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Preface for series

The subject of signals and systems, particularly linear systems, is by now
an entrenched part of the curriculum in many engineering disciplines, particu-
larly electrical engineering. Furthermore, the offshoots of signals and systems
theory—e.g., control theory, signal processing, and communications theory—are
themselves well-developed and equally basic to many engineering disciplines. As
many a student will agree, the subject of signals and systems is one with a reliance
on tools from many areas of mathematics. However, much of this mathematics is
not revealed to undergraduates, and necessarily so. Indeed, a complete account-
ing of what is involved in signals and systems theory would take one, at times
quite deeply, into the fields of linear algebra (and to a lesser extent, algebra in gen-
eral), real and complex analysis, measure and probability theory, and functional
analysis. Indeed, in signals and systems theory, many of these topics are woven
together in surprising and often spectacular ways. The existing texts on signals
and systems theory, and there is a true abundance of them, all share the virtue
of presenting the material in such a way that it is comprehensible with the bare
minimum background.

Should I bother reading these volumes?

This virtue comes at a cost, as it must, and the reader must decide whether
this cost is worth paying. Let us consider a concrete example of this, so that the
reader can get an idea of the sorts of matters the volumes in this text are intended
to wrestle with. Consider the function of time

f (t) =

e−t, t ≥ 0,
0, t < 0.

In the text (Example IV-6.1.3–2) we shall show that, were one to represent this
function in the frequency domain with frequency represented by ν, we would get

f̂ (ν) =
∫
R

f (t)e−2iπνt dt =
1

1 + 2iπν
.

The idea, as discussed in Chapter IV-2, is that f̂ (ν) gives a representation of the
“amount” of the signal present at the frequency ν. Now, it is desirable to be able
to reconstruct f from f̂ , and we shall see in Section IV-6.2 that this is done via the
formula

f (t)“=”
∫
R

f̂ (ν)e2iπνt dν. (FT)

The easiest way to do the integral is, of course, using a symbolic manipulation
program. I just tried this with Mathematica®, and I was told it could not do the
computation. Indeed, the integral does not converge! Nonetheless, in many tables of
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Fourier transforms (that is what the preceding computations are about), we are told
that the integral in (FT) does indeed produce f (t). Are the tables wrong? Well, no.
But they are only correct when one understands exactly what the right-hand side
of (FT) means. What it means is that the integral converges, in L2(R;C) to f . Let us
say some things about the story behind this that are of a general nature, and apply
to many ideas in signal and system theory, and indeed to applied mathematics as
a whole.
1. The story—it is the story of the L2-Fourier transform—is not completely trivial.

It requires some delving into functional analysis at least, and some background in
integration theory, if one wishes to understand that “L” stands for “Lebesgue,”
as in “Lebesgue integration.” At its most simple-minded level, the theory is
certainly understandable by many undergraduates. Also, at its most simple-
minded level, it raises more questions than it answers.

2. The story, even at the most simple-minded level alluded to above, takes some
time to deliver. The full story takes a lot of time to deliver.

3. It is not necessary to fully understand the story, perhaps even the most simple-
minded version of it, to be a user of the technology that results.

4. By understanding the story well, one is led to new ideas, otherwise completely
hidden, that are practically useful. In control theory, quadratic regulator theory,
and in signal processing, the Kalman filter, are examples of this.

5. The full story of the L2-Fourier transform, and the issues stemming from it,
directly or otherwise, is beautiful.
The nature of the points above, as they relate to this series, are as follows.

Points 1 and 2 indicate why the story cannot be told to all undergraduates, or
even most graduate students. Point 3 indicates why it is okay that the story not
be told to everyone. Point 4 indicates why it is important that the story be told
to someone. Point 5 should be thought of as a sort of benchmark as to whether
the reader should bother with understanding what is in this series. Here is how to
apply it. If one reads the assertion that this is a beautiful story, and their reaction
is, “Okay, but there better be a payoff,” or, “So what?” or, “Beautiful to who?” then
perhaps they should steer clear of this series. If they read the assertion that this
is a beautiful story, and respond with, “Really? Tell me more,” then I hope they
enjoy these books. They were written for such readers. Of course, most readers’
reactions will fall somewhere in between the above extremes. Such readers will
have to sort out for themselves whether the volumes in this series lie on the right
side, for them, of being worth reading. For these readers I will say that this series
is heavily biased towards readers who react in an unreservedly positive manner to
the assertions of intrinsic beauty.

For readers skeptical of assertions of the usefulness of mathematics, an inter-
esting pair of articles concerning this is [Wigner 1960] and [Hamming 1980].
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What is the best way of getting through this material?

Now that a reader has decided to go through with understanding what is in
these volumes, they are confronted with actually doing so: a possibly nontrivial
matter, depending on their starting point. Let us break down our advice according
to the background of the reader.

I look at the tables of contents, and very little seems familiar. Clearly if nothing seems
familiar at all, then a reader should not bother reading on until they have acquired
an at least passing familiarity with some of the topics in the book. This can be
done by obtaining an undergraduate degree in electrical engineering (or similar),
or pure or applied mathematics.

If a reader already possess an undergraduate degree in mathematics or engi-
neering, then certainly some of the following topics will appear to be familiar: linear
algebra, differential equations, some transform analysis, Fourier series, system the-
ory, real and/or complex analysis. However, it is possible that they have not been
taught in a manner that is sufficiently broad or deep to quickly penetrate the texts
in this series. That is to say, relatively inexperienced readers will find they have
some work to do, even to get into topics with which they have some familiarity.
The best way to proceed in these cases depends, to some extent, on the nature of
one’s background.

I am familiar with some or all of the applied topics, but not with the mathematics. For
readers with an engineering background, even at the graduate level, the depth
with which topics are covered in these books is perhaps a little daunting. The best
approach for such readers is to select the applied topic they wish to learn more
about, and then use the text as a guide. When a new topic is initiated, it is clearly
stated what parts of the book the reader is expected to be familiar with. The reader
with a more applied background will find that they will not be able to get far
without having to unravel the mathematical background almost to the beginning.
Indeed, readers with a typical applied background will normally be lacking a good
background in linear algebra and real analysis. Therefore, they will need to invest
a good deal of effort acquiring some quite basic background. At this time, they will
quickly be able to ascertain whether it is worth proceeding with reading the books
in this series.

I am familiar with some or all of the mathematics, but not with the applied topics. Readers
with an undergraduate degree in mathematics will fall into this camp, and probably
also some readers with a graduate education in engineering, depending on their
discipline. They may want to skim the relevant background material, just to see
what they know and what they don’t know, and then proceed directly to the applied
topics of interest.

I am familiar with most of the contents. For these readers, the series is one of reference
books.
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Comments on organisation

In the current practise of teaching areas of science and engineering connected
with mathematics, there is much emphasis on “just in time” delivery of mathe-
matical ideas and techniques. Certainly I have employed this idea myself in the
classroom, without thinking much about it, and so apparently I think it a good
thing. However, the merits of the “just in time” approach in written work are, in
my opinion, debatable. The most glaring difficulty is that the same mathematical
ideas can be “just in time” for multiple non-mathematical topics. This can even
happen in a single one semester course. For example—to stick to something ger-
mane to this series—are differential equations “just in time” for general system
theory? for modelling? for feedback control theory? The answer is, “For all of
them,” of course. However, were one to choose one of these topics for a “just in
time” written delivery of the material, the presentation would immediately become
awkward, especially in the case where that topic were one that an instructor did
not wish to cover in class.

Another drawback to a “just in time” approach in written work is that, when
combined with the corresponding approach in the classroom, a connection, per-
haps unsuitably strong, is drawn between an area of mathematics and an area
of application of mathematics. Given that one of the strengths of mathematics
is to facilitate the connecting of seemingly disparate topics, inside and outside of
mathematics proper, this is perhaps an overly simplifying way of delivering math-
ematical material. In the “just simple enough, but not too simple” spectrum, we
fall on the side of “not too simple.”

For these reasons and others, the material in this series is generally organised
according to its mathematical structure. That is to say, mathematical topics are
treated independently and thoroughly, reflecting the fact that they have life inde-
pendent of any specific area of application. We do not, however, slavishly follow
the Bourbaki1 ideals of logical structure. That is to say, we do allow ourselves the
occasional forward reference when convenient. However, we are certainly careful
to maintain the standards of deductive logic that currently pervade the subject of
“mainstream” mathematics. We also do not slavishly follow the Bourbaki dictum
of starting with the most general ideas, and proceeding to the more specific. While
there is something to be said for this, we feel that for the subject and intended
readership of this series, such an approach would be unnecessarily off-putting.

Andrew D. Lewis Kingston, ON, Canada
1Bourbaki refers to “Nicolas Bourbaki,” a pseudonym given (by themselves) to a group of French

mathematicians who, beginning in mid-1930’s, undertook to rewrite the subject of mathematics.
Their dictums include presenting material in a completely logical order, where no concept is referred
to before being defined, and starting developments from the most general, and proceeding to
the more specific. The original members include Henri Cartan, André Weil, Jean Delsarte, Jean
Dieudonné, and Claude Chevalley, and the group later counted such mathematicians as Roger
Godement, Jean-Pierre Serre, Laurent Schwartz, Emile Borel, and Alexander Grothendieck among
its members. They have produced eight books on fundamental subjects of mathematics.
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Preface for Volume 4

The first three volumes of this five volume series can be regarded as the
development of the mathematical background for the main subject, the the-
ory of signals and systems. The mathematical background ranges from rather
elementary—i.e., topics covered in the first year of undergraduate studied—to
standard but advanced—i.e., topics covered at the advanced undergraduate or in-
troductory graduate level—to advanced and specialised—i.e., topics covered at the
advanced graduate level. With this background in place, we can advance happily
to the last two volumes, the first (this one) more or less dealing with signal theory
and the last more or less dealing with system theory.

Our treatment of signals begins with two introductory and motivational chap-
ters, Chapters 1 and 2. In these chapters we discuss signals as represented in the
time- and frequency-domains. The time-domain representation of signals is the
“obvious” one, and we give some motivational discussion using “real world” ex-
amples. In our discussion of time-domain representations, we carefully discuss the
classes of signals that we use extensively in this volume and the next. Already here
we make extensive use of material developed in Chapters III-2, III-3, III-4, and III-6.
In Chapter 1 we encounter for the first time a theme of these volumes, that of a
parallel presentation of continuous- and discrete-time signals and systems.

The introductory discussion in Chapter 2 of frequency-domain representations
is intended to motivate our development of Fourier transform theory in Chap-
ters 5, 6, and 7. As with our discussion of time-domain representations, we use
“real world” examples to motivate frequency-domain representations. In this
chapter we do very little real mathematics, postponing this until later chapters.

Our first technical chapter is Chapter 3 where we talk about the theory of
distributions. The notion of a distribution is one that looks weird at a first encounter.
However, to make use of distributions, one can often get away with a level of
knowledge of the subject which is quite elementary. We give a comprehensive
treatment of the subject, but try to present the elementary parts of the subject in an
elementary way. Inevitably, however, one needs to have a deeper knowledge of
the subject, ultimately connected to descriptions of distributions using the theory
of locally convex spaces, as explained in Section III-6.5.5. A reader who wishes to
be truly expert in the theory of signals and linear systems will have to have facility
with the theory of distributions, and can expect to dedicate some effort to acquiring
this facility.

In Chapter 4 we give a comprehensive treatment of convolution. This is a pecu-
liar operation on signals that arises in a variety of somewhat disconnected contexts.
For example, convolution arises in multiple ways in our development of Fourier
transform theory in Chapters 5 and 6, in approximation theory in Section 4.7
which provides a useful device for understanding the relationships between vari-
ous spaces of signals and distributions, and in linear system theory in Chapter V-6.
Because of the importance of convolution to so many of the topics of interest to us,
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we cover it in greater detail than is usual.
One of the principal topics of this volume is Fourier theory, which we develop

in Chapters 5, 6, and 7. The objective is to develop the theory in a way that
emphasises that the four transforms we present are different representations of
one thing, the difference being the discrete or continuous character of the domain
and codomain of the transforms. Thus we develop the four transforms in a similar
manner, emphasising the many similarities and subtle differences. We also examine
interconnections between the four different Fourier transforms, and to do this
the theory for distributions becomes highly illuminating. Indeed, our treatment
of Fourier theory brings together much of the mathematical material from the
preceding volumes and from Chapters 3 and 4 to yield an elegant and coherent
picture of the theory. The development of this picture, we believe, itself makes it
worth the effort to understand thoroughly the mathematical presentation of this
material.

In Chapter 8 we tie together our discussion of the four Fourier transforms, and
weave these together with the topics of sampling and periodisation. As part of
this discussion, we consider the Poisson Summation Formula and the Sampling
Theorem in various guises.

The final subject we consider connected to signal theory is the two Laplace
transforms, one for continuous-time signals and the other for discrete-time signals.
These Laplace transforms are considered in Chapter 9. Our presentation of this
material is very different from the typical presentation. First of all, our terminol-
ogy is different as we refer to both the continuous- and discrete-time transforms
as “Laplace” transforms. The usual terminology is that the continuous-time trans-
form is called the “Laplace transform” while the discrete-time transform is called
the “z-transform.” This is so clearly unacceptable that we do not accept it. But
there are also substantive differences between the usual treatment and the one we
give. The usual treatment of the Laplace transform is perhaps one of the more ex-
treme instances of how a mathematical topic is regarded as a mere hammer, since
the Laplace transform is a tool that can be used, e.g., to solve certain differential
equations (see Sections V-4.5, V-4.8, V-5.4 and V-5.8). We try to do more with
the Laplace transform, however, by regarding it as an actual transform, paying
attention to its domain and codomain.

Andrew D. Lewis Kingston, ON, Canada
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Chapter 1

Signals in the time-domain

In this chapter we present the notion of a signal in its most intuitively natural
setting, the time-domain. We begin in Section 1.1 with a description of what
we mean by time in various forms. This will provide us with the sorts of sets
on which the notion of a signal is defined. We follow our discussion of time
with a basic description of signals. In this initial discussion a signal is simply
a function. If one talks of signals only as functions with no additional features,
then it becomes very difficult to actually do anything in a clear way with signals.
Indeed, it is extremely important to be able to describe, in a particular application,
the sort of signals one wishes to allow. The set of allowable signals should be
sufficiently large that any signals arising in the application are likely to be allowed,
but not so large that one cannot say anything useful about the problem. For this
reason, we spend a significant portion of this chapter talking in detail about various
properties of signals. Some of the most useful of these structures involve a norm
(see Chapter III-3) that allows us to give signals the notion of size. As we shall
see, there are various notions of size, and the one to use in a certain situation is a
matter of understanding the problem at hand. With these ideas at one’s disposal, it
is relatively easy to understand the various classes of signals that will be of interest
to us. The discrete-time situation is considered first, in Section 1.2. In Section 1.3
we discuss continuous-time signals. For most of the chapter we focus on signals
that are scalar-valued (with scalars being either inR or C) functions of a single real
variable. In Section 1.4 we introduce the possibility of signals with domains and
codomains of dimension greater than one.

Do I need to read this chapter? If you are learning about signals, this is the place
to start. •
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Section 1.1

Time, signals, and elementary properties

This section is mainly motivational, and gives only fairly elementary definitions
and no deep results. The idea is to develop some ideas about where signals
come up, how one represents them, and what simple properties might be used to
characterise them. In Section 1.1.7 we motivate the more technical discussion that
follows in Sections 1.2 and 1.3. Here we shall see that significant diversions to
Chapters III-2, III-3, and III-4 are necessary if one is to really arrive at useful tools
for dealing with signals.

Do I need to read this section? This section is mainly light reading, and will
hopefully motivate the heavier reading to follow. If you are the type that welcomes
lightness before heaviness, this section will be a beneficial read for you. •

1.1.1 Examples and problems involving time-domain signals

Signals in the time-domain are normally mathematically represented in one of
two ways: continuous or discrete. A continuous-time representation means that
one has assigned a value of the signal for all times. On the other hand, for a
discrete-time representation, one only has values for the signal at certain times,
typically evenly spaced. There are other attributes one can assign to signals, but
we postpone to subsequent sections a detailed discussion of these. Here we mean
to merely give a few concrete examples of signals so that we have some idea of
what we might mean in practice.

1.1.1 Examples (Time-domain signals)
1. In Figure 1.1 is shown the opening average for the Dow Jones Industrial Average

over a span of more than one hundred years.1 This is a discrete-time signal.
2. In Figure 1.2 is shown data representing the yearly average temperature as

recorded in Central England since 1659.2 As with the Dow Jones data, this
signal is discrete-time.

3. On June 28, 1991 the author experienced a cordial earthquake measuring 5.5 Mw
(moment magnitude). The raw accelerometer data for this quake is shown in
Figure 1.3.3 This is an example of a continuous-time signal.

4. In Figure 1.4 we show a plot of a segment of human speech recorded in the

1Data downloaded from http://www.travismorien.com/FAQ/dow.htm (link no longer active).
2Data downloaded from the Meteorological Office in the United Kingdom,

http://www.met-office.gov.uk/.
3Data downloaded from the United States National Strong-Motion Program,

http://nsmp.wr.usgs.gov/, the data being compiled by the United States Geological Sur-
vey.
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Figure 1.1 Dow Jones Industrial Average opening data from May
26, 1896 to January 26, 2001
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Figure 1.2 Average daily temperature by year in Central England

time-domain, with the signal being normalised to have maximum value +1 and
minimum value −1. This is a continuous-time representation of a signal.

5. In Figure 1.5 we show the time-domain representations of two musical clips.
The clip on the left is the first movement of Mozart’s Eine kleine Nachtmusik
(K525), and that on the right is from the soundtrack of the Darren Aronofsky
movie π. These are both continuous-time signals although, when they are
pressed onto a CD, the resulting signal becomes a discrete-time signal. •

While the notion of a time-domain signal is not so exotic, what is more exotic is
the mathematics behind representing time-domain signals in a useful and general
manner. Let us address in a superficial way some of the problems that give rise to
the necessity of talking coherently and precisely about classes of signals.
1. In Example 1.1.1–5 we mentioned that, when pressing music onto a CD, one
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converts a continuous-time signal to a discrete-time signal. It then becomes
interesting to know when the discrete-time representation is faithful, in some
sense, to the continuous-time representation. Clearly something is lost. Can
one quantify what is lost? Are there signals for which nothing is lost?

2. Suppose one wishes to design an algorithm to control a process, and wants to
ensure that external disturbances do not too seriously affect the behaviour of
the system. For what class of disturbances can one develop a general theory
that guarantees good system behaviour?

3. It sometimes arises that one is interested in signals that are not, in fact, actually
signals. The prototypical example of this is the so-called Dirac δ-function. This
“signal” is intended to model an impulse, by which we mean a large magnitude
signal that is defined for a very short period of time. Clearly, given a signal of
some large magnitude, and defined for some short time, one can always devise
another signal, possessing some larger magnitude and defined for a shorter
time. Thus, what one is really after—the highest magnitude signal defined
for the shortest time—does not exist. Is there a mathematically precise way to
capture the essence of this nonexistent signal?

4. Suppose one wishes to measure a given signal, but that the signal is included
in some background noise, i.e., is included as part of a larger signal, the rest of
which is of no interest. Is it possible to extract the signal of interest? For what
sorts of signals is this possible? For what sorts of noise is this possible?

This volume is devoted to developing the machinery needed to address questions
such as these.

1.1.2 Time

For the notion of time as we consider it, it will be helpful to recall the notion of a
semigroup from Definition I-4.1.2, a group from Definition I-4.1.4, and a subgroup
from Definition I-4.1.9. There are lots of examples of groups, some of which are
discussed in Section I-4.1. The group of interest to us is (R,+), the group formed
by the set R of real numbers and the group multiplication given by addition of
numbers. We shall be interested in subgroups of this group and also in subsets that
are semigroups. Examples of subgroups of R include
1. the set Z of integers (see Section I-1.4),
2. the set Z(∆) = {∆a | a ∈ Z} of integer multiples of ∆ ∈ R>0, and
3. the set Q of rational numbers (see Definition I-2.1.1).
It is an exercise for the reader (see Exercise I-4.1.6) to show that these are indeed
subgroups. As examples of subsets of R that are semigroups we include
4. the set t0 +Q = {t0 + q | q ∈ Q} for t0 ∈ R and
5. the set Z(t0,∆) = {t0 + k∆ | k ∈ Z} for t0 ∈ R.
If t0 ∈ Q then t0 + Q = Q and if t0 ∈ Z(∆) then Z(t0,∆) = Z(∆). In Exercise I-4.1.7
the reader can show that these statements are true.
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Now we define the basic collections of times that we will encounter in the text,
recalling from Example I-2.5.4 the notion of an interval.

1.1.2 Definition (Time-domain) A time-domain is a subset ofR of the form S∩ I where
S ⊆ R is a semigroup in (R,+) and I ⊆ R is an interval. A time-domain is

(i) continuous if S = R,
(ii) discrete if S = Z(t0,∆) for some t0 ∈ R called the origin shift and for some
∆ ∈ R>0 called the sampling interval,

(iii) finite if cl(I) is compact,
(iv) infinite if it is not finite,
(v) positively infinite if sup I = ∞,
(vi) negatively infinite if inf I = −∞, and
(vii) totally infinite if I = R. •

Let us give some examples, just by means of establishing notation for future
use.

1.1.3 Examples (Time-domains)
1. We denote Z≥0(∆) = Z(∆) ∩R≥0.
2. We denote Z>0(∆) = Z(∆) ∩R>0. •

1.1.4 Remarks (Some commonly made assumptions about time-domains)
1. We shall denote a typical point in a time-domain by t to signify time. However,

it is possible that in some applications of our techniques the “time” variable
will not be time. Nonetheless, we shall talk as if it were indeed time since this
gives access to some intuition.

2. We shall deal almost exclusively with discrete time-domains where S =
Z(∆), i.e., with no origin shift.

3. Note that for continuous time-domains we use the words “finite” and “infinite”
not in their usual mathematical way (where finite means “consists of a finite
number of points”), but in the common usage of these words as they refer to
time.

4. To eliminate the need to deal with trivial cases, we shall tacitly suppose that all
time-domains consist of more than one point, unless otherwise stated.

5. We restrict ourselves in the discrete case to signals that are sampled at regular
intervals. It can happen that sampling will happen at irregular intervals. How-
ever, to generate a useful theory for such signals is difficult, so much so that
if one is confronted with an irregularly sampled signal, the first thing to do is
convert it to a regularly sampled signal. •

Now let us consider some transformations of time-domains that will be useful
to us. We begin with a very general definition.
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1.1.5 Definition (Reparameterisation) For time-domains T1 and T2, a reparameterisa-
tion of T1 to T2 is a bijection τ : T2 → T1 that is either monotonically increasing or
monotonically decreasing. •

It perhaps seems odd why a reparameterisation of T1 should have T1 as its
codomain, and not its domain. The reason for this will be clear in Section 1.1.4
when we discuss how reparameterisations are used to transform signals. For the
moment, let us content ourselves with a few specific sorts of reparameterisations.

1.1.6 Examples (Reparameterisations)
1. For a ∈ R, the shift of a time-domain T1 by a is defined by taking the time-

domain
T2 = {t + a | t ∈ T}

and the reparameterisation τa : T2 → T1 of T1 defined by τa(t) = t − a.
2. For a time-domain T1, the transposition of T1 is defined by taking the time-

domain
T2 = {−t | t ∈ T1}

and the reparameterisation σ : T2 → T1 defined by σ(t) = −t. Often we will use
the reparameterisation in the case when σ(T1) = T1.

3. For a time-domain T1 and for λ ∈ R>0, the dilation of T1 by λ is defined by
taking the time-domain

T2 = {λt | t ∈ T1}

and the reparameterisation ρλ : T2 → T1 defined by ρλ(t) = λ−1t.
4. Here we takeT1 = T2 = [0, 1] and define a reparameterisation τ : T2 → T1 ofT1

by τ(t) = 1
2 (1 − cos(πt)). We illustrate this reparameterisation in Figure 1.6. •

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.6 A reparameterisation of [0, 1]
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1.1.3 Time-domain signals: basic definitions

In this section we give the coarsest definition of a signal, along with some
examples of signals. This will serve to provide a setting for the more abstract
notions of signal spaces to follow in Sections 1.2 and 1.3. Throughout this chapter,
and indeed this volume, we will use the symbol F to stand for either R or C. We
will denote by |a| the absolute value of a if a ∈ R and the complex magnitude of a
if a ∈ C. Similarly, ā = a if a ∈ R and ā is the complex conjugate of a if a ∈ C.

1.1.7 Definition (Time-domain signal) LetT = S∩I be a time-domain and letF ∈ {R,C}.
An F-valued time-domain signal on T is a map f : T→ F. If T is continuous then
f is a continuous-time signal and if T is discrete then f is a discrete-time signal. •

1.1.8 Notation (“Signal” versus “time-domain signal”) Since it is most natural to think
of signals in the time-domain—as opposed to in the frequency-domain as we shall
discuss in Chapter 2—we shall very often just say “signal” instead of “time-domain
signal.” •

We next consider the manner in which we shall depict signals in the time-
domain. For R-valued signals defined on a continuous time-domain T, the usual
depiction is simply the graph of the signal in the sense that we learn in elementary
school. However, for C-valued signals or for signals defined on discrete time-
domains, there is no such standard depiction. So let us give our rules for this. First
of all, let us consider how to depict aR-valued discrete-time signal. We do this as in
Figure 1.7, where we also show a depiction of a R-valued continuous-time signal

-2 -1 0 1 2
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-2 -1 0 1 2
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4

Figure 1.7 The depiction of a R-valued continuous-time signal
(left) and discrete-time signal (right)

for contrast. The idea is that one represents a discrete-time signal by placing a line
going from (t, 0) to (t, f (t)) in the plane. To represent a C-valued signal f : T → C
one can proceed in two natural ways. One way is to depict the signal is to plot the
two R-valued signals t 7→ Re( f (t)) and Im( f (t)). One could alternatively plot the
twoR-valued signals t 7→ | f (t)| and t 7→ arg( f (t)). In Figure 1.8 we show these two



10 1 Signals in the time-domain 2022/03/07

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

Figure 1.8 The real and imaginary parts (left) and the magnitude
and phase (right) for the signal t 7→ eit

possible depictions of the complex signal t 7→ eit on the continuous time-domain
[0, 2π]. Similar plots can be produced for discrete-time complex signals. Note
that representing a complex signal using magnitude and phase has the potential
problem that when the signal has zero magnitude the phase is not well-defined.
One could arbitrarily choose, say, to set the phase to be zero at these points, but
this is not actually the best thing to do since it may destroy some nice features
of the phase. For example, the phase may extend continuously to include points
where the magnitude is zero, but this may not be preserved by setting the phase
to an arbitrary value. In our examples we shall generally try to sidestep these
complications with representing complex-valued signals by considering only real-
valued signals.

Let us consider some examples of signals to illustrate the where discrete- and
continuous-time signals might naturally arise.

1.1.9 Examples (Signals)
1. We denote by 1 : T→ R the signal 1(t) = 1, t ∈ T.
2. The signal

1≥0(t) =

1, t ≥ 0
0, t < 0
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is called the unit step signal and is a continuous-time signal defined on a totally
infinite time-domain.

3. The signal

R(t) =

t, t ≥ 0
0, t < 0

is called the unit ramp signal and again is a continuous-time signal defined on
a totally infinite time-domain.

4. A binary data stream is a discrete-time signal defined on T = Z and taking
values in the set {0, 1}.

5. Consider the special binary data stream P : Z→ {0, 1} defined by

P(t) =

1, t = 0
0, otherwise.

This is called the unit pulse.
6. On R define a R-valued signal g by

g(t) =

1, t ∈ [0, 1
2 ],

0, otherwise.

Now for a, ν ∈ R>0 and ϕ ∈ R define a signal

□a,ν,ϕ(t) =
∑
n∈Z

ag(ν(t + n) + ϕ),

which we call the square wave of amplitude a, frequency ν, and phase ϕ. In
Figure 1.9 we show the features of this signal. Note that as we have defined it,

a

ν−1

φ

Figure 1.9 The square wave □a,ν,ϕ

□a,ν,ϕ is a continuous-time signal defined on a totally infinite time-domain.
7. We proceed as in the preceding example, but now take

g(t) =


2t, t ∈ [0, 1

2 ],
2 − 2t, t ∈ ( 1

2 , 1),
0, otherwise,
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and define
△a,ν,ϕ(t) =

∑
n∈Z

ag(ν(t + n) + ϕ),

which we call the sawtooth of amplitude a, frequency ν, and phase shift ϕ. This
signal is plotted in Figure 1.10. As with the square wave defined above, this is

a

ν−1

φ

Figure 1.10 The saw tooth △a,ν,ϕ

a continuous-time signal defined on a totally infinite time-domain.
8. The Down Jones Industrial Average opening data depicted in Figure 1.1 is a

discrete-time signal defined on a finite time-domain.
9. The Central England yearly average temperature data in Figure 1.2 is an exam-

ple of a discrete-time signal defined on a finite time-domain.
10. The earthquake data of Figure 1.3 is an example of a continuous-time signal

defined on a finite time-domain. •

1.1.4 Elementary transformations of signals

In this section we shall consider ways of producing new signals from existing
ones. The idea of a “transformation” of a signal will be important to us in this
volume in terms of Fourier analysis. However, the things we discuss now are
of a far more elementary nature and are given mainly be means of establishing
notation.

We first consider transformations of signals achieved by a manipulation of the
codomain. The notation for this is as follows.

1.1.10 Definition (Codomain transformation of a signal) If F ∈ {R,C}, if T is a time-
domain, if f : T→ F is a signal, and if ϕ : F→ F is a map, the codomain transfor-
mation of f by ϕ is the signal ϕ ◦ f : T→ F. •

This, then, is a simple idea merely given a suggestive name. Let us illustrate
this with a few examples.

1.1.11 Examples (Codomain transformations)
1. We define ϕ : F → F by ϕ(x) = x̄. Then the codomain transformed signal ϕ ◦ f

we denote by f̄ .
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Figure 1.11 Full-wave rectification (bottom left) and half-wave
rectification (bottom right) of a discrete-time signal (top)

2. Let F = R and define ϕ : R→ R by ϕ(x) = |x|. Then, for a signal f : T→ R the
codomain transformed signal ϕ ◦ f is known as the full-wave rectification of f .
This is depicted for a discrete-time signal in Figure 1.11. Of course the same
ideas apply to continuous-time signals.

3. We again let F = R and now we consider ϕ : R→ R defined by

ϕ(x) =

0, x < 0,
x, x ≥ 0.

In this case, for a signal f : T→ R the codomain transformed signal ϕ ◦ f is the
half-wave rectification of f and is depicted in Figure 1.11 for a discrete-time
signal.

4. We take F = R and for M ∈ R>0 consider the function ϕM : R→ R defined by

ϕM(x) =


x, x ∈ [−M,M],
−M, x < −M,
M, x > M.

We give the graph of this function on the left in Figure 1.12. The idea of
this codomain transformation is that it truncates the values of a signal to have
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Figure 1.12 Two saturation functions for M = 10

a maximum absolute value of M. Such a codomain transformation is called
a saturation function. Sometimes it is advisable to use a smooth saturation
function, and an example of one such is ψM(x) = M tanh( x

M ) whose graph we
show on the right in Figure 1.12. In Figure 1.13 we show the two saturation
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Figure 1.13 The application of the saturation function ϕM (bot-
tom left) and the saturation function ψM (bottom right) to a
continuous-time signal (top)

functions applied to a continuous-time signal. Of course, one can as well apply
the idea to a discrete-time signal.

5. Particularly in our world where almost everything is managed by digital com-
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puters, signals with continuous values are not often what one deals with in
practice. Instead, what one actually has at hand is a signal whose values live in
a discrete set. Thus one would like to convert a signal with continuous values
to one with discrete values. This general process is known as quantisation. A
simple way to quantise a signal is via the codomain transformation θh : R→ R
defined by θh(x) = h⌈x

h⌉, where we recall from Section I-2.2.3 the definition of
the ceiling function x 7→ ⌈x⌉ as giving the smallest integer greater than or equal
to x. The graph of the function is depicted in Figure I-2.1. The quantisation
θh is called the uniform h-quantisation. In Figure 1.14 we depict the uniform
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Figure 1.14 The uniform quantisation (right) of a continuous-
time signal (left)

quantisation of a continuous-time signal. The same idea applies, and indeed is
more natural, for discrete-time signals. •

Next we consider transformations of signals achieved by altering the domain
of the signal. In Definition 1.1.5 we consider the natural class of domain trans-
formations to consider, calling them reparameterisations. For these we make the
following definition.

1.1.12 Definition (Domain transformation of a signal) If F ∈ {R,C}, if T1 and T2 are
time-domains, if f : T1 → F is a signal, and if τ : T2 → T1 is a reparameterisation
of T1, the domain transformation of f by τ is the signal τ∗ f : T2 → F defined by
τ∗ f (t) = f ◦ τ(t). •

The funny notation τ∗ f to denote the composition f ◦ τ is intended to convey
the idea that τ transforms the signal f into the new signal τ∗ f , an idea that is less
easy to see from the notation f ◦ τ. We also wee here why it is natural to define a
reparameterisation of T1 as having codomain T1, not domain T1.

Let us consider some examples of domain transformations, corresponding to
some of the examples of reparameterisations introduced in Example 1.1.6.

1.1.13 Examples (Domain transformations)
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1. For a ∈ R let us consider the shift τa : T2 → T1 of T1. For a signal f : T1 → F,
the corresponding domain transformed signal is defined by τ∗a f (t) = f (t− a) for
every t ∈ T2.

2. Let us consider the transposition σ : T2 → T1. For a signal f : T1 → F, the
corresponding domain transformed signal is defined by σ∗ f (t) = f (−t) for every
t ∈ T2.

3. For λ ∈ R>0, let us consider the dilation ρλ : T2 → T1. For a signal f : T1 → F,
the corresponding domain transformed signal is defined by ρ∗λ f (t) = f (λ−1t). •

The reader is asked to understand these transformations in Exercise 1.1.4.
The signal transformations considered above all have the feature that the charac-

ter of the time-domain is preserved. That is to say, a discrete-time (resp. continuous-
time) signal is transformed to a discrete-time (resp. continuous-time) signal.
However, it is also interesting and important to consider transformations taking
continuous-time signals to discrete-time signals, and vice versa. Let us now turn
our attention to this.

1.1.14 Definition (Sampling, interpolation) Let Tcont be a continuous time-domain and
let Tdisc be a discrete time-domain such that Tcont is the smallest continuous time-
domain containing Tdisc. Let F ∈ {R,C}.

(i) For a signal fcont : Tcont → F define a signal fdisc : Tdisc → R by fdisc(t) = fcont(t)
for all t ∈ Tdisc. The signal fdisc is the Tdisc-sampled signal corresponding to
fcont. The map fcont 7→ fdisc is called sampling.

(ii) For a signal fdisc : Tdisc → F, an interpolant of fdisc is a signal fcont : Tcont → F
with the property that fcont(t) = fdisc(t) for all t ∈ Tdisc. A rule for assigning to
any fdisc an interpolant fcont is called interpolation. •

Note that sampling is uniquely defined. However, there are many possible
ways in which one may interpolate from a discrete-time signal to a continuous-
time signal. Let us consider a few of these.

1.1.15 Examples (Sampling and interpolation)
1. Sampling is easy to understand, and we illustrate it in Figure 1.15.
Consider a discrete time-domain Tdisc with origin shift t0 and sampling interval ∆
and let Tcont be the smallest continuous time-domain containing Tdisc. Note that
every point in Tcont lies in a unique interval of the form [t0 + k∆, t0 + (k + 1)∆) for
some k ∈ Z>0. Let us denote this interval by Ik. We take F = R and a signal
fdisc : Tdisc → R.
2. The interpolation defined by defining fcont(t) = fdisc(t0 + k∆) if t ∈ Ik is called the

zeroth-order hold. This is depicted in Figure 1.16. This is a simple interpolation
method that has the advantage that it can be implemented in real time since it
does not rely on knowledge of the value of signal at future times. As we shall
see, some other interpolation schemes do not have this feature.
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Figure 1.15 Sampling

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1.16 Zeroth-order hold (middle left), first-order hold
(middle right), and cubic spline (bottom) applied to a discrete-
time signal (top)
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3. The interpolation defined by

fcont(t) = fdisc(t0 + k∆) +
fdisc(t0 + (k + 1)∆) − fdisc(t0 + k∆)

∆
(t − (t0 + k∆))

when t ∈ Ik is called the first-order hold. Checking the formulae will convince
the reader that the first-order hold linearly interpolates between the values of
the discrete-time signal; we illustrate this interpolation in Figure 1.16. While
it typically provides a more pleasant continuous-time signal, e.g., one that is
continuous, it does require knowledge of the future values of the signal and so
must necessarily carry a delay when implemented in real time.

4. Another general scheme for interpolation is the so-called spline interpolation.
The topic of splines is a huge one, so we only give a brief discussion. A popular
technique of spline interpolation is the cubic spline. Here, on each of the
intervals Ik, one asks that fcont be a cubic polynomial function. Thus, if one has
N intervals I1, . . . , IN, one has N cubic polynomials to determine, each with four
unknown coefficients. To determine the 4N coefficients one imposes conditions
on the cubic polynomials. These are:

(a) fcont(t) = fdisc(t) at the endpoints of the intervals I1, . . . , IN (these are N + 1
conditions);

(b) the value at the right endpoint of Ik of the cubic polynomial on Ik should
agree with the value at the left endpoint of Ik+1 of the cubic polynomial on
Ik+1 (these are N − 1 conditions);

(c) the value at the right endpoint of Ik of the derivative of the cubic polynomial
on Ik should agree with the value at the left endpoint of Ik+1 of the derivative
of the cubic polynomial on Ik+1 (these are N − 1 conditions);

(d) the value at the right endpoint of Ik of the second derivative of the cubic
polynomial on Ik should agree with the value at the left endpoint of Ik+1

of the second derivative of the cubic polynomial on Ik+1 (these are N − 1
conditions).

The above conditions give N + 1 + 3(N − 1) = 4N − 2 linear conditions on
the 4N coefficients, and these may be shown to be linearly independent. One
then needs two additional conditions to be able to unambiguously prescribe an
interpolation method. These typically involve determining a condition at each
of the left endpoint of I1 and the right endpoint of IN. One such choice is the
natural cubic spline where one asks that the second derivatives at these points
be zero. This is what is shown in Figure 1.16. •

1.1.5 Causal and acausal signals

In “real life” signals occur on finite time-domains. However, it is convenient
mathematically to allow infinite time-domains. And apart from mathematical
convenience, many useful ideas are best discussed considering what would happen
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when time goes to infinity. The allowing of signals that are defined for increasingly
negative times is more difficult to motivate physically. However, such signals can
arise during the course of a mathematical treatment, and so it is useful to allow
them. In this section we consider carefully the characterisation of signals on the
basis of how they are look for infinite and negatively infinite times.

1.1.16 Definition (Causal signal, acausal signal) Let f be a signal on a time-domain T.
We say f is

(i) causal if either

(a) T is positively infinite but not negatively infinite or
(b) T is totally infinite and there exists T ∈ T so that f (t) = 0 for all t < T;

(ii) acausal if either

(a) T is negatively infinite but not positively infinite or
(b) T is totally infinite and there exists T ∈ T so that f (t) = 0 for all t > T.

If T = R, then we additionally say that f is
(i) strictly causal if f (t) = 0 for t < 0 and
(ii) strictly acausal if f (t) = 0 for t > 0. •

Let us visit the examples we provided for signals in the preceding section and
consider their causal character.

1.1.17 Examples (Causal and acausal signals)
1. The unit step signal 1≥0 is strictly causal.
2. The unit ramp signal R is also strictly causal.
3. A binary data stream is neither causal nor acausal.
4. The unit pulse P is both causal and acausal.
5. The square wave □a,ν,ϕ is neither causal nor acausal.
6. The sawtooth △a,ν,ϕ is neither causal nor acausal.
7. The Dow Jones Industrial Average opening averages data is neither causal nor

acausal.
8. The Central England yearly average temperature data is neither causal nor

acausal.
9. The Sierra Madre earthquake data is neither causal nor acausal. •

Note that some of these signals are neither causal nor acausal. There are two
reasons why this can happen.
1. In Examples 5 and 6 the signals are nonzero for arbitrarily large positive and

negative times. These are examples of signals that are not physical. However,
one often wishes to use the square wave and the sawtooth for positive times.
In this case, one can proceed in one of two ways: (a) one can leave the signals
defined on all of T = R and multiply them by the step signal to render them
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zero for negative times or (b) one can simply restrict them to be defined on
T = [0,∞). One should be careful to understand that these two ways of making
the signal causal, although they appear to be the same, are really different since
the time-domains are different. There will be occasions in book where it will be
necessary to really understand the time-domain one is using.

2. In Examples 7, 8, and 9 the signals are only defined on a finite time-domain,
and this makes them ineligible for being either causal or acausal. If one wishes
to realise these signals as causal signals, one can extend them from their current
time-domain T to a time-domain T that is either positively infinite or totally
infinite by making the extended signals zero on T \ T. As with the preceding
case, one should understand that these two extensions are genuinely different
because they have different time-domains.

1.1.6 Periodic and harmonic signals

We shall discuss periodic signals in some detail in Sections 1.2.4 and 1.3.4.
However, we consider them here, along with harmonic signals, since it is something
easy to do before we launch into the mathematical treatment of signals.

1.1.18 Definition (Periodic signal, harmonic signal) LetF ∈ {R,C} and letT be a totally
infinite time-domain.

(i) A signal f : T → F is periodic with period T ∈ R>0 if f (t + T) = f (t) for all
t ∈ T, i.e., if τ∗

−T f = f .
(ii) The fundamental period of a periodic signal f is the smallest number T0 for

which f has period T0, provided that this number is nonzero.
(iii) A signal f : T→ F is harmonic with frequency ν ∈ R \ {0}, amplitude a ∈ R>0,

and phase ϕ ∈ R if

f (t) =

aei(2πνt+ϕ), F = C,

a cos(2πνt + ϕ), F = R,
(1.1)

for all t ∈ T. The angular frequency for the harmonic signal is ω = 2πν. For
R-valued signals, the quantity eiϕ is the phasor for the signal. The signal
defined by (1.1) is denoted Ha,ν,ϕ.

(iv) A trigonometric polynomial of period T is a finite linear combination of
harmonic signals of period T. The degree of a trigonometric polynomial P the
smallest positive integer d such that

P(t) =
d∑

n=−d

cne2πinT−1

for some cn ∈ C, n ∈ {−d, . . . , 0, . . . , d}. •
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1.1.19 Notation (Frequency versus angular frequency) It is worth mentioning the dis-
tinction between frequency and angular frequency. This is easiest to understand
in terms of the units one uses for each. The units for frequency are s−1 or Hz (pro-
nounced “hertz”4 and the units for angular frequency are rad/s. The convention
about which of these frequencies to use is not uniformly established. The distinc-
tion does come up with the various flavours of Fourier transform notation that
are used. For the Fourier transform we use frequency and not angular frequency.
However, there will be other occasions where we will use angular frequency. • such as...

Let us record some properties of, and relationships between, periodic and har-
monic signals.

1.1.20 Proposition (Properties of periodic and harmonic signals) Let T be a totally
infinite time-domain. The following statements hold:

(i) a periodic signal with period T is also a periodic signal with period kT for k ∈ Z>0;
(ii) if T is a continuous time-domain then harmonic signals are periodic;
(iii) if T is a discrete time-domain with sampling interval ∆ then Ha,ν,ϕ is periodic if and

only if ν∆ ∈ Q;
(iv) if T is a discrete time-domain with sampling interval ∆ then Ha,ν,ϕ = Ha,ν+j∆−1,ϕ for

all j ∈ Z>0.
Proof (i) This is Exercise 1.1.5.

(ii) This follows directly from the definitions.
(iii) First suppose that ν∆ ∈ Q, so that we have ν∆ = j

k for j, k ∈ Z, and we may as
well suppose that j and k are coprime. Then we compute

Ha,ν,ϕ(t + k∆) = aei(2πν(t+k∆)+ϕ) = aeiϕe2πiνte2πiνk∆

= aeiϕe2πiνte2πi j = aei(2πνt+ϕ) = Ha,ν,ϕ(t),

for all t ∈ T. Thus Ha,ν,ϕ is periodic with period k∆. Now suppose that Ha,ν,ϕ is periodic
with period T. Then we must have T = k∆ for some k ∈ Z>0. Then

Ha,ν,ϕ(t + k∆) = Ha,ν,ϕ(t), t ∈ T

=⇒ aeiϕe2πiν(t+k∆) = aeiϕe2πiνt, t ∈ T

=⇒ e2πiνk∆ = 1.

Thus 2πνk∆ = 2π j for some j ∈ Z>0, giving ν∆ = j
k ∈ Q.

(iv) For t = ∆k ∈ Z(∆) we have, in the event that F = C,

Ha,ν+ j∆−1,ϕ(t) = aei(2π(ν+ j∆−1)∆k+ϕ)

= aeiϕe2πiν∆ke2πi jk = aei(2πν∆k+ϕ) = Ha,ν,ϕ(t).

The idea is exactly the same if F = R. ■

4Heinrich Rudolf Hertz (1857–1894) was a German physicist who is perhaps most well-known
for his contributions to contact in mechanical systems and electromagnetic theory.
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The phenomenon illustrated by part (iv) of the proposition is an important one
in digital signal processing and is called aliasing. The phenomenon is that signals
that are different in continuous-time can look the same in discrete-time.

Note that a periodic signal with period T on a time-domain T is determined
uniquely by its values on the set [0,T]∩T. Indeed, we shall frequently only think of
such a signal as being defined on [0,T]∩T. Let us, therefore, give this time-domain
a name.

1.1.21 Definition (Fundamental domain of a periodic signal) If F ∈ {R,C}, if T is
an infinite time-domain, and if f : T → F is periodic with period T, then the
fundamental domain of f is [0,T] ∩ T. •

It is convenient, in fact, to be able to start with a signal defined on [0,T]∩T and
extend it to a periodic signal. There are a few natural ways to do this. Let us give
some useful terminology for this.

1.1.22 Definition (Even and odd signals) LetF ∈ {R,C}, letT be an infinite time-domain
with a zero origin shift, and let f : T→ F. The signal f

(i) is even if f (−t) = f (t) for each t ∈ T, i.e., if σ∗ f = f , and
(ii) is odd if f (−t) = − f (t) for each t ∈ T, i.e., if σ∗ f = − f . •

We then have the following terminology.

1.1.23 Definition (Periodic extension, even and odd extension) Let F ∈ {R,C}, let T
be a time-domain of the form [a, a+ T)∩ S, and let f : T→ be a signal. Let T be the
unique infinite time-domain for which T ∩ [0,T) = T.

(i) the T-periodic extension of f is the signal fper : T→ F defined by

fper(t) = f (t − kT), t ∈ [a + kT, a + (k + 1)T).

(ii) if a = 0, the even extension of f is the signal feven : T→ F that is the 2T-periodic
extension of the signal f : [0, 2T)→ F defined by

f (t) =

 f (t), t ∈ [0,T),
f (2T − t), t ∈ [T, 2T).

(iii) if a = 0, the odd extension of f is the signal fodd : T→ F that is the 2T-periodic
extension of the signal f : [0, 2T)→ F defined by

f (t) =

 f (t), t ∈ [0,T),
f (t − T), t ∈ [T, 2T).

•

This is all trivial as an example makes clear.
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1.1.24 Examples (Periodic extension, even and odd extension)
1. The first example we consider is a discrete-time example. Let ∆ ∈ R>0 and

let T = N∆ for some N ∈ Z>0. From Example 1.1.9–5 recall the unit pulse
P : Z(∆)→ R defined by

P(t) =

1, t = 0,
0, otherwise.

The T-periodic extension of P is the T-periodic unit pulse Pper,T : Z(∆) → R
defined by

Pper,T(t) =

1, t = kT for some k ∈ Z,
0, otherwise.

2. Consider the signal f : [ 1
3 ,

4
3 ]→ R defined by f (t) = t. The periodically extended

signal fper : R→ R is shown in Figure 1.17. Note that the periodic extension is
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Figure 1.17 Periodic extension of a signal

neither even nor odd.
3. We consider the signal f : [0, 1]→ R defined by f (t) = t. In Figure 1.18 we give

the 1-periodic extension, along with the even and odd extensions. Note that
the even and odd extensions do indeed have period 2, and also not that the
periodic extension is neither even nor odd. •

1.1.7 Characterising time-domain signals

The preceding discussion of time-domain signals has a pleasant, breezy, high-
level flavour. However, except for the purposes of establishing some language, it
is almost devoid of technical value. What one is interested in in most applications
is not instances of signals, but classes of signals, and classes of signals less vapid
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Figure 1.18 Periodic (top left), even (top right), and odd (bottom)
extensions

than “causal,” “acausal,” or, “periodic.” In this section we address the sorts of
properties by which one might organise classes of signals.

Although we will not discuss systems systematically until Volume 4, it is conve-
nient to use the notion of a system to motivate our discussion of signal properties.
A system, in the broadest terms, is a “black box” accepting inputs and returning
outputs. We schematically represent this in Figure 1.19. The inputs and outputs

inputs System outputs

Figure 1.19 A depiction of a system

are both to be thought of, for our purposes, as living in some collection of signals.
A very useful and broadly used system property is linearity, the idea being that the
output resulting from a linear combination of inputs is the same linear combination
of outputs. It, therefore, makes sense to suppose that our signals spaces are vector
spaces. System motivations aside, the characteristic of linearity for signal spaces
seems quite natural. Thus we shall make free use of vector space concepts, mostly
elementary ones, from Section I-4.5.

While linearity is a natural property for a system—and the set of signals serv-
ing as inputs and outputs—it is simply too “floppy” to have much value per se.
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Moreover, most linear system models derived using physical principles have more
structure than mere linearity. Indeed, most systems one encounters in practice
have some “continuity” properties that turn out to be of great value. This property
is most directly described in the following way: if a sequence (u j) j∈Z>0 if inputs
converges to an input u, then the corresponding sequence of outputs (y j) j∈Z>0 con-
verges to the output y associated with u. The notion of convergence requires more
than mere linearity, and this is especially true for signal spaces since these tend to
be infinite-dimensional. To allow us to discuss convergence we shall in this chapter
use the notion of a norm, sometimes derived from an inner product. Thus we will
make substantial use of material from Chapters III-3 and III-4. In particular, we
will directly use some of the examples from Section III-3.8. Indeed, all of the basic
signal space structure we introduce in this chapter can be found in Section III-3.8.

Readers unacquainted with the details of how the standard signal spaces are
developed may be surprised and/or dismayed by how involved some of the con-
structions are. Indeed, apart from relying on material on Banach and Hilbert spaces
from Chapters III-3 and III-4, we will also see that the Lebesgue integral, developed
in Chapter III-2, plays an essential rôle in the development. Therefore, it is maybe
worth saying a few words about how one may approach all this. The reader may
also, at this point, read the preface for this series of texts to guide them in going
through this material if they are doing so for the first time.

It is important to keep in mind that it is not that the problems, per se, necessarily
merit complicated mathematics, but that general solutions to the problems do.
That is to say, if in a particular instance (say, one wants to know whether one’s
discrete-time representation of Beethoven’s Ninth Symphony will be pleasant to
listen to) one wishes to address one of these questions, then it is likely that much
of the mathematical sophistication in this volume can be avoided. However, if
one wishes to develop a general methodology that is guaranteed to work (say by
one’s proving of a theorem), then it is often the case that an astonishing amount of
mathematical sophistication quickly becomes necessary. It is very easy to disparage
such mathematical sophistication as being so much unnecessary abstraction. An
excellent example of this is the famous remark by Richard W. Hamming (1915–
1998):

Does anyone believe that the difference between the Lebesgue and Rie-
mann integrals5 can have physical significance, and that whether say,
an airplane would or would not fly could depend on this difference? If
such were claimed, I should not care to fly in that plane.

This, however, seems to us to be a confusion of the specific with the general. That
is to say, while it is not likely that there will ever exist an aircraft whose flight is
literally dependent on the generality of the Lebesgue integral, it may very well be
the case that certain aspects of the design of an aircraft are facilitated by general
techniques for which the theorems ensuring their validity depend on the Lebesgue

5This has to do with the topic of Lebesgue integration which we cover in Chapter III-2.
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integral. For more discussion, see Section 1.1.8.
Moreover, that one can do without a certain degree of mathematical sophis-

tication becomes more dubious when one turns to frequency representations of
signals, as we do in Chapters 5, 6, and 7.

1.1.8 Notes

A discussion of the quote by Hamming appearing in Section 1.1.7 has been
carried out by Davis and Insall [2002]. We advise the reader to read this article and
develop an opinion on what is discussed there. From our point of view, one of
the participants in the discussion is really quite ill-informed about the distinctions
between the Riemann and Lebesgue integral, both from the point of view of their
theoretical development and their application. We shall allow the reader to decide
which author we indict in this way.

Exercises

1.1.1 List ten signals, five continuous-time and five discrete-time, that have af-
fected your life in the past week. Indicate as many of the elementary prop-
erties of these signals, in the language of this section, as you can think of.

1.1.2 A subset S ofR is discrete if there exists r ∈ R>0 so that for each t ∈ S we have
{s | |t − s| < r} ∩ S = {t}. Show that the subgroups of (R,+) that are discrete
as sets are of the form Z(∆) for some ∆ ∈ R>0.

1.1.3 Let T1, T2, and T3 be time-domains and let τ1 : T2 → T1 and τ2 : T3 → T2 be
reparameterisations. Show that τ1 ◦ τ2 : T3 → T1 is a reparameterisation.

1.1.4 Let T = R and let f : R→ R be a “general-looking” signal. Sketch the graph
of f along with the graphs of the following signals:
1. τ∗a f for a ∈ R>0;
2. τ∗a f for a ∈ R<0;
3. σ∗ f ;
4. ρ∗λ f for λ < 1;
5. ρ∗λ f for λ > 1.
Hint: By a “general-looking” signal we mean one for which all of the signals whose
graph you are sketching are different.

1.1.5 Show that if f : R→ F has a period T, then it has a period kT for any k ∈ Z>0.
1.1.6 Show that if t 7→ e2πiνt is T-periodic then ν = n

T for n ∈ Z.
1.1.7 Give an example of a periodic signal whose fundamental period is not well-

defined.
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Section 1.2

Spaces of discrete-time signals

In this section we begin our systematic presentation of classes of signals. Since
they are simpler, we begin with spaces of discrete-time signals. Much of the
background for this section is pulled from Section III-3.8.2. We assume that the
reader knows what a vector space is and what a norm is, and some of the ba-
sic associated ideas. This may well require referring to material in Chapters III-3
and III-4. We shall try to make the necessary references when needed, but as a
bare minimum the reader should know the basic properties of norms from Sec-
tion III-3.1.1, know the definitions of convergence of sequences in normed vector
spaces from Section III-3.2, and be familiar with the rôle of completeness discussed
in Section III-3.3.

Do I need to read this section? If you are reading this chapter then read this
section. •

1.2.1 The vector space structure of general discrete-time signals

In this brief section we introduce the “big” vector space of discrete-time signals
on a given time-domain. The idea is to give ourselves the basic object upon
which everything else in this section is derived. The notation here originated in
Notation I-4.5.44.

1.2.1 Definition (FT) Let F ∈ {R,C} and let T be a discrete time-domain. We denote by
FT the set of maps f : T→ F. The F-vector space structure on FT is given by

( f1 + f2)(t) = f1(t) + f2(t), (α f )(t) = α( f (t)),

for f , f1, f2 ∈ FT and for α ∈ F. We may also use the product of signals f1, f2 ∈ FT

defined by
( f1 f2)(t) = f1(t) f2(t)

which makes FT into an F-algebra. •

The case when FT is finite-dimensional is particularly simple and easy to char-
acterise.

1.2.2 Proposition (Finite-dimensionality of FT) If F ∈ {R,C} and if T is a discrete time-
domain then FT is finite-dimensional if and only if T is finite. Moreover, if T is finite then
dimF(FT) = card(T).

Proof This is Exercise 1.2.1. ■

Note that it is not true that dimF(FT) = card(T) when T is infinite. This follows
from Proposition I-5.7.5 and Theorem I-5.7.9; indeed, from these results one can
deduce that dimF(FT) = card(R) for an infinite discrete time-domain T.
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1.2.2 Discrete-time signal spaces with the∞-norm

Next we consider a few discrete-time signal spaces that normed vector spaces
with the∞-norm. Since we have already presented everything here in great detail
in already in Section III-3.8, we merely present the notation and recall the main
properties of the various signal spaces, referring to the proofs that have already
been given.

For a discrete time-domain T the signal spaces we consider here are these:

cfin(T;F) = { f ∈ FT | f (t) = 0 for all but finitely many t ∈ T};

c0(T;F) = { f ∈ FT | for each ϵ ∈ R>0 there exists a finite subsetK ⊆ T
such that | f (t)| > ϵ iff t ∈ K}.

If, for f ∈ FT, we denote the support

supp( f ) = {t ∈ T | f (t) , 0}

then cfin(T;F) is the set of signals with finite support. For the purposes of this
section, the norm we use on these vector spaces is the∞-norm. Thus, if f ∈ cfin(T;F)
or f ∈ c0(T;F) then we define

∥ f ∥∞ = sup{| f (t)| | t ∈ T},

noting that the supremum is well-defined. Note that cfin(T;F) is the generalisation
to arbitrary discrete time-domains of the vector space F∞0 (see Example III-3.1.3–7)
and c0(T;F) is the generalisation to arbitrary discrete time-domains of the vector
space c0(F) (see Definition III-3.8.11). We shall explore how the generalisation
manifests itself as we go along.

Let us now list some facts about cfin(T;F) and c0(T;F).
1. If T is finite then

cfin(T;F) = c0(T;F) = FT,

and so the vector spaces are all finite-dimensional in this case. Because of this,
the use of the norm ∥·∥∞ is not significant in that the topology on the spaces will
be the same, no matter what norm is used; this is Theorem III-3.1.15.

2. If T is infinite then
cfin(T;F) ⊂ c0(T;F) ⊂ FT.

This is obvious.
3. If T is infinite then

c0(T;F) =
{

f ∈ FT
∣∣∣∣∣ lim
|t|→∞

f (t) = 0
}
.
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4. In Example III-3.1.3–7 we considered the vector space F∞0 which, in our present
language, is simply cfin(Z>0;F). For any infinite discrete time-domain T there
exists an isomorphism of normed vector spaces between (cfin(T;F), ∥·∥∞) and
(cfin(Z>0;F), ∥·∥∞). This is pretty clear, but the reader may wish to verify this in
Exercise 1.2.9. This isomorphism may not really be natural; for example there is
no really natural way to construct an isomorphism from cfin(Z>0;F) to cfin(Z;F).
However, the mere existence of an isomorphism of normed vector spaces allows
us to deduce for cfin(T;F) certain of the properties we have deduced for F∞0 . In
particular, if T is infinite then the normed vector space (cfin(T;F), ∥·∥∞) is not
complete; this is Exercise III-3.3.1.

5. In Definition III-3.8.11 we defined the vector space c0(F) which, in our present
notation, is precisely c0(Z>0;F). As in the preceding paragraph, there exists
an isomorphism of normed vector spaces between c0(Z>0;F) and c0(T;F) for
any infinite discrete time-domain T. Thus certain of the conclusions we have
deduced for c0(F) hold for c0(T;F) in this case. The conclusion of principal
interest is this: (c0(T;F), ∥·∥∞) is a separable F-Banach space and is, moreover,
the completion of (cfin(T;F), ∥·∥∞); this follows from Theorem III-3.8.12 and
Proposition III-3.8.13.

1.2.3 Discrete-time signal spaces with the p-norms, p ∈ [1,∞]

Perhaps the most important discrete-time signal spaces in applications are those
characterised by their summability properties. These were discussed at some
length in Section III-3.8.2, so we again just give the definitions and regurgitate the
most useful properties.

For a discrete time-domain T with sampling interval ∆ and for p ∈ [1,∞) the
spaces we consider are:

ℓ∞(T;F) = { f ∈ FT | sup{| f (t)| | t ∈ T} < ∞};

ℓp(T;F) =

 f ∈ FT
∣∣∣∣∣∣∣ ∑

t∈T

| f (t)|p < ∞

 .
On ℓ∞(T;F) we use the norm

∥ f ∥∞ = sup{| f (t)| | t ∈ T}

and on ℓp(T;F) we use the norm

∥ f ∥p =

∆∑
t∈T

| f (t)|p
1/p

.

There is a factor of ∆ in the definition of the p-norm for p ∈ [1,∞) that seems to
come from nowhere. It presence is motivated by connections between discrete-time
signals and generalised signals that we are not able to explore at this time. The
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interested reader can refer to . We shall see as we go along that, if T is finite, then what?

(ℓp(T;F), ∥·∥p) are the generalisations of the normed vector spaces (Fn, ∥·∥p) consid-
ered in detail in Section III-3.8.1. If T is infinite then (ℓp(T;F), ∥·∥p) are the general-
isation of the normed vector spaces (ℓp(F); ∥·∥p) considered in Section III-3.8.2.

Let us list some facts about the ℓp-spaces.
1. If T is finite then

ℓp(T;F) = ℓ∞(T;F) = FT

for all p ∈ [1,∞). Thus, for each p ∈ [1,∞], the space (ℓp(T;F), ∥·∥p) is isomorphic
as a normed vector space to the normed vector space (Fn, ∥·∥p) as discussed in
Section III-3.8.1. Thus this is the easiest case to consider. Moreover, as far as
topology goes, the spaces ℓp(T;F) are all “the same” whenever T is finite.

2. If T is infinite then
ℓp(T;F) ⊂ ℓ∞(T;F) ⊂ FT.

These inclusions are fairly clear, but these issues will be considered in detail in
Section 1.2.7.

3. Note that both spaces c0(T;F) and ℓ∞(T;F) use the ∞-norm, but are definitely
not the same space. Mathematically the difference between these spaces is:

(a) c0(T;F) is the completion of cfin(T;F), but ℓ∞(T;F) is a complete normed
vector space that contains this completion;

(b) the “smallness” of c0(T;F) is perhaps best encapsulated by the fact that
c0(T;F) is separable (Proposition III-3.8.13) while ℓ∞(T;F) is not when T
is infinite (Proposition III-3.8.20).

4. In Definitions III-3.8.8 and III-3.8.15 we considered the normed vector spaces
(ℓp(F), ∥·∥p) for p ∈ [1,∞]. In terms of our present notation we have ℓp(F) =
ℓp(Z>0;F). It is not difficult to show that, in fact, the normed vector spaces
(ℓp(T;F), ∥·∥p) and (ℓp(Z>0;F), ∥·∥p) are isomorphic (up to a constant factor for
the norm in the case of p ∈ [1,∞)) for any infinite discrete time-domain T.
This allows us to draw conclusions for ℓp(T;F) based on conclusions we have
already drawn for ℓp(F). For example, we have the following facts.

(a) If T is infinite then (ℓ∞(T;F), ∥·∥∞) is a nonseparable F-Banach space.
(b) If T is infinite and if p ∈ [1,∞) then (ℓp(T;F), ∥·∥p) is a separable F-Banach

space and, moreover, is the completion of (cfin(T;F), ∥·∥p). This Banach
space is a Hilbert space if and only if p = 2.

1.2.4 Periodic discrete-time signal spaces

An important class of signals in both theory and application are those that are
periodic. For discrete time-domains, T-periodic signals have no exotic behaviour.
Indeed, since they are determined by their values on the fundamental domain
[0,T) ∩ T and since such fundamental domains are necessarily finite, we have the
following result.
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1.2.3 Proposition (Spaces of periodic discrete-time signals are finite-dimensional)
Let F ∈ {R,C}, let T be an infinite time-domain, and let T ∈ R>0. Then the subspace of
FT consisting of T-periodic signals is finite-dimensional.

Thus we do not need to discriminate notationally between spaces of periodic
discrete-time signals, and, for a discrete time-domain T, we merely denote

ℓper,T(T;F) = { f ∈ FT | f is T-periodic}.

Note, however, that we may use a variety of norms on this space. Indeed, we can
use any one of the norms

∥ f ∥p =

∆ ∑
t∈[0,T)∩T

| f (t)|p


1/p

, p ∈ [1,∞),

∥ f ∥∞ = max{| f (t)| | t ∈ [0,T) ∩ T}.

We leave it to the reader as Exercise 1.2.4 to make the elementary verification that
these are norms. Note that for p ∈ [1,∞) these are not the norms for the signals on
T, but take into account the periodicity of the signals.

1.2.5 Discrete-time signal spaces characterised by seminorms

We now consider large collections of discrete-time signal spaces for which their
topology is not characterised by a norm, but rather by a family of seminorms. The
general theory for these spaces is explained in detail in Section III-6.5.1, so here we
just recite the facts that are of interest and give notation.

For a discrete time-domain T ⊆ Z(∆), we denote ℓloc(T;F) = FT. Thus we work
with the space of all signals on T. On this space we can define various topologies
defined by families of seminorms. To wit, for a finite subset K ⊆ T, we define the
seminorms

∥ f ∥K,∞ = sup{| f (t)| | t ∈ K},

∥ f ∥K,p =

∑
t∈K

| f (t)|p
1/p

, p ∈ [1,∞).

We shall denote by ℓp
loc(T;F) the space ℓloc(T;F), thought of as being equipped with

the p-norm, p ∈ [1,∞].
Let us enumerate some characteristics of these spaces.

1. WhenT is finite, then the signal space ℓloc(T;F) is finite-dimensional. As a result,
these spaces are isomorphic, as normed vector spaces, to the spaces discussed
in Section III-3.8.1. In particular, the topology does not depend on p by virtue of
Theorem III-3.1.15. Thus one can freely choose the norm, depending on what
one want to do. This also justifies the absence of p in the notation ℓloc(T;F) in
this case.
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2. When T is infinite, then ℓloc(T;F) is isomorphic to F∞, just by establishing a
bijection between T and Z>0. Thus, as we discussed before the statement of
Theorem III-6.5.1, the topology of ℓloc(T;F) is not dependent on p.

3. By Theorem III-6.5.1, ℓloc(T;F) is normable if and only if T is finite. When T is
not finite, then ℓloc(T;F) is a Fréchet space.

4. A sequence ( f j) j∈Z>0 converges if and only if, for each finite K ⊆ T,
lim j→∞∥ f j∥K,p = 0. Again, because the topology is independent of p, it does
not matter which p we use to describe convergence.

1.2.6 Other characteristics of discrete-time signals

In this section we give some characteristic of signals that are often useful in
practice. Some of these are simply renaming of norms we have provided above.
Some of the properties, however, are not related to the norms, but are still useful.

1.2.4 Definition (Signal characteristics) Let F ∈ {R,C} and let T be a discrete time-
domain and let f : T → F be an F-valued signal on T. If T has sampling interval
∆ then we define Nmin and Nmax by asking that ∆Nmin = infT and ∆Nmax = supT.
We allow either or both of Nmin and Nmax to be infinite in magnitude.

(i) If f ∈ ℓ1(T;F) then ∥ f ∥1 is the action of f .
(ii) If f ∈ ℓ2(T;F) then ∥ f ∥22 is the energy of f .
(iii) If f ∈ ℓ∞(T;F) then ∥ f ∥∞ is the amplitude of f .
(iv) If the limit

lim
N−→Nmin
N+→Nmax

1
N+ −N− + 1

N+∑
j=N−

| f ( j∆)|2

exists we denote it by pow( f ) and call it the average power of f . The set of
signals whose average power exists are called power signals and the set of
these is denoted by ℓpow(T;F).

(v) If f ∈ ℓpow(T;F) then rms( f ) =
√

pow( f ) is the root mean square value (rms
value) of f .

(vi) The mean of f is given by

mean( f ) = lim
N−→Nmin
N+→Nmax

1
N+ −N− + 1

N+∑
j=N−

f ( j∆),

if the limit is defined. •

We shall not have much occasion to use the set of power signals. Indeed,
mathematically this is not so useful a collection of signals, at least for infinite
discrete time-domains; for finite discrete time-domains the average power is simply
a scaled version of the energy. The motivation for the definition of average power
is that it should give some sort of integral (in this case, summation) measure of a
signal that does not decay to zero at infinity.
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1.2.5 Remark (The importance of p ∈ {1, 2,∞}) Note that special names are given to
the p-norms for p ∈ {1, 2,∞}. This suggests that these cases are somehow especially
important. This is indeed the case, so let us explain this a little. The importance of
the∞-norm and of signals with finite∞-norm is more or less clear. The importance
of the 1-norm and of signals with finite 1-norm is less easy to see at this point.
However, the fact that the 1-norm of a sequence being finite corresponds to the
sequence being absolutely summable is important in Fourier analysis. We shall see
specific instances of this in Theorems 5.2.33 and 7.1.7. The case of p = 2 is perhaps
even more difficult to image the importance of. Nonetheless, in some applications
the only sequence space even discussed is ℓ2. Often physical justifications are given
for this. However, the real reason for the importance of p = 2 is that in this case ℓ2

is a Hilbert space, and not a general Banach space. This allows the use of special
Hilbert space tools, particularly Hilbert bases, in the analysis of sequences in ℓ2.
We shall see the importance of this in, for example, Sections 5.3 and 7.1.6. •

Let us give an example where we work out some of the quantities defined
above.

1.2.6 Example (Signal characteristics) Let T = Z>0 and define f : T→ R by f ( j) = 1
j2 .

Then we compute:

1. the action of f is π2

6 ;

2. the energy of f is π4

90 ;
3. the amplitude of f is 1;
4. f is a power signal and pow( f ) = 0;
5. the rms value of f is rms( f ) = 0;
6. the mean of f is defined and mean( f ) = 0.
Generally speaking, of course, it will be impossible to determine explicit expres-
sions for many of these properties, except in exceptional cases. We have used the
computer to determine certain of the sums above. In previous centuries one might
have looked these up in a table or (gasp!) tried to figure them out somehow. •

1.2.7 Inclusions of discrete-time signal spaces

We have already alluded above to some of the inclusion relations that exist
between the various discrete-time signal spaces. Here we discuss this more thor-
oughly and prove some facts about these inclusions.

1.2.7 Theorem (Inclusions between discrete-time signal spaces) Let F ∈ {R,C} and
let T ⊆ R be a discrete time-domain. The following statements hold:

(i) if T is finite then

cfin(T;F) = c0(T;F) = ℓp(T;F) = ℓpow(T;F) = FT

for all p ∈ [1,∞];
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(ii) if T is infinite then ℓ∞(T;F) ⊂ ℓpow(T;F);
(iii) if T is infinite then c0(T;F) ⊂ ℓ∞(T;F);
(iv) if T is infinite then ℓp(T;F) ⊂ c0(T;F) for all p ∈ [1,∞);
(v) if T is infinite and if p,q ∈ [1,∞] then ℓp(T;F) ⊂ ℓq(T;F) if and only if p < q.

Moreover, the inclusions in parts (iii), (iv), and (v) are continuous.
Proof (i) This is obvious.

(ii) For simplicity we consider the case of T = Z>0; the case of an arbitrary infinite
discrete time-domain follows from this (why?). Let f ∈ ℓ∞(T;F) and denote M = ∥ f ∥∞.
Then

1
N + 1

N∑
j=1

| f ( j)|2 ≤
M2

N + 1

N∑
j=1

1 =
M2N
N + 1

.

Thus pow( f ) ≤ M2 and so f is a power signal. That the inclusion is strict is left to the
reader to verify as Exercise 1.2.12.

(iii) Let f ∈ c0(T;F). By definition of c0(T;F) there exists a finite subsetK ⊆ T such
that | f (t)| > 1 if and only if t ∈ K. Therefore,

∥ f ∥∞ = max{1,max{| f (t)|| t ∈ S}} < ∞.

The signal f (t) = 1 for every t ∈ T is in ℓ∞(T;F) but not in c0(T;F) and so the inclusion
is strict. To show that the inclusion of c0(T;F) in ℓ∞(T;F) is continuous, we note merely
that it is obviously norm-preserving.

(iv) Let p ∈ [1,∞) and let∆ be the sampling interval forT. By Proposition I-2.4.7, it
follows that if f ∈ ℓp(T;F) then lim|t|→∞| f (t)|p = 0. Thus f ∈ c0(T;F). In Exercise 1.2.10
the reader can show that the inclusion is strict. To see that the inclusion is continuous,
let ( f j) j∈Z>0 be a sequence in ℓp(T;F) converging to f . Let ϵ ∈ R>0 and let N ∈ Z>0 be
such that ∥ f − f j∥

p
p < ∆ϵ

p. Then, for each t0 ∈ T and for each j ≥ N,

∆| f (t0) − f j(t0)|p < ∆
∑
t∈T

| f (t) − f j(t)|p = ∥ f − f j∥
p
p < ∆ϵ

p.

Thus ∥ f − f j∥∞ < ϵ for every j ≥ N, showing that ( f j) j∈Z>0 converges to f in ℓ∞(T;F).
Continuity of the inclusion now follows from Theorem III-3.5.2.

(v) By parts (iii) and (iv) it follows that ℓp(T;F) ⊂ ℓ∞(T;F) for every p ∈ [1,∞).
Moreover, by Proposition I-3.8.10 we have |a|p > |a|q for a ∈ F satisfying |a| ∈ (0, 1) and
for p, q ∈ [1,∞) satisfying p < q. This shows that∑

t∈T

| f (t)|q =
∑
t∈T

| f (t)|p| f (t)|q−p
≤ ∥ f ∥q−p

∞

∑
t∈T

| f (t)|p = ∥ f ∥q−p
∞ ∥ f ∥p.

Thus ℓp(T;F) ⊆ ℓq(T;F). That the inclusion is strict we leave the reader to show in
Exercise 1.2.11. To show continuity of the inclusion, let ( f j) j∈Z>0 be a sequence in
ℓp(T;F) converging to f . For ϵ ∈ R>0 let N ∈ Z>0 be such that ∥ f − f j∥

p
p < ϵ

q for j ≥ N.
Then, for j ≥ N we have

∥ f − f j∥
q
q = ∆

∑
t∈T

| f (t) − f j(t)|q ≤ ∆
∑
t∈T

| f (t) − f j(t)|p = ∥ f − f j∥
p
p < ϵ

q.
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Thus the sequence ( f j) j∈Z>0 converges to f in ℓq(T;F), giving continuity of the inclusion
by Theorem III-3.5.2. ■

The Venn diagrams for these relationships are shown in Figure 1.20. The

ℓ1 = ℓ2 = ℓ∞ = ℓpow = c0 ℓ∞c0ℓ2ℓ1 ℓpow

Figure 1.20 Venn diagrams illustrating inclusions of signal
spaces for discrete time-domains: the finite case (left) and the
infinite case (right)

following examples of signals provide representatives for all regions of the Venn
diagram for discrete-time signals defined on infinite time-domains. The “shape”
of these diagrams follow from Theorem 1.2.7 and the exercises referred to in the
proof.

We note that there are no interesting inclusion relations between the spaces
of signals characterised by seminorms in Section 1.2.5; this is just because all of
these spaces are simply the space FT of all signals on the time-domain T. The only
difference between the spaces ℓp

loc(T;F) as p varies is the norm. Also, if T is finite,
then

c0(T;F) = ℓp(T;F) = ℓloc(T;F).

If T is infinite, then, of course, ℓloc(T;F) strictly contains all of the other spaces of
signals.

Exercises

1.2.1 Prove Proposition 1.2.2.
1.2.2 Let ∆ ∈ R>0 and consider the finite discrete time-domain T = { j∆ | j ∈

{0, 1, . . . ,n − 1}}. Show that {e2πi∆mn
| m ∈ {0, 1, . . . ,n − 1}} is an orthogonal

basis for ℓ2(T;C).

The matter of determining when a signal is in one of the ℓp-spaces can be a little
problematic. Certainly one does not want to rely on being able to explicitly compute



36 1 Signals in the time-domain 2022/03/07

the p-norm; counting on one’s ability to compute infinite sums is an activity doomed
to failure. In the following exercise you will provide some conditions that, while
simple, are often enough to ascertain when a given signal is in ℓp. It is enough to
consider the case of T = Z>0.

1.2.3 Prove the following result.

Proposition If f ∈ FZ>0 and if limt→∞
|f(t)|
ta = 0 for some a < − 1

p then f ∈
ℓp(Z>0;F).

1.2.4 Let F ∈ {R,C} and let T be an infinite discrete time-domain. Show that ∥·∥p,
p ∈ [1,∞], is a norm on ℓper,T(T;F).

1.2.5 Show that, for any discrete time-domainT, if f , g ∈ ℓ2(T;F) then f g ∈ ℓ1(T;F)
and ∥ f g∥1 ≤ ∥ f ∥2∥g∥2.

1.2.6 Let p ∈ [1,∞]. Show that, for any discrete time-domain T, if f ∈ ℓ∞(T;F)
and if g ∈ ℓp(T;F), then f g ∈ ℓp(T;F) and ∥ f g∥p ≤ ∥ f ∥∞∥g∥p.

1.2.7 For the following discrete-time signals defined on T = Z>0, compute their
action, energy, amplitude, average power, rms value, and mean:
(a) f (t) = cos(πt);
(b) f (t) = cos(πt) + 1;
(c) f (t) = 1

t .
1.2.8 For the following discrete-time signals defined on T = {1, . . . ,N}, compute

their action, energy, amplitude, average power, rms value, and mean:
(a) f (t) = cos(πt);
(b) f (t) = cos(πt) + 1;
(c) f (t) = 1

t .
1.2.9 Show that, for F ∈ {R,C} and for an infinite time-domain T,

(a) there exists an isomorphism of normed vector spaces between
(cfin(T;F), ∥·∥∞) and (cfin(Z>0;F), ∥·∥∞),

(b) there exists an isomorphism of normed vector spaces between
(c0(T;F), ∥·∥∞) and (c0(Z>0;F), ∥·∥∞), and

(c) there exists an isomorphism of normed vector spaces between
(ℓp(T;F), ∥·∥p) and (ℓp(Z>0;F), ∥·∥p) for each p ∈ [1,∞], with the consider-
ation of a constant factor for the norm in the case of p ∈ [1,∞).

1.2.10 ForF ∈ {R,C} and for an infinite discrete time-domainT, show that ℓp(T;F)
is a strict subspace of c0(T;F) for each p ∈ [1,∞). Does there exist f ∈ c0(T;F)
such that f < ℓp(T;F) for every p ∈ [1,∞)?

1.2.11 For F ∈ {R,C}, for an infinite discrete time-domain T, and for p, q ∈ [1,∞)
satisfying p < q, show that ℓp(T;F) is a strict subspace of ℓq(T;F).

1.2.12 ForF ∈ {R,C} and for an infinite discrete time-domainT, show that ℓ∞(T;F)
is a strict subset of ℓpow(T;F).
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Section 1.3

Spaces of continuous-time signals

In this section we present the classes of continuous-time signals that will arise in
these volumes. As with our treatment of discrete-time signal spaces, we will refer
back to material from Section III-3.8, mainly from Sections III-3.8.4 and III-3.8.7.
Spaces of continuous-time signals are significantly more complicated to deal with
than their discrete-time counterparts. There are two reasons for this.
1. For discrete-time signals there is no (nontrivial) notion of continuity. For

continuous-time signals, continuity is a property of which one wishes to keep
track. That is to say, one wants to include in one’s classes of signals those that
are continuous, possibly with other properties. But one also wishes to allow
for discontinuous signals, both because they arise in practice and because they
arise as limits of sequences of continuous signals. By allowing discontinuous
signals we open ourselves to the question, “How discontinuous must a signal
be before we are justified in ignoring it?” Our answer is that we restrict our
attention to signals that are measurable with respect to the Lebesgue measure.
This is an extremely large class, actually, and serves our purposes well.

2. Another reason for the complication associated with continuous-time signals
is that the simple sums used to characterise the discrete-time ℓp-signals get
replaced with integrals. If we want our spaces to be Banach spaces, and we do,
this precludes the use of the Riemann integral since it behaves badly with respect
to limits. Thus we must resort to the Lebesgue integral to get the completeness
we need to do any of the useful analysis we present in these volumes.
The upshot of the preceding discussion is that we must add to our list of

prerequisite material from Section 1.2 the prerequisite of measure theory from
Chapter III-2. A reader who wishes to can, at least initially, sidestep the discussion of
the Lebesgue integral, pretending that we are only interested in Riemann integrable
functions. However, be aware that in doing this, many important theorems referred
to in this chapter, and presented later in this volume, are actually invalid. Thus the
Lebesgue integral really is essential, even if you wish it were not.

Do I need to read this section? If you are reading this chapter then read this
section. •

1.3.1 The vector space structure of general continuous-time signals

As we did with discrete-time signals, we get started by looking at a big space
of signals in which all of our continuous-time signal spaces will sit as subspaces.
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1.3.1 Definition (FT) Let F ∈ {R,C} and let T be a continuous time-domain. We denote
by FT the set of maps f : T→ F. The F-vector space structure on FT is given by

( f1 + f2)(t) = f1(t) + f2(t), (α f )(t) = α( f (t)),

for f , f1, f2 ∈ FT and for α ∈ F. We may also use the product of signals f1, f2 ∈ FT

defined by
( f1 f2)(t) = f1(t) f2(t)

which makes FT into an F-algebra. •

Of course, unless T is a mere point, the vector space FT has a very large
dimension. Indeed, using Proposition I-5.7.5 and Theorem I-5.7.9 one may deduce
that dimF(FT) = 2card(R). But, in fact, the vector spaceFT is far too large to be useful,
and we shall restrict ourselves to spaces with a substantial amount of structure.
Even so, all classes of continuous-times signals we encounter will be infinite-
dimensional. The following result indicates why this is so. In the statement
of the result we recall the notion of the support of a continuous function from
Definition III-3.8.28(ii).correct ref?

1.3.2 Proposition (Infinite-dimensionality of continuous-time signal spaces) LetF ∈
{R,C} and let T be a continuous time-domain with nonempty interior. If [a, b] ⊆ int(T)
and if V is any subspace of FT containing the continuous functions whose support is
contained in [a, b], then V is infinite-dimensional.

Proof For simplicity we consider the special case where [a, b] = [0, 1] ⊆ int(T). A
simple adaptation of the argument gives the general case. For j ∈ Z>0 we define

f j(t) =

sin( jπt), t ∈ [0, 1],
0, otherwise.

We shall show that the collection of signals { f j} j∈Z>0 is linearly independent. Indeed,
consider any finite subset { f j1 , . . . , f jk} and suppose that there are constants c1, . . . , ck ∈ R
so that

c1 sin( j1πt) + · · · + ck sin( jkπt) = 0, t ∈ [0, 1]. (1.2)

This means that for any l ∈ {1, . . . , k}we have

sin( jlπt)(c1 sin( j1πt) + · · · + ck sin( jkπt)) = 0, t ∈ [0, 1]

=⇒

∫ 1

0

(
c1 sin( j1πt) sin( jlπt) + · · · + c j sin2( jlπt) + . . .

+ ck sin( jkπt) sin( jlπt)
)

dt = 0

=⇒
1
2

cl = 0.

Here we have used the readily verified equality∫ 1

0
sin( jπt) sin(kπt) dt =

0, j , k,
1
2 , j = k,
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for any j, k ∈ Z. In any event, we have shown that if (1.2) holds, then cl = 0, l ∈ {1, . . . , k}.
This shows that the signals with support contained in [0, 1] is infinite-dimensional.
Thus V is also infinite-dimensional. ■

One might be inclined to say that, even with severe restrictions to the classes
of continuous-time signals we consider in FT, any reasonable class of such signals
will be much larger than any discrete-time signal space. As we shall see, this is
actually not the case in general. Some hint about these matters can be seen from
the fact that many of the normed vector spaces from Sections III-3.8.4 and III-3.8.7
are separable.

1.3.2 Continuous continuous-time signal spaces with the∞-norm

Let us first consider spaces comprised of continuous signals. The material here
has been gone through thoroughly in Sections III-3.8.4 and III-6.5.2 for continuous
signals, and so we will mainly reproduce the definitions and summarise the im-
portant results. The reader is strongly encouraged to go through the material in
Sections III-3.8.4 and III-6.5.2 to really see how everything fits together.

We let F ∈ {R;C} and let T be a continuous time-domain. The spaces of
continuous signals we consider are these:

C0(T;F) = { f ∈ FT | f is continuous};

C0
cpt(T;F) = { f ∈ C0(T;F) | f has compact support};

C0
0(T;F) = { f ∈ C0(T;F)| for every ϵ ∈ R>0 there exists a compact set K ⊆ T

such that {t ∈ T | | f (t)| ≥ ϵ} ⊆ K};

C0
bdd(T;F) = { f ∈ C0(T;F)| there exists M ∈ R>0 such that | f (t)| ≤M

for all t ∈ T}.

The norm we consider for all of these spaces of signals is the∞-norm:

∥ f ∥∞ = sup{| f (t)| | t ∈ T}.

The supremum in the definition always exists for f in C0
cpt(T;F), C0

0(T;F), or
C0

bdd(T;F). If f ∈ C0(T;F) then ∥ f ∥∞ is generally only defined when T is compact.
Therefore, we will not deal much with C0(T;F) except in this compact case.

Let us reproduce some of the more important facts about these spaces of con-
tinuous functions.
1. If T is compact then

C0
cpt(T;F) = C0

0(T;F) = C0
bdd(T;F) = C0(T;F).

The case of a compact time-domain is an important one.
2. If T is not compact then

C0
cpt(T;F) ⊂ C0

0(T;F) ⊂ C0
bdd(T;F) ⊂ C0(T;F).
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This is not difficult to see, but should be thought about to be comprehended
thoroughly. The reader can engage in this sort of thought in Exercises 1.3.2
and 1.3.3. It is also worth making sure to understand that there is no useful
relationship between spaces of continuous functions defined on a bounded but
not compact time-domainT and on its closure cl(T) which is compact. This can
be explored in Exercise 1.3.6. Note that the analogous behaviour is not seen
for discrete-time signals since bounded discrete time-domains are finite. The
reason for this behaviour for continuous-time signals is that an open end of a
bounded interval is, in a topological sense, at infinity. The reader can get some
insight into this in Exercise 1.3.5.

3. If T is closed and infinite then

C0
0(T;F) =

{
f ∈ C0(T;F)

∣∣∣∣∣ lim
|t|→∞

f (t) = 0
}
.

4. The normed vector space (C0
cpt(T;F), ∥·∥∞) is a Banach space if and only if T is

compact. This is proved as Proposition III-3.8.38.
5. The normed vector space (C0

0(T;F), ∥·∥∞) is a separable F-Banach space and
is, moreover, the completion of (C0

cpt(T;F), ∥·∥∞). This is proved as Theo-
rem III-3.8.40.

6. The normed vector space (C0
bdd(T;F), ∥·∥∞) is a F-Banach space and is separable

if and only if T is compact. These facts are proved in Theorem III-3.8.39.
The reader may wish to think about the analogies presented in Table 1.1, which

Table 1.1 The relationships between the discrete-time signal
spaces in the left column are analogous to the relationships
between the continuous-time signal spaces in the right col-
umn; the discrete time-domain Td is infinite in order that the
analogies hold

Discrete-time signal space Continuous-time signal space

cfin(Td;F) C0
cpt(Tc;F)

ℓ∞(Td;F) C0
bdd(Tc;F)

c0(Td;F) C0
0(Tc;F)

is essentially a reproduction of Table III-3.1, in order to understand the relation-
ships between the various discrete-time signal spaces and their continuous-time
analogues.

It is convenient to have some notation for the differentiable counterparts of the
continuous signals considered above. Thus, for a continuous time-domain and for
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r ∈ Z≥0 ∪ {∞}we denote

Cr(T;F) = { f ∈ FT | f is r times continuously differentiable};
Cr

cpt(T;F) = { f ∈ Cr(T;F) | f has compact support};

Cr
0(T;F) = { f ∈ Cr( f ;F)| for every ϵ ∈ R>0 there exists a compact set

K ⊆ I such that {t ∈ T | | f (t)| ≥ ϵ} ⊆ K};
Cr

bdd(T;F) = { f ∈ Cr(T;F)| there exists M ∈ R>0 such that | f (t)| ≤M
for all t ∈ T},

Cr
per,T(R;F) = { f ∈ Cr(R;F) | f is T-periodic}.

Note that none of these spaces when equipped with the ∞-norm are Banach
spaces, cf. Example III-3.6.25–2. It is, however, possible to make these Banach
spaces by extending the norm to involve the derivatives. We shall not make use of
this extension in any generality, so do not discuss it here.

An important generalisation of differentiable signals are those that are abso-
lutely continuous or locally absolutely continuous. These will be essential in our
description of systems in Volume 4. If T is compact, we denote by AC(T;F) the
signals on T that are absolutely continuous. For a noncompact time-domain T
the locally absolutely continuous signals on T are denoted by ACloc(T;F). These
signals are discussed in Sections III-2.9.6 and II-3.2.3.

In Sections I-3.1.7 and I-3.2.7 we encountered the notion of piecewise continu- complex versions?

ous and piecewise differentiable signals on compact continuous time-domains. We
can define these notions on a more general continuous time-domain T by saying
that f ∈ FT is piecewise continuous if, for each compact time-domain S ⊆ T, f |S is
piecewise continuous. We denote the set of piecewise continuous signals on T by
C0

pw(T;F). In like manner we define the set of piecewise differentiable signals on
T, and denote this by C1

pw(T;F).
The space of piecewise continuous or piecewise differentiable signals is not very

useful. That is to say, we will use these spaces when we are asking that a given
signal have the properties of piecewise continuity or differentiability.

1.3.3 Measurable continuous-time signals with the p-norm, p ∈ [1,∞]

Next we turn to spaces of continuous-time signals characterised by their inte-
grals. This has the desirable effect of allowing us to naturally consider signals that
are possibly discontinuous. The price to be paid for this (absolutely necessary, from
a practical point of view) generality is that it now becomes difficult to characterise
these spaces of signals. This should not be surprising, really, as sets of possibly
discontinuous signals can be expected to be pretty crazy. In this section we shall
give a summary of how the Lp-spaces of Section III-3.8.7 were constructed. The
details are omitted here as the reader can refer back for these. As we go through
our summary we will also present the main results for these spaces.

We letF ∈ {R,C} and letT be a continuous time-domain. Since the constructions
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differ for L∞ and Lp, p ∈ [0,∞), we present them separately, starting with L∞(T;F).
Recall that for a measurable function ϕ : T→ Fwe define

ess sup{ϕ(t) | t ∈ T} = inf{M ∈ R≥0 | λ({t ∈ T | ϕ(t) > M} = 0)}.

Then we define

L(∞)(T;F) = { f : T→ F | f is measurable and ess sup{| f (t)| | t ∈ T} < ∞}.

On L(∞)(T;F) we define a seminorm ∥·∥∞ by

∥ f ∥∞ = ess sup{| f (t)| | t ∈ T}.

In Proposition III-3.8.45 we verify that (L(∞)(T;F), ∥·∥∞) is a seminormed F-vector
space. The signals of zero norm are precisely

Z∞(T;F) = { f ∈ L(∞)(T;F) | λ({t ∈ T | f (t) , 0}) = 0}.

Thus signals in Z∞(T;F) are those that are zero almost everywhere. We then define

L∞(T;F) = L(∞)(T;F)/Z∞(T;F).

Thus elements of L∞(T;F) are to be thought of as equivalence classes of signals,
where two signals f and g are declared to be equivalent if their difference f − g
is almost everywhere zero; that is f and g are equal almost everywhere. As we
indicate in Notation III-3.8.48, we shall make the convenient abuse of writing an
equivalence class in L∞(T;F) as f , with the understanding that in doing so we
are really consider f and all signals that agree with it almost everywhere. In
Theorem III-3.8.47 we show that (L∞(T;F), ∥·∥∞) is a Banach space, and in Proposi-
tion III-3.8.49 that it is only separable in the (useless) case when T = {a} for some
a ∈ R.

Now let us turn to the construction of the spaces Lp for p ∈ [1,∞). We define

L(p)(T;F) =
{

f : T→ F
∣∣∣∣∣ f is measurable and

∫
T

| f |p dλ < ∞
}
.

The integral one must use for the results in this section to be valid is the Lebesgue
integral, not the Riemann integral. Conceptually, at least for a finite duration, it is
not too dangerous to sidestep this technical matter. However, we do recommend
that the reader at some point put in the slight effort needed to understand the
Lebesgue integral, and why it, and not the Riemann integral, is suited to our needs
here.6 In any case, the norm we use here is the p-norm:

∥ f (t)∥p =
(∫
T

| f |p dλ
)1/p

.

6We have mentioned this elsewhere, but the idea is so simple and important that we will repeat
it again here. The big advantage of the Lebesgue integral over the Riemann integral is that there are
limit theorems that hold for the former that do not hold for the latter. Most crucially, the Dominated
Convergence Theorem for the two integrals have a completely different character. It is really this,
and not other stuff that you may read about, that gives the Lebesgue integral its power.
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In Proposition III-3.8.57 we show, using the Minkowski inequality, that
(L(p)(T;F); ∥·∥p) is a seminormed F-vector space for every p ∈ [1,∞). The signals in
L(p)(T;F) that have zero norm are

Zp(I;F) = { f ∈ L(p)(I;F) | λ({t ∈ T | f (t) , 0}) = 0},

i.e., those signals that are almost everywhere zero. We then define

Lp(T;F) = L(p)(T;F)/Zp(T;F)

for each p ∈ [1,∞). As we described with L∞(T;F) above, we shall denote elements
of Lp(T;F) as is they were signals and not equivalence classes of signals. In The-
orem III-3.8.59 we show that (Lp(T;F), ∥·∥p) is a F-Banach space, and is, moreover,
the completion of (C0

cpt(T;F), ∥·∥p) for each p ∈ [1,∞). In Proposition III-3.8.61 we
show that Lp(T;F) is separable.

1.3.3 Remark (Signals versus equivalence classes of signals) We shall very often
be concerned with signals in L(p)(T;F) rather than equivalence classes of signals
in Lp(T;F). However, there will also be occasions when it is essential to think
of equivalence classes of signals because we wish to utilise the Banach or Hilbert
space structure of the spaces Lp(T;F). We shall generally try to be careful just which
space, L(p)(T;F) or Lp(T;F), we mean. There are, however, occasions when it is really
not so important whether we are thinking about signals or equivalence classes of
signals, e.g., in cases when we are concerned with the signal only inasmuch as we
are concerned with its integral. Therefore, we may be a little careless with our
notation at times. This should not cause any problems. Indeed, standard practice
is simply to not distinguish between signals and equivalence classes of signals, and
to simply use the notation Lp(T;F) in all cases. However, in the interests of being
sufficiently pedantic, we shall make this distinction in these volumes. •

In Table 1.2 we depict the interrelationships of various continuous-time signal

Table 1.2 The relationships between the discrete-time signal
spaces in the left column are analogous to the relationships
between the continuous-time signal spaces in the right col-
umn; the discrete time-domain Td is infinite in order that the
analogies hold

Discrete-time signal space Continuous-time signal space

cfin(Td;F) C0
cpt(Tc;F)

ℓp(Td;F) Lp(Tc;F)

spaces to their discrete-time counterparts. We comment that L∞(T;F) does not
appear in this table, essentially as a consequence of its not being the completion of
any space of continuous continuous-time signals.
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Another sometimes useful class of merely measurable signals are those that
have bounded variation. We denote by BV(T;F) the set of F-valued signals on T
that have bounded variation. For infinite time-domains, we denote by TV(T;F) the
set of F-valued signals on I that have finite variation. These signals are discussed
in Sections I-3.3 and II-3.2.2.

1.3.4 Periodic continuous-time signal spaces

Unlike the situation for discrete-time signals, there are nontrivial things one can
say about spaces of periodic continuous-time signals.

We let F ∈ {R,C} and let T ∈ R>0. We begin by defining

C0
per,T(R,F) = { f ∈ C0(R;F) | f is T-periodic}.

The natural norm to use on this space is

∥ f ∥∞ = sup{| f (t)| | t ∈ [0,T]}.

One can verify that (C0
per,T(R;F), ∥·∥∞) is a Banach space.

1.3.4 Proposition ((C0
per,T

(R;F), ∥·∥∞) is a Banach space) ForF ∈ {R,C} and for T ∈ R>0,
(C0

per,T(R;F), ∥·∥∞) is a separable Banach space.

Proof Since C0
per,T(R;F) is a subspace of C0

bdd(R;F), if ( f j) j∈Z>0 is a Cauchy sequence in

C0
per,T(R;F) this sequence converges to f ∈ C0

bdd(R;C) by Theorem III-3.8.31. We will
show that f ∈ Cper,T(R;F). Let t ∈ R. Then the sequences ( f j(t)) j∈Z>0 and ( f (t+T)) j∈Z>0

are identical. Thus, since they converge to f (t) and f (t + T), respectively, we must
have f (t) = f (t + T) and so f is T-periodic. Separability of C0

per,T(R;F) follows from
Corollary III-3.8.37 along with the fact that the map f 7→ f |[0,T] is an injective map
from C0

per,T(R;F) into a subspace of C0([0,T];F). ■

There are also periodic analogues of the classes of differentiable signals consid-
ered at the end of Section 1.3.2. Thus, for T ∈ R>0 and for r ∈ Z>0, we define

Cr
per,T(R;F) = { f ∈ C0(R;F) | f is T-periodic}.

Now we turn to adaptations of the various Lp-spaces to periodic signals. Here
one has to contend with the fact that the spaces of signals are really spaces of
equivalence classes of signals. Let us first clarify how this equivalence relation
interacts with periodicity. Recall that the equivalence relation is that two signals
f , g : R→ F are equivalent if ( f − g)(t) = 0 for almost every t ∈ R.

1.3.5 Lemma (Periodicity and equivalence classes of signals) For F ∈ {R,C}, for
T ∈ R>0, and for a measurable signal f : R→ F the following statements are equivalent:

(i) there exists a T-periodic measurable signal g: R → F such that (f − g)(t) = 0 for
almost every t ∈ R;
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(ii) f(t + T) = f(t) for almost every t ∈ R.
Proof (i) =⇒ (ii) Let j ∈ Z>0 and let

Z j,1 = {t ∈ [ jT, ( j + 1)T) | f (t) , g(t)},
Z j,2 = {t ∈ [ jT, ( j + 1)T) | f (t + T) , g(t + T)}.

Both Z j,1 and Z j,2 have measure zero by hypothesis. If t ∈ [ jT, ( j+1)T)\ (Z j,1∪Z j,2) then

f (t) = g(t) = g(t + T) = f (t + T).

Thus, taking Z j = Z j,1 ∪ Z j,2 and A j = [ jT, ( j + 1)T) \ Z j we see that f (t) = f (t + T) for
every t ∈ A j. Thus f (t) = f (t + T) for every t ∈ ∪ j∈ZA j and since R \ ∪ j∈ZA j = ∪ j∈ZZ j
has measure zero, our assertion is established.

(ii) =⇒ (i) For j ∈ Z define

Z j = {t ∈ [0,T) | f (t + jT) , f (t)}.

We claim that Z j has measure zero. Let us verify this for j ∈ Z>0, the situation for
j ∈ Z<0 being entirely analogous. For j ∈ Z>0 we prove our claim by induction on j.
The claim is true by hypothesis for j = 1. Suppose it true for j ∈ {1, . . . , k}. Then define

Nk = {t ∈ [0,T) | f (t + kT) , f (t + (k + 1)T)},

noting that Nk has measure zero by hypothesis. If t ∈ [0,T) \ (Nk ∪ Zk) then

f (t + (k + 1)T) = f (t + kT) = f (t).

Thus Zk+1 ⊆ Nk ∪ Zk and so Zk+1 has measure zero.
Now define h : [0,T)→ F by

h(t) =

0, t ∈ ∪ j∈ZZ j,

f (t), otherwise.

Note that ∪ j∈ZZ j has zero measure. Therefore, by Proposition III-2.6.10 it follows that
h is measurable. Clearly ( f −h)(t) = 0 for almost every t ∈ [0,T). Now define g : R→ F
to be the T-periodic extension of h to give this part of the lemma. ■

We may now sensibly define what we mean by a periodic equivalence class
of signals. Following what we did above in our construction of the Lp-spaces, we
define

Z(R;F) = { f : R→ F | f is measurable and f (t) = 0 for almost every t ∈ R}.

We then make the following definition.
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1.3.6 Definition (Periodic equivalence classes of signals) Let F ∈ {R,C} and let T ∈
R>0. For a measurable signal f : R → F, the equivalence class f + Z(R;F) is
T-periodic if there exists a T-periodic signal g such that

f + Z(R;F) = g + Z(R;F). •

One way to read Lemma 1.3.5 is to say, “Equivalence classes of periodic signals
are in 1–1 correspondence with periodic equivalence classes of signals.”

With the above annoying technicalities out of the way, we can now proceed to
define Lp-spaces of periodic signals. We let F ∈ {R,C} and T ∈ R>0. We first define

L(∞)
per,T(R;F) = { f | f measurable, f T-periodic, and

ess sup{| f (t)| | t ∈ [0,T)} < ∞}

and then define
L∞per,T(R;F) = L(∞)

per,T(R;F)/Z(R;F).

On L∞per,T(R;F) we use the norm

∥ f ∥ = ess sup{| f (t)| | t ∈ [0,T)}.

For p ∈ [1,∞) we define

L(p)
per,T(R;F) =

{
f

∣∣∣∣∣∣ f measurable, f T-periodic, and
∫

[0,T)
| f (t)|p dλ < ∞

}
and then define

Lp
per,T(R;F) = L(p)

per,T(R;F)/Z(R;F).

On Lp
per,T(R;F) we use the norm

∥ f ∥p =
(∫

[0,T)
| f (t)|p dλ

)1/p

.

By Lemma 1.3.5 it follows that, for each p ∈ [1,∞], the map

f + Zp(R;F) 7→ f |[0,T) + Zp([0,T);F)

is a norm-preserving isomorphism from Lp
per,T(R;F) to Lp([0,T);F). From this we

conclude that (Lp
per,T(R;F), ∥·∥p) is a Banach space, and is separable if and only if

p ∈ [1,∞).
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1.3.5 Continuous-time signal spaces characterised by seminorms

We shall also have cause to work with spaces of signals that are not well
characterised using a norm. We shall do this by making use of seminorms, and we
refer to Sections III-6.5.2 and III-6.5.4 for details. Here we shall merely translate
the notation from these previous efforts into our signal language, and summarise
the relevant definitions and results.

We let T ⊆ R be a continuous time-domain and consider the following spaces
of signals:

C0(T;F) = { f ∈ FT | f is continuous},

L(p)
loc(T;F) = { f ∈ FT | f |K ∈ L(p)(K;F) for every compact subintervalK ⊆ T},

for p ∈ [1,∞]. As always, we denote

Zp(T;F) = { f ∈ L(p)
loc(T;F) | λ({t ∈ T | f (t) , 0}) = 0},

and then denote
Lp

loc(T;F) = L(p)
loc(T;F)/Zp(T;F).

The comments made in Remark 1.3.3 concerning signals versus equivalence classes
of signals are also valid here.

The topologies on these spaces are defined by families of seminorms, one for
each compact subintervalK ⊆ T. For C0(T;F) we use the seminorms

∥ f ∥K,∞ = ∥ f |K∥∞,

while for Lp
loc(T;F) we use the seminorms

∥ f ∥K,p = ∥ f |K∥p, p ∈ [1,∞].

Unlike the discrete-time case discussed in Section 1.2.5, the spaces of signals we
describe above are all different, in that C0(T;F) , Lp

loc(T;F) for any p ∈ [1,∞]
(obviously) and that Lp

loc(T;F) , Lq
loc(T;F) if p , q.

Let us outline some of the important features of these spaces of signals.
1. We have

C0
cpt(T;F) = C0

0(T;F) = Cbdd(T;F) = C0(T;F)

and
Lp(T;F) = Lp

loc(T;F), p ∈ [1,∞],

if and only if T is compact. Thus C0(T;F) and Lp
loc(T;F) are normable if and

only if T is compact.
2. When T is not compact, then C0(T;F) and Lp

loc(T;F), p ∈ [1,∞], are Fréchet
spaces, as we saw in Theorems III-6.5.3 and III-6.5.5.

3. Convergence in the spaces C0(T;F) and Lp
loc(T;F), p ∈ [1,∞], has the description

using seminorms from Proposition III-6.2.11. Thus a sequence ( f j) j∈Z>0 in one
of these spaces converges if and only if, for every compact subinterval K ⊆ T,
the sequence ( f j|K) j∈Z>0 converges in C0(K;F) or Lp(K;F), respectively.
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1.3.6 Other characteristics of continuous-time signals

Let us provide for continuous-time signals the analogous definitions from Def-
inition 1.2.4.

1.3.7 Definition (Signal characteristics) Let F ∈ {R,C} and letT be a continuous time-
domain and let f : T → F be an F-valued signal on T. Define Tmin = infT and
Tmax = supT. We allow either or both of Tmin and Tmax to be infinite in magnitude.

(i) If f ∈ L(1)(T;F) then ∥ f ∥1 is the action of f .
(ii) If f ∈ L(2)(T;F) then ∥ f ∥22 is the energy of f .
(iii) If f ∈ L(∞)(T;F) then ∥ f ∥∞ is the amplitude of f .
(iv) If the limit

lim
T−→Tmin
T+→Tmax

1
T+ − T−

∫ T+

T−
| f (t)|2 dt

exists we denote it by pow( f ) and call it the average power of f . The set of
signals whose average power exists are called power signals and the set of
these is denoted by Lpow(T;F).

(v) If f ∈ Lpow(T;F) then rms( f ) =
√

pow( f ) is the root mean square value (rms
value) of f .

(vi) The mean of f is given by

mean( f ) = lim
T−→Tmin
T+→Tmax

1
T+ − T−

∫ T+

T−
f (t) dt,

if the limit is defined. •

1.3.8 Remark (The importance of p ∈ {1, 2,∞}) As we remarked on in Remark 1.2.5,
the cases of L(p)-spaces for p ∈ {1, 2,∞} are distinguished in applications. For the
continuous time versions of these results, this will be borne out in Sections 5.3
and 6.3 in a general way. •

Let us give a couple of examples illustrating the above ideas.

1.3.9 Examples (Signal characteristics)
1. Let us consider the unshifted square wave □a,ν,0 of amplitude a and frequency

ν defined on T = R. It is straightforward to see that ∥□a,ν,0∥∞ = a and that □a,ν,0

has undefined action and energy. To compute the average power we note that
for sufficiently large T we have

a2
⌊T⌋

2T
≤

1
2T

∫ T

−T
|□a,ν,0(t)|2 dt ≤

a2
⌈T⌉

2T
,
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by direct calculation. Therefore, taking the limit as T→∞, we get pow(□a,ν,0) =
1
2a2. This therefore immediately gives rms(□a,ν,0) = 1

√
2
a. For the mean of the

signal we have, for sufficiently large T,

a⌊T⌋
2T
≤

1
2T

∫ T

−T
□a,ν,0(t) dt ≤

a⌈T⌉
2T

,

therefore giving mean(□a,ν,0) = 1
2a.

2. Next let us consider the unshifted sawtooth △a,ν,0 of amplitude a and frequency
ν defined on T = R. Here we compute

a2
⌊T⌋

3T
≤

1
2T

∫ T

−T
|△a,ν,0(t)|2 dt ≤

a2
⌈T⌉

3T
,

giving pow(△a,ν,0) = 1
3a2 and rms(△a,ν,0) = 1

√
3
a. For the mean we compute

a⌊T⌋
2T
≤

1
2T

∫ T

−T
△a,ν,0(t) dt ≤

a2
⌈T⌉

2T
,

giving mean(△a,ν,0) = 1
2a. •

The set of power signals is often not given much discussion. However, this
class of signals is a little unusual if one digs into its mathematical structure. For
example, we have the following result.

1.3.10 Proposition (The set of power signals is not a vector space) If F ∈ {R,C} and
if T is an infinite continuous time-domain then Lpow(T;F) is not a subspace of FT.

Proof We shall provide a counterexample to the subspace structure in the case where
T = [0,∞), and the case of a general infinite time-domain follows by simple manipu-
lations of this example.

Define signals

f1(t) =

1, t ∈ [n,n + 1), n even and positive,
0, otherwise

and

f2(t) =


1, t ∈ [2 j + 1, 2 j + 2) ⊆ [n!, (n + 1)!), n ≥ 2 and even, and j ∈ Z,
−1, t ∈ [2 j, 2 j + 1) ⊆ [n!, (n + 1)!), n ≥ 2 and odd, and j ∈ Z,
0, otherwise.

Computations give

⌊T⌋
2T
≤

1
T

∫ T

0
| f1(t)|2 dt ≤

⌈T⌉ + 1
2T

,

⌊T⌋ − 3
2T

≤
1
T

∫ T

0
| f2(t)|2 dt ≤

⌈T⌉ + 1
2T

,
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from which we ascertain that pow( f1) = pow( f2) = 1
2 . In particular, f1, f2 ∈ Lpow(T;F).

However, we claim that f1 + f2 < Lpow(T;F). Indeed, if n is a large even integer we
may compute

1
n!

∫ n!

0
| f1(t) + f2(t)|2 dt =

(n − 1)! − (n − 2)! + · · · + 1
n!

=
(n − 1)! + (n − 3)!(1 − n − 2) + · · · + 1(1 − 2)

n!

≤
(n − 1)!

n!
,

and if n is a large odd integer we compute

1
n!

∫ n!

0
| f1(t) + f2(t)|2 dt =

n! − (n − 1)! + · · · + 1
n!

=
(n − 1)!(n − 1) + 2!(3 − 1) + 1

n!

≥
(n − 1)!(n − 1)

n!
.

Therefore we have

lim
n→∞

n even

1
n!

∫ n!

0
| f1(t) + f2(t)|2 dt = 0

lim
n→∞
n odd

1
n!

∫ n!

0
| f1(t) + f2(t)|2 dt = 1,

implying that the limit

lim
T→∞

1
T

∫ T

0
| f1(t) + f2(t)|2 dt

does not exist, as desired. ■

As we shall see in Proposition 1.3.12, ifT is finite then Lpow(T;F) is an F-vector
space.

1.3.7 Inclusions of continuous-time signal spaces

In this section we explore the relationships between the various continuous-
time signal spaces. As we shall see, the relationships are more or less simple to
understand for finite time-domains, although not as simple as for bounded discrete
time-domains. For infinite continuous time-domains, the story is complicated,
perhaps surprisingly so.

First of all, recall from Section 1.3.2 that if T is compact then

C0
cpt(T;F) = C0

0(T;F) = C0
bdd(T;F) = C0(T;F)
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and if T is not compact then

C0
cpt(T;F) ⊂ C0

0(T;F) ⊂ C0
bdd(T;F) ⊂ C0(T;F).

These inclusions are easy to understand so we do not dwell on them. Instead we
focus on the relationships between the Lp-spaces.

1.3.11 Theorem (Inclusions between continuous-time signal spaces) Let F ∈ {R,C}
and let T ⊆ R be a continuous time-domain. The following statements hold:

(i) L(1)(T;F) ∩ L(∞)(T;F) ⊆ L(2)(T;F);
(ii) C0

cpt(T;F) is dense in Lp(T;F) for all p ∈ [1,∞);

(iii) if T is bounded then L(∞)(T;F) ⊆ L(p)(T;F) for any p ∈ [1,∞);
(iv) if T is bounded then L(p)(T;F) ⊆ L(q)(T;F) for q < p ∈ [1,∞).

Moreover, the inclusions in parts (iii) and (iv) are continuous.
Proof (i) We have

∥ f ∥22 =
∫
T
| f (t)|2 dt =

∫
T
| f (t)|| f (t)|dt

≤ ∥ f ∥∞

∫
T
| f (t)|dt = ∥ f ∥∞∥ f ∥1,

as desired.
(ii) This was proved as Theorem III-3.8.59.
(iii) The inclusion is simple:

∥ f ∥pp =
∫
T
| f (t)|p dt ≤ ∥ f ∥p∞

∫
T

dt < ∞.

To show that the inclusion of ℓ∞(T;F) is continuous, let ( f j) j∈Z>0 be a sequence in
ℓ∞(T;F) converging to f . Then, for ϵ ∈ R>0, there exists N ∈ Z>0 such that

ess sup{| f (t) − f j(t)|p | t ∈ T} < ϵp

λ(T)

for j ≥ N. Then ∫
T
| f (t) − f j(t)|p dt ≤ ϵp,

and so ∥ f − f j∥p < ϵ for every j ≥ N. Thus the sequence ( f j) j∈Z>0 converges to f in
Lp(T;F) and so the inclusion of L∞(T;F) in Lp(T;F) is continuous by Theorem III-3.5.2.

(iv) Let q < p and let f ∈ L(p)(T;F). Let

A = {t ∈ T | | f (t)| ≥ 1}.

We then have ∫
T
| f (t)|q dt =

∫
T\A
| f (t)|q dt +

∫
A
| f (t)|q dt

≤

∫
T\A
| f (t)|q dt +

∫
A
| f (t)|p dt

≤

∫
T

dt +
∫
T
| f (t)|p dt = ∥ f ∥p + λ(T) < ∞,
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so giving f ∈ L(q)(T;F). To show that the inclusion of Lp(T;F) in Lq(T;F) is continuous
for p > q, define r = p

q so that 1 < r ≤ p. Note that if f ∈ L(p)(T;F) then

(| f (t)|q)r = | f (t)|p,

implying that | f |q ∈ L(r)(T;F). Define g(t) = 1 for t ∈ T. Using Hölder’s inequality,
Lemma III-3.8.54, for | f |q ∈ L(r)(T;F) and for g ∈ L(r′)(T;F) we have∫

T
| f (t)|q dt =

∫
T
| f (t)|q|g(t)|dt ≤

(∫
T

(| f (t)|q)r
)1/r (∫

T
1 dt

)1/r′

≤

(∫
T
| f (t)|p

)q/p

λ(T)(p−q)/p.

Thus, for f ∈ L(p)(T;F), we have

∥ f ∥q ≤ ∥ f ∥pλ(T)
1
q−

1
p .

Now let ( f j) j∈Z>0 be a sequence in Lp(T;F) converging to f . Let ϵ ∈ R>0 and let N ∈ Z>0
be such that

∥ f − f j∥p ≤
ϵ

λ(T)
1
q−

1
p

for j ≥ N. Then ∥ f − f j∥q ≤ ϵ for j ≥ N and so the sequence ( f j) j∈Z>0 converges to f in
Lq(T;F). Continuity of the inclusion now follows from Theorem III-3.5.2. ■

For power signals, we have the following correspondences.

1.3.12 Proposition (Inclusions involving continuous-time power signals) Let T be a
continuous time-domain. The following statements hold:

(i) if T is finite then Lpow(T;F) = L(2)(T;F);
(ii) if T is infinite and f ∈ L(2)(T;F) then pow(f) = 0;
(iii) if f ∈ L(∞)(T;F) is a power signal then pow(f) ≤ ∥f∥2

∞
;

(iv) if T is infinite then Lpow(T;F) ⊆ L(1)
loc(R;F).

Proof (i) This follows immediately from the definitions.
(ii) We shall show that for T = [0,∞), and the other cases can be deduced from this

easily. For T > 0 we have∫ T

0
| f (t)|2 dt ≤ ∥ f ∥22 =⇒

1
T

∫ T

0
| f (t)|2 dt ≤

1
T
∥ f ∥22.

The result follows since as T→∞, the right-hand side goes to zero.
(iii) In the case where T is finite with length L we have

pow( f ) =
1
L

∫
T
| f (t)|2 dt ≤

1
L
∥ f ∥2∞

∫
T

dt = ∥ f ∥2∞.
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For the infinite case we consider T = [0,∞), noting that other infinite time-domain
cases follow from this. We compute

pow( f ) = lim
T→∞

1
T

∫ T

0
| f (t)|2 dt ≤ ∥ f ∥2∞ lim

T→∞

1
T

∫ T

0
dt = ∥ f ∥2∞,

as desired.
(iv) Let [a, b] be a compact subinterval of T. Provided that T > 0 is sufficiently

large that [a, b] ⊆ [−T,T] we have∫ b

a
| f (t)|2 dt ≤

∫ T

−T
| f (t)|2 dt.

In the limit as T→∞ the quantity

1
T

∫ T

−T
| f (t)|2 dt

is finite. Thus there exists a sufficiently large T0 so that the preceding quantity is finite
when T ≥ T0. From this it follows that

T0

∫ b

a
| f (t)|2 dt

is finite, showing that f |[a, b] ∈ L(2)([a, b];F). The result now follows from part (iv) of
Theorem 1.3.11. ■

1.3.13 Remark Suppose thatT is infinite. Since there exists nonzero signals in L(2)(T;F) it
follows that there are nonzero signals f for which pow( f ) is not zero. Thus pow(·)
is not a norm (even if the Lpow(T;F) were a vector space, which it is not for infinite
intervals, by Proposition 1.3.10). •

The Venn diagrams of Figure 1.21 show the relationships between the common
types of signals for both finite and infinite continuous time-domains. For finite
time-domains, the inclusions are straightforward, or follow from result proved
above. For infinite time-domains, the following examples complete the Venn dia-
gram characterisation, when combined with the results already established above.

1.3.14 Examples (Continuous-time signal space inclusions)
1. The signal f1(t) = cos t is in L(∞)(R;F), but is in none of the spaces L(p)(R;F) for

1 ≤ p < ∞.
2. The signal f2(t) = 1≥0(t) 1

1+t is not in L(1)(R;F), although it is in L(2)(R;F); one
computes ∥ f ∥2 = 1.

3. The signal f3(t) = 1 is in L(∞)(R;F) and Lpow(R;F) but not in L(2)(R;F) or L(1)(R;F).
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L1

L2 = Lpow

L∞

Lpow

L2

L∞

L1

Figure 1.21 Venn diagrams illustrating inclusions of signal
spaces for continuous time-domains: the finite case (left) and
the infinite case (right)

4. The signal

f4(t) =


√

1
t , t ∈ (0, 1],

0, otherwise

is in L(1)(R;F) but not in L(p)(R;F) for p ∈ {2,∞,pow}.
5. The signal

f5(t) =

log t, t ∈ (0, 1],
0, otherwise

is in L(p)(R;F) for p ∈ [1,∞), but is not in L(∞)(R;F).
6. The signal

f6(t) =


1

1+t + log t, t ∈ (0, 1],
1

1+t , t > 1,
0, otherwise

is in L(2)(R;F) but in neither L(1)(R;F) nor L(∞)(R;F).
7. The signal

f7(t) =


1 + log t, t ∈ (0, 1],
1, t > 1,
0, otherwise

is in Lpow(R;F) but not in L(p)(R;F) for p ∈ [1,∞].
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8. For j ∈ Z>0 define

g j =

 j, t ∈ ( j, j + j−3),
0, otherwise.

Then one checks that the signal

f8(t) =
∞∑
j=1

g j(t)

is in Lpow(R;F) and L(1)(R;F) but in neither L(2)(R;F) nor L(∞)(R;F).
9. For j ∈ Z>0 define

g j =

1, t ∈ (22 j, 22 j+1),
0, otherwise.

Then one checks that the signal

f9(t) =
∞∑
j=1

g j(t)

is in L(∞)(R;F) but not in L(p)(R;F) for p ∈ [1,∞) ∪ {pow}. •

Since the spaces of continuous-time signal spaces characterised by seminorms,
defined in Section 1.3.5 are characterised by their norms over compact subsets of
the time-domain, the inclusions for these spaces are the same as those for spaces
of normed signals defined on compact time-domains:

C0(T;F) ⊂ L∞loc(T;F) ⊂ L2
loc(T;F) ⊂ L1

loc(T;F). (1.3)

We allow the reader to explore why these inclusions are strict in Exercises 1.3.9
and 1.3.10.

1.3.8 Notes

Proposition 1.3.10 is proved by Mari [1996].
Many of the signals from Example 1.3.14 are given by Doyle, Francis, and

Tannenbaum [1990].

Exercises

1.3.1 For theF-vector space C0([0, 1];F) of continuousF-valued functions on [0, 1],
consider the vectors defined by the functions f j : t 7→ t j, j ∈ Z≥0. Show that
the set { f j | j ∈ Z≥0} is linearly independent.

1.3.2 By means of examples, show that the inclusions

C0
cpt((0, 1];R) ⊂ C0

0((0, 1];R) ⊂ C0
bdd((0, 1];R) ⊂ C0((0, 1];R)

are strict.
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1.3.3 By means of examples, show that the inclusions

C0
cpt([0,∞);R) ⊂ C0

0([0,∞);R) ⊂ C0
bdd([0,∞);R) ⊂ C0([0,∞);R)

are strict.
1.3.4 For each of the following five signals f : (0, 1] → R, answer the following

questions with concise explanations:
1. is f ∈ C0

cpt((0, 1];R)?

2. is f ∈ C0
0((0, 1];R)?

3. is f ∈ C0
bdd((0, 1];R)?

4. is f ∈ C0((0, 1];R)?
5. is f ∈ L2((0, 1];R)?
6. if possible, find a sequence in C0

cpt((0, 1];R) converging to f in
(C0

0((0, 1];R), ∥·∥∞);
7. if possible, find a sequence in C0

cpt((0, 1];R) converging to f in
(L2((0, 1];R), ∥·∥2).

Here are the functions:

(a) f (t) =

0, t ∈ (0, 1
2 ],

t − 1
2 , t ∈ ( 1

2 , 1];

(b) f (t) = t−1/4;

(c) f (t) =

0, t ∈ (0, 1
2 ],

1, t ∈ (1
2 , 1];

(d) f (t) = t1/2;
(e) f (t) = 1 + t.

1.3.5 Let F ∈ {R,C}. Show that for each pair of normed vector spaces below, there
exists between them a norm-preserving isomorphism:
(a) (C0

bdd([0, 1);F), ∥·∥∞) and (C0
bdd([0,∞), ∥·∥∞);

(b) (C0
bdd((−1, 0];F), ∥·∥∞) and (C0

bdd((−∞, 0], ∥·∥∞);
(c) (C0

bdd((0, 1);F), ∥·∥∞) and (C0
bdd(R, ∥·∥∞).

1.3.6 Find a signal f ∈ C0
bdd((0, 1];R) for which there does not exist a signal f̂ ∈

C0([0, 1];R) such that f = f̂ |(0, 1].

The reader should compare the conclusions of the following exercise with those of
Exercise 1.3.6.

1.3.7 Let F ∈ {R,C} and let T be a continuous time-domain. For f ∈ FT define
f̂ ∈ Fcl(T) by

f̂ (t) =

 f (t), t ∈ T,
0, t ∈ cl(T) \ T.
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For p ∈ [1,∞] show that the map f 7→ f̂ is an isomorphism of the normed
vector spaces Lp(T;F) and Lp(cl(T);F).

1.3.8 For F ∈ {R,C}, for a continuous time-domain T, and for p, q ∈ [1,∞] with
p < q, show that L(q)

loc(T;F) ⊆ L(p)
loc(T;F).

1.3.9 Let T = [0,∞). Find signals to illustrate that the inclusions of (1.3) are strict.
1.3.10 Let T = (0, 1]. Find signals to illustrate that the inclusions of (1.3) are strict.

The matter of determining when a signal is in one of the Lp-spaces can be a little
problematic. Certainly one does not want to rely on being able to explicitly compute
the p-norm; counting on one’s ability to compute integrals is an activity doomed
to failure. In the following exercise you will provide some conditions that, while
simple, are often enough to ascertain when a given signal is in Lp. We concentrate
on the cases of T = R since a signal on any time-domain T can be extended to R
by asking that it be zero on R \ T.

1.3.11 Answer the following questions.
(a) Prove the following result.

Proposition If F ∈ {R,C}, if f ∈ FR is measurable and satisfies

(i) |f|p ∈ L(1)
loc(R;F) and

(ii) lim|t|→∞
|f(t)|
|t|a = 0 for some a < − 1

p

then f ∈ L(p)(R;F).

(b) Is the assumption that | f |p ∈ L(1)
loc(R;F) necessary for f to be in L(p)(R;F)?

(c) Is the assumption that lim|t|→∞
| f (t)|
|t|a = 0 for some a < − 1

p necessary for f
to be in L(p)(R;F)?

1.3.12 Show that, for any continuous time-domain T, if f , g ∈ L(2)(T;F) then f g ∈
L(1)(T;F and ∥ f g∥1 ≤ ∥ f ∥2∥g∥2.

1.3.13 Let p ∈ [1,∞]. Show that, for any continuous time-domainT, if f ∈ L∞(T;F)
and if g ∈ Lp(T;F), then f g ∈ Lp(T;F) and ∥ f g∥p ≤ ∥ f ∥∞∥g∥p.

1.3.14 Let f : R→ F be a continuous-time T-periodic signal with the property that∫ T

0
| f (t)|2 dt < ∞.

Show that f is a power signal and that

pow( f ) =
1
T

∫ T

0
| f (t)|2 dt.

1.3.15 For the following continuous-time signals defined on T = [0,∞), compute
their action, energy, amplitude, average power, rms value, and mean:
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(a) f (t) = sin(2πt);
(b) f (t) = sin(2πt) + 1;
(c) f (t) = 1

1+t .
1.3.16 For the following continuous-time signals defined on T = [0, 1], compute

their action, energy, amplitude, average power, rms value, and mean:
(a) f (t) = sin(2πt);
(b) f (t) = sin(2πt) + 1;

(c) f (t) =

0, t = 0,
1
√

t
, t ∈ (0, 1].

1.3.17 Let f be a continuous-time power signal defined on T = R. Show that
the signal fλ defined by fλ(t) = f (λt) is a power signal and that pow( fλ) =
pow( f ).

1.3.18 Let T = [0,∞).
(a) Find a continuous signal f : T → R so that f ∈ L(1)(T;R) and f <

L(2)(T;R).
(b) Find a continuous signal f : T → R so that f ∈ L(2)(T;R) and f <

L(1)(T;R).
1.3.19 Show that L(1)(R;R) ∩ C0

0(R;R) ⊆ L(2)(R;R).
1.3.20 Let p ∈ [1,∞). Is it true that

L(p)([0,∞);F) ∩ C0([0,∞);F) ⊆ C0
0([0,∞);F)?

If this is true, prove it. If it is not true, demonstrate this with a counterexam-
ple.

1.3.21 Let F ∈ {R,C}, let f ∈ L(1)(R;F), let C ∈ F, and let gC, f : R→ F be defined by

gC, f (t) = C +
∫ t

0
f (τ) dτ.

Do the following.
(a) Show that the limits limt→−∞ gC, f (t) and limt→∞ gC, f (t) exist.
(b) If gC, f ∈ L(p)(R;F) for some p ∈ [1,∞), show that lim|t|→∞ gC, f (t) = 0.
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Section 1.4

Signals in multiple-dimensions

We have thus far in this chapter considered signals taking values in F ∈ {R,C}.
And for the main developments in this volume, we will mainly work with signals of
this type. However, in Volume 4 we will consider systems, and in this context it will
be important to allow signals that take values in a vector space. It is important and
useful to consider situations where signals take values in a general vector space
with some topological structure, such as a Banach or Hilbert space or a locally
convex topological vector space. That being said, in these volumes we will only
work with signals that take values in a finite-dimensional F-vector space where
the matter of topology is straightforward. One can also work with signals that
have a domain that is not time-domain, but a more general object. For example,
in many physical problems the independent variable is not just time, but space,
or space and time. We shall not have a great deal to say about these situations in
these volumes, but some context for this is given in Section V-3.1.

In this section we shall mainly provide notation for signals with codomains that
are general finite-dimensional vector spaces.

Do I need to read this section? The material in this section is a relatively
straightforward adaptation of the material already presented in this chapter. As
such, the main contribution of the constructions is to give notation. Therefore, the
section can be safely skipped until the notation is subsequently required. •

1.4.1 Real analysis in finite-dimensional R-vector spaces

In various places—including Chapter II-1 and Sections III-2.6.4, III-2.6.5,
III-2.7.7, and III-2.7.8—we have done analysis in spaces with domain and/or
codomain having dimension larger than 1. When we did this, we always worked
with Rn. This is typically an acceptable thing to do, and is certainly what one
does typically in practice. However, sometimes we will work in settings where
both algebraic structure and analysis are important. In such cases, it is desirable to
work with something more abstract thatRn sinceRn, and its pesky standard basis,
can obscure the algebra. This is all a way of saying that we will sometimes work
with analysis in finite-dimensional R-vector spaces. In this section we illustrate
that this is trivial.

We first note that a choice of a basis B = {e1, . . . , en} for a R-vector space V
establishes an isomorphism ιB of V with Rn by

v1e1 + · · · + vnen 7→ (v1, . . . , vn);

Example I-4.5.49. This then establishes a norm ∥·∥B for V by ∥v∥B = ∥ιB∥Rn .
This choice of norm for V is immaterial as all norms for V are equivalent by
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Theorem III-3.1.15. Thus the idea is that, in practice, one can choose any basis and
then use the standard norm for Rn. For theoretical purposes, we can just assume
that V has a norm which we just typically denote by ∥·∥.

Now, because all norms for V are equivalent, any concept defined using norms,
but not dependent on any particular norm—i.e., not depending on the numerical
values produced by the norm, but just the norm properties—can then be used for V,
just as if it wereRn. Let us list some of these concepts, and give notation attendant
to their use with general finite-dimensional R-vector spaces.
1. One can talk about topological concepts such as openness, closedness, compact-

ness, interior, closure, boundary, etc., in any finite-dimensional R-vector space
(indeed, in any normed vector space as we saw in Section III-3.6).

2. If U and V are finite-dimensional R-vector spaces, if O ⊆ U is open, and if
f : O → V, then we know what it means for f to be continuous, differentiable,
continuously differentiable, r-times continuously differentiable, or infinitely
differentiable, following Sections II-1.3 and II-1.4. We shall mainly use this sort
of generality in the case that U = R, and so f is to be thought of as a V-valued
signal, in the usual manner in which we think of signals.

3. We shall adopt notation for derivatives from Section II-1.4. That is, with U, V,
O, and f as in the preceding item, we will denote the rth derivative of f at x ∈ O
by Dr f (x) ∈ L(U; V) when this derivative exists.

4. The vector-valued integral discussed in Section III-2.7.7 can be extended to
functions taking values in a finite-dimensional R-vector space, just by doing
the integration component-wise in a basis.
We shall frequently encounter linear maps between finite-dimensional vector

spaces, especially in linear system theory that we consider in Chapter V-6. Spaces
of linear maps inherit norms as in Definition II-1.1.12 or Theorem III-3.5.14. For our
purposes, if (U, ∥·∥U) and (V, ∥·∥V) are finite-dimensional normed R-vector spaces,
the precise norm ∥·∥L(U;V) on the finite-dimensional vector space L(U; V) is not so
important. We shall typically require that the norm satisfy the submultiplicative
property

∥L(u)∥V ≤ ∥L∥L(U;V)∥u∥U. (1.4)

This property is enjoyed by the induced norm by Theorem III-3.5.14(ii). How-
ever, it is also enjoyed by other norms, e.g., by the Frobenius norm by
Proposition II-1.1.16(v).

There are many other constructions we will perform with vector space-valued
functions, and will introduce these as we go along.

For right now, let us adapt to vector space valued signals the spaces of signals
we developed in Sections 1.2 and 1.3.
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1.4.2 Discrete-time vector space-valued signals

We let F ∈ {R,C}, let T ⊆ Z(∆) be a discrete time-domain, and let (V, ∥·∥) be a
finite-dimensional normed F-vector space. We select a basis {e1, . . . , en} for V. For
f : T→ V we write

f (t) = f1(t)e1 + · · · + fn(t)en, t ∈ T.

We then have the following classes of discrete-time V-valued signal spaces:
1. VT is the space of all maps from T to V;
2. cfin(T; V) = { f ∈ VT | f j ∈ cfin(T;F), j ∈ {1, . . . ,n}};
3. c0(T; V) = { f ∈ VT | f j ∈ c0(T;F), j ∈ {1, . . . ,n}};
4. ℓp(T; V) = { f ∈ VT | f j ∈ ℓp(T;F), j ∈ {1, . . . ,n}}, p ∈ [1,∞];
5. ℓloc(T; V) = VT.
The notation is the obvious adaptation of the spaces of scalar-valued signals from
Section 1.2.

Let us illustrate the structure one has on these spaces. First of all, the space VT

is an F-vector space with the natural vector space structure inherited from V:

( f1 + f2)(t) = f1(t) + f2(t), (a f )(t) = a( f (t)).

Moreover, cfin(T; V), c0(T; V), ℓp(T; V), and ℓloc(T; V) are subspaces of VT. As with
scalar-valued signals, these spaces are finite-dimensional if and only if T is finite.

Now let us consider the topological structure of these signals spaces. For the
spaces cfin(T; V), c0(T; V), and ℓ∞(T; V), we use the∞-norm which is defined by

∥ f ∥∞ = sup{∥ f (t)∥ | t ∈ T}.

For the spaces ℓp(T; V), p ∈ [1,∞), we use the norm

∥ f ∥p =

∑
t∈T

∥ f ∥p
1/p

.

For ℓloc(T; V) we use a family of seminorms, indexed by finite subsets K ⊆ T and
defined by

∥ f ∥K,p = ∥ f |K∥p, p ∈ [1,∞].

The topology for ℓloc(T; V) is independent of p, just as in the scalar-valued case.
Note that these norms and seminorms are exactly as they are in the scalar-valued

setting, only we replace “|·|” with “∥·∥.”
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1.4.3 Continuous-time vector space-valued signals

We now repeat the sorts of constructions as in the preceding section, now for
continuous-time signals. We let F ∈ {R,C}, letT ⊆ Z(∆) be a discrete time-domain,
and let (V, ∥·∥) be a finite-dimensional normed F-vector space. We select a basis
{e1, . . . , en} for V. For f : T→ V we write

f (t) = f1(t)e1 + · · · + fn(t)en, t ∈ T.

We then have the following classes of discrete-time V-valued signal spaces:
1. VT the space of all maps from T to V;
2. C0(T; V) = { f ∈ VT | f j ∈ C0(T;F), j ∈ {1, . . . ,n}};
3. C0

cpt(T; V) = { f ∈ VT | f j ∈ C0
cpt(T;F), j ∈ {1, . . . ,n}};

4. C0
0(T; V) = { f ∈ VT | f j ∈ C0

0(T;F), j ∈ {1, . . . ,n}};
5. C0

bdd(T; V) = { f ∈ VT | f j ∈ C0
bdd(T;F), j ∈ {1, . . . ,n}};

6. the above four spaces, but with signals that are r-times continuously differen-
tiable and with “C0” replaced with “Cr.”

7. Lp(T; V) = { f ∈ VT | f j ∈ Lp(T;F), j ∈ {1, . . . ,n}}, p ∈ [1,∞];
8. Lp

loc(T; V) = { f ∈ VT | f j ∈ Lp
loc(T;F), j ∈ {1, . . . ,n}}, p ∈ [1,∞];

9. ACp(T; V) = { f ∈ VT | f j ∈ ACp(T;F), j ∈ {1, . . . ,n}}, p ∈ [1,∞];
10. ACp

loc(T; V) = { f ∈ VT | f j ∈ ACp
loc(T;F), j ∈ {1, . . . ,n}}, p ∈ [1,∞].

Let us illustrate the structure one has on these spaces. First of all, the space VT

is an F-vector space with the natural vector space structure inherited from V:

( f1 + f2)(t) = f1(t) + f2(t), (a f )(t) = a( f (t)).

Moreover, all of the other spaces of V-valued signals are are subspaces of VT.
As with scalar-valued signals, these spaces are finite-dimensional if and only if
int(T) = ∅, i.e., rarely.

Now let us consider the topological structure of these signals spaces. For the
spaces C0

cpt(T; V), C0
0(T; V), C0

bdd(T; V), and L∞(T; V), we use the ∞-norm which is
defined by

∥ f ∥∞ = sup{∥ f (t)∥ | t ∈ T}.

For the spaces Lp(T; V), p ∈ [1,∞), we use the norm

∥ f ∥p =
(∫
T

∥ f ∥p dλ
)1/p

.

For Lp
loc(T; V), p ∈ [1,∞], we use a family of seminorms, indexed by compact subsets

K ⊆ T and defined by

∥ f ∥K,p = ∥ f |K∥p, p ∈ [1,∞].



2022/03/07 1.4 Signals in multiple-dimensions 63

1.4.4 Vector space-valued functions of a complex variable

As well as signals that are functions of time, we shall, by transform theory, arrive
at functions of a complex variable. Typically one works with holomorphic functions
of a complex variable (because, otherwise, what’s the point?), and particularly the
Hardy classes of holomorphic functions from Chapter III-7. Here we quickly review
how these notions extend to the vector space-valued case.

Let V be a C-vector space and let {e1, . . . , en} be a basis for V. For U ⊆ C open
and for F : U→ V, we can then write

F(z) = F1(z)e1 + · · · + Fn(z)en, z ∈ U,

for F1, . . . ,Fn : U → C. We say that F is holomorphic if each of F1, . . . ,Fn is holo-
morphic. As ever, one can check that this definition is independent of the choice
of basis (Exercise 1.4.2).

Suppose now that V is equipped with a norm ∥·∥. Let I ⊆ R be an interval.
We denote by H(CI; V) the mappings F : CI → V that are holomorphic on Cint(I). If
F ∈ H(CI; V) and x ∈ I, we denote by Fx : R → V the function Fx(y) = F(x + iy), in
the usual way. For p ∈ [1,∞], we define the space Hp(CI; V) as the set of mappings
F : CI → V such that
1. F ∈ H(CI; V),
2. Fx ∈ Lp(R; V) for each x ∈ I, and
3. F has nontangential limits.
For F ∈ Hp(CI; V) we denote

∥F∥Hp,I = sup{∥Fx∥p | x ∈ I}.

The subset {F ∈ H(CI; V) | ∥F∥Hp,I < ∞} is denoted by Hp(CI; V).
Of course, the same constructions can be performed for holomorphic functions

on annuli. Let I ⊆ R≥0 be an interval. We denote by H(AI; V) the mappings
F : AI → V that are holomorphic on Aint(I). If F ∈ H(AI; V) and r ∈ I, we denote by
Fr : S→ V the function Fr(eiθ) = F(reiθ), in the usual way. For p ∈ [1,∞], we define
the space Hp(AI; V) as the set of mappings F : AI → V such that
1. F ∈ H(AI; V),
2. Fr ∈ Lp(S; V) for each r ∈ I, and
3. F has nontangential limits.
For F ∈ Hp(AI; V) we denote

∥F∥Hp,I = sup{∥Fr∥p | r ∈ I}.

The subset {F ∈ H(AI; V) | ∥F∥Hp,I < ∞} is denoted by Hp(AI; V).
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Exercises

1.4.1 In some of the constructions in this section, we used a basis to boil the
definitions down to the scalar definitions of Sections 1.2 and 1.3. Explain
why these constructions do not depend on the basis chosen.

1.4.2 Let U ⊆ C be open and let V be a finite-dimensional C-vector space. Show
that the notion of a function F : U → V being holomorphic does not depend
on basis.

1.4.3 If F ∈ {R,C}, if T is a finite discrete-time domain, and if V is a finite-
dimensional F-vector space, what is the dimension of VT?

1.4.4 Let U and V be finite-dimensional R-vector spaces, let L ∈ L(U; V), and let
T ⊆ R be an interval. Show the following:
(a) if ξ : T→ U is measurable, then L ◦ ξ is measurable;
(b) if ξ ∈ Lp(T; U), p ∈ [1,∞], then L ◦ ξ ∈ Lp(T; V);
(c) if ξ ∈ Lp

loc(T; U), p ∈ [1,∞], then L ◦ ξ ∈ Lp
loc(T; V);

(d) if ξ ∈ AC(T; U), then L ◦ ξ ∈ AC(T; V);
(e) if ξ ∈ ACloc(T; U), then L ◦ ξ ∈ ACloc(T; V);
(f) if ξ ∈ Cr(T; U), r ∈ Z≥0 ∪ {∞}, then L ◦ ξ ∈ Cr(T; V) and

dr(L ◦ ξ)
dtr = L ◦

drξ
dtr .
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Chapter 2

Signals in the frequency-domain

This chapter provides the reader with some motivation for considering
frequency-domain representations of signals. The idea of a time-domain represen-
tation of a signal described in Chapter 1 does not require much motivation since
it is this representation that we regard as being the “real one,” in that we believe
we experience the world as time, not frequency, unfolds. Nonetheless, frequency-
domain representations are extremely useful in practice, and are in many cases
a more natural method for representing data. However, to really make sense of
frequency-domain representations, one needs to precisely define the correspon-
dences between the time- and frequency-domain. These correspondences are non-
trivial, actually, and indeed comprise Chapters 5, 6, and 7. Thus our task in this
chapter is a difficult one: to discuss frequency-domain representations of signals
without actually being able to say what we really mean. Difficult and murky this
may be, but it is perhaps useful for readers unfamiliar with the frequency-domain
to possess this motivation before we get rigorous in the sequel.

Do I need to read this chapter? If you just want to get to the Fourier transforms
and their properties, then maybe you can bypass this. But hopefully this chapter
will at least be interesting reading, even if it has little technical content. •
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Section 2.1

Frequency and substance

Our objective in this section is to convince the reader that frequency is all around
us, and to do so at the scientific level of a reader who has, say, seen several episodes
of Star Trek.

A “spectrum” is, very roughly speaking, a range of frequencies. Frequency here
is to be thought of as in Definition 1.1.18 when we discussed periodic and harmonic
signals in the time-domain. When representing a signal in the frequency-domain,
one is indicating how much “energy” the signal possesses at certain frequencies.
Thus one decomposes the signal (in a manner that is by no means clear at this
point) into its constituent frequencies. The history of spectral decomposition can
be traced back at least to Newton whose experiment of passing light through a
prism illustrated that light could be decomposed. The decomposition that Newton
saw was a decomposition based on the frequency content in the light being passed
through the prism.

Do I need to read this section? If you thought that reading this chapter seemed
like a good idea, then presumably reading this section seems like a good idea as
well. •

2.1.1 The electromagnetic spectrum

Light and energy is observed in nature occurring in a broad frequency range
that is called the electromagnetic spectrum. The frequency along the electromag-
netic spectrum can be measured in various units, including m (the “physical”
wavelength), s−1 or Hz (the temporal frequency), or joules (the energy of a photon
at this frequency). It is common in the physics/chemistry literature to see m−1 used.
However, we shall use Hz, since in many of the applications we present, this is the
most natural way of thinking of things. However, the two unit systems are related
in the following way. If one is “travelling with the wave”1 and one measures the
period of the waveform as a distance, this is the wavelength measured (say) in m.
However, electromagnetic waves move through space (or whatever medium) at
the speed of light, denoted c. Thus a stationary observer of the wave will see a
single wavelength pass in time equal to the wavelength divided by c, which is the
temporal period of the waveform. The frequency is the inverse of this period. Thus

1This interpretation must be taken with a grain of salt, since electromagnetic waves do not
travel through space in the same manner as do ripples across the surface of a pond on a calm day.
However, there is a sense in which such an interpretation is at least useful, and we restrict ourselves
to this.
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we have
frequency (s−1) =

c (m/s)
wavelength (m)

.

The speed of light in a vacuum is c = 299, 792, 458m/s, and it is common to ignore
the difference between the speed of light in a vacuum and its speed in other media.

The electromagnetic spectrum is roughly divided into seven regions and these
are displayed in Table 2.1. An idea of the relative portions of the spectra occupied

Table 2.1 The frequency bands of the electromagnetic spectrum

Name Frequency range Physical phenomenon

Radio ν < 3 × 109Hz AM/FM radio, television,
shortwave, produced by
oscillatory movement of
charged particles, able to
pass through atmosphere

Microwave 3 × 109Hz < ν < 3 × 1011Hz kitchen appliance, satellite
communication, radar, study
of galactic structure, able to
pass through atmosphere

Infrared 3 × 1011Hz < ν < 4 × 1014Hz useful for studying
galactic dust, very little
passes through atmosphere

Visible 4 × 1014Hz < ν < 7.5 × 1014Hz responsible for color as we
know it, passes through
atmosphere

Ultraviolet 7.5 × 1014Hz < ν < 3 × 1016Hz emitted by hot stars, mostly
blocked by atmosphere

X-ray 3 × 1016Hz < ν < 3 × 1019Hz medical use, emitted by
hot gas

Gamma-ray 3 × 1019Hz < ν emitted by radioactive
material

by the various categories are shown in Figure 2.1. Note that the visible portion

107 109 1011 1013 1015 1017 1019 1021

radio

microwave

infrared

visible

UV
x-ray

gamma

Figure 2.1 The electromagnetic spectrum
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of the spectrum is quite small, so that one must really go beyond visual means
to understand all spectral features of a physical phenomenon. In Figure 2.2 we

Figure 2.2 The visible spectrum from red to yellow to green to
cyan to blue to violet

show the visible portion of the spectrum in terms of the color emitted by physical
phenomenon.

2.1.2 Emission and absorption spectra

First let us consider a simple experiment, one commonly performed by physics
and chemistry undergraduates. Take a tube filled with hydrogen gas and heat it
by passing through it an electric charge. The light emitted by the tube is passed
through a spectrograph, old-fashioned versions of which work much like Newton’s
prism, but newer versions of which are based on the diffraction grating. The
spectrograph will decompose the light into certain of its spectral components.
Typically a single spectrograph will only be able to reproduce certain parts of the
electromagnetic spectrum. In a simple spectrograph that works a lot like Newton’s
prism in that the spectrum is transmitted onto a physical surface, what one will
see is, pretty much by definition, the visible part of the electromagnetic spectrum
of the light emitted by hydrogen. This is called the Balmer spectrum of hydrogen
after Johann Balmer who discovered this part of the spectrum in 1885. The colours
of the visible spectrum for hydrogen occur at

4.56676 × 1014Hz, 6.16512 × 1014Hz, 6.90493 × 1014Hz, 7.30681 × 1014Hz.

The lines of the emission spectrum are shown in Figure 2.3, and represent what an

400 500 600 700

Figure 2.3 The visible emission spectrum for hydrogen

undergraduate performing this experiment might see in the lab.



70 2 Signals in the frequency-domain 2022/03/07

Other parts of the hydrogen spectrum were located by the researchers Theodore
Lyman (ultraviolet vacuum, 1906-1914), Louis Paschen (infrared, 1908), Frederick
Brackett (visible and infrared, 1922), and August Pfund (infrared, 1924), and these
researchers have their name attached to those parts of the hydrogen atom spec-
trum they identified. Remarkably, the wavelength ℓ of these spectral lines can be
determined with great accuracy by a simple formula:

1
ℓ
= RH

( 1
n2

f

−
1
n2

i

)
, (2.1)

where RH is Rydberg’s constant for hydrogen, which has the numerical value
RH = 1.09678 × 107m−1. The Balmer spectrum corresponds to (n f ,ni) ∈
{(2, 3), (2, 4), (2, 5), (2, 6)}, and Balmer actually knew the formula (2.1) in these cases.
However, it was not until Neils Bohr developed his model for the hydrogen atom
in 1913 that there was a somewhat satisfactory theoretical explanation for the rela-
tionship between (2.1) and the emission spectrum for hydrogen. And even then,
Bohr’s model left something to be desired in terms of its extension to other emis-
sion spectra, and in terms of the theory having certain aspects that were without
proper motivation. However, this takes us beyond both the scope of this book, and
the expertise of its author.

The experiment described above can be performed with any of a number of
substances, and with variations on how the experiment is setup. This leads to
Kirchhoff’s laws of spectral formation, which tell us the sort of spectrum we can
expect to see. These laws are as follows.
1. A hot opaque body, such as a hot, dense gas produces a continuous spectrum,

by which we mean a continuous spectrum of light, as for example produced by
a rainbow.

2. A hot, transparent gas produces an emission line spectrum, by which we mean
a discrete set of frequencies will be produced.

3. A cool, transparent (dilute) gas in front of a source of continuous emission
produces an absorption line spectrum. This is essentially the “opposite” of
an emission line spectrum, in that frequencies are omitted from the spectrum
rather than produced in it.

The scenario is depicted cartoon-style in Figure 2.4.

2.1.3 Determining the composition of a distant star

Let us now consider a problem that we shall not be able to be as concrete with,
at least for the moment. The brightest star in the sky is Sirius. Suppose one wishes
to ask, “Of what is Sirius made?” Obviously, it is difficult to travel to Sirius since it
is about nine light years distant. Nonetheless, we are able to say a great deal about
the physical composition of stars like Sirius. How is this done? The idea is that
one points a radio telescope at Sirius that receives a signal. To analyse this signal,
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Figure 2.4 The Kirchhoff laws of spectral formation

one compares it to the signal one might get from known physical elements, like for
example the emission spectrum for hydrogen described in the preceding section.
By understanding the absorption and/or emission lines for the spectrum, certain
elements can be identified as being present in the star. In Figure 2.5 is shown a
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Figure 2.5 Events recorded for a prescribed wavelength for a
white dwarf

record of the emission events for a white dwarf. While Sirius is not a white dwarf,
it is accompanied by a white dwarf (a small very dense star) discovered by Alvan
Clark in 1862 while testing a new telescope. When observing Sirius, he observed
a “wobble” which was caused by the presence of another, barely visible star. This
was the first white dwarf discovered, and is called Sirius B.
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Section 2.2

Sound and music

The preceding section dealt with natural “frequencies” that are observed in
nature, and which travel with “waves” moving with the speed of light. In this
section we shall see that frequency comes naturally in other settings as well.

Do I need to read this section? If you were amused by the preceding section,
you may well be amused by this one as well. •

2.2.1 Sound identification using frequency

Sound is made by the generation of a wave that travels through the air, much
as a ripple travels over the surface of a pond on a calm day. The displacement of
the air carries with it a pressure difference, and it is this pressure difference that
activates the mechanism in the ear, causing us to hear something. One can measure
this pressure differential as a function of time, and in doing so one will end of with
a signal in the time-domain, as discussed in Chapter 1. Recall the speech signal
depicted in Figure 1.4. This time-domain representation would be how such a
signal would be normally recorded. However, it is a little difficult to know what
to do with it. For example, suppose that one wished to ascertain who the speaker
was. This is not easy to do by, say, comparing the given signal with a comparison
signal from a person who you think might have made the sound. It turns out that
a good way to analyse speech data is by determining the energy present in the
signal at various frequencies, and comparing that to known data for a candidate
speech-maker. In Figure 2.6 we show the frequency content of the time-domain
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Figure 2.6 Frequency content of speech signal from Figure 1.4
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speech signal. Of course, at this point we are not saying how we come up with
this—this is exactly the point of the subsequent several chapters of the book.

2.2.2 A little music theory

One can apply the ideas expressed in the preceding section to music. Recall
from Figure 1.5 the time-domain representation of two musical clips. In Figure 2.7
we show both the time-domain and frequency-domain representations of two
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Figure 2.7 A time-domain (top) and frequency-domain (bottom)
representation of part of the first movement of Mozart’s Eine
Kleine Nachtmusik (K525) (left) and a portion of the soundtrack
of the movie π (right)

musical clips. The clip on the left is from the first movement of Mozart’s Eine
kleine Nachtmusik (K525), and that on the right is from the soundtrack of the Darren
Aronofsky movie π. While the frequency-domain signals admittedly do not look
all that coherent, it is nonetheless true that there are many powerful techniques for
analysing signals that rely on representing a signal in terms of frequency, and not
time.

Since we have mentioned Mozart, perhaps it is interesting to say a few words
about musical notes as they relate to frequency. A note is a sound consisting of a
single frequency ν. Thus a note in the time-domain is a harmonic signal µ : R→ R.
Let us denote ν(µ) as the frequency of a note. A note µ4 is an octave higher than a
note µ1 if ν(µ4)

ν(µ1) = 2. Thus an increase by an octave is a doubling of frequency. It was
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observed by the Greeks2 that the human brain seems to identify notes that differ by
an octave as belonging to the same “family.” Physically, an octave arises (loosely)
in the following way. Consider a guitar string of length ℓ plucked so that it emits
a note.3 Now suppose that one places a clamp in exactly the middle of the string,
effectively making it two strings of length ℓ

2 . When plucked, the string will now
produce a note with frequency double that of the original string.

So that’s an octave. The problem now arises of how does one “ascend” from a
note µ to the note one octave higher. A scale is a division of an octave into a finite
number of intervals. There is no “correct” way to define a scale. We shall describe
two closely related scales that are common in western music. Both are based on
the division of the octave into twelve parts. First of all, why twelve? Well, it turns
out that it is possible to say a great deal about why twelve is the right number.
Historically, probably the best explanation is that one wishes to go from 1 to 2
by rational numbers whose numerators and denominators are not too large. The
reason for this “not too large” restriction is that notes related by rational numbers
with not too large numerators and denominators sound “nice.” For example, a
note with frequency 3

2ν(µ) played alongside the note µ seems pleasing to the ear.
However, the note with frequency 7919

6997ν(µ) played alongside µ will not sound as
pleasing. For various reasons that can be understood fairly well mathematically
(see the notes in Section 2.2.3), the octave scale can be well divided into twelve
(not equal, as we shall see) parts with frequencies rationally related to the bottom
frequency by rational numbers that have numerators and denominators that are
not too large.

Now, the first scale we define is called the chromatic just temperament, and
it produces a scale with rationally related frequencies, as described above. This
scale was first expounded upon thoroughly by Bartolomeo Ramos de Pareja (1440-
1491?) in 1482, although many had contributed pieces of it prior to de Pareja.
To be concrete, we start with a specific note which we denote µ j

C4
which has a

frequency of ν j
A4
= 220Hz. The note one octave higher will then be denoted µ j

A5

which has frequency ν j
A5
= 440Hz. To construct the just temperament we define

notes µ j

A♯
4

= µ j

B♭4
, µ j

B4
, µ j

C4
, µ j

C♯4
= µ j

D♭
4

, µ j
D4

, µ j

D♯
4

= µ j

E♭4
, µ j

E4
, µ j

F4
, µ j

F♯4
= µ j

G♭
4

, µ j
G4

, and

µ j

G♯
4

= µ j

A♭
4

according to the rules laid out in Table 2.2. The naming of (say) the second

element in the table as µ j

A♯
4

or µ j

B♭4
is arbitrary, and largely a matter of convenience

or convention. But, though the name may be different, the sound is the same. Note
that the division is by even parts on a scale that is logarithmic with base 2. Two
adjacent notes are separated by an semitone. Note that while the ratios formed
by the notes with the frequency of the original note are nice rational numbers

2In the west, the first musical scale seems to have been developed by the Pythagoreans.
3A guitar string when plucked normally does not emit a note, but a sound that is a sum of many

notes. But that is another course.
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with small numerator and denominator (this is one of the objectives of chromatic
just temperament), the problem arises that there are four distinct semitones. In
Table 2.2 these gaps are described by the ratio with the next frequency in the table
to facilitate comparison with Table 2.3 below. To further facilitate this comparison,
we compute the base 2 logarithm of the ratios defining the semitones:

log2
25
24 ≈ 0.0588937, log2

135
128 ≈ 0.0768156

log2
16
15 ≈ 0.0931094, log2

27
25 ≈ 0.111031.

(2.2)

The use of the next scale we present became solidified around the time of
J. S. Bach. This is the tempered scale, and divides the octave into twelve parts,
with the division being regular in a certain sense. To illustrate, let us again choose
the note µe

A4
: R → R with frequency νe

A4
= ν(µe

A4
) = 220Hz, and denote by µe

A5
the

note one octave higher than µe
A4

. We then define eleven notes (some with multiple
names) µe

A♯
4

= µe
B♭4

, µe
B4

, µe
C4

, µe
C♯4
= µe

D♭
4

, µe
D4

, µe
D♯

4

= µe
E♭4

, µe
E4

, µe
F4

, µe
F♯4
= µe

G♭
4

, µe
G4

, and

µe
G♯

4

= µe
A♭

4

according to the rules laid out in Table 2.3. Note here that all semitones

are equal and have the numerical value 1
12 = 0.83̄, which can be compared to the

four semitone values for the just Chromatic scale as given in (2.2).
The convention of assigning to µe

A4
the frequency of 220Hz has been in place

since 1939, and is the convention now used for fixing the notes in the musical scale
used for (for example) tuning a piano. The note µe

C4
in Table 2.3 is middle C on the

piano. With this convention, the lowest note on the piano keyboard is µC1 .

2.2.3 Notes

Some interesting discussion of the mathematics of ascending an octave can
be found in the paper of [Douthett, Entringer, and Mullhaupt 1992]. Readers
interested in a scientific discussion of music are referred to the classic book of Jeans
[1968].

Exercises

2.2.1 Compute the frequencies of the following notes:

(a) µe
A0

;
(b) µe

C1
;

(c) µe
G♯

5

;

(d) µe
A♭

6

;

(e) µe
B♭2

;

(f) µe
D♯

4

.

2.2.2 For the following pairs of notes, describe the degree and quality of the
interval between them:
(a) (µe

A0
, µe

G♯
5

);

(b) (µe
D♯

4

, µe
G♯

5

);

(c) (µe
A0
, µe

C♭0
);

(d) (µe
A0
, µe

B♯0
);

(e) (µe
A0
, µe

F0
);

(f) (µe
A0
, µe

E♯0
).
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Note Frequency ratio Ratio with next step Frequency

µ j
A4

ν
j
A4

ν
j
A4

= 1
ν

j

A♯4

ν
j
A4

= 27
25 220Hz

µ j

A♯
4

= µ j

B♭4

ν
j

A♯4

ν
j
A4

= 27
25

ν
j
B4

ν
j

A♯4

= 25
24 237.6Hz

µ j
B4

ν
j
B4

ν
j
A4

= 9
8

ν
j
C4

ν
j
B4

= 16
15 247.5Hz

µ j
C4

ν
j
C4

ν
j
A4

= 6
5

ν
j

C♯4

ν
j
C4

= 16
15 264Hz

µ j

C♯4
= µ j

D♭
4

ν
j

C♯4

ν
j
A4

= 32
25

ν
j
D4

ν
j

C♯4

= 135
128 281.6Hz

µ j
D4

ν
j
D4

ν
j
A4

= 27
20

ν
j

D♯4

ν
j
D4

= 16
15 297Hz

µ j

D♯
4

= µ j

E♭4

ν
j

D♯4

ν
j
A4

= 36
25

ν
j
E4

ν
j

D♯4

= 25
24 316.8Hz

µ j
E4

ν
j
E4

ν
j
A4

= 3
2

ν
j
F4

ν
j
E4

= 16
15 330Hz

µ j
F4

ν
j
F4

ν
j
A4

= 8
5

ν
j

F♯4

ν
j
F4

= 135
128 352Hz

µ j

F♯4
= µ j

G♭
4

ν
j

F♯4

ν
j
A4

= 27
16

ν
j
G4

ν
j

F♯4

= 16
15 371.26Hz

µ j
G4

ν
j
G4

ν
j
A4

= 9
5

ν
j

G♯4

ν
j
G4

= 16
15 396Hz

µ j

G♯
4

= µ j

A♭
5

ν
j

G♯4

ν
j
A4

= 48
25

ν
j
A5

ν
j

G♯4

= 25
24 422.4Hz

µ j
A5

ν
j
A5

ν
j
A4

= 2
ν

j

A♯5

ν
j
A5

= 27
25 440Hz

Table 2.2 The division of an octave by chromatic just tempera-
ment
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Note Frequency ratio Ratio with next step Frequency (approx)

µe
A4

νe
A4

log2

νe

A♯4
νe

A4

= 1
12 220Hz

µe
A♯

4

= µe
B♭4

log2

νe

A♯4
νe

A4

= 1
12 log2

νe
B4
νe

A♯4

= 1
12 233.082Hz

µe
B4

log4

νe
B4
νe

A4

= 1
6 log2

νe
C4
νe

B4

= 1
12 246.942Hz

µe
C4

log2

νe
C4
νe

A4

= 1
4 log2

νe

C♯4
νe

C4

= 1
12 261.626Hz

µe
C♯4
= µe

D♭
4

log2

νe

C♯4
νe

A4

= 1
3 log2

νe
D4
νe

C♯4

= 1
12 277.183Hz

µe
D4

log2

νe
D4
νe

A4

= 5
12 log2

νe

D♯4
νe

D4

= 1
12 293.665Hz

µe
D♯

4

= µe
E♭4

log2

νe

D♯4
νe

A4

= 1
2 log2

νe
E4
νe

D♯4

= 1
12 311.127Hz

µe
E4

log2

νe
E4
νe

A4

= 7
12 log2

νe
F4
νe

E4

= 1
12 329.628Hz

µe
F4

log2

νe
F4
νe

A4

= 2
3 log2

νe

F♯4
νe

F4

= 1
12 349.228Hz

µe
F♯4
= µe

G♭
4

log2

νe

F♯4
νe

A4

= 3
4 log2

νe
G4
νe

F♯4

= 1
12 369.994Hz

µe
G4

log2

νe
G4
νe

A4

= 5
6 log2

νe

G♯4
νe

G4

= 1
12 391.995Hz

µe
G♯

4

= µe
A♭

5

log2

νe

G♯4
νe

A4

= 11
12 log2

νe
A5
νe

G♯4

= 1
12 415.305Hz

µe
A5

log2

νe
A5
νe

A4

= 2 log2

νe

A♯4
νe

A5

= 1
12 440Hz

Table 2.3 The division of an octave by even temperament
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Section 2.3

Signal transmission schemes

It may be supposed that we are all familiar with the terms “AM” and “FM.”4

Perhaps we may also suppose that we all know that these are abbreviations for
“amplitude modulation” and “frequency modulation.” Maybe a less familiar ex-
pression is “phase modulation,” although we have all probably used devices that
make use of phase modulation technology. In this section we will review some
ideas related to these techniques for signal transmission. We do not attempt to go
into the details of what makes one scheme better in which circumstances to the
other two, but merely content ourselves with identifying the rôle of frequency in
each of the schemes.

Do I need to read this section? If the reader does not already know about the
details of these techniques, then this section might make for an interesting intro-
duction. •

2.3.1 A general communication problem

The techniques in this section are used to solve the following problem. One has
some signal t 7→ s1(t) one wishes to transmit. However, someone else has a signal
t 7→ s2(t) that they wish to transmit. If both signals are transmitted at the same
time, then a receiver will see s1+ s2 plus any other junk floating around. If s1 and s2

are similar (say both are transmissions of the human voice), it will not be possible
to separate s1 and s2 from s1 + s2. Thus the problem is to find a way to transmit a
signal so that it is in some way distinguished from all of the other signals flying
about that are similar to it. The three modulation schemes we discuss here are
designed to achieve exactly this objective.

This problem is an example of a general communication problem, a schematic
for which is given in Figure 2.8. The idea in this schematic is that a signal enters
at the top left. The source encoder processes the signal in some way to make it
amenable for transmission. For example, perhaps this step involves some data
compression. The channel encoder manipulates the data to provide robustness.
At this step one may, for example, perform some error correction. The modulator
then makes the data ready for transmission. The physical channel is the medium
over which the data is transmitted; this is air for radio broadcasting. The demodu-
lator then retrieves the actual data from the transmitted data, the channel decoder,
knowing what was done by the channel encoder, produces an accurate represen-
tation of what came out of the course encoder, and the source decoder reverts the
data to its final usable form.

4This supposition will probably cease to be valid in the not too distant future.
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Figure 2.8 The general communication problem

In this section we are interested in the modulation/demodulation parts of the
general scheme.

2.3.2 Amplitude modulation

Historically, the technique of amplitude modulation was employed to transmit
telephone signals along electric power lines. The idea was that the existing electric
power “carried along” the audio signal from the telephone. This idea was adapted
to radio transmission, but in radio transmission one does not hitch a ride on a
preexisting signal, but the whole signal is constructed, including the carrier.

In amplitude modulation (AM) one starts with a carrier signal which is a
harmonic signal, say

c(t) = Ac sin(ωct + ϕc),

where Ac, ωc and ϕc are the amplitude, frequency, and phase of the carrier signal.
One wishes to transmit the signal s(t), and to do so one instead transmits the signal
Mam

c,s (t) = (A + s(t))c(t), called the amplitude modulated signal. The quantity ∥s∥∞
A

is called the modulation index. This quantity can be selected to achieve various
effects.

Let us get some idea of how this works by looking at a special case. We take
c(t) = Ac sin(ωct) and s(t) = As cos(ωst). We then have the amplitude modulated
signal

Mam
c,s (t) = Ac(A + As cos(ωst)) sin(ωct)

= AAc sinωct + 1
2AcAs sin((ωc + ωs)t) + 1

2AcAs sin((ωc − ωs)t),

after some trigonometric identities have been applied. The following observations
can be made.
1. The amplitude modulated has components at three frequencies, ωc, ωc + ωs,

and ωc − ωs. The frequency component at frequency ωc is just a scaled version
of the carrier signal. The effects of the amplitude modulation appear in the
other two components. It turns out that the same thing happens for a general
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signal. One gets the effects of the carrier signal at the frequency ωc and the
frequency content of the transmitted signal appear shifted both by ωc and −ωc.
In practice one chooses ωc to be larger than the largest frequency contained in
the transmitted signal. This prevents overlapping in the two shifted portions
of the spectrum. These shifted portions of the spectrum are called sidebands.
The point is that the problem of signal transmission by two transmitters is
solved by each transmitter choosing a different carrier frequency ωc. This is
the frequency to which you tune your radio dial in the unlikely event that you
listen to AM radio.

2. The information contained at the shifted frequency ωc − ωs is already present
in the information contained at the shifted frequency ωc + ωs. Thus it would
be more efficient to be able to have only one of the two sidebands. There is a
technique for achieving this and it is called single sideband (SSB) transmission.

3. In this example the modulation index is As
A . In some schemes for amplitude

modulation it is required that the modulation index not exceed 1, which means
that the amplitude must remain positive. In Figure 2.9 we show the amplitude
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Figure 2.9 Amplitude modulation with modulation index 0.5
(top left), 1 (top right), and 1.5 (bottom); in all cases we have
ωc = 5, ωs = 1, Ac = 1, and As = 1

modulated signal for the example with various modulation indexes.
4. In order to recover s from Mam

c,s , the latter signal must undergo demodulation.
This is relatively easy to understand if one knows a little Fourier transform
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theory, see . what

2.3.3 Frequency modulation

The idea for using frequency modulation came from Edwin Armstrong in 1935,
and began seeing widespread use in the 1940’s.

For frequency modulation, the idea is sort of the same as amplitude modulation,
but the details are quite different. One starts out with a sinusoidal carrier signal

c(t) = Ac sin(ωct + ϕc)

with amplitude Ac, frequency ωc, and phase ϕc. One wishes, again, to transmit the
signal s(t). To do so one defines

ωc,s(t) =
∫ t

0
(ωc +Ωs(τ)) dτ

and, using this instantaneous frequency, the frequency modulated signal

Mfm
c,s (t) = Ac sin(ωc,s(t) + ϕc).

For frequency modulation the modulation index is Ω∥s∥∞ωs
where ωs is the frequency

of the signal s to be transmitted. If s is not harmonic then ωs is not well-defined,
and one may use an average or some such thing.

To get some idea of what is going on with frequency modulation, let us consider
again the special case of c(t) = Ac sin(ωct) and s(t) = As cos(ωst). For amplitude mod-
ulation in this case we could determine the modulated signal easily using simple
trigonometry. For the frequency modulated signal, things are more complicated.
Nonetheless, after some work, one can compute

Mfm
c,s (t) = Ac sin(ωct + AsΩ

ωs
sin(ωst)) =

∞∑
k=−∞

Jk(AsΩ
ωs

) sin((ωc + kωs)t),

where Jk is the Bessel’s function of the first kind of index k:

Jk(x) =


∑
∞

m=0
(−1)m

m!(m+k)!

(
x
2

)2m+k
, k ∈ Z>0,

(−1)k ∑∞
m=0

(−1)m

m!(m−k)!

(
x
2

)2m−k
, k ∈ Z<0.

The exact form of the frequency modulated signal is not so important as the obser-
vation that the signal is a sum of harmonic signals of frequencies shifted from the
carrier frequency ωc by integer multiples of the transmitted signal frequency ωs.
Thus, for frequency modulation, there are infinitely many sidebands. The point
is that, just as with amplitude modulation, the modulated signal is most easily
interpreted in terms of the frequencies at which the signal possess harmonics.

In Figure 2.10 we show the frequency modulated signal for various modulation
indexes.
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Figure 2.10 Frequency modulation with modulation index 2 (top
left), 5 (top right, and 10 (bottom); in all cases we have ωc = 5,
ωs = 1, Ac = 1, and As = 1

2.3.4 Phase modulation

Phase modulation looks a lot like frequency modulation, so we go through the
development quickly. One again starts with a sinusoidal carrier signal

c(t) = Ac sin(ωct + ϕc)

with amplitude Ac, frequency ωc, and phase ϕc. One wishes, again, to transmit the
signal s(t). To do so one defines the instantaneous phase

ϕc,s(t) = ϕc + Φs(t)

and then the phase modulated signal

Mpm
c,s (t) = Ac(ωct + ϕc,s(t)).

The modulation index is ∥Φs∥∞. One often sees it written that one or the other of
frequency and phase modulation is a special case of the other. This is not quite
true. What is true is that the set of frequency modulated signals is, up to a constant
phase, a subset of the phase modulated signals. However, this is a rather different
statement than frequency modulation being a special case of phase modulation.
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Let us again consider the special case c(t) = Ac sin(ωct) and s(t) = As cos(ωst).
Here we have

Mpm
c,s (t) = Ac sin(ωct + ΦAs cos(ωst)).

One may determine that

Mpm
c,s (t) =

∞∑
k=−∞

Jk(AsΦ) cos((ωc + kωs)t + k−1
2 π).

Again we see that the phase modulated signal is a sum of harmonics with frequen-
cies being the carrier frequency shifted by integer multiples of the signal frequency.

In Figure 2.11 we show the phase modulated signal for various modulation
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Figure 2.11 Phase modulation with modulation index 2 (top left),
5 (top right, and 10 (bottom); in all cases we have ωc = 5,
ωs = 1, Ac = 1, and As = 1

indexes.

Exercises

2.3.1 Explain the statement, “The set of frequency modulated signals is, up to a
constant phase, a subset of the phase modulated signals.”
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Section 2.4

System identification using frequency response

We continue in this section with some ideas to motivate the use of frequency
rather than time as a means of characterising signals. While system identification,
the topic of this section, more clearly lies in the realm of system theory (as will be
discussed in detail in Volume 5), it is possible to say a few helpful things here that
relate clearly to the notion of frequency.

Do I need to read this section? If the preceding three sections did not satiate
your need to motivate the usefulness of frequency, then go ahead, read this section
too. •

2.4.1 System modelling

When making a model of a system, there are possibly three strategies one might
employ.

2.4.1.1 White-box modelling White-box modelling refers to modelling from
first principles. Such first principles might include the principles of Newtonian
mechanics, electromagnetics, fluid mechanics, thermodynamics, chemistry, quan-
tum mechanics, etc. This is the strategy one might employ if the system one is
modelling is well enough understood. Many systems are simply not of the sort
that admit first principle modelling. Many biological, economic, social, etc., sys-
tems, for example, are not presently sufficiently well understood to allow them to
be modelled in any “principled” way. Thus sometimes white-box modelling is just
not possible. Moreover, even when it is possible, sometimes white-box modelling
is not advisable. Indeed, a white-box model of an extremely complex system might
just be too difficult to manage.

2.4.1.2 Grey-box modelling In grey-box modelling one has a form of a model,
or maybe a rough form of a model at hand based on some knowledge of the system.
However, there are parameters in the model that are not determinable from first
principles, but must be determined in some way. In this case one might use some
strategy for determining the values of the undetermined parameters. This is some
form of system identification.

2.4.1.3 Black-box modelling In black-box modelling the premise is that one
is so ignorant of one’s system that the entire model has to be conjured in some
way. As mentioned above, such systems are frequently encountered in biology,
economics, social sciences, etc. It might also be the case that one has a system that
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is modellable, but one wishes to instead produce a more manageable model. The
field of system identification typically deals with systems such as these.

2.4.2 A simple example

Consider the pair of coupled masses shown in Figure 2.12. The three springs

Figure 2.12 A coupled mass system

have the same spring constant k and the masses are also equal with mass m. Let
us understand the behaviour of this system first before we start to pretend we do
not understand it. In Figure 2.13 we depict the natural modes of vibration for

Figure 2.13 The two natural modes of vibration for the coupled
mass system: (1) the masses oscillate with equal amplitude in
the same direction (left) and (2) the masses oscillate with equal
amplitude in the opposite direction

the system. The frequency of the mode on the left is
√

k
mrad/s and the frequency

of the mode on the right is
√

3k
m rad/s. Now let us forget that we know about

this system, but suppose instead that we are given a box with the system inside
as shown in Figure 2.14. The idea is that we use the lever on top to actuate the
system and we measure the response from the rod sticking out the right side of
the box. Our task is to try to understand what is inside the box by manipulating
the lever appropriately. A natural way to do this is to provide a harmonic input to
the lever. If the system is linear, one is ensured that a harmonic output will result.
By measuring the amplitude of the output at various input frequencies one might
hope to be able to deduce something about what is in the box. For example, if one
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measure here

shake here

Figure 2.14 A box with the coupled mass system inside

provides inputs at or near the natural frequencies
√

k
mrad/s and

√
3k
m rad/s, then

one might expect the output to be larger than that for input frequencies that are far
from these natural frequencies.

The details of this are not the point. The point is that varying frequency inputs
to a system can be a useful way of understanding its behaviour.

2.4.3 A not-so-simple example

The coupled mass system from the previous section is cute, but lacks a little
substance. But the same sorts of ideas apply to far more complicated systems.
In Figure 2.15 we depict a building in an earthquake. Naturally, one would

Figure 2.15 Earthquake! Get under a table!
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like for the building to move around as little as possible during the earthquake
so as to minimise the possibility of structural failure. If one knows something
about the typical frequency characteristics of the ground movement during an
earthquake, one can reasonably ask that the building not exhibit a lot of motion
when subject to harmonic signals with frequencies in those of the range present
during an earthquake.

One would, therefore, like to be able to model a building in such a way as to
ascertain how it responds to signals of certain frequencies. Now, this is an example
of a system for which a white-box model is possible to derive. We know enough
about the behaviour of materials that we could, in principle, produce a model from
physical principles. However, such a model would be very complicated, probably
more so than would be needed to achieve the desired objectives. A technique that
is used, both on real buildings and on scaled laboratory models for buildings, is to
put sensors at various points on the building and provide input forces at various
points on the building. By measuring the outputs for various inputs, one attempts
to devise a simplified model that captures the desired facets of the problem. As
with our toy example with two coupled masses, a common way to arrive at a model
is to use harmonic inputs of varying frequency.

2.4.4 Notes

There is a famous instance where the issues discussed in Section 2.4.3 were
revealed in a spectacular way. On November 7, 1940, approximately four months
after it opened, the bridge across the Tacoma Narrows in Puget Sound in Wash-
ington collapsed. The collapse was preceded by a period of about an hour where
the bridge oscillated wildly at a frequency of about 0.2Hz. This oscillation was
induced by aerodynamic effect caused by the wind conditions in the Sound. While
the wind speed was steady, vortex-shedding effects were responsible for the har-
monic excitation of the bridge.
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Section 2.5

Frequency-domains and signals in the frequency-domain

After having spent the preceding four sections motivating the meaning andright number?

usefulness of frequency-domain representations, in this section we present some
language and notation concerning frequency-domains and signals as they might
be represented in the frequency-domain. For time-domain representations of sig-
nals, the characteristics we presented in Sections 1.1.2 and 1.1.3 are fairly easy
to understand. For frequency-domain representations the meaning of the vari-
ous frequency-domains and properties of frequency-domain signals may not be so
clear. However, it will be useful to have the terminology here in the sequel.

The approach here, and the technical aspects of what we say, follow our ap-
proach of Sections 1.1, 1.2, and 1.3. Therefore, our discussion here will be a little
abbreviated since we will assume that the reader is familiar with our developments
in the time-domain.

Do I need to read this section? We shall present notation and terminology in
this section that we will freely use in the sequel. Thus the reader ought to read this
section in order to be familiar with this. •

2.5.1 Frequency

As with time-domains, our definitions of frequency-domains rely on the notion
of subgroups and semigroups in the group (R,+) of real numbers with addition.

2.5.1 Definition (Frequency-domain) A frequency-domain is a subset of R of the form
V ∩ I whereV ⊆ R is a semigroup in (R,+) and I ⊆ R is an interval. A frequency-
domain is

(i) continuous ifV = R,
(ii) discrete if V = Z(ν0,Ω) for some ν0 ∈ R called the origin shift and for some
Ω > 0 called the fundamental frequency,

(iii) bounded if cl(I) is compact,
(iv) unbounded if it is not finite. •

2.5.2 Remarks (Some commonly made assumptions about frequency-domains)
1. We shall denote a typical point in a frequency-domain by ν or ω, depending

on whether we mean to use frequency or angular frequency, respectively. Just
as we generally think of the independent variable for time-domain signals as
representing time in the usual sense, we shall think of frequency as being in
units of Hz or rad/s. However, if time is not really time but something else
(say, spatial distance) then the units of frequency will also be altered (to, say,
wavelength).
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2. As with time-domain signals, we will deal almost exclusively with discrete
frequency-domains that are not shifted. In practice there are rules for converting
shifted frequency-domains to unshifted ones. see?

3. Also as with time-domains, we shall assume that discrete frequency-domains
are regularly spaced, i.e., that the fundamental frequency is well-defined. •

2.5.2 Frequency-domain signals: basic definitions and properties

Next we define what we mean by a signal in the frequency-domain.

2.5.3 Definition (Frequency-domain signal) LetW = V∩ I be a frequency-domain and
let F ∈ {R,C}. An F-valued frequency-domain signal onW is a map F : W→ F. If
W is continuous then F is a continuous-frequency signal and ifW is discrete then
F is a discrete-frequency signal. •

2.5.4 Notation (“Frequency-domain representation” versus “frequency-domain
signal”) Since it is more natural to think of signals as “happening” in the time-
domain, we shall often refer to a frequency-domain signal as a “frequency-domain
representation” of a signal, it being implied that the signal “really lives” in the
time-domain, but we represent it (by means as yet unknown) in the frequency
domain. •

The manner in which we graphically represent frequency-domain signals is the
same as we used for time-domain signals. We refer to Figures 1.7 and 1.8, and the
surrounding discussion, for the details of this. One thing to point out, however,
is that in the frequency-domain it is far more natural to arrive at signals that are
complex-valued, even when the corresponding time-domain signal is real. We
shall see this in the examples below.

Let us next consider some examples of frequency-domain representations of
signals. While we have not yet said how to make this correspondence, for each
frequency-domain representation we will also indicate what is the time-domain
signal. This will hopefully make it easier to understand our Fourier transform
theory that follows in subsequent chapters.

2.5.5 Examples (Frequency-domain representations of signals)
1. Let us takeW = Z and define F : W→ C by

F(ν) =


1
2i , ν = 1,
−

1
2i , ν = −1,

0, otherwise.

The way one constructs the time-domain signal from this is as follows. Corre-
sponding to F(1) = 1

2i we have the time-domain signal 1
2ie

2πit and corresponding
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to F(−11) = − 1
2i we have the time-domain signal − 1

2ie
−2πit. The time-domain

signal corresponding to F is then

f (t) = F(1)e2πit + F(−1)e−2πit = 1
2i (e

2πit
− e−2πit) = sin(2πt).

2. Let us takeW = Z and define F : W→ R by

F(ν) =


1
2 , ν = 1,
−

1
2 , ν = −1,

0, otherwise.

The time-domain signal corresponding to this frequency-domain representation
is

f (t) = F(1)e2πit + F(−1)e−2πit = 1
2 (e2πit

− e−2πit) = cos(2πt).

3. We generalise the preceding two examples by again taking W = Z and now
taking F : W→ F to be any frequency-domain signal such that {ν ∈W | F(ν) ,
0} is finite. Then the corresponding time-domain signal is defined to be

f (t) =
∑
ν∈W

F(ν)e2πiνt,

this sum making sense since it is finite. The idea is that F(ν) in the frequency-
domain represents F(ν)e2πiνt in the time-domain. To get the entire signal in the
time-domain, one sums over all frequencies.

4. Take the frequency-domainW = R and define F : W→ R by

F(ν) =

1, ν ∈ [0, 1],
0, otherwise.

As with the preceding examples, we have not actually said how one determines
the time-domain signal corresponding to this frequency-domain representation.
However, we can generalise the preceding example where we sum over the
frequencies in the frequency domain multiplied by a complex harmonic at that
frequency. In this case of a continuous frequency-domain the adaptation of this
idea gives

f (t) =
∫
R

F(ν)e2πiνt dν =
∫ 1

−1
e2πiνt dν =

1
2πt

(e2πit
− e−2πit) =

sin(2πt)
πt

,

with the understanding that at t = 0 we use L’Hôpital’s Rule to get f (t) = 2
(which also agrees with the integral computation). If you are new to the idea
of a frequency-domain representation, this example will probably just seem
strange and arbitrary at this point.
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5. Let us turn the previous example around. Thus we defineW = R and F : W→
R by F(ν) = sin(2πν)

πν . Were we to follow the above recipe for determining the
corresponding time-domain signal then we would have

f (t) “ = ”
∫
R

F(ν)e2πiνt dν.

Note, however, that ν 7→ F(ν)e2πiνt is actually not integrable. Therefore, it is not
clear at all that one can use this idea of “summing over frequencies” to retrieve
the time-domain signal. However, there is a sense, in fact, where this does work,
and in this sense the corresponding time-domain signal is precisely

f (t) =

1, t ∈ [−1, 1],
0, otherwise.

As it turns out, the reason that this computation can be made is that F ∈
L(2)(R;R). Again, this likely seems merely mysterious if this is all new to you.

6. We again take the frequency-domain W = R and now take F(ν) = 1 for all
ν ∈ R. Again, using the “summing over frequency” idea of determining the
time-domain signal, we would have

f (t) “ = ”
∫
R

F(ν)e2πiνt dν =
∫
R

e2πiνt dν.

Now the function ν 7→ e2πiνt is really not integrable. For example, this function
is not in L(p)(R,C) for any p ∈ [1,∞). Nonetheless, there is a sense in which the
above integral can be computed. However, upon doing do what one gets is not
a function in the usual sense. Indeed, what one gets is the Dirac delta-signal at
t = 0, typically denoted δ0. •

A few comments corresponding to these examples are in order.
1. We should reiterate that at this point we have simply not indicated how one

systematically comes up in the examples above with the time-domain signals
corresponding to the given frequency-domain representations. Instead, we are
just presenting a slightly reasonable prescription for how one might do this in
the examples we consider.
The precise ideas behind these examples are presented in Chapters 5 and 6.
Demystification, probably preceded by further mystification, will only occur at
this time.

2. The situation in Example 5 above is explained in Section 6.3.
3. The situation in Example 6 above is explained in Sections 6.4 and 6.5.

Now let us consider some attributes that a frequency-domain signal might
possess. The support supp(F) of a frequency-domain signal F can be defined as for
a regular function as in Definition III-3.8.28(ii). correct ref?
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2.5.6 Definition (Band-limited, periodic frequency-domain signals) Let W be a
frequency-domain, let F ∈ {R,C}, and let F : W→ F be a frequency-domain signal.

(i) The frequency-domain signal is band-limited if supp(F) is bounded.
(ii) The frequency-domain signal is periodic with period W ∈ R>0 if F(ν +W) =

F(ν) for all ν ∈W.
(iii) The fundamental period of a periodic frequency-domain signal F is the small-

est number W0 for which F has period W0, provided that this number is
nonzero. •

The interpretations of these sorts of properties are not so easily made for
frequency-domain signals, so these are to be merely thought of as providing ter-
minology for later access.

2.5.3 Spaces of discrete frequency-domain signals

The spaces of signals we consider in the frequency-domain are, it turns out, the
same as those for time-domain signals. Since we have discussed these in detail in
Sections 1.2 and 1.3, with appropriate references to material in Chapters III-2, III-3,
and III-4, we only provide the notation here. For F ∈ {R,C} and for a frequency-
domainW all of the frequency-domain signal spaces we consider are subspaces of
the F-vector space FW. The first batch of subspaces we consider are

cfin(W;F) = {F ∈ FW | F(ν) = 0 for all but finitely many ν ∈W};

c0(W;F) = {F ∈ FW | for each ϵ ∈ R>0 there exists a finite subset S ⊆W
such that |F(ν)| > ϵ iff ν ∈ S};

ℓ∞(W;F) = {F ∈ FW | sup{|F(ν)| | ν ∈W} < ∞}.

For all of these F-vector spaces we use the norm

∥F∥∞ = sup{|F(ν)| | ν ∈W}.

We also use the vector space

ℓp(W;F) =
{
F ∈ FW

∣∣∣∣ ∑
ν∈W

|F(ν)|p < ∞
}

with the norm
∥F∥p =

(
Ω

∑
ν∈W

| f (ν)|p
)1/p

.

The properties of these frequency-domain signal spaces, and the relationships
between them are discussed in Sections 1.2.2 and 1.2.3. The inclusion relations for
them are discussed in Section 1.2.7.
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We may also consider periodic frequency-domain signals, although the signif-
icance of these is less transparent than for periodic time-domain signals. That is,
for F ∈ {R,C}, for an infinite frequency-domainW, and for Ω ∈ R>0, we define

ℓp
per,W(W;F) = {F ∈ FW | F is W-periodic}.

Recall that things are particularly simple in the discrete case since these spaces
are actually finite-dimensional and independent of p. The norms considered on
ℓp

per,W(W;F) are

∥F∥p =
(
Ω

∑
ν∈[0,W)∩W

|F(ν)|p
)1/p

, p ∈ [1,∞),

∥F∥∞ = max{|F(ν)| | ν ∈ [0,W) ∩W}.

2.5.4 Spaces of continuous frequency-domain signals

Let us quickly remind the reader of the notation for continuous frequency-
domain signals; as in the discrete-frequency case, the notation is borrowed directly
from the time-domain; the reader will want to read Section 1.3 carefully to re-
member the precise definitions of these spaces and some of their attributes. We let
F ∈ {R,C} and let W be a continuous frequency-domain. All frequency-domain
signal spaces considered here are subspaces of FW.

First we recall the spaces

C0(W;F) = {F ∈ FW | F is continuous};

C0
cpt(W;F) = {F ∈ C0(W;F) | F has compact support};

C0
0(W;F) = {F ∈ C0(W;F)| for every ϵ ∈ R>0 there exists a compact set

K ⊆W such that {ν ∈W | |F(ν)| ≥ ϵ} ⊆ K};

C0
bdd(W;F) = {F ∈ C0(W;F)| there exists M ∈ R>0 such that |F(ν)| ≤M

for all ν ∈W}.

On all of these subspaces the norm we use is

∥F∥∞ = sup{|F(ν)| | ν ∈W},

noting that this norm is always defined by F in C0
cpt(W;F), C0

0(W;F), or C0
bdd(W;F).

We also have the spaces L(p)(W;F) and Lp(W;F), p ∈ [1,∞], that are defined
exactly as they are in the time-domain. The norms are

∥F∥p =
(∫
W

|F|p dλ
)1/p

, p ∈ [1,∞),

∥F∥∞ = ess sup |F(ν)|ν ∈W.
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We refer the reader to Section 1.3.3 for the details of these constructions.
One also has the spaces of periodic continuous-frequency signals C0

per,Ω(R;F),

L(p)
per,Ω(R;F), and Lp

per,Ω(R;F), p ∈ [1,∞]. We refer to Section 1.3.4 for details.
Finally, we may also make reference to some of the classes of signals discussed

in the time-domain at the end of Section 1.3.2, but in the frequency-domain.
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Section 2.6

An heuristic introduction to the four Fourier transforms

In this section, with the preceding sections as motivation, we provide prelimi-
nary definitions of some of the transforms we will introduce. We do this so as to
acquaint the reader with some of the issues that go into the definitions. We will
be neither rigorous nor complete. The rough introduction we give will (hopefully)
provide some motivation for the presentation in Chapters 5, 6, and 7 where we
discuss the mathematical tools necessary to talk about frequency-domain repre-
sentations in a rigorous way. As with all heuristic approaches, there will be a
matter of taste involved. We make no claim that our heuristics are better than
any others. Indeed, we permit, and even encourage, the reader to look through as
many alternate points of view as possible since these will all contribute something.
Also, we do not advise the reader to take the remainder of this section too much
to heart. Everything done here will be done at great length and with great care in
subsequent chapters.

Do I need to read this section? There is no significant technical content in this
section, but perhaps it might be insightful to some readers. Moreover, while few
of our computations are rigorous, we do arrive at correct formulae for all of the
frequency-domain transforms that we will encounter in Chapters 5, 6, and 7. This
too may be helpful. •

2.6.1 Periodic continuous-time signals

We begin with the situation that is most easily motivated. The situation is that
of a signal f : R → C that is T-periodic. For simplicity, we consider C-valued
signals since this includesR-valued signals as a special case. We wish to write f as
a possibly infinite linear combination of “simple” T-periodic signals. The simplest
sort of T-periodic signal are those that are harmonic, t 7→ e2πin t

T , n ∈ Z. So let us
crazily suppose that our objective is to write

f (t) =
∑
n∈Z

cn( f )e2πin t
T (2.3)

for appropriate coefficients cn( f ), n ∈ Z. This is sometimes called a harmonic
expansion of f . Now, there is no reason whatsoever to expect a strategy like this
will succeed. However, as we shall see in Chapter 5, this actually is a reasonable
strategy. In any event, we will proceed as if this makes sense. One must determine
the coefficients cn( f ), n ∈ Z. Let us do this in a rather relaxed way. Using the (easily
verified) relation ∫ T

0
e2πin t

T e−2πim t
T dt =

T, m = n,
0, m , n,



96 2 Signals in the frequency-domain 2022/03/07

we compute ∫ T

0
f (t)e−2πim t

T dt =
∑
n∈Z

cn( f )
∫ T

0
e2πin t

T e−2πim t
T dt = Tcm( f )

=⇒ cm( f ) =
1
T

∫ T

0
f (t)e−2πim t

T dt,

making the assumption that the infinite sum can be swapped with the integral
(generally, it cannot be).

At this point in our discussion we merely think of the preceding formulae as
coming from an attempt to make sense of the attempt to write f as an infinite
sum of harmonics of period T. Let us now take an alternative point of view
towards this. The signal f is a T-periodic time-domain signal. The coefficient
cn( f ) is the coefficient of the harmonic of frequency nT−1 (and angular frequency
2πnT−1). Thus we might think of cn( f ) as being the “amount” of the signal f at the
frequency nT−1. This points to the frequency-domain representation of f as being
the signal nT−1

7→ cn( f ) on Z(T−1). Thus we have a mapping FCD from T-periodic
continuous-time signals to discrete-frequency signals with fundamental frequency
T−1. Explicitly we have

FCD( f )(nT−1) =
∫ T

0
f (t)e−2πin t

T dt.

(Note that we have lost a factor of 1
T . This is of no consequence and is really a

matter of convention.) The subscript “CD” is intended to signify the fact that the
mapping takes a continuous-time signal and returns a discrete-frequency signal.
Now the expression (2.3) can be thought of as an inverse to FCD in that it takes the
frequency-domain signal (represented by the coefficients cn( f ), n ∈ Z) and returns
the time-domain signal. More generally, if we have F : Z(T−1)→ Cwe may define

F −1
CD (F)(t) =

1
T

∑
n∈Z

F(nT−1)e2πin t
T .

(Note that we have recovered the factor of 1
T here.) Summarising:

FCD( f )(nT−1) =
∫ T

0
f (t)e−2πin t

T dt,

F −1
CD (F)(t) =

1
T

∑
n∈Z

F(nT−1)e2πin t
T .

(2.4)

There are lots of interesting questions here. For example, the following ques-
tions naturally arise.
1. Can our machinations be made to make sense?
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2. Is it true that F −1
CD is really the inverse of FCD? That is to say, given a T-periodic

signal f is it true that
F −1

CD
◦ FCD( f )(t) = f (t)

for almost every t?
3. Are there useful relationships between f and FCD( f )?
4. Are there possibilities for choosing the coefficients in the expression (2.3) other

than the one we give?

2.6.2 Aperiodic continuous-time signals

In this section we adapt the analysis of the preceding section to signals f : R→ C
that are not necessarily periodic. The ideas here are not as easy to motivate as they
are in the periodic case. In the periodic case, if you squint your eyes you might
be able to convince yourself that writing a periodic signal as an infinite sum of
harmonic is feasible. The corresponding statement for aperiodic signals is not so
easy to dream up and, moreover, the final answer seems decidedly less believable
than the already unbelievable situation in the periodic case. Nonetheless, we shall
proceed apace, our idea being to use the development from the preceding section
as a starting point, and using some bogus limiting argument. If the development
in the preceding section was a little sloppy, in this section, it will be downright
outrageous. Nevertheless, it is worthwhile to consider the limiting approach we
take here for signals that are not periodic to see the connection between the discrete
frequency representation in the preceding section and what will turn out to be a
continuous frequency representation.

We consider a signal f : R→ C that is not necessarily periodic. We do, however,
assume that f is integrable. Moreover, we suppose for simplicity that f (t) decays to
zero as t→∞. We adopt the following approach to attempt to derive the frequency
representation for f , using as a starting point the development of the preceding
section. We will restrict f to [−T

2 ,
T
2 ] and consider the T-periodic signal fT that is

equal to f on [−T
2 ,

T
2 ] (see Figure 2.16). For fT we write

fT(t) =
∑
n∈Z

cn( fT)e2πin t
T ,

with the equals sign being taken with an appropriate degree of skepticism, and
with

cn( fT) =
1
T

∫ T
2

−
T
2

f (t)e−2πin t
T dt.

Note that we have made some adjustments to the formulae in the preceding section
to take into account the fact that the interval is [−T

2 ,
T
2 ] and not [0,T]. This will be
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2
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2− 3T

2
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Figure 2.16 The signal fT constructed from f

done in a systematic way in Chapter 5. We define ∆ν = T−1 so that we may write

fT(t) =
∑
n∈Z

cn( fT)e2πin∆νt,

cn( fT) =
1
T

∫ T
2

−
T
2

f (t)e−2πin∆νt dt.
(2.5)

Now fix ν ∈ R and let nν ∈ Z have the property that ν ∈ [nν∆ν, (nν + 1)∆ν). Then
define

F ( f ; T)(ν) =
∫ T

2

−
T
2

f (t)e−2πinν∆νt dt.

Note that as T→∞we have nν∆ν→ ν, and so we may define

F ( f )(ν) = lim
T→∞
F ( f ; T)(ν) =

∫
R

f (t)e−2πiνt dt.

In a similar manner, for n ∈ Z let νn have the property that νn = n∆ν. We then have∑
n∈Z

cn( fT)e2πin∆νt =
∑
n∈Z

1
T
F ( f ; T)(νn)eiνnt =

∑
n∈Z

∆νF ( f ; T)(νn)e2πiνnt.

Taking the limit as T→∞, or equivalently as ∆ν→ 0, the sum becomes an integral
and we have

lim
T→∞

∑
n∈Z

cn( fT)e2πin∆νt =

∫
−R

F ( f )(ν)e2πiνt dν.
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Summarising, we have the relationships

f (t) =
∫
R

F ( f )(ν)e2πiνt dν, (2.6)

F ( f )(ν) =
∫
R

f (t)e−2πiνt dt,

which tell us what the relationships (2.5) look like when T→∞. Again, the equals
signs should be regarded with extreme suspicion.

Let us now develop a “transform” point of view of the preceding discussion,
just as we did in the preceding section. Again, the idea is that F ( f )(ν) tells us the
“frequency content” of f at the frequency ν. Thus we think of the mapping FCC

that sends a time-domain signal f to its frequency-domain representation by the
formula

FCC( f )(ν) =
∫
R

f (t)e−2πiνt dt.

The subscript “CC” indicates that the transform sends a continuous-time signal to a
continuous-frequency signal. The “inverse” ofFCC then takes a frequency-domain
signal and returns a time-domain signal by the formula

F −1
CC (F)(t) =

∫
R

F(ν)e2πiνt dν.

Summarising:

FCC( f )(ν) =
∫
R

f (t)e−2πiνt dt,

F −1
CC (F)(t) =

∫
R

F(ν)e2πiνt dν.
(2.7)

The reader should stare for at the formula alongside (2.4) for sufficiently long that
they can come to see the relationship between the ideas being expressed in each
case.

The interesting questions here include the following.
1. Can our machinations be made to make sense?
2. Is it true that F −1

CC is really the inverse of FCC? That is to say, given a signal f is
it true that

F −1
CC

◦ FCC( f )(t) = f (t)

for almost every t?
3. Are there useful relationships between f and FCC( f )?
4. Are there possibilities for the expression (2.6) other than the one we give?

We shall study FCC and its inverse in detail in Chapter 6.
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2.6.3 Periodic discrete-time signals

We now mimic the above procedure, but for discrete-time signals. First we
consider the periodic case. Thus we suppose that we have a signal f : Z(∆) → C
defined on the discrete-time domain with sampling interval ∆. We assume that the
signal is periodic with period N∆; thus f (t + N∆) = f (t) for all t ∈ Z(∆). For our
heuristic introduction we shall attempt to make use of the preceding discussion
about continuous-time signals. To do this, we think of the discrete-time signal
f : Z(∆)→ C as being equivalent to the continuous-time generalised signal

g f (t) =
∑
j∈Z

f ( j∆)δ j∆.

The idea is that a discrete-time signal gives an “impulse” at each of its discrete
points. This possibly seems reasonable, but even if it does not we proceed as if it
does. Motivated by our methodology of Section 2.6.1, we seek constants cn( f ) with
the property that

g f (t) =
∑
n∈Z

cn( f )e2πin t
N∆ .

Proceeding as in Section 2.6.1 we have

cn( f ) =
1

N∆

∫ N∆

0
g f (t)e−2πin t

N∆ dt

=
1

N∆

∫ N∆

0

(∑
j∈Z

f ( j∆)δ j∆

)
e−2πin t

N∆ dt

=
1

N∆

N−1∑
j=0

f ( j∆)e−2πin j
N ,

using the definition of the generalised signals δ j∆. Note that in computing the
integral using the properties of δ j∆ we have included δ0 but not δN∆. This can
be justified by noting that the fundamental domain of g f is [0,N∆), i.e., the right
endpoint is not included in the fundamental domain. One can readily check that
cn+N( f ) = cn( f ) for all n ∈ Z. Thus we have the fundamental relations

g f (t) =
∑
n∈Z

cn( f )e2πin t
N∆ ,

cn( f ) =
1

N∆

N−1∑
j=0

f ( j∆)e−2πin j
N .

Now we wish to recover a formula for f , not g f , from the first of these formulae.
There is a little magic to this that will only be justified in . The first observationwhat?
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is that periodicity of the coefficients cn( f )—the fact that cn+N( f ) = cn( f ) for all
n ∈ Z—implies that

∑
n∈Z

cn( f )e2πin t
N∆ =

N−1∑
n=0

cn( f )e2πin t
N∆

(∑
k∈Z

e2πik t
∆

)
.

In Example 5.5.2–2 we shall see that∑
k∈Z

e2πik t
∆ =

∑
k∈Z>0

δk∆.

Note that the left-hand side is clearly senseless as a function, but the right-hand
side says that it is a distribution in any case. Forgetting the possibility of our doing
anything senseless, we simply have

∑
n∈Z

cn( f )e2πin t
N∆ =

N−1∑
n=0

cn( f )e2πin t
N∆

( ∑
k∈Z>0

δk∆

)
.

“Evaluating” this at t = j∆ gives

g f ( j∆) = f ( j∆) =
N−1∑
n=0

cn( f )e2πin j
N .

This gives us our desired representation of the periodic discrete-time signal f .
Now let us apply the transform point of view to the discussion. In this case

we note that we have mapped a N∆-periodic discrete-time signal defined on Z(∆)
to a ∆−1-periodic frequency-domain signal defined on Z( 1

N∆ ). Thus the mapping
is one between two N-dimensional vector spaces. We denote the time-domain to
frequency-domain map by FDD and its inverse by F −1

DD . Explicitly we have

FDD( f )( n
N∆ ) = ∆

N−1∑
j=0

f ( j∆)e−2πin j
N ,

F −1
DD (F)( j∆) =

1
N∆

N−1∑
n=0

F( n
N∆ )e2πi n

N j.

(2.8)

(Note that the factor of 1
N∆ is moved about freely, just as was the factor for 1

T for
FCD.) The subscript “DD” indicates that the transform is from a discrete-time signal
to a discrete-frequency signal.

Let us make some observations about the formulae (2.8).
1. Can our machinations using generalised distributions be made to make sense?
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2. Is it true that F −1
DD is really the inverse of FDD? That is to say, given an N∆-

periodic discrete-time signal f is it true that

F −1
DD

◦ FDD( f )( j∆) = f ( j∆)

for every j ∈ {0, 1, . . . ,N − 1}? Note that this is merely a question in finite-
dimensional linear algebra, whereas this question is actually extremely involved
for FCD and FCC.

3. Since the coefficients { f j} j∈Z and {cn( f )}n∈Z are periodic with period N, the rela-
tionships between them are actually simple computationally since all sums are
finite. Is there an efficient way to perform these computations?
The transform FDD will be studied in detail in Section 7.2.

2.6.4 Aperiodic discrete-time signals

Now we consider again a discrete-time signal f : Z(∆) → C, but now we do
not assume that f is periodic. We still convert f to a continuous-time generalised
signal g f and write

g f (t) =
∑
j∈Z

f ( j∆)δ j∆.

Analogous with the construction of Section 2.6.2, we assume that the sequence
{ f ( j∆)} j∈Z>0 is absolutely summable. Thus we may compute, as in Section 2.6.2,

F ( f )(ν) =
∫
R

f (t)e−2πiνt dt =
∑
j∈Z

f ( j∆)e−2πiν j∆.

Note the similarity between this formula as a function of ν and the expression (2.3)
for a periodic signal as a function of t. Thus we see that in (2.3) t is replaced with ν
and that T is replaced with ∆−1, and there is also a sign change in the exponential.
In any case, at least if we are ruthless with our limits, we can compute∫ ∆−1

0
F ( f )(ν)e2πiνk∆ dν =

∑
j∈Z

f ( j∆)
∫ ∆−1

0
e2πiνk∆e−2πiν j∆ dν = ∆−1 f (k∆)

=⇒ f (k∆) = ∆
∫ ∆−1

0
F ( f )(ν)e2πiνk∆ dν.

Now let us give our transform interpretation of the preceding computations.
Our frequency-domain representation of the discrete time-domain signal f is a
continuous-frequency signal. Thus we denote the corresponding transform by
FDC with inverse F −1

DC . Our computations have shown that

FDC( f )(ν) = ∆
∑
j∈Z

f ( j∆)e−2πi j∆ν,

F −1
DC (F)( j∆) =

∫ ∆−1

0
F(ν)e2πi j∆ν dν.

(2.9)
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(The factor of ∆ is manipulated freely as is the factor of 1
T in the definition of FCD.)

As usual, there are questions to be asked here, including these.
1. Can our machinations using generalised distributions be made to make sense?
2. Is it true thatF −1

DC is really the inverse ofFDC? That is to say, given a discrete-time
signal f is it true that

F −1
DC

◦ FDC( f )( j∆) = f ( j∆)

for every j ∈ Z>0?
3. Are there useful relationships between f and FDC( f )?

We shall study the transform FDC in detail in Section 7.1.

2.6.5 Notes

The idea of considering the four transforms presented in Chapters 5, 6, and 7
as being different versions of the same idea we take from [Kwakernaak and Sivan
1991]. While this idea is certainly known and understood by everyone who works
with these things, the unified presentation of these, and the unified notation FCD,
FCC,FDD, andFDC we borrow from Kwakernaak and Sivan. This way of presenting
the subject seems to us to simply be the correct one, and we wish to acknowledge
Kwakernaak and Sivan for making this clear.

The ideas we describe in Section 2.6.1 form the beginning of the subject of
Fourier series, and was proposed by Fourier [1822] (1768–1830) in the course of get cites right

the study of heat conduction in solids. Fourier was trying to understand the
temperature distribution in a rod as depicted in Figure 2.17. Fourier’s idea was to

T (t, x)

Figure 2.17 Temperature distribution in a rod

write the temperature in the rod in the form

T(t, x) =
a0(t)

2
+

∞∑
n=1

(
an(t) cos(2πnx

ℓ ) + bn(t) sin(2πnx
ℓ )

)
,

where ℓ is the length of the rod. To many his colleagues at the time this seemed a
hopeless idea. One of the reasons for this was that it was thought to be infeasible to
write an arbitrary function as a series of continuous functions, the thinking being
that a convergent series of continuous functions should converge to a continuous
function. Since physically there seemed no reason to suppose that the temperature
distribution in the rod was continuous, Fourier’s idea was thought to be doomed.
However, Fourier has since been vindicated, and indeed his idea has spawned
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harmonic analysis, one of the most important areas in mathematics and applied
mathematics.

Exercises

2.6.1 Show that the following four sets of signals are linearly independent:

{t 7→ e2πin t
T | n ∈ Z};

{t 7→ e2πiνt
| ν ∈ R};

{k∆ 7→ e2πin k
N | n ∈ Z};

{k∆ 7→ e2πiνk∆
| ν ∈ R}.

The first two sets are comprised of continuous-time signals and the second
two sets of signals are comprised of discrete-time signals.
Hint:
1. Note that it suffices to show linear independence of the second and fourth sets.

Why?
2. Note that it suffices for the second and fourth sets to consider ν ∈ Q. Why?
These observations allow one to show linear independence of the sets

{t 7→ e2πiνt
| ν ∈ Q},

{k∆ 7→ e2πiνk∆
| ν ∈ Q}.
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Chapter 3

Distributions in the time-domain

It is surprisingly often that one naturally encounters signals that are not really
signals, but limits of signals in a certain sense that is not covered by the theory
of continuous-time signals spaces developed in the preceding chapter. The way
we will deal with these signals is through the use of distributions or, as they are
sometimes known, “generalised signals.” In these volumes we shall provide a
fairly complete presentation of how distribution theory arises in transform theory
and system theory. It is possible to do many things without knowing the details
of the theory of distributions. But the fact of the matter is that there comes a time
when it is harder to not use distributions than it is to use them. Therefore, we elect
to use them and to understand how they interact with more mundane matters.

In this chapter we shall encounter a number of different varieties of distribu-
tions, and these classes are related to one another in sometimes nontrivial ways.
The first class of distributions we consider, those we simply call “distributions,”
has some more or less straightforward motivation that we provide in Section 3.1.
However, the other classes of distributions might seem fairly unmotivated when
we first encounter them. This is because these classes of distributions are designed
to work with various sorts of Fourier transforms that we will encounter in sub-
sequent chapters, mainly Chapters 5, 6, and 7. Therefore, while we present the
properties of these classes of distributions in this chapter, we will not understand
the utility of some of these until we get to transform theory. The reader is advised,
then, to maybe read some of the sections in this chapter as preliminary to the
associated Fourier transform application.

In this chapter we give a self-contained treatment of distributions in the time-
domain. However, there is nothing that links distributions with time, per se, and
so one can also talk about generalised frequency-domain signals.

Do I need to read this chapter? It is a healthy thing to at least know what the
delta-signal is. So read enough to understand this as a bare minimum. •

Contents
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Section 3.1

Motivation for distributions

The most difficult aspect of the theory of distributions is not how to use distri-
butions, but to understand what you are doing when you use them. Part of arriving
at an understanding of what distributions are and are not involves understanding
why the definition of a distribution is as it is. In this section we do this by providing
some situations where the need for distributions reveals itself in a natural way.

Do I need to read this section? If you are reading this chapter, then this section
may be interesting, although it does not contain much in the way of technical
information. •

3.1.1 The impulse

There are a variety of ways one can motivate the introduction of distributions,
or as they are sometimes called, generalised signals. One of the most natural ways
to do this is through their use in differential equations. We do this in a concrete
context.

Consider a mass m oscillating on a spring as shown in Figure 3.1. Suppose that

m

k

x(t)

F (t)

Figure 3.1 A mass on a spring

we measure the displacement of the mass which we denote by y. The governing
equations for the system are then

mẍ(t) + kx(t) = F(t), y(t) = x(t),

where m is the mass, k is the stiffness constant of the spring (we assume a linear
spring), and F is a force applied to the mass as indicated in the figure. We now
consider a special sort of force F. Prior to time t = 0 we suppose the system to be
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in equilibrium. At t = 0 we apply a constant force M for duration ∆ and thereafter
the force is zero. That is, we consider the force FM,∆ defined by

FM,∆(t) =

M, t ∈ [0,∆],
0, otherwise.

The action of the force FM,∆ is

∥FM,∆∥1 =

∫
R

|FM,∆(t)|dt =M∆.

Now let FA be the collection of all signals with action A. Thus, for any FM,∆ ∈ FA

we have M∆ = A. Now consider the sequence (F j) j∈Z of forces in FA such that
F j = FAj, 1j

. Thus, as j→∞, these forces are applied for shorter time, but have larger
magnitude, subject to the constraint that they have equal action. As a sequence of
measurable signals taking values in R we have

F∞(t) ≜ lim
j→∞

F j(t) =

∞, t = 0,
0, otherwise.

Note that there is no problem in defining this limit as a pointwise limit of measur-
ableR-valued signals. Also, each of the signals F j is a perfectly nice signal that will
give rise to a response t 7→ x j(t) of the mass.

The question we wish to ask is this. Is x∞ ≜ lim j→∞ x j the response of the system
to the force lim j→∞ F j? Without actually going through the details (the reader can
do this in Exercises 3.1.1 and 3.2.15), let us see if we can say something about the
two things we are trying to compare.
1. The limit of the responses: Although the force F j is being applied for a duration

tending to zero as j → ∞, the magnitude of F j during its application tends
to infinity. Thus it is not clear what wins the race between shorter ad shorter
duration and larger and larger magnitude. In fact, we have cooked things so
that there is a tie. Were the duration to shrink at a faster rate than the magnitude
grew, then the response would tend to zero as j → ∞. Were the magnitude to
grow at a faster rate that the duration shrunk, then the response would blow up
as j→ ∞. It turns out that in this case the limit is well-defined and is nonzero.
The reader can explore this as Exercise 3.1.1.

2. The response of the limit: This is easier to be clear about. We have an inhomo-
geneous linear scalar differential equation whose right-hand side is zero except
on a set of measure zero. Solutions to such differential equations are obtained
by integrating the right-hand side, cf. Exercises 3.1.1 and 3.2.15, and so the
resulting response will be zero.

The point is this: The limit response x∞ is not the response to the limit force F∞.
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The problem, it turns out, is the way we take the limit lim j→∞ F j. If we take
this limit in the right space (for example, not in the space of measurable signals),
then it turns out that the limit of the responses is the response of the limit forces.
However, the price you pay is that the space in which one works is not a space of
signals in the usual sense, but is the space of distributions or generalised signals.

Supposing A = 1 for concreteness, the generalised signal lim j→∞ F j is the ubiq-
uitous “delta-signal” which we denote by δ0. We shall say more about δ0 in
Section 3.1.4.

3.1.2 Differentiating nondifferentiable signals

In the preceding section we saw that something that was not a signal arose in a
natural way as a limit of signals. In this section, using the same example, we will
see that something that is not a signal can arise by a natural desire to differentiate
something that is not differentiable.

We again consider the mass/spring system depicted in Figure 3.1. Now we
suppose that we measure the velocity of the mass, and we denote this by y. Then
the equations governing the system are

mẍ(t) + kx(t) = F(t), y(t) = ẋ(t).

For a given force F, one can obtain y by first solving for x and then differentiating
to get y, However, it is also natural to directly obtain a differential equation for y.
To arrive at this, we differentiate the x-equation to get

mÿ(t) + ky(t) = Ḟ(t).

Now suppose that for t < 0 the mass is at rest and we take F(t) = 1≥0(t). We are
then confronted with understanding what one might mean by ˙1≥0. Since 1≥0 is not
differentiable at t = 0 one does not have recourse to the usual notion of differentia-
tion as described in Section I-3.2. To try to understand how to differentiate 1≥0 at
t = 0 we adopt an alternate property of the derivative. Suppose that ϕ ∈ L(1)(R;R)
is continuously differentiable with a derivative also in L(1)(R;R). We then might
speculate, using integration by parts, that were we able to define ˙1≥0 it would
satisfy ∫

R

˙1≥0(t)ϕ(t) dt = 1≥0(t)ϕ(t)
∣∣∣∞
−∞
−

∫
R

1≥0(t)ϕ̇(t) dt

= ϕ(∞) −
∫
∞

0
ϕ̇(t) dt

= ϕ(∞) − ϕ(∞) + ϕ(0) = ϕ(0).

(Here we have used the fact that since ϕ, ϕ̇ ∈ L(1)(R;R), we have lim|t|→∞ ϕ(t) = 0
by Exercise 1.3.21.) That is to say, we might take as the definition of ˙1≥0 the signal
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having the property that for any continuously differentiable signal ϕ : R→ Rwith
the property that it and its derivative are integrable, we have∫

R

˙1≥0(t)ϕ(t) dt = ϕ(0).

Now one might ask whether there is an integrable signal having this property. It is
actually not difficult to show that the existence of such a signal is an impossibility.
We recall from Definition III-2.9.19 the definition of a locally integrable signal.

3.1.1 Proposition (Nonexistence of a signal having the properties of the delta-
signal) There exists no locally integrable signal δ0 : R→ R such that

∫
R
δ0(t)f(t) dt = f(0)

for every f ∈ C0
cpt(R;R).

Proof Suppose that δ0 is such a signal and let ( f j) j∈Z>0 be the sequence of signals

f j(t) =


1 + jt, t ∈ [− 1

j , 0],

1 − jt, t ∈ (0, 1
j ],

0, otherwise.

Then ∫
R
δ0(t) f j(t) dt = 1, j ∈ Z>0.

However, by the Dominated Convergence Theorem,

lim
j→∞

∫
R
δ0(t) f j(t) dt =

∫
R
δ0(t) lim

j→∞
f j(t) dt = 0,

and so we arrive at a contradiction. ■

In Section 3.1.4 we shall have more to say about this object δ0, and in Sec-
tion 3.7.6 we shall be rigorous about just what δ0 is, and ways to understand
it.

3.1.3 What should a good theory of distributions achieve?

Having now motivated why things that are not signals can arise in a natural
way, we are now in a position to wonder whether there is in fact a larger class
of mathematical objects one should be considering other than signals. Obviously
there is (e.g., the “mathematical universe”), so we should try to make our objective
well-defined. What properties might we want our fantasy “super signal theory”
to have?

Here is a possible wish list.
1. The set of “super signals” should be a vector space in a natural way. The

justifications for this are just as for they were for signal spaces in Section 1.1.7.
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2. The set of “super signals” should contain all reasonable signals. Now, what
should reasonable mean? Well, clearly any signal from any of the spaces
L(p)(R;F), p ∈ [1,∞], should be in our set. But these are far from enough.
For example, one would want to include signals like t 7→ t2 if possible. More
generally, one might like to have C0(R;F) be included in our set of super signals.
Actually, what we really want to allow are all locally integrable signals. These
seem like a pretty reasonable and reasonably large class of signals. Thus, let us
demand that L(1)

loc(R;F) be in our set of “super signals.”
3. Our set should contain the object corresponding to the impulse from Sec-

tion 3.1.1. That is to say, our theory should allow us to define an object and a
differential equation theory for using that object that would allow us to retrieve
the limit response from Section 3.1.1 as a limit of the forces from that section.

4. In Section 3.1.2 we saw that it might be useful to be able to differentiate (in some
sense) nondifferentiable signals. Thus we ask that all of our “super signals” be
differentiable (in some sense). Heck, we may as well ask that they be infinitely
differentiable!

5. For spaces of signals, we argued in Section 1.1.7 that we should expect there to
be some manner of defining convergent sequences. We shall ask the same for
our space of “super signals.”

3.1.4 Some caveats about what is written about the delta-signal

The reader wishing to load up on intellectual rubbish need do no more than do
a Google search for “delta function.” What will result is a clear exhibition of the
confusion in much of the scientific community regarding just what the delta-signal
“is.” Some will actually give the definition of the delta-signal as

δ0(t) =

∞, t = 0,
0, otherwise.

(This is not a real equation!)

Then it will be pointed out that this is not really a signal. However, it is a perfectly
well-defined signal, albeit one taking values in R. But there is still nothing really
wrong with it: it is in the same equivalence class as the zero signal under equiva-
lence of signals which differ on sets of measure zero. Then there will follow some
rules for using the delta-signal. The details of these rules will vary. But all such
descriptions suffer from ambiguity to the extent that it is very easy to use them
to perform wrong computations. For folks who think of the delta-signal in this
way, they use it as a convenient tool. If they make an error using it, this typically
shows up by obtaining results that are incoherent for the problem. Then the idea
is that one goes back to the manipulations of the delta-signal and says, “Oh, this
step must have been wrong,” even though the step is in accord with the rules laid
out. This is embarrassingly unscientific!
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Why not instead really learn what the delta-signal is and how to really use it.
It is not that difficult!

3.1.5 Notes

[Schwartz 1950-1951]

Exercises

3.1.1 Let us revisit the mass/spring example of Section 3.1. The governing differ-
ential equation is

mẍ(t) + kx(t) = F(t). (3.1)

For simplicity, take m = k = 1.
(a) Show by direct substitution that the solution to (3.1) is given by

x(t) =
∫ t

0
sin(t − τ)F(τ) dτ

if the initial conditions are x(0) = 0 and ẋ(0) = 0.
Hint: First show that

d
dt

∫ t

0
f(t, τ) dτ = f(t, t) +

∫ t

0

∂f(t, τ)
∂t

dτ,

provided that all operations make sense.
Define a sequence (F j) j∈Z>0 of forces by

F j(t) =

 jα, t ∈ [0, 1
jβ ],

0, otherwise

for α, β ∈ R>0.
(b) Compute the response x j associated to the force F j with initial conditions

x j(0) = 0 and ẋ j(0) = 0.
(c) What are the conditions on α and β that guarantee a bounded, nonzero

response in the limit as j→∞?
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Section 3.2

Distributions

We begin in this section by providing a theory for generalised signals—we
shall call them distributions—that satisfies the objectives of Section 3.1.3. With
the theory of distributions we must forgo the comfort of thinking of signals as
being functions of time. Indeed, the point of Proposition 3.1.1 is that signals
as a function of time are simply not able to capture the features we need from
generalised signals. What, then, should distributions be? It turns out that a useful
definition is to make a distribution a scalar valued function on a certain set of
so-called “test functions.” Thus distributions are functions of functions. Indeed,
distributions are the topological dual of the set of test functions, a notion which we
make precise in Section III-6.5.5. One does not need to understand these sorts of
issues, however, to understand distributions and how to use them.

We prove in this section many of the basic properties of distributions, and so
the discussion at times gets technical. However, it is also the case that distributions
are extremely easy to use in practice. The thing to keep in mind at all times is that
a distribution is a function on the set of test functions. If one does this, one can
never stray far.

Do I need to read this section? If you are reading this chapter, then the technical
matter starts here. •

3.2.1 Test signals

In this chapter we adopt the convention of using the symbol F to denote either
R or C.

In our motivation in Section 3.1.2 of the delta-signal as the derivative of the
step signal, we introduced the idea of defining a signal based on integrating its
product with a signal having certain properties, specifically having the property
of being integrable and having an integrable derivative. When one does this, the
class of signals used in the integration are called “test signals.” They may depend
in nature on just what one is doing. In this section we introduce the first our of
class of test signals.

3.2.1 Definition (Test signal) A test signal onR is a signalϕ : R→ Fwith the properties
that

(i) ϕ is infinitely differentiable and
(ii) ϕ has compact support.

The set of test signals is denotedD (R;F). •
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3.2.2 Remark (D (R;F) is a vector space) One can easily check that D (R;F) is a sub-
space of the F-vector space FR. •

The setD (R;F) we have previously denoted by C∞cpt(R;F). The notation we use
here is the traditional notation used for the test functions.

A good question to ask is, “Are there any nonzero test function?” In case you
think this is a stupid question, note that if we replace “infinitely differentiable” with
“analytic” in the definition of a test signal, then there are actually no nonzero test
signals. However, it turns out that there are nonzero test signals. Most examples
of test signals are constructed using the following signal as their basis.

3.2.3 Example (An element of D (R;F)) Define

⋏(t) =

1
c exp(− 1

1−t2 ), |t| < 1,
0, |t| ≥ 1

where c =
∫ 1

−1
exp(− 1

1−t2 ) dt. The signal is plotted in Figure 3.2. This signal is

-2 -1 0 1 2

0.0

0.2

0.4

0.6

0.8

Figure 3.2 The test signal ⋏

often called a bump signal, for obvious reasons. Clearly ⋏ has compact support
and is infinitely differentiable except at ±1. To verify that ⋏ is actually infinitely
differentiable, one may show that ⋏(k)(t) = ρ(t) ⋏ (t) for t ∈ (−1, 1), where ρ is
a rational function of t having a pole at ±1 of order 2k (cf. Example I-3.7.28–2).
Therefore,

lim
t↑1
⋏(k)(t) = lim

t↓−1
⋏(k)(t) = 0,

since the exponential decays faster than the rational function blows up. •

Note that the set of test signals forms a vector space since the sum of two test
signals is also a test signal, and any scalar multiple of a test signal is also a test
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signal. Thus D (R;F) is an infinite-dimensional vector space. If T ⊆ R is a closed
continuous time-domain of finite length, then D (T;F) denotes the subspace of
D (R;F) consisting of those test signals ϕ for which supp(ϕ) ⊆ T.

Let us define the notion of convergence in the vector space D (R;F), and asso-
ciated to this the notion of continuity for linear maps. Reader not having seen the
notion of a linear map may refer back to Definition I-4.5.4.

3.2.4 Definition (Convergence inD (R;F)) A sequence of test signals (ϕ j) j∈Z>0 converges
to zero if

(i) there exists a compact continuous time-domainT so that supp(ϕ j) ⊆ T for all
j ∈ Z>0 and,

(ii) for each k ∈ Z≥0, the sequence of signals (ϕ(k)
j ) j∈Z>0 converges uniformly to the

zero signal.
A sequence (ϕ j) j∈Z>0 inD (R;F) converges toϕ ∈ D (R;F) if the sequence (ϕ j−ϕ) j∈Z>0

converges to zero. •

Note that the notion of convergence in the space of signals D (R;F) is not
defined using a norm. An interesting question to ask is, “Is there a norm on
D (R;F) for which convergence using that norm is equivalent to convergence as
we have defined it?” The answer, it turns out, is, “No.” We discuss this in .what?

Let us consider some examples that illustrate what convergence is and is not in
D (R;F).

3.2.5 Examples (Convergence in D (R;F))
1. If (a j) j∈Z>0 is a sequence in F for which lim j→∞|a j| = 0 then we claim that the

sequence (a j⋏) j∈Z>0 of test signals converges to zero in D (R;F). This follows
since for each k ∈ Z≥0, each of the sequences of signals (a j⋏(k)) j∈Z>0 is a Cauchy
sequence in C0([−1, 1];F) and so converges by Theorem III-1.9.1.

2. Next we let (r j) j∈Z>0 be an increasing sequence of positive real numbers for
which lim j→∞ r j = ∞. If we define ⋏r j(t) = ⋏( t

r j
− 1), then we claim that the

sequence (⋏r j) j∈Z>0 does not converge to zero inD (R;F). While it is true that the
sequence of signals and their derivatives converge to zero in the sense that for
each k ∈ Z≥0 the sequence (⋏(k)

r j
) j∈Z>0 converges pointwise to the zero signal, this

convergence is not uniform, as can be gleaned from Figure 3.3. •

Associated with convergence in D (R;F) is a corresponding notion of continu-
ity.

3.2.6 Definition (Continuous linear maps on D (R;F)) A linear map L : D (R;F) → F
is continuous if the sequence (L(ϕ j)) j∈Z>0 of numbers converges to zero for every
sequence (ϕ j) j∈Z>0 of test signals converging to zero. •



2022/03/07 3.2 Distributions 117

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

Figure 3.3 The 1st, 5th, and 10th terms in the sequence (⋏r j) j∈Z>0

for r j =
1
j

3.2.7 Remark (The rôle of test signals) The reader may be a little perplexed by our
introducing the space D (R;F). Indeed, this is a space of signals that seems to
only contain quite strange signals. However, the thing to keep in mind is that the
space of test signals is only of interest to us since they will form the domain for the
things we are actually interested in in the next section. That is to say, we are not
necessarily interested in test signals per se, but only as a means of getting at what
we are really interested in.

The reader can refer to Remark 3.2.14 and Remark 3.2.28 for the justification
of choosingD (R;F) in the (maybe seemingly strange) way we did. •

3.2.2 Definition of distributions

Now we define what we mean by a distribution.

3.2.8 Definition (Distribution) A distribution, or a generalised signal, is a continuous
linear map fromD (R;F) to F. The set of distributions is denotedD ′(R;F). •

3.2.9 Notation (Applying a distribution to a test signal) Sometimes it will be conve-
nient to write ⟨θ;ϕ⟩ for θ(ϕ). Apart from notation convenience, this is consistent
with our notation for the application of an element of the dual of a vector space to
an element of the vector space; see Notation I-5.7.2. Indeed, a distribution is, by
definition, a continuous element of the algebraic dual. •

3.2.10 Remark (D ′(R;F) is vector space) One can easily verify that D ′(R;F) is a F
vector space with the vector space operations

(θ1 + θ2)(ϕ) = θ1(ϕ) + θ2(ϕ), (aθ)(ϕ) = a(θ(ϕ)),
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for θ, θ1, θ2 ∈ D ′(R;F), ϕ ∈ D (R;F), and a ∈ F. •

Let us consider some elementary constructions with distributions.

3.2.11 Examples (Distributions)
1. If θ1, θ2 ∈ D ′(R;F) then we define θ1 + θ2 ∈ D ′(R;F) by (θ1 + θ2)(ϕ) = θ1(ϕ) +

θ2(ϕ). Similarly, if θ ∈ D ′(R;F) and a ∈ F then we define aθ ∈ D ′(R;F) by
(aθ)(ϕ) = a(θ(ϕ)). These operations of vector addition and scalar multiplication
may readily be seen to makeD ′(R;F) into an F-vector space.

2. Signals can be multiplied pointwise to recover new signals. This is not generally
true of distributions (Exercise 3.2.10). However, we claim that if ϕ0 : R → F
is infinitely differentiable and if θ ∈ D ′(R;F) then we may define the product
of ϕ0 with θ to obtain a new distribution that we denote by ϕ0θ. This new
distribution is defined by

ϕ0θ(ϕ) = θ(ϕ0ϕ),

noting that ϕ0ϕ ∈ D (R;F). To show that ϕ0θ is indeed a distribution we should
show that for every sequence (ϕ j) j∈Z>0 of test signals converging to zero in
D (R;F), the sequence (ϕ0ϕ j) j∈Z>0 also converges to zero inD (R;F). Since there
exists a compact set K such that supp(ϕ j) ⊆ K for every j ∈ Z>0, we also have
supp(ϕ0ϕ j) ⊆ K. Moreover, we note that

(ϕ0ϕ j)(ℓ) =

ℓ∑
k=0

(
ℓ
k

)
ϕ(k)

0 ϕ
(ℓ−k)
j ,

using the product rule, Proposition I-3.2.11. Therefore, there exists Cℓ ∈ R>0

such that

∥(ϕ0ϕ j)(ℓ)
∥∞ ≤ Cℓ max{∥ϕ0∥∞, ∥ϕ

(1)
0 ∥∞, . . . , ∥ϕ

(ℓ)
0 ∥∞}

·max{∥ϕ j∥∞, ∥ϕ
(1)
j ∥∞, . . . , ∥ϕ

(ℓ)
j ∥∞}.

Since the right-hand side goes to zero as j → ∞, so too does the left-hand
side, giving uniform convergence of (ϕ0ϕ j)(ℓ) to zero for ℓ ∈ Z≥0, and so giving
convergence to zero of (ϕ0ϕ j) j∈Z>0 .

3. Let us show that our motivational example from Sections 3.1.1 and 3.1.2 does
indeed fit into our general framework. Consider the linear map δt0 : D (R;F)→
F defined by δt0(ϕ) = ϕ(t0). We claim that δt0 ∈ D

′(R;F). Clearly δt0 is linear.
Now let (ϕ j) j∈Z>0 be a sequence of test signals converging to zero in D (R;F).
Then clearly we have lim j→∞ ϕ j(t0) = 0, giving continuity of δt0 . We call δt0 the
delta-signal at t0, observing that it is in fact not itself a signal as we showed in
Proposition 3.1.1. •
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3.2.3 Locally integrable signals are distributions

As we indicated in our wish list from Section 3.1.3, it would be useful allow all
locally integrable signals (see Definition III-2.9.19) as distributions. In this section
we indicate that this is possible.

First we prove a preliminary result.

3.2.12 Proposition (Distributions from locally integrable signals) Let f ∈ L(1)
loc(R;F) and

define θf : D (R;F)→ F by

θf(ϕ) =
∫
R

f(t)ϕ(t) dt.

Then the following statements hold:
(i) θf ∈ D ′(R;F);
(ii) if θf1 = θf2 for f1, f2 ∈ L(1)

loc(R;F), then f1(t) = f2(t) for almost every t ∈ R.
Proof (i) First of all, we note that the integral is always defined. Indeed,∫

R
| f (t)ϕ(t)|dt =

∫
supp(ϕ)

| f (t)ϕ(t)|dt ≤ ∥ϕ∥∞

∫
supp(ϕ)

| f (t)|dt < ∞.

Also, the map ϕ 7→ θ f (ϕ) is clearly a linear map on D (R;F). Now let (ϕ j) j∈Z>0 be
a sequence of test signals converging to zero, and let T be a compact continuous
time-domain for which supp(ϕ j) ⊆ T. We then have

lim
j→∞

θ f (ϕ j) = lim
j→∞

∫
T

f (t)ϕ j(t) dt

≤ lim
j→∞
∥ϕ j∥∞

∫
T
| f (t)|dt = 0,

since lim j→∞∥ϕ j∥∞ = 0 and f is integrable on T. This shows that θ f ∈ D
′(R;F).

(ii) By linearity it suffices to show that if θ f = 0 then f (t) = 0 for almost every t ∈ R.
Thus suppose that ∫

R
f (t)ϕ(t) = 0 (3.2)

for every ϕ ∈ D (R;F). For a < b define ψa,b ∈ D (R;F) by

ψa,b(t) =

exp
(
−

1
t−a −

1
b−t

)
, t ∈ (a, b),

0, otherwise.

Note that
1. supp(ψa,b) = [a, b],
2. ψa,b(t) ∈ R>0 for t ∈ (a, b),
3. limn→∞ ψa,b(t)1/n = 1 for t ∈ (a, b), and
4. there exists M ∈ R>0 so that for all n ∈ Z>0 and t ∈ (a, b) we have ψa,b(t)1/n < M.
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Therefore, for n ∈ Z>0 we have∫
R

f (t)ψa,b(t)1/n dt =
∫ b

a
f (t)ψa,b(t)1/n dt = 0.

Since f is locally integrable and since ψ1/n
a,b (t) is uniformly bounded in n we have

0 = lim
n→∞

∫ b

a
f (t)ψa,b(t)1/n dt =

∫ b

a
f (t) lim

n→∞
ψa,b(t)1/n dt =

∫ b

a
f (t) dt,

by the Dominated Convergence Theorem. Since this holds for any a < b,
Theorem III-2.9.33(ii) this implies that f is zero almost everywhere. ■

With the preceding result as justification, we make the following definition.

3.2.13 Definition (Distribution associated to a locally integrable signal) For f ∈
L(1)

loc(R;F) the distribution associated to f is θ f ∈ D ′(R;F) defined by

θ f (ϕ) =
∫
R

f (t)ϕ(t) dt. •

The essential meaning of Proposition 3.2.12 is simply that the map L1
loc(R;F) ∋

f 7→ θ f ∈ D ′(R;F) is injective, and so L1
loc(R;F) sits as a subspace of D ′(R;F). Of

course, this also means that the map L(1)
loc(R;F) ∋ f 7→ θ f ∈ D ′(R;F), just that the

map is not injective.
Note that the preceding definition justifies one of the properties of the set

D (R;F) being chosen as it was.

3.2.14 Remark (Justification for signals in D (R;F) having compact support) Our
desire to have locally integrable signals included as generalised signals accounts
for the set D (R;F) of test signals having compact support. Indeed, note that a
locally integrable signal can blow up at infinity as fast as one likes. Thus it is not
possible to choose a set of test functions with non-compact support for which the
integral ∫

R

f (t)ϕ(t) dt

will exist for every locally integrable signal f and for every test signal ϕ. Thus
we are forced to have our test signals have compact support if we are to have
L(1)

loc(R;F) ⊆ D ′(R;F). •

As we saw in Proposition 3.1.1, there exist distributions that are not associated
to locally integrable signals as in the preceding definition. This motivates the
following definition.
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3.2.15 Definition (Regular distribution, singular distribution) A distribution of the
form θ f for f ∈ L(1)

loc(R;F) is called regular. A distribution that is not regular is
called singular. •

3.2.4 The support and singular support of a distribution

Consider the definition of δ0:

δ0(ϕ) = ϕ(0).

Although we cannot evaluate δ0 at a point t ∈ R, we nonetheless imagine that t = 0
is somehow distinguished in the definition of δ0. We wish to understand how to
make this precise.

3.2.16 Definition (Support of a distribution)
(i) A distribution θ vanishes on an open subset O ⊆ R if θ(ϕ) = 0 for all
ϕ ∈ D (R;F) for which supp(ϕ) ⊆ O.

(ii) The support of θ ∈ D (R;F) is the subset of R defined by

supp(θ) = R \
(
∪{O ⊆ R | O is open and θ vanishes on O}

)
•

Since supp(θ) is the complement in R of a union of open sets, it is a closed
subset of R.

Corresponding to the same notions for signals, we have the following charac-
teristics of distributions.

3.2.17 Definition (Causal, acausal distribution) A distribution θ is
(i) causal if supp(θ) ⊆ [a,∞) for some a ∈ R,
(ii) acausal if supp(θ) ⊆ (−∞, b] for some b ∈ R,
(iii) strictly causal if supp(θ) ⊆ [0,∞), and
(iv) strictly acausal if supp(θ) ⊆ (−∞, 0].

The set of causal (resp. strictly causal) distributions is denoted D ′+(R;F)
(resp. D ′

≥0(R;F) and the set of acausal (resp. strictly acausal) distributions by
D ′
−
(R;F) (resp.D ′

≤0(R;F)). •

Let us consider some examples of distributions where we can give the form of
the support.

3.2.18 Examples (Support of a distribution)
1. If θ = θ f for f ∈ L(1)

loc(R;F) then one readily checks that supp(θ) = supp( f ),
recalling from the notion of the support of a measurable function. what

2. We claim that if θ1, θ2 ∈ D ′(R;F) then supp(θ1 + θ2) = supp(θ1) ∪ supp(θ2).
Indeed, let O ⊆ R\

(
supp(θ1) ∪ supp(θ2)

)
be open and letϕ ∈ D (R;F) have sup-

port in O. Thenθ1(ϕ)+θ2(ϕ) = 0. This shows that O ⊆ R\
(
supp(θ1) ∪ supp(θ2)

)
.
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To show the converse implication, suppose that O is an open subset of R for
which

(
supp(θ1) ∪ supp(θ2)

)
∩ O , ∅. Then we must have O ∩ supp(θ1) , ∅

and/or O∩ supp(θ2) , ∅. In either case, there exists a test signal ϕwith support
in O so that θ(ϕ) , 0, thus giving the desired conclusion.

3. If ϕ0 : R→ F is infinitely differentiable and if θ ∈ D ′(R;F), it is straightforward
to check that supp(ϕ0θ) = supp(θ) ∩ supp(ϕ0).

4. We claim that supp(δt0) = {t0}. Indeed, it is clear that it ϕ ∈ D (R;F) has
t0 < supp(ϕ) that δt0(ϕ) = 0. Therefore supp(δt0) ⊆ {t0}, and since δt0 is not zero,
our claim is verified. •

It is possible that a distribution can be regular on some parts of R and singular
on others. In order to make sense of this, we need to be able to say what it means
for two distributions to agree on a subset.

3.2.19 Definition (Singular support of a distribution)
(i) Distributionsθ1, θ2 ∈ D ′(R;F) agree on an open subset O ⊆ R ifθ1(ϕ) = θ2(ϕ)

for each ϕ for which supp(ϕ) ⊆ O.
(ii) The singular support of θ ∈ D ′(R;F) is the largest closed set sing(θ) ⊆ Rwith

the property that on R \ sing(θ) there exists f ∈ L(1)
loc(R;F) so that θ agrees

with θ f . •

Note that sing(θ) ⊆ supp(θ).
Let us consider some examples to illustrate the notion of singular support.

3.2.20 Examples (Singular support of a distribution)
1. Clearly sing(θ f ) = ∅ for any f ∈ L(1)

loc(R;F). Also, if sing(θ) = ∅ then θ = θ f for
some f ∈ L(1)

loc(R;F). Thus we have the grammatically convenient statement, “A
distribution is singular if and only if it has nonempty singular support.”

2. Since δ0(ϕ) = 0 for any ϕ for which 0 < int(supp(ϕ)) we have sing(δ0) = {0}. •

3.2.5 Convergence of distributions

In our wish list for distributions in Section 3.1.3 we indicated that we would
like for the set of generalised signals to have some useful properties for defining
convergence. In this section we shall consider a natural notion of convergence
in D ′(R;F); it may not be clear at this point that it is useful, but as we go along
we shall see that it does do some things for us that might merit its being called
“useful.”

First the definition.

3.2.21 Definition (Convergence in D ′(R;F)) A sequence (θ j) j∈Z>0 inD ′(R;F) is
(i) a Cauchy sequence if (θ j(ϕ)) j∈Z>0 is a Cauchy sequence for every ϕ ∈ D (R;F),

and
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(ii) converges to a distributionθ if for everyϕ ∈ D (R;F), the sequence of numbers
(θ j(ϕ)) j∈Z>0 converges to θ(ϕ). •

Note that our definition of convergence inD ′(R;F) is “indirect” in that it relies
on what distributions do to test functions. Generally, this sort of convergence is
known as weak convergence. The interested reader can read more about this in . what?

Having defined the two notions of a Cauchy and a convergent sequence, the
natural issue arising next is the relationship between these? Note that these notions
are not just corresponding to a norm, so the matter is not quite equivalent to the
way we regard Cauchy sequences in, say, Lp(T;F). The general framework giving
rise to the notion of Cauchy and convergent sequences is considered in . Here, what?

let us content ourselves with showing that D ′(R;F) is “complete” in that Cauchy
sequences and convergent sequences agree.

3.2.22 Theorem (Cauchy sequences in D ′(R;F) converge) A sequence (θj)j∈Z>0 in
D ′(R;F) converges to some θ ∈ D ′(R;F) if and only if it is Cauchy.

Proof Clearly if (θ j) j∈Z>0 converges to some θ ∈ D ′(R;F) then it is a Cauchy sequence
since convergent sequences in F are convergent. So we prove the converse.

Define a map θ : D (R;F)→ F by θ(ϕ) = lim j→∞ θ j(ϕ). This certainly makes sense,
but we have to show that θ is a distribution, i.e., that it is linear and continuous.
Linearity is trivial. For continuity, let (ϕk)k∈Z>0 be a sequence inD (R;F) converging to
zero, and suppose that the sequence (θ(ϕk))k∈Z>0 does not converges to zero. We may
then choose C ∈ R>0 and a subsequence (ψn)n∈Z>0 ⊆ (ϕk)k∈Z>0 such that |θ(ψn)| ≥ C for
all n ∈ Z>0, and such that ∥ψ( j)

n ∥∞ <
1
4n for j ∈ {0, 1, . . . ,n}. By defining (χ j = 2 jψ j) j∈Z>0

we see that the sequence (χ j) j∈Z>0 converges to zero inD (R;F) and that the sequence
(|θ(χ j)|) j∈Z>0 blows up to∞ as j→∞.

A technical lemma is useful at this point.

1 Lemma There exists a subsequence (θ̃k)k∈Z>0 of (θj)j∈Z>0 and a subsequence (χ̃k)k∈Z>0 of
(χj)j∈Z>0 such that

|θ̃k(χ̃n)| <
1

2n−k
, k ∈ {1, . . . ,n − 1},

|θ̃n(χ̃n)| >
n−1∑
k=1

|θ̃n(χ̃k)| + n, n ∈ Z>0.
(3.3)

Furthermore, if (χ̃k)k∈Z>0 is so chosen then

χ =
∞∑

k=1

χ̃k ∈ D (R;F).

Proof Note that since (χ j) j∈Z>0 converges to zero inD (R;F), for fixed k ∈ Z>0 we have
lim j→∞|θk(χ j)| = 0. Therefore, for any k1, . . . , km ∈ Z>0 we may choose a subsequence
(χ̃k)k∈Z>0 of (χ j) j∈Z>0 such that

|θ̃ka(χ̃n)| <
1

2n−ka
, a ∈ {1, . . . ,m}.
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In particular, the first of equations (3.3) is satisfied. Since lim j→∞|θ(χ j)| = ∞ we can
refine the choice of subsequence (χ̃k)k∈Z>0 to further ensure that

|θ(χ̃n)| >
n−1∑
k=1

|θ(χ̃k)| + n, n ∈ Z>0.

What’s more, since limk→∞ θk(χ̃ j) = θ(χ̃ j), for all j ∈ Z>0 we may choose a subsequence
(θ̃k)k∈Z>0 of (θ j) j∈Z>0 such that the second of equations (3.3) holds.

For the second assertion we note that for k ∈ Z≥0 we have, for sufficiently large
n ∈ Z>0, ∥∥∥∥∥∥∥∥

∞∑
j=n

χ̃(k)
j

∥∥∥∥∥∥∥∥
∞

≤

∞∑
j=n

∥χ̃(k)
j ∥∞ ≤

∞∑
j=n

∥χ(k)
j ∥∞ ≤

∞∑
j=n

1
2 j < ∞

by Example I-2.4.2–1. This shows that all derivatives of the signals (χ̃k)k∈Z>0 con-
verge to zero uniformly. From this it follows that χ is infinitely differentiable by
Theorem I-3.6.24. It further has compact support since (χ̃k)k∈Z>0 converges to zero in
D (R;F), and so these signals have a common compact support. ▼

Using the subsequences (θ̃k)k∈Z>0 and (χ̃k)k∈Z>0 as specified in the lemma we have

θ̃k(χ) =
k−1∑
j=1

θ̃k(χ̃ j) + θ̃k(χ̃k) +
∞∑

j=k+1

θ̃k(χ̃ j).

The last term is bounded by the first of equations (3.3). By the second of equations (3.3)
we have ∣∣∣∣∣∣∣∣

k−1∑
j=1

θ̃k(χ̃ j) + θ̃k(χ̃k)

∣∣∣∣∣∣∣∣ ≥ |θ̃k(χ̃k)| −

∣∣∣∣∣∣∣∣
k−1∑
j=1

θ̃k(χ̃ j)

∣∣∣∣∣∣∣∣ > n,

using Exercise III-3.1.3. Thus limk→∞|θ̃k(χ)| = ∞, and so our initial assumption that θ
is not continuous is false. ■

Let us consider the relationship between convergence in D ′(R;F) and more
usual types of convergence of sequences of signals.

3.2.23 Proposition (Convergence in D ′(R;F) for signals) For a sequence (fj)j∈Z>0 of sig-
nals, the following statements hold:

(i) if (fj)j∈Z>0 converges to f in L1(R;F) then (θfj)j∈Z>0 converges to θf inD ′(R;F);
(ii) if (fj)j∈Z>0 converges to f in L2(R;F) then (θfj)j∈Z>0 converges to θf inD ′(R;F);
(iii) if, for every compact continuous time-domain T ⊆ R the sequence (fj|T)j∈Z>0 con-

verges uniformly to f ∈ C0(T;F), then (θfj)j∈Z>0 converges inD ′(R;F);

(iv) if (fj)j∈Z>0 is a sequence in L(1)
loc(R;F) for which

(a) (fj(t))j∈Z>0 converges to f(t) for almost every t ∈ R, and

(b) there exists g ∈ L(1)
loc(R;F) such that |fj(t)| ≤ g(t) for almost every t ∈ R,
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then f ∈ L(1)
loc(R;F) and (θfj)j∈Z>0 converges inD ′(R;F) to θf.

Proof (i) First suppose that ( f j) j∈Z>0 converges to f in L1(R;F). Then for ϕ ∈ D (R;F)
we have

|θ f j(ϕ) − θ f (ϕ)| =
∣∣∣∣∣∫
R

(
f j(t) − f (t)

)
ϕ(t) dt

∣∣∣∣∣
≤

∫
R
| f j(t) − f (t)||ϕ(t)|dt

≤ ∥ϕ∥∞

∫
R
| f j(t) − f (t)|dt.

Taking the limit as j→∞ then gives

lim
j→∞
|θ f j(ϕ) − θ f (ϕ)| = 0,

showing that (θ f j) j∈Z>0 converges to θ f inD ′(R;F).
(ii) Here we compute

|θ f j(ϕ) − θ f (ϕ)| =
∣∣∣∣∣∫
R

(
f j(t) − f (t)

)
ϕ(t) dt

∣∣∣∣∣
≤

∫
R
| f j(t) − f (t)||ϕ(t)|dt

≤ ∥ f j − f ∥2∥ϕ∥2,

using the Cauchy–Bunyakovsky–Schwarz inequality. Taking the limit as j→∞ gives
the result.

(iii) Letϕ ∈ D (R;F) and for ϵ ∈ R>0 let N ∈ Z>0 have the property that | f j(t)− fk(t)| <
ϵ
∥ϕ∥1

, for j, k ≥ N and t ∈ supp(ϕ), this being possible since ( f j) j∈Z>0 converges uniformly
on supp(ϕ). Now, for j, k ≥ N we compute

|θ f j(ϕ) − θ fk(ϕ)| ≤
∫

supp(ϕ)
| f j(t) − fk(t)||ϕ(t)|dt ≤ ϵ.

Thus (θ f j(ϕ)) j∈Z>0 is a Cauchy sequence in R, and therefore converges.

(iv) That f ∈ L(1)
loc(R;F) is a consequence of the Dominated Convergence Theorem.

Also by the Dominated Convergence Theorem,

lim
j→∞

∫
R

f j(t)ϕ(t) dt =
∫
R

f (t)ϕ(t) dt

for ϕ ∈ D (R;F). ■
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3.2.24 Remark (The topology in D ′(R;F) is weaker than the signal space topolo-
gies) The converses of all of the assertions of Proposition 3.2.23 are false as the
reader can show in . This means that convergence in spaces of signals is a more what?

rigid notion than convergence inD ′(R;F), i.e., the topology inD ′(R;F) is weaker
than the topologies we deal with for spaces of signals. This has its advantages and
disadvantages. One advantage is that we can get useful convergence of sequences
in cases that do not give convergence in the corresponding space of signals. One
disadvantage is that by looking only at signals as elements of D ′(R;F) under the
inclusion L(1)

loc(R;F) ⊆ D ′(R;F) we lose a lot of information about the signals. This
is something to keep in mind, depending on what one is doing. •

Let us consider a nice example of convergence inD ′(R;F).

3.2.25 Example (The delta-signal is a limit of signals) Let us consider the sequence
( f j) j∈Z>0 of signals defined by

f j(t) =

 j, t ∈ [0, 1
j ],

0, otherwise.

In Figure 3.4 we show a few of the signals in this sequence. One can show (we will

-0.9 -0.4 0.1 0.6 1.1
0

5

10

15

Figure 3.4 A sequence of signals converging to δ0

do this in Section 3.7.6) that δ0 = lim j→∞ f j, with the limit being taken inD ′(R;F).
Note that this resolves the issue that came up in Section 3.1.1 regarding the limit
of forces of increasing amplitude applied for decreasing time. •

3.2.6 Differentiation of distributions

Another item on our wish list of Section 3.1.3 was that we be able to differentiate
generalised signals. Here we see that this can be done naturally.
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Distributions have the remarkable property that they can always be differenti-
ated. To define differentiation we use the following simple result.

3.2.26 Lemma (Differentiation of distributions through test signals) For θ ∈ D (R;F)
define θ′ : D (R;F)→ F by θ′(ϕ) = −θ(ϕ′). Then θ′ ∈ D (R;F).

Proof It is clear that θ′ is linear. Moreover, if (ϕ j) j∈Z>0 is a sequence converging to
zero inD (R;F) then (−ϕ′j) j∈Z>0 is also a sequence converging to zero inD (R;F). Thus

lim
j→∞

θ′(ϕ j) = lim
j→∞

θ(−ϕ j) = 0,

giving continuity of θ′, as desired. ■

With the lemma the following definition makes sense.

3.2.27 Definition (Derivative of a distribution) If θ ∈ D ′(R;F) the derivative of θ is the
distribution θ′ defined by θ′(ϕ) = −θ(ϕ). •

3.2.28 Remark (Justification for signals in D (R;F) being infinitely differentiable)
Our desire to differentiate our generalised signals accounts for the requirement

that the test signals D (R;F) be infinitely differentiable. Indeed, were the test sig-
nals only continuous, then differentiation as we have defined it inD ′(R;F) would
not be possible. One could, one supposes, consider test functions differentiable to
some order less than infinity. However, this idea really arises naturally from the
notion of the order of a distribution as we will discuss in Section 3.2.10. •

A consequence of the definition of derivative along with Proposition 3.2.12 is
that every locally integrable signal can be differentiated! This is a strange fact on
first encounter. Here is one place that one must really get used to the fact that
distributions are not signals, but functions on the set of test functions. Thus the
derivative of a non-differentiable signal is not a signal at all, but something possible
rather different.

Also note that our definition immediately implies that distributions can be
differentiated arbitrarily often. Indeed, a simple induction gives the following
result.

3.2.29 Proposition (Higher-order derivatives of distributions) If θ ∈ D ′(R;F) and if
k ∈ Z>0¡ denote by θ(k)

∈ D ′(R;F) the distribution obtained by differentiating θ k times.
Then θ(k)(ϕ) = (−1)kθ(ϕ(k)).

This is the first time where we have used the fact that test signals are infinitely
differentiable.

Let us consider some examples of derivatives of distributions.
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3.2.30 Examples (Derivative of a distribution)
1. Let us begin with a simple general example that motivates the definition of

the derivative of a distribution. Suppose that f : R → F is differentiable with
derivative f ′. Then, for ϕ ∈ D (R;F), an integration by parts gives

θ f ′(ϕ) =
∫
R

f ′(t)ϕ(t) dt = f (t)ϕ(t)|∞
−∞
−

∫
R

f (t)ϕ′(t) dt = −θ f (ϕ′).

This shows that the “derivative of a distribution is the distribution of the deriva-
tive” when all terms are defined. We shall generalise this somewhat in Propo-
sition 3.2.31.

2. Consider the ramp signal

R(t) =

0, t ∈ R≤0,

t, t ∈ R>0.

We claim that θ′R = 1≥0. Indeed, if ϕ ∈ D (R;F) then

θ′R(ϕ) = − θR(ϕ) = −
∫
R

R(t)ϕ′(t) dt

= −

∫
∞

0
tϕ′(t) dt = −tϕ(t)

∣∣∣∞
0
+

∫
∞

0
ϕ(t) dt

=

∫
R

1≥0(t)ϕ(t) dt = θ1≥0(ϕ).

3. Let us show that δ0 is the derivative of the unit step signal 1≥0. By definition of
the derivative we have, for every test signal ϕ,

1′
≥0(ϕ) = −1≥0(ϕ′) = −

∫
R

1≥0(t)ϕ′(t) dt = −
∫
∞

0
ϕ′(t) = −ϕ(t)

∣∣∣∞
0
= ϕ(0),

as desired. •

Since locally integrable signals give rise to distributions, it makes sense to ask,
“For what class of signals is it true that θ′f = θ f ′?” To address this, we recall from
Section III-2.9.6 the notion of a locally absolutely continuous signal.

3.2.31 Proposition (When is the derivative of distribution the distribution of a deriva-
tive?) Let θ ∈ D ′(R;F) and suppose that there exists a locally integrable signal
g: R → F for which θ′ = θg. Then there exists a locally absolutely continuous signal
f such that θ = θf and g = f′ almost everywhere. Conversely, if θ = θf for a locally
absolutely continuous signal f, then θ′ = θf′ .
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Proof First suppose that θ′ = θg for g ∈ L(1)
loc(R;F). Then, for some t0 ∈ R, the signal

ft0(t) =
∫ t

t0

g(τ) dτ

satisfies f ′t0
(t) = g(t) for almost every t, meaning that θ f ′t0

= θg = θ′. Thus θ f and θ are
primitives for θ′ and so θ = θ ft0

+θh where h is a constant signal by Proposition 3.2.38.
The first part of the result follows by taking f = ft0+h, and noting by Theorem III-2.9.33
that f is locally absolutely continuous.

Next suppose that θ = θ f for a locally absolutely continuous signal f . Then

θ′(ϕ) = − θ(ϕ′)

= −

∫
R

f (t)ϕ′(t) dt

= − f (t)ϕ(t)
∣∣∣∞
−∞
+

∫
R

f ′(t)ϕ(t) dt

= θ f ′(ϕ),

as desired. ■

Conveniently, differentiation and limit can always be swapped for distribu-
tions.

3.2.32 Proposition (Limits and derivatives of distributions can be interchanged) If
(θj)j∈Z>0 is a sequence of distributions converging to θ ∈ D ′(R;F), then the sequence
(θ′j )j∈Z>0 converges inD ′(R;F) to θ′.

Proof We have ∣∣∣∣θ′(ϕ) − θ′j(ϕ)
∣∣∣∣ = ∣∣∣θ(ϕ′) − θ j(ϕ′)

∣∣∣ .
Taking the limit as j→∞ gives the result. ■

For sums we then immediately have the following result.

3.2.33 Corollary (Infinite sums and derivatives of distributions commute) Let
(θj)n∈Z>0 ⊆ D

′(R;F). If the sequence of partial sums for the series

∞∑
j=1

θj

converges to θ inD ′(R;F) then the sequence of partial sums for the series

∞∑
j=1

θ′j

converges to θ′ inD ′(R;F).
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One might think this is heaven indeed, since we seemingly no longer have to
worry about swapping operations. However, the reader should bear in mind the
caveat of Remark 3.2.24 and realise that sometimes one is loosing something when
dealing with distributions.

In Section 3.7.6 we will examine conditions on a sequence of signals that ensure
that these signals converge to δ0. In that section we also give a few examples, and
so these can be referred to to get more insight into convergence of sequences
of regular distributions to a singular distribution. Here we exhibit one of these
sequences—a sequence of infinitely differentiable functions—in order to illustrate
the convergence of derivatives.

3.2.34 Example (Example 3.2.25 cont’d) In Example 3.7.24–3 we shall show that the
sequence (GΩ, j) j∈Z>0 given by

GΩ, j(t) = j
exp(− ( jt)2

4Ω )
√

4πΩ

converges to δ0 inD ′(R;F) forΩ ∈ R>0. This sequence and its derivatives are shown
in Figure 3.5 for Ω = 1

2 . By Corollary 3.2.33 the sequence (G′
Ω, j) j∈Z>0 converges to

-2 -1 0 1 2

0
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2

3

4

-2 -1 0 1 2

-20

-10
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20

Figure 3.5 A sequence of signals converging to δ0 (left) and δ′0
(right)

δ′0 inD ′(R;F). •

In Example 3.2.11–2 we showed that a signal can be multiplied by an infinitely
differentiable signals and still be a distribution. Let us show that this resulting
distribution obeys the product rule when differentiated.

3.2.35 Proposition (A product rule for functions and derivatives) If ϕ0 : R → F is
infinitely differentiable and if θ ∈ D ′(R;F) then

(ϕ0θ)(1) = ϕ′0θ + ϕ0θ
′.
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Proof We have

(ϕ0θ)(1)(ϕ) = − ϕ0θ(ϕ′) = −θ(ϕ0ϕ
′) = θ(ϕ′0ϕ) − θ((ϕ0ϕ)(1))

= ϕ′0θ(ϕ) + θ′(ϕ0ϕ) = ϕ′0θ(ϕ) + ϕ0θ
′(ϕ),

as desired. ■

Let us consider a common situation where the use of the product rule is re-
quired.

3.2.36 Example (Differentiation of truncated signals) Let f ∈ C∞(R;F) and define
f+ = 1≥0 · f to be the signal that truncates f to positive times. According to
Proposition 3.2.35 we have

θ′f+(ϕ) = ( f ′θ1≥0)(ϕ) + ( fθ′1≥0
)(ϕ)

= θ1≥0( f ′ϕ) + θ′1≥0
( fϕ)

= θ f ′+(ϕ) + f (0)δ0(ϕ),

where f ′+ = 1≥0 · f ′. Provided one is prepared to take the time to understand
properly the notation, the preceding equation can be written as

f ′+(t) = f ′(t) · 1≥0(t) + f (0)δ0(t).

Note that this involves providing the delta-signal with “t” as argument. This
should only be done after careful consideration!

Proceeding inductively as above, one may show that

θ f+ = θ1≥0 f

θ(1)
f+
= θ f (1)

+
+ f (0)δ0

θ(2)
f+
= θ f (2) + f ′(0)δ0 + f (0)δ(1)

0

...

θ(n)
f+
= θ f ( j)

+
+

n∑
j=1

g(n− j)(0)δ( j−1)
0 ,

where f ( j)
+ = 1≥0 · f ( j). This formula is useful when discussing the solution of

differential equations using the Laplace transform. •

3.2.7 Integration of distributions

Recall from Section I-3.4.6 that a primitive for a continuous-time signal f : T→
F is a signal g : T→ F with the property that f = g′. We wish to present a similar
notion for distributions. One might expect that the idea here follows that for the
derivative of a distribution.
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3.2.37 Definition (Primitive of a distribution) A primitive for θ ∈ D ′(R;F) is a distribu-
tion θ(−1) that satisfies d

dtθ
(−1) = θ. •

We letD (1)(R;F) ⊆ D (R;F) be those test functions that are derivatives of other
test functions. That is,

D (1)(R;F) = {ϕ′ | ϕ ∈ D (R;F)}.

Note that D (1)(R;F) is a subspace of D (R;F) and that there are test signals that
are not inD (1)(R;F). To see that this is so, the reader might try to understand why
⋏ < D (1)(R;F).

With this notation we have the following result.

3.2.38 Proposition (Distributions have primitives) Every distribution possesses a primi-
tive. Furthermore, if θ(−1) and θ̃(−1) are primitives of θ ∈ D ′(R;F) then θ̃(−1)

−θ(−1) = θf

where f is a constant signal.
Proof Choose an arbitrary ϕ0 ∈ D (R;F) with the property that

∫
R
ϕ0(t) dt = 1. For

ϕ ∈ D (R;F) we can write
ϕ = cϕ,ϕ0ϕ0 + ψϕ,ϕ0

where

cϕ,ϕ0 =

∫
R
ϕ(t) dt (3.4)

and ψϕ,ϕ0 = ϕ − cϕ,ϕ0ϕ0. We claim that ψϕ,ϕ0 ∈ D
(1)(R;F). By Exercise 3.2.11 it

suffices to check that ψ ∈ D (R;F) and that
∫
R
ψϕ,ϕ0(t) dt = 0. This, however, is a direct

computation. This shows that every distribution ϕ admits a decomposition, unique in
fact, of the type ϕ = cϕ,ϕ0ϕ0 + ψϕ,ϕ0 where ϕ0 is as above and ψϕ,ϕ0 ∈ D

(1)(R;F).
We claim that with any ϕ0 as above,

θ(−1)(ϕ) = cϕ,ϕ0θ
(−1)(ϕ0) − θ(ψ(−1)

ϕ,ϕ0
)

defines a primitive of θ, where θ(−1)(ϕ0) is an arbitrarily specified constant and where

ψ(−1)
ϕ,ϕ0

(t) =
∫ t

−∞

ψϕ,ϕ0(t) dt.

Indeed, note that
(θ(−1))(1)(ϕ) = −θ(−1)(ϕ′) = θ(ϕ)

for any ϕ ∈ D (R;F) since cϕ′,ϕ0 = 0. We still need to show that θ(−1) is a distribu-
tion. To do this we must show that it is linear and continuous. Linearity is evident.
To show continuity, let (ϕ j) j∈Z>0 be a sequence converging to zero in D (R;F), and
write ϕ j = cϕ j,ϕ0ϕ0 + ψϕ j,ϕ0 as above. We claim that both sequences (cϕ j,ϕ0) j∈Z>0 and
(ψϕ j,ϕ0) j∈Z>0 must tend to zero, the former inF and the latter inD (R;F). By (3.4) we then
deduce the convergence to zero of (cϕ j,ϕ0) j∈Z>0 . The convergence to zero of (ψϕ j,ϕ0) j∈Z>0
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immediately follows. We claim that (ψ(−1)
ϕ j,ϕ0

) j∈Z>0 also tends to zero in D (R;F). In-

deed, if supp(ψϕ j,ϕ0) ⊆ [−a, a], j ∈ Z>0, then it follows since ψϕ j,ϕ0 ∈ D
(1)(R;F) that

supp(ψϕ j,ϕ0) ⊆ [−a, a], j ∈ Z>0. We then have

θ(−1)(ϕ j) = cϕ j,ϕ0θ
(−1)(ϕ0) − θ(ψ(−1)

ϕ j,ϕ0
).

It then follows that lim j→∞ θ(−1)(ϕ j) = 0, as desired.
To prove the last assertion of the result let θ(−1) and θ̃(−1) be two primitives for θ

and let ϕ0 ∈ D (R;F) satisfy
∫
R
ϕ0(t) dt = 1. For ϕ ∈ D (R;F) we have

θ(−1)(ϕ) − θ̃(−1)(ϕ) = θ(−1)(cϕ,ϕ0ϕ0 + ψϕ,ϕ0) − θ̃(−1)(cϕ,ϕ0ϕ0 + ψϕ,ϕ0)

= cϕ,ϕ0θ
(−1)(ϕ0) − cϕ,ϕ0θ̃

(−1)(ϕ0) + θ(−1)(ψϕ,ϕ0) − θ̃(−1)(ψϕ,ϕ0)

= cϕ,ϕ0θ
(−1)(ϕ0) − cϕ,ϕ0θ̃

(−1)(ϕ0)

since ψϕ,ϕ0 ∈ D
(1)(R;F). The result now follows since

cϕ,ϕ0θ
(−1)(ϕ0) − cϕ,ϕ0θ̃

(−1)(ϕ0) = (θ(−1)(ϕ0) − θ̃(−1)(ϕ0))
∫
R
ϕ(t) dt = θ f (ϕ)

where f (t) = θ(−1)(ϕ0) − θ̃(−1)(ϕ0). ■

There is also a version of integration by parts for distributions.

3.2.39 Proposition (Integration by parts for distributions) If f ∈ C∞(R;F) and if θ ∈
D ′(R;F) then

(f(1)θ)(−1) = fθ − (fθ(1))(−1) + θg,

where g is a constant signal.
Proof By Proposition 3.2.35 we have

f (1)θ = ( fθ)(1)
− fθ(1).

This means that both ( f (1)θ)(−1) and fθ− ( fθ(1))(−1) are primitives for f (1)θ, and so differ
by a constant signal by Proposition 3.2.38. ■

3.2.8 Distributions depending on parameters

Situations often arise where distributions are applied to classes of test signals
that depend in some way on a parameter. Also, it can sometimes arise that dis-
tributions themselves depend on a parameter. In either of these cases, one would
like to understand the dependence on parameter after hitting the test signal with a
distribution (in the first case) and applying the distribution to a test signal (in the
second case). One can consider the results in this section as being analogous to
those like Theorem III-2.9.16, where the dependence of integrals on parameters if
discussed.

Let us first consider a test signal depending on a parameter. We let I ⊆ R be
an interval and consider a function ϕ : I × R → F. A typical point in I × R we
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denote by (λ, t), thinking of λ as being a parameter and t as being the independent
variable. For (λ, t) ∈ I × R we define functions ϕλ : R → F and ϕt : I → F by
ϕλ(t) = ϕt(λ) = ϕ(λ, t). If, for each λ ∈ I, ϕλ ∈ D (R;F), then, given θ ∈ D ′(R;F),
we define Φθ,ϕ : I→ F by

Φθ,ϕ(λ) = θ(ϕλ).

Following the notation of Section II-1.4.5, for r, s ∈ Z≥0, we shall denote by
Ds

1Dr
2ϕ(λ, t) the associated partial derivative of ϕ at (λ, t) ∈ I × R, in case this

derivative exists. Note that one can think of these partial derivatives as simply
taking values in F since they are partial derivatives with respect to a single vari-
able, cf. Theorem II-1.4.6. For such partial derivatives, we adapt our notation from
above and denote

(Ds
1Dr

2ϕ)λ(t) = (Ds
1Dr

2ϕ)t(λ) = Ds
1Dr

2ϕ(λ, t).

The following result indicates the character of the function Φθ,ϕ.

3.2.40 Theorem (Distributions applied to test signals with parameter dependence)
Let I ⊆ R be an interval, let k ∈ Z≥0, and let ϕ : I×R→ F have the following properties:

(i) for each λ ∈ I, the map t 7→ ϕ(λ, t) is an element of D (R;F);
(ii) there exists a compact interval K ⊆ R such that supp(ϕλ) ⊆ K for each λ ∈ I;
(iii) for each r ∈ Z≥0, Dk

1Dr
2ϕ : I ×R→ F is continuous.

Then, for any θ ∈ D ′(R;F), Φθ,ϕ is k-times continuously differentiable and, moreover,

Φ(k)
θ,ϕ(λ) = θ((Dk

1ϕ)λ).

Proof We first give the proof for k = 0. Let λ ∈ I and let (ϵ j) j∈Z>0 be a sequence in R
converging to zero and such that λ + ϵ j ∈ I for every j ∈ Z>0. Define ψλj ∈ D (R;F) by

ψλj (t) = ϕ(λ + ϵ j, t).

The following lemma is then useful.

1 Lemma The sequence (ψλj )j∈Z>0 converges to ϕλ inD (R;F).

Proof First of all, by hypothesis,

supp(ψλj ) ⊆ K, j ∈ Z>0.

Thus the functions ψλj , j ∈ Z>0, have support contained in a common compact set. Let
r ∈ Z≥0. Let I′ ⊆ I be the smallest compact interval for which λ + ϵ j ∈ I′ for every
j ∈ Z>0. Since Dr

2ϕ|I
′
× K is continuous with compact support, by Theorem II-1.3.33 it

follows that it is uniformly continuous. This implies that, given ϵ ∈ R>0, there exists
N ∈ Z>0 such that

|Drψλj (t) −Drϕλ(t)| = |Dr
2ϕ(λ + ϵ j, t) −Dr

2ϕ(λ, t)| < ϵ, j ≥ N, t ∈ K.

Since r ∈ Z≥0 is arbitrary, this implies that we have the desired convergence of (ψλj ) j∈Z>0

to ϕλ. ▼
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It then follows immediately from continuity of θ that

lim
j→∞
Φθ,ϕ(λ + ϵ j) = lim

j→∞
θ(ϕλ+ϵ j) = θ( lim

j→∞
ϕλ+ϵ j) = θ( lim

j→∞
ψλj ) = θ(ϕλ) = Φθ,ϕ(λ).

Continuity of Φθ,ϕ at λ then follows from Theorem I-3.1.3.
Now we prove the theorem when k = 1. We first note that, by hypothesis, (D1ϕ) ∈

D (R;F). We let (ϵ j) be a sequence, none of whose terms are zero, converging to zero
as above. Now we take

ψλj (t) =
ϕ(λ + ϵ j, t) − ϕ(λ, t)

ϵ j
.

The following lemma is then key.

2 Lemma The sequence (ψλj )j∈Z>0 converges to (D1ϕ)λ inD (R;F).

Proof First of all, by hypothesis,

supp(ψλj ) ⊆ K, j ∈ Z>0.

Thus the functions ψλj , j ∈ Z>0, have support contained in a common compact set.
Let r ∈ Z≥0. Let I′ ⊆ I be the smallest compact interval for which λ + ϵ j ∈ I′ for

every j ∈ Z>0. Now define ψr : I′ × K→ F by

ψr(ℓ, t) =

Dr
2ϕ(ℓ,t)−Dr

2ϕ(λ,t)
ℓ−λ , ℓ , λ,

D1Dr
2ϕ(λ, t), ℓ = λ.

It is clear from the hypotheses that ψr is continuous on

{(ℓ, t) ∈ I′ × K | ℓ , λ}.

Moreover, since the derivative D1Dr
2ϕ exists and is continuous,

lim
ℓ→λ

Dr
2ϕ(ℓ, t) −Dr

2ϕ(λ, t)
ℓ − λ

= D1Dr
2ϕ(λ, t),

showing that ψr is continuous on I′ × K by Theorem I-3.1.3. Since ψr has compact
support, it is uniformly continuous by Theorem II-1.3.33. Therefore, given ϵ ∈ R>0,
there exists N ∈ Z>0 such that

|ψr(λ + ϵ j, t) − ψr(λ, t)| < ϵ, j ≥ N, t ∈ K.

Using the definition of ψr, this implies that, for every j ≥ N and for every t ∈ K,∣∣∣∣∣∣Dr
2ϕ(λ + ϵ j, t) −Dr

2ϕ(λ, t)
ϵ j

−D1Dr
2ϕ(λ, t)

∣∣∣∣∣∣ = |Drψλj (t) −Dr(D1ϕ
λ)(t)| < ϵ.

Since r ∈ Z≥0 is arbitrary, this gives convergence of (ψλj ) j∈Z>0 to (D1ϕ)λ. ▼
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By continuity of θ we then have

lim
j→∞

Φθ,ϕ(λ + ϵ j) −Φθ,ϕ(λ)

ϵ j
= lim

j→∞

θ(ϕλ+ϵ j) − θ(ϕλ)
ϵ j

= θ(lim
j→ϵ

ψλj ) = θ((D1ϕ)λ),

showing thatΦθ,ϕ is differentiable with derivative as stated in the theorem for the case
of k = 1.

Now suppose that the theorem is true for k ∈ {0, 1, . . . ,m} and suppose that the
hypotheses of the theorem hold for k = m+1. We letψ = Dm

1 ϕ and verify thatψ satisfies
the hypotheses of the theorem for k = 1. First note that, for each λ ∈ I, t 7→ ψ(λ, t)
is the mth derivative of an element D (R;F) and so is an element of D (R;F). Since
supp(ψλ) ⊆ supp(ϕλ), we also have the second hypothesis of the theorem. Finally,
since

D1Dr
2ψ = D1Dr

2Dm
1 ϕ = Dm+1

1 Dr
2ϕ

by Theorem II-1.4.33, the final hypothesis of the theorem also holds. Therefore, by the
induction hypothesis, Φθ,ψ is continuously differentiable. But, since

Φθ,ψ(λ) = θ((Dm
1 ϕ)λ) = Φ(m)

θ,ϕ
(λ),

this implies that Φθ,ϕ is m + 1-times continuously differentiable, and

Φ
(m+1)
θ,ϕ

(λ) = θ((Dm+1
1 ϕ)λ)

as desired. ■

The following result is almost immediate from the theorem.

3.2.41 Corollary (Property of distributions applied to test functions of two variables)
Let ϕ : R2

→ F be infinitely differentiable with compact support. Then we have Φθ,ϕ ∈
D (R;F). Moreover, for each r ∈ Z>0,

Φ(r)
θ,ϕ(s) = θ(Dr

1ϕ
s).

Proof Since Theorem 3.2.40 implies that Φθ,ϕ is infinitely differentiable, one only
needs to show that this function has compact support. Since ϕ has compact support,
there exists compact intervals I, J ⊆ R such that supp(ϕ) ⊆ I× J. If s ∈ R\ I thatϕs(t) = 0
for all t ∈ R, and this immediately gives θ(ϕs) = 0 and so supp(Φθ,ϕ) ⊆ I. ■

Next we consider the situation where a distribution is allowed to depend on
a parameter. We first consider a rather general setup. Let (Λ,A , µ) be a measure
space (where we will suppose the parameters live) and suppose that θ : Λ →
D ′(R;F) is an assignment of a distribution to each parameter in Λ. Then we can
define Fθ : Λ ×D (R;F)→ F by

Fθ(λ, ϕ) = ⟨θ(λ);ϕ⟩,
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using the notation mentioned in Notation 3.2.9. Correspondingly, let us define
Fθ,ϕ : Λ→ F by

Fθ,ϕ(λ) = Fθ(λ, ϕ),

and let us suppose that, for each ϕ ∈ D (R;F), Fθ,ϕ ∈ L(1)((Λ,A ;µ);F). We can then
define Θθ : D (R;F)→ F by

Θθ(ϕ) =
∫
Λ

Fθ,ϕ dµ.

The next result indicates when Θθ is a distribution.

3.2.42 Proposition (Distributions arising from integrating parameters) Let (Λ,A , µ)
be a measure space, let θ : Λ → D ′(R;F), and (with the notation above) suppose that
Fθ,ϕ ∈ L(1)((Λ,A , µ);F) for every ϕ ∈ D (R;F). If, for every converging sequence (ϕj)j∈Z>0

inD (R;F), there exists M ∈ R>0 such that the function

λ 7→ sup{|Fθ,ϕj(λ)| | j ∈ Z>0}

is µ-integrable, then Θθ ∈ D ′(R;F).
Proof Let (ϕ j) j∈Z>0 be a sequence inD (R;F) converging to zero. For λ ∈ Λwe have

lim
j→∞

Fθ,ϕ j(λ) = lim
j→∞
⟨θ(λ);ϕ j⟩ = 0,

using continuity of θ(λ). Define

Fθ(λ) = sup{|Fθ,ϕ j(λ)| | j ∈ Z>0},

and note that Fθ is measurable by Propositions III-2.6.11 and III-2.6.18, and integrable
by hypothesis. Moreover,

|Fθ,ϕ j(λ)| ≤ Fθ(λ)

for every λ ∈ Λ and j ∈ Z>0. Therefore, by the Dominated Convergence Theorem,

lim
j→∞
Θθ(ϕ j) = lim

j→∞

∫
Λ

Fθ,ϕ j dµ =
∫
Λ

lim
j→∞

Fθ,ϕ j dµ = 0,

giving the desired continuity. ■

3.2.9 Some deeper properties of distributions

Thus far, it has pretty much been fun and games for distributions. However,
there comes a time when one wants to understand what a distribution “really is.”
After all, all we have done thus far is to show that distributions have some useful
properties and signals can be represented by distributions in a manner which seems
reasonably apt. However, how do we know whether distributions are not just too
good to be true? There is certainly some evidence for this in that (1) all distributions
are differentiable and (2) differentiation can always be swapped with limits. To
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make distributions really respectable, we need to be able to say something useful
about their structure. That is to say, we need to see if there is there a nice way
to think of distributions that has some relationship with something we believe we
understand. We address this in two ways: (1) by showing that distributions are
limits of locally integrable signals; and (2) by showing that distributions are, in an
appropriate sense, always derivatives of some order of locally integrable signals.

The first result we state, we do not prove since the most natural proof involves
convolution which we consider in Chapter 4. However, now is a good time to at
least state the result.

3.2.43 Theorem (Distributions are limits of locally integrable signals) If θ ∈ D ′(R;F)
then there exists a sequence (fj)j∈Z>0 in L(1)

loc(R;C) such that the sequence (θfj)j∈Z>0 converges
inD ′(R;F) to θ.

Proof In Theorem 4.7.26 we will show something even stronger, namely that there
exists a sequence (ϕ j) j∈Z>0 inD (R;F) such that the sequence (θϕ j) j∈Z>0 converges to θ
inD ′(R;F). ■

Next we show that a distribution is always a finite derivative of a locally in-
tegrable signal. To prove this result we first need a technical fact. The fact is a
local one concerning the behaviour of distributions. To understand the result we
introduce a subset of the set D (R;F) of test signals. Let T = [a, b] be a compact
time-domain and letD (T;F) denote those test signals whose support is contained
in T. A sequence (ϕ j) j∈Z>0 ⊆ D (T;F) converges to zero inD (T;F) if it converges to
zero inD (R;F).

3.2.44 Lemma (A local boundedness property for distributions) Let T be a compact
time-domain and let θ ∈ D ′(R;F). Then there exists M ∈ R>0 and k ∈ Z≥0 such that for
each ϕ ∈ D (T;F) we have

|θ(ϕ)| ≤M∥ϕ(k)
∥∞

Proof Let T = [a, b]. First note that the sequences ((b − a)m
∥ϕ(m)

j ∥∞) j∈∞, m ∈ Z≥0,
converge to zero if and only if the sequence (ϕ j) j∈Z>0 converges to zero in D (R;F).
Note that, since for ϕ ∈ D (T;F) we have

ϕ(m)(t) =
∫ t

a
ϕ(m+1)(τ) dτ,

we have
∥ϕ(m)

∥∞ ≤ (b − a)∥ϕ(m+1)
∥∞ (3.5)

for every m ∈ Z≥0.
Now we proceed with the proof proper, using contradiction. Suppose that it is not

possible to find such an M and k as asserted in the theorem statement. Then for each
j ∈ Z>0 there exists a nonzero ϕ j ∈ D (T;F) such that

|θ(ϕ j)| > j(b − a) j
∥ϕ

( j)
j ∥∞. (3.6)



2022/03/07 3.2 Distributions 139

Then define

ψ j =
ϕ j

j(b − a) j∥ϕ
( j)
j ∥∞

,

noting that ψ j ∈ D (T;F). Then we have, for m ≤ j,

(b − a)m
∥ψ(m)

j ∥∞ =
(b − a)m

∥ϕ(m)
j ∥∞

j(b − a) j∥ϕ
( j)
j ∥∞

≤
1
j

since, by (3.5),
(b − a)m

∥ϕ(m)
j ∥∞ ≤ (b − a) j

∥ϕ
( j)
j ∥∞, m < j.

Therefore, for each m ∈ Z>0 the sequence ((b− a)m
∥ψ(m)

j ∥∞) j∈Z>0 converges to zero, and
so (ψ j) j∈Z>0 converges to zero in D (T;F) according to the observation with which we
began the proof. Therefore the sequence (θ(ψ j)) j∈Z>0 converges to zero. However, we
also have

θ(ψ j) =
θ(ϕ j)

j(b − a) j∥ϕ( j)∥∞
> 1

by (3.6), thus arriving at a contradiction. ■

We now have the following rather non-obvious result.

3.2.45 Theorem (Distributions are locally finite-order derivatives of locally inte-
grable signals) Let T be a compact continuous time-domain. If θ ∈ D ′(R;F) then
there exists r ∈ Z≥0 and fθ ∈ L(1)

loc(R;F) such that θ(ϕ) = θ(r)
fθ

(ϕ) for every ϕ ∈ D (T;F).
Furthermore, we may take r = k + 1 where k ∈ Z≥0 is as given by Lemma 3.2.44.

Proof Let M ∈ R>0 and k ∈ Z>0 be chosen as in Lemma 3.2.44 so that for each
ϕ ∈ D (T;F) we have θ(ϕ) ≤M∥ϕ(k)

∥∞. Denote

D (k+1)(T;F) = {ϕ(k+1)
| ϕ ∈ D (T;F)},

noting that this is a subspace ofD (T;F). OnD (k+1)(T;F) we consider the norm ∥·∥1:

∥ϕ(k+1)
∥1 =

∫
T
|ϕ(k+1)(t)|dt.

Define a linear map αθ : D (k+1)(T;F) → F by αθ(ϕ(k+1)) = θ(ϕ). We claim that αθ is
continuous using the norm ∥·∥1. To see this, let (ϕ(k+1)

j ) j∈Z>0 be a sequence inD (k+1)(T;F)
converging to zero in the norm ∥·∥1. Thus, for any ϵ ∈ R>0 we have N ∈ Z>0 such that∫

T
|ϕ(k+1)

j (t)|dt < ϵ, j ≥ N.
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We then have

ϕ(k)
j (t) =

∫ t

−∞

ϕ(k+1)
j (τ) dτ

=⇒ |ϕ(k)
j (t)| ≤

∫ t

−∞

|ϕ(k+1)
j (τ)|dτ

=⇒ ∥ϕ(k)
j ∥∞ ≤

∫
T
|ϕ(k+1)

j (t)|dt.

Therefore, for ϵ ∈ R>0, if we choose N ∈ Z>0 sufficiently large that∫
T
|ϕ(k+1)

j (t)|dt ≤
ϵ
M
, j ≥ N,

then we have

|αθ(ϕ j)| = |θ(ϕ j)| ≤M∥ϕ(k)
j ∥∞ ≤M

∫
T
|ϕ(k+1)

j (t)|dt ≤ ϵ, j ≥ N.

Thus the sequence (αθ(ϕ j)) j∈Z>0 converges to zero, thus verifying our claim that αθ is
continuous at 0, and so continuous by virtue of Theorem III-3.5.8.

Now think of D (k+1)(T;F) as a subspace of L(1)(T;F). By the Hahn–Banach Theo-
rem, Theorem III-3.9.2, there exists a continuous linear map ᾱθ : L(1)(T;F)→ F which
agrees with αθ onD (k+1)(T;F). By Theorem III-3.10.1 there exists fθ ∈ L(∞)(T;F) such
that

ᾱθ(ϕ(k+1)) =
∫
T

fθ(t)ϕ(k+1)(t) dt.

From this we immediately deduce

θ(ϕ) = ᾱθ(ϕ(k+1)) = θgθ(ϕ(k+1)) = (−1)k+1θ(k+1)
fθ

(ϕ),

which is the result, since L(∞)(R;F) ⊆ L(1)
loc(R;F). ■

3.2.46 Remark (Distributions are finite-order derivatives of continuous signals) Note
that since f in the statement of Theorem 3.2.45 is in L(1)

loc(R;F), the signal

g(t) =
∫ t

t0

f (τ) dτ

is locally absolutely continuous. Thus we may deduce directly that θ(ϕ) = θ(r)
g (ϕ)

for ϕ ∈ D (T;F) where g is continuous (indeed, locally absolutely continuous). •

3.2.10 The order of a distribution

The local characterisation of distributions as derivatives leads one naturally to
talk about the order of a distribution, and it is this we now do.
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3.2.47 Definition (Order of a distribution) Let θ ∈ D ′(R;F).
(i) For a compact continuous time-domain T the T-order of θ is the smallest

nonnegative integer k for which there exists a signal f ∈ L(1)
loc(R;F) satisfying

θ(ϕ) = θ(k+1)
f (ϕ) (3.7)

for all ϕ ∈ D (T;F).
(ii) The order of θ is the smallest nonnegative integer k for which there exists a

signal f ∈ L(1)
loc(R;F) satisfying (3.7) for each ϕ ∈ D (R;F). If no such integer

exists then θ has infinite order. •

Some examples clarify the definitions.

3.2.48 Examples (Order of a distribution)
1. Note that δ0 = θ

(1)
1≥0

. Thus δ0 hasT-order zero for anyT, and also has order zero.

2. The distribution δ(m)
0 has T-order zero if 0 < int(T). Indeed, if 0 < supp(ϕ) then

δ(m)(ϕ) = 0. On the other hand, if 0 ∈ int(T) then theT-order of δ(m)
0 is m. Indeed,

in this case we have δ(m)
0 (ϕ) = θ(m+1)

1≥0
(ϕ) = (−1)mϕ(m)(0).

3. We consider the distribution

θ =
∞∑

n=1

nδ(n)
n .

First, we claim that the sum defines a distribution. To see this, let (ϕ j) j∈Z>0 be a
sequence inD (R;F) converging to zero. Then there exists N ∈ Z>0 sufficiently
large that supp(ϕ) ⊆ [−N,N]. Then we have

θ(ϕ j) =
∞∑

n=1

n(−1)nϕ(n)
j (n) =

N∑
n=1

n(−1)nϕ(n)
j (n).

The last sum is a finite sum of terms going to zero as j → ∞ so we have
lim j→∞ θ(ϕ j) = 0, thus θ ∈ D ′(R;F). If T ∩ (1,∞) = ∅ then the T-order of θ is
zero since θ(ϕ) = 0 for any ϕ ∈ D (T;F). If maxT ∩Z = N then the T-order of
θ is N, as is easily verified. Note that θ has infinite order since for any N one
can find a ϕ ∈ D (R;F) with [−N,N] ∈ int(supp(ϕ)). •

If θ is a distribution of order k and if f is at least k+ 1-times continuously differ-
entiable, then it is possible to define the product of θ with f to be the distribution
fθ given by ( fθ)(ϕ) = θ( fϕ). The following result indicates how this is done.
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3.2.49 Proposition (Multiplication of distributions of finite order by functions that
are finitely differentiable) Letθ = θ(k+1)

g be a distribution of order k and let f ∈ Cr(R;F)
for r ≥ k + 1. Then the map

D (R;F) ∋ ϕ 7→ (−1)k+1θg((fϕ)(k+1)) ∈ F

defines a distribution which we denote fθ.
Proof Let (ϕ j) j∈Z>0 be a sequence converging to zero inD (R;F). Choose T ∈ R>0 such
that supp(ϕ j) ⊆ [−T,T] for all j ∈ Z>0 and then note that

|( fθ)(ϕ j)| =
∣∣∣∣∣(−1)k+1

∫
R

g(t)( fϕ)(k+1)(t) dt
∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∫
R

g(t)
k+1∑
m=0

f (m)(t)ϕ(k+1−m)(t) dt

∣∣∣∣∣∣∣
= ∥g∥∞

k+1∑
m=0

∥ f (m)
∥∞

∫ T

−T
|ϕ(k+1−m)

j (t)|dt,

where the ∞-norms are with respect to [−T,T]. Since the integrands go to zero uni-
formly in t, if we take the limit as j → ∞ we can switch this with the integration by
Theorem I-3.6.23 and we get lim j→∞|( fθ)(ϕ j)| = 0, as desired. ■

Finally, we discuss how simple distributions may be made to take not just test
signals as argument, but signals that are merely differentiable to some extent. This
sort of construction is often important in applications since one often wishes to give
as an argument to a distribution something other than a test signal. The following
result indicates why this is possible.

3.2.50 Theorem (Distributions of finite order only depend on finitely many deriva-
tives) LetT be a compact continuous time-domain, let θ ∈ D ′(R;F) haveT-order k, and
let ϕ1, ϕ2 ∈ D (T;F) satisfy

ϕ(j)
1 (t) = ϕ(j)

2 (t), j ∈ {0, 1, . . . ,k + 1}, t ∈ T ∩ supp(θ).

Then θ(ϕ1) = θ(ϕ2).
Proof By Theorem 3.2.45 let fθ ∈ L(1)

loc(R;F) have the property that θ(ϕ) = θ(k+1)
fθ

(ϕ)
for all ϕ ∈ D (T;F). Note that since supp(θ) is closed, R \ supp(θ) is open, and so is
a countable union of open intervals by Proposition I-2.5.6. Since T is compact, only a
finite number of these open intervals will intersect T, and we denote these intervals
by (t1,m, t2,m), m ∈ {1, . . . ,n} and we suppose that

t1,1 < infT < t2,1 < t1,2 < t2,2 < · · · < t1,n < supT < t2,n.

It is convenient for our purposes to redefine t1,1 = infT and t2,n = supT. Then, for
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ϕ ∈ D (T;F),

θ(ϕ) = (−1)k+1
∫
R

fθ(t)ϕ(k+1)(t) dt

=

n∑
m=1

(−1)k+1
∫ t2,m

t1,m

fθ(t)ϕ(k+1)(t) dt + (−1)k+1
∫
T∩supp(θ)

fθ(t)ϕ(k+1)(t) dt.

The second term obviously only depends on ϕ(k+1)(t) for t ∈ T ∩ supp(θ). As for the
first term, referring to our discussion of Section 3.2.4, we see that f (k+1)

θ
agrees with

the zero distribution on each interval (t1,m, t2,m). We may then apply the integration by
parts, Proposition 3.2.39, k + 1 times to each term in

n∑
m=1

(−1)k+1
∫ t2,m

t1,m

fθ(t)ϕ(k+1)(t) dt

to see that it depends only on ϕ( j)(t1,m) and ϕ( j)(t2,m) for j ∈ {0, 1, . . . , k + 1} and m ∈
{1, . . . ,n}. Since t1,m, t2,m ∈ supp(θ) for m ∈ {1, . . . ,n}, the result follows. ■

Let us see how this works in an example.

3.2.51 Example (The delta-function evaluated on differentiable signals) Let us con-
sider δ0. Suppose that f ∈ C1

cpt(R;F) is a signal with compact support containing 0
in its interior. Then we define

δ0( f ) = (−1)
∫
R

1≥0(t) f (1)(t) dt = −
∫
∞

0
f (1) dt = − f (t)

∣∣∣∞
0
= f (0).

Thus the delta-signal acts on differentiable signals just as it does on test signals.
Note that since δ0( f ) only depends on the value of f at t = 0, we ought to really be
able to define δ0 on signals in C0(R;F). We shall see in Corollary 3.7.28 that it is
indeed possible to do this. •

3.2.11 Distributions in several independent variables

3.2.12 Distributions taking values in vector spaces

In all of the development above, we considered distributions as generalisations
of locally integrable functions taking values in F ∈ {R,C}. In Section 1.4 we
discussed signals taking values in a finite-dimensional vector space. Here we meld
these two ideas, and introduce the idea of a vector space-valued distribution.

3.2.52 Definition (Vector space-valued distribution) Let F ∈ {R,C} and let V be a finite-
dimensional F-vector space. A distribution with values in V is a linear map
θ : D (R;F) → V that is continuous in the sense that, for every sequence (ϕ j) j∈Z>0

converging to zero, the sequence (θ(ϕ j)) j∈Z>0 converges to zero in V. •
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If V = Fn, then an Fn-valued distribution can be thought of as n F-valued
distributions. However, the more abstract setting will be useful for us.

A special case of a vector space-valued distribution arises as follows. For
θ ∈ D ′(R;F) and v ∈ V, define v ⊗ θ ∈ D ′(R; V) by

⟨v ⊗ θ;ϕ⟩ = ⟨θ;ϕ⟩v, ϕ ∈ D (R;F).

Let us consider a few constructions around this definition and other constructions.

3.2.53 Remarks (Linear maps and vector-valued distributions)
1. For finite-dimensional R-vector spaces U and V, let L ∈ L(U; V) and θ ∈
D ′(R; U), define L(θ) ∈ D ′(R; V) by

⟨L(θ);ϕ⟩ = L(⟨θ;ϕ⟩).

In particular, if θ = u ⊗ θ̂ for u ∈ U and θ̂ ∈ D ′(R;R), then

L(u ⊗ θ̂) = L(u) ⊗ θ̂.

2. As in Example 3.2.11–2, we can multiply distributions by infinitely differen-
tiable signals. This can be adapted to give the product of an infinitely differ-
entiable vector space-valued function with a distribution. Thus we let V be a
finite-dimensional F-vector space and let ξ ∈ C∞(R; V). We let (e1, . . . , en) be a
basis for V and write

ξ(t) = ξ1(t)e1 + · · · + ξn(t)en

for ξ1, . . . , ξn ∈ C∞(R;R). If θ ∈ D ′(R;F), then we define ξ ⊗ θ ∈ D ′(R; V) by

(ξ ⊗ θ)(ϕ) = θ(ξ1ϕ)e1 + · · · + θ(ξnϕ)en.

3. A construction we will frequently use for regular distributions is the following.
Let U and V be finite-dimensional R-vector spaces, let θξ ∈ D ′(R; U) be the
regular distribution associated with a locally essentially bounded signal ξ ∈
L∞loc(R; U). Let L ∈ L1

loc(R; L(U; V)). Then define L ◦ θξ ∈ D ′(R; V) by

⟨L ◦ θξ;ϕ⟩ =
∫
R

L(t) ◦ ξ(t)ϕ(t) dt.

Thus L ◦ θξ is the distribution associated with the locally integrable signal t 7→
L(t)(ξ(t)). That this signal is locally integrable follows from Exercises III-3.8.8
and 1.4.4. •

Exercises

3.2.1 Show that if ϕ1, ϕ2 ∈ D (R;F) then ϕ1ϕ2 ∈ D (R;F). Thus D (R;F) is an
algebra.
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3.2.2 Which of the following signals is in D (R;F)? For signals not in D (R;F),
explain why they are not.

(a) f (t) =

1 + cos t, t ∈ [−π, π],
0, otherwise.

(b) f (t) =


⋏(t + 1), t ∈ [−2,−1],
⋏(0), t ∈ (−1, 1),
⋏(t − 1), t ∈ [1, 2],
0, otherwise.

(c) f (t) = arctan(t).
3.2.3 Let ϕ ∈ D (R;F). Which of the following sequences (ϕ j) j∈Z>0 of signals in

D (R;F) converges to zero inD (R;F)? For sequences not converging to zero
inD (R;F), explain why they do not.
(a) ϕ j(t) = j−1ϕ(t)
(b) ϕ j(t) = j−1ϕ( j−1t)
(c) ϕ j(t) = jϕ( jt)

3.2.4 Let ϕ0 ∈ C∞(R;F). Show that there exists ϕ ∈ D (R;F) such that ϕ|[−1, 1] =
ϕ0|[−1, 1].

3.2.5 Let L : D (R;F)→ F be defined by

L(ϕ) =
∫
R

ϕ(t) dt.

Is L a distribution?
3.2.6 Show that, if ϕ0 ∈ C∞(R;F) and k ∈ Z>0, then

ϕ0δ
(k) =

k∑
j=0

(−1)k− j

(
k
j

)
ϕ( j)

0 (0)δk− j.

3.2.7 Recall from Example 1.1.6–2 the map σ : R→ R defined by σ(t) = −t. For a
signal f define σ∗ f (t) = f (−t), and for θ ∈ D ′(R;F) define σ∗θ : D (R;F)→ F
by σ∗θ(ϕ) = θ(σ∗ϕ).
(a) Show that σ∗θ ∈ D ′(R;F).
Recall that a signal f is even if σ∗ f = f and odd if σ∗ f = − f . Say, then, that
θ ∈ D (R;F) is even if σ∗θ = θ and odd if σ∗θ = −θ.
(b) Show that the following are equivalent:

1. θ is even;
2. θ(ϕ) = 0 for every odd ϕ ∈ D (R;F).

(c) Show that the following are equivalent:
1. θ is odd;
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2. θ(ϕ) = 0 for every even ϕ ∈ D (R;F).
3.2.8 Consider the sequence of locally integrable signals ( f j) j∈Z>0 given by f j(t) =

sin( jt).
(a) Show that the sequence converges pointwise only on a set of measure

zero.
Hint: First show that, if the sequence converges almost everywhere, then the
sequence (fj+1 − fj)j∈Z>0 converges to zero almost everywhere.

(b) Show that the sequence of distributions (θ f j) j∈Z>0 converges in D ′(R;F)
to the zero distribution.

3.2.9 Let θ1, θ2 ∈ D ′(R;F) satisfy
1. supp(θ1) = supp(θ2) and
2. θ1(ϕ) = θ2(ϕ) for every ϕ ∈ D (R;F) for which supp(ϕ) ⊆ supp(θ1) =

supp(θ2).
Show that θ1 = θ2.

3.2.10 For the signal f : R→ R defined by

f (t) =

 1
√

t
, t ∈ R>0,

0, t ∈ R≤0,

answer the following questions.

(a) Show that f ∈ L(1)
loc(R;R), so that f defines a distribution θ f .

(b) Show that the product of f with itself is not in L(1)
loc(R;R), and so cannot

be used to define a distribution in a direct manner.
3.2.11 Show that

D (1)(R;F) =
{
ϕ ∈ D (R;F)

∣∣∣∣∣ ∫
R

ϕ(t) dt = 0
}
.

3.2.12 We did not define generalised discrete-time signals. The reason is that they
are not necessary. Show how one may define the analogue of a delta-signal
for discrete-time signal by asking that it have properties like those of the
delta-signal. (Part of the question is that you should figure out what should
be the adaptations to the discrete-time case of the properties in continuous-
time case.)

3.2.13 Recall from Example 1.1.6–1 the map τa : R→ R defined by τa(t) = t − a.

(a) Show that if f ∈ L(1)
loc(R;F) then τ∗a f ∈ L(1)

loc(R;F) and show that τ∗aθ f = θτ∗a f .
(b) Show that

supp(τ∗aθ) = {t + a | t ∈ supp(θ)}.

3.2.14 Let (θ j) j∈Z>0 be a sequence in D ′
≥0(R;F) converging to θ ∈ D ′(R;F). Show

that θ ∈ D ′
≥0(R;F).
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3.2.15 Let us revisit the mass/spring example of Section 3.1. The governing dif-
ferential equation is

mẍ(t) + kx(t) = F(t). (3.8)

For simplicity, take m = k = 1.
(a) Show by direct substitution that the solution to (3.8) is given by

x(t) =
∫ t

0
sin(t − τ)F(τ) dτ

if the initial conditions are x(0) = 0 and ẋ(0) = 0.
Hint: First show that

d
dt

∫ t

0
f(t, τ) dτ = f(t, t) +

∫ t

0

∂f(t, τ)
∂t

dτ,

provided that all operations make sense.
For ϵ ∈ R>0 define

Fϵ(t) =

1
ϵ , t ∈ [0, ϵ],
0, otherwise.

(b) Compute the solution xϵ(t) to (3.8) when F = Fϵ and with zero initial
conditions.

(c) Plot xϵ for values of ϵ decreasing to zero, and comment on what the
resulting solution seems to be converging to.

(d) Now consider the differential equation

θ(2) + θ = δ0

for the distribution θ. Show that taking θ = θx with x(t) = 1≥0(t) sin t
solves the differential equation. How does this compare to the limiting
solution from part (c)? Does x satisfy the initial conditions x(0) = 0 and
ẋ(0) = 0?
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Section 3.3

Tempered distributions

The distributions D ′(R;F) considered in the previous section are the most
general sort of distribution we consider here. However, they can be, in some way,
too general for some purposes. In particular, when we use distributions in the
theory of Fourier transforms in Chapter 6 we will see that the setup with test
signals with compact support leads to an asymmetry in the theory. Therefore, in
this section we provide a different setup for distributions that utilises a larger class
of test signals, giving rise to a correspondingly smaller class of distributions.

Do I need to read this section? Tempered distributions are rather important in
the theory of the continuous-continuous Fourier transform which we present in
Chapter 6. Thus readers interested in learning this part of the theory will need to
know about tempered distributions. •

3.3.1 The Schwartz space of test signals

The set of test functions we consider in this section do not have compact support,
but they do decay quickly at infinity. The following definition makes this precise.

3.3.1 Definition (Signal of rapid decay) A signal of rapid decay is a signal f : R → F
having the property that for any k ∈ Z>0, lim|t|→∞ tk f (t) = 0. •

A useful characterisation of locally integrable signals of rapid decay is the
following. The idea is that the signal can be multiplied by any polynomial and
remain locally integrable.

3.3.2 Proposition (A property of locally integrable signals of rapid decay) If f ∈
L(1)

loc(R;F) is a signal of rapid decay then for each k ∈ Z≥0 the signal t 7→ tkf(t) is in
L(1)(R;F).

Proof Let T ∈ R>0 have the property that |tk+2 f (t)| ≤ 1 for all |t| ≥ T. This is possible
since f is of rapid decay. Then we have∫

R
|tk f (t)|dt =

∫
−T

−∞

|tk f (t)|dt +
∫ T

−T
|tk f (t)|dt +

∫
∞

T
|tk f (t)|dt

≤ 2
∫
∞

T

1
t2 dt + Tk

∫ K

−T
| f (t)|dt < ∞,

giving the result. ■

Test signals of rapid decay generalise the test signals of Definition 3.2.1.
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3.3.3 Definition (Schwartz signal) A test signal of rapid decay, or a Schwartz signal,
is an infinitely differentiable map ϕ : R→ Fwith the property that for each k ∈ Z≥0

the signal ϕ(k) is of rapid decay. The set of Schwartz signals is denoted S (R;F). •

3.3.4 Remark (S (R;F) is a vector space) One can easily verify that S (R;F) is a
subspace of the F-vector space FR. •

Let us look at some examples of test signals of rapid decay.

3.3.5 Examples (Schwartz signals)
1. Note that every element ofD (R;F) is also an element of S (R;F).
2. Consider a signal of the form

f (t) =
1

tk + pk−1tk−1 + · · · + p1t + p0

where the polynomial

tk + pk−1tk−1 + · · · + p1t + p0

has no real roots. Then one can easily show using the quotient rule for deriva-
tives that lim|t|→∞|t j f (r)(t)| = ∞ as long as j ≥ k + r. Thus this signal is not in
S (R;F).

3. The most often cited example of an test signal of rapid decay that is not in
D (R;F) is the Gaussianϕ(t) = 1

√
2π

e−
1
2 t2 . To see that this signal is indeed of rapid

decay, note that ϕ(r)(t) = Pr(t)e−
1
2 t2 for some polynomial Pr of degree r. Since the

negative exponential goes to zero faster in the limit that any polynomial (this
can be shown using l’Hôpital’s Rule), it follows that the Gaussian is indeed a
test signal of rapid decay.

4. If ϕ ∈ S (R;F) then one checks that Pϕ ∈ S (R;F) for any polynomial P ∈ F[t]
and that ϕ(k)

∈ S (R;F) for any k ∈ Z>0. (We shall prove this during the course
of the proof of Proposition 3.3.18 below.) One can also check that the sum of
two Schwartz signals is a Schwartz signal. Thus the Schwartz signals form an
F-vector space. •

As with test signals in D (R;F), the Schwartz functions come equipped with a
natural notion of convergence.

3.3.6 Definition (Convergence in S (R;F)) A sequence (ϕ j) j∈Z>0 in S (R;F) converges
to zero if, for each k, r ∈ Z≥0, one has

lim
j→∞

sup
{
|tkϕ(r)

j (t)|
∣∣∣∣ t ∈ R

}
= 0.

A sequence (ϕ j) j∈Z>0 inS (R;F) converges toϕ ∈ S (R;F) if the sequence (ϕ j−ϕ) j∈Z>0

converges to zero. •
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As with our notion of convergence in D (R;F), it is interesting to speculate
whether convergence in S (R;F) could have been prescribed by a norm. As with
D (R;F), the answer for S (R;F) is, “No.” However, the situation is somehow less
dire for S (R;F) than it is for D (R;F). For example, it turns out that there is a
metric on S (R;F) for which convergence in S (R;F) is convergence with respect
to the metric. This is not true for D (R;F). We leave these interesting matters for
the motivated reader to explore in .what?

Note that unlike the situation for convergence in D (R;F) we make no do-
main restrictions for sequences of test functions that converge. Also note that the
definition of convergence in S (R;F) implies, but is not implied by, the uniform
convergence of derivatives of all orders. The following examples illustrate the
notion of convergence in S (R;F).

3.3.7 Examples (Convergence in S (R;F))
1. We claim that a sequence (ϕ j) j∈Z>0 converging to zero inD (R;F) also converges

to zero in S (R;F). Indeed, if let T ∈ R>0 have the property that supp(ϕ j) ⊆
[−T,T], j ∈ Z>0. Then for any k, r ∈ Z≥0 we have

sup
{
|tkϕ(r) j(t)|

∣∣∣ t ∈ R
}
≤ Tk sup

{
|ϕ(r)

j (t)|
∣∣∣∣ t ∈ R

}
.

The limit as j→∞ of the term on the right goes to zero since (ϕ j) j∈Z>0 converges
to zero inD (R;F).

2. Let ϕ be the Gaussian of Example 3.3.5–3 and consider the sequence ( 1
jϕ) j∈Z>0 .

One can easily check that this sequence converges to zero in S (R;F).
3. Again let ϕ be the Gaussian and now define ϕ j(t) = ϕ(t− j). One can then check

that the sequence (ϕ j) j∈Z>0 converges to zero pointwise, but not uniformly. Thus
this sequence does not converge to zero in S (R;F).

4. For j ∈ Z>0 define a signal ϕ j as follows:

ϕ j(t) =


1
j ⋏ (t + j2), t ∈ [− j2

− 1,− j2],
1
j ⋏ (0), t ∈ (− j2, j2),
1
j ⋏ (t − j2), t ∈ [ j2, j2 + 1],

0, otherwise.

One can check that these functions are all infinitely differentiable. Also, since
ϕ j, j ∈ Z>0, has compact support, it is in D (R;F), and therefore in S (R;F).
One can also check that for each r ∈ Z≥0 the sequence of functions (ϕ(r)

j ) j∈Z>0

converges uniformly to zero. However, we claim that the sequence (ϕ j) j∈Z>0

does not converge to zero in S (R;F). Indeed, note that

sup{|tϕ j(t)| | t ∈ R} = j ⋏ (0).
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Figure 3.6 A sequence converging uniformly to zero, but not con-
verging in S (R;F)

Since this limit does not converge to zero as j → ∞, our claim follows. In
Figure 3.6 we show the first four signals in the sequence. The key feature of the
sequence of signals is that the signals “spread out” faster as j → ∞ than they
decrease in magnitude. •

For the given notion of convergence inS (R;F) there is a corresponding notion
of continuity.

3.3.8 Definition (Continuous linear maps on S (R;F)) A linear map L : S (R;F)→ F
is continuous if the sequence (L(ϕ j)) j∈Z>0 of numbers converges to zero for every
sequence (ϕ j) j∈Z>0 that converges to zero in S (R;F). •

3.3.2 Definition of tempered distributions

We now mirror for the Schwartz class of test signals the definition of a distribu-
tion.

3.3.9 Definition (Tempered distribution) A tempered distribution, or a distribution of
slow growth, is a continuous linear map from S (R;F) to F. The set of tempered
distributions is denoted S ′(R;F). •

3.3.10 Remark (S ′(R;F) is a vector space) It is easy to check that S ′(R;F) is a sub-
space of D ′(R;F). The inclusion is proved below in Proposition 3.3.12, and the
inheritance of the vector space structure is then readily verified.

Let us give some examples of tempered distributions.
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3.3.11 Examples (Tempered distributions)
1. Any polynomial function EvF(P), P ∈ F[ξ], defines a tempered distribution θP

via

θP(ϕ) =
∫
R

P(t)ϕ(t) dt.

2. We claim that if f ∈ Lpow(R;F) then θ f ∈ S ′(R;F). We first recall from
Proposition 1.3.12 that f is a power signal then it is locally integrable. Thus
θ f ∈ D ′(R;F). If ϕ ∈ S (R;F) then∣∣∣∣∣∫

R

f (t)ϕ(t) dt
∣∣∣∣∣ ≤ lim

T→∞

∫ T

−T
| f (t)ϕ(t)|dt

= lim
T→∞

∫ T

−T
|T−1/2 f (t)T1/2ϕ(t)|dt

≤ lim
T→∞

(
1
T

∫ T

−T
| f (t)|2 dt

)1/2 (
T
∫ T

−T
|ϕ(t)|2 dt

)1/2

It will follow that θ f (ϕ) is well-defined if we can show that the second term on
the right is bounded. Choose M ∈ R>0 such that |ϕ(t)| ≤ M

1+t2 for all t ∈ R. We
then have
It is easy to show (and will be shown in Proposition 3.11.4) that S (R;F) ⊆
L(2)(R;F). This shows that θ f (ϕ) is well-defined. The computations above also
show that if (ϕ j) j∈Z>0 converges to zero in S (R;F), it follows that (θ f (ϕ j)) j∈Z>0

also converges to zero, using the fact that (∥ϕ j∥2) j∈Z>0 converges to zero. Thus
θ f is continuous, so giving an element of S ′(R;F).

3. The signal f (t) = et is not one of slow growth. One can also show that this signal
does not define a tempered distribution by integration as is the case for signals
of slow growth. For example, if one takes the signal in S (R;F) defined by

ϕ(t) =


⋏(t−1)
⋏(0) e−t, t ∈ [0, 1],

e−t, t < 1,
0, otherwise.

(see Figure 3.7), then one can see that the integral
∫
R

f (t)ϕ(t) dt diverges.
4. Let (c j) j∈Z>0 be a sequence with the property that there exists M ∈ R>0, k ∈ Z≥0,

and N ∈ Z>0 such that for j ≥ N we have |c j| ≤Mjk. We claim that for ∆ ∈ R>0,

θ =
∞∑
j=1

c jδ j∆

is a tempered distribution. First of all, let us be sure we understand what θ
really is. We are defining θ by

θ(ϕ) =
∞∑
j=1

c jϕ( j∆)
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Figure 3.7 A test signal of slow growth on which et is undefined
as a tempered distribution

for ϕ ∈ S (R;F). Let us first check that this sum converges. Let Ñ ∈ Z≥0 have
the property that | jk+2ϕ( j∆)| ≤ 1 for j ≥ Ñ. This is possible since ϕ ∈ S (R;F).
We then have

∞∑
j=1

|c jϕ( j∆)| ≤
max{N,Ñ}−1∑

j=1

|c jϕ( j∆)| +
∞∑

j=max{N,Ñ}

M
j2 < ∞.

Now let (ϕℓ)ℓ∈Z>0 be a sequence converging to zero in S (R;F). We then have

|θ(ϕℓ)| =

∣∣∣∣∣∣∣
∞∑
j=1

c jϕℓ( j∆)

∣∣∣∣∣∣∣ ≤
∞∑
j=1

|c jϕℓ( j∆)|

≤

N−1∑
j=1

|c jϕℓ( j∆)| +
∞∑

j=N

M
∆k
|( j∆)kϕℓ( j∆)|

≤ sup

|ϕℓ(t)| N−1∑
j=1

|c j|

∣∣∣∣∣∣∣ t ∈ R

 + sup

|tk+2ϕℓ(t)|
M
∆k+2

∞∑
j=N

1
j2

∣∣∣∣∣∣∣ t ∈ R

 ,
the suprema existing since (ϕℓ)ℓ∈Z>0 converges to zero in S (R;F). Taking the
limit as ℓ→∞ shows that θ is indeed a tempered distribution. •

Let us now show that tempered distributions are distributions.

3.3.12 Proposition (Tempered distributions are distributions) We have S ′(R;F) ⊆
D ′(R;F). Moreover, tempered distributions θ1, θ2 ∈ S ′(R;F) agree if and only if they
agree as distributions.
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Proof Clearly since D (R;F) ⊆ S (R;F), if ϕ ∈ D (R;F) and θ ∈ S ′(R;F) it makes
sense to write θ(ϕ). We need only check that if (ϕ j) j∈Z>0 is a sequence converging
to zero in D (R;F), then (θ(ϕ j) j∈Z>0 converges to zero in F. However, this follows
since such a sequence (ϕ j) j∈Z>0 converging to zero inD (R;F) also converges to zero in
S (R;F) by Example 3.3.7–1.

Now suppose that θ1 = θ2 as tempered distributions. Thus θ1(ϕ) = θ2(ϕ) for
all ϕ ∈ S (R;F). In particular, θ1(ϕ) = θ2(ϕ) for all ϕ ∈ D (R;C) and so θ1 = θ2 as
distributions.

For the converse assertion, we refer ahead to Theorem 3.11.3(i) where it is shown
that if ϕ ∈ S (R;F) then there exists a sequence (ϕ j) j∈Z>0 in D (R;F) ⊆ S (R;F)
which converges to ϕ in S (R;F). Now suppose that θ1 = θ2 as distributions. Thus
θ1(ϕ) = θ2(ϕ) for all ϕ ∈ D (R;F). Now let ψ ∈ S (R;F) and let (ϕ j) j∈Z>0 be a sequence
inD (R;F) converging in S (R;F) to ψ. Then, continuity of θ1 and θ2 gives

θ1(ψ) = lim
j→∞

θ1(ϕ j) = lim
j→∞

θ2(ϕ j) = θ2(ψ),

giving θ1 = θ2 as tempered distributions. ■

The following result characterises a useful way of characterising those distri-
butions that are tempered. Perhaps the most revealing way of interpreting the
theorem is this. A distribution is tempered if it is continuous on D (R;F) if con-
vergence to zero in D (R;F) is defined using the notion of convergence to zero in
S (R;F).

3.3.13 Theorem (Alternative characterisation of tempered distributions) If θ ∈
S ′(R;F) then (θ(ϕj))j∈Z>0 converges to zero for every sequence (ϕj)j∈Z>0 in D (R;F)
converging to zero in S (R;F). Conversely, if θ ∈ D ′(R;F) and if (θ(ϕj))j∈Z>0 converges
to zero for every sequence (ϕj)j∈Z>0 in D (R;F) that converges to zero in S (R;F), then
θ ∈ S ′(R;F).

Proof Suppose that θ ∈ S ′(R;F). Let (ϕ j) j∈Z>0 be a sequence in D (R;F) ⊆ E (R;F)
converging to zero in S (R;F). Continuity of θ ensures that (θ(ϕ j)) j∈Z>0 converges to
zero.

Let θ ∈ D ′(R;F) have the property that (θ(ϕ j)) j∈Z>0 converges to zero for every
sequence (ϕ j) j∈Z>0 inD (R;F) converging to zero in S (R;F). Also let ϕ ∈ S (R;F). To
define θ(ϕ) we let (ϕ j) j∈Z>0 be a sequence inD (R;F) converging to ϕ. This means that
(ϕ − ϕ j) j∈Z>0 converges to zero in S (R;F). That this is possible is a consequence of
Theorem 3.11.3(i) below. Let j, k ∈ Z>0 and note that

|θ(ϕ j − ϕk)| ≤ |θ(ϕ − ϕ j)| + |θ(ϕ − ϕk)|.

By choosing j and k sufficiently large we can ensure that |θ(ϕ j − ϕk)| is as small as
desired, and this means that (θ(ϕ − ϕ j)) j∈Z>0 is a Cauchy sequence, and so converges
in F. This means that we can define θ(ϕ) = lim j→∞ θ(ϕ j). To show that this definition
does not depend on the choice of sequence inD (R;F) converging to ϕ, let (ψ j) j∈Z>0 be
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another sequence inD (R;F) again converging to ϕ in S (R;F). Then∣∣∣∣∣∣ limj→∞
θ(ϕ j) − lim

k→∞
θ(ψk)

∣∣∣∣∣∣ = lim
j,k→∞

|θ(ϕ j − ψk)|

≤ lim
j,k→∞

|θ(ϕ − ϕ j)| + lim
j,k→∞

|θ(ϕ − ψk)|.

Both of these last limits are zero and so the two limits are the same, and the notation
θ(ϕ) makes sense for ϕ ∈ S (R;F).

We must still show that θ is linear and continuous. Linearity is simple. To
show continuity let (ϕ j) j∈Z>0 be a sequence in S (R;F) converging to zero. Define
ψ ∈ D (R;F) by

ψ(t) =

e exp
(
−

1
1−t2

)
, |t| < 1,

0, otherwise.

(The reader should figure out what the graph of this function looks like, since we
will use properties of this graph in our arguments below.) Then define a sequence
(ψk) j∈Z>0 in D (R;F) by ψk(t) = ψ( t

k ). We make the following observations concerning
this sequence.

1 Lemma The following statements hold:
(i) for each every compact set K ⊆ R, the sequence (ψk|K)k∈Z>0 converges uniformly to the

function K ∋ t 7→ 1;

(ii) for each r ∈ Z>0, the sequence (ψ(r)
k )k∈Z>0 converges uniformly zero.

Proof For the first assertion, let K ⊆ R be compact and let T ∈ R>0 be such that
K ⊆ [−T,T]. For ϵ ∈ R>0 let N ∈ Z>0 be sufficient large that 1 − ψ( T

N ) < ϵ, this being
possible since limt→0 ψ(t) = 1, the limit being an increasing one as t gets closer to zero.
It then follows that for t ∈ K ⊆ [−T,T] and for k ≥ N we have

|1 − ψk(t)| = |1 − ψ( t
k )| ≤ |1 − ψ( t

N )| < ϵ,

giving uniform convergence of (ψk|K)k∈Z>0 to the function having the value 1 on K.
Now, for r ∈ Z>0, let

Mr = sup{|ψ(r)(t)| | t ∈ R}.

For ϵ ∈ R>0 let N ∈ Z>0 be sufficiently large that N−rMr < ϵ. By the Chain Rule,

|ψ(r)
k (t)| = |k−rψ(r)(t)| < ϵ

for t ∈ R and k ≥ N. This gives the desired uniform convergence of (ψ(r)
k )k∈Z>0 to zero. ▼

Next let us use this sequence to construct a sequence in D (R;F) converging to
ϕ ∈ S (R;F).
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2 Lemma If ϕ ∈ S (R;F) then the sequence (ϕψj)j∈Z>0 converges to ϕ in S (R;F).

Proof Let k, r ∈ Z≥0 and let ϵ ∈ R>0. Since lim|t|→∞ tkϕ(r)(t) = 0, there exists T ∈ R>0
such that |tkϕ(r)(t)| < ϵ

2 for all t such that |t| ≥ T.
By the Leibniz Rule, Proposition I-3.2.11, we have

(ϕψ j)(r)(t) =
r∑

m=0

(
r
m

)
ϕ(r−m)(t)ψ(m)

j (t).

Thus

ϕ(r)(t) − (ϕψ j)(r)(t) = ϕ(r)(t)(1 − ψ j(t)) +
r∑

m=1

(
r
m

)
ϕ(r−m)(t)ψ(m)

j (t).

Let

Br = max
{(

r
m

) ∣∣∣∣∣∣ m ∈ {0, 1, . . . , r}
}
.

For m ∈ {0, 1, . . . , r} let
Mm,k = sup{|tkϕ(m)(t)| | t ∈ R}

and, using Lemma 1, let N1 ∈ Z>0 be sufficiently large that

|1 − ψ j(t)|M0,k <
ϵ
2

for t ∈ [−T,T] and j ≥ N1. Again using Lemma 1, let N2 ∈ Z>0 be sufficiently large that

r|ψ(l)
j (t)|Br max{M1,k, . . . ,Mr,k} <

ϵ
2
, l ∈ {1, . . . , r},

for t ∈ R and j ≥ N2. Let N = max{N1,N2}. Now, we consider two cases.
1. |t| ≤ T: For j ≥ N we have

|tkϕ(r)(t)(1 − ψ j(t))| ≤M0,k|1 − ψ j(t)| <
ϵ
2
.

2. |t| > T: Since 1−ψ j(t) ∈ [0, 1] for every t ∈ R, our definition of T immediately gives

|tkϕ(r)(t)(1 − ψ j(t))| <
ϵ
2
.

Thus, for every t ∈ R we have

|tkϕ(r)(t)(1 − ψ j(t))| <
ϵ
2
.

For j ≥ N and m ∈ {1, . . . , r}we have

|tkϕ(r−m)(t)ψ(m)
j (t)| ≤Mr−m,k|ψ

(m)
j (t)| ≤ max{M1,k, . . . ,Mr,k}|ψ

(m)
j (t)| <

ϵ
2rBr

for every t ∈ R. Thus, for t ∈ R and j ≥ N we then have

|tk(ϕ(r)(t) − (ϕψ j)(r)(t))| =

∣∣∣∣∣∣∣tk

ϕ(r)(t)(1 − ψ j(t)) +
r∑

m=1

(
r
m

)
ϕ(r−m)(t)ψ(m)

j (t)


∣∣∣∣∣∣∣ < ϵ.

Since k and r are arbitrary, the sequence (ϕ−ϕψ j) j∈Z>0 converges to zero in S (R;F) as
desired. ▼
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Continuing with the proof, for each j ∈ Z>0 note that the sequence (χ j,k ≜ ψkϕ j) j∈Z>0

inD (R;F) converges to ϕ j in S (R;F) by Lemma 2. Therefore, for each j ∈ Z>0, there
exists N j ∈ Z>0 sufficiently large that

|θ(ϕ j − ψkϕ j)| ≤ ϵ, k ≥ N j,

by our assumptions onθ. We claim that the sequence (ψN jϕ j) j∈Z>0 inD (R;F) converges
to zero in S (R;F). Indeed we have

lim
j→∞

sup
{
|tm(ψN jϕ j)(r)(t)|

∣∣∣ t ∈ R
}
= 0

by virtue of the Lemma 1, the fact that (ϕ j) j∈Z>0 converges to zero in S (R;F), and the
formula

(ψN jϕ j)(r) =

r∑
ℓ=0

(
r
ℓ

)
ψ(ℓ)

N j
ϕ(r−ℓ)

j .

This then gives
|θ(ϕ j)| ≤ |θ(ϕ j − ψN jϕ j)| + |θ(ψN jϕ j)|.

The two terms on the right go to zero as j → ∞ by our hypotheses on θ, and so
continuity of θ on S (R;F) follows. ■

3.3.3 Properties of tempered distributions

In this section we record some of the basic facts about tempered distributions.
Many of these follow, directly or with little effort, from their counterparts for
distributions.

Since S ′(R;F) ⊆ D ′(R;F) there is inherited from D ′(R;F) the notion of con-
vergence of a sequence (θ j) j∈Z>0 in S ′(R;F).

3.3.14 Definition (Convergence in S ′(R;F)) A sequence (θ j) j∈Z>0 in S ′(R;F) is
(i) a Cauchy sequence if (θ j(ϕ)) j∈Z>0 is a Cauchy sequence for every ϕ ∈ S (R;F),

and
(ii) converges to a tempered distribution θ if, for everyϕ ∈ S (R;F), the sequence

of numbers (θ j(ϕ)) j∈Z>0 converges to θ(ϕ). •

What is not so clear is whether such a sequence converging in D ′(R;F) will
converge to an element of S ′(R;F). This is indeed the case.

3.3.15 Theorem (Cauchy sequences in S ′(R;F) converge) If (θj)j∈Z>0 is a sequence in
S ′(R;F) ⊆ D ′(R;F) that is Cauchy, then it converges to some θ ∈ S ′(R;F).

Proof The proof goes very much like that of Theorem 3.2.22. All one needs to do is
choose the initial subsequence (ψn)n∈Z>0 so as to have the additional property that

sup{|tkψ
( j)
n | | t ∈ R} <

1
4n , j, k ∈ {0, 1, . . . ,n}.

After replacing all occurrences ofD (R;F) withS (R;F) and ofD ′(R;F) withS ′(R;F),
the same proof then gives the result in this case. ■
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Let us give the analogue for tempered distributions of the fact that locally
integrable signals are distributions. Note that Example 3.3.5–3 shows that there
are locally integrable signals that are not to be regarded as tempered distributions.

3.3.16 Definition (Signal of slow growth) A measurable signal f : R→ F is said to be of
slow growth if there exists M ∈ R>0 and N ∈ Z>0 such that

| f (t)| ≤M(1 + t2)N. •

Since a signal of slow growth is bounded by a locally integrable function, such
signals are themselves locally integrable. The following result gives the relationship
between these signals and tempered distributions.

3.3.17 Proposition (Signals of slow growth are tempered distributions) If f : R → F
is a signal of slow growth then θf ∈ S ′(R;F). Moreover, if f1, f2 : R → F are signals of
slow growth for which θf1 = θf2 , then f1(t) = f2(t) for almost every t ∈ R.

Proof First let us show that the integral∫
R

f (t)ϕ(t) dt

exists for all ϕ ∈ S (R;F). We have∫
R
| f (t)ϕ(t)|dt ≤

∫
R

M(1 + t2)N
|ϕ(t)|dt.

By Proposition 3.3.2 the integral converges, showing that the map θ f is well-defined.
Now let us show that it defines a tempered distribution. Let (ϕ j) j∈Z>0 be a sequence
converging to zero in S (R;F). Then we compute

|θ f (ϕ j)| =
∣∣∣∣∣∫
R

f (t)ϕ j(t) dt
∣∣∣∣∣ ≤ ∫

R
M(1 + t2)N

|ϕ j(t)|dt

=

∫
−1

−∞

M(1 + t2)N
|ϕ j(t)|dt +

∫ 1

−1
M(1 + t2)N

|ϕ j(t)|dt

+

∫
∞

1
M(1 + t2)N

|ϕ j(t)|dt

≤ 2 sup
{
|M(1 + t2)Nt2ϕ j(t)|

∫ 2

−∞

1
τ2 dτ

∣∣∣∣∣∣ t ∈ R
}

+ sup
{
|M(1 + t2)Nϕ j(t)|

∫ 1

−1
M(1 + t2)N

|ϕ j(τ)|dτ

∣∣∣∣∣∣ t ∈ R
}
,

the suprema existing since the sequence (ϕ j) j∈Z>0 converges in S (R;F). Taking the
limit as j → ∞ gives the desired conclusion, again since the sequence (ϕ j) j∈Z>0 con-
verges to zero in S (R;F).

The last assertion follows the similar assertion in Proposition 3.2.12, along with
Proposition 3.3.12. ■

Signals of slow growth also show up to give a natural class of signals which can
be multiply tempered distributions.
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3.3.18 Proposition (Tempered distributions can be multiplied by signals all of
whose derivatives are of slow growth) Let θ ∈ S ′(R;F) and let ϕ0 : R → F
be an infinitely differentiable signal of slow growth, all of whose derivatives are also signals
of slow growth. Then the map

S (R;F) ∋ ϕ 7→ θ(ϕ0ϕ) ∈ F

defines an element of S ′(R;F).
Proof Linearity of the map is clear. To prove continuity, let (ϕ j) j∈Z>0 be a sequence in
S (R;F) converging to zero. We claim that (ϕ0ϕ j) j∈Z>0 is also a sequence converging
to zero in S (R;F).

First we show thatϕ0ϕ j ∈ S (R;F) for each j ∈ Z>0. It is clear thatϕ0ϕ j is infinitely
differentiable. For each r ∈ Z≥0 let Mr ∈ R>0 and Nr ∈ Z>0 be such that

ϕ(r)
0 (t) ≤Mr(1 + t2)Nr , t ∈ R.

Then, for k ∈ Z>0,
lim
|t|→∞
|tk(ϕ0(t)ϕ j)(r)(t)| = 0

using Proposition I-3.2.11 along with the fact that ϕ j and all of its derivatives have
slow growth.

Now we show that (ϕ0ϕ j) j∈Z>0 converges to zero. Let k, r ∈ Z≥0.

lim
j→∞

sup
{
|tk(ϕ0ϕ j)(r)(t)|

∣∣∣ t ∈ R
}

again using Proposition I-3.2.11 along with the fact that ϕ j and all of its derivatives
have slow growth.

Thus the result follows since

lim
j→∞

θ(ϕ0ϕ) = 0

for every sequence (ϕ j) j∈Z>0 converging to zero in S (R;F). ■

The notions of regular, singular, support, and singular support are applied to
S ′(R;F) by restriction fromD ′(R;F).

One can differentiate tempered distributions as they are distributions. It turns
out that the derivative is again a tempered distribution.

3.3.19 Proposition (The derivative of a tempered distribution is a tempered distribu-
tion) If θ ∈ S ′(R;F) then θ′ ∈ S ′(R;F).

Proof This is easy to show. We let (ϕ j) j∈Z>0 be a sequence in S (R;F) converging to
zero. Then (−ϕ′j) j∈Z>0 is also a sequence converging to zero inS (R;F), as is easily seen
from the definition of convergence to zero. Therefore,

lim
j→∞

θ′(ϕ j) = lim
j→∞

θ(−ϕ′j) = 0

as desired. ■

One can talk about tempered distributions of finite order, and tempered distri-
butions are always locally of finite order by virtue of their being distributions. We
shall see in Theorem 3.3.23 that even more is true for tempered distributions.
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3.3.4 Tempered distributions depending on parameters

In this section we adapt our results from Section 3.2.8 to test signals from
S (R;F) and distributions from S ′(R;F).

As in Section 3.2.8, we let I ⊆ R be an interval and consider a functionϕ : I×R→
F and denote a typical point in I ×R by (λ, t). For (λ, t) ∈ I ×Rwe define functions
ϕλ : R→ F andϕt : I→ F byϕλ(t) = ϕt(λ) = ϕ(λ, t). If, for eachλ ∈ I,ϕλ ∈ S (R;F),
then, given θ ∈ S ′(R;F), we define Φθ,ϕ : I→ F by

Φθ,ϕ(λ) = θ(ϕλ).

As in Section 3.2.8, we denote

(Ds
1Dr

2ϕ)λ(t) = (Ds
1Dr

2ϕ)t(λ) = Ds
1Dr

2ϕ(λ, t)

for r, s ∈ Z≥0.
The following result indicates the character of the function Φθ,ϕ in this case.

3.3.20 Theorem (Distributions applied to Schwartz signals with parameter depen-
dence) Let I ⊆ R be an interval, let k ∈ Z≥0, and let ϕ : I × R → F have the following
properties:

(i) for each λ ∈ I, the map t 7→ ϕ(λ, t) is an element of S (R;F);
(ii) for each r,m ∈ Z≥0 there exists Ck,r,m ∈ R>0 such that

sup
{
|tmDk+1

1 Dr
2ϕ(λ, t)|

∣∣∣ t ∈ R, λ ∈ I
}
< Ck,r,m;

(iii) for each r ∈ Z≥0, Dk+1
1 Dr

2ϕ : I ×R→ F is continuous.
Then, for any θ ∈ D ′(R;F), Φθ,ϕ is k-times continuously differentiable and, moreover,

Φ(k)
θ,ϕ(λ) = θ((Dk

1ϕ)λ).

Proof The proof follows closely that of Theorem 3.2.40, but we shall go through the
details so as to understand clearly where the differences arise.

We first give the proof for k = 0. Let λ ∈ I and let (ϵ j) j∈Z>0 be a sequence in R
converging to zero and such that λ + ϵ j ∈ I for every j ∈ Z>0. Define ψλj ∈ S (R;F) by

ψλj (t) = ϕ(λ + ϵ j, t).

The following lemma is then useful.

1 Lemma The sequence (ψλj )j∈Z>0 converges to ϕλ in S (R;F).

Proof Let r,m ∈ Z≥0. Let I′ ⊆ I be the smallest compact interval for which λ + ϵ j ∈ I′

for every j ∈ Z>0. Since
(λ, t) 7→ tmDr

2ϕ(λ, t) (3.9)
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is continuous with bounded derivative and since I × R is convex, by Proposi-
tion II-1.4.36 it follows that the function (3.9) is uniformly continuous. This implies
that, given ϵ ∈ R>0, there exists N ∈ Z>0 such that

|tmDrψλj (t) − tmDrϕλ(t)| = |tmDr
2ϕ(λ + ϵ j, t) − tmDr

2ϕ(λ, t)| < ϵ, j ≥ N, t ∈ R.

Since r,m ∈ Z≥0 is arbitrary, this implies that we have the desired convergence of
(ψλj ) j∈Z>0 to ϕλ. ▼

It then follows immediately from continuity of θ that

lim
j→∞
Φθ,ϕ(λ + ϵ j) = lim

j→∞
θ(ϕλ+ϵ j) = θ( lim

j→∞
ϕλ+ϵ j) = θ( lim

j→∞
ψλj ) = θ(ϕλ) = Φθ,ϕ(λ).

Continuity of Φθ,ϕ at λ then follows from Theorem I-3.1.3.
Now we prove the theorem when k = 1. We let (ϵ j) be a sequence, none of whose

terms are zero, converging to zero as above. Now we take

ψλj (t) =
ϕ(λ + ϵ j, t) − ϕ(λ, t)

ϵ j
.

The following lemma is then key.

2 Lemma The sequence (ψλj )j∈Z>0 converges to (D1ϕ)λ in S (R;F).

Proof Let r,m ∈ Z≥0. Define ψr,m : I ×R→ F by

ψr,m(ℓ, t) =

 tmDr
2ϕ(ℓ,t)−tmDr

2ϕ(λ,t)
ℓ−λ , ℓ , λ,

tmD1Dr
2ϕ(λ, t), ℓ = λ.

It is clear from the hypotheses that ψr,m is continuous on

{(ℓ, t) ∈ I ×R | ℓ , λ}.

Moreover, since the derivative D1Dr
2ϕ exists and is continuous,

lim
ℓ→λ

tmDr
2ϕ(ℓ, t) − tmDr

2ϕ(λ, t)
ℓ − λ

= tmD1Dr
2ϕ(λ, t), t ∈ R,

showing thatψr,m is continuous on I×R by Theorem I-3.1.3. Sinceψr,m is differentiable
with bounded derivative and since I × R is convex, it is uniformly continuous by
Proposition II-1.4.36. Therefore, given ϵ ∈ R>0, there exists N ∈ Z>0 such that

|ψr,m(λ + ϵ j, t) − ψr,m(λ, t)| < ϵ, j ≥ N, t ∈ R.

Using the definition of ψr,m, this implies that, for every j ≥ N and for every t ∈ R,∣∣∣∣∣∣ tmDr
2ϕ(λ + ϵ j, t) − tmDr

2ϕ(λ, t)
ϵ j

− tmD1Dr
2ϕ(λ, t)

∣∣∣∣∣∣ = |tmDrψλj (t) − tmDr(D1ϕ
λ)(t)| < ϵ.

Since r,m ∈ Z≥0 are arbitrary, this gives convergence of (ψλj ) j∈Z>0 to (D1ϕ)λ. ▼
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By continuity of θ we then have

lim
j→∞

Φθ,ϕ(λ + ϵ j) −Φθ,ϕ(λ)

ϵ j
= lim

j→∞

θ(ϕλ+ϵ j) − θ(ϕλ)
ϵ j

= θ(lim
j→ϵ

ψλj ) = θ((D1ϕ)λ),

showing thatΦθ,ϕ is differentiable with derivative as stated in the theorem for the case
of k = 1.

Now suppose that the theorem is true for j ∈ {0, 1, . . . ,m} and suppose that the
hypotheses of the theorem hold for k = m+1. We letψ = Dm

1 ϕ and verify thatψ satisfies
the hypotheses of the theorem for k = 1. First note that, for each λ ∈ I, t 7→ ψ(λ, t) is the
mth derivative of an element S (R;F) and so is an element of S (R;F). The second of
the hypotheses of the theorem hold immediately. Finally, since

D2Dr
2ψ = D2Dr

2Dm
1 ϕ = Dm+2

1 Dr
2ϕ

by Theorem II-1.4.33, the final hypothesis of the theorem also holds. Therefore, by the
induction hypothesis, Φθ,ψ is continuously differentiable. But, since

Φθ,ψ(λ) = θ((Dm
1 ϕ)λ) = Φ(m)

θ,ϕ
(λ),

this implies that Φθ,ϕ is m + 1-times continuously differentiable, and

Φ
(m+1)
θ,ϕ

(λ) = θ((Dm+1
1 ϕ)λ)

as desired. ■

The following corollary is what will be of primary importance for us.

3.3.21 Corollary (Property of tempered distributions applied to Schwartz functions
of two variables) Let ϕ : R2

→ F be infinitely differentiable and such that, for each
r1, r2,m ∈ Z≥0, there exists Cr1,r2,m ∈ R>0 such that

sup{(s2 + t2)m/2Dr1
1 Dr2

2 ϕ(t, s) | s, t ∈ R} ≤ Cr1,r2,m. (3.10)

Then we have Φθ,ϕ ∈ S (R;F). Moreover, for each k ∈ Z>0,

Φ(k)
θ,ϕ(s) = θ((Dk

1ϕ)s).

Proof In this case, the hypotheses of Theorem 3.3.20 are easily verified to hold for
every k ∈ Z>0, and so Φθ,ϕ is infinitely differentiable. Now let s ∈ R and r,m ∈ Z≥0
and define ψs

r,m ∈ S (R;F) by

ψs
r,m(t) = smDr

1ϕ(s, t).

Note that
smΦ

(r)
θ,ϕ

(s) = ψs
r,m(t).
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Let k ∈ Z≥0. Since ϕ satisfies (3.10), let Cr,m,k be such that

sup{|(1 + t2)k(ψs
r,m)(k)(t)| | s, t ∈ R} ≤ Cr,m,k.

By Lemma 3.3.22 below, there exists M ∈ R>0 and k ∈ Z≥0 such that

|θ(ψ)| ≤M sup
{
|(1 + t2)kψ(k)(t)|

∣∣∣ t ∈ R
}

for every ψ ∈ S (R;F). Therefore, with M and k so chosen,

|smΦ
(r)
θ,ϕ

(s)| = |smθ((Dr
1ϕ)s)| = |θ(sm(Dr

1ϕ)s)| = |θ(ψs
r,m)| ≤MCr,m,k,

which shows that Φθ,ϕ ∈ S (R;F), as desired. ■

3.3.5 Some deeper properties of tempered distributions

Tempered distributions, being distributions, have the properties of Theo-
rems 3.2.43 and 3.2.45. For tempered distributions one can say more. Indeed,
we show that tempered distributions are always of finite order, not just locally
of finite order. In order to prove this result, we have the following characterisa-
tion of tempered distributions, this providing an analogue of Lemma 3.2.44 for
S ′(R;F).

3.3.22 Lemma (A boundedness property for tempered distributions) Let θ ∈

S ′(R;F). There then exists M ∈ R>0 and k ∈ Z≥0 such that for each ϕ ∈ S (R;F)
we have

|θ(ϕ)| ≤M sup
{
|(1 + t2)kϕ(k)(t)|

∣∣∣ t ∈ R
}
.

Proof To prove the result we indicate how one can reduce to the ideas used in the
proof of Lemma 3.2.44. The principle idea of the proof of Lemma 3.2.44 is that a
sequence (ϕ j) j∈Z>0 converges to zero in D (R;F) if and only if for each m ∈ Z≥0 the
sequence ((b − a)mϕ(m)

j ) j∈Z>0 converges to zero where T = [a, b]. We shall produce an
equivalent characterisation for convergence to zero in S (R;F). To do this we define

∥ϕ∥m∞ =
(
π
2

)m
sup

{
|(1 + t2)mϕ(m)(t)|

∣∣∣ t ∈ R
}
,

for ϕ ∈ S (R;F). This allows us to state the following result.

1 Sublemma A sequence (ϕj)j∈Z>0 converges to zero in S (R;F) if and only if the sequence
(∥ϕj∥

m
∞)j∈Z>0 converges to zero for each m ∈ Z≥0.

Proof Define
∥ϕ∥m,k∞ = sup

{
|(1 + t2)mϕ(k)(t)|

∣∣∣ t ∈ R
}
.

It is evident that
∥ϕ∥m,k∞ ≤ ∥ϕ∥

ℓ,k
∞ , ℓ ≥ m. (3.11)
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For t ∈ R≥0 we have

|(1 + t2)mϕ(k)(t)| =
∣∣∣∣∣(1 + t2)m

∫
∞

t
ϕ(k+1)(τ) dτ

∣∣∣∣∣
≤ (1 + t2)m

∫
∞

t

|(1 + τ2)m+1ϕ(k+1)(τ)|
(1 + τ2)m+1

dτ

≤ ∥ϕ∥m+1,k+1
∞

∫
∞

t

dτ
1 + τ2

≤
π
2
∥ϕ∥m+1,k+1

∞ ,

using the fact that
∫
∞

0
dt

1+t2 =
π
2 . In like manner we show that for t ≤ 0 we have.

|(1 + t2)mϕ(k)(t)| =

∣∣∣∣∣∣(1 + t2)m
∫ t

−∞

ϕ(k+1)(τ) dτ

∣∣∣∣∣∣ ≤ π2 ∥ϕ∥m+1,k+1
∞ .

This shows then that
∥ϕ∥m,k∞ ≤

π
2
∥ϕ∥m+1,k+1

∞ . (3.12)

Next we compute

ϕ(k)(t) =
∫ t

−∞

ϕ(k+1)(τ) dτ

= (τ − t)ϕ(k+1)(τ)
∣∣∣t
−∞
−

∫ t

−∞

(τ − t)ϕ(k+2)(τ) dτ

= − 1
2 (τ − t)2ϕ(k+2)(τ)

∣∣∣t
−∞
+

1
2

∫ t

−∞

(τ − t)2ϕ(k+3)(τ) dτ

=
1
2

∫ t

−∞

(τ − t)2ϕ(k+3)(τ) dτ,

where we have twice integrated by parts. Therefore, for t ≤ 0 we have

|(1 + t2)mϕ(k)(t)| =

∣∣∣∣∣∣1
2 (1 + t2)m

∫ t

−∞

(τ − t)2ϕ(k+3)(τ) dτ

∣∣∣∣∣∣
≤

1
2 (1 + t2)m

∫ t

−∞

(τ − t)2 |(1 + τ
2)m+2ϕ(k+3)(τ)|

(1 + τ)m+2 dτ

≤
∥ϕ∥m+2,k+3

∞

2

∫ t

−∞

τ2

(1 + τ2)2 dτ ≤ ∥ϕ∥m+2,k+3
∞ ,

using the fact that
∫ 0
−∞

t2

1+t2 dt = π
4 . A similar computation can be made for t ∈ R≥0 to

conclude that
∥ϕ∥m,k∞ ≤ ∥ϕ∥

m+2,k+3
∞ . (3.13)

Now we combine (3.11) and (3.12) to compute

∥ϕ∥m,k∞ ≤ ∥ϕ∥
k,k
∞ ≤

(
π
2

)n
∥ϕ∥n,n∞ ,
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provided that m ≤ k and that n ≥ m, k. From (3.13) we have

∥ϕ∥m,k∞ ≤ ∥ϕ∥
m+2(m−k),k+3(m−k)
∞ = ∥ϕ∥3m−2k,3m−2k

∞ ,

provided that m > k. Choosing n = max{k, 3m − 2k}we can then ensure that

∥ϕ∥m,k∞ ≤
(
π
2

)n
∥ϕ∥n∞.

Since convergence of (ϕ j) j∈Z>0 in S (R;F) means exactly that for any m, k ∈ Z>0 the
sequence (∥ϕ∥m,k∞ ) j∈Z>0 converges to zero, the lemma now follows. ▼

We now state a simple lemma.

1 Lemma (π2 )m
∥ϕ∥m∞ ≤ (π2 )m+1

∥ϕ∥m+1
∞ , m ∈ Z≥0.

Proof By (3.12) we have ∥ϕ∥m∞ ≤
π
2 ∥ϕ∥

m+1
∞ , and the result follows by multiplication by

(π2 )m. ▼

The remainder of the theorem follows as the proof of Theorem 3.2.22, taking it
up at the second paragraph. One needs only replace (b − a)m

∥ϕ(m)
∥∞ with (π2 )m

∥ϕ∥m∞,
noting the inequalities of the second lemma above. ■

Using this nice property of tempered distributions, we can prove the following
important and useful result. We note that in contrast to Theorem 3.2.45 forD ′(R;F)
which holds only locally, the following characterisation of S ′(R;F) is global.

3.3.23 Theorem (Tempered distributions are finite-order derivatives of signals of
slow growth) If θ ∈ S ′(R;F) then there exists r ∈ Z≥0 and a signal fθ ∈ L(1)

loc(R;F) of
slow growth such that θ(ϕ) = θ(r)

fθ
(ϕ) for every ϕ ∈ S (R;F). Furthermore, we may take

r = k + 1 where k ∈ Z≥0 is as given by Lemma 3.3.22.
Proof The result follows from Lemma 3.3.22 in much the same way that Theo-
rem 3.2.45 follows from Lemma 3.2.44. We choose M ∈ R>0 and k ∈ Z>0 such
that

|θ(ϕ)| ≤M sup
{
|(1 + t2)kϕ(k)(t)|

∣∣∣ t ∈ R
}

for every ϕ ∈ S (R;F). For ϕ ∈ S (R;F) and j ∈ Z>0 define

ψ
j
ϕ

(t) = (1 + t2) jϕ( j)(t),

noting that ψ j
ϕ
∈ S (R;F) for all ϕ ∈ S (R;F). Then define

S (R;F)(k+1) =
{
ψk+1
ϕ

∣∣∣∣ ϕ ∈ S (R;F)
}
,

and consider on S (R;F)(k+1) the norm ∥·∥1. Define a linear map αθ : S (R;F)(k+1)
→ F

by αθ(ψk+1
ϕ ) = θ(ϕ). We claim that αθ is continuous with respect to the norm ∥·∥1. Let
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(ψk+1
ϕ j

) j∈Z>0 be a sequence converging to zero in S (R;F)(k+1) relative to ∥·∥1. For t ∈ R
we have

|(1 + t2)kϕ(k)
j (t)| =

∣∣∣∣∣(1 + t2)k
∫
∞

t
ϕ(k+1)

j (τ) dτ
∣∣∣∣∣

≤ (1 + t2)k
∫
∞

t

|(1 + τ2)k+1ϕ(k+1)(t)|
(1 + τ2)k+1

dτ

≤

∫
∞

t

|(1 + τ2)k+1ϕ(k+1)(τ)|
1 + τ2 dτ

≤

∫
∞

t
|(1 + τ2)k+1ϕ(k+1)(τ)|dτ

≤

∫
R
|(1 + τ2)k+1ϕ(k+1)(τ)|dτ.

Therefore, if for ϵ ∈ R>0 we choose N ∈ Z>0 such that∫
R

∣∣∣∣(1 + t2)k+1ϕ(k+1)
j (t)

∣∣∣∣ dt <
ϵ
M
, j ≥ N,

this being possible since (ψk+1
ϕ j

) j∈Z>0 converges to zero relative to ∥·∥1. Then

|αθ(ψk+1
ϕ j

)| = |θ(ϕ j)| ≤M sup
{
|(1 + t2)kϕ(k)

j |

∣∣∣∣ t ∈ R
}

≤

∫
R

∣∣∣∣(1 + t2)k+1ϕ(k+1)
j (t)

∣∣∣∣ dt < ϵ, j ≥ N.

This shows that αθ is indeed continuous as claimed.
Note that S (R;F)(k+1)

⊆ L(1)(R;F). Then, by the Hahn–Banach theorem, The-
orem III-3.9.2, there exists a continuous linear map ᾱθ : L1(R;F) → F such that
ᾱθ|S (R;F)(k+1) = αθ. By Theorem III-3.10.1 there exists gθ ∈ L(∞)(R;F) such that
for each ϕ ∈ S (R;F) we have

ᾱθ(ψk+1
ϕ ) =

∫
R

gθ(t)(1 + t2)k+1ϕ(k+1)(t) dt =
∫
R

fθ(t)ϕ(k+1)(t) dt,

where fθ(t) = (1 + t2)k+1gθ(t). Note that since gθ is bounded, fθ is a signal of slow
growth (we may as well suppose that gθ(t) ≤ ∥gθ∥∞ for all t ∈ R). Therefore,

θ(ϕ) = ᾱθ(ψk+1
ϕ ) = θ fθ(ϕ(k+1)) = (−1)k+1θ(k+1)

fθ
(ϕ),

as claimed. ■

Exercises

3.3.1 Show that if ϕ1, ϕ2 ∈ S (R;F) then ϕ1ϕ2 ∈ S (R;F). Thus S (R;F) is an
algebra.
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3.3.2 Which of the following signals is in S (R;F)? For signals not in S (R;F),
explain why they are not.
(a) f (t) = arctan(t).

finish

(b)
3.3.3 Find a locally integrable signal f that is not of slow growth and for which

θ f ∈ S ′(R;F).
3.3.4 Which of the following sequences (ϕ j) j∈Z>0 of signals inS (R;F) converges to

zero in D (R;F)? For sequences not converging to zero in S (R;F), explain
why they do not.
(a) ϕ j(t) = finish
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Section 3.4

Integrable distributions

In this section we define a class of distributions that lies between the class
E ′(R;F) of distributions with compact support and the class S ′(R;F) of tem-
pered distributions. The class of distributions we describe here will be useful in
Section 4.4.1 in our definition of convolution for distributions.

Do I need to read this section? The integrable distributions we consider in this
section are not widely used. However, they will be used in our construction of
convolution for distributions, and are indeed often used for constructions related
to this. Therefore, this section is of secondary importance, and can be read at such
time as one needs to really understand the details of the definition of convolution
for distributions. •

3.4.1 Bounded test signals

We jump right to the definition since the pattern is by now well established, we
hope. Our constructions rely on an understanding of the notions of integrability
introduced in Section III-3.8.7.

3.4.1 Definition (Bounded test signals) A bounded test signal is a signal ϕ : R → F
such that

(i) ϕ is infinitely differentiable and
(ii) lim|t|→∞ ϕ(k)(t) = 0 for each k ∈ Z≥0.

The set of bounded test signals is denoted byB0(R;F). •

3.4.2 Remark (B0(R;F) is a vector space) It is easy to verify thatB0(R;F) is a subspace
of FR. •

Let us consider some examples relating the test signals B0(R;F) to our other
classes of test signals.

3.4.3 Examples (Bounded test signals)
1. It is clear that S (R;F) ⊆B0(R;F).
2. An example of a signal inB0(R;F) that is not in S (R;F) is ϕ(t) = 1

1+t2 , cf. Ex-
ample 3.3.5–2.

3. It is clear thatB0(R;F) ⊆ E (R;F). However, the inclusion is equally as clearly
strict; for example the signal ϕ(t) = t is in E (R;F) but not inB0(R;F).

4. The functionϕ(t) = sin(t2)
t is infinitely differentiable and decays to zero as |t| → ∞.

However, since ϕ′(t) = 2t cos(t2) − sin(t2)
t2 , we see that ϕ′ does not decay to zero

as |t| → ∞. Thus ϕ <B0(R;F). •
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We can also define the notion of convergence inB0(R;F).

3.4.4 Definition (Convergence inB0(R;F)) A sequence (ϕ j) j∈Z>0 inB0(R;F) converges
to zero if, for each k ∈ Z≥0, the sequence (ϕ(k)

j ) j∈Z>0 converges uniformly to zero. A
sequence (ϕ j) j∈Z>0 inB0(R;F) converges toϕ ∈B0(R;F) if the sequence (ϕ j−ϕ) j∈Z>0

converges to zero. •

Let us examine some characteristics of convergence inB0(R;F) via examples.

3.4.5 Examples (Convergence inB0(R;F))
1. Note that a sequence (ϕ j) j∈Z>0 converging to zero in S (R;F) also converges to

zero inB0(R;F). Indeed, in Definition 3.3.3 one need only take k = 0. It then
follows from Example 3.3.7–1 that every sequence (ϕ j) j∈Z>0 converging to zero
inD (R;F) also converges to zero inB0(R;F).

2. There are sequences of test signals in S (R;F) ⊆ B0(R;F) converging to zero
inB0(R;F), but not in S (R;F). Indeed, we saw one such sequence in Exam-
ple 3.3.7–4.

3. The sequence (ϕ j) j∈Z>0 defined by ϕ j(t) = 1
j(1+t2) converges to zero in B0(R;F).

More generally, if ϕ ∈ B0(R;F) then the sequence ( j−1ϕ) j∈Z>0 converges to zero
inB)(R;F).

4. Let ϕ ∈ B0(R;F) and define ϕ j(t) = j−1ϕ( j−1t). Then one can verify that the
sequence (ϕ j) j∈Z>0 converges to zero inB0(R;F).

5. Let us define f : R→ F by

f (t) =

e exp(− 1
1−t2 ), |t| < 1,

0, |t| ≥ 1.

For j ∈ Z>0 define ϕ ∈B0(R;F) by

ϕ j(t) =


j−1, t ∈ [− j, j],
j−1 f ( j2t + j3), t ∈ (− j − 1

j2 ,− j),
j−1 f ( j2t − j3), t ∈ ( j + 1

j2 , j),
0 |t| ≥ j + 1

j2 .

In Figure 3.8 we depict a few terms in this sequence. While this sequence
converges uniformly to zero, one can show that the sequence (ϕ′j) j∈Z>0 does not
converge uniformly to zero. •

Let us define the notion of continuity onB0(R;F).

3.4.6 Definition (Continuous linear maps onB0(R;F)) A linear map L : B0(R;F)→ F
is continuous if the sequence (L(ϕ j)) j∈Z>0 of numbers converges to zero for every
sequence (ϕ j) j∈Z>0 that converges to zero inB0(R;F). •
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Figure 3.8 The 1st, 2nd, and 5th terms in a nonconverging se-
quence inB0(R;F)

3.4.2 Definition of integrable distributions

As expected, we have the following definition for the class of distributions we
are considering.

3.4.7 Definition (Integrable distribution) An integrable distribution is a continuous
linear map from B0(R;F) to F. The set of integrable distributions is denoted by
D ′

L1(R;F). •

There is a potential source of confusion in the notationD ′
L1(R;F). Let us flesh this

out. The confusion might be seen as a consequence of the two possible meanings for
D ′

L1(R;F). These are (1) D ′
L1(R;F) = (DL1(R;F))′ and (2) D ′

L1(R;F) = (D ′(R;F))L1 .
In the first interpretation, D ′

L1(R;F) is the dual of a space DL1(R;F) of test signals.
This is what we want, since, in fact, D ′

L1(R;F) is the dual to the spaceB0(R;F) of
test signals, and these test signals are not “integrable” test signals. Indeed, it is
the second interpretation ofD ′

L1(R;F) one should think of, and the meaning is that
integrable distributions are a subset ofD ′(R;F) that one labels this subset with the
subscript “L1” to indicate that they are “integrable.” This notational confusion will
be sharper in Section 3.5 when we talk about the spacesD ′Lp(R;F), p ∈ (1,∞).

3.4.8 Examples (Integrable distributions)
1. We claim that if f ∈ L(1)(R;F) then the map θ f : B0(R;F)→ F defined by

θ f (ϕ) =
∫
R

f (t)ϕ(t) dt.

First of all, since ϕ is bounded, the integral exists. Indeed, since | f (t)ϕ(t)| ≤
∥ϕ∥∞ f (t), we have ∥ fϕ∥1 ≤ ∥ϕ∥∞∥ f ∥1 < ∞. It is also obvious that θ f is linear. It
remains to show that θ f is continuous. Let (ϕ j) j∈Z>0 be a sequence inB0(R;F)
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converging to zero. This implies, in particular, that the sequence (∥ϕ j∥) j∈Z>0

converges to zero in R. For ϵ ∈ R>0 let N ∈ Z>0 be sufficiently large that
∥ϕ j∥∞ ≤

ϵ
∥ f ∥1

for j ≥ N. Then

|θ f (ϕ j)| ≤
∫
R

| f (t)ϕ j(t)|dt < ∥ϕ j∥∞∥ f ∥1 < ϵ

when j ≥ N. Thus lim j→∞ θ f (ϕ j) = 0 as desired.
2. The map δ0 : B0(R;F) → F defined by δ0(ϕ) = ϕ(0) is readily verified to be an

integrable distribution. •

Let us prove some general results which clarify the relationship between inte-
grable distributions and other classes of distributions.

3.4.9 Proposition (Integrable distributions are tempered distributions) We have
D ′

L1(R;F) ⊆ S ′(R;F). Moreover, integrable distributions θ1, θ2 ∈ D ′L1(R;F) agree
if and only if they agree as tempered distributions.

Proof Firstly, if (ϕ j) j∈Z>0 is a sequence inS (R;F) converging to zero inS (R;F), then it
follows immediately that the sequence also converges to zero inB0(R;F). Therefore,
if θ ∈ D ′

L1(R;F), then (θ(ϕ j)) j∈Z>0 converges to zero for every sequence (ϕ j) j∈Z>0 in
S (R; lF) converging to zero in S (R;F). This shows that integrable distributions are
tempered distributions.

Now let θ1, θ2 ∈ B0(R;F) agree as integrable distributions. Then clearly θ1 and
θ2 agree as tempered distributions since S (R;F) ⊆B0(R;F).

Conversely, suppose that θ1 and θ2 agree as tempered distributions. By Proposi-
tion 3.3.12 it follows that θ1 and θ2 agree as distributions, i.e., that θ1(ϕ) = θ2(ϕ) for
every ϕ ∈ D (R;F). Let ϕ ∈ B0(R;F). Then, by Theorem 3.11.3(iii), let (ϕ j) j∈Z>0 be a
sequence inD (R;F) converging to ϕ inB0(R;F). Then, continuity of θ1 and θ2 gives

θ1(ϕ) = lim
j→∞

θ1(ϕ j) = lim
j→∞

θ2(ϕ j) = θ2(ϕ),

showing that θ1 and θ2 agree as integrable distributions. ■

Next let us characterise membership in D ′
L1(R;F) by using other classes of test

functions. This is entirely analogous to Theorem 3.3.13 for tempered distribu-
tions.

3.4.10 Theorem (Alternative characterisation of integrable distributions) If θ ∈
D ′

L1(R;F) then (θ(ϕj))j∈Z>0 converges to zero for every sequence (ϕj)j∈Z>0 in S (R;F)
converging to zero inB0(R;F). Conversely, if θ ∈ D ′(R;F) and if (θ(ϕj))j∈Z>0 converges
to zero for every sequence (ϕj)j∈Z>0 in D (R;F) that converges to zero in B0(R;F), then
θ ∈ D ′

L1(R;F).
Proof Suppose that θ ∈ D ′

L1(R;F). Let (ϕ j) j∈Z>0 be a sequence in S (R;F) ⊆ E (R;F)
converging to zero inB0(R;F). Continuity of θ ensures that (θ(ϕ j)) j∈Z>0 converges to
zero.
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Let θ ∈ D ′(R;F) have the property that (θ(ϕ j)) j∈Z>0 converges to zero for every
sequence (ϕ j) j∈Z>0 in D (R;F) converging to zero in B0(R;F). Also let ϕ ∈ B0(R;F).
To define θ(ϕ) we let (ϕ j) j∈Z>0 be a sequence in D (R;F) converging to ϕ. This means
that (ϕ − ϕ j) j∈Z>0 converges to zero inB0(R;F). That this is possible is a consequence
of Theorem 3.11.3(iii) below. Let j, k ∈ Z>0 and note that

|θ(ϕ j − ϕk)| ≤ |θ(ϕ − ϕ j)| + |θ(ϕ − ϕk)|.

By choosing j and k sufficiently large we can ensure that |θ(ϕ j − ϕk)| is as small as
desired, and this means that (θ(ϕ − ϕ j)) j∈Z>0 is a Cauchy sequence, and so converges
in F. This means that we can define θ(ϕ) = lim j→∞ θ(ϕ j). To show that this definition
does not depend on the choice of sequence inD (R;F) converging to ϕ, let (ψ j) j∈Z>0 be
another sequence inD (R;F) again converging to ϕ inB0(R;F). Then∣∣∣∣∣∣ limj→∞

θ(ϕ j) − lim
k→∞

θ(ψk)

∣∣∣∣∣∣ = lim
j,k→∞

|θ(ϕ j − ψk)|

≤ lim
j,k→∞

|θ(ϕ − ϕ j)| + lim
j,k→∞

|θ(ϕ − ψk)|.

Both of these last limits are zero and so the two limits are the same, and the notation
θ(ϕ) makes sense for ϕ ∈B0(R;F).

We must still show that θ is linear and continuous. Linearity is simple. To show
continuity let (ϕ j) j∈Z>0 be a sequence inB0(R;F) converging to zero. Let (ψk)k∈Z>0 be
the sequence inD (R;F) characterised by Lemma 1 in the proof of Theorem 3.3.13.

1 Lemma If ϕ ∈B0(R;F) then the sequence (ϕψj)j∈Z>0 converges to ϕ inB0(R;F).

Proof This follows from taking the case of k = 0 in the proof of Lemma 2 used in
proving Theorem 3.3.13. ▼

For each j ∈ Z>0 note that the sequence (χ j,k ≜ ψkϕ j) j∈Z>0 in D (R;F) converges
to ϕ j in B0(R;F) by the lemma. Therefore, for each j ∈ Z>0, there exists N j ∈ Z>0
sufficiently large that

|θ(ϕ j − ψkϕ j)| ≤ ϵ, k ≥ N j,

by our assumptions onθ. We claim that the sequence (ψN jϕ j) j∈Z>0 inD (R;F) converges
to zero inB0(R;F). Indeed,

lim
j→∞

sup
{
|(ψN jϕ j)(r)(t)|

∣∣∣ t ∈ R
}
= 0

by Lemma 1 from the proof of Theorem 3.3.13, the fact that (ϕ j) j∈Z>0 converges to zero
inB0(R;F), and the formula

(ψN jϕ j)(r) =

r∑
ℓ=0

(
r
ℓ

)
ψ(ℓ)

N j
ϕ(r−ℓ)

j .

This then gives
|θ(ϕ j)| ≤ |θ(ϕ j − ψN jϕ j)| + |θ(ψN jϕ j)|.

The two terms on the right go to zero as j → ∞ by our hypotheses on θ, and so
continuity of θ onB0(R;F) follows. ■



2022/03/07 3.4 Integrable distributions 173

3.4.3 Properties of integrable distributions

Let us define the notions of convergence of integrable distributions.

3.4.11 Definition (Convergence in D ′
L1

(R;F)) A sequence (θ j) j∈Z>0 inD ′
L1(R;F) is

(i) a Cauchy sequence if (θ j(ϕ)) j∈Z>0 is a Cauchy sequence for every ϕ ∈B0(R;F)
and

(ii) converges to an integrable distribution θ if, for every ϕ ∈ B0(R;F), the
sequence (θ j(ϕ)) j∈Z>0 of numbers converges to θ(ϕ). •

As one hopes, Cauchy sequences of integrable distributions converge.

3.4.12 Theorem (Cauchy sequences in D ′
L1

(R;F) converge) If (θj)j∈Z>0 is a sequence in
D ′

L1(R;F) that is Cauchy, then it converges to some θ ∈ D ′
L1(R;F).

Proof The proof goes very much like that of Theorem 3.2.22. All one needs to do is
choose the initial subsequence (ψn)n∈Z>0 so as to have the additional property that

∥ψ
( j)
n ∥∞ <

1
4n , j, k ∈ {0, 1, . . . ,n}.

After replacing all occurrences of D (R;F) with B0(R;F) and of D ′(R;F) with
D ′

L1(R;F), the same proof then gives the result in this case. ■

The class of signals that integrable distributions generalise are, unsurprisingly,
the integrable signals.

3.4.13 Proposition (Integrable signals are integrable distributions) If f ∈ L(1)(R;F)
then θf ∈ D ′L1(R;F). Moreover, if f1, f2 ∈ L(1)(R;F) for which θf1 = θf2 then f1(t) = f2(t)
for almost every t ∈ R.

Proof The first statement of the proof is proved in Example 3.4.8–1.
The last assertion follows the similar assertion in Proposition 3.2.12, along with

Propositions 3.3.12 and 3.4.9. ■

Let us characterise the functions that we can use to multiply integrable distri-
butions.

3.4.14 Proposition (Integrable distributions can be multiplied by signals all of
whose derivatives are bounded) Let θ ∈ D ′

L1(R;F) and let ϕ0 : R→ F be infinitely
differentiable and such that ϕ(k)

0 ∈ L(∞)(R;F) for each k ∈ Z≥0. Then the map

B0(R;F) ∋ ϕ 7→ θ(ϕ0ϕ) ∈ F

defines an element of D ′
L1(R;F).

Proof Linearity of the map is clear, and continuity follows from the computations in
the second and third paragraphs of the proof of Proposition 3.3.18, taking k = 0. ■

The notions of regular, singular, support, and singular support are applied to
D ′

L1(R;F) by restriction fromD ′(R;F).
Of course, the derivative of an integrable distribution is an integrable distribu-

tion.
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3.4.15 Proposition (The derivative of an integrable distribution is an integrable dis-
tribution) If θ ∈ D ′

L1(R;F) then θ′ ∈ D ′
L1(R;F).

Proof This is easy to show. We let (ϕ j) j∈Z>0 be a sequence inB0(R;F) converging to
zero. Then (−ϕ′j) j∈Z>0 is also a sequence converging to zero in B0(R;F), as is easily
seen from the definition of convergence to zero. Therefore,

lim
j→∞

θ′(ϕ j) = lim
j→∞

θ(−ϕ′j) = 0

as desired. ■

3.4.4 Some deeper properties of integrable distributions

In this section we give some useful properties of integrable distributions. We
begin by showing that integrable distributions have a boundedness property like
as have seen for distributions and tempered distributions.

3.4.16 Lemma (A boundedness property for integrable distributions) Let θ ∈
D ′

L1(R;F). Then there exists M ∈ R>0 and k ∈ Z≥0 such that, for each ϕ ∈B0(R;F), we
have

|θ(ϕ)| ≤M max{∥ϕ∥∞, ∥ϕ(1)
∥∞, . . . , ∥ϕ

(k)
∥∞.

Proof For m ∈ Z≥0 define

∥ϕ∥m∞ = max{∥ϕ∥∞, ∥ϕ(1)
∥∞, . . . , ∥ϕ

(m)
∥∞}.

It is clear that a sequence (ϕ j) j∈∞ in B0(R;F) converges to zero if and only if
(∥ϕ(m)

j ∥∞) j∈Z>0 converges to zero for every m ∈ Z≥0. This, however, is easily seen to be
equivalent to the convergence to zero of (∥ϕ j∥

m
∞) j∈Z>0 for each m ∈ Z≥0. One can now

prove the lemma by picking up the proof of Lemma 3.2.44 in the second paragraph,
replacing (b − a)m

∥ϕ(m)
∥∞ with ∥ϕ∥m∞, noting the obvious inequality ∥ϕ∥m∞ ≤ ∥ϕ∥m+1

∞ for
each m ∈ Z≥0. ■

The following notion will also be important for us.

3.4.17 Definition (Approximate unit and special approximate unit) A sequence
(ψ j) j∈Z>0 inD (R;F)

(i) is an approximate unit if

(a) the sequence (ψ j) j∈Z>0 converges in E (R;F) to the function t 7→ 1 and

(b) for each r ∈ Z≥0, there exists Mr ∈ R>0 such that ∥ψ(r)
j ∥∞ ≤ Mr for every

j ∈ Z>0.

and
(ii) is a special approximate unit if

(a) for any compact set K ⊆ R, there exists N ∈ Z>0 such that ψ j(t) = 1 for
every t ∈ K and j ≥ N and
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(b) for each k ∈ Z≥0, there exists Mr ∈ R>0 such that ∥ψ(r)
j ∥∞ ≤ Mr for every

j ∈ Z>0. •

Such sequences of signals exist.

3.4.18 Examples (Approximate and special approximate units)
1. An example of an approximate unit is the sequence described in Lemma 1 in

the proof of Theorem 3.3.13. Recall that if we define

Ψ(t) =

e exp
(
−

1
1−t2

)
, |t| < 1,

0, otherwise,

then the approximate unit is the sequence (Ψ j) j∈Z>0 where Ψ j(t) = Ψ( t
j ). In

Figure 3.9 we show the graph ofΨ.

-2 -1 0 1 2

0.0

0.1

0.2

0.3

Figure 3.9 A signal used to construct an approximate unit

2. To give an example of a special approximate unit, let Ψ ∈ D (R;F) be defined
by

Ψ(t) =



0, t ∈ (−∞,−2],
e · e−1/(1−(t+1)2), t ∈ (−2,−1),
1, t ∈ [−1, 1],
e · e−1/(1−(t−1)2), t ∈ (1, 2),
0, t ∈ [2,∞),

and depicted in Figure 3.10. As may be deduced from Example I-3.7.28–2, this
signal is inD (R;F). The sequence (Ψ j) j∈Z>0 inD (R;F) given byΨ j(t) = Ψ( j−1t),
j ∈ Z>0, is then verified to be a special approximate unit in the sense of the
above definition. •
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-3 -2 -1 0 1 2 3
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Figure 3.10 A signal used to construct a special approximate unit

Next we state a few equivalent characterisations of integrable distributions. As
in the proof of Lemma 3.4.16, for ϕ ∈B0(R;F), denote

∥ϕ∥m
∞
= max{∥ϕ∥∞, ∥ϕ(1)

∥∞, . . . , ∥ϕ
(m)
∥∞}, m ∈ Z≥0.

With this notation we have the following result.

3.4.19 Theorem (Characterisation of integrable distributions) For θ ∈ D (R;F) the
following statements are equivalent:

(i) θ ∈ D ′
L1(R;F);

(ii) there exists k ∈ Z≥0 such that, for every ϵ ∈ R>0, there exists a compact set K ⊆ R
for which |θ(ϕ)| < ϵ∥ϕ∥k

∞
for every ϕ ∈ D (R;F) satisfying supp(ϕ) ∩ K = ∅;

(iii) for every approximate unit (Ψj)j∈Z>0 , the sequence (θ(Ψj))j∈Z>0 converges;
(iv) for every special approximate unit (Ψj)j∈Z>0 , the sequence (θ(Ψj))j∈Z>0 converges;
(v) there exists a compact set K ⊆ R, M ∈ R>0, and k ∈ Z≥0 such that |θ(ϕ)| ≤M∥ϕ∥k

∞

for every ϕ ∈ D (R;F) satisfying supp(ϕ) ∩ K = ∅.
Proof (i) =⇒ (ii) Choose k ∈ Z≥0 and M ∈ R>0 as in Lemma 3.4.16. Assume (ii)
does not hold. Thus, assume that there exists ϵ ∈ R>0 such that, for every compact set
K ⊆ R, there existsϕ ∈ D (R;F) satisfying supp(ϕ)∩K = ∅ and such that |θ(ϕ)| > ϵ∥ϕ∥k∞.
Now we inductively construct a sequence (K j) j∈Z>0 of compact sets and (ϕ j) j∈Z>0 . Let
K1 = [−1, 1]. By our assumption, there existsψ1 ∈ D (R;F) such that supp(ψ1)∩K1 = ∅
and such that |θ(ψ1)| > ϵ∥ϕ1∥

k
∞. We then takeϕ1 = a1ψ1 where a1 ∈ F is chosen such that

∥ϕ1∥
k
∞ = 1 and such thatθ(ϕ1) ∈ R>0. Thenθ(ϕ1) > ϵ. Now suppose that K1, . . . ,Km and

ϕ1, . . . , ϕm have been defined. Let Tm+1 ∈ R>0 be such that supp(ϕm) ⊆ (−Tm+1,Tm+1)
and such that

K1 ∪ · · · ∪ Km ⊆ (−Tm+1,Tm+1).

Take Km+1 = [−Tm+1,Tm+1]. Then there exists ψm+1 ∈ D (R;F) such that supp(ψm+1) ∩
Km+1 = ∅. Then define ϕm+1 = am+1ψm+1 with am+1 ∈ F chosen such that ∥ϕm+1∥

k
∞ = 1
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and θ(ϕm+1) ∈ R>0. Then θ(ϕm+1) > ϵ. Note that the supports of the functions ϕ j,
j ∈ Z>0, are pairwise disjoint. Thus we can define Φm ∈ D (R;F), m ∈ Z>0, by

Φm(x) =
m∑

j=1

ϕ j(m).

Moreover, we clearly have ∥Φm∥
k
∞ = 1, and so, by Lemma 3.4.16, |θ(Φm)| ≤ M. How-

ever, we also have

θ(Φm) =
m∑

j=1

θ(ϕ j) > mϵ.

Since this must hold for each m ∈ Z>0, we arrive at a contradiction.
(ii) =⇒ (iii) Let (Ψ j) j∈Z>0 be the special approximate unit from Example 3.4.18–2

(although any other special approximate unit can be made to work). Note that for
j ∈ Z>0 and r ∈ Z≥0 we haveΨ(r)

j = j−rΨ(r) which gives

∥Ψ
(r)
j ∥∞ ≤ ∥Ψ

(r)
∥∞, j ∈ Z>0, r ∈ Z≥0. (3.14)

For ϕ ∈B0(R;F), apply the higher-order Leibniz Rule, Proposition I-3.2.11, to get

((1 −Ψ j)ϕ)(r) =

r∑
m=0

(
r
m

)
(1 −Ψ j)(m)ϕ(r−m).

Now let

Br = max
{(

r
m

) ∣∣∣∣∣∣ m ∈ {0, 1, . . . , r}
}
.

Then
∥(1 −Ψ j)ϕ∥r∞ ≤ rBr∥1 −Ψ∥r∞∥ϕ∥

r
∞, (3.15)

using (3.14). Now let (ψ j) j∈Z>0 be an approximate unit and let k ∈ Z≥0 be chosen as
in (ii). Then define

Mk = 4 sup{∥ψ j∥
k
∞ | j ∈ Z>0}.

Let ϵ ∈ R>0. By assumption, there exists a compact set K such that

|θ(ϕ)| <
ϵ

kMkBk∥1 −Ψ∥k∞
∥ϕ∥k∞

for every ϕ ∈ D (R;F) satisfying supp(ϕ) ∩ K = ∅. Let N1 ∈ Z>0 be sufficiently large
that ΨN1(x) = 1 for all x in a neighbourhood U of K. Since 1 −ΨN1(x) = 0 for all x ∈ U
we compute, for l,m ∈ Z>0,

|θ((1 −ΨN1)(ψl − ψm))| <
ϵ

kMkBk∥1 −Ψ∥k∞
∥(1 −ΨN1)(ψl − ψm)∥k∞

≤
ϵ

kMkBk∥1 −Ψ∥k∞
kBk∥1 −Ψ∥k∞∥ψl − ψm∥

r
∞

≤
ϵ

kMkBk∥1 −Ψ∥k∞
kBk∥1 −Ψ∥k∞(∥ψl∥

r
∞ + ∥ψm∥

r
∞) ≤

ϵ
2
,
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using the triangle inequality and (3.15).
(For the next fifteen seconds we use some facts about distributions with compact

support, as developed in Section 3.7.) Since the distributionΨN1θhas compact support
and since the conditions for an approximate unit ensure that (ψ j) j∈Z>0 converges in
E (R;F), the sequence (θ(ΨN1ψ j)) j∈Z>0 converges and so is Cauchy. Thus there exists
N2 ∈ Z>0 such that, if l,m ≥ N2,

|θ(ΨN1(ψl − ψm))| <
ϵ
2
.

Thus, for l,m ≥ N2,

|θ(ψl − ψm)| ≤ |θ((1 −ΨN1)(ψl − ψm))| + |θ(ΨN1(ψl − ψm))| ≤ ϵ,

showing that the sequence (θ(ψ j)) j∈Z>0 is Cauchy, and so converges.
(iii) =⇒ (iv) This is clear.
(iv) =⇒ (v) Suppose that (v) does not hold. Thus, for every compact set K ⊆ R,

M ∈ R>0, and k ∈ Z≥0, there exists ϕ ∈ D (R;F) such that supp(ϕ) ∩ K = ∅ and
|θ(ϕ)| > M∥ϕ∥k∞. For j ∈ Z>0 let K j = [− j, j]. Then let ϕ j ∈ D (R;F) be such that
supp(ϕ j) ∩ K j = ∅ and such that |θ(ϕ j)| > j2∥ϕ∥ j

∞. Define

Φ j =
ϕ j

j∥ϕ j∥
j
∞

and note that supp(Φ j) ∩ K j = ∅, |θ(Φ j)| > j, and ∥Φ j∥
j
∞ <

1
j .

Now let (ψ j) j∈Z>0 be a special approximate unit and note that (ψ j +Φ j) j∈Z>0 is also
a special approximate unit. Moreover,

|θ(ψ j + Φ j) − θ(ψ j)| = |θ(Φ j)| > j, j ∈ Z>0,

from which we can infer that either (θ(ψ j +Φ j)) j∈Z>0 or (θ(ψ j)) j∈Z>0 diverges. Thus (iv)
does not hold.

(v) =⇒ (i) Let B (R;F) denote the set of infinitely differentiable functions on R
such that the function and all of its derivatives are bounded. If Φ ∈ B (R;F) and
ϕ ∈B0(R;F) then

(Φϕ)(r) =

r∑
m=0

(
r
m

)
Φ(m)ϕ(r−m), r ∈ Z≥0.

As in (3.15) we have
∥Φϕ∥r∞ ≤ rBr∥Φ∥

r
∞∥ϕ∥

r
∞.

Let K, M, and k be chosen as in (v). Let U ⊆ R be open and such that cl(U) is compact
and K ⊆ U. Let ψ ∈ D (R;F) be such that ψ(x) = 1 for all x in a neighbourhood of K and
such that supp(ψ) ⊆ U (why does such a function ψ exist?). By Lemma 3.2.44 there
exists C ∈ R>0 and C ∈ R>0 and m ∈ Z≥0 such that, if ϕ ∈ D (R;F) is such that supp(ϕ),
then |θ(ϕ)| ≤ C∥ϕ∥m∞. Without loss of generality we can assume that m ≥ k. (This can
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be seen by understanding the proof of Lemma 3.2.44.) Then, for any ϕ ∈ D (R;F),

|θ(ϕ)| ≤ |θ((1 − ψ)ϕ)| + |θ(ψϕ)|

≤ C∥(1 − ψ)ϕ∥m∞ +M∥ψϕ∥k∞
≤ mCBm∥(1 − ψ)∥m∞∥ϕ∥

m
∞ + kMBk∥ψ∥

k
∞∥ϕ∥

k
∞

≤ (mCBm∥(1 − ψ)∥m∞ + kMBk∥ψ∥
k
∞)∥ϕ∥m∞,

using the fact that ∥ϕ∥m∞ ≥ ∥ϕ∥k∞ since m ≥ k.
Therefore, if (ϕ j) j∈Z>0 is a sequence inD (R;F) which converges to zero inB0(R;F),

then lim j→∞ θ(ϕ j) = 0, showing that θ is integrable by Theorems 3.3.13 and 3.4.10. ■

With this characterisation of integrable distributions at hand, we can give the
following result that will be useful.

3.4.20 Corollary (Well-definedness of integrable distributions as limits) If θ ∈
D ′

L1(R;F) and if (ψj)j∈Z>0 and (ψ′j )j∈Z>0 are approximate units, then

lim
j→∞

θ(ψj) = lim
j→∞

θ(ψ′j ).

Proof Let (Ψ j) j∈Z>0 be the special approximate unit of Example 3.4.18–2. We use the
notation

∥ϕ∥m∞ = max{∥ϕ∥∞, ∥ϕ(1)
∥∞, . . . , ∥ϕ

(m)
∥∞}

from the proof of Lemma 3.4.16. Let k ∈ Z>0 be as in part (ii). Define

Mk = 4 sup({∥ψ j∥
k
∞ | j ∈ Z>0} ∪ {∥ψ

′

j∥
k
∞ | j ∈ Z>0})

Then let K ⊆ R be a compact set such that

|θ(ϕ)| ≤
ϵ

kBkMk∥1 −Ψ∥k∞
∥ϕ∥k∞

for every ϕ ∈ D (R;F) such that supp(ϕ)∩K = ∅. Let N1 ∈ Z>0 be such thatΨN1(t) = 1
for all t in a neighbourhood of K. Then let U ⊆ R be a bounded open interval such that
supp(ΨN1) ⊆ U. As per Lemma 3.2.44, let C ∈ R>0 and m ∈ Z>0 be such that

|θ|(ϕ) ≤ C∥ϕ∥m∞

for all ϕ ∈ D (R;F) for which supp(ϕ) ⊆ U. Since, for any compact subset L ⊆ R, each
of the sequences (ψ j) j∈Z>0 and (ψ′j) j∈Z>0 and all of their derivatives converge uniformly
to the function equal to 1 on L, the sequence (ψ j −ψ′j) j∈Z>0 and all derivatives converge
uniformly to the zero function. Thus there exists N2 ∈ Z>0 such that, if j ≥ N2,

∥(ψ j − ψ
′

j)| supp(ΨN1)∥m∞

≜ sup{|(ψ j − ψ
′

j)
(r)(t)| | t ∈ supp(ΨN1), r ∈ {0, 1, . . . ,m}} <

ϵ
2C∥Ψ∥m∞

.
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Then, for j ≥ N2 we have

|θ(ψ j − ψ
′

j)| ≤ |θ((1 −ΨN1)(ψ j − ψ
′

j))| + |θ(ΨN1(ψ j − ψ
′

j))|

≤
ϵ

kBkMk∥1 −Ψ∥k∞
∥(1 −ΨN1)(ψ j − ψ

′

j)∥
k
∞ + C∥ΨN1(ψ j − ψ

′

j)∥
m
∞

≤
ϵ

kBkMk∥1 −Ψ∥k∞
kBk∥(1 −Ψ)∥k∞∥ψ j − ψ

′

j∥
k
∞ + C∥Ψ∥m∞∥ψ j − ψ

′

j∥
m
∞

≤
ϵ

Mk
(∥ψr∥

k
∞ + ∥ψ

′

s∥
k
∞) + C∥Ψ∥m∞

ϵ
2C∥Ψ∥m∞

≤
ϵ
2
+
ϵ
2
= ϵ,

using our estimates above, along with (3.14) and (3.15). Thus lim j→∞ θ(ψ j − ψ′j) = 0.
Since θ is integrable, the limits lim j→∞ θ(ψ j) and lim j→∞ θ(ψ′j) exist by Theorem 3.4.19,
and so must be equal. ■

The idea of the preceding result is that, although the function u : R→ F defined
by u(t) = 1, t ∈ R, is not inD ′

L1(R;F), we can still evaluate θ ∈ D ′
L1(R;F) on u by

θ(u) = lim
j→∞

θ(ψ j)

for an approximate unit (ψ j) j∈Z>0 . This can be thought of as a conclusion along the
lines of being able to evaluate δ0 at f ∈ C0(R;F) (see Corollary 3.7.28), even though
a continuous signal is not in the domain of δ0, “officially.”

3.4.5 Measures as integrable distributions

A measure is an integrable distribution of order zero. Integrable distributions
are finite linear combinations of derivatives of measures. Horvath, pp. 344.

3.4.6 Notes

Parts of Theorem 3.4.19 are from [Dierolf and Voigt 1978].
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Section 3.5

Lp-integrable distributions

The space B ′

0(R;F) of integrable distributions generalises L1(R;F), as we saw
in Proposition 3.4.13. In this section, we consider spaces that generalise the spaces
Lp(R;F), p ∈ (1,∞). These spaces of distributions we shall denote byD ′Lp(R;F). To
this extent, one might really think of B ′

0(R;F) as being D ′
L1 , and indeed we shall

do this when it is convenient to do so.
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Section 3.6

L∞-integrable distributions
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Section 3.7

Distributions with compact support

In this section we specialise our set of distributions even further. That is, we
increase the size of the test functions with a resulting decrease in the size of the
distributions.

Do I need to read this section? This section can easily be skipped on a first read-
ing. However, the results in Section 3.7.6 may be of general interest. •

3.7.1 The set of infinitely differentiable test signals

The test signals we consider form a rather large class.

3.7.1 Definition (Infinitely differentiable test signal) An infinitely differentiable test
signal is an infinitely differentiable map ϕ : R→ F. The set of infinitely differential
test signals is denoted E (R;F). •

3.7.2 Remark (E (R;F) is a vector space) One can easily verify that E (R;F) is a sub-
space of the F-vector space FR. •

The set E (R;F) is a large set of signals, of course. It contains all polynomial
functions, exponential functions, trigonometric functions, etc. It also contains the
test signals in D (R;F), S (R;F), and B0(R;F). As with D (R;F), S (R;F), and
B0(R;F), the important notion in E (R;F) is that of convergence.

3.7.3 Definition (Convergence in E (R;F)) A sequence (ϕ j) j∈Z>0 in E (R;F) converges
to zero if for each r ∈ Z≥0 and for each compact subset K ⊆ R, the sequence
(ϕ(r)

j |K) j∈Z>0 converges uniformly to zero. A sequence (ϕ j) j∈Z>0 in E (R;F) converges
to ϕ ∈ E (R;F) if the sequence (ϕ j − ϕ) j∈Z>0 converges to zero. •

As with D (R;F), S (R;F), and B0(R;F), we can ponder bemusedly the na-
ture of convergence in E (R;F). It turns out that, as with S (R;F) and B0(R;F),
there exists a metric on E (R;F) for which convergence is convergence in the met-
ric. However, again as with S (R;F) and B0(R;F), there is no norm defining
convergence in E (R;F). references for this

Let us explore the notion of convergence in E (R;F) through some examples.

3.7.4 Examples (Convergence in E (R;F))
1. Note that a sequence (ϕ j) j∈Z>0 in B0(R;F) converging to zero in B0(R;F) also

converges to zero in E (R;F). It then follows from Example 3.4.5–1 that every
sequence (ϕ j) j∈Z>0 in S (R;F) converging to zero in S (R;F) also converges to
zero in E (R;F). And then it follows from Example 3.3.7–1 that every sequence
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(ϕ j) j∈Z>0 in D (R;F) converging to zero in D (R;F) also converges to zero in
E (R;F).

2. There are sequences of test signals inB0(R;F) ⊆ E (R;F) converging to zero in
E (R;F), but not inB0(R;F). Let us give such a sequence. Let (ψ j) j∈Z>0 be the se-
quence inD (R;F) characterised in Lemma 1 from the proof of Theorem 3.3.13.
Then define a sequence (ϕ j) j∈Z>0 inB0(R;F) by

ϕ j(t) = j−1et2/5ψ j(t).

In Figure 3.11 we show a few terms in this sequence. While the sequence

-10 -5 0 5 10

0

1

2

3

4

5

Figure 3.11 A few terms in a sequence converging to zero in
E (R;F) but not inB0(R;F)

of signals and all derivatives converges uniformly to zero on every compact
interval (i.e., converges to zero in E (R;F)), the sequence does not converge
uniformly on R. •

3.7.5 Definition (Continuous linear maps on E (R;F)) A linear map L : E (R;F)→ F is
continuous if the sequence (L(ϕ j)) j∈Z>0 converges to zero for every sequence (ϕ j) j∈Z>0

that converges to zero in E (R;F). •

3.7.2 Definition of distributions with compact support

The by now unsurprising definition is the following.

3.7.6 Definition (Distribution with compact support) A distribution with compact
support is a continuous linear map from E (R;F) to F. The set of distributions with
compact support is denoted E ′(R;F). •
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3.7.7 Remark (E ′(R;F) is a vector space) It is easy to check that E ′(R;F) is a subspace
ofB ′

0(R;F). The inclusion is proved below in Proposition 3.7.9, and the inheritance
of the vector space structure is then readily verified. •

Do not at this point read anything literal into the words “with compact support”
in the preceding definition. We will address this shortly.

Let us give some examples of distributions with compact support.

3.7.8 Examples (Distributions with compact support)
1. We claim that an integrable signal f : R → F with compact support defines an

element θ f of E ′(R;F) by

θ f (ϕ) =
∫
R

f (t)ϕ(t) dt.

The integral clearly converges since, if supp( f ) ⊆ [−T,T] we have∫
R

| f (t)ϕ(t)|dt =
∫ T

−T
| f (t)ϕ(t)|dt ≤ sup

{
|ϕ(t)|

∫ T

−T
| f (τ)|dτ

∣∣∣∣∣∣ t ∈ [−T,T]
}
< ∞.

We also claim that θ f is continuous from E (R;F) to F. If (ϕ j) j∈Z>0 is a sequence
converging to zero in E (R;F) we have

|θ f (ϕ j)| =
∣∣∣∣∣∫
R

f (t)ϕ j(t) dt
∣∣∣∣∣ ≤ ∫ T

−T
| f (t)ϕ j(t)|dt

≤ sup
{
|ϕ j(t)|

∫ T

−T
| f (τ)|dτ

∣∣∣∣∣∣ t ∈ [−T,T]
}
.

Taking the limit as j→∞ shows that θ f ∈ E ′(R;F), as claimed.

2. Let us show that δ(r)
0 ∈ E

′(R;F) for each r ∈ Z≥0. Let (ϕ j) j∈Z>0 be a sequence
converging to zero in E (R;F). We then have

δ(r)
0 (ϕ j) = (−1)rϕ(r) j(0).

Since the sequence (ϕ(r)
j ) j∈Z>0 converges uniformly to zero on [−T,T] for every

T ∈ R>0, it then follows that lim j→∞ δ
(r)
0 (ϕ j) = 0, so δ(r)

0 ∈ E
′(R;F).

3. While all derivatives of δ0 are in E ′(R;F), the “anti-derivative” of δ0, the unit
step 1≥0, is not in E ′(R;F). •

Let us show that distributions with compact support are tempered distribu-
tions.



186 3 Distributions in the time-domain 2022/03/07

3.7.9 Proposition (Distributions with compact support are integrable distributions)
We have E ′(R;F) ⊆ D ′

L1(R;F). Moreover, distributions θ1, θ2 ∈ E ′(R;F) with compact
support agree if and only if they agree as integrable distributions.

Proof Let us first show that E ′(R;F) ⊆ D ′
L1(R;F). Since B0(R;F) ⊆ E (R;F), it

makes sense to write θ(ϕ) for ϕ ∈ B0(R;F) and θ ∈ E ′(R;F). We need to check that
if (ϕ j) j∈Z>0 is a sequence converging to zero in B0(R;F) then (θ(ϕ j)) j∈Z>0 converges
to zero if θ ∈ E ′(R;F). However, this follows since (ϕ j) j∈Z>0 converging to zero in
B0(R;F) implies convergence to zero in E (R;F), as we saw in Example 3.7.4–1.

The final assertion follows as does the same part of Proposition 3.3.12, but now
using Theorem 3.11.3(ii). ■

Recall that at this point the words “with compact support” in Definition 3.7.6
appear with no justification as concerns their relationship with elements inD (R;F)
that have compact support. Therefore, we should establish this connection. First
we note that since D (R;F) ⊆ E (R;F), and since sequences converging to zero in
D (R;F) also converge to zero in E (R;F), every element θ ∈ E ′(R;F) defines a
distribution in D ′(R;F). The following result characterises those distributions in
E ′(R;F).

3.7.10 Proposition (A distribution with compact support is. . . a distribution with
compact support) A distribution θ ∈ D ′(R;F) is in E ′(R;F) if and only if supp(θ)
is a compact subset of R.

Proof First suppose that supp(θ) is compact. Define ψ ∈ D (R;F) by asking that
ψ(t) = 1 for all t in some open set containing supp(θ). One can always do this by
manipulating bump functions appropriately. By the definition of the support of a
distribution, the value of θ on any element of D (R;F) is determined by its value on
supp(θ). In other words, if we define θ : E (R;F)→ F by θ(ϕ) = θ(ψϕ), then this map
is well-defined. It is also linear and it is straightforward to check continuity. Thus this
defines θ as an element of E ′(R;F).

Now let θ ∈ E ′(R;F) and think of it as an element of D ′(R;F) by restriction to
D (R;F) ⊆ E (R;F). We claim that this element of D ′(R;F) has compact support. Let
(K j) j∈Z>0 be a sequence of compact subsets ofRwith the property that K j ⊂ Kk for j < k
and that R = ∪ j∈Z>0K j. Suppose that supp(θ) is not compact. Then for each j ∈ Z>0
there exists ϕ j ∈ D (R;F) such that ϕ j(t) = 0 for all t in an open set containing K j and
such that θ(ϕ j) , 0. Without loss of generality (by rescaling if necessary), suppose that
θ(ϕ j) = 1. We claim that the sequence (ϕ j) j∈Z>0 converges to zero in E (R;F). Indeed,
for any compact set K ⊆ R one can choose N sufficiently large that ϕ j|K = 0, j ≥ N.
Therefore, since θ is continuous we must have lim j→∞ θ(ϕ j) = 0, thus arriving at a
contradiction. ■

As with Theorem 3.3.13 for tempered distributions, it is possible to characterise
distributions with compact support using test functions fromD (R;F),S (R;F), or
B0(R;F), but with the notion of convergence inherited from E (R;F).

3.7.11 Theorem (Alternative characterisation of distributions with compact sup-
port) If θ ∈ E ′(R;F) then (θ(ϕj))j∈Z>0 converges to zero for every sequence (ϕj)j∈Z>0 in
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B0(R;F) converging to zero in E (R;F). Conversely, if θ ∈ D ′(R;F) and if (θ(ϕj))j∈Z>0

converges to zero for every sequence (ϕj)j∈Z>0 inD (R;F) that converges to zero in E (R;F),
then θ ∈ E ′(R;F).

Proof Suppose that θ ∈ E ′(R;F). Let (ϕ j) j∈Z>0 be a sequence in B0(R;F) ⊆ E (R;F)
converging to zero in E (R;F). Continuity of θ ensures that (θ(ϕ j)) j∈Z>0 converges to
zero.

Let θ ∈ D ′(R;F) have the property that (θ(ϕ j)) j∈Z>0 converges to zero for every
sequence (ϕ j) j∈Z>0 in D (R;F) converging to zero in E (R;F). Also let ϕ ∈ E (R;F). To
define θ(ϕ) we let (ϕ j) j∈Z>0 be a sequence inD (R;F) converging to ϕ. This means that
(ϕ − ϕ j) j∈Z>0 converges to zero in E (R;F). That this is possible is a consequence of
Theorem 3.11.3(ii) below. Let j, k ∈ Z>0 and note that

|θ(ϕ j − ϕk)| ≤ |θ(ϕ − ϕ j)| + |θ(ϕ − ϕk)|.

By choosing j and k sufficiently large we can ensure that |θ(ϕ j − ϕk)| is as small as
desired, and this means that (θ(ϕ − ϕ j)) j∈Z>0 is a Cauchy sequence, and so converges
in F. This means that we can define θ(ϕ) = lim j→∞ θ(ϕ j). To show that this definition
does not depend on the choice of sequence inD (R;F) converging to ϕ, let (ψ j) j∈Z>0 be
another sequence inD (R;F) again converging to ϕ in E (R;F). Then∣∣∣∣∣∣ limj→∞

θ(ϕ j) − lim
k→∞

θ(ψk)

∣∣∣∣∣∣ = lim
j,k→∞

|θ(ϕ j − ψk)|

≤ lim
j,k→∞

|θ(ϕ − ϕ j)| + lim
j,k→∞

|θ(ϕ − ψk)|.

Both of these last limits are zero and so the two limits are the same, and the notation
θ(ϕ) makes sense for ϕ ∈ E (R;F).

We must still show that θ is linear and continuous. Linearity is simple. To show
continuity let (ϕ j) j∈Z>0 be a sequence in E (R;F) converging to zero. Let (ψk)k∈Z>0 be
the sequence inD (R;F) characterised by Lemma 1 in the proof of Theorem 3.3.13.

1 Lemma If ϕ ∈ E (R;F) then the sequence (ϕψj)j∈Z>0 converges to ϕ in E (R;F).

Proof Let r ∈ Z≥0, let K ⊆ R be compact, and let ϵ ∈ R>0.
By the Leibniz Rule, Proposition I-3.2.11, we have

(ϕψ j)(r)(t) =
r∑

m=0

(
r
m

)
ϕ(r−m)(t)ψ(m)

j (t).

Thus

ϕ(r)(t) − (ϕψ j)(r)(t) = ϕ(r)(t)(1 − ψ j(t)) +
r∑

m=1

(
r
m

)
ϕ(r−m)(t)ψ(m)

j (t).

Let

Br = max
{(

r
m

) ∣∣∣∣∣∣ m ∈ {0, 1, . . . , r}
}
.

For m ∈ {0, 1, . . . , r} let
Mm = sup{|ϕ(m)(t)| | t ∈ K}
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and, using Lemma 1 from the proof of Theorem 3.3.13, let N ∈ Z>0 be sufficiently
large that

|1 − ψ j(t)|M0 <
ϵ
2

and
|ψ(l)

j (t)|Br max{M1, . . . ,Mr} <
ϵ
2
, l ∈ {1, . . . , r},

for t ∈ K and j ≥ N. Now, for t ∈ K and j ≥ N we then have

|ϕ(r)(t) − (ϕψ j)(r)(t)| =

∣∣∣∣∣∣∣ϕ(r)(t)(1 − ψk(t)) +
r∑

m=1

ϕ(r−m)(t)ψ(m)
k (t)

∣∣∣∣∣∣∣ < ϵ.
Since K and r are arbitrary, the sequence (ϕ−ϕψ j) j∈Z>0 converges to zero in E (R;F) as
desired. ▼

For each j ∈ Z>0 note that the sequence (χ j,k ≜ ψkϕ j) j∈Z>0 in D (R;F) converges
to ϕ j in E (R;F) by the lemma. Therefore, for each j ∈ Z>0, there exists N j ∈ Z>0
sufficiently large that

|θ(ϕ j − ψkϕ j)| ≤ ϵ, k ≥ N j,

by our assumptions onθ. We claim that the sequence (ψN jϕ j) j∈Z>0 inD (R;F) converges
to zero in E (R;F). Indeed, for every compact subset K ⊆ R we have

lim
j→∞

sup
{
|(ψN jϕ j)(r)(t)|

∣∣∣ t ∈ K
}
= 0

by Lemma 1 from the proof of Theorem 3.3.13, the fact that (ϕ j) j∈Z>0 converges to zero
in E (R;F), and the formula

(ψN jϕ j)(r) =

r∑
ℓ=0

(
r
ℓ

)
ψ(ℓ)

N j
ϕ(r−ℓ)

j .

This then gives
|θ(ϕ j)| ≤ |θ(ϕ j − ψN jϕ j)| + |θ(ψN jϕ j)|.

The two terms on the right go to zero as j → ∞ by our hypotheses on θ, and so
continuity of θ on E (R;F) follows. ■

3.7.3 Properties of distributions with compact support

In this section we record some of the basic facts about distributions with compact
support. Many of these follow, directly or with little effort, from their counterparts
for distributions.

Since E ′(R;F) ⊆ D ′(R;F) there is inherited from E ′(R;F) the notion of conver-
gence of a sequence (θ j) j∈Z>0 in E ′(R;F).
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3.7.12 Definition (Convergence in E ′(R;F)) A sequence (θ j) j∈Z>0 in E ′(R;F) is
(i) a Cauchy sequence if (θ j(ϕ)) j∈Z>0 is a Cauchy sequence for every ϕ ∈ E (R;F),

and
(ii) converges to a distribution θ with compact support if for every ϕ ∈ E (R;F),

the sequence of numbers (θ j(ϕ)) j∈Z>0 converges to θ(ϕ). •

As with tempered distributions, since distributions with compact support are
distributions, Cauchy sequences have the property of converging in D ′(R;F). It
is also helpful if we have convergence in E ′(R;F), and this is what the following
result shows.

3.7.13 Theorem (Cauchy sequences in E ′(R;F) converge) If (θj)j∈Z>0 is a Cauchy se-
quence in E ′(R;F) ⊆ D ′(R;F) the sequence converges to some θ ∈ E ′(R;F).

Proof As with the proof of Theorem 3.3.15, the proof here can be made to mirror that
of Theorem 3.2.22. To do this, we choose the initial subsequence (ψn)n∈Z>0 such that it
has the property that

sup
{
|ψ

( j)
n |

∣∣∣∣ t ∈ [−k, k]
}
<

1
4n , j, k ∈ {0, 1, . . . ,n}.

Now the proof follows like that of Theorem 3.2.22, replacing D (R;F) with E (R;F)
andD ′(R;F) with E ′(R;F). ■

Let us give the analogue for distributions with compact support of the fact that
locally integrable signals are distributions. We recall from the notion of the support what?

of a measurable signal.

3.7.14 Proposition (Locally integrable signals with compact support are distribu-
tions with compact support) If f : R → F is a locally integrable signal with compact
support then θf ∈ E ′(R;F). Moreover, if f1, f2 : R→ F are locally integrable signals with
compact support for which θf1 = θf2 , then f1(t) = f2(t) for almost every t ∈ R.

Proof The first assertion is Example 3.7.8–1. The last assertion follows the similar
assertion in Proposition 3.2.12, along with Propositions 3.3.12, 3.4.9, and 3.7.9. ■

Signals with compact support also show up to give a natural class of signals
which can be multiply distributions with compact support.

3.7.15 Proposition (Distributions with compact support can be multiplied by
smooth signals) Let θ ∈ E ′(R;F) and let ϕ0 : R → F be an infinitely differentiable
signal. Then the map

E (R;F) ∋ ϕ 7→ θ(ϕ0ϕ) ∈ F

defines an element of E ′(R;F).
Proof First of all, note that ϕ0ϕ ∈ E (R;F). Now, linearity of the map is clear. To
prove continuity, let (ϕ j) j∈Z>0 be a sequence in E (R;F) converging to zero. We claim
that (ϕ0ϕ j) j∈Z>0 is also a sequence converging to zero in E (R;F). It is clear that
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ϕ0ϕ j ∈ E (R;F) for each j ∈ Z>0, so we need only show that (ϕ0ϕ j) j∈Z>0 converges to
zero in E (R;F). Let K ⊆ R be compact and let r ∈ Z≥0. By Proposition I-3.2.11

(ϕ0ϕ j)(r) =

r∑
k=1

ϕ(k)
0 ϕ

(r−k)
j .

If we let ∥·∥K,∞ be the infinity norm for functions restricted to K, then we have

∥(ϕ0ϕ j)(r)
∥K,∞ ≤ r max{∥ϕ0∥K,∞, ∥ϕ

(1)
0 ∥K,∞, . . . , ∥ϕ

(r)
0 ∥K,∞}

·max{∥ϕ j∥K,∞, ∥ϕ
(1)
j ∥K,∞, . . . , ∥ϕ

(r)
j ∥K,∞}.

Letting j→∞, the second term on the right goes to zero, giving uniform convergence
of ((ϕ0ϕ j)(r)) j∈Z>0 to zero on K.

Thus the result follows since

lim
j→∞

θ(ϕ0ϕ) = 0

for every sequence (ϕ j) j∈Z>0 converging to zero in E (R;F). ■

The notions of regular, singular, support, and singular support are applied to
E ′(R;F) by restriction fromD ′(R;F).

One can differentiate distributions with compact support as they are distribu-
tions. It turns out that the derivative is again a distribution with compact support.

3.7.16 Proposition (The derivative of a distribution with compact support is a distri-
bution with compact support) If θ ∈ E ′(R;F) then θ′ ∈ E ′(R;F).

Proof We let (ϕ j) j∈Z>0 be a sequence in E (R;F) converging to zero. Then (−ϕ′j) j∈Z>0 is
also a sequence converging to zero in E (R;F), as is easily seen from the definition of
convergence to zero. Therefore,

lim
j→∞

θ′(ϕ j) = lim
j→∞

θ(−ϕ′j) = 0

as desired. ■

One can talk about distributions with compact support of finite order, and
distributions with compact support are always of finite order by virtue of their
being tempered distributions. We shall see in Theorem 3.7.19 that even more is
true for distributions with compact support.

3.7.4 Distributions with compact support depending on parameters

In this section we adapt our results from Sections 3.2.8 and 3.3.4 to test signals
from E (R;F) and distributions from E ′(R;F).

As previously, we let I ⊆ R be an interval and consider a function ϕ : I ×R→ F
and denote a typical point in I × R by (λ, t). For (λ, t) ∈ I × R we define functions
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ϕλ : R→ F and ϕt : I→ F by ϕλ(t) = ϕt(λ) = ϕ(λ, t). If, for each λ ∈ I, ϕλ ∈ E (R;F),
then, given θ ∈ E ′(R;F), we define Φθ,ϕ : I→ F by

Φθ,ϕ(λ) = θ(ϕλ).

As in Section 3.2.8, we denote

(Ds
1Dr

2ϕ)λ(t) = (Ds
1Dr

2ϕ)t(λ) = Ds
1Dr

2ϕ(λ, t)

for r, s ∈ Z≥0.
The following result indicates the character of the function Φθ,ϕ in this case.

3.7.17 Theorem (Distributions with compact support applied to test signals with
parameter dependence) Let I ⊆ R be an interval, let k ∈ Z≥0, and let ϕ : I ×R→ F
have the following properties:

(i) for each λ ∈ I, the map t 7→ ϕ(λ, t) is an element of E (R;F);
(ii) for each r ∈ Z≥0, Dk

1Dr
2ϕ : I ×R→ F is continuous.

Then, for any θ ∈ E ′(R;F), Φθ,ϕ is k-times continuously differentiable and, moreover,

Φ(k)
θ,ϕ(λ) = θ((Dk

1ϕ)λ).

Proof The proof follows closely that of Theorem 3.2.40, but we shall go through the
details so as to understand clearly where the differences arise.

We first give the proof for k = 0. Let λ ∈ I and let (ϵ j) j∈Z>0 be a sequence in R
converging to zero and such that λ + ϵ j ∈ I for every j ∈ Z>0. Define ψλj ∈ E (R;F) by

ψλj (t) = ϕ(λ + ϵ j, t).

The following lemma is then useful.

1 Lemma The sequence (ψλj )j∈Z>0 converges to ϕλ in E (R;F).

Proof Let r ∈ Z≥0 and let K ⊆ R be compact. Let I′ ⊆ I be the smallest compact
interval for which λ+ ϵ j ∈ I′ for every j ∈ Z>0. Since Dr

2ϕ(λ, t)|I′ ×K is continuous and
since I′ ×K is compact, by Theorem II-1.3.33 it follows that it is uniformly continuous.
This implies that, given ϵ ∈ R>0, there exists N ∈ Z>0 such that

|Drψλj (t) −Drϕλ(t)| = |Dr
2ϕ(λ + ϵ j, t) −Dr

2ϕ(λ, t)| < ϵ, j ≥ N, t ∈ K.

Since r ∈ Z≥0 and K are arbitrary, this implies that we have the desired convergence of
(ψλj ) j∈Z>0 to ϕλ. ▼

It then follows immediately from continuity of θ that

lim
j→∞
Φθ,ϕ(λ + ϵ j) = lim

j→∞
θ(ϕλ+ϵ j) = θ( lim

j→∞
ϕλ+ϵ j) = θ( lim

j→∞
ψλj ) = θ(ϕλ) = Φθ,ϕ(λ).

Continuity of Φθ,ϕ at λ then follows from Theorem I-3.1.3.
Now we prove the theorem when k = 1. We let (ϵ j) be a sequence, none of whose

terms are zero, converging to zero as above. Now we take

ψλj (t) =
ϕ(λ + ϵ j, t) − ϕ(λ, t)

ϵ j
.

The following lemma is then key.
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2 Lemma The sequence (ψλj )j∈Z>0 converges to (D1ϕ)λ in E (R;F).

Proof Let r ∈ Z≥0 and let K ⊆ R be compact. Let I′ ⊆ I be the smallest compact
interval for which ϵ j ∈ I′ for every j ∈ Z>0. Define ψr : I′ × K→ F by

ψr(ℓ, t) =

Dr
2ϕ(ℓ,t)−Dr

2ϕ(λ,t)
ℓ−λ , ℓ , λ,

D1Dr
2ϕ(λ, t), ℓ = λ.

It is clear from the hypotheses that ψr is continuous on

{(ℓ, t) ∈ I′ × K | ℓ , λ}.

Moreover, since the derivative D1Dr
2ϕ exists and is continuous,

lim
ℓ→λ

Dr
2ϕ(ℓ, t) −Dr

2ϕ(λ, t)
ℓ − λ

= D1Dr
2ϕ(λ, t), t ∈ K,

showing that ψr is continuous on I × R by Theorem I-3.1.3. Since ψr is continuous, it
is uniformly continuous by Theorem II-1.3.33. Therefore, given ϵ ∈ R>0, there exists
N ∈ Z>0 such that

|ψr(λ + ϵ j, t) − ψr(λ, t)| < ϵ, j ≥ N, t ∈ K.

Using the definition of ψr, this implies that, for every j ≥ N and for every t ∈ K,∣∣∣∣∣∣Dr
2ϕ(λ + ϵ j, t) −Dr

2ϕ(λ, t)
ϵ j

−D1Dr
2ϕ(λ, t)

∣∣∣∣∣∣ = |Drψλj (t) −Dr(D1ϕ
λ)(t)| < ϵ.

Since r ∈ Z≥0 and K are arbitrary, this gives convergence of (ψλj ) j∈Z>0 to (D1ϕ)λ. ▼

By continuity of θ we then have

lim
j→∞

Φθ,ϕ(λ + ϵ j) −Φθ,ϕ(λ)

ϵ j
= lim

j→∞

θ(ϕλ+ϵ j) − θ(ϕλ)
ϵ j

= θ(lim
j→ϵ

ψλj ) = θ((D1ϕ)λ),

showing thatΦθ,ϕ is differentiable with derivative as stated in the theorem for the case
of k = 1.

Now suppose that the theorem is true for j ∈ {0, 1, . . . ,m} and suppose that the
hypotheses of the theorem hold for k = m+1. We letψ = Dm

1 ϕ and verify thatψ satisfies
the hypotheses of the theorem for k = 1. First note that, for each λ ∈ I, t 7→ ψ(λ, t) is
the mth derivative of an element E (R;F) and so is an element of E (R;F). The second
of the hypotheses of the theorem hold immediately. Finally, since

D2Dr
2ψ = D2Dr

2Dm
1 ϕ = Dm+2

1 Dr
2ϕ

by Theorem II-1.4.33, the final hypothesis of the theorem also holds. Therefore, by the
induction hypothesis, Φθ,ψ is continuously differentiable. But, since

Φθ,ψ(λ) = θ((Dm
1 ϕ)λ) = Φ(m)

θ,ϕ
(λ),
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this implies that Φθ,ϕ is m + 1-times continuously differentiable, and

Φ
(m+1)
θ,ϕ

(λ) = θ((Dm+1
1 ϕ)λ)

as desired. ■

The following corollary is what will be of primary importance for us.

3.7.18 Corollary (Property of distributions with compact support applied to in-
finitely differentiable functions of two variables) Let ϕ : R2

→ F be infinitely
differentiable. Then we have Φθ,ϕ ∈ E (R;F). Moreover, for each k ∈ Z>0,

Φ(k)
θ,ϕ(s) = θ((Dk

1ϕ)s).

Proof In this case, unlike in Corollaries 3.2.41 and 3.3.21, the result follows directly
from the attending Theorem 3.7.17. ■

3.7.5 Some deeper properties of distributions with compact support

Since E ′(R;F) ⊆ D ′(R;F) it follows that Theorems 3.2.43 and 3.2.45 hold for
distributions with compact support. The extra structure, however, allows us to
provide a little more resolution in Theorem 3.2.45.

3.7.19 Theorem (Distributions with compact support are finite-order derivatives of
signals with compact support) If θ ∈ E ′(R;F) has support in the interior of a
compact set K ⊆ R, then there exists signals fθ,1, . . . , fθ,m ∈ C0(R;F) with support in K,
and r1, . . . , rm ∈ Z≥0 such that

θ =
m∑

j=1

θ
(rj)
fθ,j
.

In particular, θ has finite order.
Proof Since K is compact we can write int(K) as a finite disjoint union of open in-
tervals: int(K) = ∪n

j=1(t1, j, t2, j). We may as well also suppose that the closed intervals
[t1, j, t2, j], j ∈ {1, . . . ,n}, are disjoint. Since supp(θ) ⊆ ∪n

j=1[t1, j, t2, j] it will suffice to prove
the result for a distribution with support in a compact interval K, since then the general
result will be obtained by simply (finitely) summing the expressions for each closed
interval. In the case when K is a compact interval we may find an open U ⊆ K for which
cl(U) is compact and for which . By Theorem 3.2.45 there exists a continuous signal
g and r ∈ Z≥0 for which θ(ψ) = θ(r)

g (ψ) for ψ ∈ D (R;F)cl(U). Now define χ ∈ D (R;F)
so that it has support in U, and so that on some neighbourhood of K it takes the value
1. Such a function χ may be constructed using bump functions appropriately. For
ϕ ∈ E (R;F) we have χϕ ∈ D (R;F)cl(U), so giving, by Theorem 3.2.50,

θ(ϕ) = θ(χϕ) = (−1)r
∫
R

g(t)(χϕ)(r)(t) dt

= (−1)r
r∑

j=0

(
r
j

) ∫
R

g(t)χ(r− j)(t)ϕ( j)(t) dt.
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Letting

f j = (−1)r+ j
(
r
j

)
gχ(r− j)

this gives

θ(ϕ) =
r∑

j=0

(−1) j
∫
R

f j(t)ϕ( j) dt =
∑
j=0

θ f j(ϕ
( j)).

After a slight change of notation, the first part of the result now follows by using
integration by parts, Proposition 3.2.39, and noting that f1, . . . , fr have support in K.

To obtain the second assertion from the first, we let r = max{r1, . . . , rm} and define

f =
m∑

j=1

f
(−(r−r j))
j =⇒ f (r) =

m∑
j=1

f (r j),

so giving the result. ■

Note that θ ∈ E ′(R;F) having finite order does not mean that θ = θ(r)
fθ

for fθ
with compact support. An example illustrates this caveat.

3.7.20 Example (The delta-signal as the derivative of signals) Let us consider δ0 ∈

E ′(R;F). Note that if f ∈ C0(R;F) has the property that δ0 = θ
(k)
f then it must be

the case that θ f = δ
(−k)
0 . This means that f (t) = 1≥0(t)tk−1 + c for some constant c.

Therefore, θ f cannot have compact support. On the other hand one can write δ0 as
a finite linear combination of finite derivatives of continuous signals with compact
support. This is guaranteed by Theorem 3.7.19, and can be realised concretely by
defining

f1(t) = R(t)
⋏(t)
⋏(1)

, f2(t) = −21≥0(t)
⋏(1)(t)
⋏(1)

− R(t)
⋏(2)(t)
⋏(1)

.

A direct computation using Proposition 3.2.35 gives δ0 = θ
(2)
f1
+ θ(0)

f2
. In Figure 3.12

we plot f1 and f2, noting that they do have compact support. By rescaling the
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Figure 3.12 Signals f1 and f2 for which δ0 = θ
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+ θ(0)
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argument of ⋏ one can make the support of these signals as small as desired. This
is to be expected since δ0 should be characterisable in terms of objects defined only
in an arbitrarily small neighbourhood of t = 0. •

For distributions with compact support the conclusions of Theorem 3.2.50 can
be sharpened somewhat.

3.7.21 Theorem (Distributions with compact support only depend on finitely many
derivatives) If θ ∈ E ′(R;F) has order k and if ϕ1, ϕ2 ∈ E (R;F) satisfy

ϕ(j)
1 (t) = ϕ(j)

2 (t), j ∈ {0, 1, . . . ,k + 1}, t ∈ supp(θ),

then θ(ϕ1) = θ(ϕ2).
Proof The argument goes very much like that of Theorem 3.2.50. We let fθ ∈ L(1)

loc(R;F)

have the property that θ(ψ) = θ(k+1)
fθ

(ψ) for all ψ ∈ D (R;F). Since supp(θ) is compact
we can write R \ supp(θ) as a finite collection of open intervals T1, . . . ,Tn,Tn+1,Tn+2,
with these intervals being of the form T j = (t1, j, t2, j), j ∈ {1, . . . ,n}, and Tn+1 = (−∞, tL)
and Tn+2 = (tR,∞). We then have for ϕ ∈ E (R;F)

θ(ϕ) = (−1)k+1
∫
R

fθ(t)ϕ(k+1)(t) dt

=

n∑
m=1

(−1)k+1
∫ t2,m

t1,m

fθ(t)ϕ(k+1)(t) dt + (−1)k+1
∫
T∩supp(θ)

fθ(t)ϕ(k+1)(t) dt

+

∫ tL

−∞

fθ(t)ϕ(k+1)(t) dt +
∫
∞

tR

fθ(t)ϕ(k+1)(t) dt.

Just as in the proof of Theorem 3.2.50 the first three terms may be shown to depend
only on ϕ( j)(t) for j ∈ {0, 1, . . . , k + 1} and t ∈ supp(θ). As for the last term, note that
on (−∞, tL) and (tR,∞), θ agrees with the zero distribution. This means that on these
intervals fθ is a polynomial of degree at most k (its (k + 1)st derivative must vanish).
Now let ψ ∈ D (R;F) have the property that it takes the value 1 on a neighbourhood of
[tL, tR]. Then we can write ϕ = ψϕ+ (1−ψ)ϕ. Since 1−ψ vanishes on a neighbourhood
of supp(θ), from the definition of support we have θ((1 − ψ)ϕ) = 0. We can then
integrate by parts k + 1 times the expression∫ tL

−∞

fθ(t)(ψϕ)(k+1)(t) dt

to observe that it depends only on the value of (ψϕ)( j)(tL), j ∈ {1, . . . , k + 1}. Similarly
the expression ∫ tL

−∞

fθ(t)(ψϕ)(k+1)(t) dt

depends only on the value of (ψϕ)( j)(tR), j ∈ {1, . . . , k + 1}. Since (ψϕ)( j)(tL) = ϕ( j)(tL)
and (ψϕ)( j)(tR) = ϕ( j)(tR), the result follows. ■

A reading of the proof of the preceding theorem immediately gives the following
corollary.
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3.7.22 Corollary (A bound for the evaluation of distributions with compact support)
If θ ∈ E ′(R;F) and if ϕ ∈ E (R;C), then there exists M ∈ R>0, k ∈ Z>0, and K ⊆ R

compact such that

|θ(ϕ)| ≤M sup{Mϕ(j)(x) | j ∈ {1, . . . ,k}, x ∈ K}.

3.7.6 Some constructions with delta-signals

The distribution δ0 and its derivatives are all examples of distributions with
compact support. In this section we study some particular features of these signals.
In Example 3.2.25 we considered a sequence of locally integrable signals that
converge in D ′(R;F) to δ0. In general, a delta-sequence is a sequence ( f j) j∈Z>0 of
locally integrable signals having the property that lim j→∞ θ f j = δ0, with the limit
being taken in E ′(R;F). We shall encounter many examples of delta-sequences,
and the following result will allow us to state that these indeed converge to δ0.

3.7.23 Proposition (Characterisation of delta-sequences) Let (fj)j∈Z>0 be a sequence in
L(1)

loc(R;F) with the following properties:
(i) there exists M,T ∈ R>0 such that∫

|t|≥T
|fj(t)|dt < M, j ∈ Z>0;

(ii) for each δ ∈ (0, 1) the sequences (fj|Iδ)j∈Z>0 and (fj|I−δ)j∈Z>0 converge uniformly to
zero, where Iδ = [δ, δ−1] and I−δ = [−δ,−δ−1];

(iii) for every δ ∈ R>0 the sequence (∫
|t|≤δ

fj(t) dt
)

j∈Z>0

converges to 1.
Then (fj)j∈Z>0 is a delta-sequence.

Proof Let δ ∈ (0, 1). For ϕ ∈ D (R;F) we have

θ f j(ϕ) =
∫
R

f j(t)ϕ(t) dt

=

∫
|t|≤δ

f j(t)ϕ(0) dt +
∫
|t|≤δ

f j(t)(ϕ(t) − ϕ(0)) dt +
∫
|t|≥δ

f j(t)ϕ(t) dt.

Since ϕ has bounded derivatives there exists C ∈ R>0 such that |ϕ(t) − ϕ(0)| ≤ |t|C for
t ∈ R. Thus we havedetails with Lipschitz

stuff ∫
|t|≤δ
| f j(t)(ϕ(t) − ϕ(0))|dt ≤ δM

∫
|t|<δ
| f j(t)|dt.
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Therefore we can choose δ sufficiently small that∫
|t|≤δ
| f j(t)(ϕ(t) − ϕ(0))|dt <

ϵ
3
, j ∈ Z>0,

by property (iii) of the sequence ( f j) j∈Z>0 . Since (ϕ f j) j∈Z>0 converges uniformly to zero
on Iδ and I−δ due to ϕ having compact support, we have

lim
j→∞

∫
|t|≥δ
| f j(t)ϕ(t)|dt =

∫
|t|≥δ

lim
j→∞
| f j(t)ϕ(t)|dt = 0.

Thus we may choose N1 ∈ Z>0 sufficiently large that∫
|t|≥δ
| f j(t)ϕ(t)|dt <

ϵ
3
, j ≥ N1.

Now choose N2 ∈ Z>0 sufficiently large that∣∣∣∣∣∫
R

f j(t) dt − 1
∣∣∣∣∣ < ϵ

3
.

Taking N = max{N1,N2}we see that∣∣∣∣∣∫
R

f j(t)ϕ(t) dt − ϕ(0)
∣∣∣∣∣ < ϵ, j ≥ N,

so giving the result. ■

Let us give a list a sequences of sequences of signals that may be verified to
satisfy the hypotheses of this result, and such that they converge to δ0 inD ′(R;F).

3.7.24 Examples (Delta-sequences)
1. A commonly used delta-sequence is given by ( f j) j∈Z>0 where

f j(t) =

 j, t ∈ [0, 1
j ],

0, otherwise.

This trivially verifies the hypotheses of Proposition 3.7.23. In Figure 3.13
(top left) we show some signals in this sequence. Note that we have made this
sequence one comprised signals that vanish for positive times. One could do the
same with a sequence of signals that vanish for negative times by considering
instead the sequence (σ∗ f j) j∈Z>0 (Figure 3.13, top right). What’s more, one could
instead centre each of the signals at zero, and still maintain a delta-sequence
(Figure 3.13, bottom).

The approximate identities from Example 4.7.7 below are all easily seen to define
delta-sequences. We present these here, and the reader can easily verify that the
hypotheses of Proposition 3.7.23 are satisfied by these signals, using the fact that
these sequences are approximate identities.
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Figure 3.13 Three examples of delta-sequences

2. Our next delta-sequence is denoted (P j) j∈Z>0 and defined by

P j(t) =
1
π

j
1 + j2t2 .

This sequence is examined as an approximate identity in Example 4.7.7–1. A
few terms of this sequence are shown in Figure 4.23 below, and there we can
see the anticipated behaviour of concentration of the signal near 0.
Note that since this sequence is infinitely differentiable, it follows from Corol-
lary 3.2.33 that the sequence (P(k)

j ) j∈Z>0 converges inD ′(R;F) to δ(k)
0 .

3. The sequence of signals (GΩ, j) j∈Z>0 given by

GΩ, j(t) = j
exp(− ( jt)2

4Ω )
√

4πΩ

converges to δ0 in D ′(R;F) for every Ω ∈ R>0. This sequences is examined as
an approximate identity in Example 4.7.7–2. A few terms of this sequence are
shown in Figure 4.24 below, and there we can see the anticipated behaviour of
concentration of the signal near 0.
Note again that this sequence is infinitely differentiable, and so it follows from
Corollary 3.2.33 that the sequence (G(k)

Ω, j) j∈Z>0 converges inD ′(R;F) to δ(k)
0 .
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4. The sequence (F j) j∈Z>0 of signals defined by

F j(t) =

 sin2(π jt)
π2 jt2 , t , 0,

j, t = 0

can easily be shown to satisfy thee hypotheses of Proposition 3.7.23, and so
is a delta-sequence. This sequence is examined as an approximate identity in
Example 4.7.7–3. In Figure 4.25 below we show a few terms in this sequence.
Again, this is a sequence of infinitely differentiable signals, so the sequences of
its derivatives converge in D ′(R;F) to the corresponding derivatives of δ0, as
prescribed by Corollary 3.2.33. •

Note that delta-sequences may be thought of as sequences of signals that blow
up at zero in just the right way, cf. Exercise 3.1.1. This idea leads to negative
characterisations of delta-sequences. One such is the following which will have
some consequences in Chapter 5.

3.7.25 Proposition (Characterisations of non-delta-sequences) Let (fj)j∈Z>0 be a se-
quence in L(2)(R;F) with the following properties:

(i) there exists M,T ∈ R>0 such that∫
|t|≥T
|fj(t)|dt < M, j ∈ Z>0;

(ii) for each δ ∈ (0, 1) the sequences (fj|Iδ)j∈Z>0 and (fj|I−δ)j∈Z>0 converge uniformly to
zero, where Iδ = [δ, δ−1] and I−δ = [−δ,−δ−1];

(iii) (∥fj∥2)j∈Z>0 converges.
Then (fj)j∈Z>0 is not a delta-sequence.

Proof As in the proof of Proposition 3.7.23 we have, for any δ ∈ (0, 1) andϕ ∈ D (R;F),

lim
j→∞

∫
|t|≥δ
| f j(t)ϕ(t)|dt = 0.

By the Cauchy–Schwarz–Bunyakovsky inequality we have∣∣∣∣∣∣
∫
|t|≤δ

f j(t)ϕ(t) dt

∣∣∣∣∣∣ ≤
(∫
|t|≤δ
| f j(t)|2 dt

)1/2 (∫
|t|≤δ
|ϕ(t)|2 dt

)1/2

,

this holding for all δ ∈ R>0. Now let (δ j) j∈Z>0 be a positive sequence converging to
zero. Then∣∣∣∣∣∫

R
f j(t)ϕ(t) dt

∣∣∣∣∣ =
∣∣∣∣∣∣
∫
|t|≤δ j

f j(t)ϕ(t) dt +
∫
|t|≥δ j

f j(t)ϕ(t) dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
|t|≤δ j

f j(t)ϕ(t) dt

∣∣∣∣∣∣ +
∫
|t|≥δ j

| f j(t)ϕ(t)|dt

≤

(∫
|t|≤δ
| f j(t)|2 dt

)1/2 (∫
|t|≤δ
|ϕ(t)|2 dt

)1/2

+

∫
|t|≥δ j

| f j(t)ϕ(t)|dt.
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Since ( f j) j∈Z>0 converges in L2(R;F) it follows that

lim
j→∞

(∫
|t|≤δ
| f j(t)|2 dt

)1/2

< ∞.

Since ϕ is continuous it follows that

lim
j→∞

(∫
|t|≤δ
|ϕ(t)|2 dt

)1/2

= 0.

Thus lim j→∞ θ f j(ϕ) = 0, so showing that lim j→∞ θ f j(ϕ) = δ0(ϕ) only if ϕ(0) = 0. Thus
( f j) j∈Z>0 is not a delta-sequence. ■

Let us give an example that illustrates the difference between a sequence that is
a delta-sequence and one that is not.

3.7.26 Example (A non-delta-sequence) Define

f j =


√

j, j ∈ [0, 1
j ],

0, otherwise.

We then compute ∥ f j∥2 = 1, so (∥ f j∥2) j∈Z>0 converges. Clearly the sequence satisfies
all the conditions of Proposition 3.7.25, so is not a delta-sequence. In Figure 3.14 we
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Figure 3.14 A sequence of signals that is not a delta-sequence

show some terms in this sequence. The idea is that they do not blow up sufficiently
fast relative to the rate at which their domain shrinks. A delta-sequence must
maintain this “balance” in just the right way. The reader may explore this further
in Exercise 3.7.6, also cf. Exercise 3.1.1. •

Now we shall show that the delta-signal and its derivatives are the only distri-
butions which have a single point as their support.
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3.7.27 Proposition (Characterisation of distributions with point support) If θ ∈
D ′(R;F) has the property that supp(θ) = {t0} then there exists c1, . . . , cm ∈ F and
r1, . . . , rm ∈ Z≥0 such that

θ =
m∑

j=1

cjδ
(rj)
t0
.

Proof Since θ has compact support it has finite order k ∈ Z≥0. Then θ = θ(k+1)
fθ

for

fθ ∈ L(1)
loc(R;F), or θ = θ(k+2)

gθ for gθ ∈ C0(R;F). Since supp(θ) = {t0}, θ agrees with
the zero distribution on (−∞, t0) and (t0,∞). This means that on (−∞, t0) and (t0,∞)
the continuous signal gθ must be a polynomial of degree at most k + 1 (its derivative
of order k + 2 must vanish). Thus we can write, using the argument in the proof of
Theorem 3.7.21,

θ(ϕ) =
∫ t0

−∞

fL(t)ϕ(k+2)(t) dt +
∫
∞

t0

fR(t)ϕ(k+1)(t) dt,

where fL and fR are polynomials of degree at most k + 1. Furthermore, since gθ is
continuous we must have fL(t0) = fR(t0). Integrating by parts then gives θ(ϕ) as a
linear combination of ϕ(t0), ϕ(1)(t0), . . . , ϕ(k)(t0), thus giving the result. ■

As a corollary to this we have the following (obvious) property of the delta-
signal, showing that indeed one can give the delta-signal a continuous signal as an
argument. This generalises Theorem 3.2.50 which says that the delta-signal can
take differentiable signals as an argument.

3.7.28 Corollary (Order of derivatives for argument of derivatives of delta-signal)
Let θ ∈ E ′(R;F) be a linear combination of δt0 , δ

(1)
t0
, . . . , δ(k)

t0
. If ϕ1, ϕ2 ∈ E (R;F) satisfy

ϕ(j)
1 (t0) = ϕ(j)

2 (t0), j ∈ {0, 1, . . . ,k}, then θ(ϕ1) = θ(ϕ2).

Exercises

3.7.1 Show that ifϕ1, ϕ2 ∈ E (R;F) thenϕ1ϕ2 ∈ E (R;F). ThusE (R;F) is an algebra.
3.7.2 Which of the following locally integrable signals defines a distribution in

E ′(R;F)?
(a) f (t) = arctan(t).

finish

(b)
3.7.3 Which of the following signals is in E (R;F)? For signals not in E (R;F),

explain why they are not.
(a) f (t) = arctan(t).

finish

(b)
3.7.4 Which of the following locally integrable signals defines a distribution in

E ′(R;F)?
(a) f (t) = arctan(t).

finish

(b)
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3.7.5 Show that, if ϕ ∈ D (R;F) and θ ∈ D ′(R;F), then ϕθ ∈ E ′(R;F).
3.7.6 Let ( f j) j∈Z>0 have the following properties:

1. there exists M,T ∈ R>0 such that∫
|t|≥T
| f j(t)|dt < M, j ∈ Z>0;

2. for each δ ∈ (0, 1) the sequences ( f j|Iδ) j∈Z>0 and ( f j|I−δ) j∈Z>0 converge uni-
formly to zero, where Iδ = [δ, δ−1] and I−δ = [−δ,−δ−1];

3. (∥ f j∥1) j∈Z>0 diverges.
Show that ( f j) j∈Z>0 is not a delta-sequence.
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Section 3.8

Ultradistributions

In this section we consider another class of distributions. This class is used in
defining the Fourier transform of a distribution in Section 6.5. The test functions
we use in this section might appear particularly unmotivated. However, the appro-
priate motivation will appear in Section 6.5 when we show that the test functions
considered here are the continuous-continuous Fourier transform of test functions
fromD (R;F).

Do I need to read this section? This section provides the prerequisite material
for defining the CCFT of a distribution in 6.5. Moreover, the connection between
ultradistributions and the CCFT is very tight. Indeed, in this section we use some of
the basic results from Section 6.1 regarding the properties of the CCFT. Therefore,
to understand some of the proofs in this section will require reading Section 6.1.
In terms of whether the present section is required reading, it should be read prior
to, and maybe immediately prior to, one’s reading of Section 6.5. •

3.8.1 The test signal space for ultradistributions

Let us begin by defining the collection of test signals for our new class of
distributions. Let us give the definition for the moment, and then turn to discussing
the various properties of these test signals.

3.8.1 Definition (Z (R;F)) Z (R;F) denotes the set of signals ϕ for which there exists an
entire function aϕ : C→ C such that

(i) aϕ(t + i0) = ϕ(t) for all t ∈ R and
(ii) there exists constants a ∈ R>0 and Ck ∈ R≥0, k ∈ Z≥0, such that, for each

k ∈ Z≥0, we have |zkaϕ(z)| ≤ Ckea|Im(z)| for all z ∈ C. •

In the usual circumstances, we would at this point list a collection of signals
from Z (R;F), but this list will be absent here. There is a reason for this. As we
shall see in Theorem 6.5.1, to produce such signals requires computing FCC(ψ)
for ψ ∈ D (R;C). Explicit computations of this type are not easily done, and
would in any case produce signals that are not so recognisable. Thus the reader
should content themselves with understanding Z (R;C) simply as a collection of
test signals, some properties of which we enumerate above. Note that the same
comments apply to our previous collections of test signals D (R;C), S (R;C), and
E (R;C). While producing explicit examples of such signals helps us understand
the properties of the collection, the examples are not strictly necessary to apply the
theory of the associated distributions.

There is also a notion of convergence for test signals in Z (R;F), just as for all
classes of test signals we encountered previously.
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3.8.2 Definition (Convergence in Z (R;F)) A sequence (ϕ j) j∈Z>0 in Z (R;F) converges
to zero if

(i) there exists a ∈ R>0 and Ck ∈ R>0, k ∈ Z≥0, such that, for each j ∈ Z>0, the
inequality

|zkaϕ j(z)| ≤ Ckea|Im(z)|, z ∈ C,

holds, and
(ii) the sequence (aϕ j) j∈Z>0 converges uniformly to zero on any compact subset

K ⊆ C.
A sequence (ϕ j) j∈Z>0 inZ (R;F) converges to ϕ ∈ Z (R;F) if (ϕ j − ϕ) j∈Z>0 converges
to zero. •

Convergence in Z (R;F) leads to the definition of continuity for maps.

3.8.3 Definition (Continuous linear maps on Z (R;F)) A linear map L : D (R;F) → F
is continuous if the sequence (L(ϕ j)) j∈Z>0 of numbers converges to zero for every
sequence (ϕ j) j∈Z>0 of test signals converging to zero. •

Let us understand the relationship betweenZ (R;F) and the other spaces of test
signals. In the proof of the following result, we make use of Theorem 6.5.1 which
characterises Z (R;F) in terms of the continuous-continuous Fourier transform.

3.8.4 Proposition (Relationship of Z (R;F) with D (R;F) and S (R;F)) The following
statements hold:

(i) Z (R;F) ∩D (R;F) = {0};
(ii) Z (R;F) ⊆ S (R;F).

Proof For the first assertion, let ϕ ∈ D (R;F) ∩ Z (R;F). This means that there is an
interval [a, b] ⊆ R for which ϕ(t) = 0 for all t ∈ [a, b]. However, since aϕ is entire, this
implies that aϕ = 0 by analytic continuation.ref?

For the second assertion, since aϕ is entire, clearly ϕ is infinitely differentiable.
SinceFCC(ϕ) ∈ D (R;F) by Theorem 6.5.1, the signal t 7→ tkFCC(ϕ)(t) is also inD (R;F)
for every k ∈ Z>0. From Proposition 6.5.4 we deduce that ϕ(k)

∈ Z (R;F). From
property (ii) of Definition 3.8.1, taking z ∈ R, we conclude that ϕ ∈ S (R;F). ■

Let us record some facts that further elucidate the relationship betweenZ (R;C)
and S (R;C). Here again we make use of the continuous-continuous Fourier
transform to understand properties of Z (R;F).

3.8.5 Proposition (Further properties of Z (R;F) relative to S (R;F)) The following
statements hold:

(i) a sequence (ϕj)j∈Z>0 converging to zero inZ (R;F) also converges to zero inS (R;F);
(ii) Z (R;F) is a dense subspace of S (R;F).

Proof For the first assertion, note that by Theorem 6.5.6 that (FCC(ϕ j)) j∈Z>0 converges
to zero in D (R;F). This means that for each k ∈ Z≥0 the sequence (ρkFCC(ϕ j)) j∈Z>0

converges to zero where ρ(t) = t. Following Proposition 6.5.4 we may then conclude
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that for each k ∈ Z≥0 the sequence (ϕ(k)
j ) j∈Z>0 converges to zero in Z (R;F). Now note

that convergence to zero in Z (R;F) implies that for each k,m ∈ Z≥0 we have

lim
j→∞

sup
{
|tmϕ(k)

j (t)|
∣∣∣∣ t ∈ R

}
= 0,

so giving convergence to zero in S (R;F).
Let ϕ ∈ S (R;F) and by Theorem 3.11.3(i) choose a sequence (ψ j) j∈Z>0 inD (R;F)

converging toFCC(ϕ). The sequence (F CC(ψ j)) j∈Z>0 is then a sequence inZ (R;F) that
converges to ϕ by continuity of FCC. ■

3.8.2 Definition of ultradistributions

Now we consider the set of distributions defined usingZ (R;F) as test signals.

3.8.6 Definition (Ultradistribution) An ultradistribution is a continuous linear map
from Z (R;F) to F. The set of ultradistributions is denoted Z ′(R;F). •

Ultradistributions have defined on them the operations usual for distributions.
We list some of these. formalise this

1. Ultradistributions can be added and multiplied by complex scalars to give them
a F-vector space structure.

2. If θ ∈ Z ′(R;F) then one can define τ∗aθ ∈ Z ′(R;F) and σ∗θ ∈ Z ′(R;F) in the
same manner as these are defined for distributions. make sense of this for

a ∈ C

3. The derivative of an ultradistribution θ is defined by θ′(ϕ) = −θ(ϕ′). To make
sense of this, one must show that the setZ (R;F) is closed under differentiation,
but this is easy to do.

4. Let F ∈ {R,C}. Let χ̃ : C→ C be an entire function satisfying

|χ̃(z)| ≤ Cea|Im(z)|(1 + |z|k)

for some C, a ∈ R>0 and k ∈ Z≥0. Define χ(t) = χ̃(t + i0), supposing that χ is F-
valued. One can show easily that, ifϕ ∈ Z (R;F), thenχϕ ∈ Z (R;F). Therefore,
for such functions χ and for θ ∈ Z ′(R;F) one can define χθ ∈ Z ′(R;F) by
(χθ)(ϕ) = θ(χϕ).
We now turn to recording some of the basic properties of ultradistributions.

3.8.7 Proposition (Tempered distributions are ultradistributions) S ′(R;F) ⊆
Z ′(R;F).

Proof Since Z (R;F) ⊆ S (R;F) by Proposition 3.8.4 it follows that θ(ϕ) is well-
defined for θ ∈ S ′(R;F) and ϕ ∈ Z (R;F). Continuity of θ on Z (R;F) follows from
Proposition 3.8.5. ■

This then gives a whole collection of ultradistributions. For instance, signals of
slow growth define ultradistributions. One might hope that the set of distributions
is contained in the set of ultradistributions. This is not the case, however, as the
following counterexample shows.
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3.8.8 Examples (Ultradistributions)
1. Define f ∈ L(1)

loc(R;R) by f (t) = et2 . We claim that θ f ∈ D ′(R;R) but that θ f <
Z ′(R;R). That f ∈ D ′(R;R) follows from Proposition 3.2.12. However, since
Z (R;R) ⊆ S (R;R), the rapid decay conditions of test signals from S (R;R)
ensure that the integral ∫

R

et2
ϕ(t) dt

does not exist for every ϕ ∈ Z (R;R), and so f is not an ultradistribution.
2. Now let us take τ ∈ R \ {0} and consider τ∗iτδ, which we define as an ultradistri-

bution by
⟨τ∗iτδ;ϕ⟩ = aϕ(iτ),

where aϕ ∈ H(C;C) is as in Definition 3.8.1. We claim that τ∗iτδ does not define
a distribution. If it did, then it would have to be the case that τ∗iτδ = FCC(θ) for
some θ ∈ Z ′(R;C). Moreover, by Example 6.5.10, we must have θ = θE−2πτ .
Therefore, for ϕ ∈ D (R;C), we must have

⟨τ∗iτδ;ϕ⟩ = ⟨θE−2πτ ;FCC(ϕ)⟩.

However, since FCC(ϕ) ∈ Z (R;C) ⊆ S (R;C), the right-hand side of this ex-
pression is not defined. Thus τ∗iτδ0 is not a distribution. •

3.8.3 Properties of ultradistributions

Ultradistributions have defined with them a notion of convergence in the usual
manner.

3.8.9 Definition (Convergence in Z ′(R;F)) A sequence (θ j) j∈Z in Z ′(R;F)
(i) is a Cauchy sequence if (θ j(ϕ)) j∈Z>0 is a Cauchy sequence for everyϕ ∈ Z (R;F),

and
(ii) converges to an ultradistribution θ if, for every ϕ ∈ Z (R;F), (θ j(ϕ)) j∈Z>0

converges to θ(ϕ). •

One then has the hoped for relationship between Cauchy sequences and con-
vergent sequences.

3.8.10 Theorem (Cauchy sequences in Z ′(R;F) converge) A sequence (θj)j∈Z>0 in
Z ′(R;F) converges to some θ ∈ Z ′(R;F) if and only if it is Cauchy.

Proof This can be proved in the same manner as Theorem 3.2.22. We shall give a
proof that relies on the relationship ofZ ′(R;F) toD ′(R;F) via the CCFT, as described
in Section 6.5.

Let (θ j) j∈Z>0 be a Cauchy sequence in Z ′(R;F). Note that, for ϕ ∈ D (R;F), we
have

⟨F CC(θ j);ϕ⟩ = ⟨θ j;FCC(ϕ)⟩.
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Thus, we can immediately conclude that (F CC(θ j)) j∈Z>0 is a Cauchy sequence in
D ′(R;F). Therefore, by Theorem 3.2.22, it converges, say to ρ ∈ D ′(R;F). By continu-
ity of FCC as a mapping fromD ′(R;F) to Z ′(R;F) (Theorem 6.5.9), we can conclude
that (θ j) j∈Z>0 converges to FCC(ρ). ■

With this notion of convergence in mind, we state the following result, giving
an analogue of Taylor’s Theorem for ultradistributions.

3.8.11 Theorem (Taylor’s Theorem for ultradistributions) If θ ∈ Z ′(R;F) and a ∈ F
then

τ∗
−aθ =

∞∑
j=0

aj

j!
θ(j)

Proof Let ϕ ∈ Z and note that since aϕ is entire we may write

aϕ(t − a) =
∞∑
j=0

(−a) j

j!
aϕ(t),

this being valid for all a ∈ F. One has

FCC

 n∑
j=0

(−a) j

j!
ϕ( j)

 (t) =
n∑

j=0

(−a) j

j!
(2πit) jFCC(ϕ)(t),

using Proposition 6.5.5. Since FCC(ϕ) has compact support it follows that this series
will converge in D (R;F) to e−2πitaFCC(ϕ) = FCC(τ∗1ϕ) in the limit as n → ∞. By
Theorem 6.5.6 this means that

n∑
j=0

(−a) j

j!
ϕ( j)(t)

converges in Z (R;F) as n→ ∞. The result now follows by continuity of FCC and the
equality τ∗

−aθ(ϕ) = θ(τ∗aϕ). ■

It might be helpful to think of “τ−aθ(t) = θ(t + a),” noting that this notation is
something we are trying to avoid. This makes the relationship to Taylor’s Theorem
more transparent.

As with the test signals Z (R;F) we did not invest much effort in enumerating
explicit examples of ultradistributions. While it is true that tempered distributions
are ultradistributions, there are ultradistributions that are not tempered. However,
the best way to think of ultradistributions as being those objects which one gets
after applying the continuous-continuous Fourier transform to distributions. This
is what we do in Section 6.5.

3.8.4 Some deeper properties of ultradistributions

In Theorem 3.2.45 we saw that distributions are locally finite-order derivatives
of locally integrable signals. In Section 6.5 we shall show that ultradistributions
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arise naturally as Fourier transforms of distributions. One may anticipate that the
structure of distributions, combined with the Fourier transform, lead to structural
properties for ultradistributions. In this section we shall explore this connection.
We shall make free use of properties of the CCFT discussed in Chapter 6.

We recall from Definition 3.2.47 that the order of θ ∈ D ′(R;F) is the small-
est nonnegative integer k for which there exists a signal f ∈ L(1)

loc(R;F) satisfying
θ = θ(k+1)

f , if such a k exists. Let us denote by D ′per(R;F) the set of finite-order
distributions.

3.8.12 Definition (Finite-order ultradistribution) An ultradistribution θ ∈ Z ′(R;F) is a
finite-order ultradistribution if θ̂ = FCC(θ) ∈ D ′per(R;F). We denote by Zper(R;F)
the set of finite-order ultradistributions. •

We first establish a technical lemma.

3.8.13 Lemma (Entire functions lower bounded by a locally bounded function) If
f : R→ C is locally bounded as in Definition II-1.3.30, then there exists an entire function
Φ ∈ H(C;C) with no zeros and satisfying |Φ(t)| ≥ |f(t)| for all t ∈ R.

Proof Define g : R≥0 → C by

g(s) =

sup{| f (t)| | |t| ≤ s}, s ≥ 0,
sup{| f (t)| | |t| ≤ −s}, s < 0.

It then suffices to show that there exists an entire function Φ ∈ H(C;C) with no zeros
and satisfying |Φ(s)| ≥ g(s) for s ∈ R≥0.

To this end, define

g∗(s) = sup{log(1 + |g(t)|) | t ∈ [0, s]}, s ∈ R≥0.

Note that g∗ is nonnegative-valued and nondecreasing. Let (a j) j∈Z≥0 and (b j) j∈Z≥0 be
sequences in R>0 satisfying
1. a j ≤ a j+1 and b j ≤ b j+1, j ∈ Z,

2. there exists α ∈ (1,∞) such that
a j

b j
= α, j ∈ Z, and

3. lim j→∞ b j = ∞.
For each j ∈ Z>0, let k j ∈ Z>0 be such that(

a j

b j

)k j

≥ g∗(a j+1),

and suppose, without loss of generality, that k j < k j+1, j ∈ Z>0. By and since lim j→∞ b j =radius of convergence of

complex power series
∞, the power series

∞∑
j=1

(
z
b j

)k j
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has an infinite radius of convergence. Then define

Ψ(z) = g∗(a1) +
∞∑
j=1

(
z
b j

)k j

,

and note that x 7→ Ψ(x) is nonnegative-valued and increasing for x ∈ R≥0. Moreover,
for x ∈ [a j, a j+1], we have

Ψ(x) ≥ Ψ(a j) ≥
(

a j

b j

)k j

≥ g∗(a j+1) ≥ g∗(x) ≥ log(1 + g(x)).

Now, if we take Φ(z) = eΨ(z), then we have, for x ∈ R≥0,

Φ(x) = eΨ(x)
≥ 1 + g(x) ≥ g(x).

Since Φ has no zeros, the lemma is proved. ■

Next let us introduce some notation which will be useful in expressing our
structural result. Let α ∈ H(C;C) be entire and, by , write taylor

α(z) =
∞∑
j=0

a jz j, z ∈ C.

Associated with α, we propose to define Dα : Z (R;C)→ Z (R;C) by

Dα(ϕ)(ν) =
∞∑
j=0

( 1
2πi

) j

a jϕ
( j)(ν).

Let us prove a useful property of the mapping Dα.

3.8.14 Lemma (An infinite-order differential operator on Z (R;C)) For α ∈ H(C;C), Dα

is a continuous linear map from Z (R;C) to Z (R;C).
Proof For ϕ ∈ Z (R;C), let ϕ̂ ∈ D (R;C) be such that ϕ̂ = FCC(ϕ). Then

ϕ(ν) =
∫
R
ϕ̂(t)e2πiνt dt

and differentiating under the integral sign (which is valid since ϕ̂has compact support),

ϕ( j)(ν) = (2πi) j
∫
R

t jϕ̂(t)e2πiνt dt, j ∈ Z≥0.

Therefore,
∞∑
j=0

( 1
2πi

) j
a jϕ

( j)(ν) =
∞∑
j=0

∫
R

t jϕ̂(t)e2πiνt dt

=

∫
R

 ∞∑
j=0

t j

 ϕ̂(t)e2πiνt dt

=

∫
R
α(t + i0)ϕ̂(t)e2πiνt dt,
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using the Dominated Convergence Theorem which is valid since ϕ̂ has compact sup-
port. This shows that

Dα(ϕ) = F CC(αϕ̂), (3.16)

and this shows that Dα has the desired properties since ϕ̂ 7→ αϕ̂ is continuous by
Example 3.2.11–2 and since F CC is continuous by Theorem 6.5.6. ■

We can now characterise finite-order ultradistributions. In the statement of the
result we make use of the following variation of Dα:

Dα(ϕ)(ν) =
∞∑
j=0

(
−

1
2πi

) j

a jϕ
( j)(ν).

We note that Dα is “dual” to Dα in the sense that

⟨Dα(ϕ);ψ⟩ = ⟨ϕ; Dα(ψ)⟩,

for ϕ,ψ ∈ Z (R;C).

3.8.15 Theorem (Characterisation of finite-order ultradistributions) If θ ∈ Zper(R;C),
then there exist α ∈ H(C;C) and f ∈ C0

0(R;C) such that

θ =
k∑

l=0

Dα(k−l)

((
k
l

)
((2πi)lρlθf)

)
.

Proof For θ ∈ Zper(R;C), let θ̌ = F CC(θ) ∈ Dper(R;C). Then, for ϕ ∈ Z (R;C), denote
ϕ̂ = FCC(ϕ) ∈ D (R;C). By Theorem 3.2.45 we have f ∈ C0(R;C) and k ∈ Z≥0 such
that

θ(ϕ) = θ̌(ϕ̂) = (−1)r
∫
R

f (t)ϕ̂(k)(t) dt.

By Lemma 3.8.13, let Φ ∈ H(C;C) be an entire function without zeros for which
t 7→ f (t)/Φ(t) is bounded on R. Thus, if α(z) = (1 + z2)Φ(z), α is an entire function such
that

t 7→ gα(t) ≜
f (t)
α(t)

is integrable. Define ρk : R → R by ρk(ν) = νk. By a double induction, one can prove
that

d j

dν j (νkϕ(ν)) =
k∑

l=0

(
k
l

)
j( j − 1) · · · ( j − l)νk−lϕ( j−l)(ν).

Let us also note that

α(l)(z) =
∞∑
j=0

j( j − 1) · · · ( j − l)a j︸                ︷︷                ︸
a(l)

j

z j−l,
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with the convention that a(l)
j = 0 for l ≥ j. Using this we compute

θ(ϕ) =
∫
R

gα(t)(−1)kα(t)ϕ̂(k)(t)

=

∫
R
FCC(gα)(ν)(−1)kF CC(αϕ̂(k))(ν) dν

=

∫
R
FCC(gα)(ν)(−1)kDα((−2πi)kρkϕ)(ν) dν

=

∫
R
FCC(gα)(ν)(2πi)k

 ∞∑
j=0

( 1
2πi

) j
a j(ρkϕ)( j)

 (ν) dν

=

∫
R
FCC(gα)(ν)(2πi)k

 ∞∑
j=0

( 1
2πi

) j
a j

k∑
l=0

(
k
l

)
j( j − 1) · · · ( j − l)νk−lϕ( j−l)(ν)

 dν

=

∫
R
FCC(gα)(ν)(2πi)k

 k∑
l=0

(
k
l

)
νk−l

∞∑
j=0

( 1
2πi

) j
j( j − 1) · · · ( j − l)a jϕ

( j−l)(ν)

 dν

=

∫
R
FCC(gα)(ν)(2πi)k−l

 k∑
l=0

(
k
l

)
νk−l

∞∑
j=0

( 1
2πi

) j−l
a(l)

j ϕ
( j−l)(ν)

 dν

=

∫
R

k∑
l=0

(
k
l

)
(2πiν)lFCC(gα)(ν)Dα(k−l)(ϕ)(ν) dν

=

k∑
l=0

〈
Dα(k−l)

((
k
l

)
((2πi)lρlFCC(gα))

)
;ϕ

〉
,

also using Fourier reciprocity (Proposition 6.1.9), (3.16), and Proposition 6.1.12. The
result follows by taking f = FCC(gα). ■

The result can be read as follows: a finite-order ultradistribution is a finite sum
of infinite-order differential operators applied to a bounded continuous function
as distributional derivatives.

Exercises

3.8.1
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Section 3.9

Periodic distributions

The next class of distributions we consider are those that are periodic. The
development proceeds much as has been the case in the development of the sets
D ′(R;F), S ′(R;F), and E ′(R;F) of generalised signals.

Do I need to read this section? The material in this section is important in the
development of the continuous-discrete Fourier transform of Chapter 5. In partic-
ular, if the reader is interested in understanding in a complete way the relationships
between the four Fourier transforms we present, then the material in this section
is important. •

3.9.1 Periodic test signals

Let us get straight to it.

3.9.1 Definition (Periodic test signal) A T-periodic test signal is a signal ψ : R → F
with the properties

(i) ψ is infinitely differentiable and
(ii) ψ(t + T) = ψ(t) for all t ∈ R.

The number T is the period for ψ, and the set of periodic test signals with period T
is denotedDper,T(R;F). •

3.9.2 Remark (Dper,T(R;F) is a vector space) One can easily verify that Dper,T(R;F) is
a subspace of the F-vector space FR. •

Let us consider some examples of periodic test signals.

3.9.3 Examples (Periodic test signals)
1. Harmonic signals, as discussed in Section 1.1.6, are certainly periodic test sig-

nals. Thus the signals t 7→ sin(2πn t
T ), t 7→ cos(2πn t

T ), n ∈ Z≥0, are R-valued
T-periodic test signals, and the signals t 7→ e2πin t

T , n ∈ Z, areC-valued T-periodic
test signals.

2. If ϕ ∈ D (R;F) then we may construct from ϕ a natural T-periodic test signal by

perT(ϕ)(t) =
∑
j∈Z

ϕ(t − jT). (3.17)

Note that since ϕ has compact support, for each fixed t the sum in (3.17) is
actually finite.
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3. There is a particularly interesting collection of periodic test signals of the sort
described above. A test signal υ ∈ D (R;F) is T-unitary if

perT(υ)(t) = 1

for each t ∈ R. The set of T-unitary signals is denoted UT(R;F). This way
of constructing periodic signals from aperiodic signals can be carried out in a
general setting, and this is done in Section 8.1.2.
The prototypical unitary test signal is

υT(t) =


1
c

∫ T

|t|
exp

(
−

T2

τ(T − τ)

)
dτ, t ∈ (−T,T),

0, otherwise,

where

c =
∫ T

0
exp

(
−

T2

τ(T − τ)

)
dτ.

In Figure 3.15 we plot υT. To check that this test signal is unitary we first note

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.15 The unitary test signal υT for T = 1

that it is indeed infinitely differentiable. It is obviously differentiable away from
t = 0 by virtue of the same arguments by which ⋏ is infinitely differentiable.
At t = 0 one can check that the value of the signal is 1, and that all derivatives
from the left and right are zero, cf. Example I-3.7.28–2. This shows that υT is
infinitely differentiable. We also note that the sum∑

n∈Z

υT(t − nT)
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will, for a fixed t, be comprised of at most two summands. Indeed, if t ∈
[ jT, ( j + 1)T] then∑

n∈Z

υT(t − nT) = υT(t − jT) + υT(t − ( j + 1)T)

=
1
c

(∫ T

|t− jT|
exp

(
−

T2

τ(T − τ)

)
dτ

+

∫ T

|t−( j+1)T|
exp

(
−

T2

τ(T − τ)

)
dτ

)
.

Note that the integrand exp
(
−

T2

τ(T−τ)

)
is positive and symmetric about T

2 . Also
note that the lower limits on the above two integrals are symmetric about T

2 .
Therefore ∫ T

|t−( j+1)T|
exp

(
−

T2

τ(T − τ)

)
dτ =

∫
|t− jT|

0
exp

(
−

T2

τ(T − τ)

)
dτ.

This then gives ∑
n∈Z

υT(t − nT) =
1
c

∫ T

0
exp

(
−

T2

τ(T − τ)

)
dτ = 1,

as desired. •

As usual, it is important to specify a notion of convergence for the set of periodic
test signals.

3.9.4 Definition (Convergence in Dper,T(R;F)) A sequence (ψ j) j∈Z>0 inDper,T(R;F) con-
verges to zero if, for each r ∈ Z≥0, the sequence (ψ(r)

j ) j∈Z>0 converges to zero uni-
formly. A sequence (ψ j) j∈Z>0 in Dper,T(R;F) converges to ψ ∈ Dper,T(R;F) if the
sequence (ψ j − ψ) j∈Z>0 converges to zero. •

Note that there are none of the domain issues with convergence inDper,T(R;F) as
arise withD (R;F), S (R;F), and E (R;F). This is because, by virtue of periodicity,
a convergent sequence in Dper,T(R;F) can be understood by its behaviour on the
compact set [0,T].

3.9.5 Examples (Convergence in Dper,T(R;F))
1. For k ∈ Z>0 the sequence ( 1

nk sin(2πn t
T ))n∈Z>0 does not converge to zero in

Dper,T(R;F). The reason for this is that dk

dtk
1
nk sin(2πn t

T ) will be of the form
±(2π

T )k sin(2πn t
T ) or ±( 2π

T )k cos(2πn t
T ) so that the sequence ( dk

dtk
1
nk sin(2πn t

T ))n∈Z>0

does not converge uniformly to zero.
2. The sequence (e−n sin(2πn t

T ))n∈Z>0 does converge to zero inDper,T(R;F) since all
derivatives will converge to zero uniformly in [0,T]. •

One also defines the notion of continuity of maps with domainDper,T(R;F).
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3.9.6 Definition (Continuous linear maps on Dper,T(R;F)) A linear map
L : Dper,T(R;F) → F is continuous if the sequence (L(ψ j)) j∈Z>0 converges to zero
for every sequence (ψ j) j∈Z>0 that converges to zero inDper,T(R;F). •

This seems rather like everything that has preceded it thus far. However, there
is some useful additional structure forDper,T(R;F) that we have not yet revealed.

3.9.7 Proposition (Periodic test signals come from test signals) If ψ ∈ Dper,T(R;F),
then there exists ϕ ∈ D (R;F) such that ψ = perT(ϕ).

Proof Let υ ∈ UT(R;F). Note that ψυ ∈ D (R;F) since υ has compact support. We also
have ∑

n∈Z

ψ(t − nT)υ(t − nT) = ψ(t)
∑
n∈Z

υ(t − nT) = ψ(t),

by periodicity ofψ and since υ is unitary. The result therefore follows by takingϕ = ψυ.
■

3.9.2 Definition of periodic distributions

Let us begin with a preliminary construction. Recall from Example 1.1.6–1
the definition of τt0 : R → R by τt0(t) = t − t0 and from Example 1.1.13–1 the
notation τ∗t0

f (t) = f ◦ τt0(t) = f (t − t0) for f : R→ F. If θ ∈ D ′(R;F) then we define
τ∗t0
θ ∈ D ′(R;F) by τ∗t0

θ(ϕ) = θ(τ∗
−t0
ϕ). In particular, if θ = θ f for f ∈ L(1)

loc(R;F) then

τ∗t0
θ f (ϕ) =

∫
R

f (t)ϕ(t + t0) dt =
∫
R

f (t − t0)ϕ(t) dt = θτ∗t0 f (ϕ).

With this as motivation, it makes sense to say that θ ∈ D ′(R;F) is, by definition,
T-periodic if τ∗Tθ = θ. Note that there is no need for periodic test signals in this
definition! Let us, therefore, make a definition using Dper,T(R;F), and then show
that it agrees with the natural definition we just gave in the absence ofDper,T(R;F).

Our definition is as follows.

3.9.8 Definition (Periodic distribution) A T-periodic distribution is a continuous lin-
ear map from Dper,T(R;F) to F. The set of T-periodic distributions is denoted
D ′per,T(R;F). •

3.9.9 Remark (D ′
per,T

(R;F) is a vector space) It is easy to check that D ′per,T(R;F) is a
subspace of D ′(R;F). The inclusion is proved below in Theorem 3.9.10, and the
inheritance of the vector space structure is then readily verified.

Now we can show that this definition of D ′per,T(R;F) agrees with our alternate
characterisation above.



216 3 Distributions in the time-domain 2022/03/07

3.9.10 Theorem (Periodic distributions are. . . periodic distributions) There exists a
natural isomorphism fromD ′per,T(R;F) to the subspace

D ′T(R;F) = {θ ∈ D ′(R;F) | τ∗Tθ = θ}

of D ′(R;F).
Proof We shall construct the inverse of the stated isomorphism. Let υ ∈ UT(R;F) and
define a map ιυ : D ′T(R;F)→ Dper,′T(R;F) by

ιυ(θ)(ψ) = θ(υψ), θ ∈ D ′T(R;F), ψ ∈ Dper,T(R;F).

For ιυ to make sense we must show that ιυ(θ) is continuous. Let (ψ j) j∈Z>0 be a sequence
converging to zero in Dper,T(R;F). It is then clear that (υψ j) j∈Z>0 converges to zero
in D (R;F) since supp(υψ j) = supp(υ), j ∈ Z>0. We next claim that ιυ is actually
independent of υ. That is to say, if υ1, υ2 ∈ UT(R;F) then we have ιυ1 = ιυ2 . To see this,
we first note that, if θ ∈ D ′T(R;F), υ ∈ UT(R;F), and ϕ ∈ D (R;F), then

θ(ϕ) = θ

∑
n∈Z

τ∗nTυϕ

 =∑
n∈Z

θ(τ∗nTυϕ) =

∑
n∈Z

τ∗nTυθ

 (ϕ).

Therefore,

θ(υ1ψ) =

∑
n∈Z

τ∗nTυ2θ

 (υ1ψ) =

∑
n∈Z

(τ∗nTυ2)υ1θ

 (ψ)

=

∑
n∈Z

υ2τ
∗

−nT(υ1θ)

 (ψ) =

∑
n∈Z

τ∗nTυ1θ

 (υ2ψ) = θ(υ2ψ).

This then establishes a natural linear map, which we denote simply by ι, fromD ′T(R;F)
toD ′per,T(R;F). We now show that ι is an isomorphism.

First let us show that ι is surjective. Let θ ∈ D ′per,T(R;F). For ϕ ∈ D (R;F) define

θ̃ ∈ D (R;F) by θ̃(ϕ) = θ(perT(ϕ)). We claim that θ̃ ∈ D ′T(R;F). This is clear since for
ϕ ∈ D (R;F) we have

τ∗Tθ̃(ϕ) = θ̃(τ∗Tϕ) = θ(τ∗T perT(ϕ)) = θ(perT(ϕ)) = θ̃(ϕ).

We also claim that ι(θ̃) = θ. Let υ ∈ UT(R;F). From the proof of Proposition 3.9.7 note
that for any ψ ∈ Dper,T(R;F) we may write ψ = perT(ϕ) where ϕ = υψ. We then have

ι(θ̃)(ψ) = θ̃(υψ) = θ̃(ϕ) = θ(perT(ϕ)) = θ(ψ),

as desired, and so showing that ι is surjective.
We lastly show that ι is injective. Suppose that ι(θ) = 0. Then ι(θ)(ψ) = 0 for every

ψ ∈ Dper,T(R;F). In particular, ι(θ)(perT(ϕ)) = 0 for every ϕ ∈ D (R;F), meaning that
θ(ϕ) = 0 for every ϕ ∈ D (R;F). Thus θ = 0, so showing injectivity of ι. ■

Although the proof of the theorem is a little long-winded, it is elementary in
that there are no difficult ideas to digest. But more importantly, it allows us to
think of elements of D ′per,T(R;F) as distributions in the usual sense, and we shall
subsequently do this without notice in the sequel. For this reason it is worth
reproducing the following corollary that explicitly describes the isomorphism of
Theorem 3.9.10.
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3.9.11 Corollary (Explicit characterisation of periodic distributions) For θ ∈ D ′(R;F)
and T ∈ R>0 the following are equivalent:

(i) τ∗Tθ = θ;
(ii) there exists a unique θ̃ ∈ D ′per,T(R;F) such that, for all υ ∈ UT(R;F),

θ̃(ψ) = θ(υψ), ψ ∈ Dper,T(R;F);

(iii) there exists a unique θ̃ ∈ D ′per,T(R;F) such that

θ(ϕ) = θ̃

∑
j∈Z

τ∗jTϕ

 , ϕ ∈ D (R;F).

In contrast to the statement of the corollary, we shall not distinguish between
a distribution θ ∈ D ′T(R;F) that is T periodic and the corresponding periodic
distribution. We will accept the notational confusion of this, and we note that
the confusion is resolved by knowing what is the argument of θ. The corollary
establishes the rule for going from one interpretation of θ to the other.

With these characterisations of T-periodic distributions, let us look at some
examples.

3.9.12 Examples (Periodic distributions)
1. Let f ∈ L(1)

per,T(R;F). Note that as an element inD (R;F) we have θ f ∈ D ′T(R;F).
Therefore, we may think of θ f ∈ D ′per,T(R;F). Using Corollary 3.9.11 let us
compute θ f (ψ) for ψ ∈ Dper,T(R;F). For an arbitrary υ ∈ UT(R;F) and a ∈ R, we
have

θ f (ψ) =
∫
R

f (t)υ(t)ψ(t) dt

=
∑
n∈Z

∫ a+(n+1)T

a+nT
f (t)υ(t)ψ(t) dt

=
∑
n∈Z

∫ a+T

a
f (t + nT)υ(t + nT)ψ(t + nT) dt

=

∫ a+T

a
f (t)

∑
n∈Z

υ(t − nT)ψ(t) dt

=

∫ a+T

a
f (t)ψ(t) dt.

Thus we determine θ f (ψ) is computed by integrating over any interval of length
T in R.
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2. The delta-comb with period T is the T-periodic distribution defined by

⋔T=
∑
n∈Z

δnT.

Note that this is well-defined as an element ofD ′(R;F), and that it is clearly in
D ′T(R;F). To compute how ⋔T acts on an element of Dper,T(R;F) we again use
Corollary 3.9.11 and compute, for ψ ∈ Dper,T(R;F),

⋔T (ψ) =⋔T (υψ) =
∑
n∈Z

δnT(υψ) =
∑
n∈Z

υ(nT)ψ(nT) = ψ(0)
∑
n∈Z

υ(nT) = ψ(0).

This is analogous to the preceding example if one properly understands the
symbols. That is to say, suppose that a ∈ [(m − 1)T,mT]. Then we can write

⋔T (ψ) =
∫ a+T

a
⋔T (t)ψ(t) dt =

∫ a+T

a

∑
n∈Z

δnT(t)ψ(t) dt = ψ(mT) = ψ(0).

These sorts of manipulations are perfectly acceptable, provided one under-
stands what they actually mean!

3. We claim that, for k ∈ Z>0, ⋔(k)
T (ψ) = (−1)kψ(k)(0) for every ψ ∈ Dper,T(R;F).

Indeed,

⟨⋔(k)
T ;ψ⟩ = (−1)k

⟨⋔T; (υψ)(k)
⟩ = (−1)k

∑
j∈Z

(υψ)(k)( jT)

= (−1)k
∑
j∈Z

k∑
l=0

(
k
l

)
υ(l)( jT)ψ(k−l)( jT)

= (−1)k
k∑

l=0

ψ(k−l)(0)
∑
j∈Z

υ(l)( jT) = (−1)kψ(k)(0),

using the fact that ∑
j∈Z

υ(t − jT) = 1, t ∈ R. •

3.9.3 Properties of periodic distributions

In this section we record some of the basic facts about distributions with compact
support. Many of these follow, directly or with little effort, from their counterparts
for distributions.

Since D ′per,T(R;F) ⊆ D ′(R;F), we have, in principle, a notion of convergence
inherited from D (R;F). However, let us give a definition of convergence using
Dper,T(R;F).
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3.9.13 Definition (Convergence in D ′
per,T

(R;F)) A sequence (θ j) j∈Z>0 inD ′per,T(R;F) is

(i) a Cauchy sequence if (θ j(ψ)) j∈Z>0 is a Cauchy sequence for every ψ ∈
Dper,T(R;F), and

(ii) converges to a distribution θ with compact support if for every ψ ∈

Dper,T(R;F), the sequence of numbers (θ j(ψ)) j∈Z>0 converges to θ(ψ). •

Now we relate this notion of convergence to that inherited fromD ′(R;F).

3.9.14 Theorem (Convergence in D ′
per,T

(R;F)) If (θj)j∈Z>0 is a sequence in D ′T(R;F) ⊆
D ′(R;F) that converges to θ ∈ D ′(R;F), then θ ∈ D ′T(R;F). Furthermore, such a
sequence in D ′T(R;F) converges in D ′(R;F) if and only if the corresponding sequence in
D ′per,T(R;F) determined by Theorem 3.9.10 converges inD ′per,T(R;F).

In particular, a sequence (θj)j∈Z>0 inD ′per,T(R;F) is a Cauchy sequence if and only if it
converges.

Proof For the first statement we need to show that τ∗Tθ = θ. We have

τ∗Tθ(ϕ) = θ(τ∗
−Tϕ) = lim

j→∞
θ j(τ∗−Tϕ) = lim

j→∞
τ∗Tθ j(ϕ) = lim

j→∞
θ j(ϕ) = θ(ϕ),

this holding for any ϕ ∈ D (R;F).
For the second assertion, let ψ ∈ Dper,T(R;F), assuming that ψ = perT(ϕ) for

ϕ ∈ D (R;F). We then have

lim
j→∞

ι(θ j)(ψ) = lim
j→∞

θ j(perT(ϕ)) = θ(perT(ϕ)) = ι(θ)(ψ),

thus giving convergence in D ′per,T(R;F) from convergence in D ′(R;F). If (ι(θ j)) j∈Z>0

converges inD ′per,T(R;F) and if ϕ ∈ D (R;F) then we have

lim
j→∞

θ j(ϕ) = lim
j→∞

ι(θ j)(perT(ϕ)) = ι(θ)(ϕ) = θ(ϕ),

thus showing convergence inD ′(R;F).
The final assertion will follow if we can show that a sequence in D ′per,T(R;F) is

Cauchy if and only if the corresponding sequence inD ′T(R;F) is Cauchy. This follows
from the same sort of arguments as used in the preceding part of the proof, and we
leave the trivial working out of this to the reader. ■

Let us give the analogue for distributions with compact support of the fact that
locally integrable signals are distributions. We recall from Definition III-2.9.4 the
notion of the support of a measurable signal.

3.9.15 Proposition (Periodic integrable signals are periodic distributions) If f : R →
F is a T-periodic locally integrable signal then θf ∈ D ′per,T(R;F). Moreover, if f1, f2 : R→
F are periodic locally integrable signals for which θf1 = θf2 , then f1(t) = f2(t) for almost
every t ∈ R.
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Proof From Proposition 3.2.12 we know that θ f ∈ D
′(R;F). Thus we need only show

that θ f is T-periodic. This, however, is elementary. For ψ ∈ Dper,T(R;F) we have

τ∗Tθ f = θτ∗T f = θ f ,

using the computation preceding Definition 3.9.8.
The last assertion follows the similar assertion in Proposition 3.2.12. ■

Periodic signals also show up to give a natural class of signals which can be
multiply periodic distributions.

3.9.16 Proposition (Periodic distributions can be multiplied by smooth periodic sig-
nals) Let θ ∈ D ′per,T(R;F) and let ψ0 : R → F be a T-periodic infinitely differentiable
signal. Then the map

Dper,T(R;F) ∋ ψ 7→ θ(ψ0ψ) ∈ F

defines an element of D ′per,T(R;F).
Proof Linearity of the map is clear. To prove continuity, let (ψ j) j∈Z>0 be a sequence in
Dper,T(R;F) converging to zero. We claim that (ψ0ψ j) j∈Z>0 is also a sequence converging
to zero inDper,T(R;F).

It is clear that ψ0ψ j ∈ Dper,T(R;F) for each j ∈ Z>0, so we need only show that
(ψ0ψ j) j∈Z>0 converges to zero inDper,T(R;F). By Proposition I-3.2.11 the signal (ψ0ψ j)(r)

is a sum of products formed by signals that are bounded on with signals that converge
uniformly to zero on K. Thus ((ψ0ψ j)(r)) j∈Z>0 converges uniformly to zero, giving the
desired conclusion.

Thus the result follows since

lim
j→∞

θ(ψ0ψ) = 0

for every sequence (ψ j) j∈Z>0 converging to zero inDper,T(R;F). ■

The notions of regular, singular, support, and singular support are applied to
D ′per,T(R;F) by restriction fromD ′(R;F).

One can differentiate periodic distributions as they are distributions. It turns
out that the derivative is again a periodic distribution.

3.9.17 Proposition (The derivative of a periodic distribution is a periodic distribu-
tion) If θ ∈ D ′per,T(R;F) then θ′ ∈ D ′per,T(R;F). Moreover, for ψ ∈ Dper,T(R;F), we
have θ′(ψ) = −θ(ψ′).

Proof Let ϕ ∈ D (R;F). Then

τ∗Tθ
′(ϕ) = θ′(τ∗

−Tϕ) = −θ((τ∗
−Tϕ)′) = −θ(τ∗

−Tϕ
′) = −τ∗Tθ(ϕ) = −θ(ϕ′) = θ′(ϕ),

showing that θ′ ∈ D ′per,T(R;F).
Now let ψ ∈ Dper,T(R;F) and υ ∈ UT(R;F). Compute

θ′(ψ) = θ′(υψ) = −θ((υψ)′)

= − θ

∑
j∈Z

τ∗jT(υψ)′
 = −θ(ψ′),
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as desired. ■

One can talk about periodic distributions of finite order, and periodic distribu-
tions are always locally of finite order by virtue of their being distributions. We
shall see in Theorem 3.9.19 that even more is true for distributions with compact
support.

3.9.4 Some deeper properties of periodic distributions

We have already shown that there is a natural way the consider a periodic
distribution as a regular distribution. Next we verify that periodic distributions
are of slow growth.

3.9.18 Theorem (Periodic distributions are tempered distributions) D ′per,T(R;F), as a
subspace of D ′(R;F), is a subspace of S ′(R;F).

Proof Takeθ ∈ D ′per,T(R;F) and regard this as an element ofD ′(R;F). Letϕ ∈ D (R;F)
have the following properties:
1. supp(ϕ) ⊆ (0,T);
2. there is a neighbourhood of T

2 on which ϕ takes the value 1;
3. ϕ(t) ∈ [0, 1] for all t ∈ R.
Then define ψ ∈ Dper,T(R;F) to be the T-periodic extension of ϕ. We can then write
θ = ψθ + (1 − ψ)θ, and we shall show that each summand is in S ′(R;F). If θ1 = ϕθ
and θ2 = (1 − ϕ)θ then θ1, θ2 ∈ E ′(R;F). Furthermore,

θ =
∑
n∈Z

τ∗nTθ1 +
∑
n∈Z

τ∗nTθ2.

The result will then follow if we can show that, for any distribution βwith compact
support, it follows that the sequence ∑

|n|≤N

τ∗nTβ

of partial sums converges in S ′(R;F). By Theorem 3.7.19, this will in turn follow if
we can show that, for f ∈ C0

cpt(R;F), the sequence∑
|n|≤N

τ∗nTθ
(r)
f

of partial sums converges in S ′(R;F) for r ∈ Z≥0. So let χ ∈ S (R;F), f ∈ C0
cpt(R;F),

and r ∈ Z≥0. For convenience, and without loss of generality, we suppose that
supp( f ) = [0, a] for some a ∈ R>0. Since χ ∈ S (R;F) we have

|χ(r)(t)| ≤
M

(1 + t2)3
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for some M ∈ R>0. We may choose N sufficiently large that if t ∈ supp(τ∗NT f ) then
(1 + t2)−1

≤ ϵ. In this case we have

|(τ∗nT f )(t)ϕ(r)(t)| ≤
M∥ f ∥∞
(1 + t2)3 ≤

M∥ f ∥∞ϵ
(1 + t2)2 ≤

M∥ f ∥∞ϵ
(1 + (nT)2)(1 + t2)

for all n ≥ N and t ∈ R. Therefore it follows that by taking N sufficiently large we have∣∣∣∣∣∣∣∑
|n|≥N

τ∗nTθ
(r)
f (χ)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∑
|n|≥N

(−1)r
∫
R

(τnT f )(t)χ(r)(t) dt

∣∣∣∣∣∣∣ ≤ ∑
|n|≥N

∫
R
|τnT f )(t)χ(r)(t)|dt

≤

∑
|n|≥N

∫
R

M∥ f ∥∞ϵ
(1 + (nT)2)(1 + t2)

dt =
1
2

M∥ f ∥∞πϵ
∑
|n|≥N

1
1 + (nT)2 .

Since the series in the preceding expression converges, this shows that by taking N
sufficiently large we can make ∣∣∣∣∣∣∣∑

|n|≥N

τ∗nTθ
(r)
f (χ)

∣∣∣∣∣∣∣
as small as we like, which shows that

∑
n∈Z τ

∗

nTθ
(r)
f converges in S ′(R;F), so giving

the result. ■

The following result now follows easily from Theorem 3.3.23, and provides the
useful property of finite order for periodic generalised signals.

3.9.19 Theorem (Periodic distributions are finite-order derivatives of periodic sig-
nals) If θ ∈ D ′per,T(R;F) then there exists r ∈ Z≥0 and a T-periodic signal f ∈ C0(R;F)

such that θ(ψ) = θ(r)
f (ψ) for every ψ ∈ Dper,T(R;F).

Proof From the proof of Theorem 3.9.18 we have

θ =
∑
n∈Z

τ∗nTθ1 +
∑
n∈Z

τ∗nTθ2,

for distributions θ1, θ2 ∈ E ′(R;F) with support in (0,T). Using Theorem 3.7.19 we
may then write

θ j =

m j∑
k j=1

θ
(r j,kj )

f j,kj

for continuous signals f j,k j , j ∈ {1, 2}, k j ∈ {1, . . . ,m j}, with compact support. Note that

τ∗nTθ
(r j,kj )

f j,kj
= θ

(r j,kj )

τ∗nT f j,kj
, n ∈ Z, j ∈ {1, 2}, k j ∈ {1, . . . ,m j}.

Thus

θ =
∑
n∈Z

2∑
j=1

m j∑
k j=1

θ
(r j,kj )

τ∗nT f j,kj
=

m∑
j=1

θ
(r j)
g j
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where m = m1 +m2, g1, . . . , gm are the T-periodic continuous signals given by

g j =


∑

n∈Z τ
∗

nT f1, j, j ∈ {1, . . . ,m1},∑
n∈Z τ

∗

nT f2,m1+ j, j ∈ {m1 + 1, . . . ,m1 +m2},

and where

r j =

r1, j, j ∈ {1, . . . ,m1},

r2,m1+ j, j ∈ {m1 + 1, . . . ,m1 +m2}.

Now we claim that for any T-periodic signal f and r ∈ Z>0 there exists a T-periodic
solution g to the equation g(r) = f . This can be shown inductively, and the essential
idea is contained in the argument when r = 1. In this case we define

g(t) =
∫ t

0
f (τ) dτ −

∫ T

0
f (τ) dτ,

and we note that

g(t + T) =
∫ t+T

0
f (τ) dτ =

∫ t

0
f (τ) dτ +

∫ t+T

t
f (τ) dτ = g(t),

so showing that g is T-periodic. We then take r = max{r1, . . . , rm1+m2} and then define

h j, j ∈ {1, . . . ,m}, to be T-periodic signals satisfying h(r)
j = g

(r j)
j . This then gives θ = θ(r)

h
where h =

∑m
j=1 h j. ■

We close this result with a final structural characterisation of periodic distri-
butions. This one relies on convolution that we will define in Section 4.4.1 for
distributions.

3.9.20 Proposition (Periodic distributions as convolutions with the delta-comb) If
θ ∈ D ′per,T(R;F), then there exists θ0 ∈ E ′(R;F) such that θ = θ0∗ ⋔T.

Proof Let υ ∈ UT(R;F) and define θ0 = υθ, noting that θ0 ∈ E ′(R;F) by Exercise 3.7.5.
Let ϕ ∈ D (R;F) and compute

⟨θ0∗ ⋔T;ϕ⟩ =
∑
j∈Z

⟨θ0 ∗ δ jT;ϕ⟩ =
∑
j∈Z

⟨τ∗jTθ0;ϕ⟩

=
∑
j∈Z

⟨θ0; τ∗
− jTϕ⟩ =

∑
j∈Z

⟨θ; υτ∗
− jTϕ⟩

=
∑
j∈Z

⟨θ; τ∗jTυϕ⟩ = ⟨θ;ϕ⟩,

using Example 4.4.3–1. Thus θ = θ0∗ ⋔T by Theorem 3.9.10. ■

Exercises

3.9.1 Show that if ϕ1, ϕ2 ∈ Dper,T(R;F) then ϕ1ϕ2 ∈ Dper,T(R;F). Thus Dper,T(R;F)
is an algebra.
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3.9.2 Show that, if θ ∈ E ′(R;F) is a distribution with compact support and let
T ∈ R>0. Show that the distribution perT(θ) defined by

perT(θ)(ϕ) = θ

∑
j∈Z

τ∗jTϕ


is T-periodic.
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Section 3.10

Periodic ultradistributions

In this section we consider our final class of distributions, namely the class of
ultradistributions that are periodic. Our discussion of periodic ultradistributions
will follow fairly closely the development of periodic distributions in Section 3.9.
We shall see, however, that the test signals for periodic ultradistributions are very
simple. As with ultradistributions, the best context for periodic ultradistributions
is best understood in the context of Fourier analysis, and one gets a very simple
characterisation of these distributions in this setting.

Do I need to read this section? If you wish to understand the structure of the
discrete-continuous Fourier transform presented in Section 7.1.8, then you will
need to read this section. Indeed, this section is best read concurrently with that. •

3.10.1 The test signal space for periodic ultradistributions

Let us follow our approach for periodic distributions and define a class of
periodic test signals.

3.10.1 Definition (Zper,T(R;F)) Let T ∈ R>0. Denote by Zper,T(R;F) the set of functions
ψ : R→ Fwith the following properties:

(i) there exists aψ ∈ H(C;C) such that aψ(t + i0) = ψ(t),
(ii) there exists M, α ∈ R>0 and N ∈ Z>0 such that

|aψ(z)| ≤M(1 + |z|2)Neα|z|, z ∈ C,

(iii) ψ(t + T) = ψ(t) for all t ∈ R. •

One readily verifies that Zper,T(R;F) is a subspace of FR.

3.10.2 Remark (Characterisation of Zper,T(R;F)) We shall see in Theorem 6.4.15 that
the conditions on aψ are precisely those that arise from ψ being the CCFT of a
distribution with compact support. •

Let us look at a few examples of signals in Zper,T(R;F).

3.10.3 Examples (Signals in Zper,T(R;F))
1. As in Example 3.9.3–1, harmonic signals are in Zper,T(R;F). To show this, we

should show that E2πn : t 7→ e2πin t
T is in Z (R;C). To see this, we note that

E2πn(t) = e2πin(t+i0) and that, for k ∈ Z≥0,

|e2πinz
| ≤ |e−2πn Im(z)

| ≤ |e2πn|Im(z)|
| ≤ |e2πn|z|

|.

This is enough to show that E2πn ∈ Zper,T(R;C).
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2. If ϕ ∈ Z (R;F), we claim that, if

perT(ϕ)(t) =
∑
j∈Z

ϕ(t − jT),

then perT(ϕ) ∈ Zper,T(R;F). First of all, we claim that the series defining perT(ϕ)
converges uniformly and absolutely. Since ϕ ∈ Z (R;F), there exists M ∈ R>0

such that
|ϕ(t)| ≤

M
1 + t2 , t ∈ R.

It suffices to consider the convergence of the series for t ∈ [0,T] since the sum is
T-periodic. First consider j ≤ 0. In this case we have

t ≥ 0
=⇒ t − jT ≥ − jT

=⇒ 1 + (t − jT)2
≥ 1 + j2T2

=⇒
M

1 + (t − jT)2 ≤
M

1 + j2T2 .

If j ≥ 1, we have

t ≤ T
=⇒ t − jT ≤ (1 − j)T
=⇒ jT − t ≥ ( j − 1)T

=⇒ 1 + (t − jT)2
≥ 1 + ( j − 1)2T2

=⇒
M

1 + (t − jT)2 ≤
M

1 + ( j − 1)2T2 .

Therefore, for t ∈ [0,T],

∑
j∈Z

|ϕ(t − jT)| ≤
0∑

j=−∞

M
1 + j2T2 +

∞∑
j=1

M
1 + ( j − 1)2T2 .

This shows that the series converges absolutely, and also uniformly by the
Weierstrass M-test.
Now let us show that perT(ϕ) ∈ Zper,T(R;F). Following Remark 3.10.2, we shall
show that perT(ϕ) = FCC(θ) for θ ∈ E ′(R;F). To this end, we compute

F CC(θperT(ϕ)) =
∑
j∈Z

F CC(τ∗2π jϕ) = F CC(ϕ)
∑
j∈Z

E2πinT−1

= TF CC(ϕ)
∑
j∈Z

⋔T= T
∑
j∈Z

F CC(ϕ)( jT)δ jT,
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using Example 5.5.2–2. SinceFCC(ϕ) ∈ D (R;F), we have thatF CC(θperT(ϕ)) is a
distribution with compact support (its support is contained in supp(ϕ)). Thus
we conclude that perT(ϕ) is the CCFT of a distribution with compact support,
as desired.

3. Let us consider a special class of functions as in the preceding example. We
denote

VT(R;F) = {υ ∈ Z (R;F) | perT(υ)(t) = 1, t ∈ R}.

Let us show that VT(R;F) is not empty. Let ϕ ∈ D (R;F) satisfy ϕ(0) = 1. Let us
define

υ = FCC(ϕ) ∗ χ[− T
2 ,

T
2 ].

We claim that υ ∈ VT(R;F). First of all, by Proposition 6.4.9, we have

υ = FCC(ϕ) ∗ FCC ◦ F CC(χ[− T
2 ,

T
2 ]) = FCC(ϕF CC(χ[− T

2 ,
T
2 ])).

Note that
F CC(χ[− T

2 ,
T
2 ]) =

sin(πTt)
πt

by Example 6.1.3–3. Thus υ is the CCFT of a signal in D (R;F), and so is in
Z (R;F) by Theorem 6.5.1. Now we compute

∑
j∈Z

υ(t − jT) = FCC(ϕ) ∗

∑
j∈Z

τ∗jTχ[− T
2 ,

T
2 ]

 (t)

= FCC(ϕ) ∗ (FCC ◦ F CC(1)) = FCC(ϕδ0) = ϕ(0)FCC(δ0) = θ1,

as desired. •

Now let us consider convergence in Zper,T(R;F).

3.10.4 Definition (Convergence in Zper,T(R;F)) A sequence (ψ j) j∈Z>0 in Zper,T(R;F) con-
verges to zero if it, for each r ∈ Z≥0, the sequence (ψ(r)

j ) j∈Z>0 converges uniformly to
zero. A (ψ j) j∈Z>0 converges to ψ ∈ Zper,T(R;F) if (ψ j − ψ) j∈Z>0 converges to zero. •

We can also make the obvious definition of continuity for linear map whose
domain is Zper,T(R;F).

3.10.5 Definition (Continuous linear maps on Zper,T(R;F)) A linear map
L : Zper,T(R;F) → is continuous if (L(ψ j)) j∈Z>0 converges to zero for every se-
quence (ψ j) j∈Z>0 that converges to zero in Zper,T(R;F). •

We have the following result, which follows exactly as does Proposition 3.9.7,
replacing UT(R;F) with VT(R;F).
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3.10.6 Proposition (Zper,T(R;F) comes fromZ (R;F)) If ψ ∈ Zper,T(R;F), then there exists
ϕ ∈ Z (R;F) such that ψ = perT(ϕ).

The preceding discussion of the spaceZper,T(R;F) makes it look more interesting
than it is, as the following result makes clear.

3.10.7 Proposition (Characterisation ofZper,T(R;C)) If ψ ∈ Zper,T(R;C), thenψ is a finite
linear combination of the harmonic signals E2πinT−1 , n ∈ Z.

Proof For ψ ∈ Zper,T(R;C) ⊆ D ′per,T(R;C), we have

FCC(θψ) =
1
T

∑
n∈Z

FCD(ψ)(nT−1)δnT−1 .

by Proposition 6.4.19. However, by Remark 3.10.2, FCC(θψ) is a distribution with
compact support. Therefore, FCD(ψ)(nT−1) is nonzero for only finitely many n ∈ Z.
By Corollary 6.2.28,

ψ(t) =
1
T

∑
n∈Z

FCD(ψ)(nT−1)e2πin t
T ,

where the sum converges uniformly, and we conclude the proposition. ■

3.10.2 Definition of periodic ultradistributions

We can give the expected definition of periodic ultradistributions, in a manner
entirely analogous to that the periodic distributions.

3.10.8 Definition (Periodic ultradistribution) A T-periodic ultradistribution is a contin-
uous linear map from Zper,T(R;F) to F. The set of T-periodic ultradistributions is
denoted by Z ′per,T(R;F). •

Given Theorem 3.10.9 below, it is evident that Z ′per,T(R;F) is isomorphic to a
subspace of Z (R;F).

Let us show that periodic ultradistributions correspond to ultradistributions
that are periodic.

3.10.9 Theorem (Periodic ultradistributions are. . . periodic ultradistributions) There
exists a natural isomorphism from Z ′per,T(R;F) to the subspace

Z ′T(R;F) = {θ ∈ Z ′(R;F) | τ∗Tθ = θ}

of Z ′(R;F).
Proof The proof mirrors that for Theorem 3.9.10, with the rôle of UT(R;F) being
played by VT(R;F). ■

The theorem also has a corollary that usefully expresses the two ways of thinking
about periodic ultradistributions.
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3.10.10 Corollary (Explicit characterisation of periodic ultradistributions) For θ ∈
Z ′(R;F) and T ∈ R>0 the following are equivalent:

(i) τ∗Tθ = θ;
(ii) there exists a unique θ̃ ∈ Z ′per,T(R;F) such that, for all υ ∈ VT(R;F),

θ̃(ψ) = θ(υψ), ψ ∈ Zper,T(R;F);

(iii) there exists a unique θ̃ ∈ Z ′per,T(R;F) such that

θ(ϕ) = θ̃

∑
j∈Z

τ∗jTϕ

 , ϕ ∈ Z (R;F).

Given that S ′(R;F) ⊆ Z ′(R;F) as we showed in Proposition 3.8.7, it follows
that perT(ϕ) ∈ Zper,T(R;F). This furnishes us with a wealth of periodic ultradistri-
butions. We shall acquire a complete understanding of the collection of periodic
ultradistributions when we study the CDFT for periodic ultradistributions in Sec-
tion 5.6.

3.10.3 Properties of periodic ultradistributions

Let us discuss the convergence of periodic ultradistributions.

3.10.11 Definition (Convergence in Z ′
per,T

(R;F)) A sequence (θ j) j∈Z in Z ′per,T(R;F)

(i) is a Cauchy sequence if (θ j(ψ)) j∈Z>0 is a Cauchy sequence for every ψ ∈
Zper,T(R;F), and

(ii) converges to a T-periodic ultradistribution θ if, for every ψ ∈ Zper,T(R;F),
(θ j(ψ)) j∈Z>0 converges to θ(ψ). •

One then has the hoped for relationship between Cauchy sequences and con-
vergent sequences.

3.10.12 Theorem (Convergence in Z ′
per,T

(R;F)) If (θj)j∈Z>0 is a sequence in Z ′T(R;F) ⊆
Z ′(R;F) that converges to θ ∈ Z ′(R;F), then θ ∈ Z ′T(R;F). Furthermore, such a
sequence in Z ′T(R;F) converges in Z ′(R;F) if and only if the corresponding sequence in
Z ′per,T(R;F) determined by Theorem 3.9.10 converges in Z ′per,T(R;F).

In particular, a sequence (θj)j∈Z>0 in Z ′per,T(R;F) is a Cauchy sequence if and only if it
converges.

Proof This can be proved in exactly the same manner as Theorem 3.9.14. ■

Let us give the analogue for distributions with compact support of the fact that
locally integrable signals are distributions. We recall from Definition III-2.9.4 the
notion of the support of a measurable signal.
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3.10.13 Proposition (Periodic integrable signals are periodic ultradistributions) If
f : R → F is a T-periodic locally integrable signal then θf ∈ Z ′per,T(R;F). Moreover,
if f1, f2 : R→ F are periodic locally integrable signals for which θf1 = θf2 , then f1(t) = f2(t)
for almost every t ∈ R.

Proof From Proposition 3.8.7, we know that θ f ∈ S
′(R;F) ⊆ Z ′(R;F). That θ f is

T-periodic is clear.
The last assertion follows the similar assertion in Proposition 3.2.12. ■

Let us identify the multipliers for periodic ultradistributions.

3.10.14 Proposition (Periodic ultradistributions can be multiplied by periodic test sig-
nals) Let θ ∈ Z ′per,T(R;F) and let ψ0 ∈ Zper,T(R;F). Then the map

Zper,T(R;F) ∋ ψ 7→ θ(ψ0ψ) ∈ F

defines an element of Z ′per,T(R;F).
Proof Linearity of the map is clear. To prove continuity, let (ψ j) j∈Z>0 be a sequence in
Zper,T(R;F) converging to zero. It is clear that (ψ0ψ j) j∈Z>0 is also a sequence converging
to zero in Zper,T(R;F). Thus the result follows since

lim
j→∞

θ(ψ0ψ) = 0

for every sequence (ψ j) j∈Z>0 converging to zero in Zper,T(R;F). ■

The notions of regular, singular, support, and singular support are applied to
Z ′per,T(R;F) by restriction from Z ′(R;F).

One can differentiate periodic distributions as they are distributions. It turns
out that the derivative is again a periodic distribution.

3.10.15 Proposition (The derivative of a periodic ultradistribution is a periodic ultra-
distribution) If θ ∈ Z ′per,T(R;F) then θ′ ∈ Z ′per,T(R;F). Moreover, for ψ ∈ Zper,T(R;F),
we have θ′(ψ) = −θ(ψ′).

Proof This is proved in the same manner as Proposition 3.9.17, withVT(R;F) playing
the rôle of UT(R;F). ■
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Section 3.11

Inclusions between signals, test signals, and generalised
signals

Having now presented all (okay, almost all; see Section 3.8.2) of our spaces of
distributions, we shall now determine the inclusion relations between them.

Do I need to read this section? The material here is important, and at times ex-
tremely important. In particular, results concerning the density of spaces of test
signals in spaces of distributions give important characterisations of distributions.

•

In the preceding four sections we introduced the signal classes D (R;F),
S (R;F), E (R;F), and Dper,T(R;F), and the generalised signal classes D ′(R;F),
S ′(R;F), E ′(R;F) and D ′per,T(R;F). In the course of our presentation, we proved
the following result.

3.11.1 Proposition (Inclusion relations between spaces of test signals and distribu-
tions) The following inclusions hold:

D (R;F) ⊆ S (R;F) ⊆ E (R;F) ⊇ Dper,T(R;F)
∩ ∩ ∩ ∩

E ′(R;F) ⊆ S ′(R;F) ⊆ D ′(R;F) ⊇ D ′per,T(R;F)

We wish to better understand some of these inclusions by providing some
density relationships between the various sets of test signals and distributions.
In order to do this we need to say what we mean by a dense subspace of the
various spaces of test signals and associated distributions. The following definition
achieves this.

3.11.2 Definition (Density between spaces of test signals and distributions) Let
T1,T2 ∈ {D (R;F),S (R;F),E (R;F),B0(R;F),Dper,T(R;F)} and let T ′

1 ,T
′

2 ∈

{D ′(R;F),S ′(R;F),E ′(R;F),D ′
L1(R;F),D ′per,T(R;F)}.

(i) If T1 ⊆ T2 then T1 is dense in T2 if, for each ϕ ∈ T2, there exists a sequence
(ϕ j) j∈Z>0 in T1 such that lim j→∞ ϕ j = ϕ, the limit being taken in T2.

(ii) IfT ′

1 ⊆ T
′

2 thenT ′

1 is dense inT ′

2 if, for each θ ∈ T ′

2 , there exists a sequence
(θ j) j∈Z>0 in T ′

1 such that lim j→∞ θ j = θ, the limit being taken in T ′

2 .
(iii) If T1 ⊆ T ′

2 then T1 is dense in T ′

2 if, for each θ ∈ T ′

2 , there exists a sequence
(ϕ j) j∈Z>0 in T1 such that lim j→∞ θϕ j = θ, the limit being taken in T ′

2 . •

We then have the following important result.
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3.11.3 Theorem (Density of spaces of test signals and distributions in one another)
The following statements hold:

(i) D (R;F) is a dense subspace of S (R;F);
(ii) D (R;F) is a dense subspace of E (R;F);
(iii) D (R;F) is a dense subspace of B0(R;F);
(iv) D (R;F) is a dense subspace of D ′(R;F);
(v) D (R;F) is a dense subspace of S ′(R;F).
(vi) D (R;F) is a dense subspace of E ′(R;F).

Proof (i) This is Lemma 2 in the proof of Theorem 3.3.13.
(ii) This is Lemma 1 in the proof of Theorem 3.7.11.
(iii) Let ϕ ∈B0(R;F) and let (ψk)k∈Z>0 be the sequence inD (R;F) characterised in

Lemma 1 in the proof of Theorem 3.3.13. The arguments from the proof of Lemma 2
in the proof of Theorem 3.3.13 can be applied to show that the sequence (ϕψk)k∈Z>0

converges to ϕ in B0(R;F). Indeed, a moments thought shows that the desired
conclusion here follows directly from the computations in the proof of Lemma 2 in the
proof of Theorem 3.3.13.

(iv) We will prove this as Theorem 4.7.26.
(v) We note that if θ ∈ S ′(R;F) then there exists fθ ∈ C0(R;F) and r ∈ Z≥0 of slow

growth such that θ = θ(r)
fθ

. By Theorem 4.7.24 we may find a sequence (ψ j) j∈Z>0 in
D (R;F) = C∞cpt(R;F) such that lim j→∞∥ fθ−ψ j∥∞ = 0. Sinceϕ ∈ S (R;F) and since fθ is
of slow growth it follows that the sequence of signals (ψ jϕ) j∈Z>0 is uniformly bounded
in j and t. We claim that this implies that the sequence (θ(r)

ψ j
) j∈Z>0 converges to θ(r)

fθ
in

S ′(R;F). Indeed, let ϕ ∈ S (R;F) and compute

lim
j→∞

θ(r)
ψ j

(ϕ) = lim
j→∞

(−1)r
∫
R
ψ j(t)ϕ(r)(t) dt

= (−1)r
∫
T

lim
j→∞

ψ j(t)ϕ(r)(t) dt

= (−1)r
∫
T

g(t)ϕ(r)(t) dt = θ(r)
fθ

(ϕ),

as desired, by the Dominated Convergence Theorem.
(vi) By Theorem 3.7.19, if θ ∈ E ′(R;F) then there exists f1, . . . , fm ∈ C0

cpt(R;F) and
r1, . . . , rm ∈ Z≥0 such that

θ =
m∑

j=1

θ
(r j)
f j
.

By Theorem 4.7.24 we may find sequences (ψ j,k)k∈Z>0 , j ∈ {1, . . . ,m}, in D (R;F) =
C∞cpt(R;F) so that limk→∞∥ f j − ψ j,k∥∞ = 0. Furthermore, the support of the functions
ψ j,k, k ∈ Z>0, j ∈ {1, . . . ,m}, is contained in some compact interval T ⊆ R. We claim

that this implies that for each j ∈ {1, . . . ,m}, the sequence (θ
(r j)
ψ j,k

)k∈Z>0 converges to θ
(r j)
f j
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in E ′(R;F). Indeed, let ϕ ∈ E (R;F) and compute

lim
k→∞

θ
(r j)
ψ j,k

(ϕ) = lim
k→∞

(−1)r j

∫
R
ψ j,k(t)ϕ(r j)(t) dt

= (−1)r j

∫
T

lim
k→∞

ψ j,k(t)ϕ(r j)(t) dt

= (−1)r j

∫
T

f j(t)ϕ(r j)(t) dt = θ
(r j)
f j

(ϕ),

as desired. Here we have used the fact that ψ j,kϕ
(r j) is uniformly bounded in t and

k, so making the interchange of the limit and the integral possible by the Dominated
Convergence Theorem. We can then write

θ(ϕ) = lim
N→∞

m∑
j=1

N∑
k=1

θ
(r j)
ψ j,k

(ϕ),

giving the result sinceθ
(r j)
ψ j,k

, j ∈ {1, . . . ,m}, k ∈ Z>0, corresponds to an element inD (R;F)
sinceD (R;F) is closed under differentiation. ■

Now let us consider the relationships between test signals and some of the
signal spaces introduced in Chapter 1. improve this with

injectivity statements

and understanding of

equivalence classes of

signals
3.11.4 Proposition (Inclusion relations between signal spaces and spaces of test

signals and distributions) The following statements hold:
(i) S (R;F) ⊆ L(p)(R;F) for p ∈ [1,∞];
(ii) L(p)(R;F) ⊆ S ′(R;F) for p ∈ [1,∞];
(iii) D (R;F) is a dense subspace of Lp(R;F) for p ∈ [1,∞);
(iv) S (R;F) is a dense subspace of Lp(R;F) for p ∈ [1,∞).

Proof (i) Let ϕ ∈ S (R;F). By Proposition 3.3.2 there exists T ∈ R>0 such that
|ϕ(t)| < 1

t2 . Since ϕ is infinitely differentiable it is also bounded on any compact subset
of R, and thus we deduce that S (R;F) ⊆ L(∞)(R;F). Now let p ∈ [1,∞). Choosing
T > 1 we have

∥ϕ∥
p
p =

∫
R
|ϕ(t)|p dt =

∫
|t≤T|
|ϕ(t)|p dt +

∫
|t|≥T
|ϕ(t)|p dt

≤

∫
|t≤T|
|ϕ(t)|p dt + 2

∫
∞

T
t−2p dt ≤

∫
|t≤T|
|ϕ(t)|p dt +

1
2p − 1

< ∞,

so giving the result.
(ii) Let f ∈ L(p)(R;F), p ∈ [1,∞], and let (ϕ j) j∈Z>0 be a sequence converging to zero

in S (R;F). From part (i), ϕ j ∈ L(p′)(R;F), j ∈ Z>0, where 1
p +

1
p′ = 1. Furthermore,

lim
j→∞
∥ϕ j∥

p′

p′ = lim
j→∞

∫
R
|ϕ(t)|p

′

dt =
∫
R

lim
j→∞
|ϕ j(t)|dt = 0,
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the last operation being valid since (ϕ j) j∈Z>0 converges uniformly to zero on R. We
then have

|θ f (ϕ j)| =
∣∣∣∣∣∫
R

f (t)ϕ j(t) dt
∣∣∣∣∣

≤

∫
R
| f (t)ϕ j(t)|dt

≤ ∥ f ∥p∥ϕ j∥p′ ,

using Hölder’s inequality, Lemma III-3.8.54. Taking the limit as j→∞ gives the result.
(iii) This will be proved as Theorem 4.7.24.
(iv) This follows, using Exercise III-3.6.2, from part (iii) and part (i) of Theo-

rem 3.11.3. ■
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Chapter 4

Convolution

The operation of convolution which we consider in this chapter is a remarkably
useful one, and one which comes up in myriad ways. In this chapter itself we
shall see how convolution can be used to generate nice approximations for general
classes of signals. In we shall see how convolutions arise in a natural way as systems

representations for classes of systems. Convolution also arises in relation with
the Fourier and Laplace transforms we consider in Chapters 5–9. This connection
between convolution and transform theory is what makes transform theory so
useful in the study of systems.

Despite this ubiquity of convolution, it is a subtle operation to understand. In-
deed, perhaps because of the ubiquity of convolution, it is difficult to understand, as
it is difficult to pinpoint the feature of convolution that makes it useful. Nonethe-
less, in this chapter we shall begin our study of convolution, giving some examples
which, we hope might lead to come intuition about how convolution works. We
shall also prove some of the basic results concerning convolution that will be useful
in subsequent chapters.

Do I need to read this chapter? The basic definition of convolution should cer-
tainly be absorbed in reading these volumes. It is possible that the detailed results
from Sections 4.2 and 4.5 can be read as needed in later chapters. Material from
Section 4.7 provides a useful application of convolution, and for this reason it may
be useful to read when one is making a first pass at this chapter. •
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Section 4.1

Convolution of signals: Definitions, basic properties, and
examples

This is an introductory section, defining the various sorts of convolution for
signals that we will use, and giving some examples of when the operation of
convolution is and is not defined. We postpone until Section 4.2 detailed results
on when the operation of convolution of signals can be defined.

Do I need to read this section? If you are beginning to learn about convolution,
this is where to begin. •

4.1.1 Convolution for aperiodic continuous-time signals

Let F ∈ {R,C}. We begin with signals defined on R. For a ∈ R define the
reparameterisation γa : R→ R by γa(t) = a − t. Note that γa is the composition of a
time reversal followed by a time shift by a. For f : R→ F define γ∗a f by

γ∗a f (t) = f ◦ γa(t) = f (a − t).

With this notation we make the following result, recalling from Section III-2.9.5
the notion of local integrability.

4.1.1 Definition (Convolution for aperiodic continuous-time signals) An ordered
pair ( f , g) of locally integrable F-valued signals on R is convolvable if (γ∗t f )g ∈
L(1)(R;F) for almost every t ∈ R. If ( f , g) is convolvable then we denote

D( f , g) = {t ∈ R | (γ∗t f )g ∈ L(1)(R;F)}.

If ( f , g) is convolvable then their convolution is the signal f ∗ g : R→ F defined by

f ∗ g(t) =
∫
R

(γ∗t f )g dλ

when t ∈ D( f , g). If t < D( f , g), we shall adopt the convention that f ∗ g(t) = 0. •

4.1.2 Remark (Convolution only depends on “almost everywhere equal” equiva-
lence class) By Proposition III-2.7.11, if f1, f2, g1, g2 : R→ F are signals such that
f1(t) = f2(t) for almost every t ∈ R and g1(t) = g2(t) for almost every t ∈ R, then
( f1, g1) is convolvable if and only if ( f2, g2) is convolvable, and, if one of these pairs
is convolvable, then f1 ∗ g1(t) = f2 ∗ g2(t) for almost every t ∈ R. For this reason, one
can, and we very often will, think of convolution as mapping pairs of equivalence
classes of signals to an equivalence class of signals using the equivalence relation
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where two signals are equivalent if they agree almost everywhere. Sometimes we
will be careful to be explicit about when we are talking about equivalence classes,
and sometimes we will not be so careful. •

Using the more familiar and penetrable Riemann integral notation for the
Lebesgue integral, we have

f ∗ g(t) =


∫
R

f (t − s)g(s) ds, t ∈ D( f , g),
0, t < D( f , g).

We shall use this notation unless it is more convenient and/or clear to use the
Lebesgue integral notation. Moreover, we shall often simply write

f ∗ g(t) =
∫
R

f (t − s)g(s) ds,

with the tacit understanding that this expression is to be applied only when t ∈
D( f , g). In Exercise 4.1.5 the reader can show that there exists a convolvable pair
( f , g) such that D( f , g) , R.

In order to get some intuition about the operation of convolution, let us look at
a simple concrete example.

4.1.3 Example (The mechanics of convolution) We consider two signals f , g : R→ R
defined by

f (t) =


1 + s

2 , s ∈ [−2, 0],
1 − s, s ∈ (0, 1],
0, otherwise,

g(t) =


1
2 +

s
2 , s ∈ [−1, 0],

1
2 −

s
4 , t ∈ (0, 2],

0, otherwise.

We depict these signals in Figure 4.1 We note that D( f , g) = R.
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Figure 4.1 Two signals f (left) and g (right)

Let us first consider the character of the integrand of the convolution integral
for various t. We show this in Figure 4.2. Note that the picture one should have in
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Figure 4.2 Integrand of convolution integral for signals from Fig-
ure 4.1 for t ∈ {−3,−2,−1, 0, 1, 2, 3}. In each plot, γt f and g are
shown in grey.
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mind is of first time reversing the signal f and then “sliding it through g” starting
at −∞ and going to ∞. For times in the intersection of the supports of γt f and g,
the integrand at that time is the product of the two signals.

Next let us determine the convolution integral. The computation itself is merely
tedious, and the result is

f ∗ g(t) =



1
24 (t + 3)3, t ∈ [−3,−2],
1
48 (−t3 + 18t + 30), t ∈ (−2,−1],
1
48 (−7t3

− 18t2 + 24), t ∈ (−1, 0],
1
48 (7t3

− 18t2 + 24), t ∈ (0, 1],
1
48 (t3

− 18t + 30), t ∈ (1, 2],
−

1
24 (t − 3)3, t ∈ (2, 3].

We depict the convolution in Figure 4.3. A few comments are in order about the
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Figure 4.3 The convolution of the signals f and g from Figure 4.1

convolution here, and these reflect some truths about convolution in general.
1. The supports of f and g are “smeared” by convolution. That is, the support of

f ∗ g is larger than either supp( f ) or supp(g).
2. Each of the signals f and g is continuous, but not differentiable. However, one

can verify that f ∗ g is differentiable. This reflects the fact that convolution has
a “smoothing” property. •

Now that we have an example illustrating how convolution of signals, let us
explore some basic properties of this operation. The following result is sometimes
useful.
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4.1.4 Proposition (Property of D(f, g)) We have that (f,g) is convolvable if and only if
(|f|, |g|) is convolvable. Moreover, if (f,g) is convolvable, then D(f,g) = D(|f|, |g|).

Proof This is an immediate consequence, by Proposition III-2.7.21, of the fact that
s 7→ f (t − s)g(s) is integrable if and only if s 7→ | f (t − s)||g(s)| is integrable. ■

It is not easy to give a complete characterisation of all convolvable pairs. We
dedicate Section 4.2 to describing some interesting subsets of convolvable pairs of
signals. Also, it is not easy to describe in generality the character of a signal which
is obtained by convolving two convolvable signals. However, it is useful to have
the following property of a convolvable pair.

4.1.5 Theorem (Convolutions are locally integrable) If (f,g) is a convolvable pair of
signals, then f ∗ g is locally integrable.

Proof We first begin with an observation, one which will be expanded upon and
generalised in Section 4.6.1. Let us consider, in the language of Proposition III-2.7.65,
the measures µ = f · λ and ν = g · λ. These measures are, by Example III-2.11.2–1,
absolutely continuous with respect to λ. By µ × ν denote the product measure on
R2 = R×R. Now consider the mapΦ : R2

→ R given byΦ(σ, τ) = σ+τ. OnRwe may
consider the signed (if F = R) or complex (if F = C) measure (µ × ν)Φ−1 which is the
image of µ × ν under Φ (see Section III-2.7.6). This measure on R is then an element
of the topological dual of the continuous functions with compact support equipped
with the∞-norm (see ). Moreover, if h : R→ F is a continuous function with compactwhat?

support,
⟨(µ × ν)Φ−1; h⟩ = ⟨µ × ν;Φ∗h⟩.

Using the definition of the product measure, we can directly verify that

⟨(µ × ν)Φ−1; h⟩ =
∫
R2

F f ,g,h dλ2,

where F f ,g,h(σ, τ) = h(σ + τ) f (τ)g(σ). Moreover, if A ∈ L (R) then

(µ × ν)Φ−1(A) =
∫
R2

F f ,g,A dλ2,

where F f ,g,A(σ, τ) = χA(σ + τ) f (τ)g(σ). We shall employ these relationships and the
attendant constructions in the proof of the theorem and the corollary following.

By definition, both f and g are locally integrable. For t ∈ R and S ⊆ R let us denote
t+ S = {t+ x | x ∈ S}. Let us define ϕ : R2

→ R2 by ϕ(s, t) = (s, t− s). If A ∈ L (R) then,
recalling the notation F f ,g,A from above, we have

F f ,g,A ◦ ϕ(s, t) = χA(t) f (t − s)g(s).

Now let N ∈ L (R) have Lebesgue measure zero. Note that s 7→ F f ,g,N ◦ ϕ(s, t) is
integrable if t ∈ (R \N) ∪ (D( f , g) ∩N), and so integrable for almost every t ∈ R since
( f , g) is convolvable. Also, the map t 7→ F f ,g,N ◦ ϕ(s, t) is almost everywhere zero for
every s ∈ R, and so integrable for almost every s ∈ R. If we define

hg,N(τ) =
∫
R
χ−τ+N g dλ,
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then we note that absolute continuity of the measure g · λ (see Example III-2.11.2–1)
implies that hg,N(τ) = 0 for every τ ∈ R. Therefore,∫

R
hg,N dλ = 0

for every N ∈ L (R) having zero Lebesgue measure. By Fubini’s Theorem, whose
hypotheses we have just verified, and the remarks at the beginning of the proof,

(µ × ν)Φ−1(N) =
∫
R2

F f ,g,N dλ2 =

∫
R

hg,N dλ = 0

for every set N of Lebesgue measure zero. Thus the measure (µ × ν)Φ−1 is absolutely
continuous with respect to the Lebesgue measure.

Now let h : R→ F be continuous with compact support. Note that

F f ,g,h ◦ ϕ(s, t) = h(t) f (t − s)g(s).

By our remarks at the beginning of the proof we have

⟨(µ × ν)Φ−1; h⟩ =
∫
R2

F f ,g,h dλ2 ∈ R.

Since ( f , g) is convolvable, s 7→ Fh, f ,g ◦ ϕ(s, t) is integrable when

t ∈ D( f , g) ∪ (R \ supp(h)).

In particular, this function is integrable for almost every t ∈ R. Now consider the
function t 7→ Fh, f ,g ◦ ϕ(s, t). Since g is locally integrable, g(s) is finite for almost every
s ∈ R. Therefore, t 7→ Fh, f ,g ◦ ϕ(s, t) is integrable for almost every s ∈ R by Proposi-
tion III-2.9.21. By the change of variable theorem, Theorem III-2.10.7, and Fubini’s
Theorem, whose hypotheses we just verified, we have∫

R2
F f ,g,h dλ2 =

∫
R2

F f ,g,h ◦ ϕdλ2 =

∫
R

h( f ∗ g) dλ,

which shows that

⟨(µ × ν)Φ−1; h⟩ =
∫
R

h( f ∗ g) dλ.

Thus f ∗ g is the Radon–Nikodym derivative of the absolutely continuous measure
(µ × ν)Φ−1 with respect to λ. By , f ∗ g is locally integrable. ■ what?

4.1.6 Remark (Local integrability and convolution) The reader will observe that the
proof of the preceding theorem, somewhat surprisingly, on some nontrivial mea-
sure theoretic developments. This is perhaps because convolution of signals is
really a special case of convolution of measures, and some of the basic properties
for convolutions of signals are most directly, and perhaps only, seen through the
connection to convolution of measures. We shall examine the convolution of mea-
sures in Sections 4.6.1 and 4.6.2. •

The following characterisation of convolution is useful for determining some
of the properties of convolution.
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4.1.7 Corollary (Characterisation of convolution) For f,g ∈ L(1)
loc(R;F) the following

statements are equivalent:
(i) (f,g) is convolvable;
(ii) for every continuous signal h: R→ F with compact support, it holds that∫

R2
Ff,g,h dλ2 ∈ R,

where Ff,g,h(σ, τ) = h(σ + τ)f(τ)g(σ).
Moreover, if (f,g) is convolvable and if h: R → F is continuous with compact support,
then ∫

R

h(f ∗ g) dλ =
∫
R2

Ff,g,h dλ2.

Proof We continue using the notation from the proof of the theorem.
Suppose that ( f , g) is convolvable and let h : R → F be continuous with compact

support. Since ( f , g) is convolvable, s 7→ Fh, f ,g ◦ ϕ(s, t) is integrable when

t ∈ D( f , g) ∪ (R \ supp(h)).

In particular, this function is integrable for almost every t ∈ R. Now consider the
function t 7→ Fh, f ,g ◦ ϕ(s, t). The signals f and g are locally integrable. Then, as we saw
in the proof of the preceding theorem, by Fubini’s Theorem we have∫

R
h( f ∗ g) dλ =

∫
R2

F f ,g,h dλ2.

Since f ∗ g is locally integrable by the preceding theorem, the integral on the left is
finite by . This gives this part of the result.what

Next suppose that F f ,g,h is integrable with respect to λ2 for every continuous signal
h with compact support. With ϕ as above, it follows from the change of variable
formula, Theorem III-2.10.7, that |F f ,g,h| ◦ ϕ is also integrable with respect to λ2 for
every such h. Now, for a continuous compactly supported signal h, let

Ah = {t ∈ R | h(t) , 0}.

By Fubini’s Theorem, there exists a set Zh ⊆ Ah of measure zero such that, if t ∈ Ah \Zh,
the function s 7→ |F f ,g,h ◦ ϕ(t, s)| is integrable. Now, for j ∈ Z, define

h j(t) =


1, t ∈ [ j, j + 1],
t − ( j − 1), t ∈ [ j − 1, j),
−t + ( j + 2), t ∈ ( j + 1, j + 2],
0, otherwise.

Note that for each t ∈ R there exists jt ∈ Z (not necessarily unique, but no matter)
such that h jt(t) = 1. Moreover, for each j ∈ Z, h j is continuous with compact support.
Note that the set Z = ∪ j∈ZZh j has measure zero, being the countable union of sets of
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measure zero. Moreover, if t ∈ R\Z then we have that s 7→ |F f ,g,h jt
◦ϕ(t, s)| is integrable.

However,
|F f ,g,h jt

◦ ϕ(t, s)| = | f (t − s)g(s)|,

showing that if t ∈ R \ Z then t ∈ D( f , g). Thus ( f , g) is convolvable. ■

In more familiar notation, the preceding result says that ( f , g) is convolvable if
and only if, for every compactly supported continuous signal h it holds that∫

R

h(t) f ∗ g(t) dt =
"
R2

h(σ + τ) f (τ)g(σ) dσdτ.

Let us prove a result which makes somewhat precise the “smearing” of supports
resulting from convolution that we observed in Example 4.1.3. In this result we
make use of the Definition III-2.9.4 which gives the support of a measurable signal.

4.1.8 Proposition (Support of convolution) If (f,g) is a pair of convolvable F-valued
signals on R then

supp(f ∗ g) ⊆ cl(supp(f) + supp(g)),

where supp(f) + supp(g) = {s + t | s ∈ supp(f), t ∈ supp(g)}. Moreover, the above
inclusion is equality of sets if f(t) and g(t) are nonnegative for almost every t ∈ R.

Proof If cl(supp( f ) + supp(g)) = R the first assertion holds trivially. So we suppose
this not to be the case. Let t ∈ R \ cl(supp( f ) + supp(g)) and let U be a neighbourhood
of t contained in R \ cl(supp( f ) + supp(g)), such a neighbourhood existing since R \
cl(supp( f )+supp(g)) is open. Let h : R→ F be a continuous function with supp(h) ⊆ U.
(Such a function exists since U necessarily contains an open interval, and it is easy to
explicitly define a continuous function with support contained in a prescribed interval;
think of a function whose graph is triangular.) Then we have that, borrowing the
notation of Corollary 4.1.7,∫

R
h( f ∗ g) dλ =

∫
R2

F f ,g,h dλ2 =

∫
supp( f )×supp(g)

F f ,g,h dλ2, (4.1)

using the definition F f ,g,h(σ, τ) = h(σ+τ) f (τ)g(σ). However, if (σ, τ) ∈ supp( f )×supp(g)
it follows by assumption that h(σ + τ) = 0, and so F f ,g,h(σ, τ) = 0 as well. Thus the
integrals from (4.1) vanish for every continuous function h with support in U. It follows
from that U ⊆ R \ supp( f ∗ g). Thus every open subset of R \ cl(supp( f ) + supp(g)) what

is contained in R \ supp( f ∗ g). Equivalently, every closed subset of supp( f ∗ g) is
contained in cl(supp( f ) + supp(g)), which gives the first part of the result.

For the second assertion, note that if f and g are almost everywhere nonnegative,
then so is f ∗ g, being defined as the integral of two almost everywhere nonnegative
signals. Let U ⊆ R be open and with the property that f ∗g(t) = 0 for almost every t ∈ U.
If the only such open set is the empty set then f ∗ g is almost everywhere nonzero, and
so almost everywhere positive. In this case the second assertion holds trivially. Thus
we suppose that there exists a nonempty open set U such that f ∗ g(t) = 0 for almost
every t ∈ U. Then we let K ⊆ U be a nonempty compact set and let L ⊆ U be a compact
set such that K ⊂ L. By Urysohn’s Lemma, Theorem II-1.10.42, let h : R → [0, 1] have
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compact support and have the property that h(t) = 1 for t ∈ K and h(t) = 0 for t ∈ R \ L.
It follows that h(t) = 0 for t ∈ R \U. We, therefore, have∫

R
h( f ∗ g) dλ = 0.

Let H : R2
→ [0, 1] be defined by H(σ, τ) = h(σ + τ). By (4.1) it follows that the open

set H−1(( 1
2 ,∞)) (open since H is continuous) does not intersect supp( f ) × supp(g). We

claim that this implies that K∩cl(supp( f )+supp(g)) = ∅. Indeed, if t ∈ K∩cl(supp( f )+
supp(g)) then t = σ + τ for σ ∈ supp( f ) and τ ∈ supp(g) and h(t) = H(σ + τ) = 1. But
then (σ, τ) ∈ supp( f )×supp(g)∩H−1(( 1

2 ,∞)), giving a contradiction. Thus we conclude
by that if K ⊆ R\ supp( f ∗ g) is compact then K ⊆ R\ cl(supp( f )+ supp(g)). This showswhat?

that cl(supp( f ) + supp(g)) ⊆ supp( f ∗ g) in this case, as is desired. ■

Let us verify that convolution is commutative and distributive.

4.1.9 Proposition (Algebraic properties of convolution of signals) If f,g,h ∈

L(1)
loc(R;F), then the following statements hold:
(i) if (f,g) is convolvable, then (g, f) is convolvable and f ∗ g = g ∗ f;
(ii) if (f,g) and (f,h) are convolvable, then (f,g + h) is convolvable and f ∗ (g + h) =

f ∗ g + f ∗ h.
Proof (i) Let t ∈ D( f , g). Note that γt : R → R is a differentiable bijection that is
monotonically decreasing. Moreover, γ′t(s) = −1. Therefore, by Theorem III-2.9.38 it
follows that ((γ∗t f )g) ◦ γt is integrable. Moreover,

((γ∗t f )g) ◦ γt(s) = (γ∗t f )(t − s)g(t − s) = f (s)g(t − s) = ((γ∗t g) f )(s).

Thus t ∈ D(g, f ). Reversing the argument shows that if t ∈ D(g, f ) then t ∈ D( f , g).
Thus D( f , g) = D(g, f ). By Theorem III-2.9.38 we also have∫

R
(γ∗t f )g dλ =

∫
R

(γ∗t g) f dλ,

which is the result.
(ii) This is a direct consequence of linearity of the integral, Proposition III-2.7.17.■

Thus, for a convolvable pair ( f , g) we have (g, f ) also convolvable and, moreover,

f ∗ g(t) = g ∗ f (t) =
∫
R

f (t − s)g(s) ds =
∫
R

f (s)g(t − s) ds.

This is a formula that we shall employ without mention in our future uses of
convolution.

If one is looking for the binary operation of convolution to have the properties of
an algebra, one might observe that associativity is missing from the list of properties
in the preceding result. This is because associativity does not always hold.
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4.1.10 Example (Convolution is not generally associative) Let w : R→ R be given by

w(t) =

1 − cos t, t ∈ [0, 2π],
0, otherwise,

and define f , g, h : R→ R by

f (t) = 1, g(t) =

sin t, t ∈ [0, 2π],
0, otherwise,

h(t) =
∫ t

−∞

w(τ) dτ.

Note that w is differentiable everywhere except at 0 and 2π, and that its derivative
at all points of differentiability is w′(t) = g(t). Thus we write w′ = g with the
understanding that this holds except at 0 and 2π. As we will be computing integrals
of these signals, this will not make a difference.

We then compute

f ∗ g(t) =
∫
R

f (t − s)g(s) ds =
∫ 2π

0
sin s ds = 0

and

g ∗ h(t) =
∫
R

g(t − s)h(s) ds =
∫
R

w′(t − s)
(∫ s

0
w(τ) dτ

)
ds

=

∫
R

w(t − s)w(s) ds = w ∗ w(t),

using integration by parts. Note that w is strictly positive on (0, 2π) and zero
elsewhere. Therefore,

w ∗ w(t) =
∫
R

w(t − s)w(s) ds =
∫ 2π

0
w(t − s)w(s) ds

is strictly positive whenever the set {t − s | s ∈ (0, 2π)} intersects (0, 2π), i.e., when-
ever t ∈ (0, 4π). Thus w ∗ w is strictly positive on (0, 4π) and zero elsewhere. Thus
we have ( f ∗ g) ∗ h = 0 and

f ∗ (g ∗ h)(t) =
∫
R

f (t − s)w ∗ w(s) ds =
∫
R

w ∗ w(s) ds,

giving f ∗(g∗h) as being a nonzero constant signal. In particular, ( f ∗g)∗h , f ∗(g∗h).
•

Despite the preceding result, we shall see that there are many classes of signals
for which, when the convolution operation is restricted to them, it is associative.
We shall see instances of this in Section 4.2.

Let us close this section by considering an important property of convolution:
that of continuity of the convolved signal. We shall see in Section 4.2 that, in many
cases, the convolution of signals is a continuous signal. However, this is not always
the case, as the following example shows.
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4.1.11 Example (A convolvable pair whose convolution is discontinuous) We let
f : R→ R defined by

f (t) =

t−1/2, t ∈ (0, 1],
0, otherwise.

One easily verifies that ( f , f ) is convolvable, that D( f , f ) = R, and that

f ∗ f (t) =


π, t ∈ (0, 1],
2(csc−1(

√
t) − tan−1(

√
t − 1)), t ∈ (1, 2),

0, otherwise,

recalling from Section I-3.8.4 the definitions of csc−1 and tan−1. In Figure 4.4 we
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Figure 4.4 A convolution f ∗ f of unbounded signals that is dis-
continuous

depict the convolution f ∗ f , and we see that it is discontinuous at t = 0. •

The preceding example may make one think that at times where a signal be-
comes unbounded, this will lead to the convolution being discontinuous. The next
example shows that the truth is more subtle than this.

4.1.12 Example (An unbounded signal with a continuous convolution with itself)
Here we take f : R→ R to be defined by

g(t) =

t−1/4, t ∈ (0, 1],
0, otherwise.

The computation of the convolution integral here involves special functions that
are not quite elementary, including but not limited to, the Γ-function from Exer-
cise II-1.2.16. However, once one swallows this, one sees that ( f , f ) is convolvable
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Figure 4.5 A convolution g ∗ g of unbounded signals that is con-
tinuous

with D( f , f ) = R. In Figure 4.5 we show depict the convolution g ∗ g, and we note
that it is continuous, despite f being unbounded. •

As we shall see in Section 4.2, in particular Theorem 4.2.8, the difference
between the preceding two examples is that in Example 4.1.11 the signal is in
L(1)(R;F), whereas the signal from Example 4.1.12 is in L(2)(R;F).

This is all we shall say in general about convolution for signals defined on Ra.
In Section 4.2 we shall give many more important results on convolution in this
setting, taking into account particular collections of signals.

4.1.2 Convolution for continuous-time signals with restrictions on their
support

We shall be especially interested in the convolution of causal continuous-time
signals as part of our examination of system theory in Section V-6.7. In this section
we give a few introductory observations of the mechanics of convolution in these
cases. It goes without saying that the entire discussion can be adapted to acausal
signals, but the most natural and important applications are to causal signals. For
a causal signal f : R → F we denote σ( f ) = inf supp( f ). Thus f (t) = 0 for almost
every t ∈ (−∞, σ( f )].

The following result is the basic one concerning the convolution of causal sig-
nals.

4.1.13 Theorem (Convolution of continuous-time causal signals) If f,g ∈ L(1)
loc(R;F)

are causal then (f,g) is convolvable and

f ∗ g(t) =


∫ t−σ(f)

σ(g)
f(t − s)g(s) ds, t ∈ [σ(f) + σ(g),∞) ∩D(f,g),

0, otherwise.
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Proof First let us determine the domain over which we integrate to compute f ∗ g(t)
for t ∈ R fixed, and at the same time determine for which t we are guaranteed to have
f ∗ g(t) = 0.

Suppose that t < σ( f ) + σ(g). We then have two cases for s ∈ R.
1. s < σ(g): In this case, f (t − s)g(s) = 0 for almost every s < σ(g).
2. s ≥ σ(g): In this case we have

t − s < σ( f ) + (σ(g) − s) ≤ σ( f )

and so f (t − s)g(s) = 0 for almost every s ≥ σ(g).
In any case, for t < σ( f )+ σ(g), we conclude that f (t− s)g(s) = 0 for almost every s ∈ R,
and so ∫

R
f (t − s)g(s) ds = 0

when t < σ( f ) + σ(g).
Now, with t ≥ σ( f ) + σ(g), let s > t − σ( f ). Then t − s < σ( f ). Therefore, for almost

every s ∈ R \ [σ(g), t − σ( f )] it holds that f (t − s)g(s) = 0. In this case it also holds that∫
R

f (t − s)g(s) ds =
∫ t−σ( f )

σ(g)
f (t − s)g(s) ds.

Thus, when t ≥ σ( f )+ σ(g), the convolution integral is over the domain [σ(g), t− σ( f )].
Next we show that f ∗ g(t) is defined for almost every t ∈ R. Clearly, from the

above conclusions, we can restrict consideration to the case when t ≥ σ( f ) + σ(g). Let
us define F f ,g : R2

→ F by F f ,g(x, y) = f (x)g(y). If we take ϕ : R2
→ R2 to be defined

by ϕ(s, t) = (s, t − s) then F f ,g ◦ ϕ(s, t) = f (t − s)g(s). Since f and g are locally integrable,
by Corollary III-2.8.8 F f ,g is also locally integrable. By the change of variable formula,
Theorem III-2.10.7, F f ,g ◦ ϕ is also locally integrable. Therefore,∫

K
|F f ,g ◦ ϕ|dλ2 < ∞

for any compact set K ⊆ R2. If K is a rectangle that contains the set⋃
t∈[σ( f )+σ(g),R]

{(x, y) | x ∈ [σ(g), t − σ( f )], y = t}

for R > σ( f ) + σ(g), then we conclude, by Fubini’s Theorem, that s 7→ f (t − s)g(s) in
integrable over [σ(g), t − σ( f )] for almost every t ∈ [σ( f ) + σ(g),R] and that

f ∗ g|[σ( f ) + σ(g),R] ∈ L(1)([σ( f ) + σ(g),R];F).

As this holds for every R > σ( f ) + σ(g), we conclude that f ∗ g is locally integrable. ■

In Exercise 4.1.8 the reader can provide the analogous statement for acausal
signals.

Of particular interest is the case where signals have their support contained in
R≥0. In this case we have the following corollary of the above result.
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4.1.14 Corollary (Convolution for strictly causal signals) If f,g ∈ L(1)
loc(R;F) satisfy

supp(f), supp(g) ⊆ R≥0, then
(i) (f,g) is convolvable,
(ii) supp(f ∗ g) ⊆ R≥0, and

(iii) f ∗ g(t) =
∫ t

0
f(t − s)g(s) ds, t ∈ R≥0.

This shows that signals in L(1)
loc(R;F) with support in R≥0 are closed under

the product of convolution. With this in mind, for f , g ∈ L(1)
loc(R≥0;F) we define

f � g ∈ L(1)
loc(R≥0;F) by

f � g(t) =
∫ t

0
f (t − s)g(s) ds, t ∈ R≥0,

so that L(1)
loc(R≥0;F) is a bona fide algebra.

Of course, since � is the restriction of the usual convolution on R to signals
with support in R≥0, all of the results concerning general convolution in R from
Section 4.1.1 hold just as well for �.

Let us give an illustration of convolution in L(1)
loc(R≥0;F) so the reader can com-

pare it to what we have seen for convolution in R.

4.1.15 Example (The mechanics of causal convolution) We consider the signals f , g ∈
L(1)

loc(R≥0;R) defined by
f (t) = sin(t), g(t) = cos(t).

The reader may be familiar with the graphs of these signals, which we display in
Figure 4.6. We note that D( f , g) = R. In Figure 4.7 we show the integrand for vari-
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Figure 4.6 Two signals f (left) and g (right)

ous t. We depict the convolution in Figure 4.8. The intuition for causal convolution
does not differ substantially from that for convolution on R as demonstrated in
Example 4.1.3. The specific signals we have chosen here show that the convolution
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Figure 4.7 Integrand of causal convolution integral for signals
from Figure 4.6 for t ∈ {2, 4, 6, 8, 10, 12}. In each plot, γt f and
g are shown in grey.

of bounded signals need not be bounded. This phenomenon will show up when
we study linear ordinary differential equations that exhibit “resonance,” cf. Exam-
ple V-4.3.20. •

Let us give the algebraic properties of convolution in R≥0.

4.1.16 Proposition (Algebraic properties of causal convolution for signals) If f,g,h ∈
L(1)

loc(R;F) are causal, then the following statements hold:
(i) f ∗ g = g ∗ f;
(ii) (f ∗ g) ∗ g = f ∗ (g ∗ h);
(iii) f ∗ (g + h) = f ∗ g + f ∗ h.
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Figure 4.8 The convolution of the signals f and g from Figure 4.6

Proof Parts (i) and (iii) follow from Proposition 4.1.9. Thus we prove part (ii). We
have

( f � g) � h(t) =
∫ t

0
f ∗ g(t − s)h(s) ds

=

∫ t

0

(∫ t−s

0
f (t − s − r)g(r) dr

)
h(s) ds

=

∫ t

0

(∫ t

s
f (t − τ)g(τ − s) dτ

)
h(s) ds

=

∫ t

0
f (t − τ)

(∫ τ

0
g(τ − s)h(s) ds

)
dτ

=

∫ t

0
f (t − τ)g ∗ h(τ) dτ = f ∗ (g ∗ h)(t),

using the change of variable theorem and Fubini’s Theorem. ■

4.1.3 Convolution for periodic continuous-time signals

Again we let F ∈ {R;C}. And again we consider signals defined on R, but now
we ask that the signals we consider be T-periodic for a fixed T ∈ R>0. It will be
convenient in this section to have at hand the notion of a T-periodic set S ⊆ R, by
which we mean that {T + t | t ∈ S} = S.

We still denote γa : R→ R by γa(t) = a−t and note that if f : R→ F is T-periodic
then γ∗a f is also T-periodic. Thus we can make the following definition.

4.1.17 Definition (Convolution for T-periodic continuous-time signals) An ordered
pair ( f , g) of signals from L(1)

per,T(R;F) is periodically convolvable if (γ∗t f )g|[0,T] ∈
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L(1)([0,T];F) for almost every t ∈ R. If ( f , g) is convolvable then we denote

D( f , g) = {t ∈ [0,T] | (γ∗t f )g|[0,T] ∈ L(1)([0,T];F)}.

If ( f , g) is periodically convolvable then their periodic convolution is the signal
f ∗ g : R→ F defined by

f ∗ g(t) =
∫

[0,T]
(γ∗t f )g dλ[0,T]

when t ∈ D( f , g). If t < D( f , g), we shall adopt the convention that f ∗ g(t) = 0. •

Of course, Remark 4.1.2 applies equally well here, and so periodic convolu-
tion can be thought of as mapping pairs of equivalence classes of signals to an
equivalence class of signals under the equivalence of almost everywhere equality.

Using Riemann integral notation, the periodic convolution of periodic signals
can be written as

f ∗ g(t) =


∫ T

0
f (t − s)g(s) ds, t ∈ D( f , g),

0, t < D( f , g).

Moreover, we shall often simply write

f ∗ g(t) =
∫ T

0
f (t − s)g(s) ds,

with the understanding that this holds only almost everywhere.

4.1.18 Remarks (On periodic convolution of periodic signals)
1. By Lemma 1.3.5 we can consider the periodic convolution of T-periodic signals

or of signals whose value at t+T is equal to their value at t for almost every t ∈ R.
We shall frequently make use of this lack of distinction without mention.

2. For aperiodic convolution we required signals to be locally integrable. For
periodic convolution, local integrability demands that signals be integrable over
each period. Thus the domain of convolution in this case is clearly defined, and
it is L(1)

per,T(R;F).

3. Note that there can be no essential ambiguity between which convolution is
meant for periodic signals since the notion of convolution from Section 4.1.1
only exists for T-periodic signals when one of the signals is zero; see Exer-
cise 4.1.9.

4. In our definitions above, the integration is performed over the integral [0,T].
The definition, however, is independent of particular the interval of length T
over which integration is performed. We shall sometimes use this fact to change
the interval of integration, frequently to [−T

2 ,
T
2 ]. •

Let us give an example of a periodic convolution to see how it works.
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4.1.19 Example (The mechanics of periodic convolution) We consider two 1-periodic
signals f , gN : R→ R defined on (− 1

2 ,
1
2 ] by

f (t) =


0, t ∈ (−1

2 ,−
1
4 ],

1, t ∈ (−1
4 ,

1
4 ],

0, t ∈ (1
4 ,

1
2 ],

gN(t) =

 sin(2πNt)
πt , t , 0,

2N, t = 0.

Here we think of N as a parameter in Z>0. We plot the graphs of f and gN for
various N in Figure 4.9. One can verify that f , gN) is periodically convolvable with
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Figure 4.9 Two 1-periodic signals f (left) and gN (right top, mid-
dle, and bottom), the latter for N ∈ {1, 5, 10}

D( f , g) = R. In Figures 4.10, 4.11, and 4.12 we show the integrands for various
t’s and N’s, in order to try to get some feeling for what is happening with the
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Figure 4.10 Integrand of periodic convolution integral for signals
from Figure 4.9 for N = 1 and t ∈ {−1

2 ,−
1
4 , 0,

1
4 ,

1
2 }. In each plot

γt f and g are shown in grey.

convolution integral. The periodic convolution itself is shown in Figure 4.13. The
closed-form expression for the convolution in this case is only given in terms of
special functions we have not introduced; thus we do not provide these expressions,
only plotting the results.

Let us make some comments about these periodic convolutions.
1. Let us first make some comments about signal gN for various N. As N increases

these signals become more “focused” around t = 0. That is, the values of the
signal around t = 0 grow large compared to the values away from t = 0 as
N → ∞. As N → ∞, the signals gN exhibit some oscillatory behaviour whose
frequency becomes larger.
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Figure 4.11 Integrand of periodic convolution integral for signals
from Figure 4.9 for N = 5 and t ∈ {−1

2 ,−
1
4 , 0,

1
4 ,

1
2 }. In each plot

γt f and g are shown in grey.

2. Now let us compare f with f ∗ gN as N varies. In some sense, as N → ∞,
f ∗ gN approximates f . Let us make some observations about the nature of this
approximation.

(a) The approximation of f by f ∗ gN is by infinitely differentiable signals for
each N, despite the act that f is itself discontinuous.

(b) Away from the points of discontinuity for f , the approximation by f ∗ gN

appear to get better as N→∞.
(c) Around points of discontinuity of f , the approximation is quite rough.

Looking at the integrands from Figures 4.10, 4.11, and 4.12, we can get
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Figure 4.12 Integrand of periodic convolution integral for signals
from Figure 4.9 for N = 10 and t ∈ {−1

2 ,−
1
4 , 0,
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2 }. In each

plot γt f and g are shown in grey.

some hints as to why this might be. There we see that as the point of
discontinuity of γ∗t f passes through t = 0 the convolution picks up the
oscillatory behaviour of gN. This effect is often called “ringing.” It is a
little difficult to be precise about this, but after awhile one develops some
intuition.

The sequence of signals (gN)N∈Z>0 that we see here will be very important to us in
Chapter 5, and we shall see there why the periodic convolution integrals above are
useful. •

Now let us explore the basic properties of periodic convolution. The pattern
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Figure 4.13 The periodic convolution of the signals f and gN
from Figure 4.9 for N ∈ {1, 5, 10}. The signal f is shown in
grey.

here follows that for the aperiodic convolution from the preceding section. Thus
we skip or sketch proofs that mirror their counterparts we have already seen.

As for aperiodic signals, we have the following result.

4.1.20 Proposition (Property of D(f, g)) We have that (f,g) is periodically convolvable if and
only if (|f|, |g|) is periodically convolvable. Moreover, if (f,g) is periodically convolvable,
then D(f,g) = D(|f|, |g|).

The periodic convolution of two periodically convolvable signals is particularly
nice. We also show that the notion of periodic convolvability is vacuous when the
signals being convolved are in L(1)

per,T(R;F), as we assume.

4.1.21 Theorem (Periodic convolutions are periodic and integrable) If f,g ∈

L(1)
per,T(R;F) then (f,g) is convolvable and f ∗ g ∈ L(1)

per,T(R;F).
Proof First we show that f ∗g(t) is defined for almost every t ∈ R and is integrable over
any period. Let us define F f ,g : R2

→ F by F f ,g(σ, τ) = f (τ)g(σ). If we take ϕ : R2
→ R2

to be defined by ϕ(s, t) = (s, t − s) then F f ,g ◦ ϕ(s, t) = f (t − s)g(s). Since f and g are
locally integrable, by Corollary III-2.8.8 F f ,g is also locally integrable. By the change of
variable formula, Theorem III-2.10.7, F f ,g ◦ ϕ is also locally integrable. Therefore,∫

[0,T]×[0,T]
|F f ,g ◦ ϕ|dλ2 ∈ R.
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By Fubini’s Theorem we then have that s 7→ f (t − s)g(s) in integrable over [0,T] for
almost every t ∈ [0,T] and that f ∗ g|[0,T] ∈ L(1)([0,T];F).

We next claim that D( f , g) is T-periodic. Indeed, if s 7→ f (t − s)g(s) is integrable,
then, since f (t + T − s) = f (t − s) (i.e., γt+T f = γt f ), s 7→ f (t + T − s)g(s) is integrable.

Finally we show that f ∗ g is T periodic. Let t ∈ R. First suppose that t ∈ D( f , g).
Then,

f ∗ g(t + T) =
∫

[0,T]
(γ∗t+T f )g dλ =

∫
[0,T]

(γ∗t f ) f dλ = f ∗ g(t).

Also, if t < D( f , g) then t + T < D( f , g) and so

f ∗ g(t + T) = 0 = f ∗ g(t),

giving the result. ■

The theorem has the following useful corollary.

4.1.22 Corollary (Characterisation of periodic convolution) For f,g ∈ L(1)
per,T(R;F) we

have ∫
[0,T]

h(f ∗ g) dλ =
∫

[0,T]×[0,T]
Ff,g,h dλ2

for every T-periodic continuous signal h: R→ F, where Ff,g,h(σ, τ) = h(σ + τ)f(τ)g(σ).
Proof If ϕ : R2

→ R2 is defined by ϕ(s, t) = (s, t− s) then F f ,g,h ◦ϕ(s, t) = h(t) f (t− s)g(s).
Define

P = {(s, t) ∈ R2
| ϕ(s, t) ∈ [0,T] × [0,T]};

see Figure 4.14. By the change of variables theorem we have

[0, T ]

[0, T ]

P

Figure 4.14 The change of variable domain for the proof of Corol-
lary 4.1.22

∫
[0,T]×[0,T]

F f ,g,h dλ2 =

∫
P

F f ,g,h ◦ ϕdλ2.
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By Fubini’s Theorem we have∫
P

F f ,g,h ◦ ϕdλ2 =

∫
[0,T]

g
(∫

s+[0,T]
G f ,h dλ

)
dλ,

where G f ,h(s, t) = h(t) f (t − s). Periodicity of f and h then ensures that∫
s+[0,T]

G f ,h dλ =
∫

[0,T]
G f ,h dλ,

so giving ∫
P

F f ,g,h ◦ ϕdλ2 =

∫
[0,T]

g
(∫

[0,T]
G f ,h dλ

)
dλ.

Another application of Fubini’s Theorem gives∫
[0,T]

g
(∫

[0,T]
G f ,h dλ

)
dλ =

∫
[0,T]

h( f ∗ g) dλ,

which gives the result. ■

As with the convolution for aperiodic signals from Section 4.1.1, we can say
something about the support of the convolution of two T-periodic signals. In order
to do this, it is convenient to define the map ϕT : R→ [0,T) by noting that if t ∈ R
then t − kT ∈ [0,T) for some unique k ∈ Z. We then define ϕT(t) = t − kT.

4.1.23 Proposition (Support of periodic convolution) If (f,g) is a pair of T-periodic F-
valued periodically convolvable signals, then

(supp(f ∗ g) ∩ [0,T)) ⊆ ϕT(cl(supp(f) ∩ (−T, 2T) + supp(g)(−T, 2T))).

Moreover, the above inclusion is equality of sets if f(t) and g(t) are nonnegative for almost
every t ∈ [0,T].

Proof Note that since f ∗ g is T-periodic, supp( f ∗ g) is invariant under translations by
T:

{t + T | t ∈ supp( f ∗ g)} = supp( f ∗ g).

Similar statements hold for the sets supp( f ), supp(g), and supp( f )+supp(g). Moreover,
note that

{s ∈ R | s + t ∈ [0,T), t ∈ [0,T)} ∪ {s ∈ R | s − t ∈ [0,T), t ∈ [0,T)}
∪ {s ∈ R | t − s ∈ [0,T), t ∈ [0,T)} = (−T, 2T).

Therefore, taking this all into account, a moments thought shows that the result is
equivalent to the assertion that

supp( f ∗ g) ⊆ cl(supp( f ) + supp(g)),

with equality occurring when f and g are almost everywhere nonnegative.
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If cl(supp( f ) + supp(g)) = R the first assertion holds trivially. So we suppose
this not to be the case. Let t ∈ R \ cl(supp( f ) + supp(g)), noting that t + kT ∈ R \
cl(supp( f )+ supp(g)) for every k ∈ Z. Now let U be a neighbourhood of t contained in
R\cl(supp( f )+supp(g)), such a neighbourhood existing sinceR\cl(supp( f )+supp(g))
is open. Let us also assume that U can be contained in an interval J of length T, this
being possible without loss of generality. The neighbourhood U can then be made
T-periodic by translating it by kT, k ∈ Z. We then have an open set U containing
the points t + kT, k ∈ Z. Let h : R → F be a continuous T-periodic function with
supp(h) ⊆ U. Then we have that, borrowing the notation of Corollary 4.1.22,∫

J
h( f ∗ g) dλ =

∫
J×J

F f ,g,h dλ2 =

∫
(supp( f )∩J)×(supp(g)∩J)

F f ,g,h dλ2, (4.2)

using the definition F f ,g,h(σ, τ) = h(σ+τ) f (σ)g(τ). However, if (σ, τ) ∈ supp( f )×supp(g)
it follows by assumption that h(σ + τ) = 0, and so F f ,g,h(σ, τ) = 0 as well. Thus the
integrals from (4.2) vanish for every continuous T-periodic function h with support in
U. It follows from that U ⊆ R \ supp( f ∗ g). Thus every open subset ofR \ cl(supp( f )+what

supp(g)) is contained inR\supp( f ∗ g). Equivalently, every closed subset of supp( f ∗ g)
is contained in cl(supp( f ) + supp(g)), which gives the first part of the result.

For the second assertion, note that if f and g are almost everywhere nonnegative,
then so is f ∗ g, being defined as the integral of two almost everywhere nonnegative
signals. Let U ⊆ R be open and with the property that f ∗ g(t) = 0 for almost every
t ∈ U. If the only such open set is the empty set then f ∗g is almost everywhere nonzero,
and so almost everywhere positive. In this case the second assertion holds trivially.
Thus we suppose that there exists a nonempty open set U such that f ∗ g(t) = 0 for
almost every t ∈ U. Without loss of generality we suppose that U is strictly contained
in an interval J of length T. Then we let K ⊆ U be a nonempty compact set and let
L ⊆ U be a compact set such that K ⊂ L. By Urysohn’s Lemma, Theorem II-1.10.42, let
h : J → [0, 1] have compact support and have the property that h(t) = 1 for t ∈ K and
h(t) = 0 for t ∈ J \L. It follows that h(t) = 0 for t ∈ J \U. Next, T-periodically extend h to
be defined on all of R, still denoting the periodically extended signal by h. Similarly,
translate K by kT, k ∈ Z, to get a T-periodic set which is a union of compact sets, the
translations of K. Still denote this set by K. We then have∫

J
h( f ∗ g) dλ = 0.

Let H : R2
→ [0, 1] be defined by H(σ, τ) = h(σ + τ). By (4.2) it follows that the open

set H−1(( 1
2 ,∞)) (open since H is continuous) does not intersect supp( f ) × supp(g). We

claim that this implies that K∩cl(supp( f )+supp(g)) = ∅. Indeed, if t ∈ K∩cl(supp( f )+
supp(g)) then t = σ + τ for σ ∈ supp( f ) and τ ∈ supp(g) and h(t) = H(σ + τ) = 1. But
then (σ, τ) ∈ supp( f )×supp(g)∩H−1(( 1

2 ,∞)), giving a contradiction. Thus we conclude
by that if K ⊆ R\supp( f ∗ g) is constructed as above, then K ⊆ R\cl(supp( f )+supp(g)).what?

This shows that cl(supp( f ) + supp(g)) ⊆ supp( f ∗ g) in this case, as is desired. ■

The algebraic properties of periodic convolution are given in the following
result. We note that, unlike the general situation with convolution for signals on
R, periodic convolution is generally associative.
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4.1.24 Proposition (Algebraic properties of periodic convolution) If f,g,h ∈

Lper,T1(R;F), then the following statements hold:
(i) f ∗ g = g ∗ f;
(ii) (f ∗ g) ∗ g = f ∗ (g ∗ h);
(iii) f ∗ (g + h) = f ∗ g + f ∗ h.

Proof (i) The proof that D( f , g) = D(g, f ) follows as in the proof of Proposition 4.1.9.
Also, as in the proof of Proposition 4.1.9, the change of variable theorem gives f ∗ g =
g ∗ f .

(ii) Here we use Fubini’s Theorem, the change of variable theorem, and periodicity
of f and g to compute

( f ∗ g) ∗ h(t) =
∫ T

0
f ∗ g(t − s)h(s) ds

=

∫ T

0

(∫ T

0
f (t − s − r)g(r) dr

)
h(s) ds

=

∫ T

0

(∫ s+T

s
f (t − τ)g(τ − s) dτ

)
h(s) ds

=

∫ T

0

(∫ T

0
f (t − τ)g(τ − s) dτ

)
h(s) ds

=

∫ T

0
f (t − τ)

(∫ T

0
g(τ − s)h(s) ds

)
dτ

=

∫ T

0
f (t − τ)g ∗ h(τ) dτ = f ∗ (g ∗ h)(t).

(iii) This follows directly from linearity of the integral, Proposition III-2.7.17. ■

We comment here that Examples 4.1.11 and 4.1.12, while presented in the
context of aperiodic signals on the time-domain R, are equally valid for periodic
signals by simply appropriately periodically extending the signals in the aperiodic
case. In particular, there is a signal f ∈ L(1)

per,T(R;F) for which f ∗ f is discontinuous

and there is an unbounded signal f ∈ L(1)
per,T(R;F) for which f ∗ f is continuous.

4.1.4 Convolution for aperiodic discrete-time signals

The next class of signals for which we consider convolution is the class of signals
defined on a discrete time-domain of the form Z(∆). The situation for discrete-
time signals is somewhat simpler than that for continuous-time signals since we
do not have to deal with the subtleties of integration, but instead can just deal with
summation.

4.1.25 Definition (Convolution for aperiodic discrete-time signals) Let ∆ ∈ R>0. An
ordered pair ( f , g) of F-valued signals on Z(∆) is convolvable if the signal

Z(∆) ∋ j∆ 7→ f (k∆ − j∆)g( j∆) ∈ F
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is in ℓ1(Z(∆);F) for every k∆ ∈ Z(∆). If ( f , g) is convolvable then their convolution
is the signal f ∗ g : Z(∆)→ F defined by

f ∗ g(k∆) = ∆
∑
j∈Z

f (k∆ − j∆)g( j∆). •

Let us consider a simple example in order to understand how discrete convo-
lution works.

4.1.26 Example (The mechanics of discrete convolution) On the time-domain Z(1) =
Z and for N ∈ Z>0 let us define f , gN : Z→ R by

f (k) =

1, k ∈ {−5, . . . , 5},
0, otherwise,

gN(t) =


sin(2πΩNk)

πk
, k , 0,

2ΩN, otherwise.

We takeΩ = 1
20π and in Figure 4.15 we plot f and gN for various N. In Figure 4.16

we show the convolution f ∗ gN for various N. The only thing we will point out
here is that as N gets large, the convolution f ∗ gN approaches f . This is rather
similar to what we saw in Example 4.1.19. However, it turns out that there are
some issues here with the signals being discrete. We shall consider these in . •what?

As we saw in Theorem 4.2.24 for periodic signals, and as we shall see in
Theorem 4.2.1 for aperiodic signals, in the continuous case there is no signal which
serves as a unit for the binary operation of convolution. For discrete-time signals,
however, there is a unit.

4.1.27 Example (Convolution with the unit pulse) Let ∆ ∈ R>0 and let f ∈ ℓloc(Z(∆);F)
be an arbitrary signal. Recall from Example 1.1.9–5 the unit pulse P : Z(∆) → R
defined by

P(t) =

1, t = 0
0, otherwise.

Let us correspondingly define PN : Z(∆)→ R by

PN(t) =

1, t = N∆
0, otherwise

for N ∈ Z. We then directly compute

f ∗ PN(k∆) = ∆
∑
j∈Z>0

f (k∆ − j∆)PN( j∆) = ∆ f (k∆ −N∆).

In particular, f ∗ (∆−1P) = f , and so we see that discrete-time signals always possess
a unit under the binary operation of convolution. •

Although the characterisation is not as deep as in the continuous-time case, we
provide the following characterisation of convolvable discrete-time signals.
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Figure 4.15 Two signals f (left) and gN (right top, middle, and
bottom), the latter for N ∈ {1, 5, 20}

4.1.28 Theorem (Characterisation of discrete convolution) Let ∆ ∈ R>0. For f,g ∈
ℓloc(Z(∆);F) the following statements are equivalent:

(i) (f,g) is convolvable;
(ii) for every signal h ∈ ℓloc(Z(∆);F) with finite support (i.e., h(t) , 0 for finitely many

t ∈ Z(∆)), it holds that ∑
(j,k)∈Z2

Ff,g,h(j,k) ∈ R,

where Ff,g,h(j,k) = h(j∆ + k∆)f(k∆)g(j∆).
Moreover, if (f,g) is convolvable and if h ∈ ℓloc(Z(∆);F) has finite support, then

∆
∑
j∈Z

h(j∆)f ∗ g(j∆) = ∆2
∑

(j,k)∈Z2

Ff,g,h(j,k).
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Figure 4.16 The convolution of the signals f and gN from Fig-
ure 4.15 for N ∈ {1, 5, 20}.

Proof Suppose that ( f , g) is convolvable and let h ∈ ℓloc(Z(∆);F) have finite support.
Define ϕ : Z2

→ Z2 by ϕ( j, k) = ( j, k − j) and note that

F f ,g,h ◦ ϕ( j, k) = h(k∆) f (k∆ − j∆)g( j∆).

Since ( f , g) is convolvable, it follows that j 7→ F f ,g,h ◦ϕ( j, k) is in ℓ1(Z,F) for every k ∈ Z.
Since h has finite support, the signal k 7→ F f ,g,h ◦ ϕ( j, k) is in ℓ1(Z;F) for every j ∈ Z.
Then we have ∑

k∈Z

h(k∆) f ∗ g(k) = ∆
∑
j∈Z

∑
k∈Z

F f ,g,h ◦ ϕ( j, k).

Since ( f , g) is convolvable and since h has finite support, the sum on the left converges
absolutely. Thus the sum on the right converges absolutely and so, sinceϕ is a bijection,
we have ∑

j∈Z

∑
k∈Z

F f ,g,h ◦ ϕ( j, k) =
∑

j,k∈Z2

F f ,g,h( j, k),

which gives this part of the theorem following the constructions of Section I-2.4.7.
Now suppose that, for every signal h ∈ ℓloc(Z(∆);F) with finite support, it holds

that ∑
( j,k)∈Z2

|F f ,g,h( j, k)| ∈ R.
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By the constructions of Section I-2.4.7 it follows that∑
( j,k)∈Z2

|F f ,g,h ◦ ϕ( j, k)| ∈ R,

with ϕ as above. By Fubini’s Theorem the function j 7→ |F f ,g,h ◦ ϕ( j, k)| is in ℓ1(Z;F) for
every k ∈ Z and for every finitely supported h ∈ ℓloc(Z(∆);F). As above,

F f ,g,h ◦ ϕ( j, k) = h(k∆) f (k∆ − j∆)g( j∆),

and so choosing

h(k∆) =

1, k = m,
0, otherwise,

we see that j 7→ | f (m∆ − j∆)g( j∆)| is in ℓ1(Z;F) for every m ∈ Z. Thus ( f , g) is
convolvable. ■

As with the convolution of continuous-time signals, we can characterise the
support of the convolution of discrete-time signals.

4.1.29 Proposition (Support of discrete convolution) Let ∆ ∈ R>0. If (f,g) is a pair of
convolvable F-valued signals on Z(∆), then

supp(f ∗ g) ⊆ supp(f) + supp(g),

where supp(f) + supp(g) = {s + t | s ∈ supp(f), t ∈ supp(g)}. Moreover, the above
inclusion is equality of sets if f(t) and g(t) are nonnegative for every t ∈ Z(∆).

Proof If supp( f ) + supp(g) = Z(∆) the first assertion holds trivially. So we suppose
this not to be the case. Let t ∈ Z(∆)\(supp( f )+supp(g)) and let h : Z(∆)→ F be a signal
with supp(h) = {t}. Then we have that, borrowing the notation of Theorem 4.1.28,

∆
∑
j∈Z

h( j∆) f ∗ g( j∆) = ∆2
∑

( j,k)∈Z2

F f ,g,h( j, k) = ∆2
∑

( j,k)∈supp( f )×supp(g)

F f ,g,h( j, k), (4.3)

using the definition F f ,g,h( j, k) = h( j∆+ k∆) f (k∆)g( j∆). However, if ( j∆, k∆) ∈ supp( f )×
supp(g) it follows by assumption that h( j∆ + k∆) = 0, and so F f ,g,h( j, k) = 0 as well.
Thus the sums from (4.3) vanish for every signal h with supp(h) = {t}. It follows that
{t} ⊆ R \ supp( f ∗ g), which gives the first part of the result.

For the second assertion, note that if f and g are nonnegative, then so is f ∗ g, being
defined as the sum of two nonnegative signals. If there is no t ∈ Z(∆) where f ∗ g(t) = 0
then f ∗ g is everywhere nonzero, and so everywhere positive. In this case the second
assertion holds trivially. So let t ∈ Z(∆) be such that f ∗ g(t) = 0 and let h ∈ ℓloc(Z(∆);F)
be such that supp(h) = {t}. We, therefore, have∑

j∈Z

h( j∆) f ∗ g( j∆) = 0.
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According to (4.3) we have ∑
( j,k)∈supp( f )×supp(g)

F f ,g,h( j, k) = 0.

Since the sum is a sum of strictly positive or strictly negative terms, it follows that all
terms in the sum are zero. By the definitions of h and F f ,g,h, this means that, for ( j∆, k∆) ∈
supp( f ) × supp(g), f ( j∆)g(k∆) = 0 whenever j∆ + k∆ = t. Thus t < supp( f ) + supp(g),
giving the second assertion of the proposition. ■

Next we give a few algebraic properties of discrete convolution.

4.1.30 Proposition (Algebraic properties of discrete convolution) If f,g,h: Z(∆)→ F
then the following statements hold:

(i) if (f,g) is convolvable, then (g, f) is convolvable and f ∗ g = g ∗ f;
(ii) if (f,g) and (f,h) are convolvable, then (f,g + h) is convolvable and f ∗ (g + h) =

f ∗ g + f ∗ h.
Proof (i) Let k ∈ Z and consider the bijection γk : Z→ Z given by γk( j) = k − j. Since
( f , g) is convolvable, the signalγ∗k f g is in ℓ1(Z;F). By the constructions of Section I-2.4.7
it follows that (γ∗k f g) ◦ γk is in ℓ1(Z;F). Since

(γ∗k f g) ◦ γk( j) = (γ∗k f g)(k − j) = f ( j)g(k − j),

it follows that j 7→ f ( j∆)g(k∆ − j∆) is in ℓ1(Z;F), showing that (g, f ) is convolvable.
The constructions of Section I-2.4.7 further give∑

j∈Z

f ( j)g(k − j) =
∑
j∈Z

(γ∗k f g) ◦ γk( j) =
∑
j∈Z

(γ∗k f g)( j) =
∑
j∈Z

f (k − j)g( j).

(ii) This is a direct consequence of linearity of convergent sums, Proposi-
tion I-2.4.30. It is also a consequence of linearity of the integral since sums are actually
integrals with respect to a suitable measure by Example III-2.7.10. ■

4.1.31 Example (Discrete convolution is not generally associative) Let us take ∆ = 1
and define f , g, h : Z→ R by

f ( j) = 1, g( j) =


1, j = 1,
−1, j = 2,
0, otherwise,

h( j) =


0, j ≤ 0,
1, j = 1,
2, g ≥ 2.

We have
f ∗ g(k) =

∑
j∈Z

f (k − j)g( j) =
∑
j∈Z

g( j) = 0

for every k ∈ Z. We also directly compute

g ∗ h( j) =

1, j ∈ {2, 3},
0, otherwise

and consequently also directly we compute f ∗ (g ∗ h)( j) = 2 for every j ∈ Z. This
shows, in particular, that f ∗ (g ∗ h) , ( f ∗ g) ∗ h, as desired. •
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4.1.5 Convolution for discrete-time signals with restrictions on their support

In Section V-6.9 we shall be interested in the convolution of causal discrete-time
signals as part of our examination of system theory. The convolution product
that is used in this case is the adaptation to the discrete-time case of the causal
convolution of Section 4.1.2.

As we continuous-time signals, for f ∈ ℓloc(Z(∆);F), we let σ( f ) = inf(supp( f )),
and assume causality of f so that σ( f ) > −∞. Note that f (t) = 0 for every t < σ( f ).

The following result characterises the convolution of two causal discrete-time
signals.

4.1.32 Theorem (Convolution of discrete-time causal signals) If f,g ∈ ℓloc(Z(∆);F) are
causal then (f,g) is convolvable and

f ∗ g(k∆) =


∑k−σ(f)/∆

j=σ(g)/∆ f(k∆ − j∆)g(j∆), k∆ ≥ σ(f) + σ(g),

0, otherwise.

Proof First let us determine the domain over which we sum to compute f ∗ g(t) for
t ∈ Z(∆) fixed, and at the same time determine for which t we are guaranteed to have
f ∗ g(t) = 0.

Suppose that t < σ( f ) + σ(g). We then have two cases for s ∈ Z(∆).
1. s < σ(g): In this case, f (t − s)g(s) = 0 for every s < σ(g).
2. s ≥ σ(g): In this case we have

t − s < σ( f ) + (σ(g) − s) ≤ σ( f )

and so f (t − s)g(s) = 0 for every s ≥ σ(g).
In any case, for t < σ( f )+ σ(g), we conclude that f (t− s)g(s) = 0 for every s ∈ R, and so∑

j∈Z

f (k∆ − j∆)g( j∆) = 0

when k∆ < σ( f ) + σ(g).
Now, with t ≥ σ( f ) + σ(g), let s > t − σ( f ). Then t − s < σ( f ). Therefore, provided

that s < σ(g) or s > t − σ( f ), it holds that f (t − s)g(s) = 0. In this case it also holds that

∑
j∈Z

f (k∆ − j∆)g( j∆) =
k−σ( f )/∆∑
j=σ(g)/∆

f (k∆ − j∆)g( j∆).

Thus, when t ≥ σ( f )+σ(g), the convolution sum is over a finite set of times. This shows
that, for every t ∈ Z(∆), f ∗ g(t) is well-defined. ■

In Exercise 4.1.13 the reader can provide the analogous statement for acausal
signals.

The following result records the consequences of the previous result when
signals are supported in

Z≥0(∆) = {k∆ | k ∈ Z≥0},

which we think of as the discrete-time analogue of R≥0.
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4.1.33 Corollary (Convolution for signals with support in Z≥0(∆)) If f,g ∈ ℓloc(Z(∆);F)
satisfy supp(f), supp(g) ⊆ Z≥0(∆), then

(i) (f,g) is convolvable,
(ii) supp(f ∗ g) ⊆ Z≥0(∆), and

(iii) f ∗ g(k∆) =
∑k

j=0 f(k∆ − j∆)g(j∆), k∆ ∈ Z≥0(∆).

Let us give an example that shows how causal convolution works. We have
dedicated significant effort in the continuous-time case, and in the acausal discrete-
time case, to describe how convolution works. Thus, here we shall be brief.

4.1.34 Example (The mechanics of causal convolution) We give the discrete-time ver-
sion of the continuous-time causal convolution of Example 4.1.15. Thus, we con-
sider the signals f , g ∈ L(1)

loc(R≥0;R) defined by

f (t) = sin(t), g(t) = cos(t).

The reader may be familiar with the graphs of these signals, which we display in
Figure 4.17. We depict the convolution in Figure 4.18. As with Example 4.1.15
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Figure 4.17 Two signals f (left) and g (right)

in the continuous-time case, this gives an example of bounded signals with an
unbounded convolution. •

Let us give the algebraic structure of discrete causal convolution.

4.1.35 Proposition (Algebraic properties of discrete causal convolution) If f,g,h ∈
ℓloc(Z≥0(∆);F), then the following statements hold:

(i) f ∗ g = g ∗ f;
(ii) (f ∗ g) ∗ g = f ∗ (g ∗ h);
(iii) f ∗ (g + h) = f ∗ g + f ∗ h.

Proof Parts (i) and (iii) follow from Proposition 4.1.30. One may prove part (ii) just as
was done in the proof of Proposition 4.1.16. ■
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Figure 4.18 The convolution of the signals f and g from Fig-
ure 4.17

4.1.6 Convolution for periodic discrete-time signals

The next class of convolutions we consider is that for periodic discrete-time
signals. For periodic discrete convolution, there is no danger of any pairs of signals
not being convolvable since, as we shall shortly see, this convolution involves finite
sums. Thus we make the following definition.

4.1.36 Definition (Convolution for periodic discrete-time signals) Let ∆ ∈ R>0 and let
T = N∆ for some N ∈ Z>0. The convolution of the pair ( f , g) ∈ ℓper,T(Z(∆);F) is the
signal f ∗ g : Z(∆)→ F defined by

f ∗ g(k∆) = ∆
N−1∑
j=0

f (k∆ − j∆)g( j∆).

Let us make some comments about discrete periodic convolution.

4.1.37 Remarks (On periodic convolution of discrete-time periodic signals)
1. For a pair ( f , g) of T-periodic discrete-time signals defined on Z(∆), when we

write f ∗ g there can be no ambiguity about whether we mean “convolution” or
“periodic convolution.” Indeed, if the pair ( f , g) is convolvable in the sense of
Definition 4.1.25, then one of f and g must be zero. The reader can prove this
in Exercise 4.1.16.

2. While the sum in Definition 4.1.36 is from 0 to N − 1, by periodicity of f and
g the sum can be performed over any collection of length N of consecutive
integers. •

Let us give an example of discrete periodic convolution. We shall be a little brief
here, having devoted much effort in the previous three versions of convolution to
understanding what convolution “is.”
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4.1.38 Example (The mechanics of discrete periodic convolution) We let ∆ = 1 and
take T = 10. We define two T-periodic signals f and g on Z by defining them on
{−5,−4, . . . , 4, 5} to be

f (k) =

1, k ∈ {−2,−1, 0, 1, 2},
0, otherwise,

g(k) =


1, k = 0,
1
2 , k ∈ {−1, 1},
0, otherwise.

In Figure 4.19 we depict these signals on one period. Their convolution is shown
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Figure 4.19 Two periodic discrete-time signals

in Figure 4.20. •
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Figure 4.20 The periodic convolution of the signals from Fig-
ure 4.19

As with aperiodic discrete convolution, periodic discrete convolution possesses
a unit.
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4.1.39 Example (Convolution with the periodic unit pulse) Let∆ ∈ R>0 and let T = N∆
for some N ∈ Z>0. Let f ∈ ℓper,T(Z(∆);F) be an arbitrary T-periodic discrete-
time signal. In Example 1.1.24–1 we defined the T-periodic unit pulse Pper,T ∈

ℓper,T(Z(∆);F) by

Pper,T(t) =

1, t = kT for some k ∈ Z,
0, otherwise.

We then compute

f ∗ Pper,T(k∆) = ∆
N−1∑
j=0

f (k∆ − j∆)Pper,T( j∆) = ∆ f (k∆).

Thus f ∗Pper,T = ∆ f , showing that ∆−1Pper,T serves as a multiplicative identity if the
product is given by convolution. •

We should verify that discrete periodic convolution gives rise to periodic sig-
nals.

4.1.40 Proposition (Discrete periodic convolutions are periodic) Let ∆ ∈ R>0 and let
T = N∆ for some N ∈ Z>0. If f,g ∈ ℓper,T(Z(∆);F) then f ∗ g ∈ ℓper,T(Z(∆);F).

Proof This is a simple computation:

f ∗ g(k∆ +N∆) = ∆
N−1∑
j=0

f (k∆ +N∆ − j∆)g( j∆) = ∆
N−1∑
j=0

f (k∆ − j∆)g( j∆) = f ∗ g(k∆). ■

Let us now characterise the support for discrete periodic convolutions. We recall
from the paragraph preceding Proposition 4.1.23 the definition ofϕT : R→ [0,T).

4.1.41 Proposition (Support of discrete periodic convolution) Let ∆ ∈ R>0 and let
T = N∆ for some N ∈ Z>0. If (f,g) is a pair of convolvable T-periodic F-valued signals on
Z(∆), then

(supp(f ∗ g) ∩ [0,T)) ⊆ ϕT(supp(f) ∩ (−T, 2T) + supp(g)(−T, 2T)).

Moreover, the above inclusion is equality of sets if f(t) and g(t) are nonnegative for every
t ∈ Z(∆).

Proof Note that since f ∗ g is T-periodic, supp( f ∗ g) is invariant under translations by
T:

{t + T | t ∈ supp( f ∗ g)} = supp( f ∗ g).

Similar statements hold for the sets supp( f ), supp(g), and supp( f )+supp(g). Moreover,
note that

{s ∈ Z(∆) | s + t ∈ [0,T), t ∈ [0,T)} ∪ {s ∈ Z(∆) | s − t ∈ [0,T), t ∈ [0,T)}
∪ {s ∈ Z(∆) | t − s ∈ [0,T), t ∈ [0,T)} = Z(∆) ∩ (−T, 2T).
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Therefore, taking this all into account, a moments thought shows that the result is
equivalent to the assertion that

supp( f ∗ g) ⊆ (supp( f ) + supp(g)),

with equality occurring when f and g are almost everywhere nonnegative.
If supp( f ) + supp(g) = Z(∆) the first assertion holds trivially. So we suppose this

not to be the case. Let t ∈ Z(∆) ∩ [0,T) \ (supp( f ) + supp(g)), noting that t + kT ∈
Z(∆) \ (supp( f ) + supp(g)) for every k ∈ Z. Let h : Z(∆) → F be a T-periodic signal
with

supp(h) = {t + kT | k ∈ Z}.

Then we have that, borrowing the notation of Theorem 4.1.28,

N−1∑
j=0

h( j∆) f ∗ g( j∆) = ∆
∑

( j,k)∈{0,1,...,N−1}2
F f ,g,h( j, k) = ∆

∑
( j,k)∈supp( f )×supp(g)∩[0,T)2

F f ,g,h( j, k),

(4.4)
using the definition F f ,g,h( j, k) = h( j + k) f ( j)g(k). However, if ( j∆, k∆) ∈ supp( f ) ×
supp(g) ∩ [0,T)2 it follows by assumption that h( j∆ + k∆) = 0, and so F f ,g,h( j, k) = 0 as
well. Thus the sums from (4.4) vanish for every T-periodic signal h with the support
as described. It follows that

{t + kT | k ∈ Z} ⊆ R \ supp( f ∗ g),

which gives the first part of the result.
For the second assertion, note that if f and g are nonnegative, then so is f ∗ g, being

defined as the sum of two nonnegative signals. If there is no t ∈ Z(∆) where f ∗ g(t) = 0
then f ∗ g is everywhere nonzero, and so everywhere positive. In this case the second
assertion holds trivially. So let t ∈ Z(∆) ∩ [0,T) be such that f ∗ g(t) = 0 and note that
f ∗ g(t + kT) = 0 for every k ∈ Z. Let h : Z(∆)→ F be a T-periodic signal with

supp(h) = {t + kT | k ∈ Z}.

We, therefore, have
N−1∑
j=1

h( j∆) f ∗ g( j∆) = 0.

According to (4.4) we have ∑
( j,k)∈supp( f )×supp(g)∩[0,T)2

F f ,g,h( j, k) = 0.

Since the sum is a sum of strictly positive or strictly negative terms, it follows that
all terms in the sum are zero. By the definitions of h and F f ,g,h, this means that, for
( j∆, k∆) ∈ supp( f ) × supp(g) ∩ [0,T)2, f ( j∆)g(k∆) = 0 whenever j∆ + k∆ = t. Thus
t < supp( f ) + supp(g), giving the second assertion of the proposition. ■

We close this section by considering the algebraic properties of discrete periodic
convolution.
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4.1.42 Proposition (Algebraic properties of discrete periodic convolution) If f,g,h ∈
ℓper,T(Z(∆);F), then the following statements hold:

(i) f ∗ g = g ∗ f;
(ii) (f ∗ g) ∗ g = f ∗ (g ∗ h);
(iii) f ∗ (g + h) = f ∗ g + f ∗ h.

Proof (i) We compute

f ∗ g(k∆) = ∆
N−1∑
j=0

f (k∆ − j∆)g( j∆) = ∆
k∑

m=k−(N−1)

f (m∆)g(k∆ −m∆)

= ∆

N−1∑
l=0

f (l∆)g(k∆ − l∆) = g ∗ f (k∆).

(ii) We compute

f ∗ (g ∗ h)(l∆) = ∆
N−1∑
k=0

f (l∆ − k∆)g ∗ h(k∆) = ∆2
N−1∑
k=0

N−1∑
j=0

f (l∆ − k∆)g(k∆ − j∆)h( j∆)

= ∆2
N−1− j∑
m=− j

N−1∑
j=0

f (l∆ −m∆ − j∆)g(m∆)h( j∆)

= ∆2
N−1∑
j=0

N−1∑
m=0

f (l∆ − j∆ −m∆)g(m∆)h( j∆) = ∆
N−1∑
j=0

f ∗ g(l∆ − j∆)h( j∆)

= ( f ∗ g) ∗ h(l∆).

(iii) This follows by linearity of finite summation. ■

4.1.7 Convolution for signals with values in vector spaces

In the sections above, we describe in great detail the operation of convolution
for scalar-valued signals. In this section we overview how to extend this to vector
space-valued signals. We shall not do this as carefully as we did above for the
scalar case, since there are no conceptual difficulties to extending this amount of
care to the vector space-valued case.

We have the various classes of signals to consider. In all cases, we let F ∈ {R,C}
and let U and V be finite-dimensional F-vector spaces.
1. First we consider the case of signals defined on R. For functions η : R→ U and

L : R→ L(U; V), we define the convolution L ∗ η : R→ V by

L ∗ η(t) =
∫
R

L(t − s)(η(s)) ds,

whenever the integral makes sense. The usual rules and caveats for convolution
apply, except that commutativity does not generally make sense.
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2. Next let us consider causal convolution for signals defined on R≥0. Here,
for functions η : R≥0 → U and L : R≥0 → L(U; V), we define the convolution
L � η : R≥0 → V by

L � η(t) =
∫ t

0
L(t − s)(η(s)) ds,

whenever the integral makes sense.
3. The final continuous-time situation is for periodic signals on R. Thus we let

η : R→ U and L : R→ L(U; V) be T-periodic functions. We can then define their
periodic convolution by

L ∗ η(t) =
∫ T

0
L(t − s)(η(s)) ds,

whenever the integral makes sense.
4. Let us now consider discrete-time convolution, first looking at the case of signals

defined on Z(∆). In this case, we have signals η : Z(∆) → U and L : Z(∆) →
L(U; V), and we define the convolution L ∗ η : Z(∆)→ V by

L ∗ η(k∆) = ∆
∑
j∈Z

L(k∆ − j∆)(η( j∆)),

whenever the sum makes sense.
5. The next discrete-time case is for causal signals, i.e., signals defined on Z≥0(∆).

Here we have signals η : Z≥0(∆) → U and L : Z≥0(∆) → L(U; V), and we define
the convolution L ∗ η : Z≥0(∆)→ V by

L ∗ η(k∆) = ∆
k∑

j=0

L(k∆ − j∆)(η( j∆)),

The preceding sum, being finite, is always defined.
6. Finally, we consider the discrete-time periodic case, where we have T-periodic

signals η : Z(∆) → U and L : Z(∆) → L(U; V). Of course, we take T = N∆, and
then the periodic convolution L ∗ η : Z(∆)→ V is defined by

L ∗ η(k∆) = ∆
N−1∑
j=0

L(k∆ − j∆)(η( j∆)),

and we note that this sum always exists since it is finite.
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4.1.8 Notes

The reader should be aware that the basic treatment of convolution in many
texts is a little sloppy. For example, it is very often stated that convolution is
associative. Our Example 4.1.10, from [Hall and Wise 1990], shows that this is not
generally true, although in Theorem 4.2.1 we show that this is true for L1(R;F).
Periodic convolution and acausal convolution are always associative, however.
Thus one has to exercise care when utilising the “natural” algebraic properties of
convolution.

Various definitions of convolution are possible, and comparisons of these are
made, for example, in [Dierolf and Voigt 1978, Kamiński 1982]

Exercises

4.1.1 Let F ∈ {R;C}, let h ∈ L1
loc(R;F), and denote

conv(R;F) = {( f , g) ∈ L1
loc(R;F) ⊕ L1

loc(R;F) | ( f , g) is convolvable}

and
convh = { f ∈ L1

loc(R;F) | ( f , h) is convolvable}.

Answer the following questions.
(a) Is conv(R;F) a subspace of L1

loc(R;F) ⊕ L1
loc(R;F)?

(b) Is convh(R;F) a subspace of L1
loc(R;F)?

4.1.2 For the following pairs ( f , g) of signals defined on R, compute their convo-
lution if they are convolvable.
(a) Take f = g = 1≥0.
(b) Take f (t) = 1≥0 and g = σ∗1≥0.
(c) Take

f (t) = g(t) =

1, t ∈ [−a, a],
0, otherwise.

(d) Take f (t) = 1 for all t ∈ R and take

g(t) =


1 − t, t ∈ [0, 1],
1 + t, t ∈ [−1, 0),
0, otherwise.

(e) Take

f (t) = g(t) =

t2, t ∈ [−1, 1],
0, otherwise.

4.1.3 For the following pairs of 1-periodic signals defined on R, compute their
periodic convolution if they are convolvable.
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(a) Take f and g to be defined on [0, 1) by

f (t) = g(t) =

t, t ∈ [0, 1
2 ],

1 − t, t ∈ [ 1
2 , 1).

(b) Take f and g to be defined on [0, 1) by

f (t) = g(t) =

1, t ∈ [0, 1
4 ] ∪ [3

4 , 1),
0, otherwise.

(c) Take f (t) = g(t) = 1 for all t ∈ R.
(d) Take f and g to be defined on [0, 1) by

f (t) = g(t) =

|t|−1, t ∈ (0, 1),
0, t = 0.

(e) Take f (t) = sin(2πt) and g(t) = sin(4πt).

4.1.4 Let f , g ∈ L(1)
loc(R;F) be convolvable and let a ∈ R. Answer the following

questions.
(a) Show that (τ∗a f , g) and ( f , τ∗ag) are convolvable and that

(τ∗a f ) ∗ g = f ∗ (τ∗ag) = τ∗a( f ∗ g).

(b) Show that (τ∗a f , τ∗ag) is convolvable and that (τ∗a f ) ∗ (τ∗ag) = τ∗2a( f ∗ g).
4.1.5 Consider the signals f , g : R→ R defined by

f (t) =

t−1/2, t ∈ (0, 1],
0, otherwise

and g(t) = f (−t).
(a) Show that ( f , g) is convolvable and that D( f , g) = R \ {0}.
(b) Compute f ∗ g.

4.1.6 Show that, if f ∈ L(∞)(R;F) has compact support and if g ∈ L(1)
loc(R;F), then

( f , g) is convolvable.

4.1.7 For f ∈ L(1)(R;F) and g ∈ L(∞)
per,T(R;F), answer the following questions.

(a) Show that ( f , g) is convolvable and that the convolution f ∗g is T-periodic.
Let F be the T-periodic extension of f |[0,T], let G be the T-periodic extension
of g|[0,T] (i.e., G = g), and let H be the T-periodic extension of ( f ∗ g)|[0,T]
(i.e., H = f ∗ g).
(b) Show that H = F ∗ G (convolution here is periodic convolution).
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4.1.8 State and prove the version of Theorem 4.1.13 that is valid for acausal signals.
4.1.9 Let ( f , g) be T-periodic F-valued signals whose convolution over R,

f ∗ g(t) =
∫
R

f (t − s)g(s) ds,

exists for almost every t ∈ R. Show that one of f or g must be zero, i.e., zero
almost everywhere.

4.1.10 For the following pairs ( f , g) of signals defined on Z(∆), compute their
convolution if they are convolvable.
(a) Take f = g = 1≥0.
(b) Take f (t) = 1≥0 and g = σ∗1≥0.
(c) Take

f (t) = g(t) =

1, t ∈ [−N∆,N∆] ∩Z(∆),
0, otherwise.

(d) Take f (t) = 1 for all t ∈ Z(∆) and take

g(t) =


−

t
N∆ + 1, t ∈ {0,∆, . . . , (N − 1)∆},

t
N∆ + 1, t ∈ {−(N − 1)∆, . . . ,−∆},
0, otherwise.

4.1.11 Let ∆ ∈ R>0 and let f , g ∈ ℓ1(Z(∆);F) be convolvable and let a ∈ Z(∆).
Answer the following questions.
(a) Show that (τ∗a f , τ∗ag) and (τ∗a f , τ∗ag) are convolvable and that

(τ∗a f ) ∗ g = f ∗ (τ∗ag) = τ∗a( f ∗ g).

(b) Show that (τ∗a f , τ∗ag) is convolvable and that (τ∗a f ) ∗ (τ∗ag) = τ∗2a( f ∗ g).
4.1.12 Let ∆ ∈ R>0 and let f ∈ ℓloc(Z(∆);F). Show that there exist signals

g, h ∈ ℓloc(Z(∆);F) such that g ∗ h = f , i.e., show that discrete convolution is
“surjective.”

4.1.13 State and prove the version of Theorem 4.1.32 that is valid for acausal
signals.

4.1.14 For f ∈ ℓloc(Z≥0;F) and for n ∈ Z>0, define v f ,n ∈ Fn and A f ,n ∈ L(Fn;Fn) by

v f ,n = ( f (0), f (1), . . . , f (n − 1)),

A f ,n =


f (0) 0 0 · · · 0
f (1) f (0) 0 · · · 0
f (2) f (1) f (0) · · · 0
...

...
...

. . .
...

f (n − 1) f (n − 2) f (n − 3) · · · 0

 .
Show that, for f , g ∈ ℓloc(Z≥0;F), we have

f � g(n) = A f ,nvg,n = Ag,nv f ,n, n ∈ Z>0.
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4.1.15 For f ∈ ℓ1(Z(∆);F) and g ∈ ℓper,N∆(Z(∆);F), answer the following ques-
tions.
(a) Show that ( f , g) is convolvable and that the convolution f ∗ g is N∆-

periodic.
Let F be the N∆-periodic extension of f |[0,N∆) ∩ Z(∆), let G be the N∆-
periodic extension of g|[0,N∆) ∩ Z(∆) (i.e., G = g), and let H be the N∆-
periodic extension of ( f ∗ g)|[0,N∆) ∩Z(∆) (i.e., H = f ∗ g).
(b) Show that H = F ∗ G (convolution here is periodic convolution).

4.1.16 Let ( f , g) be discrete-time T-periodic F-valued signals defined on Z(∆)
whose convolution,

f ∗ g(k∆) = ∆
∑
j∈Z

f (k∆ − j∆)g( j∆),

exists for every k ∈ Z. Show that one of f or g must be zero.
4.1.17 Let ∆ ∈ R>0, let T = N∆ for some N ∈ Z>0, and let f ∈ ℓloc(Z(∆);F) be

T-periodic. Show that there exist T-periodic signals g, h ∈ ℓloc(Z(∆);F) such
that g ∗ h = f , i.e., show that periodic discrete convolution is “surjective.”
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Section 4.2

Convolvable pairs of signals and properties of convolutions

In this section we consider the convolution between signals from various spaces.
It is really not possible to stage the most general result for when the convolution
of two signals is defined, nor is it necessarily interesting to do so. Thus, in this
section we shall give those results which will be of interest to us in our subsequent
uses of convolution.

Do I need to read this section? If one wishes to understand the basic results
about when the operation of convolution is defined between two signals, then
this is the section to read. •

4.2.1 Convolution in L1(R;F)

The first case where convolution makes sense is when it is applied to integrable
signals. The following result gives the space of integrable signals some rather
useful algebraic structure.

4.2.1 Theorem (L1(R;F) is an associative, commutative algebra without unit, when
equipped with convolution as product) If f,g ∈ L(1)(R;F) then (f,g) is convolvable
and f ∗ g ∈ L(1)(R;F). Furthermore, for f,g,h ∈ L(1)(R;F), then the following statements
hold:

(i) ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1;
(ii) f ∗ g = g ∗ f;
(iii) (f ∗ g) ∗ h = f ∗ (g ∗ h);
(iv) f ∗ (g + h) = f ∗ g + f ∗ h;
(v) (recalling Remark 4.1.2) there is no equivalence class of signals [u] ∈ L1(R;F) such

that [u ∗ f] = [f] for every [f] ∈ L1(R;F).
Proof Define F f ,g : R2

→ F by F f ,g(σ, τ) = f (σ)g(τ). By Corollary III-2.8.8 F f ,g ∈

L(1)(R2;F). Now consider the change of variableϕ : R2
→ R2 given byϕ(s, t) = (t−s, s),

so that
F f ,g ◦ ϕ(s, t) = f (t − s)g(s).

By the change of variable theorem, Theorem III-2.10.7, F f ,g ◦ ϕ ∈ L(1)(R2;F), and so by
Fubini’s Theorem, the function s 7→ f (t − s)g(s) is integrable for almost every t ∈ R.
Thus ( f , g) is convolvable.

(i) Moreover, using the change of variable theorem and Fubini’s Theorem again,∫
R

∣∣∣∣∣∫
R

f (t − s)g(s) ds
∣∣∣∣∣ dt ≤

∫
R2
|F f ,g ◦ ϕ|dλ2 =

∫
R2
|F f ,g|dλ2 = ∥ f ∥1∥g∥1,

as desired.
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(ii) This is Proposition 4.1.9(i).
(iii) We have

( f ∗ g) ∗ h(t) =
∫
R

f ∗ g(t − s)h(s) ds

=

∫
R

(∫
R

f (t − s − r)g(r) dr
)

h(s) ds

=

∫
R

(∫
R

f (t − τ)g(τ − s) dτ
)

h(s) ds

=

∫
R

f (t − τ)
(∫
R

g(τ − s)h(s) ds
)

dτ

=

∫
R

f (t − τ)g ∗ h(τ) dτ = f ∗ (g ∗ h)(t),

using the change of variable theorem and Fubini’s Theorem.
(iv) This is Proposition 4.1.9(ii).
(v) Let u ∈ L(1)(R;F) be such that, for every f ∈ L(1)(R;F), u ∗ f (t) = f (t) for almost

every t ∈ R. We first use a lemma that is an adaptation of Lemma 1 from the proof of
Theorem 4.2.24.

1 Lemma If u ∈ L(1)(R;F) then there exists r ∈ R>0 such that∣∣∣∣∣∣
∫ t+r′

t−r′
u(s) ds

∣∣∣∣∣∣ < 1, t ∈ R, r′ ∈ (0, r].

Proof Let t ∈ R. By Proposition III-2.9.24 and Theorem III-2.9.33, the function

r 7→
∫ t+r

t−r
u(s) ds

is continuous since u is locally integrable. Therefore, since the value of this function is
zero at r = 0, there exists rt ∈ R>0 such that∣∣∣∣∣∣

∫ t+r

t−r
u(s) ds

∣∣∣∣∣∣ < 1
2

for every r ∈ (0, rt). Now let T ∈ R>0 be sufficiently large that∫
R
|u(s)|ds −

∫ T

−T
|u(s)|ds < 1,

this being possible since

lim
T→∞

∫ T

−T
|u(s)|ds < ∞.

Note that ((−rt, rt))t∈[−2T,2T] is an open cover of [−2T, 2T]. By compactness of [−2T, 2T],
we can apply Theorem I-2.5.30 to assert the existence of ρ ∈ R>0 such that, for each
t ∈ [−2T, 2T], there exists st ∈ [−2T, 2T] such that

(t − ρ, t + ρ) ∩ [−2T, 2T] ⊆ (st − rst , st + rst).
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Let r = min{ρ, T
2 }.

Now let t ∈ R and let r′ ∈ (0, r]. If t ∈ [−2T, 2T] then let st ∈ [−2T, 2T] be such that

(t − r, t + r) ∩ [−2T, 2T] ⊆ (st − rst , st + rst),

this being possible by definition of r. Then the preceding inclusion and the definition
of rst immediately gives∣∣∣∣∣∣

∫ t+r′

t−r′
u(s) ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ st

t−r′
u(s) ds +

∫ t+r′

st

u(s) ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∫ st

t−r′
u(s) ds

∣∣∣∣∣ +
∣∣∣∣∣∣
∫ t+r′

st

u(s) ds

∣∣∣∣∣∣ < 1

using the usual convention that ∫ b

a
ds = −

∫ a

b
ds

when a > b. If t ∈ (−∞,−2T) then, by the definition of T, we have∣∣∣∣∣∣
∫ t+r′

t−r′
u(s) ds

∣∣∣∣∣∣ ≤
∫ t+r

t−r
|u(s)|ds ≤

∫
−2T

−∞

|u(s)|ds < 1.

Similarly, if t ∈ (2T,∞) then

|

∫ t+r′

t−r′
u(s) ds| < 1,

and the lemma follows. ▼

Now let f = χ[−r,r] be the characteristic function of the interval [−r, r]. By assump-
tion, there exists Z ⊆ R of zero measure such that u ∗ f (t) = f (t) for every t ∈ R \Z. For
t ∈ [−r, r] ∩ (R \ Z) we have

1 = f (t) = u ∗ f (t) =
∫
R

u(t − s) f (s) ds =
∫
−r

−r
u(t − s) ds =

∫ t+r

t−r
u(s) ds < 1,

using the lemma and the change of variables theorem. This gives a contradiction. ■

The last four assertions of the preceding theorem exactly say that L1(R;F),
equipped with convolution as product, forms an associative, commutative algebra
without unit. The first assertion says that, equipped with the 1-norm, the resulting
algebra is what is known as a Banach algebra. This property has the following
corollary.

4.2.2 Corollary (Continuity of L1-convolution) The map (f,g) 7→ f ∗ g from L1(R;F) ×
L1(R;F) to L1(R;F) is continuous, where the domain is equipped with the product topology.

Proof We first state a lemma that will be of use later as well.
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1 Lemma Let (U, ∥·∥U), (V, ∥·∥V), and (W, ∥·∥W) be (semi)normed F-vector spaces. A bilinear
map B : U × V→W is continuous, where U × V is equipped with the product topology, if and
only there exists M ∈ R>0 such that

∥B(u,v)∥W ≤M∥u∥U∥v∥V (4.5)

for every (u,v) ∈ U × V.

Proof First suppose that there exists M ∈ R>0 such that (4.5) holds. Let (u0, v0) ∈ U×V
and let ϵ ∈ R>0. Let

δ = min
{√

ϵ
3M

,
ϵ

3M∥u0∥U
,

ϵ
3M∥v0∥V

}
,

allowing that the last two terms might be infinite if either u0 or v0 are zero. Suppose
that (u, v) ∈ U × V are such that ∥u − u0∥U, ∥v − v0∥V < δ. We then compute

∥B(u, v)−B(u0, v0)∥W ≤ ∥B(u − u0, v − v0)∥W + ∥B(u − u0, v0)∥W + ∥B(u0, v − v0)∥W
≤M∥u − u0∥U∥v − v0∥V +M∥u − u0∥U∥v0∥V +M∥u0∥U∥v − v0∥V < ϵ,

giving continuity of B at (u0, v0).
Now suppose that B is continuous. Thus B is continuous at (0, 0). Given this, let

M ∈ R>0 be such that

∥u∥U, ∥v∥V <
2
√

M
=⇒ ∥B(u, v)∥W < 1.

Then, for (u, v) ∈ U × V,∥∥∥∥∥∥ u
√

M∥u∥U

∥∥∥∥∥∥
U

,

∥∥∥∥∥∥ v
√

M∥v∥V

∥∥∥∥∥∥
V
<

2
√

M
=⇒

∥∥∥∥∥∥B
(

u
√

M∥u∥U
,

v
√

M∥v∥V

)∥∥∥∥∥∥
W

< 1

=⇒ ∥B(u, v)∥W < M∥u∥U∥v∥V,

as claimed. ▼

The corollary follows immediately from the lemma. ■

The next result indicates an additional property of the algebra L1(R;F), noting
that the product of convolution makes this set into a ring.

4.2.3 Proposition (L1(R;F) is not an integral domain) There exists f,g ∈ L(1)(R;F) with
the following properties:

(i) f and g are each bounded and nowhere zero;
(ii) f ∗ g(t) = 0 for every t ∈ R.

Proof Let α = (α j) j∈Z ∈ ℓ1(Z;F) and define Lα : L(1)(R;F)→ L(1)(R;F) by

Lα( f )(t) =
∑
j∈Z

α j f (t − j).
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Let us verify that this map is well-defined. Certainly, for each t ∈ R, the sum defin-
ing the number Lα( f )(t) converges since α ∈ ℓ1(Z;F). Moreover, by the Monotone
Convergence Theorem,∫
R

∣∣∣∣∣∣∣∣
∑
j∈Z

f (t − j)

∣∣∣∣∣∣∣∣ dt ≤
∫
R

∑
j∈Z

|α j|| f (t − j)|dt =
∑
j∈Z

|α j|

∫
R
| f (t − j)|dt = ∥ f ∥1

∑
j∈Z

|α j| < ∞,

showing that Lα( f ) ∈ L(1)(R;F).
Now let α,β ∈ ℓ1(Z;F) and let f ∈ L(1)(R;F). Then

Lα ◦ Lβ( f )(t) = Lα

∑
j∈Z

β j f (t − j)

 =∑
k∈Z

∑
j∈Z

αkβ j f (t − j − k) =
∑
m∈Z

γm f (t −m),

where
γm =

∑
j,k∈Z

j+k=m

α jβk, (4.6)

using Proposition I-2.4.30. Also, forα,β ∈ ℓ1(Z;F) and for f , g ∈ L(1)(R;F) we compute

Lα( f ) ∗ Lβ(g)(t) =
∫
R

∑
j∈Z

α j f (t − s − j)


∑

k∈Z

g(s − k)

 ds

=
∑
j∈Z

∑
k∈Z

α jβk

∫
R

f (t − s − j)g(s − k) ds

=
∑
j∈Z

∑
k∈Z

α jβk

∫
R

f (t − τ − j − k)g(τ) dτ

=
∑
m∈Z

γm f ∗ g(t −m) = Lα ◦ Lβ( f ∗ g),

where γm, m ∈ Z, is as given in (4.6), where we swap the sums and the integral using
Fubini’s Theorem and where we use the change of variables formula.

Now define α,β ∈ ℓ1(Z;F) by

α j =


1
π

(−1) j/2

1− j2 , j even,
1
4 , j ∈ {−1, 1},
0, otherwise

and

β j =


1
π

(−1) j/2

1− j2 , j even,

−
1
4 , j ∈ {−1, 1},

0, otherwise.

If we define the 2π-periodic signals

F(t) = 1
2 (|cos(t)| + cos(t)), G(t) = 1

2 (|cos(t)| − cos(t)),
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one verifies by direct computation (here we use the notion of the continuous-discrete
Fourier transform discussed in Chapter 5) that

FCD(F)(2π j) = 2πα j, FCD(G)(2π j) = 2πβ j.

Thus
F(t) =

∑
j∈Z

α jei jt, G(t) =
∑
j∈Z

β jei jt.

Note that F(t)G(t) = 0 for every t ∈ R. Therefore,

0 = F(t)G(t) =

∑
j∈Z

α jei jt


∑

k∈Z

βkeikt

 =∑
j∈Z

∑
k∈Z

α jβkei( j+k)t =
∑
m∈Z

γmeimt,

where γm, m ∈ Z, is as given by (4.6), and where we use Proposition I-2.4.30 which
is valid since the sums are absolutely convergent. Injectivity of the CDFT (see The-
orem 5.2.1) implies that γm = 0 for each m ∈ Z. Therefore, it follows from our
computations above for the composition Lα ◦ Lβ and for the convolution Lα( f ) ∗ Lβ(g)
that, for any f1, g1 ∈ L(1)(R;F) we have

Lα( f1) ∗ Lβ(g1)(t) = Lα ◦ Lβ( f1 ∗ g1)(t) = 0

for all t ∈ R. If we take f1 = g1 = χ(−1,1] we see that Lα( f1)(t) and Lβ(g1)(t) are nonzero
for every t ∈ R. Thus the result follows taking f = Lα( f1) and g = Lβ(g1). ■

Another interesting result that holds for convolution in L(1)(R;F) is that every
signal is a convolution of two other signals in L(1)(R;F). The second part of the
result makes mention of the CCFT which we will study in detail in Chapter 6.

4.2.4 Theorem (Convolution in L1(R;F) is “surjective”) If f ∈ L(1)(R;C) then there exists
g,h ∈ L(1)(R;C) such that f(t) = g ∗ h(t) for almost every t ∈ R. Moreover, g and h can be
chosen such that g is an element of the closure (using the L1-norm) of the ideal generated
by f and such that h and FCC(h) are even positive signals.

Proof In our proof of this result we freely make use of some results we have not
yet proved. In particular, we use facts regarding the continuous-continuous Fourier
transform presented in Chapter 6.

The proof begins with the construction of a function with certain properties. Our
construction is based on the following basic interpolation result.

1 Lemma Let a, b, c ∈ R>0 satisfy a > b > c and let y1,y2 ∈ R>0 satisfy y2 > y1 and
b > (y2 − y1)−1. Then, for each σ1 ∈ (b, a) and σ2 ∈ (c, b) for which the lines

s 7→ y1 + σ1s, s 7→ y2 + σ2(s − 1)

intersect at a point (s̄, ᾱ) for which s̄ ∈ Q, there exists ψ : [0, 1] → R with the following
properties:

(i) ψ(0) = y1;
(ii) ψ(1) = y2;
(iii) ψ′(0) = σ1;

(iv) ψ′(1) = σ2;
(v) ψ′′(0) = ψ′′(1) = 0;
(vi) ψ′′(s) < 0 for s ∈ (0, 1).
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Proof Let us write s̄ = n
d and let k ∈ Z>0 be such that kn ≥ 2 and k(d − n) ≥ 2. Let

L : [0, 1]→ R be the function

L(s) =

y1 + σ1s, s ∈ [0, s̄],
y2 + σ2(s − 1), s ∈ (s̄, 1],

noting that L is continuous with a graph consisting of two line segments with positive
slope, the slope for the leftmost being larger than that of the rightmost. Let ψ be the
Bernstein polynomial of degree kd for L:

ψ(s) =
kd∑
j=0

L
(

j
kd

) (
kd
j

)
s j(1 − s)kd− j

(see Section I-3.6.6 for our discussion of Bernstein polynomials). It immediately follows
that

ψ(0) = L(0) = y1, ψ(1) = L(1) = y2.

By Lemma I-3.6.20(vi) we have

ψ(r)(s) =
(kd)!

(kd − r)!

kd−r∑
j=0

∆r
hL

(
j

kd

) (
kd − r

j

)
s j(1 − s)kd−r− j (4.7)

for r ∈ {1, . . . , kd} and where h = 1
kd . Thus, in particular,

ψ′(0) =
(kd)!

(kd − 1)!
∆1

hL(0), ψ′(1) =
(kd)!

(kd − 1)!
∆1

hL
(

kd − 1
kd

)
and

ψ′′(0) =
(kd)!

(kd − 2)!
∆2

hL(0), ψ′′(1) =
(kd)!

(kd − 2)!
∆2

hL
(

kd − 2
kd

)
.

Since

∆1
hL(0) =

L(h) − L(0)
h

, ∆1
hL

(
kd − 1

kd

)
=

L(1) − L(1 − h)
h

and

∆2
hL(0) =

L(2h) − 2L(h) + L(0)
h

, ∇2
hL∆2

hL
(

kd − 2
kd

)
=

L(1) − 2L(1 − h) + L(1 − 2h)
h

and since
2h =

2
kd
≤

kn
kd
= s̄

and
1 − 2h =

kd − 2
kd

≥
kn
kd
= s̄ (4.8)

by definition of k, we have

ψ′(0) = σ1, ψ′(1) = σ2, ψ′′(0) = ψ′′(1) = 0.
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The final assertion, that ψ′′(s) < 0 for s ∈ (0, 1) will follow from Lemma I-3.6.20(vi)
if we can show that ∆2

hL(s) < 0 for every s ∈ (0, 1 − 2h).
Now let us prove that ψ′′(s) < 0 for s ∈ (0, 1). Let s ∈ [0, 1 − 2h]. If s + 2h ≤ s̄ or if

s ≥ s̄, it is immediate that

∆2
hL(s) =

L(s + 2h) − 2L(s + h) + L(s)
h

= 0.

If s̄ ∈ (s, s+2h) note that the point (s+h, 1
2 (L(s)+L(s+2h)) in the plane is the midpoint on

the line connecting the points (s,L(s)) and (s+ 2h,L(s+ 2h)). This proves that ∆2
hL(s) ≤ 0

for every s ∈ [0, 1 − 2h]. Moreover, if s̄ ∈ (s, s + 2h) then ∆2
hL(s) < 0. Now note that,

by (4.8),
kn − 1

kd
= s̄ − h < s̄ ≤

kd − 2
kd

.

Therefore, for s ∈ (0, 1) we note that, in the case of r = 2, the sum in (4.7) is one of
nonpositive terms, and has the term

∆r
hL(s̄ − h)

(
kd − r

j

)
s j(1 − s)kd−r− j

as one if its summands. This term is negative as we showed above. Thus ψ′′(s) < 0, as
claimed. ▼

In Figure 4.21 we illustrate how one can think of the function ψ from the lemma.

s̄

y1

y2

0 1

Figure 4.21 The function from Lemma 1 in the proof of Theo-
rem 4.2.4; the shaded regions are the admissible slopes at the
endpoints

Using the previous lemma, the following lemma provides the function we need.
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2 Lemma Let (sj)j∈Z>0 be a sequence in R≥0 such that s1 = 0 and sj+1 > 2sj for j ∈ Z>0. Then
there exists a function ϕ : R≥0 → R with the following properties:

(i) ϕ is twice continuously differentiable;
(ii) ϕ(sj) = j, j ∈ Z>0;
(iii) sjϕ′(sj) < 2, j ≥ 2;
(iv) ϕ′′(s) ≤ 0 for s ∈ R≥0.

Proof We construct ϕ by defining it on each of the intervals [s j−1, s j] in such a way
that when the definitions on each of these intervals are combined to give a function
defined on R≥0 with the desired properties.

Let us give a few preliminary constructions. Define b1 = s−1
2 , a1 =

3
2 b1, and c1 =

(s3 − s2)−1. Then, for j ≥ 2, recursively define a j = b j−1, b j = c j−1, and c j = (s j+2 − s j+1)−1.
In our constructions, the interval (b j, a j) will be the valid set of slopes for graph of our
function ϕ as it passes through (s j, j). Note that c j < b j < a j for each j ∈ Z>0.

Let us now select which slopes we choose. Let j ∈ Z>0, let σ j ∈ (b j, a j) and
σ j+1 ∈ (b j+1, a j+1), and let

λ j(s) = j + σ j(s − s j), µ j(s) = j + 1 + σ j+1(s − s j+1)

be the lines through (s j, j) and (s j+1, j + 1) with slopes σ j and σ j+1, respectively. These
lines intersect at a point in the plane whose s-coordinate is

sσ j,σ j+1 =
1 + σ js j − σ j+1s j+1

σ j − σ j+1
.

One can verify that, as σ j varies in the interval (b j, a j) and σ j+1 varies in the interval
(b j+1, a j+1), sσ j,σ j+1 varies throughout the interval(

1 + a js j − b j+1s j+1

a j − b j+1
,

1 + b js j − a j+1s j+1

b j − a j+1

)
.

Moreover, if σ j ∈ (b j, a j) is fixed, sσ j,σ j+1 varies throughout the interval(
1 + σ js j − b j+1s j+1

σ j − b j+1
,

1 + σ js j − a j+1s j+1

σ j − a j+1

)
.

We then select the slopes σ1 and σ2 so that

α1 ≜
sσ1,σ2 − s1

s2 − s1
∈ Q.

For j ≥ 3 we then recursively define σ j by asking that

α j−1 ≜
sσ j−1,σ j − s j−1

s j − s j−1
∈ Q.

These constructions are possible by Proposition I-2.2.15.
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Let j ≥ 2. By Lemma 1 let ψ j : [0, 1]→ R satisfy

1. ψ j(0) = j − 1;
2. ψ j(1) = j;
3. ψ′j(0) = σ j−1(s j − s j−1);

4. ψ′j(1) = σ j(s j − s j−1);

5. ψ′′1 (0) = ψ′′1 (1) = 0;
6. ψ′′1 (s) < 0 for s ∈ (0, 1).

Then define ϕ j : [s j−1, s j]→ R by

ϕ j(s) = ψ j

(
s − s j−1

s j − s j−1

)
and note that

1. ϕ j(s j−1) = j − 1,
2. ϕ j(s j) = j,
3. ϕ′j(s j−1) = σ j−1,

4. ϕ′j(s j) = σ j,

5. ϕ′′j (s j−1) = ϕ′′j (s j) = 0, and

6. ϕ′′(s) < 0 for s ∈ (s j−1, s j).
Then, if we define ϕ : R≥0 → R by asking that ϕ|[s j−1, s j] = ϕ j, we see that ϕ has the
first two properties asserted in the statement of the lemma.

For the final assertion of the lemma, note that by the Mean Value Theorem we
have

ϕ(s j) − ϕ(s j−1) = ϕ′(s̄ j)(s j − s j−1)

for some s̄ j ∈ (s j−1, s j). Since ϕ′′ is negative on (s j−1, s j) it follows that ϕ′(s j) < ϕ′(s̄ j).
Since ϕ(s j) = j and ϕ(s j−1) = j − 1 this gives

ϕ′(s j)(s j − s j−1) < 1.

Since s j−1 <
1
2 s j we have the final property asserted for ϕ. ▼

With the preceding technical constructions in place, we proceed with the proof
proper. For s ∈ R>0 define Fs : R→ R by asking that

FCC(Fs)(ν) =

1 − |ν|s , |ν| ≤ s,
0, otherwise.

One can verify that

Fs(t) =
sin2(πst)

sπ2t2 ,

cf. Example 6.1.3–4. Define
E(s) = ∥Fs ∗ f − f ∥1.

By Theorem 6.2.36, lims→∞ E(s) = 0.
Now choose a sequence (s j) j∈Z>0 by letting s j = 0 and by taking s j > 2s j−1 such that

E(s) < j−1 if s > s j. Then, by Lemma 2, let ϕ be such that
1. ϕ is twice continuously differentiable,
2. ϕ(s j) = j, j ∈ Z>0,
3. s jϕ′(s j) < 2, j ≥ 2, and
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4. ϕ′′(s) ≤ 0 for s ∈ R≥0.
Then, for j ≥ 2, since ϕ′′ is nonpositive and using integration by parts,∫ s j+1

s j

sE(s)|ϕ′′(s)|ds < − j−2
∫ s j+1

s j

sϕ′′(s) ds

= − j−2

sϕ′(s)|
s j+1
s j
−

∫ s j+1

s j

ϕ′(s) ds


= j−2(s jϕ

′(s j) − s j+1ϕ
′(s j+1) + ϕ(s j1) − ϕ(s j)) ≤ 3 j−2.

Thus ∫
R≥0

sE(s)|ϕ′′(s)|ds <
∫ s2

s1

sE(s)|ϕ′′(s)|ds + 3
∞∑
j=2

1
j2
< ∞

using Example I-2.4.2–4. Since

E(s) =
∫
R
|Fs ∗ f (t) − f (t)|dt,

it follows from Fubini’s Theorem that

(s, t) 7→ (Fs ∗ f (t) − f (t))sϕ′′(s)

is integrable on R≥0 ×R. Therefore, again by Fubini’s Theorem, the function

s 7→ (Fs ∗ f (t) − f (t))sϕ′′(s)

is integrable for almost every t ∈ R and that the function g defined by

g(t) = f (t) +
∫
R≥0

(Fs ∗ f (t) − f (t))sϕ′′(s) ds

is integrable.
By Proposition 6.1.18 we have

FCC(g)(ν) = FCC( f )(ν) + FCC( f )(ν)
∫
R≥0

(FCC(Fs)(ν) − 1)sϕ′′(s) ds.

For ν ∈ R>0 we use the form of FCC(Fs) to compute∫
R≥0

(FCC(Fs)(ν) − 1)sϕ′′(s) ds = −
∫ ν

0
sϕ′′(s) ds − ν

∫
∞

ν
ϕ′′(s) ds

= − sϕ′(s)|ν0 +
∫ ν

0
ϕ′(s) ds − νϕ′(s)|∞ν

= ϕ(ν) − ϕ(0) = ϕ(ν) − 1,

using integration by parts. Now extendϕ to be defined onRby asking thatϕ(−s) = ϕ(s)
for s ∈ R<0. Then, since FCC(Fs)(−ν) = FCC(Fs)(ν), we have∫

R≥0

(FCC(Fs)(ν) − 1)sϕ′′(s) ds = ϕ(ν) − 1
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for all ν ∈ R. Therefore,

FCC(g)(ν) = FCC( f )(ν)ϕ(ν), ν ∈ R. (4.9)

Next let ψ(s) = 1
ϕ(s) , this making sense since ϕ(s) ∈ R>0 for every s ∈ R. We have

ψ′(s) = −
ϕ′(s)
ϕ(s)2 , ψ′′(s) = −

ϕ′′(s)
ϕ(s)2 + 2

ϕ′(s)2

ϕ(s)3

This implies that ψ′ is negative and ψ′′ is positive in R≥0. Moreover, lims→∞ ψ(s) = 0
and lims→∞ ψ′(s) = 0. By the Mean Value Theorem we have

ψ(t2) − ψ(t1) = ψ′(t̄)(t2 − t1)

for every t1, t2 ∈ R≥0 satisfying t1 < t2 and for some t̄ ∈ (t1, t2). Since ψ′ is increasing
we have ψ′(t2) > ψ′(t̄) and so

ψ′(t2)t2 > ψ(t2) − ψ(t1) + ψ′(t2)t1

for all t1, t2 ∈ R≥0 satisfying t1 < t2. Let ϵ ∈ R>0 and let t1 ∈ R≥0 be sufficiently large
that ψ(t) < ϵ for t ≥ t1. Then

ψ′(t2)t2 > ψ(t2) − ϵ + ψ′(t2)t1,

and taking the limit as t2 →∞we have

lim
t2→∞

ψ′(t2)t2 > −ϵ,

which, since ϵ is arbitrary, gives

lim
t2→∞

ψ′(t2)t2 = 0 (4.10)

Now, by integration by parts and (4.10), we have∫
R≥0

sψ′′(s) ds = sψ′(s)|∞0 −
∫
R≥0

ψ′(s) ds = ψ(0) < ∞.

Therefore, since s 7→ Fs(t) is bounded by 1 for every t ∈ R, we can define h by

h(t) =
∫
R≥0

Fs(t)sψ′′(s) ds.

One can easily see that
(s, t) 7→ Fs(t)sψ′′(s)

is integrable on R≥0 ×R. By Fubini’s Theorem it follows that h is integrable.
We now have

FCC(h)(ν) =
∫
R≥0

FCC(Fs)(ν)sψ′′(s) ds.
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For ν ∈ R>0 we compute

FCC(h)(ν) =
∫
∞

ν
(s − ν)ψ′′(s) ds

= sψ′(s)|∞ν −
∫
∞

ν
ψ′(s) ds − νψ′(s)|∞ν = ψ(ν),

using integration by parts and (4.10). As above, sinceFCC(Fs) and ψ are even, we have

FCC(h)(ν) = ψ(ν), ν ∈ R. (4.11)

Thus, combining (4.9) and (4.11), we have FCC( f ) = FCC(g)FCC(h), and the first asser-
tion of the proposition follows from Proposition 6.1.18.

It is clear from the definitions that h and FCC(h) are positive and even. Let s ∈ R>0
and define

Φs(ν) =


0, ν ∈ (−∞,−s],
(Fs)′(ν)(1 + ν

s ) + Fs(ν), ν ∈ (−s, 0],
(Fs)′(ν)(1 − ν

s ) − Fs(ν), s ∈ (0, s],
0, s ∈ (s,∞),

and note thatΦs is the derivative ofϕFs at those points where the latter is differentiable.
Note that Φs is piecewise continuous with compact support. Therefore, as we showed
in Corollary 6.2.28, the function

Ψs(t) =
∫
R
ϕ(ν)Fs(ν)e2πiνt dν

is in L(1)(R;R) and FCC(Ψs) = ϕFs. By (4.9) we have

FCC(Ψs)FCC( f ) = FCC(Fs)FCC(g).

By Proposition 6.1.18 it follows that Fs ∗ g = Ψs ∗ f and so Fs ∗ g is in the ideal generated
by f for every s ∈ R>0. By Theorem 6.2.36, lims→∞ Fs ∗ g = g, the limit being taken
with respect to the L1-norm. It follows, therefore, that g is in the closure of the ideal
generated by f , as claimed. ■

4.2.5 Remark (The character of factorisation in L1(R;F)) The proof of Theorem 4.2.17
below is easily adapted to prove the following, which is an alternative version of
Theorem 4.2.4.

Let ϵ ∈ R>0. If f ∈ L(1)(R;F) then there exists g, h ∈ L(1)(R;F) such that

(i) f (t) = g ∗ h(t) for almost every t ∈ R,
(ii) g is in the closed ideal generated by f , and
(iii) ∥ f − g∥1 < ϵ.

In fact, the preceding result is somewhat easier to prove than Theorem 4.2.17 since
the topology on L1(R;F) is a norm topology, and is not defined by a family of
seminorms, as is the topology on L1

loc(R≥0;F). •
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Note that one of the factors, namely h, in the convolution f = g∗h in the statement
of the preceding theorem is a positive-valued signal. It makes sense to ask whether
every nonnegative-valued signal is the convolution of two nonnegative-valued
signals. This is not the case, as the following example shows.

4.2.6 Example (A nonnegative signal that is not the convolution of two nonnega-
tive signals) Let C1/2 be the Cantor set from Example I-2.5.42 with ϵ = 1

2 . We recall
the following:
1. C1/2 is compact;
2. int(A) = ∅;
3. every point of C1/2 is an accumulation point.
We will show that χC1/2 , the characteristic function of C1/2, is not the convolution of
two nonnegative signals. We do this with a few lemmata.

1 Lemma If f,g ∈ L(1)(R;R≥0) then f ∗ g is lower semicontinuous.

Proof By Proposition III-2.6.39 let ( f j) j∈Z>0 be a sequence of simple functions satis-
fying
1. f j+1(t) ≥ f j(t), j ∈ Z>0, and
2. f (t) = lim j→∞ f j(t).
By Corollary 4.2.10 below, f j ∗ g is continuous and bounded for each j ∈ Z>0. By
the Monotone Convergence Theorem,

lim
j→∞

f j ∗ g(t) = f ∗ g(t)

for every t ∈ R. By Proposition II-1.10.17 it follows that f ∗ g is lower semicontin-
uous. ▼

Thus it follows that if χC1/2 is the convolution of two nonnegative signals, then
χC1/2 must be almost everywhere equal to a signal that is lower semicontinuous.
This is not the case, as the following lemma shows.

2 Lemma The signal χC1/2 is not almost everywhere equal to a lower semicontinuous signal.

Proof Suppose that χC1/2 is almost everywhere equal to the function f . Let Z be
the set of measure zero where f and χC1/2 differ. Let t0 ∈ R. If t0 ∈ R \ C1/2 then,
by closedness of C1/2, there exists a neighbourhood U of t0 such that U ⊆ R \ C1/2.
Choose r ∈ R>0 such that B(r, t0) ⊆ U. For j ∈ Z>0 note that B( r

j , t0) − Z , ∅ since Z
has measure zero. Choose t j ∈ B( r

j , t0) − Z so that the sequence (t j) j∈Z converges to
t0. Note that

lim sup
j→∞

f (t j) = lim
j→∞

χC1/2(t j) = 0.

Next suppose that t0 ∈ C1/2. Note that C1/2 ∩ B(r, t0) has positive measure for every
r ∈ R>0 (why?). Thus, for each j ∈ Z>0, we can take t j ∈ (C1/2 ∩ B( 1

j , t0)) − Z. The
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sequence (t j) j∈Z>0 then converges to t0 and satisfies f (t1) = 1. Thus

lim sup
j→∞

f (t j) = lim
j→∞

χC1/2(t j) = 0.

Thus the preceding holds, for some sequence (t j) j∈Z>0 , for every t0 ∈ R, show that f
cannot by lower semicontinuous by Proposition II-1.10.14. ▼

The previous lemma gives us an example of a nonnegative signal that is not the
convolution of two nonnegative signals. •

Let us summarise the algebraic structure of L1(R;F).

4.2.7 Theorem (The algebraic structure of L1(R;F)) The algebra L1(R;F) with the product
defined by convolution has the following properties:

(i) the multiplicative structure is commutative and associative;
(ii) it has no multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is not an integral domain.

4.2.2 Convolution between Lp(R;F) and Lq(R;F)

In this section we consider the convolution between signals living in various
Lp-spaces. There are various flavours of such results, but many of them are conse-
quences of the following result, sometimes known as Young’s inequality.

4.2.8 Theorem (Convolution between Lp(R;F) and Lq(R;F)) Let p,q, r ∈ [1,∞] satisfy
1
r =

1
p+

1
q−1. If f ∈ L(p)(R;F) and g ∈ L(q)(R;F) then (f,g) is convolvable, f∗g ∈ L(r)(R;F),

and ∥f ∗ g∥r ≤ ∥f∥p∥g∥q.
Proof Define

h(t) =
∫
R
| f (t − s)g(s)|ds,

noting that this integral is always defined, although it may be infinite.
Define

α =
r − p

r
, β =

r − q
r

and
p̄ =

p
α
, q̄ =

q
β
.

We claim that we have the following relations:
1. α, β ∈ [0, 1];
2. p̄, q̄ ∈ [1,∞];
3. 1

p̄ +
1
q̄ +

1
r = 1.
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First of all,

α = 1 −
p
r
≤ 1, α = p

(
1
p
−

1
r

)
= p

(
1 −

1
q

)
≥ 0,

and similarly β ∈ [0, 1]. It is evident that p̄, q̄ ∈ [1,∞]. Finally,

1
p̄
+

1
q̄
+

1
r
=
α
p
+
β

q
+

1
r
=

1
p
−

1
r
+

1
q
−

1
r
+

1
r
= 1,

as claimed.
With this in mind, we compute using Hölder’s inequality, Lemma III-3.8.54 and

Exercise III-3.8.8,

h(t) =
∫
R
| f (t − s)|1−α|g(s)|1−β| f (t − s)|α|g(s)|β ds

=

(∫
R
| f (t − s)|(1−α)r

|g(s)|(1−β)r ds
)1/r (∫

R
| f (t − s)|αp̄ ds

)1/p̄ (∫
R
|g(s)|βq̄ ds

)1/q̄

=

(∫
R| f (t − s)|(1−α)r

|g(s)|(1−β)r ds
)1/r

∥ f ∥ααp̄∥g∥
β
βq̄.

Thus, using Fubini’s Theorem,∫
R
|h(t)|r dt = ∥ f ∥ααp̄∥g∥

β
βp̄.

∫
R

(∫
R
| f (t − s)|(1−α)r

|g(s)|(1−β)r ds
)

dt

= ∥ f ∥ααp̄∥g∥
β
βq̄

∫
R

(∫
R
| f (t − s)|(1−α)r dt

)
|g(s)|(1−β)s ds

= ∥ f ∥ααp̄∥g∥
β
βq̄ ≤ ∥ f ∥ααp̄∥g∥

β
βq̄∥ f ∥(1−α)r

(1−α)r∥g∥
(1−β)r
(1−β)r.

We have
αr̄ = r, (1 − α)q = r, βp̄ = p, (1 − β)q = r,

which gives
∥ f ∗ g∥rr ≤ ∥ f ∥rp∥g∥

r
q,

giving the result upon taking rth roots. ■

The preceding theorem, applied in various cases, gives a few useful corollaries.

4.2.9 Corollary (Convolution between L1(R;F) and Lp(R;F)) If p ∈ [1,∞], if f ∈
L(p)(R;F), and if g ∈ L(1)(R;F), then (f,g) is convolvable, f ∗g ∈ L(p)(R;F), and ∥f ∗g∥p ≤
∥f∥p∥g∥1.

Proof This follows from Theorem 4.2.8 with r = p and q = 1. ■
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4.2.10 Corollary (Convolution between Lp(R;F) and Lp′(R;F)) Let p ∈ [1,∞] and let
p′ ∈ [1,∞] satisfy 1

p +
1
p′ = 1. If f ∈ L(p)(R;F) and g ∈ L(p′)(R;F) then (f,g) is

convolvable, D(f,g) = R, and f ∗ g ∈ C0
bdd(R;F).

Proof That ( f , g) is convolvable and that f ∗ g ∈ L(∞)(R;F) follows from Theorem 4.2.8
with r = ∞ and q = p′. Moreover, since s 7→ f (t − s) is in L(p)(R;F) and since s 7→
f (s) is in L(p′)(R;F), we conclude from Hölder’s inequality, Lemma III-3.8.54 and
Exercise III-3.8.8, that the signal s 7→ f (t − s)g(s) is in L(1)(R;F). Thus D( f , g) = R.

It remains to show that f ∗ g is continuous. Key to this is the following lemma,
recalling that, if a ∈ R, then τ∗a f (t) = f (t − a).

1 Lemma If p ∈ [1,∞) and if f ∈ L(p)(R;F), then lima→0∥f − τ∗af∥p = 0.
Proof Let ϵ ∈ R>0. Choose g ∈ C0

cpt(R;C) so that ∥ f − g∥p < ϵ
3 by part (ii) of The-

orem 1.3.11. Suppose that supp(g) ⊆ [α, β]. By uniform continuity of g (cf. Theo-
rem I-3.1.24), choose δ ∈ (0, 1) so that |g(t − a) − g(t)| < ϵ

3(β−α+2)1/p when |a| < δ. Then

∥τag − f ∥p =
(∫ β+1

α−1
|g(t − a) − g(t)|p dt

)1/p

<

(∫ β+1

α−1

ϵp

3p(β − α + 2)
dt

)1/p

=
ϵ
3

for |a| < δ. We then have

∥τ∗a f − f ∥p ≤ ∥τ∗a f − τ∗ag∥p + ∥τ∗ag − f ∥p + ∥ f − g∥p
= 2∥ f − g∥p + ∥τ∗ag − f ∥p < ϵ,

as claimed. ▼

By commutativity of convolution, Proposition 4.1.9(i), we need only consider p ∈
[1,∞). Recall the notation σ∗ f (t) = f (−t) and note that, for any t ∈ R, τ∗tσ

∗ f ∈ L(p)(R;F)
if f ∈ L(p)(R;F), as a consequence of the change of variable theorem, Theorem III-2.9.38.
Now let ϵ ∈ R>0 and choose δ ∈ R>0 such that

∥τ∗aτ
∗

tσ
∗ f − τ∗tσ

∗ f ∥p <
ϵ
∥g∥p′

for |a| < δ, this being possible by the lemma. Then, using Hölder’s inequality in the
form of either Lemma III-3.8.54 and Exercise III-3.8.8, we have

| f ∗ g(t + a) − f ∗ g(t)| ≤
∫
R
| f (t + a − s) − f (t − s)||g(s)|ds

≤ ∥τ∗aτ
∗

tσ
∗ f − τ∗tσ

∗ f ∥p∥g∥p′ < ϵ

for |a| < δ. This gives the desired continuity of f ∗ g. ■

4.2.11 Remark (Continuity of translation) In Lemma 1 in the proof of the preceding
corollary we show, essentially, that translation is continuous in L(p)(R;F) when
p ∈ [1,∞). This conclusion is false when p = ∞. Indeed, if f ∈ L(∞)(R;F), then
lima→∞∥ f − τ∗a f ∥∞ = 0 if and only if f is almost everywhere equal to a uniformly
continuous signal. •

The following result records the continuity of convolution in the case we are
considering.
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4.2.12 Corollary (Continuity of Lp-convolution) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p +

1
q − 1.

The map (f,g) 7→ f ∗ g from Lp(R;F) × Lq(R;F) to Lr(R;F) is continuous, where the
domain is equipped with the product topology.

Proof This follows from Lemma 1 from the proof of Corollary 4.2.2. ■

4.2.3 Convolution in L1
loc

(R≥0;F)

Next we turn to causal convolution. With the convolutions between the various
Lp-spaces, the natural topologies to consider on the various signal spaces were
prescribed by the appropriate norms. However, for the signal spaces Lp

loc(R≥0;F),
p ∈ [1,∞), there is no useful norm topology. We shall provide a locally convex
topology for Lp

loc(R≥0;F), using tools from Chapter III-6. Thus on Lp
loc(R≥0;F) we

consider the family of seminorms ∥·∥T,p, T ∈ R>0, defined by

∥ f ∥T,p =
(∫ T

0
| f (t)|p dt

)1/p

, T ∈ R>0, p ∈ [1,∞),

and
∥ f ∥T,∞ = ess sup{| f (t)| | t ∈ [0,T]}, T ∈ R>0,

and we note from Theorem III-6.5.5 that the resulting locally convex topology on
Lp

loc(R≥0;F) is Fréchet. In this section, we focus on L1
loc(R≥0;F); in Section 4.2.4 we

shall consider the more general case.
With this notation, we have the following result that provides the basic structure

of the algebra L1
loc(R≥0;F).

4.2.13 Theorem (L1
loc

(R≥0;F) is an associative, commutative algebra without unit,

when equipped with convolution as a product) For f,g,h ∈ L(1)
loc(R≥0;F), the

following statements hold:
(i) ∥f � g∥T,1 ≤ ∥f∥T,1∥g∥T,1 for every T ∈ R>0;
(ii) f � g = g � f;
(iii) (f � g) � h = f � (g � h);
(iv) f � (g + h) = f � g + f � h;
(v) (recalling Remark 4.1.2) there is no equivalence class of signals [u] ∈ L1

loc(R≥0;F)
such that [u � f] = [f] for every [f] ∈ L1

loc(R≥0;F).
Proof Only parts (i) and (v) do not follow from already proved facts.

(i) We use Fubini’s Theorem, the change of variable theorem, and the causality of
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f and g:

∥ f ∗ g∥T,1 =
∫ T

0
| f � g(t)|dt =

∫ T

0

∣∣∣∣∣∣
∫ t

0
f (t − s)g(s) ds

∣∣∣∣∣∣ dt

≤

∫ T

0

(∫ t

0
| f (t − s)g(s)|ds

)
dt ≤

∫ T

0

(∫ T

0
| f (t − s)g(s)|ds

)
dt

=

∫ T

0
|g(s)|

(∫ T−s

−s
| f (τ)|dτ

)
ds ≤

∫ T

0
|g(s)|

(∫ T

0
| f (τ)|dτ

)
ds

≤ ∥ f ∥T,1

∫ T

0
|g(s)|ds = ∥ f ∥T,1∥g∥T,1.

(v) Let u ∈ L(1)
loc(R≥0;F) be such that u � f (t) = f (t) for every f ∈ L(1)

loc(R≥0;F) and for

almost every t ∈ R≥0. This implies that u � f (t) = f (t) for every f ∈ L(1)
loc(R≥0;F) and for

almost every t ∈ [0, 1]. Let û ∈ L1(R;F) be defined such that û = u(t) for t ∈ [0, 1] and
such that it is zero off [0, 1]. By Lemma 1 from the proof of Theorem 4.2.1, there exists
r ∈ R>0 such that ∣∣∣∣∣∣

∫ t+r′

t−r′
u(s) ds

∣∣∣∣∣∣ < 1, t ∈ R, r′ ∈ (0, r].

Let ρ = min{r, 1} and take f = χ[0,ρ]. By hypothesis, there exists a set Z ⊆ [0, 1] such
that u � f (t) = f (t) for every t ∈ [0, ρ] \ Z. Thus there exists t ∈ [0, 1] \ Z such that
u � f (t + ρ

2 ) = f (t + ρ
2 ). Then

1 = f (t + ρ
2 ) = u � f (t + ρ

2 ) = u ∗ f (t + ρ
2 ) =

∫
R

u(t + ρ
2 − s) f (s) ds

=

∫ ρ

0
u(t + ρ

2 − s) ds =
∫ t+ρ/2

t−ρ/2
u(τ) dτ < 1,

the contradiction giving us the desired result. ■

We can also prove that convolution is continuous in L1
loc(R≥0;F) using the ap-

propriate topology.

4.2.14 Corollary (Continuity of L1
loc

-convolution) The map (f,g) 7→ f�g from L1
loc(R≥0;F)×

L1
loc(R≥0;F) to L1

loc(R≥0;F) is continuous, where the domain is equipped with the product
topology.

Proof Let f , g ∈ L1
loc(R≥0;F) and let U be a neighbourhood of f � g. Thus there exists

T, ϵ ∈ R>0 such that

U(T, ϵ, f � g) ≜ {h ∈ L1
loc(R≥0;F) | ∥h − f � g∥T,1 < ϵ} ⊆ U.

By Lemma 1 from the proof of Corollary 4.2.2, the map ( f ′, g′) 7→ f ′� g′ is continuous
in the topology defined by the seminorm ∥·∥T,1. Therefore, there exists δ ∈ R>0 such
that, if f ′, g′ ∈ L1

loc(R≥0;F) satisfy

∥ f − f ′∥T,1, ∥g − g′∥T,1 < δ,
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then
∥ f � g − f ′ � g′∥T,1 < ϵ.

That is, the set
{( f ′g′) | ∥ f − f ′∥T,1, ∥g − g′∥T,1 < δ}

is mapped to U by convolution, and this gives the desired continuity. ■

The following famous theorem gives some properties of this algebra (which are
summarised in the corollary following the theorem).

4.2.15 Theorem (Titchmarsh1 Convolution Theorem) If f,g ∈ L(1)
loc(R;F) are such that

σ(f), σ(g) > −∞, then σ(f ∗ g) = σ(f) + σ(g).
Proof The proof is an indirect one that relies on establishing a few facts about the
so-called Volterra operator. This is the linear map V : L(1)([0, 1];F) → L(1)([0, 1];F)
defined by

V( f )(t) =
∫ t

0
f (τ) dτ.

Let us first examine the form of V and its iterates. To do so it is convenient to denote
by f̂ ∈ L(1)(R;F) the signal corresponding to f ∈ L(1)([0, 1];F) according to

f̂ (t) =

 f (t), t ∈ [0, 1],
0, otherwise.

For k ∈ Z>0 let us also define hk : R→ F by

hk(t) =

 tk−1

(k−1)! , t ∈ R≥0,

0, t ∈ R<0.

With this notation we have the following lemma.

1 Lemma If f ∈ L(1)(R;F) and if k ∈ Z>0 then Vk(f)(t) = hk ∗ f̂(t) for every t ∈ [0, 1].

Proof Let f ∈ L(1)([0, 1];F) and compute

V( f )(t) =
∫ t

0
f (τ) dτ =

∫ t

0
f (τ)h1(t − τ) dτ = h1 ∗ f (t)

for all t ∈ [0, 1]. This establishes the lemma for k = 1. Now suppose that the lemma
holds for k = r and compute

Vr+1( f )(t) = V(Vr( f ))(t) = h1 ∗ (hr ∗ f )(t) = (h1 ∗ hr) ∗ f (t)

for t ∈ [0, 1], using the induction hypothesis and associativity of convolution. The
result now follows since one easily verifies that h1 ∗ hr(t) = hr+1. ▼

The following result provides the invariant subspaces of the Volterra operator.

1Edward Charles Titchmarsh (1899-1963) was an English mathematician, all of whose work was
in the area of analysis, including complex function theory and Fourier analysis.
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2 Lemma For a closed subspace S ⊆ L(1)([0, 1];F), the following two statements are equivalent:
(i) there exists b ∈ [0, 1] such that

S = {f | f(t) = 0 for almost every t ∈ [0, b]};

(ii) V(S) ⊆ S.

Proof (i) =⇒ (ii) Supposing that S is as hypothesised for some b ∈ [0, 1], let f ∈ S and
let t ∈ [0, b]. Then

V( f )(t) =
∫ t

0
f (τ) dτ = 0,

and so V( f ) ∈ S.
(ii) =⇒ (i) First suppose that S ⊆ C0([0, 1];F) is such that V(S) ⊆ S. For b ∈ [0, 1]

denote
Sb = { f ∈ C0([0, 1];F) | f (t) = 0 for all t ∈ [0, b]}.

We shall prove that there exists b ∈ [0, 1] such that, if f ∈ S, then f ∈ Sb. In our proof
of this fact, we shall use the fact that the dual of C0([0, 1];F) is BV([0, 1];F)—the vector
space of normalised functions of bounded variation (see Definition III-2.12.4)—and have I shown that

functions of

bounded variation

are measurable?

that the natural pairing between φ ∈ BV([0, 1];F) and f ∈ C0([0, 1];F) is

φ( f ) =
∫ 1

0
f (t) dφ(t);

see Theorem III-2.12.6. We shall denote by µφ : B ([0, 1]) → R the signed or complex restricted Borel

notation defined?measure defined on [0, 1] by

µφ(A) =
∫ 1

0
χA(t) dφ(t)

for A ∈ B ([0, 1]). We shall implicitly think of functions defined on a subinterval of R
as being extended to be defined on all ofR by taking them to be zero off the subinterval
on which they are defined. In particular, we shall not make use of the “·̂” notation
from Lemma 1.

Let S ⊆ C0([0, 1];F) be a subspace invariant under V as above. Let f ∈ S and
let S f be the smallest subspace of S containing f and invariant under V. Let φ ∈
BV([0, 1];F) be such that φ(Vk( f )) = 0 for every k ∈ Z>0, i.e., φ annihilates the subspace
S f , cf. Theorem I-5.4.12. By Lemma 1, φ(hk ∗ f ) = 0 for every k ∈ Z>0. Let σ∗φ ∈
BV([−1, 0];F) be defined by σ∗ϕ(t) = φ(−t). By we have conv of measures

φ(hk ∗ f ) =
∫ 1

0
hk ∗ f (t) dφ(t) =

∫ 1

0
hk ∗ f (t) d(σ∗φ)(−t) = ((hk ∗ f ) ∗ (σ∗φ))(0) = 0

for every k ∈ Z>0. By associativity of convolution we then have prove this for what is

needed

(hk ∗ ( f ∗ (σ∗φ)))(0) = 0, k ∈ Z>0.

Thus ∫
R

hk(−t) d( f ∗ (σ∗φ))(t) = 0, k ∈ Z>0. (4.12)



302 4 Convolution 2022/03/07

Let σ∗µφ be the signed or complex measure on [−1, 0] associated with σ∗φ.
We claim that supp( f ∗ (σ∗µφ)) ⊆ R≥0. Indeed, suppose that t0 ∈ R<0 lies in define support of

measuresupp(µφ). Then, by, there exists a continuous function g ∈ C0
cpt(R;F) such that

what?

supp(g) ⊆ [t0 − ϵ, t0 + ϵ] and such that f ∗ (σ∗µφ)(g) , 0. By the Weierstrass Ap-
proximation Theorem, let (g j) j∈Z>0 be a sequence of polynomial functions converging
uniformly to g on [t0 − ϵ, 0]. By (4.12) we have f ∗ (σ∗µφ)(g j) = 0 for every j ∈ Z>0.
Continuity of f ∗ (σ∗µφ) on the normed vector space (C0

cpt(R;F), ∥·∥∞) then ensures thatref

f ∗ (σ∗µφ)(g) = lim
j→∞

f ∗ (σ∗µφ)(g j) = 0,

and the resulting contradiction implies that supp( f ∗ (σ∗µφ)) ⊆ R≥0, as claimed.
Let [α, δ] be the smallest compact interval such that supp( f ) ⊆ [α, β]. We claim

that ann(S f ) = ann(Sα). Since f ∈ Sα and since Sα is invariant under V from the
first part of the proof, S f ⊆ Sα. Therefore, ann(Sα) ⊆ ann(S f ) by Proposition I-5.7.15.
Conversely, suppose that φ ∈ ann(S f ). Let [δ, γ] be the smallest compact interval such
that supp(µφ) ⊆ [α, β]. By and we have supp( f ∗ (σ∗µφ)) = [α− γ, β− δ]. Thus α− γ ≥ 0measures are

distributions

support of convolution

of distributions

and so γ ≤ α. Thus φ ∈ ann(Sα), as claimed.
Now note that S is the closed span of the union of the subspaces S f for f ∈ S. Our

arguments above show that S is the closed span of the union of subspaces of the form
Sσ( f ) for f ∈ S. We claim that this implies that there exists b ∈ [0, 1] so that S = Sb.
Indeed, take

b = inf{σ( f ) | f ∈ S}.

First, if g is in the span of the union of the subspaces Sσ( f ) for f ∈ S then

g = c1g1 + · · · + ckgk

for some c j ∈ F and g j ∈ Sσ( f j), j ∈ {1, . . . , k}, where f j ∈ S. It immediately follows that
g(t) = 0 for

t ∈ min{σ( f1), . . . , σ( fk)} ≥ b.

Thus g ∈ Sb. Next let g be in the closed linear span of the union of subspaces of the
form Sσ( f ) for f ∈ S. Then there exists a sequence (g j) j∈Z>0 in Sb converging uniformly,
and so pointwise, to g. It follows immediately that g ∈ Sb. Thus the closed linear span
of the subspaces S f for f ∈ S is Sb, as claimed.

The above arguments prove the second half of the lemma for continuous functions.
Let us now prove this half of the lemma for integrable signals. Thus we let S ⊆
L(1)([0, 1];F) be invariant under V. Then V(S) is invariant under V and and, by
Theorem III-2.9.33, is comprised of functions that are absolutely continuous, and so
continuous. By our arguments above, if

b = inf{σ(V f ) | f ∈ S},

then V(S) = Sb. Thus, if f ∈ S,∫ t

0
f (τ) dτ = 0, t ∈ [0, b].

Thus, by Lemma III-2.9.32, f (t) = 0 for almost every t ∈ [0, b] and so S = Sb, completing
the proof. ▼
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Using the preceding result on the invariant subspaces of the Volterra operator, we
can prove the following result. Here we adopt the convention that functions defined
on an interval are extended toR by taking them to be zero off the interval of definition,
making no special notation for the extended function.

3 Lemma Let b ∈ R>0. If f,g ∈ L2([0, b];F) satisfy σ(f) = 0 and σ(f ∗ g) ≥ b, then g(t) = 0 for
almost every t ∈ [0, b].

Proof For k ∈ Z>0 let hk be as defined above and note that σ(hk) = 0. By Proposi-
tion 4.1.8 we then have

σ(hk ∗ f ∗ g) ≥ σ(hk) + σ( f ∗ g) = σ( f ∗ g) ≥ b.

By Corollary 4.2.10, hk ∗ f ∗ g is continuous and so hk ∗ f ∗ g(t) = 0 for all t ∈ [0, b].
Therefore, in particular,

0 = hk ∗ f ∗ g(1) =
∫ 1

0
hk ∗ f (t)g(1 − t) dt.

Thus the signal t 7→ g(1− t) is orthogonal in L2([0, 1];F) to hk ∗ f = Vk( f ), k ∈ Z>0, using
Lemma 1. Thus, by Lemma 2, t 7→ g(1− t) is orthogonal in L2([0, b];F) to a subspace of
the form L2([a, b];F) for some a ∈ [0, b]. Moreover, as we saw in the proof of Lemma 2,
a = 0 since σ( f ) = 0. Therefore, g is almost everywhere zero, as claimed. ▼

Finally, we use the last lemma to prove the theorem. By translating the signals
and by swapping them, we can assume without loss of generality that σ( f ) = 0 and
σ(g) ≥ 0. By Proposition 4.1.8 it follows that σ( f ∗ g) ≥ 0. Let M ∈ R>0. Define

b =

σ( f ∗ g), σ( f ∗ g) < ∞,
M, σ( f ∗ g) = ∞.

Since σ( f ∗ g) ≥ σ(g) it suffices to show that σ(g) ≥ b.
Now define f1 = h1 ∗ f and g1 = h1 ∗ g. Since

f1(t) =
∫ t

0
f (τ) dτ, g1(t) =

∫ t

0
g(τ) dτ

it follows from Theorem III-2.9.33 that f1 and g1 are locally absolutely continuous and
that their derivatives are almost everywhere equal to f and g, respectively. There-
fore, σ( f1) = σ( f ) = 0 and σ(g1) = σ(g). Now, by Proposition 4.1.8, associativity of
convolution, and the easily verified fact that h1 ∗ h1 = h2,

σ( f1 ∗ g1) = σ(h1 ∗ h1 ∗ f ∗ g) = σ(h2) + σ( f ∗ g) ≥ b.

Now let f2, g2 : R → F be defined so that they agree with f1 and g1 restricted to [0, b]
and are zero elsewhere. Note that, for t ∈ [0, b],

f1 ∗ g1(t) =
∫ t

0
f1(t − s)g1(s) ds =

∫ t

0
f2(t − s)g2(s) ds = f2 ∗ g2(t).
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Since f1 and g1 are continuous, f2 and g2 are bounded and so in L2([0, b];F). Since
σ( f2) = σ( f1) = 0 and σ( f2 ∗ g2) ≥ b, by Lemma 3 it follows that g2 is almost everywhere
zero. Thus σ(g1) ≥ b and so, since g1 is continuous, for every t ∈ [0, b],

0 = g1(t) =
∫ t

0
g(τ) dτ.

This gives g(t) = 0 for almost every t ∈ [0, b] by Lemma III-2.9.32. Thus the theorem
follows. ■

The following consequence of the Titchmarsh Convolution Theorem as stated
above is one that often carries the name of the theorem.

4.2.16 Corollary (L1
loc

(R≥0;F) is an integral domain) When equipped with the product �,
L1

loc(R≥0;F) is an integral domain.
Proof If f � g(t) = 0 for almost every t ∈ R≥0 then σ( f � g) = ∞. It follows from
the Titchmarsh Convolution Theorem that at least one of σ( f ) or σ(g) must be infinite,
which gives the result. ■

Next let us give the analogue of Theorem 4.2.4 for the algebra L(1)
loc(R≥0;F).

4.2.17 Theorem (Convolution in L1
loc

(R≥0;F) is “surjective”) If f ∈ L(1)
loc(R≥0;F) then there

exists g,h ∈ L(1)
loc(R≥0;F) such that f(t) = g � h(t) for almost every t ∈ R≥0. Moreover,

given ϵ ∈ R>0 and T ∈ R>0, g can be chosen such that
(i) g is in the closed ideal generated by f and
(ii) ∥f − g∥T,1 dt < ϵ.

Proof First of all, let us denote L
1
loc(R≥0;F) = F ⊕ L1

loc(R≥0;F) and define a product in

L
1
loc(R≥0;F) by

(α, f ) · (β, g) = (αβ, αg + β f + f � g).

Note that (1, 0) is then an identity in this algebra. Moreover, if for T ∈ R>0 we define a

seminorm on L
1
loc(R≥0;F), denoted by ∥·∥T,1 (accepting a mild abuse of notation), by

∥(α, f )∥T,1 = |α| +
∫ T

0
| f (t)|dt.

Note that ∥(α, f ) · (β, g)∥T,1 ≤ ∥(α, f )∥T,1∥(β, g)∥T,1, as may be directly verified. Let us
agree to write I = (1, 0) so that (α, f ) = αI + (0, f ), which we simply write as αI + f .

We now prove a few lemmata.

1 Lemma If f ∈ L1
loc(R≥0;F) has the property that ∥f∥T,1 < 1 for every T ∈ R>0, then I − f is

invertible and

(I − f)−1 = I +
∞∑

n=1

fn,

where fn denotes the n-fold product of f with itself, using the product �.
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Proof First we claim that multiplication in L
1
loc(R≥0;F) is continuous. That is, we

show that the map (u, v) 7→ u · v is continuous, where the domain is equipped with the

product topology. Let u0, v0 ∈ L
1
loc(R≥0;F) and let N be a neighbourhood of (u0, v0). Let

U be a neighbourhood of u0 · v0. By there exists T ∈ R>0 and ϵ ∈ R>0 such that what

U(T, ϵ) ≜ {u ∈ L
1
loc(R≥0;F) | ∥u − u0∥T,1 < ϵ} ⊆ U.

First suppose that u0 , 0. Let δ ∈ R>0 be such that

δ

(
∥v0∥T,1 +

ϵ
2∥u0∥T,1

)
<
ϵ
2

and let u ∈ U(T, δ) and v ∈ U(T, ϵ
2∥u∥T,1

). Then

∥v∥T,1 ≤ ∥v − v0∥T,1 + ∥v0∥T,1 < ∥v0∥T,1 +
ϵ

2∥u∥T,1

and so
∥u · v − u0 · v0∥T,1 ≤ ∥(u − u0) · v∥T,1 + ∥u0 · (v − v0)∥T,1 < ϵ,

giving the desired continuity of multiplication in case u0 , 0 by . If u0 = 0 than, taking what?

u, v ∈ U(T,
√
ϵ), we have

∥u · v − u0 · v0∥T,1 < ϵ,

completing the proof of our claim that multiplication is continuous.

We next claim that the sum
∑
∞

n=1 f n converges in L
1
loc(R≥0;F). Let T ∈ R>0 and

N ∈ Z>0. Then
N∑

n=1

∥ f n
∥T,1 ≤

N∑
n=1

∥ f ∥nT,1 ≤
∥ f ∥T,1

1 − ∥ f ∥T,1
,

using Example I-2.4.2–1. Thus

∞∑
n=1

∥ f n
∥T,1 ≤

∥ f ∥T,1
1 − ∥ f ∥T,1

,

giving convergence of the sum on the left. Thus, if ϵ ∈ R>0, there exists N ∈ Z>0 such
that

∞∑
n=N

∥ f n
∥T,1 ≤ ϵ.

Therefore, if j, k ≥ N, ∥∥∥∥∥∥∥∥
k∑

n= j+1

f n

∥∥∥∥∥∥∥∥
T

≤

k∑
n= j+1

∥ f ∥nT,1 ≤ ϵ,

showing that the sequence of partial sums is Cauchy with respect to the seminorm
∥·∥T,1, and so is convergent with respect to that seminorm. This gives convergence of

the sum in L
1
loc(R≥0;F) by Proposition III-6.2.9.
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Now, using continuity of multiplication to swap the multiplication and the sum,
we have

(I − f )

I +
∞∑

n=1

f n

 = I +
∞∑

n=1

f n
− f −

∞∑
n=2

f n = I,

giving the lemma. ▼

2 Lemma Let T ∈ R>0. If G(L
1
loc(R≥0;F)) denotes the set of invertible (with respect to

multiplication) elements of L
1
loc(R≥0;F), then the map G(L

1
loc(R≥0;F)) ∋ αI + f 7→ (αI + f)−1

is continuous in the topology defined by the seminorm ∥·∥T,1.

Proof Let v ∈ L
1
loc(R≥0;F) and let ϵ ∈ R>0. Let δ ∈ R>0 be sufficiently small that

∥v−1
∥

2
T,1δ

′

1 − ∥v−1∥T,1δ′
< ϵ

for all δ′ ∈ (0, δ). Then, if ∥u − v∥T,1 < δ we have

∥u−1
− v−1

∥T,1 = ∥((I − v−1
· (v − u))−1

− I) · v−1
∥T,1

≤

∥∥∥∥∥∥∥∥
∞∑
j=1

(v−1
· (v − u)) j

∥∥∥∥∥∥∥∥
T,1

∥v−1
∥T,1 ≤

 ∞∑
j=1

∥v−1
· (v − u)∥ j

T,1

 ∥v−1
∥T,1

≤ ∥v−1
∥T,1

∥v−1
· (v − u)∥T,1

1 − ∥v−1 · (v − u)∥T,1
≤

∥v−1
∥

2
T,1∥u − v∥T,1

1 − ∥v−1∥T,1∥u − v∥T,1
< ϵ,

using Lemma 1 and Proposition III-3.4.2. This gives the result. ▼

3 Lemma Let f ∈ L1
loc(R≥0;F), let u ∈ L1

loc(R≥0;R≥0) satisfy∫
R≥0

u(t) dt = 1,

and let T ∈ R>0. Let β ∈ ( 1
2 , 1) and define

v = (βI + (1 − β)u)−1.

Then

∥v · f − f∥T,1 ≤
1 − β
2β − 1

∥u � f − f∥T,1.

Proof First note that

βI + (1 − β)u = β
(
I +

β − 1
β

u
)

and that ∥∥∥∥∥β − 1
β

u
∥∥∥∥∥

T,1
< ∥u∥T,1 ≤ 1
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for every T ∈ R>0. It follows from Lemma 1 that βI + (1 − β)u is invertible and that

(βI + (1 − β)u)−1 = β−1

I +
∞∑

n=1

β − 1
β

un

 .
We have

v · f − f = ((βI + (1 − β)u)−1
− I) · f

= ((βI + (1 − β)u)−1
− (βI + (1 − β)u)−1

· (βI + (1 − β)u)) · f

=
1 − β
β

( f − u � f ) ·
(
I +

1 − β
β

u
)−1

=
1 − β
β

( f − u � f )

I +
∞∑

n=1

(
β − 1
β

)n

un

 .
Therefore, by our hypothesis on u,

∥v · f − f ∥T,1 ≤
1 − β
β
∥u � f − f ∥T,1

∞∑
n=0

(
1 − β
β

)n

=
1 − β
β
∥u � f − f ∥T,1

β

2β − 1
=

1 − β
2β − 1

∥u � f − f ∥T,1,

as claimed. ▼

Using the preceding lemmata, the key to proving the theorem is then the following
inductive lemma.

4 Lemma Let β ∈ ( 1
2 , 1). There exists sequences (uj)j∈Z>0 in L1

loc(R≥0;F) and (hj)j∈Z>0 in

L
1
loc(R≥0;F) with the following properties for each k ∈ Z>0:

(i)
∫
R≥0

uk(t) dt = 1;

(ii) hk = β
kI + (1 − β)

k∑
j=1

βj−1uj;

(iii) ∥h−1
k · f − h−1

k−1 · f∥1,kT <
ϵ

2k , where h0 = I.

Proof First of all, note that if uk satisfies (i) and if hk satisfies (i), then hk is invertible
with respect to multiplication. To see that, note that

hk = β
k

I −
β − 1
βk

k∑
j=1

β j−1u j


and that, for any T ∈ R>0,∥∥∥∥∥∥∥∥β − 1

βk

k∑
j=1

β j−1u j

∥∥∥∥∥∥∥∥
T,1

≤
1 − β
βk

∞∑
j=1

β j−1 =
1
βk
< 1,
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using Example I-2.4.2–1. From Lemma 1 it follows that hk is invertible as claimed.
Let u ∈ L1

loc(R≥0;F) satisfy ∫
R≥0

u(t) dt = 1

and, for σ ∈ R>0, define uσ(t) = σu(σt). Then, by Theorem 4.7.9, let σ be sufficiently
large that

∥uσ � f − f ∥T,1 <
ϵ(2β − 1)
2(1 − β)

.

Take u1 = uσ and take h1 = β + (1 − β)u1. Note that, as we showed at the beginning
of the proof, h1 is invertible. Moreover, by Lemma 3, the estimate (iii) holds. Thus we
have the conditions of the lemma for k = 1.

Now suppose that u1, . . . ,uk and h1, . . . , hk satisfy the four conditions of the lemma.
Let uσ, σ ∈ R>0, be the family of functions defined above. Then define

wσ = (βI + (1 − β)uσ)−1,

u′σ, j = wσ · u j, j ∈ {1, . . . , k},

h′σ,k = β
kI + (1 − β)

k∑
j=1

β j−1u′σ, j,

hσ,k+1 = h′σ,k · w
−1
σ .

Note that, by Lemma 1 and Example I-2.4.2–1,

∥wσ∥1,(k+1)T = β
−1

∥∥∥∥∥∥∥
(
I −

β − 1
β

uσ

)−1
∥∥∥∥∥∥∥

1,(k+1)T

= β−1

∥∥∥∥∥∥∥∥I +
∞∑
j=1

(
β − 1
β

) j

u j
σ

∥∥∥∥∥∥∥∥
1,(k+1)T

≤ β−1 1

1 − 1−β
β

=
1

2β − 1
. (4.13)

Then

∥hk − h′σ,k∥1,(k+1)T =

∥∥∥∥∥∥∥∥βkI + (1 − β)
k∑

j=1

β j−1u j − β
kI − (1 − β)

k∑
j=1

β j−1u′σ, j

∥∥∥∥∥∥∥∥
1,(k+1)T

≤ (1 − β)
k∑

j=1

β j−1
∥u j − u′σ, j∥1,(k+1)T

≤ (1 − β)

 ∞∑
j=1

β j−1

 max{∥u j − u′σ, j∥1,(k+1)T | j ∈ {1, . . . , k}}

≤ max{∥u j − wσ · u j∥1,(k+1)T | j ∈ {1, . . . , k}},

using Example I-2.4.2–1. By Lemma 3 it then follows that

∥hk − h′σ,k∥1,(k+1)T ≤
1 − β

2β − 1
max{∥u j − uσ � u j∥1,(k+1)T | j ∈ {1, . . . , k}}. (4.14)
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Note that

∥h−1
σ,k+1 · f−h−1

k · f ∥1,(k+1)T = ∥(h′σ,k)−1
· wσ · f − h−1

k · f ∥1,(k+1)T

≤ ∥(h′σ,k)−1
· wσ · f − h−1

k · wσ · f ∥1,(k+1)T + ∥h−1
k · wσ · f − h−1

k · f ∥1,(k+1)T

≤ ∥(h′σ,k)−1
− h−1

k ∥1,(k+1)T∥wσ · f ∥1,(k+1)T + ∥h−1
k ∥1,(k+1)T∥wσ · f − f ∥1,(k+1)T

≤
1

2β − 1
∥(h′σ,k)−1

− h−1
k ∥1,(k+1)T∥ f ∥1,(k+1)T +

1 − β
2β − 1

∥h−1
k ∥1,(k+1)T∥uσ � f − f ∥1,(k+1)T,

(4.15)

where we have used (4.13) and Lemma 3.
By Theorem 4.7.9 let σ be sufficiently large that

1 − β
2β − 1

∥h−1
k ∥1,(k+1)T∥uσ � f − f ∥1,(k+1)T <

ϵ

2k+1
. (4.16)

By Lemma 2, let δ ∈ R>0 be sufficiently small that, if w ∈ G(L
1
loc(R≥0;F)) satisfies

∥w∥1,(k+1)T ≤ δ, then
1

2β − 1
∥ f ∥1,(k+1)T∥w−1

∥1,(k+1)T ≤
ϵ

2k+2

Arguing as we did to obtain (4.16), we can take σ sufficiently large that

1 − β
2β − 1

max{∥u j − uσ � u j∥1,(k+1)T | j ∈ {1, . . . , k}} ≤ δ.

By (4.14) and the definition of δ it follows that

1
2β − 1

∥(h′σ,k)−1
− h−1

k ∥1,(k+1)T∥ f ∥1,(k+1)T <
ϵ

2k+1
(4.17)

for σ sufficiently large.
Now let σ be sufficiently large that both (4.16) and (4.17) hold and define uk+1 = uσ

and hk+1 = hσ,k+1. By (4.15) it follows that

∥h−1
k+1 · f − h−1

k · f ∥1,(k+1)T <
ϵ

2k+1
.

Moreover, by definition of hσ,k+1, we have

hk+1 =

βkI + (1 − β)
k∑

j=1

β j−1wσ · u j

 (βI + (1 − β)uk+1) = βk+1I + (1 − β)
k+1∑
j=1

β j−1u j,

and this completes the proof of the lemma. ▼

Now we complete the proof of the theorem. We define gk = h−1
k · f so that f = gk ·hk

for each k ∈ Z>0. We claim that the sequence (h j) j∈Z>0 converges in L
1
loc(R≥0;F) to

h ≜ (1 − β)
∞∑
j=1

β j−1u j. (4.18)
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First of all, note that the sum in the preceding expression converges in L
1
loc(R≥0;F). To

see this, note that for each T ∈ R>0

∞∑
j=1

β j−1
∥u j∥T,1 ≤

∞∑
j=1

β j−1 =
1

1 − β
,

using Example I-2.4.2–1. This gives convergence of the sum on the left. Thus, if
ϵ ∈ R>0, there exists N ∈ Z>0 such that

∞∑
j=N

β j−1
∥u j∥T,1 ≤ ϵ.

Therefore, if j, k ≥ N, ∥∥∥∥∥∥∥∥
k∑

m= j+1

βm−1uk

∥∥∥∥∥∥∥∥
T,1

≤

k∑
m= j+1

βm−1
∥um∥T,1 ≤ ϵ,

showing that the sequence of partial sums for the sum in (4.18) is Cauchy with respect
to the seminorm ∥·∥T,1, and so the sum is convergent with respect to that seminorm.

This gives convergence of the sum in (4.18) in L
1
loc(R≥0;F) by . To show that thewhat?

sequence (h j) j∈Z>0 converges to h, for each T ∈ R>0 we compute

∥hk − h∥T,1 = ∥βkI∥T,1 = βk.

Clearly then, limk→∞∥hk − h∥T,1 = 0, giving the desired convergence. By Lemma 2 and
continuity of multiplication (proved during the course of the proof of Lemma 1), we
can define

g = lim
k→∞

gk = lim
k→∞

h−1
k · f .

Let us now show that g is in the closed ideal generated by f . This will follow if we
can show that gk is in the closed ideal of L1

loc(R≥0;F) generated by f for each k ∈ Z>0.
To see that this is true, note that, by Lemma 1, h−1

k has the form

h−1
k = αI +

∞∑
j=1

v j,

where α ∈ F, where v j ∈ L1
loc(R≥0;F), and where the series on the right converges.

Therefore,

gk =

αI +
∞∑
j=1

v j

 · f = α f +
∞∑
j=1

v j � f .

by continuity of multiplication. The sum is clearly in the closed ideal generated by f .
Thus, to show that gk is in the closed ideal generated by f , it suffices to show that f is
in the closed ideal generated by f , cf. Theorem I-4.2.54. However, if uσ, σ ∈ R>0, is the
family of functions used above, then, by Theorem 4.7.9, limσ→∞∥ f � uσ − f ∥T,1 = 0 for
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every T ∈ R>0. This shows that, indeed, f is in the closed ideal generated by itself by
virtue of .what?

Now let us prove that the bound (ii) holds. For each k ∈ Z>0,

∥ f − gk∥T,1 = ∥ f − f · h−1
k ∥T,1

≤ ∥ f − f · g−1
1 ∥T,1 + ∥ f · g−1

1 − f · g−1
2 ∥1,2T + · · · + ∥ f · g−1

k−1 − f · g−1
k ∥1,kT

≤

∞∑
j=1

ϵ

2 j = ϵ.

Therefore,
∥ f − g∥T,1 = lim

k→∞
∥ f − gk∥T,1 < ϵ,

as desired. ■

With the preceding results, we can summarise the algebraic character of
L1

loc(R≥0;F).

4.2.18 Theorem (The algebraic structure of L1
loc

(R≥0;F)) The algebra L1
loc(R≥0;F) with the

product defined by convolution has the following properties:
(i) the multiplicative structure is commutative and associative;
(ii) it has no multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is an integral domain.

4.2.4 Convolution between Lp
loc

(R≥0;F) and Lq
loc

(R≥0;F)

Let us now consider the convolutions between the various spaces Lp
loc(R≥0;F).

We first establish a causal version of Young’s inequality which we give above as
Theorem 4.2.8. Let us first give a result for general signals with support bounded
on the left, recalling that σ( f ) = inf supp( f ).

4.2.19 Theorem (Causal convolution between Lp
loc

(R;F) and Lq
loc

(R;F)) Let p,q, r ∈

[1,∞] satisfy 1
r =

1
p +

1
q − 1 and consider causal signals f ∈ L(p)

loc(R;F) and g ∈ L(q)
loc(R;F).

LetK ⊆ R be a compact interval satisfying

supK ≥ σ(f) + σ(g)

and let L be such that

infL ≤ min{σ(f), σ(g)},
supL ≥ max{supK − σ(f), supK − σ(g)}

Then (f,g) is convolvable and

∥f ∗ g∥K,r ≤ ∥f∥L,p∥g∥L,q.
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Proof Define

h(t) =
∫
R
| f (t − τ)g(τ)|dτ,

noting that this integral is always defined, although it may be infinite. By Theo-
rem IV-4.1.13 we have

h(t) =
∫ t−σ( f )

σ(g)
| f (t − τ)g(τ)|dτ,

where σ( f ) = σ( f ) and σ(g) = σ(g). Moreover, again by Theorem IV-4.1.13,

supp(h) ⊆ [σ( f ) + σ(g),∞).

Let us abbreviate t0 = σ( f ) + σ(g) and t1 = supK. By hypothesis, t1 ≥ t0.
Define

α =
r − p

r
, β =

r − q
r

and
p̄ =

p
α
, q̄ =

q
β
.

We claim that we have the following relations:
1. α, β ∈ [0, 1];
2. p̄, q̄ ∈ [0,∞];
3. 1

p̄ +
1
q̄ +

1
r = 1.

First of all,

α = 1 −
p
q
≤ 1, α = p

(
1
p
−

1
r

)
= p

(
1 −

1
q

)
≥ 0,

and similarly β ∈ [0, 1]. It is evident that p̄, q̄ ∈ [1,∞]. Finally,

1
p̄
+

1
q̄
+

1
r
=
α
p
+
β

q
+

1
r
=

1
p
−

1
r
+

1
q
−

1
r
+

1
r
= 1,

as claimed.
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With this in mind, we compute using Hölder’s inequality

h(t) =
∫ t−σ( f )

σ(g)
| f (t − τ)|1−α|g(τ)|1−β| f (t − τ)|α|g(τ)|β dτ

=

∫ t−σ( f )

σ(g)
| f (t − τ)|(1−α)r

|g(τ)|(1−β)r dτ

1/r ∫ t−σ( f )

σ(g)
| f (t − τ)|αp̄ dτ

1/p̄

×

∫ t−σ( f )

σ(g)
|g(τ)|βq̄ dτ

1/q̄

=

∫ t−σ( f )

σ(g)
| f (t − τ)|(1−α)r

|g(τ)|(1−β)r dτ

1/r (∫ t−σ(g)

σ( f )
| f (s)|αp̄ ds

)1/p̄

×

∫ t−σ( f )

σ(g)
|g(τ)|βq̄ dτ

1/q̄

=

∫ t−σ( f )

σ(g)
| f (t − τ)|(1−α)r

|g(τ)|(1−β)r dτ

1/r

∥ f ∥α[σ( f ),t−σ(g)],αp̄∥g∥
β
[σ(g),t−σ( f )],αp̄.

Thus, using Fubini’s Theorem (sketch the domain in the (t, τ)-plane) and noting that
t0 = σ( f ) + σ(g),∫

K
|h(t)|r dt ≤ ∥ f ∥αr

[t0−σ(g),t1−σ(g)],αp̄∥g∥
βr
[t0−σ( f ),t1−σ( f )],αp̄

×

∫ t1

t0

∫ t−σ( f )

t0−σ( f )
| f (t − τ)|(1−α)r

|g(τ)|(1−β)r dτ

 dt

= ∥ f ∥αr
[t0−σ(g),t1−σ(g)],αp̄∥g∥

βr
[t0−σ( f ),t1−σ( f )],αp̄

×

∫ t1−σ( f )

t0−σ( f )

(∫ t1

τ+σ( f )
| f (t − τ)|(1−α)r dt

)
|g(τ)|(1−β)r dτ

= ∥ f ∥αr
[t0−σ(g),t1−σ(g)],αp̄∥g∥

βr
[t0−σ( f ),t1−σ( f )],αp̄

×

∫ t1−σ( f )

t0−σ( f )

(∫ t1−τ

σ( f )
| f (s)|(1−α)r ds

)
|g(τ)|(1−β)r dτ

≤ ∥ f ∥αr
[t0−σ(g),t1−σ(g)],αp̄∥g∥

βr
[t0−σ( f ),t1−σ( f )],αp̄

× ∥ f ∥(1−α)r
[t0−σ(g),t1−σ(g)],(1−α)r∥g∥

(1−β)r
[t0−σ( f ),t1−σ( f )],(1−β)r.

We have
αp̄ = p, (1 − α)r = p, βq̄ = q, (1 − β)r = p,

which gives
∥ f ∗ g∥rK,r ≤ ∥ f ∥r[σ( f ),t1−σ(g)],p∥g∥

r
[σ(g),t1−σ( f )],q.

Our hypotheses include

infL ≤ min{σ( f ), σ(g)}, supL ≥ max{t1 − σ( f ), t1 − σ(g)}.

Thus the result follows by taking rth roots. ■
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We can simplify the theorem in the case when signals have support in R≥0.

4.2.20 Corollary (Convolution between Lp
loc

(R≥0;F) and Lq
loc

(R≥0;F)) Let p,q, r ∈ [1,∞]

satisfy 1
r =

1
p +

1
q − 1 and consider signals f ∈ L(p)

loc(R≥0;F) and g ∈ L(q)
loc(R≥0;F). Then

(f,g) is convolvable and

∥f � g∥T,r ≤ ∥f∥T,p∥g∥T,q, T ∈ R>0.

Proof We apply the theorem withK = L = [0,T]. ■

As in the case of signals with unconstrained support, there are a couple of
special cases that we can single out.

4.2.21 Corollary (Convolution between L1
loc

(R≥0;F) and Lp
loc

(R≥0;F)) If p ∈ [1,∞], if

f ∈ L(p)
loc(R≥0;F), and if g ∈ L(1)

loc(R≥0;F), then f � g ∈ L(p)
loc(R≥0;F), and

∥f � g∥T,p ≤ ∥f∥T,p∥g∥T,1, T ∈ R>0.

Proof This follows from Corollary 4.2.20 with r = p and q = 1. ■

4.2.22 Corollary (Convolution between Lp
loc

(R≥0;F) and Lp′

loc
(R≥0;F)) Let p ∈ [1,∞] and

let p′ ∈ [1,∞] satisfy 1
p+

1
p′ = 1. If f ∈ L(p)

loc(R≥0;F) and g ∈ L(p′)
loc (R≥0;F) then D(f,g) = R,

and f � g ∈ C0
bdd(R≥0;F).

Proof That ( f , g) is convolvable and that f � g ∈ L(∞)(R;F) follows from Theo-
rem 4.2.19 with r = ∞ and q = p′. Moreover, since s 7→ f (t − s) is in L(p)([0,T];F)
and since s 7→ f (s) is in L(p′)([0,T];F), we conclude from Hölder’s inequality,
Lemma III-3.8.54 and Exercise III-3.8.8, that the signal s 7→ f (t−s)g(s) is in L(1)([0,T];F).
Thus s 7→ f (t − s)g(s) is locally integrable for all t ∈ R≥0 and so D( f , g) = R. It remains
to show that f � g is continuous, and this is done exactly as in the proof of Corol-
lary 4.2.10. ■

Finally, we can prove the continuity of acausal convolution.

4.2.23 Corollary (Continuity of Lp
loc

-convolution) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p +

1
q − 1.

The map (f,g) 7→ f�g from Lp
loc(R≥0;F)×Lq

loc(R≥0;F) to Lr
loc(R≥0;F) is continuous, where

the domain is equipped with the product topology.
Proof This follows from Corollary 4.2.20 in the same manner as Corollary 4.2.14
follows from Theorem 4.2.13(i). ■

4.2.5 Convolution in L1
per,T

(R;F)

Now let us record the algebraic structure of periodic convolution. Here, pe-
riodicity allows us to make stronger assertions that we were able to make in the
aperiodic case, principally since periodic convolutions are integrable over their
period by Theorem 4.1.21.
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4.2.24 Theorem (L(1)
per,T

(R;F) is an associative, commutative algebra without unit,
when equipped with convolution as product) If f,g,h: R → F are such that
their restrictions to [0,T] are in L(1)([0,T];F), then the following statements hold:

(i) ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1;
(ii) f ∗ g = g ∗ f;
(iii) if (f ∗ g) ∗ h = f ∗ (g ∗ h);
(iv) f ∗ (g + h) = f ∗ g + f ∗ h;
(v) (recalling Remark 4.1.2) there is no equivalence class of signals [u] ∈ L1

per,T(R;F)
such that [u ∗ f] = [f] for every [f] ∈ L1

per,T(R;F).

Proof We only prove those parts that are not already proved.
(i) This is a straightforward estimate using Fubini’s Theorem, the change of variable

theorem, periodicity of f , and Proposition III-2.7.21:

∥ f ∗ g∥1 =
∫ T

0
| f ∗ g(t)|dt =

∫ T

0

∣∣∣∣∣∣
∫ T

0
f (t − s)g(s) ds

∣∣∣∣∣∣ dt

≤

∫ T

0

(∫ T

0
| f (t − s)g(s)|ds

)
dt =

∫ T

0
|g(s)|

(∫ T−s

−s
| f (τ)|dτ

)
ds

≤ ∥ f ∥1

∫ T

0
|g(s)|ds = ∥ f ∥1∥g∥1.

(v) We use a lemma.

1 Lemma If u ∈ L(1)
per,T(R;F) then there exists r ∈ R>0 such that∣∣∣∣∣∣

∫ t+r′

t−r′
u(s) ds

∣∣∣∣∣∣ < 1, t ∈ R, r′ ∈ (0, r].

Proof Let t ∈ R. By Proposition III-2.9.24 and Theorem III-2.9.33, the function

r 7→
∫ t+r

t−r
u(s) ds

is continuous since u is locally integrable. Therefore, since the value of this function is
zero at r = 0, there exists rt ∈ R>0 such that∣∣∣∣∣∣

∫ t+r

t−r
u(s) ds

∣∣∣∣∣∣ < 1
2

for every r ∈ (0, rt). Note that ((−rt, rt))t∈[0,T] is an open cover of [0,T]. By compactness
of [0,T], we can apply Theorem I-2.5.30 to assert the existence of r ∈ R>0 such that, for
each t ∈ [0,T], there exists st ∈ [0,T] such that

(t − r, t + r) ∩ [0,T] ⊆ (st − rst , st + rst). (4.19)
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Now let t ∈ [0,T] and let st ∈ [0,T] be such that (4.19) holds, this being possible
by definition of r. Let r′ ∈ (0, r]. Then the preceding inclusion and the definition of rst

immediately gives∣∣∣∣∣∣
∫ t+r′

t−r′
u(s) ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ st

t−r′
u(s) ds +

∫ t+r′

st

u(s) ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∫ st

t−r′
u(s) ds

∣∣∣∣∣ +
∣∣∣∣∣∣
∫ t+r′

st

u(s) ds

∣∣∣∣∣∣ < 1,

using the usual convention that ∫ b

a
ds = −

∫ a

b
ds

when a > b. The lemma follows from periodicity of u. ▼

Now let f = χ[−r,r] be the characteristic function of the interval [−r, r]. By assump-
tion, there exists Z ⊆ R of zero measure such that u ∗ f (t) = f (t) for every t ∈ R \Z. For
t ∈ [−r, r] ∩ (R \ Z) we have

1 = f (t) = u ∗ f (t) =
∫ T

2

−
T
2

u(t − s) f (s) ds =
∫
−r

−r
u(t − s) ds =

∫ t+r

t−r
u(s) ds < 1,

using the change of variables theorem. This gives a contradiction. ■

Much of the work for periodic convolution has been done in Section 4.1.3.
In particular, in Theorem 4.2.24 we stated the fundamental theorem regarding
convolution in L1

per,T(R;F). From this result and from Lemma 1 from the proof of
Corollary 4.2.2, we have the following result.

4.2.25 Corollary (Continuity of L1
per,T

-convolution) The map (f,g) 7→ f∗g from L1
per,T(R;F)×

L1
per,T(R;F) to L1

per,T(R;F) is continuous, where the domain is equipped with the product
topology.

We can explore the algebra L1
per,T(R;F) further by providing a few results re-

garding the algebraic properties of the algebra.

4.2.26 Theorem (L1
per,T

(R;F) is not an integral domain) There exists f,g ∈ L(1)
per,T(R;F)

with the following properties:
(i) f and g are each bounded, continuous, and nonzero;
(ii) f ∗ g(t) = 0 for every t ∈ R.

Proof Consider the two signals

f (t) =
∞∑

n=1

cos(2π(2n) t
T )

(2n)2 , g(t) =
∞∑
j=1

cos(2π(2n − 1) t
T )

(2n − 1)2 ,

and make the following observations, making reference to the CDFT discussed in
Chapter 5.
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1. Since the series
∑
∞

n=1
1

(2n)2 and
∑
∞

n=1
1

(2n−1)2 converge absolutely, the series defining
f and g converge uniformly to a continuous function by the Weierstrass M-test.

2. We have FCD( f )(nT−1) = 0 for n odd and FCD(g)(nT−1) = 0 for n even.
As a result, FCD( f )FCD(g) is the zero signal. However, by Proposition 5.1.19,

FCD( f ∗ g) = FCD( f )FCD(g),

giving FCD( f ∗ g) = 0. Thus f ∗ g is the zero signal by Lemma 1 from the proof of
Theorem 5.2.1, noting that f ∗ g is continuous by Corollary 4.2.32. ■

We can prove a surjectivity result for periodic convolution. The result here
makes reference to the continuous-discrete Fourier transform which we discuss in
detail in Chapter 5.

4.2.27 Theorem (Convolution in L1
per,T

(R;F) is “surjective”) If f ∈ L(1)
per,T(R;C) then there

exists g,h ∈ L(1)(R;C) such that f(t) = g ∗ h(t) for almost every t ∈ R. Moreover, g and
h can be chosen such that g is an element of the closure (using the L1-norm) of the ideal
generated by f and such that h and FCD(h) are even positive signals.

Proof Let f̂ ∈ L(1)(R;F) be defined by

f̂ (t) =

 f (t), t ∈ [0,T],
0, otherwise.

By Theorem 4.2.4 there exists ĝ, ĥ ∈ L(1)(R;F) such that
1. f̂ (t) = ĝ ∗ ĥ(t) for almost every t ∈ R,
2. ĝ is in the closed ideal generated by f̂ , and
3. ĥ and FCC(ĥ) are even and positive.

As we shall show in the proof of Proposition 8.1.2 below, we can define g ∈ L(1)
per,T(R;F)

by
g(t) =

∑
j∈Z

ĝ(t + jT),

with this sum being defined for almost every t ∈ R. Similarly we define

h(t) =
∑
j∈Z

ĥ(t + jT)

and, moreover, note that
f (t) =

∑
j∈Z

f̂ (t + jT).

We claim that f (t) = g ∗ h(t) for almost every t ∈ R. Indeed, for any t for which the
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summations are defined, we have∫ T

0
g(t − s)h(s) ds =

∫ T

0

∑
j∈Z

ĝ(t − s + jT)


∑

k∈Z

ĥ(s + kT)

 ds

=
∑
j∈Z

∑
k∈Z

∫ T

0
ĝ(t − s + jT)ĥ(s + kT) ds

=
∑
j∈Z

∑
l∈Z

∫ ( j+1)T

jT
ĝ(t − s + lT)ĥ(s) ds

=
∑
l∈Z

∫
R

ĝ(t + lT − s)ĥ(s) ds =
∑
l∈Z

f̂ (t + lT) = f (t),

using Fubini’s Theorem to swap the sum and integral and also using the change of
variable formula.

Finally, we claim that h is even. Indeed, for t ∈ R,

h(−t) =
∑
j∈Z

ĥ(−t + jT) =
∑
j∈Z

ĥ(t − jT) =
∑
j∈Z

ĥ(t + jT),

using the fact that ĥ is even. Then, from Proposition 5.1.6(iii), we also have thatFCD(h)
is even, concluding the proof. ■

4.2.28 Remark (The character of factorisation in L1
per,T

(R;F)) The proof of Theo-
rem 4.2.17 above is easily adapted to prove the following, which is an alternative
version of Theorem 4.2.4.

Let ϵ ∈ R>0. If f ∈ L1
per,T(R;F) then there exists g, h ∈ L1

per,T(R;F) such that

(i) f (t) = g ∗ h(t) for almost every t ∈ R,
(ii) g is in the closed ideal generated by f , and
(iii) ∥ f − g∥1 < ϵ.

In fact, the preceding result is somewhat easier to prove than Theorem 4.2.17 since
the topology on L1

per,T(R;F) is a norm topology, and is not defined by a family of
seminorms, as is the topology on L1

loc(R≥0;F). •

nonnegative

counterexample? We can now summarise the algebraic structure of L1
per,T(R;F).

4.2.29 Theorem (The algebraic structure of L1
per,T

(R;F)) The algebra L1
per,T(R;F) with the

product defined by convolution has the following properties:
(i) the multiplicative structure is commutative and associative;
(ii) it has no multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is not an integral domain.
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4.2.6 Convolution between Lp
per,T

(R;F) and Lq
per,T

(R;F)

In this section we give the analogous results for periodic signals to the results
from Section 4.2.2 for aperiodic signals.

4.2.30 Theorem (Convolution between Lp
per,T

(R;F) and Lq
per,T

(R;F)) Let p,q, r ∈ [1,∞]

satisfy 1
r =

1
p +

1
q − 1. If f ∈ L(p)

per,T(R;F) and g ∈ L(q)
per,T(R;F) then (f,g) is convolvable,

f ∗ g ∈ L(r)
per,T(R;F), and ∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

Proof This is proved exactly as is Theorem 4.2.8, but replacing integrals over Rwith
integrals over [0,T]. The details of the translation can be easily performed by any
exceptionally bored reader. ■

The following corollaries single out the most interesting cases of the preceding
theorem. They follow from Theorem 4.2.30 in the same manner as the correspond-
ing corollaries to Theorem 4.2.8.

4.2.31 Corollary (Convolution between L1
per,T

(R;F) and Lp
per,T

(R;F)) If p ∈ [1,∞], if

f ∈ L(p)
per,T(R;F), and if g ∈ L(1)

per,T(R;F), then (f,g) is convolvable, f ∗ g ∈ L(p)
per,T(R;F), and

∥f ∗ g∥p ≤ ∥f∥p∥g∥1.

4.2.32 Corollary (Convolution between Lp
per,T

(R;F) and Lp′

per,T
(R;F)) Let p ∈ [1,∞] and

let p′ ∈ [1,∞] satisfy 1
p +

1
p′ = 1. If f ∈ L(p)

per,T(R;F) and g ∈ L(p′)
per,T(R;F) then (f,g) is

convolvable, D(f,g) = R, and f ∗ g ∈ C0
per,T(R;F).

Proof The following lemma is key.

1 Lemma If p ∈ [1,∞) and if f ∈ L(p)
per,T(R;F), then lima→0∥f − τ∗af∥p = 0.

Proof Let ϵ ∈ R>0. Choose g ∈ C0
per,T(R;C) so that ∥ f − g∥p < ϵ

3 by part (i) of
Theorem 5.2.42. By uniform continuity of g (cf. Theorem I-3.1.24), choose δ ∈ (0, 1) so
that |g(t − a) − g(t)| < ϵ

3T1/p when |a| < δ. Then

∥τag − f ∥p =
(∫ T

0
|g(t − a) − g(t)|p dt

)1/p

<

(∫ T

0

ϵp

3pT
dt

)1/p

=
ϵ
3

for |a| < δ. We then have

∥τ∗a f − f ∥p ≤ ∥τ∗a f − τ∗ag∥p + ∥τ∗ag − f ∥p + ∥ f − g∥p
= 2∥ f − g∥p + ∥τ∗ag − f ∥p < ϵ,

as claimed. ▼

The corollary now follows from the lemma in the same manner as Corollary 4.2.10
follows from Lemma 1. ■
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4.2.33 Corollary (Continuity of Lp
per,T

-convolution) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p +

1
q −1.

The map (f,g) 7→ f ∗ g from Lp
per,T(R;F)× Lq

per,T(R;F) to Lr
per,T(R;F) is continuous, where

the domain is equipped with the product topology.

4.2.7 Convolution in ℓ1(Z(∆);F)

Now we turn to convolutions of discrete-time signals. First we consider the
case of absolutely summable, aperiodic signals, i.e., signals in ℓ1(Z(∆);F). The
following result records the basic algebraic structure of this space of signals with
the convolution as product.

4.2.34 Theorem (ℓ1(Z(∆);F) is an associative, commutative algebra with unit, when
equipped with the convolution as product) If f,g ∈ ℓ1(Z(∆);F) then (f,g) is
convolvable and f ∗ g ∈ ℓ1(Z(∆);F). Furthermore, for f,g,h ∈ ℓ1(R;F), the following
statements hold:

(i) ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1;
(ii) f ∗ g = g ∗ f;
(iii) (f ∗ g) ∗ h = f ∗ (g ∗ h);
(iv) f ∗ (g + h) = f ∗ g + f ∗ h;
(v) there exists u ∈ ℓ1(Z(∆);F) such that u ∗ f = f for every f ∈ ℓ1(Z(∆);F).

Proof Define F f ,g : Z(∆)2
→ F by F f ,g(σ, τ) = f (σ)g(τ). By Corollary III-2.8.8∑

( j,k)∈Z2

|F f ,g( j∆, k∆)| < ∞.

Now consider the change of variable ϕ : Z(∆)2
→ Z(∆)2 given by ϕ( j∆, k∆) = ((k −

j)∆, j∆), so that
F f ,g ◦ ϕ( j∆, k∆) = f ((k − j)∆)g( j∆).

By Theorem I-2.4.5 (why is this the right theorem to use?),∑
( j,k)∈Z2

| f ((k − j)∆)g( j∆)| < ∞.

By Fubini’s Theorem, the function j∆ 7→ f ((k − j)∆)g( j∆) is integrable for every k ∈ Z.
Thus ( f , g) is convolvable.

(i) Moreover, using a change of index and Fubini’s Theorem again,

∆2
∑
k∈Z

∣∣∣∣∣∣∣∣
∑
j∈Z

f ((k − j)∆)g( j∆)

∣∣∣∣∣∣∣∣ ≤ ∆2
∑
k∈Z

∑
j∈Z

| f ((k − j)∆)g( j∆)|

= ∆2
∑

( j,k)∈Z2

| f (k∆)||g( j∆)| = ∥ f ∥1∥g∥1,

as desired.
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(ii) This is Proposition 4.1.30(i).
(iii) We have

( f ∗ g) ∗ h(k∆) = ∆
∑
j∈Z

f ∗ g((k − j)∆)h( j∆)

= ∆2
∑
j∈Z

∑
l∈Z

f (k − j − l)g(l)

 h( j∆)

= ∆2
∑
j∈Z

∑
l∈Z

f ((k − l)∆)g((l − j)∆)

 h( j∆)

= ∆2
∑
l∈Z

f ((k − l)∆)

∑
j∈Z

g((l − j)∆)h( j∆)


=∆

∑
l∈Z

f ((k − l)∆)g ∗ h(l∆) = f ∗ (g ∗ h)(k∆),

using a change of index and Fubini’s Theorem.
(iv) This is simply linearity of the integral, Proposition III-2.7.17.
(v) This was shown in Example 4.1.27. ■

We can show that the convolution we are considering in this section is contin-
uous.

4.2.35 Corollary (Continuity of ℓ1-convolution) The map (f,g) 7→ f ∗ g from ℓ1(Z(∆);F) ×
ℓ1(Z(∆);F) to ℓ1(Z(∆);F) is continuous, where the domain is equipped with the product
topology.

Proof This follows from Lemma 1 from the proof of Corollary 4.2.2. ■

The following result gives some additional algebraic structure for ℓ1(Z(∆);F).

4.2.36 Proposition (ℓ1(Z(∆);F) is not an integral domain) There exists f,g ∈ ℓ1(Z(∆);F)
with the following properties:

(i) f and g are not everywhere zero;
(ii) f ∗ g(k∆) = 0 for every k ∈ Z.

Proof We shall assume some things about the CDFT and the DCFT which we discuss
ion detail in Chapter 5 and in Section 7.1, respectively. Define F,G ∈ C0

per,∆−1(R;F) by

asking that for ν ∈ [0,∆−1] we have

F(ν) =


ν, ν ∈ [0, 1

4∆
−1],

1
4∆
−1(1 − ν), ν ∈ ( 1

4∆
−1, 1

2∆
−1],

0, ν ∈ ( 1
2∆
−1,∆−1]

and

G(ν) =


0, ν ∈ [0, 1

2∆
−1],

ν − 1
2∆
−1, ν ∈ ( 1

2∆
−1, 3

4∆
−1],

3
4∆
−1
− ν, ν ∈ ( 3

4∆
−1,∆−1].
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Clearly we have FG(ν) = 0 for every ν ∈ R. Note that F and G satisfy the hypotheses
of Corollary 5.2.35. Thus, as we showed in the proof of that corollary,

FCD(F),FCD(G) ∈ ℓ1(Z(∆),F).

Moreover, injectivity of the CDFT proved in Theorem 5.2.1 gives that FCD(F) and
FCD(G) are nonzero. By Proposition 7.1.12 we have

FDC(FCD(F) ∗ FCD(G))(ν) = F(ν)G(ν) = 0

for every ν ∈ R. Injectivity of the DCFT proved in Theorem 7.1.14 gives FCD(F)(k∆) ∗
FCD(G)(k∆) = 0 for every k ∈ Z. ■

Note that in ℓ1(Z(∆);F) the matter of factorisation, such as we developed in
Theorems 4.2.4, 4.2.17, and 4.2.27 for various classes of continuous-time signals,
is not as interesting for ℓ1(Z(∆);F) since we always have f = u ∗ f where u is the
unit alluded to in Theorem 4.2.34.

Let us summarise the algebraic structure of L1(R;F).

4.2.37 Theorem (The algebraic structure of ℓ1(Z(∆);F)) The algebra ℓ1(Z(∆);F) with the
product defined by convolution has the following properties:

(i) the multiplicative structure is commutative and associative;
(ii) it has a multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is not an integral domain.

4.2.8 Convolution between ℓp(Z(∆);F) and ℓq(Z(∆);F)

In this section we give the analogous results for discrete-time signals to the
results from Section 4.2.2 for continuous-time signals.

4.2.38 Theorem (Convolution between ℓp(Z(∆);F) and ℓq(Z(∆);F)) Let p,q, r ∈ [1,∞]
satisfy 1

r =
1
p +

1
q − 1. If f ∈ ℓp(Z(∆);F) and g ∈ ℓq(Z(∆);F) then (f,g) is convolvable,

f ∗ g ∈ ℓr(Z(∆);F), and ∥f ∗ g∥r ≤ ∥f∥p∥g∥q.
Proof This is proved exactly as is Theorem 4.2.8, but replacing integrals over R
with sums over Z, replacing the use of Lemma III-3.8.54 and Exercise III-3.8.8
with Lemma III-3.8.16 and Exercise III-3.8.2, respectively, and replacing the use of
Lemma III-3.8.56 with Lemma III-3.8.18. ■

The following corollaries single out the most interesting cases of the preceding
theorem. They follow from Theorem 4.2.38 in the same manner as the correspond-
ing corollaries to Theorem 4.2.8.

4.2.39 Corollary (Convolution between ℓ1(Z(∆);F) and ℓp(Z(∆);F)) If p ∈ [1,∞], if
f ∈ ℓp(Z(∆);F), and if g ∈ ℓ1(Z(∆);F), then (f,g) is convolvable, f ∗g ∈ ℓp(Z(∆);F), and
∥f ∗ g∥p ≤ ∥f∥p∥g∥1.
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4.2.40 Corollary (Convolution between ℓp(Z(∆);F) and ℓp′(Z(∆);F)) Let p ∈ [1,∞] and
let p′ ∈ [1,∞] satisfy 1

p +
1
p′ = 1. If f ∈ ℓp(Z(∆);F) and g ∈ ℓp′(Z(∆);F) then (f,g) is

convolvable.

Note that the continuous-time versions of the preceding corollary, Corollar-
ies 4.2.10 and 4.2.32, have the additional conclusion that the resulting convolution
is continuous. Such conclusions do not have significance in the discrete-time case.

4.2.41 Corollary (Continuity of ℓp-convolution) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p +

1
q − 1.

The map (f,g) 7→ f ∗g from ℓp(Z(∆);F)× ℓq(Z(∆);F) to ℓr(Z(∆);F) is continuous, where
the domain is equipped with the product topology.

4.2.9 Convolution in ℓloc(Z≥0(∆);F)

Next we consider discrete convolution for causal signals. In this case, we need to
use seminorms rather than norms to discuss the topological aspects of convolution
in this case. We shall use the seminorms

∥ f ∥N,p =

∆ N∑
j=0

| f ( j∆)|p


1/p

, N ∈ Z>0, p ∈ [1,∞),

and
∥ f ∥N,∞ = sup{| f ( j∆)| | j ∈ {0, 1, . . . ,N}}, N ∈ Z>0.

As we discussed before the statement of Theorem III-6.5.1, the topologies defined
by these seminorms are the same. We shall see in Theorem 4.2.47 a consequence of
this fact, although many of the results appear similar to the analogous continuous-
time results in Sections 4.2.3 and 4.2.4.

The essential structural result for ℓloc(Z≥0(∆);F) is then the following, where we
make use of the 1-norm.

4.2.42 Theorem (ℓloc(Z≥0(∆);F) is an associative, commutative algebra with unit,
when equipped with convolution as a product) For f,g,h ∈ ℓloc(Z≥0(∆);F), the
following statements hold:

(i) ∥f � g∥N,1 ≤ ∥f∥N,1∥g∥N,1 for every N ∈ Z>0;
(ii) f � g = g � f;
(iii) (f � g) � h = f � (g � h);
(iv) f � (g + h) = f � g + f � h;
(v) there exists u ∈ ℓloc(Z≥0(∆);F) such that u � f = f for every f ∈ ℓloc(Z≥0(∆);F).

Proof We shall only prove those parts of the theorem that we have not yet already
proved.
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(i) We compute

∥ f ∗ g∥N,1 = ∆
N∑

k=0

| f ∗ g(k)| ≤ ∆2
N∑

k=0

N∑
j=0

| f (k∆ − j∆)g( j∆)|

= ∆2
N∑

j=0

|g( j∆)|
N− j∆∑

m=− j∆

| f (m∆)| ≤ ∆2
N∑

j=0

|g( j∆)|
N∑

m=0

| f (m∆)|

= ∆∥ f ∥N,1
N∑

j=0

|g( j∆)| = ∥ f ∥N,1∥g∥N,1.

(v) This follows from Example 4.1.27 since the unit pulse is in ℓloc(Z≥0(∆);F). ■

Using part (i) of the preceding theorem to prove the following continuity result.

4.2.43 Corollary (Continuity of ℓloc-convolution) The map (f,g) 7→ f � g from
ℓloc(Z≥0(∆);F) × ℓloc(Z≥0(∆);F) to ℓloc(Z≥0(∆);F) is continuous, where the domain is
equipped with the product topology.

Proof This follows from Theorem 4.2.42 in the same manner as Corollary 4.2.14
follows from Theorem 4.2.13(i). ■

As with continuous-time causal convolution, the convolution algebra
ℓloc(Z≥0(∆);F) is an integral domain. In the continuous-time case this is hard,
necessitating the Titchmarsh Convolution Theorem. In the discrete-time case, this
is much easier.

4.2.44 Theorem (Discrete Titchmarsh Convolution Theorem) If f,g ∈ ℓloc(Z(∆);F) are
such that σ(f), σ(g) > −∞, then σ(f ∗ g) = σ(f) + σ(g).

Proof By translation and permuting f and g if necessary, we can suppose that σ( f ) = 0
and σ(g) ≥ 0. By Proposition 4.1.29 we have σ( f ∗ g) ≥ 0. Let M ∈ Z>0 and define

N =

σ( f ∗ g)/∆, σ( f ∗ g) < ∞,
M, σ( f ∗ g) = ∞.

To prove the theorem in this case, it suffices to show that σ(g) ≥ N∆. Thus we need to
show that g(k∆) = 0 for k ∈ {0, 1, . . . ,N}. For k = 0, we have

f � g(0) = f (0)g(0).

Since σ( f ) = 0, we must have g(0) = 0. Thus the claim is true for k = 0. Suppose it true
for k = m < N. Thus

g(0) = g(1) = · · · = g(m) = 0.

Then, by Theorem 4.1.32, we have

f � g(m + 1) = f (0)g(m + 1) + f (1)g(m) + · · · + f (m)g(1) + f (m + 1)g(0) = f (m + 1)g(0).

Again since σ( f ) = 0, we have g(m + 1). This induction can be carried out until m = N,
and this gives the theorem. ■

The following consequence of the discrete Titchmarsh Convolution Theorem
explains its importance.
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4.2.45 Corollary (ℓloc(Z≥0(∆);F) is an integral domain) When equipped with the product
�, ℓloc(Z≥0(∆);F) is an integral domain.

Proof If f � g(t) = 0 for every t ∈ Z≥0(∆) then σ( f � g) = ∞. It follows from the
discrete Titchmarsh Convolution Theorem that at least one of σ( f ) or σ(g) must be
infinite, which gives the result. ■

As we have seen with ℓ1(Z(∆);F), the presence of a unit in ℓloc(Z≥0(∆);F) renders
uninteresting the surjectivity results we have given for continuous-time signals.

With the preceding results, we can summarise the algebraic character of
ℓloc(Z≥0(∆);F).

4.2.46 Theorem (The algebraic structure of ℓloc(Z≥0(∆);F)) The algebra ℓloc(Z≥0;F) with
the product defined by convolution has the following properties:

(i) the multiplicative structure is commutative and associative;
(ii) it has a multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is an integral domain.

The preceding results are to be regarded as the discrete-time analogue of the
result for continuous-time case in Section 4.2.3. There are also discrete-time ana-
logues to the results in Section 4.2.4, although these results are not as deep in the
discrete-time case as they are in the continuous-time case.

Let us first state the discrete-time version of Young’s inequality for causal
discrete-time signals.

4.2.47 Theorem (Causal convolution in ℓloc(Z(∆);F)) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p +

1
q −1 and consider causal signals f,g ∈ ℓloc(Z(∆);R). LetK ⊆ R be a compact interval

satisfying
supK ≥ σ(f) + σ(g)

and let L be such that

infL ≤ min{σ(f), σ(g)},
supL ≥ max{supK − σ(f), supK − σ(g)}

Then
∥f ∗ g∥Z(∆)∩K,r ≤ ∥f∥Z(∆)∩L,p∥g∥Z(∆)∩L,q.

Proof This follows in the same manner as Theorem 4.2.19, but replacing integrals
over R with sums over Z, replacing the use of Lemma III-3.8.54 and Exercise III-3.8.8
with Lemma III-3.8.16 and Exercise III-3.8.2, respectively, and replacing the use of
Lemma III-3.8.56 with Lemma III-3.8.18. ■

We can simplify the theorem in the case when signals have support inZ≥0(∆).
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4.2.48 Corollary (Convolution in ℓloc(Z≥0(∆);F)) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p +

1
q − 1

and consider signals f,g ∈ ℓloc(Z≥0(∆);F). Then

∥f � g∥N,r ≤ ∥f∥N,p∥g∥N,q, N ∈ Z>0.

Proof We apply the theorem withK = L = [0,N]. ■

As in the case of signals with unconstrained support, there are a couple of
special cases that we can single out.

4.2.49 Corollary (Convolution in ℓloc(Z≥0(∆);F) with q = 1) If p ∈ [1,∞] and if f,g ∈
ℓloc(Z≥0(∆);F), then

∥f � g∥N,p ≤ ∥f∥N,p∥g∥N,1, N ∈ Z>0.

Proof This follows from Corollary 4.2.48 with r = p and q = 1. ■

4.2.50 Corollary (Convolution in ℓloc(Z≥0(∆);F) with q = p′) Let p ∈ [1,∞] and let p′ ∈
[1,∞] satisfy 1

p +
1
p′ = 1. If f,g ∈ ℓloc(Z≥0(∆);F) then

∥f � g∥N,∞ ≤ ∥f∥N,p∥g∥N,p′ , N ∈ Z>0.

Finally, we can prove the continuity of acausal convolution. Here we are able to
give additional characterisations of continuity since the topology of ℓloc(Z≥0(∆);F)
does not depend on the seminorms one uses.

4.2.51 Corollary (Continuity of ℓloc-convolution (redux)) Let p,q, r ∈ [1,∞]. Then the
following statements hold:

(i) the map (f,g) 7→ f ∗ g from ℓloc(Z≥0(∆);F) × ℓloc(Z≥0(∆);F) to ℓloc(Z≥0(∆);F) is
continuous;

(ii) for N ∈ Z>0, there exists Cp,q,r,N ∈ R>0 such that

∥f � g∥N,r ≤ Cp,q,r,N∥f∥N,p∥g∥N,q, N ∈ Z>0;

(iii) if additionally we have 1
r =

1
p +

1
q − 1, then we can take Cp,q,r,N = 1 in part (ii).

Proof (iii) This follows from Corollary 4.2.48 in the same manner as Corollary 4.2.43
follows from Theorem 4.2.42.

(ii) This follows from part (iii) since, for any p, q,∈ [1,∞] and N ∈ Z>0, there exists
Cp,q ∈ R>0 such that

∥ f ∥N,q ≤ Cp,q,N∥ f ∥N,p
for any f ∈ ℓloc(Z≥0(∆);F). This is a consequence of Theorems III-3.1.14 and III-3.1.15.

(i) This follows from Lemma 1 from the proof of Corollary 4.2.2 and part (ii). ■

4.2.10 Convolution in ℓper,T(Z(∆);F)

The final case of convolution we examine in some detail is discrete periodic
convolution. Let us first give the essential features of convolution for periodic
discrete-time signals.
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4.2.52 Theorem (ℓper,T(Z(∆);F) is an associative, commutative algebra with unit
when equipped with convolution as product) Let ∆ and let T = N∆ for some
N ∈ Z>0. If f,g,h ∈ ℓper,T(Z(∆;F), then the following statements hold:

(i) ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1;
(ii) f ∗ g = g ∗ f;
(iii) if (f ∗ g) ∗ h = f ∗ (g ∗ h);
(iv) f ∗ (g + h) = f ∗ g + f ∗ h;
(v) there exists u ∈ ℓper,T(Z(∆);F) such that u ∗ f = f for every f ∈ ℓper,T(Z(∆);F).

Proof We shall only prove those parts that are not already proved.
(i) We compute

∥ f ∗ g∥1 = ∆
N−1∑
k=0

| f ∗ g(k)| ≤ ∆2
N−1∑
k=0

N−1∑
j=0

| f (k∆ − j∆)g( j∆)|

= ∆2
N−1∑
j=0

|g( j∆)|
N−1− j∆∑
m=− j∆

| f (m∆)| = ∆∥ f ∥1
N−1∑
j=0

|g( j∆)| = ∥ f ∥1∥g∥1.

(v) This follows from Example 4.1.39. ■

As we have seen may times above, part (i) of the theorem has the following
continuity interpretation.

4.2.53 Corollary (Continuity of ℓper,T-convolution) The map (f,g) 7→ f ∗ g from
ℓper,T(Z(∆);F) × ℓper,T(Z(∆);F) to ℓper,T(Z(∆);F) is continuous, where the domain is
equipped with the product topology.

As with continuous-time periodic signals, the space of periodic discrete-time
signals is not an integral domain.

4.2.54 Theorem (ℓper,T(Z(∆);F) is not an integral domain) There exists f,g ∈

ℓper,T(Z(∆);F) with the following properties:
(i) f and g are each nonzero;
(ii) f ∗ g(t) = 0 for every t ∈ R.

Proof We can easily mirror the proof of Theorem 4.2.26. Let T = N∆. Thus we
take nonzero signals F,G ∈ ℓper,∆−1(Z((N∆)−1);F) for which FG = 0, and then take
f = F −1

DD (F) and g = F −1
DD (G). By Proposition 7.2.12 we have

FDD( f ∗ g) = FG,

and the result follows since FDD is an isomorphism by Proposition 7.2.10. ■

As with aperiodic discrete-time convolution, the various factorisation theo-
rems are not interesting since ℓper,T(Z(∆);F) has a unit as pointed out in Theo-
rem 4.2.52(v).

We can summarise the algebraic structure of ℓper,T(Z(∆);F).
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4.2.55 Theorem (The algebraic structure of ℓper,T(Z(∆);F)) The algebra ℓper,T(Z(∆);F)
with the product defined by convolution has the following properties:

(i) the multiplicative structure is commutative and associative;
(ii) it has a multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is not an integral domain.

The preceding results are to be regarded as the discrete-time analogue of the
result for continuous-time case in Section 4.2.5. There are also discrete-time ana-
logues to the results in Section 4.2.6, although these results are not as deep in the
discrete-time case as they are in the continuous-time case.

Let us first state the discrete-time version of Young’s inequality for causal
discrete-time signals.

4.2.56 Theorem (Convolution in ℓper,T(Z(∆);F)) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p +

1
q − 1

and consider causal signals f,g ∈ ℓper,T(Z(∆);R). Then

∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

Proof This follows in the same manner as Theorem 4.2.30, but replacing integrals
over R with sums over Z, replacing the use of Lemma III-3.8.54 and Exercise III-3.8.8
with Lemma III-3.8.16 and Exercise III-3.8.2, respectively, and replacing the use of
Lemma III-3.8.56 with Lemma III-3.8.18. ■

As in the case of signals with unconstrained support, there are a couple of
special cases that we can single out.

4.2.57 Corollary (Convolution in ℓper,T(Z(∆);F) with q = 1) If p ∈ [1,∞] and if f,g ∈
ℓper,T(Z(∆);F), then

∥f � g∥p ≤ ∥f∥p∥g∥1.
Proof This follows from Theorem 4.2.56 with r = p and q = 1. ■

4.2.58 Corollary (Convolution in ℓper,T(Z(∆);F) with q = p′) Let p ∈ [1,∞] and let p′ ∈
[1,∞] satisfy 1

p +
1
p′ = 1. If f,g ∈ ℓper,T(Z(∆);F) then

∥f � g∥∞ ≤ ∥f∥p∥g∥′p.

Finally, we can prove the continuity of acausal convolution. Here we are able to
give additional characterisations of continuity since the topology of ℓper,T(Z(∆);F)
does not depend on the seminorms one uses.
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4.2.59 Corollary (Continuity of ℓper,T-convolution (redux)) Let p,q, r ∈ [1,∞]. Then the
following statements hold:

(i) the map (f,g) 7→ f ∗ g from ℓper,T(Z≥0(∆);F)× ℓper,T(Z≥0(∆);F) to ℓper,T(Z≥0(∆);F)
is continuous;

(ii) there exists Cp,q,r ∈ R>0 such that

∥f � g∥r ≤ Cp,q,r∥f∥p∥g∥q;

(iii) if additionally we have 1
r =

1
p +

1
q − 1, then we can take Cp,q,r = 1 in part (ii).

Proof This is proved exactly as is Corollary 4.2.51. ■

4.2.11 Convolution and regularity for signals

In this section we indicate how the regularity properties of one of the signals
in a convolvable pair are transferred to the convolution of the signals. The basic
result is the following.

4.2.60 Theorem (Differentiability and convolution for aperiodic signals) Let f,g ∈
L(0)(R;F) have the following properties:

(i) f is locally absolutely continuous;
(ii) for each compact set K ⊆ R, the functions

(s, t) 7→ f(t − s)g(s), (s, t) 7→ f′(t − s)g(s),

when restricted to R × K, are integrable.
Then (f,g) and (f′,g) are convolvable, f ∗ g is locally absolutely continuous, and

(f ∗ g)′(t) = f′ ∗ g(t)

for almost every t ∈ R.
Proof For each k ∈ Z>0 the hypotheses of the theorem ensure that

(s, t) 7→ f (t − s)g(s), (s, t) 7→ f ′(t − s)g(s)

are integrable when restricted to R × [−k, k]. By Fubini’s Theorem it follows that
s 7→ f (t − s)g(s) is integrable for almost every t ∈ [−k, k]. Since this is true for every
k ∈ Z>0 it follows that ( f , g) and ( f ′, g) is convolvable.

Define F : R2
→ F by F(t, s) = f (t − s)g(s). The hypotheses ensure that

1. t 7→ F(t, s) is locally absolutely continuous for every s ∈ R and,
2. for every compact set K ⊆ R, the functions

(t, s) 7→ F(t, s)g(s), (t, s) 7→ D1F(t, s),

when restricted to K ×R, are integrable.
The result now follows immediately from Theorem III-2.9.17. ■

By inductively applying the preceding result, we have the following.
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4.2.61 Corollary (Higher derivatives and convolution for aperiodic signals) Let g ∈
L(1)(R;F) and let f ∈ Ck(R;F) have the property that f(r) is bounded for r ∈ {0, 1, . . . ,k}.
Then (f(r),g), r ∈ {0, 1, . . . ,k}, is convolvable, f ∗ g ∈ Ck

bdd(R;F), and (f ∗ g)(r) = f(r)
∗ g for

each r ∈ {0, 1, . . . ,k}.
Proof By Corollary 4.2.10 it follows that ( f (r), g) is convolvable and that f (r)

∗ g ∈
C0

bdd(R;F) for each r ∈ {0, 1, . . . , k}. Moreover, for each r ∈ {0, 1, . . . , k − 1}, the hypothe-
ses of Theorem 4.2.60 applied to the pair ( f (r), g) gives that f (r)

∗ g is locally absolutely
continuous. As we have already shown, its derivative is continuous. Therefore, by
Theorem I-3.4.30 we conclude that f (r)

∗ g is continuously differentiable. By Theo-
rem 4.2.60 we have the formula ( f (r)

∗ g)′ = f (r+1)
∗ g. An elementary induction then

gives the desired formula ( f ∗ g)(r+1) = f (r+1)
∗ g. ■

One can also give differentiability results for convolutions of other sorts of
signals. For example, for signals with support in R≥0 we have the following
result.

4.2.62 Theorem (Differentiability and convolution for signals with support in R≥0)
Let f,g ∈ L(1)

loc(R≥0;F) have the following properties:
(i) f is locally absolutely continuous;
(ii) for each compact set K ⊆ R, the functions

(s, t) 7→ f(t − s)g(s), (s, t) 7→ f′(t − s)g(s),

when restricted to R × K, are integrable.
Then (f,g) and (f′,g) are convolvable, f � g is locally absolutely continuous, and

(f � g)′(t) = f(0)g(t) + f′ � g(t)

for almost every t ∈ R≥0.
Proof This can be proved in a slick way using distributions. However, we give a
direct distribution-free proof.

We shall think of f and g as being defined onR by asking that they be zero onR<0.
Let ϵ ∈ R>0 and define fϵ : R→ F by

fϵ(t) =

 f (t), t ∈ R≥0,

f (0)(1 + t
ϵ ), t ∈ [−ϵ, 0).

Note that fϵ is locally absolutely continuous. Now let K ⊆ R and note that the set

{(s, t) | t ∈ K, s ∈ [0, t]}

is compact and, moreover, contains the support of the functions

(s, t) 7→ fϵ(t − s)g(s), (s, t) 7→ f ′ϵ (t − s)g(s)

when restricted to K ×R. Since both fϵ and g are locally integrable, Fubini’s Theorem
allows us to conclude that these restricted functions are, in fact, integrable. Thus the
pair ( fϵ, g) satisfies the hypotheses of Theorem 4.2.60. Therefore, fϵ � g is locally
absolutely continuous and ( fϵ � g)′(t) = f ′ϵ � g(t) for almost every t ∈ R≥0.

Now we use a lemma.
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1 Lemma Let F: R ×R→ F have the following properties:
(i) t 7→ F(s, t) is locally absolutely continuous for almost every s ∈ R;
(ii) the functions

(s, t) 7→ F(s, t), (s, t) 7→ D2F(s, t)

are locally integrable.
Let a, b: R → R be locally absolutely continuous and have the property that a(t) < b(t) for
every t ∈ R. Then

d
dt

(∫ b(t)

a(t)
F(s, t) ds

)
= F(a(t), t) − F(b(t), t) +

∫ b(t)

a(t)
D2F(s, t) ds.

Proof Define G : R3
→ F by

G(u, v,w) =
∫ b(v)

a(u)
F(s,w) ds

and define d : R→ R3 by d(t) = (t, t, t). Note that

G ◦ d(t) =
∫ b(t)

a(t)
F(s, t) ds.

For almost every t ∈ R, by Theorem II-1.4.49, and Theorems III-2.9.17 and III-2.9.33, it
holds that

d
dt

∫ b(t)

a(t)
F(s, t) ds = D1G(d(t)) ◦

d
dt

d(t) +D2G(d(t)) ◦
d
dt

d(t) +D3G(d(t)) ◦
d
dt

d(t)

= F(a(t), t) − F(b(t), t) +
∫ b(t)

a(t)
D2F(s, t) ds,

as desired. ▼

Note that for t ∈ R≥0 we have

f � g(t) =
∫ t

0
f (t − s)g(s) ds =

∫ t

0
fϵ(t − s)g(s) ds,

so that, for almost every t ∈ R≥0, by the lemma,

( f � g)′(t) =
d
dt

∫ t

0
fϵ(t − s)g(s) ds = fϵ(0)g(t) +

∫ t

0
f ′ϵ (t − s)g(s) ds

= f (0)g(t) +
∫ t

0
f ′(t − s)g(s) ds,

as stated. ■

For higher-order derivatives we have the following result.
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4.2.63 Corollary (Higher derivatives and convolution for signals with support inR≥0)
Let g ∈ L(1)

loc(R≥0;F) and let f ∈ Ck(R≥0;F). Then (f(r),g), r ∈ {0, 1, . . . ,k}, is convolvable,
f ∗ g ∈ Ck(R;F), and (f ∗ g)(r) = f(r)

∗ g for each r ∈ {0, 1, . . . ,k}.
Proof This follows immediately from induction using Theorem 4.2.62. ■

For periodic signals, the result is the following.

4.2.64 Theorem (Differentiability and convolution for periodic signals) Let f,g ∈
L(1)

per,T(R;F) be such that f is locally absolutely continuous with f′ ∈ L(1)
per,T(R;F). Then

(f,g) and (f′,g) are convolvable, f ∗ g is locally absolutely continuous, and

(f ∗ g)′(t) = f′ ∗ g(t)

for almost every t ∈ R.
Proof Let K ⊆ R be compact. Since integrable periodic signals are locally integrable,
from Fubini’s Theorem we have that the signals

(s, t) 7→ f (t − s)g(s), (s, t) 7→ f ′(t − s)g(s)

are integrable when restricted to [0,T] × K. The result then follows immediately from
Theorem III-2.9.17. ■

For higher-order derivatives we have the following result.

4.2.65 Corollary (Higher derivatives and convolution for periodic signals) Let g ∈
L(1)

per,T(R≥0;F) and let f ∈ Ck
per,T(R≥0;F). Then (f(r),g), r ∈ {0, 1, . . . ,k}, is convolvable,

f ∗ g ∈ Ck
per,T(R;F), and (f ∗ g)(r) = f(r)

∗ g for each r ∈ {0, 1, . . . ,k}.
Proof This follows immediately from induction using Theorem 4.2.64. ■

4.2.12 Notes

Proposition 4.2.3 is from [Hall and Wise 1990].
Theorem 4.2.4 is from [Rudin 1957], and its adaptation to prove Theorem 4.2.27

is from [Rudin 1958]. Various versions of this result have been stated or shown
to not be true. For example, Koosis [1973] shows that it is not true that every
compactly supported signal is the convolution of two compactly supported signals.
A generalisation of Theorem 4.2.4 to locally compact groups is given by Cohen
[1959].

The existence in Lemma 1 of the concave function used in the proof of Theo-
rem 4.2.4 follows the technique of Passow and Roulier [1977].

Theorem 4.2.15 was first proved by Titchmarsh [1926]. This theorem seems
to defy direct proof. The original proof of Titchmarsh relies on methods from
the theory of analytic functions. Proofs in a similar style are also given by Crum
[1941] and Dufresnoy [1947], the latter proof also using the Laplace transform.
A proof using methods of real function theory can be found spread out in the
papers [Mikusiński 1951, Mikusiński 1952, Mikusiński and Ryll-Nardzewski 1952].
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A more or less elementary (but still not direct) proof is given by Doss [1988]. Proofs
of Titchmarsh’s Convolution Theorem involving functional analysis methods are
given by Kalisch [1957] and Brodskiı̆ [1957]. Our proof is based on this sort of
proof in that we use the characterisation of invariant subspaces of the Volterra
operator. Our proof of the character of these invariant subspaces follows the
measure theoretic arguments of Donoghue Jr. [1957].

Exercises

4.2.1 Show that there exist f , g ∈ L(2)(R;F) such that f ∗ g < L(2)(R;F).
Hint: Use Proposition 6.3.15 and Theorem 6.3.10.

4.2.2 In Section 4.2.9 we introduced the seminorms

∥ f ∥T,p =
(∫ T

0
| f (t)|p dt

)1/p

for Lp
loc(R≥0;F). Show that convergence with respect to these seminorms is

equivalent to convergence with respect to the seminorms from Section 1.3.5.
4.2.3 In Section 4.2.3 we introduced the seminorms

∥ f ∥T,1 =
N∑

j=0

| f ( j∆)|, N ∈ Z>0.

for ℓloc(Z≥0(∆);F). Show that convergence with respect to these seminorms is
equivalent to convergence with respect to the seminorms from Section 1.2.5.
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Section 4.3

Tensor product of distributions

In this section we shall explore a setup where two distributions in a single
independent variable are combined to give a distribution in two variables. We
shall use this construction in a few ways, one way being to define the convolution
of distributions. We refer to Section 3.2.11 for a discussion of distributions in more
than one variable. The reader may wish to refer to the discussion of tensor products
in Section I-5.6.3 to get in the mood for tensor products in this more general setup.

Do I need to read this section? If one wishes to learn tensor products of distri-
butions, then this section is required reading. •

4.3.1 Tensor product in D′(R;F)

Let D (R2;F) be the set of infinitely differentiable functions from R2 to F with
compact support. Note that the map ι : D (R;F) ×D (R;F)→ D (R2;F) given by

ι(ϕ1 × ϕ2)(t1, t2) = ϕ1(t1)ϕ2(t2)

is an injection. We denote ϕ1 ⊗ ϕ2 = ι(ϕ1, ϕ2) and denote the span of the image of ι
byD (R;F)⊗D (R;F), cf. Notation I-5.6.13. The following result relatesD (R;F)⊗
D (R;F) withD (R2;F).

4.3.1 Theorem (The closure of the tensor product D (R;F) ⊗ D (R;F)) If ϕ ∈
D (R2;F), then there exists a sequence (ϕj)j∈Z>0 in D (R;F) ⊗ D (R;F) converging to
ϕ in the topology of D (R2;F).

Proof Let us define γ j : R2
→ R by

γ j(z) =
j2

2π
e−k2

∥z∥2 , j ∈ Z>0.

Following the computations of Example 6.2.39–2, we can show that∫
R2
γ j(z) dz = 1, j ∈ Z>0.

Now define

ψ j(z) =
∫
R2
γ j(ζ)ϕ(z − ζ) dζ.

By we havemulti-dimensional diffn

of convolvution

Dk
1Dl

2ψ j(z) =
∫
R2
γ j(ζ)Dk

1Dl
2ϕ(z − ζ) dζ, j, k, l ∈ Z>0.
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Let us fix k, l ∈ Z>0. Let ϵ ∈ R>0 and let δ ∈ R>0 be such that

|Dk
1Dl

2ϕ(z) −Dk
1Dl

2ϕ(z − ζ)| <
ϵ
2

for all z ∈ R2 and for all ζ ∈ R2 satisfying ∥ζ∥ < δ. This is possible since ϕ, and hence
all of its derivatives, have compact support and so are uniformly continuous. Now we
estimate

|Dk
1Dl

2ϕ(z) −Dk
1Dl

2ψ j(z)| ≤
∫
R2
γ j(ζ)|Dk

1Dl
2ϕ(z) −Dk

1Dl
2ϕ(z − ζ)|dζ

=

∫
∥ζ∥≤δ

γ j(ζ)|Dk
1Dl

2ϕ(z) −Dk
1Dl

2ϕ(z − ζ)|dζ

+

∫
∥ζ∥>δ

γ j(ζ)|Dk
1Dl

2ϕ(z) −Dk
1Dl

2ϕ(z − ζ)|dζ

≤
ϵ
2
+ ∥Dk

1Dl
2ϕ∥∞

1
π

∫
∥ζ∥> jδ

e−∥ζ∥
2

dζ,

the last integral arising after a change of variable. Now, there exists N ∈ Z>0 such that

∥Dk
1Dl

2ϕ∥∞
1
π

∫
∥ζ∥> jδ

e−∥ζ∥
2

dζ <
ϵ
2
, j ≥ N.

Thus, for j ≥ N, we have

|Dk
1Dl

2ϕ(z) −Dk
1Dl

2ψ j(z)| < ϵ, z ∈ R2.

Thus the sequence (Dk
1Dl

2ψ j) j∈Z>0 converges uniformly to Dk
1Dl

2ϕ for each k, l ∈ Z>0.
Now we make use of the power series for the exponential function from Defini-

tion I-3.8.1. To wit, we write

γ j(z) =
j2

2π

∞∑
s=0

(− j∥z∥)2s

s!
,

the sum converging uniformly for z in a compact set. Note also that commutativity of
convolution allows us to write

ψ j(x) =
j2

2π

∞∑
s=0

∫
R2

(− j2∥z − ζ∥2)s

s!
ϕ(ζ) dz,

the expression being valid for z in a compact set. We then define, for j,m ∈ Z>0,

ψ j,m(z) =
j2

2π

m∑
s=0

1
s!

∫
R2

(− j2(∥z − ζ∥2)sϕ(ζ) dz.

For j, k, l,m ∈ Z>0, we may differentiate as above to get

Dk
1Dl

2ψ j,m(z) =
j2

2π

m∑
s=0

1
s!

∫
R2

(− j2(∥z − ζ∥2)sDk
1Dl

2ϕ(ζ) dζ.
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For a compact set K ⊆ R2, let R ∈ R>0 and let z ∈ R2 be such that ∥z − ζ∥ ≤ R for all
ζ ∈ K. We then estimate

|Dk
1Dl

2ψ j,m(z) −Dk
1Dl

2ψ j(z)| ≤
j2

2π

∞∑
s=m+1

1
s!

∫
R2

(− j2(∥z − ζ∥2)sDk
1Dl

2ϕ(ζ) dζ

≤

 j2

2π

∞∑
s=m+1

( j2R2)s

s!

 ∫
Rn
|Dk

1Dl
2ϕ(ζ)|dζ.

Convergence of the exponential series ensures that

lim
m→∞

j2

2π

∞∑
s=m+1

( j2R2)s

s!
= 0

and so (Dk
1Dl

2ψ j,m) j∈Z>0 converges uniformly to Dk
1Dl

2ψ j for z ∈ R2 such that ∥z−ζ∥ ≤ R
for all ζ ∈ K. Note, moreover, that it we write z = (t1, t2), then ψ j,m is a polynomial
function of degree 2m:

ψ j,m(t1, t2) =
2m∑

n1,n2=0

An1n2tn1
1 tn2

2

for some An1n2 ∈ F, n1,n2 ∈ {0, 1, . . . , 2m}. Therefore, ψ j,m ∈ spanF(D (R;F) ⊗D (R;F)).
Now let K1,K2 ⊆ R be compact and such that supp(ϕ) ⊆ K1 × K2 and let χ1, χ2 ∈

D (R;F) be such that χa(ta) = 1 for ta ∈ Ka, a ∈ {1, 2}. Define

ϕ j,m(t1, t2) = χ1(t1)χ2(t2)ψ j,m(t1, t2), (t1, t2) ∈ R2,

and note that ϕ j,m ∈ spanF(D (R;F) ⊗D (R;F)). Also define

ϕ j(t1, t2) = χ1(t1)χ2(t2)ψ j(t1, t2), (t1, t2) ∈ R2.

Let K ⊆ R2 be compact and let R ∈ R>0 be such that ∥z − ζ∥ ≤ R for z ∈ K and
ζ ∈ K1 × K2. As in the second paragraph of the proof, we have that (ψ j,m)m∈Z>0 and all
of its derivatives converge uniformly on K to ψ j and its derivatives. By the Leibniz
Rule (Theorem II-1.4.48), it follows that (ϕ j,m)m∈Z>0 and all of its derivatives converges
uniformly on K toϕ j and its derivatives. As this holds for every K, (ϕ j,m)m∈Z>0 converges
in D (R2;F) to ϕ j. Now we use the first paragraph of the proof and again the Leibniz
Rule to see that (ϕ j) j∈Z>0 converges to ϕ inD (R2;F). ■

4.3.2 Remark (Generalisation to the multivariable case) The preceding theorem can
be generalised in a few ways by changing the proof by mere notation. For instance,
by replacing the variables (t1, t2) ∈ R2 with vector variables (t1, t2) ∈ Rn1 × Rn2 ,
one can show that, given ϕ ∈ D (Rn1+n2 ;F), there exists a sequence (ϕ j) j∈Z>0 in
D (Rn1 ;F)⊗D (Rn2 ;F) that converges inD (Rn1+n2 ;F) to ϕ. By this argument and by
induction, it also follows that, given ϕ ∈ D (Rn;F), there exists a sequence (ϕ j) j∈Z>0

in
D (R;F) ⊗ · · · ⊗D (R;F)︸                         ︷︷                         ︸

n times

converging to ϕ inD (Rn;F). •
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Now, having the notion of tensor product inD (R;F) at hand, we can consider
the tensor product of θ, ρ ∈ D ′(R;F). This will be a distribution in D ′(R2;F).
Let ϕ ∈ D (R2;F) and let ϕs(t) = ϕ(s, t), so defining an element ϕs

∈ D (R;F). By
Corollary 3.2.41, the function s 7→ ρ(ϕs) is inD (R;F). We had denoted this function
by Φρ,ϕ in Section 3.2.8. Therefore, we can make the following definition.

4.3.3 Definition (Tensor product of distributions) Ifθ, ρ ∈ D ′(R;F), the tensor product
of θ and ρ is the mapping θ ⊗ ρ : D (R2;F)→ F defined by

θ ⊗ ρ(ϕ) = θ(Φρ,ϕ), ϕ ∈ D (R2;F). •

Let us show that the tensor product of two distributions in one variable is a
distribution in two variables, and enumerate a few properties.

4.3.4 Theorem (Properties of the tensor product of distributions) For θ, ρ, π ∈
D ′(R;F), the following statements hold:

(i) θ ⊗ ρ ∈ D ′(R2;F);
(ii) θ ⊗ ρ is the unique distribution for which

θ ⊗ ρ(ϕ ⊗ ψ) = θ(ϕ)ρ(ψ);

(iii) θ ⊗ ρ = ρ ⊗ θ;
(iv) θ ⊗ (ρ ⊗ π) = (θ ⊗ ρ) ⊗ π;
(v) supp(θ ⊗ ρ) = supp(θ) × supp(ρ);

Proof First note that the definition of the tensor product gives (ii). It is also clear that
θ ⊗ ρ is linear. Now let ϕ ∈ D (R2;F), as above, we have Φρ,ϕ(s) = ρ(ϕs) and let us
also denoteΨθ,ϕ(t) = θ(ϕt). With this notation, we have the following result which we
shall use in a few ways.

1 Lemma If ϕ ∈ D (R2;F) and if (ϕj)j∈Z>0 is a sequence inD (R2;F) converging to ϕ, then

lim
j→∞

θ(Φρ,ϕj) = θ(Φρ,ϕ), lim
j→∞

ρ(Ψθ,ϕj) = ρ(Ψθ,ϕ).

Proof Clearly it suffices to prove that lim j→∞ ρ(Ψθ,ϕ j) = ρ(Ψθ,ϕ) as the other conclu-
sion follows in a similar manner.

We first claim that (Ψθ,ϕ j) j∈Z>0 converges to Ψθ,ϕ in D (R;F). Suppose otherwise

so that, for some r ∈ Z≥0, the sequence (Ψ(r)
θ,ϕ j

) j∈Z>0 does not converge uniformly to

Ψ
(r)
θ,ϕ

. Thus, possibly by replacing (ϕ j) j∈Z>0 with a subsequence, there exists α ∈ R>0

such that, for each j ∈ Z>0, there exists t j ∈ R such that

|Ψ
(r)
θ,ϕ j

(t j) −Ψ
(r)
θ,ϕ

(t j)| ≥ α.

By Corollary 3.2.41 we have

Ψ
(r)
θ,ϕ

(t) = θ(Dr
2ϕt), Ψ

(r)
θ,ϕ j

(t) = θ(Dr
2ϕ j,t), j ∈ Z>0.
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Therefore, for each j ∈ Z>0, there exists t j ∈ R such that

|θ(Dr
2ϕ j,t j) − θ(Dr

2ϕt j)| ≥ α.

Now let ϵ ∈ R>0. Since (ϕ j) j∈Z>0 converges to ϕ inD (R2;F), there exists N ∈ Z>0 such
that

sup{|Dm
1 Dr

2(ϕ j − ϕ)(s, t)| | s, t ∈ R} < ϵ

for j ≥ N. Thus
sup{|Dm

1 Dr
2(ϕ j − ϕ)(s, t j)| | s ∈ R} < ϵ

for all j ≥ N. Thus (Dr
2ϕ j,t j) j∈Z>0 converges to Dr

2ϕt j inD (R;F). Thus, by continuity of
θ,

lim
j→∞
|θ(Dr

2ϕ j,t j) − θ(Dr
2ϕt j)| = 0.

This contradiction implies that, indeed, (Ψθ,ϕ j) j∈Z>0 converges toΨθ,ϕ inD (R;F).
From this the lemma immediately follows from the continuity of ρ. ▼

Now let (ϕ) j∈Z>0 be a sequence converging to zero in D (R2;F). Then, by the
lemma,

lim
j→∞

θ ⊗ ρ(ϕ j) = lim
j→∞

θ(Φρ,ϕ j) = θ(Φρ,0) = 0,

showing that θ ⊗ ρ is continuous, so giving (i).
Finally, let (ϕ j) j∈Z>0 be a sequence in D (R;F) ⊗D (R;F) as in Theorem 4.3.1. For

each j ∈ Z>0 we write

ϕ j(s, t) =
m j∑
k=1

ψ j,k(s)χ j,k(t).

Note that linearity of θ allows us to write

Φρ,ϕ j(s) = ρ(ϕs
j) = ρ

 m j∑
k=1

ψ j,k(s)χ j,k

 = m j∑
k=1

ψ j,k(s)ρ(χ j,k).

Similarly,

Ψθ,ϕ j(t) =
m j∑
k=1

χ j,k(t)θ(ψ j,k).

Then

θ(Φρ,ϕ j) =
m j∑
k=1

θ(ψ j,k)ρ(χ j,k) = ρ(Ψθ,ϕ j),

giving (iii).
To prove part (iv) we note that, for ϕ,ψ, χ ∈ D (R;F), we have

⟨θ ⊗ (ρ ⊗ π);ϕ ⊗ (ψ ⊗ χ)⟩ = ⟨(θ ⊗ ρ) ⊗ π; (ϕ ⊗ ψ) ⊗ χ⟩,

and the assertion follows from the extension of Theorem 4.3.1 stated in Remark 4.3.2.
Now we prove part (v). Let s0 ∈ R\supp(θ) and let t0 ∈ R. Since supp(θ) is closed,

let U ⊆ R be a neighbourhood of s0 such that θ(ϕ) = 0 for every ϕ ∈ D (R;F) for which
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supp(ϕ) ⊆ U. For ϕ ∈ D (R2;F) such that supp(ϕ) ⊆ U × R, we have Φρ,ϕ ∈ D (R;F)
(by Corollary 3.2.41) and supp(Φρ,ϕ) ⊆ U. Therefore,

θ ⊗ ρ(ϕ) = θ(Φρ,ϕ) = 0.

Thus (s0, t0) < supp(θ ⊗ ρ). Similarly, if t0 ∈ R \ supp(ρ) and s0 ∈ R, then (s0, t0) <
supp(θ ⊗ ρ). Thus

R2
\ (supp(θ) × supp(ρ)) ⊆ R2

\ supp(θ ⊗ ρ).

Now suppose that (s0, t0) ∈ supp(θ) × supp(ρ). Let U ⊆ R2 be a neighbourhood
of (s0, t0), and let ϕ,ψ ∈ D (R;F) be such that supp(ϕ) × supp(ψ) ⊆ U and such that
θ(ϕ), ρ(ψ) , 0. Then

θ ⊗ ρ(ϕ ⊗ ψ) = θ(ϕ)ρ(ψ) , 0,

and so supp(θ) × supp(ρ) ⊆ supp(θ ⊗ ρ). ■

4.3.5 Remark (Generalisation to the multivariable case) The theorem can be extended
easily to distributions in multiple variables, with only an adaptation of notation,
and by extending Corollary 3.2.41 to the multivariable setting, again by mere
adaptation of notation. The result of doing this is that, in Corollary 3.2.41, if
ϕ ∈ D (Rn1+n2 ;F), and if we denote ϕs(t) = ϕ(s, t), and if θ ∈ D ′(Rn2 ;F), then the
function Φθ,ϕ defined by Φθ,ϕ(s) = θ(ϕs) is inD (Rn1 ;F). Then, applying this to the
proof of the theorem, we can define θ ⊗ ρ ∈ D ′(Rn1+n2 ;F) for θ ∈ D ′(Rn1 ;F) and
ρ ∈ D (Rn2 ;F). All of the properties of the tensor product from the theorem apply
to this multivariable setting. The straightforward working out of this, we leave to
the reader. •

The commutativity of the tensor product can be regarded as an adaptation of
some version of Fubini’s Theorem for distributions. Let us explain why this is so.
Let f , g ∈ L(1)

loc(R;F) and let ϕ ∈ D (R2;F). Applying part (iii) of the theorem then
gives ∫

R

f (s)
(∫
R

g(t)ϕ(s, t) dt
)

ds =
∫
R

g(t)
(∫
R

f (s)ϕ(s, t) ds
)

dt,

a fact which classically follows from Fubini’s Theorem.

4.3.2 Tensor product in S′(R;F)

Of course, since tempered distributions are distributions, Theorem 4.3.4 holds
for tempered distributions. However, the results can be improved to account for
the additional structure ofS ′(R;F). As in the preceding section, we have the map
ι : S (R;F) ×S (R;F)→ S (R2;F) given by

ι(ϕ1 × ϕ2)(t1, t2) = ϕ1(t1)ϕ2(t2),

and we denoteϕ1⊗ϕ2 = ι(ϕ1, ϕ2) and denote the span of the image of ι byS (R;F)⊗
S (R;F). We then have the following analogue of Theorem 4.3.1.
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4.3.6 Theorem (The closure of the tensor product S (R;F) ⊗ S (R;F)) If ϕ ∈
S (R2;F), then there exists a sequence (ϕj)j∈Z>0 in S (R;F) ⊗ S (R;F) converging to
ϕ in the topology of S (R2;F).

Proof This follows from Theorem 4.3.1 since, given ϕ ∈ S (R2;F), there exists a
sequence (ϕ j) j∈Z>0 in D (R2;F) converging to ϕ in the topology of S (R2;F) (cf. Theo-
rem 3.11.3(i)). ■

We comment that the analogue of Remark 4.3.2 applies to the preceding theo-
rem.

Now let ϕ ∈ S (R2;F), i.e., such that, for every r1, r2,m ∈ Z≥0, there exists
Cr1,r2,m ∈ R>0 such that

sup{(s2 + t2)m/2Dr1
1 Dr2

2 ϕ(t, s) | s, t ∈ R} ≤ Cr1,r2,m.

As above, define ϕs, ϕt ∈ S (R;F) by ϕs(t) = ϕt(s) = ϕ(s, t), noting that these
functions obviously are elements of S (R;F). Let θ ∈ S ′(R;F) and define
Φθ,ϕ,Ψθ,ϕ : R→ F by

Φθ,ϕ(s) = θ(ϕs), Ψθ,ϕ(t) = θ(ϕt).

From Corollary 3.3.21 we have that both of these functions are elements ofS (R;F).
Therefore, we can make the following definition.

4.3.7 Definition (Tensor product of tempered distributions) If θ, ρ ∈ S ′(R;F), the
tensor product of θ and ρ is the mapping θ ⊗ ρ : S (R2;F)→ F defined by

θ ⊗ ρ(ϕ) = θ(Φρ,ϕ), ϕ ∈ S (R2;F). •

Let us show that the tensor product of two tempered distributions in one vari-
able is a distribution in two variables, and enumerate a few properties.

4.3.8 Theorem (Properties of the tensor product of tempered distributions) For
θ, ρ, π ∈ S ′(R;F), the following statements hold:

(i) θ ⊗ ρ ∈ S ′(R2;F);
(ii) θ ⊗ ρ is the unique distribution for which

θ ⊗ ρ(ϕ ⊗ ψ) = θ(ϕ)ρ(ψ);

(iii) θ ⊗ ρ = ρ ⊗ θ;
(iv) θ ⊗ (ρ ⊗ π) = (θ ⊗ ρ) ⊗ π;
(v) supp(θ ⊗ ρ) = supp(θ) × supp(ρ);

Proof The only assertion that does not follow from Theorem 4.3.4 is (i). For this we
use a lemma.
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1 Lemma If ϕ ∈ S (R2;F) and if (ϕj)j∈Z>0 is a sequence in S (R2;F) for which

lim
j→∞

sup
{
|sk1tk2Dr1

1 Dr2
2 (ϕj − ϕ)(s, t)|

∣∣∣ s, t ∈ R
}
= 0

for every k1,k2, r1, r2 ∈ Z≥0, then

lim
j→∞

θ(Φρ,ϕj) = θ(Φρ,ϕ), lim
j→∞

ρ(Ψθ,ϕj) = ρ(Ψθ,ϕ).

Proof Clearly it suffices to prove that lim j→∞ ρ(Ψθ,ϕ j) = ρ(Ψθ,ϕ) as the other conclu-
sion follows in a similar manner.

We first claim that (Ψθ,ϕ j) j∈Z>0 converges to Ψθ,ϕ in S (R;F). Suppose otherwise
so that, for some k, r ∈ Z≥0,

lim
j→∞

sup{|tk(Ψ(r)
θ,ϕ j

(t) −Ψ(r)
θ,ϕ

(t))| | t ∈ R} , 0.

Thus, possibly by replacing (ϕ j) j∈Z>0 with a subsequence, there exists α ∈ R>0 such
that, for each j ∈ Z>0, there exists t j ∈ R such that

|tk
j(Ψ

(r)
θ,ϕ j

(t j) −Ψ
(r)
θ,ϕ

(t j))| ≥ α.

By Theorem 3.3.20 we have

Ψ
(r)
θ,ϕ

(t) = θ(Dr
2ϕt), Ψ

(r)
θ,ϕ j

(t) = θ(Dr
2ϕ j,t), j ∈ Z>0.

Therefore, for each j ∈ Z>0, there exists t j ∈ R such that

|tk
j(θ(Dr

2ϕ j,t j) − θ(Dr
2ϕt j))| ≥ α.

Let ϵ ∈ R>0. By assumption, for each l,m ∈ Z≥0, there exists N ∈ Z>0 such that

sup{sltkDm
1 Dr

2(ϕ j − ϕ)(s, t) | s, t ∈ R} < ϵ,

for j ≥ N. In particular,

sup{sltk
jD

m
1 Dr

2(ϕ j − ϕ)(s, t) | s ∈ R} < ϵ,

for j ≥ N. Thus (tk
jD

r
2ϕ j,t j) j∈Z>0 converges to tk

jD
r
2ϕt j in S (R;F). Thus, by continuity of

θ,
lim
j→∞
|θ(tk

jD
r
2ϕ j,t j) − θ(tk

jD
r
2ϕt j)| = lim

j→∞
|tk

j(D
r
2ϕ j,t j − θ(Dr

2ϕt j))| = 0.

This contradiction implies that, indeed, (Ψθ,ϕ j) j∈Z>0 converges toΨθ,ϕ in S (R;F).
From this the lemma immediately follows from the continuity of ρ. ▼

Part (i) now follows just like the same part of Theorem 4.3.4. ■

4.3.3 Tensor product in E′(R;F)

The final class of tensor product we consider is for distributions with compact
support. As in the preceding sections, we have the map ι : E (R;F) × E (R;F) →
S (R2;F) given by

ι(ϕ1 × ϕ2)(t1, t2) = ϕ1(t1)ϕ2(t2),
and we denoteϕ1⊗ϕ2 = ι(ϕ1, ϕ2) and denote the span of the image of ι by E (R;F)⊗
S (R;F). We then have the following analogue of Theorem 4.3.1.
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4.3.9 Theorem (The closure of the tensor product E (R;F)⊗E (R;F)) If ϕ ∈ E (R2;F),
then there exists a sequence (ϕj)j∈Z>0 in E (R;F)⊗E (R;F) converging to ϕ in the topology
of E (R2;F).

Proof This follows from Theorem 4.3.1 since, given ϕ ∈ E (R2;F), there exists a
sequence (ϕ j) j∈Z>0 in D (R2;F) converging to ϕ in the topology of E (R2;F) (cf. Theo-
rem 3.11.3(ii)). ■

We comment that the analogue of Remark 4.3.2 applies to the preceding theo-
rem.

Now let ϕ ∈ E (R2;F), i.e., ϕ is infinitely differentiable. As above, define ϕs, ϕt ∈

E (R;F) byϕs(t) = ϕt(s) = ϕ(s, t), noting that these functions obviously are elements
of E (R;F). Let θ ∈ E ′(R;F) and define Φθ,ϕ,Ψθ,ϕ : R→ F by

Φθ,ϕ(s) = θ(ϕs), Ψθ,ϕ(t) = θ(ϕt).

From Corollary 3.7.18 we have that both of these functions are elements of E (R;F).
Therefore, we can make the following definition.

4.3.10 Definition (Tensor product of distributions with compact support) If θ, ρ ∈
E ′(R;F), the tensor product of θ and ρ is the mapping θ⊗ρ : E (R2;F)→ F defined
by

θ ⊗ ρ(ϕ) = θ(Φρ,ϕ), ϕ ∈ E (R2;F). •

Let us show that the tensor product of two tempered distributions in one vari-
able is a distribution in two variables, and enumerate a few properties.

4.3.11 Theorem (Properties of the tensor product of distributions with compact sup-
port) For θ, ρ, π ∈ E ′(R;F), the following statements hold:

(i) θ ⊗ ρ ∈ E ′(R2;F);
(ii) θ ⊗ ρ is the unique distribution for which

θ ⊗ ρ(ϕ ⊗ ψ) = θ(ϕ)ρ(ψ);

(iii) θ ⊗ ρ = ρ ⊗ θ;
(iv) θ ⊗ (ρ ⊗ π) = (θ ⊗ ρ) ⊗ π;
(v) supp(θ ⊗ ρ) = supp(θ) × supp(ρ);

Proof The only assertion that does not follow from Theorem 4.3.4 is (i). For this we
use a lemma.

1 Lemma If ϕ ∈ E (R2;F) and if (ϕj)j∈Z>0 is a sequence in E (R2;F) for which

lim
j→∞

sup
{
|Dr1

1 Dr2
2 (ϕj − ϕ)(s, t)|

∣∣∣ s, t ∈ K
}
= 0

for every r1, r2 ∈ Z≥0 and every compact K ∈ R2, then

lim
j→∞

θ(Φρ,ϕj) = θ(Φρ,ϕ), lim
j→∞

ρ(Ψθ,ϕj) = ρ(Ψθ,ϕ).
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Proof Clearly it suffices to prove that lim j→∞ ρ(Ψθ,ϕ j) = ρ(Ψθ,ϕ) as the other conclu-
sion follows in a similar manner.

We first claim that (Ψθ,ϕ j) j∈Z>0 converges to Ψθ,ϕ in E (R;F). Suppose otherwise
so that, for some r ∈ Z≥0 and some compact K ⊆ R,

lim
j→∞

sup{|Ψ(r)
θ,ϕ j

(t) −Ψ(r)
θ,ϕ

(t)| | t ∈ K} , 0.

Thus, possibly by replacing (ϕ j) j∈Z>0 with a subsequence, there exists α ∈ R>0 such
that, for each j ∈ Z>0, there exists t j ∈ K such that

|Ψ
(r)
θ,ϕ j

(t j) −Ψ
(r)
θ,ϕ

(t j)| ≥ α.

By Theorem 3.7.17 we have

Ψ
(r)
θ,ϕ

(t) = θ(Dr
2ϕt), Ψ

(r)
θ,ϕ j

(t) = θ(Dr
2ϕ j,t), j ∈ Z>0.

Therefore, for each j ∈ Z>0, there exists t j ∈ K such that

|θ(Dr
2ϕ j,t j) − θ(Dr

2ϕt j)| ≥ α.

Let ϵ ∈ R>0. By assumption, for each m ∈ Z≥0 and L ⊆ R2 compact, there exists
N ∈ Z>0 such that

sup{Dm
1 Dr

2(ϕ j − ϕ)(s, t) | (s, t) ∈ L} < ϵ,

for j ≥ N. In particular, for a compact set K′ ⊆ R,

sup{Dm
1 Dr

2(ϕ j − ϕ)(s, t) | s ∈ K′, t ∈ K /} < ϵ,

for j ≥ N. Thus (Dr
2ϕ j,t j) j∈Z>0 converges to Dr

2ϕt j in E (R;F). Thus, by continuity of θ,

lim
j→∞
|θ(Dr

2ϕ j,t j) − θ(Dr
2ϕt j)| = lim

j→∞
|Dr

2ϕ j,t j − θ(Dr
2ϕt j)| = 0.

This contradiction implies that, indeed, (Ψθ,ϕ j) j∈Z>0 converges toΨθ,ϕ in E (R;F).
From this the lemma immediately follows from the continuity of ρ. ▼

Part (i) now follows just like the same part of Theorem 4.3.4. ■

Exercises

4.3.1 Show that, for ψ ∈ D (R;F), the mapping ϕ 7→ ϕ ⊗ ψ is continuous.
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Section 4.4

Convolution of distributions: Definitions, basic properties, and
examples

In Sections 4.1 and 4.2 we considered in detail the matter of convolution for
signals. In this section and in Section 4.5 we carry out a similar process for
distributions. As with signals, it is not the case that convolution exists for all
pairs of distributions, so a careful discussion must begin with what is meant by a
convolvable pair of distributions. It is this that we are primarily concerned with in
this section.

Do I need to read this section? This is where you will want to begin if you are
learning about convolution for distributions. •

4.4.1 Convolution for distributions

We note that an attempt to directly adapt the definition

f ∗ g(t) =
∫
R

f (t − s)g(s) ds

to distributions is problematic since, for one thing, one cannot multiply distri-
butions. One must proceed in a different way, and we take guidance from the
characterisation in Corollary 4.1.7 of convolvable pairs of signals. To wit, let us
suppose that f , g ∈ L(1)

loc(R;F) and that ϕ ∈ D (R;F). Then, thinking of f and g as
regular distributions, the regular distribution f ∗ g (when it is defined) satisfies

θ f ∗g(ϕ) =
∫
R

f ∗ g(t)ϕ(t) dt =
∫
R

(∫
R

f (t − s)g(s) ds
)
ϕ(t) ds

=

∫
R

(∫
R

f (t − s)ϕ(t) ds
)

g(s) ds =
∫
R

(∫
R

f (t)ϕ(s + t) ds
)

g(s) ds

=

∫
R

∫
R

f (t)g(s)ϕ(s + t) dsdt,

where we use Fubini’s Theorem (whose hypotheses are readily verified to hold)
and the change of variable theorem. Thus the integral is over the domain

{(s, t) ∈ R2
| s + t ∈ supp(ϕ)},

which we depict in Figure 4.22 Despite ϕ having compact support, this domain
will not be compact when supp(ϕ) has a nonempty interior. This prohibits us from
writing

θ f ∗g(ϕ) = ⟨θ f ⊗ θg; τ∗ϕ⟩
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s

t

supp(φ)

su
p
p
(φ
)

Figure 4.22 The domain of integration for convolution

for
τ : R2

→ R

(s, t) 7→ s + t;

the point is that τ∗ϕ < D (R2;F). Thus we have to take into account how f and g
behave on the domain depicted in Figure 4.22.

There are various ways to rectify this; we shall use a sequential approach, defin-
ing the convolution as a limit. To motivate this, we recall from Definition 3.4.17
the notion of an approximate unit which we used to characterise integrable dis-
tributions in Theorem 3.4.19. While the definition was given for functions whose
domain is R, it is adapted in an obvious way to functions whose domain is R2. To
this end, we let (ψ j) j∈Z>0 be a sequence inD (R2;R) satisfying
1. the sequence (ψ j) j∈Z>0 converges in E (R2;F) to the function t 7→ 1 and

2. for each k, l ∈ Z≥0, there exists Mk,l ∈ R>0 such that ∥Dk
1Dl

2ψ j∥∞ ≤ Mk,l for every
j ∈ Z>0.

In this case, for each j ∈ Z>0, ψ jτ∗ϕ ∈ D (R2;F) for every ϕ ∈ D (R;F), and so the
expression

⟨θ f ⊗ θg;ψ jτ
∗ϕ⟩

makes sense.
The preceding preparation leads to the following definition, recalling the no-

tion of an integrable distribution from Section 3.4 and the characterisation in The-
orem 3.4.19 of integrable distributions. Our definition also involves the fact that,
by applying Propositions 3.3.12 and 3.4.9, to know an integrable distribution, it
suffices to know the distribution on test signals inD (R;F).
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4.4.1 Definition (Convolution for distributions) A pair (θ, ρ) of distributions is con-
volvable if, for every ϕ ∈ D (R;F), the distribution

D (R2;F) ∋ ψ 7→ ⟨θ ⊗ ρ;ψτ∗ϕ⟩

is an integrable distribution, i.e., in D ′
L1(R2;F). If (θ, ρ) is convolvable then their

convolution is the distribution θ ∗ ρ ∈ D ′(R;F) defined by

θ ∗ ρ(ϕ) = lim
j→∞
⟨θ ⊗ ρ;ψ jτ

∗ϕ⟩,

where (ψ j) j∈Z>0 is an approximate unit, as per Definition 3.4.17. •

Let us first verify that this definition of convolution generalises the definition of
convolution for signals given in Definition 4.1.1. In the statement of the following
result, recall from Theorem 4.1.5 that convolutions are locally integrable, and so
define distributions by Proposition 3.2.12.

4.4.2 Theorem (Convolution of distributions generalises convolution of signals) A
pair (f,g) of locally integrable F-valued signals is convolvable if and only if the pair (θf, θg)
is convolvable. Moreover, if (f,g) is convolvable, then θf∗g = θf ∗ θg.

Proof First suppose that ( f , g) is convolvable and let ϕ ∈ D (R;F) and let (ψ j) j∈Z>0 be
a sequence inD (R2;F) that is an approximate unit. Note that

⟨θ f ⊗ θg;ψ jτ
∗ϕ⟩ =

∫
R2

f (s)g(t)ψ j(s, t)ϕ(s + t) dx,

taking x = (s, t) ∈ R2. Since ( f , g) is convolvable, by Corollary 4.1.7 we have that

(s, t) 7→ f (s)g(t)ϕ(s + t)

is integrable. Therefore, by the Dominated Convergence Theorem (whose hypotheses
hold as a consequence of the definition of an approximate unit), we have

lim
j→∞

∫
R2

f (s)g(t)ψ j(s, t)ϕ(s + t) dx =
∫
R2

f (s)g(t)ϕ(s + t) dx.

This shows that (1) the distribution

D (R2;F) ∋ ψ 7→ ⟨θ f ⊗ θg;ψτ∗ϕ⟩ =
∫
R2

f (s)g(t)ψ(s, t)ϕ(s + t) dx

is integrable (by Theorem 3.4.19) and so (θ f , θg) is convolvable and that (2)θ f ∗θg = θ f ∗g
(by Corollary 4.1.7).

Next suppose that (θ f , θg) is convolvable and let ϕ ∈ D (R;F). Without loss of
generality (by Proposition 4.1.4) we suppose that f and g are nonnegative-valued.
Consider a sequence (ψ j) j∈Z>0 in D (R2;F) that is an approximate unit and which is
positive and converges to 1 monotonically from below, cf. see the sequence (ψ j) j∈Z>0

used in the second part of the proof of Theorem 3.3.13. Then

⟨θ f ⊗ θg;ψ jτ
∗ϕ⟩ =

∫
R2

f (s)g(t)ψ j(s, t)ϕ(s + t) dx,
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as above. Since (θ f , θg) is convolvable, the limit

lim
j→∞
⟨θ f ⊗ θg;ψ jτ

∗ϕ⟩

exists. Therefore, by the version Theorem III-2.7.25 of the Monotone Convergence
Theorem, we deduce that

lim
j→∞

∫
R2

f (s)g(t)ψ j(s, t)ϕ(s + t) dx =
∫
R2

f (s)g(t)ϕ(s + t) dx < ∞.

Now let h : R→ F be continuous with compact support and let ϕ ∈ D (R;F) be a non-
negative function such that |h(t)| ≤ ϕ(t) for each t ∈ R. Then, by Proposition III-2.7.19,

−∞ <

∫
R2

F f ,g,−ϕ dλ2 ≤

∫
R2

F f ,g,h dλ2 ≤

∫
R2

F f ,g,ϕ dλ2 < ∞

showing that F f ,g,h is integrable for every continuous function h with compact support.
That ( f , g) is convolvable follows from Corollary 4.1.7. Moreover, as we have proved
that

lim
j→∞
⟨θ f ⊗ θg;ψ jτ

∗ϕ⟩ =

∫
R2

f (s)g(t)ϕ(s + t) dx,

we also have θ f ∗ θg = θ f ∗g, again by Corollary 4.1.7. ■

The theorem gives us a large collection of convolvable distributions. However,
let us consider some convolutions of distributions that are not regular.

4.4.3 Examples (Convolution of distributions)
1. We claim that, for a distribution θ ∈ D ′(R;F) and for t0 ∈ R, (θ, δt0) is con-

volvable and θ ∗ δt0 = τ
∗

t0
θ. To see this, let ϕ ∈ D (R;F) and ψ ∈ D (R2;F) and

compute
⟨δt0 ; (ψτ∗ϕ)s

⟩ = ψ(s, t0)ϕ(s + t0).

If we choose ψ such that ψ(s, t0) = 1 for s ∈ supp(τ∗
−t0
ϕ), in which case

⟨δt0 ; (ψτ∗ϕ)s
⟩ = τ∗

−t0
ϕ(s).

Then
⟨θ ⊗ δt0 ;ψτ

∗ϕ⟩ = θ(τ∗
−t0
ϕ) = τ∗t0

θ(ϕ).

Now, with ϕ ∈ D (R;F) fixed, if we let (ψ j) j∈Z>0 be a special approximate unit
in D (R2;F), then there exists N ∈ Z>0 such that ψ j(s, t0) = 1 for s ∈ supp(τ∗

−t0
ϕ)

and for j ≥ N. Therefore,

lim
j→∞
⟨θ ⊗ δt0 ;ψ jτ

∗ϕ⟩ = τ∗t0
θ(ϕ),

from which we conclude that (θ, δt0) is convolvable and that θ ∗ δt0 = τ
∗

t0
θ.
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2. For θ ∈ D ′(R;F) and k ∈ Z>0, we claim that (θ, δ(k)
0 ) is convolvable and that

θ ∗ δ(k)
0 = θ

(k). Indeed, for ϕ ∈ D (R;F) and ψ ∈ D (R2;F),

⟨δ(k)
0 ; (ψτ∗ϕ)s

⟩ = (−1)k
⟨δ0; ((ψτ∗ϕ)s)(k)

⟩

=

k∑
j=0

(−1)k
k∑

j=0

(
k
j

)
⟨δ; (ψ(0, j)(τ∗ϕ)(k− j))s

⟩

=

k∑
j=0

(−1)k
k∑

j=0

(
k
j

)
ψ(0, j)(s, 0)ϕ(k− j)(s).

Thus, if we take ψ such that ψ(s, 0) = 1 for s ∈ supp(ϕ), then

⟨δ(k)
0 ; (ψτ∗ϕ)s

⟩ = (−1)kϕ(k)(s).

Now, with ϕ ∈ D (R;F) fixed, let (ψ j) j∈Z>0 be a special approximate unit in
D (R2;F) and let N ∈ Z>0 be such that ψ j(s, 0) = 1 for s ∈ supp(ϕ). Then

lim
j→∞
⟨θ ⊗ δ(k);ψ jτ

∗ϕ⟩ = (−1)k
⟨θ;ϕ(k)

⟩ = ⟨θ(k);ϕ⟩,

giving that (θ, δ(k)) is convolvable and that θ ∗ δ(k) = θ(k).
3. The preceding computations are easily combined to show that, if θ ∈ D ′(R;F),

if t0 ∈ R, and if k ∈ Z≥0, then (θ, δ(k)
t0

) is convolvable and that θ ∗ δ(k)
t0
= τ∗t0

θ(k). •

Let us now give some basic properties of convolution for distributions, rather
closely mirroring what we have already done for signals.

First we indicate the character of the support of a convolution.

4.4.4 Proposition (Support of convolution of distributions) If (θ, ρ) is a pair of con-
volvable F-valued distributions, then

supp(θ ∗ ρ) ⊆ cl(supp(θ) + supp(ρ)),

where supp(θ) + supp(ρ) = {s + t | s ∈ supp(θ), t ∈ supp(ρ)}.
Proof Let U = R \ (supp(θ) + supp(ρ)), noting that U is open. Note that, if (s, t) ∈
supp(θ) × supp(ρ), then s + t ∈ supp(θ) + supp(ρ) and so

s + t ∈ R \ (supp(θ) + supp(ρ)) =⇒ (s, t) ∈ R2
\ (supp(θ) × supp(ρ)).

Therefore, if ϕ ∈ D (R;F) is such that supp(ϕ) ⊆ U, then supp(τ∗ϕ) ∈ R2
\ (supp(θ) ×

supp(ρ)). It follows from Theorem 4.3.4(v), that, for anyψ ∈ D (R2;F), ⟨θ⊗ρ;ψτ∗ϕ⟩ = 0,
and so ⟨θ ∗ ρ;ϕ⟩ = 0. Thus supp(θ ∗ ρ) ⊆ supp(θ) + supp(ρ), as claimed. ■
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4.4.5 Proposition (Algebraic properties of convolution of distributions) If θ, ρ, π ∈
D ′(R;F), then the following statements hold:

(i) if (θ, ρ) is convolvable, then (ρ, θ) is convolvable and θ ∗ ρ = ρ ∗ θ;
(ii) if (θ, ρ) and (θ, π) are convolvable, then (θ, ρ + π) is convolvable and θ ∗ (ρ + π) =

θ ∗ ρ + θ ∗ π.
Proof (i) Let (ψ j) j∈Z>0 be an approximate unit in D (R2;F) and let ϕ ∈ D (R;F). For
j ∈ Z>0, define ψ̂ j(s, t) = ψ j(t, s), and note that (ψ̂ j) j∈Z>0 is an approximate unit as well.
Then we note that

ψ j(s, t)τ∗ϕ(s, t) = ψ̂ j(t, s)τ∗ϕ(t, s).

By Theorem 4.3.4(iii) and by the definition of θ ⊗ ρ, we have

⟨ρ ⊗ θ;ψ jτ
∗ϕ⟩ = ⟨θ ⊗ ρ; ψ̂ jτ

∗ϕ⟩, j ∈ Z>0.

Thus
lim
j→∞
⟨ρ ⊗ θ;ψ jτ

∗ϕ⟩ = lim
j→∞
⟨θ ⊗ ρ; ψ̂ jτ

∗ϕ⟩.

From this we conclude that (ρ, θ) is convolvable and that ρ ∗ θ = θ ∗ ρ.
(ii) Let ϕ ∈ D (R;F) and let (ψ j) j∈Z>0 be an approximate unit inD (R2;F). Then we

compute
⟨θ ⊗ (ρ + π);ψ jϕ⟩ = ⟨θ ⊗ ρ;ψ jϕ⟩ + ⟨θ ⊗ π; psi jϕ⟩,

whence
lim
j→∞
⟨θ ⊗ (ρ + π);ψ jϕ⟩ = lim

j→∞
⟨θ ⊗ ρ;ψ jϕ⟩ + lim

j→∞
⟨θ ⊗ π; psi jϕ⟩.

From this we conclude that (θ, ρ+π) in convolvable and that θ ∗ (ρ+π) = θ ∗ ρ+θ ∗π,
as claimed. ■

4.4.6 Example (Convolution is not generally associative) We already know that con-
volution of signals is not generally associative (Example 4.1.10). It follow from this
and Theorem 4.4.2 that the convolution of distributions is also not commutative.
However, we can give a simpler and more “distributiony” example as follows.
Note that

δ(1)
0 ∗ θ1≥0 = θ

(1)
1≥0
= δ0

using Example 4.4.3–2 and Example 3.2.30–3. Also, if 1 ∈ L1
loc(R;F) is defined by

1(t) = 1, t ∈ R, then
θ1 ∗ δ

(1)
0 = θ

(1)
1 = 0,

again using Example 4.4.3–2 and using Proposition 3.2.31. Therefore, combining
these computations,

θ1 ∗ (δ(1)
0 ∗ θ1≥0) = θ1 ∗ δ0 = θ1

(using Example 4.4.3–1), but

(θ1 ∗ δ
(1)
0 ) ∗ θ1≥0 = 0. •

It turns out that it will be helpful to have on hand some language to describe
associativity of convolution for distributions.
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4.4.7 Definition (Convolution-associative triple of distributions) A triple (θ1, θ2, θ3)
is convolution-associative if the pairs (θ1, θ2), (θ1, θ3), and (θ2, θ3) are convolvable
and if

(θσ(1) ∗ θσ(2)) ∗ θσ(3) = θσ(1) ∗ (θσ(2) ∗ θσ(3))

for every σ ∈ S3. •

The reader can show in Exercise 4.4.3 that, for a convolution-associative triple
of distributions, that all possible ways of computing θ ∗ ρ ∗ π agree.

4.4.2 Convolution for distributions with restrictions on their support

In Section 4.1.2 we discussed convolution of causal and, specifically, strictly
causal signals. In these cases we saw that every pair of locally integrable signals
is convolvable, and the fact that they are convolvable is a consequence of the fact
that the causality of the signals leads to the integration defining convolution being
done over a compact interval. The same idea apply for causal distributions, as we
explore in this section.

We recall from Definition 3.2.17 the definitions of the setsD ′+(R;F) andD ′
−
(R;F)

of causal and acausal distributions, respectively. We also have the sets D ′
≥0(R;F)

and D ′
≤0(R;F) of strictly causal and strictly acausal distributions, respectively. In

this section we shall focus on causal distributions, the corresponding results for a
causal distributions following mutatis mutandis.

First let us show that convolution of causal distributions is always defined.

4.4.8 Theorem (Convolution of causal distributions) If θ, ρ ∈ D ′+(R;F) , then (θ, ρ) is
convolvable and θ ∗ ρ ∈ D ′+(R;F).

Proof Let ϕ ∈ D (R;F) and let (ψ j) j∈Z>0 be a sequence in D (R2;F) that is a special
approximate unit. The hypotheses are that

supp(θ) ⊆ [a,∞), supp(ρ) ⊆ [b,∞).

Let us suppose that supp(ϕ) ⊆ [α, β]. We claim that, if

s, t > |β|, s, t < min{−|a|,−|b|,−|α|},

then (s, t) < supp(θ ⊗ ρ) ∩ supp(τ∗ϕ). Indeed,

s, t > |β| =⇒ s + t > 2|β| > β =⇒ (s, t) < supp(τ∗ϕ),
s, t < −|α| =⇒ s + t < −2|α| < α =⇒ (s, t) < supp(τ∗ϕ),
s, t < −|a| =⇒ s < a =⇒ s < supp(θ),
s, t < −|b| =⇒ t < b =⇒ t < supp(ρ).

and our assertion follows from Theorem 4.3.4(v). It follows that, if N ∈ Z>0 is suffi-
ciently large that

(s, t) ∈ [min{−|a|,−|b|,−|α|}, |β|]2 =⇒ ψN(s, t) = 1,
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then
⟨θ ⊗ ρ;ψ jτ

∗ϕ⟩ = ⟨θ ⊗ ρ;ψNτ
∗ϕ⟩, j ≥ N,

which implies that (θ, ρ) is convolvable. That θ ∗ ρ ∈ D ′+(R;F) follows from Proposi-
tion 4.4.4. ■

A direct consequence of the preceding result, along with Theorem 4.3.4(v), is
the following.

4.4.9 Corollary (Convolution of strictly causal distributions) If θ, ρ ∈ D ′
≥0(R;F), then

(θ, ρ) is convolvable and θ ∗ ρ ∈ D ′
≥0(R;F).

As is the case with causal signals and convolution, there are useful algebraic
properties of the set of causal distributions.

4.4.10 Proposition (Algebraic properties of causal convolution for distributions) If
θ, ρ, π ∈ D ′+(R;F) are causal, then the following statements hold:

(i) θ ∗ ρ = ρ ∗ θ;
(ii) (θ ∗ ρ) ∗ π = θ ∗ (ρ ∗ π);
(iii) θ ∗ (ρ + π) = θ ∗ ρ + θ ∗ π.

Proof Only (ii) does not follow from things we have already proved for convolution
of general distributions.

Let ϕ ∈ D (R;F) and let a, b, c ∈ R be such that

supp(θ) ⊆ [a,∞), supp(ρ) ⊆ [b,∞), supp(π) ⊆ [c,∞)

and let α, β ∈ R be such that supp(ϕ) ∈ [α, β]. We then argue, just as in the proof of
Theorem 4.4.8, that, if (s, t,u) ∈ R3 satisfy

s, t,u > |β|, s, t,u < min{−|a|,−|b|,−|c|,−|α|},

then
(s, t,u) < supp(θ ⊗ ρ ⊗ π) ∩ sup(τ̂∗ϕ),

where
τ̂ : R3

→ R

(s, t,u) 7→ s + t + u.

Note that we also have, as shown in the proof of Theorem 4.4.8,

t,u > |β|, t,u < min{−|a|,−|b|,−|c|,−|α|} =⇒ (t,u) < supp(ρ ⊗ π) ∩ sup(τ∗ϕ)

and

s, t > |β|, s, t < min{−|a|,−|b|,−|c|,−|α|} =⇒ (s, t) < supp(θ ⊗ ρ) ∩ sup(τ∗ϕ).

Let χ1 ∈ D (R;F) be such that

χ1(x) = 1, x ∈ [min{−|a|,−|b|,−|c|,−|α|}, |β|],
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and define χ2 ∈ D (R2;F) and χ3 ∈ D (R3;F) by

χ2(s, t) = χ1(s)χ2(t), χ3(s, t,u) = χ1(s)χ1(t)χ1(u).

With these preliminary computations out of the way, we next claim that

⟨θ ∗ (ρ ∗ π);ϕ⟩ = ⟨θ ⊗ (ρ ⊗ π);χ3τ̂
∗ϕ⟩. (4.20)

By definition of convolution, we have

⟨θ ∗ (ρ ∗ π);ϕ⟩ = ⟨θ ⊗ (ρ ∗ π);χ2τ
∗ϕ⟩.

For s ∈ R, denote ϕs(t) = ϕ(s + t) and define

Φρ∗π,ϕ(s) = ⟨ρ ∗ π;ϕs
⟩.

By Corollary 3.2.41, Φρ∗π,ϕ ∈ D (R;F). We also have, by definition of convolution,

⟨ρ ∗ π;ϕs
⟩ = ⟨ρ ⊗ π;χ2τ

∗ϕs
⟩

Now we denote
Φρ⊗π,χ3τ̂∗ϕ(s) = ⟨ρ ⊗ π; (χ3τ̂

∗ϕ)s
⟩,

with
(χ3τ̂)s(t,u) = χ3(s, t,u)ϕ(s + t + u).

By the extension of Theorem 4.3.4 as indicated in Remark 4.3.5, Thus, as long as

(s, t,u) ∈ [min{−|a|,−|b|,−|c|,−|α|}, |β|]3,

we have
χ2τ

∗ϕs(t,u) = (χ3τ̂
∗ϕ)s(t,u).

As a consequence of this,

⟨ρ ∗ π;ϕs
⟩ = ⟨ρ ⊗ π; (χ3τ̂

∗ϕ)s
⟩,

and, as a consequence of this,

⟨θ ⊗ (ρ ∗ θ);χ2τ
∗ϕ⟩ = ⟨θ ⊗ (ρ ⊗ π);χ3τ̂

∗ϕ⟩.

The definition of convolution and the construction of χ2 and χ3 then give (4.20).
An entirely similar argument establishes the equality

⟨(θ ∗ ρ) ∗ π;ϕ⟩ = ⟨(θ ⊗ ρ) ⊗ π;χ3τ̂
∗ϕ⟩.

The desired assertion now follows from Theorem 4.3.4(iv). ■
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4.4.3 Convolution for periodic distributions

We now turn to the convolution of periodic distributions, such as introduced
in Section 3.9. As is the case with convolution of periodic signals, if we apply
ordinary convolution to periodic distributions, nothing interesting happens since
the only time a pair of distributions (θ, ρ) are convolvable is when one of them is
zero. Thus we need to have a distinct mechanism for defining the convolution of
periodic distributions.

The following definition indicates how this is done. In the definition,
pr1,pr2 : R2

→ are defined in the obvious way:

pr1(s, t) = s, pr2(s, t) = t.

Thus for f , g : R→ F, pr∗1 f (s, t) = f (s) and pr∗2 g(s, t) = g(t).

4.4.11 Definition (Convolution for T-periodic distributions) For T ∈ R>0 and θ, ρ ∈
Dper,T(R;F), the T-periodic convolution of θ and ρ is given by θ ∗ ρ ∈ D ′per,T(R;F)
with

θ ∗ ρ(ψ) = ⟨θ ⊗ ρ; (pr∗1 µ)(pr∗2 υ)(τ∗ψ)⟩, ψ ∈ Dper,T(R;F),

for µ, υ ∈ UT(R;F). •

This definition requires having sense be made of it. First of all, since
(pr∗1 µ)(pr∗2 υ) ∈ D (R2;F), the definition gives a (not necessarily periodic) distri-
bution for every µ, υ ∈ UT(R;F). One needs to verify that (1) the definition of θ ∗ ρ
does not depend on υ and υ and (2) the resulting distribution is T-periodic. The
following result establishes these fact.

4.4.12 Theorem (Periodic convolutions are periodic) For T ∈ R>0 and θ, ρ ∈
Dper,T(R;F), the definition of θ ∗ ρ is well-defined and gives a T-periodic distribution.

Proof For ψ ∈ Dper,T(R;F) and υ ∈ UT(R;F), note that, if we define

(υψ)s(t) = υ(t)ψ(t + s),

then (υψ)s
∈ Dper,T(R;F). Similarly to what we did in Section 3.2.8, define Φρ,ψ(s) =

ρ((υψ)s). By Theorem 3.2.40, we conclude that Φρ,ψ ∈ C∞(R;F) and it is evidently
T-periodic, i.e., Φρ,ψ ∈ Dper,T(R;F). By Corollary 3.9.11, Φρ,ψ is independent of υ,
hence the notation omitting υ is justified. Now, by Corollary 3.9.11 again, we have
that

⟨θ;Φρ,ψ⟩ = ⟨θ;µΦρ,ψ⟩

for any µ ∈ UT(R;F). By definition of tensor product, we have

⟨θ;µΦρ,ψ⟩ = ⟨Φρ,ψθ;µ⟩ = ⟨(Φρ,ψθ) ⊗ ρ; pr∗1 µ⟩
= ⟨θ ⊗ ρ; (pr∗1 µ)(pr∗2 υ)(τ∗ψ)⟩.

This establishes that the definition of θ ∗ ψ does not depend on µ and υ. To see that
θ ∗ρ ∈ D ′per,T(R;F), we first note that θ ∗ρ is linear from its definition. Now let (ψ j) j∈Z>0
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be a sequence inDper,T(R;F) converging to zero. Then it is easy to verify, by the higher-
order Leibniz Rule (Proposition I-3.2.11), that ((pr∗1 µ)(pr∗2 υ)(τ∗ψ j)) j∈Z>0 converges to
zero inD (R2;F). Continuity of the tensor product ensures that (θ∗ρ(ψ j)) j∈Z>0 converges
to zero, and so θ ∗ ρ is continuous. ■

As one would hope, the definition of convolution of periodic distributions
generalises the convolution of periodic signals.

4.4.13 Theorem (Convolution of periodic distributions agrees with convolution of
periodic signals) For T ∈ R>0 and for f,g ∈ L(1)

per,T(R;F),

θf∗g = θf ∗ θg.

Proof Let ψ ∈ Dper,T(R;F) and let µ, υ ∈ UT(R;F). Then, by definition of periodic
convolution,

⟨θ f ∗ θg;ψ⟩ =
∫
R2
µ(s)υ(t) f (s)g(t)ψ(s + t) dsdt.

The computations of Example 3.9.3–1 then give

⟨θ f ∗ θg;ψ⟩ =
∫

[0,T]×[0,T]
f (s)g(t)ψ(s + t) dsdt.

Also, by Corollary 4.1.22, we have

⟨θ f ∗g;ψ⟩ =
∫

[0,T]×[0,T]
f (s)g(t)ψ(s + t) dsdt,

which gives the result. ■

Let us consider some examples of periodic convolution.

4.4.14 Examples (Periodic convolution) In all examples, we let T ∈ R>0.
1. We recall from Example 3.9.12–2 the definition of the delta-comb:

⋔T=
∑
n∈Z

δnT.

We claim that, if θ ∈ D ′per,T(R;F), then θ∗ ⋔T= θ. To see this, let ψ ∈ Dper,T(R;F)
and let µ, υ ∈ UT(R;F). Then, as we determined in Example 3.9.12–2, ⋔T (ψ) =
ψ(0). Therefore,

Φ⋔T ,ψ(s) = ⟨⋔T; (υψ)s
⟩ = ψ(s), s ∈ R.

Then
⟨θ;µΦθ,ψ⟩ = ⟨θ;ψ⟩,

and the computations from the proof of Theorem 4.4.12 then give ⟨θ∗ ⋔T;ψ⟩ =
⟨θ;ψ⟩, whence θ∗ ⋔T= θ, as claimed.
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2. We claim that, for θ ∈ D ′per,T(R;F) and for k ∈ Z>0, θ∗ ⋔(k)
T = θ

(k). Indeed, let
ψ ∈ Dper,T(R;F) and let µ, υ ∈ UT(R;F). Then, as we determined in Exam-
ple 3.9.12–3, ⋔(k)

T (ψ) = (−1)kψ(k)(0). Therefore,

Φ⋔T ,ψ(s) = ⟨⋔T; (υψ)s
⟩ = ψ(s), s ∈ R.

Then
⟨θ;µΦθ,ψ⟩ = ⟨θ;ψ⟩,

and the computations from the proof of Theorem 4.4.12 then give ⟨θ∗ ⋔T;ψ⟩ =
⟨θ;ψ⟩, whence θ∗ ⋔T= θ, as claimed. •

Let us present the algebraic properties of periodic distributions with the con-
volution product.

4.4.15 Proposition (Algebraic properties of periodic convolution) If θ, ρ, π ∈

D ′per,T(R;F), then the following statements hold:

(i) θ ∗ ρ = ρ ∗ θ;
(ii) (θ ∗ ρ) ∗ π = θ ∗ (ρ ∗ π);
(iii) θ ∗ (ρ + π) = θ ∗ ρ + θ ∗ π.

Proof The only attribute that does not follow from the general properties of convolu-
tion for distributions is part (ii). To prove part (ii), we can follow an argument similar
to that in the proof of Proposition 4.4.10. We shall simply provide that major steps,
since the verifications follow in the same manner as Proposition 4.4.10.

Let υ1 ∈ UT(R;F) and define υ2 ∈ D (R2;F) and υ3 ∈ D (R3;F) by

υ2(s, t) = υ1(s)υ1(t), υ3(s, t,u) = υ1(s)υ1(t)υ1(u).

Let τ̂ : R3
→ R be defined by τ̂(s, t,u) = s+ t+ u and let ψ ∈ Dper,T(R;F). With this, we

can show that
⟨θ ∗ (ρ ∗ π);ϕ⟩ = ⟨θ ⊗ (ρ ⊗ π);χ3τ̂

∗ψ⟩

and that
⟨(θ ∗ ρ) ∗ π;ϕ⟩ = ⟨(θ ⊗ ρ) ⊗ π;χ3τ̂

∗ψ⟩.

The result then follows from the associativity of the tensor product proved as Theo-
rem 4.3.4(iv). ■

4.4.4 Convolution for distributions with values in vector spaces

In Section 3.2.12 we consider distributions with values in a vector space. In Sec-
tion 4.1.7 we consider convolutions of signals with values in a vector space. Here
we combine the ideas in these section to arrive at the convolution of distributions
with values in a vector space.

We let F ∈ {R,C} and let U and V be finite-dimensional F-vector spaces. The
key step in defining the convolution of vector space-valued distributions is to
understand the tensor product in this case, since all convolutions are defined
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by tensor product. Thus we let L ∈ D ′(R; L(U; V)) and let η ∈ D ′(R; U). For
ϕ,ψ ∈ D (R;F) we can define L ⊗ η on ϕ ⊗ ψ by

L ⊗ η(ϕ ⊗ ψ) = L(ϕ)(η(ψ)), (4.21)

recalling that L(ϕ) ∈ L(U; V) and η(ψ) ∈ U. Let us express this in a basis so as to
see how it works. Let ( f1, . . . , fm) and (e1, . . . , en) be bases for U and V, respectively.
We let E ja ∈ L(U; V), j ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}, be the induced basis for L(U; V)
defined by

E ja( fb) =

e j, a = b,
0, otherwise.

Then we can write
η = η1 f1 + · · · + ηm fm

for η1, . . . , ηm ∈ D ′(R;F). Similarly, we define L ja ∈ D ′(R;F), j ∈ {1, . . . ,n}, a ∈
{1, . . . ,m}, by

L =
n∑

j=1

m∑
a=1

L jaE ja.

Then we have

L ⊗ η(ϕ ⊗ ψ) =
n∑

j=1

m∑
a=1

(L ja ⊗ ηa)(ϕ ⊗ ψ)e j.

This then reduces the tensor product of L and η to the scalar case. One can then
use Theorem 4.3.4(ii) to give the existence of a unique distribution L⊗η ∈ D ′(R; V)
satisfying (4.21).

The matter of defining convolution is then similar. Distributions L ∈

D ′(R; L(U; V)) and η ∈ D ′(R; U) are convolvable if the distribution

D ′(R2;F) ∋ ψ 7→ ⟨L ⊗ η;ψτ∗ϕ⟩ ∈ V

is integrable for every ϕ ∈ D (R;F). The convolution of L and η is then defined by

⟨L ∗ η;ϕ⟩ = lim
j→∞
⟨L ⊗ η;ψ jτ

∗ϕ⟩, ϕ ∈ D (R;F),

for a n approximate unit (ψ j) j∈Z>0 inD (R2;F).
One can now verify the properties of convolution in the above sense from the

scalar case, noting, of course, that convolution is not commutative as this no longer
generally makes sense. One also defines the convolution of causal distributions
and periodic distributions with values in a vector space similarly.

4.4.5 Notes

[Mincheva-Kamińska 2011, Mincheva-Kamińska 2014] for sequential ap-
proaches to convolution
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Exercises

4.4.1 Let F ∈ {R;C}, let β ∈ D ′(R;F), and denote

conv(R;F) = {(θ, ρ) ∈ D ′(R;F) ⊕D ′(R;F) | (θ, ρ) is convolvable}

and
convβ = {θ ∈ D ′(R;F) | (θ, β) is convolvable}.

Answer the following questions.
(a) Is conv(R;F) a subspace ofD ′(R;F) ⊕D ′(R;F)?
(b) Is convh(R;F) a subspace ofD ′(R;F)?

4.4.2 Let θ, ρ ∈ D ′(R;F) be convolvable and let a ∈ R. Answer the following
questions.
(a) Show that (τ∗aθ, ρ) and (θ, τ∗aρ) are convolvable and that

(τ∗aθ) ∗ ρ = θ ∗ (τ∗aρ) = τ∗a(θ ∗ ρ).

(b) Show that (τ∗aθ, τ∗aρ) is convolvable and that (τ∗aθ) ∗ (τ∗aρ) = τ∗2a(θ ∗ ρ).
4.4.3 Show that, if (θ1, θ2, θ3) is a convolution-associative triple of distributions,

then
(θ1 ∗ θ2) ∗ θ3 = (θσ(1) ∗ θσ(2)) ∗ θσ(3) = θσ(1) ∗ (θσ(2) ∗ θσ(3))

for all σ ∈ S3.
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Section 4.5

Convolvable pairs of distributions

In the preceding section we understood the mechanics of the convolution of dis-
tributions and considered a few general attributes of this convolution, both in the
general setting and within special classes of distributions. In this section we shall
study particular convolvable pairs of distributions, and as well give the important
continuity properties of convolution. Note that all of our results from Section 4.2
give classes of convolvable distributions, by virtue of Proposition 3.2.12. This
we focus in this section on distribution specific results. Some of our results ap-
ply to rather specific classes of distributions, such as D (R;F) or S (R;F), even
though such distributions may not abound in nature. Such results signal that
the developments will be used in a (1) a theoretical setting such as our develop-
ment of approximations using convolution in Section 4.7 or (2) in situations where
important specific signals arise that are in these signal classes, e.g., 1 ∈ S (R;F).

Do I need to read this section? The results in this section can be somewhat spe-
cific and technical. It is possible, therefore, to pass over this section on a first
reading, and then come back to it for such results as are subsequently needed. •

4.5.1 Convolutions with test signals

The first category of convolutions we consider are those involving test signals.
Test signals, especially those inD (R;F) and S (R;F), are not necessarily common
in nature. However, the convolutions we consider here are useful at various points
for establishing other important results that do pertain more directly to nature.

We begin with a technical lemma describing convolution with a test signal.

4.5.1 Lemma (Convolutions with test signals) If

T ∈ {D (R;F),S (R,F),E (R;F)},

if ϕ ∈ T and θ ∈ T ′, then ϕ ∗ θ is a regular distribution that is infinitely differentiable,
and

(ϕ ∗ θ)(k) = ϕ(k)
∗ θ = ϕ ∗ θ(k), k ∈ Z≥0.

Proof Let ψ ∈ T and θ ∈ T ′ and define ψs(t) = ψ(s + t) and Φθ,ψ(s) = θ(ψs). By
Theorems 3.2.40, 3.3.20, and 3.7.17, we have Φθ,ψ ∈ C∞(R;F) and

Φ
(k)
θ,ψ

(s) = θ((ψ(k))s). (4.22)

Moreover, we claim that

Φθ,ψ ∈


E (R;F), T = D (R;F),
S (R;F), T = S (R;F),
D (R;F), T = E (R;F).
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The first case, when T = D (R;F), is clear. In the second case, when T = S (R;F), let
us denote τ(s, t) = s + t as usual, and note that, for r1, r2 ∈ Z≥0,

Dr1
1 Dr2

2 τ
∗ψ(s, t) = Dr1+r2ψ(s + t).

From this, and the fact that τ∗ϕ is infinitely differentiable, we easily see that the
hypotheses of Corollary 3.3.21 hold for every k ∈ Z≥0. Finally, in the case when
T = E (R;F), we note that, for large values of |s|, supp(θ) and supp(ψs) will not
intersect.

Now, given the above, let us determine ϕ ∗ θ. In all cases, we have

⟨ϕ ∗ θ;ψ⟩ = ⟨θϕ;Φθ,ψ⟩ = ⟨θϕ ⊗ θ; τ∗ψ⟩,

and we note that the final expression here makes sense, literally in the case of T =
S (R;F) and after multiplication of τ∗ϕ by a suitable χ ∈ D (R2;R) in the other two
cases; thus we indulge in an harmless abuse of notation. We then have

⟨ϕ ∗ θ;ψ⟩ = ⟨θ ⊗ θϕ; τ∗ψ⟩ = ⟨θ;Φθϕ,ψ⟩.

Note that

Φθϕ,ψ(s) =
∫
R
ϕ(t)ψ(s + t) dt =

∫
R
ϕ(t − s)ψ(t) dt

and so
⟨θ;Φθϕ,ψ⟩ = ⟨θΨθ,ϕ ;ψ⟩,

whereΨθ,ϕ(t) = θ(τ∗tσ
∗ϕ).

Moreover, similarly to (4.22), we have

Ψ
(k)
θ,ϕ

(t) = θ(τ∗tσ
∗ϕ(k)).

Thus, by our computations just preceding, we have

⟨θ(k)
ϕ∗θ

;ψ⟩ = (−1)k
⟨θϕ∗θ;ψ(k)

⟩ = (−1)k
⟨θ;Φθϕ,ψ(k)⟩

= (−1)k
⟨θΨθ,ϕ ;ψ(k)

⟩ = ⟨θ(k)
Ψθ,ϕ

;ψ⟩ = ⟨θΨ
θ,ϕ(k) ;ψ⟩.

In summary, we have shown that ϕ ∗ θ is the infinitely differentiable function
defined by ϕ ∗ θ(t) = θ(τ∗tσ

∗ϕ) and that

(ϕ ∗ θ)(k)(t) = θ(τ∗tσ
∗ϕ(k)) = ϕ(k)

∗ θ(t),

For the final conclusion of the lemma, we compute

ϕ ∗ θ(k)(t) = ⟨θ(k); τ∗tσ
∗ϕ⟩ = (−1)k

⟨θ; (τ∗tσ
∗ϕ)(k)

⟩ = ⟨θ; τ∗tσ
∗ϕ(k)
⟩ = θ ∗ ϕ(k),

as desired. ■

Now we prove three theorems concerning convolutions of distributions with
test signals. In each case, the difficult part of the proof is the asserted continuity
conditions, and for these we make use of the descriptions of the topologies for test
signals and distributions developed in Section III-6.5.5. We point out that, when
proving continuity of the convolution with respect to the “distribution part,” we
do not use the usual topology forD ′(R;F), but the strong topology described in . what?

First we consider the case of test signals inD (R;F).
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4.5.2 Theorem (Convolutions involvingD (R;F)) If ϕ ∈ D (R;F) and θ ∈ D ′(R;F), then
(ϕ, θ) is convolvable, ϕ ∗ θ ∈ E (R;F), and the maps

D (R;F) ∋ ϕ 7→ ϕ ∗ θ ∈ E (R;F)

and
D ′(R;F) ∋ θ 7→ ϕ ∗ θ ∈ E (R;F)

are continuous, the latter in the strong topology forD ′(R;F).
Proof The only thing not following from Lemma 4.5.1 is the continuity assertions.

First we prove continuity of the map ϕ 7→ ϕ ∗ θ. To do this, by it suffices to showcontinuity for inductive

limits that, for every compact K ⊆ R, the restriction of this map to the subspace D (K;F)
of test signals with support in K is continuous. Let L ⊆ R be compact and let K be
a compact interval for which supp(τ∗tσ

∗ϕ) ⊆ K for every t ∈ L and ϕ ∈ D (K;F). By
Lemma 3.2.44, let M ∈ R>0 and r ∈ Z≥0 be such that

|θ(ψ)| ≤M∥ψ(r)
∥∞, ψ ∈ D (K;F).

We then compute

sup{|(ϕ ∗ θ)(k)(t)| | t ∈ L} = sup{|⟨θ; τ∗tσ
∗ϕ(k)
⟩| | t ∈ L}

≤M sup{|ϕ(k+r)(s − t)| | t ∈ L, s ∈ R}

≤M sup{|ϕ(k+r)(u)| | u ∈ K}.

By Proposition III-6.2.9, we conclude continuity of the restriction of ϕ 7→ ϕ ∗ θ when
restricted toD (K;F).

Now we show strong continuity of θ 7→ ϕ ∗ θ. First we claim that, for ϕ ∈ D (R;F)
fixed (as is the case here) and K ⊆ R compact, the set

Bϕ,K ≜ {τ∗tσ
∗ϕ | t ∈ K} ⊆ D (R;F)

is bounded. First of all, by Proposition III-6.2.10, to show that this set is bounded, it
suffices to show that

sup{|ϕ(k)(s − t)| | s ∈ R, t ∈ K} < ∞

for each k ∈ Z≥0. This, however, is evident since supp(ϕ) is compact. Now let (θ j) j∈Z>0

be a sequence inD ′(R;F) that converges strongly to zero. Then, by , we havestrong convergence

lim
j→∞

sup{|(ϕ ∗ θ j)(t)| | t ∈ K} = lim
j→∞

sup{|⟨θ j; τ∗tσ
∗ϕ⟩| | t ∈ K}

≤ lim
j→∞

sup{|θ j(ψ)| | ψ ∈ Bϕ,K} = 0.

Thus (ϕ ∗ θ j|K) j∈Z>0 converges uniformly to zero. Since

(ϕ ∗ θ j)(k) = ϕ(k)
∗ θ j, j, k ∈ Z>0,

a similar argument to that just preceding shows that ((ϕ ∗ θ j)(k)
|K) j∈Z>0 converges

uniformly to zero, and this proves that (ϕ ∗ θ j) j∈Z>0 converges to zero in E (R;F). ■

Next we consider convolutions with test signals in S (R;F).
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4.5.3 Theorem (Convolutions involving S (R;F)) If ϕ ∈ S (R;F) and θ ∈ S ′(R;F),
then (ϕ, θ) is convolvable, ϕ ∗ θ ∈ E (R;F), along with all of its derivatives, are signals of
slow growth, and the maps

S (R;F) ∋ ϕ 7→ ϕ ∗ θ ∈ E (R;F)

and
S ′(R;F) ∋ θ 7→ ϕ ∗ θ ∈ E (R;F)

are continuous, the latter in the strong topology for S ′(R;F).
Proof Apart from what we have already proved in Lemma 4.5.1, we need to prove
thatϕ∗θ and all of its derivatives have slow growth and we have to prove the continuity
assertions.

First we prove continuity of the map ϕ 7→ ϕ ∗ θ. Let K ⊆ R be compact. By
Lemma 3.3.22, let M ∈ R>0 and r ∈ Z≥0 be such that

|θ(ψ)| ≤M sup{|(1 + t2)rψ(r)(t)| | t ∈ R}, ψ ∈ S (K;F)

We then compute

sup{|(ϕ ∗ θ)(k)(t)| | t ∈ K} = sup{|⟨θ; τ∗tσ
∗ϕ(k)
⟩| | t ∈ K}

≤M sup{|(1 + s2)rϕ(k+r)(s − t)| | t ∈ K, s ∈ R}

≤M sup{|(1 + (u + t)2)k+rϕ(k+r)(u)| | u ∈ R, t ∈ K}.

Note that

lim
|u|→∞

1 + u2

1 + (u + t)2 = 1,

uniformly in t ∈ K. Thus there exists C ∈ R>0 such that

1 + (u + t)2
≤ C(1 + u2),

and so

sup{|(ϕ ∗ θ)(k)(t)| | t ∈ K} ≤MCk+r sup{|(1 + u2)k+rϕ(k+r)(u)| | u ∈ R}.

By Proposition III-6.2.9, we conclude continuity of the restriction of ϕ 7→ ϕ ∗ θ.
Now we show strong continuity of θ 7→ ϕ ∗θ. First we claim that, for ϕ ∈ S (R;F)

fixed (as is the case here) and K ⊆ R compact, the set

Bϕ,K ≜ {τ∗tσ
∗ϕ | t ∈ K} ⊆ S (R;F)

is bounded. First of all, by Proposition III-6.2.10, to show that this set is bounded, it
suffices to show that

sup{|(1 + s2)kϕ(k)(s − t)| | s ∈ R, t ∈ K} < ∞

for each k ∈ Z≥0. This, however, is evident since ϕ ∈ S (R;F). Now let (θ j) j∈Z>0 be a
sequence in S ′(R;F) that converges strongly to zero. Then, by , we have strong convergence
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lim
j→∞

sup{|(ϕ ∗ θ j)(t)| | t ∈ K} = lim
j→∞

sup{|⟨θ j; τ∗tσ
∗ϕ⟩| | t ∈ K}

≤ lim
j→∞

sup{|θ j(ψ)| | ψ ∈ Bϕ,K} = 0.

Thus (ϕ ∗ θ j|K) j∈Z>0 converges uniformly to zero. Since

(ϕ ∗ θ j)(k) = ϕ(k)
∗ θ j, j, k ∈ Z>0,

a similar argument to that just preceding shows that ((ϕ ∗ θ j)(k)
|K) j∈Z>0 converges

uniformly to zero, and this proves that (ϕ ∗ θ j) j∈Z>0 converges to zero in E (R;F).
Finally, we show that (ϕ ∗ θ)(k) is a signal of slow growth for every k ∈ Z≥0. By

Theorem 3.3.23, let r ∈ Z≥0 and let f ∈ C0(R;F) be a signal of slow growth such that
θ = θ(r)

f . Let C ∈ R>0 and N ∈ Z>0 be such that

| f (t)| ≤ C(1 + t2)N, t ∈ R.

Then we calculate

|ϕ ∗ θ(t)| ≤ |⟨θ(r)
f ; τ∗tσ

∗ϕ⟩| ≤

∫
R
| f (s)ϕ(r)(t − s)|ds

=

∫
R
| f (t − s)ϕ(r)(s)|ds ≤ C

∫
R
|(1 + (t − s)2)N

||ϕ(k)(s)|ds

≤ C
∫
R

2N∑
j=1

|t|t|P j(s)ϕ(r)(s)|ds

for polynomials P1, . . . ,P2N. Since ϕ ∈ S (R;F), P jϕ(r) is integrable, and so we obtain

|ϕ ∗ θ(t)| ≤
2N∑
j=1

C j|t| j,

showing that ϕ ∗θ is a signal of slow growth. Since (ϕ ∗θ)(k) = ϕ(k)
∗θ by Lemma 4.5.1,

the preceding argument applies to show that the derivatives of ϕ ∗ θ are also signals
of slow growth. ■

Lastly, we consider convolutions in E (R;F).

4.5.4 Theorem (Convolutions involving E (R;F)) If ϕ ∈ E (R;F) and θ ∈ E ′(R;F), then
(ϕ, θ) is convolvable, ϕ ∗ θ ∈ D (R;F), and the maps

E (R;F) ∋ ϕ 7→ ϕ ∗ θ ∈ E (R;F)

and
E ′(R;F) ∋ θ 7→ ϕ ∗ θ ∈ E (R;F)

are continuous, the latter in the strong topology for E ′(R;F).
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Proof Apart from what we have already proved in Lemma 4.5.1, we need to prove
the continuity assertions.

First we prove continuity of the map ϕ 7→ ϕ ∗ θ. Let L ⊆ R be compact. By
Theorem 3.7.19, let r1, . . . , rm ∈ Z≥0 and f1, . . . , fm ∈ C0

cpt(R;F) be such that

θ =
m∑

j=1

θ
(r j)
f j
.

Let K ⊆ R be compact and such that supp( f j) ⊆ K, j ∈ {1, . . . ,m}. We then compute

sup{|(ϕ ∗ θ)(k)(t)| | t ∈ L} = sup{|⟨θ; τ∗tσ
∗ϕ(k)
⟩| | t ∈ L}

≤M sup


m∑

j=1

|ϕ(k+r j)(u)|

∣∣∣∣∣∣∣∣ u ∈ K

 .
By Proposition III-6.2.9, we conclude continuity of the restriction of ϕ 7→ ϕ ∗ θ.

Now we show strong continuity of θ 7→ ϕ ∗ θ. First we claim that, for ϕ ∈ E (R;F)
fixed (as is the case here) and K ⊆ R compact, the set

Bϕ,K ≜ {τ∗tσ
∗ϕ | t ∈ K} ⊆ D (R;F)

is bounded. First of all, by Proposition III-6.2.10, to show that this set is bounded, it
suffices to show that, for every compact L ⊆ R,

sup{|ϕ(k)(s − t)| | s ∈ L, t ∈ K} < ∞

for each k ∈ Z≥0. This, however, is evident since ϕ(k) is continuous and the set

{s − t | s ∈ L, t ∈ K}

is compact. Now let (θ j) j∈Z>0 be a sequence in E ′(R;F) that converges strongly to zero.
Then, by , we have strong convergence

lim
j→∞

sup{|(ϕ ∗ θ j)(t)| | t ∈ K} = lim
j→∞

sup{|⟨θ j; τ∗tσ
∗ϕ⟩| | t ∈ K}

≤ lim
j→∞

sup{|θ j(ψ)| | ψ ∈ Bϕ,K} = 0.

Thus (ϕ ∗ θ j|K) j∈Z>0 converges uniformly to zero. Since

(ϕ ∗ θ j)(k) = ϕ(k)
∗ θ j, j, k ∈ Z>0,

a similar argument to that just preceding shows that ((ϕ ∗ θ j)(k)
|K) j∈Z>0 converges

uniformly to zero, and this proves that (ϕ ∗ θ j) j∈Z>0 converges to zero in E (R;F). ■

4.5.2 Convolutions involving E′(R;F)

We first consider the case of convolutions where one of the terms is a distribution
with compact support. Let us first show that all such convolutions are defined.
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4.5.5 Theorem (Convolution between E ′(R;F) and D ′(R;F)) The following two state-
ments hold:

(i) for ρ ∈ E ′(R;F), the map

D ′(R;F) ∋ θ 7→ θ ∗ ρ ∈ D ′(R;F)

is well defined and continuous;
(ii) for θ ∈ D ′(R;F), the map

E ′(R;F) ∋ ρ 7→ θ ∗ ρ ∈ D ′(R;F)

is well defined and continuous.
Proof (i) First of all, for ϕ ∈ D (R;F), denote ϕs(t) = ϕ(s + t). If Φρ,ϕ(s) = ρ(ϕs), then
Φρ,ϕ ∈ E (R;F) by Corollary 3.7.18. Moreover, since ρ has compact support, for large
values of |s|we will have supp(ρ) ∩ supp(ϕs) = ∅. Thus Φρ,ϕ ∈ D (R;F). Then

⟨θ ∗ ρ;ϕ⟩ = ⟨θ;Φρ,ϕ⟩.

This shows that (θ, ρ) is convolvable for every θ ∈ D (R;F). Continuity of the mapping
also follows immediately from the preceding formula.

(ii) We proceed similarly to above, letting ϕ ∈ D (R;F). Taking ϕs(t) = ϕ(s + t), by
Theorem 3.2.40 we have that Φθ,ϕ(s) = θ(ϕs) is infinitely differentiable. Thus we can
define

⟨ρ ∗ θ;ϕ⟩ = ⟨ρ;Φθ,ϕ⟩,

and from this can conclude well definedness of convolution and also its continuity. ■

When convolving with tempered distributions, convolution of a distribution
with compact support returns a tempered distribution again.

4.5.6 Theorem (Convolution between E ′(R;F) and S ′(R;F)) The following two state-
ments hold:

(i) for ρ ∈ E ′(R;F), the map

S ′(R;F) ∋ θ 7→ θ ∗ ρ ∈ S ′(R;F)

is well defined and continuous;
(ii) for θ ∈ S ′(R;F), the map

E ′(R;F) ∋ ρ 7→ θ ∗ ρ ∈ S ′(R;F)

is well defined and continuous.
Proof For ϕ ∈ S (R;F) and ρ ∈ E ′(R;F), denote ϕs(t) = ϕ(s + t) and define Φρ,ϕ(s) =
θ(ϕs). As we saw in the proof of Lemma 4.5.1, Φρ,ϕ ∈ S (R;F). We claim that the
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map ϕ 7→ Φρ,ϕ is a continuous mapping from S (R;F) to itself. By Theorem 3.3.23, let
f1, . . . , fm ∈ C0

cpt(R;F) and let r1, . . . , rm ∈ Z≥0 be such that

ρ =
m∑

j=1

θ
(r j)
f j
.

Let K ⊆ R be such that supp( f j) ⊆ K, j ∈ {1, . . . ,m}. Then

Φρ,ϕ =

m∑
j=1

(−1)r j

∫
K

f j(s)ϕ(r j)(s + t) ds.

Now suppose that (ϕ j) j∈Z>0 converges to zero in S (R;F). Then compute

|tkΦ
(l)
ρ,ϕ j

(t)| ≤
m∑

j=1

∫
K
| f j(s)||tkϕ

(r j+l)
j (t + s)|ds

≤

m∑
j=1

∫
K
| f j(s)|

|tk
|

1 + |s + t|k
|1 + |s + t|k||ϕ

(r j+l)
j (t + s)|ds.

Note that

s 7→ | f j(s)|
|tk
|

1 + |s + t|k

is bounded, uniformly in t. This then gives

|tkΦ
(l)
ρ,ϕ j

(t)| ≤ C
m∑

j=1

(
∥ϕ

(r j+l)
j ∥∞ + sup{tkϕ

(r j+l)
j (t) | t ∈ R}

)
,

and since the expression on the right goes to zero as j→∞, we conclude that (Φρ,ϕ j) j∈Z>0

converges to zero in S (R;F). This gives the desired continuity of the map ϕ 7→ Φρ,ϕ.
Now we prove that θ ∗ ρ ∈ S ′(R;F) for θ ∈ S ′(R;F) and ρ ∈ E ′(R;F). Let

(ϕ j) j∈Z>0 be a sequence inD (R;F) that converges to zero in S (R;F). We have

⟨θ ∗ ρ;ϕ j⟩ = ⟨θ;Φρ,ϕ j⟩,

and so from the first part of the proof we have

lim
j→∞
⟨θ ∗ ρ;ϕ j⟩ = 0,

and so θ ∗ ρ ∈ S ′(R;F) by Theorem 3.3.13.
The above prove the well-definedness assertions of the theorem. It remains to

prove the continuity conditions.
(i) Let (θ j) j∈Z>0 be a sequence in S ′(R;F) converging to zero. Then, as we saw in

the first part of the proof, Φρ,ϕ ∈ S (R;F) for ϕ ∈ S (R;F). Thus, for ϕ ∈ S (R;F),

lim
j→∞
⟨θ j ∗ ρ;ϕ⟩ = lim

j→∞
⟨θ j;Φρ,ϕ⟩ = 0,
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giving the desired convergence.
(ii) Let (ρ j) j∈Z>0 be a sequence in E ′(R;F) and note that Φθ,ϕ ∈ E (R;F) for ϕ ∈

S (R;F), as we showed in the proof of Lemma 4.5.1. Thus, for ϕ ∈ S (R;F),

lim
j→∞
⟨ρ j ∗ θ;ϕ⟩ = lim

j→∞
⟨ρ j;Φθ,ϕ⟩ = 0,

which gives the desired conclusion. ■

Note that one must pay careful attention to which spaces one is working with
when considering convolutions as continuous mappings. Let us emphasise this
with an example and a result that clarifies why the example fails to demonstrate
continuity of convolution in certain topologies.

4.5.7 Example (Discontinuity of convolution in the “wrong” topology) Note that, for
each j ∈ Z>0, δ j ∈ E ′(R;F). For any j ∈ Z>0 we have δ j ∗ 1 = 1 by Example 4.4.3–1.
Note that (δ j) j∈Z>0 converges to zero in D ′(R;F). Indeed, if ϕ ∈ D (R;F), then
δ j(ϕ) = ϕ( j) = 0 for sufficiently large j since ϕ has compact support. However,
(δ j ∗ 1) j∈Z>0 does not converge to zero. This shows that the mapping

E ′(R;F) ∋ θ 7→ θ ∗ ρ ∈ D (R′;F)

is not continuous is one equips E ′(R;F) with the topology inherited fromD ′(R;F).
Note that our example fails to be a counterexample to Theorems 4.5.5 and 4.5.6
because the sequence (δ j) j∈Z>0 does not converge in E ′(R;F). •

The following result clarifies the situation that arises in the example.

4.5.8 Proposition (Conditions for continuity of topology in the “wrong” topology)
The following statements hold:

(i) if ρ ∈ S ′(R;F) and if (θj)j∈Z>0 be a sequence in E ′(R;F) converging to zero in
D ′(R;F) and for which there exists a compact subset K ⊆ R such that supp(θj) ⊆ K,
j ∈ Z>0, then (θj ∗ ρ)j∈Z>0 converges to zero inD ′(R;F);

(ii) if ρ ∈ E ′(R;F) and if (θj)j∈Z>0 is a sequence in S ′(R;F) converging to zero in
D ′(R;F), then (θj ∗ ρ)j∈Z>0 converges to zero inD (R;F).

Proof We leave this to the reader as Exercise 4.5.1. ■

When restricting to convolutions only of distributions with compact support,
we have the following result.

4.5.9 Theorem (E ′(R;F) is an associative, commutative algebra with unit when
equipped with convolution as product) If θ, ρ ∈ E ′(R;F), then (θ, ρ) is convolvable
and θ ∗ ρ ∈ E ′(R;F). Furthermore, if θ, ρ, π ∈ E ′(R;F), then the following statements
hold:

(i) the maps

E ′(R;F) ∋ θ′ 7→ θ′ ∗ ρ ∈ E ′(R;F), E ′(R;F) ∋ ρ′ 7→ θ ∗ ρ′ ∈ E ′(R;F)

are continuous;
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(ii) θ ∗ ρ = ρ ∗ θ;
(iii) (θ ∗ ρ) ∗ π = θ ∗ (ρ ∗ π);
(iv) θ ∗ (ρ + π) = θ ∗ ρ + θ ∗ π;
(v) there exists a multiplicative unit for E ′(R;F).

Proof That pairs in E ′(R;F) are convolvable and that convolution is continuous as
in part (i) follows from Theorem 4.5.5. That θ ∗ ρ ∈ E ′(R;F) follows from Propo-
sition 4.4.4. The commutativity and distributivity properties follow from Proposi-
tion 4.4.5. Given that E ′(R;F) ⊆ D+(R;F), associativity of convolution follows from
Section 4.4.2. Finally, we have shown in Example 4.4.3–1 that δ0 is a multiplicative
unit. ■

4.5.3 Convolution in D′
+

(R;F)

Next we consider convolution inD ′+(R;F), as introduced in Section 4.4.2. First
we consider the special case of distributions supported in R≥0.

4.5.10 Theorem (D ′
≥0

(R;F) is an associative, commutative integral domain with unit,
when equipped with convolution as a product) For θ, ρ, π ∈ D ′

≥0(R;F), the
following statements hold:

(i) the mappings

D ′
≥0(R;F) ∋ θ′ 7→ θ′ ∗ ρ ∈ D ′

≥0(R;F), D ′
≥0(R;F) ∋ ρ′ 7→ θ ∗ ρ′ ∈ D ′

≥0(R;F)

are continuous;
(ii) θ ∗ ρ = ρ ∗ θ;
(iii) (θ ∗ ρ) ∗ π = θ ∗ (ρ ∗ π);
(iv) θ ∗ (ρ + π) = θ ∗ ρ + θ ∗ π;
(v) D ′

≥0(R;F) has a multiplicative unit;
(vi) D ′

≥0(R;F) is an integral domain.
Proof Only parts (i) and (vi) do not follow from results that have already been proved.

(i) Let (θ j) j∈Z>0 be a sequence in D ′
≥0(R;F) converging to θ in D ′(R;F). By Ex-

ercise 3.2.14, θ ∈ D ′+(R;F). Let ϕ ∈ D (R;F). Let ϕs(t) = ϕ(s + t) and denote
Φρ,ϕ(s) = ρ(ϕs). By Theorem 3.2.40,Φρ,ϕ ∈ C∞(R;F). Since the support of ρ is bounded
on the left, the support of Φρ,ϕ is bounded on the right, cf. the argument regarding
support from the proof of Proposition 4.4.10. Thus we can choose ψ ∈ D (R;F) such
that ψ(s) = 1 for s ∈ R≥0 ∩ supp(Φρ,ϕ). Then, for all j ∈ Z>0,

⟨θ j ∗ ρ;ϕ⟩ = ⟨θ j;ψΦρ,ϕ⟩

and
⟨θ ∗ ρ;ϕ⟩ = ⟨θ;ψΦρ,ϕ⟩.

It then follows, since (θ j) j∈Z>0 converges to θ, that (θ j ∗ρ) j∈Z>0 converges to θ ∗ρ, giving
continuity of the map θ 7→ θ ∗ ρ.
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(vi) Suppose that θ, ρ ∈ D ′
≥0(R;F) are such that θ ∗ ρ = 0. For ϕ,ψ ∈ D (R;F), we

then have
0 = θ ∗ ρ ∗ ϕ ∗ ψ = (θ ∗ ϕ) ∗ (ρ ∗ ψ)

since convolution is associative in D ′
≥0(R;F). By and Proposition 4.4.4, θ ∗ ϕ andwhat

ρ ∗ψ are smooth functions with support bounded on the left. Thus, by the Titchmarsh
Convolution Theorem—more precisely, by an adaptation of Corollary 4.2.16 to signals
whose support has a fixed lower bound—we have either θ ∗ϕ = 0 or ρ ∗ψ = 0. Now let
(χ j) j∈Z>0 be a delta-sequence in D (R;F) as in . Then there is a subsequence (χ jk)k∈Z>0what

such that either θ ∗ χ jk = 0 for all k ∈ Z or ρ ∗ χ jk = 0 for all k ∈ Z>0. It follows from
that eitherwhat?

0 = lim
k→∞

θ ∗ χ jk = θ or 0 = lim
k→∞

ρ ∗ χ jk = ρ.

Thus either θ = 0 or ρ = 0, as claimed. ■

Note that the continuity conditions from part (i) do not hold in D+(R;F) since
it is required that all distributions have a common lower bound for their support:
a lower bound of 0 in the theorem. The final assertion of the theorem, however, is
easily seen to have the following generalisation that augments Proposition 4.4.10.

4.5.11 Corollary (Algebraic property of D ′
+

(R;F)) The space D ′+(R;F) of causal distribu-
tions is an integral domain.

4.5.4 Convolution and regularity for distributions

In Section 4.2.11 we considered the matter of the commutativity of convolution
and differentiation. Here we give analogous characterisations for convolution
of distributions. We first point out that in Lemma 4.5.1 we have already given
an important situation where differentiation commutes with convolution, in an
appropriate sense, namely in the case of the convolution of a distribution and a test
signal.

A rather general situation where differentiation commutes with convolution
arises from the following result.

4.5.12 Proposition (A condition for commutating of differentiation and convolution)
Let θ, ρ ∈ D ′(R;F) be a convolvable pair of distributions. If the triple convolution

(θ, ρ, δ(1)) is convolution-associative, then

(θ ∗ ρ)(k) = θ(k)
∗ ρ = θ ∗ ρ(k), k ∈ Z>0.

Proof First, by Example 4.4.3–2, we have

(θ ∗ ρ)(1) = δ(1)
∗ (θ ∗ ρ) = (δ(1)

∗ θ) ∗ ρ = θ(1)
∗ ρ

and
(θ ∗ ρ)(1) = (θ ∗ ρ) ∗ δ(1) = θ ∗ (ρ ∗ δ(1)) = θ ∗ ρ(1).

One can apply this calculation recursively to get the result. ■

As a special case of the preceding general result, we have the following.
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4.5.13 Proposition (Differentiation and convolution between E ′(R;F) and D ′(R;F))
If θ ∈ D ′(R;F) and ρ ∈ E ′(R;F), then

(θ ∗ ρ)(k) = θ(k)
∗ ρ = θ ∗ ρ(k), k ∈ Z>0.

Proof This follows from Proposition 4.5.12 and Exercise 4.5.2. Exercise 4.5.2 ■

Exercises

4.5.1 Prove Proposition 4.5.8.
4.5.2
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Section 4.6

Convolution of measures

4.6.1 Convolution for measures on R

4.6.2 Convolution for periodic measures on R
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Section 4.7

Approximation and regularisation

One of the most useful applications of convolution is in the construction of
approximations of general signals by signals with desired properties. For instance,
the regularity results of Section 4.2.11 indicate that convolution often inherits the
smoothness of the smoother of the signals being convolved. We shall also see that
convolution allows us a means of approximating signals by signals with restrictions
on their support. One way to regard this procedure of approximation is this. Note
that in Theorems 4.2.1, 4.2.13, and 4.2.24 we showed that our spaces of continuous-
time signals did not have a unit for the convolution product. However, we shall
see that these spaces have approximate units, by which we mean a sequence of
signals which, when convolved with a signal from the space, produce a sequence
of signals converging to the original signal in an appropriate sense. This is the
notion of an “approximate identity,” and these will play an important rôle in our
study of various Fourier transforms in Chapters 5 and 6, and Section 7.1.

Do I need to read this section? The material in this section is important to un-
derstand since the ideas we consider feature prominently in our discussion of
Fourier inversion in Chapters 5 and 6, and Section 7.1. Moreover, this section
gives an important application of the convolution product, and so is an essential
part of coming to grips with convolution in general. •

4.7.1 Approximate identities on R

We shall encounter the notion of an approximate identity for various classes
of signals. In this section we study approximate identities for aperiodic signals
defined on R.

There are many variations on the definition of an approximate identity. An
example of one version is what we characterised in Section 3.7.6 as a “delta-
sequence,” i.e., a sequence in L(1)

loc(R;F) converging to δ0 inE ′(R;F). Here we choose
a slightly different definition that is not equivalent to our notion of a delta-sequence,
but serves our purposes here. The reader may encounter other definitions, some
of which may be equivalent, some of which may not be. Just which definition one
uses depends on the sort of approximations one wishes to make.

4.7.1 Definition (Approximate identity for aperiodic signals defined on R) An ap-
proximate identity on R is a sequence (u j) j∈Z>0 in L(1)(R;F) with the following
properties:

(i)
∫
R

u j(t) dt = 1, j ∈ Z>0;

(ii) there exists M ∈ R>0 such that ∥u j∥1 ≤M for each j ∈ Z>0;
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(iii) for each α ∈ R>0,

lim
j→∞

∫
R\[−α,α]

|u j(t)|dt = 0. •

Before we give some examples of approximate identities, let us show why they
are useful. We do this by way of two approximation theorems.

4.7.2 Theorem (Approximation in Lp(R;F) using approximate identities) Let p ∈
[1,∞). If (uj)j∈Z>0 is an approximate identity onR and if f ∈ L(p)(R;F), then the sequence
(f ∗ uj)j∈Z>0 converges to f in Lp(R;F).

Proof Note that

f (t) − f ∗ u j(t) =
∫
R

( f (t) − f (t − τ))u j(τ) dτ,

using the fact that ∫
R

u j(τ) dτ = 1.

Recalling the integral version of Minkowski’s inequality, Lemma III-3.8.56, we have

∥ f − f ∗ u j∥p =

(∫
R

∣∣∣∣∣∫
R

( f (t) − f (t − s))u j(τ) dτ
∣∣∣∣∣p dt

)1/p

≤

∫
R

(∫
R
|( f (t) − f (t − τ))u j(τ)|p dt

)1/p

dτ

=

∫
R

(∫
R
| f (t) − f (t − τ)|p dt

)1/p

|u j(τ)|dτ

≤

∫
R
∥ f − τ∗τ f ∥p|u j(τ)|dτ,

recalling the notation τ∗τ f (t) = f (t−τ). Let ϵ ∈ R>0. Let M ∈ R>0 be such that ∥u j∥1 ≤M
for each j ∈ Z>0. By Lemma 1 from the proof of Corollary 4.2.10 let δ ∈ R>0 be
sufficiently small that ∥ f − τ∗a f ∥ < ϵ

2M for a ∈ (0, δ]. Then∫ δ

−δ
∥ f − τ∗τ f ∥p|u j(τ)|dτ ≤

ϵ
2M

∫
R
|u j(τ)|dτ ≤

ϵ
2
. (4.23)

Also let N ∈ Z>0 be sufficiently large that∫
R\[−δ,δ]

|u j(τ)|dτ <
ϵ

4∥ f ∥p
, j ≥ N.

Then, noting that ∥ f − τ∗τ f ∥p ≤ 2∥ f ∥p by the triangle inequality and invariance of the
norm under translation, we compute∫

R\[−δ,δ]
∥ f − τ∗τ f ∥p|u j(τ)|ds ≤ 2∥ f ∥p

∫
R\[−δ,δ]

|u j(τ)|dτ <
ϵ
2
. (4.24)

Combining (4.23) and (4.24) we see that, for j ≥ N,

∥ f − f ∗ u j∥p < ϵ,

giving the result. ■
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For continuous signals we also have an approximation result using approximate
identities.

4.7.3 Theorem (Approximation in C0
bdd

(R;F) using approximate identities) If (uj)j∈Z>0

is an approximate identity on R and if f ∈ C0
bdd(R;F), then, for each compact set K ⊆ R,

the sequence (f ∗ uj|K)j∈Z>0 converges uniformly to f|K.
Proof Let K ⊆ R be compact and let ϵ ∈ R>0. Choose T ∈ R>0 sufficiently large that
K ⊆ [−T,T]. As in the proof of Theorem 4.7.2, noting that∫

R
u j(τ) dτ = 1

we have

f (t) − f ∗ u j(t) =
∫
R

( f (t) − f (t − τ))u j(τ) dτ (4.25)

for every t ∈ R and j ∈ Z>0. Note that since f is bounded this integral makes sense for
all t ∈ R. Let M ∈ R>0 be such that ∥u j∥1 ≤M for each j ∈ Z>0. Note that f is uniformly
continuous on [−T,T]. Thus there exists δ ∈ R>0 such that

| f (t) − f (t − τ)| <
ϵ

2M

when t ∈ [−T,T] and |τ| < δ. Then∫ δ

−δ
| f (t) − f (t − τ)||u j(τ)|dτ ≤

ϵ
2M

∫
R
|u j(τ)|dτ <

ϵ
2
. (4.26)

Now let C = ∥ f ∥∞ and note that, for every t1, t2 ∈ R, | f (t1) − f (t2)| ≤ 2C using the
triangle inequality. Now there exists N ∈ Z>0 such that∫

R\[−δ,δ]
|u j(τ)|dτ <

ϵ
4C

for j ≥ N. Therefore, if j ≥ N we have∫
R\[−δ,δ]

| f (t) − f (t − τ)||u j(τ)|dτ <
ϵ
2
. (4.27)

Putting (4.25), (4.26), and (4.27) together we have

| f (t) − f ∗ u j(t)| < ϵ, j ≥ N, t ∈ K,

giving the result. ■

Our next approximation result also deals with continuous signals. Here we get
the stronger result of uniform convergence on R, but by adding the hypothesis of
uniform continuity.
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4.7.4 Theorem (Approximation in C0
unif,bdd

(R;F) using approximate identities) If
(uj)j∈Z>0 is an approximate identity on R and if f ∈ C0

unif,bdd(R;F), then the sequence
(f ∗ uj|K)j∈Z>0 converges uniformly to f.

Proof Let M ∈ R>0 be such that ∥u j∥1 ≤ M for every j ∈ Z>0. Choose δ ∈ R>0 so that
| f (t − s) − f (t)| < ϵ

2M for |s| < δ, this being possible by uniform continuity of f . Let
N ∈ Z>0 be such that ∫

R\[−δ,δ]
|u j(s)|ds ≤

ϵ
2∥ f ∥∞

.

For each j ∈ Zwe have ∫
R

u j(s) ds = 1

and so, for each t ∈ R and j ≥ N,

| f ∗ u j(t) − f (t)| =
∣∣∣∣∣∫
R

u j(s)( f (t − s) − f (t)) ds
∣∣∣∣∣

≤

∫ δ

−δ
|u j(s)|| f (t − s) − f (t)|ds +

∫
R\[−δ,δ]

|u j(s)|| f (t − s) − f (t)|ds

≤ ∥u j∥1
ϵ

2M
+ 2∥ f ∥∞

∫
R\[−δ,δ]

|u j(s)|ds < ϵ,

giving the result. ■

Our final result is a pointwise convergence result.

4.7.5 Theorem (Pointwise approximations using even approximate identities) Let
(uj)j∈Z>0 be an approximate identity such that uj(−t) = uj(t) for each j ∈ Z>0 and t ∈ R.
If f ∈ L(∞)(R;F) and if, for t0 ∈ R, the limits f(t0−) and f(t0+) exist, then (f ∗ uj(t0))j∈Z>0

converges to 1
2 (f(t0−) + f(t0+)).

Proof We may obviously assume that f is not almost everywhere zero. First suppose
that f is continuous at t0. Let ϵ ∈ R>0. Let M ∈ R>0 be such that ∥u j∥1 ≤ M for every
j ∈ Z>0. Let δ ∈ R>0 be such that, if |τ| < δ, then | f (t0 − τ) − f (t0)| ≤ ϵ

2M . Then∫ δ

−δ
|u j(τ)|| f (t0 − τ) − f (t0)|dτ ≤

ϵ
2M

∫
R
|u j(τ)|dτ <

ϵ
2
.

Note that | f (t0 − τ) − f (t0)| ≤ 2∥ f ∥∞. Let N ∈ Z>0 be sufficiently large that∫
R\[−δ,δ]

|u j(τ)|dτ <
ϵ

4∥ f ∥∞

for j ≥ N. Then ∫
R\[−δ,δ]

|u j(τ)|| f (t0 − τ) − f (t0)|dτ <
ϵ
2

for j ≥ N.
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Now, as in the proofs of Theorems 4.7.2 and 4.7.3, we have

f (t0) − f ∗ u j(t0) =
∫
R

( f (t0) − f (t0 − τ))u j(τ) dτ

and so

| f (t0) − f ∗ u j(t0)| ≤
∫ δ

−δ
|u j(τ)|| f (t0 − τ) − f (t0)|dτ

+

∫
R\[−δ,δ]

|u j(τ)|| f (t0 − τ) − f (t0)|dτ < ϵ

for j ≥ N.
Thus our result holds if f is continuous at t0. If the limits f (t0−) and f (t0+) both exist

but are not necessarily equal, then one applies the argument for signals continuous at
t = 0 to the signal g(t) = 1

2 ( f (t0 − t) + f (t0 + t)). Convergence of (g ∗ u j(t0)) j∈Z>0 to g(0)
then implies convergence of ( f ∗ u j(t0)) j∈Z>0 to 1

2 ( f (t0−) + f (t0+)) using the fact that∫
R

f (t0 − s)u j(τ) dτ =
1
2

∫
R

( f (t0 − τ) + f (t0 + τ))u j(τ) dτ

by evenness of u j, j ∈ Z>0. ■

Pointwise convergence at Lebesgue points in convolution.pdf and Stein and
Weiss, pg. 13

There is a large class of approximate identities that arise in the following way.

4.7.6 Proposition (Approximate identities on R generated by a single signal) If
u ∈ L(1)(R;F) satisfies ∫

R

u(t) dt = 1,

then the sequence (uj)j∈Z>0 defined by uj(t) = ju(jt) is an approximate identity on R.
Proof By the change of variables formula we have∫

R
u j(t) dt =

∫
R

u(t) dt

and ∥u j∥1 = ∥u∥1 for every j ∈ Z>0, immediately giving the first two properties of an
approximate identity. For the third property, let α ∈ R>0. Note that since u ∈ L(1)(R;F)
the limit ∫ R

−R
|u(t)|dt

exists and so

lim
R→0

∫
R\[−R,R]

|u(t)|dt = 0.

Therefore, using the change of variables theorem,

lim
j→∞

∫
R\[−α,α]

|u j(t)|dt = lim
j→∞

∫
R\[− jα, jα]

|u(τ)|dτ = 0,

as desired. ■

Let us give some examples of approximate identities.
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4.7.7 Examples (Approximate identities on R)
1. Let us define Poisson kernel on R for Ω ∈ R>0 by

PΩ(t) =
1
π

Ω

1 +Ω2t2 , t ∈ R.

In Figure 4.23 we plot it for a few values of Ω.
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Figure 4.23 The Poisson kernel PΩ forΩ ∈ {1, 5, 20} (top) and the
corresponding approximations by convolution of the charac-
teristic function of [−1, 1] (bottom)

It is clear that PΩ ∈ L(1)(R;R) (see Exercise 1.3.11). Also, by the change of
variable theorem we compute

Ω

π

∫
R

1
1 +Ω2t2 dt =

1
π

∫
R

1
1 + τ2 dτ =

1
π

tan−1(τ)|∞
−∞
= 1,

recalling that, as we showed in the proof of Theorem I-3.8.18,

d
dx

tan−1(x) =
1

1 + x2
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(also see Example II-1.6.40–1). Note that

jPΩ( jt) =
1
π

jΩ
1 + ( jΩ)2t2 = P jΩ.

Therefore, by Proposition 4.7.6, (P jΩ) j∈Z>0 is an approximate identity for ev-
ery Ω ∈ R>0. Moreover, this also shows that the limit as j → ∞ in Theo-
rems 4.7.2, 4.7.3, 4.7.4, and 4.7.5 can be replaced with the limit as Ω → ∞.
Said precisely, if f ∈ L(p)(R;F), then limΩ→∞∥ f − f ∗PΩ∥p = 0 and, if f ∈ C0

bdd(R;F)
then the family of signals ( f ∗ PΩ)Ω∈R>0 converges uniformly to f on every com-
pact set. In Figure 4.23 we show a few approximations of the signal χ[−1,1] by ref for what this means?

convolution with the Poisson kernel.
There is an alternative representation of the Poisson kernel that will be useful
to us in . To make this representation, we think of the Poisson kernel as being a what?

function of t and Ω and make the change of variable

R>0 ×R(Ω, t) 7→ ( 1
Ω
, t) ∈ R>0 ×R,

calling the new variables (x, y). In these variables, the Poisson kernel is ex-
pressed as

P(x, y) =
1
π

x
x2 + y2 .

We can think of P as being defined on the plane, and indeed the complex
plane. In doing this, the limit as Ω → ∞ becomes the limit as x → 0 from the
right, i.e., approaching the imaginary axis in the complex plane.

2. Here, for Ω ∈ R>0, we define the Gauss–Weierstrass kernel on R by

GΩ(t) =
exp(− t2

4Ω )
√

4πΩ

for t ∈ R. In Figure 4.24 Note that GΩ ∈ L(1)(R;R) by Exercise 1.3.11. By
Lemma III-1 from Example III-2.3.32–4 and a change of variable, we easily
determine that ∥GΩ∥1 = 1 for every Ω ∈ R>0. Thus, if we define

GΩ, j(t) = jGΩ( jt),

we see from Proposition 4.7.6 that the sequence (GΩ, j) j∈Z>0 is an approximate
identity. In Figure 4.24 we show a few approximations by convolution with the
Gauss–Weierstrass kernel of the characteristic function of [−1, 1].

3. The Fejér kernel2 on R is defined for Ω ∈ R>0 and t ∈ R by

FΩ(t) =

 sin2(πΩt)
π2Ωt2 , t , 0,
Ω, t = 0.
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Figure 4.24 The Gauss–Weierstrass kernel GΩ for Ω ∈ {1, 5, 20}
(top) and the corresponding approximations by convolution
of the characteristic function of [−1, 1] (bottom)

In Figure 4.25 we show the Fejér kernel for a few values of Ω.
Let us show that FΩ ∈ L(1)(R;R) and that ∥FΩ∥1 = 1. First we prove a couple of
lemmata. First we define sinc : R→ R by

sinc(t) =

 sin(t)
t , t , 0,

1, t = 0.

With this function defined, we have the following lemma.

1 Lemma lim
T→∞

∫ T

−T
sinc(t) dt = π.

2Lipót Fejér (1880-1959) was a Hungarian mathematician whose main area of mathematical
activity was harmonic analysis.
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Figure 4.25 The Fejér kernel FΩ for Ω ∈ {1, 5, 20} (top) and the
corresponding approximations by convolution of the charac-
teristic function of [−1, 1] (bottom)

Proof Define F : C→ C by

F(z) =

 ez
−e−z

2iz , z , 0,
1, z = 0

and note that

F(iy) =
eiy
− e−iy

2i(iy)
=

sinc(y)
i

.

It is clear that F is analytic on C \ {0}. Since limz→0 F(z) = 1 it follows from that what

F is, in fact, analytic. Note that if we define

F+(z) =
ez

2iz
, F−(z) =

e−z

2iz
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then F(z) = F+(z) + F−(z) for z , 0, but that at z = 0 both F+ and F− have
singularities.
Now we define some contours in C:

γT = {0 + iy ∈ C | y ∈ [−T,T]},

γ′T = {0 + iy | y ∈ [−T, 1]} ∪ {eiθ
| θ ∈ [− 1

2 ,
1
2 ]} ∪ {0 + iy | y ∈ [1,T]}, T > 1,

C+,T = {Teiθ
| θ ∈ [−π, π]},

C−,T = {−Teiθ
| θ ∈ [−π, π]}.

We depict these contours in Figure 4.26 with their positive orientations. Let us

Figure 4.26 The contours γT (topleft), γ′T (top right), C+,T (bottom
left), and C−,T (bottom right)

also denote
Γ+,T = γ

′

T ∪ C+,T, Γ−,T = γ′T ∪ C−,T,
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taking the counterclockwise orientation about these contours as being positive,
as usual.
Note that, by direct computation, we have∫ T

−T
sinc(t) dt =

∫
γT

F(z) dz.

Note that since F is entire we have∫ T

−T
sinc(t) dt =

∫
γ′T

F(z) dz

by virtue of . Therefore, what?∫ T

−T
sinc(t) dt =

∫
γ′T

F+(z) dz −
∫
γ′T

F−(z) dz. (4.28)

By the Residue Theorem, since F+(z) has a simple pole at z = 0,∫
Γ−,T

F+(z) dz = 2πi Res(F+, 0) = 2πi lim
z→0

zF+(z) = π.

Since F− is analytic on and within Γ+,T we have∫
Γ+,T

F−(z) dz = 0.

Note that, by Jordan’s Lemma (), we have ref

lim
T→∞

∫
C−,T

F+(z) dz = lim
T→∞

∫
C+,T

F−(z) dz = 0.

Therefore, since ∫
Γ−,T

F+(z) dz =
∫
γ′T

F+(z) dz +
∫

C−,T
F+(z) dz

and ∫
Γ+,T

F−(z) dz = −
∫
γ′T

F−(z) dz +
∫

C+,T
F−(z) dz

(keeping orientations of contours in mind), we have

lim
T→∞

∫
γ′T

F+(z) dz = π

and

lim
T→∞

∫
γ′T

F−(z) dz = 0,

giving the lemma by virtue of (4.28). ▼
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2 Lemma
∫ T

0
sinc(t)2 dt =

∫ 2T

0
sinc(t) dt − T sinc(T)2.

Proof We differentiate both sides of the proposed equation with respect to T:

d
dT

∫ T

0
sinc(t)2 dt = sinc(T)2

and (noting the definition of sinc)

d
dT

(∫ 2T

0
sinc(t) dt −

sin(T)2

T

)
= sinc(2T) +

sin(T)(sin(T) − 2T cos(T))
T2

=
sin(T)2

T2 = sinc(T)2,

noting that 2 cos(T) sin(T) = sin(2T). Thus both sides of the proposed equality
have the same derivatives. Moreover, since they both have the value 0 at x = 0
and since they are differentiable, it follows that the two sides of the proposed
equation must indeed be equal. ▼

3 Lemma We have sinc < L(1)(R;R) and sinc2
∈ L(1)(R;R) ∩ L(2)(R;R).

Proof That sinc < L(1)(R;R) is shown in Example I-3.4.20. Since sinc is contin-
uous, so is sinc2. Thus sinc2 is bounded on [−1, 1]. Thus, noting that sinc2 is
even, ∫

R

|sinc2(t)|dt =
∫ 1

−1
|sinc2(t)|dt + 2

∫
∞

1

∣∣∣∣∣sin(t)2

t2

∣∣∣∣∣ dx

≤

∫ 1

−1
|sinc2(t)|dt +

∫
∞

1

1
t2 dt < ∞,

giving sinc2
∈ L(1)(R;R). One similarly shows that sinc2

∈ L(2)(R;R). ▼

From the second lemma and then the first lemma (noting that sinc is an even
function) we have

lim
T→∞

∫ T

0
sinc(t)2 dt = lim

T→∞

∫ T

0
sinc(t) dt =

π
2
.

Thus ∫
R

sinc(t)2 dt = π,

using evenness of sinc2. By the third lemma, FΩ ∈ L(1)(R;R). Moreover, by the
change of variable theorem,∫

R

FΩ(t) dt =
1
π

∫
R

sinc(τ)2 dτ = 1,
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showing that FΩ a candidate for defining an approximate identity according to
Proposition 4.7.6. Note that

jFΩ( jt) =
sin2(π jΩt)
π2 jΩt2 = F jΩ(t).

Thus, just as for the Poisson kernel, (F jΩ) j∈Z>0 is an approximate identity for
everyΩ ∈ R>0. And, also just as for the Poisson kernel, we can replace the limit
as j→∞ in Theorems 4.7.2, 4.7.3, 4.7.4, and 4.7.5 with the limit as Ω→∞.
While we are talking about the Fejér kernel, it is a good moment to prove a
formula that will be useful to us in Section 6.2.

4 Lemma FΩ(t) =
1
Ω

∫ Ω

0

(∫ a

−a
e2πiνt dν

)
da.

Proof An easy calculation (which will be performed in Example 6.1.3–3) gives∫ a

−a
e2πiνt dν =

 sin(2πat)
πt , t , 0,

2a, t = 0.

The result now follows by elementary integration. ▼

4. The next approximate identity we consider is the de la Vallée Poussin kernel on
R which is defined for Ω ∈ R>0 by

VΩ(t) = 2F2Ω(t) − FΩ(t).

In Figure 4.27 we show the de la Vallée Poussin kernel for a few values of Ω.
From the properties of the Fejér kernel we immediately have that ∥VΩ∥1 = 1.
Moreover, we have

jVΩ( jt) = 2 jF2Ω( jt) − jFΩ( jt) = 2F2 jΩ(t) − F jΩ(t) = V jΩ(t).

Thus we deduce that (VΩ) j∈Z>0 is an approximate identity for everyΩ ∈ R>0. As
we have seen above for the Poisson and Fejér kernels, we can replace the limit
as j→∞ in Theorems 4.7.2, 4.7.3, 4.7.4, and 4.7.5 with the limit as Ω→∞.

5. The Dirichlet kernel on R is defined for Ω ∈ R>0 by

DΩ(t) =

 sin(2πΩt)
πt , t , 0,

2Ω, t = 0

for t ∈ R. In Figure 4.28 we show the Dirichlet kernel for a few values of Ω.
Note that,

jDΩ( jt) =
sin(2π jΩt)

πt
= D jΩ(t),
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Figure 4.27 The de la Vallée Poussin kernel VΩ for Ω ∈ {1, 5, 10}
(top) and the corresponding approximations by convolution
of the characteristic function of [−1, 1] (bottom)

similarly to what we have seen for the Poisson and Fejér kernels. However, it is
not the case that (Ω−1D jΩ) j∈Z>0 is an approximate identity. For example, by the
change of variable theorem and Lemma 1 above, we have

lim
T→∞

∫ T

−T
DΩ(t) dt = lim

T→∞

Ω

π

∫ T

−T
sinc(t) dt = Ω,

and so the Dirichlet kernel does not have unit integral. Also as can be seen
from Lemma 3, DΩ < L(1)(R;R). So the Dirichlet kernel fails to define an
approximate identity in the way that the Fejér kernel does. However, it could
still be the case that the sequence (D jΩ) j∈Z>0 has the approximating properties
of an approximate identity. It turns out that this is true, sort of. It is not
true strictly. For example, there exists f ∈ L(1)(R;F) such that the sequence
( f ∗ D jΩ) j∈Z>0 does not converge to f in L1(R;F). But in Figure 4.28 we show aref
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Figure 4.28 The Dirichlet kernel DΩ for Ω ∈ {1, 5, 20} (top) and
the corresponding approximations by convolution of the char-
acteristic function of [−1, 1] (bottom)

few approximations of the characteristic functionχ[−1,1], and we see that, indeed,
some sort of approximation seems to be taking place. We shall discuss these
matters in some detail when we talk about Fourier integrals in Section 6.2. •

4.7.2 Approximate identities on R≥0

In this section we consider approximate identities for signals defined on the
continuous time-domain R≥0. Let p ∈ [1,∞). In Section 4.1.2 we considered
the structure of convolution in Lp

loc(R≥0;F), focusing on the case of p = 1. Here
we shall use the locally convex topological structure of Lp

loc(R≥0;F) discussed in
Section 4.1.2.

We begin with the definition of an approximate identity on R≥0. Again, the
reader should be aware of possible variations, not all equivalent, to the definition
we give.
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4.7.8 Definition (Approximate identity for signals defined on R≥0) An approximate
identity on R≥0 is a sequence (u j) j∈Z>0 in L(1)(R≥0;F) with the following properties:

(i)
∫
R≥0

u j(t) dt = 1, j ∈ Z>0;

(ii) there exists M ∈ R>0 such that ∥u j∥1 ≤M for each j ∈ Z>0;
(iii) for each α ∈ R>0,

lim
j→∞

∫
∞

α

|u j(t)|dt = 0. •

The following result adapts Theorem 4.7.2 to the present case.

4.7.9 Theorem (Approximation in Lp
loc

(R≥0;F) using approximate identities) If
(uj)j∈Z>0 is an approximate identity on R≥0 and if f ∈ L(p)(R≥0;F), then the sequence
(f � uj)j∈Z>0 converges to f in the topology on Lp

loc(R≥0;F).
Proof Let T ∈ R>0 and let fT = fχ[0,T] so that fT ∈ Lp(R≥0;F). Let us think of the
signals u j, j ∈ Z>0, and fT as being defined on R by asking that they take the value
0 for negative times. Then (u j) j∈Z>0 is obviously an approximate identity on R, as
discussed in Section 4.7.1. By Theorem 4.7.2 it follows that ( fT ∗ u j) j∈Z>0 converges to
f in Lp(R;F). Now let t ∈ [0,T]. Then, for each j ∈ Z>0,

f � u j(t) =
∫ t

0
f (t − s)u j(s) ds =

∫ t

0
fT(t − s)u j(s) ds = fT � u j(t) = fT ∗ u j(t).

That is to say, f � u j|[0,T] only depends on f |[0,T]. Therefore,

lim
j→∞
∥ f � u j − f ∥p,T = lim

j→∞
∥ fT ∗ u j − fT∥p = 0,

giving the result by . ■what

The result can also be adapted to continuous signals. Thus we consider
C0(R≥0;F) and on this space of signals we use the locally convex topology de-
fined by the family of seminorms ∥·∥∞,T, T ∈ R>0, defined by

∥ f ∥∞,T = sup{| f (t)| | t ∈ [0,T]}.

As in , this topology is Fréchet. In this case we have the following result.what?

4.7.10 Theorem (Approximation in C0(R≥0;F) using approximate identities) If (uj)j∈Z>0

is an approximate identity on R≥0 and if f ∈ C0
bdd(R≥0;F), then the sequence (f � uj)j∈Z>0

converges to f in the topology on C0(R≥0;F).
Proof Let T ∈ R>0 and define fT ∈ C0

bdd(R≥0;F) by

fT(t) =


f (0), t ∈ R<0,

f (t), t ∈ [0,T],
f (T), t ∈ (T,∞).
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Let u j, j ∈ Z>0, be extended to be defined on R by asking that it take the value 0 for
negative times. By Theorem 4.7.3 the sequence ( fT ∗ u j) j∈Z>0 converges uniformly to
fT on [0,T]. As in the proof of Theorem 4.7.9, f � u j(t) = f ∗ u j(t) for t ∈ [0,T]. Thus

lim
j→∞
∥ f � u j − f ∥∞,T = lim

j→∞
sup{| fT ∗ u j(t) − f (t)| | t ∈ [0,T]} = 0,

giving the result by . ■ what?

The special class of approximate identities on R characterised in Proposi-
tion 4.7.6 are easily adapted to the case of approximate identities on R≥0. The
following result is easily proved along the same lines as Proposition 4.7.6.

4.7.11 Proposition (Approximate identities on R≥0 generated by a single signal) If
u ∈ L(1)(R≥0;F) satisfies ∫

R≥0

u(t) dt = 1,

then the sequence (uj)j∈Z>0 defined by uj(t) = ju(jt) is an approximate identity on R≥0.

It is also straightforward to adapt the examples of approximate identities given
in Example 4.7.7. We invite the reader to compute some approximations by con-
volution with these approximate identities to see how they work. Unsurprisingly,
the reader will find that they work rather like those in Example 4.7.7.

4.7.12 Examples (Approximate identities on R≥0)
1. For t ∈ R≥0 and for Ω ∈ R>0 define the Poisson kernel on R≥0 by

P+Ω(t) =
2
π

Ω

1 +Ω2t2 .

As in Example 4.7.7–1, we have P+
Ω
∈ L(1)(R≥0;F) and ∥P+

Ω
∥1 = 1 for every Ω ∈

R>0. Moreover, we also have jP+( jt) = P+jΩ(t) and so (P+jΩ) j∈Z>0 is an approximate
identity for every Ω ∈ R>0.

2. As in Example 4.7.7–2 we define the Gauss–Weierstrass kernel on R≥0 for
Ω ∈ R>0 by

G+Ω(t) =
exp(− t2

4Ω )
√
πΩ

.

One verifies from Example 4.7.7–2 that G+
Ω
∈ L(1)(R≥0;F) and that ∥G+

Ω
∥1. Thus,

if we define G+
Ω, j(t) = jG+

Ω
( jt), we have that (G+

Ω, j) j∈Z>0 is an approximate identity.

3. The Fejér kernel on R≥0 is defined for Ω ∈ R>0 and t ∈ R≥0 by

F+Ω(t) =

2 sin2(πΩt)
π2Ωt2 , t ∈ R>0,

2Ω, t = 0.

Following Example 4.7.7–3 we note that F+
Ω
∈ L(1)(R≥0;F), ∥F+

Ω
∥1 = 1, and

jF+
Ω

( jt) = F+jΩ(t). Thus (F+jΩ) j∈Z>0 is an approximate identity.
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4. The de la Vallée Poussin kernel on R≥0 is defined for Ω ∈ R>0 and t ∈ R≥0 by

V+Ω(t) = 2F+2Ω(t) − F+Ω(t).

From our computations for the Fejér kernel we have ∥V+
Ω
∥1 = 1 and jV+

Ω
( jt) =

V+jΩ(t). Thus (V+jΩ) j∈Z>0 is an approximate identity on R≥0. •

4.7.3 Periodic approximate identities

In this section we shall discuss approximate identities for periodic signals. The
first part of the discussion, that giving the definitions and the basic approximation
theorems, follows along the same lines as the preceding two sections. However, we
then turn to some rather deep connections between approximate identities on R
as discussed in Section 4.7.1 and periodic approximate identities. This discussion
relies heavily on material from Chapters 5 and 6.

Let us begin with the more or less familiar parts of the discussion.

4.7.13 Definition (Approximate identity for periodic signals) A T-periodic approxi-
mate identity onR is a sequence (u j) j∈Z>0 in L(1)(R;F) with the following properties:

(i)
∫ T

2

−
T
2

u j(t) dt = 1, j ∈ Z>0;

(ii) there exists M ∈ R>0 such that ∥u j∥1 ≤M for each j ∈ Z>0;
(iii) for each α ∈ (0, T

2 ],

lim
j→∞

∫
[− T

2 ,
T
2 ]\[−α,α]

|u j(t)|dt = 0. •

We can now state approximation theorems that are analogous to those in Sec-
tion 4.7.1.

4.7.14 Theorem (Approximation in Lp
per,T

(R;F) using approximate identities) Let p ∈

[1,∞). If (uj)j∈Z>0 is a T-periodic approximate identity on R and if f ∈ L(p)
per,T(R;F), then

the sequence (f ∗ uj)j∈Z>0 converges to f in Lp
per,T(R;F).

Proof Note that

f (t) − f ∗ u j(t) =
∫ T

2

−
T
2

( f (t) − f (t − τ))u j(τ) dτ,

using the fact that ∫ T
2

−
T
2

u j(τ) dτ = 1.
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Recalling the integral version of Minkowski’s inequality, Lemma III-3.8.56, we have

∥ f − f ∗ u j∥p =

∫ T
2

−
T
2

∣∣∣∣∣∣∣
∫ T

2

−
T
2

( f (t) − f (t − s))u j(τ) dτ

∣∣∣∣∣∣∣
p

dt


1/p

≤

∫ T
2

−
T
2

∫ T
2

−
T
2

|( f (t) − f (t − τ))u j(τ)|p dt

1/p

dτ

=

∫ T
2

−
T
2

∫ T
2

−
T
2

| f (t) − f (t − τ)|p dt

1/p

|u j(τ)|dτ

≤

∫ T
2

−
T
2

∥ f − τ∗τ f ∥p|u j(τ)|dτ,

recalling the notation τ∗τ f (t) = f (t−τ). Let ϵ ∈ R>0. Let M ∈ R>0 be such that ∥u j∥1 ≤M
for each j ∈ Z>0. By Lemma 1 from the proof of Corollary 4.2.32 let δ ∈ (0, T

2 ] be
sufficiently small that ∥ f − τ∗a f ∥ < ϵ

2M for a ∈ (0, δ]. Then∫ δ

−δ
∥ f − τ∗τ f ∥p|u j(τ)|dτ ≤

ϵ
2M

∫ T
2

−
T
2

|u j(τ)|dτ ≤
ϵ
2
. (4.29)

Also let N ∈ Z>0 be sufficiently large that∫
[− T

2 ,
T
2 ]\[−δ,δ]

|u j(τ)|dτ <
ϵ

4∥ f ∥p
, j ≥ N.

Then, noting that ∥ f − τ∗τ f ∥p ≤ 2∥ f ∥p by the triangle inequality and invariance of the
norm under translation, we compute∫

[− T
2 ,

T
2 ]\[−δ,δ]

∥ f − τ∗τ f ∥p|u j(τ)|ds ≤ 2∥ f ∥p

∫
[− T

2 ,
T
2 ]\[−δ,δ]

|u j(τ)|dτ <
ϵ
2
. (4.30)

Combining (4.29) and (4.30) we see that, for j ≥ N,

∥ f − f ∗ u j∥p < ϵ,

giving the result. ■

For continuous signals we also have an approximation result using approximate
identities.

4.7.15 Theorem (Approximation in C0
per,T

(R;F) using approximate identities) If
(uj)j∈Z>0 is a T-periodic approximate identity on R and if f ∈ C0

per,T(R;F), then the
sequence (f ∗ uj)j∈Z>0 converges uniformly to f.

Proof Let ϵ ∈ R>0. As in the proof of Theorem 4.7.14, noting that∫ T
2

−
T
2

u j(τ) dτ = 1
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we have

f (t) − f ∗ u j(t) =
∫ T

2

−
T
2

( f (t) − f (t − τ))u j(τ) dτ (4.31)

for every t ∈ R and j ∈ Z>0. Note that since f is bounded this integral makes sense for
all t ∈ R. Let M ∈ R>0 be such that ∥u j∥1 ≤M for each j ∈ Z>0. Note that f is uniformly
continuous on each interval of length T, and so is uniformly continuous. Thus there
exists δ ∈ (0, T

2 ] such that

| f (t) − f (t − τ)| <
ϵ

2M
for t ∈ R and |τ| < δ. Then, for every j ∈ Z>0,∫ δ

−δ
| f (t) − f (t − τ)||u j(τ)|dτ ≤

ϵ
2M

∫ T
2

−
T
2

|u j(τ)|dτ <
ϵ
2
. (4.32)

Now let C = ∥ f ∥∞ and note that, for every t1, t2 ∈ R, | f (t1) − f (t2)| ≤ 2C using the
triangle inequality. Now there exists N ∈ Z>0 such that∫

[− T
2 ,

T
2 ]\[−δ,δ]

|u j(τ)|dτ <
ϵ

4C

for j ≥ N. Therefore, if j ≥ N we have∫
[− T

2 ,
T
2 ]\[−δ,δ]

| f (t) − f (t − τ)||u j(τ)|dτ <
ϵ
2
. (4.33)

Putting (4.31), (4.32), and (4.33) together we have

| f (t) − f ∗ u j(t)| < ϵ, j ≥ N, t ∈ R,

giving the result. ■

We also have a result concerning pointwise convergence of approximations.

4.7.16 Theorem (Pointwise approximations using even approximate identities) Let
(uj)j∈Z>0 be a T-periodic approximate identity such that uj(−t) = uj(t) for each j ∈ Z>0 and
t ∈ (−T

2 ,
T
2 ). If f ∈ L(∞)

per,T(R;F) and if, for t0 ∈ R, the limits f(t0−) and f(t0+) exist, then
(f ∗ uj(t0))j∈Z>0 converges to 1

2 (f(t0−) + f(t0+)).
Proof We may obviously assume that f is not almost everywhere zero. First suppose
that f is continuous at t0. Let ϵ ∈ R>0. Let M ∈ R>0 be such that ∥u j∥1 ≤ M for every
j ∈ Z>0. Let δ ∈ (0, T

2 ] be such that, if |τ| < δ, then | f (t0 − τ) − f (t0)| ≤ ϵ
2M . Then∫ δ

−δ
|u j(τ)|| f (t0 − τ) − f (t0)|dτ ≤

ϵ
2M

∫ T
2

−
T
2

|u j(τ)|dτ <
ϵ
2
.

Note that | f (t0 − τ) − f (t0)| ≤ 2∥ f ∥∞. Let N ∈ Z>0 be sufficiently large that∫
[− T

2 ,
T
2 ]\[−δ,δ]

|u j(τ)|dτ <
ϵ

4∥ f ∥∞
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for j ≥ N. Then ∫
[− T

2 ,
T
2 ]\[−δ,δ]

|u j(τ)|| f (t0 − τ) − f (t0)|dτ <
ϵ
2

for j ≥ N.
Now, as in the proofs of Theorems 4.7.14 and 4.7.15, we have

f (t0) − f ∗ u j(t0) =
∫ T

2

−
T
2

( f (t0) − f (t0 − τ))u j(τ) dτ

and so

| f (t0) − f ∗ u j(t0)| ≤
∫ δ

−δ
|u j(τ)|| f (t0 − τ) − f (t0)|dτ

+

∫
[− T

2 ,
T
2 ]\[−δ,δ]

|u j(τ)|| f (t0 − τ) − f (t0)|dτ < ϵ

for j ≥ N.
Thus our result holds if f is continuous at t0. If the limits f (t0−) and f (t0+) both exist

but are not necessarily equal, then one applies the argument for signals continuous at
t = 0 to the signal g(t) = 1

2 ( f (t0 − t) + f (t0 + t)). Convergence of (g ∗ u j(t0)) j∈Z>0 to g(0)
then implies convergence of ( f ∗ u j(t0)) j∈Z>0 to 1

2 ( f (t0−) + f (t0+)) using the fact that∫ T
2

−
T
2

f (t0 − s)u j(τ) dτ =
1
2

∫ T
2

−
T
2

( f (t0 − τ) + f (t0 + τ))u j(τ) dτ

by evenness of u j, j ∈ Z>0. ■

Now that we understand some of the approximation properties of periodic
approximate identities, we can see some of the ways in which they can be produced.
A basic result here shows how approximate identities on R give rise to periodic
approximate identities. To state the result, we look ahead to Section 8.1.2 for the
notion of the periodisation of a signal.

4.7.17 Theorem (Periodic approximate identities from aperiodic ones) Let (uj)j∈Z>0

be an approximate identity on R and let T ∈ R>0. Then (perT(uj))j∈Z>0 is a T-periodic
approximate identity.

Proof From Proposition 8.1.2 the first two properties of a periodic approximate iden-
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tity are immediately verified. For the third, let α ∈ (0, T
2 ]. Then∫

[− T
2 ,

T
2 ]\[−α,α]

|perT(u j)(t)|dt ≤
∫

[− T
2 ,

T
2 ]\[−α,α]

|u j(t)|dt +
∫

[− T
2 ,

T
2 ]\[−α,α]

 ∑
k∈Z\{0}

|u j(t + kT)|

 dt

≤

∫
[− T

2 ,
T
2 ]\[−α,α]

|u j(t)|dt +
∫ T

2

−
T
2

∑
k∈Z\{0}

|u j(t + kT)|dt

=

∫
[− T

2 ,
T
2 ]\[−α,α]

|u j(t)|dt +
∑

k∈Z\{0}

∫ T
2

−
T
2

|u j(t + kT)|dt

=

∫
[− T

2 ,
T
2 ]\[−α,α]

|u j(t)|dt +
∑

m∈Z\{0}

∫ (m− 1
2 )T

(m+ 1
2 )T
|u j(τ)|dτ

=

∫
R\[−α,α]

|u j(τ)|dτ,

using Fubini’s Theorem to swap the sum and integral and using the change of variables
theorem. Taking the limit as j → ∞ gives the result since (u j) j∈Z>0 is an approximate
identity. ■

Combining the preceding theorem with Proposition 4.7.6 immediately gives
the following corollary.

4.7.18 Corollary (A special class of periodic approximate identities) Let u ∈ L(1)(R;F)
satisfy ∫

R

u(t) dt

and define uj ∈ L(1)(R;F) by uj(t) = ju(jt). Then, for any T ∈ R>0, (perT(uj))j∈Z>0 is a
periodic approximate identity.

The matter of computing perT( f ) is often facilitated by the so-called Poisson
Summation Formula, presented in Section 8.2, which relies on the theory of Fourier
transforms presented in Chapters 5 and 6. In Section 8.2.2 we use the Poisson Sum-
mation Formula to compute periodisations of the approximate identities onRgiven
in Example 4.7.7. Here we shall simply refer ahead to these computations and give
the resulting periodic approximate identities, as well as give the approximations
for a concrete example.

4.7.19 Examples (Periodic approximate identities)
1. In Example 8.2.2–1 the periodisation of the Poisson kernel

PΩ(t) =
1
π

Ω

1 +Ω2t2 ,

is computed, and this periodisation is determined to be perT(PΩ) = 1
T Pper

T,Ω, where

Pper
T,Ω(t) =

1 − (e−
2π
ΩT )2

1 − 2e− 2π
ΩT cos(2π t

T ) + (e− 2π
ΩT )2

.



2022/03/07 4.7 Approximation and regularisation 393

We call Pper
T,Ω the T-periodic Poisson kernel. Note that, according to Theo-

rem 4.7.17 and our computations of Example 4.7.7–1, the sequence ( 1
T Pper

T, jΩ) j∈Z>0

is an approximate identity for everyΩ ∈ R>0. In Figure 4.29 we plot the periodic
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Figure 4.29 The 2-periodic Poisson kernel Pper
Ω

for Ω ∈ {5, 10, 20}
(top) and the corresponding approximations by convolution of
the periodic extension of the characteristic function of [− 1

2 ,
1
2 ]

(bottom)

Poisson kernel for T = 2 and a few values of Ω. We also show the correspond-
ing approximations to the periodic extension of the characteristic function of
[−1

2 ,
1
2 ].

There is another representation of the periodic Poisson kernel that we shall use.
To understand this representation, we think of the Poisson kernel as a function
of the two variables (Ω, t). We then make a change of variable

R>0 × [0,T] ∋ (Ω, t) 7→ (e−2π/Ω, 2π t
T ) ∈ (0, 1) × [0, 2π],

calling the new variables (r, θ). The periodic Poisson kernel expressed in these
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coordinates is then

Pper(r, θ) =
1 − r2

1 − 2r cosθ + r2 ,

which we think of as being a function on the unit disk in the plane, possibly the
complex plane. Note that r→ 1 as Ω→∞. Thus limits for large Ω correspond
to approaching the boundary of the disk. This interpretation is explored .where

2. In Example 8.2.2–2 we determined the periodisation of the Gauss–Weierstrass
kernel

GΩ(t) =
exp(− t2

4Ω )
√

4πΩ
to be given by the infinite series

perT(GΩ)(t) =
∑
n∈Z

exp
(
−

4π2Ωn2

T2

)
e2πin t

T .

This infinite series converges uniformly by the Weierstrass M-test. If we define

GΩ, j(t) = jGΩ( jt),

then (perT(GΩ, j)) j∈Z>0 is an approximate identity. In Figure 4.30 we plot the pe-
riodic Gauss–Weierstrass kernel for T = 2 and a few values ofΩ. We also show
the corresponding approximations to the periodic extension of the characteristic
function of [−1

2 ,
1
2 ].

3. In Example 8.2.2–3 we determine the periodisation of the Fejér kernel

FΩ(t) =

 sin2(πΩt)
π2Ωt2 , t , 0,
Ω, t = 0.

In order to express this, for N ∈ Z>0 and T ∈ R>0, we define the periodic Fejér
kernel and the periodic Dirichlet kernel by

Fper
T,N(t) =


1
N

sin2(Nπ t
T )

sin2(π t
T )
, t < Z(T),

N, t ∈ Z(T)

and

Dper
T,N(t) =

 sin((2N+1)π t
T )

sin(π t
T ) , t < Z(T),

2N + 1, t ∈ Z(T),

respectively. With these signals defined, we can then write the general form of
the periodisation of FΩ:

perT(FΩ)(t) = 1
T

(
N

TΩFper
T,N(t) + (1 − N

TΩ )Dper
T,N−1(t)

)
,
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Figure 4.30 The 2-periodic Gauss–Weierstrass kernel perT(GΩ)
for Ω ∈ {1, 5, 20} (top) and the corresponding approximations
by convolution of the periodic extension of the characteristic
function of [− 1

2 ,
1
2 ] (bottom)

where N ∈ Z>0 is the smallest integer such that N ≥ TΩ. Note that, according
to Theorem 4.7.17 and our computations of Example 4.7.7–3, the sequence
(perT(F jΩ)) j∈Z>0 is an approximate identity for each Ω ∈ R>0. In particular,
when TΩ ∈ Z, this shows that ( 1

T Fper
T,N)N∈Z>0 is an approximate identity. In

Figure 4.31 we plot the periodic Fejér kernel for T = 2 and a few values of
Ω. We also show the corresponding approximations to the periodic extension
of the characteristic function of [− 1

2 ,
1
2 ]. Note that in the plot given, TΩ is an

integer, and so perT(FΩ) = 1
T Fper

T,N in this case.
4. In Example 8.2.2–4 we considered the periodisation of the de la Vallée Poussin

kernel
VΩ(t) = 2F2Ω(t) − FΩ(t).

In the case when the period T of the periodisation satisfies TΩ ∈ Z then we saw
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Figure 4.31 The 2-periodic Fejér kernel Fper
T,N forΩ ∈ {1, 5, 10} (top)

and the corresponding approximations by convolution of the
periodic extension of the characteristic function of [−1

2 ,
1
2 ] (bot-

tom)

that
perT(VΩ)(t) = 1

T Vper
T,N(t),

where N = TΩ and where

Vper
T,N(t) ≜ 2Fper

T,2N(t) − Fper
T,N(t).

By Theorem 4.7.17 and our computations of Example 4.7.7–4, the sequence
(perT(V jΩ)) j∈Z>0 is an approximate identity for each Ω ∈ R>0. In Figure 4.32 we
plot the periodic de la Vallée Poussin kernel for T = 2 and a few values ofΩ. We
also show the corresponding approximations to the periodic extension of the
characteristic function of [− 1

2 ,
1
2 ]. Note that in the plot given, TΩ is an integer,

and so perT(VΩ) = 1
T Vper

T,N in this case.
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Figure 4.32 The 2-periodic de la Vallée Poussin kernel Vper
T,N for

Ω ∈ {1, 5, 10} (top) and the corresponding approximations
by convolution of the periodic extension of the characteris-
tic function of [− 1

2 ,
1
2 ] (bottom)

5. The last periodic approximate identity we consider is not actually a periodic
approximate identity, but it is so important that we include it in our list of
examples. The Dirichlet kernel

DΩ(t) =

 sin(2πΩt)
πt , t , 0,

2Ω, t = 0

introduced in Example 4.7.7–5 is not integrable, and so it cannot be used as
in Theorem 4.7.17 to construct an approximate identity. Moreover, its peri-
odisation cannot be computed using the Poisson Summation Formula as was
the case for the Poisson, Gauss–Weierstrass, and Fejér kernels. Nonetheless, in
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Example 8.1.3 we computed the periodisation of DΩ to be

perT(DΩ)(t) =
1
T

Dper
N,T(t), Ω < Z(T−1),

Dper
N,T(t) + cos(2π(N + 1) t

T ), Ω ∈ Z(T−1),

where N is largest integer such that N < TΩ. While we cannot use Theo-
rem 4.7.17 to deduce that perT(DΩ) gives rise to an approximate identity, it still
might be the case that perT(DΩ) does give rise to an approximate identity. For
example, note that perT(DΩ) ∈ C0

per,T(R;F) and so perT(DΩ) is bounded since

it is periodic. Therefore, perT(DΩ) ∈ L(1)
per,T(R;F), and so this requirement of a

periodic approximate identity is met. Moreover, we compute∫ T
2

−
T
2

Dper
N,T(t) dt =

N∑
j=−N

∫ T

0
e2πi j t

T dt = T,

noting that ∫ T
2

−
T
2

e2πi j t
T dt = 0

for j , 0. From this we conclude that∫ T
2

−
T
2

perT(DΩ)(t) dt = 1

for every T,Ω ∈ R>0. However, the following lemma shows that perT(DΩ)
cannot be used to define a periodic approximate identity.

1 Lemma For T ∈ R>0, limN→∞∥D
per
T,N∥1 = ∞.

Proof Since perT(DΩ) is even, it suffices to consider its restriction to [0, T
2 ]. Note

that
0 < sin(x) < x, x ∈ (0, π2 ] =⇒ 0 < sin(π t

T ) < π t
T , t ∈ (0, T

2 ].

We then have∫ T
2

0
|Dper

T,N(t)|dt ≥
N−1∑
k=1

∫ k+1
2N+1 T

k
2N+1 T

|Dper
T,N(t)|dt

≥

N−1∑
k=1

∫ k+1
2N+1 T

k
2N+1 T

∣∣∣∣∣∣sin((2N + 1)π t
T )

π t
T

∣∣∣∣∣∣ dt

≥

N−1∑
k=1

(
π

k + 1
2N + 1

)−1 ∫ k+1
2N+1 T

k
2N+1 T

|sin((2N + 1)π t
T )|dt

=

N−1∑
k=1

2N + 1
π(k + 1)

2T
(2N + 1)π

=
2T
π2

N−1∑
k=1

1
k + 1

.
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By Example I-2.4.2–2, this gives

lim
N→∞

∫ T
2

0
|Dper

T,N(t)|dt = ∞,

which gives the lemma. ▼

Thus condition (ii) of Definition 4.7.13 cannot be satisfied for the sequence
(perT(D jΩ)) j∈Z>0 . Nonetheless, as we did in Example 4.7.19–5, we can ponder
on whether (perT(D jΩ)) j∈Z>0 can be used to approximate signals. As was the
case in Example 4.7.19–5, for (D jΩ) j∈Z>0 , there exists f ∈ L(1)

per,T(R;F) such that
( f ∗ perT(D jΩ)) j∈Z>0 does not converge in L1

per,T(R;F). But, for some classes
of signals, these approximations by convolution do indeed give meaningful
results. To this end, in Figure 4.33 we plot the periodisation perT(DΩ) of the
Dirichlet kernel for T = 2 and a few values ofΩ. We also show the corresponding
approximations to the periodic extension of the characteristic function of [−1

2 ,
1
2 ].

Note that in the plot given, TΩ is always an integer, and so perT(DΩ) , 1
T Dper

T,N
in this case. •

4.7.4 Regularisation of signals on R

Next we consider approximating signals by signals that are infinitely differen-
tiable. Key to this is the following idea.

4.7.20 Definition A sequence (ρ j) j∈Z>0 inD (R;F) is regularising if
(i) ρ j(t) ≥ 0 for all t ∈ R;

(ii)
∫
R
ρ j(t) dt = 1 for j ∈ Z>0;

(iii) supp(ϕ j) = [−δ j, δ j] and lim j→∞ δ j = 0.
If f ∈ L(p)(R;F) and if (ρ j) j∈Z>0 is a regularising sequence, then the sequence ( f ∗
ρ j) j∈Z>0 is a regularisation of f . •

Note that it is clear by Proposition 3.7.23 that a regularising sequence is a delta-
sequence. However, it is a rather special delta-sequence since it is comprised of
test signals. The following example shows that regularising sequences exist.

4.7.21 Example Define ρ j(t) = j ⋏ ( jt). One readily checks that the sequence (ρ j) j∈Z>0 is a
regularising sequence. In Figure 4.34 we show a few terms in this sequence. •

The following theorem shows that the sequence of regularisations of a signal
converges to the signal in a suitable sense.

4.7.22 Theorem If f ∈ L(p)(R;F), p ∈ [1,∞), and (ρj)j∈Z>0 is a regularising sequence then
limj→∞∥f − f ∗ ρj∥p = 0.
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Figure 4.33 The 2-periodisation of DΩ forΩ ∈ {1, 5, 10} (top) and
the corresponding approximations by convolution of the peri-
odic extension of the characteristic function of [−1

2 ,
1
2 ] (bottom)

Proof We shall first prove the result for a compactly supported continuous signal g.
Let (ρ j) j∈Z>0 be a regularising sequence. Let us consider approximating g by g ∗ ρ j. We
have

g(t) − g ∗ ρ j(t) =
∫
R

(g(t) − g(t − s))ρ j(s) ds,

using the fact that
∫
R
ρ j(t) dt = 1. Recalling the integral version of Minkowski’s
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Figure 4.34 A regularising sequence

inequality, Lemma III-3.8.56, we have

∥g − g ∗ ρ j∥p =

(∫
R

∣∣∣∣∣∫
R

(g(t) − g(t − τ))ρ j(τ) dτ
∣∣∣∣∣p dt

)1/p

≤

∫
R

(∫
R
|(g(t) − g(t − τ))ρ j(τ)|p dt

)1/p

dτ

≤

∫
R

(∫
R
|g(t) − g(t − τ)|p dt

)1/p

|ρ j(τ)|dτ

≤

∫
R
∥g − gτ∥p|ρ j(τ)|dτ,

where gτ(t) = g(t−τ). Note that the integral above is really over [−δ j, δ j] since ρ j has its
support in this interval. We claim that limτ→0∥g− gτ∥p = 0. Indeed, since g ∈ C0

cpt(R;F)
by choosing δ > 0 sufficiently small we can ensure that |g(t)− g(t− τ)| is as small as we
like for |τ| < δ. In this case, it is clear that ∥g− gτ∥p can also be made as small as we like
by taking τ sufficiently close to zero. Therefore, by taking j sufficiently large we can
ensure that

∥g − g ∗ ρ j∥p <
ϵ
2
,

by virtue of δ j being sufficiently small. This gives the result for g. By Theorem 1.3.11(ii)
there exists g ∈ C0

cpt(R;F) so that ∥ f − g∥p < ϵ
2 . Thus the result follows for general

f ∈ L(p)(R;F).
For the actual assertion of the theorem, consider the signal ( f − g) ∗ ρ j. By Corol-

lary 4.2.9 we have

∥( f − g) ∗ ρ j∥p ≤ ∥ f − g∥p∥ρ j∥1 = ∥ f − g∥p.
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This then gives

∥ f − f ∗ ρ j∥p = ∥ f − g + g − g ∗ ρ j + g ∗ ρ j − f ∗ ρ j∥p

≤ ∥ f − g∥p + ∥g − g ∗ ρ j∥p + ∥( f − g) ∗ ρ j∥p

≤ 2∥ f − g∥ + ∥g − g ∗ ρ j∥p < ϵ,

provided g ∈ C0
cpt(R;F) is chosen sufficiently close to f in Lp(R;F) and that j is

sufficiently large, so giving the result. ■

The theorem shows that a signal in L(p)(R;F) can be well approximated by an
infinitely differentiable signal. This can be shown via an example.

4.7.23 Example We consider f (t) = 1
1+t2 . •

Let us now establish the density of D (R;F) in Lp(R;F) for p ∈ [1,∞). This
result is one that we have used time and again in the text to this point, and so
must be considered one of some importance. We actually proved this result during
the course of the proof of Theorem 4.7.22. However, it is useful to have the
proof we give below since it gives the construction that was useful in the proof of
Theorem 6.7.3.

4.7.24 Theorem D (R;F) is dense in Lp(R;F) for p ∈ [1,∞).
Proof We let ϕ ∈ D (R;F) have the property that

∫
R
ϕ(t) dt = 1 and that there exists a

neighbourhood of 0 on which ϕ takes the value 1. We leave to the reader the exercise
of showing that such a test signals exists. We define f j(t) = f (t)ϕ( t

j ) and we note that
as j → ∞ the signals f and f j agree on a sequence of intervals that covers R in the
limit. Thus we have lim j→∞∥ f − f j∥p = 0. Now take ρk = kϕ(kt). As in the proof of
Theorem 4.7.22 we have, for each j ∈ Z>0, limk→∞∥ f j − f j ∗ ρk∥p = 0. We also have
lim j→∞∥ f − f ∗ ρ j∥p = 0. Therefore

lim
k→∞
∥ f − f ∗ ρk − ( f j − f j ∗ ρk)∥p = 0

∥ f − f j ∗ ρ j∥p = ∥ f − f j ∗ ρk + f j ∗ ρk − f j ∗ ρ j∥p

≤ ∥ f − f ∗ ρk∥p+

■

4.7.25 Corollary C∞cpt(T;F) is dense in Lp(T;F) for p ∈ [1,∞).
Proof In Theorem 4.7.24 we proved that C∞cpt(R;F) is dense in Lp(R;F). Furthermore,
if one investigates the proof, one can see that if supp( f ) is compact then one can choose
ϕ ∈ C∞cpt(R;F) so that λ(supp(ϕ) \ supp( f )) is as small as one likes. Now one proceeds
as follows, assuming that f ∈ Lp(T;F) for some open time-domain T. Let T̃ ⊆ T be a
compact time-domain sufficiently large that | f − fχT̃|p <

ϵ
2 . Then choose ϕ ∈ C∞cpt(T;F)

so that ∥ fχT̃ − ϕ∥p <
ϵ
2 and that supp(ϕ) ⊆ T. It now follows that ∥ f − ϕ∥p < ϵ, which

gives the result. ■
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4.7.5 Regularisation of periodic signals

4.7.6 Regularisation of generalised signals

4.7.26 Theorem

Proof ■

Exercises

4.7.1
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Section 4.8

Applications of convolution of signals

Cross-correlation:

R f1 f2(t) =
∫
∞

−∞

f1(τ) f2(τ + t) dτ

Autocorrelation:

R f f (t) =
∫
∞

−∞

f (τ) f (τ + t) dτ

transport stuff from proof of Lemma 6.3.1
Power spectral density: Fourier transform of autocorrelation.

4.8.1 The Schwartz Kernel Theorem

We consider in this section an important theorem that has significant contri-
butions to system theory, as we shall explore in Section V-6.7. In Section 4.2 we
considered in detail the matter of when a pair of signals is convolvable and, when
they are, where the convolution resides. A consequence of these constructions is
that we have, for a fixed signal g with some properties, we have a continuous linear
map f 7→ g ∗ f between spaces of signals with some properties. The question we
address here is whether, given a continuous linear map between some spaces of
signals, it is a convolution. This question is not so easy to characterise for signals,
but has an elegant answer for distributions.

We note that, if K ∈ D ′(R2;F), there is defined a mapping gK : D (R;F) →
D ′(R;F) according to

⟨gK(ϕ);ψ⟩ = K(ψ ⊗ ϕ), ϕ, ψ ∈ D (R;F),

and where we use the tensor product notation from Section 4.3. The next result
indicates that this mapping is continuous and that, moreover, every continuous
mapping fromD (R;F) toD ′(R;F) can be so obtained.

4.8.1 Theorem (Schwartz Kernel Theorem) The following statements hold:
(i) for K ∈ D ′(R2;F), the mapping gK is continuous;
(ii) if g: D (R;F)→ D ′(R;F) is continuous, then there exists a unique K ∈ D ′(R2;F)

such that g = gK.
Proof (i) First of all, we claim that gK(ϕ) is a distribution for every ϕ ∈ D (R;F). To see
this, note that Exercise 4.3.1 shows that the mapping⊗ϕ : ψ 7→ ψ⊗ϕ is continuous, and
so the mapping K ◦ ⊗ϕ is continuous, which shows that gK(ϕ) is indeed a distribution.
Continuity if gK follows by the same argument, but now applied to the mapping K◦⊗ψ.

(ii) We first prove a technical lemma.
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1 Lemma Let U and V be Fréchet spaces and let B: U × V → F be a bilinear map for which
the mapping u 7→ B(u,v) is continuous for every v ∈ V and that the mapping v 7→ B(u,v)
is continuous for every u ∈ U. Then B is continuous with respect to the product topology on
U × V.

Proof Let O be a neighbourhood of 0 ∈ F and, by Lemma III-1 from the proof of
Proposition III-6.1.5, let O′ be a neighbourhood of 0 in F such that O′ + O′ ⊆ O. Let
(u j) j∈Z>0 and (v j) j∈Z>0 be sequences converging to u0 ∈ U and v0 ∈ V, respectively. For
j ∈ Z>0, defineα j ∈ U∗ byα j(u) = B(u, v j). Note that, for u ∈ U, lim j→∞ B(u, v j) = B(u, v0)
by continuity of B in the second argument. Thus, for u ∈ U, the set (α j(u)) j∈Z>0 is
bounded in F. By the Banach–Steinhaus Theorem (), the family of continuous linear what

mappings (α j) j∈Z>0 is equicontinuous, and so there is a neighbourhood A ⊆ U of 0 such
that α j(A) ⊆ O′ for every j ∈ Z>0. Now we write

B(u j, v j) − B(u0, v0) = B(u j − u0, v j) + B(u0, v j − v0).

For large j, u j − u0 ∈ A and v j − v0 ∈ B. Also, by continuity in the second argument, for
large j, B(u0, v j − v0) ∈ O′. Therefore, for large j,

B(u j, v j) − B(u0, v0) = α j(u j − u0) + B(u0, v j − v0) ∈ O′ +O′ ⊆ O,

giving convergence of B(u j, v j) to B(u0, v0). Since U×V is metrisable by , this is sufficient products of metric

spacesto prove continuity of B by . ▼
sequences suffice in

metric spaces

We claim that the lemma implies that, for any K,L ⊆ R, there exists C ∈ R>0 and
N,M ∈ Z>0 such that

|⟨g(ϕ);ψ⟩| ≤ C∥ψ(k)
∥∞∥ϕ

(l)
∥∞,

ψ ∈ D (K;F), ϕ ∈ D (L;F), k ∈ {0, 1, . . . ,N}, l ∈ {0, 1, . . . ,M}. (4.34)

Use Theorem 3.2.45. details

Let U,V ⊆ R be precompact open sets and let K,L ⊆ R be compact sets for which
cl(U) ⊆ K and cl(V) ⊆ L. Let λ, µ ∈ D (R;F) satisfy
1. λ(s), µ(t) ≥ 0 for s, t ∈ R,
2.

∫
R
λ(s) ds =

∫
R
µ(t) dt = 1, and

3. supp(λ), supp(µ) ⊆ [−1, 1].
For (s, t) ∈ U × V, denote λs(σ) = λ(s − σ) and µt(τ) = µ(t − τ). Also denote

K(s, t) = ⟨g(λs);µt
⟩.

For (s, t) ∈ U × V and ϵ ∈ R>0, denote λϵ(s) = λ(ϵ−1s) and µϵ(t) = µ(ϵ−1t). Correspond-
ingly denote λs

ϵ(σ) = λϵ(s − σ) and µt
ϵ(τ) = µϵ(t − τ). Also denote

Kϵ(s, t) = ϵ−2
⟨g(λs

ϵ);µ
t
ϵ⟩.

Note that, by Proposition 4.4.4 and by the support assumptions on λ and µ, Kϵ is well
defined as a function on U × V for ϵ sufficiently small. By (4.34), we have

|Kϵ(s, t)| ≤ Cϵ−(N+M+2), (s, t) ∈ U × V. (4.35)
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For χ ∈ E (R2;F), a direct computation gives

∂
∂ϵ

(ϵ−2χ(ϵ−1s, ϵ−1t)) =
∂
∂s

(ϵ−2α(ϵ−1s, ϵ−1t)) +
∂
∂t

(ϵ−2β(ϵ−1s, ϵ−1t)), (4.36)

where
α(s, t) = −sχ(s, t), β(s, t) = −tχ(s, t).

As a consequence of the continuity of

(ψ,ϕ) 7→ ⟨g(ψ);ϕ⟩

proved in Lemma 1 and by Theorem 3.2.40, we can differentiate Kϵ with respect to ϵ
by differentiating “inside” the ⟨·; ·⟩ and “inside” g. Doing so, and using (4.36), gives

∂
∂ϵ

Kϵ(s, t) =
∂
∂s

(ϵ−2α(ϵ−1s, ϵ−1t)︸             ︷︷             ︸) +
∂
∂t

(ϵ−2β(ϵ−1s, ϵ−1t)︸            ︷︷            ︸),

where α(s, t) = −sK(s, t) and β(s, t) = −tK(s, t). By (4.35), the terms with a brace under
them satisfy a bound

|ϵ−2α(ϵ−1s, ϵ−1t)|, |ϵ−2β(ϵ−1s, ϵ−1t)| ≤ CϵN+M+2,

possibly after increasing C. This process can be continued to conclude the following.

2 Lemma If K(j)
ϵ denotes the jth partial derivative of Kϵ with respect to ϵ, then K(j)

ϵ is a finite
linear combination of terms, each of which is a derivative with respect to s and t of total order j
of a term bounded by CϵN+M+2, possibly after increasing C.

Now let us address the convergence of Kϵ as ϵ → 0. Let Cr
cpt(U × V) be the

compactly supported r-times continuously differentiable functions in U × V, which is
a Banach space with the norm

∥ f ∥r = sup{| f ( j)(s, t)| | (s, t) ∈ U × V, j ∈ {0, 1, . . . , r}}.

Denote by Cr(U × V;F)′ the space of continuous linear functions on Cr(U × V;F)
equipped with the weak topology (see Definition III-3.5.18). With this, we have the
following result.

3 Lemma For ϵ ∈ R>0 sufficiently small, the map

CN+M+3(U × V;F) ∋ Φ 7→ ⟨Kϵ;Φ⟩ ≜
∫
R

∫
R

Kϵ(s, t)Φ(s, t) dsdt

is continuous, and limϵ→0 Kϵ exists in CN+M+3(U×V;F)′ and, for δ ∈ R>0 sufficiently small
that Kϵ is well defined for ϵ in a neighbourhood of δ, we have

lim
ϵ→0
⟨Kϵ;Φ⟩ =

N+M+2∑
j=0

〈
K(j)
δ

;Φ
〉 (−δ)j

j!
+ (−δ)N+M+2

∫ 1

0

〈
K(N+M+3)
δ(1−x) ;Φ

〉 (1 − t)N+M+2

(N +M + 2)!
dx

for Φ ∈ CN+M+3(U × V;F).
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Proof As a consequence of (4.35), if (Φ j) j∈Z>0 is a sequence in CN+M+3(U × V;F) con-
verging to zero, then

lim
j→0

∫
R

∫
R

Kϵ(s, t)Φ j(s, t) dsdt =
∫
R

∫
R

lim
j→0

Kϵ(s, t)Φ j(s, t) dsdt = 0.

Thus Kϵ ∈ CN+M+3(U×V;F)′ for each ϵ ∈ R>0 small enough that Kϵ is defined on U×V.
Let δ ∈ R>0 be as in the statement of the lemma and consider the Taylor expansion

of ϵ 7→ Kϵ about ϵ = δ. Using the integral form of Taylor’s Theorem (), we have what?

Kϵ(s, t) =
N+M+2∑

j=0

K( j)
δ

(s, t)
(ϵ − δ) j

j!
+ (ϵ − δ)N+M+2

∫ 1

0
K(N+M+3)
δ+x(ϵ−δ) (s, t)

(1 − t)N+M+2

(N +M + 2)!
dx.

Note that, for ϵ ∈ R>0 and for x ∈ [0, 1].

(1 − t)δ ≤ δ + x(ϵ − δ) =⇒
(1 − x)N+M+2

(δ + x(ϵ − δ))N+M+2 ≤ δ
N+M+2.

Thus, using Lemma 2, we have∣∣∣∣∣∣K(N+M+3)
δ+x(ϵ−δ) (s, t)

(1 − t)N+M+2

(N +M + 2)!

∣∣∣∣∣∣ ≤ CδN+M+2

(N +M + 2)!
, (4.37)

the main point being that this bound is independent of ϵ.
Now, for Φ ∈ CN+M+3(U × V;F), we have

⟨Kϵ;Φ⟩ =
N+M+2∑

j=0

〈
K( j)
δ

;Φ
〉 (ϵ − δ) j

j!
+ (ϵ − δ)N+M+2

∫ 1

0

〈
K(N+M+3)
δ+x(ϵ−δ) ;Φ

〉 (1 − t)N+M+2

(N +M + 2)!
dx.

Since we can swap the integral and the limit as a result of the bound (4.37), the lemma
will follow if we can show that

lim
ϵ→0

〈
K(N+M+3)
δ+x(ϵ−δ) ;Φ

〉
=

〈
K(N+M+3)
δ(1−x) ;Φ

〉
.

This we argue by noting that, by Lemma 2 and ,
〈
K(N+M+3)
δ+x(ϵ−δ) ;Φ

〉
is a finite linear combi- derivs for multivariable

distributions

nation of terms of the form ⟨Kδ+x(ϵ−δ);Ψ⟩, where Ψ is a derivative with respect to (s, t)
of total order N +M + 3. It will then follow, just as in the first part of the proof, that,
for any such term,

lim
ϵ→0
⟨Kδ+x(ϵ−δ);Ψ⟩ =

〈
K(N+M+3)
δ(1−x) ;Ψ

〉
.

By again using , we arrive at the desired conclusion. ▼ derivs for multivariable

distributions

Let us denote by KU×V ∈ CN+M+3(U × V;F)′ the limit as ϵ→ 0 of Kϵ. Note that we
regard KU×V as a distribution inD ′(U × V;F) of order N +M + 3.

For the next step in the proof, we use a simple continuity lemma.



408 4 Convolution 2022/03/07

4 Lemma Let r ∈ Z≥0. If ϕ ∈ Cr
cpt(R;F) and ψ ∈ C0

cpt(R;F), and, for h ∈ R>0, consider the
function

κh(t) = h
∑
j∈Z

ϕ(t − jh)ψ(jh).

Then limh→0 κh = ϕ ∗ ψ, with convergence being in Cr
cpt(R;F), as in . what?

Proof Note that supp(κh) ⊆ supp(ϕ) + supp(ψ) for every h ∈ R>0. Now we calculate∣∣∣∣∣∣∣∣ϕ ∗ ψ(t) − h
∑
j∈Z

ϕ(t − jh)ψ( jh)

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
∫
R
ϕ(t − s)ψ(s) ds − h

∑
j∈Z

ϕ(t − jh)ψ( jh)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
j∈Z

∫ ( j+1)h

jh
ϕ(t − s)ψ(s) ds − h

∑
j∈Z

ϕ(t − jh)ψ( jh)

∣∣∣∣∣∣∣∣
≤

∑
j∈Z

∫ ( j+1)h

jh
|ϕ(t − s)ψ(s) − ϕ(t − jh)ψ( jh)|ds.

Since (s, t) 7→ ϕ(t − s)ψ(s) is uniformly continuous by the Heine–Cantor Theorem, we
can choose h in a way that

|ϕ(t − s)ψ(s) − ϕ(t − jh)ψ( jh)|

can be made as small as desired for every t ∈ R and s ∈ [ jh, ( j1)h]. Then, since the sum
above is finite because of the compact support of the integrand, we can choose h small
enough that ∣∣∣∣∣∣∣∣ϕ ∗ ψ(t) − h

∑
j∈Z

ϕ(t − jh)ψ( jh)

∣∣∣∣∣∣∣∣
can be made as small as desired, uniformly in t. This gives convergence of (κh)h∈R>0 to
ϕ ∗ ψ in C0

cpt(R;F). The result now follows by Corollary 4.2.61. ▼

Now let ψ ∈ D (U;F) and ϕ ∈ D (V;F) and note that

⟨Kϵ;ψ ⊗ ϕ⟩ =
∫
R

∫
R

Kϵ(s, t)ψ(s)ϕ(t) dsdt

=

∫
R

∫
R
⟨g(τ∗tσ

∗ϵ−1λϵϕ(t)); τ∗sσ
∗ϵ−1λϵψ(s)⟩dsdt

= ⟨g(ϵ−1λϵ ∗ ψ); ϵ−1µϵ ∗ ϕ⟩,

where we have swapped the integrals with the pairing ⟨·; ·⟩ and with g by the lemma
just preceding. By Corollary 4.2.61 and Theorem 4.7.3,

lim
ϵ→0

ϵ−1λϵ ∗ ψ = ψ, ϵ−1µϵ ∗ ϕ = ϕ,

convergence being inD (R;F). Thus

⟨g(ϕ);ψ⟩ = lim
ϵ→0
⟨g(ϵ−1λϵ ∗ ψ); ϵ−1µϵ ∗ ϕ⟩ = lim

ϵ→0
⟨Kϵ;ψ ⊗ ϕ⟩ = ⟨KU,V;ψ ⊗ ϕ⟩,
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for ϕ ∈ D (V;F) and ψ ∈ D (U;F), which gives the existence of a KU,V ∈ D ′(U × V;F)
satisfying

⟨KU×V;ψ ⊗ ϕ⟩ = ⟨g(ϕ);ψ⟩, ϕ ∈ D (V;F), ψ ∈ D (U;F). (4.38)

Following an argument like that for Theorem 4.3.4(ii), one shows that KU,V is uniquely
determined by (4.38).

Since
D (R2;F) = ∪{D (U × V;F) | U,V ⊆ R precompact},

and by the uniqueness assertion of the preceding paragraph, we conclude that there
exists K ∈ D (R2;R) such that K|D (U × V;F) = KU×V for every precompact U,V ⊆ R.

Finally, we show that K is uniquely defined by the requirement that g = gK. To see
this, we note that the requirement that

g(ψ ⊗ ϕ) = K(ψ ⊗ ϕ), ϕ, ψ ∈ D (R;F),

uniquely determines K following an argument like that for Theorem 4.3.4(ii). ■

Let us see how this result gives rise to a closely connected result for convolutions
in the special case when the operator g is translation-invariant, in the sense that

g(τ∗aϕ) = τ∗a(g(ϕ)), ϕ ∈ D (R;F). (4.39)

We shall see in Section V-6.7.4 the significance of a condition like this in system
theory.

4.8.2 Corollary (Schwartz Kernel Theorem for convolutions) If g: D (R;F) →
D ′(R;F) is continuous and is translation-invariant in the sense of (4.39), then there
exists a unique k ∈ D ′(R;F) such that g(ϕ) = k ∗ ϕ.

Proof For (a, b) ∈ R2, denote

τ∗(a,b)χ(s, t) = χ(s − a, t − b), s, t ∈ R, χ ∈ D (R2;F).

We have the following lemma.

1 Lemma If θ ∈ D ′(R2;F) satisfies

⟨θ; τ∗(0,a)χ⟩ = ⟨θ;χ⟩, χ ∈ D (R2;F),

then θ = ρ ⊗ θ1 for some ρ ∈ D ′(R;F).

Proof Idea: θ is periodic in t with every positive period T ∈ R>0. Take the CCFT of θ
is t, thinking of it as a periodic distribution and then write its Fourier series in t. Then
will give something like

⟨θ;ϕ ⊗ ψ⟩ =

▼
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From Theorem 4.8.1 we K ∈ D ′(R2;F) such that

⟨g(ϕ);ψ⟩ = K(ψ ⊗ ϕ), ϕ, ψ ∈ D (R;F).

For a ∈ R, we then have

K(τ∗aψ, τ
∗

aϕ) = ⟨g(τ∗aϕ); τ∗aψ⟩ = ⟨τ
∗

a(g(ϕ)); τ∗aψ⟩
= ⟨g(ϕ);ψ⟩ = K(ψ ⊗ ϕ).

Define
Φ : R2

→ R2

(s, t) 7→ (s − t, s)
=⇒ Φ−1(s, t) = (t, t − s)

and define Φ∗,Φ∗ : D (R2;F)→ D (R2;F) by

Φ∗χ(s, t) = χ ◦Φ(s, t), Φ∗χ(s, t) = χ ◦Φ−1(s, t), s, t ∈ R, χ ∈ D (R2;F).

Then define Φ∗,Φ∗ : D ′(R2;F)→ D ′(R2;F) by

⟨Φ∗θ;χ⟩ = ⟨θ;Φ∗χ⟩, ⟨Φ∗θ;χ⟩ = ⟨θ;Φ∗χ⟩, χ ∈ D (R2;F).

Then we can directly verify that

τ(a,a) ◦Φ
−1(s, t) = Φ−1

◦ τ(0,a)(s, t), s, t, a ∈ R,

and so
Φ∗τ

∗

(a,a)χ = τ
∗

(0,a)Φ∗χ, a ∈ R, χ ∈ D (R2;F).

Then

⟨K; τ∗aψ ⊗ τ
∗

aϕ⟩ = ⟨K;ψ ⊗ ϕ⟩, ϕ, ψ ∈ D (R;F), a ∈ R,

⇐⇒ ⟨K; τ∗(a,a)χ⟩ = ⟨K;χ⟩, χ ∈ D (R2;F), a ∈ R,

⇐⇒ ⟨Φ∗K;Φ∗τ∗(a,a)χ⟩ = ⟨Φ
∗K;Φ∗χ⟩, χ ∈ D (R2;F), a ∈ R,

⇐⇒ ⟨Φ∗K; τ∗(0,a)Φ∗χ⟩ = ⟨Φ
∗K;Φ∗χ⟩, χ ∈ D (R2;F), a ∈ R,

⇐⇒ ⟨Φ∗K; τ∗(0,a)χ⟩ = ⟨Φ
∗K;χ⟩, χ ∈ D (R2;F), a ∈ R.

We, therefore, conclude thatΦ∗K = k̂⊗θ1 for some k̂ ∈ D ′(R;F), and so K = Φ∗(k̂⊗θ1).
Now, for ϕ,ψ ∈ D (R;F),

Φ∗(ψ ⊗ ϕ)(s, t) = ψ ⊗ ϕ(t, t − s) = ψ(t)ϕ(t − s).

We then compute

⟨K;ψ ⊗ ϕ⟩ = ⟨Φ∗(k ⊗ θ1);ψ ⊗ ϕ⟩
= ⟨k ⊗ θ1;Φ∗(ψ ⊗ ϕ)⟩
= ⟨k ∗ ϕ;ψ⟩,

noting, by Lemma 4.5.1, that k ∗ ϕ ∈ E (R;F) satisfies k ∗ ϕ(t) = θ(τ∗tσ
∗ϕ). ■

Exercises

4.8.1
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Chapter 5

The continuous-discrete Fourier transform

In this chapter we begin our discussion of Fourier transform theory. As we
shall see, there are four natural sorts of transforms, depending on the character
of the signal involved. The order of presentation of the four transforms is not
quite uniquely determinable from the point of view of combining pedagogy and
logic. Our choice here is to present first the CDFT on the basis that it is perhaps
the easiest to motivate. Based on the dream of Fourier, our version of which is
presented in Section 2.6.1, our hope is that the harmonic signals {e2πin t

T }n∈Z have
the property that a suitable large class of periodic signals can be written as infinite
linear combinations of them. In our way of presenting things, this dream is not
immediately apparent. Indeed, our presentation begins with a transform point of
view, the idea being that we wish to produce a frequency-domain representation
of a time-domain signal. However, the dream is realised in two ways.
1. In Section 5.2 we present the dream as being precisely the idea that the trans-

form from time-domain to frequency-domain is invertible. We give suitable
properties of signals which ensure that they can indeed be recovered from their
frequency-domain representations.

2. In Section 5.3 we consider the harmonic signals {e2πin t
T }n∈Z as an orthogonal

set in L2
per,T(R;C). We show in Theorem 5.3.3 that this set (more precisely,

the orthonormal set associated to it) is a Hilbert basis for L2
per,T(R;C). Using

Theorem III-4.4.25 we then conclude that every signal in L2
per,T(R;C) can be

written as an infinite sum of harmonic signals, with the sum converging in the
2-norm.

Thus, with a little patience, the reader shall see that our way of thinking about
things as transforms provides a coherent picture of the subject of Fourier analysis
since many of the questions in Fourier analysis can be thought of in terms of the
transform and its inverse.

Do I need to read this chapter? If you are learning Fourier transform theory, this
is where your journey begins. •
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Section 5.1

The L1-CDFT

In this section we define the CDFT and give some of its properties. The point
of view in this section is simply that, given a signal f ∈ L(1)

per,T(R;C), we assign to it
another signal FCD( f ). We think of f as being a time-domain signal and of FCD( f )
as being its frequency-domain representation. We do this because this provides a
nice motivation for what we are doing. However, from the point of view of the
theory, there is nothing in particular to be gained from thinking of f as being a
function of time or of FCD( f ) as being a function of frequency.

Do I need to read this section? If you are reading this chapter then you are read-
ing this section. •

5.1.1 Definitions and computations

We assume the reader has read the motivational ideas from Section 2.6.1 and
from the preamble to this chapter and to this section. Therefore, we merely give
the definition.

5.1.1 Definition (CDFT) The continuous-discrete Fourier transform or CDFT assigns to
f ∈ L(1)

per,T(R;C) the signal FCD( f ) : Z(T−1)→ C by

FCD( f )(nT−1) =
∫ T

0
f (t)e−2πin t

T dt, n ∈ Z. •

5.1.2 Remarks (Comments on the definition of the CDFT)
1. Note that the expression for FCD( f ) makes sense if and only if f ∈ L(1)

per,T(R;C),
so the CDFT is most naturally defined on such signals.

2. Note that if f1, f2 ∈ L(1)
per,T(R;C) have the property that f1(t) = f2(t) for almost ev-

ery t ∈ R, then we have FCD( f1) = FCD( f2) by Proposition III-2.7.11. Therefore,
FCD is well-defined as a map from equivalence classes in L1

per,T(R;C). Fre-
quently we shall be interested in this equivalence class version of the CDFT,
and we shall explicitly indicate that we are working with L1

per,T(R;C) rather

than L(1)
per,T(R;C) in such cases. However, we shall adhere to our convention

of denoting equivalence classes of signals in L1
per,T(R;C) by f rather than with

some more cumbersome notation.
3. It is convenient for the purposes of general discussion to always think of

L(1)
per,T(R;R) as being a subspace of L(1)

per,T(R;C), and so always use complex
exponentials for the Fourier series rather than the real trigonometric functions.
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4. It is not uncommon to see FCD( f ) defined as having domain Z rather than
Z(T−1). The reason for our choice of Z(T−1) for the domain of FCD( f ) is not
perfectly clear at this time, except that the points nT−1, n ∈ Z, are the frequencies
of the harmonics in the Fourier series for f .

5. Another very common alternative convention for the CDFT is to define it as we
have done, but scaled by 1

T . There are good reasons to do this, and there are
good reasons to do as we have done. So the reader needs to simply be aware of
what conventions are in effect. •

Let us compute the CDFT for some simple examples.

5.1.3 Examples (Computing the CDFT)
1. We let f ∈ L(1)

per,1(R;R) be the 1-periodic extension of the signal f̃ (t) = t; the signal
is depicted in Figure 5.1. We directly compute
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0.00
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Figure 5.1 The 1-periodic extension of t 7→ t on [0, 1] (left) and
the real (top right) and imaginary (bottom right) parts of its
CDFT

FCD( f )(0) =
∫ 1

0
t dt =

1
2
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and, using integration by parts,

FCD( f )(n) =
∫ 1

0
te−2πint dt

= − t
1

2πin
e−2πint

∣∣∣∣1
0
+

1
2πin

∫ 1

0
e−2πint dt

= −
1

2πin
+

1
2πin

1
2πin

e2πint
∣∣∣∣1
0

= −
1

2πin
=

i
2nπ

,

provided that n , 0. Therefore,

FCD( f )(n) =

 1
2 , n = 0,

i
2nπ , otherwise.

2. We consider the signal f : R→ R defined by f (t) = □2,1,0(t) − 1 and depicted in
Figure 5.2. Thus f is the 1-periodic extension of the signal defined on [0, 1] by

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

-6 -4 -2 0 2 4 6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 5.2 The signal □2,1,0(t) − 1 (left) and its CDFT (right)

( f |[0, 1])(t) =

1, t ∈ [0, 1
2 ],

−1, t ∈ ( 1
2 , 1].

We compute

FCD( f )(0) =
∫ 1

0
f (t) dt = 0.
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For n , 0 we have

FCD( f )(n) =
∫ 1

0
f (t)e−2πint dt

=

∫ 1
2

0
e−2πint dt −

∫ 1

1
2

e−2πint dt

= −
e−2πint

2πin

∣∣∣∣ 1
2

0
+

e−2πint

2πin

∣∣∣∣11
2

=
1 − einπ

2πin
−

einπ
− 1

2πin

= i
(−1)n

− 1
nπ

,

using the identity einπ = (−1)n for n ∈ Z. Thus we have

FCD( f )(n) =

0, n = 0,
i (−1)n

−1
nπ otherwise.

We plot this in Figure 5.2.
3. Next we consider the signal g = △ 1

2 ,1,0
depicted in Figure 5.3. Thus g is the
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Figure 5.3 The signal △ 1
2 ,1,0

(left) and its CDFT (right)

1-periodic extension of the signal

(g|[0, 1])(t) =

t, t ∈ [0, 1
2 ],

1 − t, t ∈ ( 1
2 , 1].

We then compute

FCD(g)(0) =
∫ 1

0
g(t) dt =

∫ 1
2

0
t dt +

∫ 1

1
2

(1 − t) dt =
t2

2

∣∣∣∣ 1
2

0
+

(
t −

t2

2

) ∣∣∣∣11
2

=
1
4
,
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and for n , 0,

FCD(g)(n) =
∫ 1

0
g(t)e−2πint dt

=

∫ 1
2

0
te−2πint dt +

∫ 1

1
2

(1 − t)e−2πint dt

= −
te−2πint

2πin

∣∣∣∣ 1
2

0
+

1
2πin

∫ 1
2

0
e−2πint dt

+

∫ 1

1
2

e−2πint dt +
te−2πint

2πin

∣∣∣∣11
2

−
1

2πin

∫ 1

1
2

e−2πint dt

= −
e−inπ

4inπ
+

e−2πint

4n2π2

∣∣∣∣ 1
2

0
−

e−2πint

2πin

∣∣∣∣11
2

+
1

2πin
−

e−inπ

4inπ
−

e−2πint

4n2π2

∣∣∣∣11
2

= −
e−inπ

4inπ
+

e−inπ

4n2π2 −
1

4n2π2 −
1

2πin
+

e−inπ

2πin
+

1
2πin

−
e−inπ

4inπ
−

1
4n2π2 +

e−inπ

4n2π2

=
e−inπ

− 1
2n2π2 =

(−1)n
− 1

2n2π2 .

We have used the fact that e−inπ = (−1)n for n ∈ Z. Thus we have

FCD(g)(n) =

 1
4 , n = 0,
(−1)n

−1
2n2π2 , otherwise.

(5.1)

This CDFT is plotted in Figure 5.3.
4. The T-periodic signal we consider next we define not be specifying it on [0,T],

but on [−T
2 ,

T
2 ]. We take a ∈ (0, T

2 ] and define fa : R→ R by defining it on [−T
2 ,

T
2 ]

by

fa(t) =

1, t ∈ [−a, a],
0, otherwise.

We plot this signal in Figure 5.4. We compute the CDFT of this signal, noting
that T-periodicity gives

FCD( fa)(nT−1) =
∫ T

2

−
T
2

fa(t)e−2πin t
T dt.

For n , 0 we have

FCD( f )(nT−1) =
∫ T

2

−
T
2

fa(t)e−2πin t
T dt =

∫ a

−a
e−2πin t

T dt = −
Te−2πin t

T

2πin

∣∣∣∣a
−a

=
1
π n

T

1
2i

(e2πin a
T − e−2πin a

T ) =
sin(2πa n

T )
π n

T
.
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Figure 5.4 The signal fa for T = 1 and a = 1
3 (left) and its CDFT

(right)

We also directly compute FCD( fa)(0) = 2a. In summary,

FCD( fa)(nT−1) =

2a, n = 0,
sin(2πa n

T )
π n

T
, n , 0.

We plot the CDFT of fa in Figure 5.4.
5. As with the previous example, we define a T-periodic signal by prescribing it

on [−T
2 ,

T
2 ]. The signal we denote by ga for a ∈ (0, T

2 ]:

ga(t) =


1 + t

a , t ∈ [−a, 0],
1 − t

a , t ∈ (0, a],
0, otherwise.

We compute the CDFT of ga, first for n , 0:
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Figure 5.5 The signal ga for T = 1 and a = 1
3 (left) and its CDFT

(right)
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FCD(ga)(nT−1) =
∫ T

2

−
T
2

ga(t)e−2πin t
T dt

=

∫ 0

−a
(1 + t

a )e−2πin t
T dt +

∫ a

0
(1 − t

a )e−2πin t
T dt

= 2
∫ a

0
(1 − t

a ) cos(2πn t
T ) dt,

using a change of variable and the identity cosθ = 1
2 (eiθ + e−iθ). One may now

use a messy integration by parts to compute

FCD(ga)(nT−1) =
sin(πa n

T )2

π2a( n
T )2

for n , 0. For n = 0 we compute

FCD(ga)(0) =
∫ 0

−a
(1 + t

a ) dt +
∫ a

0
(1 − t

a ) dt = a.

Thus we have

FCD(ga)(nT−1) =

a, n = 0,
sin(πa n

T )2

π2a( n
T )2 , n , 0.

This CDFT is plotted in Figure 5.5. •

Sometimes one also considers somewhat different versions of Fourier trans-
forms, defined using real, rather than complex, harmonic functions. These are
easy to define.

5.1.4 Definition (CDCT and CDST)
(i) The continuous-discrete cosine transform or CDCT assigns to f ∈ L(1)

per,T(R;C)
the signal CCD : Z≥0(T−1)→ C by

CCD( f )(nT−1) =
∫ T

0
f (t) cos(2πn t

T ) dt, n ∈ Z≥0.

(ii) The continuous-discrete sine transform or CDST assigns to f ∈ L(1)
per,T(R;C)

the signal SCD : Z>0(T−1)→ C by

SCD( f )(nT−1) =
∫ T

0
f (t) sin(2πn t

T ) dt, n ∈ Z>0. •

Let us give the relationship between the CDFT, and the CDCT and the CDST.
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5.1.5 Proposition (The CDFT, and the CDCT and the CDST) For f ∈ L(1)
per,T(R;C) the

following statements hold:
(i) FCD(f)(0) = CCD(f)(0);
(ii) FCD(f)(nT−1) = CCD(f)(nT−1) − iSCD(f)(nT−1) and
FCD(f)(−nT−1) = CCD(f)(nT−1) + iSCD(f)(nT−1) for every n ∈ Z>0;

(iii) CCD(f)(nT−1) = 1
2 (FCD(f)(nT−1) + FCD(f)(−nT−1)) for every n ∈ Z≥0;

(iv) SCD(f)(nT−1) = 1
2i (FCD(f)(−nT−1) − FCD(f)(nT−1)) for every n ∈ Z>0.

Proof This follows by direct computation using Euler’s formula

e2πin t
T = cos(2πn t

T ) + i sin(2πn t
T ). ■

Sometimes it is easier to compute the CDFT using the CDCT and the CDST,
along with the relations from the preceding result. However, for dealing with
generalities the CDFT is by far the more preferable, so we will deal exclusively
with it for this purpose.

5.1.2 Properties of the CDFT

Before we go any further, let us provide some elementary properties of the
CDFT. Recall from Example 1.1.6–2 the time-domain reparameterisation σ : R→ R
defined by σ(t) = −t, and from Example 1.1.13–2 the domain transformation σ∗

defined by σ∗ f (t) = f (−t). Clearly, if f ∈ L(1)
per,T(R;C) then σ∗ f ∈ L(1)

per,T(R;C). Also,
if a ∈ R then in Example 1.1.6–1 we defined the reparameterisation τa : R→ R by
τa(t) = t− a and in Example 1.1.13–1 the corresponding domain transformation τ∗a
by τ∗a f (t) = f (t− a). Again, if f ∈ L(1)

per,T(R;C) then τ∗a f ∈ L(1)
per,T(R;C). In like manner,

if f ∈ L(1)
per,T(R;C) then f̄ ∈ L(1)

per,T(R;C) denotes the signal defined by f̄ (t) = f (t). For

f ∈ L(1)
per,T(R;C) let us also define the signal F CD( f ) : Z(T−1)→ C by

F CD( f )(nT−1) =
∫ T

0
f (t)e2πin t

T dt.

At this point it is not clear why we should care about F CD( f ), but it will come up
in Section 7.1. With the preceding notation we have the following result.

5.1.6 Proposition (Elementary properties of the CDFT) If f ∈ L(1)
per,T(R;C) and if a ∈ R,

then the following statements hold:

(i) FCD(f) = F CD(f̄);

(ii) FCD(σ∗f) = σ∗(FCD(f)) = F CD(f);
(iii) if f is even (resp. odd) then FCD(f) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) thenFCD(f) is real and even (resp. imaginary

and odd);
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(v) FCD(τ∗af)(nT−1) = e−2πin a
TFCD(f)(nT−1).others?

Proof (i) This follows directly from the definition of FCD and F CD.
(ii) We compute

FCD(σ∗ f )(nT−1) =
∫ T

0
f (−t)e−2πin t

T dt =
∫ T

0
f (t)e2πi(−n) t

T dt

= σ∗(FCD( f )) = F CD( f ).

(iii) This follows immediately from (ii).
(iv) If f is real and even then f̄ = f = σ∗ f . Evenness of FCD( f ) follows from (ii) and

realness of FCD f follows since

FCD( f ) = F CD( f̄ ) = F CD( f ) = σ∗(FCD( f )) = FCD( f ),

where we have used (i), (ii), and (iii). In like manner, if f is real and odd then we
have f̄ = f and σ∗ f = − f . The same computations then show that FCD( f ) = −FCD( f ),
meaning that FCD( f ) is odd and imaginary.

(v) We compute

FCD(τ∗a f )(nT−1) =
∫ T

0
τ∗a f (t)e−2πin t

T dt =
∫ T

0
f (t − a)e−2πin t

T dt

=

∫ T−a

−a
f (t)e−2πin t+a

T dt = e−2πin a
T

∫ T

0
f (t)e−2πin t

T dt

= e−2πin a
TFCD( f )(nT−1),

as desired. ■

5.1.7 Examples (Elementary properties of the CDFT)
1. We consider the signal f (t) = □2,1,0(t) − 1 introduced in Example 5.1.3–2. This

signal is real and odd, and we see thatFCD( f ) is imaginary and odd, as predicted
by part (iv) of Proposition 5.1.6.

2. We consider the signal g(t) = △ 1
2 ,1,0

(t) − 1 introduced in Example 5.1.3–3. This
signal is real and even, and we see that FCD(g) is real and even, again as in
part (iv) of Proposition 5.1.6.

3. We consider the example initiated in Example 1.1.24. We consider the signal
f̃ defined on [ 1

3 ,
4
3 ] by f̃ (t) = t. Note that we have changed the “ f ” in Exam-

ple 1.1.24 to “ f̃ ” here in order to match the notation of Proposition 5.1.6(v). In
Figure 5.6 we show the periodic extension of f̃ as well as the periodic extension
of the signal f defined by f (t) = f̃ (t+ 1

3 ). Note that fper is continuous on [0, 1] but
that f̃per is not, but is continuous on the shifted interval [1

3 ,
4
3 ]. Let us determine

the CDFT for each signal. For f we compute

FCD( fper)(0) =
∫ 1

0
(t + 1

3 ) dt =
5
6
,
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Figure 5.6 A signal f̃ (top) and its shift to the origin f (bottom),
both periodically extended

and for n , 0,

FCD( fper)(n) =
∫ 1

0
(t + 1

3 )e−2πint dt =
∫ 1

0
te−2πint dt =

i
2nπ

(this is the same computation as we performed in Example 5.1.3–1). For f̃per

we note that for t ∈ [0, 1] we have

f̃per =

t + 1, t ∈ [0, 1
3 ],

t, t ∈ ( 1
3 , 1].

Thus we compute

FCD( f̃per)(0) =
∫ 1

3

0
(t + 1) dt +

∫ 1

1
3

t dt

= ( t2

2 + t)
∣∣∣ 1

3

0
+ t2

2

∣∣∣11
3
=

7
18
+

4
9
=

5
6
,

and for n , 0 we compute

FCD( f̃per)(n) =
∫ 1

3

0
(t + 1)e−2πint dt +

∫ 1

1
3

te−2πint dt

=

∫ 1

0
te−2πint dt +

∫ 1
3

0
e−2πint dt

=
i

2nπ
+

e−2πin/3
− 1

−2πin
= e−2πin/3 i

2nπ
.

Note that this is exactly as predicted by Proposition 5.1.6(v), and we could have
saved ourselves some computation by noting this, of course. •

Let us now show that when f ∈ L(1)
per,T(R;C), the sequence (FCD( f )(nT−1))n∈Z>0 is

reasonably well behaved.
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5.1.8 Theorem (Riemann–Lebesgue Lemma) If f ∈ L(1)([a, b];C) then

lim
|n|→∞

∫ b

a
f(t)e2πin t

T dt = 0.

In particular, if (FCD(f)(nT−1))n∈Z>0 are the values of the CDFT of f ∈ L(1)
per,T(R;C) then

lim|n|→∞|FCD(f)(nT−1)| = 0.
Proof We first establish the result when f is continuously differentiable on [a, b]. In
this case, integration by parts yields∫ b

a
f (t)e2πin t

T dt =
T

2πin
f (t)e2πin t

T
∣∣∣b
a −

T
2πin

∫ b

a
f ′(t)e2πin t

T dt.

Taking the modulus of both sides of this equation gives∣∣∣∣∣∣
∫ b

a
f (t)e2πin t

T dt

∣∣∣∣∣∣ ≤ T
2|n|π

| f (b)| + | f (a)| +
∫ b

a
| f ′(t)|dt

 , (5.2)

where we have used the triangle inequality, along with the inequality∣∣∣∣∣∣
∫ b

a
g(t) dt

∣∣∣∣∣∣ ≤
∫ b

a
|g(t)|dt. (5.3)

Taking the limit as n→∞ in (5.2) gives the result when f is continuously differentiable.
By Corollary 4.7.25 the continuously differentiable signals are dense in L1([a, b];C).

Therefore, if f ∈ L(1)([0,T];C), then for any ϵ ∈ R>0 there exists a continuously differ-
entiable gϵ : [0,T]→ Cwith the property that∫ b

a
| f (t) − gϵ(t)|dt <

ϵ
2
.

Thus gϵ is close to f in L1. The triangle inequality and (5.3) now give∣∣∣∣∣∣
∫ b

a
f (t)e2πin t

T dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ b

a
( f (t) − gϵ(t) + gϵ(t))e2πin t

T dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ b

a
( f (t) − gϵ(t))e2πin t

T dt

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫ b

a
gϵ(t)e2πin t

T dt

∣∣∣∣∣∣
≤

∫ b

a

∣∣∣ f (t) − gϵ(t)
∣∣∣ dt +

∣∣∣∣∣∣
∫ b

a
gϵ(t)e2πin t

T dt

∣∣∣∣∣∣ .
As the lemma is true for gϵ, there exists N ∈ Z>0 so that, provided that |n| ≥ N, we
have ∣∣∣∣∣∣

∫ b

a
gϵ(t)e2πin t

T dt

∣∣∣∣∣∣ < ϵ
2
.

Thus, for |n| ≥ N we have ∣∣∣∣∣∣
∫ b

a
f (t)e2πin t

T dt

∣∣∣∣∣∣ < ϵ,
giving the result. ■
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5.1.9 Remark (What the Riemann–Lebesgue Lemma does not say) Note that the
decaying of the CDFT to zero at infinity says nothing about the summability prop-
erties of the sequence (FCD( f )(nT−1))n∈Z. Indeed, the coefficients may decay quite
slowly indeed, cf. Theorem 5.1.18. This is a crucial matter when it comes to at-
tempting to invert the CDFT in Section 5.2. •

The following result gives an interpretation of Theorem 5.1.8 in terms of the
ideas of Section III-3.5. To make sense of the statement recall from Section 1.2.2
that c0(Z(T−1);F) denotes the set of signals in ℓ(Z(T−1);F) that decay to zero at
infinity.

5.1.10 Corollary (The CDFT is continuous) FCD is a continuous linear mapping from
(L1

per,T(R;C), ∥·∥1) to (c0(Z(T−1);C), ∥·∥∞).
Proof Linearity of FCD follows directly from linearity of the integral. The Rie-
mann–Lebesgue Lemma tells us that the domain of the CDFT is indeed c0(Z(T−1);C).
Note that for n ∈ Zwe have

|FCD( f )(nT−1)| =

∣∣∣∣∣∣
∫ T

0
f (t)e−2πin t

T dt

∣∣∣∣∣∣ ≤
∫ T

0
| f (t)|dt = ∥ f ∥1.

Since this holds for every n ∈ Z, this shows that

∥FCD( f )∥∞ ≤ ∥ f ∥1.

Thus FCD is bounded and so continuous by Theorem III-3.5.8. ■

The following formula is sometimes a helpful one.

5.1.11 Proposition (Fourier Reciprocity Relation for the CDFT) If f,g ∈ L(1)
per,T(R;C) are

such that FCD(f) ∈ ℓ1(Z(T−1);C) then∫ T

0
f(t)g(t) dt =

1
T

∑
n∈Z

FCD(f)(nT−1)FCD(g)(−nT−1).

In particular, ∫ T

0
|f(t)|2 dt =

1
T

∑
n∈Z

|FCD(f)(nT−1)|2.

Proof As we shall see in Theorem 5.2.33, and as follows more or less immediately
from the Weierstrass M-test, the series

1
T

∑
n∈Z

FCD( f )(nT−1)e2πin t
T

converges uniformly to a (necessarily continuous) signal that is equal to f almost
everywhere. Thus we can assume, without loss of generality, that f is continuous so
that

f (t) =
1
T

∑
n∈Z

FCD( f )(nT−1)e2πin t
T , t ∈ R.
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Thus f is bounded since it is periodic and so t 7→ f (t)g(t) is bounded by the integrable
signal ∥ f ∥∞g, and so is integrable. By the Dominated Convergence Theorem and
Proposition 5.1.6 we have∫ T

0
f (t)g(t) dt =

1
T

∑
n∈Z

FCD( f )(nT−1)
∫ T

0
g(t)e2πin t

T dt

=
1
T

∑
n∈Z

FCD( f )(nT−1)F CD(g)(nT−1)

=
1
T

∑
n∈Z

FCD( f )(nT−1)FCD(g)(−nT−1),

as desired.
The last relation in the statement of the proposition is proved by taking g = f̄ , and

using Proposition 5.1.6. ■

The final assertion of the preceding result is a special case of Parseval’s equality
which we shall explore more generally in Section 5.3; see Corollary 5.3.4.

5.1.3 Differentiation, integration, and the CDFT

We next consider the relationships between the CDFT of a signal and the CDFT
of its derivative, in those case when the signal is in some sense differentiable. These
relationships are important to understand since they give some hint that the CDFT
of a signal might actually say something about the signal itself.

5.1.12 Proposition (The CDFT and differentiation) Suppose that f ∈ C0
per,T(R;C) and

suppose that there exists a piecewise continuous signal f′ : [0,T] → C with the property
that

f(t) = f(0) +
∫ t

0
f′(τ) dτ, t ∈ [0,T].

Then
FCD(f′per)(nT−1) =

2πin
T
FCD(f)(nT−1), n ∈ Z.

Proof Let (t0, t1, . . . , tk) be the endpoints of a partition having the property that f ′

is continuous on each subinterval (t j, t j−1), j = 1, . . . , k. Integration by parts of the
expression for FCD( f ′)(nT−1) on (t j, t j−1) gives∫ t j

t j−1

f ′(t)e−2πin t
T dt = f (t)e−2πin t

T

∣∣∣∣t j

t j−1
+

2πin
T

∫ t j

t j−1

f (t)e−2πin t
T dt.
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Over the entire interval [0,T] we then have

FCD( f ′per)(nT−1) =
∫ T

0
f ′(t)e−2πin t

T dt

=

k∑
j=1

∫ t j

t j−1

f ′(t)e−2πin t
T dt

=
2πin

T

∫ T

0
f (t)e−2πin t

T dt =
2πin

T
FCD( f )(nT−1),

using the fact that f is continuous and that f (0) = f (T). ■

5.1.13 Example (The CDFT and differentiation) We consider the signals f and g intro-
duced in parts 2 and 3 of Example 5.1.3. Note that g satisfies the conditions of
Proposition 5.1.12 and that

g(t) =
∫ t

0
f (τ) dτ, t ∈ [0, 1].

Consistent with Proposition 5.1.12, we have

FCD( f )(n) = 2πinFCD(g)(n). •

The preceding result may be applied iteratively if a periodic signal is more than
once differentiable. Upon doing this, we obtain the following characterisation of
the CDFT.

5.1.14 Corollary (The CDFT and higher-order derivatives) Suppose that f ∈ Cr−1
per,T(R;C)

for r ∈ Z>0 and suppose that there exists a piecewise continuous signal f(r) : [0,T] → C
with the property that

f(r−1)(t) = f(r−1)(0) +
∫ t

0
f(r)(τ) dτ.

Then
FCD(f(r)

per)(nT−1) =
(2πin

T

)r

FCD(f)(nT−1).

The next result records the manner in which integration acts relative to the
CDFT.

5.1.15 Proposition (The CDFT and integration) If f ∈ L(1)
per,T(R;C), if

∫ T

0
f(t) dt = 0, and if

we define g: [0,T]→ C by

g(t) =
∫ t

0
f(τ) dτ,

then

FCD(gper)(nT−1) =


T
∫ T

0
f(t) dt −

∫ T

0
tf(t) dt, n = 0,

T
2πin

FCD(f)(nT−1), n ∈ Z \ {0}.
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Proof Using integration by parts we compute for n , 0

FCD(gper)(nT−1) =
∫ T

0
g(t)e−2πin t

T dt

= −
T

2πin
e−2πin t

T g(t)
∣∣∣∣T
0
+

T
2πin

∫ T

0
f (t)e−2πin t

T dt

=
T

2πin
FCD( f ),

as desired. For n = 0 we have, again by integration by parts,

FCD(g)(0) =
∫ T

0
g(t) dt = tg(t)

∣∣∣T
0 −

∫ T

0
t f (t) dt = T

∫ T

0
f (t) dt −

∫ T

0
t f (t) dt,

as stated. ■

5.1.16 Example (The CDFT and integration) Consider again the signals f and g intro-
duced in parts 2 and 3 of Example 5.1.3. We have g(t) =

∫ t

0
f (τ) dτ, and we note

that indeed the CDFT’s of f and g are related as in Proposition 5.1.15. •

5.1.4 Decay of the CDFT

In this section we examine how properties of a signal, particularly its “smooth-
ness,” are reflected in its CDFT.

Given our results in the preceding section relating differentiability of a signal
to its CDFT, we immediately have the following summary of the behaviour of the
CDFT as the smoothness of a signal improves.

1. If f ∈ L(1)
per,T(R;C) then the Fourier coefficients satisfy

lim
|n|→∞
|FCD( f )(nT−1)| = 0.

This is the Riemann–Lebesgue Lemma, Theorem 5.1.8.

2. If f ∈ L(2)
per,T(R;C) thenFCD( f ) ∈ ℓ2(Z(T−1);C). This is simply Parseval’s equality

and this will be discussed further in Section 5.3, also, cf. Proposition 5.1.11.
3. If f satisfies the conditions of Proposition 5.1.12 then (FCD( f )(nT−1))n∈Z ∈

ℓ1(Z(T−1);C) as we shall show in Corollary 5.2.35. Note that by Theorem 1.2.7
this is a stronger condition on the coefficients than one gets from a signal simply
being in L(2)

per,T(R;C).

4. If f ∈ Cr
per,T(R;C) then the CDFT of f satisfies

lim
|n|→∞
|nrFCD( f )(nT−1)| = 0.

This follows from Corollary 5.1.14.
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5. A converse of the preceding implication also holds. Precisely, if
lim|n|→∞ nr+1+ϵFCD( f )(nT−1) = 0 for some ϵ ∈ R>0, then f ∈ Cr

per,T(R;C). This
follows exactly as in Corollary 7.1.11 proved below for the DCFT.

6. If f ∈ C∞per,T(R;C) is infinitely differentiable then the Fourier coefficients satisfy

lim
|n|→∞
|nkFCD( f )(nT−1)| = 0

for any k ∈ Z≥0. This follows from an inductive application of Corollary 5.1.14.
Let us give a result which relates the CDFT to real analyticity as defined in

Definition I-3.7.24. Note that, in the context here, if I ⊆ R is an interval, then
f : I → C is real analytic if its real and imaginary parts are real analytic, i.e., don’t
let the fact that the signal is C-values lure you into thoughts of holomorphicity.

5.1.17 Theorem (The CDFT for real analytic signals) A signal f ∈ L(1)
per,T(R;C) is almost

everywhere equal to a real analytic signal if and only if there exists C, α ∈ R>0 such that
|FCD(f)(nT−1)| ≤ Ce−α|n| for every n ∈ Z.

Proof First suppose that f ∈ L(1)
per,T(R;C) is almost everywhere equal to a real analytic

signal. We assume without loss of generality that f is itself real analytic. By Theo-
rem I-3.7.26, for each t0 ∈ [0,T] there exists a neighbourhood U of t0 and M, r ∈ R>0
such that

| f (m)(t)| ≤Mm!r−m

for each t ∈ U and m ∈ Z≥0. Since [0,T] is compact, we can cover [0,T] with a finite
number of intervals for which the above estimate holds. Therefore, we can assume the
estimate holds for every t ∈ [0,T], and so for every t ∈ R by periodicity of f .

Then, since f is infinitely differentiable, by Corollary 5.1.14, we have

|FCD( f )(nT−1)| ≤
∣∣∣∣∣ T
2πn

∣∣∣∣∣m |FCD( f (m))(nT−1)| ≤
∣∣∣∣∣ T
2πn

∣∣∣∣∣m TMm!r−m =
Am!
(nr)m ,

where A = MT( T
2π )m, this being valid for n , 0 and for all m ∈ Z≥0. Let mn be the

largest integer less than |n|r. Then we have

|FCD( f )(nT−1)| ≤
Amn!
mmn

n
.

By Stirling’s formula, ,what

lim
n→∞

mn!
√

2πmn( mn
e )mn

= 1.

Thus there exists N1 ∈ Z>0 sufficiently large that

|FCD( f )(nT−1)| ≤ 2A
√

2πmne−mn , |n| ≥ N1.

Since limn→∞
√

mne−mn/2 = 0, there exists N2 ∈ Z>0 such that 2A
√

2πmne−mn/2 ≤ 1 for
|n| ≥ N2. Thus, if N = max{N1,N2}we have

|FCD( f )(nT−1)| ≤ e−mn/2, |n| ≥ N.
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Since mn + 1 ≥ |n|r this gives

|FCD( f )(nT−1)| ≤
√

ee−r|n|/2, |n| ≥ N.

Let us take α = r
2 and define

C = max{
√

e, |FCD( f )(−NT−1)|eα|N|, . . . , |FCD( f )(NT−1)|eα|N|}.

Then we have
|FCD( f )(nT−1)| ≤ Ceα|n|

for all n ∈ Z, as desired.
Conversely, suppose that there exists C, α ∈ R>0 such that |FCD( f )(nT−1)| ≤ Ce−α|n|

for all n ∈ Z. By the Weierstrass M-test, cf. Theorem 5.2.33 below, the series

1
T

∑
n∈Z

FCD( f )(nT−1)e2πin t
T

converges to a continuous function that is almost everywhere to f . Let us suppose,
without loss of generality, that f is defined by this series. By repeated application of
Theorem I-3.6.24 and the Weierstrass M-test we have

f (m)(t) =
1
T

∑
n∈Z

(2πin
T

)m
FCD( f )(nT−1)e2πin t

T

for every m ∈ Z≥0, and this limit is continuous. If we take

C′ =
A
T
, r′ =

2π
T

we have

| f (m)(t)| ≤ C′
∑
n∈Z

(nr′)me−α|n| = C′ + 2C′
∞∑

n=1

(nr′)me−α|n|.

For n ∈ Z>0 and x ∈ [n,n + 1] we have

(nr′)me−α|n| ≤ eα(r′x)me−αx

and so

| f (m)(t)| ≤ C′ + 2C′eα(r′)m
∑
n∈Z

∫ n+1

n
xme−αx dx ≤ C′ + 2C′eα(r′)m +

∫
∞

0
xme−αx dx.

By a repeated application of integration by parts we have∫
∞

0
xme−αx dx =

1
α

m!
αm .

Thus

| f (m)(t)| ≤ C′ +
2C′eα

α

(r′

α

)m
m!
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for each m ∈ Z≥0. Since

lim
m→∞

(
C′ +

2C′eα

α

(r′

α

)m
m!

) (
α
r′

)m 1
m!
=

2C′eα

α
,

there exists N ∈ Z>0 sufficiently large that

C′ +
2C′eα

α

(r′

α

)m
m! ≤

4C′eα

α

(r′

α

)m
m!

for every m ≥ N. Now take r = α
r′ and

C = max
{

4C′eα

α
, ∥ f ∥∞, . . . ,

rN

N!
∥ f (N)

∥∞

}
.

Then we have | f (m)(t)| ≤ Cm!r−m for every m ∈ Z≥0 and t ∈ R, giving analyticity of f
by Theorem I-3.7.26. ■

Finally, let us show that any general estimate for the rate of decay of the values
for the CDFT is not possible.

5.1.18 Theorem (The CDFT decays arbitrarily slowly generally) If G ∈ c0(Z(T−1);R≥0)
then there exists f ∈ L(1)

per,T(R;C) such that

|FCD(f)(nT−1)| ≥ G(nT−1), n ∈ Z.

Proof We first state a couple of lemmata having to do with the construction of se-
quences with desirable properties.

1 Lemma If (αj)j∈Z≥0 is a sequence inR≥0 satisfying limj→∞ αj = 0, then there exists a sequence
(βj)j∈Z≥0 satisfying

(i) βj ≥ αj, j ∈ Z≥0,
(ii) βj+2 + βj ≥ 2βj+1, j ∈ Z≥0, and
(iii) limj→∞ βj = 0.

Proof Let M ∈ R>0 be such that β j ≤M for each j ∈ Z≥0. Let N0 = 0 and let N1 > N0 be
such that α j ≤

M
2 for j ≥ N1. Now suppose that we have defined N0,N1, . . . ,Nn ∈ Z>0

such that
N0 < N1 < · · · < Nn

and α j ≤ M2−m whenever j ≥ Nm. Then choose Nn+1 > Nn +
1
2 (Nn − Nn−1) such that

α j ≤ M2−(n+1) whenever j ≥ Nn+1. This inductively defines a sequence (Nm)m∈Z>0 .
Define h : R≥0 → R≥0 by asking that h(Nm) = M2m−1 and that h be linear between Nm
and Nm+1 for each m ∈ Z≥0. The resulting function is easily seen to be strictly convex
by construction. We define β j = h( j) for each j ∈ Z≥0. Since h is convex we have the
second conclusion. Since limm→∞ βNm = 0 the third conclusion follows. Finally, the
construction of the sequence (Nm)m∈Z≥0 ensures that the first conclusion holds. ▼
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2 Lemma If (βj)j∈Z≥0 is a sequence satisfying the first two conclusions of the preceding lemma,
then

∞∑
j=0

(j + 1)(βj+k+2 + βj+k − 2βj+k+1) = βk

for each k ∈ Z≥0.

Proof An elementary induction on N gives

N∑
j=0

( j + 1)(β j+k+2 + β j+k − 2β j+k+1) = βk − (N + 1)(βk+N+1 − βk+N+2) − βk+N+1

for each N ∈ Z≥0. The lemma will follow if we can show that

lim
N→∞

(N + 1)(βk+N+1 − βk+N+2) = 0.

Let N′ be the largest integer less than N
2 . We have

βk+N′+1 − βk+N+2 = (βk+N′+1 − βk+N′+2) + (βk+N′+2 − βk+N′+3) + · · · + (βk+N+1 − βk+N+2).

By the second property from the preceding lemma,

βk+N′+ j − βk+N′+ j+1 ≥ βk+N′+ j+1 − βk+N′+ j+2

for each j ∈ {1, . . . ,N −N′}. This gives

βk+N′+1 − βk+N+2 ≥ (N′ + 1)(βk+N+1 − βk+N+2) ≥
N + 1

2
(βk+N+1 − βk+N+2) ≥ 0.

Since
lim

N→∞
βk+N′+1 − βk+N+2 = 0

(noting that N′ is determined by N), the lemma follows. ▼

For G ∈ c0(Z(T−1);R≥0) define

α j = T(G( jT) + G(− jT)), j ∈ Z≥0.

By Lemma 1 let (β j) j∈Z≥0 be a sequence satisfying the conclusions of that lemma for
the associated sequence (α j) j∈Z≥0 . Define (βn)n∈Z by asking that βn = β−n for n ∈ Z<0.
Define

f (t) =
∞∑
j=0

( j + 1)(β j+2 + β j − 2β j+1)Fper
T, j (t),

where Fper
T, j , j ∈ Z≥0, is the Fejér kernel of Example 4.7.19–3. By the properties of the

sequence (β j) j∈Z≥0 and the positivity of the Fejér kernel, it follows that f (t) ∈ R≥0 for
each t ∈ R. Applying Lemma 2 with k = 0 gives

∥ f ∥1 =
∞∑
j=0

( j + 1)(β j+1 + β j − 2β j+1)∥Fper
T, j ∥1 = β0 < ∞,
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using the fact that ∥Fper
T, j ∥1 = 1 by a direct computation using Lemma 2 from Exam-

ple 8.2.2–3. This shows that f ∈ L(1)
per,T(R;C). do this somewhere

Now we compute the CDFT of f . For n ∈ Zwe have

FCD( f )(nT−1) =
∞∑
j=0

( j + 1)(β j+2 + β j − 2β j+1)FCD(Fper
T, j )(nT−1)

=
1
T

∞∑
j=|n|

( j + 1)(β j+2 + β j − 2β j+1)
(
1 −

|n|
j + 1

)

=
1
T

∞∑
j=|n|

( j + 1)(β j+2 + β j − 2β j+1) −
|n|
T

∞∑
j=|n|

(β j+2 + β j − 2β j+1)

=
1
T

∞∑
j=0

( j + 1 + |n|)(β j+|n|+2 + β j+|n| − 2β j+|n|+1)

−
|n|
T

∞∑
j=0

(β j+|n|+2 + β j+|n| − 2β j+|n|+1) =
β|n|
T
,

using Lemma 2 and Lemma 3 from Example 8.2.2–3. Finally, note that

|FCD( f )(nT−1)| =
β|n|
T
≥
α|n|
T
≥ G(nT−1),

as desired. ■

5.1.5 Convolution, multiplication, and the L1-CDFT

An important rôle is played in Fourier transform theory by convolution. In this
section we investigate this for periodic signals and the CDFT.

As we saw in Theorem 4.2.24, the product of convolution makes L(1)
per,T(R;C)

into an algebra with some particular properties. It makes sense to ask how this
algebra structure appears after the CDFT is applied. It turns out that the answer
is very simple: Convolution in the time-domain becomes multiplication in the
frequency-domain. This is the content of the following theorem.

5.1.19 Proposition (The CDFT of a convolution is the product of the CDFT’s) If f,g ∈
L(1)

per,T(R;C) then

FCD(f ∗ g)(nT−1) = FCD(f)(nT−1)FCD(g)(nT−1)

for every n ∈ Z.
Proof This is a fairly straightforward application of Fubini’s Theorem, the change of
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variables theorem, and periodicity of f :

FCD( f ∗ g)(nT−1) =
∫ T

0
f ∗ g(t)e−2πin t

T dt =
∫ T

0

(∫ T

0
f (t − s)g(s) ds

)
e−2πin t

T dt

=

∫ T

0
g(s)

(∫ T

0
f (t − s)e−2πin t

T dt
)

ds

=

∫ T

0
g(σ)

(∫ T−σ

−σ
f (τ)e−2πin σ+τT dτ

)
dσ

=

(∫ T

0
g(σ)e−2πin σ

T dσ
) (∫ T

0
f (τ)e−2πin τ

T dτ
)

= FCD( f )(nT−1)FCD(g)(nT−1).

(The reader may wish to compare this computation to that performed at some length
in the proof of Theorem 4.1.21.) ■

Mostly, the previous result is of theoretical importance since, as we shall see
in , convolution arises in an essential way when one talks about linear systems. what?

However, sometimes the result can be used to easily compute the CDFT of a signal
knowing that it is a convolution.

5.1.20 Example (The CDFT of a convolution) Let us define f , g ∈ L(1)
per,1(R;C) by asking

that for t ∈ [− 1
2 ,

1
2 ] we have

f (t) =

1, t ∈ [− 1
4 ,

1
4 ],

0, otherwise

and

g(t) =

 1
2 + t, t ∈ [− 1

2 , 0],
1
2 − t, t ∈ (0, 1

2 ].

In Examples 5.1.3–4 and 5 we computed a=1/4 T=1

FCD( f )(n) =

 1
2 , n = 0,
sin( nπ

2 )
nπ , n , 0,

FCD(g)(n) =

 1
4 , n = 0,
sin( nπ

2 )2

π2n2 , n , 0.

One can verify that g = f ∗ f and so, by Proposition 5.1.19, we have FCD(g) =
FCD( f )FCD( f ). This is true. •

It is possible to swap the rôles of convolution and multiplication in the above re-
sult, recalling from Section 4.1.4 the definition of convolution for aperiodic discrete-
time (in this case, discrete-frequency) signals.
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5.1.21 Proposition (The CDFT of a product is the convolution of the CDFT’s) If f,g ∈
L(1)

per,T(R;C) and if FCD(f),FCD(g) ∈ ℓ1(Z(T−1;C), then

FCD(fg)(nT−1) = FCD(f) ∗ FCD(g)(nT−1)

for every n ∈ Z.
Proof Our proof relies on some facts about the inverse of the CDFT presented in
Section 5.2 and some facts about the DCFT presented in Section 7.1.

By Theorem 5.2.33 it follows that f and g are almost everywhere equal to contin-
uous signals. Let us without loss of generality assume that f and g are continuous.

Note that
FCD( f ) ∗ FCD(g) ∈ ℓ1(Z(T−1);C)

by Theorem 4.2.34. By Proposition 5.1.6(ii), Theorem 7.1.16, Proposition 7.1.12, and
the fact that F CD = F −1

DC , we have

FDC(FCD( f ) ∗ FCD(g)) = FDC(F −1
DC (σ∗ f ) ∗ F −1

DC (σ∗g)) = σ∗ fσ∗g.

By the definition of the DCFT this gives

1
T

∑
n∈Z

FCD( f ) ∗ FCD(g)(nT−1)e−2πin τ
T = f (−τ)g(−τ), τ ∈ R,

the sum on the left converging uniformly by the Weierstrass M-test. Making the change
of variable t = −τ we have

1
T

∑
n∈Z

FCD( f ) ∗ FCD(g)(nT−1)e2πin t
T = f (t)g(t), t ∈ R,

Taking the CDFT of the expression on the left, swapping the integral and sum by virtue
of Theorem I-3.6.23 and using Lemma 5.3.2 below, we get

FCD( f ) ∗ FCD(g)(nT−1) = FCD( f g)(nT−1),

as desired. ■

Exercises

5.1.1 Suppose that f is the 2T-periodic extension of g ∈ L(1)([−T,T];C).
(a) Argue that the natural harmonic signals to use to define the CDFT for f

are (ẽn = eiπn t
T )n∈Z.

(b) Show that

FCD( f )( n
2T ) =

∫ T

−T
g(t)e−iπn t

T dt.

(c) Give the formulae for the CDCT and the CDST in this case.
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5.1.2 In this exercise you will be given the graphs of T-periodic signals for T = 1.
For each signal, without just grinding away at the computations, determine
the CDFT.
Hint: Use Example 5.1.3.
(a) The graph is

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

(b) The graph is

0.0 0.2 0.4 0.6 0.8 1.0

2.5

3.0

3.5

4.0

5.1.3 Let f ∈ L(1)
per,T(R;C).

(a) For a ∈ R, show that |FCD(τ∗a f )(nT−1)| = |FCD( f )(nT−1)| for each n ∈ Z.
(b) For which values of a ∈ R is it true that arg(FCD(τ∗a f )(nT−1)) =

arg(FCD( f )(nT−1)) for every n ∈ Z? Does your conclusion depend on
f ?

(c) Find a nontrivial codomain transformation ϕ : C → C such that
arg(FCD(ϕ ◦ f )(nT−1)) = arg(FCD( f )(nT−1)) for every n ∈ Z.

5.1.4 Prove the following result.

Proposition Let f ∈ L(1)([0,T];R) and denote by feven ∈ L(1)
per,2T(R;R) and fodd ∈
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L(1)
per,2T(R;R) the even and odd extensions. Then

CCD(feven)(n(2T)−1) = 2
∫ T

0
feven(t) cos(πn t

T ) dt, n ∈ Z≥0,

SCD(feven)(n(2T)−1) = 0, n ∈ Z>0,

CCD(fodd)(n(2T)−1) = 0, n ∈ Z≥0,

SCD(fodd)(n(2T)−1) = 2
∫ T

0
fodd(t) sin(πn t

T ) dt, n ∈ Z>0.

5.1.5 Let f , g ∈ L(1)
per,T(R;C) and suppose that FCD( f ) ∈ ℓ1(Z(T−1);C). Show that∫ T

0
f (t)g(t) dt =

1
T

∑
n∈Z

FCD( f )(nT−1)FCD(g)(−nT−1),

making sure to understand why all integrals and sums exist.
5.1.6 In Table 5.1 you are given the graphs of four functions, all defined on [0, 2π],

along with four Fourier series. You are not told which graph goes with
which Fourier series. You are to match the graph with the appropriate
Fourier series, providing justification for your choice.

5.1.7 In each of the following problems, you will be asked to provide a 1-periodic
signal (i.e., a periodic signal with period 1) f : R→ Cwith prescribed prop-
erties. In all cases, you are not allowed to use the explicit form of the CDFT
of f , i.e., all explanations must be given in terms of f .
(a) Properties:

1. lim|n|→∞FCD( f )(n) = 0 and
2. lim|n|→∞ nFCD( f )(n) , 0.

(b) Properties:
1. lim|n|→∞ nFCD( f )(n) = 0 and
2. lim|n|→∞ n2FCD( f )(n) , 0.

(c) Properties:
1. lim|n|→∞ nrFCD( f )(n) = 0 for every r ∈ Z≥0.

(d) Properties:
1. FCD( f ) ∈ ℓ2(Z;C) and
2. FCD( f ) < ℓ1(Z;C).
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Table 5.1 Table of Fourier series and graphs of functions
Fourier series Graphs

1. π + 2
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n=1
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2 − sin 3nπ

2 )
n

cos(nt) 1.
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Section 5.2

Inversion of the CDFT

Now that we have defined the CDFT and given some of its more basic properties,
let us turn to the question, “Does the CDFT of a signal faithfully represent the
signal.” If one thinks about the situation illustrated in Figure 2.7 where we show
time- and frequency-domain representations of two music clips, if the frequency-
domain representation is to have any value then we ought to be able to recover from
it the time-domain representation. In this section we investigate this “inversion”
process.

Do I need to read this section? The topic of transform inversion is one of the
most important in Fourier analysis. So this section is an important one. •

5.2.1 Preparatory work

The CDFT takes f ∈ L1
per,T(R;C) and returns FCD( f ) ∈ c0(Z(T−1);C). Our objec-

tive is to ascertain whether there is a way of retrieving f if we are given FCD( f ).
First let us show that the inverse of the CDFT exists, at least in a set theoretic
sense.

5.2.1 Theorem (The CDFT is injective) The map FCD : L1
per,T(R;C) → c0(Z(T−1);C) is

injective.
Proof Let us recall from Example 4.7.19–3 the definition of the periodic Fejér kernel:

Fper
T,N(t) =


1
N

sin2(Nπ t
T )

sin2(π t
T )

, t < Z(T),

N, t ∈ Z(T).

According to Lemma 2 from Example 8.2.2–3 below, Fper
T,N is a finite linear combination

of the harmonic signals t 7→ e2πin t
T , n ∈ Z. Also recall that in Example 4.7.19–3 we

verified that ( 1
T Fper

T,N)N∈Z>0 is a periodic approximate identity. We use these facts in the
following lemma.

1 Lemma Let f1, f2 ∈ C0
per,T(R;F) and suppose that FCD(f1)(nT−1) = FCD(f2)(nT−1) for all

n ∈ Z. Then f1 = f2.

Proof By linearity, the theorem amounts to showing that if f ∈ C0
per,T(R;F) and if

FCD( f )(nT−1) = 0 for n ∈ Z, then f = 0. Also by linearity of the integral, we may as
well suppose that F = R, as if this is not so, we may apply the theorem separately to
the real and imaginary parts of f .

We suppose that FCD( f )(nT−1) = 0 for n ∈ Z and that f , 0. By translation
(cf. Proposition 5.1.6) and multiplication by −1 if necessary, we may suppose that
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f (0) ∈ R>0. Note that the relation

FCD( f )(nT−1) =
∫ T

0
f (t)e−2πin t

T dt = 0

implies, by periodicity of f and of e2πin t
T , n ∈ Z, that∫ T

2

−
T
2

f (t)e−2πin t
T dt = 0, n ∈ Z.

By linearity of the integral this means that∫ T
2

−
T
2

f (t)g(t) dt = 0 (5.4)

where g is any finite linear combination of the harmonic signals (e2πin t
T )n∈Z.

Now we use the properties of Fper
T,N to proceed with the proof. As f is continuous

and f (0) , 0, we can choose α ∈ R>0 so that f (t) ≥ 1
2 f (0) for all t ∈ [−α, α]. We then

write ∫ T
2

−
T
2

f (t)Fper
T,N dt =

∫ α

−α
f (t)Fper

T,N(t) dt +
∫

[− T
2 ,

T
2 ]\[−α,α]

f (t)Fper
T,N(t) dt.

Let
Mα = sup{| f (t)| | α ≤ |t| ≤ T

2 },

noting that Mα < ∞ as f is continuous. Thus we have∣∣∣∣∣∣
∫

[− T
2 ,

T
2 ]\[−α,α]

f (t)Fper
T,N(t) dt

∣∣∣∣∣∣ ≤Mα

∫
[− T

2 ,
T
2 ]\[−α,α]

Fper
T,N(t) dt,

and so

lim
N→∞

∣∣∣∣∣∣
∫

[− T
2 ,

T
2 ]\[−α,α]

f (t)Fper
T,N(t) dt

∣∣∣∣∣∣ = 0

since ( 1
T Fper

T,N)N∈Z>0 is a periodic approximate identity. We also have∫ α

−α
f (t)Fper

T,N(t) dt ≥
1
2

f (0)
∫ α

−α
Fper

T,N(t) dt.

Thus, again since ( 1
T Fper

T,N)N∈Z>0 is a periodic approximate identity,

lim
N→∞

∫ α

−α
f (t)Fper

T,N(t) dt ≥
1
2

f (0)T.

Now choose N0 ∈ Z>0 sufficiently large that, for all N ≥ N0,∣∣∣∣∣∣
∫

[− T
2 ,

T
2 ]\[−α,α]

f (t)Fper
T,N(t) dt

∣∣∣∣∣∣ < 1
8

f (0)T
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and ∫ α

−α
f (t)Fper

T,N(t) dt ≥
1
4

f (0)T.

This gives ∫ T
2

−
T
2

f (t)Fper
T,N(t) dt ≥

1
8

f (0)T ∈ R>0,

so contradicting (5.4). Thus, if f is continuous and nonzero, it must hold that
FCD( f )(nT−1) , 0 for some n ∈ Z, so giving the result. ▼

Now let f ∈ L1
per,T(R;C). It is sufficient to show that if FCD( f )(nT−1) = 0 for every

n ∈ Z then f (t) = 0 for almost every t ∈ R. Define F : [0,T]→ C by

F(t) =
∫ t

0
f (τ) dτ.

We claim that Fper is continuous. By Proposition III-2.9.24 and Theorem III-2.9.33 it
follows that F is continuous. Moreover,

F(T) =
∫ T

0
f (t) dt = FCD( f )(0) = 0 = F(0),

and so we conclude that Fper is continuous. For n , 0, using Fubini’s Theorem we
compute

FCD(Fper)(nT−1) =
∫ T

0
F(t)e−2πin t

T dt =
∫ T

0

(∫ t

0
f (τ)e−2πin t

T dτ
)

dt

=

∫ T

0
f (τ)

(∫ T

τ
e−2πin t

T dt
)

dτ

=
T

2πin

(∫ T

0
f (τ)e−2πin τ

T dτ − e−2πin
∫ T

0
f (τ) dτ

)
=

T
2πin

(FCD( f )(nT−1) − FCD( f )(0)) = 0,

since FCD( f ) = 0. Now consider the signal G ∈ C0
per,T(R;C) defined by G(t) = Fper(t) −

1
TFCD(Fper)(0). We have

FCD(G)(nT−1) = FCD(Fper)(nT−1) −
1
T
FCD(Fper)(0)

∫ T

0
e−2πin t

T dt = 0, n ∈ Z.

By Lemma 1 it follows that the signal G is zero since it is continuous. Thus

f (t) = F′per(t) = G′(t) = 0

for almost every t ∈ R using Lemma III-2.9.32. ■
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Note that the proof of Theorem 5.2.22 is quite detailed and involved, using
special properties of harmonic signals. This is to be expected since we are proving
something nontrivial, namely that FCD possesses an inverse of some sort. In the
course of the proof we made use of the periodic Fejér kernel defined in Exam-
ple 4.7.19–3. As we saw when we defined the periodic Fejér kernel, it defined a
periodic approximate identity. Moreover, in the proof of Theorem 5.2.22 we used
precisely the properties of an approximate identity in the proof. We shall again and
again see this theme of approximate identities playing a crucial rôle in transform
inversion.

Theorem 5.2.1 raises the question about the surjectivity of the CDFT. It turns
out that it is not surjective as the following result indicates.

5.2.2 Proposition (The CDFT is not onto c0(Z(T−1);C)) The map FCD : L1
per,T(R;C) →

c0(Z(T−1);C) is not surjective.
Proof We argue abstractly. As a map of Banach spaces, FCD is continuous. If
it is an linear isomorphism then it is a homeomorphism by Theorem III-3.5.31.
Let F −1

CD : c0(Z(T−1);C) → L1
per,T(R;C) be the inverse of FCD. Thus, by Theo-

rem III-3.5.8 it follows that there exists M ∈ R>0 such that ∥F −1
CD (F)∥1 ≤ M∥F∥∞ for

every F ∈ c0(Z(T−1);C). In particular, it follows that ∥ f ∥1 ≤ M∥FCD( f )∥∞ for every
f ∈ L1

per,T(R;C). We recall from Example 4.7.19–5 the sequence (Dper
T,N)N∈Z>0 defined

by the periodic Dirichlet kernel. By Lemma 1 from Example 8.1.3 below we have

Dper
T,N(t) =

∑
|n|≤N

e2πin t
T .

From this we conclude that ∥FCD(Dper
T,N)∥∞ = 1 for every N ∈ Z>0. By Lemma 1 from

Example 4.7.19–5 we have limN→∞∥D
per
T,N∥1 = ∞. This, however, contradicts the con-

clusion, arrived at by assuming that FCD is surjective, that ∥Dper
T,N∥1 ≤ M∥FCD(Dper

T,N)∥∞
for every N ∈ Z>0. Thus FCD cannot be surjective. ■

5.2.3 Remarks (On inversion of the CDFT)
1. As the reader knows from Proposition I-1.3.9, Theorem 5.2.1 implies the exis-

tence of a left-inverse for the CDFT. That is to say, we are ensured the existence of
a mapICD : c0(Z(T−1);C)→ L1

per,T(R;C) with the property thatICD ◦FCD( f ) = f
for every f ∈ L1

per,T(R;C). Since FCD is not surjective, this inverse is not unique.
Therefore, from the multitude of possible left-inverse, one would want one with
useful properties. This is one way to view the results in this section.

2. Another approach would be to propose a possible left-inverse, and then consider
classes of functions in L1

per,T(R;C) for which the proposed left-inverse actually
does act as a left-inverse should; namely, one recovers the original function
after an application of the CDFT and the proposed left-inverse. This approach
is, in fact, the one we adopt, and it is the one predominantly adopted when
one considers inversion of the CDFT. As we shall see, there are various possible
left-inverses, each with its own advantages and disadvantages. •
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5.2.2 Fourier series

Apropos to Remark 5.2.3–2, and motivated by the ramblings in Section 2.6.1
and other places, a seemingly good candidate for the inverse of the CDFT is the
map F −1

CD : c0(Z(T−1);C)→ L1
per,T(R;C) defined by

F −1
CD (F)(t) =

1
T

∑
n∈Z

F(nT−1)e2πin t
T .

(The reason for the factor 1
T is not so awfully important.) Well, this is unlikely to

literally work since F −1
CD (F) will not be defined for frequency-domain signals in

c0(Z(T−1);C) that decay slowly at infinity. However, all may not be lost because all
we are interested in is computing F −1

CD on image(FCD). Thus, maybe it holds that

f (t) =
1
T

∑
n∈Z

FCD( f )(nT−1)e2πin t
T .

However, this fails too, and actually fails badly in some sense; we discuss this in
Section 5.2.3. Thus the “obvious” inverse for FCD does not work on signals in
L1

per,T(R;C). However, maybe it works on some subset of L1
per,T(R;C) that is large

enough to contain most signals of interest. We shall see that this is sort of true in
that signals for which the naı̈ve inverse of FCD does not work tend to be a little
pathological.

With the above as setup, we make the following definition.

5.2.4 Definition (Fourier series) For f ∈ L(1)
per,T(R;C) the Fourier series of f is the series

FS[ f ](t) =
1
T

∑
n∈Z

FCD( f )(nT−1)e2πin t
T ,

disregarding the convergence of this series. The real Fourier series of f is

FS[ f ](t) =
1

2T
CCD(0) +

1
T

∞∑
n=1

(
CCD( f )(nT−1) cos(2πn t

T ) +SCD( f )(nT−1) sin(2πn t
T )

)
,

again disregarding convergence of the series. •

As we shall see in a moment, we are justified in using the same symbol for the
Fourier series and the real Fourier series.

5.2.5 Remark (The meaning of “disregarding the convergence of this series”) The
disregarding of the convergence of the series defining FS[ f ] is perhaps unsettling.
What we mean by this is that we will be considering various ways in which this
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series converges. However, it is possible to assign a precise meaning to FS[ f ] in
any case, so let us describe this. We may define FS[ f ] ∈ D ′per,T(R;C) by

FS[ f ](ψ) =
1
T

∑
n∈Z

FCD( f )(nT−1)FCD(ψ)(−nT−1), (5.5)

for ψ ∈ Dper,T(R;C). Note that this sum makes sense for all f ∈

L(1)
per,T(R;C) since FCD( f ) ∈ c0(Z(T−1);C) (and so is bounded, in particular), since

limn→∞|n|k|FCD(ψ)(nT−1)| = 0 since ψ is infinitely differentiable, and using Exer-
cise 1.2.3. The rationale for this formula comes from the Fourier Reciprocity
Relation, Proposition 5.1.11. Indeed, if FCD( f ) ∈ ℓ1(Z(T−1);C) then this result
gives ∫ T

0
FS[ f ](t)ψ(t) dt =

1
T

∑
n∈Z

FCD( f )(nT−1)FCD(ψ)(−nT−1),

which is the relation (5.5) in this case. However, the formula (5.5) is valid for all
f ∈ L(1)

per,T(R;C). Despite this interpretation being accurate and valid, we shall not
use it. •

5.2.6 Remark (The usual rôle of Fourier series) In most texts that deal with Fourier
series, the chapter dealing with the topics we are now discussing would be titled
“Fourier series.” For us Fourier series arise in terms of inverting the CDFT, and so
are not the principal objects of study, but just something that comes up along the
way. Thus the emphasis and arrangement of ideas is a little different for us than
for many other treatments. For example, in the usual treatment, one does not often
think of the CDFT as a map, but more or less thinks of the coefficients

cn( f ) =
∫ T

0
f (t)e−2πin t

T dt

in the complex case or

an( f ) = 2
∫ T

0
f (t) cos(2πn t

T ) dt, bn( f ) = 2
∫ T

0
f (t) sin(2πn t

T ) dt

as being computed, and then retrieving f using the Fourier series. The coefficients
are called the Fourier coefficients. The transform approach we give here more easily
connects with the CCFT and the other Fourier transforms that we will encounter
later. But the reader should still be aware that the usual treatment of the material
in this chapter has a different slant than we give here, although the content of the
presentation is broadly equivalent. •

The question we spend some time answering in this section is, “For what signals
does the Fourier series converge?” In studying convergence of Fourier series we
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shall consider the Nth partial sum which is simply

fN(t) =
1
T

N∑
n=−N

FCD( f )(nT−1)e2πin t
T

for the Fourier series and

fN(t) =
1

2T
CCD(0) +

1
T

N∑
n=1

(
CCD( f )(nT−1) cos(2πn t

T ) +SCD( f )(nT−1) sin(2πn t
T )

)
for the real Fourier series. The use of fN for both partial sums is acceptable because,
as the reader can show in Exercise 5.2.1, they are actually the same.

It is useful to have a formula for the Nth partial sum. Quite miraculously, there
is a very nice explicit expression, and involving the periodic Dirichlet kernel from
Examples 4.7.19–3 and 4.7.19–5:

Dper
T,N(t) =

 sin((2N+1)π t
T )

sin(π t
T ) , θ < Z,

2N + 1, θ ∈ Z.

Note that like its sister, the periodic Fejér kernel Fper
T,N which we saw in the proof

of Theorem 5.2.1, the periodic Dirichlet kernel is “concentrated” around t = 0 for
large N, even though it is not a periodic approximate identity. The two kernels Fper

T,N
and Dper

T,N form an integral part of the analysis of Fourier series, with each being the
appropriate object at different stages of the game.

For us, the essential part played by the periodic Dirichlet kernel is given in the
following lemma.

5.2.7 Lemma (Partial sums and the periodic Dirichlet kernel) For f ∈ L(1)
per,T(R;C) we

have

fN(t) =
1
T

∫ T
2

−
T
2

f(t − τ)Dper
T,N(τ) dτ

for every N ∈ Z>0.
Proof We compute

fN(t) =
1
T

∑
|n|≤N

FCD( f )(nT−1)e2πin t
T =

1
T

∑
|n|≤N

(∫ T

0
f (s)e−2πin s

T ds
)

e2πin t
T

=
1
T

∑
|n|≤N

∫ T
2

−
T
2

f (s)e−2πin s
T ds

 e2πin t
T =

1
T

∫ T
2

−
T
2

∑
|n|≤N

e2πin (t−s)
T

 f (s) ds. (5.6)

Applying Lemma 1 from Example 8.1.3 below in the case when θ = 2π t−s
T gives∑

|n|≤N

e2πin (t−s)
T =

sin((2N + 1)π t−s
T )

sin(π t−s
T )

= Dper
T,N(t − s).
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This equality, after substitution into (5.6) with this followed by a change of variable
τ = t − s, gives

fN(t) =
1
T

∫ T
2+t

−
T
2+t

f (t − τ)Dper
T,N(τ) dτ.

Since both f and Dper
T,N are T-periodic we have

fN(t) =
1
T

∫ T
2

−
T
2

f (t − τ)Dper
T,N(τ) dτ,

as desired. ■

Note that this gives the Nth partial sum as the T-periodic convolution of f
with Dper

T,N, recalling from Section 4.1.3 the definition of convolution for periodic
signals.

5.2.8 Notation (Dper
T,N

f) Motivated by the above, for f ∈ L(1)
per,T(R;C) and for N ∈ Z>0 we

shall from now on denote the Nth partial sum by

Dper
T,N f (t) =

1
T

∑
|n|≤N

FCD( f )(nT−1)e2πin t
T .

The notation is intended to be suggestive of convolution, and also serves to make
clear the essential rôle of the periodic Dirichlet kernel in Fourier series. •

Also, rather than speak of convergence of the Fourier series to f we speak of
convergence of the sequence (Dper

T,N f )N∈Z>0 to f . At various times, the convergence
will be pointwise, uniform, or bounded, as required by the situation. The reader
may wish to revisit Section I-3.6 to recall these various notions of convergence since
we will proceed as if they are known.

Before we get to the specific results on convergence of Fourier series, it is perhaps
useful to have an example to preview what we might expect.

5.2.9 Example (A sample Fourier series) We let f ∈ L(1)
per,1(R;R) be the 1-periodic

extension of the signal f̃ (t) = t. In Example 5.1.3–1 we computed

FCD( f )(n) =

1
2 , n = 0,

i
2nπ , otherwise.

Equivalently we may compute the CDCT and CDST to be

CCD( f )(n) =

1, n = 0,
0, n , 0,

SCD( f )(n) = −
1

nπ
, n ∈ Z>0.
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Thus we have

FS[ f ](t) =
1
2
+

∑
n∈Z\{0}

ie2πin t
T

2nπ
=

∞∑
n=1

−
1

nπ
sin(2nπt).

In Figure 5.7 are shown a few of the partial sums. Let us make a few observations.
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Figure 5.7 The 1st (top left), 5th (top right), and 10th (bottom)
partial sums for the Fourier series for f (t) = t

1. The partial sums seem to be converging nicely at all points where the signal is
continuous. One might be led to speculate that continuity is related to conver-
gence of Fourier series. This is not true. Indeed, for the signal we are considering
here, at points of continuity, the signal is not just continuous, but infinitely dif-
ferentiable. We will see in Corollary 5.2.25 that, in fact, differentiability at a
point implies convergence of the Fourier series at this point.

2. At the points of discontinuity the partial sums behave peculiarly. Indeed, as we
take more terms in the partial sums, the region for which the approximation is
good gets larger, but the approximation near the point of discontinuity gets no
better. We shall see in Section 5.2.6 that this is a somewhat general phenomenon.

•
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5.2.3 Divergence of Fourier series

Before we get to results regarding convergence of Fourier series, it is first useful, to
properly frame our discussion, to say a few words about divergence of Fourier series.
There are various modes of convergence one may discuss, including pointwise
convergence, uniform convergence, and convergence in the L1-norm. In this section
we shall see that the Fourier series interacts well with none of these modes of
convergence in any general way. Since our discussion is a little involved at points,
let us point out that the essential ideas are expressed in Example 5.2.10, and in the
statements of Theorems 5.2.18, 5.2.20, and 5.2.21.

Let us begin with pointwise convergence. First of all, note that pointwise con-
vergence of Fourier series to signals in L(1)

per,T(R;C) is sort of meaningless since
signals with the same CDFT, and so the same Fourier series, will generally only
agree almost everywhere. However, for continuous signals, the matter of pointwise
convergence has some meaning since continuous signals agreeing almost every-
where are necessarily equal by Exercise III-2.9.8. With this as background, our first
divergent Fourier series is for a continuous signal with a Fourier series diverging
at a single point.

5.2.10 Example (A continuous signal whose Fourier series diverges at a point) We
define a continuous function 2π-periodic signal whose Fourier series diverges at
t = 0. The construction of the continuous signal on is as follows. For k ∈ Z>0 define
αk =

1
k2 and nk = 3k4 . Note that for each t ∈ (0, π] there exists a unique k ∈ Z>0 for

which t ∈ [ πnk
, π

nk−1
]. With this in mind, for t ∈ [0, π] define

f (t) =

αk sin(nkt), t ∈ [ πnk
, π

nk−1
],

0, t = 0.

We then take f to be the even extension of its restriction to [0, π]. In Figure 5.8
we plot f between −π and π. The idea is that on the intervals [ πnk

, π
nk−1

], k ∈ Z>0,
the signal is sinusoidal with an amplitude that decreases with k. These intervals
accumulate at t = 0. They are actually compressed rather tightly around t = 0,
and in Figure 5.8 we can effectively only see two of the intervals. Note that at the
endpoints of each of these intervals the signal is zero, so the signal is continuous at
all points away from t = 0. The signal is also continuous at t = 0 as we now show.
Let ϵ ∈ R>0 and let kϵ be the smallest natural number for which 1

k2 < ϵ. If we take
δ = π

nkϵ
then it follows that if |t| < δ then | f (t)| < ϵ, thereby showing continuity of f

at t = 0. We may also show that f is of bounded variation on any closed interval
not containing 0. Therefore, the convergence of (Dper

T,N f )N∈Z>0 to f is uniform on any
closed subset of [−π, π] not containing t = 0.

We show that despite this the Fourier series diverges at t = 0. To show this we
shall show that

lim
N→∞

∫ π

0
f (t)

sin(nNt)
t

dt = ∞,
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Figure 5.8 A continuous signal with a Fourier series divergent at
0

which suffices by Theorem 5.2.22 and by evenness of f . We have

IN ≜

∫ π

0
f (t)

sin(nNt)
t

dt =
∞∑

k=1

αk

∫ π/nk−1

π/nk

sin(nkt)
sin(nNt)

t
dt.

Let us define

iN,k =

∫ π/nk−1

π/nk

sin(nkt)
sin(nNt)

t
dt

so that IN =
∑
∞

k=1 αkiN,k. For N , k we have

iN,k =
1
2

∫ π/nk−1

π/nk

cos|nk − nN|t − cos(nk + nN)t
t

dt

=
1
2

∫ π|nk−nN |/nk−1

1

cos τ
τ

dτ −
1
2

∫ π|nk−nN |/nk

1

cos τ
τ

dτ

+
1
2

∫ π(nk−nN)/nk−1

1

cos τ
τ

dτ −
1
2

∫ π(nk−nN)/nk

1

cos τ
τ

dτ.

Note that none of the upper limits is less than 2π
3 and since∫

∞

1

cos τ
τ

dτ < ∞

it follows that limN→∞|iN,k| < ∞ provided that N , k.
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We also have

iN,N =
1
2

∫ π/nN−1

π/nN

1 − cos(2nNt)
t

dt

=
1
2

∫ 2πnN/nN−1

2π

1 − cos τ
τ

dτ

=
1
2

log(nN/nN−1) −
1
2

∫ 2πnN/nN−1

2π

cos τ
τ

dτ.

As N→∞ the second term is bounded. Therefore

lim
N→∞

IN = lim
N→∞

αN

2
log(nN/nN−1) + β

where |β| < ∞. Note that

αN

2
log(nN/nN−1) =

(N4
− (N − 1)4) log 3

2N2 ,

thus showing that limN→∞|IN| = ∞, thus showing divergence of (Dper
T,N f (0))N∈Z>0 as

desired. •

Now we turn to divergence of Fourier series on more general sets and for classes
of signals. Our discussion here will be a little general in the beginning since it is
convenient to make some of the constructions in an abstract setting first. We begin
by considering a useful sort of class of periodic signals.

5.2.11 Definition (Homogeneous Banach space of periodic signals) A homogeneous
Banach space of T-periodic signals is a Banach space (V, ∥·∥) with the following
properties:

(i) V is a subspace of L1
per,T(R;C);

(ii) ∥ f ∥1 ≤ ∥ f ∥ for every f ∈ V;
(iii) ∥τ∗a f ∥ = ∥ f ∥ for every f ∈ V and a ∈ R;
(iv) the map a 7→ τ∗a f is continuous for every f ∈ V.

A homogeneous Banach space of T-periodic signals (V, ∥·∥) is regular
(v) if E2πinT−1 f ∈ V and
(vi) if ∥E2πinT−1 f ∥ = ∥ f ∥

for every f ∈ V and n ∈ Z, where E2πinT−1 denotes the harmonic signal t 7→ e2πin t
T . •

There are two homogeneous Banach spaces of periodic signals in which we will
be interested.
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5.2.12 Examples (Homogeneous Banach spaces of periodic signals)
1. We claim that (L1

per,T, ∥·∥1) is a homogeneous Banach space of T-periodic signals.
The only nonobvious property to verify is the last one. This, however, is proved
as Lemma 1 in the proof of Corollary 4.2.32.

2. We claim that (C0
per,T(R;C),T∥·∥∞) is a homogeneous Banach space of T-periodic

signals. The second of the properties is verified thusly:

∥ f ∥1 =
∫ T

0
| f (t)|dt ≤ ∥ f ∥∞

∫ T

0
dt = T∥ f ∥∞.

The third property is obvious and the fourth property is exactly the statement
that continuous periodic signals are uniformly continuous, cf. Theorem I-3.1.24.

•

One of the useful features of homogeneous Banach spaces is that they admit the
following useful approximation result. This result really belongs to Section 5.2.7,
but we state it here since this is the only place we shall use this general result. We
shall find the shorthand

Fper
T,N f (t) =

1
T

∫ T

0
f (t − τ)Fper

T,N(τ) dτ

useful, where f ∈ L(1)
per,T(R;C).

5.2.13 Lemma (Approximations in homogeneous Banach spaces) If (V, ∥·∥) is a ho-
mogeneous Banach space of T-periodic signals and if f ∈ V, then the sequence (Fper

T,Nf)N∈Z>0

converges to f in V in the topology induced by the norm ∥·∥.
Proof We begin with a couple of sublemmata that have to do with integrals of func-
tions taking values in a Banach space. We consider a general situation before we
specialise to the situation of the lemma. To this end, for an F-Banach space (V, ∥·∥), let
us denote by ℓ∞([a, b]; V) the subspace of F[a,b] as follows:

ℓ∞([a, b]; V) = {γ : [a, b]→ V | sup{∥γ(t)∥ | t ∈ [a, b]} < ∞}.

This has the F-vector space structure given by pointwise operations of vector addition
and scalar multiplication:

(γ1 + γ2)(t) = γ1(t) + γ2(t), (aγ)(t) = a(γ(t)).

We also define a norm ∥·∥∞ on ℓ∞([a, b]; V) by

∥γ∥∞ = sup{∥γ(t)∥ | t ∈ [a, b]}.

This is readily verified to be a norm. Also denote by C0([a, b]; V) the set of continuous
maps from [a, b] to V. We can now state our first lemma.
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1 Sublemma If (V, ∥·∥) is a F-Banach space, if γ ∈ C0([a, b]; V), and if k ∈ Z>0, define
γk : [a, b]→ V by asking that

γk(t) =

γ(a + j(b−a)
k ), t ∈ [a + j(b−a)

k , a + (j+1)(b−a)
k ), j ∈ {0, 1, . . . ,k − 1},

γ(a + (k−1)(b−a)
k ), t = b.

Then the sequence (γk)k∈Z>0 converges to γ in the norm ∥·∥∞.
Proof Note that γ is uniformly continuous since [a, b] is compact. This is proved
exactly as the standard Heine–Borel Theorem is proved for R-valued functions, but
using the norm ∥·∥ in place of the absolute value |·|. Let ϵ ∈ R>0 and, by uniform
continuity of γ, let δ ∈ R>0 be sufficiently small that if t1, t2 ∈ [a, b] satisfy |t1 − t2| < δ
then ∥γ(t1) − γ(t2)∥ < ϵ. Let N ∈ Z>0 be sufficiently large that b−a

N < δ
2 . For k ≥ N let

t ∈ [a, b) and let j ∈ {0, 1, . . . , k − 1} be such that t ∈ [a + j(b−a)
k , a + ( j+1)(b−a)

k ). Then

∥γ(t) − γk(t)∥ = ∥γ(t) − γ(a + j(b−a)
k )∥ < ϵ.

Also,
∥γ(b) − γk(b)∥ = ∥γ(b) − γ(a + (k−1)(b−a)

k )∥ < ϵ.

Thus ∥γ − γk∥∞ < ϵ for k ≥ N, giving the desired result. ▼

2 Sublemma Let (V, ∥·∥) be a F-Banach space, let γ ∈ C0([a, b]; V), and for k ∈ Z>0 define

Sk =
(b − a)

k

k∑
j=1

γ(a + j(b−a)
k ).

Then the sequence (Sk)k∈Z>0 converges in V.
Proof LetS be the set of all piecewise constant maps from [a, b] to V. Thus σ : [a, b]→
V is an element ofS if there exists a partition (I1, . . . , Ik) of [a, b] such that σ|I j is constant
for each j ∈ {1, . . . , k}. Note that S is a C-vector space with pointwise operations of
addition and scalar multiplication. Define a linear map I : S → V by

I(σ) =
k∑

j=1

λ(I j)σ j,

where P = (I1, . . . , Ik) is a partition such that σ|I j takes the value σ j ∈ V. Let EP(P) =
{t0, t1, . . . , tk}. Note that

∥I(σ)∥ ≤
k∑

j=1

(t j − t j−1)∥σ j∥ ≤ T∥σ∥∞.

Thus I is a bounded linear map. Thus, by Proposition III-3.5.11, the map I extends to a
bounded linear map I from the completion ofS into V. By Sublemma 1 it follows that
γ ∈ cl(S ), since in that sublemma we provided a sequence (γk)k∈Z>0 in S converging
to γ. Therefore,

I(γ) = lim
k→∞

I(γk),

the limit existing by virtue of Proposition III-3.5.11. ▼
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3 Sublemma If (V, ∥·∥) is a homogeneous Banach space of T-periodic signals, if f ∈ V, and if
g ∈ C0

per,T(R;C), then the limit

lim
k→∞

T
k

k∑
j=1

g
( jT

k

)
τ∗jT/kf

exists in V and is almost everywhere equal to g ∗ f.
Proof Let us first suppose that V = L1

per,T(R;C), that ∥·∥ = ∥·∥1, and that f is continuous.
Since f and g are continuous, the signal s 7→ g(s) f (t − s) is continuous. Therefore, by
Theorems I-3.4.9 and I-3.4.11 it follows that∫ T

0
g(s) f (t − s) ds = lim

k→∞

T
k

k∑
j=1

g
( jT

k

)
τ∗jT/k f (t)

for every t ∈ R. Note that for each k ∈ Z>0 we have

T
k

∫ T

0

∣∣∣∣∣∣∣∣
k∑

j=1

g
(

jT
k

)
τ∗jT/k f (t)

∣∣∣∣∣∣∣∣ dt ≤
T
k

k∑
j=1

∣∣∣∣∣∣g
(

jT
k

)∣∣∣∣∣∣
∫ T

0
|τ∗jT/k f (t)|dt

≤ ∥g∥∞∥ f ∥1.

Thus we can apply the Dominated Convergence Theorem to get the result in this case.
Next suppose that V = L1

per,T(R;C), that ∥·∥ = ∥·∥1, and that f is a general signal.

Let ϵ ∈ R>0. By Theorem III-3.8.59 let h ∈ C0
per,T(R;C) be such that

∥ f − h∥1 < max
{

ϵ
3∥g∥1

,
ϵ

3∥g∥∞

}
.

As we showed in the preceding paragraph,

lim
k→∞

T
k

k∑
j=1

g
( jT

k

)
τ∗jT/kh = g ∗ h.

Thus let N ∈ Z>0 be such that∥∥∥∥∥∥∥∥T
k

k∑
j=1

g
( jT

k

)
τ∗jT/kh − g ∗ h

∥∥∥∥∥∥∥∥ < ϵ
3

for k ≥ N. Then, for k ≥ N we have∥∥∥∥∥∥∥∥T
k

k∑
j=1

g
( jT

k

)
τ∗jT/k f − g ∗ f

∥∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥T

k

k∑
j=1

g
( jT

k

)
τ∗jT/k( f − h) − g ∗ ( f − h)

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥T
k

k∑
j=1

g
( jT

k

)
τ∗jT/kh − g ∗ h

∥∥∥∥∥∥∥∥
≤ ∥g∥∞∥ f − h∥1 + ∥g∥1∥ f − h∥1 +

ϵ
3
< ϵ,
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using Theorem 4.2.1. This gives the result in this case.
Finally, we can prove the result in the general case. Thus we let (V, ∥·∥) be a homo-

geneous Banach space of T-periodic signals and we let f ∈ V. By Proposition III-3.5.4
and the definition of a homogeneous Banach space of T-periodic signals, the map

[0,T] ∋ s 7→ u(s)τ∗s f ∈ V

is continuous in the norm topology induced by ∥·∥. With this in mind, let us for prove that

U ∋ u 7→ f (u)F(u) ∈ V is
continuous where U is

open in U
notational convenience define F ∈ C0([0,T]; V) by

F(s) = u(s)τ∗s f .

By Sublemma 2 the limit

lim
k→∞

T
k

k∑
j=1

g
( jT

k

)
τ∗jT/k f

exists in V with respect to the norm ∥·∥. Let us denote this limit by F. Since ∥·∥1 ≤ ∥·∥,
one readily verifies that F being continuous in the topology of the norm ∥·∥ implies its
being continuous in the topology of the norm ∥·∥1. Therefore, as we proved above, the
limit

lim
k→∞

T
k

k∑
j=1

g
( jT

k

)
τ∗jT/k f ,

exists in L1
per,T(R;C) and is almost everywhere equal to g ∗ f . Denote

Sk =
T
k

k∑
j=1

g
( jT

k

)
τ∗jT/k f .

For ϵ ∈ R>0 let N ∈ Z>0 be such that ∥F − Sk∥ <
ϵ
2 and ∥g ∗ f − Sk∥1 <

ϵ
2 for k ≥ N. Then

we have

∥F − g ∗ f ∥1 ≤ ∥F − Sk∥1 + ∥g ∗ f − Sk∥1 ≤ ∥F − Sk∥ + ∥g ∗ f − Sk∥1 < ϵ

giving ∥F − g ∗ f ∥1 = 0 and so F almost everywhere equal to g ∗ f , as desired. ▼

We first prove a technical estimate from which the result of the lemma follows
easily.

4 Sublemma If (V, ∥·∥) is a homogeneous Banach space of T-periodic signals, if f ∈ V, and if
u ∈ C0

per,T(R;C) satisfies
∫ T

0 u(s) ds = 1, then

∥f − f ∗ u∥ ≤
∫ T

0
∥f − τ∗sf∥|u(s)|ds.

Proof We have

f (t) − f ∗ u(t) =
∫ T

0
( f (t) − f (t − s))u(s) ds.
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By the preceding sublemma and by Theorems I-3.4.9 and I-3.4.11, we have

f − f ∗ u = lim
k→∞

T
k

k∑
j=1

u
( jT

k

)
( f − τ∗jT/k f ),

the limit being taken in V with respect to the norm ∥·∥. By continuity of the norm we
have

∥ f − f ∗ u∥ =

∥∥∥∥∥∥∥∥ lim
k→∞

T
k

k∑
j=1

u
( jT

k

)
( f − τ∗jT/k f )

∥∥∥∥∥∥∥∥
≤ lim

k→∞

T
k

k∑
j=1

∣∣∣∣u ( jT
k

)∣∣∣∣ ∥ f − τ∗jT/k f ∥ =
∫ T

0
|u(s)|∥ f − τs f ∥ds,

the last equality holding by Theorems I-3.4.9 and I-3.4.11, along with the fact that u
and the map s 7→ ∥ f − τ∗s f ∥ are continuous. ▼

Let ϵ ∈ R>0. By the sublemma,∥∥∥∥ f − Fper
T, j f

∥∥∥∥ ≤ 1
T

∫ T
2

−
T
2

∥ f − τ∗s f ∥|Fper
T, j (s)|ds. (5.7)

Let M ∈ R>0 be such that ∥Fper
T, j ∥1 ≤ M for each j ∈ Z>0. By the properties of homoge-

neous Banach spaces of T-periodic signals, there exists δ ∈ (0, T
2 ] such that

∥ f − τ∗s f ∥ <
Tϵ
2M

for t ∈ R and |s| < δ. Then, for every j ∈ Z>0,

1
T

∫ δ

−δ
∥ f − τ∗s f ∥|Fper

T, j (s)|ds ≤
ϵ

2M

∫ T
2

−
T
2

|Fper
T, j (s)|ds <

ϵ
2
. (5.8)

Now let C = ∥ f ∥ and note that ∥ f − τ∗s f ∥ ≤ 2C using the triangle inequality and
invariance of ∥·∥ under translation. Now, since ( 1

T Fper
T, j ) j∈Z>0 is an approximate identity

by Example 4.7.19–3, there exists N ∈ Z>0 such that

1
T

∫
[− T

2 ,
T
2 ]\[−δ,δ]

|Fper
T, j (s)|ds <

ϵ
4C

for j ≥ N. Therefore, if j ≥ N we have

1
T

∫
[− T

2 ,
T
2 ]\[−δ,δ]

∥ f − τ∗s f ∥|Fper
T, j (s)|ds <

ϵ
2
. (5.9)

Putting (5.7), (5.8), and (5.9) together we have

| f (t) − f ∗ u j(t)| < ϵ, j ≥ N, t ∈ R,

giving the result. ■

Now let us consider a general definition that will be useful in characterising
pointwise convergence of Fourier series.
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5.2.14 Definition (Set of divergence) A subset A ⊆ [0,T) is a set of divergence for a
homogeneous Banach space of T-periodic signals (V, ∥·∥) if there exists f ∈ V such
that (Dper

T,N f (t))N∈Z>0 diverges for every t ∈ A. •

For f ∈ L(1)
per,T(R;C) and t ∈ R, let us introduce the following notation:

D
per
T f (t) = sup{sup{|Dper

T,m f (t)| | m ∈ {1, . . . ,n}} | n ∈ Z>0}.

The following lemma indicates the value of these definitions.

5.2.15 Lemma (Condition to be in a set of divergence) If (V, ∥·∥) is a homogeneous Banach
space of T-periodic signals, then A ⊆ [0,T) is a set of divergence for V if and only if there
exists f ∈ V such that D

per
T f(t) = ∞ for every t ∈ A.

Proof It is clear that, if there exists f ∈ V such that D
per
T f (t) = ∞ for every t ∈ A, then

(Dper
T,N f (t))N∈Z>0 does not converge for t ∈ A. Thus A is a set of divergence for V.

To prove the converse, we first prove a technical result.

1 Sublemma Let (V, ∥·∥) be a homogeneous Banach space of T-periodic signals and let g ∈ V.
Then there exists f ∈ V and a sequence (αj)j∈Z>0 in R>0 such that

(i) αj > αj+1, j ∈ Z>0,
(ii) limj→∞ αj = ∞, and
(iii) FCD(f)(nT−1) = α|n|FCD(g)(nT−1), n ∈ Z.

Proof By Lemma 5.2.13, for n ∈ Z>0 let Nn ∈ Z>0 be sufficiently large that∥∥∥∥g − Fper
T,Nn

g
∥∥∥∥ < 2−n.

Define

f = g +
∞∑

n=1

(g − Fper
T,Nn

g).

Since
∞∑

n=1

∥∥∥∥g − Fper
T,Nn

g
∥∥∥∥ < 1

by Example I-2.4.2–1, it follows that the series in the definition for f converges in V
by Theorem III-3.4.6. Thus f ∈ V. Moreover, since

∞∑
n=1

∥∥∥∥g − Fper
T,Nn

g
∥∥∥∥

1
≤

∞∑
n=1

∥∥∥∥g − Fper
T,Nn

g
∥∥∥∥ ,

it follows that the sum defining f also converges in L1
per,T(R;C). Therefore, by conti-

nuity of FCD and by Proposition 5.1.19, it follows that

FCD( f )(kT−1) = FCD(g)(kT−1) +
∞∑

n=1

(FCD(g)(kT−1) − FCD(Fper
T,Nn

g)(kT−1))

= FCD(g)(kT−1)

1 +
∞∑

n=1

(
1 −

1
T
FCD(Fper

T,Nn
(kT−1))

) .
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Let us define

αk = 1 +
∞∑

n=1

(
1 −

1
T
FCD(Fper

T,Nn
(kT−1))

)
From Example 5.2.45–4 we have

1
T
FCD(Fper

T,Nn
(kT−1)) =

1 − |k|Nn
, |k| ∈ {0, 1, . . . , (Nn − 1)},

0, otherwise.

It follows that the sequence (αk)k∈Z>0 is strictly monotonically increasing. Moreover,
by the Monotone Convergence Theorem,

lim
k→∞

αk = 1 +
∞∑

n=1

(
1 −

1
T

lim
k→∞
FCD(Fper

T,Nn
(kT−1))

)
= ∞,

since limk→∞FCD(Fper
T,Nn

(kT−1)) = 0 for each n ∈ Z>0. This gives the result since α−k = αk
for all k ∈ Z<0. ▼

Now suppose that A is a set of divergence for V and let g ∈ V have the property that
(Dper

T,N g(t))N∈Z>0 diverges for each t ∈ A. By the sublemma, let f ∈ V and the sequence
(α j) j∈Z>0 in R>0 satisfy
1. α j > α j+1, j ∈ Z>0,
2. lim j→∞ α j = ∞, and
3. FCD( f )(nT−1) = α|n|FCD(g)(nT−1), n ∈ Z.
Then we compute, for n,m ∈ Z>0 with n > m and t ∈ R,

Dper
T,n g(t) −Dper

T,mg(t) =
1
T

n∑
j=m+1

FCD(g)( jT−1)e2πi j t
T +

1
T

−m−1∑
j=−n

FCD(g)( jT−1)e2πi j t
T

=
1
T

n∑
j=m+1

α−1
| j| FCD( f )( jT−1)e2πi j t

T +
1
T

−m−1∑
j=−n

α−1
| j| FCD( f )( jT−1)e2πi j t

T

=

n∑
j=m+1

α−1
j (Dper

T, j f (t) −Dper
T, j−1 f (t))

= α−1
n Dper

T,n f (t) − α−1
m+1Dper

T,m f (t) +
n−1∑

j=m+1

(α−1
j − α

−1
j+1)Dper

T, j f (t).

Hence
|Dper

T,n g(t) −Dper
T,mg(t)| ≤ α−1

m+1|D
per
T,m f (t)| ≤ α−1

m+1D
per
T f (t). (5.10)

We claim that D
per
T f (t) = ∞ for each t ∈ A. Indeed, suppose that D

per
T f (t) < ∞ for some

t ∈ A. We claim that (Dper
T,n g(t))n∈Z>0 is Cauchy, and so converges. Indeed, if ϵ ∈ R>0 let

N ∈ Z>0 be sufficiently large that

D
per
T f (t)
αN

< ϵ.
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By (5.10) we then have
|Dper

T,n g(t) −Dper
T,mg(t)| < ϵ,

showing that (Dper
T,n g(t))n∈Z>0 indeed converges. This contradiction gives the result. ■

The following characterisation of sets of divergence is useful.

5.2.16 Theorem (Character of sets of divergence) If (V, ∥·∥) is a regular homogeneous
Banach algebra of T-periodic signals, then A ⊆ [0,T) is a set of divergence for V if and
only if there exists a sequence (Pj)j∈Z>0 of trigonometric polynomials in V such that

(i)
∑
∞

j=1∥Pj∥ < ∞ and

(ii) sup{D
per
T Pj(t) | j ∈ Z>0} = ∞ for every t ∈ A.

Proof To simplify notation, let us take T = 1, without loss of generality.
Let (P j) j∈Z>0 be a sequence of trigonometric polynomials satisfying conditions (i)

and (ii). Let d j be the degree of P j and let (m j) j∈Z>0 be a sequence of integers for which

m j > m j−1 + d j + d j−1. (5.11)

With these definitions take

f (t) =
∞∑
j=1

e2πim jtP j(t),

noting that the series converges uniformly by assumption (i) and the Weierstrass M-
test. Note that since P j is a trigonometric polynomial we have

P j(t) =
∑
n∈Z

FCD(P j)(n)e2πint =⇒ e2πim jtP j(t) =
∑
n∈Z

FCD(P j)(n −m j)e2πint

using Lemma 5.3.2, with the sums being finite. Therefore,

FCD(E2πim jP j)(n) = FCD(P j)(n −m j)

and so

FCD( f )(n) =
∞∑
j=1

FCD(P j)(n −m j), n ∈ Z.

Let j ∈ Z>0, let n ∈ {0, 1, . . . , d j}, and compute

Dper
1,m j+n f (t) −Dper

1,m j−n−1 f (t) =
m j+n∑

k=−m j−n

FCD( f )(k)e2πikt
−

m j−n−1∑
k=−m j+n+1

FCD( f )(k)e2πikt

=

m j+n∑
k=−m j−n

∞∑
r=1

FCD(Pr)(k −mr)e2πikt
−

m j−n−1∑
k=−m j+n+1

∞∑
r=1

FCD(Pr)(k −mr)e2πikt. (5.12)
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We shall examine the preceding sums when the inner sum is fixed at r ∈ Z>0. In this
case we make a change of index l = k − mr and make some manipulations to get that
the rth term in (5.12) is

−mr−m j+n∑
l=−mr−m j−n

FCD(Pr)(l)e2πi(mr+l)t +

m j−mr+n∑
l=m j−mr−n

FCD(Pr)(l)e2πi(mr+l)t. (5.13)

Now we make a few observations.
1. Note that, by definition of dr,

FCD(Pr)(l) = 0, l > dr or l < −dr.

2. By (5.11) we have

m j −m j+1 < −d j − d j+1, m j+1 −m j+2 < −d j+1 − d j+2.

Adding these inequalities we have

m j −m j+2 < d j − 2d j+1 − d j+2 < −d j − d j+2.

Carrying on, we have that m j − mr < −d j − dr whenever r > j. Therefore, by this
inequality and the definition of n,

m j −mr + n ≤ m j −mr + d j < −dr.

Therefore, whenever r > j, we have that the rth term in (5.12) is zero since all terms
in the sum (5.13) are zero.

3. Let r < j. By (5.11) we have

mr + dr < mr+1 − dr+1 < mr+1 + dr+1 < mr+2 − dr+2 < mr+2 + dr+2 <

· · · < m j−1 − d j−1 < m j−1 + d j−1 < m j − d j.

Thus
−m j −mr + n < mr −m j < −d j − dr < −dr.

Also,
m j −mr − n ≥ m j −mr − d j > dr.

These preceding two relations imply immediately that the rth term in the sum (5.12)
is zero since all terms in the sum (5.13) are zero.

4. Now we r = j. In this case, again using (5.11),

−mr −m j + n < −2m j < −d j

and so the first sum in (5.13) is zero. The second sum is obviously e2πim jtDper
1,n Pr(t).
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Putting the preceding observations together we have

Dper
1,m j+n f (t) −Dper

1,m j−n−1 f (t) = e2πim jtDper
1,n P j(t)

for every j ∈ Z>0, n ∈ {0, 1, . . . , d j}, and t ∈ R. Now we claim that for t ∈ A the sequence
(Dper

1,n f (t))n∈Z>0 is not Cauchy, and so does not converge. First note that the condition

sup{D
per
1 P j(t) | j ∈ Z>0} = ∞,

along with the fact that P j has degree j, implies that, for every j0 ∈ Z>0, there exists
j ≥ j0 and n ∈ {0, 1, . . . , d j} such that |Dper

1,n P j(t)| ≥ 1. Now let N ∈ Z>0 and let j ∈ Z>0

be such that m j−1 ≥ N and such that |Dper
1,n P j(t)| ≥ 1 for some n ∈ {0, 1, . . . , d j}. Then

m j + n ≥ N and

m j − n − 1 ≥ m j − d j − 1 ≥ m j − d j − d j−1 > m j−1 ≥ N.

Thus m j + n,m j − n − 1 ≥ N have the property that

|Dper
1,m j+n f (t) −Dper

1,m j−n−1 f (t)| ≥ 1.

This prohibits the sequence (Dper
1,N f (t))N∈Z>0 from Cauchy and so it diverges.

For the converse, we use the following technical lemma.

1 Lemma For a homogeneous Banach space (V, ∥·∥) of T-periodic signals and a set of divergence
A for V, there exists f ∈ V and a sequence (βj)j∈Z>0 in R>0 such that βj+1 > βj, j ∈ Z>0, and
limj→∞ βj = ∞ with the property that

card({n ∈ Z>0 | |D
per
T,nf(t)| > βn}) = ∞

for every t ∈ A.

Proof Since A is a set of divergence, let g ∈ V be such that (Dper
T,N g(t))N∈Z>0 diverges for

each t ∈ A. As in the proof of Lemma 5.2.15, let (α j) j∈Z>0 be a sequence in R>0 that is
strictly monotonically increasing and diverging to∞ for which

Dper
T,n g(t) −Dper

T,mg(t) = α−1
n Dper

T,n f (t) − α−1
m+1Dper

T,m f (t) +
n−1∑

j=m+1

(α−1
j − α

−1
j+1)Dper

T, j f (t)

for every n,m ∈ Z>0 with n > m and for every t ∈ R. Now let (β j) j∈Z>0 be a strictly
monotonically increasing sequence ▼

By the preceding lemma, let f ∈ V and the sequence (β j) j∈Z>0 be such that (β j) j∈Z>0

is strictly monotonically increasing and diverges to∞ and satisfies

card({n ∈ Z>0 | |D
per
T,n f (t)| > βn}) = ∞ (5.14)

for every t ∈ A. By Lemma 5.2.13 let (n j) j∈Z>0 be a sequence in Z>0 such that

∥ f − Fper
1,n j

f ∥ < 2− j, j ∈ Z>0. (5.15)
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There exists a strictly monotonically increasing sequence (m j) j∈Z>0 in Z>0 such that

βm j > 2 sup{D
per
1 (Fper

1,n j
f )(t) | t ∈ A} (5.16)

because the signal Fper
1,n j

f is a trigonometric polynomial. Define

P j = Vper
1,m j+1

∗ ( f − Fper
1,n j
∗ f ), j ∈ Z>0,

where Vper
1,N, N ∈ Z>0, denotes the de la Vallée Poussin kernel. Note that by

Lemma 5.2.40 it follows that the convolution of the periodic Fejér kernel with a signal
in L(1)

per,1(R;C) is a trigonometric polynomial. Therefore, since the de la Vallée Poussin
kernel is a sum of Fejér kernels, it follows that P j is a trigonometric polynomial. We
have, just as in Sublemma 4 from Lemma 5.2.13,

∥u ∗ g∥ =

∥∥∥∥∥∥∥∥ lim
k→∞

1
k

k∑
j=1

u
(

j
k

)
τ∗j/kg

∥∥∥∥∥∥∥∥ ≤ lim
k→∞

1
k

k∑
j=1

∣∣∣∣∣∣u
(

j
k

)∣∣∣∣∣∣ ∥τ jk∗g∥

=

∫ 1

0
|u(s)|∥τ∗sg∥ds = ∥u∥1∥g∥,

where u ∈ C0
per,T(R;C) satisfies

∫ 1
0 u(s) ds = 1 and where g ∈ V. Using the preceding

formula, (5.13), and the fact that ∥Vper
1,N∥1 = 1 for each N ∈ Z>0, we have

∞∑
j=1

∥P j∥ =

∞∑
j=1

∥Vper
1,m j+1

∗ ( f − Fper
1,n j
∗ f )∥ ≤

∞∑
j=1

∥ f − Fper
1,n j

f ∥ < ∞.

Now let t ∈ A and n ∈ Z>0 satisfy |Dper
T,n f (t)| > βn. Let j ∈ Z>0 be such that n ∈

{β j + 1, . . . , β j+1}. Note that by Example 5.2.45–5 and Proposition 5.1.19 we have

FCD(Vper
1,mg)(n) = FCD(g)(n)

for m ≤ n and for g ∈ L(1)
per,1(R;C). Thus

Dper
1,n P j(t) = Dper

1,n ( f − Fper
1,n j

f )(t) = Dper
1,n f (t) −Dper

1,n (Fper
1,n j

f )(t).

By (5.16) we have |Dper
1,n P j(t)| ≥ 1

2βn. Since this holds for any n ∈ Z>0 for which
|Dper

1,n f (t)| ≥ βn and since the sequence (βn)n∈Z>0 diverges to∞, this part of the theorem
follows from (5.14). ■

The following property of sets of divergence is also useful.

5.2.17 Lemma (Countable unions of sets of divergence are sets of divergence) If
(V, ∥·∥)is a homogeneous Banach space of T-periodic signals and if (Aj)j∈Z>0 is a family of
sets of divergence for V, then ∪j∈Z>0Aj is a set of divergence for V.

finish

Proof ■

With the preceding general development, we can state the following theorem
which significantly strengthens the conclusions of Example 5.2.10.
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5.2.18 Theorem (Continuous signals can have Fourier series diverging on a set of
zero measure) If Z ⊆ [0,T) has Lebesgue measure zero, then Z is a set of divergence for
(C0

per,T(R;C),T∥·∥∞). Thus there exists f ∈ C0
per,T(R;C) such that (Dper

T,Nf(t))N∈Z>0 diverges
for every t ∈ Z.

Proof ■

The following general result helps to clarify the nature of sets of divergence.

5.2.19 Theorem (Sets of divergence for classes of signals containing the continu-
ous signals) If (V, ∥·∥) is a homogeneous Banach algebra of T-periodic signals containing
C0

per,T(R;C) and if A ⊆ [0,T) is a set of divergence for V, then either A has zero Lebesgue
measure or A = [0,T).

Proof ■

Using the preceding result we can characterise the set of divergence for the
Banach space of integrable signals.

5.2.20 Theorem (Integrable signals can have Fourier series diverging everywhere)
The set [0,T) is a set of divergence for L1

per,T(R;C). In particular, there exists f ∈

L(1)
per,T(R;C) such that the sequence (Dper

T,Nf(t))N∈Z>0 does not converge for every t ∈ R.
Proof In the proof we freely make use of facts about the CDFT that we have not
covered yet. So some forward referencing will be necessary.

Throughout the proof we take T = 1 without loss of generality.
We begin with a couple of technical lemmata. The first relies on the CDFT for

measures which we discuss in Section 5.7.

1 Lemma There exists N ∈ Z>0, C ∈ R>0, and, for each n ∈ Z with n ≥ N, a periodic measure
µn onB (R) such that

(i) µn([0, 1)) = 1 and
(ii) sup{|Dper

1,m ∗ µn(t)| | m ∈ Z>0} ≥ C log n for almost every t ∈ R.

Proof Let n ∈ Z>0. Fix q1, . . . , qn ∈ Q and note that the set

{(t1, . . . , tn) ∈ Rn
| q1t1 + · · · + qntn + 1 = 0}

is a hyperplane with normal vector (q1, . . . , qn). Such a hyperplane has measure zero.
Note that the set

Cn = {(t1, . . . , tn) ∈ Rn
| (t1, . . . , tn, 1) is linearly independent over Q}

is the same as the set⋂
(q1,...,qn)∈Qn

{(t1, . . . , tn) ∈ Rn
| q1t1 + · · · + qntn + 1 = 0}.
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Thus Cn is the intersection of a countable number of hyperplanes. As each of these
hyperplanes has measure zero, so does their intersection.

From the preceding paragraph, choose t1, . . . , tn ∈ [0, 1) such that t j < t j+1, j ∈
{1, . . . ,n − 1}, and such that

1
2n
≤ |t j+1 − t j| ≤

2
n
, j ∈ {1, . . . ,n}, (5.17)

where we take tn+1 = t1 + 1. Let

An = {t ∈ [0, 1] | {t − t1, . . . , t − tn, 1} is linearly independent over Q}.

We claim that λ(An) = 1. To prove this, we first claim that

[0, 1] \Q[t1, . . . , tn, 1] ⊆ An,

where Q[t1, . . . , tn, 1] is the field extension of Q by the linearly independent set
{t1, . . . , tn, 1}; see Definition I-4.6.5. Indeed, if t ∈ [0, 1] \ An then

q1(t − t1) + · · · + qn(t − tn) + 1 = 0

for some q1, . . . , qn ∈ Q. Thus

t = q1t1 + · · · + qntn +
1

q1 + · · · + qn
,

and so t ∈ Q[t1, . . . , tn, 1] as claimed. From this we conclude that [0, 1] \An is countable
and so has measure zero.

Next, with t1, . . . , tn as above, define the measure µn by

µn =
∑
k∈Z

1
n

n∑
j=1

δtn+k,

noting that µn is 1-periodic and that µn([0, 1) = 1. Let t ∈ R and j ∈ Z>0 and compute,
using the characterisation Lemma 1 from Example 8.1.3 of the Dirichlet kernel,

|Dper
1,m ∗ µn(t)| =

∣∣∣∣∣∣∣∣
m∑

k=−m

e2πikt 1
n

n∑
j=1

e−2πikt j

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣1n

n∑
j=1

Dper
1,m(t − t j)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣1n
n∑

j=1

sin(2π(m + 1
2 )(t − t j))

sin(π(t − t j))

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣1n
n∑

j=1

Im(e2πi(m+ 1
2 )(t−t j)) sign(sin(π(t − t j)))
sin(π(t − t j))

∣∣∣∣∣∣∣∣ .
By Theorem II-3.2.7, for each t ∈ An there exists m ∈ Z>0 sufficiently large that

|e2πim(t−t j) − ie2πi 1
2 (t−t j) sign(sin(π(t − t j)))| <

1
2
, j ∈ {1, . . . ,n}.
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This implies that

|e2πi(m+ 1
2 )(t−t j) sign(sin(π(t − t j))) − i| <

1
2
, j ∈ {1, . . . ,n},

which in turn implies that

Im(e2πi(m+ 1
2 )(t−t j) sign(sin(π(t − t j)))) >

1
2
, j ∈ {1, . . . ,n}.

Since sin(πx) ≤ πx for x ∈ [0, 1] we then deduce that

|Dper
1,m ∗ µn(t)| >

1
2n

n∑
j=1

1
|sin(π(t − t j))|

≥
1

2πn

n∑
j=1

1
|t − t j|

.

If t ∈ [0, 1] then t ∈ [t j0 , t j0+1) for some j0 ∈ {1, . . . ,n}. Thus, by (5.17),

|t − t j| ≤ |t − t j0 | + |t j0 − t j| ≤ (| j − j0| + 1)
2
n
.

Therefore,

n∑
j=1

1
|t − t j|

≥

n∑
j=1

n
2

1
| j − j0| + 1

≥
n
2

1 +
j0−1∑
j=1

∫ j

j−1

1
|x − j0| + 1

dx +
n∑

j= j0+1

∫ j+1

j

1
|x − j0| + 1

dx


=

n
2

(1 + 2 log(2) + log(n − j0 + 2) + log( j0 + 1)).

Note that

lim
n→∞

1
n log(n)

n
2

(1 + 2 log(2) + log(n − j0 + 2) + log( j0 + 1)) =
1
2
.

Thus there exists N ∈ Z>0 such that

n
2

(1 + 2 log(2) + log(n − j0 + 2) + log( j0 + 1)) ≥
1
4

n log(n)

for each n ≥ N. Thus we have

|Dper
1,m ∗ µn(t)| ≥ C log(n)

upon taking C = 1
8π . ▼
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2 Lemma If M ∈ R>0 then there exists a 1-periodic signal

fM(t) =
∑
k∈Z

ck,Me2πikt (5.18)

and AM ∈ L ([0, 1)) such that
(i) λ(AM) > 1 − 2−M,
(ii) the set {k ∈ Z | ck,M , 0} is finite,
(iii) ∥fM∥1 = 1, and
(iv) inf{sup{|Dper

1,m ∗ fM(t)| | m ∈ Z>0} | t ∈ AM} > 2M.

Proof Let M ∈ R>0 and let N ∈ Z>0 be sufficiently large that C log(N) > 2M+2, where
C ∈ R>0 is as prescribed by Lemma 1. Let µN be as prescribed by Lemma 1. By
Lemma 1 and Fatou’s Lemma we have

1 = λ
({

t ∈ [0, 1)
∣∣∣∣ lim

m→∞
sup{|Dper

1, j ∗ µN(t) ≥ 2M+1
| | j ∈ {1, . . . ,m}}

})
≤ lim inf

m→∞
λ({t ∈ [0, 1) | sup{|Dper

1, j ∗ µN(t)| | j ∈ {1, . . . ,m}}}).

Therefore, let m0 ∈ Z>0 be sufficiently large that, if we take

AM = {t ∈ [0, 1) | sup{|Dper
1, j ∗ µN(t)| | j ∈ {1, . . . ,m}}},

then λ(AM) ≥ 1 − 2M. By Theorem 5.2.42(ii), let k0 ∈ Z>0 be sufficiently large that

∥Fper
1,k0
∗Dper

1, j −Dper
1, j ∥∞ ≤ 1 (5.19)

for j ∈ {1, . . . ,m0}. Define fM = µN ∗F
per
1,k0

. By we have that fM is a finite sum of complexwhat

exponential signals. By (5.19) and we have thatconvol ineq for measures

|Dper
1, j ∗ fM(t) −Dper

1, j ∗ µN(t)| ≤ ∥Fper
1,k0
∗Dper

1, j −Dper
1, j ∥∞ ≤ 1

for each t ∈ [0, 1) and j ∈ {1, . . . ,m0}. Therefore, if t ∈ AM and if j ∈ {1, . . . ,m0}, we have

|Dper
1, j ∗ fM(t)| ≥ |Dper

1, j ∗ µN(t)| − 1 ≥ 2M+1
− 1 ≥ 2M+1 > 2M,

using our assumptions on N. Finally, using ,conv ineq for measures

∥ fM∥1 = ∥µN ∗ Fper
1,k0
∥1 = ∥µN∥∥F

per
1,k0
∥1 = 1,

since µN is a positive measure and since Fper
1,k0

is positive with unit L1-norm by our
computations of Example 4.7.7–3.

We have verified the four conditions of the lemma. ▼

With these technical lemmata, we are now able to complete the proof.
We inductively construct sequences (ϵ j) j∈Z≥0 in R>0, (M j) j∈Z≥0 in R>0, and (δ j) j∈Z≥0

in Z>0 as follows. Take ϵ0 =M0 = δ0 = 1. Suppose that we have defined ϵ j, M j, and δ j
for j ∈ {0, 1, . . . ,n − 1} and then take

ϵn = 2−n(2δn−1)−1,
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choose Mn such that
ϵn2Mn ≥ 2n + δn−1 + 1,

and take δn to be such that the coefficients ck,M j in (5.18) are zero for |k| ≥ n and
j ∈ {1, . . . ,n}. Note that ϵ j ≤ 2− j and δ j ≤ δ j+1 for each j ∈ Z≥0.

Now we define

f =
∞∑
j=1

ϵ j fM j .

Since ϵ j ≤ 2− j and since ∥ fM j∥1 = 1, the sequence of partial sums for this series is a
Cauchy sequence in L1

per,1(R;C) and so converges to give f ∈ L1
per,1(R;C).

Let j ∈ Z>0 and let t ∈ AM j where the set AM j is as in the proof of Lemma 2. By
Lemma 2 let m0 ∈ Z>0 be such that |Dper

1,m0
∗ fM j(t)| > 2M j and take k0 = min{m0, δ j}. With

these definitions we have

ϵ jD
per
1,k0
∗ fM j(t) = Dper

1,k0
∗ f (t) −

j−1∑
l=1

ϵlD
per
1,k0
∗ fM j(t) −

∞∑
l= j+1

ϵlD
per
1,k0
∗ fM j(t)

and an application of the triangle inequality gives

|Dper
1,k0
∗ f (t)| ≥ ϵ j|D

per
1,k0
∗ fM j(t)| −

j−1∑
l=1

ϵl|D
per
1,k0
∗ fM j(t)| −

∞∑
l= j+1

ϵl|D
per
1,k0
∗ fM j(t)|. (5.20)

Note from Lemma 1 from Example 8.1.3 that Dper
1,l is a finite linear combination of

complex exponential signals. Moreover, by Lemma 2, fM j is also a finite sum of
complex exponential signals. Using the orthogonality of the complex exponential
signals, cf. Lemma 5.3.2, the definition of k0, the fact that δ j ≤ δl for j < l, and
Proposition 5.1.19, we obtain

Dper
1,k0
∗ fM j = Dper

1,m0
∗ fM j ,

Dper
1,k0
∗ fMl = Dper

1,min(δl,k0) ∗ fMl , l < j,

Dper
1,k0
∗ fMl = Dper

1,min(δ j,k0) ∗ fMl , l > j.

Now, using the definition of m0 and the fact that t ∈ AM j , we have

|Dper
1,k0
∗ fM j(t)| = |D

per
1,m0
∗ fM j(t)| > 2M j .

Using the fact ∥ fMl∥1 = 1, the fact that ∥Dper
1,k ∥∞ ≤ 2k + 1 ≤ 3k, and Theorem 4.2.30, we

have
|Dper

1,k0
∗ fMl | ≤ 3δl, l < j,

and
|Dper

1,k0
∗ fMl | ≤ 3δ j, l > j.
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Combining the preceding three estimates with (5.20) yields

|Dper
1,k0
∗ f (t)| ≥ ϵ j2M j − 3

j−1∑
l=1

ϵlδl − 3δ j

∞∑
l= j+1

ϵl.

Next we have

3
j−1∑
l=1

ϵlδl = 3δ j−1

j−1∑
l=1

ϵl ≤ δ j−1

j−1∑
l=1

1
δl−12l

< δ j−1

and

3δ j

∞∑
l= j+1

ϵl =

∞∑
l= j+1

δ j

δl−12l
≤

∞∑
l= j+1

1
2l
< 1,

using the definition of ϵl, l ∈ Z>0, and Example I-2.4.2–1. Combining the preceding
three estimates yields

|Dper
1,k0
∗ f (t)| ≥ ϵ j2M j − δ j−1 − 1 ≥ 2 j.

Thus, for every j ∈ Z≥0 and every t ∈ AM j we have

sup{|Dper
1,k ∗ f (t)| | k ∈ Z>0} ≥ 2 j.

It follows that for every j ∈ Z>0 and t ∈ ∪∞l= jAM j we have

sup{|Dper
1,k ∗ f (t)| | k ∈ Z>0} ≥ 2 j.

Therefore, if we take A = ∩ j∈Z>0 ∪
∞

l= j AMl then we have

sup{|Dper
1,k ∗ f (t)| | k ∈ Z>0} = ∞

whenever t ∈ A. Each of the sets B j ≜ ∪∞l= jAMl , j ∈ Z>0, has measure 1, and so their
complement has measure zero. Therefore,

λ([0, 1) \ A) = λ
(
[0, 1] \

(
∩ j∈Z>0B j

))
= λ

(
∪ j∈Z>0[0, 1) \ B j

)
,

and so A has full measure. The theorem now follows from Theorem 5.2.19. ■

The signal from the preceding theorem and corollary is admittedly pathologi-
cal, and one could easily object to it as a counterexample, reasoning that for any
“decent” class of signals, maybe the Fourier series does converge pointwise. This
is not even the case, as the following example shows.

Let us now consider convergence of Fourier series in the L1-norm.
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5.2.21 Theorem (A signal whose Fourier series diverges in the L1-norm) There exists
f ∈ L(1)

per,T(R;C) such that the sequence (Dper
T,Nf)N∈Z>0 does not converge in L1

per,T(R;C).
Proof In the proof we freely use some facts we have not yet proved.

For N ∈ Z>0 let LN : L1
per,T(R;C) → L1

per,T(R;C) be the “Nth partial sum opera-
tor,” i.e.,

LN( f )(t) =
1
T

N∑
n=−N

FCD( f )(nT−1)e2πin t
T .

By Lemma 5.2.7 and Theorem 4.2.24(i) we thus have

∥LN( f )∥1 = 1
T ∥D

per
T,N ∗ f ∥1 ≤ 1

T ∥D
per
T,N∥1∥ f ∥1.

Therefore, if ∥·∥1,1 denotes the induced norm for continuous linear maps from
L1

per,T(R;C) to L1
per,T(R;C) (using the 1-norm for both the domain and codomain),

we have ∥LN∥1,1 ≤
1
T ∥D

per
T,N∥1.

Now let n ≥ N and let Fper
n,T be the periodic Fejér kernel. We now have

∥LN(Fper
n,T)∥1 = 1

T ∥D
per
N,T ∗ Fper

n,T∥1 =
1
T ∥F

per
n,T ∗Dper

N,T∥1.

By Theorem 5.2.42(ii), ( 1
T Fper

n,T ∗ Dper
N,T)n∈Z>0 converges uniformly to Dper

T,N. Therefore, by
the Dominated Convergence Theorem,

lim
n→∞
∥LN(Fper

n,T)∥1 = 1
T ∥D

per
T,N∥1.

From this we conclude that ∥LN∥1,1 =
1
T ∥D

per
T,N∥1. Note that limN→∞∥LN∥1 = ∞ by

Lemma 1 from Example 4.7.19–5.
Now suppose that (LN( f ))N∈Z>0 converges to f in L1

per,T(R;C) for every f ∈
L1

per,T(R;C). Then, by the Principle of Uniform Boundedness, , it follows that there what?

exists M ∈ R>0 such that ∥LN∥1 ≤ M for every N ∈ Z>0. This contradiction of our
conclusion from the first part of the proof gives the theorem. ■

5.2.4 Pointwise convergence of Fourier series

Now we consider various forms of convergence of the Fourier series. Given the
examples and results from the preceding section, we know that we have to place
some sort of stringent conditions on a signal to ensure that its Fourier series has
desirable convergence properties.

The most basic form of convergence is pointwise convergence, and so we begin
with this. The basic theorem from which all other pointwise convergence theorems
are derived is the following.

5.2.22 Theorem (Pointwise convergence of Fourier series) Let f ∈ L(1)
per,T(R;C), let

t0 ∈ R, and let s ∈ C. The following statements are equivalent:
(i) limN→∞ fN(t0) = s;
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(ii) lim
N→∞

1
T

∫ T
2

−
T
2

(f(t0 − t) − s)Dper
T,N(t) dt = 0;

(iii) for each ϵ ∈ (0, T
2 ] we have

lim
N→∞

1
T

∫ ϵ

−ϵ

(f(t0 − t) − s)Dper
T,N(t) dt = 0;

(iv) for each ϵ ∈ (0, T
2 ] we have

lim
N→∞

1
π

∫ ϵ

−ϵ

(f(t0 − t) − s)
sin((2N + 1)π t

T )
t

dt = 0.

Proof Applying Lemma 5.2.7 in the case when f (t) = 1 gives the formula

1 =
1
T

∫ T
2

−
T
2

Dper
T,N(t) dt. (5.21)

Subtracting s from each side of the expression from Lemma 5.2.7 and using (5.21) then
gives

fN(t0) − s =
∫ T

2

−
T
2

f (t0 − t) − s)Dper
T,N(t) dt.

This shows the equivalence of parts (i) and (ii).
Clearly part (iii) is implied by part (ii). To show the converse we proceed as follows.

We write

1
T

∫ T
2

−
T
2

( f (t0 − t) − s)Dper
T,N(t) dt

=
1
T

∫ ϵ

−ϵ
( f (t0 − t) − s)Dper

T,N(t) dt +
1
T

∫
|t|>ϵ

( f (t0 − t) − s)Dper
T,N(t) dt

Define Aϵ = {t ∈ [−T
2 ,

T
2 ] | |t| ≥ ϵ}. The second integral may be rewritten as∫ T

2

−
T
2

χAϵ(t)
( f (t0 − t) − s)

sin(π t
T )

sin((2N + 1)π t
T ) dt.

Note that the function

χAϵ(t)
( f (t0 − t) − s)

sin(π t
T )

is integrable on [−T
2 ,

T
2 ] since the function t 7→ sin(π t

T ) is bounded on Aϵ. From the
Riemann–Lebesgue Lemma we then have

lim
N→∞

1
T

∫ T
2

−
T
2

χAϵ(t)
( f (t0 − t) − s)

sin(π t
T )

sin((2N + 1)π t
T ) dt = 0,
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and from this the equivalence of (ii) and (iii) follows.
To show the equivalence of (ii) and (iv) we write

1
T

∫ T
2

−
T
2

( f (t0 − t) − s)Dper
T,N(t) dt =

1
π

∫ ϵ

−ϵ
( f (t0 − t) − s)

sin((2N + 1)π t
T )

t
dt

+
1
T

∫ ϵ

−ϵ
( f (t0 − t) − s)

 1
sin(π t

T )
−

T
πt

 sin((2N + 1)π t
T ) dt

+
1
T

∫
|t|>ϵ

( f (t0 − t) − s)Dper
T,N(t) dt.

The last term on the right goes to zero as N → ∞, just as in the preceding part of the
proof. The function

χ[−ϵ,ϵ](t)( f (t0 − t) − s)

 1
sin(π t

T )
−

T
πt


in integrable and so by the Riemann–Lebesgue Lemma we have

lim
N→∞

1
T

∫ ϵ

−ϵ
χ[−ϵ,ϵ](t)( f (t0 − t) − s)

 1
sin(π t

T )
−

T
πt

 sin((2N + 1)π t
T ) dt = 0,

giving the equivalence of (ii) and (iv), as desired. ■

5.2.23 Remark (Localisation) One important upshot of the preceding theorem is that the
convergence of (Dper

T,N f (t0))N∈Z>0 only involves the behaviour of f in an arbitrarily
small neighbourhood of t0. This is often referred to as the localisation principle. •

Armed with these computations we proceed to prove a couple of useful con-
ditions for pointwise convergence of Fourier series. The first condition we give is
perhaps the easiest and is due to Dini.1

5.2.24 Theorem (Dini’s test) Let f ∈ L(1)
per,T(R;C) and let t0 ∈ R. If there exists ϵ ∈ (0, T

2 ] so
that ∫ ϵ

−ϵ

∣∣∣∣∣ f(t0 − t) − s
t

∣∣∣∣∣ dt < ∞,

then limN→∞Dper
T,Nf(t0) = s.

Proof If t 7→ f (t0−t)−s
t is in L(1)([−ϵ, ϵ];C) then, by the Riemann–Lebesgue Lemma,

lim
N→∞

∫ ϵ

−ϵ

f (t0 − t) − s
t

sin((2N + 1)π t
T ) dt = 0.

The result now follows immediately from part (iv) of Theorem 5.2.22. ■

Dini’s test has the following useful corollary.

1Ulisse Dini (1845–1918) was an Italian mathematician who made his main mathematical con-
tributions in the area of real analysis.
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5.2.25 Corollary (Fourier series converge at points of differentiability) Let f ∈
L(1)

per,T(R;C) and let t0 ∈ R. If f is differentiable at t0 then limN→∞Dper
T,Nf(t0) = f(t0).

Proof If f is differentiable at t0 then limt→tt0
f (t0−t)− f (t0)

t exists and so the function

t 7→ f (t0−t)− f (t0)
t is bounded in a neighbourhood of t0. From this is follows that f (t0−t)− f (t0)

t
is integrable in a neighbourhood of t0, and so the corollary follows from Dini’s test. ■

There is another version of Dini’s test that can sometimes be applied when the
theorem above cannot be.

5.2.26 Corollary (An alternative version of Dini’s test) Let f ∈ L(1)
per,T(R;C) and let t0 ∈ R.

If there exists ϵ ∈ (0, T
2 ] such that∫ ϵ

0

∣∣∣∣∣∣ 1
2 (f(t0 + t) + f(t0 − t)) − s

t

∣∣∣∣∣∣ dt < ∞,

then limN→∞Dper
T,Nf(t0) = s.

Proof This follows from Exercise 5.2.3. ■

Let us look at a couple of examples that illustrate the value and the limitations
of Theorem 5.2.24.

5.2.27 Examples (Dini’s test)
1. Let us first consider the signal f (t) = □2,1,0(t)−1 introduced in Example 5.1.3–2.

At points t0 that are not integer multiples of 1
2 we note that f is differentiable,

so that Corollary 5.2.25 implies that (Dper
T,N f )N∈Z>0 converges to f at such points.

Now let us consider a typical point of discontinuity, say the one at t = 0. For
ϵ ∈ R>0 and s ∈ R we compute∫ ϵ

−ϵ

f (−t) − s
t

dt =
∫ 0

−ϵ

(1 − s)t−1 dt +
∫ ϵ

0
(−1 − s)t−1 dt = −2

∫ ϵ

0
t−1 dt.

The last integral diverges, and so we cannot conclude the convergence of
(Dper

T,N f (t))N∈Z>0 at t = 0. The same argument holds at all points of disconti-
nuity of f .
However, the alternative statement of Corollary 5.2.26 works. Indeed, for t0 = 0
we have

f (t0 + t) + f (t0 − t) = 0,

and so the hypotheses of Corollary 5.2.26 trivially apply, cf. part (c) of Exer-
cise 5.2.3.

2. Next let us consider the signal g(t) = △ 1
2 ,1,0

(t) introduced in Example 5.1.3–3.
Note that at points where g is differentiable, that is to say points t0 that are not
integer multiples of 1

2 , (Dper
T,N g(t0))N∈Z>0 converges to g(t0). Now let us consider a

typical point where g is not differentiable, say t = 0. In this case we compute∫ ϵ

−ϵ

g(−t)
t

dt =
∫ 0

−ϵ

dt −
∫ ϵ

0
dt = −2ϵ < ∞.
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We thus conclude that at t = 0 the Fourier series for g converges to 0, which is
also the value of g at t = 0. Therefore, (Dper

T,N g)N∈Z>0 converges pointwise to g.
3. Our next signal is a new one, given by the 2π-periodic extension, denoted h, of

the signal t 7→ (sin t
2 )1/2. In Figure 5.9 we show the graph of h. Note that near

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.9 The signal h

t = 0 the signal h behaves roughly like 1
√

2

√
t, and therefore the integral of the

function h(t)
t converges near t = 0. Thus∫ ϵ

−ϵ

h(0 − t) − 0
t

dt < ∞,

showing that (Dper
T,Nh(t))N∈Z>0 converges to 0 at t = 0. In a similar way, (Dper

T,Nh)N∈Z>0

converges to 0 at integer multiples of 2π. At all other points h is differentiable,
and so convergence to h at these points is immediate. •

Note that to use Theorem 5.2.24 to conclude things about the convergence of
a Fourier series one does not need to compute the CDFT. We shall see this theme
illustrated with many of the convergence results we state. Indeed, this is one thing
that makes them so useful. This is not to say, however, that there is a disconnect
between the CDFT of a signal and the convergence properties of its Fourier series.
For example, in Corollary 5.2.35 we shall see directly an instance where a certain
property of the CDFT leads to uniform convergence.

The next result we state is historically the first result on convergence of Fourier
series. The reader may wish to recall the definition of the left and right limits for a
function and its derivative as discussed in Section I-3.2.

5.2.28 Theorem (Dirichlet’s test) Let f ∈ L(1)
per,T(R;C) and suppose that the limits f(t0−),

f(t0+), f′(t0−), and f′(t0+) exist for t0 ∈ R. Then

lim
N→∞

Dper
T,Nf(t0) =

1
2

(f(t0+) + f(t0−)) .
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Proof Let us make some simplifying assumptions about f that will also be useful in
the proof of Theorem 5.2.31. First we define

g f (t) = 1
2 ( f (t0 + t) − f (t0+) + f (t0 − t) − f (t0−)).

Note that g f is even and that g f (0+) = g f (0−) = 0. Moreover, by Exercise 5.2.3
(Dper

T,N g f (0))N∈Z>0 converges to zero if and only if (Dper
T,N f (t0))N∈Z>0 converges to 1

2 ( f (t0+)+
f (t0−)). Therefore, without loss of generality we may suppose that f is even, that
f (0+) = f (0−) = 0, and that we consider convergence of (Dper

T,N f )N∈Z>0 to f at t = 0.
With these assumptions, we note that the four hypotheses of the theorem imply

that f is differentiable from the left and right at t = 0. Therefore the limits

lim
t↑0

f (t)
t
, lim

t↓0

f (t)
t

exist. Therefore, there exists M, ϵ ∈ R>0 so that
∣∣∣∣ f (t)

t

∣∣∣∣ < M for |t| < ϵ. The theorem now
follows from Theorem 5.2.24. ■

5.2.29 Remark (Dirichlet’s test is a special case of Dini’s test) In the proof of the pre-
ceding theorem we used Dini’s test. Indeed, we essentially showed that any signal
satisfying the hypotheses of Dirichlet’s test also satisfies the hypotheses of Dini’s
test. Thus Dini’s test is more general that Dirichlet’s test (we shall see examples
below where Dini’s test applies but Dirichlet’s test does not). Nonetheless, Dirich-
let’s test is sometimes easier to apply. •

Let us provide examples of signals that satisfy the hypotheses of the theorem
and see what their Fourier series look like. These are the same signals considered
in Example 5.2.27.

5.2.30 Examples (Dirichlet’s test)
1. Next consider the signal f (t) = □2,1,0(t) − 1 introduced in Example 5.1.3–2.

We note that f satisfies the hypotheses, and therefore the conclusions, of Theo-
rem 5.2.28 at every point in [0, 1], and so the Fourier series converges pointwise.
Note that the limit signal is

FS[ f ](t) =


0, t ∈ {0, 1

2 , 1},
1, t ∈ (0, 1

2 ),
−1, t ∈ ( 1

2 , 1).

Thus we see that in this case, the Fourier series does not converge to the signal
whose Fourier series we are computing.

2. We consider the signal g(t) = △ 1
2 ,1,0

introduced in Example 5.1.3–2. This signal is
obviously piecewise differentiable. Note that the hypotheses of Theorem 5.2.28
are satisfied by g at each point in [0, 1]. Thus the Fourier series converges
pointwise. Moreover, the limit signal is exactly g in this case.
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3. Next we consider the signal h of Example 5.2.27. At points of differentia-
bility, i.e., points t that are not integer multiples of 2π, we may apply The-
orem 5.2.28 to conclude the pointwise convergence of (Dper

T,Nh(t))N∈Z>0 to h(t).
However, at integer multiples of 2π the limits f ′(t0+) and f ′(t0−) do not exist
and so Theorem 5.2.28 cannot be applied.
Note that Theorem 5.2.24 gives convergence of (Dper

T,Nh)N∈Z>0 at those points
where Theorem 5.2.28 cannot be applied. •

Our last result on the pointwise convergence of Fourier series at a prescribed
point is due to Jordan. It is the most general of our results, and it comes the closest
of all the results we state here to an assertion of the form, “The Fourier series for
any reasonable signal will converge to that signal.” Recall from Theorem I-3.3.3(iv)
that if f is a signal of bounded variation on a continuous time-domain T then for
each t0 ∈ int(T) the left and right limits for f , denoted f (t0−) and f (t0+), exist.

5.2.31 Theorem (Jordan’s test) Let f ∈ L(1)
per,T(R;C), let t0 ∈ R, and suppose that there exists

a neighbourhood J of t0 so that f|J has bounded variation. Then

lim
N→∞

Dper
T,Nf(t0) =

1
2

(f(t0+) + f(t0−)).

Proof Our proof relies on the Second Mean Value Theorem for integrals, stated as
Proposition I-3.4.33. According to Exercise 5.2.3, let us first make the assumption
that f satisfies the hypotheses of the theorem and that, as well, t0 = 0, f is even, and
f (0) = 0. Since f has bounded variation in a neighbourhood of t0, we may write
f = f+ − f− where f+ and f− are monotonically increasing. By applying the argument
we give below to each component in the sum, we may without loss of generality also
assume that f is monotonically increasing in a neighbourhood of 0 in [0,∞).

We first claim that there exists M ∈ R>0 so that∣∣∣∣∣∣
∫ t

0

sin((2N + 1)π τT )
τ

dτ

∣∣∣∣∣∣ ≤M (5.22)

for all t ∈ R>0 and N ∈ Z>0. By a change of variable we have∫ t

0

sin((2N + 1)π τT )
τ

dτ =
∫ (2N+1)πt

0

sin u
u

du.

By Lemma 1 from Example 4.7.7–3 it follows that

lim
a→∞

∫ a

0

sin u
u

du

is finite. Thus the function

a 7→
∫ a

0

sin u
u

du
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is continuous on [0,∞) and has a limit as a → ∞. Therefore, it is bounded. From this
we have boundedness of

t 7→
∫ t

0

sin((2N + 1)π τT )
τ

dτ,

and (5.22) holds, as desired.
Now let M be chosen such that (5.22) holds and let ϵ ∈ R>0. Choose δ ∈ R>0 so

that f (δ−) < ϵπ
2M and compute, for some δ′ ∈ (0, δ) guaranteed by Proposition I-3.4.33,∣∣∣∣∣∣ 1
π

∫ δ

−δ
f (t)

sin((2N + 1)π t
T )

t
dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 2
π

∫ δ

0
f (t)

sin((2N + 1)π t
T )

t
dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣2 f (δ−)
π

∫ δ

δ′

sin((2N + 1)π t
T )

t
dt

∣∣∣∣∣∣
≤
ϵπ
2M

2M
π
= ϵ.

Note that we may apply Proposition I-3.4.33 by virtue of Theorem I-3.3.3(vi). The
theorem now follows from part (iv) of Theorem 5.2.22. ■

It is not very often easy to verify directly that a signal has bounded variation in
a neighbourhood of a point. The way that this is most frequently done is indirectly
through some simple characterisation of signals of bounded variation. For this
reason, we shall not directly apply this theorem in any of our examples below.

Theorems 5.2.24, 5.2.28, and 5.2.31 give convergence of the Fourier series
at a point. They can be make “global” by requiring that their hypotheses hold
uniformly at every point in [0,T]. To do this for Theorem 5.2.24 it is convenient
to introduce a new property for signals. A signal f : T → C is Lipschitz of order
α ∈ R>0 at t0 ∈ T if there exists L, δ ∈ R>0 such thatrefer to material in

volume I

|t − t0| < δ =⇒ | f (t) − f (t0)| ≤ L|t − t0|
α.

If f is Lipschitz of order α at t0 it is also continuous at t0, but the converse is not
necessarily true. For example, on R the signal f (t) = − 1

log|x| is continuous but is not
Lipschitz of any order at t = 0. A continuous-time signal f : T → C is uniformly
Lipschitz of order α ∈ R>0 if there exists L ∈ R>0 so that | f (t) − f (t0)| ≤ L|t − t0|

α for
all t, t0 ∈ T. With this notion at hand, we state the following result, whose proof
amounts to showing that the hypotheses of Theorems 5.2.24, 5.2.28, and 5.2.31,
respectively, hold at each point in [0,T].

5.2.32 Corollary (Conditions for global pointwise convergence) Let f ∈ L(1)
per,T(R;C)

and suppose that for each t ∈ R we have f(t) = 1
2 (f(t+) + f(t−)). Then any of the following

statements implies that (Dper
T,Nf)N∈Z>0 converges pointwise to f:

(i) f is uniformly Lipschitz;
(ii) f|[0,T] ∈ C1

pw([0,T];C);
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(iii) f|[0,T] ∈ BV([0,T];C).

One can look back at Examples 5.2.27 and 5.2.30 to see how Corollary 5.2.32
can be used for the signals f , g, and h to deduce the global convergence properties
of their Fourier series.

5.2.5 Uniform convergence of Fourier series

Now, having addressed pointwise convergence with some degree of thorough-
ness, let us turn to uniform convergence of Fourier series. The first characterisation
we provide for uniform convergence provides a useful criterion, and as well gives
a relationship between the CDFT of a signal the convergence of its Fourier series.

5.2.33 Theorem (Uniform convergence of Fourier series) Let f ∈ L(1)
per,T(R;C). If

FCD(f) ∈ ℓ1(Z(T−1);C) then the following statements hold:
(i) (Dper

T,Nf)N∈Z>0 converges uniformly to a (necessarily continuous) T-periodic signal g;
(ii) f(t) = g(t) for almost every t ∈ R.

Proof We use the Weierstrass M-test, Theorem I-3.6.15. The nth term in the CDFT for
f satisfies

|FCD( f )(nT−1)e−2πin t
T | = |FCD( f )(nT−1)| =Mn,

and furthermore the series
∑

n∈ZMn converges. This shows that (Dper
T,N f )N∈Z>0 con-

verges uniformly by the Weierstrass M-test, and we denote the limit signal by g. This
signal is continuous by Theorem I-3.6.8.

To see that f and g are equal almost everywhere we first note that, swapping the
sum and the integral using Theorem I-3.6.23,

FCD(g)(nT−1) =
∫ T

0
g(t)e−2πin t

T dt

=

∫ T

0

∑
m∈Z

1
T
FCD( f )(mT−1)e2πim t

T e−2πin t
T dt

=
1
T

∑
m∈Z

FCD( f )(mT−1)
∫ T

0
e2πim t

T e−2πin t
T dt = FCD( f )(nT−1).

The theorem now follows directly from Theorem 5.2.1. ■

It is possible to phrase this result in such a way that it clarifies its relationship to
our discussion of the Fourier series as providing a possible inverse for the CDFT.
To do so, we will introduce the notation (explained in Section 7.1 below)

F DC(F)(t) =
1
T

∑
n∈Z

F(nT−1)e2πin t
T ,

for F ∈ ℓ1(Z(T−1);C).
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5.2.34 Corollary (A case when the Fourier integral in the inverse of the CDFT) If
f ∈ C0

per,T(R;C) has the property that FCD(f) ∈ ℓ1(Z(T−1);C), then

F DC ◦ FCD(f)(t) = f(t), t ∈ R.

The following result is a standard one for uniform convergence of Fourier series,
and follows from our more general theorem.

5.2.35 Corollary (A test for uniform convergence) Let f ∈ C0
per,T(R;C) and suppose that

there exists a piecewise continuous signal f′ : [0,T]→ C with the property that

f(t) = f(0) +
∫ t

0
f′(τ) dτ.

Then (Dper
T,Nf)N∈Z>0 converges uniformly to f. In particular, if f ∈ C1

per,T(R;C) then
(Dper

T,Nf)N∈Z>0 converges uniformly to f.
Proof We shall show that the hypotheses of Theorem 5.2.33 hold. Since (Dper

N,T f )N∈Z>0

converges pointwise to f by Theorem 5.2.28 and since f is continuous, we may write

f (t) =
1
T

∑
n∈Z

FCD( f )(nT−1)e2πin t
T .

By Proposition 5.1.12 the CDFT of f ′ is given by

FCD( f ′)(nT−1) =
2πin

T
FCD( f )(nT−1).

By Bessel’s inequality (here we use some ideas from Section 5.3) we then have

1
T

∑
n∈Z

|FCD( f ′)(nT−1)|2 ≤ ∥ f ′∥22 < ∞,

so that the sum ∑
n∈Z

|FCD( f ′)(nT−1)|2

converges. Now let
sN =

∑
|n|≤N

|FCD( f )(nT−1)|,

and note that

sN = |FCD( f )(0)| +
∑
|n|≤N
n,0

|FCD( f )(nT−1)| = |FCD( f )(0)| +
∑
|n|≤N
n,0

|TFCD( f ′)(nT−1)|
|2πin|

= |FCD( f )(0)| +
T

2π

∑
|n|≤N
n,0

|FCD( f ′)(nT−1)|
∣∣∣∣∣1n

∣∣∣∣∣
≤ |FCD( f )(0)| +

T
2π


∑
|n|≤N
n,0

|FCD( f ′)(nT−1)|2


1/2 

∑
|n|≤N
n,0

1
n2


1/2

,
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using the Cauchy–Bunyakovsky–Schwarz inequality. Now note that both sums∑
n∈Z
n,0

|FCD( f ′)(nT−1)|2,
∑
n∈Z
n,0

1
n2

converge. This shows that
lim

N→∞
sN < ∞. (5.23)

Moreover, since the sequence (sN)N∈Z>0 is increasing, (5.23) implies that the sequence
converges, and this is what we set out to prove. ■

Let us see how these conditions apply to the signals examined in Exam-
ples 5.2.27 and 5.2.30.

5.2.36 Examples (Uniform convergence of Fourier series)
1. For the signal f (t) = □2,1,0(t) − 1, we computed its CDFT in Example 5.1.3–2.

The computations done in that example give the Fourier series for f as

FS[ f ](t) =
∞∑

n=1

2(1 − (−1)n)
nπ

sin(2nπt).

We may simplify this by only writing the nonzero terms in the series:

FS[ f ](t) =
∞∑

k=1

4
(2k − 1)π

sin(2(2k − 1)πt).

This Fourier series, while converging pointwise, fails to satisfy the hypotheses
of Corollary 5.2.35. This does not necessarily imply that the signal fails to satisfy
the conclusions of Corollary 5.2.35, however. The fact of the matter is that the
Fourier series does not converge uniformly, although this does not quite follow
directly from Corollary 5.2.35. To see that the convergence is not uniform,
we argue as follows. Recall that if a sequence of continuous signals converges
uniformly, the limit signal must be continuous. Therefore, if a sequence of
continuous signals converges pointwise to a discontinuous signal, convergence
cannot be uniform. The partial sums of a Fourier series do define a sequence
of continuous signals. Therefore, if a Fourier series converges pointwise to a
discontinuous signal, the convergence cannot be uniform. In Example 5.2.30
we saw that the Fourier series for f converges to a discontinuous signal, so
this prohibits uniform convergence of this series. We shall explore this in more
detail in Section 5.2.6.
In any event, the 10th partial sum is shown in Figure 5.10, and one can see that
the convergence is not all that nice at the points of discontinuity.
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Figure 5.10 The 10th partial sum for f

2. For the signal g(t) = △ 1
2 ,1,0

(t), we have computed its CDFT in Example 5.1.3–3.
Using the computations of Example 5.1.3 we may determine that

FS[g](t) =
1
4
+

∞∑
n=1

(−1)n
− 1

n2π2 cos(2nπt).

As with f , we can simplify this by only writing the nonzero terms, which gives
the series

FS[g](t) =
1
4
−

∞∑
k=1

2
(2k − 1)2π2 cos(2(2k − 1)πt).

Note that g does satisfy the hypotheses for Corollary 5.2.35, so the convergence
of this Fourier series is uniform. Furthermore, we see that the CDFT satisfies
the hypotheses of Theorem 5.2.33. In Figure 5.11 we show the 10th partial sum
for g. It looks pretty nice.

3. Let us consider the signal h introduced in Example 5.2.27. We saw that the
sequence of approximations (Dper

T,Nh)N∈Z>0 converges everywhere to h, and we
now wish to see whether this convergence is uniform. Note that h is not
in fact continuous and piecewise differentiable, since it fails to possess left
and right limits for the derivative at integer multiples of 2π. Therefore, the
hypotheses of Corollary 5.2.35 do not hold, and so we cannot deduce uniform
convergence using this result. It is possible that we might be able to directly
use Theorem 5.2.33. However, this would entail computing the Fourier series
for the signal, and this is not so easily done. Also note that since the signal is
continuous we cannot immediately exclude uniform convergence. Thus we are
left up in the air at this point as concerns the uniform convergence of the Fourier
series of h. However, we shall immediately address this in Theorem 5.2.37. •
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Figure 5.11 The 10th partial sum for g

Now let us provide a rather general condition for uniform convergence, one
that builds on our most general pointwise convergence result, Theorem 5.2.31. As
with that theorem, the hypotheses of the following theorem may not be so easy to
directly validate in practice.

5.2.37 Theorem (Continuous signals of bounded variation have uniformly conver-
gent Fourier series) If f ∈ L(1)

per,T(R;C) is continuous and if f|[0,T] has bounded
variation then (Dper

T,Nf)N∈Z>0 converges uniformly to f.
Proof By Proposition I-3.3.11, V( f ) is continuous. We claim that V( f )|[0,T] is uni-
formly continuous. That is to say, we claim that for each ϵ ∈ R>0 there exists δ ∈ R>0
so that if |t1 − t2| < δ then | f (t1) − f (t2)| < ϵ. To see that this is so, choose ϵ ∈ R>0 and
for t0 ∈ [0,T] define δ(t0) ∈ R>0 so that if |t − t0| < 1

2δ(t0), | f (t) − f (t0)| < ϵ. If we define
I(t0) = [t0 − δ(t0), t0 + δ(t0)] then [0,T] ⊆ ∪t∈[0,T]U(t). Now there exists a finite subset
{t1, . . . , tk} ⊆ [0,T] so that [0,T] ⊆ ∪k

j=1U(t j). Now let δ = 1
2 min{δ(t1), . . . , δ(tk)} and let

t, t0 ∈ [0,T] satisfy |t − t0| < δ, Suppose that t0 ∈ U(t j) and note that

|t − t j| = |t − t0| + |t0 − t j| < δ +
1
2δ(t j) < δ(t2).

Therefore we have

| f (t) − f (t0)| = | f (t) − f (t j) + f (t j) − f (t0)| ≤ | f (t) − f (t j)| + | f (t j) − f (t0)| < ϵ.

Thus V( f )|[0,T] is indeed uniformly continuous. As in the proof of Theorem 5.2.31
we let M ∈ R>0 satisfy ∣∣∣∣∣∣

∫ t

0

sin((2N + 1)π τT )
τ

dτ

∣∣∣∣∣∣ ≤M

for all t ∈ R>0 and N ∈ Z>0. Therefore, for ϵ ∈ R>0 we may choose δ ∈ R>0 so that
|V( f )(t1)−V( f )(t2)| < ϵπ

2M for all t1, t2 ∈ R satisfying |t1− t2| < δ, this being possible since
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V( f ) is uniformly continuous. Now the argument of Theorem 5.2.31 can be applied to
show that ∣∣∣∣∣∣

∫ δ

−δ
( f (t0 − t) − f (t0))

sin((2N + 1)π t
T )

t
dt

∣∣∣∣∣∣ < ϵ,
with this holding for each t0 ∈ R, giving uniform convergence as desired. ■

With this theorem we can resolve the uniform convergence of the signal h in
Example 5.2.36.

5.2.38 Example (An application of the bounded variation test for uniform conver-
gence) We consider the signal h that is the 2π-periodic extension of the function
defined by t 7→ (sin t

2 )1/2. We claim that this function has bounded variation on
[0, 2π]. To see this we define

h+ =

(sin t
2 )1/2, t ∈ [0, π],

1, t ∈ (π, 2π],

h− =

0, t ∈ [0, π],
1 − (sin t

2 )1/2, t ∈ (π, 2π].

Note that h+ and h− are monotonically increasing and that h = h+−h−. Therefore, by
part (I-ii) of Theorem I-3.3.3 we conclude that h has bounded variation. Therefore
Theorem 5.2.37 implies that (Dper

T,Nh)N∈Z>0 converges uniformly to h. •

5.2.6 Gibbs’ phenomenon

In our discussion of convergence of the signal f in the preceding example, we
argued that if a Fourier series converges pointwise to a discontinuous signal, then
the convergence of this Fourier series cannot be uniform. This does not provide
much information about the way in which the series is not uniformly convergent.
It turns out that for a large class of discontinuities such as often arise in practice,
one can give a fairly explicit characterisation of what the partial sums look like.
In Exercise 5.2.10 we lead the reader through an investigation of the so-called
Gibbs’ phenomenon for the square wave. Here we consider a generalisation of this
particular example.

To present the result, we need some notation. Let f ∈ L(1)
per,T(R;R) and let t0 be a

point of discontinuity of f , and we assume that f possesses left and right limits at
t0. A Gibbs sequence at t0 consists of a sequence (t j) j∈Z>0 with the properties
1. lim j→∞ t j = t0 and
2. lim j→∞ j(t j − t0) exists.
Thus a Gibbs sequence at t0 converges to t0 from one side and not too slowly (this
is the upshot of the second of the above conditions). The Gibbs set for f at t0 is
then

G( f , t0) =
{
lim j→∞Dper

T, j f (t j)
∣∣∣∣ (t j) j∈Z>0 is a Gibbs sequence at t0

}
.
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One way to think of the Gibbs set is as follows. Let (t j) j∈Z>0 be a Gibbs sequence
at t0. The points in the sequence of (Dper

T, j f (t j)) j∈Z>0 correspond to points on the
graphs of the finite sums Dper

T, j f , with the points getting closer to the vertical line
t = t0. Thus, one way to understand the Gibbs set is as the collection of points in
the graphs of the finite sums that lie close to the vertical line t = t0 in the limit. We
shall explore this point of view further later on. For now, let us state the theorem
describing the Gibbs set.

5.2.39 Theorem (General Gibbs’ phenomenon for Fourier series) Let f ∈ L(1)
per,T(R;R),

let t0 ∈ R, and suppose that the limits f(t0−), f(t0+), f′(t0−), and f′(t0+) exist. Denote
j(t0) = f(t0+) − f(t0−) and denote

I =
∫ π

0

sin t
t

dt ≈ 1.85194.

The Gibbs set for f at t0 then satisfies

G(f, t0) = [1
2 (f(t0+) + f(t0−)) − ∆2 ,

1
2 (f(t0+) + f(t0−)) + ∆2 ],

where

∆ =

∣∣∣∣∣2Ij(t0)
π

∣∣∣∣∣ ≈ 1.17898|j(t0)|.

Proof Let us first prove the theorem in a special case, that for f = g where g is the
2π-periodic extension of the signal t 7→ 1

2 (π − t) on [0, 2π]. The signal g has a jump of
π at t = 0. One verifies by direct computation that

FS[g](t) =
∞∑

n=1

sin(nt)
n

.

From Lemma 1 in Example 8.1.3 and using Euler’s formula eiθ = cosθ + i sinθ, we
have the identity

n∑
j=0

cos(nt) =
sin((n + 1

2 )t)

2 sin t
2

Using this identity we have, for a positive Gibbs sequence (tn)n∈Z>0 ,

Dper
2π,ng(tn) =

n∑
j=1

sin( jtn)
j

=

∫ tn

0

n∑
j=1

cos( jt) dt =
∫ tn

0

sin((n + 1
2 )t)

2 sin t
2

dt −
tn

2

=

∫ tn

0

sin((n + 1
2 )t)

t
dt +

∫ tn

0

 1
sin t

2

−
1
t

 sin((n + 1
2 )t) dt −

tn

2
.

As n → ∞ the last two terms go to zero, the first of these by virtue of the Rie-
mann–Lebesgue Lemma. Thus

lim
n→∞

Dper
2π,ng(tn) = lim

n→∞

∫ tn

0

sin((n + 1
2 )t)

t
dt = lim

n→∞

∫ (n+ 1
2 )tn

0

sin t
t

dt.
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By the second property of a Gibbs sequence, the upper limit on the integral con-
verges. Furthermore, by choosing this sequence appropriately, this upper limit can be
arbitrarily specified. Thus, if we define

ϕ(t) =
∫ t

0

sin τ
τ

dτ,

then
G(g, 0) =

⋃
t∈R>0

[−ϕ(t), ϕ(t)].

Using Theorem I-3.2.16 one may check that the function ϕ has maxima at t = (2k+ 1)π
and minima at 2kπ, k ∈ Z>0. One may moreover check that the global maximum
occurs at t = π and one computes

ϕ(π) =
∫ π

0

sin t
t

dt ≈ 1.85194 >
π
2
.

This shows that we have G(g, 0) = [−ϕ(π), ϕ(π)].
Now we consider a general signal f satisfying the hypotheses of the theorem with

a jump discontinuity at t0. We then define

h(t) = f (t) −
j(t0)
π

g
(

2π
T (t − t0)

)
.

One has

h(t0+) = f (t0+) −
j(t0)
π

g(0+) = 1
2 ( f (t0+) + f (t0−))

h(t0−) = f (t0−) −
j(t0)
π

g(0−) = 1
2 ( f (t0+) + f (t0−)).

Thus h is continuous at t0 and the limits h′(t0+) and h′(t0−) exist. Therefore the Fourier
series for h converges to h at t0. Using this fact, if (tn)n∈Z>0 is a Gibbs sequence at t0 for
which limn→∞ n(tn − t0) = α then

lim
n→∞

Dper
T,n f (tn) = 1

2 ( f (t0) + f (t0−)) +
j(t0)
π

∫ α

0

sin t
t

dt.

Thus the Gibbs set is an interval of length
∣∣∣∣2 j(t0)ϕ(π)

π

∣∣∣∣ with centre 1
2 ( f (t0+) + f (t0−)). ■

The theorem describes the nature of the partial sums Dper
T,N f near a discontinuity

of f as N becomes large. If one graphs these partial sums, their graph will exhibit
some overshoot or undershoot of value of the signal. The graphs as N becomes
large tend to approach shapes as exhibited in Figure 5.12. The figure depicts
qualitatively the overshoot and undershoot exhibited by the partial sums. The
exact amount of these is what is given by Theorem 5.2.39. Referring to Figure 5.12,
we have

∆+ = ∆− = | j(t0)|
( I
π
−

1
2

)
≈ 0.0895| j(t0)|.
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∆+

∆−

∆−

∆+

Figure 5.12 Limit of graphs for partial sums near points of dis-
continuity

Thus the error due to any finite approximation is about 9% of the jump as the
approximation gets “better.” Note that what is depicted in Figure 5.12 is not the
graph of the limit signal! In fact, it is not the graph of any single-valued signal.
Indeed, it is interesting to read Gibbs’ short 1899 paper in Nature as regards this
point. As the following excerpt suggests, the matter of uniform convergence caused
as much confusion amongst practitioners in that day as it does with students today.

I think this distinction important; for (with the exception of what relates to my
unfortunate blunder described above), whatever differences of opinion have
been expressed on this subject seem due, for the most part, to the fact that
some writers have had in mind the limit of the graphs, and others the graph of the
limit of the sum. A misunderstanding on this point is a natural consequence
of the usage which allows us to omit the word limit in certain connections, as
when we speak of the sum of an infinite series. [Emphases are Gibbs’.]

The distinction between the “limit of the graphs,” and the “graph of the limit” may
be what is confusing you, if you are indeed confused by the notion of uniform
convergence. The notion of the Gibbs set is designed to make precise the notion of
the “limit of the graph.”

5.2.7 Cesàro summability

As we indicate in Section 5.2.3, the matter of convergence for Fourier series is
a rather touchy matter for merely integrable signals, i.e., for signals in L(1)

per,T(R;C).
Furthermore, in Example 5.2.10 we saw an example of a continuous signal whose
Fourier series diverged. As we have stated all along, this makes the idea of the
inversion of the CDFT via Fourier series a little tricky. In this section we investigate
an alternate notion of inversion of the CDFT which uses an averaged version of
the Fourier series. This notion comes with both advantages and disadvantages.
The idea comes to us from the general notion of Cesàro convergence described in
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Section III-3.4.5. The idea is that, given a sequence (v j) j∈Z>0 in a normed vector space
(V, ∥·∥), we consider, not convergence of the series

∑
j∈Z>0

v j, but of the sequence of
averaged partial sums (S̄1

n)n∈Z>0 , where

S̄1
n =

1
n

n∑
j=1

j∑
l=1

vl.

In Theorem III-3.4.15 we showed that if a series converges, then its sequence of
averaged partial sums converges to the same limit. However, the converse is not
necessarily true; see Example III-3.4.14–2.

Let us apply the above general notion of Cesàro convergence of a series to the
Fourier series. The following lemma gives the form for the partial Cesàro sums,
just as Lemma 5.2.7 gives the partial sums for the Fourier series. Here we see the
periodic Fejér kernel of Example 4.7.19–3 pop up again.

5.2.40 Lemma (Cesàro sums and the periodic Fejér kernel) For f ∈ L(1)
per,T(R;C) we have

1
N

N−1∑
n=0

1
T

n∑
j=−n

FCD(f)(jT−1)e2πij t
T =

1
T

∫ T
2

−
T
2

f(t − τ)Fper
T,N(τ) dτ.

Proof By Lemma 5.2.7, for t ∈ [0,T] we have

1
N

N−1∑
n=0

Dper
T,n f (t) =

1
NT

N−1∑
n=0

∫ T
2

−
T
2

f (t − τ)Dper
T,n (τ) dτ

=
1
T

∫ T
2

−
T
2

f (t − τ)Fper
T,N(τ) dτ

=
1
T

∫ T
2

−
T
2

(
f (t − τ)

)
Fper

T,N(τ) dτ,

where we have used Lemma 2 from Example 8.2.2–3. ■

Note that the lemma gives the Cesàro sums as the T-periodic convolution of f
with Fper

T,N (see ).what?

5.2.41 Notation (Fper
T,N

f) Motivated by the above, for f ∈ L(1)
per,T(R;C) and for N ∈ Z>0 we

shall from now on denote the Nth Cesàro sum by

Fper
T,N f (t) =

1
N

N−1∑
n=0

1
T

∑
| j|≤n

FCD( f )( jT−1)e2πi j t
T .

The notation is intended to be suggestive of convolution, just as we did with the
periodic Dirichlet kernel in Notation 5.2.8. •

We may now state the main result in this section.
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5.2.42 Theorem (Convergence of Cesàro sums) For f ∈ L(0)
per,T(R;C) the following state-

ments hold:
(i) if f ∈ L(p)

per,T(R;C) then (Fper
T,Nf)N∈Z>0 converges to f in Lp

per,T(R;C);

(ii) if f ∈ C0
per,T(R;C) then (Fper

T,Nf)N∈Z>0 converges uniformly to f;

(iii) if f ∈ L(∞)
per,T(R;C) and if, for t0 ∈ R, the limits f(t0−) and f(t0+) exist then

(Fper
T,Nf(t0))N∈Z>0 converges to 1

2 (f(t0−) + f(t0+)).
Proof This follows from Theorems 4.7.14, 4.7.15, and 4.7.16. ■

Note that the theorem tells us that the Cesàro partial sums for the Fourier series
of Example 5.2.10 now converge uniformly, although the Fourier series diverges
at t = 0. Let us further illustrate the advantages of using the Cesàro sums to
reconstruct a signal from its CDFT through a simple example.

5.2.43 Example (Cesàro sums) We consider the signal f (t) = □2,1,0(t) − 1 that we have
previously dealt with as concerns its convergence. In Figure 5.13 we plot the
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Figure 5.13 Dper
T,N f (left) and Fper

T,N f (right) for N = 50

partial Fourier series sums and the partial Cesàro sums. We note that the Cesàro
sums do not exhibit the Gibbs effect at the discontinuity. •

5.2.44 Remarks (Pros and cons of using Cesàro sums)
1. Note that the Cesàro sums provide a genuine left-inverse for the CDFT on

L1
per,T(R;C). That is to say, if we define ICD : c0(Z(T−1);C)→ L1

per,T(R;C) by

ICD((F(nT−1))n∈Z) = lim
N→∞

1
N + 1

N∑
n=0

1
T

∑
| j|≤n

F( jT−1)e2πi j t
T (5.24)

then this map has the property that ICD ◦ FCD( f ) = f for all f ∈ L1
per,T(R;C).

Note that ICD as defined is not quite a left-inverse in the usual sense of the
word. In particular, ICD((cn)n∈Z>0) is not generally an element of L1

per,T(R;C) for
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(cn)n∈Z ∈ c0(Z(T−1);C). However, this is a minor problem since we can merely
define ICD((cn)n∈Z) = 0 if (cn)n∈Z < image(FCD). This would then give us a bona
fide left-inverse for FCD in the set theoretic sense. The resulting map would
not, however, be a linear map from c0(Z(T−1);C) to L1

per,T(R;C). However,
it is possible to massage ICD as defined by (5.24) in such a way that it is a
linear left inverse. Note that does not mean that ICD ◦ FCD( f )(t) = f (t) for all
t ∈ R. However, if f is additionally continuous, then the pointwise equality of
ICD ◦ FCD( f ) with f does hold, and furthermore, the convergence is uniform.

2. It would seem, then, that the Cesàro sums would always be the right thing to
use to reconstruct a signal from its CDFT. However, this is not unequivocally
so, the reason being that it is frequently the case that convergence of the Cesàro
sums is slower than that of the regular Fourier partial sums. This is something
we will not get deeply into here, although it is of some importance in some
areas of signal processing. •

5.2.8 The CDFT and approximate identities

The reader will have noticed the rôle played by convolution in our inversion of
the CDFT, cf. Lemmata 5.2.7 and 5.2.40. A little more precisely, two of the ways in
which we have attempted to invert the CDFT—by using Fourier series and by using
the Cesàro sums of Fourier series—have turned out to involve approximations by
convolution with an appropriate kernel. The kernels we used, the periodic Dirichlet
and Fejér kernels, had the special feature of being finite linear combinations of
harmonic functions. One can ask, however, whether the rôle played by these
kernels can be played as well by other functions. Since we saw that the periodic
Dirichlet and Fejér kernels arose in our study of periodic approximate identities
(the latter kernel did define an approximate identity while the former did not),
one may wonder what rôle might be played for the CDFT by general approximate
identities. In this section we flesh this out.

5.2.45 Examples (The CDFT of approximate identities)
1. Recall from Example 4.7.19–3 the definition of the periodic Dirichlet kernel:

Dper
T,N(t) =

 sin((2N+1)π t
T )

sin(π t
T ) , t < Z(T),

2N + 1, t ∈ Z(T).

Even though we showed in Example 4.7.19–5 that (DT,N)N∈Z>0 is not an approx-
imate identity, we shall consider its CDFT here, since it exhibits some of the
properties of an approximate identity. By Lemma 1 from Example 8.1.3 below
we have

Dper
T,N(t) =

N∑
m=−N

e2πim t
T .
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Therefore,

FCD(Dper
T,N)(nT−1) =

∫ T

0
Dper

T,N(t)e−2πin t
T dt

=

N∑
m=−N

∫ T

0
e2πim t

T e−2πin t
T dt =

T, |n| ≤ N,
0, otherwise,

the last integral being one that is easily explicit computed, cf. Lemma 5.3.2
below. Thus we have

FCD(Dper
T,N)(nT−1) =

T, n ∈ {−N, . . . ,−1, 0, 1, . . . ,N},
0, otherwise.

We depict this in Figure 5.14 we show this signal and its CDFT when T = 1 and
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Figure 5.14 The signal Dper
T,N (left) and its CDFT (right) for N = 5

and T = 1

N = 5.
2. We next consider the periodic Poisson kernel

Pper
T,Ω(t) =

1 − (e−
2π
ΩT )2

1 − 2e− 2π
ΩT cos(2π t

T ) + (e− 2π
ΩT )2

.

from Example 4.7.19–1. As we saw in Example 8.2.2–1, we have

FCD(Pper
T,Ω)(nT−1) = Te−

2π|n|
ΩT .

We depict the periodic Poisson kernel and its CDFT in Figure 5.15 when T = 1
and Ω = 5.

3. The periodic Gauss–Weierstrass kernel was given in Example 8.2.2–2 as being
determined by the infinite series

perT(GΩ)(t) =
∑
n∈Z

exp
(
−

4π2Ωn2

T2

)
e2πin t

T .



488 5 The continuous-discrete Fourier transform 2022/03/07

-0.4 -0.2 0.0 0.2 0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

-10 -5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.15 The signal Pper
T,Ω (left) and its CDFT (right) for Ω = 5

and T = 1

As this series converges uniformly by the Weierstrass M-test, we may swap
summation and integration using Theorem I-3.6.23 to obtain

FCD(perT(GΩ))(nT−1) =
∫ T

0

∑
m∈Z

exp
(
−

4π2Ωm2

T2

)
e2πim t

T

 e2πin t
T ,dt

= T exp
(
−

4π2Ωn2

T2

)
,

using the computation of the integral from our determination of FCD(Dper
T,N). In

Figure 5.16 we plot the periodic Gauss–Weierstrass kernel and its CDFT for
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Figure 5.16 The signal perT(GΩ) (left) and its CDFT (right) for
Ω = 1

100 and T = 1

T = 1 and Ω = 1
100 .

4. Next we consider the CDFT for the periodic Fejér kernel introduced in Exam-
ple 4.7.19–3:

Fper
T,N(t) =


1
N

sin2(Nπ t
T )

sin2(π t
T )
, t < Z(T),

N, t ∈ Z(T).
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By Lemmata 2 and 3 from Example 8.2.2–3 we have

Fper
T,N(t) = 1 +

−1∑
n=−N+1

(
1 + n

N

)
e2πin t

T +

N−1∑
n=1

(
1 − n

N

)
e2πin t

T .

As in our computation of FCD(Dper
N,T), we can integrate this expression term-by-

term when computing the CDFT to obtain

FCD(Fper
T,N)(nT−1) = T

1 − |n|N , |n| ∈ {0, 1, . . . , (N − 1)},
0, otherwise.

We depict Fper
T,N and its CDFT in Figure 5.17 when T = 1 and N = 5.
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Figure 5.17 The signal Fper
T,N (left) and its CDFT (right) for N = 5

and T = 1

5. Next we determine the CDFT of the periodic de la Vallée Poussin kernel

Vper
T,N(t) = 2Fper

T,N(t) − Fper
T,N(t).

As we have just computed the CDFT of the Fejér kernel, we can use linearity of
the CDFT to compute

FCD(Vper
T,N(nT−1) = T


1, |n| ∈ {0, 1, . . . ,N − 1},
2 − |n|N , |n| ∈ {N,N + 1, . . . , 2N − 1},
0, |n| ≥ 2N.

We depict Vper
T,N and its CDFT in 5.18 when T = 1 and N = 5. •

5.2.9 Notes

Theorem 5.2.28 was published by Dirichlet [1829] and was the first conver-
gence theorem for Fourier series. Thus Dirichlet’s test was the first vindication
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Figure 5.18 The signal Vper
T,N (left) and its CDFT (right) for N = 5

and T = 1

of Fourier’s idea of writing a periodic function as an infinite sum of harmonic
functions.

In Example 5.2.10 we give an example of a continuous signal with a Fourier
series that diverges at a point. The first such example was given by du Bois-
Reymond [1876],2 after which time many such example were produced. The
example we give is from [Hardy and Rogosinski 1944]. Our treatment of sets of
divergence follows the excellent presentation of Katznelson [2004].

Theorem 5.2.20 is due to Kolmogorov [1923]. This result was improved by
Kolmogorov [1926] to show that there exists f ∈ L(1)

per,T(R;C) whose Fourier series
diverges everywhere, not just almost everywhere.

Gibbs’ phenomenon was reported by Gibbs [1899]3 in response to experimental
phenomenon reported by the physicist Albert Abraham Michelson (1852–1931).
Although Gibbs gets the credit here, the essential ideas were noticed as early as 1848
by a Cambridge mathematician Henry Wilbraham. A discussion of such matters
may be found in [Carslaw 1930]. The general case presented in Theorem 5.2.39
was worked out by Bôcher [1906].4

The use of the Fejér kernel in the study of Fourier series was introduced by
Fejér [1903] where uniform convergence of the Cesàro means were shown for
continuous signals. One can define alternate forms of Cesàro summability. An
extensive discussion of these issues for Fourier series may be found in the treatise
of Zygmund [1959].

A rigorous discussion of the tradeoffs encountered in using Cesàro sums may

2Paul David Gustav du Bois-Reymond (1831–1889) was a German mathematician who made to
mathematical analysis.

3Josiah Willard Gibbs (1839–1903) was an American mathematical physicist. In the realm of
mathematics, his most significant contribution is the Fourier series phenomenon bearing his name.
In physics, he is also known for his work in the area of thermodynamics where his name appears
by virtue of Gibbs’ free energy.

4Maxime Bôcher (1867–1918) was an American mathematician who made mathematical contri-
butions to linear algebra, differential equations, and analysis.
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be found in [Pinsky 2009].

Exercises

5.2.1 Let f ∈ L(1)
per,T(R;C). Show that for every N ∈ Z>0 we have

1
T

N∑
n=−N

FCD( f )(nT−1)e2πin t
T

=
1

2T
CCD( f )(0)+

1
T

N∑
n=1

(
CCD( f )(nT−1) cos(2πn t

T ) +SCD( f )(nT−1) sin(2πn t
T )

)
.

5.2.2 Let f : [0, 1]→ R given by f (t) = t.
(a) Using Exercise 5.1.4, compute the CDCT and the CDST feven and fodd.
(b) Plot the first few partial sums for both feven and fodd and comment on

their relative merits.

Our definition of partial sums for Fourier series is symmetric about zero, i.e., we
take the Nth partial sum to be the terms −N,−N + 1, . . . ,−1, 0, 1, . . . ,N − 1,N in the
series. In the following exercise you will explore one of the consequences of this
somewhat arbitrary choice of definition for the partial sums.

5.2.3 Let f ∈ L(1)
per,T(R;C) and, for t0 ∈ R and s ∈ C, define e f ,t0,s : R→ C by

e f ,t0,s(t) =
1
2 ( f (t0 + t) + f (t0 − t)) − s.

(a) Show that e f ,t0,s ∈ L(1)
per,T(R;C).

(b) Show that the Fourier series for f converges to s ∈ C at t0 if and only if
the Fourier series for e f ,t0,s converges to 0 at 0.

(c) Show that, if there exists a neighbourhood U of 0 for which f (t0 + t) =
− f (t0 − t) for every t ∈ U, then it holds that the Fourier series for f
converges to zero at t0.

(d) Sketch the graph of a typical function from part (c).
5.2.4 Answer the following questions.

(a) Is the function

n 7→
(−1)n+1

2n − 1
in ℓ1(Z>0;R)?

(b) Show that
∞∑

n=1

(−1)n+1

2n − 1
=
π
4
.

Hint: Use Example 5.1.3–2 and Theorem 5.2.28.
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5.2.5 Answer the following questions.
(a) Is the function

n 7→
1

(2n − 1)2

in ℓ1(Z>0;R)?
(b) Show that

∞∑
n=1

1
(2n − 1)2 =

π2

8
.

Hint: Use Example 5.1.3–3 and Theorem 5.2.28.

5.2.6 Give a signal f ∈ L(1)
per,T(R;C) such that FCD( f ) < ℓ1(Z(T−1);C). Explain why

your example works without doing any computations.
5.2.7 For the 1-periodic extensions fper of the following signals f ∈ C0([0, 1];R),

do the following:
1. sketch one period of the graph of fper;
2. determine, without computation, which (if any) of the terms CCD( f )(n),

n ∈ Z≥0, and SCD( f )(n), n ∈ Z>0, are zero;
3. indicate whether the sequence {Dper

T,N f }N∈Z>0 converges pointwise, and if it
does, to which signal does it pointwise converge;

4. indicate whether the sequence {Dper
T,N f }N∈Z>0 converges uniformly, and if it

does, to which signal does it uniformly converge.
The signals are:
(a) f (t) = t(1 − t);

(b) f (t) =

1, t ∈ [0, 1
2 ],

0, t ∈ (1
2 , 1];

(c) f (t) = et.
5.2.8 Define f , g : [0, 1]→ R by

f (t) =


√

1
2 − t, t ∈ [0, 1

2 ],√
t − 1

2 , t ∈ ( 1
2 , 1],

g(t) =


√

1
2 − t, t ∈ [0, 1

2 ],

−

√
t − 1

2 , t ∈ ( 1
2 , 1],

and let fper, gper : R → R be the signals of period 1 obtained by periodically
extending f and g, respectively. For each of the signals f and g, answer the
following questions.
(a) Sketch the graph of the signal on the interval [0, 1].
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(b) If possible determine the points at which the Fourier series converges,
and indicate to what value it converges.

(c) If possible using results from the course, determine whether the Fourier
series converges uniformly, and if so to what signal.

5.2.9 For the given signals with their CDFT’s, do the following:
1. plot one fundamental period of the signal;
2. plot the 10th partial sum for the Fourier series and comment on the quality

of the approximation;
3. indicate whether the Fourier series converges pointwise, and if so indicate

to what signal it converges;
4. indicate whether the Fourier series converges uniformly, and if so indicate

to what signal it converges.
The signals, defined for a single fundamental period, and their CDFT’s are:

(a) f (t) =


0, t ∈ [0, 1],
1, t ∈ (1, 2],
0, t ∈ (2, 3],

FCD( f )(0) = 1,
FCD( f )(nT−1) = 3i

2nπ

(
e−inπ 4

3 − e−inπ 2
3

)
, n ∈ Z \ {0};

(b) f (t) =

et
− 1, t ∈ [0, 1],

(1 − e)t + 2(e − 1), t ∈ (1, 2],
a0( f ) = 3e − 5,

CCD( f )(nT−1) = 2
1−(−1)n

−(−1)nn2π2+e(−1+(−1)n+(−1+2(−1)n)n2π2)
n2π2+n4π4 , n ∈ Z>0,

SCD( f )(nT−1) = 2−1+(−1)ne
nπ+n3π3 , n ∈ Z>0;

(c) f (t) =

t, t ∈ [0, π],
0, t ∈ (π, 2π],

FCD( f )(0) = π2

2 ,

FCD( f )(nT−1) = (−1)n
−1

n2 + πi (−1)n

n , n ∈ Z \ {0};

(d) f (t) =

−t2, t ∈ [0, π],
πt − 2π2, t ∈ (π, 2π],

FCD( f )(0) = −10π3

12 ,

FCD( f )(nT−1 = π (1−3(−1)n)
n2 + 2i (−1)n

−1
n3 , n ∈ Z \ {0}.

In the following exercise you will verify the famous Gibbs phenomenon for the
square wave.

5.2.10 Let f : [0, 2π]→ R be defined by

f (t) =

1, t ∈ [0, π],
−1, t ∈ (π, 2π].
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(a) Show that

FS[ f ](t) =
4
π

∞∑
n=1

sin((2n − 1)t)
2n − 1

.

(b) Does the Fourier series converge pointwise? Uniformly?
Let

fN(t) = Dper
2π,N f (t) =

4
π

N∑
n=1

sin((2n − 1)t)
2n − 1

be the Nth partial sum.
(c) Show that π sin t f ′N(t) = 2 sin(2Nt).

Hint: Directly differentiate Dper
2π,Nf, and use mathematical induction with some

trig identities.
(d) Show that the maximum value of Dper

2π,N f on the interval [0, π] is

4
π

N∑
n=1

1
2n − 1

sin
(

(2n − 1)π
2N

)
. (5.25)

(e) Show that the sum (5.25) is the approximation of the integral

2
π

∫ π

0

sin t
t

dt

by N rectangles of equal width.
(f) Take the limit as N → ∞ to show that the maximum value of Dper

2π,N f on
the interval [0, π] approaches

2
π

∫ π

0

sin t
t

dt

as N→∞.
(g) Evaluate or look up the value of the integral to obtain the maximum

value of Dper
2π,N f on the interval [0, π] as N→∞.

(h) How does this reflect on uniform convergence of the Fourier series.
(i) Plot a few partial sums to check your analysis.

5.2.11 Use Bôcher’s theorem, Theorem 5.2.39, to draw the limit of the graph of the
Fourier series for the following signals. Make sure that you assign numbers
to appropriate bits of the graph.

(a) f (t) =

t, t ∈ [0, 1
2 ],

1 − t, t ∈ ( 1
2 , 1].

(b) f (t) =

1, t ∈ [0, 1
2 ],

−1, t ∈ (1
2 , 1].
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(c) f (t) =

t, t ∈ [0, π],
t − π, t ∈ (π, 2π].

(d) f (t) = et, t ∈ [0, 1].
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Section 5.3

The L2-CDFT

Since L2
per,T(R;C) ⊆ L1

per,T(R;C) by part (iv) of Theorem 1.3.11, we may define
the CDFT on L2

per,T(R;C) simply by restriction; we call this the L2-CDFT. Thus, ev-
erything we have said thus far can be applied in particular to L2

per,T(R;C). However,
the L2-CDFT has many interesting properties not possessed by the more general
L1-CDFT. Many of these properties are a consequence of the Hilbert space structure
of L2

per,T(R;C), whereas L1
per,T(R;C) is a more general Banach space. One of the use-

ful features present in Hilbert spaces that is not present in a general Banach space
is the existence of Hilbert bases which give series representations of all elements in
the Hilbert space. If the world is a sane place then, given our results in Section 5.2,
it ought to hold that the harmonic signals are a Hilbert basis (after normalisation).
We show in Section 5.3.1 that this is indeed the case. For the remainder of the sec-
tion we explore some of the additional structure present for the CDFT that arises
from the additional structure of L2

per,T(R;C).
While the additional structure added to the CDFT by assuming signals to be

in L2
per,T(R;C) may seem to be a little esoteric, in fact, the L2-CDFT is often what

one normally studies. Indeed, it is very often the case that the fact that the natural
domain of definition for the CDFT is L1

per,T(R;C) is ignored, and it is assumed that
the only signals of interest are in L2

per,T(R;C). Thus the theory of Fourier series is
often presented as an L2-theory, which seems a little unnatural if one thinks about
it for a moment. However, what is true is that for the purposes of applications,
there are precious few interesting signals in L1

per,T(R;C) \ L2
per,T(R;C), and so the

simplification to L2
per,T(R;C) is justified on these grounds.

Do I need to read this section? The L2-theory of the CDFT is central, so if you
are reading this chapter, then read this section. •

5.3.1 The Hilbert basis of harmonic signals

We know from Theorem III-3.8.59 that L2
per,T(R;C) is a C-Hilbert space, and

from Proposition III-3.8.61 that it is separable. From Theorem III-4.4.21 we can
then assert the existence of an enumerable Hilbert basis for L2

per,T(R;C). In this
section we show that we already have at hand a Hilbert basis: the collection of
harmonic signals.

For the purposes of this section it is convenient to define, for a ∈ C, the signal
Ea : R → C by Ea(t) = eat. For a ∈ R let us also define Ca,Sa : R → R by Ca(t) =
cos(at) and Sa(t) = sin(at). Note that C0 is the constant function t 7→ 1. For signals
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in L(2)
per,T(R;C) the CDFT is expressible in terms of the L2-inner product

⟨ f , g⟩2 =
∫ T

0
f (t)ḡ(t) dt.

We have the following obvious result.

5.3.1 Lemma (The CDFT using inner products) For f ∈ L(2)
per,T(R;C) we have

FCD(f)(nT−1) = ⟨f,E2πinT−1⟩2, n ∈ Z,

CCD(f)(nT−1) = ⟨f,C2πnT−1⟩2, n ∈ Z≥0,

SCD(f)(nT−1) = ⟨f,S2πnT−1⟩2, n ∈ Z>0.

While the previous result is obvious, note that it does not make sense for
f ∈ L(1)

per,T(R;C). However, its neat connection to Hilbert space geometry explains
why many authors are lured into making this their definition of the CDFT (or
CDCT and CDST), thus immediately excluding any discussion of the L1-CDFT.

Let us record the following facts about the sets of harmonic signals.

5.3.2 Lemma (Orthogonality of harmonics) The sets

{E2πinT−1}n∈Z, {C2πnT−1}n∈Z≥0 ∪ {S2πnT−1}n∈Z>0

are orthogonal in (L(2)
per,T(R,C), ∥·∥2). Moreover, the sets

{
1
√

T
E2πinT−1

}
n∈Z

,
{

1
√

T

}
∪

{√
2
TC2πnT−1

}
n∈Z>0

∪

{√
2
TS2πnT−1

}
n∈Z>0

are orthonormal.
Proof This follows from the following computations:∫ T

0
e2πim t

T e−2πin t
T dt =

T, m = n,
0, m , n,∫ T

0
cos(2πm t

T ) cos(2πn t
T ) dt =

T
2 , m = n,
0, m , n,∫ T

0
sin(2πm t

T ) sin(2πn t
T ) dt =

T
2 , m = n,
0, m , n,∫ T

0
cos(2πm t

T ) sin(2πn t
T ) dt = 0,

for m,n ∈ Z≥0. ■
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From the preceding two lemmata we have that the Fourier series for f ∈
L2

per,T(R;C) can be written as

FS[ f ] =
∑

n∈Z>0

〈
f , 1
√

T
E2πinT−1

〉
2

1
√

T
E2πinT−1

or

FS[ f ] =
〈

f , 1
√

T
C0

〉
2

1
√

T
C0 +

∞∑
n=1

〈
f , 2
√

T
C2πnT−1

〉
2

2
√

T
C2πnT−1

+

∞∑
n=1

〈
f , 2
√

T
S2πnT−1

〉
2

2
√

T
S2πnT−1 .

We shall stick primarily to the first of these for our general discussion since it
is simpler to manage notationally. The main point is that the Fourier series
looks like one is writing f as an orthonormal expansion using the orthonormal
set { 1

√
T
E2πinT−1}n∈Z. The interesting question is then, “Does this series converge in

L2
per,T(R;C)?” As we have seen in Section III-4.4, this question tantamount to asking

whether { 1
√

T
E2πinT−1}n∈Z is a Hilbert basis.

That this is in fact the case is the next result.

5.3.3 Theorem (Harmonic signals form a Hilbert basis for L2
per,T

(R;C)) In the Hilbert

space L2
per,T(R;C) the set of signals { 1

√
T
E2πinT−1}n∈Z is a Hilbert basis.

Proof We let f ∈ L2
per,T(R;C) and prove the theorem by showing that there exists a

sequence (p j) j∈Z in spanC(E2πinT−1) which converges to f in L2
per,T(R;C):

lim
j→∞
∥ f − p j∥2 = 0. (5.26)

Let us perform some simple preliminary computations. By Bessel’s inequality,
Theorem III-4.4.24, we have∑

n∈Z

∣∣∣∣∣〈 f , 1
√

T
E2πin

〉∣∣∣∣∣2
2
=

1
T

∑
n∈Z

∣∣∣FCD( f )(nT−1)
∣∣∣2 ≤ ∥ f ∥22. (5.27)

Thus, f being in L2
per,T(R;C), the series in the middle converges. Now, as we saw in

the proof of Theorem III-4.4.24 (among other places), the signals fN and f − fN are
orthogonal. The Pythagorean identity (Exercise III-4.1.12) then gives∑

|n|≤N

|FCD( f )(nT−1)|2 +
∫ T

0
| f (t) − fN(t)|2 dt =

∫ T

0
| f (t)|2 dt. (5.28)

Now suppose for the moment that f is continuous and define ϕ : R→ R by

ϕ(t) =
∫ T

0
f (t + τ) f̄ (τ) dτ.



2022/03/07 5.3 The L2-CDFT 499

Since f has period T, so too does ϕ. What’s more, ϕ is locally absolutely continuous
by Theorem III-2.9.33, and so continuous by Proposition III-2.9.24. Let us compute the
Fourier coefficients of ϕ:

FCD(ϕ)(nT−1) =
∫ T

0
ϕ(t)e−2πin t

T dt

=

∫ T

0

(∫ T

0
f (t + τ) f̄ (τ) dτ

)
e−2πin t

T dt

=

∫ T

0
f̄ (τ)

(∫ T

0
f (t + τ)e−2πin t

T dt
)

dτ

=

∫ T

0
f̄ (τ)

(∫ τ+T

τ
f (t)e−2πin t

T dt
)

e2inπ τ
T dτ

= FCD( f )(nT−1)
∫ T

0
f̄ (τ)e2inπ τ

T dτ

= FCD( f )(nT−1)
∫ T

0
f (t)e−2πin t

T dt

= |FCD( f )(nT−1)|2,

where we have used Fubini’s Theorem. By (5.27) this implies that the Fourier coeffi-
cients of ϕ must have the property that∑

n∈Z

|FCD(ϕ)(nT−1)| < ∞,

i.e., FCD(ϕ) ∈ ℓ1(Z(T−1);C). By Theorem 5.2.33 it follows that FS[ϕ] = ψ for some
continuous functionψ. Moreover, also by Theorem 5.2.33, ϕ(t) = ψ(t) for almost every
t ∈ R. By Exercise III-2.9.8 we can then conclude that ψ = ϕ. This shows that for t ∈ R
we have

ϕ(t) =
∫ T

0
f (t + τ) f̄ (τ) dτ =

1
T

∑
n∈Z

FCD(ϕ)(nT−1)e2πin t
T .

In the case when t = 0 this reads∫ T

0
| f (τ)|2 dτ =

1
T

∑
n∈Z

FCD(ϕ)(nT−1) =
∑
n∈Z

|FCD( f )(nT−1)|2.

Applying this equality to (5.28) gives

lim
N→∞

∫
| f (t) − fN(t)|2 dt = 0,

giving (5.26) in the case when f is continuous (take the sequence (p j) j∈Z>0 to be the
sequence of partial sums for FS[ f ]).

If f ∈ L2
per,T(R;C) is not necessarily continuous, then by part (ii) of Theorem 1.3.11,

for any ϵ ∈ R>0 there exists a continuous signal gϵ ∈ L2
per,T(R;C) with the property that
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∥ f − gϵ∥2 < ϵ
2 . Let gϵ, j be the jth partial sum for the Fourier series of gϵ. For any ϵ ∈ R>0

there exists Nϵ ∈ Z>0 so that ∥gϵ− gϵ, j∥2 < ϵ
2 provided that j ≥ Nϵ. Thus, by the triangle

inequality

∥ f − g j,ϵ∥2 = ∥( f − gϵ) + (gϵ − gϵ, j)∥2
≤ ∥ f − gϵ∥2 + ∥gϵ − gϵ, j∥2 = ϵ,

for any j ≥ Nϵ. Taking p j = g j−1,N j
gives

lim
j→∞
∥ f − p j∥2 = 0.

Thus this shows that the collection of finite sums of {E2πinT−1}n∈Z are dense in
L2

per,T(R;C), implying that the signals { 1
√

T
E2πinT−1}n∈Z are a Hilbert basis by virtue

of Theorem III-4.4.25. ■

Since the theorem holds, so too do all the equivalent conditions of Theo-
rem III-4.4.25. Let us record these here for convenience.

5.3.4 Corollary (Further properties of the harmonic basis) The following equivalent
statements hold:

(i) cl(spanC({E2πinT−1}n∈Z)) = L2
per,T(R;C);

(ii) for all f ∈ L2
per,T(R;C) we have

1
T

∑
n∈Z

|FCD(f)(nT−1)|2 =
∫ T

0
|f(t)|2 dt

(Parseval’s equality);
(iii) for all f,g ∈ L2

per,T(R;C) we have

1
T

∑
n∈Z

FCD(f)(nT−1)FCD(g)(nT−1) =
∫ T

0
f(t)ḡ(t) dt;

(iv) {E2πinT−1}
⊥

n∈Z = {0};

(v) if B is any orthonormal set in L2
per,T(R;C) containing

{
1
√

T
E2πinT−1

}
n∈Z

, thenB ={
1
√

T
E2πinT−1

}
n∈Z

.

From Theorem III-4.1.26, along with Theorem 5.3.3, now follows this result.

5.3.5 Corollary (Partial Fourier sums minimise distance) If f ∈ L2
per,T(R;C) then the

unique point fN ∈ spanC(E2πinT−1)|n|≤N for which the distance ∥f − fN∥2 is minimised is the
partial sum

fN(t) =
1
T

∑
|n|≤N

FCD(f)(nT−1)e2πin t
T .

Furthermore, limN→∞∥f − fN∥2 = 0.
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This result gives geometric meaning to our choice of Fourier coefficients. No
matter what the signal is, as long as it is in L2

per,T(R;C), the partial sum fN is the
closest point in spanC(E2πinT−1)|n|≤N to f . This is, you must agree, a nifty geometric
interpretation.

Another neat consequence of Theorem 5.3.3 is the following property of the
CDFT.

5.3.6 Corollary (The L2-CDFT as a continuous map) If f ∈ L2
per,T(R;C) then FCD(f) ∈

ℓ2(Z(T−1);C). Moreover, FCD|L2
per,T(RC) : L2

per,T(R;C)→ ℓ2(Z(T−1);C) is continuous.

Proof That FCD(L2
per,T(R;C)) ⊆ ℓ2(Z(T−1);C) follows immediately from Parseval’s

equality. Moreover, this equality also gives

∥FCD( f )∥2 = ∥ f ∥2,

recalling that

∥F∥22 =
1
T

∑
n∈Z

|F(n)|22

is the norm on ℓ2(Z(T−1),C). This gives continuity of the CDFT by virtue of Theo-
rem III-3.5.8. ■

This raises the question about whether the same sort of thing can be said for
the restriction of the CDFT to the other Lp-spaces. It turns out that this is not the
case, and the only instance for whichFCD(Lp

per,T(R;C)) ⊆ ℓp(Z(T−1);C) is p = 2. This
gives further hints of the “magic” that happens in this case. The following example
illustrates the failure of the general proposition for p = 1.

5.3.7 Example (The CDFT only preserves p = 2) We let f be the 2π-periodic extension
of the signal on [0, 2π] defined by t 7→ (π − t). Clearly f ∈ L(2)

per,2π(R;C), and so

f ∈ L(1)
per,T(R;C). We also compute

FCD( f )(n(2π)−1) =

0, n = 0,
−

i
n , n , 0.

Thus we see that FCD( f ) < ℓ1(Z((2π)−1);C) although FCD( f ) ∈ ℓ2(Z((2π)−1);C). •

5.3.2 The inverse L2-CDFT

Now we study invertibility of the L2-CDFT. As we saw in Theorem 5.2.20,
invertibility of the L1-CDFT by using Fourier series is hopeless. Moreover, we have
seen in Example 5.2.10 that invertibility in the sense of pointwise convergence
of Fourier series is not achievable, even for continuous signals. Since continuous
signals are in L(2)

per,T(R;C), this means that for signals in L(2)
per,T(R;C) we cannot rule

out their Fourier series diverging pointwise.
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Nonetheless, there is a weaker form of convergence using Fourier series that
works for L2

per,T(R;C), and this is what we consider in this section. The key is
Corollary 5.3.6 which tells us that the L2-CDFT is ℓ2-valued.

5.3.8 Theorem (The L2-CDFT is an isomorphism) The map FCD : L2
per,T(R;C) →

ℓ2(Z(T−1);C) is an isomorphism of vector spaces with inverse

F −1
CD (F) =

1
T

∑
n∈Z

F(nT−1)E2πinT−1 .

Moreover, FCD is a Hilbert space isomorphism from (L2
per,T(R;C), ⟨·, ·⟩2) to

(ℓ2(Z(T−1);C), ⟨·, ·⟩2).
Proof By a direct computation, using the definition of the norm

∥F∥22 =
1
T

∑
n∈Z

|F(n)|22

on ℓ2(Z(T−1);C), we have

∥FCD( f )∥22 =
1
T

∑
n∈Z

|FCD( f )(nT−1)|2 =
∫ T

0
| f (t)|2 dt = ∥ f ∥2.

Thus FCD is norm-preserving and so inner product preserving by . Moreover, FCDwhat?

maps the Hilbert basis { 1
√

T
E2πinT−1}n∈Z for (L2

per,T(R;C), ⟨·, ·⟩2,T) to the Hilbert basis

{
√

Ten}n∈Z (here {en}n∈Z is the standard basis for CZ0 ) for (ℓ2(Z(T−1);C), ⟨·, ·⟩2). There-
fore, it follows from Corollary III-4.4.35 that the map

F 7→
∑
n∈Z

1
T

F(nT−1)E2πinT−1

is a Hilbert space isomorphism from (ℓ2(Z(T−1);C), ⟨·, ·⟩2) to (L2
per,T(R;C), ⟨·, ·⟩2). The

inverse of this isomorphism is then FCD by Proposition III-4.4.23. ■

The above results show that the Fourier series provides a left-inverse for the
CDFT restricted to L2

per,T(R;C). The inverse is defined only in the L2-sense, however,
not pointwise. For pointwise convergence one still must revert to the results of
Sections 5.2.4, 5.2.5, or 5.2.7.

Note that the inverse of the L2-CDFT is not to a signal, but to an equivalence class
of signals in L2

per,T(R;C). One can then ask, “What is the relationship between the
inversion of the L2-CDFT as given by Theorem 5.3.8 and the inversion in terms of
pointwise convergence of Fourier series?” This is what we now address. As we saw
in Theorem 5.2.20, the prospect of inversion of the L1-CDFT is hopeless, since there
are signals in L(1)

per,T(R;C) whose Fourier series diverge everywhere. Furthermore,
our example in Example 5.2.10 shows that even for continuous T-periodic signals
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one cannot expect convergence everywhere for Fourier series. Note that this also
precludes convergence everywhere for signals in L(2)

per,T(R;C). Therefore, it is at this
point in our presentation an open question as concerns the inversion of the CDFT
for signals in L(2)

per,T(R;C). The question can also be asked in the context of signals

in L(p)
per,T(R;C) for p ∈ (1,∞). The following result is famous and difficult, and we

devote Section 5.4 to its proof.

5.3.9 Theorem (Fourier series for signals in L2 converge almost everywhere) Let
p ∈ (1,∞). If f ∈ L(p)

per,T(R;C) then the sequence (Dper
T,Nf(t))N∈Z>0 converges for almost every

t ∈ [0,T] and
λ{t ∈ [0,T] | FS[f](t) − f(t) , 0} = 0.

Thus FS[f] differs from f only on a set of measure zero.

As we know from Theorem 5.2.18, the conclusions of the theorem cannot be
strengthened to assert convergence everywhere, even for continuous signals.

5.3.3 The relationship between various notions of convergence

We have seen thus far three notions of convergence for Fourier series: pointwise
convergence as discussed in Section 5.2.4, uniform convergence as discussed in
Section 5.2.5, and convergence in L2 as given by Theorem 5.3.8. The latter sort
of convergence is often referred to as mean convergence since it is convergence in
the sense that the integral of the square of the error goes to zero. We will now
summarise the relationships between these types of convergence.

1. Suppose that f ∈ L(1)
per,1(R;C) and that (Dper

T,N f )N∈Z>0 converges uniformly to f .
Clearly (Dper

T,N f )N∈Z>0 converges pointwise to f . It is also easy to show that
(Dper

T,N f )N∈Z>0 converges in L2
per,T(R;C) to f , and the reader is invited to verify this

in Exercise 5.3.5.
2. Suppose that f ∈ L(1)

per,1(R;C) and that (Dper
T,N f )N∈Z>0 converges pointwise to f .

Then it is not necessary that (Dper
T,N f )N∈Z>0 converge uniformly to f (consider the

signal f (t) = □2,1,0(t)−1 discussed at various points throughout this chapter.) It is
also true that pointwise convergence does not imply convergence in L2

per,T(R;C).
We demonstrate this with an example. We consider the signal f that is the odd
extension of the signal on ∈ [0, 2π] given by

( f |[0, 2π]) =

− log|sin t
2 |, t ∈ (0, 2π),

0, t ∈ {0, 2π}.

In Figure 5.19 we plot one period of f . Let us make some comments concerning
this signal.
(a) The signal f is not bounded. Indeed, to show what we want, it cannot

be bounded since bounded signals in L(1)
per,T(R;C) are also in L(2)

per,T(R;C),
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Figure 5.19 A signal whose Fourier series converges pointwise
but not in L2

per,T(R;C)

and so then necessarily have a Fourier series that converges in L2
per,T(R;C).

(The reader may wish to check that they understand this statement.)

(b) We do have f ∈ L(1)
per,4π(R;C). To see that this is so we note that the

singularities of f at integer multiples of 2π are logarithmic, and also note
that t 7→ |log|t|| is integrable near t = 0. Thus we can compute the CDFT of
f .

(c) Since f is odd its Fourier series is

FS[ f ](t) =
1

2π

∞∑
n=1

SCD( f )( n
4π ) sin nt

2

where

SCD( f )( n
4π ) = 2

∫ 2π

0
f (t) sin nt

2 dt, n ∈ Z>0.

(d) To see that (Dper
4π,N f )N∈Z>0 converges pointwise to f we note that at points

that are not integer multiples of 2π the series converges pointwise since
f is differentiable at these points. At integer multiples of 2π we note that
Dper

4π,N f (2nπ) = 0, n ∈ Z, so giving convergence at these points as well.

Thus we see that f has a Fourier series converging pointwise, but not in
L2

per,T(R;C), just as desired.

3. Finally, suppose that f ∈ L(2)
per,T(R;C), which by the Riesz-Fischer theorem is

equivalent to (Dper
T,N f )N∈Z>0 converging in L2

per,T(R;C) to f . By Theorem 5.3.9 we
know that (Dper

T,N f )N∈Z>0 converges almost everywhere to f . Obviously uniform
convergence is not guaranteed.
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Figure 5.20 Relationship between pointwise, uniform, and L2

convergence

The preceding discussion is summarised in Figure 5.20. Note that uniform
convergence is the strongest flavour, and is the one most desired in practise.

5.3.4 Convolution, multiplication, and the L2-CDFT
anything to say here?

5.3.5 The Uncertainty Principle for the CDFT
Pinsky

5.3.6 Notes

The L2-version of Theorem 5.3.9 is due to Carleson [1966]5 and the version for
general p is due to Hunt [1967]. The result of Carleson answered a 1913 conjecture
of Luzin,6 and the passage of the fifty-three years from the formal announcement of
the conjecture to its resolution is a reflection of the difficulty of the result. Indeed,
the predominant thinking at the time Carleson published his result was that it was
false. Our Theorem 5.2.18 was proved by Kahane and Katznelson [1966].

Exercises

5.3.1 Answer the following two questions.
(a) Find an enumerable orthonormal set in L2

per,T(R;C) that is not a Hilbert
basis.

(b) For the set you found in part (a), find a signal for which the correspond-
ing “Fourier series” does not converge to the signal in L2

per,T(R;C).

5.3.2 For each of the following signals, defined on the interval [0, 1],

(a) f (t) =

1, t ∈ [0, 1
2 ],

4(t − 1
2 )2, t ∈ ( 1

2 , 1].

5Lennart Axel Edvard Carleson (1928–) is a Swedish mathematician who has made importanrt
contributions to harmonic analysis. Aside from the theorem concerning pointwise convergence of
L2-Fourier series that we give here, he also proved a theorem known as Carleson’s Corona Theorem
which has to do with ideals in the set of bounded functions on the closed unit disk in C, analytic in
the interior.

6Nikolai Nikolaevich Luzin (1883–1950) was born in Russia. His mathematical work was mainly
in the areas of set theory and analysis.
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(b) f (t) =

0, t = 0,
1
√

t
, t ∈ (0, 1].

(c) f (t) =

t3, t ∈ [0, 1
2 ],

1
2 (t − 1)2, t ∈ ( 1

2 , 1].

answer each of the following questions.
1. Sketch the graph of the signal.
2. Does the Fourier series for the signal fper converge pointwise?
3. If the Fourier series converges pointwise, what is the limit signal?
4. Does the Fourier series for the signal fper converge uniformly?
5. Does the Fourier series for the signal fper converge in L2

per,T(R;C)?

6. Which of the following assertions,

(i) lim
n→∞
FCD( f )(n) = 0 (ii)

∑
n∈Z

|FCD( f )(n)|2 < ∞

(iii)
∑
n∈Z

|FCD( f )(n)| < ∞,

represents the strongest that can be made for the Fourier coefficients of
the signal. (Note that (iii) =⇒ (ii) =⇒ (i).)

Do not compute the Fourier series for any of these signals!
5.3.3 Consider three signals f1, f2, f3 : R → R that are periodic with period 1 and

which satisfy

FCD( f1)(n) =

0, n = 0,
1
|n| , n , 0,

FCD( f2)(n) =

0, n = 0,
1
√
|n|
, n , 0,

FCD( f3)(n) =

0, n = 0,
1
n2 , n , 0.

Answer the following questions.
(a) For each of the signals f1, f2, and f3, indicate whether it is continuous.
(b) For each of the signals f1, f2, and f3, indicate whether it is in L(1)

per,T(R;R).

(c) For each of the signals f1, f2, and f3, indicate whether it is in L(2)
per,T(R;R).

(d) For each of the signals f1, f2, and f3, indicate whether it has a uniformly
convergent Fourier series.
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5.3.4 Find a signal f ∈ L(1)
per,T(R;C) such that the sum∑

n∈Z

|FCD f (nT−1)|2

does not converge.

5.3.5 Show that if the Fourier series for f ∈ L(1)
per,T(R;C) converges uniformly to f ,

then it also converges in L2
per,T(R;C) to f .

Suppose that an electric circuit is provided with a voltage t 7→ V(t) and a resulting
current t 7→ I(t). The average power supplied to the circuit on the time interval
[t0, t1] is

1
t1 − t0

∫ t1

t0

V(t)I(t) dt.

In particular, if V and I are T-periodic, then the average power over one period is

1
T

∫ T

0
V(t)I(t) dt.

5.3.6 Show that the average power over one period in a circuit with T-periodic
voltage t 7→ V(t) and T-periodic current t 7→ I(t) is

1
T2

∑
n∈Z>0

FCD(V)(nT−1)FCD(I)(−nT−1).

5.3.7 Answer the following questions.
(a) Is the function

n 7→
1

2n − 1
in ℓ2(Z>0;R)?

(b) Show that
∞∑

n=1

1
(2n − 1)2 =

π2

8
.

Hint: Use Example 5.1.3–2 and Parseval’s equality.
5.3.8 For each of the following six signals F : Z → C, if directly possible using what

you have learned in this book, answer the following questions with concise
explanations:
1. is F ∈ cfin(Z;C)?
2. is F ∈ c0(Z;C)?
3. is F ∈ ℓ∞(Z;C)?
4. is F ∈ ℓ2(Z;C)?
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5. is F ∈ ℓ1(Z;C)?
6. is F = FCD( f ) for f ∈ L1

per,1(R;C)?

7. is F = FCD( f ) for f ∈ L2
per,1(R;C)?

8. is F = FCD( f ) for f ∈ C0
per,1(R;C)?

Here are the signals:

(a) F(n) =

1, |n| ≤ 10100,

0, otherwise;

(b) F(n) =

|n|, n , 0,
0, otherwise;

(c) F(n) =

|n|−1, n , 0,
0, otherwise;

(d) F(n) =

|n|−1/2, n , 0,
0, otherwise;

(e) F(n) =

|n|−2, n , 0,
0, otherwise;

(f) F(n) = e−n2 .
5.3.9 Answer the following questions

(a) Is the function

n 7→
1

(2n − 1)2

in ℓ2(Z>0;R)?
(b) Show that

∞∑
n=1

1
(2n − 1)4 =

π4

96
.

Hint: Use Example 5.1.3–3 and Parseval’s equality.
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Section 5.4

The Carleson–Hunt Theorem

In this section we shall undertake a proof of the famous theorem regarding the
pointwise convergence of Lp-Fourier series. This result is quite difficult to prove,
and its proof will touch upon many of the ideas regarding real and Fourier analysis
that we have presented in these volumes.

Do I need to read this section? This section can be pretty easily regarded as op-
tional. •

5.4.1 Statement of result and discussion

5.4.2 The basic estimate and its use in proving the theorem

5.4.3 Proof of the basic estimate
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Section 5.5

The CDFT for periodic distributions

Now we consider the CDFT not of signals in L(1)
per,T(R;C), but of T-periodic

distributions as discussed in Section 3.9. Interestingly, provided one is happy with
the notion of a periodic generalised signal, the CDFT is actually much simpler for
generalised signals that for locally integrable signals. The price one pays for this
simplicity is a loss of resolution; as we shall see, all of the subtle behaviour related
to pointwise convergence of Fourier series disappears in the distributional version
of Fourier series.

Do I need to read this section? The material here is of importance if one is inter-
ested in understanding the precise relationships between the various transforms
we consider. In particular, in the world of distributions one can consider the CDFT
as a special case of the CCFT considered in Chapter 6; see . •what?

5.5.1 Definitions and computations

In this section, it is notationally convenient to denote Ea(t) = eat for a ∈ C. If
f ∈ L(1)

per,T(R;C), following Example 3.9.12–1, we can write

FCD( f )(nT−1) =
∫ T

0
f (t)E−2πinT−1(t) dt = θ f (E−2πinT−1),

where θ f is the T-periodic distribution associated with f . With this as motivation,
and recalling that E2πinT−1 ∈ Dper,T(R;C), we make the following definition.

5.5.1 Definition (CDFT for periodic distributions) The continuous-discrete Fourier
transform or CDFT assigns to θ ∈ D ′per,T(R;C) the signal FCD(θ) : Z(T−1) → C

by FCD(θ)(nT−1) = θ(E−2πinT−1), n ∈ Z. •

Let us immediately consider examples.

5.5.2 Examples (CDFT for periodic distributions)
1. First we recall that the map f 7→ θ f gives a mapping of L(1)

per,T(R;C) into
D ′per,T(R;C), and that this map is injective in the sense that two signals with the
same image differ on a set of measure zero (see Proposition 3.2.12). Thus the
CDFT onD ′per,T(R;C) agrees when restricted to the usual CDFT on L(1)

per,T(R;C).

2. Recall from Example 3.9.12–2 the definition

⋔T=
∑
n∈Z

δnT.
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of the delta-comb as a T-periodic distribution. Using the computations from
that example we have

FCD(⋔T)(nT−1) =⋔T (E−2πinT−1) = E−2πinT−1(0) = 1.

Note that the “Fourier series” for ⋔T is now

FS[⋔T] =
1
T

∑
n∈Z

E2πinT−1 .

Clearly this makes no sense at all in terms of the discussions of Section 5.2. That
is to say, the series obviously diverges for all t. However, we shall have to wait
until Section 5.5.3 to understand how such a sum should be interpreted. •

5.5.2 Properties of the CDFT for periodic distributions

The CDFT for periodic distributions has certain of the basic properties attributed
to the L1-CDFT. Let us record these. For the following result, recall from Exer-
cise 3.2.7 the definition of τ∗θ for θ ∈ D ′(R;C). Also recall from the preliminary
remarks of Section 3.9.2 the definition of τ∗aθ for θ ∈ D ′(R;C). We also use the
notation θ̄ ∈ D ′(R;C) to define the distribution θ̄(ϕ) = θ(ϕ̄).

5.5.3 Proposition (Properties of the CDFT for periodic distributions) If θ ∈
D ′per,T(R;C) then

(i) FCD(θ) = F CD(θ̄);
(ii) FCD(σ∗θ) = σ∗(FCD(θ)) = F CD(θ);
(iii) if θ is even (resp. odd) then FCD(θ) is even (resp. odd);
(iv) if θ is real and even (resp. real and odd) thenFCD(θ) is real and even (resp. imaginary

and odd);
(v) FCD(τ∗aθ)(nT−1) = e−2πin a

TFCD(θ)(nT−1).

The proof is an exercise in applying the definitions, and is left to the reader
(see Exercise 5.5.1). The CDFT for periodic distributions also shares similarities
with its L1-counterpart as concerns differentiation. To wit, we have the following
result.

5.5.4 Proposition (The CDFT for periodic distributions and differentiation) For θ ∈
D ′per,T(R;C) we have

FCD(θ′)(nT−1) =
2πin

T
FCD(θ)(nT−1).

Proof We compute

FCD(θ′)(nT−1) = θ′(E−2πinT−1) = −θ(E′
−2πinT−1)

=
2πin

T
θ(E−2πinT−1) =

2πin
T
FCD(θ)(nT−1),

as desired. ■
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The Riemann–Lebesgue Lemma tells us that the CDFT of f ∈ L(1)
per,T(R;C) decays

to zero as n→ ∞. Let us now state the analogue for T-periodic distributions. The
key is the following definition.

5.5.5 Definition (Sequence of slow growth) A sequence (cn)n∈Z ⊆ C has slow growth
if there exists M ∈ R>0 and k ∈ Z≥0 such that |cn| ≤M|n|k, n ∈ Z. •

We have encountered this notion already (see Example 3.3.11–4). In any case,
the following result records the relationship with the CDFT.

5.5.6 Theorem (The CDFT of a periodic distribution is a sequence of slow growth)
If T ∈ R>0 and θ ∈ D ′per,T(R;C) then the sequence (FCD(θ)(nT−1))n∈Z has slow growth.

Proof As per Corollary 3.9.11,

FCD(θ)(nT−1) = ⟨θ; E2πinT−1⟩ = θ(υE2πinT−1)

for υ ∈ UT(R;C). By Lemma 3.2.44 there exists C ∈ R>0 and k ∈ Z>0 such that

|FCD(θ)(nT−1)| ≤ C∥(υE−2πinT−1)(k)
∥∞

≤ C
k∑

j=0

∣∣∣∣∣2nπ
T

∣∣∣∣∣ j (kj
)
∥υ(k− j)

∥∞.

Note that

(a + b)k =

k∑
j=0

(
k
j

)
a jbk− j.

Taking a = b = 1 gives
k∑

j=0

(
k
j

)
= 2k,

and so we conclude that

|FCD(θ)(nT−1)| ≤ Ck2k max{(2πT−1) j
∥υ(k− j)

∥∞ | j ∈ {0, 1, . . . , k}}nk,

which is enough to prove the theorem. ■

5.5.3 Inversion of the CDFT for periodic distributions

As our enormous efforts of Section 5.2 illustrate, the matter of inverting the
CDFT for signals in L1

per,T(R;C) is a complex and highly technical subject. However,
for T-periodic generalised signals, the picture is not so complicated, at least in terms
of how careful one must be in order to state the appropriate results. However, the
manner in which one understands the results is now not so clear. However, we shall
see that the results we give in this section will have great utility in our treatment
of systems.where
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Given θ ∈ D ′per,T(R;C) we may define

FS[θ] =
1
T

∑
n∈Z

FCD(θ)(nT−1)θE2πinT−1 .

However, just as with the Fourier series for signals in L(1)
per,T(R;C), it is not guaran-

teed that FS[θ] has any relationship with θ. As we shall see, it is actually true that
FS[θ] = θ for any θ ∈ D ′per,T(R;C).

Our first result characterises Fourier series that converge to periodic distribu-
tions.

5.5.7 Theorem (Sequences of slow growth give Fourier series in Dper,T(R;C)) If
(cn)n∈Z ⊆ C is a sequence of slow growth then the series∑

n∈Z

cnθE2πinT−1

converges inD ′per,T(R;C) to a T-periodic distribution θ for which FCD(θ)(nT−1) = Tcn.

Proof Let M ∈ R>0 and k ∈ Z>0 have the property that |cn| ≤ M|n|k. Consider the
sequence (bn)n∈Z defined by bn =

Tk+2cn
(2πin)k+2 , n , 0, and take b0 = 0. Then∑

n∈Z

|bn| < ∞,

and so the series ∑
n∈Z

bne2πin t
T

converges uniformly to a continuous T-periodic signal by Theorem 5.2.33. Let us de-
note this signal by f . By Corollary 3.2.33 the generalised signalθ f can be differentiated
k + 2 times and is given by

θ(k+2)
f =

∑
n∈Z

cnθE2πinT−1 .

This shows that θ = θc01 + θ
(k+2)
f . Note that the partial sums for the series expression

for θ(k+2)
f are inD ′per,T(R;C). That θ ∈ D ′per,T(R;C) follows from Proposition 3.2.32.

Now, given the convergence of the sum defining θ, we can compute

FCD(θ)(mT−1) = θ(E−2πimT−1) =
∑
n∈Z

cn⟨θE2πinT−1 ; E−2πimT−1⟩ = Tcm,

giving the final assertion. ■

When combined with Theorem 5.5.6, Theorem 5.5.7 immediately suggests the
question, “Is the Fourier series of a T-periodic distribution equal to the distribu-
tion?” The answer is affirmative.
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5.5.8 Theorem (Fourier series inversion of the CDFT for periodic distributions) If
θ ∈ D ′per,T(R;C) then FS[θ] converges inD ′per,T(R;C) to θ.

Proof We first note that convergence of FS[θ] in D ′per,T(R;C) is guaranteed by Theo-
rems 5.5.6 and 5.5.7. Moreover, by Theorem 5.5.7, FCD(FS[θ]) = FCD(θ). It remains
to show that if, given two T-periodic distributions θ1 and θ2 with the property that
θ1(E2πinT−1) = θ2(E2πinT−1) for all n ∈ Z, then θ1 = θ2. Let ψ ∈ Dper,T(R;C). By
Corollary 5.2.35, the Fourier series for ψ converges uniformly to ψ so we may write

ψ(t) =
1
T

∑
n∈Z

FCD(ψ)(nT−1)e2πin t
T ,

where the coefficientsFCD(ψ)(nT−1) satisfy limn→∞ nkFCD(ψ)(nT−1) = 0 for all k ∈ Z>0,
ψ being infinitely differentiable. By Theorem 3.9.19 we can write, using Proposi-
tion 5.1.12,

θ j(ψ) = θ(r)
f j

(ψ) = (−1)rθ f j(ψ
(r))

= (−1)r
∫ T

0
f j(t)

1
T

∑
n∈Z

(2πin
T

)r
FCD(ψ)(nT−1)e2πin t

T (t) dt, j ∈ {1, 2},

for some T-periodic continuous signals f1, f2 and for some r ∈ Z≥0. Since f j, j ∈ {1, 2}
is continuous and since the sum in the integrand converges uniformly, by Theo-
rem I-3.6.23 we may pull the summation out of the integral and write

θ j(ψ) =
(−1)r

T

∑
n∈Z

(2πin
T

)r
FCD(ψ)(nT−1)

∫ T

0
f j(t)e2πin t

T (t) dt

=
(−1)r

T

∑
n∈Z

(2πin
T

)r
FCD(ψ)(nT−1)θ f j(E2πinT−1). (5.29)

Since θ1(E2πinT−1) = θ2(E2πinT−1), n ∈ Z, we have

(−1)r

T

(2πin
T

)r
θ f1(E2πinT−1) =

(−1)r

T

(2πin
T

)r
θ f2(E2πinT−1).

Combining this with (5.29) now shows that θ1(ψ) = θ2(ψ), so giving the theorem. ■

The above results immediately give the following important corollary.

5.5.9 Corollary (The CDFT for periodic distributions is an isomorphism) The map
θ 7→ FCD(θ) fromD ′per,T(R;C) is an isomorphism to the vector space of frequency-domain
signals

{F: Z(T−1)→ C | (F(nT−1))n∈Z is a sequence of slow growth}.

Moreover, the inverse of this map is defined by

F −1
CD (F) =

1
T

∑
n∈Z

F(n∆)θE2πinT−1 .
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Proof Clearly FCD is linear. By Theorem 5.5.7, FCD is surjective. Also by Theo-
rem 5.5.7, it follows that the map sending F : Z(T−1) → C, such that (F(nT−1))n∈Z is a
sequence of slow growth, to

1
T

∑
n∈Z

F(nT−1)E2πinT−1

is a left-inverse forFCD. ThusFCD is also injective. That the inverse is as stated follows
from Theorems 5.5.7 and 5.5.8. ■

It is interesting to adjoin these nice properties for the CDFT of a periodic dis-
tribution to the not-so-nice properties of pointwise convergence for Fourier series.
This we do via examples.

5.5.10 Examples (Inversion of the CDFT for periodic distributions)
1. We may now complete Example 5.5.2–2 to conclude that

⋔T=
1
T

∑
n∈Z

E2πinT−1 .

2. For θ ∈ Dper,T(R;C), from Example 3.3.11–4 we see that the generalised signal

1
T

∑
n∈Z

FCD(θ)(nT−1)δnT−1

is inS ′(R;C). This will be interesting in subsequent chapters when establishing
relationships between various types of Fourier transforms.

3. As per our discussion in Section 5.2.3, there exists a signal f ∈ L(1)
per,T(R;C)

whose Fourier series diverges everywhere. Now, Theorem 5.5.7 implies that
we have limN→∞ θDper

T,N f = θ f in Dper,T(R;C), despite the fact that the sequence

(Dper
T,N f )N∈Z>0 diverges everywhere. This means that for any ψ ∈ Dper,T(R;C) we

have

lim
N→∞

1
T

∫ T

0
Dper

T,N f (t)ψ(t) dt =
∫ T

0
f (t)ψ(t) dt.

Note, however that

lim
N→∞

∫ T

0
Dper

T,N f (t)ψ(t) dt ,
∫ T

0
lim

N→∞
Dper

T,N f (t)ψ(t) dt;

indeed, the expression on the right makes no sense.
This provides us with an excellent illustration of why care must be taken in
dealing with distributions. It is possible that in making the step to using
distributions that one throws out the baby with the bath water, so to speak.
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4. In Example 5.2.10 we considered a continuous signal f whose Fourier series
diverged at t = 0, but converged everywhere else. Since f ∈ L(2)

per,2π(R;C),
Theorem 5.5.7 implies that FS[θ f ] converges to θ f in D ′per,T(R;C) (for T = 2π).
Thus, even though the Fourier series diverges at integer multiples of 2π, it still
converges in D ′per,T(R;C). This is reasonable since convergence on D ′per,T(R;C)
means that for ψ ∈ Dper,T(R;C) we have

lim
N→∞

1
T

∑
|n|≤N

∫ 2π

0
FCD( f )e2πin t

2πψ(t) dt =
∫ 2π

0
f (t)ψ(t) dt.

Since f ∈ L(2)
per,T(R;C), this seems reasonable since in this case we know the

Fourier series converges pointwise except on a set of measure zero. Also, note
that our observation here is entirely consistent with Proposition 3.7.25. •

Exercises

5.5.1 Prove Proposition 5.5.3.
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Section 5.6

The CDFT for periodic ultradistributions

We now turn our attention to considering the CDFT, not for periodic distribu-
tions, but for periodic ultradistributions. As we shall see, this has the effect of
enlarging the image of the CDFT to include arbitrary discrete frequency signals.

The presentation closely follows that for periodic distributions in Section 5.5.

Do I need to read this section? The material here is of importance if one is inter-
ested in understanding the precise relationships between the various transforms
we consider. In particular, in the world of distributions one can consider the CDFT
as a special case of the CCFT considered in Chapter 6; see . • what?

5.6.1 Definitions and computations

We follow our notational convention from the previous section and denote
Ea(t) = eat for a ∈ C. Following the reasoning for the CDFT inD ′per,T(R;C), we make
the following definition.

5.6.1 Definition (CDFT for periodic ultradistributions) The continuous-discrete
Fourier transform or CDFT assigns to θ ∈ Z ′per,T(R;C) the signalFCD(θ) : Z(T−1)→
C by FCD(θ)(nT−1) = θ(E−2πinT−1), n ∈ Z. •

5.6.2 Properties of the CDFT for periodic ultradistributions

The CDFT for periodic ultradistributions has certain of the basic properties
attributed to the L1-CDFT. Let us record these. For the following result, recall
from Exercise 3.2.7 the definition of τ∗θ for θ ∈ Z ′(R;C). Also recall from the
preliminary remarks of Section 3.9.2 the definition of τ∗aθ for θ ∈ Z ′(R;C). We also
use the notation θ̄ ∈ Z ′(R;C) to define the distribution θ̄(ϕ) = θ(ϕ̄).

5.6.2 Proposition (Properties of the CDFT for periodic ultradistributions) If θ ∈
Z ′per,T(R;C) then

(i) FCD(θ) = F CD(θ̄);

(ii) FCD(σ∗θ) = σ∗(FCD(θ)) = F CD(θ);
(iii) if θ is even (resp. odd) then FCD(θ) is even (resp. odd);
(iv) if θ is real and even (resp. real and odd) thenFCD(θ) is real and even (resp. imaginary

and odd);
(v) FCD(τ∗aθ)(nT−1) = e−2πin a

TFCD(θ)(nT−1).

The proof is an exercise in applying the definitions, and is left to the reader
(see Exercise 5.6.1). The CDFT for periodic distributions also shares similarities
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with its L1-counterpart as concerns differentiation. To wit, we have the following
result.

5.6.3 Proposition (The CDFT for periodic distributions and differentiation) For θ ∈
Z ′per,T(R;C) we have

FCD(θ′)(nT−1) =
2πin

T
FCD(θ)(nT−1).

Proof The proof is the same as that of Proposition 5.5.4. ■

As we saw in Theorem 5.5.6, the CDFT of a periodic distribution is a sequence
of slow growth. It is then natural to ask what restrictions are placed on the CDFT
of a periodic ultradistribution. The answer is, “There are none,” but we have to
wait for Corollary 5.6.6 to see why this is so.

5.6.3 Inversion of the CDFT for periodic ultradistributions

Next we turn to the inversion of the CDFT for periodic ultradistributions. As
with the CDFT for periodic distributions, given θ ∈ Z ′per,T(R;C) we define

FS[θ] =
1
T

∑
n∈Z

FCD(θ)(nT−1)θE2πinT−1 .

We wish to show, of course, that FS[θ] makes sense and that FS[θ] = θ for any
θ ∈ Z ′per,T(R;C). The first step in this procedure is to consider the sorts of series
that arise.

5.6.4 Theorem (All sequences give Fourier series in Zper,T(R;C)) If (cn)n∈Z ⊆ C is a
sequence, then the series ∑

n∈Z

cnθE2πinT−1

converges in Z ′per,T(R;C) to a T-periodic ultradistribution θ for which FCD(θ)(nT−1) =
Tcn.

Proof Let ψ ∈ Zper,(R;C) and, by Proposition 3.10.7, write

ψ(t) =
∑
m∈Z

ame−2πim t
T ,

with all but finitely many am, m ∈ Z, being zero. For N ∈ Z>0, define

fN(t) =
N∑

n=−N

cne2πin t
T ,

noting that θ fN ∈ Z
′

per,T(R;C). Then

⟨θ fN ;ψ⟩ =
∫ T

0

 N∑
n=−N

cne2πin t
T


∑

m∈Z

ame−2πim t
T

 dt = T
N∑

n=−N

cnan.
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Let N0 ∈ Z>0 be large enough that am = 0 for |m| ≥ N0. Then, for N ≥ N0,

⟨θ fN ;ψ⟩ = T
N0∑

n=−N0

cnan,

and so (θ fN )N∈Z>0 converges in Z ′per,T(R;C). Let θ denote the limit.
Using the convergence of the series defining θ, we have

FCD(θ)(mT−1) = θ(E−2πimT−1) =
∑
n∈Z

cn⟨θE2πinT−1 ; E−2πimT−1⟩ = Tcm,

giving the final assertion. ■

With the preceding result, we can prove that the Fourier series of a periodic
ultradistribution converges to the ultradistribution.

5.6.5 Theorem (Fourier series inversion of the CDFT for periodic ultradistributions)
If θ ∈ Z ′per,T(R;C) then FS[θ] converges in Z ′per,T(R;C) to θ.

Proof We first note that convergence of FS[θ] in Z ′per,T(R;C) is guaranteed by Theo-
rem 5.6.4. Moreover, by Theorem 5.5.7, FCD(FS[θ]) = FCD(θ). It remains to show
that if, given two T-periodic ultradistributions θ1 and θ1 with the property that
θ1(E2πinT−1) = θ2(E2πinT−1) for all n ∈ Z, then θ1 = θ2. Let ψ ∈ Zper,T(R;C). By
Proposition 3.10.7, we may write

ψ(t) =
∑
m∈Z

ame−2πim t
T ,

where all but finitely many of the coefficients am, m ∈ Z, are zero. By linearity of θ1
and θ2, we can then write

θ j(ψ) =
∑
m∈Z

amFCD(θ j)(mT−1), j ∈ {1, 2}.

From this we immediately conclude that, since FCD(θ1) = FCD(θ2), we have θ1(ψ) =
θ2(ψ), i.e., θ1 = θ2. ■

The above results immediately give the following important corollary.

5.6.6 Corollary (The CDFT for periodic ultradistributions is an isomorphism) The
map θ 7→ FCD(θ) from Z ′per,T(R;C) is an isomorphism to the vector space CZ(T−1) of
frequency-domain signals. Moreover, the inverse of this map is defined by

F −1
CD (F) =

1
T

∑
n∈Z

F(n∆)θE2πinT−1 .

Proof Clearly FCD is linear. By Theorem 5.6.5, FCD is surjective. Also by Theo-
rem 5.5.8, it follows that the map sending F : Z(T−1)→ C to

1
T

∑
n∈Z

F(nT−1)E2πinT−1

is a left-inverse for FCD. Thus FCD is also injective. ■
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Exercises

5.6.1 Prove Proposition 5.6.2.
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Section 5.7

The CDFT for measures
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Chapter 6

The continuous-continuous Fourier
transform

The preceding chapter deals with frequency-domain representations of periodic
signals. Now we consider frequency-domain representations of signals that are
not periodic. While frequency-domain representations of periodic signals seem
somehow natural, this is less so for aperiodic signals. In Section 2.6.2 we attempt to
motivate this idea by adapting, in an utterly non-rigorous way, the idea of periodic
frequency-domain representations in the limit as the period gets large. However,
at some point it seems as if the CCFT that we consider in this section is something
that one must just get used to. (Alternatively, one might try to understand the idea
of a Fourier transform by making the generalisation to locally compact groups.
This is an idea we will not explore in these volumes.)

Some comfort should be afforded by the fact that readers having already studied
the CDFT in Chapter 5 will see many similarities between the CCFT we discuss in
this chapter and the CDFT. Indeed, we try to emphasise this similarity as much as
possible. This allows the treatment of one to reinforce that of the other. By way of
warning, we mention that one significant area of difference if the manner in which
the L2-theory is developed in each case. These differences are pointed out in the
subsequent text.

Finally, we comment that the transform we consider in this chapter is most
often known simply as the “Fourier transform.” Thus our terminology departs
from the standard terminology since we do not distinguish this transform as being
any more or less important than the other three Fourier transforms we consider.

Do I need to read this chapter? If you are learning Fourier transform theory,
then you must read this chapter. •
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Section 6.1

The L1-CCFT

In this section we present the CCFT in its most natural setting, at least from
the mathematical point of view. For applications, other forms of the CCFT are
actually the more useful. In particular, the L2-CCFT of Section 6.3 is what is most
often of use in signals and systems theory. Indeed, very often one sees only the
L2-CCFT presented. However, as we shall see, this is actually incoherent. The very
definition of the L2-CCFT rests in a crucial way on the a priori understanding of the
L1-CCFT.

Do I need to read this section? If you are reading this chapter then you are read-
ing this section. •

6.1.1 Definitions and computations

Let us give the basic definition.

6.1.1 Definition (CCFT) The continuous-continuous Fourier transform or CCFT assigns
to f ∈ L(1)(R;C) the signal FCC( f ) : R→ C by

FCC( f )(ν) =
∫
R

f (t)e−2πiνt dt. •

6.1.2 Remarks (Comments on the definition of the CCFT)
1. Note that the expression for FCC( f ) makes sense if and only if f ∈ L(1)(R;C), so

the CCFT is most naturally defined on such signals.
2. Note that if f1, f2 ∈ L(1)(R;C) have the property that f1(t) = f2(t) for almost every

t ∈ R, then we have FCC( f1) = FCC( f2) by Proposition III-2.7.11. Therefore, FCC

is well-defined as a map from equivalence classes in L1(R;C). Frequently we
shall be interested in this equivalence class version of the CCFT, and we shall
explicitly indicate that we are working with L1(R;C) rather than L(1)(R;C) in
such cases. However, we shall adhere to our convention of denoting equiva-
lence classes of signals in L1(R;C) by f rather than with some more cumbersome
notation.

3. We comment that there are many slightly different versions of the CCFT, mostly
having to do with the replacing of 2πν with other expressions. Some people
prefer one over the other with ferocious devotion. For example, it is common to
useω rather than 2πν. This corresponds to using angular frequency rather than
frequency. In Section 6.1.6 we explore these alternative formulae in a general
way. It is important to note that in terms of the mathematics, these formulae
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have the same properties, although the details of the computations will vary in
each case.

4. As we did in our development of the CDFT, we shall consider L(1)(R;R) as a
subspace of L(1)(R;C), so that our development is conveniently made assuming
all signals to be complex. •

Let us look at some examples.

6.1.3 Examples (Computing the CCFT)
1. For a ∈ Cwith Re(a) ∈ R>0, note that f (t) = 1≥0(t)e−at is a signal in L(1)(R;C). We

then compute

FCC( f )(ν) =
∫
R

f (t)e−2πiνt dt =
∫
∞

0
e−(a+2πiν)t dt

= −
e−(a+2πiν)t

a + 2πiν

∣∣∣∣∞
0
=

1
a + 2πiν

.

In Figure 6.1 we show the signal and its CCFT.
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Figure 6.1 The signal t 7→ 1≥0(t)e−at with a = 1 (left) and its CCFT
(right)

2. If we take f (t) = 1≥0(t)e−at + 1≥0(−t)ebt for a, b ∈ C with Re(a),Re(b) ∈ R>0, then
we ascertain that f ∈ L(1)(R;C). It is then easy to compute

FCC( f )(ν) =
1

a + 2πiν
+

1
b − 2πiν

.
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In Figure 6.2 we show the signal and its CCFT.
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Figure 6.2 The signal 1 7→ 1≥0(t)e−at + 1≥0(−t)ebt with a = 1, b = 2
(left) and its CCFT (right)

3. Let a ∈ R>0 and consider the signal f = χ[−a,a] given by the characteristic function
of [−a, a]. We then compute

FCC(σ)(ν) =
∫ a

−a
e−2πiνt dt = −

e−2πiνt

2πiν

∣∣∣∣a
−a
=

sin(2πaν)
πν

.

In Figure 6.3 we plot the signal along with its CCFT, which happens to be real
in this case.

4. Here we consider f : R→ C defined by

f (t) =


1 + t

a , t ∈ [−a, 0],
1 − t

a , t ∈ (0, a],
0, otherwise,
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Figure 6.3 The characteristic function of [−1, 1] (left) and its CCFT
(right)

for a ∈ R>0. We then compute

FCC( f )(ν) =
∫
R

f (t)e−2πiνt dt

=

∫ 0

−a
(1 + t

a )e−2πiνt dt +
∫ a

0
(1 − t

a )e−2πiνt dt

=

∫ a

−a
e−2πiνt dt −

2
a

∫ a

0
t cos(2πνt) dt

=
sin(2πνa)

πν
−

2
a

(
t sin(2πνt)

2πν

∣∣∣∣t=a

t=0
−

1
2πν

∫ a

0
sin(2πνt) dt

)
= −

2
a

cos(2πνt)
(2πν)2

∣∣∣∣t=a

t=0
=

1 − cos(2πaν)
2πaν2

∣∣∣∣t=a

t=0
=

sin2(πaν)
π2aν2 .

In Figure 6.4 we show f and its CCFT.
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Figure 6.4 The signal from part 4 with a = 1 (left) and its CCFT
(right)
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5. Let f (t) = e−a|t| for a ∈ R>0. We then compute

FCC( f ) =
2a

a2 + 4a2ν2 .

In Figure 6.5 we plot the signal along with its CCFT, which again is real in this
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Figure 6.5 The signal of e−a|t|with a = 1 (left) and its CCFT (right)

case. •

As with the CDFT, there are cosine and sine transforms associated with the
CCFT.

6.1.4 Definition (CCCT and CCST)
(i) The continuous-continuous cosine transform or CCCT assigns to f ∈

L(1)(R;C) the signal CCC( f ) : R≥0 → C by

CCC( f )(ν) =
∫
R

f (t) cos(2πνt) dt, ν ∈ R≥0.

(ii) The continuous-continuous sine transform or CCST assigns to f ∈ L(1)(R;C)
the signal SCC( f ) : R>0 → C by

SCC( f )(ν) =
∫
R

f (t) sin(2πνt) dt, ν ∈ R>0. •

The same sorts of relationships hold between the CCFT, and the CCCT and
CCST as hold in the periodic case.

6.1.5 Proposition (The CCFT, and the CCCT and the CCST) For f ∈ L(1)(R;C) the
following statements hold:

(i) FCC(0) = CCC(f)(0);
(ii) FCC(f)(ν) = CCC(f)(ν) − iSCC(f)(ν) and
FCC(f)(−ν) = CCC(f)(ν) + iSCC(f)(ν) for every ν ∈ R>0;
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(iii) CCC(f)(ν) = 1
2 (FCC(f)(ν) + FCC(f)(−ν)) for every ν ∈ R≥0;

(iv) SCC(f)(ν) = i
2 (FCC(f)(ν) − FCC(f)(−ν)) for every ν ∈ R>0.

As with the CDFT, it might sometimes be easier to compute the CCFT through
the CCCT and/or the CCST. Since cosine is even and sine is odd we can write

CCC( f )(ν) = 2
∫
∞

0
feven(t) cos(2πνt) dt,

SCC( f )(ν) = 2
∫
∞

0
fodd(t) sin(2πνt) dt,

where
feven(t) = 1

2 ( f (t) + f (−t)), fodd(t) = 1
2 ( f (t) − f (−t)).

For this reason, the cosine and sine transforms are often defined only for signals
that are zero on R<0.

6.1.2 Properties of the CCFT

First let us give some of the more elementary properties of the CCFT. Recall
from Example 1.1.6 that σ(t) = −t, so that σ∗ f (t) = f (−t). Clearly, if f ∈ L(1)(R;C)
then σ∗ f ∈ L(1)(R;C). Also, if a ∈ R then τ∗a f ∈ L(1)(R;C) denotes the signal defined
by τ∗a f (t) = f (t − a). In like manner, if f ∈ L(1)(R;C) then f̄ ∈ L(1)(R;C) denotes
the signal defined by f̄ (t) = f (t). For f ∈ L(1)(R;C) let us also define the signal
F CC( f ) : R→ C by

F CC( f )(ν) =
∫
R

f (t)e2πiνt dt.

The proof of the following mirrors that of Proposition 5.1.6 for the CDFT.

6.1.6 Proposition (Elementary properties of the CCFT) For f ∈ L(1)(R;C) the following
statements hold:

(i) FCC(f) = F CC(f̄);

(ii) FCC(σ∗f) = σ∗(FCC(f)) = F CC(f);
(iii) if f is even (resp. odd) then FCC(f) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) thenFCC(f) is real and even (resp. imaginary

and odd);
(v) FCC(τ∗af)(ν) = e−2πiaνFCC(f)(ν).

The next result is the most general result concerning the basic behaviour of the
CCFT, and gives the analogue of the Riemann–Lebesgue Lemma (Theorem 5.1.8)
for the CCFT.
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6.1.7 Theorem (The Riemann–Lebesgue Lemma for the CCFT) For f ∈ L(1)(R;C)
(i) FCC(f) is a bounded, uniformly continuous function and
(ii) lim|ν|→∞|FCC(f)(ν)| = 0.

Proof (i) Let t ∈ R and compute

|FCC( f )(ν + h) − FCC( f )(ν)| =
(∫
R

f (t)e−2πiνt(e−2πiht
− 1) dt

)
≤

∫
R
| f (t)||e−2πiht

− 1|dt

=

∫
|t|≤T
| f (t)||e−2πiνh

− 1|dt +
∫
|t|>T
| f (t)||e−2πiht

− 1|dt

for T ∈ R>0. The signal t 7→ e−2πiht
−1 is uniformly bounded in t, and since f ∈ L(1)(R;C)

we may choose T ∈ R>0 sufficiently large that∫
|t|>T
| f (t)||e−2πiht

− 1|dt < ϵ

for any given ϵ ∈ R>0. Using the Taylor series expansion for e−2πiht we have∫
|t|≤T
| f (t)||e−2πiνh

− 1|dt ≤ 2π|h|
∫
|t|≤T
|t f (t)|dt = Ch,

so defining C ∈ R>0. Therefore

lim
h→0

sup{|FCC( f )(ν + h)|t ∈ R − FCC( f )(ν) | ≤} lim sup
h→0

(Ch + ϵ) = ϵ,

giving uniform continuity, as stated.
(ii) We shall prove this part of the result first for step functions, then for continuous

signals with compact support, then for arbitrary integrable signals. Let I ⊆ R be a
compact interval and let [−a, a] be that interval symmetric about 0 for which λ(I) = 2a.
Then we have, for some α ∈ R,

|FCC(χI)(ν)| =
∣∣∣∣∣∫

I
e−2πiνt dt

∣∣∣∣∣ = ∣∣∣∣∣eiα
∫ a

−a
e−2πiνt dt

∣∣∣∣∣ ≤ |2ν−1
|

by Example 6.1.3–3. This shows that this part of the theorem is true for characteristic
functions of compact intervals, and is therefore true for any step function with com-
pact support. Now let f be a continuous signal with compact support. There then
exists a sequence (g j) j∈Z>0 of step functions for which lim j→∞∥ f − g j∥1 = 0. We have
lim|ν|→∞|FCC(g j)(ν)| = 0 for each j ∈ Z>0, and by part (i) we have | f (ν)− g j(ν)| ≤ ∥ f − g∥1.
Taking the limit as j → ∞ in this last expression gives the result for continuous sig-
nals with compact support. By Theorem 1.3.11(ii) C0

cpt(R;C) is dense in L1(R;C).
Therefore, if f ∈ L(1)(R;C) there exists a sequence (g j) j∈Z>0 ⊆ C0

cpt(R;C) for which
lim j→∞∥ f − g j∥1 = 0. The argument above may now be repeated to give this part of the
theorem. ■

Recall from Section 1.3.2 that C0
0(R;C) denotes the set of continuous signals

on R that decay to zero at infinity. The following result provides an important
interpretation of Theorem 6.1.7 in terms of the ideas introduced in Section III-3.5.
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6.1.8 Corollary (The CCFT is continuous) FCC is a continuous linear mapping from
(L1(R;C), ∥·∥1) to (C0

0(R;C), ∥·∥∞).
Proof Linearity of FCC follows from linearity of the integral. By Theorem 6.1.7
we know that FCC( f ) ∈ C0

0(R;C) for f ∈ L1(R;C). Continuity of FCC follows from
Theorem III-3.5.8 along with the estimate

|FCC( f )(ν)| =
∣∣∣∣∣∫
R

f (t)e−2πiνt dt
∣∣∣∣∣ ≤ ∫

R
| f (t)|dt = ∥ f ∥1. ■

The final result in this section often comes in handy when dealing with the
CCFT.

6.1.9 Proposition (Fourier Reciprocity Relation for the CCFT) If f,g ∈ L(1)(R;C) then
fFCC(g),FCC(f)g ∈ L(1)(R;C) and∫

R

f(ξ)FCC(g)(ξ) dξ =
∫
R

FCC(f)(ξ)g(ξ) dξ.

Proof First note that since FCC(g) is continuous and decays to zero at infinity by
Theorem 6.1.7, it follows that FCC(g) is bounded. Therefore we have∫

R
f (ξ)FCC(g)(ξ) dξ ≤ ∥FCC(g)∥∞

∫
R

f (ξ) dξ < ∞,

showing that fFCC(g) ∈ L(1)(R;C) (and, of course, that FCC( f )g ∈ L(1)(R;C)). We also
have ∫

R
f (ξ)FCC(g)(ξ) dξ =

∫
R

f (ξ)
(∫
R

g(η)e−2πiξη dη
)

dξ

=

∫
R

g(η)
(∫
R

f (ξ)e−2πiηξ dξ
)

dη

=

∫
R
FCC( f )(η)g(η) dη,

where we have used Fubini’s Theorem, whose hypotheses are satisfied by virtue of
Corollary III-2.8.8. ■

6.1.3 Differentiation, integration, and the CCFT

Next let us turn to signals with more structure and see what we can say about
their character relative to the CCFT. The ideas here, as with their analogues for
the CDFT, are important in that they show that information about a signal can be
obtained from its transform.

6.1.10 Proposition (The CCFT and differentiation) Suppose that f ∈ C0(R;C)∩ L(1)(R;C)
and that there exists a signal f′ : R→ C with the following properties:

(i) for every T ∈ R>0, f′ is piecewise continuous on [−T,T];
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(ii) f′ is discontinuous at a finite number of points;
(iii) f′ ∈ L(1)(R;C);

(iv) f(t) = f(0) +
∫ t

0
f′(τ) dτ.

Then
FCC(f′)(ν) = (2πiν)FCC(f)(ν).

Proof By Exercise 1.3.21 we have lim|t|→∞ f (t) = 0. Now we let T be sufficiently
large that all discontinuities of f ′ are contained in (−T,T). Let us denote the points of
discontinuity of f ′ by {t1, . . . , tk}, denote t0 = −T and tk+1 = T, and compute∫ T

−T
f ′(t)e−2πiνt dt =

k∑
j=0

∫ t j+1

t j

f ′(t) dt

=

k∑
j=0

f (t)e−2πiνt
∣∣∣∣t j+1

t j
+

k∑
j=0

(2πiν)
∫ t j+1

t j

f (t)e−2πiνt dt

= f (T)e−2πiνT
− f (−T)e2πiνt + (2πiν)

∫ T

−T
f (t)e−2πiνt dt,

using the fact that f is continuous. The result now follows by letting T→∞. ■

As with the corresponding results for the CDFT, we may extend the result for
signals that have more differentiability.

6.1.11 Corollary (The CCFT and higher-order derivatives) If f ∈ Cr−1(R;C)∩ L(1)(R;C)
for r ∈ Z>0 and suppose that there exists a signal f(r) : R→ Cwith the following properties:

(i) for every T ∈ R>0, f(r) is piecewise continuous on [−T,T];
(ii) f(r) is discontinuous at a finite number of points;
(iii) f(j)

∈ L(1)(R;C) for j ∈ {1, . . . , r};

(iv) f(r−1)(t) = f(r−1)(0) +
∫ t

0
f(r)(τ) dτ.

Then
FCC(f(r))(ν) = (2πiν)rFCC(f)(ν).

For the CCFT we can also talk about the differentiability of the transform. Note
that this is something that is not possible for the CDFT.

6.1.12 Proposition (Differentiability of transformed signals) For f ∈ L(1)(R;C), if t 7→
tkf(t) ∈ L(1)(R;C), then FCC(f) is k-times continuously differentiable and

FCC(f)(k)(ν) =
∫
R

(−2πit)kf(t)e−2πiνt dt.
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Proof For fixed t the signal f (t)e−2πiνt is infinitely differentiable with respect to ν.
Furthermore, the kth derivative is bounded in magnitude by 2π|tk f (t)|. As this signal
is assumed to be in L(1)(R;C) we may apply Theorem III-2.9.16(ii) to conclude that
FCC( f ) is k-times continuously differentiable and that the derivative and the integral
may be swapped, giving the stated formula. ■

The theorem has the following immediate corollary.

6.1.13 Corollary (Signals with compact support have infinitely differentiable trans-
forms) If f ∈ L(1)(R;C) has compact support then FCC(f) is infinitely differentiable.

Proof We leave it to the reader as Exercise 6.1.4 to show how this follows from
Proposition 6.1.12. ■

Let us give some examples that illustrate Theorem 6.1.7 and Propositions 6.1.10
and 6.1.12, and which also illustrate what can happen when the hypotheses do
not hold.

6.1.14 Examples (The CCFT and differentiation)
1. Let us first take the signal f (t) = 1≥0(t)e−at with Re(a) ∈ R>0, and for which we

computed in Example 6.1.3–1

FCC( f )(ν) =
1

a + 2πiν
.

We see that FCC( f ) does indeed satisfy the conclusions of Theorem 6.1.7. Note
that this signal satisfies the hypotheses of Proposition 6.1.12 for any k ∈ Z>0.
Therefore we expect thatFCC(σ) will be infinitely differentiable, which it indeed
is. Note that this shows that it is not necessary that f have compact support in
order that FCC( f ) be infinitely differentiable.

2. For the signal σ(t) = 1≥0(t)e−at + 1≥0(−t)ebt, Re(a),Re(b) ∈ R>0, we have

FCC( f )(ν) =
1

a + 2πiν
+

1
b − 2πiν

.

Note again that the CCFT is infinitely differentiable because the signal decays
exponentially at infinity.

3. For the Gaussian γa(t) = e−at2 note that the CCFT FCC(γa) has exactly the be-
haviour of γa. That is to say, it is infinitely differentiable and decays faster than
any polynomial at infinity. This will make sense in the context of Section 6.4.2.

4. Let us consider the signal σ(t) = 1
t2+1 . For this signal the signal tk f (t) is in

L(1)(R;C) if and only if k = 0 (cf. Exercise 1.3.11). Thus all we can deduce from
Proposition 6.1.12 is that FCC( f ) is continuous. Indeed, we compute

FCC( f ) =
π

e2π|ν|
,

which is continuous but not differentiable. In Figure 6.6 we show the CCFT
of f . •

Next let us consider the behaviour of the CCFT relative to integration.
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Figure 6.6 The CCFT for a slowly decaying signal

6.1.15 Proposition (The CCFT and integration) Let f ∈ L(1)(R;C) and define

g(t) =
∫ t

0
f(τ) dτ.

If g ∈ L(1)(R;C) then

FCC(g)(ν) =

 1
2πiνFCC(f)(ν), ν , 0,
−

∫
R

tf(t) dt, ν = 0.

Proof Fix ν , 0 and compute, using integration by parts,

FCC(g)(ν) = lim
T→∞

∫ T

−T
g(t)e−2πiνt dt

= lim
T→∞

−g(t)
e−2πiνt

2πiν

∣∣∣∣T
−T
+

1
2πiν

lim
T→∞

∫ T

−T
f (t)e−2πiνt dt.

By Exercise 1.3.21, limT→±∞ g(T) = 0, and so the result follows for ν , 0. For ν = 0 the
result follows directly from an integration by parts. ■

6.1.4 Decay of the CCFT

As discussed for the CDFT in Section 5.1.4, there are relationships between
signals and the rate of decay of their CCFT. Indeed, we have already encountered
the following facts.
1. If f ∈ L(1)(R;C) then the CCFT satisfies

lim
|ν|→∞
|FCC( f )(ν)| = 0.

This is the Riemann–Lebesgue Lemma, Theorem 6.1.7.
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2. If f ∈ L(2)(R;C) thenFCC( f ) ∈ L(2)(R;C). This is nontrivial and will be discussed
in Section 6.3, also cf. Proposition 5.1.11.

3. If f satisfies the conditions of Proposition 6.1.10 then FCC( f ) ∈ L(1)(R;C), as we
shall show in Corollary 6.2.28. In particular, if f ∈ L(1)(R;C) is differentiable
and if f ′ ∈ L(1)(R;C), then FCC( f ) ∈ L(1)(R;C).

4. If f ∈ Cr(R;C) and if f (k)
∈ L(1)(R;C) for k ∈ {0, 1, . . . , r} then the CCFT of f has

the property that
lim
|ν|→∞

ν jFCC( f )(ν) = 0

for j ∈ {0, 1, . . . , r}. This is a consequence of Corollary 6.1.11.
5. A sort of converse of the preceding statement is provided by Proposition 6.1.12,

along with the inversion theorem Theorem 6.2.26 below. Precisely, ν 7→
νr+1+ϵFCC( f )(ν) ∈ L(1)(R;C) for some ϵ ∈ R>0, then f (t) = g(t) for almost ev-
ery t ∈ R, where g ∈ Cr(R;C) and g(k)

∈ L(1)(R;C) for k ∈ {0, 1, . . . , r}.
6. If f ∈ C∞(R;C) and if f (k)

∈ L(1)(R;C) for k ∈ Z≥0 then the CCFT of f has the
property that

lim
|ν|→∞

νkFCC( f )(ν) = 0

for any k ∈ Z≥0. This follows from a repeated application of Corollary 6.1.11.
7. If f ∈ L(1)(R;C) and if the signal t 7→ tr f (t) ∈ L(1)(R;C), then FCC( f ) ∈ Ck(R;C).

This is Proposition 6.1.12.
8. A converse to the preceding situation is furnished by

Precisely, if FCC( f ) ∈ Cr

9. If f ∈ L(1)(R;C) and if t 7→ tr f (t) ∈ L(1)(R;C), r ∈ Z≥0, then FCC( f ) ∈ C∞(R;C).
This follows from a repeated application of Proposition 6.1.12.
Using the CDFT, in Theorem 5.1.17 we precisely characterised periodic real

analytic signals. For integrable real analytic signals, one imagines that it is possible
to use the CCFT. However, for the CCFT the situation is more complicated because
of the noncompactness of the domain of the signals being transformed. Indeed,
it turns out that the CCFT is not the proper tool for distinguishing real analytic
signals from general signals, at least in terms of their decay rate. What one can
prove is the following.

6.1.16 Proposition (A sufficient condition on the CCFT for a signal to be real ana-
lytic) If f ∈ L(1)(R;C) satisfies the condition that

|FCC(f)(ν)| ≤ Ce−αt

for some C, α ∈ R>0, then f is almost everywhere equal to a real analytic signal.
Proof By Theorem 6.2.26 below we have f = F CC ◦ FCC( f ). Note that by applying
Proposition 6.1.12 to the transform F CC instead of to FCC we have that f is almost
everywhere equal to an infinitely differentiable signal. Without loss of generality
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we assume that f is itself infinitely differentiable. We then have, again by Proposi-
tion 6.1.12,

f (k)(t) = (2πi)k
∫
R
νkFCC( f )(ν)e2πiνtdν, t ∈ R, k ∈ Z≥0.

Thus we have

| f (k)(t)| ≤ C(2π)k
∫
R
|ν|ke−αν dν = 2C(2π)k

∫
∞

0
νke−αν dν = 2C(2π)k 1

α
k!
αk
,

the last step following by a repeated integration by parts. Taking M = 2C
α and r = 2π

α
we have

| f (k)(t)| ≤Mk!r−k, t ∈ R,

giving real analyticity of f by Theorem I-3.7.26. ■

The sufficient condition of the preceding result on the CCFT of a signal for it to
be real analytic is not necessary. We refer to Section 6.1.7 for further discussion.

As with the CDFT (see Theorem 5.1.18), it is not possible to prescribe a rate of
decay for the CCFT of a general signal in L(1)(R;C). The following result makes
this precise.

6.1.17 Theorem (The CDFT decays arbitrarily slowly generally) If G ∈ C0
0(R;R≥0) then

there exists f ∈ L(1)(R;C) such that, for any Ω ∈ R>0, there exists ν+, ν− ≥ Ω for which

|FCC(f)(ν+)| ≥ G(ν+), |FCC(f)(−ν−)| ≥ G(−ν−).

Proof Define F ∈ c0(Z;R≥0) by F(n) = 2G(n) for each n ∈ Z. By Theorem 5.1.18 let
g ∈ L(1)

per,1(R;C) be such that

|FCD(g)(n)| ≥ F(n), n ∈ Z.

Let f = gχ[0,T]. Then, for Ω ∈ R>0, let ν+ = ν− be the smallest integer greater than Ω.
By Exercise 8.4.1 we have

|FCC( f )(ν+)| = |FCD(g)(ν+)| ≥ F(ν+) > G(ν+),

and similarly |FCC( f )(−ν−)| > G(−ν−), giving the theorem. ■

6.1.5 Convolution, multiplication, and the L1-CCFT

In this section we consider the interaction of convolution with the L1-CCFT.
Results for the L2-CCFT are given in Section 6.3.2. As we saw in Proposition 5.1.19
for the CDFT, the result is a simple one: The CCFT of a convolution is the product
of the convolutions.
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6.1.18 Proposition (The L1-CCFT of a convolution is the product of the L1-CCFT’s)
If f,g ∈ L(1)(R;C) then

FCC(f ∗ g)(ν) = FCC(f)(ν)FCC(g)(ν)

for all ν ∈ R.
Proof This is a fairly straightforward application of Fubini’s Theorem, the change of
variables theorem, and periodicity of f :

FCC( f ∗ g)(ν) =
∫
R

f ∗ g(t)e−2πiνt dt =
∫
R

(∫
R

f (t − s)g(s) ds
)

e−2πiνt dt

=

∫
R

g(s)
(∫
R

f (t − s)e−2πiνt dt
)

ds

=

∫
R

g(σ)
(∫
R

f (τ)e−2πiν(σ+τ) dτ
)

dσ

=

(∫
R

g(σ)e−2πiνσ dσ
) (∫

R
f (τ)e−2πiντ dτ

)
= FCC( f )(ν)FCC(g)(ν).

(The reader may wish to compare this computation to that performed at some length
in the proof of Theorem 4.1.5.) ■

The principle value of the preceding result is theoretical rather than computa-
tional. In we shall see that convolution plays a crucial rôle in the theory of linear what

systems. However, on occasion, the result can be used to compute a CCFT, as the
following example shows.

6.1.19 Example (The CCFT of a convolution) Define f , g ∈ L(1)(R;C) by

f (t) =

1, t ∈ [−1
2 ,

1
2 ],

0, otherwise,
g(t) =


1 + t, t ∈ [−1, 0],
1 − t, t ∈ (0, 1],
0, otherwise.

One computes directly that g = f ∗ f . Moreover, in Examples 6.1.3–3 and 6.1.3–4
we computed

FCC( f )(ν) =

 sin(πν)
πν , ν , 0,

1, ν = 0,
FCC(g)(ν) =

 sin2(πν)
π2ν2 , ν , 0,

1, ν = 0.

As predicted by the previous result, the CCFT of the convolution is the convolution
of the CCFT’s. •

The previous result can also be turned around.
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6.1.20 Proposition (The L1-CCFT of a product is the convolution of the L1-CCFT’s)
If f,g ∈ L(1)(R;C) and if FCC(f),FCC(g) ∈ L(1)(R;C), then

FCC(fg)(ν) = FCC(f) ∗ FCC(g)(ν), ν ∈ R.

Proof Our proof relies on some facts about the inverse of the CCFT presented in
Section 6.2.

By Theorem 6.2.26 it follows that f and g are almost everywhere equal to contin-
uous signals. Let us without loss of generality assume that f and g are continuous.

We use the fact, resulting from Theorem 6.2.26 below, that if F ∈ L(1)(R;C) ∩
C0(R;C) has the property that FCC(F) ∈ L(1)(R;C), then

F CC ◦ FCC(F) = FCC ◦ F CC(F) = F.

That is, F −1
CC = F CC when restricted to signals having these properties.

Note that
FCC( f ) ∗ FCC(g) ∈ L(1)(R;C)

by Theorem 4.2.1. By Proposition 6.1.6(ii), Proposition 6.1.18, and the fact thatF CC =
F −1

CC for the signals with which we are dealing, we have

F CC(FCC( f ) ∗ FCC(g)) = f g.

Since f = F CC ◦ FCC( f ) and since FCC( f ) ∈ L(1)(R;C), it follows by Theorem 6.1.7
(essentially) that f ∈ C0

o(R;C). Thus f ∈ C0
bdd(R;C) and so f g ∈ L(1)(R;C) (why?).

Thus we can take the CCFT of both sides of the preceding equation to get the result.■

6.1.6 Alternative formulae for the CCFT

In this section we briefly and concisely provide alternative formulae for the
CCFT and its inverse. The notion of the inverse of the CCFT is discussed in the
next section, and it will be seen there that what we denoted prior to the statement
of Proposition 6.1.6 as F CC serves, in some sense, as an inverse. Of course, the
alternative definitions must be made so that all the relevant theorems hold. That
is to say, the “inverse” must be the inverse, when it is actually defined (e.g., in
the L2-theory of Section 6.3). In this section we briefly characterise these possible
alternate definitions so that they are available for easy reference when looking at
other work.

6.1.21 Definition (Alternative formulae for the CCFT) Let a, b ∈ R with b , 0. For
f ∈ L(1)(R;C) define

F (a,b)
CC ( f )(ν) =

√
|b|

(2π)1−a

∫
R

f (t)eibνt dt

F
(a,b)

CC ( f )(t) =

√
|b|

(2π)1+a

∫
R

f (ν)e−ibνt dν. •
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Note that we have FCC = F
(0,−2π)

CC and F CC = F
(0,−2π)

CC . Other popular choices
are (a, b) = (0, 1) (this is used in Mathematica®), (a, b) = (0,−1) (a common choice
of physicists), (a, b) = (1,−1) (a common choice of mathematicians and systems
engineers), (a, b) = (−1, 1) (used by ancient physicists), and (a, b) = (1, 1) (used in
some areas of probability theory). The choice (a, b) = (0,−2π) used in this text is
sometimes used in signal processing. There is no real difference between these
choices in the sense that there are no important theorems that hold with one choice
of (a, b) but not with another. However, it is true that in certain disciplines there
are often reasons of convenience for using a particular (a, b). One place where one
should use care is with Parseval’s equality (see Theorem 6.3.3(ii)). For the F (a,b)

CC
transform this reads

∥F (a,b)
CC ( f )∥22 = (2π)a

∥ f ∥22.

6.1.7 Notes

In Proposition 6.1.16 we gave a sufficient condition on the CCFT of a signal for
it to be real analytic. This condition is not necessary. However, there is a sharp
condition of a transform of a signal in L(1)(R;C) for it to be real analytic, but the
transform is not the CCFT, but the so-called FBI transform.1 This is actually a
family of transforms Fa, a ∈ R>0, assigning to f ∈ L(1)(R;C) a map Fa( f ) : R2

→ C
by the formula

Fa( f )(s, ν) =
∫
R

f (t)e−2πiνte−πa(t−s)2
dt.

One then has the following theorem.

Theorem [Iagolnitzer 1975] For f ∈ L(1)(R;C) and t0 ∈ R, the following statements
are equivalent:

(i) f is real analytic at t0;
(ii) there exists C,M, α ∈ R>0 and a neighbourhood U of t0 such that

|Fa(f)(s, aν)| ≤ Ce−αa

for all a ∈ R>0, s ∈ U, and ν ∈ R such that |ν| ≥M.

Exercises

6.1.1 Let f ∈ L(1)(R;C).
(a) For a ∈ R, show that |FCC(τ∗a f )(ν)| = |FCC( f )(ν)| for each ν ∈ R.
(b) For which values of a ∈ R is it true that arg(FCC(τ∗a f )(ν)) = arg(FCC( f )(ν))

for every ν ∈ R? Does your conclusion depend on f ?
(c) Find a codomain transformationϕ : C→ C such that arg(FCC(ϕ◦ f )(ν)) =

arg(FCC( f )(ν)) for every ν ∈ R?
1Named after Fourier, as well as Jacques Bros and Daniel Iagolnitzer.
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6.1.2 Let f ∈ L(1)(R;C) and let a ∈ R. Define fa(t) = e2πiat f (t).
(a) Show that fa ∈ L(1)(R;C).
(b) Show that FCC( fa)(ν) = FCC( f )(ν − a).

6.1.3 Let f ∈ L(1)(R;C) and let λ ∈ R>0. Define fλ(t) = f (λt).
(a) Show that fλ ∈ L(1)(R;C).
(b) Show that FCC( fλ)(ν) = λ−1FCC( f )(λ−1ν).

6.1.4 Prove Corollary 6.1.13. That is, show that, if f ∈ L(1)(R;C) has compact
support, then FCC( f ) is infinitely differentiable.

6.1.5 In Table 6.1 you are given the expressions for four signals, all defined on R,
along with the graphs of four CCFT’s. Match the signal with the appropriate
CCFT.

6.1.6 Answer the following questions. Note that “nonzero signal” means “signal
that is nonzero on a set of positive measure.” The last two parts of the
question can only be answered after the material from Section 6.3 has been
understood.
(a) Find a nonzero signal f ∈ L(1)(R;C) with the property that FCC( f ) ∈

L(1)(R;C) but that the signal ν 7→ νFCC( f )(ν) is not in L(1)(R;C).
(b) Find a nonzero signal f ∈ L(1)(R;C) with the property that FCC( f ) ∈

C0(R;C) but that FCC( f ) < C1(R;C).
(c) Find a nonzero signal f ∈ L(1)(R;C) with the property that the signal

ν 7→ νkFCC( f )(ν) is in L(1)(R;C) for each k ∈ Z>0.
(d) Find a nonzero signal f ∈ L(1)(R;C) with the property that FCC( f ) is

infinitely differentiable.
(e) Find a nonzero signal f ∈ L(1)(R;C) with the property that FCC( f ) <

L(1)(R;C) and that FCC( f ) ∈ L(2)(R;C).
(f) For the signal f from part (e), explain the meaning of the expression

f (t) “=”
∫
R

FCC( f )(ν)e2πiνtdν.

6.1.7 For the following five signals, list them in order of smoothness of their
CCFT’s, the least smooth being first and the most smooth being fifth:
1. f1(t) = e−|t|;
2. f2(t) = 1

1+|t| ;

3. f3(t) = e−t2 ;
4. f4(t) = 1

1+t2 ;
5. f5(t) = t

1+|t|3 .
6.1.8 For the following five CCFT’s, list them in order of the rate of decay at

infinity of the corresponding signals, the slowest decaying being first and
the most rapidly decaying being fifth:
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Table 6.1 Table of signals and graphs of CCFT’s
Signals Graphs of CCFT’s

1. t 7→


1 + t, t ∈ [− 1

2 , 0),
1 − t, t ∈ [0, 1

2 ],
0, otherwise

1.

2. t 7→


1 + t, t ∈ [−1, 0),
1 − t, t ∈ [0, 1],
0, otherwise

2.

3. t 7→
1

1 + 80|t|
3.

4. t 7→
1

1 + 40t2 4.

1. FCC( f1)(ν) = 1≥0(ν)e−ν, where ν 7→ 1≥0(ν) is the step signal which is 1 for
ν ≥ 0 and 0 for ν < 0;

2. FCC( f2)(ν) = e−|ν|;

3. FCC( f3)(ν) = e−ν2 ;
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4. FCC( f4)(ν) =


0, |ν| > 1,
1 + ν, ν ∈ [−1, 0],
1 − ν, ν ∈ (0, 1];

5. FCC( f5)(ν) =


0, |ν| > 1,
ν, ν ∈ [−1, 0],
−ν, ν ∈ (0, 1].
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Section 6.2

Inversion of the CCFT

As with the CDFT, the matter of the invertibility of the CCFT (in an appropriate
sense) is of vital importance if the transform is to have meaning. In this section
we turn to precisely this matter. The discussion bears much similarity to that for
the CDFT, although there are some technical distinctions that crop up to make life
more difficult.

Do I need to read this section? If you are reading this chapter, then this section
is a very important part of it. •

6.2.1 Preparatory work

In order to begin to think of an inverse for the CCFT, we need to be sure an
inverse exists in an appropriate sense. The following result then serves to make
sense of what we are doing in this section.

6.2.1 Theorem (The CCFT is injective) The map FCC : L1(R;C)→ C0
0(R;C) is injective.

Proof Recall from Example 4.7.7–3 the definition of the Fejér kernel:

FΩ(t) =

 sin2(πΩt)
π2Ωt2 , t , 0,
Ω, t = 0.

Suppose that FCC( f )(ν) = 0 for every ν ∈ R. By Theorem III-2.9.37 the theorem will
follow if we can show that f (t) = 0 for every Lebesgue point t for f . So suppose
that t0 ∈ R is a Lebesgue point for f . By Proposition 6.1.6(v) we may without loss of
generality assume that t0 = 0. Since FCC( f )(ν) = 0 for every ν ∈ R we have∫

R
f (t)e−2πiνt dt = 0

for every ν ∈ R. Then, using Fubini’s Theorem,∫ a

−a

(∫
R

f (t)e−2πiνt dt
)

dν =
∫
R

f (t)
(∫ a

−a
e−2πiνt dν

)
dt =

∫
R

f (t)
sin(2πat)

πt
dt = 0

for every a ∈ R>0 (see Example 6.1.3–3 for the easy integral computed in the above
computation). Therefore, arguing in the same way,

1
Ω

∫ Ω

0

(∫
R

f (t)
sin(2πat)

πt
dt

)
da =

1
Ω

∫
R

f (t)
(∫ Ω

0

sin(2πat)
πt

da
)

dt

=

∫
R

f (t)
sin2(πΩt)
π2Ωt2 =

∫
R

f (t)FΩ(t) dt = 0
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for every Ω ∈ R>0, using Lemma 4 from Example 4.7.7–3. Since FΩ is even we have∫
R

f (t)FΩ(t) dt = 0 ⇐⇒

∫
R

( f (t) + f (−t))FΩ dt = 0.

We may thus suppose without loss of generality that f is even and so that∫
∞

0
f (t)FΩ(t) dt = 0

for all Ω ∈ R>0. Since ∫
R

FΩ(t) dt = 1

(as shown in Example 4.7.7–3), and since FΩ is even, we have

1
2 f (0) =

∫
∞

0
f (0)FΩ(t) dt =⇒ 1

2 f (0) =
∫
∞

0
( f (t) − f (0))FΩ(t) dt.

Thus, to show that f (0) = 0 it suffices to show that∫
∞

0
( f (t) − f (0))FΩ(t) dt = 0,

and this is what we shall do.
Let ϵ ∈ R>0 and for brevity in what follows let us denote ϵ1 =

π2

2(4+π2)ϵ. Since 0 is a
Lebesgue point for f we have

lim
h→0

1
h

∫ h

0
| f (t) − f (0)|dt = 0.

Thus choose h0 ∈ R>0 such that

1
h

∫ h

0
| f (t) − f (0)|dt < ϵ1

for all h ∈ (0, h0].
Let Ω1 ∈ R>0 be such that 1

Ω1
< h0. For x ∈ R>0 we have

sin(x) ≤ x =⇒ sin2(πΩt) ≤ π2Ω2t2

for all t,Ω ∈ R>0. Thus we have∫ 1/Ω1

0
| f (t) − f (0)|FΩ1(t) dt = Ω1

∫ 1/Ω1

0
| f (t) − f (0)|

sin2(πΩ1t)
π2Ω2

1t2
dt ≤ ϵ1. (6.1)

We also have∫ h0

1/Ω1

| f (t) − f (0)|FΩ1(t) dt ≤
∫ h0

1/Ω1

| f (t) − f (0)|
π2Ω1t2 dt

=
1

π2Ω1

1
t2

∫ t

0
| f (τ) − f (0)|dτ

∣∣∣∣t=h0

t=1/Ω1
+

2
π2Ω1

∫ h0

1/Ω1

∫ t
0 | f (τ) − f (0)|dτ

t3 dt
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using integration by parts. Now we have

1
π2Ω1

1
h2

0

∫ h0

0
| f (τ) − f (0)|dτ ≤

1
π2h0

∫ h0

0
| f (τ) − f (0)|dτ ≤

ϵ1

π2 (6.2)

and
Ω1

π2

∫ 1/Ω1

0
| f (τ) − f (0)|dτ ≤

ϵ1

π2 (6.3)

by definition of h0 and Ω1. We also have

2
π2Ω1

∫ h0

1/Ω1

∫ t
0 | f (τ) − f (0)|dτ

t3 dt ≤
2

π2Ω1

∫ h0

1/Ω1

ϵ1

t2 dt ≤
2ϵ1

π2 , (6.4)

again using the properties of h0 and Ω1. Combining (6.2), (6.3), and (6.4) we have∫ h0

1/Ω1

| f (t) − f (0)|FΩ1(t) dt ≤
4ϵ1

π2 . (6.5)

Since f ∈ L1(R;C) let Ω2 ∈ R>0 be such that 1
π2Ω2α2 <

ϵ
2∥ f ∥1

. Then |FΩ(t)| < ϵ
2∥ f ∥1

for
all t ∈ (−∞,−Ω2] ∪ [Ω2,∞). Then∣∣∣∣∣∣

∫
|t|≥h0

f (t)FΩ(t) dt

∣∣∣∣∣∣ ≤
∫
|t|≥h0

| f (t)|FΩ(t) ≤ ∥ f ∥1 sup{FΩ(t) | |t| ≥ h0} <
ϵ
2

(6.6)

for Ω ≥ Ω2.
Now, for Ω ≥ max{Ω1,Ω2}, combining (6.1), (6.5), and (6.6) gives∣∣∣∣∣∫ ∞

0
( f (t) − f (0))FΩ(t) dt

∣∣∣∣∣ ≤ ∫
∞

0
| f (t) − f (0)|FΩ(t) dt < ϵ,

so proving the theorem. ■

As with the corresponding Theorem 5.2.1 for the CDFT, the preceding theorem
is a little technical, and it deserves to be since it is telling us that the CCFT faithfully
preserves signals in L1(R;C). During the course of the proof we used the continuous
Fejér kernel first described in Example 4.7.7–3. This kernel is plotted in Figure 4.25
for a few values ofΩ. As with the discrete Fejér kernel, the essential feature is that
asΩ becomes large, the signal becomes “concentrated” around the origin. Indeed,
as we showed in Example 4.7.7–3, the family (FΩ)Ω∈R>0 is an approximate identity.

6.2.2 Example (The CCFT is not onto C0
0
(R;C)) The holding of Theorem 6.2.1 makes

one wonder if FCC : L1(R;C) → C0
0(R;C) is surjective. It is not. We shall demon-

strate this with a counterexample, although we will refer ahead to other results
proved in this section to verify what we assert. Consider the signal

F : ν 7→
ν

(1 + |ν|) log(2 + |ν|)
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which is easily verified to C0
0(R;C). Suppose that F = FCC( f ) for f ∈ L1(R;C). Let

g = χ[0,1] so that

FCC(g)(ν) =
1 − e−2πiν

2πiν
,

as may be directly computed. By Theorem 6.2.24 below it follows that, with the
exception of the points t = 0 and t = 1,

g(t) = lim
Ω→∞

∫ Ω

−Ω

g(t − τ)DΩ(τ) dτ = lim
Ω→∞

DΩg(t),

where DΩ is the continuous Dirichlet kernel defined in Example 4.7.7–5. More-
over, by Theorem 6.2.33 the convergence is bounded. Thus, by the Dominated
Convergence Theorem, Fubini’s Theorem, and the change of variable formula∫

R

f (t)g(t) dt = lim
Ω→∞

∫
R

f (t)DΩg(t) dt = lim
Ω→∞

∫
R

f (t)
(∫ Ω

−Ω

g(t − τ)DΩ(τ) dτ
)

dt

= lim
Ω→∞

∫
R

f (t)
(∫ t+Ω

t−Ω
g(s)DΩ(t − s) ds

)
dt

= lim
Ω→∞

∫
R

g(s)
(∫ s+Ω

s−Ω
f (t)DΩ(t − s) dt

)
ds

= lim
Ω→∞

∫
R

g(s)
(∫ Ω

−Ω

f (s − τ)DΩ(τ) dτ
)

ds = lim
Ω→∞

∫
R

g(t)DΩ f (t) dt.

By Lemma 6.2.7 we have

DΩ f (t) =
∫ Ω

−Ω

F(ν)e2πiνt dν.

Thus ∫
R

f (t)g(t) dt = lim
Ω→∞

∫
R

g(t)
(∫ Ω

−Ω

F(ν)e2πiνt0 dν
)

dt

= lim
Ω→∞

∫ Ω

−Ω

F(ν)
(∫
R

g(t)e2πiνt dt
)

dν

=

∫ Ω

−Ω

F(ν)FCC(g)(−ν) dν =
∫ Ω

−Ω

F(−ν)FCC(g)(ν) dν.

The real part of this last integral is precisely∫ Ω

−Ω

1 − cos(2πν)
(1 + |ν|) log(2 + |ν|)

dν

which diverges as Ω → ∞. However, clearly f g ∈ L1(R;C) and the resulting
contradiction implies that F cannot be the CCFT of any signal in L1(R;C). •

Let us close this section by making some remarks mirroring those we made for
the CDFT.
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6.2.3 Remarks (On inversion of the CCFT)
1. Theorem 6.2.1 ensures that there exists a map ICC : C0

0(R;C) → L1(R;C) such
that ICC ◦ FCC( f ) = f for f ∈ L1(R;C), i.e., a left-inverse for FCC. Indeed, there
will be many such inverses, even linear ones. However, the existence of a left-
inverse is not of much use. One would instead like to have a left-inverse with
some properties one enjoys.

2. Another approach to inversion of the CCFT is to propose an inverse and see
which signals can be recovered from their CCFT by the proposed inverse. We
shall spend a good deal of effort in this section doing precisely this for various
left-inverses. •

6.2.2 The Fourier integral

With the CDFT one can ask whether a signal can be recovered by its Fourier
series, and this focused our discussion of the inverse of the CDFT in Section 5.2. For
the CCFT, the natural inverse is produced by another integral transformation, in this
case it turns out to be the transformation F CC defined in the discussion preceding
Proposition 6.1.6. That is, we propose that the map F −1

CC : C0
0(R;C) → L1(R;C)

defined by

F −1
CC (F)(t) =

∫
R

F(ν)e2πiνt dν

is an inverse forFCC. Of course, this is absurd since the integral will not be defined
for general frequency-domain signals F ∈ C0

0(R;C). But possibly it holds that for
every f ∈ L1(R;C) we have

f (t) =
∫
R

FCC( f )(ν)e2πiνt dν.

However, just as with the CDFT, this idea fails spectacularly, and we discuss some
of the fascinating reasons for this in Section 6.2.9. Nonetheless, we will attempt to
describe signals for which the preceding formula holds.

With the above as motivation, we introduce the following terminology.

6.2.4 Definition (Fourier integral) For f ∈ L(1)(R;C) the Fourier integral for f is

FI[ f ](t) =
∫
R

FCC( f )(ν)e2πiνt dν,

disregarding whether the integral converges. The real Fourier integral for f is

FI[ f ](t) =
∫
∞

0
CCC( f )(ν) cos(2πνt) dν +

∫
∞

0
SCC( f )(ν) sin(2πνt) dν,

again disregarding convergence of the integral. •

The use of the same symbol FI[ f ] for two possibly different things is justified
since they are actually the same; see Exercise 6.2.3.
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6.2.5 Remark (The meaning of “disregarding whether the integral converges”) The
expression “disregarding whether the integral converges” in the preceding defini-
tion is admittedly vague. What we mean is that we will consider conditions under
which the integral makes sense, and the manner in which it makes sense. If one
want to attach precise meaning to the Fourier integral at this point, one could say
that FI[ f ] is the element of S ′(R;C) defined by

FI[ f ](ϕ) = θFCC( f )(F CC(ϕ)) =
∫
R

FCC( f )(ν)
(∫
R

ϕ(t)e2πiνt dt
)

dν (6.7)

for ϕ ∈ S (R;C). Note that F CC( f ) ∈ S (R;C) (as we shall prove in Theorem 6.4.1
below), and so the above integral makes sense as written. However, it is not
generally equal to ∫

R

(∫
R

FCC( f )(ν)e2πiνt dν
)
ϕ(t) dt

since the inner integral does not generally exist. The formula for FI[ f ] as a tem-
pered distribution has its justification in the Fourier Reciprocity Relation, Propo-
sition 6.1.9, applied to F CC. Precisely, suppose that FI[ f ](t) is well-defined as an
integral for each t ∈ R (as in the definition) and that ϕ ∈ S (R;C). Then, according
to Proposition 6.1.9,∫

R

FI[ f ](t)ϕ(t) dt =
∫
R

F CC(FCC( f ))(t)ϕ(t) dt =
∫
R

FCC( f )(ν)F CC(ϕ)(ν) dν,

which is our defining formula (6.7) in this case. Note, however, that (6.7) makes
sense for all f ∈ L(1)(R;C). This all being said, we shall not make use of this precise
characterisation of FI[ f ]. •

We advise the reader to compare the definition of the Fourier integral with
the definition of Fourier series and convince themselves that these are really two
manifestations of the same thing. The reader should not sleep until they are
reconciled to this idea.

6.2.6 Remark (The usual rôle of the Fourier integral) While our presentation exploits
the similarities between the CDFT and the CCFT as much as possible, this is not
the usual way of doing things. The usual presentation of the material goes under
the names of “Fourier series” and “Fourier transform.” Note that these are actually
the opposite concepts! Fourier series has to do with inversion of the CDFT and the
usual Fourier transform is exactly the CCFT. In the typical presentation, the Fourier
integral is presented as we have presented it: as having to do with inverting the
CCFT. Careless treatments will simply say that the Fourier integral is the inverse
of the Fourier transform, and leave it at that, seemingly not caring that the formula
makes no sense. •
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We will study the convergence of the Fourier integral. In order to do this we
define the partial sums (we hope the reader will forgive us calling these partial
sums, even though they are integrals)

fΩ(t) =
∫ Ω

−Ω

FCC( f )(ν)e2πiνt dν

and

fΩ(t) =
∫ Ω

0
CCC( f )(ν) cos(2πνt) dν +

∫ Ω

0
SCC( f )(ν) sin(2πνt) dν,

for Ω ∈ R>0. The reader can show in Exercise 6.2.3 that the use of fΩ in both
equations is justified.

To give a useful formula for these partial sums we recall the continuous Dirichlet
kernel first introduced in Example 4.7.7–5:

DΩ(t) =

 sin(2πΩt)
πt , t , 0,

2Ω, t = 0.

In Figure 4.28 we plot DΩ for a few values of Ω. We note the similarity with the
behaviour of DΩ with that of Dper

T,N. One of the fundamental differences is that
the Dirichlet kernel is periodic, befitting its use for the CDFT, but the continuous
Dirichlet kernel is not. We shall investigate this further in Section 8.4.1. As with
the discrete Dirichlet kernel, the continuous Dirichlet kernel does not define an
approximate identity.

The following lemma gives a useful formula for these partial sums.

6.2.7 Lemma (Partial sums and the Dirichlet kernel) For f ∈ L(1)(R;C) we have

fΩ(t) =
∫
R

f(t − τ)DΩ(τ) dτ

for every Ω ∈ R>0.
Proof We compute, using Fubini’s Theorem and the computations of Exam-
ple 6.1.3–3, ∫ Ω

−Ω

FCC( f )(ν)e2πiνt dν =
∫ Ω

−Ω

(∫
R

f (τ)e−2πiντ dτ
)

e2πiνt dν

=

∫
R

f (τ)
(∫ Ω

−Ω

e2πiν(t−τ) dν
)

dτ

=

∫
R

f (t − τ)
(∫ Ω

−Ω

e2πiντ dν
)

dτ

=

∫
R

f (t − τ)
sin(2πΩτ)

πτ
dτ,

as desired. ■

We comment that ( f ,DΩ) is convolvable by Corollary 4.2.10, and that f ∗DΩ is
continuous and bounded. Based on this we use the following notation.
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6.2.8 Notation (DΩf) For f ∈ L(1)(R;C) and for Ω ∈ R>0 we shall denote

DΩ f (t) =
∫
R

f (t − τ)DΩ(τ) dτ.

The notation is intended to suggest the rôle of convolution in the partial sums. •

Based on the preceding lemma and notation, when we talk about convergence
of the Fourier integral we will speak of convergence of the net (DΩ f )Ω∈R>0 . As with
sequences of signals, there are various flavours of convergence and we refer to
Section I-3.6 for these. It is also important to point out that if the limit

lim
Ω→∞

∫ Ω

−Ω

FCC( f )(ν)e2πiνt dν

exists, this does not mean that the integral∫
R

FCC( f )(ν)e2πiνt dν

exists in the usual sense. It is important to keep this in mind.
Let us give a quick example of a Fourier integral and examine its partial sums.

6.2.9 Example (A sample Fourier integral) We consider the signal f ∈ L(1)(R;C) defined
by

f (t) =

t, t ∈ [−1, 1],
0, otherwise.

We may compute

FCC( f )(ν) = i
2πν cos(2πν) − sin(2πν)

2π2ν2 .

Thus

FI[ f ](t) =
i

2π2

∫
R

2πν cos(2πν) − sin(2πν)
ν2 e2πiνt dν.

In Figure 6.7 we show the signal and a few partial sums. Let us comment on the
behaviour of the partial sums as a preview for the kinds of things that will be of
interest for us.
1. At points of continuity of f , the partial sums appear to be converging nicely.

As with Fourier series, it turns out that it is differentiability, not continuity, that
is tied to pointwise convergence of the Fourier integral. This will be proved in
Corollary 6.2.18.

2. At points of discontinuity of f the region of approximation for the partial sums
get larger, but the approximation does not seem to get better. There is a theorem
that describes this, and we consider this in Section 6.2.6. •
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Figure 6.7 The partial sums for the Fourier integral for Ω = 1
(top left), Ω = 5 (top right), and Ω = 10 (bottom)

6.2.3 Divergence of Fourier integrals

Before we consider specific conditions under which Fourier integral converge,
let us first show that generally they will not converge. Fortunately, a lot of the work
has been done for us when we considered such results for the CDFT in Section 5.2.3.
Here we are able to adapt many of the constructions from that section.

We begin with a continuous signal whose Fourier integral vanishes at a point.

6.2.10 Example (A continuous signal whose Fourier integral diverges at a point)
In Example 5.2.10 we considered a continuous signal g (denoted by f in Exam-
ple 5.2.10) of period 2πwhose Fourier series diverged at t = 0. Define f ∈ L(1)(R;C)
by

f (t) =

 f (t), t ∈ [−π, π]
0, otherwise.

Since g(−π) = g(π) = 0 it follows that f is continuous. By Theorem 5.2.22 this
means that there exists ϵ ∈ (0, π) such that the limit

lim
N→∞

∫ ϵ

−ϵ

f (−t)
sin

(
(2N + 1)π t

T

)
t

dt
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does not exist. By Theorem 6.2.14 and Proposition I-2.3.29 we have that
(DΩ f (t0))Ω∈R>0 does not converge. •

Next we show that there can be continuous signals whose Fourier integrals
vanish on a given set of measure zero.

6.2.11 Theorem (Continuous signals can have Fourier integrals diverging on a set
of measure zero) If Z ⊆ R has Lebesgue measure zero, then there exists f ∈ L(1)(R;C)∩
C0(R;C) such that (DΩf(t))Ω∈R>0 diverges for every t ∈ R.

Proof Let Zn = Z ∩ [n,n + 1) and let

An = {n + t | t ∈ Zn}, A = ∪n∈Z>0An.

Note that A ⊆ [0, 1) has measure zero, being a countable union of sets of measure zero.
By Theorem 5.2.18 there exists g ∈ C0

per,1(R;C) such that (Dper
1,N g(t))N∈Z>0 diverges for

every t ∈ [0, 1). Define f : R→ C by asking that f (t) = 1
2|n| g(t) if t ∈ [n,n + 1). Note that∫

R
| f (t)|dt =

∑
n∈Z

1
2|n|

∫ 1

0
|g(t)|dt < ∞

■finish

Our first result deals with pointwise divergence of Fourier integrals.

6.2.12 Theorem (Integrable signals can have Fourier integrals diverging every-
where) There exists f ∈ L(1)(R;C) such that (DΩf(t))Ω∈R>0 diverges for almost every
t ∈ R.

Proof By Theorem 5.2.20 let g ∈ L(1)
per,1(R;C) be such that (Dper

1,N g(t))N∈Z>0 diverges for

almost every t ∈ R. Define f : R → C by asking that f (t) = 1
2|n| g(t − n) if t ∈ [n,n + 1).

Note that ∫
R
| f (t)|dt =

∑
n∈Z

1
2|n|

∫ 1

0
|g(t)|dt < ∞

by Example I-2.4.2–1. Thus f ∈ L(1)(R;C). Let t0 ∈ R be a time for which t ∈ (n,n + 1)
for some n ∈ Z and for which (Dper

1,N g(t0))N∈Z>0 diverges. Note that the set of all such
times has a complement whose measure is zero. By Theorem 5.2.22 it follows that
there exists ϵ ∈ R>0 such that the limit

lim
N→∞

∫ ϵ

−ϵ
g(t0 − t)

sin((2N + 1)π t
T )

t
dt

does not exist. Let us assume that ϵ is sufficiently small that (t0 − ϵ, t0 + ϵ) ⊆ (n,n + 1).
By definition of f it then follows that the limit

lim
N→∞

∫ ϵ

−ϵ
f (t0 − t)

sin((2N + 1)π t
T )

t
dt

does not exist. Then it follows from Theorem 6.2.14 and Proposition I-2.3.29 that
(DΩ f (t0))Ω∈R>0 does not converge, as desired. ■
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Next we have an example that illustrates that “nice” signals can give rise to
divergent Fourier integrals.

Finally we consider the lack of norm convergence of Fourier integrals.

6.2.13 Example (A signal whose Fourier integral diverges in the L1-norm) Let us take
f = χ[−1,1]. By Example 6.1.3–3 we have FCC( f ) = D1. By Theorem 6.2.21 we have
that (DΩ f )Ω∈R>0 converges pointwise to the signal

g(t) =


1, t ∈ (−1, 1),
1
2 , t ∈ {−1, 1},
0, otherwise.

Since g(t) = f (t) for almost every t ∈ R, it follows that if (DΩ f )Ω∈R>0 converges in
L1(R;C), it must necessarily converge to f . Thus, supposing that this convergence
to f holds,

lim
Ω→∞

∫ Ω

−Ω

DΩ
finish

6.2.4 Pointwise convergence of Fourier integrals

As with our treatment of the CDFT, we begin with a discussion of the general
conditions that ensure convergence of the inverse CCFT at a point t ∈ R. The basic
result is the following, recalling from Definition III-2.9.9 the conditional Lebesgue
integral.

6.2.14 Theorem (Pointwise convergence of Fourier integrals) Let f ∈ L(1)(R;C), let
t0 ∈ R, and let s ∈ C. The following statements are equivalent:

(i) lim
Ω→∞

∫ Ω

−Ω

FCC(f)(ν)e2πiνt0 dν = s;

(ii) lim
Ω→∞

∫
R

f(t0 − t)DΩ(t) dt = s;

(iii) lim
Ω→∞

∫
C
R

(f(t0 − t) − s)DΩ(t) dt = 0;

(iv) for each ϵ ∈ R>0 we have lim
Ω→∞

∫ ϵ

−ϵ

(f(t0 − t))DΩ(t) dt = s;

(v) for each ϵ ∈ R>0 we have lim
Ω→∞

∫ ϵ

−ϵ

(f(t0 − t) − s)DΩ(t) dt = 0.

Proof The equivalence of parts (i) and (ii) is obvious, given Lemma 6.2.7.
The equivalence of parts (i) and (iii) follows after we use from Lemma 1 from

Example 4.7.7–3, along with a change of variable, to see that∫
C
R

DΩ(t) dt = 1.
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Let us next prove that

lim
Ω→∞

∫ Ω

−Ω

FCC( f )(ν)e2πiνt dν = lim
Ω→∞

∫ ϵ

−ϵ
f (t0 − t)DΩ(t) dt (6.8)

for every ϵ ∈ R>0. To see this we note from Lemma 6.2.7 that

lim
Ω→∞

∫ Ω

−Ω

FCC( f )(ν)e2πiνt dν = lim
Ω→∞

∫
R

f (t0 − t)DΩ(t) dt.

Now we write∫
R

f (t0 − t)DΩ(t) dt =
∫
−ϵ

−∞

f (t0 − t)DΩ(t) dt

+

∫ ϵ

−ϵ
f (t0 − t)DΩ(t) dt +

∫
∞

ϵ
f (t0 − t)DΩ(t) dt.

Since f ∈ L(1)(R;C) and since t 7→ 1
t is bounded on (−∞,−ϵ] it follows that t 7→ f (t)

πt is in
L(1)((−∞,−ϵ];C). Thus, by the Riemann–Lebesgue Lemma,

lim
Ω→∞

∫
−ϵ

−∞

f (t0 − t)DΩ(t) dt = lim
Ω→∞

∫
−ϵ

−∞

f (t0 − t)
πt

sin(2πΩt) dt = 0.

Similarly,

lim
Ω→∞

∫
∞

ϵ
f (t0 − t)DΩ(t) dt = 0.

This proves (6.8).
From this immediately follows the equivalence of parts (i) and (iv).
The equivalence of parts (i) and (v) follows from the formula

lim
Ω→∞

∫ ϵ

−ϵ
DΩ(t) dt = 1,

which the reader can verify as Exercise 6.2.4. ■

6.2.15 Remark (The “conditional” in the preceding theorem) The appearance of the
conditional Lebesgue integral in the previous theorem—as compared to its ab-
sence from the corresponding Theorem 5.2.22 for the CDFT—arises because
DΩ < L(1)(R;C) (see Lemma 3 from Example 4.7.7–3), whereas Dper

T,N ∈ L(1)
per,T(R;F).

Nonetheless, the Dirichlet kernel DΩ is conditionally Lebesgue integrable (see
Lemma 1 from Example 4.7.7–3). •

6.2.16 Remark (Localisation) As with the recovery of a signal from its CDFT, we see
from part (v) that the recovery of a signal from its CCFT is a local matter. That
is to say, to ascertain the behaviour of inverse Fourier transform at t0 one only
cares about the behaviour of f in an arbitrarily small neighbourhood of t0. This is
another instance of the localisation principle. •

We may now state results for the inversion of the CCFT that are analogous to
those stated for the CDFT in Section 5.2.4. The first result is a Dini-type test.
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6.2.17 Theorem (Dini’s test) Let f ∈ L(1)(R;C) and let t0 ∈ R. If there exists ϵ ∈ R>0 so that∫ ϵ

−ϵ

∣∣∣∣∣ f(t0 − t) − s
t

∣∣∣∣∣ dt < ∞,

then (DΩf(t0))Ω∈R>0 converges to s.
Proof This follows immediately from part (v) of Theorem 6.2.14 since we have

lim
Ω→∞

∫ ϵ

−ϵ

f (t0 − t) − s
πt

sin(2πΩt) dt = 0

by the Riemann–Lebesgue Lemma. ■

The following consequence of Dini’s test is very often useful.

6.2.18 Corollary (Fourier integrals converge at points of differentiability) Let f ∈
L(1)(R;C) and let t0 ∈ R. If f is differentiable at t0 then (DΩf(t0))Ω∈R>0 converges to f(t0).

Proof This follows from Theorem 6.2.17 exactly as Corollary 5.2.25 follows from
Theorem 5.2.24. ■

The following alternative version of Dini’s test is sometimes useful.

6.2.19 Corollary (An alternative version of Dini’s test) Let f ∈ L(1)(R;C) and let t0 ∈ R.
If there exists ϵ ∈ R>0 so that∫ ϵ

0

∣∣∣∣∣∣ 1
2 (f(t0 + t) + f(t0 − t)) − s

t

∣∣∣∣∣∣ dt < ∞,

then (DΩf(t0))Ω∈R>0 converges to s.
Proof This follows from Exercise 6.2.5. ■

The following examples illustrate the utility of the Dini test.

6.2.20 Examples (Dini’s test) We introduce a collection of signals onR that will allow us
to understand the workings of the CCFT as it relates to the workings of the CDFT.
1. Our first signal is given by f (t) = χ[− 1

2 ,
1
2 ](t)(□2,1,1(t) − 1), which we plot in Fig-

ure 6.8. We readily compute the CCFT of f to be

FCC( f )(ν) = i
1 − cos(πν)

πν
,

and in Figure 6.8 the CCFT is also shown. As concerns Theorem 6.2.17 we note
that the analysis goes just as it did for Example 5.2.27–1. The conclusion is that
Theorem 6.2.17 predicts the convergence of (DΩ f (t))Ω∈R>0 to f (t) at points where
f is continuous. At points of discontinuity, in this case the points t ∈ {− 1

2 , 0,
1
2 },

Theorem 6.2.17 does not directly predict convergence of the inverse CCFT.
However, the alternative version of Corollary 6.2.19 does indeed work since,
for t0 = 0,

f (t0 + t) + f (t0 − t) = 0.
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Figure 6.8 The signal χ[− 1
2 ,

1
2 ](□2,1,1 − 1) (top) and the imaginary

part of its CCFT (bottom)
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Figure 6.9 The signal χ[− 1
2 ,

1
2 ]△ 1

2 ,1,1
(top) and its CCFT (bottom)

2. Next we look at the signal g(t) = χ[− 1
2 ,

1
2 ](t)△ 1

2 ,1,1
(t), which we plot in Figure 6.9.

The CCFT of g is computed to be

FCC(g)(ν) =
1 − cos(πν)

2π2ν2 ,

and this is plotted in Figure 6.9. As we saw with Example 5.2.27–2, Theo-
rem 6.2.17 allows us to assert that (DΩg(t))Ω∈R>0 converges to f (t) for all t ∈ R.

3. The last signal we consider in this example is given by

h(t) =


√

sin t+π
2 , |t| ≤ π,

0, otherwise.

In Figure 6.10 we plot this signal. The analysis for the applicability of Theo-
rem 6.2.17 to this signal proceeds as we saw in Example 5.2.27–3. Thus we
conclude that (DΩh(t))Ω∈R>0 converges to f (t) for all t ∈ R. •

The value of tests like Dini’s test is that one does not actually need to compute
the CCFT to determine whether the Fourier integral converges.
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Figure 6.10 The signal h

Next we state the analogue of the Dirichlet test for Fourier series, stated as
Theorem 5.2.28.

6.2.21 Theorem (Dirichlet’s test) Let f ∈ L(1)(R;C) and suppose that the limits f(t0−), f(t0+),
f′(t0−), and f′(t0+) exist for t0 ∈ R. Then (DΩf(t0))Ω∈R>0 converges to 1

2 (f(t0+) + f(t0−)).
Proof We first define

g f (t) = 1
2 ( f (t0 + t) − f (t0+) + f (t0 − t) − f (t0−))

and note that g f is even and g f (0+)g f (0−) = 0. Moreover, by Exercise 6.2.5
(DΩg f (0))Ω∈R>0 converges to zero if and only if (DΩ f (t0))Ω∈R>0 converges to 1

2 ( f (t0+) +
f (t0−)). Therefore, without loss of generality we may suppose that f is even, that
f (0+) = f (0−) = 0, and that we consider convergence of (DΩ f )Ω∈R>0 to f at t = 0.

With these assumptions, we note that the four hypotheses of the theorem imply
that f is differentiable from the left and right at t = 0. Therefore the limits

lim
t↑0

f (t)
t
, lim

t↓0

f (t)
t

exist. Therefore, there exists M, ϵ ∈ R>0 so that
∣∣∣∣ f (t)

t

∣∣∣∣ < M for |t| < ϵ. The theorem now
follows from Theorem 6.2.17. ■

6.2.22 Remark (Dirichlet’s test is a special case of Dini’s test) From the proof of
Theorem 6.2.21 we see that Dirichlet’s test follows from Dini’s test. However, it is
often easier in practice to directly verify the hypotheses of Dirichlet’s test. •

A couple of examples are useful in illustrating the relationship between Theo-
rem 6.2.17 and Theorem 6.2.21.
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6.2.23 Examples (Dirichlet’s test)
1. Consider the signal f (t) = χ[− 1

2 ,
1
2 ](t)(□2,1,1(t)−1) considered in Example 6.2.20–1.

Mimicking the analysis of Example 5.2.30–1, we conclude from Theorem 6.2.21
that at all points except t ∈ {−1

2 , 0,
1
2 } we have limΩ→∞DΩ f (t) = f (t). At the

exceptional points we have

lim
Ω→∞

DΩ f (− 1
2 ) =

1
2
,

lim
Ω→∞

DΩ f (0) = 0,

lim
Ω→∞

DΩ f (1
2 ) = −

1
2
,

these values simply being the average of the left and right limits of the signal
at these points, as predicted by Theorem 6.2.21.

2. Next we consider the signal g(t) = χ[− 1
2 ,

1
2 ](t)△ 1

2 ,1,1
(t) first discussed in Exam-

ple 6.2.20–2. From Theorem 6.2.21 we conclude that for each t ∈ R we have
limΩ→∞DΩg(t) = g(t).

3. Finally, we look again at the signal h discussed in Example 6.2.20–3. Since
this signal is differentiable for t < {− 1

2 ,
1
2 }, and so at such values of t we have

limΩ→∞DΩg(t) = g(t), from Theorem 6.2.21. This result cannot be used to
predict the value of limΩ→∞DΩg(t) when t ∈ {−1

2 ,
1
2 }. •

Next we state our most powerful test concerning the inversion of the Fourier
transform.

6.2.24 Theorem (Jordan’s test) Let f ∈ L(1)(R;C), let t0 ∈ R, and suppose that there exists a
neighbourhood J of t0 so that f|J has bounded variation. Then (DΩf(t0))Ω∈R>0 converges to
1
2 (f(t0+) + f(t0−)).

Proof By Exercise 6.2.5 let us first make the assumption that f satisfies the hypotheses
of the theorem and that, as well, t0 = 0, f is even, and f (0) = 0. Since f has bounded
variation in a neighbourhood of t0, we may write f = f+ − f− where f+ and f− are
monotonically increasing (part (I-i) of Theorem I-3.3.3). By applying the argument
we give below to each component in the sum, we may without loss of generality also
assume that f is monotonically increasing in a neighbourhood of 0 in [0,∞).

We first note that as in the proof of Theorem 5.2.31 there exists M ∈ R>0 so that∣∣∣∣∣∣
∫ t

0

sin(2πΩτ)
τ

dτ

∣∣∣∣∣∣ ≤M

for all t,Ω ∈ R>0. Now let M be so chosen and let ϵ ∈ R>0. Choose δ ∈ R>0 so that
f (δ−) < ϵ

2M and compute, for some δ′ ∈ (0, δ) guaranteed by Proposition I-3.4.33,be sure this is coherent
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∫ δ

−δ
f (t)

sin(2πΩt)
t

dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣2

∫ δ

0
f (t)

sin(2πΩt)
t

dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣2 f (δ−)
∫ δ

δ′

sin(2πΩt)
t

dt

∣∣∣∣∣∣
≤

ϵ
2M

2M = ϵ.

The theorem now follows from part (v) of Theorem 6.2.14. ■

The pointwise convergence tests of Theorems 6.2.17, 6.2.21, and 6.2.24 can be
made global by asking that their hypotheses hold in a global sense. Doing this
gives the following analog of Corollary 5.2.32.

6.2.25 Corollary (Conditions for global pointwise convergence) Let f ∈ L(1)(R;C) and
suppose that for each t ∈ R we have f(t) = 1

2 (f(t+) + f(t−)). Then either of the following
statements implies that (DΩf)Ω∈R>0 converges pointwise to f as Ω→∞:

(i) f is uniformly Lipschitz;
(ii) f ∈ C1

pw(R;C);
(iii) f ∈ BV(R;C).

As with Fourier series, the above results for Fourier integrals suggest that
it may be that Fourier integrals will diverge for commonplace signals. Indeed,
just as in Example 5.2.10, there are continuous signals in L(1)(R;C) for which the
Fourier integral for the signal diverges at a point. Indeed, if one simply extends
the example of Example 5.2.10 to R by asking that it be zero outside the interval
[−π, π], then this signal’s Fourier integral will diverge at t = 0, essentially by virtue
of Remark 6.2.16.

6.2.5 Uniform convergence of Fourier integrals

In this section we establish results analogous to those for uniform convergence
for Fourier series. The central result we give is the following.

6.2.26 Theorem (Uniform convergence of Fourier integrals) If f ∈ L(1)(R;C) and if
FCC(f) ∈ L(1)(R;C), then the following statements hold:

(i) (DΩf)Ω∈R>0 converges uniformly to a (necessarily continuous) signal g as Ω→∞;
(ii) f(t) = g(t) for almost every t ∈ R.

Proof Just as FCC : L1(R;C) → C0
0(R;C) is continuous when using the norm ∥·∥1 on

L1(R;C) and the norm ∥·∥∞ on C0
0(R;C), the mapF CC will have these same properties.

Indeed, only trivial modifications need be made to the proof of Theorem 6.1.7 to show
this. Now note that the net (χ[−Ω,Ω]FCC( f ))Ω∈R>0 converges to FCC( f ) in the L1-norm if
FCC( f ) ∈ L1(R;C). If we let

g(t) =
∫
R
FCC( f )(ν)e2πiνt dν
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then it follows that g ∈ C0
0(R;C) and that if

gΩ(t) =
∫
R
χ[−Ω,Ω](ν)FCC( f )(ν)e2πiνt dν

then the net (gΩ)Ω∈R>0 converges to g in the L∞-norm. That is to say, it converges
uniformly to g since both g and the approximations gΩ are continuous. The first part
of the result follows since gΩ = DΩ f .

The second part of the theorem follows from Theorem 6.2.1 along with Exer-
cise III-2.9.8. ■

This result has the following immediate corollary, recalling the notation

F CC(F)(t) =
∫
R

F(ν)e2πiνt dν

for F ∈ L(1)(R;C).

6.2.27 Corollary (A case when the Fourier integral in the inverse of the CCFT) If
f ∈ L(1)(R;C) ∩ C0(R;C) has the property that FCC(f) ∈ L(1)(R;C), then

F CC ◦ FCC(f)(t) = f(t), t ∈ R.

Let us now state a result that is analogous to Corollary 5.2.35 for the CDFT. The
proof here requires a little work to ensure that it follows from Theorem 6.2.26.

6.2.28 Corollary (A test for uniform convergence) Let f ∈ C0(R;C) and suppose that there
exists a signal f′ : R→ C such that

(i) for every T ∈ R>0, f′ is piecewise continuous on [−T,T],
(ii) f′ is discontinuous at a finite number of points,
(iii) f′ ∈ L(1)(R;C) ∩ L(2)(R;C), and

(iv) f(t) =
∫ t

−∞

f′(τ) dτ.

Then (DΩf)Ω∈R>0 converges uniformly to f. In particular, if f, f(1), f(2)
∈ C0(R;C) ∩

L(1)(R;C) then (DΩf)N∈Z>0 converges uniformly to f.
Proof The hypotheses of the corollary ensure that the limits f (t+), f (t−), f ′(t+) and
f ′(t−) exist for each t ∈ R so that Theorem 6.2.21 implies

f (t) = lim
Ω→∞

∫ Ω

−Ω

FCC( f )(t)e2πiνt dν

for each t ∈ R.
By Proposition 6.1.10 we have

FCC( f )′(ν) = 2πiνFCC( f )(ν).
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We then have ∫ Ω

−Ω

|FCC( f )(ν)|dν =
∫ Ω

−Ω

∣∣∣∣∣FCC( f )′(ν)
2πiν

∣∣∣∣∣ dν.

Since χ[−Ω,Ω]FCC( f ) ∈ L(1)(R;C) the integral on the right exists for any finite Ω. Since
we are interested in the behaviour as Ω→∞ let us write∫ Ω

−Ω

∣∣∣∣∣FCC( f )′(ν)
2πiν

∣∣∣∣∣ dν =
∫
|ν|≤1

∣∣∣∣∣FCC( f )′(ν)
2πiν

∣∣∣∣∣ dν +
∫

1≤|ν|≤Ω

∣∣∣∣∣FCC( f )′(ν)
2πiν

∣∣∣∣∣ dν,

and note that the limit asΩ→∞ exists on the left if and only if it exists for the second
integral on the right. For this integral we use the Cauchy–Bunyakovsky–Schwarz
inequality to deduce∫

1≤|ν|≤Ω

∣∣∣∣∣FCC( f )′(ν)
2πiν

∣∣∣∣∣ dν ≤
(∫

1≤|ν|≤Ω
|FCC( f )′(ν)|2 dν

)1/2 (∫
1≤|ν|≤Ω

∣∣∣∣∣ 1
2πiν

∣∣∣∣∣2 dν
)1/2

.

By Lemma 6.3.1 below the first integral on the right converges asΩ→∞, and a direct
computation shows that the second integral on the right also converges as Ω → ∞.
This shows that FCC( f ) ∈ L(1)(R;C), and the main statement in the result now follows
from Theorem 6.2.26.

For the last statement of the corollary note that by Proposition 6.1.10 it follows
that if f , f (1), f (2)

∈ C0(R;C)∩L(1)(R;C) thenFCC( f ) ∈ L(1)(R;C), and so Theorem 6.2.26
again applies. ■

6.2.29 Remark (The L2-condition in Corollary 5.2.35) Note that the assumption that
f ′ ∈ L(1)(R;C) ∩ L(2)(R;C) allows us to use Lemma 6.3.1 below. This lemma plays
the rôle that is played by Bessel’s inequality in the proof of Corollary 5.2.35. This
is yet another instance of the similarity of the development of the CDFT and the
CCFT, provided one makes suitable modifications. •

Let us consider some of our examples in light of this result on uniform conver-
gence.

6.2.30 Examples (Uniform convergence of Fourier integrals)
1. We first consider the signal f (t) = χ[− 1

2 ,
1
2 ](t)(□2,1,1(t) − 1) considered previously

as concerns its pointwise convergence. Since this signal is not continuous
(more precisely, it is not equal almost everywhere to a continuous signal),
Theorem 6.2.26 implies that FCC( f ) < L(1)(R;C). One of the consequences of
this is that f , FI[ f ] since the latter integral does not exist. What does exist is
the improper integral

lim
Ω→∞

∫ Ω

−Ω

FCC( f )(ν)e2πiνt dν.
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Furthermore, we have seen that this integral converges to the signal

t 7→


f (t), t < {−1, 0, 1},
1
2 , t = −1,
0, t = 0
−

1
2 , t = 1.

In Figure 6.11 we show an approximation of f by one of the partial sums
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Figure 6.11 The approximation DΩ f to f when Ω = 20

DΩ f . Note that it illustrates the same sort of oscillatory behaviour near the
discontinuities as we have seen with Fourier series.

2. Next we consider g(t) = χ[− 1
2 ,

1
2 ](t)△ 1

2 ,1,1
(t), another of the signals considered

above for pointwise convergence. We saw that the net (DΩg)Ω∈R>0 converged
pointwise to f . In Example 6.2.20–2 we produced the CCFT for g, and one can
see thatFCC(g) ∈ L(1)(R;C). Therefore, Theorem 6.2.26 indicates that (DΩg)Ω∈R>0

converges uniformly to g, since g is continuous. In Figure 6.12 we show
an approximation of g by DΩg for Ω = 20. Note that the behaviour of the
approximation is quite good. Also notice that in this case we may directly use
the definition of the Fourier integral and write g = FI[g]. Note that it is not
always the case that one can do this!

3. Finally we consider the signal h considered first in Example 6.2.20–3. This
signal does not satisfy the hypotheses of Corollary 6.2.28. And, without actually
computing the CCFT, we are not in a position to apply Theorem 6.2.26. Thus
we are a bit up in the air at this point as concerns the uniform convergence of
(DΩh)Ω∈R>0 to h. However, this will be taken care of by Theorem 6.2.31 below. •

We now give the analogue of Theorem 5.2.37 for the CCFT. The result we state
here has two parts, coinciding with the fact that a signal onRmay have its variation
constrained in at least two different ways.
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Figure 6.12 The approximation DΩg to g when Ω = 20

6.2.31 Theorem (Continuous signals of finite variation have uniformly convergent
Fourier integrals) If f ∈ L(1)(R;C) is continuous then the following statements hold:

(i) if f has finite variation then (DΩf|K)Ω∈R>0 converges uniformly for any compact
subset K ⊆ R;

(ii) if f has bounded variation then (DΩf)Ω∈R>0 converges uniformly on R.
Proof As in the proof of Theorem 6.2.24 (without the modifications necessary to make
the assumptions that t0 = 0, f (t0) = 0, and evenness of f ), uniform convergence will
follow if we can show that for ϵ ∈ R>0 there exists δ ∈ R>0 so that∣∣∣∣∣∣

∫ δ

−δ
( f (t0 − t) − f (t0))

sin(2πΩt)
t

dt

∣∣∣∣∣∣ < ϵ
for all Ω ∈ R>0. As in the proof of Theorem 5.2.37 this will involve showing uniform
continuity of the variation V.

For part (i) let T ∈ R>0 be chosen so that K ⊆ [−T,T]. We prove uniform continuity
of V on [−T,T] for any T ∈ R>0 just as was done in Theorem 5.2.37, this being valid by
compactness of [−T,T]. We let M satisfy∣∣∣∣∣∣

∫ t

0

sin(2πΩτ)
τ

dτ

∣∣∣∣∣∣ ≤M (6.9)

for all t,Ω ∈ R>0. Now choose δ so that |V( f )(t1) − V( f )(t2)| < ϵπ
2M for all t1, t2 ∈ [−T,T]

satisfying |t1 − t2| < δ. The estimate (6.9) then holds for all t0 ∈ K.
For part (ii) we note that bounded variation of f implies that the limits limt→−∞V(t)

and limt→∞V(t) exist. This follows immediately from monotonicity of V and from the
fact that the closure of V(R) is a compact interval. Now, for ϵ ∈ R>0 choose T ∈ R>0 so
that |V(t) − V(−∞)| < ϵ for t < −T and |V(t) − V(∞)| < ϵ for t > T, and choose δ so that
|V( f )(t1) −V( f )(t2)| < ϵπ

2M for all t1, t2 ∈ [−T,T] satisfying |t1 − t2| < δ. The estimate (6.9)
again holds, but now for all t0 ∈ R. ■

We can apply the theorem to an example to see how it can be used to verify
uniform convergence.
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6.2.32 Example (An application of the bounded variation test for uniform conver-
gence) We consider the signal h from Example 6.2.20–3. If we define

h+ =


0, t ∈ (−∞,−π),
(sin( t+π

2 )1/2, t ∈ [−π, 0],
1, t ∈ (0,∞]

h− =


0, t ∈ (−∞, 0),
1 − (sin t+π

2 )1/2, t ∈ [0, π],
1, t ∈ [π,∞).

We see that both h+ and h− are monotonically increasing and that h = h+ − h−.
Therefore, by part (I-ii) of Theorem I-3.3.3 we conclude that h has finite variation.
Moreover, since h is constant outside the compact interval [−π, π], h actually has
bounded variation. Therefore Theorem 5.2.37 implies that (DΩh)Ω∈R>0 converges
uniformly to h. •

The reader is encouraged to consider the examples of Section 6.1.1 to see which
are eligible to make valid the formula f = FI[ f ]. You should find that Exam-
ples 6.1.3–1 and 3 are ineligible, and that Examples 6.1.3–2, 4, and 5 are eligible.

6.2.6 Gibbs’ phenomenon

Just as for Fourier series, when determining a discontinuous signal from its
CCFT, there can arise difficulties with convergence at points of discontinuity, even
though the Fourier integral converges pointwise. In this section we quantify this.

The first thing to do is introduce notation that mirrors that used for the Gibbs’
phenomenon for the inverse CDFT. Let f ∈ L(1)(R;R) and let t0 be a point of
discontinuity of f , and we assume that f possesses left and right limits at t0. We
refer the reader to Section 5.2.6 for the notion of a Gibbs sequence. The Gibbs set
for f at t0 is

G( f , t0) =
{
lim j→∞D j f (t j)

∣∣∣ (t j) j∈Z>0 is a Gibbs sequence at t0

}
.

The interpretation of the Gibbs set is essentially the same as it was for the CDFT.
That is to say, the Gibbs set can be interpreted as the collection of points in the
graphs of the approximations to f that lie close to the vertical line t = t0 in the limit.
The following result characterises the Gibbs set.

6.2.33 Theorem (General Gibbs’ phenomenon for Fourier integrals) Let f : [0,T]→ R
satisfy the conditions of Corollary 6.2.25(ii), and for t0 ∈ R let j(t0) = f(t0+)− f(t0−). Also
denote

I =
∫ π

0

sin t
t

dt ≈ 1.85194.
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The Gibbs set then satisfies

G(f, t0) = [1
2 (f(t0+) + f(t0−)) − ∆2 ,

1
2 (f(t0+) + f(t0−)) + ∆2 ],

where

∆ =

∣∣∣∣∣2Ij(t0)
π

∣∣∣∣∣ ≈ 1.17898|j(t0)|.

Proof The strategy for the proof follows that of Theorem 5.2.39. Thus we establish
the theorem for a special signal for which the computations can be performed directly,
then we reduce the general case to this special one. The special signal we choose is
g = χ[0,1] − χ[−1,0]. This signal has a jump discontinuity at t0 = 1 of magnitude 2. We
compute

FCC(g)(ν) =
2 − e−2πiν

− e2πiν

2πiν
.

We then have

DΩg(t) =
∫ Ω

−Ω

FCC(g)(ν)e2πiνt dν

=

∫ Ω

−Ω

2e2πiνt
− e2πiν(t−1)

− e2πiν(t+1)

2πiν
dν

=

∫ Ω

0

2 sin(2πνt) − sin(2πν(t − 1)) − sin(2πν(t + 1))
πν

dν,

using the fact that the integral of an odd function over the domain [−Ω,Ω] will vanish.
Now let (t j) j∈Z>0 be a Gibbs sequence at t0 = 0. We then have

lim
n→∞

Dng(tn) = lim
n→∞

∫ n

0

sin(2πν(tn − 1)) + sin(2πν(tn + 1)) − 2 sin(2πνtn)
2πν

dν

= lim
n→∞

1
π

∫ 2πntn

0

sin ξ
ξ

dξ

− lim
n→∞

1
2π

∫ 2πn(tn−1)

0

sin ξ
ξ

dξ − lim
n→∞

1
2π

∫ 2πn(tn+1)

0

sin ξ
ξ

dξ (6.10)

The first integral in (6.10) can have the form

1
π

∫ α

0

sin ξ
ξ

dξ

for any α ∈ R>0 by an appropriate choice of Gibbs sequence. As we showed in the
proof of Theorem 5.2.39, the maximum value occurs when α = ±π. The second
integral in (6.10) has the value −1

2 in the limit, and the third has the value 1
2 in the limit

since ∫
C
∞

0

sin ξ
ξ

dξ =
π
2

by Lemma 1 from Example 4.7.7–3. Thus we have the result in the case when f = g.
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To complete the proof we define

h(t) = f (t) + j(t0)g(t0),

noting that h is continuous at t0, and that the limits h′(t0+) and h′(t0−) exist. The
remainder of the proof now goes like the final steps in Theorem 5.2.39. ■

The reader may refer to the discussion following Theorem 5.2.39 for a discus-
sion of how one may interpret the Gibbs set, and for a discussion of the distinction
of the difference between the limit of a graph and the graph of a limit.

6.2.7 Cesàro means

For the CDFT, we saw that the Cesàro sums gave us a means of explicitly
inverting the CDFT for general classes of signals, where as the use of the Fourier
partial sums did not allow this. The same phenomenon happens for the CCFT,
where we can define an analogue of the Cesàro sums, and show that these will
always recover the signal, under extremely weak hypotheses. In the course of the
development we shall come across the continuous Fejér kernel FΩ which came up
during the course of the proof of Theorem 6.2.1. We recall that

FΩ(t) =

 sin2(πΩt)
π2Ωt2 , t , 0,
Ω, t = 0.

To see how this kernel might be related to Cesàro means as they arise in Fourier
integrals we give the following lemma.

6.2.34 Lemma (Cesàro means and the Fejér kernel) For f ∈ L(1)(R;C) we have

1
Ω

∫ Ω

0

(∫ ω

−ω

FCC(f)(ν)e2πiνt dν
)

dω =
∫
R

f(t − τ)FΩ(τ) dτ.
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Proof We compute, using Lemma 6.2.7,

1
Ω

∫ Ω

0

(∫ ω

−ω
FCC( f )(ν)e2πiνt dν

)
dω =

1
Ω

∫ Ω

0
Dω f (t) dω

=
1
Ω

∫ Ω

0

(∫ ω

−ω
FCC( f )(ν)e2πiνt dν

)
dω

=
1
Ω

∫ Ω

0

(∫ ω

−ω

(∫
R

f (τ)e−2πiντ dτ
)

e2πiνt dν
)

dω

=
1
Ω

∫ Ω

0

(∫
−R

(∫ ω

−ω
f (τ)e2πiν(t−τ) dν

)
dτ

)
dω

=
1
Ω

∫ Ω

0

(∫
R

f (τ)
sin(2πω(t − τ))

π(t − τ)
dτ

)
dω

=
1
Ω

∫
R

f (τ)
(∫ Ω

0

sin(2πω(t − τ))
π(t − τ)

dω
)

dτ

=

∫
R

f (t − τ)FΩ(τ) dτ,

twice using Fubini’s Theorem. ■

Thus the Cesàro means appear as the convolution with the Fejér kernel.

6.2.35 Notation (FΩf) For f ∈ L(1)(R;C) and for Ω ∈ R>0 we denote

FΩ f (t) =
1
Ω

∫ Ω

0

(∫ ω

−ω

FCC( f )(ν)e2πiνt dν
)

dω.

This suggests the rôle of convolution in these Cesàro means. •

The following result is what now we are after.

6.2.36 Theorem (Convergence of Cesàro means) For f ∈ L(0)(R;C) the following state-
ments hold:

(i) if f ∈ L(p)(R;C), then (FΩf)Ω∈R converges to f in Lp(R;C);
(ii) if f ∈ C0

bdd(R;C), then (FΩf|K)Ω∈R>0 converges uniformly to f|K for every compact
subset K ⊆ R;

(iii) if f ∈ C0
unif,bdd(R;C), then (FΩf)Ω∈R>0 converges uniformly to f;

(iv) if f ∈ L(∞)(R;C) and if, for t0 ∈ R, the limits f(t0−) and f(t0+) exist, then
(FΩf(t0))Ω∈R>0 converges to 1

2 (f(t0−) + f(t0+)).
Proof This follows from Theorems 4.7.2, 4.7.3, 4.7.4, and 4.7.5. ■

An example is helpful in illustrating the smoothing effect of the Cesaro means
in recovering a signal from its CCFT.
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Figure 6.13 DΩ f (left) and FΩ f (right) for Ω = 50

6.2.37 Example (Cesàro means) We consider the signal f (t) = χ[− 1
2 ,

1
2 ](t)(□2,1,1(t) − 1) first

discussed in Example 6.2.20. In Figure 6.13 we show the approximations to f
using the Dirichlet and Fejér kernels. As expected, the Cesàro means do not exhibit
the Gibbs effect. •

6.2.38 Remarks (Pros and cons of using Cesàro means)
1. Note that the Cesàro means provide us with a left-inverse of FCC. Indeed, if we

define ICC : C0
0(R;C)→ L1(R;C) by

ICC(F) = lim
Ω→∞

1
Ω

∫ Ω

0

(∫ ω

−ω

F(ν)e2πiνt dν
)

dω,

then we haveICC ◦FCC( f ) = f for all f ∈ L1(R;C). Of course,ICC is not actually
defined for all F ∈ C0

0(R;C), but this can be kludged for the purposes of the
left-inverse conversation by setting ICC(F) = 0 for all F < image(FCC).

2. As with the use of Cesàro sums with the CDFT, the use of Cesàro means for the
CCFT has some drawbacks. We refer to Remark 5.2.44 for an account of some
of this. •

6.2.8 The CCFT and approximate identities

In this section we investigate the CCFT as it applies to approximate identities
on R. We have already seen in this chapter the important rôle of approximate
identities. The Dirichlet kernel (okay, it is not an approximate identity) is linked
to the Fourier integral in Lemma 6.2.7, and the Fejér kernel is linked to the Cesàro
means for Fourier integrals in Lemma 6.2.34. In this section we see the rôle played
by general approximate identities with respect to the CCFT.

Lemma 2.2.2 in Pinsky
Next we compute the CCFT for a few important approximate identities. In all

of the examples we consider, the approximate identity and its CCFT are continu-
ous and integrable and so, by Theorem 6.2.26, it follows that the corresponding
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Fourier integral converge uniformly. Therefore, in these cases, it is possible to use
the similarity of the CCFT with the Fourier integral to compute the CCFT of the
approximate identity by finding a signal whose CCFT is equal to the approximate
identity. Moreover, in all cases we have actually found such signals in Exam-
ple 6.1.3. However, here we shall directly compute the CCFT’s using complex
analysis in order to illustrate the relationships between the CCFT and contour inte-
gration. In Exercise 6.2.7 the reader can explore the easier way of computing these
CCFT’s.

6.2.39 Examples (The CCFT of approximate identities)
1. Recall from Example 4.7.7–1 the definition of the Poisson kernel:

PΩ(t) =
1
π

Ω

1 +Ω2t2 .

We claim that
FCC(PΩ)(ν) = e−

2π|ν|
Ω .

To verify this formula, let us recall the contours γT, C−,T, and C+,T from the proof
of Lemma 1 in Example 4.7.7–3. For ν ∈ R let us define Fν : C→ C by

Fν(z) = −i
Ω

π
e−2πνz

1 −Ω2z2 ,

noting that Fν has simple poles at ±Ω−1. Note that∫ T

−T
PΩ(t)e−2πiνt dt =

∫
γT

Fν(z) dz.

First let ν ∈ R>0. By the Residue Theorem, get Res notation right

−

∫
γT

Fν(z) dz +
∫

C+,T
Fν(z) dz = 2πi Res(Fν,Ω−1)

= lim
z→Ω−1

2πi(z −Ω−1)Fν(z) = −e−2πν/Ω.

Similarly, if ν ∈ R<0, we have∫
γT

Fν(z) dz +
∫

C−,T
Fν(z) dz = 2πi Res(Fν,−Ω−1)

= lim
z→−Ω−1

2πi(z +Ω−1)Fν(z) = e−2π|ν|/Ω.

By Jordan’s Lemma we have ref

lim
T→∞

∫
C+,T

Fν(z) dz = lim
T→∞

∫
C−,T

Fν(z) dz = 0,
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noting that we take ν ∈ R>0 in the first case and ν ∈ R<0 in the second. Thus we
have

FCC(PΩ)(ν) = lim
T→∞

PΩe−2πiνt dt = lim
T→∞

∫
γT

Fν(z) dz = e−2π|ν|/Ω,

for ν ∈ R\{0}. We also haveFCC(PΩ)(0) = 1 since the CCFT of an integrable signal
is continuous (Theorem 6.1.7). This gives the desired formula. In Figure 6.14
we show the Poisson kernel and its CCFT for Ω = 5.
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Figure 6.14 The signal PΩ (left) and its CCFT (right) for Ω = 5

2. Recall from Example 4.7.7–2 the Gauss–Weierstrass kernel

GΩ(t) =
exp(− t2

4Ω )
√

4πΩ
.

We claim that
FCC(GΩ)(ν) = exp(−4π2Ων2).

To verify this formula, we shall compute the CCFT of the general Gaussian
γa(t) = e−at2 where a ∈ R>0. We claim that

FCC(γa)(ν) =

√
π
a

e−
π2ν2

a .

To verify this, we compute

FCC(γa)(ν) =
∫
R

e−at2
−2πiνt dt

=

∫
R

e−at2
−2πiνt+ π

2ν2
a e−

π2ν2
a dt

= e−
π2ν2

a

∫
R

e−a(t+i πνa )2
dt.
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This last integral is an integral along the line through iπνa ∈ C and parallel to the
real axis. To perform this integral we use contour integration in C. Let us take
the case of ν ∈ R>0 first. We define a contour ΓR given by

ΓR = {(x, 0) | x ∈ [−R,R]} ∪
{
(R, y)

∣∣∣ y ∈ [0, πνa ]
}

∪

{
(x, πνa )

∣∣∣ x ∈ [−R,R]
}
∪

{
(−R, y)

∣∣∣ y ∈ [0, πνa ]
}
,

and we take the counterclockwise sense for performing the integration. Since
the function z 7→ e−az2 is analytic in Cwe have

0 =
∫
ΓR

e−az2
dz

=

∫ R

−R
e−ax2

dx +
∫ πν

a

0
e−a(R+iy)2

dy +
∫
−R

R
e−a(x+i πνa )2

dx +
∫ 0

πν
a

e−a(−R+iy)2
dy.

We claim that the second and fourth integrals are zero in the limit as R → ∞.
To see this for the second integral, note that

|e−a(R+iy)2
| = |e−aR2

e−2aiRye−ay2
| ≤ e−aR2

e
π2ν2

a ,

Thus ∣∣∣∣∣∣
∫ πν

a

0
e−a(R+iy)2

dy

∣∣∣∣∣∣ ≤
∫ πν

a

0
|e−a(R+iy)2

|dy ≤ e
π2ν2

a

∫ πν
a

0
e−aR2

dy.

We then compute

lim
R→∞

∫ πν
a

0
e−aR2

dy = lim
R→∞

πν
a

e−aR2
= 0.

This gives the vanishing of the second integral as R → ∞. The same sort of
argument gives the same conclusion as regards the fourth integral. Therefore,
we get ∫

R

e−a(t+i πνa )2
dt = lim

R→∞

∫ R

−R
e−a(t+i πνa )2

dt = lim
R→∞

∫ R

−R
e−at2

dt.

Thus we have

FCC(γa)(ν) = e−
π2ν2

a

∫
R

e−at2
dt,

this being valid for ν ∈ R>0. A similar analysis to the above gives the same
formula for ν ∈ R<0. To evaluate the integral on the right we use Lemma III-1
from Example III-2.3.32–4 to give its value as

√
π
a . This gives FCC(γa) as stated.

Thus we see that the Gaussian has the feature that its CCFT is almost equal
to itself. Indeed, if a = π then the CCFT is exactly equal to the original signal.
Moreover, we also haveFCC(GΩ) as stated. In Figure 6.15 we show the Gaussian
kernel and its CCFT for Ω = 5.
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Figure 6.15 The signal GΩ (left) and its CCFT (right) for Ω = 5

3. Next we consider the Fejér kernel from Example 4.7.7–3.

FΩ =

 sin2(πΩt)
π2Ωt2 , t , 0,
Ω, t = 0.

We claim that

FCC(FΩ)(ν) =

1 − |ν|
Ω
, |ν| ∈ [0,Ω],

0, otherwise.

Let us verify this expression. Fix Ω ∈ R>0. Let R ∈ R>0. We recall from the
proof of Lemma 1 from Example 4.7.7–3 the definitions of the contours γR, γ′R,
C+,R, C−,R, Γ+,R, and Γ−,R. For ν ∈ R define Fν : C→ C by

Fν(z) = i
1 − 1

2 (e2πΩz + e−2πΩz)
2π2Ωz2 e−2πνz,

noting that Fν is obviously analytic on C \ {0}. Moreover, one checks that
limz→0 Fν(z) = Ω, and so Fν is entire by . Note that a direct computation usingwhat

the identity sin2 θ = 1
2 (1 − cos(2θ) verifies that∫ R

−R
FΩ(t)e−2πiνt dt =

∫
γR

Fν(z) dz.

Since Fν is entire, we also have∫
γR

Fν(z) dz =
∫
γ′R

Fν(z) dz

by .what

Let us define fν,1, fν,2, fν,3 : C→ C by

fν,1(z) =
e−2πνz

z2 , fν,2(z) =
e2π(Ω−ν)z

z2 , fν,3(z) =
e2π(−Ω−ν)z

z2 ,
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noting that these functions all have a pole of degree 2 at the origin.
We next compute a few contour integrals using Cauchy’s Theorem and the
Residue Theorem.

(a) Suppose that ν ∈ R>0. Then

−

∫
γ′R

fν,1(z) dz +
∫

C+,R
fν,1(z) dz =

∫
Γ+,R

fν,1(z) dz = 0

by Cauchy’s Theorem. By Jordan’s Lemma we then have

lim
R→∞

∫
γ′R

fν,1(z) dz = 0.

(b) Suppose that ν ∈ R<0. Then∫
γ′R

fν,1(z) dz +
∫

C−,R
fν,1(z) dz =

∫
Γ−,R

fν,1(z) dz = 2πi Res( fν,1, 0) = −4iπ2ν

by the Residue Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

fν,1(z) dz = −4iνπ2.

(c) Suppose that Ω − ν ∈ R>0. Then∫
γ′R

fν,2(z) dz +
∫

C−,R
fν,2(z) dz =

∫
Γ−,R

fν,2(z) dz = −4iπ2(ν −Ω).

by the Residue Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

fν,2(z) dz = −4iπ2(ν −Ω).

(d) Suppose that Ω − ν ∈ R<0. Then

−

∫
γ′R

fν,2(z) dz +
∫

C+,R
fν,2(z) dz =

∫
Γ+,R

fν,2(z) dz = 0

by Cauchy’s Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

fν,2(z) dz = 0.
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(e) Suppose that −Ω − ν ∈ R>0. Then∫
γ′R

fν,3(z) dz +
∫

C−,R
fν,3(z) dz =

∫
Γ−,R

fν,3(z) dz = −4iπ2(ν +Ω)

by the Residue Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

fν,3(z) dz = −4iπ2(ν +Ω).

(f) Suppose that −Ω − ν ∈ R<0. Then

−

∫
γ′R

fν,3(z) dz +
∫

C+,R
fν,3(z) dz =

∫
Γ−,R

fν,3(z) dz = 0

by Cauchy’s Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

fν,3(z) dz = 0.

Now, using these calculations and noting that

Fν(z) =
i

2π2Ω
( fν,1(z) − 1

2 fν,2(z) − 1
2 fν,3(z)),

we have the following cases.

(a) ν < −Ω: In this case we have ν < 0,Ω− ν > 0, and −Ω− ν > 0. Thus we get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π2Ω

(−4iπ2ν + 2iπ2(ν −Ω) + 2iπ2(ν +Ω)) = 0.

(b) −Ω < ν < 0: In this case we have ν < 0, Ω − ν > 0, and −Ω − ν < 0. Thus
we get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π2Ω

(−4iπ2ν + 2iπ2(ν −Ω) + 0) = 1 +
ν
Ω
.

(c) 0 < ν < Ω: In this case we have ν > 0, Ω − ν > 0, and −Ω − ν < 0. Thus we
get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π2Ω

(0 + 2iπ2(ν −Ω) + 0) =
1
−

ν
Ω
.

(d) ν > Ω: In this case we have ν > 0, Ω − ν < 0, and −Ω − ν < 0. Thus we get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π2Ω

(0 + 0 + 0) = 0.
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Figure 6.16 The signal VΩ (left) and its CCFT (right) for Ω = 5

Now, since FCC(FΩ) is continuous by Theorem 6.1.7, our formula for FCC(FΩ)
is as stated.
In Figure 6.16 we show the Fejér kernel and its CCFT for Ω = 5.

4. Let us next determine the CCFT of the de la Vallée Poussin kernel defined by

VΩ(t) = 2F2Ω(t) − FΩ(t).

As we have computed FCC(FΩ) above, we easily use linearity of the CCFT to
determine

FCC(VΩ)(t) =


1, |ν| ∈ [0,Ω],
2 − |ν|

Ω
, |ν| ∈ (Ω, 2Ω],

0, otherwise.

In Figure 6.17 we show the de la Vallée Poussin kernel and its CCFT forΩ = 5. •
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Figure 6.17 The signal VΩ (left) and its CCFT (right) for Ω = 5

6.2.9 Notes

Our Example 6.2.2 appears in [Pinsky 2009, page 119].
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Exercises

6.2.1 Let f ∈ L(1)(R;C) and denote its CCFT by FCC( f ).
(a) Write the integral version of the expression FI[ f ].
(b) Naı̈vely, what would have to be true for it to hold that

FI[ f ](t) = f (t), t ∈ R?

6.2.2 Give a proof along the lines of the proof of Proposition 5.2.2 that FCC is not
onto C0

0(R;C).
6.2.3 Show that for each Ω ∈ R>0 we have∫ Ω

−Ω

FCC( f )(ν)e2πiνt dν =∫ Ω

0
CCC( f )(ν) cos(2πνt) dν +

∫ Ω

0
SCC( f )(ν) sin(2πνt) dν.

6.2.4 Show that for every ϵ ∈ R>0 we have

lim
Ω→∞

∫ ϵ

−ϵ

DΩ(t) dt = 1.

Hint: Use Lemma 1 from Example 4.7.7–3.
6.2.5 Let f ∈ L(1)(R;C) and, for t0 ∈ R and s ∈ C, define e f ,t0,s : R→ C by

e f ,t0,s(t) =
1
2 ( f (t0 + t) + f (t0 − t)) − s.

(a) Show that e f ,t0,s ∈ L(1)
loc(R;C).

(b) Show that the Fourier integral for f converges to s ∈ C at t0 if and only
if the Fourier integral for e f ,t0,s converges to 0 at 0.

(c) Show that, if there exists a neighbourhood U of t0 for which f (t0 + t) =
− f (t0 − t) for every t ∈ U, then it holds that the Fourier integral for f
converges to zero at t0.

(d) Sketch the graph of a typical function from part (c).
6.2.6 Give a signal f ∈ L(1)(R;C) such that FCC( f ) < L(1)(R;C). Explain why your

example works without doing any computations.
6.2.7 Using Theorem 6.2.26 and examples given in the text, compute the CCFT’s

of PΩ and FΩ.
6.2.8 Answer the following questions.

(a) Is the function

x 7→
(1 − cos x) sin x

x
in L(1)(R>0;R)?
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(b) Show that

lim
R→∞

∫ R

0

(1 − cos x) sin x
x

dx =
π
4
.

Hint: Use Example 6.2.20–1.
6.2.9 Answer the following questions.

(a) Is the function

x 7→
1 − cos x

x2

in L(1)(R>0;R)?
(b) Show that

lim
R→∞

∫ R

0

1 − cos x
x2 dx =

π
2
.

Hint: Use Example 6.2.20–2.
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Section 6.3

The L2-CCFT

As with the CDFT, the L2-theory of the CCFT is extremely important. The
reason for this is that, as we shall see in this section, the L2-CCFT has nice inversion
properties as a consequence of the more friendly geometry of the Hilbert space
L2(R;C) versus the Banach space geometry of L1(R;C).

One of the places where the CCFT diverges in its development from the CDFT
is with the L2-theory. For the CDFT the L2-transform is obtained by restriction
since L(2)

per,T(R;C) ⊆ L(1)
per,T(R;C). However, as can be recalled from Figure 1.21,

L(2)(R;C) 1 L(1)(R;C). Thus a direct definition of the L2-CCFT is not possible.
Indeed, it is not immediately clear that any definition is possible. That this is
possible is a consequence of some nice interrelations between L(1)(R;C), L(2)(R;C),
and the CCFT. These interrelationships are what this section is concerned with.

Do I need to read this section? If you are learning about the Fourier transform,
then this section is required reading. •

6.3.1 Definition of the L2-CCFT

Our construction of the L2-CCFT is a little indirect. However, at the end of the
day we do end up with a computable theory; see Section 6.3.4.

If one looks back at the examples we used in Sections 6.1 and 6.2 it can be seen
that all of the signals used had the property that they were not only in L(1)(R;C),
but were also in L(2)(R;C). Indeed, signals in L(1)(R;C)−L(2)(R;C) tend to be a little
unfriendly (try doing Exercise 1.3.18). The following result records what happens
with the CCFT in the intersection of L(1)(R;C) ∩ L(2)(R;C).

6.3.1 Lemma (FCC(L1 ∩ L2) ⊆ L2) If f ∈ L(1)(R;C) ∩ L(2)(R;C) then ∥FCC(f)∥2 = ∥f∥2. In
particular, FCC(f) ∈ L(2)(R;C).

Proof Let t ∈ R. Since f ∈ L(2)(R;C), τ∗
−t f , f̄ ∈ L(2)(R;C). Thus τ∗

−t f f̄ ∈ L(1)(R;C) by
Hölder’s inequality. Define

ϕ(t) =
∫
R

f (t + τ) f̄ (τ) dτ.

We first claim that ϕ ∈ C0
0(R;C), and that ϕ is in fact uniformly continuous. For a, t ∈ R

we compute

|ϕ(t + a) − ϕ(t)| ≤
∫
R
| f (t + a + τ) − f (t + τ)|| f (τ)|dτ

≤

(∫
R
| f (a + τ) − f (τ)|2 dτ

)1/2

∥ f ∥2

= ∥τ∗−a f − f ∥2∥ f ∥2
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by the Cauchy–Bunyakovsky–Schwarz inequality. By Lemma 1 from Corollary 4.2.10,
for ϵ ∈ R>0 there exists δ ∈ R>0 so that if |a| < δ then ∥τ∗

−a f − f ∥2 < ϵ
∥ f ∥2

. Uniform
continuity of ϕ now follows. We now show that lim|t|→∞ ϕ(t) = 0. Let ϵ ∈ R>0 and let
T ∈ R>0 be sufficiently large that(∫

R\[−T,T]
| f (t)|2 dt

)1/2

<
ϵ

2∥ f ∥2
,

this being possible since f ∈ L(2)(R;C). Now let t ∈ R satisfy |t| > 2T. Then

|ϕ(t)| ≤
∫ T

−T
| f (t + τ)|| f (τ)|dτ +

∫
R\[−T,T]

| f (t + τ)|| f (τ)|dτ

≤

(∫ T

−T
| f (t + τ)|2 dτ

)1/2 (∫ T

−T
| f (τ)|2 dτ

)1/2

+

(∫
R\[−T,T]

| f (t + τ)|2 dτ
)1/2 (∫

R\[−T,T]
| f (τ)|2 dτ

)1/2

≤ ∥ f ∥2

(∫ t+T

t−T
| f (τ)|2 dτ

)1/2

+ ∥ f ∥2

(∫
R\[−T,T]

| f (τ)|2 dτ
)1/2

≤ 2∥ f ∥2

(∫
R\[−T,T]

| f (τ)|2 dτ
)1/2

< ϵ,

where we have used the Cauchy–Bunyakovsky–Schwarz inequality, the change of
variable formula, and the fact that [t − T, t + T] ⊆ R \ [−T,T]. Thus ϕ(t) goes to zero as
|t| → ∞ as claimed.

We claim that ϕ ∈ L(1)(R;C). Indeed,∫
R
|ϕ(t)|dt ≤

∫
R

(∫
R
| f (t + τ) f̄ (τ)|dτ

)
dt

=

∫
R
| f (τ)|

(∫
R
| f (t + τ)|dt

)
dτ = ∥ f ∥21,

using Fubini’s Theorem. We then compute

FCC(ϕ)(ν) =
∫
R

(∫
R

f (t + τ) f̄ (τ) dτ
)

e−2πiνt dt

=

∫
R

f̄ (τ)
(∫
R

f (t + τ)e−2πiνt dt
)

dτ

=

∫
R

f̄ (τ)
(∫
R

f (t)e−2πiνt dt
)

e2πiντ dτ

= FCC( f )(ν)
∫
R

f̄ (τ)e2inπ τ
T dτ

= FCC( f )(ν)
∫
R

f (t)e−2πiνt dt = |FCC( f )(ν)|2.
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From Example 6.2.39–3, and using Proposition 6.1.6(ii) along with the fact that
σ∗FΩ = FΩ, we have

F CC(FΩ)(ν) = FCC(σ∗FΩ)(ν) = FCC(FΩ)(ν) =


1 + t

Ω , t ∈ [−Ω, 0],
1 − t

Ω , t ∈ (0,Ω],
0, otherwise.

We also note that limΩ→∞FCC(FΩ)(ν) = 1 for every ν ∈ R.
We saw in Theorem 6.2.36 that (FΩσ∗ϕ)Ω∈R>0 converges to σ∗ϕ in

(C0
unif,bdd(R;C), ∥·∥∞). Thus

σ∗ϕ(t) = lim
Ω→∞

∫
R
σ∗ϕ(t − τ)FΩ(τ) dτ

= lim
Ω→∞

∫
R
σ∗ϕ(t − τ)FCC ◦ F CC(FΩ(τ)) dτ

= lim
Ω→∞

∫
R

e−2πiνtFCC(ϕ)(ν)F CC(FΩ)(ν) dν

=

∫
R
|FCC( f )(ν)|2e2πiνt dν,

using Proposition 6.1.6(ii) and (v), Fourier Reciprocity, and the Dominated Conver-
gence Theorem. Setting t = 0 gives ∥ f ∥2 = ∥FCC( f )∥2, as desired. ■

The reader may want to check that the lemma is satisfied for all of the signals
we encountered in Sections 6.1 and 6.2.

The next result says that, by knowing FCC|L1(R;C) ∩ L2(R;C), we know the
CCFT on a “large” subspace of L2(R;C). This will allow us to extend the CCFT to
all of L2(R;C).

6.3.2 Lemma (L1 ∩ L2 is dense in L2) L1(R;C) ∩ L2(R;C) is dense in L2(R;C).
Proof Let f ∈ L2(R;C), let ϵ ∈ R>0, and choose T ∈ R>0 sufficiently large that∫

R\[−T,T]
| f (t)|2 dt < ϵ2,

this being possible since f ∈ L(2)(R;C). Then it is clear that, if g = χ[−T,T] f , we have
g ∈ L2(R;C) and ∥ f − g∥2 < ϵ. Since f |[−T,T] ∈ L2([−T,T];C) and since L2([−T,T];C) ⊆
L1([−T,T];C) (by Theorem 1.3.11(iv)), it follows that g ∈ L1(R;C). ■

From this we have the following result.

6.3.3 Theorem (Plancherel’s2 Theorem) There exists a unique continuous linear map
F̃CC : L2(R;C)→ L2(R;C) with the properties

(i) F̃CC(f) = FCC(f) for f ∈ L1(R;C) ∩ L2(R;C) and

2Michel Plancherel (1885–1967) was a Swiss mathematician who made contributions to the fields
of analysis, algebra, and mathematical physics.
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(ii) ∥F̃CC(f)∥2 = ∥f∥2 (Parseval’s equality or Plancherel’s equality).
Furthermore, if f ∈ L2(R;C) and if (fj)j∈Z>0 is a sequence in L1(R;C)∩ L2(R;C) for which
limj→∞∥f − fj∥2 = 0, then limj→∞∥F̃CC(f) − FCC(fj)∥2 = 0.

Proof The existence and uniqueness of ˜FCC follows from Proposition III-3.5.11. The
final assertion in the theorem follows from continuity of ˜FCC. Part (ii) follows from the
last assertion and, by Lemma 6.3.1, the fact that ∥F̃CC( f )∥2 = ∥ f ∥2 for f ∈ L(1)(R;C) ∩
L(2)(R;C). ■

The theorem makes sense of the following definition.

6.3.4 Definition (L2-CCFT) The map F̃CC : L2(R;C) → L2(R,C) of Theorem 6.3.3 is the
L2-CCFT. We shall write the L2-CCFT simply as FCC. •

6.3.5 Remarks (Attributes of the L2-CCFT)
1. Note that the L2-CCFT differs in spirit from the CCFT for L1 signals. Indeed, the

definition of the L1-CCFT explicitly defines a function of frequency ν. However,
the L2-CCFT defines only an equivalence class of functions of frequency.

2. There are many ways to define a sequence in L1(R;C) ∩ L2(R;C) converging to
f ∈ L2(R;C). Two common ones are as follows:

(a) f j(t) = χ[− j, j](t) f (t) (cf. the proof of Lemma 6.3.2);

(b) f j(t) = e−t2/ j f (t) (use the Cauchy–Bunyakovsky–Schwarz inequality to
show that this signal is in L1(R;C)).

3. The above arguments can be carried out mutatis mutandis for the transform
F CC to extend it from L1(R;C) ∩ L2(R;C) to L2(R;C). The properties of this
transformation will be explored in Section 6.3.3. However, in the next section
we shall tacitly suppose that the map F CC : L2(R;C)→ L2(R;C) is defined. •

6.3.2 Properties of the L2-CCFT

In this section we shall develop a few consequences of the definition of the L2-
CCFT. First we have the following basic properties, just as we do for the L1-CCFT.

6.3.6 Proposition (Elementary properties of the L2-CCFT) For f ∈ L2(R;C) the following
statements hold:

(i) FCC(f) = F CC(f̄);

(ii) FCC(σ∗f) = σ∗(FCC(f)) = F CC(f);
(iii) if f is even (resp. odd) then FCC(f) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) then FCC(f) is real and even (resp. imaginary

and odd);
(v) FCC(τ∗af)(ν) = e−2πiaνFCC(f)(ν).
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Proof If f ∈ L1(R;C) ∩ L2(R;C) then the assertions of the result hold by virtue of
Proposition 6.1.6. For f ∈ L2(R;C), by Lemma 6.3.2 we have a sequence ( f j) j∈Z>0 in
L1(R;C) ∩ L2(R;C) converging to f in L2(R;C). By continuity of the L2-CCFT and by
continuity of the operations involved in the statement of the proposition (cf. Proposi-
tion III-3.5.4), since the assertions hold for each of the signals f j, it also holds for f by
Theorem III-3.5.2. ■

The relationship between the CCFT and differentiation also carries over to the
L2-CCFT. The following result is a special case of Proposition 6.4.5. While it is
possible to prove this result without the aid of distributions, we will not do so.

6.3.7 Proposition (The L2-CCFT and differentiation) Suppose that f ∈ C0(R;C) ∩
L(2)(R;C) and that there exists a signal f′ : R→ C with the following properties:

(i) for every T ∈ R>0, f′ is piecewise continuous on [−T,T];
(ii) f′ is discontinuous at a finite number of points;
(iii) f′ ∈ L(1)(R;C);

(iv) f(t) = f(0) +
∫ t

0
f′(τ) dτ.

Then
FCC(f′)(ν) = (2πiν)FCC(f)(ν).

Proof By Exercise 1.3.21 we have lim|t|→∞ f (t) = 0. The remainder of the proof now
follows Proposition 6.1.10. ■

The result concerning the differentiability of the CCFT also holds. Again, this
result will be proved in the setting of tempered distributions, so we will not prove
it here in this less general setting.

6.3.8 Proposition (Differentiability of transformed signals) For f ∈ L(2)(R;C), if the
signals t 7→ tjf(t), j ∈ {0, 1, . . . ,k}, are in L(2)(R;C) then FCC(f) is k-times continuously
differentiable and FCC(f)(k)(ν) = FCC(fk)(ν), where fk(t) = (−2πit)kf(t).

Proof For fixed t the signal f (t)e−2πiνt is infinitely differentiable with respect to ν.
Furthermore, the kth derivative is bounded in magnitude by 2π|tk f (t)|. As this signal
is assumed to be in L(2)(R;C), it is locally integrable, cf. Exercise 1.3.8. We may apply
Theorem III-2.9.17 to conclude that, for every j ∈ Z>0, the signal

ν 7→

∫
R

f (t)e−2πiνt dt

is k-times continuously differentiable and that its kth derivative is

ν 7→

∫
R

(−2πit)k f (t)e−2πiνt dt,

which is the result. ■

Next we prove that the Fourier Reciprocity Relation holds for signals in
L2(R;C).
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6.3.9 Proposition (Fourier Reciprocity Relation for the L2-CCFT) If f,g ∈ L2(R;C)
then FCC(f)g, fFCC(g) ∈ L1(R;C) and∫

R

f(ξ)FCC(g)(ξ) dξ =
∫
R

FCC(f)(ξ)g(ξ) dξ.

Proof By the Cauchy–Bunyakovsky–Schwarz inequality, the product of two signals
in L2(R;C) gives a signal in L1(R;C). For f , g ∈ L2(R;C) let ( f j) j∈Z>0 and (g j) j∈Z>0 be se-
quences in L1(R;C)∩L2(R;C) converging, respectively, to f and g. By Proposition 6.1.9
it follows that ∫

R
f j(ξ)FCC(g j)(ξ) dξ =

∫
R
FCC( f j)(ξ)g j(ξ) dξ

for all j ∈ Z>0. For the expression on the left we have∣∣∣∣∣∫
R

f (ξ)FCC(g)(ξ) dξ−
∫
R

f j(ξ)FCC(g j)(ξ) dξ
∣∣∣∣∣

≤

∣∣∣∣∣∫
R
FCC( f − f j)(ξ)g(ξ) dξ

∣∣∣∣∣ + ∣∣∣∣∣∫
R

f (ξ)FCC(g − g j)(ξ) dξ
∣∣∣∣∣

≤ ∥ f − f j∥2∥g∥2 + ∥ f ∥2∥g − g j∥2,

using the Cauchy–Bunyakovsky–Schwarz inequality. Taking the limit as j→∞ gives∫
R

f (ξ)FCC(g)(ξ) dξ = lim
j→∞

∫
R

f j(ξ)FCC(g j)(ξ) dξ.

Similarly we have∫
R
FCC( f )(ξ)g(ξ) dξ = lim

j→∞

∫
R
FCC( f j)(ξ)g j(ξ) dξ.

From this the result follows. ■

6.3.3 The inverse L2-CCFT

In this section we establish the important fact that FCC : L2(R;C) → L2(R;C)
is an isomorphism. This mirrors the corresponding fact for FCD : L2

per,T(R;C) →
ℓ2(Z(T−1);C).

6.3.10 Theorem (The L2-CCFT is an isomorphism) The L2-CCFT is a Hilbert space iso-
morphism. That is to say,

(i) it is a linear bijection and
(ii) it preserves the L2-inner product, i.e., ⟨FCC(f),FCC(g)⟩2 = ⟨f,g⟩2 for each f,g ∈

L2(R;C).
Proof To show that the L2-CCFT is injective, suppose thatFCC( f ) = 0 for f ∈ L2(R;C).
Then by part (ii) of Theorem 6.3.3 it follows that ∥ f ∥2 = 0, or that f = 0. Thus the L2-
CCFT is injective. We next claim that the image of the L2-CCFT is a closed subspace of
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L2(R;C). Indeed, if (FCC( f j)) j∈Z>0 is a sequence in the image of the L2-CCFT converging
to g ∈ L2(R;C) then, since

∥ f j − fk∥2 = ∥FCC( f j) − FCC( fk)∥2,

it follows that ( f j) j∈Z>0 is itself a Cauchy sequence, and so converges to f ∈ L2(R;C). It
remains to show that g = FCC( f ). For this we have

∥FCC( f ) − g∥2 ≤ ∥FCC( f ) − FCC( f j)∥2 + ∥g − FCC( f j)∥2.

In the limit as j→∞ the first term on the right vanishes by continuity of the L2-CCFT,
and the second term on the right vanishes by definition of g. This shows that the image
of the L2-CCFT is a closed subspace. Therefore, to show that this closed subspace is all
of L2(R;C) it suffices by Theorem III-4.1.19 to show that, if ⟨FCC( f ), g⟩2 = 0 for every
f ∈ L2(R;C), then g = 0. By Proposition 6.3.9 we have

⟨FCC( f ), g⟩ =
∫
R
FCC( f )(ξ)ḡ(ξ) dξ =

∫
R

f (ξ)FCC(ḡ)(ξ) dξ.

If this is to vanish for each f ∈ L2(R;C) it must hold that FCC(ḡ) = 0. By part (ii) of
Theorem 6.3.3 this implies that ḡ = 0, so giving surjectivity of the L2-CCFT.

Next we verify that the L2-CCFT preserves the L2-inner product. For f , g ∈ L2(R;C)
we have

⟨FCC( f + g),FCC( f + g)⟩ = ⟨ f , f ⟩ + ⟨g, g⟩ + ⟨FCC( f ),FCC(g)⟩ + ⟨FCC(g),FCC( f )⟩,

using part (ii) of Theorem 6.3.3. Again by part (ii) of Theorem 6.3.3 we have

⟨FCC( f + g),FCC( f + g)⟩ = ⟨ f + g, f + g⟩ = ⟨ f , f ⟩ + ⟨g, g⟩ + ⟨ f , g⟩ + ⟨g, f ⟩.

Combining these two expressions we get

⟨FCC( f ),FCC(g)⟩ + ⟨FCC(g),FCC( f )⟩ = ⟨ f , g⟩ + ⟨g, f ⟩, f g ∈ L2(R;C). (6.11)

Using the symmetry property of the inner product, (6.11) implies that
Re(⟨FCC( f ),FCC(g)⟩) = Re(⟨ f , g⟩). Applying (6.11) to −i f and g similarly gives
Im(⟨FCC( f ),FCC(g)⟩) = Im(⟨ f , g⟩). This gives the result. ■

Next let us establish explicitly the inverse of the L2-CCFT. Note that for the map
F CC : L(1)(R;C)→ C0

0(R;C) defined by

F CC( f )(ν) =
∫
R

f (t)e2πiνt dt

we may apply the same sort of arguments as were applied to FCC in developing
the L2-CCFT. In doing so, one arrives at the following conclusions:

1. if f ∈ L(1)(R;C) ∩ L(2)(R;C) then F CC( f ) ∈ L(2)(R;C);

2. the map F CC extends uniquely from L1(R;C) ∩ L2(R;C) to a linear map
F CC : L2(R;C)→ L2(R;C) having the property that ∥F CC( f )∥2 = ∥ f ∥2;
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3. F CC is a Hilbert space isomorphism.
The proof of these facts requires only sign modifications in the arguments used
for FCC, and we leave this to the reader to fill in. Next we establish that for the
L2-CCFT, its inverse is exactly F CC, or more precisely the extension of F CC from
L1(R;C) ∩ L2(R;C) to L2(R;C).

6.3.11 Theorem (F CC is the inverse of FCC for the L2-CCFT) FCC ◦ F CC(f) = f and
F CC ◦ FCC(f) = f for all f ∈ L2(R;C).

Proof Recall thatS (R;C) denotes the set of Schwartz signals, i.e., those signal which,
along with all of their derivatives, decay rapidly. In Theorem 6.4.1 below we shall
show that

FCC ◦ F CC(ϕ)(t) = F CC ◦ FCC(ϕ)(t) = ϕ(t)

for every t ∈ R and ϕ ∈ S (R;C). In we showed that S (R;C) is a dense subspace of what

L2(R;C). It, therefore, follows from Proposition III-3.5.12 that

FCC ◦ F CC( f ) = F CC ◦ FCC( f ) = f

(equality being of equivalence classes!) for every f ∈ L2(R;C), as desired. ■

6.3.12 Remarks (The character of the L2-CCFT) It might seem as if the CCFT in the
L2-setting achieves Fourier Nirvana. However, one must be a little careful since
there is nothing in the theory about the pointwise properties of the transform
or its inverse. The reader should refer to the discussion concerning pointwise
convergence in Section 6.2.9. That caveat being stated, for practical purposes the
L2-CCFT is often of great utility. •

We close this section with an example that illustrates that the use of the Lebesgue
integral in the above definition of the L2-CCFT is essential.

6.3.13 Example (The Riemann integral cannot be used for the L2-CCFT) Since we
wish to distinguish between the Riemann and Lebesgue integrals on R, we shall
denote these integrals by ∫

∞

−∞

f (t) dt,
∫
R

f dλ,

respectively. We denote by R(p)(R;C) the collection of functions f : R → C which
satisfy ∫

∞

−∞

| f (t)|p dt < ∞,

where we use the Riemann integral for possibly unbounded functions defined on
unbounded domains; see Section II-1.6.5. We also define

R0(R;C) =
{

f ∈ Rp(R;C)
∣∣∣∣∣ ∫

∞

−∞

| f (t)|p dt = 0
}
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and denote
Rp(R;C) = R(p)(R;C)/R0(R;C).

As we have done when defining the Lebesgue integral, we denote [ f ] = f+R0(R;C).
If we define

∥[ f ]∥p =
(∫

∞

−∞

| f (t)|p dt
)1/p

,

then (Rp(R;C), ∥·∥p) is a normed vector space. It is not a Banach space since the
example of Proposition III-2.1.12 can be extended to Rp(R;C) by taking all functions
to be zero outside the interval [0, 1].

Let us show that FCC|R2(R;C) does not take values in R2(R;C), and thus show
that the “R2-Fourier transform” is not well-defined. We denote by F the function
defined (and denoted by f ) in Proposition III-2.1.12, but now extended to be defined
on R by taking it to be zero off [0, 1]. We have F ∈ L(1)(R;C) ∩ L(2)(R;C) since F is
bounded and measurable with compact support. Now define f : R→ C by

f (t) =
∫
R

FE2πit dλ;

thus f is the inverse Fourier transform of F. Since F ∈ L(1)(R;C) it follows that
f ∈ C0

0(R;C). Therefore, f |[−R,R] is continuous and bounded, and hence Riemann
integrable, for every R ∈ R>0. Since F ∈ L(2)(R;C) we have f ∈ L(2)(R;C) which
implies that ∫ R

−R
| f (t)|2 dt =

∫
[−R,R]
| f |2 dλ ≤

∫
R

| f |2 dλ, R ∈ R>0.

Thus the limit

lim
R→∞

∫ R

−R
| f (t)|2 dt

exists. This is exactly the condition for Riemann integrability of f as a function
on an unbounded domain as in Section II-1.6.5. Now, since [ f ] = F −1

CC ([F]) by
definition, we have FCC([ f ]) = [F], where here FCC denotes the L2-CCFT. In Propo-
sition III-2.1.12 we showed that [F]|[0, 1] < R1([0, 1];C). From this we conclude that
[F] < R1(R;C) and, since |F|2 = F, [F] < R2(R;C). Thus FCC(R2(R;C)) 1 R2(R;C), as
it was desired to show. •

6.3.4 Computation of the L2-CCFT

The preceding discussion of the L2-CCFT is somewhat abstract, and hides some-
what its value in practice. In this section we therefore look at some simple and
illustrative examples that show how the L2-CCFT can be used to give a coherent
discussion of the CCFT for a large variety of signals, some of which are a little
problematic in the L1 theory.
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6.3.14 Examples (L2-CCFT)
1. Let us consider the Dirichlet kernel:

DΩ(t) =

 sin(2πΩt)
πt , t , 0,

2Ω, t = 0.

By Lemma 3 from Example 4.7.7–3 it follows that DΩ < L(1)(R;C), but that
DΩ ∈ L(2)(R;C). Thus we can use the L2-CCFT to compute FCC(DΩ), but the
L1-CCFT does not apply.
Let us do the computations, using contour integration. For ν ∈ R define

Fν(z) = i
e−2πΩz

− e2πΩz

2πz
e−2πνz.

It is clear that Fν is analytic on C \ {0}, and by it is entire since limz→0 Fν(z) = 2Ω. what

We recall from the proof of Lemma 1 from Example 4.7.7–3 the definitions of
the contours γR, γ′R, C+,R, C−,R, Γ+,R, and Γ−,R. One checks directly that∫ R

−R
DΩ(t)e−2πiνt dt =

∫
γR

Fν(z) dz.

Since Fν is entire, we also have∫
γR

Fν(z) dz =
∫
γ′R

Fν(z) dz

by . what

Let us define fν,1, fν,2 : C→ C by

fν,1(z) =
e2π(−Ω−ν)z

z
, fν,2(z) =

e2π(Ω−ν)z

z
,

noting that these functions all have a simple pole at the origin.
We next compute a few contour integrals using Cauchy’s Theorem and the
Residue Theorem.

(a) Suppose that −Ω − ν ∈ R>0. Then∫
γ′R

f1,ν(z) dz +
∫

C−,R
f1,ν(z) dz =

∫
Γ−,R

f1,ν(z) dz = 2πi

by the Residue Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

f1,ν(z) dz = 2πi.
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(b) Suppose that −Ω − ν = 0. Then note that f1,−Ω(z) = 1
z and so, by direct

computation, ∫
C+,R

f1,−Ω(z) dz = i
∫ π

2

−
π
2

dθ = πi.

Also,

−

∫
γ′R

f1,−Ω(z) dz +
∫

C+,R
f1,−Ω(z) dz = 0

by Cauchy’s Theorem. Thus we have

lim
R→∞

∫
γ′R

f1,−Ω(z) dz = −πi.

(c) Suppose that −Ω − ν ∈ R<0. Then

−

∫
γ′R

f1,ν(z) dz +
∫

C+,R
f1,ν(z) dz =

∫
Γ+,R

f1,ν(z) dz = 0

by Cauchy’s Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

f1,ν(z) dz = 0.

(d) Suppose that Ω − ν ∈ R>0. Then∫
γ′R

f2,ν(z) dz +
∫

C−,R
f2,ν(z) dz =

∫
Γ−,R

f2,ν(z) dz = 2πi

by the Residue Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

f2,ν(z) dz = 2πi.

(e) Suppose that Ω − ν = 0. Then note that f2,Ω(z) = 1
z and so, by direct

computation, ∫
C+,R

f2,Ω(z) dz = i
∫ π

2

−
π
2

dθ = πi.

Also,

−

∫
γ′R

f2,Ω(z) dz +
∫

C+,R
f2,Ω(z) dz = 0

by Cauchy’s Theorem. Thus we have

lim
R→∞

∫
γ′R

f2,Ω(z) dz = −πi.
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(f) Suppose that −Ω − ν ∈ R<0. Then

−

∫
γ′R

f2,ν(z) dz +
∫

C+,R
f2,ν(z) dz =

∫
Γ+,R

f2,ν(z) dz = 0

by Cauchy’s Theorem. By Jordan’s Lemma we have

lim
R→∞

∫
γ′R

f2,ν(z) dz = 0.

Now, using these calculations and noting that

Fν(z) =
i

2π
( fν,1(z) − fν,2(z)),

we have the following cases.
(a) ν < −Ω: In this case we have −Ω − ν > 0 and Ω − ν > 0. Thus we get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π

(2πi − 2πi) = 0.

(b) ν = −Ω: In this case we have Ω − ν > 0. Thus we get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π

(πi − 2πi) =
1
2
.

(c) −Ω < ν < Ω: In this case we have −Ω − ν < 0 and Ω − ν > 0. Thus we get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π

(0 − 2πi) = 1.

(d) ν = Ω: In this case we have −Ω − ν < 0. Thus we get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π

(0 − πi) =
1
2
.

(e) ν > Ω: In this case we have −Ω − ν < 0 and Ω − ν < 0. Thus we get

lim
R→∞

∫ R

−R
Fν(z) dz =

i
2π

(0 − 0) = 0.

Thus, putting the above computations all together,

lim
j→∞

∫ j

− j
DΩ(t)e−2πiνt dt =


1, ν ∈ (−Ω,Ω),
1
2 , t ∈ {−Ω,Ω},
0, otherwise.

Thus FCC(DΩ) is equal to the equivalence class of the frequency-domain signal
on the right in the preceding expression. We have described this equivalence
class by taking a particular sequence, namely the sequence (DΩχ[− j, j]) j∈Z>0 , in
L1(R;C) ∩ L2(R;C) that converges to DΩ.
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2. We take f = χ[−a,a] whose CCFT we computed in Example 6.1.3–3 to be

FCC( f )(ν) =
sin(2πaν)

πν
= Da(t).

Note that from this it immediately follows that Da ∈ L2(R;C) and that Parseval’s
equality gives ∫

R

(
sin(2πaν)

πν

)2

dν = ∥ f ∥22 =
∫
R

| f (t)|2 dt = 4a2.

One can use this technique to generate all kinds of interesting integrals.
The recovery of f from FCC( f ) in this case is determined, except on a set of
measure zero, by computing the limit

lim
j→∞

∫ j

− j
FCC( f )(ν)e2πiνt dν. (6.12)

In this case, because f ∈ L(1)(R;C), this also follows from the developments of
Section 6.2.4 (e.g., Theorem 6.2.21). What the L2-theory gives us in this case
that we did not have before is that the convergence to f is valid in the L2-sense.
Thought of in this way, F CC does recover f directly from its CCFT, albeit only
as an equivalence class in L2(R;C).
Let us illustrate another limiting process that recovers f from its CCFT. We
consider the limit

lim
j→∞

∫
R

e−ν
2/ jFCC( f )(ν)e2πiνt dν (6.13)

(cf. Remark 6.3.5–2). In Figure 6.18 we show the approximations using (6.12)
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Figure 6.18 Two L2-approximations of χ[−1,1] ( j = 20)

(left) and (6.13) (right). This emphasises that there are many ways of converging
to an element in L2(R;C) with a sequence in L1(R;C) ∩ L2(R;C). Note that the
L2-CCFT differs from the L1-CCFT in that the pointwise behaviour of the two
limits shown in Figure 6.18 are irrelevant. What matters is the limit signal as
an equivalence class in L2(R;C).
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3. The signal f (t) = χ[− 1
2 ,

1
2 ](t)(□2,1,1(t) − 1) is one in L(1)(R;C) ∩ L(2)(R;C). Thus its

CCFT, which was given in Example 6.2.20–1 as

FCC( f )(ν) = i
1 − cos(πν)

πν
,

is in L(2)(R;C). However, since f is not almost everywhere equivalent to a
continuous signal, it cannot be that FCC( f ) ∈ L(1)(R;C). Thus we are in a
situation entirely like that considered in the preceding example where one can
reconstruct f , as an equivalence class in L2(R;C), from its CCFT using F CC.
This could be done explicitly using contour integration, or since f satisfied
the hypotheses of (say) Dirichlet’s Test, we can use the inversion results from
Section 6.2.4.

4. Next we consider the signal g(t) = χ[− 1
2 ,

1
2 ](t)△ 1

2 ,1,1
(t) whose CCFT was given in

Example 6.2.20–2 as

FCC(g)(ν) =
1 − cos(πν)

2π2ν2 .

Thus g is a signal in L(1)(R;C) ∩ L(2)(R;C) whose CCFT is also in L(1)(R;C) ∩
L(2)(R;C). Furthermore, the sequence (DΩg)Ω∈R>0 converges uniformly to g (or,
more precisely, to a signal almost everywhere equal to g, cf. Theorem 6.2.26).
Thus this is an example of a signal for which the L1-CCFT works quite satis-
factorily. Nevertheless, the L2-CCFT may still be applied, provided one accepts
that it deals in equivalence classes of signals, not with the signals themselves.

5. The final signal we consider in our list of examples is the signal

h(t) =


√

sin t+π
2 , |t| ≤ π,

0, otherwise

considered in Example 6.2.20–3. This signal is one in L(1)(R;C) ∩ L(2)(R;C), so
its CCFT must be in L(2)(R;C). Nothing that we have presented thus far allows
us to conclude that the CCFT of f is in L(1)(R;C). However, we did show using
Theorem 6.2.31 that (DΩh)Ω∈R>0 converges uniformly to h. •

6.3.5 Convolution, multiplication, and the L2-CCFT

In Section 6.1.5 we considered the relationships between convolution and the
CCFT in the L1-setting. In this section we carry this out in the L2-setting. Recall
from Corollary 4.2.10 that the convolution of signals in L(2)(R;C) is a signal in
C0

bdd(R;C). Generally, the CCFT of signals in C0
bdd(R;C) is not defined, and indeed

there exist signals in L2(R;C) whose convolution is in the domain of neither the L1-
nor the L2-CCFT. However, it is still possible to state a result in this case.
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6.3.15 Proposition (The convolution of L2-signals of the inverse CCFT of the product
of the L2-CCFT’s) If f,g ∈ L(2)(R;C) then

f ∗ g(t) = F CC(FCC(f)FCC(g))(t)

for all t ∈ R.
Proof Define f j = χ[− j, j] f and g j = χ[− j, j]g. As shown in the proof of Lemma 6.3.2, the
sequences ( f j) j∈Z>0 and (g j) j∈Z>0 are in L(1)(R;C) ∩ L(2)(R;C) and converge in L2(R;C)
to f and g, respectively. Moreover, since f j and g j have compact support, by Proposi-
tion 4.1.8 it follows that f j ∗ g j has compact support for each j ∈ Z>0. Since f j ∗ g j is in
L(1)(R;C) by Theorem 4.2.1, it follows from Theorem 1.3.11(iv) that f j ∗ g j ∈ L(2)(R;C).
Then, according to Proposition 6.1.18,

FCC( f j ∗ g j) = FCC( f j)FCC(g j)

=⇒ f j ∗ g j = F CC(FCC( f j)FCC(g j)) j ∈ Z>0,

because f j ∗g j ∈ L(2)(R;C) and sinceF CC ◦FCC is the identity on L2(R;C), as we showed
in Theorem 6.3.11.

By the sequence (( f j, g j)) j∈Z>0 converges to ( f , g) in the product topology onwhat?

L2(R;C)×L2(R;C). By Corollary 4.2.12 the sequence ( f j ∗ g j) j∈Z>0 converges uniformly
to f ∗ g.

We claim that (F CC(FCC( f j)FCC(g j))) j∈Z>0 converges uniformly to
F CC(FCC( f )FCC(g)). Indeed, we have

∥FCC( f )FCC(g)−FCC( f j)FCC(g j)∥1 ≤ ∥FCC( f )FCC(g) − FCC( f j)FCC(g)∥2
+ ∥FCC( f j)FCC(g) − FCC( f j)FCC(g j)∥2

≤ ∥FCC( f ) − FCC( f j)∥2∥FCC(g)∥2 + ∥FCC( f j)∥2∥FCC(g) − FCC(g j)∥2
= ∥ f − f j∥2∥g∥2 + ∥ f j∥2∥g − g j∥2

using the Cauchy–Bunyakovsky–Schwarz inequality and Parseval’s equality. Thus

lim
j→∞
∥FCC( f )FCC(g) − FCC( f j)FCC(g j)∥1 = 0.

By Corollary 6.1.8 (applied to F CC rather than FCC) it then follows that
(F CC(FCC( f j)FCC(g j))) j∈Z>0 converges uniformly to F CC(FCC( f )FCC(g)), as desired.

Thus we have

lim
j→∞

f j ∗ g j = f ∗ g, lim
j→∞
F CC(FCC( f j)FCC(g j)) = F CC(FCC( f )FCC(g)),

with both limits being with respect to the∞-norm. From this the result follows. ■

One would like to be able to say thatFCC( f ∗ g) = FCC( f )FCC(g) in the preceding
result, analogously to Proposition 6.1.18 in the L1-case. However, this formula is
not true in the L2-case, since, if general, f ∗ g is not a signal whose Fourier transform
can be taken. This, however, will be rectified when we consider these matters for
distributions in Corollary 6.4.12.

For the relationship between products and the L2-CCFT, the result is the same
as in the L1-case, but now we do not need any restrictions on the character of the
CCFT’s of the signals
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6.3.16 Proposition (The L2-CCFT of a product is the convolution of the L2-CCFT’s)
If f,g ∈ L(2)(R;C) then

FCC(fg)(ν) = FCC(f) ∗ FCC(g)(ν),

for almost every ν ∈ R.
Proof As in the proof of Proposition 6.3.15, let ( f j) j∈Z>0 and (g j) j∈Z>0 be sequences of
compactly supported signals in L(1)(R;C) ∩ L(2)(R;C) converging in L2(R;C) to f and
g, respectively. By Proposition 6.1.20 we have

FCC( f jg j)(ν) = FCC( f j) ∗ FCC(g j)(ν)

for every j ∈ Z>0 and for every ν ∈ R.
By continuity of the L2-CCFT it follows that the sequences (FCC( f j)) j∈Z>0 and

(FCC(g j)) j∈Z>0 converge in L2(R;C) to FCC( f ) and FCC(g), respectively. Thus, by , the what?

sequence ((FCC( f j),FCC( f j))) j∈Z>0 converges in L2(R;C) × L2(R;C) to (FCC( f ),FCC(g))
with the product topology. By Corollary 4.2.12 it follows that the sequence (FCC( f j) ∗
FCC(g j)) j∈Z>0 converges to FCC( f ) ∗ FCC(g) uniformly.

We claim that the sequence (FCC( f jg j)) converges uniformly to FCC( f g). Indeed,
we have

∥ f g − f jg j∥1 ≤ ∥ f g − f jg∥2 + ∥ f jg − f jg j∥ ≤ ∥ f − f j∥2∥g∥2 + ∥ f j∥∥g − g j∥2,

using the Cauchy–Bunyakovsky–Schwarz inequality. Thus

lim
j→∞
∥ f g − f jg j∥1 = 0.

By Corollary 6.1.8 it then follows that (FCC( f jg j)) j∈Z>0 converges uniformly toFCC( f g),
as desired.

Thus

lim
j→∞
FCC( f jg j) = FCC( f g), lim

j→∞
FCC( f j) ∗ FCC(g j) = FCC( f )FCC(g),

with convergence being uniform in each case. This gives the result. ■

A final result concerning convolution and the CCFT concerns taking convolu-
tions in a “mixed” case.

6.3.17 Proposition (Convolutions in L1 and L2) If f ∈ L(1)(R;C) and g ∈ L(2)(R;C), then
FCC(f)FCC(g) ∈ L2(R;C) and

f ∗ g(t) = F CC(FCC(f)FCC(g))(t), a.e. t ∈ R.

Proof Similarly to the proof of Proposition 6.3.15, let ( f j) j∈Z>0 and (g j) j∈Z>0 be se-
quences of compactly supported signals in L(1)(R;C)∩L(2)(R;C) converging in L1(R;C)
and L1(R;C) to f and g, respectively. Since f j, g j ∈ L(1)(R;C), by Proposition 6.1.20 we
have

f j ∗ g j(t) = F CC(FCC( f j)FCC(g j))(t), t ∈ R.
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for every j ∈ Z>0 and for every t ∈ R.
Note that FCC( f )FCC(g) ∈ L(2)(R;C) by Exercise 1.3.13. Moreover,

∥FCC( f )FCC(g)−FCC( f j)FCC(g j)∥2 ≤ ∥FCC( f )FCC(g) − FCC( f )FCC(g j)∥2
+ ∥FCC( f )FCC(g j) − FCC( f j)FCC(g j)∥2

≤ ∥FCC( f )∥∞∥FCC(g) − FCC(g j)∥2 + ∥FCC( f ) − FCC( f j)∥∞∥FCC(g j)∥2
≤ ∥ f ∥1∥g − g j∥2 + ∥ f − f j∥1∥g j∥2,

using Corollary 6.1.8. Taking limits as j→∞we see thatFCC( f )FCC(g) ∈ L2(R;C). By
Theorem 6.3.10,

lim
j→∞
F CC(FCC( f j)FCC(g j)) = F CC(FCC( f )FCC(g)),

the limit being in L2(R;C). By Corollary 4.2.9, we have

f ∗ g = lim
j→∞

f j ∗ g j = lim
j→∞
F CC(FCC( f j)FCC(g j)) = F CC(FCC( f )FCC(g)),

as desired. ■

6.3.6 The CCFT for signals in L2(R;C) with compact support

In our discussions of sampling in , we will see that it is important to thinkwhat

about signals in L2(R;C) with compact support. As we shall see, in the settings in
which such signals arise, they arise, not as signals in the time-domain, but rather
in the frequency-domain. In this context, the way to view the results in this section
as describing the signals with a particular CCFT. We see here a deep connection
between Fourier analysis and complex analysis, and this is a theme that will come
up again, both in our subsequent Fourier analysis and in Chapter 9 where we
discuss the Laplace transform.

We first recall from Corollary 6.1.13 that if f ∈ L(1)(R;C) has compact support
then FCC( f ) is infinitely differentiable. If we further have f ∈ L(2)(R;C) then there
is more we can say about the character of FCC( f ). To discuss this thoroughly, we
introduce some notation that is essential in describing the image of the CCFT.

Recall from that we denote by H(C;C) the set of entire functions, i.e., the set ofwhere?

holomorphic C-valued functions on C.

6.3.18 Definition (Entire function of exponential type) An entire function F ∈ H(C;C) is
of exponential type if there exist M, α ∈ R>0 such that |F(z)| ≤Meα|z| for z ∈ C. When
this inequality holds for a certain α ∈ R>0, we say the function is of exponential
type α. The set of entire functions of exponential type is denoted by Hexp(C;C) and
the set of entire functions of exponential type α is denoted by Hexp,α(C;C). •

The preceding definition allows the following characterisation of the CCFT of
signals that are in L(2)(R;C) and with compact support.
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6.3.19 Theorem (L2-Paley–Wiener Theorem with compact supports) For f : R → C
and for T ∈ R>0, the following two statements are equivalent:

(i) f ∈ L(2)(R;C) and supp(f) ⊆ [−T,T];
(ii) there exists F ∈ Hexp,2πT(C;C) such that

(a)
∫
R
|F(ν + i0)|2 dν < ∞ and

(b) FCC(f)(ν) = F(ν + i0) for all ν ∈ R.

Moreover, with f and F as above, we have

F(z) =
∫
R

f(t)e2πizt dt

for every z ∈ C.
Proof First we assume that f ∈ L(2)(R;C) and that supp( f ) ⊆ [−T,T]. We define
F : C→ C by

F(z) =
∫ T

−T
f (t)e−2πizt dt.

Let us denote G(t, z) = f (t)e−2πizt. Since f ∈ L(2)([−T,T];C) and since t 7→ e−2πizt is
in L(2)([−T,T];C) for every z ∈ C, it follows from the Cauchy–Bunyakovsky–Schwarz
inequality that t 7→ G(t, z) is in L(1)([−T,T];C) for every z ∈ C. It is also evident that the
function z 7→ e−2πizt is entire. Let z0 ∈ C and let U = B(1, z0). Define

η = sup{|Im(z)| | z ∈ U}

and note that for z = x + iy ∈ U we have

|G(t, z)| = | f (t)||e2πyt
| ≤ | f (t)||e2πηt

|.

Since t 7→ | f (t)| and t 7→ |e2πηt
| are both in L(2)([−T,T];C), it follows from the

Cauchy–Bunyakovsky–Schwarz inequality that t 7→ | f (t)||e2πηt
| is in L(1)([−T,T];C).

The lemma above then immediately shows that F ∈ H(C;C).
Note that for ν ∈ R we have

F(ν + i0) =
∫
R

f (t)e−2πiνt dt = FCC( f )(ν).

Since f ∈ L(2)(R;C) it follows that the function ν 7→ F(ν + i0) is also in L(2)(R;C).
Moreover, for z = x + iy ∈ Cwe have

|e−2πi(x+iy)t
| = |e2πyt

| ≤ |e2π|y||t|
| ≤ |e2π|z||t|

| (6.14)

This then gives

|F(z)| ≤
∫ T

−T
| f (t)e−2πizt

|dt ≤
∫ T

−T
| f (t)||e2π|z||t|

|dt ≤ e2π|z|T
∫ T

−T
| f (t)|dt, (6.15)

which shows that F ∈ Hexp,2πT(C;C), as desired.
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The proof of the converse might be seen as being rather indirect. We let F ∈
Hexp,2πT(C;C) be such that its restriction to the real axis is in L(2)(R;C) and such that
this restriction is the CCFT of f . This immediately implies, by invertibility of the
L2-CCFT, that f ∈ L(2)(R;C). We must now show that supp( f ) ⊆ [−T,T].

Let θ ∈ R and define
ρθ = {re−iθ

∈ C | r ∈ R>0}

and
Pθ,T = {z ∈ C | Re(ze−iθ) < −T}.

We depict these subsets of the complex plane in Figure 6.19. Now, for θ ∈ R and for

Pθ,T

T

ρθ

θ θ

Figure 6.19 Sets used in the proof of the Paley-Wiener Theorem

w ∈ C let us denote

Gθ(w) =
∫
ρθ

F(z)e2πwz dz.

This function is not well defined for every w ∈ C, so let us record when it is defined,
and give some of its properties.

1 Lemma The functions Gθ have the following properties:
(i) for θ ∈ R, Gθ is well-defined and holomorphic on Pθ,T;
(ii) G0 is well-defined and holomorphic on C<0 and Gπ is well-defined and holomormorphic

on C>0;
(iii) for w ∈ Pθ1,T ∩ Pθ2,T, Gθ1(w) = Gθ2(w);
(iv) for ϵ ∈ R>0, ∫

R
F(ν + i0)e−2πϵ|ν|e2πiνt dν = G0(−ϵ + it) −Gπ(ϵ + it),
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for t , 0.

Proof (i) Note that

Gθ(w) = e−iθ
∫
∞

0
F(re−iθ) exp(2πwre−iθ) dr. (6.16)

We have

|F(re−iθ) exp(2πwre−iθ)| ≤M exp(2πT|re−iθ
|) exp(Re(2πwre−iθ))

=M exp(2πr(T + Re(we−iθ))). (6.17)

Therefore, for w ∈ Pθ,T the integral (6.16) defining Gθ(w) is well-defined since

r 7→ F(re−iθ) exp(2πwre−iθ)

is in L(1)(R>0,C) when w ∈ Pθ,T. Also, the function

w 7→ F(re−iθ) exp(2πwre−iθ)

is in H(Pθ,T;C) for every r ∈ R>0 (indeed, it is in H(C;C) for every r ∈ R>0). Moreover,
if w0 ∈ Pθ,T then let ϵ ∈ R>0 be such that B(2ϵ,w0) ⊆ Pθ,T. Then denote

α = sup{T + Re(we−iθ) | w ∈ B(2ϵ,w0)},

noting that this quantity is finite since w 7→ Re(we−iθ) is a continuous function of w
and is negative since B(ϵ,w0) ⊆ Pθ,T. We then have

|F(re−iθ) exp(2πwre−iθ)| ≤M exp(2πrα).

This shows that the hypotheses of Theorem III-2.9.18 above hold, and so Gθ is holo-
morphic on Pθ,T.

(ii) We shall prove the assertion for G0, the proof for Gπ following in a similar vein.
We have

G0(w) =
∫
∞

0
F(r + i0)e2πwr dr.

By hypothesis, r 7→ F(r + i0) is in L(2)(R>0;C). For w ∈ C<0 we also have r 7→ e2πwr in
L(2)(R>0;C). By the Cauchy–Bunyakovsky–Schwarz inequality, r 7→ F(r + i0)e2πwr is in
L(1)(R>0;C). As above,

w 7→ F(r + i0)e2πwr

is in H(C;C) and so in H(C<0;C). If w0 ∈ C<0, let ϵ ∈ R>0 be such that B(2ϵ,w0) ⊆ C<0.
Then let

α = sup{Re(w) | w ∈ B(ϵ,w0)},

which then gives
|F(r + i0)e2πwr

| ≤ F(r + i0)e2παr

for w ∈ B(ϵ,w0). Thus the hypotheses of Theorem III-2.9.18 hold and so G0 is holomor-
phic in C<0.
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(iii) Suppose that θ1 , θ2 + 2kπ for some k ∈ Z. If Pθ1,T ∩ Pθ2,T , ∅, then without
loss of generality we may assume that θ2 > θ1 and that θ2 − θ1 < π. This being the
case, let us define

ϕ = 1
2 (θ1 + θ2), ψ = 1

2 (θ2 − θ1).

Consider w ∈ C of the form w = −reiϕ for r ∈ R>0. We then directly compute

Re(we−iθ1) = Re(we−iθ2) = −r cosψ.

Thus the ray
ρθ1,θ2,T = {−reiϕ

| − r cosψ < −T}

is contained in w ∈ Pθ1,T ∩ Pθ2,T.
Now, for R ∈ R>0, define

Γθ1,R = {re−iθ1 | r ∈ [0,R]},

Γθ2,R = {re−iθ2 | r ∈ [0,R]},

Γθ1,θ2,R = {Re−iα
| α ∈ [θ1, θ2]}.

Note that Γ = Γθ1,R ∪ Γθ2,R ∪ Γθ1,θ2,R is a closed contour and so, taking the contour with
positive (i.e., counterclockwise) orientation,∫

Γ

F(z)e2πwz dz =
∫
Γθ1 ,R

F(z)e2πwz dz +
∫
Γθ1 ,θ2 ,R

F(z)e2πwz dz −
∫
Γθ2 ,R

F(z)e2πwz dz = 0

by Cauchy’s Theorem. Let us examine the middle integral on the right. We can write
it as ∫

Γθ1 ,θ2 ,R

F(z)e2πwz dz = −iR
∫ θ2

θ1

F(Re−iα)e2πwRe−iα
dα.

Estimating the integrand gives

|F(Re−iα) exp(2πwRe−iα)| ≤M exp(2πR(T + Re(we−iα))),

just as in (6.17). Taking w = −reiϕ as above we have

Re(we−iα) = −r cos(ϕ − α).

As a function of α, the expression on the right is monotonically decreasing on [θ1, ϕ]
and monotonically increasing on [ϕ, θ2], and so achieves its maximum either when
α = θ1 or when α = θ2. However, we have

cos(ϕ − θ1) = cos(ϕ − θ2) = cosψ.

Therefore, Re(we−iα) ≤ −r cosψ and so

|F(Re−iα) exp(2πwRe−iα)| ≤M exp(2πR(T − r cosψ)).

Thus, provided that w ∈ ρθ1,θ2,T, we have

lim
R→∞

∫
Γθ1 ,θ2 ,R

F(z)e2πwz dz = 0.
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Therefore, again for w ∈ ρθ1,θ2,T, and taking orientations into account,

lim
R→∞

∫
Γθ1 ,R

F(z)e2πwz dz = lim
R→∞

∫
Γθ2 ,R

F(z)e2πwz dz.

From the definition of Gθ we have Gθ1(w) = Gθ2(w) when w ∈ ρθ1,θ2,T. Since Pθ1,T∩Pθ2,T
is a connected open set containing the ray ρθ1,θ2,T, it follows from that Gθ1 and Gθ2 what

agree on Pθ1,T ∩ Pθ2,T as desired.
(iv) This is a direct computation using the formula (6.16) for Gθ for θ ∈ {0, π}. ▼

Now we may complete the proof. From part (iv) of Lemma 1 we have∫
R

F(ν + i0)e−2πϵ|ν|e2πiνt dν = G0(−ϵ + it) − Gπ(ϵ + it),

for ϵ ∈ R>0 and for |t| > T. Note that for ϵ ∈ R>0 we have −ϵ + it ∈ C<0 ∩ P
−
π
2 ,T

when

t > T and −ϵ + it ∈ C<0 ∩ Pπ
2 ,T

when t < −T. The argument used in Lemma 1(iii)
shows that G0 and G− π2 agree on C<0 ∩ P

−
π
2 ,T

since they agree on the ray ρ− π2 ,0,T. In

a similar manner, G0 and G π
2

agree on C<0 ∩ Pπ
2 ,T

since they agree on the ray ρ0, π2 ,T.

Corresponding statements hold with Gπ in place of G0 and C>0 in place of C<0. Thus
we can write ∫

R
F(ν + i0)e−2πϵ|ν|e2πiνt dν = G− π2 (−ϵ + it) − G− π2 (ϵ + it)

when t > T and ∫
R

F(ν + i0)e−2πϵ|ν|e2πiνt dν = G π
2
(−ϵ + it) − G π

2
(ϵ + it)

when t < −T. In any case, we have

lim
ϵ→0

∫
R

F(ν + i0)e−2πϵ|ν|e2πiνt dν = 0

whenever |t| > T.
Now note that as ϵ→ 0 the signal

ν 7→ F(ν + i0)e−2πϵ|ν| (6.18)

converges in L2(R;C) to the signal

ν 7→ F(ν + i0), (6.19)

cf. Remark 6.3.5–1. SinceF −1
CC is a continuous isomorphism of L2(R;C), it follows that

the inverse CCFT of the signal (6.18) converges in L2(R;C) to the inverse CCFT of the
signal (6.19). Since the inverse CCFT of the signal (6.19) is f by hypothesis, it follows
that

f (t) =
∫
R

F(ν + i0)e2πiνt dν = lim
ϵ→0

∫
R

F(ν + i0)e−2πϵ|ν|e2πiνt dν

for almost every t ∈ R. In particular, f (t) = 0 for almost every t for which |t| > T. ■
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6.3.20 Remarks (On the L2-Paley–Wiener Theorem with compact supports)
1. There is another version of the Paley–Wiener Theorem which we state as The-

orem 9.1.17 when we discuss the Laplace transform.
2. Of course, the statement of the Paley–Wiener Theorem holds if “FCC” is replaced

with “F −1
CC ” in the statement.

3. By considering the strong of bounds in (6.14) and the computation (6.15) that
follows it, we see that, if f ∈ L2(R;C) has support in [−T,T], then we, in fact,
have FCC( f )(ν) = F(ν + i0), ν ∈ R, where F ∈ H(C;C) satisfies

|F(z)| ≤Me2πT|Im(z)|, z ∈ C,

for some M ∈ R>0. We shall make use of this slightly more refined bound
subsequently. •

Let us give some examples so that we can explicitly see how the Paley–Wiener
Theorem works.

6.3.21 Examples (Paley–Wiener Theorem)
1. Let a ∈ R>0 and consider f = χ[−a,a]. In Example 6.1.3–3 we computed
FCC( f )(ν) = sin(2πaν)

πν . We note that f is in L(2)(R;C) and that supp( f ) ⊆ [−a, a].
Note that if we define

F(z) =
∫
R

f (t)e−2πizt dt =
sin(2πaz)

πz
,

then F(ν+ i0) = FCC( f )(ν). We should verify that F ∈ Hexp,2πa(C;C). By verifying
the Cauchy–Riemann equations, we can check that F is holomorphic. Let

C = sup{|F(z)| | z ∈ B(1, 0)},

noting that C < ∞. If |z| > 1 we then have, using Euler’s formula,

|F(z)| ≤
∣∣∣∣∣e2πaiz

− e−2πaiz

2πiz

∣∣∣∣∣ ≤ 1
2π

(e2πa|z| + e−2πa|z|) ≤
1
π

e2πa|z|.

Thus, if we take M = max{C, 1
π }, |F(z)| ≤ Me2πa|z|. This then verifies the conclu-

sions of the Paley–Wiener Theorem.
2. Here we take f defined by

f (t) =


1 + t

a , t ∈ [−a, 0],
1 − t

a , t ∈ (0, a],
0, otherwise,

for a ∈ R>0. In Example 6.1.3–4 we computed FCC( f ) = sin2(πaν)
π2aν2 . In this case we

note that

F(z) =
∫
R

f (t)e−2πizt dt =
sin2(πaz)
π2az2
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has the property that FCC( f )(ν) = F(ν + i0). Note that supp( f ) = [−a, a]. To
verify that F ∈ Hexp,2πa(C;C) we note that

sin2(πaz) =
(

1
2i (e

πaiz
− e−πaiz)

)2
= − 1

4 (e2πaiz + e−2πaiz + 2).

Now a computation just like the one in the previous example gives |F(z)| ≤
Me2πa|z| for an appropriately chosen M. •

6.3.7 Notes

Exercises

6.3.1 Find a signal f ∈ L(1)(R;C) such that the integral∫
R

|FCC f (ν)|2 dν

does not exist.
6.3.2 Let f (t) = 1

1+t2 .
(a) Show that f ∈ L(1)(R;C).
(b) Compute the CCFT of f directly from the definition.
(c) Perform a complex partial fraction decomposition of f to write it as a

sum of two signals, each with a denominator linear in t.
(d) Are the components in the partial sum in L(1)(R;C)?
(e) Show that the components in the partial sum are in L(2)(R;C).
(f) Compute the L2-CCFT of each component, and show that the sum of the

resulting CCFT’s equals the CCFT of f .
6.3.3 Let f (t) = t

1+|t| .

(a) Show that f < L(1)(R;C).
(b) Show that f ∈ L(2)(R;C).
(c) Compute the L2-CCFT of f .

6.3.4 Let f ∈ L2(R;C).
(a) Show that the partial sums∫ Ω

−Ω

FCC( f )(ν)e2πiνt dν, Ω ∈ R>0,

are well-defined, and are continuous as functions of t.
(b) Conclude that, if f is not almost everywhere equal to a continuous signal,

then the family of signals (DΩ f )Ω∈R>0 cannot converge uniformly.
Hint: Use Proposition III-3.8.62.
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6.3.5 Consider four signals f1, f2, f3, f4 : R→ R satisfying

f1(t) =

1, t ∈ [−1, 1],
0, otherwise,

f2(t) =

exp
(
−

1
1−t2

)
, t ∈ (−1, 1),

0, otherwise,

f3(t) =
1

1 +
√
|t|
,

f4(t) =
1

1 + |t|
.

Answer the following questions.
(a) For each of the transformsFCC( f1),FCC( f2),FCC( f3), andFCC( f4), indicate

whether it exists in the sense that

FCC( fa)(ν) =
∫
R

fa(t)e−2πiνt dt,

for a ∈ {1, 2, 3, 4}.
(b) For each of the transformsFCC( f1),FCC( f2),FCC( f3), andFCC( f4), indicate

whether it is continuous.
(c) For each of the transformsFCC( f1),FCC( f2),FCC( f3), andFCC( f4), indicate

whether it is differentiable.
(d) For each of the transformsFCC( f1),FCC( f2),FCC( f3), andFCC( f4), indicate

whether it is in L(1)(R;R).
(e) For each of the transformsFCC( f1),FCC( f2),FCC( f3), andFCC( f4), indicate

whether it is in L(2)(R;R).
6.3.6 Let f = χ[−1,1].

(a) Compute FCC( f ).
We propose to recover f from its CCFT by computing∫ Ω2

−Ω1

FCC( f )(ν)e2πiνt dν,

and letting Ω1 and Ω2 tend to infinity separately. The resulting limit will
exist if and only if the two limits

lim
Ω1→∞

∫ 0

−Ω1

FCC( f )(ν)e2πiνt dν, lim
Ω2→∞

∫ Ω2

0
FCC( f )(ν)e2πiνt dν, (6.20)

exist.
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(b) Show that the imaginary parts of the two integrals in (6.20) converge in
the limit.

(c) Show that the real parts of the two integrals in (6.20) do not converge in
the limit.

(d) What is the point of this exercise?
6.3.7 Answer the following questions.

(a) Is the function

x 7→
(1 − cos x)

x
in L(2)(R>0;R)?

(b) Show that

lim
R→∞

∫ R

0

(1 − cos x)2

x2 dx =
π
2
.

Hint: Use Example 6.2.20–1 and Parseval’s equality.
6.3.8 Answer the following questions.

(a) Is the function

x 7→
(1 − cos x)

x2

in L(2)(R>0;R)?
(b) Show that

lim
R→∞

∫ R

0

(1 − cos x)2

x4 dx =
π
6
.

Hint: Use Example 6.2.20–2 and Parseval’s equality.

In the next exercise you will be led through the proof of a simple version of the
so-called Sampling Theorem. This result will be discussed in detail and in more
generality in Section 8.3.

6.3.9 Consider the following result.

Theorem If f ∈ C0(R;C) ∩ L(2)(R;C) is such that FCC(f) is band-limited with
supp(FCC(f)) ⊆ [−Ω,Ω], then

f(t) =
∑
n∈Z

f
( n
2Ω

) sin(π(2Ωt − n))
π(2Ωt − n)

for all t ∈ R.

Prove the theorem along the following lines, filling in the gaps and justifying
all the steps.
(a) Prove that FCC( f ) ∈ L(1)(R;C) ∩ L(2)(R;C).
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(b) Conclude that if we define

g(t) =
∫ Ω

−Ω

FCC( f )(ν)e2πiνtdν, (6.21)

then g(t) = f (t) for almost every t ∈ R.
(c) Also conclude that continuity of f allows us to assert that g(t) = f (t) for

every t ∈ R.
Hint: Use the fact that F CC is a continuous map from (L1(R;C), ∥·∥1)
into (C0

0(R;C), ∥·∥∞) by Corollary 6.1.8, and then apply Theorems III-3.5.2
and III-3.8.39 and Exercise III-2.9.8.

(d) Note that FCC( f ) ∈ L(2)([−Ω,Ω];C). Write the Fourier series for
FCC( f )|[−Ω,Ω]:

FS[FCC( f )|[−Ω,Ω]](ν) =
∑
n∈Z

cne−πin ν
Ω ,

where
cn =

1
2Ω

f
( n
2Ω

)
.

(e) Perform a computation to finish the proof.
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Section 6.4

The CCFT for tempered distributions

Now we turn to our first development of the CCFT for distributions. We begin
by considering the CCFT for tempered distributions. This has the limitation that it
does not include signals that grow faster than polynomials at infinity, e.g., it does
not allow signals with ubiquitous exponential growth. However, as we shall see,
the CCFT for tempered distributions has a very attractive symmetry that makes
these distributions somehow natural to the CCFT.

Do I need to read this section? The material in this section is essential if one is to
tie together the four Fourier transforms we consider; see . However, it can perhaps what?

be bypassed on a first superficial treatment of Fourier analysis. •

6.4.1 The strategy for defining the CCFT of a distribution

The motivation for our methodology of defining the CCFT for a distribution
is the equality θFCC( f )(ϕ) = θ f (FCC(ϕ)), which is valid for all ϕ ∈ D (R;C) and
f ∈ L(1)

loc(R;C) for which FCC( f ) ∈ L(1)(R;C):

θFCC( f )(ϕ) =
∫
R

FCC( f )(ν)ϕ(ν) dν =
∫
R

(∫
R

f (t)e−2πiνt dt
)
ϕ(ν) dν

=

∫
R

(
ϕ(ν)e−2πiνt dν

)
dt =

∫
R

FCC(ϕ)(t) f (t) dt,

using Fubini’s Theorem. This suggests that a good approach for defining the CCFT
on a general distribution θ ∈ D ′(R;C) is to take FCC(θ)(ϕ) = θ(FCC(ϕ)). This
approach has one immediate drawback, namely that it is generally not true that
FCC(ϕ) ∈ D (R;C) when ϕ ∈ D (R;C). One can then take two approaches to resolve
the problem. The first is work with a class of test signals that is invariant under
the CCFT. The other is to consider a set of distributions defined using test signals
that are the CCFT’s of signals fromD (R;C). We shall pursue both approaches, the
first in this section being the more standard, and the most widely applicable. The
second approach we pursue in Section 6.5.

6.4.2 The Fourier transform of Schwartz test signals

It turns out that the setS (R;C) of Schwartz signals gives a space of test signals
invariant under FCC. Indeed, FCC|S (R;C) has many remarkable features that we
will exploit. The following result is the basic one.

6.4.1 Theorem (The CCFT is an isomorphism of the Schwartz test signals)
FCC|S (R;C) is a Hilbert space isomorphism from S (R;C) to itself. That is to say,
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(i) FCC(S (R;C)) ⊆ S (R;C),
(ii) FCC|S (R;C) is a bijection onto S (R;C), and
(iii) ∥ϕ∥2 = ∥FCC(ϕ)∥2, ϕ ∈ S (R;C).

Proof Letϕ ∈ S (R;C). The infinite differentiability ofFCC(ϕ) for follows from Propo-
sition 6.1.12 and the fact thatϕ is rapidly decreasing. ThatFCC(ϕ) is rapidly decreasing
follows from Proposition 6.1.10 and the fact that ϕ is infinitely differentiable. To show
that FCC(ϕ)(k) is rapidly decreasing note that the signal ϕm,k : t 7→ ((−2πit)mϕ(t))(k) is in
L(1)(R;C) since ϕ and all of its derivatives are rapidly decreasing. Now note that by
Proposition 6.1.10 we have( 1

2πi

)k
FCC(ϕm,k)(ν) = νkFCC(ϕm,0)(ν) = νkFCC(ϕ)(m)(ν).

The leftmost expression tends to zero as ν → ∞ by the Riemann–Lebesgue Lemma,
and this gives the rapid decrease ofFCC(ϕ)(m) for any m, since k ∈ Z>0 is arbitrary. This
shows that FCC(S (R;C)) ⊆ S (R;C).

Since S (R;C) ⊆ L(1)(R;C) ∩ L(2)(R;C) and since Schwartz signals are continuous,
it follows from Theorem 6.2.26 that F CC ◦ FCC(ϕ) = FCC ◦ F CC(ϕ) = ϕ for all ϕ ∈
S (R;C).

The final statement of the theorem follows from part (ii) of Theorem 6.3.3. ■

6.4.3 Definitions and computations

Now we may define the CCFT for tempered distributions using the fact that
S (R;C) is invariant under the CCFT.

6.4.2 Definition (The CCFT for tempered distributions) The continuous-continuous
Fourier transform or CCFT assigns to θ ∈ S ′(R;C) the elementFCC(θ) ∈ S ′(R;C)
defined by FCC(θ)(ϕ) = θ(FCC(ϕ)), ϕ ∈ S (R;C). •

Of course, we can similarly defineF CC : S ′(R;C)→ S ′(R;C) byF CC(θ)(ϕ) =
θ(F CC(ϕ)).

Before we embark on a discussion of the various properties of the CCFT for
tempered distributions, let us look at some examples.

6.4.3 Examples (The CCFT for tempered distributions)
1. If f ∈ L(1)(R;C) then FCC(θ f ) = θFCC( f ). First of all, note that θ f ∈ S ′(R;C)

by part (ii) of Proposition 3.11.4. Also, since FCC( f ) is bounded it follows
from Proposition 3.3.17 that θFCC( f ) is indeed a tempered distribution. Now, by
Fourier Reciprocity, Proposition 6.1.9, we have

θFCC( f )(ϕ) =
∫
R

FCC( f )(ξ)ϕ(ξ) dξ =
∫
R

f (ξ)FCC(ϕ)(ξ) dξ

= θ f (FCC(ϕ)) = FCC(θ) f (ϕ)

for any ϕ ∈ S (R;C). Thus the CCFT for tempered distributions agrees with
the L1-CCFT in the cases where they are both defined.
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2. We also claim that CCFT for tempered distributions generalises the L2-CCFT.
That is, for f ∈ L2(R;C) we claim that FCC(θ) f = θFCC( f ). It follows from part (ii)
of Proposition 3.11.4 that θ f , θFCC( f ) ∈ S ′(R;C). The same sequence of compu-
tations as above, using Fourier Reciprocity for the L2-CCFT (Proposition 6.3.9),
gives the claim in this case.

The above two examples show that the CCFT for tempered distributions does
generalise both the L1 and L2-CCFT. Let us now show that there are signals whose
CCFT can be computed as tempered distributions, but which do not fit the theory
for the CCFT developed during the preceding sections.
3. Let us compute the CCFT of the delta-signal, δa, for a ∈ R. We have

FCC(δa)(ϕ) = δa(FCC(ϕ)) = FCC(ϕ)(a) =
∫
R

ϕ(t)e−2πiat dt.

Therefore, FCC(δa) = θE−2πia .

4. Let us compute the CCFT of δ(k)
0 for k ∈ Z>0. Here, for ϕ ∈ S (R;F), we compute

⟨FCC(δ(k)
0 );ϕ⟩ = (−1)k

⟨δ0;FCC(ϕ)(k)
⟩ = (−1)kFCC(ϕ)(k)(0)

= (−1)k
∫
R

(−2πit)kϕ(t)e−2πiνt dt
∣∣∣∣∣
ν=0

= (2πi)k
∫
R

tkϕ(t) dt = (2πi)k
⟨θPk ;ϕ⟩,

using Proposition 6.1.12 and where Pk(t) = tk. Thus FCC(δ(k)
0 ) = (2πi)kθPk .

5. Let us compute the CCFT of the Dirac comb

⋔T=
∑
n∈Z

δnT.

This is a tempered distribution, as we can see in a few ways. For one, in
Example 3.3.11–4 we showed directly that ⋔T is a particular case of a family of
tempered distributions arising as infinite sums of shifted delta-signals. Second,
⋔T is a T-periodic distribution, and so is tempered by Theorem 3.9.18. In any
case, we can compute its CCFT. We compute, using continuity of the CCFT,

FCC(⋔T) =
∑
n∈Z

FCC(δnT) =
∑
n∈Z

θE2πinT .

From Example 5.5.10–1 we have∑
n∈Z

θE2πinT =
1
T
⋔T−1 ,

and so
FCC(⋔T) =

1
T
⋔T−1 .
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6. Consider f (t) = e2πiat. As a signal of slow growth, this signal qualifies as a
tempered distribution. We compute its CCFT by

FCC(θ f )(ϕ) = θ f (FCC(ϕ)) =
∫
R

e2πiaξFCC(ϕ)(ξ) dξ = F CC(FCC(ϕ))(a) = ϕ(a),

using the fact that F CC(FCC(ϕ)) recovers ϕ by Theorem 6.2.26 and since
FCC(ϕ) ∈ L(1)(R;C) by part (ii) of Proposition 3.11.4. Thus FCC( f ) = δa.

7. Let Pk(t) = tk, noting that Pk ∈ S ′(R;C) by Example 3.3.11–1. Following the
computations of 4, we have

F CC(δ(k)) = (−2πi)kθPk .

Taking the CCFT of this equation gives

FCC(Pk) = (−2πi)−kδ(k). •

6.4.4 Properties of the CCFT for tempered distributions

The CCFT for tempered distributions has the same basic properties of the L1-
CCFT as outlined in Section 6.1.2. We state these here for completeness. For the
following result, recall from Exercise 3.2.7 the definition of τ∗θ for θ ∈ D (R;C).
Also recall from the preliminary remarks of Section 3.9.2 the definition of τ∗aθ for
θ ∈ D (R;C). We also use the notation θ̄ ∈ D ′(R;C) to define the distribution
θ̄(ϕ) = θ(ϕ̄).

6.4.4 Proposition (Elementary properties of the CCFT for tempered distributions)
For θ ∈ S ′(R;C) the following statements hold:

(i) FCC(θ) = F CC(θ̄);
(ii) FCC(σ∗θ) = σ∗(FCC(θ)) = F CC(θ);
(iii) if θ is even (resp. odd) then FCC(θ) is even (resp. odd);
(iv) if θ is real and even (resp. real and odd) thenFCC(θ) is real and even (resp. imaginary

and odd);
(v) FCC(τ∗aθ)(ν) = E−2πiaFCC(θ)(ν).

The proof is a matter of working through the definitions, and makes an excellent
exercise (see Exercise 6.4.2). The properties of the CCFT for tempered distributions
and differentiation also mirror those for the L1-CCFT.

6.4.5 Proposition (The CCFT for tempered distributions and differentiation) For
θ ∈ S ′(R;C) we have FCC(θ(k)) = (2πiρ)kFCC(θ), where ρ(ν) = ν.

Proof For k = 1 and for ϕ ∈ S (R;C) we have

FCC(θ′)(ϕ) = θ′(FCC(ϕ)) = −θ(FCC(ϕ)′) = −θ(FCC((−2πiρ)ϕ)) = FCC(θ)(2πiρϕ),

where we have used Proposition 6.1.12. The result for general k follows by a trivial
induction. ■
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6.4.6 Proposition (The CCFT for tempered distributions and differentiation of the
transform) For θ ∈ S ′(R;C) we have FCC(θ)(k) = FCC((−2πiρ)kθ), where ρ(t) = t.

Proof For k = 1 and for ϕ ∈ S (R;C) we have

FCC(θ)′(ϕ) = −FCC(θ)(ϕ′) = −θ(FCC(ϕ′)) = −θ(2πiρFCC(ϕ)) = FCC((−2πiρ)θ)(ϕ),

where we have used Proposition 6.1.10. The general case follows by an easy induction.
■

Let’s use the above computations to derive the CCFT for the step signal. Inter-
estingly, this is not so easily done.

6.4.7 Example (The CCFT of the step signal) The unit step signal is denoted by 1≥0.
We wish to compute the CCFT of 1≥0. To do so requires some work. We begin
with the easy part. Note that θ′1≥0

= δ0. Thus, by Example 6.4.3–3, FCC(θ′1≥0
) is the

tempered distribution associated with the frequency signal ν 7→ 1. The us denote
this signal by u in our discussion. By Proposition 6.1.10, 2πiρFCC(θ1≥0) = FCC(θ′1≥0

)
where ρ(ν) = ν. We have to solve this equation for FCC(θ1≥0), and this is where
the hard part comes in. We break this into several steps. Throughout the ensuing
discussion, ρ is the signal ρ(t) = t.
1. Characterise elements of D (R;C) vanishing at t = 0: We claim that χ ∈ D (R;C)

satisfies χ( j)(0) = 0, j ∈ {0, 1, . . . , k − 1}, if and only if there exists χ̃ ∈ D (R;C)
such that χ(t) = tkχ̃(t). Clearly if χ(t) = tkχ̃(t) then the first k − 1 derivatives of χ
vanish at t = 0. Now suppose that the first k−1 derivatives so vanish. Note that
the function χ̃(t) = t−kχ(t) is infinitely differentiable away from t = 0, and has
compact support. We may then compute the derivative of χ̃ away from t = 0
using the product rule:

χ̃(m)(t) =
m∑

j=0

(
m
j

)
χ( j)(t)

dm− j

dtm− j

1
tk
.

Since χ is infinitely differentiable, for any j ∈ Z>0 we may write

χ(t) =
r∑

j=0

χ( j)(0)t j

j!
+ Rm(t),

where |Rm(t)| ≤ Ktm+1 for some K ∈ R≥0. This is Taylor’s Theorem with remain-
der. Taking j sufficiently large we see that χ̃ will be infinitely differentiable at
t = 0 provided we take χ̃(0) = ψ(k)(0)

k! .
2. Characterise elements of D (R;C) taking the value 1 at t = 0: Here we claim that

if ψ ∈ D (R;C) satisfies ψ(0) = 1 and ψ( j)(0) = 0, j ∈ {1, . . . , k − 1}, then for any
ϕ ∈ D (R;C) we can write

ϕ(t) = ψ(t)
k−1∑
j=0

ϕ( j)(0)t j

j!
+ χ(t), (6.22)
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where χ(t) ∈ D (R;C) satisfies χ( j)(0) = 0, j ∈ {0, 1, . . . , k}. To see this, first note
that (6.22) uniquely determines χ, and that χ is clearly an element of D (R;C).
To show that the first k derivatives of χ vanish, one merely differentiates (6.22),
using the properties of ψ.

3. Solve ρkθ = 0 for θ ∈ D ′(R;C): We claim that the solutions to this equation are
of the form

θ =
k−1∑
j=0

c jδ
( j)
0 , c0, c1, . . . , ck−1 ∈ C. (6.23)

If χ ∈ D (R;C) satisfies χ( j)(0) = 0, j ∈ {0, 1, . . . , k}, we have χ(t) = tkχ̃(t) for
χ̃ ∈ D (R;C), and therefore, θ(χ) = 0. Now fix such a test signal χ and write
ϕ ∈ D (R;C) as in (6.22). Then

θ(ϕ) =
k−1∑
j=1

ϕ( j)(0)
j!

θ(ρ jχ).

The representation (6.23) follows by taking

c j =
(−1) j

j!
θ(ρ jχ).

4. The distribution pv(ρ−1): Note that the signal f (t) = t−1 is not locally integrable,
so does not define a distribution in a direct manner. However, its primitive
f −1(t) = log|t| is locally integrable. Therefore, the derivative of the primitive
defines a distribution, and this distribution we denote by pv(ρ−1). Let us try to
better understand this distribution (and in so doing, make sensible the notation
we have used to denote it). Let us denote g(t) = log|t| so that pv(ρ−1) = g′. We
then have, for ϕ ∈ D (R;C),

pv(ρ−1)(ϕ) = −θg(ϕ′) = −
∫
R

log|t|ϕ′(t) dt

= lim
ϵ→0

(
−

∫ ϵ

−∞

log|t|ϕ′(t) dt −
∫
∞

ϵ

log|t|ϕ′(t) dt
)

= lim
ϵ→0

(
(ϕ(ϵ) − ϕ(−ϵ)) log ϵ +

∫
|t|≥ϵ

ϕ(t)
t

dt
)

= lim
ϵ→0

(
(2ϵϕ′(t0)) log ϵ +

∫
|t|≥ϵ

ϕ(t)
t

dt
)

= lim
ϵ→0

∫
|t|≥ϵ

ϕ(t)
t

dt = pv
∫
R

ϕ(t)
t

dt,

where we have used integration by parts in the third step and the Mean Value
Theorem in the third step. This then makes it sensible to denote the distribution
g′ by pv(ρ−1).
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5. Solve ρθ = θu for θ ∈ D ′(R;C): Here, recall, u denotes the signal that takes
the value 1 everywhere. We first claim that θ = pv(ρ−1) solves this equation
ρθ = θu. To verify this we note that if ϕ ∈ D (R;C) we have

(ρpv(ρ−1))(ϕ) = pv(ρ−1)(ρϕ) = pv
∫
R

ρ(t)
ϕ(t)

t
dt =

∫
R

ϕ(t) dt = θu(ϕ).

Now we note that any solution of the equation ρθ = θu will have the form
θ = pv(ρ−1) + σ, where σ ∈ D ′(R;C) satisfies ρσ = 0. But this means, as we
have seen in step 3, that σ = cδ0 for some c ∈ C. Therefore, a general solution of
ρθ = θu has the form θ = pv(ρ−1) + cδ0 for c ∈ C.
Now we proceed with our determination of FCC(θ1≥0). We have ρFCC(θ1≥0) =

1
2πiθu. This means, by part 5 of our above discussion, that FCC(θ1≥0) =

1
2πipv(ρ−1) +

cδ0 for some c ∈ C. To determine the value of c, note that pv(ρ−1) is an odd
distribution and that δ0 is an even distribution. Therefore

cδ0 =
1
2 (FCC(θ1≥0) + σ

∗FCC(θ1≥0))

= 1
2 (FCC(θ1≥0) + FCC(σ∗θ1≥0))

= 1
2 (FCC(θ1≥0 + σ

∗θ1≥0))

= 1
2FCC(θu) =

1
2
δ0.

Using Example 6.4.3–6. Thus c = 1
2 . Thus, after some not insignificant effort, we

have derived the formula

FCC(θ1≥0) =
1

2πi
pv(ρ−1) +

1
2
δ0. •

6.4.5 Inversion of the CCFT for tempered distributions

The matter of inverting the CCFT on S ′(R;C) mirrors the situation we saw for
the inversion of the CDFT on periodic distributions, in that all the complexities of
inversion that are present for signals get washed away. Indeed, the main result
here is the following. Continuity in the following theorem means that convergent
sequences are mapped to convergent sequences.

6.4.8 Theorem (The CCFT is an isomorphism of the tempered distributions) The
map FCC : S ′(R;C) → S ′(R;C) is a continuous bijection with a continuous inverse.
Furthermore, the inverse is F CC : S ′(R;C)→ S ′(R;C).

Proof Continuity of FCC in this case means that if (θ j) j∈Z>0 is a sequence converging
to zero in S ′(R;C), then the sequence (FCC(θ j)) j∈Z>0 converges to zero in S ′(R;C).
To see that this relation holds, we let ϕ ∈ S (R;C) and compute

lim
j→∞
FCC(θ j)(ϕ) = lim

j→∞
θ j(FCC(ϕ)) = 0
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since FCC(ϕ) ∈ S (R;C). This shows continuity of FCC, and continuity of F CC is
shown in exactly the same way.

To see that FCC is a bijection, we shall show that its inverse is F CC. For θ ∈
S ′(R;C) and ϕ ∈ S (R;C) we compute

(F CC ◦ FCC(θ))(ϕ) = FCC(θ)(F CC(ϕ)) = θ(FCC ◦ F CC(ϕ)) = θ(ϕ),

since ϕ,F CC(ϕ) ∈ L(1)(R;C) and since ϕ is continuous (here we are invoking Theo-
rem 6.2.26). This shows that F CC ◦FCC(θ) = θ. That FCC ◦F CC(θ) = θ follows in an
entirely similar manner. Thus FCC is a bijection whose inverse is F CC. ■

6.4.6 Convolution, multiplication, and the CCFT for tempered distributions

We have seen in Sections 6.1.5 and 6.3.5 the connection between convolution,
multiplication, and the CCFT for the L1- and L2-CCFT. Here we examine the same
ideas in the case of the CCFT for tempered distributions. There are not a lot of very
general situations where one can write a formula like FCC(θ ∗ ρ) = FCC(θ)FCC(ρ),
in large part because multiplying distributions is not an operation that is normally
defined. Thus part of the story has to be that one of the CCFT’s has to be a multiplier
for the other CCFT, in whatever class of distributions one is working with.

The first result concerns convolution of test signals and distributions.

6.4.9 Proposition (The CCFT of convolution between S (R;C) and S ′(R;C)) If ϕ ∈
S (R;C) and θ ∈ S ′(R;C), then FCC(ϕ ∗ θ) = FCC(ϕ)FCC(θ).

Proof By Theorem 4.5.3, we have that ϕ ∗ θ ∈ E (R;C) is a signal of slow growth, and
so is in S ′(R;C). Additionally, for ψ ∈ S (R;C), we have

⟨FCC(ϕ ∗ θ);ψ⟩ = ⟨ϕ ∗ θ;FCC(ψ)⟩ = ⟨θ ⊗ θϕ; τ∗FCC(ψ)⟩,

where τ(s, t) = s + t. Note that FCC(ϕ) ∈ S (R;C) by Theorem 6.4.1 and FCC(θ) ∈
S ′(R;C) by Theorem 6.4.8. By Proposition 3.3.18, the product FCC(ϕ)FCC(θ) is well
defined as a tempered distribution. Moreover, for ψ ∈ S (R;C), we have

⟨FCC(ϕ)FCC(θ);ψ⟩ = ⟨FCC(θ);FCC(ϕ)ψ⟩ = ⟨θ;FCC(FCC(ϕ)ψ)⟩.

Using Proposition 6.3.16, we compute

FCC(FCC(ϕ)ψ) = FCC(FCC(ϕ)) ∗ FCC(ϕ) = (σ∗ϕ) ∗ FCC(ψ) = ⟨θϕ; τ∗FCC(ψ)⟩,

the last equality following since

(σ∗ϕ) ∗ FCC(ψ)(s) =
∫
R
ϕ(−τ)FCC(ψ)(s − τ) dτ =

∫
R
ϕ(τ)FCC(ψ)(s + τ) dτ.

Putting the preceding calculations together gives

⟨FCC(ϕ)FCC(θ);ψ⟩ = ⟨θ ⊗ θϕ;FCC(ψ)⟩ = ⟨FCC(ϕ ∗ θ);ψ⟩,

as claimed. ■

Still working with test signals and distributions, the process can be reversed,
which makes sense since the product makes sense in this case.
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6.4.10 Proposition (The CCFT of product between S (R;C) and S ′(R;C)) If ϕ ∈
S (R;C) and θ ∈ S ′(R;C), then FCC(ϕθ) = FCC(ϕ) ∗ FCC(θ).

Proof We use Proposition 6.4.9 and calculate

F CC(FCC(ϕ) ∗ FCC(θ)) = F CC(FCC(ϕ))F CC(FCC(θ) = ϕθ.

By Theorem 6.4.8 we obtain the result. ■

We now give a less restrictive result involving the CCFT of the convolution of
a pair of distributions, although we still require one of the distributions to have
compact support.

6.4.11 Proposition (The CCFT of convolution between E ′(R;C) and S ′(R;C)) If θ ∈
S ′(R;C) and ρ ∈ E ′(R;C), then FCC(ρ ∗ θ) = FCC(ρ)FCC(θ).

Proof By Theorem 6.4.15 below, FCC(ρ) ∈ E (R;C) is a signal of slow growth. Then
we note that, since E ′(R;C) ⊆ S ′(R;C) by Propositions 3.7.9 and 3.4.9, the product
FCC(ρ)FCC(θ) is well defined in S ′(R;C) by Proposition 3.3.18, noting that FCC(θ) ∈
S ′(R;C).

Now we compute, for ϕ ∈ S (R;C),

⟨FCC(ρ)FCC(θ);ϕ⟩ = ⟨FCC(θ);FCC(ρ)ϕ⟩ = ⟨θ;FCC(FCC(ρ)ϕ)⟩.

Note thatFCC(ρ)ϕ is a signal of slow growth, sinceFCC(ρ) ∈ E (R;C) is a signal of slow
growth. Thus, by Proposition 6.4.10 we have

FCC(FCC(ρ)ϕ) = FCC(FCC(ρ)) ∗ FCC(ϕ) = (σ∗ρ) ∗ FCC(ϕ).

Thus
⟨FCC(ρ)FCC(θ);ϕ⟩ = ⟨θ; (σ∗ρ) ∗ FCC(ϕ)⟩ = ⟨θ ⊗ ρ; τ∗FCC(ϕ)⟩,

the last equality since

(σ∗ρ) ∗ FCC(ϕ)(s) = ⟨σ∗ρ; τ∗sσ
∗FCC(ϕ)⟩ = ⟨ρ; τ∗−sFCC(ϕ)⟩.

Therefore,

⟨FCC(ρ)FCC(θ);ϕ⟩ = ⟨θ ⊗ ρ; τ∗FCC(ϕ)⟩ = ⟨θ ∗ ρ;FCC(ϕ)⟩ = ⟨FCC(ρ ∗ θ);ϕ⟩,

as desired. ■

As a final result in this section, we complete Proposition 6.3.15 to give a form of
the result that is what one expects, as long as one keeps track of where everything
lives.

6.4.12 Corollary (The CCFT of convolution in L2) If f,g ∈ L2(R;C), then

FCC(θf∗g) = θFCC(f)FCC(g).

Proof By Proposition 6.3.15 we have

f ∗ g(t) = F CC(FCC( f )FCC(g)), t ∈ R,

and the result follows by taking the CCFT in S ′(R;C) of this equation. ■
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6.4.7 The CCFT for distributions with compact support

Since distributions with compact support are tempered distributions (by Propo-
sitions 3.7.9 and 3.4.9), the basic theory of the CCFT for distributions with compact
support follows from the discussion of the preceding sections. However, since
distributions with compact support have additional structure over tempered dis-
tributions, one can ask how this additional structure is manifested in the CCFT for
these distributions. It is this that we dedicate ourselves to in this section.

The reader will recall at this point the discussion in Section 9.1.5 of the Pa-
ley–Wiener Theorem in L2(R;C). The main point in that discussion is that there is
a particular class of entire functions that are associated with the CCFT of signals in
L2(R;C) with compact support. The next definition gives the corresponding class
of entire functions that arise as the CCFT of distributions with compact support.

6.4.13 Definition (Entire function of exponential type and slow growth) An entire
function F ∈ H(C;C) is of exponential type α and slow growth if there exists
M, α ∈ R>0 and N ∈ Z>0 such that

|F(z)| ≤M(1 + |z|2)Neα|z|, z ∈ C.

The set of entire functions of exponential type and slow growth is denoted by
Pexp(C;C) and the set of entire functions of exponential type α and slow growth is
denoted by Pexp,α(C;C). •

It is plausible but not obvious that a function of exponential type and slow
growth is of exponential type. Precisely, we have the following result.

6.4.14 Lemma (Exponential type and slow growth implies exponential type) The
following statements hold:

(i) Hexp,α(C;C) ⊆ Pexp,α(C;C);
(ii) for every ϵ ∈ R>0, Pexp,α(C;C) ⊆ Hexp,α + ϵ(C;C).

Proof (i) This is obvious since (1 + |z|2) ≥ 1 for all z ∈ C.
(ii) Let F ∈ Pexp,α(C;C) and let M, α ∈ R>0 and N ∈ Z>0 be such that

|F(z)| ≤M(1 + |z|2)Neα|z|.

Note that limx→∞(1 + x2)Ne−ϵx = 0 by L’Hôpital’s Rule. Thus let R ∈ R>0 be large
enough that (1+ x2)e−ϵx ≤ 1 for x ≥ R. Then define M′ =M(1+R2)N. If |z| < R we have

|F(z)| ≤M(1 + |z|2)Neα|z| ≤M′e(α+ϵ)|z|.

If |z| ≥ R we have

|F(z)| ≤M(1 + |z|2)Ne−ϵ|z|e(α+ϵ)|z|
≤M′e(α+ϵ)|z|,

giving the lemma. ■

With this definition, we may characterise the CCFT of a distribution with com-
pact support.
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6.4.15 Theorem (Paley–Wiener–Schwartz Theorem) For θ ∈ D ′(R;C) and for T ∈ R>0,
the following statements are equivalent:

(i) supp(θ) ⊆ [−T,T];
(ii) FCC(θ) is a regular distribution and, moreover, there exists F ∈ Pexp,2πT(C;C) such

that FCC(θ)(ν) = F(ν + i0) for all ν ∈ R.
Proof First suppose thatθhas support [−T,T]. By Theorem 3.7.19 there exists m ∈ Z>0
and continuous signals f1, . . . , fm with support in [−T,T] such that

θ =
m∑

j=1

θ
( j)
f j
.

By Proposition 6.4.5 we have

FCC(θ) =
m∑

j=1

FCC(θ( j)
f j

) =
m∑

j=1

(2πiρ) jFCC( f j),

where ρ(ν) = ν. Since f j is a signal with compact support, by Corollary 6.1.13 we have
FCC( f j) as a regular, indeed infinitely differentiable, function. More precisely,

FCC(θ)(ν) =
m∑

j=1

(2πiν) jFCC( f j)(ν).

Also lim|ν|→∞FCC( f j)(ν) = 0 by the Riemann–Lebesgue Lemma. Thus FCC(θ) is evi-
dently a function of slow growth, being a linear combination of functions, each of which
is the product of a bounded function decaying to zero at infinity with a polynomial
function.

To see that FCC(θ) can be extended to a function in Pexp,2πT(C;C), define

F(z) =
m∑

j=1

(2πiz) j
∫
R

f j(t)e−2πizt dt.

Since f j, j ∈ {1, . . . ,m}, has compact support, the definition makes sense for each z ∈ C.
Moreover, we clearly have FCC(θ)(ν) = F(ν + i0) for each ν ∈ R. It remains to show
that F ∈ Pexp,2πT(C;C). Since f j, j ∈ {1, . . . ,m} has support contained in [−T,T] and is
continuous, from Theorem 6.3.19 it follows that

G j : z 7→
∫
R

f j(t)e−2πizt dt

is in Hexp,2πT(C;C). Thus there exists M j ∈ R>0, j ∈ {1, . . . ,m}, such that

|G j(z)| ≤M jeα|z|, z ∈ C. (6.24)

If N is such that 2N > m then one can readily verify that there exists M ∈ R>0 such that

|F(z)| ≤
m∑

j=1

(2π) j
|z| j|G j(z)| ≤M(1 + |z|2)Neα|z|, (6.25)
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as desired.
For the converse, suppose thatFCC(θ) is a regular distribution (we shall, therefore,

think of FCC(θ) as being a function, and so evaluate it as a function) and that there
exists F ∈ Pexp,2πT(C;C) such that FCC(θ)(ν) = F(ν + i0) for ν ∈ R. Define ϕ ∈ D (R;C)
by ϕ(t) = C ⋏ ( t

T ) where C ∈ R>0 is such that∫
R
ϕ(t) dt = 1.

Then define (ϕ j) j∈Z>0 in D (R;C) by ϕ j(t) = jϕ( jt). By Proposition 3.7.23 and Ex-
ample 4.7.21 we know that (ϕ j) j∈Z>0 is a delta-sequence. Moreover, supp(ϕ j) =
[−T

j ,
T
j ]. Note that FCC(ϕ j) ∈ S (R;C), j ∈ Z>0, since ϕ j ∈ S (R;C). Note that

since F ∈ Pexp,2πT(C;C), it follows that θ is a signal of slow growth. Therefore,
FCC(ϕ j)FCC(θ) ∈ S (R;C) since the product of a signal of slow growth with a sig-
nal in S (R;C) is in S (R;C) (see Example 3.3.5–4). We then compute

F −1
CC (FCC(ϕ j)FCC(θ)) = ϕ j ∗ θ

by . Since lim j→∞ ϕ j = δ inD ′(R;C), from we know thatwhat?

continuity of

convolution lim
j→∞

ϕ j ∗ θ = δ ∗ θ = θ,

convergence being inD ′(R;C).
Now, since S (R;C) ⊆ L(2)(R;C), by Theorem 6.3.19 we know that FCC(ϕ j) can

be extended to a function Φ j ∈ Hexp,2π T
j
(C;C). Since Φ j ∈ Hexp,2π T

j
(C;C) and since F ∈

Pexp,2πT(C;C), it follows from Lemma 6.4.14 that Φ jF ∈ Hexp,2π(1 + 2
j )T(C;C). Therefore,

by Theorem 6.3.19 and Remark 6.3.20–2 we know that

supp(ϕ j ∗ θ) ⊆ [−(1 + 2
j )T, (1 +

2
j )T].

Letψ ∈ D (R;C) be a test function for which supp(ψ) ⊆ R\[−T,T]. Then, since supp(ψ)
is closed, there exists N ∈ Z>0 such that

supp(ϕ) ⊆ R \ [−(1 + 2
N )T, (1 + 2

N )T].

Therefore, (ϕ j ∗ θ)(ψ) = 0 for j ≥ N and so θ(ψ) = 0 by definition of convergence
in D ′(R;C). Therefore, we conclude that supp(θ) ⊆ [−(1 + 2

j )T, (1 +
2
j )T] for every

j ∈ Z>0, i.e., supp(θ) ⊆ [−T,T]. ■

6.4.16 Remark (Refinement of bound in Paley–Wiener Theorem) If we consider Re-
mark 6.3.20–3 applied to the inequality (6.24) and the following computation (6.25),
we can conclude that, if θ ∈ E ′(R;C) satisfies supp(θ) ⊆ [−T,T], then we, in fact,
have FCC(θ)(ν) = F(ν + i0), ν ∈ R, where F ∈ H(C;C) satisfies

|F(z)| ≤M(1 + |z|2)Ne2πT|Im(z)|, z ∈ C,

for some M ∈ R>0 and N ∈ Z>0. We shall make use of this slightly more refined
bound subsequently. •

Let us give an example which verifies the Paley–Wiener–Schwartz Theorem.
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6.4.17 Example (Paley–Wiener–Schwartz Theorem) We note that for a ∈ R, δa is a distri-
bution with compact support. In Example 6.4.3–3 we computed FCC(δa) = θE−2πia .
Thus FCC(δa) is indeed a regular, indeed infinitely differentiable, distribution.
Note that F(z) = e−2πaiz has the property that FCC(δa)(ν) = F(ν + i0). Since
supp(δa) ⊆ [−a, a], we should verify that FCC(δa) ∈ Pexp,2πa(C;C). However, we
clearly have F ∈ Hexp,2πa(C;C) and so our conclusion follows from Lemma 6.4.14, •

During the course of the first part of the proof of the preceding theorem, we
proved the following result, recalling that for a ∈ C Ea : R → C is defined by
Ea(t) = eat.

6.4.18 Corollary (The CCFT of a distribution with compact support) If θ ∈ E ′(R;C)
then FCC(θ) is an infinitely differentiable function of slow growth which satisfies
FCC(θ)(ν) = θ(E−2πiν).

Proof This follows from the computation, using the notation from the proof of the
theorem,

θ(E−2πiν) =
m∑

j=1

θ
( j)
f j

(E−2πiν) =
m∑

j=1

(−1) jθ f j(E
( j)
−2πiν)

=

m∑
j=1

(2πiν) j
∫
R

f j(t)e−2πiνt dt,

which is exactly the expression we derived in the proof of the theorem for FCC(θ)(ν).
In the above computation we used Proposition 3.2.35. ■

6.4.8 The CCFT for periodic distributions

As with distributions of compact support, the CCFT for periodic distributions
follows in its generalities from the CCFT for tempered distributions (by Theo-
rem 3.9.18). However, periodic distributions possess particular structure which
shows up in an essential way in the theory of the CCFT for these distributions. In
this section we investigate this.

The result is the following, which draws a clear connection between the CDFT
and the CCFT for periodic distributions.

6.4.19 Proposition (CCFT for periodic distributions) If θ ∈ D ′per,T(R;C), then

FCC(θ) =
1
T

∑
n∈Z

FCD(θ)(nT−1)δnT−1 .

Proof By Proposition 3.9.20, write θ = θ0∗ ⋔T for θ0 ∈ E ′(R;C). Recall from the proof
of Proposition 3.9.20 that we can take θ0 = υθ for υ ∈ UT(R;F). By Example 6.4.3–5
we have

FCC(⋔T) =
1
T
⋔T−1 .
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We have
FCD(θ)(nT−1) = θ(E−2πinT−1) = θ(υE−2πinT−1) = θ0(E−2πinT−1),

making the usual abuse of thinking of an element ofD ′per,T(R;C) as being a T-periodic
element of D ′(R;C) as in Corollary 3.9.11. Thus, by Proposition 6.4.11 and Corol-
lary 6.4.18, for ϕ ∈ D (R;F), we have

⟨FCC(θ);ϕ⟩ = ⟨FCC(θ0)FCC(⋔T);ϕ⟩ =
1
T
⟨FCC(θ0) ⋔T−1 ;ϕ⟩

=
1
T

∑
n∈Z

FCC(θ0)(nT−1)ϕ(nT−1) =
1
T

∑
n∈Z

θ0(E−2πinT−1)ϕ(nT−1)

=
1
T

∑
n∈Z

θ(υE−2πinT−1)ϕ(nT−1) =
1
T

∑
n∈Z

FCD(θ)(nT−1)⟨δnT−1 ;ϕ⟩,

which is the desired conclusion. ■

Exercises

6.4.1 Let ϕ ∈ S (R;C).
(a) Show that FCC(FCC(ϕ)) = σ∗ϕ.
(b) Show that ϕ is the inverse Fourier transform of FCC(FCC(FCC(ϕ))).

6.4.2 Prove Proposition 6.4.4.
6.4.3 The CCFT is sometimes used to solve ordinary differential equations, just

like the Laplace transform that you may have encountered in the same rôle.
In the following exercise you will be asked to use the CCFT to solve two
ordinary inhomogeneous differential equations for the distribution θwith a
forcing function given by the delta-signal δ0. For each differential equation
do the following:
1. take the CCFT of the differential equation, using the fact, as demonstrated

in Example 6.4.3–3, that FCC(δ0) is the distribution corresponding to the
locally integrable signal ν 7→ 1;

2. in the frequency domain, solve for FCC(θ);
3. compute the inverse CCFT to show that θ actually corresponds to a

locally integrable signal x in the time-domain (i.e., θ = θx), and provide
the expression for x(t);
Hint: In both examples, one can compute the inverse CCFT by reference to
Examples 6.1.3–1 and 2.

4. sketch the solution to the differential equation;
5. Is the signal x causal?
The differential equations are:
(a) θ′ + θ = δ0;
(b) θ′′ − θ = δ0.
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6.4.4 Let f ∈ ℓ1(Z(T−1);C) and define a generalised signal in the frequency domain
by

θ =
∑
n∈Z

f (nT−1)δnT−1 .

Answer the following questions.
(a) Show that θ ∈ S (R;C).
(b) Compute F CC(θ).
(c) Show thatF CC(θ) is the distribution associated with a T-periodic signal

g (i.e., θ = θg) and show that FCD(g)(nT−1) = f (nT−1).
(d) Carry out part (b) in the case where f (0) = 0 and f (nT−1) = 1

2n2 , n ∈ Z\{0},
and plot F CC(θ) in this case (take T = 1 for concreteness).
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Section 6.5

The CCFT for distributions and ultradistributions

Next we turn to the Fourier transform of a general distribution. As indicated by
the remarks Section 6.4.1, this necessitates determining that nature of those signals
ϕ for which FCC(ϕ) ∈ D (R;C). This itself leads to a new class of distribution,
those known as “ultradistributions” and introduced in Section 3.8. The CCFT
connects inextricably distributions and ultradistributions, and so their CCFT’s are
necessarily studied together.

Do I need to read this section? The material in this section is a tad technical.
However, it does suggest some strange and mysterious connections between
Fourier analysis and complex analysis (see Theorem 6.5.1). This idea is explored in
some detail in Chapter III-7, with consequences in transform theory seeing their full
utility with the Laplace transform in Chapter 9. That all being said, it is possible
that this section can be bypassed on a first reading. •

6.5.1 The Fourier transform of D(R;C)

In Section 3.8.1 we considered the class of test signals Z (R;C). Let us recall
here the defining property of ϕ ∈ Z (R;C) for convenience: there exists an entire
function aϕ : C→ C such that
1. aϕ(t + i0) = ϕ(t) for all t ∈ R and
2. there exists constants α ∈ R>0 and Mk ∈ R≥0, k ∈ Z≥0, such that, for each k ∈ Z≥0,

we have |zkaϕ(z)| ≤Mkeα|Im(z)| for all z ∈ C.
Note that condition 2 implies that Z (R;C) ⊆ L(p)(R;C) for every p ∈ [1,∞] since it
implies that test signals inZ (R;C) are bounded and decay faster that any polyno-
mial at infinity.

The most compelling characterisation of the space Z (R;C) involves the CCFT,
as described by the following theorem.

6.5.1 Theorem (A characterisation of Z (R;C)) We have ϕ ∈ Z (R;C) if and only if
ϕ ∈ FCC(D ).

Proof Let ψ ∈ D (R;C) denote the CCFT of ϕ ∈ Z (R;C), supposing that supp(ψ) ⊆
[−Ω,Ω]. We then have

ϕ(t) =
∫
R
ψ(t)e2πiνt dν

by Theorem 6.2.26 since ϕ,ψ ∈ L(1)(R;C) ∩ C0(R;C). If we define

aϕ(z) =
∫
R
ψ(ν)e2πiνz dν (6.26)



2022/03/07 6.5 The CCFT for distributions and ultradistributions 623

for z ∈ C, then it follows from Theorem 6.3.19 that aϕ is entire. This verifies property 1
above of Z (R;C). To verify property 2, we integrate (6.26) by parts j times using the
fact that ψ has compact support:

(−2πiz) jaϕ(z) =
∫
R
ψ( j)(ν)e2πiνz dν.

Taking the modulus of each side gives property 2 if we take α = 2πΩ and

Mk =
1

(2π)k

∫ Ω

−Ω

|FCC(ϕ)(k)(ν)|dν.

Now suppose that there exists an entire function aϕ having properties 1 and 2.
Define

ψ(ν) =
∫
R
ϕ(t)e−2πiνt dt.

We must show that ψ ∈ D (R;C). Since ϕ ∈ L(2)(R;C), from Theorem 6.3.19 we know
thatψhas compact support; indeed, its support is contained in [− α

2π ,
α

2π ]. Thus we must
only show that ψ is infinitely differentiable. The integral defining ψ can be thought of
as the parameterised integral of ∫

C
aϕ(z)e−2πiνz dz

where C is the real axis. Now for R ∈ R>0 define a closed contour ΓR by

ΓR = {t + i0 | t ∈ [−R,R]} ∪ {R + is | s ∈ [0, y]}
∪ {t + iy | t ∈ [−R,R]} ∪ {R + i(y − s) | s ∈ [0, y]}.

By Cauchy’s Theorem we have

0 =
∫
ΓR

aϕ(z)e−2πiνz dz =
∫ R

−R
aϕ(t + i0)e−2πiνt dt + i

∫ y

0
aϕ(R + is)e−2πiν(R+is) ds

+

∫
−R

R
aϕ(t + iy)e−2πiν(t+iy) dt + i

∫ y

0
aϕ(R + i(y − s))e−2πiν(R+i(y−s)) ds.

Note that
|aϕ(R + is)e−2πiν(R+is)

| ≤ |M0eαs
||e2πνs

|

and that s 7→ |M0eαs
||e2πνs

| is in L(1)([0, y];R). Therefore, by the Dominated Convergence
Theorem,

lim
R→∞

∫ y

0
aϕ(R + is)e−2πiν(R+is) ds =

∫ y

0
lim

R→∞
aϕ(R + is)e−2πiν(R+is) ds = 0

by virtue of property 2 of aϕ. Thus the second integral on the right goes to zero as
R→∞. The same statement holds for the fourth integral. This then gives

ψ(ν) = e2πνy
∫
R

aϕ(t + iy)e−2πiνt dt (6.27)
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for every y ∈ R. Property 1 of aϕ ensures that the integrand here satisfies an inequality

|tkaϕ(t + iy)e−2πiνt
| ≤ |(t + iy)kaϕ(t + iy)| ≤Mkeα|y|

for each k ∈ Z≥0. Thus the integrand in (6.27) is uniformly bounded by an integrable
function of t for every ν ∈ R. By Theorem III-2.9.16 this justifies a differentiation with
respect to ν of the expression ∫

R
aϕ(z)e−2πiνz dz

under the integral sign, and so gives

ψ′(ν) =
∫
R

(−2πiz)aϕ(z)e−2πiνz dz.

The same arguments as above apply to justify another differentiation under the integral.
Thus, by an inductive argument, we conclude that ψ is infinitely differentiable and
satisfies

ψ(k)(ν) =
∫
R

(−2πiz)kaϕ(z)e−2πiνz dz.

This concludes the proof. ■

Let us make some fairly immediate, but nonetheless useful, observations based
on the preceding theorem.

6.5.2 Remarks (Some properties of Z (R;F))
1. Suppose thatϕ ∈ Z (R;F). SinceFCC(ϕ) ∈ D ⊆ S it follows thatF CC◦FCC(ϕ) ∈
S . This means thatF CC ◦FCC(ϕ) = ϕ, therefore. Thus the relationship between
an element of Z (R;F) and its CCFT is a nice one, in that the two signals are
recoverable one from the other by the CCFT and its inverse.

2. Note that if ϕ ∈ Z (R;F) then it follows that not only doesFCC(ϕ) lie inD (R;F),
but F CC(ϕ) ∈ D (R;F). Indeed, note by Proposition 6.1.6 that F CC(ϕ) =
FCC(ϕ̄), and the expression on the right is inD (R;F). •

By Remark 6.5.2 the mappings FCC : Z (R;C) → D (R;C) have the basic prop-
erties given in Section 6.1.2 concerning relationships with complex conjugation,
the mappings σ and τa, and differentiation. Let us record these for completeness.

6.5.3 Proposition (Elementary properties of CCFT for test signals in Z (R;C)) For
ϕ ∈ Z (R;C) the following statements hold:

(i) FCC(ϕ) = F CC(ϕ̄);

(ii) FCC(σ∗ϕ) = σ∗(FCC(ϕ)) = F CC(ϕ);
(iii) if ϕ is even (resp. odd) then FCC(ϕ) is even (resp. odd);
(iv) if ϕ is real and even (resp. real and odd) thenFCC(ϕ) is real and even (resp. imaginary

and odd);
(v) FCC(τ∗aϕ)(ν) = e−2πiaνFCC(ϕ)(ν).
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6.5.4 Proposition (The CCFT for Z (R;C) and differentiation) For ϕ ∈ Z (R;C) we
have FCC(ϕ(k))(ν) = (2πiν)kFCC(ϕ)(ν).

6.5.5 Proposition (The CCFT for Z (R;C) and differentiation of the transform) For
ϕ ∈ Z (R;C) we have FCC(ϕ)(k) = FCC((−2πiρ)kϕ), where ρ(t) = t.

With the notion of convergence in Z (R;C) from Definition 3.8.2, we may talk
about continuity of the CCFT. Continuity in the following theorem means that
convergent sequences are mapped to convergent sequences.

6.5.6 Theorem (The CCFT is continuous on test signals) The maps FCC : Z (R;C)→
D (R;C) and F CC : D (R;C)→ Z (R;C) are continuous.

Proof To show that FCC is continuous as stated in the theorem, we can show that if
(ϕ j) j∈Z>0 is a sequence inZ (R;C) converging to zero, then (FCC(ϕ j)) j∈Z>0 converges to
zero in D (R;C). If a ∈ R>0 is as in part (ii) then it follows from our computations in
the proof of Theorem 6.5.1 that supp(FCC(ϕ j)) ⊆ [−a, a]. We also compute

|FCC(ϕ j)(k)(ν)| =
∣∣∣∣∣∫
R

(−2πit)kϕ j(t)e−2πiνt dt
∣∣∣∣∣

≤

∫
R

2π(tk + tk+2)ϕ j(t)

1 + t2 dt

≤ π sup{|(tk + tk+2)ϕ j(t)| | t ∈ R}.

As j → ∞ the right-hand side goes to zero, and this gives the convergence of
(FCC(ϕ j)) j∈Z>0 to zero inD (R;C).

Now suppose that (ψ j) j∈Z>0 is a sequence converging to zero inD (R;C). Suppose
that these test signals have their support contained in [−Ω,Ω]. Denote ϕ j = F CC(ψ j),
j ∈ Z>0. As we computed during the course of the proof of Theorem 6.5.1, we have

|zkaϕ j(z)| =
1

(2π)k

∫ Ω

−Ω

ψ(k)
j (ν)e2πiνz dν

≤
e2πΩ|Im(z)|

(2π)k

∫ Ω

−Ω

|ψ(k)
j (ν)|dν

≤
2Ωe2πΩ|Im(z)|

(2π)k
sup

{
|ψ(k)

j (ν)|
∣∣∣∣ t ∈ R

}
.

Since the right-hand side converges to zero as j→ ∞, this shows that the inequalities
of part (i) of the definition of convergence in Z (R;C) holds. From the equation

|aϕ j(z)| ≤ 2Ωe2πΩ|Im(z)| sup{|ψ j(ν)| | t ∈ R}

we also deduce uniform convergence to zero of (aϕ j) j∈Z>0 on compact subsets of C. ■

6.5.2 Definitions and computations

The value of the preceding machinery concerning ultradistributions will now be
demonstrated by illustrating that it is possible to define the CCFT for distributions.
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6.5.7 Definition (The CCFT on D ′(R;C)) The continuous-continuous Fourier trans-
form or CCFT assigns to θ ∈ D ′(R;C) the element FCC(θ) ∈ Z ′(R;C) defined by
FCC(θ)(ϕ) = θ(FCC(ϕ)), ϕ ∈ Z (R;C). •

6.5.8 Remarks (On the CCFT on D ′(R;C))
1. For this definition to make sense, one needs to show that FCC(θ) is continuous

on Z (R;C). However, this follows easily from Theorem 6.5.6.

2. In a similar manner, using the fact that F CC maps D (R;C) onto Z (R;C),
one may define F CC : Z ′(R;C) → D ′(R;C) by F CC(θ)(ϕ) = θ(F CC(ϕ)) for
ϕ ∈ D (R;C). •

6.5.3 Properties of the CCFT for distributions

6.5.4 Inversion of the CCFT for distributions

The following result is the central one for the CCFT on D ′(R;C), and gives
the analog of Theorem 6.4.8 in our present setting. Continuity in the following
theorem means that convergent sequences are mapped to convergent sequences.

6.5.9 Theorem (The CCFT is an isomorphism of distributions and ultradistribu-
tions) The map FCC : D ′(R;C)→ Z ′(R;C) is a continuous bijection with a continuous
inverse. Furthermore, the inverse is F CC : Z ′(R;C)→ D ′(R;C).

Proof Continuity of FCC in this case means that if (θ j) j∈Z>0 is a sequence converging
to zero inD ′(R;C), then the sequence (FCC(θ j)) j∈Z>0 converges to zero inZ ′(R;C). To
see that this relation holds, we let ϕ ∈ Z (R;C) and compute

lim
j→∞
FCC(θ j)(ϕ) = lim

j→∞
θ j(FCC(ϕ)) = 0

since FCC(ϕ) ∈ D (R;C). This shows continuity of FCC, and continuity of F CC is
shown in exactly the same way.

That FCC is a bijection, we shall show that its inverse is F CC. For θ ∈ D ′(R;C)
and ϕ ∈ D (R;C) we compute

(F CC ◦ FCC(θ))(ϕ) = FCC(θ)(F CC(ϕ)) = θ(FCC ◦ F CC(ϕ)) = θ(ϕ),

since ϕ,F CC(ϕ) ∈ L(1)(R;C) and since ϕ is continuous (here we are invoking Theo-
rem 6.2.26). This shows that F CC ◦FCC(θ) = θ. That FCC ◦F CC(θ) = θ follows in an
entirely similar manner. Thus FCC is a bijection whose inverse is F CC. ■

Let us close our discussion of the CCFT for distributions by giving an example
that can now be handled, but that could not be handled by the CCFT for tempered
distributions.
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6.5.10 Example (The CCFT of the exponential signal) We take f (t) = eat for a ∈ C. We
have θ f ∈ D ′(R;C) but θ f < S ′(R;C). Let us write

f (t) =
∞∑
j=0

(at) j

j!
,

noting by part (iv) of Proposition 3.2.23 that the series converges to f (more properly
to θ f ) inD ′(R;C). Continuity of the CCFT onD ′(R;C) allows us to write

FCC(θ f ) =
∞∑
j=0

a j

j!
FCC(ρ j)

where ρ(t) = t. By Example 6.4.3–7 we have FCC(ρ j) = 1
(−2πi) jδ

( j)
0 . Thus

FCC(θ f ) =
∞∑
j=0

(
−

a
2πi

) j δ( j)
0

j!
.

Using Theorem 3.8.11 we have

FCC(θ f ) = τ∗ a
2πi
δ0 = δ a

2πi
.

Taking a = 2πiα we recover the formula FCC(θE2πiα) = δα. However, the computa-
tion now works if Re(a) , 0, whereas this computation is not possible in the context
of the CCFT for tempered distributions. •

6.5.5 Convolution, multiplication, and the CCFT for distributions

In this section we extend the results concerning convolution, multiplication,
and the CCFT in Sections 6.1.5, 6.3.5 and 6.4.6.

6.5.11 Proposition (The CCFT of convolution between E ′(R;C) and D ′(R;C)) If θ ∈
D ′(R;C) and ρ ∈ E ′(R;C), then FCC(ρ ∗ θ) = FCC(ρ)FCC(θ).

Proof By Theorem 4.5.5, the convolution ρ ∗ θ is defined. By Remark 6.4.16, there
exists F ∈ H(C;C) such that FCC(ρ)(ν) = F(ν + i0) and such that

|F(z)| ≤M(1 + |z|2)Neα|Im(z)|, z ∈ C.

By 4 following Definition 3.8.6, it follows that FCC(ρ) is allowed as a multiplier of
FCC(θ) ∈ Z ′(R;C). Thus all of the operations in the statement of the proposition make
sense. Let us verify the asserted formula.

Let ϕ ∈ Z (R;C) and compute

⟨FCC(ρ ∗ θ);ϕ⟩ = ⟨ρ ∗ θ;FCC(ϕ)⟩ = ⟨θ ∗ ρ; τ∗FCC(ϕ)⟩ = ⟨θ;Φρ,FCC(ϕ)⟩,

where Φρ,FCC(ϕ)(s) = ρ(τ∗
−sFCC(ϕ)). Now we calculate

⟨ρ; τ∗−sFCC(ϕ)⟩ = ⟨σ∗ρ; σ∗τ∗−sFCC(ϕ)⟩ = ⟨σ∗ρ; τ∗sσ
∗FCC(ϕ)⟩ = (σ∗ρ) ∗ FCC(ϕ).
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Therefore, since (σ∗ρ) ∈ S ′(R;C) andFCC(ϕ) ∈ S (R;C), we can use Proposition 6.4.9
to give

⟨FCC(ρ ∗ θ);ϕ⟩ = ⟨θ; (σ∗ρ) ∗ FCC(ϕ)⟩ = ⟨FCC(θ);F CC(σ∗ρ)ϕ⟩ = ⟨FCC(θ);FCC(ρ)ϕ⟩.

As we observed above, FCC(ρ) multiplies FCC(θ), and so we have

⟨FCC(ρ ∗ θ);ϕ⟩ = ⟨FCC(ρ)FCC(θ);ϕ⟩,

as desired. ■

6.5.6 The CCFT for periodic ultradistributions

Since periodic ultradistributions are ultradistributions, the general properties
of the CCFT for periodic ultradistributions follows from that for general ultradis-
tributions. In this section we investigate the particular property of the CCFT when
it is restricted to periodic ultradistributions.

The result is the following, which draws a clear connection between the CDFT
and the CCFT for periodic ultradistributions.

6.5.12 Proposition (CCFT for periodic ultradistributions) If θ ∈ Z ′per,T(R;C), then

FCC(θ) =
1
T

∑
n∈Z

FCD(θ)(nT−1)δnT−1 .

Proof By Corollary 5.6.6, write

θ =
1
T

∑
n∈Z

FCD(θ)(nT−1)θE2πinT−1 .

Since this sum converges in Z ′(R;C) and since the CCFT is continuous, we have

FCC(θ) =
1
T

∑
n∈Z

FCD(θ)(nT−1)δnT−1 ,

as claimed. ■

Exercises

6.5.1 Fourier transform in UT.
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Section 6.6

The CCFT for measures
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Section 6.7

The uncertainty principle

In quantum mechanics the famous Heisenberg Uncertainty Principle negates
the possibility of accurately measuring both the position and momentum of a
particle. This rough physical notion has a mathematical meaning, and, while we
do not go into detail describing the quantum mechanical interpretation of what we
say, we can nevertheless give some idea of how the uncertainty principle works as
it relates to a signal and its CCFT.

6.7.1 Signal centres and widths

The key idea is the following.

6.7.1 Definition A signal f ∈ L(2)(R;C) is dispersive if ∥ f ∥2 , 0 and if∫
R

t2
| f (t)|2 dt < ∞.

The dispersion of a dispersive signal is given by

D0( f ) =

∫
R

t2
| f (t)|2 dt∫

R
| f (t)|2 dt

. •

The way in which one should interpret dispersion is according to the following
simple result.

6.7.2 Proposition For T > 0 we have ∫
|t|≥M
|f(t)|2 dt∫

R
|f(t)|2 dt

≤
D0(f)

T2 .

Proof ■

Thus D0( f ) can be used to estimate the contribution to the L2-norm of f from
those parts of the signal defined for times greater than T. Although the above
discussion has been in terms of signals where the independent variable was thought
of as time, the same discussion can be made when the independent variable is
frequency. For time-domain signals the square root of the dispersion is sometimes
called the effective duration and for frequency-domain signals the square root of the
dispersion is sometimes called the effective bandwidth. The uncertainty principlewhy?

says, essentially, that these two quantities cannot both be small.

6.7.2 A proof of the uncertainty principle

The uncertainty principle is the following.
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6.7.3 Theorem If f ∈ L(2)(R;C) is locally absolutely continuous and dispersive, then FCC(f) is
dispersive and

D0(f)D0(FCC(f)) ≥
1

16π2 .

Proof The key to our proof is the following result. We use the notation t f to stand for
the signal t 7→ t f (t) and the notation νFCC( f ) to stand for the signal ν 7→ νFCC( f )(ν).

1 Lemma The pair (V, ⟨·, ·⟩) defined by

V = {f ∈ L2(R;C) | f and FCC(f) are dispersive}

∥f∥ =
√
⟨f, f⟩ = (∥f∥22 + ∥tf∥

2
2 + ∥νFCC(f)∥22)1/2

is a Hilbert space, andD (R;C) is dense in V.

Proof That the expression ∥·∥ defined in the statement of the lemma comes from an
inner product follows from a straightforward verification of the parallelogram law of
Theorem III-4.1.9. The completeness of the resulting inner product space follows if
one can show that a Cauchy sequence { f j} j∈Z>0 of signals in V converges to a signal in
V. First of all note that convergence in V implies convergence in L2(R;C). Thus the
limit of the Cauchy sequence exists as a signal in L2(R;C). We must show that both f
and FCC( f ) are dispersive. For this we compute∫

R
t2
| f j(t)|2 dt ≤ lim

j→∞

∫
R

t2
| f j(t)|dt

by Fatou’s lemma. Since the sequence converges in V the term on the right is finite,
and so it follows that f is dispersive. It follows similarly that FCC( f ) is dispersive.

We now show that D (R;C) is dense in V. We let ϕ ∈ D (R;C) have the property
that

∫
R
ϕ(t) dt = 1 and that there exists ϵ > 0 so that ϕ(t) = 1 for t ∈ [−ϵ, ϵ]. For f ∈ V

define

f j(t) =
∫
R

f (t − τ)ϕ( t−τ
j ) jϕ( jτ) dτ.

The limit lim j→∞∥ f − f j∥2 = 0 follows from Theorem 4.7.24. The same argument shows
that lim j→∞∥t f − t f j∥2 = 0. ▼

Motivated by the lemma, we prove the theorem in the case when f ∈ D (R;C). In
this case we have

FCC( f ′)(ν) = (2iπν)FCC( f )(ν)

by Proposition 6.1.10. This immediately gives ∥νFCC( f )∥2 = 1
4π2 ∥FCC( f ′)∥2. From the

Cauchy-Bunyakovsky-Schwarz inequality we have

∥t f ∥2∥ f ′∥2 ≥ |⟨t f , f ′⟩2| ≥ |Re(⟨t f , f ′⟩2)|.

But we also have, using integration by parts,

Re(⟨t f , f ′⟩2) =
1
2

∫
R

t( f (t) f̄ ′(t) + f̄ (t) f ′(t)) dt

= t| f (t)|2
∣∣∣∞
−∞
−

∫
R
| f (t)|2 dt = −∥ f ∥22.
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This then gives

∥t f ∥2∥νFCC( f )∥2 ≥
1

4π
∥ f ∥22,

from which the result follows for f ∈ D (R;C).
For a general signal, we first of all note that we must have f ∈ V. From Lemma 1

there exists a sequence { f j} j∈Z>0 inD (R;C) so that lim j→∞∥ f − f j∥ = 0, with ∥·∥ the norm
described in the lemma. We then have

∥t f ∥2∥νFCC( f )∥2 = lim
j→∞
∥t f j∥2∥νFCC( f ) j∥2 ≥

1
4π2 ,

by continuity of the norm (Proposition III-3.5.4). ■

Let us look at an example.

6.7.4 Example We take f (t) = γa(t) = e−at2 for a > 0. For this signal we shall show that
the bound for the product D0( f )D0(FCC( f )) of Theorem 6.7.3 is attained.
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Chapter 7

Discrete-time Fourier transforms

In this chapter we study Fourier transform theory for discrete-time signals,
mirroring the developments of Chapters 5 and 6. Things are somewhat easier for
the discrete-time theory, and so we are able to combine the discrete-time analogues
of these three chapters in a single chapter.

In Sections 7.1 and 7.2 we complete our Fourier transform quadrangle by giving
the discrete versions of the Fourier transform for aperiodic and periodic signals,
respectively. The development here is much simpler than in the continuous-time
case. Indeed, for the DCFT we can make use of much of the machinery already in
place from our somewhat thorough study of the inverse of the CDFT in Section 5.2.
For the DDFT things are simpler because the signal spaces involved are finite-
dimensional.

In Section 8.4 we summarise the relationships between the various Fourier
transforms. Some of these are more or less obvious, but some are a little deep,
requiring, for example, comprehension of the transforms for various classes of
distributions.

Do I need to read this chapter? If you are interested in understanding the
Fourier transforms that may be applied to discrete-time signals, then this is the
place to start. •
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Section 7.1

The discrete-continuous Fourier transform

The transform we consider in this section takes as input an aperiodic discrete-
time signal and returns a periodic continuous-time signal. This transform is very
often known by the name “discrete-time Fourier transform.” However, for us to
call it anything other than the DCFT would be absurd.

Do I need to read this section? If you want to know about the DCFT, then you
will be reading this section. •

7.1.1 Definition of the ℓ1-DCFT

As with the CDFT and the CCFT, we refer the reader to material in Section 2.6.4
for motivation for the transform we discuss here. Assuming this motivation, we
proceed with the definition.

7.1.1 Definition (DCFT) The discrete-continuous Fourier transform or DCFT assigns to
f ∈ ℓ1(Z(∆);C) the signal FDC( f ) : R→ C by

FDC( f )(ν) = ∆
∑
n∈Z

f (n∆)e−2πin∆ν, ν ∈ R. •

7.1.2 Remarks (Comments on the definition of the DCFT)
1. As mentioned in the preamble to this section, what we call the DCFT is most

often called the “discrete-time Fourier transform.” Our decision to use the
much less common “DCFT” is based solely on rational concerns.

2. It is important to note the relationship of the DCFT with Fourier series. This
relationship, along with our observations in Sections 5.2 and 5.3.2, should make
one wonder whether the DCFT is well-defined in that the sum exists. However,
the assumption that the DCFT is applied to signals in ℓ1(Z(∆);C) is sufficient
to ameliorate any concerns about convergence. We shall make this formal in
Theorem 7.1.7.

3. As we have done with our previous Fourier transforms, we shall regard
ℓ1(Z(∆);R) as a subspace of ℓ1(Z(∆;C), so R-valued signals are treated most
often as special cases of C-valued signals.

4. One often sees the DCFT defined with the domain being a signal on the time-
domainZ rather than onZ(∆) as we have done. Our explicit involvement of ∆
makes it clear the rôle of the sampling time.

Let us compute the DCFT for some examples.
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7.1.3 Examples (Computing the DCFT)
1. Let us consider the unit pulse P : Z(∆)→ C defined by

P(t) =

1, t = 0
0, otherwise.

Trivially, the DCFT of P is

FDC(P)(ν) = ∆, ν ∈ R.

2. Let us generalise the preceding example slightly, and consider the shifted pulse
PN : Z(∆)→ C defined by

PN(t) =

1, t = N∆,
0, otherwise.

In this case,
FDC(PN)(ν) = ∆e−2πiN∆ν

3. Next we consider a discrete version of the square wave. Thus we define
f : Z(∆)→ C by

f (t) =

1, t ∈ {−N∆,−∆, 0,∆, . . . ,N∆},
0, otherwise.

We plot this signal in Figure 7.1. In this case, the sum defining the DCFT of f
is finite, and we have

FDC( f )(ν) = ∆
N∑

n=−N

e−2πin∆ν = ∆Dper
∆−1,N

(ν),

using Lemma 1 from Example 8.1.3 and the definition

Dper
∆−1,N

(ν) =


sin ((2N + 1)π∆ν)

sin (π∆ν)
, t , 0,

2N + 1, t = 0

of the discrete Dirichlet kernel; see the discussion in Section 5.2.2.
4. The final example we consider is a signal which is the discrete analogue of

triangular wave. Thus we consider g(∆) : Z→ C defined by

g(t) =


−

t
N∆ + 1, t ∈ {0,∆, . . . , (N − 1)∆},

t
N∆ + 1, t ∈ {−(N − 1)∆, . . . ,−∆},
0, otherwise.
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Figure 7.1 A discrete square wave (top) and a discrete triangular
wave (bottom) for ∆ = 1 and N = 5

This signal is plotted in Figure 7.1. The compute the DCFT of g, we takeθ = 2πν
in Lemmata 2 and 3 from Example 8.2.2–3 to get

FDC(g)(ν) = ∆Fper
∆−1,N

(ν),

where

Fper
∆−1,N

(t) =


1
N

sin2 (πN∆ν)
sin2(π∆ν)

, t , 0,

N, t = 0

is the Fejér kernel. We refer the discussion following the proof of Theorem 5.2.1
for some properties of the Fejér kernel. •

Recall with the CDFT and the CCFT there are sine and cosine versions of
the transform and these are related with the complex exponential version; see
Definitions 5.1.4 and 6.1.4, and Propositions 5.1.5 and 6.1.5. We have a similar
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construction for the DCFT, although this is less frequently presented as it is less
frequently useful.

7.1.4 Definition (DCCT and DCST)
(i) The discrete-continuous cosine transform or DCCT assigns to f ∈ ℓ1(Z(∆);C)

the signal CDC( f ) : R≥0 → C by

CDC( f )(ν) = ∆
∑

n∈Z≥0

f (n∆) cos(2πn∆ν), ν ∈ R.

(ii) The discrete-continuous sine transform or DCST assigns to f ∈ ℓ1(Z(∆);C)
the signal SDC( f ) : R>0 → C by

SDC( f )(ν) = ∆
∑

n∈Z>0

f (n∆) sin(2πn∆ν), ν ∈ R.

The relationships between the DCFT and the DCCT and DCST are given as
follows.

7.1.5 Proposition (The DCFT, and the DCCT and the DCST) For f ∈ ℓ1(Z(∆);C) the
following statements hold:

(i) FDC(f)(0) = CDC(f)(0);
(ii) FDC(f)(ν) = CDC(f)(ν) − iSDC(f)(ν) and
FDC(f)(−ν) = CDC(f)(ν) + iSDC(f)(ν) for every ν ∈ R>0;

(iii) CDC(f)(ν) = 1
2 (FDC(f)(ν) + FDC(f)(−ν)) for every ν ∈ R≥0;

(iv) SDC(f)(ν) = i
2 (FDC(f)(ν) − FDC(f)(−ν)) for every ν ∈ R>0.

Proof This is a direct application of Euler’s formula:

e−2πin∆ν = cos(2πn∆ν) − i sin(2πn∆ν). ■

Using evenness of cosine and oddness of sine, we can also write the DCCT and
the DCST as

CDC( f )(ν) = 2∆
∑

n∈Z≥0

feven(n∆) cos(2πn∆ν),

SDC( f )(ν) = 2∆
∑

n∈Z>0

fodd(n∆) sin(2πn∆ν),

where
feven(t) = 1

2 ( f (t) + f (−t)), fodd(t) = 1
2 ( f (t) − f (−t)).

It is not too difficult to reason that one might want to apply the DCCT and the
DCST for signals that are zero on Z<0.



2022/03/07 7.1 The discrete-continuous Fourier transform 639

7.1.2 Properties of the DCFT

Let us now consider some properties of the DCFT that are analogous to those
we have seen for the other Fourier transforms. We begin by looking at elementary
properties. For f ∈ ℓ1(Z(∆);C) we have σ∗ f ∈ ℓ1(Z(∆);C) defined by σ∗ f (t) = f (−t).
If a ∈ Z(∆) then we define τ∗a f ∈ ℓ1(Z(∆);C) by τ∗ f (t) = f (t − a). Finally, we define
F DC( f ) : R→ C by

F DC( f )(ν) = ∆
∑

n∈Z>0

f (n∆)e2πin∆ν.

With this notation we have the following result.

7.1.6 Proposition (Elementary properties of the DCFT) For f ∈ ℓ1(Z(∆);C) the following
statements hold:

(i) FDC(f) = F DC(f̄);

(ii) FDC(σ∗f) = σ∗(FDC(f)) = F DC(f);
(iii) if f is even (resp. odd) then FDC(f) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) thenFDC(f) is real and even (resp. imaginary

and odd);
(v) if a ∈ Z(∆) then FDC(τ∗af)(ν) = e−2πiaνFDC(f)(ν).

Proof The proof consists of direct verifications of all assertions. ■

Next we consider the character of the function FDC( f ) when f ∈ ℓ1(Z(∆);C).
The following result indicates that this function is actually continuous and periodic
with period ∆−1. Moreover, the result also gives an important topological property
of the DCFT.

7.1.7 Theorem (Continuity of the DCFT) If f ∈ ℓ1(Z(∆);C) then FDC(f) ∈ C0
per,∆−1(R;C).

Moreover, the mapping f 7→ FDC(f) is a continuous linear mapping from (ℓ1(Z(∆);C), ∥·∥1)
to (C0

per,∆−1(R;C), ∥·∥∞).

Proof Since f ∈ ℓ1(Z(∆);C), the series

FDC( f )(ν) = ∆
∑

n∈Z>0

f (n∆) exp−2πin∆ν

converges uniformly by the Weierstrass M-test. Since the uniform limit of a sequence
of bounded continuous functions is continuous (this is Theorem I-3.6.8), it follows that
FDC( f ) is continuous. Linearity of the DCFT follows from the fact that convergent
series are linear. Using this fact we also have

FDC( f )(ν + ∆−1) = ∆
∑

n∈Z>0

f (n∆) exp−2πin∆(ν+∆−1)

= ∆
∑

n∈Z>0

f (n∆) exp−2πin∆ν = FDC(ν),
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giving the ∆−1-periodicity of FDC( f ).
To verify the final assertion of the theorem, we compute

|FDC( f )(ν)| = ∆

∣∣∣∣∣∣∣ ∑n∈Z>0

f (n∆) exp−2πin∆ν

∣∣∣∣∣∣∣ ≤ ∆ ∑
n∈Z>0

| f (n∆)| = ∆∥ f ∥1.

Thus we have
∥FDC( f )∥∞ = sup{|FDC( f )(ν)| | ν ∈ R} ≤ ∆∥ f ∥1.

Thus FDC is a bounded linear map, and so continuous by Theorem III-3.5.8. ■Ref to complex version

of infinite triangle

inequality

7.1.8 Remark (The DCFT and inversion of the CDFT) Note that the first assertion
of the previous theorem really follows from Theorem 5.2.33 which deals with
uniform convergence of Fourier series. The natural assumption that f ∈ ℓ1(Z(∆);C)
corresponds to the natural hypotheses for uniform convergence of Fourier series. •

We also have a version of the Fourier Reciprocity Relation for the DCFT.

7.1.9 Proposition (Fourier Reciprocity Relation for the DCFT) If f,g ∈ ℓ1(Z(∆);C)
then

∆
∑
n∈Z

f(n∆)g(n∆) =
∫ ∆−1

0
FDC(f)(ν)F DC(g)(ν) dν.

Proof We leave this to the reader as Exercise 7.1.2. ■

7.1.3 The effect of coefficient decay on the DCFT

In Section 5.1.3 we saw that there were relationships between the differentia-
bility of a periodic signal and the rate of decay of CDFT at large frequencies. In
this section we establish a sort of converse of this, understanding that the rôles of
time and frequency are reversed for the DCFT.

For smoothness of the DCFT of a signal, the following result is the main one.

7.1.10 Proposition (Differentiability of the DCFT of a signal) For k ∈ Z>0, suppose
that f : Z(∆) → C has the property that the signal t 7→ tkf(t) is in ℓ1(Z(∆);C). Then
FDC(f) ∈ Ck(R;C) and

FDC(f)(k)(ν) = ∆
∑
n∈Z

(−2πin∆)kf(n∆)e−2πin∆ν.

Proof First of all, note that the hypotheses of the proposition ensure that f ∈
ℓ1(Z(∆);C). Indeed, consider the signal g : Z(∆)→ C defined by

g(t) =

 f (t), t = 0,
tk f (t), otherwise.

Then, our hypotheses ensure that g ∈ ℓ1(Z(∆);C). Since | f (t)| ≤ g(t) for all t ∈ Z(∆) it
follows from the Comparison Test that f ∈ ℓ1(Z(∆);C).
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We now prove the result by induction on k. For k = 0 it is true from Theorem 7.1.7.
So suppose the result holds for k ∈ {0, 1, . . . , r − 1} and let f : Z(∆) → C be such
that t 7→ tr f (t) is in ℓ1(Z(∆);C). It follows as in the first paragraph of the proof that
t 7→ tr−1 f (t) is in ℓ1(Z(∆);C) and so, by the induction hypothesis,

FDC( f )(r−1)(ν) = ∆
∑
n∈Z

(−2πin∆)r−1 f (n∆)e−2πin∆ν,

with the convergence of the series on the left being uniform by the Weierstrass M-test.
By our hypotheses on f , the series ∑

n∈Z

nr f (n∆)

converges absolutely. By the Weierstrass M-test, this means that the series∑
n∈Z

(−2πin∆)r f (n∆)e−2πin∆ν

converges uniformly. Therefore, by Theorem I-3.6.24, it follows that FDC( f ) is r-times
continuously differentiable and that

FDC( f )r(ν) = ∆
∑
n∈Z

(−2πin∆)r f (n∆)e−2πin∆ν,

as desired. ■

This results gives rise to the following corollary, which gives an easy class of
signals with smooth DCFT’s.

7.1.11 Corollary (Differentiability of the DCFT of a signal) For k ∈ Z>0, suppose that
f : Z(∆) → C has the property that lim|t|→∞ tk+1+ϵf(t) = 0 for some ϵ ∈ R>0. Then
FDC(f) ∈ Ck(R;C) and

FDC(f)(k)(ν) = ∆
∑
n∈Z

(−2πin∆)kf(n∆)e−2πin∆ν.

Proof Let N ∈ Z>0 be sufficiently large that |t|k+1+ϵ
| f (t)| < 1 for |t| ≥ N∆. Therefore,

| f (t)| < |t|−k−1−ϵ =⇒ |t|k| f (t)| < |t|−1−ϵ.

Therefore, t 7→ tk f (t) is in ℓ1(Z(∆);C) by Example I-2.4.2–4. The result then follows
from Proposition 7.1.10. ■

7.1.4 Convolution, multiplication, and the DCFT

As with the CDFT and the CCFT, there are connections between the DCFT and
convolution. Here we state these in the ℓ1-case, referring to Section 7.1.6 for the
situation in the ℓ2-case. The first result is that the DCFT of a convolution is the is this right

product of the DCFT’s.
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7.1.12 Proposition (The ℓ1-DCFT of a convolution is the product of the ℓ1-DCFT’s) If
f,g ∈ ℓ1(Z(∆);C) then

FDC(f ∗ g)(ν) = FDC(f)(ν)FDC(g)(ν)

for every t ∈ R.
Proof We have

FDC( f ∗ g)(ν) =
∑
n∈Z

∑
k∈Z

f ((n − k)∆)g(kδ)

 e−2πin∆ν

=
∑
m∈Z

∑
k∈Z

f ((m∆)g(kδ)

 e−2πi(m+k∆ν

=

∑
m∈Z

f (m∆)e−2πim∆ν

 (g(k∆)e−2πik∆ν
)

= FDC( f )(ν)FDC(g)(ν),

interchanging the sums by Fubini’s Theorem. ■

For the DCFT of products, we have the following result.

7.1.13 Proposition (The ℓ1-DCFT of a product is the convolution of the ℓ1-DCFT’s) If
f,g ∈ ℓ1(Z(∆);C) then

FDC(fg)(ν) = FDC(f) ∗ FDC(g)(ν), ν ∈ R.

Proof Note that ℓ1(Z(∆);C) ⊆ ℓ2(Z(∆);C) by Theorem 1.2.7(v). By Exercise 1.2.5 we
then have f g ∈ ℓ1(Z(∆);C). We can thus compute

FDC( f ) ∗ FDC(g)(ν) =
∫ ∆−1

0
FDC( f )(ν − µ)FDC(g)(µ) dµ

=

∫ ∆−1

0

∑
n∈Z

f (n∆)e−2πin∆(ν−µ)


∑

m∈Z

g(m∆)e−2πim∆µ

 dµ

=
∑
n∈Z

∑
m∈Z

f (n∆)g(m∆)e−2πin∆ν
∫ ∆−1

0
e2πin∆µe−2πim∆µ dµ

= ∆
∑
n∈Z

f (n∆)g(n∆)e−2πin∆ν = FDC( f g)(ν),

where the sums and the integral have been interchanged by Fubini’s Theorem. ■

7.1.5 Inversion of the DCFT

Inversion of the DCFT is more easily accomplished than for the continuous-time
Fourier transforms, the CDFT and the CCFT. This is partly due to the fact that the
transform has a set of discrete-time signals as its domain, and partly because we
have done some of the work to invert the DCFT in our discussion of the CDFT.

As with the CDFT and the CCFT, it is first useful to understand the basic
properties of FDC as a map from ℓ1(Z(∆);C) to C0

per,∆−1(R;C).
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7.1.14 Theorem (The DCFT is injective) The map FDC : ℓ1(Z(∆);C) → C0
per,∆−1(R;C) is

injective.
Proof BecauseFDC is linear, to show that it is injective it suffices to show that only the
zero signal in ℓ1(Z(∆);C) maps to the zero signal in C0

per,∆−1(R;C), cf. Exercise I-4.5.23.

Thus suppose that f ∈ ℓ1(Z(∆);C) has the property that FDC( f )(ν) = 0 for every ν ∈ R.
Thus ∑

n∈Z

f (n∆)e−2πin∆ν = 0, ν ∈ R.

As we have already seen, the sum on the left converges uniformly by the Weierstrass
M-test. Using Theorem I-3.6.23 we have, for m ∈ Z

0 =
∑
n∈Z

f (n∆)
∫ ∆−1

0
e2πim∆νe−2πin∆ν dν =

f (m∆)
∆

,

using Lemma 5.3.2. This gives the result. ■

One might now hope that the DCFT is an isomorphism. However, if the reader
was following along in Chapters 5 and 6, then they will realise that this is too much
to hope for.

7.1.15 Proposition (The DCFT is not onto C0
per,∆−1

(R;C)) The map FDC : ℓ1(Z(∆);C) →

C0
per,∆−1(R;C) is not surjective.

Proof Let F ∈ C0
per,∆−1(R;C) be a signal whose Fourier series does not converge, cf. Ex-

ample 5.2.10. Let σ : R → R be defined by σ(ν) = −ν. Then the Fourier series of σ∗F
also does not converge, where σ∗F(ν) = F(−ν). Suppose that f ∈ ℓ1(Z(∆);C) is such
that FDC( f ) = σ∗F. Thus

F(ν) = ∆
∑
n∈Z

f (n∆)e2πin∆ν.

Since f ∈ ℓ1(Z(∆);C) the series on the left must converge uniformly to F. However, the
series on the left is the Fourier series of F which we have assumed is divergent. This is
a contradiction, and so there can exist no f ∈ ℓ1(Z(∆);C) such that FDC( f ) = σ∗F. Since
σ∗F ∈ C0

per,∆−1(R;C), this gives the result. ■

As we did with the CDFT and the CCFT, we can seek a left-inverse for DCFT.
For the CDFT and the CCFT, this required some work. For the DCFT the inverse
is easily written down by virtue of our work on convergence of Fourier series in
Sections 5.2.4 and 5.2.5.

7.1.16 Theorem (The inverse of the DCFT) The map F −1
DC : C0

per,∆−1(R;C) → c0(Z(∆);C)
defined by

F −1
DC (F)(n∆) =

∫ ∆−1

0
F(ν)e2πin∆ν dν

has the property that F −1
DC

◦ FDC(f) = f for every f ∈ ℓ1(Z(∆);C). That is to say, F −1
DC is a

left-inverse for FDC.



644 7 Discrete-time Fourier transforms 2022/03/07

Proof First of all, note that the Riemann–Lebesgue Lemma ensures that F −1
DC takes

values in c0(Z(∆);C), as stated. Now let f ∈ ℓ1(Z(∆);C), let m ∈ Z, and compute, using
Theorem I-3.6.23 and Lemma 5.3.2,

(F −1
DC ◦ FDC( f ))(m∆) = ∆

∫ ∆−1

0

∑
n∈Z

f (n∆)e−2πin∆νe2πim∆ν dν

= ∆
∑
n∈Z

f (n∆)
∫ ∆−1

0
e−2πin∆νe2πim∆ν dν = f (m∆),

as desired. ■

7.1.6 The ℓ2-DCFT

Recall from Section 1.2.7 that ℓ1(Z(∆);C) ⊆ ℓ2(Z(∆);C) and that the inclusion is
strict. For example, the signal f : Z(∆)→ C defined by

f (t) =

 1
|t| , t , 0,
0, t = 0

is in ℓ2(Z(∆);C) but not in ℓ1(Z(∆);C). Therefore, the definition of the DCFT from
Section 7.1.1 cannot be directly applied to signals in ℓ2(Z(∆);C). However, the
work done in Section 5.3 can be applied here.

We shall mirror the constructions of Section 6.3 for the L2-CCFT, although this is
not quite necessary since the ℓ2-DCFT is a little simpler than the L2-CCFT. However,
it is useful to see the two transforms developed in the same manner.

We first state two lemmata for the DCFT that mirror Lemmata 6.3.1 and 6.3.2
for the CCFT.

7.1.17 Lemma (FDC(ℓ1 ∩ ℓ2) ⊆ ℓ2) If f ∈ ℓ1(Z(∆);C)∩ ℓ2(Z(∆);C) then ∥FDC(f)∥2 = ∥f∥2. In
particular, FDC(f) ∈ L(2)

per,∆−1(R;C).
Proof We leave this to the reader as Exercise 7.1.3. ■

7.1.18 Lemma (ℓ1 ∩ ℓ2 is dense in ℓ2) ℓ1(Z(∆);C) ∩ ℓ2(Z(∆);C) is dense in ℓ2(Z(∆);C).
Proof We leave this to the reader as Exercise 7.1.4. ■

From this we have the following result, whose proof we encourage the reader
to look at, as it makes clear connections with our constructions of Section 5.3.

7.1.19 Theorem (Plancherel’s Theorem for the DCFT) There exists a unique continuous
linear map F̃DC : ℓ2(Z(∆);C)→ L2

per,∆−1(R;C) with the properties

(i) F̃DC(f) = FDC(f) for f ∈ ℓ1(Z(∆;C) ∩ ℓ2(Z(∆);C) and
(ii) ∥F̃DC(f)∥2 = ∥f∥2 (Parseval’s equality or Plancherel’s equality).

Furthermore, if f ∈ ℓ2(Z(∆);C) and if (fj)j∈Z>0 is a sequence in ℓ1(Z(∆);C) ∩ ℓ2(Z(∆);C)
for which limj→∞∥f − fj∥2 = 0, then limj→∞∥F̃DC(f) − FDC(fj)∥2 = 0.
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Proof We could adopt the same proof as Theorem 6.3.3, but give a somewhat more
explicit proof, using facts about the L2-CDFT.

For j ∈ Z>0 and f ∈ ℓ2(Z(∆);C), define

f j(n∆) =

 f (n∆), n ∈ {− j, . . . ,−1, 0, 1, . . . , j},
0, otherwise.

Note that ( f j) j∈Z>0 is a sequence in ℓ1(Z(∆);C)∩ℓ2(Z(∆);C) (this is obvious) converging
to f in ℓ2(Z(∆);C) (this is easy to prove, and furnishes a solution to Exercise 7.1.4. Note
that

FDC( f j) = ∆
j∑

n=− j

f (n∆)e−2πin∆ν.

In the proof we recall from Section 1.2.3 that the inner product on ℓ2(Z(∆);C) is

⟨ f , g⟩2 = ∆
∑
n∈Z

f (n∆)g(n∆).

Let E−2πin∆ ∈ L(2)
per,∆−1(R;C) be defined by E−2πin∆−1(ν) = e−2πin∆−1ν. As in Theo-

rem 5.3.3, (
√
∆E−2πin∆−1)n∈Z is a Hilbert basis for (L2

per,∆−1(R;C), ⟨·, ·⟩2). Therefore, by

Theorem III-4.4.29 it follows that, if f ∈ ℓ2(Z(∆);C), then the sequence (FDC( f j)) j∈Z>0

converges in L2
per,∆−1(R;C). ■

The map F̃DC from the preceding theorem is an isomorphism of Hilbert spaces.

7.1.20 Theorem (The inverse of the ℓ2-DCFT) The map F̃DC is a Hilbert space isomorphism
from (ℓ2(Z(∆),C), ⟨·, ·⟩2) to (L2

per,∆−1(R;C), ⟨·, ·⟩2) with inverse

F −1
DC (F)(n∆) =

∫ ∆−1

0
F(ν)e2πin∆ν dν.

Proof The map F̃DC assigning to f ∈ ℓ2(Z(∆);C) the resulting limit is an isomor-
phism by Corollary III-4.4.35. That F −1

DC is as stated in the theorem follows since, by
Theorem III-4.4.29,

FDC( f ) = ∆
∑
n∈Z

f (n∆)E−2πin∆

=⇒ f (n∆) = ⟨FDC( f ),E−2πin∆−1⟩2

=⇒ f (n∆) =
∫ ∆−1

0
FDC( f )(ν)e2πin∆ν dν.

That F̃DC is a Hilbert space isomorphism follows just as does the proof of the similar
statement in Theorem 5.3.8. ■
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Of course, we shall not use the symbol F̃DC for the ℓ2-DCFT, but shall use FDC

instead, the exact meaning of this symbol being clear from context.
Note that the fact that the DCFT cannot be computed directly for signals in

ℓ2(Z(∆);C) is analogous to the fact that the CCFT cannot be computed directly for
signals in L(2)(R;C). For the L2-CCFT we followed a procedure which led us to the
fact that the limit

lim
T→∞

∫ T

−T
f (t)e−2πiνt dt

exists in L2(R;C), so defining the L2-CCFT of f ∈ L2(R;C). This is analogous to the
situation in the preceding theorem where we define the ℓ2-DCFT of f ∈ ℓ2(Z(∆);C)
as the limit

lim
N→∞
∆

N∑
n=−N

f (n∆)e−2πin∆ν

in L2
per,∆−1(R;C). We refer to Section 5.3 for a discussion of the pointwise conver-

gence properties of this limit.
Let us consider some examples illustrating the issues involved with the ℓ2-

DCFT.

7.1.21 Examples (The ℓ2-DCFT)
1. Let us consider the discrete square wave f from Example 7.1.3–3. Note that

f ∈ ℓ1(Z(∆);C) ⊆ ℓ2(Z(∆);C). Thus the ℓ2-DCFT of f is “the same” as the
ℓ1-CDFT:

FDC( f )(ν) = ∆Dper
1,N(t).

Note, however, when dealing with the ℓ2-DCFT, we are really thinking of the
DCFT as being the equivalence class in L2

per,∆−1(R;C) containing the ℓ1-CDFT.

2. Here we consider f : Z→ C defined by

f (n) =

0, n = 0,
i1−(−1)n

nπ , otherwise.

Note that f ∈ ℓ2(Z;C) but that f < ℓ1(Z;C). Using our Fourier series computa-
tions from Example 5.2.30–1 we have

lim
N→∞

N∑
n=−N

i
1 − (−1)n

nπ
e−2πinν = lim

N→∞

N∑
n=−N

i
(−1)n

− 1
nπ

e2πinν =


0, ν ∈ {0, 1

2 , 1},
1, ν ∈ (0, 1

2 ),
−1, ν ∈ ( 1

2 , 1),

with the value ofFDC( f ) being defined for all frequencies by periodic extension.
Thus, in this case, the series defining FDC( f ) ∈ L2

per,∆−1(R;C) converges for every
ν ∈ R. Nonetheless, one should be careful to understand that Theorem 7.1.19
gives convergence in L2

per,∆−1(R;C), not pointwise convergence.
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3. The final example we consider is the signal f : Z(∆)→ C defined by

f (n∆) =

0, n = 0,
1
n , otherwise.

Note that f ∈ ℓ2(Z(∆);C) but that f < ℓ1(Z(∆);C). Note that at ν = 0 the limit

lim
N→∞
∆

N∑
n=−N

1
n

e−2πin∆ν

does not exist. Nonetheless, Theorem 7.1.19 ensures that the limit

lim
N→∞
∆

N∑
n=−N

1
N

e−2πin∆ν

exists in L2
per,∆−1(R;C). • what is this limit?

Let us provide the results regarding convolution and multiplication for the
DCFT in the ℓ2-case. As with the CCFT, for the ℓ2-DCFT we have to modify our
expectations for what we can say about the DCFT of a convolution. Indeed, by
Corollary 4.2.40 we have that f ∗ g ∈ ℓ∞(Z(∆);C) and the DCFT of signals in
ℓ∞(Z(∆);C) is not generally defined. The result that we can state is the following.

7.1.22 Proposition (The convolution of ℓ2 is the inverse DCFT of the product of the
ℓ2-DCFT’s) If f,g ∈ ℓ2(Z(∆);C) then

f ∗ g(n∆) = F −1
DC (FDC(f)FDC(g))(n∆)

for every n ∈ Z.
Proof Define

f j(n∆) =

 f (n∆), n ∈ {− j, . . . ,−1, 0, 1, . . . , j},
0, otherwise,

g j(n∆) =

g(n∆), n ∈ {− j, . . . ,−1, 0, 1, . . . , j},
0, otherwise.

As the reader might verify en route to doing Exercise 7.1.4, the sequences ( f j) j∈Z>0

and (g j) j∈Z>0 are in ℓ1(Z(∆);C) ∩ ℓ2(Z(∆);C) and converge in ℓ2(Z(∆);C) to f and g,
respectively. Moreover, since f j and g j have finite support, by Proposition 4.1.29 it
follows that f j ∗ g j has finite support for each j ∈ Z>0. Thus f j ∗ g j ∈ ℓ1(Z(∆);C) ∩
ℓ2(Z(∆);C). Then, according to Proposition 7.1.12,

FDC( f j ∗ g j) = FDC( f j)FDC(g j)

=⇒ f j ∗ g j = F
−1

DC (FDC( f j)FDC(g j)) j ∈ Z>0,
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because f j ∗ g j ∈ ℓ2(Z(∆);C) and since F −1
DC

◦ FDC is the identity on ℓ2(Z(∆);C) by
Theorem 7.1.20.

By the sequence (( f j, g j)) j∈Z>0 converges to ( f , g) in the product topology on what?

ℓ2(Z(∆);C) × ℓ2(Z(∆);C). By Corollary 4.2.40 the sequence ( f j ∗ g j) j∈Z>0 converges
to f ∗ g using the∞-norm.

We claim that (F −1
DC (FDC( f j)FDC(g j))) j∈Z>0 converges to F −1

DC (FDC( f )FCC(g)) in the
∞-norm. Indeed, we have

∥FDC( f )FDC(g)−FDC( f j)FDC(g j)∥1 ≤ ∥FDC( f )FDC(g) − FDC( f j)FDC(g)∥2
+ ∥FDC( f j)FDC(g) − FDC( f j)FDC(g j)∥2

≤ ∥FDC( f ) − FDC( f j)∥2∥FDC(g)∥2 + ∥FDC( f j)∥∥FDC(g) − FDC(g j)∥2
= ∥ f − f j∥2∥g∥2 + ∥ f j∥∥g − g j∥2

using the Cauchy–Bunyakovsky–Schwarz inequality and Parseval’s equality. Thus

lim
j→∞
∥FDC( f )FDC(g) − FDC( f j)FDC(g j)∥1 = 0.

By Corollary 5.1.10 (applied to F −1
DC rather than FCD) it then follows that

(F −1
DC (FDC( f j)FDC(g j))) j∈Z>0 to F −1

DC (FDC( f )FDC(g)) in the∞-norm, as desired.
Thus we have

lim
j→∞

f jg j = f g, lim
j→∞
F −1

DC (FDC( f j)FDC(g j)) = F −1
DC (FDC( f )FDC(g)),

with both limits being with respect to the∞-norm. From this the result follows. ■

7.1.23 Proposition (The DCFT of a product is the convolution of the DCFT’s) If f,g ∈
ℓ1(Z(∆);C) and if FCD(f),FCD(g) ∈ ℓ1(Z(T−1;C), then

FDC(fg)(ν) = FDC(f) ∗ FDC(g)(ν), ν ∈ R.

Proof As in the proof of Proposition 7.1.22, let ( f j) j∈Z>0 and (g j) j∈Z>0 be sequences of
finitely supported signals in ℓ1(Z(∆);C) ∩ ℓ2(Z(∆);C) converging in ℓ2(Z(∆);C) to f
and g, respectively. By Proposition 7.1.13 we have

FDC( f jg j)(ν) = FDC( f j) ∗ FDC(g j)(ν)

for every j ∈ Z>0 and for every ν ∈ R.
By continuity of the ℓ2-DCFT it follows that the sequences (FDC( f j)) j∈Z>0 and

(FDC(g j)) j∈Z>0 converge in ℓ2(Z(∆);C) to FDC( f ) and FDC(g), respectively. Thus, by
, the sequence ((FDC( f j),FDC( f j))) j∈Z>0 converges in L2

per,∆−1(R;C) × L2
per,∆−1(R;C) towhat?

(FCC( f ),FCC(g)) with the product topology. By Corollary 4.2.32 it follows that the
sequence (FDC( f j) ∗ FDC(g j)) j∈Z>0 converges to FDC( f ) ∗ FDC(g) uniformly.

We claim that the sequence (FDC( f jg j)) converges uniformly to FDC( f g). Indeed,
we have

∥ f g − f jg j∥1 ≤ ∥ f g − f jg∥2 + ∥ f jg − f jg j∥ ≤ ∥ f − f j∥2∥g∥2 + ∥ f j∥∥g − g j∥2,
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using the Cauchy–Bunyakovsky–Schwarz inequality. Thus

lim
j→∞
∥ f g − f jg j∥1 = 0.

By Theorem 7.1.7 it then follows that (FDC( f jg j)) j∈Z>0 converges uniformly toFCC( f g),
as desired.

Thus

lim
j→∞
FDC( f jg j) = FDC( f g), lim

j→∞
FDC( f j) ∗ FDC(g j) = FDC( f )FDC(g),

with convergence being uniform in each case. This gives the result. ■

7.1.7 The DCFT for signals of slow growth

Having now considered the DCFT for signals in ℓ1(Z(∆);C) and ℓ2(Z(∆);C),
classes of signals that decay to zero at infinity, we now turn to more general classes
of signals that do not necessarily decay to zero at infinity. Of course, in such
cases the direct definition of Definition 7.1.1 is hopeless. For those who have been
following along carefully, it will come as no surprise to see that we circumvent the
difficulties with a direct definition using distribution theory.

We begin by restricting ourselves to a class of signals that do not grow too
quickly at infinity. The reader will notice obvious similarities between the presen-
tation here and the presentation in Section 5.5 of the CDFT for periodic distribu-
tions.

7.1.24 Definition (Signal of slow growth) A signal f : Z(∆) → C is a signal of slow
growth if there exists M ∈ R>0 and k ∈ Z≥0 such that | f (n∆)| ≤ M|n|k for every
n ∈ Z. Let us denote by S(Z(∆);C) the set of signals of slow growth. •

7.1.25 Remark (Signals of slow growth form a vector space) It is easily verified that
S(Z(∆);C) is a C-vector space; the reader may verify this as Exercise 7.1.6. •

The fundamental result in this section is then the following. We use the no-
tation that, if f ∈ L(1)

per,∆−1(R;C), then θ f ∈ D ′per,∆−1(R;C) denotes the ∆−1-periodic
distribution as in Example 3.9.3–1.

7.1.26 Theorem (DCFT for signals of slow growth) The map FDC which assigns to f ∈
S(Z(∆);C) the periodic distribution

FDC(f) = ∆
∑
n∈Z

f(n∆)θE−2πin∆

is an isomorphism of S(Z(∆);C) withD ′
per,∆−1(R;C). Moreover, the inverse of FDC is

F −1
DC (Θ)(n∆) = Θ(E2πin∆).
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Proof Let σ∗ f (t) = f (−t); it is evident that σ∗ f ∈ S(Z(∆);C). By Theorem 5.5.7 we
have

FDC( f ) = ∆
∑
n∈Z

f (n∆)θE−2πin∆ = ∆
∑
n∈Z

σ∗ f (n∆)θE2πin∆ ∈ D
′

per,∆−1(R;C).

Thus the FDC as written indeed hasD ′
per,∆−1(R;C) as its codomain. By Corollary 5.5.9

it also follows that FDC is an isomorphism.
Let us defineF −1

DC as stated in the theorem, and show that this is indeed the inverse
of FDC (thereby introducing an abuse of notation whose temporal support is so small
as to be negligible). By Corollary 5.5.9

F −1
DC ◦ FDC( f )(m∆) =

∆∑
n∈Z

f (−n∆)θE2πin∆

 (E2πim∆)

=

∆∑
n∈Z

f (n∆)θE−2πin∆

 (E2πim∆) = f (m∆),

using the fact that

θE−2πin∆(E2πim∆) =
∫ ∆−1

0
e−2πin∆νe2πim∆ν dν = ∆−1

by Lemma 5.3.2. Thus F −1
DC is a left-inverse for FDC. Moreover, by Corollary 5.5.9 we

also compute

FDC ◦ F
−1

DC (Θ) = ∆
∑
n∈Z

Θ(E2πin∆)θE−2πin∆ = ∆
∑
n∈Z

Θ(E−2πin∆)θE2πin∆ = Θ

for Θ ∈ D ′
per,∆−1(R;C). Thus F −1

DC is also a right-inverse for FDC, and so an inverse. ■

Let us give some examples of the DCFT for signals of slow growth.

7.1.27 Examples (DCFT for signals of slow growth)
1. Let us take f ∈ S(Z(∆);C) to be defined by f (n∆) = 1 for every n ∈ Z. We have

FDC( f ) = ∆
∑
n∈Z

θE−2πin∆ =
∑
n∈Z

δn∆−1 ,

using Example 5.5.2–2. To verify the validity of this expression to oneself, it
suffices to verify its sensibility when evaluated on functions ψ ∈ Dper,∆−1(R;C).
Such functions can be written as

ψ(ν) = ∆
∑
m∈Z

FCD(ψ)(m∆)e2πim∆ν.
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We then have∑
n∈Z

θE−2πin∆

 (ψ) =
∑
m∈Z

∑
n∈Z

∆FCD(ψ)(n∆)θE−2πin∆(E2πim∆)

=
∑

n∈Z>0

FCD(ψ)(n∆)

=
∑
n∈Z

FCD(ψ)(n∆)

∑
m∈Z

δm∆−1(θE2πin∆ν)


=

∑
m∈Z

δm∆−1

 (ψ),

verifying the desired equality.
2.

7.1.8 The DCFT for general signals

We now carry the results of the preceding section one step further to allow the
taking of the DCFT for an arbitrary signal f : Z(∆)→ C.

Exercises

7.1.1 In Table 7.1.1 are given plots of three discrete-time signals defined onZ and
their DCFT’s. You are not told which signal goes with which DCFT. Without
doing any computations, indicate which signal in the left column goes with
which DCFT in the right column.

7.1.2 Prove Proposition 7.1.9.
7.1.3 Prove Lemma 7.1.17.
7.1.4 Prove Lemma 7.1.18.
7.1.5 Find a signal f ∈ ℓ2(Z(∆);C) such that the signal FDC( f ) is not continuous.
7.1.6 Show that S(Z(∆);C) is a C-vector space.
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Graphs of signals Graphs of DCFT’s

1. 1.

2. 2.

3. 3.
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Section 7.2

The discrete-discrete Fourier transform

The last of the four Fourier transforms we discuss is the simplest, the most easily
computed, and the most widely used in practice. Indeed, were one to adopt an
excessively simplistic point of view, one might assert that the only Fourier transform
worth learning in the DDFT. However, the fact remains that, even though one might
use the DDFT in practice, one often uses it as an approximation of what one really
wishes to compute, typically the CCFT. Thus, the flipside of the usefulness of the
DDFT is the fact that it is often a mere computational approximation to what one
wants to do. In this way, perhaps the DDFT is the one transform that one should
not learn.

The above polemical remarks aside, the DDFT is best understood as an ex-
tremely useful computational tool which is best appreciated in relation to the other
Fourier transforms. In this section we study the DDFT outright, leaving to Sec-
tion 8.4 the comparisons with the other transforms.

Do I need to read this section? If you are learning Fourier transform theory, and
particularly if you ever plan to use the Fourier transform in a non-textbook setting,
then you must read this section. •

7.2.1 The DDFT signal spaces

The signals we consider in this section are the discrete-time periodic signals as
described in Section 1.2.4. The two spaces of interest are

ℓper,N∆(Z(∆);C) = { f : Z(∆)→ C | f ((n +N)∆) = f (n∆) for all n ∈ Z}

in the time-domain and

ℓper,∆−1(Z((N∆)−1);C) = { f : Z((N∆−1))→ C | f (n+N
N∆ ) = f ( n

N∆ ) for all n ∈ Z}

in the frequency-domain, both defined for some N ∈ Z>0. In particular, we saw
in Section 1.2.4 that the spaces we are dealing with above are finite-dimensional.
Therefore, unlike for all of our other Fourier transforms, one does not have to dis-
criminate between spaces with various summability properties, i.e., the ℓp spaces.

We shall make use in this section of inner products on these two finite-
dimensional vector spaces. The inner products we use are those derived from
the 2-norms from Section 1.2.3. Let us recall these here. On ℓper,N∆(Z(∆;C) we use
the inner product

⟨ f , g⟩time = ∆

N−1∑
n=0

f (n∆)g(n∆)
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and on ℓper,∆−1(Z((N∆)−1);C) we use the inner product

⟨F,G⟩freq = (N∆)−1
N−1∑
n=0

F(n(N∆)−1)G(n(N∆)−1).

Let us record orthonormal bases for these spaces with these inner products.

7.2.1 Lemma (Orthonormal bases for the DDFT time-dimain) For ∆ ∈ R>0 and N ∈
Z>0, define e0, . . . , eN−1,E0, . . . ,EN−1 ∈ ℓper,N∆(Z(∆;C) by defining

ej(n∆) =

1, j = n,
0, otherwise

and
Ej(n∆) = e2πi n

N j

for j,n ∈ {0, 1, . . . ,N − 1}, and then defining then on all of Z(∆) so that they are N∆-
periodic. Then the sets {∆−1/2e0, . . . ,∆−1/2eN−1} and {(N∆)−1/2E0, . . . , (N∆)−1/2EN−1} are
orthonormal bases for (ℓper,N∆(Z(∆);C), ⟨·, ·⟩time).

Proof We have

⟨e j, ek⟩time = ∆

N−1∑
n=0

e j(n)ek(n) =

∆, j = k,
0, otherwise,

which gives the result for {∆−1/2e0, . . . ,∆−1/2eN−1}. For j, k ∈ {0, . . . ,N − 1}with j > k we
have

∆−1
⟨E j,Ek⟩time =

N−1∑
n=0

e2πi n
N je−2πi n

N k =

N−1∑
n=0

e2πi n
N ( j−k) =

N−1∑
n=0

(e2πi 1
N )n( j−k).

Note that e2πi 1
N is a primitive Nth root of unity. By Proposition II-3.2.6, since j − k ∈

{1, . . . ,N − 1},

⟨E j,Ek⟩time = ∆

N−1∑
n=0

(e2πi 1
N )n( j−k) = 0.

Similarly, for k > j we have ⟨E j,Ek⟩time = 0. Finally, if j = k we immediately have
⟨E j,Ek⟩time = N∆, and the result now follows. ■

The following lemma records the corresponding result for the frequency-
domain of the DDFT.

7.2.2 Lemma (Orthonormal bases for the DDFT frequency-dimain) For ∆ ∈ R>0 and
N ∈ Z>0, define f0, . . . , fN−1,F0, . . . ,FN−1 ∈ ℓper,∆−1(Z((N∆)−1;C) by defining

fj(n(N∆)−1) =

1, j = n,
0, otherwise
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and
Fj(n(N∆)−1) = e2πi n

N j

for j,n ∈ {0, 1, . . . ,N − 1}, and then defining then on all of Z((N∆)−1) so that they are
∆−1-periodic. Then the sets {(N∆)1/2f0, . . . , (N∆)1/2fN−1} and {∆1/2F0, . . . ,∆1/2FN−1} are
orthonormal bases for (ℓper,N∆(Z(∆);C), ⟨·, ·⟩freq).

7.2.2 Definition of the DDFT

We refer to Section 2.6.3 for motivational remarks concerning the following
definition.

7.2.3 Definition (DDFT) The discrete-discrete Fourier transform or DDFT assigns to
f ∈ ℓper,N∆(Z(∆);C) the signal FDD( f ) ∈ ℓper,∆−1(Z((N∆)−1);C) by

FDD( f )( k
N∆ ) = ∆

N−1∑
n=0

f (n∆)e−2πi k
N n, k ∈ Z. •

7.2.4 Remarks (Comments on the definition of the DDFT)
1. It is perhaps not completely trivial that the DDFT takes values in

ℓper,∆−1(Z((N∆)−1);R). This is proved in Proposition 7.2.8 below.
2. What we above call the DDFT is most commonly referred to as the “discrete

Fourier transform,” for more or less obvious reasons. However, we shall keep
to “DDFT” to preserve the rationale of our naming conventions.

3. As there is no discrimination, as with the other Fourier transforms, with summa-
bility properties with spaces of periodic discrete-time signals, we do not have
an “ℓ1-DDFT,” nor shall we have an “ℓ2-DDFT.” This results because the do-
main and codomain of the DDFT are both finite-dimensional, indeed having
the same dimension. This is one of the results of the comparative simplification
of the DDFT relative to the other Fourier transforms.

4. As we have always done in dealing with the Fourier transform, we shall regard
ℓper,N∆(Z(∆);R) and ℓper,∆−1(Z((N∆)−1);R) as subspaces of ℓper,N∆(Z(∆);C) and
ℓper,∆−1(Z((N∆)−1);C).

5. Sometimes the domain and codomain of the DDFT is taken to be {0, 1, . . . ,N −
1}. This is reasonable, given that the signal spaces forming the domain and
codomain have dimension N. •

Let us give some examples where we can explicitly compute the DDFT. Unlike
the other Fourier transforms, the simplicity of the DDFT allows us to give “closed
form” expressions (in the form of finite sums) for the DDFT of any signal.
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7.2.5 Examples (Computing the DDFT)
1. We first consider the periodic extension of a pulse. Thus we take Pper ∈

ℓper,N∆(Z(∆);C) to be defined by

Pper(t) =

1, t = kN∆, k ∈ Z,
0, otherwise.

In this case we simply have

FDD(Pper)(k(N∆)−1) = ∆e−2πi k
N

for each k ∈ Z.
2. Here we consider the discrete periodic square wave. We thus define f ∈

ℓper,N(Z;C) by defining it on {−⌈N
2 ⌉∆, . . . ,−∆, 0,∆, . . . , ⌈

N
2 ⌉∆} (recall from the text

following Definition I-2.2.8 the definition of the ceiling function ⌈·⌉) by

f (t) =

1, t ∈ {−M∆, . . . ,−∆, 0,∆, . . . ,M∆},
0, otherwise,

for some M ∈ {1, . . . , ⌊N
2 ⌋}. We depict this signal in Figure 7.2. Here we have

FDD( f )(k(N∆)−1) = ∆
M∑

n=−M

e−2πi k
N n = ∆Dper

∆−1,M
(k(N∆)−1),

where, by Lemma 1 from Example 8.1.3, we have

Dper
N,M(k(N∆)−1) =


sin

(
(2M + 1)π k

N

)
sin

(
π k

N

) , t , 0,

2M + 1, t = 0.

We plot FDD( f ) in Figure 7.2.
3. Finally we consider a discrete periodic triangular. Similarly with the preceding

example, we define the function on {−⌈N
2 ⌉∆, . . . ,−∆, 0,∆, . . . , ⌈

N
2 ⌉∆}. Here we

have

g(t) =


−

t
M∆ + 1, t ∈ {0,∆, . . . , (M − 1)∆},

t
M∆ + 1, t ∈ {−(M − 1)∆, . . . ,−∆},
0, otherwise,

which we show in Figure 7.3. Here we take M ∈ {1, . . . , ⌊N
2 ⌋}. We then compute,

using Lemma 3 from Example 8.2.2–3,

FDD(g)(k(N∆)−1) = ∆
M∑

n=−M

g(n∆)e−2πi k
N n = ∆Fper

∆−1,M
( k

N )
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Figure 7.2 A discrete periodic square wave (top) and its DDFT
(bottom) for ∆ = 1, N = 20, and M = 5

where

Fper
∆−1,M

(k(N∆)−1) =


1
M

sin2
(
πM k

N

)
sin2(π k

N )
, t , 0,

M, t = 0.

We plot this DDFT in Figure 7.3. •

As with our other Fourier transforms, there are sine and cosine versions of the
DDFT.

7.2.6 Definition (DDCT and DDST)
(i) The discrete-discrete cosine transform or DDCT assigns to f ∈ ℓper,N∆(Z(∆);C)

the signal CDD( f ) ∈ ℓper,∆−1(Z((N∆)−1);C) by

CDD( f )( k
N∆ ) = 2∆

N−1∑
n=0

f (n∆) cos
(
2π k

N n
)
, k ∈ Z((N∆)−1).
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Figure 7.3 A discrete periodic triangular wave (top) and its DDFT
(bottom) for ∆ = 1, N = 20, and M = 5

(ii) The discrete-discrete sine transform or DDST assigns to f ∈ ℓper,N∆(Z(∆);C)
the signal CDD( f ) ∈ ℓper,∆−1(Z((N∆)−1);C) by

SDD( f )( k
N∆ ) = 2∆

N−1∑
n=0

f (n∆) sin
(
2π k

N n
)
, k ∈ Z((N∆)−1).

The DDFT is related to the DDCT and the DDST as follows.

7.2.7 Proposition (The DDFT, and the DDCT and the DDST) For f ∈ ℓper,N∆(Z(∆);C)
the following statements hold:

(i) FDD(0) = 1
2CDD(f)(0);

(ii) FDD(f)(n(N∆)−1) = 1
2 (CDD(f)(n(N∆)−1) − iSDD(f)(n(N∆)−1)) and

FDD(f)(−n(N∆)−1) = 1
2 (CDD(f)(n(N∆)−1) + iSDD(f)(n(N∆)−1)) for every n ∈ Z>0;

(iii) CDD(f)(n(N∆)−1) = FDD(f)(n(N∆)−1) + FDD(f)(−n(N∆)−1) for every n ∈ Z≥0;
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(iv) SDD(f)(n(N∆)−1) = i(FDD(f)(n(N∆)−1) − FDD(f)(−n(N∆)−1)) for every n ∈ Z>0.
Proof This follows by direct computation using Euler’s formula

e−2πi k
N n = cos

(
2π k

N n
)
+ i sin

(
2π k

N n
)
. ■

7.2.3 Properties of the DDFT

In this section we present the basic properties of the DDFT. We begin by veri-
fying that the DDFT is a signal is indeed periodic with the period stated in Defini-
tion 7.2.3.

7.2.8 Proposition (The image of the DDFT consists of periodic signals) If f ∈
ℓper,N∆(Z(∆);C) and if FDD(f) : Z((N∆)−1)→ C is defined by

FDD(f)( k
N∆ ) = ∆

N−1∑
n=0

f(n∆)e−2πi k
N n, k ∈ Z,

then FDD(f) is periodic with period ∆−1.
Proof This follows simply because

FDD( f )( k
N∆ + ∆

−1) = ∆FDD( f )( k+N
N∆ ) = ∆

N−1∑
n=0

f (n∆)e−2πi k+N
N n

= ∆

N−1∑
n=0

f (n∆)e−2πi k
N ne−2πin = ∆FDD( f )( k

N∆ ),

as desired. ■

The DDFT has the familiar properties with respect to transformations of the
domain and codomain. To state these, we let σ, τa : Z(∆) → Z(∆) be defined
by σ(t) = σ(−t) and τa(t) = t − a for a ∈ Z(∆). This then gives, in the usual
way, σ∗ f (t) = f (−t) and τ∗a f (t) = f (t − a) for f ∈ ℓper,N∆(Z(∆);C). We also define
F DD : ℓper,N∆(Z(∆);C)→ ℓper,∆−1(Z((N∆)−1);C) by

F DD( f )( k
N∆ ) = ∆

N−1∑
n=0

f (n∆)e2πi k
N n,

With all this notation, we have the following result whose proof consists of com-
putations.

7.2.9 Proposition (Elementary properties of the DDFT) For f ∈ ℓper,N∆(Z(∆);C) the
following statements hold:

(i) FDD(f) = F DD(f̄);

(ii) FDD(σ∗f) = σ∗(FDD(f)) = F DD(f);
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(iii) if f is even (resp. odd) then FDD(f) is even (resp. odd);
(iv) if f is real and even (resp. real and odd) thenFDD(f) is real and even (resp. imaginary

and odd);
(v) if m ∈ Z then FDD(τ∗m∆f)( k

N∆ ) = e−2πi k
N mFDC(f)( k

N∆ ).

Finally, we state the basic structure of the DDFT as a transformation of signal
spaces.

7.2.10 Proposition (The DDFT is a linear map) FDD is an isomorphism of the finite-
dimensional C-vector spaces ℓper,N∆(Z(∆);C) and ℓper,∆−1(Z((N∆)−1);C). Moreover, if
we use the inner products from Section 7.2.1, then FDD is a mapping of the corresponding
Hilbert spaces.

Proof Linearity of FDD is a consequence of finite sums commuting with addition and
scalar multiplication of terms in the sum. To verify thatFDD is a mapping of the stated
Hilbert spaces, we compute

⟨FDD( f ),FDD(g)⟩freq =
1

N∆

N−1∑
n=0

FDD( f )( n
N∆ )FDD(g)( n

N∆ )

=
1

N∆

N−1∑
n=0

∆N−1∑
j=0

f ( j∆)e−2πi n
N j


∆N−1∑

k=0

g(k∆)e2πi n
N k


=
∆

N

N−1∑
j=0

N−1∑
k=0

f ( j∆)g(k∆)
N−1∑
n=0

(e2πi 1
N )n(k− j).

By Proposition II-3.2.6, the inner sum is zero unless j = k, in which case the sum is
equal to N. This then gives

⟨FDD( f ),FDD(g)⟩freq = ∆

N−1∑
n=0

f (n∆)g(n∆) = ⟨ f , g⟩time,

as desired. ■

As one might expect, there is a version of the Fourier Reciprocity Relation for
the DDFT.

7.2.11 Proposition (Fourier Reciprocity Relation for the DDFT) For f,g ∈

ℓper,N∆(Z(∆);C) we have

∆

N−1∑
n=0

f(n∆)g(n∆) =
1

N∆

N−1∑
n=0

FDD(f)( n
N∆ )F DD(g)( n

N∆ ).

Proof This is left for the reader to prove in Exercise 7.2.4. ■

7.2.4 Convolution, multiplication, and the DDFT

Here we present the formulae relating the DDFT with convolution and multi-
plication.
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7.2.12 Proposition (The DDFT of a convolution is the product of the DDFT’s) If f,g ∈
ℓper,N∆(Z(∆);C) then

FDD(f ∗ g)( n
N∆ ) = FDD(f)( n

N∆ )FDD(g)( n
N∆ )

for every n ∈ Z.
Proof We compute

FDD( f ∗ g)( n
N∆ ) = ∆

N−1∑
k=0

f ∗ g(k∆)e−2πi n
N k

= ∆

N−1∑
k=0

∆N−1∑
j=0

f ((k − j)∆)g( j∆)

 e−2πi n
N k

= ∆2
N−1∑
m=0

N−1∑
j=0

f (m∆)g( j∆)e−2πi n
N (m+ j)

=

∆N−1∑
m=0

f (m∆)e−2πi n
N m


∆N−1∑

j=0

g( j∆)e−2πi n
N j


= FDD( f )( n

N∆ )FDD(g)( n
N∆ ),

as desired. ■

7.2.13 Proposition (The DDFT of a product is the convolution of the DDFT’s) If f,g ∈
ℓper,N∆(Z(∆);C) then

FDD(fg)( n
N∆ ) = FDD(f) ∗ FDD(g)( n

N∆ )

for every n ∈ Z.
Proof We compute

FDD( f ) ∗ FDD(g)( n
N∆ ) =

1
N∆

N−1∑
k=0

FDD( f )( n−k
N∆ )FDD( k

N∆ )

=
1

N∆

N−1∑
k=0

∆N−1∑
j=0

f ( j∆)e−2πi n−k
N j


∆N−1∑

m=0

g(m∆)e−2πi k
N m


=
∆

N

N−1∑
j=0

N−1∑
m=0

f ( j∆)g(m∆)e−2πi n
N j

N−1∑
k=0

e2πi k
N je−2πi k

N m


= ∆

N−1∑
m=0

f (m∆)g(m∆)e−2πi n
N m = FDD( f g)( n

N∆ ),

using the fact that, since e2πi 1
N is a primitive Nth root of unity,
N−1∑
n=0

(e2πi 1
N )n(k− j) =

N, j = k,
0, j , k,

cf. the proof of Lemma 7.2.1. ■
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7.2.5 Inversion of the DDFT

The inversion of the DDFT is far less complicated than the other transforms. For
example, it is immediate thatFDD is injective since it is a mapping of inner product
spaces cf. . Therefore, since it is also a mapping of finite-dimensional vector spaceswhat?

of the same dimension, it is also an isomorphism by Corollary I-5.4.44. Thus FDD

has an inverse, and it only remains to demonstrate it.

7.2.14 Theorem (Inverse of the DDFT) The map FDD : ℓper,N∆(Z(∆);C) →

ℓper,∆−1(Z((N∆)−1);C) is an isomorphism with inverse defined by

F −1
DD (F)(k∆) =

1
N∆

N−1∑
n=0

F(n(N∆)−1)e2πi k
N n.

Proof We compute

F −1
DD ◦ FDD( f )(k∆) =

1
N∆

N−1∑
n=0

FDD( f )(n(N∆)−1)e2πi k
N n

=
1

N∆

N−1∑
n=0

∆N−1∑
j=0

f ( j∆)e−2πi n
N j

 e2πi k
N n

=
1
N

N−1∑
j=0

f ( j∆)
N−1∑
n=0

(e−2πi 1
N )n(k− j).

By Proposition II-3.2.6, the inner sum is zero unless j = k, in which case the sum is
equal to N. This then gives

F −1
DD ◦ FDD( f )(k∆) = f (k∆),

or F −1
DD

◦ FDD( f ) = f . Thus F −1
DD is a left-inverse for FDD, and so an inverse by

Corollary I-5.4.44. ■

7.2.6 The fast Fourier transform

In this section is provided the reason for the utility of the DDFT in practice.
We provide a computational algorithm for computing the DDFT when the discrete
time-domain has a cardinality that is a power of 2. In order to simplify notation, we
toss out some of the “physical” structure of the DDFT resulting from the sampling
time. Thus we think of the DDFT as being a map from CN to CN, labelling points
in CN by z = (z(0), z(1), . . . , z(N − 1)). The DDFT in this simplified framework is
defined by a map FDD : CN

→ CN given by

FDD(z)(k) =
N−1∑
n=0

z(n)e2πi k
N n, k ∈ {0, 1, . . . ,N − 1}.

The relationship between this map and the DDFT is obviously trivial.
The first and crucial observation is the following lemma which states that, when

N is even, FDD can be computed via two similar computations, but on CN/2.
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7.2.15 Lemma (Decimation step for the DDFT) Let N ∈ Z>0 be even and, for z1, z2 ∈ CN/2,
define

z = (z1(0), z2(0), z1(1), z2(1), . . . , z1(N
2 − 1), z2(N

2 − 1)).

Then

FDD(z)(k) = 1
2 (FDD(z1)(k) + e−2πi k

N FDD(z2)(k)),

FDD(z)(k + N
2 ) = 1

2 (FDD(z1)(k) − e2πi k
N FDD(z2)(k))

for k ∈ {0, 1, . . . , N
2 − 1}.

Proof For k ∈ {0, 1, . . . , N
2 }we compute

FDD(z)(k) =
N−1∑
n=0

z(n)e−2πi k
N n

=

N
2 −1∑
n=0

z(2n)e−2πi k
N (2n) +

N
2 −1∑
n=0

z(2n + 1)e−2πi k
N (2n+1)

=

N
2 −1∑
n=0

z1(n)e−2πi k
N/2 n + e−2πi k

N

N
2 −1∑
n=0

z2(n)e−2πi k
N/2 n

= FDD(z1)(k) + e−2πi k
N FDD(z2)(k)

and

FDD(z)(k + N
2 ) =

N−1∑
n=0

z(n)e−2πi
k+N

2
N n

=

N
2 −1∑
n=0

z(2n)e−2πi
k+N

2
N (2n) +

N
2 −1∑
n=0

z(2n + 1)e−2πi
k+N

2
N (2n+1)

=

N
2 −1∑
n=0

z1(n)e−2πi k
N/2 n
− e−2πi k

N

N
2 −1∑
n=0

z2(n)e−2πi k
N/2 n

= FDD(z1)(k) − e−2πi k
N FDD(z2)(k),

as desired. ■

Now, if N = 2r for some r ∈ Z>0, then we can repeat the above decimation
process r times to compute the DDFT of z ∈ CN by computing N DDFT’s for C1, N

2
DDFT’s for C2, N

4 DDFT’s for C4, N
8 DDFT’s for C8, and so on to the computation of

two DDFT’s for CN/2. Let us make this explicit.

7.2.16 Sequential construction for fast Fourier transform To illustrate this, given

ζ0
0,ζ

0
1, . . . ,ζ

0
2r−1 ∈ C
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and given j ∈ {1, . . . , r}, we define

ζj
0,ζ

j
1, . . . ,ζ

j
2r−j−1

∈ C2j

iteratively according to the rule

ζj+1
m (k) = 1

2 (ζj
2m(k) + e−πi k

2j ζj
2m+1(k)),

ζj+1
m (2j + k) = 1

2 (ζj
2m(k) − e−πi k

2j ζj
2m+1(k)),

for k ∈ {0, . . . , 2j
− 1}.

Next we relate the above construction to the DDFT. One of the difficulties,
evident in Lemma 7.2.15, is that the order of the z gets rearranged at each step. In
order to account for this in a systematic way, we define a map ρr : {0, 1, . . . , 2r

−1} →
0, 1, . . . , 2r

− 1} as follows. Given k ∈ {0, 1, . . . , 2r
− 1}write

k =
r−1∑
j=0

d j2 j

for some uniquely defined d j ∈ {0, 1}, j ∈ {0, 1, . . . , r − 1}. This is simply the binary
decimal expansion of k. We then define

ρr(k) =
r−1∑
j=0

dr− j−12 j.

Thus ρr(k) is the number whose binary decimal expansion is the reverse of that
for k. Let us record some elementary properties of the bit reversal mapping.

7.2.17 Lemma (Properties of bit reversal) For r ∈ Z>0 the following statements hold:
(i) ρr is a bijection satisfying ρr ◦ ρr(k) = k for every k ∈ {0, 1, . . . , 2r

− 1};

(ii) ρr(
∑r−1

j=0 dj2j) =
∑r−1

j=0 bj2r−j−1;
(iii) it holds that

ρr+1(2k) = ρr(k),
ρr+1(2k + 1) = 2r + ρr(k)

for k ∈ {0, 1, . . . , 2r
− 1};

(iv) ρr(2j + k) = ρr(k) + 2r−j−1 for j ∈ {0, 1, . . . , r − 1} and k ∈ {0, 1, . . . , 2j
− 1}.

Proof (i) It is clear that ρr ◦ ρr(k) = k for each k ∈ {0, 1, . . . , 2r
− 1}. From this it follows

that ρr is a left- and right-inverse for itself, and so ρr is invertible.
(ii) This is just the definition of ρr with a change of index in the sum.
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(iii) Let us write k =
∑r−1

j=0 d j2 j. Then

2k =
r−1∑
j=0

d j2 j+1 =

r∑
j=0

d′j2
j,

where d′j = d j−1 for j ∈ {1, . . . , r} and d′0 = 0. Then

ρr+1(2k) =
r∑

j=0

d′r− j2
j =

r−1∑
j=0

d′r− j2
j =

r−1∑
j=0

dr− j−12 j = ρr(k).

We also have

2k + 1 =
r−1∑
j=0

d j2 j+1 + 10 =

r∑
j=0

d′′j 2 j,

where d′′j = d j−1 for j ∈ {1, . . . , r} and d′0 = 1. Therefore,

ρr+1(2k + 1) =
r∑

j=0

d′′r− j2
j =

r−1∑
j=0

d′r− j + 2r =

r−1∑
j=0

dr− j−12 j + 2r = ρr(k) + 2r,

as desired.
(iv) For j ∈ {0, 1, . . . , r − 1} and k ∈ {0, 1, . . . , 2 j

− 1}write

k =
j−1∑

m=0

dm2m

for unique dm ∈ {0, 1}, m ∈ {0, 1, . . . , j − 1}. Thus

k + 2 j =

j−1∑
m=0

dm2m + 2 j =

r−1∑
m=0

d′m2m,

where d′m = dm, m ∈ {0, 1, . . . , j − 1}, d′j = 1, and d′m = 0, m ∈ { j + 1, . . . , r − 1}. Therefore,
using part (ii),

ρr(k + 2 j) =
r−1∑
m=0

d′m2r−m−1 =

j−1∑
m=0

dm2r−m−1 + 2r− j−1 = ρr(k) + 2r− j−1,

as desired. ■

The point of the lemma is that one can compute the numbers
ρr(0), ρr(1), . . . , ρr(2r

− 1) as follows:

ρr(0) = 0, ρr(1) = ρr(0) + 2r−1, ρr(2) = ρr(0) + 2r−2,

ρr(3) = ρr(1) + 2r−2, ρr(4) = ρr(0) + 2r−3, . . .

Thus ρ can be computed using no floating point multiplications.
The following lemma clarifies the rôle of bit reversal in the computation of the

DDFT.
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7.2.18 Lemma (Use of bit reversal in DDFT decimation) For j ∈ {0, 1, . . . , r} and for
m ∈ {0, 1, . . . , 2r−j

− 1} we have

ζj
m = FDD(ζ0

m2j+ρj(0),ζ
0
m2j+ρj(1), . . . ,ζ

0
m2j+ρj(2j−1)).

Proof We prove the lemma by induction on j. For j = 0 we have

ζ0
m = FDD(z0

m),

which indicates that the lemma holds in this case. Now suppose that the lemma holds
for j ∈ {0, 1, . . . , k}. Then we calculate

ζk+1
m (n) = 1

2 (ζk
2m(n) + e−πi n

2k ζk
2m+1(n))

= 1
2 (FDD(ζ0

2m2k+ρk(0), . . . ,ζ
0
2m2k+ρk(2k−1))

+ e−πi n
2k FDD(ζ0

(2m+1)2k+ρk(0), . . . ,ζ
0
(2m+1)2k+ρk(2k−1)),

using the definition ζk+1
m and the induction hypothesis. Now we use Lemma 7.2.15 to

write
ζk+1

m (n) = FDD(ζ0
s0
, . . . ,ζ0

s2k+1−1
),

where

s2n = m2k+1 + ρk(n),

s2n+1 = m2k+1 + 2k + ρk(n)

for n ∈ {0, 1, . . . , 2k
− 1}. By Lemma 7.2.17(iii) we have

s2n = m2k+1 + ρk+1(2n),

s2n+1 = m2k+1 + ρk+1(2n + 1)

for n ∈ {0, 1, . . . , 2k
− 1}. This gives ζk+1

m (n) is the form asserted by the lemma in the
case that n ∈ {0, 1, . . . , 2k

− 1}. For n ∈ {2k, . . . , 2k+1
− 1}we use the definition of ζk+1

m , the
induction hypothesis, Lemma 7.2.15, and Lemma 7.2.17 as above, but with a change
of sign from e−πi n

2k to −e−πi n
2k . ■

This immediately gives the following characterisation of the DDFT.

7.2.19 Theorem (The fast Fourier transform) For r ∈ Z>0 and z ∈ C2r define ζ0
j ∈ C

2r ,
j ∈ {0, 1, . . . , 2r

− 1}, by

ζ0
j = z(ρr(j)), j ∈ {0, 1, . . . , 2r

− 1}.

Then the procedure in 7.2.16 is such that FDD(z) = ζr
0.

Proof We apply Lemma 7.2.18 in the case of j = r and m = 0, noting that ρr ◦ρr(k) = k,
k ∈ {0, 1, . . . , 2r

− 1}, by Lemma 7.2.17(i). ■
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The previous procedure for computing FDD is known as the fast Fourier trans-
form of FFT. It is now reasonable to ask why this procedure has acquired the
name “fast.” Let us consider this a little carefully. First of all, note that the direct
computation of each component of FDD(z) requires N complex multiplications and
N complex additions. Thus the direct computation of FDD(z) requires N2 complex
multiplications and N2 complex additions. Addition is computationally relatively
quick. Therefore, the speed of an algorithm is often measured by the number of
multiplications that must be performed. The next result bounds the number of
complex multiplications involved in the computation of the FFT.

7.2.20 Theorem (Computational complexity of the FFT) The number of complex multipli-
cations needed to compute FDD on CN, N = 2r, using the FFT procedure is bounded above
by 1

2N log2 N + 2N.
Proof In going from step j to step j + 1 in the procedure 7.2.16 one must perform the
following complex multiplications.

1. The numbers (e−πi 1
2 j )2, . . . , (e−πi 1

2 j )2 j
−1 must be computed. This necessitates 2 j

−2 ≤
2 j complex multiplications.

2. Computing each of the vectors ζ j+1
m , m ∈ {0, 1, . . . , 2r− j−1

− 1}, from the vectors ζ j
m,

m ∈ {0, 1, . . . , 2r− j
}, involves 2 j complex multiplications. Thus the total number of

complex multiplications to be done to compute all vectorsζ j+1
m , m ∈ {0, 1, . . . , 2r− j−1

},
is 2r− j−1

· 2 j = 2r−1.
Therefore, in going from step j to step j + 1 in the procedure 7.2.16 one must perform
no more than 2r−1 + 2 j complex multiplications. One must also compute the numbers

e−πi 1
2 , . . . e−πi 1

2r−1 . This can be done by computing the last of the numbers, then compute

the rest using the rule e−πi 1
2 j = (e−πi 1

2 j+1 )2. This then constitutes r − 2 ≤ r complex
multiplications.

In summary, we have shown that the FFT on N = 2r data points requires a number
of complex multiplications bounded above by

r−1∑
j=0

(2r−1 + 2 j) + r ≤ r2r−1 + 2r + r,

using the fact that
r−1∑
j=0

2 j = 2r
− 1,

an identity which is easily proved by induction on r. Now, since r = log2 N, we have

r2r−1 + 2r + r = 1
2 r2r + 2r + r = 1

2 N log2 N +N + log2 N.

The theorem follows since log2 N ≤ N. ■

For large N, there is a significant savings in computing the DDFT using the fast
Fourier transform. In Table 7.1 we show the estimates on the number of complex
multiplications for the direct and fast computation of the DDFT. One can see from
this table the extent of the computational savings by using the FFT for large N.
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Table 7.1 Bounds on complex multiplications needed for the di-
rect computation of the DDFT (left) and computation using
the FFT (right)

N N2 1
2N log2 N + 2N

21 = 2 4 5
22 = 4 16 12
23 = 8 64 28
24 = 16 256 64
25 = 32 1024 144
26 = 64 4096 320

27 = 128 16384 704
28 = 256 65536 1536
29 = 512 262144 3328

210 = 1024 1048576 7168

7.2.7 Notes

The fast Fourier transform has many forms, the one we present perhaps being
the most elementary.

Exercises

7.2.1 If f ∈ ℓper,2∆(Z(∆);C), show that

FDD( f )(k(2∆)−1) = ∆ f (0) + (−1)k∆ f (∆).

7.2.2 Let f : Z(∆)→ C be defined by f (n∆) = (−1)n.
(a) Show that f is 2∆-periodic and compute the DDFT of f in this case.
(b) Show that f is 4∆-periodic and compute the DDFT of f in this case.

7.2.3 Recall from Section 7.2.1 the orthonormal bases {∆−1/2e0, . . . ,∆−1/2eN−1}

and {(N∆)−1/2E0, . . . , (N∆)−1/2EN−1} for ℓper,N∆(Z(∆);C) and the or-
thonormal bases {(N∆)1/2 f0, . . . , (N∆)1/2 fN−1} and {∆1/2F0, . . . ,∆1/2FN−1} for
ℓper,∆−1(Z((N∆)−1;C).
(a) Determine the matrix representative of FDD relative to the bases
{∆−1/2e0, . . . ,∆−1/2eN−1} and {(N∆)1/2 f0, . . . , (N∆)1/2 fN−1}.

(b) Determine the matrix representative of FDD relative to the bases
{∆−1/2e0, . . . ,∆−1/2eN−1} and {∆1/2F0, . . . ,∆1/2FN−1}.

(c) Determine the matrix representative of FDD relative to the bases
{(N∆)−1/2E0, . . . , (N∆)−1/2EN−1} and {(N∆)1/2 f0, . . . , (N∆)1/2 fN−1}.

(d) Determine the matrix representative of FDD relative to the bases
{(N∆)−1/2E0, . . . , (N∆)−1/2EN−1} and {∆1/2F0, . . . ,∆1/2FN−1}.
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7.2.4 Prove Proposition 7.2.11.
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Chapter 8

Sampling, periodisation, and the Fourier
transforms

This chapter can be seen in two different ways: (1) it explores in detail the “du-
ality” between the operations of sampling and periodisation; (2) it explores deep
non-obvious interconnections between the four Fourier transforms explored in the
preceding three chapters. Yet another way to view the chapter is that it explores
that the preceding two explorations are interconnected. In any case, we shall ex-
plore the relationships between the Fourier transforms and their interconnections
with sampling and periodisation. Sampling and periodisation, per se, are useful
and interesting notions that we have indeed encountered already in a few places,
albeit in a non-systematic manner. Here we organise everything so that we can
understand precisely all of the interconnections.

Do I need to read this chapter? If you have gone through the preceding three
chapters, it would be a shame to not also go through this one, since it serves as an
excellent wrap-up of the subject. •
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Section 8.1

Sampling and periodisation

In this section we define the operations of sampling and periodisation, which we
have essentially already done. However, we shall explore the definitions in greater
generality and organise in one place all of the instances of previous definitions.

Do I need to read this section? If you are reading this chapter, then you need to
read this section. •

8.1.1 Sampling

8.1.2 Periodisation

The construction begins with the following concept.

8.1.1 Definition (Periodisation) Let f ∈ L(0)(R;F) and let T ∈ R>0.
(i) The signal f is T-periodisable if, for almost every t ∈ R, the sum∑

j∈Z

f (t + jT)

converges. The set of points t ∈ R for which the sum converges is denoted
by Dper( f ).

(ii) If f is T-periodisable then its T-periodisation is the signal perT( f ) : R → F
defined by

perT( f )(t) =


∑
j∈Z

f (t + jT), t ∈ Dper( f ),

0, t < Dper( f ). •

Since we obviously have∑
j∈Z

f (t + jT) =
∑
j∈Z

f (t + jT + T),

it follows that if f is T-periodisable then perT( f ) is T-periodic.
The following result gives a large class of T-periodisable signals.

8.1.2 Proposition (Integrable signals are periodisable) If f ∈ L(1)(R;F) then f is T-
periodisable for every T ∈ R>0, perT(f) ∈ L(1)

per,T(R;F),∫
R

f(t) dt =
∫ T

0
perT(f)(t) dt,

and ∥perT(f)∥1 ≤ ∥f∥1.
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Proof We compute, using Fubini’s Theorem in the form of Theorem III-2.8.4(i),∫
R
| f (t)|dt =

∑
j∈Z

∫ ( j+1)T

jT
| f (t)|dt =

∑
j∈Z

∫ T

0
| f (t + jT)|dt

=

∫ T

0

(∑
j∈Z

| f (t + jT)|
)

dt.

Since f ∈ L(1)(R;F) it follows that, for almost every t ∈ [0,T], the sum∑
j∈Z

| f (t + jT)|

converges. Thus, for any k ∈ Z and for any t ∈ [0,T], the sum∑
j∈Z

| f (t + kT + jT)|

converges, and thus we can conclude that the sum∑
j∈Z

| f (t + jT)|

converges for almost every t ∈ R since it converges for almost every t in any interval
of the form [kT, (k + 1)T]. Therefore, by Proposition I-2.4.3, the sum∑

j∈Z

f (t + jT)

converges for almost every t ∈ R, and so f is periodisable. Our computations above
show that ∫ T

0
|perT( f )(t)|dt ≤

∫ T

0

(∑
j∈Z

| f (t + jT)|
)

dt. =
∫
R
| f (t)|dt

Thus perT( f ) ∈ L(1)
per,T(R;F) and, moreover, ∥per( f )∥1 ≤ ∥ f ∥1. Finally, we have∫
R

f (t) dt =
∑
j∈Z

∫ ( j+1)T

jT
f (t) dt =

∑
j∈Z

∫ T

0
f (t + jT) dt

=

∫ T

0

(∑
j∈Z

f (t + jT)
)

dt =
∫ T

0
perT( f )(t) dt,

using Fubini’s Theorem to swap the sum and the integral. ■

The map perT : L(1)(R;C)→ L(1)
per,T(R;C) is surjective. What is its kernel?finish

In Example 3.9.3–3 we saw how periodisation arose in the description of the
periodic test signal spaceDper,T(R;F). The matter of determining the periodisation
of a signal is generally problematic. Let us for the moment consider an example that
we can carry out “by hand.” In the next section we shall use the Poisson Summation
Formula as a tool for determining the periodisation of certain signals.
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8.1.3 Example (The periodisation of the Dirichlet kernel) Recall from Exam-
ple 4.7.7–5 the Dirichlet kernel defined by

DΩ(t) =

 sin(2πΩt)
πt , t , 0,

2Ω, t = 0

for Ω ∈ R>0. Also recall from Example 4.7.19–5 the periodic Dirichlet kernel
defined by

Dper
T,N(t) =

 sin((2N+1)π t
T )

sin(π t
T ) , θ < Z,

2N + 1, θ ∈ Z.
(8.1)

Note from Example I-3.4.20 that DΩ < L(1)(R;F), and so we cannot use Proposi-
tion 8.1.2 to conclude that it is periodisable. We shall show, nonetheless, that DΩ
is periodisable (in an appropriate sense) for every Ω ∈ R>0, and that

perT(DΩ)(t) =
1
T

Dper
N,T(t), Ω < Z(T−1),

Dper
N,T(t) + cos(2π(N + 1) t

T ), Ω ∈ Z(T−1),
(8.2)

where N is largest integer such that N < TΩ. In this case, we verify this formula
by a direct assault. We begin with a useful formula.

1 Lemma For θ ∈ R and N ∈ Z>0,

N∑
n=−N

eniθ =

 sin((N+ 1
2 )θ)

sin θ
2

, θ < Z(2π),

2N + 1, θ ∈ Z(2π).

Proof Suppose that θ = 2kπ for k ∈ Z. Then

N∑
n=−N

eniθ =

N∑
n=−N

1 = 2N + 1,

giving the lemma in this case.
Next suppose that θ = (4k + 1)π for k ∈ Z. Then,

sin θ
2 = sin((2k + 1

2 )π) = 1

and, for each N ∈ Z>0, we have

sin((N + 1
2 )θ) = sin((N + 1

2 )(4k + 1)π) = sin((N + 1
2 )π) = (−1)N.

Also, for each n ∈ Z, we have

eniθ = cos(nθ) + i sin(nθ) = cos(4knπ + nπ) = cos(nπ) = (−1)n.
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Thus
N∑

n=−N

eniθ =

N∑
n=−N

(−1)n = (−1)N =
sin((N + 1

2 )θ)

sin θ
2

,

giving the lemma in this case.
Next suppose that θ , (4k+ 1)π, k ∈ Z, and that θ , 2kπ, k ∈ Z. Then sin θ

2 , 1.
Then we compute

(1 − eiθ)(eiθ + e2iθ + · · · + eNiθ) = eiθ + e2iθ + · · · + eNiθ

− e2iθ
− e3iθ

− · · · − e(N+1)iθ

= eiθ
− e(N+1)iθ

= eiθ(1 − eiNθ),

from which we ascertain that

N∑
n=1

eniθ =
eiθ(1 − eiNθ)

1 − eiθ . (8.3)

Now we compute

eiθ(1 − eiNθ)
1 − eiθ =

ei θ2 (1 − eiNθ)

e−i θ2 − ei θ2

=
(cos θ

2 + i sin θ
2 )((1 − cos(Nθ)) − i sin(Nθ))

−2i sin θ
2

=

(
cos θ

2 (1 − cos(Nθ)) + sin θ
2 sin(Nθ)

)
+ i

(
sin θ

2 (1 − cos(Nθ)) − cos θ
2 sin(Nθ)

)
−2i sin θ

2

=
−

(
sin θ

2 (1 − cos(Nθ)) − cos θ
2 sin(Nθ)

)
+ i

(
cos θ

2 (1 − cos(Nθ)) + sin θ
2 sin(Nθ)

)
2 sin θ

2

.

Taking the real part of this expression and using (8.3) we obtain

N∑
n=1

cos(nθ) =
cos θ

2 sin(Nθ) − sin θ
2 (1 − cos(Nθ))

2 sin θ
2

=
1
2

sin((N + 1
2 )θ)

sin θ
2

−
1
2
,

where we have used the trigonometric identity

cos a sin b + sin a cos b = sin(a + b).
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This gives

1 + 2
N∑

n=1

cos(nθ) =
sin((N + 1

2 )θ)

sin θ
2

,

which is exactly the result by a trivial expansion of
∑N

n=−N eiθ into its real and (zero)
imaginary part. ▼

The following lemma records the necessary computations to verify the peri-
odisability of DΩ.

2 Lemma lim
M→∞

M∑
j=−M

DΩ(t + jT) =
1
T

Dper
N,T(t), Ω < Z(T−1),

Dper
N,T(t) + cos(2π(N + 1) t

T ), Ω ∈ Z(T−1).

Proof As in Example 6.1.3–3 we have

DΩ(t) =
∫ Ω

−Ω

e2πiνt dν.

We let T ∈ R>0 and M ∈ Z>0. Let N′ ∈ Z>0 be the largest integer such that
N′ + 1

2 ≤ TΩ. We then compute

M∑
j=−M

DΩ(t + jT) =
M∑

j=−M

∫ Ω

−Ω

e2πiν(t+ jT) dν =
∫ Ω

−Ω

e2πiνt
( M∑

j=−M

e2πiν jT
)

dν

=

∫ Ω

−Ω

e2πiνtDper
T−1,M

(ν) dν

=

∫
−(N′+ 1

2 )T−1

−Ω

e2πiνtDper
T−1,M

(ν) dν +
N′∑

j=−N′

∫ ( j+ 1
2 )T−1

( j− 1
2 )T−1

e2πiνtDper
T−1,M

(ν) dν

+

∫ Ω

(N′+ 1
2 )T−1

e2πiνtDper
T−1,M

(ν) dν

=

∫ 1/(2T)

−Ω+(N′+1)T−1
e2πit(τ−(N′+1)T−1)Dper

T−1,M
(τ) dτ

+

N′∑
j=−N′

∫ 1/(2T)

−1/(2T)
e2πit(τ+ jT−1)Dper

T−1,M
(τ + j)T−1) dτ

+

∫ Ω−(N′+1)T−1

−1/(2T)
e2πit(τ+(N′+1)T−1)Dper

T−1,M
(τ) dτ

= e−2πi(N′+1) t
T

∫ 1/(2T)

−Ω+(N′+1)T−1
e2πiτtDper

T−1,M
(τ) dτ

+

N′∑
j=−N′

e2πi j t
T

∫ 1/(2T)

−1/(2T)
e2πitτDper

T−1,M
(τ) dτ
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+ e2πi(N′+1) t
T

∫ Ω−(N′+1)T−1

−1/(2T)
e2πiτtDper

T−1,M
(τ) dτ, (8.4)

using Fubini’s Theorem to swap the sum and integral, Lemma 1, the change of
variable theorem, the fact that Dper

T−1,M
has period T−1,

Now, for t ∈ R, let ft,1, ft,2, ft,3 ∈ L1
per,T−1(R;F) be the T−1-periodic extensions of

the signals

τ 7→

e2πitτ, τ ∈ [−Ω+ (N′ + 1)T−1, 1
2T ],

0, τ ∈ [− 1
2T ,−Ω+ (N′ + 1)T−1),

τ 7→ e2πitτ,

τ 7→

e2πitτ, τ ∈ [− 1
2T ,Ω − (N′ + 1)T−1],

0, t ∈ (Ω − (N′ + 1)T−1, 1
2T ],

respectively. Note that, by Lemma 5.2.7, we have that

T
∫ 1/(2T)

−Ω+(N′+1)T−1
e2πiτtDper

T−1,M
(τ) dτ, T

∫ 1/(2T)

−1/(2T)
e2πitτDper

T−1,M
(τ) dτ,

T
∫ Ω−(N′+1)T−1

−1/(2T)
e2πiτtDper

T−1,M
(τ) dτ

are the Mth partial sums of the Fourier series at 0 for σ∗ f1, σ∗ f2, and σ∗ f3, respectively.
The limit as M→ ∞ of these partial sums can be evaluated using Theorem 5.2.28
since f1, f2, and f3 clearly satisfy the hypotheses of this theorem. We have that

σ∗ f1(0+) = f1(0−) =

0, −Ω+ (N′ + 1)T−1
≥ 0,

1, −Ω+ (N′ + 1)T−1 < 0,

σ∗ f1(0−) = f1(0+) =

0, −Ω+ (N′ + 1)T−1 > 0,
1, −Ω+ (N′ + 1)T−1

≤ 0,

σ∗ f2(0+) = f2(0−) = 0, σ∗ f2(0−) = f2(0+) = 0,

σ∗ f3(0+) = f3(0−) =

1, Ω − (N′ + 1)T−1
≥ 0,

0, Ω − (N′ + 1)T−1 < 0,

σ∗ f3(0−) = f3(0+) =

1, Ω − (N′ + 1)T−1 > 0,
0, Ω − (N′ + 1)T−1

≤ 0.
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Therefore,

lim
M→∞

∫ Ω−(N′+1)T−1

−1/(2T)
e2πiτtDper

T−1,M
(τ) dτ =

1
T


0, Ω − (N′ + 1)T−1 < 0,
1, Ω − (N′ + 1)T−1 > 0,
1
2 , Ω − (N′ + 1)T−1 = 0,

lim
M→∞

∫ 1/(2T)

−1/(2T)
e2πitτDper

T−1,M
(τ) dτ =

1
T
,

lim
M→∞

∫ Ω−(N′+1)T−1

−1/(2T)
e2πiτtDper

T−1,M
(τ) dτ =

1
T


1, Ω − (N′ + 1)T−1 > 0,
0, Ω − (N′ + 1)T−1 < 0,
1
2 , Ω − (N′ + 1)T−1 = 0.

Putting this all into (8.4) and using Lemma 2 gives

lim
M→∞

M∑
j=−M

DΩ(t + jT) =
1
T


Dper

T,N′+1(t), N′ + 1 < TΩ,
Dper

T,N′(t), N′ + 1 > TΩ,
Dper

T,N′(t) + cos(2(N′ + 1)π t
T ), N′ + 1 = TΩ.

Now, according to the definitions of N and N′, if N′ + 1 < TΩ then N = N′ + 1, and
if N′ + 1 ≥ TΩ then N = N′. This gives the lemma. ▼

We conclude, then, that perT(DΩ) is as specified in (8.2), provided that we
interpret the infinite sum perT(DΩ) in the sense of its partial sums existing, as in
Lemma 2. Let us agree to make this interpretation, and so use (8.2) as the definition
of perT(DΩ). It is not surprising that we can only make this somewhat limited
conclusion, since DΩ < L(1)(R;F). •

Periodisation version of periodisation from Pinsky, as well as adjoint interpre-
tation.

Exercises

8.1.1 Suppose that f ∈ L(1)(R;F) satisfies supp( f ) ⊆ [0,T]. Show that f is T-
periodisable and that perT( f ) is the T-periodic extension of f |[0,T].
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Section 8.2

The Poisson summation formula

In this section we consider the Poisson Summation Formula which provides an
interesting connection between the CCFT and the CDFT. The formula itself is an
intriguing one, but it also has many applications, some of which we shall explore
in this section.

Do I need to read this section? This section contains some results that we use in
an essential way in various places. For example, our discussion of periodisation in
Section 8.1.2 was used in Section 4.7.3 to provide a class of periodic approximate
identities. These approximate identities, in turn, played an essential rôle in our
development of inversion of the CDFT in Section 5.2. This being said, if one is
prepared to accept the results from this section at face value, one can probably
bypass the discussion here. •

8.2.1 The Poisson Summation Formula for signals

Without concerning ourselves with being precise, the Poisson Summation For-
mula says that, for f : R→ F and for T ∈ R>0,∑

n∈Z

f (t + nT) =
1
T

∑
n∈Z

FCC( f )(nT−1)e2πin t
T . (8.5)

On the right in this equation is a Fourier series of some sort, whose coefficients are
obtained from the CCFT of f . On the left is a signal, apparently T-periodic, derived
from the signal f . In this section we discuss when the infinite sum defining this
signal makes sense.

In this section we consider the Poisson Summation Formula for signals in
L(1)(R;F). We will then use this result to compute the periodisation of a few
important signals.

We begin by stating the result.

8.2.1 Theorem (Poisson Summation Formula) If f ∈ L(1)(R;F) then

FCD(perT(f))(nT−1) = FCC(f)(nT−1), n ∈ Z.
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Proof This is the computation

FCD(perT( f ))(nT−1) =
∫ T

0
perT( f )(t)e−2πin t

T dt =
∫ T

0

(∑
j∈Z

f (t + jT)
)
e−2πin t

T dt

=
∑
j∈Z

∫ T

0
f (t + jT)e−2πin t

T dt =
∑
j∈Z

∫ ( j+1)T

jT
f (τ)e−2πi n

T (τ− jT) dτ

=
∑
j∈Z

∫ ( j+1)T

jT
f (τ)e−2πi n

T τ dτ =
∫
R

f (τ)e−2πi n
T τ dτ

= FCC( f )(nT−1),

using the Dominated Convergence Theorem to swap the sum and the integral, and the
change of variables theorem. ■

Note that it does not follow from the theorem that the formula (8.5) holds in
general. Indeed, let g ∈ L(1)

per,T(R;C) be such that its Fourier series diverges almost
everywhere (see Section 5.2.3). Let f ∈ L(1)(R;C) be such that f |[0,T] = g|[0,T] and
f (t) = 0 for t < [0,T]. Then, as in Exercise 8.1.1, perT( f ) is the T-periodic extension
of f |[0,T]. This precludes the formula (8.5) from holding in this case. Thus one
needs to place additional conditions on f to ensure that (8.5) holds in a literal sense. some results?

8.2.2 Periodisation by the Poisson Summation Formula

This section is devoted to the matter of computing the periodisation of a few im-
portant signals, namely the approximate identities from Example 4.7.7. As we saw
in Section 4.7.3, these periodisations can be used to define periodic approximate
identities.

8.2.2 Examples (Periodisation of approximate identities on R)
1. In Example 4.7.7–1 we introduced the Poisson kernel:

PΩ(t) =
1
π

Ω

1 +Ω2t2 .

Let us define

Pper
T,Ω(t) =

1 − (e−
2π
ΩT )2

1 − 2e− 2π
ΩT cos(2π t

T ) + (e− 2π
ΩT )2

.

and show that
perT(PΩ) = 1

T Pper
T,Ω(t) (8.6)

In order to verify this formula, we first recall from Example 6.2.39–1 that

FCC(PΩ)(ν) = e−
2π|ν|
Ω .
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Now let r ∈ [0, 1) and define

gr(t) =
1 − r2

1 − 2r cos(2π t
T ) + r2

.

The next result gives the CDFT of gr.

1 Lemma FCD(gr)(nT−1) = T r|n|, n ∈ Z.
Proof Note that

1 + re2πi t
T

1 − re2πi t
T
=

1 + re2πi t
T

1 − re2πi t
T

1 − re−2πi t
T

1 − re−2πi t
T

=
1 − r2 + 2i sin(2π t

T )

1 − 2r cos(2π t
T ) + r2

.

Therefore,

gr(t) = Re
(1 + re2πi t

T

1 − re2πi t
T

)
.

By we havewhat

1 + re2πi t
T

1 − re2πi t
T
= (1 + re2πi t

T )
∞∑

m=0

rme2πim t
T =

∞∑
m=0

rme2πim t
T +

∞∑
m=1

rme2πim t
T

=

∞∑
m=0

rme2πim t
T +

−∞∑
m=−1

r|m|e2πi|m| tT =
∑
m∈Z

r|m|e2πi|m| tT

=
∑
m∈Z

r|m| cos(2πm t
T ) + i

∑
m∈Z

r|m| sin(2π|m| tT ).

Therefore,

gr(t) =
∑
m∈Z

r|m| cos(2πm t
T ) =

∑
m∈Z

1
2

r|m|(e2πim t
T + ie−2πim t

T )

=
∑
m∈Z

1
2

r|m|(e2πim t
T + ie−2πim t

T ) +
∑
m∈Z

1
2

r|m|(e2πim t
T − ie−2πim t

T )︸                           ︷︷                           ︸
=0

=
∑
m∈Z

r|m|e2πim t
T .

Since this last series converges uniformly by Example I-2.4.2–1 and the Weier-
strass M-test, we compute

FCD(gr)(nT−1) =
∫ T

0

(∑
m∈Z

r|m|e2πim t
T

)
e−2πin t

T dt

=
∑
m∈Z

r|m|
∫ T

0
e2πim t

T e−2πin t
T dt = T r|n|,
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using Theorem I-3.6.23 and Lemma 5.3.2. ▼

Combining the preceding lemma with the formula for FCC(PΩ), taking r = e−
2π
ΩT

in the second, and using the Poisson Summation Formula, we have that

FCD(perT(PΩ))(nT−1) = FCC(PΩ)(nT−1) = e−
2π|n|
ΩT

= (e−
2π
ΩT )|n| = T−1FCD(g

e−
2π
ΩT

)(nT−1)

for each n ∈ Z. From Theorem 5.2.1 we conclude that perT(PΩ) = T−1g
e−

2π
ΩT

.
This gives the desired formula (8.6) for the T-periodic Poisson kernel.

2. Next we consider the T-periodisation of the Gauss–Weierstrass kernel on R,
given in Example 4.7.7–2 as

GΩ(t) =
exp(− t2

4Ω )
√

4πΩ
.

By Example 6.2.39–2 we have

FCC(GΩ)(ν) = exp(−4π2Ων2).

It follows from the Poisson Summation Formula that

FCD(perT(GΩ))(nT−1) = exp
(
−

4π2Ωn2

T2

)
.

Note that FCD(perT(GΩ)) ∈ ℓ1(Z(T−1);F) by Exercise 1.2.3. Therefore, by Theo-
rem 5.2.33, the Fourier series

perT(GΩ)(t) =
∑
n∈Z

exp
(
−

4π2Ωn2

T2

)
e2πin t

T

for perT(GΩ) converges uniformly to perT(GΩ). There seems to be no more
useful simplification of this signal which we call the periodic Gauss–Weierstrass
kernel.

3. Next we consider the T-periodisation of Fejér kernel from Example 4.7.7–3:

FΩ(t) =

 sin2(πΩt)
π2Ωt2 , t , 0,
Ω, t = 0.

To express the periodisation of FΩ we use the periodic Dirichlet kernel Dper
T,N

from (8.1), as well as the periodic Fejér kernel,

Fper
T,N(t) =


1
N

sin2(Nπ t
T )

sin2(π t
T )
, θ < Z,

N, θ ∈ Z.
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As we shall see, it is sometimes the case that the T-periodisation of the Fejér
kernel is the periodic Fejér kernel, but it is not always the case. We shall show
that the general formula is

perT(FΩ)(t) = 1
T

(
N

TΩFper
T,N(t) + (1 − N

TΩ )Dper
T,N−1(t)

)
, (8.7)

where N ∈ Z>0 is the smallest integer such that N ≥ TΩ. We verify this formula,
again using the Poisson Summation Formula.
We first recall from Example 6.2.39–3 that

FCC(FΩ)(ν) =


1 + ν

Ω
, ν ∈ [−Ω, 0],

1 − ν
Ω
, ν ∈ (0,Ω],

0, otherwise.

Now let us take N ∈ Z>0 to be the smallest integer such that N ≥ TΩ. From the
Poisson Summation Formula and the formula for FCC(FΩ) we have that

FCD(perT(FΩ))(nT−1) =


1 + n

TΩ , n ∈ {−N + 1, . . . ,−1, 0},
1 − n

TΩ , n ∈ {1, . . . ,N − 1},
0, otherwise.

Thus FCD(perT(FΩ)) is finite, and so clearly in ℓ1(Z(T−1);F). Therefore, by
Theorem 5.2.33,

perT(FΩ)(t) =
1
T

N−1∑
n=−N+1

FCD(perT(FΩ))(nT−1)e2πin t
T . (8.8)

It remains to evaluate this sum. This we do via a few lemmata.

2 Lemma For θ ∈ R and N ∈ Z>0,

N−1∑
n=0

n∑
k=−n

ekiθ =


sin2(Nθ

2 )

sin2 θ
2

, θ < Z(2π),

N2, θ ∈ Z(2π).

Proof Let us first suppose that θ = 2kπ for k ∈ Z. Then

N−1∑
n=0

n∑
k=−n

ekiθ =

N−1∑
n=0

n∑
k=−n

1 =
N−1∑
n=0

(2n + 1) = N + 2
N−1∑
n=1

n

= N +N(N − 1) = N2
−N +N = N2,

giving the result in this case.
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Next, as in the preceding lemma, suppose that θ = (4k + 1)π, k ∈ Z. As in the
proof of the preceding lemma, sin2 θ

2 = 1. Also,

sin2(N θ
2 ) = sin2(N(2k + 1

2 )π) = sin2(Nπ
2 ) =

1, N odd,
0, N even.

As in the proof of the preceding lemma we have

n∑
k=−n

ekiθ = (−1)n.

Thus
N−1∑
n=0

n∑
k=−n

ekiθ =

N−1∑
n=0

(−1)n =

1, N odd,
0, N even

,

giving the lemma in this case.
Now suppose that θ , (4k + 1)π, k ∈ Z, and that θ , 2kπ, k ∈ Z. By Lemma 1
from Example 8.1.3 we have

n∑
k=−n

ekiθ =
sin((n + 1

2 )θ)

sin θ
2

.

According to (8.3) above,

N−1∑
n=0

eniθ = 1 +
eiθ(1 − ei(N−1)θ)

1 − eiθ .

Using this formula we compute

N−1∑
n=0

sin((n + 1
2 )θ)

sin θ
2

=
1

sin θ
2

Im
(N−1∑

n=0

ei(n+ 1
2 )θ

)
=

1
sin θ

2

Im
(
ei θ2

N−1∑
n=0

eniθ
)

=
1

sin θ
2

Im
(
ei θ2

eNiθ
− 1

eiθ − 1

)
=

1
sin θ

2

Im
( eNiθ

− 1

ei θ2 − e−i θ2

)
=

1
sin θ

2

Im
( (cos(Nθ) − 1) + i sin(Nθ)

2i sin θ
2

)
=

1
sin θ

2

Im
(− sin(Nθ) + i(1 − cos(Nθ))

2 sin θ
2

)
=

1 − cos(Nθ)
2 sin2 θ

2

=
sin2(N θ

2 )

sin2 θ
2

,

using the identity sin2 a = 1
2 (1 − cos(2a)). This gives the lemma. ▼



686 8 Sampling, periodisation, and the Fourier transforms 2022/03/07

3 Lemma For θ ∈ R we have

1 +
−1∑

n=−N+1

(
1 + n

N

)
einθ +

N−1∑
n=1

(
1 − n

N

)
einθ =

1
N

N−1∑
k=0

k∑
n=−k

einθ.

Proof The proof is a matter of expanding the right hand sum. To this end we
have, via mere rearrangement and a change of summation index in the last step,

N−1∑
k=0

k∑
n=−k

einθ = 1 + (eiθ + 1 + e−iθ) + (ei2θ + eiθ + 1 + e−iθ + e−i2θ) + · · ·

+ (ei(N−1)θ + · · · + 1 + · · · + e−i(N−1)θ)

= N + (N − 1)(eiθ + e−iθ) + (N − 2)(ei2θ + e−i2θ) + . . .

+ (ei(N−1)θ + e−i(N−1)θ)

= N +
N−1∑
k=1

(N − k)(eikθ + e−ikθ)

= N +
N−1∑
n=1

(N − n)einθ +

−1∑
n=−N+1

(N + n)einθ.

Division by N gives the result. ▼

With (8.8) as a starting point, we can now compute

T perT(FΩ)(t) =
N−1∑

n=−N+1

FCD(perT(FΩ))(nT−1)e2πin t
T

= 1 +
−1∑

n=−N+1

(1 + n
TΩ )e2πin t

T +

N−1∑
n=1

(1 − n
TΩ )e2πin t

T

= 1 +
−1∑

n=−N+1

( N
TΩ +

n
N

N
TΩ )e2πin t

T +

N−1∑
n=1

( N
TΩ −

n
N

N
TΩ )e2πin t

T

+

−1∑
n=−N+1

(1 − N
TΩ )e2πin t

T +

−1∑
n=−N+1

(1 − N
TΩ )e2πin t

T

= 1 −
N

TΩ
+

N
TΩ
+

N
TΩ

−1∑
n=−N+1

(1 + n
N )e2πin t

T +
N

TΩ

N−1∑
n=1

(1 − n
N )e2πin t

T

+ (1 − N
TΩ )

−1∑
n=−N+1

e2πin t
T + (1 − N

TΩ )
−1∑

n=−N+1

e2πin t
T

=
1

TΩ

N−1∑
n=0

n∑
k=−n

e2πik t
T +

(
1 −

N
TΩ

) N−1∑
n=−N+1

e2πin t
T .
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Using Lemma 1 from Example 8.1.3 and Lemma 2 above we get (8.7).
Note that when TΩ ∈ Zwe have N = TΩ and so, in this case,

perT(FΩ)(t) = 1
T Fper

T,N(t).

It is this form of the periodisation of the Fejér kernel that we have used in
Section 5.2 when discussing the inversion of the CDFT.

4. Now we consider the periodisation of the de la Vallée Poussin kernel introduced
in Example 4.7.7–4. Since periodisation is linear and since

VΩ(t) = 2F2Ω(t) − FΩ(t),

we have
perT(VΩ)(t) = 2 perT(F2ω)(t) − perT(FΩ)(t).

Using (8.7) we get

perT(VΩ)(t) = 1
T

(
N2
TΩFper

T,N2
(t) − N1

TΩFper
T,N1

(t)
)

+ 1
T

(
(2 − N2

TΩ )Dper
T,N2−1(t) − (1 − N1

TΩ )Dper
T,N1−1(t)

)
,

where N1 is the smallest integer for which N1 ≥ TΩ and N2 is the smallest
integer for which N2 ≥ 2TΩ. If TΩ ∈ Z>0 then N2 = 2N1, and the preceding
expression simplifies to

perT(VΩ)(t) =
1
T

Vper
T,N(t),

where
Vper

T,N(t) = 2Fper
T,2N(t) − Fper

T,N(t)

is the periodic de la Vallée Poussin kernel. •

8.2.3 The Poisson Summation Formula for distributions
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Section 8.3

Sampling theorems

In this section we present the various forms of the Sampling Theorem which
concerns the representation of a class of signals with the property that their CCFT
has compact support.

Do I need to read this section? •

8.3.1 The L1-Sampling Theorem

8.3.2 The L2-Sampling Theorem

8.3.3 The Sampling Theorem for distributions

8.3.4 Notes

There is considerable discussion concerning the origins of the Sampling Theo-
rem. As a consequence, the theorem goes under many names, typically involving
one or more of “Nyquist,” “Shannon,” and “Whittaker,” although special versions
of the theorem date back to Gauss. The first version of the sampling theorem that
is mathematically recognisable as such is probably due to Whittaker [1915] whose
work was in the context of interpolation theory. From the work of Nyquist [1928] it
is possible to recognise the rôle of the Sampling Theorem, although the result is not
explicitly stated by Nyquist. However, the result came to prominence with the pa-
per of [Shannon 1949] who explicitly pointed out its importance in communication
theory. To this day it plays a central rôle in signal processing and communication
theory.
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Section 8.4

The relationships between the four Fourier transforms

8.4.1 Relationships between the CDFT and the CCFT

Exercises

8.4.1 Let f ∈ L(1)(R;C) satisfy supp( f ) ⊆ [0,T].
(a) Show that FCC( f )(nT−1) = FCD(g)(nT−1) where g is the T-periodic exten-

sion of f |[0,T].
(b) Verify the relation from part (a) explicitly in the case where

f (t) =

1, t ∈ [0, 1
2 ]

0, otherwise

and for each T ∈ {12 , 1, 2}.
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Chapter 9

The Laplace transforms

In Chapters 5–7, we have carefully developed the theory of the Fourier trans-
form. The Fourier transform, however, is quite limited, and this is especially tru of
the CCFT and the DCFT, whose natural domains are L1(R;C) and ℓ1(Z(∆);C), and
can be extended with some work to domains L2(R;C) and ℓ2(Z(∆);C). This is all
well and good, but many interesting signals do not reside in these spaces. Provided
one is willing to sign on to the theory of distributions, it is possible to apply the
CCFT and DCFT to more general signals, most generally those inD ′(R;C) for the
CCFT and to general discrete-time signals for the DCFT, with the transforms taking
values in Z (R;C) or Zper,∆−1(R;C), respectively. This distributional theory of the
CCFT and DCFT allows one to transform signals like t 7→ 1≥0(t)et. It turns out that
it is possible to transform such signals without the aid of distribution theory, but
one has to consider transforms that no longer has associated with them the nice
frequency interpretations of the CCFT and the DCFT. However, there are a great
many advantages that come along with consideration of these new transforms. In
this chapter we describe the transforms, called the Laplace transforms. As with the
Fourier transforms, the Laplace transforms come in continuous-time and discrete-
time flavours. Within each of these, there are additional subflavours, and we shall
consider these as well.

Do I need to read this chapter? The material in this chapter is standard knowl-
edge in the theory of linear systems. It is the essential background for the discussion
of transfer function methods in Chapter V-7. •

Contents

9.1 The causal continuous Laplace transform . . . . . . . . . . . . . . . . . . . . . . 693
9.1.1 Laplace transformable causal signals . . . . . . . . . . . . . . . . . . . . . 693
9.1.2 Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
9.1.3 The causal CLT and convolution . . . . . . . . . . . . . . . . . . . . . . . 705
9.1.4 The causal CLT and the CCFT . . . . . . . . . . . . . . . . . . . . . . . . . 707
9.1.5 Causal Laplace transforms for strictly causal signals . . . . . . . . . . . . 711
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9.1.7 The causal CLT for vector space-valued signals . . . . . . . . . . . . . . . 720
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Section 9.1

The causal continuous Laplace transform

We begin by introducing the most commonly used Laplace transform, that
which is applied to causal signals (see Definition 1.1.16). For the purposes of
system theory, this is a natural case to consider as one wishes to focus on “future”
behaviour, not “past” behaviour. The more general Laplace transform for not
generally causal signals we consider in Section 9.3.

Do I need to read this section? If you are reading this chapter, you need to read
this section. •

9.1.1 Laplace transformable causal signals

The Laplace transform is an odd device since it takes a continuous-time signal
and transforms it into a functions of a complex variable with a domain of definition
depending on the signal.

Let us first make a definition.

9.1.1 Definition (Laplace transformable causal signal) Let p ∈ [1,∞]. A causal mea-
surable signal f : R → C is p-Laplace transformable if there exists x ∈ R such
that t 7→ f (t)e−xt is in Lp(R;C). We denote by LTp,+(R;C) the set of p-Laplace trans-
formable signals. If T ⊆ R is a causal continuous time-domain, then we denote

LTp,+(T;C) = { f ∈ LTp,+(R;C) | supp( f ) ⊆ T}. •

We note that an immediate consequence of the definition of Laplace trans-
formability is that a Laplace transformable signal is locally Lp-integrable; see Exer-
cise 9.1.2.

Given this definition of Laplace transformability, we have the following result.

9.1.2 Proposition (Existence of minimum abscissa of convergence) Let p ∈ [1,∞]
and let f ∈ LTp,+(R;C). Then there exists αp

min(f) ∈ [−∞,∞) such that
(i) if x > αp

min(f), then t 7→ f(t)e−xt is in Lp(R;C) and
(ii) if x < αp

min(f), then t 7→ f(t)e−xt is not in Lp(R;C).
Proof First let us consider the case of p = ∞. Let x0 ∈ R be such that t 7→ f (t)e−xt is in
L∞(R;C). Define

α∞min( f ) = inf{x ∈ R | the signal t 7→ f (t)e−xt is in L∞(R;C)}.

We will show that, if x > α∞min( f ), then the signal t 7→ f (t)e−xt is in L∞(R;C).
Let us record a simple but useful fact.
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1 Lemma If f ∈ LT∞,+(R;C), then

sup{x ∈ R | the signal t 7→ f(t)e−xt is in L∞(R;C)} = ∞.

Proof Suppose that supp( f ) ⊆ [T,∞). If T ∈ R≥0 then we have | f (t)|e−x1t
≤ | f (t)|e−x2t

for t ∈ R≥0 and x2 > x1. Therefore, for every x > x0, the signal t 7→ f (t)e−xt is in
L∞(R;C), which gives the lemma in the case when T ∈ R≥0. If T ∈ R≤0 it suffices to
show that the signal t 7→ f (t)e−xt is essentially bounded on [T, 0] for any x ∈ R. This
will follow if we can show that f is essentially bounded on [T, 0]. Since t 7→ f (t)e−x0t is
essentially bounded on [T, 0] by hypothesis, there exists M ∈ R>0 such that

| f (t)|e−x0t
≤M, a.e. t ∈ [T, 0] =⇒ | f (t)| ≤Mex0t, a.e. t ∈ [T, 0],

as desired. This gives the lemma. ▼

Write f = f+ + f− where

f+ = 1≥0 f , f− = σ∗1≥0 f . (9.1)

Then we clearly have

| f−(t)|e−xt
≤ | f (t)|e−xt, | f+(t)|e−xt

≤ | f (t)|e−xt

for all t ∈ R. Therefore, α∞min( f+) ≤ α∞min( f ). By Lemma 1, if x > α∞min( f ), we have

ess sup{| f (t)|e−xt
| t ∈ R} = ess sup{| f+(t)|e−xt + | f−(t)|e−xt

| t ∈ R}

= ess sup{| f−(t)|e−xt
| t ∈ R} + ess sup{| f+(t)|e−xt

| t ∈ R}
< ∞,

giving part (i) for p = ∞.
Our definition of α∞min( f ) gives part (ii).
Now we consider p ∈ [1,∞). Since t 7→ f (t)e−xt is in Lp(R;C) if and only if

t 7→ | f (t)|pe−xpt is in L1(R;C), it suffices, for the purposes of this result, to take p = 1.
This we shall do for the remainder of the proof.

Let x0 ∈ R be such that the signal t 7→ f (t)e−x0t is in L1(R;C). Then define

α1
min( f ) = inf{x ∈ R | the signal t 7→ f (t)e−xt is in L1(R;C)}.

We will show that, if x > α1
min( f ), then the signal t 7→ f (t)e−xt is in L1(R;C).

Let us record the conclusions of the lemma above in this case.

2 Lemma If f ∈ LT1,+(R;C), then

sup{x ∈ R | the signal t 7→ f(t)e−xt is in L1(R;C)} = ∞.

Proof Suppose that supp( f ) ⊆ [T,∞). First suppose that T ∈ R≥0. For t ∈ R≥0 we have
| f (t)|e−x2t

≤ | f (t)|e−x1t if x2 > x1. It, therefore, follows that∫
R
| f (t)|e−x2t dt ≤

∫
R
| f (t)|e−x1t dt,
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giving the lemma in this case. If T ∈ R<0 it suffices to show that the integral∫ 0

T
| f (t)|e−xt dt

exists for each x ∈ R. This follows since the signal t 7→ e−xt is bounded on [T, 0] (by,
say, M ∈ R>0) so that ∫ 0

T
| f (t)|e−xt dt ≤M

∫ 0

T
| f (t)|dt < ∞.

(That the integral is finite is a consequence of Exercise 9.1.2.) Thus the lemma holds
in this case as well. ▼

Write f = f+ + f− where f+ and f− are as defined in (9.1). Note that | f+(t)|e−xt
≤

| f (t)|e−xt, implying that α1
min( f+) ≤ α1

min( f ). By Lemma 2, if x > α1
min( f ) we have∫

R
| f (t)|e−xt dt =

∫
R
| f+(t)|e−xt dt +

∫
R
| f−(t)|e−xt dt < ∞,

giving part (i).
Now suppose that x < α1

min( f ). It is clear from the definition of α1
min( f ) that the

signal t 7→ f (t)e−xt is not in L1(R;C). ■

Based on the proposition, we denote

Ip( f ) = {x ∈ R | t 7→ f (t)e−xt is in Lp(R;C)},

and we note that Ip( f ) is an interval. For a subset A ⊆ R, we denote

CA = {z ∈ C | Re(z) ∈ A}.

With the lemma and the above notation at hand, we can make the following
definitions.

9.1.3 Definition (Minimum abscissa of absolute p-convergence, region of conver-
gence) For p ∈ [1,∞] and for a causal signal f ∈ LTp,+(R;C),

(i) αp
min( f ) is the minimum abscissa of absolute p-convergence,

(ii) Ip( f ) is the interval of p-convergence,
(iii) CIp( f ) = {z ∈ C | Re(z) ∈ Ip( f )} is the region of absolute p-convergence. •

The following result gives an important relationship between the various spaces
LTp,+(R;C) as p varies.
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9.1.4 Proposition (Intervals of convergence and index) Let p,q ∈ [1,∞] with q < p
and let f : R→ C be causal and measurable. Then int(Ip(f)) ⊆ Iq(f).

Proof The assertion is obvious if int(Ip( f )) = ∅, so we assume this is not the case.
First take p ∈ [1,∞). Let x ∈ int(Ip( f )) and choose x− ∈ Ip( f ) with x− < x. We then

have
f (t)e−xt = f (t)e−(x−x−)te−x−t.

By hypothesis, t 7→ f (t)e−x−t is in Lp(R;C).
We claim that t 7→ f (t)e−x−te−(x−x−)t is in Lq(R;C). Define

A = {t ∈ R | | f (t)e−x−t
| < 1}, B = {t ∈ R | | f (t)e−x−t

| ≥ 1}.

Since
| f (t)e−x−t

|
q = (| f (t)e−x−t

|
p)q/p

and since q/p < 1, for t ∈ B we have

| f (t)e−x−t
|
q
≤ | f (t)e−x−t

|
p.

Therefore, ∫
B
| f (t)e−x−te−(x−x−)t

|
q dt ≤

∫
B
| f (t)e−x−t

|
pe−q(x−x−)t dt < ∞.

For the remainder of the integral we have∫
A
| f (t)e−x−te−(x−x−)t

|
q dt ≤

∫
A
χ[T,∞)(t)e−q(x−x−)t dt < ∞,

where supp( f ) ⊆ [T,∞). This gives∫
R
| f (t)e−x−te−(x−x−)t

|
q dt < ∞,

as desired.
Now let p = ∞, f ∈ LT∞,+(R;C), and take x ∈ int(I∞( f )). We write

f (t)e−xt = f (t)e−(x−x−)te−x−t

as above, with x− ∈ I∞( f ) and x− < x. Then t 7→ f (t)e−x−t is in L∞(R;C). Therefore,
since t 7→ χ[T,∞)(t)e−(x−x−)t (with T as above) is in Lq(R;C), it follows that t 7→ f (t)e−xt

is also in Lq(R;C) by Exercise 1.3.13. ■

Let us show that the preceding result cannot be improved upon.

9.1.5 Examples (Intervals of convergence and index)
1. We give an example which illustrates that we cannot generally expect that

cl(Ip( f )) ⊆ Iq( f ) when q < p. Let f : R→ C be given by

f (t) = 1≥0(t)
1

(1 + t)r ,

where r ∈ (p−1, q−1). Then we verify that Ip( f ) = [0,∞) and Iq( f ) = (0,∞). Thus
cl(Ip( f )) 1 Iq( f ).
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2. We claim that, in general, we do not have the inclusion Iq( f ) ⊆ Ip( f ). Indeed,
for r ∈ (p−1, q−1) define f : R→ C by

f (t) =

t−r, t ∈ (0, 1],
0, otherwise.

One then checks that f ∈ Lq(R;C) and, since f has compact support, this implies
that Iq( f ) = R. On the other hand, for x ∈ R let us define m = inf{e−xt

| t ∈ [0, 1]}.
Then ∫

R

| f (t)e−xt
|
p dt ≥ mp

∫ 1

0
t−rp dt = ∞,

and so Ip( f ) = ∅.
3. The preceding example can be improved upon by constructing f such that

Ip( f ) , ∅. As above, we take p, q ∈ [1,∞) with q < p. To make this construction,
first define F : (0, 1]→ C by F(t) = t−r with r ∈ (p−1, q−1) as above. Note that∫ 1

0
|F(t)|q dt =

1
1 − qr

.

Now define a sequence (G j) j∈Z>0 of C-valued signals on (0, 1] by

G j(t) =

t−r, t ∈ [1
j , 1],

0, otherwise.

Note that the sequence∫ 1

0
|G j(t)|p dt =

jpr−1
− 1

pr − 1
, j ∈ Z>0,

diverges monotonically to∞.

1 Lemma There exists N ∈ Z>0 such that, for each k ≥ N, there exists jk ∈ Z>0 with
the property that

e2pk
≤

jpr−1
k − 1

pr − 1
≤ e3pk.

Moreover, N can be chosen sufficiently large that the preceding condition implies that
jk ≥ 2 for k ≥ N.

Proof Let us define jk to be the smallest positive integer for which

jpr−1
k − 1

pr − 1
≥ e2pk.
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In order to ensure that the inequality

jpr−1
k − 1

pr − 1
≤ e3pk

also holds, it is clearly sufficient to check that

( jk + 1)pr−1
− 1

pr − 1
≤ e3pk.

This inequality will hold provided that

e3pk
− e2pk

≥ 2

 ( jk + 1)pr−1
− 1

pr − 1
−

jpr−1
k − 1

pr − 1

 .
We will demonstrate this inequality for sufficiently large k by showing that

lim
k→∞

e3pk
− e2pk

− 2

 ( jk + 1)pr−1
− 1

pr − 1
−

jpr−1
k − 1

pr − 1

 = ∞. (9.2)

By definition of jk we have

e2pk =
( jk − αk)pr−1

− 1
pr − 1

for some αk ∈ [0, 1). Therefore,

e3pk
− e2pk

− 2

 ( jk + 1)pr−1
− 1

pr − 1
−

jpr−1
k − 1

pr − 1


= e2pk

epk
− 1 − 2

(
( jk − αk)pr−1

− 1
pr − 1

)−1
 ( jk + 1)pr−1

− 1
pr − 1

−
jpr−1
k − 1

pr − 1


 .

By the Mean Value Theorem we have

( jk + 1)pr−1
− 1

pr − 1
−

jpr−1
k − 1

pr − 1
= ( jk + βk)pr−2

for some βk ∈ (0, 1). As jk →∞ as k→∞ it follows that

lim
k→∞

(
( jk − αk)pr−1

− 1
pr − 1

)−1
 ( jk + 1)pr−1

− 1
pr − 1

−
jpr−1
k − 1

pr − 1

 = 0.

Therefore, the limit (9.2) obtains, and this gives the first part of the proof.
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For the final assertion, since jk → ∞ as k → ∞ we can obviously choose N
sufficiently large that the jk’s defined above satisfy jk ≥ 2 for k ≥ N. Moreover,
since the construction of the integers jk, k ∈ Z>0, above are obviously the smallest
integers for which the inequality of the lemma holds, it follows that any integers
jk, k ∈ Z>0, such that the inequality of the lemma holds will be larger than 1 for
large enough k. ▼

Now, for k ∈ Z>0 define Ik = (k − 1, k] and let αk ∈ R>0 be defined such that∫ 1

0
|αkF(t)|q dt =

αq
k

1 − qr
=

1
k2 .

We then define f : R→ C by

f (t) =

αkG jk(t − k − 1), t ∈ Ik,

0, t ≤ 0.

Let us record the properties of interest for f .

2 Lemma Iq(f) = [0,∞).

Proof First we compute∫
∞

0
| f (t)|q dt =

∞∑
k=1

∫ k

k−1
|αkG(t − k − 1)|q dt ≤

∞∑
k=1

∫ 1

0
|αkF(t)|k dt =

∞∑
k=1

1
k2 < ∞.

This shows that f ∈ Lq(R≥0;C) and so [0,∞) ⊆ Iq( f ). To show the opposite
inclusion, suppose that x ∈ R<0. Using the fact that f (t) ≥ αk for t ∈ [k − 1

2 , k]
(here we use the fact that jk ≥ 2) we compute∫

∞

0
| f (t)e−xt

|
q =

∞∑
k=1

∫ k

k−1
| f (t)e−xt

|
q dt ≥

∞∑
k=1

∫ k

k− 1
2

αq
ke
−qxt dt. (9.3)

Since

αk =

(
1 − qr

k2

)1/q

and since x ∈ R<0, we conclude that the last sum in (9.3) diverges to ∞, giving
the result. ▼

3 Lemma cl(Ip(f)) = [a,∞) for some a ∈ [1, 4].
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Proof We use the positive integer N from Lemma 1, and suppose without loss
of generality that N > 4. We compute∫

∞

0
| f (t)e−4t

|
p dt =

∞∑
k=1

∫ k

k−1
| f (t)e−4t

|
p dt ≤

∞∑
k=1

e−4p(k−1)
∫ k

k−1
| f (t)|p dt

=

∞∑
k=1

αp
ke−4p(k−1)

jpr−1
k − 1

pr − 1

≤

N∑
k=1

αp
ke−4p(k−1)

jpr−1
k − 1

pr − 1
+

∞∑
k=N+1

αp
ke−4p(k−1)e3pk

=

N∑
k=1

αp
ke−4p(k−1)

jpr−1
k − 1

pr − 1
+

∞∑
k=N+1

αp
ke−p(k−4) < ∞,

using the fact that

αk =

(
1 − qr

k2

)1/q

.

This shows that [4,∞) ⊆ Ip( f ).
For the lower bound on a we compute∫

∞

0
| f (t)e−t

|
p dt =

∞∑
k=1

∫ k

k−1
| f (t)e−t

|
p dt ≥

∞∑
k=1

e−pk
∫ k

k−1
| f (t)|p dt

=

∞∑
k=1

e−pk
jpr−1
k − 1

pr − 1
≥

∞∑
k=N+1

αp
ke−pke2pk = ∞.

This gives Ip( f ) ⊆ (1,∞), and this establishes the lemma. ▼

From the above constructions we see that it is possible that int(Iq( f )) is not
contained in Ip( f ), even when the latter is nonempty. Moreover, this example
shows that it is possible that cl(Ip( f )) ⊆ Iq( f ). •

9.1.6 Remark (Intervals of convergence and index) The signal f defined in the last of
the examples above is not continuous. However, the signal can easily be modified
so as to be continuous and have the same properties asserted above. •

9.1.2 Definitions and examples

With the above constructions of what we mean by a Laplace transformable
signal, let us define the continuous Laplace transform.
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9.1.7 Definition (Causal CLT) If f ∈ LTp,+(R;C), the mapping

L
p

C ( f ) : CI1( f ) → C

z 7→
∫
R

f (t)e−zt dt

is the causal continuous p-Laplace transform or Lp causal CLT of f . •

We note that the domain of the transformed function is that for p = 1, even
when the function is in LTp,+(R;C). This, of course, is a consequence of the fact that,
when z ∈ I1( f ), then the integral defining the causal CLT is ensured to exist. Note
that, by Proposition 9.1.4, we have int(Ip( f )) ⊆ I1( f ), and so the only problem that
might arise concerning the domain is at an endpoint of Ip( f ) that is not contained
in I1( f ). We shall see this arise in examples. We shall also see in Theorem 9.1.17
that sometimes we can extend the domain ofL p

C ( f ) to include these endpoints.
Let us enumerate some properties of the causal CLT of a signal.

9.1.8 Proposition (Properties of the causal CLT) Let f,g ∈ LTp,+(R;C) be causal p-
Laplace transformable signals, and let a ∈ C and s ∈ R. Then the following statements
hold:

(i) L p
C (f)|Cint(I1(f)) is holomorphic;

(ii) af is p-Laplace transformable, αp
min(af) = αp

min(f), andL p
C (af) = aL p

C (f);
(iii) f + g is p-Laplace transformable, αp

min(f + g) ≤ max{αp
min(f), αp

min(g)}, and

L
p

C (f + g)(z) = L p
C (f)(z) +L p

C (g)(z), Re(z) ∈ I1(f) ∩ I1(g);

(iv) τ∗sf is p-Laplace transformable, αp
min(τ∗sf) = α

p
min(f), and

L
p

C (τ∗sf)(z) = e−szL
p

C (f)(z), Re(z) ∈ I1(f).

Proof (i) Let z ∈ C be such that Re(z) ∈ int(I1(I)) and let ϵ ∈ R>0 be such that

[Re(z) − ϵ,Re(z) + ϵ] ⊆ I1( f ).

Then, for z′ ∈ Cwith Re(z′) ∈ (Re(z) − ϵ,Re(z) + ϵ),

| f (t)e−z′t
| = | f (t)e−zte(z−z′)t

| ≤ | f (t)e−zt
|e−ϵt.

Thus we can apply Theorem III-2.9.18 to conclude the result.
(ii) This is obvious.
(iii) If x > max{αp

min( f ), αp
min(g)}, then(∫

R
| f (t) + g(t)|pe−pxt dt

)1/p

≤

(∫
R
| f (t)|pe−pxt dt

)1/p

+

(∫
R
|g(t)|e−xt dt

)1/p

< ∞.

Thus αp
min( f + g) ≤ max{αp

min( f ), αp
min(g)}. If Re(z) ∈ I1( f ) ∩ I1(g), then linearity of the

integral gives the second conclusion in this part of the proposition.
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(iv) For x > αp
min( f ), we have∫

R
| f (t − s)|pe−pxt dt = e−psx

∫
R
| f (τ)|pe−pxτ dτ

by a change of variable. If Re(z) ∈ I1( f ) then∫
R
| f (t − s)|e−zt dt = e−sz

∫
R
| f (τ)|e−zτ dτ,

which proves this part of the result. ■

Let us consider a few examples.

9.1.9 Examples (Causal CLT)
1. First let us consider f (t) = 1≥0(t)tk for k ∈ Z≥0. We claim that f is p-Laplace

transformable for every p ∈ [1,∞] and that

Ip( f ) =

[0,∞), k = 0, p = ∞,
(0,∞), otherwise.

To see this, note that, if x ∈ R>0, then limt→∞ tke−xt/2 = 0. Since t 7→ tke−xt/2 is
continuous on R≥0, it is bounded. Therefore, there exists M ∈ R>0 such that

|tk
|e−xt/2

≤M =⇒ | f (t)| ≤Mext/2 =⇒ | f (t)e−xt
| ≤Me−xt/2

for t ∈ R≥0. This shows that x ∈ Ip( f ) for all k ∈ Z≥0 and all p ∈ [1,∞]. Moreover,
taking x = 0 so that e−xt = 1, then we see that 0 ∈ Ip( f ) if and only if k = 0
and p = ∞. Finally, if x ∈ R≤0, then t 7→ tke−xt is clearly not in Lp(R≥0;C)
for any k ∈ Z≥0 and p ∈ [1,∞]. This gives our claimed interval of absolute
p-convergence.
Next, we claim that

L
p

C ( f )(z) =
k!

zk+1
.

We can prove this by induction on k. For k = 0 we have∫
∞

0
e−zt dt = −

e−zt

z

∣∣∣∣∣∞
0
=

1
z
,

and so our claim is true when k = 0. So suppose the claim is true for k = m and
let k = m + 1. We then have, using integration by parts,∫

∞

0
tm+1e−zt dt = −

tm+1e−zt

z

∣∣∣∣∣∞
0
+

m + 1
z

∫
∞

0
tme−zt dz

=
m + 1

z
m!

zm+1 =
(m + 1)!

zm+2 ,

as claimed.
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2. Next we consider f (t) = 1≥0(t)eat for a ∈ C. We claim that

Ip( f ) =

[Re(a),∞), p = ∞,
(Re(a),∞), p ∈ [1,∞).

To see this, note that, if x − Re(a) = ϵ ∈ R>0, then |eat
|e−xt = e−ϵt and we see that

t 7→ f (t)e−xt is in Lp(R≥0;C) for all p ∈ [1,∞]. Thus x ∈ Ip( f ) for all p ∈ [1,∞].
If x = Re(z), then |eat

|e−xt = 1 and so x ∈ Ip( f ) if and only if p = ∞. Finally, if
x − Re(z) = −ϵ ∈ R<0, then |eat

|e−xt = eϵt and we see that t 7→ f (t)e−xt is not in
Lp(R≥0;C) for any p ∈ [1,∞]. This gives the claimed interval of convergence.
In this case we can calculate

L
p

C ( f )(z) =
∫
∞

0
eate−zt dt =

e(a−z)t

a − z

∣∣∣∣∣∣
∞

0

=
1

z − a
.

3. Let us “combine” the preceding two examples and consider f (t) = 1≥0(t)tkeat for
k ∈ Z≥0 and a ∈ C. Here we have the same interval of convergence as in part 2,
and by a very similar argument. In this case we have, by a change of variable
ζ = z − a,

L
p

C ( f )(z) =
∫
∞

0
tkeate−zt dt =

∫
∞

0
tke−ζt dt =

k!
ζk+1

=
k!

(z − a)k+1
.

4. Consider f (t) = 1≥0(t) sin(ωt) for ω ∈ R. We leave it as an exercise to the reader
to verify that

Ip( f ) =

[0,∞), p = ∞,
(0,∞), p ∈ [1,∞).

We have, using integration by parts,

L
p

C ( f )(z) =
∫
∞

0
sin(ωt)e−zt dt

= −
sin(ωt)e−zt

z

∣∣∣∣∣∞
0
+
ω
z

∫
∞

0
cos(ωt)e−zt dt

= −
ω
z

cos(ωt)e−zt

z

∣∣∣∣∣∞
0
−
ω2

z2

∫
∞

0
sin(ωt)e−zt dt

=
ω
z2

(
1 − ωL p

C ( f )(z)
)
.

Thus we can solve forL p
C ( f )(z) as

L
p

C ( f )(z) =
ω

z2 + ω2 .
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5. We can perform a similar computation for f (t) = 1≥0(t) cos(ωt). Here again, we
have

Ip( f ) =

[0,∞), p = ∞,
(0,∞), p ∈ [1,∞).

We also compute

L
p

C ( f )(z) =
∫
∞

0
cos(ωt)e−zt dt

= −
cos(ωt)e−zt

z

∣∣∣∣∣∞
0
−
ω
z

∫
∞

0
sin(ωt)e−zt dt

=
1
z
+
ω
z

sin(ωt)e−zt

z

∣∣∣∣∣∞
0
−
ω2

z2

∫
∞

0
cos(ωt)e−zt dt

=
1
z
+
ω2

z2 L
p

C ( f )(z).

Solving forL p
C ( f ) gives

L
p

C ( f )(z) =
z

z2 + ω2 .

6. Now we combine all of the preceding computations to derive the causal CLT of
a general signal of the form t 7→ 1≥0(t)tkeσt sin(ωt) or t 7→ 1≥0(t)tkeσt cos(ωt) for
k ∈ Z≥0 and σ,ω ∈ R. In both cases we have

Ip( f ) =

[σ,∞), p = ∞,
(σ,∞), p ∈ [1,∞).

the verification of which we leave to the reader.
We first consider the C-valued signal f (t) = tke(σ+iω)t. From 3 we have

L
p

C ( f )(z) =
k!

((z − σ) + iω)k+1
=

k!((z − σ) − iω)k+1

((z − σ)2 + ω2)k+1

=

⌊k/2⌋∑
j=0

(
k
2 j

)
(−1) jk!(z − σ)k−2 jω2 j

((z − σ)2 + ω2)k+1

+ i
⌊k/2⌋∑
j=0

(
k

2 j + 1

)
(−1) j+1k!(z − σ)k−2 j−1ω2 j+1

((z − σ)2 + ω2)k+1
,

using the Binomial Formula and where ⌊x⌋ is the largest integer less than or
equal to x.
Since

e(σ+iω)t = eσt(cos(ωt) + i sin(ωt)),
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we conclude that, if

f (t) = tkeσt sin(ωt), g(t) = tkeσt cos(ωt),

then

L
p

C ( f )(z) =
⌊k/2⌋∑
j=0

(
k

2 j + 1

)
(−1) j+1(z − σ)k−2 j−1ω2 j+1

((z − σ)2 + ω2)k+1
.

and

L
p

C (g)(z) =
⌊k/2⌋∑
j=0

(
k
2 j

)
(−1) j(z − σ)k−2 jω2 j

((z − σ)2 + ω2)k+1
•

9.1.3 The causal CLT and convolution

Next we consider the relationship of convolution with products for the CLT.
The transformed variables in this case reside in C(a,∞) for some a ∈ R, and so
transformed functions are functions from C(a,∞) to C. Thus, in this case, we have
F,G : C(a,C) → C and so the product of F and G is the function

FG : C(a,∞) → C

z 7→ F(z)G(z).

What we want to know is, if F = L p
C ( f ) and G = L p

C ( f ), is there a causal signal
h : R→ C for which L p

C (h) = FG? We shall give two results where we can give an
affirmative answer to this question. Both make use of the properties of convolution
for causal signals discussion in Section 4.1.2.

Our first result concerns convolution of strictly causal signals in LT∞,+(R;C).

9.1.10 Proposition (Causal CLT and convolution I) If f,g ∈ LT∞,+(R≥0;C), then f ∗ g ∈
LT∞,+(R≥0;C), α∞min(f ∗ g) ≤ max{α∞min(f), α∞min(g)}, and

L ∞

C (f ∗ g)(z) = L ∞

C (f)(z)L ∞

C (g)(z)

for z ∈ C(a,∞), and for any a > max{α∞min(f), α∞min(g), α∞min(f ∗ g)}.
Proof Let a > max{α∞min( f ), α∞min(g)} and let b ∈ R be such that

a > b > max{α∞min( f ), α∞min(g)}.

Let M ∈ R>0 be such that | f (t)|, |g(t)| ≤Mebt for t ∈ R≥0. Then

| f ∗ g(t)| ≤
∫ t

0
| f (t − s)g(s)|ds ≤M2

∫ t

0
eb(t−s)ebs ds ≤M2tebt.

Since limt→∞ te(b−a)t = 0, there exists R ∈ R>0 such that

te(b−a)t
≤ 1, t ≥ R.
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Next let
C = sup{te(b−a)t

| t ∈ [0,R]}.

Then, for t ∈ R≥0, we have te(b−a)t
≤ max{1,C}. Thus

| f ∗ g(t)| ≤M2tebt
≤M2 max{1,C}eat, t ∈ R≥0.

This shows that α∞min( f ∗ g) ≤ max{α∞min( f ), α∞min(g)}.
The remainder of the proof is a fairly straightforward application of Fubini’s

Theorem and the change of variables theorem:

L ∞C ( f ∗ g)(z) =
∫
∞

0
f ∗ g(t)e−zt dt =

∫
∞

0

(∫ t

0
f (t − s)g(s) ds

)
e−zt dt

=

∫
∞

0
g(s)

(∫
∞

s
f (t − s)e−zt dt

)
ds

=

∫
∞

0
g(σ)

(∫
∞

0
f (τ)e−z(σ+τ) dτ

)
dσ

=

(∫
∞

0
g(σ)e−zσ dσ

) (∫
∞

0
f (τ)e−zτ dτ

)
= L ∞C ( f )(z)L ∞C (g)(z),

as claimed. ■

The next result makes use of Young’s inequality for convolution.

9.1.11 Proposition (Causal CLT and convolution II) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p +

1
q − 1. If f ∈ LTp,+(R;C) and g ∈ LTq,+(R;C), then f ∗ g ∈ LTr,+(R;C), αr

min(f ∗ g) ≤
max{αp

min(f), αq
min(g)}, and

L r
C(f ∗ g)(z) = L p

C (f)(z)L q
C (g)(z)

for z ∈ C(a,∞), and for any a > max{αp
min(f), αq

min(g), αr
min(f ∗ g)}.

Proof Let x ∈ int(Ip( f )) ∩ int(Iq(g)). By Proposition 9.1.4, x ∈ I1( f ) ∩ I1(g). By Theo-
rem 4.2.1, (E−x f ) ∗ (E−xg) ∈ L1(R;C). Also note that

(E−x f ) ∗ (E−xg)(t) =
∫
R

e−x(t−τ) f (t − τ)(e−xτg(τ)) dτ = e−xt f ∗ g(t).

Note that the convolution f ∗ g exists by Theorem 4.1.13 since f and g have support
bounded on the left. Thus x ∈ I1( f ∗ g). Moreover, since E−x f ∈ Lp(R;C) and E−xg ∈
Lq(R;C), we have E−x f ∗ g ∈ Lr(R;C) by Theorem 4.2.8. Thus f ∗ g ∈ LTr,+(R;C) and

Ir( f ∗ g) ⊇ int(Ip( f )) ∩ int(Iq(g)).

Moreover, since the above argument holds replacing x with x′ ∈ (x − ϵ, x + ϵ) for some
sufficiently small ϵ ∈ R>0, we additionally have

int(Ir( f ∗ g)) ⊇ int(Ip( f )) ∩ int(Iq(g)).
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It remains to show that the causal CLT of the convolution is the product of the
causal CLT’s. If Re(z) ∈ int(Ip( f )) ∩ int(Iq(g)) as above, then Re(z) ∈ I1( f ) ∩ I1(g) as
above. Thus we can use Fubini’s Theorem and Theorem 4.1.13 to compute

L r
C( f ∗ g)(z) =

∫
R

f ∗ g(t)e−zt dt

=

∫
∞

σ( f )+σ(g)

∫ t−σ( f )

σ(g)
f (t − s)(g(s)) ds

 e−zt dt

=

∫
∞

σ(g)

(∫
∞

s+σ( f )
f (t − s)e−zt dt

)
(g(s)) ds

=

∫
∞

σ(g)

(∫
∞

σ( f )
f (τ)e−z(s+τ) dτ

)
(g(s)) ds

=

(∫
∞

σ( f )
f (τ)e−zτ dτ

) (∫
∞

σ(g)
g(s)e−zs ds

)
= L

p
C ( f )(z)L q

C (g)(z),

as desired. ■

9.1.4 The causal CLT and the CCFT

There is a more or less obvious connection between the causal CLT and the
CCFT. In this section we make the connections clear and give some consequences
of these connections.

Let us first state clearly the obvious connection. In the statement of the next
result, we recall that we use the notation Ea(t) = eat for a ∈ C.

9.1.12 Proposition (Causal CLT and CCFT) If p ∈ [1,∞] and if f ∈ LTp,+(R;C), then

L
p

C (f)(σ + iω) = FCC(fE−σ)
(
ω
2π

)
for all ω ∈ R and σ ∈ I1(f).

Proof We have

L
p

C ( f )(σ + iω) =
∫
R

f (t)e−(σ+iω)t dt =
∫
R

f (t)e−σte−2πi(ω/2π)t dt

= FCC( f E−σ)
(
ω
2π

)
,

as desired. ■

Using this simple relationship of the causal CLT with the CCFT, we can make
some important conclusions about the causal CLT. For example, we have the fol-
lowing result.
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9.1.13 Theorem (Injectivity of the causal CLT) Let p ∈ [1,∞] and let f,g ∈ LTp,+(R;C)
have the property that

L
p

C (f)(σ + iω) = L p
C (g)(σ + iω), ω ∈ R,

for some σ ∈ I1(f) ∩ I1(g). Then f(t) = g(t) for almost every t ∈ R.
Proof Let σ ∈ I1( f ) ∩ I1(g). By Proposition 9.1.12,

FCC( f E−σ) = FCC(gE−σ).

By Theorem 6.2.1 it follows that

f (t)e−σt = g(t)e−σt, a.e. t ∈ R.

Therefore, f (t) = g(t) for almost every t ∈ R, as claimed. ■

The connection with the CCFT also allows us to produce a formula for the
inverse of the causal CLT, using the Fourier integral. Indeed, using the formula

L 1
C ( f )(σ + iω) = FCC( f E−σ)

(
ω
2π

)
,

which we rewrite as
L 1

C ( f )(σ + 2πiν) = FCC( f E−σ)(ν),

we have the Fourier integral

FI[ f E−σ](t) =
∫
R

L 1
C ( f )(σ + 2πiν)e2πiν dν

=
1

2π

∫
R

L 1
C ( f )(σ + iω)eiωt dt.

This then gives

eσtFI[ f E−σ](t) =
1

2π

∫
R

L 1
C ( f )(σ + iω)e(σ+iω)t dt.

Given that we should have eσtFI[ f E−σ](t) = f (t), this then gives us an integral
representation for recovering f from its causal CLT. Of course, the limitations of
the Fourier integral as concerns its convergence will be inherited by this integral
formula for the inverse of the causal CLT. We shall follow in the manner of our
presentation of the Fourier integral in Definition 6.2.4, and give a definition with
an integral that may or may not converge.
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9.1.14 Definition (Fourier–Mellin1 integral) For f ∈ LTp,+(R;C), the Fourier–Mellin in-
tegral for f is

FMI[ f ](t) =
1

2π

∫
R

L 1
C ( f )(σ + iω)e(σ+iω)t dω,

where σ ∈ I1( f ), disregarding whether the integral converges. •

One of the curious things about this inversion integral for the causal CLT is that
it is done with respect to a choice of σ ∈ I1( f ). In cases where the Fourier–Mellin
integral converges, it clearly does not depend on the choice of σ, just because we
know that the theory of the Fourier integral does return the signal, in cases when it
converges in some sense. This is connected to the fact that, since the transformed
signal is an holomorphic function, this function is uniquely determined by its
values on, for example any line in the domain of convergence, e.g., a line with real
part equal to σ.

In cases where the inverse transform can be actually computed, one seldom
computes it using the explicit inversion formula. Rather, there are tables of CLT’s
and inverse transforms, and one’s first move should be for such a table. In Exam-
ple 9.1.9 we give some important examples of CLT’s. Let us now produce some
related examples for inverse Laplace transforms.

9.1.15 Examples (Inverse CLT)
1. Let us consider the function

F : C(0,∞) → C

z 7→
1
zk

for k ∈ Z>0. By Example 9.1.9–1 and linearity of the CLT, we have F = L 1
C ( f ),

where

f (t) = 1≥0(t)
tk−1

(k − 1)!
.

2. Next we consider the function

F : C(a,∞) → C

z 7→
1

(z − a)k

for k ∈ Z>0 and a ∈ R.2 By Example 9.1.9–3 and linearity of the CLT, we have
F = L 1

C ( f ), where

f (t) = 1≥0(t)
tk−1eat

(k − 1)!
.

1Hjalmar Mellin (1854-1933) was a Finnish mathematician whose primary contributions were to
analysis.

2We can take a ∈ C, in which case the domain of F would be C(Re(a),∞).
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3. The next function we consider is

F : C(a,∞) → C

z 7→
z

(z − a)k

for k ≥ 2 and a ∈ R.3 Here we take G(z) = 1
(z−a)k and note from our previous

example that G(z) = L 1
C (g)(z), where g(t) = tk−1eat

(k−1)! . Now, by Proposition 9.1.20,
we have

L ∞

C (g′)(z) = zL ∞

C (g)(z) − g(0) = F(z).

Thus F = L ∞

C ( f ), where f = g′. Thus, wrapping all this up,

f (t) = 1≥0(t)
tk−2eat

(k − 2)!
+ 1≥0(t)

atk−1eat

(k − 1)!
.

4. Next we consider
F(z) =

1
(z − σ)2 + ω2

for σ ∈ R and ω ∈ R>0. As per Example 9.1.9–6, the inverse CLT is

f (t) = 1≥0(t)
1
ω

eσt sin(ωt).

In similar fashion, if
G(z) =

z
(z − σ)2 + ω2 ,

then its inverse causal CLT is

g(t) = 1≥0(t)eσt cos(ωt).

5. Now we generalise the preceding example, considering

F(z) =
1

((z − σ)2 + ω2)k
,

for k ≥ 2, σ ∈ R, and ω ∈ R>0. Here we note that

F(z) =
1

(z − (σ + iω))k︸           ︷︷           ︸
F+(z)

1
(z − (σ − iω))k︸           ︷︷           ︸

F−(z)

.

Let Sig = L ∞

C ( f ), F+ = L ∞

C ( f+), and F− = L ∞

C ( f−). By 2 above,

f+(t) =
tk−1e(σ+iω)t

(k − 1)!
, f−(t) =

tk−1e(σ−iω)t

(k − 1)!
.

3As previously, we can take a ∈ C.
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By Proposition 9.1.10 below, we have

f (t) = f+ ∗ f−(t) =
∫ t

0
f+(y) f−(t − s) ds

=
1

((k − 1)!)2

∫ t

0
sk−1(t − s)k−1e(σ+iω)se(σ−iω)(t−s) ds

=
1

((k − 1)!)2

k−1∑
j=0

(
k − 1

j

)
tk− j−1e(σ−iω)t

∫ t

0
sk+ j−1e2iωs ds.

A simple inductive (on k) computation gives∫ t

0
skeas ds = eat

k∑
j=0

(−1)k− jk!
j!ak− j+1

t j
−

(−1)kk!
ak+1

.

Thus finish, somehow

f (t) =
1

((k − 1)!)2

k−1∑
j=0

(
k − 1

j

)
tk− j−1e(σ−iω)t

∫ t

0
sk+ j−1e2iωs ds

=
1

((k − 1)!)2

k−1∑
j=0

(
k − 1

j

)
tk− j−1e(σ−iω)t

×

e2iωt
k+ j−1∑

l=0

(−1)k+ j−l−1(k − j − 1)!
l!(2iω)k+ j−l

tl +
(−1)k+ j(k − 1)!

(2iω)k


=

9.1.5 Causal Laplace transforms for strictly causal signals

In our development thus far, we have considered the causal CLT for signals
that are causal, but have not distinguished the case where the signals vanish for
negative times. In this section we consider this matter and we shall see that there are
distinguishing properties of causal CLT’s with support inR≥0. In the development,
it is useful to phrase the results in terms of the Hardy spaces for vertical strips that
were discussed in Section III-7.4.

Our first result is a rather general result about the character of the CLT for
signals that vanish for negative time.

9.1.16 Proposition (The causal CLT for strictly causal signals) Let p ∈ [1,∞]. If
f ∈ LTp,+(R≥0;C), then

(i) L p
C (f) ∈ C0(CI1(f);C) and

(ii) L p
C (f)|C(a,∞) ∈ H∞(C(a,∞);C for every a ∈ I1(f).
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Proof (ii) Let a ∈ I1( f ) and note that, for Re(z) ∈ [a,∞),

|L
p

C ( f )(z)| ≤
∫
∞

0
| f (t)|e−Re(z)t dt ≤

∫
∞

0
| f (t)|e−at dt.

SinceL p
C ( f ) is holomorphic by Proposition 9.1.8(i), we get this part of the result.

(i) It suffices to show that L p
C ( f )|[a,∞) is continuous for every a ∈ I1( f ). Let

z ∈ C[a,∞) and let (z j) j∈Z>0 be a sequence in C[a,∞) converging to z. By the Dominated
Convergence Theorem (whose applicability follows from our estimate in part (i)), we
have

lim
j→∞
L

p
C ( f )(z j) = lim

j→∞

∫
∞

0
f (t)e−z jt dt = L p

C ( f )(z),

as desired. ■

Note that, in case I1( f ) is closed, the continuity of L p
C ( f ) on bd(CI1( f )) follows

from the fact that FCC( f ) is continuous if f ∈ L1(R;C).
With the preceding more or less elementary result in hand, let us flesh it out

more carefully in the case of p = 2. In our preceding treatment of the CLT, while
we made some mention of the p-transform for p , 1, we restricted our attention to
the case of the transform defined on the domain CI1( f ) in all cases, because it is only
on this domain that the definition of the transform directly applies. In the case of
p = 2, we can extend the transform beyond I1( f ) to include the boundary of the
strip.

For this development, it is convenient to work with a version of the CCFT
adapted to the CLT. Thus, for the purposes of this section, we denote the modified
CCFT by

F ′

CC( f )(ω) =
∫
R

f (t)e−iωt dt

and its Fourier integral

F ′

CC(F)(t) =
1

2π

∫
R

F(ω)eiωt dω.

These differ from the version of the CCFT we use in Chapter 6 only by a change
of frequency variable, and so all of the results from that chapter hold, particularly
those regarding the L2-CCFT from Section 6.3. The only mildly material difference
arises from Parseval’s Equality, which reads∫

R

| f (t)|2 dt =
1

2π

∫
R

|F ′

CC( f )(ω)|2 dω

for f ∈ L2(R;C).
Let us first make some constructions for the L2-causal CLT, based on our con-

struction of the L2-CCFT in Section 6.3. We let f ∈ L2(R;C) be a causal signal
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and note that R≥0 ∈ I2( f ). By Proposition 9.1.4, int(I2( f )) ⊆ I1( f ). In particular,
R>0 ⊆ I1( f ), and so, for z ∈ CR>0 , we can directly define

L 2
C ( f )(z) =

∫
R

f (t)e−zt dt.

Since f ∈ L2(R;C), 0 ∈ I2( f ). It is possible, however, that 0 < I1( f ), and so the direct
definition of the CLT may not apply. However, we can still define

L 2
C ( f )(iy) = lim

T→∞

∫ T

−T
f (t)e−iyt dt,

as in Section 6.3. In this way, we can extend the the domain of definition ofL 2
C ( f )

to be defined on CR≥0 . In the following, we shall consider this extension to always
be made.

The theorem we are after is the following.

9.1.17 Theorem (L2-Paley–Wiener4 Theorem for strictly causal signals) If f ∈
L2(R≥0;C), then L 2

C (f) ∈ H2(CR≥0 ;C) and, moreover, L 2
C is an isomorphism from

L2(R≥0;C) to H2(CR≥0 ;C).
Proof We first show that, if f ∈ L2(R≥0;C), then the function F

F(z) =
∫
R

f (t)e−zt dt

is in H2(CR≥0 ;C). Since R>0 ⊆ I1( f ), by Proposition 9.1.8(i) we conclude that F is
holomorphic in CR>0 . Also, for z ∈ CR>0 , we have

F(x + iy) =
∫
R

f (t)e−(x+iy)t dt =
∫
R

f (t)e−xte−iyt dt.

Therefore, by Theorem 6.3.3,∫
R
|F(x + iy)|2 dy =

∫
R
| f (t)e−xt

|
2 dt ≤

∫
R
| f (t)|2 dt,

which shows that F ∈ H2(CR>0 ;C). By definition, we further have F ∈ H2(CR≥0 ;C). This
shows that

L 2
C (L2(R≥0;C)) ⊆ H2(CR≥0 ;C).

It is clear that L 2
C is linear, and it is additionally injective by Theorem 9.1.13 and

Theorem 6.3.10. It remains to show that it is surjective. Here we claim that it is
sufficient to show that, if F ∈ H(CR>0 ;C) is such that there exists M ∈ R>0 such that∫

R
|F(x + iy)|2 dy ≤M, x ∈ R>0,
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then F = L 2
C ( f ) for some f ∈ L2(R≥0;C). Indeed, if this is true, then, by , we have boundary values for

Hardy spaces

lim
x→0

Fx(y) = lim
x→0

∫
R

f (t)e−(x+iy)t dt = L 2
C ( f )(iy)

by the Dominated Convergence Theorem, which is valid by the
Cauchy–Bunyakovsky–Schwarz inequality and by the assumption that ∥Fx∥2 is
uniformly bounded in x. This, then, gives the boundary function of F to be the same
as the boundary value ofLC( f ).

Thus let F ∈ H2(CR>0 ;C) be such that there exists M ∈ R>0 such that∫
R
|F(x + iy)|2 dy ≤M, x ∈ R>0.

We claim that, if we define

f (t) = lim
T→∞

1
2π

∫ T

−T
F(x + iy)e(x+iy)t dy, t ∈ R≥0, (9.4)

then L 2
C ( f ) = F. The integral is well-defined since Fx ∈ L2(R;C). We must first show

that the definition of f is independent of x.
Let x1, x2 ∈ R>0 with x1 < x2 and, for k ∈ Z>0, define a contour Γx1,x2,k ⊆ C by

Γx1,x2,k = {x1 + iy | y ∈ [−k, k]} ∪ {x + ik | x ∈ [x1, x2]}
∪ {x2 + iy | y ∈ [−k, k]} ∪ {x − ik | x ∈ [x1, x2]}.

By Cauchy’s Theorem,

0 =
∫
Γx1 ,x2 ,k

F(z)ezt dz =
∫
−k

k
F(x1 + iy)e(x1+iy)t dy +

∫ x2

x1

F(x − ik)e(x−ik)t dx

+

∫ k

−k
F(x2 + iy)e(x2+iy)t dy +

∫ x2

x2

F(x + ik)e(x+ik) dx. (9.5)

Let us show that the second and fourth integrals on the right sort of vanisk as k→∞.
Precisely, we prove the following lemma.

1 Lemma Let x1, x2, t ∈ R>0 with x1 < x2. There is a strictly increasing subsequence (kj)j∈Z>0

in Z>0 such that

lim
j→∞

∫ x2

x1

F(x + ikj)e(x+ikj)t dx = 0

and

lim
j→∞

∫ x2

x1

F(x − ikj)e(x−ikj)t dx = 0

4Raymond Edward Alan Christopher Paley (1907–1933) was a British analyst. He died in an
avalnche in Banff, Alberta in Canada. Norbert Wiener (1894–1965) was an American mathematician
who began his academic life studying zoology and philosophy, before settling on mathematics. He
made fundamental contributions to the sort of harmonic analysis that has found uses in engineering.
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Proof Using the Cauchy–Bunyakovsky–Schwarz inequality, we calculate∣∣∣∣∣∣
∫ x2

x1

F(x + ik)e(x+ik)t dx

∣∣∣∣∣∣2 ≤
(∫ x2

x1

|F(x + ik)|2 dx
) (∫ x2

x1

e2xt dx
)
.

As the second integral is independent of k, it suffices to show that there is a strictly
increasing subsequence (k j) j∈Z>0 such that

lim
j→∞

∫ x2

x1

|F(x + ik j)|2 dx = 0.

By our hypotheses on F, we have∫ x2

x1

∫
R
|F(x + iy)|2 dy dx ≤M(x2 − x1).

By Fubini’s Theorem, ∫
R

∫ x2

x1

|F(x + iy)|2 dx dy ≤M(x2 − x1). (9.6)

Suppose now that there is no such sequence (k j) j∈Z>0 as asserted in the lemma. Then
there must exist some a ∈ R>0 such that

lim inf
|y|→∞

∫ x2

x1

|F(x + iy)|2 dx ≥ a.

This would then imply that ∫
R

∫ x2

x1

|F(x + iy)|2 dx dy = ∞,

in contradiction with (9.6). ▼

By the lemma and (9.5), we have

lim
j→∞

∫ k j

−k j

F(x1 + iy)e(x1+iy)t dy = lim
j→∞

∫ k j

−k j

F(x2 + iy)e(x2+iy)t dy. (9.7)

By the construction of the L2-CCFT in Section 6.3 and a change of variable, the sequence
of functions

t 7→
1

2π

∫ k j

k j

F(x1 + iy)eiyt dy, j ∈ Z>0,

converges in L2(R;C) to F CC(Fx1). In like manner, the sequence of functions

t 7→
1

2π

∫ k j

k j

F(x2 + iy)eiyt dy, j ∈ Z>0,
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converges in L2(R;C) to F CC(Fx2). By , there exist strictly increasing sequences almost everywhere

pointwise convergent

subsequence( jm1)m1∈Z>0 and ( jm2)m2∈Z>0 such that the sequence of functions

t 7→
1

2π

∫ k jm1

k jm1

F(x1 + iy)eiyt dy, m1 ∈ Z>0,

converges pointwise almost everywhere to F CC(Fx1) and

t 7→
1

2π

∫ k jm2

k jm2

F(x1 + iy)eiyt dy, m2 ∈ Z>0,

converges pointwise almost everywhere to F CC(Fx2). By (9.7) we conclude that

ex1tF CC(Fx1)(t) = ex2tF CC(Fx2)(t), a.e. t ∈ R,

which shows that (9.4) is well-defined, in that it is independent of x.
By L2-Fourier inversion, for x ∈ R>0,

Fx(y) = F(x + iy) =
∫
R

f (t)e−xte−iyt dt

which gives

F(z) =
∫
R

f (t)e−zt dt,

i.e., F = L 2
C ( f ). Note that, since f and t 7→ e−xt are in L2(R;C), the integrand is in

L1(R;C), and so this is indeed the ordinary integral defining the CLT.
Finally, we need to show that f (t) = 0 for almost every t < 0. By Plancherel’s

Theorem, ∫
R

e−2xt
| f (t)|2 dt =

∫
R
|Fx(y)|2 dy ≤M, x ∈ R>0.

Note that, if f (t) , 0 on a subset of R<0 of positive measure, then

lim
x→∞

∫ 0

−∞

e−2xt
| f (t)|2 dt = ∞

by the Monotone Convergence Theorem. This contradiction ensures that f (t) = 0 for
almost every t < 0. ■

9.1.6 The causal CLT and differentiation for strictly causal signals

An important property of the causal CLT is how it acts with respect to the
derivative. To establish this, we first consider the situation with the integral.
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9.1.18 Proposition (The causal CLT and integration) Let f ∈ LT1,+(R≥0,C). If

g(t) =
∫ t

0
f(τ) dτ,

and if Re(z) ∈ I1(f) ∩R>0, then

lim
t→∞

∫ t

0
g(τ)e−zτ dτ =

1
z
L 1

C (f)(z).

Moreover, I1(f) ∩R>0 ⊆ I∞(g), and so int(I1(f)) ∩R>0 ⊆ I1(g).
Proof Let x ∈ I1( f ) ∩R>0 and define

h1(t) =
∫ t

0
g(τ)e−xτ dτ, h2(t) = exth1(t), h3(t) = ext.

Note that h1 is continuously differentiable and that h1 =
h2
h3

. Also, limt→∞ h3(t) = ∞.
Now calculate

h′2(t)
h′3(t)

=
ext(xh1(t) + h′1(t))

xext =
1
x

(xh1(t) + h′1(t))

=
1
x

(
x
∫ t

0
g(τ)e−xτ dτ + g(t)e−xt

)
=

1
x

(
−g(τ)e−xτ

∣∣∣∣τ=t

τ=0
+

∫ t

0
f (τ)e−xτ dτ + g(t)e−xt

)
=

1
x

∫ t

0
f (τ)e−xτ dτ

using integration by parts. Since x ∈ I1( f ) ∩R>0, the limit exists

lim
t→∞

h′2(t)
h′3(t)

=
1
x
L 1

C ( f )(x)

exists. By L’Hôpital’s Rule, we then have

lim
t→∞

∫ t

0
g(τ)e−xτ dτ = lim

t→∞

h′2(t)
h′3(t)

=
1
x
L 1

C ( f )(x).

This gives the first assertion of the proposition.
Moreover, as a consequence of the computations above, for x ∈ I1( f ) ∩R>0,

lim
t→∞

h1(t) = lim
t→∞

1
x

(xh1(t) + h′1(t)) =⇒ lim
t→∞

h′1(t) = 0.

In other words,
lim
t→∞

g(t)e−xt = 0,

from which we conclude that t 7→ g(t)e−xt is bounded, and so x ∈ I∞(g). Finally, the
conclusion that

int(I1( f )) ∩R>0 ⊆ I1(g)

follows from Proposition 9.1.4. ■
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From the result concerning integration, we immediately get the following result
concerning differentiation.

9.1.19 Proposition (The causal CLT and differentiation I) Let f ∈ L1
loc(R≥0;C) be locally

absolutely continuous with

f(t) = f(0+) +
∫ t

0
f′(τ) dτ, t ∈ R>0,

for f′ ∈ LT1,+(R≥0;C). Then, for x ∈ I1(f′) ∩R>0,

L 1
C (f′)(z) = lim

t→∞
z
∫ t

0
f(τ)e−zτ dτ − f(0+).

Moreover, I1(f′) ∩R>0 ⊆ I∞(f), and so int(I1(f′)) ∩R>0 ⊆ I1(f).

This result is. . . well. . . true. . . however, it does have the defect that its hypothe-
ses involve the Laplace transformability of the derivative, and the Laplace trans-
formability of the signal itself is a conclusion. Instead, one would like to assume
the Laplace transformability of the signal, and make conclusions about the Laplace
transformability of the derivative.

9.1.20 Proposition (The causal CLT and differentiation II) Let f ∈ LT∞,+(R≥0;C) be locally
absolutely continuous with

f(t) = f(0+) +
∫ t

0
f′(τ) dτ, t ∈ R>0,

for f′ ∈ L1
loc(R≥0;C). Then, for z ∈ Cint(I∞(f)),

lim
t→∞

∫ t

0
f′(τ)e−zτ dτ = zL ∞

C (f)(z) − f(0+).

Proof Let z ∈ Cint(I∞( f )) and note that this implies that limt→∞| f (t)|e−zt = 0. Assume
first that z , 0. Using integration by parts we compute∫ t

0
f (τ)e−zτ dt =

∫ t

0

(
f (0+) +

∫ τ

0
f ′(s) ds

)
e−zτ dτ

= −
e−zτ

z
f (τ)

∣∣∣∣∣τ=t

τ=0
+

1
z

∫ t

0
f ′(τ)e−zτ dτ

= −
e−zτ

z
f (τ)

∣∣∣∣∣τ=t

τ=0
+

1
z

∫ t

0
f ′(τ)e−zτ dτ.

Rearranging, ∫ t

0
f ′(τ)e−zτ dτ = z

∫ τ

0
f (τ)e−zτ dτ + e−zτ f (τ)

∣∣∣τ=t
τ=0 .

Taking the limit as t → ∞ gives the result. A similar computation gives the same
conclusion when z = 0. This gives the first two conclusions of the proposition. ■

The preceding results can be applied recursively to obtain the following re-
sults.
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9.1.21 Corollary (Laplace transform and higher-order derivatives I) Let f ∈
Ck−1(R≥0;C) and suppose that f(k−1) is locally absolutely continuous with

f(k−1)(t) = f(0+) +
∫ t

0
f(k)(τ) dτ, t ∈ R>0,

for f(k)
∈ LT1,+(R≥0;C). Then, for x ∈ I1(f(k)) ∩R>0,

L 1
C (f(k))(z) = lim

t→∞
zk

∫ t

0
f(τ)e−zτ dτ − f(0+)zk−1

− · · · − f(k−2)(0+)z − f(k−1)(0+).

Moreover, I1(f(k)) ∩R>0 ⊆ I∞(f(a)), a ∈ {0, 1, . . . ,k − 1}.

9.1.22 Corollary (Laplace transform and higher-order derivatives II) Let f ∈
Ck−1(R≥0;C), and suppose that f(a)

∈ LT+,∞(R≥0;C), a ∈ {0, 1, . . . ,k− 1}, and that f(k−1) is
locally absolutely continuous with

f(k−1)(t) = f(0+) +
∫ t

0
f(k)(τ) dτ, t ∈ R>0,

for f(k)
∈ L1

loc(R≥0;C). Then, for z ∈ Cint(I∞(f(k−1))),

lim
t→∞

∫ t

0
f(k)(τ)e−zτ dτ = zkL ∞

C (f)(z) − f(0+)zk−1
− · · · − f(k−2)(0+)z − f(k−1)(0+).

The following result is often helpful.

9.1.23 Corollary (Limiting values of signals and their causal CLT’s) Let f ∈
LT∞,+(R≥0;C) be locally absolutely continuous with

f(t) = f(0+) +
∫ t

0
f′(τ) dτ, t ∈ R>0,

for f′ ∈ L1
loc(R≥0;C). Additionally assume that f′ ∈ LT1,+(R≥0;C). Then the following

statements hold:
(i) f(0+) = limx→∞ xL ∞

C (f)(x);
(ii) if 0 ∈ I1(f′), then limt→∞ f(t) = limx→0 xL ∞

C (f)(x).

Proof (i) Let x ∈ I1( f ′). By Proposition 9.1.20, noting that f ′E−x ∈ L1(R≥0;C) we have∫
∞

0
f ′(t)e−xt dt = xL ∞C ( f )(x) − f (0+).

If we take the limits as x → ∞, we may switch the limit and the integral by the
Dominated Convergence Theorem. This gives

0 = lim
x→∞

xL ∞C ( f )(x) − f (0+)
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from which our first assertion follows.
(ii) Again by Proposition 9.1.20 we have∫

∞

0
f ′(t)e−xt dt = xL ∞C ( f )(x) − f (0+).

We take the limit as x→ 0 of both sides, and move the limit inside the integral by the
Dominated Convergence Theorem (which we can do since 0 ∈ I1( f ′)). This gives∫

∞

0
f ′(t) dt = lim

x→0
xL ∞C ( f )(x) − f (0+)

=⇒ lim
t→∞

f (t) − f (0+) = lim
x→0

xL ∞C ( f )(x) − f (0+)

from which the result follows. ■

Note that the conclusions of the two assertions have hypotheses, so be careful
when using them that the hypotheses hold. The second assertion of the proposition
is often called the Final Value Theorem.

9.1.7 The causal CLT for vector space-valued signals

We should indicate what we mean by the CLT of a signal taking values in a
R-vector space.

9.1.24 Definition (Causal CLT for vector space-valued signals) Let V be an n-
dimensional R-vector space and let {e1, . . . , en} be a basis for V. For a causal signal
ξ : R→ V, write

ξ(t) = ξ1(t)e1 + · · · + ξn(t)en

for ξ j : R→ R, j ∈ {1, . . . ,n}. Let p ∈ [1,∞].
(i) Denote

LTp,+(R; V) = {ξ : R→ V | ξ1, . . . , ξn ∈ LTp,+(R;R)}.

(ii) For ξ ∈ LTp,+(R; V), denote

αp
min(ξ) = max{αp

min(ξ1), . . . , αp
min(ξn)}

and Ip(ξ) = (αp
min(ξ),∞).

(iii) A causal signal in LTp,+(R; V) will be said to be p-Laplace transformable.
(iv) For ξ ∈ LTp,+(R; V), the p-Laplace transform of ξ is

L
p

C (ξ) : CIp(ξ) → VC
z 7→ L p

C (ξ1)(z)e1 + · · · +L
p

C (ξn)(z)en.5
•

Of course, one must verify that the preceding definitions are independent of
the choice of basis, and we leave this to the reader as Exercise 9.1.9.
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Exercises

9.1.1 Show that a causal signal f : R→ C is in Lp(R;C) if and only if 0 ∈ Ip( f ).
9.1.2 Let p ∈ [1,∞]. Show that, if f ∈ LTp,+(R;C) is p-Laplace transformable, then

f ∈ Lp
loc(R;C).

9.1.3 Determine for which p ∈ [1,∞] the following signals f : R→ C are p-Laplace
transformable and, if they are, determine Ip( f ).

(a) f (t) =

1
t , t ∈ R>0,

0, otherwise.

(b) f (t) = 1≥0(t)et2 .
(c) f (t) = 1≥0(t)e−t2 .
(d) f (t) = 1≥0(t)(aktk + · · · + a1t + a0), a0, a1, . . . , ak ∈ R.

9.1.4 For f ∈ L1
loc(R≥0;C), suppose that the limit

lim
t→∞

∫ t

0
f (τ)e−xτ dτ

exists and is finite. Show that, for Re(z) ∈ (x,∞),

L 1
C ( f )(z) = (z − x)

∫
∞

0
g(t)e−(z−x)t dt,

where

g(t) =
∫ t

0
f (τ)e−xτ dτ.

Additionally show that Re(z) ∈ I1(g).
9.1.5 Define f (t) = 1

1+t2 .
(a) For what values of z ∈ C is the signal t 7→ f (t)e−zt in L1(R;C)?
(b) For what values of z ∈ C is the signal t 7→ 1≥0(t) f (t)e−zt in L1([0,∞);C)?
(c) For what values of z ∈ C is the signal t 7→ 1≥0(−t) f (t)e−zt in L1((−∞, 0];C)?

9.1.6 Consider the signal

f (t) =

t−1/2, t ∈ (0, 1],
0, otherwise.

Answer the following questions.
(a) Determine I∞( f ).
(b) Determine I∞( f ∗ f ).

Hint: See Example 4.1.11.
(c) Comment on how your previous two answers bear on Proposi-

tion 9.1.10.
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9.1.7 Let f (t) = 1(t) sin t. Compute limz→0 z f̂ (z) and determine whether
limt→∞ f (t) = limz→0 z f̂ (z). Explain your conclusion in terms of Corol-
lary 9.1.23(ii).

9.1.8 Let f : R→ R be defined by

f (t) =

1, t ∈ [0, 1],
0, otherwise.

Answer the following questions.
(a) ComputeL 1

C ( f ) andL 1
C (τ∗

−1/2 f ).
(b) Comment on the difference in the two CLT’s in view of Proposi-

tion 9.1.16.
9.1.9 Let V be a finite-dimensional R-vector space and let p ∈ [1,∞]. Answer the

following questions regarding Definition 9.1.24.
(a) Show that the definition of LTp,+(R; V) is independent of choice of basis.
(b) For ξ ∈ LTp,+(R; V), show that the definition of αp

min(ξ) is independent of
choice of basis.

(c) For ξ ∈ LTp,+(R; V), show that the definition of L p
C (ξ) is independent of

choice of basis.
Hint: Use the change of basis formula Theorem I-5.4.32.
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Section 9.2

The causal discrete Laplace transform

In this section, we adapt the causal CLT from Section 9.1 for continuous-time
causal signals to discrete-time causal signals. Much of the theory follows along
similar lines to the continuous-time case, with some simplifications owing to some
aspects of spaces of discrete-time signals being simpler than their continuous-time
counterparts.

Do I need to read this section? If you are reading this chapter, then this is one
of its core sections. •

9.2.1 Laplace transformable causal signals

We work with causal signals on the discrete time-domain Z(∆). If one were to
make the standard recasting of the causal CLT to this discrete-time setting, then
the natural definition would assign to a causal signal f : Z(∆)→ C the function of
the complex variable z given by

z 7→ ∆
∑
n∈Z

f (n∆)e−n∆z.

This construction then resembles the DCFT in the same way as the causal DLT
resembles the CCFT. However, this is not the normal way the DLT is defined.
Instead one writes

( e∆z︸︷︷︸
“z”

)n,

so redefining the rôle of the complex variable z. Apart from the fact that this is
the way things are normally done (which is not often a good reason for doing
anything), there are rational reasons for making this alteration of the definition of
the DLT. While it does break the perfect symmetry of the connections

CCFT⇔ CLT DCFT⇔ DLT,

these are restored by a variable substitution (which we will do in Section 9.2.4).
Moreover, the altered version of the causal DLT then assigns to f : Z(∆) → C the
function of the complex variable z given by

z 7→ ∆
∑
n∈Z

f (n∆)z−n,

which is attractive since it has the form of a Laurent series expansion.
With all of this as backdrop, we make the following definition.
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9.2.1 Definition (Laplace transformable causal signal) Let p ∈ [1,∞]. A causal sig-
nal f : Z(∆) → C is p-Laplace transformable if there exists r ∈ R≥0 such that
t 7→ f (t)r−t/∆ is in ℓp(Z(∆);C). We denote by LTp,+(Z(∆);C) the set of p-Laplace
transformable signals. If T ⊆ Z(∆) is a causal discrete time-domain, then we
denote

LTp,+(T;C) = { f ∈ LTp,+(Z(∆);C) | supp( f ) ⊆ T}. •

We now have the following result concerning the abscissa of convergence for
causal discrete-time Laplace transformable signals.

9.2.2 Proposition (Existence of minimum abscissa of convergence) Let p ∈ [1,∞]
and let f ∈ LTp,+(Z(∆);C). Then there exists αp

min(f) ∈ [0,∞] such that
(i) if r > αp

min(f), then t 7→ f+(t)r−t/∆ is in ℓp(Z(∆);C);
(ii) if r < αp

min(f), then t 7→ f+(t)r−t/∆ is not in ℓp(Z(∆);C).

Proof First take p ∈ [1,∞). Note that t 7→ f+(t)r−t/∆ is in ℓp(Z(∆);C) if and only if the
power series

∞∑
n=0

| f (n∆)|p(r−p)n

in the variable r−p converges. The result in this case now follows from results on the
radius of convergence of power series, e.g., .ref

For p = ∞, we have that t 7→ f(t)r−t/∆ is in ℓ∞(Z(∆);C) if and only if

sup{| f (n∆)|r−n
| n ∈ Z≥0} < ∞.

We can define

α∞min( f ) = inf{r ∈ R>0 | the signal t 7→ f(t)r−t/∆ is in ℓ∞(Z≥0(∆);C)}.

Since r 7→ r−n is strictly monotonically decreasing, it follows that

r 7→ inf{| f (n∆)|r−n
| n ∈ Z≥0}

is also monotonically decreasing. Given the definition of α∞min( f ), this means that

sup{| f (n∆)|rn
| n ∈ Z≥0} < ∞

if r > α∞min( f ) and
sup{| f (n∆)|rn

| n ∈ Z≥0} = ∞

if r < α∞min( f ). This part of the result follows from these observations. ■

Based on the preceding result, we denote

Ip( f ) = {r ∈ R≥0 | t 7→ f (t)rn is in ℓp(Z(∆),C)}.

With this result, we can make a few definitions.
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9.2.3 Definition (Minimum abscissa of absolute p-convergence, region of conver-
gence) For p ∈ [1,∞] and for a causal signal f ∈ LTp,+(Z(∆);C),

(i) αp
min( f ) is the minimum abscissa of absolute p-convergence,

(ii) Ip( f ) is the interval of p-convergence,
(iii) AIp( f ) = {z ∈ C | |z| ∈ Ip( f )} is the region of absolute p-convergence. •

Note that Ip( f ) = Ip( f+), and so, for the purposes of the interval of convergence,
we can assume that supp( f ) ⊆ (Z≥0(∆)).

The relationship of the abscissa of absolute p-convergence is related to the index
p in the manner of the following result.

9.2.4 Proposition (Intervals of convergence and index) Let p,q ∈ [1,∞] with q < p
and let f : Z(∆)→ C be causal. Then Iq(f) ⊆ Ip(f) and int(Ip(f)) ⊆ Iq(f).

Proof That Iq( f ) ⊆ Ip( f ) follows just since ℓq(Z(∆);C) ⊆ ℓp(Z(∆);C).
The second assertion is obvious if int(Ip( f )) = ∅, so we assume this is not the case.
First take p ∈ [1,∞). Let r ∈ int(Ip( f )) and choose r+ ∈ Ip( f ) with r+ > r. We then

have

f (t)rt/∆ = f (t)
( r
r+

)t/∆
rt/∆
+ , n ∈ Z≥0.

By hypothesis, t 7→ f+(t)rt/∆
+ is in ℓp(Z(∆);C).

We claim that t 7→ f+(t)rt/∆
+ ( r

r+ )t/∆ is in ℓq(Z(∆);C). Define

A = {t ∈ Z(∆) | f+(t)rt/∆
+ < 1}, B = {t ∈ Z(∆) | f+(t)rt/∆

+ ≥ 1}.

Since
| f+(t)rt/∆

+ |
q = (| f+(t)rt/∆

+ |
p)q/p

and since q/p < 1, for t ∈ B we have

| f+(t)rt/∆
+ |

q
≤ | f+(t)rt/∆

+ |
p.

Therefore, ∑
t∈B

∣∣∣∣∣∣ f+(t)rt/∆
+

( r
r+

)t/∆
∣∣∣∣∣∣q ≤∑

t∈B

| f+(t)rt/∆
+ |

p
( r
r+

)qt/∆
< ∞.

For the remainder of the sum we have∑
t∈A

∣∣∣∣∣∣ f+(t)rt/∆
+

( r
r+

)t/∆
∣∣∣∣∣∣q ≤∑

t∈A

( r
r+

)qt/∆
< ∞

This gives ∫
R
| f (t)e−x−te−(x−x−)t

|
q dt < ∞,

by Example I-2.4.2–1, as desired.
Now let p = ∞, f ∈ LT∞,+(Z(∆);C), and take r ∈ int(I∞( f )). We write

f (t)rt/∆ = f (t)
( r
r+

)t/∆
rt/∆
+
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as above, with r+ ∈ I∞( f ) and r+ > r. Then t 7→ f+(t)rt/∆
+ is in ℓ∞(Z(∆);C). Therefore,

since t 7→ ( r
r+ )t/∆ is in ℓq(R;C), it follows that t 7→ f (t)rt/∆ is also in ℓq(Z(∆);C) by

Exercise 1.2.6. ■

We note that the conclusion that Iq( f ) ⊆ Ip( f ) does not hold for the causal CLT.
This is because, for discrete-time signals, we have the inclusion ℓq(Z(∆);C) ⊆
ℓp(Z(∆);C), while, for continuous-time signals, we do not have the analogous
inclusion. Note that a consequence of this additional conclusion is that αp

min( f ) =
αq

min( f ), again in distinction to the situation for the causal Laplace transform.
Let us give an example to illustrate the dependence of interval of convergence

on index.

9.2.5 Example (Intervals of convergence and index) Let p, q ∈ [1,∞) with q < p. Let
us consider f : Z→ C given by

f (n) = 1≥0(n)
1

(1 + n)s ,

where s ∈ [p−1, q−1]. We have

lim sup
n→∞

( 1
1 + n

)sp/n

= 1

and so, by Exercise 9.2.1, αp
min( f ) = 1 for all p ∈ [1,∞). Moreover,

∞∑
n=0

1
(1 + n)a < ∞ ⇐⇒ a ∈ (1,∞),

from which we conclude that f ∈ ℓp(Z;C) and f < ℓq(Z;C). Thus

Ip( f ) = [1,∞), Iq( f ) ∈ (1,∞).

This is consistent with Proposition 9.2.4. •

9.2.2 Definitions and examples

We may now give the definition of the causal DLT.

9.2.6 Definition (Causal DLT) If f ∈ LTp,+(Z(∆);C), the mapping

L
p

D ( f ) : AI1( f ) → C

z 7→ ∆
∑

t∈Z(∆)

f (t)z−t/∆

is the causal discrete p-Laplace transform or ℓp causal DLT of f . •

Let us enumerate some properties of the causal DLT of a signal.
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9.2.7 Proposition (Properties of the causal DLT) Let f,g ∈ LTp,+(Z(∆);C) be causal p-
Laplace transformable signals, and let a ∈ C and s ∈ Z(∆). Then the following statements
hold:

(i) L p
D (f)| int(AI1(f)) is holomorphic;

(ii) af is Laplace transformable, αp
min(af) = αp

min(f), andL p
D (af) = aL p

D (f);
(iii) f + g is Laplace transformable, αp

min(f + g) ≥ min{αp
min(f), αp

min(g)}, and

L
p

D (f + g)(z) = L p
D (f)(z) +L p

D (g)(z), z ∈ int(AI1(f)) ∩ int(AI1(g));

(iv) τ∗sf is Laplace transformable, αp
min(τ∗sf) = α

p
min(f), and

L
p

D (τ∗sf)(z) = z−s/∆L
p

D (f)(z), z ∈ int(AI1(f)).
Proof (i) This follows from . holomorphic power series

(ii) This is obvious.
(iii) If z ∈ int(AI1( f )) ∩ int(AI1(g)), then∑

t∈Z(∆)

| f (t) + g(t)|z−t/∆
≤

∑
t∈Z(∆)

| f (t)|z−t/∆ +
∑

t∈Z(∆)

|g(t)|z−t/∆ < ∞.

(iv) For z ∈ int(AI1( f )), we have∑
t∈Z(∆)

| f (t − s)|z−t/∆ = z−s/∆
∑
τ∈Z(∆)

| f (τ)|z−τ/∆

by a change of variable. This proves this part of the result. ■

As with the causal CLT, the domain for the causal DLT is determined by the do-
main of convergence for p = 1, just to ensure that the sum defining the transformed
signal exists. Moreover, also as with the causal CLT, the issues with the domain
of definition are only problematic in the case that Ip( f ) contains an endpoint not
contained in I1( f ). In we shall see that sometimes the domain of the transformed what

signal can be extended to include these endpoints.
Let us consider some examples.

9.2.8 Examples (Causal DLT)
1. Let us first consider the signal f (t) = 1≥0(t)tk for k ∈ Z≥0. We can readily see that

Ip( f ) =

[1,∞), k = 0, p = ∞,
(1,∞), otherwise.

We claim that
For k = 0 we have

∞∑
n=0

zn =
1

1 − z

by . For k = 1 we compute complex geometric series

∞∑
n=0

(n∆)zn = ∆z
∞∑

n=0

nzn−1 = ∆z
∞∑

n=0

dzn

dz
= ∆z

d
dz

∞∑
n=0

zn = ∆z
d
dz

( 1
1 − z

)
.
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9.2.3 The causal DLT and convolution

Next we consider the relationship of convolution with products for the DLT.
The transformed variables in this case reside in A(a,∞) for some a ∈ R, and so
transformed functions are functions from A(a,∞) to C. Thus, in this case, we have
F,G : A(a,C) → C and so the product of F and G is the function

FG : A(a,∞) → C

z 7→ F(z)G(z).

What we want to know is, if F = L p
D ( f ) and G = L p

D ( f ), is there a signal h : R≥0 → C

for whichL p
D (h) = FG?

The answer to this question is yielded by the convolution product � of Sec-
tion 4.1.5.

9.2.9 Proposition (Causal DLT and convolution I) If f,g ∈ LT1,+(Z≥0(∆);C), then f�g ∈
LT1,+(Z≥0(∆);C), α∞min(f � g) ≤ max{α1

min(f), α1
min(g)}, and

L 1
D (f ∗ g)(z) = L 1

D (f)(z)L 1
D (g)(z)

for z ∈ A(a,∞), and for any a > max{α1
min(f), α1

min(g), α1
min(f ∗ g)}.

Proof Let a > max{α1
min( f ), α1

min(g)} and let b, c ∈ R≥0 be such that

a > b > c > max{α1
min( f ), α1

min(g)}.

Since ∑
n∈Z≥0

| f (n∆)|c−n,
∑

n∈Z≥0

|g(n∆)|c−n < ∞,

there exists M ∈ R>0 such that

| f (n∆)|, |g(n∆)| ≤Mcn, n ∈ Z≥0.

Then

| f ∗ g(n∆)| ≤
n∑

k=0

| f ((n − k)∆)||g(k∆)| ≤M2
n∑

k=0

cn−kck

=M2cn
n∑

k=0

1 = nM2cn.

Since limn→∞ n
(

c
b

)n
= 0, there exists N ∈ Z>0 such that

n
( c
b

)n
≤ 1, n ≥ N.

Let
C = sup

{
n
( c
b

)n ∣∣∣∣∣ n ∈ {0, 1, . . . ,N}
}
.
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Then

n
( c
a

)n
= n

( c
b

)n
(

b
a

)n

≤ C
(

b
a

)n

, n ∈ Z≥0.

Thus
| f ∗ g(n∆)| ≤M2ncn

≤ CM2bn, n ∈ Z≥0.

Thus

| f ∗ g(n∆)|a−n
≤ CM2

(
b
a

)n

, n ∈ Z≥0.

This shows that α1
min( f ∗ g) ≤ max{α1

min( f ), α1
min(g)}.

The remainder of the proof is a fairly straightforward application of Fubini’s
Theorem and a change of summation variable:

L ∞D ( f ∗ g)(z) = ∆
∞∑

n=0

f ∗ g(n∆)z−n = ∆2
∞∑

n=0

 n∑
k=0

f ((n − k)∆)g(k∆)

 z−n

= ∆2
∞∑

n=0

g(k∆)

 ∞∑
k=n

f ((n − k)∆)z−n


= ∆2

∞∑
k=0

g(k∆)

 ∞∑
n=0

f (n∆)z−(k+n)


=

∆ ∞∑
k=0

g(k∆)z−k


∆ ∞∑

n=0

f (n∆)z−n


= L 1

D ( f )(z)L 1
D (g)(z),

as claimed. ■

The next result makes use of Young’s inequality for convolution.

9.2.10 Proposition (Causal CLT and convolution II) Let p,q, r ∈ [1,∞] satisfy 1
r =

1
p+

1
q−1.

If f ∈ LTp,+(Z(∆);C) and g ∈ LTq,+(Z(∆);C), then f ∗ g ∈ LTr,+(Z(∆);C), αr
min(f ∗ g) ≤

max{αp
min(f), αq

min(g)}, and

L r
D(f ∗ g)(z) = L p

D (f)(z)L q
D g)(z)

for z ∈ A(a,∞), and for any a > max{αp
min(f), αq

min(g), αr
min(f ∗ g)}.

Proof Let x ∈ int(Ip( f )) ∩ int(Iq(g)). By Proposition 9.2.4, x ∈ I1( f ) ∩ I1(g). By Theo-
rem 4.2.34, (P1/x f ) ∗ (P1/xg) ∈ ℓ1(Z(∆);C). Also note that

(P1/x f ) ∗ (P1/xg)(k∆) = ∆
∑
ȷ∈Z

x−(k− j) f ((k − j)∆)(x− jg( j∆)) = x−k f ∗ g(k∆).

Note that the convolution f ∗ g exists by Theorem 4.1.32 since f and g have support
bounded on the left. Thus x ∈ I1( f ∗ g). Moreover, since P1/x f ∈ ℓp(Z(∆);C) and
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P1/xg ∈ ℓq(Z(∆);C), we have P1/x f ∗ g ∈ ℓr(Z(∆);C) by Theorem 4.2.8. Thus f ∗ g ∈
LTr,+(Z(∆);C) and

Ir( f ∗ g) ⊇ int(Ip( f )) ∩ int(Iq(g)).

Moreover, since the above argument holds replacing x with x′ ∈ (x − ϵ, x + ϵ) for some
sufficiently small ϵ ∈ R>0, we additionally have

int(Ir( f ∗ g)) ⊇ int(Ip( f )) ∩ int(Iq(g)).

It remains to show that the causal DLT of the convolution is the product of the
causal DLT’s. If |z| ∈ int(Ip( f )) ∩ int(Iq(g)) as above, then |z| ∈ I1( f ) ∩ I1(g) as above.
Thus we can use Fubini’s Theorem and Theorem 4.1.32 to compute

L r
D( f ∗ g)(z) =

∑
k∈Z

f ∗ g(k∆)z−k

=

∞∑
k=(σ( f )+σ(g))/∆


k−σ( f )/∆∑
l=σ(g)/∆

f ((k − l)∆)(g(l∆))

 z−k

=

∞∑
l=σ(g)/∆

 ∞∑
k=l+σ( f )/∆

f ((k − l)∆)z−k

 (g(l∆))

=

∞∑
l=σ(g)/∆

 ∞∑
k=σ( f )/∆

f (k∆)z−(k+l)

 (g(l∆))

=

 ∞∑
k=σ( f )/∆

f (k∆)z−k


 ∞∑

l=σ(g)/∆

g(l∆)z−l


= L

p
D ( f )(z)L q

D(g)(z),

as desired. ■

9.2.4 The causal DLT and the DCFT

There is a more or less obvious connection between the causal DLT and the
DCFT. In this section we make the connections clear and give some consequences
of these connections.

Let us first state clearly the obvious connection. In the statement of the next
result, we recall the notation Pa(t) = at for a ∈ C. We also denote by δb : R→ R the
mapping δb(t) = bt for b ∈ R.

9.2.11 Proposition (Causal CLT and CCFT) If p ∈ [1,∞] and if f ∈ LTp,+(Z(∆);C), then

L
p

D (f)(reiθ) = FDC(f(P1/r ◦ δ∆−1))
(
θ

2π

)
for all θ ∈ R and r ∈ I1(f).
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Proof We have

L
p

D ( f )(reiθ) = ∆
∑

t∈Z(∆)

f (t)(reiθ)−t/∆ = ∆
∑

t∈Z(∆)

f (t)r−t/∆e−2πi(θ/2π)(t/∆)

= FDC( f (P1/r ◦ δ∆−1))
(
θ

2π

)
,

as desired. ■

Note that the DCFT in the preceding statement produces a 1-periodic function.
Thus the 1-periodicity of the codomain of the CDFT is compatible with the 2π-
periodicity of θ 7→ reiθ in the argument of the DLT.

Using this simple relationship of the causal DLT with the DCFT, we can make
some important conclusions about the causal DLT. For example, we have the fol-
lowing result.

9.2.12 Theorem (Injectivity of the causal DLT) Let p ∈ [1,∞] and let f,g ∈ LTp,+(Z(∆);C)
have the property that

L
p

D (f)(reiθ) = L p
D (g)(reiθ), θ ∈ R,

for some r ∈ I1(f) ∩ I1(g). Then f(t) = g(t) for every t ∈ Z(∆).
Proof Let r ∈ I1( f ) ∩ I1(g). By Proposition 9.2.11,

FDC( f (P1/r ◦ δ∆−1)) = FDC(g(P1/r ◦ δ∆−1)).

By Theorem 7.1.14 it follows that

f (t)r−t/∆ = g(t)r−t/∆, t ∈ Z(∆).

Therefore, f (t) = g(t) for every t ∈ Z(∆), as claimed. ■

The connection with the DCFT also allows us to produce a formula for the
inverse of the causal DLT. As we saw with the DCFT in Theorem 7.1.16, the matter
of inverting the DCFT is quite straightforward. This translates into a similarly
straightforward means of inverting the DLT.

9.2.13 Theorem (The inverse of the DLT) Let f ∈ LTp,+(Z(∆);C) and let r ∈ I1(f). Then

f(t) =
rt/∆

2π∆

∫ 2π

0
L

p
C (f)(reiθ)eiθt/∆ dθ

for any r ∈ I1(f).
Proof We have

L
p

C ( f )(reiθ) = ∆
∑
n∈Z

f (n∆)r−ne−inθ.
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If we multiply this equation by eimθ and integrate we have∫ 2π

0
L

p
C ( f )(reiθ)eimθ dθ = ∆

∑
n∈Z

f (n∆)r−n
∫ 2π

0
ei(m−n)θ dθ

= 2π∆ f (m∆)r−m,

where we swap the integral and the sum by Theorem I-3.6.23 as the sum converges
uniformly by the Weierstrass M-test, Theorem I-3.6.15. ■

One of the curious things about this inversion integral for the causal DLT is
that it is done with respect to a choice of r ∈ I1( f ). It clearly does not depend on
the choice of σ, just because we know that inversion for the DCFT does return
the signal, in cases when it converges in some sense. This is connected to the
fact that, since the transformed signal is an holomorphic function, this function
is uniquely determined by its values on, for example any circle in the domain of
convergence, e.g., a circle with radius equal to r and centre at 0.

9.2.5 Causal Laplace transforms for strictly causal signals

We now develop for the causal DLT the results of Section 9.1.5 for the causal
CLT. In particular, the following result gives the character of the causal DLT for
strictly causal signals.

9.2.14 Proposition (The causal DLT for strictly causal signals) Let p ∈ [1,∞]. If
f ∈ LTp,+(Z≥0(∆);C), then

(i) L p
D (f) ∈ C0(AI1(f);C) and

(ii) L p
D (f)|A(a,∞) ∈ H∞(A(a,∞);C) for every a ∈ I1(f).

Proof (ii) Let a ∈ I1( f ) and note that, for Re(z) ∈ [a,∞),

|L
p

D ( f )(z)| ≤ ∆
∞∑

n=0

| f (n∆)||z|−n
≤ ∆

∞∑
n=0

| f (n∆)|a−n.

SinceL p
D ( f ) is holomorphic by Proposition 9.2.7(i), we get this part of the result.

(i) It suffices to show that L p
D ( f )|[a,∞) is continuous for every a ∈ I1( f ). Let

z ∈ A[a,∞) and let (z j) j∈Z>0 be a sequence in A[a,∞) converging to z. By the Dominated
Convergence Theorem (whose applicability follows from our estimate in part (i)), we
have

lim
j→∞
L

p
D ( f )(z j) = lim

j→∞
∆

∞∑
n=0

f (n∆)zn
j = L

p
D ( f )(z),

as desired. ■

Next we discuss the analogue for the DLT of the results for the CLT stated in
Theorem 9.1.17. The basic setup is the same. It is convenient to work with a
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version of the DCFT adapted to the DLT. Thus, for the purposes of this section, we
denote the modified DCFT by

F ′

DC( f )(ω) = ∆
∑
n∈Z

f (n∆)e−inω

and its inverse

F ′

DC(F)(n∆) =
1

2π∆

∫ 2π

0
F(ω)einω dω.

These differ from the version of the DCFT we use in Section 7.1 only by a change
of frequency variable, and so all of the results from that section hold, particularly
those regarding the ℓ2-CCFT from Section 7.1.6. The analogue of the Parseval’s
Equality for the DCFT becomes, for this modified transform,

∆
∑
n∈Z

| f (n∆)|2 =
1

2π∆

∫ 2π

0
|F ′

DC( f )(ω)|2 dω

for f ∈ ℓ2(Z(∆);C).
We let f ∈ ℓ2(Z(∆);C) be causal. By Proposition 9.2.4, int(I2( f )) ⊆ I1( f ). In

particular, (1,∞) ⊆ I1( f ), and so, for z ∈ A(1,∞), we can directly define

L 2
C ( f )(z) = ∆

∑
n∈Z

f (n∆)z−n.

Since f ∈ L2(R;C), 1 ∈ I2( f ). It is possible, however, that 1 < I1( f ), and so the direct
definition of the CLT may not apply. However, we can still define

L 2
C ( f )(eiθ) = lim

N→∞

N∑
n=−N

f (n∆)e−inθ,

as in Section 7.1.6. In this way, we can extend the the domain of definition ofL 2
C ( f )

to be defined onA[1,∞). In the following, we shall consider this extension to always
be made.

The main theorem is the following.

9.2.15 Theorem (ℓ2-Paley–Wiener Theorem with causal supports) If f ∈ ℓ2(Z≥0(∆);C),
then L 2

D (f) ∈ H2(A[1,∞);C) and, moreover, L 2
D is an isomorphism from ℓ2(Z≥0(∆);C) to

H2(A[1,∞);C).
Proof We first show that, if f ∈ ℓ2(Z≥0(∆);C), then the function F

F(z) = ∆
∞∑

n=0

f (n∆)z−n
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is in H2(A[1,∞);C). Since (1,∞) ⊆ I1( f ), we have that F is holomorphic in A(1,∞) by
Proposition 9.2.7(i). Also, for z ∈ A(1,∞), we have

F(reiθ) = ∆
∞∑

n=0

f (n∆)r−ne−inθ.

Therefore, by Theorem 7.1.19,

1
2π∆

∫ 2π

0
|F(reiθ)|2 dθ = ∆

∞∑
n=0

| f (t)r−nt
|
2
≤ ∆

∞∑
n=0

| f (t)|2,

which shows that F ∈ H2(A(1,∞);C). By definition, we further have F ∈ H2(A[1,∞);C).
This shows that

L 2
D (ℓ2(Z≥0(∆);C)) ⊆ H2(A[1,∞);C).

It is clear that L 2
D is linear, and it is additionally injective by Theorem 9.2.12 and

Theorem 7.1.20. It remains to show that it is surjective. Here we claim that it is
sufficient to show that, if F ∈ H(A(1,∞);C) is such that there exists M ∈ R>0 such that∫ 2π

0
|F(reiθ)|2 dθ ≤M, r ∈ (1,∞),

then F = L 2
D ( f ) for some f ∈ ℓ2(Z≥0(∆);C). Indeed, if this is true, then, by , we haveboundary values for

Hardy spaces

lim
r→1

Fr(θ) = lim
r→1
∆

∞∑
n=0

f (n∆)r−ne−iθ = L 2
D ( f )(eiθ)

by the Dominated Convergence Theorem, which is valid by the
Cauchy–Bunyakovsky–Schwarz inequality and by the assumption that ∥Fr∥2 is
uniformly bounded in r. This, then, gives the boundary function of F to be the same
as the boundary value ofLD( f ).

Thus let F ∈ H2(AZ(1,∞);C) be such that there exists M ∈ R>0 such that∫ 2π

0
|F(reiθ

|
2 dθ ≤M, r ∈ Z(1,∞).

We claim that, if we define

f (n∆) =
1

2π∆

∫ 2π

0
F(reiθ)r−ne−inθ dθ, n ∈ Z≥0,

then L 2
D ( f ) = F. The integral is well-defined since Fr ∈ L2(R;C). We must first show

that the definition of f is independent of r.
Let r1, r2 ∈ (1,∞) satisfy r1 < r2 and let a ∈ R>0 be small enough that we can form

the contour Γa shown in Figure 9.1. By Cauchy’s Theorem,

0 =
∫
Γa

F(z) dz =
∫
Γa,+

F(z) dz +
∫
Γa,2

F(z) dz +
∫
Γa,−

F(z) dz +
∫
Γa,1

F(z) dz,
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a
r1

r2

Γa,1

Γa,2

Γa,+

Γa,−

Figure 9.1 Contour for ℓ2-Paley–Wiener Theorem

where the contours Γa,+, Γa,2, Γa,−, and Γa,1 are as indicated in the figure. Note that

lim
a→0

∫
Γa,+

F(z) dz = − lim
a→0

∫
Γa,−

F(z) dz

and

lim
a→0

∫
Γa,1

F(z) dz =
∫ 2π

0
F(r1eiθ) dθ,

lim
a→0

∫
Γa,2

F(z) dz =
∫ 2π

0
F(r2eiθ) dθ.

This gives the independence of the definition of f on r.
Moreover, by ℓ2-Fourier inversion, for r ∈ (1,∞),

Fr(y) = F(reiθ) = ∆
∑
n∈Z

f (n∆)r−ne−inθ,

which gives
F(z) = ∆

∑
n∈Z

f (n∆)z−n,

i.e., F = L 2
D ( f ). Note that, since f and t 7→ r−t/∆ are in ℓ2(Z(∆);C), the integrand is in

ℓ1(Z(∆);C), and so this is indeed the ordinary sum defining the DLT.
Finally, we need to show that f (t) = 0 for almost every t < 0. By Plancherel’s

Theorem,

∆
∑
n∈Z

r−2n
| f (n∆)|2 =

1
2π∆

∫ 2π

0
|Fr(θ)|2 dy ≤

M
2π∆

, r ∈ (1,∞).

Note that, if f (n∆) , 0 for some n < 0, then

lim
r→∞
∆

∑
n∈Z

r−2n
| f (n∆)|2 = ∞
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by the Monotone Convergence Theorem. This contradiction ensures that f (t) = 0 for
almost every t < 0. ■

9.2.6 The causal DLT and differences for strictly causal signals

An important property of the causal DLT is how it acts with respect to differ-
ences.

9.2.16 Proposition (The causal DLT and forward differences) If f ∈ LT1,+(Z≥0(∆);C),
then, for z ∈ int(AI1(f)),

L 1
D (τ∗

−∆f)(z) = z(L 1
D (f) − ∆f(0)).

Proof Let z ∈ Aint(I1( f )) \ {0} and calculate

L 1
D (τ∗

−∆ f )(z) = ∆
∑

t∈Z(∆)

f (t + ∆)z−t/∆ = ∆
∑

t∈Z>0(∆)

f (t)z−(t−∆)/∆

= ∆z
∑

t∈Z≥0(∆)

f (t)z−t/∆
− ∆z f (0),

as claimed. ■

The proposition can be applied recursively to obtain the following result.

9.2.17 Corollary (Laplace transform and higher-order differences) If f ∈

LT1,+(Z≥0(∆);C), then, for z ∈ int(AI1(f)),

L 1
D (τ∗

−k∆f)(z) = zkL 1
D (f)(z) − (∆z)kf(0) − · · · − (∆z)2f((k − 2)∆) − (∆z)f((k − 1)∆).

Unlike the situation for the causal CLT, for the causal DLT one trivailly concludes
the Laplace transformability of the forward differences.

The following result is often helpful.

9.2.18 Corollary (Limiting values of signals and their causal DLT’s) Let f ∈
LT1,+(Z≥0(∆);C). Then the following statements hold:

(i) f(0) = limx→∞ ∆
−1L ∞

D (f)(x);
(ii) if 1 ∈ I1(f′), then limt→∞ f(t) = limx→1(x − 1)L 1

D (f)(x).

Proof (i) Since the sum defining L 1
D ( f ) converges uniformly in AI1( f ), we can inter-

change the limit and sum to get

lim
x→∞
L 1

D ( f )(x) = lim
x→∞
∆

∑
t∈Z≥0(∆)

f (t)x−t/∆ = ∆ f (0).

(ii) We compute

L 1
D (τ∗

−∆ f − f )(x) = ∆
∑

t∈Z≥0(∆)

( f (t + ∆) − f (t))x−t/∆.
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By Proposition 9.2.16, we have

L 1
D (τ∗

−∆ f − f )(x) = x(L 1
D ( f )(x) − ∆ f (0)) −L 1

D ( f )(x)

= (x − 1)L 1
D ( f )(x) − ∆x f (0).

Since 1 ∈ I1( f ), we can write

∆
∑

t∈Z≥0(∆)

( f (t + ∆) − f (t)) = lim
N→∞

∆

N∑
n=0

( f ((n + 1)∆) − f (n∆))

= lim
N→∞

∆( f ((N + 1)∆) − f (0))

= ∆(lim
t→∞

f (t) − f (0)).

Thus

lim
x→1

(
(x − 1)L 1

D ( f )(x) − ∆x f (0)
)
= lim

x→1
(x − 1)L 1

D ( f )(x) − ∆ f (0)

= ∆(lim
t→∞

f (t) − f (0)),

and, from this, this part of the result follows. ■

The second assertion of the proposition is often called the Final Value Theorem.

9.2.7 The causal DLT for vector space-valued signals

We should indicate what we mean by the DLT of a signal taking values in a
R-vector space.

9.2.19 Definition (Causal DLT for vector space-valued signals) Let V be an n-
dimensional R-vector space and let {e1, . . . , en} be a basis for V. For a causal signal
ξ : Z(∆)→ V, write

ξ(t) = ξ1(t)e1 + · · · + ξn(t)en

for ξ j : Z(∆)→ R, j ∈ {1, . . . ,n}. Let p ∈ [1,∞].
(i) Denote

LTp,+(R; V) = {ξ : Z(∆)→ V | ξ1, . . . , ξn ∈ LTp,+(Z(∆);R)}.

(ii) For ξ ∈ LTp,+(Z(∆); V), denote

αp
min(ξ) = max{αp

min(ξ1), . . . , αp
min(ξn)}

and Ip(ξ) = (αp
min(ξ),∞).

(iii) A causal signal in LTp,+(Z(∆); V) will be said to be p-Laplace transformable.
(iv) For ξ ∈ LTp,+(Z(∆); V), the p-Laplace transform of ξ is

L
p

D (ξ) : AIp(ξ) → VC
z 7→ L p

D (ξ1)(z)e1 + · · · +L
p

D (ξn)(z)en.
•

Of course, one must verify that the preceding definitions are independent of
the choice of basis, and we leave this to the reader as Exercise 9.2.6.
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Exercises

9.2.1 Let p ∈ [1,∞). If f ∈ LT+,p(Z(∆);C), show that

αp
min( f ) = (lim sup

n→∞
| f (n∆)|p/n)1/p.

9.2.2 Show that a causal signal f : Z(∆)→ C is in ℓp(Z(∆);C) if and only if 1 ∈ Ip( f ).
9.2.3 Determine for which p ∈ [1,∞] the following signals f : Z→ C are p-Laplace

transformable and, if they are, determine Ip( f ).

(a) f (t) =

1, t ∈ {−100, . . . ,−1, 0},
0, otherwise.

(b) f (t) =

1, t ∈ {0, 1, . . . , 100},
0, otherwise.

(c) f (t) = P(t).
(d) f (t) = 1≥0(t)et.

9.2.4 Let f ∈ LT1,+(Z≥0(∆);C) and let k ∈ Z>0. Show thatLD(τ∗k∆ f )(z) = z−kLD( f )(z),
z ∈ AI1( f ).

9.2.5 Let f : Z→ R be defined by

f (t) =

1, t ∈ {0, 1, 2},
0, otherwise.

Answer the following questions.
(a) ComputeL 1

D ( f ) andL 1
D (τ∗

−1 f ).
(b) Comment on the difference in the two DLT’s in view of Proposi-

tion 9.2.14.
9.2.6 Let V be a finite-dimensional R-vector space and let p ∈ [1,∞]. Answer the

following questions regarding Definition 9.2.19.
(a) Show that the definition of LTp,+(Z(∆); V) is independent of choice of

basis.
(b) For ξ ∈ LTp,+(Z(∆); V), show that the definition of αp

min(ξ) is independent
of choice of basis.

(c) For ξ ∈ LTp,+(Z(∆); V), show that the definition ofL p
D (ξ) is independent

of choice of basis.
Hint: Use the change of basis formula Theorem I-5.4.32.
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représenter une fonction arbitraire entre des limites données, Journal für die Reine
und Angewandte Mathematik, 4, pages 157–169, issn: 0075-4102, doi: 10.1515/
crll.1829.4.157.

Donoghue Jr., W. F. [1957] The lattice of invariant subspaces of a completely continuous
quasi-nilpotent transformation, Pacific Journal of Mathematics, 7(2), pages 1031–
1035, issn: 0030-8730, url: http : / / projecteuclid . org / euclid . pjm /
1103043498 (visited on 07/23/2014).

Doss, R. [1988] An elementary proof of Titchmarsh’s convolution theorem, Proceedings
of the American Mathematical Society, 104(1), pages 181–184, issn: 0002-9939,
doi: 10.1090/S0002-9939-1988-0958063-5.

Douthett, J., Entringer, R., and Mullhaupt, A. [1992] Musical scale construction: The
continued fraction compromise, Utilitas Mathematica, 42, pages 97–113, issn: 0315-
3681.

https://doi.org/10.2307/1967238
https://doi.org/10.1007/BF02392815
https://doi.org/10.1215/S0012-7094-59-02620-1
https://doi.org/10.1007/s00004-002-0029-x
https://doi.org/10.1007/s00004-002-0029-x
https://eudml.org/doc/220308
https://doi.org/10.1515/crll.1829.4.157
https://doi.org/10.1515/crll.1829.4.157
http://projecteuclid.org/euclid.pjm/1103043498
http://projecteuclid.org/euclid.pjm/1103043498
https://doi.org/10.1090/S0002-9939-1988-0958063-5


744 Bibliography

Doyle, J. C., Francis, B. A., and Tannenbaum, A. R. [1990] Feedback Control Theory,
Macmillian: New York, NY, isbn: 0-02-330011-6, Reprint: [Doyle, Francis, and
Tannenbaum 2009].

— [2009] Feedback Control Theory, Dover Publications, Inc.: New York, NY, isbn:
978-0486469331, Original: [Doyle, Francis, and Tannenbaum 1990].

du Bois-Reymond, P. D. G. [1876] Zusätze zur Abhandlung: Untersuchungen über die
Convergenz und Divergenz der Fourierschen Darstellungsformeln, Mathematische
Annalen, 10(3), pages 431–445, issn: 0025-5831, doi: 10.1007/BF01442324.

Dufresnoy, J. [1947] Sur le produit de composition de deux fonctions, Comptes Rendus
Mathématique. Académie des Sciences, 335, pages 857–859, issn: 1631-073X.

Fejér, L. [1903] Untersuchungen über Fouriersche Reihen, Mathematische Annalen,
58(1-2), pages 51–69, issn: 0025-5831, doi: 10.1007/BF01447779.

Fourier, J. B. J. [1822] Theorie Analytique de la Chaleur, Firmin Didot: Paris, Transla-
tion: [Fourier 2009].

— [2009] The Analytical Theory of Heat, translated by A. Freeman, Cambridge Li-
brary Collection, Cambridge University Press: New York/Port Chester/Mel-
bourne/Sydney, isbn: 978-1-108-00178-6, Original: [Fourier 1822].

Gibbs, J. W. [1899] Fourier’s series, Nature, 59, page 606, issn: 0028-0836, doi: 10.
1038/059606a0.

Hall, E. B. and Wise, G. L. [1990] An algebraic aspect of linear system theory, Institute of
Electrical and Electronics Engineers. Transactions on Circuits and Systems. Part
I, Fundamental Theory and Applications, 37(5), pages 651–653, issn: 1057-7122,
doi: 10.1109/31.55011.

Hamming, R. W. [1980] The unreasonable effectiveness of mathematics, The Ameri-
can Mathematical Monthly, 87(2), pages 81–90, issn: 0002-9890, doi: 10.2307/
2321982.

Hardy, G. H. and Rogosinski, W. W. [1944] Fourier Series, Cambridge Tracts in Math-
ematics and Mathematical Physics, Cambridge University Press: New York/Port
Chester/Melbourne/Sydney, Reprint: [Hardy and Rogosinski 2013].

— [2013] Fourier Series, Dover Publications, Inc.: New York, NY, isbn: 978-0-486-
40681-7, Original: [Hardy and Rogosinski 1944].

Hunt, R. A. [1967] On the convergence of Fourier series, in Orthogonal Expansions and
Their Continuous Analogues, Conference held at Southern Illinois University,
(Edwardsville, IL, Apr. 1967), edited by D. T. Haimo, pages 235–255, Southern
Illinois University Press: Carbondale, IL.

Iagolnitzer, D. [1975] Microlocal essential support of a distribution and local decom-
positions—An introduction, in Hyperfunctions and Theoretical Physics, Rencontre
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