1
2
αδ3c2 log(n).

Thus, if k ∈ Z>0 satisfies k ≤ ⌊∆ϵ log(n)⌋, then

2k
δ
− αδ2c2 log(n) < log( 1

2 ).

By (5.11), with n > Nϵ and k ≤ ⌊∆ϵ log(n)⌋, we have γmk(∪a∈N S(k, δ,a)) ∈ R>0. Thus
there exists

(x1, . . . , xk) ∈ ((Rm)k
\ ∪a∈N S(k, δ,a)).

Now, given the definition of S(k, δ,a), this means that

∣∣∣∣∥∥∥∥ k∑
j=1

m∑
α=1

a j
x jαwα

mean( f )

∥∥∥∥ − 1
∣∣∣∣ < δ

for every a ∈ N . Thus, taking

v j =

m∑
α=1

x jαwα

mean( f )
, j ∈ {1, . . . , k},

we see that

(1 − δ) ≤
∥∥∥∥ k∑

j=1

a jv j

∥∥∥∥ ≤ (1 + δ)

for every a ∈ N . Since δ has been chosen according to Lemma 3, the theorem follows.
■

5.2.3 Consequences of Dvoretzky’s Theorem

In this section we consider some corollaries of Dvoretzky’s Theorem as we
state it in Theorem 5.2.5. As we shall see, each of the results we present can be
categorised in three different ways, depending on how one states the hypotheses.
We, therefore, provide two restatements of Dvoretzky’s Theorem to set the stage
for how the remaining presentation will look.

The first restatement of Dvoretzky’s Theorem is simply a slight rearrangement
of the hypotheses.
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5.2.6 Corollary (Alternative statement of Dvoretzky’s Theorem) If ϵ ∈ R>0 and if
k ∈ Z>0, then there exists Nϵ,k ∈ Z>0 such that,

(i) if n > Nϵ and
(ii) if (V, ∥·∥) is an n-dimensional Banach space

then there are vectors v1, . . . ,vk ∈ V for which

(1 − ϵ)∥(a1, . . . , ak)∥Rk ≤

∥∥∥∥ k∑
j=1

ajvj

∥∥∥∥ ≤ (1 + ϵ)∥(a1, . . . , ak)∥Rk

for every (a1, . . . , ak) ∈ Rk.
Proof Let Nϵ ∈ Z>0 and ∆ϵ ∈ R>0 be as in Dvoretzky’s Theorem. Taking Nϵ,k =

max{Nϵ, e
k
∆ϵ }, we see that if n and (V, ∥·∥) satisfy the hypotheses of the corollary, then

k, n, and (V, ∥·∥) satisfy the hypotheses of Dvoretzky’s Theorem. The corollary then
follows immediately. ■

The second restatement of Dvoretzky’s Theorem is for infinite-dimensional
Banach spaces. In this case, the hypotheses are simpler since infinite-dimensional
Banach spaces obviously contain subspaces of arbitrarily large finite dimension.

5.2.7 Corollary (Dvoretzky’s Theorem for infinite-dimensional Banach spaces) If
ϵ ∈ R>0, if k ∈ Z>0, and if (V, ∥·∥) is an infinite-dimensional Banach space, then there
exists v1, . . . ,vk ∈ V such that

(1 − ϵ)∥(a1, . . . , ak)∥Rk ≤

∥∥∥∥ k∑
j=1

ajvj

∥∥∥∥ ≤ (1 + ϵ)∥(a1, . . . , ak)∥Rk

for every (a1, . . . , ak) ∈ Rk.

Next let us consider what Dvoretzky’s Theorem says about convex bodies. First
we provide a precise notion of the phenomenon we observed in Example 5.2.4.

5.2.8 Definition ((ϵ-round) section of a convex body in Euclidean space) Let C ⊆ Rn

be a convex body and let ϵ ∈ R>0.
(i) A section of C is a set of the form C ∩ A where A is an affine subspace.
(ii) The dimension of a section C ∩ A of C is the dimension of A.
(iii) A section C ∩ A is a central section if A is a subspace.
(iv) A section C∩A of a convex body is ϵ-round if there exists x0 ∈ Rn and r ∈ R>0

such that
Bn((1 − ϵ)r, x0) ∩ A ⊆ C ∩ A ⊆ Bn((1 + ϵ)r, x0) ∩ A. •

Our first statement concerning the application of Dvoretzky’s Theorem to con-
vex bodies is the following.
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5.2.9 Corollary (High-dimensional balanced convex bodies admit almost round
sections I) If ϵ ∈ R>0 then there exists Nϵ ∈ Z>0 and ∆ϵ ∈ R>0 such that,

(i) if n > Nϵ,
(ii) if k ∈ Z>0 satisfies 2k − 1 ≤ ⌊∆ϵ log(n)⌋, and
(iii) if C ⊆ Rn is a balanced convex body,

then there is an ϵ-round central section of C of dimension k.
Proof For ϵ ∈ R>0, let ϵ′ ∈ R>0 be such that

(1 − ϵ) ≤
1

1 + ϵ′
,

1
1 − ϵ′

≤ (1 + ϵ).

Let N′ϵ′ and ∆′ϵ′ be as given in Dvoretzky’s Theorem. Let n > N′ϵ′ and k ∈ Z>0 satisfy
2k − 1 ≤ ⌊∆′ϵ′ log(n)⌋. Let C ⊆ Rn be a balanced convex body and let ∥·∥ be the gauge of
C (see Definition 5.1.2). By Dvoretzky’s Theorem, let v1, . . . ,v2k−1 ∈ R

n satisfy

(1 − ϵ′)∥a∥R2k−1 ≤

∥∥∥∥2k−1∑
j=1

a jv j

∥∥∥∥ ≤ (1 + ϵ′)∥a∥R2k−1

for every a ∈ R2k−1. Let V ⊆ Rn be the subspace spanned by {v1, . . . ,v2k−1} and let
V⊥ be the orthogonal complement of V with respect to the Euclidean inner product.
Let v2k, . . . ,vn be an orthonormal basis for V⊥ and define a linear map L : Rn

→ Rn by
asking that L(e j) = v j, j ∈ {1, . . . ,n}, where {e1, . . . , en} is the standard basis (this defines
L by Theorem I-4.5.24). Define the ellipsoid Er = L(B(r, 0)). Note that if x ∈ Er ∩V then

(1 − ϵ′)r ≤ ∥x∥ ≤ (1 + ϵ′)r.

Thus, for every r ∈ R≥0,

B((1 − ϵ′)r, 0) ∩ V ⊆ Er ∩ V ⊆ B((1 + ϵ′)r, 0) ∩ V,

where B(r, 0) is the ball of radius r centred at 0 for the norm ∥·∥. Therefore,

E(1−ϵ)r ∩ V ⊆ E(1+ϵ)−1r ∩ V ⊆ B(r, 0) ∩ V ⊆ E(1−ϵ)−1r ∩ V ⊆ E(1+ϵ)r ∩ V

for every r ∈ R≥0.
Since C = B(1, 0) by Theorem 5.1.3, it follows that the central section C ∩ V is

approximated by the ellipsoids E1−ϵ ∩ V (from within) and E1+ϵ ∩ V (from without).
Now we prove a lemma.

1 Lemma If E ⊆ R2k−1 is an ellipsoid with centre 0, then there exists a k-dimensional subspace
U ⊆ R2k−1 such that E ∩ U = B ∩ U where B is a ball with respect to the Euclidean norm.

Proof By Proposition 5.1.5, let { f 1, . . . , f 2k−1} be an orthonormal basis such that

E = {y1 f 1 + · · · + yn f 2k−1 ∈ R
2k−1
| λ1y2

1 + · · · + λ2k−1y2
2k−1 ≤ 1}

for λ j ∈ R>0, j ∈ {1, . . . , 2k − 1}. Now we define a linear map A : R2k−1
→ Rk−1. To do

so, we write x ∈ R2k−1 as
x = y1 f 1 + · · · + y2k−1 f 2k−1
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and

A(y1 f 1 + · · · + y2k−1 f 2k−1) = A1(y1, . . . , y2k−1)e1 + · · · + Ak−1(y1, . . . , y2k−1)ek−1

where A j : R2k−1
→ R, j ∈ {1, . . . , k − 1}, is a linear function of the components

y1, . . . , y2k−1 and {e1, . . . , ek−1} is the standard basis for Rk−1. We define the linear
functions A j, j ∈ {1, . . . , k − 1}, by

L j(y1, . . . , y2k−1) =


y j

√
λ j − λk − yk+ j−1

√
λk+ j−1 − λk, λk < {λ j, λk+ j−1},

y j, λk = λk+ j−1,

yk+ j−1, λk = λ j,

y j − yk+ j−1, λk = λ j = λk+ j−1.

One easily sees that A has rank k − 1 (by, for example, directly checking that A is
surjective) and so, if U = ker(A), then dim(U) = k by the Rank–Nullity Theorem.

Note that if
y1 f 1 + · · · + y2k−1 f 2k−1 ∈ ker(A)

we have
λ jy2

j + λk+ j−1y2
k+ j−1 = λk(y2

j + y2
k+ j−1), j ∈ {1, . . . , k − 1}.

Therefore, if
y1 f 1 + · · · + y2k−1 f 2k−1 ∈ U

then
λk(y2

1 + · · · + y2
2k−1) = λ1y2

1 + · · · + λ2k−1y2
2k−1.

Since { f 1, . . . , f 2k−1} is an orthonormal basis, if

x = y1 f 1 + · · · + y2k−1 f 2k−1,

then
∥x∥2
R2k−1 = y2

1 + · · · + y2
2k−1.

Thus x ∈ E ∩ U if and only if

λk∥x∥2R2k−1 = λ1y2
1 + · · · + λ2k−1y2

2k−1 ≤ 1,

i.e., if and only if x ∈ B2k−1(λ−1
k , 0) ∩ U, giving the lemma. ▼

Now let { f 1, . . . , f 2k−1} be an orthonormal basis for V and, using Theorem I-4.5.24,
define an isomorphism ι : R2k−1

→ V by asking that ι(e j) = f j, j ∈ {1, . . . , 2k − 1}, where
{e1, . . . , e2k−1} is the standard basis forR2k−1. Note that ι−1(Er∩V) is an ellipsoid. By the
lemma, let U ⊆ R2k−1 be a k-dimensional subspace for which U ∩ ι−1(Er ∩ V) = U ∩ Br,
where Br is a ball (indexed by r, but not necessarily of radius r) with respect to the
Euclidean norm on R2k−1. Note that, since ι maps the orthonormal basis {e1, . . . , e2k−1}

to the orthonormal basis { f 1, . . . , f 2k−1}, ι(Br) = B′r ∩ V where B′r is a ball in Rn with
respect to the Euclidean norm; again, note that B′r is not necessarily of radius r. Taking
U′ = ι(U) we then have Er ∩ U′ = B′r ∩ U′. Thus

B′1−ϵ ∩ U′ ⊆ C ∩ U′ ⊆ B′1+ϵ ∩ U′,

so showing that C has the ϵ-round central section C ∩U′. The result follows by taking
Nϵ = N′ϵ′ and ∆ϵ = ∆′ϵ′ . ■
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Now we have an alternative statement of the preceding corollary.

5.2.10 Corollary (High-dimensional balanced convex bodies admit almost round
sections II) If ϵ ∈ R>0 and if k ∈ Z>0, then there exists Nϵ,k ∈ Z>0 such that,

(i) if n > Nϵ and
(ii) if C ⊆ Rn is a balanced convex body,

then there is an ϵ-round central section of C of dimension k.
Proof This follows from Corollary 5.2.9 as Corollary 5.2.6 follows from Theo-
rem 5.2.5. ■

In order to provide an infinite-dimensional statement of the preceding results,
we need to first generalise the them somewhat to Banach spaces. The idea here
is similar to our above constructions in Euclidean space, but there is a difference
because in a general Banach space, the notion of “roundness” is not naturally
defined.

5.2.11 Definition ((ϵ-round) section of convex body in a Banach space) Let (V, ∥·∥) be
a Banach space, let C ⊆ Rn be a convex body, and let ϵ ∈ R>0.

(i) A section of C is a set of the form C ∩ A where A is an affine subspace.
(ii) The dimension of a section C ∩ A of C is the dimension of A.
(iii) A section C ∩ A is a central section if A is a subspace.
(iv) An n-dimensional section C∩A of a convex body is ϵ-round if there exists an

injective affine map ι : Rn
→ V with image(ι) = A such that

ι(Bn((1 − ϵ), 0)) ⊆ C ∩ A ⊆ ιBn((1 + ϵ), 0). •

With this definition we have the following result.

5.2.12 Corollary (Unit balls in high-dimensional Banach spaces admit almost round
sections I) If ϵ ∈ R>0 then there exists Nϵ ∈ Z>0 and ∆ϵ ∈ R>0 such that,

(i) if n > Nϵ,
(ii) if k ∈ Z>0 satisfies k ≤ ⌊∆ϵ log(n)⌋, and
(iii) if (V, ∥·∥) is a Banach space of dimension n,

then there is an ϵ-round central section of B(1, 0V) of dimension k, where B(1, 0V) denotes
the unit ball centred at 0V with respect to the norm ∥·∥.

Proof Let ι′ : Rn
→ V be an isomorphism (e.g., by choosing a basis for V and using

Theorem I-4.5.45) and define a norm ∥·∥′ on Rn by ∥x∥′ = ∥ι′(x)∥. Let B(1, 0)′ ⊆ Rn be
the unit ball with respect to the norm ∥·∥′. Let ϵ ∈ R>0 and define Nϵ and ∆ϵ as in
the proof of Corollary 5.2.9. As we saw in the proof of Corollary 5.2.9, there exists a
k-dimensional subspace U ⊆ Rn and an ellipsoid E ⊆ Rn with centre 0 such that

(1 − ϵ)E ∩ U ⊆ B(1, 0)′ ∩ U ⊆ (1 + ϵ)E ∩ U.
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Therefore, if U′ = ι′(U), then

ι′((1 − ϵ)E) ∩ U′ ⊆ B(1, 0V) ∩ U′ ⊆ ι′((1 + ϵ)E) ∩ U′.

By definition of an ellipsoid, there exists an isomorphism ι′′ : Rn
→ Rn such that

E = ι′′(Bn(1, 0)). Note that

ι′′((1 − ϵ)Bn(1, 0)) = (1 − ϵ)E, ι′′((1 + ϵ)Bn(1, 0)) = (1 + ϵ)E.

If we take ι : Rn
→ U′ defined by ι = ι′ ◦ ι′′, then we have

ι((1 − ϵ)B(1, 0)) ∩ U′ ⊆ B(1, 0V) ∩ U′ ⊆ ι((1 + ϵ)B(1, 0)) ∩ U′,

which is the result. ■

In the usual way, we have the following restatement.

5.2.13 Corollary (Unit balls in high-dimensional Banach spaces admit almost round
sections II) If ϵ ∈ R>0 and if k ∈ Z>0, then there exists Nϵ,k ∈ Z>0 such that,

(i) if n > Nϵ and
(ii) if (V, ∥·∥) is a Banach space of dimension n,

then there is an ϵ-round central section of B(1, 0V) of dimension k.
Proof This follows from Corollary 5.2.12 as Corollary 5.2.6 follows from Theo-
rem 5.2.5. ■

Also in the usual way, we have the following infinite-dimensional version of
the preceding two results.

5.2.14 Corollary (Almost round sections of unit balls in infinite-dimensional Banach
spaces) If ϵ ∈ R>0, if k ∈ Z>0, and if (V, ∥·∥) is an infinite-dimensional Banach space,
then there exists an ϵ-round central section of B(1, 0V) of dimension k.

Our final interpretation of Dvoretzky’s Theorem deals with characterising the
differences between Banach spaces that are isomorphic as vector spaces.

5.2.15 Definition (Banach–Mazur1 distance) If (V1, ∥·∥1) and (V2, ∥·∥2) are R-Banach
spaces that are isomorphic as R-vector spaces, the Banach–Mazur distance be-
tween these Banach spaces is

dBM(V1,V2) = inf{∥L∥1,2∥L−1
∥2,1 | L ∈ L(V1; V2) is an isomorphism},

where ∥·∥1,2 and ∥·∥2,1 are the induced norms on L(V1; V2) and L(V2; V1), respectively.
•

With this definition we have the following consequence of Dvoretzky Theo-
rem.

1Barry Charles Mazur (1937–) is an American topologist and number theorist.
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5.2.16 Corollary (High-dimensional Banach spaces contain subspaces close to Eu-
clidean spaces I) If ϵ ∈ R>0 then there exists Nϵ ∈ Z>0 and ∆ϵ ∈ R>0 such that,

(i) if n > Nϵ,
(ii) if k ∈ Z>0 satisfies k ≤ ⌊∆ϵ log(n)⌋, and
(iii) if (V, ∥·∥) is an n-dimensional Banach space,

then there exists a k-dimensional subspace U of V such that

dBM(U,Rk) ≤ 1 + ϵ,

where the norm on U is the restriction of ∥·∥ and the norm on Rk is the Euclidean norm.
Proof Let ϵ ∈ R>0 and let ϵ′ ∈ R>0 be sufficiently small that 1+ϵ′

1−ϵ′ ≤ 1 + ϵ. (This is
possible since limϵ′↓0

1+ϵ′
1−ϵ′ = 1.) By Corollary 5.2.12, let ι : Rk

→ V be an injective linear
map such that

ι(Bk((1 − ϵ′), 0)) ⊆ B(1, 0V) ∩ U ⊆ ι(Bk((1 + ϵ′), 0)),

where U = image(ι). Using Theorem 3.5.14,

∥ι∥Rk,U = sup{∥ι(x)∥U | x ∈ Bk(1, 0)} ≤ sup{u | u ∈ B((1 − ϵ′)−1, 0V)} ≤ (1 − ϵ′)−1

(noting that ι(Bk(1, 0)) ⊆ B((1 − ϵ′)−1, 0V)) and

∥ι−1
∥U,Rk = sup{∥ι−1(u)∥2 | u ∈ B(1, 0V)} ≤ sup{∥x∥2 | x ∈ Bk((1 + ϵ′), 0)} ≤ (1 + ϵ′),

noting that ι−1(B(1, 0V)) ⊆ Bk((1 + ϵ′), 0). Thus

∥ι∥Rk,U∥ι
−1
∥U,Rk ≤

1 + ϵ′

1 − ϵ′
≤ 1 + ϵ,

giving the desired conclusion. ■

As always, we have the following restatement of the preceding corollary.

5.2.17 Corollary (High-dimensional Banach spaces contain subspaces close to Eu-
clidean spaces II) If ϵ ∈ R>0 and if k ∈ Z>0, then there exists Nϵ,k ∈ Z>0 such
that,

(i) if n > Nϵ and
(ii) if (V, ∥·∥) is a Banach space of dimension n,

then there exists a k-dimensional subspace U of V such that

dBM(U,Rk) ≤ 1 + ϵ,

where the norm on U is the restriction of ∥·∥ and the norm on Rk is the Euclidean norm.
Proof This follows from Corollary 5.2.16 as Corollary 5.2.6 follows from Theo-
rem 5.2.5. ■

Finally, we have an infinite-dimensional version of the preceding two results.
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5.2.18 Corollary (Infinite-dimensional Banach spaces contain subspaces close to
Euclidean spaces) If ϵ ∈ R>0, if k ∈ Z>0, and if (V, ∥·∥) is an infinite-dimensional
Banach space, then there exists a k-dimensional subspace U of V such that

dBM(U,Rk) ≤ 1 + ϵ,

where the norm on U is the restriction of ∥·∥ and the norm on Rk is the Euclidean norm.

5.2.4 Notes

Concentration of measure phenomenon by Ledoux [2001].
Gaussian concentration from [Pisier 1986].
[Dvoretzky 1960].
Idea of probabilistic approach due to Milman [1971].
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Chapter 6

Topological vector spaces

In Chapters 3 and 4 we considered some important classes of vector spaces
with topological structure. However, these spaces are not adequate to give useful
topological descriptions of all of the vector spaces one encounters in applications.
One can see this by a consideration of examples of Banach spaces from Section 3.8.
Many of these spaces were spaces of functions with certain properties, and one
can see that there are many classes of functions omitted from this description. For
example, the simple space C0(R;R) of continuous R-valued functions on the real
line is not among the spaces of functions that we described as a Banach space. In this
chapter we describe a topological structure for vector spaces that includes Banach
and Hilbert spaces as special cases, but which also includes useful descriptions of
vector spaces that do not naturally admit the structure of a Banach or Hilbert space.

Do I need to read this chapter? The material in this chapter is important and
useful, and some of the examples in Section 6.5 will feature prominently in our
future developments. However, the chapter can probably be skipped until it is
subsequently needed. •
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Section 6.1

General topological vector spaces

In this section we consider the general problem of topologising a vector space.
The idea is that one want a topology that respects the vector space structure. While
we shall make principal use of very specific topologies for vector spaces (but still
sometimes more general than the situations illustrated in Chapters 3 and 4), it
is worth developing the theory in a little generality in order to see what are the
consequences of the most general sorts of axioms one might demand for a topology
on a vector space.

Do I need to read this section? This is background material for this chapter, so
if one is reading this chapter, this is the place to start. •

6.1.1 Why go beyond norms?

Were we to launch immediately into the definitions needed to get started with
locally convex topologies, it is possible that the reader would quickly be alienated
by the seemingly pointless abstraction. However, it is also true that the examples
that illustrate the ideas of locally convex topologies are somewhat complicated,
and so it is difficult to present these alongside the general theory without making
substantial detours. Therefore, in this section, without rigour, we illustrate via an
example why norms are too restrictive to cover some interesting situations, and
how one might go beyond norms in a reasonable way.

We consider the set C0(R;R) of continuous R-valued functions on R. In Sec-
tion 3.8.5 we reminded the reader that, if we restrict consideration to members of
C0(R;R) that are bounded, then, with the norm ∥·∥∞ defined by

∥ f ∥∞ = {| f (x)| | x ∈ R},

the resulting vector space is a Banach space. However, if one does not restrict
consideration to bounded functions, then clearly the norm ∥·∥∞ cannot even be
defined. However, it is still possible that one may wish to topologies C0(R;R), since
it is a vector space of perfectly nice functions that one may very well encounter in
applications.

To think about how one might usefully topologise C0(R;R) we note that, if
K ⊆ R is a compact set, then, for any member f ∈ C0(R;R), f |K is bounded. Thus
we can define ∥ f ∥∞,K ∈ R by

∥ f ∥∞,K = sup{| f (x)| | x ∈ K}.

One can check that
1. ∥λ f ∥∞,K = |λ|∥ f ∥∞,K for all λ ∈ R and f ∈ C0(R;R),
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2. ∥ f + g∥∞,K ≤ ∥ f ∥∞,K + ∥g∥∞,K for all f , g ∈ C0(R;R), and
3. ∥ f ∥∞,K ≥ 0 for all f ∈ C0(R;R).
Thus ∥·∥∞,K falls short of being a norm only by the fact that there exists nonzero
functions f for which ∥ f ∥∞,K = 0. Note, however, that ∥·∥∞,K is a norm on the vector
space { f |K | f ∈ C0(R;R)}. We shall call such objects as ∥·∥∞,K “seminorms.” In this
case, we have a family of seminorms

{∥·∥∞,K | K ⊆ R is compact}.

The question becomes, “How can these seminorms be used to define a topology,
and is this topology meaningful?”

To see how one might define a topology, instead of defining the topology
directly, let us rather indicate what a convergent sequence might look like in this
topology. Let f ∈ C0(R;R) and let ( f j) j∈Z>0 be a sequence in C0(R;R). We say
that the sequence ( f j) j∈Z>0 converges to f if, for every compact subset K ⊆ R, the
sequence ( f j|K) j∈Z>0 converges to f |K in the norm ∥·∥∞,K.

Let us consider an example of this sort of convergence.

6.1.1 Example We let f ∈ C0(R;R) be defined by f (x) = 0 for all x ∈ R, and, for j ∈ Z>0,
we define f j ∈ C0(R;R) by

f j(x) =


0, x ∈ [− j, j],
x − j, x ∈ ( j,∞),
−x − j, x ∈ (−∞,− j).

We claim that the sequence ( f j) j∈Z>0 converges to f . Indeed, let K ⊆ R be compact,
and choose N ∈ Z>0 sufficiently large that K ⊆ [−N,N]. Then, since f j|[−N,N] is
zero for j ≥ N, it follows that f j|K is zero for geN, giving the desired conclusion. It
may be useful for the reader to sketch the graphs of the functions in the sequence
( f j) j∈Z>0 to understand why it converges to f , and what this means and does not
mean relative to the sorts of convergence considered in Section I-3.6. •

This is all we intend to say about this example for the moment. However, let
us raise some of the more immediate questions arising from our rather superficial
discussion.
1. Is there a topology on C0(R;R) in which convergence is exactly as we have

defined it? The answer is, “yes,” and we consider this in .where?

2. While the topology on C0(R;R) implicitly considered above is not the norm
topology for the norm ∥·∥∞, is it the norm topology for some other norm? The
answer is. “no,” and this is considered in .where?

3. While the topology on C0(R;R) implicitly considered above is not a norm
topology for any norm, is there a metric on C0(R; lR) for which the topology
is the metric topology? The answer here is, “yes,” and we show this in . Thewhere?

answer to this question is (non-obviously) related to the fact that the following
two statements are equivalent:
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(a) for f ∈ C0(R;R) and a sequence ( f j) j∈Z>0 , the sequence ( f j|K) j∈Z>0 converges
to f |K in the norm ∥·∥∞,K for every compact set K ⊆ R;

(b) for f ∈ C0(R;R) and a sequence ( f j) j∈Z>0 , the sequence ( f j|[−N,N]) j∈Z>0

converges to f |[−N,N] in the norm ∥·∥∞,[−N,N] for every N ∈ Z>0.

With this as motivation, we get down to the business of formally defining the
notion of a locally convex topology.

6.1.2 Definitions and basic properties

In this section we shall have a need to regard F ∈ {R,C} as topological spaces,
and we do this by giving them their usual topology, which can be described in a
multitude of ways.
1. One can regard F as a metric space with metric d(a1, a2) = |a1 − a2|. This gives

the balls
B(r, a) = {a′ ∈ F | d(a′, a) < r}, r ∈ R>0, a ∈ F.

In this case the metric topology is prescribed by declaring that a subset U ⊆ F
is open when, for any point in U, there is a ball centred at that point contained
in U.

2. We can regard F as a normed vector space with norm |·|. In this case, this gives
rise to the metric described just above, and so gives rise to the same open sets.

With this in mind, we make the following definition.

6.1.2 Definition (Topological vector space) Let F ∈ {R,C}, A topological F-vector
space is a pair (V,O ) where V is an F-vector space and where O is a topology on V
such that the maps

µ : F × V→ V
(a, v) 7→ av

and
α : V × V→ V

(v1, v2) 7→ v1 + v2

are continuous. •

This definition is pretty natural, but gives rise to a surprising amount of struc-
ture. As an initial illustration of this, we have the following result.

6.1.3 Proposition (Determination of topology from a neighbourhood base of zero)
Let F ∈ {R,C} and let (V,O ) be a topological F-vector space. Then O is uniquely

determined by any neighbourhood base of 0.
Proof First of all, by Proposition 1.2.26 we know thatO is uniquely determined by the
choice of a neighbourhood base at every point in V. Thus, to prove the proposition, it
suffices to show that a neighbourhood base for 0 uniquely determined a neighbourhood
base at v for every v ∈ V.
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Let v ∈ V. By Exercise 6.1.1 we know that

αv : V→ Vv′v′ + v

is an homeomorphism of V. It follows from this that, ifBv′ is a neighbourhood base
for v′ ∈ V, then

{αv(B) | B ∈Bv′}

is a neighbourhood base for αv(v′) = v′ + v. (This is just a matter of verifying the
definitions of a neighbourhood base.) Taking v′ = 0 gives the desired conclusion. ■

With the preceding result in mind, we make a definition.

6.1.4 Definition (Local base) Let F ∈ {R,C} and let (V,O ) be a topological F-vector
space. A local base for O is a neighbourhood base for 0. •

The proof of the preceding proposition shows that ifB0 is a local base for the
topology of a topological vector space, then

v +B0 = {αv(B) | B ∈B0}

is a neighbourhood base for v.
An important property of local bases is the following result, which is a conse-

quence of topological vector spaces being regular, in the terminology of .what

6.1.5 Proposition (Property of local bases) Let F ∈ {R,C} and let (V,O ) be a topological
F-vector space. If B0 is a local base for O and if B ∈ B0, then there exists B′ ∈ B0 such
that cl(B′) ⊆ B.

Proof We begin with a general technical lemma.

1 Lemma If U is a neighbourhood of 0, then there exists a neighbourhood V of 0 such that
(i) V = −V and
(ii) V + V ⊆ U.

Proof Since α(0, 0) = 0 + 0 = 0 there exist neighbourhoods V1 and V2 of 0 such that
V1 + V2 ⊆ U. Taking

V = V1 ∩ V2 ∩ (−V1) ∩ (−V2)

gives the result. ▼

Note that one can then apply the lemma to the neighbourhood V itself to give
a neighbourhood V of U such that V = −V and V + V + V + V ⊆ U. In particular,
V + V + V ⊆ U.

Now we state another lemma, from which the result will follow easily.
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2 Lemma If K ⊆ V is compact and if A ⊆ V is closed with K ∩ C , ∅, then there is a
neighbourhood U of 0 such that

(K + V) ∩ (C + V) = ∅.

Proof We can suppose that K , ∅, since the result is obvious otherwise. Let v ∈ K.
Since v < C and since C is closed, there exists a neighbourhood Ux of 0 such that
(v +Ux) ∩ C = ∅. Applying the preceding lemma, there exists a neighbourhood Vx of
0 satisfying Vx = −Vx and

(x + Vx + Vx + Vx) ∩ C = ∅ =⇒ (x + Vx + Vx) ∩ (C − Vx) = ∅
=⇒ (x + Vx + Vx) ∩ (C + Vx). (6.1)

By compactness of K, let x1, . . . , xm ∈ K be such that

K ⊆ (x1 + Vx1) ∪ · · · ∪ (xm + Vxm).

Denote V = ∩m
j=1Vx j so that we have

K ⊆
m⋃

j=1

(x j + Vx j + V) ⊆
m⋃

j=1

(x j + Vx j + Vx j).

Thus (K + V) ∩ (C + V) = ∅ by (6.1). ▼

Note that, if K, C, and V are as in the lemma, then

cl(K + V) ∩ C , ∅.

To see this, note that
C + V = ∪v∈C(x + V)

is open. Suppose that v ∈ cl(K + V) ∩ C. Thus (v + V) ∩ (K + V) , ∅ by definition of
closure. Since v + V ∈ C + V we arrive at a contradiction of the lemma.

Now, to prove the proposition, let B ∈ B0 and apply the lemma in the case of
K = {0} and C = V \ B. The lemma then gives a neighbourhood V of 0 such that
V ∩ (C + V) = ∅. By our comments just preceding

∅ = cl(V) ∩ C = cl(V) ∩ (V \ B) =⇒ cl(V) ⊆ B.

Since B0 is a neighbourhood base, there exists B′ ∈ B0 such that B′ ⊆ B. Then
cl(B′) ⊆ B. ■

We can further refine the “shape” of the elements of a local base for a topological
vector space using the following notions.
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6.1.6 Definition (Balanced set, absorbing set) Let F ∈ {R,C} and let V be an F-vector
space.

(i) A subset B ⊆ V is balanced if µa(B) ⊆ B for every α ∈ F satisfying |a| ≤ 1.
(ii) A subset A ⊆ V is absorbing if, for every v ∈ V, there exists λ ∈ R>0 such that

x ∈ aA for every a ∈ F satisfying |a| ≥ λ. •

The reader can explore the meaning of balanced sets in Exercise 6.1.3. We note
that the notions of balanced and absorbing set are not dependent on the topology
of V (although they do depend on the topology of F).

For our purposes, we have the following results.

6.1.7 Proposition (Topological vector spaces possess balanced local bases) Let
F ∈ {R,C} and let (V,O ) be a topological vector space. Then there exists a local base for
(V,O ) comprised of balanced sets.

Proof First we show that every neighbourhood of 0 contains a balanced neighbour-
hood of 0. Let U be a neighbourhood of 0. By continuity of the scalar multiplication
map µ, there exists δ ∈ R>0 and a neighbourhood V of 0 such that av ∈ U for |a| < δ
and v ∈ V. Define

W = {av | v ∈ V, |a| < δ}.

Being a union of the open sets µa(V), |a| < δ, W is open. We claim that W is balanced.
Indeed, let w ∈ W and let a ∈ F be such that |a| ≤ 1. Then w = a′v for |a| < δ and v ∈ V.
Thus aw = (aa′)v ∈W since |aa′| < |a′| < δ.

Now letB0 be a local base and, for each B ∈B0 let UB be a balanced neighbourhood
of 0 such that UB ⊆ B. Then

{UB | B ∈B0}

is a local base comprised of balanced sets. ■

6.1.8 Proposition (Neighbourhoods of zero are absorbing) Let F ∈ {R,C} and let
(V,O ) be a topological vector space. Then every neighbourhood of 0 is an absorbing set.

Proof Let U be a neighbourhood of 0 and let v ∈ V. Note that the mapping F ∋ a 7→
av ∈ V is continuous. Since U is a neighbourhood of 0, this means that

{a ∈ F | av ∈ U}

is an open subset of F containing 0. Thus there exists λ ∈ R>0 such that av ∈ U for
|a| ∈ (0, λ]. Thus v ∈ a−1U for |a−1

| ≥ λ, which is the result. ■

6.1.3 Boundedness in topological vector spaces

Let F ∈ {R,C} and let (V,O ) be a topological F-vector space. Let us first
introduce a notion in a topological vector space that arises out of an interplay of
the topological and vector space structure.
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6.1.9 Definition (Bounded set) Let F ∈ {R,C} and let (V,O ) be a topological F-vector
space. A subset E ⊆ V is bounded if, for any neighbourhood U of 0, there exists
λ ∈ R>0 such that E ⊆ µa(U) for every a ∈ F satisfying |a| ≥ λ. •

The following characterisation of boundedness is often useful.

6.1.10 Proposition (Sequential characterisation of bounded sets) Let F ∈ {R,C} and
let (V,O ) be a topological F-vector space. For a subset E ⊆ V, the following statements are
equivalent:

(i) E is bounded;
(ii) if (vj)j∈Z>0 is a sequence in E and if (aj)j∈Z>0 is a nowhere zero sequence inF converging

to 0, then the sequence (ajvj)j∈Z>0 converges to 0.
Proof (i) =⇒ (ii) Let U ⊆ V be a balanced neighbourhood of 0 and let λ ∈ R>0 be such
that E ⊆ (aU) for |a| ≥ λ. Then, in particular, U ⊆ λ−1E. Let N ∈ Z>0 be such that
|a jλ| < 1 for j ≥ N. Then, by virtue of U being balanced,

a jv j = (a jλ)λ−1v j ∈ a jλU ∈ U, j ≥ N.

Thus (a jv j) j∈Z>0 converges to 0 by Proposition 6.1.7.
(ii) =⇒ (i) Suppose that E is not bounded. Then there exists a neighbourhood U of

0 and a sequence (r j) j∈Z>0 in R>0 satisfying lim j→∞ r j = ∞ such that E 1 r jV for every
j ∈ Z>0. For j ∈ Z>0, let v j ∈ E be such that v j < r jV. Thus r−1

j v j < V for every j ∈ Z>0.

Thus we have a sequence (r−1
j ) j∈Z>0 in R>0 converging to zero and sequence (v j) j∈Z>0

in E such that (r−1
j v j) j∈Z>0 does not converge to 0. ■

The following result generalises the well known fact about normed vector
spaces.

6.1.11 Proposition (Compact sets are bounded) Let F ∈ {R,C} and let (V,O ) be a topo-
logical F-vector space. If K ⊆ V is compact, then it is bounded.

Proof Let U be a neighbourhood of 0 and let V ⊆ U be a balanced neighbourhood, by
Proposition 6.1.7. By Proposition 6.1.8, V is absorbing, and so

K ⊆
⋃

j∈Z>0

jV.

By compactness of K, let j1, . . . , jk ∈ Z>0 be such that j1 < · · · < jk and such that

K ⊆ j1U ∪ · · · ∪ jkV.

Since V is balanced,

jl j−1
k V ⊆ V =⇒ jlV ⊆ jkV, l ∈ {1, . . . , k}.

Similarly, if a ∈ F satisfies |a| ≥ jk, jkV ⊆ aV. Thus, if a ∈ F satisfies |a| ≥ jk,

K ⊆ jkV ⊆ aV ⊆ aU,

showing that K is bounded. ■
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Recall from Theorem 3.6.15 that closed and bounded subsets of a normed vector
space (V, ∥·∥) are compact if and only if V is finite-dimensional. One imagines that
this carries over to topological vector spaces, and that closed and bounded subsets
of a topological vector space (V,O ) are compact if and only if V is finite-dimensional.
This is a failing of imagination, however. Examples of infinite-dimensional topo-
logical vector spaces where closed and bounded subsets are compact are not nec-
essarily trivial, so here we content ourselves with making a definition, saving for
the presentation of examples having the stated property.what

6.1.12 Definition (Heine–Borel property) Let F ∈ {R,C}. A topological F-vector space
(V,O ) has the Heine–Borel property if every closed and bounded subset of V is
compact. •

6.1.4 Attributes of subsets of a topological vector space

Note that since V is a vector space, the notion of a subspace of V makes sense,
as do the myriad other notions associated with the vector space structure. Also,
the notion of a closed subset of V makes sense, as do the myriad other notions
that come with a topology. The following result indicates how the vector space
structure and the topology interact.

6.1.13 Proposition (Interaction of topological and vector space structure) Let F ∈
{R,C} and let (V,O ) be a topological F-vector space. Let A,A′ ⊆ V, let U ⊆ V be a
subspace, let B ⊆ V be balanced, let C ⊆ V be convex, and let E ⊆ V be bounded. Then the
following statements hold:

(i) cl(A) = ∩{A +U | U is a neighbourhood of 0};
(ii) cl(A) + cl(A′) ⊆ cl(A +A′);
(iii) cl(U) is a subspace;
(iv) cl(B) is balanced and int(B) is balanced if 0 ∈ int(B);
(v) cl(C) and int(C) are convex;
(vi) cl(E) is bounded.

Proof (i) Following the proof of Proposition 6.1.3, v ∈ cl(A) if and only if (v+U)∩A , ∅
for every neighbourhood U of 0. Thus v ∈ cl(A) if and only if x ∈ A − U for every
neighbourhood U of 0. Thus x ∈ cl(A) if and only if x ∈ A+U for every neighbourhood
U of 0, since −U is a neighbourhood of 0 if U is a neighbourhood of 0.

(ii) Let v ∈ cl(A) and v′ ∈ cl(A′) and let U be a neighbourhood of v + v′. By
continuity of addition, let U and U′ be neighbourhood of v and v′, respectively, such
that U + U′ ⊆ U. Then let u ∈ A ∩ U and u′ ∈ A′ ∩ V′ since v ∈ cl(A) and v′ ∈ cl(A′).
Then u + u′ ∈ (A + A′) ∩U, showing that (A + A′) ∩U , ∅. Thus v + v′ ∈ cl(A + A′).

(iii) By Exercise 6.1.2, a cl(U) = cl(aU) for every a ∈ F. We can now use part (ii):

a cl(U) + b cl(U) = cl(aU) + cl(bU) ⊆ cl(aU + bU) = cl(U),

for a, b ∈ F, and this gives this part of the proof.
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(iv) That cl(B) is balanced follows in a manner entirely similar to that used to prove
part (iii). Since µa is an homeomorphism for a , 0, we have a int(B) = int(aB) for
|a| ∈ (0, 1]. Thus

a int(B) ⊆ a int(B) ⊆ B, |a| ∈ (0, 1].

Since a int(B) is open, this then gives a int(B) ⊆ int(B) for |a| ∈ (0, 1]. Since we clearly
have 0 int(B) ⊆ int(B) if 0 ∈ int(B), this part of the result follows.

(v) That cl(C) is convex follows in a manner entirely similar to that used to prove
part (iii). For λ ∈ (0, 1) we have

λ int(C) + (1 − λ) int(C) ⊆ C,

just since int(C) ⊆ C. Moreover, the set λ int(C) + (1 − λ) int(C) is open by continuity
of the vector space operations. Since int(C) is the union of all open subsets of C, this
gives

λ int(C) + (1 − λ) int(C) ⊆ int(C),

which is this part of the result.
(vi) Let U be a neighbourhood of 0. By Proposition 6.1.5, let V be a neighbourhood

of 0 for which cl(V) ⊆ U. Since E is bounded, there exists λ ∈ R>0 such that E ⊆ (aV)
for |a| ≥ λ. Thus E ⊆ (aU) for |a| ≥ λ. ■

6.1.5 Completeness of topological vector spaces

Completeness featured prominently in our presentation of normed vector
spaces, and we dedicated some time to understanding why it is an essential feature
of these spaces in practice. It is, of course, similarly true that completeness is an
essential feature of topological vector spaces. However, because of the increased
generality of topological vector spaces as compared to normed vector spaces, it
turns out that sequences are not adequate for describing completeness. Instead we
use nets as explained in what?

Exercises

6.1.1 Let F ∈ {R,C} and let (V,O ) be a topological F-vector space. Let a0 ∈ F \ {0}
and let v0 ∈ V. Show that the maps

µa0 : V→ V
v 7→ a0v

,
αv0 : V→ V

v 7→ v + v0

are homeomorphisms of V.
6.1.2 Let F ∈ {R,C} and let (V,O ) be a topological F-vector space. Let A ⊆ V and

let a ∈ F. Show that cl(µa(A)) = µa(cl(A)).
6.1.3 Which of the following subsets of the R-vector space R2 is balanced?

(a)
Answer the same question, now identifying R2 with C and thinking of it as
a C-vector space.
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6.1.4 Let F ∈ {R,C} and let V be an F-vector space. Let v ∈ V, a ∈ F, and λ ∈ R>0.
If B ⊆ V is balanced, show that

av ∈ λB ⇐⇒ |a|v ∈ λB.
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Section 6.2

Locally convex topological vector spaces

We introduce in this section an important and fairly easily described In Chap-
ters 3 and 4 we considered the most common means by which a vector space may
be topologised, namely by a norm. In Definition 3.1.2 we presented the idea of a
seminorm on anF-vector space, which is aR≥0-valued function with all of the prop-
erties of a norm, except that is lacks the property that the only vector of (semi)norm
zero is the zero vector. Relative to our discussion for Banach spaces, we showed
in Theorem 3.1.8 that every vector space with a seminorm can be turned into a
related space with a norm by “quotienting out by the vectors with zero norm,” as
if these vectors were an embarrassment. Here we make use of multiple seminorms
for the same vector space to develop a topology. The “locally convex” topologies
we introduce here are less general than the sort of generality we discussed in Sec-
tion 6.1, but the sorts of spaces we introduce here are commonly encountered in
applications, and indeed cover many interesting and useful applications that are
not covered by norms.

Do I need to read this section? If you are reading this chapter, this section is
probably the most important one, since we shall make use of the structure we
introduce here in various places, including in our discussion of systems in Chap-
ter V-6. •

6.2.1 Seminorms and Minkowski functionals

In this section we work entirely with algebraic constructions, leaving for the
next section the topological connections associated with the objects we introduce.

We first make a construction that generalises what we have already seen in
Definition 5.1.2.

6.2.1 Definition (Minkowski functional) Let F ∈ {R,C} and let (V,O ) be a topological
F-vector space. If A ⊆ V is absorbing, then the Minkowski functional of A is the
map pA : Rn

→ R≥0 given by

pA(v) = inf{λ ∈ R>0 | v ∈ λA}. •

We wish to explore the relationships between Minkowski functions of convex,
balanced, absorbing sets and seminorms. Our first result in this direction is the
following. In Definition 3.1.2 we denoted a norm by the function v 7→ ∥v∥. Here we
shall change the notation to the more common and flexible “p” to denote a typical
seminorm.
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6.2.2 Proposition (Seminorms are Minkowski functionals) Let F ∈ {R,C}, let V be an
F-vector space, and let p be a seminorm on V. Then the subset

Bp = {v ∈ V | p(v) < 1}

is convex, balanced, and absorbing, and p = pBp .
Proof If v ∈ Bp and if a ∈ F satisfies |a| ≤ 1, then p(av) = |a|p(v) < 1. This shows that Bp
is balanced. If v1, v2 ∈ Bp and if λ ∈ (0, 1), we have

p(λv1 + (1 − λ)v2) ≤ λp(v1) + (1 − λ)p(v2) < 1,

showing that Bp is convex. Let v ∈ V and note that, for all a ∈ F satisfying |a| ≥ p(v) we
have

p(a−1v) = |a|−1p(v) < 1 =⇒ a−1v ∈ Bp =⇒ v ∈ aBp.

Thus Bp is absorbing.
Our preceding computation gives

{λ ∈ R>0 | λ > p(v)} ⊆ {λ ∈ R>0 | v ∈ λBp}.

Therefore,

pBp(v) = inf{λ ∈ R>0 | v ∈ λBp}

≤ inf{λ ∈ R>0 | λ > p(v)} = p(v).

Now let λ ∈ (0, p(v)] so that p(λ−1v) ≥ 1. Therefore, λ−1v < Bp and so v < λBp. Thus

p(v) ≤ inf{λ ∈ R>0 | v ∈ λBp} = pBp(v),

which gives the result. ■

Thus seminorms give rise to sets whose Minkowski functional is equal to the
seminorm we started with. Now let us consider the other construction, from subset
to seminorm via the Minkowski functional.

6.2.3 Proposition (Minkowski functionals are sometimes seminorms) LetF ∈ {R,C},
let V be an F-vector space, and let B ⊆ V be a convex, balanced, absorbing set. Then pB is
a seminorm. Moreover, if we define

B< = {v ∈ V | pB(v) < 1}, B≤ = {v ∈ V | pB(v) ≤ 1},

then
B< ⊆ B ⊆ B≤

and pB< = pB = pB≤ .
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Proof Let v1, v2 ∈ V. Since B is absorbing, we can write v1 = λ1u1 and v2 = λ2u2 for
u1,u2 ∈ B and λ1, λ2 ∈ R>0. Then

λ1

λ1 + λ2
u1 +

λ2

λ1 + λ2
u1 ∈ B =⇒ λ1u1 + λ2u2 ∈ (λ1 + λ2)B

=⇒ v1 + v2 ∈ (λ1 + λ2)B.

Thus

{λ1, λ2 ∈ R>0 | v1 ∈ λ1B, v2 ∈ λ2B} ⊆ {λ1, λ2 ∈ R>0 | v1 + v2 ∈ (λ1 + λ2)B}.

Thus we have

pB(v1 + v2) = inf{λ ∈ R | v1 + v2 ∈ λB}
= inf{λ1 + λ2 | v1 + v2 ∈ (λ1 + λ2)B}
≤ inf{λ1 + λ2 | v1 ∈ λ1B, v2 ∈ λ2B}
= inf{λ1 | v1 ∈ λ1B} + inf{λ2 | v2 ∈ λ2B} = pB(v1) + pB(v2),

using Proposition I-2.2.28. This gives the triangle inequality for pB.
Now note that 0 ∈ B since B is absorbing. If a = 0 and v ∈ B, then

pB(av) = pB(0) = inf{λ ∈ R>0 | 0 ∈ λB} = infR>0 = 0,

since 0 ∈ B. Now let a ∈ R>0. Then

pB(av) = inf{λ ∈ R>0 | av ∈ λB}

= inf{λ ∈ R>0 | v ∈ λ
a B}

= inf{aλ ∈ R>0 | v ∈ λB}
= a inf{λ ∈ R>0 | v ∈ λB} = apB(v),

using Proposition I-2.2.28. Finally, let a ∈ F \ {0}. Then, using Exercise 6.1.4 since B is
balanced,

pB(av) = inf{λ ∈ R>0 | av ∈ λB}
= inf{λ ∈ R>0 | |a|v ∈ λB}
= |a| inf{λ ∈ R>0 | v ∈ λB} = |a|pB(v),

using the fact that this part of the result has been proved for a ∈ R>0, even when B is
not balanced. Thus pB has the homogeneity property of a seminorm.

Suppose that v ∈ B<. Then

inf{λ ∈ R>0 | v ∈ λB} < 1.

Thus v ∈ λB for some λ ∈ (0, 1). Thus v ∈ B since B is balanced. This gives B< ⊆ B.
Now, if v ∈ V \ B≤, then

inf{λ ∈ R>0 | v ∈ λB} > 1.

Thus v ∈ λB for some λ > 1. Since B is balanced, this means that v ∈ V \ B. Thus
B ⊆ B≤.
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The preceding inclusions give pB≤ ≤ pB ≤ pB< . For the other inequalities, first let
v ∈ V and let λ, µ ∈ R>0 be such that pB≤(v) < λ < µ. Then

pB≤(v/λ) < 1 =⇒ v/λ ∈ B≤.

Thus pB(v/λ) ≤ 1 and pB(v/µ) ≤ λ/µ < 1. Thus v/µ ∈ B< and so pB<(v) ≤ µ. This holds
for every t > pB≤(v) and so pB<(v) ≤ pB≤(v), and the result follows from this. ■

The punchline of the preceding two propositions is the following essential
correspondence:

{seminorms on V} ↔ {convex, balanced, absorbing sets}.

6.2.2 Seminorms and locally convex topologies

Now we introduce topology into our discussion of seminorms by a considera-
tion of a—probably the most—important class of topological vector spaces, those
that are “locally convex.” We shall see that the property of a topological vector
space being locally convex has a concrete realisation in terms of seminorms. We
shall two this in three steps. First we show that a local base of convex balanced
sets for a locally convex topology has associated with it gives rise to a family of
seminorms, one for each convex balanced neighbourhood coming from the local
base. Then we show that a family of seminorms gives rise to a natural collection
of convex balanced neighbourhoods of zero, and these are a base for a locally con-
vex topology. Finally, we show that the two constructions commute, giving the
equivalence of two descriptions of a locally convex topological vector space.

We get started with the following definition.

6.2.4 Definition (Locally convex topological vector space) Let F ∈ {R,C}. A topo-
logical F-vector space (V,O ) is locally convex if there exists a local base for O
comprised of convex sets. •

This notion of a locally convex topological vector space is “geometric” in the
sense that it gives a geometric property of a local base.

Before we get rolling with our programme of realising locally convex topologies
using seminorms, let us establish the analogue of Proposition 6.1.7 for locally
convex topological vector spaces.

6.2.5 Proposition (Locally convex topological vector spaces possess convex bal-
anced local bases) LetF ∈ {R,C} and let (V,O ) be a locally convex topologicalF-vector
space. Then there is a local base for (V,O ) comprised of convex balanced sets.

Proof First we show that every convex neighbourhood of 0 contains a balanced convex
neighbourhood of 0. We let U be a convex neighbourhood of 0. Denote

B = ∩{aU | |a| = 1}.
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By continuity of scalar multiplication, let V be a neighbourhood of 0 and let δ ∈ R>0
such that aV ⊆ U for every a ∈ F such that |a| < δ. Define

W = {av | v ∈ U, |a| < δ}.

As we saw in the proof of Proposition 6.1.7, W is balanced and W ⊆ U. Then, if a ∈ F
satisfies |a| = 1, we have a−1W =W. Thus, if |a| = 1,

W ⊆ αW ⊆ αU ⊆ B.

Therefore, since W is a neighbourhood of 0, int(B) is a neighbourhood of 0. The
sets aU, |a| = 1, are convex, and so B is the intersection of convex sets, and so is
convex, cf. Exercise II-1.9.3. Therefore, by Proposition 6.1.13(v), int(B) is convex. It
remains to show that int(B) is balanced, which will follow from Proposition 6.1.13(iv)
if we can show that B is balanced. To this end, let a ∈ F satisfy |a| ≤ 1 and write a = rb
where r ∈ [0, 1] and |b| = 1. Then

aB = rbB = ∩ {rba′U | a′ ∈ F, |a′| = 1}
= ∩ {ra′U | a′ ∈ F, |a′| = 1}.

Since a′U is a convex set containing 0 and since r ∈ [0, 1], ra′U ⊆ a′U and so, if |a| ≤ 1,

aB = ∩ {ra′U | a′ ∈ F, |a′| = 1}
⊆ ∩ {a′U | a′ ∈ F, |a′| = 1} = B,

and so we have demonstrated that every convex neighbourhood of 0 contains a bal-
anced convex neighbourhood of 0.

Now let B0 be a local base of convex neighbourhoods of 0 and, for each B ∈ B0
let UB be a convex balanced neighbourhood of 0 such that UB ⊆ B. Then

{UB | B ∈B0}

is a local base comprised of convex balanced sets. ■

Now we consider how seminorms can be used to describe locally convex topolo-
gies. We begin by assigning to a locally convex topological vector space a family
of seminorms.

6.2.6 Proposition (Family of seminorms associated to a locally convex topological
vector space) Let F ∈ {R,C} and let (V,O ) be a locally convex topological F-vector
space. If B0 is a local base of convex balanced neighbourhoods of 0, then the family

{pU | U ∈B0}

of seminorms has the following properties:
(i) for each U ∈B0, U = {v ∈ V | pU(v) < 1};
(ii) the functions pU : V→ R, U ∈B0, are continuous.
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Proof First of all, since each U ∈ B0 is absorbing by Proposition 6.1.8, pU is a semi-
norm by Proposition 6.2.3.

(i) This was shown during the proof of the last assertion of Proposition 6.2.3.
(ii) Let ϵ ∈ R>0. Then, for v1, v2 ∈ ϵU for U ∈B0,

|pU(v1) − pU(v2)| ≤ pU(v1 − v2) <
ϵ
2
+
ϵ
2
< ϵ

by Exercise 3.1.3 and the triangle inequality. This gives continuity of pU. ■

Now we turn this around and show how to define a locally convex topology
from a given family of seminorms.

6.2.7 Proposition (Locally convex topological vector space associated with a fam-
ily of seminorms) Let F ∈ {R,C} and let V be an F-vector space. Let P be a family of
seminorms on V. For p ∈ P and for k ∈ Z>0, denote

U(p,k) = {v ∈ V | p(v) < k−1
}

and letB0 be the collection of all finite intersections of the sets U(p,k), p ∈ P , k ∈ Z>0.
ThenB0 is a convex balanced local base for a locally convex topology for V with the property
that each p ∈ P is continuous.

Proof Of course, the topology O for V is defined by asking that

{v +U | U ∈B0}

be a neighbourhood base for v ∈ V. To show that this renders (V,O ) a locally con-
vex topological F-vector space, we need only show that the operations µ of scalar
multiplication and α of vector addition are continuous.

First we show continuity of addition. First let V be a neighbourhood of 0. Then,
sinceB0 is a neighbourhood base for 0, there exists p1, . . . , pm ∈ P and k1, . . . , km ∈ Z>0
such that

m⋂
j=1

U(p j, k j) ⊆ V.

Define

W =
m⋂

j=1

U(p j, 2k j),

and note that, by the triangle inequality, W +W ⊆ V. With this computation at hand,
let v1, v2 ∈ V and let v1 + v2 +V be a neighbourhood of v1 + v2 with V a neighbourhood
of 0. Then let W be as above and consider the neighbourhood (v1 +W) × (v2 +W) of
(v1, v2) ∈ V × V. Then

α((v1 +W) × (v2 +W)) ⊆ v1 + v2 + V,

and this proves continuity of addition.
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To prove continuity of scalar multiplication, let a ∈ F and let v ∈ V. Let U be
a neighbourhood of 0 and let W be the neighbourhood of zero as constructed in the
preceding paragraph. Let λ ∈ R>0 be such that v ∈ λW and define

µ =
λ

1 + |a|λ
.

Let v′ ∈ v + µW and let a′ ∈ F satisfy |a′ − a| < λ−1. Note that

||a′| − |a|| ≤ |a′ − a| <
1
λ
.

If |a′| − |a| ≥ 0 this gives

|a′| − |a| <
1
λ
=⇒ |a′|λ ≤ 1 + |a|λ =⇒ |a′|µ ≤ 1.

We similarly get this conclusion when |a| − |a′| ≥ 0. We then have

a′v′ − av = a′(v − v′) + (a′ − a)v ∈ |a′|µW + |a′ − a|λW ⊆W +W ⊆ U

by virtue of the fact that W is balanced (being the intersection of balanced sets). This
give continuity of scalar multiplication.

To show that p ∈ P is continuous, let ϵ ∈ R>0 and let k ∈ Z>0 be such that k−1 < ϵ
2 .

Then, for v1, v2 ∈ U(p, k) we have

|p(v1) − p(v2)| ≤ p(v1 − v2) ≤ p(v1) + p(v2) <
2
k
< ϵ,

giving the desired continuity. ■

6.2.8 Remark (“Commuting of descriptions of locally convex topologies) Now let
us see that these descriptions of a locally convex topological vector space by (1) the
prescription of a convex balanced local base and (2) a collection of seminorms really
agree in the sense that the prescriptions “commute.”
1. First suppose that we start with a convex balanced local base B0 for a locally

convex topological vector space (V,O ) and that we produce a collection of semi-
norms according to Proposition 6.2.6. Now, given this collection of seminorms,
define a locally convex topology according to Proposition 6.2.7. The local base
for this topology is then comprised of the sets

m⋂
j=1

1
k j

U j (6.2)

for k1, . . . , km ∈ Z>0 and U1, . . . ,Um ∈ B0. However, U j = p−1
U j

((−∞, 1)) and so

each of the sets 1
k j

U j in is O by continuity of pU j and of scalar multiplication.
Thus the sets (6.2) are in O and so the local base defined by Proposition 6.2.7 is
the same as O .
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2. Now suppose that we start with a collection P of seminorms on a vector
space V and define, according to Proposition 6.2.7, a locally convex topology
O . Then, starting from O , we define a collection of seminorms according to
Proposition 6.2.6. Among the seminorms will be those from P as we have p =
pU(p,1). However, there will also be other seminorms. However, the seminorms
obtained will define the same topology, just as we argued above. •

6.2.3 Properties of locally convex topological vector spaces

The presence of seminorms allows for characterisations of many topologi-
cal concepts for locally convex topological vector spaces that resemble those for
normed spaces. This concreteness is what makes these spaces especially easy to
use.

6.2.9 Proposition (Seminorm characterisation of continuity) Let F ∈ {R,C} and let
(U,OU) and (V,OV) be locally convex topological F-vector spaces. Then a linear map
L ∈ HomF(U; V) is continuous if and only if, for every continuous seminorm p on V, there
exists a continuous seminorm q on U such that p(L(u)) ≤ q(u).

Proof First suppose that L is continuous, and so continuous at 0, and let p be a
continuous seminorm on V. Consider the neighbourhood O ⊆ V of 0 given by

O = {v ∈ V | p(v) < 1}.

Continuity of L at 0 gives a neighbourhood N = L−1(O) ⊆ U of 0. Let q1, . . . , qk be
continuous seminorms for U and let r1, . . . , rk ∈ R>0 be such that

{u ∈ U | q j(u) < r j, j ∈ {1, . . . , k}} ⊆ N.

Then
L({u ∈ U | q j(u) < r j, j ∈ {1, . . . , k}}) ⊆ O.

Let r = min{r1, . . . , rk}. Thus, if

u ∈ {u′ ∈ U | q j(u′) < 1, j ∈ {1, . . . , k}},

then
ru ∈ {u′ ∈ U | q j(u) < r, j ∈ {1, . . . , k}} ⊆ N.

Thus
p(L(ru)) = p(rL(u)) = rp(L(u)) < 1.

Therefore,

sup{p(L(u)) | u ∈ {u′ ∈ U | q j(u′) < 1, j ∈ {1, . . . , k}}} < r−1 < ∞.

Now let

s = sup{p(L(u)) | u ∈ {u′ ∈ U | q j(u′) < 1, j ∈ {1, . . . , k}}}.
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For u ∈ U and for ϵ ∈ R>0, denote

uϵ = (q1(u) + · · · + qk(u) + ϵ)−1u.

Note that

q j(uϵ) =
q j(u)

q1(u) + · · · + qk(u) + ϵ
< 1, j ∈ {1, . . . , k}.

Thus
uϵ ∈ {u′ ∈ U | q j(u′) < 1, j ∈ {1, . . . , k}},

whence
p(L(uϵ)) ≤ s,

and so
p(L(u)) ≤ s(q1(u) + · · · + qk(u) + ϵ).

As this is valid for any ϵ ∈ R>0, we have

p(L(u)) ≤ s(q1(u) + · · · + qk(u)).

Note that s(q1 + · · · + qk) is a continuous seminorm on U.
For the converse, let u0 ∈ U and let O ⊆ V be a neighbourhood of L(u0). Let

p1, . . . , pk be continuous seminorms for V and let r1, . . . , rk ∈ R>0 be such that

{v ∈ V | p j(v − L(u0)) < r j, j ∈ {1, . . . , k}} ⊆ O.

Let q1, . . . , qk be continuous seminorms for U satisfying

p j(L(u)) ≤ q j(u), j ∈ {1, . . . , k}, u ∈ U.

Then, if u ∈ U satisfies q j(u − u0) < r j, then

p j(L(u − u0)) ≤ q j(u − u0), j ∈ {1, . . . , k},

and so
L(u) ∈ {v ∈ V | p j(v − L(u0)) < r j, j ∈ {1, . . . , k}} ⊆ O,

giving continuity of L at u0. ■

6.2.10 Proposition (Seminorm characterisation of boundedness) Let F ∈ {R,C} and
let (V,O ) be a locally convex topological F-vector space. A subset B ⊆ V is bounded if and
only if p|B is bounded for every continuous seminorm p on V.

Proof Suppose that B is bounded and let p be a continuous seminorm for V. Let
λ ∈ R>0 be such that

B ⊆ a{v ∈ V | p(v) < 1}, |a| ≥ λ.

Then, for |a| ≥ λ,

B ⊆ {av ∈ V | p(v) < 1} = {v ∈ V | p( v
a ) < 1} = {v ∈ V | p(v) < λ},

giving boundedness of p on B.



640 6 Topological vector spaces 2022/03/07

Next let B be such that p|B is bounded for every continuous seminorm p. Let U be
a neighbourhood of 0 and let p1, . . . , pk be continuous seminorms and r1, . . . , rk ∈ R>0
be such that

{v ∈ V | p j(v) < r j, j ∈ {1, . . . , k}} ⊆ U.

Let r = min{1, . . . , k}. Let

m j = sup{p j(v) | b ∈ B}, j ∈ {1, . . . , k},

and let m = max{m1, . . . ,mk}. Let λ = m
r , let a ∈ F satisfy |a| > λ, and let v ∈ B. Then

p j(v) ≤ m =⇒ r−1p j(v) ≤ λ =⇒ p j

(v
a

)
< r < r j,

and so v
a
∈ {v ∈ V | p j(v) < r j, j ∈ {1, . . . , k}} ⊆ U,

whence v ∈ aU, showing that B is bounded. ■

6.2.11 Proposition (Seminorm characterisation of convergence) Let F ∈ {R,C}, let
(V,O ) be a locally convex topological F-vector space, and let (I,⪯) be a directed set. A net
(vi)i∈I in V converges to v0 ∈ V if and only if the sequence (p(v0 − vi))i∈I converges to 0 for
every continuous seminorm p on V.

Proof First suppose that (vi)i∈I converges to v0, let ϵ ∈ R>0, and let p be a continuous
seminorm on V. Then there exists i0 ∈ I such that, for i0 ⪯ i,

vi ∈ {v ∈ V | p(v0 − vi) < ϵ},

which proves convergence of the sequence (p(v0 − vi))i∈I to zero.
Now suppose that (p(v0 − vi))i∈I converges to zero for every continuous seminorm

p. Let U be a neighbourhood of 0 and let p1, . . . , pk be continuous seminorms and
r1, . . . , rk ∈ R>0 be such that

{v ∈ V | p j(v) < r j, j ∈ {1, . . . , k}} ⊆ U.

Then there exists i0 ∈ I such that, for i0 ⪯ i,

v0 − vi ∈ {v ∈ V | p j(v) < r j}, j ∈ {1, . . . , k}.

Thus v0 − vi ∈ U for i0 ⪯ i, and so we have convergence of (vi)i∈I to v0. ■

6.2.12 Proposition (Seminorm characterisation of Cauchy sequences) LetF ∈ {R,C},
let (V,O ) be a locally convex topological F-vector space, and let (I,⪯) be a directed set. A
net (vi)i∈I in V is Cauchy if and only if, for every continuous seminorm p on V and every
ϵ ∈ R>0, there exists i0 ∈ I such that p(vv − vj) < ϵ for io ⪯ i, j.

Proof ■
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6.2.13 Proposition (Seminorm characterisation of Hausdorffness) Let F ∈ {R,C} and
let (V,O ) be a locally convex topological F-vector space. Then (V,O ) is Hausdorff if and
only if, for every v ∈ V, there exists a continuous seminorm p on V such that p(v) ∈ R>0.

Exercises

6.2.1 Give an interpretation of Theorem 3.1.14 in terms of locally convex topolo-
gies and seminorms.

6.2.2 Use Proposition 6.2.9 to prove the equivalence of parts (i) and (iv) of Theo-
rem 3.5.8.
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Section 6.3

Special classes of topological vector spaces

6.3.1 Finite-dimensional spaces

(Rn, (γ j) j∈{1,...,n}) is a finite multinormed space. Indeed, it is clear that (γ j) j∈{1,...,n}

is separating. Some examples of balloons at (0, 0) ∈ R2 are shown in Figure 6.1.
Note that it is generally true that the intersection of two balloons (and therefore any

Figure 6.1 Balloons inR2. The bottom balloon is the intersection
of the top two.

finite number of balloons) is itself a balloon. Note that open sets have the property
that around any point in the set there is an open rectangle contained in the set.
This quite clearly matches the usual definition of an open subset of Rn. One also
readily verifies that convergence in the multinorm is the same as convergence in
the usual sense in Rn. Since with this notion of convergence it is true that Cauchy
sequences converge, it follows that Rn is a Fréchet space.
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6.3.2 Normed spaces

6.3.1 Theorem (Characterisation of normed locally convex spaces) Let F ∈ {R,C}
and let (V,O ) be a topological F-vector space. Then (V,O ) is normable if and only if it
possesses a bounded convex neighbourhood of 0.

Proof ■

6.3.3 Metrisable spaces

The essential structure that leads to the myriad useful properties of generalised
signals is the structure of convergence on the sets of test signals. In the chapter
to this point we merely defined directly the sort of convergence we use. Note,
for example, that convergence in D (R;F) is not that of convergence with respect
to a norm. Here we describe the general structure that gives rise to convergence
in D (R;F) and our other spaces of test signals. What follows is a sequence of
definitions and simple examples that lead us to our objective.

For countable multinorms we have the following characterisation of their struc-
ture, which is useful.

6.3.2 Proposition If (V, (γj)j∈Z>0) is a countable multinormed vector space then, for each
v0 ∈ V, there exists a sequence (Bk)k∈Z>0 of balloons at v0 with the properties

(i) Bk+1 ⊆ Bk, k ∈ Z>0, and
(ii) every neighbourhood of v0 contains at least one of the balloons from (Bk)k∈Z>0 .

Proof Define a collection of balloons by

C j,q = {v ∈ V | γ j(v − v0) < q}

where j ∈ Z>0 and where q is a positive rational number. This forms a countable
set of balloons, and so may be enumerated as (Cm)m∈Z>0 . Now define B1 = C1 and
inductively define Bk+1 = Bk ∩ Ck+1. Note now that the collection (Bk)k∈Z>0 clearly
satisfies the first condition of the proposition. Note that every balloon is contained
in one of the balloons (Cm)m∈Z>0 . Thus if any neighbourhood must contain one of the
balloons (Cm)m∈Z>0 . The result follows immediately. ■

6.3.4 Countable union spaces

In the preceding section we saw that Fréchet spaces generalised the notion of
Banach spaces by allowing the topological notions of openness, convergence, etc.,
to be defined using a collection of seminorms rather then a norm. This setup was,
as we saw in Example 6.5.8–1, not adequate to define convergence in D (R;F).
In this section we generalise this idea even further by consider nested families of
Fréchet spaces. It is this sort of idea that we need to complete our discussion of the
topology on spaces of test signals.



644 6 Topological vector spaces 2022/03/07

With this definition we provide a new sort of topological structure for a vector
space. In the following definition we use the fact that if (V, (γa)a∈Z>0) is a multi-
normed vector space and if U is a subspace of V, then the multinorm (γa)a∈Z>0 can
be thought of on U by simple restriction.

6.3.3 Definition Let V be an F-vector space and let ((V j, (γ j,k)k∈Z>0)) j∈Z>0 be a collection of
countable multinormed vector spaces with the following properties:

(i) V j is a subspace of V for each j ∈ Z>0;
(ii) V j ⊆ V j+1 for j ∈ Z>0;
(iii) V = ∪ j∈Z>0V j;
(iv) for each j ∈ Z>0, the multinorm induced on V j by the multinorm (γ j+1,k)k∈Z>0

on V j+1 is weaker that the multinorm (γ j,k)k∈Z>0 .
Then V, equipped with the collection of countable multinormed vector spaces
((V j, (γ j,k)k∈Z>0)) j∈Z>0 , is a countable union space. •

The notion of convergence in a countable union space is something that is not
immediately clear from the definition, so we state it explicitly.

6.3.4 Definition Let V be a countable union space defined by a collection of countable
multinormed vector spaces ((V j, (γ j,k)k∈Z>0)) j∈Z>0 .

(i) A sequence (v j) j∈Z>0 converges to v0 if there exists m ∈ Z>0 so that v j ∈ Vm,
j ∈ Z>0, if v0 ∈ Vm, and if (v j) j∈Z>0 converges to v0 in (Vm, (γm,k)k∈Z>0).

(ii) A sequence (v j) j∈Z>0 is a Cauchy sequence if there exists m ∈ Z>0 so that
v j ∈ Vm, j ∈ Z>0, and if (v j) j∈Z>0 is a Cauchy sequence in (Vm, (γm,k)k∈Z>0).

(iii) The countable union space V is complete if every Cauchy sequence converges.
•
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Section 6.4

Linear maps between locally convex topological vector spaces

6.4.1 Duals of locally convex topological vector spaces

6.4.2 Reflexivity in locally convex topological vector spaces

6.4.3 Duals of Fréchet spaces

The dual space of an F-normed vector space is simply the set of continuous
linear F-valued maps. The similar statement holds for Fréchet spaces, only now
one has a notion of continuity adapted to the collection of seminorms.

6.4.1 Definition Let (V, (γ j) j∈Z>0) be a countable multinormed F-vector space.
(i) A linear map α : V→ F is continuous at v0 ∈ V if for each ϵ > 0 there exists a

neighbourhood O of v0 so that if v ∈ O then |α(v) − α(v0)| < ϵ.
(ii) The set of continuous linear maps on V is the dual space for V and is denoted

V′. •

Since S (R;F) and E (R;F) are Fréchet spaces, we may ask whether S ′(R;F)
and E ′(R;F) are their duals, as defined above. The answer is, of course, yes, and
is provided by the following general result.

6.4.2 Proposition Let (V, (γj)j∈Z>0) be a countable multinormed F-vector space and let α : V→
F be F-linear. The following statements are equivalent:

(i) α is continuous at v0 for every v0 ∈ V;
(ii) α is continuous at 0 ∈ V;
(iii) if (vj)j∈Z>0 is a sequence converging to v0 ∈ V then the sequence (α(vj))j∈Z>0 converges

to α(v0).
Proof The implication (i) =⇒ (ii) is obvious. Now let (v j) j∈Z>0 be a sequence converg-
ing to v0 and suppose that α is continuous at 0. It is clear that the sequence (v j−v0) j∈Z>0

converges to zero. This means that for every neighbourhood O of 0 there exists N
sufficiently large that v j−v0 ∈ O for j ≥ N. Thus, for ϵ > 0 we can choose N sufficiently
large that |α(v j − v0)| < ϵ for j ≥ N, which shows that (ii) =⇒ (iii).

Finally, suppose that α is not continuous at v0 ∈ V. Then there exists ϵ > 0
so that one cannot find a neighbourhood O of v0 with the property that if v ∈ O then
|α(v)−α(v0)| < ϵ. By Proposition 6.3.2 let (B j) j∈Z>0 be a decreasing sequence of balloons
with the property that every neighbourhood contains at least one of these balloons.
Then take v j ∈ B j, noting that |α(v j − v0)| ≥ ϵ. However, we also have the convergence
of (v j) j∈Z>0 to v0. This shows that (iii) cannot hold, and so completes the proof. ■

This shows that continuity of elements of S ′(R;F) and E ′(R;F) corresponds
to a general notion of continuity associated with elements of the dual of a Fréchet
space. Let us similarly put the notion of convergence in the spaces S ′(R;F) and
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E ′(R;F) can be cast in our current general framework. We do this by making the
dual of a countable multinormed vector space itself a multinormed vector space.
We first make the fairly obvious observation that V′ is an F-vector space if one
defines

(α1 + α2)(v) = α1(v) + α1(v), (aα)(v) = a(α(v)) (6.3)

for α, α1, α2 ∈ V′ and a ∈ F.

6.4.3 Definition Let (V, (γ j) j∈Z>0) be a countable multinormed vector space.
(i) For v ∈ V define a seminorm γv on V′ by γv(α) = |α(v)|.
(ii) The weak multinorm on V′ is the collection of seminorms (γv)v∈V. •

This gives on V′ the same sort of structure as one has on V. One difference
is that even though V possesses a countable multinorm, it is not the case that the
weak multinorm is itself countable. Nevertheless, it is a multinorm, and all of
the concepts associated with a multinorm apply to V′. Among these is the notion
of convergence, Cauchy sequences, and completeness. The following result is a
fundamental one in the theory of Fréchet spaces.

6.4.4 Theorem If (V, (γj)j∈Z>0) is a Fréchet space then (V′, (γv)v∈V) is a complete multinormed
space.

Proof The proof here has essentially been done for the proof of Theorem IV-3.2.22.
One need only transform the notation fromD (R;F) with its seminorms δk(ϕ) = ∥ϕ(k)

∥∞,
k ∈ Z>0, to the general notation of V with its seminorms γ j, j ∈ Z>0. ■

From this result we see why it is that Theorems IV-3.3.15 and IV-3.7.13 es-
sentially follow in the same manner as Theorem IV-3.2.22. Indeed, a general
systematic treatment of distribution theory will begin with a treatment of Fréchet
spaces. However, since it is possible to understand distributions without the gen-
eral background, we take the approach of presenting the general theory as an
“aside.”

6.4.4 Duals of countable union spaces

Next we turn to defining continuous linear mappings from countable union
spaces to F. This will provide a systematic framework for understanding the space
D ′(R;F) of distributions.

6.4.5 Definition Let V be a countable union space defined by a collection
((V j, (γ j,k)k∈Z>0)) j∈Z>0 of countable multinormed vector spaces.

(i) A linear map α : V → F is continuous if for every j ∈ Z>0 the restriction of α
to V j is continuous with respect to the multinorm (γ j,k)k∈Z>0 .

(ii) The set of continuous linear maps on V is the dual space for V and is denoted
V′. •

Directly from Proposition 6.4.2 and the definition of convergence in a countable
union space, we have the following result.
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6.4.6 Proposition Let V be a countable union space defined by a collection ((Vj, (γj,k)k∈Z>0))j∈Z>0

of countable multinormed vector spaces. For a linear map α : V → F the following
statements are equivalent:

(i) α is continuous;
(ii) if (vj)j∈Z>0 is a sequence converging in V then the sequence (α(vj))j∈Z>0 converges in
R.

Note that this then gives the notion of continuity of elements of D ′(R;C) as
continuity as elements in the dual of a countable union space. For a general
countable union space V defined by a collection ((V j, (γ j,k)k∈Z>0)) j∈Z>0 of countable
multinormed vector spaces, the dual V′ comes equipped with the natural notion
of vector addition and scalar multiplication (see (6.3)). Also, we may render V′

a multinormed space in exactly the same manner as was done for the dual of a
multinormed space.

6.4.7 Definition Let V be a countable union space defined by a collection
((V j, (γ j,k)k∈Z>0)) j∈Z>0 of countable multinormed vector spaces.

(i) For v ∈ V define a seminorm γv on V′ by γv(α) = |α(v)|.
(ii) The weak multinorm on V′ is the collection of seminorms (γv)v∈V. •

With this multinorm, one has the usual notions of convergence, Cauchy se-
quences, and convergence in V′. One also has the following result which follows
directly from Theorem 6.4.4 and the definition of convergence in a countable union
space.

6.4.8 Theorem Let V be a countable union space defined by a collection ((Vj, (γj,k)k∈Z>0))j∈Z>0 of
complete countable multinormed vector spaces. Then V′ is also complete.

This, applied to the countable union space D (R;C), gives the completeness of
D ′(R;C).
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Section 6.5

Examples of locally convex spaces

In Section 3.8 we gave a multitude of examples of Banach spaces, many of
which will play an essential rôle in subsequent developments. However, there are
also many cases where we will encounter natural spaces of signals that do not fall
under any of the examples of Banach spaces. In this section we give some of the
common locally convex spaces we will encounter subsequently. We shall restrict
ourselves to a consideration only of spaces that are not already normed spaces,
since we already have many of these at hand. However, it goes without saying that
all of the normed vector spaces we have considered are also locally convex spaces.

Do I need to read this section? Some of the constructions here will be used in
an essential way in some of our developments of system theory, especially in
Chapter V-6. Thus it will be important to refer here for some of the facts we shall
use later. •

6.5.1 Locally convex spaces of sequences

In Section 3.8.2 we introduced particular spaces of sequences, which we de-
noted by c0(F) and ℓp(F), p ∈ [1,∞]. These spaces of sequences were distinguished
by their possessing natural norms that render them Banach spaces. Here we extend
the analysis to the space F∞ of all sequences (see Example I-4.5.2–3 for notation).

On the space F∞ is all sequences in F, we consider a few different families of
seminorms, all indexed by a finite subset K ⊆ Z>0. The seminorms are

∥(a j) j∈Z>0∥K,∞ = sup{|a j| | j ∈ K},

∥(a j) j∈Z>0∥K,p =

∑
j∈K

|a j|
p


1/p

.

This defines a family, one for each p ∈ [1,∞], of locally convex topologies for F∞.
The first observation we make is that all of the topologies defined by these norms
as p varies are actually the same. To see this, we note that for a fixed finite subset
K ⊆ Z>0, we have, for any p, q ∈ [1,∞],

c∥(a j) j∈Z>0∥K,p ≤ ∥(a j) j∈Z>0∥K,q ≤ c−1
∥(a j) j∈Z>0∥K,p

for some c ∈ R>0. This is just a consequence of the fact that all norms on finite-
dimensional vector spaces agree by Theorem 3.1.15. Thus we do not need to make
reference to p in the discussion of these topologies.

Let us give some properties of this topology for the space of sequences.
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6.5.1 Theorem (Properties of the locally convex topological vector space F∞) For
F ∈ {R,C}, the locally convex topological vector space F∞ has the following properties:

(i) Hausdorff;
(ii) metrisable;
(iii) complete;
(iv) separable;
(v) not normable.

Proof For m ∈ Z>0, denote Km = {1, . . . ,m}. We claim that the topology of F∞ is
defined by the seminorms ∥·∥Km,p, m ∈ Z>0. To see this, let K ⊆ Z>0 be finite and let
m ∈ Z>0 be large enough that K ⊆ Km. Then, for any (a j) j∈Z>0 ∈ F

∞, we have

∥(a j) j∈Z>0∥K,p ≤ ∥(a j) j∈Z>0∥Km,p.

This gives continuity of the identity map from F∞ with the topology defined by the
seminorms (Km)m∈Z>0 to F∞ with its usual topology. We also have, for every m ∈ Z>0,

∥(a j) j∈Z>0∥Km,p ≤ ∥(a j) j∈Z>0∥Km,p,

and this gives continuity of the identity map from F∞ with its usual topology to F∞

with the topology defined by the seminorms (Km)m∈Z>0 . Thus the two topologies agree.
By Proposition 6.2.13 we easily conclude that F∞ is Hausdorff. From we immedi- metrisation

ately conclude that F∞ is metrisable.
To show that F∞ is complete, it suffices to check that Cauchy sequences converge

since the space it metrisable. Thus let ((ak, j) j∈Z>0)k∈Z>0 be a Cauchy sequence in F∞.
Let K ⊆ Z>0 be finite. Then, by Proposition 6.2.12, we have that ((ak, j) j∈K)k is a Cauchy
sequence. This means that, for each j ∈ K, (ak, j)k∈Z>0 is a Cauchy sequence in F and so
converges. Thus ((ak, j) j∈K)k also converges, and so we conclude from Proposition 6.2.11
that ((ak, j) j∈Z>0)k∈Z>0 converges.

To see that F∞ is separable, let D ⊆ F be a dense subset. Let (a j) j∈Z>0 . For m ∈ Z>0,
let dm,1, . . . , dm,m ∈ D be such that

|a j − dm, j| <
1
m
, j ∈ {1, . . . ,m}.

For j > m, take dm, j = 0. We claim that the sequence ((dm, j) j∈Z>0)m∈Z>0 converges to
(a j) j∈Z>0 . Let K ⊆ Z>0 be finite and let ϵ ∈ R>0. Let m ∈ Z>0 be such that K ⊆ Km and
1
m < ϵ. Then, for k ≥ m,

|a j − dk, j| <
1
k
≤

1
m
< ϵ, j ∈ Kk ⊇ Km ⊇ K.

By Proposition 6.2.11, this gives the claimed convergence. This shows that the set of
sequences with entries in D are dense in F∞. Moreover, the set of all such sequences is
countable by Proposition I-1.7.16.

Finally, to show that F∞ is not normable, by Theorem 6.3.1 it suffices to show that
every convex neighbourhood of 0 is unbounded. Let U be a convex neighbourhood of
0 and let j1, . . . , jm ∈ Z>0 and let r1, . . . , rm ∈ R>0 be such that

m⋂
l=1

{(a j) j∈Z>0 ∈ F
∞
| pK jl

((a j) j∈Z>0) < r jl} ⊆ U.
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Let n ∈ Z>0 be large enough that

K jl ⊆ Kn, l ∈ {1, . . . ,m},

and let r < r j, j ∈ {1, . . . ,m}. Let M ∈ R>0 and let (a j) j∈Z>0 be a sequence such that
a1, . . . , an < r and such that an+1 ≥M. Then (a j) j∈Z>0 ∈ U and

∥(a j) j∈Z>0∥Kn+1,p ≥M.

As this construction can be made for every M ∈ R>0, we conclude from Proposi-
tion 6.2.10 that U is not bounded. Thus F∞ is not normable. ■

Let us relate the preceding topology on the space of all sequences to that for the
special classes of sequences considered in Section 3.8.2.

6.5.2 Proposition (Continuity of inclusions of normed vector spaces of sequences)
Let F ∈ {R,C}. The inclusions of the normed vector spaces F∞0 , c0(F), and ℓp(F),
p ∈ [1,∞], in F∞ are continuous.

Proof Let us consider first the inclusions of F∞0 , c0(F), and ℓ∞(F), as the proof of the
continuity of the inclusions is the same for all cases. We shall use the seminorms ∥·∥K,∞
to prove continuity, noting that the choice of seminorm is immaterial in this case. Let
K ⊆ Z>0 be finite and let (a j) j∈Z>0 be a sequence in one of the spaces F∞0 , c0(F), or ℓ∞(F).
Then

∥(a j) j∈Z>0∥K,∞ = sup{|a j| | j ∈ K} ≤ ∥(a j) j∈Z>0∥∞,

which gives the desired continuity by Proposition 6.2.9. The proof of continuity of the
inclusion of ℓp(F), p ∈ [1,∞), follows similarly, using the seminorms ∥·∥K,p. ■

6.5.2 Locally convex spaces of continuous functions on R

We next consider general classes of continuous functions defined on an interval
I ⊆ R. Thus we consider the space

C0(I;F) = { f ∈ FI
| f is continuous}.

We consider the locally convex topology for C0(I;F) associated with the seminorms

∥ f ∥K,∞ = sup{| f (x)| | x ∈ K},

for a compact subinterval K ⊆ I.
Let us give some properties of this topology for the space of sequences.

6.5.3 Theorem (Properties of the locally convex topological vector space C0(I;F))
For F ∈ {R,C}, the locally convex topological vector space C0(I;F) has the following

properties:
(i) Hausdorff;
(ii) metrisable;
(iii) complete;
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(iv) separable;
(v) normable if and only if I is compact.

Proof In the case that I is compact, then we claim that C0(I;F) is the same, as a topolog-
ical vector space, as the normed vector space (C0(I;F), ∥·∥∞) discussed in Section 3.8.4.
To see this, let K ⊆ I be compact and note that ∥ f ∥K,∞ ≤ ∥ f ∥∞. By Proposition 6.2.9,
this gives continuity of the identity map as a map from the normed vector space into
the locally convex topological vector space. On the other hand, the obvious inequality
∥ f ∥∞ ≤ ∥ f ∥I,∞ gives continuity of the identity map from the locally convex topological
vector space into the normed vector space. Thus the two topologies agree.

We now have that, when I is compact, the space C0(I;F) is Hausdorff (because it
is normed), metrisable (because it is normed), complete (Theorem 3.8.31), separable
(Proposition 3.8.34) and normable (it is normed).

Now, for the remainder of the proof we assume that I is not compact.
Let (K j) j∈Z>0 be a sequence of compact subintervals in I such that K j ⊆ int(K j+1),

j ∈ Z>0, and I = ∪ j∈Z>0K j. We claim that the seminorms (∥·∥K j,∞) j∈Z>0 define the
topology of C0(I;F). Let K ⊆ I and let K j be such that K ⊆ K j. The inequality
∥ f ∥K,p ≤ ∥ f ∥K j,p for f ∈ C0(I;F) shows that the identity mapping from C0(I;F) with
the claimed topology into the same space with its usual topology is continuous. The
inequality ∥ f ∥K j,∞ ≤ ∥ f ∥K j,∞ for f ∈ C0(I; V) gives the continuity of the identity mapping
from C0(I; V) with its usual topology to the same space with the claimed topology. Thus
the seminorms (∥·∥K j,∞) j∈Z>0 define the topology of C0(I;F).

By Proposition 6.2.13 we easily conclude that C0(I;F) is Hausdorff. From we metrisation

immediately conclude that C0(I;F) is metrisable.
To show that C0(I;F) is complete, it suffices to check that Cauchy sequences con-

verge since the space it metrisable. Thus let ( f j) j∈Z>0 be a Cauchy sequence in C0(I;F).
Let K ⊆ I be compact. Then, by Proposition 6.2.12, we have that ( f j|K) j∈Z>0 is a
Cauchy sequence in C0(K;F). By Theorem 3.8.31, this means that ( f j|K) j∈Z>0 con-
verges to fK ∈ C0(K;F). Moreover, for two compact subintervals K,L ⊆ I, we have
fK|K∩L = fL|K∩L. Therefore, there exists f ∈ C0(I;F) with the property that ( f j|K) j∈Z>0

converges uniformly to f |K for every compact interval K ⊆ I. That is, ( f j) j∈Z>0 converges
to f in the locally convex topology.

To see that C0(I;F) is separable, for m ∈ Z>0, let Dm ⊆ C0(Km;F) be a dense subset
by Proposition 3.8.34. We can think of f ∈ Dm as a function on I by extending it
arbitrarily to a continuous function on all of I. For f ∈ C0(I;F) and m ∈ Z>0, let
fm ∈ Dm be such that

∥ f − fm∥Km,∞ <
1
m
.

We claim that ( fm)m∈Z>0 converges to f . Let K ⊆ I and ϵ ∈ R>0. Let m ∈ Z>0 be such
that K ⊆ Km and 1

m < ϵ. Then, for k ≥ m,

∥ f − fk∥K,∞ <
1
k
<

1
m
< ϵ,

since K ⊆ Km ⊆ Kk. This gives convergence of ( fm)m∈Z>0 to f . Since ∪m∈Z>0Dm is
countable by Proposition I-1.7.16, we conclude that C9(I;F) is separable,
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Finally, to show that F∞ is not normable when I is not compact, by Theorem 6.3.1
it suffices to show that every convex neighbourhood of 0 is unbounded. Let U be a
convex neighbourhood of 0 and let j1, . . . , jm ∈ Z>0 and let r1, . . . , rm ∈ R>0 be such that

m⋂
l=1

{ f ∈ C0(I;F) | pK jl
( f ) < r jl} ⊆ U.

Let n ∈ Z>0 be large enough that

K jl ⊆ Kn, l ∈ {1, . . . ,m},

and let r < r j, j ∈ {1, . . . ,m}. Let M ∈ R>0 and let f ∈ C0(I;F) be such that | f (x)| < r for
x ∈ Kn and such that there exists x ∈ Kn+1 \ Kn such that | f (x)| ≥M. Then f ∈ U and

∥ f ∥Kn+1,∞ ≥M.

As this construction can be made for every M ∈ R>0, we conclude from Proposi-
tion 6.2.10 that U is not bounded. Thus C0(I;F) is not normable. ■

Let us relate the preceding topology on the space of all sequences to that for the
special classes of continuous functions sequences considered in Section 3.8.4.

6.5.4 Proposition (Continuity of inclusions of normed vector spaces of continuous
functions) LetF ∈ {R,C}. The inclusions of the normed vector spaces C0

cpt(I;F), C0
0(I;F),

and C0
bdd(I;F) in C0(I;F) are continuous.

Proof The proof of the continuity of the inclusions looks the same for all cases. Let
K ⊆ I be compact and let f : I → F be a function in one of the spaces named in the
proposition. Then

∥ f ∥K,∞ = sup{| f (x)| | x ∈ K} ≤ ∥ f ∥∞,

and this gives continuity of the inclusion by Proposition 6.2.9. ■

6.5.3 Locally convex spaces of continuous functions on metric spaces

6.5.4 Locally convex spaces of locally integrable functions on R

Now we discuss spaces of locally integrable functions, extending our consider-
ation of Banach spaces of such functions in Section 3.8.7. For p ∈ [1,∞] and for an
interval I ⊆ R, we denote

L(p)
loc(I;F) = { f ∈ FI

| f |K ∈ L(p)(K;F) for every compact subinterval K ⊆ I}.

Just as we did for the Lp-spaces, we can quotient out the subspace of functions that
are almost everywhere zero:

Zp(I;F) = { f ∈ Lp
loc(I;F) | λ({x ∈ I | f (x) , 0}) = 0}

and define
Lp

loc(I;F) = L(p)
loc(I;F)/Zp(I;F).



2022/03/07 6.5 Examples of locally convex spaces 653

We render these spaces locally convex topological vector spaces by defining semi-
norms, one for each compact subintervalK ⊆ T:

∥ f ∥K,p =
(∫
K

| f |p dλ
)1/p

, p ∈ [1,∞),

∥ f ∥K,∞ = ess sup{| f (x)| | x ∈ K}.

Let us record the properties of these topological vector spaces.

6.5.5 Theorem (Character of signal spaces) For F ∈ {R,C} and for p ∈ [1,∞], the locally
convex topological vector space Lp

loc(I;F) has the following properties:
(i) Hausdorff;
(ii) metrisable;
(iii) complete;
(iv) separable if p , ∞;
(v) not separable if p = ∞;
(vi) normable if I is compact;
(vii) not normable if I is not compact.

Proof The proof of Theorem 6.5.3 applies to prove all assertions except that that
L∞loc(I;F) is not separable. When I is compact, this assertion is Proposition 3.8.49.
When I is not compact, the assertion follows since L∞(I;F) contained the nonseparable
subspace L∞(K;F) for any compact subinterval K ⊆ I. ■

Let us relate the preceding topology on the space of all sequences to that for the
special classes of integrable functions considered in Section 3.8.7.

6.5.6 Proposition (Continuity of inclusions of normed vector spaces of integrable
functions) Let F ∈ {R,C}. The inclusion of the normed vector spaces Lp(I;F) in Lp

loc(I;F)
are continuous for every p ∈ [1,∞].

Proof The proof of the continuity of the inclusions looks the same for all cases. Thus
we fix p ∈ [1,∞]. Let K ⊆ I be compact and let f ∈ Lp(I;F). Then

∥ f ∥K,p =


(∫

K| f |
p dλ

)1/p
, p ∈ [1,∞),

sup{| f (x)| | x ∈ K}, p = ∞
≤ ∥ f ∥p,

and this gives continuity of the inclusion by Proposition 6.2.9. ■

6.5.5 Distributions as elements of locally convex topological vector spaces

Throughout this chapter we have made use of some structure on our setsD ,S ,
and E of test signals, but without really saying what this structure is. That there
is some underlying structure here can be seen by the manner in which one can
set us the proofs of Theorems IV-3.3.15 and IV-3.7.13 for convergence in S ′(R;F)
and E ′(R;F) to follow is the same manner as the proof of Theorem IV-3.2.22, that
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for convergence in D ′(R;F). In this section we explore the structure that leads to
these sorts of developments. Readers not interested in the details of the topology
of spaces of distributions can easily forgo this section on a first reading.

6.5.7 Examples
1. Let I ⊆ R be a continuous time-domain. OnD (I;F) define seminorms δI,k(·) by

δI,k(ϕ) = sup
t∈I
|ϕ(k)(t)|.

2. On S (R;F) we define seminorms σm,k, m, k ∈ Z≥0, by

σm,k(ϕ) = sup
t∈R
|(1 + t2)mϕ(k)(t)|.

3. On E (R;C) and for K ⊆ R a compact set, define seminorms εK,k(·), k ∈ Z≥0, by

εK,k(ϕ) = sup
t∈K
|ϕ(k)(t)|. •

6.5.8 Examples (Example 6.5.7 cont’d)
1. OnD (I;F) the sequence of seminorms (δI,k)k∈Z≥0 is clearly separating since δI,0 is

a norm. Thus we have a countable multinorm on D (I;F). If I is compact, then
convergence in the multinorm is the same as the notion of convergence defined
in D (R;F). However, if I is not compact, this is no longer the case. Indeed,
suppose that I = R and consider the sequence (ϕ j) j∈Z>0 defined by

ϕ j(t) =

e
j2

t2− j2 e1−t2
, |t| < j

0, otherwise.

One may verify that the sequence converges uniformly to ϕ(t) = e−t2 , and
that all derivatives similarly converge uniformly to those of ϕ. Note that
ϕ < D (R;F). This shows two things: (1) convergence in D (R;F) with re-
spect to the multinorm (δR,k)k∈Z≥0 is not the same as convergence in D (R;F) as
per Definition IV-3.2.4; (2) the multinormed space (D (R;F), (δR, j) j∈Z≥0) is not a
Fréchet space.

2. Now let us consider the multinormed vector space (S (R;F); (σm,k)m,k∈Z≥0). It
is easily verified that the collection (σm,k)m,k∈Z≥0 of seminorms is separating,
so this is indeed a multinormed vector space. In this case it is evident from
Proposition 6.2.11 that convergence in the multinorm is equivalent to the usual
notion of convergence in S (R;F). One can also show easily that the resulting
space is a Fréchet space.
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3. If K ⊆ R is compact, note that the family (εK,k)k∈Z≥0 is not separating on E (R;F).
Indeed, ifϕ ∈ E (R;F) has support contained inR\K then we have εK,k(ϕ) = 0 al-
though ϕ is nonzero. However, if we take the collection of seminorms allowed
by varying K over all compact subsets, the resulting collection is separating.
Thus the set (εK,k)k∈Z≥0,K compact is a multinorm for E (R;F) that is uncountable.
Furthermore, one can verify that convergence in this multinorm is exactly the
usual notion of convergence in E (R;C). One can show that the Cauchy se-
quences converge, and so the resulting space is complete, but not Fréchet since
the multinorm is not countable.

4. One can, however, regard E (R;F) as a Fréchet space as follows. Define
Im = [−m,m] and define a countable collection of seminorms on E (R;F) by
(εIm,k)m∈Z>0,k∈Z≥0 . This is a separating collection of seminorms, and so is a count-
able multinorm. We also claim that a sequence converges in this multinorm if
and only if it converges in the usual sense in E (R;F). It is obvious that if a se-
quence (ϕ j) j∈Z>0 converges in E (R;F) then it converges in the given multinorm.
Suppose then that a sequence converges in the given multinorm and let K be a
compact set. By choosing m sufficiently large that K ⊆ Im we then have

lim
j→∞

sup
t∈K
|ϕ(k)

j | ≤ lim
j→∞

sup
t∈Im

|ϕ(k)
j | = 0,

giving convergence in E (R;C). •

6.5.9 Example (Example 6.5.7 cont’d) Define I j = [− j, j] and note the following facts:
(a) for each j ∈ Z>0, D (I j;F) can be thought of as a subspace of D (R;F) by
extending the signals to be zero outside I j;

(b) D (I j;F) ⊆ D (I j+1;F);
(c) D (R;F) =

⋃
j∈Z>0
D (I j,F);

(d) the multinorm (δI j+1,k)k∈Z≥0 restricted to D (I j;F) is weaker then the multinorm
(δI j+1,k)k∈Z≥0 .

This shows that D (R;C) is a countable union space defined by the collection
((DI j , (δI j,k)k∈Z≥0)) j∈Z>0 of countable multinormed spaces. •

Exercises

6.5.1 Show that a sequence ((ak, j) j∈Z>0)k∈Z>0 converges to (a j) j∈Z>0 if and only if
limk→∞ ak, j = a j for each j ∈ Z>0.

6.5.2 Determine whether the following sequences ((ak, j) j∈Z>0)k∈Z>0 of sequences
converge in R∞ and determine the limit sequence when it exists. Here are
the sequences of sequences:

(a) ak, j =

1, j ≤ k,
0, j > k;
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(b) ak, j = (−1)k+ j;
(c) ak, j = jk;
(d) ak, j = k j;

(e) ak, j =

 k− j+1
k , j ≤ k,

0, j > k.

6.5.3 Determine whether the following sequences ( f j) j∈Z>0 of functions in C0(R;R)
converge and determine the limit function when it exists. Here are the
sequences of functions:

(a) f j(x) =


0, x ∈ [− j, j],
x − j, x > j,
−x − j, x < − j;

(b) f j(x) = x j;

(c) f j(x) =

sin(x), x ∈ [0, 2 jπ],
0, otherwise;

(d) f j(x) = |x|1/2 j.
6.5.4 Determine for which, if any, p ∈ [1,∞] the following sequences ( f j) j∈Z>0 of

functions in Lp
loc(R;R) converge and determine the limit function when it

exists. Here are the sequences of functions:

(a) f j(x) =


0, x ∈ [− j, j],
x − j, x > j,
−x − j, x < − j;

(b) f j(x) = x j;

(c) f j(x) =

sin(x), x ∈ [0, 2 jπ],
0, otherwise;

(d) f j(x) = |x|1/2 j;

(e) f j(x) =

(t − 1
j )
−1/2, t ∈ ( 1

j ,∞),

0, otherwise.

6.5.5 Let I ⊆ R be an interval.
(a) Show that a sequence ( f j) j∈Z>0 in C0(I;R) converges pointwise if it con-

verges with respect to the family of seminorms ∥·∥K,∞, K ⊆ I a compact
subinterval.

(b) Show that a sequence ( f j) j∈Z>0 in C0(I;R) converges with respect to the
family of seminorms ∥·∥K,∞, K ⊆ I a compact subinterval, if it converges
uniformly.

(c) Give an example of an interval I ⊆ R and a sequence ( f j) j∈Z>0 in C0(I;R)
that converges with respect to the family of seminorms ∥·∥K,∞, K ⊆ I a
compact subinterval, but does not converge uniformly.
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6.5.6 Show that the following inclusions are continuous:
(a) the inclusion of c0(F) in F∞;
(b) the inclusion of ℓp(F) in F∞, p ∈ [1,∞].

6.5.7 Let I ⊆ R be an interval. Show that the following inclusions are continuous:
(a) the inclusion of C0

0(I;F) in C0(I;F);
(b) the inclusion of C0

bdd(I;F) in C0(I;F).
6.5.8 Let I ⊆ R be an interval and let p ∈ [1,∞]. Show that the inclusion of Lp(I;F)

in Lp
loc(I;F) is continuous.
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Chapter 7

Hardy spaces

In Chapter IV-9 we will present the Laplace transform, which can, in some sense,
be thought of as a generalisation of the CCFT where the transformed signal is not a
function of a real variable, but of a complex variable. One of the difficulties of the
Laplace transform is to understand it as a map between spaces, as one has to give
properties to the space of complex functions in which the Laplace transform takes
its values. An entirely related issue arises in Chapter V-7 when we consider transfer
functions for linear systems. A transfer function will be a function of a complex
variable, and one wishes to have at hard spaces where these transfer functions live.
It is with these objectives in mind that we discuss in this chapter a collection of
spaces of functions of a complex variable known as “Hardy spaces.1” These spaces
are tightly connected with the various Lp-spaces considered in Section 3.8.7.

We consider Hardy spaces in two flavours, one flavour defined on vertical
strips in the complex plane and the other defined on annuli in the complex plane.
Both will be useful to us; the first for continuous-time systems the second for
discrete-time systems.

Do I need to read this chapter? This is a chapter that can be read when one needs
to understand deeper properties of Laplace transforms and transfer functions in
Chapters IV-9 and V-7. •

Contents

7.1 Preliminary constructions and results . . . . . . . . . . . . . . . . . . . . . . . . 661
7.1.1 The Hardy–Littlewood maximal function . . . . . . . . . . . . . . . . . . 661
7.1.2 Nontangential limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
7.1.3 Constructions with subharmonic functions . . . . . . . . . . . . . . . . . 670

7.2 Hardy spaces of harmonic functions defined on vertical strips . . . . . . . . . . 671
7.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

1After Godfrey Harold Hardy (1877–1947). Hardy was a leading mathematician of his time,
and made substantial contributions to analysis and number theory. Apart from his mathematical
work, he is known for a number of other contributions and aspects of his life, including having
Srinivasa Ramanujan as protégé, writing A Mathematician’s Apology describing the inner life of a
mathematician, and his love for cricket.
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Section 7.1

Preliminary constructions and results

Many of the constructions we shall make for Hardy spaces require some sub-
stantial buildup of material that is not directly related to the principal constructions.
In this section we shall gather this preliminary material.

Do I need to read this section? If you want to understand the material in this
chapter in depth and detail, you will have, at some point, to wrestle with the
material in this section. However, at a first reading, the section can be skipped,
and then referred to at the points where the results are required. •

7.1.1 The Hardy–Littlewood maximal function

Our discussion begins with the following definition; if X is a set and ifF ∈ R,C},
we denote by M (X;F) the set of F-valued (not necessarily positive) measures on
X.

7.1.1 Definition (Hardy–Littlewood maximal function) Let F ∈ {R,C}.
(i) If f ∈ L1

loc(R;F), the Hardy–Littlewood maximal function of f is the function
M f : R→ R defined by

M f (t) = sup
{

1
λ(I)

∫
I
| f (τ)|dτ

∣∣∣∣∣ I ∈ I , t ∈ I
}
.

(ii) If µ ∈M (R;F), the Hardy–Littlewood maximal function of µ is the function
Mµ : R→ R defined by

sup
{
|µ|(I)
λ(I)

∣∣∣∣∣ I ∈ I , t ∈ I
}

•

We shall be interested in the properties of the assignment f 7→ M f . To un-
derstand this in the case when f ∈ L1(R;F), we introduce the notion of “weak-Lp

spaces.” This we do with the following quite general definitions.

7.1.2 Definition (Distribution function, weak-Lp space) Let (X,A , µ) be a measure
space and let F ∈ {R,C}.

(i) If f ∈ L0(X;F), the distribution function of f is

m f : R>0 → R≥0

σ 7→ µ({x ∈ X | | f (x)| > σ}).



662 7 Hardy spaces 2022/03/07

(ii) A function f : X→ F is weak-Lp if there exists C ∈ R>0 such that

m f (σ) ≤
C
σp , σ ∈ R>0.

By Lw,p(X;F) we denote the set of weak-Lp functions.
(iii) For f ∈ Lw,p(X;F), we denote

∥ f ∥w,p = sup{σm f (σ)1/p
| σ ∈ R>0}. •

We comment that ∥·∥w,p is not a norm as it does not satisfy the triangle inequality.
Nevertheless, it is common practice to treat it as one would treat a norm. It may
not be surprising to know that Lp-functions are weak-Lp. This follows from a slight
generalisation of Chebychev’s inequality, presented as Corollary 2.7.36.

7.1.3 Lemma (Generalisation of Chebychev’s inequality) Let (X,A , µ) be a measure
space and let F ∈ {R;C}. If f ∈ Lp(X;F), then f ∈ Lw,p(X;F); moreover,

mf(σ) ≤
∥f∥pp
σp .

Proof For σ ∈ R>0, denote

E f ,σ = {x ∈ X | | f (x)| > σ}

and note that

σpµ(E f ,σ) ≤
∫

E f ,σ

| f (x)|p dµ(x) ≤ ∥ f ∥pp. ■

The following important result will be used subsequently in this section, and is
also useful in Chapter IV-6 in our discussion of the continuous-continuous Fourier
transform.

7.1.4 Theorem (Marcinkiewicz2 Interpolation Theorem) Let (X,A , µ) and (Y,B , ν) be
measure spaces, let p̄ ∈ (1,∞], let F ∈ {R;C}, and let

A: L1(X;F) + Lp̄(X;F)→ L0(Y;F)

be a mapping with the following properties:
(i) |A(f + g)(y)| ≤ |A(f)(y)| + |A(g)(y)| for all f,g ∈ L1(X;F) + Lp̄(X;F) and y ∈ Y;
(ii) there exists C0 ∈ R>0 such that

mA(f)(σ) ≤
C0

σ
∥f∥1, f ∈ L1(X;F), σ ∈ R>0;

(iii) we have the following cases:
2Józef Marcinkiewicz (1910-1940) was Polish mathematician who made contributions to analysis.

He died as a prisoner of war during the Second World War.
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(a) p ∈ (1,∞): there exists C1 ∈ R>0 such that

mA(f)(σ) ≤
(C1

σ
∥f∥p̄

)p̄

, f ∈ Lp̄(X;F), σ ∈ R>0;

(b) p = ∞: there exists C1 ∈ R>0 such that

∥A(f)∥∞ ≤ C1∥f∥∞, f ∈ L∞(X;F).

Then, if p ∈ (1, p̄), there exists Cp ∈ R>0 such that

∥A(f)∥p ≤ Cp∥f∥p, f ∈ Lp(X;F).

Proof First let us show that, if f ∈ Lp(X;F), p ∈ (1, p̄), then f ∈ L1(X;F) + Lp̄(X;F).
Indeed, let us denote

E0 = {x ∈ X | | f (x)| ≤ 1}, E1 = {x ∈ X | | f (x)| > 1}

and note that f = fχE0 + fχE1 . We then have

| fχE0(x)| ≤ | f (x)|p, | fχE1(x)| ≤ | f (x)|p/p̄, x ∈ X.

Thus fχE0 ∈ L1(X;F) and fχE1 ∈ Lp̄
∈ Lp̄(X;F).

Now let p ∈ (1, p̄) and let f ∈ Lp(X;F). For σ ∈ R>0, denote

Fσ = {y ∈ Y | |A( f )(y)| > σ}.

Also denote

Eσ,0 = {x ∈ X | | f (x)| ≤ σ
2C1
}, Eσ,1 = {x ∈ X | | f (x)| > σ

2C1
}

and define fσ,0 = fχEσ,0 and fσ,1 = fχEσ,1 . Note that fσ,1 ∈ L1(X,F) and fσ,0 ∈ Lp̄(X;F).
We also denote

Gσ,0 = {y ∈ Y | |A( fσ,0)(y)| > σ
2 }, Gσ,1 = {y ∈ Y | |A( fσ,1)(y)| > σ

2 }

and note that, by hypothesis (i),

Fσ = {y ∈ Y | |A( f )(y)| > σ}
= {y ∈ Y | |A( fsigma,0 + fσ,1)(y)| > σ}
⊆ y ∈ Y|A( fσ,0)(y)| + |A( fσ,1)(y)| > σ
⊆ {y ∈ Y | |A( fσ,0)(y)| > σ

2 , |A( fσ,0)(y)| > σ
2 }

⊆ Gσ,0 ∪ Gσ,1.

According to hypothesis (ii), we have

ν(Gσ,1) ≤
2C0

σ
∥ fσ,1∥1 ≤

2C0

σ

∫
Eσ,1
| f (x)|dµ(x).
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Thus we compute, using Fubini’s Theorem,∫
∞

0
pσp−1ν(Gσ,1) dσ ≤

∫
∞

0
pσp−1

(
2C0

σ

∫
Eσ,1
| f (x)|dµ(x)

)
dσ

≤ 2C0p
∫
| f (x)|

∫ 2C1| f (x)|

0
σp−2dσdµ(x)

=
2pC0Cp−1

1 p

p − 1
∥ f ∥pp,

noting that p − 2 > −1.
To estimate ν(Gσ,0), and so estimate ν(Fσ), and so estimate ∥A( f )∥p using Lemma 2,

we consider two cases.
1. p̄ ∈ (1,∞): By the hypothesis (a) we have

ν(Gσ,0) ≤
(2C1

σ
∥ fσ,0∥p̄

)p̄
≤

(2C1)p̄

σp̄

∫
Eσ,0
| f (x)|p̄ dµ(x).

Therefore, using Fubini’s Theorem,∫
∞

0
pσp−1ν(Gσ,0) dσ ≤

∫
∞

0
pσp−1

(
(2C1)p̄

σp̄

∫
Eσ,0
| f (x)|p̄ dµ(x)

)
dσ

≤ (2C1)p̄p
∫
| f (x)|p̄

∫
∞

2C1| f (x)|
σp−p̄−1 dσdµ(x)

=
(2C1)pp

p̄ − p
∥ f ∥pp,

noting that p − p̄ − 1 < −1.
2. p̄ = ∞: Here, directly by hypothesis (b), we have ∥ fσ,0∥∞ < σ

2C1
and so Gσ,0 = ∅ and

so ν(Gσ,0) = 0. In this case, ∫
∞

0
pσp−1ν(Gσ,1) dσ = 0

Now we use Lemma 2 and our estimates above to calculate

∥A( f )∥pp =
∫
∞

0
pσp−1ν(Fσ) dσ

≤

∫
∞

0
pσp−1ν(Gσ,0) dσ +

∫
∞

0
pσp−1ν(Gσ,1) dσ

≤

( (2C1)pp
p̄−p +

2pC0Cp−1
1 p

p−1 )∥ f ∥pp, p̄ ∈ (1,∞),
2pC0Cp−1

1 p
p−1 ∥ f ∥pp, p̄ = ∞.

Thus the result follows by taking

Cp
p =

( (2C1)pp
p̄−p +

2pC0Cp−1
1 p

p−1 )∥ f ∥pp, p̄ ∈ (1,∞),
2pC0Cp−1

1 p
p−1 ∥ f ∥pp, p̄ = ∞.

■
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Let us now characterise the Hardy–Littlewood maximal function in terms of
weak-Lp functions. For a set X and for F ∈ {R,C}, we denote byMfin(X;F) the set
of finite F-valued (not necessarily positive) measures on X.

7.1.5 Theorem (Hardy–Littlewood3 Maximal Theorem) If p ∈ [1,∞], if F ∈ {R,C}, and
if f ∈ Lp(R;F), then Mf(t) is finite for almost every t ∈ R and we have the following
statements:

(i) if p = 1, then Mf ∈ Lw,1(R;R) and, moreover, mMf(σ) ≤ 2
σ∥f∥1 for every f ∈ L1(R;F);

(ii) if p ∈ (1,∞], then Mf ∈ Lp(R;R) and, moreover, there exists Cp ∈ R>0 such that
∥Mf∥p ≤ Cp∥f∥p for every f ∈ Lp(R;F).

Also, if µ ∈Mfin(R;F), then
(iii) Mµ ∈ Lw,1(R;R) and, moreover, mMµ(σ) ≤ 2

σ∥µ∥TV.
Proof In order to prove the theorem we will first prove a few lemmata.

1 Lemma (Wiener Covering Lemma) Let µ be a finite positive Borel measure on R and let
(I1, . . . , In) be a family of open intervals. Then there exist j1, . . . , js ∈ {1, . . . ,n} such that the
intervals (Ij1 , . . . , Ijs) are pairwise disjoint and

s∑
r=1

µ(Ijr) ≥
1
2
µ

 n⋃
j=1

Ij

 .
Proof We first claim that there exist k1, . . . , km ∈ {1, . . . ,n} such that, for each l ∈
{1, . . . ,m},

Ikl 1
⋃

l′∈{1,...,m}
l′,l

Ikl′

and such that
m⋃

l=1

Ikl =

n⋃
j=1

I j.

This claim we prove by induction on n, it being clearly true for n = 1. So suppose
it true for n = N and let (I1, . . . , IN+1) be a family of open intervals. By the induction
hypothesis, there exists k1, . . . , km ∈ {1, . . . ,N} such that, for each l ∈ {1, . . . ,m},

Ikl 1
⋃

l′∈{1,...,m}
l′,l

Ikl′

and such that
m⋃

l=1

Ikl =

N⋃
j=1

I j.

3John Edensor Littlewood (1885–1977) was an English mathematician who made contributions
to analysis and number theory. He was a frequent collaborator of Hardy.
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We have two possibilities. The first possibility is that

IN+1 ⊆

m⋃
l=1

Ikl ,

in which case the indices k1, . . . , km ∈ {1, . . . ,N+1} are as claimed. The second possibility
is that

IN+1 1
m⋃

l=1

Ikl ,

in which case the indices k1, . . . , km, km+1 ∈ {1, . . . ,N + 1}, with km+1 = N + 1, are as
claimed.

Now, given the preceding claim, we can without loss of generality assume that the
intervals (I1, . . . , In) have the property that, for any j ∈ {1, . . . ,n},

I j 1
⋃

j′∈{1,...,n}
j′, j

I j′ .

Now write I j = (a j, b j) and assume the ordering of the intervals is such that a j ≤ a j+1 for
j ∈ {1, . . . ,n−1}. We claim that b j+1 > b j. Indeed, if this were not the case, then I j+1 ⊆ I j.
We also claim that a j+1 > b j−1. Indeed, if this were not the case, then I j ⊆ I j−1 ∪ I j+1.
From this we can conclude that, if j1, j2 ∈ {1, . . . ,n} are distinct and either both even or
both odd, then I j1 ∩ I j2 = ∅. Moreover,

∑
j odd

µ(I j) +
∑

j even

µ(I j) ≥ µ

 n⋃
j=1

I j

 .
We can conclude that at least one of the families of intervals

(I j| j odd), (I j| j even)

will give the desired collection of intervals. ▼

2 Lemma For a measure space (X,A , µ), for p ∈ [1,∞], for F ∈ {R,C}, and for f ∈ L0(X;F)∫
|f(x)|p dµ(x) =

∫
∞

0
pσp−1mf(σ) dσ.

Proof If supp( f ) does not have σ-finite measure, then both sides of the equality to be
proved are∞, and so the lemma holds in this case. This we suppose that supp( f ) has
σ-finite measure, i.e., supp( f ) is a countable union of sets of finite measure. (We have
now finished the abuse of notation of using “σ” in two different ways.) For σ ∈ R>0,
denote

E f ,σ = {x ∈ X | | f (x)| > σ}.

Also note the obvious equality

|α|p =

∫ α

0
pσp−1 dσ, α ∈ R≥0.
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We then calculate ∫
| f (x)|p dµ(x) =

∫ ∫
| f (x)|

0
pσp−1dσdµ(x)

=

∫
∞

0

∫
pσp−1χE f ,σ(x) dµ(x) dσ

=

∫
∞

0
pσp−1m f (σ) dσ,

using Fubini’s Theorem. ▼

(i) For f ∈ L1(X;F) and σ ∈ R>0, denote

Eσ = {t ∈ R | M f (t) > λ}.

We claim that Eσ is open. Indeed, if t ∈ Eσ, then there exists an open interval I ∋ t and
such that

1
λ(I)

∫
O
| f (τ)|dτ > σ.

Thus I ⊆ Eσ, giving openness of Eσ, as claimed. Now let K ⊆ Eσ be compact. For each
t ∈ K there exists an open interval It such that

λ(It) <
1
σ

∫
It

| f (τ)|dτ.

Choose a finite subcover of the open cover (It)t∈K of K so we have a finite collection
I1, . . . , In covering K. By Lemma 1, let j1, . . . , js ∈ {1, . . . ,n} be such that (I j1 , . . . , I js) are
pairwise disjoint and satisfy

λ

 n⋃
j=1

I j

 ≤ 2
s∑

r=1

λ(I js).

Thus we have

λ(K) ≤ λ

 n⋃
j=1

I j

 ≤ 2
s∑

r=1

1
σ

∫
I jr

| f (t)|dt ≤
2
λ
∥ f ∥1.

Now take a sequence of compact subsets (K j) j∈Z>0 of Eσ such that lim j→∞ λ(K j) =
λ(Eσ), cf. Theorem 2.4.19. Then

m f (σ) = λ(Eσ) = lim
j→∞

λ(K j) ≤
2
σ
∥ f ∥1,

as desired.
(ii) We shall employ Theorem 7.1.4 with X = Y = R (with Lebesgue measure),

with A being the operator f 7→ M f , and with p̄ = ∞. Let us verify the hypotheses of
Theorem 7.1.4. By definition of the maximal function, condition (i) holds. That (ii)
holds was proved as part (i) of the theorem. For part (b), since

1
λ(I)

∫
I
| f (t)|dt ≤ ess sup{| f (t)| | t ∈ I},
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we conclude that ∥M f ∥∞ < ∥ f ∥∞. Now an application of Theorem 7.1.4 gives the
existence of Cp ∈ R>0 such that ∥M f ∥p ≤ Cp∥ f ∥p, as desired.

(iii) The proof is rather like that for part (i), but we give it for completeness. For
µ ∈Mfin(R;F) and σ ∈ R>0, denote

Eσ = {t ∈ R | Mµ(t) > λ}.

We claim that Eσ is open. Indeed, if t ∈ Eσ, then there exists an open interval I ∋ t and
such that

|µ|(I)
λ(I)

> σ.

Thus I ⊆ Eσ, giving openness of Eσ, as claimed. Now let K ⊆ Eσ be compact. For each
t ∈ K there exists an open interval It such that

λ(It) <
1
σ
|µ|(It).

Choose a finite subcover of the open cover (It)t∈K of K so we have a finite collection
I1, . . . , In covering K. By Lemma 1, let j1, . . . , js ∈ {1, . . . ,n} be such that (I j1 , . . . , I js) are
pairwise disjoint and satisfy

λ

 n⋃
j=1

I j

 ≤ 2
s∑

r=1

λ(I js).

Thus we have

λ(K) ≤ λ

 n⋃
j=1

I j

 ≤ 2
s∑

r=1

1
σ
|µ|(I jr) ≤

2
λ
∥µ∥TV.

Now take a sequence of compact subsets (K j) j∈Z>0 of Eσ such that lim j→∞ λ(K j) =
λ(Eσ), cf. Theorem 2.4.19. Then

m f (σ) = λ(Eσ) = lim
j→∞

λ(K j) ≤
2
σ
∥µ∥TV,

as desired. ■

7.1.2 Nontangential limits

[Axler, Bourdon, and Ramey 2001].

7.1.6 Definition (Nontangential limits) Let I ∈ I and let z0 ∈ CI. A cone tip in CI at z0

is a subset K ⊆ C such that there exist a convex cone K and a convex set C with the
following properties:

(i) K is a closed proper convex cone (i.e., K , C) with nonempty interior;

(ii) K has its vertex at z0;
(iii) C is a closed convex set with z0 ∈ int(C);
(iv) K = K ∩ C;
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(v) K \ {z0} ⊆ Cint(I).
A nontangential sequence in CI at z0 is a sequence (z j) j∈Z>0 in CI for which there
exists a cone tip K at z0 with the following properties:

(vi) there exists N ∈ Z>0 such that z j ∈ K for j ≥ N;
(vii) (z j) j∈Z>0 converges to z0.

A function F : CI → Chas a nontangential limit at z0 ∈ CI if, for every nontangential
sequence (z j) j∈Z>0 in CI at z0, F(z0) = lim j→∞ F(z j). A function F : CI → C has
nontangential limits if it has a nontangential limit at z0 for almost every z0 ∈ CI. •

These definitions differ enough from the usual definitions to merit a little ex-
planation.

7.1.7 Remarks (Nontangential limits)
1. Our notion of cone tip in CI at z0 places very little in the way of restrictions on

the cone if z0 ∈ Cint(I), as depicted in Figure 7.1. However, at boundary points

( ]
I

z1

z2

Figure 7.1 Cone tips at an interior point z1 (left) and a boundary
point z2 (right)

the cones cannot contain vertical line segments, and so we see that cone tips as
we define them capture the desired behaviour at boundary points.

2. If F : CI → C is continuous on Cint(I), then F clearly possesses a nontangential
limit at every point inCint(I). We shall only be working with functions continuous
on the interior of vertical strips, so the notion of nontangential limits is nonvoid
only at boundary points.

3. If I has an open endpoint x0, our definition does not include the possibility of
having nontangential limits at points of the form x0 + iy since these points are
not in CI, and our definition explicitly allows nontangential limits to exist only
at points inCI. The matter of extending to the boundary is one we shall consider
in Theorem 7.4.4. •
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In this section we introduce another sort of maximal function. Like the
Hardy–Littlewood maximal function, this measures the variation of a function
in a certain sense.

7.1.3 Constructions with subharmonic functions
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Section 7.2

Hardy spaces of harmonic functions defined on vertical strips

In this section we consider spaces of holomorphic functions defined on vertical
strips in the complex plane.

7.2.1 Definitions

We recall from Section II-3.8.1 the definition of an harmonic function of a com-
plex variable, and some of the properties of such functions. In this section we
shall be interested in harmonic functions whose domain is a vertical strip. Let us
establish the notation for such domains. If I ⊆ R, we denote by

CI = {z ∈ C | Re(z) ∈ I}

the vertical strip whose real part is in I; see Figure 7.2.

Re

Im

I

CI

Figure 7.2 A vertical strip in the complex plane

For a function F : CI → F, F ∈ {R,C}, and for x ∈ I, we denote Fx : R → F the
function defined by Fx(y) = F(x + iy).

We now give a definition of a general class of harmonic functions.

7.2.1 Definition (Functions harmonic on a vertical strip) For an interval I ⊆ R and
for F ∈ {R;C), we denote by h(CI;F) the mappings F : CI → F that are harmonic on
Cint(I). If int(I) = ∅, we take the convention that h(CI;F) = FCI . •

Note that, for each interval I ⊆ R, h(CI;F) is a F-vector space with respect to the
operations of pointwise addition and scalar multiplication. Note that if int(I) , I,
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then we place no restrictions on the values of functions in h(CI;C) when restricted
to bd(CI). For more useful classes of functions, we will find it beneficial to assign
these boundary values in a meaningful way, as in Section 7.1.2.

Now let us define the particular classes of harmonic functions in which we shall
be interested. We begin by defining a large class of these functions, and then we
consider a subset of these prescribed by some norm being finite.

7.2.2 Definition (Big harmonic Hardy space on a vertical strip) Let I ⊆ R be an
interval, F ∈ {R,C}, and p ∈ [1,∞]. Denote by hp(CI;F) the mappings F ∈ h(CI;F)
such that

(i) F ∈ h(CI;F),
(ii) Fx ∈ Lp(R;F) for each x ∈ I, and
(iii) F has nontangential limits.

The space hp(CI;F) is the big harmonic Hardy space. •

Note that the condition for having nontangential limits is vacuous if I is open.
However, if I does contain an endpoint or two, then the requirement of having
nontangential limits at these endpoints becomes nonvoid. Indeed, the study of the
existence of such nontangential limits will be something that will be of interest to
us in Section 7.2.3 below.

Of particular interest is the following subset of the big harmonic Hardy space,
where we ask that the Lp-norms on vertical lines be uniformly bounded.

7.2.3 Definition (Harmonic Hardy space on a vertical strip) Let I ⊆ R be an interval
and let p ∈ [1,∞]. For F ∈ hp(CI;C) we denote

∥F∥hp,I = sup{∥Fx∥p | x ∈ I}.

The subset {F ∈ hp(CI;C) | ∥F∥hp,I < ∞} is denoted by hp(CI;C) and we call these
spaces the harmonic Hardy spaces. •

We shall be primarily interested in the harmonic hardy spaces in this chapter.
Indeed, we shall not have use in these volumes for the big harmonic Hardy spaces;
we will, however, have use for their holomorphic analogues introduced in Sec-
tion 7.4.1. These we have introduced here the big harmonic Hardy spaces in the
interest of symmetry and aesthetics.

7.2.2 Poisson integral representations of harmonic functions on vertical
strips

We shall characterise the harmonic Hardy spaces using Poisson integral rep-
resentations. Let us define the appropriate Poisson kernels. We do this for three
types of intervals, one for (a,∞), one for (−∞, b), and one for (a, b).
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7.2.4 Definition (Poisson kernels for strips) Let I ⊂ R be an open interval. The Poisson
kernel for I is the function PI : CI → C defined by:

(i) I = (a,∞): PI(x + iy) =
1
π

x
(x − a)2 + y2 ;

(ii) I = (−∞, b): PI(x + iy) =
1
π

x
(b − x)2 + y2 ;

(iii) I = (a, b): PI(x + iy) =
1

2π
sin(πx−a

b−a )

cosh(π y
b−a ) − cos(πx−a

b−a )
. •

Let us record some elementary properties of these Poisson kernels.

7.2.5 Lemma (Properties of Poisson kernels) If I ⊂ R be an open interval, the following
statements hold:

(i) PI is harmonic and so are its translates in y;
(ii) PI,x ∈ Lp

(iii) integral of PI

(iv) tail estimate for Pp
I

Proof ■

Now we use these Poisson kernels to construct functions from boundary data.
We do this in the three cases. Let F ∈ {R,C}.
1. I = (a,∞): Given f ∈ Lp(R;F), we define

PI f : CI → F

x + iy 7→
1
π

∫
R

x
(x − a)2 + (y − η)2 f (η) dη.

Given µ ∈Mfin(R;F), we define

PIµ : CI → F

x + iy 7→
1
π

∫
R

x
(x − a)2 + (y − η)2 dµ(η).

2. I = (−∞, b): Given g ∈ Lp(R;F), we define

PI g : CI → F

x + iy 7→
1
π

∫
R

x
(b − x)2 + (y − η)2 g(η) dη.

Given ν ∈Mfin(R;F), we define

PIν : CI → F

x + iy 7→
1
π

∫
R

x
(b − x)2 + (y − η)2 dν(η).
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3. I = (a, b): Given f , g ∈ Lp(R;F), we define

PI( f , g) : CI → F

x + iy 7→
1

2π

∫
R

sin(πx−a
b−a )

cosh(π y−η
b−a ) − cos(πx−a

b−a )
f (η) dη

+
1

2π

∫
R

sin(π b−x
b−a )

cosh(π y−η
b−a ) − cos(π b−x

b−a )
g(η) dη.

Given µ, ν ∈Mfin(R;F), we define

PI(µ, ν) : CI → F

x + iy 7→
1

2π

∫
R

sin(πx−a
b−a )

cosh(π y−η
b−a ) − cos(π x−a

b−a )
dµ(η)

+
1

2π

∫
R

sin(π b−x
b−a )

cosh(π y−η
b−a ) − cos(π b−x

b−a )
dν(η).

At this point, we do not fuss about whether the integrals exist. We will take this
into consideration as a matter of course when discussing the deeper properties of
the above constructions.

The following properties of Poisson kernels explain our interest in them.

7.2.6 Theorem (Poisson integral representations of harmonic functions) Let I ⊂ R
be an open interval, let F ∈ {R;C}, and let F: CI → F. For x ∈ I define Fx(y) = F(x + iy).
For p ∈ (1,∞], the following statements hold:

(i) I = (a,∞) or I = (−∞, b): the following statements are equivalent:

(a) there exists f ∈ Lp(R;F) such that F = PIf;
(b) F ∈ hp(CI;F);

(ii) I = (a, b): the following statements are equivalent:

(a) there exists f,g ∈ Lp(R;F) such that F = PI(f,g);

(b) F ∈ hp(CI;F);

For p = 1, the following statements hold:
(iii) I = (a,∞) or I = (−∞, b): the following statements are equivalent:

(a) there exists µ ∈Mfin(R;F) such that F = PIµ;

(b) F ∈ h1(CI;F);

(iv) I = (a, b): the following statements are equivalent:

(a) there exists µ, ν ∈Mfin(R;F) such that F = PI(µ, ν);

(b) F ∈ h1(CI;F);
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Proof We shall denote PI,x(y) = PI(x + iy) for x ∈ I. We also assume, without loss of
generality, that F = R.

(i) We take I = (0,∞), the cases of a general unbounded interval following by
translation and/or reflection.

(a) =⇒ (b) Let us first suppose that f ∈ Lp(R;R) and that

F(x + iy) =
∫
R

PI,x(y − η) f (η) dη.

We first show that F is harmonic. We will do this by differentiating PI f under the
integral sign with respect to x and y. This requires that we verify that, for x0 + iy0 ∈ CI,
the function

α(x,y) : η 7→
x

x2 + (y − η)2 f (η),

and its first and second derivatives with respect to x and y, are bounded by an integrable
function of η, uniformly for x + iy in some neighbourhood of x0 + iy0. This we argue
as follows. Write α(x,y)(η) = β(x,y)(η) 1

1+η2 for

β(x,y)(η) =
x(1 + η2)

x2 + (y − η)2

and note that β(x,y), and all of its derivatives with respect to x and y, are bounded as
functions of η. Thus, by continuity, given x0 + iy0 ∈ CI, there exists a neighbourhood
U of x0 + iy0 such that β(x,y), and any finite number of its derivatives with respect to x
and y, are bounded, as functions of η, uniformly in U. Since η 7→ 1

1+η2 is in Lp′(R;R)
for every p ∈ [1,∞), we conclude using Hölder’s inequality that, if f ∈ Lp(R;R), then
α(x,y), and any finite number of its derivatives with respect to x and y, are in L1(R;R),
uniformly in U. Thus, by Theorem 2.9.16(ii), we can differentiate the expression

x + iy 7→
1
π

∫
R

x
x2 + (y − η)2 f (η) dη

under the integral sign, and verify that the expression defines an harmonic function of
x + iy on CI if f ∈ Lp(R;R), this by Lemma 7.2.5(i).

Since Fx is the convolution of PI,x with f for each x ∈ I, by Young’s inequality
(Theorem IV-4.2.8) and Lemma 7.2.5(iii), we have

∥Fx∥p ≤ ∥PI,x∥1∥ f ∥p = ∥ f ∥p,

Thus F ∈ hp(CI;R).
(b) =⇒ (a) Let us first prove a couple of technical lemmata.

1 Lemma Let I = (0,∞), let p ∈ [1,∞], let f ∈ Lp(R;R), let y0 ∈ R, and suppose that f is
continuous at y0. Then

lim
z→iy0

PIf(z) = f(y0).
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Proof Let ϵ ∈ R>0. Let δ2 ∈ R>0 be sufficiently small that, if |y − y0| < δ2 and |η| < δ2,

| f (y − η) − f (y0)| <
ϵ
3
.

With δ2 so chosen, let δ1 ∈ R>0 be sufficiently small that, if x < δ1,∫
|η|>δ2

PI,x(η)| f (y − η)|dη <
ϵ
3

(using Hölder’s inequality and Lemma 7.2.5(iv)) and

| f (y0)|
∫
|η|>δ2

PI,x(η) dη <
ϵ
3

(using Lemma 7.2.5(iv)). By Lemma 7.2.5(iii) we have

PI f (x + iy) − f (y0) =
∫
R

PI,x(η)( f (y − η) − f (y0)) dη.

Then, for |x| < δ1 and |y − y0| < δ2, we have

|PI f (x + iy) − f (y0)| ≤
∫
R

PI,x(η)| f (y − η) − f (y0)|dη

=

∫
|η|≤δ2

PI,x(η)| f (y − η) − f (y0)|dη

+

∫
|η|>δ2

PI,x(η)| f (y − η) − f (y0)|dη

≤
ϵ
3
+
ϵ
3
+
ϵ
3
= ϵ,

using Lemma 7.2.5(iii). ▼

2 Lemma Let I = (0,∞). If F: Ccl(I) → R is continuous and if F|CI ∈ h∞(CI;R), then

F(x + iy) =
∫
R

PI,x(y − η)F(iη) dη, x + iy ∈ CI.

Proof Denote

G(x + iy) = F(x + iy) −
∫
R

PI,x(y − η)F(iη) dη.

From the proof of the implication (a) =⇒ (b) above in the case of p = ∞, the second
term in the definition of G, and thus G itself, is harmonic and bounded on CI. By
Lemma 1, G can be extended continuously to Ccl(I) by taking the value 0 on bd(CI).
Now define H : C→ R by

H(x + iy) =

G(x + iy), x ≥ 0,
−G(−x + iy), x < 0.
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Note that H is bounded and continuous. We claim that it is also harmonic.
By Theorem II-3.8.2(iv), it suffices to show that H has the mean value property at
any point in C. For points z in CI, we can choose a disk D(r, z) small enough that
D(r, z) ⊆ CI. Because G is harmonic, the mean value property for H will be satisfied for
this disk. Next let z = x+ iy ∈ C−I. We let r ∈ R>0 be sufficiently small that D(r, z) ⊆ C−I.
Then we have∫ 2π

0
H(z + reiθ) dθ = −

∫ 2π

0
G(−x + iy + re−iθ) dθ = −G(−x + iy) = H(z),

verifying the mean value property in this case. Finally, if z = iy and if r ∈ R>0, then∫ 2π

0
H(iy + reiθ) dθ =

∫ π
2

−
π
2

H(iy + reiθ) dθ +
∫
−
π
2

π
2

H(iy + reiθ) dθ

=

∫ π
2

−
π
2

G(iy + reiθ) dθ −
∫
−
π
2

π
2

G(iy + re−iθ) dθ

=

∫ π
2

−
π
2

G(iy + reiθ) dθ −
∫ π

2

−
π
2

G(iy + reiθ) dθ = 0,

showing that the mean value property is satisfied on the imaginary axis, and so
everywhere in C. Thus H is a bounded harmonic function on C, and so is constant . ref

Since H(0) = 0, the lemma follows. ▼

3 Lemma Let I = (0,∞), let p ∈ [1,∞), and let and let F ∈ hp(CI;R). Then, for z = x+iy ∈ CI,
we have

|F(z)| ≤
( 1
πx2

)1/p
∥F∥hp,I.

Proof By the mean value property of harmonic functions (Theorem II-3.8.2(iii)), we
have

F(z) =
1

2π

∫ π

−π
F(z + reiθ) dθ

for every r ∈ (0, ρ] for which D(r, z) ⊆ CI. Thus

1

vol(D(ρ, z))

∫
D(ρ,z)

F(ζ) dζ =
1
πρ2

∫ ρ

0

∫ π

−π
F(z + reiθ)rdθdr

=
2
ρ2

∫ ρ

0
F(z)r dr = F(z).
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Therefore, by Hölder’s Inequality, if z = x + iy, we have

|F(z)| ≤
1

vol(D(x, z))

∫
D(x,z)
|F(ζ)|dζ

≤
1
πx2

(∫
D(x,z)
|F(ζ)|p dζ

)1/p

vol(D(x, z))1/p′

≤

(
1
πx2

∫ 2x

0

∫
R
|F(ξ + iη)|p dηdξ

)1/p

≤

( 2
πx

)1/p
∥F∥hp,I,

as claimed. ▼

With these technicalities at hand, we can proceed with the proof. We let
F ∈ hp(CI;R). Let (x j) j∈Z>0 be a sequence converging to 0 from above and define
f j ∈ Lp(R;R) by f j(η) = F(x j + iη). Note that, since F ∈ hp(CI;R), ( f j) j∈Z>0 is a bounded
sequence in Lp(R;R) ≃ (Lp′(R;R))∗ (this characterisation of the dual space is Theo-
rem 3.10.1). It follows by the Banach–Alaoglu Theorem that there is a subsequenceref

( f jk)k∈Z>0 and f ∈ Lp(R;R) such that ( f jk)k∈Z>0 converges weak-∗ to f . Now define

F j : CI → R

z 7→ F(x j + z).

By Lemma 3, for p ∈ (1,∞), F j is bounded and continuous Ccl(I) and harmonic in
CI. In case p = ∞, this holds by hypothesis. Therefore, by Lemma 2 we have, for
z = x + iy ∈ CI,

F j(z) =
∫
R

PI,x(y − η)F j(iη) dη =
∫
R

PI,x(y − η) f j(η) dη, j ∈ Z>0.

Since PI,x ∈ Lp′(R;R) by Lemma 7.2.5(ii), we have

F(z) = lim
k→∞

F(x jk + z) = lim
k→∞

F jk(z)

= lim
k→∞

∫
R

PI,x(y − η) f jk(η) dη

=

∫
R

PI,x(y − η) f (η) dη,

by definition of weak-∗ convergence and the pairing of Lp′(R;R) with its dual. This
concludes this part of the proof.

(ii) We assume that I = (0, π), the other cases following by change of variables.
(a) =⇒ (b) We suppose that

F(x + iy) =
1

2π

∫
R

PI,x(y − η) f (η) dη +
1

2π

∫
R

PI,π−x(y − η)g(η) dη
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for f , g ∈ Lp(R;R). Let us first show that F is harmonic. To do this, assume that g = 0.
A similar argument can be used when f = 0, and the general case follows since the
sum of harmonic functions is harmonic. We will do this, as we did in the previous part
of the proof, by showing that we can differentiate under the integral sign. We define

α(x,y) : η 7→
sin(x)

cosh(y − η) − cos(x)
f (η)

and show that it, and its first two derivatives with respect to x and y, are bounded in a
neighbourhood of any point x0 + iy0 ∈ CI. We do this by writing α(x,y)(η) = β(x,y)

1
cosh(η) ,

where

β(x,y)(η) =
sin(x) cosh(η)

cosh(y − η) − cos(x)
.

Then β(e,y), and any of its derivatives with respect to x and y, are bounded as functions
of η. We can argue just as we did in the first part of the proof that α(x,y), and any finite
number of its derivatives with respect to x and y, are in L1(R;R), uniformly in U. Thus
we can differentiate the expression

x + iy 7→
∫
R

PI,x(y − η) f (η) dη

with respect to x and y under the integral sign, and so conclude by Lemma 7.2.5(i) that
the expression is harmonic in CI.

We still assume that g = 0. Since Fx is the convolution of PI,x with f for each x ∈ I,
by Young’s inequality (Theorem IV-4.2.8) and Lemma 7.2.5(iii), we have

∥Fx∥p ≤ ∥PI,x∥1∥ f ∥p ≤ ∥ f ∥p,

Thus F ∈ hp(CI;R).
(b) =⇒ (a) We first prove a few technical lemmata which serve rather the same

purpose as those above for I = (0,∞).

4 Lemma Let I = (0, π), let p ∈ [1,∞], and let f ∈ Lp(R;R). Then

lim
z→π+iy

PI(f, 0)(z) = 0, y ∈ R.

Proof Let y0 ∈ R. Choose x0 sufficiently close to π that cos(x) ∈ (−1,− 1
2 ] for x ∈ [x0, π).

For x ∈ [x0, π) we thus have − cos(x) ≥ 1
2 and so

PI,x(y − η) ≤
cosh(η)

cosh(y − η) + 1
2

1
cosh(η)

.

Since
cosh(η)

cosh(y − η) + 1
2

is bounded as a function ofη for fixed y, for a given y0 ∈ R, there exists a neighbourhood
U ⊆ R of y0 and C ∈ R>0 such that

cosh(η)

cosh(y − η) + 1
2

< C
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for y ∈ U. Since η 7→ 1
cosh(η) is in Lp′(R;R) for every p′ ∈ [1,∞), we conclude by Hölder’s

inequality that
η 7→ PI,x(y − η) f (η)

is in L1(R;R), uniformly in [x0, π) × U ⊆ CI. Thus, by the Dominated Convergence
Theorem,

lim
x+iy7→π+iy0

∫
R

PI,x(y − η) f (η) dη =
∫
R

lim
x+iy→π+iy0

sin(x)
cosh(y − η) − cos(x)

f (η) dη = 0,

as desired. ▼

In similar manner, of course, if g ∈ Lp(R;R), we have

lim
z→iy

PI(0, g)(z) = 0, y ∈ R.

We will use this fact subsequently.

5 Lemma Let I = (0, π), let p ∈ [1,∞], let f ∈ Lp(R;R), let y0 ∈ R, and suppose that f is
continuous at y0. Then

lim
z→iy0

PI(f, 0)(z) = f(y0).

Proof Abbreviate F = PI( f , 0). Let ϵ ∈ R>0 and choose δ ∈ R>0 sufficiently small that,
if |η| < δ2 and if |y − y0| < δ2, then

| f (y − η) − f (y0)| <
ϵ
4
.

For x ∈ (0, π) we have

|F(x + iy) − f (y0)| ≤
∣∣∣∣F(x + iy) −

π − x
π

f (y0)
∣∣∣∣ + ∣∣∣∣ f (y0) −

π − x
π

f (y0)
∣∣∣∣ .

Choose δ1 ∈ R>0 sufficiently small that∣∣∣∣ f (y0) −
π − x
π

f (y0)
∣∣∣∣ < ϵ

4

if x < δ1. With δ2 as chosen above, we can suppose that δ1 ∈ R>0 is sufficiently small
that, if x < δ1, ∫

|η|>δ2

PI,x(η)| f (y − η)|dη <
ϵ
4

(using Hölder’s inequality and Lemma 7.2.5(iv)) and

| f (y0)|
∫
|η|>δ2

PI,x(η) dη <
ϵ
4
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(using Lemma 7.2.5(iv)). Now we compute∣∣∣∣F(x + iy) −
π − x
π

f (y0)
∣∣∣∣ = ∣∣∣∣∣∫

R
PI,x(η) f (y − η) dη − f (y0)

∫
R

PI,x(η) dη
∣∣∣∣∣

≤

∫
R

PI,x(η)| f (y − η) − f (y0)|dη

≤

∫
|η|≤δ2

PI,x(η)| f (y − η) − f (y0)|dη

+

∫
|η|>δ2

PI,x(η)| f (y − η) − f (y0)|dη

≤
ϵ
4
+
ϵ
4
+
ϵ
4
=

3ϵ
4
,

using Lemma 7.2.5(iii). This then gives

|F(x + iy) − f (y0)| < ϵ,

as desired. ▼

In a similar manner, of course, if g ∈ Lp(R;R) is continuous at y0 ∈ R, we have

lim
z→π+iy0

PI(0, g)(z) = g(y0),

a fact which we shall use subsequently.

6 Lemma Let I = (0, π). If F: Ccl(I) → R is continuous and if F|CI ∈ h∞(CI;R), then

F(x + iy) =
∫
R

PI,x(y − η)F(iη) dη +
∫
R

PI,π−x(y − η)F(π + iη) dη, x + iy ∈ CI.

Proof Define G : CI → R by

G(z) = F(z) −
∫
R

PI,x(y − η)F(iη) dη +
∫
R

PI,π−x(y − η)F(π + iη) dη.

Note that, for y0 ∈ R,

lim
z→iy

G(z) = F(iy) − lim
z→iy

∫
R

PI,x(y − η)F(iη) dη − lim
z→iy

∫
R

PI,π−x(y − η)F(π + iη) dη = 0,

using Lemmata 4 and 5. In like manner,

lim
z→π+iy

G(z) = 0.

Thus G can be extended to a continuous function on Ccl(I) by assigning to G the value 0
on bd(CI). Now we define H : C→ R by “periodically extending” it in x in a particular
manner. We first define H|C[0,2π] by

H(z) =

G(z), z ∈ C[0,π],

−G(2π − z), z ∈ C[π,2π].
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Then we require that, for k ∈ Z and for z ∈ C[2kπ,2(k+1)π], H(z) = G(z−2kπ). The resulting
function will be harmonic on C, which can be shown be demonstrating that it has the
mean value property, following the proof of Lemma 2. And, just as in the proof of
that lemma, we conclude that H is constant by Liouville’s Theorem. This gives the
lemma. ▼

7 Lemma Let I = (0, π), let p ∈ (1,∞), and let F ∈ hp(CI;R). Then, for z = x + iy ∈ CI,

|F(z)| ≤
(

1
πmin{x, π − x}2

)1/p

∥F∥hp,I.

Proof The idea of the proof is like that we used for Lemma 3. In the present case, we
let z = x + iy ∈ CI, let r = min{x, π − x}, and compute

|F(z)| ≤
1

vol(D(r, z))

∫
D(r,z)
|F(ζ)|dζ

≤
1
πr2

(∫
D(r,z)
|F(ζ)|p dζ

)1/p

vol(D(r, z))1/p′

≤

(
1
πr2

∫ 2r

0

∫
R
|F(x + iy)|p dy dx

)1/p

≤

( 2
πr

)1/p
∥F∥hp,I,

as claimed. ▼

Now we proceed with the proof. Let F ∈ hp(CI;R). Let (x j) j∈Z>0 be a sequence in
(0, π2 ) converging to 0 from above. Define ( f j) j∈Z>0 and (g j) j∈Z>0 by

f j(η) = F(x j + iη), g j(η) = F(π − x j + iη).

We think of these as together defining a sequence of functions that we denote by
(( f j, g j)) j∈Z>0 on bd(CI) in the obvious way:

( f j, g j)(z) =

 f j(Im(z)), Re(z) = 0,
g j(Im(z)), Re(z) = π.

Since F ∈ Hp(CI;R), these are bounded sequences in Lp(bd(CI);R) and so, by the
same arguments as above for I = (0,∞), there exists a subsequence (( f jk , g jk))k∈Z>0 that
converges weak-∗ to a limit ( f , g) ∈ Lp(bd(CI);R). Now define

F j : CI → R

z 7→ F(x j +
π − 2x j

π
z).

One directly verifies that F j is harmonic. By Lemma 3, for p ∈ (1,∞), F j is bounded
and continuous in Ccl(I) and harmonic in CI. In case p = ∞, this holds by hypothesis.



2022/03/07 7.2 Hardy spaces of harmonic functions defined on vertical strips 683

Therefore, by Lemma 2, we have, for z = x + iy ∈ CI,

F j(z) =
∫
R

PI,x(y − η)F j(iη) dη +
∫
R

PI,π−x(y − η)F j(π + iη) dη

=

∫
R

PI,x(y − η) f j(η) dη +
∫
R

PI,π−x(y − η)g j(η) dη

for j ∈ Z>0. Since PI,x,PI,π−x ∈ Lp′(R;R) by Lemma 7.2.5(ii), we can think of (PI,x,PI,π−x)
as an element of Lp′(bd(CI);R) in the obvious way:

(PI,x,PI,π−x)(z) =

PI,x(Im(z)), Re(z) = 0,
PI,π−x(Im(z)), Re(z) = π.

We then have

F(z) = lim
k→∞

F(x jk +
π − 2x jk

π
z) = lim

k→∞
F jk(z)

= lim
k→∞

(∫
R

PI,x(y − η) f jk(η) dη +
∫
R

PI,π−x(y − η)g jk(η) dη
)

=

∫
R

PI,x(y − η) f (η) dη +
∫
R

PI,π−x(y − η)g(η) dη,

by definition of weak-∗ convergence and the pairing of Lp′(bd(CI);R) with its dual,
Lp(bd(CI);R) Theorem 3.10.1.

(iii) We again take I = (0,∞).
(a) =⇒ (b) We suppose that

F(x + iy) =
1
π

∫
R

x
x2 + (y − η)2 dµ(η)

for a finite measure µ. For z = x+ iy ∈ CI, let r ∈ R>0 be such that D(r, z) ⊆ CI. We then
compute, by Fubini’s Theorem,∫

bd(D(r,z))
F(z + reiθ) =

∫ 2π

0

(
1
π

∫
R

x + r cosθ
(x + r cosθ)2 + (y + r sinθ − η)2 dµ(η)

)
dθ

=
1
π

∫
R

(∫ 2π

0

x + r cosθ
(x + r cosθ)2 + (y + r sinθ − η)2 dθ

)
dµ(η)

=
1
π

∫
R

x
x2 + (y − η)2 dµ(η) = F(z),

using the mean value property of PI, since PI is harmonic (Theorem II-3.8.2(iii)). By
Theorem II-3.8.2(iv), we conclude that F is harmonic on CI.

Now let us note that

F(x + iy) =
∫
R

PI,x(y − η) dµ(η),
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i.e., Fx is the convolution of PI,x ∈ L1(R;R) with µ. Thus Fx ∈ L1(R;R) and

∥Fx∥1 ≤ ∥PI,x∥1∥µ∥TV = ∥µ∥TV,

using Lemma 7.2.5(iii), ∥·∥TV being the total variation norm as in Theorem 3.8.63. We
conclude that F ∈ h1(CI;R).

(b) =⇒ (a) We let F ∈ h1(CI;R) and let (x j) j∈Z>0 be a sequence converging to 0 from
above. Define f j ∈ L1(R;R) by f j(η) = F(x j + iη). Note that, since F ∈ h1(CI;R), ( f j) j∈Z>0

is a bounded sequence in L1(R;R) ⊆ Mfin(R;R) = (C0
0(R;R))∗ (this characterisation

of the dual space is ). It follows by the Banach–Alaoglu Theorem that there is aTheorem 7.3.6, DLC:13

ref subsequence ( f jk)k∈Z>0 and µ ∈ Mfin(R;R) such that ( f jk)k∈Z>0 converges weak-∗ to µ.
Now define

F j : CI → R

z 7→ F(x j + z).

By Lemma 3, F j is bounded and continuous on Ccl(I) and harmonic in CI. By Lemma 2
we have, for z = x + iy ∈ CI,

F j(z) =
∫
R

PI,x(y − η)F j(iη) dη =
∫
R

PI,x(y − η) f j(η), j ∈ Z>0.

Since PI,x ∈ C0
0(R;R), we have

F(z) = lim
k→∞

F(x j + z) = lim
k→∞

F jk(z)

= lim
k→∞

∫
R

PI,x(y − η) f jk(η) dη

=

∫
R

PI,x(y − η) dµ(η),

by definition of weak-∗ convergence and the pairing of C0
0(R;R) with its dual. This

concludes this part of the proof.
(iv) As in part (ii) we take (0, π).
(a) =⇒ (b) We suppose that

F(x + iy) =
1

2π

∫
R

sin(x)
cosh(y − η) − cos(x)

dµ(η) +
1

2π

∫
R

sin(π − x)
cosh(y − η) − cos(π − x)

dν(η).

As in the proof of (a) =⇒ (b), we can verify the mean value property of F using Fubini’s
Theorem. This shows that F is harmonic. Moreover, since

F(x + iy) =
∫
R

PI,x(y − η) dµ(η) +
∫
R

PI,π−x(y − η) dν(η),

i.e., F is defined by a sum of convolutions, we can use Lemma 7.2.5(iii) and to giveProposition 3.9.9,

VIB:07a

∥Fx∥1 ≤ ∥PI,x∥1∥µ∥TV + ∥PI,π−x∥1∥ν∥TV,

which gives F ∈ h1(CI;R).
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(b) =⇒ (a) Let F ∈ h1(CI;R). Let (x j) j∈Z>0 be a sequence in (0, π2 ) converging to 0
from above. Define ( f j) j∈Z>0 and (g j) j∈Z>0 by

f j(η) = F(x j + iη), g j(η) = F(π − x j + iη).

We think of these as together defining a sequence of measures that we denote by
(( f j, g j)) j∈Z>0 on bd(CI) in the obvious way:

( f j, g j)(A) =
∫

A∩iR
f j(η) dη +

∫
A∩(π+iR)

g j(η) dη.

Since F ∈ h1(CI;R), these are bounded sequences in L1(bd(CI);R) ⊆ Mfin(bd(CI);R) ≃
(C0

0(bd(CI);R))∗ and so, by the same arguments as above for I = (0,∞), there exists
a subsequence (( f jk , g jk))k∈Z>0 that converges weak-∗ to a limit (µ, ν) ∈ Mfin(bd(CI);R).
Now define

F j : CI → R

z 7→ F(x j +
π − 2x j

π
z).

One directly verifies that F j is harmonic. By Lemma 3, F j is bounded and continuous
in Ccl(I) and harmonic in CI. Therefore, by Lemma 2, we have, for z = x + iy ∈ CI,

F j(z) =
∫
R

PI,x(y − η)F j(iη) dη +
∫
R

PI,π−x(y − η)F j(π + iη) dη

=

∫
R

PI,x(y − η) f j(η) dη +
∫
R

PI,π−x(y − η)g j(η) dη

for j ∈ Z>0. Since PI,x,PI,π−x ∈ C0
0(R;R), we can think of (PI,x,PI,π−x) as an element of

C0
0(bd(CI);R) in the obvious way:

(PI,x,PI,π−x)(z) =

PI,x(Im(z)), Re(z) = 0,
PI,π−x(Im(z)), Re(z) = π.

We then have

F(z) = lim
k→∞

F(x jk +
π − 2x jk

π
z) = lim

k→∞
F jk(z)

= lim
k→∞

(∫
R

PI,x(y − η) f jk(η) dη +
∫
R

PI,π−x(y − η)g jk(η) dη
)

=

∫
R

PI,x(y − η) dµ(η) +
∫
R

PI,π−x(y − η) dν(η),

by definition of weak-∗ convergence and the pairing of C0
0(bd(CI);R) with its dual,

Mfin(bd(CI);R) . ■ Theorem 7.3.6, DLC:13

While the results of the preceding theorem are satisfactory in that they give a
useful integral representation for harmonic functions. There are, however, some
unsatisfactory elements of the development.
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1. If I ⊆ R is an open interval and if F ∈ hp(C;F), then it is not clear what is the
relationship between the values of F as we approach the boundary of CI and
the values of the boundary functions (or measures) that give rise to the Poisson
integral representation for F.

2. One might hope that, in some interesting cases, in the case of p = 1 the Poisson
integral representation involves boundary functions and not boundary mea-
sures.

We shall address these questions by showing that (1) the boundary functions (or
measures) can be chosen in such a way that they are the nontangential limit of F
as it approaches the boundary () and (2) if F is holomorphic, then its boundarywhat

measure is absolutely continuous with respect to the Lebesgue measure, and so is
determined by an integrable function. The complete development of these resultswhere

requires some substantial and seemingly unmotivated diversions. This is the more
complicated for us here, as contrasted to the standard presentations, because we
work with harmonic functions on arbitrary vertical strips, and so the results must
be flexible enough to handle all possibilities.

The programme that will occupy us for the next few sections is outlined as
follows.
1. We first study the Hardy–Littlewood maximal function. This function has two

attributes that will be of interest. One is the exact character of the maximal
function when constructed for functions in Lp(R;R). We shall see here that,
just as with Poisson integral representations, the case of p = 1 is distinguished
in character. The other attribute of the maximal function is that it provides a
useful bound for other sorts of constructions involving Poisson integrals that
will be useful for ensuring pointwise limits.

2. Next we make use of the latter attribute of the maximal function to prove the
existence of nontangential boundary limits for functions in the harmonic Hardy
spaces. These nontangential boundary limits exist even in the case of p = 1 when
the Poisson integrals involve boundary measures. In this case, one sees that
the difference between the boundary measure and the boundary function is a
singular measure.

3. We close the section by considering some constructions with subharmonic func-
tions and majorants of subharmonic functions by harmonic functions. We shall
see that the harmonic majorant can be chosen to be a Poisson integral. We shall
use this fact in to show that the Poisson integral representation of holomor-where

phic functions can be made using boundary functions, even though boundary
measures are required for general harmonic functions in the case p = 1.

7.2.3 Nontangential limits for the harmonic Hardy spaces on vertical strips

8 Lemma Let p ∈ [1,∞), let I ∈ I with cl(I) ∈ {[a,∞), (−∞, b]}, and let F ∈ Hp(CI;C).
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Then, for z ∈ int(I),

|F(z)| ≤


( 2
π(Re(z) − a)

)1/p
∥I∥HF,p, cl(I) = [a,∞),( 2

π(b − Re(z))

)1/p
∥I∥HF,p, cl(I) = (−∞, b].

Proof We will work out the case of cl(I) = [a,∞). The other case follows similarly.
Let z ∈ [a,∞) and let ρ = Re(z) − a. By Cauchy’s Integral Formula we have

F(z) =
1

2π

∫ π

−π

F(z + reiθ) dθ

for every r ∈ (0, ρ]. Thus

1

vol(D(ρ, z))

∫
D(ρ,z)

F(ζ) dζ =
1
πρ2

∫ ρ

0

∫ π

−π

F(z + reiθ)rdθdr

=
2
ρ2

∫ ρ

0
F(z)r dr = F(z).

We then use Hölder’s inequality to compute

|F(z)| ≤
1

vol(D(ρ, z))

∫
D(ρ,z)
|F(ζ)|dζ

≤
1
πρ2

(
|F(ζ)|p

)1/p
vol(D(ρ, z))1/p′

≤

( 1
πρ2

∫
C[a,a+2ρ]

|F(ζ)|p dζ
)1/p

≤

( 1
πρ2

∫ 2ρ

0
|F(a + x + iy)|p dydx

)1/p

≤

( 2
πρ

)1/p
∥I∥HF,p,

which is the desired result. ▼

Now let (F j) j∈Z>0 be a Cauchy sequence in Hp(CI;C). We first consider the cases
cl(I) ∈ {[a, b], [a,∞), (−∞, b]}. If K ⊆ Cint(I) is compact, then there exists J ⊆ int(I)
compact such that K ⊆ CJ. By the lemmata above, if p ∈ [1,∞) we have that
(F j|K) j∈Z>0 is a Cauchy sequence in the ∞-norm. Of course, this is also true when
p = ∞, and so we conclude that (F j) converges in the compact-open topology of
H(Cint(I);C) to an holomorphic limit F . Next let ϵ ∈ R>0 and let N ∈ Z>0 be such ref

that ∥I∥HFj−Fk ,p < ϵ for j, k ≥ N. For y ∈ int(I) and for j ≥ N we have

∥F j − F∥{y},p = lim
k→∞
∥F j − Fk∥{y},p ≤ lim

k→∞
∥I∥HFj−Fk ,p < ϵ.
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As this holds for every y ∈ int(I) we conclude that ∥I∥HFj−F
,p < ϵ for j ≥ N, giving the

desired convergence.
The Poisson kernel for the strip Sa,b = (a, b) ×R ⊆ R2

≃ C is

Pa,b(x, y) =
1

2(b − a)
sin(πx−a

b−a )

cosh(π y
b−a ) − cos(πx−a

b−a )
.

We directly compute that the Laplacian of Pa,b is zero, and so Pa,b is harmonic. For
fa, fb ∈ Lp(R;C) we denote Pa,b ∗ ( fa, fb) : Sa,b → C by

Pa,b ∗ ( fa, fb)(x + iy) =
∫
R

fa(t)Pa,b(x, t − y) dt +
∫
R

fb(t)Pa,b(a + b − x, t − y) dt.

Similarly, if µa, µb ∈Mfin(R;C), then we define

Pa,b ∗ (µa, µb)(x + iy) =
∫
R

Pa,b(x, t − y) dµa(t) +
∫
R

Pa,b(a + b − x, t − y) dµb(t). (7.1)

If r ∈ R>0 and z0 ∈ Sa,b is such that D(r, z0) ⊆ Sa,b, then we may use the Dominated
Convergence Theorem to directly compute∫

bd(D(r,z0))
Pa,b ∗ ( fa, fb)(z) dz = 0,

giving that Pa,b ∗ ( fa, fb) is harmonic on Sa,b, and similarly for finite Radon measures.
One verifies that y 7→ Pa,b(x + iy) is an approximate identity as x ↓ a , and soDVW:61

y 7→ Pa,b((a + b − x) + iy) is also an approximate identity as x ↑ b. The usual
arguments then yield that we have the following flavours of convergence of theTheorem I.3.1, JBG:07

limits

lim
x↓a

∫
R

Pa,b ∗ ( fa, fb)(x + iy) dy = fa, lim
x↑b

∫
R

Pa,b ∗ ( fa, fb)(x + iy) dy = fb :

1. convergence in Lp for fa, fb ∈ Lp(R;C), p ∈ [1,∞);
2. weak-∗ convergence for fa, fb ∈ L∞(R;C) (keeping in mind that L1(R;C) is the

continuous dual of L∞(R;C));
3. uniform convergence if fa and fb are uniformly continuous and bounded;
4. weak-∗ convergence if fa = µa and fb = µb are finite Radon measures (keeping

in mind that the space of Radon measures is the continuous dual to C0
cpt(R;C)).

Let hp(CI;R) be the set of R-valued functions F harmonic on Cint(I) for which x 7→
∥Fx∥p is bounded on I, where Fx(y) = F(x + iy). Standard arguments using theTheorem I.3.5, JBG:07

Banach–Alaoglu Theorem show thatref

1. for p ∈ (1,∞], the mapping ( fa, fb) 7→ Pa,b ∗ ( fa, fb) is an isometry of Lp(R;R)2 onto
hp(CI;R), and
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2. for p = 1, the mapping (µa, µb) is an isometry ofMfin(R;R)2 onto h1(CI;R).
Let us now sketch the argument one may use to prove the existence of nontangential
limits for functions in hp(CI;R), from which the result for functions in Hp(CI;C)
follows. We take F ∈ h1(CI;C) and write F = Pa,b∗(µa, µb) for someµa, µb ∈Mfin(R;C).
We shall consider the boundary C{a}, the case for the other boundary following in
a similar manner. For y ∈ R, α ∈ R>0, and ℓ ∈ (0, 1

2 (a + b)), denote

Γ+a,α,ℓ(y) = {(a + iy) + (ξ + iη) ∈ C | |η| < αξ, |ξ| ≤ ℓ}

be a truncated cone with vertex at a + iy in C pointing into Cint(I); see Figure 7.3.
(The subscript “+” connotes the fact that there will also be a cone at the right

a b

y Γ+
a,α,ℓ(y)

ℓ

Figure 7.3 The truncated cone Γ+a,α,ℓ(y)

boundary that will point in the “negative direction.”) First let us suppose that µa

is absolutely continuous with respect to the Lebesgue measure, i.e., µa = faλ for
some fa ∈ L1(R;R). Denote

T+a,α,ℓF : R→ R≥0

y 7→ sup{|F(z)| | z ∈ Γ+a,α,ℓ(y)}.

For y ∈ R define
Ω+a,α,ℓF(y) = lim sup

z→a+iy
z∈Γ+a,α(y)

F(z) − lim inf
z→a+iy
z∈Γ+a,α(y)

F(z).

Clearly, Ω+a,α,ℓF(y) = 0 for some α ∈ R>0 and some ℓ ∈ (0, 1
2 (a + b)) if and only if F

has a nontangential limit at a + iy. We shall show that, for a given α ∈ R>0 and
ℓ ∈ (0, 1

2 (a + b)), Ω+a,α,ℓF(y) = 0 for almost every y ∈ R. The following lemma allows
us to make the crucial step in the proof, and is the place where one has to keep
track of the specific form of the Poisson kernel for the strip.
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9 Lemma For I ∈ I satisfying cl(I) = [a, b], and for fa, fb ∈ L1(R;R), let F = Pa,b∗(fa, fb) ∈
h1(CI;R). Then, for each α ∈ R>0 and ℓ ∈ (0, 1

2 (a+ b)), there exists Aa,α,ℓ ∈ R>0 such that

T+a,α,ℓF(y) ≤ Aa,α,ℓ(Mfa(y) +Mfb(y)), y ∈ R,

where Mfa and Mfb are the Hardy–Littlewood maximal functions for fa and fb .page 24, JBG:07

Proof Given the form (7.1) for Pa,b ∗ ( fa, fb) we may without loss of generality take
y = 0.

For t ∈ R let

ψa,x,y(t) = sup{Pa,b(x, s − y) | |s| > t}, ψb,x,y(t) = sup{Pa,b(a + b − x, s − y) | |s| > t}.

The functions ψa,x,y, ψb,x,y : R→ R>0 have the following features:
1. they are even;
2. they are strictly decreasing on R>0 (and so strictly increasing on R<0);
3. for each t ∈ R, Pa,b(x, t − y) ≤ ψa,x,y(t) and Pa,b(b − a, t − y) ≤ ψb,x,y(t).
For the next little while let us fix x + iy ∈ Γ+a,α,ℓ(0). We then compute (after a
moments reflection about what the graphs of the functions ψa,x,y and ψb,x,y look like
as a consequence of properties 1 and 2),∫

R

ψa,x,y(t) dt =
∫

t<−|y|
Pa,b(x, t) dt +

∫
|y|

−|y|
Pa,b(x, 0) dt +

∫
t>|y|

Pa,b(x, t) dt

=

∫
R

Pa,b(x, t) dt +
|y| sin(π x−a

b−a )
(b − a)(1 − cos(πx−a

b−a ))

≤
x − a
b − a

(
1 +

α sin(πx−a
b−a )

(1 − cos(πx−a
b−a ))

)
≤ 1 + 2α,

where we use the computations of and the fact that the functionDVW:61

θ 7→
θ sinθ

1 − cosθ

is bounded by 2 on [0, π]. A similarly style computation gives∫
R

ψb,x,y(t) dt ≤ 1 + 2α.

Now, by properties 1 and 2 we can arbitrarily well approximate (in the L1-sense)
ψa,x,y andψb,x,y from below by step functions with the same properties (see ). If σa,x,yFigure I.4, JBG:07

and σb,x,y are such step functions we can write them as

σa,x,y(t) =
N∑

j=1

α jχ(−y j, y j), σb,x,y(t) =
N∑

j=1

β jχ(−y j, y j),
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for some 0 < y1 < · · · < yN and some a1, . . . , aN ∈ R>0, and where, by our estimates
just preceding,

N∑
j=1

2y jα j ≤ 1 + 2α,
N∑

j=1

2y jβ j ≤ 1 + 2α.

For such step functions we compute∣∣∣∣∫
R

σa,x,y(t) fa(t) dt
∣∣∣∣ ≤ ∫

R

σa,x,y(t)| fa(t)|dt

≤

N∑
j=1

2y jα j
1

2y j

∫ y j

−y j

| fa(t)|dt

≤ (1 + 2α)M fa(0).

By the Monotone Convergence Theorem, taking the supremum over all such step
functions, we arrive at the conclusion∫

R

| fa(t)|ψa,x,y(t) dt ≤ (1 + 2α)M fa(0)

and, similarly ∫
R

| fb(t)|ψb,x,y(t) dt ≤ (1 + 2α)M fb(0).

Thus we finally compute

|F(x + iy)| ≤
∫
R

| fa(t)|Pa,b(x, t − y) dt +
∫
R

| fb(t)|Pa,b(a + b − x, t − y) dt

≤

∫
R

| fa(t)|ψa,x,y(t) dt +
∫
R

| fb(t)|ψb,x,y(t) dt

≤ (1 + 2α)(M fa(0) +M fb(0)),

as desired, noting that this holds for any x + iy ∈ Γ+a,α,ℓ(0). ▼

By definitions we have Ω+a,α,ℓF(y) ≤ 2T+a,α,ℓF(y). By the Hardy–Littlewood Maxi-
mal Theorem, for β ∈ R>0 we have

λ({y ∈ R | M fa(y) > β}) ≤
2
β
∥ fa∥1, λ({y ∈ R | M fb(y) > β}) ≤

2
β
∥ fb∥1.

Now, given the lemma, the estimates just preceding, and the fact that for σ, τ ∈ R≥0
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we have σ + τ ≤ 2 max{σ, τ}, we have

λ({y ∈ R | Ωa,α,ℓF(y) > ϵ}) ≤ λ({y ∈ R | 2T+a,α,ℓF(y) > ϵ})

≤ λ({y ∈ R | 2Aa,α,ℓ(M fa(y) +M fb(y)) > ϵ})

≤ λ
({

y ∈ R
∣∣∣∣ M fa(y) >

ϵ
4Aa,α,ℓ

})
+ λ

({
y ∈ R

∣∣∣∣ M fb(y) >
ϵ

4Aa,α,ℓ

})
≤

8Aa,α,ℓ

ϵ
(∥ fa∥1 + ∥ fb∥1).

Now let ga, gb ∈ L1(R;R) ∩ C0
cpt(R;R) be such that

∥ fa + ga∥1, ∥ fb + gb∥1 <
ϵ2

16Aa,α,ℓ
.

If G = Pa,b ∗ (ga, gb) then G ∈ C0(C[a,b];R) ∩ h1(CI;R). Therefore, since G has nontan-
gential limits at every point a + iy, y ∈ R, by the estimate

λ({y ∈ R | Ωa,α,ℓ(F + G)(y) > ϵ}) ≤
8Aa,α,ℓ

ϵ
(∥ fa + ga∥1 + ∥ fb + gb∥1),

we have

λ({y ∈ R | Ωa,α,ℓF(y) > ϵ}) = λ({y ∈ R | Ωa,α,ℓ(F + G)(y) > ϵ})

≤
8Aa,α,ℓ

ϵ

( ϵ2

16Aa,α,ℓ
+

ϵ2

16Aa,α,ℓ

)
= ϵ.

Thus, using Proposition 2.3.3(ii),

λ({y ∈ R | Ωa,α,ℓF(y) > 0}) = λ
(
∩ j∈Z>0{y ∈ R | Ωa,α,ℓF(y) > 1

j }
)
≤ lim

j→∞

1
j
= 0,

which gives the existence of nontangential limits for p = 1 and absolutely con-
tinuous boundary measures. The same conclusion for p = 1 and measures with
nonsingular part follows from the argument made of .Lemma I.5.4, JBG:07

For p = ∞, for each β ∈ R>0 we write ga,β = χ[−β, β] fa, gb,β = χ[−β, β] fb, and
ha = fa − ga and hb = fb − gb. We also denote Gβ = Pa,b ∗ (ga, gb) and Hβ = Pa,b ∗ (ha, hb).
Since ga, gb ∈ L1(R;R), the function Gβ possesses nontangential limits at a + iy for
almost every y ∈ R. By we have that Hβ has nontangential limit 0 at a+ iy for everyTheorem 1, DVW:61

y ∈ (−β, β). Thus F = Gβ + Hβ has nontangential limits at a + iy for almost every
y ∈ (−β, β). Letting β→∞ gives the existence of nontangential limits for p = ∞.

For p ∈ (1,∞) we define ga, gb ∈ L1(R;R) by

ga(y) =

 fa(y), | fa(y)| ≥ 1,
0, otherwise.
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In like manner, we define ha, hb ∈ L∞(R;R) by ha = fa − ga and hb = fb − gb. The
existence of nontangential limits then follows by the p = 1 and p = ∞ cases above.

It remains to show that the boundary functions defined by nontangential limits
for F ∈ Hp(CI;C) are in Lp(R;C).

Exercises

7.2.1
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Section 7.3

Hardy spaces of harmonic functions defined on annuli

In this section we carry out the programme of Section 7.2 for harmonic functions
whose domain is an annulus in the complex plane. We will be able to adapt some
of our results for functions on vertical strips from Section 7.2, but some of the
development will be special to the case of annuli.

Do I need to read this section? This section contains largely technical material
that can maybe be skipped at a first read, and then read subsequently when a deeper
understanding is required of the holomorphic Hardy spaces on annuli described
in Section 7.5. •

7.3.1 Definitions

First we describe the domains on which the harmonic functions we describe in
this section will be defined. For an interval I ⊆ R≥0, let us denote

AI = {z ∈ C | |z| ∈ I}.

Note that, if 0 ∈ I, then AI is a disk. When sup I = ∞, then AI is the complement
of a disk. If we have both 0 ∈ I and sup I = ∞, then AI = C. We depict the
generic situation in Figure 7.4. One of the differences between the theory of Hardy

Re

Im

I

AI

Figure 7.4 An annulus in the complex plane

spaces for vertical strips and the theory for annuli is the reduction of the analysis
to a “generic” interval. For example, in the proof of Theorem 7.2.6 we reduced
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consideration of bounded vertical strips to C(0,π). This was acceptable since all
bounded vertical strips admits a standard biholomorphic mapping between them.
By Theorem II-3.2.8, this is not true for annuli of the form A(r,R) for r,R ∈ R>0

satisfying r < R. Indeed, Theorem II-3.2.8 tells us that there is a biholomorphic
bijection from A(r1,R1) to A(r2,R2) if and only if r1

R1
= r2

R2
. Thus the best we can do to

make a “canonical” choice of annulus is to fix one of the radii to, say, 1.
For harmonic and holomorphic functions on vertical strips, we used their values

on vertical lines to characterise their properties. For annuli, we use the values of
functions on circles. A bit of notation we use for this is

S = {z ∈ C | |z| = 1},

i.e., S is the unit circle. A point on S we denote by eiθ. Note that, if f : S → F, we
can identify it with a 2π-periodic function f̂RF by the formula f (eiθ) = f̂ (θ). Thus
we can define spaces of functions on S by identifying them with their 2π-periodic
analogues. For example, we define Lp(S;F) by

Lp(S;F) ≃ Lp
per,2π(R;F)

with the norm

∥ f ∥p =
∫ 2π

0
f (eiθ) dθ.

For a function F : AI → F, F ∈ {R,C}, and for r ∈ I, we denote Fr : S → F the
function defined by Fr(eiθ) = F(reiθ).

We now give a definition of a general class of harmonic functions.

7.3.1 Definition (Functions harmonic on an annulus) For an interval I ⊆ R≥0 and for
F ∈ {R;C), we denote by h(AI;F) the mappings F : AI → F that are harmonic on
int(AI). If int(AI) = ∅, we take the convention that h(AI;F) = FAI . •

Note that, for each interval I ⊆ R, h(AI;F) is a F-vector space with respect to
the operations of pointwise addition and scalar multiplication. Note that if AI is
not open, then we place no restrictions on the values of functions in h(AI;C) when
restricted to bd(AI). For more useful classes of functions, we will find it beneficial
to assign these boundary values in a meaningful way, as in Section 7.1.2.

Now let us define the particular classes of harmonic functions in which we shall
be interested. We begin by defining a large class of these functions, and then we
consider a subset of these prescribed by some norm being finite.

7.3.2 Definition (Big harmonic Hardy space on an annulus) Let I ⊆ R≥0 be an interval,
F ∈ {R,C}, and p ∈ [1,∞]. Denote by hp(AI;F) the mappings F ∈ h(AI;F) such that

(i) F ∈ h(AI;F),
(ii) Fr ∈ Lp(R;F) for each r ∈ I, and
(iii) F has nontangential limits.
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The space hp(AI;F) is the big harmonic Hardy space. •

Note that the condition for having nontangential limits is vacuous if I is open.
However, if I does contain an endpoint or two, then the requirement of having
nontangential limits at these endpoints becomes nonvoid. Indeed, the study of the
existence of such nontangential limits will be something that will be of interest to
us in Section 7.3.3 below.

Of particular interest is the following subset of the big harmonic Hardy space,
where we ask that the Lp-norms on vertical lines be uniformly bounded.

7.3.3 Definition (Harmonic Hardy space on an annulus) Let I ⊆ R≥0 be an interval
and let p ∈ [1,∞]. For F ∈ hp(AI;C) we denote

∥F∥hp,I = sup{∥Fr∥p | r ∈ I}.

The subset {F ∈ hp(AI;C) | ∥F∥hp,I < ∞} is denoted by hp(AI;C) and we call these
spaces the harmonic Hardy spaces. •

We shall be primarily interested in the harmonic Hardy spaces in this chap-
ter. Indeed, we shall not have use in these volumes for the big harmonic Hardy
spaces; we will, however, have use for their holomorphic analogues introduced in
Section 7.5.1. These we have introduced here the big harmonic Hardy spaces in
the interest of symmetry and aesthetics.

7.3.2 Poisson integral representations of harmonic functions on annuli

7.3.3 Nontangential limits for the harmonic Hardy spaces on annuli
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Section 7.4

Hardy spaces of holomorphic functions defined on vertical
strips

In this section we shall extend our discussion of spaces of harmonic functions
defined on vertical strips to holomorphic functions. We shall see that there are
some similarities between the harmonic and holomorphic theories, but there are
also some important differences, particularly in the case of the p = 1.

Throughout the section, we shall make use of basic properties of holomorphic
functions discussed in Chapter II-3.

Do I need to read this section? The definitions in this section will be used in
Chapter IV-9 and Section V-7.1. So these can certainly be read when they are
needed. However, it is not necessary to understand a lot of the technical material
to understand the definitions. •

7.4.1 Definitions

We recall from the notion of an holomorphic function of a complex variable. what?

With this in mind, we have the following definition.

7.4.1 Definition (Functions holomorphic on a vertical strip) For an interval I ⊆ R,
we denote by H(CI;C) the mappings F : CI → C that are holomorphic on Cint(I). If
int(I) = ∅, we denote take the convention that H(CI;C) = CCI . •

Note that, for each interval I ⊆ R, H(CI;C) is aC-vector space with respect to the
operations of pointwise addition and scalar multiplication. Note that if int(I) , I,
then we place no restrictions on the values of functions in H(CI;C) when restricted
to bd(CI). Indeed, as with our investigation of harmonic functions in Section 7.2,
the matter of boundary values is a subject of considerable independent interest.

With the preceding definitions and discussion, we make the following defini-
tion.

7.4.2 Definition (Big holomorphic Hardy space on a vertical strip) Let I ⊆ R be
an interval and let p ∈ [1,∞]. For F : CI → C and x ∈ I denote Fx : R → C by
Fx(y) = F(x + iy). Denote by Hp(CI;C) the mappings F : CI → C such that

(i) F ∈ H(CI;C),
(ii) Fx ∈ Lp(R;C) for each x ∈ I, and
(iii) F has nontangential limits.

The space Hp(CI;C) is the big holomorphic Hardy space. •

Corresponding to Remark 7.1.7–3, we do not have that the big holomorphic
Hardy spaces are the same as the classical Hardy spaces, e.g., Hp(C(0,∞);C) is not
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the same as the Hardy space of the right half-plane as there is no requirement that
the norms ∥Fx∥p be uniformly bounded in x.

7.4.2 Poisson integral representations of holomorphic functions on vertical
strips

As we saw in Section 7.2.2, we can use the boundary values for an harmonic
function to prescribe the interior values. In this section we will adapt this idea to
holomorphic functions.

7.4.3 Banach spaces of holomorphic functions on vertical strips

Now we study topological vector spaces of holomorphic functions whose do-
main is a vertical strip. We begin, in this section, by consider Banach spaces of such
functions. For such spaces we shall see that there is a useful theory of nontangential
limits, such as we presented in Section 7.2.3 for harmonic functions. As we shall
see, we can do better for these nontangential limits in the holomorphic case than
can be done in the harmonic case.

First we define the spaces we will investigate.

7.4.3 Definition (Holomorphic Hardy spaces on a vertical strip) Let I ⊆ R be an
interval and let p ∈ [1,∞]. For F ∈ Hp(CI;C) we denote

∥F∥Hp,I = sup{∥Fx∥p | x ∈ I}.

The subset {F ∈ H(CI;C) | ∥F∥Hp,I < ∞} is denoted by Hp(CI;C) and we call these
spaces the holomorphic Hardy spaces. •

Let us prove the essential properties of the holomorphic Hardy spaces. If
int(I) , ∅, let us say that F : CI → C tends to zero uniformly at infinity in CI if, for
each ϵ ∈ R>0, there exists a compact set K ⊆ I such that |F(z)| < ϵ for z ∈ CI \ CK.

7.4.4 Theorem (Hardy spaces are defined on closed strips) Let I ⊆ R be an interval.
(i) if F ∈ Hp(CI;C) for p ∈ [1,∞], then there exists F ∈ Hp(Ccl(I);C) such that

(a) F|Cint(I) = F|Cint(I),

(b) F has nontangential limits;
(c) limx→x0∥Fx0 − Fx∥p = 0 for every x0 ∈ cl(I);

(ii) if F ∈ Hp(CI;C) for p ∈ [1,∞), then F tends to zero uniformly at infinity.

In particular, by part (i), the spaces Hp(CI;C) and Hp(Ccl(I);C) are isometric.
Proof Page 124 of Hoffmann

(i) First we prove the existence of F by proving that, for x0 ∈ bd(I), there exists
Fx0 ∈ Lp(R;C) such that, if we define

F(z) =

F(z), z ∈ CI,

Fx0(Im(z)), z ∈ bd(I),
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then F has nontangential limits. Then we prove that limx→x0 Fx = Fx0 in Lp(R;C).
This part of the result asserts that we can take nontangential limits of F ∈ Hp(CI;C)

at endpoints of I, and that the boundary functions are in Lp(R;C). As such, this part of
the result is classical for cl(I) = [0,∞) [cf. Garnett 2007, Corollary II.3.2]. By elementary
changes of variable, the result also holds for intervals I for which cl(I) = [a,∞) or
cl(I) = (−∞, b] for any a, b ∈ R. For I = {x0} or I = R, the result is vacuous. The case of
cl(I) = [a, b] follows from [Bakan and Kaijser 2007, Theorem 1 and Corollary 1].

(ii) For cl(I) = [a,∞) and cl(I) = (−∞, b], this follows from the Theorem on page 125
of [Hoffmann 1962]. For I = R the result is vacuous, since Hp(C;C) = {0}. For I = {x0},
the result is vacuous by definition. So the only case remaining to consider is cl(I) = [a, b].
Here we prove a lemma.

1 Lemma Let p ∈ [1,∞), let I ⊆ R be an interval with cl(I) = [a, b], let a′, b′ ∈ R be such that

[a′, b′] ⊆ (a, b),

and let ρ ∈ R>0 be such that [a′ − ρ, b′ + ρ] ⊆ (a, b). Then, for z ∈ C[a′,b′],

|F(z)| ≤
(

b − a
πρ2

)1/p

∥F∥Hp,I.

Proof Let z ∈ C[a′,b′]. By Cauchy’s Integral Formula [Conway 1978, Theorem IV.5.4]
we have

F(z) =
1

2π

∫ π

−π
F(z + reiθ) dθ

for every r ∈ (0, ρ]. Thus

1

vol(D(ρ, z))

∫
D(ρ,z)

F(ζ) dζ =
1
πρ2

∫ ρ

0

∫ π

−π
F(z + reiθ)rdθdr

=
2
ρ2

∫ ρ

0
F(z)r dr = F(z).

Therefore, by Hölder’s Inequality [Cohn 2013, Proposition 3.3.2],

|F(z)| ≤
1

vol(D(ρ, z))

∫
D(ρ,z)
|F(ζ)|dζ

≤
1
πρ2

(∫
D(ρ,z)
|F(ζ)|p dζ

)1/p

vol(D(ρ, z))1/p′

≤

(
1
πρ2

∫
CI

|F(ζ)|p dζ
)1/p

≤

(
1
πρ2

)1/p ∫ b

a

∫
R
|F(x + iy)|p dy dx

1/p

≤

(
b − a
πρ2

)1/p

∥F∥Hp,I,

as claimed. ▼
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Now let a′, b′ ∈ R>0 be such that

[a′, b′] ⊆ (a, b)

and let ρ ∈ R>0 be sufficiently small that [a′ − ρ, b′ + ρ] ⊆ (a, b). As in the proof of the
lemma above, we have

|F(z)| ≤
(

1
πρ2

∫
D(ρ,z)
|F(ζ)|p dζ

)1/p

for every z ∈ C[a′,b′]. Also,∫
C[a′ ,b′]

|F(ζ)|p dζ =
∫ b′

a′

∫
R
|F(x + iy)|p dydx ≤ (b′ − a′)∥F∥pHp,I < ∞.

Therefore, given ϵ ∈ R>0, there exists M ∈ R>0 sufficiently large that∫ b′

a′

∫
|x|≥M
|F(x + iy)|p dydx < πρ2ϵp.

If z ∈ C[a,b] satisfies
D(ρ, z) ⊆ {ζ ∈ C[a′,b′] | Im(ζ) > M},

then

|F(z)| ≤
∫ b′

a′

∫
|x|≥M
|F(x + iy)|p dydx < ϵ,

as desired. ■

7.4.5 Example (Hp(CI;C) ⊂ Hp(CI;C) if I is not closed) If I is not closed, then it is easy
to see that Hp(CI;C) is strictly contained in Hp(CI;C). To see this, suppose that I has
an open endpoint at x0 and note that F ∈ Hp(CI;C) defined by Fp(z) = (z − x0)−2p is
in Hp(CI;C), p ∈ [1,∞) but not in Hp(CI;C). For every p ∈ [1,∞), Fp ∈ H∞(CI;C) but
Fp < H∞(CI;C). •

We now show that the norms for Hardy spaces can be simplified to the compu-
tation of Lp-norms on the boundary.

7.4.6 Proposition (Norms for Hardy spaces) For an interval I ⊆ R, p ∈ [1,∞], and
F ∈ Hp(CI;C), let F ∈ Hp(Ccl(I);C) be as given by Theorem 7.4.4. Then the following
statements hold:

(i) if cl(I) = [a, b] for a, b ∈ R, a < b, then ∥F∥Hp,I = max{∥Fa∥p, ∥Fb∥p};

(ii) if sup I = ∞ and inf I = a ∈ R, then ∥F∥Hp,I = ∥Fa∥p;

(iii) if inf I = −∞ and sup I = b ∈ R, then ∥F∥Hp,I = ∥Fb∥p;

(iv) if I = R then Hp(CI;C) is comprised of constant functions that are necessarily zero
if p ∈ [1,∞).
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Proof (i)
(ii) and (iii) These follow from part (ii) of the Theorem on page 123 of [Hoffmann

1962].
(iv) By Liouville’s Theorem [Conway 1978, Theorem IV.3.4] we have that Hp(C;C)

consists of constant functions that, and so these must be zero if p ∈ [1,∞). ■

We conclude this discussion by proving that the Hardy spaces are Banach
spaces.

7.4.7 Theorem (Hardy spaces are Banach spaces) If I ⊆ R is an interval and if p ∈
[1,∞], then Hp(CI;C) is a Banach space.

Proof For intervals satisfying cl(I) = [a,∞) or cl(I) = (−∞, b], the result follows from
classical results [e.g., Garnett 2007, Theorem II.1.3]. If I = R, the result follows from
Proposition 7.4.6(iv). If I = {x0} then the result is clear by convention. It remains to
consider the case cl(I) = [a, b], where a, b ∈ R satisfy a < b. In this case let (F j) j∈Z>0

be a Cauchy sequence in Hp(CI;C). By Lemma 1 from the proof of Theorem 7.4.4,
if p ∈ [1,∞) we have that (F j|K) j∈Z>0 is a Cauchy sequence in the ∞-norm for any
compact K ⊆ Cint(I). Of course, this is also true when p = ∞, and so we conclude that
(F j) converges in the compact-open topology of H(Cint(I);C) to an holomorphic limit
F [Rudin 1991, §1.45]. Next let ϵ ∈ R>0 and let N ∈ Z>0 be such that ∥F j − Fk∥Hp,I < ϵ
for j, k ≥ N. For y ∈ int(I) and for j ≥ N we have

∥F j − F∥{y},p = lim
k→∞
∥F j − Fk∥{y},p ≤ lim

k→∞
∥F j − Fk∥Hp,I < ϵ.

As this holds for every y ∈ int(I) we conclude that ∥F j − F∥Hp,I < ϵ for j ≥ N, giving the
desired convergence. ■

7.4.4 Locally convex topological vector spaces of holomorphic functions
on vertical strips

In the preceding section we considered the classical Hardy spaces and showed
that these are essentially the big Hardy spaces for closed intervals. In this section
we use this structure to provide a locally convex topology for the big Hardy spaces.

We begin by making a simple observation concerning the relationship between
big Hardy spaces defined on nested intervals.

7.4.8 Proposition (Hardy spaces defined on nested intervals) Let p ∈ [1,∞]. If inter-
vals I, J ⊆ R satisfy J ⊇ I, then Hp(CJ;C) ⊆ Hp(CJ;C). Moreover, if I and J are closed,
then ∥F∥Hp,J ≥ ∥I∥HF,p for every F ∈ Hp(CJ;C) and, in particular, the inclusion map from
Hp(CJ;C) into Hp(CI;C) is continuous for closed intervals I and J.

follows like LT case

Proof ■

For a fixed interval I we have a family of inclusions iI,J : Hp(CI;C) → Hp(CJ;C),
where J runs over compact intervals J ⊆ I. We then have the initial topology
defined by the mappings iI,J, J ⊆ I be compact, which is the coarsest topology for
which the mappings are continuous. This is a locally convex topology [Horváth
1966, §2.11]. Let us characterise this topology.
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7.4.9 Theorem (The locally convex topology for big Hardy spaces) Let I ⊆ R be an
interval and let p ∈ [1,∞]. Then Hp(CI;C), with the preceding locally convex topology, is
a Fréchet space. Moreover:

(i) if (Ij)j∈Z>0 is a sequence of compact subintervals of I such that (a) Ij ⊆ Ij+1

and (b) I = ∪j∈Z>0Ij, then the locally convex topology for Hp(CI;C) agrees with
the locally convex inverse limit (Hp(CIj ;C))j∈Z>0 , where the connecting map from
Hp(CIj+1 ;C) to Hp(CIj ;C), j ∈ Z>0, is the inclusion map;

(ii) if I is closed, then the locally convex topology on Hp(CI;C) is the same as the norm
topology induced of Hp(CI;C);

(iii) if I is not closed, then the locally convex topology on Hp(CI;C) is not normable.
Proof (i) The argument here follows in the same manner as the proof of .the:Lpfrechet

(ii) The argument here follows in the same manner as the proof of .the:Lpfrechet

(iii) Let (I j) j∈Z>0 be a sequence of intervals as in part (i). Arguing as in the proof of
, it suffices to show that each of the setsthe:Lpfrechet

U( j, r) = {F ∈ Hp(CI;C) | ∥F∥Hp,I < r}, j ∈ Z>0, r ∈ R>0,

is unbounded. We consider the five possible cases of not closed intervals.
First we take I = (a,∞) for a ∈ R. We let a j = a+ 1

j , j ∈ Z>0, and define I j = [a j, a+ j],
j ∈ Z>0. Let p ∈ [1,∞), j ∈ Z>0, r ∈ R>0, and M ∈ R>0. Define

Fk,b(z) =
b

(z − a)k

for k ∈ Z>0 and b ∈ R>0. We compute

∥Fk,b,x∥
p
p =

∫
R

∣∣∣∣∣∣ b
((x − a) + iy)2

∣∣∣∣∣∣p dy =

√
πbp(x − a)1−kpΓ( 1

2 (kp − 1))

Γ( kp
2 )

, x ∈ I.

From this we conclude that Fk,b ∈ Hp(CI;C) if kp > 1. For each k ∈ Z>0 for which kp > 1,
we choose bk such that∫

R
|Fk,bk(

1
2 ((a + 1

j ) + (a + 1
j+1 ) + x) + iy)|p dy = 1.

Then, since x 7→ ∥Fk,b,x∥p is strictly monotonically decreasing in x we have

∥Fk,bk∥
p
I j,p
< 1 < ∥Fk,bk∥

p
I j+1,p

.

By taking k sufficiently large we can ensure that

∥Fk,bk∥I j,p < r, ∥Fk,bk∥I j+1,p > M,

as desired. For p = ∞ a similar argument with the function b
z−a gives the desired

conclusion.
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The same sort of argument with the same functions gives the result for the non-
closed intervals of the form (a, b) and (a, b]. By a change of variable, we get the
conclusion for intervals of the form (−∞, b) and [a, b).

It remains to consider the case I = R. Here we take I j = [− j, j], j ∈ Z>0. We define
Fa,b = beaz2

, a, b ∈ R>0, and calculate

∥Fa,b,x∥
p
p =

∫
R
|bea(x+iy)2

|
p dy =

√
πbbeapx2

√
ap

.

For a ∈ R>0 let ba ∈ R>0 be such that |Fa,b,±( j+ 1
2 )|

p
p = 1. Since x 7→ ∥Fa,b,x∥p is monotonically

decreasing on R>0 and monotonically increasing on R<0, we have

∥Fa,b∥
p
Hp,I j

< 1 < ∥Fa,b∥Hp,I j+1 .

By taking a sufficiently small we can ensure that

∥Fa,b∥
p
Hp,I j

< r, ∥Fa,b∥Hp,I j+1 > M,

which is the desired conclusion in this case for p ∈ [1,∞). For p = ∞ a similarly styled
argument with the same function Fa,b will give the same conclusion. ■
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Section 7.5

Hardy spaces of holomorphic functions defined on annuli

We now adapt our constructions of Section 7.4 to holomorphic functions defined
on annuli in the complex plane. As with our constructions with harmonic functions
on annuli in Section 7.3, some of these constructions can be built upon those for
vertical strips in Section 7.4.

Do I need to read this section? The definitions in this section will be used in
Chapter IV-9 and Section V-7.2. So these can certainly be read when they are
needed. However, it is not necessary to understand a lot of the technical material
to understand the definitions. •

7.5.1 Definitions

By this point, we can get right to it.

7.5.1 Definition (Functions holomorphic on an annulus) For an interval I ⊆ R≥0, we
denote by H(AI;C) the mappings F : AI → C that are holomorphic on int(AI). If
int(AI) = ∅, we denote take the convention that H(AI;C) = CAI . •

Note that, for each interval I ⊆ R≥0, H(AI;C) is a C-vector space with respect to
the operations of pointwise addition and scalar multiplication. Note that if AI is
not open, then we place no restrictions on the values of functions in H(AI;C) when
restricted to bd(AI). Indeed, as with our investigation of harmonic functions in
Section 7.3, the matter of boundary values is a subject of considerable independent
interest.

With the preceding definitions and discussion, we make the following defini-
tion.

7.5.2 Definition (Big holomorphic Hardy spaces on an annulus) Let I ⊆ R≥0 be an
interval and let p ∈ [1,∞]. For F : AI → C and r ∈ I denote Fr : S → C by
Fr(eiθ) = F(reiθ). Denote by Hp(CI;C) the mappings F : AI → C such that

(i) F ∈ H(AI;C),
(ii) Fr ∈ Lp(S;C) for each r ∈ I, and
(iii) F has nontangential limits.

The space Hp(AI;C) is the big holomorphic Hardy space. •

Corresponding to Remark 7.1.7–3, we do not have that the big holomorphicdisk version

Hardy spaces are the same as the classical Hardy spaces, e.g., Hp(A[0,1);C) is not the
same as the Hardy space of the unit disk as there is no requirement that the norms
∥Fr∥p be uniformly bounded in r.
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7.5.2 Poisson integral representations of holomorphic functions on annuli

7.5.3 Banach spaces of holomorphic functions on annuli

Now we study topological vector spaces of holomorphic functions whose do-
main is an annulus. We begin, in this section, by consider Banach spaces of such
functions. For such spaces we shall see that there is a useful theory of nontangential
limits, such as we presented in Section 7.3.3 for harmonic functions. As we shall
see, we can do better for these nontangential limits in the holomorphic case than
can be done in the harmonic case.

First we define the spaces we will investigate.

7.5.3 Definition (Holomorphic Hardy spaces on an annukus) Let I ⊆ R≥0 be an inter-
val and let p ∈ [1,∞]. For F ∈ Hp(AI;C) we denote

∥F∥Hp,I = sup{∥Fr∥p | r ∈ I}.

The subset {F ∈ H(AI;C) | ∥F∥Hp,I < ∞} is denoted by Hp(AI;C) and we call these
spaces the holomorphic Hardy spaces. •

Let us prove the essential properties of the holomorphic Hardy spaces.

7.5.4 Theorem (Hardy spaces are defined on closed annuli) Let I ⊆ R≥0 be an interval.
(i) if F ∈ Hp(AI;C) for p ∈ [1,∞], then there exists F ∈ Hp(Acl(I);C) such that

(a) F|Cint(I) = F|Cint(I),

(b) F has nontangential limits;

(c) limr→r0∥Fr0 − Fr∥p = 0 for every r0 ∈ cl(I).

In particular, by part (i), the spaces Hp(AI;C) and Hp(Acl(I);C) are isometric.

Proof ■

7.5.4 Locally convex topological vector spaces of holomorphic functions
on annuli

7.5.5 Hardy spaces of vector-valued holomorphic functions defined on
annuli
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