A Mathematical Introduction to
Signals and Systems

Volume IV. Time- and frequency-domain
representations of signals

Andrew D. Lewis

This version: 2022/03/07






Preface for series

The subject of signals and systems, particularly linear systems, is by now
an entrenched part of the curriculum in many engineering disciplines, particu-
larly electrical engineering. Furthermore, the offshoots of signals and systems
theory—e.g., control theory, signal processing, and communications theory—are
themselves well-developed and equally basic to many engineering disciplines. As
many a student will agree, the subject of signals and systems is one with a reliance
on tools from many areas of mathematics. However, much of this mathematics is
not revealed to undergraduates, and necessarily so. Indeed, a complete account-
ing of what is involved in signals and systems theory would take one, at times
quite deeply, into the fields of linear algebra (and to a lesser extent, algebra in gen-
eral), real and complex analysis, measure and probability theory, and functional
analysis. Indeed, in signals and systems theory, many of these topics are woven
together in surprising and often spectacular ways. The existing texts on signals
and systems theory, and there is a true abundance of them, all share the virtue
of presenting the material in such a way that it is comprehensible with the bare
minimum background.

Should | bother reading these volumes?

This virtue comes at a cost, as it must, and the reader must decide whether
this cost is worth paying. Let us consider a concrete example of this, so that the
reader can get an idea of the sorts of matters the volumes in this text are intended
to wrestle with. Consider the function of time

(b = {e‘t, t>0,

0, t<0.

In the text (Example IV-6.1.3-2) we shall show that, were one to represent this
function in the frequency domain with frequency represented by v, we would get
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The idea, as discussed in Chapter IV-2, is that f(v) gives a representation of the
“amount” of the signal present at the frequency v. Now, it is desirable to be able
to reconstruct f from f, and we shall see in Section IV-6.2 that this is done via the
formula

flty =" f fw)er™ dv. (FT)

The easiest way to do the integral is, of course, using a symbolic manipulation
program. I just tried this with MatHEMATICA®, and I was told it could not do the
computation. Indeed, the integral does not converge! Nonetheless, in many tables of



Fourier transforms (that is what the preceding computations are about), we are told
that the integral in (FT) does indeed produce f(t). Are the tables wrong? Well, no.
But they are only correct when one understands exactly what the right-hand side
of (FT) means. What it means is that the integral converges, in L*(R; C) to f. Let us
say some things about the story behind this that are of a general nature, and apply
to many ideas in signal and system theory, and indeed to applied mathematics as
a whole.

1. The story—it is the story of the L?-Fourier transform—is not completely trivial.
It requires some delving into functional analysis atleast, and some background in
integration theory, if one wishes to understand that “L” stands for “Lebesgue,”
as in “Lebesgue integration.” At its most simple-minded level, the theory is
certainly understandable by many undergraduates. Also, at its most simple-
minded level, it raises more questions than it answers.

2. The story, even at the most simple-minded level alluded to above, takes some
time to deliver. The full story takes a lot of time to deliver.

3. Itis not necessary to fully understand the story, perhaps even the most simple-
minded version of it, to be a user of the technology that results.

4. By understanding the story well, one is led to new ideas, otherwise completely
hidden, that are practically useful. In control theory, quadratic regulator theory,
and in signal processing, the Kalman filter, are examples of this.

5. The full story of the L2-Fourier transform, and the issues stemming from it,
directly or otherwise, is beautiful.

The nature of the points above, as they relate to this series, are as follows.
Points 1 and 2 indicate why the story cannot be told to all undergraduates, or
even most graduate students. Point 3 indicates why it is okay that the story not
be told to everyone. Point 4 indicates why it is important that the story be told
to someone. Point 5 should be thought of as a sort of benchmark as to whether
the reader should bother with understanding what is in this series. Here is how to
apply it. If one reads the assertion that this is a beautiful story, and their reaction
is, “Okay, but there better be a payoff,” or, “So what?” or, “Beautiful to who?” then
perhaps they should steer clear of this series. If they read the assertion that this
is a beautiful story, and respond with, “Really? Tell me more,” then I hope they
enjoy these books. They were written for such readers. Of course, most readers’
reactions will fall somewhere in between the above extremes. Such readers will
have to sort out for themselves whether the volumes in this series lie on the right
side, for them, of being worth reading. For these readers I will say that this series
is heavily biased towards readers who react in an unreservedly positive manner to
the assertions of intrinsic beauty.

For readers skeptical of assertions of the usefulness of mathematics, an inter-
esting pair of articles concerning this is [Wigner 1960] and [Hamming 1980].



What is the best way of getting through this material?

Now that a reader has decided to go through with understanding what is in
these volumes, they are confronted with actually doing so: a possibly nontrivial
matter, depending on their starting point. Let us break down our advice according
to the background of the reader.

I look at the tables of contents, and very little seems familiar. Clearly if nothing seems
familiar at all, then a reader should not bother reading on until they have acquired
an at least passing familiarity with some of the topics in the book. This can be
done by obtaining an undergraduate degree in electrical engineering (or similar),
or pure or applied mathematics.

If a reader already possess an undergraduate degree in mathematics or engi-
neering, then certainly some of the following topics will appear to be familiar: linear
algebra, differential equations, some transform analysis, Fourier series, system the-
ory, real and/or complex analysis. However, it is possible that they have not been
taught in a manner that is sufficiently broad or deep to quickly penetrate the texts
in this series. That is to say, relatively inexperienced readers will find they have
some work to do, even to get into topics with which they have some familiarity.
The best way to proceed in these cases depends, to some extent, on the nature of
one’s background.

I am familiar with some or all of the applied topics, but not with the mathematics. For
readers with an engineering background, even at the graduate level, the depth
with which topics are covered in these books is perhaps a little daunting. The best
approach for such readers is to select the applied topic they wish to learn more
about, and then use the text as a guide. When a new topic is initiated, it is clearly
stated what parts of the book the reader is expected to be familiar with. The reader
with a more applied background will find that they will not be able to get far
without having to unravel the mathematical background almost to the beginning.
Indeed, readers with a typical applied background will normally be lacking a good
background in linear algebra and real analysis. Therefore, they will need to invest
a good deal of effort acquiring some quite basic background. At this time, they will
quickly be able to ascertain whether it is worth proceeding with reading the books
in this series.

L am familiar with some or all of the mathematics, but not with the applied topics. Readers
with an undergraduate degree in mathematics will fall into this camp, and probably
also some readers with a graduate education in engineering, depending on their
discipline. They may want to skim the relevant background material, just to see
what they know and what they don’t know, and then proceed directly to the applied
topics of interest.

I am familiar with most of the contents. For these readers, the series is one of reference
books.



Comments on organisation

In the current practise of teaching areas of science and engineering connected
with mathematics, there is much emphasis on “just in time” delivery of mathe-
matical ideas and techniques. Certainly I have employed this idea myself in the
classroom, without thinking much about it, and so apparently I think it a good
thing. However, the merits of the “just in time” approach in written work are, in
my opinion, debatable. The most glaring difficulty is that the same mathematical
ideas can be “just in time” for multiple non-mathematical topics. This can even
happen in a single one semester course. For example—to stick to something ger-
mane to this series—are differential equations “just in time” for general system
theory? for modelling? for feedback control theory? The answer is, “For all of
them,” of course. However, were one to choose one of these topics for a “just in
time” written delivery of the material, the presentation would immediately become
awkward, especially in the case where that topic were one that an instructor did
not wish to cover in class.

Another drawback to a “just in time” approach in written work is that, when
combined with the corresponding approach in the classroom, a connection, per-
haps unsuitably strong, is drawn between an area of mathematics and an area
of application of mathematics. Given that one of the strengths of mathematics
is to facilitate the connecting of seemingly disparate topics, inside and outside of
mathematics proper, this is perhaps an overly simplifying way of delivering math-
ematical material. In the “just simple enough, but not too simple” spectrum, we
fall on the side of “not too simple.”

For these reasons and others, the material in this series is generally organised
according to its mathematical structure. That is to say, mathematical topics are
treated independently and thoroughly, reflecting the fact that they have life inde-
pendent of any specific area of application. We do not, however, slavishly follow
the Bourbaki! ideals of logical structure. That is to say, we do allow ourselves the
occasional forward reference when convenient. However, we are certainly careful
to maintain the standards of deductive logic that currently pervade the subject of
“mainstream” mathematics. We also do not slavishly follow the Bourbaki dictum
of starting with the most general ideas, and proceeding to the more specific. While
there is something to be said for this, we feel that for the subject and intended
readership of this series, such an approach would be unnecessarily off-putting.

Andrew D. Lewis Kingston, ON, Canada

'Bourbaki refers to “Nicolas Bourbaki,” a pseudonym given (by themselves) to a group of French
mathematicians who, beginning in mid-1930’s, undertook to rewrite the subject of mathematics.
Their dictums include presenting material in a completely logical order, where no concept is referred
to before being defined, and starting developments from the most general, and proceeding to
the more specific. The original members include Henri Cartan, André Weil, Jean Delsarte, Jean
Dieudonné, and Claude Chevalley, and the group later counted such mathematicians as Roger
Godement, Jean-Pierre Serre, Laurent Schwartz, Emile Borel, and Alexander Grothendieck among
its members. They have produced eight books on fundamental subjects of mathematics.



Preface for Volume 4

The first three volumes of this five volume series can be regarded as the
development of the mathematical background for the main subject, the the-
ory of signals and systems. The mathematical background ranges from rather
elementary—i.e., topics covered in the first year of undergraduate studied—to
standard but advanced—i.e., topics covered at the advanced undergraduate or in-
troductory graduate level—to advanced and specialised—i.e., topics covered at the
advanced graduate level. With this background in place, we can advance happily
to the last two volumes, the first (this one) more or less dealing with signal theory
and the last more or less dealing with system theory.

Our treatment of signals begins with two introductory and motivational chap-
ters, Chapters 1 and 2. In these chapters we discuss signals as represented in the
time- and frequency-domains. The time-domain representation of signals is the
“obvious” one, and we give some motivational discussion using “real world” ex-
amples. In our discussion of time-domain representations, we carefully discuss the
classes of signals that we use extensively in this volume and the next. Already here
we make extensive use of material developed in Chapters llI-2, lll-3, 11l-4, and I-6.
In Chapter 1 we encounter for the first time a theme of these volumes, that of a
parallel presentation of continuous- and discrete-time signals and systems.

The introductory discussion in Chapter 2 of frequency-domain representations
is intended to motivate our development of Fourier transform theory in Chap-
ters 5, 6, and 7. As with our discussion of time-domain representations, we use
“real world” examples to motivate frequency-domain representations. In this
chapter we do very little real mathematics, postponing this until later chapters.

Our first technical chapter is Chapter 3 where we talk about the theory of
distributions. The notion of a distributionis one thatlooks weird at a first encounter.
However, to make use of distributions, one can often get away with a level of
knowledge of the subject which is quite elementary. We give a comprehensive
treatment of the subject, but try to present the elementary parts of the subject in an
elementary way. Inevitably, however, one needs to have a deeper knowledge of
the subject, ultimately connected to descriptions of distributions using the theory
of locally convex spaces, as explained in Section I1I-6.5.5. A reader who wishes to
be truly expert in the theory of signals and linear systems will have to have facility
with the theory of distributions, and can expect to dedicate some effort to acquiring
this facility.

In Chapter 4 we give a comprehensive treatment of convolution. This is a pecu-
liar operation on signals that arises in a variety of somewhat disconnected contexts.
For example, convolution arises in multiple ways in our development of Fourier
transform theory in Chapters 5 and 6, in approximation theory in Section 4.7
which provides a useful device for understanding the relationships between vari-
ous spaces of signals and distributions, and in linear system theory in Chapter V-6.
Because of the importance of convolution to so many of the topics of interest to us,



Vi

we cover it in greater detail than is usual.

One of the principal topics of this volume is Fourier theory, which we develop
in Chapters 5, 6, and 7. The objective is to develop the theory in a way that
emphasises that the four transforms we present are different representations of
one thing, the difference being the discrete or continuous character of the domain
and codomain of the transforms. Thus we develop the four transforms in a similar
manner, emphasising the many similarities and subtle differences. We also examine
interconnections between the four different Fourier transforms, and to do this
the theory for distributions becomes highly illuminating. Indeed, our treatment
of Fourier theory brings together much of the mathematical material from the
preceding volumes and from Chapters 3 and 4 to yield an elegant and coherent
picture of the theory. The development of this picture, we believe, itself makes it
worth the effort to understand thoroughly the mathematical presentation of this
material.

In Chapter 8 we tie together our discussion of the four Fourier transforms, and
weave these together with the topics of sampling and periodisation. As part of
this discussion, we consider the Poisson Summation Formula and the Sampling
Theorem in various guises.

The final subject we consider connected to signal theory is the two Laplace
transforms, one for continuous-time signals and the other for discrete-time signals.
These Laplace transforms are considered in Chapter 9. Our presentation of this
material is very different from the typical presentation. First of all, our terminol-
ogy is different as we refer to both the continuous- and discrete-time transforms
as “Laplace” transforms. The usual terminology is that the continuous-time trans-
form is called the “Laplace transform” while the discrete-time transform is called
the “z-transform.” This is so clearly unacceptable that we do not accept it. But
there are also substantive differences between the usual treatment and the one we
give. The usual treatment of the Laplace transform is perhaps one of the more ex-
treme instances of how a mathematical topic is regarded as a mere hammer, since
the Laplace transform is a tool that can be used, e.g., to solve certain differential
equations (see Sections V-4.5, V-4.8, V-5.4 and V-5.8). We try to do more with
the Laplace transform, however, by regarding it as an actual transform, paying
attention to its domain and codomain.

Andrew D. Lewis Kingston, ON, Canada
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Chapter 1

Signals in the time-domain

In this chapter we present the notion of a signal in its most intuitively natural
setting, the time-domain. We begin in Section 1.1 with a description of what
we mean by time in various forms. This will provide us with the sorts of sets
on which the notion of a signal is defined. We follow our discussion of time
with a basic description of signals. In this initial discussion a signal is simply
a function. If one talks of signals only as functions with no additional features,
then it becomes very difficult to actually do anything in a clear way with signals.
Indeed, it is extremely important to be able to describe, in a particular application,
the sort of signals one wishes to allow. The set of allowable signals should be
sufficiently large that any signals arising in the application are likely to be allowed,
but not so large that one cannot say anything useful about the problem. For this
reason, we spend a significant portion of this chapter talking in detail about various
properties of signals. Some of the most useful of these structures involve a norm
(see Chapter IlI-3) that allows us to give signals the notion of size. As we shall
see, there are various notions of size, and the one to use in a certain situation is a
matter of understanding the problem at hand. With these ideas at one’s disposal, it
is relatively easy to understand the various classes of signals that will be of interest
to us. The discrete-time situation is considered first, in Section 1.2. In Section 1.3
we discuss continuous-time signals. For most of the chapter we focus on signals
that are scalar-valued (with scalars being either in R or C) functions of a single real
variable. In Section 1.4 we introduce the possibility of signals with domains and
codomains of dimension greater than one.

Do | need to read this chapter? If you are learning about signals, this is the place
to start. °
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Section 1.1

Time, signals, and elementary properties

This section is mainly motivational, and gives only fairly elementary definitions
and no deep results. The idea is to develop some ideas about where signals
come up, how one represents them, and what simple properties might be used to
characterise them. In Section 1.1.7 we motivate the more technical discussion that
follows in Sections 1.2 and 1.3. Here we shall see that significant diversions to
Chapters llI-2, Ill-3, and llI-4 are necessary if one is to really arrive at useful tools
for dealing with signals.

Do I need to read this section? This section is mainly light reading, and will
hopefully motivate the heavier reading to follow. If you are the type that welcomes
lightness before heaviness, this section will be a beneficial read for you. .

1.1.1 Examples and problems involving time-domain signals

Signals in the time-domain are normally mathematically represented in one of
two ways: continuous or discrete. A continuous-time representation means that
one has assigned a value of the signal for all times. On the other hand, for a
discrete-time representation, one only has values for the signal at certain times,
typically evenly spaced. There are other attributes one can assign to signals, but
we postpone to subsequent sections a detailed discussion of these. Here we mean
to merely give a few concrete examples of signals so that we have some idea of
what we might mean in practice.

Examples (Time-domain signals)

1. InFigure 1.1 is shown the opening average for the Dow Jones Industrial Average
over a span of more than one hundred years.! This is a discrete-time signal.

2. In Figure 1.2 is shown data representing the yearly average temperature as
recorded in Central England since 1659.> As with the Dow Jones data, this
signal is discrete-time.

3. OnJune 28,1991 the author experienced a cordial earthquake measuring 5.5 Mw
(moment magnitude). The raw accelerometer data for this quake is shown in
Figure 1.3.% This is an example of a continuous-time signal.

4. In Figure 1.4 we show a plot of a segment of human speech recorded in the

!Data downloaded from http://www.travismorien.com/FAQ/dow.htm (link no longer active).

’Data downloaded from the Meteorological Office in the United Kingdom,
http://www.met-office.gov.uk/.

SData downloaded from the United States National Strong-Motion Program,
http://nsmp.wr.usgs.gov/, the data being compiled by the United States Geological Sur-
vey.
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Figure 1.2 Average daily temperature by year in Central England

time-domain, with the signal being normalised to have maximum value +1 and
minimum value —1. This is a continuous-time representation of a signal.

5. In Figure 1.5 we show the time-domain representations of two musical clips.
The clip on the left is the first movement of Mozart’s Eine kleine Nachtmusik
(K525), and that on the right is from the soundtrack of the Darren Aronofsky
movie 1. These are both continuous-time signals although, when they are
pressed onto a CD, the resulting signal becomes a discrete-time signal. )

While the notion of a time-domain signal is not so exotic, what is more exotic is
the mathematics behind representing time-domain signals in a useful and general
manner. Let us address in a superficial way some of the problems that give rise to
the necessity of talking coherently and precisely about classes of signals.

1. In Example 1.1.1-5 we mentioned that, when pressing music onto a CD, one
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converts a continuous-time signal to a discrete-time signal. It then becomes
interesting to know when the discrete-time representation is faithful, in some
sense, to the continuous-time representation. Clearly something is lost. Can
one quantify what is lost? Are there signals for which nothing is lost?

2. Suppose one wishes to design an algorithm to control a process, and wants to
ensure that external disturbances do not too seriously affect the behaviour of
the system. For what class of disturbances can one develop a general theory
that guarantees good system behaviour?

3. It sometimes arises that one is interested in signals that are not, in fact, actually
signals. The prototypical example of this is the so-called Dirac 6-function. This
“signal” is intended to model an impulse, by which we mean a large magnitude
signal that is defined for a very short period of time. Clearly, given a signal of
some large magnitude, and defined for some short time, one can always devise
another signal, possessing some larger magnitude and defined for a shorter
time. Thus, what one is really after—the highest magnitude signal defined
for the shortest time—does not exist. Is there a mathematically precise way to
capture the essence of this nonexistent signal?

4. Suppose one wishes to measure a given signal, but that the signal is included
in some background noise, i.e., is included as part of a larger signal, the rest of
which is of no interest. Is it possible to extract the signal of interest? For what
sorts of signals is this possible? For what sorts of noise is this possible?

This volume is devoted to developing the machinery needed to address questions

such as these.

1.1.2 Time

For the notion of time as we consider it, it will be helpful to recall the notion of a
semigroup from Definition I-4.1.2, a group from Definition |-4.1.4, and a subgroup
from Definition 1-4.1.9. There are lots of examples of groups, some of which are
discussed in Section I-4.1. The group of interest to us is (IR, +), the group formed
by the set R of real numbers and the group multiplication given by addition of
numbers. We shall be interested in subgroups of this group and also in subsets that
are semigroups. Examples of subgroups of R include
1. the set Z of integers (see Section I-1.4),

2. theset Z(A) = {Aa | a € Z} of integer multiples of A € R, and

3. the set Q of rational numbers (see Definition [-2.1.1).

It is an exercise for the reader (see Exercise |I-4.1.6) to show that these are indeed
subgroups. As examples of subsets of IR that are semigroups we include

4. thesetty+Q={tp+q| g€ Q} fort; € Rand

5. theset Z(ty, A) = {to + kA | k € Z} for t; € R.

If tp € Q then tp + Q = Q and if {y € Z(A) then Z(ty, A) = Z(A). In Exercise |-4.1.7
the reader can show that these statements are true.
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Now we define the basic collections of times that we will encounter in the text,
recalling from Example |-2.5.4 the notion of an interval.

Definition (Time-domain) A time-domain is a subset of R of the form $ N [ where
5 € Ris a semigroup in (R, +) and I € Ris an interval. A time-domain is
(i) continuousif$ =R,
(i) discrete if 5 = Z(t, A) for some t;, € R called the origin shift and for some
A € R, called the sampling interval,
(iii) finite if cl(I) is compact,
(iv) infinite if it is not finite,

(vi) negatively infinite if inf] = —oo, and

)
)
(v) positively infinite if sup I = oo,
)
(vii) totally infinite if | = R. o

Let us give some examples, just by means of establishing notation for future
use.

Examples (Time-domains)
1. We denote Z-o(A) = Z(A) N Ry,.
2. We denote Z.o(A) = Z(A) N R,,. °

Remarks (Some commonly made assumptions about time-domains)

1. We shall denote a typical point in a time-domain by ¢ to signify time. However,
it is possible that in some applications of our techniques the “time” variable
will not be time. Nonetheless, we shall talk as if it were indeed time since this
gives access to some intuition.

2. We shall deal almost exclusively with discrete time-domains where 5 =
Z(A), i.e., with no origin shift.

3. Note that for continuous time-domains we use the words “finite” and “infinite”
not in their usual mathematical way (where finite means “consists of a finite
number of points”), but in the common usage of these words as they refer to
time.

4. To eliminate the need to deal with trivial cases, we shall tacitly suppose that all
time-domains consist of more than one point, unless otherwise stated.

5. We restrict ourselves in the discrete case to signals that are sampled at regular
intervals. It can happen that sampling will happen at irregular intervals. How-
ever, to generate a useful theory for such signals is difficult, so much so that
if one is confronted with an irregularly sampled signal, the first thing to do is
convert it to a regularly sampled signal. o

Now let us consider some transformations of time-domains that will be useful
to us. We begin with a very general definition.
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1.1.5 Definition (Reparameterisation) For time-domains T; and T5, a reparameterisa-
tion of T to T, is a bijection 7: T, — T; that is either monotonically increasing or
monotonically decreasing. o

It perhaps seems odd why a reparameterisation of T; should have T, as its

codomain, and not its domain. The reason for this will be clear in Section 1.1.4
when we discuss how reparameterisations are used to transform signals. For the
moment, let us content ourselves with a few specific sorts of reparameterisations.

1.1.6 Examples (Reparameterisations)

1.

For a € R, the shift of a time-domain T, by a is defined by taking the time-
domain
T,={t+al| teT}

and the reparameterisation 7,: T, — T; of T, defined by 7,(t) =t —a.

For a time-domain T;, the transposition of T, is defined by taking the time-
domain

Ty, ={-t| t €T}
and the reparameterisation o: T, — T; defined by o(t) = —t. Often we will use
the reparameterisation in the case when o(T;) = T;.

For a time-domain T; and for A € R,, the dilation of T, by A is defined by
taking the time-domain
T, = {At]| t e Ty}

and the reparameterisation p,: T, — T; defined by p,(t) = A71t.

Here we take T; = T, = [0, 1] and define a reparameterisation 7: T, — T; of T
by 7(t) = %(1 — cos(mtt)). We illustrate this reparameterisation in Figure 1.6. o

0.0 0.2 0.4 0.6 0.8 1.0
t

Figure 1.6 A reparameterisation of [0, 1]
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1.1.3 Time-domain signals: basic definitions

In this section we give the coarsest definition of a signal, along with some
examples of signals. This will serve to provide a setting for the more abstract
notions of signal spaces to follow in Sections 1.2 and 1.3. Throughout this chapter,
and indeed this volume, we will use the symbol F to stand for either R or C. We
will denote by |a| the absolute value of a if 2 € R and the complex magnitude of a
if a € C. Similarly, 2 = a if 4 € R and 7 is the complex conjugate of a if a € C.

Definition (Time-domain signal) Let T = SN[ be a time-domain and let F € {R, C}.
An F-valued time-domain signal on T isamap f: T — F. If T is continuous then
f is a continuous-time signal and if T is discrete then f is a discrete-time signal. e

Notation (“Signal” versus “time-domain signal’) Since it is most natural to think
of signals in the time-domain—as opposed to in the frequency-domain as we shall
discuss in Chapter 2—we shall very often just say “signal” instead of “time-domain
signal.” .

We next consider the manner in which we shall depict signals in the time-
domain. For R-valued signals defined on a continuous time-domain T, the usual
depiction is simply the graph of the signal in the sense that we learn in elementary
school. However, for C-valued signals or for signals defined on discrete time-
domains, there is no such standard depiction. So let us give our rules for this. First
of all, let us consider how to depict a R-valued discrete-time signal. We do this asin
Figure 1.7, where we also show a depiction of a R-valued continuous-time signal

f(t)
f(t)
~

of IIu.,.uII

-2 -1 0 1 2

t t

Figure 1.7 The depiction of a R-valued continuous-time signal
(left) and discrete-time signal (right)

for contrast. The idea is that one represents a discrete-time signal by placing a line
going from (¢,0) to (¢, f(t)) in the plane. To represent a C-valued signal f: T — C
one can proceed in two natural ways. One way is to depict the signal is to plot the
two R-valued signals t — Re(f(t)) and Im(f(t)). One could alternatively plot the
two R-valued signals t + [f(¢)| and t = arg(f(t)). In Figure 1.8 we show these two
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Figure 1.8 The real and imaginary parts (left) and the magnitude
and phase (right) for the signal t — e

possible depictions of the complex signal t — e on the continuous time-domain
[0,27]. Similar plots can be produced for discrete-time complex signals. Note
that representing a complex signal using magnitude and phase has the potential
problem that when the signal has zero magnitude the phase is not well-defined.
One could arbitrarily choose, say, to set the phase to be zero at these points, but
this is not actually the best thing to do since it may destroy some nice features
of the phase. For example, the phase may extend continuously to include points
where the magnitude is zero, but this may not be preserved by setting the phase
to an arbitrary value. In our examples we shall generally try to sidestep these
complications with representing complex-valued signals by considering only real-
valued signals.

Let us consider some examples of signals to illustrate the where discrete- and
continuous-time signals might naturally arise.

1.1.9 Examples (Signals)
1. Wedenoteby 1: T — R thesignal 1(t) =1, € T.

2. The signal
1, t>0
1> t =
>0(t) {O, ‘<0
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is called the unit step signal and is a continuous-time signal defined on a totally
infinite time-domain.

3. The signal

>
mﬂ:{u £>0
0, t<0

is called the unit ramp signal and again is a continuous-time signal defined on
a totally infinite time-domain.

4. A binary data stream is a discrete-time signal defined on T = Z and taking
values in the set {0, 1}.

5. Consider the special binary data stream P: Z — {0, 1} defined by

H0:$,t:0

0, otherwise.

This is called the unit pulse.
6. On R define a R-valued signal g by

o) = {1, telo,1],

0, otherwise.

Now for a,v € R, and ¢ € R define a signal
Donp()) = Y ag(v(t +1) +¢),
nez.

which we call the square wave of amplitude 4, frequency v, and phase ¢. In
Figure 1.9 we show the features of this signal. Note that as we have defined it,

ok |

a

|
—

Figure 1.9 The square wave O,

O, 1S @ continuous-time signal defined on a totally infinite time-domain.
7. We proceed as in the preceding example, but now take

2t, tel0,3],
g(t) =12- Zt/ te (%/ 1)/
0, otherwise,
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and define

Banp() = Y ag(v(t +1) +§),

nez

which we call the sawtooth of amplitude a, frequency v, and phase shift ¢. This
signal is plotted in Figure 1.10. As with the square wave defined above, this is

40

a

|
I W

Figure 1.10 The saw tooth A,

a continuous-time signal defined on a totally infinite time-domain.

8. The Down Jones Industrial Average opening data depicted in Figure 1.1 is a
discrete-time signal defined on a finite time-domain.

9. The Central England yearly average temperature data in Figure 1.2 is an exam-
ple of a discrete-time signal defined on a finite time-domain.

10. The earthquake data of Figure 1.3 is an example of a continuous-time signal
defined on a finite time-domain. .

1.1.4 Elementary transformations of signals

In this section we shall consider ways of producing new signals from existing
ones. The idea of a “transformation” of a signal will be important to us in this
volume in terms of Fourier analysis. However, the things we discuss now are
of a far more elementary nature and are given mainly be means of establishing
notation.

We first consider transformations of signals achieved by a manipulation of the
codomain. The notation for this is as follows.

1.1.10 Definition (Codomain transformation of a signal) If F € {IR,C}, if T is a time-

domain, if f: T — F is a signal, and if ¢: [F — [ is a map, the codomain transfor-
mation of f by ¢ is the signal ¢ f: T — IF. o

This, then, is a simple idea merely given a suggestive name. Let us illustrate
this with a few examples.

1.1.11 Examples (Codomain transformations)

1. We define ¢: F — F by ¢(x) = x. Then the codomain transformed signal ¢ ° f
we denote by f.
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Figure 1.11 Full-wave rectification (bottom left) and half-wave
rectification (bottom right) of a discrete-time signal (top)

2. Let F = R and define ¢o: R — R by ¢(x) = |x|. Then, for a signal f: T — R the
codomain transformed signal ¢ © f is known as the full-wave rectification of f.
This is depicted for a discrete-time signal in Figure 1.11. Of course the same
ideas apply to continuous-time signals.

3. We again let F = R and now we consider ¢: R — R defined by

0, x<0,
Px) = {x

, x>0.

In this case, for a signal f: T — R the codomain transformed signal ¢ ° f is the
half-wave rectification of f and is depicted in Figure 1.11 for a discrete-time
signal.

4. We take IF = R and for M € R, consider the function ¢»: R — R defined by

X, x € [-M, M],
(PM(x) = _MI x < _M/
M, x> M.

We give the graph of this function on the left in Figure 1.12. The idea of
this codomain transformation is that it truncates the values of a signal to have
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U (

-5} 4 5

Figure 1.12 Two saturation functions for M = 10

a maximum absolute value of M. Such a codomain transformation is called
a saturation function. Sometimes it is advisable to use a smooth saturation
function, and an example of one such is 1 (x) = Mtanh(3;) whose graph we
show on the right in Figure 1.12. In Figure 1.13 we show the two saturation

20F

-20

20F I T q 20F

1o f(x)
o =5
1o f(x)
o =

Figure 1.13 The application of the saturation function ¢y (bot-
tom left) and the saturation function 1); (bottom right) to a
continuous-time signal (top)

functions applied to a continuous-time signal. Of course, one can as well apply
the idea to a discrete-time signal.

5. Particularly in our world where almost everything is managed by digital com-
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puters, signals with continuous values are not often what one deals with in
practice. Instead, what one actually has at hand is a signal whose values live in
a discrete set. Thus one would like to convert a signal with continuous values
to one with discrete values. This general process is known as quantisation. A
simple way to quantise a signal is via the codomain transformation 0,: R — R
defined by 60,(x) = h[31, where we recall from Section I-2.2.3 the definition of
the ceiling function x — [x] as giving the smallest integer greater than or equal
to x. The graph of the function is depicted in Figure |-2.1. The quantisation
Oy, is called the uniform h-quantisation. In Figure 1.14 we depict the uniform

20F 1 ‘ ] 20F T —

)
T

(
o
po fl@
o
-

0
~

-20 I I | -20

Figure 1.14 The uniform quantisation (right) of a continuous-
time signal (left)

quantisation of a continuous-time signal. The same idea applies, and indeed is
more natural, for discrete-time signals. °

Next we consider transformations of signals achieved by altering the domain
of the signal. In Definition 1.1.5 we consider the natural class of domain trans-
formations to consider, calling them reparameterisations. For these we make the
following definition.

Definition (Domain transformation of a signal) If [F € {R,C}, if T; and T, are
time-domains, if f: T; — [Fis a signal, and if 7: T, — T, is a reparameterisation
of Ty, the domain transformation of f by 7 is the signal " f: T, — [ defined by
Tf(t) = fot(t). °

The funny notation 7" f to denote the composition f ¢ 7 is intended to convey
the idea that 7 transforms the signal f into the new signal 7" f, an idea that is less
easy to see from the notation f o 7. We also wee here why it is natural to define a
reparameterisation of T; as having codomain T;, not domain T;.

Let us consider some examples of domain transformations, corresponding to
some of the examples of reparameterisations introduced in Example 1.1.6.

Examples (Domain transformations)
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1. For a € R let us consider the shift 7,: T, — T; of T;. For a signal f: T; — F,
the corresponding domain transformed signal is defined by 7 f(t) = f(t —a) for
every t € Tb.

2. Let us consider the transposition o: T, — T;. For a signal f: Ty — F, the
corresponding domain transformed signal is defined by 0" f(t) = f(—t) for every
teT,.

3. For A € R, let us consider the dilation p,: T, — T;. For a signal f: T; — F,
the corresponding domain transformed signal is defined by p; f(t) = f(A7't). e

The reader is asked to understand these transformations in Exercise 1.1.4.

The signal transformations considered above all have the feature that the charac-
ter of the time-domain is preserved. That s to say, a discrete-time (resp. continuous-
time) signal is transformed to a discrete-time (resp. continuous-time) signal.
However, it is also interesting and important to consider transformations taking
continuous-time signals to discrete-time signals, and vice versa. Let us now turn
our attention to this.

Definition (Sampling, interpolation) Let T,,,; be a continuous time-domain and
let Tg4;s. be a discrete time-domain such that T is the smallest continuous time-
domain containing Tgi.. Let IF € {IR, C}.

(i) Forasignal feont: Teont — [F define a signal faisc : Taise = R bY faisc(t) = feont(t)
for all t € Tgisc. The signal fyisc is the Tgisc-sampled signal corresponding to
feont- The map feont = faisc is called sampling.

(i) For a signal fyisc: Taisc = [F, an interpolant of fys. is a signal feont: Teont — F
with the property that foont(t) = faisc(f) for all t € Tyis. A rule for assigning to
any fgisc an interpolant f.on is called interpolation. °

Note that sampling is uniquely defined. However, there are many possible
ways in which one may interpolate from a discrete-time signal to a continuous-
time signal. Let us consider a few of these.

Examples (Sampling and interpolation)
1. Sampling is easy to understand, and we illustrate it in Figure 1.15.

Consider a discrete time-domain Tgisc with origin shift ¢y and sampling interval A

and let T.on be the smallest continuous time-domain containing Tgis.. Note that

every point in T lies in a unique interval of the form [t, + kA, ¢y + (k + 1)A) for
some k € Z.o. Let us denote this interval by I;. We take F = R and a signal

f disc: Tdise = R.

2. The interpolation defined by defining feont(t) = faisc(fo + kA) if t € I is called the
zeroth-order hold. This is depicted in Figure 1.16. This is a simple interpolation
method that has the advantage that it can be implemented in real time since it
does not rely on knowledge of the value of signal at future times. As we shall
see, some other interpolation schemes do not have this feature.
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Figure 1.15 Sampling
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Figure 1.16 Zeroth-order hold (middle left), first-order hold
(middle right), and cubic spline (bottom) applied to a discrete-
time signal (top)
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3. The interpolation defined by

fdisc(t() + (k + 1)A) - fdisc(tO + kA)

fcont(t) = fdisc(tO + kA) + A

(t = (fo + kA))

when t € I; is called the first-order hold. Checking the formulae will convince
the reader that the first-order hold linearly interpolates between the values of
the discrete-time signal; we illustrate this interpolation in Figure 1.16. While
it typically provides a more pleasant continuous-time signal, e.g., one that is
continuous, it does require knowledge of the future values of the signal and so
must necessarily carry a delay when implemented in real time.

4. Another general scheme for interpolation is the so-called spline interpolation.
The topic of splines is a huge one, so we only give a brief discussion. A popular
technique of spline interpolation is the cubic spline. Here, on each of the
intervals I, one asks that f.on be a cubic polynomial function. Thus, if one has
Nintervals I, ..., Iy, one has N cubic polynomials to determine, each with four
unknown coefficients. To determine the 4N coefficients one imposes conditions
on the cubic polynomials. These are:

(@)  feoont(t) = faisc(f) at the endpoints of the intervals I, ..., Iy (these are N + 1
conditions);

(b) the value at the right endpoint of I; of the cubic polynomial on I; should
agree with the value at the left endpoint of I;,; of the cubic polynomial on
Ix4+1 (these are N — 1 conditions);

(c) thevalueattherightendpoint of I, of the derivative of the cubic polynomial
on [, should agree with the value at the left endpoint of I, of the derivative
of the cubic polynomial on I;; (these are N — 1 conditions);

(d) the value at the right endpoint of I; of the second derivative of the cubic
polynomial on I should agree with the value at the left endpoint of Ii;
of the second derivative of the cubic polynomial on Ij,; (these are N — 1
conditions).

The above conditions give N + 1 + 3(N — 1) = 4N — 2 linear conditions on
the 4N coefficients, and these may be shown to be linearly independent. One
then needs two additional conditions to be able to unambiguously prescribe an
interpolation method. These typically involve determining a condition at each
of the left endpoint of I; and the right endpoint of Iy. One such choice is the
natural cubic spline where one asks that the second derivatives at these points
be zero. This is what is shown in Figure 1.16. .

1.1.5 Causal and acausal signals

In “real life” signals occur on finite time-domains. However, it is convenient
mathematically to allow infinite time-domains. And apart from mathematical
convenience, many useful ideas are best discussed considering what would happen
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when time goes to infinity. The allowing of signals that are defined for increasingly
negative times is more difficult to motivate physically. However, such signals can
arise during the course of a mathematical treatment, and so it is useful to allow
them. In this section we consider carefully the characterisation of signals on the
basis of how they are look for infinite and negatively infinite times.

Definition (Causal signal, acausal signal) Let f be a signal on a time-domain T.
We say f is

() causal if either

(a) T is positively infinite but not negatively infinite or
(b) T is totally infinite and there exists T € T so that f(t) =0 forallt < T;

(il) acausal if either

(a) T isnegatively infinite but not positively infinite or
(b) T is totally infinite and there exists T € T so that f(t) =0 forall t > T.

If T = R, then we additionally say that f is

(i) strictly causal if f(t) = 0 for t < 0 and
(i) strictly acausal if f(t) =0 fort > 0. °

Let us visit the examples we provided for signals in the preceding section and

consider their causal character.

Examples (Causal and acausal signals)

NOo oAb~

The unit step signal 15 is strictly causal.

The unit ramp signal R is also strictly causal.

A binary data stream is neither causal nor acausal.
The unit pulse P is both causal and acausal.

The square wave 0O,,, is neither causal nor acausal.
The sawtooth A, 4 is neither causal nor acausal.

The Dow Jones Industrial Average opening averages data is neither causal nor
acausal.

The Central England yearly average temperature data is neither causal nor
acausal.

The Sierra Madre earthquake data is neither causal nor acausal. o

Note that some of these signals are neither causal nor acausal. There are two

reasons why this can happen.

1.

In Examples 5 and 6 the signals are nonzero for arbitrarily large positive and
negative times. These are examples of signals that are not physical. However,
one often wishes to use the square wave and the sawtooth for positive times.
In this case, one can proceed in one of two ways: (a) one can leave the signals
defined on all of T = R and multiply them by the step signal to render them
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zero for negative times or (b) one can simply restrict them to be defined on
T = [0, o). One should be careful to understand that these two ways of making
the signal causal, although they appear to be the same, are really different since
the time-domains are different. There will be occasions in book where it will be
necessary to really understand the time-domain one is using.

2. In Examples 7, 8, and 9 the signals are only defined on a finite time-domain,
and this makes them ineligible for being either causal or acausal. If one wishes
to realise these signals as causal signals, one can extend them from their current
time-domain T to a time-domain T that is either positively infinite or totally
infinite by making the extended signals zero on T \ T. As with the preceding
case, one should understand that these two extensions are genuinely different
because they have different time-domains.

1.1.6 Periodic and harmonic signals

We shall discuss periodic signals in some detail in Sections 1.2.4 and 1.3.4.
However, we consider them here, along with harmonic signals, since itis something
easy to do before we launch into the mathematical treatment of signals.

1.1.18 Definition (Periodic signal, harmonic signal) Let F € {R, C} and let T be a totally
infinite time-domain.
(i) Asignal f: T — F is periodic with period T € R, if f(t + T) = f(t) for all
teT,ie, if ' f = f.
(i) The fundamental period of a periodic signal f is the smallest number T for
which f has period Ty, provided that this number is nonzero.
(i) Asignal f: T — [Fis harmonic with frequency v € R\ {0}, amplitude a € R,
and phase ¢ € R if

C

R (1.1)

acos(2rvt + @),

aei(2nvt+¢), F
) =
-l

for all t € T. The angular frequency for the harmonic signal is @ = 2ntv. For
R-valued signals, the quantity e'? is the phasor for the signal. The signal
defined by (1.1) is denoted H, .

(iv) A trigonometric polynomial of period T is a finite linear combination of
harmonic signals of period T. The degree of a trigonometric polynomial P the
smallest positive integer d such that

for somec, € C,nef{-d,...,0,...,d}. °
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1.1.19 Notation (Frequency versus angular frequency) It is worth mentioning the dis-
tinction between frequency and angular frequency. This is easiest to understand
in terms of the units one uses for each. The units for frequency are s™ or Hz (pro-
nounced “hertz”* and the units for angular frequency are rad/s. The convention
about which of these frequencies to use is not uniformly established. The distinc-
tion does come up with the various flavours of Fourier transform notation that
are used. For the Fourier transform we use frequency and not angular frequency.
However, there will be other occasions where we will use angular frequency. ® cuch as...

Let us record some properties of, and relationships between, periodic and har-
monic signals.

1.1.20 Proposition (Properties of periodic and harmonic signals) Let T be a totally
infinite time-domain. The following statements hold:
(i) a periodic signal with period T is also a periodic signal with period KT for k € Z.;
(i) if T is a continuous time-domain then harmonic signals are periodic;
(iii) if T is a discrete time-domain with sampling interval A then H, ,,, is periodic if and
only if vA € Q;
(iv) if T is a discrete time-domain with sampling interval A then H, 5 = H, a1 for
all j € Z,.
Proof (i) This is Exercise 1.1.5.
(ii) This follows directly from the definitions.
(iii) First suppose that vA € Q, so that we have vA = % for j, k € Z, and we may as
well suppose that j and k are coprime. Then we compute
Ha,v,tj)(t +k A) — aei(2nv(t+kA)+¢) — aeiq,’)elnivteZniva

— aei(peZRivteZnij — uei(vaHgb) — Ha,v,gi)(t)/

forallt € T. Thus H, ¢ is periodic with period kA. Now suppose that H;, ,,, is periodic
with period T. Then we must have T = kA for some k € Z.. Then

Havo(t +kA) = Hg,(h), teT
— aei(peZT(iv(HkA) — aekpeZnivt/ teT
N e27TinA =1.
Thus 2nvkA = 27tj for some j € Z, giving vA = % €.
(iv) For t = Ak € Z(A) we have, in the event that IF = C,

Hopsjiat o) = 2el@T+ATAk+D)
— aei([) eZTzivAkeZTZijk — aei(vaAkﬂp) — Hu,v,zp (t)
The idea is exactly the same if IF = R. |

“Heinrich Rudolf Hertz (1857-1894) was a German physicist who is perhaps most well-known
for his contributions to contact in mechanical systems and electromagnetic theory.
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The phenomenon illustrated by part (iv) of the proposition is an important one
in digital signal processing and is called aliasing. The phenomenon is that signals
that are different in continuous-time can look the same in discrete-time.

Note that a periodic signal with period T on a time-domain T is determined
uniquely by its values on the set [0, TINT. Indeed, we shall frequently only think of
such a signal as being defined on [0, T]NT. Let us, therefore, give this time-domain
a name.

1.1.21 Definition (Fundamental domain of a periodic signal) If F € {IR,C}, if T is
an infinite time-domain, and if f: T — [ is periodic with period T, then the
fundamental domain of f is [0, T N T. o

It is convenient, in fact, to be able to start with a signal defined on [0, T]|N T and
extend it to a periodic signal. There are a few natural ways to do this. Let us give
some useful terminology for this.

1.1.22 Definition (Even and odd signals) Let F € {IR, C}, let T be an infinite time-domain
with a zero origin shift, and let f: T — F. The signal f

(i) is even if f(—t) = f(t) foreacht € T,ie., if 0" f = f, and
(i) is odd if f(~t) = —f(t) foreacht € T,ie. if o f = —f. °

We then have the following terminology.

1.1.23 Definition (Periodic extension, even and odd extension) Let [F € {R,C}, let T
be a time-domain of the form [2,a + T) NS, and let f: T — be a signal. Let T be the

unique infinite time-domain for which Tn[0,T)=T.

(i) the T-periodic extension of f is the signal foer: T — TF defined by

foer(t) = f(t = kT), tela+kT,a+ (k+1)7).

(ii) ifa = 0, the even extension of f is the signal foyen: T — IF thatis the 2T-periodic
extension of the signal f: [0,2T) — FF defined by

Tl — f(t)/ te [0/ T)/
) = { fQRT —t), tel[T,2T).

(iii) ifa = 0, the odd extension of f is the signal fyqq: T — [F that is the 2T-periodic
extension of the signal f: [0,2T) — F defined by

T _ f(t)/ te [0/ T)/
f& = { f(t=T), telT,2T).

This is all trivial as an example makes clear.
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1.1.24 Examples (Periodic extension, even and odd extension)

1. The first example we consider is a discrete-time example. Let A € R,y and
let T = NA for some N € Z.,. From Example 1.1.9-5 recall the unit pulse
P: Z(A) — R defined by

P(t):{l' =0,

0, otherwise.

The T-periodic extension of P is the T-periodic unit pulse Pye,7: Z(A) — R
defined by

(t) = 1, t=kT forsomeke Z,
perT 0, otherwise.

2. Consider thesignal f: [1,3] — Rdefined by f(t) = t. The periodically extended
signal fper: R — Ris shown in Figure 1.17. Note that the periodic extension is

12/
1.0

0.6

04+

-2 -1 0 1 2

Figure 1.17 Periodic extension of a signal

neither even nor odd.

3. We consider the signal f: [0,1] — R defined by f(t) = t. In Figure 1.18 we give
the 1-periodic extension, along with the even and odd extensions. Note that
the even and odd extensions do indeed have period 2, and also not that the
periodic extension is neither even nor odd. .

1.1.7 Characterising time-domain signals

The preceding discussion of time-domain signals has a pleasant, breezy, high-
level flavour. However, except for the purposes of establishing some language, it
is almost devoid of technical value. What one is interested in in most applications
is not instances of signals, but classes of signals, and classes of signals less vapid
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Figure 1.18 Periodic (top left), even (top right), and odd (bottom)
extensions

than “causal,” “acausal,” or, “periodic.” In this section we address the sorts of
properties by which one might organise classes of signals.

Although we will not discuss systems systematically until Volume 4, it is conve-
nient to use the notion of a system to motivate our discussion of signal properties.
A system, in the broadest terms, is a “black box” accepting inputs and returning
outputs. We schematically represent this in Figure 1.19. The inputs and outputs

inputs ——| System —— outputs

Figure 1.19 A depiction of a system

are both to be thought of, for our purposes, as living in some collection of signals.
A very useful and broadly used system property is linearity, the idea being that the
output resulting from a linear combination of inputs is the same linear combination
of outputs. It, therefore, makes sense to suppose that our signals spaces are vector
spaces. System motivations aside, the characteristic of linearity for signal spaces
seems quite natural. Thus we shall make free use of vector space concepts, mostly
elementary ones, from Section |-4.5.

While linearity is a natural property for a system—and the set of signals serv-
ing as inputs and outputs—it is simply too “floppy” to have much value per se.
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Moreover, most linear system models derived using physical principles have more
structure than mere linearity. Indeed, most systems one encounters in practice
have some “continuity” properties that turn out to be of great value. This property
is most directly described in the following way: if a sequence (u;);cz., if inputs
converges to an input u, then the corresponding sequence of outputs (y;);cz., con-
verges to the output y associated with u. The notion of convergence requires more
than mere linearity, and this is especially true for signal spaces since these tend to
be infinite-dimensional. To allow us to discuss convergence we shall in this chapter
use the notion of a norm, sometimes derived from an inner product. Thus we will
make substantial use of material from Chapters IlI-3 and lll-4. In particular, we
will directly use some of the examples from Section |1I-3.8. Indeed, all of the basic
signal space structure we introduce in this chapter can be found in Section III-3.8.

Readers unacquainted with the details of how the standard signal spaces are
developed may be surprised and/or dismayed by how involved some of the con-
structions are. Indeed, apart from relying on material on Banach and Hilbert spaces
from Chapters IlI-3 and lll-4, we will also see that the Lebesgue integral, developed
in Chapter Ill-2, plays an essential role in the development. Therefore, it is maybe
worth saying a few words about how one may approach all this. The reader may
also, at this point, read the preface for this series of texts to guide them in going
through this material if they are doing so for the first time.

It is important to keep in mind that it is not that the problems, per se, necessarily
merit complicated mathematics, but that general solutions to the problems do.
That is to say, if in a particular instance (say, one wants to know whether one’s
discrete-time representation of Beethoven’s Ninth Symphony will be pleasant to
listen to) one wishes to address one of these questions, then it is likely that much
of the mathematical sophistication in this volume can be avoided. However, if
one wishes to develop a general methodology that is guaranteed to work (say by
one’s proving of a theorem), then it is often the case that an astonishing amount of
mathematical sophistication quickly becomes necessary. Itis very easy to disparage
such mathematical sophistication as being so much unnecessary abstraction. An
excellent example of this is the famous remark by Richard W. Hamming (1915-
1998):

Does anyone believe that the difference between the Lebesgue and Rie-
mann integrals® can have physical significance, and that whether say,
an airplane would or would not fly could depend on this difference? If
such were claimed, I should not care to fly in that plane.

This, however, seems to us to be a confusion of the specific with the general. That
is to say, while it is not likely that there will ever exist an aircraft whose flight is
literally dependent on the generality of the Lebesgue integral, it may very well be
the case that certain aspects of the design of an aircraft are facilitated by general
techniques for which the theorems ensuring their validity depend on the Lebesgue

5This has to do with the topic of Lebesgue integration which we cover in Chapter III-2.
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integral. For more discussion, see Section 1.1.8.

Moreover, that one can do without a certain degree of mathematical sophis-
tication becomes more dubious when one turns to frequency representations of
signals, as we do in Chapters 5, 6, and 7.

1.1.8 Notes

A discussion of the quote by Hamming appearing in Section 1.1.7 has been
carried out by Davis and Insall [2002]. We advise the reader to read this article and
develop an opinion on what is discussed there. From our point of view, one of
the participants in the discussion is really quite ill-informed about the distinctions
between the Riemann and Lebesgue integral, both from the point of view of their
theoretical development and their application. We shall allow the reader to decide
which author we indict in this way.

Exercises

1.1.1 List ten signals, five continuous-time and five discrete-time, that have af-
fected your life in the past week. Indicate as many of the elementary prop-
erties of these signals, in the language of this section, as you can think of.

1.1.2 A subset S of R is discrete if there exists r € R, so that for each t € S we have
{s| |t=s| <r}nS = {t}. Show that the subgroups of (IR, +) that are discrete
as sets are of the form Z(A) for some A € R..

1.1.3 Let Ty, T,, and T3 be time-domains and let 7;: T, — T, and 7,: T3 — T, be
reparameterisations. Show that 7, o 7,: T3 — T is a reparameterisation.

1.1.4 Let T =Randlet f: R — R be a “general-looking” signal. Sketch the graph
of f along with the graphs of the following signals:

1. 7,f fora € R.y;
2. 7,f fora € Ry;
3. o'f;

4. p*Affor/\<1;
5. pyf for A >1.

Hint: By a “general-looking” signal we mean one for which all of the signals whose
graph you are sketching are different.

1.1.5 Show thatif f: R — Fhas a period T, then it has a period kT for any k € Z.,.
1.1.6 Show that if t = ™" is T-periodic then v = £ for n € Z.

1.1.7 Give an example of a periodic signal whose fundamental period is not well-
defined.
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Section 1.2

Spaces of discrete-time signals

In this section we begin our systematic presentation of classes of signals. Since
they are simpler, we begin with spaces of discrete-time signals. Much of the
background for this section is pulled from Section [1I-3.8.2. We assume that the
reader knows what a vector space is and what a norm is, and some of the ba-
sic associated ideas. This may well require referring to material in Chapters IlI-3
and Ill-4. We shall try to make the necessary references when needed, but as a
bare minimum the reader should know the basic properties of norms from Sec-
tion 111-3.1.1, know the definitions of convergence of sequences in normed vector
spaces from Section IlI-3.2, and be familiar with the role of completeness discussed
in Section |1-3.3.

Do | need to read this section? If you are reading this chapter then read this
section. °

1.2.1 The vector space structure of general discrete-time signals

In this brief section we introduce the “big” vector space of discrete-time signals
on a given time-domain. The idea is to give ourselves the basic object upon
which everything else in this section is derived. The notation here originated in
Notation [-4.5.44.

Definition (FT) Let F € {R, C} and let T be a discrete time-domain. We denote by
FT the set of maps f: T — F. The F-vector space structure on F" is given by

(fi + 2)() = fi(t) + fo(t),  (af)(t) = a(f(t)),
for f, fi, f» € FT and for a € F. We may also use the product of signals fi, f, € FT

defined by
(A1) = fi) f2(8)

which makes FT into an F-algebra. .

The case when FF! is finite-dimensional is particularly simple and easy to char-
acterise.

Proposition (Finite-dimensionality of FT) If IF € (R, C} and if T is a discrete time-
domain then " is finite-dimensional if and only if T is finite. Moreover, if T is finite then
dimg(FT) = card(T).

Proof This is Exercise 1.2.1. |

Note that it is not true that dimg(IF') = card(T) when T is infinite. This follows
from Proposition [-5.7.5 and Theorem [-5.7.9; indeed, from these results one can
deduce that dimg(IFT) = card(R) for an infinite discrete time-domain T.
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1.2.2 Discrete-time signal spaces with the co-norm

Next we consider a few discrete-time signal spaces that normed vector spaces
with the co-norm. Since we have already presented everything here in great detail
in already in Section IlI-3.8, we merely present the notation and recall the main
properties of the various signal spaces, referring to the proofs that have already
been given.

For a discrete time-domain T the signal spaces we consider here are these:

Cin(T; F) = {f € FT | f(t) = 0 for all but finitely many t € T};
co(I;F) ={f € FT' | for each e € R, there exists a finite subset K € T
such that |f(t)| > e iff t € K}.

If, for f € IFT, we denote the support

supp(f) ={t € T | f(t) # 0}

then Cgn(T; F) is the set of signals with finite support. For the purposes of this
section, the norm we use on these vector spaces is the co-norm. Thus, if f € ¢y (T; F)
or f € ¢y(T; F) then we define

I flleo = supflf(B) | £ €T},

noting that the supremum is well-defined. Note that ¢, (T; IF) is the generalisation
to arbitrary discrete time-domains of the vector space IF;’ (see Example |I-3.1.3-7)
and cy(T; F) is the generalisation to arbitrary discrete time-domains of the vector
space Cy(IF) (see Definition 111-3.8.11). We shall explore how the generalisation
manifests itself as we go along.

Let us now list some facts about Cg,(T; F) and ¢o(T; [F).

1. If T is finite then
Ciin(T; F) = co(T; F) = FT,

and so the vector spaces are all finite-dimensional in this case. Because of this,
the use of the norm ||-|| is not significant in that the topology on the spaces will
be the same, no matter what norm is used; this is Theorem Il1-3.1.15.

2. If T is infinite then
Cin(T; F) € ¢o(T; F) c FT.

This is obvious.
3. If T is infinite then

co(T; F) = {f e Ft

lim f(r) = o}.
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4. In Example Ill-3.1.3—7 we considered the vector space IF;’ which, in our present
language, is simply Cgn(Zo; F). For any infinite discrete time-domain T there
exists an isomorphism of normed vector spaces between (Csin(T; F), ||||l) and
(Cin(Z>0; F), ||l). This is pretty clear, but the reader may wish to verify this in
Exercise 1.2.9. This isomorphism may not really be natural; for example there is
no really natural way to construct an isomorphism from Cin(Z; IF) to Cun(Z; IF).
However, the mere existence of an isomorphism of normed vector spaces allows
us to deduce for Cgn(T; F) certain of the properties we have deduced for Fy. In
particular, if T is infinite then the normed vector space (Cgn(T; F), ||||l») is not
complete; this is Exercise I11-3.3.1.

5. In Definition IlI-3.8.11 we defined the vector space ¢,(IF) which, in our present
notation, is precisely Cy(Zo;F). As in the preceding paragraph, there exists
an isomorphism of normed vector spaces between Cy(Z.;F) and co(T; F) for
any infinite discrete time-domain T. Thus certain of the conclusions we have
deduced for ¢y(IF) hold for cy(T;F) in this case. The conclusion of principal
interest is this: (Co(T;IF), ||l) is a separable [F-Banach space and is, moreover,
the completion of (Cfin(T; F),||-ll); this follows from Theorem [II-3.8.12 and
Proposition 111-3.8.13.

1.2.3 Discrete-time signal spaces with the p-norms, p € [1, o]

Perhaps the most important discrete-time signal spaces in applications are those
characterised by their summability properties. These were discussed at some
length in Section 11-3.8.2, so we again just give the definitions and regurgitate the
most useful properties.

For a discrete time-domain T with sampling interval A and for p € [1, c0) the
spaces we consider are:

(°(T;F) = {f € F" | sup{|f()]| t € T} < co};

Y Ifor < oo}.

teT

(T;F) = {f e FT

On ¢*(T; F) we use the norm

Ifllo = supf{lf(t)l | t € T}

and on (T, F) we use the norm

1/p
Ifl, = (A Zlf(t)l”) .

teT

There is a factor of A in the definition of the p-norm for p € [1, o) that seems to
come from nowhere. It presence is motivated by connections between discrete-time
signals and generalised signals that we are not able to explore at this time. The
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interested reader can refer to . We shall see as we go along that, if T is finite, then
(¢7(T; ), ||]l,) are the generalisations of the normed vector spaces (IF", ||-[|,) consid-
ered in detail in Section 1I-3.8.1. If T is infinite then (¢/(T; IF), ||-||,) are the general-
isation of the normed vector spaces (¢/(IF); ||||,) considered in Section 11I-3.8.2.

Let us list some facts about the £/-spaces.

1. If T is finite then
(T;F) = ¢(T;F) = F!

forallp € [1, o). Thus, for each p € [1, o], the space (¢£/(T; FF), ||-||,,) is isomorphic
as a normed vector space to the normed vector space (IF", ||-||,) as discussed in
Section IlI-3.8.1. Thus this is the easiest case to consider. Moreover, as far as
topology goes, the spaces /(T FF) are all “the same” whenever T is finite.

2. If T is infinite then
(T, F) c ¢(T;F) c F'.

These inclusions are fairly clear, but these issues will be considered in detail in
Section 1.2.7.

3. Note that both spaces ¢y(T; F) and ¢£*(T; F) use the co-norm, but are definitely
not the same space. Mathematically the difference between these spaces is:

(@) Co(T;F) is the completion of gy (T; F), but £<°(T; F) is a complete normed
vector space that contains this completion;

(b) the “smallness” of ¢o(T;F) is perhaps best encapsulated by the fact that
Co(T; IF) is separable (Proposition Il1-3.8.13) while ¢*(T; F) is not when T
is infinite (Proposition 111-3.8.20).

4. In Definitions [11-3.8.8 and 11I-3.8.15 we considered the normed vector spaces
(¢P(IF), |IFll,) for p € [1,00]. In terms of our present notation we have {*(FF) =
' (Z-; F). It is not difficult to show that, in fact, the normed vector spaces
(P (T; ), |Ill,) and (£F(Zso; IF), ||-ll,) are isomorphic (up to a constant factor for
the norm in the case of p € [1,)) for any infinite discrete time-domain T.
This allows us to draw conclusions for ¢/(T; F) based on conclusions we have
already drawn for {#(FF). For example, we have the following facts.

(@) If T is infinite then (£*(T; F), |||l.) is a nonseparable [F-Banach space.

(b) If Tis infinite and if p € [1, c0) then (¢/(T; IF), ||||,) is a separable IF-Banach
space and, moreover, is the completion of (Cgn(T;F),[|ll,). This Banach
space is a Hilbert space if and only if p = 2.

1.2.4 Periodic discrete-time signal spaces

An important class of signals in both theory and application are those that are
periodic. For discrete time-domains, T-periodic signals have no exotic behaviour.
Indeed, since they are determined by their values on the fundamental domain
[0, T) N T and since such fundamental domains are necessarily finite, we have the
following result.

what?
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Proposition (Spaces of periodic discrete-time signals are finite-dimensional)
Let F € {R,C}, let T be an infinite time-domain, and let T € R,(. Then the subspace of
IFY consisting of T-periodic signals is finite-dimensional.

Thus we do not need to discriminate notationally between spaces of periodic
discrete-time signals, and, for a discrete time-domain T, we merely denote

lper7(T;F) = {f € F'| f is T-periodic}.

Note, however, that we may use a variety of norms on this space. Indeed, we can
use any one of the norms

1/p
|vm=[§ §:|ﬂmﬂ , pellw),
t€[0,T)NT
Iflle = max{If(B)l| £ €[0,T)NT).

We leave it to the reader as Exercise 1.2.4 to make the elementary verification that
these are norms. Note that for p € [1, o) these are not the norms for the signals on
T, but take into account the periodicity of the signals.

1.2.5 Discrete-time signal spaces characterised by seminorms

We now consider large collections of discrete-time signal spaces for which their
topology is not characterised by a norm, but rather by a family of seminorms. The
general theory for these spaces is explained in detail in Section I11-6.5.1, so here we
just recite the facts that are of interest and give notation.

For a discrete time-domain T C Z(A), we denote £,.(T;F) = IFT. Thus we work
with the space of all signals on T. On this space we can define various topologies
defined by families of seminorms. To wit, for a finite subset K C T, we define the
seminorms

Ifllkes = supflfO] | £ € K},
1/p
nmmz[zymﬂ , pello)

teKK

We shall denote by ffOC(T; FF) the space io.(T; F), thought of as being equipped with

the p-norm, p € [1, co].

Let us enumerate some characteristics of these spaces.

1. When T is finite, then the signal space €. (T; IF) is finite-dimensional. Asaresult,
these spaces are isomorphic, as normed vector spaces, to the spaces discussed
in Section I11-3.8.1. In particular, the topology does not depend on p by virtue of
Theorem 11I-3.1.15. Thus one can freely choose the norm, depending on what
one want to do. This also justifies the absence of p in the notation {jo.(T; F) in
this case.
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2. When T is infinite, then £,.(T; ) is isomorphic to F*, just by establishing a
bijection between T and Z.,. Thus, as we discussed before the statement of
Theorem 11I-6.5.1, the topology of ¢i,.(T; F) is not dependent on p.

3. By Theorem |1I-6.5.1, £oc(T; F) is normable if and only if T is finite. When T is
not finite, then ¢i.(T; FF) is a Fréchet space.

4. A sequence (fj)jcz, converges if and only if, for each finite K C T,
lim;.|lfjllx, = 0. Again, because the topology is independent of p, it does
not matter which p we use to describe convergence.

1.2.6 Other characteristics of discrete-time signals

In this section we give some characteristic of signals that are often useful in
practice. Some of these are simply renaming of norms we have provided above.
Some of the properties, however, are not related to the norms, but are still useful.

1.2.4 Definition (Signal characteristics) Let F € {IR,C} and let T be a discrete time-
domain and let f: T — IF be an F-valued signal on T. If T has sampling interval
A then we define Ny, and Ny by asking that AN, = inf T and ANpax = sup T.
We allow either or both of Npin and Ny« to be infinite in magnitude.
i) If f € /(T F) then ||f||; is the action of f.
(||) If f € (*(T;F) then ||f|[3 is the energy of f.
(i) If f € £>(T; F) then ||f|l« is the amplitude of f.
(iv) If the limit

2
W N TN A1 N_ 1 Zlf jAl

N+—Nmax
exists we denote it by pow(f) and call it the average power of f. The set of
signals whose average power exists are called power signals and the set of
these is denoted by ¢P°¥(T; IF).

v) If f € (P°Y(T; F) then rms(f) = /pow(f) is the root mean square value (rms
value) of f.

(vi) The mean of f is given by

mean(f) = lim m Z f(jA),

N_-—Nmin

N+ —Nmax

if the limit is defined. °

We shall not have much occasion to use the set of power signals. Indeed,
mathematically this is not so useful a collection of signals, at least for infinite
discrete time-domains; for finite discrete time-domains the average power is simply
a scaled version of the energy. The motivation for the definition of average power
is that it should give some sort of integral (in this case, summation) measure of a
signal that does not decay to zero at infinity.
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Remark (The importance of p € {1,2, c0}) Note that special names are given to
the p-norms for p € {1, 2, oo}. This suggests that these cases are somehow especially
important. This is indeed the case, so let us explain this a little. The importance of
the co-norm and of signals with finite co-norm is more or less clear. The importance
of the 1-norm and of signals with finite 1-norm is less easy to see at this point.
However, the fact that the 1-norm of a sequence being finite corresponds to the
sequence being absolutely summable is important in Fourier analysis. We shall see
specific instances of this in Theorems 5.2.33 and 7.1.7. The case of p = 2 is perhaps
even more difficult to image the importance of. Nonetheless, in some applications
the only sequence space even discussed is ¢>. Often physical justifications are given
for this. However, the real reason for the importance of p = 2 is that in this case £
is a Hilbert space, and not a general Banach space. This allows the use of special
Hilbert space tools, particularly Hilbert bases, in the analysis of sequences in ¢2.
We shall see the importance of this in, for example, Sections 5.3 and 7.1.6. °

Let us give an example where we work out some of the quantities defined
above.

Example (Signal characteristics) Let T = Z, and define f: T — R by f(j) = ]lz
Then we compute:

the action of f is s ;

the energy of f is g—g ;
the amplitude of fis 1;

f is a power signal and pow(f) = 0;

the rms value of f is rms(f) = 0;

the mean of f is defined and mean(f) = 0.

Generally speaking, of course, it will be impossible to determine explicit expres-
sions for many of these properties, except in exceptional cases. We have used the
computer to determine certain of the sums above. In previous centuries one might
have looked these up in a table or (gasp!) tried to figure them out somehow. o

R

1.2.7 Inclusions of discrete-time signal spaces

We have already alluded above to some of the inclusion relations that exist
between the various discrete-time signal spaces. Here we discuss this more thor-
oughly and prove some facts about these inclusions.

Theorem (Inclusions between discrete-time signal spaces) Let F € {R,C} and
let T C IR be a discrete time-domain. The following statements hold:

(i) if T is finite then
Ciin(T; F) = ¢o(T; F) = P(T; F) = F°%(T; F) = F'

forall p € [1, 00];
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(i) if T is infinite then € (T; F) C PV (T; F);

(iii) if T is infinite then co(T; IF) C £*(T;F);

(iv) if T is infinite then €P(T;F) C co(T; F) for all p € [1, o0);

(v) if T is infinite and if p,q € [1, o] then {P(T;F) C ¢(T; F) if and only if p < q.

Moreover, the inclusions in parts (iii), (iv), and (v) are continuous.
Proof (i) This is obvious.
(i) For simplicity we consider the case of T = Z.¢; the case of an arbitrary infinite

discrete time-domain follows from this (why?). Let f € £*°(T;F) and denote M = || f||co.
Then

Thus pow(f) < M? and so f is a power signal. That the inclusion is strict is left to the
reader to verify as Exercise 1.2.12.

(i) Let f € co(T; F). By definition of ¢o(T; FF) there exists a finite subset K C T such
that |f(t)| > 1 if and only if t € K. Therefore,

IIflleo = max{1, max{|f()l| t € S}} < 0.

The signal f(t) = 1 for every t € T is in £*°(T; F) but not in ¢o(T; IF) and so the inclusion
is strict. To show that the inclusion of ¢o(T; IF) in £*°(T; IF) is continuous, we note merely
that it is obviously norm-preserving.

(iv) Letp € [1, 0) and let A be the sampling interval for T. By Proposition |-2.4.7, it
follows thatif f € ¢/(T; F) then limy—, 0| f (£)IP = 0. Thus f € ¢o(T; F). In Exercise 1.2.10
the reader can show that the inclusion is strict. To see that the inclusion is continuous,
let (fj)jez., be a sequence in ¢*(T; IF) converging to f. Let e € R.o and let N € Z( be
such that ||f — f]-||£ < Ae?. Then, for each tp € T and for each j > N,

Alf(to) = fito)l’ < A Y IF(t) = FitF = IIf = fill, < AP
teT
Thus ||f — fjllo < € for every j > N, showing that (f;)jez., converges to f in {*(T; F).
Continuity of the inclusion now follows from Theorem |1-3.5.2.
(v) By parts (iii) and (iv) it follows that ¢/(T;IF) c ¢*(T; ) for every p € [1,00).
Moreover, by Proposition [-3.8.10 we have |a|’ > |a|7 for a € FF satisfying |a| € (0,1) and
for p,q € [1, 00) satisfying p < q. This shows that

Y iror =Y IFororr <AL Yo = IFILPIAp.

teT teT teT

Thus {/(T;F) C £9(T;IF). That the inclusion is strict we leave the reader to show in
Exercise 1.2.11. To show continuity of the inclusion, let (fj)jcz., be a sequence in
tP(T; F) converging to f. For € € R.g let N € Z( be such that [|f — f]-||5 <e€flforj>N.
Then, for j > N we have

If = £l = A Y IF@ - FOF < A Y IF6) - f0F = I1f - Il <€

teT teT
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Thus the sequence (f}) jez., converges to f in £9(T; F), giving continuity of the inclusion
by Theorem III-3.5.2. ]

The Venn diagrams for these relationships are shown in Figure 1.20. The

Figure 1.20 Venn diagrams illustrating inclusions of signal
spaces for discrete time-domains: the finite case (left) and the
infinite case (right)

following examples of signals provide representatives for all regions of the Venn
diagram for discrete-time signals defined on infinite time-domains. The “shape”
of these diagrams follow from Theorem 1.2.7 and the exercises referred to in the
proof.

We note that there are no interesting inclusion relations between the spaces
of signals characterised by seminorms in Section 1.2.5; this is just because all of
these spaces are simply the space F" of all signals on the time-domain T. The only
difference between the spaces ffoc("ll",' IF) as p varies is the norm. Also, if T is finite,
then

Co(T; IF) = #(T; F) = {1oc(T; F).

If T is infinite, then, of course, {1,.(T; [F) strictly contains all of the other spaces of
signals.

Exercises

1.2.1 Prove Proposition 1.2.2.

1.2.2 Let A € R,y and consider the finite discrete time-domain T = {jA | j €
{0,1,...,n = 1}}. Show that {e*™™" | m € {0,1,...,n — 1}} is an orthogonal
basis for ¢*(T; C).

The matter of determining when a signal is in one of the {’-spaces can be a little
problematic. Certainly one does not want to rely on being able to explicitly compute
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the p-norm; counting on one’s ability to compute infinite sums is an activity doomed
to failure. In the following exercise you will provide some conditions that, while
simple, are often enough to ascertain when a given signal is in ¢7. It is enough to
consider the case of T = Z.,.

1.2.3 Prove the following result.

Proposition If f € F%° and if lim; e 'ft(:)l = 0 for some a < —% then f €
P (Z0; FF).

1.2.4 LetF € {R,C} and let T be an infinite discrete time-domain. Show that |||,
p € [1, 00], is a norm on &, r(T; TF).

1.2.5 Show that, for any discrete time-domain T, if f, ¢ € ¢*(T;F) then fg € {'(T;TF)
and [[f¢lli < [Ifll2llgll2-

1.2.6 Letp € [1,00]. Show that, for any discrete time-domain T, if f € £*(T;F)
and if g € ¢/(T; IF), then fg € /(T FF) and || fgll, < IIfll-lIgll,-

1.2.7 For the following discrete-time signals defined on T = Z.,, compute their
action, energy, amplitude, average power, rms value, and mean:
(a) f(t) = cos(nb);
(b) f(t) = cos(mt) +1;
(© f(t)=1.

1.2.8 For the following discrete-time signals defined on T = {1,..., N}, compute
their action, energy, amplitude, average power, rms value, and mean:
(a) f(t) = cos(nt);
(b) f(t) = cos(mt) +1;
(© f(t)=1.

1.2.9 Show that, for F € {R, C} and for an infinite time-domain T,

(a) there exists an isomorphism of normed vector spaces between
(Cin(T; IF), [Ilw) and (Cin(Zso; F), [[l),
(b) there exists an isomorphism of normed vector spaces between
(Co(T F), [|-llo) and (Co(Zs0; FF), ||-ll0), and
(c) there exists an isomorphism of normed vector spaces between
(¢P(T; ), ||ll,) and (£P(Zso; F), ||']l,) for each p € [1, o], with the consider-
ation of a constant factor for the norm in the case of p € [1, o).
1.2.10 For FF € {IR, C} and for an infinite discrete time-domain T, show that £/(T; IF)
is a strict subspace of ¢o(T; FF) for each p € [1, 00). Does there exist f € ¢yo(T; FF)
such that f ¢ ¢#(T; F) for every p € [1, 00)?
1.2.11 For F € {R, C}, for an infinite discrete time-domain T, and for p,g € [1, o)
satisfying p < ¢, show that ¢/(T;F) is a strict subspace of {/(T; [F).
1.2.12 ForF € {R, C} and for an infinite discrete time-domain T, show that £*°(T; IF)
is a strict subset of (P (T; FF).
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Section 1.3

Spaces of continuous-time signals

In this section we present the classes of continuous-time signals that will arise in
these volumes. As with our treatment of discrete-time signal spaces, we will refer
back to material from Section [lI-3.8, mainly from Sections lI-3.8.4 and 11I-3.8.7.
Spaces of continuous-time signals are significantly more complicated to deal with
than their discrete-time counterparts. There are two reasons for this.

1. For discrete-time signals there is no (nontrivial) notion of continuity. For
continuous-time signals, continuity is a property of which one wishes to keep
track. That is to say, one wants to include in one’s classes of signals those that
are continuous, possibly with other properties. But one also wishes to allow
for discontinuous signals, both because they arise in practice and because they
arise as limits of sequences of continuous signals. By allowing discontinuous
signals we open ourselves to the question, “How discontinuous must a signal
be before we are justified in ignoring it?” Our answer is that we restrict our
attention to signals that are measurable with respect to the Lebesgue measure.
This is an extremely large class, actually, and serves our purposes well.

2. Another reason for the complication associated with continuous-time signals
is that the simple sums used to characterise the discrete-time (*-signals get
replaced with integrals. If we want our spaces to be Banach spaces, and we do,
this precludes the use of the Riemann integral since it behaves badly with respect
to limits. Thus we must resort to the Lebesgue integral to get the completeness
we need to do any of the useful analysis we present in these volumes.

The upshot of the preceding discussion is that we must add to our list of
prerequisite material from Section 1.2 the prerequisite of measure theory from
Chapter llI-2. A reader who wishes to can, atleast initially, sidestep the discussion of
the Lebesgue integral, pretending that we are only interested in Riemann integrable
functions. However, be aware that in doing this, many important theorems referred
to in this chapter, and presented later in this volume, are actually invalid. Thus the
Lebesgue integral really is essential, even if you wish it were not.

Do | need to read this section? If you are reading this chapter then read this
section. °

1.3.1 The vector space structure of general continuous-time signals

As we did with discrete-time signals, we get started by looking at a big space
of signals in which all of our continuous-time signal spaces will sit as subspaces.
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Definition (FT) Let F € {R, C} and let T be a continuous time-domain. We denote
by FFT the set of maps f: T — [F. The F-vector space structure on [F! is given by

(fi + )@) = A1) + o),  (af)(t) = a(f(D)),

for f, fi, f» € FT and for « € F. We may also use the product of signals fi, f, € FT
defined by

(fuf)(®) = D) f2(B)

which makes F! into an FF-algebra. o

Of course, unless T is a mere point, the vector space F! has a very large
dimension. Indeed, using Proposition I-5.7.5 and Theorem I-5.7.9 one may deduce
that dimg(FFT) = 2¢ard®)_ But, in fact, the vector space FT is far too large to be useful,
and we shall restrict ourselves to spaces with a substantial amount of structure.
Even so, all classes of continuous-times signals we encounter will be infinite-
dimensional. The following result indicates why this is so. In the statement
of the result we recall the notion of the support of a continuous function from
Definition I11-3.8.28(ii).

Proposition (Infinite-dimensionality of continuous-time signal spaces) Let F €
{R,C} and let T be a continuous time-domain with nonempty interior. If [a,b] C int(T)
and if V is any subspace of ' containing the continuous functions whose support is
contained in [a,b], then V is infinite-dimensional.
Proof For simplicity we consider the special case where [a,b] = [0,1] C int(T). A
simple adaptation of the argument gives the general case. For j € Z.( we define

it = {sin(jnt), te[o,1],
(1) =

0, otherwise.

We shall show that the collection of signals {f;} ez, is linearly independent. Indeed,
consider any finite subset {f;,, ..., f; } and suppose that there are constantscy, ..., cx € R
so that

cisin(jimt) + - -+ + ¢ sin(jxmt) =0, t€[0,1]. (1.2)

This means that for any / € {1, ..., k} we have
sin(jimt)(cq sin(jimt) + - - - + g sin(jmt)) =0, t€[0,1]
1
= f (c1 sin(jy7tt) sin(jymtt) + - -+ + ¢ sinz(jlnt) +...
0
+ ci sin(jimtt) sin(jimet) ) dt = 0
1
- EC[ =0.

Here we have used the readily verified equality

0, j#k

1
f sin(jmt) sin(kmt) dt = 7
0 v J=k
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forany j, k € Z. Inany event, we have shown that if (1.2) holds, then¢; = 0,1 € {1, ..., k}.
This shows that the signals with support contained in [0, 1] is infinite-dimensional.
Thus V is also infinite-dimensional. [ ]

One might be inclined to say that, even with severe restrictions to the classes
of continuous-time signals we consider in F', any reasonable class of such signals
will be much larger than any discrete-time signal space. As we shall see, this is
actually not the case in general. Some hint about these matters can be seen from
the fact that many of the normed vector spaces from Sections I11-3.8.4 and 111-3.8.7
are separable.

1.3.2 Continuous continuous-time signal spaces with the co-norm

Let us first consider spaces comprised of continuous signals. The material here
has been gone through thoroughly in Sections 11-3.8.4 and 11l-6.5.2 for continuous
signals, and so we will mainly reproduce the definitions and summarise the im-
portant results. The reader is strongly encouraged to go through the material in
Sections [11-3.8.4 and 111-6.5.2 to really see how everything fits together.

We let F € {R;C} and let T be a continuous time-domain. The spaces of
continuous signals we consider are these:

CXT;F) = {f € F' | f is continuous};
C(c)pt(T; F) = {f € C%T;F) | fhas compact support};
C(T;TF) = {f € CUT; )| for every € € R., there exists a compact set K C T
such that {t e T | |f(t)| > €} € K};
ngd(T,‘ F) = {f € C%(T;TF)| there exists M € R, such that [f(t)] < M
for all t € T}.

The norm we consider for all of these spaces of signals is the co-norm:

Ifllo = sup{|f(®)I | t € T}

The supremum in the definition always exists for f in Cgpt(T; IF), C)(T;F), or

Cg W(LE). If f e CY%T; FF) then ||f|| is generally only defined when T is compact.
Therefore, we will not deal much with C°(T; F) except in this compact case.

Let us reproduce some of the more important facts about these spaces of con-
tinuous functions.

1. If T is compact then
Cgpt(T; IF) = Cg(T; IF) = ngd(T; IF) = C/(T; FF).

The case of a compact time-domain is an important one.
2. If T is not compact then

Cop(T; IF) € GY(T; IF) € Cpy (T TF) € CU(T ).
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This is not difficult to see, but should be thought about to be comprehended
thoroughly. The reader can engage in this sort of thought in Exercises 1.3.2
and 1.3.3. It is also worth making sure to understand that there is no useful
relationship between spaces of continuous functions defined on a bounded but
not compact time-domain T and on its closure cl(T) which is compact. This can
be explored in Exercise 1.3.6. Note that the analogous behaviour is not seen
for discrete-time signals since bounded discrete time-domains are finite. The
reason for this behaviour for continuous-time signals is that an open end of a
bounded interval is, in a topological sense, at infinity. The reader can get some
insight into this in Exercise 1.3.5.

3. If T is closed and infinite then
C)(T; F) = { f € CUT;F) ‘ l}lim ft) = 0}.

4. The normed vector space (C2 (T; ), |||l-) is a Banach space if and only if T is
cp
compact. This is proved as Proposition |1-3.8.38.

5. The normed vector space (Cg(T; IF), ||ll) is a separable IF-Banach space and
is, moreover, the completion of (Cgpt(T; F),|[ll). This is proved as Theo-
rem [11-3.8.40.

6. The normed vector space (Cg 44T ), [|]l) is a IF-Banach space and is separable
if and only if T is compact. These facts are proved in Theorem I1I-3.8.39.

The reader may wish to think about the analogies presented in Table 1.1, which

Table 1.1 The relationships between the discrete-time signal
spaces in the left column are analogous to the relationships
between the continuous-time signal spaces in the right col-
umn; the discrete time-domain T4 is infinite in order that the
analogies hold

Discrete-time signal space Continuous-time signal space

Cein(Ty; IF) Cgpt (T; IF)
£>(T4; F) Chyq(Te; FF)
co(Ty; F) Cy(T; FF)

is essentially a reproduction of Table 1lI-3.1, in order to understand the relation-
ships between the various discrete-time signal spaces and their continuous-time
analogues.

It is convenient to have some notation for the differentiable counterparts of the
continuous signals considered above. Thus, for a continuous time-domain and for
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r € Zy U {c0} we denote

C'(T;F) = {f e F'| fis r times continuously differentiable};
Copt(T;F) = {f e C(T;F) | f has compact support};
Cy(T; F) = {f € C'(f;F)| for every € € R, there exists a compact set
K CIsuchthat{teT| [f(t)| > €} CK};
Cihaq(T;F) = {f € C'(T; F)| there exists M € R, such that [f(t)| < M
forallt € T},
Cper,7(R;IF) = {f € C'(IR;F) | fis T-periodic}.

Note that none of these spaces when equipped with the co-norm are Banach
spaces, cf. Example I1I-3.6.25-2. It is, however, possible to make these Banach
spaces by extending the norm to involve the derivatives. We shall not make use of
this extension in any generality, so do not discuss it here.

An important generalisation of differentiable signals are those that are abso-
lutely continuous or locally absolutely continuous. These will be essential in our
description of systems in Volume 4. If T is compact, we denote by AC(T;F) the
signals on T that are absolutely continuous. For a noncompact time-domain T
the locally absolutely continuous signals on T are denoted by AC,..(T; F). These
signals are discussed in Sections 11-2.9.6 and 11-3.2.3.

In Sections I-3.1.7 and 1-3.2.7 we encountered the notion of piecewise continu-
ous and piecewise differentiable signals on compact continuous time-domains. We
can define these notions on a more general continuous time-domain T by saying
that f € F' is piecewise continuous if, for each compact time-domain $ C T, f5 is
piecewise continuous. We denote the set of piecewise continuous signals on T by
ng(fll“; IF). In like manner we define the set of piecewise differentiable signals on
T, and denote this by Cj,,, (T TF).

The space of piecewise continuous or piecewise differentiable signals is not very
useful. That is to say, we will use these spaces when we are asking that a given
signal have the properties of piecewise continuity or differentiability.

1.3.3 Measurable continuous-time signals with the p-norm, p € [1, o]

Next we turn to spaces of continuous-time signals characterised by their inte-
grals. This has the desirable effect of allowing us to naturally consider signals that
are possibly discontinuous. The price to be paid for this (absolutely necessary, from
a practical point of view) generality is that it now becomes difficult to characterise
these spaces of signals. This should not be surprising, really, as sets of possibly
discontinuous signals can be expected to be pretty crazy. In this section we shall
give a summary of how the L7-spaces of Section IlI-3.8.7 were constructed. The
details are omitted here as the reader can refer back for these. As we go through
our summary we will also present the main results for these spaces.

WeletF € {R, C} and let T be a continuous time-domain. Since the constructions

complex versions?
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differ for L* and L?, p € [0, o0), we present them separately, starting with L*(T; IF).
Recall that for a measurable function ¢: T — IF we define

esssup{d(t) | t € T} =inffM € Ry | A({t € T | ¢(t) > M} = 0)}.
Then we define
LT F) = {f: T—F| fismeasurable and esssup{|f(t)|| t € T} < co}.
On L®)X(T; F) we define a seminorm ||||. by

I flleo = esssup{|f(t)|| t € T}.

In Proposition 1l1-3.8.45 we verify that (L*)(T;F), ||||-) is a seminormed F-vector
space. The signals of zero norm are precisely

Z¥(T;F) = {f € LYT;F) | At e T| f(t) # 0}) = 0}.
Thus signals in Z*(T; F) are those that are zero almost everywhere. We then define
L®(T;F) = L(T;F)/Z(T; F).

Thus elements of L*(T; ) are to be thought of as equivalence classes of signals,
where two signals f and g are declared to be equivalent if their difference f — ¢
is almost everywhere zero; that is f and g are equal almost everywhere. As we
indicate in Notation 11I-3.8.48, we shall make the convenient abuse of writing an
equivalence class in L*(T;F) as f, with the understanding that in doing so we
are really consider f and all signals that agree with it almost everywhere. In
Theorem [11-3.8.47 we show that (L*(T; FF), ||||) is a Banach space, and in Proposi-
tion 111-3.8.49 that it is only separable in the (useless) case when T = {a} for some
aelR
Now let us turn to the construction of the spaces L? for p € [1, o0). We define

LY(T; F) = {f T—TF ‘ f is measurable and flfl” dA < 00}.
T

The integral one must use for the results in this section to be valid is the Lebesgue
integral, not the Riemann integral. Conceptually, at least for a finite duration, it is
not too dangerous to sidestep this technical matter. However, we do recommend
that the reader at some point put in the slight effort needed to understand the
Lebesgue integral, and why it, and not the Riemann integral, is suited to our needs
here.® In any case, the norm we use here is the p-norm:

1Ol = ( fT I d)\)l/p.

®We have mentioned this elsewhere, but the idea is so simple and important that we will repeat
it again here. The big advantage of the Lebesgue integral over the Riemann integral is that there are
limit theorems that hold for the former that do not hold for the latter. Most crucially, the Dominated
Convergence Theorem for the two integrals have a completely different character. It is really this,
and not other stuff that you may read about, that gives the Lebesgue integral its power.
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In Proposition [lI-3.8.57 we show, using the Minkowski inequality, that
(LY(T; F); |I1ll,) is a seminormed F-vector space for every p € [1, o). The signals in
L»)(T; F) that have zero norm are

ZP(LF) = {f e LY(L;F) | A({t € T| f(t) # 0}) = 0}
i.e., those signals that are almost everywhere zero. We then define
L (T F) = LY (T IF) /27 (T F)

foreachp € [1,0). As we described with L*(T; IF) above, we shall denote elements
of LP(T; FF) as is they were signals and not equivalence classes of signals. In The-
orem |1I-3.8.59 we show that (LP(T; F), ||-||,) is a IF-Banach space, and is, moreover,
the completion of (Cgpt(T; IF), ||-ll,) for each p € [1, 00). In Proposition Ill-3.8.61 we
show that L*(T; [F) is separable.

Remark (Signals versus equivalence classes of signals) We shall very often
be concerned with signals in L% (T;F) rather than equivalence classes of signals
in L?(T;F). However, there will also be occasions when it is essential to think
of equivalence classes of signals because we wish to utilise the Banach or Hilbert
space structure of the spaces L7(T; IF). We shall generally try to be careful just which
space, LP)(T; IF) or L*(T; IF), we mean. There are, however, occasions when it is really
not so important whether we are thinking about signals or equivalence classes of
signals, e.g., in cases when we are concerned with the signal only inasmuch as we
are concerned with its integral. Therefore, we may be a little careless with our
notation at times. This should not cause any problems. Indeed, standard practice
is simply to not distinguish between signals and equivalence classes of signals, and
to simply use the notation L”(T; F) in all cases. However, in the interests of being
sufficiently pedantic, we shall make this distinction in these volumes. )

In Table 1.2 we depict the interrelationships of various continuous-time signal

Table 1.2 The relationships between the discrete-time signal
spaces in the left column are analogous to the relationships
between the continuous-time signal spaces in the right col-
umn; the discrete time-domain T4 is infinite in order that the
analogies hold

Discrete-time signal space Continuous-time signal space

Cfin (le IF) Cpt (TC/ IF)
P(Ty; F) L (T,; F)

spaces to their discrete-time counterparts. We comment that L*(T;F) does not
appear in this table, essentially as a consequence of its not being the completion of
any space of continuous continuous-time signals.
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Another sometimes useful class of merely measurable signals are those that
have bounded variation. We denote by BV(T; ) the set of [F-valued signals on T
that have bounded variation. For infinite time-domains, we denote by TV(T; F) the
set of [F-valued signals on I that have finite variation. These signals are discussed
in Sections I-3.3 and 11-3.2.2.

1.3.4 Periodic continuous-time signal spaces

Unlike the situation for discrete-time signals, there are nontrivial things one can
say about spaces of periodic continuous-time signals.
Welet F € {R,C} and let T € R,. We begin by defining

Cﬁer,T(lR, F) = {f € C°(R;F) | fis T-periodic}.
The natural norm to use on this space is

Ifllee = supllf(®)I| t [0, T}
One can verify that (Cger,T(]R; IF), ||-l) is a Banach space.

Proposition ((CgerT(]R; 1), |Ill..) is a Banach space) For F € {RR, C} and for T € Ry,
(Cger/T(]R; IF), |||l is a separable Banach space.

Proof Since Cger,T(IR; IF) is a subspace of Cg 1R ), if (fj)jez., is a Cauchy sequence in

Cger 7(IR;TF) this sequence converges to f € Cg 44(R; €) by Theorem [11-3.8.31. We will
show that f € Cper,7(R; IF). Let t € R. Then the sequences (f;(t));ez., and (f(t + T))jez.,
are identical. Thus, since they converge to f(t) and f(t + T), respectively, we must
have f(t) = f(t + T) and so f is T-periodic. Separability of Cger’T(]R; IF) follows from
Corollary 111-3.8.37 along with the fact that the map f ~— f][0, T] is an injective map

from Cger 7(IR; FF) into a subspace of Co([0, T); F). [

There are also periodic analogues of the classes of differentiable signals consid-
ered at the end of Section 1.3.2. Thus, for T € R.q and for r € Z.,, we define

Cler (R F) = {f € CU(R;F) | f is T-periodic}.

Now we turn to adaptations of the various LP-spaces to periodic signals. Here
one has to contend with the fact that the spaces of signals are really spaces of
equivalence classes of signals. Let us first clarify how this equivalence relation
interacts with periodicity. Recall that the equivalence relation is that two signals
f,g: R — F are equivalent if (f — g)(t) = O for almost every ¢t € R.

Lemma (Periodicity and equivalence classes of signals) For F € {R,C}, for
T € R.o, and for a measurable signal f: R — [ the following statements are equivalent:

(i) there exists a T-periodic measurable signal g: R — F such that (f — g)(t) = 0 for
almost every t € IR;
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(i) £(t + T) = £(t) for almost every t € R.
Proof (i) = (ii) Let j € Z( and let

Zip={te[jT,G+1DT)| ft) # g®)},
Zip={te[jT,(G+1T)| f(t+T)# g(t+T)}.

Both Z;; and Z;, have measure zero by hypothesis. If t € [jT, (j+1)T)\(Z;1 U Z;>2) then
f6)=g(t) =gt +T) = f(t+T).

Thus, taking Z; = Z;1 UZj» and A; = [jT,(j + 1)T) \ Z; we see that f(t) = f(t + T) for
every t € Aj. Thus f(t) = f(t + T) for every t € UjezA; and since R\ UjezA; = UjezZ;
has measure zero, our assertion is established.

(i) = (i) For j € Z define

Zi={te[0,T)| f(t+T)# f(t)}.

We claim that Z i has measure zero. Let us verify this for j € Z, the situation for
J € Z«o being entirely analogous. For j € Z.( we prove our claim by induction on j.
The claim is true by hypothesis for j = 1. Suppose it true for j € {1,...,k}. Then define

N ={te[0,T)| f(t+kT)# f(t+ (k+1)T)},
noting that N has measure zero by hypothesis. If t € [0, T) \ (Ni U Z;) then
ft+ (k+1)T) = f(t+kT) = f(1).

Thus Z;41 € Ny U Z; and so Zj,; has measure zero.
Now define i: [0,T) — F by

h(t) = 0, te U]»eZZ]-,
f(t), otherwise.

Note that UjezZ; has zero measure. Therefore, by Proposition Il-2.6.10 it follows that
h is measurable. Clearly (f —h)(t) = 0 for almost every t € [0, T). Now define g: R — F
to be the T-periodic extension of / to give this part of the lemma. |

We may now sensibly define what we mean by a periodic equivalence class
of signals. Following what we did above in our construction of the L”-spaces, we
define

Z(R;F) ={f: R — F| fismeasurable and f(t) = 0 for almost every t € R}.

We then make the following definition.
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Definition (Periodic equivalence classes of signals) Let F € {R,C} and let T €
R.o. For a measurable signal f: R — [, the equivalence class f + Z(R; ) is
T-periodic if there exists a T-periodic signal g such that

f+Z(R;F) = g + Z(R; F). .

One way to read Lemma 1.3.5 is to say, “Equivalence classes of periodic signals
are in 1-1 correspondence with periodic equivalence classes of signals.”

With the above annoying technicalities out of the way, we can now proceed to
define L7-spaces of periodic signals. We let IF € {R,C} and T € R.(. We first define

L;O:r),T(R; F) ={f| f measurable, f T-periodic, and
esssup{|f(t)| | t€[0,T)} < oo}

and then define
L, (R, F) = L5 (R; F)/Z(R; F).

On L}‘;"er,T(lR; IF) we use the norm

IfIl = esssup{|f(t)l | t€ [0, T)}

For p € [1, o) we define

L:fe)r/T(lR; IF) = { f ' f measurable, f T-periodic, and f[(; T)I fOFdA < oo}

and then define

L (R F) = LY (R;IF)/Z(R; ).

On Lg o 7(IR; IF) we use the norm

1/p
Ifll, = ( f[o o dA) .

By Lemma 1.3.5 it follows that, for each p € [1, o], the map
f+ZF(R;TF) & fI[0,T) + ZP([0, T); IF)

(R;F) to LP([0, T); F). From this we
conclude that (L’; er/T(IR; IF),[|-ll,) is a Banach space, and is separable if and only if
p €[1,00).

is a norm-preserving isomorphism from L’; o T
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1.3.5 Continuous-time signal spaces characterised by seminorms

We shall also have cause to work with spaces of signals that are not well
characterised using a norm. We shall do this by making use of seminorms, and we
refer to Sections Il1-6.5.2 and 11I-6.5.4 for details. Here we shall merely translate
the notation from these previous efforts into our signal language, and summarise
the relevant definitions and results.

We let T C R be a continuous time-domain and consider the following spaces
of signals:

CXT;F) = {f € F' | fis continuous},
L? (T; F) = { feF"| fIK € LY(K; ) for every compact subinterval K C T},

loc

for p € [1, 00]. As always, we denote
Z/(T;F) = {f € LY(T;F) | A(te T| £(5) #0}) = 0),

and then denote »
Lfoc(rlf; IF) = LlﬁC(T; IF)/ZP(T; FF).
The comments made in Remark 1.3.3 concerning signals versus equivalence classes
of signals are also valid here.
The topologies on these spaces are defined by families of seminorms, one for

each compact subinterval K € T. For C°(T; IF) we use the seminorms

”f”]K,oo = ||f|]I<”001

while for L? (T;F) we use the seminorms

I fllkp = /K, p e[l o]

Unlike the discrete-time case discussed in Section 1.2.5, the spaces of signals we
describe above are all different, in that C°(T;F) # LfOC(T; ) for any p € [1, 0]
(obviously) and that L} (T;F) # LI (T;F)ifp # 4.

Let us outline some of the important features of these spaces of signals.

1. We have
Copt(T; IF) = CY(T; IF) = Cpaa(T; F) = CU(T; F)
and
L*(T; F) = LfOC(T; IF), p € [1,00],

if and only if T is compact. Thus C%(T;F) and LTOC(T; IF) are normable if and
only if T is compact.

2. When T is not compact, then C%(T;F) and LfOC(T; F), p € [1, 0], are Fréchet
spaces, as we saw in Theorems I11-6.5.3 and I1I-6.5.5.

3. Convergence in the spaces C°(T; IF) and LfOC(T; FF), p € [1, 0], has the description
using seminorms from Proposition 11I-6.2.11. Thus a sequence (f;)jcz., in one
of these spaces converges if and only if, for every compact subinterval K C T,
the sequence (fj|K)jez., converges in C°(K; F) or L?(K; IF), respectively.
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1.3.6 Other characteristics of continuous-time signals

Let us provide for continuous-time signals the analogous definitions from Def-
inition 1.2.4.

1.3.7 Definition (Signal characteristics) Let F € {IR, C} and let T be a continuous time-
domain and let f: T — [ be an F-valued signal on T. Define Ty, = inf T and
Tmax = sup T. We allow either or both of Tyin and Thax to be infinite in magnitude.

i) If f € LO(T;F) then ||f|l; is the action of f.
(||) If f € LO(T; ) then ||f||? is the energy of f.
(i) If f € LT, ) then ||f|l- is the amplitude of f.
(iv) If the limit

1 T+
2
T_ILI]];}“m T+ - T_ ‘['1:_ |f(t)| dt

T+ —>Tmax

exists we denote it by pow(f) and call it the average power of f. The set of
signals whose average power exists are called power signals and the set of

these is denoted by LP°¥(T; IF).

v) If f € LP°(T; FF) then rms(f) = +/pow(f) is the root mean square value (rms
value) of f.

(vi) The mean of f is given by

T,
mean(f) = lir}}n T ft)dt,
T+—)Tmax N
if the limit is defined. °

1.3.8 Remark (The importance of p € {1,2, }) As we remarked on in Remark 1.2.5,
the cases of L¥-spaces for p € {1,2, o} are distinguished in applications. For the
continuous time versions of these results, this will be borne out in Sections 5.3
and 6.3 in a general way. .

Let us give a couple of examples illustrating the above ideas.

1.3.9 Examples (Signal characteristics)

1. Let us consider the unshifted square wave O, o of amplitude 4 and frequency
v defined on T = RR. It is straightforward to see that |0, ./l = 4 and that O,
has undefined action and energy. To compute the average power we note that
for sufficiently large T we have

al 2 gy < T
e [ ars T
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by direct calculation. Therefore, taking the limit as T — oo, we get pow(O,.,0) =
1a?. This therefore immediately gives rms(dy,,0) = %a. For the mean of the

signal we have, for sufficiently large T,

alT| T alT]
o7 < ﬁf Dayo() df < —o,

1
>a.
2. Next let us consider the unshifted sawtooth A,,( of amplitude 4 and frequency

v defined on T = R. Here we compute

therefore giving mean(Qd, ) =

a?|T| T ) a?[T]
<
37T ~ 2Tf [Bamo(®)" df < 3T ’

i _ 1.2 _ 1
giving pow(4,,,0) = 34° and rms(4,,,0) = 54 For the mean we compute

alT) ’ a[T]
—= < — | Au)dt< )
2T _ZTIT o)At < =7

giving mean(A,,,) = %a. °

The set of power signals is often not given much discussion. However, this
class of signals is a little unusual if one digs into its mathematical structure. For
example, we have the following result.

1.3.10 Proposition (The set of power signals is not a vector space) If F € {R, C} and
if T is an infinite continuous time-domain then LP°"(T; IF) is not a subspace of F".
Proof We shall provide a counterexample to the subspace structure in the case where
T = [0, 00), and the case of a general infinite time-domain follows by simple manipu-
lations of this example.
Define signals

, te€[nn+1),nevenand positive,
A = .
0, otherwise

and

1, tel2j+1,2j+2)C[n!,(n+1)!),n>2andeven,and j € Z,
ft)=3-1, tel2j2j+1)C[n,(n+1)!),n>2and odd, and j € Z,
0, otherwise.

Computations give
ﬂ ’ [T] +1
et [Nnorars T

G ) m+1
_Tflf(t)l at < 141
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from which we ascertain that pow(f;) = pow(f,) = 3. In particular, f;, f» € LP°¥(T; F).
However, we claim that f; + f, ¢ LP°Y(T;F). Indeed, if n is a large even integer we
may compute

M- -m=-2)!+---+1

o [ 1o+ popa -

n!
_(m=-D+n-3)1-n-2)+---+1(1-2)
B n!
< (n—l)!,
- n!
and if n is a large odd integer we compute
1 ™ n—m-1+---+1
o [ iho+ poar = ===
_(m=-Dn-1)+2!3-1)+1
= p
_(=Din-1)
> o

Therefore we have
lim — f It + ) dt =

lim —f At + HPFdt =1,

n—00
n odd
implying that the limit
1 (T
tim 1 [ 1)+ 0P
does not exist, as desired. ]

As we shall see in Proposition 1.3.12, if T is finite then LP°¥(T; [F) is an [F-vector

space.

1.3.7 Inclusions of continuous-time signal spaces

In this section we explore the relationships between the various continuous-

time signal spaces. As we shall see, the relationships are more or less simple to
understand for finite time-domains, although not as simple as for bounded discrete
time-domains. For infinite continuous time-domains, the story is complicated,
perhaps surprisingly so.

First of all, recall from Section 1.3.2 that if T is compact then

Cop(T; IF) = CY(T; IF) = Cyy(T; FF) = C*(T; F)
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and if T is not compact then
Cgpt(T; IF) ¢ G(T;; IF) € Cpyy(T; IF) € C(T; ).

These inclusions are easy to understand so we do not dwell on them. Instead we
focus on the relationships between the L7-spaces.

Theorem (Inclusions between continuous-time signal spaces) Let F € {R,C}
and let T C R be a continuous time-domain. The following statements hold:

(i) LO(T;TF) N LE(T; F) € LO(T; F);

(ii) Cgpt(T; FF) is dense in LP(T; IF) for all p € [1, o0);

(iii) if T is bounded then L*)(T;F) C L®)(T; F) for any p € [1, c0);

(iv) if T is bounded then LP(T;F) C LY(T;F) for q < p € [1, o).
Moreover, the inclusions in parts (iii) and (iv) are continuous.

Proof (i) We have

IfI2 = fT (P dt = fT FOIfGIdt
< fllo fT FOId = Iflllflh,

as desired.
(i) This was proved as Theorem I1I-3.8.59.
(iif) The inclusion is simple:

A1 = fT FoPdt <AL, fT d < co.

To show that the inclusion of ¢*(T; ) is continuous, let (f})jez., be a sequence in
¢=(T;F) converging to f. Then, for € € R,, there exists N € Z( such that

esssupf{|f(t) - fi(HIP | t € T} < %,r)
for j > N. Then
fT If(5) - fi(hlP dt < €P,

and so [|f — fill, < € for every j > N. Thus the sequence (f)jcz., converges to f in
LP(T; F) and so the inclusion of L*(T; F) in LP(T; FF) is continuous by Theorem IlI-3.5.2.
(iv) Let g < p and let f € L¥(T; F). Let

A={teT]| |f#)>1}.

j;rlf(t)lth: L\Alf(t)lth+ﬁlf(t)lth

< fT rondrs fA FOP dt
< fTdt+ﬁr|f(t)|ﬁdt=||f||p+A(1r)<oo,

We then have
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so giving f € L@(T;TF). To show that the inclusion of LP(T; F) in L(T; FF) is continuous
for p > g, define r = £ so that 1 < r < p. Note that if f € L¥)(T; F) then

(fOIN" =1f®OF,

implying that [f|7 € LO)(T;F). Define g(t) = 1 for t € T. Using Holder’s inequality,
Lemma I11-3.8.54, for |f|7 € LY)(T;F) and for g € L¢)(T; F) we have

1/r 1/7
fT I dt = fT |f<t>|q|g<t>|dts( fT <|f<t>|q>f) ( fT 1dt)
<([ |f<t>|P)q/pA<T><P—q>/P.
T

Thus, for f € L®)(T; F), we have

1Ally < IALACT) .

Now let (fj)jez., be a sequence in LP(T; IF) converging to f. Lete € Rypand let N € Z

be such that c

||f_f]'||p S—53
A qp

for j > N. Then [|f — fjll; < € for j > N and so the sequence (f) ez, converges to f in
L7(T; F). Continuity of the inclusion now follows from Theorem IlI-3.5.2. [

For power signals, we have the following correspondences.

1.3.12 Proposition (Inclusions involving continuous-time power signals) Let T be a
continuous time-domain. The following statements hold:

(i) if T is finite then LP°V(T; F) = LO(T; F);

(ii) if T is infinite and f € L®(T; F) then pow(f) = 0;

(iii) if £ € L)(T; TF) is a power signal then pow(f) < |Ifl[%;
) g e i find ow (- M MR

(iv) if T is infinite then LP*¥(T; F) C L, (R; IF).

Proof (i) This follows immediately from the definitions.
(il) We shall show that for T = [0, o), and the other cases can be deduced from this
easily. For T > 0 we have

! 1 (7 1
[roraesing = 7 [rorars a2

The result follows since as T — oo, the right-hand side goes to zero.
(iii) In the case where T is finite with length L we have

pow(f) = % fT FOF dt < %nfni, f[ dt = I
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For the infinite case we consider T = [0, o), noting that other infinite time-domain
cases follow from this. We compute

N B e 2 1 (T 2
= — < — =
pow() = Jim . [ IR A <IfIE Jim 7 [ =172,

as desired.
(iv) Let [a,b] be a compact subinterval of T. Provided that T > 0 is sufficiently
large that [a,b] C [-T, T] we have

b T
2 2
fa|f(t)| dtsITlf(t)l dt.

In the limit as T — oo the quantity
1 ("o
7 | vora

is finite. Thus there exists a sufficiently large Ty so that the preceding quantity is finite
when T > Tj. From this it follows that

b
To f |f(t)[* dt

is finite, showing that fl[a, b] € L@([a, b]; F). The result now follows from part (iv) of
Theorem 1.3.11. [ |

1.3.13 Remark Suppose that T is infinite. Since there exists nonzero signals in L?(T; F) it
follows that there are nonzero signals f for which pow(f) is not zero. Thus pow(-)
is not a norm (even if the LP°"(T; IF) were a vector space, which it is not for infinite
intervals, by Proposition 1.3.10). o

The Venn diagrams of Figure 1.21 show the relationships between the common
types of signals for both finite and infinite continuous time-domains. For finite
time-domains, the inclusions are straightforward, or follow from result proved
above. For infinite time-domains, the following examples complete the Venn dia-
gram characterisation, when combined with the results already established above.

1.3.14 Examples (Continuous-time signal space inclusions)
1. The signal fi(t) = cost is in L®)(R; FF), but is in none of the spaces L¥(R; F) for
1<p<oeo.
2. The signal fo(f) = 150(f)15 is not in LO(R; ), although it is in L?(RR; F); one
computes ||f]l = 1.
3. Thesignal f3(t) = 1isin L®)(R; F) and LP°¥(RR; IF) but not in L?(RR; IF) or LY(RR; FF).
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Figure 1.21 Venn diagrams illustrating inclusions of signal
spaces for continuous time-domains: the finite case (left) and
the infinite case (right)

. The signal

0, otherwise

is in LY(RR; F) but not in LV (R; F) for p € {2, co, pow}.

. The signal
logt, te€(0,1],
) =
) {O, otherwise

is in LP(R; FF) for p € [1, ), but is not in L&) (RR; FF).

. The signal
— +logt, te(0,1],
fo(t) = %w t>1,
0, otherwise
is in L@(RR; F) but in neither LY (R; F) nor L&)(IR; IF).
. The signal
1+logt, te(0,1],
fr(t) =41, t>1,
0, otherwise

is in LP°"(IR; FF) but not in LV(IR; F) for p € [1, co].
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8. For j € Z., define

i teGiti),
8i 0, otherwise.

Then one checks that the signal
i) =) &)
j=1

is in LP°"(RR; F) and LY(IR; F) but in neither L?(RR; F) nor L®(R; FF).
9. For j € Z., define

1, te @2,
8i = 0, otherwise.

Then one checks that the signal

Aty =Y 8
j=1

is in L®(IR; F) but not in L¥(R; FF) for p € [1, 00) U {pow}. o

Since the spaces of continuous-time signal spaces characterised by seminorm:s,
defined in Section 1.3.5 are characterised by their norms over compact subsets of
the time-domain, the inclusions for these spaces are the same as those for spaces
of normed signals defined on compact time-domains:

CYT;F) c L (T;F) c Lf (T, F) c L

loc loc

(T; F). (1.3)
We allow the reader to explore why these inclusions are strict in Exercises 1.3.9
and 1.3.10.

1.3.8 Notes

Proposition 1.3.10 is proved by Mari [1996].
Many of the signals from Example 1.3.14 are given by Doyle, Francis, and
Tannenbaum [1990].

Exercises

1.3.1 For the F-vector space C°([0, 1]; F) of continuous [F-valued functions on [0, 1],
consider the vectors defined by the functions fj: t - t/, j € Z,. Show that
the set {f; | j € Zo} is linearly independent.

1.3.2 By means of examples, show that the inclusions
Cipu((0,11;R) € CR(0, 11 R) © Cgy((0, 1, R) < C((0, 11, R)

are strict.
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1.3.3

1.3.4

1.3.5

1.3.6
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By means of examples, show that the inclusions

Copi([0, 00); R) € C{([0, 00); R) € Cp ([0, 0); R) € C°([0, 0); R)
are strict.

For each of the following five signals f: (0,1] — R, answer the following
questions with concise explanations:

1.is f € Ccpt((O,l];lR)?
is f € C)((0,1]; R)?
is f € G ,((0,1]; R)?
is f € C%((0,1]; R)?
is f € L%((0,1]; R)?
. if possible, find a sequence in Ccpt((O,l];IR) converging to f in
(CH((0, 1L R), [Iles)s
7. if possible, find a sequence in Cpt((0 1;R) converging to f in
(L*((0, 1L R), IIIl2)-
Here are the functions:
te (1]
(@) f(t)= {t__’ ety
b) f(t)=t""%
0, te(0,3],
c) f(H)= 1, te (1)
) f(H=t7
(e) f(h)y=1+¢t
Let F € {R, C}. Show that for each pair of normed vector spaces below, there
exists between them a norm-preserving isomorphism:

(8) (C4(10, 1); F), Illl) and (G ([0, o0), IFe);

(b) (Cpya((=1,0L;TF), [1lo) and (C} 4 (=00, 0], [l);

(€) (CRyy((0,1); ), Ileo) and (CPyy (R, [I-lle)-

Find a signal f € C),((0,1];R) for which there does not exist a signal fe
C°([0,1]; R) such that f = £](0, 1].

079’%93!\’

The reader should compare the conclusions of the following exercise with those of
Exercise 1.3.6.

1.3.7

Let F € {R,C} and let T be a continuous time-domain. For f € FT define

f e FIM by
~ o |f), teT,
fy= {0, tec(T)\'T
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For p € [1,0] show that the map f ~ f is an isomorphism of the normed
vector spaces LP(T; F) and L7 (cl(T); F).

1.3.8 For F € {R, C}, for a continuous time-domain T, and for p,q € [1, o] with
p < g, show that LEZ)C(T; IF) C L{z)c(T; F).

1.3.9 Let T = [0, o). Find signals to illustrate that the inclusions of (1.3) are strict.
1.3.10 Let T = (0, 1]. Find signals to illustrate that the inclusions of (1.3) are strict.

The matter of determining when a signal is in one of the L?-spaces can be a little
problematic. Certainly one does not want to rely on being able to explicitly compute
the p-norm; counting on one’s ability to compute integrals is an activity doomed
to failure. In the following exercise you will provide some conditions that, while
simple, are often enough to ascertain when a given signal is in L”. We concentrate
on the cases of T = R since a signal on any time-domain T can be extended to R
by asking that it be zero on R \ T.

1.3.11 Answer the following questions.
(@) Prove the following result.

Proposition If F € {R, C}, if f € F® is measurable and satisfies

(i) Ifl° € L (R; F) and

(i) Timyy— e 'ft%)' = 0 for some a < —%

then f € LP(R; F).

(b) Is the assumption that [fP € Lf(l))c(lR; IF) necessary for f to be in LP(R; F)?

Lf®)]

(c) Is the assumption that limye

to be in L¥(R; IF)?
1.3.12 Show that, for any continuous time-domain T, if f, ¢ € L@(T;F) then fg €
LO(T; F and [Ifglh < [IfI1Igll-
1.3.13 Letp € [1, co]. Show that, for any continuous time-domain T, if f € L*(T; [F)
and if g € LP(T; IF), then fg € LP(T;F) and || fgll, < IIfll-lIgll,-
1.3.14 Let f: R — [F be a continuous-time T-periodic signal with the property that

= 0 for some a < —% necessary for f

T
fo If(t))* dt < oo.

Show that f is a power signal and that

T
pow(f) = %I} If(t)lzdt.

1.3.15 For the following continuous-time signals defined on T = [0, c0), compute
their action, energy, amplitude, average power, rms value, and mean:
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(a) f(t) = sin(2nt);
(b) f(t) =sin(2mtt) + 1;
© f) =15

1.3.16 For the following continuous-time signals defined on T = [0, 1], compute
their action, energy, amplitude, average power, rms value, and mean:
(@) f(t) = sin(2mt);
(b) f(t) =sin(2mt) +1;

B O’ t:O/
(c) f(t)= % t € (0,1].

1.3.17 Let f be a continuous-time power signal defined on T = R. Show that
the signal f, defined by f.\(t) = f(At) is a power signal and that pow(f,) =
pow(f).

1.3.18 Let T = [0, o).

(a) Find a continuous signal f: T — R so that f € LY(T;R) and f ¢
L@(T; R).
(b) Find a continuous signal f: T — R so that f € L®(T;R) and f ¢
LO(T; R).
1.3.19 Show that LY(R; R) N C)(R; R) € LY(R; R).
1.3.20 Letp € [1, o). Is it true that

LP)([0, c0); TF) N C°([0, o0); TF) € CY([0, o0); F)?

If this is true, prove it. If it is not true, demonstrate this with a counterexam-
ple.

1.3.21 LetF € {R,C}, let f € LY(R;F),let C € IF, and let g s: R — F be defined by

gC,f(t) =C+ L f(T) dr.

Do the following.
(@) Show that the limits lim;_,_o, gc ¢(t) and lim;_,., gc ¢(t) exist.
(b) If gcr € L?)(R; FF) for some p € [1, o), show that limy_c gcs(t) =0.
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Section 1.4

Signals in multiple-dimensions

We have thus far in this chapter considered signals taking values in [F € {R, C}.
And for the main developments in this volume, we will mainly work with signals of
this type. However, in Volume 4 we will consider systems, and in this context it will
be important to allow signals that take values in a vector space. It is important and
useful to consider situations where signals take values in a general vector space
with some topological structure, such as a Banach or Hilbert space or a locally
convex topological vector space. That being said, in these volumes we will only
work with signals that take values in a finite-dimensional F-vector space where
the matter of topology is straightforward. One can also work with signals that
have a domain that is not time-domain, but a more general object. For example,
in many physical problems the independent variable is not just time, but space,
or space and time. We shall not have a great deal to say about these situations in
these volumes, but some context for this is given in Section V-3.1.

In this section we shall mainly provide notation for signals with codomains that
are general finite-dimensional vector spaces.

Do | need to read this section? The material in this section is a relatively
straightforward adaptation of the material already presented in this chapter. As
such, the main contribution of the constructions is to give notation. Therefore, the
section can be safely skipped until the notation is subsequently required. o

1.4.1 Real analysis in finite-dimensional R-vector spaces

In various places—including Chapter Il-1 and Sections 111-2.6.4, 111-2.6.5,
I11-2.7.7, and 1ll-2.7.8—we have done analysis in spaces with domain and/or
codomain having dimension larger than 1. When we did this, we always worked
with R". This is typically an acceptable thing to do, and is certainly what one
does typically in practice. However, sometimes we will work in settings where
both algebraic structure and analysis are important. In such cases, it is desirable to
work with something more abstract that R” since R", and its pesky standard basis,
can obscure the algebra. This is all a way of saying that we will sometimes work
with analysis in finite-dimensional R-vector spaces. In this section we illustrate
that this is trivial.

We first note that a choice of a basis & = {ej,...,e,} for a R-vector space V
establishes an isomorphism 5 of V with R" by

vier + -+ ve, o (U1,...,0,);

Example 1-4.5.49. This then establishes a norm ||| for V by |[vllg = [ltgllr:.
This choice of norm for V is immaterial as all norms for V are equivalent by
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Theorem Ill-3.1.15. Thus the idea is that, in practice, one can choose any basis and
then use the standard norm for R". For theoretical purposes, we can just assume
that V has a norm which we just typically denote by ||-||.

Now, because all norms for V are equivalent, any concept defined using normes,
but not dependent on any particular norm—i.e., not depending on the numerical
values produced by the norm, but just the norm properties—can then be used for V,
just as if it were IR". Let us list some of these concepts, and give notation attendant
to their use with general finite-dimensional R-vector spaces.

1. One can talk about topological concepts such as openness, closedness, compact-
ness, interior, closure, boundary;, etc., in any finite-dimensional IR-vector space
(indeed, in any normed vector space as we saw in Section II-3.6).

2. If U and V are finite-dimensional R-vector spaces, if O C U is open, and if
f: O — 'V, then we know what it means for f to be continuous, differentiable,
continuously differentiable, r-times continuously differentiable, or infinitely
differentiable, following Sections II-1.3 and II-1.4. We shall mainly use this sort
of generality in the case that U = IR, and so f is to be thought of as a V-valued
signal, in the usual manner in which we think of signals.

3. We shall adopt notation for derivatives from Section Il-1.4. That is, with U, V,
O, and f as in the preceding item, we will denote the rth derivative of f atx € O
by D' f(x) € L(U; V) when this derivative exists.

4. The vector-valued integral discussed in Section Ill-2.7.7 can be extended to
functions taking values in a finite-dimensional R-vector space, just by doing
the integration component-wise in a basis.

We shall frequently encounter linear maps between finite-dimensional vector
spaces, especially in linear system theory that we consider in Chapter V-6. Spaces
of linear maps inherit norms as in Definition II-1.1.12 or Theorem |11-3.5.14. For our
purposes, if (U, [-|lu) and (V, ||-|lv) are finite-dimensional normed R-vector spaces,
the precise norm ||-[| ;v on the finite-dimensional vector space L(U; V) is not so
important. We shall typically require that the norm satisfy the submultiplicative
property

L@ < 1Ll llullu. (1.4)
This property is enjoyed by the induced norm by Theorem IlI-3.5.14(ii). How-
ever, it is also enjoyed by other norms, e.g., by the Frobenius norm by
Proposition II-1.1.16(v).

There are many other constructions we will perform with vector space-valued
functions, and will introduce these as we go along.

For right now, let us adapt to vector space valued signals the spaces of signals
we developed in Sections 1.2 and 1.3.
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1.4.2 Discrete-time vector space-valued signals

We let F € {R,C}, let T C Z(A) be a discrete time-domain, and let (V, ||||) be a
finite-dimensional normed [F-vector space. We select a basis {ey, ..., e,} for V. For
f: T — V we write

f(t) = fi(t)er + -+ + fu(t)en, teT.

We then have the following classes of discrete-time V-valued signal spaces:

VT is the space of all maps from T to V;

Can(T;V) = [f € VT | f € Can(TS ), j € {1,...,m});

co(T; V) ={f e VI'| fieco(T;F), jefl,...,n}};

(V) ={feVT| fe’/(T;F), jel{l,...,n}},pell,

lioe(T; V) = VT,

The notation is the obvious adaptation of the spaces of scalar-valued signals from
Section 1.2.

Let us illustrate the structure one has on these spaces. First of all, the space VT
is an [F-vector space with the natural vector space structure inherited from V:

(f1 + 2)(&) = () + fo(t),  (@f)(t) = a(f(1)).

Moreover, Cn(T; V), ¢o(T; V), &/(T; V), and €,.(T; V) are subspaces of VT. As with

scalar-valued signals, these spaces are finite-dimensional if and only if T is finite.
Now let us consider the topological structure of these signals spaces. For the

spaces Csin(T; V), Co(T; V), and £°(T; V), we use the co-norm which is defined by

Iflleo = sup{llf(BII ¢ € T}.

For the spaces ¢/(T; V), p € [1, ), we use the norm

I, = (anup)l/p.

teT

ok~ wp -

For 41,.(T; V) we use a family of seminorms, indexed by finite subsets K C T and
defined by

I fllkp = IIfIKll,, — p € [1,00].
The topology for £,.(T; V) is independent of p, just as in the scalar-valued case.

Note that these norms and seminorms are exactly as they are in the scalar-valued
setting, only we replace “||” with “||-[|.”
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1.4.3 Continuous-time vector space-valued signals

We now repeat the sorts of constructions as in the preceding section, now for
continuous-time signals. Welet F € {IR,C}, let T € Z(A) be a discrete time-domain,
and let (V, ||]|) be a finite-dimensional normed [F-vector space. We select a basis
{e1,...,e,} for V. For f: T — V we write

f(t) = fi(t)er + -+ + fu(t)en, teT.

We then have the following classes of discrete-time V-valued signal spaces:

1. VT the space of all maps from T to V;

2. CUT;V) ={feVT| f; € CAT;F), ]e ,nlk;

3' cpt(T V) f € VT | f] € Ccpt(T ]F) {1 ,Tl}},’

4. CYT;V)={feVT| f,e CAT;F), jefl,...,n}};

5. Choq(T;V) ={f e V1| f;j € C) (T;F), ]6{ ,...,n}};

6. the above four spaces, but with signals that are r-times continuously differen-

tiable and with “C°” replaced with “C".”
7. (MV)={feVT| fje (T, F), jell,..., n}},pell, ol
8. lOC(T V)={feVT] f]eLfOC"JF]F) jefl,...,nl},pell, o]
9. AC/(T;V) = {f e V| fj € AC'(T;F), ]e{ nl), pell, o0l
10. AC! (T;V) ={f € VT | f; € AC| (T;F), j € { ,...,n}},pe [1, 0].
Let us illustrate the structure one has on these spaces. First of all, the space VT
is an [F-vector space with the natural vector space structure inherited from V:

(fi + &) = fi()) + fo(t),  (@f)() = a(f(1)).

Moreover, all of the other spaces of V-valued signals are are subspaces of V.
As with scalar-valued signals, these spaces are finite-dimensional if and only if
int(T) = @, i.e., rarely.

Now let us consider the topological structure of these signals spaces. For the
spaces Ccpt(T; V), C)(T; V), CL,4(T; V), and L(T; V), we use the co-norm which is
defined by

Iflle = supllFOII | £ € T).

For the spaces L*(T; V), p € [1, o), we use the norm

£l = ( fT G dA)W

For LfOC(T; V), p € [1, 0], we use a family of seminorms, indexed by compact subsets
K € T and defined by

I fllp = IfIKIl,, — p e[l el
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1.4.4 Vector space-valued functions of a complex variable

Aswell as signals that are functions of time, we shall, by transform theory, arrive
at functions of a complex variable. Typically one works with holomorphic functions
of a complex variable (because, otherwise, what’s the point?), and particularly the
Hardy classes of holomorphic functions from Chapter llI-7. Here we quickly review
how these notions extend to the vector space-valued case.

Let V be a C-vector space and let {ey, ..., e,} be a basis for V. For U C C open
and for F: U — V, we can then write

F(z) = F1(z)e; + - - - + F,(2)ey, ze U,

for Fy,...,F,: U — C. We say that F is holomorphic if each of Fy,...,F, is holo-
morphic. As ever, one can check that this definition is independent of the choice
of basis (Exercise 1.4.2).

Suppose now that V is equipped with a norm [||. Let I € R be an interval.
We denote by H(C}; V) the mappings F: C; — V that are holomorphic on Cinyp). If
F € H(C; V) and x € I, we denote by F,: R — V the function F.(y) = F(x + iy), in
the usual way. For p € [1, oo], we define the space H’(C;; V) as the set of mappings
F: C; — V such that

1. Fe H(C,V),

2. F, e ’(R;V) for each x € I, and
3. F has nontangential limits.

For F € HP(C; V) we denote

IFllke,r = sup{lIFxll, | x €1},

The subset {F € H(Cj; V) | ||F|l; < oo} is denoted by ﬁP(CI; V).

Of course, the same constructions can be performed for holomorphic functions
on annuli. Let I € Ry be an interval. We denote by H(A;; V) the mappings
F: A; — V that are holomorphic on A . If F € H(A; V) and r € I, we denote by
F,: $ — V the function F,(e!”) = F(re'?), in the usual way. For p € [1, ], we define
the space H’(Aj; V) as the set of mappings F: A; — V such that

1. FeH(ALV),

2. F, el?S;V)foreachrel, and
3. F has nontangential limits.
For F € H?(A; V) we denote

IFllie,r = supl{llF:l, | 7 € I}.

The subset {F € H(A}; V) | ||Fllr; < oo} is denoted by HP (AL V).
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Exercises

1.4.1 In some of the constructions in this section, we used a basis to boil the
definitions down to the scalar definitions of Sections 1.2 and 1.3. Explain
why these constructions do not depend on the basis chosen.

1.4.2 Let U C C be open and let V be a finite-dimensional C-vector space. Show
that the notion of a function F: U — V being holomorphic does not depend
on basis.

1.43 If F € {R,C}, if T is a finite discrete-time domain, and if V is a finite-
dimensional F-vector space, what is the dimension of VT?

1.4.4 Let U and V be finite-dimensional IR-vector spaces, let L € L(U;V), and let
T C R be an interval. Show the following;:
(a) if &: T — U is measurable, then L - & is measurable;

b) if £ € LP(T;U), p € [1, 0], then L~ & € LV(T; V);

c) ifEell (T;U),pe[l, o] thenLe&ell (T;V);

if £ € AC(T; U), then L - & € AC(T; V);

if £ € ACoo(T; U), then L - & € AC,,.(T; V);

fy if £ e C(T;U),re ZsoU{oo}, thenlL- & € C'(T; V) and

D

A~~~ ~
~ ~— ~— ~—

d’(Le &) L. d&
dt dt
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Chapter 2

Signals in the frequency-domain

This chapter provides the reader with some motivation for considering
frequency-domain representations of signals. The idea of a time-domain represen-
tation of a signal described in Chapter 1 does not require much motivation since
it is this representation that we regard as being the “real one,” in that we believe
we experience the world as time, not frequency, unfolds. Nonetheless, frequency-
domain representations are extremely useful in practice, and are in many cases
a more natural method for representing data. However, to really make sense of
frequency-domain representations, one needs to precisely define the correspon-
dences between the time- and frequency-domain. These correspondences are non-
trivial, actually, and indeed comprise Chapters 5, 6, and 7. Thus our task in this
chapter is a difficult one: to discuss frequency-domain representations of signals
without actually being able to say what we really mean. Difficult and murky this
may be, but it is perhaps useful for readers unfamiliar with the frequency-domain
to possess this motivation before we get rigorous in the sequel.

Do I need to read this chapter? If you just want to get to the Fourier transforms
and their properties, then maybe you can bypass this. But hopefully this chapter

will at least be interesting reading, even if it has little technical content. o
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Section 2.1

Frequency and substance

Our objective in this section is to convince the reader that frequency is all around
us, and to do so at the scientific level of a reader who has, say, seen several episodes
of Star Trek.

A “spectrum” is, very roughly speaking, a range of frequencies. Frequency here
is to be thought of as in Definition 1.1.18 when we discussed periodic and harmonic
signals in the time-domain. When representing a signal in the frequency-domain,
one is indicating how much “energy” the signal possesses at certain frequencies.
Thus one decomposes the signal (in a manner that is by no means clear at this
point) into its constituent frequencies. The history of spectral decomposition can
be traced back at least to Newton whose experiment of passing light through a
prism illustrated that light could be decomposed. The decomposition that Newton
saw was a decomposition based on the frequency content in the light being passed
through the prism.

Do | need to read this section? If you thought that reading this chapter seemed
like a good idea, then presumably reading this section seems like a good idea as
well. °

2.1.1 The electromagnetic spectrum

Light and energy is observed in nature occurring in a broad frequency range
that is called the electromagnetic spectrum. The frequency along the electromag-
netic spectrum can be measured in various units, including m (the “physical”
wavelength), s™! or Hz (the temporal frequency), or joules (the energy of a photon
at this frequency). It is common in the physics/chemistry literature to see m™ used.
However, we shall use Hz, since in many of the applications we present, this is the
most natural way of thinking of things. However, the two unit systems are related
in the following way. If one is “travelling with the wave”! and one measures the
period of the waveform as a distance, this is the wavelength measured (say) in m.
However, electromagnetic waves move through space (or whatever medium) at
the speed of light, denoted c. Thus a stationary observer of the wave will see a
single wavelength pass in time equal to the wavelength divided by ¢, which is the
temporal period of the waveform. The frequency is the inverse of this period. Thus

'This interpretation must be taken with a grain of salt, since electromagnetic waves do not
travel through space in the same manner as do ripples across the surface of a pond on a calm day.
However, there is a sense in which such an interpretation is at least useful, and we restrict ourselves
to this.
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we have

- ¢ (m/s)
f h= .
requency (s7) wavelength (m)
The speed of light in a vacuum is ¢ = 299,792, 458m/s, and it is common to ignore
the difference between the speed of light in a vacuum and its speed in other media.
The electromagnetic spectrum is roughly divided into seven regions and these
are displayed in Table 2.1. An idea of the relative portions of the spectra occupied

Table 2.1 The frequency bands of the electromagnetic spectrum

Name Frequency range Physical phenomenon

Radio v < 3x10°Hz AM/FM radio, television,
shortwave, produced by
oscillatory movement of
charged particles, able to
pass through atmosphere

Microwave 3 x10°Hz <v <3x10"Hz  kitchen appliance, satellite
communication, radar, study
of galactic structure, able to
pass through atmosphere

Infrared 3x10"Hz <v <4x10"Hz  useful for studying
galactic dust, very little
passes through atmosphere

Visible 4x10"Hz <v <7.5x10"Hz responsible for color as we
know it, passes through
atmosphere

Ultraviolet 7.5 x 10Hz <v <3 x 10'®Hz emitted by hot stars, mostly
blocked by atmosphere

X-ray 3x10%Hz <v <3x10"Hz  medical use, emitted by
hot gas

Gamma-ray 3 x10YHz <v emitted by radioactive
material

by the various categories are shown in Figure 2.1. Note that the visible portion

vi%i_’?le
infrared .. UV
i microwave ” I X-ray —
radio
_—
107 10° 10t 1013 1015 107 1019 10

Figure 2.1 The electromagnetic spectrum
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of the spectrum is quite small, so that one must really go beyond visual means
to understand all spectral features of a physical phenomenon. In Figure 2.2 we

Figure 2.2 The visible spectrum from red to yellow to green to
cyan to blue to violet

show the visible portion of the spectrum in terms of the color emitted by physical
phenomenon.

2.1.2 Emission and absorption spectra

First let us consider a simple experiment, one commonly performed by physics
and chemistry undergraduates. Take a tube filled with hydrogen gas and heat it
by passing through it an electric charge. The light emitted by the tube is passed
through a spectrograph, old-fashioned versions of which work much like Newton’s
prism, but newer versions of which are based on the diffraction grating. The
spectrograph will decompose the light into certain of its spectral components.
Typically a single spectrograph will only be able to reproduce certain parts of the
electromagnetic spectrum. In a simple spectrograph that works a lot like Newton’s
prism in that the spectrum is transmitted onto a physical surface, what one will
see is, pretty much by definition, the visible part of the electromagnetic spectrum
of the light emitted by hydrogen. This is called the Balmer spectrum of hydrogen
after Johann Balmer who discovered this part of the spectrum in 1885. The colours
of the visible spectrum for hydrogen occur at

456676 x 10Hz, 6.16512 x 10'*Hz, 6.90493 x 10'*Hz, 7.30681 x 10"*Hz.

The lines of the emission spectrum are shown in Figure 2.3, and represent what an

400 500 600 700
MHz

Figure 2.3 The visible emission spectrum for hydrogen

undergraduate performing this experiment might see in the lab.
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Other parts of the hydrogen spectrum were located by the researchers Theodore
Lyman (ultraviolet vacuum, 1906-1914), Louis Paschen (infrared, 1908), Frederick
Brackett (visible and infrared, 1922), and August Pfund (infrared, 1924), and these
researchers have their name attached to those parts of the hydrogen atom spec-
trum they identified. Remarkably, the wavelength ¢ of these spectral lines can be
determined with great accuracy by a simple formula:

2.1)

where Ry is Rydberg’s constant for hydrogen, which has the numerical value
Ry = 1.09678 x 10’'m™'. The Balmer spectrum corresponds to (ns,n;) €
{(2,3),(2,4),(2,5),(2,6)}, and Balmer actually knew the formula (2.1) in these cases.
However, it was not until Neils Bohr developed his model for the hydrogen atom
in 1913 that there was a somewhat satisfactory theoretical explanation for the rela-
tionship between (2.1) and the emission spectrum for hydrogen. And even then,
Bohr’s model left something to be desired in terms of its extension to other emis-
sion spectra, and in terms of the theory having certain aspects that were without
proper motivation. However, this takes us beyond both the scope of this book, and
the expertise of its author.

The experiment described above can be performed with any of a number of
substances, and with variations on how the experiment is setup. This leads to
Kirchhoff’s laws of spectral formation, which tell us the sort of spectrum we can
expect to see. These laws are as follows.

1. A hot opaque body, such as a hot, dense gas produces a continuous spectrum,
by which we mean a continuous spectrum of light, as for example produced by
a rainbow.

2. A hot, transparent gas produces an emission line spectrum, by which we mean
a discrete set of frequencies will be produced.

3. A cool, transparent (dilute) gas in front of a source of continuous emission
produces an absorption line spectrum. This is essentially the “opposite” of
an emission line spectrum, in that frequencies are omitted from the spectrum
rather than produced in it.

The scenario is depicted cartoon-style in Figure 2.4.

2.1.3 Determining the composition of a distant star

Let us now consider a problem that we shall not be able to be as concrete with,
at least for the moment. The brightest star in the sky is Sirius. Suppose one wishes
to ask, “Of what is Sirius made?” Obviously, it is difficult to travel to Sirius since it
is about nine light years distant. Nonetheless, we are able to say a great deal about
the physical composition of stars like Sirius. How is this done? The idea is that
one points a radio telescope at Sirius that receives a signal. To analyse this signal,



2022/03/07 2.1 Frequency and substance 71

continuous spectrum emission line spectrum absorption line spectrum

diffraction grating source

Figure 2.4 The Kirchhoff laws of spectral formation

one compares it to the signal one might get from known physical elements, like for
example the emission spectrum for hydrogen described in the preceding section.
By understanding the absorption and/or emission lines for the spectrum, certain
elements can be identified as being present in the star. In Figure 2.5 is shown a
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Figure 2.5 Events recorded for a prescribed wavelength for a
white dwarf

record of the emission events for a white dwarf. While Sirius is not a white dwarf,
it is accompanied by a white dwarf (a small very dense star) discovered by Alvan
Clark in 1862 while testing a new telescope. When observing Sirius, he observed
a “wobble” which was caused by the presence of another, barely visible star. This
was the first white dwarf discovered, and is called Sirius B.
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Section 2.2

Sound and music

The preceding section dealt with natural “frequencies” that are observed in
nature, and which travel with “waves” moving with the speed of light. In this
section we shall see that frequency comes naturally in other settings as well.

Do | need to read this section? If you were amused by the preceding section,
you may well be amused by this one as well. o

2.2.1 Sound identification using frequency

Sound is made by the generation of a wave that travels through the air, much
as a ripple travels over the surface of a pond on a calm day. The displacement of
the air carries with it a pressure difference, and it is this pressure difference that
activates the mechanism in the ear, causing us to hear something. One can measure
this pressure differential as a function of time, and in doing so one will end of with
a signal in the time-domain, as discussed in Chapter 1. Recall the speech signal
depicted in Figure 1.4. This time-domain representation would be how such a
signal would be normally recorded. However, it is a little difficult to know what
to do with it. For example, suppose that one wished to ascertain who the speaker
was. This is not easy to do by, say, comparing the given signal with a comparison
signal from a person who you think might have made the sound. It turns out that
a good way to analyse speech data is by determining the energy present in the
signal at various frequencies, and comparing that to known data for a candidate
speech-maker. In Figure 2.6 we show the frequency content of the time-domain

L e s B
%0 ]
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Figure 2.6 Frequency content of speech signal from Figure 1.4
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speech signal. Of course, at this point we are not saying how we come up with
this—this is exactly the point of the subsequent several chapters of the book.

2.2.2 A little music theory

One can apply the ideas expressed in the preceding section to music. Recall
from Figure 1.5 the time-domain representation of two musical clips. In Figure 2.7
we show both the time-domain and frequency-domain representations of two

015

0.10 -

0.05 -
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-0.10
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0.0 0.5 1.0 1.5

v v

Figure 2.7 A time-domain (top) and frequency-domain (bottom)
representation of part of the first movement of Mozart’s Eine
Kleine Nachtmusik (K525) (left) and a portion of the soundtrack
of the movie 7 (right)

musical clips. The clip on the left is from the first movement of Mozart’s Eine
kleine Nachtmusik (K525), and that on the right is from the soundtrack of the Darren
Aronofsky movie 7. While the frequency-domain signals admittedly do not look
all that coherent, it is nonetheless true that there are many powerful techniques for
analysing signals that rely on representing a signal in terms of frequency, and not
time.

Since we have mentioned Mozart, perhaps it is interesting to say a few words
about musical notes as they relate to frequency. A note is a sound consisting of a
single frequency v. Thus a note in the time-domain is a harmonic signal p1: R — R.

Let us denote v(u) as the frequency of a note. A note 4 is an octave higher than a
v(pa)
v(1)

note p; if = 2. Thus an increase by an octave is a doubling of frequency. It was
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observed by the Greeks? that the human brain seems to identify notes that differ by
an octave as belonging to the same “family.” Physically, an octave arises (loosely)
in the following way. Consider a guitar string of length ¢ plucked so that it emits
a note.> Now suppose that one places a clamp in exactly the middle of the string,
effectively making it two strings of length £. When plucked, the string will now
produce a note with frequency double that of the original string.

So that’s an octave. The problem now arises of how does one “ascend” from a
note u to the note one octave higher. A scale is a division of an octave into a finite
number of intervals. There is no “correct” way to define a scale. We shall describe
two closely related scales that are common in western music. Both are based on
the division of the octave into twelve parts. First of all, why twelve? Well, it turns
out that it is possible to say a great deal about why twelve is the right number.
Historically, probably the best explanation is that one wishes to go from 1 to 2
by rational numbers whose numerators and denominators are not too large. The
reason for this “not too large” restriction is that notes related by rational numbers
with not too large numerators and denominators sound “nice.” For example, a
note with frequency 3v(u) played alongside the note u seems pleasing to the ear.
However, the note with frequency 22v(u) played alongside u will not sound as
pleasing. For various reasons that can be understood fairly well mathematically
(see the notes in Section 2.2.3), the octave scale can be well divided into twelve
(not equal, as we shall see) parts with frequencies rationally related to the bottom
frequency by rational numbers that have numerators and denominators that are
not too large.

Now, the first scale we define is called the chromatic just temperament, and
it produces a scale with rationally related frequencies, as described above. This
scale was first expounded upon thoroughly by Bartolomeo Ramos de Pareja (1440-
1491?) in 1482, although many had contributed pieces of it prior to de Pareja.

To be concrete, we start with a specific note which we denote yé4 which has a
frequency of th = 220Hz. The note one octave higher will then be denoted ‘ufq

which has frequency vi‘ = 440Hz To construct the ]ust temperament we define

notes i, = py, Hy,, Hey ly = = Hipyr iy By = H iy fry e = Hey G,

‘ué = [J; , according to the rules laid outin Table 2.2. Thenaming of (say) the second
4 4

element in the table as ‘ui , Or ‘ué , is arbitrary, and largely a matter of convenience
4 4

or convention. But, though the name may be different, the sound is the same. Note
that the division is by even parts on a scale that is logarithmic with base 2. Two
adjacent notes are separated by an semitone. Note that while the ratios formed
by the notes with the frequency of the original note are nice rational numbers

2In the west, the first musical scale seems to have been developed by the Pythagoreans.
3A guitar string when plucked normally does not emit a note, but a sound that is a sum of many
notes. But that is another course.
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with small numerator and denominator (this is one of the objectives of chromatic
just temperament), the problem arises that there are four distinct semitones. In
Table 2.2 these gaps are described by the ratio with the next frequency in the table
to facilitate comparison with Table 2.3 below. To further facilitate this comparison,
we compute the base 2 logarithm of the ratios defining the semitones:

log, £ ~ 0.0588937, log, 12 ~ 0.0768156 22)

log, 12 ~ 0.0931094, log, & ~ 0.111031. '
The use of the next scale we present became solidified around the time of
J. S. Bach. This is the tempered scale, and divides the octave into twelve parts,
with the division being regular in a certain sense. To illustrate, let us again choose
the note 1) : R — R with frequency v}, = v(yj, ) = 220Hz, and denote by , _the
note one octave higher than pf, . We then define eleven notes (some with multlple

e — e e e e — e e e — e e e [Ca— e e
names) = Hy, Hhy oy By = Hryr Foy My = Hyr ey Hry By = Hy o,y and
‘uzﬂ = ¢, according to the rules laid out in Table 2.3. Note here that all semitones

4 4

are equal and have the numerical value ; = 0.83, which can be compared to the
four semitone values for the just Chromatic scale as given in (2.2).

The convention of assigning to uf, the frequency of 220Hz has been in place
since 1939, and is the convention now used for fixing the notes in the musical scale
used for (for example) tuning a piano. The note pg in Table 2.3 is middle C on the
piano. With this convention, the lowest note on the piano keyboard is pc,.

2.2.3 Notes

Some interesting discussion of the mathematics of ascending an octave can
be found in the paper of [Douthett, Entringer, and Mullhaupt 1992]. Readers
interested in a scientific discussion of music are referred to the classic book of Jeans
[1968].

Exercises

2.2.1 Compute the frequencies of the following notes:

@) @ 1,
(0) pe,; (e) HeBg;
(c) ‘Uzg; M) p,

2.2.2 For the following pairs of notes, describe the degree and quality of the
interval between them:

(a) (u;ofu‘;ﬁ); (d) (W5, 104
SR (€) (uy, b5,

5

(©) (Wl s (f) (W, w : ).
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Note Frequency ratio Ratio with next step Frequency
j v£;4 Vi\ﬁ 27
HA4 V]_ =1 V]— = 55 220Hz
?4 A
v j
o) A_x Yy _ 35 237.6Hz
He=Hp 7 =3 ¥ 24 :
4 4 Ay Aﬁ
' v 9 e 16
j Bs _ 9 S 16
s =3 =1 247.5Hz
Ay By
‘ vl Y
] S _ 6 4 — 16
ul, =t =13 264Hz
7 K
) .
i_,) S_=m "y _ 135 281.6Hz
Ho =Hp T =2 7T 128 :
4 4 Ay ct
4
j v
j Yo, _ 27 i _ 16
b, H=% T 297Hz
44 Pa
v/ " )
o, Pa_36 s _ 25
u=p, =3 F =% 316.8Hz
4 4 A4 pf
4
. V{; Vj 1
] B3 fa 16
s - =3 =1 330Hz
Ay 4
j Vﬁ 8 VFﬁ 135
i, =t - = 352Hz
7 h
) :
i_j A_m o _ 16 371.26Hz
B =He 7 = N :
4 4 Ay Fﬁ
. W
j V]G4 9 Gﬁ 16
ul, =3 =1 396Hz
?4 N
. . v ]
iy s s 2 422 4Hz
B =Hp 7 =25 v, 24 '
4 5 Ay Gﬁ
4
j v
j Vag Ag 27
i, = = 2 =% 440Hz
A A
4 5

Table 2.2 The division of an octave by chromatic just tempera-

ment
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Note Frequency ratio Ratio with next step Frequency (approx)
e e Vig 1
1Y, Va, log, woT 1 220Hz
e e vi“ﬁ 1 %4 1
Ho = 1y log, =1 log, = =3 233.082Hz
4 4 4 Ai
e, log, A4 =1 log, f =2 246.942Hz
ve Veﬁ
ue, log, Z =1 log, % =3 261.626Hz
e e Viﬁ 1 Vf)4 1
e, =u, log, = =3 log, =+ =15 277.183Hz
C4 D4 Ay Ci
e Veﬂ
ue, log, — =2 log, — =1 293.665Hz
Ve § .
e, =u, logz* =3 log, ++ = & 311.127Hz
4 4 )4 ?ﬁ
e, log, % =7 log, fi -1 329.628Hz
e V;4 — 2 Vii — 1
HE, log, Rk log, T 349.228Hz
an .
W, =pe, log, = =3 log, =+ = & 369.994Hz
Fy Gy Yy VFi
ve Veﬁ
e, log, 1 =3 log, ; =L 391.995Hz
v " .
w, =, log, % =1 log, =* = & 415.305Hz
4 5 4 Gi
€ VAu
K log, V;i =2 log, i =+ 440Hz

Table 2.3 The division of an octave by even temperament
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Section 2.3

Signal transmission schemes

It may be supposed that we are all familiar with the terms “AM” and “FM.”*
Perhaps we may also suppose that we all know that these are abbreviations for
“amplitude modulation” and “frequency modulation.” Maybe a less familiar ex-
pression is “phase modulation,” although we have all probably used devices that
make use of phase modulation technology. In this section we will review some
ideas related to these techniques for signal transmission. We do not attempt to go
into the details of what makes one scheme better in which circumstances to the
other two, but merely content ourselves with identifying the role of frequency in
each of the schemes.

Do | need to read this section? If the reader does not already know about the
details of these techniques, then this section might make for an interesting intro-
duction. °

2.3.1 A general communication problem

The techniques in this section are used to solve the following problem. One has
some signal t > s1(t) one wishes to transmit. However, someone else has a signal
t = sy(t) that they wish to transmit. If both signals are transmitted at the same
time, then a receiver will see s; + s, plus any other junk floating around. If s; and s,
are similar (say both are transmissions of the human voice), it will not be possible
to separate s; and s, from s; + s,. Thus the problem is to find a way to transmit a
signal so that it is in some way distinguished from all of the other signals flying
about that are similar to it. The three modulation schemes we discuss here are
designed to achieve exactly this objective.

This problem is an example of a general communication problem, a schematic
for which is given in Figure 2.8. The idea in this schematic is that a signal enters
at the top left. The source encoder processes the signal in some way to make it
amenable for transmission. For example, perhaps this step involves some data
compression. The channel encoder manipulates the data to provide robustness.
At this step one may, for example, perform some error correction. The modulator
then makes the data ready for transmission. The physical channel is the medium
over which the data is transmitted; this is air for radio broadcasting. The demodu-
lator then retrieves the actual data from the transmitted data, the channel decoder,
knowing what was done by the channel encoder, produces an accurate represen-
tation of what came out of the course encoder, and the source decoder reverts the
data to its final usable form.

*This supposition will probably cease to be valid in the not too distant future.
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_ source channel
encoder encoder Modulator
physical
channel
- source channel
decoder decoder Demodulator

Figure 2.8 The general communication problem

In this section we are interested in the modulation/demodulation parts of the
general scheme.

2.3.2 Amplitude modulation

Historically, the technique of amplitude modulation was employed to transmit
telephone signals along electric power lines. The idea was that the existing electric
power “carried along” the audio signal from the telephone. This idea was adapted
to radio transmission, but in radio transmission one does not hitch a ride on a
preexisting signal, but the whole signal is constructed, including the carrier.

In amplitude modulation (AM) one starts with a carrier signal which is a
harmonic signal, say

c(t) = Acsin(wct + @),

where A, w. and ¢, are the amplitude, frequency, and phase of the carrier signal.

One wishes to transmit the signal s(f), and to do so one instead transmits the signal
MZE(t) = (A + s(t))c(t), called the amplitude modulated signal. The quantity %
is called the modulation index. This quantity can be selected to achieve various
effects.

Let us get some idea of how this works by looking at a special case. We take
c(t) = Acsin(w.t) and s(t) = A cos(wst). We then have the amplitude modulated

signal

MEZ(t) = Ad(A + A cos(wst)) sin(w,t)
= AA sinw.t + %ACAS sin((w, + w;s)t) + %ACAS sin((w, — ws)t),

after some trigonometric identities have been applied. The following observations
can be made.

1. The amplitude modulated has components at three frequencies, w., w, + ws,
and w, — ws. The frequency component at frequency w, is just a scaled version
of the carrier signal. The effects of the amplitude modulation appear in the
other two components. It turns out that the same thing happens for a general
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signal. One gets the effects of the carrier signal at the frequency w. and the
frequency content of the transmitted signal appear shifted both by @, and —w..
In practice one chooses w. to be larger than the largest frequency contained in
the transmitted signal. This prevents overlapping in the two shifted portions
of the spectrum. These shifted portions of the spectrum are called sidebands.
The point is that the problem of signal transmission by two transmitters is
solved by each transmitter choosing a different carrier frequency w.. This is
the frequency to which you tune your radio dial in the unlikely event that you
listen to AM radio.

2. The information contained at the shifted frequency w. — w; is already present
in the information contained at the shifted frequency w, + w,;. Thus it would
be more efficient to be able to have only one of the two sidebands. There is a

technique for achieving this and it is called single sideband (SSB) transmission.

3. In this example the modulation index is %. In some schemes for amplitude

modulation it is required that the modulation index not exceed 1, which means
that the amplitude must remain positive. In Figure 2.9 we show the amplitude
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Figure 2.9 Amplitude modulation with modulation index 0.5
(top left), 1 (top right), and 1.5 (bottom); in all cases we have
we=5ws=1,A-=1,and A; =1

modulated signal for the example with various modulation indexes.

4. In order to recover s from MZY, the latter signal must undergo demodulation.

This is relatively easy to understand if one knows a little Fourier transform
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theory, see . what

2.3.3 Frequency modulation

The idea for using frequency modulation came from Edwin Armstrong in 1935,
and began seeing widespread use in the 1940’s.

For frequency modulation, the idea is sort of the same as amplitude modulation,
but the details are quite different. One starts out with a sinusoidal carrier signal

c(t) = Acsin(w t + @)

with amplitude A, frequency w., and phase ¢.. One wishes, again, to transmit the
signal s(t). To do so one defines

weslt) = fo (. + Qs(1)) dr

and, using this instantaneous frequency, the frequency modulated signal
ME(t) = Acsin(wes(t) + ¢o)-

For frequency modulation the modulation index is 5= where w, is the frequency

of the signal s to be transmitted. If s is not harmonic ‘then w; is not well-defined,
and one may use an average or some such thing.

To get some idea of what is going on with frequency modulation, let us consider
again the special case of c(t) = A, sin(w.t) and s(t) = A; cos(wst). For amplitude mod-
ulation in this case we could determine the modulated signal easily using simple
trigonometry. For the frequency modulated signal, things are more complicated.
Nonetheless, after some work, one can compute

t) = i Je(%22) sin((@c + kay)t),

k=—00

Mfm (t) = Ac sin(w,

where Ji is the Bessel’s function of the first kind of index k:

Zoo (_1)m (l)2m+k k c Z
Ji(x) = m=0 m(m+k)!\ 2 ’ >0/

m 2m—k
(- 1)kzm0%(x) , keZy.

The exact form of the frequency modulated signal is not so important as the obser-
vation that the signal is a sum of harmonic signals of frequencies shifted from the
carrier frequency w, by integer multiples of the transmitted signal frequency ws.
Thus, for frequency modulation, there are infinitely many sidebands. The point
is that, just as with amplitude modulation, the modulated signal is most easily
interpreted in terms of the frequencies at which the signal possess harmonics.

In Figure 2.10 we show the frequency modulated signal for various modulation
indexes.
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Figure 2.10 Frequency modulation with modulation index 2 (top

left), 5 (top right, and 10 (bottom); in all cases we have w. =5,
ws=1,A=1,and A; =1
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2.3.4 Phase modulation

Phase modulation looks a lot like frequency modulation, so we go through the
development quickly. One again starts with a sinusoidal carrier signal

c(t) = Acsin(w .t + @)

with amplitude A., frequency w., and phase ¢.. One wishes, again, to transmit the
signal s(t). To do so one defines the instantaneous phase

qbc,s(t) = (Pc + (DS(t)
and then the phase modulated signal
Mgrsn(t) = Aot + (Pc,s(t))-

The modulation index is ||Ps||... One often sees it written that one or the other of
frequency and phase modulation is a special case of the other. This is not quite
true. What is true is that the set of frequency modulated signals is, up to a constant
phase, a subset of the phase modulated signals. However, this is a rather different
statement than frequency modulation being a special case of phase modulation.
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Let us again consider the special case c(t) = A.sin(w.t) and s(t) = A, cos(w;t).
Here we have
MEY(t) = A sin(w.t + DA; cos(wst)).

One may determine that

ME™(#) = Z Ji(AD) cos((w, + ka )t + 5.

k=—00

Again we see that the phase modulated signal is a sum of harmonics with frequen-
cies being the carrier frequency shifted by integer multiples of the signal frequency.
In Figure 2.11 we show the phase modulated signal for various modulation
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Figure 2.11 Phase modulation with modulation index 2 (top left),
5 (top right, and 10 (bottom); in all cases we have w. = 5,
ws=1,A=1,and A; =1
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indexes.

Exercises

2.3.1 Explain the statement, “The set of frequency modulated signals is, up to a
constant phase, a subset of the phase modulated signals.”
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Section 2.4

System identification using frequency response

We continue in this section with some ideas to motivate the use of frequency
rather than time as a means of characterising signals. While system identification,
the topic of this section, more clearly lies in the realm of system theory (as will be
discussed in detail in Volume 5), it is possible to say a few helpful things here that
relate clearly to the notion of frequency.

Do I need to read this section? If the preceding three sections did not satiate
your need to motivate the usefulness of frequency, then go ahead, read this section
too. °

2.4.1 System modelling

When making a model of a system, there are possibly three strategies one might
employ.

2.4.1.1 White-box modelling White-box modelling refers to modelling from
tirst principles. Such first principles might include the principles of Newtonian
mechanics, electromagnetics, fluid mechanics, thermodynamics, chemistry, quan-
tum mechanics, etc. This is the strategy one might employ if the system one is
modelling is well enough understood. Many systems are simply not of the sort
that admit first principle modelling. Many biological, economic, social, etc., sys-
tems, for example, are not presently sufficiently well understood to allow them to
be modelled in any “principled” way. Thus sometimes white-box modelling is just
not possible. Moreover, even when it is possible, sometimes white-box modelling
isnot advisable. Indeed, a white-box model of an extremely complex system might
just be too difficult to manage.

2.4.1.2 Grey-box modelling In grey-box modelling one has a form of a model,
or maybe a rough form of a model at hand based on some knowledge of the system.
However, there are parameters in the model that are not determinable from first
principles, but must be determined in some way. In this case one might use some
strategy for determining the values of the undetermined parameters. This is some
form of system identification.

2.4.1.3 Black-box modelling In black-box modelling the premise is that one
is so ignorant of one’s system that the entire model has to be conjured in some
way. As mentioned above, such systems are frequently encountered in biology,
economics, social sciences, etc. It might also be the case that one has a system that
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is modellable, but one wishes to instead produce a more manageable model. The
field of system identification typically deals with systems such as these.

2.4.2 A simple example

Consider the pair of coupled masses shown in Figure 2.12. The three springs

Figure 2.12 A coupled mass system

have the same spring constant k and the masses are also equal with mass m. Let
us understand the behaviour of this system first before we start to pretend we do
not understand it. In Figure 2.13 we depict the natural modes of vibration for

—- —- —- —

Figure 2.13 The two natural modes of vibration for the coupled
mass system: (1) the masses oscillate with equal amplitude in
the same direction (left) and (2) the masses oscillate with equal
amplitude in the opposite direction

the system. The frequency of the mode on the left is \/%rad /s and the frequency

of the mode on the right is \/“:’nzrad/s. Now let us forget that we know about

this system, but suppose instead that we are given a box with the system inside
as shown in Figure 2.14. The idea is that we use the lever on top to actuate the
system and we measure the response from the rod sticking out the right side of
the box. Our task is to try to understand what is inside the box by manipulating
the lever appropriately. A natural way to do this is to provide a harmonic input to
the lever. If the system is linear, one is ensured that a harmonic output will result.
By measuring the amplitude of the output at various input frequencies one might
hope to be able to deduce something about what is in the box. For example, if one
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\
shake here
—| measure here
g [ ]
CAMA— AMA— CAMA—

Figure 2.14 A box with the coupled mass system inside

provides inputs at or near the natural frequencies \/%rad/s and \/%T‘rad/ s, then
one might expect the output to be larger than that for input frequencies that are far
from these natural frequencies.

The details of this are not the point. The point is that varying frequency inputs
to a system can be a useful way of understanding its behaviour.

2.4.3 A not-so-simple example

The coupled mass system from the previous section is cute, but lacks a little
substance. But the same sorts of ideas apply to far more complicated systems.
In Figure 2.15 we depict a building in an earthquake. Naturally, one would

7 N

—— 0 e—

Figure 2.15 Earthquake! Get under a table!
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like for the building to move around as little as possible during the earthquake
so as to minimise the possibility of structural failure. If one knows something
about the typical frequency characteristics of the ground movement during an
earthquake, one can reasonably ask that the building not exhibit a lot of motion
when subject to harmonic signals with frequencies in those of the range present
during an earthquake.

One would, therefore, like to be able to model a building in such a way as to
ascertain how it responds to signals of certain frequencies. Now, this is an example
of a system for which a white-box model is possible to derive. We know enough
about the behaviour of materials that we could, in principle, produce a model from
physical principles. However, such a model would be very complicated, probably
more so than would be needed to achieve the desired objectives. A technique that
is used, both on real buildings and on scaled laboratory models for buildings, is to
put sensors at various points on the building and provide input forces at various
points on the building. By measuring the outputs for various inputs, one attempts
to devise a simplified model that captures the desired facets of the problem. As
with our toy example with two coupled masses, a common way to arrive at a model
is to use harmonic inputs of varying frequency.

2.4.4 Notes

There is a famous instance where the issues discussed in Section 2.4.3 were
revealed in a spectacular way. On November 7, 1940, approximately four months
after it opened, the bridge across the Tacoma Narrows in Puget Sound in Wash-
ington collapsed. The collapse was preceded by a period of about an hour where
the bridge oscillated wildly at a frequency of about 0.2Hz. This oscillation was
induced by aerodynamic effect caused by the wind conditions in the Sound. While
the wind speed was steady, vortex-shedding effects were responsible for the har-
monic excitation of the bridge.
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Section 2.5

Frequency-domains and signals in the frequency-domain

After having spent the preceding four sections motivating the meaning and
usefulness of frequency-domain representations, in this section we present some
language and notation concerning frequency-domains and signals as they might
be represented in the frequency-domain. For time-domain representations of sig-
nals, the characteristics we presented in Sections 1.1.2 and 1.1.3 are fairly easy
to understand. For frequency-domain representations the meaning of the vari-
ous frequency-domains and properties of frequency-domain signals may not be so
clear. However, it will be useful to have the terminology here in the sequel.

The approach here, and the technical aspects of what we say, follow our ap-
proach of Sections 1.1, 1.2, and 1.3. Therefore, our discussion here will be a little
abbreviated since we will assume that the reader is familiar with our developments
in the time-domain.

Do | need to read this section? We shall present notation and terminology in
this section that we will freely use in the sequel. Thus the reader ought to read this
section in order to be familiar with this. o

2.5.1 Frequency

As with time-domains, our definitions of frequency-domains rely on the notion
of subgroups and semigroups in the group (IR, +) of real numbers with addition.

Definition (Frequency-domain) A frequency-domain is a subset of R of the form
V NnIwhere V C Ris asemigroup in (IR, +) and I € R is an interval. A frequency-
domain is

(i) continuousif V =1,
(i) discrete it V = Z(v, Q) for some v, € R called the origin shift and for some
Q > 0 called the fundamental frequency,
(iii) bounded if cl(I) is compact,
(iv) unbounded if it is not finite. .

2.5.2 Remarks (Some commonly made assumptions about frequency-domains)

1. We shall denote a typical point in a frequency-domain by v or w, depending
on whether we mean to use frequency or angular frequency, respectively. Just
as we generally think of the independent variable for time-domain signals as
representing time in the usual sense, we shall think of frequency as being in
units of Hz or rad/s. However, if time is not really time but something else
(say, spatial distance) then the units of frequency will also be altered (to, say,
wavelength).
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2. As with time-domain signals, we will deal almost exclusively with discrete
frequency-domains that are not shifted. In practice there are rules for converting
shifted frequency-domains to unshifted ones.

3. Also as with time-domains, we shall assume that discrete frequency-domains
are regularly spaced, i.e., that the fundamental frequency is well-defined. e

2.5.2 Frequency-domain signals: basic definitions and properties
Next we define what we mean by a signal in the frequency-domain.

Definition (Frequency-domain signal) Let W = VNI be a frequency-domain and
let F € {R, C}. An F-valued frequency-domain signal on W is amap F: W — F. If
W is continuous then F is a continuous-frequency signal and if W is discrete then
F is a discrete-frequency signal. .

Notation (“Frequency-domain representation” versus “frequency-domain
signal”) Since it is more natural to think of signals as “happening” in the time-
domain, we shall often refer to a frequency-domain signal as a “frequency-domain
representation” of a signal, it being implied that the signal “really lives” in the
time-domain, but we represent it (by means as yet unknown) in the frequency
domain. o

The manner in which we graphically represent frequency-domain signals is the
same as we used for time-domain signals. We refer to Figures 1.7 and 1.8, and the
surrounding discussion, for the details of this. One thing to point out, however,
is that in the frequency-domain it is far more natural to arrive at signals that are
complex-valued, even when the corresponding time-domain signal is real. We
shall see this in the examples below.

Let us next consider some examples of frequency-domain representations of
signals. While we have not yet said how to make this correspondence, for each
frequency-domain representation we will also indicate what is the time-domain
signal. This will hopefully make it easier to understand our Fourier transform
theory that follows in subsequent chapters.

Examples (Frequency-domain representations of signals)
1. Let us take W = Z and define F: W — C by

1 _
E}/ V= 1/
F(V) = _%/ V= _1/
0, otherwise.

The way one constructs the time-domain signal from this is as follows. Corre-
sponding to F(1) = 3 we have the time-domain signal 5-e*™ and corresponding

see?
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—27tit

to F(-11) = —3. we have the time-domain signal —3.e ™. The time-domain

signal corresponding to F is then

f(t) — F(l)eZTzit + F(_l)e—Znit — %(eb—cit _ e—Znit) — sin(27zt).

2. Letustake W = Z and define F: W — R by

o ov=l,
F(V) = _%/ V= _1/
0, otherwise.

The time-domain signal corresponding to this frequency-domain representation
is
f(t) — P(l)eZRit + F(_l)e—Znit — %(eZT(it _ e—Znit) — COS(ZTCt).

3. We generalise the preceding two examples by again taking W = Z and now
taking F: W — F to be any frequency-domain signal such that {v € W | F(v) #
0} is finite. Then the corresponding time-domain signal is defined to be

f) = ) Fw)er™,

veW

this sum making sense since it is finite. The idea is that F(v) in the frequency-
domain represents F(v)e?™ in the time-domain. To get the entire signal in the
time-domain, one sums over all frequencies.

4. Take the frequency-domain W = R and define F: W — R by

Fo) - {1, velo,1],

0, otherwise.

As with the preceding examples, we have not actually said how one determines
the time-domain signal corresponding to this frequency-domain representation.
However, we can generalise the preceding example where we sum over the
frequencies in the frequency domain multiplied by a complex harmonic at that
frequency. In this case of a continuous frequency-domain the adaptation of this
idea gives

1 .
) ) 1 . . 2t
f(t) — ‘fH;F(V)eZmW dV — [1 e2mvt dV — 27Tt(e2mt _ e—2n1t) — Sln;tn ),

with the understanding that at t = 0 we use L'Hopital’s Rule to get f(f) = 2
(which also agrees with the integral computation). If you are new to the idea

of a frequency-domain representation, this example will probably just seem
strange and arbitrary at this point.
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5.

2.
3.

Let us turn the previous example around. Thus we define W = Rand F: W —
R by F(v) = w Were we to follow the above recipe for determining the
corresponding time-domain signal then we would have

fn =" f]R F(v)e*™" dv.

Note, however, that v — F(v)e*™ " is actually not integrable. Therefore, it is not
clear at all that one can use this idea of “summing over frequencies” to retrieve
the time-domain signal. However, there is a sense, in fact, where this does work,
and in this sense the corresponding time-domain signal is precisely

0 = {1, te[-1,1],

0, otherwise.

As it turns out, the reason that this computation can be made is that F €
L@(R; R). Again, this likely seems merely mysterious if this is all new to you.

We again take the frequency-domain W = R and now take F(v) = 1 for all
v € R. Again, using the “summing over frequency” idea of determining the
time-domain signal, we would have

f(t) “ _ fF(v)eZTIivt dV — erTIin dV.
R R

Now the function v - e*™ is really not integrable. For example, this function
is not in LPV(RR, C) for any p € [1, o). Nonetheless, there is a sense in which the
above integral can be computed. However, upon doing do what one gets is not
a function in the usual sense. Indeed, what one gets is the Dirac delta-signal at
t = 0, typically denoted 6. o

A few comments corresponding to these examples are in order.

. We should reiterate that at this point we have simply not indicated how one

systematically comes up in the examples above with the time-domain signals
corresponding to the given frequency-domain representations. Instead, we are
just presenting a slightly reasonable prescription for how one might do this in
the examples we consider.

The precise ideas behind these examples are presented in Chapters 5 and 6.
Demystification, probably preceded by further mystification, will only occur at
this time.

The situation in Example 5 above is explained in Section 6.3.

The situation in Example 6 above is explained in Sections 6.4 and 6.5.

Now let us consider some attributes that a frequency-domain signal might

possess. The support supp(F) of a frequency-domain signal F can be defined as for
a regular function as in Definition I1I-3.8.28(ii).

correct ref?
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Definition (Band-limited, periodic frequency-domain signals) Let W be a
frequency-domain, let IF € {IR, C}, and let F: W — [F be a frequency-domain signal.

() The frequency-domain signal is band-limited if supp(F) is bounded.
(i) The frequency-domain signal is periodic with period W € R if F(v + W) =
F(v) forallv e W.

(i) The fundamental period of a periodic frequency-domain signal F is the small-
est number W, for which F has period Wy, provided that this number is
nonzero. .

The interpretations of these sorts of properties are not so easily made for
frequency-domain signals, so these are to be merely thought of as providing ter-
minology for later access.

2.5.3 Spaces of discrete frequency-domain signals

The spaces of signals we consider in the frequency-domain are, it turns out, the
same as those for time-domain signals. Since we have discussed these in detail in
Sections 1.2 and 1.3, with appropriate references to material in Chapters IlI-2, I1I-3,
and lll-4, we only provide the notation here. For F € {RR, C} and for a frequency-
domain W all of the frequency-domain signal spaces we consider are subspaces of
the F-vector space FW. The first batch of subspaces we consider are

Cin(W;F) = {F € FV | F(v) = 0 for all but finitely many v € W};
co(W;F) = (Fe FV | for each € € R there exists a finite subset S € W

such that |[F(v)| > e iff v € S};
(W, F) = {Fe FV | sup{|F(v)| | v € W} < oo}.

For all of these [F-vector spaces we use the norm
[Fllw = sup{lF(v)| | v € W}.

We also use the vector space

(W) = [F e BY | Y IFO)I < oo

veW

with the norm

e, = (@Y o).

veW

The properties of these frequency-domain signal spaces, and the relationships
between them are discussed in Sections 1.2.2 and 1.2.3. The inclusion relations for
them are discussed in Section 1.2.7.
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We may also consider periodic frequency-domain signals, although the signif-
icance of these is less transparent than for periodic time-domain signals. That is,
for IF € {IR, C}, for an infinite frequency-domain W, and for Q) € IR.,, we define

& wW;TF) ={F e FV | Fis W-periodic}.

per,

Recall that things are particularly simple in the discrete case since these spaces
are actually finite-dimensional and independent of p. The norms considered on

fg o (WS TF) are

iEL=(@ Y, For)”, pele),

ve[0, W)W

|IFllcc = max{|[F(v)|| v € [0, W) N W]}.

2.5.4 Spaces of continuous frequency-domain signals

Let us quickly remind the reader of the notation for continuous frequency-
domain signals; as in the discrete-frequency case, the notation is borrowed directly
from the time-domain; the reader will want to read Section 1.3 carefully to re-
member the precise definitions of these spaces and some of their attributes. We let
F € {R,C} and let W be a continuous frequency-domain. All frequency-domain
signal spaces considered here are subspaces of IF"V.

First we recall the spaces

C%(W; ) = (F e FV | Fis continuous};
Cgpt(W; F) = {F € C°(W;F) | F has compact support};
Cg(\W; F) = {F € C°(W;F)| for every € € R, there exists a compact set
K C W such that {v e W | |F(v)| > €} C K};

Cpyq(W;F) = {F € C°(W; F)| there exists M € R such that |[F(v)| < M
for all v € W}

On all of these subspaces the norm we use is
[IFlles = sup{lF(w)| | v € W},

noting that this norm is always defined by F in C} (W IF), C}(W; ), or C{ , ,(W; IF).

We also have the spaces LP(W;F) and LP(W;F), p € [1, o], that are defined
exactly as they are in the time-domain. The norms are

1/p
IFIl, = ( f FPdA) ", pell, o),
%Y
IF|lee = esssup [F(v)lv € W.



94 2 Signals in the frequency-domain 2022/03/07

We refer the reader to Section 1.3.3 for the details of these constructions.

One also has the spaces of periodic continuous-frequency signals Cger,g(]R; IF),

L® o(R;F), and Li o o(R;TF), p € [1,00]. We refer to Section 1.3.4 for details.

per,
Finally, we may also make reference to some of the classes of signals discussed

in the time-domain at the end of Section 1.3.2, but in the frequency-domain.
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Section 2.6

An heuristic introduction to the four Fourier transforms

In this section, with the preceding sections as motivation, we provide prelimi-
nary definitions of some of the transforms we will introduce. We do this so as to
acquaint the reader with some of the issues that go into the definitions. We will
be neither rigorous nor complete. The rough introduction we give will (hopefully)
provide some motivation for the presentation in Chapters 5, 6, and 7 where we
discuss the mathematical tools necessary to talk about frequency-domain repre-
sentations in a rigorous way. As with all heuristic approaches, there will be a
matter of taste involved. We make no claim that our heuristics are better than
any others. Indeed, we permit, and even encourage, the reader to look through as
many alternate points of view as possible since these will all contribute something.
Also, we do not advise the reader to take the remainder of this section too much
to heart. Everything done here will be done at great length and with great care in
subsequent chapters.

Do | need to read this section? There is no significant technical content in this
section, but perhaps it might be insightful to some readers. Moreover, while few
of our computations are rigorous, we do arrive at correct formulae for all of the
frequency-domain transforms that we will encounter in Chapters 5, 6, and 7. This
too may be helpful. .

2.6.1 Periodic continuous-time signals

We begin with the situation that is most easily motivated. The situation is that
of a signal f: R — C that is T-periodic. For simplicity, we consider C-valued
signals since this includes R-valued signals as a special case. We wish to write f as
a possibly infinite linear combination of “simple” T-periodic signals. The simplest
sort of T-periodic signal are those that are harmonic, t > e*™1, n € Z. So let us
crazily suppose that our objective is to write

=) e(He (23)

nez
for appropriate coefficients c,(f), n € Z. This is sometimes called a harmonic
expansion of f. Now, there is no reason whatsoever to expect a strategy like this
will succeed. However, as we shall see in Chapter 5, this actually is a reasonable
strategy. In any event, we will proceed as if this makes sense. One must determine
the coefficients c,(f), n € Z. Let us do this in a rather relaxed way. Using the (easily

verified) relation
T —
f Q2ming g=2mimt q¢ _ T, m=n,
0 0/ m#mn,
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we compute

T T
f f(t)e—Znim% dt — Z Cn(f)f eZnin%e—Znim% dt — Tcm(f)
0 nez 0

T
— cm<f>=%fo fle 2t dt,

making the assumption that the infinite sum can be swapped with the integral
(generally, it cannot be).

At this point in our discussion we merely think of the preceding formulae as
coming from an attempt to make sense of the attempt to write f as an infinite
sum of harmonics of period T. Let us now take an alternative point of view
towards this. The signal f is a T-periodic time-domain signal. The coefficient
ca(f) is the coefficient of the harmonic of frequency nT~! (and angular frequency
2nnT™1). Thus we might think of ¢,(f) as being the “amount” of the signal f at the
frequency nT~!. This points to the frequency-domain representation of f as being
the signal nT~! - ¢,(f) on Z(T™'). Thus we have a mapping Fp from T-periodic
continuous-time signals to discrete-frequency signals with fundamental frequency
T-'. Explicitly we have

T »
Feo (T = [ fles .
0

(Note that we have lost a factor of 1. This is of no consequence and is really a
matter of convention.) The subscript “CD” is intended to signify the fact that the
mapping takes a continuous-time signal and returns a discrete-frequency signal.
Now the expression (2.3) can be thought of as an inverse to Fp in that it takes the
frequency-domain signal (represented by the coefficients c,(f), n € Z) and returns
the time-domain signal. More generally, if we have F: Z(T~') — C we may define

T (PO = 7 Y FaT et

nez.

(Note that we have recovered the factor of % here.) Summarising:

T it
Feol N = [ et
10 B (2.4)
Fep (F)O) = 7 ) FnT )™ r,

nez.

There are lots of interesting questions here. For example, the following ques-
tions naturally arise.

1. Can our machinations be made to make sense?
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2. Isit true that ) is really the inverse of %cp? That is to say, given a T-periodic
signal f is it true that

Fcn e Foo(H)b) = f(t)
for almost every t?
3. Are there useful relationships between f and Zp(f)?

4. Are there possibilities for choosing the coefficients in the expression (2.3) other
than the one we give?

2.6.2 Aperiodic continuous-time signals

In this section we adapt the analysis of the preceding section tosignals f: R — C
that are not necessarily periodic. The ideas here are not as easy to motivate as they
are in the periodic case. In the periodic case, if you squint your eyes you might
be able to convince yourself that writing a periodic signal as an infinite sum of
harmonic is feasible. The corresponding statement for aperiodic signals is not so
easy to dream up and, moreover, the final answer seems decidedly less believable
than the already unbelievable situation in the periodic case. Nonetheless, we shall
proceed apace, our idea being to use the development from the preceding section
as a starting point, and using some bogus limiting argument. If the development
in the preceding section was a little sloppy, in this section, it will be downright
outrageous. Nevertheless, it is worthwhile to consider the limiting approach we
take here for signals that are not periodic to see the connection between the discrete
frequency representation in the preceding section and what will turn out to be a
continuous frequency representation.

We consider a signal f: R — C that is not necessarily periodic. We do, however,
assume that f is integrable. Moreover, we suppose for simplicity that f(¢) decays to
zeroast — oo. We adopt the following approach to attempt to derive the frequency
representation for f, using as a starting point the development of the preceding

section. We will restrict f to [-%, L] and consider the T-periodic signal fr that is

272
equal to f on [-1, 1] (see Figure 2.16). For fr we write

272
fr)y =Y ealfe™t,

nez.

with the equals sign being taken with an appropriate degree of skepticism, and
with

ca(fr) = % | fe i dt

(Sl

Note that we have made some adjustments to the formulae in the preceding section

to take into account the fact that the interval is [-F, 2] and not [0, T]. This will be
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fr(t)
W\/‘\/‘

vl 4

Figure 2.16 The signal fr constructed from f

done in a systematic way in Chapter 5. We define Av = T~! so that we may write

fT(t) — Z Cn(fT)eZTzinAvt,
(2.5)

nez
T
: f(t)e—ZninAvt dt

=7 |

Now fix v € R and let 1, € Z have the property that v € [n,Av, (n, + 1)Av). Then

F (D) = f f(pemmma dt.

Note that as T — oo we have n,Av — v, and so we may define
F () = %im F(f;T)v) = ff(t)e—Znivt dr.
—00 R

In a similar manner, for n € Z let v, have the property that v, = nAv. We then have

(Sl

define

nez
Taking the limit as T — oo, or equivalently as Av — 0, the sum becomes an integral

nez
71,1m Cy (fT)eZHinAvt — f g’(f)(v)eZHivt dV.
- -R

(o)
nez.

Z Cn(fT)eZHinAvt — Z %g(f, T)(Vn)eiv,,t — Z Av?(f, T)(VH)GZmV"t.
nez

and we have
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Summarising, we have the relationships
fo= [ FPwea 26)
R

F(H) = fR e dt,

which tell us what the relationships (2.5) look like when T — 0. Again, the equals
signs should be regarded with extreme suspicion.

Let us now develop a “transform” point of view of the preceding discussion,
just as we did in the preceding section. Again, the idea is that & (f)(v) tells us the
“frequency content” of f at the frequency v. Thus we think of the mapping Fc
that sends a time-domain signal f to its frequency-domain representation by the
formula

Feclf) = fR e dt.

The subscript “CC” indicates that the transform sends a continuous-time signal to a
continuous-frequency signal. The “inverse” of ¢ then takes a frequency-domain
signal and returns a time-domain signal by the formula

FE = f F(v)e*™ ™ dv.

R

Summarising:

Fecl ) = fR e at,
2.7)

FHE) = f F(v)e*™ dv.

R

The reader should stare for at the formula alongside (2.4) for sufficiently long that
they can come to see the relationship between the ideas being expressed in each
case.

The interesting questions here include the following.

1. Can our machinations be made to make sense?

2. Isit true that #(' is really the inverse of #c? That is to say, given a signal f is
it true that

Foc o Fec(f)(t) = f(t)
for almost every t?
3. Are there useful relationships between f and Fcc(f)?
4. Are there possibilities for the expression (2.6) other than the one we give?
We shall study Fc and its inverse in detail in Chapter 6.
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2.6.3 Periodic discrete-time signals

We now mimic the above procedure, but for discrete-time signals. First we
consider the periodic case. Thus we suppose that we have a signal f: Z(A) — C
defined on the discrete-time domain with sampling interval A. We assume that the
signal is periodic with period NA; thus f(t + NA) = f(t) for all t € Z(A). For our
heuristic introduction we shall attempt to make use of the preceding discussion
about continuous-time signals. To do this, we think of the discrete-time signal
f:Z(A) — C as being equivalent to the continuous-time generalised signal

gr(t) =) F(iMOja.

j€Z

The idea is that a discrete-time signal gives an “impulse” at each of its discrete
points. This possibly seems reasonable, but even if it does not we proceed as if it
does. Motivated by our methodology of Section 2.6.1, we seek constants c,(f) with
the property that

gr(t) =Y calf)e s

nez

Proceeding as in Section 2.6.1 we have

1 NA
_ —2mingx
lf) =g | gt

I il
= == fo () £(8)5ja )25 dt

JEZ.
1 N-1 )
.y
- f(]'A)e—ZmnN,
NA ;4

using the definition of the generalised signals 6;4. Note that in computing the
integral using the properties of 6,5 we have included 6y but not éna. This can
be justified by noting that the fundamental domain of g is [0, NA), i.e., the right
endpoint is not included in the fundamental domain. One can readily check that
cueN(f) = cu(f) for all n € Z. Thus we have the fundamental relations

gr(t) =Y ca( e,

nez
1 N-1 )
_ - . —2nin§

Now we wish to recover a formula for f, not g, from the first of these formulae.
There is a little magic to this that will only be justified in . The first observation
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is that periodicity of the coefficients c,(f)—the fact that c,.n(f) = c.(f) for all
n € Z—implies that

N-1
Z cn(f)ezni”ﬁ — Z Cn(f)e2ninﬁ(2 e2nik£).
nez n=0 kezZ

In Example 5.5.2—2 we shall see that
Z o2mikg — Z .
kez keZ

Note that the left-hand side is clearly senseless as a function, but the right-hand
side says that it is a distribution in any case. Forgetting the possibility of our doing
anything senseless, we simply have

N-1
D (N = Y (e () b,
n=0

nez. k€Z>O

“Evaluating” this at t = jA gives

Z

gD = FGA) = Y cu(fe2nw.

n

Il
o

This gives us our desired representation of the periodic discrete-time signal f.
Now let us apply the transform point of view to the discussion. In this case
we note that we have mapped a NA-periodic discrete-time signal defined on Z(A)
to a A'-periodic frequency-domain signal defined on Z(yx). Thus the mapping
is one between two N-dimensional vector spaces. We denote the time-domain to
frequency-domain map by p and its inverse by 7. Explicitly we have

z

1

Foo(f)(§5) = A ' f(]'A)e‘Z”i”AL},

]

I
o

(2.8)

z

-1
F(5)e™™ .,

|~

Fon (F)(jA) =

Z

A

n

I
o

(Note that the factor of 5; is moved about freely, just as was the factor for 1 for
cp.) The subscript “DD” indicates that the transform is from a discrete-time signal
to a discrete-frequency signal.

Let us make some observations about the formulae (2.8).

1. Can our machinations using generalised distributions be made to make sense?
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2. Is it true that ¥} is really the inverse of #pp? That is to say, given an NA-
periodic discrete-time signal f is it true that

Fo © Foo(H(A) = f(A)
for every j € {0,1,...,N — 1}? Note that this is merely a question in finite-
dimensional linear algebra, whereas this question is actually extremely involved
for %p and Fc.

3. Since the coefficients {f;};cz and {c,(f)}.cz are periodic with period N, the rela-
tionships between them are actually simple computationally since all sums are
tinite. Is there an efficient way to perform these computations?

The transform %p will be studied in detail in Section 7.2.

2.6.4 Aperiodic discrete-time signals

Now we consider again a discrete-time signal f: Z(A) — C, but now we do
not assume that f is periodic. We still convert f to a continuous-time generalised
signal g¢ and write

gr(t) = ) F(iMSja.
jEZ
Analogous with the construction of Section 2.6.2, we assume that the sequence
{f(jA)}jez., is absolutely summable. Thus we may compute, as in Section 2.6.2,

F(H = [ foevar= Y faje
R jEZ
Note the similarity between this formula as a function of v and the expression (2.3)
for a periodic signal as a function of . Thus we see that in (2.3) t is replaced with v
and that T is replaced with A™!, and there is also a sign change in the exponential.
In any case, at least if we are ruthless with our limits, we can compute
A_l A—l
g*(f)(v)eZTLiva dv = Z f(]A)f eZnivae—ZnivjA dv = A_lf(kA)
0

0 j€Z

A1
= fkA) = A fo F ()X dy,

Now let us give our transform interpretation of the preceding computations.
Our frequency-domain representation of the discrete time-domain signal f is a
continuous-frequency signal. Thus we denote the corresponding transform by
Foc with inverse %‘Cl. Our computations have shown that

Foc(Hv) =AY f(jA)e,

jeZ

(2.9)

A
TR = [ Fre
0




2022/03/07 2.6 An heuristic introduction to the four Fourier transforms 103

(The factor of A is manipulated freely as is the factor of % in the definition of Fp.)
As usual, there are questions to be asked here, including these.

1. Can our machinations using generalised distributions be made to make sense?

2. Isittrue that 7 isreally the inverse of #pc? Thatis to say, given a discrete-time
signal f is it true that

e ° Foc(H(A) = f(jA)
for every j € Z.¢?
3. Are there useful relationships between f and %c(f)?
We shall study the transform % in detail in Section 7.1.

2.6.5 Notes

The idea of considering the four transforms presented in Chapters 5, 6, and 7
as being different versions of the same idea we take from [Kwakernaak and Sivan
1991]. While this idea is certainly known and understood by everyone who works
with these things, the unified presentation of these, and the unified notation p,
e, Yop, and Fipc we borrow from Kwakernaak and Sivan. This way of presenting
the subject seems to us to simply be the correct one, and we wish to acknowledge
Kwakernaak and Sivan for making this clear.

The ideas we describe in Section 2.6.1 form the beginning of the subject of
Fourier series, and was proposed by Fourier [1822] (1768-1830) in the course of
the study of heat conduction in solids. Fourier was trying to understand the
temperature distribution in a rod as depicted in Figure 2.17. Fourier’s idea was to

1(t, )

7

Figure 2.17 Temperature distribution in a rod

write the temperature in the rod in the form

T(t, x) = aOT(t) + Z(ﬂn(t) o) + b,(t) sin(zn%)),

n=1

where ¢ is the length of the rod. To many his colleagues at the time this seemed a
hopeless idea. One of the reasons for this was that it was thought to be infeasible to
write an arbitrary function as a series of continuous functions, the thinking being
that a convergent series of continuous functions should converge to a continuous
function. Since physically there seemed no reason to suppose that the temperature
distribution in the rod was continuous, Fourier’s idea was thought to be doomed.
However, Fourier has since been vindicated, and indeed his idea has spawned

get cites right
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harmonic analysis, one of the most important areas in mathematics and applied
mathematics.

Exercises

2.6.1 Show that the following four sets of signals are linearly independent:

t > e¥T | e Z);

t e |y e R);
kA - ¥V | e Z2);
kA — ™A |y e R).

{
{
{
{

The first two sets are comprised of continuous-time signals and the second

two sets of signals are comprised of discrete-time signals.

Hint:

1. Note that it suffices to show linear independence of the second and fourth sets.
Why?

2. Note that it suffices for the second and fourth sets to consider v € Q. Why?

These observations allow one to show linear independence of the sets

{t N e2nivt | Ve Q},

{kA — @?7ivkA | ve@Ql.
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Chapter 3

Distributions in the time-domain

It is surprisingly often that one naturally encounters signals that are not really
signals, but limits of signals in a certain sense that is not covered by the theory
of continuous-time signals spaces developed in the preceding chapter. The way
we will deal with these signals is through the use of distributions or, as they are
sometimes known, “generalised signals.” In these volumes we shall provide a
fairly complete presentation of how distribution theory arises in transform theory
and system theory. It is possible to do many things without knowing the details
of the theory of distributions. But the fact of the matter is that there comes a time
when it is harder to not use distributions than it is to use them. Therefore, we elect
to use them and to understand how they interact with more mundane matters.

In this chapter we shall encounter a number of different varieties of distribu-
tions, and these classes are related to one another in sometimes nontrivial ways.
The first class of distributions we consider, those we simply call “distributions,”
has some more or less straightforward motivation that we provide in Section 3.1.
However, the other classes of distributions might seem fairly unmotivated when
we first encounter them. This is because these classes of distributions are designed
to work with various sorts of Fourier transforms that we will encounter in sub-
sequent chapters, mainly Chapters 5, 6, and 7. Therefore, while we present the
properties of these classes of distributions in this chapter, we will not understand
the utility of some of these until we get to transform theory. The reader is advised,
then, to maybe read some of the sections in this chapter as preliminary to the
associated Fourier transform application.

In this chapter we give a self-contained treatment of distributions in the time-
domain. However, there is nothing that links distributions with time, per se, and
so one can also talk about generalised frequency-domain signals.

Do | need to read this chapter? It is a healthy thing to at least know what the
delta-signal is. So read enough to understand this as a bare minimum. )
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Section 3.1

Motivation for distributions

The most difficult aspect of the theory of distributions is not how to use distri-
butions, but to understand what you are doing when you use them. Part of arriving
at an understanding of what distributions are and are not involves understanding
why the definition of a distribution is as itis. In this section we do this by providing
some situations where the need for distributions reveals itself in a natural way.

Do I need to read this section? If you are reading this chapter, then this section
may be interesting, although it does not contain much in the way of technical
information. .

3.1.1 The impulse

There are a variety of ways one can motivate the introduction of distributions,
or as they are sometimes called, generalised signals. One of the most natural ways
to do this is through their use in differential equations. We do this in a concrete
context.

Consider a mass m oscillating on a spring as shown in Figure 3.1. Suppose that

‘F(t)

Figure 3.1 A mass on a spring

we measure the displacement of the mass which we denote by y. The governing
equations for the system are then

mi(t) + kx(t) = F(t),  y(t) = x(t),

where m is the mass, k is the stiffness constant of the spring (we assume a linear
spring), and F is a force applied to the mass as indicated in the figure. We now
consider a special sort of force F. Prior to time t = 0 we suppose the system to be
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in equilibrium. At t = 0 we apply a constant force M for duration A and thereafter
the force is zero. That is, we consider the force Fy; 4 defined by

M, te]0,A]
0, otherwise.

Fua(t) = {
The action of the force Fy;, is

IFaially = f Fua()dt = MA.
R

Now let %4 be the collection of all signals with action A. Thus, for any Fya € %

we have MA = A. Now consider the sequence (F;);cz of forces in &, such that

Fj=F,j1. Thus, as j — oo, these forces are applied for shorter time, but have larger
7]

magnitude, subject to the constraint that they have equal action. As a sequence of
measurable signals taking values in R we have

Ful) £ limFy(t) = ' =Y
T e Y0, otherwise.

Note that there is no problem in defining this limit as a pointwise limit of measur-
able R-valued signals. Also, each of the signals F; is a perfectly nice signal that will
give rise to a response t — x(t) of the mass.

The question we wish to ask is this. Is x., £ lim;_. x; the response of the system
to the force lim;_,., F;? Without actually going through the details (the reader can
do this in Exercises 3.1.1 and 3.2.15), let us see if we can say something about the
two things we are trying to compare.

1. The limit of the responses: Although the force F; is being applied for a duration
tending to zero as j — oo, the magnitude of F; during its application tends
to infinity. Thus it is not clear what wins the race between shorter ad shorter
duration and larger and larger magnitude. In fact, we have cooked things so
that there is a tie. Were the duration to shrink at a faster rate than the magnitude
grew, then the response would tend to zero as j — co. Were the magnitude to
grow at a faster rate that the duration shrunk, then the response would blow up
as j — oo. It turns out that in this case the limit is well-defined and is nonzero.
The reader can explore this as Exercise 3.1.1.

2. The response of the limit: This is easier to be clear about. We have an inhomo-
geneous linear scalar differential equation whose right-hand side is zero except
on a set of measure zero. Solutions to such differential equations are obtained
by integrating the right-hand side, cf. Exercises 3.1.1 and 3.2.15, and so the
resulting response will be zero.

The point is this: The limit response x.. is not the response to the limit force F.,.
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The problem, it turns out, is the way we take the limit lim;_,, F;. If we take
this limit in the right space (for example, not in the space of measurable signals),
then it turns out that the limit of the responses is the response of the limit forces.
However, the price you pay is that the space in which one works is not a space of
signals in the usual sense, but is the space of distributions or generalised signals.

Supposing A = 1 for concreteness, the generalised signal lim;_,., F; is the ubiq-
uitous “delta-signal” which we denote by 6;. We shall say more about 6, in
Section 3.1.4.

3.1.2 Differentiating nondifferentiable signals

In the preceding section we saw that something that was not a signal arose in a
natural way as a limit of signals. In this section, using the same example, we will
see that something that is not a signal can arise by a natural desire to differentiate
something that is not differentiable.

We again consider the mass/spring system depicted in Figure 3.1. Now we
suppose that we measure the velocity of the mass, and we denote this by y. Then
the equations governing the system are

mi(t) + kx(t) = F(),  y(t) = %(¢).

For a given force F, one can obtain y by first solving for x and then differentiating
to get y, However, it is also natural to directly obtain a differential equation for y.
To arrive at this, we differentiate the x-equation to get

mij(t) + ky(t) = F(b).

Now suppose that for t < 0 the mass is at rest and we take F(t) = 159(t). We are
then confronted with understanding what one might mean by 1.,. Since 10 is not
differentiable at t = 0 one does not have recourse to the usual notion of differentia-
tion as described in Section |-3.2. To try to understand how to differentiate 15, at
t = 0 we adopt an alternate property of the derivative. Suppose that ¢ € LY(R;R)
is continuously differentiable with a derivative also in LY(IR;R). We then might
speculate, using integration by parts, that were we able to define 15 it would
satisfy

f 120((0) df = Taa(p(H)|” — f 1o(B() dt
R R

= ) — j d
9(c0) f d(t)dt
= $(e) — $(c0) + B(0) = H(0).

(Here we have used the fact that since ¢, ¢ € LO(R;R), we have lim_ ¢(t) = 0
by Exercise 1.3.21.) That is to say, we might take as the definition of 15 the signal



3.1.1

2022/03/07 3.1 Motivation for distributions 111

having the property that for any continuously differentiable signal ¢: R — R with
the property that it and its derivative are integrable, we have

fR 120(Hb() dt = (0).

Now one might ask whether there is an integrable signal having this property. It is
actually not difficult to show that the existence of such a signal is an impossibility.
We recall from Definition Il1-2.9.19 the definition of a locally integrable signal.

Proposition (Nonexistence of a signal having the properties of the delta-
signal) There exists no locally integrable signal 69: R — R such that f]R Op(t)f(t) dt = £(0)
for every f € C) (R R).

Proof Suppose that d is such a signal and let (f))jez., be the sequence of signals

1+jt, te [—%,O],

f](t) = 1_jt1 tG(O, %]/
0, otherwise.

Then
f do(t)fi(t)dt =1, j € Zo.
R

However, by the Dominated Convergence Theorem,

tim [ a0 = [ au(tlim £ =0,

and so we arrive at a contradiction. ]

In Section 3.1.4 we shall have more to say about this object 6y, and in Sec-
tion 3.7.6 we shall be rigorous about just what 6, is, and ways to understand
it.

3.1.3 What should a good theory of distributions achieve?

Having now motivated why things that are not signals can arise in a natural
way, we are now in a position to wonder whether there is in fact a larger class
of mathematical objects one should be considering other than signals. Obviously
there is (e.g., the “mathematical universe”), so we should try to make our objective
well-defined. What properties might we want our fantasy “super signal theory”
to have?

Here is a possible wish list.

1. The set of “super signals” should be a vector space in a natural way. The
justifications for this are just as for they were for signal spaces in Section 1.1.7.
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2. The set of “super signals” should contain all reasonable signals. Now, what
should reasonable mean? Well, clearly any signal from any of the spaces
L?(R; F), p € [1,00], should be in our set. But these are far from enough.
For example, one would want to include signals like t +— #? if possible. More
generally, one might like to have C°(R; IF) be included in our set of super signals.
Actually, what we really want to allow are all locally integrable signals. These
seem like a pretty reasonable and reasonably large class of signals. Thus, let us
demand that LE)C(IR; IF) be in our set of “super signals.”

3. Our set should contain the object corresponding to the impulse from Sec-
tion 3.1.1. That is to say, our theory should allow us to define an object and a
differential equation theory for using that object that would allow us to retrieve
the limit response from Section 3.1.1 as a limit of the forces from that section.

4. InSection 3.1.2 we saw that it might be useful to be able to differentiate (in some
sense) nondifferentiable signals. Thus we ask that all of our “super signals” be
differentiable (in some sense). Heck, we may as well ask that they be infinitely
differentiable!

5. For spaces of signals, we argued in Section 1.1.7 that we should expect there to
be some manner of defining convergent sequences. We shall ask the same for
our space of “super signals.”

3.1.4 Some caveats about what is written about the delta-signal

The reader wishing to load up on intellectual rubbish need do no more than do
a Google search for “delta function.” What will result is a clear exhibition of the
confusion in much of the scientific community regarding just what the delta-signal
“is.” Some will actually give the definition of the delta-signal as

oo, t=0
So(t) =4 7 ’ This is not a real equation!
ot {0, otherwise. ( 1 )

Then it will be pointed out that this is not really a signal. However, it is a perfectly
well-defined signal, albeit one taking values in R. But there is still nothing really
wrong with it: it is in the same equivalence class as the zero signal under equiva-
lence of signals which differ on sets of measure zero. Then there will follow some
rules for using the delta-signal. The details of these rules will vary. But all such
descriptions suffer from ambiguity to the extent that it is very easy to use them
to perform wrong computations. For folks who think of the delta-signal in this
way, they use it as a convenient tool. If they make an error using it, this typically
shows up by obtaining results that are incoherent for the problem. Then the idea
is that one goes back to the manipulations of the delta-signal and says, “Oh, this
step must have been wrong,” even though the step is in accord with the rules laid
out. This is embarrassingly unscientific!



2022/03/07 3.1 Motivation for distributions 113

Why not instead really learn what the delta-signal is and how to really use it.
It is not that difficult!

3.1.5 Notes
[Schwartz 1950-1951]

Exercises

3.1.1 Let us revisit the mass/spring example of Section 3.1. The governing differ-
ential equation is
mi(t) + kx(t) = F(t). (3.1)

For simplicity, take m = k = 1.
(a) Show by direct substitution that the solution to (3.1) is given by

x(t) = ‘fo sin(t — 7)F(t)dt

if the initial conditions are x(0) = 0 and x(0) = 0.
Hint: First show that

d [t ' of(t, 7)
&Lf(t’T)dT_f(t,t)+fo St dr,

provided that all operations make sense.

Define a sequence (F));cz., of forces by

o
i) = {] LoDyl

0, otherwise

for a, p € R.y.

(b) Compute the response x; associated to the force F; with initial conditions
x]'(O) =0and X](O) =0.

(c) What are the conditions on & and g that guarantee a bounded, nonzero
response in the limit as j — c0?
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Section 3.2

Distributions

We begin in this section by providing a theory for generalised signals—we
shall call them distributions—that satisfies the objectives of Section 3.1.3. With
the theory of distributions we must forgo the comfort of thinking of signals as
being functions of time. Indeed, the point of Proposition 3.1.1 is that signals
as a function of time are simply not able to capture the features we need from
generalised signals. What, then, should distributions be? It turns out that a useful
definition is to make a distribution a scalar valued function on a certain set of
so-called “test functions.” Thus distributions are functions of functions. Indeed,
distributions are the topological dual of the set of test functions, a notion which we
make precise in Section [l1-6.5.5. One does not need to understand these sorts of
issues, however, to understand distributions and how to use them.

We prove in this section many of the basic properties of distributions, and so
the discussion at times gets technical. However, it is also the case that distributions
are extremely easy to use in practice. The thing to keep in mind at all times is that
a distribution is a function on the set of test functions. If one does this, one can
never stray far.

Do I need to read this section? If you are reading this chapter, then the technical
matter starts here. o

3.2.1 Test signals

In this chapter we adopt the convention of using the symbol FF to denote either
R or C.

In our motivation in Section 3.1.2 of the delta-signal as the derivative of the
step signal, we introduced the idea of defining a signal based on integrating its
product with a signal having certain properties, specifically having the property
of being integrable and having an integrable derivative. When one does this, the
class of signals used in the integration are called “test signals.” They may depend
in nature on just what one is doing. In this section we introduce the first our of
class of test signals.

Definition (Test signal) A test signal onRisasignal ¢: R — F with the properties
that

(i) ¢ is infinitely differentiable and
(i) ¢ has compact support.
The set of test signals is denoted Z/(IR; IF). °
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Remark (Z'(R; F) is a vector space) One can easily check that Z(R; FF) is a sub-
space of the F-vector space FX. .

The set Z(R; IF) we have previously denoted by CZ,(R; IF). The notation we use
here is the traditional notation used for the test functions.

A good question to ask is, “Are there any nonzero test function?” In case you
think this is a stupid question, note that if we replace “infinitely differentiable” with
“analytic” in the definition of a test signal, then there are actually no nonzero test
signals. However, it turns out that there are nonzero test signals. Most examples
of test signals are constructed using the following signal as their basis.

Example (An element of I (R; F)) Define

A(t) = cexp(—1h), <1,
0, 1> 1

where ¢ = f_ 11 exp(—12z)dt. The signal is plotted in Figure 3.2. This signal is

A(t)

Figure 3.2 The test signal A

often called a bump signal, for obvious reasons. Clearly A has compact support
and is infinitely differentiable except at £1. To verify that A is actually infinitely
differentiable, one may show that A®W(t) = p(t) A (t) for t € (-1,1), where p is
a rational function of ¢t having a pole at +1 of order 2k (cf. Example |-3.7.28-2).
Therefore,

lim A®(#) = lim A®(t) = 0,

#1 tl-1

since the exponential decays faster than the rational function blows up. o

Note that the set of test signals forms a vector space since the sum of two test
signals is also a test signal, and any scalar multiple of a test signal is also a test
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signal. Thus Z(R; F) is an infinite-dimensional vector space. If T C R is a closed
continuous time-domain of finite length, then &(T;F) denotes the subspace of
Z(R; F) consisting of those test signals ¢ for which supp(¢) C T.

Let us define the notion of convergence in the vector space Z(IR; [F), and asso-
ciated to this the notion of continuity for linear maps. Reader not having seen the
notion of a linear map may refer back to Definition 1-4.5.4.

Definition (Convergence in & (R; IF)) A sequence of test signals (¢;) ez, converges
to zero it

(i) there exists a compact continuous time-domain T so that supp(¢;) C T for all
j € Z,p and,

(i) foreachk € Zs, the sequence of signals (qb;k)) jez., converges uniformly to the
zero signal.

A sequence (¢) jez., in Z(IR; F) converges to ¢ € I(IR; IF) if the sequence (¢~ ) ez,
converges to zero. °

Note that the notion of convergence in the space of signals Z(IR;F) is not
defined using a norm. An interesting question to ask is, “Is there a norm on
Z(R; F) for which convergence using that norm is equivalent to convergence as
we have defined it?” The answer, it turns out, is, “No.” We discuss this in .

Let us consider some examples that illustrate what convergence is and is not in

I (R; F).

Examples (Convergence in ¥ (R; F))

1. If (aj)jez., is a sequence in F for which lim;_,.|a;| = 0 then we claim that the
sequence (ajA)jez., of test signals converges to zero in Z(IR;F). This follows
since for each k € Z., each of the sequences of signals (2;A%)cz_, is a Cauchy
sequence in C°([-1, 1]; F) and so converges by Theorem I11-1.9.1.

2. Next we let (7j)icz., be an increasing sequence of positive real numbers for
which limj . 7; = co. If we define A, (t) = /\(rii — 1), then we claim that the
sequence (A;,)jez,, does not converge to zero in Z(IR; IF). While it is true that the
sequence of signals and their derivatives converge to zero in the sense that for

each k € Z the sequence (Ag;)) jez., converges pointwise to the zero signal, this
convergence is not uniform, as can be gleaned from Figure 3.3. o

Associated with convergence in Z(IR; F) is a corresponding notion of continu-
ity.
Definition (Continuous linear maps on ' (R; F)) A linear map L: Z(R;F) — F

is continuous if the sequence (L(¢));cz., of numbers converges to zero for every
sequence (¢)jez., of test signals converging to zero. o
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0.8
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Figure 3.3 The 1st, 5th, and 10th terms in the sequence (Ar,.) j€Z50

=1
forr]—j

Remark (The réle of test signals) The reader may be a little perplexed by our
introducing the space Z(IR;F). Indeed, this is a space of signals that seems to
only contain quite strange signals. However, the thing to keep in mind is that the
space of test signals is only of interest to us since they will form the domain for the
things we are actually interested in in the next section. That is to say, we are not
necessarily interested in test signals per se, but only as a means of getting at what
we are really interested in.

The reader can refer to Remark 3.2.14 and Remark 3.2.28 for the justification
of choosing Z(IR; IF) in the (maybe seemingly strange) way we did. o

3.2.2 Definition of distributions

Now we define what we mean by a distribution.

Definition (Distribution) A distribution, or a generalised signal, is a continuous
linear map from Z(R; F) to F. The set of distributions is denoted 2’ (RR; [F). .

Notation (Applying a distribution to a test signal) Sometimes it will be conve-
nient to write (0; ¢) for O(¢). Apart from notation convenience, this is consistent
with our notation for the application of an element of the dual of a vector space to
an element of the vector space; see Notation |-5.7.2. Indeed, a distribution is, by
definition, a continuous element of the algebraic dual. o

Remark (2'(R; F) is vector space) One can easily verify that Z'(R;F) is a F
vector space with the vector space operations

(61 + 02)(P) = 61() + 02(¢),  (aB)(P) = a(6(¢)),
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for 0,0,,0, € Z"(IR;F), p € Z(R;F),and a € F. °

Let us consider some elementary constructions with distributions.

3.2.11 Examples (Distributions)

1.

If 61,0, € Z'(IR; F) then we define 0; + 0, € ' (R; F) by (61 + 0,)(¢) = 01(¢) +
O2(¢p). Similarly, if 0 € Z’(R;F) and a € F then we define a0 € Z'(R; F) by
(a0)(¢) = a(0(¢)). These operations of vector addition and scalar multiplication
may readily be seen to make Z’(IR; IF) into an [F-vector space.

Signals can be multiplied pointwise to recover new signals. This is not generally
true of distributions (Exercise 3.2.10). However, we claim that if ¢y: R — F
is infinitely differentiable and if 0 € &’(RR; F) then we may define the product
of ¢y with 0 to obtain a new distribution that we denote by ¢y0. This new
distribution is defined by

$oB(P) = O(o),

noting that ¢ € Z(IR; F). To show that ¢o0 is indeed a distribution we should
show that for every sequence (¢;)icz., of test signals converging to zero in
9 (R; F), the sequence (¢o;)icz., also converges to zero in Z(IR; IF). Since there
exists a compact set K such that supp(¢;) C K for every j € Z.,, we also have
supp(¢po@;) € K. Moreover, we note that

4

(Pop) =) (i)qbé”qb;”%

k=0

using the product rule, Proposition 1-3.2.11. Therefore, there exists C; € R,
such that

1P00)llee < Cemax{lidollco, 15 Mo, - - -, 10 1o}
-max{liglloo, 1) oo, - - -, 16l

Since the right-hand side goes to zero as j — oo, so too does the left-hand
side, giving uniform convergence of (¢o¢;)) to zero for £ € Z, and so giving
convergence to zero of (PpoQ;)jcz.,-

Let us show that our motivational example from Sections 3.1.1 and 3.1.2 does
indeed fit into our general framework. Consider the linear map 6;,: Z(R; F) —
F defined by 6,(¢) = ¢(ty). We claim that 6;, € Z'(R; F). Clearly o, is linear.
Now let (¢))jez., be a sequence of test signals converging to zero in Z(R; F).
Then clearly we have lim;_,, ¢;(ty) = 0, giving continuity of 6;,. We call 6;, the
delta-signal at t,, observing that it is in fact not itself a signal as we showed in
Proposition 3.1.1. .
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3.2.3 Locally integrable signals are distributions

As we indicated in our wish list from Section 3.1.3, it would be useful allow all
locally integrable signals (see Definition IlI-2.9.19) as distributions. In this section
we indicate that this is possible.

First we prove a preliminary result.

3.2.12 Proposition (Distributions from locally integrable signals) Let f € Lfi)c(]R; IF) and
define Os: I (R; F) — F by

01(¢) = fR () d.

Then the following statements hold:
(i) 6r € Z"(R; TF);
(i) if O = Oy, for ty,f, € Lgi(lR; IF), then f,(t) = f,(t) for almost every t € R.
Proof (i) First of all, we note that the integral is always defined. Indeed,

f FOS®dt = f OO dE < [0l f (O] dt < oo.
R supp(¢) supp(¢)

Also, the map ¢ — 6¢(¢) is clearly a linear map on Z(R;F). Now let (¢))jez., be
a sequence of test signals converging to zero, and let T be a compact continuous
time-domain for which supp(¢;) € T. We then have

}gg Of(p)) = }i_)I?ofo(f)qu(f)df
li oo dt =0,
< timll o [ 1701dr =0

since lim;,«|l¢jll = 0 and f is integrable on T. This shows that 0 € Z'(R; FF).
(i) By linearity it suffices to show that if 6 = 0 then f(f) = 0 for almost every t € R.
Thus suppose that

f}R fBPt) =0 (3.2)
for every ¢ € Z(R; F). Fora < b define ¢, € Z(R; F) by

exp(-7 —55), te@b),
0, otherwise.

l1ljzz,b(t) = {

Note that

supp(Vqp) = [4, 0],

l;bu,b(t) € R, forte ((Il, b),

limy—c0 ¥, 5(H)1/" = 1 for t € (a,b), and

there exists M € R so that for all n € Z. and t € (4, b) we have %,b(t)l/ "< M.

—

> w D
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Therefore, for n € Z-y we have

b
f o)™ dt = f ftapt)™dt = 0.
R a

Since f is locally integrable and since gb;/b”(t) is uniformly bounded in #n we have

b b b
0= tim [ fO00at= [ 500 im g0 at= [ pora,

by the Dominated Convergence Theorem. Since this holds for any a < b,
Theorem I11-2.9.33(ii) this implies that f is zero almost everywhere. [

With the preceding result as justification, we make the following definition.

3.2.13 Definition (Distribution associated to a locally integrable signal) For f €
LY (IR; F) the distribution associated to f is 0 € Z'(IR; F) defined by

loc

0,(9) = fR FOP) . .

The essential meaning of Proposition 3.2.12 is simply that the map L (R;TF) >

f = 0y € Z'(R;F) is injective, and so L} _(R;TF) sits as a subspace of & ’%c])lc?; IF). Of
course, this also means that the map Lg)c(lR; F) > f = 0f € Z'(R; ), just that the
map is not injective.

Note that the preceding definition justifies one of the properties of the set
Z(R; F) being chosen as it was.

3.2.14 Remark (Justification for signals in &' (R; F) having compact support) Our
desire to have locally integrable signals included as generalised signals accounts
for the set Z(IR; F) of test signals having compact support. Indeed, note that a
locally integrable signal can blow up at infinity as fast as one likes. Thus it is not
possible to choose a set of test functions with non-compact support for which the
integral

f]R () dr

will exist for every locally integrable signal f and for every test signal ¢. Thus
we are forced to have our test signals have compact support if we are to have
LY (R; F) € 2" (R; ). .

As we saw in Proposition 3.1.1, there exist distributions that are not associated
to locally integrable signals as in the preceding definition. This motivates the
following definition.
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Definition (Regular distribution, singular distribution) A distribution of the
form O for f € Lgl(]R; IF) is called regular. A distribution that is not regular is
called singular. o

3.2.4 The support and singular support of a distribution

Consider the definition of :

00(¢) = ¢(0).

Although we cannot evaluate 0 at a point f € IR, we nonetheless imagine that t = 0
is somehow distinguished in the definition of 6,. We wish to understand how to
make this precise.

Definition (Support of a distribution)

() A distribution 0 vanishes on an open subset O C R if O(¢) = 0 for all
¢ € I(R; F) for which supp(¢) € O.

(i) The support of 6 € Z(R; ) is the subset of R defined by
supp(0) =R\ (U{O € R | Oisopen and 6 vanishes on O}) )

Since supp(0) is the complement in R of a union of open sets, it is a closed
subset of R.

Corresponding to the same notions for signals, we have the following charac-
teristics of distributions.

Definition (Causal, acausal distribution) A distribution 6 is
(i) causal if supp(0) C [a, o0) for some a € R,
(i) acausal if supp(0) C (—oo, b] for some b € R,
(iii) strictly causal if supp(0) C [0, o), and
(iv) strictly acausal if supp(0) C (—o0,0].

The set of causal (resp. strictly causal) distributions is denoted Z(IR;[F)
(resp. L. (IR;IF) and the set of acausal (resp. strictly acausal) distributions by
D' (R;F) (resp. Z.,(R; IF)). °

Let us consider some examples of distributions where we can give the form of
the support.

Examples (Support of a distribution)

1. If 6 = Of for f € Lgl(lR; F) then one readily checks that supp(6) = supp(f),
recalling from the notion of the support of a measurable function.

2. We claim that if 01,0, € &'(R; F) then supp(0; + 02) = supp(61) U supp(6,).
Indeed, let O € R\ (supp(6:) U supp(6,)) be open and let ¢ € Z(R; F) have sup-
portin O. Then 0;(¢)+6,(¢p) = 0. This shows that O € R\(supp(6:) U supp(62)).

what
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To show the converse implication, suppose that O is an open subset of R for
which (supp(61) U supp(62)) N O # @. Then we must have O N supp(6,) # @
and/or O Nsupp(0,) # @. In either case, there exists a test signal ¢ with support
in O so that 6(¢) # 0, thus giving the desired conclusion.

3. If ¢o: R — Fisinfinitely differentiable and if 0 € &'(RR; ), it is straightforward
to check that supp(¢o0) = supp(6) N supp(¢o).

4. We claim that supp(0;,) = {to}. Indeed, it is clear that it ¢ € Z(R;F) has
to & supp(¢) that 6;,(¢p) = 0. Therefore supp(6;,) < {to}, and since 6y, is not zero,
our claim is verified. o

It is possible that a distribution can be regular on some parts of R and singular
on others. In order to make sense of this, we need to be able to say what it means
for two distributions to agree on a subset.

3.2.19 Definition (Singular support of a distribution)
(i) Distributions 04, 0, € Z'(R; F) agree on an open subset O C Rif 01(¢) = O,(¢)
for each ¢ for which supp(¢) € O.
(i) The singular support of O € Z’'(IR; IF) is the largest closed set sing(0) € R with
the property that on R \ sing(0) there exists f € LE)C(IR; IF) so that O agrees
with 6. o

Note that sing(0) C supp(0).
Let us consider some examples to illustrate the notion of singular support.

3.2.20 Examples (Singular support of a distribution)
1. Clearly sing(0f) = @ forany f € Lgi(]R; IF). Also, if sing(0) = @ then 0 = 0 for
some f € Lgl(lR; F). Thus we have the grammatically convenient statement, “A
distribution is singular if and only if it has nonempty singular support.”
2. Since 6o(¢) = 0 for any ¢ for which 0 ¢ int(supp(¢)) we have sing(6p) = {0}.

3.2.5 Convergence of distributions

In our wish list for distributions in Section 3.1.3 we indicated that we would
like for the set of generalised signals to have some useful properties for defining
convergence. In this section we shall consider a natural notion of convergence
in Z’(IR; IF); it may not be clear at this point that it is useful, but as we go along
we shall see that it does do some things for us that might merit its being called
“useful.”

First the definition.

3.2.21 Definition (Convergence in &'(RR;F)) A sequence (0))jez., in 2’ (R; F) is
(i) a Cauchy sequence if (0;(¢))jez., is a Cauchy sequence for every ¢ € Z(R; F),
and



2022/03/07 3.2 Distributions 123

(i) convergestoadistribution Oif forevery ¢ € Z(R; F), the sequence of numbers
(0i(9))jez., converges to O(¢). °

Note that our definition of convergence in &’(IR; F) is “indirect” in that it relies
on what distributions do to test functions. Generally, this sort of convergence is
known as weak convergence. The interested reader can read more about thisin. e
Having defined the two notions of a Cauchy and a convergent sequence, the
natural issue arising next is the relationship between these? Note that these notions
are not just corresponding to a norm, so the matter is not quite equivalent to the
way we regard Cauchy sequences in, say, L7(T; F). The general framework giving
rise to the notion of Cauchy and convergent sequences is considered in . Here,
let us content ourselves with showing that 2 (IR; F) is “complete” in that Cauchy
sequences and convergent sequences agree.

3.2.22 Theorem (Cauchy sequences in 9'(R;IF) converge) A sequence (0y)cz., in
' (R; F) converges to some 6 € D' (IR; F) if and only if it is Cauchy.
Proof Clearly if (0)) jez., converges to some 0 € Z’(RR; [F) then it is a Cauchy sequence
since convergent sequences in [F are convergent. So we prove the converse.

Define a map 0: Z(R;F) — Fby 0(¢) = lim;_,c 0j(¢). This certainly makes sense,
but we have to show that 6 is a distribution, i.e., that it is linear and continuous.
Linearity is trivial. For continuity, let (¢x)kez., be a sequence in Z(R; IF) converging to
zero, and suppose that the sequence (0(¢x))iez., does not converges to zero. We may
then choose C € R, and a subsequence (y1)nez., € (Pk)kez., such that [0(y,)| > C for
all n € Z-(, and such that ||1,D,(1])||oo < % for j €{0,1,...,n}. By defining (x; = 2fgbj)jez>o
we see that the sequence (x})jez., converges to zero in Z(IR; [F) and that the sequence
(16(x)) jez., blows up to oo as j — oo.

A technical lemma is useful at this point.

1 Lemma There exists a subsequence (Ox)xez., of (0y)iez., and a subsequence (Vi )xez., of
(Xj)j€Z>o such that

~ 1
|9k()?1’1)| < 21’1_—1(, k € {1/~ N2 1 1}/

~ n-1 ~ (33)
|On(Xn)l > Zlen(;(k” +n, n € Zo.
k=1

Furthermore, if (X«)kez., 1 S0 chosen then
x=) € DR;P.
k=1

Proof Note that since (x}) ez, converges to zero in Z(IR; IF), for fixed k € Zo we have
lim;|6k(xj)| = 0. Therefore, for any ki, ..., ky € Z-o we may choose a subsequence
(Xkez., Of (X)) jez., such that

1Ok, (Tn)l < aell,..., mh.

on—k,’
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In particular, the first of equations (3.3) is satisfied. Since lim;|0(x;)| = o we can
refine the choice of subsequence (fx)rez., to further ensure that

n—1

0> Y 10 +n, € Za.

What’s more, since lim;_,., 6x(¥;) = 0(¥)), for all j € Z.o we may choose a subsequence
(ék)keZ>0 of (6))jez., such that the second of equations (3.3) holds.
For the second assertion we note that for k € Z.o we have, for sufficiently large

ne Z>0/
" o0 " 1 0 v L
< 2Pl < Y Pl <} oz < o0
o0 j=n j=n j=n

by Example I-2.4.2—1. This shows that all derivatives of the signals (%x)kez., con-
verge to zero uniformly. From this it follows that x is infinitely differentiable by
Theorem |-3.6.24. It further has compact support since (fx)rez., converges to zero in
Z(R;F), and so these signals have a common compact support. v

[se]

Ler

J=n

Using the subsequences (ék)keZ>0 and (%x)kez., as specified in the lemma we have

P

—1 00
000 = ), 0k(x)) + Ot + Y| Okl
j j=k+1

I
—_

The last term is bounded by the first of equations (3.3). By the second of equations (3.3)

we have
k-1

Z k(%)) + Ok(T)

=1

k-1

Z (%))

j=1

> |0k (i)l — >n,

using Exercise 11-3.1.3. Thus limy_,|0x(x)| = o, and so our initial assumption that 6
is not continuous is false. [

Let us consider the relationship between convergence in &(IR;F) and more
usual types of convergence of sequences of signals.

3.2.23 Proposition (Convergence in &'(RR; IF) for signals) For a sequence (f))icz., of sig-
nals, the following statements hold:

(i) if (£)icz., converges to fin LY(R; IF) then (0% )jez., converges to O in D' (R; F);
(ii) if (£)jez., converges to f in L*(R; F) then (0% )jez., converges to O in D' (R; F);
(iii) if, for every compact continuous time-domain T C R the sequence (£|T)jcz,, con-
verges uniformly to f € CO(T;F), then (Ot )jcz., converges in Z'(R; F);
(iv) if (§)icz., is a sequence in Lg)c(]R; IF) for which
(@) (£(t))jcz., converges to £(t) for almost every t € R, and
(b) there exists g € L;(l)i(]R; IF) such that |fj(t)] < g(t) for almost every t € IR,
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then f € Lg)c(lR; IF) and (0 )iez.,, converges in Z'(R; F) to 0.

Proof (i) First suppose that (f})jez., converges to f in L}(IR;IF). Then for ¢ € Z(R;F)
we have

056 - 0,01 = | [ (501- )ty
< fIR () - FOlo®] e
< bl fR FO - fOldL.
Taking the limit as j — oo then gives
lim|;(6) - 0,(6) =0,

showing that (0f)jez., converges to 05 in Z”(R; ).
(i) Here we compute

05 - 0,0 = | [ (50 - ) o0

< fm £(6) - FOlomI dt
<1If; - bl

using the Cauchy-Bunyakovsky-Schwarz inequality. Taking the limit as j — oo gives
the result.

(iii) Let € Z(R; F) and for e € R>o let N € Z¢ have the property that|f;(t)— fi(t)| <
”(Pﬁ, for j,k > N and t € supp(¢), this being possible since (f) jcz., converges uniformly
on supp(¢). Now, for j, k > N we compute

050~ 050 < |

supp(¢

)|fj(t) — f®llo(t) dt < e.

Thus (05,(¢))jez., is a Cauchy sequence in IR, and therefore converges.

(iv) That f € LE)C(IR; IF) is a consequence of the Dominated Convergence Theorem.
Also by the Dominated Convergence Theorem,

tim [ fopwdr= [ foona

for ¢ € Z(R; F). [
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3.2.24 Remark (The topology in &'(R;F) is weaker than the signal space topolo-
gies) The converses of all of the assertions of Proposition 3.2.23 are false as the
reader can show in . This means that convergence in spaces of signals is a more
rigid notion than convergence in &' (R; F), i.e., the topology in &'(IR; FF) is weaker
than the topologies we deal with for spaces of signals. This has its advantages and
disadvantages. One advantage is that we can get useful convergence of sequences
in cases that do not give convergence in the corresponding space of signals. One
disadvantage is that by looking only at signals as elements of Z'(IR; [F) under the
inclusion Lg)c(lR; F) € Z'(R; F) we lose a lot of information about the signals. This
is something to keep in mind, depending on what one is doing. o

Let us consider a nice example of convergence in Z'(RR; FF).

3.2.25 Example (The delta-signal is a limit of signals) Let us consider the sequence
(fi)jez., of signals defined by

it O,l,
fj<t)={] clo5]

0, otherwise.

In Figure 3.4 we show a few of the signals in this sequence. One can show (we will

10+ B

-0.9 -04 0.1 0.6 1.1
t

Figure 3.4 A sequence of signals converging to &g

do this in Section 3.7.6) that 5y = lim;_,., f;, with the limit being taken in &' (RR; IF).
Note that this resolves the issue that came up in Section 3.1.1 regarding the limit
of forces of increasing amplitude applied for decreasing time. o

3.2.6 Differentiation of distributions

Another item on our wish list of Section 3.1.3 was that we be able to differentiate
generalised signals. Here we see that this can be done naturally.
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Distributions have the remarkable property that they can always be differenti-
ated. To define differentiation we use the following simple result.

3.2.26 Lemma (Differentiation of distributions through test signals) For 6 € ' (R; F)
define 0': Z(R;F) = F by 0'(¢) = —0(¢’). Then 0’ € I (R; ).

Proof Tt is clear that 6’ is linear. Moreover, if (¢))jcz., is a sequence converging to

zero in Z(R; F) then (—gi);.) jez., s also a sequence converging to zero in Z(R; F). Thus

lim 0/(,) = lim 6(~;) =0,
j—ooo j—oo
giving continuity of 0’, as desired. u

With the lemma the following definition makes sense.

3.2.27 Definition (Derivative of a distribution) If 6 € &’(IR; F) the derivative of 0 is the
distribution 0’ defined by 0'(¢) = —0(9). °

3.2.28 Remark (Justification for signals in Z'(R; F) being infinitely differentiable)
Our desire to differentiate our generalised signals accounts for the requirement

that the test signals Z/(IR; IF) be infinitely differentiable. Indeed, were the test sig-

nals only continuous, then differentiation as we have defined it in &"(IR; F) would

not be possible. One could, one supposes, consider test functions differentiable to

some order less than infinity. However, this idea really arises naturally from the

notion of the order of a distribution as we will discuss in Section 3.2.10. .

A consequence of the definition of derivative along with Proposition 3.2.12 is
that every locally integrable signal can be differentiated! This is a strange fact on
first encounter. Here is one place that one must really get used to the fact that
distributions are not signals, but functions on the set of test functions. Thus the
derivative of a non-differentiable signal is not a signal at all, but something possible
rather different.

Also note that our definition immediately implies that distributions can be
differentiated arbitrarily often. Indeed, a simple induction gives the following
result.

3.2.29 Proposition (Higher-order derivatives of distributions) If 0 € &' (R; F) and if
k € Z.oj denote by 0% € D' (IR; F) the distribution obtained by differentiating 6 k times.
Then 60(¢) = (~1)<0(™).

This is the first time where we have used the fact that test signals are infinitely
differentiable.
Let us consider some examples of derivatives of distributions.
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3.2.30 Examples (Derivative of a distribution)
1. Let us begin with a simple general example that motivates the definition of

the derivative of a distribution. Suppose that f: R — F is differentiable with
derivative f’. Then, for ¢ € Z(R;F), an integration by parts gives

05(¢) = fR PO dE = FOOI. - fR FOF (0 dt = ~6,(¢).

This shows that the “derivative of a distribution is the distribution of the deriva-
tive” when all terms are defined. We shall generalise this somewhat in Propo-

sition 3.2.31.
2. Consider the ramp signal

0, t R< 7
R(t) = € R
t, t E R>O.

We claim that Oy = 15¢. Indeed, if ¢ € Z(R;F) then
0() = — Or(d) = - fR R()¢' (1) dt
= - f (' (H) dt = —tp(t)]) + f o(t) dt
0 0
fR 1o dt = 01.,(0).

3. Let us show that 0y is the derivative of the unit step signal 1. By definition of
the derivative we have, for every test signal ¢,

() = ~1a0l) = - fR 1ot/ ()dt = fo ') = o0 = $(0),

as desired. °

Since locally integrable signals give rise to distributions, it makes sense to ask,
“For what class of signals is it true that 6} = 07?” To address this, we recall from

Section 11-2.9.6 the notion of a locally absolutely continuous signal.

3.2.31 Proposition (When is the derivative of distribution the distribution of a deriva-
tive?) Let 0 € D'(R;F) and suppose that there exists a locally integrable signal
g: R — F for which 0" = 0,. Then there exists a locally absolutely continuous signal
f such that © = Of and g = {' almost everywhere. Conversely, if 0 = 0 for a locally
absolutely continuous signal £, then 0’ = Op.
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Proof First suppose that 6" = 0, for ¢ € Lﬁ)c(]R; IF). Then, for some tp € R, the signal

t
fto(t):ft‘g(fc)dr

satisfies ft’0 (t) = g(t) for almost every t, meaning that 0 fro=0g= 0’. Thus O and O are
0

primitives for 6" and so 6 = 6y, +6), where I is a constant signal by Proposition 3.2.38.
The first part of the result follows by taking f = f;, +h, and noting by Theorem I11-2.9.33
that f is locally absolutely continuous.

Next suppose that 6 = 6 for a locally absolutely continuous signal f. Then

0'(¢) = - (&)
- [ oo
R
-ﬁmwm1+ffﬁwwm
R
= 0p(P),

as desired. -

Conveniently, differentiation and limit can always be swapped for distribu-
tions.

3.2.32 Proposition (Limits and derivatives of distributions can be interchanged) If
(0y)jez., is a sequence of distributions converging to 0 € Z'(R;IF), then the sequence
(6].’ )iez., converges in Z'(IR;IF) to 0'.
Proof We have

0'(9) - 0(9)| = 0@ - (")
Taking the limit as j — oo gives the result. |

For sums we then immediately have the following result.

3.2.33 Corollary (Infinite sums and derivatives of distributions commute) Let
(Oinez., € Z'(R; ). If the sequence of partial sums for the series

t.?g

1l
—_

j
converges to 0 in D' (IR; IF) then the sequence of partial sums for the series
GJ'

=1

J

converges to 0" in ' (R; [F).
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One might think this is heaven indeed, since we seemingly no longer have to
worry about swapping operations. However, the reader should bear in mind the
caveat of Remark 3.2.24 and realise that sometimes one is loosing something when
dealing with distributions.

In Section 3.7.6 we will examine conditions on a sequence of signals that ensure
that these signals converge to . In that section we also give a few examples, and
so these can be referred to to get more insight into convergence of sequences
of regular distributions to a singular distribution. Here we exhibit one of these
sequences—a sequence of infinitely differentiable functions—in order to illustrate
the convergence of derivatives.

Example (Example 3.2.25 cont’d) In Example 3.7.24-3 we shall show that the

sequence (Gq,j)jecz., given by

(b?
exp(—i5
0

Tt

converges to 0o in Z’(R; FF) for Q) € R.. This sequence and its derivatives are shown
in Figure 3.5 for Q = 1. By Corollary 3.2.33 the sequence (Gq,)jez., converges to

£i(t)

Figure 3.5 A sequence of signals converging to 6o (left) and &,
(right)
0y in Z'(R; IF). *

In Example 3.2.11-2 we showed that a signal can be multiplied by an infinitely
differentiable signals and still be a distribution. Let us show that this resulting
distribution obeys the product rule when differentiated.

Proposition (A product rule for functions and derivatives) If ¢): R — F is
infinitely differentiable and if 60 € ' (IR; F) then

(P00)Y = )0 + o0’
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Proof We have
(@00) V() = = PoO(@") = —=0(do¢”) = O(y) — O((Po)™")
= $p0(P) + 0" (o) = P0() + $o6' (),
as desired. [ ]

Let us consider a common situation where the use of the product rule is re-
quired.

3.2.36 Example (Differentiation of truncated signals) Let f € C®(R;F) and define
fi = 150 - f to be the signal that truncates f to positive times. According to
Proposition 3.2.35 we have

07, () = (f'01.,)(¢) + (f07,)(@)
= 91zo(f’¢) + quo(f(i))
= 07,(9) + F(0)5(9),

where f; = 15, - f’. Provided one is prepared to take the time to understand
properly the notation, the preceding equation can be written as

fo(®) = f(8) - 150(8) + f(0)00(h).

Note that this involves providing the delta-signal with “t” as argument. This
should only be done after careful consideration!
Proceeding inductively as above, one may show that
6f+ = 6120f
6% = 6,0 + f(0)

ajfj = O + f/(0)50 + £(0)S))

67 =00+ 8" 0™,
j=1

where f¥ = 1,9 - f?. This formula is useful when discussing the solution of
differential equations using the Laplace transform. o

3.2.7 Integration of distributions

Recall from Section |-3.4.6 that a primitive for a continuous-time signal f: T —
Fis a signal g: T — IF with the property that f = g’. We wish to present a similar
notion for distributions. One might expect that the idea here follows that for the
derivative of a distribution.
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Definition (Primitive of a distribution) A primitive for 0 € &' (R; F) is a distribu-
tion 61 that satisfies $6 = 6. o

We let ZD(R; F) € Z/(R; F) be those test functions that are derivatives of other
test functions. That is,

ZYRF) ={¢' | ¢ € Z(R;F).

Note that ZY(R; F) is a subspace of Z(R;F) and that there are test signals that
are not in ZW(R; F). To see that this is so, the reader might try to understand why
A ¢ DD(R; F).

With this notation we have the following result.

Proposition (Distributions have primitives) Every distribution possesses a primi-
tive. Furthermore, if 0CV and OV are primitives of 0 € @'(R; F) then 6D — 9V = 0;
where £ is a constant signal.
Proof Choose an arbitrary ¢ € Z(IR; F) with the property that fIR ¢o(t)dt = 1. For
¢ € I(R; F) we can write
¢ = Cog0P0 + Yoo

where
C¢,¢0 :j;{(]b(t)dt (34)

and Ypp) = ¢ — CppePo- We claim that g, € Z (D(R;F). By Exercise 3.2.11 it
suffices to check that ) € Z/(R; F) and that f]R Yo, (t) dt = 0. This, however, is a direct
computation. This shows that every distribution ¢ admits a decomposition, unique in
fact, of the type ¢ = cg,0,¢0 + Po,0, where ¢y is as above and ¢, ¢, € ZV(R; F).

We claim that with any ¢ as above,

9(—1)((]5) = Cop,eh0 9(_1)(¢0) - 6(1’057)_,;)2

defines a primitive of 6, where 6(_1)(¢0) is an arbitrarily specified constant and where

t
v = [ vonwar

Indeed, note that
O D(g) = -6V (¢) = 6(¢)

for any ¢ € Z(R;F) since cy,6, = 0. We still need to show that 6 is a distribu-
tion. To do this we must show that it is linear and continuous. Linearity is evident.
To show continuity, let (¢;)jez., be a sequence converging to zero in Z(R;[F), and
write ¢j = ¢g,0,P0 + Yo, as above. We claim that both sequences (cy; ¢)jez., and
(¢¢j,¢0) jez., must tend to zero, the former in [F and the latter in Z(IR; IF). By (3.4) we then
deduce the convergence to zero of (¢y,,¢,)jez.,- The convergence to zero of (¢,,¢,)jez.
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immediately follows. We claim that (1,[)52)_,1(1))0)]'62>O also tends to zero in Z(R;F). In-
]/

deed, if supp(Y¢,¢,) € [-4,al, j € Zso, then it follows since Yy ¢, € Z O(R; F) that
supp(Ye, ¢,) € [-a,al, j € Z>o. We then have

00()) = 0,007 (0) - OW ).

It then follows that lim; e 6(‘1)((]5 /) =0, as desired.

To prove the last assertion of the result let 01 and 6V be two primitives for 0
and let ¢g € I (IR; F) satisfy fIR ¢Po(t)dt = 1. For ¢ € I(R; F) we have

0 (@) = 67V (9) = 07,000 + Pirp0) = 07 (C,00P0 + Vs, 0)
= €000 (0) = 9,600V (P0) + 0V (Wg,00) — 0TV (W)
= 4,600V (P0) = €9,600 (0)

since Y, € ZW(R; F). The result now follows since

Coi0 0T (0) = 0,000V (P0) = (0T (o) — OV (¢ho)) fm o(t)dt = 04(¢)

where f(t) = 0CD(¢g) — 0D (¢ho). m
There is also a version of integration by parts for distributions.

3.2.39 Proposition (Integration by parts for distributions) If f € C*(R;F) and if 0 €
2'(R;TF) then
(Vo) = fg — (foWD 4 O,

where g is a constant signal.
Proof By Proposition 3.2.35 we have

f(l)g = (f@)(l) - f@(l)_

This means that both (f0)Y) and 0 — (f6W)=1 are primitives for f(V9, and so differ
by a constant signal by Proposition 3.2.38. [

3.2.8 Distributions depending on parameters

Situations often arise where distributions are applied to classes of test signals
that depend in some way on a parameter. Also, it can sometimes arise that dis-
tributions themselves depend on a parameter. In either of these cases, one would
like to understand the dependence on parameter after hitting the test signal with a
distribution (in the first case) and applying the distribution to a test signal (in the
second case). One can consider the results in this section as being analogous to
those like Theorem 111-2.9.16, where the dependence of integrals on parameters if
discussed.

Let us first consider a test signal depending on a parameter. We let I C IR be
an interval and consider a function ¢: I X R — F. A typical point in [ X R we
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denote by (A, t), thinking of A as being a parameter and ¢ as being the independent
variable. For (A,t) € I X R we define functions ¢*: R — F and ¢;: I — F by
Pt = Pi(A) = (A, B). If, for each A € I, ¢! € D(R; F), then, given 0 € D'(R; F),
we define ®g4: [ — F by
Do,4(A) = O(™).

Following the notation of Section 1I-1.4.5, for r,s € Z.,, we shall denote by
DiD,d(A, t) the associated partial derivative of ¢ at (A,t) € I X R, in case this
derivative exists. Note that one can think of these partial derivatives as simply
taking values in FF since they are partial derivatives with respect to a single vari-
able, cf. Theorem |I-1.4.6. For such partial derivatives, we adapt our notation from
above and denote

(D;D4¢) () = (D D5)(A) = DiDs(A, B).
The following result indicates the character of the function ®g .

Theorem (Distributions applied to test sighals with parameter dependence)
Let 1 C R be an interval, let k € Zo, and let ¢: I X R — F have the following properties:

(i) for each A €1, the map t — ¢(A,t) is an element of D (IR; F);
(ii) there exists a compact interval K C R such that supp(¢*) € K for each A € I;
(iii) for each r € Zso, D¥Di¢: I X R — T is continuous.
Then, for any 6 € Z'(R; F), g ¢ 1s k-times continuously differentiable and, moreover,

@g) (1) = O(D5)).
Proof We first give the proof for k = 0. Let A € I and let (€}) ez, be a sequence in R
converging to zero and such that A + €; € I for every j € Z.o. Define llb? € I(R; F) by
Pt = (A +ej ).
The following lemma is then useful.
1 Lemma The sequence (gbjA)jELO converges to ¢ in Z(R; ).
Proof First of all, by hypothesis,
supp(gb?) cK J € Zy.

Thus the functions gb]A., J € Z~, have support contained in a common compact set. Let

r € Zso. Let I’ C I be the smallest compact interval for which A + ¢€; € I’ for every
J € Z0. Since D¢|I" X K is continuous with compact support, by Theorem II-1.3.33 it
follows that it is uniformly continuous. This implies that, given € € R., there exists
N € Z-¢ such that

DY) - DM = DY + €5, t) — Dyp(A, Bl <e,  j=N, tek.

Sincer € Z is arbitrary, this implies that we have the desired convergence of (l,b;.\) j€Z0
to ¢ v
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It then follows immediately from continuity of 0 that

lim ®,4(A +¢)) = lim 0(¢"*) = O(lim ¢**9) = O(lim y}) = 0(¢") = D,5(A).
Continuity of @ 4 at A then follows from Theorem I-3.1.3.

Now we prove the theorem when k = 1. We first note that, by hypothesis, (D1¢) €

D (R;TF). We let () be a sequence, none of whose terms are zero, converging to zero
as above. Now we take
P(A +€j,t) = (A, 1)

€j

HOE
The following lemma is then key.
2 Lemma The sequence (1,bjA)]EZ>O converges to (Dl(p)}‘ in Z(R; F).
Proof First of all, by hypothesis,

supp(ll);\) cK j € Zsy.

Thus the functions 1,0]4, J € Z>9, have support contained in a common compact set.

Let r € Zsp. Let I’ C I be the smallest compact interval for which A +¢; € I’ for
every j € Z-o. Now define i,: I’ x K — F by

- /-1 7 * A/
l,br( )= r[_A
DD\, ), €= A.

It is clear from the hypotheses that ¢, is continuous on
{((,H) el xK| €+ A}
Moreover, since the derivative Dngqb exists and is continuous,

im Di¢(¢, 1) — Dyg(A, t)
{—A {—A

= DlDECP(A/ t)/

showing that 1), is continuous on I’ X K by Theorem [-3.1.3. Since ¢, has compact
support, it is uniformly continuous by Theorem 1I-1.3.33. Therefore, given € € R,
there exists N € Z. such that

[Vr(A +€,t) —Pr(A, D) <€, j=N, tek.
Using the definition of 1),, this implies that, for every j > N and for every t € K,

DL(A +e¢j,t) — DA, B)
€j

- DiDj(A, b)| = ID"Y} (1) = D' (D1pM)(D)] < e.

Since r € Z is arbitrary, this gives convergence of (gb;\) jez. to (D19)™. v
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By continuity of 6 we then have

Dy (A +€/) — Dy (A O(dMei) — O(pt
jim 0,0( i) — Dg,(A) _ Jim (™€) = 0(¢")
j—ooo €]' j—o0 €j

= Q(%i_r)r; v = 6((D1p)"),

showing that @y, is differentiable with derivative as stated in the theorem for the case
of k=1.

Now suppose that the theorem is true for k € {0,1,...,m} and suppose that the
hypotheses of the theorem hold for k = m+1. Welet ¢ = D'¢ and verify that i) satisfies
the hypotheses of the theorem for k = 1. First note that, for each A € I, t = (A, 1)
is the mth derivative of an element Z(IR; [F) and so is an element of Z(IR; F). Since
supp(y¥) € supp(¢?), we also have the second hypothesis of the theorem. Finally,
since

DDy = DiDyDY') = D™ Diep
by Theorem |I-1.4.33, the final hypothesis of the theorem also holds. Therefore, by the
induction hypothesis, ®g y is continuously differentiable. But, since

Do,y (A) = O((DYD)) = B (M),

this implies that ®g 4 is m + 1-times continuously differentiable, and

of V() = 0D} )

as desired. n
The following result is almost immediate from the theorem.

3.2.41 Corollary (Property of distributions applied to test functions of two variables)
Let ¢: R* — T be infinitely differentiable with compact support. Then we have ®g g €
D (R; F). Moreover, for each r € Z.,,

@y, (5) = O(D} ).

Proof Since Theorem 3.2.40 implies that ®@g, is infinitely differentiable, one only
needs to show that this function has compact support. Since ¢ has compact support,
there exists compact intervals I, | € R such that supp(¢) € Ix]. If s € R\ that ¢°(t) = 0
for all t € R, and this immediately gives 6(¢°) = 0 and so supp(®g ) C I. |

Next we consider the situation where a distribution is allowed to depend on
a parameter. We first consider a rather general setup. Let (A, &, i) be a measure
space (where we will suppose the parameters live) and suppose that 0: A —
Z'(R; F) is an assignment of a distribution to each parameter in A. Then we can
define Fo: A X I (R;F) — F by

Fo(A, ) = (O(A); ),
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using the notation mentioned in Notation 3.2.9. Correspondingly, let us define
FH,(P: A—>F by
Fos(A) = Fo(A, 9),

and let us suppose that, for each ¢ € Z(R;F), Fg, € LD((A, &; p); F). We can then
define ®y: Z(R;F) — F by

®9(¢)=‘fAFG,¢ du.

The next result indicates when ©y is a distribution.

Proposition (Distributions arising from integrating parameters) Let (A, %, u)
be a measure space, let 0: A — Z'(R;F), and (with the notation above) suppose that
Fos € LO((A, &, 1), F) for every ¢ € Z(R; ). If, for every converging sequence (¢y)iez.,
in D(IR; F), there exists M € R such that the function

A sup{|F9,¢j()\)| | ] € Z>0}

is u-integrable, then ®y € Z'(R; F).
Proof Let (¢)jez., be a sequence in Z(IR; IF) converging to zero. For A € A we have

lim Fg.(A) = im(6(A); ¢;) = 0,
j—o0 j—o0

using continuity of 6(A). Define
Fo(A) = supl{|Fo,, ()l | j € Zso},

and note that Fy is measurable by Propositions I11-2.6.11 and 111-2.6.18, and integrable
by hypothesis. Moreover,

IFo,6,(A)] < Fo(A)

for every A € A and j € Z. Therefore, by the Dominated Convergence Theorem,

hm @9((;5]) = hm f Fgldjj dy = f hm Fg,q!)]. dy = O,
giving the desired continuity. ]

3.2.9 Some deeper properties of distributions

Thus far, it has pretty much been fun and games for distributions. However,
there comes a time when one wants to understand what a distribution “really is.”
After all, all we have done thus far is to show that distributions have some useful
properties and signals can be represented by distributions in a manner which seems
reasonably apt. However, how do we know whether distributions are not just too
good to be true? There is certainly some evidence for this in that (1) all distributions
are differentiable and (2) differentiation can always be swapped with limits. To
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make distributions really respectable, we need to be able to say something useful
about their structure. That is to say, we need to see if there is there a nice way
to think of distributions that has some relationship with something we believe we
understand. We address this in two ways: (1) by showing that distributions are
limits of locally integrable signals; and (2) by showing that distributions are, in an
appropriate sense, always derivatives of some order of locally integrable signals.

The first result we state, we do not prove since the most natural proof involves
convolution which we consider in Chapter 4. However, now is a good time to at
least state the result.

Theorem (Distributions are limits of locally integrable signals) If 6 € Z'(R; F)
then there exists a sequence (£)icz., in Lf(l))c (R; C) such that the sequence (ij )iez.., converges
in D' (R; ) to 6.

Proof In Theorem 4.7.26 we will show something even stronger, namely that there

exists a sequence (¢))jez., in Z(IR; F) such that the sequence (0,) jez., converges to 6
in 9’ (R; FF). [

Next we show that a distribution is always a finite derivative of a locally in-
tegrable signal. To prove this result we first need a technical fact. The fact is a
local one concerning the behaviour of distributions. To understand the result we
introduce a subset of the set Z(IR; F) of test signals. Let T = [a,b] be a compact
time-domain and let & (T; F) denote those test signals whose support is contained
in T. A sequence (¢))jez., S Z(T; F) converges to zero in Z(T; FF) if it converges to
zero in Z(IR; IF).

Lemma (A local boundedness property for distributions) Let T be a compact
time-domain and let O € &' (IR; F). Then there exists M € R, and k € Z such that for
each ¢ € I (T;F) we have

16()| < Mllp®|l

Proof Let T = [a,b]. First note that the sequences ((b — a)mllcj);m)lloo)jeoo, m € Zso,

converge to zero if and only if the sequence (¢;);cz,, converges to zero in Z(IR; IF).
Note that, since for ¢ € I(T; F) we have

t
$(1) = f 0 (2) d,

we have

0™ oo < (b = )] V|oo (3.5)

for every m € Zo.

Now we proceed with the proof proper, using contradiction. Suppose that it is not
possible to find such an M and k as asserted in the theorem statement. Then for each
J € Z there exists a nonzero ¢; € Z(T; F) such that

01 > o = )11 o (3.6)
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Then define
%
= a) 19l
noting that ¢; € Z(T; F). Then we have, for m < j,

)

b =a"lp" Il 4

b —a)" oo = ———L —
f i - aylip e 7

since, by (3.5), }
0 =a)"lp"lleo < 0 = )1l oo, M < .

Therefore, for each m € Z. the sequence ((b — a)mllgbg.m)lloo) jez., converges to zero, and

s0 (Y})jez., converges to zero in Z(T;F) according to the observation with which we
began the proof. Therefore the sequence (6(y))) ez, converges to zero. However, we
also have

0(¢;)

—_— Y >
j = a)lipDlles
by (3.6), thus arriving at a contradiction. u

o)) =

We now have the following rather non-obvious result.

3.2.45 Theorem (Distributions are locally finite-order derivatives of locally inte-
grable signals) Let T be a compact continuous time-domain. If 60 € D'(R;F) then

there exists r € Z.sq and gy € Lgi(lR; IF) such that 0(¢) = Gg)(cz)) for every ¢ € I (T; F).
Furthermore, we may take r = k + 1 where k € Z. is as given by Lemma 3.2.44.

Proof Let M € R.g and k € Z.o be chosen as in Lemma 3.2.44 so that for each
¢ € D(T;F) we have 0(¢p) < M||¢p®]|,. Denote

FENTF) = (6% | ¢ € Z(T; B,

noting that this is a subspace of Z(T;F). On & (+1)(T; IF) we consider the norm ||-|i:

llp® Dl = f p® D ()l dt.
T

Define a linear map ag: Z*D(T;F) — F by ag(p®V) = 0(¢). We claim that ag is
continuous using the norm ||-[|. To see this, let (¢§."+”) jez., be asequencein I (1) (T, TF)
converging to zero in the norm ||-||;. Thus, for any € € R, we have N € Z( such that

f |¢§."“>(t)|dt <e, j=N.
T
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We then have
() = f ;¢>§"*”<T>df
= 1o0) < f ;mb;"“)(mdr

= 9Pl < f 6ol dt.
T

Therefore, for € € R, if we choose N € Z..( sufficiently large that

(k+1) € .
ngbf Bldt < M j=N,

then we have
laa(@))] = 10| < Mllpleo < M f 9 V@erdt<e,  j2N.
T

Thus the sequence (g(¢)))jez., converges to zero, thus verifying our claim that ag is
continuous at 0, and so continuous by virtue of Theorem [11-3.5.8.

Now think of Z® (T, F) as a subspace of LO(T; TF). By the Hahn-Banach Theo-
rem, Theorem I11-3.9.2, there exists a continuous linear map ag: LMD(T; F) — F which
agrees with ag on & (1 (T; F). By Theorem 1I-3.10.1 there exists fy € L)(T; F) such
that

ag(p™*) = fT fotyp™ V() dt.

From this we immediately deduce
9(¢) — 0_(9(¢(k+1)) — 9g9(¢(k+1)) — (_1)k+16§‘{;+1)(¢);
which is the result, since L®(R; F) € L (R; F). n

3.2.46 Remark (Distributions are finite-order derivatives of continuous signals) Note
that since f in the statement of Theorem 3.2.45 is in Lgi(lR; IF), the signal

o) = f f(0)de

is locally absolutely continuous. Thus we may deduce directly that 0(¢) = Qg)(cp)
for ¢ € (T, F) where g is continuous (indeed, locally absolutely continuous).

3.2.10 The order of a distribution

The local characterisation of distributions as derivatives leads one naturally to
talk about the order of a distribution, and it is this we now do.
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3.2.47 Definition (Order of a distribution) Let 6 € 9'(RR; FF).
(i) For a compact continuous time-domain T the T-order of O is the smallest
nonnegative integer k for which there exists a signal f € Lf(l))c(]R; [F) satisfying

0(¢) = 0 (@) (37)

for all p € Z(T; FF).
(i) The order of O is the smallest nonnegative integer k for which there exists a
signal f € L(l)(IR; IF) satisfying (3.7) for each ¢ € Z(IR; F). If no such integer

loc
exists then O has infinite order. o

Some examples clarify the definitions.

3.2.48 Examples (Order of a distribution)
1. Note that 6 = 6(1130. Thus 6y has T-order zero for any T, and also has order zero.

2. The distribution 68”) has T-order zero if 0 ¢ int(T). Indeed, if 0 ¢ supp(¢) then
6(¢) = 0. On the other hand, if 0 € int(T) then the T-order of (58”) is m. Indeed,
in this case we have 60" (¢)) = 92”;”(@ = (=1)"¢™(0).

3. We consider the distribution

0= i no™.
n=1

First, we claim that the sum defines a distribution. To see this, let (¢))jez., be a
sequence in Z(IR; IF) converging to zero. Then there exists N € Z. sufficiently
large that supp(¢) € [-N, N]. Then we have

[s¢]

N
0¢) = Y n(=1)'¢"(m) = Y n(=1)"¢"" ().

n=1 n=1

The last sum is a finite sum of terms going to zero as j — oo so we have
lim;_,., O(¢p) = 0, thus 0 € Z'(R;F). If T N (1, 00) = @ then the T-order of 0 is
zero since 0(¢) = 0 for any ¢ € Z(T; F). If maxT N Z = N then the T-order of
0 is N, as is easily verified. Note that 0 has infinite order since for any N one
can find a ¢ € I(R; F) with [-N, N] € int(supp(¢)). .

If 0 is a distribution of order k and if f is at least k + 1-times continuously differ-
entiable, then it is possible to define the product of O with f to be the distribution
f0 given by (f0)(¢p) = O(f¢). The following result indicates how this is done.
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3.2.49 Proposition (Multiplication of distributions of finite order by functions that
are finitely differentiable) Let 0 = 05" be a distribution of order kand let f € C'(R; F)
forr > k + 1. Then the map

(R F) 3¢ (-1) " 0,((fp)* ) € F

defines a distribution which we denote f0.

Proof Let (¢})jez., be a sequence converging to zero in Z(IR; IF). Choose T € R such
that supp(¢;) € [T, T] for all j € Z.¢ and then note that

(FO)())] = |<—1>"+1 fR SO D) dt\
k+1
(m) (k+1-m) d
fR g(t)n;)f (Hp®H 1= (¢) dt

k+1

T
= llglleo Y 1™ llo f oM wla,
m=0 -

where the co-norms are with respect to [-T, T]. Since the integrands go to zero uni-
formly in ¢, if we take the limit as j — oo we can switch this with the integration by
Theorem 1-3.6.23 and we get lim;,.|(f0)(¢;)| = 0, as desired. |

<

Finally, we discuss how simple distributions may be made to take not just test
signals as argument, but signals that are merely differentiable to some extent. This
sort of construction is often important in applications since one often wishes to give
as an argument to a distribution something other than a test signal. The following
result indicates why this is possible.

3.2.50 Theorem (Distributions of finite order only depend on finitely many deriva-
tives) Let T be a compact continuous time-domain, let 0 € D’(R; [F) have T-order k, and
let @1, po € D(T; F) satisfy

OO =60,  jel01,... k+1], teTnsupp(©).

Then Q(CPl) = 6(¢2)
Proof By Theorem 3.2.45 let fg € Lgi(]R; F) have the property that 0(¢) = G;I;H)(qf))

for all ¢ € I (T;F). Note that since supp(0) is closed, R \ supp(0) is open, and so is
a countable union of open intervals by Proposition |-2.5.6. Since T is compact, only a
finite number of these open intervals will intersect T, and we denote these intervals
by (t1,m,t2,m), m € {1,...,n} and we suppose that

ta<infT <ty <tp<to<---<ty, <supT <tr,.

It is convenient for our purposes to redefine t;; = infT and t,,, = sup T. Then, for
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¢ € Z(T;F),
6((P) — (_1)k+1 f fQ(t)¢(k+1)(t) dt
R

n 2 m
DG e R O e e I A0 OL

=1 1 Nsupp(6)

The second term obviously only depends on ¢**1(t) for t € T N supp(6). As for the

first term, referring to our discussion of Section 3.2.4, we see that fékﬂ) agrees with
the zero distribution on each interval (t1 ,,,, t2,,). We may then apply the integration by
parts, Proposition 3.2.39, k + 1 times to each term in

n t2,m
Y O fahet V(e de
m=1 t1m

to see that it depends only on <¢><f)(t1,m) and ¢(j)(t2,m) for j € {0,1,...,k+ 1} and m €
{1,...,n}. Since ty ;, tom € supp(0) for m € {1,...,n}, the result follows. [ ]

Let us see how this works in an example.

3.2.51 Example (The delta-function evaluated on differentiable signals) Let us con-
sider 0p. Suppose that f € Clpt(]R; IF) is a signal with compact support containing 0
in its interior. Then we define

do(f) = (=1) fR 10OV (D) dt = - fo fOdt = —f()|, = £0).

Thus the delta-signal acts on differentiable signals just as it does on test signals.
Note that since 6¢(f) only depends on the value of f at t = 0, we ought to really be
able to define & on signals in C°(IR; F). We shall see in Corollary 3.7.28 that it is
indeed possible to do this. o

3.2.11 Distributions in several independent variables
3.2.12 Distributions taking values in vector spaces

In all of the development above, we considered distributions as generalisations
of locally integrable functions taking values in F € {R,C}. In Section 1.4 we
discussed signals taking values in a finite-dimensional vector space. Here we meld
these two ideas, and introduce the idea of a vector space-valued distribution.

3.2.52 Definition (Vector space-valued distribution) Let IF € {IR, C} and let V be a finite-
dimensional F-vector space. A distribution with values in V is a linear map
0: Z(R;F) — V that is continuous in the sense that, for every sequence (¢;)jcz.,
converging to zero, the sequence (0(¢,))jez., converges to zero in V. o
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If V = F", then an F"-valued distribution can be thought of as n [F-valued
distributions. However, the more abstract setting will be useful for us.

A special case of a vector space-valued distribution arises as follows. For
0 e ' R;F)and v €V, definev® 0 € Z'(R; V) by

(v®0;9) =(0;P)v, ¢ € Z(R; ).
Let us consider a few constructions around this definition and other constructions.

3.2.53 Remarks (Linear maps and vector-valued distributions)

1. For finite-dimensional R-vector spaces U and V, let L € L(U;V) and 0 €
Z'(R; U), define L(6) € Z'(R; V) by

(L(O); ¢) = L(O; P)).
In particular, if 0 = u ® OforueUand b e "(R; R), then
Lu®6) =Lu)® 0.

2. As in Example 3.2.11-2, we can multiply distributions by infinitely differen-
tiable signals. This can be adapted to give the product of an infinitely differ-
entiable vector space-valued function with a distribution. Thus we let V be a
finite-dimensional F-vector space and let £ € C*(IR; V). We let (e, ...,e,) be a
basis for V and write

é(t) = él(t)el +-eet En(t)en
for &y,..., &, € C°(R;R). If 0 € Z'(R; F), then we define £ ® 0 € Z'(RR; V) by

(E®0)(@) = O(&1p)er + - -+ + O(EnP)en.

3. A construction we will frequently use for regular distributions is the following.
Let U and V be finite-dimensional R-vector spaces, let 0; € Z’(IR; U) be the
regular distribution associated with a locally essentially bounded signal & €
Lo (R;U). LetL € Llloc(]R; L(U;V)). Then define L~ 0;: € Z'(IR; V) by

(Le050) = [ L= o)t
R

Thus L ° 0; is the distribution associated with the locally integrable signal ¢ —
L(#)(E(t)). That this signal is locally integrable follows from Exercises 111-3.8.8
and 1.4.4. .

Exercises

3.2.1 Show that if ¢1, ¢, € I(R;F) then ¢p1¢, € I (R;F). Thus I(R;F) is an
algebra.
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3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.2.7

Which of the following signals is in Z'(IR;F)? For signals not in Z(R; F),
explain why they are not.

(@) f(t)= {

1+ cost, te[-m, m],
0, otherwise.

At+1), te[-2,-1],

A(0), te(-1,1),

At-1), te]l,2],

0, otherwise.

(c) f(t) = arctan(t).

Let ¢ € Z(R;F). Which of the following sequences (¢;)icz,, of signals in
Z(R; F) converges to zero in Z(IR; F)? For sequences not converging to zero
in Z(RR; FF), explain why they do not.

(@) @) =j"'P(t)

(b) @i(t) = j'o( ')

(c) ¢i(t) = jo(jt)

Let ¢y € C®(R; F). Show that there exists ¢ € Z(IR; F) such that ¢[[-1,1] =
¢ol[-1,1].

LetL: I(R;F) — F be defined by

(b) f(t) =

u@:1£¢mdt

Is L a distribution?
Show that, if ¢y € C*(IR; F) and k € Z,,, then

k 1K\ . .
5® = -1 k—]( ) )] 0 Sk
o ;; e ©

Recall from Example 1.1.6—2 the map o: R — R defined by o(t) = —t. For a
signal f define 0" f(t) = f(—t), and for 0 € &'(IR; F) define 6"0: Z(R;F) —» F
by 0°6(9) = 6(0"¢).
(a) Show that 0*0 € &' (R; [F).
Recall that a signal f is even if 0" f = f and odd if 0 f = —f. Say, then, that
0 € D(R; F) is even if 0¥ = 0 and odd if 076 = —0.
(b) Show that the following are equivalent:

1. Biseven;

2. 0(¢) = 0 for every odd ¢ € Z(R; F).
(c) Show that the following are equivalent:

1. Ois odd;
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2. 0(¢) = 0 for every even ¢ € I(R; F).
3.2.8 Consider the sequence of locally integrable signals (f;);cz., given by f;(t) =
sin(jt).
(a) Show that the sequence converges pointwise only on a set of measure
Zero.
Hint: First show that, if the sequence converges almost everywhere, then the
sequence (fi,1 — f)icz., converges to zero almost everywhere.

(b) Show that the sequence of distributions (6,);ez., converges in Z'(IR; IF)
to the zero distribution.
3.2.9 Let 04,0, € Z'(R; F) satisfy
1. supp(61) = supp(6:) and
2. 01(¢) = 0x(¢) for every ¢ € I(R;F) for which supp(¢p) € supp(61) =
supp(02).
Show that 6; = 0,.
3.2.10 For the signal f: R — R defined by

1
f(t) _ N te R>O/
0, t e ]RS(),

answer the following questions.
(@) Show that f € Lg) (R;R), so that f defines a distribution 0.

C

(b) Show that the product of f with itself is not in Lg)c(lR; R), and so cannot
be used to define a distribution in a direct manner.

3.2.11 Show that
ZYR;F) = {¢ € I(R;F) ' f G(t)dt = o}.
R

3.2.12 We did not define generalised discrete-time signals. The reason is that they
are not necessary. Show how one may define the analogue of a delta-signal
for discrete-time signal by asking that it have properties like those of the
delta-signal. (Part of the question is that you should figure out what should
be the adaptations to the discrete-time case of the properties in continuous-
time case.)

3.2.13 Recall from Example 1.1.6—1 the map 7,: R — R defined by 7,(t) = t —a.
(a) Show thatif f € LS))C(]R; F)thent,f € Lfil(lR} IF) and show that 7,0¢ = 0.
(b) Show that
supp(t,0) = {t+a| t € supp(0)}.
3.2.14 Let (0))jez., be a sequence in Z/ (IR; F) converging to 6 € Z'(R;F). Show
that 0 € Z/ (R; F).
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3.2.15 Let us revisit the mass/spring example of Section 3.1. The governing dif-
ferential equation is
mi(t) + kx(t) = F(t). (3.8)
For simplicity, take m = k = 1.
(a) Show by direct substitution that the solution to (3.8) is given by

x(t) = fo sin(t — 7)F(t)dt

if the initial conditions are x(0) = 0 and x(0) = 0.
Hint: First show that

d * Of(t, T)

t
at . f(t, 7) A = f(t,t) + fo S dr,

provided that all operations make sense.

For € € R, define
l/ te 0/ 7
E.(t) = {e [0, €]

0, otherwise.

(b) Compute the solution x.(f) to (3.8) when F = F. and with zero initial
conditions.

(c) Plot x. for values of € decreasing to zero, and comment on what the
resulting solution seems to be converging to.

(d) Now consider the differential equation
0% + 0 =5,

for the distribution 0. Show that taking 0 = 0, with x(t) = 15(() sint
solves the differential equation. How does this compare to the limiting

solution from part (c)? Does x satisfy the initial conditions x(0) = 0 and
x(0) =0?
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Section 3.3

Tempered distributions

The distributions &(IR; F) considered in the previous section are the most
general sort of distribution we consider here. However, they can be, in some way,
too general for some purposes. In particular, when we use distributions in the
theory of Fourier transforms in Chapter 6 we will see that the setup with test
signals with compact support leads to an asymmetry in the theory. Therefore, in
this section we provide a different setup for distributions that utilises a larger class
of test signals, giving rise to a correspondingly smaller class of distributions.

Do | need to read this section? Tempered distributions are rather important in
the theory of the continuous-continuous Fourier transform which we present in
Chapter 6. Thus readers interested in learning this part of the theory will need to
know about tempered distributions. o

3.3.1 The Schwartz space of test signals

The set of test functions we consider in this section do not have compact support,
but they do decay quickly at infinity. The following definition makes this precise.

Definition (Signal of rapid decay) A signal of rapid decay is a signal f: R — F
having the property that for any k € Z.,, limy_,. t*f(t) = 0. °

A useful characterisation of locally integrable signals of rapid decay is the
following. The idea is that the signal can be multiplied by any polynomial and
remain locally integrable.

Proposition (A property of locally integrable signals of rapid decay) If f €
L(R; F) is a signal of rapid decay then for each k € Zsq the signal t > t*f(t) is in

loc

LO(R; F).
Proof Let T € R.( have the property that [f**2f(t)| < 1 for all |¢{ > T. This is possible
since f is of rapid decay. Then we have

—-T T 00
k _ k k k
fR o= [ itsonare | Wfoar + fT 1 £ o)l di
00 K
szf tlzdt+ka If(H)]dt < oo,
T -T

giving the result. |

Test signals of rapid decay generalise the test signals of Definition 3.2.1.
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3.3.3 Definition (Schwartz signal) A test signal of rapid decay, or a Schwartz signal,
is an infinitely differentiable map ¢: R — IF with the property that for each k € Z,
the signal ¢® is of rapid decay. The set of Schwartz signals is denoted #(RR; F). o

3.3.4 Remark (#(R; ) is a vector space) One can easily verify that #(R;F) is a
subspace of the F-vector space FX. .

Let us look at some examples of test signals of rapid decay.

3.3.5 Examples (Schwartz signals)
1. Note that every element of Z(IR; F) is also an element of &(IR; FF).
2. Consider a signal of the form

1
4 peaat" + -+ it + po

ft) =
where the polynomial
T it + g

has no real roots. Then one can easily show using the quotient rule for deriva-
tives that limye|t/ f?()| = oo as long as j > k + r. Thus this signal is not in
F(R;F).

3. The most often cited example of an test signal of rapid decay that is not in
Z(R; F) is the Gaussian ¢(f) = %e‘%tz. To see that this signal is indeed of rapid

decay, note that ¢p)(t) = P,(t)e™2"" for some polynomial P, of degree . Since the
negative exponential goes to zero faster in the limit that any polynomial (this
can be shown using 'Hopital’s Rule), it follows that the Gaussian is indeed a
test signal of rapid decay.

4. If p € #(R;F) then one checks that P¢ € F(IR; F) for any polynomial P € F[t]
and that ¢® € #(R; F) for any k € Z.,. (We shall prove this during the course
of the proof of Proposition 3.3.18 below.) One can also check that the sum of
two Schwartz signals is a Schwartz signal. Thus the Schwartz signals form an
[F-vector space. .

As with test signals in Z(IR; F), the Schwartz functions come equipped with a
natural notion of convergence.

3.3.6 Definition (Convergence in & (R;F)) A sequence (¢))jez., in (R;F) converges
to zero if, for each k, r € Z-(, one has

]11_>r{1.o sup {Itkcpj.r)(t)l ‘ te IR} =0.

Asequence (¢))jcz., in & (R; F) converges to ¢ € F(R; F) if the sequence (p;j—¢)jcz.,
converges to zero. o
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As with our notion of convergence in Z(IR; F), it is interesting to speculate
whether convergence in % (IR; [F) could have been prescribed by a norm. As with
Z(R; F), the answer for #(IR; [F) is, “No.” However, the situation is somehow less
dire for (IR; F) than it is for Z(R;F). For example, it turns out that there is a
metric on ¥ (IR; IF) for which convergence in #(IR; F) is convergence with respect
to the metric. This is not true for Z(IR; F). We leave these interesting matters for
the motivated reader to explore in .

Note that unlike the situation for convergence in Z(IR;F) we make no do-
main restrictions for sequences of test functions that converge. Also note that the
definition of convergence in #(IR; F) implies, but is not implied by, the uniform
convergence of derivatives of all orders. The following examples illustrate the
notion of convergence in ¥ (R; FF).

3.3.7 Examples (Convergence in ¥ (R;F))

1. We claim that a sequence (¢;)cz., converging to zero in Z(R; F) also converges
to zero in #(R;F). Indeed, if let T € R, have the property that supp(¢;) <
[-T,T], j € Zso. Then for any k,r € Z, we have

sup (Il |t € R} < T sup (|60 (0) ‘ teR).

The limit as j — oo of the term on the right goes to zero since (¢;) cz., converges
to zero in Z(R; FF).

2. Let ¢ be the Gaussian of Example 3.3.5-3 and consider the sequence (%({)) j€Zo-
One can easily check that this sequence converges to zero in #(RR; F).

3. Again let ¢ be the Gaussian and now define ¢;(t) = ¢(t — j). One can then check
that the sequence (¢;) ez, converges to zero pointwise, but not uniformly. Thus
this sequence does not converge to zero in #(R; F).

4. For j € Z, define a signal ¢; as follows:

LA+ ), tel-f-1,-7]
LA, te(=R2 )
Lat=7), telf 2+1],

0, otherwise.

Pi(t) =

One can check that these functions are all infinitely differentiable. Also, since
¢i, ] € Zso, has compact support, it is in Z(R;F), and therefore in ¥(IR; F).
One can also check that for each r € Z;, the sequence of functions (qbg.r))jez>0
converges uniformly to zero. However, we claim that the sequence (¢))jcz.,
does not converge to zero in ¥ (R; F). Indeed, note that

sup(ltp;(t)| | t € R} = j A (0).



3.3.8

3.3.9

3.3.10

2022/03/07 3.3 Tempered distributions 151

08»(’\

0.6

ol — -
L
-20 I -10 I 0 I 10 I 20

Figure 3.6 A sequence converging uniformly to zero, but not con-
verging in ¥ (R; IF)

Since this limit does not converge to zero as j — oo, our claim follows. In
Figure 3.6 we show the first four signals in the sequence. The key feature of the
sequence of signals is that the signals “spread out” faster as j — oo than they
decrease in magnitude. .

For the given notion of convergence in & (IR; IF) there is a corresponding notion
of continuity.

Definition (Continuous linear maps on #(R; F)) A linear map L: #(R;F) — F
is continuous if the sequence (L(¢;));cz., of numbers converges to zero for every
sequence (¢))jez., that converges to zero in & (RR; IF). o

3.3.2 Definition of tempered distributions

We now mirror for the Schwartz class of test signals the definition of a distribu-
tion.

Definition (Tempered distribution) A tempered distribution, or a distribution of
slow growth, is a continuous linear map from #(R; F) to [F. The set of tempered
distributions is denoted %’ (IR; IF). .

Remark (¥’(R; F) is a vector space) It is easy to check that #'(IR; F) is a sub-
space of Z'(R;F). The inclusion is proved below in Proposition 3.3.12, and the
inheritance of the vector space structure is then readily verified.

Let us give some examples of tempered distributions.
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3.3.11 Examples (Tempered distributions)

1. Any polynomial function Evg(P), P € F[£], defines a tempered distribution 0p
via

0r0) = [ PO

2. We claim that if f € LP°(IR;[F) then 0 € &(R;F). We first recall from
Proposition 1.3.12 that f is a power signal then it is locally integrable. Thus
05 € Z'(R;F). If ¢ € ¥ (R;F) then

T

ff(t)qb(t) dt) < %1_1)% If(H)p(t)| dt
R -T

T
= lim f T2 f(HT?p(t)| dt
—00 —T

T 1/2 T 1/2
Jim (% | T|f<t>|2dt) (T | qub(t)ﬁdt)

It will follow that 0((¢) is well-defined if we can show that the second term on
the right is bounded. Choose M € R, such that [p(t)| < ﬁ\f—ﬂ for all t € R. We
then have

It is easy to show (and will be shown in Proposition 3.11.4) that #(R;F) C
L@(R; F). This shows that 0(¢) is well-defined. The computations above also
show that if (¢;)jcz., converges to zero in (IR; IF), it follows that (0(¢))) ez,
also converges to zero, using the fact that (||(/ll2)cz., converges to zero. Thus
0 is continuous, so giving an element of ¥”(IR; IF).

IN

3. Thesignal f(t) = e’ isnot one of slow growth. One can also show that this signal
does not define a tempered distribution by integration as is the case for signals
of slow growth. For example, if one takes the signal in (IR; [F) defined by

Soe telo1],

-t t<1,

e
0, otherwise.

P(t) =

(see Figure 3.7), then one can see that the integral fR f(t)p(t) dt diverges.

4. Let (cj)jez., be a sequence with the property that there exists M € R.o, k € Z,,
and N € Z., such that for j > N we have |c;| <M 7*. We claim that for A € R.,

0= i Cj(s]‘A
j=1

is a tempered distribution. First of all, let us be sure we understand what 0
really is. We are defining 0 by

0(p) = Y cip(j)

=1
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04

03+

0.2+

0.1

Figure 3.7 A test signal of slow growth on which e’ is undefined
as a tempered distribution

for ¢ € #(R;F). Let us first check that this sum converges. Let N € Z, have
the property that |*2¢(jA)| < 1 for j > N. This is possible since ¢ € ¥ (R;F).

We then have
0o max{N,N}-1 ) M
YleoGal< Y lepGMl+ Y 7 <
j=1 j=1 j=max{N,N}
Now let (¢¢)cez., be a sequence converging to zero in #(IR; IF). We then have
0] = | cioeiB)| < Y lejpe(A)
j=1 j=1
N-1 &) M
< Y lepel+ Y S IGAY be(iA)
j=1 =N
<

N-1
sup {kpf(t)l Y el te JR},
j=1

the suprema existing since (¢¢)cez., converges to zero in &(IR;F). Taking the
limit as £ — oo shows that 0 is indeed a tempered distribution. o

M 1
te ]R} + sup {Itk+2¢f(t)|Ak+2 Z ]—2

j=N

Let us now show that tempered distributions are distributions.

3.3.12 Proposition (Tempered distributions are distributions) We have &'(R;F) C
D' (R; F). Moreover, tempered distributions 01,0, € &’ (IR; F) agree if and only if they
agree as distributions.
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Proof Clearly since Z(R;F) € #(R;F), if ¢ € Z(R;F) and 6 € &’(R; F) it makes
sense to write 6(¢). We need only check that if (¢))jez., is a sequence converging
to zero in Z(R;F), then (6(¢))jez., converges to zero in F. However, this follows
since such a sequence (¢) jez., converging to zero in Z(IR; IF) also converges to zero in
F(R; F) by Example 3.3.7-1.

Now suppose that 61 = 0, as tempered distributions. Thus 01(¢p) = 02(¢) for
all p € #(R;F). In particular, 01(¢) = 02(¢) for all ¢ € F(R;C) and so 1 = 0; as
distributions.

For the converse assertion, we refer ahead to Theorem 3.11.3(i) where it is shown
that if ¢ € F(R;F) then there exists a sequence (¢))jez., in Z(R;F) € F(R;F)
which converges to ¢ in #(IR;F). Now suppose that 0; = 0, as distributions. Thus
01(¢) = 02(¢) for all € F(IR; F). Now let € F(R; F) and let (¢) jcz., be a sequence
in Z(R; F) converging in &(IR; IF) to 1. Then, continuity of 8 and 0, gives

01(y) = lim 61(9)) = lim 02(0) = 2(¥),

giving 01 = 0; as tempered distributions. |

The following result characterises a useful way of characterising those distri-
butions that are tempered. Perhaps the most revealing way of interpreting the
theorem is this. A distribution is tempered if it is continuous on Z(IR; F) if con-
vergence to zero in Z(IR; F) is defined using the notion of convergence to zero in

F(R; F).

3.3.13 Theorem (Alternative characterisation of tempered distributions) If 0 €
F"(R;F) then (0(¢;))iez., converges to zero for every sequence (¢yicz., in Z(R;IF)
converging to zero in #(R; F). Conversely, if 0 € &'(R;F) and if (0(¢))iez., converges
to zero for every sequence (¢y)icz., in Z(R;F) that converges to zero in & (R; F), then
0 € &' (R F).

Proof Suppose that 6 € &'(IR;F). Let (¢));cz., be a sequence in Z(RR;F) C &(RR;TF)
converging to zero in #(IR; IF). Continuity of 6 ensures that (0(¢;))ez., converges to
zero.

Let 0 € Z'(R;TF) have the property that (0(¢;));ez., converges to zero for every
sequence () jez., in Z(R; F) converging to zero in #(IR; [F). Also let ¢ € ¥ (R;F). To
define 0(¢) we let (¢) jcz., be a sequence in Z(IR; IF) converging to ¢. This means that
(¢ — ¢j)jez., converges to zero in F(R;[F). That this is possible is a consequence of
Theorem 3.11.3(i) below. Let j, k € Z.y and note that

0(j = Pl < 10( = @)l +10(p — Pi)l-

By choosing j and k sufficiently large we can ensure that [0(¢; — ¢x)| is as small as
desired, and this means that (0(¢ — ¢/))jez., is a Cauchy sequence, and so converges
in IF. This means that we can define 0(¢) = lim;_« 6(¢;). To show that this definition
does not depend on the choice of sequence in Z(IR; IF) converging to ¢, let () jez., be
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another sequence in Z(IR; F) again converging to ¢ in #(IR; F). Then

lim 0(9,) — lim 0| = lim 10(; = Y]
< lim [6(p — )| + Lim [O(p — Y).
jk—oo jk—oo

Both of these last limits are zero and so the two limits are the same, and the notation
0(¢) makes sense for ¢ € ¥ (R; F).

We must still show that 0 is linear and continuous. Linearity is simple. To
show continuity let (¢))jcz., be a sequence in ¥ (RR;F) converging to zero. Define
Y € Z(R; F) by

o) = {e exp (—ﬁ), It <1,

0, otherwise.

(The reader should figure out what the graph of this function looks like, since we
will use properties of this graph in our arguments below.) Then define a sequence
(Vr)jez., in Z(R;F) by Yi(t) = ¥(;). We make the following observations concerning
this sequence.

1 Lemma The following statements hold:

(i) for each every compact set K C IR, the sequence (x|K)xez._, converges uniformly to the
functionK >t 1;

(ii) for eachr € Z, the sequence (gbf ))k€Z>0 converges uniformly zero.

Proof For the first assertion, let K € R be compact and let T € R, be such that
K C [-T,T]. For € € R, let N € Z be sufficient large that 1 — gb(%) < €, this being
possible since lim;_,o 1(f) = 1, the limit being an increasing one as t gets closer to zero.
It then follows that for t € K C [-T, T] and for k > N we have

-yl =1 -PEI <N -P(H)<e

giving uniform convergence of (x|K)ez._, to the function having the value 1 on K.
Now, for r € Z, let
M, = sup{lp" ()| t € R}.

For e € R5¢ let N € Z be sufficiently large that N™"M, < €. By the Chain Rule,
WO = kO @) < e

fort € Rand k > N. This gives the desired uniform convergence of (¢,‘f’)k€Z>0 to zero. v

Next let us use this sequence to construct a sequence in Z(IR;F) converging to

¢ € (R F).
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2 Lemma If ¢ € S (IR;F) then the sequence (Ppvj)iez., converges to ¢ in & (R; IF).

Proof Letk,r € Z5y and let € € R5p. Since limyy_, tkcj)(r)(t) = 0, there exists T € R,
such that |t"¢<r>(t)| < 5 for all t such that |t| > T.
By the Leibniz Rule, Proposition 1-3.2.11, we have

T

@90 =) (;)¢<f—m>(t)¢§m>(t).

m=0

Thus .
OO~ (@)"(H) = 9V O~ i) + ) (;)qb“‘m)(t)w;m)(t).
m=1

Br:max{(r)‘ me {O,1,...,r}}.
m

M, x = sup{lt*d™(t)] | t € R)

and, using Lemma 1, let N; € Z be sufficiently large that

Forme{0,1,...,r} let

1= ()Mo < 5
fort € [-T,T]and j > N;. Again using Lemma 1, let N, € Z.( be sufficiently large that
Ay (1B, max(M, ..., My} < g
fort € Rand j > N>. Let N = max{Nj, N2}. Now, we consider two cases.
1. [t < T: For j > N we have

GO = (1) < Mol — ()l < g.

le{l,...,r},

2. |t| > T: Since 1-1;(t) € [0, 1] for every ¢ € IR, our definition of T immediately gives
FoV (B - Bl < 5.
Thus, for every t € R we have
FoO O - i)l < 5.

For j>Nandm € {1,...,r} we have
- €
FS P O] < Moyl (0] < maxiMg, .., Mgl (0] < 5
r

for every t € R. Thus, for t € R and j > N we then have

@O (t) — (py ) (1)) =

<E.

tk ((P(?’)(t)(l - ¢](t)) + Z_l (;)(P(r_m)(t)l/);m)(t))

Since k and r are arbitrary, the sequence (¢ — ¢v)) ez, converges to zero in ¥ (R; IF) as
desired. v
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Continuing with the proof, for each j € Z. ¢ note that the sequence (xjx = Yx}))jez.,
in Z(R; F) converges to ¢; in & (IR; IF) by Lemma 2. Therefore, for each j € Z, there
exists N; € Z sufficiently large that

0(¢; — k)l <€, k=Nj,

by our assumptions on 6. We claim that the sequence (Yn;¢})jez., in Z(R; IF) converges
to zero in #(IR; F). Indeed we have

lim sup ("N, ®I| teR}=0

by virtue of the Lemma 1, the fact that (¢;) ez, converges to zero in #(R; F), and the

formula
.

NG ") .,(0 4 =0
This then gives

10(P)l < 10(Pj — ;P + 10N, ).
The two terms on the right go to zero as j — oo by our hypotheses on 0, and so
continuity of 6 on & (RR; FF) follows. ]

3.3.3 Properties of tempered distributions

In this section we record some of the basic facts about tempered distributions.
Many of these follow, directly or with little effort, from their counterparts for
distributions.

Since ¥'(R; F) € &(IR; F) there is inherited from &’ (IR; F) the notion of con-
vergence of a sequence (0))iez., in &' (R; F).

3.3.14 Definition (Convergence in #'(R;F)) A sequence (0))jez., in &'(R; F) is

(i) a Cauchy sequence if (0(¢));cz., is a Cauchy sequence for every ¢ € ¥ (R; F),
and

(i) converges toatempered distribution 6 if, for every ¢ € ¥ (IR; F), the sequence
of numbers (0;(¢))cz., converges to 6(¢). °

What is not so clear is whether such a sequence converging in &'(IR; F) will
converge to an element of ”’(RR; [F). This is indeed the case.

3.3.15 Theorem (Cauchy sequences in #'(R;F) converge) If (0))cz., is a sequence in
F'(R;F) € Z'(R; F) that is Cauchy, then it converges to some 6 € F'(R; FF).
Proof The proof goes very much like that of Theorem 3.2.22. All one needs to do is
choose the initial subsequence ({',),ez., S0 as to have the additional property that

, 1 )
sup{[Fp?| | te R} < o keloL.n).

After replacing all occurrences of Z(IR; IF) with #(R; F) and of &' (R; F) with ¥’ (RR; [F),
the same proof then gives the result in this case. |
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Let us give the analogue for tempered distributions of the fact that locally
integrable signals are distributions. Note that Example 3.3.5-3 shows that there
are locally integrable signals that are not to be regarded as tempered distributions.

3.3.16 Definition (Signal of slow growth) A measurable signal f: R — F is said to be of
slow growth if there exists M € R, and N € Z, such that

IF(O)] < M1 + AN, .

Since a signal of slow growth is bounded by a locally integrable function, such
signals are themselves locally integrable. The following result gives the relationship
between these signals and tempered distributions.

3.3.17 Proposition (Signals of slow growth are tempered distributions) If f: R — F
is a signal of slow growth then 0; € ' (R; F). Moreover, if f;,f,: R — T are signals of
slow growth for which O = Oy,, then f,(t) = f,(t) for almost every t € R.
Proof First let us show that the integral

fIR f(®)o(t) dt
exists for all ¢ € #(R;F). We have

f If(Hob) dt < f M + t)N|p(t)| dt.
R R

By Proposition 3.3.2 the integral converges, showing that the map 6 is well-defined.
Now let us show that it defines a tempered distribution. Let (¢;);ez., be a sequence
converging to zero in ¥ (RR; [F). Then we compute

6¢())| = ‘ fR f(t)@(t)dt's fR M(1 + #)N|pi(t)] dt

-1 1
= f M1+ 2)N|g (1)l dt + f M1+ )N (1) dt
— o0 -1

telR}

1
+ sup {lM(l +)No;(b) j: 1 M1+ )N|g(r)l dt

+ fl M1+ )N|g (1) dt

2
< 2sup {lM(l + NP o;(b)] I % drt

telR},

the suprema existing since the sequence (¢;);ez., converges in #(IR;IF). Taking the
limit as j — oo gives the desired conclusion, again since the sequence (¢;);ez., con-

verges to zero in ¥ (RR; [F).
The last assertion follows the similar assertion in Proposition 3.2.12, along with
Proposition 3.3.12. ]

Signals of slow growth also show up to give a natural class of signals which can
be multiply tempered distributions.
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3.3.18 Proposition (Tempered distributions can be multiplied by signals all of
whose derivatives are of slow growth) Let 6 € ¥ (R;F) and let ¢o: R — F
be an infinitely differentiable signal of slow growth, all of whose derivatives are also signals
of slow growth. Then the map

F(R;F) 3 ¢ — O(pop) € F
defines an element of #’(R; ).

Proof Linearity of the map is clear. To prove continuity, let (¢;)cz., be a sequence in
F(R;F) converging to zero. We claim that (¢9¢))jez., is also a sequence converging
to zero in #(IR; F).

First we show that po¢p; € F(IR; FF) for each j € Z. Itis clear that ¢o¢; is infinitely
differentiable. For each r € Z5q let M, € R5g and N, € Z( be such that

D <MA+2N,  teR
Then, for k € Z,
Jim £ (o)) (O] = 0

using Proposition 1-3.2.11 along with the fact that ¢; and all of its derivatives have
slow growth.
Now we show that (¢o¢))jez., converges to zero. Let k,r € Zo.

lim sup {I#(9op) (0 | € R|

again using Proposition I-3.2.11 along with the fact that ¢; and all of its derivatives
have slow growth.
Thus the result follows since

lim O(¢op) =0
]—}OO
for every sequence (¢;)jcz., converging to zero in & (R; [F). ]
The notions of regular, singular, support, and singular support are applied to
F’"(R; F) by restriction from 2’(RR; F).

One can differentiate tempered distributions as they are distributions. It turns
out that the derivative is again a tempered distribution.

3.3.19 Proposition (The derivative of a tempered distribution is a tempered distribu-
tion) If 6 € #'(R; F) then 6’ € #'(R; F).
Proof This is easy to show. We let (¢))jcz., be a sequence in ¥ (RR; F) converging to
zero. Then (—(j);.) jez., is also a sequence converging to zero in (IR; IF), as is easily seen
from the definition of convergence to zero. Therefore,

lim 6'(¢;) = lim 9(—qb;) =0
]—)OO ]—)OO
as desired. -

One can talk about tempered distributions of finite order, and tempered distri-
butions are always locally of finite order by virtue of their being distributions. We
shall see in Theorem 3.3.23 that even more is true for tempered distributions.
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3.3.4 Tempered distributions depending on parameters

In this section we adapt our results from Section 3.2.8 to test signals from
F(R;F) and distributions from ¥’(IR; IF).

Asin Section 3.2.8, weletI C Rbe aninterval and consider a function ¢: IXRR —
IF and denote a typical point in I X R by (A, t). For (A, t) € I x R we define functions
¢": R - Fand ¢;: [ —» Fby ¢M(t) = ¢s(A) = (A, 1). If, foreach A € I, ¢! € F(R; F),
then, given 0 € ¥’(RR; IF), we define @y 4: I — [F by

Dg,5(A) = O(P™).
As in Section 3.2.8, we denote
(DiDy) () = (D;D5)(A) = DiDs(A, 1)

forr,s € Zy.
The following result indicates the character of the function @, in this case.

Theorem (Distributions applied to Schwartz signals with parameter depen-
dence) Let I C IR be an interval, let k € Z, and let ¢: 1 X R — F have the following
properties:

(i) for each A €1, the map t — ¢(A,t) is an element of #(R;F);

(i) for each r,m € Z there exists Cy;m € R such that
sup {[t"D DA, O] | te€R, A €T} < Chpm

(iii) for each t € Zso, DF'Dip: Ix R — T is continuous.
Then, for any 0 € Z'(R;IF), Og 4 is k-times continuously differentiable and, moreover,

@) (1) = 6((Dy)Y).

Proof The proof follows closely that of Theorem 3.2.40, but we shall go through the
details so as to understand clearly where the differences arise.

We first give the proof for k = 0. Let A € I and let (¢j)jez,, be a sequence in R
converging to zero and such that A + €; € I for every j € Z.. Define llb? € #(R;F) by

gb?(t) = p(A +€;,b).
The following lemma is then useful.

1 Lemma The sequence (l,l}J.A)jeZ>O converges to ¢ in F(R; F).

Proof Letr,m € Zso. Let I’ C I be the smallest compact interval for which A +¢; € I

for every j € Zy. Since
(A, t) = t"Dip(A, 1) (3.9)
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is continuous with bounded derivative and since I X R is convex, by Proposi-
tion 11-1.4.36 it follows that the function (3.9) is uniformly continuous. This implies
that, given € € R, there exists N € Z such that

|tmD’gb]A.(t) — "D M (H)] = [F"DYP(A + €, 1) — DA, Bl <€,  j>=N, teR.
Since r,m € Zo is arbitrary, this implies that we have the desired convergence of
(lub?)]'ezw to (PA' v

It then follows immediately from continuity of O that
lim g ,5(A + €)) = lim 6(¢"*7) = 6(lim ¢**/) = O(lim lP;\) = 6(¢") = Dg,u(A).
j—o j—o j—oo j—ooo

Continuity of g 4 at A then follows from Theorem I-3.1.3.
Now we prove the theorem when k = 1. We let (¢;) be a sequence, none of whose
terms are zero, converging to zero as above. Now we take

(A + ¢, 1) = (A, 1)

€j

HOE

The following lemma is then key.

2 Lemma The sequence (gbjA)jeZ>0 converges to (D19)" in F(R; F).
Proof Letr,m € Zsg. Define 1;.,,: I X R — [F by

DL p(E)~1"Dyb(A )

, C#A,
I;br,m(gl t) = f_/\
PDIDLOL L), L=

It is clear from the hypotheses that 1, ,, is continuous on
{(¢,t)eIXR| €+ A}
Moreover, since the derivative D1 D¢ exists and is continuous,

DO ~ "Dy (A, b
{—A £—A

= "DiDyp(A, 1),  tER,

showing that 1, is continuous on I X R by Theorem |-3.1.3. Since 1., is differentiable
with bounded derivative and since I X R is convex, it is uniformly continuous by
Proposition II-1.4.36. Therefore, given € € R, there exists N € Z.( such that

[Vrm(A +€j,t) = Yrm(A, B)l <€, j=N, teR
Using the definition of 1, ,, this implies that, for every j > N and for every t € IR,

P DLd(A + €, 1) — F"Dd(A, B)

€j

— t"D1Dyp(A, )| = |t'"Df¢]4(t) — t"D"(D1¢p™)(P)| < e.

Since r,m € Zq are arbitrary, this gives convergence of (1][)?) jeZo tO (D1(]5)A. v
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By continuity of 6 we then have

Pop(d +€) = Pop(A)  B(p™) - 6(¢")
lim = lim
jooo €j j—oo €j

= O(lim ) = 0((D19)"),

showing that @y, is differentiable with derivative as stated in the theorem for the case
of k=1.

Now suppose that the theorem is true for j € {0,1,...,m} and suppose that the
hypotheses of the theorem hold for k = m+1. Welet ¢ = D'¢ and verify that i) satisfies
the hypotheses of the theorem for k = 1. First note that, for each A € I, t = (A, t) is the
mth derivative of an element % (IR; [F) and so is an element of % (IR; F). The second of
the hypotheses of the theorem hold immediately. Finally, since

DDy = DDDY') = DY *Djg

by Theorem |I-1.4.33, the final hypothesis of the theorem also holds. Therefore, by the
induction hypothesis, @ y is continuously differentiable. But, since

gy(1) = O(DYP)") = (1),

this implies that @ ¢, is m + 1-times continuously differentiable, and

of V() = 6((DF )"
as desired. -
The following corollary is what will be of primary importance for us.

3.3.21 Corollary (Property of tempered distributions applied to Schwartz functions
of two variables) Let ¢: R> — TF be infinitely differentiable and such that, for each
I1, T2, M € Zsy, there exists Cy, v, m € Roq such that

sup{(s® + tz)m/zDilD?(p(t, s)| s,teR} <Cyym- (3.10)
Then we have ®g 4 € F(R; F). Moreover, for each k € Z.,
) (s) = O((DY)").

Proof In this case, the hypotheses of Theorem 3.3.20 are easily verified to hold for
every k € Z-o, and so @y is infinitely differentiable. Now let s € R and r,m € Zs
and define ¢}, € (R;F) by

Py m(t) = s"D1d(s, b).

Note that
S"DY)(5) = Y (t).
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Let k € Zg. Since ¢ satisfies (3.10), let C, ,,, x be such that
sup{l(1 + £2Y @5, )P | s,t € R} < Cppye
By Lemma 3.3.22 below, there exists M € R, and k € Z such that
0)| < Msup {1+ 2 p®(p) | te R}
for every 1) € #(IR; F). Therefore, with M and k so chosen,
5" (5)] = Is" O((D;p))] = 6" (D5 )] = 0(Y5,)] < MCrom,
which shows that ®g , € & (R; F), as desired. ]

3.3.5 Some deeper properties of tempered distributions

Tempered distributions, being distributions, have the properties of Theo-
rems 3.2.43 and 3.2.45. For tempered distributions one can say more. Indeed,
we show that tempered distributions are always of finite order, not just locally
of finite order. In order to prove this result, we have the following characterisa-
tion of tempered distributions, this providing an analogue of Lemma 3.2.44 for

F(R; F).

3.3.22 Lemma (A boundedness property for tempered distributions) Let 6 ¢
' (R;F). There then exists M € R and k € Zs, such that for each ¢ € F(R;F)
we have

0(¢)] < Msup {[(1 + 2 ¢® ()| teR].

Proof To prove the result we indicate how one can reduce to the ideas used in the
proof of Lemma 3.2.44. The principle idea of the proof of Lemma 3.2.44 is that a
sequence (¢;)jez., converges to zero in Z(IR; ) if and only if for each m € Z5 the

sequence ((b — a)mqb§m)) jez., converges to zero where T = [a,b]. We shall produce an
equivalent characterisation for convergence to zero in % (IR; IF). To do this we define

Tt

ol = (E)m sup i1+ 26" 01| teR],

for ¢ € #(IR; FF). This allows us to state the following result.
1 Sublemma A sequence (¢j)icz., converges to zero in F(IR;F) if and only if the sequence
(19;l[S)jez., converges to zero for each m € Zs,.
Proof Define
ol = sup {I(1+ 2)"pO (1)l | t e R}

It is evident that
oIk < ik, ¢=m. (3.11)
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For t € R>g we have

(1 + 2 B ()] = \(1 + )" ft ) p® (1) dr
00 2\m+1 4 (k+1)
s(1+t2)’”f A+ )™ ¢ (T)|d’C
t

(1+T2)m+1
® dr
< m+1k+1f
el i
m+1k+1
< ZI9II:

using the fact that fooo 151_;2 = 7. In like manner we show that for t < 0 we have.

”(P“H’H-l k+1

t
11+ £2)" 0 ()] = ‘(1+t2)m f d* (1) dr| <

This shows then that
llplIrs* < ||¢||’“+1 A+l (3.12)

Next we compute
t
0= [ "
—eo | t
@090 - [ (- not @ dr
t
1 (= t)2¢(k+2)(T)|t_oo + % f (T — t)2¢(k+3)(T) dt

t
_ % I - B26%3(7) dr,

where we have twice integrated by parts. Therefore, for ¢t < 0 we have

t
(1 + 2)"p® ()] = |31 + )" f (t - t)>p**I (1) dr

2\m+2 4 (k+3)
%1+t2)mf (1 t)zl(lﬂ) i QI

(1 + 7)m+2

” ||m+2 k+3

dt = 7. A similar computation can be made for t € R5¢ to

using the fact that f_
conclude that

1+t2

lpIIZE < ||plmr24+3, (3.13)

Now we combine (3.11) and (3.12) to compute

T n
Il < 19l < () ol
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provided that m < k and that n > m, k. From (3.13) we have

k m+2(m—k),k+3(m—k 3m—2k,3 2k
[QIIE < || p|[r20m=RIRr3Em=h) g Sm—2k 3m=

provided that m > k. Choosing n = max{k, 3m — 2k} we can then ensure that

oz < (3 il

Since convergence of (¢))jez., in F(R;F) means exactly that for any m, k € Z the
sequence (||¢||ZZ;") jez., converges to zero, the lemma now follows. v

We now state a simple lemma.

1 Lemma (5)™[I$lI2 < (5)™[¢lID*!, m € Zs.
Proof By (3.12) we have [|¢||Z < E||(j)||§+1, and the result follows by multiplication by
3 v

The remainder of the theorem follows as the proof of Theorem 3.2.22, taking it
up at the second paragraph. One needs only replace (b — a)mnq)(m)uoo with (3)"|}lI%,
noting the inequalities of the second lemma above. |

Using this nice property of tempered distributions, we can prove the following
important and useful result. We note that in contrast to Theorem 3.2.45 for ' (IR; [F)
which holds only locally, the following characterisation of %”’(IR; FF) is global.

3.3.23 Theorem (Tempered distributions are finite-order derivatives of signals of
slow growth) If 6 € ¥'(IR;F) then there exists r € Zs, and a signal fg € Lgi(]R; IF) of
slow growth such that 0(¢) = Og)(qb) for every ¢ € F(R;F). Furthermore, we may take
r = k + 1 where k € Z is as given by Lemma 3.3.22.

Proof The result follows from Lemma 3.3.22 in much the same way that Theo-
rem 3.2.45 follows from Lemma 3.2.44. We choose M € R.g and k € Z.y such
that

10(¢)] < Msup {[(1+ 2Yo®(®) | teR]

for every ¢ € S (IR; ). For ¢ € #(R;F) and j € Z.( define
i = 1+ 20,
noting that l/}(; e (R F) for all ¢ € #(R;F). Then define

y(R/ ]F)(k+1) — {l)bk-'—l

¢ e F(R;F)},

and consider on % (R; F)**D the norm ||-[|;. Define a linear map ag: & (R; F)**D — F
by ag(l/)k“ 0(¢). We claim that ag is continuous with respect to the norm ||-||;. Let
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(gbl(;;l) jez., be a sequence converging to zero in & (R; IF)**+1) relative to ||-||l;. For t € R

we have

(1 + 2P0l = k1+t%kjfm¢?+”uodf
ok 00 |(1 + 72)k+1q5(k+1)(t)|
<(1+#) ft A dr

00 |(1 + T2)k+1¢)(k+1)(’f)|
<]

1+ 72

drt

< fool(]. + Tz)k+1¢(k+l)(’[)|d’f
t

1 2\k+1 4 (k+1) dr.

< [1ae gt

Therefore, if for € € R.g we choose N € Z-( such that

jl; |(1 + tz)k+1¢§k+l)(t)| dt < %’ ]2 N,

this being possible since (1{)7(‘;1) jez, converges to zero relative to [|-|l;. Then
]

ol = 10(¢))] < Msup {|(1 + )¢ | te ]R}
< fR ’(1 + 21 di<e,  j2 N,

This shows that g is indeed continuous as claimed.

Note that #(R;F)**D ¢ LO(RR;F). Then, by the Hahn-Banach theorem, The-
orem 11I-3.9.2, there exists a continuous linear map ag: L'(R;F) — T such that
agl P (R; F)**D = qg. By Theorem 1I-3.10.1 there exists ¢o € L)(R;F) such that
for each ¢ € #(R; F) we have

a9l = [ o+ AR d= [ et d,

where fo(t) = (1 + £2)*1gg(t). Note that since gp is bounded, fy is a signal of slow
growth (we may as well suppose that gg(t) < [Igoll for all ¢ € R). Therefore,

9(¢) — ae(wlgl) — 6f6(¢(k+1)) — (_1)k+185[I;+1)(¢)’

as claimed. []

Exercises

3.3.1 Show that if ¢1,¢, € F(R;F) then ¢1¢, € F(R;F). Thus F(R;F) is an
algebra.
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3.3.2 Which of the following signals is in S (IR;F)? For signals not in & (R;F),
explain why they are not.
(@) f(t) = arctan(t).
(b)

3.3.3 Find a locally integrable signal f that is not of slow growth and for which
0f € (R ).

3.3.4 Which of the following sequences (¢) jcz., of signals in & (IR; IF) converges to
zero in Z(R;F)? For sequences not converging to zero in % (R; [F), explain
why they do not.

(@) ()=

finish
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Section 3.4

Integrable distributions

In this section we define a class of distributions that lies between the class
&' (R;F) of distributions with compact support and the class #’(IR;F) of tem-
pered distributions. The class of distributions we describe here will be useful in
Section 4.4.1 in our definition of convolution for distributions.

Do | need to read this section? The integrable distributions we consider in this
section are not widely used. However, they will be used in our construction of
convolution for distributions, and are indeed often used for constructions related
to this. Therefore, this section is of secondary importance, and can be read at such
time as one needs to really understand the details of the definition of convolution
for distributions. o

3.4.1 Bounded test signals

We jump right to the definition since the pattern is by now well established, we
hope. Our constructions rely on an understanding of the notions of integrability
introduced in Section |1-3.8.7.

Definition (Bounded test signals) A bounded test signal is a signal ¢: R — F
such that

(i) ¢ isinfinitely differentiable and
(if) limyy—e @®(#) = 0 for each k € Zy.
The set of bounded test signals is denoted by %(IR; IF). °

Remark (%, (RR; IF) is a vector space) It is easy to verify that % (IR; F) is a subspace
of FR, .

Let us consider some examples relating the test signals %,(IR; F) to our other
classes of test signals.

Examples (Bounded test signals)

1. Itis clear that #(R; F) € %y (RR; FF).

2. An example of a signal in %y(IR; FF) that is not in #(R; F) is ¢(t) =
ample 3.3.5-2.

3. Itis clear that %y(IR; F) C &(R; ]F). However, the inclusion is equally as clearly
strict; for example the signal ¢(t) = tis in &(R; F) but not in %y (R; [F).

cf. Ex-

1+F’

4. The function ¢(t) = 222 is infinitely differentiable and decays to zero as |¢| — co.

However, since ¢'(t) = 2t cos(t?) — S“;S , we see that ¢’ does not decay to zero
as |f| — co. Thus ¢ ¢ By(R; F). °
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We can also define the notion of convergence in % (RR; IF).

Definition (Convergence in %, (R; IF)) A sequence (¢))jez., in %By(IR; F) converges
to zero if, for each k € Z,, the sequence (¢§k)) jez., converges uniformly to zero. A
sequence () ez, in By(R; F) converges to ¢ € FBy(IR; FF) if the sequence (¢p;—P)jez.,
converges to zero. .

Let us examine some characteristics of convergence in % (IR; IF) via examples.

Examples (Convergence in %,(RR; IF))

1. Note that a sequence (¢;)jez., converging to zero in &(IR; F) also converges to
zero in %y(IR; F). Indeed, in Definition 3.3.3 one need only take k = 0. It then
follows from Example 3.3.7—1 that every sequence (¢;) cz., converging to zero
in Z(IR; F) also converges to zero in %,(IR; IF).

2. There are sequences of test signals in ¥ (R; F) € %(R; F) converging to zero
in %y(R; F), but not in #(R; F). Indeed, we saw one such sequence in Exam-
ple 3.3.7-4.

3. The sequence (¢));cz., defined by ¢;(t) = ﬁ converges to zero in %,(IR; F).
More generally, if ¢ € ZBy(R; F) then the sequence (j'¢)jez., converges to zero
in %(R; F).

4. Let ¢ € PBy(R;F) and define ¢;(t) = j'¢(j~'t). Then one can verify that the
sequence () jez., converges to zero in %By(R; IF).

5. Letus define f: R — F by

eexp(—z), <1,
t) =
f® {O, lt| > 1.

For j € Z. define ¢ € %B(IR; FF) by
j_ll te [_j/j]/
oy~ VPR te =),
WEV R =), teGi+ b)),
0 [t > j+ ]lz

In Figure 3.8 we depict a few terms in this sequence. While this sequence
converges uniformly to zero, one can show that the sequence (¢’) ez, does not

converge uniformly to zero. o

Let us define the notion of continuity on %(R; FF).

3.4.6 Definition (Continuous linear maps on %(KR; IF)) A linear map L: % (R;F) — F

is continuous if the sequence (L(¢;));cz., of numbers converges to zero for every
sequence (¢)jez., that converges to zero in %y(IR; IF). °
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L
1.0
0.8

0.6

s

. I

......................

Figure 3.8 The 1st, 2nd, and 5th terms in a nonconverging se-
quence in %y)(R; IF)

3.4.2 Definition of integrable distributions

As expected, we have the following definition for the class of distributions we
are considering.

3.4.7 Definition (Integrable distribution) An integrable distribution is a continuous

linear map from %,(IR; F) to F. The set of integrable distributions is denoted by
2/, (R F). .

There is a potential source of confusion in the notation &/, (IR; IF). Let us flesh this
out. The confusion mightbe seen as a consequence of the two possible meanings for
Z/,(R;F). These are (1) Z/,(R;F) = (ZL(R;F))’ and (2) Z/,(R; F) = (Z"(R; F))L.
In the first interpretation, &/, (R; F) is the dual of a space 2.1 (R; ) of test signals.
This is what we want, since, in fact, 9[1 (R; FF) is the dual to the space %y(RR; F) of
test signals, and these test signals are not “integrable” test signals. Indeed, it is
the second interpretation of &/, (R; F) one should think of, and the meaning is that
integrable distributions are a subset of 2’ (IR; IF) that one labels this subset with the
subscript “L!'” to indicate that they are “integrable.” This notational confusion will
be sharper in Section 3.5 when we talk about the spaces &/, (R; F), p € (1, ).

3.4.8 Examples (Integrable distributions)
1. We claim that if f € LO(R; F) then the map 05: %,(R;F) — F defined by

0y() = [ Ft0pct

First of all, since ¢ is bounded, the integral exists. Indeed, since |f(t)p(t)| <
Pl f(£), we have [[flli < [PlleollfIli < 00. It is also obvious that Oy is linear. It
remains to show that 0y is continuous. Let (¢;);cz., be a sequence in %,(RR; IF)
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converging to zero. This implies, in particular, that the sequence (||¢;ll)jcz.,
converges to zero in R. For € € R,y let N € Z., be sufficiently large that
lpjlleo < g for j = N. Then

046l < fR OO dt < I llullflh <€

when j > N. Thus lim;_,., O(¢;) = 0 as desired.

2. The map 6¢: %By(R;F) — F defined by 6¢(¢p) = ¢(0) is readily verified to be an
integrable distribution. .

Let us prove some general results which clarify the relationship between inte-
grable distributions and other classes of distributions.

Proposition (Integrable distributions are tempered distributions) We have
/(R F) ¢ F'(R;F). Moreover, integrable distributions 61,0, € 9/, (R; F) agree
if and only if they agree as tempered distributions.
Proof Firstly, if (¢)) jez., is asequence in F(R; F) converging to zeroin ¥ (R; IF), then it
follows immediately that the sequence also converges to zero in %y (R; IF). Therefore,
if 0 € 9[1 (R;F), then (6(¢)))jez., converges to zero for every sequence (¢;)jez., in
F(R;IF) converging to zero in *(IR; F). This shows that integrable distributions are
tempered distributions.

Now let 01, 0, € %By(IR; F) agree as integrable distributions. Then clearly 6; and
0, agree as tempered distributions since ¥ (R; F) € %y(RR; F).

Conversely, suppose that 01 and 0, agree as tempered distributions. By Proposi-
tion 3.3.12 it follows that 01 and 0 agree as distributions, i.e., that 01(¢) = 02(¢) for
every ¢ € Z(R;F). Let ¢ € Bo(R;F). Then, by Theorem 3.11.3(iii), let (¢})jez., be a
sequence in Z(R; F) converging to ¢ in %By(IR; F). Then, continuity of 6; and 0, gives

01(9) = lim 01(9,) = lim 02(0,) = 02(0),

showing that 0; and 0, agree as integrable distributions. u

Next let us characterise membership in Z/,(R; F) by using other classes of test
functions. This is entirely analogous to Theorem 3.3.13 for tempered distribu-
tions.

Theorem (Alternative characterisation of integrable distributions) If 0 ¢
/(R F) then (6(¢)))iez., converges to zero for every sequence (¢jliez., in S (IR;TF)
converging to zero in By(R; IF). Conversely, if 0 € Z'(R;F) and if (0(¢))jez., converges
to zero for every sequence (y)icz., in Z(IR;IF) that converges to zero in FBy(IR;IF), then
0 € 2/, (R F).
Proof Suppose that 0 € 9{1 (R;F). Let (¢))jez., be a sequence in ¥ (R; F) € &(R;TF)
converging to zero in %y (R; IF). Continuity of 6 ensures that (6(¢))) jez., converges to
zZero.
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Let 0 € Z'(R; F) have the property that (0(¢)))jez., converges to zero for every
sequence (¢;)jez., in Z(IR;F) converging to zero in %Bo(R; F). Also let ¢ € FBo(R;[F).
To define 0(¢) we let (¢)) jez., be a sequence in Z(R; F) converging to ¢. This means
that (¢ — ¢))jez., converges to zero in %Bo(IR; IF). That this is possible is a consequence
of Theorem 3.11.3(iii) below. Let j, k € Z-( and note that

0(d) = Pl < 10( = )| + 10( — Pr)l.

By choosing j and k sufficiently large we can ensure that [0(¢; — ¢x)| is as small as
desired, and this means that (0(¢ — ¢})) ez, is a Cauchy sequence, and so converges
in IF. This means that we can define 0(¢) = lim;_«, 6(¢;). To show that this definition
does not depend on the choice of sequence in Z(IR; IF) converging to ¢, let (1) jez., be
another sequence in Z(IR; F) again converging to ¢ in %y(R; F). Then

lim 0(9;) ~ lim ()| = lim [6(6; ~ )

< m 1069 = ¢l + im 106 ~ ol

jk—oo

Both of these last limits are zero and so the two limits are the same, and the notation
0(¢) makes sense for ¢ € FBy(R; F).

We must still show that 0 is linear and continuous. Linearity is simple. To show
continuity let (¢))ez., be a sequence in %)(IR; F) converging to zero. Let (Y)rez., be
the sequence in Z(IR; FF) characterised by Lemma 1 in the proof of Theorem 3.3.13.

1 Lemma If ¢ € Bo(R;F) then the sequence (Ppvj)iez., converges to ¢ in By(R; TF).
Proof This follows from taking the case of k = 0 in the proof of Lemma 2 used in
proving Theorem 3.3.13. v

For each j € Z.( note that the sequence (x;x = Yx))jez., in Z(R;[F) converges
to ¢; in %BH(IR; F) by the lemma. Therefore, for each j € Z, there exists N i € Zxo
sufficiently large that

0(p; —Yrpj)l <€,  k=N;

by our assumptions on 6. We claim that the sequence (Yn;¢}) jez., in Z(R; IF) converges
to zero in %By(IR; IF). Indeed,

]111110 sup {I(n, o))l | te R} =0

by Lemma 1 from the proof of Theorem 3.3.13, the fact that (¢) ez, converges to zero
in %By(RR; FF), and the formula

r

)" = Y (7)ot

=0
This then gives
0PI < 10(d; — YN, P + 10N, D)l

The two terms on the right go to zero as j — oo by our hypotheses on 0, and so
continuity of 0 on %)(IR; F) follows. [
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3.4.3 Properties of integrable distributions
Let us define the notions of convergence of integrable distributions.
3.4.11 Definition (Convergence in 9L’1 (R; ) A sequence (0))jez., in Z/,(R; F) is

(i) a Cauchy sequence if (0,(¢))cz., is a Cauchy sequence for every ¢ € %,(IR; IF)
and

(i) converges to an integrable distribution 0 if, for every ¢ € %y(R; ), the
sequence (0;(¢));cz., of numbers converges to 6(¢). o

As one hopes, Cauchy sequences of integrable distributions converge.

3.4.12 Theorem (Cauchy sequences in 9;1 (R; IF) converge) If (0))cz., is a sequence in

2/, (R; F) that is Cauchy, then it converges to some 6 € Z/,(IR; IF).
Proof The proof goes very much like that of Theorem 3.2.22. All one needs to do is
choose the initial subsequence ({',),ez., S0 as to have the additional property that

Il < 3 k€101, ).
After replacing all occurrences of Z(R;FF) with %B(R;F) and of Z'(R;F) with
Z/,(R; ), the same proof then gives the result in this case. |

The class of signals that integrable distributions generalise are, unsurprisingly,
the integrable signals.

3.4.13 Proposition (Integrable signals are integrable distributions) If f € LY(R;TF)
then O € D, (R;F). Moreover, if f,,f, € LY(IR;TF) for which 0y, = Oy, then fi(t) = fo(t)
for almost every t € R.
Proof The first statement of the proof is proved in Example 3.4.8-1.
The last assertion follows the similar assertion in Proposition 3.2.12, along with
Propositions 3.3.12 and 3.4.9. ]

Let us characterise the functions that we can use to multiply integrable distri-
butions.

3.4.14 Proposition (Integrable distributions can be multiplied by signals all of
whose derivatives are bounded) Let 6 € &/, (R; F) and let ¢o: R — TF be infinitely

differentiable and such that ¢\ € L(IR;F) for each k € Zo. Then the map
By(R;F) 3 ¢ - O(poop) € F
defines an element of | (R; F).

Proof Linearity of the map is clear, and continuity follows from the computations in
the second and third paragraphs of the proof of Proposition 3.3.18, takingk=0. =

The notions of regular, singular, support, and singular support are applied to
Z/,(R;FF) by restriction from Z"(R; F).

Of course, the derivative of an integrable distribution is an integrable distribu-
tion.
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3.4.15 Proposition (The derivative of an integrable distribution is an integrable dis-
tribution) If 6 € /', (R; F) then 0" € Z/,(R; ).

Proof This is easy to show. We let (¢;);ecz., be a sequence in %By(IR; IF) converging to

zero. Then (—cp;.)]-ez>O is also a sequence converging to zero in %y(IR; ), as is easily

seen from the definition of convergence to zero. Therefore,
]15{30 6 (¢)) = }Lrgo 0(-¢7) =0
as desired. -

3.4.4 Some deeper properties of integrable distributions

In this section we give some useful properties of integrable distributions. We
begin by showing that integrable distributions have a boundedness property like
as have seen for distributions and tempered distributions.

3.4.16 Lemma (A boundedness property for integrable distributions) Let 0 €
D/ \(R;F). Then there exists M € R and k € Zx such that, for each ¢ € %By(R; F), we
have

10(@) < Mmax{[[plleo, 16V leo, - - -, 19 o

Proof For m € Z( define

lpI™ = max{l[elleo, PDlco, - - -, D™ lco}.

It is clear that a sequence (¢))jec in HBo(RR;F) converges to zero if and only if
(II(PE.m)IIOO) jez., converges to zero for every m € Zo. This, however, is easily seen to be

equivalent to the convergence to zero of (||¢/ll%)jez., for each m € Z5. One can now
prove the lemma by picking up the proof of Lemma 3.2.44 in the second paragraph,
replacing (b — a)’”ll(p(’“)llOo with [|¢]|”, noting the obvious inequality ||| < [|¢|["2+ for
each m € Zxy. [ |

The following notion will also be important for us.

3.4.17 Definition (Approximate unit and special approximate unit) A sequence
¥))jez., in Z(R;IF)

(i) is an approximate unit it
(a) the sequence (1)jcz., converges in & (IR; F) to the function ¢ — 1 and
(b) for each r € Z, there exists M, € R, such that IbeY)IIm < M, for every

] € Zsyo.
and
(i) is a special approximate unit if

(a) for any compact set K C IR, there exists N € Z. such that ¢;(t) = 1 for
every t € Kand j > N and
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(b) for each k € Z., there exists M, € R, such that IIL/)Y)Iloo < M, for every
j c Z>0. °

Such sequences of signals exist.

3.4.18 Examples (Approximate and special approximate units)

1. An example of an approximate unit is the sequence described in Lemma 1 in
the proof of Theorem 3.3.13. Recall that if we define

0, otherwise,

W(t) = {eexp (-22), <1,

then the approximate unit is the sequence (V;);cz., where W;(t) = ‘I’(?). In
Figure 3.9 we show the graph of W.

Figure 3.9 A signal used to construct an approximate unit

2. To give an example of a special approximate unit, let ¥ € Z(IR;F) be defined

by
0, te (=00, 2],
e e V=17 - f e (=2, 1),
W =11, tel-t il
e e V-1 e (1,2),
0/ t € [2/ OO),

and depicted in Figure 3.10. As may be deduced from Example |-3.7.28-2, this
signal is in Z(R; F). The sequence (¥})jez., in Z(R; F) given by W (t) = W(j't),
J € Zsy, is then verified to be a special approximate unit in the sense of the
above definition. o
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Figure 3.10 A signal used to construct a special approximate unit

Next we state a few equivalent characterisations of integrable distributions. As
in the proof of Lemma 3.4.16, for ¢ € %,(IR; F), denote

Il = max{lilleo, lpVlleo, - 19" e}, 11 € Zso.
With this notation we have the following result.

3.4.19 Theorem (Characterisation of integrable distributions) For 6 € Z(IR;F) the
following statements are equivalent:
(i) 6 € 2/, (R F);
(i) there exists k € Z such that, for every € € R, there exists a compact set K € R
for which |0(¢)| < €llpll, for every ¢ € D(R;TF) satisfying supp(p) NK = &;
(iii) for every approximate unit (WV,)icz.,, the sequence (0(W)))jcz., converges;
(iv) for every special approximate unit (V;)icz.,, the sequence (0(W;))jcz., converges;
(v) there exists a compact set K C R, M € R, and k € Z such that |6(¢)| < M||p|Ik,
for every ¢ € D(IR; F) satisfying supp(¢p) NK = @.
Proof (i) = (ii) Choose k € Zsp and M € R, as in Lemma 3.4.16. Assume (ii)
does not hold. Thus, assume that there exists € € R. such that, for every compact set
K C R, there exists ¢ € Z(R; ) satisfying supp(¢)NK = @ and such that|0(¢)| > €l|pl[L,.
Now we inductively construct a sequence (K;)jez., of compact sets and (¢)jez.,- Let
K; = [-1,1]. By our assumption, there exists {1 € Z(IR; F) such that supp(1)NK; = @
and such that [O(y1)| > ellgblllf;,. We then take ¢; = a1¢1 wherea; € Fis chosen such that
||<j>1||’§o = land such that 6(¢1) € R.o. Then 6(¢1) > €. Now suppose thatKj, ..., K;; and
1, ...,Pm have been defined. Let T,,11 € R5g be such that supp(¢m) € (=Tm+1, Tm+1)

and such that
Kl u---UKk,, C (—Tm+1/ Tm+1)'

Take Ky+1 = [=Twm+1, Tm+1]. Then there exists ¢,11 € Z(IR; FF) such that supp({y+1) N
Kin+1 = @. Then define ¢i1 = aps1¢Pm+1 with a1 € F chosen such that ||gbm+1||’§o =1
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and O(¢m+1) € Rso. Then 0(¢p41) > €. Note that the supports of the functions ¢;,
j € Z,, are pairwise disjoint. Thus we can define ®,, € Z(R; F), m € Z, by

() = ) i(m).
j=1

Moreover, we clearly have |P,.ll, = 1, and so, by Lemma 3.4.16, |0(®;,)| < M. How-
ever, we also have

(@) = ) 0(@)) > me.
j=1

Since this must hold for each m € Z.(, we arrive at a contradiction.
(i) = (iii) Let (¥})jez., be the special approximate unit from Example 3.4.18-2
(although any other special approximate unit can be made to work). Note that for

j € Zsgand r € Zso we have \Ifg.r) = j "W which gives

I lleo < IWOlloo, € Zso, 7€ Zso, (3.14)

For ¢ € %By(R; FF), apply the higher-order Leibniz Rule, Proposition |-3.2.11, to get

T

(@-w)p) =) (1;)(1 = W),

m=0

B,:max{(r)‘ me {O,1,...,r}}.
m

(X = W)elle < 7Bl = WILIIPlIG, (3.15)

Now let

Then

using (3.14). Now let (y))jez., be an approximate unit and let k € Z5( be chosen as
in (ii). Then define
My = 4sup{lljlls | j € Zso).

Let € € R,. By assumption, there exists a compact set K such that

[

€
kMBIl = WIS

10(¢)] <

for every ¢ € I(IR; F) satisfying supp(¢) N K = @. Let N; € Z be sufficiently large
that Wy, (x) = 1 for all x in a neighbourhood U of K. Since 1 — Wy, (x) =0forallx € U
we compute, for [, m € Z,

€
o((1-w —U))l < 1-w —vnllE,
10(( ND@1 = Pm))l kMkBk”l—\P”]éo”( ND @1 = )l
€
< kBilIl = WIE 1w = Yl
MBI il lleollthr = Wl

€
<
kMBIl = Wl

€
KBElIT = WIS (lilles + Ipmllce) < 5,
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using the triangle inequality and (3.15).

(For the next fifteen seconds we use some facts about distributions with compact
support, as developed in Section 3.7.) Since the distribution Wy, 0 has compact support
and since the conditions for an approximate unit ensure that (;)jcz., converges in
& (R;TF), the sequence (0(Wn,V}))jez., converges and so is Cauchy. Thus there exists
N, € Z-y such that, if [, m > N»,

€
10N, (Y1 — Ym))l < 5
Thus, for I,m > N>,

101 = )l < [0((1 = WN) (W1 = Yu))| +1O(YN, (1 = Pm))l < €,

showing that the sequence (6(¢)) jez., is Cauchy, and so converges.

(iii) = (iv) This is clear.

(iv) = (v) Suppose that (v) does not hold. Thus, for every compact set K C IR,
M € Ry, and k € Zs, there exists ¢ € Z(R;F) such that supp(¢) N K = @ and
6()l > Mllgllk,. For j € Zo let K; = [—j,jl. Then let ¢; € Z(R;F) be such that

supp(¢;) N K; = @ and such that |6(¢;)| > jzllql)llf;o. Define
;= i
fllgpjllss

and note that supp(®;) N K; = &, |6(D;)| > j, and ||®j||£o < %
Now let () jez., be a special approximate unit and note that (¢; + ®;) ez, is also
a special approximate unit. Moreover,

0 + @) = O =10(@)I > ), jE€Zso,

from which we can infer that either (0(¢'; + ®@))jez., or (0(¢)))jez., diverges. Thus (iv)
does not hold.

(V) = (i) Let B(R; F) denote the set of infinitely differentiable functions on R
such that the function and all of its derivatives are bounded. If ® € Z(R;F) and
¢ € Bo(R; F) then

.
(@P)") = Z ( ’ )ch)(p(f—m), r € Zso.
m=0 m
As in (3.15) we have
1Pl < rBrlIPllc 1Pl

Let K, M, and k be chosen as in (v). Let U C R be open and such that cl(U) is compact
and K € U. Let ¢ € Z(R; F) be such that ¢(x) = 1 for all x in a neighbourhood of K and
such that supp(y)) € U (why does such a function 1 exist?). By Lemma 3.2.44 there
exists C € R.p and C € R,p and m € Zy( such that, if ¢ € Z(R; F) is such that supp(¢),
then |0(¢)| < Cll¢||%. Without loss of generality we can assume that m > k. (This can
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be seen by understanding the proof of Lemma 3.2.44.) Then, for any ¢ € Z(R; F),

16()] < 16((1 = Y)P)| + 18(p)|
< ClI(1 = )l + Ml
< mCBull(1 = P)ILNPIZ + kMBI NIl
< (mCBull(1 = I + kMBI,

using the fact that ||¢[|Z > ||q5||{;, since m > k.
Therefore, if () jcz., is a sequence in Z(IR; IF) which converges to zero in %(RR; IF),
then lim; .., 6(¢;) = 0, showing that 0 is integrable by Theorems 3.3.13 and 3.4.10. m

With this characterisation of integrable distributions at hand, we can give the
following result that will be useful.

3.4.20 Corollary (Well-definedness of integrable distributions as limits) If 0 €
2/ \(R; F) and if ({)jez., and (Y))jez., are approximate units, then

lim 6(y) = lim 6().
joo joo

Proof Let (V))jez., be the special approximate unit of Example 3.4.18—2. We use the
notation

11 = max{liplloo, Moo, - -, 0™ o}
from the proof of Lemma 3.4.16. Let k € Z. be as in part (ii). Define
My = 4sup((lly,lls | j € Zso) UK | ] € Zso))

Then let K C R be a compact set such that

€
kBRMl[1 — WIIk,

10()l < [

for every ¢ € Z(IR; FF) such that supp(¢) N\K = @. Let N1 € Z. be such that Wy, (f) =1
for all t in a neighbourhood of K. Then let U € R be a bounded open interval such that
supp(Wn,) € U. As per Lemma 3.2.44, let C € R.o and m € Z( be such that

161(¢) < Cliplics

for all ¢ € I(IR; FF) for which supp(¢) € U. Since, for any compact subset L C R, each
of the sequences (¢/)jez., and (gb;) jez., and all of their derivatives converge uniformly

to the function equal to 1 on L, the sequence (¢; — rp;.) jez., and all derivatives converge
uniformly to the zero function. Thus there exists N> € Z. such that, if j > N»,

(% = P supp(Wn,)Iles

= supf|(y); — l,b;-)(r)(l‘)l | t € supp(Wn,), r€1{0,1,...,m}} ©

< —.
2C[WIIS
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Then, for j > N, we have

10; — $)I < 10((1L = P )W = W) +10(Wn, (1 = ¥))

€ - .
= 1 - \Il i i/lloo + C \IJ i — i/lloo
Bt Wik T I = ke + ClIT N ) = 9

€
<
kBM|l1 — W[k,

KBll(1 = WIISIIY; — Wil + CINVIIGIIY; — il

€ k ik m €
< £ + + Cl|\ Y| ==
< o (lrlls + 1WA + CIVI S
< E + E =€
= 2 2 - %

using our estimates above, along with (3.14) and (3.15). Thus lim; .. 0(¢; — 1p}) =0.
Since 0 is integrable, the limits lim; .., 6(1;) and lim; o 9(1,[1;.) exist by Theorem 3.4.19,
and so must be equal. |

The idea of the preceding result is that, although the function u: R — [ defined
by u(t) =1,t € R, is not in Z/,(R; F), we can still evaluate 6 € &/, (R; F) on u by

0() = lim 0(y)

for an approximate unit (¢;)jcz.,. This can be thought of as a conclusion along the
lines of being able to evaluate o at f € C°(R; FF) (see Corollary 3.7.28), even though
a continuous signal is not in the domain of 6y, “officially.”

3.4.5 Measures as integrable distributions

A measure is an integrable distribution of order zero. Integrable distributions
are finite linear combinations of derivatives of measures. Horvath, pp. 344.

3.4.6 Notes
Parts of Theorem 3.4.19 are from [Dierolf and Voigt 1978].
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Section 3.5

LP-integrable distributions

The space % (R; F) of integrable distributions generalises L'(R;F), as we saw
in Proposition 3.4.13. In this section, we consider spaces that generalise the spaces
LP(IR; IF), p € (1, 00). These spaces of distributions we shall denote by &/, (IR; F). To
this extent, one might really think of Zj(R; F) as being &/,, and indeed we shall
do this when it is convenient to do so.
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Section 3.6

L*-integrable distributions
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Section 3.7

Distributions with compact support

In this section we specialise our set of distributions even further. That is, we
increase the size of the test functions with a resulting decrease in the size of the
distributions.

Do | need to read this section? This section can easily be skipped on a first read-
ing. However, the results in Section 3.7.6 may be of general interest. o

3.7.1 The set of infinitely differentiable test signals

The test signals we consider form a rather large class.

Definition (Infinitely differentiable test signal) An infinitely differentiable test
signal is an infinitely differentiable map ¢: R — [F. The set of infinitely differential

test signals is denoted & (RR; IF). .
Remark (£ (R; F) is a vector space) One can easily verify that & (RR; F) is a sub-
space of the F-vector space FX. .

The set &(R; ) is a large set of signals, of course. It contains all polynomial
functions, exponential functions, trigonometric functions, etc. It also contains the
test signals in Z(R; F), #(R;F), and %y(R;F). As with Z(R;F), #(R; F), and
%By(R; IF), the important notion in & (R; FF) is that of convergence.

Definition (Convergence in &(RR;IF)) A sequence (¢;)icz., in &(IR;IF) converges
to zero if for each r € Z;( and for each compact subset K C R, the sequence
(qb?”lK) jez., converges uniformly to zero. A sequence (¢))jez., in & (IR; IF) converges
to ¢ € &(R; ) if the sequence (¢; — ¢)jez,, converges to zero. o

As with I(R; F), ¥ (R;F), and %y(R;F), we can ponder bemusedly the na-
ture of convergence in & (RR;F). It turns out that, as with #(IR;F) and %,(R; ),
there exists a metric on & (IR; IF) for which convergence is convergence in the met-
ric. However, again as with #(R;F) and %,(R;F), there is no norm defining
convergence in & (RR; [F).

Let us explore the notion of convergence in & (IR; F) through some examples.

Examples (Convergence in & (R; IF))

1. Note that a sequence (¢));cz., in By(R; F) converging to zero in %y (IR; F) also
converges to zero in & (IR; F). It then follows from Example 3.4.5—1 that every
sequence (¢;)jez., in ¥ (R;F) converging to zero in #(IR; F) also converges to
zero in & (R; [F). And then it follows from Example 3.3.7—1 that every sequence

references for this
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(Piiez., iIn Z(R;F) converging to zero in Z(R;IF) also converges to zero in
& (R; TF).

2. There are sequences of test signals in %(R; [F) € &(IR; [F) converging to zero in
& (R;F), but notin %,(IR; F). Let us give such a sequence. Let (1)) jez., be the se-
quence in Z(IR; IF) characterised in Lemma 1 from the proof of Theorem 3.3.13.
Then define a sequence (¢;);cz., in By(R; F) by

pi(t) = e Pyh).

In Figure 3.11 we show a few terms in this sequence. While the sequence

. . . . I . . . . . . . . I . . . M
-10 -5 0 5 10
t

Figure 3.11 A few terms in a sequence converging to zero in
& (R; F) but not in %y(RR; IF)

of signals and all derivatives converges uniformly to zero on every compact
interval (i.e., converges to zero in &(IR;F)), the sequence does not converge
uniformly on R. .

3.7.5 Definition (Continuous linear maps on & (R; IF)) A linear map L: &(R;F) — Fis
continuous if the sequence (L(¢;)) cz., converges to zero for every sequence (¢;) cz.,
that converges to zero in & (R; FF). °

3.7.2 Definition of distributions with compact support
The by now unsurprising definition is the following.

3.7.6 Definition (Distribution with compact support) A distribution with compact
support is a continuous linear map from & (IR; F) to IF. The set of distributions with
compact support is denoted &”(IR; IF). .
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3.7.7 Remark (2’ (R; F) is a vector space) It is easy to check that &’(IR; FF) is a subspace
of B;(R; F). The inclusion is proved below in Proposition 3.7.9, and the inheritance
of the vector space structure is then readily verified. o

Do not at this point read anything literal into the words “with compact support”
in the preceding definition. We will address this shortly.
Let us give some examples of distributions with compact support.

3.7.8 Examples (Distributions with compact support)

1. We claim that an integrable signal f: R — F with compact support defines an
element 0 of &'(R; FF) by

0y() = [ F0ptt

The integral clearly converges since, if supp(f) € [T, T] we have

T T
f|f(t)qf>(t)|dt = f If(H)p(t)dt < sup {I(p(t)lf If(Dldt | te[-T, T]} < oo.
R -T -T

We also claim that 0 is continuous from & (R; F) to [F. If (¢)) ez, is a sequence
converging to zero in & (R; IF) we have

T
= j: Tlf (B)p;(£)l dt

001 = | fR O, di

T
< sup{qu)j(t)l f f()dr te[—T,Tl}.
-T

Taking the limit as j — oo shows that 0 € &' (R;TF), as claimed.

2. Let us show that 68’) € &' (R;F) for each r € Z5o. Let (¢)jez., be a sequence
converging to zero in & (RR; IF). We then have

6D(d7) = (=1)' (0.

Since the sequence (qb;.r)) jez., converges uniformly to zero on [T, T] for every
T € R.y, it then follows that lim_,« (SE)r)(qZ)j) =0, so 68” € &' (R;F).

3. While all derivatives of oq are in &’(IR;F), the “anti-derivative” of 9,, the unit
step 150, is not in &”(IR; IF). °

Let us show that distributions with compact support are tempered distribu-
tions.
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3.7.9 Proposition (Distributions with compact support are integrable distributions)

3.7.10

We have &' (IR; F) C Z/,(R;TF). Moreover, distributions 61,0, € &' (R; FF) with compact
support agree if and only if they agree as integrable distributions.

Proof Let us first show that &'(R;F) € Z/,(R;F). Since Bo(R;F) ¢ E(R;F), it
makes sense to write 9(¢) for ¢ € FBy(R;F) and 0 € &’ (R;F). We need to check that
if (¢))jez., is a sequence converging to zero in %y(IR;F) then (6(¢)))jez., converges
to zero if 0 € &'(R;F). However, this follows since (¢)ez., converging to zero in
%By(R; F) implies convergence to zero in & (IR; F), as we saw in Example 3.7.4-1.

The final assertion follows as does the same part of Proposition 3.3.12, but now
using Theorem 3.11.3(ii). [

Recall that at this point the words “with compact support” in Definition 3.7.6

appear with nojustification as concerns their relationship with elements in Z/(IR; IF)
that have compact support. Therefore, we should establish this connection. First
we note that since Z(R; F) € &(IR; F), and since sequences converging to zero in
Z(R; F) also converge to zero in &(R;F), every element 6 € &'(RR;F) defines a
distribution in Z’(R; F). The following result characterises those distributions in
&' (R;TF).

Proposition (A distribution with compact support is...a distribution with
compact support) A distribution 6 € ' (R; F) is in &' (R; F) if and only if supp(0)
is a compact subset of R.

Proof First suppose that supp(0) is compact. Define ¢ € Z(R;F) by asking that
YP(t) = 1 for all t in some open set containing supp(0). One can always do this by
manipulating bump functions appropriately. By the definition of the support of a
distribution, the value of 0 on any element of Z(IR; FF) is determined by its value on
supp(0). In other words, if we define 0: &(IR; F) — [F by 6(¢) = 6(¢), then this map
is well-defined. It is also linear and it is straightforward to check continuity. Thus this
defines 6 as an element of &’ (IR; IF).

Now let 6 € &'(R;F) and think of it as an element of Z’(R; F) by restriction to
Z(R;F) € &(R;F). We claim that this element of &’ (IR; F) has compact support. Let
(Kj)jez., be a sequence of compact subsets of R with the property that K; C K for j <k
and that R = Ujez (K;. Suppose that supp(6) is not compact. Then for each j € Z.g
there exists ¢; € Z(IR; F) such that ¢;(t) = 0 for all ¢ in an open set containing K; and
such that 6(¢;) # 0. Without loss of generality (by rescaling if necessary), suppose that
0(¢j) = 1. We claim that the sequence (¢;);cz., converges to zero in &(R; [F). Indeed,
for any compact set K C R one can choose N sufficiently large that ¢;|K =0, j > N.
Therefore, since 0 is continuous we must have lim;,« 6(¢;) = 0, thus arriving at a
contradiction. ]

As with Theorem 3.3.13 for tempered distributions, it is possible to characterise

distributions with compact support using test functions from ' (R; [F), ¥ (R; [F), or
PBo(R; F), but with the notion of convergence inherited from & (R; IF).

3.7.11 Theorem (Alternative characterisation of distributions with compact sup-

port) If 0 € &' (R;F) then (O(¢))iez., converges to zero for every sequence (¢y)icz., in
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DBy(R; IF) converging to zero in & (R;IF). Conversely, if 0 € Z'(R;F) and if (0(¢P)))iez.,
converges to zero for every sequence (5 )icz., in Z(R; IF) that converges to zero in & (R; F),
then 0 € &' (R; TF).
Proof Suppose that 0 € &'(R;[F). Let (¢))jez., be a sequence in %By(R;F) € &(R;F)
converging to zero in &(R; IF). Continuity of 6 ensures that (6(¢))jez., converges to
Zero.

Let 0 € Z'(R; F) have the property that (0(¢)))jez., converges to zero for every
sequence (¢})jez., in Z(R;F) converging to zero in & (R;F). Also let ¢ € &(R;TF). To
define 0(¢) we let (¢))jez., be a sequence in Z(R; IF) converging to ¢. This means that
(¢ — ¢j)jez., converges to zero in &(R;[F). That this is possible is a consequence of
Theorem 3.11.3(ii) below. Let j, k € Z.( and note that

0(j = Pl < 10( = @)l +10( — Pi)l-

By choosing j and k sufficiently large we can ensure that |6(¢; — ¢¢)| is as small as
desired, and this means that (6(¢ — ¢}))jez., is a Cauchy sequence, and so converges
in IF. This means that we can define 0(¢) = lim; o, 6(¢;). To show that this definition
does not depend on the choice of sequence in Z(IR; IF) converging to ¢, let (¢/)) jez., be
another sequence in Z(RR; F) again converging to ¢ in & (IR; F). Then

lim 0(g;) ~ Jim 0(p)| = lim 10(; ~ )
< lim (0 = )l + lim 1060~ i)l
Both of these last limits are zero and so the two limits are the same, and the notation
6(¢) makes sense for ¢ € & (R; F).
We must still show that 0 is linear and continuous. Linearity is simple. To show

continuity let (¢;);cz., be a sequence in &(IR;F) converging to zero. Let ({)ez., be
the sequence in Z(IR; FF) characterised by Lemma 1 in the proof of Theorem 3.3.13.

1 Lemma If ¢ € &(R;F) then the sequence (p1)j)iez., converges to ¢ in & (R; IF).

Proof Letr € Z>, let K C R be compact, and let € € R..
By the Leibniz Rule, Proposition I-3.2.11, we have

T

@90 =) (;)qb("”(t)wjm)(t).

m=0
Thus ,
O ~ (@) = 9V O~ i) + ) (;)czw-mw;m)(t).
m=1

B,:max{(r)‘ me {O,1,...,r}}.
m

M,y = supllp™(t)| | t € K}

Let

Forme{0,1,...,7r} let
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and, using Lemma 1 from the proof of Theorem 3.3.13, let N € Z. be sufficiently
large that

11— ¥(HIMy < g

and c
WP OB max(My, ... M) <3, 1L,

fort € Kand j > N. Now, for t € Kand j > N we then have

90(1) = (¢ )OO = PO - i) + Y G BB <e.
m=1

Since K and r are arbitrary, the sequence (¢ — ¢1j)jcz., converges to zero in & (R; [F) as
desired. v

For each j € Z( note that the sequence (xjx = VxQ))jez., in Z(IR;F) converges
to ¢; in & (R;F) by the lemma. Therefore, for each j € Z, there exists N i € Zso
sufficiently large that

0(p; —Yrpj)l <€,  k=N;

by our assumptions on 6. We claim that the sequence (Yn;¢}) jez., in Z(R; IF) converges
to zero in & (IR; IF). Indeed, for every compact subset K € R we have

lim sup (om0 01| tek)=0

by Lemma 1 from the proof of Theorem 3.3.13, the fact that (¢) jez., converges to zero
in &(R;F), and the formula

r

0" =Y (1) o068

=0

This then gives
10| < 10(] — n b))l + 10N, )]

The two terms on the right go to zero as j — oo by our hypotheses on 0, and so
continuity of 6 on & (R; F) follows. |

3.7.3 Properties of distributions with compact support

In this section we record some of the basic facts about distributions with compact
support. Many of these follow, directly or with little effort, from their counterparts
for distributions.

Since &’ (R; [F) C Z'(IR; FF) there is inherited from &’ (IR; [F) the notion of conver-
gence of a sequence (0))jez., in &' (R; ).
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Definition (Convergence in &’(RR; IF)) A sequence (0))jcz., in &'(R; F) is
(i) a Cauchy sequence if (0;(¢));ez., is a Cauchy sequence for every ¢ € &(R; ),
and

(i) converges to a distribution 6 with compact support if for every ¢ € &(R; F),
the sequence of numbers (0;(¢))cz., converges to 0(¢). o

As with tempered distributions, since distributions with compact support are
distributions, Cauchy sequences have the property of converging in &' (IR; IF). It
is also helpful if we have convergence in &’(R; [F), and this is what the following
result shows.

Theorem (Cauchy sequences in &’ (R;F) converge) If (0))icz., is a Cauchy se-
quence in &' (R; F) € Z'(R; FF) the sequence converges to some 6 € &' (R; IF).
Proof As with the proof of Theorem 3.3.15, the proof here can be made to mirror that
of Theorem 3.2.22. To do this, we choose the initial subsequence (1,,)sez., such that it
has the property that

. ]7 .
sup{lpl| tel-kk) < jkel01,.. ).
Now the proof follows like that of Theorem 3.2.22, replacing ¥ (R; F) with &(RR; IF)
and 9’ (R; F) with &'(IR; IF). [

Let us give the analogue for distributions with compact support of the fact that
locally integrable signals are distributions. We recall from the notion of the support
of a measurable signal.

Proposition (Locally integrable signals with compact support are distribu-
tions with compact support) If f: R — IF is a locally integrable signal with compact
support then ¢ € &' (R; F). Moreover, if f;,f,: R — IF are locally integrable signals with
compact support for which Or, = Oy,, then f;(t) = f,(t) for almost every t € R.
Proof The first assertion is Example 3.7.8—1. The last assertion follows the similar
assertion in Proposition 3.2.12, along with Propositions 3.3.12, 3.4.9, and 3.7.9. [ |

Signals with compact support also show up to give a natural class of signals
which can be multiply distributions with compact support.

Proposition (Distributions with compact support can be multiplied by
smooth signals) Let 0 € &' (R;F) and let ¢o: R — F be an infinitely differentiable
signal. Then the map
E(R;F) > ¢ - O(poo) € F
defines an element of &’ (R; FF).
Proof First of all, note that ¢o¢ € &(R;F). Now, linearity of the map is clear. To

prove continuity, let (¢))jez., be a sequence in &(R; [F) converging to zero. We claim
that (¢po¢)cz., is also a sequence converging to zero in &(R;[F). It is clear that

what?
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$opj € E(R;F) for each j € Zo, so we need only show that (¢o¢)jez., converges to
zero in &(R; F). Let K C R be compact and let r € Z5g. By Proposition |-3.2.11

.
N — (k) o (r—k)
(Gop)? =Y 6!,
k=1
If we let ||-||x o be the infinity norm for functions restricted to K, then we have

1
1(0)) Voo < ¥ maxtlloll oo oS lkeo, - - - 1P c0)
max{llllios, 19 Moo, - - 1 lieo)-

Letting j — oo, the second term on the right goes to zero, giving uniform convergence

of ((po))")jez., to zero on K.
Thus the result follows since

lim 6(¢po¢p) = 0
j—o0

for every sequence (¢;)jcz., converging to zero in &(IR; IF). ]

The notions of regular, singular, support, and singular support are applied to
&'(R; F) by restriction from 2’ (R; ).

One can differentiate distributions with compact support as they are distribu-
tions. It turns out that the derivative is again a distribution with compact support.

3.7.16 Proposition (The derivative of a distribution with compact support is a distri-
bution with compact support) If 6 € &' (R; FF) then 0’ € &' (R; F).
Proof We let (¢)jcz., be a sequence in & (R; IF) converging to zero. Then (—qb}) jeZ., 18
also a sequence converging to zero in &(IR; FF), as is easily seen from the definition of
convergence to zero. Therefore,

lim 6'(¢)}) = lim 6(-¢}) =0
]—)00 ]—)OO
as desired. n

One can talk about distributions with compact support of finite order, and
distributions with compact support are always of finite order by virtue of their
being tempered distributions. We shall see in Theorem 3.7.19 that even more is
true for distributions with compact support.

3.7.4 Distributions with compact support depending on parameters

In this section we adapt our results from Sections 3.2.8 and 3.3.4 to test signals
from & (R; F) and distributions from &’ (IR; IF).

As previously, we let I C R be an interval and consider a function ¢: I X R — IF
and denote a typical point in I X R by (A, t). For (A,t) € I X R we define functions
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¢*: R - Fand ¢: [ > Fby ¢'(t) = ¢i(A) = (A, 1). If, foreach A € I, ¢* € E(R; F),
then, given 0 € &'(RR; IF), we define @y ,: I — F by

Do 4(A) = O(™).
As in Section 3.2.8, we denote
(DiDy$)' (1) = (DiD)(A) = DiDy(A, 1)

forr,s € Zy.
The following result indicates the character of the function @, in this case.

3.7.17 Theorem (Distributions with compact support applied to test signals with
parameter dependence) Let I C R be an interval, let k € Zso, and let ¢: IXR — F
have the following properties:

(i) for each A €1, the map t — ¢(A,t) is an element of &(R; F);
(ii) for each r € Zso, D¥D5¢: I x R — T is continuous.
Then, for any 0 € &' (R; F), O is k-times continuously differentiable and, moreover,

@) (1) = 6((Dy)Y).

Proof The proof follows closely that of Theorem 3.2.40, but we shall go through the
details so as to understand clearly where the differences arise.

We first give the proof for k = 0. Let A € I and let (¢j)jez., be a sequence in R
converging to zero and such that A + €; € I for every j € Z. Define gb? € &(R;F) by

Yi(0) = oA + e b).
The following lemma is then useful.

1 Lemma The sequence (1,bjA)j€Z>0 converges to ¢ in &(IR; F).

Proof Letr € Z>p and let K C R be compact. Let I’ C I be the smallest compact
interval for which A +¢; € I’ for every j € Z. Since D;¢(A, t)|I’ X K is continuous and
since I’ X K is compact, by Theorem I-1.3.33 it follows that it is uniformly continuous.
This implies that, given € € R, there exists N € Z( such that

IDrl,b (t) — D' M(t)] = [Dhp(A + €j,t) — Dyp(A, )| <€, j=N, tek
Since r € Z>¢ and K are arbitrary, this implies that we have the desired convergence of
(W})jez. to ¢ v
It then follows immediately from continuity of 0 that
lim @o,4(2 +¢)) = lim (")) = O(lim ¢*) = O(lim y7) = 6(9") = Po,o(1).
Continuity of g 4 at A then follows from Theorem I-3.1.3.

Now we prove the theorem when k = 1. We let (¢;) be a sequence, none of whose
terms are zero, converging to zero as above. Now we take

(A + e, 1) — (A, 1)

€j

PH =

The following lemma is then key.
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2 Lemma The sequence (gbjA)jeZ>0 converges to (D1p)" in & (RR; F).

Proof Letr € Zso and let K C R be compact. Let I’ C I be the smallest compact
interval for which €; € I’ for every j € Z.¢. Define ¢,: I' X K — F by

Pr(e ) = {DEW—J??E’W'”, (#4,
D1D5p(A, t), = A
It is clear from the hypotheses that ¢, is continuous on
() el xK| €+ A}
Moreover, since the derivative D1 D¢ exists and is continuous,

i ng)(f, ) — Dgcp(/\, t)
=7 £—A

=DiDyp(A ),  teK,

showing that 1), is continuous on I X R by Theorem [-3.1.3. Since 1, is continuous, it
is uniformly continuous by Theorem 1I-1.3.33. Therefore, given € € R, there exists
N € Z. such that

[Yr(A +€,t) = Pr(A, Bl <€, j=N, tek
Using the definition of 1;, this implies that, for every j > N and for every t € K,
Dip(A +€j,t) = Dyd(A, 1)

€j

= DiD5p(A, )| = ID"P(t) - D'(D1pM)(B)] < e.

Since r € Z( and K are arbitrary, this gives convergence of (gb?) jez. to (D1¢)™. v
By continuity of 6 we then have

. DPogp(A+e)—Dop(d)  O(pM) - 0(p™)
lim = lim
j—)oo €]' ]—>00 €]'

= O(lim ) = 0((D19)"),

showing that @y, is differentiable with derivative as stated in the theorem for the case
of k=1.

Now suppose that the theorem is true for j € {0,1,...,m} and suppose that the
hypotheses of the theorem hold for k = m+1. Welet ) = D'¢ and verify that i) satisfies
the hypotheses of the theorem for k = 1. First note that, for each A € I, t = (A, t) is
the mth derivative of an element & (IR; IF) and so is an element of & (IR; IF). The second
of the hypotheses of the theorem hold immediately. Finally, since

DDy = DD} = DY 2D}

by Theorem |I-1.4.33, the final hypothesis of the theorem also holds. Therefore, by the
induction hypothesis, ®g y is continuously differentiable. But, since

g,y (1) = B(D}'9)") = @),
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this implies that ®g 4 is m + 1-times continuously differentiable, and

of V() = 0D} )
as desired. |
The following corollary is what will be of primary importance for us.

3.7.18 Corollary (Property of distributions with compact support applied to in-
finitely differentiable functions of two variables) Let ¢: R> — F be infinitely
differentiable. Then we have ®g 4 € & (R; IF). Moreover, for each k € Z..,,

K
YY) (5) = O((DfY)°).
Proof In this case, unlike in Corollaries 3.2.41 and 3.3.21, the result follows directly
from the attending Theorem 3.7.17. u

3.7.5 Some deeper properties of distributions with compact support

Since &' (R;F) € Z'(IR; F) it follows that Theorems 3.2.43 and 3.2.45 hold for
distributions with compact support. The extra structure, however, allows us to
provide a little more resolution in Theorem 3.2.45.

3.7.19 Theorem (Distributions with compact support are finite-order derivatives of
signals with compact support) If 0 € &' (R;F) has support in the interior of a
compact set K C R, then there exists signals fg1,...,fgm € CO(R;F) with support in K,
and ry,...,Im € Zso such that

(x)
0 = Z ;.

j=1
In particular, O has finite order.
Proof Since K is compact we can write int(K) as a finite disjoint union of open in-
tervals: int(K) = U]ﬂzl(tl,j/ to ;). We may as well also suppose that the closed intervals
[t1,j,t2,/1, ] € {1,...,n}, are disjoint. Since supp(6) C U7:1[t1,j/ t ;] it will suffice to prove
the result for a distribution with support in a compact interval K, since then the general
result will be obtained by simply (finitely) summing the expressions for each closed
interval. In the case when Kis a compact interval we may find an open U C K for which
cl(U) is compact and for which . By Theorem 3.2.45 there exists a continuous signal
gand r € Zg for which 0(y) = Qg)(l,b) for Y € I (R; F)qu). Now define y € Z(R;F)
so that it has support in U, and so that on some neighbourhood of K it takes the value

1. Such a function xy may be constructed using bump functions appropriately. For
¢ € &(R;F) we have x¢ € Z(IR; F)qq), so giving, by Theorem 3.2.50,

6(6) = 0(x) = (-1’ fIR SO dt

= (-1) (’) sty (t) dt.
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] r+j L r—j

this gives
0(¢) = Z(—l)f f filtyp" dt = Z 0y, (@),
j=0 R =0

After a slight change of notation, the first part of the result now follows by using
integration by parts, Proposition 3.2.39, and noting that f, ..., f, have support in K.
To obtain the second assertion from the first, we let r = max{ry, ..., r,} and define

m

m
(~(r=-1)) .
f= Z 77 = = Z £,

j=1 j=1
so giving the result. |

Note that 6 € &’(RR;F) having finite order does not mean that 6 = 6;2 for fo
with compact support. An example illustrates this caveat.

3.7.20 Example (The delta-signal as the derivative of signals) Let us consider oy €
&’(R;F). Note that if f € C°(IR;F) has the property that 6, = Qﬁfk) then it must be

the case that 65 = 68_]‘). This means that f() = 150(t)*"! + ¢ for some constant c.
Therefore, 0y cannot have compact support. On the other hand one can write 6, as
a finite linear combination of finite derivatives of continuous signals with compact
support. This is guaranteed by Theorem 3.7.19, and can be realised concretely by
defining

A()
A1)

AQ(t)
A1)

A(l)(t) B

Al = R G

fa(t) = =2150(t)

R(#)

A direct computation using Proposition 3.2.35 gives 6 = 61 + 67). In Figure 3.12
we plot f; and f,, noting that they do have compact support. By rescaling the

012

0.10 1 0

0.08 |-

0.04 1 -4+

0.02 -

0.00
L L I I
-0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 15

t t

Figure 3.12 Signals f; and f, for which 6y = 6}? + 6((2))

f:
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argument of A one can make the support of these signals as small as desired. This
is to be expected since 6, should be characterisable in terms of objects defined only
in an arbitrarily small neighbourhood of ¢ = 0. o

For distributions with compact support the conclusions of Theorem 3.2.50 can
be sharpened somewhat.

Theorem (Distributions with compact support only depend on finitely many
derivatives) If 0 € &'(R; ) has order k and if ¢1, ¢, € &(R;F) satisfy

oty =),  je{0,1,....k+1}, t € supp(0),

then 0(¢1) = 0(¢2).
Proof The argument goes very much like that of Theorem 3.2.50. Welet fg € Lgi(]R; IF)
have the property that 9(y) = 9;{:1)(1,0) for all ¢ € I(R;F). Since supp(0) is compact
we can write R \ supp(0) as a finite collection of open intervals Ty, ..., Ty, T)r1, Tyio,
with these intervals being of the form T; = (t,t2,j), j € {1,...,n},and Ty41 = (-0, 1)
and T4, = (fg, ). We then have for ¢ € &(RR; F)

0(¢) = (~1)*1 fR foOED( dt

n t2,m
Y [ gt a0t [ et

m=1 Nsupp(0)
tL 00
(k+1) (k+1)
+ f_ SV de + ftR FoBo® V(B dt.

Just as in the proof of Theorem 3.2.50 the first three terms may be shown to depend
only on ¢(t) for j € {0,1,...,k + 1} and t € supp(0). As for the last term, note that
on (—oo,t1) and (fg, o0), O agrees with the zero distribution. This means that on these
intervals fg is a polynomial of degree at most k (its (k + 1)st derivative must vanish).
Now let i € Z(IR; F) have the property that it takes the value 1 on a neighbourhood of
[tr,tr]. Then we can write ¢ = Y + (1 —1P)¢. Since 1 —1) vanishes on a neighbourhood
of supp(0), from the definition of support we have 0((1 — 1)) = 0. We can then
integrate by parts k + 1 times the expression

fL
~ fowe) ) at

to observe that it depends only on the value of (Y¢))(t,), j € {1,...,k + 1}. Similarly
the expression

fL
[ FoO$) <o) di

depends only on the value of () (t), j € {1,...,k + 1}. Since (W) (tL) = dV(ty)
and (P)(tr) = U (tg), the result follows. =

A reading of the proof of the preceding theorem immediately gives the following
corollary.
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Corollary (A bound for the evaluation of distributions with compact support)
If 6 € &(R;F) and if ¢ € &(R;C), then there exists M € Ry, k € Z., and K € R
compact such that

10(¢)| < Msup{M¢pP(x) | jei1,...,k}, x € K}.

3.7.6 Some constructions with delta-signals

The distribution 6y and its derivatives are all examples of distributions with
compact support. In this section we study some particular features of these signals.
In Example 3.2.25 we considered a sequence of locally integrable signals that
converge in Z'(R;F) to 0p. In general, a delta-sequence is a sequence (f;)icz., of
locally integrable signals having the property that lim; . 05 = &, with the limit
being taken in &’(IR;F). We shall encounter many examples of delta-sequences,
and the following result will allow us to state that these indeed converge to 6.

Proposition (Characterisation of delta-sequences) Let (f)cz., be a sequence in
LE)C(IR; IF) with the following properties:
(i) there exists M, T € R, such that

[ mona<m, ez
[tI>T

(ii) for each 6 € (0,1) the sequences (fi|ls)icz., and (§|1_s)icz., converge uniformly to
zero, where Iy = [5,07 ] and 1_s = [-5, =67'];

(iii) for every 6 € R, the sequence
( f fi(t) dt)
ltl<6 i€Zs0

converges to 1.

Then (£)icz., is a delta-sequence.
Proof Let6 € (0,1). For ¢ € I(R; F) we have

051 = [ fiona
= | fimp©dt+ f

[H<o It

@) - p(0) dt + f OB dt
<6 =

Since ¢ has bounded derivatives there exists C € R, such that |¢(t) — $(0)| < |t|C for
t € R. Thus we have

L<6|ﬁ(t)(¢(t) - ¢(0))|dt < oM £l dt.

|t|<d
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Therefore we can choose 6 sufficiently small that

f OG0 - Ot < S, jeze,
If<5 3

by property (iii) of the sequence (f})jez.,- Since (¢f))jez., converges uniformly to zero
on Is and I_; due to ¢ having compact support, we have

im
]—)OO

F(Ho®dt = f

[t1>6

HmI (0 d = .

[t1>6

Thus we may choose N; € Z. sufficiently large that

€ .
f Il dt < 7, j = Ni.
=5 3
Now choose N, € Z. sufficiently large that
Ufj(t)dt— 1‘ <<
R 3
Taking N = max{N1, N>} we see that

<E€, j=N,

‘ fR fi()p(t) dt — $(0)
so giving the result. |

Let us give a list a sequences of sequences of signals that may be verified to
satisfy the hypotheses of this result, and such that they converge to 6p in &’ (IR; IF).

3.7.24 Examples (Delta-sequences)
1. A commonly used delta-sequence is given by (f;)cz., where

1 1
f](t):{]/ tE[O,].],

0, otherwise.

This trivially verifies the hypotheses of Proposition 3.7.23. In Figure 3.13
(top left) we show some signals in this sequence. Note that we have made this
sequence one comprised signals that vanish for positive times. One could do the
same with a sequence of signals that vanish for negative times by considering
instead the sequence (0" f})jez., (Figure 3.13, top right). What’s more, one could
instead centre each of the signals at zero, and still maintain a delta-sequence
(Figure 3.13, bottom).

The approximate identities from Example 4.7.7 below are all easily seen to define
delta-sequences. We present these here, and the reader can easily verify that the
hypotheses of Proposition 3.7.23 are satisfied by these signals, using the fact that
these sequences are approximate identities.
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£i(®)
(

L L L L L L n n n
-0.9 -0.4 0.1 0.6 11 -0.9 -0.4 0.1 0.6 1.1

-0.9 -0.4 0.1 0.6 1.1

Figure 3.13 Three examples of delta-sequences

2. Our next delta-sequence is denoted (P))jcz., and defined by

1

PO =15 pe

This sequence is examined as an approximate identity in Example 4.7.7-1. A
few terms of this sequence are shown in Figure 4.23 below, and there we can
see the anticipated behaviour of concentration of the signal near 0.

Note that since this sequence is infinitely differentiable, it follows from Corol-
lary 3.2.33 that the sequence (P;k)) jez., converges in Z'(R; F) to 68]().

3. The sequence of signals (Gq,j)jcz., given by
exp(—%

Gojt) =7 e
T

converges to oy in Z’(IR; FF) for every Q € R.,. This sequences is examined as
an approximate identity in Example 4.7.7-2. A few terms of this sequence are
shown in Figure 4.24 below, and there we can see the anticipated behaviour of
concentration of the signal near 0.

Note again that this sequence is infinitely differentiable, and so it follows from
Corollary 3.2.33 that the sequence (Gg?].) jez., converges in Z'(R; F) to 62)]‘).
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4. The sequence (Fj);cz., of signals defined by

sinz(njt)
Fy=) e [0
! j, t=0

can easily be shown to satisfy thee hypotheses of Proposition 3.7.23, and so
is a delta-sequence. This sequence is examined as an approximate identity in
Example 4.7.7-3. In Figure 4.25 below we show a few terms in this sequence.
Again, this is a sequence of infinitely differentiable signals, so the sequences of
its derivatives converge in &’(IR; FF) to the corresponding derivatives of 0o, as
prescribed by Corollary 3.2.33. o

Note that delta-sequences may be thought of as sequences of signals that blow
up at zero in just the right way, cf. Exercise 3.1.1. This idea leads to negative
characterisations of delta-sequences. One such is the following which will have
some consequences in Chapter 5.

3.7.25 Proposition (Characterisations of non-delta-sequences) Let (f)icz., be a se-
quence in LO(R; IF) with the following properties:
(i) there exists M, T € R.q such that

f fi(Hldt <M, j € Z;
[>T

(ii) for each 6 € (0,1) the sequences (fi|ls)icz., and (§|1_s)icz., converge uniformly to
zero, where Iy = [5,07 ' and 1_s = [-5, =671];
(iii) (Ifll2)jez., converges.

Then (f))icz., is not a delta-sequence.
Proof Asin the proof of Proposition 3.7.23 we have, forany 6 € (0, 1) and ¢ € Z(R; F),

lim | |fi(H(E)ldt = 0.

J=o0 Jig=6

By the Cauchy-Schwarz-Bunyakovsky inequality we have

172 172
(12 2
s( fm I dt) ( fm o) dt) ,

this holding for all 6 € R.o. Now let (6))jez., be a positive sequence converging to
zero. Then

| f 0w 60 dt + f F(p
R It<0; =

filh(t)dt

[t]<6

IA

FOo0 ] + f F(Op(0)di
<o 2o

172 12
(+)]2 2 .
[rra) ([ owral s [ isooera

IA
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Since (f})jez., converges in L%(R; F) it follows that

1/2
hm(f mmﬁm) < 0.
] N\J |t <6

Since ¢ is continuous it follows that

1/2
li Zd) =0.

Thus lim;_,, 6 f],(qb) = 0, so showing that lim; .., 6 fi () = 6o(¢p) only if ¢p(0) = 0. Thus
(fj)jez., is not a delta-sequence. |

Let us give an example that illustrates the difference between a sequence that is
a delta-sequence and one that is not.

3.7.26 Example (A non-delta-sequence) Define

fj:{\/j’ ]'E[O,%],

0, otherwise.

We then compute [|fill, = 1, so (||fjll2) jcz., converges. Clearly the sequence satisfies
all the conditions of Proposition 3.7.25, so isnot a delta-sequence. In Figure 3.14 we

15(t)

0 [ L L L L L L L L L L L L L L L L L L L L L L i
-0.9 -0.4 0.1 0.6 1.1

t

Figure 3.14 A sequence of signals that is not a delta-sequence

show some terms in this sequence. The idea is that they do not blow up sufficiently
fast relative to the rate at which their domain shrinks. A delta-sequence must
maintain this “balance” in just the right way. The reader may explore this further
in Exercise 3.7.6, also cf. Exercise 3.1.1. )

Now we shall show that the delta-signal and its derivatives are the only distri-
butions which have a single point as their support.
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3.7.27 Proposition (Characterisation of distributions with point support) If 0 €
D'(R;F) has the property that supp(0) = {to} then there exists ci,...,cm € F and
r,...,Im € Zsq such that

Proof Since 0 has compact support it has finite order k € Z. Then 0 = Q(I:rl) for

fe
fo € LD (R;F), or 6 = 9;’:2) for g € C'(R;F). Since supp(0) = {to}, O agrees with

loc
the zero distribution on (—oo, ty) and (tg, o). This means that on (—co, tg) and (tg, o)

the continuous signal ggp must be a polynomial of degree at most k + 1 (its derivative
of order k + 2 must vanish). Thus we can write, using the argument in the proof of
Theorem 3.7.21,

to 00
0@ = [ AOP0)dt + f Fe®P () dt,
—0 to

where f; and fr are polynomials of degree at most k + 1. Furthermore, since gg is
continuous we must have f;(ty) = fr(tg). Integrating by parts then gives 0(¢) as a
linear combination of ¢(t), pM(to), . .., p®(ty), thus giving the result. [

As a corollary to this we have the following (obvious) property of the delta-
signal, showing that indeed one can give the delta-signal a continuous signal as an
argument. This generalises Theorem 3.2.50 which says that the delta-signal can
take differentiable signals as an argument.

3.7.28 Corollary (Order of derivatives for argument of derivatives of delta-signal)
Let 6 € & (R;F) be a linear combination of 6y, 68), ... ,62:). If ¢1, 2 € E(R; F) satisfy

D(to) = p(to),j €10,1,..., K}, then O(cb1) = 6(¢ha).

Exercises

3.7.1 Show thatif ¢y, > € &(R; F) then ¢1¢, € &(R; F). Thus &(R; ) is an algebra.
3.7.2 Which of the following locally integrable signals defines a distribution in
&' (R; F)?
(@) f(t) = arctan(t).
(b)
3.7.3 Which of the following signals is in &(IR;F)? For signals not in &(R;F),
explain why they are not.

(@) f(t) = arctan(t).
(b)
3.7.4 Which of the following locally integrable signals defines a distribution in
&' (R;TF)?
(@) f(t) = arctan(t).
(b)

finish

finish

finish
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3.7.5 Show that, if p € Z(R;F) and 6 € Z’(R; F), then ¢ € &' (R; FF).
3.7.6 Let (fj)jcz., have the following properties:
1. there exists M, T € R, such that

f fOldE<M,  jeZ
[t|=T

2. for each 6 € (0,1) the sequences (fjlls)jcz., and (fill_s);cz., converge uni-
formly to zero, where Iy = [6,6'] and I_s = [-5,—07'];

3. (Ilfillh)jez., diverges.

Show that (f;)cz., is not a delta-sequence.
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Section 3.8

Ultradistributions

In this section we consider another class of distributions. This class is used in
defining the Fourier transform of a distribution in Section 6.5. The test functions
we use in this section might appear particularly unmotivated. However, the appro-
priate motivation will appear in Section 6.5 when we show that the test functions
considered here are the continuous-continuous Fourier transform of test functions
from Z(IR; FF).

Do | need to read this section? This section provides the prerequisite material
for defining the CCFT of a distribution in 6.5. Moreover, the connection between
ultradistributions and the CCFT is very tight. Indeed, in this section we use some of
the basic results from Section 6.1 regarding the properties of the CCFT. Therefore,
to understand some of the proofs in this section will require reading Section 6.1.
In terms of whether the present section is required reading, it should be read prior
to, and maybe immediately prior to, one’s reading of Section 6.5. o

3.8.1 The test signal space for ultradistributions

Let us begin by defining the collection of test signals for our new class of
distributions. Let us give the definition for the moment, and then turn to discussing
the various properties of these test signals.

Definition (Z (R;F)) Z(IR; F) denotes the set of signals ¢ for which there exists an
entire function a,: C — C such that
(i) ay(t +1i0) = ¢(t) forall t € R and
(i) there exists constants a € R,y and C; € Ry, k € Zy, such that, for each
k € Zso, we have |z°a4(z)| < Cre™™®! for all z € C. o

In the usual circumstances, we would at this point list a collection of signals
from Z(IR; F), but this list will be absent here. There is a reason for this. As we
shall see in Theorem 6.5.1, to produce such signals requires computing Fc ()
for ¢ € Z(R;C). Explicit computations of this type are not easily done, and
would in any case produce signals that are not so recognisable. Thus the reader
should content themselves with understanding Z (IR; C) simply as a collection of
test signals, some properties of which we enumerate above. Note that the same
comments apply to our previous collections of test signals Z/(RR; C), ¥ (R; C), and
& (R; C). While producing explicit examples of such signals helps us understand
the properties of the collection, the examples are not strictly necessary to apply the
theory of the associated distributions.

There is also a notion of convergence for test signals in Z(IR; IF), just as for all
classes of test signals we encountered previously.
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Definition (Convergence in Z'(R;F)) A sequence (¢))jcz., in Z (R;F) converges
to zero if

(i) there exists a € R,¢ and Cx € R., k € Zs, such that, for each j € Z,,, the

inequality
204, (2)] < Cre™®, ze(,
holds, and
(if) the sequence (44,)jez., converges uniformly to zero on any compact subset
KccC.
A sequence (¢))jez., in Z (R;F) converges to ¢ € Z(R; F) if (¢; — ¢)jcz., converges
to zero. °

Convergence in Z (IR; IF) leads to the definition of continuity for maps.

Definition (Continuous linear maps on Z'(R; IF)) A linear map L: Z(R;F) — F
is continuous if the sequence (L(¢));cz., of numbers converges to zero for every
sequence (¢)jez., of test signals converging to zero. o

Let us understand the relationship between Z (IR; IF) and the other spaces of test
signals. In the proof of the following result, we make use of Theorem 6.5.1 which
characterises Z (IR; [F) in terms of the continuous-continuous Fourier transform.

Proposition (Relationship of Z (R;F) with I (R;F) and #(R;F)) The following
statements hold:
() Z(R;F) NZ(R;F) = {0};
(il Z(R;F) € (R F).
Proof For the first assertion, let ¢ € I (R;F) N Z(R;F). This means that there is an
interval [a,b] C R for which ¢(t) = 0 for all ¢ € [a,b]. However, since a,, is entire, this
implies that a, = 0 by analytic continuation.
For the second assertion, since 4, is entire, clearly ¢ is infinitely differentiable.
Since Fcc(¢) € Z(R; F) by Theorem 6.5.1, the signal t +— tk%c(cp)(t) is also in Z(IR; IF)
for every k € Z.o. From Proposition 6.5.4 we deduce that ¢ € Z(R;F). From
property (ii) of Definition 3.8.1, taking z € R, we conclude that ¢ € & (RR; FF). [

Let us record some facts that further elucidate the relationship between Z (IR; C)
and #(R;C). Here again we make use of the continuous-continuous Fourier
transform to understand properties of Z (RR; IF).

Proposition (Further properties of Z (R;F) relative to #(R;F)) The following
statements hold:
(i) asequence (¢j)iez., converging to zero in Z (IR; IF) also converges to zero in #(R; IF);
(i) Z (R;F) is a dense subspace of ¥ (R;F).
Proof For the first assertion, note that by Theorem 6.5.6 that (Fcc(¢))) jez., converges

to zero in I (IR;F). This means that for each k € Z the sequence (pk%c(¢j))jez>0
converges to zero where p(t) = t. Following Proposition 6.5.4 we may then conclude
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that for each k € Z the sequence (qbg.k)) jez., converges to zero in Z (IR; IF). Now note
that convergence to zero in Z (IR; F) implies that for each k, m € Z>, we have

lim sup {|tm¢§.k>(t)| | te 1R} —0,
jooo

so giving convergence to zero in ¥ (R; IF).
Let ¢ € #(IR;F) and by Theorem 3.11.3(i) choose a sequence (¢})jez., in Z(R; F)

converging to %cc(¢). The sequence (?cc(lp ))jez., is then a sequence in Z (IR; IF) that
converges to ¢ by continuity of Fc. |

3.8.2 Definition of ultradistributions

Now we consider the set of distributions defined using Z (IR; IF) as test signals.

3.8.6 Definition (Ultradistribution) An ultradistribution is a continuous linear map
from Z (IR;F) to [F. The set of ultradistributions is denoted Z’(RR; [F). .

Ultradistributions have defined on them the operations usual for distributions.

We list some of these.

1.

2.

Ultradistributions can be added and multiplied by complex scalars to give them
a [F-vector space structure.

If 6 € Z’(IR; F) then one can define 7,0 € Z'(R;F) and 0°0 € Z'(R; F) in the
same manner as these are defined for distributions.

The derivative of an ultradistribution 0 is defined by 0’(¢) = —0(¢’). To make
sense of this, one must show that the set Z'(IR; [F) is closed under differentiation,
but this is easy to do.

Let F € {R,C}. Let f: C — C be an entire function satisfying
1X(2)] < Ce™ (1 + [[)

for some C,a € R,y and k € Z. Define x(t) = f(t +i0), supposing that y is [F-
valued. One can show easily that, if ¢ € Z'(IR; F), then x¢ € Z (R; F). Therefore,
for such functions x and for 0 € Z’'(IR;F) one can define x0 € Z'(R;F) by
(X0)(@) = O(xP).

We now turn to recording some of the basic properties of ultradistributions.

3.8.7 Proposition (Tempered distributions are ultradistributions) #’'(R;F) C
Z'(R; F).

Proof Since Z(R;F) € #(R;FF) by Proposition 3.8.4 it follows that 6(¢) is well-
defined for 6 € &’(R;F) and ¢ € Z(R;F). Continuity of 6 on Z(R; F) follows from
Proposition 3.8.5. |

This then gives a whole collection of ultradistributions. For instance, signals of

slow growth define ultradistributions. One might hope that the set of distributions
is contained in the set of ultradistributions. This is not the case, however, as the
following counterexample shows.

formalise this

make sense of this for
aeC
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3.8.8 Examples (Ultradistributions)
1. Define f € L)(R;R) by f(t) = ”. We claim that 0; € Z'(R;R) but that 0; ¢
Z'(R;R). That f € Z'(R; R) follows from Proposition 3.2.12. However, since
Z(R;R) € F(R;R), the rapid decay conditions of test signals from ¥ (R; R)

ensure that the integral
f e’ o(t) dt
R

does not exist for every ¢ € Z(IR;R), and so f is not an ultradistribution.

2. Now let us take 7 € R \ {0} and consider 7} 6, which we define as an ultradistri-
bution by
(73,6; P) = ay(it),
where a, € H(C; C) is as in Definition 3.8.1. We claim that 7] 6 does not define
a distribution. If it did, then it would have to be the case that 7} 6 = Hc(6) for
some 0 € Z'(R;C). Moreover, by Example 6.5.10, we must have 0 = Og,_.
Therefore, for ¢ € Z(R; C), we must have

(130, @) = (Oe_y,.; Fec(P))-
However, since Fcc(¢) € Z(R;C) € F(R;C), the right-hand side of this ex-
pression is not defined. Thus 7} _d, is not a distribution. o
3.8.3 Properties of ultradistributions

Ultradistributions have defined with them a notion of convergence in the usual
manner.

3.8.9 Definition (Convergence in Z”’(RR; IF)) A sequence (0));cz in Z'(R; F)
(i) isa Cauchy sequenceif (0;(¢}));cz.,isa Cauchy sequence forevery ¢ € Z(R; F),

and
(i) converges to an ultradistribution 0 if, for every ¢ € Z(R;F), (0i(}))icz.,
converges to 0(¢). °

One then has the hoped for relationship between Cauchy sequences and con-
vergent sequences.

3.8.10 Theorem (Cauchy sequences in Z'(R;IF) converge) A sequence (0))icz., in
Z'(R; F) converges to some 6 € Z'(IR; F) if and only if it is Cauchy.
Proof This can be proved in the same manner as Theorem 3.2.22. We shall give a
proof that relies on the relationship of Z”(IR; F) to 2’(IR; F) via the CCFT, as described
in Section 6.5.
Let (0))jez., be a Cauchy sequence in Z’(RR;F). Note that, for ¢ € Z(R;[F), we
have

(F cc(0)); 0 = (0j; Fec ().
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Thus, we can immediately conclude that (% cc(0 ))jez., is a Cauchy sequence in
2'(R; F). Therefore, by Theorem 3.2.22, it converges, say to p € Z’(IR; F). By continu-
ity of cc as a mapping from Z'(R; F) to Z’(R; F) (Theorem 6.5.9), we can conclude
that (0) jez., converges to Fcc(p). [

With this notion of convergence in mind, we state the following result, giving
an analogue of Taylor’s Theorem for ultradistributions.

3.8.11 Theorem (Taylor’s Theorem for ultradistributions) If 0 € Z'(R;F) and a € F
then o
a .
0=V 290
v,0=)" ; 0l
j=0

Proof Let ¢ € Z and note that since a, is entire we may write

%c[ (—_“)] qb(j)] (t) = (_j—?)](Znit)j\%C@)(t)/
O '

j=0

using Proposition 6.5.5. Since %c(¢) has compact support it follows that this series
will converge in Z(R;F) to e 2" Fc(¢p) = Fce(ti@) in the limit as n — oco. By
Theorem 6.5.6 this means that

-G

converges in Z (IR;F) as n — oco. The result now follows by continuity of %c and the
equality 7 ,0(¢) = 0(1;¢). |

It might be helpful to think of “7_,0(t) = 0(t + a),” noting that this notation is
something we are trying to avoid. This makes the relationship to Taylor’s Theorem
more transparent.

As with the test signals Z'(IR; F) we did not invest much effort in enumerating
explicit examples of ultradistributions. While it is true that tempered distributions
are ultradistributions, there are ultradistributions that are not tempered. However,
the best way to think of ultradistributions as being those objects which one gets
after applying the continuous-continuous Fourier transform to distributions. This
is what we do in Section 6.5.

3.8.4 Some deeper properties of ultradistributions

In Theorem 3.2.45 we saw that distributions are locally finite-order derivatives
of locally integrable signals. In Section 6.5 we shall show that ultradistributions
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arise naturally as Fourier transforms of distributions. One may anticipate that the
structure of distributions, combined with the Fourier transform, lead to structural
properties for ultradistributions. In this section we shall explore this connection.
We shall make free use of properties of the CCFT discussed in Chapter 6.

We recall from Definition 3.2.47 that the order of 6 € &'(R;F) is the small-
est nonnegative integer k for which there exists a signal f € L{(l))c(lR; F) satisfying
0 = 9?“1), if such a k exists. Let us denote by Z/,(R;F) the set of finite-order
distributions.

3.8.12 Definition (Finite-order ultradistribution) An ultradistribution 6 € Z'(IR; F) is a
finite-order ultradistribution if 0 = Fcc(0) € Z,(R; F). We denote by Zpe:(R; F)
the set of finite-order ultradistributions. °

We first establish a technical lemma.

3.8.13 Lemma (Entire functions lower bounded by a locally bounded function) If
f: R — Cis locally bounded as in Definition 1I-1.3.30, then there exists an entire function
@ € H(C; C) with no zeros and satisfying |D(t)| > |f(t)| for all t € R.
Proof Define g: R>9 — C by

(s) = sup{lf(OI | [t <s}, s=0,
sup{lf() | || < -s}, s<O.

It then suffices to show that there exists an entire function ® € H(C; C) with no zeros
and satisfying |D(s)| > g(s) for s € Rxo.
To this end, define

g'(s) = supflog(1 + [g(t)]) | t €[0,s]}, s € Ryo.

Note that ¢* is nonnegative-valued and nondecreasing. Let (4))jez,, and (b});ez., be
sequences in R satisfying

1. a; < aj+1 and b]' < b]'+1, ] eZ,

2. there exists a € (1, 00) such that Z—j =aqa,j€”Z,and

3. lim]-_m b] = 00.

For each j € Z., let k; € Z be such that

aj

ki
(b_]) Z g*(aj+1)/

radius of convergence of and suppose, without loss of generality, thatk; < kj;1, j € Z-¢. By and sincelim; o, b; =
complex power series o0, the power series
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has an infinite radius of convergence. Then define

00 k;
ww:gwo+2xg),
=1

and note that x — W(x) is nonnegative-valued and increasing for x € R>g9. Moreover,
for x € [aj,aj11], we have

a;\ki
W(x) > W(a)) > (b—j) > ¢'(aj+1) 2 g (x) > log(1 + g(x)).
Now, if we take ®(z) = e¥@, then we have, for x € Rxy,
D(x) = eT™ > 1+ g(x) > g(x).
Since @ has no zeros, the lemma is proved. u
Next let us introduce some notation which will be useful in expressing our
structural result. Let a € H(C; C) be entire and, by , write
a(z)=) az/, zeC.
j=0
Associated with a, we propose to define D,: Z(R;C) - Z(R;C) by
oo 1 j .
= — ) a0
D) = Y (5] 970,

Let us prove a useful property of the mapping D,.
3.8.14 Lemma (An infinite-order differential operator on Z (R; C)) For « € H(C; C), D,
is a continuous linear map from Z (R; C) to Z (R; C).
Proof For ¢ € Z(R;C), let ¢ € D (R;C) be such that ¢ = Fc(¢). Then
¢m=f@mﬁﬂt
R

and differentiating under the integral sign (which is valid since ¢ has compact support),

PV (v) = 2mi)/ f Hpter™ dt,  je Zso.
R

Therefore,

3 L j ' - j 2 miv
;(ﬁ) ajpV(v) = ]; fR ti(t)e?™ v dt
= f[i tj}{b(t)eznmdt
R (%3

= f a(t +i0)p(He®™ dt,
R

taylor
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using the Dominated Convergence Theorem which is valid since ¢ has compact sup-
port. This shows that

Da($) = F cclad), (3.16)

and this shows that D, has the desired properties since ¢ — a¢ is continuous by
Example 3.2.11-2 and since ¥ cc is continuous by Theorem 6.5.6. [ |

We can now characterise finite-order ultradistributions. In the statement of the
result we make use of the following variation of D,:

[o0]

Da(@)(v) = Z (—%)j a;p ().

=0
We note that D, is “dual” to D, in the sense that

(Dal@); ) = (¢; Dal®))),
for ¢, € Z(R; C).

3.8.15 Theorem (Characterisation of finite-order ultradistributions) If 0 € Z,..(R; C),
then there exist a € H(C; C) and f € C)(R; C) such that

k
Z e (( ) (2 plea)

Proof For 6 € Zper(R; C), let 6 = F cc(6) € Dper(RR; €). Then, for ¢ € Z(R; C), denote
q?) = Foc(9) € Z(R;C). By Theorem 3.2.45 we have f € CO(R;C) and k € Zso such
that

0(¢) = 6(3) = (-1 f FOBO() di

By Lemma 3.8.13, let ® € H(C;C) be an entire function without zeros for which
t — f(t)/®(t) is bounded on R. Thus, if a(z) = (1 + z%)®(z), a is an entire function such
that

f®
a(h)

is integrable. Define py: R — R by pi(v) = v*. By a double induction, one can prove
that

- ga(t) =

d—j( ¢ ())—Zk‘ . i(j—=1)---(j = WU D)
3N =2 |, )il j— DD ).

1=0
Let us also note that -
a2y =Y i =1 (= Dayz™,
=0

¥
]
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with the convention that a(l) 0 for I > j. Using this we compute

0() = fR 2 O(=Dkad
_ fR Fec(g) )1\ F cclad®)w) dv

= fR Foc(a)W)(—1) Da((—2mi)* prep)(v) dv

- f Fec(ga)v)(2mi)k (L)ja-( ¢ | (v)dv
" ccl8a 27 ]Pk

k

(ﬁ) a]Z( )](j— 1) (j = DD w) | dv

1=0
k 21
(z) . IJZ.(Z_) iG—1)- (= Da;pV D) | dv
k i |
Z‘ (27111) a§l)¢(]_l)(v)] dv
5 (k
- f]R Z (l)(Zﬂiv)l%C(ga)(v)Da(kl) (P)(v)dv
1=0

k
= Z <5a(kl) ((?)((2ﬂi)lpz%c(ga)));¢> ’
1=0

also using Fourier reciprocity (Proposition 6.1.9), (3.16), and Proposition 6.1.12. The
result follows by taking f = Fcc(ga)- |

- f Fec(8a)(v)(2mi)
R

EM» 1M8 Z';l\’ls

- fIR Fec(8a)(v)(2mi)

f Fec(ga)w)@mi)

/—\

The result can be read as follows: a finite-order ultradistribution is a finite sum
of infinite-order differential operators applied to a bounded continuous function
as distributional derivatives.

Exercises
3.8.1
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Section 3.9

Periodic distributions

The next class of distributions we consider are those that are periodic. The
development proceeds much as has been the case in the development of the sets
2'(R;F), #'(R; F), and &’ (R; FF) of generalised signals.

Do | need to read this section? The material in this section is important in the
development of the continuous-discrete Fourier transform of Chapter 5. In partic-
ular, if the reader is interested in understanding in a complete way the relationships
between the four Fourier transforms we present, then the material in this section
is important. °

3.9.1 Periodic test signals

Let us get straight to it.

Definition (Periodic test signal) A T-periodic test signal is a signal : R — F
with the properties

(i) ¥ is infinitely differentiable and
(i) Yt +T)=1(t) forallt € R.
The number T is the period for 1, and the set of periodic test signals with period T

is denoted Zer,7(IR; F). °
Remark (Z,er,7(R; IF) is a vector space) One can easily verify that Zpe, 7(IR; F) is
a subspace of the F-vector space FX. o

Let us consider some examples of periodic test signals.

Examples (Periodic test signals)

1. Harmonic signals, as discussed in Section 1.1.6, are certainly periodic test sig-
nals. Thus the signals t - sin(2nnt), t - cos(2nnt), n € Z, are R-valued

T-periodic test signals, and the signals t > e™"1, n € Z, are C-valued T-periodic
test signals.

2. If ¢ € Z(R; F) then we may construct from ¢ a natural T-periodic test signal by

per(@)(t) = Y ¢(t — jT). (3.17)

jeZ

Note that since ¢ has compact support, for each fixed t the sum in (3.17) is
actually finite.
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3. There is a particularly interesting collection of periodic test signals of the sort
described above. A test signal v € I(R; F) is T-unitary if

per(v)(t) =1

for each t € R. The set of T-unitary signals is denoted %r(R;F). This way
of constructing periodic signals from aperiodic signals can be carried out in a
general setting, and this is done in Section 8.1.2.

The prototypical unitary test signal is

1 T TZ
o L R e R

0, otherwise,

T T2
c= [) exp(—T(T_ T)) dr.

In Figure 3.15 we plot vr. To check that this test signal is unitary we first note

where

Figure 3.15 The unitary test signal vr for T =1

that it is indeed infinitely differentiable. It is obviously differentiable away from
t = 0 by virtue of the same arguments by which A is infinitely differentiable.
At t = 0 one can check that the value of the signal is 1, and that all derivatives
from the left and right are zero, cf. Example |-3.7.28—-2. This shows that vr is
infinitely differentiable. We also note that the sum

Z vr(t — nT)

nez.
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will, for a fixed t, be comprised of at most two summands. Indeed, if t €
[jT,(j + 1)T] then

Y vr(t = nT) = vr(t = T) + vr(t - (j + )T

nez.
(L)
= - exp|— dt
c (flt‘—]'Tl p (T — 1)
T )
+ exp|— drt].
ﬁ—(]’ﬂ)Tl p( (T - 1)

Note that the integrand exp (—T(g—:» is positive and symmetric about Z. Also

note that the lower limits on the above two integrals are symmetric about 1.

Therefore
T [t=iT]
)e= [ evlm)
exp|— dt = exp|— dr.

ﬁ—(mm P ( (T — 1) 0 P (T - 1)

This then gives
1 (7 T2
t—nT) = - - =1
évT( nT) cj; exp( T(T—T)) drt ,

as desired. °

As usual, it is important to specify a notion of convergence for the set of periodic
test signals.

3.9.4 Definition (Convergence in Qe 1(R; IF)) A sequence (1)) jez., in Zper, 7(R; F) con-
verges to zero if, for each r € Z;,, the sequence (1,b§.r))jez>0 converges to zero uni-
formly. A sequence (Y))jcz., in Zper,7(IR;F) converges to ¢ € Zper 7(IR;F) if the
sequence (1; — V) jez., converges to zero. o

Note that there are none of the domain issues with convergence in Ze;, 1(IR; IF) as
arise with I (R; F), ¥ (R; F), and & (IR; F). This is because, by virtue of periodicity,

a convergent sequence in Qper,T(IR; IF) can be understood by its behaviour on the

compact set [0, T].

3.9.5 Examples (Convergence in Qe 1(R; IF))

1. For k € Z., the sequence (= sin(2mn%)),ez,, does not converge to zero in
Doer7(R;F).  The reason for this is that j—g% sin(27m%) will be of the form
+(Z) sin(2nnt) or £(3)* cos(2mnt) so that the sequence (3—;% SINR1NE))nez.,
does not converge uniformly to zero.

2. The sequence (e™ sin(27m%))nez>0 does converge to zero in Zpe, 7(IR; IF) since all
derivatives will converge to zero uniformly in [0, T]. o

One also defines the notion of continuity of maps with domain Ze;, r(IR; IF).
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Definition (Continuous linear maps on e 1(R;F)) A linear map
L: Zier7(R;F) — [F is continuous if the sequence (L(1}))cz., converges to zero
for every sequence (1) ;cz., that converges to zero in Zpe 7(IR; IF). o

This seems rather like everything that has preceded it thus far. However, there
is some useful additional structure for Ze, r(IR; IF) that we have not yet revealed.

Proposition (Periodic test signals come from test signals) If | € Y., 1(R; ),
then there exists ¢ € D (IR;F) such that { = per(¢).

Proof Letv € %r(R;F). Note that v € Z(IR; F) since v has compact support. We also
have

Y (= nTo(t —nT) = (t) Y v(t = nT) = P(b),

nez. nez.

by periodicity of ¢ and since v is unitary. The result therefore follows by taking ¢ = yv.
|

3.9.2 Definition of periodic distributions

Let us begin with a preliminary construction. Recall from Example 1.1.6-1
the definition of 7,,: R — R by 74 (t) = t — t; and from Example 1.1.13—1 the
notation T f(t) = f o 7, (t) = f(t — to) for f: R — F. If 6 € Z’(R; F) then we define
7,0 € Z'(R; ) by 7; 0(9) = (7", $). In particular, if 0 = 0; for f € L\)(IR; F) then

7, 07(P) = \f]l;f(t)(p(t + to) dt = fﬂ;f(t — to)p(t) dt = QT;Of(({)).

With this as motivation, it makes sense to say that 0 € &’(IR; F) is, by definition,

T-periodic if 7.0 = 0. Note that there is no need for periodic test signals in this

definition! Let us, therefore, make a definition using @per,T(JR; IF), and then show

that it agrees with the natural definition we just gave in the absence of Zp.;,r(R; IF).
Our definition is as follows.

Definition (Periodic distribution) A T-periodic distribution is a continuous lin-
ear map from Qper,T(IR; F) to F. The set of T-periodic distributions is denoted
Qéer,T(]R; IF). .

Remark (géerT(IR; IF) is a vector space) It is easy to check that géeﬂ(]R; F)is a
subspace of Z'(R; F). The inclusion is proved below in Theorem 3.9.10, and the
inheritance of the vector space structure is then readily verified.

Now we can show that this definition of géer r(R; IF) agrees with our alternate
characterisation above.
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3.9.10 Theorem (Periodic distributions are...periodic distributions) There exists a

natural isomorphism from géer,T(lR? IF) to the subspace

ZUR;F) = {6 € Z'(R; F) | 130 = 6}

of Z"(R; FF).

Proof We shall construct the inverse of the stated isomorphism. Let v € Z7(IR; F) and
define a map t,: Z7(R; F) = Zper, T(R; F) by

w(0) (@) = 6(vy), 0 € 9%(]12/ F), ¢ e gper,T(]R? IF).
For 1, to make sense we must show that 1, (6) is continuous. Let (¢)})jez., be a sequence
converging to zero in Zper,7(IR;IF). It is then clear that (VY))jez., converges to zero
in Z(R;F) since supp(vy;) = supp(v), j € Zso. We next claim that ¢, is actually
independent of v. That is to say, if v1, v2 € Zr(R; F) then we have t,, = 1,,. To see this,
we first note that, if 0 € 9%(11{; F), v € Zr(R; F), and ¢ € Z(R; F), then

0(¢) = 6 [Z T;Tucp) =Y 0(t)rv9) = [Z T;Tve] @)

nez. nez nez.
Therefore,

O(v1y) = [Z T;T029] (ny) = {Z(T;TUZ)Ule] W)

nez. nez.

= [Z 0T nT(vle)) (W) = [Z T;Tvle) (V21) = O(va)).

nez nez
This then establishes a natural linear map, which we denote simply by ¢, from Z/(R; IF)
to 9};& 7(R; IF). We now show that ¢ is an isomorphism.
First let us show that ¢ is surjective. Let 0 € S%éer (R, F). For ¢ € Z(R;FF) define
0 € Z(R;F) by 0(¢) = O(perp(¢)). We claim that 0 € Z1(R; F). This is clear since for
¢ € Z(R; F) we have

Tr0(¢) = 0(t7¢) = O(7} perr()) = O(perr($)) = O(¢)-
We also claim that (6) = 6. Let v € %r(IR; F). From the proof of Proposition 3.9.7 note
that for any ¢ € Zper, 7(IR; F) we may write 1) = per(¢) where ¢ = vip. We then have

(O)() = O(vy) = O(¢) = O(perr($)) = O(Y),
as desired, and so showing that ¢ is surjective.
We lastly show that ( is injective. Suppose that ((0) = 0. Then ¢(0)(y) = 0 for every
Y € Zhper, 7(IR; F). In particular, (0)(per(¢)) = 0 for every ¢ € Z(R;F), meaning that
0(¢p) = 0 for every ¢ € I(IR;F). Thus 0 = 0, so showing injectivity of . |

Although the proof of the theorem is a little long-winded, it is elementary in
that there are no difficult ideas to digest. But more importantly, it allows us to
think of elements of QZéerlT(lR; IF) as distributions in the usual sense, and we shall
subsequently do this without notice in the sequel. For this reason it is worth

reproducing the following corollary that explicitly describes the isomorphism of
Theorem 3.9.10.
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3.9.11 Corollary (Explicit characterisation of periodic distributions) For 6 € &'(R; F)
and T € R, the following are equivalent:

(i) 7.0 =0;
(ii) there exists a unique 0 € géer,T(IR; IF) such that, for all v € %r(R; F),

W) = 0(vyY), Y€ Zoerr(R;F);

(iii) there exists a unique 6 € gp;er,T(]R; IF) such that

6(¢) = 0 [Z T;Tq;], ¢ € Z(R; F).

j€Z

In contrast to the statement of the corollary, we shall not distinguish between
a distribution 6 € Z/(R;F) that is T periodic and the corresponding periodic
distribution. We will accept the notational confusion of this, and we note that
the confusion is resolved by knowing what is the argument of 6. The corollary
establishes the rule for going from one interpretation of 9 to the other.

With these characterisations of T-periodic distributions, let us look at some
examples.

3.9.12 Examples (Periodic distributions)
1. Let f € LD r(R;IF). Note that as an element in Z(IR; IF) we have 05 € Z/(IR; IF).

per,
Therefore, we may think of 0y € géer,T(]R; F). Using Corollary 3.9.11 let us

compute 0¢(1) for 1 € Dper, r(R; IF). For an arbitrary v € %r(R;F) and a € R, we
have

0,(y) = fR FOubpn dt

+(n+1)T
=Y [ oo
nezZ V4

+nT

+T
= Z f F(t +nTyv(t + nT)Y(t + nT) dt
nezZ v4
+T
- f FOY vl = nDyyp(t)dt
a nez

+T
= f Fleypo dt.

Thus we determine 0¢(1) is computed by integrating over any interval of length
Tin R.
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2. The delta-comb with period T is the T-periodic distribution defined by

= Z S

nez.

Note that this is well-defined as an element of &'(IR; F), and that it is clearly in
9%(][(; IF). To compute how Mr acts on an element of Qpeﬂ(]R; IF) we again use
Corollary 3.9.11 and compute, for ¢ € Zper, 7(R; IF),

ey () =thr () = ) Sur(v) = Y vET)P(T) = P(0) ) v(nT) = Y(0).

nez. nez. nez.

This is analogous to the preceding example if one properly understands the
symbols. That is to say, suppose that a € [(m — 1)T, mT]. Then we can write

a+T +T
e () = f e (Ey(t) dt = f Y dur(By () dt = p(mT) = (0).

nez

These sorts of manipulations are perfectly acceptable, provided one under-
stands what they actually mean!

3. We claim that, for k € Z.,, rhg’f’ W) = (=1 p®(0) for every ¥ € e r(IR; ).
Indeed,

(P ) = (DK ) ®) = (<1)F Y P)IGT)

j€zZ

k
=YY (’l‘)v“kﬁw(k-lkﬁ)

j€Z 1=0
k

= (=1 Y 90) Y vOGT) = (-1)"¢P(0),

1=0 jez.

using the fact that
Y ut-jH=1, teR .

jEZ
3.9.3 Properties of periodic distributions

In this section we record some of the basic facts about distributions with compact
support. Many of these follow, directly or with little effort, from their counterparts
for distributions.

Since ¥ 1; er,T(IR,‘ F) € Z'(R; F), we have, in principle, a notion of convergence
inherited from Z(R;F). However, let us give a definition of convergence using
9’per,T(IR; IF)
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3.9.13 Definition (Convergence in 9;6”(]12; IF)) A sequence (0))jez., in ! (R;F) is

per,

() a Cauchy sequence if (0,(}))icz., is a Cauchy sequence for every 1) €
Der,7(R; F), and

(i) converges to a distribution 6 with compact support if for every
Der 7(R; IF), the sequence of numbers (6,())jez., converges to O(1).

e M

Now we relate this notion of convergence to that inherited from Z'(R; FF).

3.9.14 Theorem (Convergence in SJZ';erT(]R; F) If (0)jcz., is a sequence in D(R;F) C
D'(R; F) that converges to O € @"(]R; IF), then 60 € Z/(IR;IF). Furthermore, such a
sequence in Z1(IR; IF) converges in Z'(IR; IF) if and only if the corresponding sequence in
@I;er,T(]R; IF) determined by Theorem 3.9.10 converges in Qéer,T(lR; IF).

In particular, a sequence (0;)cz., in QéerrT(lR; IF) is a Cauchy sequence if and only if it
converges.
Proof For the first statement we need to show that 77.60 = 0. We have

T0(9) = 0" 1) = lim 0,(” 1) = lim 70,(9) = lim 6(¢) = 6(0),

this holding for any ¢ € Z(R; F).
For the second assertion, let ) € Zpher 7(IR;F), assuming that i = per;(¢) for
¢ € I(R;F). We then have

lim 1(6)(y) = lim 6(pery(9)) = B(pery(9)) = O)Y),

thus giving convergence in @éer,T(]R; IF) from convergence in Z'(R; F). If (1(6)))jez.,
converges in @};er (R;F) and if ¢ € I (R;F) then we have

lim 6(6) = lim 1(6))(perr(¥)) = (6)(®) = 6(¢),

thus showing convergence in &’ (IR; FF).

The final assertion will follow if we can show that a sequence in 91; er,T(IR; IF) is
Cauchy if and only if the corresponding sequence in Z/(IR; IF) is Cauchy. This follows
from the same sort of arguments as used in the preceding part of the proof, and we
leave the trivial working out of this to the reader. |

Let us give the analogue for distributions with compact support of the fact that
locally integrable signals are distributions. We recall from Definition [11-2.9.4 the
notion of the support of a measurable signal.

3.9.15 Proposition (Periodic integrable signals are periodic distributions) If f: R —
IF is a T-periodic locally integrable signal then Oy € glger,T(IR; IF). Moreover, if f;,f,: R —
IF are periodic locally integrable signals for which O, = 0y,, then f,(t) = f,(t) for almost
every t € R.
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Proof From Proposition 3.2.12 we know that 6y € Z”(IR; IF). Thus we need only show
that 6 ris T-periodic. This, however, is elementary. For ¢ € gper,T(IR; IF) we have

T*Tef = QT*Tf = Qf,

using the computation preceding Definition 3.9.8.
The last assertion follows the similar assertion in Proposition 3.2.12. |

Periodic signals also show up to give a natural class of signals which can be
multiply periodic distributions.

3.9.16 Proposition (Periodic distributions can be multiplied by smooth periodic sig-
nals) Let 0 € QéerrT(lR; F) and let Yo: R — T be a T-periodic infinitely differentiable
signal. Then the map

gper,T(]R; ]F) > 17b = G(V’Dol,l)) e F
defines an element of Z, +(IR;IF).
Proof Linearity of the map is clear. To prove continuity, let ({;) ez, be a sequence in
Dper T(R; F) converging to zero. We claim that (Y01}) jez., is also a sequence converging
to zero in Pper, 7(R; IF).

It is clear that Y1) € Doer, 7(R; F) for each j € Zo, so we need only show that
(Yoy}) jez., converges to zero in Zper, 7(IR; IF). By Proposition I-3.2.11 the signal (o))"
is a sum of products formed by signals that are bounded on with signals that converge
uniformly to zero on K. Thus ((¢o¢ ],)(r)) jez., converges uniformly to zero, giving the
desired conclusion.

Thus the result follows since

lim 6(ipop) = 0
j—ooo
for every sequence (1) jez., converging to zero in Zper, 7(IR; IF). ]
The notions of regular, singular, support, and singular support are applied to
.E’ZéerlT(]R; FF) by restriction from 2’ (R; F).
One can differentiate periodic distributions as they are distributions. It turns
out that the derivative is again a periodic distribution.

3.9.17 Proposition (The derivative of a periodic distribution is a periodic distribu-
tion) If 0 € Qéeﬂ(]R; IF) then 0’ € QéerlT(lR; IF). Moreover, for { € Zpert(R;F), we
have 0'(1) = =0(").

Proof Let ¢ € Z(R;F). Then
0’ (¢) = 6'(1_19) = —0((1_19)) = —6(7_1¢") = —176(¢) = -60(§") = 0 (),
showing that 0’ € &’ (R F).

per, T
Now let ¢ € Zper,7(R; F) and v € Zr(R; F). Compute

0'(Y) = 0'(vy) = —O((vy)')

= - G(Z ﬁﬂmp)’] =-0"),

jEZ
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as desired. [ ]

One can talk about periodic distributions of finite order, and periodic distribu-
tions are always locally of finite order by virtue of their being distributions. We
shall see in Theorem 3.9.19 that even more is true for distributions with compact
support.

3.9.4 Some deeper properties of periodic distributions

We have already shown that there is a natural way the consider a periodic
distribution as a regular distribution. Next we verify that periodic distributions
are of slow growth.

3.9.18 Theorem (Periodic distributions are tempered distributions) < (IR;IF), as a
subspace of D'(R; F), is a subspace of #'(R; IF).
Proof Take6 € gl;:er,T(]R; F) and regard this as an element of ' (R; IF). Let ¢ € Z(R; F)
have the following properties:
1. supp(9) € (0, T);
2. there is a neighbourhood of 1 on which ¢ takes the value 1;
3. ¢t)e[0,1]forallteR.

Then define ¢ € Zper,7(IR; F) to be the T-periodic extension of ¢p. We can then write
0 = Y0 + (1 - )0, and we shall show that each summand is in ’(R; F). If 6; = ¢0
and 0, = (1 — ¢)0 then 01, 0, € &' (R; F). Furthermore,

0=Y Tg01+ ) TyOn.
nez. nez

The result will then follow if we can show that, for any distribution g with compact
support, it follows that the sequence
Z TurP

[n|<N

of partial sums converges in #’(R;F). By Theorem 3.7.19, this will in turn follow if
we can show that, for f € Cgpt(lR; IF), the sequence

2, Ty

[n|<N

of partial sums converges in &’ (IR; F) for r € Z>(. Solet y € S (R;F), f € Cgpt(]R; IF),
and r € Zso. For convenience, and without loss of generality, we suppose that
supp(f) = [0,a] for some a € Rs. Since y € F#(R; F) we have

@)
(Bl < T+ )
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for some M € R.o. We may choose N sufficiently large that if t € supp(t},f) then
(1+ #?)7! < e. In this case we have

Milfls _ Milflwe __ Milfllue
Q+2)3 7 1+2)? 7 Q+mWDHA + 1)

(T O (B)] <

foralln > N and t € R. Therefore it follows that by taking N sufficiently large we have

PRI

Y [@aenonods ¥, [rapodiol

[n|>=N [n|>N |Vl|>N
Ml |
< dt = —M|| [|looTTE e ——
||Z;\]fn; aromparm -2 HZ;V 5 (TP

Since the series in the preceding expression converges, this shows that by taking N
sufficiently large we can make
DI

[n|>N

as small as we like, which shows that }.,cz T, G;r) converges in &’(IR; F), so giving

the result. []

The following result now follows easily from Theorem 3.3.23, and provides the
useful property of finite order for periodic generalised signals.

3.9.19 Theorem (Periodic distributions are finite-order derivatives of periodic sig-
nals) If 6 € & (R;F) then there exists r € Zo and a T-periodic signal f € C(R;TF)

such that 6(y) = Qf)(gb) for every ¥ € Dper 1(IR; FF).
Proof From the proof of Theorem 3.9.18 we have

_ * *
0= Tig61+) Ti0s,
nez nez

for distributions 01,0, € &’ (IR;F) with support in (0, T). Using Theorem 3.7.19 we

may then write
_ ]k )
6 Z ij i

for continuous signals f]',k],, j€{1,2},kj € {1, ..., mj}, with compact support. Note that

- G(Vj,kj)_ (jk;)

w0 = O 5 ne”,je{l,2}, kjefl,...,mj.

Thus

2 mj ]k) m )
ZZZfZ Turfik; _2681’]
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where m = my +my, g1, ..., gm are the T-periodic continuous signals given by

gi= ZHEZT;Tfl,j/ je {1,...,1’}11},
] .
ZneZ T;TfZ,m1+j/ ] € {mi+1,...,m +mp},

and where
ri= rl,j/ j€{1/~~~1ml}l
rom+j, J €M1 +1,...,my+mal.

Now we claim that for any T-periodic signal f and r € Z there exists a T-periodic
solution g to the equation ¢! = f. This can be shown inductively, and the essential
idea is contained in the argument when r = 1. In this case we define

t T
s0= [ o= [ o

t+T t t+T
git+T) = f(; f(r)dr = L f(r)dr +jt‘ f(r)dr = g(t),

and we note that

so showing that g is T-periodic. We then take r = max{ry, ..., 7u,+m,} and then define
hj, j €{1,...,m}, to be T-periodic signals satisfying hg.r) = gﬁ.r" ) This then gives 0 = 9](;)
where h = Y7L, h;. n

We close this result with a final structural characterisation of periodic distri-
butions. This one relies on convolution that we will define in Section 4.4.1 for
distributions.

3.9.20 Proposition (Periodic distributions as convolutions with the delta-comb) If
0 € &' (R;IF), then there exists Oy € &' (IR; F) such that 0 = Og* Mr.

per,
Proof Letv € Zr(R; F) and define 6y = v0, noting that 6y € &' (IR; IF) by Exercise 3.7.5.
Let ¢ € Z(R; F) and compute

(O thr; ) = ) (00 +61:) = ) (T 00; )

JEZ jEZ
= Y (007 1) = ) (607 10
jEZ j€Z
= ) (6;Trve) = (0; ),
jeZ
using Example 4.4.3—1. Thus 6 = 0g* hr by Theorem 3.9.10. u
Exercises

3.9.1 Show that if ¢1, P2 € Dper,7(R; F) then P12 € Phper, 7(IR; F). Thus Zhper, 7(IR; IF)
is an algebra.
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3.9.2 Show that, if 6 € &’(IR;F) is a distribution with compact support and let
T € R.o. Show that the distribution per..(0) defined by

per,(6)(¢) = 6 (Z T;.Tqb]

jez

is T-periodic.
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Section 3.10

Periodic ultradistributions

In this section we consider our final class of distributions, namely the class of
ultradistributions that are periodic. Our discussion of periodic ultradistributions
will follow fairly closely the development of periodic distributions in Section 3.9.
We shall see, however, that the test signals for periodic ultradistributions are very
simple. As with ultradistributions, the best context for periodic ultradistributions
is best understood in the context of Fourier analysis, and one gets a very simple
characterisation of these distributions in this setting.

Do | need to read this section? If you wish to understand the structure of the
discrete-continuous Fourier transform presented in Section 7.1.8, then you will
need to read this section. Indeed, this section is best read concurrently with that. e

3.10.1 The test signal space for periodic ultradistributions

Let us follow our approach for periodic distributions and define a class of
periodic test signals.

Definition (Zpe,,1(R; IF)) Let T € R.o. Denote by Z.e, 7(IR; [F) the set of functions
Y: R — F with the following properties:

(i) there exists a, € H(C; C) such that ay(t +i0) = (¢),
(ii) there exists M, @ € R,y and N € Z. such that

lap(z)] < M(1 + [zI*)Ne™, zeC,

(i) Y(t+T)=1(t) forallt € R. °
One readily verifies that Z,..,r(R; IF) is a subspace of FR,

Remark (Characterisation of Z,e1(IR;IF)) We shall see in Theorem 6.4.15 that
the conditions on 4, are precisely those that arise from ¢ being the CCFT of a
distribution with compact support. o

Let us look at a few examples of signals in Ze, 7(IR; IF).

Examples (Signals in Zyer, 1(R; IF))
1. Asin Example 3.9.3—1, harmonic signals are in Ze7(IR; F). To show this, we

should show that Ejn,: t — €27 is in Z(R;C). To see this, we note that
Eorn(t) = €240 and that, for k € Zs,,

|e2ninzl < |e—2nn Im(z)l < |eZTmIIm(z)|l < |e2nn|z||.

This is enough to show that Exr, € Zper, 7(R; €).
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2. If ¢ € Z(R;F), we claim that, if

per(@)(t) = Y $(t - jT),

jEZ

then per(¢) € Zper,r(IR; IF). First of all, we claim that the series defining per(¢)
converges uniformly and absolutely. Since ¢ € Z(IR; F), there exists M € R,
such that

M
lp(f)] < 1512 te R

It suffices to consider the convergence of the series for ¢ € [0, T] since the sum is
T-periodic. First consider j < 0. In this case we have

t>0
= t—-jT>—jT
= 1+ (t—jT)?* 21+ *T?
N M < M
1+ @ —jT)* ~ 1+ j2T*

If j > 1, we have

t<T
= t-jT<1-)T
= jT-t>(G-1DT
= 1+(¢t— T 21+ (- 1)7°T?
- < M .
1+ (t—jT)2 ~ 1+(j—1)2T2

Therefore, for t € [0, T],

0 S
. M M
2lot=jni< Y 1+ P12 2, 1+ (- 1)
. -

j€Z j=—00

This shows that the series converges absolutely, and also uniformly by the
Weierstrass M-test.

Now let us show that per(¢) € Zper, 7(R; IF). Following Remark 3.10.2, we shall
show that per,(¢) = Fc(0) for 0 € &'(R; FF). To this end, we compute

F ccOpery@) = )| F cc(Ty®) = F () Y| Eaiur
JEZ JEZ

=TT cc@®) ), =T Y Fcc@) (Do,

jEZ j€Z
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using Example 5.5.2-2. Since Fcc(¢) € Z(R; F), we have that F cc(Oper,(¢)) is a
distribution with compact support (its support is contained in supp(¢)). Thus
we conclude that per,(¢) is the CCFT of a distribution with compact support,
as desired.

3. Let us consider a special class of functions as in the preceding example. We
denote
7r(R;F) = {ve Z(R;F) | per (v)(t) =1, te R}

Let us show that Z7(R; FF) is not empty. Let ¢ € I (R; F) satisfy ¢(0) = 1. Let us
define

v = Foc(P) * X-1,1)-
We claim that v € 77(IR; F). First of all, by Proposition 6.4.9, we have

v = (@) * Fec e ycc()([_g,g]) = %C(qb?CC(X[_g,g]))-
Note that
sin(rtTt)
Tt

by Example 6.1.3-3. Thus v is the CCFT of a signal in Z(IR;F), and so is in
Z (R; F) by Theorem 6.5.1. Now we compute

Zf;m,g]]<t>

JEZ

F el =

Y ot = 1) = Fec(d) +

jEZ

= Fec(P) + (Fec ° F cc(1)) = Fec(do) = p0) Fc(So) = 01,
as desired. °
Now let us consider convergence in Zper,r(R; IF).

3.10.4 Definition (Convergence in Z.1(R;F)) A sequence (V))jez., in Zper,7(IR; F) con-
verges to zero if it, for each r € Z,, the sequence (yby)) jez., converges uniformly to
zero. A (Y))jez., converges to Y € Zper, 7(R; FF) if (1 — ) ez, converges to zero. e

We can also make the obvious definition of continuity for linear map whose
domain is Zper, r(R; IF).

3.10.5 Definition (Continuous linear maps on Zy1(R;F)) A linear map
L: Zoer 7(R;IF) — is continuous if (L(Y)}))jez., converges to zero for every se-
quence (Y;)jez., that converges to zero in Zper,T(IR; IF). °

We have the following result, which follows exactly as does Proposition 3.9.7,
replacing %r(IR; F) with 77(IR; IF).
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Proposition (Zpe, 7(R; IF) comes from Z'(R; IF)) If ¢ € Z,e,1(IR; IF), then there exists
¢ € Z(R; F) such that | = per(¢).

The preceding discussion of the space Z,..,r(R; IF) makes it look more interesting
than it is, as the following result makes clear.

Proposition (Characterisation of Zpe,1(R; C)) If i € Zper 1(R; C), then ¢ is a finite
linear combination of the harmonic signals E, ;,r-1, n € Z.

Proof For ¢ € Zper,1(R;C) C 9}; er,T(]R; C), we have

FocBy) = 7 Y Feo()nT)o, 71

nez

by Proposition 6.4.19. However, by Remark 3.10.2, Fcc(0y) is a distribution with
compact support. Therefore, Zop()(nT™?) is nonzero for only finitely many n € Z.
By Corollary 6.2.28,

Y1) = 7 Y Fep@)nT e,
nez

where the sum converges uniformly, and we conclude the proposition. |

3.10.2 Definition of periodic ultradistributions

We can give the expected definition of periodic ultradistributions, in a manner
entirely analogous to that the periodic distributions.

Definition (Periodic ultradistribution) A T-periodic ultradistribution is a contin-
uous linear map from Z., r(IR; F) to IF. The set of T-periodic ultradistributions is

denoted by z};er’T(R,- IF). .

Given Theorem 3.10.9 below, it is evident that zp’er’T(IR; IF) is isomorphic to a
subspace of Z(IR; FF).

Let us show that periodic ultradistributions correspond to ultradistributions
that are periodic.

Theorem (Periodic ultradistributions are... periodic ultradistributions) There
exists a natural isomorphism from Ep’er,T(lR; IF) to the subspace

ZIR;F)={0 € Z'(R;F) | 170 = 0}

of Z'(R; F).
Proof The proof mirrors that for Theorem 3.9.10, with the role of Zr(IR;F) being
played by 77 (R; FF). |

The theorem also has a corollary that usefully expresses the two ways of thinking
about periodic ultradistributions.
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Corollary (Explicit characterisation of periodic ultradistributions) For 6 €
Z'(R;F) and T € R, the following are equivalent:

(i) ;0 =0;
(ii) there exists a unique 0 € zp’er,T(lR; IF) such that, for all v € 77(IR; F),

OW) =0(vy), Y€ Zper1(RF);

(iii) there exists a unique 6 € zp,er,T(IR’. IF) such that

6(¢) = 0 [Z T;Tq)], ¢ € Z(R;F).

j€Z

Given that #’(R;F) € Z’(RR; F) as we showed in Proposition 3.8.7, it follows
that per () € Zper, 7(IR; IF). This furnishes us with a wealth of periodic ultradistri-
butions. We shall acquire a complete understanding of the collection of periodic
ultradistributions when we study the CDFT for periodic ultradistributions in Sec-
tion 5.6.

3.10.3 Properties of periodic ultradistributions

Let us discuss the convergence of periodic ultradistributions.

Definition (Convergence in zp,er,T(]R; IF)) A sequence (6))jez in Z,, +(R; F)

(i) is a Cauchy sequence if (0,(y))jez., is a Cauchy sequence for every 1 €

Zper 7(R; F), and
(ii) converges to a T-periodic ultradistribution 0 if, for every 1) € Z.er7(R;F),
(0;(¥)) jez., converges to O(1)). °

One then has the hoped for relationship between Cauchy sequences and con-
vergent sequences.

Theorem (Convergence in zp:e”(]R; ) If (0))icz., is a sequence in Z/(R;IF) C
Z'(R;F) that converges to 6 € Z'(R;F), then 0 € Z[(R;F). Furthermore, such a
sequence in Z/(IR;F) converges in Z'(IR; F) if and only if the corresponding sequence in

zp,er,T(IR; IF) determined by Theorem 3.9.10 converges in ZP’QLT(R; IF).

In particular, a sequence (0;)icz., in Zp’er,T(R; IF) is a Cauchy sequence if and only if it
converges.

Proof This can be proved in exactly the same manner as Theorem 3.9.14. |

Let us give the analogue for distributions with compact support of the fact that
locally integrable signals are distributions. We recall from Definition IlI-2.9.4 the
notion of the support of a measurable signal.
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3.10.13 Proposition (Periodic integrable signals are periodic ultradistributions) If
f: R — F is a T-periodic locally integrable signal then 0y € Zp’er,T(]R; IF). Moreover,
if f1,f,: R — IFare periodic locally integrable signals for which 0, = Oy,, then £;(t) = f,(t)
for almost every t € R.

Proof From Proposition 3.8.7, we know that 0y € &'(R;IF) € Z'(IR;F). That 0y is
T-periodic is clear.
The last assertion follows the similar assertion in Proposition 3.2.12. |

Let us identify the multipliers for periodic ultradistributions.

3.10.14 Proposition (Periodic ultradistributions can be multiplied by periodic test sig-
nals) Let O € zp:er,T(R; IF) and let Yo € Zper,r(R; IF). Then the map

Zper, T(R;F) 3 Y = O(Yoy)) € F

defines an element of :Z; (R; ).

er, T
Proof Linearity of the map is clear. To prove continuity, let ({;) ez, be a sequence in
Zper,T(IR; F) converging to zero. Itis clear that (Y01))) jez., is also a sequence converging
to zero in Zper, 7(R; IF). Thus the result follows since

lim O(oy) = 0
j—o0

for every sequence (1) jez., converging to zero in Zper 7(IR; IF). ]

The notions of regular, singular, support, and singular support are applied to
Z p’ o 7(IR; IF) by restriction from Z"(R; IF).

One can differentiate periodic distributions as they are distributions. It turns
out that the derivative is again a periodic distribution.

3.10.15 Proposition (The derivative of a periodic ultradistribution is a periodic ultra-
distribution) If 0 € erer,T(R; IF) then 6’ € z};er,T(R? IF). Moreover, for ) € Zoer7(R; F),
we have 0’ () = —0(Y").
Proof This is proved in the same manner as Proposition 3.9.17, with 77(IR; F) playing
the role of %r(IR; FF). ]
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Section 3.11

Inclusions between signals, test signals, and generalised
signals

Having now presented all (okay, almost all; see Section 3.8.2) of our spaces of
distributions, we shall now determine the inclusion relations between them.

Do | need to read this section? The material here is important, and at times ex-
tremely important. In particular, results concerning the density of spaces of test

signals in spaces of distributions give important characterisations of distributions.
[ ]

In the preceding four sections we introduced the signal classes Z(IR;F),
F(R;F), &R;F), and Zper,r(R; F), and the generalised signal classes Z'(IR; F),
S (R; F), & (R; F) and 9}; (R; F). In the course of our presentation, we proved
the following result.

er, T

3.11.1 Proposition (Inclusion relations between spaces of test signals and distribu-
tions) The following inclusions hold:
IR;F) ¢ FREF) < ERF) 2 Zher1(R )
N N N N
&' (R, F) ¢ ¥ (RF) C Z'RIF) 2 gr’)er,T(]R; IF)

We wish to better understand some of these inclusions by providing some
density relationships between the various sets of test signals and distributions.
In order to do this we need to say what we mean by a dense subspace of the
various spaces of test signals and associated distributions. The following definition
achieves this.

3.11.2 Definition (Density between spaces of test signals and distributions) Let
5. F € {DREF), R EF),ER;F), By(R; F), Zper,7(R; F)} and let 7", 7, €
(2" R F), 7' (R;F), & R F), Z/\(R;F), Z,,, (R F)}.
(i) If 71 € F then T is dense in 7, if, for each ¢ € 7, there exists a sequence
(}))jez., In 91 such that lim; . ¢; = ¢, the limit being taken in .
(i) f 7" € 9, then 7" is dense in 7, if, for each 0 € 7,’, there exists a sequence
(0))jez., in 7" such that lim;_,, 0; = 0, the limit being taken in 7,".
(iii)y If A1 € 9, then T is dense in 7, if, for each 0 € 7,’, there exists a sequence
($))jez., in F1 such that lim;_,. 04, = 0, the limit being taken in VA8 °

We then have the following important result.



232 3 Distributions in the time-domain 2022/03/07

3.11.3 Theorem (Density of spaces of test signals and distributions in one another)
The following statements hold:

(i) I (R;F) is a dense subspace of ' (IR; F);
(i) Z(R;F) is a dense subspace of &(R; F);
(iii) Z(R;F) is a dense subspace of PBo(R;F);
(iv) D(R; F) is a dense subspace of Z'(R; FF);
(v) D(R;F) is a dense subspace of &’ (R; FF).
(vi) Z(R;F) is a dense subspace of &’(R; ).

Proof (i) This is Lemma 2 in the proof of Theorem 3.3.13.

(ii) This is Lemma 1 in the proof of Theorem 3.7.11.

(iii) Let ¢ € Bo(R; F) and let (Yk)kez., be the sequence in Z(IR; IF) characterised in
Lemma 1 in the proof of Theorem 3.3.13. The arguments from the proof of Lemma 2
in the proof of Theorem 3.3.13 can be applied to show that the sequence (p1x)rez.,
converges to ¢ in PBy(R;F). Indeed, a moments thought shows that the desired
conclusion here follows directly from the computations in the proof of Lemma 2 in the
proof of Theorem 3.3.13.

(iv) We will prove this as Theorem 4.7.26.

(v) We note that if 6 € #’(R; F) then there exists fy € C°(R; F) and r € Zs of slow

rowth such that @ = 6. By Theorem 4.7.24 we may find a sequence W) iez., In
g for O y q j)j€Zso
I (R;F) = C2 (R; F) such that lim;_,l|| fo — ¥l = 0. Since ¢ € F(IR; [F) and since fy is
cpt ] ]

of slow growth it follows that the sequence of signals (1) cz., is uniformly bounded
in jand t. We claim that this implies that the sequence (91(;)-) jez., converges to 6}2 in
]

F’"(R;F). Indeed, let ¢ € F(R;F) and compute

lim 6(¢) = lim(-1) [ w00 a

b [ tim g0
- )rfj‘rg(t)qj(r)(t) dt = 05:9)((]5),

as desired, by the Dominated Convergence Theorem.
(vi) By Theorem 3.7.19, if 6 € &’(RR; F) then there exists fi,..., fu € Ccpt(]R; [F) and

",...,"m € Zso such that
0= Z 6(”

By Theorem 4.7.24 we may find sequences (Vj()kez.,, j € {1,...,m}, in D(R;F) =
Cpt(IR IF) so that limj_, || f] Vjkllo = 0. Furthermore, the support of the functions
Viks keZ., je{1,...,m}, is contained in some compact interval T C R. We claim

that this implies that for each j € {1, ...,m}, the sequence (65;’: 1)keZ>0 converges to Gi:j )
I ]
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in &' (R;F). Indeed, let ¢ € &(R;F) and compute

lim 67 (¢))

k—o0 Vik

lim (-1 fR i (E) dt

07 [ fim g0 dt
= (1)) fT £t dt = 67 (9),

as desired. Here we have used the fact that 1/}]-,;((;)(’1) is uniformly bounded in t and
k, so making the interchange of the limit and the integral possible by the Dominated
Convergence Theorem. We can then write

m N
o= tim 3300
=1 e

J=1 k=1

giving the result since 95;’ 1, je(l,...,m} k € Zsy, corresponds to an element in Z(IR; IF)
I/
since I (IR; FF) is closed under differentiation. [

Now let us consider the relationships between test signals and some of the
signal spaces introduced in Chapter 1.

3.11.4 Proposition (Inclusion relations between signal spaces and spaces of test
signals and distributions) The following statements hold:

(i) F(R;F) C LP(R;TF) for p € [1, 0];
(i) LP(R;F) € ' (R;TF) for p € [1, o0];
(iii) Z(R; ) is a dense subspace of LP(IR; FF) for p € [1, c0);
(iv) F(R;TF) is a dense subspace of LP(IR; FF) for p € [1, o0).
Proof (i) Let ¢ € ¥ (R;[F). By Proposition 3.3.2 there exists T € R, such that
lp(t)] < tlz Since ¢ is infinitely differentiable it is also bounded on any compact subset

of R, and thus we deduce that #(R;F) C L™®)(R;F). Now let p € [1,0). Choosing
T > 1 we have

P Pdt = rd Pd
ol fR G dt L oot fm _lowr ar
0 1
P d =2r 4 Pd 0,
< j|:5T||qb(t)| t+2fT t t < f|;5T||¢(t)| t+ -1 <

so giving the result.
(i) Let f € LO(R;F), p € [1, 0], and let (¢})jez., be a sequence converging to zero
in #(R;F). From part (i), (OFES L(p/)(lR; F), j € Z~o, where % + r% = 1. Furthermore,

tim g, = tim [ Ip(F de = [ timigy(01d =0,
]——9Cx3 ]——9CX3 R R ]——)CO

improve this with
injectivity statements
and understanding of
equivalence classes of
signals
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the last operation being valid since (¢;);ez., converges uniformly to zero on R. We
then have

0701 = | fR fo0 4

< f}R FO;Bldt
< il

using Holder’s inequality, Lemma 11-3.8.54. Taking the limit as j — oo gives the result.
(i) This will be proved as Theorem 4.7.24.
(iv) This follows, using Exercise 11I-3.6.2, from part (iii) and part (i) of Theo-
rem 3.11.3. ]



This version: 2022/03/07

Chapter 4

Convolution

The operation of convolution which we consider in this chapter is a remarkably
useful one, and one which comes up in myriad ways. In this chapter itself we
shall see how convolution can be used to generate nice approximations for general
classes of signals. In we shall see how convolutions arise in a natural way as
representations for classes of systems. Convolution also arises in relation with
the Fourier and Laplace transforms we consider in Chapters 5-9. This connection
between convolution and transform theory is what makes transform theory so
useful in the study of systems.

Despite this ubiquity of convolution, it is a subtle operation to understand. In-
deed, perhaps because of the ubiquity of convolution, it is difficult to understand, as
it is difficult to pinpoint the feature of convolution that makes it useful. Nonethe-
less, in this chapter we shall begin our study of convolution, giving some examples
which, we hope might lead to come intuition about how convolution works. We
shall also prove some of the basic results concerning convolution that will be useful
in subsequent chapters.

Do | need to read this chapter? The basic definition of convolution should cer-
tainly be absorbed in reading these volumes. It is possible that the detailed results
from Sections 4.2 and 4.5 can be read as needed in later chapters. Material from
Section 4.7 provides a useful application of convolution, and for this reason it may

be useful to read when one is making a first pass at this chapter. o
Contents
4.1 Convolution of signals: Definitions, basic properties, and examples . . . . . . . 238
41.1 Convolution for aperiodic continuous-time signals . . . . ... ... .. 238
4.1.2 Convolution for continuous-time signals with restrictions on their support249
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4.1.5 Convolution for discrete-time signals with restrictions on their support 269
41.6 Convolution for periodic discrete-time signals . . . . .. ... ... ... 271
4.1.7 Convolution for signals with values in vector spaces . . . ... ... .. 275

471.8 NoOtes . . . . . . o e e e s e 277

systems
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Section 4.1

Convolution of signals: Definitions, basic properties, and
examples

This is an introductory section, defining the various sorts of convolution for
signals that we will use, and giving some examples of when the operation of
convolution is and is not defined. We postpone until Section 4.2 detailed results
on when the operation of convolution of signals can be defined.

Do | need to read this section? If you are beginning to learn about convolution,
this is where to begin. o

4.1.1 Convolution for aperiodic continuous-time signals

Let F € {R,C}. We begin with signals defined on R. For a € R define the
reparameterisation y,: R — R by y,(t) = a — t. Note that y, is the composition of a
time reversal followed by a time shift by a. For f: R — [F define y; f by

Vaof(6) = foya(t) = fla—1).

With this notation we make the following result, recalling from Section IlI-2.9.5
the notion of local integrability.

4.1.1 Definition (Convolution for aperiodic continuous-time signals) An ordered
pair (f,g) of locally integrable [F-valued signals on R is convolvable if (y;f)g €
LO(R; FF) for almost every t € R. If (f, ¢) is convolvable then we denote

D(f,8) ={t e R| (y;f)g € LYR;F)}.

If (f, g) is convolvable then their convolution is the signal f * g: R — FF defined by

fes0= [(ipgar
R
when t € D(f, ). If t ¢ D(f, g), we shall adopt the convention that f + g(t) =0.

4.1.2 Remark (Convolution only depends on “almost everywhere equal” equiva-
lence class) By Proposition IlI-2.7.11, if f1, f>, ¢1,¢2: R — F are signals such that
fi(t) = fo(t) for almost every t € R and gi(t) = g(t) for almost every ¢t € R, then
(f1, §1) is convolvable if and only if (f,, g2) is convolvable, and, if one of these pairs
is convolvable, then f; * g1(t) = f * g»(t) for almost every t € R. For this reason, one
can, and we very often will, think of convolution as mapping pairs of equivalence
classes of signals to an equivalence class of signals using the equivalence relation
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where two signals are equivalent if they agree almost everywhere. Sometimes we
will be careful to be explicit about when we are talking about equivalence classes,
and sometimes we will not be so careful. o

Using the more familiar and penetrable Riemann integral notation for the
Lebesgue integral, we have

f f(t=s5)g(s)ds, teD(f,g),

fr8t)= {o, t¢ D(f, ).

We shall use this notation unless it is more convenient and/or clear to use the
Lebesgue integral notation. Moreover, we shall often simply write

fxgt) = f]Rf(t —5)g(s)ds,

with the tacit understanding that this expression is to be applied only when t €
D(f,g). In Exercise 4.1.5 the reader can show that there exists a convolvable pair
(f, g) such that D(f, g) # R.

In order to get some intuition about the operation of convolution, let us look at
a simple concrete example.

Example (The mechanics of convolution) We consider two signals f,g: R — R
defined by

1+35, se[-2,0], 1+3%, se[-1,0]
f=41-s, se(0,1], gty =431-3% t€(0,2],
0, otherwise, 0, otherwise.

We depict these signals in Figure 4.1 We note that D(f, g) = R.

0.8 1 0.8

06 1 06

021 1 0.2

00 ——mmm— _ 0.0

Figure 4.1 Two signals f (left) and g (right)

Let us first consider the character of the integrand of the convolution integral
for various t. We show this in Figure 4.2. Note that the picture one should have in
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1.0 1.0
0.8 B 081
= 06F = 06
S 2
< 04t < 04t
0.2f B 02
0.0 0.0
.
-4 -2 0 2 4 -4 -2 0 2 4
s S
1.0 1.0
0.8} 1 081
z 06p = o06f
S <
< 04 < 04t
0.2f 1 02
0.0 0.0
I
-4 -2 0 2 4 -4 -2 0 2 4
s s
1.0 1.0
0.8} b 08|
= 06 = 06
2 2
< 04 < 04
0.2f ] 02l
0.0 0.0
. . . . . . .
-4 -2 0 2 4 -4 -2 0 2 4
s S
1.0
08}
% 06
§
< 04t
0.2}
0.0
-4 -2 0 2 4

Figure 4.2 Integrand of convolution integral for signals from Fig-
ure 4.1 fort € {-3,-2,-1,0,1,2,3}. In each plot, y;f and g are
shown in grey.
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mind is of first time reversing the signal f and then “sliding it through g¢” starting
at —oco and going to co. For times in the intersection of the supports of y;f and g,
the integrand at that time is the product of the two signals.

Next let us determine the convolution integral. The computation itself is merely
tedious, and the result is

5 (E+3), te[-3,-2],
(- +18t+30), te(-2,-1],
&(-78 - 1812 +24), te(-1,0],
(78 - 182 +24), te(0,1],
(P — 18t +30), te(1,2],
—5(t—=3)?, te (23]

fxg(t) =

We depict the convolution in Figure 4.3. A few comments are in order about the

10F
08l

06l

*g(t)

f

-4 -2 0 2 4

Figure 4.3 The convolution of the signals f and g from Figure 4.1

convolution here, and these reflect some truths about convolution in general.

1. The supports of f and g are “smeared” by convolution. That is, the support of
f * g is larger than either supp(f) or supp(g).

2. Each of the signals f and g is continuous, but not differentiable. However, one
can verify that f » g is differentiable. This reflects the fact that convolution has
a “smoothing” property. .

Now that we have an example illustrating how convolution of signals, let us
explore some basic properties of this operation. The following result is sometimes
useful.
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4.1.4 Proposition (Property of D(f,g)) We have that (f,g) is convolvable if and only if
(Ifl, Igl) is convolvable. Moreover, if (£, g) is convolvable, then D(f, g) = D(|fl, |gl).

Proof This is an immediate consequence, by Proposition 111-2.7.21, of the fact that
s = f(t —s)g(s) is integrable if and only if s = |f(t — 5)||g(s)| is integrable. [

It is not easy to give a complete characterisation of all convolvable pairs. We

dedicate Section 4.2 to describing some interesting subsets of convolvable pairs of
signals. Also, it is not easy to describe in generality the character of a signal which
is obtained by convolving two convolvable signals. However, it is useful to have
the following property of a convolvable pair.

4.1.5 Theorem (Convolutions are locally integrable) If (f,g) is a convolvable pair of
signals, then f = g is locally integrable.

Proof We first begin with an observation, one which will be expanded upon and
generalised in Section 4.6.1. Let us consider, in the language of Proposition I11-2.7.65,
the measures u = f-A and v = g - A. These measures are, by Example lll-2.11.2—1,
absolutely continuous with respect to A. By u X v denote the product measure on
R? = RXR. Now consider the map ®: R? — R given by ®(0, 7) = 6 + 7. On R we may
consider the signed (if F = R) or complex (if IF = C) measure (¢ X v)®~! which is the
image of p X v under @ (see Section I1-2.7.6). This measure on R is then an element
of the topological dual of the continuous functions with compact support equipped
with the co-norm (see ). Moreover, if h: R — F is a continuous function with compact
support,
((ux V)@ hy = (ux v, Dh).

Using the definition of the product measure, we can directly verify that

(ux )@ h) = fz FfondAz,
R

where Fy,1,(0,7) = h(o + 1) f(1)g(0). Moreover, if A € Z(R) then

@xne @)= [ Frad,

where Frg 4(0,7) = xa(o + 1)f(7)g(0). We shall employ these relationships and the
attendant constructions in the proof of the theorem and the corollary following.

By definition, both f and g are locally integrable. For t € Rand S C R let us denote
t+S={t+x| x €S}. Let us define ¢p: R> — R? by ¢)(s, t) = (s,t —s). If A € Z(R) then,
recalling the notation Fy, 4 from above, we have

Froao (s, t) = xalt)f(t —s)g(s).

Now let N € Z(R) have Lebesgue measure zero. Note that s — F foN ° O(s, 1) is
integrable if t € (R \ N) U (D(f, g) N N), and so integrable for almost every t € R since
(f,8) is convolvable. Also, the map t = Ffon © ¢(s, t) is almost everywhere zero for
every s € R, and so integrable for almost every s € R. If we define

hg,N(T)ZfX—HNgd/\,
R
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then we note that absolute continuity of the measure g - A (see Example Ill-2.11.2—1)
implies that hg n(7) = 0 for every 7 € R. Therefore,

fhg,NdA =0
R

for every N € Z(R) having zero Lebesgue measure. By Fubini’s Theorem, whose
hypotheses we have just verified, and the remarks at the beginning of the proof,

(u xv)® I(N) = f FpondAz = f hendA =0
R2 R

for every set N of Lebesgue measure zero. Thus the measure (u X v)®! is absolutely
continuous with respect to the Lebesgue measure.
Now let i: R — T be continuous with compact support. Note that

Frenod(s,t) = h(t)f(t = 5)g(s).

By our remarks at the beginning of the proof we have

((uxv)®~h) = f FrendAz € R
R2
Since (f, g) is convolvable, s = Fj, ¢, © ¢(s, t) is integrable when

t € D(f, g) U (R \ supp(h)).

In particular, this function is integrable for almost every t € IR. Now consider the
function t — F, 56 © ¢(s,t). Since g is locally integrable, ¢(s) is finite for almost every
s € R. Therefore, t = Fy rq ° ¢(s, ) is integrable for almost every s € R by Proposi-
tion 111-2.9.21. By the change of variable theorem, Theorem IlI-2.10.7, and Fubini’s
Theorem, whose hypotheses we just verified, we have

f FyepdAs = f Froneo¢pdis = f h(f *g)dA,
R? R2 R

which shows that
xne i = [ hfgdi.

Thus f + g is the Radon-Nikodym derivative of the absolutely continuous measure
(1 X v)@~! with respect to A. By, f * ¢ is locally integrable. |

4.1.6 Remark (Local integrability and convolution) The reader will observe that the
proof of the preceding theorem, somewhat surprisingly, on some nontrivial mea-
sure theoretic developments. This is perhaps because convolution of signals is
really a special case of convolution of measures, and some of the basic properties
for convolutions of signals are most directly, and perhaps only, seen through the
connection to convolution of measures. We shall examine the convolution of mea-
sures in Sections 4.6.1 and 4.6.2. o

The following characterisation of convolution is useful for determining some
of the properties of convolution.

what?
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4.1.7 Corollary (Characterisation of convolution) For f,g € L (IR;F) the following
statements are equivalent:

(i) (£, g) is convolvable;
(ii) for every continuous signal h: R — IF with compact support, it holds that

f Ff,g,h dAz (S R,
R2

where Fey1,(0, ) = h(o + 1)f(1)g(0).
Moreover, if (f,g) is convolvable and if h: R — T is continuous with compact support,

then
fh(f * g) dA = f Fflglh d)\z
R R2

Proof We continue using the notation from the proof of the theorem.
Suppose that (f, g) is convolvable and let i: R — TF be continuous with compact
support. Since (f, g) is convolvable, s = Fj, rc o ¢(s, t) is integrable when

t € D(f, &) U (R \ supp(h)).

In particular, this function is integrable for almost every t € IR. Now consider the
function t — Fj, r ¢ © ¢(s, t). The signals f and g are locally integrable. Then, as we saw
in the proof of the preceding theorem, by Fubini’s Theorem we have

fh(f*g)d/\ZI Ff,g,hd/\z.
R R2

Since f * g is locally integrable by the preceding theorem, the integral on the left is
what finite by . This gives this part of the result.
Next suppose that F . j, is integrable with respect to A, for every continuous signal
h with compact support. With ¢ as above, it follows from the change of variable
formula, Theorem I1I-2.10.7, that |Ff | © ¢ is also integrable with respect to A for
every such /. Now, for a continuous compactly supported signal £, let

A, = [t eR| h(t) # 0.

By Fubini’s Theorem, there exists a set Z;, C Aj, of measure zero such that, if t € Ay, \ Zy,
the function s — |F ¢ ° Q(t, 9)| is integrable. Now, for j € Z, define

1, teljj+1],
t_(j_l)/ te[j_llj)l
-t+(j+2), te(j+1,j+2],
0, otherwise.

hi(t) =

Note that for each t € R there exists j; € Z (not necessarily unique, but no matter)
such that h;,(t) = 1. Moreover, for each j € Z, h; is continuous with compact support.
Note that the set Z = U jeZZh]. has measure zero, being the countable union of sets of
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measure zero. Moreover, if t € R\ Z then we have thats  |F fah, ¢(t,s)| is integrable.
However,

IFfgn;, @t s)l = If(t—5)g(s)l,
showing that if t € R\ Z then t € D(f, g). Thus (f, g) is convolvable. |

In more familiar notation, the preceding result says that (f, g) is convolvable if

and only if, for every compactly supported continuous signal & it holds that

[Rh(t)f + g(t)dt = ffw h(o + t)f(1)g(0) dodr.

Let us prove a result which makes somewhat precise the “smearing” of supports

resulting from convolution that we observed in Example 4.1.3. In this result we
make use of the Definition |11-2.9.4 which gives the support of a measurable signal.

Proposition (Support of convolution) If (f,g) is a pair of convolvable F-valued
signals on R then

supp(f * g) C cl(supp(f) + supp(g)),

where supp(f) + supp(g) = {s +t | s € supp(f), t € supp(g)}. Moreover, the above
inclusion is equality of sets if f(t) and g(t) are nonnegative for almost every t € R.

Proof If cl(supp(f) + supp(g)) = R the first assertion holds trivially. So we suppose
this not to be the case. Let t € R \ cl(supp(f) + supp(g)) and let U be a neighbourhood
of t contained in R\ cl(supp(f) + supp(g)), such a neighbourhood existing since R \
cl(supp(f)+supp(g))is open. Leth: R — IFbe a continuous function with supp(h) € U.
(Such a function exists since U necessarily contains an open interval, and it is easy to
explicitly define a continuous function with support contained in a prescribed interval;
think of a function whose graph is triangular.) Then we have that, borrowing the
notation of Corollary 4.1.7,

f h(f+ g)dA = f Fpondiy = f Frondls, (4.1)
R R2 supp(f)xsupp(g)

using the definition Fy,g (0, ) = h(0 + 1) f(7)g(0). However, if (0, T) € supp(f) xsupp(g)
it follows by assumption that h(o + 7) = 0, and so Fg (0, 7) = 0 as well. Thus the
integrals from (4.1) vanish for every continuous function & with supportin U. It follows
from that U C R\ supp(f * g). Thus every open subset of R \ cl(supp(f) + supp(g))
is contained in R \ supp(f * g). Equivalently, every closed subset of supp(f * g) is
contained in cl(supp(f) + supp(g)), which gives the first part of the result.

For the second assertion, note that if f and g are almost everywhere nonnegative,
then so is f * g, being defined as the integral of two almost everywhere nonnegative
signals. Let U C R be open and with the property that f*g(t) = 0 for almostevery t € U.
If the only such open set is the empty set then f * ¢ is almost everywhere nonzero, and
so almost everywhere positive. In this case the second assertion holds trivially. Thus
we suppose that there exists a nonempty open set U such that f * g(t) = 0 for almost
every t € U. Then we let K C U be a nonempty compact set and let L € U be a compact
set such that K ¢ L. By Urysohn’s Lemma, Theorem 1I-1.10.42, let h: R — [0,1] have

what
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compact support and have the property that i(t) = 1 fort € Kand h(t) = 0 for t € R\ L.
It follows that h(t) = 0 for t € R\ U. We, therefore, have

fh(f*g)d/\zo.
R

Let H: R?> — [0,1] be defined by H(o,7) = h(c + 7). By (4.1) it follows that the open
set H ‘1((%, 00)) (open since H is continuous) does not intersect supp(f) X supp(g). We
claim that this implies that KNcl(supp(f) +supp(g)) = @. Indeed, if t € KNcl(supp(f) +
supp(g)) then t = ¢ + 7 for o € supp(f) and 7t € supp(g) and h(t) = H(c + 7) = 1. But
then (o, 7) € supp(f) xsupp(g) NH -1 ((%, 00)), giving a contradiction. Thus we conclude
by that if K C R\ supp(f *g) is compact then K C R\ cl(supp(f) + supp(g)). This shows
that cl(supp(f) + supp(g)) € supp(f * ) in this case, as is desired. |

Let us verify that convolution is commutative and distributive.

4.1.9 Proposition (Algebraic properties of convolution of signals) If f,g,h <
LY (R; IF), then the following statements hold:

loc

(i) if (£, g) is convolvable, then (g, f) is convolvable and f+ g = g * {;
(i) if (f,g) and (f,h) are convolvable, then (f, g + h) is convolvable and f + (g + h) =

frg+f+h
Proof (i) Let t € D(f,g). Note that y;: R — R is a differentiable bijection that is
monotonically decreasing. Moreover, yj(s) = —1. Therefore, by Theorem 111-2.9.38 it

follows that ((y;f)g) ° y: is integrable. Moreover,

((:.)8) o v(s) = (Vi )t = 5)g(t —s) = f(s)g(t —5) = ((V;8)1)(S)-

Thus t € D(g, f). Reversing the argument shows that if t € D(g, f) then t € D(f, g).
Thus D(f, g) = D(g, f). By Theorem 11I-2.9.38 we also have

f (Vif)gdA = f (vig)f da,
R R

which is the result.
(if) This is a direct consequence of linearity of the integral, Proposition IlI-2.7.17. m

Thus, for a convolvable pair (f, g§) we have (g, f) also convolvable and, moreover,

feglt)=g+f(t) = f £t - 9)g(s) ds = f FS)g(t - 5)ds.

This is a formula that we shall employ without mention in our future uses of
convolution.

If one is looking for the binary operation of convolution to have the properties of
analgebra, one might observe that associativity is missing from the list of properties
in the preceding result. This is because associativity does not always hold.
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4.1.10 Example (Convolution is not generally associative) Let w: R — R be given by

1-cost, te]l0,2m],
w(t) = .
0, otherwise,
and define f, g,h: R — R by
3 _|sint, te€[0,27], 3 g
fH=1 gt = {0, otherwise, ) = f_‘m w(m)dr.

Note that w is differentiable everywhere except at 0 and 27, and that its derivative
at all points of differentiability is w’(t) = g(t). Thus we write w’ = g with the
understanding that this holds except at 0 and 27t. As we will be computing integrals
of these signals, this will not make a difference.

We then compute

27T
f*g(t):jﬁlf(t—s)g(s)ds:j; sinsds =0

g*h(t) = ‘L;g(t —S)h(s)ds = wa'(t —s) (‘fo w(T) d’c) ds

= f w(t — s)w(s)ds = w = w(t),
R

and

using integration by parts. Note that w is strictly positive on (0,27) and zero
elsewhere. Therefore,

27
w*w(t) = L; w(t — s)w(s)ds = ‘[0 w(t — s)w(s)ds

is strictly positive whenever the set {t —s | s € (0,2m)} intersects (0,2mn), i.e., when-
ever t € (0,4n). Thus w * w is strictly positive on (0,47) and zero elsewhere. Thus
we have (f *g)*h =0and

f*(g*h)(t):f]l;f(t—s)w*w(s)ds:j]I;ZU*w(s)ds,

giving f*(g+*h) as being a nonzero constant signal. In particular, (f*g)*h # f+(g*h).

Despite the preceding result, we shall see that there are many classes of signals
for which, when the convolution operation is restricted to them, it is associative.
We shall see instances of this in Section 4.2.

Let us close this section by considering an important property of convolution:
that of continuity of the convolved signal. We shall see in Section 4.2 that, in many
cases, the convolution of signals is a continuous signal. However, this is not always
the case, as the following example shows.
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Example (A convolvable pair whose convolution is discontinuous) We let

f: R — R defined by
t12, te(0,1],
) =
f® {0, otherwise.

One easily verifies that (f, f) is convolvable, that D(f, f) = R, and that

T, t e (O, 1],
fxf(t) =22(csc™ Y (Vh) —tan " (VE - 1)), te(1,2),
0, otherwise,

1

recalling from Section 1-3.8.4 the definitions of csc™! and tan™'. In Figure 4.4 we

3.0

251

201

f=f(t)

1.5

1.0

051

0.0

Figure 4.4 A convolution f * f of unbounded signals that is dis-
continuous

depict the convolution f * f, and we see that it is discontinuous at t = 0. .

The preceding example may make one think that at times where a signal be-
comes unbounded, this will lead to the convolution being discontinuous. The next
example shows that the truth is more subtle than this.

Example (An unbounded signal with a continuous convolution with itself)
Here we take f: R — R to be defined by

o= {t‘1/4, te(0,1],

0, otherwise.

The computation of the convolution integral here involves special functions that
are not quite elementary, including but not limited to, the I'-function from Exer-
cise II-1.2.16. However, once one swallows this, one sees that (f, f) is convolvable
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2.0

151

*g(t)

1.0

g9

0.5

0.0

Figure 4.5 A convolution g * g of unbounded signals that is con-
tinuous

with D(f, f) = R. In Figure 4.5 we show depict the convolution g * ¢, and we note
that it is continuous, despite f being unbounded. o

As we shall see in Section 4.2, in particular Theorem 4.2.8, the difference
between the preceding two examples is that in Example 4.1.11 the signal is in
LD(R; IF), whereas the signal from Example 4.1.12 is in L®(R; F).

This is all we shall say in general about convolution for signals defined on Ra.
In Section 4.2 we shall give many more important results on convolution in this
setting, taking into account particular collections of signals.

4.1.2 Convolution for continuous-time signals with restrictions on their
support

We shall be especially interested in the convolution of causal continuous-time
signals as part of our examination of system theory in Section V-6.7. In this section
we give a few introductory observations of the mechanics of convolution in these
cases. It goes without saying that the entire discussion can be adapted to acausal
signals, but the most natural and important applications are to causal signals. For
a causal signal f: R — IF we denote o(f) = infsupp(f). Thus f(t) = 0 for almost
every t € (—oo,0(f)].

The following result is the basic one concerning the convolution of causal sig-
nals.

4.1.13 Theorem (Convolution of continuous-time causal signals) If f,g € L)(R;F)
are causal then (£, g) is convolvable and

f+g(t) = {f“t@df) f(t—s)g(s)ds, te [o(f) +a(g), ) ND(f, g),

, otherwise.
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Proof First let us determine the domain over which we integrate to compute f * g(t)
for t € R fixed, and at the same time determine for which t we are guaranteed to have

fret) =
Suppose that t < o(f) + 0(g). We then have two cases for s € R.

1. s < 0(g): In this case, f(t —s)g(s) = 0 for almost every s < o(g).
2. 52> 0(g): In this case we have

t—s<o(f)+(0(g) —s) < o(f)

and so f(t —s)g(s) = 0 for almost every s > ().

In any case, for t < o(f) + 0(g), we conclude that f(t —s)g(s) = O for almost every s € R,
and so

[ fe-9gerds=o0
R

when t < o(f) + 0(9).
Now, with t > o(f) + 0(g), let s > t — o(f). Then t —s < o(f). Therefore, for almost
every s € R\ [0(g),t — o(f)] it holds that f(f —s)g(s) = 0. In this case it also holds that

t—o(f)
[ re-ageras= [ se-sg0as
R a(8)

Thus, when t > o(f) + 0(g), the convolution integral is over the domain [0(g), t — o(f)].
Next we show that f * g(t) is defined for almost every t € R. Clearly, from the
above conclusions, we can restrict consideration to the case when t > o(f) + 0(g). Let
us define Fg: R? = F by Fro(x,y) = f(x)g(y). If we take ¢: R?* — R? to be defined
by ¢(s,t) = (s,t —s) then Fgo o ¢(s, 1) = f(t —5)g(s). Since f and g are locally integrable,
by Corollary Ill-2.8.8 F , is also locally integrable. By the change of variable formula,

Theorem Il1-2.10.7, F 4 » ¢ is also locally integrable. Therefore,

f|Ff,g°¢)|d/\2 < 0
K

for any compact set K € R%. If K is a rectangle that contains the set
tJ{@wMEMgF ()] y
telo(f)+o(2).R]

for R > o(f) + 0(g), then we conclude, by Fubini’s Theorem, that s = f(t —s)g(s) in
integrable over [0(g), t — o(f)] for almost every t € [o(f) + 0(g), R] and that

f = gllo(f) +a(g), Rl € LY(a(f) + o(g), R ).
As this holds for every R > o(f) + 0(g), we conclude that f * g is locally integrable. =

In Exercise 4.1.8 the reader can provide the analogous statement for acausal
signals.

Of particular interest is the case where signals have their support contained in
R5o. In this case we have the following corollary of the above result.
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4.1.15

Corollary (Convolution for strictly causal signals) If f,g € L)(R;F) satisfy
supp(f), supp(g) < Ry, then

(i) (£, g) is convolvable,

(ii) supp(f *g) € Rso, and

(iii) £+g(t) = f(; f(t — s)g(s) ds, t € Ry,.

This shows that signals in LE)C(]R; F) with support in Ry, are closed under

the product of convolution. With this in mind, for f, g € LD (Rso; F) we define

loc
f®ge LD (Ro; F) by

loc

f®gt) = jo‘ f(t —s)g(s)ds, t € Ry,

so that Lgi(leo ; IF) is a bona fide algebra.

Of course, since @ is the restriction of the usual convolution on R to signals
with support in Ry, all of the results concerning general convolution in R from
Section 4.1.1 hold just as well for ®.

Let us give an illustration of convolution in Lgi(]Rzo ; IF) so the reader can com-
pare it to what we have seen for convolution in RR.

Example (The mechanics of causal convolution) We consider the signals f, g €
LW (Rx0; R) defined by

loc

f(t) =sin(t), g(t) = cos(t).

The reader may be familiar with the graphs of these signals, which we display in
Figure 4.6. We note that D(f, g) = R. In Figure 4.7 we show the integrand for vari-

1.0+ 9 1.0
= o0 < o0

-05} 1 -05

Figure 4.6 Two signals f (left) and g (right)

ous t. We depict the convolution in Figure 4.8. The intuition for causal convolution
does not differ substantially from that for convolution on R as demonstrated in
Example 4.1.3. The specific signals we have chosen here show that the convolution
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Figure 4.7 Integrand of causal convolution integral for signals
from Figure 4.6 for t € {2,4,6,8,10,12}. In each plot, y;f and
g are shown in grey.

Hy(s)

Dyls)

(7ef)g(s)

I
12

of bounded signals need not be bounded. This phenomenon will show up when
we study linear ordinary differential equations that exhibit “resonance,” cf. Exam-
ple V-4.3.20. .

Let us give the algebraic properties of convolution in IRx.

4.1.16 Proposition (Algebraic properties of causal convolution for signals) If f,g, h €
Lg)c(]R; IF) are causal, then the following statements hold:
(i) frg=g=f
(i) (fxg)*g=1f=+(g+h)
(iii) f(g+h) =fxg+f=+h.
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f®g(t)
o o
T

Figure 4.8 The convolution of the signals f and g from Figure 4.6

Proof Parts (i) and (iii) follow from Proposition 4.1.9. Thus we prove part (ii). We
have

t
(Feg) ®h() = fo £+ gt~ h(s) ds

t t—s
= f ( flt—s—r)g(r) dr) h(s)ds
0 \Jo

£yt

:‘[O(‘fs f(t—’[)g(T—S)dT)h(S)dS
t T

:j(;f(t—f)(fo g(T—s)h(s)ds) dt

t
:L ft —1)g*h(t)dT = f=(g*h)(t),

using the change of variable theorem and Fubini’s Theorem. u

4.1.3 Convolution for periodic continuous-time signals

Again we let F € {R; C}. And again we consider signals defined on R, but now
we ask that the signals we consider be T-periodic for a fixed T € Ro. It will be
convenient in this section to have at hand the notion of a T-periodic set S C R, by
which we mean that {T +t| t € S} = S.

Wesstill denote y,: R — R by y,(t) = a—t and note thatif f: R — [Fis T-periodic
then y; f is also T-periodic. Thus we can make the following definition.

4.1.17 Definition (Convolution for T-periodic continuous-time signals) An ordered
pair (f, g) of signals from L +(R;F) is periodically convolvable if (y;f)gl[0,T] €

per,
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LD([0, T]; F) for almost every t € R. If (f, g) is convolvable then we denote
D(f,8) = {t € [0, T] | (y;f)gll0, T] € LV([0, T}, IF)}.

If (f,g) is periodically convolvable then their periodic convolution is the signal
f+*g: R — F defined by

feglt) = f[ 03z don

when t € D(f, g). If t ¢ D(f, g), we shall adopt the convention that f = g(f) =0. e

Of course, Remark 4.1.2 applies equally well here, and so periodic convolu-
tion can be thought of as mapping pairs of equivalence classes of signals to an
equivalence class of signals under the equivalence of almost everywhere equality.

Using Riemann integral notation, the periodic convolution of periodic signals
can be written as

o [ =95 ds, teD(f, ),
f*8(t) {o? LeD(f )

Moreover, we shall often simply write

T
feg(t) = f £t - 5)g(e) ds,

with the understanding that this holds only almost everywhere.

4.1.18 Remarks (On periodic convolution of periodic signals)

1. By Lemma 1.3.5 we can consider the periodic convolution of T-periodic signals
or of signals whose value at t + T is equal to their value at t for almost every t € R.
We shall frequently make use of this lack of distinction without mention.

2. For aperiodic convolution we required signals to be locally integrable. For
periodic convolution, local integrability demands that signals be integrable over
each period. Thus the domain of convolution in this case is clearly defined, and
itis L)) -(R; ).

3. Note that there can be no essential ambiguity between which convolution is
meant for periodic signals since the notion of convolution from Section 4.1.1

only exists for T-periodic signals when one of the signals is zero; see Exer-
cise 4.1.9.

4. In our definitions above, the integration is performed over the integral [0, T].
The definition, however, is independent of particular the interval of length T

over which integration is performed. We shall sometimes use this fact to change

the interval of integration, frequently to [-Z, 1].

272 hd

Let us give an example of a periodic convolution to see how it works.



2022/03/074.1 Convolution of signals: Definitions, basic properties, and example255

4.1.19 Example (The mechanics of periodic convolution) We consider two 1-periodic
signals f, gn: R — R defined on (-3, 1] by

0/ te (_l/ _%]/ sin(2ntNt)

t#0

Hy =21, te(-11], = nt ’

£ 33l e {ZN, o
0, tE(Z’E’

Here we think of N as a parameter in Z.,. We plot the graphs of f and gy for
various N in Figure 4.9. One can verify that f, gn) is periodically convolvable with

gn(t)

0.8

06

()

04

oo} ] . /N /N

0.0

I I I I I I I
-04 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

AL AA
SV

0.4

L
-0.4

t

Figure 4.9 Two 1-periodic signals f (left) and gy (right top, mid-
dle, and bottom), the latter for N € {1, 5, 10}

D(f,g) = R. In Figures 4.10, 4.11, and 4.12 we show the integrands for various
t’s and N’s, in order to try to get some feeling for what is happening with the
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T T T T
201 A 20

9/
yef)a(s)

051 q 0.5

0.0 0.0
I I I I

(ve)g(s)
Yef)g(s)

ef)g(s)
>

(r

0.5

0.0

Figure 4.10 Integrand of periodic convolution integral for signals
from Figure 4.9 for N =1and t € {—%, —%,0, %, %}. In each plot
ytf and g are shown in grey.

convolution integral. The periodic convolution itself is shown in Figure 4.13. The
closed-form expression for the convolution in this case is only given in terms of
special functions we have not introduced; thus we donot provide these expressions,
only plotting the results.

Let us make some comments about these periodic convolutions.

1. Let us first make some comments about signal gy for various N. As N increases
these signals become more “focused” around ¢t = 0. That is, the values of the
signal around t = 0 grow large compared to the values away from t = 0 as
N — 0. As N — oo, the signals gy exhibit some oscillatory behaviour whose
frequency becomes larger.



2022/03/074.1 Convolution of signals: Definitions, basic properties, and example&57

6 6
:;2 ] \‘;2
A~ 7N\ [N A . YA /N\

L L L E| I I
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

, /N | AN . 7\
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(

Rz e~

VARV

-0.4 -0.2 0.0 0.2 0.4

Figure 4.11 Integrand of periodic convolution integral for signals
from Figure 4.9 for N =5and f € {—%, —%,O, %, %}. In each plot

y¢f and g are shown in grey.

2. Now let us compare f with f * gy as N varies. In some sense, as N — oo,
f * gn approximates f. Let us make some observations about the nature of this
approximation.

(@) The approximation of f by f * gy is by infinitely differentiable signals for
each N, despite the act that f is itself discontinuous.

(b) Away from the points of discontinuity for f, the approximation by f * gy
appear to get better as N — co.

(c) Around points of discontinuity of f, the approximation is quite rough.
Looking at the integrands from Figures 4.10, 4.11, and 4.12, we can get
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Figure 4.12 Integrand of periodic convolution integral for signals
from Figure 4.9 for N = 10 and ¢ € {—%,—%,O, }1,%}. In each
plot y:f and g are shown in grey.

some hints as to why this might be. There we see that as the point of
discontinuity of y;f passes through ¢t = 0 the convolution picks up the
oscillatory behaviour of gn. This effect is often called “ringing.” It is a
little difficult to be precise about this, but after awhile one develops some

intuition.

The sequence of signals (gn)nez., that we see here will be very important to us in
Chapter 5, and we shall see there why the periodic convolution integrals above are

useful.

Now let us explore the basic properties of periodic convolution. The pattern
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4.1.20

4.1.21

f*gn(t)
frgn(t)
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Figure 4.13 The periodic convolution of the signals f and gn
from Figure 4.9 for N € {1,5,10}. The signal f is shown in

grey.

here follows that for the aperiodic convolution from the preceding section. Thus
we skip or sketch proofs that mirror their counterparts we have already seen.
As for aperiodic signals, we have the following result.

Proposition (Property of D(f, g)) We have that (f, g) is periodically convolvable if and
only if (If],g|) is periodically convolvable. Moreover, if (£, g) is periodically convolvable,
then D(f, g) = D(|f], 1g])-

The periodic convolution of two periodically convolvable signals is particularly
nice. We also show that the notion of periodic convolvability is vacuous when the

)

signals being convolved are in Lper’T(lR, IF), as we assume.

Theorem (Periodic convolutions are periodic and integrable) If f,g ¢
LD +(IR; IF) then (£, g) is convolvable and f + g € L;l) (R; FF).

er, er,T
! Proof First we show that f*g(t) is defined for almost every t € IR and is integrable over
any period. Let us define Fy,,: R?> > F by Ffe(0,7) = f(1)8(0). If we take ¢: R? - R?
to be defined by ¢(s,t) = (s,t — s) then Fyq © ¢(s,t) = f(t —5)g(s). Since f and g are
locally integrable, by Corollary 111-2.8.8 F,, is also locally integrable. By the change of
variable formula, Theorem 1l1-2.10.7, F fg°Pis also locally integrable. Therefore,

f |Ff,g ° (M d/\2 e R.
[0,T]1x[0,T]
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By Fubini’s Theorem we then have that s — f(t — s)g(s) in integrable over [0, T] for
almost every t € [0, T] and that f = g|[0, T] € LD([0, T F).
We next claim that D(f, g) is T-periodic. Indeed, if s = f(t —s)g(s) is integrable,
then, since f(t + T —s) = f(t —s) (i.e., yia1f = ytf), s = f(t + T —5)g(s) is integrable.
Finally we show that f * g is T periodic. Let t € R. First suppose that t € D(f, g).
Then,

fegern = [ OiaNgdi= [ GipfaA=fogl
[0,T] [0,T]
Also,ift ¢ D(f,g) thent + T ¢ D(f,g) and so
frg(t+T)=0=f+g(),
giving the result. ]

The theorem has the following useful corollary.

4.1.22 Corollary (Characterisation of periodic convolution) For f,g € L (IR;TF) we
per,

have
f h(f+g)dA = f FigndAs
[0,T] [0,TIX[0,T]

for every T-periodic continuous signal h: R — IF, where F¢g (0, T) = h(o + 7)f(1)g(0).
Proof 1If ¢ R? — R? is defined by ¢(s,t) = (s,t —s) then Frg 0 (s, t) = h(t) f(t —5)g(s).
Define
P={(s,t) e R?*| ¢(s,t) € [0, T x [0, T]};

see Figure 4.14. By the change of variables theorem we have

(0,77

Figure 4.14 The change of variable domain for the proof of Corol-
lary 4.1.22

f Ff,g,h d/\z = fFf'g’h ° ¢ d/\z.
[0,T1x[0,T] P
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4.1.23

By Fubini’s Theorem we have

fPf,g,ho(Pd/\Z = f g(f Gf,h d)\) d)\,
p [0,1] s+[0,T]

where Gy (s, t) = h(t)f(t — s). Periodicity of f and h then ensures that

f GpudA = f GpndA,

s+[0,T] [0.7]

fFf,g,h ° qbdAz = f g(f Gf,h d/\) dA.
P [0,T] [0,T]

Another application of Fubini’s Theorem gives

f g(f Gf/hd/\) dA :f h(f +g)dA,
[0,T] [0,T] [0,T]

which gives the result. |

so giving

As with the convolution for aperiodic signals from Section 4.1.1, we can say
something about the support of the convolution of two T-periodic signals. In order
to do this, it is convenient to define the map ¢r: R — [0, T) by noting that if t € R
then t — kT € [0, T) for some unique k € Z. We then define ¢r(t) = t — kT.

Proposition (Support of periodic convolution) If (f, g) is a pair of T-periodic IF-
valued periodically convolvable signals, then

(supp(f * g) N[0, T)) € pr(cl(supp(f) N (=T, 2T) + supp(g)(-T, 2T))).

Moreover, the above inclusion is equality of sets if f(t) and g(t) are nonnegative for almost
every t € [0, T].

Proof Note that since f * g is T-periodic, supp(f * g) is invariant under translations by
T:

{t+T| tesupp(f*g)}=supp(f*g)

Similar statements hold for the sets supp(f), supp(g), and supp(f)+supp(g). Moreover,
note that

{seR|s+te[0,T),tel0,T)}U{seR|s—-te[0,T), te]0,T)}
U{seR| t-s€]0,T), te[0,T)} =(-T,62T).

Therefore, taking this all into account, a moments thought shows that the result is
equivalent to the assertion that

supp(f * g) € cl(supp(f) + supp(g)),

with equality occurring when f and g are almost everywhere nonnegative.
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If cl(supp(f) + supp(g)) = R the first assertion holds trivially. So we suppose
this not to be the case. Let t € R\ cl(supp(f) + supp(g)), noting that t + kT € R\
cl(supp(f) +supp(g)) for every k € Z. Now let U be a neighbourhood of t contained in
R\ cl(supp(f) +supp(g)), such a neighbourhood existing since R\ cl(supp(f) +supp(g))
is open. Let us also assume that U can be contained in an interval | of length T, this
being possible without loss of generality. The neighbourhood U can then be made
T-periodic by translating it by kT, k € Z. We then have an open set U containing
the points t + kT, k € Z. Let h: R — F be a continuous T-periodic function with
supp(h) € U. Then we have that, borrowing the notation of Corollary 4.1.22,

f h(f+g)dA = f FrondAy = f FrondAy, (4.2)
] JX] (supp(f)NN)x(supp(g)N])

using the definition Fy,g (0, ) = h(0 + 1) f(0)g(7). However, if (0, T) € supp(f) xsupp(g)
it follows by assumption that i(o + 7) = 0, and so Fy,g (0, 7) = 0 as well. Thus the
integrals from (4.2) vanish for every continuous T-periodic function / with support in
U. It follows from that U € R \ supp(f * g). Thus every open subset of R \ cl(supp(f) +
supp(g)) is contained in R\ supp(f *g). Equivalently, every closed subset of supp(f *g)
is contained in cl(supp(f) + supp(g)), which gives the first part of the result.

For the second assertion, note that if f and g are almost everywhere nonnegative,
then so is f * g, being defined as the integral of two almost everywhere nonnegative
signals. Let U C R be open and with the property that f * g(f) = 0 for almost every
t € U. If the only such open set is the empty set then f*g is almost everywhere nonzero,
and so almost everywhere positive. In this case the second assertion holds trivially.
Thus we suppose that there exists a nonempty open set U such that f * g(t) = 0 for
almost every t € U. Without loss of generality we suppose that U is strictly contained
in an interval | of length T. Then we let K € U be a nonempty compact set and let
L C U be a compact set such that K C L. By Urysohn’s Lemma, Theorem |1-1.10.42, let
h: ] — [0, 1] have compact support and have the property that h(t) = 1 for t € K and
h(t) = 0fort € J\L. It follows that h(t) = 0 for t € J\ U. Next, T-periodically extend / to
be defined on all of IR, still denoting the periodically extended signal by /. Similarly,
translate K by kT, k € Z, to get a T-periodic set which is a union of compact sets, the
translations of K. Still denote this set by K. We then have

fh(f*g)d)\ =0.
J

Let H: R?> — [0,1] be defined by H(o,7) = h(c + 7). By (4.2) it follows that the open
set H ‘1((%, 00)) (open since H is continuous) does not intersect supp(f) X supp(g). We
claim that this implies that KNcl(supp(f) +supp(g)) = @. Indeed, if t € KNcl(supp(f) +
supp(g)) then t = ¢ + 7 for o € supp(f) and 7 € supp(g) and h(t) = H(c + 7) = 1. But
then (0, 7) € supp(f) xXsupp(g) ﬂH‘l((%, 00)), giving a contradiction. Thus we conclude
by thatif K € R\ supp(f*g) is constructed as above, then K C R\ cl(supp(f) +supp(g)).
This shows that cl(supp(f) + supp(g)) € supp(f * ) in this case, as is desired. [

The algebraic properties of periodic convolution are given in the following

result. We note that, unlike the general situation with convolution for signals on
R, periodic convolution is generally associative.
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4.1.24 Proposition (Algebraic properties of periodic convolution) If f,g.h €
Lper T1(IR; IF), then the following statements hold:
() frg=g+f
(ii) (fxg)+g =1f+(g*h);
(iii) f+(g+h)=f+g+f=+h.
Proof (i) The proof that D(f, g) = D(g, f) follows as in the proof of Proposition 4.1.9.
Also, as in the proof of Proposition 4.1.9, the change of variable theorem gives f * ¢ =

§*f.
(i) Here we use Fubini’s Theorem, the change of variable theorem, and periodicity
of f and g to compute

T
(f &) *h(t) = fo f*8(t=s)h(s)ds

- | ' ( | Tf(t—s—r)g(r)dr) ) ds

- fo ! ( f . F(t—0)g(t —5) dT) h(s) ds

- fOT(fOTf(t—T)g(T—S)dT) I(s) ds
: ,

_ fo Ft-1) ( fo g(T—s)h(s)ds) dr

T
- [ sa-ngenrdr=ro g

(iii) This follows directly from linearity of the integral, Proposition IlI-2.7.17. =

We comment here that Examples 4.1.11 and 4.1.12, while presented in the
context of aperiodic signals on the time-domain IR, are equally valid for periodic
signals by simply appropriately periodically extending the signals in the aperiodic
case. In particular, there is a signal f € LS) (R; FF) for which f = f is discontinuous

er, T
and there is an unbounded signal f € LSgLT(]R; IF) for which f * f is continuous.

4.1.4 Convolution for aperiodic discrete-time signals

The next class of signals for which we consider convolution is the class of signals
defined on a discrete time-domain of the form Z(A). The situation for discrete-
time signals is somewhat simpler than that for continuous-time signals since we
do not have to deal with the subtleties of integration, but instead can just deal with
summation.

4.1.25 Definition (Convolution for aperiodic discrete-time signals) Let A € R.,. An
ordered pair (f, g) of F-valued signals on Z(A) is convolvable if the signal

Z(A) 3 jA — F(kA - jA)S(A) € F
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is in £Y(Z(A); F) for every kA € Z(A). If (f, g) is convolvable then their convolution
is the signal f » g: Z(A) — F defined by

f2gkA) =AY f(kA = jAS(A). .
jEZ

Let us consider a simple example in order to understand how discrete convo-
lution works.

Example (The mechanics of discrete convolution) On the time-domain Z(1) =
Z and for N € Z. let us define f, gn: Z — R by

1, ke{-5,...,5}, Sin@rONK) Lo,
f(k) = herwi gn(t) = Tk
0, otherwise, 2QN, otherwise.

We take Q = 53— and in Figure 4.15 we plot f and gy for various N. In Figure 4.16
we show the convolution f * gy for various N. The only thing we will point out
here is that as N gets large, the convolution f * gy approaches f. This is rather
similar to what we saw in Example 4.1.19. However, it turns out that there are
some issues here with the signals being discrete. We shall consider these in . o

As we saw in Theorem 4.2.24 for periodic signals, and as we shall see in
Theorem 4.2.1 for aperiodic signals, in the continuous case there is no signal which
serves as a unit for the binary operation of convolution. For discrete-time signals,
however, there is a unit.

Example (Convolution with the unit pulse) Let A € R, and let f € {1o(Z(A); F)
be an arbitrary signal. Recall from Example 1.1.9-5 the unit pulse P: Z(A) — R

defined by
1, t=0
P(t)=1{"
® {O, otherwise.
Let us correspondingly define Py: Z(A) — R by

1, t=NA
SNGERIN
n() {O, otherwise

for N € Z. We then directly compute
FoPukA) = A Y f(kA = jAPN(A) = Af(kA — NA).
j€2z>0

In particular, f*(A™'P) = f, and so we see that discrete-time signals always possess
a unit under the binary operation of convolution. o

Although the characterisation is not as deep as in the continuous-time case, we
provide the following characterisation of convolvable discrete-time signals.
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Figure 4.15 Two signals f (left) and gy (right top, middle, and
bottom), the latter for N € {1, 5, 20}

4.1.28 Theorem (Characterisation of discrete convolution) Let A € R.. For f, g €
boc(Z(A); FF) the following statements are equivalent:

(i) (£, g) is convolvable;
(ii) for every signal h € €i,.(Z(A); IF) with finite support (i.e., h(t) # 0 for finitely many
t € Z(A)), it holds that
Y Fign( K € R,

(jkez?
where Fegn(j, k) = h(GA + kA){(kA)g(A).
Moreover, if (£, g) is convolvable and if h € {1,.(Z(A); F) has finite support, then
A hGA+gGA) = A* Y Fygn(j, k).

=2 (,k)ez?
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Figure 4.16 The convolution of the signals f and gy from Fig-
ure 4.15 for N € {1, 5, 20}.

Proof Suppose that (f, g) is convolvable and let i € {1o.(Z(A); F) have finite support.
Define ¢: Z> — Z? by ¢(j, k) = (j k — j) and note that

Fpgno (k) = h(kA)f(kA = jA)S(jA).

Since (f, ) is convolvable, it follows that j - Fy o, o $(j, k) is in £1(Z, FF) for every k € Z.
Since h has finite support, the signal k — F,g; o ¢(j, k) is in £1(Z; F) for every j € Z.

Then we have
Y KAV * @) =AY Y Frono b,
kezZ JEZ keZ

Since (f, g) is convolvable and since & has finite support, the sum on the left converges
absolutely. Thus the sum on the right converges absolutely and so, since ¢ is a bijection,

we have
Y Y Frono o =Y Frontih),
JEZ keZ jkez?

which gives this part of the theorem following the constructions of Section |-2.4.7.
Now suppose that, for every signal h € £,.(Z(A); F) with finite support, it holds

that
Y IFpen(i bl € R.
(jk)ez?
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By the constructions of Section 1-2.4.7 it follows that

Y Freno oG bl €R,

(jk)ez?

with ¢ as above. By Fubini’s Theorem the function j — [Ffq j, ° ¢(j, k)| is in € 1(Z; ) for
every k € Z and for every finitely supported h € {1o.(Z(A); F). As above,

Fgn o (k) = h(kA) f(kA = jA)S(GA),

and so choosing
1, k=m,
0, otherwise,

h(kA) = {

we see that j — |f(mA — jA)g(jA)| is in €1(Z;F) for every m € Z. Thus (f,g) is
convolvable. |

As with the convolution of continuous-time signals, we can characterise the
support of the convolution of discrete-time signals.

4.1.29 Proposition (Support of discrete convolution) Let A € R.. If (f, g) is a pair of
convolvable F-valued signals on Z(A), then

supp(f * g) € supp(f) + supp(g),

where supp(f) + supp(g) = {s +t | s € supp(f), t € supp(g)}. Moreover, the above
inclusion is equality of sets if f(t) and g(t) are nonnegative for every t € Z(A).
Proof If supp(f) + supp(g) = Z(A) the first assertion holds trivially. So we suppose
this not to be the case. Lett € Z(A)\ (supp(f)+supp(g)) and let h: Z(A) — F be a signal
with supp(h) = {t}. Then we have that, borrowing the notation of Theorem 4.1.28,

AZ h(jA) f = g(jA) = A Z Fron(j k) = A2 Z Fron(ik), — (43)

jeZ. (jk)ez? (jk)esupp(f)xsupp(g)

using the definition Fy g ,(j, k) = h(jA +kA) f(kA)g(jA). However, if (jA, kA) € supp(f) X
supp(g) it follows by assumption that h(jA + kA) = 0, and so Fs.(j, k) = 0 as well.
Thus the sums from (4.3) vanish for every signal i with supp(h) = {t}. It follows that
{t} € R\ supp(f * g), which gives the first part of the result.

For the second assertion, note that if f and g are nonnegative, thensois f * g, being
defined as the sum of two nonnegative signals. If there isno t € Z(A) where f * g(t) = 0
then f * g is everywhere nonzero, and so everywhere positive. In this case the second
assertion holds trivially. So let t € Z(A) be such that f * g(t) = 0 and let h € £1,.(Z(A); F)
be such that supp(h) = {t}. We, therefore, have

Y HGAYS * (i) = 0.

JEZ
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According to (4.3) we have

Fon(j k) = 0.
(jk)esupp(f)xsupp(g)
Since the sum is a sum of strictly positive or strictly negative terms, it follows that all
terms in the sum are zero. By the definitions of hand F Fah this means that, for (jA, kA) €
supp(f) X supp(g), f(jA)g(kA) = 0 whenever jA + kA = t. Thus t ¢ supp(f) + supp(g),
giving the second assertion of the proposition. |

Next we give a few algebraic properties of discrete convolution.

4.1.30 Proposition (Algebraic properties of discrete convolution) If f,g, h: Z(A) —» F
then the following statements hold:
(i) if (£, g) is convolvable, then (g, f) is convolvable and f+ g = g * {;
(i) if (f,g) and (f,h) are convolvable, then (f, g + h) is convolvable and f + (g + h) =
frg+f+h
Proof (i) Let k € Z and consider the bijection y: Z — Z given by yx(j) = k — j. Since
(f, 8)is convolvable, the signal y; f g is in £'(Z; IF). By the constructions of Section |-2.4.7

it follows that (y;f¢) © yx is in £(Z; ). Since
(e f8) e vi(i) = (i f &)k = ) = f()g(k = )),

it follows that j — f(jA)g(kA — jA) is in {1(Z;F), showing that (g, f) is convolvable.
The constructions of Section |-2.4.7 further give

Y fGgle= ) =Y 0if e veli) = Y (f i) = Y fle = (-
j€Z j€Z j€Z j€Z
(i) This is a direct consequence of linearity of convergent sums, Proposi-

tion 1-2.4.30. It is also a consequence of linearity of the integral since sums are actually
integrals with respect to a suitable measure by Example I11-2.7.10. |

4.1.31 Example (Discrete convolution is not generally associative) Let us take A =1
and define f, g, h: Z — R by

1, j=1, 0, j<0,
fH =1, g()=3-1, j=2, h(j)=41, j=1,
0, otherwise, 2, §2>22

We have
fre®) =Y fk=pg() =) &) =0

JEZ. JEZ
for every k € Z. We also directly compute
1, je{23},
0, otherwise

g*h(j)={

and consequently also directly we compute f * (g * h)(j) = 2 for every j € Z. This
shows, in particular, that f = (g * h) # (f * g) * h, as desired. o
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4.1.5 Convolution for discrete-time signals with restrictions on their support

In Section V-6.9 we shall be interested in the convolution of causal discrete-time
signals as part of our examination of system theory. The convolution product
that is used in this case is the adaptation to the discrete-time case of the causal
convolution of Section 4.1.2.

As we continuous-time signals, for f € 1o(Z(A); F), we let o(f) = inf(supp(f)),
and assume causality of f so that o(f) > —co. Note that f(t) = 0 for every t < o(f).

The following result characterises the convolution of two causal discrete-time
signals.

4.1.32 Theorem (Convolution of discrete-time causal signals) If f,g € {io(Z(A); F) are
causal then (£, g) is convolvable and

Lo fkA =jA)gGA), kA 2 o(f) +o(g),

0, otherwise.

£+ g(kA) ={

Proof First let us determine the domain over which we sum to compute f * g(t) for
t € Z(A) tixed, and at the same time determine for which t we are guaranteed to have

f*g(t)=0.
Suppose that t < o(f) + 0(g). We then have two cases for s € Z(A).

1. s < 0(g): In this case, f(t —s)g(s) = 0 for every s < ().
2. 52> 0(g): In this case we have

t—s <o(f)+(a(g) —s) <o(f)

and so f(t —s)g(s) = 0 for every s > o(g).
In any case, for t < o(f) + 0(g), we conclude that f(t —s)g(s) = 0 for every s € R, and so
Y fleA = jA)g(jA) = 0
jez
when kA < o(f) + 0(g).

Now, with t > o(f) + 0(g), let s > t — o(f). Then t —s < o(f). Therefore, provided
thats < g(g) or s > t — o(f), it holds that f(t —s)g(s) = 0. In this case it also holds that

k=a(f)/A
Y flea-jmgiay =Y fled - jA)GA).
j€Z j=o(g)/A

Thus, when t > o(f) +0(g), the convolution sum is over a finite set of times. This shows
that, for every t € Z(A), f * g(t) is well-defined. [

In Exercise 4.1.13 the reader can provide the analogous statement for acausal
signals.
The following result records the consequences of the previous result when
signals are supported in
Z>o(A) = (kA | k € Zso),

which we think of as the discrete-time analogue of Ry,.
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4.1.33 Corollary (Convolution for signals with support in Z,,(8)) If f, g € io.(Z(A); F)
satisfy supp(f), supp(g) € Z-o(A), then
(i) (£, g) is convolvable,
(i) supp(f*g) € Zso(A), and
(i) £+ g(kA) = Lo (kA — jA)Z(A), KA € Z(A).
Let us give an example that shows how causal convolution works. We have

dedicated significant effort in the continuous-time case, and in the acausal discrete-
time case, to describe how convolution works. Thus, here we shall be brief.

4.1.34 Example (The mechanics of causal convolution) We give the discrete-time ver-
sion of the continuous-time causal convolution of Example 4.1.15. Thus, we con-

sider the signals f, g € Li(l))C(IRZO; R) defined by

f(t) =sin(t), g(t) = cos(t).

The reader may be familiar with the graphs of these signals, which we display in
Figure 4.17. We depict the convolution in Figure 4.18. As with Example 4.1.15

= S
-0. |H' |H‘| -0. }}}‘ l}}}

Figure 4.17 Two signals f (left) and g (right)

&
i

2

2

&
@

in the continuous-time case, this gives an example of bounded signals with an
unbounded convolution. .

Let us give the algebraic structure of discrete causal convolution.
4.1.35 Proposition (Algebraic properties of discrete causal convolution) If f,g,h €
lioc(Z50(A); IF), then the following statements hold:
(i) frg=g=f
(i) (fxg)xg=1+(g*h)
(iii) f(g+h)=fxg+f=+h.

Proof Parts (i) and (iii) follow from Proposition 4.1.30. One may prove part (ii) just as
was done in the proof of Proposition 4.1.16. u
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Figure 4.18 The convolution of the signals f and g from Fig-
ure 4.17

4.1.6 Convolution for periodic discrete-time signals

The next class of convolutions we consider is that for periodic discrete-time
signals. For periodic discrete convolution, there is no danger of any pairs of signals
not being convolvable since, as we shall shortly see, this convolution involves finite
sums. Thus we make the following definition.

4.1.36 Definition (Convolution for periodic discrete-time signals) Let A € R., and let
T = NA for some N € Z.. The convolution of the pair (f, g) € lper, 7(Z(A); F) is the
signal f * g: Z(A) — F defined by

N-1
frgkA) =AY Flk = jA)(A).

j=0
Let us make some comments about discrete periodic convolution.

4.1.37 Remarks (On periodic convolution of discrete-time periodic signals)

1. For a pair (f, g) of T-periodic discrete-time signals defined on Z(A), when we
write f * ¢ there can be no ambiguity about whether we mean “convolution” or
“periodic convolution.” Indeed, if the pair (f, g) is convolvable in the sense of
Definition 4.1.25, then one of f and g must be zero. The reader can prove this
in Exercise 4.1.16.

2. While the sum in Definition 4.1.36 is from 0 to N — 1, by periodicity of f and
g the sum can be performed over any collection of length N of consecutive
integers. o

Let us give an example of discrete periodic convolution. We shall be a little brief
here, having devoted much effort in the previous three versions of convolution to
understanding what convolution “is.”
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4.1.38 Example (The mechanics of discrete periodic convolution) We let A = 1 and
take T = 10. We define two T-periodic signals f and g on Z by defining them on
{=5,-4,...,4,5} to be

1, ke{-2,-1,0,1,2) L k=0,
k) = s & LY LAy k) = l’ ke _1’1 ,
e {0, otherwise, gk =12 { _ }
0, otherwise.

In Figure 4.19 we depict these signals on one period. Their convolution is shown

0.8 0.8

0.6 0.6

0.4 04

0.2 0.2

0.0¢

b
[
b
Lo
b

0.0t L2

Figure 4.19 Two periodic discrete-time signals

in Figure 4.20. °

20F 7

*g(k)

1.0 ]

0.5 -

0‘0; X X ! X X X X X X ! X > -
-4 -2 0 2 4

Figure 4.20 The periodic convolution of the signals from Fig-
ure 4.19

As with aperiodic discrete convolution, periodic discrete convolution possesses
a unit.
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4.1.39

4.1.40

4.1.41

Example (Convolution with the periodic unit pulse) Let A € R.gandlet T = NA
for some N € Z.g. Let f € lper7(Z(A);F) be an arbitrary T-periodic discrete-
time signal. In Example 1.1.24—1 we defined the T-periodic unit pulse Pper,T €
fper,T(Z(A); ]F) by
1, t=kT forsomek € Z
Poerr(t) ={ 7 ’
pert (1 {O, otherwise.

We then compute

N-1

f % Poerr(kA) = A )" (kA = jA)Pperr(jA) = AF(KA).

j=0

Thus f * Pper,r = Af, showing that A7l Prerr serves as a multiplicative identity if the
product is given by convolution. o

We should verify that discrete periodic convolution gives rise to periodic sig-
nals.

Proposition (Discrete periodic convolutions are periodic) Let A € R, and let
T = NA for some N € Z... If f,g € lper, 7(Z(A); F) then £+ g € Cper, 1(Z(A); TF).

Proof This is a simple computation:

N-1 N-1
FrgUeA+NA) =AY f(kA+NA = jAGA) = A Y F(kA = jA(A) = f+g(kA). =
j=0 j=0

Let us now characterise the support for discrete periodic convolutions. We recall
from the paragraph preceding Proposition 4.1.23 the definition of ¢r: R — [0, T).

Proposition (Support of discrete periodic convolution) Let A € R,y and let
T = NA for some N € Z.. If (f,g) is a pair of convolvable T-periodic IF-valued signals on
Z(A), then

(supp(f* g) N[0, T)) € Ppr(supp(f) N (=T, 2T) + supp(g)(-T, 2T)).

Moreover, the above inclusion is equality of sets if f(t) and g(t) are nonnegative for every
te Z(A).
Proof Note that since f * g is T-periodic, supp(f * g) is invariant under translations by
T:
{t+T| tesupp(f=g)}=supp(f *g).
Similar statements hold for the sets supp(f), supp(g), and supp(f)+supp(g). Moreover,
note that

seZ(A)| s+te[0,T), te[0,T) UlseZ(A)| s—te[0,T), te[0,T))
U{seZ(A) | t-se[0,T), t€[0,T)} = Z(A) N (~T,2T).
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Therefore, taking this all into account, a moments thought shows that the result is
equivalent to the assertion that

supp(f * g) € (supp(f) + supp(g)),

with equality occurring when f and g are almost everywhere nonnegative.

If supp(f) + supp(g) = Z(A) the first assertion holds trivially. So we suppose this
not to be the case. Lett € Z(A) N [0,T) \ (supp(f) + supp(g)), noting that t + kT €
Z(A) \ (supp(f) + supp(g)) for every k € Z. Let h: Z(A) — F be a T-periodic signal
with

supp(h) = {t +kT | k € Z}.

Then we have that, borrowing the notation of Theorem 4.1.28,

N-1
RGN+ g(A) =AY Freu(ik) =A Y Frgn(i k),
j=0 (7k)€{0,1,...N-1}2 (j,k)esupp(f)xsupp(g)N[0,T)?
(4.4)

using the definition Frg,(j, k) = h(j + k)f(j)g(k). However, if (jA kA) € supp(f) X
supp(g) N [0, T)? it follows by assumption that h(jA + kA) = 0, and so Fy,g,(j, k) = 0 as
well. Thus the sums from (4.4) vanish for every T-periodic signal h with the support
as described. It follows that

{t+kT| ke Z} SR\ supp(f *g),

which gives the first part of the result.

For the second assertion, note that if f and g are nonnegative, then sois f * g, being
defined as the sum of two nonnegative signals. If there isno t € Z(A) where f+g(t) =0
then f * ¢ is everywhere nonzero, and so everywhere positive. In this case the second
assertion holds trivially. So let t € Z(A) N [0, T) be such that f *+ g(t) = 0 and note that
f+gt+kT)=0foreveryk € Z. Let h: Z(A) — F be a T-periodic signal with

supp(h) = {t +kT | k € Z}.

We, therefore, have

Z

-1
h(jA)f * g(jA) = 0.

-
I
—_

According to (4.4) we have

Fren(j k) = 0.
(jk)esupp(f)xsupp(g)NI0,T)?

Since the sum is a sum of strictly positive or strictly negative terms, it follows that
all terms in the sum are zero. By the definitions of # and F ¢, this means that, for
(jA, kA) € supp(f) x supp(g) N [0,T)?, f(jA)g(kA) = 0 whenever jA + kA = t. Thus
t ¢ supp(f) + supp(g), giving the second assertion of the proposition. [

We close this section by considering the algebraic properties of discrete periodic
convolution.
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4.1.42 Proposition (Algebraic properties of discrete periodic convolution) If f, g, h €
Coer,T(Z(A); IF), then the following statements hold:
() frg=g=f
(i) (fxg)xg=1+(g*h)
(iii) £+ (g+h)=f+g+f+h.
Proof (i) We compute

N-1 k
frgkn) =AY FkA=jAGGA)=A ) fmA)g(ka - mA)
=0 m=k—(N-1)

N-1
=AY FUAKA—IA) = g+ f(kA).
1=0

(i) We compute

N-1 N-1N-1
Fr(gem(A) =AY fUA—kA)g*h(kA) = A2 YY" f(A = kA)G(KA = jAR(A)
k=0 k=0 j=0
N-1-jN-1
A2 YN FUA - mA = jA)g(mA(jA)
j =0

m=—i j=

N-1N-1 N-1
= A2 Y'Y FUA— A - mA)YgmA(A) = A Y F* gUA = jAYA(jA)
j=0 m=0 =0
= (f*g) *h(IA).
(i) This follows by linearity of finite summation. [

4.1.7 Convolution for signals with values in vector spaces

In the sections above, we describe in great detail the operation of convolution
for scalar-valued signals. In this section we overview how to extend this to vector
space-valued signals. We shall not do this as carefully as we did above for the
scalar case, since there are no conceptual difficulties to extending this amount of
care to the vector space-valued case.

We have the various classes of signals to consider. In all cases, we let F € {IR, C}
and let U and V be finite-dimensional [F-vector spaces.

1. First we consider the case of signals defined on IR. For functions 77: R — U and
L: R — L(U; V), we define the convolution L * : R — V by

L n(t) = fR L(t - 5)((s)) s,

whenever the integral makes sense. The usual rules and caveats for convolution
apply, except that commutativity does not generally make sense.
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2. Next let us consider causal convolution for signals defined on Ry. Here,
for functions 1: Ryp — U and L: Ry, — L(U;V), we define the convolution
L®n: Ry — Vby

Len) = fo L(t - 5)(n(s)) s,

whenever the integral makes sense.

3. The final continuous-time situation is for periodic signals on R. Thus we let
n: R— UandL: R — L(U; V) be T-periodic functions. We can then define their
periodic convolution by

T
Le(h) = fo L(t - 9)((s)) ds,

whenever the integral makes sense.

4. Letusnow consider discrete-time convolution, first looking at the case of signals
defined on Z(A). In this case, we have signals 1: Z(A) — U and L: Z(A) —
L(U;V), and we define the convolution L = : Z(A) — V by

Len(kA) = A Y LKA = jA)n(A)),
jEZ
whenever the sum makes sense.

5. The next discrete-time case is for causal signals, i.e., signals defined on Z.,(A).
Here we have signals 1: Z5¢(A) — U and L: Z>4(A) — L(U; V), and we define
the convolution L * n): Z>o(A) — V by

k
Len(kd) = A Y L(kA = jA)n(A)),

j=0

The preceding sum, being finite, is always defined.

6. Finally, we consider the discrete-time periodic case, where we have T-periodic
signals n: Z(A) — U and L: Z(A) — L(U; V). Of course, we take T = NA, and
then the periodic convolution L * : Z(A) — V is defined by

N-1

Len(kA) = A Y LA = jA)n(A)),

j=0

and we note that this sum always exists since it is finite.
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4.1.8 Notes

The reader should be aware that the basic treatment of convolution in many
texts is a little sloppy. For example, it is very often stated that convolution is
associative. Our Example 4.1.10, from [Hall and Wise 1990], shows that this is not
generally true, although in Theorem 4.2.1 we show that this is true for L}(R; F).
Periodic convolution and acausal convolution are always associative, however.
Thus one has to exercise care when utilising the “natural” algebraic properties of
convolution.

Various definitions of convolution are possible, and comparisons of these are
made, for example, in [Dierolf and Voigt 1978, Kamiriski 1982]

Exercises
411 LetF e (R;C},leth e L] (RR;F), and denote

conv(R; FF) = {(f, Q) € L! R;F)eL! (R;F)]| ( f,8) is convolvable}

loc loc

and
convy, = {f € L, (R;F) | (f,h) is convolvable}.
Answer the following questions.
(a) Is conv(RR; F) a subspace of L (R;F)® L, (R;IF)?
(b) Is convy(IR; F) a subspace of Llloc(lR; IF)?
4.1.2 For the following pairs (f, g) of signals defined on R, compute their convo-
lution if they are convolvable.
(@) Take f =g =13,.
(b) Take f(t) = 150 and g = 0" 15.
(c) Take
1, te[-a,a],
0, otherwise.

f(t) = g(t) = {
(d) Take f(t) =1forallt € R and take

1-t, te]0,1],
gt)y={1+t, te[-1,0),

0, otherwise.
(e) Take
tzr te [_1/ 1]/
) = o(t) =
fH =380 {O, otherwise.

4.1.3 For the following pairs of 1-periodic signals defined on R, compute their
periodic convolution if they are convolvable.
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41.5

41.6

41.7
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(a) Take f and g to be defined on [0, 1) by

te0,3],

t,
fﬁ%=ﬂﬂ={1_h te[l1).

(b) Take f and g to be defined on [0, 1) by

1, te]o, %] U [%,1),
0, otherwise.

ﬂﬂ=ﬁﬂ={

(c) Take f(t) = g(t) =1forallt € R.
(d) Take f and g to be defined on [0, 1) by

1, te01),

ﬂﬂ=ﬁﬂ={a i—o.

(e) Take f(t) = sin(2mtt) and g(t) = sin(4mnt).

Let f,g € Lg)c(lR; IF) be convolvable and let 2 € IR. Answer the following
questions.

(@) Show that (7,f, ) and (f, 7,8) are convolvable and that

(taf)*8 = f+(1:8) = T,(f*3)

(b) Show that (7 f, 7,¢) is convolvable and that (7, f) * (7,g) = 75,(f * g).
Consider the signals f, ¢: R — R defined by

fm:{rm,temJL

0, otherwise

and g(t) = f(-b).
(a) Show that (f, g) is convolvable and that D(f, g) = R\ {0}.

(b) Compute f *g.

Show that, if f € L®)(RR;F) has compact support and if ¢ € L{(l))c(]R; IF), then
(f, &) is convolvable.

For f € LO(R;F) and g € L;O:I),T(R; IF), answer the following questions.

(@) Show that(f, g)isconvolvable and that the convolution f*gis T-periodic.

Let F be the T-periodic extension of f|[0, T], let G be the T-periodic extension
of ¢|[0,T] (i.e., G = g), and let H be the T-periodic extension of (f * g)I[0, T]
(ie, H=f=xg).

(b) Show that H = F * G (convolution here is periodic convolution).
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4.1.8 State and prove the version of Theorem 4.1.13 thatis valid for acausal signals.
4.1.9 Let (f, ) be T-periodic F-valued signals whose convolution over R,

feglt) = fR £t - 5)g(s)ds,

exists for almost every t € R. Show that one of f or ¢ must be zero, i.e., zero
almost everywhere.

4.1.10 For the following pairs (f, g) of signals defined on Z(A), compute their
convolution if they are convolvable.
(a) Take f =g =15.
(b) Take f(t) =159 and g = 0" 1.
(c) Take
1, te[-NA,NA]INZA),
£) = o(t) =
fH =380 {0, otherwise.
(d) Take f(t) =1 forall t € Z(A) and take

= +1, tel0,A,...,(N-1)A},
g =1L +1, te{-(N-1A,...,-A},
0, otherwise.

4111 Let A € R, and let f,g € {}(Z(A);F) be convolvable and let a € Z(A).
Answer the following questions.

(@) Show that (7,f, 7,g) and (7} f, 7,9) are convolvable and that

(Tof) * 8 = f*(1,8) = T,(f * Q).
(b) Show that (7} f, 7,8) is convolvable and that (7} f) * (7,8) = 7,,(f * &)
4112 Let A € Ry and let f € {o(Z(A);F). Show that there exist signals

g, h € o(Z(A); F) such that g+ h = f, i.e., show that discrete convolution is
“surjective.”

4.1.13 State and prove the version of Theorem 4.1.32 that is valid for acausal
signals.

4.1.14 For f € l1o.(Z>0; F) and for n € Z., define vy, € F" and Ay, € L(IF";F") by
vin = (f(0), f(1),..., f(n-1)),

T £(0) 0 0 - 0]
O fO 0 0
A =| f@ ) fO oo

f(n-1) f(n-2) f(n-3) --- 0
Show that, for f, g € €1oc(Zo; F), we have
f ® g(]’l) = Af,nvg,n = Ag,nvf,n/ ne Z>0.
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4.1.15 For f € {Y(Z(A);F) and g € Cperna(Z(A); F), answer the following ques-
tions.
(a) Show that (f, g) is convolvable and that the convolution f * g is NA-

periodic.

Let F be the NA-periodic extension of f|[0, NA) N Z(A), let G be the NA-
periodic extension of g|[0, NA) N Z(A) (i.e.,, G = g), and let H be the NA-
periodic extension of (f * g)I[0, NA) N Z(A) (i.e., H = f * g).
(b) Show that H = F * G (convolution here is periodic convolution).

4.1.16 Let (f,g) be discrete-time T-periodic F-valued signals defined on Z(A)
whose convolution,

frgkA) =AY F(kA = jAS(A),

jEZ

exists for every k € Z. Show that one of f or ¢ must be zero.
4.1.17 Let A € R., let T = NA for some N € Z.,, and let f € {1,.(Z(A); F) be

T-periodic. Show that there exist T-periodic signals g, h € €1o.(Z(A); F) such
that g+ h = f, i.e., show that periodic discrete convolution is “surjective.”
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Section 4.2

Convolvable pairs of signals and properties of convolutions

In this section we consider the convolution between signals from various spaces.
It is really not possible to stage the most general result for when the convolution
of two signals is defined, nor is it necessarily interesting to do so. Thus, in this
section we shall give those results which will be of interest to us in our subsequent
uses of convolution.

Do | need to read this section? If one wishes to understand the basic results
about when the operation of convolution is defined between two signals, then
this is the section to read. o

4.2.1 Convolution in L'(R; F)

The first case where convolution makes sense is when it is applied to integrable
signals. The following result gives the space of integrable signals some rather
useful algebraic structure.

Theorem (L'(R; FF) is an associative, commutative algebra without unit, when
equipped with convolution as product) If f,g € LY(R; F) then (£, g) is convolvable
and f+ g € LO(R; F). Furthermore, for f, g, h € LO(R; ), then the following statements
hold:

(i) 1If = gl < lifllllgl;
(ii) frg=g*f
(ii) (£+g)*h = £+ (g+h);
(iv) fx(g+h)=fxg+f+h;
(v) (recalling Remark 4.1.2) there is no equivalence class of signals [u] € L'(R; IF) such
that [u = f] = [f] for every [f] € LY(IR; F).

Proof Define Fp,: R? — F by Ffe(o,7) = f(0)g(1). By Corollary l1I-2.8.8 Fr, €
LM(R?; F). Now consider the change of variable ¢p: R> — R? given by ¢(s, t) = (t—s,s),
so that

Frgo (s t) = f(t —s)g(s).

By the change of variable theorem, Theorem IlI-2.10.7, F fg° ¢ € L(l)(]R2 ;IF), and so by
Fubini’s Theorem, the function s — f(t —s)g(s) is integrable for almost every t € R.
Thus (f, g) is convolvable.

(i) Moreover, using the change of variable theorem and Fubini’s Theorem again,

[ ][ re-sg0as

as desired.

dt < f |Frgo¢ldAz = f [FreldAz = 1IflllIglh,
R2 R2
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(ii) This is Proposition 4.1.9(i).
(iii) We have

(f *g)*h(t) = fm f+ gt —s)h(s)ds

= fR(j]I;f(t—s—r)g(r)dr) h(s)ds
= ‘[R(fﬁ;f(t—’[)g(’[—s)d’t) h(s) ds
= fmf(t_T)(‘f]Rg(T_S)h(S)ds) dt

_ fR f(t—D)g +h(r)dT = f* (g + 1)(D),

using the change of variable theorem and Fubini’s Theorem.

(iv) This is Proposition 4.1.9(ii).

(v) Let u € LO(R; F) be such that, for every f € LO(R;F), u * f(t) = f(t) for almost
every t € R. We first use a lemma that is an adaptation of Lemma 1 from the proof of
Theorem 4.2.24.

1 Lemma If u € LO(R; ) then there exists r € R such that

t+r
f u(s)ds
t—r’

Proof Lett € R. By Proposition 111-2.9.24 and Theorem [11-2.9.33, the function

<1, teR, r' €(0,r].

t+r
7 u(s) ds
t=r
is continuous since u is locally integrable. Therefore, since the value of this function is
zero at r = 0, there exists 7; € R such that

t+r
f u(s)ds
t—r

for every r € (0,7:). Now let T € R, be sufficiently large that

T
fRIu(S)Ids—ITlu(snds <1,

T
lim lu(s)| ds < oo.
T—oo -T
Note that ((—7¢, 7t))te[-2T21] is an open cover of [-2T, 2T]. By compactness of [-2T, 2T],
we can apply Theorem |-2.5.30 to assert the existence of p € R, such that, for each
t € [-2T,2T], there exists s; € [-2T, 2T] such that

1
<_
2

this being possible since

(t—p, t+p)N[-2T,2T] C (5t — 15, 5¢ + I's,).
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Let » = min({p, %}.
Now lett € Rand let " € (0,r]. If t € [-2T,2T] then let s; € [-2T,2T] be such that

(t=r,t+1r)N[-2T,2T] C (st — 15,5t + 15,),

this being possible by definition of r. Then the preceding inclusion and the definition

of r;, immediately gives
St t+r’
f u(s)ds f u(s)ds
t—r" St

t+r’ St t+1"
f u(s)ds f u(s)ds + f u(s)ds
t—r’ t—r’ St

using the usual convention that
b
f ds = — f ds
a b

whena > b. If t € (oo, —2T) then, by the definition of T, we have

t+17 t+r —2T
f u(s)ds| < f lu(s)|ds < f lu(s)|ds < 1.
t—r’ t—r —00

Similarly, if t € (2T, o) then
t+17
| u(s)ds| <1,

t—r’

= < + <1

and the lemma follows. v

Now let f = [, be the characteristic function of the interval [-7, 7]. By assump-
tion, there exists Z C R of zero measure such that u = f(t) = f(t) for every t € R\ Z. For
te[-r,r]N(R\ Z) we have

—r t+r
1=f(t)=uxf{t) = jl;u(t—s)f(s)ds = f u(t—s)ds :j; u(s)ds < 1,

—r —-r
using the lemma and the change of variables theorem. This gives a contradiction. =

The last four assertions of the preceding theorem exactly say that L'(RR;TF),
equipped with convolution as product, forms an associative, commutative algebra
without unit. The first assertion says that, equipped with the 1-norm, the resulting
algebra is what is known as a Banach algebra. This property has the following
corollary.

4.2.2 Corollary (Continuity of L'-convolution) The map (f,g) — f* g from LY(R;F) X
LY(R; F) to LY(IR; F) is continuous, where the domain is equipped with the product topology.
Proof We first state a lemma that will be of use later as well.
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1 Lemma Let (U, [[-lu), (V,II-llv), and (W, |l-lw) be (semi)normed IF-vector spaces. A bilinear
map B: U XV — W is continuous, where U X V is equipped with the product topology, if and
only there exists M € Ry such that

1B(u, v)llw < Mlfullullvllv (4.5)

for every (u,v) e UxX V.
Proof First suppose that there exists M € R, such that (4.5) holds. Let (19, v9) € UXV

and let € € R.. Let
o= min{ < c < }
\V 3M" 3MlJuglly” 3Mllvolly | *

allowing that the last two terms might be infinite if either 1 or vy are zero. Suppose
that (u,v) € U x V are such that [[u — ugl|y, l[v — vollv < 6. We then compute

1B(u, v)—B(uo, vo)llw < [I1B(u — 19, v — vo)llw + [IB(u — uo, vo)llw + [1B(u0, v — vo)llw
< Mlu = uollyllo — vollv + Mllu — uollullvollv + Mluollullo — vollv <€,

giving continuity of B at (uo, vp).
Now suppose that B is continuous. Thus B is continuous at (0,0). Given this, let
M € Rsq be such that

Il oy < = = 1B o)l <1
Then, for (u,v) e UXV,
H u v - 2 _ HB( u v ) -
VMilullully | VMiolivlly VM VMilully” VMifolly /lw
= |IB(u, v)llw < Mllullullvllv,
as claimed. v
The corollary follows immediately from the lemma. [

The next result indicates an additional property of the algebra L!(RR; F), noting
that the product of convolution makes this set into a ring.

4.2.3 Proposition (L'(R;F) is not an integral domain) There exists f, g € LY(R; F) with
the following properties:
(i) fand g are each bounded and nowhere zero;
(i) £+ g(t) =0 forevery t € R.
Proof Leta = (a))jez € {'(Z;TF) and define L, : LV(R; F) - LO(R; FF) by

La(F)®) = ) a;f(t = ).

jEZ
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Let us verify that this map is well-defined. Certainly, for each t € R, the sum defin-
ing the number L,(f)(t) converges since & € {'(Z;F). Moreover, by the Monotone

Convergence Theorem,

[ X o= i) ars [ Yatse-prae =Yl [15e- piae =1t Yol < oo

j€Z j€Z j€Z j€Z
showing that L,(f) € LO(R; F).
Now let &, B € (1(Z;F) and let f € LO(R; F). Then

Lo * Lp(f)(®) = La (Z Bif(t- f)J =Y Y aBift ==K =) yufit—m),

JEZ keZ jeZ. mezZ

where
Y=Y ai (4.6)

jkez
j+k=m

using Proposition [-2.4.30. Also, fora, f§ € {(Z; F) and for f, g€ LO(R; F) we compute

La(f) * Lp(@)(®) = fR [Z aif(t—s - j)] [Z 805 - k)) ds

jeZ kez
= Y Y ai [ fe-s-pgis-hds
ieZ kez R
= Y. Y [ fe-c-j-bgde
ieZ kez. R
= Z Ymf* gt —m)=LaoLg(f*g),
meZ.

where v, m € Z, is as given in (4.6), where we swap the sums and the integral using
Fubini’s Theorem and where we use the change of variables formula.
Now define a, B € {(Z;F) by

% =7 j even,
@ =13 jel-1,1,
0, otherwise
and 4
% (11)]‘]2/2, j even,
Fi=3-1 jet-1,1}
0, otherwise.

If we define the 2mt-periodic signals

F(t) = %(Icos(t)l +cos(t)), G(t) = %(Icos(t)l — cos(t)),
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one verifies by direct computation (here we use the notion of the continuous-discrete
Fourier transform discussed in Chapter 5) that

Fcp(F)2mj) = 2naj,  Fep(G)(2mj) = 2mp;.
F(t) = Z ajel,  G(t) = Z Biell.
jEZ jEZ
Note that F(t)G(t) = 0 for every t € R. Therefore,

0 = F()G(t) = [Z ajeijt] (Z ﬁkeikt) _ Z Z ajﬁkei(jﬂc)t — Z ymeimt’

jEZ kezZ JEZ keZ meZ.

Thus

where y,,, m € Z, is as given by (4.6), and where we use Proposition 1-2.4.30 which
is valid since the sums are absolutely convergent. Injectivity of the CDFT (see The-
orem 5.2.1) implies that y,, = 0 for each m € Z. Therefore, it follows from our
computations above for the composition L, © Lg and for the convolution L (f) * Lg(g)
that, for any f1, g1 € LD(R; F) we have

La(f1) * Lp(81)(t) = La © Lg(f1 * g1)(t) = 0

forall t € R. If we take f; = g1 = x(-1,1] we see that L,(f1)(t) and Lg(g1)(t) are nonzero
for every t € R. Thus the result follows taking f = Ls(f1) and g = Lg(g1). |

Another interesting result that holds for convolution in LY(R; FF) is that every
signal is a convolution of two other signals in LO(IR;F). The second part of the
result makes mention of the CCFT which we will study in detail in Chapter 6.

4.2.4 Theorem (Convolution in L'(R; F) is “surjective”) If f € LY(R; C) then there exists
g, h € LO(R; C) such that f(t) = g = h(t) for almost every t € R. Moreover, g and h can be
chosen such that g is an element of the closure (using the L'-norm) of the ideal generated
by f and such that h and Sc(h) are even positive signals.

Proof In our proof of this result we freely make use of some results we have not
yet proved. In particular, we use facts regarding the continuous-continuous Fourier
transform presented in Chapter 6.

The proof begins with the construction of a function with certain properties. Our
construction is based on the following basic interpolation result.

1 Lemma Let a,b,c € Ry satisfy a > b > c and let y1,y2 € Ry satisfy yo > yy and
b > (y2 — y1)~. Then, for each o1 € (b,a) and o, € (c,b) for which the lines

s y1+o01s, sHyx+oa(s—1)

intersect at a point (5, &) for which 5 € Q, there exists 1: [0,1] — R with the following

properties:
(i) ¥0) =yv; (iv) ¥'(1) = o,
(ii) Y(1) = y2; (v) 9"(0) =¢"(1) =0;

(iii) ' (0) = o4, (vi) ¢"'(s) <0 fors € (0,1).
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Proof Let us write 5 = 5 and let k € Z¢ be such that kn > 2 and k(d — n) > 2. Let
L:[0,1] = R be the function

L(s) = 1+ 015, s € [(_), 5],
2 + GZ(S - 1)/ SRS (SI 1]/

noting that L is continuous with a graph consisting of two line segments with positive
slope, the slope for the leftmost being larger than that of the rightmost. Let ¢ be the
Bernstein polynomial of degree kd for L:

{7\ (kd
=Ll

j=0
(see Section |-3.6.6 for our discussion of Bernstein polynomials). Itimmediately follows

that
Y(0)=L0) =y1, Y(1)=LQ1) = ya.

By Lemma [-3.6.20(vi) we have

kd—r .
P = (k;’“’_”;), 2 AL (k]—d) (kd . r)sf'(l -5y (47)

j=0

forre{l,...,kd} and where h = é. Thus, in particular,
kd)! kd)! -
(kd) (k) A;L("d 1)

’ _ 1 ’
¢ = (kd — 1)!AhL(O)' P = (kd — 1)! kd
and (kd)! (kd)! kd -2
” _ . 2 ” _ . 2 B
$r0) = (kd—z)!AhL(O)’ P = (kd—z)!AhL( kd )
Since L(h) — L(0) kd -1 L()-L(1-h)
1 _ - 1 i - -
AhL(O) i — AL o ) = p
and
5 _ L(2h) — 2L(h) + L(0) 27 x27 (kd—=2\  L(1) = 2L(1 - h) + L(1 — 2h)
AhL(O) = 7 , V,LAJL o ) = p
and since -
n _
2h = H < _d =S
and
kd—2 kn 48)

— =3

1=2h=—r—24

by definition of k, we have

P(0) =01, ¢P'1)=02, ¢"(0)=9"(1)=0.
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The final assertion, that 1)"’(s) < 0 for s € (0, 1) will follow from Lemma [-3.6.20(vi)
if we can show that A]%L(s) <0 foreverys € (0,1-2h).
Now let us prove that 1p”’(s) < 0 for s € (0,1). Lets € [0,1 - 2h]. If s + 2h < 5 or if
s > §, it is immediate that
_ L(s+2h) = 2L(s + h) + L(s)

AJL(s) = - =0.

If 5 € (s,5+2h) note that the point (s +4, %(L(s) +L(s+2h)) in the plane is the midpoint on
the line connecting the points (s, L(s)) and (s + 2/, L(s + 2h)). This proves that AiL(s) <0
for every s € [0,1 — 2h]. Moreover, if 5 € (s,s + 2h) then AiL(s) < 0. Now note that,

by (4.8),

kn-1_ . . ki=2
o ST

Therefore, for s € (0,1) we note that, in the case of r = 2, the sum in (4.7) is one of
nonpositive terms, and has the term

AL - h)(kd]._ r)sj(l S

as one if its summands. This term is negative as we showed above. Thus 1"’ (s) <0, as
claimed. v

In Figure 4.21 we illustrate how one can think of the function ¢ from the lemma.

Figure 4.21 The function from Lemma 1 in the proof of Theo-
rem 4.2.4; the shaded regions are the admissible slopes at the
endpoints

Using the previous lemma, the following lemma provides the function we need.
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2 Lemma Let (sj)icz., be a sequence in Rxq such that sy = 0 and sj.1 > 2sj for j € Z~o. Then
there exists a function ¢: Rsg — R with the following properties:

(i) ¢ is twice continuously differentiable;
(ii) ¢(sj) =], j € Zso;
(iii) sj¢p’(s)) <2,j=2;
(iv) ¢”(s) <0 for s € Rxy.

Proof We construct ¢ by defining it on each of the intervals [s;_1,s;] in such a way
that when the definitions on each of these intervals are combined to give a function
defined on Ry with the desired properties.

Let us give a few preliminary constructions. Define by = s, a1 = %bl, and ¢; =
(s3—52)7L. Then, for j > 2, recursively define a; = bj_1, b; = ¢j-1,and ¢; = (8j2 — sj+1)‘1.
In our constructions, the interval (b}, a;) will be the valid set of slopes for graph of our
function ¢ as it passes through (s, j). Note that ¢; < b; < a; for each j € Z.,.

Let us now select which slopes we choose. Let j € Z.o, let 0; € (bj,a;) and
0j+1 € (bj+1,aj+1), and let

1

A = j+ a5 =5), ) = j+1+0j(s = 5501)

be the lines through (s, j) and (sj+1, j + 1) with slopes 0 and 0}41, respectively. These
lines intersect at a point in the plane whose s-coordinate is

SGj,Gj+1 -

1+ O]'S]' - O]'+15]'+1
Oj=0js1

One can verify that, as o; varies in the interval (b;,4;) and ¢, varies in the interval
(bj+1,aj+1), So 041 varies throughout the interval

7

(1 + leS]' - b]'+1S]'+1 1+ b]'S]' - 11]'+1S]'+1)
aj—bjs bj —aj '

Moreover, if 0; € (bj, a;) is fixed, So/,0141 varies throughout the interval

/

(1 + O']‘S]‘ - b]'+1S]'+1 1+ G]'S]‘ - El]‘+1S]'+1)
0= bjn oj=ap )

We then select the slopes 01 and o7 so that

So1,00 — 51
alé;eQ'
52 =51

For j > 3 we then recursively define ¢, by asking that

S6i1,0; — Sj-1
aj-1 </ - € Q.
S]' - S]'_l

These constructions are possible by Proposition I-2.2.15.
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Let j > 2. By Lemma 1 let ¢;: [0,1] — R satisfy

1. 90 =j-1 4. Yi(1) = gj(sj = sj-1);
2. v =75 5. 970 =¢/(1)=0;

3. ¥A0) = 0j-1(s) = 5j-1); 6. //(s) < 0fors € (0,1).
Then define ¢;: [sj-1,s;] = Rby

@@=%C_%ﬁ

Sj—S]'_l

and note that

1. qf)]'(S]'_l) = j— 1, 4, (i);(S]) = G]',
2. ¢i(s)) =], 5. ¢/(sj-1) = ¢/(s)) = 0, and
3. ¢i(sj-1) =0j, 6. ¢(s) <0 fors € (sj-1,5)).

Then, if we define ¢: R>9p — R by asking that ¢|[s;-1,5;] = ¢;, we see that ¢ has the
first two properties asserted in the statement of the lemma.

For the final assertion of the lemma, note that by the Mean Value Theorem we
have

P(sj) = P(sj-1) = '(5))(s; — sj-1)
for some 3; € (sj-1,5). Since ¢” is negative on (s;-1, ;) it follows that ¢’(s;) < ¢’(3)).
Since ¢(sj) = jand ¢(sj-1) = j — 1 this gives

¢/(Sj)(Sj - Sj—l) <1.
Since sj_1 < 1s j we have the final property asserted for ¢. v

With the preceding technical constructions in place, we proceed with the proof
proper. For s € R, define F;: R — R by asking that

1-4, pi<s
Foc(Fs)(v) = ° o
cc(Fs)(v) {0/ otherwise.
One can verify that
)
sin“(7st)
Fy(t) = T em22 !

cf. Example 6.1.3—4. Define
E(s) = |IFs* f = flh.
By Theorem 6.2.36, lim;_,., E(s) = 0.

Now choose a sequence (s)) cz., by letting s; = 0 and by taking s; > 2s;_; such that
E(s) < j~'if s > s;. Then, by Lemma 2, let ¢ be such that

1. ¢ is twice continuously differentiable,
2. ¢(s) = j, j € Zn,
3. sidp'(sj))<2,j=2,and
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4. ¢"(s) <0fors e Ryp.
Then, for j > 2, since ¢" is nonpositive and using integration by parts,

f " SE@IE ) ds < — 2 f " s)ds

S (sqb (s)ls’” f ¢’ (s) ds)

= 77259 (5)) = Sj1(5j41) + P(sj,) — p(s;)) < 3772
Thus
144 %2 144 - 1
f sE(s)|¢p” (s)lds < f sE(s)l¢” (s)| ds +BZ - <
2/

Rxo 51

using Example |-2.4.2—4. Since

E6) = [ IFe 50 - fCOIt,
R
it follows from Fubini’s Theorem that

(s,t) = (Fs * f() = f(£))s”(s)

is integrable on IR>g X R. Therefore, again by Fubini’s Theorem, the function
s> (Fs= f(t) — f(1))s”(s)
is integrable for almost every t € R and that the function g defined by

g(t) = f(t) + f]R (Fs = f(t) = f(D)s¢" (s) ds

is integrable.
By Proposition 6.1.18 we have

Fec(@) = Fec(H) + Fec () fR (Fec(Fs)(v) — Ds¢”(s) ds.

For v € R, we use the form of c(F;s) to compute

L>o(%C(FS)(V) —1)s¢”(s)ds = — [)V s’ (s)ds —v\[voo ¢”(s)ds

SO+ fo ¢/(5) ds — vy ()2
() - 9(0) = p) —

using integration by parts. Now extend ¢ to be defined on R by asking that ¢p(—s) =

for s € Rg. Then, since Fc(Fs)(—v) = Foc(Fs)(v), we have

(Fec(Fs)(v) = 1s¢”(s) ds = ¢p(v) =

Rxo

291
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for all v € R. Therefore,

Fcc(@) = Fec(H(P(),  veR (4.9)

Next let 1)(s) = —, this making sense since ¢(s) € R for every s € R. We have
% 36 g ¢ y
96 _96) 96
P(s)?’ PG Ps)?

This implies that 1" is negative and )" is positive in Ryg. Moreover, lims_,« {(s) = 0
and lims_,, 1’(s) = 0. By the Mean Value Theorem we have

P(ta) = P(t) = ' (H(t2 — 1)

for every t1,t, € Ry satisfying t; < t; and for some t € (t;, t). Since ¢’ is increasing
we have 1’ (t;) > ¢’(f) and so

P(s) = P(s) =

Y (t2)ta > P(t2) — P(tr) + ' (f2)h

for all t1,t, € Ry satisfying t; < t,. Let € € Ryg and let t; € Ry be sufficiently large
that (t) < e for t > t;. Then

Y (t2)t2 > P(t2) — € + P/ (2)t1,

and taking the limit as , — co we have
lim l,bl(tz)tz > —€,
t2—>oo

which, since € is arbitrary, gives

tlim l//(tz)tz =0 (410)
2—00

Now, by integration by parts and (4.10), we have

f s (s)ds = sy’ (s)ly — f Y’ (s)ds = 1(0) < oo.
Rxo Rxo

Therefore, since s +— F;(t) is bounded by 1 for every t € R, we can define / by

h(t):L Fy(t)sy"(s) ds.

One can easily see that
(s,£) = Fs(t)sy" (s)

is integrable on R>o X R. By Fubini’s Theorem it follows that / is integrable.
We now have

Fecll) = f}R Fec(EW)sy”(5) ds.
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For v € R,p we compute
Feclh®) = [ = nye)d

—sy O - [ v er =y,
using integration by parts and (4.10). As above, since #cc(Fs) and ¢ are even, we have
Fec)v) =¢(v),  veR (4.11)

Thus, combining (4.9) and (4.11), we have Fcc(f) = Fcc(9)Fcc(h), and the first asser-
tion of the proposition follows from Proposition 6.1.18.
It is clear from the definitions that i and Hc(h) are positive and even. Let s € R
and define
0, v € (-0, —5],
(Fs) (A + %) +Fs(v), ve(=s0],
(Fs) (A = %)—Fs(v), s€(0,s],
0, s € (s, ),

Ds(v) =

and note that @; is the derivative of ¢F; at those points where the latter is differentiable.
Note that @; is piecewise continuous with compact support. Therefore, as we showed
in Corollary 6.2.28, the function

W,(t) = f]R H()Fs(v)e?™ dv

is in LM(R; R) and Fc(Ws) = ¢F;. By (4.9) we have

Fec(Ws)Fec(f) = Fec(Fs) Fec(g)-

By Proposition 6.1.18 it follows that Fs* g = W, * f and so Fs * g is in the ideal generated
by f for every s € Ryg. By Theorem 6.2.36, lim;_, Fs * ¢ = g, the limit being taken
with respect to the L-norm. It follows, therefore, that g is in the closure of the ideal
generated by f, as claimed. ]

4.2.5 Remark (The character of factorisation in L'(R; F)) The proof of Theorem 4.2.17
below is easily adapted to prove the following, which is an alternative version of
Theorem 4.2.4.

Let € € Ro. If f € LO(R;TF) then there exists g, h € LO(R; F) such that
(i) f(t) = g=h(t) for almost every t € R,
(i) g is in the closed ideal generated by f, and
(iii) 1If — gl <e.
In fact, the preceding result is somewhat easier to prove than Theorem 4.2.17 since

the topology on L'(RR;F) is a norm topology, and is not defined by a family of
seminorms, as is the topology on L| (IRs; IF). o
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Note that one of the factors, namely /, in the convolution f = g+hin the statement
of the preceding theorem is a positive-valued signal. It makes sense to ask whether
every nonnegative-valued signal is the convolution of two nonnegative-valued
signals. This is not the case, as the following example shows.

Example (A nonnegative signal that is not the convolution of two nonnega-
tive signals) Let Cy, be the Cantor set from Example |-2.5.42 with e = % We recall
the following:

1. Cy)p is compact;

2. int(A) = 2;

3. every point of C;; is an accumulation point.

We will show that xc, ,, the characteristic function of Cy 2, is not the convolution of
two nonnegative signals. We do this with a few lemmata.

Lemma If f, g € LO(R; Ryo) then f + g is lower semicontinuous.

Proof By Proposition I11-2.6.39 let (f);cz., be a sequence of simple functions satis-
tying

1. fj+1(t) 2 fj(t)/ ] € Zo, and

2. f(t) =limj o fi(t).

By Corollary 4.2.10 below, f; * ¢ is continuous and bounded for each j € Z.,. By
the Monotone Convergence Theorem,

lim fj g(6) = f+ ()

for every t € R. By Proposition [I-1.10.17 it follows that f * g is lower semicontin-
uous. v

Thus it follows that if xc,, is the convolution of two nonnegative signals, then
Xc,,, must be almost everywhere equal to a signal that is lower semicontinuous.
This is not the case, as the following lemma shows.

Lemma The signal xc,, is not almost everywhere equal to a lower semicontinuous signal.

Proof Suppose that xc,, is almost everywhere equal to the function f. Let Z be
the set of measure zero where f and xc,, differ. Lett, € R. If tp € R\ Cy), then,
by closedness of C;,, there exists a neighbourhood U of t; such that U C R\ Cys.
Choose r € R, such that B(r, ty) € U. For j € Z., note that B(?, ty) — Z # @ since Z
has measure zero. Choose t; € B(?, to) — Z so that the sequence (t;)cz converges to
to. Note that
limsup f(tj) = lim xc, ,(¢;) = 0.
jooo

Next suppose that ¢y € C;/2. Note that Cy» N B(r, tp) has positive measure for every
r € R.o (why?). Thus, for each j € Z.,, we can take t; € (Cy2 N B(%,to)) —Z. The



4.2.7

4.2.8

2022/03/07 4.2 Convolvable pairs of signals and properties of convolutions 295

sequence (/) ;cz., then converges to f, and satisfies f(t;) = 1. Thus

limsup f(t;) = lim xc,,(t;) = 0.
. j—o0

]

Thus the preceding holds, for some sequence (t;)jcz.,, for every t; € R, show that f
cannot by lower semicontinuous by Proposition II-1.10.14. v

The previous lemma gives us an example of a nonnegative signal that is not the
convolution of two nonnegative signals. .

Let us summarise the algebraic structure of L'(RR; FF).

Theorem (The algebraic structure of L' (R; F)) The algebra L' (R; IF) with the product
defined by convolution has the following properties:

(i) the multiplicative structure is commutative and associative;
(ii) it has no multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is not an integral domain.

4.2.2 Convolution between LP(R; F) and L9(R; IF)

In this section we consider the convolution between signals living in various
LP-spaces. There are various flavours of such results, but many of them are conse-
quences of the following result, sometimes known as Young’s inequality.

Theorem (Convolution between LP(R; IF) and LI(R; IF)) Let p,q,r € [1, o0] satisfy
1= %+Cll—1. If f € LP(R; F)and g € LO(R; FF) then (f, g) is convolvable, f+g € LY(R; F),

and ||f * g|l. < IfllplIgllq-
Proof Define

h(t) = lef(t —5)g(s)lds,

noting that this integral is always defined, although it may be infinite.

Define r—p r—g
s Pe
and p g
p:a, q:‘E

We claim that we have the following relations:
1. a,p€[0,1];
2. p,qell,ef;

1 1 1
o2+ =2+=-=1.
3 P q r
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First of all,
1 1
a=1-=-<1, a= (———):p(l——)>0,
p T q
and similarly g € [0,1]. It is evident that p, 7 € [1, co]. Finally,
11 1 a p 1 1 1 1 1 1
—+ 4= —d—t-—=———t+-——+-=1,
p q9 v p g v p v g v 7
as claimed.

With this in mind, we compute using Holder’s inequality, Lemma 111-3.8.54 and
Exercise 111-3.8.8,

nt) = fm £t = S Ig@IPIEE - 9)%g()F ds

1/r 1/p 1/9
_ ( f}R £t = 90" |g(s)0-P" ds) ( fR £t =9I ds) ( fm g ds)
1/r
= (f]R|f(t_S)l(l—a)r|g(s)|(1—ﬁ)rds) ”ngﬁ“g”gq

Thus, using Fubini’s Theorem,

r — a B _ =) 1-pyr
Jmorae=usigty. [ { [ 1= o1 as) a

- Wt git, | ( [ire-sp dt) o
= p p (1-a)ry (A=P)r
- ”f”gﬁ”g”ﬁ‘? = ”fl|gﬁ”g”ﬁ17|If”(l—a)r"g”(l—ﬁ)r'
We have
af=r,(1-a)=r, fp=p, (1-pg=r,

which gives
I1f = gl < 1£lplIgHlG

giving the result upon taking rth roots. |
The preceding theorem, applied in various cases, gives a few useful corollaries.

4.2.9 Corollary (Convolution between L'(R;F) and LP(R;F)) If p € [1,00], if f €
LPX(R; IF), and if g € LY(R; F), then (f, g) is convolvable, f+g € LP/(IR; ), and ||f + g||, <
lIfllplIgll:-

Proof This follows from Theorem 4.2.8 withr = pand g = 1. [ |
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4.2.10 Corollary (Convolution between LP(R;F) and LP'(R;IF)) Let p € [1,c0] and let
p’ € [1,00] satisfy % + é =1 If f € LO(R;F) and g € LPNR;F) then (f,g) is
convolvable, D(f,g) = R, and f+ g € Cg (R ).

Proof That (f,g)is convolvable and that f =g € L(*®)(RR; ) follows from Theorem 4.2.8
with r = co and g = p’. Moreover, since s — f(t —s) is in L?P)(R;F) and since s —
f(s) is in LP)(R;F), we conclude from Holder’s inequality, Lemma [lI-3.8.54 and
Exercise I11-3.8.8, that the signal s — f(t —5)g(s) is in L(R; F). Thus D(f, g) = R.
It remains to show that f * ¢ is continuous. Key to this is the following lemma,
recalling that, if a € IR, then 7 f(t) = f(t —a).
1 Lemma If p € [1, 00) and if f € LP(IR; F), then lim,_|lf — T fllp = 0.
Proof Let e € R.o. Choose g € Cgpt(IR; C) so that ||f — gll, < § by part (ii) of The-
orem 1.3.11. Suppose that supp(g) € [a,p]. By uniform continuity of g (cf. Theo-
rem 1-3.1.24), choose 6 € (0, 1) so that |g(t —a) — g(t)| < W when |a| < 6. Then
1/p

B+1 1/p B+1 &P c
=y =( [ tse-o-gora) ([ getaga) -5

for |a| < 6. We then have

Iaf = fllp < lltaf — waglly + lTag = fllp + 11 — &lly
=2l = gllp + lTeg = fllp <&,
as claimed. v
By commutativity of convolution, Proposition 4.1.9(i), we need only consider p €
[1, 00). Recall the notation " f(t) = f(~t) and note that, forany t € R, ;0" f € LP(R; FF)

if f € LP)(IR; IF), as a consequence of the change of variable theorem, Theorem I11-2.9.38.
Now let € € R, and choose 6 € R, such that

€
|Tot,0" f — ti0" fll, < ——

a“t f t f 14 ”g“p'
for |a|] < 6, this being possible by the lemma. Then, using Holder’s inequality in the
form of either Lemma I11-3.8.54 and Exercise 111-3.8.8, we have

f*glt+a)— Frg(b) < fR|f<t+a—s)—f(t—s>||g<s>|ds

< lltgtio’f = 1o flpliglly < e

for |a| < 6. This gives the desired continuity of f = g. |

4.2.11 Remark (Continuity of translation) In Lemma 1 in the proof of the preceding
corollary we show, essentially, that translation is continuous in L?(R;F) when
p € [1,00). This conclusion is false when p = . Indeed, if f € L®)(RR;F), then
lim,,llf = 7, fllo = 0 if and only if f is almost everywhere equal to a uniformly
continuous signal. .

The following result records the continuity of convolution in the case we are
considering.
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Corollary (Continuity of LP-convolution) Let p,q,r € [1, 0] satisfy 1 = 1% + é - 1.
The map (f,g) +— f=g from LP(R;IF) X LYR;F) to L"(IR; F) is continuous, where the
domain is equipped with the product topology.

Proof This follows from Lemma 1 from the proof of Corollary 4.2.2. []

4.2.3 Convolution in L:oc(]RZo; F)

Next we turn to causal convolution. With the convolutions between the various
LP-spaces, the natural topologies to consider on the various signal spaces were
prescribed by the appropriate norms. However, for the signal spaces L} (Rs; F),
p € [1,00), there is no useful norm topology. We shall provide a locally convex
topology for L' (Rs;IF), using tools from Chapter Il-6. Thus on L (Rso;F) we
consider the family of seminorms ||'||7,, T € IR, defined by

T 1/p
fllzp, = (f lf®r dt) , T € R, p€[1, ),
0

and
lfllT.eo = esssup{lf(t) | t €[0,TI}, T € R.o,

and we note from Theorem IlI-6.5.5 that the resulting locally convex topology on
Lfoc(]RZO ; IF) is Fréchet. In this section, we focus on Llloc(]Rzo} IF); in Section 4.2.4 we
shall consider the more general case.

With this notation, we have the following result that provides the basic structure
of the algebra L (Rs; F).

Theorem (L:OC(IRZO; F) is an associative, commutative algebra without unit,

when equipped with convolution as a product) For f,gh € L) (R.;F), the
following statements hold:

(i) If ® gliry < lifllrallglit for every T € Ry

(i) foeg=g®f;

(ii) f®g)®h=f® (g®h),

(iv) f®@(g+h =f®g+f®h;

(v) (recalling Remark 4.1.2) there is no equivalence class of signals [u] € L] (IRs; F)

such that [u @ f] = [f] for every [f] € L] _(Rso; ).

Proof Only parts (i) and (v) do not follow from already proved facts.
(i) We use Fubini’s Theorem, the change of variable theorem, and the causality of
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fand g:

dt

T T t
If * gllrs = fo f @ gldt = fO fo F(t - 5)g(s) ds
T t T T
Sf(; (Llf(t—s)g(s)lds) dtgj(: (fo If(t—s)g(s)lds) dt
T T—s T T
_ fo |g(s>|( f s |f<f>|df) ds < fo |g<s>|( fo If(T)IdT) ds

T
< 1Ifilza fo 1)l ds = [|fllzallglr 1.

(v) Let u € L{" (Rso; IF) be such that u @ f(f) = f(t) for every f € L{" (Rsq; IF) and for
almost every t € Ryp. This implies that u & f(t) = f(t) for every f € Lgl(IRzo ;IF) and for

almost every t € [0,1]. Let 1l € LY(R; F) be defined such that # = u(t) for t € [0,1] and
such that it is zero off [0, 1]. By Lemma 1 from the proof of Theorem 4.2.1, there exists

r € Rsg such that
t+1’
f u(s)ds
t—r"

Let p = min{r, 1} and take f = xjo,]- By hypothesis, there exists a set Z C [0, 1] such
that u ® f(t) = f(t) for every t € [0,p] \ Z. Thus there exists t € [0,1] \ Z such that
u® f(t+5) = f(t+5). Then

<1, teR, v €(0,r].

1=f(t+5)=u®f(t+§)=u*f(t+§)=fRu(t+§—s)f(s)ds

0 t+p/2
:f u(t+§—s)ds:f u(t)dr <1,

0 t—p/2
the contradiction giving us the desired result. |

We can also prove that convolution is continuous in L, _(Rs;F) using the ap-
propriate topology.

4.2.14 Corollary (Continuity of Ll‘oc-convolution) Themap (f, g) — f®gfromL! (Rsp; F)x

loc
L. .(Rxo; F) to L} (Rso; F) is continuous, where the domain is equipped with the product

topology.
Proof Let f, g€ Llloc(leO ;IF) and let U be a neighbourhood of f ® g. Thus there exists

T,e € R such that
U(Te f®g) = {hel]

loc

(Rxg;F) | h=f®glltg <e} < U

By Lemma 1 from the proof of Corollary 4.2.2, the map (f’, g’) = f’ ® ¢’ is continuous
in the topology defined by the seminorm [|-||7;;. Therefore, there exists 6 € R-p such
that, if ', ¢’ € Llloc(]RZO; IF) satisfy

If = f'llira, llg — §'llra <O,
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then
Ifeg-f ®gllr1 <e.

That is, the set
{(FH1Nf=flirlig = &l < o)

is mapped to U by convolution, and this gives the desired continuity. |

The following famous theorem gives some properties of this algebra (which are
summarised in the corollary following the theorem).

4.2.15 Theorem (Titchmarsh' Convolution Theorem) If f,g € L\ (R;TF) are such that
o(f), o(g) > —oo, then o(f + g) = o(f) + 0(g).
Proof The proof is an indirect one that relies on establishing a few facts about the
so-called Volterra operator. This is the linear map V: LW([0,1];F) — LW([0,1];TF)
defined by

t
vqwriﬁfch

Let us first examine the form of V and its iterates. To do so it is convenient to denote
by f € LO(RR; F) the signal corresponding to f € L1([0, 1]; F) according to

)= { f(t), telo1],

0, otherwise.

For k € Z let us also define /i: R — FF by
-1
() = L & t € Rxo,
0, t € IR<O.
With this notation we have the following lemma.

1 Lemma If f € LO(R;TF) and if k € Z¢ then VX(f)(t) = hy * f(t)for every t € [0,1].
Proof Let f € LM ([0,1];F) and compute

t t
vmm=£ﬂﬂw=ﬁfmmwwM=mwm

for all t € [0,1]. This establishes the lemma for k = 1. Now suppose that the lemma
holds for k = r and compute

VL) = VIVI(OE) = by x (= f)(E) = (= hy) = f(2)

for t € [0,1], using the induction hypothesis and associativity of convolution. The
result now follows since one easily verifies that iy = h,(t) = hyq. v

The following result provides the invariant subspaces of the Volterra operator.

'Edward Charles Titchmarsh (1899-1963) was an English mathematician, all of whose work was
in the area of analysis, including complex function theory and Fourier analysis.
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2 Lemma For a closed subspace S € LV ([0, 11; IF), the following two statements are equivalent:
(i) there exists b € [0,1] such that

S = {f | £(t) = 0 for almost every t € [0,b]};

(i) V(S) C S.

Proof (i) = (ii) Supposing that S is as hypothesised for some b € [0,1], let f € S and
lett € [0,b]. Then

t
VUWﬁiﬁf@MT:Q

and so V(f) € S.
(if) = (i) First suppose that S € C°([0, 1]; F) is such that V(S) € S. For b € [0,1]
denote
Sy = {f € C%[0,1]; F) | f(t) = 0 forall t € [0, b]}.
We shall prove that there exists b € [0, 1] such that, if f € S, then f € S;. In our proof

of this fact, we shall use the fact that the dual of C°([0, 1]; FF) is W([O, 1]; IF)—the vector
space of normalised functions of bounded variation (see Definition |lI-2.12.4)—and have 1 shomn that

that the natural pairing between ¢ € BV([0,1];F) and f € C%([0, 1];F) is bounded variation

are measurable?

1
¢m=£fwwm;

see Theorem I1I-2.12.6. We shall denote by ,: ZB([0,1]) — R the signed or complex restricted sore1
measure defined on [0, 1] by notation defined?

1
WW=£XNMW)

for A € 98([0,1]). We shall implicitly think of functions defined on a subinterval of R
as being extended to be defined on all of R by taking them to be zero off the subinterval
on which they are defined. In particular, we shall not make use of the “*” notation
from Lemma 1.
Let S € C%([0,1];F) be a subspace invariant under V as above. Let f € S and
let Sy be the smallest subspace of S containing f and invariant under V. Let ¢ €
BV([0, 1]; F) be such that (p(Vk( 1)) =0foreveryk € Z.y,i.e., ¢ annihilates the subspace
Sy, cf. Theorem 1-5.4.12. By Lemma 1, p(ly = f) = O for every k € Z.. Let o"p €
BV([-1,0]; F) be defined by o*¢(t) = ¢(—t). By we have conv of measures

1 1
Pl f) = fo hyx f(B) dep(t) = j; hix f(£) d(0"@)(=t) = (e = £) = (079))(0) = 0
for every k € Z¢. By associativity of convolution we then have prove this for what is
needed
(= (f = (@eNO) =0, ke Zso.

Thus
fﬂ;hk(_t) d(f = (c"p))(t) =0, ke Z-y. (4.12)
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Let 0", be the signed or complex measure on [-1, 0] associated with o*¢.

We claim that supp(f * (0"1p)) S Rso. Indeed, suppose that typ € R<p lies in detine support of
supp(ue). Then, by, there exists a continuous function g € Cgpt(]R; F) such that "
supp(g) € [to — €,to + €] and such that f * (0"ue)(g) # 0. By the Weierstrass Ap-
proximation Theorem, let (¢;)cz., be a sequence of polynomial functions converging
uniformly to g on [tg — €,0]. By (4.12) we have f = (0"uy)(g;) = 0 for every j € Zo.

ref Continuity of f * (0" ) on the normed vector space (Cgpt(]R; IF), |||l) then ensures that

what?

[0 pe)gQ) = ]lggof* (0 uep)(&)) =0,

and the resulting contradiction implies that supp(f * (6" up)) € Rxo, as claimed.

Let [a, 6] be the smallest compact interval such that supp(f) C [, p]. We claim
that ann(Sy) = ann(S,). Since f € S, and since S, is invariant under V from the
first part of the proof, Sy C S,. Therefore, ann(S,) C ann(Sy) by Proposition I-5.7.15.
Conversely, suppose that ¢ € ann(Sy). Let [, y] be the smallest compact interval such

measures are that supp(u,) C [a, f]. By and we have supp(f *(6"uyp)) = [a =y, —0]. Thusa -y >0
sumport of comvolution and so y < a. Thus ¢ € ann(S,), as claimed.
of distributions Now note that S is the closed span of the union of the subspaces S for f € S. Our

arguments above show that S is the closed span of the union of subspaces of the form
Ss(f) for f € S. We claim that this implies that there exists b € [0,1] so that S = S,
Indeed, take

b =inflo(f)| f € S}.

First, if g is in the span of the union of the subspaces S for f € S then

§=c181+ -+ 8k

for some cj € Fand g; € Sg(f].), j€{l,...,kl, where f; € S. It immediately follows that
g(t) = 0 for
t € min{o(f1),...,0(fx)} = b.

Thus g € S. Next let g be in the closed linear span of the union of subspaces of the
form S,(f) for f € S. Then there exists a sequence (g))jez., in Sy converging uniformly,
and so pointwise, to g. It follows immediately that ¢ € S,. Thus the closed linear span
of the subspaces Sy for f € Sis Sy, as claimed.

The above arguments prove the second half of the lemma for continuous functions.
Let us now prove this half of the lemma for integrable signals. Thus we let S C
LD([0,1];F) be invariant under V. Then V(S) is invariant under V and and, by
Theorem [11-2.9.33, is comprised of functions that are absolutely continuous, and so
continuous. By our arguments above, if

b=infla(Vf)| fe€S},
then V(S) = S;. Thus, if f € S,

t
f f(r)dt =0, t€[0,b].
0

Thus, by Lemma [11-2.9.32, f(t) = 0 for almostevery ¢ € [0,b] and so S = Sj, completing
the proof. v
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Using the preceding result on the invariant subspaces of the Volterra operator, we
can prove the following result. Here we adopt the convention that functions defined
on an interval are extended to R by taking them to be zero off the interval of definition,
making no special notation for the extended function.

3 Lemma Letb € Ry If f, g € L%([0,b]; F) satisfy o(f) = 0 and o(f+g) > b, then g(t) = 0 for
almost every t € [0,b].

Proof For k € Z let hy be as defined above and note that o(h) = 0. By Proposi-
tion 4.1.8 we then have

o(hg* fxg)>0o(hy) +o(f*g)=0(f*g)>b.

By Corollary 4.2.10, hy = f * ¢ is continuous and so i = f = g(f) = 0 for all ¢t € [0, b].
Therefore, in particular,

1
0= hes frg(l) = fo e+ FH(L - B

Thus the signal t = g(1 —#) is orthogonal in L?([0, 1]; TF) to h = f = VX(f), k € Zs0, using
Lemma 1. Thus, by Lemma 2, t — g(1 —t) is orthogonal in L%([0,b];F) toa subspace of
the form L?([a, b]; FF) for some a € [0, b]. Moreover, as we saw in the proof of Lemma 2,
a = 0 since o(f) = 0. Therefore, g is almost everywhere zero, as claimed. v

Finally, we use the last lemma to prove the theorem. By translating the signals
and by swapping them, we can assume without loss of generality that o(f) = 0 and
0(g) = 0. By Proposition 4.1.8 it follows that o(f * g) > 0. Let M € R5¢. Define

po 10U *8) a(fxg) <eo,
M, G(f * g) = 00,
Since o(f * g) > o(g) it suffices to show that o(g) > b.
Now define f; = h; * f and g1 = hy * g. Since

t t
filb) = fo fdt, gi(®) = fo g(0)dr

it follows from Theorem I[lI-2.9.33 that f; and g; are locally absolutely continuous and
that their derivatives are almost everywhere equal to f and g, respectively. There-
fore, o(f1) = o(f) = 0 and o(g1) = 0(g). Now, by Proposition 4.1.8, associativity of
convolution, and the easily verified fact that iy * hy = hy,

o(fixg1) =o(hi+hi* f*g)=o(hy) +o(f*g) >0

Now let f>,g2: R — TF be defined so that they agree with f; and g; restricted to [0, b]
and are zero elsewhere. Note that, for t € [0, D],

t t
fiegi) = fo filt = 9)g1(s) ds = fo folt = 9)ga(s) ds = fo = ga(0).
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Since f; and g; are continuous, f, and g are bounded and so in L%([0, b]; F). Since
o(f2) = o(f1) = 0 and o(f2 * g2) > b, by Lemma 3 it follows that g is almost everywhere
zero. Thus 0(g1) > b and so, since g; is continuous, for every ¢ € [0, ],

t
0=8N%i£g@Mt

This gives g(t) = 0 for almost every t € [0,b] by Lemma 111-2.9.32. Thus the theorem
follows. u

The following consequence of the Titchmarsh Convolution Theorem as stated
above is one that often carries the name of the theorem.

4.2.16 Corollary (Ll1oc(]R20; IF) is an integral domain) When equipped with the product ®,
L,..(Rxo; IF) is an integral domain.
Proof If f ® g(t) = 0 for almost every t € Ry then o(f ® g) = co. It follows from

the Titchmarsh Convolution Theorem that at least one of o(f) or 0(g) must be infinite,
which gives the result. |

Next let us give the analogue of Theorem 4.2.4 for the algebra Lf(l)z(lRZO ; IF).

4.2.17 Theorem (Convolution in L:oc(]Rzo; IF) is “surjective”) If f € LS))C(]RZO; IF) then there
exists g, h € LD (Rso; FF) such that f(t) = g ® h(t) for almost every t € Ry. Moreover,

loc
given € € Ry and T € R., g can be chosen such that

(i) g is in the closed ideal generated by f and
(ii) |If — gl dt <e.

Proof First of all, let us denote [lloc(IRzo ;F)=Fa& Llloc(IRzo ;IF) and define a product in
—1
L]oc (RZO; IF) bY
(@ f)-B g =(apag+Bf+f®g).
Note that (1, 0) is then an identity in this algebra. Moreover, if for T € R, we define a

—1
seminorm on L, .(R>p; IF), denoted by ||-||7,1 (accepting a mild abuse of notation), by

T
nwmm:w+£uwm

Note that ||(a, f) - (B, 9llT1 < (e, HliTall(B, 91, as may be directly verified. Let us
agree to write I = (1,0) so that («, f) = al + (0, f), which we simply write as al + f.
We now prove a few lemmata.

1 Lemma If f Llloc(]RZO ; IF) has the property that ||f[lt1 < 1 for every T € R, then 1 —f is
invertible and

[o¢]

(I—f)‘1=I+Zf“,

n=1

where f" denotes the n-fold product of f with itself, using the product ®.
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—1
Proof First we claim that multiplication in L;,.(R>o;F) is continuous. That is, we
show that the map (1, v) = u - v is continuous, where the domain is equipped with the

product topology. Let ug, vg € [lloc(]Rzo ;IF) and let N be a neighbourhood of (19, vp). Let
U be a neighbourhood of ug - vy. By there exists T € R, and € € R, such that what

. 1
U(T,€e) = {u € Lioc(Rx0; F) | |lu—uollr1 <€} €U

First suppose that 1 # 0. Let 6 € R be such that

€ €
O\llvollT, +—)<—
( T Dluollr )~ 2

and let u € U(T, 6) and v € U(T, ZII;W)‘ Then

€
lollr1 < llo=wollT1 + lloollr1 < llwollty + 57—
2|lullra

and so
[ -0 —ug - vollT,1 < |l(u —uo) - vllr,1 + lluo - (v —vo)llT1 <€,

giving the desired continuity of multiplication in case 1y # 0 by . If 49 = 0 than, taking nar
u,v € U(T, vfe), we have
llu-v—up - vollry <e,

completing the proof of our claim that multiplication is continuous.

—1
We next claim that the sum );’, f" converges in Lj,.(R>p;F). Let T € R, and

N € Z~o. Then
" Cfllmy
an I < ZufnT1 T

using Example |-2.4.2—1. Thus

" 17,1
an I < T

giving convergence of the sum on the left. Thus, if € € R, there exists N € Z( such

that
Y lflira <e.
n=N

Therefore, if j,k > N,

k
Y| < Y <o
n=j+1 n=j+1

showing that the sequence of partlal sums is Cauchy with respect to the seminorm
lllT1, and so is convergent with respect to that seminorm. This gives convergence of

the sum in Elloc(leo ; IF) by Proposition I11-6.2.9.
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Now, using continuity of multiplication to swap the multiplication and the sum,

we have
<1—f>[1+2f”]=1+2f”—f—2f" =1,
n=1 n=1 n=2
giving the lemma. v

2 Lemma Let T € Ryo. If G([lloc(leo; IF)) denotes the set of invertible (with respect to

multiplication) elements of ElloC(IRzo ;IF), then the map G(Elloc(leo ;F)sal+f (al +)7!
is continuous in the topology defined by the seminorm ||-||t 1.

—1
Proof Letv € L;,.(IR>0;F) and let € € R. Let 6 € R, be sufficiently small that
1112 s
07,0
1= [[o~Yr,10”
for all &’ € (0,0). Then, if ||u — v|[r1 < 6 we have

Nt = r = -0 0=-uw) ™ =D -7y

o0 o0
<[ Y@ @-wy| o < [Zuv—1 (0~ u)llé,l} o~ I7;1
=1 T1 j=1
<o o™ (v = u)llrs < ||U_1||2T,1||M =l
1=l @ =-wlira T 1=l imallu = vllra
using Lemma 1 and Proposition 111-3.4.2. This gives the result. v

3 Lemma Let fe L} (Rsq;F), let u € L (Rso; Rso) satisfy

f u(t)ydt =1,
Rxo

and let T € R>o. Let p € (%, 1) and define

v=(Bl+ (1= pu).

Then

[Iv-f—fllpq < _51 lu®f—fllr1.

26

Proof First note that

ﬁ1+(1—,8)u:,8(1+ﬁg1u)

and that

ull  <llullrg <1

i

-1
p

T1
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for every T € R.. It follows from Lemma 1 that SI + (1 — f)u is invertible and that

BI+1-Bu)yt =p" [I+;ﬁglun}

We have

v f=f=(l+A-puw =] f
= (BI+A=pu)" = I+ =pu)™ - (Bl + (1~ pu)) - f

_1;(]f_u®f)-(1+1_ﬁu)_1
B p

:%f_mf)[Hi(ﬁ%)”unJ.

n=1

Therefore, by our hypothesis on u,

o f = fllra <~ ;ﬁ lu® f - fllra f’a (1%)

1- 1-
ﬁﬁ||u<>*9f—f||T,12ﬁﬁ_1 = 28 _ﬁ1||u®f—f||T,1,

as claimed. v

Using the preceding lemmata, the key to proving the theorem is then the following
inductive lemma.

4 Lemma Let f € (%,1). There exists sequences (Ujiez., in Llloc(leO} F) and (hj)iez., in
[lloc(]Rzo; IF) with the following properties for each k € Z:
(i) u(t)dt = 1;

Rxo

k
(i) by = BT+ (1= p) ) p 'y

=
(iii) It - f=ht Al < 35, Wherehg = T

Proof First of all, note that if u; satisfies (i) and if &, satisfies (i), then hy is invertible
with respect to multiplication. To see that, note that

— k i
i = " [1 - ‘Bﬁ_kl )3 ﬁ]_lu])
=1

and that, for any T € R,




308 4 Convolution 2022/03/07

using Example |-2.4.2—1. From Lemma 1 it follows that I is invertible as claimed.

Let u € L (Rso; F) satisfy
f u(t)ydt =1
R0

and, for o € Ry, define u,(t) = ou(ot). Then, by Theorem 4.7.9, let ¢ be sufficiently
large that
€2 -1)
21-p)°
Take 11 = u, and take h; = f + (1 — f)u;. Note that, as we showed at the beginning
of the proof, i is invertible. Moreover, by Lemma 3, the estimate (iii) holds. Thus we
have the conditions of the lemma for k = 1.

Now suppose thatuy, ..., uand hy, . .., h satisfy the four conditions of the lemma.
Let u,, 0 € Rs0, be the family of functions defined above. Then define

wy = (BT + (1 - Puy) ™,

u;,jzwa'uj, jell,... k},

lug ® f = fllta <

k
W=pI+-p)) piul,
j=1

1, -1
ha,k+1 = hg,k "Wy

Note that, by Lemma 1 and Example I-2.4.2—1,

-1 \! © a1\ .
lwolly syt = B° (1 _f 3 Ma) =g+ Z (ﬁT) ul,
1,(k+1)T Jj=1 1,(k+1)T
1 1
<p! = . (4.13)
11 28-1
B
Then
koo koo
e =l gesnyr = [T+ =B) Y 7 uj = fI= (1 =p) ) p
j=1 j=1 1,(+1)T
k "
<(A=p) Y B g = u] sy
=1
<(1-p) (Z ﬁj_l]maxﬂluj - M;,jlll,(kn)T | je{l,... k}}
=1
< max{lfuj — wo - ujlly,genyr | 7€1{L, ..., K,
using Example |-2.4.2—1. By Lemma 3 it then follows that
, 1-8 .
Wi = Bl geenyt < 57— max{lli; —us @ ujllygernyr | j €141, K} (4.14)

261
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Note that

||h6k+1 f=h fllgesnyr = ||(h;,k)_1 cwo - f —H fllgenT
S ™ wo - f =Mt - wo - fllgeenyr + W - ws - f =B fllygenr

< ||(h' k)_l = 1 M genyrllws « fll gyt + Wl geenyrliws - £ = Fllngsnyr

1-8
/ 1 _g-1 -1
< —2‘3 1||(h O I eyl g + 61 1||hk Il g+ 1yl ® f = fllige1)T)

(4.15)
where we have used (4.13) and Lemma 3.
By Theorem 4.7.9 let ¢ be sufficiently large that
il < 4.16
5= l|| M enrlive ® f = fll gyt < S’ (4.16)

—1
By Lemma 2, let 6 € R, be sufficiently small that, if w € G(L;,.(IR>o; IF)) satisfies

lwll1,k+1yr < 6, then

1

zﬁ—_l”f“l,(kH)T“w_l||1,(k+1)T < e

Arguing as we did to obtain (4.16), we can take o sufficiently large that

3 el = o © e | 7€ (... K] <5

By (4.14) and the definition of 6 it follows that

€
2‘6—1”(” D7 = B gyl fll eyt < Py (4.17)

for o sufficiently large.
Now let 0 be sufficiently large that both (4.16) and (4.17) hold and define uy. = u,
and hyy1 = hgpe1. By (4.15) it follows that

~1 -1 €
Wy f —he - fllygeenr < TN
Moreover, by definition of /1, we have

k+1

i = | BT+ (1 - ﬁ)Zﬁf Y0 u | (1 + (1= Bagan) = BT+ (1 - ﬁ)Zﬁf tuj,

and this completes the proof of the lemma. v
Now we complete the proof of the theorem. We define g = h;l -fsothat f = g Iy

—1
for each k € Zy. We claim that the sequence (/))jez., converges in L;,.(IR>o; FF) to

h(1-p) i B ;. (4.18)

j=1
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—1
First of all, note that the sum in the preceding expression converges in L, .(R>o; IF). To
see this, note that for each T € R

[o¢]

- = 1
DB i < Y B = e,
=1 ~F

j=1
using Example |-2.4.2—1. This gives convergence of the sum on the left. Thus, if
€ € R., there exists N € Z-( such that

[o0]

i—1
Y B iy <e.

j=N

Therefore, if j,k > N,

k k
Z B |l < Z B Humllry <e,

m=j+1 71 m=j+l

showing that the sequence of partial sums for the sum in (4.18) is Cauchy with respect
to the seminorm |-||7,1, and so the sum is convergent with respect to that seminorm.

=1
what? This gives convergence of the sum in (4.18) in L;,.(R>o;F) by . To show that the
sequence (/)jez., converges to I, for each T € R we compute

Wy — hllza = 1B = B~

Clearly then, limy_,||hx — hllT1 = 0, giving the desired convergence. By Lemma 2 and
continuity of multiplication (proved during the course of the proof of Lemma 1), we
can define

§= fim ge= fm - f

Let us now show that g is in the closed ideal generated by f. This will follow if we
can show that g is in the closed ideal of Llloc(IRzo ;IF) generated by f for each k € Z.,.

To see that this is true, note that, by Lemma 1, h;l has the form

[o¢]

]’llz1 =al + Z’Uj,

=1

where a € F, where v; € Llloc(leo;]F), and where the series on the right converges.

Therefore,
S :(aI+Zv]-]-f:af+Zvj®f.
=1 j=1

by continuity of multiplication. The sum is clearly in the closed ideal generated by f.
Thus, to show that g is in the closed ideal generated by f, it suffices to show that f is
in the closed ideal generated by f, cf. Theorem |-4.2.54. However, if u;, 0 € R, is the
family of functions used above, then, by Theorem 4.7.9, lim;_,|lf ® us — fllT1 = 0 for
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every T € R.o. This shows that, indeed, f is in the closed ideal generated by itself by
what? virtue of .
Now let us prove that the bound (ii) holds. For each k € Z.,

If = gllra = IIf = f -1l
SWF=f-gillna +IIf -8 = f -85 har + -+ 1f - &y — f - 8t

[o0)
SZ - = €.
4 j

=1

Nlm

Therefore,
If - glira = limIf - el <e,

as desired. n

With the preceding results, we can summarise the algebraic character of
Llloc (Rxo; IF).

4.2.18 Theorem (The algebraic structure of Ll‘oc(]RZO; IF)) The algebra L}OC(IRZO; IF) with the
product defined by convolution has the following properties:
(i) the multiplicative structure is commutative and associative;
(ii) it has no multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is an integral domain.

4.2.4 Convolution between L:‘;c(]Rzo; F) and Lﬂ)c(]Rzo; F)

Let us now consider the convolutions between the various spaces Lfoc(]RZO’. IF).

We first establish a causal version of Young’s inequality which we give above as
Theorem 4.2.8. Let us first give a result for general signals with support bounded
on the left, recalling that o(f) = inf supp(f).

4.2.19 Theorem (Causal convolution between Lf;c(]R; F) and Lf‘oc(]R; F)) Let p,q,r €
[1, 0] satisfy 1 = % + cll — 1 and consider causal signals f € Ligz(]R; F)and g € Lng(IR; F).
Let K C R be a compact interval satisfying

sup K > o(f) + o(g)
and let 1L be such that

infIL. < min{o(f), o(g)},
sup L > max{sup K — o(f), sup K — o(g)}

Then (£, g) is convolvable and

£+ gllxr < Il pllglhq-
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4 Convolution

Proof Define

h(t) = j}l;lf(t —1)g(7)ld7,

noting that this integral is always defined, although it may be infinite.

rem IV-4.1.13 we have

t—o(f)
h(t) = f GERCTS
o(g

where o(f) = 0(f) and 0(g) = 0(g). Moreover, again by Theorem [V-4.1.13,

supp(h) C [o(f) + 0(g), ).

Let us abbreviate ty = o(f) + 0(g) and t; = sup K. By hypothesis, t; > fo.

Define
_r=p _r—q
a=—" b=
and . q
p:;l q:‘g

We claim that we have the following relations:
1. a,p€[0,1];

2. p,gel0,00];

3. l4lil=1

pq
First of all,
p 1 1) ( 1)
a=1-=-<1, a=p|l---]=p|1-=]20,
q p(P r) =7 q
and similarly g € [0, 1]. It is evident that p,§ € [1, co]. Finally,
1 11 a p 1 1T 1 1 1 1
—+ 4= —d—t-—=———t+-——+=-=1,
p 9 r p q v p r g r T

as claimed.

2022/03/07

By Theo-
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With this in mind, we compute using Holder’s inequality

t—o(f)
h(t) = f £ = D2l I 1)Plg@)P dr

a(g)

t-o(f) Ur o at-a(f) 1p
- ( f £t = )0 |g (0] 0P dTJ [ f £t = DI dr)

a(g) a(8)

t=o(f) o\
X (f Ig(T)Iﬁq dT]
a(g)

t=a(f) U pi=a(g) p
U f (*—T>|“'“”lg<f>|“‘ﬁ>ydT) (f |f(s)|“ﬁds)

a(g) a(f)

t-0(f) o\
X ( f lg(7)[P dT]
a(g)
t-a(f) : ) r
f If(t = DI |g (o) ’”’dT) IIfII‘[’(,(f)It (@) a,,llgll[g(g)t (lap

( o(8)

Thus, using Fubini’s Theorem (sketch the domain in the (¢, 7)-plane) and noting that
to = a(f) +a(g),

r ar
f]l<|h(t)| dt S ||f| [tO_G(g)/tl U )] ap”g”[to_g(f) t]—U(f ] ap

1 t—(f(f)
X f [ f |f(t — 7)1 g(7)|T-Pr dT] dt
to to— U(f)

o 1A 1 4 o) h-o(Plap

t1—0(f)
X f ( f If(t—T)I(l_"‘)rdt) ()| dr
to-o(f) \Jr+a()

= Il [to—0(g),t1—0(g)], aPHg”[to —o(f)t1—o(f)Lap

t1—o(f) t1—T
X f ( f |f(s)| " ds) lg()| P dr
to—a(f) a(f)

S I ap”g”[to—aq) b-o(Plap

X IIf1 |E}o—0:7)(rg),t1 —U(g)],(l—a)rl|g”$o—i)2f),t1 -a(H(A-p)r*
We have
ap=p, A=y =p, pg=q, (1=-P)r=p,
which gives
1= 8l < W lo o118 Motg) -0t
Our hypotheses include
infl. < min{o(f),0(g)}, supL > max{t; —o(f), t1 —0(9)}.

Thus the result follows by taking rth roots. |
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We can simplify the theorem in the case when signals have support in Rx.

Corollary (Convolution between Ll’:c(]RZW F) and Lf‘oc(]RZo; ) Let p,q,r € [1,0]

satisfy 1 = % + % — 1 and consider signals f € Lg(]RZO;]F) and g € Ligi(leo} IF). Then
(t, g) is convolvable and

If ® glltr < llfllrpliglitg, T € Rso.
Proof We apply the theorem with K = IL = [0, T]. -

As in the case of signals with unconstrained support, there are a couple of
special cases that we can single out.

Corollary (Convolution between L:oc(]RZO; F) and Lf;c(]Rzoi F) If p € [1,00], if
fe LEZ(]RZO; F), and if g € LS,Z(IRzo; F), thenf® g € LEZ(]RZO; IF), and

If ® gllrp < [Ifllrpllgllt;, T € R
Proof This follows from Corollary 4.2.20 with r = p and g = 1. -

Corollary (Convolution between Lf;c(]Rzo; F) and L::;C(Rzo; IF)) Let p € [1, o] and
letp’ € [1,00] satisfy }%+§ =1.1Iffe Ligi(]Rzo} F)and g € Lfg;)(leo; F) then D(f, g) = R,
and f ® g € C), ,(Rsq; ).
Proof That (f,g) is convolvable and that f ® g € L)(R; F) follows from Theo-
rem 4.2.19 with r = co and g = p’. Moreover, since s > f(t —s) is in LP)([0, T];F)
and since s +— f(s) is in L®)([0,T];F), we conclude from Holder’s inequality,
Lemma I11-3.8.54 and Exercise |11-3.8.8, that the signal s + f(t—s)g(s) is in LI([0, T]; TF).
Thus s = f(t —5)g(s) is locally integrable for all t € R>p and so D(f, g) = R. It remains

to show that f ® g is continuous, and this is done exactly as in the proof of Corol-
lary 4.2.10. u
Finally, we can prove the continuity of acausal convolution.
Corollary (Continuity of L:‘:’c-convolution) Let p,q,r € [1,00] satisfy 1 = % + % -1.
The map (f, g) = f@g from LY, (Rso; F)X L] (Rso; FF) to Lj. (Rso; FF) is continuous, where

the domain is equipped with the product topology.

Proof This follows from Corollary 4.2.20 in the same manner as Corollary 4.2.14
follows from Theorem 4.2.13(i). [

4.2.5 ConvolutioninL! _(R;F)
per, T

Now let us record the algebraic structure of periodic convolution. Here, pe-
riodicity allows us to make stronger assertions that we were able to make in the
aperiodic case, principally since periodic convolutions are integrable over their
period by Theorem 4.1.21.
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4.2.24 Theorem (LI‘;e’rT(]R; F) is an associative, commutative algebra without unit,

when equipped with convolution as product) If f,g,h: R — T are such that
their restrictions to [0, T] are in LD([0, T]; IF), then the following statements hold:

(i) 11f =gl < [ifllliglh
(i) f+rg=g=f;
(iii) yf(f*g)*h =fx+(g=*h)
(iv) f+(g+h)=f+g+f+h;
(v) (recalling Remark 4.1.2) there is no equivalence class of signals [u] € L}ljerrT(lR; IF)
such that [u = f] = [f] for every [f] € LlljerIT(lR; IF).

Proof We only prove those parts that are not already proved.
(i) Thisis a straightforward estimate using Fubini’s Theorem, the change of variable
theorem, periodicity of f, and Proposition Ill-2.7.21:

T T T
If * gl = fo If + g(O)dt = fo fo £t - 9)g(s) ds

r T T T—s
< L (L |f(t—8)8(8)|d5) dtzf(; |g(s)|(£s |f(T)|dT) ds

T
<1Ifil fo 1)1 ds = lIflhllglh.

dt

(v) We use a lemma.

1 Lemma Ifuc LS;T(]R; IF) then there exists r € Rsq such that

t+r/
f u(s)ds
t—r’

Proof Lett € R. By Proposition Il-2.9.24 and Theorem |11-2.9.33, the function

t+r
T f u(s) ds
t—r

is continuous since u is locally integrable. Therefore, since the value of this function is
zero at r = 0, there exists r; € R such that

t+r
f u(s)ds
t—r

for every r € (0,7;). Note that ((=r¢, 71))s[0,7] is an open cover of [0, T]. By compactness
of [0, T], we can apply Theorem |-2.5.30 to assert the existence of r € R, such that, for
each t € [0, T], there exists s; € [0, T] such that

<1, teR, ' €(0,r].

<1
2

(t=r,t+7r)N[0,T] C (5t = 15,5t + 15,). (4.19)
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Now let t € [0,T] and let s; € [0, T] be such that (4.19) holds, this being possible
by definition of . Let 7’ € (0,7]. Then the preceding inclusion and the definition of s,

immediately gives
St t+7"
f u(s)ds f u(s)ds
t—r’ St

t+1" St t+r’
If u(s)ds| = lf u(s) ds+f u(s)ds
t—r’ t—r’ St
b
f ds = - f ds
a b

using the usual convention that
when a > b. The lemma follows from periodicity of u. v

<

+ <1,

Now let f = [, be the characteristic function of the interval [-7, 7]. By assump-
tion, there exists Z C R of zero measure such that u = f(t) = f(t) for every t € R\ Z. For
te[-r,r]N(R\ Z) we have

% —r t+r
1=f(t)y=uxf(t) :f u(t —s)f(s)ds = j: u(t—s)ds :j; u(s)ds <1,

r =r

NS

using the change of variables theorem. This gives a contradiction. |

Much of the work for periodic convolution has been done in Section 4.1.3.
In particular, in Theorem 4.2.24 we stated the fundamental theorem regarding
convolution in L:)er’T(]R; F). From this result and from Lemma 1 from the proof of
Corollary 4.2.2, we have the following result.

4.2.25 Corollary (Continuity of L;erlT-convqution) The map (f, g) > fxrg from L} _(R;F)x

per, T

L;er,T(IR; F) to Lllaer,T(lR; IF) is continuous, where the domain is equipped with the product

topology.

We can explore the algebra L;er’T(]R; IF) further by providing a few results re-
garding the algebraic properties of the algebra.

4.2.26 Theorem (L:)er,T(]R; IF) is not an integral domain) There exists f, g € Lse)r,T(lR; IF)
with the following properties:
(i) fand g are each bounded, continuous, and nonzero;
(ii) £*g(t) =0 forevery t € R.

Proof Consider the two signals

< cos(2m(2n)Lt) = cos(2m(2n — 1)4)
f=) —5 T 8=}, —5

n=1 j=1

and make the following observations, making reference to the CDFT discussed in
Chapter 5.
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1. Since the series )7, ﬁ and ), m converge absolutely, the series defining

f and g converge uniformly to a continuous function by the Weierstrass M-test.
2. We have Zop(f)(nT™!) = 0 for n odd and Fcp(g)(nT~!) = 0 for n even.

As a result, Zop(f)Fcp(g) is the zero signal. However, by Proposition 5.1.19,
Feo(f + §) = Feo()Fn(8),

giving Fcp(f * §) = 0. Thus f = g is the zero signal by Lemma 1 from the proof of
Theorem 5.2.1, noting that f * g is continuous by Corollary 4.2.32. |

We can prove a surjectivity result for periodic convolution. The result here
makes reference to the continuous-discrete Fourier transform which we discuss in
detail in Chapter 5.

4.2.27 Theorem (Convolution in L;erT(]R; ) is “surjective”) If f € Lse)rT(lR; C) then there

exists g, h € LO(R; C) such that {(t) = g = h(t) for almost every t € R. Moreover, g and
h can be chosen such that g is an element of the closure (using the L'-norm) of the ideal
generated by f and such that h and Fcp(h) are even positive signals.

Proof Let f € LO(R;F) be defined by

0 = {f(t), tel0,T],

0, otherwise.

By Theorem 4.2.4 there exists g,ﬁ € LO(R; F) such that
1. f(t) =3* h(t) for almost every t € R,
2. gisin the closed ideal generated by £, and
3. hand Sc(h) are even and positive.
As we shall show in the proof of Proposition 8.1.2 below, we can define g € LS;IT(IR; IF)
by
g(t) =) a(t+]m),
jEZ
with this sum being defined for almost every ¢ € R. Similarly we define
n(t) =Yt +jT)
j€Z

and, moreover, note that

fy =) fe+m).

JEZ

We claim that f(t) = g * h(t) for almost every t € R. Indeed, for any ¢ for which the
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summations are defined, we have

ng(t—s)hs)ds—f [Z t—s+jT)](Zﬁ(s+kT)]ds
v/

keZ
- ]ezzéf §(t —s + jT)h(s + kT) ds
(+1)T
= ZZ[T §(t — s +IT)h(s) ds
jez ez, )
= ng(t+lT—s)h(s)ds =Y fe+m=f
leZ lez

using Fubini’s Theorem to swap the sum and integral and also using the change of
variable formula.
Finally, we claim that / is even. Indeed, for t € IR,

=Y (-t +iT) = Y ht - 1) = Y bt + ),

JEZ. JEZ. JEZ.

using the fact that Jiis even. Then, from Proposition 5.1.6(iii), we also have that #cp(h)
is even, concluding the proof. |

4.2.28 Remark (The character of factorisation in L:)erT(]R;]F)) The proof of Theo-

rem 4.2.17 above is easily adapted to prove the following, which is an alternative
version of Theorem 4.2.4.

Lete e Ry If f € L1 . 7(R;TF) then there exists g, h € Llljer,T(lR; IF) such that

(i) f(t) = g=h(t) for almost every t € R,
(i) g is in the closed ideal generated by f, and
(iii) 1If — gl <e.
In fact, the preceding result is somewhat easier to prove than Theorem 4.2.17 since
the topology on L}ljerlT(lR; IF) is a norm topology, and is not defined by a family of
seminorms, as is the topology on L| (IRs; IF). )

nonnegative

counterexample? We can now summarise the algebraic structure of Ller +(R;IF).

4.2.29 Theorem (The algebraic structure of L; (R; F)) The algebra L1 o 7(IR; IF) with the
product defined by convolution has the followmg properties:
(i) the multiplicative structure is commutative and associative;
(ii) it has no multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is not an integral domain.
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4.2.6 Convolution between L> _(R;F)and L? _(R;F)
per,T per, T

In this section we give the analogous results for periodic signals to the results
from Section 4.2.2 for aperiodic signals.

Theorem (Convolution between LZerT(]R; IF) and L:erT(IR; ) Letp,q,r € [1,00]
satisfy 1 = Il) + é ~1. If fe L® (R;IF) and g € L9 _(R;F) then (£, g) is convolvable,

per, T per, T

frg el (R;F), and|If gl < |l llglly

Proof This is proved exactly as is Theorem 4.2.8, but replacing integrals over R with
integrals over [0, T]. The details of the translation can be easily performed by any
exceptionally bored reader. ]

The following corollaries single out the most interesting cases of the preceding
theorem. They follow from Theorem 4.2.30 in the same manner as the correspond-
ing corollaries to Theorem 4.2.8.

Corollary (Convolution between L' (R;FF) and L’ (R;F)) If p € [1,], if
per, T per, T
fe L}(j’) (R;IF), and if g € L1} (R;IF), then (f, g) is convolvable, £+ g € L® _(R;F), and

er,T er,T per,

it = gllp < lIfllpllgllh-

Corollary (Convolution between LzerT(]R; IF) and Lg;r LR;P) Let p € [1,c0] and
let p’ € [1,00] satisfy % + § =1 If fe P (R;F) and g € LY) (R;F) then (f,g) is

per, per,

convolvable, D(f,g) = R, and f+ g € Cger,T(IR; IF).

Proof The following lemma is key.
1 Lemma If p € [1,00) and if f LSZL,T(JR; IF), then lim,o||f — T3]l = 0.

Proof Let € € R,y. Choose g € Cger'T(]R;C) so that ||f — gll, < 5 by part (i) of
Theorem 5.2.42. By uniform continuity of g (cf. Theorem [|-3.1.24), choose ¢ € (0,1) so

that |g(t —a) — g(t)| < ﬁ when |a| < 6. Then

T 1/p T 1/p
ITag = fllp = (fo lg(t —a) — g dt) < (j; %dt) zg

for |a| < 6. We then have
o f = fll, < lltof — a8lly + 11Tag = fllp +IIf = gllp
=2||f —gllp +It.g — fllp <€,
as claimed. v

The corollary now follows from the lemma in the same manner as Corollary 4.2.10
follows from Lemma 1. [ ]
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TP g
The map (f, g) = f+g from Lger/T(lR; IF) x Lger/T(]R; IF) to L;er,T(]R; IF) is continuous, where
the domain is equipped with the product topology.

Corollary (Continuity of Lzer,T-convqution) Letp,q,r € [1,00] satisfy 1 =1 +1-1.

4.2.7 Convolution in £'(Z(A); F)

Now we turn to convolutions of discrete-time signals. First we consider the
case of absolutely summable, aperiodic signals, i.e., signals in ¢!(Z(A); F). The
following result records the basic algebraic structure of this space of signals with
the convolution as product.

Theorem (£'(Z(A); F) is an associative, commutative algebra with unit, when
equipped with the convolution as product) If f,g € (Y(Z(A);F) then (f,g) is
convolvable and f = g € €*(Z(A); F). Furthermore, for f,g,h € ¢X(R;F), the following
statements hold.:

(i) IIf*glh < liflhliglh

(i) frg=g=+f;

(iii) (f+g)+h=1f=+(g+h)

(iv) fx(g+h)=fxg+f+h;

(v) there exists u € £*(Z(A); F) such that u = f = £ for every f € {}(Z(A); F).

Proof Define Fy: Z(A)?> > F by Ffe(0,7) = f(0)g(7). By Corollary 111-2.8.8

Z IF 1o (jAA kA)| < co.
(j,k)eZ2

Now consider the change of variable ¢: Z(A)?> — Z(A)? given by ¢(jA, kA) = ((k -
DA, jA), so that
Fgod(jAkA) = f((k = HA)S(A).

By Theorem |-2.4.5 (why is this the right theorem to use?),
Y 1= DAYA) < .

(jk)ez?

By Fubini’s Theorem, the function jA — f((k — j)A)g(jA) is integrable for every k € Z.
Thus (f, g) is convolvable.
(i) Moreover, using a change of index and Fubini’s Theorem again,

),

keZ.

< A2 Z Z| f((k = )HA)G(A)|

kezZ jez

= A2 Z LFRMIZGA = 1IN,

(jk)ez?

Y (k- Hag(iny

jEZ

as desired.
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(ii) This is Proposition 4.1.30(i).

(iii) We have
(f )+ h(kA) = A Y £+ g((k = JAA(A)
jEZ

=AY [Z fle—j- l)g(l)) h(ja)
JEZ \IeZ

=AY [2 (k= DA)g((I - J')A)) h(ja)
JEZ \IeZ

= A?Y" fllk=1A) [Z 8- j)A)h(jA)J
leZ JEZ

=AY f((k= DAY+ h(IA) = f 5 (g * H)(KA),

leZ

using a change of index and Fubini’s Theorem.
(iv) This is simply linearity of the integral, Proposition I1I-2.7.17.
(v) This was shown in Example 4.1.27. [

We can show that the convolution we are considering in this section is contin-
uous.

4.2.35 Corollary (Continuity of £'-convolution) The map (f,g) — f * g from €'(Z(A); F) X
{HZ(A); F) to £1(Z(A); F) is continuous, where the domain is equipped with the product

topology.
Proof This follows from Lemma 1 from the proof of Corollary 4.2.2. |
The following result gives some additional algebraic structure for £'(Z(A); FF).

4.2.36 Proposition (£(Z(A); F) is not an integral domain) There exists f, g € {*(Z(A); F)
with the following properties:

(i) fand g are not everywhere zero;

(i) £+ g(kA) =0 for every k € Z.
Proof We shall assume some things about the CDFT and the DCFT which we discuss
ion detail in Chapter 5 and in Section 7.1, respectively. Define F, G € Cg (R; F) by

er,A~!
asking that for v € [0, A™'] we have

v, velo,3A7Y,
Fv)={IA7Y(1-v), ve (@A™, iAT,
0, ve AT AT
and
0, velo, 1A,
Gv) ={v-1A71, ve(Aal ATl
AT -y, ve(3ATL AT
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Clearly we have FG(v) = 0 for every v € R. Note that F and G satisfy the hypotheses
of Corollary 5.2.35. Thus, as we showed in the proof of that corollary,

Feo(F), Fon(G) € €1(Z(M), ).

Moreover, injectivity of the CDFT proved in Theorem 5.2.1 gives that #p(F) and
Fcp(G) are nonzero. By Proposition 7.1.12 we have

Foc(Fep(F) » Fep(G))(v) = F(v)G(v) = 0

for every v € R. Injectivity of the DCFT proved in Theorem 7.1.14 gives Fp(F)(kA) *
Fcp(G)(kA) = 0 for every k € Z. [

Note that in ¢!(Z(A); F) the matter of factorisation, such as we developed in
Theorems 4.2.4, 4.2.17, and 4.2.27 for various classes of continuous-time signals,
is not as interesting for ¢*(Z(A); F) since we always have f = u  f where u is the
unit alluded to in Theorem 4.2.34.

Let us summarise the algebraic structure of L'(R; FF).

4.2.37 Theorem (The algebraic structure of £'(Z(A); IF)) The algebra {*(Z(A); F) with the
product defined by convolution has the following properties:

(i) the multiplicative structure is commutative and associative;
(ii) it has a multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is not an integral domain.

4.2.8 Convolution between (P(Z(A); F) and 9(Z(A); IF)

In this section we give the analogous results for discrete-time signals to the
results from Section 4.2.2 for continuous-time signals.

4.2.38 Theorem (Convolution between ¢°(Z(A); F) and {4(Z(A);F)) Let p,q,r € [1, 0]
satisfy 1 = }l) + % — 1. If f € P(Z(A); F) and g € €4(Z(A); F) then (£, g) is convolvable,
f+ g e t(Z(A); ), and ||f = gll. < |Ifll,lIglly-

Proof This is proved exactly as is Theorem 4.2.8, but replacing integrals over R
with sums over Z, replacing the use of Lemma [1I-3.8.54 and Exercise III-3.8.8

with Lemma [l-3.8.16 and Exercise 11I-3.8.2, respectively, and replacing the use of
Lemma [11-3.8.56 with Lemma 111-3.8.18. ]

The following corollaries single out the most interesting cases of the preceding
theorem. They follow from Theorem 4.2.38 in the same manner as the correspond-
ing corollaries to Theorem 4.2.8.

4.2.39 Corollary (Convolution between ¢'(Z(A); F) and P(Z(A); ) If p € [1,c0], if
f € (P(Z(A); F), and if g € £1(Z(A); F), then (f, g) is convolvable, £+ g € €P(Z(A); F), and
lIf = gllp < lifllplIgll-
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Corollary (Convolution between *(Z(A); F) and F (Z(A); F)) Let p € [1, 0] and
let p’ € [1, 0] satisfy % + é = 1. If f € (P(Z(A); F) and g € (P (Z(A); F) then (f, g) is
convolvable.

Note that the continuous-time versions of the preceding corollary, Corollar-
ies 4.2.10 and 4.2.32, have the additional conclusion that the resulting convolution
is continuous. Such conclusions do not have significance in the discrete-time case.

Corollary (Continuity of £P-convolution) Let p,q,r € [1, o] satisfy 1 = % + é - 1.
The map (f, g) = fxg from (P(Z(A); F) x t4(Z(A); F) to t*(Z(A); FF) is continuous, where

the domain is equipped with the product topology.

4.2.9 Convolution in £,,c(Z5¢(A); IF)

Next we consider discrete convolution for causal signals. In this case, we need to
use seminorms rather than norms to discuss the topological aspects of convolution
in this case. We shall use the seminorms

N 1p
Ifily, = {A ZIf(jA)I”] . NeZy, pell,w),
j=0

and
lfllne = sup{lf(jA)N] j€{0,1,...,N}}, N € Z.,.

As we discussed before the statement of Theorem 1I-6.5.1, the topologies defined
by these seminorms are the same. We shall see in Theorem 4.2.47 a consequence of
this fact, although many of the results appear similar to the analogous continuous-
time results in Sections 4.2.3 and 4.2.4.

The essential structural result for £1,.(Z>(A); FF) is then the following, where we
make use of the 1-norm.

Theorem ({1oc(Z5o(A); F) is an associative, commutative algebra with unit,
when equipped with convolution as a product) For f,g, h € {1,.(Z5o(A); F), the
following statements hold:

(i) lIf ® gllng < lflinaliglin for every N € Zso;

(i) fog=g®f

(i) f®g) ®h =f® (g@®h);

(iv) f@(g+h) =feg+fa@h;

(v) there exists u € C1oc(Z>0(A); F) such that u ® f = f for every f € {1,(Z5o(A); F).

Proof We shall only prove those parts of the theorem that we have not yet already
proved.
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(i) We compute

N N N
If +gling = A Y If g0l < A2 Y Y IF(kA = jA)g(A)]

k=0 k=0 j=0
N-jA
= A2 Z|g<]A>| Y 1fmd) < A2 Z|g<]A>| Zlf(mA)l
:—]A

= Allflina ZIg(jA)I = lIfInalIglINga-

j=0
(v) This follows from Example 4.1.27 since the unit pulse is in £1,.(Z>o(A); F). =

Using part (i) of the preceding theorem to prove the following continuity result.

4.2.43 Corollary (Continuity of fc-convolution) The map (f,g) — f ® g from
Coc(Zs0(A); F) X L1oc(Z5o(A); F) to Cioc(Z50(A); F) is continuous, where the domain is
equipped with the product topology.

Proof This follows from Theorem 4.2.42 in the same manner as Corollary 4.2.14
follows from Theorem 4.2.13(i). [

As with continuous-time causal convolution, the convolution algebra
lioc(Z50(A); F) is an integral domain. In the continuous-time case this is hard,
necessitating the Titchmarsh Convolution Theorem. In the discrete-time case, this
is much easier.

4.2.44 Theorem (Discrete Titchmarsh Convolution Theorem) If f, g € {1o.(Z(A); FF) are
such that o(f), o(g) > —oo, then o(f * g) = o(f) + o(g).
Proof By translation and permuting f and g if necessary, we can suppose that o(f) =
and o(g) > 0. By Proposition 4.1.29 we have o(f * g) > 0. Let M € Z.( and define

N = o(f+g)/A, o(f*g) < oo,
M, o(f +g) =

To prove the theorem in this case, it suffices to show that 6(g) > NA. Thus we need to
show that g(kA) =0fork €{0,1,...,N}. For k = 0, we have

f®g(0) = f(0)g(0).
Since o(f) = 0, we must have g(0) = 0. Thus the claim is true for k = 0. Suppose it true
for k = m < N. Thus
8(0) =g(1) =---=g(m) =0.
Then, by Theorem 4.1.32, we have

f®gm+1)=f0)gm+1)+ f(1)g(m) +---+ f(m)g(1) + f(m + 1)g(0) = f(m + 1)g(0).

Again since o(f) = 0, we have g(m + 1). This induction can be carried out until m = N,
and this gives the theorem. |

The following consequence of the discrete Titchmarsh Convolution Theorem
explains its importance.
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Corollary (fioc(Z5o(D); F) is an integral domain) When equipped with the product
®, Coc(Z50(A); F) is an integral domain.
Proof If f ® g(t) = 0 for every t € Zso(A) then o(f ® g) = oo. It follows from the
discrete Titchmarsh Convolution Theorem that at least one of o(f) or o(g) must be
infinite, which gives the result. [ |

Aswehave seen with £'(Z(A); FF), the presence of a unit in £1,(Zso(A); F) renders
uninteresting the surjectivity results we have given for continuous-time signals.

With the preceding results, we can summarise the algebraic character of
Goc(Z20(A); IF).

Theorem (The algebraic structure of £i,c(Z5o(B); F)) The algebra 61o.(Z>; F) with
the product defined by convolution has the following properties:
(i) the multiplicative structure is commutative and associative;
(ii) it has a multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is an integral domain.

The preceding results are to be regarded as the discrete-time analogue of the
result for continuous-time case in Section 4.2.3. There are also discrete-time ana-
logues to the results in Section 4.2.4, although these results are not as deep in the
discrete-time case as they are in the continuous-time case.

Let us first state the discrete-time version of Young’s inequality for causal
discrete-time signals.

Theorem (Causal convolution in £oc(Z(A);F)) Let p,q,r € [1,00] satisfy % =
% + % —1 and consider causal signals f, g € {1o.(Z(A); R). Let K C IR be a compact interval

satisfying
sup K > o(f) + 0(g)

and let 1L be such that

infIL < min{o(f), o(g)},
sup IL > max{sup K - o(f), sup K - o(g)}

Then
If * gllzaynk,r < Ifllzaynwpllgllzane.g-
Proof This follows in the same manner as Theorem 4.2.19, but replacing integrals
over R with sums over Z, replacing the use of Lemma I1I-3.8.54 and Exercise |11-3.8.8

with Lemma [ll-3.8.16 and Exercise 1lI-3.8.2, respectively, and replacing the use of
Lemma 11-3.8.56 with Lemma I11-3.8.18. |

We can simplify the theorem in the case when signals have support in Z,(A).
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4.2.48 Corollary (Convolution in fioc(Z5o(B); F)) Let p,q,r € [1, 00] satisfy 1 = % + é -1
and consider signals £, g € li,c(Z5o(A); F). Then
lf ® gline < llflinpligling N € Zso.
Proof We apply the theorem with K = IL = [0, N]. |

As in the case of signals with unconstrained support, there are a couple of
special cases that we can single out.

4.2.49 Corollary (Convolution in {joc(Z5o(A); F) with q = 1) If p € [1,00] and if f, g €
Ooc(Z50(A); IF), then

If ® glinp < llflinpligling N € Zsy.
Proof This follows from Corollary 4.2.48 withr = pand g = 1. -

4.2.50 Corollary (Convolution in £ioc(Z5o(A); F) with q = p’) Let p € [1, 0] and let p’ €
[1, oo] satisfy Il) + # = 1. If f, g € €oc(Z0(A); F) then

I ® gl < finpligly, N €Zao.

Finally, we can prove the continuity of acausal convolution. Here we are able to
give additional characterisations of continuity since the topology of {i,.(Zo(A); FF)
does not depend on the seminorms one uses.

4.2.51 Corollary (Continuity of foc-convolution (redux)) Let p,q,r € [1,00]. Then the
following statements hold:
(I) the maP (f/ 8) = f * gﬁ’Om floc(ZZO(A); ]F) X floc(ZZO(A); ]F) to floc(ZZO(A); ]F) is
continuous;
(ii) for N € Z., there exists Cp, qrn € Ry such that

If® gline < Cpgrnllfllnpligling N € Zsp;

(iii) if additionally we have 1 = }l) + % — 1, then we can take Cpq.n = 1 in part (ii).

Proof  (iii) This follows from Corollary 4.2.48 in the same manner as Corollary 4.2.43
follows from Theorem 4.2.42.

(if) This follows from part (iii) since, for any p, g, € [1,c0] and N € Z., there exists
Cp,q € Rsp such that

”f”Nq < Cp,q,N”f”N,p

for any f € €1oc(Z>0(A); F). This is a consequence of Theorems IlI-3.1.14 and I1I-3.1.15.
(i) This follows from Lemma 1 from the proof of Corollary 4.2.2 and part (i). =

4.2.10 Convolution in fpe,1(Z(A); F)

The final case of convolution we examine in some detail is discrete periodic
convolution. Let us first give the essential features of convolution for periodic
discrete-time signals.
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4.2.52 Theorem ({per,7(Z(D);F) is an associative, commutative algebra with unit
when equipped with convolution as product) Let A and let T = NA for some
N € Z.o. If £,g,h € lper, 1(Z(A; TF), then the following statements hold:

(i) |lf = glh < liflhliglh;
(i) f+rg=g=f;
(iii) if (fxg)+h=1f+(g+h)
(iv) fx(g+h)=fxg+f+h;
(v) there exists u € Cper,1(Z(A); F) such that u = f = £ for every f € Coer, 1(Z(A); TF).

Proof We shall only prove those parts that are not already proved.
(i) We compute

N-1N-1
If * glll—AZIf + g0 < A% )" N IF(kA = jA)Z(A)
k=0 j=0
N-1-jA
= A2Z|g<JA>| Y, Ifma) = Allflllzlg(JA)l = lIflhliglh.
:—]A
(v) This follows from Example 4.1.39. [

As we have seen may times above, part (i) of the theorem has the following
continuity interpretation.

4.2.53 Corollary (Continuity of fper-convolution) The map (f,g) +— f* g from
Coer,T(Z(A); F) X Lper T (Z(A); F) to Cper1(Z(A); F) is continuous, where the domain is
equipped with the product topology.

As with continuous-time periodic signals, the space of periodic discrete-time
signals is not an integral domain.

4.2.54 Theorem (fper7(Z(D);F) is not an integral domain) There exists f,g ¢
Coer,T(Z(A); F) with the following properties:
(i) fand g are each nonzero;
(i) £+g(t) =0 for every t € R.
Proof We can easily mirror the proof of Theorem 4.2.26. Let T = NA. Thus we
take nonzero signals F,G € fper,A—l (Z((NA)™);F) for which FG = 0, and then take

f= %D (F)and g = D‘Dl (G). By Proposition 7.2.12 we have
Foo(f *8) = FG

and the result follows since %pp is an isomorphism by Proposition 7.2.10. [ |

As with aperiodic discrete-time convolution, the various factorisation theo-
rems are not interesting since per,7(Z(A); IF) has a unit as pointed out in Theo-
rem 4.2.52(v).

We can summarise the algebraic structure of {per, 7(Z(A); IF).
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4.2.55 Theorem (The algebraic structure of fpe,1(Z(A); ) The algebra lperr(Z(A);F)
with the product defined by convolution has the following properties:

(i) the multiplicative structure is commutative and associative;
(ii) it has a multiplicative unit;
(iii) the ring associated with the multiplicative structure has no primes;
(iv) the ring associated with the multiplicative structure is not an integral domain.

The preceding results are to be regarded as the discrete-time analogue of the
result for continuous-time case in Section 4.2.5. There are also discrete-time ana-
logues to the results in Section 4.2.6, although these results are not as deep in the
discrete-time case as they are in the continuous-time case.

Let us first state the discrete-time version of Young’s inequality for causal
discrete-time signals.

4.2.56 Theorem (Convolution in fpe1(Z(A);F)) Let p,q,r € [1,00] satisfy 1 = -1

and consider causal signals f, g € Coer 1(Z(A); R). Then

141
p q

£+ gl < [1fllplIgllq-

Proof This follows in the same manner as Theorem 4.2.30, but replacing integrals
over R with sums over Z, replacing the use of Lemma |11-3.8.54 and Exercise 1I-3.8.8
with Lemma [11-3.8.16 and Exercise 11I-3.8.2, respectively, and replacing the use of
Lemma I11-3.8.56 with Lemma I11-3.8.18. ]

As in the case of signals with unconstrained support, there are a couple of
special cases that we can single out.

4.2.57 Corollary (Convolution in fpe,1(Z(A);F) with q = 1) If p € [1,00] and if f, g €
Coer,T(Z(A); TF), then
If ® gllp < lIfllplIgl:-
Proof This follows from Theorem 4.2.56 withr = pand g = 1. ]

4.2.58 Corollary (Convolution in £per1(Z(D); F) with q = p’) Let p € [1,00] and let p’ €
[1, o0] satisfy % + é = 1. I f, g € lper1(Z(A); FF) then

If ® glleo < lifll,lIgll-

Finally, we can prove the continuity of acausal convolution. Here we are able to
give additional characterisations of continuity since the topology of {per,7(Z(A); IF)
does not depend on the seminorms one uses.
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4.2.59 Corollary (Continuity of £, r-convolution (redux)) Let p,q,r € [1,00]. Then the
following statements hold:

(i) the map (f,g) = f*g from Cper1(Z50(A); IF) X Cper 1(Z50(A); F) t0 Lper, 1(Z50(A); TF)
is continuous;

(ii) there exists Cp o € R such that
lIf @ gl < Cpqrlifllpllgllys

(iii) if additionally we have 1 = }l) + é — 1, then we can take Cp q, = 1 in part (ii).
Proof This is proved exactly as is Corollary 4.2.51. |

4.2.11 Convolution and regularity for signals

In this section we indicate how the regularity properties of one of the signals
in a convolvable pair are transferred to the convolution of the signals. The basic
result is the following.

4.2.60 Theorem (Differentiability and convolution for aperiodic signals) Let f, g €
LO(R; IF) have the following properties:
(i) fis locally absolutely continuous;
(ii) for each compact set K C IR, the functions

(s,t) = f(t—s)g(s), (s, 1) = F'(t—5)g(s),

when restricted to R X K, are integrable.
Then (f, g) and (f', g) are convolvable, t * g is locally absolutely continuous, and

(fxg)'(t) = = g(t)

for almost every t € R.
Proof For each k € Z. the hypotheses of the theorem ensure that

(Sr t) = f(t - S)g(S), (Sr t) = f/(t - S)g(S)

are integrable when restricted to R X [-k,k]. By Fubini’s Theorem it follows that
s — f(t —s)g(s) is integrable for almost every t € [~k k]. Since this is true for every
k € Z it follows that (f, ) and (f’, g) is convolvable.

Define F: R? — F by F(t,s) = f(t — 5)g(s). The hypotheses ensure that

1.t F(t,s) is locally absolutely continuous for every s € R and,
2. for every compact set K C R, the functions

(t,s) = F(t,5)g(s), (t,s)— D1F(t,s),

when restricted to K X R, are integrable.
The result now follows immediately from Theorem I11-2.9.17. []

By inductively applying the preceding result, we have the following.
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4.2.61 Corollary (Higher derivatives and convolution for aperiodic signals) Let g €
LO(R; F) and let f € CX(R;F) have the property that {9 is bounded for r € {0,1,...,k}.
Then (f,g), r €{0,1,...,k}, is convolvable, f + g € Cf,(R;TF), and (f + g)) = {) « g for
eachr€{0,1,...,k}.

Proof By Corollary 4.2.10 it follows that ("), ¢) is convolvable and that f) x ¢ €
ngd(]R; F) for eachr € {0, 1, ...,k}. Moreover, for eachr € {0,1, ...,k — 1}, the hypothe-
ses of Theorem 4.2.60 applied to the pair (f, g) gives that f* = ¢ is locally absolutely
continuous. As we have already shown, its derivative is continuous. Therefore, by
Theorem 1-3.4.30 we conclude that f() « ¢ is continuously differentiable. By Theo-
rem 4.2.60 we have the formula (f) = ¢) = f(*1 « ¢. An elementary induction then
gives the desired formula (f * g)0*V = fID x ¢, u

One can also give differentiability results for convolutions of other sorts of
signals. For example, for signals with support in Ryy we have the following
result.

4.2.62 Theorem (Differentiability and convolution for signals with support in R;)
Letf, g e Lgi(lRZO ; IF) have the following properties:
(i) fis locally absolutely continuous;
(i) for each compact set K C IR, the functions

(s,t) = f(t —s)g(s), (s, t) > f'(t—s)g(s),
when restricted to R X K, are integrable.
Then (t, g) and (f', g) are convolvable, £ ® g is locally absolutely continuous, and

(f@g)'(t) = f(0)g(t) + ' ® g(t)

for almost every t € Ry,.
Proof This can be proved in a slick way using distributions. However, we give a
direct distribution-free proof.
We shall think of f and g as being defined on R by asking that they be zero on R.
Let € € R5 and define f.: R — F by

_Jf@®), t € Rxo,
JeH) = { fO)1+1), te[-e0).

Note that f. is locally absolutely continuous. Now let K C R and note that the set
(s, teK sel0,t])
is compact and, moreover, contains the support of the functions

(5,t) > fe(t —5)8(s),  (s,t) > fi(t—5)8(s)

when restricted to K X R. Since both f. and g are locally integrable, Fubini’s Theorem
allows us to conclude that these restricted functions are, in fact, integrable. Thus the
pair (fe, g) satisfies the hypotheses of Theorem 4.2.60. Therefore, f. ® g is locally
absolutely continuous and (fe ® g)’(t) = f! ® g(t) for almost every t € Ro.

Now we use a lemma.
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1 Lemma Let F: R X R — [F have the following properties:
(i) t— E(s,t) is locally absolutely continuous for almost every s € R;
(ii) the functions
(S, t) = F(S/ t)/ (SI t) = DZF(SI t)
are locally integrable.

Let a,b: R — R be locally absolutely continuous and have the property that a(t) < b(t) for
every t € R. Then

d
dt

Proof Define G: R® — F by

b(t)
f F(s, t) ds) = F(a(t), t) — F(b(t), t) + D,F(s, t) ds.
a(t)

b(v)
G(u,v,w) = f F(s,w)ds
a(u)

and define d: R — RR® by d(t) = (t,,t). Note that
b(t)
God(t) = f F(s, t)ds.
a(t)

For almost every t € R, by Theorem II-1.4.49, and Theorems [11-2.9.17 and 111-2.9.33, it
holds that

b(t)

% » F(s,t)ds = D1G(d(t)) ° %d(t) + D>G(d(1)) © %d(t) + DsG(d(t) o %d(t)

b(t)
= F(a(t), t) — E(b(t), ) + f( ) D,E(s, t)ds,

as desired. v

Note that for t € R>g we have

t t
fogl) = fo £t - 5)g(s) ds = fo fult - 5)g(s) ds,
so that, for almost every t € Ry, by the lemma,
’ _ i ' _ _ f 1
Fosr0=g [ ft-950ds= £+ [ -9

t
= FO)g() + fo £t - 9)g(6)ds,

as stated. ]

For higher-order derivatives we have the following result.
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4.2.63 Corollary (Higher derivatives and convolution for signals with support in R)
Letg € Lf(l))c(]RZO; IF) and let f € C¥(Rx; F). Then (9, g), r € {0,1,...,k}, is convolvable,

f+g e CYR;F), and (f» g)® = {0 x g foreachr € {0,1,...,k}.
Proof This follows immediately from induction using Theorem 4.2.62. |

For periodic signals, the result is the following.

4.2.64 Theorem (Differentiability and convolution for periodic signals) Let f, g €
LSe)LT(]R; IF) be such that £ is locally absolutely continuous with ' € L;le)r’T(lR; IF). Then
(f,g) and (f', g) are convolvable, f * g is locally absolutely continuous, and

(f+g)'(t) =1 = g(t)

for almost every t € R.
Proof Let K C R be compact. Since integrable periodic signals are locally integrable,
from Fubini’s Theorem we have that the signals

(S/ t) = f(t - S)g(S), (S/ t) = f,(t - S)g(S)

are integrable when restricted to [0, T] X K. The result then follows immediately from
Theorem I11-2.9.17. |

For higher-order derivatives we have the following result.
4.2.65 Corollary (Higher derivatives and convolution for periodic signals) Let g €
LD (Rso; F) and let f € C;er,T(IRzo} IF). Then (f9,g), r € {0,1,...,k}, is convolvable,

per,

frge Cl;)erT(R; IF), and (f * g)® = {9 « g for each r € {0,1, ..., k}.
Proof This follows immediately from induction using Theorem 4.2.64. [ ]
4.2.12 Notes

Proposition 4.2.3 is from [Hall and Wise 1990].

Theorem 4.2.4 is from [Rudin 1957], and its adaptation to prove Theorem 4.2.27
is from [Rudin 1958]. Various versions of this result have been stated or shown
to not be true. For example, Koosis [1973] shows that it is not true that every
compactly supported signal is the convolution of two compactly supported signals.
A generalisation of Theorem 4.2.4 to locally compact groups is given by Cohen
[1959].

The existence in Lemma 1 of the concave function used in the proof of Theo-
rem 4.2.4 follows the technique of Passow and Roulier [1977].

Theorem 4.2.15 was first proved by Titchmarsh [1926]. This theorem seems
to defy direct proof. The original proof of Titchmarsh relies on methods from
the theory of analytic functions. Proofs in a similar style are also given by Crum
[1941] and Dufresnoy [1947], the latter proof also using the Laplace transform.
A proof using methods of real function theory can be found spread out in the
papers [Mikusiniski 1951, Mikusiriski 1952, Mikusiniski and Ryll-Nardzewski 1952].
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A more or less elementary (but still not direct) proof is given by Doss [1988]. Proofs
of Titchmarsh’s Convolution Theorem involving functional analysis methods are
given by Kalisch [1957] and Brodskii [1957]. Our proof is based on this sort of
proof in that we use the characterisation of invariant subspaces of the Volterra
operator. Our proof of the character of these invariant subspaces follows the
measure theoretic arguments of Donoghue Jr. [1957].

Exercises

4.2.1 Show that there exist f, ¢ € LO(R; F) such that f * ¢ ¢ LO(R; F).
Hint: Use Proposition 6.3.15 and Theorem 6.3.10.

4.2.2 In Section 4.2.9 we introduced the seminorms

1flly = ( fo o dt)l/p

for LfOC(IRZO ;IF). Show that convergence with respect to these seminorms is
equivalent to convergence with respect to the seminorms from Section 1.3.5.

4.2.3 In Section 4.2.3 we introduced the seminorms
N
Iflls = Y IfGA),  NeZ.
=0

for {1,.(Z>0(A); IF). Show that convergence with respect to these seminorms is
equivalent to convergence with respect to the seminorms from Section 1.2.5.
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Section 4.3

Tensor product of distributions

In this section we shall explore a setup where two distributions in a single
independent variable are combined to give a distribution in two variables. We
shall use this construction in a few ways, one way being to define the convolution
of distributions. We refer to Section 3.2.11 for a discussion of distributions in more
than one variable. The reader may wish to refer to the discussion of tensor products
in Section I-5.6.3 to get in the mood for tensor products in this more general setup.

Do | need to read this section? If one wishes to learn tensor products of distri-
butions, then this section is required reading. o

4.3.1 Tensor product in D’'(R; [F)

Let Z(R% F) be the set of infinitely differentiable functions from R? to F with
compact support. Note that the map 1: Z(R; F) x Z(R; F) —» Z(R% F) given by

U1 X P2)(t1, t2) = P1(t1)Pa(t)

is an injection. We denote ¢1 ® ¢, = 1(¢1, ¢,) and denote the span of the image of ¢
by Z(R; F) ® Z(R; F), cf. Notation 1-5.6.13. The following result relates Z(IR; F) ®
2 (R; F) with Z(R?; FF).

Theorem (The closure of the tensor product I(R;F) @ I(R;F)) If ¢ €
D (R%TF), then there exists a sequence (¢iez., in Z(R;F) ® Z(R;F) converging to
¢ in the topology of Z(R% ).

Proof Let us define yj: R> - Rby

2
j/j(z) = zj—ne_kZHZHZ, ] € Z-o.

Following the computations of Example 6.2.39—-2, we can show that
f yi(z)dz =1, j € Zy.
R2

Now define

0= [ vi0oe-0dc

By we have

DiDyyj(z) = f]R i 7i(Q)DXDhp(z - ¢)ds,  j k1€ Zso.
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Letusfixk,l € Z-g. Let € € R5p and let 6 € R, be such that
€
ID{D3(2) - DiDy(z = Ol < 5

for all z € R? and for all ¢ € R? satisfying ||C|| < 6. This is possible since ¢, and hence
all of its derivatives, have compact support and so are uniformly continuous. Now we

estimate
ID{Do) - DiDhy (21 < [ yi0IDiDlo(e) - DiDhotz - Olae

) ﬁcn«s Vi(©IDIDy(2) — DiDa(z — £ de
’ f yi(QIDID3(z) - DiDyd(z - 0)ldg
licl>o
+ DD pllo = -IEP gz,
o ﬁcna‘a e de

the last integral arising after a change of variable. Now, there exists N € Z( such that

1 .
1D Dhblloo = f elPac<S,  jxN
7 Jici>jo 2

Nlm

Thus, for j > N, we have
IDXDyd(z) - DEDLyi(z) <€,  zeR™:

Thus the sequence (D]{Dlzq) j) jez., converges uniformly to leDlqu foreachk,l € Z.
Now we make use of the power series for the exponential function from Defini-

R )
TCRE =D W

5=0

tion 1-3.8.1. To wit, we write

the sum converging uniformly for z in a compact set. Note also that commutativity of

convolution allows us to write

2 _ 2
Pix) = f CEZED 40y as,

the expression being valid for z in a compact set. We then define, for j,m € Z.,

5[z - e e

s!

2
Ebj,m (2) = 2]_7_(

=

I
o

S

For j, k,I,m € Z-o, we may differentiate as above to get

1 f (-(llz - ¢IP*DEDLo(2) de.
]RZ

s!

i2

Ms

N\.
:]|

DDy ju(z) =

I
o

S
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For a compact set K C R?, let R € R.p and let z € R? be such that ||z — ¢|| < R for all
¢ € K. We then estimate

lD?Dé¢j,m<z>—D§Dé¢](z>l< o f (=2 - Py D{D4¢(5) dg
s m+1
(]ZRZ)S o
[Zns;ﬂ f XD (C)lde.

Convergence of the exponential series ensures that

(]2R2)s
m—>oo 27’( Z =0

s=m+1

and so (DX ngb jm)jez., converges uniformly to DkD ZYiforze R? such that ||z —¢|| <R
for all ¢ € K. Note, moreover, that it we write z = (t1,t2), then ¢;,, is a polynomial
function of degree 2m:

l,bj,m(tl; t2) = Z Anlnz Tltgz
n1,n2=0
for some Ay, € F, 11,12 €{0,1,...,2m}. Therefore, 1}, € spanp(Z(R;F) ® Z(R; F)).
Now let K1, K> € R be compact and such that supp(¢) € K1 X K> and let x1, x2 €
Z(R;F) be such that x,(t,) = 1 for t, € K,, a € {1,2}. Define

Pjm(t1, t2) = x1(t)x2(t2)Pjm(t1, t2), (f1, 1) € R?,
and note that ¢;,, € spanp(Z(R;F) ® Z(RR; F)). Also define

¢j(t, t2) = xi(t)x2(t)Pj(t, ), (b, f2) € R

Let K C R? be compact and let R € R.o be such that ||z — ¢|| < R for z € K and
¢ € K1 X Kp. As in the second paragraph of the proof, we have that (¢ u)mez., and all
of its derivatives converge uniformly on K to ¢; and its derivatives. By the Leibniz
Rule (Theorem 1I-1.4.48), it follows that (¢ )mez., and all of its derivatives converges
uniformly on Kto ¢ j and its derivatives. As thisholds forevery K, (¢ ]-,m)mez>0 converges
in Z(R%TF) to ¢;. Now we use the first paragraph of the proof and again the Leibniz
Rule to see that (¢ ]-) jez., converges to ¢ in g (IR2 ;IF). []

4.3.2 Remark (Generalisation to the multivariable case) The preceding theorem can
be generalised in a few ways by changing the proof by mere notation. For instance,
by replacing the variables (t;,t,) € R? with vector variables (t;,t,) € R™ x R™,
one can show that, given ¢ € Z(R""";F), there exists a sequence (¢;);cz,, in
I(R™"; F)® Z(R™; F) that converges in Z(IR"*"2; IF) to ¢. By this argument and by
induction, it also follows that, given ¢ € Z(IR"; F), there exists a sequence (¢;)jez.,
in

IJRF)Q - I(RF)

n times

converging to ¢ in Z(R"*; IF). °
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Now, having the notion of tensor product in Z/(IR; F) at hand, we can consider
the tensor product of 0,p € @’(R;F). This will be a distribution in 2’(R?; ).
Let ¢ € Z(R%TF) and let ¢°(t) = ¢(s, t), so defining an element ¢° € Z(R;F). By
Corollary 3.2.41, the function s - p(¢°) is in Z(IR; F). We had denoted this function
by @, in Section 3.2.8. Therefore, we can make the following definition.

4.3.3 Definition (Tensor product of distributions) If 0, p € &'(IR; F), the tensor product
of 6 and p is the mapping 0 ® p: Z(R?* F) — F defined by

0 ® p(¢) = (D), O € Z(R%F). o

Let us show that the tensor product of two distributions in one variable is a
distribution in two variables, and enumerate a few properties.

4.3.4 Theorem (Properties of the tensor product of distributions) For 0,p,t €
D' (R; F), the following statements hold:
(i) 6 p € D'(R*F);
(i) O ® p is the unique distribution for which
0@ p@®y) =0(P)p(y);

(i) O®p=p®0O;

(iv) 0@ (pen) =(00p)

(v) supp(0 ® p) = supp(0) X supp(p);
Proof First note that the definition of the tensor product gives (ii). It is also clear that
0 ® p is linear. Now let ¢ € Z(IR*F), as above, we have ®,,0(s) = p(¢°) and let us

also denote Wo ,(t) = 6(¢pr). With this notation, we have the following result which we
shall use in a few ways.

1 Lemma If ¢ € Z(R%TF) and if (¢))jez., is a sequence in D (R?; FF) converging to ¢, then
]11)1510 0(@p,¢) = 0(Dp ), ]11{?0 P(Wo,p) = p(Wo,0)-

Proof Clearly it suffices to prove that lim; . p(Wo,¢,) = p(We,¢) as the other conclu-
sion follows in a similar manner.
We first claim that (W ,)jez., converges to Wy in Z(R;F). Suppose otherwise

so that, for some r € Z(, the sequence (\I’g) ¢]_) jez., does not converge uniformly to

‘I’g)(ﬁ Thus, possibly by replacing (¢)jez., with a subsequence, there exists a € R-o
such that, for each j € Z, there exists t; € R such that

Wi, (£) =W ()] = a
By Corollary 3.2.41 we have

\Pg)¢(t) = 0(D}¢y), \Ifgl)q)]_(t) = 0Dpy),  jE€Zso
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Therefore, for each j € Z., there exists ¢; € R such that
0(D}j1,) — ODps)| = a.

Now let € € R»¢. Since (¢))jez., converges to ¢ in & (R?; F), there exists N € Z( such
that

sup{IDY'Dy(¢j — @)(s, ) | s,t e R} <€
for j > N. Thus

sup{[Dy'D5(¢; = d)(s, tj)l | s € R} <e
forall j > N. Thus (D3¢+)jez., converges to D3¢y, in Z(IR; F). Thus, by continuity of
0,

]ll)rg)le(ng)],t]) - 6(D£¢t])| =0.

This contradiction implies that, indeed, (\P9,¢j) jez., converges to Wg 4 in Z(IR; IF).
From this the lemma immediately follows from the continuity of p. v

Now let (§)jez., be a sequence converging to zero in Z(R?%F). Then, by the
lemma,
lim 6@ p() = lim O(®y,0) = 0(®@y0) = 0,

showing that 6 ® p is continuous, so giving (i).

Finally, let (¢)jez., be a sequence in Z(IR; F) ® Z(R; F) as in Theorem 4.3.1. For
each j € Z.o we write

(5,5 = Y Uikl
k=1

Note that linearity of 0 allows us to write

Dp, () = p((j);) = p(z ¢j,k(S)Xj,k] = Z Vik(E)p(jk)-
k=1 k=1

Similarly,
m;
W, (0 = ) XiOOW;0).
k=1
Then
m;
0 ®p) = Y OW0p(0) = p(Wos),
k=1
giving (iii).

To prove part (iv) we note that, for ¢, ¢, x € Z(R;F), we have

(O(pen);dW® X)) =(00p) (PP X),

and the assertion follows from the extension of Theorem 4.3.1 stated in Remark 4.3.2.
Now we prove part (v). Letsp € R\ supp(0) and let ty € R. Since supp(0) is closed,
let U € R be a neighbourhood of sy such that 6(¢) = 0 for every ¢ € Z(RR; F) for which
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supp(¢) C U. For ¢ € Z(R%;F) such that supp(¢) C U X R, we have @, , € Z(R; F)
(by Corollary 3.2.41) and supp(®,,) € U. Therefore,

0 ® p(¢p) = 6(D,,0) = 0.

Thus (so, tg) ¢ supp(6 ® p). Similarly, if tp € R \ supp(p) and sp € R, then (so, tp) ¢
supp(0 ® p). Thus

R?\ (supp(0) x supp(p)) € R?\ supp(0 ® p).

Now suppose that (s, to) € supp(6) x supp(p). Let U C IR? be a neighbourhood
of (so,tp), and let ¢, € Z(R;F) be such that supp(¢) X supp(ip) € U and such that
0(¢), p(¢) # 0. Then

0@ p(@®Y)=0(P)p) #0,

and so supp(0) X supp(p) € supp(0 ® p). |

4.3.5 Remark (Generalisation to the multivariable case) The theorem can be extended
easily to distributions in multiple variables, with only an adaptation of notation,
and by extending Corollary 3.2.41 to the multivariable setting, again by mere
adaptation of notation. The result of doing this is that, in Corollary 3.2.41, if
¢ € I(R"*;F), and if we denote ¢°(t) = ¢(s, t), and if 0 € Z'(IR™; [F), then the
function @y ¢ defined by @ 4(s) = 0(¢°) is in Z(IR™; F). Then, applying this to the
proof of the theorem, we can define 0 ® p € &'(R"*"; F) for 0 € &’'(R™;F) and
p € Z(R";F). All of the properties of the tensor product from the theorem apply
to this multivariable setting. The straightforward working out of this, we leave to
the reader. o

The commutativity of the tensor product can be regarded as an adaptation of
some version of Fubini’s Theorem for distributions. Let us explain why this is so.

Let f, g € Lf(l))c(]R; F) and let ¢ € Z(R*%F). Applying part (iii) of the theorem then
gives

O df| ds = ) ds| dt,
fR f(s)( fR g)p(s, t) t) s fR g(t)( fR f(5)p(s,t) s) t

a fact which classically follows from Fubini’s Theorem.

4.3.2 Tensor product in S'(R; [F)

Of course, since tempered distributions are distributions, Theorem 4.3.4 holds
for tempered distributions. However, the results can be improved to account for
the additional structure of &'(IR; F). As in the preceding section, we have the map
1 (R;F) x #(R;F) - F(R%F) given by

U1 X P2)(t1, t2) = P1(t1)Pa(t2),

and we denote ¢ ®¢, = (¢, @2) and denote the span of the image of t by ¥ (R; F)®
F(R; F). We then have the following analogue of Theorem 4.3.1.
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4.3.6 Theorem (The closure of the tensor product (R;F) ® R;F) If ¢ €
F(R%F), then there exists a sequence (¢y)icz., in F(R;F) ® F(R;F) converging to
¢ in the topology of & (R?*;TF).

Proof This follows from Theorem 4.3.1 since, given ¢ € & (R?;F), there exists a
sequence (¢))jez., in Z(R%;FF) converging to ¢ in the topology of ¥ (IR%; F) (cf. Theo-
rem 3.11.3(i)). [

We comment that the analogue of Remark 4.3.2 applies to the preceding theo-
rem.
Now let ¢ € & (R%; ), i.e., such that, for every ri, 7, m € Zs, there exists
Crom € Ry such that

sup{(s* + tz)m/zDng?Wt, )| s,t € R} <Gy ryme

As above, define ¢°,¢; € F(R;F) by ¢°(f) = ¢i(s) = ¢(s, 1), noting that these
functions obviously are elements of #(R;F). Let 6 € %'(R;F) and define
CDQ,¢, \ygl(pl R—-F by

Dg,p(s) = 0(¢°),  Wou(t) = O(y).

From Corollary 3.3.21 we have that both of these functions are elements of ¥ (IR; IF).
Therefore, we can make the following definition.

4.3.7 Definition (Tensor product of tempered distributions) If 0,p € ¥'(R; F), the
tensor product of 6 and p is the mapping 6 ® p: F(R?* F) — F defined by

0 ® p(¢) = 0(Dp), ¢ € F(R%T). o

Let us show that the tensor product of two tempered distributions in one vari-
able is a distribution in two variables, and enumerate a few properties.

4.3.8 Theorem (Properties of the tensor product of tempered distributions) For
0,p,m € ' (R;F), the following statements hold:
(i) 6 p € ¥ (R%TF);
(i) O ® p is the unique distribution for which

0® p(p @ y) = 0(P)p(Y);

(i) O®p=p®0O;
(iv) 0@ (p®n)=(0®p)Qm;
(v) supp(0 ® p) = supp(0) X supp(p);

Proof The only assertion that does not follow from Theorem 4.3.4 is (i). For this we
use a lemma.
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1 Lemma If ¢ € S (R%F) and if (¢y)iez., is a sequence in & (R%; F) for which
lim sup {IskltkzD? D3 (¢ — P)(s, )] | s, te IR} =0

]—700
for every kq,ko, 11,12 € Zs, then

jlilg O(@p,¢) = O(Pp0), ]1530 P(Wo,e) = p(Wo,0)-
Proof Clearly it suffices to prove that lim;. p(Wo,¢;) = p(We,¢) as the other conclu-
sion follows in a similar manner.

We first claim that (Wo,¢,)jez., converges to Wo, in &(R; F). Suppose otherwise
so that, for some k,r € Z,

: kap® (py _ w®
lim sup(I#*(¥, () = W5, ()| € R} #0.

Thus, possibly by replacing (¢))jez., with a subsequence, there exists a € R such
that, for each j € Z., there exists t; € R such that

kg (r)
IE (W g, () = Wy ()] = v
By Theorem 3.3.20 we have
W () = 6Dsp), W ()= 6Dy, € Zso.
Therefore, for each j € Z, there exists t; € R such that
I(OD5),) — O(Dypr))] = e

Let € € R>. By assumption, for each I, m € Z, there exists N € Z.( such that

sup{s'*DI'D(¢; — P)(s,t) | s,t € R} <,
for j > N. In particular,

sup{slt']?D’lan(gbj —-P)s,t)| seR} <e,

for j > N. Thus (t’]‘,Dg(j) ]-,t].) jez., converges to t']‘.DE(th ;in S (R; ). Thus, by continuity of

0,
Lm|O(tD3;) - 6(tDyby)| = Hml£ (D1, = O3yl = 0.

This contradiction implies that, indeed, (Wo,¢,) jez., converges to Wo ¢ in &(R; ).
From this the lemma immediately follows from the continuity of p. v

Part (i) now follows just like the same part of Theorem 4.3.4. [

4.3.3 Tensor product in E’(R; IF)

The final class of tensor product we consider is for distributions with compact
support. As in the preceding sections, we have the map (: &(R; F) x &(R;F) —
F(R% F) given by

1 X P2)(f1, £2) = Pr(t1)pa(t2),
and we denote ¢1 ® P, = 1(¢P1, ) and denote the span of the image of t by & (R; F)®
F(R; F). We then have the following analogue of Theorem 4.3.1.
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Theorem (The closure of the tensor product &(R; F)® & (R; F)) If ¢ € &(R*F),
then there exists a sequence (¢y)iez., in & (R; IF) ® & (R; IF) converging to ¢ in the topology
of &(R? ).
Proof This follows from Theorem 4.3.1 since, given ¢ € & (]RZ; IF), there exists a
sequence (¢))jez., in Z(R?;F) converging to ¢ in the topology of &(R?;F) (cf. Theo-
rem 3.11.3(ii)). [

We comment that the analogue of Remark 4.3.2 applies to the preceding theo-
rem.
Now letp € & (R%;TF), i.e., ¢ is infinitely differentiable. As above, define ¢°, ¢, €
& (R; F) by ¢°(t) = ¢(s) = ¢(s, t), noting that these functions obviously are elements
of &(R;F). Let 0 € &'(IR; F) and define ®g 4, Wo4: R — F by

®Q,¢(S) = 9(¢S), \P@,qf,(t) = 6((@)

From Corollary 3.7.18 we have that both of these functions are elements of & (R; IF).
Therefore, we can make the following definition.

Definition (Tensor product of distributions with compact support) If 0,p <
&’ (R;TF), the tensor product of O and p is the mapping 6® p: &(R?*;IF) — TF defined
by

O®p(P) = 0(D,y), ¢ € ER%). .

Let us show that the tensor product of two tempered distributions in one vari-
able is a distribution in two variables, and enumerate a few properties.

Theorem (Properties of the tensor product of distributions with compact sup-
port) For 0,p,n € &' (R; F), the following statements hold:

(i) 6®p € & (R% ),
(i) O ® p is the unique distribution for which

0@ p(@®Y) = 0(P)p(Y);

(i) 0p=p®O;
(iv) 02 (p®n)=(0®p)Q ™,

(v) supp(6 ® p) = supp(0) X supp(p);
Proof The only assertion that does not follow from Theorem 4.3.4 is (i). For this we
use a lemma.

1 Lemma If ¢ € &(R%F) and if (¢y)iez., is a sequence in & (R?; F) for which
lim sup {|D}' D} (¢ - )(s, Bl | s,te K} =0
]—)OO
for every 11,12 € Zso and every compact K € R?, then

jliglo (D) = O(DPp0), ]11{?0 p(Wo,6) = p(Wo,0)-
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Proof Clearly it suffices to prove that lim; . p(We,¢;) = p(We,¢) as the other conclu-
sion follows in a similar manner.

We first claim that (We,¢,)jez., converges to Wy, in &(IR;F). Suppose otherwise
so that, for some r € Zy and some compact K C IR,

lim sup{|W") oy, () = wi) oDl t K #0.
j—oo

Thus, possibly by replacing (¢)jez., with a subsequence, there exists a € R.o such
that, for each j € Z., there exists ¢ jEK such that

W () =W ()] = a.
By Theorem 3.7.17 we have
W) = 6Dy, WY, (1) = 6Dy, € Zso.
Therefore, for each j € Z, there exists t; € K such that
0Dy¢h,) — O(Djepe))| = a

Let € € R.g. By assumption, for each m € Zzp and L C R? compact, there exists
N € Z- such that

sup{D]'Dy(¢p; — P)(s, 1) | (s,t) €L} <€

for j > N. In particular, for a compact set K’ C R,
sup{D]'D}(¢p; — ¢)(s,t) | s€ K', teK [} <,
for j > N. Thus (D}¢;t,)jez., converges to Di¢y, in &(R; IF). Thus, by continuity of 6,

m|6(D}0) = D3¢ )| = D}, ~ OD}py)| =

This contradiction implies that, indeed, (Wo,¢,)jez., converges to Vo, in &(R; ).

From this the lemma immediately follows from the continuity of p. v
Part (i) now follows just like the same part of Theorem 4.3.4. |
Exercises

4.3.1 Show that, for i € Z(R; F), the mapping ¢ — ¢ ® 1 is continuous.
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Section 4.4

Convolution of distributions: Definitions, basic properties, and
examples

In Sections 4.1 and 4.2 we considered in detail the matter of convolution for
signals. In this section and in Section 4.5 we carry out a similar process for
distributions. As with signals, it is not the case that convolution exists for all
pairs of distributions, so a careful discussion must begin with what is meant by a
convolvable pair of distributions. It is this that we are primarily concerned with in
this section.

Do | need to read this section? This is where you will want to begin if you are
learning about convolution for distributions. °
4.4.1 Convolution for distributions

We note that an attempt to directly adapt the definition

feglt) = fR £t - 9)g(s) ds

to distributions is problematic since, for one thing, one cannot multiply distri-
butions. One must proceed in a different way, and we take guidance from the
characterisation in Corollary 4.1.7 of convolvable pairs of signals. To wit, let us

suppose that f, g € LS)Z(IR; F) and that ¢ € Z(R;F). Then, thinking of f and g as
regular distributions, the regular distribution f * ¢ (when it is defined) satisfies

0,.(6) = fR £+ gOp(t) dt = fR ( fR f(t—s)g(s)ds)qb(t)ds

- [ ( | f(t—s)qb(t)ds)g(s)ds: | ( | f<t>¢<s+t>ds)g<s)ds

= fff(t)g(s)qb(s+t)dsdt,
R JR

where we use Fubini’s Theorem (whose hypotheses are readily verified to hold)
and the change of variable theorem. Thus the integral is over the domain

{(s,) € R* | s+t €supp(o)},

which we depict in Figure 4.22 Despite ¢ having compact support, this domain
will not be compact when supp(¢) has a nonempty interior. This prohibits us from
writing

Org(P) = (Of ® Og; T' )
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supp(¢)

supp(¢)

Figure 4.22 The domain of integration for convolution

for
7:R* > R

(s,t) > s+t

the point is that 7°¢ ¢ Z(R% ). Thus we have to take into account how f and g
behave on the domain depicted in Figure 4.22.

There are various ways to rectify this; we shall use a sequential approach, defin-
ing the convolution as a limit. To motivate this, we recall from Definition 3.4.17
the notion of an approximate unit which we used to characterise integrable dis-
tributions in Theorem 3.4.19. While the definition was given for functions whose
domain is IR, it is adapted in an obvious way to functions whose domain is R?. To
this end, we let (1)) ez, be a sequence in Z(IR?* RR) satisfying
1. the sequence () ;cz., converges in & (R?; FF) to the function t — 1 and

2. for each k,I € Z, there exists My € R, such that IIDI{DIZ%'IIOO < My, for every
j S Z>0.

In this case, for each j € Z., ¢jT'¢p € Z(R*F) for every ¢ € Z(RR;F), and so the

expression

(05 @ Og; 9T 9)

makes sense.

The preceding preparation leads to the following definition, recalling the no-
tion of an integrable distribution from Section 3.4 and the characterisation in The-
orem 3.4.19 of integrable distributions. Our definition also involves the fact that,
by applying Propositions 3.3.12 and 3.4.9, to know an integrable distribution, it
suffices to know the distribution on test signals in Z/(RR; F).
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Definition (Convolution for distributions) A pair (6, p) of distributions is con-
volvable if, for every ¢ € I (IR; F), the distribution

D(R%TF) 3¢ - (0 p; UT*h)

is an integrable distribution, i.e., in &/, (R%F). If (6, p) is convolvable then their
convolution is the distribution 0 * p € Z'(IR; IF) defined by

0 p(¢) = im0 ® p; ;')

where (/) jcz., is an approximate unit, as per Definition 3.4.17. )

Let us first verify that this definition of convolution generalises the definition of
convolution for signals given in Definition 4.1.1. In the statement of the following
result, recall from Theorem 4.1.5 that convolutions are locally integrable, and so
define distributions by Proposition 3.2.12.

Theorem (Convolution of distributions generalises convolution of signals) A
pair (£, g) of locally integrable IF-valued signals is convolvable if and only if the pair (0, Oy)
is convolvable. Moreover, if (£, g) is convolvable, then Oy = Of * O,,.
Proof First suppose that (f, g) is convolvable and let ¢ € Z(R;[F) and let () jez., be
a sequence in Z(IR?; F) that is an approximate unit. Note that

(07 0 ;T0) = | FORO6 D00+ D,
taking x = (s,t) € R2. Since (f, g) is convolvable, by Corollary 4.1.7 we have that
(s,1) = f(s)g(B)p(s + 1)

is integrable. Therefore, by the Dominated Convergence Theorem (whose hypotheses
hold as a consequence of the definition of an approximate unit), we have

tim [ FOg(6, 096+ 0 dr = [ G006+ d.

This shows that (1) the distribution

@(IRZ; F)ys¢y e (Or® O YT P) = IRZ f(5)gt)(s, t)Pp(s + t) dx

isintegrable (by Theorem 3.4.19) and so (6, 0¢) is convolvable and that (2) 0 sx0, = Or.¢
(by Corollary 4.1.7).

Next suppose that (0, 6,) is convolvable and let ¢ € P (R;F). Without loss of
generality (by Proposition 4.1.4) we suppose that f and g are nonnegative-valued.
Consider a sequence (i})jez., in Z(R%F) that is an approximate unit and which is
positive and converges to 1 monotonically from below, cf. see the sequence (¢})ez.,
used in the second part of the proof of Theorem 3.3.13. Then

(0@ 0g;¢;T ) = j]l;z f(&)8®Yj(s, HP(s + t) dx,
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as above. Since (6 Iz 0,) is convolvable, the limit
lim (0 ® O,; YT Q)
j—o0

exists. Therefore, by the version Theorem Il-2.7.25 of the Monotone Convergence
Theorem, we deduce that

lim fR FEZEP(5, (s + ) dx = fR fOR(B(s + B dx < co.

Now let i: R — FF be continuous with compact support and let ¢ € Z(IR; F) be a non-
negative function such that |i(t)| < ¢(t) for each t € R. Then, by Proposition 111-2.7.19,

—00 < f Ffz8r‘¢ dA, < f Ff,g,h dA, < f Ff,g,(P dAy, < o0
R2 RR2 R2

showing that F,¢ j, is integrable for every continuous function & with compact support.
That (f, g) is convolvable follows from Corollary 4.1.7. Moreover, as we have proved
that

}im(Qf ® Oy TPy = fz f(s)gt)p(s + t) dx,
—00 R
we also have 6 + 6, = 0r.,, again by Corollary 4.1.7. |

The theorem gives us a large collection of convolvable distributions. However,

let us consider some convolutions of distributions that are not regular.

4.4.3 Examples (Convolution of distributions)

1.

We claim that, for a distribution 60 € Z'(IR;F) and for ¢, € R, (6, 0,) is con-
volvable and 6 * 6;, = 7; 6. To see this, let ¢ € Z(R;F) and € & (R?;F) and
compute

(O1y; (YT PY) = (s, t)P(s + to).
If we choose ¢ such that y(s, ty) = 1 for s € supp(t", ¢), in which case

(O10; (YT P)) = T4, (s)-

Then
(0 ® by, YT Pp) = O(1_, D) = 1, 0(P).

Now, with ¢ € Z(IR; F) fixed, if we let (1)) ez, be a special approximate unit
in Z(R?; F), then there exists N € Z., such that Yi(s, tg) = 1fors € supp(”[*_tocp)
and for j > N. Therefore,

lim(0 ® by ;7' 9) = 7;,0(9),

from which we conclude that (6, 6;,) is convolvable and that 0 * 6, = T:OQ.
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2. For 0 € &’'(R;F) and k € Z.,, we claim that (6, 6E)k)) is convolvable and that
0+6Y = 0W. Indeed, for ¢ € Z(R;F) and ¢ € Z(R% F),

OO0 (YT o)) = (- 1)"<6o,<<w ¢))®)

k

= Z<—1>k Y (].)«5; @O0 (T )y

=
k k k

- Yt Y (oo ot
=

Thus, if we take ¢ such that y(s,0) = 1 for s € supp(¢), then

% (o)) = (-1)fp®(s).

Now, with ¢ € Z(R;F) fixed, let ({;)jcz., be a special approximate unit in
Z(R* ) and let N € Z be such that ¢j(s,0) = 1 for s € supp(¢). Then

lim(6 ® 6®; Y, T'p) = (=1)6; p®) = (69; p),
e

giving that (6,6®) is convolvable and that 6  6® = 6®.
3. The preceding computations are easily combined to show that, if 0 € Z'(IR; F),
if ty € R, and if k € Zs, then (0, 62]()) is convolvable and that 0 * (SE? = T;OG(k). °

Let us now give some basic properties of convolution for distributions, rather
closely mirroring what we have already done for signals.
First we indicate the character of the support of a convolution.

4.4.4 Proposition (Support of convolution of distributions) If (0, p) is a pair of con-
volvable IF-valued distributions, then

supp(6 * p) C cl(supp(0) + supp(p)),

where supp(0) + supp(p) = {s + t| s € supp(0), t € supp(p)}.
Proof Let U = R\ (supp(0) + supp(p)), noting that U is open. Note that, if (s,t) €
supp(0) X supp(p), then s + t € supp(0) + supp(p) and so

s+t €R\ (supp(0) +supp(p)) = (5,1) € R*\ (supp(6) x supp(p)).

Therefore, if ¢ € Z(IR;F) is such that supp(¢) C U, then supp(t*p) € R? \ (supp(6) x
supp(p)). It follows from Theorem 4.3.4(v), that, forany ¢ € Z(R%; F), (6®p; YT°d) =
and so (0 * p; ¢) = 0. Thus supp(0 * p) C supp(0) + supp(p), as claimed. |
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4.4.5 Proposition (Algebraic properties of convolution of distributions) If 0,p,n €
D' (R; F), then the following statements hold:
(i) if (0, p) is convolvable, then (p, 0) is convolvable and O+ p = p * O;
(i) if (0, p) and (0, 1) are convolvable, then (0, p + 1) is convolvable and 0 + (p + 1) =
Oxp+0=*m.
Proof (i) Let (¢/)jez., be an approximate unit in & (R%F) and let ¢ € Z(R;F). For
j € Z, define ljJ i(s,t) = Pj(t,s), and note that (lf) j)jez., is an approximate unit as well.
Then we note that
Yi(s, HT'P(s, t) = g@j(t, S)T'P(t,s).

By Theorem 4.3.4(iii) and by the definition of O ® p, we have

(PO Y TP =0 p; jT'P),  j€Zso.

Thus
lim(p ® 0; ;" }) = im(0 ® p; P;T°¢).
j— j—

From this we conclude that (p, 0) is convolvable and that p* 0 = 0 = p.
(i) Let ¢ € Z(R;F) and let (¢)) jez., be an approximate unit in & (R?; F). Then we
compute
(O (p+m);Yip) =<0 ®p;YjP) + (0 ® 1T; psijp),
whence
Hm(0® (p+m); i) = Im(O® p;jp) + lim (O @ 70, psijp).

From this we conclude that (0, p + ) in convolvable and that 0% (p+ 1) = O*p + 0=,
as claimed. n

4.4.6 Example (Convolution is not generally associative) We already know that con-
volution of signals is not generally associative (Example 4.1.10). It follow from this
and Theorem 4.4.2 that the convolution of distributions is also not commutative.
However, we can give a simpler and more “distributiony” example as follows.
Note that

65)1) * 01, = 6212)0 =09

using Example 4.4.3-2 and Example 3.2.30-3. Also, if 1 € | _(R;T) is defined by
1(t)=1,t € R, then
01«5 = 0V =0,

again using Example 4.4.3—2 and using Proposition 3.2.31. Therefore, combining
these computations,
61 * (681) * 8120) = 61 * 60 = 61

(using Example 4.4.3—-1), but
(01%6") % 04, = 0. .

It turns out that it will be helpful to have on hand some language to describe
associativity of convolution for distributions.
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4.4.7 Definition (Convolution-associative triple of distributions) A triple (6,, 6, 05)
is convolution-associative if the pairs (0,, 0,), (01, 03), and (0,, 05) are convolvable
and if

(Os(1y * O52) * Os3) = O501) * (O5(2) * O5(3))
for every o € G;. o

The reader can show in Exercise 4.4.3 that, for a convolution-associative triple
of distributions, that all possible ways of computing 0 * p * 7 agree.

4.4.2 Convolution for distributions with restrictions on their support

In Section 4.1.2 we discussed convolution of causal and, specifically, strictly
causal signals. In these cases we saw that every pair of locally integrable signals
is convolvable, and the fact that they are convolvable is a consequence of the fact
that the causality of the signals leads to the integration defining convolution being
done over a compact interval. The same idea apply for causal distributions, as we
explore in this section.

We recall from Definition 3.2.17 the definitions of the sets 2 (R; F) and &’ (R; FF)
of causal and acausal distributions, respectively. We also have the sets 27 (R; IF)
and Z(R; F) of strictly causal and strictly acausal distributions, respectively. In
this section we shall focus on causal distributions, the corresponding results for a
causal distributions following mutatis mutandis.

First let us show that convolution of causal distributions is always defined.

4.4.8 Theorem (Convolution of causal distributions) If 0,p € I (IR;F) , then (0, p) is
convolvable and 0 + p € D (R; FF).
Proof Let ¢ € Z(R;[F) and let (¢)jez., be a sequence in & (R?%; F) that is a special
approximate unit. The hypotheses are that

supp(0) C [a,00), supp(p) C [b, o).
Let us suppose that supp(¢) C [a, f]. We claim that, if

s,t>1Bl, s,t<min{-l|al,—|bl, —lal},
then (s, t) ¢ supp(0 ® p) N supp(t*P). Indeed,

s,t>fl = s+t>2B|>p = (s,t) ¢ supp(tP),
st<—la] = s+t<2al<a = (st)¢supp(t'p),
s,t<—la] = s<a = s¢supp(0),

s,t<—bl = t<b = t¢supp(p).

and our assertion follows from Theorem 4.3.4(v). It follows that, if N € Z is suffi-
ciently large that

(s, t) € [min{—lal, —|bl, —lal}, IB? = ¢nGs, 1) =1,
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then
(0@ p; YiT'P) = (O ® p; YNT ), j=N,

which implies that (6, p) is convolvable. That 0 * p € & (R; F) follows from Proposi-
tion 4.4.4. [

A direct consequence of the preceding result, along with Theorem 4.3.4(v), is
the following.

4.4.9 Corollary (Convolution of strictly causal distributions) If 0, p € Z/ (R; F), then
(6, p) is convolvable and 60 + p € . (R; F).

As is the case with causal signals and convolution, there are useful algebraic
properties of the set of causal distributions.

4.4.10 Proposition (Algebraic properties of causal convolution for distributions) If
0,p, 1 € D (R; F) are causal, then the following statements hold:

([) Q*P:P*Q}
(i) (O+p)rmt=0x(p=*m)
(iii) O (p+m)=0+p+0*m.

Proof Only (ii) does not follow from things we have already proved for convolution
of general distributions.
Let p € Z(R;F) and leta, b, c € R be such that

supp(6) C [a, o), supp(p) C [b, ), supp(n) C [c, )

and let a, 5 € R be such that supp(¢) € [a, f]. We then argue, just as in the proof of
Theorem 4.4.8, that, if (s, t, u) € R3 satisfy

S, tru > |ﬁ|/ s, t/ u< min{—|tz|, _|b|/ _|C|I _lal}/

then
(s,t,u) & supp(0 ® p ® ) N sup(t*P),

where
2:RP> R

(s, t,u) > s+t+u.

Note that we also have, as shown in the proof of Theorem 4.4.8,

t,u>|l, t,u < min{—lal, —|bl, —|c|, —lal} = (t,u) ¢ supp(p ® ©) N sup(t°P)
and

s,t > |Bl, s,t <min{—|a|, —|bl, —lc|, —lal} = (s,t) & supp(0 ® p) Nsup(t’).
Let x1 € Z(R; F) be such that

Xl(x) = 1/ Xe [min{_ml/ _lbll _|C|/ _|a|}/ |ﬁ|]/
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and define x7 € Z(R%F) and x3; € Z(R3; F) by
xa(s, 1) = xa()xa(t), - xa(s,t,u) = xa(S)xaHxa(w).
With these preliminary computations out of the way, we next claim that
(Ox(p=m);d) =0 & (p®M); x3T°). (4.20)

By definition of convolution, we have
(0 (p=m); ) =0 (p*T0); 2T P).
For s € R, denote ¢°(t) = ¢(s + t) and define
Dperp(s) = {p * 1 §°).
By Corollary 3.2.41, @, » € Z(R;F). We also have, by definition of convolution,
(p*9%) ={p®T; x2T'P")

Now we denote
q)p®7'(,)(3%*(f)(s) = <p ® T(; (X3%*¢)s>/

with
(x3)°(t, u) = x3(s,t, u)p(s + £ + u).

By the extension of Theorem 4.3.4 as indicated in Remark 4.3.5, Thus, as long as

(s, t,u) € [min{al, =[bl, =Icl, =lal}, |BII®,

we have
X2T ¢ (tu) = (X3t P)*(t, u).
As a consequence of this,
(p*1;¢°) = (p T, (Xx31"P)*),
and, as a consequence of this,

(O®(p=0); x2T'}) = (O ® (p ® ); x31"P).

The definition of convolution and the construction of x; and x3 then give (4.20).
An entirely similar argument establishes the equality

((O=p)x1;0) = (0 ®p) ®T; x3T D).

The desired assertion now follows from Theorem 4.3.4(iv). [
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4.4.11

4.4.3 Convolution for periodic distributions

We now turn to the convolution of periodic distributions, such as introduced
in Section 3.9. As is the case with convolution of periodic signals, if we apply
ordinary convolution to periodic distributions, nothing interesting happens since
the only time a pair of distributions (0, p) are convolvable is when one of them is
zero. Thus we need to have a distinct mechanism for defining the convolution of
periodic distributions.

The following definition indicates how this is done. In the definition,
pr,, pr,: R? — are defined in the obvious way:

pr,(s,t) =s, pr,(s,t) =t

Thus for f,g: R — IF, pr] f(s,t) = f(s) and pr;, g(s, t) = g(t).

Definition (Convolution for T-periodic distributions) For T € R,y and 0,p €
Dper, /(IR F), the T-periodic convolution of 6 and p is given by 6+ p € | (R; )
with

0+ p(¥) =0 & p; (pry (P VI(TY)), ¢ € Dpeurr(RF),
for u, v € %r(R; F). °

This definition requires having sense be made of it. First of all, since
(pr; W)(pryv) € & (R% ), the definition gives a (not necessarily periodic) distri-
bution for every u, v € Zr(R; F). One needs to verify that (1) the definition of 0 * p
does not depend on v and v and (2) the resulting distribution is T-periodic. The
following result establishes these fact.

4.4.12 Theorem (Periodic convolutions are periodic) For T € R,y and 0,p €

Doer 7(R; F), the definition of 0 * p is well-defined and gives a T-periodic distribution.
Proof For ¢ € Zper, 7(IR; F) and v € r(IR; F), note that, if we define

) () = v(B)Y(t +3),

then (VY)° € Dper,7(R;F). Similarly to what we did in Section 3.2.8, define @, y(s) =
p((wy)’). By Theorem 3.2.40, we conclude that @, € C*(R;[F) and it is evidently
T-periodic, ie., ®py € ZLper,7(R;F). By Corollary 3.9.11, @, is independent of v,
hence the notation omitting v is justified. Now, by Corollary 3.9.11 again, we have
that

(0, Dp,y) = (0; uDp,y)
for any u € %r(R;F). By definition of tensor product, we have

(6; uDy,y) = (D4 0; 1y = {(Dp,y0) ® p; pry 1)
= (0 ® p; (pr; 1)(pry V)(T'Y)).

This establishes that the definition of 0 * ¢ does not depend on p and v. To see that
Oxp € @éer 1(IR; IF), we first note that 6+ p is linear from its definition. Now let (¢)) jez.,
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be a sequence in Zper, 7(IR; IF) converging to zero. Then it is easy to verify, by the higher-
order Leibniz Rule (Proposition 1-3.2.11), that ((pr] u)(pr; v)(T"¢}))jez., converges to
zero in Z(IR?; F). Continuity of the tensor product ensures that (0+p(y)) jez., converges
to zero, and so 0 * p is continuous. [ ]

As one would hope, the definition of convolution of periodic distributions
generalises the convolution of periodic signals.

4.4.13 Theorem (Convolution of periodic distributions agrees with convolution of
periodic signals) For T € R. and for f, g € LSE)LT(]R; IF),
Qf*g = Qf * Qg.

Proof Let ¢ € Zper7(IR;F) and let p,v € %r(R;F). Then, by definition of periodic
convolution,

OO0 = [ HOUOSEsOGs + ) dsa,

The computations of Example 3.9.3—1 then give

<9f*6g;¢>=f

[0,T]x[0

f(8)g(H)Y(s + t) dsdt.
7]

Also, by Corollary 4.1.22, we have

O i) = f F5)g(Bls + 1) dsdt,
[0,T]x[0,T]

which gives the result. |
Let us consider some examples of periodic convolution.

4.4.14 Examples (Periodic convolution) In all examples, we let T € R..
1. We recall from Example 3.9.12-2 the definition of the delta-comb:

thy= Z Sur-

nez.

We claim that, if 0 € Q}QerlT(]R; IF), then 0+ hy= 0. To see this, let ) € Dper, 7(R; IF)
and let u, v € Zr(IR; F). Then, as we determined in Example 3.9.12-2, My (y)) =
1(0). Therefore,

Dpyp(s) = (M (VP)°) =1P(s),  s€R.

Then
(6; uDgy) = (6; 1),

and the computations from the proof of Theorem 4.4.12 then give (0* Mr; ) =
(6; ¥), whence 6+ Mr= 0, as claimed.
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2. We claim that, for 0 € ngerlT(IR; IF) and for k € Z.,, 0+ rhg’f): 6, Indeed, let
Y € Do r(R;FF) and let p,v € %r(R;F). Then, as we determined in Exam-
ple 3.9.12-3, h% () = (=1)kp®(0). Therefore,

Dpyp(s) = My (VP)°) = P(s),  s€R.

Then
(6; uDg ) =<6; 1),

and the computations from the proof of Theorem 4.4.12 then give (0+ Mhy; Y) =
(6; ¥), whence 6+ Mr= 0, as claimed. °

Let us present the algebraic properties of periodic distributions with the con-
volution product.

4.4.15 Proposition (Algebraic properties of periodic convolution) If 0,p,n €
9; er/T(IR; IF), then the following statements hold:

(i) Oxp=p=+0;
(ii) (0*p)*m=0x(p*m)
(iii) O+ (p+m)=0*+p+0*m.
Proof The only attribute that does not follow from the general properties of convolu-
tion for distributions is part (ii). To prove part (ii), we can follow an argument similar
to that in the proof of Proposition 4.4.10. We shall simply provide that major steps,

since the verifications follow in the same manner as Proposition 4.4.10.
Let v; € %r(R; F) and define v, € Z(R?; ) and v; € Z(R3; F) by

v2(s, 1) = vi(s)va(t),  va(s, b, u) = vi(s)va(t)vi(w).

Let 7: R® = R be defined by %(s,t,u) =s+t+uandleti € gper,T(lR; IF). With this, we
can show that
(0= (p*m); Q) =<0 ® (p®m); x3t"Y)

and that
((O*p)x1;0) =(O0® p) ®T; x3T" ).

The result then follows from the associativity of the tensor product proved as Theo-
rem 4.3.4(iv). [

4.4.4 Convolution for distributions with values in vector spaces

In Section 3.2.12 we consider distributions with values in a vector space. In Sec-
tion 4.1.7 we consider convolutions of signals with values in a vector space. Here
we combine the ideas in these section to arrive at the convolution of distributions
with values in a vector space.

We let F € {R,C} and let U and V be finite-dimensional [F-vector spaces. The
key step in defining the convolution of vector space-valued distributions is to
understand the tensor product in this case, since all convolutions are defined
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by tensor product. Thus we let L € Z'(R;L(U;V)) and let n € &'(R;U). For
¢, Y € Z(R; F) we can define L ® 7 on ¢ ® ¢ by

Lo n(¢®y) = Lig)ny), (4.21)

recalling that L(¢) € L(U; V) and n(y) € U. Let us express this in a basis so as to
see how it works. Let (fy,..., fu) and (e, ..., e,) be bases for U and V, respectively.
We let Ej, € L(U;V), j € {1,...,n},a € {1,...,m}, be the induced basis for L(U; V)
defined by

e, a=b,

Eja(fb) :{

0, otherwise.

Then we can write
n=mfi+-+nwfu
for n1,...,nm € Z'(R;FF). Similarly, we define L, € Z'(R;F), j € {1,...,n},a €

{1,...,m}, by
L=Y"Y LiEu

j=1 a=1
Then we have 0 om
Len@ey) =) Y (L@ ;.
j=1 a=1

This then reduces the tensor product of L and 1 to the scalar case. One can then
use Theorem 4.3.4(ii) to give the existence of a unique distribution L&1n € &'(IR; V)
satisfying (4.21).

The matter of defining convolution is then similar. Distributions L €
Z'(R;L(U; V)) and n € Z'(R; U) are convolvable if the distribution

D'R%EF) s > (Lonproy eV
is integrable for every ¢ € I(IR; F). The convolution of L and 1 is then defined by

(Lxm; ) = }Lg(L M TP), ¢ € Z(R;IF),

for a n approximate unit ()) ez, in Z(R% ).

One can now verify the properties of convolution in the above sense from the
scalar case, noting, of course, that convolution is not commutative as this no longer
generally makes sense. One also defines the convolution of causal distributions
and periodic distributions with values in a vector space similarly.

4.4.5 Notes

[Mincheva-Kaminska 2011, Mincheva-Kamiriska 2014] for sequential ap-
proaches to convolution
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Exercises
Let F € {R; C}, let p € &' (R; F), and denote

conv(R; FF) = {(0,p) € Z'(R; F) ® Z'(R; F) | (0, p) is convolvable}

and
convyg = {0 € Z'(IR;F) | (0,p) is convolvable}.

Answer the following questions.

(@) Is conv(R;F) a subspace of Z'(R; F) ® Z'(R; F)?

(b) Is convy(IR; F) a subspace of &'(RR; IF)?

Let 0,p € &’(R; F) be convolvable and let 2 € R. Answer the following
questions.

(a) Show that (7,0, p) and (0, 7,p) are convolvable and that
(1,0) * p = 0= (1,p) = T,(0 * p).

(b) Show that (7,0, T;p) is convolvable and that (7;0) * (;p) = 75,(0 * p).
Show that, if (01, 0,, 03) is a convolution-associative triple of distributions,
then

(61 % 02) * O3 = (O5q1) * O5(2)) * Os3) = Os1) * (Oo2) * Os(3))

forall 0 € G;s.



4.5.1

358 4 Convolution 2022/03/07
Section 4.5

Convolvable pairs of distributions

In the preceding section we understood the mechanics of the convolution of dis-
tributions and considered a few general attributes of this convolution, both in the
general setting and within special classes of distributions. In this section we shall
study particular convolvable pairs of distributions, and as well give the important
continuity properties of convolution. Note that all of our results from Section 4.2
give classes of convolvable distributions, by virtue of Proposition 3.2.12. This
we focus in this section on distribution specific results. Some of our results ap-
ply to rather specific classes of distributions, such as Z(R;F) or #(R; F), even
though such distributions may not abound in nature. Such results signal that
the developments will be used in a (1) a theoretical setting such as our develop-
ment of approximations using convolution in Section 4.7 or (2) in situations where
important specific signals arise that are in these signal classes, e.g., 1 € (R; [F).

Do I need to read this section? The results in this section can be somewhat spe-
cific and technical. It is possible, therefore, to pass over this section on a first
reading, and then come back to it for such results as are subsequently needed. e

4.5.1 Convolutions with test signals

The first category of convolutions we consider are those involving test signals.
Test signals, especially those in Z/(RR; F) and ¥ (IR; F), are not necessarily common
in nature. However, the convolutions we consider here are useful at various points
for establishing other important results that do pertain more directly to nature.

We begin with a technical lemma describing convolution with a test signal.

Lemma (Convolutions with test signals) If
T e{ZRF), ¥R F),ERF),

if e T and 6 € I, then ¢ » O is a reqular distribution that is infinitely differentiable,
and
(@*0) =p® 0 =cpx0W, k € Z,.
Proof Let{ € 7 and 0 € 7’ and define ¢°(t) = Y(s + t) and Py y(s) = O(y°). By
Theorems 3.2.40, 3.3.20, and 3.7.17, we have @y y, € C*(IR; IF) and

o) () = O((Y)). (422)

Moreover, we claim that

ER;F), I =Z(R;F),
Dyy €{ L (R;F), T = F (R,
IZR;F), T =&R;F).
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The first case, when 7 = D (IR; [F), is clear. In the second case, when 7 = ¥ (IR; F), let
us denote (s, t) = s + t as usual, and note that, for 1,1, € Zs,

DD T"(s, t) = D"2(s + t).

From this, and the fact that 7°¢ is infinitely differentiable, we easily see that the
hypotheses of Corollary 3.3.21 hold for every k € Z. Finally, in the case when
I = &[R;F), we note that, for large values of |s|, supp(0) and supp(¢°) will not
intersect.

Now, given the above, let us determine ¢ * 0. In all cases, we have

(P = 0;1) =(0p; Dg,y) = Oy ® 6;TY),
and we note that the final expression here makes sense, literally in the case of 7 =
F(R;F) and after multiplication of 7°¢ by a suitable y € Z(IR%* R) in the other two
cases; thus we indulge in an harmless abuse of notation. We then have
(P*6;¢) =0 & Op; TY) = (0, Dy, p)-
Note that
00,00 = [ opts -0t = [ ot peoar
and so
(6, Do) = (Ow,,; P),
where W ,(t) = 0(T;079).
Moreover, similarly to (4.22), we have
\y(kip(t) o(tia*p®).
Thus, by our computations just preceding, we have
(050> = (1! 0p0; ) = (~1)0; Vg, )
= (DO, 9 0) = (0 ;) = (Ow, i P).
In summary, we have shown that ¢ * 0 is the infinitely differentiable function
defined by ¢ * O(t) = 6(t;0"¢) and that
9+ 0)9(t) = 0(rjo"¢®) = ¢+ 0(1),
For the final conclusion of the lemma, we compute
¢+ 09(t) = (6W; 7j0"p) = (~1)6; (1;0" ) = (6; 1" pY) = 6+ T,
as desired. n
Now we prove three theorems concerning convolutions of distributions with
test signals. In each case, the difficult part of the proof is the asserted continuity
conditions, and for these we make use of the descriptions of the topologies for test
signals and distributions developed in Section IlI-6.5.5. We point out that, when
proving continuity of the convolution with respect to the “distribution part,” we

do not use the usual topology for &’(IR; IF), but the strong topology described in . uacr
First we consider the case of test signals in Z'(IR; FF).
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4.5.2 Theorem (Convolutions involving I (R; F)) If ¢ € Z(R;F)and 6 € &' (R; F), then

continuity for inductive
limits

strong convergence

(¢, 0) is convolvable, ¢ + O € &(IR; F), and the maps

DR;F) > ¢ - 0 € ER;F)

and

D'(R;F) 5 0 ¢+0 € &(R; F)

are continuous, the latter in the strong topology for Z'(R; FF).

Proof The only thing not following from Lemma 4.5.1 is the continuity assertions.

First we prove continuity of the map ¢ = ¢ * 6. To do this, by it suffices to show
that, for every compact K C IR, the restriction of this map to the subspace ¥ (K;IF)
of test signals with support in K is continuous. Let L C R be compact and let K be
a compact interval for which supp(7jo*¢) C K for every t € L and ¢ € Z(K;F). By
Lemma 3.2.44, let M € R>g and r € Z>( be such that

0W) < MIYDNlw, ¥ € D(K;TF).
We then compute
supfl(¢* )P ()| | t € L} = sup{l(0;7ja"p™)| | t € L)

< Msup{lp® (s - )| teL, s e R}
< Msup{lp®(w)| | u € K}.

By Proposition 111-6.2.9, we conclude continuity of the restriction of ¢ — ¢ * O when
restricted to & (K; IF).

Now we show strong continuity of 6 +— ¢ * 0. First we claim that, for ¢ € Z(IR;F)
fixed (as is the case here) and K C R compact, the set

B¢,K = {T;G*qb | te K} - g(R,IF)

is bounded. First of all, by Proposition Il-6.2.10, to show that this set is bounded, it
suffices to show that
sup{lp®W(s —1)|| s€R, t € K} < o0

for each k € Z. This, however, is evident since supp(¢) is compact. Now let (0;) ez,
be a sequence in &’ (IR; IF) that converges strongly to zero. Then, by , we have

lim sup([(¢+ 0,)(0) | € K = lim sup{K6;7jo" ) | € K)
< }gg sup{|0;(Y)I | ¥ € By} =0.
Thus (¢ * 0j|K)jez., converges uniformly to zero. Since
(0*0)® =900,  jkeZsy,

a similar argument to that just preceding shows that ((¢ * Gj)(k)IK)j€Z>O converges
uniformly to zero, and this proves that (¢ * 0)) ez, converges to zero in &(R;F). m

Next we consider convolutions with test signals in & (IR; IF).
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4.5.3 Theorem (Convolutions involving ¥(R;F)) If ¢ € F(R;F) and 60 € ¥ (R; ),
then (¢, 0) is convolvable, ¢ + 0 € &(IR; F), along with all of its derivatives, are signals of
slow growth, and the maps

FPRF)> ¢ ¢+0 € &R F)
and
F'R;F) 20 ¢+0e&(RF)

are continuous, the latter in the strong topology for &’ (IR; IF).

Proof Apart from what we have already proved in Lemma 4.5.1, we need to prove
that ¢+0 and all of its derivatives have slow growth and we have to prove the continuity
assertions.

First we prove continuity of the map ¢ — ¢ * 0. Let K € R be compact. By
Lemma 3.3.22, let M € R and r € Z5( be such that

6W)l < Msup{|(1+ 27| teR), e FEKF)
We then compute
supfl(¢* )P ()| | t € K} = sup{l0; Tja"p®)| | t € K]

< Msup{|(1 +s2)o* (s — )| teK, s € R}
< Msup{|(1 + (u+ ) ® W) | ueR, t €K}

Note that
1+u?

lim ——— =1,
|u|1—>oo 1+ (u + t)z
uniformly in ¢ € K. Thus there exists C € R such that

1+ u+1)?<C1+u?),
and so

sup{l(¢* ) (@®)| | t € K} < MC*" sup{|(1 + u?)*"o* I (w)| | u € R}.

By Proposition 1l1-6.2.9, we conclude continuity of the restriction of ¢ — ¢ * 0.
Now we show strong continuity of 6 — ¢ * 0. First we claim that, for ¢ € F#(R; F)
fixed (as is the case here) and K C R compact, the set

B¢,K = {T:G*(P | te K} - Sp(]R,IF)

is bounded. First of all, by Proposition Il1-6.2.10, to show that this set is bounded, it
suffices to show that

sup{|(1 + ) p®(s— )| s€R, t €K} < oo

for each k € Z¢. This, however, is evident since ¢ € F(R;F). Now let (6;);cz., be a
sequence in #’(IR; IF) that converges strongly to zero. Then, by , we have strong convergence
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]113& supf{l(¢ = 0))(t)| | t € K} = ]lgg sup{(0;; T;,0"P)| | t € K}
< ]11_>r£10 sup{|0;(W)I | ¥ € By} = 0.
Thus (¢ * 0j|K) ez, converges uniformly to zero. Since
@=0)® =99 +0;,  jkeZs,

a similar argument to that just preceding shows that ((¢ * 6;)®|K)jez., converges
uniformly to zero, and this proves that (¢ * 0)) ez, converges to zero in & (R; IF).
Finally, we show that (¢ * 0)® is a signal of slow growth for every k € Z5o. By

Theorem 3.3.23, let r € Z( and let f € CO(RR; FF) be a signal of slow growth such that
6= 65[?). Let C € R.g and N € Z. be such that

If(t) < C(1 + )N, teR.

Then we calculate
(6 00) < KOVitio" o) < [ 17667 -9 ds
R
- f If(t—s)p(s)|ds < C f 11+ (t = 5))N|lp®(s)| ds
R R

2N
<c| ;|t|f|Pj<s>¢“’<s>|ds

for polynomials Py, ..., Poy. Since ¢ € #(R; F), P jqb(r) is integrable, and so we obtain

2N ‘
p+0®I < Y Ciltl,

j=1

showing that ¢ = 0 is a signal of slow growth. Since (¢ * 0)® = ¢® « 0 by Lemma 4.5.1,
the preceding argument applies to show that the derivatives of ¢ * 0 are also signals
of slow growth. m

Lastly, we consider convolutions in & (R; IF).

4.5.4 Theorem (Convolutions involving &(R;F)) If ¢ € &(R;F) and 6 € &'(R; F), then
(¢, 0) is convolvable, ¢ + 0 € D (R; F), and the maps

ER;F)>p— ¢p+0e&(RF)

and
&' (R;F)30- ¢px0ec&(RF)

are continuous, the latter in the strong topology for &’ (R; FF).
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Proof Apart from what we have already proved in Lemma 4.5.1, we need to prove
the continuity assertions.

First we prove continuity of the map ¢ — ¢ + 0. Let L C R be compact. By
Theorem 3.7.19,letry,...,rm € Zspand fi,..., fm € Cgpt(IR; IF) be such that

m
_ @)
0 = Z 0,
j=1
Let K C R be compact and such that supp(f;) C K, j € {1,...,m}. We then compute

supil(¢* O)P(t)| | t € L} = sup{0;Tjo*p®)| | t € L)

m
< Msup Z|¢(k+r1)(u)| ueks.
j=1

By Proposition I11-6.2.9, we conclude continuity of the restriction of ¢ +— ¢ * 0.
Now we show strong continuity of 0 + ¢ * 0. First we claim that, for ¢ € &(IR; [F)
fixed (as is the case here) and K C R compact, the set

B(f,,K = {T:O‘*qb | te K} - g(R,IF)

is bounded. First of all, by Proposition 11I-6.2.10, to show that this set is bounded, it
suffices to show that, for every compact L C R,

sup{lp®(s — )| | s€ L, t € K} < oo
for each k € Z(. This, however, is evident since (p(k) is continuous and the set
{s—t|seL, tek}

is compact. Now let (0))jez., be a sequence in &’ (R; [F) that converges strongly to zero.
Then, by , we have strong convergence

}Lrgo sup{l(p = 0)(#)| | t € K} = ]lggo sup{(6;; T;,0"P)| | t € K}
= }g{}o sup{|0;(@)l | ¢ € Byx} =0.
Thus (¢ * 0|K)jez., converges uniformly to zero. Since
(@*0)® =900,  jkeZs,

a similar argument to that just preceding shows that ((¢ * 6,)®|K)jez., converges
uniformly to zero, and this proves that (¢ * 0)) jcz., converges to zero in &(R;F). m

4.5.2 Convolutions involving E’(R; IF)

We first consider the case of convolutions where one of the terms is a distribution
with compact support. Let us first show that all such convolutions are defined.
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4.5.5 Theorem (Convolution between &’(R; F) and 9'(R;F)) The following two state-
ments hold:

(i) for p € & (R; F), the map
D' (R;F)3 0 0+p e D'(R;F)

is well defined and continuous;
(i) for 6 € D'(R; ), the map

E'R;F)>pH- 0xpe ' (R

is well defined and continuous.

Proof (i) First of all, for ¢ € Z(IR;F), denote ¢°(t) = ¢p(s + t). If D, 5(s) = p(¢°), then
@, € &(IR;F) by Corollary 3.7.18. Moreover, since p has compact support, for large
values of |s| we will have supp(p) N supp(¢°) = @. Thus @, , € Z(IR; F). Then

(0 xp; ) =(0;Dp ).

This shows that (6, p) is convolvable for every 0 € Z(IR; F). Continuity of the mapping
also follows immediately from the preceding formula.

(i) We proceed similarly to above, letting ¢ € Z(R; F). Taking ¢°(t) = ¢(s + t), by
Theorem 3.2.40 we have that ®g,(s) = 6(¢°) is infinitely differentiable. Thus we can
define

(p*6;0) =p; Do),

and from this can conclude well definedness of convolution and also its continuity. m

When convolving with tempered distributions, convolution of a distribution
with compact support returns a tempered distribution again.

4.5.6 Theorem (Convolution between &’ (R; F) and #’(R;F)) The following two state-
ments hold:

(i) for p € &' (R; F), the map
F'RF)320m- 0+pe F(RF)

is well defined and continuous;
(ii) for 6 € ¥’ (R;F), the map
ER;F)spH 0xpe F (R

is well defined and continuous.

Proof For ¢ € #(IR;F) and p € &'(R;[F), denote ¢*(t) = ¢(s + t) and define ®, 4(s) =
0(¢°). As we saw in the proof of Lemma 4.5.1, @, € S (R;[F). We claim that the
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map ¢ — D, 4 is a continuous mapping from F(IR; F) to itself. By Theorem 3.3.23, let
fi,ooo fm € CCpt(lR; IF) and let 7y, ...,y € Zso be such that

p= Z 0.
Let K C R be such that supp(f;) €K, j € {1,...,m}. Then

o) :m—lff () d
o ]Z;x ) fK F5)o"(s + B ds

Now suppose that (¢;) jez., converges to zero in #(IR; F). Then compute

ol Z [iremte] s sas

3

m
Z f ——— 1+ I+ I, "t + )] ds.
K flk

Note that .
||

s = |fi(s)|————=
Uil )|1+|s+t|k

is bounded, uniformly in ¢. This then gives

(rj+D)

! (10D
DY (10l + suplé“ol ) | e RI),
]:

and since the expression on the right goes to zeroas j — oo, we conclude that (@4 ) jez.,

converges to zero in %(IR; IF). This gives the desired continuity of the map ¢ = @ 4.
Now we prove that 0+ p € ¥’ (R;F) for 6 € ¥'(R;F) and p € &' (R;F). Let

(¢))jez., be a sequence in Z(R; F) that converges to zero in &(R; [F). We have

(O p;0) =(0; Dp0,),
and so from the first part of the proof we have
lim (0 + p; ) = 0,
]—)OO

and so 0 * p € ¥'(R; F) by Theorem 3.3.13.

The above prove the well-definedness assertions of the theorem. It remains to
prove the continuity conditions.

(i) Let (6)jez., be a sequence in #”(IR; IF) converging to zero. Then, as we saw in
the first part of the proof, ®, 4, € ¥ (R; F) for ¢ € ¥ (R;F). Thus, for ¢ € ¥ (R;F),

lim(0; * p; ¢) = im(0;; @p,6) = 0,
J— ]
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giving the desired convergence.
(i) Let (pj)jez., be a sequence in &”(RR;[F) and note that ®g € &(R;F) for ¢ €
F(R;F), as we showed in the proof of Lemma 4.5.1. Thus, for ¢ € ¥ (R; F),

}i_)rg)@j +0,¢p) = ]h_{f)})(f?j; Gg) =0,

which gives the desired conclusion. |

Note that one must pay careful attention to which spaces one is working with
when considering convolutions as continuous mappings. Let us emphasise this
with an example and a result that clarifies why the example fails to demonstrate
continuity of convolution in certain topologies.

4.5.7 Example (Discontinuity of convolution in the “wrong” topology) Note that, for
each j € Z.y, 6; € & (R;F). For any j € Z., we have §; * 1 = 1 by Example 4.4.3-1.
Note that (6;)jcz., converges to zero in Z'(R;F). Indeed, if ¢ € I(R;F), then
0i(p) = ¢(j) = 0 for sufficiently large j since ¢ has compact support. However,
(6 * 1)jez., does not converge to zero. This shows that the mapping

&' (R;F)>0 - 0+pecIR;F)

is not continuous is one equips &’ (IR; IF) with the topology inherited from &' (IR; IF).
Note that our example fails to be a counterexample to Theorems 4.5.5 and 4.5.6
because the sequence (6;)ez., does not converge in &’ (R; IF). °

The following result clarifies the situation that arises in the example.

4.5.8 Proposition (Conditions for continuity of topology in the “wrong” topology)
The following statements hold:
(i) if p € &' (R;F) and if (0)icz., be a sequence in &' (R;F) converging to zero in
' (R; F) and for which there exists a compact subset K C R such that supp(0;) C K,
j € Zo, then (0; * p)iez., converges to zero in ' (R; F);

(i) if p € & (R;F) and if (0y)iez., is a sequence in S'(R;F) converging to zero in

D' (R; ), then (0; * p)iez., converges to zero in Z(IR; IF).
Proof We leave this to the reader as Exercise 4.5.1. ]

When restricting to convolutions only of distributions with compact support,
we have the following result.

4.5.9 Theorem (&’(R;F) is an associative, commutative algebra with unit when
equipped with convolution as product) If 0, p € &'(R; [F), then (0, p) is convolvable
and 0 + p € & (R;F). Furthermore, if 0,p, 1 € &'(R;F), then the following statements
hold:

(i) the maps
ERF)>30 - 0+xped&'(RF), &ERF)>3p - 0+p €& (R

are continuous;
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(i) Oxp=p=0;

(ii) (0+p) =0+ (pxm)

(iv) Ox(p+m)=0+p+0xm;

(v) there exists a multiplicative unit for &' (IR; IF).

Proof That pairs in &’(R;F) are convolvable and that convolution is continuous as
in part (i) follows from Theorem 4.5.5. That 6 * p € &'(R;F) follows from Propo-
sition 4.4.4. The commutativity and distributivity properties follow from Proposi-
tion 4.4.5. Given that &' (R; F) € Z,(IR; F), associativity of convolution follows from
Section 4.4.2. Finally, we have shown in Example 4.4.3—1 that §¢ is a multiplicative
unit. [

4.5.3 Convolution in D’ (R; F)

Next we consider convolution in &/ (IR; [F), as introduced in Section 4.4.2. First
we consider the special case of distributions supported in Ry.

4.5.10 Theorem (2 0(]R; IF) is an associative, commutative integral domain with unit,

when equipped with convolution as a product) For 0,p, 7t € D.,(R;F), the
following statements hold:

(i) the mappings
DR F) 30 - 0 +pe P (RF), ZRF)>p - 0x+p €D (RF)

are continuous;

(i) Oxp=p=0;

(ili) (O p)*m=0x(p*mn)

(iv) Ox(p+m)=0+p+0xm;

(v) 2. (R;F) has a multiplicative unit;

(vi) Z.\(R;F) is an integral domain.
Proof Only parts (i) and (vi) do not follow from results that have already been proved.

(i) Let (6))jez., be a sequence in Z7 (R;F) converging to 0 in &Z'(R; F). By Ex-

ercise 3.2.14, 0 € I (R;F). Let ¢ € I(R;F). Let ¢°(t) = ¢(s + t) and denote
D, 5(s) = p(¢*). By Theorem 3.2.40, @, € C*(R; F). Since the support of p isbounded
on the left, the support of @, is bounded on the right, cf. the argument regarding

support from the proof of Proposition 4.4.10. Thus we can choose { € Z(R; F) such
that (s) = 1 for s € Rxo N supp(®Pp»)- Then, for all j € Z.,,

(0= p;p) ={0j; PPy p)

and
(0% p; ) =(6; YDy ).

It then follows, since (6)) jez., converges to 0, that (0, p) jcz., converges to 0+ p, giving
continuity of the map 0 +— 0+ p.
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(vi) Suppose that 0, p € Z/(IR; F) are such that 0+ p = 0. For ¢, € Z(R; ), we

then have
0=0p*xPp*yp=(0xP)*(p*1)
since convolution is associative in 27 (R;F). By and Proposition 4.4.4, 6 + ¢ and
p =1 are smooth functions with support bounded on the left. Thus, by the Titchmarsh
Convolution Theorem—more precisely, by an adaptation of Corollary 4.2.16 to signals
whose support has a fixed lower bound—we have either 0+¢ = 0 or p*¢ = 0. Now let
(X))jez., be a delta-sequence in Z(IR; F) as in . Then there is a subsequence (x})kez.,
such that either 6+ x;, = 0 for allk € Z or p* x;, = 0 for all k € Z,. It follows from
that either
0=lim6@=xy; =6 or O:kli_)rgop*)(jk:p.

k—o0

Thus either O = 0 or p = 0, as claimed. [}

Note that the continuity conditions from part (i) do not hold in Z. (R; [F) since
it is required that all distributions have a common lower bound for their support:
a lower bound of 0 in the theorem. The final assertion of the theorem, however, is
easily seen to have the following generalisation that augments Proposition 4.4.10.

Corollary (Algebraic property of &’ (R;F)) The space Z/(IR;TF) of causal distribu-
tions is an integral domain.

4.5.4 Convolution and regularity for distributions

In Section 4.2.11 we considered the matter of the commutativity of convolution
and differentiation. Here we give analogous characterisations for convolution
of distributions. We first point out that in Lemma 4.5.1 we have already given
an important situation where differentiation commutes with convolution, in an
appropriate sense, namely in the case of the convolution of a distribution and a test
signal.

A rather general situation where differentiation commutes with convolution
arises from the following result.

4.5.12 Proposition (A condition for commutating of differentiation and convolution)

Let 6,p € Z'(R;F) be a convolvable pair of distributions. If the triple convolution
(6, p, W) is convolution-associative, then

Oxp)W=00xp=0+p®,  keZ.,.
Proof First, by Example 4.4.3—-2, we have
@)V =60 (0xp) =D =0)xp=6Vxp

and
(9 * p)(l) = (0= p) * 6(1) =0 (P " 6(1)) —0x P(l)-

One can apply this calculation recursively to get the result. |

As a special case of the preceding general result, we have the following.
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4.5.13 Proposition (Differentiation and convolution between &’(R; F) and 9'(R; IF))
If 0 € Z'(R;FF) and p € &' (R; F), then

CE p)(k) =M 4 p= O = p(k), keZ.,.

Proof This follows from Proposition 4.5.12 and Exercise 4.5.2. Exercise 4.5.2 |

Exercises

4.5.1 Prove Proposition 4.5.8.
45.2
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Section 4.6

Convolution of measures

4.6.1 Convolution for measures on R

4.6.2 Convolution for periodic measures on R
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Section 4.7

Approximation and regularisation

One of the most useful applications of convolution is in the construction of
approximations of general signals by signals with desired properties. For instance,
the regularity results of Section 4.2.11 indicate that convolution often inherits the
smoothness of the smoother of the signals being convolved. We shall also see that
convolution allows us a means of approximating signals by signals with restrictions
on their support. One way to regard this procedure of approximation is this. Note
thatin Theorems 4.2.1,4.2.13, and 4.2.24 we showed that our spaces of continuous-
time signals did not have a unit for the convolution product. However, we shall
see that these spaces have approximate units, by which we mean a sequence of
signals which, when convolved with a signal from the space, produce a sequence
of signals converging to the original signal in an appropriate sense. This is the
notion of an “approximate identity,” and these will play an important role in our
study of various Fourier transforms in Chapters 5 and 6, and Section 7.1.

Do | need to read this section? The material in this section is important to un-
derstand since the ideas we consider feature prominently in our discussion of
Fourier inversion in Chapters 5 and 6, and Section 7.1. Moreover, this section
gives an important application of the convolution product, and so is an essential
part of coming to grips with convolution in general. o

4.7.1 Approximate identities on R

We shall encounter the notion of an approximate identity for various classes
of signals. In this section we study approximate identities for aperiodic signals
defined on R.

There are many variations on the definition of an approximate identity. An
example of one version is what we characterised in Section 3.7.6 as a “delta-
sequence,” i.e., a sequence in Lgl(lR; IF) converging to 6 in &”’(IR; IF). Here we choose
asslightly different definition that is not equivalent to our notion of a delta-sequence,
but serves our purposes here. The reader may encounter other definitions, some
of which may be equivalent, some of which may not be. Just which definition one
uses depends on the sort of approximations one wishes to make.

Definition (Approximate identity for aperiodic signals defined on R) An ap-
proximate identity on R is a sequence (u))icz., in LY(R;F) with the following
properties:

(i) fuj(t) dt=1,j € Z.;
R
(i) there exists M € R, such that ||ujll; < M for each j € Z.;
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(iii) for each a € R,,

lim f ju(H)] dt = 0. .
7% JR\[-a,a]

Before we give some examples of approximate identities, let us show why they
are useful. We do this by way of two approximation theorems.

4.7.2 Theorem (Approximation in LP(R;F) using approximate identities) Let p <
[1, 00). If (Wy)iez., is an approximate identity on R and if f € L®(R; F), then the sequence
(f * uj)icz., converges to f in LP(IR; IF).
Proof Note that

£t = Frui(t) = fR (F(H) — f(t — D)0 dr,

f uj(r)dt = 1.
R

Recalling the integral version of Minkowski’s inequality, Lemma 11I-3.8.56, we have

poo\Up
If = £+l = ( fR | f]R (FO) = £t = $)i() de dt)

1/
< [ ( [ 10 - f(t—T))uj(T)l’”dt) de

1/p
- [ ( | If(t)—f(t—r)l’”dt) (o)l de
R R

< fR 1f = fllu (0] dr,

recalling the notation 77 f(t) = f(t — 7). Lete € R>o. Let M € R be such that [|ull; < M
for each j € Z.o. By Lemma 1 from the proof of Corollary 4.2.10 let 6 € R5¢ be
sufficiently small that [|f — 7 f]| < 55; for a € (0,06]. Then

using the fact that

(4.23)

N @™

5
. €
[ wr=hnonde < 55 [ ole <
Also let N € Z be sufficiently large that

€
lui(t)|dt < ——, j=N
flR\[—o,o] J 4lIf 1l

Then, noting that ||f — 77 fll, < 2||f||, by the triangle inequality and invariance of the
norm under translation, we compute

* €
[ w-asboids <o, [ wolde<s @2
R\[-6,0] R\[-6,6]
Combining (4.23) and (4.24) we see that, for j > N,
IF = Feufly <e,

giving the result. |
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For continuous signals we also have an approximation result using approximate
identities.

4.7.3 Theorem (Approximationin ngd(]R; IF) using approximate identities) If (u;)icz.,
is an approximate identity on R and if f € G, (IR; F), then, for each compact set K C R,
the sequence (f * uj|K)icz., converges uniformly to f|K.

Proof Let K C R be compact and let € € R,9. Choose T € IR sufficiently large that
K C [-T,T]. As in the proof of Theorem 4.7.2, noting that

fuj(’c) dr =1
R

)~ Frut) = fR (F(H) — £t O)us(x)d (4.25)

for every t € Rand j € Z.o. Note that since f is bounded this integral makes sense for
allt € R. Let M € R be such that [|uj|l; < M for each j € Zo. Note that f is uniformly
continuous on [-T, T]. Thus there exists 6 € R.¢ such that

we have

€
|f(t)—f(f—’f)|<m

when t € [T, T] and |7| < 6. Then

O
I V) = £t = Dyl dr < ﬁ fR juj(7)l dt < g (4.26)

Now let C = ||f|l and note that, for every t;,f, € R, |f(t1) — f(t2)] < 2C using the
triangle inequality. Now there exists N € Z such that

€
lui(t)|dt < —
flR\[—é,é] ! 4C

for j > N. Therefore, if j > N we have

f If(t) = f(t = Dlluj()ldr < g (4.27)
R\[-6,0]

Putting (4.25), (4.26), and (4.27) together we have
lf(t) = f=ujt) <€, j=N,tek
giving the result. u

Our next approximation result also deals with continuous signals. Here we get
the stronger result of uniform convergence on R, but by adding the hypothesis of
uniform continuity.
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4.7.4 Theorem (Approximation in C:’m" bdd(]R;lF) using approximate identities) If

(W)iez., is an approximate identity on R and if f € C? (R;IF), then the sequence
(f * 1j|K)jez.,, converges uniformly to £.
Proof Let M € R be such that |u;ll; < M for every j € Z(. Choose 6 € Rxo so that
|f(t —s) = f(H)] < 55 for Is| < 0, this being possible by uniform continuity of f. Let
N € Z-o be such that

nif, bdd

€

[ui(s)|ds < .
j]l;\[—é,é] i) 2[|flleo

fu]-(s)ds =1
R

If = uj®) = fOI = | | uj(s)(f(E—s5)— f(£))ds
R

For each j € Z we have

and so, foreacht € Rand j > N,

)
< f T =3) = F] s + fIR O =5) o1 ds
< llh oz + 21l fR L Elds <

giving the result. u
Our final result is a pointwise convergence result.

4.7.5 Theorem (Pointwise approximations using even approximate identities) Let

(W)iez., be an approximate identity such that uj(—t) = u;(t) for eachj € Z.o and t € R.

If £ € L(R; F) and if, for ty € R, the limits f(to—) and f(to+) exist, then (f = uj(to))iez.,
converges to 3(f(to—) + f(to+)).

Proof We may obviously assume that f is not almost everywhere zero. First suppose

that f is continuous at fo. Let € € R5. Let M € R be such that [|uj|l; < M for every

Jj € Zo. Let 6 € Ry be such that, if |7] < 6, then |f(to — T) — f(to)| < 55;. Then

5
Ié|uj(T)||f(to - 1) = f(to)ldT < ﬁ LW]'(T)ldT < g

Note that |f(fo — ) — f(to)|l < 2l|fll. Let N € Z be sufficiently large that

€

lui(t)|dt <
f]R\[—é,é] / 4| flloo

for j > N. Then
€
f [u;j(OIlf (to — 7) — f(to)ldT < 5
R\[-6,0]

for j > N.
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Now, as in the proofs of Theorems 4.7.2 and 4.7.3, we have

F(to) — £+ uj(to) = fR (Fito) - f(to - ©)u;(x) de

and so
5
|f(to) = f = uj(to)] < Ib_luj(r)||f(t0 — 1) — f(to)l dt
+j\ Juj(@llf(to —7) — flto)ldT <€
R\[-5,6]

for j > N.

Thus our result holds if f is continuous at tg. If the limits f(tp—) and f(to+) both exist
but are not necessarily equal, then one applies the argument for signals continuous at
t = 0 to the signal g(t) = %(f(to —t) + f(to + t)). Convergence of (g * u;(t))jez., to g(0)
then implies convergence of (f * uj(t)) jez., to %( f(to—) + f(to+)) using the fact that

ff(to —s)uj(t)dt = %f(f(i’o — 1) + f(to + T))uj(t)dt
R R

by evenness of uj, j € Zo. [}

Pointwise convergence at Lebesgue points in convolution.pdf and Stein and
Weiss, pg. 13
There is a large class of approximate identities that arise in the following way.

4.7.6 Proposition (Approximate identities on R generated by a single signal) If

u € LO(R; FF) satisfies
fu(t) dt=1,
R

then the sequence (u;)icz., defined by u(t) = ju(jt) is an approximate identity on R.
Proof By the change of variables formula we have

fwmwzjhmm
R R

and [lujlly = |lully for every j € Z.(, immediately giving the first two properties of an
approximate identity. For the third property, let @ € IR.¢. Note that since u € LY(RR; F)

the limit "
f ()] dt
—-R

hmf lu(t)| dt = 0.

Therefore, using the change of variables theorem,

exists and so

lim luj()| dt = lim lu(t)|dt =0,
7% IR\[-a,a] ]2 JIR\[-ja, ja]

as desired. -

Let us give some examples of approximate identities.
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4.7.7 Examples (Approximate identities on R)
1. Let us define Poisson kernel on R for () € R, by

Pq(t) = %% teR.
In Figure 4.23 we plot it for a few values of .
4
—_— —
-1.0 -0.5 0.0 0.5 1.0

X[-1.1] * Pa(t)

-2 -1 0 1 2

Figure 4.23 The Poisson kernel Pq, for Q € {1,5,20} (top) and the
corresponding approximations by convolution of the charac-
teristic function of [-1, 1] (bottom)

It is clear that Po € LD(R;R) (see Exercise 1.3.11). Also, by the change of
variable theorem we compute

Q 1 1 1 1
— | —=zdt=— dt = —tan'(7)|, =1,
Tt L1+Q2t2 nf]R1+’c2 R O

recalling that, as we showed in the proof of Theorem [-3.8.18,

1
1+x2

d 1) —
atan (x) =



2022/03/07 4.7 Approximation and regularisation 377

(also see Example |I-1.6.40—1). Note that

P (i) = 1 jQ _p

jPa(jt) = =T+ (ape - e

Therefore, by Proposition 4.7.6, (Piq)jcz., is an approximate identity for ev-

ery Q € R.y. Moreover, this also shows that the limit as j — oo in Theo-
rems 4.7.2, 4.7.3, 4.7.4, and 4.7.5 can be replaced with the limit as (O — oco.
Said precisely, if f € LP(R; FF), then limg .|| f = f*Pall, = 0and, if f € C), (R; F)
then the family of signals (f * Pq)qer., converges uniformly to f on every com-
pact set. In Figure 4.23 we show a few approximations of the signal x[-1,1] Dy ref for uhat this neans?
convolution with the Poisson kernel.

There is an alternative representation of the Poisson kernel that will be useful

to us in . To make this representation, we think of the Poisson kernel as being a usat
function of t and Q) and make the change of variable

Roo X R(Q, 1) - (5,1 € Ry X R,

calling the new variables (x,y). In these variables, the Poisson kernel is ex-

pressed as
1 x
p =——.
() X2 + 12
We can think of P as being defined on the plane, and indeed the complex
plane. In doing this, the limit as () — oo becomes the limit as x — 0 from the

right, i.e., approaching the imaginary axis in the complex plane.
2. Here, for Q € R, we define the Gauss—Weierstrass kernel on R by
exp(—%

47

Ga(t) =

for t € R. In Figure 4.24 Note that Go € LY(R;R) by Exercise 1.3.11. By
Lemma Ill-1 from Example l1I-2.3.32—4 and a change of variable, we easily
determine that [|Gqll; = 1 for every Q € R.o. Thus, if we define

Ga,i(t) = jGa(jh),

we see from Proposition 4.7.6 that the sequence (Gq,)jez., is an approximate
identity. In Figure 4.24 we show a few approximations by convolution with the
Gauss—Weierstrass kernel of the characteristic function of [-1, 1].

3. The Fejér kernel? on R is defined for Q € R,pand t € R by

sin?(n Q)
t#0
F t — nZQtZ 4 4
al® {Q t=0.
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Galt)
w
T
1

2(t)

X[—1.1] * G¢

Figure 4.24 The Gauss—Weierstrass kernel Gg for Q € {1,5,20}
(top) and the corresponding approximations by convolution
of the characteristic function of [-1, 1] (bottom)

In Figure 4.25 we show the Fejér kernel for a few values of Q).

Let us show that Fg € LO(R; R) and that ||Fgll; = 1. First we prove a couple of
lemmata. First we define sinc: R — R by

sin(t)

, t#0,
sinc(t)={ ! ’

1, t=0.

With this function defined, we have the following lemma.

T
1 Lemma %im sinc(t) dt = 7.
—oo ) T

ZLip6t Fejér (1880-1959) was a Hungarian mathematician whose main area of mathematical
activity was harmonic analysis.
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20 :

15+

0 TS
210 05 0.0 0.5 1.0
¢
10 ; -
08l 1
06 ; -

X[-1.1] * Fa(t)

Figure 4.25 The Fejér kernel Fq for Q € {1,5,20} (top) and the
corresponding approximations by convolution of the charac-
teristic function of [-1, 1] (bottom)

Proof Define F: C — C by

e z#0,
Fey={ 2= =7
1, z=0

and note that _ , ine(1)
. eY —e™ sinc(y
F = = .
W) =5 i
It is clear that F is analytic on C \ {0}. Since lim,_,o F(z) = 1 it follows from that
F is, in fact, analytic. Note that if we define

Z -z

e e
F+(Z) = E/ F—(Z) = E
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then F(z) = F,(z) + F_(z) for z # 0, but that at z = 0 both F, and F_ have
singularities.
Now we define some contours in C:

yT—{O+1y€C|y€[ T, T]},

={0+iy| ye[-T, 1 U{e’| 0e[-},Buf0+iy| ye[L, Tl T>1,
+T—{T16|66[ -7, 7]},

={-Te?| 0 € [-n, nt]}.

We depict these contours in Figure 4.26 with their positive orientations. Let us

4/

Figure 4.26 The contours yr (topleft), y7. (top right), C. r (bottom
left), and C_ 1 (bottom right)

also denote
Lir=y7UCyr, T_or=9y;UC_p,
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taking the counterclockwise orientation about these contours as being positive,
as usual.
Note that, by direct computation, we have

T
i dt = F(z) dz.
‘[ ) sinc(t) dt ‘fy ) (z)dz

Note that since F is entire we have

IZ sinc(t) dtf = f F(z)dz

YT

by virtue of . Therefore, what?

f i sinc(f) dt = f
- Y

’
T

F+(z)dz—fF_(z)dz. (4.28)

’r

By the Residue Theorem, since F.(z) has a simple pole at z = 0,

f F.(z)dz = 2miRes(F,,0) = 2mi lin(}zﬂ(z) = T.

Ir

Since F_ is analytic on and within I', r we have

fr F_(z)dz = 0.

Note that, by Jordan’s Lemma (), we have res

lim F.(z)dz = lim F_(z)dz =0.
T—ooco C—,T T—o0 C.T

fr F+(z)dz:fP+(z)dz+j; F.(z)dz
T % -7

’
T

ﬁﬂ F_(z)dz = —L

’
T

Therefore, since

and

F_(z)dz + f F_(z)dz
C+,T
(keeping orientations of contours in mind), we have

%im F (z)dz=m
—00 7/%

and

lim f F_(z)dz =0,
T—o0 ,
Vr

giving the lemma by virtue of (4.28). v
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T 2T
2 Lemma f sinc(t)® dt = f sinc(t) dt — T sinc(T)?.
0 0

Proof We differentiate both sides of the proposed equation with respect to T:
i ' sinc(t)* dt = sinc(T)?
dT J, B

and (noting the definition of sinc)

2T , . |
i ( [ sincty - smf)z) - sinc(zr) + SDI(D) - 2T cosT)

_ sin(T)?

= —
noting that 2 cos(T) sin(T) = sin(2T). Thus both sides of the proposed equality
have the same derivatives. Moreover, since they both have the value 0 at x = 0

and since they are differentiable, it follows that the two sides of the proposed
equation must indeed be equal. v

= sinc(T)?,

3 Lemma We have sinc ¢ LO(R; R) and sinc® € LO(R; R) N LP(R; R).

Proof That sinc ¢ LY(RR; R) is shown in Example 1-3.4.20. Since sinc is contin-
uous, so is sinc®>. Thus sinc? is bounded on [-1,1]. Thus, noting that sinc? is

even,
1 00| . 2
t
f Isinc2(f)| dt = f Isinc(6)| df + 2 f Smg "] dx
R -1 1 t
1 00 1
< | Isinc?(t)| dt + —dt < oo,
1 , P
giving sinc® € LO(RR; R). One similarly shows that sinc* € L?(R; R). v

From the second lemma and then the first lemma (noting that sinc is an even
function) we have

T

) e
lim —.
T—oo

N

T
sinc(t)* dt = %im f sinc(t) dt =
- Jo

0
Thus

f sinc(t)*dt = m,
R

using evenness of sinc?. By the third lemma, Fq, € LD(R; R). Moreover, by the
change of variable theorem,

fFQ(t) dt = 1 f sinc(7)*dt =1,
R T JR
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showing that Fg a candidate for defining an approximate identity according to
Proposition 4.7.6. Note that

sin®(m jQt)

jFa(jt) = 2 IOF = Fja(t).

Thus, just as for the Poisson kernel, (Fiq)jez., is an approximate identity for
every Q) € R,y. And, also just as for the Poisson kernel, we can replace the limit
as j — oo in Theorems 4.7.2, 4.7.3, 4.7.4, and 4.7.5 with the limit as () — oo.

While we are talking about the Fejér kernel, it is a good moment to prove a
formula that will be useful to us in Section 6.2.

Q a
4 Lemma Fq(t) = é f ( f et dv) da.
0 -a

Proof An easy calculation (which will be performed in Example 6.1.3—3) gives

sin(2mat)
f e2nivt dV — nt 7 t# O’
—a Za/ t = 0.

The result now follows by elementary integration. v

4. The next approximate identity we consider is the de la Vallée Poussin kernel on
R which is defined for Q € R, by

Va(t) = 2Fq(t) — Fao(t).

In Figure 4.27 we show the de la Vallée Poussin kernel for a few values of Q.
From the properties of the Fejér kernel we immediately have that ||Vqll; = 1.
Moreover, we have

7Va(jt) = 2jFxq(jt) — jFa(jt) = 2F2ja(t) — Fia(t) = Via(t).

Thus we deduce that (V) ez, is an approximate identity for every QQ € IR,,. As
we have seen above for the Poisson and Fejér kernels, we can replace the limit
as j — oo in Theorems 4.7.2, 4.7.3, 4.7.4, and 4.7.5 with the limit as ) — oo.

5. The Dirichlet kernel on R is defined for Q € R, by

sin(2tQt)
Do(t)={, ™ ' 20
2Q), t=0

for t € R. In Figure 4.28 we show the Dirichlet kernel for a few values of Q.
Note that,
sin(27tjC)t)

jDa(jt) = —

= Dja(t),
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30F ]

25} ]

Va(t)

10F ]

-1.0 -0.5 0.0 0.5 1.0

t
1.0 L K [\ A i
08l 1

< o6l ]

104l ]
02} 1
O-O L O ol

L L L \\]\ 1 L L L L L L L L 1 \\-\/ L
2 1 0 1 2

Figure 4.27 The de la Vallée Poussin kernel Vq, for Q € {1, 5, 10}
(top) and the corresponding approximations by convolution
of the characteristic function of [-1, 1] (bottom)

similarly to what we have seen for the Poisson and Fejér kernels. However, it is
not the case that (Q™'Djq)jez., is an approximate identity. For example, by the
change of variable theorem and Lemma 1 above, we have

T o (T
lim Dq(t)dt = lim — f sinc(t) dt = Q,
T—oo _T T—oo TT _T

and so the Dirichlet kernel does not have unit integral. Also as can be seen
from Lemma 3, Dg ¢ LY(R;R). So the Dirichlet kernel fails to define an
approximate identity in the way that the Fejér kernel does. However, it could
still be the case that the sequence (Djq)jcz., has the approximating properties
of an approximate identity. It turns out that this is true, sort of. It is not
true strictly. For example, there exists f € LO(R;F) such that the sequence
(f * Djq)jez., does not converge to f in L}(IR;F). But in Figure 4.28 we show a
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30 .

Da(t)

| Y
-10: * *
-1.0 -0.5 0.0 0.5 1.0
t
10
0.8;
f 0.6;
E 0.4;
0.2;
0.05
—0.2: L L
_2 -1 0 1 2

Figure 4.28 The Dirichlet kernel Dq for Q € {1,5,20} (top) and
the corresponding approximations by convolution of the char-
acteristic function of [-1, 1] (bottom)

tew approximations of the characteristic function x{-1,1;, and we see that, indeed,
some sort of approximation seems to be taking place. We shall discuss these
matters in some detail when we talk about Fourier integrals in Section 6.2. o

4.7.2 Approximate identities on R»q

In this section we consider approximate identities for signals defined on the
continuous time-domain Ry,. Let p € [1,00). In Section 4.1.2 we considered
the structure of convolution in Lfoc(]RZO; IF), focusing on the case of p = 1. Here
we shall use the locally convex topological structure of L} (Rs;F) discussed in
Section 4.1.2.

We begin with the definition of an approximate identity on R;. Again, the
reader should be aware of possible variations, not all equivalent, to the definition
we give.
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4.7.8 Definition (Approximate identity for signals defined on R;() An approximate
identity on Ry is a sequence (1)) jez., in LY (Rxo; IF) with the following properties:

(i) f uit)ydt =1, j € Zy;
R>o

(i) there exists M € R, such that |ujll; < M for each j € Z.;

(iii) for each a € R,

Km | |u(t)dt = 0. .
]—)CX)

o

The following result adapts Theorem 4.7.2 to the present case.

4.7.9 Theorem (Approximation in L:Zc(]RZO; F) using approximate identities) If
(W)iez., is an approximate identity on Ry and if f € LP(Ryo;F), then the sequence
(f ® u))jez., converges to f in the topology on LY (Rso; F).
Proof Let T € Ry and let fr = fxjo1) so that fr € LP(Rxo;F). Let us think of the
signals uj, j € Zso, and fr as being defined on R by asking that they take the value
0 for negative times. Then (u))jez,, is obviously an approximate identity on IR, as
discussed in Section 4.7.1. By Theorem 4.7.2 it follows that (fr * ;) ez, converges to
fin LP(IR; F). Now let t € [0, T]. Then, for each j € Z,

t t
feut) = jo‘ f(t—s)uj(s)ds = fo frt —s)uj(s)ds = fr ® u;(t) = fr*u;d).
That is to say, f ® u;|[0, T] only depends on f|[0, T]. Therefore,
limlf @ u; ~ fllyr = limlfr «u; = frll, =0,

what giving the result by . |

The result can also be adapted to continuous signals. Thus we consider
C’%(Rxo; F) and on this space of signals we use the locally convex topology de-
fined by the family of seminorms |||, 7, T € R, defined by

I flleo,r = supflf (&) | t € [0, T]}.

As in , this topology is Fréchet. In this case we have the following result.

what?

4.7.10 Theorem (Approximation in C°(Ro; IF) using approximate identities) If (u;)icz.,
is an approximate identity on Ry and if f € Cg 4d(Rxo; IF), then the sequence (f ® uj)iez.,
converges to f in the topology on C°(Ro; IF).

Proof LetT € R, and define fr € Cg a d(IRZ(),' IF) by

f(O), te ]R<O/
fT(t) = f(t)l te [0/ T]/
f(T), te(T,o0).
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Let uj, j € Z-o, be extended to be defined on R by asking that it take the value 0 for

negative times. By Theorem 4.7.3 the sequence (fr * ) jez., converges uniformly to
fron [0, T]. Asin the proof of Theorem 4.7.9, f ® uj(t) = f u(t) for t € [0, T]. Thus

milf ® ;= fllor = lim supllfi « () = fOI | £ €[0T =0,

giving the result by . B unae

The special class of approximate identities on R characterised in Proposi-
tion 4.7.6 are easily adapted to the case of approximate identities on Ryy. The
following result is easily proved along the same lines as Proposition 4.7.6.

4.7.11 Proposition (Approximate identities on R, generated by a single signal) If
u € LO(Ryo; FF) satisfies
f u(t)dt=1,
Rxo

then the sequence ()icz., defined by u;(t) = jul(jt) is an approximate identity on Ryo.

It is also straightforward to adapt the examples of approximate identities given
in Example 4.7.7. We invite the reader to compute some approximations by con-
volution with these approximate identities to see how they work. Unsurprisingly,
the reader will find that they work rather like those in Example 4.7.7.

4.7.12 Examples (Approximate identities on R5o)
1. Fort € Ry and for Q € R, define the Poisson kernel on R, by

2 Q
]l + Q22

As in Example 4.7.7-1, we have P}, € LW(Ry;F) and [P |l = 1 for every Q €
R.(. Moreover, we also have ]PEr jt) = P;’Q(t) and so (P;“Q) jez., 18 an approximate
identity for every Q € R,,.

Pg(t) =

2. As in Example 4.7.7-2 we define the Gauss—Weierstrass kernel on Ry, for
QelR, by

exp(—%
V7 Q)

One verifies from Example 4.7.7-2 that G/, € LD (Rsp; F) and that IGSll- Thus,
if we define G;)’].(t) = jG{(jt), we have that (G;),j) jez., is an approximate identity.

3. The Fejér kernel on Ry is defined for QQ € R,y and t € IR;( by

in?(m
F+ _ 23 nz(QfZ)t)/ te R>0/
o) =150 t=0

Go(h) =

Following Example 4.7.7-3 we note that F§, € LO(R.o; F), IFjlh = 1, and
JEQ(E) = Fig(t). Thus (F},)jez,, is an approximate identity.
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4. The de la Vallée Poussin kernel on Ry is defined for Q € R,y and t € R5( by
V(O = 265 () — F5(0).

From our computations for the Fejér kernel we have [|[V{[l; = 1 and jV{(jt) =
V;“Q(t). Thus (V;TQ) jez., 18 an approximate identity on IRx. °

4.7.3 Periodic approximate identities

In this section we shall discuss approximate identities for periodic signals. The
tirst part of the discussion, that giving the definitions and the basic approximation
theorems, follows along the same lines as the preceding two sections. However, we
then turn to some rather deep connections between approximate identities on R
as discussed in Section 4.7.1 and periodic approximate identities. This discussion
relies heavily on material from Chapters 5 and 6.

Let us begin with the more or less familiar parts of the discussion.

4.7.13 Definition (Approximate identity for periodic signals) A T-periodic approxi-
mate identity on R is a sequence (i) jez_, in L(R; IF) with the following properties:

(i) f uhydt =1, j € Zoy;

2

(i) there exists M € R such that |[u;ll; < M for each j € Z.;
(iii) for each a € (O,% ,
lim luj(t)| dt = 0. °

=% JI-1, I\ [~a,a]

We can now state approximation theorems that are analogous to those in Sec-
tion 4.7.1.

4.7.14 Theorem (Approximation in LierT(lR; IF) using approximate identities) Let p €

[1,00). If (W)jcz., is a T-periodic approximate identity on R and if f € ng)r’T(lR; IF), then
the sequence (f * W)z, converges to fin Lg o 7R ).
Proof Note that
T
2
(

fO) = frujt) =

Iz ui(r)dr = 1.

f(B) = f(t = D)uj(r)dr,

[Sll}

using the fact that

~

NS
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Recalling the integral version of Minkowski’s inequality, Lemma 111-3.8.56, we have

T p 1/p
If = Foufly = [f dt)

[ C(F) — (& - shui(r) dr

T
2

it 1/p
= [ ( _T|(f(t)_f(t_T))uj(T)lpdt] dr
2 ; 1/p
= II( _I|f(t)—f(t—7)|P dtJ |u]-(7)|dr[
< 7llf — T: fllpluj(v)l dr,

NS

recalling the notation 77 f(t) = f(t— 7). Lete € Rso. Let M € R» be such that [[ujl; <M
for each j € Z.g9. By Lemma 1 from the proof of Corollary 4.2.32 let 6 € (0, 11 be
sufficiently small that [|f — 7 f]| < 55; for a € (0,6]. Then

I
2

0
[ rr=mp@ide < 55 [ wolde <

I
2

(4.29)

N ™

Also let N € Z be sufficiently large that
€

lui(7)|dt < , > N.
f{—%%l\[—aé} : af,

Then, noting that ||f — 7} fll, < 2l|f||, by the triangle inequality and invariance of the
norm under translation, we compute

" €
f If = fll (0] ds < 211l f uldr < <. (4.30)
~LI\[-50] (=1, I1\[-50] 2
Combining (4.29) and (4.30) we see that, for j > N,
If = fujll, <e,
giving the result. |

For continuous signals we also have an approximation result using approximate
identities.
4.7.15 Theorem (Approximation in Cger L (R; ) using approximate identities) If

(W)iez., is a T-periodic approximate identity on R and if f € Cger,T(]R; IF), then the
sequence (f * w7, converges uniformly to £.
Proof Lete € R.. As in the proof of Theorem 4.7.14, noting that

f:g uj(r)dr =1

(Sl
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we have .
F(E) — f o uj(h) = f (0~ - 0 de (431)

forevery t € Rand j € Z.o. Note that since f is bounded this integral makes sense for
allt € R. Let M € Rs be such that [|uj|l; < M for each j € Z. Note that f is uniformly
continuous on each interval of length T, and so is uniformly continuous. Thus there
exists 6 € (0, I such that

€
£ = flt =) < 57

for t € Rand |7| < 6. Then, for every j € Z,

; :
I 6| F(B) = £t = Dlluj(0)ldr < ﬁ juj()] dr < g (4.32)

I
2

Now let C = ||fll» and note that, for every t;,f, € R, |f(t1) — f(t2)] < 2C using the
triangle inequality. Now there exists N € Z( such that

€
luj(t)ldt < —
f ~LIN-50] 4C

for j > N. Therefore, if j > N we have

f If () = f(t = Dlluj(r)ldr < g (4.33)
-3 IN-09]

Putting (4.31), (4.32), and (4.33) together we have

f() - fruiBl<e, j=N, teR,
giving the result. |
We also have a result concerning pointwise convergence of approximations.

4.7.16 Theorem (Pointwise approximations using even approximate identities) Let
(W)jez., be a T-periodic approximate identity such that vuj(—t) = v;(t) for each j € Z..o and
te(-2,5). Iffe Lg’:r),T(R; IF) and if, for ty € R, the limits f(ty—) and f(to+) exist, then

272
(f * uj(to))jez., converges to 3(f(to—) + f(to+)).
Proof We may obviously assume that f is not almost everywhere zero. First suppose
that f is continuous at fo. Let € € R5o. Let M € R be such that [|uj|l; < M for every
j € Zso. Let 6 € (0, L] be such that, if |7] < 6, then [f(fo — 7) — f(fo)| < 55. Then

0 3
IéWj(T)Hf(fo - 1) — f(to)ldT < ﬁ luj(t)ldr < g

NS

Note that [f(fo — 7) — f(to)| < 2||fll- Let N € Z( be sufficiently large that

€

lui(t)|dt <
j[ig,%]\[—é,é] J 4l flleo
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for j > N. Then
€
[ st -~ fwlde <
(-2, 5 1\[-0,0]

for j > N.
Now, as in the proofs of Theorems 4.7.14 and 4.7.15, we have
T
2
(

f(to) = f = uj(to) =

f(to) = f(to — T)uj(r)dr

[Sll}

and so

O
(ko) — f * uj(to)l < f IOt =) = fltd
+ f luj (Dl f(to — 7) — f(to)ldT <€
[- . 21\[-5,6]

for j > N.

Thus our result holds if f is continuous at fy. If the limits f(fop—) and f(fo+) both exist
but are not necessarily equal, then one applies the argument for signals continuous at
t = 0 to the signal g(t) = %(f(to —t) + f(to + t)). Convergence of (g * u;(t))jez., to g(0)
then implies convergence of (f * u;(t)) ez, to %( f(to—) + f(to+)) using the fact that

: f(to—s)uj(r)dr = 1 7(f(t‘g = 1)+ f(to + D)uj(tr)dr

_T 2 J.r
2 2

by evenness of u;, j € Zo. [ |

Now that we understand some of the approximation properties of periodic
approximate identities, we can see some of the ways in which they can be produced.
A basic result here shows how approximate identities on R give rise to periodic
approximate identities. To state the result, we look ahead to Section 8.1.2 for the
notion of the periodisation of a signal.

4.7.17 Theorem (Periodic approximate identities from aperiodic ones) Let (u))cz.,
be an approximate identity on R and let T € R.o. Then (pery(w;))iez., is a T-periodic
approximate identity.

Proof From Proposition 8.1.2 the first two properties of a periodic approximate iden-
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tity are immediately verified. For the third, let a € (0, %]. Then

Iper,(u;)(B)| dt < f ()] dt + f it + k)| d
f———]\[aa Y 0 INaal —%% a0l 2, I

keZ\{0}

Z Juj(t + KT)| dt

2 keZ\{0}

Il IN
T ) I 2
TR NI~
s i
T T
Q
2
B =
= =
= =
Q. [oW
~ ~
+ +
| p)
'~]_ N
=
N
=
+
»
H
=
Q.
~

f ()| dt +
L, IN\-aal

_ f (0] d,
R\[-a,a]

using Fubini’s Theorem to swap the sum and integral and using the change of variables
theorem. Taking the limit as j — oo gives the result since (#))jez., is an approximate
identity. ]

meZ\{0}

Combining the preceding theorem with Proposition 4.7.6 immediately gives
the following corollary.

4.7.18 Corollary (A special class of periodic approximate identities) Let u € LV(R; F)

satisfy
f u(t) dt
R

and define u; € LY(R;F) by u(t) = ju(jt). Then, for any T € Rso, (pery(w))icz., is a
periodic approximate identity.

The matter of computing per,(f) is often facilitated by the so-called Poisson
Summation Formula, presented in Section 8.2, which relies on the theory of Fourier
transforms presented in Chapters 5 and 6. In Section 8.2.2 we use the Poisson Sum-
mation Formula to compute periodisations of the approximate identities on R given
in Example 4.7.7. Here we shall simply refer ahead to these computations and give
the resulting periodic approximate identities, as well as give the approximations
for a concrete example.

4.7.19 Examples (Periodic approximate identities)
1. In Example 8.2.2—1 the periodisation of the Poisson kernel

1 Q
Po(t) = ———==,
a(®) 1+ Q2f2
is computed, and this periodisation is determined to be per,(Pq) = %Pg o Where
1— (e 8

PPer (t) — — t —.
1 —2e70T cos(2m ) + (e7ar)
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We call Pl;ir) the T-periodic Poisson kernel. Note that, according to Theo-
rem 4.7.17 and our computations of Example 4.7.7-1, the sequence (3 Py ) jez..
is an approximate identity for every Q € R.(. In Figure 4.29 we plot the periodic

PRa()

X(-1.1] * PRG(t)

Figure 4.29 The 2-periodic Poisson kernel Pger for Q) € {5,10, 20}
(top) and the corresponding approximations by convolution of
the periodic extension of the characteristic function of [-3, 1]
(bottom)

Poisson kernel for T = 2 and a few values of Q2. We also show the correspond-
ing approximations to the periodic extension of the characteristic function of
L4

There is another representation of the periodic Poisson kernel that we shall use.
To understand this representation, we think of the Poisson kernel as a function

of the two variables (Q, t). We then make a change of variable
R.o X [0, T] 3 (Q,t) — (729, 21d) € (0,1) x [0, 27],

calling the new variables (r, 0). The periodic Poisson kernel expressed in these
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coordinates is then

1-7r2
1—-2rcos6 +r?
which we think of as being a function on the unit disk in the plane, possibly the
complex plane. Note that r — 1 as O — co. Thus limits for large Q correspond
to approaching the boundary of the disk. This interpretation is explored .

PP (r, 6) =

. In Example 8.2.2—2 we determined the periodisation of the Gauss—-Weierstrass

kernel ,
exp(— 4t—Q

41 Q)

Ga(t) =

to be given by the infinite series

per-(Go)(t) = Z exp

nez.

( 4712(21’12) 2nint
- T2 e T,

This infinite series converges uniformly by the Weierstrass M-test. If we define

Ga,j(t) = jGaljt),

then (per;(Gq,j))jez., is an approximate identity. In Figure 4.30 we plot the pe-
riodic Gauss—Weierstrass kernel for T = 2 and a few values of Q). We also show

the corresponding approximations to the periodic extension of the characteristic

function of [-1, 1].

. In Example 8.2.2—-3 we determine the periodisation of the Fejér kernel

sin?(nQt)
t+0
F t — 20r 7/ 7
alt) {Q t=0.

In order to express this, for N € Z., and T € R.(, we define the periodic Fejér
kernel and the periodic Dirichlet kernel by

1 sin’(Nmtt)

er T . 9, +. 7 t ¢ Z(T)/
Frn(®) =N sin’(n$)
N, teZ(T)
and
sin(2N+1)m ) t¢ Z(T)

Dper (t) — sin(n%)
N {ZN +1, t e Z(T),

respectively. With these signals defined, we can then write the general form of
the periodisation of Fq:

per(Fo)(t) = £ (Z5Fh() + (1 = 25)DP_ (1),
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perp(Ga)(t)

1.0; 4

08l —

2)(t)

0.6 L 4

* perp(Ge

Il Il
-1.0 -0.5 0.0 0.5 1.0

Figure 4.30 The 2-periodic Gauss—Weierstrass kernel per(Gq)
for Q) € {1,5,20} (top) and the corresponding approximations
by convolution of the periodic extension of the characteristic

11

function of [-3, 5] (bottom)

where N € Z. is the smallest integer such that N > TQ). Note that, according
to Theorem 4.7.17 and our computations of Example 4.7.7-3, the sequence
(pery(Fia))jez., is an approximate identity for each ) € R,. In particular,
when TQ € Z, this shows that (%1—”1;?;,)1\162>0 is an approximate identity. In
Figure 4.31 we plot the periodic Fejér kernel for T = 2 and a few values of
Q). We also show the corresponding approximations to the periodic extension

of the characteristic function of [—%, %]. Note that in the plot given, TQ is an
integer, and so per,(Fq) = +F0 in this case.

4. In Example 8.2.2—4 we considered the periodisation of the de la Vallée Poussin
kernel

Va(t) =